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Foreword

Kummer’s work on cyclotomic fields paved the way for the development of
algebraic number theory in general by Dedekind, Weber, Hensel, Hilbert,
Takagi, Artin and others. However, the success of this general theory has
tended to obscure special facts proved by Kummer about cyclotomic fields
which lie deeper than the general theory. For a long period in the 20th century
this aspect of Kummer’s work seems to have been largely forgotten, except
for a few papers, among which are those by Pollaczek [Po], Artin—-Hasse
[A-H] and Vandiver [Val].

In the mid 1950’s, the theory of cyclotomic fields was taken up again by
Iwasawa and Leopoldt. Iwasawa viewed cyclotomic fields as being analogues
for number fields of the constant field extensions of algebraic geometry, and
wrote a great sequence of papers investigating towers of cyclotomic fields,
and more generally, Galois extensions of number fields whose Galois group
is isomorphic to the additive group of p-adic integers. Leopoldt concentrated
on a fixed cyclotomic field, and established various p-adic analogues of the
classical complex analytic class number formulas. In particular, this led him
to introduce, with Kubota, p-adic analogues of the complex L-functions
attached to cyclotomic extensions of the rationals. Finally, in the late 1960’s,
Iwasawa [Iw 11] made the fundamental discovery that there was a close
connection between his work on towers of cyclotomic fields and these
p-adic L-functions of Leopoldt-Kubota.

The classical results of Kummer, Stickelberger, and the Iwasawa-
Leopoldt theories have been complemented by, and received new significance
from the following directions:

1. The analogues for abelian extensions of imaginary quadratic fields in
the context of complex multiplication by Novikov, Robert, and Coates—
Wiles. Especially the latter, leading to a major result in the direction of the
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Foreword

Birch—-Swinnerton-Dyer conjecture, new insight into the explicit reciprocity
laws, and a refinement of the Kummer-Takagi theory of units to all levels.

2. The development by Coates, Coates-Sinnott and Lichtenbaum ofan
analogous theory in the context of K-theory.

3. The development by Kubert-Lang of an analogous theory for the units
and cuspidal divisor class group of the modular function field.

4. The introduction of modular forms by Ribet in proving the converse of
Herbrand’s theorem.

5. The connection between values of zeta functions at negative integers
and the constant terms of modular forms starting with Klingen and Siegel,
and highly developed to congruence properties of these constant terms by
Serre, for instance, leading to the existence of the p-adic L-function for
arbitrary totally real fields.

6. The construction of p-adic zeta functions in various contexts of elliptic
curves and modular forms by Katz, Manin, Mazur, Vishik.

7. The connection with rings of endomorphisms of abelian varieties or
curves, involving complex multiplication (Shimura-Taniyama) and/or the
Fermat curve (Davenport-Hasse-Weil and more recently Gross—Rohrlich).

There is at present no systematic introduction to the basic cyclotomic
theory. The present book is intended to fill this gap. No connection will be
made here with modular forms, the book is kept essentially purely cyclotomic,
and as elementary as possible, although in a couple of places, we use class
field theory.

Some basic conjectures remain open, notably: Vandiver’s conjecture that
h* is prime to p.

The Iwasawa—Leopoldt conjecture that the p-primary part of C~ is cyclic
over the group ring, and therefore isomorphic to the group ring modulo
the Stickelberger ideal. For prime level, Leopoldt and Iwasawa have shown
that this is a consequence of the Vandiver conjecture. Cf. Chapter VI, §4.

Much of the cyclotomic theory extends to totally real number fields, as
theorems or conjecturally. We do not touch on this aspect of the question.
Cf. Coates’ survey paper [Co 3], and especially Shintani [Sh].

There seems no doubt at the moment that essential further progress will be
closely linked with the algebraic—geometric considerations, especially via the
Fermat and modular curves.

I am very much indebted to John Coates, Ken Ribet and David Rohrlich
for their careful reading of the manuscript, and for a large number of
suggestions for improvement.

New Haven, Connecticut SERGE LANG
1978
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Notation

Z(N) = integers mod N = Z/NZ.

If A is an abelian group, we usually denoted by A4, the elements x € A
such that Nx = 0. Thus for a prime p, we denote by 4, the elements of order
p. However, we also use p in this position for indexing purposes, so we rely
to some extent on the context to make the intent clear. In his book, Shimura
uses A[p] for the kernel of p, and more generally, if A is a module
over a ring, uses A[a] for the kernel of an ideal a in 4. The brackets are
used also in other contexts, like operators, as in Lubin-Tate theory. There is
a dearth of symbols and positions, so some duplication is hard to avoid.

We let A(N) = A/NA. We let A® be the subgroup of A consisting of all
elements annihilated by a power of p.

xi



Character Sums

Character sums occur all over the place in many different roles. In this
chapter they will be used at once to represent certain principal ideals, thus
giving rise to annihilators in a group ring for ideal classes in cyclotomic fields.

They also occur as endomorphisms of abelian varieties, especially Jacob-
ians, but we essentially do not consider this, except very briefly in §6. They
occur in the computation of the cuspidal divisor class group on modular
curves in [KL 6]. The interplay between the algebraic geometry and the
theory of cyclotomic fields is one of the more fruitful activities at the moment
in number theory.

§1. Character Sums Over Finite Fields
We shall use the following notation.
F = F, = finite field with g elements, g = p™.
Z(N) = Z/NZ.
& = primitive pth root of unity in characteristic 0. Over the complex
numbers, ¢ = e2™/?,
Tr = trace from F to F,.

uy = group of Nth roots of unity.
A: F— p, the character of F given by

Mx) = e,

x: F* — y,_, denotes a character of the multiplicative group.
We extend y to F by defining y(0) = 0.

The field Q(uy) has an automorphism ¢ _; such that

o_1: =N



1. Character Sums

If o € Q(py) then the conjugate & denotes o_,a. Over the complex numbers,
this is the complex conjugate.
The Galois group of Q(uy) over Q is isomorphic to Z(N)*, under the map

c—>0,
where
o.: (= (-

Let f, g be functions on F with values in a fixed algebraically closed field of
characteristic 0. We define

S(f,8) = > f(e).

xeF

We define the Fourier transform 7/ by

If(y) = z SX)A(—xy) = Zf(x)a—'rr(xy)_

XEF

Then Tf is again a function on F, identified with its character group by 4,
and T is a linear map.

Theorem 1.1. Let f~ be the function such that f~(x) = f(—x). Then
T3 = qf~, that is

T’f(2) = qf(-2).
Proof. We have

T?f(2) = D, >, feIM = yx)A(—2y)
= D flx — 2) 2 M—x).

If x# 0 then yr> A(yx) is a non-trivial character, and the sum of the
character over Fis 0. Hence this last expression is

=qf(-2)

as desired.

We define the convolution f + g between functions by the formula
(f=8)») = > f(x)g(y — %)

A change of variables shows that

frg=gxf



§1. Character Sums Over Finite Fields

Theorem 1.2. For functions f, g on F we have
T(f=g) = (Tf)Tg)
T(fz) = éTf*ng.
Proof. For the first formula we have

T(f*g)2) = 2, (f* )X WM—2y) = > > f(¥)g(y — DU —z).

v

We change the order of summation, let t = y — x, y = x + ¢, and find
= 2, fA(=2) 3 g()(=21)
= (Tf)(Tg)2),

thereby proving the first formula.

The second formula follows from the first because T is an isomorphism
on the space of functions on F, so that we can write f = Tf; and g = Tg,
for some functions f;, g;. We then combine the first formula with Theorem
1.1 to get the second.

We shall be concerned with the Gauss sums (Lagrange resolvant)

S, A) = SG) = > 1@)Mu)

u

where the sum is taken over u € F*. We could also take the sum over x in F
since we defined y(0) = 0. Since A is fixed, we usually omit the reference to A
in the notation. The Gauss sums have the following properties.

GS 0. Let y, be the trivial character 1 on F*. Then

S(X1) =-1

This is obvious from our conventions. It illustrates right at the beginning the
pervasive fact, significant many times later, that the natural object to con-
sider is — S(y) rather than S(y) itself. We shall also write

S = S, ),

but the convention remains in force that even for the trivial character, its
value at 0 is O.

GS 1. For any character y # 1, we have Ty = y(—1S()x 2.



1. Character Sums

Proof. We have

Ti(y) = 2, XA~ yx).

If y = 0 then Tx(y) = 0 (summing the multiplicative character over the
multiplicative group). If y # 0, we make a change of variables x = —ty~2,
and we find precisely the desired value

x(=DSCx(y~H.
GS 2. We have S(§) = x(—1)S(x) and for y # 1, SG)S(F) = x(—1)g, so

SSQ) =g, fory# L.

Proof. Note that T%y = T(x(—1DS@)x™ %) = S@)S(x~Yyx. But we also
know that T%y = gy ~. This proves GS 2, as the other statements are obvious.

Over the complex numbers, we obtain the absolute value

ISGOI = ¢*=.

We define the Jacobi sum

T, x2) = — 2, 1(®)xe(l — ).

Observe the minus sign, a most useful convention. We have

J(1,1) =—(g - 2).
GS 3. If 132 # 1 then

= _S(XI)S(XZ)'
T, 1) = SOax2)

In particular, J(1, x3) = J(x1, 1) = 1. If y1x2 = 1 but not both 1, ¥
are trivial, then

J(1s x2) = x1(=1).

Proof. We compute from the definitions:
SGS() = 2, 2 1A + )
= Z ; 1x(y — X)A(y)
= 2, 2 (e = D) + 2. 1= ).

u#0



§1. Character Sums Over Finite Fields

If y,x2 # 1, the last sum on the right is equal to 0. In the other sum, we inter-
change the order of summation, replace x by ux, and find

> x@Aw) D (el — x),

thus proving the first assertion of GS 3. If y,x, = 1, then the last sum on the
right is equal to y;(—1)(¢ — 1), and the second assertion follows from
GS 2.

Next we give formulas showing how the Gauss sums transform under
Galois automorphisms.

GS 4. SOP) = S
Proof. Raising to the pth power is an automorphism of F, and therefore
Tr(x?) = Tr(x).

Thus S(y7) is obtained from S(¥) by permuting the elements of F under
x - xP. The property is then obvious.

Let m be a positive integer dividing ¢ — 1, and suppose that y has order m,
meaning that

1" = 1.
Then the values of y are in Q(u,,) and
S(X) = S(Xa '1) € Q(ﬂrm ”p)'

For any integer ¢ prime to m we have an automorphism o, ; of Q(tin, f,)
such that

Ge1:{—{¢ and o, is identity on y,.
For any integer v prime to p, we have an automorphism g, , such that
01, e+—>¢" and ¢, is identity on p,,.

We can select v in a given residue class mod p such that v is also prime to m.
In the sequel we usually assume tacitly that v has been so chosen, in particular
in the next property.

GSS. 0e1S() = S and 0,,S() = ¥(SQ)

Proof. The first is obvious from the definitions, and the second comes by
making a change of variable in the Gauss sum,

X v ix.



1. Character Sums

Observe that
01, M%) = TP = T = J(yx),

The second property then drops out.

The diagram of fields is as follows.

Q(tm, 1)

Q(um) Q(u,)

e

Q

From the action of the Galois group, we can see that the Gauss sum
(Lagrange resolvant) satisfies a Kummer equation.

Theorem 1.3. Assume that x has order m.

@) S lies in Q(pn).
(ii) Let b be an integer prime to m, and let 6, = 06, 3. Then S(x)°*~° lies in

Q(un).

Proof. In each case we operate on the given expression by an automorphism
0,,, with an integer v prime to pm. Using GS 5, it is then obvious that the
given expression is fixed under such an automorphism, and hence lies in

Q(ttm)-

§2. Stickelberger’s Theorem

In the first section, we determined the absolute value of the Gauss sum.
Here, we determine the prime factorization. We shall first express a character
in terms of a canonical character determined by a prime.

Let p be a prime ideal in Q(y,_;), lying above the prime number p. The
residue class field of p is identified with F = F,. We keep the same notation
as in §1. The equation X?~! — 1 = 0 has distinct roots mod p, and hence
reduction mod p induces an isomorphism

ﬂq-—l‘i)F* = F*

Phrased another way, this means that there exists a unique character @ of
F* such that

o(w) mod p = u.

This character will be called the Teichmuller character. This last equation
will also be written in the more usual form

o(u) = u (mod p).



§2. Stickelberger’s Theorem

The Teichmuller character generates the character group of F*, so any
character y is an integral power of w.
We let

n=2¢—1.

Let ¥ be a prime ideal lying above b in Q(u,_;, 4,). We use the symbol
A ~ Bto mean that 4/B is a unit, or the unit ideal, depending whether 4, B
are algebraic numbers or (fractional) ideals. We then have

P~ Pl

because elementary algebraic number theory shows that p is totally ramified
in Q(e), and p is totally ramified in Q(u,_1, fi,).

Let £ be an integer, and assume first that 0 < k < g — 1. Write the
p-adic expansion

k=ko+kip+---+ ky1p"?

with 0 < k; < p — 1. We define

s(k) = ko + ky +- -+ ky_s.

For an arbitrary integer k, we define s(k) to be periodic mod g — 1, and
defined by the above sum in the range first assumed. For convenience, we also
define

'y(k) - kQ!kll‘ . 'kn._]_!

to be the product of the k;! in the first range, and then also define y(k) by
(g — )-periodicity for arbitrary integers k. If the dependence on g is
desired, one could write

Sso(k) and (k).
Theorem 2.1. For any integer k, we have the congruence

S(w~¥, ety —1
E—"—I)SW = Tk) (mod GB)

In particular,
ordg S(w~%) = s(k).

Remark. Once more, we see how much more natural the negative of the
Gauss sum turns out to be, for we have

— Sk A _ 1
Seh 5 (mod )

with 1 instead of —1 on the right-hand side.



1. Character Sums

Proof of Theorem 2.1. If k = 0 then the relation of Theorem 2.1 is clear
because both sides of the congruence to be proved are equal to —1. We

assume 1 < k£ < g — 1, and prove the theorem by induction. Suppose first
that k = 1. Then

S(CO - k) — Z w(u) ~1gTr(w

u

— Z o)~} 1 + m)Tw®
= > 0@ (1 + (Trwn + 0(x?)
(interpreting Tr u as an integer in the given residue class mod p). But

0@ *Trw) = u (@ + u® +- -+ " ) mod B
L+wr~t gyl

I

Each u — 4#'~1 is a non-trivial character of F*. Hence

> @) Tr@@) = ¢ — 1 = —1 (mod B)
and therefore

&a;rj = —1 (mod B)

thus proving the theorem for k = 1.
Assume now the result proved for k — 1, and write
w—k — w——lw—(k—l)
for 1 < k < g — 1. We distinguish two cases.
Case 1. p|k, so we can write k = pk’ with 1 < k' < g — 1. Then trivially
s(k) = s(k’) and (k) = (k)

because k has the same coefficients k; as k', shifted only by one index. Let
o, = 0,1, SO 0, leaves ¢ fixed. Since

7,5(@7*) = S(@™*) = S(w™"),
we find that applying o, to the inductive congruence

Sl %) -1
W—— = m (mod ;,B)

yields a proof for the present case, because o, is in the decomposition group
of B, whence ¢,B = B.’

8



§2. Stickelberger’s Theorem

Case 2. pt k. Then 1 < k,. Furthermore,
sk) =s(k —1)+1 and yk — 1) = (ko — DV ky!-- k1l
Then

S % S lo~*Y) _ So?) So-%"b) -1
50 = 5 = T %D J(m 3, @~ *-D)
= .1 —1 (mod B)
B Yk — D) J(0™ ! o~%"D) '

To conclude the proof, it will suffices to get the right congruence for J. We
use GS 3 from §l, to get:

—~J(@™Y, @~ %V) = > u~}(1 — u)~*-D+2-1 (mod ),

and the sum is at first taken for u # 0, 1, but with the additional positive
exponent g — 1 which does not change anything, we may then suppose that
the sum is taken for # # 0 in F. Hence we get further
a=k —k
=5 > (-1)!(" _ )u"l.
j= J

u#0 o
If j# 1 then 3 u/~! = 0, so we get the further congruence
—J(@™ 0~ * V) = (=1)g — k(g — ) =—ko (modP),
thereby proving the theorem.

Having obtained the order of the Gauss sum at one prime above p, we also
want the full factorization. Suppose that m is an integer >1 and that p { m.
Let p be a prime ideal above p in Q(u,,) and let

Np =g =p-
Let & be an integer such that

p f i has order m in Q/Z.

Let {¢) denote the smallest real number >0 in the residue class mod Z of a
real number ¢. Let

G = Gal(Q(un)/Q).

Define the Stickelberger element in the rational group ring

) = 5 (GEg Yo e a6




1. Character Sums

Let B be the prime ideal in Q(u,, 4,) lying above p. Let w as before be the
Teichmuller character on F}. We let g, = o,;.

Theorem 2.2. We have the factorization
S(w™F) ~ PE-1OED A oD

Proof. We have

orde; P S(w~*) = ordg o.S(w™%)
= ordg S(w~*°)
= s(ke)

by Theorem 2.1. On the other hand, the isotropy group of p in the Galois
group G consists of the powers

{o,4 for i=0,...,n— L

Hence in the ideal p®® the prime o, 'p occurs with multiplicity

"/ kept >
iZO <q -1

Hence to prove Theorem 2.2 it will suffice to prove:

Lemma 1. For any integer k we have

)= -3 (2

Proof. We may assume that 1 < k < ¢ — 1 since both sides are (g — 1)-

periodic in &, and the relation is obvious for £ = 0. Since p* = 1 (mod g — 1)
we find:

k=ko +kip +- -+ kpap"?
Pk=ky i +kop +---4 kn_op" ' (modg — 1)
PPhk=kn s+ ky1p+t -+ kygp't(modg —1)

Hence

_ right-hand side of ith equation_
q— 1 qg—1
Summing yields

_s®A+p4---+pY
q—l q-—l

thereby proving the lemma.

10



§2  Stickelberger’s Theorem

In Theorem 2.2 we note that the Gauss sum is not necessarily an element
of Q(u,), and the equivalence of ideals is true only in the appropriate ex-
tension field. Similarly, the Stickelberger element has rational coefficients.
By the same procedure, we can both obtain an element in Q(u,,) and a corre-
sponding element in the integral group ring, as follows.

For any integers a, b € Z and any real number t, we have
bt> —<Kbt>eZ and <at) + <bt) — {(a + b)t)> e Z.
The proof is obvious. Let us define R = Z[G], and
I = ideal of R generated by all elements 6, — b with b prime to m.
Then the above remark shows that
16 < R = Z[G].

Although we won’t need it, we may prove the converse for general insight.
The matter is analyzed further in Chapter 2, §3.

Lemma 2. We have I0 = RO N R.

Proof. Note that m € I because
m=—(014sm — (1 + m)).
Suppose that an element of R@ lies in R, that is

> z(b)of e R
with z(b) € Z. Then

S z(b)<%c> eZ forallc

whence
> z(b)b = 0 (mod m),

and Y z(b)b is in 1. But then
> 2b)a, = > 2(b)(o, — b) + > z(b)b
is in I, thus proving the lemma.

It will be convenient to formulate the results in terms of the powers of one
character, depending on the integer m. Thus we let

— . —(Np-
qp = wp Np-Dim

11



1. Character Sums

where wy is the Teichmuller character. We define the Stickelberger element

of level m by
0(m) = z <£>a;1.
ceZ(m)* m

As a special case of Theorem 2.2, we then obtain the factorization
FAC 1. S(xp) ~ pom,

Therefore, if b is an integer prime to m, and g, = 03,5, then
FAC 2. S(xp)t =% ~ plme-op,

In FAC 2 the algebraic number on the left lies in Q(y,,), and the group ring
element 8(m)(b — o) lies in Z[G], namely

O A OO

Thus we have the ideal factorization of the (b — o,)-power of the Gauss
sum in terms of powers of conjugates of the prime p in Q(u,,).

We return later to the application of this factorization to the study of the
ideal classes in the cyclotomic field, but it is worth while here to mention the
simplest consequence. In every ideal class there exists an ideal prime to m.
Since the ideal

PRRICREN

is principal for every prime p { m, we find:

Theorem 2.3. Let € be the ideal class group of Q(u,). Then for all b prime
to m,

(b — a,)b(m)

annihilates €.

For each integer r let

o= 3Gy

We are now allowing r to have common factors with m. Let:

A = module generated over Z by all elements 60, with r € Z, called the
Stickelberger module,

& = M N R, called the Stickelberger ideal.
Observe that . is also an R-module.

12



§2. Stickelberger’s Theorem

Theorem 2.4. The Stickelberger ideal annihilates the ideal class group of
Q).

Proof. Let
o = z z(r)0.(m) e R

T

be an element of the Stickelberger ideal, with z(r) € Z, and the sum taken with
only a finite number of coefficients # 0. Then

z z(r)r = 0 mod m.

T

By Theorem 2.2 we have the factorization

1__[ S(XPT)ZU) ~ pu,

and it is immediately verified that the left-hand side lies in Q(y,,) by using
GS 5 of the preceding section. This proves the theorem.

Next we look at the Jacobi sums. If d is an integer, then d operates in a
natural way on R/Z by multiplication. We denote this operation by [d].
Thus on representatives, we let

[dKet> = <dt), teR.
It is convenient to let
dlay, a;] = [ai] + [a5] — [a; + as)].

Recall the Jacobi sum for y,y, # 1:

JOs 22) = —S_g%)%_),

Let ay, a, be integers, @, + a, % 0 mod m. Then from FAC 1 we get:
FAC 3. J(Xpal Xpa'z) ~ pd[al,azlo(m)’

where

e, o) = 3 ({25 + (220 - (Bt edey)oon

and 4[a,, a;]0(m) € Z[G] lies in the integral group ring. We know that the
Jacobi sum lies in Q(y,,), so again we have an ideal factorization of an element

of Q(un)-
13



1. Character Sums

It will be convenient to introduce an abbreviation. Let
a = (ay, a,)
denote a pair of integers. We let
Ala,, a,]0(m) = 6(m)[a,, a;] = 0(m)[al.

In several applications, e.g., in the next section, the level m is fixed, and
consequently we omit m from the notation, and write simply

0(m)la] = Ola].
If d is an integer prime to m then trivially
o0[a]l = 6[da].

The next two sections are logically independent and can be read in any order.
They pursue two different topics begun in §2.

§3. Relations in the Ideal Classes

Let G = Gal(Q(i,)/Q), so that elements of G can be written in the form o,
with ¢ € Z(m)*. We recall the Stickelberger element

from formulas FAC 1 and FAC 2. Let

I = ideal of Z[G] generated by all elements b — o,, with integers b prime
to m.

Let p be prime number prime to the Euler function ¢(m). For instance, if
m = p itself, the prime p does not divide p — 1. The character group on G
takes its values in ¢(m)th roots of unity. We let ¢ = p™ be a power of p such
that ¢(m) divides ¢ — 1. We let o, be the ring of p-adic integers in the un-
ramified extension of Z, of degree n, so that v,/po, = o,(p) is the finite field
with p" = g elements. Then o, contains the ¢(m)th roots of unity. If m = p
then we take g = p and o, = Z,.

Let % be the ideal class group of Q(u,,), and ¥ its p-primary component.
We have an isomorphism

Z, Q6P x €,

The elementary divisors of ¥® over Z, are the same as the elementary
divisors of

0, Q €® over o,

14



§3. Relations in the Ideal Classes

If 4 is an o,ideal, on which G operates, we let A(x) be the y-eigenspace.
We let

I, = v,-ideal generated by all elements » — y(b) with integers b prime to m.
By abuse of notation, we write often y(b) instead of x(¢,). The important
special case we shall consider is when m = p, in which case it is easy to

determine 7,. We assume p > 3.

Lemma 1. (i) If x = w is the Teichmuller character, then I, = (p).
(ii) If y is non-trivial and not equal to the Teichmuller character, then

I, = (1)

Proof. For (i), we can take an integer b of the form

b={+ pu

where u is a p-adic unit, and { = w(b)isa (p — 1)th root of unity. This makes
(i) clear, and (ii) is obvious, from the definitions.

In the next sections we shall deal with Bernoulli numbers systematically.
For the moment, we need only a special case, so we define ad hoc the first
Bernoulli polynomial

B(X)=X-1%

and the first Bernoulli number B, = —1, its constant term. For any function

f on Z(m) we define
no= 3om(CGE))

N OR

If x is non-trivial, then 3 y(c¢) = 0, and hence in this case,

R XC

Then in the present terminology, Theorem 2.3 can be reformulated as
follows.

In particular,

Theorem 3.1. For non-trivial y, the ideal B, ;I, annihilates €®(y).

15



1. Character Sums

Corollary 1. Assume that m = p is prime >3. If y is not equal to the
Teichmuller character and is non-trivial, then

ord By ;I, = ord B, ;.

Proof. Immediate from the lemma and the theorem.

Corollary 2. If y is equal to the Teichmuller character then B, ;I, = (1),
and € (y) = 0.

Proof. Mod Z,, we have the congruence

i = —1 (mod Z,).

’EI»—-

Z co(e)™ ! =

Hence B, ; has a pole of order 1 at p. Lemma 1(i) concludes the proof.

"tsl»—t

Corollary 3 (Herbrand’s theorem). Assume again that m = p. Let y = w*~¥,
with2 < k < p — 2. If € (y) # O, then p|B,,, where B, is the kth Bernoulli
number.

Proof. In the next chapter Theorem 2.5, we shall prove the congruence

1 By yien = 1 By (mod p)

for k in the given range, and any positive integer n. By Corollary 1, we know
that B, ; annihilates ¥®(y), and

B, ; = By ,*-1 Bk (mod p).

=k
If p does not divide B,, it follows that B, ; is a p-unit, whence €®(y) = 0, thus
proving Herbrand’s theorem.

The converse of Herbrand’s theorem has been proved by Ribet [Ri].
For analogues on the modular curves, see the [KL] series, especially [KL 6].

The reader interested in pursuing the ideas of this section may skip the
rest of this chapter, read the first section of Chapter 3, and then go to
Chapter 5.

§4. Jacobi Sums as Hecke Characters

Let { throughout this section be a fixed primitive mth root of unity. We con-
sider the additive group

Z(m)® = Z(m) x Z(m),
of order m? Its elements will be denoted by

a = (a]_, az), b = (b19 bg).
16



§4. Jacobi Sums as Hecke Characters

The dot product is the usual one, a-b = a6, + a.b,. For any function f on
Z(m)® we have its Fourier transform f, and the inversion formulas:

*) fla) = gﬂb)cm

**) f8) = =53 fla e,

whose verifications are simple exercises.
For any prime ideal p in Q(u,,) not dividing m, and a € Z(m)® we define

J(a, p) = J(p™, xp®).

We extend the definition to fractional ideals of Q(u,,) prime to m by multi-
plicativity, thus defining J(a, a) for all a prime to m. We have:

J 0. J,p) = —-(Np — 2).

We get J(0, a) by multiplicativity. We also need the congruence
J1. J(0, a)Na = 1 mod m?.

By multiplicativity it suffices to prove it for prime ideals. In that case it is
immediate, since m divides Np — 1, and by J 0,

—(Np — 2)Np =1 — (1 — Np)%

If a,, or a,, or a; + a, = 0 mod m, then we shall say that a is special.
Otherwise we say that a is non-special. The absolute value of the Gauss sum
determined in GS 2 immediately implies a corresponding result for the Jacobi
sum, namely:

J2. J(a, a)J(a, a) = Na if a is non-special.

If a is special, a # 0, note that J(a, a) = 1 or —1. In all cases, we have
J3, J@, ) = =D @yl — u) = D J@, p)e
u b

where the Fourier coefficient —J(b, p) is the number of solutions u of the
equations
@) =T and  yp(l —u) = (P2

17



1. Character Sums

By multiplicativity, it follows that the Fourier coefficients J(b, a) are integers
for arbitrary a, that is

J(b, a) € Z.

For the rest of this section, it will be convenient to assume that all number
fields are contained in the complex numbers.

We have seen that 0[a] is in the integral group ring Z[G]. For any non-zero
element a € Q(u,,), we let

w(a, @) = J(a, (o))~ if a is non-special,
w(a, a) = J(a, (&) if a is special, a # 0
w(0,a) = 1.

As usual, (o) is the principal (fractional) ideal generated by «.
If d is an integer prime to m, then trivially from GS 5,

oJ(a, a) = J(da, ) and o.w(a, o) = w(da, o).

Theorem 4.1. The algebraic number w(a, o) is a root of unity.

Proof. As () ranges over all principal fractional ideals, the numbers
w(a, o) form a group. It will therefore suffice to prove that these numbers
have absolute value 1, for then their conjugates also have absolute value 1,
and these numbers form a finite group. In case a is special the theorem is
true by definition. Otherwise we can use J 2, so that

J(a, ()J(a, («)) = Na.

On the other hand, the product of a®® and its conjugate is equal to N«
under the hypothesis that @; + a, # 0 mod m. Indeed, we have

0la) + O[-a] = > (<E’;£> N <%c> _ <(a1 —;laz)c>)ac_1
K (- (e

If ¢ is a real number and not an integer, then
) +LK-t) =1,
and

ot
csZ(m)'

18



§4. Jacobi Sums as Hecke Characters

operates multiplicatively like the absolute norm. The desired relation for the
product of %4 and its conjugate follows at once. The theorem follows by
using J 2, the analogous relation for the Jacobi sums.

The next theorem was proved originally by Eisenstein for prime level, and
by Weil [We 2] in the general case, which we follow.

Theorem 4.2. If o is an algebraic integer in Q(u,), and o = 1 (mod m?)
then for all a we have w(a, a) = 1, that is,

J(a, (@)) = o,

Proof. We fix a and view J, w as functions of @, omitting « from the nota-
tion. In the Fourier inversion relation, we know that the Fourier coefficients
J(b) are integers. But o = 1 (mod m?) implies that

w(a) = J(a) (mod m?).

This is obvious from the definition if @ # 0, and follows at once from J 1
if @ = 0. Hence w(b) is an algebraic integer for all 5. Furthermore, for d
prime to m,

0ah(B) = -3 . oaw(a) 4o

1
= =3 > w(da); e

= w(b).

It follows that w(b) € Z for all b. Now by the Plancherel formula,
. 1
2101 = 25 2, @)l

Since we know that |w(a)|2 = 1, and w(b) is an integer for all b, it follows that
w(b) # 0 for a single value of b, and is 0 for all other values of b. In particular,
for this special b,

w(a) = w(b)e.
But w(0) = 1, so w(b) = 1. Putting @ = (1, 0) and a = (0, 1) we get:
w(l,0)=J(1,0)=1 and w(l,0) =
w0,1) =J0,1) =1 and w(0,1) = (.
It follows that
w(a) = 1
for all @, thus proving the theorem.
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1. Character Sums

§5. Gauss Sums Over Extension Fields

We prove in this section a theorem of Davenport-Hasse [D-H].

Theorem 5.1. Let F = F, be the finite field with q elements, and let E be a
finite extension. Let

Tgr and Nggp
be the trace and norm from E to F. Let

Xe = XoNgr and Ag = AoTgp.
Then
—Sg(Xe> 48) = (—S(x, APF

Proof. Let m = [E : F]. For any polynomial
f(X) = Xn + Can_l + ° + CO

with coefficients in F, define

Y(f) = Me)x(co)-
Then

¥ : Monic polynomials of degree > 1 over F— F

is a homomorphism, i.e., satisfies

¥(f2) = v W (g)

We write n(f) = deg f. From unique factorization we have the formula

1
L+ 200% = | =y

where the product is taken over all monic irreducible polynomials over F.
Suppose f'is of degree 1, say f(X) = X + c. Then we see that

> WX = S(x, HX.

=1

On the other hand, if # > 2 we have

> vNxX"=0.

nfH=n

Indeed,
2, YN =g Mew) D x(eo),

aH=n
and the sum over ¢, in F on the right is 0, as desired.
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§5. Gauss Sums Over Extension Fields

Therefore we find

Mutatis mutandis, using the variable X™ instead of X, we get

1
) 1+ Se(te, A)X™ = 1;[ [ o)X @

where the product is taken over all monic irreducible polynomials Q over E,
and

¥u(Q) = x(co(@NAx(ci(Q)).

We shall write the product over Q as

I[T=1I11

Q P QiP
Each irreducible polynomial P splits in E into a product
P=0; -0,
Let n = n(P) = deg P. Then
deg Q = n/r.

If « is any root of P, then [F(«): F] = n and the field F(«) is independent of
the chosen root. We have the following lattice of fields.

E F(x)
F' = En F(o)
F

All the polynomials Q; are conjugate over F, and their coefficients generate
the field F' = E N F(a), of degree r over F. We have

r = (m, n).
These facts are all obvious from elementary field theory. Since

N, EIF = NF’/F ° NE/F', TEIF = T, F'|F ° T EIF’>

and
NF'/FC'O(Q) ="¢o(P), Trypei(Q) = a(P),
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1. Character Sums

we get

V(Q) = (qlco(P))A(cy(P)))E:F1
= w(P)m/r'

With a view towards (2), we conclude that

3) ][:l;:[ 1 - ],[/E(Q)an(Q)) =1 - l/I(P)m/ern/r)f
= [T @ - yexxy
mir=1

= 11 a—v@exn.

For this last step, we observe that the map
&

gives a surjection of p, — p,,, and the inverse image of any element of
Umr 18 @ coset of y, since ¥ = (m, n). This makes the last step obvious.
Substituting (3) in (2), we now find

1 4+ Se(xe, Ag)X™ =

1
ﬂ H 1 = y(@P)EX)"™)
=T 1 @+ S Hex)
gm=1

=1 + (= D)™*1S(y, HmX™,

This proves the theorem.

§6. Application to the Fermat Curve

Although we do not return in this book to the applications of Gauss sums to
algebraic geometry, we cannot resist giving the application of Davenport—
Hasse [D-H], Hua-Vandiver [Hu-V], and Weil [We 1], [We 2], [We 3] to
the computation of the zeta function of a Fermat curve.

We keep things to their simplest case, the method applies much more
generally. We consider the Fermet curve ¥V = V{(d) defined by

xt+ 2+ 28 =0,

with d > 2, defined over a finite field F with g elements. Again for simplicity,
we suppose that d divides ¢ — 1, and therefore dth roots of unity are con-
tained in F.

We let w: F* — p,_, be the Teichmuller character, and

x = character such that y(u) = w(w)@ v/,
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§6. Application to the Fermat Curve

If a is an integer mod d, we let x*(z) have the usual value if ¥ # 0, and for
u = 0 we let:

20 =1 ifa=0,
10 =0 ifa#0.

For u in F, we let:

Ny(u) = number of solutions x € F such that x¢ = u.

Then
1 ifu=0
Nyw) =<0 ifu# 0, uis not dth power in F
d ifu # 0, uis dth power in F.
Therefore

N = > 2.

a mod d

Theorem 6.1. Let N be the number of points of V(d) (in affine space) in the
field F. Then

N=¢2— (g — DD 3 (=G 1)

The sum is taken over integers a, b satisfying 0 < a < dand 0 < b < d,
and a + b # 0 (mod d).

Proof. We have

N=> > xrl@rrmw)

a,b,c L(u,v,w)=0

where the sum over u, v, w is taken over triples of elements of F lying on the
line

u+v+w=0.

The sum over a, b, ¢ is taken over elements in Z mod 4.

The term for which a = b = ¢ = 0 yields a contribution of g2, that is the
number of points on the line in F.

Next, suppose that in the remaining sum, one of a, b, ¢ is 0 but not all are
0in Z/dZ. Say a = 0 but b # 0. Then we may write the sum

= > Xrwrmw > @)

u+v+w=0 certain u,w allveF
and the sum on the far right is 0. This shows that all the terms in the sum
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1. Character Sums

with one, but not all, of 4, b, ¢ equal to O give a contribution 0. Hence we get

N=¢+ 3 D X@rrm)

O<a,b,c<d u+v+w=0

where the sum over a, b, c is taken over positive integers satisfying the in-
dicated inequality.

If w = 0 then x°(w) = 0. We may therefore assume that in the inner sum,
we have w # 0. We then put

u=uw and v = v'w.

The inner sum then has the form

> Ar(w) @) @).
w#0 wWHv'=-1

Ifa + b + ¢ # 0 mod d, then the sum on the left is 0. Otherwise itisqg — 1,
which we assume from now on. Since 0 < 4, b, ¢ < d, there is no such triple
(a, b, ¢) with a + b = 0 mod d, because any accompanying ¢ would have to
equal 4. Hence the sum over a, b, ¢ is for a + b # 0 mod d, and then ¢ is
uniquely determined. Changing back the variables #’, v’ to ¥” = —u', v" =
—v" and taking into account the value of the Jacobi sum yields the expression
as stated in the theorem.

Let N be the number of points of ¥(d) in projective space in the field F.
Then

N=1+ (g — DN.

Therefore we obtain:
Corollary. N=1+gq- Z“a»b
where a,, = x* (= 1DJ(% x°), and (a, b) are as in Theorem 6.1.

Let N, be the number of points of V(d) in projective space over the field
F, of degree v over F. The theorem applied to F, instead of F yields an
analogous expression, the character y being replaced by yx, such that for
uek,,

Xv(u) = w(u)(qv -Lid — w(u)(qv— D@-Dig-1d — (D(ul +q+etg¥e 1)(q - 1)Id.

This last expression is nothing but y composed with the norm map, in other
words, it is precisely the character lifted to the extension as in the preceding
section. The additive character is also lifted in a similar fashion. Therefore
by Theorem 5.1 we find

N,=1+gq" - Zaf,,b.
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§6. Application to the Fermat Curve

Note that the power of y(— 1) also behaves in the same way as J when lifted
to F,. Indeed, if q is odd then

l1+g+---+¢""*=vmod?2,

and ifg iseven, then 1 = —1in F.
The zeta function Z(V, T) is defined by the conditions

Z'|ZT)=-Y N,T'-* and Z(0) = 1.

It is then immediate that

= 110 = %,7)
AVDD = g =1y = g1y

This is best seen by taking the logarithmic derivative of the last expression
on the right-hand side. The operator

fe=rif

is a homomorphism, so we take the operator for each linear term. Inverting
a geometric series we see that the logarithmic derivative of the last expression
on the right-hand side has precisely the power series

> NI

Since it has the value 1 at T = 0, it is the unique function having the desired
properties.

If finally one starts with the Fermat curve defined over the field of dth
roots of unity, and one reduces mod primes p not dividing d, one can take
the product of the zeta functions for the reduced curve over the correspond-
ing finite field. Then as Weil remarked, since the Jacobi sums are Hecke
characters, it follows that the Hasse zeta function

(v, s) = ngZ(V(d), Np~9)

is equal to a Hecke L-series (up to the obvious factors of the zeta function of

Q(uy) at sand s — 1).
The computation of solutions in finite fields works in essentially the same
way for diagonal equations

alxld1 +eet arxrd' = O,
as in Hua—Vandiver [Hu-V] and Weil [We 1, 2, 3]. The additional connection

with the Hasse zeta function for the curve over number fields was made by
Weil.
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Stickelberger Ideals and
Bernoulli Distributions

The study of ideal classes or units in cyclotomic fields, or number fields
(Iwasawa, Leopoldt), of divisor classes on modular curves (e.g., as in [KL]),
of higher K-groups (Coates-Sinnott [Co 1], [Co 2], [C-S]) has led to purely
algebraic theorems concerned with group rings and certain ideals, formed
with Bernoulli numbers (somewhat generalized, as by Leopoldt). Such ideals
happen to annihilate these groups, but in many cases it is still conjectural
that the groups in question are isomorphic to the factor group of the group
ring by such ideals.

However, it is possible to study these ideals, the structure of their factor
group, and the orders of the factor groups in the group ring, without any
allusion to the applications to ideal classes, divisors, or units. This chapter
gives the foundations for such study, applicable to many contexts.

The first section gives Iwasawa’s computation of the index of the Stickel-
berger ideal for k = 1, directly applicable to the ideal class group in cyclo-
tomic fields. Next we deal with the basic theory of Bernoulli numbers and
polynomials, and especially integrality theorems of Mazur and Coates—
Sinnott. The sections concerning Stickelberger ideals for & > 2 are taken
from Kubert-Lang [KL 8]. The last sections on distribution relations are
from [KL 5] and Kubert [Ku].

For a discussion of conjectures in the case of totally real number fields, cf.
Coates [Co 3], [Co 4], and the very general conjectures in Coates—Lichten-
baum [C-L].

The present chapter is organized so that a reader interested especially in
the structure of the ideal class group in the cyclotomic tower (the basic sub-
stantial example of the theory) can read the first section, and then can go
immediately to Chapter 3, followed by Chapter 5 without impairing the
logical understanding of the material. I followed this pattern when I taught
the course in 1977.
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§1. The Index of the First Stickelberger Ideal

On the other hand, a reader especially eager to get into p-adic L-functions
can concentrate on this chapter and then read Chapter 4 as a continuation
omitting Chapter 3. Only the section on the p-adic regulator in Chapter 4 is
related to Chapter 3. Chapter 2 may then be interpreted as giving the basic
congruence properties of Bernoulli distributions, and Chapter 4 gives
essentially more (p-adically) global measure theoretic properties.

A third alternative is to see Chapters 3 and 4 as forming a pair, describing
side by side the complex and p-adic class number and regulator formulas
originally conceived by Leopoldt.

§1. The Index of the First Stickelberger Ideal

Let G ~ Z(m)* be the Galois group of Q(u,), and assume that m is the
conductor of that field, so that m > 1, m is odd, or m is divisible by 4. We
let

M = % order of G ="1¢(m).
We let
R=1Z[G], e =31-0.1), & =31+0_y).

For any G-module, we let 4~ be the (— 1)-eigenspace for ¢_;. Then multipli-
cation by ¢~ is the projection operator on this eigenspace (provided 2 is
invertible), and ¢~ is the associated idempotent in the group algebra.

Lemma 1. We have R- =2e"R=(1 — 6_;)R and
(eTR:R~) =2M,

Proof. The inclusion (1 — 6_;)R < R~ is clear. Conversely, let P be a set
of representatives in Z(m)* for Z(m)*/ £ 1. Let

o= ZZ(c)ac‘1 €R~

with coefficients z(c) € Z. Thus ¢_,& = —a. Then z(—c¢) = —z(c). If we let

B =2 o,

ceP

then o = (1 — o_,)B, thereby proving the lemma, because ¢” R is a free
abelian group of rank M.

We recall the primitive Stickelberger element

0= > <5>a:1-
ceZ(m)* m
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2. Stickelberger Ideals and Bernoulli Distributions

We have written 6’ instead of 0 because we are now setting more permanent
notation, and there is a more canonical element which has priority, namely

= eN _ o < -1
1=2(GE) =) = 2 G
It is immediately verified that
*) e 0 =6, andso 0 =0".

We are interested in RO N R. The next lemma does away with a possible
alternative definition of this ideal.

Lemma 2, RONR=(RINR)".
Proof. Let T = RO’ " R. Clearly

T-<¢ RI=RO and T~ <R,

so the inclusion > is obvious. Conversely, let @ € RO N R. It will suffice to
prove that o € RO’ (because o € R and o0 = a~). Write

o= Zz(b)abf) = Z}b:z(b)(<f—§> — %)6{1.

From the hypothesis that o has integral coefficients, we conclude that

be 1\ _
Z 2(b) (E - E) = 0 (mod Z)
for all ¢ prime to m, so that
1 1
-~ ; 2B)b = 5 b 2(b) (mod Z).
We contend that
> z(b)b = 0(modm) and » z(b) = 0 (mod 2).

This is obvious if m is odd. Suppose m even, so m is divisible by 4. Write
m = 4m,. Each b is odd, and

> z(b)b = 0 (mod 2m,)
so > z(b) is even. Then

> 2(b)b = % 2(b) (mod mZ),

thus proving also the first congruence. Only the second will be used.
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§1. The Index of the First Stickelberger Ideal

Now let s(G) = 2 ¢ be the sum of the elements of G in the group ring,
and note that

e*0’ = 1s(G) and (1 + o_.)0" = s(G).
Then
@ = z(b)oe=0" = > z(b)o(1 — &*)0’
= > 2(B)of’ — > z(b)oe* o’
= 2 2(b)a0’ — 3 2(6)4s(G).

Substituting s(G) = (1 + 6_,)8" on the right and using 5 z(b) even shows
that o lies in R@#', and concludes the proof.

It is of interest to determine the index arising from Lemma 2. This is done
in the next lemma. We let as usual:

w = number of roots of unity in Q(u,,).
Lemma 3. (RO:RONR)=w.
Proof. We define a homomorphism

T: RO~ 7/7.
w

by mapping an element of the group algebra on its first coefficient mod Z.
In other words, if

o= z a(c)o,,

we let T = a(1). Note that

T®) = - — %(mod ),

1
m

and therefore that T is surjective. It now suffices to prove that its kernel is
RO N R. But we have

0,00 = baf (mod R),
whence for odd b prime to m, and « € R, we get

T(o,x0) = bT(a6) (mod Z).
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2. Stickelberger Ideals and Bernoulli Distributions

If of is in the kernel of T, it follows that a6 also lies in R, thereby proving the
lemma.

We now assume that m = p" is a prime power. Then
& =RONR

is called the Stickelberger ideal. We want to determine the index

(R™: &).

B 2 00m((5))

for any character y on Z(m)*. Let ' be the primitive character associated with
%, and let m’ be its conductor. Then it is easy to verify that if we replace m by
m’ and y by x' in the right-hand side, we obtain the same value, so B, , is
independent of whether we view y as primitive character, or simply a charac-
ter on Z(m)*. (The above fact is a special case of the distribution relation,
discussed in the next section.)

Next, we shall use the fact that

Define

X(e) = Bl,x # 0

for odd characters y. For primitive y the non-vanishing of B, , comes from
its relation with the L-series, and will be briefly recalled in Chapter 3. Cf.
also [L 3], Chapter 14, Corollary of Theorem 2.2.

Lemma 4. (RO : Rmb) = m™.

Proof. This is obvious if one can show that RO is a free abelian group of
rank M. When m is a prime power, this results from the fact that for odd x
we have

20) = By, # 0.

We shall analyze (R~ : %) by the sequence of groups and subgroups
shown in the following diagram.

2M

&R —5— R~ 31— &

MMH—BL: U U w

Xodd

Rmb T RO
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§1. The Index of the First Stickelberger 1deal

We have shown the inclusion relations, and we have also indicated the in-
dices. All of them have been proved, except the one on the left-hand side.
This will be the item in the final lemma, and we then find:

Theorem 1.1 (Iwasawa). Assume that m is a prime power. Then

R~ :9) =wl] ~ 3By

x odd

Remark. Even though some inclusions go opposite to each other in the
diagram, to compute indices one still has multiplicativity, with opposite
inclusions occurring with opposite exponents. Cf. §4 if you don’t find this
obvious.

Lemma 5. (6"R:&e"Rmb) = +m™ H B, ,.

xodd

Proof. First observe that the sign is whatever is needed to make the right-
hand side positive. Multiplication by ¢~mf is an endomorphism of QR™,
which is a semisimple algebra, decomposing into a product of 1-dimensional
algebras corresponding to the odd characters. Consequently we find

det(e=mf) = [ | x(m6) = m™ [ | By,,.

xodd xodd

On the other hand, ¢~m0 maps ¢~ R into itself, and by standard elementary
linear algebra, the index is given by the absolute value of the determinant.
This proves the lemma, and the theorem.

Remark. In Chapter 3 we shall prove that the index computed in Theorem
1.1 is the order of the (— 1)-eigenspace of the ideal class group in the cyclo-
tomic field, denoted by 4. The analytic class number formula will show that
the product of — B, , yields the positive sign.

The theorem and its proof are due to Iwasawa [Iw 7]. It was generalized
to composite levels m by Sinnott [Si]. In the composite case, one cannot deal
any more with a single element 6, but one has to deal with the module
generated by Stickelberger elements of all intermediate levels

2. 5())

for all divisors d of m. A similar situation had already arisen in the analogous
situation in dimension one higher, concerning the Stickelberger elements
formed with B, rather than B,, in the Kubert-Lang series [KL 2], [KL 3],
[KL 5].
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2. Stickelberger Ideals and Bernoulli Distributions

§2. Bernoulli Numbers

We recall first some general notions concerning distributions, defined by
Mazur following the work of Iwasawa.

Let {X,} be a sequence of finite sets, and suppose given a sequence of
surjective maps

LTSRS Xn+1 g Xm
so that we can consider the projective limit
X—- o Xn+1 — Xn._). . e— Xl'

For convenience, we took our family of sets indexed by the positive
integers. In applications, it often occurs that the sets are ordered by the
positive integers ordered by divisibility. For instance, the family of sets
Z[NZ arises in the sequel. We shall also consider the projective family

{Z/p"Z},

with a fixed prime number p, andn = 0, 1, 2, .. .. In each case, the connecting
homomorphism

ry: Z/NZ -~ Z/MZ
for M|N is reduction mod M, denoted by r,,.

This type of projective family will also arise in isomorphic form as
follows. We have an isomorphism

%Z/z —~ ZJNZ

given by multiplication with N. We then have a commutative diagram

1
v Z/Z—~Z|NZ

N,Ml lm

I
ZIZ—>Z|ML

where the left vertical arrow is multiplication with N/M, and the right arrow
is reduction mod M. Thus the system

(o)

is also a projective system, ordered by divisibility.
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§2. Bernoulli Numbers

Let us now return to the general projective system { X,;}. For each n suppose
given a function ¢, of X, into an abelian group V. We say that the family
{p.} is compatible if for each n and x € X, we have

Pn(x) = z Pn+1()-

fp—1Y=X

The sum is taken over all the elements of X, ., lying above x. In what follows,
we often omit the subscripts, and write 7y = x, for instance.

Let K be a ring of operators on V. Let f be a function on X,, for some
integer m, with values in K. If n > m, then we view fas defined on X, through
the natural projection on X,,. We conclude at once from the compatibility
relation that

> f@enx) = > f)Pu().

xeXy XEX 1
Let X be the projective limit
X = lim X,
<

with the limit topology, so that X is a compact space. For each n we have a
surjective map

I,: X— X,.

For each x € X,, the inverse image r,; !(x) is an open set in X, and the totality
of such open sets for all n, x is a basis for the topology of X.

A function fon X is called locally constant if and only if there exists # such
that f factors through X,. Such functions are also called step functions, and
their group is denoted by St(X, K). For each such function, we can define its
integral

[rao =3 re0.,

x€Xp

independent of the choice of # such that f factors through X,. We then call
the family {¢,}, or the functional dp, a distribution on X. It is an additive map

do: SH{(X, K)—~ V.

Examples of such maps will be given later with Bernoulli numbers.

Let K be a complete field with respect to a non-Archimedean valuation,
and suppose that V is a non-Archimedean Banach space over K, i.e., Vis a
complete vector space, with a norm

| |: V—R*
satisfying
v + w| < max{|v|, |w|]} o,weV

levly = |elxlolv ceK veV.
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2. Stickelberger Ideals and Bernoulli Distributions

If ¢ is bounded, i.e., |@,(x)| is bounded for all n, x € X,, then we say that ¢
is bounded, or quasi-integral for the valuation. For any fe St(X, K) we have

|[740| < 111161,

where | /| is the sup norm of £, and ||¢|| is the sup norm of the values |@,(x)|.
Indeed, if f factors through X, then

fral-

by the non-Archimedean property, so our assertion is clear.

In particular, if fe C(X) is a continuous function on X, then we can
approximate f uniformly by a sequence {f,} of step functions, and since
If = fall =0, we get

LX)

xeXp

< max | f(x)] | ()|

Ifo = ful =0

for m, n — 0. Hence the integrals

ffn do

converge, and define the integral

fquo

for such a continuous function, provided that ¢ is bounded. This will be the
case in important examples, and bounded distributions are also called
measures.

All this is preliminary to defining the distributions which are of importance
to us, namely the Bernoulli distributions. If x € Z(N) then x/N can be viewed
as an element of Q/Z. For any ¢ € R/Z we let {¢) be the smallest real number
>0 in the residue class of t mod Z. What we want is for each positive integer
k a polynomial P, with rational coefficients, leading coefficient 1, such that

the functions
k-1 X
x—N Pk(< N>)

form a distribution on the projective system {Z/NZ}. Such polynomials will
be given by the Bernoulli polynomials. Let the Bernoulli numbers B, be
defined by the power series

t < te
B1. F(t)=et_1=kZOBk T

w
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§2. Bernoulli Numbers

Then for instance

Observe that
F(—t) - F@) =1,
so that F is almost even, and in particular, we have
B, =0 ifkisodd, k # 1.

We define the Bernoulli polynomials B,(X) be the expansion
tet* & tk
B 2. Fit, X) = 57— = kzo B(X) 1y

Then it is clear that the Bernoulli numbers are the constant terms of the
Bernoulli polynomials, that is

We find:
Bi(X)=1 B(X)=X-14  B(X)=X>—- X+ 3.

The desired distribution relation is implied by the next formula.

N-1
B3, B,(X) = N1 > Bk(X+ “)-
a=0

N

Proof. On one hand, we have

N-1 teXtar 1 N-1 NitelX +ININT

(,e”‘—lzj\f—z eV — 1

a
il
o

a=

N a=0 k=0 N k!

N A X+ a)] te
= Nk-1B ( —

k:ZO [a=0 " N k'

On the other hand, summing the geometric series > e directly from a = 0
to a = N — 1 and using the definition of the Bernoulli polynomials shows
that the coefficient of t¥*/k! is precisely B,(X), thereby proving the desired
identity.
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2. Stickelberger Ideals and Bernoulli Distributions
Relation B 3 can also be written in the form

B4, NEL S Bk(< y+ ]—f,—>) = B.KNy)

t mod N

for y e R/Z. This can be interpreted as follows.

{7}

x> M 1B, (Kx>) forxe % Z/Z

On the projective system

the association

defines a distribution.

Proof. If ye(1/MN)Z/Z is one element such that Ny = x, then all
elements in the inverse image of x by the mapping (N-id)~* consist of

t .
y+ W with # mod N.

Multiplying B 4 by M*~1 yields precisely the distribution relation.

Since the system {(1/M)Z/Z} is isomorphic to the system {Z/MZ}, we can
also express the distribution relation on the latter. It is convenient to norm-
alize this distribution further and to give it a special symbol. For x € Z/NZ

we define
1
EM(x) = Nk-1 A Bk(<%r>)'

Then the family {EZ"} forms a distribution on {Z|NZ}.

Remark. Historically, this distribution arose in the context of the partial
zeta functions. Indeed, if x € (Z/NZ)*, define

Lue, ) = > n7.

nex
n>0

The Dirichlet series converges only for Re(s) > 1, but it is classical and
elementary that it can be analytically continued to the whole complex plane,
and Hurwitz has shown that

La(x, 1 — k) = —E®(x) fork > 1.
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§2. Bernoulli Numbers

Furthermore the partial zeta functions themselves satisfy the distribution
relation. For a further discussion, cf. Example 4 at the end of the chapter. For
distributions associated with zeta functions in connection with Cartan groups,
see [KL 10].

For the applications, we shall use one more formula concerning the
Bernoulli polynomials, namely

BS. B(X) = X* — 1kX*~! 4 lower terms.
This is obvious by the direct multiplication of the series

t tk t*
eT:_—'I— = ZB"F and €% = Zka-

For what we have in mind, we don’t care about the lower terms, which have
rational coefficients.

Let N be a positive integer, and let f be a function on Z/NZ. We form the
polynomial

tefa+xn

F6X) = 3 f0) g

We define the generalized Bernoulli polynomials (relative to the function f)
by

B 6. F(t.X) = > B..,(X) 77
k=0 :

In particular, the constant term of B, ;(X) is the generalized Bernoulli number
By,s = Bk,f(o)-

For instance, f may be a Dirichlet character y on Z(N)*, extended to Z/NZ

by the value 0 on integers not prime to N. Then By, is the generalized Ber-

noulli number of Leopoldt. Directly from the definition, we then find the
expression

B7. B., = Nt NZ: f(a)Bk(<-X7>).

In terms of the distribution relation, this can be written

1
=B, ;= dE,.
k k.t z, f 3
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2. Stickelberger Ideals and Bernoulli Distributions

The distribution {E{"} is rational valued. We shall be interested in its
p-adic integrality properties for a prime p. For this purpose, we describe a
process which integralizes this distribution. For historical comments, see
‘below, after Theorem 2.1.

Let ¢ be a rational number. For N prime to ¢ (i.e., prime to the numerator
and denominator of ¢) we define

EPYx) = E°(x) — c*Ef(c™ ),
for x € Z(N). Multiplication by ¢ or ¢! is well defined on Z(N) so our

expression makes sense. If ¥ is a power of a prime p, then we could also take
¢ to be a p-adic unit. We can write symbolically

Ek,c = Ek - CkEkQC_l.

This distribution satisfies the following properties.

E L E®(x) = <%> - c<9-_]-vi’-‘> + 52

Proof. We have

o= ((57)) - (7))
BSEC A

whence the assertion is clear.

S —

E2. EQUx) = x*71E{Y(x) mod 7= Zc, 1/c],

kD(k)

where D(k) is a least common multiple of the denominators of the coeffi-
cients of the polynomial B,(X).

Proof. We work with a representative integer x such that
0<x<N-1
We write
¢cx=>b+ yN

with an integer b satisfying 0 < b < N — 1 and y € Z[1/c]. Then

¢ x b b
7r—w+y—<ﬁ+y>+z
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§2. Bernoulli Numbers

with some integer z. Since B, (X) = X* — 1kX*~! + lower terms, we find
the following congruences mod N/(D(k))Z[c, 1/c]:

v (i) - ())
=) -2 6)7]
ey A G-

k x k k

=%~ zx"‘l - [N"'l (N — cz) - c"i(b + Ny — Nz)"‘l]
k
2

= xN" — FxEt — [ENE — kx*"lez — c*3 bk‘l]
Y cix c—1
kx (N N p) )

and Property E 2 follows by using E 1.

The values of E{) are in

kD(k) Zlc, 1/c].

They will be called N-integral if they are p-integral for every prime dividing
N.

Theorem 2.1. (i) The values of EX) are N-integral.
(ii) We have the congruence for every prime p dividing N:
EM(x) = x*E{®)(x) mod NZ,.

(iii) If ¢ is an integer prime to 2kN and to the denominators of the Bernoulli
polynomial B,(X), then the values of EQ) lie in Z.

Proof. For large integer v the values N*/k D(k) are N-integral. Let M = N".
The distribution relation yields

EM(x) = 2 E$(y)

where the sum is taken over. those y mod M which reduce to x mod N. The
expression for E{™ is obviously N-integral except possibly for the term

39



2. Stickelberger Ideals and Bernoulli Distributions

(¢ — 1)/2. But if N is even then c is odd, so (¢ — 1)/2 is N-integral, and if N
is odd, then (¢ — 1)/2 is N-integral. If we apply E 2 to each term EZ9(y)
then we see that the first two assertions are proved.

For case (iii), we take M = (NkD(k))" for large v. The argument then
proceeds as before, because the only denominators occurring in

() o ()

contain only primes dividing Nk D(k).

&

For k = 1 the integralizing process already appears in the Stickelberger
theorem, and was used extensively by Iwasawa. For k > 1, Coates—-Sinnott
obtained integral elements in group rings by this process [C-S 2], Theorem
1.3 and [C-S 3], Theorem 1. Mazur formulated this integralizing process
in terms of measure theory and the distribution relation, which allows the
jacking up argument used to prove Theorem 2.1.

For the rest of this section, we let N = p™ with some fixed prime number p,
so the distributions are defined on the projective limit of Z(p"™), which is
none other than the p-adic integers Z,. We view the values of the distributions
to be in C,, the completion of the algebraic closure of the p-adic numbers.
We may express Theorem 2.1(ii) in the limit as follows.

Theorem 2.2. Let ¢ be a p-adic unit. Then
Ey, (%) = X*71E; ().

We shall now express Bernoulli numbers in terms of the integralized
distributions.

Theorem 2.3. Let c€ Z} and let k be an integer > 1 such that c* # 1.
Then

1 1 J
=B =—— | X*"1dE, (x).
k k 1 — c* z, 1,()

Proof. By definition,

dE, . + f ¢ dE(c-1%).

Zy

1
— B, =f dE, =
k k z, k

Zp
On the last integral to the right, we make the change of variable

X > cxX,
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§2. Bernoulli Numbers

which gives

dE(x) = | dE/(c™x).

Zp z,
The formula we want drops out by using Theorem 2.2.

Corollary 1 (Kummer Congruence). Let o be a residue class mod p — 1 and
o 5% 0. Then for even positive integers k = a mod p — 1, the values (1/k)B,
are all congruent mod p, and are p-integral.

Proof. Select ¢ to be a primitive root mod p so that
c® # 1 mod p.

Then 1 — c¢*is a unit at p. The values 1 — ¢* and x*~* mod p are independent
of the choice of k in the residue class mod p — 1, and the corollary then
follows from the expression of (1/k)B, as the integral of the theorem.

Corollary 2 (Von Staudt Congruence). Let k = O mod p — 1, and k even.
Then

1
B, = 7 mod Z,.

Proof. Suppose p odd for simplicity. Let ¢ =1 + p. An easy induction
shows that
¢ = 1 + pk mod p*kZ,.
Hence
=5 = o L+ 0,
and so

By = —lf x¢~1 dE; (x),
DJz,

because the integral over pZ, is = 0 mod p. An approximating sum mod p
for the integral over Z§ is

2 -G+

Since ¢ = 1 + p we have
<f%>=z.
p p
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2. Stickelberger Ideals and Bernoulli Distributions

The desired congruence follows from the fact that
p—-1
Z x* = —1 mod p.
x=1
We leave p = 2 as an exercise. We merely wanted to show how classical

congruences can be handled systematically from integration theory.

Let f be any function on Z/NZ. We defined

-5 rom((5)

In terms of the distribution notation, this can be written

1
% Ber = fdE
Zp

We shall apply this when f is a character of finite order on Zj, so that f is
an ordinary Dirichlet character on Z(p™)* for some positive integer n. As
usual, for such a character, we define its value to be 0 on elements of Z(p™)
which are not prime to p. Then by definition, for any character ¥ of finite
order on Z¥ we have the formula for the Bernoulli-Leopoldt numbers

1
1B, = L;// dE,
Note: When ¢ = 1 we do not have (1/n)B, , = (1/n)B, because ¥ is 0 on
PZ, by definition.
Theorem 2.4. Let / be a character of finite order on Z}. Then

2 By = Ty fzsw(a)aﬂ-l dE, (a).

Proof. We write dE, = dE, . + ¢" dE,oc™*, or in other words

Y Boy = [WdB.. + [ Y@ dEL).
Integrals are taken over Z¥ We let x — cx in the second integral. Then

¥(c) comes out as a factor. Using Theorem 2.2 concludes the proof.

Theorem 2.5. Let 2 < k < p — 2. Let w: Z(p)* — Zj be the Teichmuller
character such that

o(a) = a(mod p).
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§3. Integral Stickelberger Ideals

For any integer n > 1 we have

1 1
5 Bra*-r = 7 By (mod p).

Proof. Let Y = w*~™ Choose ¢ to be a primitive root mod p, so that
c® # 1 mod p. By Theorem 2.3 we get

1 1 _
iB=r 1 fz;xk * dE, (%) (mod p).

By Theorem 2.4 we have the congruence mod p:

1 1 _ e 1 1
Boy — B = fzx 1[1 O ck} dE; (%)

-
P

because 1 — Y(c)c™ and 1 — c* are p-units. Since the expression in brackets
under the integral sign is = 0 (mod p), the theorem follows.

The next sections, §3 through §7, taken from Kubert-Lang [KL 8), deal further
with the integrality properties of Stickelberger ideals.

§3. Integral Stickelberger Ideals

Let k be an integer >2. Let N = p” be a prime power with p > 3 until §5.
We let:

G = Z(N)* if k is odd

G = Z(N)*/+1 if kis even.

R = Rg; = Z[G] and R, = Z,[G].

deg: R — Z is the augmentation homomorphism, such that

deg( Z m,a) = Z m,.

[ e

This augmentation homomorphism extends to the complex group algebra
by linearity.

R,, = ideal of R consisting of those elements whose degree is = 0 mod m.
If I'is an ideal of R, we let I, = I N R,,.
card G = |G].

5G) = D .

oeG
For any £ € R we have

¢s(G) = (deg &)s(G).

If J is an ideal of R, we write d = degJ to mean that d is the smallest
integer >0 which generates the Z-ideal of elements deg ¢ with £ in J.
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2. Stickelberger Ideals and Bernoulli Distributions

Let B,(X) be the kth Bernoulli polynomial. We let

- S (GG
an - S 0((5) - mo)r

k-1

B,:s(G),

where B, = B,(0) is the kth Bernoulli number. We have:

degf# 0 and deg6 # 0, for k even.
In fact, these degrees can be computed easily. We need only that they are
#0 for k even, but the computation is as follows. Suppose & is odd. We use
the distribution relation. Summing over all primitive elements, i.e., elements

of p" yields the value of the distribution summed over all elements of level
p"~ 1. Continuing in this fashion reduces the computation to level 1. But

p 2 an((5) =4m0 -

The degree of 8 arises from the same sum but with the term a = 0 omitted.
Hence

— pk-1
and

k-1
deg 0’ = deg 8 — l B,|G]

k

or

, 1 _pk;—l Nk .
deg ' = (L= — 90" B

These formulas would also be valid for k even, except for our convention to
take G = Z(N)*/ + 1. This requires dividing the formulas by 2 to get deg 6
and similarly for 8’. The non-vanishing for k even comes from the functional
equation of the zeta function.

Next we give the ideals used in integralizing the distribution.
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§3. Integral Stickelberger Ideals

J®(N) = ideal of elements > m(b)a, such that
> m(B)b* = 0 (mod N)

I®(N) = ideal of elements ¢, — c* with integers ¢ prime to N.

Since k and N remain fixed, we often write 8 and 6’ instead of 8,(N) and
0(N). Similarly, we write J* and I®, or J and /. It is obvious that

J® o a0,

We shall determine the extent to which J # I in §2.
We have:

deg I"Y(N) = p*, where ¢ is the maximum integer such that k = 0 mod ¢(p?).

This is obvious, because deg I®(N) is generated by the integers 1 — c* with
¢ prime to p.

Theorem 3.1. (i) We have
RO, N R = [y,

In fact, if an element £ € R is such that £0’ € R, then & € I®,
(i) On the other hand, letting I = Z,I®, we have

R,,Gk N Rp = I;k)ek.

If an element & € R, is such that £0 € R, then & € I,

Proof. First we prove that for any prime >2, we have
I’ =< R, and I,0 <R,

A similar property is due to Mazur and Coates-Sinnott, as mentioned before.
Indeed, we have

65 o, — ¢, = > EfNa)o;

ae@

e = o [m((5 ) - en( ()}

The p-integrality then follows from Theorem 2.1(i). For other primes we
need a lemma.

where
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2. Stickelberger Ideals and Bernoulli Distributions

Lemma 1. The polynomial (1/k)(B(X) — B,(0)) maps Z into Z and maps
Z, into Z, for every prime l.

Proof. A standard property of Bernoulli polynomials states that
FBAX + 1) - B(X)) = X+

Hence for any integer m we see recursively that the first assertion of the
lemma is true. The second, concerning /-adic integers, follows by continuity.
The lemma is also valid for p = 2.

We may define Ej . by using B,(X) — B,(0) instead of B,(X) in the
definition of E, .. The lemma shows that 716’ < R.
For convenience we let
Bi(X) = B(X) — B(0).
Lemma 2. (i) Let £ € R and suppose that 0’ € Z,|G] = R,. Then £ € J.

(ii) Let & € R, and suppose that E0 € R,. Then £ e J, = Z,J.
Proof. Write ¢ = 3 z(b)s, with integral coefficients z(b). Then

# =N z(b)i%B;(<l—;Vc )agl,

and therefore

k-1
N T Z z(b)B;(<-]%>) is p-integral.
b

But an elementary formula for Bernoulli polynomials, obtained directly
from the definition, gives for an integer b,

NE-1 b k. NE-1 [k b \k-i
enl) = 25 ()

Comparing the leading term modulo all the lower order terms, and taking
into account that B; = —1 is p-integral (here we use p # 2), and the Kummer
theorem that B, is p-integral for i < p — 1, we find

2z(b)p" = O mod

z

1
kN k Z,.

Multiplying both sides by kN proves the lemma.
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§3 Integral Stickelberger Ideals

Lemma 3. Let p° be the smallest power of p such that p*6;, is p-integral.
Then

s =n + ord, k.

We have I N Z = (p°).

Proof. The argument uses the same expression for the Bernoulli polynomial
as in the previous lemma. We see that

s NE-L [k 1\e-t, .
P2 (i)Bi(]_V) is p-integral.

The leading term is p’/kN. The Bernoulli numbers B; are p-integral for
i <p—1by Kummer, and for i > p — 1 the power N*~! in front in-
tegralizes (1/N)*~% It follows that

ps
v is p-integral,

whence s has the stated value. Since we have already seen that I8’ < R, it
follows that the p-contribution of I N Z is exactly p®. It is clear that IN Z
is equal to (p®), because we can always select

c=1modN and c¢=0mod/

for any prime / s p to see that I N\ Z contains elements prime to /. This
proves the lemma.

Lemma 4. We have J = I + ZN, and (J : I) = p*~™ = pordk,

Proof. 1t is clear that N € J. Conversely, write an element of J in the form

>, mc)o. — c¥) + > m(c)ck.

The first term is in Z, and the second term is an integral multiple of N. This
proves the lemma.

We may now conclude the proof of the theorem. We prove (i). Suppose
¢ e Rand &0’ € R. By Lemma 2, £ € J. By Lemma 4, we know that

¢ = zNmod I forsomezeZ.

We know that 16" < R. Hence zN@' € R. By Lemma 3, it follows that p*
divides zN, so £ € I, and the theorem (i) is proved. The part (ii) is proved the
same way.
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2. Stickelberger Ideals and Bernoulli Distributions

§4. General Comments on Indices

Let V be a finite dimensional vector space over the rationals, and let 4, B
be lattices in V, that is free Z-modules of the same rank as the dimension
of V. Let C be a lattice containing both of them. We define the index

(C:B)

(A:B)=m'

It is an easy exercise to prove that this index is independent of the choice of
C, and satisfies the usual multiplicativity property

(4:D)YD:B)=(4:B).
Furthermore, if E is a lattice contained in both 4 and B then

. gy = “:E)
(A:B) = B E)
We leave the proofs to the reader.

Suppose that 4 is not only a lattice, but is an algebra over Z. Let 0 be an
element of Q4 = V and let m be a positive integer such that mf € 4. Assume
that 0 is invertible in Q4. Then

(4 : A6) = +detq, 0,

where the determinant is taken for the linear transformation of QA4 equal to
multiplication by 6. This is easily seen, because

(A:A40) = (4 : AmO)(Amb : A6)
and

(Am0 : A0) = (40 : AmB)~1.

Since m# lies in A4, the index (4 : Amb) is given by the absolute value of the
determinant of mf, which is m" det 0, where r is the rank of 4. This power
m" then cancels the other index.

Note that the determinant can be computed in the extension of scalars by
the complex numbers. In particular, if 4 is a semisimple algebra, and is
commutative, then

det0 = [ x®
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§5. The Index for k£ Even

where y ranges over all the characters of the algebra, counted with their
multiplicities. In the applications, the algebra is essentially a group ring, so
the multiplicities are 1, and the characters come from characters of the group.

This will be applied to the case when 6 = 6%, We recall the definition of
generalized Bernoulli numbers according to Leopoldt:

e Zaom (5

Thus

x(0) = 7 By,

¥

X —

Note that the Bernoulli number is defined with respect to G, so that for k even,
we are summing over Z(N)*/+ 1. This convention is the most useful for
present applications in §5 and §6. (We revert to the other convention in §7.)
For even k, it gives half the other values.

The classical theorem about the non-vanishing of By, when k and yx have
the same parity gives the desired invertibility of the Stickelberger element 0,
in the corresponding part of the group algebra over Q.

§5. The Index for k Even

We let s = n + ord, k, and ¢ is defined as in §3, to be the maximum integer
such that k = 0 mod ¢(p*). We regard R, N RO (for k even) as the Stickel-
berger ideal. We shall prove:

Theorem 5.1.

1
(Ro: Ry N RO) = Npak—t] ] + % Bexr

x#1

First observe that since deg 8 and deg 6’ # 0 we have
Ro M RO = Ry N RO,
By Theorem 2.1, we conclude that
RO'NR =10, and hence RO'N R, = 1,0
But Ry + 10’ = R, where
d = deg I6' = (deg I)(deg 0").
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2. Stickelberger Ideals and Bernoulli Distributions

In §3 we had noted deg ¢ = p’. The factor deg 6’ will cancel ultimately. In
any case, we have:
(Ro: Ry N RB) = (Ry: Ry N RO
= (Ro . 109')
= (Ry:10")
_(R:10)
(R:R)

- é(R . ROYRO' : 10

= TTxoR: D).

The product is taken over all characters y of G. We separate this product
into a factor with the trivial character, giving deg #’, canceling that same
factor in d, and the product over the non-trivial characters. For y non-trivial,
we have y(0) = x(6").

In the final step we also wrote (R’ : I6") = (R : I). This is because 6’ is
invertible in the group algebra over Q. Hence the map & — &0’ induces an
isomorphism on R.

We are therefore reduced to proving a final lemma.

Lemma. (R: 1) = p* where s = n + ord, k.

Proof. We have (R:I) = (R:J)(J : I). Any element & in R can be written
in the form

&= mco, = > mic)o, — c*) + > mic)ck.

From this it is clear that (R :J) = N, and the index (J: I) is obvious, thus
concluding the proof.

Remark. Of course we have not determined the sign occurring in the
product of the Bernoulli numbers. It is the sign which makes the product
come out positive, and which one determines easily from the functional
equation of the zeta function and the factorization in L-series. This is irrel-
evant for our purposes here.

§6. The Index for £ Odd
Assume k is odd. Note that 0 = 6'. Let
e =31-0_y)

be the idempotent which projects on the (—1)-eigenspace. It is immediate
from the definition that 6 is odd, that is,

&0 =0.
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§7. Twistings and Stickelberger Ideals

The Stickelberger ideal in this case is R N R = 10, and is odd. We shall
prove:

Theorem 6.1.
(R-:RONR) = Np~+ [ | ¢ %(B,c,x.

xodd
The rest of the section is devoted to the proof.

Lemma 1. We have R~ = 2e R and (e R: R™) = 2¢®™i2,
Proof. This is the same as Lemma 1 of §1.
We then proceed as in the even case. First we write

(e"R:e710)

(R™ : 10) = € R:R)’

and then
(" R:e710) = (¢"R:e"RO)e RO : e 16)
=[] x®E R:e"D)

Yodd
because 0 is invertible in ¢~ Q[G]. Furthermore,
(eR:eD)=(E"R:R )R :2e"N(2e I:¢"1)
=(R":271])

because (2e~1: e~I) = 292 since ¢~ 1 is free of rank ¢(N)/2. Finally,

Lemma 2. (R~ :2¢~1) = p* where s = n + ord, k.

Proof. The group 2¢~1 is generated by elements of the form

(6. —06_.) — c*(oy — 6_,).

An element £ € R~ lies in Z(g, — o_,) mod I. Hence the same argument as

in the past case gives the desired index.

§7. Twistings and Stickelberger Ideals

The Stickelberger elements 6, should really be indexed by the groups to
which they correspond. We now want to compare factor groups of the group
ring by various Stickelberger ideals, twisted in various ways. Consequently,
it is not useful any more to have G different in the even or odd case. For this
section, we let N = p® still, and we allow p = 2. We let

G, = Z(p")*.
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2. Stickelberger Ideals and Bernoulli Distributions

We define
Or,o(p") = a5 (o, — c)0(p™) € Z(pM[G,].
This makes sense since we know from §1 that 8, (p) is p-integral.

Let V be a Z(p™)[G,]-module. We define its twist to be the tensor product
with the roots of unity,

V(D) =V ® uy-
Then o in G operates diagonally,
o0 ®y)=0v®o0y, and 6,0 Q7) = alor  y).

We let y be a basis for uy over Z(N). Note that the element o on the right
makes sense as an element of Z(N) since V ® py is a module over Z(N).
From the definitions we then get the formula

W 1. O, (0 ®7) = 01,0 ® 7,

resulting from Theorem 2.1(iii),
Ek:,c(a) = ak_lEl.c(a) mod N.

The distribution relation allows us in E 2 to replace N by high powers of ¥
at a higher level, and then return to level N to get this congruence.

In particular, if 6, _, . annihilates ¥, then 6, . annihilates ¥(1). The argu-
ment simply extracts in a general context the argument given by Coates—
Sinnott [C-S 2] in connection with the ideal class groups in cyclotomic fields,
see their Theorem 2.1.

Take V to be Z(p™)[G,] itself, so that V(1) is generated by a single
element ¢; ® y. The map

E>E8(0.®7)
gives an isomorphism

Z(pMGal ~ Z(pM[G,] @ piym.

Let S(p") = ideal of Z(p™)[G,] generated by the elements 6, .(p"). Then
the isomorphism induces a bijection

FUP") = F-1(P") @ ppr.

Hence we get an isomorphism

TW 2. A S Z> Ay @ | S 1 (™) @ i,

where A, = Z(p™)|[G,] is the group ring.
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§8. Stickelberger Elements as Distributions

We may then pass to the projective limit. The limit of A, is the Iwasawa
algebra. We let &, be the ideal generated by the elements 8, . (projective limit
of 6, .(p™). We obtain an isomorphism with the twist,

A/ = AV Fe-1(1).

This isomorphism permutes the eigenspaces for the action of u,_,, and this
can be interpreted in terms of congruence relations between Bernoulli-
Leopoldt numbers (with characters) in the obvious manner.

We now make remarks concerning twistings, ideal classes, and modular
curves. We assume that the reader is acquainted with the latter. Suppose
N = p is prime # 2, 3. The Iwasawa-Leopoldt conjecture predicts an iso-
morphism

C- = (RSP,

where C T is the p-primary part of the (— 1)-eigenspace of the ideal class group
in Q(u,). On the other hand, Kubert-Lang [KL 7] establish an isomorphism

¢o(X1(p)) ® Ro/%

where €°(X,(p)) is the cuspidal divisor class group on the modular curve
X,(p), generated by the cusps lying above the relational cusp on Xq(p).
Consequently, we expect a commutative diagram:

R*(p)|SAp) = R™(P) ® tol S1(P) ® v

|

(X(P)P) —5H5— C (PO Ky

It remains a problem to give a direct isomorphism at the bottom, from some
sort of geometric construction. This may in fact lead to a proof of the
Iwasawa-Leopoldt conjecture.

§8. Stickelberger Elements as Distributions

In this section we follow Kubert-Lang [KL 5] to describe a *“Stickelberger
distribution”” associated with a distribution on Q/Z, and to give its basic
properties.

Let 4 be a function on Q/Z (with values in some abelian group, but for
the rest of this section, we shall take values in some algebraically closed field
F of characteristic 0). We say that 4 is an ordinary distribution if it satisfies the
relation

h(r) = > h(t)
Dt=r
for every element r € Q/Z, and positive integer D. The sum is taken over
those elements ¢ such that Dt = r. In the application we have in mind, &
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2. Stickelberger Ideals and Bernoulli Distributions

will be obtained from the first Bernoulli polynomial, and generalizations on
(Q/Z)® lead to the higher Bernoulli polynomials. See [KL 5] for k > 1.

We let G(N) ~ Z(N)*, writing the isomorphism as a — ¢,. We let /2 be an
ordinary distribution as above. We define

(%) = h(<%>) for x € Z(N).

For any function f on G(N) we define (as usual)
S(f hy) = 2. f(@hx(a),

with the sum taken over a € Z(N)*. If we define f on Z(N) to be 0 outside
G(N) then we see that

Su(f, hy) = j fdh.

By abuse of notation, we often write a € G(N) instead of a € Z(N)*.
Let Zy = (1/N)Z/Z and let r € Z. We define

1
r) = = h(ra)o;t.
&) = [T .2, "
If the values of /4 are in the field F, then the values of g, are in the group
algebra F[G(N)]. It is clear that if M is a denominator for r, i.e., r € Z,; and
M divides N, then the image of gy(r) under the canonical homomorphism
G(N) — G(M) is equal to gu(r). Thus we may define

g(r) = lim gx(r)

in the injective limit of the group algebras (as vector spaces over F), ordered
by divisibility, with the injections from one level to a higher one given by
sending one group element to the sum of all the group elements lying above
it under the canonical homomorphism.

Theorem 8.1. The function g: Q/Z — lim F[G(N)] is an ordinary distri-
bution.

Proof. Immediate from the definitions.
We define g to be the Stickelberger distribution associated with /.

Let Ay be the vector space generated by the values g(r) with reZy
(essentially the same as the vector space generated by the values gy(r)). We
observe that g(0) is a constant multiple of the augmentation element, that is

(V)
g(O) B IG(N )' cEG(N) 7
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§8. Stickelberger Elements as Distributions

Let y be a character of G(N) and let m = m(y) be its conductor. We define
SQ6 1) = Sa(tm: 1)
where y,, is the character on G(m) determined by y. We let
Gu(N) = set of characters y such that S(3, #) # 0.

Theorem 8.2. The dimension of Ay is equal to the cardinality of G,(N).

Proof. The space generated by the elements gy(r) with r e Zy is clearly a
G(N)-module since

o,gy(r) = gy(rb), for b e G(N).

We let the idempotent associated with y be the usual

1 -

If M is the conductor of y, then

gN(%)e,C = 5@ B l—é(lﬂ-)—[ex.

as one sees at once from the fact that ra depends only on the residue class of
amod M, for ae G(N). Hence Ay has a non-trivial y-component if S(¥, )
# 0. This shows that the dimension of Ay it at least that which we asserted.

On the other hand, let r € Z and suppose r has exact period M. Let y be
any character of G(V). Then

e(r)e, = o] 2 M@,

€G(N)

1
= e h(rb i(a)e,.
IG(N)I DE;M) ( )red;z=bX( ) x
If the conductor of y does not divide M, then y is non-trivial on the kernel
of the reduction map

redy: G(N) — G(M),

and the sum on the right is 0. If the conductor of y divides M, then jy(a) =
%(b) on the right, so

1 G(N)| _
800, = [T HD) {G((—A})'l i®)e,

G(M)

- i_G(lA?ﬂ S HebGe,

eG(M)
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2.- Stickelberger Ideals and Bernoulli Distributions

Since we can write r = a/M with some a prime to M, a change of variables
in the sums shows that up to a non-zero constant factor, gx(r)e, is equal to

SM(ZM’ hM)el.

We now have to analyze this sum. The next lemma will show that this sum
is equal to some factor times S,(¥n, fim)-

Lemma. Let y be a character of G(N) with conductor m.
(1) If every prime dividing N also divides m then
SN(XN: hN) = Sm(Xms hm)

(ii) Let p be a prime dividing N but not dividing m. Write N = p"M with
pt M. Then

SxCtw> ) = (1 = X DDSu(Xat> Pra)-

Proof. The first statement is immediate from the distribution relation. Let
us prove (ii). We have

> W @hy(a) = be%y YOI h(%)

aeZ(N)* as zb(%)
ae! *

By the distribution relation, we know that

b Z x a a
M xeZ(N) N ae;N)‘ N aezz(N)‘ N
x=b(M) a=b(M) a=b(M)

The elements a in Z(N) which are not primitive but are = b mod M are in
bijection with the elements ¢ € Z(N/p) satisfying the conditions

a=pc and c¢ = p lamod M,
under the map

ct+>pc

which sends Z(N/p) into pZ/NZ < Z/NZ. Therefore the sum over primitive
elements lying above a given b can be expressed as a difference

20 ) -3

(where the sum is taken over ¢ € Z(N/p), ¢ = p~lamod M)

SO
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§9. Universal Distributions

(by the distribution relation). Plugging this into the first relation, and making
a change of variables b — pb, we find

Sv(t By = SuClars ha) — 2, x(b)h(%)

beZ(M)*
= (I — xs(P)SuQtar> hine)-

This concludes the proof of the lemma.

In applying the lemma to the theorem, we note that the y-component is
at most one-dimensional, and has exactly dimension 1 under the stated
condition Sy(¥y, Ay) # 0. This concludes the proof of the theorem.

A distribution can be decomposed as a direct sum of an odd and an even
distribution, provided that its image is contained in some module on which
multiplication by 2 is invertible.

In the next section, we shall prove that the rank of the values on Zy is
at most |Z¥|, where Z} is the set of primitive elements in Zj,.

If we take for 4 the distribution arising from the Bernoulli polynomial

h(r) = By((rd) if r # 0, h(0) = 0

then the non-vanishing of B, , for odd characters y shows that 4 has the
maximal attainable rank for an odd distribution. Consequently, we find:

Thoerem 8.3. The Stickelberger distribution g associated with h(r) as
above is the unmiversal odd ordinary distribution into modules on which
multiplication by 2 is invertible.

So far, Theorem 8.3 has been proved only for distributions with values in
a field of characteristic zero. However, the next section will give a result of
Kubert showing that the universal distribution is generated on Z, by free
generators whose cardinality is |Z¥|. This will take care of the additional
integrality possibilities allowed in the statement of Theorem 8.3.

Later in the book, we shall see that the cyclotomic units in the cyclotomic
field form an even distribution, which has maximal rank by the class number-
regulator formula, cf. Chapter 3, §3, and Chapter 6, §3.

The direct sum then yields a distribution of maximal attainable rank.
This is one method to show that the universal distribution in Theorem 9.1(ii)
has rank |ZF]|.

§9. Universal Distributions

In this section we give a theorem of Kubert [Ku 1], [Ku 2], constructing a free
basis for the universal distribution on the projective system {(1/N)Z/Z}. In
[Ku 2] Kubert gives a complete treatment of the ordinary universal distribu-
tion on QF/Z* for arbitrary k, as a GL,(Az)-module, where A, is the ring of
integral finite adeles. Here we limit ourselves to k = 1, and give only the
abelian group structure.

57



2. Stickelberger Ideals and Bernoulli Distributions

For simplicity of notation we let

1

1
NZ/Z, and ey = —=mod Z.

ZN= _N

We let
g: Q/Z — some abelian group

be an ordinary distribution, in other words we suppose that for r € Q/Z,
and a positive integer D we have

> g(t) = gr).

Dt=r

It is clear that such distributions form a category, and we wish to construct
the universal distribution.

We let Z3 be the set of primitive elements in Zy, i.e., elements having
period exactly N in Z,.

The prime power case

Let N = p" be a prime power and write N = M D, a factorization with
M > 1. Let re Z. If Dt = r then it is immediate that ¢t € Z§ (N = prime
power is used here). The distribution relation shows that g(r) is an integral
linear combination of the images of the primitive elements g(¢). Hence 0 and
these primitive elements generate the universal distribution, at level N.

We have

2 8t)=g0 and > g(t) =gO).

teZy teZyyp

Hence we get one relation among primitive elements,

> gt) =0.
teZy
Let
Tk =2Z% — {ey} and T¥ = {0}.
Let

TN:-TI?UT;_{‘.

Theorem 9.1. (i) The elements g(Ty) generate the abelian group generated
by g(Zy). ,

(ii) If g is the universal distribution then the elements g(t) with t € Ty are
[free generators.

(iii) The cardinality of Ty is equal to that of Z%.

Proof. The first statement is obvious from the preceding remarks. The
cardinality of Ty is clearly equal to that of Z3. For (ii), we may consider the
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§9. Universal Distributions

free abelian group generated by the elements of ZF and {0}, modulo the
single linear relation

We can then define g on Z5 to be the canonical homomorphism in the factor
group, and for r € Z; with M # N and M|N we can define

glr) = > g(t), with D = N/M.

Di=r

It is then clear that g defines a mapping on Z, satisfying the distribution
relation.

The proof of (ii) is in some sense natural, but in many ways it is better
to exhibit mappings which are distributions and which have the appropriate
rank to get the lower bound for the rank of the universal distribution. Cf.
the end of §8, where we exhibit natural distributions in the theory of cyclo-
tomic fields which have such rank.

The composite case

To state the theorem concerning the universal distribution in the com-
posite case, we shall write elements of Zy according to their partial fraction
decomposition. Let

N=T]pm

iz1

Then
1 Z|Z =P iZ/Z
N Pl
and

a a;
where g; is well defined mod p}:, while a is well defined mod N. We let:

Ty = set of elements a/N as above, such that either g; is prime to p; and
a# 1l,ora =0.

It is then clear that Ty has cardinality ¢(N).

Theorem 9.2. The preceding theorem holds with this definition of Ty, for com-
posite N.
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2. Stickelberger Ideals and Bernoulli Distributions

Proof. The proof will be a simplification of Kubert’s proof by Katz. Let
Ay be the abelian group generated by g(Zy). A distribution having the lower
bound ¢(V) for its rank has been exhibited in §8. Since T has this cardinality,
it will suffice to prove that g(Ty) generates 4. We first show that the elements
g(a/N) with a such that g; is prime to p, or a; = 0, generate 4,. We do this by
induction.

Let

b
i

be an arbitrary element of Zy. Write b; = pla; where a; is 0 or prime to p.
If a; = O then we are through by induction, so we can assume that a; is prime
to p, and 1< r < n;. Then:

pia; bi)
R + —_—r =
g ( jdel ,222 pi

- 2 dmr5e 2

4 mod p'

by the distribution relation. Since r < #, it follows that

@ f_al,
P ptopn

where ay is prime to p.

Inductively, we may now repeat the same argument with respect to p,,
D3, - ... 1t merely suffices to observe the following. In the first step of the
argument, when we factored out pl, thus changing b, to ¢, if b; is prime to p
then ¢; is prime to p. Thus performing the same argument inductively on the
other primes does not destroy the desired property for those primes which
have already been taken care of. This concludes the first part of the proof.

Secondly, we show that we can recover those elements a/N for which a;
may be equal to 1 from the prescribed set 7. Let

€ L Z|Z.

N' = N/ph, V

From the distribution relation, we find:

> g(— + y) = g(phy)

1
7 mod pf1

k
g(——n — + y) = g(ph~1y).
P1t

k mod p71~1
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§10. The Davenport—-Hasse Distribution

Subtracting yields

Z g(L,l + y\) = 0 mod 4y,
jmod p}y pit /
dm=1

where Ay. is the group generated by g(Zy.). This yields

5+) G2 )

—g|= + = — + y) mod Ay..

g(p,lll y a; glon + ¥
(a3,p)=1

Observe that the same quantity y occurs on both sides of this relation. We

may now repeat the procedure inductively on the partial fraction decomposi-

tion of y. If we write

a;

-
n,
i=2 P1t

==

and say a, = 1, we get a similar congruence

a, a, ay
—gl— + = (-——+—-—+ )modA”,
g(pflll )’1) azzl g o ph y2, N
(ag,p2)=1

where N” = N/p22. In this way we reduce the proof to the case when N con-
tains fewer prime factors, and then can apply induction with respect to the
number of prime factors to conclude the proof.

§10. The Davenport—Hasse Distribution

In this section we give a relation of Davenport-Hasse [D-H]. Let F, be the
field with ¢ = p™ elements, and let ¢ = 1 mod m. We follow the notation of
Chapter 1, §1. We let p be a prime in Q(y,-,) lying above p, and let P be a
prime in Q(u,_1, i) lying above p. We write as usual

o = f mod* P

to mean that «f~* = | mod mg;, where mg is the maximal ideal in the local
ring at P. We use similar notation mod* p or mod* p. We let y, Y be characters
on F}¥, and put

() = =S, A

Theorem 10.1. (Davenport—Hasse) We have
[ [=G) = <™ C @, m)

Mm=1

where C(r, m) = y(m™™) [ | ().

=1
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2. Stickelberger Ideals and Bernoulli Distributions

Proof. Let u,() be the quotient of the left-hand side by the right-hand side,
that is

[T=G)
) = gD CEm

We have to show u,(y) = 1. First note that u,()) lies in Q(u,_,). This is
immediate by looking at the action of oy ,, cf. GS5 of Chapter 1, §1. From
the fact that |S(Y)| = +/qif ¢ # 1 and |S(Y)| = 1if = 1, we conclude that
|n(¥)| = 1. Similarly, all conjugates of u,(i/) have absolute value 1. Since
SW)SW) = +gq, we know that only primes dividing p occur in the factoriza-
tion of S(y). We shall prove that

1) U, () = 1 mod P.

This will imply that u,(y/) is a unit, and therefore a root of unity. If p # 2,
this congruence (1) implies that u, () = 1. If p = 2, we shall give the argu-
ment at the end of the proof.

To prove the congruence, we simplify the expression in Stickelberger’s
theorem. For any integer k we had defined s(k) = s,(k) and y(k) = y,(k) in
Chapter 1, §2. We let r(k) = r (k) be the unique integer such that

0<r(k)<g—1 and k=r(k)modg — 1.

Lemma 1. Let 0 < k < g — 1. Then

k—s(k)

k!'= (=p) ?-1 y(k) mod* p.
Proof. By induction. Suppose first that pt £. Then k, > 1, and

sk) =stk— 1)+ 1, yk) = yk — Dk,

The assertion is then obvious from the inductive step for & — 1. Next sup-
pose plk, so k = pk’. Since

k k
Ol’dpk!= [1—)] + - [F]

and similarly for k', we see that
ord, k! — ord, k'l = k'.
In k! = (k'p)!, the factors not divisible by p give a contribution of
(p — D!=-1 mod p,

taken k' times. The product of the factors divisible by p yields k'! p, where
t = ord, k'!. The lemma is then immediate.
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§10. The Davenport-Hasse Distribution

Asin Chapter 1, welete = e?*/?, Weletn = ¢ — 1. Then from
E—-1+1)-1=0
we see at once that
n?~l= —pmod*n

From Stickelberger’s theorem and Lemma 1, we conclude that

) (%) = ’ mod* P.

(k)'
This reduces the proof of the congruence relation (1) to the proof of such a
congruence for the expressions on the right-hand side of (2), corresponding

to the way u,(¢) is made up from expression t(w~*) for appropriate values
of k. We shall prove two relations for the residue function, namely:

3) Z:o r(x + p) = r(my) + Zor(x)
) ]__I r(x + y)! = r(my)! m=rm H r(x)!

In these relations, sums and products are taken over elements x mod ¢ — 1
such that mx = 0 mod g — 1. The theorem is immediate from these relations,
taking into account

m ™ = o(m) ™ mod P,

applied to y such that = w~%.

We prove the two relations (3) and (4). To begin with, we note that the
left-hand side and right-hand side of each relation is unchanged when we
change y in a residue class mod (g — 1)/m. Consequently we may assume that

g—1
0<y< —

We choose the obvious representatives

q—

x=1v withv=0,1,...,m — 1.

Then
r(x) = x, rx+y)=x+y, r(my) = my.
This makes (3) obvious, and (4) takes the form:

-1
b ) s e

%) mmY
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2. Stickelberger Ideals and Bernoulli Distributions

The products are taken forv = 0, 1,...,m — 1 and y is taken as above, with
0 <y < (g — 1)/m. Let F(y) be the left-hand side of (5). Then the right-
hand side of (5) is equal to F(0), and consequently, it suffices to prove that

F(y)

——=— = 1 mod* p,
FOo - 1) P

with 1 < y < (¢ — 1)/m, or equivalently

[T+

H (my _ V) = | mod* D,

mm

or also

T=rmy + v(g — 1)

= £
11 proT— = 1 mod* p.

For this it will suffice to prove that each factor in the product is = 1 mod p.
But the power of p entering in my — v is at most p™~!. Dividing numerator
and denominator of each factor by my — v shows that

my — v+ vq

— *
my = = 1 mod* p.

This proves the theorem except when p = 2, when we know only that u, () =
+ 1. In this case we argue further as in [D-H].
Let / be a prime dividing ¢ — 1. Let

=y

be the decomposition of ¥ into a product of a character of /-power order, and
a character of order prime to /. Then

y" = Yryr

is the corresponding decomposition for iy™. Let [* be the highest power of /
dividing ¢ — 1, and let {;» be a primitive /“th root of unity. Let

A=1{w»— L
Since ¥, = 1 mod 4, it follows that ¥ = ;. mod A. Therefore
()= (Y)mod A and (y¥;) = 1 mod A.
In particular,

() = u,(Y) mod A and wu,(yY;) = 1 mod A.
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Appendix. Distributions

Since u, () = +1, it follows that u,(y) = 1, thereby proving the theorem.

Remark. In [Ya], Yamamoto shows that the Gauss sums form the univer-
sal odd distribution modulo 2-torsion.

Appendix

In this chapter we have looked at the distributions which are especially
relevant to the cyclotomic theory discussed in the rest of the book. It is
worthwhile to give here a number of examples of distributions occurring
throughout mathematics, involving various classical objects. We make a list
of a general nature, including those we have already met.

(1) The Bernoulii distribution, which is essentially given by a polynomial.

(2) The Fourier-Bernoulli distribution, giving rise to the Bernoulli distri-
bution, as follows. For real 6 we have the Fourier expansion

ezuine

k!
BLO) =~y 2,

Thus we may even define B, on R/Z, and through this Fourier series, the
function given at level N by

0 — N*~1B,({8))
satisfies the distribution relation.

(3) The holomorphic Bernoulli distribution. Let

5D =2 5%

and restrict z to the unit circle, z = 2", Then {N*~1f,} defines a distribution.
The real part for k even and imaginary part for k odd are mere homomorphic
images of this one, and give rise to the Bernoulli distribution of (2).

(4) The partial zeta functions. Let

o 1
o= 2w

be the Hurwitz zeta function, for 0 < u < 1. For each real number ¢, let {¢}
be the unique number congruent to # mod Z, and such that

0<{} <1l
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2. Stickelberger Ideals and Bernoulli Distributions

Then for a € Z(M), the function

)

satisfies the distribution relation, namely

b a
N-s c(s, {_}) _ M‘SC(S, {—})
bE;M) N M
The sum on the left is taken for b in Z(N) reducing to a mod M.

(5) The gamma distribution. Define
G(z — I'(z
(2) = \/ (@).

We'view G as defined on Q/Z with the origin deleted, but then with values in
the factor group

G:Q/Z — {0}~ C*/Qg

of the multiplicative group of complex numbers, modulo the multiplicative
group of all algebraic numbers. The classical identity

T A W 3Nz
sz +5) =y rovaw
shows that G defines a distribution.

Rohrlich has conjectured that G is then the universal odd distribution,
with values in groups where multiplication by 2 is invertible. This is a con-
jecture in the theory of transcendental numbers. It also leads to the question
(in algebraic independence) whether the distribution relations, the oddness
relations and the functional equations generate an ideal of definition over the
algebraic numbers for all algebraic relations among the values of the gamma
function (1/4/27)I", with rational arguments.

(6) The cyclotomic umits, which we have discussed.

(7) The modular units, which may be defined by their g-expansions,
namely

g(a) = —g#Paevetmaza -0zl — g )T (1 — g"g. )1 — q"/g.)
n=1

where a = (ay, a5) € Q%/Z2 and a # (0, 0), where

zZ=mT + ay,
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Appendix. Distributions

and where the value g(a) is to be taken in the multiplicative group of the
modular function field modulo roots of unity, cf. [KL 3], following the work
or Ramachandra and Robert. The association

a+—>g(a)

is the universal even ordinary distribution on Q?/Z2? — {0}. The ordinary
Bernoulli distribution (with & = 2) then appears as a homomorphic image of
this one.

In the last three examples, the distribution is not defined at 0. In such cases,
it is useful terminology to refer to the distribution as punctured.

Roughly speaking, I expect that in any classical situation where a distribu-
tion arises naturally, it is universal (odd, even, punctured, as the case may be),
always subject to taking values in groups where 2 is invertible.

(8) The Lobatchevski distribution. I am indebted to Milnor for the

following brief comments which might inspire the reader. Define the
Lobatchevski function

]
20) = — f log|2 sin 7] dr.
0
This is essentially the same as the integral
]
—J log|e?™* — 1| dt.
0

Since the function - |e2®* — 1| satisfies the distribution relation, one sees
at once that A(f) satisfies the distribution relation in the sense that on
{(1/N)Z/Z} the family {NA(0)} is a distribution, which is odd.

Let H be hyperbolic 3-space. This is the set of points

(x4, X3, ) €R x R x R*

80 (x3, x,) is an ordinary point in the plane, and y > 0. We endow H with
the metric

dx? + dxZ + dy?
»? '

Select four distinct points in the plane, and let T be the tetrahedron in H
whose vertices are at these points. Then it can be shown that opposite dihedral
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2. Stickelberger Ideals and Bernoulli Distributions

angles are equal. (The dihedral angles are the angles between the faces of the
tetrahedron.) Let o, 8, y be the dihedral angles. Then

a+f+y=m,

and the volume of the tetrahedron is precisely given in terms of the Lobatchev-
ski function by

”jd—)‘é%—“'X:VolT=,1(a)+z(ﬁ)+z(y).

The search for relations among such volumes had led Milnor to consider the
Lobatchevski function and its relations, now known as distribution relations,
and to show that it had the maximum rank (its values being viewed as con-
tained in a vector space over the rationals). Of course, Kubert’s construction
in fact gives free generators over Z.

Finally, let o = Z[{], where { is a primitive cube root of unity. Then

PSL,(0) < PSLy(C) = Aut H,
where Aut H is the group of automorphisms for the Riemannian structure,
orientation preserving. The tetrahedron is essentially a fundamental domain

for PSLy(0). This point of view leads into the problem of determining all
relations for volumes of fundamental domains in the higher dimensional case.
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Complex Analytic Class Number Formulas

The complex analytic class number formulas date back to the 19th century.
They relate class numbers of cyclotomic fields and units. They arise by
factoring the zeta function of a cyclotomic ﬁeld in L-series, and looking at the
factorization of the residue.

§1. Gauss Sums on Z/mZ

We have to redo the properties developed in Chapter 1, for the ring with
divisors of zero Z(m) = Z/mZ. The only additional feature arises from the
presence of non-zero elements which are not units. We let m = [] p™® be
the prime power product. We then have product decompositions

Zm) =] [Z(p™) and Z(m)* =] [ Z(p~®)*.

From the product, for any character y on Z(m)* and any character A on
Z(m) we have a decomposition

x=pr and 1=I—_[11p.
b4 P

If xeZ(m) and x is not prime to m, we define y(x) = 0. We let { be a
primitive mth root of unity (chosen to be ¢2™/™ over the complex numbers),
and

Mx) = ¢~
Observe that Z(m) is self dual under the pairing
(x, y) = L.
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3. Complex Analytic Class Number Formulas

Let d|m. We have a natural surjective homomorphism
Z(m) — Z(d)
and also a surjective homomorphism
Z(m)* — Z(d)*.

If there does not exist d|m and d # m such that y factors through Z(d)*, then
we call y primitive. Again to determine the smallest d such that a given
character factors through Z(d)*, we may look at prime powers.

Suppose m = p" is a prime power, and y is a character on Z(p™). Let p
be the smallest power of p such that y is trivial on

1+ p"Z(p".
For convenience, let us abbreviate
A4 = Z(p"),

so 1 4+ p*A4 is a group for any positive integer v. The following criterion is
immediate.

X is primitive if and only if r = n.

The power p™ = p™® is called the conductor of y.
In the composite case, we let the conductor be defined by the product

c(x) = cond(y) = H .

pim

It is then clear that ¢(x) is the smallest d such that y factors through Z(d)*.
We define

SQ) = S0t A = 2 x()A),

and the sum could be taken only over those x € Z(m)*. It is then obvious that
we have a decomposition

S0 A =T 1 So(tes A)

where the sum S, is taken over Z({p™®)*,
If d is an integer prime to m, then, as with Gauss sums over finite fields,
we have

S, Aod) = 1(d)S(, ),
by making the change of variables x > d~1x.
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§1. Gauss Sums on Z/mZ

On the other hand, if d is not prime to m, we have one new significant
feature.

Theorem 1.1. If y is primitive and d is not prime to m, then
S(x, Aod) = 0.

Proof. Using the prime power decomposition, we may assume without loss
of generality that m = p™ is a prime power. Abbreviate

A = Z(p".

Also without loss of generality, we may assume d = p” for some integer
r > 1, and r < n. Form a coset decomposition

A* = U u(l + p"TA).
Then
SGuAp) =2 > g + X)Mpw)

i xep"“"A

= > 1@)A(p'w) 2 x(1 + x).
i x
Since y is assumed primitive, it is non-trivial on 1 + p"~"4, and the sum on

the right is 0, thus proving the theorem.

From here on we have the same formalism as for Gauss sums over finite
fields. For any function f on Z(m) we define its Fourier transform

) = > fEAU—x).

xeZ(m)

Theorem 1.2. (i) We have T?*f = mf~.
(ii) If x is primitive, then

Ty = x(—DSCx~*
(iii) Again if y is primitive, then
SSG) = m.

Proof. Part (i) is proved as for the finite field case. For (ii), if y is not
prime to m, then T¥(y) = 0 by Theorem 1.1. If y is prime to m then we can
make the usual change of variables to get the right answer. Part (iii) is then
proved as in the finite field case.
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3. Complex Analytic Class Number Formulas

§2. Primitive L-series

Let y be a character mod m. We consider the Dirichlet L-series for Re(s) > 1:

=35 - 5 03 L

aeZ(m)®

Let { again be a primitive mth root of unity. Then we have

1 @ {0 if n = amod m
—_— WX —
M i 1 ifn % amodm.

Indeed, if a # n (mod m), then the character x — {“~™#* is non-trivial on
Z(m). Consequently we can write the L-series in the form

o= 3 w@s S Srenl

aeZ(m) n=1 x

whence also

Lo = 3 Senin 3T

xeZ(m) n
Theorem 2.1. Assume that y is a primitive character mod m. Then

C—nb
n

1 _ @
Lis, ) =5 S0 2 ®) 2,
beZ(m)* n=1
Proof. If x is not prime to m then the Gauss sum is 0 by Theorem 1.1.
If b is prime to m, we can make the change of variables which yields the
desired expression.

So far we have worked with Re(s) > 1. We now want to have the value
of the L-series at s = 1. It is not difficult to prove that the L-series has an
analytic continuation for Re(s) > 0. Of course, it is also known (and a little
more involved) how to prove the analytic continuation to the whele complex
plane. For our purposes, to get the value at 1, we can work ad hoc, let s be
real > 1, and take the limit as s approaches 1. Then we don’t need anything
else here.

We recall a lemma about series.

Lemma. Let {a,} be a decreasing sequence of positive numbers, whose limit
is 0 as n— . Let {b,} be a sequence of complex numbers, and assume that
there is a number C > 0 such that for all n,

>, b
k=1

<C,
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§2. Primitive L-series

i.e., the partial sums of the series {b,} are bounded. Then the series > a,b,
converges, and in fact

< Ca,.

n
Z aby,
E=1

The proof is immediate using summation by parts.

We apply the lemma to the series with b, = {~™ and a, = 1/n° with s
real >0. The partial sums of the b, are clearly bounded (they are periodic).
Let

Zy =C_b$é 1.

For |z| < 1 we have
@ Pl
—log(l — 2) = ,ZJ'

As z — z,, —log(l — z) approaches —log(l — z,). On the other hand, let
z=rz, withO<r<l.

Then the series > z"/n converges to > z§/n as z tends to z, along the ray
(that is, r tends to 1). This is again obvious by estimating the tail end of the
series using the lemma. Consequently, we find:

Theorem 2.2. If y is a primitive character, then

L =-32 S 56)l0g - ¢-).

m beZ(m)*

The picture of the roots of unity looks like in the figure.

Zb

1= e = “ — Cblew,
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3. Complex Analytic Class Number Formulas

then the picture shows that
1 —(b= Il — C—ble—w_

The branch of the logarithm is determined so that

T ¥
—§<9<§'

Observe that we do not change the sum
2, 1) log(1 — ()

if we replace b with —b. We shall distinguish two cases.

We say that y is evemr if y(—1) = 1, and that y is odd if y(—1) = —

We assume m > 2, and m = m(y) is the conductor of .

Case 1. y is even.

In this case, adding the sum with b and — & yields

2> i) log(l — {7%) = > 7(®)llog(l — ) + log(l — (9],

With y even, we obtain the formula

L) =-S5 ge)ogt - .

beZ(m)*

Case 2. y is odd.

In this case, we let
{=e™m and b=1,...,m— L
Then

log(l — {7%) = log|l — (7] + z(’zf - %”)

tog(t — &) = toglt - | 1} - 2,

m

Thus with ¥ odd, we obtain the formula

i, mS(x) z '(b)( _1_) _ miS(y) B,.

m £
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§3. Decomposition of L-series

Remark. Let m be an integer >1 and let y be a non-trivial character on
Z(m)*. Then either the conductor of y is odd, or it is even, in which case it is
divisible by 4. Hence for a primitive character, we cannot have m = 2.

This is in line with a field theoretic property. Consider the field

K= Q(#m)-

Let m be the smallest positive integer for which we can write K in this fashion.
Then either m is odd or m is divisible by 4. If m is odd, then the group of
roots of unity p in K consists of + p,,. If m is even, then uy = u,,.

§3. Decomposition of L-series

For the applications we have in mind, we have to deal with two types of
fields: The cyclotomic field Q(u,,) for some integer m > 2, and its maximal
real subfield, over which it is of degree 2. We shall use a language which
applies to the more general situation of an arbitrary abelian extension of the
rationals (known to be contained in a cyclotomic field), but the reader may
limit his attention to the two cases mentioned above. Certain proofs can be
given ad hoc in these cases, while it is easiest to use general class field theory
to deal with the general situation. I hope that the extent to which I recall
certain proofs here will make the material readable to any reader not
acquainted with class field theory.

Let K therefore be an abelian extension of Q, and let K* be its real
subfield. We let m be the smallest positive integer such that K = Q(u,,) (we
call m the conductor of K). We assume K # Q, and as said above, you may
assume K = Q(u,,) or K = Q(u,)*. We have a surjective homomorphism

Z(m)* — Gal(K/Q) = Gxjq

Any character y of Gk,q gives rise to a character on Z(m)*, also denoted by y.
We let m(y) be its conductor. We may view y as factored through Z(m(x))*,
in which case we speak of y as the corresponding primitive character. If we
need to make a distinction between y as character on Z(m)* or the corre-
sponding primitive character on Z(m(y))*, then we denote this primitive
character by y,. The context should always make clear which is meant.

Let

a6 =T1(1- xg)

be the zeta function associated with K. It is a fact that there is a decom-
position

te(s) = [ [ Les, »),
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3. Complex Analytic Class Number Formulas

where the product is taken over all the primitive characters induced by
the characters of Gg,q. We reproduce the proof in the case K = Q(u,,). Inthe
last section we dealt with the L-series in its additive form. Here we use the
multiplicative form

e -T1( -2

where the product is taken over all primes p not dividing m(y). All these series
and products converge absolutely for Re(s) > 1, and what is to be proved
amounts to formal identities, localized at each prime p. Specifically, the
decomposition is equivalent to proving for each prime number p:

10~ -11(-12)

plp p

It is therefore convenient to let # = p~5. As usual, let

(P) = ®1---9),, Np=p

be the decomposition of p in prime ideals in K. Then

efr = [K: Q]

The identity to be shown is then equivalent to

A -vy=110 - xp)}.

4

Suppose first that ptm. Then e = 1. The prime p generates a cyclic subgroup
of order fin Z(m)*,

Z(my* = {p} = {1}.

The value of a character y viewed as character on Z(m)* or as primitive
character are the same on p. There are f distinct characters on the cyclic
group {p}, corresponding to the fth roots of unity, each such character
assigning one of these roots of unity to p. Each one of these characters then
extends in r possible ways to Z(m)*. Since trivially we have the factorization

- =]]0-2,

tf=1

we have proved our identity in the case p{m. The argument is, by the way,
entirely similar if K # Q(un).
Suppose secondly that p|m. Write m = p*m’ with (p, m') = 1. If p|m(y)
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§3. Decomposition of L-series

then by definition y(p) = 0. If ptm(y) then y factors through Z(m'y*. We are
therefore reduced to proving the identity

A-ty =110 - xp»

where the product is taken over those y whose conductor m(y) is not divisible
by p, and hence such that y factors through Z(m')*. The arguments are then
identical with the preceding arguments, replacing m by m'. This concludes
the proof. (Cf. [L 1], Chapter XII, §1.)

As usual, we let ry, r, be the number of real and complex conjugate
embeddings of K.

If Kis real then ry = [K:Q], r; = 0.

If K is not real, then r;, = 0 and r, = $[K: Q].

We let
=[K:Q] =

We assume known the analytic continuation of the zeta function and
L-series at 1 (cf. [L 1], Chapter VII, [L 2], Chapter XIV). By comparing
residues, we have the class number formula:

CNF. 22nyhR _ 1T 11, .

T wdiz
d x#1

As usual:

w = wg = number of roots of unity in K.
h = hg = class number of K.
R = Ry = regulator of K.

d = dyx = absolute value of the discriminant.

If K is real, so r, = 0, then w = 2 and the formula reads:

kR .
AR _TTarq, .
vVid QZ( 0

Leopoldt’s p-adic analogue will be given in the next chapter. If K is not real,
then we let 2%, R* denote the class number and regulator of its real subfield
and N* is the degree of the real subfield,

N* = N2 =r,.
We shall also need another fact whose proof is somewhat more delicate.
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3. Complex Analytic Class Number Formulas

Theorem 3.1. We have product expressions:

@) [Ime=d
x#1
B diz if K is real
(i) 1-:[1 St = { i2d'?  if K is not real.

Proof. 1t is possible to give essentially algebraic proofs for these facts
(although the sign of the Gauss sums is always a little delicate, involving
something about the complex numbers). The best way to see the theorem,
however, is probably as in Hasse [Ha 1], using the functional equations of the
zeta function and L-series. Indeed, under the change s — 1 — s, the functions

A5 =512 (s/2))Vx(s) if K is real

1+ s)\¥2 . . .
ds’2(7z“s’zf(s/Z))N’2(n‘s’2F ( > )) {x(s) if K imaginary

are invariant. On the other hand, under the transformation
s—1—s and yx+—jp,
the following functions (for non-trivial y)

m()*'3(n =120 (s/2))L(s, x) if y is even
m()"? (n-swr (1—12”-:5) )L(s, ) if y is odd

take on the factor

Va(=Dm(p)
9]

Dividing the functional equation of the zeta function by the functional
equation of the L-series, one sees that under s+—>1 — s,

m()*? V(=Dm()
( p ) takes on the factor S0 .
The theorem then follows at once.

If we combine the residue formula, Theorem 3.1, and the expressions for
the values L(1, y) for primitive characters y found in the last section, we then
get the following factorizations for the product AR in the two cases.

K real.
21hR=[] 2 —x®)logll — Lyl

x#1 bmod m(x)
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§3. Decomposition of L-series

Warning: In this case, N = N*, h = h*, R = R* and characters are even.

K imaginary.

2V2 pR
—=T1 > —x®loglt - theyl- [ —Bux
xodd

xeven b mod m(x)
X¥F1

In the real case, we observe that all characters are even. Also the number of
roots of unity in K when K is real is equal to 2. Otherwise, the formulas are
just obtained by plugging in.

It will be convenient to reformulate them slightly, to make the connection
between imaginary K and the maximal real subfield clearer. We let:

E = Ex = group of units in K
E* = Eg+ = group of units in K*
Ux = group of roots of unity in K
Cx = group of ideal classes in K.

Lemma. We have the index

IWID-1R+
. Y — T,
(E . #KE ) R
Proof. This is obvious by computing the regulator of the units in K+ with
respect to K, where local factors of 2 occur in each row of the determinant
expressing the regulator, whereas a local factor of 1 occurs in the corre-
sponding determinant giving the regulator of the units in K*.

Following Hasse, we give a symbol for the index in the lemma, calling it
the unit index:

Ox = Q = (E: uxE™).

Reading the class number formula in the real case applied to K+, we find:

Theorem 3.2. For imaginary K,

h=htQw2-v2 ][] —B,,.

zodd
In the next section, we shall analyze more closely the decomposition
h=h*h",
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3. Complex Analytic Class Number Formulas

where h~ is defined as A/h*, and we shall see that A~ is an integer. In any
case, we have the class number formula:

CNF-. b~ =0ow] ]| —1By,

xodd

In the next section, we shall prove that @ = 1 if K = Q(u,,) and m is a
prime power. In addition, 2~ will be interpreted as the order of the (—1)-
eigenspace of the ideal class group. From Theorem 1.1 of Chapter 2, we find:

Theorem 3.3. If m is a prime power, K = Q(u,), G = Gal(K/Q), and & is
the Stickelberger ideal, then

b~ = (Z[G]": &).

Let p be a prime number. If 4 is an abelian group, we denote by A® its
p-primary part. As Iwasawa observed [Iw 7], knowing the index immediately
shows that:

The group Cz® is generated by one element over Z[G] if and only if there
is a Z[G}-isomorphism

Cz® x (Z[G]~ )P

Indeed, we know that the Stickelberger ideal annihilates the ideal classes,
so the isomorphism is obvious if there exists one generating element by
Theorem 1.1 of Chapter 2.

Let m = p itself. Iwasawa [Iw 7] and Leopoldt [Le S], [Le 10] have shown
that if the Vandiver conjecture #* prime to p is true, then the cyclicity follows
for the p-primary part of C~. (See Chapter 6, §4.) Proving the Vandiver
conjecture, or the Iwasawa-Leopoldt conjecture that Cz® is cyclic over the
group ring is therefore one of the major problems of algebraic number theory
today.

In the Iwasawa-Leopoldt conjecture it is necessary in general to restrict
the conjecture to the p-primary component. For example, let F be an imaginary
quadratic field Q(v'—p), and suppose p is such that F is contained in the
cyclotomic field Q(u,) = K. Then K over F is totally ramified above p, and
the Hilbert class field of F lifts to an unramified extension of K of the same
degree, so the ideal class group Cy is a factor group of the ideal class group
Ck, and Cp = Cp~. It is known that there exist such fields, e.g., Q(v —3299),
for which Cj contains a group of type (3, 3), see Scholz—Taussky [S-T].
Furthermore, 3 does not divide p — 1, with p = 3299. Consequently all the
non-trivial eigenspaces for characters of Z(p)* of the local ring group Z;[G]
are cyclic over Zg. This shows that there cannot be an isomorphism

Cx™ ® Z[G]" /4,
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§4. The (& 1)-eigenspaces

and thus in general, the Iwasawa-Leopoldt conjecture has to be restricted to
the p-primary component.
For h* we also get a formula, and it is convenient to introduce the group

G = Z(m)*/ £ 1,
and for each even character y the group
G, = Zm()*/ £ 1.

Then there are exactly N/2 even characters and (N/2) — 1 non-trivial even
characters. Therefore we obtain the other class number formula:

1
CNF+, ht = il >, —x®)log|l — (-

bEGx

The product over y # 1 is taken over the non-trivial characters of G,, or
equivalently the non-trivial even characters of Z(m)*. This product will be
interpreted as a determinant of certain units in §5, and it will follow that 4*
is equal to the index of a certain subgroup of the units in the group of all
units.

§4. The (+ 1)-eigenspaces

In this section we analyze in greater detail the factors A* and A~ of the
class number, and the corresponding unit index. We assume that m is odd
or m = O mod 4.

Theorem 4.1. Let K = Q(u,). Then Qg = 1 if m is a prime power, and 2
if m is not a prime power.

Proof. Let E = Ex be the unit group in K. For each unit # in E, the
quotient it/u is a unit, of absolute value 1, and for any automorphism ¢ of
K over Q, we have

o(iiju) = oujou

because o commutes with complex conjugation (abelian Galois group).
Hence all conjugates of #/u have absolute value 1. Hence #@/u is a root of
unity. Let

Q:E—>p = pg
be the homomorphism () = #/u. Then
u < o(E) < p,
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because if u is a root of unity, then ¢(x) = u~2 so the image of ¢ contains
the squares. Hence the index of ¢(E) in pis 1 or 2 because y is cyclic. Further-
more, we see at once:

Qx = 2 if and only if ¢ is surjective, i.e., p(E) = p.

Assume that m is composite. Let { be a generator of p if m is even, and a
generator of the odd part of p if m is odd. Then 1 — { is a unit (elementary
fact, and easy exercise), and ¢(1 — {) = —(~1, so ¢(E) = u, in other words
@ is surjective. On the other hand, @(E* ) = p2, so the index is 2 in this case.

Suppose next that m is a prime power, m = p™. We contend that ¢(E) # u.
It will follow that @(E) = p2, and since the kernel of ¢ is E* the theorem also
follows in this case. Suppose @(E) = u. Let { be a primitive mth root of
unity, and let # be a unit such that

fu=-"1

Let

=

Then o/& = 1 so & = & and « is real. But 1 — { is a prime element above p
in K and so « is also a prime element, which cannot lie in the real subfield.
This proves the theorem.

Theorem 4.2. Let K = Q(u,,). The natural map
Cy+ = Cg

of ideal classes in K+ into the ideal class group of K is injective.

Proof. Let o be an ideal of K* and suppose a = (&) with « in K. Then
&/a is a unit, and in fact a root of unity as one sees by an argument similar
to that in Theorem 4.1. Suppose that m is composite. By Theorem 4.1, we
know that Qx = 2 and ¢ is surjective, so there exists a unit # such that

ufii = ofa.

Then au is real, and generates the same ideal as «, thus proving the theorem
in this case.

Suppose that m = p" is a prime power. Let { be a primitive mth root of
unity, and let = 1 — {, so 4 is a prime element above p in K. We can write
& = az with some root of unity, and A/A = —{ is a generator of u. Hence

z = (AfA)F

for some positive integer k. Then al* is real. Since the ideal generated by «
comes from K+, and since p is totally ramified in K, it follows that k is even.
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§4. The (+ 1)-eigenspaces

Hence z is a square in p, and therefore in the image of ¢, say z = u/u for
some unit ». Then au is real, and generates the same ideal as «, thus proving
that a is principal, and also proving the theorem.

Theorems 4.1 and 4.2 are classical, see for instance Hasse [Ha 1], Chapter 3,
for more general results. The elegant proofs given here are due to Iwasawa.

Theorem 4.3. Let K be an imaginary abelian extension of Q. Then the norm
map

NKIK+: CK - CK“'

on the ideal class group is surjective.

Proof. We have to use class field theory, which gives the more general
statement:

Lemma. Let K be an abelian extension of a number field F. Let H be the
Hilbert class field of F (maximal abelian unramified extension of F). If
KN H = F then the norm map Ng;z: Cx — Cp is surjective.

Proof. For any ideal class ¢ in K, the properties of the Artin symbol show
that

(¢, KH/K) restricted to H = (Ngzc, H/F).

We have natural isomorphisms of Galois groups:
KH
\ > H

KNH=F

Gal(KH/K) ~ Gal(H/F) K

Hence the group (Ng,;»Cx, H/F) is the whole Galois group Gal(H/F), whence
Ng»Cx = Cr since the Artin symbol gives an isomorphism of the ideal class
group with the Galois group. This proves the lemma.

The theorem follows at once, because K over K* is ramified at the
archimedean primes, and hence cannot intersect the Hilbert class field of F
except in F.

Let © denote complex conjugation. Let

Cxz = (—1)-eigenspace of Cy
= {c € Cy such that ¢*** = 1}.
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3. Complex Analytic Class Number Formulas

Theorem 4.4. Let K = Q(,,). Then the sequence
1+ Cg— Cx =25 Cr+—1

is exact.

Proof. We consider the norm map followed by the injection,

CK % CK"' L) CK'
The kernel of this composite map is Cz by definition, so the theorem is
obvious by what had already been proved.

Corollary. The quotient h/h* is an integer, which is the order of the group
Ck.

Remark. The integer 4~ is called the first factor, and 4+ is called the second
factor of the class number, in older literature. This is poor terminology since
the ordering seems arbitrary, and for several years this has been replaced by
the plus and minus terminology.

§5. Cyclotomic Units

Let m again be the conductor of the cyclotomic field Q(u,,), so either m is
odd >1 or m is divisible by 4. Let { be a primitive mth root of unity. For b
prime to m we let

[ -
gb=%:“'11‘

Then g, is a unit called a cyclotomic unit. It is easy to see that g, is equal to a
real unit times a root of unity. Indeed, without loss of generality we may
assume that b is odd, since {® depends only on the residue class of b mod m.
Then

b—-1

(g, for V= ——

is real (i.e., fixed under o_,), as one sees immediately from the definitions.
We let g; be this real unit, uniquely determined up to sign, and call it the
real cyclotomic unit.

We let & be the group of units in Q(u,,) generated by the roots of unity
and the cyclotomic units. We let &* be the group of units in Q(u,,)* generated
by +1 and the real cyclotomic units. Then

E|§ ~ EY|&*.
Observe that g, and g_, differ by a root of unity.
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§5. Cyclotomic Units

As before, let N = [Q(u,) : Q] and let

N

r=§—1

Then r is the rank of E, and also the rank of E*. If ¢,, .. ., & is a basis for
E* (mod roots of unity), then the regulator R* is the absolute value of the
determinant

R(E) = R* = ide}t log|o ¢4
a,

where j = 1,...,rand a e Z(m)*/ £+ 1 and a # + 1 (mod m). It is convenient
to let

G = Z(m)*/ 1

so we may view ae G, a # 1 in G.
On the other hand, we may form the cyclotomic regulator

R(€) = Ry, = + det log|o,gs
a,b#1

again with a, b € G, and of course it does not matter if we write g, or g
since the absolute value of a root of unity is 1.

For composite levels m the cyclotomic units are not necessarily inde-
pendent, and so we now turn to prime power level,

m = p".

We shall prove in this case that the cyclotomic units are independent.
Interpreting the regulator as the volume of a fundamental domain for the
lattice generated by the log vectors of units in R, we see that

(E: &) =(E*:6%) = Ryo/R™.

Remark. For composite m, as with the index of the Stickelberger ideal,
it is necessary to consider the group generated by cyclotomic units of all
intermediate levels to get a group of units of the right rank.

Theorem 5.1. Let K = Q(u,) and h = hyg. Assume m = p" is a prime power.
Then

ht = (E*: %)= (E: &).
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3. Complex Analytic Class Number Formulas

Proof. Let G be any finite abelian group. Then we have the Frobenius
determinant formula for any function fon G:

[12 r@f@™ = det [flab™) — fl@)}

x#1 ae@

The proof will be recalled later for the convenience of the reader. It is already
clear that up to minor changes, this formula yields the theorem, taking into
account the expression for 2% obtained at the end of §3. We now make these
changes explicit.

Lemma 1. We have for G = Z(m)*/ + 1:

+ det loglogs| =] [ > x(6) logl1 — ¢’

x#1 beG

=112 2 log|g,-

x#1 beG

Proof. The first expression comes from the Frobenius determinant formula
(Theorem 6.2), and the second comes from the fact that for non-trivial y,

2, 1) log|1 = (| =0.

Lemma 2. Let G, = Z(m(y))*/ + 1. For prime power m = p", we have

> x®) log|l — Loyl = ,,ZG 2(6) log|1 — {5

beGy
Proof. Let m(y) = p°. We write residue classes in Z(p™)* in the form
y=b+ pe, with0 < ¢ < p"~5,

and b ranges over a fixed set of representatives for residue classes of Z(p®)*.
Instead of the sums over G, and G respectively, it is easier now to work with
sums over Z(p®)* and Z(p™)* respectively, and then divide by 2. The desired
relation is then immediate from the identity

[T x-ayv)=xm— ym

am=1

because we get

> M logll =l = > x(®)log|l — Lkl

¥y mod p* bmod p3
This proves the lemma.

Theorem 5.1 is then immediate from the lemmas, and the class number
formula for A+ obtained from the L-series.
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§5. Cyclotomic Units

It is generally believed that the coincidence of group orders in Theorem 5.1
does not correspond to an isomorphism of the groups involved. Iwasawa has
a counterexample at least that C* is not isomorphic to E/& as Galois module.
Mazur has pointed out that the analogous statement for the case of elliptic
curves with complex multiplication is definitely false.

We conclude this section by mentioning the most classical case of the
quadratic subfield. For our purposes we are interested in the case of the real
quadratic subfield. Thus for the end of this section, we let

m = p with p prime # 2, 3

and such that K = Q(y,,) contains a real subfield F = Q(v' D) with D > 0,
so D = p, and D is the discriminant. Let ¢ > 1 be a fundamental unit of F,
and /; the class number. From

Cr(s) = Cals)L(s, 1)
where y has order 2, we get

2hz log ¢
v'D

= L(L X)
=205 3@ ogl1 - 1]
a=1

It is a simple matter of the theory of quadratic fields that the conductor m(y)
is exactly .D (assumed > 0). The explicit value S(x) can be determined in any
number of ways (via functional equation, via Dirichlet’s method as in my
Algebraic Number Theory, Chapter IV, §3, etc.), and we have S(x) = V' D.
Thus we find:

Theorem 5.2. For a real quadratic field F = Q(V/ D) as above,
2hploge = — > (a)log|l — {7

amod D

We have the tower of fields:

Z(D)*/ +1

Q—m——x—X
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3. Complex Analytic Class Number Formulas

Let & be the group of cyclotomic units in K* and let 6; be + its norm group
into F, so

6p = + Ng+ 6.

Then & (mod + 1) is infinite cyclic.

Theorem 5.3. hy = (Ep: &%).
Proof. Let
o= ] @-¢9 and o= J] (1-¢9,
xa)=1 x@y=-1

where { is a fixed primitive Dth root of unity. Note that the character y is
even, so g and —a occur simultaneously in each product. Therefore the norm
from K* to F of any real cyclotomic unit

1—¢

cbl_c

is a unit in F, and the group generated by these norms (mod 1) is infinite
cyclic, generated by a unit # > 0 such that

+7% = o'fa.
From Theorem 5.2 we conclude that
hplog ¢ = log 1.

Thus n = ¢&*, and since n (mod + 1) generates the norms of cyclotomic units
in K*, this proves the index relation of Theorem 5.3.

This index relation is analogous to that of Theorem 5.1 for the full cyclo-
tomic field. Since K* is totally ramified over F (at the prime p) it follows from
class field theory that

hg divides A,
(Proof: Let Hy be the Hilbert class field of F. Then Hr N K* = F, so
[HFK+ :K+] = [HF:F] = hF'

Since HzK*/K* is unramified, it follows by class field theory that 4, divides
hi.)

We shall see later that the Vandiver conjecture asserts that Af is prime to
p. It would then follow that A is prime to p also. For tables of some Ay, see
Borevich—Shafarevich, Number Theory, Academic Press, p. 424. It has been
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§6. The Dedekind Determinant

observed for a long time that A, has very small values, and grows very
slowly. It is unknown if there are infinitely many real quadratic fields of class
number 1.

§6. The Dedekind Determinant

Let G be a finite abelian group and G = {y} its character group. We have the
Dedekind determinant relation:

Theorem 6.1. Let f be any (complex valued) function on G. Then

['12 x@ft@) = det fla=*b).

XZ€G aeG

Proof. Let F be the space of functions on G. It is a finite dimensional vector
space whose dimension is the order of G. It has two natural bases. First, the
characters {x}, and second the functions {J,}, b € G, where

o(x) =1 if x=0»
0(x) =0 if x#b.

For each a € G let T, f be the function such that T, f(x) = f(ax). Then
(Tax)(®) = x(ab) = x(@)x(b),
so that
Tox = x(@)yx.

So yx is an eigenvector of T,. Let

T=> fla Y.

ae@

Then T is a linear map on F, and for each character y, we have

Ty = [ 2 x@f@ )]

asq

Therefore x is an eigenvector of T, and consequently the determinant of T is
equal to the product over all ¥ occurring on the left-hand side of the equality
in Theorem 6.1.

On the other hand, we look at the effect of T on the other basis. We have
T,05(x) = dy(ax),
so that T,0, is the characteristic function of ¢~1b, and
T.0, = 05-1.
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3. Complex Analytic Class Number Formulas

Consequently

To, = . fla 3,1

aeq@

= > fla ),

aeG

From this we find an expression for the determinant of 7 which is precisely
the right-hand side in Theorem 4.1. This proves our theorem.

Theorem 6.2. The determinant in Theorem 4.1 splits into

det f(ab™") = [Z f(a)] det [f(ab™") - f(@)]-

aeG

Therefore

11> waf@ = et [f(ab™) - f(a))

x#1aeG@

Proof. Leta;, = 1,..., a, be the elements of G. In the determinant

flaar?) flaaz?)---flaas?)
det flaa;?) = : ' '

flaar?) flamaz?)- - -flanan™)

add the last » — 1 rows to the first. Then all elements of the new first row are
equal to >, f(a~*) = > f(a). Factoring this out yields

1 1 e 1
[2 fa )] f(azal 1) f(azaz .- f(azan 1)

aeq@

f (anal 1) f (ana2 1) f (anan 1)

Recall that a, is chosen to be 1. Subtract the first column from each one of the
other columns. You get the first statement.

On the other hand, the function f can be selected so that the elements
{f(a)}, a € G, are algebraically independent over Q, and therefore the factori-
zation given in this first statement for the determinant is applicable in the
polynomial ring generated over Z by the variables f(4). Combining the first
statement with Theorem 6.1 yields the second relation where the product is
taken only over y # 1.

Serre has pointed out to me that the determinant relation is due to Dede-
kind, February 1896, who communicated it to Frobenius in March. Cf.
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§7. Bounds for Class Numbers

T. Hawkins, “New light on Frobenius. .., Archive for History of Exact
Sciences 12 (1974), p. 223.

§7. Bounds for Class Numbers

In this book we have not emphasized questions having to do with the size
of the class number. We shall here make some brief remarks concerning
various possibilities to obtain bounds. We let #,, = class number of Q(u,,),
and p is prime >3.

To begin we derive the expression of the class number 4; as a determinant
following Carlitz-Olson [Ca-O]. We start with the expression

hz; = 2p H —%Bl.z

xodd

=21+ 3 w2,

because the characters are non-trivial, and the term with 4 drops out. We try
to rewrite this as a Dedekind determinant over the group

G = Z(p)*/+1.

OREO

Let o be the Teichmuller character such that w(a) = a mod p. We write odd
characters as products

We have

X = oy

where ¥ is even. Then we find

-1 (- G55

and this makes sense because the function

o =o0((5) - {5))

on Z(p)* is actually well defined mod + 1, so is defined on G. This expression
is now in the form where we can apply the Dedekind determinant, thus getting

hy = zpzfplmdet[“’(ab)(<%> - <;pqé>)]
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3. Complex Analytic Class Number Formulas

The size of the determinant is

p—1

2

Let { be a primitive (p — 1)-root of unity. Representatives for elements of G
are given by the powers ! with 1 < i < (p — 1)/2. The determinant may then
be taken over indices
ij= 1,...,!’—;—1 witha = 0 b = O,

and w(ab) = {**. In the expansion of the determinant, every term contains a
factor arising from these {**7, whose product is obviously 1. Consequently
the determinant is the same as the determinant obtained by omitting these
{*79 from each term.

Let R(a) be the smallest positive integer in the residue class of @ mod p.
Then R(a) is an integer < p — 1, and

G-

We use the notation R({'*?) and R(—{*7) to denote similarly the smallest
positive integers in the residue class of {**7 and — {**/ respectively. Then we
have proved the following theorem.

Theorem 7.1. + D, = (2p)*~®2ps
where
D, = det[R({'*?) — R(-{**9)].

Observe that each entry in the determinant D, is an integer of absolute
value < p — 1.

The absolute value of the determinant is the volume of the fundamental
domain of its row vectors, say. This volume is bounded by the product of the
Euclidean lengths of these vectors (Hadamard inequality).- Carlitz [Ca]
observed that this gives the bound

hp— < 2—(3p—7)l4(p _ 1)(P+3)I‘1.

As Carlitz-Olson relate it, the history of the determinant in Theorem 7.1
is amusing. The determinant

det R(@b™Y), a,b = 1,...,3—5—1

was known classically as the Maillet determinant, conjectured to be #0 by
Maillet. Malo computed it for p < 13, and found it equal to the appropriate
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§7. Bounds for Class Numbers

power of p. He conjectured that it was always so equal, but Carlitz—Olson
computed a bit further, and found extra factors. They derived that the
Maillet determinant is equal to the determinant of Theorem 7.1 (up to the
obvious power of 2), and then also to the class number times that power of
p by using the expression of the class number as a product of generalized
Bernoulli numbers (not called that at the time). Thus Malo had missed out
the class number factor.

In this book we have entirely left out questions having to do with the size
of the class number (as distinguished from certain congruence properties).
We refer the reader to recent papers for these, notably the following which
contain more extensive bibliographies than we give here. We let 4,, = class
number of Q(u,,), and p is prime.

On the one hand, Carlitz and Carlitz-Olson [Ca], [Ca-O] write A4, in
the form + D/p®~%/2 where D is a certain determinant of dimension (p — 1)/2
whose entries are integers between 1 and p — 1. Carlitz pointed out that
Hadamard’s inequality immediately gives

hp— < p(p +3)/4) - (p-1)i4,
Masley-Montgomery [M—M] also prove the inequalities
(271:) —plzp(p ~26)/4 < hp— < (271:) - plzp(p + 31)/4’

for primes p > 200. Thus the Carlitz bound is reasonably sharp. For applica-
tions of this see Ribet [Ri].

For primes p, it has been proved by Uchida [Uch] that 4, = 1 if and only
if p < 19. More generally, Masley and Montgomery [M-M] subsequently
proved that h, = 1 for precisely 29 distinct values of m (always assumed
#2 mod 4), the largest of which is m = 84. Masley [Mas 2] shows that 4, = 2
if and only if m = 39, 56. For Euclidean cyclotomic fields, see also [Mas 1].
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The p-adic L-function

In this chapter we return to p-adic integration theory, and give Mazur’s
formulation of the p-adic L-function as Mellin transform. It turns out to be
more convenient as a basic definition, than Iwasawa’s previous formulation
in terms of power series. The connection is made via Example 2 of §1. We
derive further analytic properties, which allow us to make explicit its value
at s = 1, thereby obtaining Leopoldt’s formula in the p-adic case, analogous
to that of the complex case. We also give Leopoldt’s version of the p-adic
class number formula and regulator.

The basic arguments are due to Leopoldt [Le 11]. However, we shall
follow in §1 and §2 a course of Katz, which developed systematically opera-
tions on measures and their corresponding formulation on power series in the
Iwasawa algebra. In this manner, constructions which appear slightly tricky
in Leopoldt’s paper here become completely natural, and even forced from
these measure theoretic operations.

The Leopoldt transform then appears as an extension of an integral
transform to a somewhat wider class of power series than those with p-adic
integral coefficients. No use will be made of this, since only integral valued
measures occur in the analysis of the p-adic L-function, but we include
Leopoldt’s results for completeness, for convenience of reference if the need
ever arises for them.

The p-adic L-function in the case of elliptic curves is discussed in Robert
[Ro], and especially Coates—Wiles [C-W 2], [C-W 3]. See also Lichtenbaum
[Li 3], and Katz [Ka] for general comments concerning its connection with
formal groups. For the case of totally real fields, Shintani’s evaluation of the
zeta function [Sh] presumably allows a development of the L-function similar
to that of the cyclotomic case.

This chapter is used only in Chapter 7, and it can therefore be omitted
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without loss of the logical connections. On the other hand, if one leaves out
the section on the p-adic regulator, then the chapter appears as a natural
continuation of Chapter 2, and is essentially measure theoretic, independent
of Chapter 3.

Throughout, we need the fact that if o is the ring of integers in a p-adic
field, then there is a natural isomorphism

lim o[ X /(0 + X)*" — 1) = o[X]}.
<

The limit is the projective limit, and is called the Iwasawa algebra. This is a
basic fact of algebra. In the next chapter, we need further facts about this
algebra and modules over it. For the convenience of the reader, all these
facts and their proofs will be placed in the next chapter.

§1. Measures and Power Series

Let C, be the completion of the algebraic closure of Q,, and let o = og,
be the ring of p-integers in C,. By a measure p we shall mean an o-valued
distribution on Z,. This means that for each integer » > 0 we have a function

Hn: Z(p™) —> 0

such that the family {u,} is a distribution on the projective system Z(p").

Let Cont(Z,, o) or C(Z,, o) be the space of continuous functions on Z,
into o, with sup norm. As usual, there is a bijection between measures and
bounded functionals

A: Cont(Z,, 0) — o.
[A Z,-linear map A is called bounded if there exists C > 0 such that
[A(@)| < Cle]| for all ¢ € Cont(Z,, o).

The inf of such C is called the norm of A, and denoted by ||4|. The bounded
functionals form a p-adic space.] Indeed, it is clear that any measure u gives
rise to a functional

du: o »—>j o du.

On the other hand, suppose 1 is a bounded functional. If x € Z(p"), let ¢,
be the characteristic function of the set of elements y € Z, such that

y = xmod p.
Define
Ha(X) = X@z)-
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4. The p-adic L-function

It is then clear that {u,} defines a measure. Since any continuous function
on Z, can be uniformly approximated by step functions, it follows easily

that the correspondence
p>du

is a bijection from o-valued measures on Z, to bounded functionals.

Furthermore, define the nerm
Il = sup [pa(x)],

taken for x € Z(p™) and all n. Then the map u+ du is easily verified to be
norm preserving.
The Iwasawa algebra is obtained as the projective limit

Ay = lim o[ XJ/((1 + X)*" — 1) ~ o[[X]],

and
o[ X}/((1 + X)*" — 1) = o[TY(T”" ~ 1)

where T =1 + X. Let y, = Tmod (T — 1), so " = 1. Let as usual

(;C) _rr— 1)---]?!'— k+1)

The function g, on Z(p™) can be viewed as an element of the group algebra

o[y,], namely

=1 pt-1 =1 /p
2, aryh = 2 m) D ()X

k
r=0 r=0 k=0

5 (5ol

- k=0 r=0
where the right-hand side is read mod (1 + X)*" — 1. Thus
-1

p"—1
> ey = kE Ca X¥ = Py(X),
r=0 =0

where the coefficients ¢, , are given by
=1 7
Coe = Z ﬂn(r)(k) *
r=0

The canonical homomorphism Z(p"*?*) — Z(p") maps
Pn+1(X) '_>Pn(X):
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and we let

P(X) = lim P,(X)

be the projective limit of these elements in the Iwasawa algebra. We call
P(X) the power series associated to u, and also denote it by (Pu)(X) or
Pu(X). Thus

P: p-valued measures on Z, — o[[X]]

is an o-linear map. Conversely, any power series € o[[X]] defines a com-
patible system of elements in the group algebras o[y,], so the map P is
bijective. We write

f=Pu or p=y

to mean that f is the power series associated to u as above. We call P the
Iwasawa isomorphism.
For any x€ Z, let

Cu(x) = x(x — 1) kgx —k+1) _ (;{C)

Since C,(r) is an integer for any positive integer r, and since Z* is dense in
Z,, it follows that

Ck: Zp——>Zp

is a polynomial map of Z, into itself, and in particular is continuous.
For fixed n, define

r—1D---r—k+1
k!

CP) = -

where 0 < r < p® — 1, and r = x mod p*. Then C{™ is a step function,
defined at ievel n, and

lim C{ = C; uniformly.

n-» w0

Since the coefficients ¢, in the polynomial P,(X) are given by the sum of
products of u, and the binomial coefficient, we obtain:

Theorem 1.1. Let f(X) = 3 ¢, X* € o[[X]]. Then

=), (i) ().
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4. The p-adic L-function

Theorem 1.2. The power series Py is the unique power series f such that for
z in the maximal ideal of v, we have

(1 + 2)* du(x) = f(2).

Zp

Proof. We have

LG ora@ =[5 ().

p K=0
We can interchange the sum and integral, apply Theorem 1.1, and we see

that Py has the desired property. Uniqueness is obvious since any power series
is determined by its values.

Example 1. Let p be the Dirac measure at a point s € Z,, that is

L @ dp = ¢(s).

P

Then the associated power series fis
= s

X) = Xt =(1+ X).

=3 (r=a+x

Example 2. Let v be a measure on Z, whose support lies in the open
closed subset 1 + pZ,. Let y be a topological generator of 1 + pZ,, for
instance y = 1 + p. There is an isomorphism

Z,—~1+ pZ,
such that
X > y*.

By pull back, there exists a unique measure y4 = u; on Z, such that
| waw =] v du.
1492, Zp
By Theorem 1.2, writing y* = 1 + z, we get

| f e dv) = £ - D).
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§1. Measures and Power Series

The power series f is not easily determined in terms of v. Iwasawa expressed
his results on p-adic L-functions in terms of the power series f. Mazur gave
the formulation in terms of the integral, see §3 below.

Theorem 1.3. (Mabhler) A function ¢ from Z, into o is continuous if and only
if there exist elements a, € o such that |a,| — 0 and

- 3 o)

The sequence {a,} is uniquely determined by ¢.

Proof. Given a sequence {a,} as above, it is clear that the function

0@ = S a])

is continuous. For uniqueness, let

40(x) = o(x + 1) — @(x).

Then ¢(0) = ¢,, and furthermore

)= a- el

and
Ak(P(O) = Qy.

This proves uniqueness.

We now prove existence. In the applications, the measures will take values
in the ring of p-adic integers in a finite extension of Q,. An argument using
tensor products reduces the general case to this case, and we omit it since we
have no use for it. The case of a finite extension is then reduced to the case
when the measure is Z,-valued by taking a basis for the ring of values over
Z, and projecting on the coordinates. We now handle this case.

Let B be the Banach space of sequences (a,) with a, € Z,, and |a,| — 0,
under the sup norm. We have a Z,-linear map

B—C(Zy,Z,) by (a)—>, a, C:)

We have to show it is surjective. By completeness of C(Z,, Z,) it suffices to
prove that a given fe C(Z,, Z,) is congruent to the image of an element
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4. The p-adic L-function

of B mod p" for each n, and by a simple recursion, it suffices to do this mod p.
In other words, it suffices to prove that the map

{(a.), a, € F,, almost all @, = 0} - C(Z,, F,)

given by the same formula as above, is surjective. But
C(Zpa Fp) = U Maps(Z(p”), Fp)
N

because F, is discrete and finite.

Lemma. Let 0 < k < p". Then the function

x> (z) mod p

of Z, into F, is periodic of period p".
Proof. We have to show

) s 1<
( k = modp ifk < pV.

Since
A+TyF*" =0 +D)*A + T)"" = (1 + T)*(1 + T*) mod p,
we prove the lemma by comparing the coefficients of T,
Now we are reduced to showing that
{(@1), a, € ¥y, a, = 0if n > p"} — Maps(Z(p"), F,)

is bijective. Since both spaces have F,-dimension p”, the surjectivity follows
from injectivity, which is proved the same way we proved that the function
¢(x) has uniquely determined coefficients a,. This proves Mahler’s theorem.

Corollary. If f(X) = > ¢, X" and

o(x) = Zan(z)’

then

f @ dtuf = z apCy,

U.w dps

N

< (supla:D|fI < [£]-
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§2. Operations on Measures and Power Series

We define the norms:

171 = sup |ca|

lull = sup |ua(x)| as before.

Theorem 1.4. We have ||f|| = |u;|.

Cp = J‘ (:) dus(x),

we get trivially | f]] < |us]. Conversely, given a level p*, let x, € Z(p") and
let ¢ be the locally constant function such that

Proof. Since

o(xo) =1, and o@(x) =0 if x # x4, x € Z(p").
Then

f Qdu; = pn(xo),

and on the other hand, from the corollary of Theorem 1.3, we get

U(pdﬂf

< |71

so |us| < || f] as desired.

§2. Operations on Measures and Power Series

We shall give a list of integration formulas, or better, a list of operations on
measures and their corresponding operations on power series.

Meas 0. du; = f(0).

Zp

Proof. Special case of Theorem 1.2 with z = 0.
For the next property, we let
Yo(x) = (1 + 2)*
if ze m = maximal ideal of 0. Also (with formal groups in mind) we write
X[+lz=X+z+2zX=(1+2)(,+ X) - L
Meas 1. Vs = Uy, where g(X) = f(X[+]2).
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4. The p-adic L-function

Proof. For we m we have

[l podwar = [ vt

= 1+ wy*( + 2)* du(x)

Zp

= 1+ w+ z + wz)* du(x).
Zy

The property is then clear from the definitions.

In particular, let { be a p™th root of unity, and let z = { — 1. Then

‘pz(x) ={*

and we find:
Meas 2. Yeoally = g,
where g(X) = f({(1 + X) — 1) = AAX[+]1( - 1)).

As before, putting T = 1 + X, and f(X) = f; (T) if f is a rational func-
tion, we can write the power series g(X) in Meas 2 in the form

g(X) = f6,(T).

Moreover, let ¢ be a step function, constant on cosets mod p*. Write the
Fourier expansion

ox) = > ¢Or
1

(=

o0 = ;— S o=

xeZ(p™)
We find:
Meas 3. QU = Uy
whereg(X) = > ¢ + X) — 1)

=1

If f(X) = f,(T) is a rational function, then

2T = > oOfe,LT).

(ph=1

Let U, = U be the operator
U = /30~ 3 fQ + 1 = D,
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§2. Operations on Measures and Power Series

We call U the unitization operator because of the next property.
Meas 4. If ¢ = characteristic function of Z%, then

OUs = Hyjy-

Proof. We compute trivially the Fourier expansion of ¢:

=ljp if{#1

o0 =+ zc- { =gy
Then Meas 3 gives
g(X) = Cgl PO + X) — 1) = Uf(X),
as was to be shown.

Remark. Let 4 be the formal multiplicative group (cf. Chapter 8). In the
notation of such groups, we can write the unitization operator in the form

Uf(X) = f(X) — - Z fX[+12).

Meas 5. Let y be a character on Z}, of finite order with conductor N =
power of p. Let { be a primitive Nth root of unity, and let

SG) = 2 @

acZ(N)*

Then
XHs = Ug

where

s =260 S s+ 1) - 1.

acZ(N)*

If fis a rational function, then

gD = 2L S sy (o).

Proof. It suffices to apply Meas 3 and to compute the Fourier transform
of x. This is trivial, and we have

Z ()ny_{o if x = Omod p
vty W@S, 0 ifx=a% 0modp.
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4. The p-adic L-function

Meas 6. xpy(x) = pp,(x)

where D = (1 + X)Dx. In particular

fz ¥ du () = [ dupy = DH(0).

P Zp

Proof. Note that

x = lim
2-0

(1 +zz)”— I b = 1

z—-0 z

Hence for any step function ¢ we get
. Ax) — 1
[ 500y ) = tim [ YEL= ) iy

= tim [ p(s) dp 0 (by Meas 1)
where

(X +z+ zX) — f(X)

gz(X) = Z

= (1 + X)f'(X) mod z

by Taylor’s formula. The desired result follows by taking the limit as z— 0
and using the non-trivial part of Theorem 1.4, that is:

lito, — biosll < llg= — DfY| < |2].

Remark. We shall deal throughout with three variables. Let T be the
variable on the “multiplicative group.” We put

T = é%, X=T-1, T=1+X.

Then Z is the corresponding variable on the additive group. For any power
series f(X) (with coefficients in a field of characteristic 0) there is a corre-
sponding power series denoted by f*(Z) or f; (Z) such that

S(X) = e — 1) = fo(Z) = fo,(T).

This last equality makes sense only when f'is a rational function.
The differential operator D then can be expressed in terms of the three
variables,

(1 + X)DX = Dz = TDT.

The expression in terms of 7" applies only to rational functions of T (rational
functions of X). The first two expressions in terms of X and Z apply to
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§3. The Mellin Transform and p-adic L-function

arbitrary power series, and for any positive integer k, the expression D*f
makes sense whether we view f as power series in X or Z. Furthermore,

D¥f(0) = D%fc,(0).
If fis a rational function, this is also equal to (T'Dr)*fg (1).
Meas 7. Let g = Ug so y, is a measure on ZE. Then

a~'p,(a) = pun(a)
where h is any power series such that Dh = g.

Proof. Since a~'uy(a) is 2 measure on Z¥, there exists a power series f
such that fe o[[X]],

a'pfa) = pl@ and Uf=f.
Then

Ho(x) = xpy(x)
whence by Meas 6,
g = Df = DUf.

We let 1 = Uf to conclude the proof.

§3. The Mellin Transform and p-adic L-function
Let w be the Teichmuller character. If p is odd, then

. *
0 ZF ~ plps

is the character such that w(a) = @ mod p. If p = 2, then we define w(a) = +1
such that

o(a) = amod 4.
Then we can write uniquely an element a € Z¥ as
a = w(aXa,
where {a@) = 1 mod p if p is odd, and {(a) = 1 mod 4 if p = 2.

Let u be a measure. We define its Gamma transform as a function on Z,
by the integral

Fouts) = | <a* duta),

and we define its Mellin transform, also as function on Z,, by

M,(s) = j (@ya~* dua)
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4, The p-adic L-function

It is clear that I'yu and M, u are continuous in s. (For analyticity, see below.)
Since the integral is taken on Z§, M,u depends only on the restriction of
pto Z35, soif u = u,, then

M,py = Moy

If 4 = u;, we write sometimes M, f instead of M,u;, and similarly for the
Gamma transform.

Note that a=! du(a) for a e ZF is also the functional associated with a
measure, so that the Mellin transform is actually a special case of the Gamma
transform (of another measure).

Theorem 3.1. Let g € o[[X]] be such that Ug = g, and let h be a power
series such that Dh = g. Then Uh € o[[X]] and

r,Uh = M,pu,.

Proof. This is an immediate application of Meas 7, after integrating the
function {a)".

We now consider the analyticity properties.

Lemma. Let u be a measure on Z%. Then there exists a power series
he Z,[[s]],

h(s) = D bs™
n=0
such that b, — 0 as n — oo, with the property that for all s € Z,,

h(s) = i {a>® dyu.

Proof. The integral can be written as a sum of integrals over cosets of
1 + pZ, (or 1 + 4Z, if p = 2). Changing the measure appropriately with
respect to each coset, we are reduced to proving (say for odd p) that for any
measure u, the integral

f {a)* du
1+0Zp

has the desired analyticity property. We note that

=[S s= = n+ ) i
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§3. The Mellin Transform and p-adic L-function

Buta — 1 = O mod p, and so (@ — 1)"/n! is p-integral for all n. Furthermore,
(a — 1)*/n! tends to O p-adically as n — oco. Hence we can interchange the
sum and integral to yield

[ @rdu=3 P,
1+9Zp n=0
where P, is a polynomial of degree » with integral coefficients, and

o= D

1+9Z,

is p-integral, and ¢, — 0. It is then clear that > P,(s)c, can be written as a
power series A(s) whose coefficients b, tend to O as desired.

We had the measure E, . in Chapter 2, with c € Z}. Let s be a p-adic
variable in Z,. For any c such that y(c){c)® is not identically 1 we define the
p-adic L-function L, by

Ll — .20 = T graycas MoEL6)

1—_‘X(T<C>s f <a)*y(@)a~* dE, (a).

By the lemma, the integral is analytic as a function of s. The factor in front
is analytic except when

x(cXe)® = 1.

If x is non-trivial, we can select ¢ such that y(c) # 1, and then the factor in
front is also analytic at s = 0.

Theorem 3.2. The value of L,(1 — s, x) is independent of the choice of c,
and for any positive integer k,

1
Lp(l - ks X) = —]; Bk,xw_k

In particular, if k = Omod p — 1, and p is odd, then

1
Ll = k) = = Bey

Proof. Since the set of sufficiently large integers £k = 0 mod p — 1 is dense
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4. The p-adic L-function

in Z,, we see that the first assertion follows from the explicit values given at
integers of the form 1 — k as described. For these, we have:

M, GE,00) = | (@) dBs @)

- j a"~ (@) *y(@) dE; ()

P

= (1 — yo *)c*) I%: B, -+ by Theorem 2.4 of Chapter 2
1
= (1 - X(C)<C>k)]; Bk.xw""-

This proves the theorem.
Theorem 3.3. Let g = Ug and let h be the power series such that

Dh =g and h(0)=0.
Then

M,1,(0) = — 11, PR

Proof. By Meas 7 we have

Myp(©) = [ ™ du@) = [ dint@) = UKO).

The formula is then clear from the definition of U.

To compute L,(1, x) we have to work out the power series associated to
E, . and then apply the formalism of the preceding section systematically
to get the answer, with s = 0 in L,(1 — s, ¥), using Theorem 3.3.

Proposition 3.4. Let ¢ € Z}. The power series associated with the measure
E,  is

1 c . _
ﬁ,c——_—m—],c———:—l') WlthT—1+X.

Proof. 1t is immediate to verify that as power series in X the expression
on the right-hand side is holomorphic at X = 0, and that its coefficients are
p-integral because ¢ is a p-unit. Let

T clogT
1 T°c-~1

ATy = 2
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§3. The Mellin Transform and p-adic L-function

Putting T = €% we find

AT) = 14(2) = 2 - 2

Zk
2,(1 = B 73

On the other hand, let f; . be the power series associated with E, ., and write

fi,c(X) =f1>l:c(Z) Z Cr-1 ( Zk i
Since

f x*"1dE, , = 1Bk(1 - ),
z <k

P

it follows from Meas 6 that
Ceor = DEIA(0) = LB — o),
SO
Z242) = 5.0~ B L = 14(2) = o —
It follows that
He=g—7- 71

as desired.

Proposition 3.5. Let y be a non-trivial character on Z¥ with conductor N.
The power series associated with yE; . is

&re = GUT) — cx(0)G(T)

where

6,0 =2 5 )t

aeZ(N)*

Proof. Immediate from Meas 5.

We shall now assume that ¢ is an integer > 1 prime to p.
Written in full, the power series for g, . is

oo = 403 ol - 2O
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4. The p-adic L-function

If we let
) = LD S S g tog1 + 12 )

where:

A ranges over cth roots of unity # 1,

a ranges over Z(N)*,
then it is easy to see (and we carry out the computation below) that
Dh,. =g,. and h,(0) =0.
Furthermore,
M;g,,o(s) = (1 — x(e)<XeHP)Ly(1 — s, 1)

The situation is then set up to apply Theorem 3.3.
We now prove that Dk, . = g, .. Observe that since 3 j(a) = 0, we have

61y = TL8S 30) 7t =SS

S, _
Lemma. (X 9 z 2,10 77 lC“ = cx()GLT?) — G(T).
Proof. Taking the logarithmic derivative of
Te — (o = ]._.[(T _ )_Ca.)
A

we obtain

- T y(a)cTe \T
z Z X(a) T — lCa, - a %c(az'c Cac z T(a '

A#FL
Multiplying by S(y, {)/N proves the lemma.
The assertion
Dhy,c = gy.c
follows by using

X T — A

Ity —7m =1

and differentiating naively using D = TDy.
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§3. The Mellin Transform and p-adic L-function

We shall recall below how it is possible to extend the definition of the
p-adic logarithm uniquely to a continuous function on all of C¥ such that
log p = 0. This is the log with which we deal in the next theorem, giving us
Leopoldt’s value of the L-function L,(s, ¥) at s = 1.

Theorem 3.6. Let y be a primitive Dirichlet character with conductor N equal
to a power of p. Then

L) =-"42 5 i@l - 19

Proof. By Theorem 3.3, Proposition 3.5, and the definition of L,(1, x), we
find:

(1 — (L1, ) =‘-;' N Z z 121 (@) log(l + AC“)
_ 185G ¢ ¢ -
_;—zX(“)IOgHH /‘[Ca'

But

— lca 1 — }'pCap _ 1 — Acazz )
[13= =Ll = la—y

A%l £ A#1

Using the fact that N is the conductor of y and that the sum of a non-trivial
character over a group is 0, we leave to the reader the verification that

> %@ log(1 — L) = 0.
It follows that

(1 - L0 0 = TED S g 10T T (1 - a9

- 3205 sar0e =4

_ S()Jc\,, 9, (x(e) — 1) Zi(a) log(1 — ¢%),

as was to be shown.

Appendix. The p-adic Logarithm

We recall briefly how to extend the p-adic log to the multiplicative group
C¥. The p-adic log is defined first by the usual series

x2
logp(i+x)=x—7+---
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4. The p-adic L-function

We shall omit the p as subscript. The series converges for |x| < 1 (the
absolute value is that on C,, the completion of the algebraic closure of Q,).
We extend the log to all units of C¥ as follows. The units have a product
decomposition

U=pm x U,

where uy,; is the group of roots of unity in F of order prime to p, and U, is
the group of units = 1 (mod p), and p|p in C¥. For each unit u we let <u)>
be its projection on U,, and we define

log u = log <u).

Thus the log has been extended to all units, and it is clear that this extension
is continuous, and is a homomorphism.

It is even possible to extend the log to the whole multiplicative group
C¥ (following Iwasawa). We let P be a subgroup of C¥ containing the
powers of p, and one th root of p for each positive rational number ¢. Then
the multiplicative group of C§ has the product decomposition

P x Hip) X Ul'

Again we define the log of an element « € C§ to be the log of its projection
on U;.

We leave it as an exercise to the reader to verify that this extension is
continuous. It is obviously a homomorphism. In particular, log p = 0.

As for uniqueness, suppose the log has been extended to a continuous
function on C¥, which is 2 homomorphism into the additive group. Then the
log has to vanish on all roots of unity. If log p = 0 then log p™ = 0 for all
rational numbers r. Given a € C} there exists r such that ap” is a unit. Hence
the extension is determined by its values on units. Furthermore there exists
a root of unity { such that ap’{ is =1 mod m, where m is the maximal ideal
of the integers of C,. Hence the log is determined by its values on elements
=1mod m, where it is defined by the usual power series. This proves
uniqueness.

§4. The p-adic Regulator

Let K be a totally real number field, and let E = Ex be the group of units
of K. Let p be a prime number. Let uy, ..., u, be a family of independent
units in K, and let

6:K—~C,, i=1,...,r+1
be the embeddings of K in the p-adic complex numbers (completion of the
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§4. The p-adic Regulator

algebraic closure of Q,). We suppose 6, ., = id. We define the p-adic regulator
up to sign,

Rp(uls ) ur) = '_,"_ det log O';uj.

If uy, ..., u, are a basis for the units (mod roots of unity), we simply call it
the p-adic regulator, and write

R, = Rg, = Rp(EK) = Rp(E)-

If K is the real subfield of Q(u,), and & is the group generated by the real
cyclotomic units, then we let

Rp(g) = Rp(uh LIRS ] ur)

where uy, . . ., u, generate these cyclotomic units, mod +1.
We leave it to the reader to verify:

Theorem 4.1. Let K be the real subfield of Q(u,,). Then
R(&) = (E: E)RN(E) = (E: &)R,.
We know from Theorem 5.1 of the preceding chapter that
h* = (E: &).
Let g, (a prime to m) be the cyclotomic units, and g/ the corresponding

real cyclotomic units. From our definition of the p-adic log, we know that
for any embedding o: Q(u,) — C,,

log og, = log ag,’.

Thus in writing down the regulator, we can use the usual form for the
cyclotomic units, without bothering to write down the extra root of unity.

We may write the p-adic cyclotomic regulator by the Frobenius determinant
formula,

R,(#) = det logo.g, = [1> i@logz.,

x#1 ae@

where G = Z(m)*/ + 1. Since

113



4. The p-adic L-function

and since Y, 7(@) = 0, we may also write this formula in the form

Ry(&) =[] 2 ia)log(t® — 1).

x#1ae@

The product is taken over all non-trivial characters of Z(m)*/ + 1.

Theorem 4.2 (Brumer). We have R, # 0O for the real cyclotomic field
Qun)*.

Proof. The cyclotomic units are algebraic, and it is a known theorem from
the theory of transcendental numbers that the logs (p-adic or otherwise) of
multiplicatively independent algebraic numbers are linearly independent over
the algebraic numbers. The proof is the p-adic analogue of Baker’s proof for
the corresponding result over the complex numbers, see Brumer [Br], or
[L 41, before Chapter VIII, Introduction to the Baker method. The proof given
there applies p-adically. The factorization of the regulator into a product of
linear forms in logarithms then shows that the regulator is not 0.

Theorem 4.3 (Leopoldt p-adic Class Number-regulator Formula). Let
m = p" be a prime power, and K* = Q(u,,)*. Then

T i =2
2#1 2 dg+

x even

R,.

Proof. From Theorem 4.1 and the complexly derived index
ht = (E: &)

of Theorem 5.1 in the preceding chapter, we find:

+h* R (E) = +R,(6) = [ | | [ 7@ log,((* - 1)

1
= )]z;l - Sn(@x(’xi)j p(l’ X)

by Theorem 3.6, the 4 appearing because G = Z(m)*/ +1,

= Vi [] - 5L )

AFL
A even

by using the complex Theorem 3.1 of Chapter 3. Selecting the sign of the
regulator R, appropriately yields the desired formula.
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§5. The Formal Leopoldt Transform

Remark. The proof of the formula involves the complex case. Presumably
there is a direct proof, which is valid for all totally real number fields K.
Cf. the Appendix of Coates Durham lectures [Co 3], where such a proof is
given for the characteristic polynomial of a certain Iwasawa module. The
extent to which analogues of cyclotomic units will ultimately play a role in
such proofs is not clear at present.

§5. The Formal Leopoldt Transform

Let K be a field of characteristic 0. Let T be the variable on the muitiplicative
group. We put:

T = €%, X=T-1, T=X+1.
Then Z is the corresponding variable on the additive group. Note that
Xt=T-1"=(" -1
Changing variables gives rise to the notation
J(X) = fe? = 1) = f6 (Z) = fo,(T).

This last equality makes sense only when fis a rational function.
For any power series fe K[[X]] we define the Leopoldt transform I'f as a
function on integers >0 by

fal2) = S0 E-
As before we let
Dy = dldX, D;=dldZ, D;= d/dT.

Then

D; =1 + X)Dx = TDy,
and for any integer k > 0,

Ifk) = Dfs,lz=0 = (TDr)*f5,|r=1.

Define coefficients y,(k) by

@ =17 = 3 nbF:
Then

(k) = D¥e? — 1)*|z=0 = (TD)(T — 1)*|7=1
k) =0 ifk'<n.
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4. The p-adic L-function

Lemma. (a) We have

yalk) = z (_l)n_,(?)ik_

(b) Each integer y,(k) is divisible by n!.
Proof. As to the first assertion, it is immediate by induction that
(TDyT* = i*T*,

Hence
< N\,
10) = (TDAHT = Vlz-s = D 3 (~17=(}) 1

has the expression as stated. On the other hand by induction it follows that
given an integer n, for each integer k there exist integers a,, . .., a,_, such
that g, = 0if i > 0, and

(TD)T - 1y =a(T — )" + na,_(T — D1 4+...
+nn—1)--(n—k + Da,_ (T — D%

Putting T = 1 yields the second assertion.

In the light of the lemma, a power series f(X) has the Z-expression

S 5, k) Z*
=73 > a Tk

n=0k=0

Consequently,

Zsz= i S a. b_@_—zk

These formulas can be summarized in the following theorem. We let C(Z, K)
denote the space of functions from Z into K.

Theorem 5.1. There exists a unique linear map
I': K[X]— C(Z, K)
satisfying any one of the following equivalent conditions:
I'l. I + X)) k) = m"* for all integers m > 0.
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§6. The p-adic Leopoldt Transform

r2. r(‘-}‘;—) (k) = X—n(,@

s, fol2) = S0 2.

This map also satisfies:
I4, I'(ZDzf)(k) = kIf(k).

Observe that the Leopoldt transform is defined by I'3 for power series.
The other two conditions I'l and I'2 do not make sense for power series.
However, in the next section, we shall work over a p-adic field K where these
other conditions do make sense for a suitably restricted set of power series,
with certain convergence conditions.

§6. The p-adic Leopoldt Transform

For simplicity, we suppose that p is an odd prime number. Let K be finite over
Q,. Let C, = completion of the algebraic closure of K. We denote the p-adic
absolute value by | | = | |,, normalized so that

|| = 1/p.

We define the Leopeldt space:
&L = %, = space of power series

X'ﬂ
fX)=>a, T mek
such that
lim|a,] = 0.
We define the Leopoldt norm
I/l = max a,.
Then.# is a Banach space, and a Banach algebra because || fz | » < | f] 2lg] -
Theorem 6.1. If f€ £ then f converges on the disc of elements
xeC, and |x| < |p|t®-D.

For such x we have

/&) < |fle
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4. The p-adic L-function

Proof. Obvious, because

x"
a, —

|p[™*-Y < |n!| and so P

‘ < |ay)-

We let C(Z,, K) = Banach space of continuous functions on Z, with
values in K, and the sup norm.

If aeZ, and p|a, we let <a) = 0.
If a e Z¥ we write
a = {ay = o(a)}a)

where { € u,_; and <a) = 1 mod p. The Teichmuller character w by definition
is such that

w(a) = {.
If se Z,, then

(@)t = }lci_l}g {a)*

is defined in the usual way, where k ranges over positive integers approaching
s p-adically. If a is not prime to p, then we let (@>* = 0 for all s.

If x is a character on ZJ, as usual we put y(m) = 0 if m is divisible by p,
50

x(m)m)s = 0 if p|m.

If x = " where « is a residue class mod p — 1, and k = a mod p — 1, then
for any positive integer i such that pti, we have

i* = o™ (K.

Theorem 6.2. Let o be a residue class mod p — 1. There exists a unique
continuous linear map

I,: % — C(Z, K)
satisfying any one of the following three equivalent conditions:
. 1. L1 + X)™)(s) = w*(m)m)*,

for any integer m > 0.
Xr I <3 n o
r.2. L2 = 5 3 oo
n! n! &, i

Tu 3. If(s) = lim If0n) = lim 3, a1 (-ff—,) (m)
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§6. The p-adic Leopoldt Transform

where the limit is taken over positive integers m satisfying.
™ m—> 00, m — s p-adically, m=oamodp — 1.

This map also satisfies

ITaf1l < /]2
and for s € Z,,

I.4. T (ZD2)f)s) = sTf(s).

Proof. Any continuous linear map on the space of polynomials (with
Leopoldt norm) extends uniquely by continuity to the Leopoldt Banach
algebra. We shall prove that the linear map

I,: K[X]— C(Z,, K)

with values
n(3)e =5 3 () wox

is continuous, and has the other properties. Uniqueness is obvious.
If f(X) = 3 a,(X"/n!) lies in &, then [a,| — 0 as n— co0. To prove that
TI', is continuous, it will therefore suffice to prove that the values

r(¥)e

are bounded. In fact, we shall see that I',(X™/n!)(s) is p-integral. This will also
prove that

ISl < 1f 2.

Fix the integer n. Let m range over integers as in I, 3. Such integers are
dense in Z,, so it suffices to prove that

r, (-’:—') (m) is p-integral for such m.

If i = 0 mod p, then i™/n! is p-integral for large m. If i # 0 mod p, and
i = @)X,
then for m close to s p-adically,
™= 0"()E>™ = 0*(@)Xi>* mod high power of p.
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4. The p-adic L-function

The Lemma (b) of §2 then concludes the proof that |I,f| < || f| &, and the
arguments also show that T'y 1 and I’y 3 are satisfied. It is clear that I', also
satisfies I'y 4, thereby concluding the proof of the theorem.

We call I', the p-adic Leopoldt transform..

The Leopoldt transform p-adically with characters w* was first used by
Lichtenbaum [Li 3] to deal with elliptic curves.

In Theorem 6.5 below we shall prove that I'y is the p-adic Gamma

transform already mentioned in §3 when applied to a power series with
coefficients in 0. Hence we may then write

Lof =T,f.

We recall the operator
U0 = /0~ 5 fEX+ D=1,

where the sum is taken over all pth roots of unity {. Then for the special
polynomial (1 + X)" we have

U + X)) = (1 + X — % Z o+ Xy

—d+ X)“(l —%;cn),
and

- {p if pln
~ o ifpin.

Hence

n_J0 if p|n
v + xy) = {(1 + X ifpin,

and in particular, U is a projection operator, i.e.,
Uz="1.

The next lemma describes the continuity property of the operator U for
the Leopoldt norm.

120



§6. The p-adic Leopoldt Transform

Lemma. |Ufle < | fle.
Proof.

Sfex+r-n= 5oL
{#F1

n

=22 ( )(zx)k(c -

(F1 1 k=0

= 2 (35 (e o)

The coefficient of X*/k! in the above sum is either 0 or

Z}jj,(n 1 €~ D,

{#1

and |{ — 1|** < |(n — k)!|, so the coefficient of a, is not a unit at p. But

>, (€= 1

{#1
is a rational integer, and is therefore =0 mod p. Hence
1 1 & X"
= X+ -1D=- ( ab )—~
P JCX+ =D =25 > abue) T

where b, .. € Z and b, ;, = 0 mod p. It is then immediate that

IUfle < 1f]e

as desired.

The next theorems prove for the Leopoldt transform on the Leopoldt
space results which have already been proved for measures.

Theorem 6.3. Let m be an integer >0, and m = a mod p — 1. Then
I f(m) = I'Uf(m).
Proof. The two maps
f—=T,f and fi+>TUf

of K[X]— C(Z,, K) are equal on the polynomials (1 + X)’. For a fixed m
the maps

f>T,f(m) and f+>TIUf(m)
are continuous, so the theorem follows by continuity.
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4. The p-adic L-function

Theorem 6.4. For fc€ % we have
Fof(©) = UFO) = f(0) — 11, DRI

Proof. The power series for Uf in terms of X or Z have the same constant
term. Hence

ruf0) = UAo).

Taking o = 0, the theorem is obvious from Theorem 6.3, and the fact that
{ — 1 lies in the domain of convergence of f by Theorem 6.1.

The next theorem resulted from a conversation with Ribet.

Theorem 6.5. For s € Z,, and f € o[[X]] we have

" Kay* dus(a) = Tof(s).

Proof. By continuity in s, it suffices to prove the theorem when s = k is
an integer >1 and £ = O mod p — 1. Let ¢ be the characteristic function of
Z¥. Then

[ @rdum = f (%) dps(x)

Zp

- f % dite ()

P

= DUf(0)
= I'Uf(k)
= I'of(k).

This proves the theorem.

We now see that the Leopoldt transform is an extension of the Gamma
transform to the Leopoldt space.
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Iwasawa Theory and Ideal Class Groups

We shall now study Iwasawa’s theory concerning projective limits in Z,-
extensions.

The first three sections establish purely algebraic facts about projective
limits, and finitely generated modules over the power series ring Z,[[X]]
which appears as the limit of p-adic group rings of cyclic groups. The situation
is quite similar to modules over principal rings when considering finitely
generated modules over integralily closed Noetherian domains. Cf. Bourbaki,
Commutative Algebra, Chapter VII, §4, where a general structure theorem is
given. For 2-dimensional local rings, this was compiemented by Serre [Se 1]
who showed that reflexive modules in that case are free, thus getting a com-
plete result for Z,[[X]]. Here we shall follow Paul Cohen’s proof analogous
to finding elementary divisors by row and column operations.

We shall also follow Serre’s exposition [Se 1], giving the asymptotic estimate
for the orders of the factor modules. This is applied afterwards to the orders
of ideal class groups. Iwasawa’s original proofs were rather complicated, and
his point of view was that of projective limits of finite abelian p-groups on
which I' & Z, operates continuously, and which are of topologically finite
type for this action. See [Iw 1], [Iw 6]. Serre [Se 1] saw that there was an
isomorphism of categories between these objects and Z,[[X]]-modules of
finite type. He introduced this point of view which simplified the proofs and
also proved successful in subsequent applications. .

The next three sections deal with arithmetic situations arising as special
cases (but which historically motivated the general results). We consider
several modules over the Iwasawa algebra. First, we deal with the projective
limit of ideal class groups. Class field theory identifies this projective limit
with a Galois group. The reader unacquainted with class field theory can
simply take for granted the isomorphism, which is described as we need it.
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5. Iwasawa Theory and Ideal Class Groups

We follow mostly Serre’s exposition [Se 1]. The results are valid for arbitrary
Z,-extensions, not necessarily cyclotomic ones.

The final two sections go further into certain Galois groups as modules
over the Iwasawa algebra, and also describe all possible Z_-extensions of a
given number field in class field theoretic terms. The Leopoldt conjecture
would imply that there are precisely r, + 1 independent ones. This depends
on the Z,-rank of the closure of the global units in the local units. See §5,
Theorem 5.2.

§1. The Iwasawa Algebra

Let I' be a topological group isomorphic to Z,. We write I' multiplicatively,
and let y be a fixed generator, so that the isomorphism may be written

x> y* for x € Z,,.
Let
I, = Irjir* x Z(p".

Then I, is cyclic of order p", generated by the image of y. Conversely, a

compatible system {y,} of generators in a projective system {I',} of cyclic

groups of order p" would give rise to a generator 7 in their projective limit.
We have a commutative diagram

Zp[rn+1] g Zp[T]/(Tp"+1 - 1)

|

Zp[Fn] - Z,,[T]/(T"" - 1)

where T is a variable. Let X =T~ 1, T = X + 1. Then Z,[T] = Z,[X],
and

ZITYT™ — 1) & ZIX)(X + 1" = 1).
Let
By = hy(X) = (1 + X" — 1.
Then
hy= X7 -,

and all coefficients other than the leading coefficient are divisible by p. Such
a polynomial is called distinguished.
We wish to establish an isomorphism

Z,[[X1] 3> lim Z,[T,] = lim Z,[X/(h,).
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§1. The Iwasawa Algebra

Let
A = Z,[[X]].

We first note that if / is any distinguished polynomial, then
Z,IX])(h) = AlhA.

This is immediate from the Euclidean algorithm (see Theorem 3.1), which
shows that A/hA is free of rank deg / over Z,, and similarly Z,[X]/(h) is free
of the same rank over Z,. Furthermore this same algorithm shows that the
natural map

Z,[X]/(h) —AlhA

is surjective, so is an isomorphism.
We thus obtain a natural map for each n,

Z,[[X]] = Z,[I;] = Z,[X]/(ha),
whence a homomorphism
e:Ad = Z[[X]] = lim Z,[X]/(h,).

Theorem 1.1. The homomorphism ¢ is an isomorphism.

Proof. A trivial induction shows that
h,=0+ X — 1e(p, X)"*!

where (p, X) denotes the maximal ideal of Z,[ X], generated by p and X.
It follows that the intersection of the ideals 4,4 must be 0, whence the kernel
of ¢ is 0. Since ¢ is clearly surjective, this proves the theorem.

Note that the isomorphism & depends on the original choice of generator y.
The projective limit

lim Z,[I',]
-

is called the Iwasawa algebra. Given a choice of generator v, it is identified
with Z,[[X]] by Theorem 1.1, and then we also call Z,[[X]] the Iwasawa
algebra.

We now consider modules over the Iwasawa algebra.

For each n let V, be a module over Z,[I",], and suppose we have homo-
morphisms

Vn+1 - Vn
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5. Iwasawa Theory and Ideal Class Groups

compatible with the action of the group rings Z,[I", ,,] and Z,[I",] respec-
tively. We may form the projective limit

V =lim V,,

which is then a A-module.

Examples. In §4 of this chapter, V, = C, is the p-primary part of the ideal
class group, and so the projective limit C is a module over 4 = Z,[[X]]. In
Chapter 7, we shall consider projective systems of local units as modules over
the Iwasawa algebra.

If each ¥, is a finite abelian group, or is compact, then the projective limit
V is compact, and Z,[[ X']] operates continuously on ¥, which is then what we
call a topological module over Z,[[X]]. (Here and in the sequel, compact
means compact Hausdorff.) Note that Z,[[ X]] itself is compact.

Nakayama’s lemma. Let o be a local ring with maximal ideal m, and m-adic
topology. Let V be a compact topological v-module.

O IfmV = VthenV = 0.
(ii) If o is compact, and V[/mV is finitely generated, then V is finitely
generated by any set of representatives of V/mV.

Proof. Let U be a neighborhood of 0 in V. Since V is a topological o-
module, for each x € V there exists an open neighborhood U, of x and a
positive integer n(x) such that

m»y, < U.

A finite number of neighborhoods U, cover V. Hence there exists an integer
n such that m*V < U. But mV = Vimplies m"V = ¥V, and hence V < U for
all U. Since V is Hausdorfl, it follows that V' = 0, which proves (i).

For (ii), let xy,..., x, be representatives of V/mV, and let W be the
o-submodule generated by them. Then W is a continuous image of o, and
is therefore compact, and closed. Then V/W is compact, and we have

m(V/W) = V|W.
Hence V/W = 0, and V = W, thereby proving (ii).

Next we pass to certain results concerning finitely generated modules over
the Iwasawa algebra. These will be applied to computing orders of certain
factor groups (which in §4 will be ideal class groups). The reader may omit
the rest of this section if he wishes to disregard such computations for the
moment and merely wishes to concentrate on general structural results.

Two modules V, V' are said to be quasi-isomorphic if there is a homo-
morphism

V-V’
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§1. The Iwasawa Algebra

with finite kernel and cokernel. It will be shown in §3 that any finitely
generated V has a quasi-isomorphism with a finite product

*) VA" T [4/e™ @] T4/,

where the f; are distinguished. The first factor A is the free part. The other
factors are A-torsion modules.

Suppose now that V is a torsion module such that V/h,V is finite for all
n. We wish to get an asymptotic formula for the order of V/A,V. Such a
formula does not change under a quasi-isomorphism, so we are reduced to
consider the two cases when

V=A4/p™ and V =Alf

for some positive integer m, and f'is distinguished.
In the first case we have

Alp™ = Z(pMILX]],

the power series ring over Z(p™). In the second case, A/f is a free module
over Z,, whose rank is deg f. It may happen in this second case that

Va=V/G" — DV

is not finite. We shall first make the assumption of finiteness to get the
formula for the order, which is a power of p, so we put

card ¥V, = p°» where e, = e, (V).

Theorem 1.2. (i) If V = A/p™ then e, = mp™.

(ii) Let V = A|f where f is distinguished of degree d, and assume V, finite
Jor all n. Then for all n sufficiently large,

e, = dn.

(iii) If V is finitely generated over A such that V, is finite for all n, then
there exists a constant ¢ such that

e (V)=mp" + dn + ¢

Jor all n sufficiently large. In the representation of V as in (*) with
r = 0, we have

m¥2m¢ and d=2degf,.
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5. Iwasawa Theory and Ideal Class Groups

Proof. In case (i) we have

Z(PMIXT((X + D7 — 1) & Ze™IXY((X + 1) — 1),

and this is just Z(p™[T/(T*" — 1), which is a free module of rank p* over
Z(p™). Thus the computation of the order is obvious.
Let us now look at case (ii). For any 4 € A we let h; be the endomorphism
of V induced by A. We let
=W, w=Xr+L
We have
" —1=(X+ 1" — 1 = X*" (mod p),
f= X9 (mod p).

Hence there exists ny such that for n > n, we have
X?" '=0mod (f,p) and X2 ' = Omodp,

and therefore

= o=l
Yo-1 =Yy

= 1 (mod p).
It follows that
Ya = ¥i-1 = 1 (mod p?).
Now
Taer— L=+ 7+ +% o~ D
=@+ 14+ 1+ 0N — 1)
= pu(y, — 1)

where u is invertible. We have therefore shown that

(’)’n - I)V = pn—no(,yno - 1)V~

Furthermore, (y,, — 1)V is of finite index in ¥, and is therefore a free
module over Z, of the same rank d as V. This proves (ii). Case (iii) is then
obvious, thus proving the theorem.

Next we consider the case when V/h,V is not necessarily finite, but make
additional hypotheses which still allow us to compute the orders of certain
factor groups asymptotically, and which are satisfied in the application to
ideal class groups.

We let

E=1l+y 4y
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§2. Weierstrass Preparation Theorem

We say that V is of Iwasawa type if there exist elements vy, ..., v, € V such
that, if we put

U, = Z,-submodule of V generated by (y — DV and vy, ..., v,
Un = g'n.UOa

then V/U, is finite for all n. In particular, V/U, is finite. For a module of
Iwasawa type, we let

Vy = V|U,

Theorem 1.3. Assume that V is of Iwasawa type. Then the conclusions of
Theorem 1.2(3), (ii), (iii) remain valid, except that in 1.2(ii) we have to write
the exponent

e, =dn+ ¢
with some constant c,.

Proof. Note that Case (i) is unchanged, only Case (ii) is now slightly
different, but the proof runs along entirely similar lines as follows. In this
case, V is Z,-free of rank d. An argument similar to that of Theorem 1.2(ii)
shows that

gnV = Pn_"°gn°V
for all n = ny. Let W = g, V. Then
e(VigaV) = e(VIW) + e(W/[p"~"W) = ¢; + d(n — no)

for some constant c;, since W has the same Z,-rank as V. This proves the
theorem.

§2. Weierstrass Preparation Theorem

The proof of the Weierstrass theorem in this section is due to Manin [Man 1].
We start with the Euclidean algorithm.

Theorem 2.1. Let v be a complete local ring with maximal ideal m. Let
fx) = Z a X!
i=0

be a power series in o[[ X]1], such that not all a; lieinm. Say a, . .., a,_; €m,
and a, € o* is a unit. Given g € o[[X]] we can solve the equation uniquely

g=4qf+r,
with q € o[[X]], r € o[ X], and degr <n— 1.
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5. Iwasawa Theory and Ideal Class Groups

Proof. Let ¢ and 7 be the projections on the beginning and tail end of the
series, given by

n—1

a:ZbiX‘)-% Z biXi = bo + bl + -4 bn_an_l
i=0

T:Zb{XiH Z b{Xi_n = bn + bn+1X+ bn+2X2 +“‘.
i=n

Note that ©7(X™h) = h for any 4 € o[[X]], and % is a polynomial of degree <n
if and only if z(h) = 0.

The existence of g, r is equivalent with the condition that there exists g
such that

u(g) = 1(gf).
But

f=of + X*(f).

Hence our problem is equivalent with solving

1(8) = w(quf)) + w(gX"1(f)) = (qu(f)) + g1(f).

Note that 7(f) is invertible. Put Z = gt(f). Then the above equation is
equivalent with

1(g) = r( —:‘—g—%) +Z= (1 + zo:g;)z.

Note that

o i‘(‘,fi o[[X]] — mo[[XT],

because a(f)/t(f) € mo[[X]]. We can therefore invert to find Z, namely

Z= (I + 7o :((2) —lr(g),

which proves both existence and uniqueness and concludes the proof.

Theorem 2.2 (Weierstrass Preparation). The power series f in the previous
theorem can be written in the form

JX) = (X" + by 1 X1 + -+ + bo)u,
where b, € m, and u is a unit in o[[X]].
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Proof. Write
Xt =gqf +r,
by the Euclidean algorithm. Then ¢ is invertible because

q=Co+01X+"'
f=...+anX"+...

so that
1 = ¢ya, (mod m),

and ¢, is a unit in 0. We obtaingf = X™ — r, and

f= q—l(Xn - r)s
with » = 0 (mod m). This proves the theorexp.

The integer n in Theorems 2.1 and 2.2 is called the Weierstrass degree of f,
and is denoted by

degy f.

We see that a power series not all of whose coefficients lie in m can be
expressed as a product of a polynomial having the given Weierstrass degree,
times a unit in the power series ring. Furthermore, all the coefficients of the
polynomial except the leading one lie in the maximal ideal. Such a polynomial
is called distinguished.

§3. Modules over Z,[[X]]

The structure of finitely generated modules over Z,[[ X']] was first determined
by Serre [Se 1] who introduced this point of view in Iwasawa theory. As
already mentioned, cf. Bourbaki for general structure theorems over integrally
closed Noetherian domains. Paul Cohen showed how one could give a proof
along the standard lines of row and column operations, cf. [L 3]. 'Robert
Coleman pointed out to me that the inductive step as given in [L 3] had to be
modified, and I am indebted to him for the exposition given in the lemma and
Theorem 3.2 below.

We let A = o[[X]], where o is a complete discrete valuation ring. We
denote by p a prime element of o. By a finite module over o we mean a
finitely generated module annihilated by some power p* and some distin-
guished element A. If o = Z,, then “finite” has the usual meaning.

By a quasi-isomorphism we mean a homomorphism with finite kernel and
cokernel. We denote a quasi-isomorphism by the sign

M~ M.
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5. Iwasawa Theory and Ideal Class Groups

Theorem 3.1. Let M be a finitely generated A-module. There exists a quasi-
isomorphism

M~A°@] [Alp @] [41(h5m™)

where each f; is a distinguished polynomial, irreducible in o[X], i, j range
over finite sets of indices, and A is the product of A taken r times, for some
integer r.

The rest of this section is devoted to the proof.
Suppose that M has generators uy, . . ., u,. Relative to such generators we
can form the matrix of relations, whose rows are vectors

(A1 - es An)
such that
/llul +---+ A'nun = 0.

Since 4 is Noetherian, a finite number of the rows generate all of them.
Performing the usual row and column operations on the matrix amounts
to changing the generators of the module. We shall describe other operations,
corresponding to embedding the module in a bigger one with finite cokernel.
An element A €4 is called p-free if A does not lie in pA, in other words, if
we can apply the Weierstrass preparation theorem to it.
Suppose that there is a relation of the form

llul + P(ﬂzuz +- 'lnun) =0,

where 4, is p-free. We can form the new module M’ obtained by adjoining a
new generator v with the relations

pU = ul, ).11) = _(lzug + et + lnun).
This can be formalized by considering a direct sum
M@ ()

modulo the desired relations, i.e., modulo the submodule generated by the
elements

©,pv) — (4;,0) and (0, 1,0) — (Aoutp + - - - + Antty, 0).

It is then immediately verified that the canonical map of M into the factor
module is injective. The factor module M’/M is annihilated by p and 4;,
whence is finite. Furthermore, the elements v, u,, . . ., u, generate M’, and
have the relation

(/111) + I’{zug + e /'l.nu,, = 0.
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§3. Modules over Z,[[X]]

In terms of the relation matrix, this means that we shall allow the following
operations, replacing the matrix R by a matrix R'.

O 1. If R contains a row (A4, pAg, . . ., pA,) with A, not divisible by p, then
we let R’ be the matrix whose rows consist of

(s, - -5 An)
and the rows of R with first element multiplied by p.

Observe that in this first operation, we may have A, =---= 1, = 0.
Next suppose that some power p* (k > 1) divides all elements of R, but
that there exists one relation

PGy -5 Ar)

such that 1, is distinguished (or equivalently, 1, is not divisible by p). We may
then form the module M’ obtained by adjoining a new element v with the
relations

Pv=pu; and A= —(lotty +- -+ Luy).

Again, it is easily verified that M is embedded in M’ and that M’/M is finite.
Note that p*(v — u;) = 0. The relations of the submodule

, ug, . . ., uy)
are generated by R and the additional relation
Ay o An)-
We have a direct sum decomposition
M =, uy...,u) D W — uy),

and the relations of v — u, are generated by p*. To prove the theorem, it
suffices to consider the first component of A’. Thus our second operation is
described as follows.

O 2. If all elements of the first column in R are divisible by p*, and if there
exists one relation (p*Aq, . .., p¥A,) such that A, is not divisible by p, then
we let R' consist of R and the new row

Ay o es An).
Finally we allow one more operation:
O 3. If R has a relation of the form
P A, k=0,
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5. Iwasawa Theory and Ideal Class Groups

and there exists an element A not divisible by p such that
(Ads, ..., Ady)

is also a relation, then we may replace R by the matrix R’ having the same
rows as R, except that the row p*(A4, . . ., A,) is replaced by

A1y -y A
This operation corresponds to the surjection with finite kernel
M— M/(j,lul +---4 l,,un).
Row or column operations, or O1, O 2, O 3 will be called admissible
operations.
Given a matrix R over A, we define
deg®(R) = min degy(a;,) fori,j =k,

where (a;;) ranges over all admissible transformations of R which leave
unaltered the components of the first k — 1 rows.

Remark. If R’ is obtained from R by admissible operations leaving the
values in the first £k — 1 rows unaltered, then

deg®(R) < deg®(RY).

Let r > 1 be an integer. Suppose that R has the form

2;,0---0 0.---0
6 et Aporr-10--40
PR IR ]

and
lrr e )-m
(7)o
Assume also that A; fori = 1,..., r — 1 is a distinguished polynomial with
the property that
deg®(R) = degdy, fork=1,...,r— 1.

Then we shall say that Risin (# — 1)-normal form. If » = 1 then this condition
is vacuously satisfied, and is the starting point for the induction of the
following lemma.

134
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Lemma. Suppose that R is in (r — 1)-normal form, with its first r — 1
diagonal elements 11, . . ., A,_1 r-1. Then by admissible transformations, we
can transform R into a matrix which is in r-normal form, and has the same
first r — 1 diagonal elements.

Proof. Using O 1 with respect to each of the first r — 1 rows, we may
assume without loss of generality that any given power p* (k > 0) divides
all components 4;; with i > rand j = 1,...,r — 1, that is all components
lying below the portion of the matrix which has already been diagonalized.
Using O 2, we may then arrange that p does not divide some A;; with i > r,
andj > r. After a succession of admissible transformations on the lower right

matrix
A oo Am
sestesleokoskskokskokok
induced by admissible transformations of R which leave the first » — 1 rows

fixed elementwise, we may then find some element A;; with i > rand j > r
such that

degwy 4; = deg”(R).

The Weierstrass preparation theorem allows us to assume that this element
A;; is a distinguished polynomial, and

deg 4;; = deg™(R).

Finally, row and column interchanges which do not involve the elements A
(i=1,...,r — 1) allow us to assume that 4;; = 4,,.

There remains to show that we can make all other elements on the rth
row equal to O after appropriate transformations. By the Euclidean Algorithm,
we may assume that

deg A,; < deg A,, for r # j
deg 4,; < deg A;; for j < r.

We first deal with the elements to the right of A,, on the rth row. We may
assume that A,; with j > r is divisible by p, otherwise we contradict the
minimality of the degree of A,,.. Using O 1 repeatedly as before with respect
to the first  — 1 rows, we may then assume that all elements A,; with j < r
are divisible by a high power p*. We then use O 1 with respect to the rth row,
to divide all elements 4,; (j # r) by successive powers of p, thus leading to
some element 4,;, with j* > r not divisible by p, a contradiction of deg /,, =
deg™(R). Thus 4,; = O for j > r.

For elements 1,; to the left of A,,, that is with j < 7, if some such element
is not 0, then we may use O 1 with respect to the rth row to divide by p,
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5. Iwasawa Theory and Ideal Class Groups

until we are in the situation where there exists j < r such that 4,; is not
divisible by p, contradicting the facts that

deg A,; < degA;; and degl, = deg?(R).
Thus we have put the matrix in r-normal form, and proved the lemma.

Theorem 3.2. If R is a matrix of relations, we can transform R with a finite
number of admissible operations into a matrix R’ of the form

4,0---0 0---0
0 0---4,0---0
0 O0--- 0---0

where Ay are distinguished polynomials.
Proof. By the lemma, we can replace R by a matrix R’ of the form

2,00 0---0
0 04, 0---0
* %x---% 0...0

where A;; are distinguished polynomials, and
deg Ay = deg®(R) fori=1,...,r
By the Euclidean Algorithm, we may assume that A; = 0 or
deg A;; < deg A;; for j # i.

In fact, we contend that A; = 0 for all j # i. Suppose otherwise, so that
Ay # 0 for some j > r > i, so we have a relation

ity - 541, 0,...,0)
not identically 0. Let
A=A A
Then A is not divisible by p, and Ay, = 0fori=1,...,r, so
(Ahj1s -5 Ay, 0,...,0)

is also a relation. By O 3 we may assume without loss of generality that some
Aj1s . . .5 A is not divisible by p, and then contradict the minimality condition
on the ;. This proves the theorem.
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We return to the module interpretation, to see that Theorem 3.2 implies
the theorem. Indeed, any module with matrix of relations R’ as in Theorem
3.2 is isomorphic to

A @ @ A/,

Finally, if £, g are distinguished and relatively prime, the map

A(fg) > Alf @ Alg

is an embedding with finite cokernel. This allows us to decompose the factors
Afly into a direct sum of factors

A[(fi™)

where f;.is distinguished and irreducible, thereby concluding the proof of
Theorem 3.1.

§4. Z,-extensions and Fdeal Class Groups

Let K, be a number field. An extension K., of K, is called a Z -extension if
it is abelian, and its Galois group is isomorphic to Z,. To give such an
extension is the same as to give a tower of fields

Ko = UKnD"'D KnD"'DKO
n=0

such that K, is cyclic over K, of degree p™
Examples. Let p be a prime number. Let

K, = Q(us+2) if p is odd
K, = Q(u»+2) if p is even.

This gives the cyclotomic Z,-extension over the field K.
More generally, let K be any number field, let

K® = K(u®)

be the extension obtained by adjoining all p-power roots of unity. Then K®
is abelian over K, and it is easy to see that the fixed field of the torsion sub-
group of Gal(K®/K) is a Z, -extension of K, = K, called the cyclotomic
Z,-extension. We study it later in the book. Note that a non-totally real field
K always has non-cyclotomic Z,-extensions, cf. §5. Natural examples can be
constructed with elliptic curves having complex multiplication, cf. [C-W].
We say that a prime ideal p, of K, is almost totally ramified in a Galois
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5. Iwasawa Theory and Ideal Class Groups

extension K’ if the inertia group of a prime p in K’ over , is of finite index
in Gal(K'/K,). We say p, is almost unramified if its inertia group is finite.
We consider the following condition of Iwasawa.

IW. K, is totally ramified over K, over a finite number of prime ideals
Y1, ..., bs lying above p, and is unramified over all other prime ideals.

Lemma. Let K.,/K, be a Z,-extension. Then:

(i) Only a finite number of prime ideals of K, ramify in K, they lie above
p, and they are almost totally ramified.
(ii) For some positive integer d, the extension K./K, is a Z,-extension
~ satisfying TW.

Proof. Some prime ideal p of K, must ramify in K, because class field
theory says the maximal unramified abelian extension of K| is finite. Let 1
be the inertia group. It is a closed subgroup of I', and #0, hence equal to
p™Z, for some m, so that p is almost totally ramified. Over the completion
K, p, the maximal tamely ramified abelian extension is finite. Hence the wild
ramification group is of finite index in I', thus showing that p lies above p.
This proves (i). If we let b,, ..., p, be the finite number of primes which are
almost totally ramified; and let

I:I = Pd’Zp

be the inertia groups, and d = max dj, then K,/K, satisfies condition IW
as desired.

Assume that condition IW is satisfied.

The same lemma as in Chapter 3, §4 shows that the norm map between
any two successive steps in the tower is surjective on the ideal class groups.
We let C, = C® be the p-primary part of the ideal class group in K,. Then
we have a surjective sequence

C0+C1'<—‘C2'<—"‘

and we let

C = lim proj C,

be the projective limit. We may view C as consisting of all sequences

(cos €15 C2y .+ 2)

with ¢, € C, and ¢, ., mapping on ¢, under the norm map.
Let M, be the maximal p-primary abelian unramified extension of K, in
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§4. Z,-extensions and Ideal Class Groups

other words the p-primary part of the Hilbert class field of X,. There is an
isomorphism given by class field theory

G = Gal(M,/K;)

such that the following diagram is commutative.
Cn+1 - Gal(Mn+l/Kn+1)
Norml lRﬁtriction
C, —> Gal(M,/K,)

Since K, is totally ramified over K, it follows that M, is linearly disjoint
from K, over K,. The lattice of fields looks as follows. We let M, = |J M,.

We let
G = Gal(M,/K,) and G, = Gal(M,/K.) = C.

Remark. If we replace K, by K, then K, over K, satisfies the same con-
dition IW, so a number of results proved for K., over K, apply a fortiori to
K., over K,. Observe that if y is a topological generator for I, then

Gal(Ko/K,) = I'™ = {y""} = p"Z,
Theorem 4.1. Assume first that YW is satisfied with s = 1. Let I be the
inertia group of any prime above p in G. Then:

(i) G = IG is a semidirect product, and the restriction of I to K., gives
an isomorphism of I and T'.
(ii) The commutator group G' = G}~ 1.
(ili) We have isomorphisms

CICT 1 % Cy ~ Gal(Mo/Ko) % Gal(KoMo/Kw) = Go/GY .
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5. Iwasawa Theory and Ideal Class Groups

Proof. We have an exact sequence
l>Ge—>G—>T—>1.

The image of I in I' by restriction to K., is surjective because K, is totally
ramified over K. It is injective because M, is unramified over K., and so

IN Gy ={1}.

This proves (i). If 6 € G then ¢”~! is a commutator because I operates on
G by conjugation. Hence G%~* < G’. On the other hand, G/G%™1 is abelian,
so the reverse inclusion also holds and (ii) is proved. Finally, M, is the
maximal p-primary abelian unramified extension of K, and so Gal(M /M)
is the smallest subgroup of G containing G’ and the inertia group Z. Since G
is the semidirect product of I and G, we see that (iii) follows from (ii), and
conclude the proof of the theorem.

Corollary, We have an isomorphism

C, = Gal(M,,/Kn) ~ C/C?"”—l ~ Gc/ng_l,
Proof. Apply the theorem to the situation where K, is replaced by K.

Next consider the general situation with a finite number of primes.

Theorem 4.2. Assume that TW is satisfied, with primes p,, . . ., p,. Let I be
the inertia group of v, in G. Then:

(i) There is a semidirect product decomposition
G = I,Gg,
and G' = G4~ 1.
(ii) Let o; be a generator for I, and write
g; = 1,0, With t; € Gg.
Then
Co & Gef(t1, - - -, Te, GE™ ).

Proof. Identical with that of Theorem 4.1, except that in the present more
general situation, we have to look at the smallest subgroup of G containing
the commutator group G’ and all the inertia groups I; instead of a single
inertia group I.

Corollary. Let U, be the Z -submodule of G, generated by the elements
T1y ..., Ts and G~ L. Let

U, = Ué’nk whereg, =1+ 7y + 9% +---+ 97"~ 1.
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§4. Z,-extensions and Ideal Class Groups

Then
C, = Gg/U,.
Proof. We apply the theorem to K, as Z,-extension of K,. This has the

effect of replacing y by y*" and ¢; by 6;"". Then 1, is replaced by (z;)%, because
for every positive integer k, we have

k _ — - 2, - F ~ -
of = (no)F = tioyti01 - oftior 2 - -0k T inor ErL . oF,
whence for k = p™ we obtain

of" = (t)yn-of".

Then
U, = Gy " Yty,..., T
where (4, . . ., 7,) is the group generated over Z, by 1y, ..., t,. Since

& — D =y"-1,
we find U, = Uj», which proves the corollary.

It will be easily shown below in Theorem 4.4 that C is finitely generated
over the Iwasawa algebra. Then Theorem 4.2 and its corollary show that C
is of Iwasawa type as defined in §1, so that one can apply the counting
procedure given there, to get an asymptotic formula for the orders of the
groups C,,.

Iwasawa has conjectured that m = 0 in the case of the cyclotomic tower
Q(u,), so that in this case, the order of the ideal class group (p-primary part)
would have the form

Card C, = pin+te

for n sufficiently large, in analogy with the orders of points of p-power order
on abelian varieties. This conjecture has recently been proved by Ferrero and
Washington. On the other hand, he has given examples of non-cyclotomic
Z,-extensions K, over K, for which m > 0.

Theorem 4.3. Assume that IW is satisfied with one prime. If Co = {1}, then
» = {1} for all n.

Proof. If Cy = 1, then Theorem 4.1 shows that C = C?-1. Viewing C as
module over Z,[[X]], this means that C = XC. But X is contained in the
maximal ideal of Z,[[X]]. By Nakayama’s lemma, it follows that C = {1},
as desired. ‘
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5. Iwasawa Theory and Ideal Class Groups

Remark. We could let K, = Q(u,»+1)* be the real subfield of the cyclo-
tomic field. It is a conjecture of Vandiver in that case that C, is trivial.
[Remember: By definition, C, = C$ in this chapter.] Thus the Vandiver
conjecture may also be formulated by saying that

h¢ is prime to p,

and Theorem 4.3 shows that if this is the case, then 4; is also prime to p
for all n.

It is probably so that Vandiver actually never came out in print with the
statement: “I conjecture etc.”” In [Va], he proves that if the Fermat conjecture
is false for x? + y? = z? with relatively prime integers x, y, z such that xyz
is prime to p, then A™ is divisible by p. Later in the paper, he states: “The
theorem last mentioned as well as Theorem 1 indicates that much of the
writer’s work concerning Fermat’s last theorem is tending toward the possible
conclusion that if the second factor of the class number of k({) is prime to /,
then Fermat’s Last Theorem is true.” The terminology Vandiver’s con-
jecture” seemed appropriate to me. In any case, I believe it.

Theorem 4.4. For any Z,-extension the module C over Z,[[X]] is a finitely
generated torsion module.

Proof. Suppose first for simplicity that condition IW is satisfied with only
one prime. Then C/mC is a factor group of C/C?~1, which is none other than
C, by Theorem 4.1, and is therefore finite. That C is finitely generated is a
special case of Nakayama’s lemma.

In general, when IW is satisfied but with several primes, then we have to
use another argument. By Theorem 4.2 we know that

Go/GY* ~ CJC?-1

is finitely generated over Z, of rank uniformly bounded by s. Nakayama’s
lemma again shows that C is finitely generated over the Iwasawa algebra.
Furthermore, applying Theorem 4.2 to K./K,, that is replacing y by y*",
shows that

ClG™ — 1C

is also finitely generated over Z, with a similar bound s for the rank. By the
structure theorem of §3, if ¥ is finitely generated over A, then there is a quasi-
isomorphism

* VA2 [4/0™ @ T4/,

where f; are distinguished. We use this with ¥ = C, writing V additively.
The uniform bound on the rank immediately shows that there cannot be any
free part, i.e., r = 0. This proves Theorem 4.4.
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§5. The Maximal p-abelian p-ramified Extension

The next two sections describe in class-field theoretic terms some properties
of the Galois group of the maximal p-abelian p-ramified extension of a number
field, and describe its Z,-extensions.

Let K be a number field. We let:

M,(K) = the maximal p-abelian p-ramified extension of K.

M3*(K) = the maximal p-abelian unramified extension of K.

We fix the prime number p and the field K, so we sometimes omit reference
to them in the notation.
J = Jg = ideles of K, and U is the group of unit ideles,

U=]]U, and J°=]] K~
o

vESw

In the first product, p ranges over the prime ideals of K. We write

Uy=][]Up and Uy, =]]U.

»Ip 1%
E = E; = units in K. We have an embedding on the diagonal:
0, E— U,.
G3P(K) = Gal(M(K)/K).
By class field theory, an abelian extension of K is unramified at primes

dividing / if and only if its associated group in the ideles contains U,. Conse-
quently we have an isomorphism

G2*(K) =~ p-part of Jg/ U, J °K*

where the bar denotes closure in the idele topology. We have the inclusions
J> U, U, J°K* 2 U, J*K*.

The first factor group
JIU, U J°K* = JJUK*

is isomorphic to the Galois group of the Hilbert class field, and is finite.
The second factor group is equal to

U, Ui °K*[U ) J °K* = U,jU, N Upyd °K*.
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5. TIwasawa Theory and Ideal Class Groups

Lemma. U, N U, J°K* = o,E.

Proof. Let U be the group of units in U, which are =1 mod p*. Then
the groups

UPUpd °K*

form a fundamental system of neighborhoods for Up,;J *K*, and their inter-
section is this closure. Intersecting with U, (whose elements have component
1 at all primes not dividing p) shows that

Uz(,n)U[p]JwK* N Up = EUI(,"').
Taking the intersection for all n proves the lemma.

Theorem 5.1. Let H be the p-Hilbert class field of K. Then we have an
isomorphism

Gal(M,(K)/H) % p-part of Uy/a,E
= UP[U N 0,E).

Again, as p is fixed, we write simply U,/E. By a quasi-isomorphism, we
shall mean a homomorphism with finite kernel and cokernel. We denote a
quasi-isomorphism by a single ~. The theorem yields a quasi-isomorphism

G3*(K) ~ Uy/E.

Furthermore, since U, contains an open subgroup of finite index isomorphic
to ZX 9 by means of the exponential map, say, we have a quasi-isomorphism

G2°(K) ~ ZF:®-"s, where r, = ranky E = r,(E).

The Leopoldt conjecture states that r, = r =r, + r, — 1.
Let Z,(K) = composite of all Z,-extensions of K. From the quasi-
isomorphism we find:

[M(K) : Z,(K)] < co.

Theorem 5.2. Assume the Leopoldt conjecture for K. Then we have a quasi-
isomorphism

GP(K) ~ Z3* = Gal(Z,(K)/K).
Proof. The first statement comes from the definitions and
[K:Q] =ry + 2r,.
For the second statement, we note that the composite of all Z -extensions of
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K has a Galois group embedded in the product of Z, with itself, and as such
is a torsion free finitely generated module over Z,, whose rank is exactly
r; + 1 by the first statement.

Example. Let K, = Q(u*®). Let U, be the local units in the completion
of K, congruent to 1 mod p,. Let U, be the subgroup of units whose norm
to Q, is 1. Assume the Vandiver conjecture. Let the notation be as in §4 of
the preceding chapter. Then we obtain an isomorphism

Gal(Q/Q™) % lim U./E,.
.

Without assuming the Vandiver conjecture, we shall study the projective limit
of the local groups in Chapter 7.

§6. The Galois Group as Module over the Iwasawa Algebra
Let K, be a number field, K.,/K, any Z,-extension, with Galois group

r={y

with topological generator y. Let Q be a p-abelian extension of X,, which is
also Galois over K,. For each n we let Q, be the maximal subfield of Q which
is abelian over X,.

I K.
r,

\ KO

The Galois groups are denoted by the letters shown on the diagram. Since Q

is assumed Galois over K, and is abelian over K, it follows that the com-
mutator subgroup is

Gal(Q/K,) = G" 1,
in other words, it consists of all elements
6" = gyo~'y~! witho € G.
It is frequently useful to view G as an additive module over the Iwasawa
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5.” Iwasawa Theory and Ideal Class Groups

algebra. Indeed, I', operates by conjugation on Gal(Q/K,), and hence on the
commutator group

Gal(Q/K,)"" -1, also written (y*" — 1) Gal(Q/K,).
Hence
lim G, = G is a compact module over A = Z,[[X]] = lim Z,[T",].
Taking K, as ground field instead of K, we obtain mutatis mutandis
Gal(Q/Q,) = (" — DG = (1 + X)™ — 1)G.
Thus in terms of the Iwasawa algebra, we find
G, = G/(y* — 1)G.
We denote by the sign ~ a quasi-isomorphism of A-modules.

Theorem 6.1. Let Q be the maximal p-abelian p-ramified extension of K.
Then:

(i) G = Gal(Q/K,,) is finitely generated over the Iwasawa algebra, and in
fact

G/G"Y ~ ZF wherep = [Ky: Q] — r, — 1.
(ii) If K, satisfies the Leopoldt conjecture, then p = r,, and
G/XG ~ Z}a.

Proof. By definition,
Qo = M,(Ko),

and the rank over Z, of a subgroup of finite index in its Galois group was
determined to be [K, : Q] — r, in Theorem 5.2. Taking into account I itself
shows that G/ XG ~ Z§ where p is as stated. Nakayama’s lemma then proves
the first assertion, and (i). Part (ii) is then a matter of definitions.

Theorem 6.2. Assume that K, is totally imaginary, and that each K, satisfies
the Leopoldt conjecture (namely

ro(Er) = ro(Ky).
Then there is a quasi-isomorphism

G ~ A" X Gy,
where Gy, is the A-torsion submodule of G.
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Proof. From the structure theorem, we know that
G ~ At X Gy
On the other hand,
ry(K,) = ryp™.
By Theorem 5.2 we know that
Gal(Q,/K,) ~ ZpF"+1,

From the structure theorem, one sees easily that this is possible only if = r,,
as desired.

The above theorems give a sample of Iwasawa’s results [Iw 12]. It is
possible to vary some of the hypotheses to obtain variants. For instance,
one need not assume the full Leopoldt conjecture in Theorem 6.2, merely
assume that the defect in that conjecture is bounded as function of n. For
the cyclotomic Z,-extension, this can be proved easily, see for instance Green-
berg [Gr 4].
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Kummer Theory over Cyclotomic
Z,-extensions

In the last chapter we studied the ideal class groups in a Z,-extension of a
number field. Here we shall consider especially the cyclotomic Z,-extension,
and then Kummer extensions above it, as in Iwasawa [Iw 12], obtained by
adjoining p"th roots of units, p-units, and ideal classes of p-power order.

We also give the Leopoldt—Iwasawa theorem that the Vandiver conjecture
implies that C~ is cyclic, in a precise version for the cyclotomic extension of Q,
following Kubert-Lang [KL 9]. We prove that the Galois group of the
Kummer extension obtained by adjoining p-power roots of p-units is 1-
dimensional free over the Iwasawa algebra. As a consequence, we see that
C~ is a quotient of this free module. See Leopoldt [Le 5] and the last Satz
in [Le 10], as well as Iwasawa [Iw 7], Theorem 2. In the limit, there is an
analogous (but less precise) statement of Greenberg [Gr 4], see also Coates
[Co 3], Theorem 5.7.

For a discussion of the case of totally real number fields, cf. Coates [Co 3],
[Co 4]. In this connection it is likely that the units conjectured by Stark [St]
(see also Lichtenbaum’s conjectures [Li 2]) will play a significant role similar
to the one played by the cyclotomic units, to clarify the situation.

§1. The Cyclotomic Z -extension

Let u® be the group of p-power roots of unity. Then Q(u®) is the composite
of an extension of degree p — 1if p is odd, Q(?) if p = 2, and a Z,-extension
which is uniquely determined as the fixed field of the (finite) torsion group of
the Galois group, and will be called the cyclotomic Z,-extension. We denote
it by Z,(Q). It is real. If K is a number field, we let

Cye,(K) = KZ,(Q)
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be the composite of K and the cyclotomic Z,-extension. Then Cyc,(K) is a
Z -extension of K. If K is totally real, then this cyclotomic Z,-extension is
also totally real.

Suppose on the other hand that K contains the pth roots of unity if p is
odd, and contains 7 if p = 2. Let g, be the power of p such that the g,th roots
of unity lie in K. Let

g» = qop" and K, = K(u,,).
Then [K, ., : K,] = p, and
K. =\ JK.
is Z,-extension of K. Let I' = Gal(K,,/K,) and let
w: I =1+ qoZ,
be the canonical representation such that for any pth root of unity ¢ we have
g = o,

A Galois extension is called p-abelian if its Galois group is a projective

limit of finite p-abelian groups. We now discuss properties of such extensions

of K, which are Galois over K.

For the rest of this section, we assume that K, contains the pth roots of
unity if p is odd and i if p = 2. Let A, be a subgroup of K;¥, and let

I'y = Gal(K,/Ko), A = Z(p")I,].
We assume that A, is stable under I,
Ordinary Kummer theory gives a pairing
Gal(K(47/")/Ka) x AR [(A37" O K5) — pope
expressed by the symbol
(0, ) = <o, @y, = ooja

for ¢ in the Galois group and « € AY*". If y € I',, then

0", s = o, Wy = <o, 07,

where 67 = Joj 1, and § is any extension of y to K,(45?"). Indeed,

7o o) = v(ﬂ‘) - v("“)-

o o
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6. Kummer Theory over Cyclotomic Z,-extensions

We may also write
(o, 7P = {a, *M),.
The group AY¥?" mod AL™" N K has exponent p*, so exponentiating with a
p P p

p-adic integer is well defined. In particular, we may rewrite the functorial
formula in the form

<a”, ady = o, a""Dy, Where y* =y~ u(y).
We wish to pass to the limit. We could have taken the Kummer pairing on
Gal(K(4Y)[Ko) x AXP"[(AYP" N Ko *) — pm,

writing the symbol (o, «)> without an index », defined by the same formula.
The Galois group on the left can be identified with a subgroup of
Gal(K,(4%")/K,), arising from the change of base of the Kummer extension
from K, to K. Let G, be the Galois group on the left, so

n = Gal(Ko(47"")/Ko).
The field diagram is as follows.
Ko(A2™)
G ] I

K (43"
Km\ }
K,
r, |
K,

The group G, is a I',-module, hence a Z(p™)[I',] = A,-module. Hence via the
natural homomorphism, it is a A-module, where

A =1limA4,
is the Iwasawa algebra, isomorphic to Z,[[X]], and X = y, — 1, where yyis a
fixed generator of I'.
Let
A= Zmin, meZ,
be an element of A. We define the Iwasawa involution
A¥ = Zm;X*‘, where X* = x(yo)(1 + X))~ — 1.
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Then X* is also in the maximal ideal (p, X) of 4, and
A A*

is an automorphism of A. The functorial formula for the action of y € I" on
the Kummer symbol can then be expressed in terms of the involution by

o*, ay = <o, *,

for o € G, and o € AL /(A¥*" N K%).
In the applications, we also pass to the limit on # for the Kummer pairing.
We suppose that

An < An+1-
Let

Q4 =J Ko(4}*") and G, = Gal(Q,/K.).

We have a compatible system of pairings for m > n:

G, X AYP"/(AY™ N Ko*) —  ppm

| I |

Gn X AT (V" N Ko *) — pp

The Galois groups on the left form a projective system, and the Kummer
groups of field elements on the right of the pairing form an injective system.
At each finite level, we have a compact-discrete duality. In the limit, we have a
similar compact-discrete duality

G, x lim A7 /(AY" N K2) — p®
-9.

with values in the p-primary roots of unity.

The action of A, on G, is compatible in the projective limit, so the limit
group G, is a topological compact A-module. We shall investigate its structure
for various systems {4,} obtained from units and ideal classes in the next
sections. It will also happen that we consider two groups, say

A > B,

in which case Q, @ Q. It is clear in each case that Gal(Q,/Q;) is a A-module,
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6. Kummer Theory over Cyclotomic Z,-extensions

and that the Kummer pairings and involution described above also apply to
this intermediate situation.

§2. The Maximal p-abelian p-ramified Extension of the
Cyclotomic Z -extension

A Galois extension is called p-abelian if its Galois group is a projective limit
of finite p-abelian groups. It is called p-ramified if it is unramified at all primes
(including infinity) not dividing p. We let:

M(K) = the maximal p-abelian p-ramified extension of K.

MP*(K) = the maximal p-abelian unramified extension of K.

We fix the prime number p and the field K, so we sometimes omit reference
to them in the notation.

Even if X is infinite over Q we may define M,(K) and MZ*(K) as above.
It is then immediate that '

My(K) = | My(F),

where the union is taken over a family of subfields F of K finite over Q, whose
union is K, and which is cofinal with the family of all subfields of KX finite
over Q. For instance, if X is finite over Q, and K, is a Z,-extension, then

My(K») = | My(Ky).

A similar remark applies for M5"(K,).
Throughout this section, we let:

K. = cyclotomic Z,-extension of K, and we assume that K, contains
the pth roots of unity if p is odd, contains i if p = 2.

Q2 = maximal p-abelian p-ramified extension of K.
E, = units in K, and E = |J E,.
QE = Kw(Ellpw)

A, = group of elements « in K;f such that (a) = a?" where a is (frac-
tional) ideal prime to p, and 4 = {J 4,.

Q4 = U Kuo(47™)

B, = p-units in K, = group of elements whose ideal factorization con-
tains only ideals dividing p.

Qp = K, (BY*®) -
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We have the following diagram of fields.

Q

QA QB

Qg
K,
It is clear that 2, and Qj both contain Q. In fact, both 4 and B contain E.

Lemma 1. Q = Q,Q;.

Proof.‘ By Kummer theory, Q is a composite of cyclic extensions. Let
K, (@V?™) = Q for some a € K. Then « € K,, for some n. We take n > m
and also such that

K, («*'*™) is p-ramified over K.
Then o necessarily has an ideal factorization

(o) = a®"b,

where b is p-primary and a is prime to p. Let 4 be the class number of K,
and write A = p’d with d prime to p. Then

@ = (@)™(B)
where () = a" and (B) = b*. Furthermore,
Ky (0M7""7) = Ky f(@¥7") = Ky yr(0")
and also
Ky s r(0MP"7) © Koo (3?7, B, BV,
This proves the lemma.

Theorem 2.1. The Galois groups Gal(Q,/Qz) and Gal(Q;/Qg) are A-torsion
modules. So Gal(Q/Qg) is a A-torsion module.

Proof. We shall analyze each Galois group separately, and get a closer
view of its structure.
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6. Kummer Theory over Cyclotomic Z,-extensions

The extension Q,/Q;.
Let Gy = Gal(2,4/Q5). For now abbreviate G,z = G, and let

n = Gal(Qs(42"")/Qx).

The field diagram is as follows.

Qu(43™")
Gn{

Qg

K

It is clear that G = projective limit of the groups G,, and that G, is a
Z(p™)[I',]-module, so in the limit, G is a A-module.
As in Chapter 5, let:

C, = CI™(K,) = p-primary subgroup of ideal class group of X,.
Then we have a homomorphism
A" ¢,
given by

ali? 5 q

if (@) = o If u is a unit in Q such that 4*" € 4,, then »*" € E,. The kernel
of our homomorphism is therefore precisely EX*", so we have an injective
homomorphism

1/ph | liph
APEY — Cy,

which is also a A-homomorphism. Let &7, be its image. Then the Kummer
pairing is isomorphic to a pairing with 4,, namely:

G, x AYPEM" — i
G, x oA, —— Up

In addition, this isomorphism is compatible with the limiting process:

1
Guiy X nir — MW"

|

Gn X dn"—’ U™
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Hence we get a compact-discrete duality
G X o — u®

where &/ = direct limit of 4,. By Chapter 5, Theorem 4.4, there exists
AeAsuchthat C* = 1,50 C} = 1forall n,and 42 = 1 for all n. By Kummer
duality, for o € G we get

(e¥,a) = <{o,a*> =1 forallaec AL and all n.

Hence ¢** = 1, so A* annihilates G, which is therefore a torsion module over
A as desired.
In addition, we note that the direct limits

lim A¥*"/E¥*" = lim &/, and Im C, = C,
— — —

are equal since any element in C, has a representative ideal prime to p.
Consequently we get the additional information:

Theorem 2.2. The Kummer pairing gives rise to a compact-discrete duality
Gal(Q,/Q2z) x Co — u®.

Remark. Iwasawa has also shown that C = lim C, is quasi-isomorphic to
<
Hom(lim C,, Q,/Z,) (see Theorem 11, p. 266 of [Iw 12]).
—

The extension Qp/Q5.

Let Gz = Gal(Q3/Qg). For now abbreviate Gz = G. By the Lemma of
Chapter 5, §1 we know that there is only a finite number of primes p,, .. ., b,
dividing p in some finite extension K}, such that p,, . . ., p, are totally ramified
in K. Let 4 be the class number of K. Let

Pt = (M), ..., ¥y = (my).
Then

Qp = Qg(nl*®, ..., ©}l*).
It is immediate that

Gal(Qp/Q25) ~ Z3 with s’ < s.

In particular, the structure theorem for finitely generated A-modules implies
that G cannot have any free part, so is a A-torsion module. This proves
Theorem 2.1.
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6. Kummer Theory over Cyclotomic Z,-extensions

For additional information concerning the fixed field of
Gal(Q/K o )sor

(for referring to A-torsion), cf. for instance Coates [Co 1], Theorem 5. Iwasawa
has an example showing that there are cases when the fixed field is not
necessarily Q.

Theorem 2.3. Assume that there is only one prime in K, lying above p.
Then

Qg = QE,, = Qg
where E, is the group of p-units in K., and

Qg, = QE;"*).
Proof. We consider the diagram of fields:

K,

Q(#;+1) = Qn

Q

The ideal above p in Q, is principal, say generated by the element 1, =
1 — ¢,. The degree [K, : Q,] is bounded independently of n, and we have

(ln) = Ppz»

where e, is the ramification index, bounded by this degree. Taking e to be the
least common multiple of the integers e, shows that p¢ is principal for all n.
We apply this to the previous discussion of the extension Q5 = Qg(n}’*).
As ideals we have

(m1) = pin

for n sufficiently large, and j, is divisible by arbitrary large powers of p as
n— oo. Furthermore

Qp = Qu(n§?%).

It is then clear that Q; = Q.
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§3. Cyclotomic Units as a Universal Distribution

Let p be a prime number.
Let &, be the group generated by + u® (p-power roots of unity) and by
the elements

{—1, with{eu® and { +# 1.

We call &, the cyclotomic p-units. They satisfy the following relations:

CU 1. o (-1D)==-0"-1
CcuU 2. [JTh-D=0p—1 ifP#1
=1
CUs. [T ¢-v=p
t;xg:inn-l_—itlive

For this last one, note that the pth roots of unity satisfy
X?7l4...4+1=0.

Replacing X by X + 1 yields the equation for { — 1, where { is a pth root
of unity. The constant term is then p. Replacing X by X?"~* yields the
equation for the general case, proving CU 3. The other properties are obvious.

We may rewrite these relations to fit the formalism of distributions as
follows. Let a € (Q/Z)® and a # 0. Define

g, = e?me — 1,
Let ¥V = &,/ + u® be the factor group of cyclotomic p-units by roots of unity.
Theorem 3.1. The association of (Q/Z)® — V given by
ar—> g, (mod roots of unity)
satisfies the distribution relations except at 0.

The theorem means that for a # 0 we have

H 8y = &a>
pb=a
and is obvious in the light of CU 2.

Let V, = &, ./ + p1,» be the factor group by roots of unity of p-units at
level <n, i.e., generated by the roots of unity, and the elements { — 1 where
{ is a p"th root of unity # 1. Whether we take { to be primitive or not to
generate V, is immaterial since the distribution relation shows that we get
all of them from the primitive ones.
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6. Kummer Theory over Cyclotomic Z,-extensions

Let 47 = Gal(Q(u,)/Q) mod ¢_;. The next theorem is due to Bass [Ba].

Theorem 3.2. The group %, operates simply transitively on the primitive
elements of V,, and the induced homomorphism

2[4} ] — V, such that 6, +> gopn

is an isomorphism.

Proof. The homomorphism is obviously surjective. It is injective because
Z[%;}] is torsion free, and the ranks of the two groups are equal. This proves
the theorem.

Theorem 3.3. The factor group V,|V, for m = n has no torsion.

Proof. The embedding of V, into V,, corresponds to the embedding of
group rings

(%]~ Z[%n]

which sends an element ¢, on the element > o,, where the sum is taken over
gy € 9 (c), the set of elements in %, which project on ¢, under the canonical
map

Gt > G,
If an element

> > k®o, k(d)eZ,

c begz(c)

is a torsion element with respect to Z[%,], then all the coefficients k() for
b e %3 (c) must be equal to each other, and hence the element already lies
in Z[%,], as was to be shown.

Analogues of Theorem 3.2 and 3.3 in the modular case are proved in the
Kubert-Lang series [KL 2, 3, 4, 5]. In that case, it is also shown that there are
no units except the modular ones. Here in the cyclotomic case, say for the
p-primary component, it is the Vandiver conjecture whether the factor group
EJ¢& is without p-torsion.

For the rest of this section, it is convenient to use &, to denote the proper
group of cyclotomic units, i.e., the group of units of the form

a

n,

where 7 = { — 1, { is a primitive p™th root of unity, and « = ,cpmy k()0
is an element of Z[%,], of degree 0, i.c.,

> k) = 0.
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Theorem 3.4. Let p be odd, and let ¢ be a primitive root mod p?. Then E,
is generated over Z[%,], by the element

fe—1
{-1

Proof. We write an element « of degree 0 in the form

v = ot = s

o« = k(d)o, — 1),

and observe that o, — 1 is divisible in the integral group ring by ¢, — 1
because o, is a generator of the cyclic group ¥4,. This proves the theorem.

For p = 2 one has an analogous result using for ¢ an element =1 mod 4
such that ¢ generates 1 + 4Z,. The group ¢, = Gal(Q(u,»)/Q) is not cyclic
but a product of a cyclic group of order 2 and %}, which is cyclic.

It is convenient to reformulate the above theorem by passing to %, .

Theorem 3.5. Let ¢ be a generator of 1 + 4Z, if p = 2, and a primitive
root mod p? if p > 2. Let

-1
(-1

v, = image of inV,,

and let V be the subgroup of V., represented by units (not just p-units).
Then we have an isomorphism

V2 = Z[%3 Jovn,

so V3 is free of rank 1 over Z[%; ;.
Proof. Clear.

The composite case.

Let ¥V be the group of cyclotomic units of all levels, modulo the group of roots
of unity. Then V is torsion free.

Let ¢ = (..., ¢y, ...) be a vector with a component c, € Z}¥ for each p
such that ¢, is a primitive root mod p? if p is odd, and ¢, = 1 mod 4 and
generates 1 + 4Z, if p = 2. We have an associated automorphism ¢, on the
full cyclotomic extension of Q.

Let ae Q/Z and a ¢ Z. We define

o.c(e21r,£a. — 1)

h(a) = image in ¥ of e 1

Then 4 is an ordinary distribution in the sense of Chapter 2, §8 if we define
h(0) = 0. ‘
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6. Kummer Theory over Cyclotomic Z,-extensions

Theorem 3.6. This distribution is the universal even ordinary distribution with
value 0 at 0, and values into abelian groups on which multiplication by 2 is
invertible.

Proof. On (1/N)Z/Z the group generated by the image of 4 has rank
HZW)*| - 1,

which according to Kubert’s Theorem 9.1(iii) of Chapter 2 is the maximal
possible rank (the value 0 at O gives rise to the —1). The Kubert generators
in Ty/+ 1 must therefore be free generators, and the canonical map from.the
universal distribution to 4 must be an isomorphism.

The above is more or less Bass’ theorem in a different formulation. (Also,
as Bass states it, there is some difficulty with 2-torsion.) The idea of interpret-
ing it in terms of the cyclotomic units forming a universal distribution is due
to Kubert-Lang [KL 3], where a similar result is proved for the modular
units. The essential step in the proof here is of course Kubert’s theorem cited
above, combined with the independence of the units. In the cyclotomic case,
this comes back to the non-vanishing of the regulator, i.e., L(1, ) # 0. In the
modular case, see [KL 2] and [KL 5].

§4. The Iwasawa-Leopoldt Theorem and the Vandiver Conjecture

For simplicity throughout this section we assume that p is an odd prime. Also
throughout this section, we let:

Ko = Qu®) and K, = Q(u,),
¢ = Gal(K.,/Q),
9, = Gal(K,/Q),
gt = 4, mod o_, as in the preceding section.
» = Z(p")[¥%.], and R = projective limit of R,.

Remark. It is easy to see that
R = A[Gy]
where A is the usual Iwasawa algebra.
h} = class number of K;f.

We assume the Vandiver conjecture that hy = (E, : &,) is prime to p.
Q, = K (Vi) = K,(£32). By the Vandiver conjecture,
Q. = Ko (B3
Q = U Q, = KH(E}*r") = Ko(€F77).
G, = Gal(Q,/K;) and G = Gal(Q/K.).
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We shall now develop the theory of G as R-module following the exposition
of [KL 9]. We use an upper minus sign to denote, as usual, the (— 1)-eigen-
space. This applies for instance to R~, G, etc.

Theorem 4.1. Assuming the Vandiver conjecture, we have G = G~, and G
is a 1-dimensional free module over R~

Proof. By the Vandiver conjecture and Theorem 3.3 we have

E,. N K¥" = EZWu®.
Let us abbreviate for simplicity

Vi = EMP|E,, O KE.
Then the Kummer theory pairing discussed in §1 can be described more
explicitly as follows. From Theorem 3.2 we write an isomorphism

L ZILIG] > Vi,
using formal linear combinations with coefficients in (1/p")Z,/Z,. We have a
model for Kummer duality, through the pairing

Z(pME,] X ;,1— Z,/Z,1%,] > 1y

such that
z x(c)o, % z Y(€)o, > €2™ T Mewiex
This pairing induces a perfect duality

2%, x ;,1— Z,/Z0%,]" >

as follows immediately from the formula
A9, &7 =<4, &F

where p is complex conjugation, or for that matter any element of ¥%,.
Therefore we have an isomorphism of the Kummer pairing in terms of the

group rings,
G, X VIP" — pon»

1]

- 1
:R,'X;R:—> Hpr
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6. Kummer Theory over Cyclotomic Z,-extensions

and this isomorphism is compatible with the limiting process, which can be
represented by a diagram in terms of the group rings for m > n:

1

+
m Rm —> HUp™

R, %

-

RJXI)ITR:"IIP"

It is then clear that
G=1lmG,~xlimR;, =R",
as desired.

One would expect the units whose existence is conjectured by Stark [St]
to play a similar role over totally real fields.

Theorem 4.2. Let C, = CI®(K,) be the p-primary part of the ideal class
group of K, and let C = projective limit of the C, under the norm map.
Under the Vandiver conjecture, we have C = C~, and C~ is cyclic as a
A-module. In fact, the maximal unramified p-abelian extension of K, is
contained in Q, so we have a natural surjective map

G—>G; = C,
the first map by restriction and the second by class field theory.

Proof. The field diagram (once the theorem is proved) is as follows.
Q

G Qnr
| o
Ko
What we have to do is to show that the maximal p-abelian unramified exten-
sion of K, is in fact contained in Q. The rest of the theorem is then obvious
from Theorem 4.1. It will suffice to prove that a finite cyclic unramified
p-abelian extension of K, is contained in Q.
Let K,(x) be unramified, with some element « such that o' lies in K.
We first show that we may select « to be real. By Vandiver’s conjecture, we
have G¢ = 1s0 Gz = Gg. Let ¢ be a generator for Gal(K,(®)/K.). Then

oo = {a for some pth root of unity {.

Let p be complex conjugation. Then pop~* = pop = ¢~ since G = G~.
Hence popa = {~*a, and therefore

ot = {a,
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so that o(&/o) = &/a. Thus &/ = b lies in K. But the norm of b from K,
to K£ is 1 (obvious), so by Hilbert’s Theorem 90, there exists § € K,, such
that B/B = b. Then of is real, and K,(«) = K(af). This shows that we may
assume o real.

For n sufficiently large, o lies in K}, and K} («) is unramified over K;
because p is odd. Hence we have an ideal factorization

@ = o

for some fractional ideal a in K. The class of this ideal is principal by
Vandiver’s conjecture. It is then immediate that

Kn(0) = K, ')

for some unit u, thereby concluding the proof.

In the next theorem we let

I, . = Gal(K,/K,).
Theorem 4.3. (i) For m = n we have an injection
Ker(C, — C,) = HY(I 'y 5, Ep)-
(ii) Under the Vandiver conjecture we have H*(I'y, 4, Ep) = 0, s0
C,—C,
is injective.
Proof. Let a be an ideal representing an element of C,, becoming principal

in K, say a = () with o € K,. For any element ¢ € I',, , we have ga = a.
Hence ou is equal to « times some unit. The association

a+> cocycle class of (ga/o)

is 2 homomorphism of Ker(C, — C,) into H* of the units, which is immedi-
ately verified to be injective.

Assume now the Vandiver conjecture. Let &, be the group of cyclotomic
units. Then E,/&,, has order prime to p, so

HY(&,) = HY(E).
For simplicity let W,, = p»+1. Then we have exact sequences

O—>W,—>épn—>Vy—>0
and

0>&, & n—>2Z—0
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6. Kummer Theory over Cyclotomic Z,-extensions

whence exact cohomology sequences
0— HY(W,)— Hl(éap,m) - HY(V,)
and
0 — HYS,) — HY(E,,m) > HY(Z).
Since HY(Z)is trivial and H*(V,,) is trivial (by elementary facts of cohomology
of finite groups, and Theorem 3.2), it will now suffice to prove that H(W,,)
is trivial. By the theory of the Herbrand quotient (cf. for instance Chapter IX,

§1 of my Algebraic Number Theory), the orders of HY(W,,) and H(W,,) are
equal. However,

HO(Wm) = WIII:"""/Nm,nWm = Wn/Nm,nWm-

where N,, , is the norm. Thus finally it suffices to prove that every p-power
root of unity in K, is the norm of an element in W,,. Let { be a generator of
W.,. The elements of the Galois group are represented by p-adic integers of
the form

1+ xp*! withxe Z/p"—"Z.

Taking the norm yields
Npol =] JOrom = gmo

which is a primitive element in W, and thus shows that H°(W,,) is trivial.
This concludes the proof of the theorem.

Let K be a number field and let K’ be an abelian extension with Galois
group G. We assume that K and K’ are stable under complex conjugation.
We say that the extension K’ of K is odd (resp. even) if its Galois group is in
the (— 1)-eigenspace (resp. the 1-eigenspace) for complex conjugation.

Lemma. If «*"** € K}, then K,(2)/K, is an odd extension.

Proof. Clear.

From the lemma, it follows that Qz/K, is an odd extension, because the
units are generated by real cyclotomic units and roots of unity.

Theorem 4.4. Under the Vandiver conjecture, the Kummer duality gives rise
to a compact discrete duality

Gal(Q/Qg)* dual to C5
and also
Gal(Q/Q™)* dual to Cg.
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Proof. By Theorems 2.2, 2.3 and Lemma 1 of §2 we know that Q = Q,
and that

Gal(Q/Qp) is dual to Co.

Taking eigenspaces for complex conjugation yields the first assertion. As to
the second, we know from Theorem 4.2 that

in‘ = QE

and Qg is an odd extension of Q°*. Again considering the eigenspaces yields
the second assertion.
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Iwasawa Theory of Local Units

Iwasawa [Iw 8], [Iw 10] developed a theory of local units analogous to the
global theory, taking projective limits, especially in the cyclotomic tower, and
getting the structure of this projective limit modulo the closure of the cyclo-
tomic units. He considers eigenspaces for the characters of Gal(K,/Q,) where
Ky = Q,({) with a primitive pth root of unity {. Since the cyclotomic units are
essentially real, we consider only even non-trivial characters. Then the eigen-
space is isomorphic to 4/(g), where g is a power series which is essentially the
p-adic L-function.

The first section deals with the classical Kummer-Takagi exponents at the
first level Q,({), where { is a primitive pth root of unity, p odd. This is used in
combination with Nakayama’s lemma afterwards to get corresponding results
in the cyclotomic tower. Throughout this chapter we assume that p is odd.

Coates—Wiles [C-W 4] have extended this theory to the case of elliptic
curves with complex multiplication. In the process they have found sub-
stantial simplifications for Iwasawa’s proofs, and the exposition of this
chapter is essentially due to them. Note especially their generalization of the
Kummer homomorphism to all levels—a key to the whole theory. Such a
homomorphism extends to other formal groups besides the multiplicative
group, and a quite general statement has also been given by Coleman [Col].

On the whole, this chapter may be viewed as giving a good introduction
to the theories of Coates~Wiles. I am much indebted to them for keeping me
up on their work.

§1. The Kummer—Takagi Exponents

Let { be a primitive pth root of unity, where p is an odd prime. Let K, =
Q,(0). We let o, p be the integers and prime ideal of K, respectively, and
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§1. The Kummer-Takagi Exponents

let
n={—1
Let U, be the group of units =1 mod p in K,. We let G, = Gal(K,/Q,), and
%ot Go—> pp_3 < Z3
be the homomorphism such that
{7 = %, for ¢ e G,

For simplicity of typography in this section we shall write % instead of .
Let fe Z,[[X]]. We recall the variables

T=1+4 X=é€%,
and the differential operator
D = (1 + X)Dx = Dz = TDT.

This last equality holds only for rational functions of X (or T).
Let ue U, so u = 1 mod p. Let f be a power series =1 mod (p, X) such
that

u = f(m).

We then say that f'is a power series associated with u. Such a power series is
well defined up to a multiple of the irreducible polynomial 4#(X) of = over Z,.
Let £, f, be associated with u, so f = f; mod 4. Since f; is a unit power series,
there exists a power series g such that

f=1(1 +gh with ge Z,[[X]].
Then

gh' + hg'

Fif =l + 5

and
Dflf = Dfi[f; + multiples of & and #'.
Since # is an Eisenstein polynomial, it follows that

DE=Y(DfIf)(0) [= D* log £(0)] is well defined modpfor1 <k <p — 2.
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We define the Kummer homomorphism for these values of k by
@) = D*~*(Df/f)(0) mod p.
It is indeed clear that
o Uy — Z(p)

is a homomorphism. By the change of variables X = e — 1, the formula

DE=X(DfIf)0)
is also valid for f as function of Z, i.e., if we set
f(X) = fo(2)
then
DE=X(DfIf)0) = D%~ (Dzfe,/fe)0).

We now develop systematically certain properties of the Kummer homo-
morphism. These will be extended in the Coates—Wiles manner later to all
levels.

K 1. If f1, f> are associated with units u,, u,, then f.f, is associated with
wuy. If f is associated with u and a e Z,, then f(X)* is associated
with u®.

Proof. The homomorphic property is clear, and has already been mentioned.
The statement for a € Z, follows from positive integers by continuity.

K 2. If f is associated with u, then a power series associated with v’ is

A0 + Xy« —1).
Proof-Ifu = f(r)and f=1 +-- -, then

w = f(d + n)* - 1.
So the property is obvious. Furthermore,
f@ + Xy = 1) = f&% - 1),

The next property then follows from the chain rule in terms of the
variable Z.

K 3. o1(u?) = #(a)°pi(u).
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Let y be a character of G,. Let
1 -
e(x) = 7 —1 Z (o)

p g€Gy

be the corresponding idempotent in the group algebra Z,[G,]. Write y = x»*
for some residue class e mod p — 1. Let « = 1 mod p. Put

ut® = y(y).
K4(). If k = amod p — 1 then ¢, (u(x)) = o(w).

K 4(ii). If k # amod p — 1 then ¢, (u(x)) = 0.
Proof. By K 2 and K 3 we find

P ?) = % (e()e(W).
The property follows by orthogonality of characters.
The units
1—x* fork=12,...
generate U, topologically. We shall be especially interested in the values of k

satisfying 1 < k& < p — 2, and we shall orthogonalize these units with respect
to the characters of G,. We let

e = (1 — no)e®

where we abbreviate

e(k) = e(»¥) = }:—l ZG % ¥(0)o.

Lemma. We have n,, = 1 — n*mod n**%, for 1 <k < p — 2.

Proof. We have

m=]]0 - — 1)¥)*" mod n*~*
[10 + x4 - 1.

Say (¢ = (° Then
% ¥o)(” — D =a ¥({* — 1)¥ = ({ — 1) mod n*~,
as was to be shown.
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Theorem 1.1. Let 1 < k,j < p — 2.

() @) = —k mod p.

(D) oun) = 0ifk # j.

Proof. The second assertion is a special case of K 4(ii). As to the first,
oxne) = ox(1 — 7).

An associated power series of 1 — n¥is f(X) = 1 — X¥, and

£ = =%
Then
DfIf(X) = —k(1 + X) 2) XvE
= —ke? i (e? — 1)®
= —k eZ mod Z*.
Hence
D*-Y(DfIf)0) = —k
as desired.

By the lemma, and a trivial recursion procedure, any unit =1 mod p has
a product expression

u =t .yqir=2 mod n*-1,

and the exponents #, are called the Kummer-Takagi exponents. They are well
defined mod p.

Theorem 1.2. Let u be as above. Then

1
kh=—f ¢x(u) mod p.

Proof. Immediate, from K 4 and the fact that ¢, is a Z,-morphism.

The Kummer Generators

The rest of this section will not be needed, but is included for completeness
of reference, and as an introduction to [C-W 2], [C-W 4]. It is convenient to
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§1. The Kummer-Takagi Exponents

phrase the results in terms of the Lubin-Tate formal groups, so for the rest
of this section, we assume that the reader is acquainted with the basic facts
of these groups as explained in §1 and §2 of the next chapter, as well as the
existence of the logarithm on such groups, as explained in §6 of the next
chapter.

Let 4 be a Lubin-Tate formal group over the p-adic field K, and associated
prime n. We let B be the basic Lubin-Tate group associated with the
Frobenius polynomial

X+ nX.

Let W be the local parameter on B, and Z the parameter on the additive group,
so we have

Z = Ag(W) = Wmod W1

by Lemma 2 of §6 in the next chapter.
Let

gs(W) =bo + bW +- - -
be a power series with coefficients in X, and let
gGa(Z) = do + d]_Z +---

be the power series obtained by putting gg(W) = g, (Az(W)). Then it is clear
that

bkzdk fork=0,...,q“'1.
Taking the logarithmic derivative, i.e., the operator
g—>g'lg

for any power series g, we then obtain:

Lemma. If
gs/gs(W) = Z Ccx,sWFE?
k=1
8cal8e(Z) = Z oW A
k=1
then

ck,B=€k,Gu fork= 1,...,q"‘2.

171



7. Iwasawa Theory of Local Units

Proof. This is trivial from the chain rule, writing
go(W) = ga (W + O(W*~1)).
Let w, be an element of B, such that
w4+ = 0.
The field
K, = K(wp)

is tamely ramified, with different p3-2.
Let u be a unit in K,, and let g € o[[W]] be a power series such that

u = g(wo).
If g, is another such power series, then
gW) = g:(Wn(W)

where A(W) is the irreducible polynomial of w, over K. From this it is
immediate that

g'/g(wy) is well defined modulo p%~2, and lies in .

In particular, if we write

@
g'[g(wo) = Z awh™t, with ¢ €0,
=1

then ¢, is well defined mod p for 1 < k < g — 2. We define
o) =c¢, forl <k <gq-— 2.
Then it is clear that
Pi: 0 = 0fp

is a homomorphism, which we shall call the Kummer homomorphism of degree
k. We shall determine the value of this homomorphism in special interesting
cases.

The units

1 —-wk withk=12,...
form a topological system of generators for the units =1 mod p, in o,. Let
Gy, = Gal(Ky/K), so Gy = py-1-
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§1. The Kummer-Takagi Exponents

There is a character y of G, into y,_, such that
owy = x(o)wo.

To avoid technical complications, we now assume that K = Q, so that
o =1Z, Welet

1
€ =r—1 Z x (o)

o€Go

be the idempotent in the group ring Z,[G,] for the character y¥*. If u is a
unit =1 mod w,, we can define

v with teZ,

in the obvious manner. We pick a sequence of integers m € Z approaching ¢
p-adically, and the ordinary powers u™ approach a limit, which is by
definition #t.

We orthogonalize a basis for the units. We let

e =1 —wg%, fork=1...,p—1
Then:
() me =1 — whmod p§**.

(i) an, = nE°, i.e., n, € Uy(k), where Uy(k) is the y*-eigenspace of U,, and
U, are the units =1 mod », in K.

The second statement is obvious by the standard properties of the idem-
potent e;. For the first, we simply expand the product

e = n (1 — wk)~ x4 mod wk*?

=110 - x@wh=*"
= (1 + wkr-?

=1-wg
as was to be shown.

Theorem 1.3. Letj,k = 1,...,p — 2. Then:
(@) @en) =0 ifk #j.
(i) @) = —k mod p.
If uis a unit =1 mod p, and
u's= g 02z mod wil,
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7. Iwasawa Theory of Local Units

then
1
t = % ¢ (u) mod p.

Proof. Taking the logarithmic derivative formally, we have:

dlog dlog ok i — 2oy
ok CL 10 = 2w
kg — K (@)wE?
— k,
Z — 17O T
=k k(g Wk +D -1
jZO ;:X (o)W
Forj=Owegetatermk(p — )w~! = —kwf~! mod w§~2. This shows that

@x(my) = —k. On the other hand, if k(j + 1) — 1 < p — 3, we have

kj+1)<p—2 so ki<p-—3.
Then

¥ is not trivial,

so the orthogonality relations show that the coefficient of the corresponding
power of wy is 0. This proves (i) and (ii). The last assertion then follows from
the homomorphic property of the map ¢,, thus proving the theorem.

Let &7 = {a;} be a finite family of integers prime to p, and let #* = {n;}
be a finite family of integers satisfying

Ha{‘zslmodp and Z”i=0"
Let

= u(dN) =] ] (% - D
Then u is a cyclotomic unit, and # = 1 mod p,.
Theorem 1.4. Let
u( L, Ny =y - np=3 mod wh~L.
Then
t, = 735 B, z naf mod p.
where B, is the Bernoulli number.
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§2. Projective Limit of the Unit Groups

Proof. Let A be the formal multiplicative group, B the special Lubin-
Tate group associated with it. The power series

8c,(Z) = e*? — 1
corresponds to the power series gz(W) such that
gs(wo) = — 1

where ( is a pth root of unity. Directly from the definition of the Bernouili
numbers,

V4 & , ZF
ef—1" kzo By m
it follows trivially that
, S }
ge/8e(Z) = a+ > 5 B.ad Z" "
k=0""

Since the operation g+ g'/g sends multiplication to addition, the theorem
follows from Lemma 1 of §6 in the next chapter, and Theorem 1.3.

§2. Projective Limit of the Unit Groups
Let:
Ky = QW) Wy = e,
0,, P, = integers and maximal ideal in K, respectively.
U, = units =1 mod »,, in K,.
U, = units whose norms to Q, are equal to !

= units which are infinitely divisible in the projective system of
units under the norm maps N,, , with m = n.

We have given two conditions describing U, and it is easy to prove that they
are equivalent. Indeed, we have the formula for the norm residue symbol:

(ua Km/Kn = (N s Km/ Qp)

where N, is the norm from K, to Q,. If N,u = 1 then u is a norm from K,
for every m. Conversely, if the left-hand side is 1 for all m, then

N,u = 1 mod p™
for all positive integers m, so N,u = 1. This proves the equivalence.
Let:
G, = Gal(K,/Q,) and G, = Gal(K,/Q,)
I, = Gal(K,/K,) and T = lim T, = Gal(K./Ky).
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7. Iwasawa Theory of Local Units

Note that G, operates on X, U,, U, and
G,xT, x G, while G, =T x G,

Let y be a topological generator of I'. Then I'"" = Gal(K,./K,) is generated
by y*".

We have an exact sequence of Galois modules
1 - U, — U, 25 subgroup of Z¥ — 1.
From this sequence we conclude that for each character y of G, and y # 1,
Un(0) = Un()-

In the next lemma, by rank,, we mean (as usual) the rank of a module modulo
torsion over Z,,

Lemma 1. (i) ranky, U.(x) = p™
Gi) If x # 1, %, then
U.(0) = Z¢™,

Proof. The integers o, contain a free submodule over the group ring

Z,[Gal(K,/Q,)],

and for large r, 1 + p'o, is Galois-isomorphic to the above submodule under
the exponential map, and is contained in U, with finite index, so the first
part of the lemma is clear.

For the second part, the only torsion in U, consists of the roots of unity
W, which is a %,-eigenspace. Hence for y # 1, %, we have an isomorphism

U() = Zg7
as desired.

We consider the groups U, as forming a projective system under the norm
maps, and we let

U=1mU,
<
be the projective limit. Then from the definition of U, we see that also
U = lim U,
<
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§2. Projective Limit of the Unit Groups

Note that U is a topological, compact Z,-module, and also a A-module, where
A =lim Z,[I,].
<
If u is an element of U, then we view u as a vector
u=(..,u,...)
with components u, € U, such that N, ,u, = u, for m > n, and we also write
u = lim u,.

Lemma 2. U has no Z,-torsion.

Proof. Otherwise there exists a fixed power p” and an element # = lim u,
such that 42" = 1 for all n. Then u, is a root of unity, and if u, # 1 for some n,
then the order of u,, becomes arbitrarily large as m becomes large, which is
impossible.

Theorem 2.1. For each character y # 1, %, of G, there is a A-isomorphism
Uy =~ A.
In other words, U(y) is free of dimension 1 over A.

The proof will occupy the rest of this section, and will result from a
sequence of lemmas. A “natural” basis element for U(y) over A will be given
in the next section.

We shall apply Galois and class field theory in a manner similar to the
global case. For simplicity of notation, if X is a I'-module, we let:

Xo = X/ — DX and X™ = fixed elements under y*",

For simplicity of notation, throughout this section, denote by K2* the
maximal p-abelian extension of* K,, and similarly let K2 be the maximal
p-abelian extension of K,,. We have a tower of fields

K, < K, © K2* < K&,
Recall that I operates by conjugation on Gal(K2*/K.,).

Lemma 3. If y # 1 then we have isomorphisms

Gal(K2*/K.)(x) = Gal(K&"/Kw)m ()
~ Gal(K2*/K,)(x)-

177



7. Iwasawa Theory of Local Units

Proof. This is clear from the fact that K2® is the maximal abelian extension
of K, contained in K2, together with the exact sequence

0 — Gal(K2*/K,,) — Gal(K®*/K,) — Gal(K,/K,) — 0
together with the fact that the last term is x Z,.

The Galois group Gal(K2*/K,) is isomorphic by class field theory with the
completion of K;¥ under the topology of subgroups of finite index. There is a
topological isomorphism as abelian groups
KF ~ Z x of.

Given a choice of prime element n in K, the isomorphism has the form
K} = 7% x o}

The completion of K* in the topology of subgroups of finite index is therefore
K* x~ 7% x of

as abelian groups (not Galois modules), where

Z= H Z, (product taken over all primes /).
1

On the other hand we have an exact sequence of Galois modules
1= U, —> K¥[pp-1—>Z —0.
Since G, operates trivially on Z, for each x # 1 of G, we have an isomorphism
U0 = (K3 tp- 1) ().
The isomorphism of local class field theory
K¥lpp-1 = Gal(K$®/K,)

preserves the I' and G, structures of both groups. Passing to the projective
limit over n, it follows from the previous isomorphism that

U(y) = lim U,(y) & Gal(K2"/K.)(%),
<
whence we obtain the next theorem from Lemma 3.
Theorem 2.2. For y # 1 we have an isomorphism

Un(0) = U/G™ — DU = U
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§3. A Basis for U(y) over 4

Lemma 4. Let M be a finitely generated A-module such that

M|y — DM
is free over Z, of rank p™ for all n. Then M is quasi-isomorphic to A.
Proof. Obvious from the structure theorem in Chapter 5.

The lemma is applied to the unit groups, using Lemma 1 and Theorem 2.2.
We therefore conclude that there is an exact sequence of A-modules

0>A4A—-Ulx)>A—-B—>0

where A, B are finite. Since U has no Z,-torsion by Lemma 2, it follows that
A = 0. The next lemma will conclude the proof.

Lemma 5. In the exact sequence, we have B = 0, for y # 1, x,.
Proof. From the exact sequence
0—>U(l —-A4—->B—0
we get the exact (cohomology) sequence
0 U™ — A® > B® > U)en.

[This is no big deal in the present instance. The last map is obtained by taking
an element b € B™, lifting back to any ¢ € 4, and sending ¢ — (y*" — 1)c. This
is well defined in U(y)/(y*" — 1)U(y), and the sequence is trivially verified to
be exact.]

Trivially A™ = 0. Hence we obtain an injection

0— B™ — U()m = Un(x) by Theorem 2.2.
But U,(y) has no torsion by Lemma 1(ii). Hence
B™ =0 for all n.

Since B is finite, this implies that B = 0, and proves Theorem 2.1.

§3. A Basis for U(y) over A

For each n > 0 we let W, = pyn+1, and we fix a family of primitive p™*+th
roots of unity {, € W, such that

Cﬁ+1 = Cn-
We let
Xn = Cn - L
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7. Iwasawa Theory of Local Units

The notation remains that of the preceding section. If ¢ € G,, then there is
an isomorphism

%: G — LY}
such that for all n,
& = oo,
As before, we let
o Go—> fy_1

be the corresponding isomorphism at the first level. If y is a character of G,,
with values in y,_,, then

Lk
X = %o

for some k determined mod p — 1.
Given y # 1, %o we shall construct an element ¢ € U such that the element

S0 = e

is a basis of U(y) over A. It is natural to construct &, of the form

¢ = w(®)™Mb — x,)

where b € Z, and w is the Teichmuller character. We have divided by w(b)
so that £, = 1 mod p,. For each n > 1 we want that

Nppn-1(b — x,) = b — x,_;.
But x, is a root of (1 + X)* = {,_, so the equation for b — x, over K,_, is
A+b—-Yy—-"{.1=0,
and from the constant term we see that
A+bf —los=Nonoa0 = X)) =b = x,1 = b — ({1 — ).
Thus
AQ+bP=1+b so (1+br =1

Therefore we select any

b=1-1, withany A% 1 and Aep,_,
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§3. A Basis for U() over 4

to get the desired 4. A choice of A determines such &, and we write

&P instead of &,
if we wish to emphasize the dependence on A. Since
w(®) = w(b),
it follows that for n > 1,
Non-10(b) = 0(b)® = w(b),

and so the elements &, form a projective system in U.

Lemma 1. Given y = x§ # 1, %, there exists A€ p,_, such that if we let

b=12 — 1, and
So = &P = ()b — xo),

then:
() @u(€o) # Omod p;

(i) &o(x) = e(x)-&o generates Uy(x) over Z,,.

Proof. We shall check below that for a suitable choice of 1 (depending
on k) the Kummer-Takagi exponent given by Theorem 1.2 is % 0 mod p.
Then &o(x) generates Uy(x)/Uq(x)?, and hence generates Uy(y) over Z, by

Nakayama’s lemma.

Now for the computation of the Kummer-Takagi exponents, we need only

compute ¢.(&,) by K 4. We have
b = < (1 = xo/b)
o= w@ " T T
The associated power series is
£ = 2 (1 - xp8)
~ w(b) ’

Then

Q-'I’—

XY = —3 1=

We want to prove that

D*=Y(DfIf) # 0 mod p.

~3 2, (.
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7. Iwasawa Theory of Local Units

We have

Dfif = (L+ X If(X) = 351 = 1 4 2

But D = TD;. Hence it will suffice to prove that for2 < k < p — 2 we have

(TDyp)*- 1(T1 A)' _ #0modp.

By induction, it is immediately shown that

o1\ TP PT D)
(TDz) (T‘:’Z) =i g

where P,(T, 1) is a polynomial in A of degree < m — 2, with coefficients in
Z[T}. Hence

_ +/1k_2 + P_,(1, '1).
R

@7 55),.,

The numerator A*~2 4 P, _,(1, A) is a polynomial in A of degree < p — 4.
It is clearly not identically zero mod p, and so it has at most p — 4 roots mod p.
We can therefore choose 4 # 1 in p,., such that A is not a root of the
polynomial mod p. This completes the proof.

Theorem 3.1. Let y # 1, %y. We can choose A € p,_, such that the element

£ = &2

generates U(y) over A, i.e.,

UQ) = 4-&(),
and such an element is a free basis for U(y) over A.

Proof. We know from Theorem 2.2 that

U0 = U/ — DU,

and so by Lemma 1, e(y)-& generates U(y) mod m,- U(y). By Nakayama’s
lemma, it follows that &(y) generates U(y) over A. Since U(y) = A by Theorem
2.1, such a generator is also a basis, thereby proving the theorem.

§4. The Coates—Wiles Homomorphism

In this section we give the extension of the Kummer homomorphism to all
levels, based on a refinement of the associated power series.
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Theorem 4.1. To every element u € U there is a unique power series f€ Z,[[X]]
such that

f;t(xn) = Uy.
This power series satisfies f,(X) = 1 mod (p, X), and the map
urf,

is a homomorphism of U into the multiplicative group of power series
=1 mod (p, X).

We first note that uniqueness is obvious since a power series has only a
finite number of zeros (Weierstrass preparation theorem).

The proof of existence will proceed via several steps, which also develop
systematically other properties of these series. First:

1
CwWo. f;(X)—ZOTB—)(b— X)
is the power series associated with our element &. Indeed,

£ = 555 ® = %) = &

Next we note two formal properties of the power series f, which is called the
associated power series to u.

CW 1. If a € Z, then the power series associated with u® is f,(X)".

Proof. This is first obvious when « is a positive integer, and is then true
for all a € Z, by continuity.

CW 2. If f,, is associated with u, and o € G, then there is a power series
associated with u°, namely

Jur(X) = L1 + XY = 1).
Proof. If u, = 3 ax: with a, € Z,, then
ug = > a(lg — 1,
so the property is obvious from the definitions.

We are now ready to prove the theorem, i.e., we must show that every u
has an associated power series. The two properties CW 1 and CW 2 show
that the set of elements in U having an associated power series is a A[G,]-
submodule of U, and contains &. So it contains A[G,)€. In particular, taking
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7. Iwasawa Theory of Local Units

Theorem 3.1 into account, we have already shown that it contains U(y) for
all y # 1, »,. This is enough for the applications we have in mind.

For the remaining eigenspaces of y = 1 or x,, the element & does not
suffice to generate these spaces, and one must show how to find an associated
power series for additional elements generating these spaces. This is not too
difficult and will be left to the reader, especially since a generalization of the
associated power series to all Lubin-Tate formal groups has been given by
Coleman [Col].

Let as usual

.D = (1 + X)DX = Dz.
Since f,'[f, has coefficients in Z,, it is clear that

Df.[f(X) € Z,[[X]].

For each integer £k > 1 we define the Coates-Wiles homomorphism ¢, on
U by

@) = D*log £,(0) = D*~*(Df,/f.)(0).
We see that ¢,: U— Z, maps U into Z, by the preceding remark.

CW 3. For 0 € Go, @) = %(0)*0,(10).

Proof. If u+> u° then CW 2 gives the power series associated with #°, and
the assertion is then obvious by the chain rule applied to

D¥log f,(0) = D log fu(e“? — 1)|z=0-
CW 4. Let y = x5 where o is a residue class mod p — 1.
() Ifk = amod p — 1, then ¢(u(x)) = ¢i(w).

(ii) If k # amod p — 1, then ¢, (u(x)) = 0.

Proof. Let e(y) be the idempotent associated with y. Then by CW 1 and
CW 3 we find

PrU®) = %§(e())Pw).
The property follows by orthogonality of characters.

CWS. Forue Uand geA = Z,[[X]], we have

oi(g-u) = g((y) — Dow(u).

Proof. The assertion is true when g(X) = 1, and wheng(X) =1+ X =9
by CW 3. Thus it is true when g(X) = X, i.e.,

Oi(X-u) = () — Dou(w).
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The property follows for arbitrary polynomials by induction, and arbitrary g
by continuity.

Theorem 4.2. Given a congruence class o mod p — 1, there exists a power
series h, such that for any k = aomod p — 1, we have

(I = P Nu(&) = h(x(r)* — 1).
If a is even # O mod p — 1, then we can choose A such that
P(EP)
is a unit, and h, is a unit in Z,[[X]].
Proof. Let
[i(X) = Dlog f(X) = (1 + X)fi[fe(X).
Then by Meas 6 of Chapter 4,

oD = DO = [ % du @),

Zp

Then a computation shows that
(1 = P Do) = D~ (Uf)0) = f @~ dyyy,(a)
z;

= j a* du(a)

*
rd

for some measure u. By decomposing the integral over cosets of u,_, in Z¥
we can write

[ oexara@= 3 [  adu@
Zp TE€Up_y Y1+DZ,

where y, is a measure with support in 1 + pZ,. By Example 2 of Chapter 4,
§1, we conclude that for each r there is a power series £, such that

f & di(@) = () — 1),

and we let

h= > f.

TE€Up -1
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7. Iwasawa Theory of Local Units

Then for k = a mod p — 1, we get

Mo = 1) = | @ e duta)

zp

= L a* du(a).

»
P

This concludes the proof of the existence of 4. There remains to show that
0 (EP) is a unit—it is then trivial that % is a unit power series. But this last
property is clear from Lemma 1 of §3, as was to be shown.

§5. The Closure of the Cyclotomic Units
Let &, be the group of cyclotomic units, i.e., the group generated by

S
(-1

W, = + pu;m+1 and elements

where ( is primitive p™*th root of unity. Let:

V, = closure of &, N U, in U, = &, ;

V = lim V,.
<
If we wish to preserve the &-notation, then we may write

V = limgn’l = é_aw,l,
<

The group V, is a Z,[G,]-module, and ¥V is a A-module. Since &,/W,, comes

from the real subfield, y-eigenspaces occur only for even characters y of G,.
Before analyzing the projective limit of ¥,,, we recall in the p-adic context

some facts about finite levels. In the global fields, we have an isomorphism

&/ Wa = Z[GS Lo,
where the index on the right indicates the augmentation ideal. Cf. Theorem 3.2
of Chapter 6. Since the cyclotomic units are independent over Z, by the
non-vanishing of the p-adic regulator, we obtain a G,-isomorphism

En|Wa & Zy[GF ]o-
Hence for each even y # 1,

(é?n/Wn)(X) ~ Zp[Grf]O(X) = Zp[G; Io e(X)
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Let ¢ € Z} be a primitive root mod p?, and let

Cn_l
-1

Up = (D(C) c
n

Then v, = 1 mod p,. Furthermore for any even character y # 1 the element
u() = 5P

lies in &, so in V,(x). (The root of unity w(c) disappears when we project on
the eigenspace for y.) Note that the elements v, form a compatible system in
the cyclotomic tower, that is

Ny =v, form = n.
We let
v = lim v,
<
Then
v(y) = lim v,(y) = lim vg®,
Theorem 5.1. For each even character y # 1 we have

Vn(X) = Zp[Gn]vn(x)a

and hence
V() = A-v().
Proof. Immediate from Theorem 3.2 of Chapter 6.

We note that the power series associated with the element v is

SLX) = (o) (1—:_———;)0__1

Let x be an even character of G,, and y # 1. Let & = &4 be the con-
structed element of U such that £(y) is a basis for U(y) over A. We have

U) =4-€() and V(p) = 4-0(0).
Let us write
v(r) = £,-&() with some g, 4.
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Theorem 5.2. Let y = x§ be an even character # 1. We have an isomorphism

UQIVQ) = Alg,A.

The power series g, (determined up to a unit in A) can be selected such that
it is equal to the power series g satisfying

g6 — 1) = (1 = P9 (1 = 9 1 B,

for any even positive integer k such that k = o modp — 1.

Proof. We have

(V) = u(v(x)) by CW 4
= g, (x(0)* — DowE(0) by CW 5
= g, () — Dow(©) by CW 4

= g(()* — DA — pF~1)7,

where g = g,h,, and 4, is the power series of Theorem 4.2. Since 4, is a unit
power series, g and g, generate the same Ae(y)-ideal. There remains to prove

0u0) = (1 = 7 B

But
, _l+Xx 1+ Xy
1+ X) flf(X) = — T+ Xr =1
€ _ ce?
T et -1 ez -1
= Df.[f..
Sofork > 2,

@u(0) = D*H(DLf/f:)0)

1
=1 - ck)]—c'BIc

by the definition of Bernoulli numbers. This concludes the proof.

The values of the power series g show that it is essentially the p-adic
L-function.

Remark. In this chapter we have proved a local statement which would be
immediate if one had the global Vandiver conjecture, as explained in Chapter 6,
§4. The corresponding global conjecture can also be formulated as follows.
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§5. The Closure of the Cyclotomic Units

Let K, = Q(u®), and let K% be the maximal p-abelian p-ramified

extension of K. Let y be any even character #1. Then there is a quasi-
isomorphism

Gal(Kgb/ K co)(X) ~ A/ ng

where g, is as in Theorem 5.2.
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Lubin-Tate Theory

This chapter reproduces with little change the approach to local class field
theory given by Lubin-Tate [L-T]. Using special power series associated with
prime elements in a p-adic field, they construct maximal abelian totally
ramified extensions by means of torsion points on formal groups, thus
obtaining a merging of class field theory and Kummer theory by means of
these groups.

The theory applies in particular to the cyclotomic case. The p"th torsion
point on a suitable group will be seen to be the classical cyclotomic numbers

(-1

where ( is a p"th root of unity.

§1. Lubin-Tate Groups

Let o be a ring. By a formal group over o we mean a power series
F(X, Y)eo[[X, Y]]
in two variables satisfying the three conditions:
FG 1. F(X, Y) = X + Y (mod degree 2).
FG2. F(X,F(Y,Z)) = F(F(X, Y), Z).
FG3. F(X,Y) = F(Y, X).

Strictly speaking, our formal groups should be called commutative one-
parameter formal groups, but we won’t deal with any others. The expression
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§1. Lubin-Tate Groups

mod degree 2 means modulo the power series of degree >2. Using the
associativity with ¥ = Z = 0 it follows at once that

F(X,Y)= X+ Ymod XY,
ie., F(X,0) = X and F(0, Y) = Y.
It is an easy matter to show recursively that given a formal group as above,
there exists a unique power series A(X) such that
MX) = — X (mod degree 2)
and

F(X, (X)) = FIM(X), X) = 0.

If this could not be proved, we would assume it as an axiom. We leave the
proof as an exercise. For the more extensive foundations of formal groups in
any number of variables, cf. Frohlich [Fr].

Example. The formal multiplicative group G,, is defined by
FX, V) =X+ Y+ XY=(01+X)(1+7Y) -1
If a is a positive integer, and [a] denotes ‘““addition” on G,, a times, then
[aX)=(1 + X)* — 1.

If M is an algebra over o (always assumed commutative) and M is nilpotent
(in the sense that every element of M is nilpotent—some positive power of
the element is 0) then the formal group F defines an additive group law on the
set of elements of M, by the association

(x, ») = F(x, y)
for x, y in M. Instead of F(x, y) we would also write
F(x,y)=x+ry, or x[+]y, or x[+]ry.

The set of elements of M with this group law could be denoted by M. On
the other hand, it is useful to use a slightly different notation. We view F as
defining a functor

M Mpg.

We may also denote this functor by a letter like A (or A if we wish to make
the reference to F explicit), and then denote

My = A(M)
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8. Lubin-Tate Theory

to be the set of points of 4 in M. As a set, it consists of the elements of M,
and it is also an additive group with the group law determined as above.

Suppose that o is a complete valuation ring, with quotient field K and
maximal ideal m,. We also write o = og. Then mgz = m is topologically
nilpotent, in the sense that arbitrarily large powers of an element tend to O.
For any positive integer k, m/m* is a nilpotent o-algebra, and A(m/m*) is a
group, as we saw. By continuity, it follows that 4(m) is also a group. Addition
between elements x, y in m is again given by

(x, y) = F(x, ).

Let L be any algebraic extension with valuation ring o, and maximal ideal
;. Then we also have the completion o, if L is infinite over K, with maximal
ideal tit;, and it is clear that A(ti1;) can again be defined as group with the
group law given by the same formula as above.

By an endomorphism of the formal group F (or A7), we mean a power
series f(X) such that

SIFX, Y)) = F(f(X), f(Y)).

We say that f'is defined over o if the coefficients of flie in 0. It is then clear
that such an endomorphism defines an endomorphism of A(m) by the
association

x> f(x), for xin m.

Similarly, a homomorphism f of a formal group F into a formal group F’ is a
power series such that

SEX, Y)) = F'(f(X), f(Y)).

This relation could also be written

JX +£Y) = f(X) +& f(Y).
Such homomorphism induces a group homomorphism
A(m) — A'(m),

where A'(m) is the group whose underlying set is m, and whose group law is
that determined by F’.

We shall be interested in a special kind of formal group. From now on,
we assume that oy is a discrete valuation ring, and we let = be a prime
element in my. We assume that og/my is finite with g elements. We let:

&, = set of power series € o[[X]] such that

f(X) = X mod degree 2
f(X) = X?mod =.
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§1. Lubin-Tate Groups

Example. The power series (polynomial) f(X) = X? 4+ nX is an element
of #,, actually its simplest element, which will be called the special or basic
Frobenius polynomial associated with .

Example. Let

X)=Q+Xy—-1=X?+---+ pX.
Then f(X) is an element of &,

The elements of &, will be called the Frobenius power series determined
by .

Theorem 1.1. To each Frobenius power series f in &, there exists a unique
Jformal group F; (defined over o) such that f is an endomorphism of F;.

The formal group associated with f(X) = X? + nX in Theorem 1.1 will be
called the special or basic Lubin-Tate group associated with the prime =.

The proof of this theorem will follow from a general lemma, as will the
fact that the formal group F; then admits o in a natural way as a ring of
endomorphisms commuting with f.

Lemma. Let f and g be Frobenius power series in %,. Let

L(Xl,. . ey Xﬂ) = a1X1 +.--+ aan

be a linear form with coefficients a; in 0. There exists a unique Sseries
F(Xs,..., X, eo[[Xy,..., X,]] such that

F(Xy,..., X,) = L(Xy,..., X,) mod degree 2
and

f(F(XI’ cees Xn)) = F(g(X1)9 LR g(Xn))

Proof. We abbreviate X = (X3,..., X,) and g(X) = (g(XY), ..., g(X,).
We show by induction on r that the congruences

F(X)=L(X)moddeg2 and f(F,(X)) = F(g(X))moddegr + 1

have a solution F,(X) in o[X] which is unique mod deg r + 1. This is true
for r = 1 with Fi(X) = L(X). Suppose it true for r > 1. We let

Fo=F+H,
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8. Lubin-Tate Theory

where H,,, is a homogeneous polynomial of degree r + 1 with coefficients
in 0. We have:

S(F+1(X) = f(F(X)) + nH,,1(X) mod deg r + 2
Fr . 1(g(X)) = F(g(X)) + n"**H,,,(X) mod deg r + 2.

To satisfy the desired relation up to degree r + 1, we must take

H, () = TEE) = Flg(X)

PR

mod deg r + 2.

The coefficients are in o because
SF(X)) — F(g(X)) = (F(X))* — F(X? = 0 (mod n).

It is then clear that
F(X) = lim F(X)eo[[X]]

is the desired unique solution satisfying the conditions of the lemma.

Addendum to the lemma, The completeness of o was not assumed or used
in the proof. Furthermore, the proof shows that F; is the only power series
with coefficients in an extension field of K satisfying the conditions of the
lemma.

Theorem 1.1 is immediate from the lemma. Indeed, F; is the unique power
series F(X, Y) such that

F(X,Y)= X+ Ymoddeg2,
and

SIF(X, Y)) = F(f(X), A(Y)).

The other two formal group properties are seen to be satisfied by showing
that the left-hand side and right-hand side of FG 2 (resp. FG 3) are each the
unique solution of a system of conditions as in the lemma.

We call F; the Lubin-Tate formal group associated with f. If we want to
use the other notation, we also write it A(f), or simply A if the reference to
fis clear from the context.

We shall now see that F; admits o as a ring of endomorphisms in a natural
way. We prove slightly more. For each pair of elements f, g € %, and a e o,
we let a; , or [a];,, denote the unique solution of

a; (X) = aX mod deg 2
foar, =a54°8.
We write a; or [a]; instead of a, ; for simplicity.
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§1. Lubin-Tate Groups

Theorem 1.2. The association a v a; is an injective ring homomorphism of
o into End(F;), such that

= f.

More generally, the association av> a;, is an injective additive homo-
morphism of v into Hom(F,, F), satisfying the composition rule

asg0by = [ab]sn

and

[a + b];,o(X) = Fyas,o(X), by (X))
a;,(X) +5, by o(X).

Proof. In each case, one checks immediately that both the left-hand side
and right-hand side of the desired identity are solutions of the type given in
the Lemma, whose solution is unique.

It is clear that if £, g € &, then the element 1, , is an isomorphism between
F, and F;. Thus the isomorphism class of F; is uniquely determined by .

Furthermore, from Theorem 1.2, we may also view F; as an o-module via
the operation a; for aeo, and the above isomorphism is obviously an
o-isomorphism.

As a matter of notation, we shall use the three notations

as, ay or [a]

to denote the same power series. After a while, the polynomial f in &,
becomes mostly irrelevant, and we think in terms of the group law 4. Thus
a, or [a] when A4 is fixed become more satisfying to work with.

Let L be the completion of an algebraic extension of K. Then we may view
A(m;) as an o-module in the obvious way. The operation of o on A(m;) is
given by

x> alx) for xemy.

Of course, if L is finite over K, then L is equal to its own completion. By
functoriality, we also see that the formal isomorphisms 1, , induce isomor-
phisms

A(g)(my) Z> A(f)(my).

In view of this isomorphism, it is often convenient to omit f or g from the
notation and write [a](x) for the operation of o on A(m;) for x in m;.

Let L be a Galois extension, with Galois group G over K. The operations
of elements of G on L extend to the completion by continuity, so we may

195



8. Lubin-Tate Theory

replace L by its completion. Since the power series a; ,, a; ;, F; have coeffi-
cients in o, it is then clear that the operations which they define on m,
commute with the action of G on m;.

§2. Formal p-adic Multiplication

Again we let o be a discrete valuation ring with quotient field X, which we
assume complete. We let my be the maximal ideal, and let ¢ = card og/my
be finite, a power of the prime p. We let ' be a Frobenius power series over o,
associated with the prime element 7 in my, and we let F; or 4 = A(f) be
the corresponding Lubin-Tate group.

For each a € o, we let 4,(f) be the set of elements x in the maximal ideal
mye of the algebraic closure of K such that

a;(x) = 0.
In other words, 4, is the kernel of [a]. If a is a unit, then Ker a; = 0, so we
are really concerned with A for positive integers n. Of course, 4, depends
on f so we should write A,( /). However, if g is another Frobenius power
series in o associated with the same =, then the isomorphism 1, , induces an
isomorphism

Aa(8) S A1),

which commutes with Galois isomorphisms. Further, if ¢ is an automorphism
of K® over K, then

as(ox) = o(a,(x)),
50 A.(f) is a Galois module, and the extension
K(A,(f)) over K

is independent of the choice of fin %,. We shall see in a moment that it is a

separable extension, whence it is a Galois extension, and is finite for a # 0

because a non-zero power series has only a finite number of zeros (Weierstrass

preparation, or more naively, use the power series X? + nX.in &,).
Consider the case n = 1, so consider K(A4,). Then

K(4,) = K(x)
where x is a root of X? + nX = 0, x # 0, or in other words, x is a root of

Xl +n=0.
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§2. Formal p-adic Multiplication

Thus K(A4,) is a Kummer extension (since the (¢ — 1)th roots of unity are
in K), with abelian Galois group, cyclic of order ¢ — 1, and totally ramified
over 7.

Let xe A, and x # 0. The map

ar> a,(x)

gives a homomorphism of o into 4,, whose kernel is obviously zno. Since
A, has g elements, it follows that

A, = o/no
as o-module. In particular, End, 4, & o/no, and
Auty A, ~ (o/no)*.
We have a representation
%: Gy = Gal(K(4,)/K) — Auty 4, ~ (o/no)*.

Since G, and (o/no)* have the same cardinality, namely ¢ — 1, it follows that
this representation is an isomorphism.
We have similar results in the n"-tower.

Theorem 2.1. (i) The group A,» is a free 1-dimensional module over o/n™.

(ii) K(A,») is abelian over K, totally ramified, and we have a natural
isomorphism

x: Gal(K(4,»)/K) ~ (oja™0)*.

Proof. Let (x1, X5, . .., X,) be a sequence with x; € 4%, such that x; # 0
and 7,(x;) = x,_,. Without loss of generality we may assume

X)) = X"+ nX.
For k > 1 we see that x; is a root of
X4+ aX — x,_, =0.

Relatively to the field K(A4,-1) this is an Eisenstein equation, and so we have
shown inductively that K(A4,) is totally ramified. Since A, is stable under
the Galois action, and since the equation

Xq+7tX—~xk_1=0

is separable, it follows that K(4,)/K is Galois. As before, we get a repre-
sentation of the Galois group in Auty 4,». The map

ar> a;(x,)
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8. Lubin-Tate Theory

induces an injection of o/n"o into A ,», whence an o-isomorphism by counting
cardinalities, and it follows as for n = 1 that we have an isomorphism as in
(ii), thus proving the theorem.

Passing to the limit, we may form the projective limit 7,(A4), consisting of
all infinite vectors

(%0, X1, . -.)

such that n/(x,) = x,_, and n/(x,) = 0. It is then immediate that T,(4) is
a free 1-dimensional module over o.
Let

K, = Kdp+), Ko =|JK.
Then K, is an abelian, totally ramified extension of K, and
»: Gal(K,/K) =~ o*

in the natural way. If u is a unit in 0¥, then we have a corresponding element
of the Galois group, denoted by ¢, which is such that

oy = [u],~*

in the representation on T,(A(f)). If we wish to omit the reference to f, we
simply write [u]. Thus on a vector as above, we have

Uu—l(xo, X5 - - ) = ([u](x0)7 [u](xl)’ . )

It is also convenient to have a notation for the representation of the Galois
group in o*. We let

%: Gg — 0¥

be this representation, where Gy = Gal(K?/K), such that

ox = [#(0)](x) for xeAd™.

Example. We shall now give the standard example with the formal
multiplicative group

FX,Y)= X+ Y + XY.
Over the p-adic integers o = Z, we have the Frobenius series given by
fAO=0+Xy-1=X?+-..-4+pX
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associated with the prime p. Let 4 be the corresponding Lubin-Tate formal
group. Then in fact A4 is defined by the power series

Ff(Xi Y)= F(X, Y),

i.e., A is the formal multiplicative group. Then 4,» consists of those elements
in the maximal ideal of the algebraic closure satisfying the equation

I+Xxy"—-1=0
and these elements are none other than
(-1,
where { is a-p"th root of unity.

Theorem 2.2, The prime n is a norm from every extension K(A»).

Proof. Consider first the bottom level of the tower K(A4,) over K, obtained
from the equation

Xl 4+7n=0.
Let o be a root. Then
(=1 *N(@) = 7.

If g is odd then = is the norm of «. If g is even then ¢ — 1 is odd, the degree
[K(4,): K] is odd, and —1 itself is a norm. Hence = is the norm of —a.
This proves the theorem in case n = 1. For the proof in general, let 7 = x,,
and let

(xO’ xl: .. )
be such that
nf(xn) = Xp-1-

Thus x, is an element of 4,, x; # 0, and x,_, is a norm of +x, from the
field K(x,) over K(x,_,). The argument is similar and equally trivial, as
desired.

Theorem 2.3. Let B be the special Lubin-Tate group associated with the
prime n and the Frobenius polynomial X* + nX. Let { € p,_,. Then:

) [£3(X) = {X.
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8. Lubin-Tate Theory

(ii) If F(X, Y) is the group law for B, and
FX,Y)=X+ Y ayX'Y’,
then a;; = Qunlessi + j=1(mod p — 1).
Proof. Let X, be a generator of B,»+1 such that
[7](xn) = Xn-1.

Since x, is a root of X2~ + © = 0 it follows by a trivial recursion that the
irreducible polynomial for x, over K is a polynomial in X?~1, Therefore we
can find an automorphism

o, € Gal(K,/K)

such that ¢,x, = {x,. Since elements of the Galois group commute with [z],
there exists an element ¢ € Gal(K,,/K) such that

ox, = {x, forall n.

By Theorem 2.1 there exists a € 0% such that ox, = [a](x,) for all n. Since
g%~ 1 = 1, it follows that a is a (g — 1)th root of unity. But also

{x, = [alx, = ax, mod x2
s0 { — a = 0 mod x,. This is impossible since both {, a are in y,., unless
{ = a, thereby proving (i).
Secondly, for every { € p,_, we have

(F(X, Y) = FCX,(Y) = (X + (Y + D a,l XY

Then (ii) follows immediately.

§3. Changing the Prime

We shall now analyze what happens when going from one prime x to another
prime ©n’ = mu where u is a unit of og. Since we have to refer to the primes,
we let

K®=K® = |_) K(4,».
We let A’ be the Lubin-Tate group associated with 7', so
K™ =) K(4z).

We let L be the completion of the maximal unramified extension of X, with
ring of integers o,. We let K. be the maximal unramified extension of X,
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§3. Changing the Prime

and oy, its valuation ring, with maximal ideal m,,.. We let ¢ be the Frobenius
automorphism of K, extended by continuity to L.

Theorem 3.1. Let f, f' be Frobenius power series over v, associated with the
primes m, 1’ respectively. Let ¢ be a unit of oy such that &[e = u. (Such
units exist.) Then there exists a unique isomorphism

0: F > F, r
defined over o, which commutes with the operation of v, that is for all a in 0.
0o ay; = Qg © 0,

and such that
0(X) = eX mod deg 2.

This power series 0 satisfies

9"’=0°u;.

Proof. The existence of the unit ¢ such that ¢*/e = u is easily obtained by a
recursive procedure, and is left to the reader. We then construct a power series
0(X) = eX + - - - to satisfy 0° = 0 o u; as follows. Let 6,(X) = eX. Suppose
we have found 6,(X) of degree r such that

09(X) = 0 u(X)) mod degr + 1.
We wish to find some element b € o, such that the series
0, .1(X) = 0,(X) + bXT*!
satisfies the same congruence to one higher degree. We have:

022(X) = O7(X) + br X"+
110 1 (X) = 6, u(X) + bu(X)*

The condition on b is therefore that
b® — bu*tt = ¢,

where c is the (r + 1)th coefficient of 6, o u(X) — 0f(X). Write b = ag”*1.
The condition on b is equivalent with the condition

a® — a = c[e?T+D,
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8. Lubin-Tate Theory

A recursive procedure, letting a,,, = a, + xn"** shows that we can solve
for x at each step to make the equation valid mod =", whence solve the
equation for a in o;. This concludes the construction of 6.

We shall now see that 8 almost satisfies the other conditions of the theorem,
and that it is easy to adjust it to get these other conditions exactly. Let

g=0om 0671

It is obvious that 0 o F; o 0~ commutes with 0 o 7, 0 6~ = g. We contend
that g is a Frobenius power series associated with n’, and has coefficients in
o = og. Once we have proved this contention, we then conclude that the
power series

0(F,(6~*(X), 6-1(Y))

has the properties characterizing F,(X, Y) (it is obvious that this power series
is congruent to X + Y mod deg 2). The Lemma and addendum to Theorem 1.1
show that the power series is equal to F,(X, Y). Similarly, we verify that
0 o a; o 071 has the properties which characterize a,, so is equal to a,. In this
manner, we have proved the theorem except for the fact that

0:F,— F,

is an isomorphism from F; to F,. Replacing 6 by 1. , 8 then concludes the
proof.
All that remains to be done is settle the contention. We have:

Or.0-YX) = en’s ' X = n' X mod deg 2.
Also,

On,'0~1(X) = Ou;m,60-1(X) = 6°(f(0- (X))
= 6°(0-Y(X)) mod n
= 6°(0-*(X9))mod =
= X mod 7.
There remains only to prove that the coefficients of 07;8~1! lie in o, and it

suffices to show that they are fixed under the Frobenius automorphism ¢.
We have:

Om0-1) = 0°fu,0-° = 0°f0-1 = Qu,f0-* = Om,0-",

which concludes the proof of the theorem.
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§4. The Reciprocity Law

Let K, as before be the maximal unramified abelian extension of K. Local
class field theory would immediately show that the composite field

K™K,

is the maximal abelian extension of K. On K™ we have a good model for the
Galois group given by the association

ar>[a], aeo*,

and on K,, we have the Frobenius automorphism, which generates the
Galois group. We wish now to give an independent proof that the field K™K,
is independent of the choice of =, and that the structure of the Galois group
is in fact determined independently of that choice also.

Theorem 4.1. The field K™K, is independent of n. Let a € K*. Write
a = un™

for some unit u, and some integer m. Let r (a) be the automorphism of
K™K, . such that:

r.(@ = o, on K™

ra) = @™ (p = Frobenius) on K,,.

Then the association a > r.(a) is independent of the choice of =.

Proof. Let L be the completion of K, as in the preceding section. Let 4
be the Lubin-Tate formal groups associated with the prime =, and let 4’
be associated with the prime =’. Since 4 and A’ are isomorphic over L by
Theorem 3.1, it is clear that

LK™ = LK™,
However, K, is algebraically closed in L. The two totally ramified extensions
K™K, and K™K,

become equal when lifted to L. By elementary field theory, they must be
equal as extensions of K, thus proving the first assertion in the theorem.

The set of prime elements n’ generates the multiplicative group K*. To
prove the independence of r(a) from the choice of x, it will therefore suffice
to prove that for all #n’,

@) = ry(n’).
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These automorphisms coincide on K, since they both give rise to the
Frobenius element. It will therefore suffice to prove that they coincide on
K ™. We keep the notation of Theorem 3.1.' Write n’ = un with some unit u.
Since r,.(z") = identity on K™, we are reduced to showing this same property
for r (=").

Let f be a Frobenius power series associated with n. The field K™ is
generated by the elements 0(x) with x € A™(f). Hence we are reduced to
showing that such elements are fixed by r (n’). Indeed:

r(n)0(x) = r(Wr(n)0(x)
r(1)6%(x)

= 0%(u; (%))
= ().

This concludes the proof of the theorem.

One may now use local class field theory to guarantee that K™K, is the
maximal abelian extension of K. Let

(@, Kan/K)

be the norm residue symbol mapping K* into Gal(X,,/K) from local class
field theory. Then we find

r(a) = (a’ Ks,b/K)-

Indeed, both automorphisms induce the Frobenius automorphism on K,
and for any prime element n, both automorphisms induce the identity on
K®_ since n is a norm from every finite subextension of K™ by Theorem 2.2.
Since r(a) and (a, K,,/K) coincide on all prime elements, they coincide on
K*,

§5. The Kummer Pairing

It should be clear that the formalism of formal groups is completely analogous
to the classical formalism on the multiplicative group or the group of Witt
vectors. In a similar way, one can develop “Kummer theory’ completely
analogously to the standard way (cf. for instance Algebra, Chapter VIII, §8),
or the way Witt did it in characteristic p for his vectors (Crelle 1935-1936).
The possibility of doing this in the context of Lubin-Tate groups was first
noted by Frohlich [Fr]. Of course, some new phenomena arise. Applications
to explicit reciprocity laws as in Coates—Wiles [C-W 2] and Wiles [Wi] will
be postponed to a later chapter.
Let 4 be a Lubin-Tate group associated with the prime 7. We let

K, = K(A 1:'”'1)
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so K, = K(4,). We let o, be the ring of integral elements in K, and let p,
be its maximal ideal. We write A(p,) as usual for the set of elements p,, with
the group law defined by 4. We define a pairing

A(p,) x K¥ — A1,

Let x € A(p,), let t be an element of A(p,) such that [z**]t = x, and let
a € K. Note that actually t € A(p?"*+?). Define the symbol

<x’ a>n = 04l —4t,

where 6, = (o, K2?/K,) is the automorphism of K2* over K, arising from
local class field theory. Then it is clear that {x, a) lies in A,»+: and is inde-
pendent of the choice of # such that [z"*1]¢ = x. We call it the local (Kummer)
symbol (relative to the formal group A4 and the multiplicative group). If we
want to specify 4 in the notation we write

{x, ap.

Example. The formal multiplicative group. For # = 1 mod p, and o € K}
we define the classical norm residue symbol

B,y =<B—1Lyp + 1,

where A4 is the formal multiplicative group.

The local symbol trivially satisfies the following properties.

LS 1. It is og-linear in x vand multiplicative in o.
In particular, the symbol induces a pairing

AP/ 1A(P,) X KFHKF"" — Anes,
and it is clear that in the pairing
A(ps) X K — Agnea

the kernel on the left is exactly [rz"*]A4(b,), because if x is not a [a"*+!]-
multiple in A(p,), then its [z"*1] root ¢ generates a proper extension of K,

so the Galois group operates non-trivially.

LS 2. If0: A — A’ is an isomorphism over o between two Lubin-Tate groups
associated with the same prime =, then

<x, o8 = 0(<01(x), 7).
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LS 3. If ¢ is an automorphism of K®® over K then
{ox, o0y, = 6{x, 0.
LS 4. <x, o>, = 0 if and only if o is a norm from K,(t), where [n**]t = x.

This last property uses a fact from local class field theory which could be
proved from the Lubin-Tate formalism, but which we shall take for granted.
Otherwise, the other properties are obvious.

As an application of LS 4, let N, , denote the norm from X, to X, for
m > n. Then the orthogonal complement of A ,s+: under the pairing is given
by

L *
Apner = N2u+1,nK2n+1-

LS S. Let m = n and let N, , denote the norm from K, to K,. Then for
x € A(p,) and a € K;F we have

[n" " Kx, adm = <x, Nm,n(a)>n-
In other words, N, ,, is the transpose of [r™~"].

Again this is clear from the functorial properties of the norm residue symbol
which we assume. We can then define the symbol in a limit situation as
follows. We let

T(K%*) = group of sequences (oo, &, ...) with «, € KF such that for
alln > 0,

Nn+1,nan+1 = Wy

Thus T(K¥) is just the projective limit of the groups K2 under the norm
mappings. We may then define a pairing

A(po) x T(KT) — T(4)
by letting

x X (0o, &y, - - . ) > (KX, Do, <X, U1, ... )

On the right-hand side, the components {x, a,>, are defined for all m
sufficiently large, i.e., m > n such that x € A(p,). The components <{x, o,
for k < n may then be defined by applying the appropriate power of [r] to
the nth component. Property LS 5 shows that this is well defined. The pairing
is ox-linear in x and multiplicative in « € T(K}).
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§5. The Kummer Pairing

Of course it is a considerable restriction on an element o, in K to be
liftable to an infinite vector of consecutive norms. In fact, let N, be the norm
from K, to K, and let

N;Y(n?%) = group of elements « € K} whose norm N, is a power of .

Lemma 1. We have N;*(n?%) = m N,..KF.

mzn

Proof. Suppose N,a € n%. Then
(@, Kn/K;) = (Na2t, Ky/K) € (07, Kn/K) = 1
because 7 is a norm from each extension K, by Theorem 2.2. Hence « is a
norm from K,,, thus proving one inclusion.
Conversely, suppose that « is a norm from each K, for m > n. Then

1 = (&, Kn/Ky) = (Nott, KnfK).

Let N,o = n'u where u is a unit in K. Since n is a norm from K, by
Theorem 2.2, we conclude that

(u, K,/K) =1 for all m.

Hence # = 1 mod p™ for all m, so u = 1. This proves the reverse inclusion,
and proves the lemma.

LS 6. If p is odd then

® {at, o>, = 0.

Whether p is odd or even, we have

(if) (a, — a3y = O,
(iii) x, =13, =0 iford,x > e+ 1
and so

(iv) {o,00, =0 iford,a>e+ 1.

Proof. Let f,(X) be a Weierstrass polynomial such that

[2"*11(X) = fu(X)g(X)
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8. Lubin-Tate Theory

where g(X) is a unit power series in o[[X]]. Let # be a root of f,(X) = .
The extension K,(¢) is independent of the choice of ¢. Thus, if we factor
fo(X) — a into irreducible polynomials over K,, say

flX) —a = H fu kXD,

then for each j we obtain K,(¢) by adjoining a single root of f; ,(X) to K.
Therefore, if ¢, ; denotes the constant term of f; {X), and d is the common
degree of the irreducible polynomials f, ; then we conclude that (—1)%c, ;
is a norm. But

S
—o = | | c,,_j.
j=1

Hence —a = (—1)* times a norm, and (—1)* = (-1) is a norm. This
proves the first two assertions. For the last two (relevant only for p = 2),
it is clear from bilinearity that

gn+l

[2Kx, =1 = 0.

If ord,a > e + 1, then a = [2]y for some y, and so <a, —1) = 0, thus
proving the last two assertions.

The following lemma gives information on the factor group

A(po)/[7"* 14 (p,),

by showing that near the origin, the operator [n] operates very regularly. We
let &, denote a prime element in K.

Lemma 2. Assume k > g™. Then A(nnko,) = [r]A(nko,).

Proof. The inclusion > is obvious. We prove the reverse inclusion. Let
= nnkt with ¢ € 0,. We must solve

x*+nx =z with x=nfy and yeo,.
This is equivalent to
eyt 4 @Dy — kg
But & > g™ implies that gk > g™(g — 1) + k, so we are reduced to solving
)= +y—-1t=0

with « divisible by z,. Since f(¢) = 0 mod =#,, and f'(¢) = 1, Hensel’s lemma
does it.
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§5. The Kummer Pairing

As consequences of the lemma, we find for instance:
A(n™*20,) < [n* 1] A(P,)
A@E* +1o,) < [n]A(pn).
This second inclusion comes from using & = g™ + 1.

Theorem 5.1, Let w; be elements of v, for i=1,...,q"*, such that
ordy, w; = i. Then these elements generate A(p,) mod [n]A(p,), and therefore
generate A(p,) mod[n™*1]A(p,) over o.

Proof. Since X +, Y= X+ Ymoddeg2, given xep, we can find
a, € o such that

x —a[a]wy = O mod p7,

because [a;]w; = a,w; mod p2. We may then proceed recursively to find
a,, . . ., ap+t such that

x = [a]wy +a[axdws +4- - - +4 [ap+1]wgr+1 mod paitiel,

By the lemma, this congruence also holds mod[z]4(p,). Hence the w; generate
A(p,) mod[r]A(p,), whence by Nakayama’s lemma, they also generate
A(p,) mod[r"*1]A(p,). This proves the theorem.

The special case when K = Q, is of importance in the cyclotomic theory
(and elsewhere), and some refined statements can be given as in the next two
theorems due to Coates—Wiles [C-W 1], [C-W 2].

Theorem 5.2. Assume K = Q,. Then A(p,,)/[n"**]A(p,) is free over o/n"* 0.
Suppose that A is the basic Lubin-Tate group. Let I be the set of integers i

satisfying
1<i<p*?! with (,p)=1, or i=p*i
Let x, be a non-zero element of A, and let
(X, X15 s Xny .. 2)
be an element of T,(A), that is [r]x ., = Xy. Then the elements
{xt} withiel

Jorm a basis.

Proof. For i e I we let w; = x}. On the other hand, if p™ divides i exactly,
we take

w;, = [r1(x).
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8. Lubin-Tate Theory

This shows that the elements xi with i e I generate A(p,) mod[n"*1]A(b,),
over o.

There remains to prove that they are linearly independent mod z™* 0.
We first show that they are linearly independent in A(p,)/[r]A(¥,) over o/zo.
Suppose we have a relation

* >, lalx, = 0 mod [r]A(p,),

where 3, indicates the sum with respect to the group law of 4, and some
coefficient g; is a unit, say a,. We may assume a;, = 1.

Case 1. k < p**1. For any x € p, we know that
[n]lx = x? +--- 4+ px.

Either the term x” dominates this expression, in which case ordy, x is divisible
by p, or some other term dominates, which means that

p-ordx > p*(p — 1) + ord x,

so ord x > p", and ord [r]x > p"*!. This implies that we cannot have a
relation of congruence (*) because as with ordinary addition, if y, y’' € A(p,)
and ord y # ord )’ then

ord(y +, ¥") = min(ord y, ord y").

Hence there cannot be any cancellation in the sum of the left-hand side of
(*), thus concluding the proof in Case 1.

Case 2. k = p"*1. Then by Case 1 we may suppose that g; is divisible by
7 for all i # k, and therefore x2"** lies in [n]4(p,). We use the hypothesis
that A is the basic Lubin-Tate group, and then there exists y € p,, such that

Y+ Ty = X2
But x2" ~ x, and x§~! = —n. The above equation is clearly impossible if y

is not divisible by x, because the orders on the left-hand side cannot match
the order on the right-hand side. Then we divide by x,? to find

(V/x0)? — (¥/%0) = x&"**/x) = unit.
Reading this equation mod p,, yields a solution of
Y? — Y = unit mod p,
in the residue class field Z/pZ, which is impossible. This proves the theorem.
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§6. The Logarithm

Theorem 5.3. Assume that K = Q,, and that K(A,) does not contain the
pth roots of unity. Then the local pairing

A(p,)/[n*11A(p,) x KXK¥""" — 401

is exact on both sides, i.e., the kernels are 0 on both sides.

Proof. In Theorem 5.2 we have determined the order of

A(pn)/[n"* ]A(p,).

It is a standard exercise of local algebraic number theory [L 1], Chapter II,
§3 to determine that

order of KX/KX*""" = (A(p,): [n"*1]A(p.))p"

where p”. is the order of the group of p-power roots of unity in K,,. If K(4,)
does not contain y, then neither does K. Hence

KX K¥"!

has the same order as A(p,)/[z"*1]4(p,), and we know that the kernel on the
left is trivial. Since A »+1 is cyclic in the present case, it follows by the duality
of finite abelian groups that the kernel on the right of the pairing must also
be trivial, as desired.

Remark. When the pth roots of unity are in K(4,), in particular when
A = G,, the above argument definitely shows that the kernel on the right is
non-zero.

§6. The Logarithm

Let A4 be a formal group, defined by a power series F(X, Y) over some ring o
with quotient field K of characteristic 0. It can be shown that there exists an
isomorphism

AAd—>G,

with the additive group, i.e., a power series with coefficients in some extension
of K such that

MY 4+ Y) = X)) + AY),
A(X) = Xmod deg 2.
The + sign on the right-hand side is the ordinary addition. That power series

is then uniquely determined, and its coefficients lie in K. It is called the
logarithm on 4, and we write 1 = A, if we need to refer to 4 explicitly.
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8. Lubin-Tate Theory

Example. Suppose 4 = G,, is the formal multiplicative group. Then the
log is given by

MX) = log(l + X),
where the log here is the usual series from calculus.

It is easy to show that any endomorphism of G, is given by multiplication
with a scalar, i.e., if a power series / satisfies

WX + Y) = h(X) + h(Y),

then A(X) = aX for some constant a. Hence the uniqueness of the log A,
follows at once. In this section we shall prove its existence for Lubin-Tate
groups, and additional properties, following Wiles [W] in preparation for the
explicit reciprocity laws.

Lemma 1. The limit

HX) = lim 2 m3(x)

exists, and gives a formal isomorphism of the Lubin-Tate formal group A
with the additive group G,.

Remark. The limit is to be understood in the following sense. Each term
Lm0 = 3 X

is a power series. By the existence of the limit, we mean that for each k,

lim ¢® = ¢,
n

exists as # — oo, and then A(X) is defined to be > ¢, X*. The convergence will
not be uniform in .

Proof of the lemma. We look at the difference

ﬂwn—%wuthmwwwrwﬂW»

n+7r

+
n‘nf

Let
H(X) = "X + g.(X)
where
g(X) =D aPmiX’ and i+j2n+1, j=2,
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§6. The Logarithm

and the coefficients a{P are in og. Then the right-hand side of the required
difference is equal to

1
F gr(nnX + gn(X))

We are interested in the coefficients of monomials of degree <k for a fixed k.
Reading all expressions mod X**! we see that we may assume

izn+1—(+1).

Hence "X + g,(X)is divisible by " ~*. Similarly, the power series expression
for g, is divisible at least by n"~*. Since g, has degree >2 it follows that
g X + g, (X)) is divisible at least by

- kn2(n -k — n2n +r— 3k.

Dividing by n"*" shows that the required difference tends to 0 as #n — co.
This proves that the desired limit exists.

It is clear that A(X) = X mod deg 2.
There remains to prove that A satisfies the homomorphism property. We
have:

1 1
;r‘;;ﬂﬁ(X +4 Y) = E(TCQX +4 TIZY)

1 1
= S @IX + TY) + > (XYY,

i+722

where c;; are the coefficients of the formal group
X447 =7 cyXiY'.

For each fixed k, m the coefficient of X* Y™ in the sum on the right-hand side
tends to 0 as » tends to infinity, so the additivity follows.

Lemma 2. The log A, commutes with the action of v, that is,
Ad(a(X)) = al(X) for ac og.

For the basic Lubin-Tate group B, if
W(X)=X+ D aX
i=2

then a; = O unless i = 'mod g — 1.
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8. Lubin-Tate Theory
Proof. The function X+> A4(a,(X)) is an additive formal power series.
such that
Agay X)) = aX mod deg 2.
The uniqueness of the logarithm shows that this function is al,.
For the basic Lubin-Tate group, we take a = { where { is a primitive

(g — 1)th root of unity, and apply Theorem 2.3 to conclude the proof.

Lemma 3. (i) Let 1’ denote the formal derivative d)\/dX. Then 2,(X) has
coefficients in o.

(ii) The series A4 X) can be written in the form

1) = 3 a0 X

where g(X) € o[[X]]. In particular, it converges on the maximal ideal.
(iii) Suppose q = 3 and let x € K® have ord, x > 1. Then

Aa(x) = x mod x2.
Proof. For (i) we differentiate with respect to Y the relation
AF(X, Y)) = A4(X) + A4(Y)
and get
Au(F(X, Y)DF(X, Y) = 2,(Y).
We then put ¥ = 0, and find
2(X)D,F(X,0) = 1.
But from F(X, Y) = X + Y mod deg 2, it follows that D,F(X, 0) is a power
series whose constant term is 1, and with coefficients in 0. This proves the
first assertion.

As for (ii), it suffices to prove the result for the basic Lubin-Tate group
whose Frobenius power series is given by

X+ nX,

because if {: 4 — B is an isomorphism such that y(X) = X mod deg 2, then
A'A = A’B ° ll/.
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§6. The Logarithm

It also clearly suffices to prove the following statement:
The power series [n")(X) lies in the module

o[[X ]}’ X*
withj > 0,k > 1 andj + [log, k] = n.

We prove this by induction. It is obvious for n = 1. Assume it for n. Let

[nn](X) = fn(X) = Z g,-k(X)n’X".
Then
[7* (X)) = ful(X)? + nfa(X).

It is immediate that nf,(X) satisfies the induction hypothesis with respect to
n + 1. For the term f£,(X)%, it will consist of cross terms which binomial-type
coeflicients divisible by p, hence by =, thus satisfying the desired conditions
on the exponents, or terms

gjk(X)qnfq Xka,

The log, of the exponent of X is increased by one, and so the desired in-
equality is also satisfied. This proves (ii).
Part (iii) is obvious from (ii).

Observe that in the simplest case of the ordinary log,

2
logl + X) = X~ 5 4.

If p = 2, the first term after X gives trouble. If p = 3, the next term which
might give trouble is
X3

r-utd

3

but in this case, the assumption ord, x = 1 shows that (iii) holds. After that,
things only get better.

Lemma 4. Let e (Z) be the power series (with coefficients in K) which is
the inverse of A X). Let D be the disc in mg= consisting of those elements z
such that

ord,z > ——-
g—1
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8. Lubin-Tate Theory

Then e (Z) converges on this disc, and induces the inverse isomorphism to
A4, on the groups

A(D) {_: G.(D).

For z in this disc we have
ord z = ord A,4(2) = ord e,(2).
Proof. Let ye D, y # 0. Define
1
A(X) = ;/La(yX )-
Then for i > 0,

g' -1
qg—1

1y#
ord;? =(¢'—Dordy—i>

— I
By Lemma 3, it follows that 1,(X) has integral coefficients. Let E, be the
power series such that E, o 1,(X) = X. Replacing X with y~*X we see that

E(Z) = y~lesyZ). Since E, has integral coefficients (because 1,(X) =
X + higher terms), we conclude that

1
= Z
¥ es(yZ)

has integral coefficients. Let e,(Z) = > a,Z" Then a,y" ! is integral for all
n and all y in D. It follows that in fact, a, )" tends to 0 (p-adically) as » tends
to infinity for each y in D. Furthermore, we then conclude that

es(y) € yoge
for all y in D, and in particular,
ord e,(y) = ord y.

On the other hand, again using Lemma 4, it is immediate that for x in D,
we have

ord A,(x) = ord x.
Since e, and 4, give inverse mappings, we get
ord e (y) = ord y = ord A4(»),

thus proving Lemma 4.
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We may then recover immediately a lemma proved in connection with
Theorem 5.1.

Corollary, (i) A(n"*20,) < [r"*1]A(p,).

(ii) A44(Pn) = o0,
Proof. Clear.

Lemma 5. The kernel of 1, in the maximal ideal of the algebraic closure of
K is precisely Ao, the group of torsion points on A, or in other words, the
group A®.

Proof. A point x is a torsion point if and only if [z"]x is a torsion point
for some positive integer n, or for every large positive integer n. But [z"]x
approaches 0, and for large », lies in the neighborhood of O where the
exponential and log on 4 give inverse mappings. Since on the additive group,
there are no elements of finite order, it follows that the kernel of 1 is precisely
A,

§7. Application of the Logarithm to the Local Symbol

We recall that the finite extension K, is self dual as a vector space over X
by means of the trace. This means we have a non-degenerate K-linear pairing

K, x K,—~ K
given by
x, y) > Ta(xy).
Let a be an ideal in K,. We denote by a* the set of elements y € K, such that
T.(xy) o = vg.

Of course, we have the notion of perpendicularity with respect to any given
pairing, and the context will always make clear which is meant. We have

at = Homy(a, 0).
Indeed, let y: a — o be a p-homomorphism. Then  can trivially be extended
to a K-linear functional K, — K denoted by the same letter. But then for some

o € K, we have

Y(x) = T,(x) forall xe K,
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8. Lubin-Tate Theory

and « € at by assumption. Our identification of a' with Hom,(a, 0) then
follows at once. If D, = Dg ¢ is the different, then

at = a™ 19,1,

We return to the pairing given by the local symbol
A(pn)/[n"*11A(,) x K — Agnee.

We had already noted as a consequence of LS 4 that

1 — *
Anﬂ“'l = N2n+1,nK2n+1-

Observe that we are dealing with two orthogonality signs: One referring to
the local symbol, and one referring to the duality

K, x K,— Ko

(where the trace is viewed as having values in the factor group K/o), applied
in particular to an ideal

a x at—>op,
Then we have the pairing
A(‘pn)/([nn+1]A(pn) +A An"’+1) X A;'c.""'l - An"'“'

Since Ker A, = Ao, we have Ker 1, N K, = A,»+1. Applying the log map
of 4, we get a pairing

AA®)T1AA(D,) X Abpr — A s,

Let a = AA4(p,), so the factor group on the left is a/n™**a. In the light of the
exact duality

a/m**la x at/n**lat — o/n"+lo,
there exists a unique group homomorphism
Ynt Agnes = AA(P,) 7" 1 AA(p,)

such that for x € A(b,) and o € A2x+: we have

LS7. <%, 037 = [Ta(AaCW (@) ]a(x%n)-
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This formula has been written without abbreviations, but of course in the
future we frequently omit indices 4, n, etc. If ¢ € Gal(K®/K) and ¢ > %(0)
is its representation in o* on T,(A4), then

LS 8. Ya(ow) = x(o)n()°.
Proof. We have

007 x, ay = <{x, 00y = [To(As(x)Wn(00))]x,
and also
0o x, o) = [Ta((0~* Aa(x)Yn(e)](0%n).

But ox, = [%(0)]x, by the definition of %, with x(¢) € o*. Using [ab] = [a][b]
and T,(6y) = T,(») concludes the proof of LS 8.
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Explicit Reciprocity Laws

Iwasawa [Iw 8] proved general explicit reciprocity laws extending the classical
results of Artin-Hasse, for applications to the study of units in cyclotomic
fields. These were extended by Coates—Wiles [CW 1] and Wiles [Wi] to
arbitrary Lubin-Tate groups. Although Wiles follows Iwasawa to a large
extent, it turns out his proofs are simpler because of the formalism of the
Lubin-Tate formal groups. We essentially reproduce his paper in the present
chapter.

We assume that X is a finite extension of Q, (i.e. has characteristic 0)
because we want to use the logarithm.

We allow p = 2, and I am indebted to R. Coleman for showing me how
Wiles’ paper extends with essentially no change to that case, by using (ii),
(iii), (iv) of LS 6, and the minus sign in DL 6.

We let:

A = Lubin-Tate group associated with the prime element 7.
We let:
(X0, X1, ...) € T(A4) with x4 # 0.

K, = K(x,) = K(4p+2).
N, = norm from K, to KX, and N,, , = norm from K, to K, form > n.
T,

= trace from K, to K.

We abbreviate { , >, to { , > unless we wish to specify the level at which
the symbol is taken.
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§1. Statement of the Reciprocity Laws

NZY(n%) = subgroup of K consisting of those elements whose norm to K
lies in n% (i.e., is a power of =).

= () NnnK¥ by Lemma 1 of Chapter 8, §5.

mzn
T(K%) = group of vectors (ag, ®y, . ..) with «, € K¥ such that
Np ol = 0.

§1. Statement of the Reciprocity Laws

Theorem 1.1. Suppose o € v, and o = 1 mod p,,. Then
N,o = 1 mod ="+
and
G0 = | 7 o™ = D3,
Proof. By the formalism of the norm residue symbol, we know that
1 = (o, Ki/Kp) = (N2, K/ K).

Hence [N,alx, = x, by the Lubin-Tate theory, so the first assertion is clear.
We choose ¢ = x,, ., so that [n**]t = x,. Then

{Xpy A = G, —4 L.
Since (o, K,(t)/K,) = (N,o, K,(t)/K) we obtain from Lubin-Tate theory

<xn, d) = [Nna_llt —at
= [Na~t — 1]z

Using the first congruence and the fact that [z"*1]t = x, yields the theorem.

Corollary 1. Let « = 1 mod p,,. Assume that K is unramified over Q,. Then

1
<x1l9 d> = [—nn+1 Tn(log a)] Xn
where the log is the ordinary log on the multiplicative group.
Proof. Since = is unramified, we can write
Not=1+z
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9. Explicit Reciprocity Laws

where z = 0 mod p™**. Since p # 2 it follows that
log N,a~' = z mod 22
Hence
—T,(loga) = log Nya=' = Npa~' — 1 mod p2"+2.
Since K is unramified over Q,, we have = ~ p, and the coroliary follows.

Corollary 2. Let A = G,, be the formal multiplicative group. Let { be a
primitive p™*th root of unity, and let « = 1 mod p,,. Then

(C’ O() — C—(llp"'* HT,(dog @)

Proof. Special case of Corollary 1.

The law of Corollary 2 is one of Artin—Hasse’s laws, obtained here by
Wiles as a special case of the Lubin-Tate formalism. We have written the
symbol with the usual parentheses, transfering its meaning to the multiplica-
tive group.

We shall now state the main result of this chapter. Let a € K%. Let
r = ordy, a. Let g(X) = ¢, X" +--- be a power series in o[[X]] with a unit
¢, such that

a = g(xn)-

Of course, there exist infinitely many such power series. Let
D = djdx

be the ordinary derivative of formal power series, so that

Dg(X) = g'(X).

Define

DnL(“) = g,/g(xn)'

The operator D,L depends on the choice of element
(305 X1, . . .) € To(A),

and it depends on the choice of g. We shall see later to what extent it does
not depend on g.
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§1. Statement of the Reciprocity Laws

We define

1 1

5,,((1) = F m DnL(d)

Again this depends on the choice of g.
Let x € A(p,) and let o, € K*. In Lemma 3.2 we shall give conditions
under which the symbol

[%, Gl = 2 Tuh(x)6n(e)

is well defined mod =" ** independently of m. These conditions involve either
x being sufficiently divisible in A(p,), or m being sufficiently large. The value
of the symbol lies a priori in K/n™**0, but it will turn out that under suitable
conditions, its value lies in o/z"*o, so that it can be viewed as an operator
on A,+1. This was the reason for selecting the bracket in the notation.
Precisely, the conditions are as follows.

Condition (i) m > 2n + 1 and there exists an integer

k= [n2] + 2(n + 1) if p is.odd
k = max{[n/2] + 2(n + D,e + 1} ifp =2,
such that o, = Ny .o, with o, € KF.
Condition (ii) m = n and ord, x > [n/2] + 2.
Theorem 1.2. Let x € A(p,) and a € KF. Suppose a = N, ., for some

o, € K¥. Under either one of the conditions (i), (ii), the symbol [x, o],
has value in o/n"* 1o and we have equality

<x, n =[x, anln(xs)-
An important case is that when
o = (ctg, %3, - - .) € T(KF).

Thus «, satisfies an infinitely regressive norm-divisibility condition. In that
case we may define the symbol

< [x a] = [x, Om]m
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9. Explicit Reciprocity Laws

for arbitrarily large m, and its value will be the same for any m > 2n + 1.
It gives the formula

X,y 0y = [xa “]A(xn)'

Example. The formal multiplicative group. For f = 1 mod p, and o € KFf
we defined the classical norm residue symbol

(ﬂa a)n = <B - 19 a>1Ai + 1:

where 4 = G,,. Consider the special case when K = Q, and = = p. Let {
be a primitive p**th root of unity. Then

X, =(— 1

We have 1,(X) = log(l + X), so

' 1 -
A’A(xn)=l+x =C 1

Let x € p; = G, (p,). Then we find form > 2n + 1:

(x, ), =" wherev = p—l———— Tp (§log(1 + x) D, log o).

m+1

This is Iwasawa’s formula [Iw 10].

Finally there is another Artin—Hasse reciprocity law generalized by Coates-—
Wiles to the Lubin-Tate case for level 0.

Theorem 1.3. Let x € A(p3) and o. € K. Then the symbol [x, o], has values
in o/no, and we have

{x, o = [x, alf(xo).

The rest of the sections will be devoted to the proofs.

§2. The Logarithmic Derivative

In this section we investigate systematically the logarithmic derivative, when
it is well defined (modulo certain powers of the prime), and also to what
extent the mapping () is well defined. We let:

D, = different of K, over K;

D, = different of K, over K, for m > n.
Then
ﬁD0 = ﬂpo_‘la C'Dn+1,n = TOn+1, $>n = nm:DODn-
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§2. The Logarithmic Derivative

These are immediate by considering the basic Lubin-Tate generators w,,
satisfying the equations:

wil4+a=0 and wil,; + aw,,s — w, = 0.

The relative difference is obtained by taking the derivative, and evaluating at
we and w, ., respectively. The given values fall out.
Let « € K, and write o as a power series

o = g(x,) with g(X) = ¢, X" + higher terms

and ¢, equal to a unit. Let g(X) = X"A(X). Then
g/g(X) = 3 + H[HX).

Hence g’'/g(x,) is integral if r = 0, and in any case lies in p; L. If
g:1(X) = X'hy(X) and go(X) = X"hy(X)

are two power series whose values at x, are equal to «, and f(X) is the
irreducible polynomial of x, over K, then

g1(X) — go(X) = X'f(X)p(X)

for some power series ¢(X) € o[[X]]. Hence

84/8:050) — g1gs(%) = 22 f'(x,)p(x) = 0 mod D,

This shows that g'/g(x,) is well defined modulo the different.
DL 1. The map D,L is a homomorphism
D,L: K¥ — p;* mod D,.
and the image of the units lies in v, mod D,,.

This is obvious from the previous discussion. Since A'(X) is a power series
starting with 1 and with integral coefficients, it follows that A'(x,) is a unit.
Hence from the definition of §,, we find:

DL 2. The map 6, is a homomorphism
0n: KF — K, mod Dy0,,.

Its image lies in n~™0;* mod Do, and the image of the units lies in
7" mod Dyo0,,.
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9. Explicit Reciprocity Laws

As the elements of K are generated by powers of x, and units, the com-
putation of 9, is reduced to d,(x,) and J,(units). Note:

1 1 1
On(Xs) = T IE) x

DL 3. For o € Gal(K?*/K), and o € K},
5.(0%) = %(0)3,(2)".
Proof. Write o = g(x,) as usual. Then
o = g(ox,) = g([%(a)]xy).
Thus we let g,(X) = g([#(6)}(X)), so that
oo = g,(x,).

On one hand, we have

1 g(bdo)lx)

0X,) oo

(1) 76,0 = 7y 8 180%) = 77

On the other hand, since A o [x(6)}(X) = #(6)A(X), we find

V)] A(ox)[#(0)) (x0) = #(0)A (x,).
Furthermore

3) 7" 8,(0%) = 7 (;x,.) g———-";(;‘")-
and

&' (X) = g'([(a))(X)[x(a)] (X).
Putting (1), (2), (3), (4) together yields the desired property.
DL 4. Let m > n and let o be a unit in K¥. Then

Om(e) = 8,(x) mod Dyo,,.
Proof. The proof is similar to DL 3. We know that

Ao [x"7TUX) = 2 A(X),
so by the chain rule,
A" () = 777" (Xm)-
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§2. The Logarithmic Derivative

We have the representations

Q= g(xn) = g([nm—n]xm) = gm(xm)

where
gn(X) = g o [n"~"|(X).

Since « is assumed to be a unit, the power series g starts with a unit, and so
does the power series g, so both these power series can be used to compute
the logarithmic derivative. The rest of the proof then follows immediately
from the chain rule and the definitions.

DL 5. Let m > n, and o, € K¥. Then

On(Nm,n0m) = T n0m(0tm) mod o,.

Proof. Without loss of generality we may assume that m = n + 1. We
first deal with the case when ay, is a unit. We find:

| 5n(Nm,n‘xm) = 5m(:[—_[ a;z) = Z 6711(“:) by DL 4

4

= > #(6)0u(n)’, by DL 3.

The sums are taken over ¢ € Gal(K,,/K,). For such ¢ we must have
#(c) = 1 mod "+t

because [x(o)] is the identity on A ,»+1. Since 6,(x,,)* liesinw~™0,, = g~ ®*Vp,,
the desired congruence follows.

It will then suffice to prove DL 5 next for o,, = x,,, because of the multi-
plicativity of the function §. For simplicity, let us first suppose that the
Frobenius power series associated with the Lubin-Tate group is in fact a
polynomial,

[71(X) = f(X) = nX +---+ X9

and that the coefficient of X“ is exactly 1. For instance, the basic Lubin-Tate
group and the formal multiplicative group are of this type. Under this
additional assumption, we have in fact the stronger property with equality
instead of the congruence:

1 1

DL 6. 5n(Nm.n(_xm)) = Tm,nam(_xm)a where 6m(xm) = TE_m W .

Remark. The minus signs are there to take care of the case p = 2. If p 2,
they can be omitted. '
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9. Explicit Reciprocity Laws

Proof. We may again suppose m = n + 1. We have (as in the proof of
Theorem 2.2 of Chapter 8)

Nn+1,n(_xn+1) = —Xp.
The formula to be proved amounts to

_1 _r 1\
A (Xn)Xn T A (X 4 1)%n+1

We have x, = f(x,..1), and since A(f(X)) = nid(X), we have

(A f)(X) = VA(X)f'(X) = 7d'(X).

We put X = x, ., and see that the formula amounts to

X,
Tn __,___n_ = l.
+1’n(f (xn+1)xn+1)

We replaée X, by f(Xp41) = Xpq +---+ x%,,. Let a = x,,,. Standard
orthogonality relations of elementary algebra (see for instance Algebra,
Chapter VII, §6) yield

ai—l

Tn+1,n(m)=l ifi=gq
=0 ifixgq.

This proves what we wanted.

The proof of DL 5 in general when «,, = x, follows exactly the same
pattern, but we end up only with the asserted congruence. We give the details.

By the Weierstrass theorem, we may factor in o,,
F(X) = xp = g(X)W(X)
where
gX) =bo + -+ by X7 + X9, b, = 0 mod p,

MX) = ¢y + ¢; X +--- is a unit power series, ¢, € 0.

Then f'(x,41) = g'(Xn+1)(x,+1). Proceeding as before, we are reduced to
proving the congruence

T, ( Xn
L 8 (Xn+ 1)M(Xn +1)Xn 41

) = 1 mod p,.
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§3. A Local Pairing with the Logarithmic Derivative

Again we replace x, by f(x, ). From the factorization we have
co = 1 (mod x,).
Hence
h(x, 1) = 1mod x, ;.

From the orthogonality relation, we obtain a contribution of 1 from the trace
of one term. From the definition of the different (which is precisely g'(x, +1))
it is then clear that the traces of all the other terms are =0 mod y,, as desired.

Property DL 5 can be expressed in the projective limit as usual. Let

T(K./0o) = projective limit of the additive groups K,/o, under the
trace maps,

= group of vectors (2o, zy, . . .) with z, € K, /o, such that
Tav1,nZn41 = Zn.
Then the map
0: T(K¥) = T(Ke/0)
given by
ooy Oy ) (e, Onlatn), - - 2)

is well defined, and is 2 homomorphism.

§3. A Local Pairing with the Logarithmic Derivative

Having derived the necessary formalism for the values of §,(a), we may now
combine this with the logarithm on A to define the symbol

[%, ala = 1 Ta(A()6,(@), for o € K.

Lemma 3.1. The symbol [x, o), is well defined mod =" ** in each of the follow-
ing cases:

() xe A(p,) andm = 2n + 1;
(ii) x € AP2™") and m = n.

Proof. By DL 2 we know that J,() is well defined mod Dy0,,. Hence the
symbol is defined mod =™*? if

Tm(;lt }t(x)ﬁboo,,,) < grtip,
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9. Explicit Reciprocity Laws

By the definition of the different D, = n~"Dg !0,,, this is equivalent with:
™" 2)(x)®2E is integral.

It will even be shown that in case (i), n™ "~ 2(x)D, is integral.
For future reference, we prove congruences which imply the above, and
list them systematically.

CLIfxeA(p,) and m > 2n + 1 then

T,,,(l A(x)om) < qttlp,
T
C 2. If x€ A(p27) and m > n then

Tm(% /l(x)iboom) < g+lp,

C 3. If x€ A(p27D,) and m > n then
1
T’"(R ).(x)om) < gttlp,

Observe that the ®, does not occur inside the traceinC1and C 3. Only C 1
and C 2 are needed for Lemma 3.1 but C 3 will be needed for Lemma 3.2.
We now give the proofs.

Suppose first that m = 2n + 1 (the worst case of (i)). We have to verify
that

"~ I(x)D, is integral.

Recall that ord, D, = (¢ — 2)/(g — 1).
By Chapter 8, §6, Lemma 3 we know that A(x) is a power series in x whose
terms are either integral, or at worst with a factor

qt

X .
—» and i> L
n

Suppose x € A(p,). Then

1 .. oqg—2
———‘_—l+—‘—‘—‘
q*(qg — 1) g—1

We need the right-hand side >0. For i < n — 1 this is obvious, because
n —1—1i=> 0 and the other terms are positive. For i > n the estimate is
equally easy.

Suppose next that x € A(p2") and only that m > n, say m = n which is
the worst case. Then x lies in the disc of “good’’ convergence for the log and

ord i" (x)Dy = n— 1 + ¢
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§3. A Local Pairing with the Logarithmic Derivative

exponent, and thus

ord A(x) = ord x > q%l

For C 2, it suffices to verify that =~ 2A(x)®Z is integral, or equivalently

2 q—2
-—2+q_2+2q_120,

which is obviously the case. The proof for C 3 is the same.

We remark that in the range where the symbol is well defined, it is ox-linear
in x and multiplicative in a. In any case, within the ranges of Lemma 1!, we
view the symbol as having values in

K mod n™*og.

The next lemma will show that the value [x, o], is independent of m when
o, is the component of an infinite vector

o = (0(0, Oy, . .) € T(K:s),
and m is sufficiently large. We define [x, «] to be this value.
Lemma 3.2. Let k > m > n. Let a,, € K¥ and oy, € K}¥ be such that

On = Ny mOlg-
Then
[x, &l = [x, oap), mod 7 +1
in either case:
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