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Foreword 

Kummer's work on cyclotomic fields paved the way for the development of 
algebraic number theory in general by Dedekind, Weber, Hensel, Hilbert, 
Takagi, Artin and others. However, the success of this general theory has 
tended to obscure special facts proved by Kummer about cyclotomic fields 
which lie deeper than the general theory. For a long period in the 20th century 
this aspect of Kummer's work seems to have been largely forgotten, except 
for a few papers, among which are those by Pollaczek [Po], Artin-Hasse 
[A-H] and Vandiver [Va]. 

In the mid 1950's, the theory of cyclotomic fields was taken up again by 
Iwasawa and Leopoldt. Iwasawa viewed cyclotomic fields as being analogues 
for number fields of the constant field extensions of algebraic geometry, and 
wrote a great sequence of papers investigating towers of cyclotomic fields, 
and more generally, Galois extensions of number fields whose Galois group 
is isomorphic to the additive group of p-adic integers. Leopoldt concentrated 
on a fixed cyclotomic field, and established various p-adic analogues of the 
classical complex analytic class number formulas. In particular, this led him 
to introduce, with Kubota, p-adic analogues of the complex L-functions 
attached to cyclotomic extensions of the rationals. Finally, in the late 1960's, 
Iwasawa [Iw 1 I] . made the fundamental discovery that there was a close 
connection between his work on towers of cyclotomic fields and these 
p-adic L-functions of Leopoldt-Kubota. 

The classical results of Kummer, Stickelberger, and the Iwasawa­
Leopoldt theories have been complemented by, and received new significance 
from the following directions: 

1. The analogues for abelian extensions of imaginary quadratic fields in 
the context of complex multiplication by Novikov, Robert, and Coates­
Wiles. Especially the latter, leading to a major result in the direction of the 
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Foreword 

Birch-Swinnerton-Dyer conjecture, new insight into the explicit reciprocity 
laws, and a refinement of the Kummer-Takagi theory of units to all levels. 

2. The development by Coates, Coates-Sinnott and Lichtenbaum of an 
analogous theory in the context of K-theory. 

3. The development by Kubert-Lang of an analogous theory for the units 
and cuspidal divisor class group of the modular function field. 

4. The introduction of modular forms by Rihet in proving the converse of 
Herbrand's theorem. 

5. The connection between values of zeta functions at negative integers 
and the constant terms of modular forms starting with Klingen and Siegel, 
and highly developed to congruence properties of these constant terms by 
Serre, for instance, leading to the existence of the p-adic L-function for 
arbitrary totally real fields. 

6. The construction of p-adic zeta functions in various contexts of elliptic 
curves and modular forms by Katz, Manin, Mazur, Vishik. 

7 .. The connection with rings of endomorphisms of abelian varieties or 
curves, involving complex mUltiplication (Shimura-Taniyama) and/or the 
Fermat curve (Davenport-Hasse-Weil and more recently Gross-Rohrlich). 

There is at present no systematic introduction to the basic cyclotomic 
theory. The present book is intended to fill this gap. No connection will be 
made here with modular forms, the book is kept essentially purely cyclotomic, 
and as elementary as possible, although in a couple of places, we use class 
field theory. 

Some basic conjectures remain open, notably: Vandiver's conjecture that 
h + is prime to p. 

The Iwasawa-Leopoldt conjecture that the p-primary part 0f C- is cyclic 
over the group ring, and therefore isomorphic to the group ring modulo 
the Stickelberger ideal. For prime level, Leopo.!dt and Iwasawa have shown 
that this is a consequence of the Vandiver conjecture. Cf. Chapter VI, §4. 

Much of the cyclotomic theory extends to totally real number fields, as 
theorems or conjecturally. We do not touch on this aspect of the question. 
Cf. Coates' survey paper [Co 3], and especially Shintani [Sh]. 

There seems no doubt at the moment that essential further progress will be 
closely linked with the algebraic-geometric considerations, especially via the 
Fermat and modular curves. 

I am very much indebted to John Coates, Ken Ribet and David Rohrlich 
for their careful reading of the manuscript, and for a large number of 
suggestions for improvement. 

New Haven, Connecticut 
1978 
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Notation 

ZeN) = integers mod N = Zj NZ. 
If A is an abelian group, we usually denoted by AN the elements x E A 

such that Nx = O. Thus for a prime p, we denote by Ap the elements of order 
p. However, we also use p in this position for indexing purposes, so we rely 
to some extent on the context to make the intent clear. In his book, Shimura 
uses A[p] fot the kernel of p, and more generally, if A is a module 
over a ring, uses A[a] for the kernel of an ideal a in A. The brackets are 
used also in other contexts, like operators, as in Lubin-Tate theory. There is 
a dearth of symbols and positions, so some duplication is hard to avoid. 

We let A(N) = AjNA. We let A(p) be the subgroup of A consisting of all 
elements annihilated by a power of p. 
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Character Sums 1 

Character sums occur all over the place in many different roles. In this 
chapter they will be used at once to represent certain principal ideals, thus 
giving rise to annihilators in a group ring for ideal classes in cyclotomic fields. 

They also occur as endomorphisms of abelian varieties, especially Jacob­
ians, but we essentially do not consider this, except very briefly in §6. They 
occur in the computation of the cuspidal divisor class group on modular 
curves in [KL 6]. The interplay between the algebraic geometry and the 
theory of cyclotomic fields is one of the more fruitful activities at the moment 
in number theory. 

§1. Character Sums Over Finite Fields 

We shall use the following notation. 

F = Fq = finite field with q elements, q = pn. 
ZeN) = ZjNZ. 
e = primitive pth root of unity in characteristic O. Over the complex 

numbers, e = e21tilp. 

Tr = trace from F to Fp. 
JlN = group of Nth roots of unity. 
2: F -i>- Jlp the character of F given by 

2(x) = eTr(X). 

X: F* -i>- Jlq -1 denotes a character of the multiplicative group. 
We extend X to F by defining X(O) = O. 

The field Q(JlN) has an automorphism (1' -1 such that 

(1'_1:(1-+(-1. 



1. Character Sums 

If CI. E Q(JiN) then the conjugate ex denotes (J -lCl.. Over the complex numbers, 
this is the complex conjugate. 

The Galois group of Q(JiN) over Q is isomorphic to Z(N)*, under the map 

where 

Let/, g be functions on Fwith values in a fixed algebraically closed field of 
characteristic O. We define 

S(f, g) = L f(x)g(x). 
XEF 

We define the Fourier transform Tfby 

Tf(y) = L f(x)Je( -xy) = Lf(x)e-Tr<XY). 
XEF 

Then Tf is again a function on F, identified with its character group by Je, 
and T is a linear map. 

Theorem 1.1. Let f- be the function such that f-(x) = f( -x). Then 
T2f = qf-, that is 

T2f(z) = qf(-z). 

Proof We have 

T2f(z) = L Lf(x)Je( - yx)Je( -zy) 
Y x 

= Lf(x - z) LJe(-yx). 
x 1I 

If x =f. 0 then y 1---7 Je(yx) is a non-trivial character, and the sum of the 
character over F is O. Hence this last expression is 

= qf( -z) 

as desired. 

We define the convolutionf * g between functions by the formula 

(f * g)(y) = L f(x)g(y - x). 
x 

A change of variables shows that 
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§1. Character Sums Over Finite Fields 

Theorem 1.2. For functions J, g on F we have 

T(f * g) = (Tf)(Tg) 

1 
T(fg) = - Tf* Tg. q . 

Proof For the first formula we have 

T(f*g)(z) = L(f*g)(Y)A(-ZY) = LLf(x)g(y - X)A(-ZY). 
11 11 x 

We change the order of summation, let t = Y - x, Y = x + t, and find 

= LfCx)A( -zx) Lg(t)A( -zt) 
x t 

= (Tf)(Tg )(z), 

thereby proving the first formula. 

The second formula follows from the first because T is an isomorphism 
on the space of functions on F, so that we can write f = Tit and g = Tgl 

for some functions It, gl' We then combine the first formula with Theorem 
1.1 to get the second. 

We shall be concerned with the Gauss sums (Lagrange resolvant) 

Sex, A) = sex) = L XCU)A(U) 
u 

where the sum is taken over U E F*. We ceuld also take the sum over x in F 
since we defined X(O) = O. Since A is fixed, we usually omit the reference to A 
in the notation. The Gauss sums have the following properties. 

GS O. Let Xl be the trivial character 1 on F*. Then 

This is obvious from our conventions. It illustrates right at the beginning the 
pervasive fact, significant many times later, that the natural object to con­
sider is -Sex) rather than Sex) itself. We shall also write 

SCI) = SCI, A), 

but the convention remains in force that even for the trivial character, its 
value at 0 is O. 

GS 1. For any character X '=f. 1, we have TX = X( -I)S(x)X- l • 
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1. Character Sums 

Proof We have 

TX(Y) = L x(x),.l( - yx) . .. 
If y = 0 then TX(Y) = 0 (summing the multiplicative character over the 
multiplicative group). If Y"# 0, we make a change of variables x = -ty-I, 
and we find precisely the desired value 

X( -1)S(x)X(y-l). 

GS 2. We have S(i) = X( -1)S(x) andfor X "# 1, S(x)S(i) = X( -1)q, so 

S(x)S(x) = q, for X "# 1. 

Proof Note that T2X = T(X( -1)S(x)X-l) = S(x)S(X-l)X. But we also 
know that T2X = qX-. This proves GS 2, as the other statements are obvious. 

Over the complex numbers, we obtain the absolute value 

We define the Jacobi sum 

J(xI> X2) = - L Xl(X)X2(1 - x) . .. 
Observe the minus sign, a most useful convention. We have 

4 

J(1, 1) = -(q - 2). 

GS 3. If XIX2 "# 1 then 

J(x X) = - S(1)S(x2) . 
1, 2 S(XIX2) 

In particular, J(I, X2) = JU1, 1) = 1. If XIX2 = 1 but not both Xl, X2 
are trivial, then 

JUI> X2) = Xl( -1). 

Proof We compute from the definitions: 

S(1)S(x2) = L L Xl(X)X2(y),.l(X + y) 
.. II 

= L L Xl(X)X2(y - x)A(y) 
.. II 

= L: L Xl(X)X2(U - x),.l(u) + L Xl(X)X2( -x) . 
.. u¢o .. 



§1. Character Sums Over Finite Fields 

If XlX2 =F 1, the last sum on the right is equal to O. In the other sum, we inter­
change the order of summation, replace x by ux, and find 

2: XIX2(U)A.(U) 2: Xl(x)X2(1 - x), 
u x 

thus proving the first assertion of GS 3. If XlX2 = 1, then the last sum on the 
right is equal to Xl( -l)(q - 1), and the second assertion follows from 
GS2. 

Next we give formulas showing how the Gauss sums transform under 
Galois automorphisms. 

GS 4. 

Proof Raising to the pth power is an automorphism of F, and therefore 

Tr(xP) = Tr(x). 

Thus S(xP) is obtained from S(X) by permuting the elements of F under 
x 1-7 xp • The property is then obvious. 

Let m be a positive integer dividing q - 1, and suppose that X has order m, 
meaning that 

Then the values of X are in Q(l1m) and 

For any integer c prime to m we have an automorphism (le,l of Q(l1m, I1p) 
such that 

(l e,l: ( 1-7 (e and (l e,l is identity on I1p. 

For any integer v prime to p, we have an automorphism (ll,v such that 

We can select v in a given residue class mod p such that v is also prime to m. 
In the sequel we usually assume tacitly that v has been so chosen, in particular 
in the next property. 

GS 5. 

Proof The first is obvious from the definitions, and the second comes by 
making a change of variable in the Gauss sum, 
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1. Character Sums 

Observe that 

0"1,){X) = eVTr(x) = eTr(Vx) = A(VX). 

The second property then drops out. 

The diagram of fields is as follows. 

From the action of the Galois group, we can see that the Gauss sum 
(Lagrange resolvant) satisfies a Kummer equation. 

Theorem 1.3. Assume that X has order m. 

(i) S(X)m lies in Q(/lm). 
(ii) Let b be an integer prime to m, and let O"b = O"b,1' Then S(x)b-"b lies in 

Q(/lm)· 

Proof In each case we operate on the given expression by an automorphism 
0"1,v with an integer v prime to pm. Using GS 5, it is then obvious that the 
given expression is fixed under such an automorphism, and hence lies in 
Q(/lm)· 

§2. Stickelberger's Theorem 

In the first section, we determined the absolute value of the Gauss sum. 
Here, we determine the prime factorization. We shall first express a character 
in terms of a canonical character determined by a prime. 

Let V be a prime ideal in Q(/lq-1), lying above the prime number p. The 
residue class field of V is identified with F = Fq. We keep the same notation 
as in §l. The equation X q - 1 - 1 = 0 has distinct roots modp, and hence 
reduction mod V induces an isomorphism 

~ F* - F* /lq - 1 ---l>- - q. 

Phrased another way, this means that there exists a unique character w of 
F* such that 

w(u) mod V = u. 

This character will be called the Teichmuller character. This last equation 
will also be written in the more usual form 

w(u) == u (mod V). 

6 



§2. Stickel berger's Theorem 

The Teichmuller character generates the character group of F*, so any 
character X is an integral power of w. 

We let 

n=e-l. 

Let ~ be a prime ideal lying above p in Q(jlq-l, jlp). We use the symbol 
A ,...., B to mean that AlB is a unit, or the unit ideal, depending whether A, B 
are algebraic numbers or (fractional) ideals. We then have 

p ,...., ~P-l 

because elementary algebraic number theory shows that p is totally ramified 
in Q(e), and p is totally ramified in Q(jlq-l, jlp). 

Let k be an integer, and assume first that 0 ~ k < q - 1. Write the 
p-adic expansion 

with 0 ~ kj ~ p - 1. We define 

I s(k) = ko + kl + ... + k n - 1 • 

For an arbitrary integer k, we define s(k) to be periodic mod q - 1, and 
defined by the above sum in the range first assumed. For convenience, we also 
define 

to be the product of the k i ! in the first range, and then also define y(k) by 
(q - I)-periodicity for arbitrary integers k. If the dependence on q is 
desired, one could write 

sik) and Ylk). 

Theorem 2.1. For any integer k, we have the congruence 

S(w- k , eTr) _ -1 
(e - I),(k) = y(k) (mod ~). 

In particular, 

ord$ S(w- k ) = s(k). 

Remark. Once more, we see how much more natural the negative of the 
Gauss sum turns out to be, for we have 

-S(w-k, 2) _ 1 
ns(k) = y(k) (mod ~) 

with 1 instead of -Ion the right-hand side. 

7 



1. Character Sums 

Proof of Theorem 2.1. If k = 0 then the relation of Theorem 2.1 is clear 
because both sides of the congruence to be proved are equal to -1. We 
assume 1 ::; k < q - 1, and prove the theorem by induction. Suppose first 
that k = 1. Then 

S(w- k ) = L w(u)-leTr<u) 
u 

= L w(u)-I(1 + n)Tr<u) 

= L w(u)-I(1 + (Tr u)n + O(n2» 

(interpreting Tr u as an integer in the given residue class mod p). But 

W(U)-I Tr(u) == u-I(u + uP + ... + upn - 1) mod ~ 

== 1 + up - I + ... + Upn - LI• 

Each u H- uPJ - I is a non-trivial character of F*. Hence 

L W(U)-I Tr(u) == q - 1 == -1 (mod ~) 

and therefore 

S(W-I) 
-- == -1 (mod~) n 

thus proving the theorem for k = 1. 

Assume now the result proved for k - 1, and write 

for 1 < k < q - 1. We distinguish two cases. 

Case 1. plk, so we can write k = pk' with 1 ::; k' < q - 1. Then trivially 

s(k) = s(k') and y(k) = y(k') 

because k has the same coefficients k i as k', shifted only by one index. Let 
Up = Up,1, so Up leaves e fixed. Since 

we find that applying Up to the inductive congruence 

S(w- k ') -1 
nS(k') == y(k') (mod~) 

yields a proof for the present case, because Up is in the decomposition group 
of~, whence up~ = ~. 

8 



§2. Stickel berger's Theorem 

Case 2. p t k. Then 1 ::::;; ko• Furthermore, 

s(k) = s(k - 1) + 1 and y(k - 1) = (ko - I)! k1 !··· k n - 1 !. 

Then 

S(w- k) 
~ 

S(W- 1W-(k-l») _ S(w- 1) S(W-(k-l» -I 
ns(k) = -n- ns(k-l) J(w 1, w (k 1» 

= -1. -1 -1 (d ~) 
- y(k - 1) J(w 1, W (k 1» mo . 

To conclude the proof, it will suffices to get the right congruence for J. We 
use GS 3 from §I, to get: 

-J(w-I, W-(k-l» == L: u- 1(1 - U)-(k-l)+Q-l (mod ~), 

and the sum is at first taken for u =f 0, 1, but with the additional positive 
exponent q - I which does not change anything, we may then suppose that 
the sum is taken for u =f 0 in F. Hence we get further 

If j =f 1 then L ui -1 = 0, so we get the further congruence 

-J(w-I, W-(k-l» == (-I)(q - k)(q - ) == -ko (mod ~), 

thereby proving the theorem. 

Having obtained the order of the Gauss sum at one prime above p, we also 
want the full factorization. Suppose that m is an integer > 1 and that p t m. 
Let .p be a prime ideal above p in Q(flm) and let 

N.p = q = pn. 

Let k be an integer such that 

~1 has order m in Q/Z. q-

Let <t> denote the smallest real number ~ 0 in the residue class mod Z of a 
real number t. Let 

G = Gal(Q(flm)/Q). 

Define the Stickelberger element in the rational group ring 

e(k,.p) = L: < ~ 1 )lJ'c -1 E Q[G]. 
ce2:(m)' q 

9 



1. Character Sums 

Let ~ be the prime ideal in Q(fJ.m, fJ.p) lying above .p. Let w as before be the 
Teichmuller character on Fr We let Ue = Ue,l' 

Theorem 2.2. We have the factorization 

Proof We have 

S(w-k) '" ~(P-l)O(k,P) ""' .p0(k,P). 

orda;lp S(w- k) = ord!j3 UeS(W-k) 

= ord!j3 S(w- kC) 

= s(kc) 

by Theorem 2.1. On the other hand, the isotropy group of .p in the Galois 
group G consists of the powers 

{Upl} for i = 0, ... , n - 1. 

Hence in the ideal .p0(k) the prime U;l.p occurs with multiplicity 

n-l < kcpl ) 2: -. 
1=0 q - 1 

Hence to prove Theorem 2.2 it will suffice to prove: 

Lemma 1. For any integer k we have 

s(k) = (p - 1).z --?- . n-l< k I ) 

1=0 q 1 

Proof We may assume that 1 :::; k < q - 1 since both sides are (q - 1)­
periodic in k, and the relation is obvious for k = O. Since pn == 1 (mod q - 1) 
we find: 

k = ko + k1P + ... + kn_1pn-l 

pk == k n- 1 + kop + ... + k n_2pn-l (mod q - 1) 

p2k == k n- 2 + kn-1P + ... + k n_3pn-l (mod q - 1) 

Hence 

< kl ) = right-hand side of ith equation. 
q-1 q-1 

Summing yields 

n~l < kpi ) = s(k)(1 + p + ... + pn-l) = s(k) _1_, 
I~ q - 1 q - 1 p - 1 

thereby proving the lemma. 
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§2 Stickelberger's Theorem 

In Theorem 2.2 we note that the Gauss sum is not necessarily an element 
of Q(flm), and the equivalence of ideals is true only in the appropriate ex­
tension field. Similarly, the Stickel berger element has rational coefficients. 
By the same procedure, we can both obtain an element in Q(flm) and a corre­
sponding element in the integral group ring, as follows. 

For any integers a, b E Z and any real number t, we have 

b<t) - <bt) E Z and <at) + <bt) - «a + b)t) E Z. 

The proof is obvious. Let us define R = Z[G], and 

I = ideal of R generated by all elements Ub - b with b prime to m. 

Then the above remark shows that 

I() c R = Z[G]. 

Although we won't need it, we may prove the converse for general insight. 
The matter is analyzed further in Chapter 2, §3. 

Lemma 2. We have I() = R() n R. 

Proof Note that mEl because 

m = -(U1+m - (1 + m)). 

Suppose that an element of R() lies in R, that is 

with z(b) E Z. Then 

whence 

"'2 z(b)b == 0 (mod m), 

and L: z(b)b is in 1. But then 

"'2 Z(b)Ub = "'2 Z(b)(Ub - b) + "'2 z(b)b 

is in I, thus proving the lemma. 

It will be convenient to formulate the results in terms of the powers of one 
character, depending on the integer m. Thus we let 

< XI' = wp(NI'-l)/m 

11 



1. Character Sums 

where Wp is the Teichmuller character. We define the Stickelberger element 
of level m by 

Oem) = 2: <~)(J;;1. 
CEZ(m)' m 

As a special case of Theorem 2.2, we then obtain the factorization 

FAC 1. 

Therefore, if b is an integer prime to m, and (Jb = (Jb,b then 

FAC 2. 

In FAC 2 the algebraic number on the left lies in Q(flm), and the group ring 
element O(m)(b - (Jb) lies in Z[G], namely 

Thus we have the ideal factorization of the (b - (Jb)-power of the Gauss 
sum in terms of powers of conjugates of the prime ~ in Q(flm). 

We return later to the application of this factorization to the study of the 
ideal classes in the cyclotomic field, but it is worth while here to mention the 
simplest consequence. In every ideal class there exists an ideal prime to m. 
Since the ideal 

is principal for every prime ~ t m, we find: 

Theorem 2.3. Let ((j be the ideal class group of Q(Pm). Then for all b prime 
tom, 

annihilates ((j. 

For each integer r let 

We are now allowing r to have common factors with m. Let: 

vi! = module generated over Z by all elements Or with r E Z, called the 
Stickelberger module, 

y = vi! n R, called the Stickelberger ideal. 

Observe that vi! is also an R-module. 
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§2. Stickelberger's Theorem 

Theorem 2.4. The Stickelberger ideal annihilates the ideal class group of 
Q(Pm). 

Proof. Let 

IX = '2 z(r)Or(m) E R 
r 

be an element of the Stickel berger ideal, with z(r) E Z, and the sum taken with 
only a finite number of coefficients t= O. Then 

'2 z(r)r == 0 mod m. 
r 

By Theorem 2.2 we have the factorization 

and it is immediately verified that the left-hand side lies in Q(flm) by using 
GS 5 of the preceding section. This proves the theorem. 

Next we look at the Jacobi sums. If d is an integer, then d operates in a 
natural way on RjZ by multiplication. We denote this operation by [d]. 
Thus on representatives, we let 

[d]<t) = <dt), t E R. 

It is convenient to let 

Recall the Jacobi sum for XIX2 t= 1: 

Let ah a2 be integers, al + a2;jiE 0 mod m. Then from FAC 1 we get: 

FAC3. 

where 

and LI[ah a2]8(m) E Z[G] lies in the integral group ring. We know that the 
Jacobi sum lies in Q(flm), so again we have an ideal factorization of an element 
of Q(flm). 
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i. Character Sums 

It will be convenient to introduce an abbreviation. Let 

denote a pair of integers. We let 

In several applications, e.g., in the next section, the level m is fixed, and 
consequently we omit m from the notation, and write simply 

8(m)[a] = 8[a]. 

If d is an integer prime to m then trivially 

The next two sections are logically independent and can be read in any order. 
They pursue two different topics begun in §2. 

§3. Relations in the Ideal Classes 

Let G = Gal(Q(Jlm)/Q), so that elements of G can be written in the form ae , 

with c E Z(m)*. We recall the Stickelberger element 

from formulas FAC 1 and FAC 2. Let 

I = ideal of Z[G] generated by all elements b - ab , with integers b prime 
to m. 

Let p be prime number prime to the Euler function ¢(m). For instance, if 
m = p itself, the prime p does not divide p - 1. The character group on G 
takes its values in ¢(m)th roots of unity. We let q = pn be a power of p such 
that ¢(m) divides q - 1. We let Oq be the ring of p-adic integers in the un­
ramified extension of Zp of degree n, so that Oq/pOq = oip) is the finite field 
with pn = q elements. Then Oq contains the ¢(m)th roots of unity. If m = p 
then we take q = p and Oq = Zp. 

Let'(j' be the ideal class group of Q(Jlm), and '(j'(p) its p-primary component. 
We have an isomorphism 

The elementary divisors of '(j'(p) over Zp are the same as the elementary 
divisors of 

Oq ® '(j'(p) over Oq. 
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§3. Relations in the Ideal Classes 

If A is an oq-ideal, on which G operates, we let AU) be the x-eigenspace. 
We let 

Ix = oq-ideal generated by all elements b - X(b) with integers b prime to m. 

By abuse of notation, we write often X(b) instead of X(tTb)' The important 
special case we shall consider is when m = p, in which case it is easy to 
determine IX" We assume p :2: 3. 

Lemma 1. (i) If X = w is the Teichmuller character, then Ix = (P). 
(ii) If X is non-trivial and not equal to the Teichmuller character, then 

Ix = (1). 

Proof For (i), we can take an integer b of the form 

b=(+pu 

where u is ap:-adic unit, and ( = web) is a (p - l)th root of unity. This makes 
(i) clear, and (ii) is obvious, from the definitions. 

In the next sections we shall deal with Bernoulli numbers systematically. 
For the moment, we need only a special case, so we define ad hoc the first 
Bernoulli polynomial 

and the first Bernoulli number BI = --t, its constant term. For any function 
fan Z(m) we define 

BI,t = :2 f(X)BI«~»)' 
xeZ(m) m 

In particular, 

BI,x = :2 «~) - 2!)X(C). 
ceZ(m)' m 

If X is non-trivial, then L X(c) = 0, and hence in this case, 

Then in the present terminology, Theorem 2.3 can be reformulated as 
follows. 

Theorem 3.1. For non-trivial X, the ideal Bl,'j/x annihilates ~(P)U). 
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1. Character Sums 

Corollary 1. Assume that m = p is prime ;:::: 3. If X is not equal to the 
Teichmuller character and is non-trivial, then 

ord B1,xIx = ord Bq . 

Proof Immediate from the lemma and the theorem. 

Corollary 2. If X is equal to the Teichmuller character then B1,xIx = (1), 
and ct'(Pl(x) = 0. 

Proof Mod Zp, we have the congruence 

I P- 1 IP-l-l 
B1,w- 1 = - L CW(C)-l == - L 1 == p-- (mod Zp). 

Pc=l Pc=l P 

Hence B1,x has a pole of order 1 at p. Lemma l(i) concludes the proof. 

Corollary 3 (Herbrand's theorem). Assume again that m = p. Let X = w1-k, 
with 2 :0; k :0; P - 2. Ifct'(Pl(x) i= 0, then plBk' where Bk is the kth Bernoulli 
number. 

Proof In the next chapter Theorem 2.5, we shall prove the congruence 

1 1 
- B k-n == - Bk (modp) n n,w k 

for k in the given range, and any positive integer n. By Corollary 1, we know 
that B1,x annihilates ct'(Pl(x), and 

If p does not divide Bk, it follows that Bq is a p-unit, whence ct'(Pl(x) = 0, thus 
proving Herbrand's theorem. 

The converse of Herbrand's theorem has been proved by Ribet [Ri]. 
For analogues on the modular curves, see the [KL] series, especially [KL 6]. 

The reader interested in pursuing the ideas of this section may skip the 
rest of this chapter, read the first section of Chapter 3, and then go to 
Chapter 5. 

§4. Jacobi Sums as Hecke Characters 

Let, throughout this section be a fixed primitive mth root of unity. We con­
sider the additive group 

Z(m)<21 = Z(m) x Z(m), 

of order m2• Its elements will be denoted by 
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§4. Jacobi Sums as Hecke Characters 

The dot product is the usual one, a·b = albl + a2b2' For any functionfon 
Z(m)'2) we have its Fourier transform], and the inversion formulas: 

(*) f(a) = L j(bW'a 
b 

(**) 

whose verifications are simple exercises. 
For any prime ideal ~ in Q(Jl.m) not dividing m, and a E Z(m)<2) we define 

We extend the definition to fractional ideals of Q(Jl.m) prime to m by multi­
plicativity, thus defining lea, a) for all a prime to m. We have: 

J O. J(O,~) = -(N~ - 2). 

We get J(O, a) by multiplicativity. We also need the congruence 

J 1. J(O, a)Na == 1 mod m2 • 

By multiplicativity it suffices to prove it for prime ideals. In that case it is 
immediate, since m divides N~ - 1, and by J 0, 

If all or a2, or al + a2 == ° mod m, then we shall say that a is special. 
Otherwise we say that a is non-special. The absolute value of the Gauss sum 
determined in GS 2 immediately implies a corresponding result for the Jacobi 
sum, namely: 

J2. J(a, a)l(a, a) = Na if a is non-special. 

If a is special, a =I 0, note that J(a, a) = 1 or -l. In all cases, we have 

J 3. lea, ~) = - L XlJ a1(U)XlJa2(1 - U) = L J(b, ~ Kb.a 
u b 

where the Fourier coefficient -J(b,~) is the number of solutions u of the 
equations 
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1. Character Sums 

By multiplicativity, it follows that the Fourier coefficients J(b, a) are integers 
for arbitrary a, that is 

J(b, a) E Z. 

For the rest of this section, it will be convenient to assume that all number 
fields are contained in the complex numbers. 

We have seen that 8[a] is in the integral group ring Z[G]. For any non-zero 
element a E Q(Jlm), we let 

w(a, a) = J(a, (a»a- 8[al 

w(a, a) = J(a, (a» 

w(O, a) = 1. 

if a is non-special, 

if a is special, a =1= ° 

As usual, (a) is the principal (fractional) ideal generated by a. 
If d is an integer prime to m, then trivially from GS 5, 

(J'dJ(a, a) = J(da, a) and (J'dw(a, a) = w(da, a). 

Theorem 4.1. The algebraic number w(a, a) is a root of unity. 

Proof As (a) ranges over all principal fractional ideals, the numbers 
w(a, a) form a group. It will therefore suffice to prove that these numbers 
have absolute value 1, for then their conjugates also have absolute value 1, 
and these numbers form a finite group. In case a is special the theorem is 
true by definition. Otherwise we can use J 2, so that 

J(a, (a»J(a, (a» = Na:. 

On the other hand, the product of a8[al and its conjugate is equal to Na 
under the hypothesis that a1 + a2 t= ° mod m. Indeed, we have 

If t is a real number and not an integer, then 

and 
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§4. Jacobi Sums as Hecke Characters 

operates multiplicatively like the absolute norm. The desired relation for the 
product of 1X9[a] and its conjugate follows at once. The theorem follows by 
using J 2, the analogous relation for the Jacobi sums. 

The next theorem was proved originally by Eisenstein for prime level, and 
by Weil [We 2] in the general case, which we follow. 

Theorem 4.2. If IX is an algebraic integer in Q(f.1m) , and IX == 1 (mod m2) 
then/or all a we have w(a, IX) = 1, that is, 

J(a, (IX)) = 1X6[a]. 

Proof We fix IX and view J, was functions of a, omitting IX from the nota­
tion. In the Fourier inversion relation, we know that the Fourier coefficients 
J(b) are integers. But IX == 1 (mod m2) implies that 

w(a) == J(a) (mod m2). 

This is obvious from the definition if a =I 0, and follows at once from J 1 
if a = O. Hence web) is an algebraic integer for all b. Furthermore, for d 
prime to m, 

= web). 

It follows that web) E Z for all b. Now by the Plancherel formula, 

Since we know that Iw(a)12 = 1, and web) is an integer for all b, it follows that 
web) =I 0 for a single value of b, and is 0 for all other values of b. In particular, 
for this special b, 

w(a) = w(b)(b.a. 

But w(O) = 1, so web) = l. Putting a = (1,0) and a = (0, 1) we get: 

w(1,O) = J(l, 0) = 1 and w(l,O) = (b1 

w(O, 1) = J(O, 1) = 1 and w(O, 1) = (b2. 

It follows that 

w(a) = 1 

for all a, thus proving the theorem. 
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1. Character Sums 

§5. Gauss Sums Over Extension Fields 

We prove in this section a theorem of Davenport-Hasse [D-H]. 

Theorem 5.1. Let F = Fq be the finite field with q elements, and let E be a 
finite extension. Let 

be the trace and norm from E to F. Let 

Then 
- SEUE, AE) = (-SU, A))lE:Fl. 

Proof Let m = [E: F]. For any polynomial 

f(X) = xn + C1Xn- 1 + ... + Co 

with coefficients in F, define 

Then 
tjJ: Monic polynomials of degree ~ lover F -+ F 

is a homomorphism, i.e., satisfies 

tjJ(fg) = tjJ(f)tjJ(g). 

We write n(f) = degf From unique factorization we have the formula 

where the product is taken over all monic irreducible polynomials over F. 
Suppose f is of degree 1, say f( X) = X + c. Then we see that 

L tjJ(f)xn(f) = SU, A)X. 
nUl= 1 

On the other hand, if n ~ 2 we have 

L tjJ(f)xn = O. 
n(f)=n 

Indeed, 

and the sum over Cl in F on the right is 0, as desired. 
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§5. Gauss Sums Over Extension Fields 

Therefore we find 

(1) 

Mutatis mutandis, using the variable xm instead of X, we get 

(2) 

where the product is taken over all monic irreducible polynomials Q over E, 
and 

We shall write the product over Q as 

TI=TITI· 
Q P QIP 

Each irreducible polynomial P splits in E into a product 

Let n = n(P) = deg P. Then 

deg Q = nlr. 

If a is any root of P, then [F(a):F] = n and the field F(a) is independent of 
the chosen root. We have the following lattice of fields. 

E F(a) 

~~ 
F' = En F(a) 

,1 
F 

All the polynomials Qi are conjugate over F, and their coefficients generate 
the field F' = En F(a), of degree rover F. We have 

r = (m, n). 

These facts are all obvious from elementary field theory. Since 

and 
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1. Character Sums 

we get 

l/IE(Q) = ex(CO(P»Jl(Cl(P»))lE:F'l 

= l/I(p)m/r. 

With a view towards (2), we conclude that 

(3) TI (1 -l/IE(Q)xmn(Q») = (1 - l/I(p)m/rxmn/ry 
Q\P 

= TI (1 - l/I(P)(xny 
{mf'~ 1 

= TI (l - l/I(p)(eX)n). 
,m=l 

For this last step, we observe that the map 

gives a surjection of {lm -7- {lm/n and the inverse image of any element of 
{lm/r is a coset of {lr since r = (m, n). This makes the last step obvious. 

Substituting (3) in (2), we now find 

1 + SE(XE, JlE)Xm = JI IJ (1 - l/I(p\(ex)n(p» 

= TI (1 + Sex, Jl)eX) 
~m~l 

This proves the theorem.. 

§6. Application to the Fermat Curve 

Although we do not return in this book to the applications of Gauss sums to 
algebraic geometry, we cannot resist giving the application of Davenport­
Hasse [D-H], Hua-Vandiver [Hu-V], and Weil [We 1], [We 2], [We 3] to 
the computation of the zeta function of a Fermat curve. 

We keep things to their simplest case, the method applies much more 
generally. We consider the Fermet curve V = V(d) defined by 

with d ~ 2, defined over a finite field F with q elements. Again for simplicity, 
we suppose that d divides q - 1, and therefore dth roots of unity are con­
tained in F. 

We let w: F* -7- {lq-l be the Teichmuller character, and 

x = character such that X(u) = W(U)<q-l)/d. 
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§6. Application to the Fermat Curve 

If a is an integer mod d, we let Xa(u) have the usual value if u # 0, and for 
u = 0 we let: 

xa(o) = 1 if a = 0, 
Xa(o) = 0 if a # O. 

For u in F, we let: 

NaCu) = number of solutions x E F such that Xci = u. 

Then 

Therefore 

ifu = 0 

if u # 0, u is not dth power in F 

if u # 0, u is dth power in F. 

NaCu) = L Xa(u). 
amodci 

Theorem 6.1. Let N be the number of points of V(d) (in affine space) in the 
field F. Then 

The sum is taken over integers a, b satisfying 0 < a < d and 0 < b < d, 
and a + b "¥- 0 (mod d). 

Proof We have 

N = L L Xa(u)Xb(v)XC(w) 
a,b,c L(u,v,w)= 0 

where the sum over u, v, w is taken over triples of elements of F lying on the 
line 

u + v + w = O. 

The sum over a, b, c is taken over elements in Z mod d. 
The term for which a = b = c = 0 yields a contribution of q2, that is the 

number of points on the line in F. 
Next, suppose that in the remaining sum, one of a, b, c is 0 but not all are 

o in ZjdZ. Say a = 0 but b # O. Then we may write the sum 

L 
u+v+w=o 

L Xa(u)Xc(w) L Xb(V), 
certain 'U, W all veF 

and the sum on the far right is O. This shows that all the terms in the sum 
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1. Character Sums 

with one, but not all, of a, b, c equal to 0 give a contribution O. Hence we get 

N = q2 + 2: 2: Xa(u)Xb(v)XC(w) 
O<a,b,c<d Il+V+W=O 

where the sum over a, b, c is taken over positive integers satisfying the in­
dicated inequality. 

If w = 0 then XC(w) = O. We may therefore assume that in the inner sum, 
we have w t= O. We then put 

u = u'w and v = v'w. 

The inner sum then has the form 

2: Xa+b+C(w) 2: Xa(u')Xb(v'). 
w"o Il'+v'=-l 

If a + b + c ~ 0 mod d, then the sum on the left is O. Otherwise it is q - 1, 
which we assume from now on. Since 0 < a, b, c < d, there is no such triple 
(a, b, c) with a + b == 0 mod d, because any accompanying c would have to 
equal d. Hence the sum over a, b, c is for a + b ~ 0 mod d, and then c is 
uniquely determined. Changing back the variables u', v' to u" = -u', v" = 
- v' and taking into account the value of the Jacobi sum yields the expression 
as stated in the theorem. 

Let N be the number of points of V(d) in projective space in the field F. 
Then 

N = 1 + (q - 1 )N. 

Therefore we obtain: 

Corollary. N = 1 + q - 2: cta,b 

where cta,b = Xa+b( -1)J(xa, Xb), and (a, b) are as in Theorem 6.1. 

Let Nv be the number of points of V(d) in projective space over the field 
Fv of degree v over F. The theorem applied to Fv instead of F yields an 
analogous expression, the character X being replaced by Xv such that for 
uEFv , 

This last expression is nothing but X composed with the norm map, in other 
words, it is precisely the character lifted to the extension as in the preceding 
section. The additive character is also lifted in a similar fashion. Therefore 
by Theorem 5.1 we find 
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§6. Application to the Fermat Curve 

Note that the power of x( -1) also behaves in the same way as J when lifted 
to Fv' Indeed, if q is odd then 

1 + q + ... + q v -1 == v mod 2, 

and if q is even, then 1 = - 1 in F. 
The zeta function Z(V, T) is defined by the conditions 

Z'IZ(T) = - L NvT v -1 and Z(O) = 1. 

It is then immediate that 

_ T1 (l - lY.a.bT ) 
Z(V(d), T) - (1 _ T)(1 - qT) 

This is best seen by taking the logarithmic derivative of the last expression 
on the right-hand side. The operator 

Jf-+ I'IJ 

is a homomorphism, so we take the operator for each linear term. Inverting 
a geometric series we see that the logarithmic derivative of the last expression 
on the right-hand side has precisely the power series 

Since it has the value 1 at T = 0, it is the unique function having the desired 
properties. 

If finally one starts with the Fermat curve defined over the field of dth 
roots of unity, and one reduces mod primes ,p not dividing d, one can take 
the product of the zeta functions for the reduced curve over the correspond­
ing finite field. Then as Weil remarked, since the Jacobi sums are Hecke 
characters, it follows that the Hasse zeta function 

,eYed), s) = I1 Z(V(d), N,p-S) 
Il.ra 

is equal to a Hecke L-series (up to the obvious factors of the zeta function of 
Q(J1a) at sand s - 1). 

The computation of solutions in finite fields works in essentially the same 
way for diagonal equations 

as in Hua-Vandiver [Hu-V] and Weil [We 1,2,3]. The additional connection 
with the Hasse zeta function for the curve over number fields was made by 
Weil. 
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2 Stickelberger Ideals and 
Bernoulli Distributions 

The study of ideal classes or units in cyclotomic fields, or number fields 
(Iwasawa, Leopoldt), of divisor classes on modular curves (e.g., as in [KL]), 
of higher K-groups (Coates-Sinnott [Co 1], [Co 2], [C-S]) has led to purely 
algebraic theorems concerned with group rings and certain ideals, formed 
with Bernoulli numbers (somewhat generalized, as by Leopoldt). Such ideals 
happen to annihilate these groups, but in many cases it is still conjectural 
that the groups in question are isomorphic to the factor group of the group 
ring by such ideals. 

However, it is possible to study these ideals, the structure of their factor 
group, and the orders of the factor groups in the group ring, without any 
allusion to the applications to ideal classes, divisors, or units. This chapter 
gives the foundations for such study, applicable to many contexts. 

The first section gives Iwasawa's computation of the index of the Stickel­
berger ideal for k = 1, directly applicable to the ideal class group in cyclo­
tomic fields. Next we deal with the basic theory of Bernoulli numbers and 
polynomials, and especially integrality theorems of Mazur and Coates­
Sinnott. The sections concerning Stickelberger ideals for k ~ 2 are taken 
from Kubert-Lang [KL 8]. The last sections on distribution relations are 
from [KL 5] and Kubert [Ku]. 

For a discussion of conjectures in the case of totally real number fields, cf. 
Coates [Co 3], [Co 4], and the very general conjectures in Coates-Lichten­
baum [C-L]. 

The present chapter is organized so that a reader interested especially in 
the structure of the ideal class group in the cyclotomic tower (the basic sub­
stantial example of the theory) can read the first section, and then can go 
immediately to Chapter 3, followed by Chapter 5 without impairing the 
logical understanding of the material. I followed this pattern when I taught 
the course in 1977. 
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§1. The Index of the First Stickelberger Ideal 

On the other hand, a reader especially eager to get into p-adic L-functions 
can concentrate on this chapter and then read Chapter 4 as a continuation 
omitting Chapter 3. Only the section on the p-adic regulator in Chapter 4 is 
related to Chapter 3. Chapter 2 may then be interpreted as giving the basic 
congruence properties of Bernoulli distributions, and Chapter 4 gives 
essentially more (p-adically) global measure theoretic properties. 

A third alternative is to see Chapters 3 and 4 as forming a pair, describing 
side by side the complex and p-adic class number and regulator formulas 
originally conceived by Leopoldt. 

§1. The Index of the First Stickelberger Ideal 

Let G ~ Z(m)* be the Galois group of Q(Pm), and assume that m is the 
conductor of that field, so that m > 1, m is odd, or m is divisible by 4. We 
let 

M = !- order of G =,!-cp(m). 

We let 

R = Z[G], 

For any G-module, we let A - be the (-I)-eigenspace for a -1. Then multipli­
cation by e- is the projection operator on this eigenspace (provided 2 is 
invertible), and e- is the associated idempotent in the group algebra. 

Lemma 1. We have R- = 2e- R = (l - a -l)R and 

Proof The inclusion (1 - a -l)R c R- is clear. Conversely, let P be a set 
of representatives in Z(m)* for Z(m)*j ± 1. Let 

rx = L z(c)ac- 1 E R-

with coefficients z(c) E Z. Thus a -lrx = -rx. Then z( -c) = -z(c). If we let 

[J = L z(c)a';-1, 
ceP 

then rx = (l - a -1)/3, thereby proving the lemma, because e- R is a free 
abelian group of rank M. 

We recall the primitive Stickelberger element 

(J' '" < c) -1 , = L., - ac • 
ceZ(m)' m 
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2. Stickelberger Ideals and Bernoulli Distributions 

We have written ()' instead of () because we are now setting more permanent 
notation, and there is a more canonical element which has priority, namely 

It is immediately verified that 

(*) e-()' = (), andso () = ()-. 

We are interested in R() n R. The next lemma does away with a possible 
alternative definition of this ideal. 

Lemma 2. R() n R = (R()' n R)-. 

Proof Let T = R()' n R. Clearly 

T- c e - R() = R() and T- c R, 

so the inclusion ~ is obvious. Conversely, let IY. E R() n R. It will suffice to 
prove that IY. E R()' (because IY. E Rand IY. = IY.-). Write 

From the hypothesis that IY. has integral coefficients, we conclude that 

L z(b) (be - !) == 0 (mod Z) 
b m 2 

for all e prime to m, so that 

1 1 - L z(b)b == -2 L z(b) (mod Z). 
m b b 

We contend that 

L z(b)b == 0 (mod m) and L z(b) == 0 (mod 2). 

This is obvious if m is odd. Suppose m even, so m is divisible by 4. Write 
m = 4mo. Each b is odd, and 

L z(b)b == 0 (mod 2mo) 

so 2: z(b) is even. Then 

L z(b)b == I L z(b)(mod mZ), 

thus proving also the first congruence. Only the second will be used. 
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§1. The Index of the First Stickelberger Ideal 

Now let s(G) = 2: U be the sum of the elements of G in the group ring, 
and note that 

Then 

e+8' = 1-s(G) and (1 + U -1)8' = s(G). 

IX = 2: Z(b)Ube-(J' = 2: Z(b)Ub(1 - e+)8' 

= 2: Z(b)Ub8' - 2: Z(b)Ube+8' 

= 2: Z(b)Ub8' - 2: z(bHs(G). 

Substituting s(G) = (1 + U -1)8' on the right and using 2: z(b) even shows 
that IX lies in R8', and concludes the proof. 

It is of interest to determine the index arising from Lemma 2. This is done 
in the next lemma. We let as usual: 

w = number of roots of unity in Q(Jlm). 

Lemma 3. (R8 : R8 n R) = w. 

Proof We define a homomorphism 

1 
T: R8-+- ZjZ 

w 

by mapping an element of the group algebra on its first coefficient mod Z. 
In other words, if 

we let TIX = a(I). Note that 

1 1 
T(8) == In - 2 (mod Z), 

and therefore that T is surjective. It now suffices to prove that its kernel is 
R8 n R. But we have 

whence for odd b prime to m, and IX E R, we get 

T(UbIX8) == bT(1X8) (mod Z). 
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2. Stickel berger Ideals and Bernoulli Distributions 

If Cf.() is in the kernel of T, it follows that Cf.() also lies in R, thereby proving the 
lemma. 

We now assume that m = pn is a prime power. Then 

!/ = R() () R 

is called the Stickelberger ideal We want to determine the index 

Define 

for any character X on Z(m)*. Let X' be the primitive character associated with 
X, and let m' be its conductor. Then it is easy to verify that if we replace m by 
m' and X by X' in the right-hand side, we obtain the same value, so B1•x is 
independent of whether we view X as primitive character, or simply a charac­
ter on Z(m)*. (The above fact is a special case of the distribution relation, 
discussed in the next section.) 

Next, we shall use the fact that 

for odd characters X. For primitive X the non-vanishing of B1•X comes from 
its relation with the L-series, and will be briefly recalled in Chapter 3. Cf. 
also [L 3], Chapter 14, Corollary of Theorem 2.2. 

Lemma 4. (R(): Rm()) = mM • 

Proof This is obvious if one can show that R() is a free abelian group of 
rank M. When m is a prime power, this results from the fact that for odd X 
we have 

We shall analyze (R- :!/) by the sequence of groups and subgroups 
shown in the following diagram. 

e- R 2M R- __ 1- !/ 
::::> ::::> 

mMTI -B lu ul w I.' 
'odd 

Rm() c R() mM 
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§1. The Index of the First Stickelberger Ideal 

We have shown the inclusion relations, and we have also indicated the in­
dices. All of them have been proved, except the one on the left-hand side. 
This will be the item in the final lemma, and we then find: 

Theorem 1.1 (Iwasawa). Assume that m is a prime power. Then 

Remark. Even though some inclusions go opposite to each other in the 
diagram, to compute indices one still has multiplicativity, with opposite 
inclusions occurring with opposite exponents. Cf. §4 if you don't find this 
obvious. 

Lemma 5. (e- R: e-Rme) = ±mM f1 B1,X" 
xodd 

Proof First observe that the sign is whatever is needed to make the right­
hand side positive. Multiplication bye-me is an endomorphism of QR-, 
which is a semisimple algebra, decomposing into a product of I-dimensional 
algebras corresponding to the odd characters. Consequently we find 

det(e-me) = f1 X(me) = mM f1 B1,x' 
xodd ;todd 

On the other hand, e-me maps e- R into itself, and by standard elementary 
linear algebra, the index is given by the absolute value of the determinant. 
This proves the lemma, and the theorem. 

Remark. In Chapter 3 we shall prove that the index computed in Theorem 
1.1 is the order of the ( - 1 )-eigenspace of the ideal class group in the cyclo­
tomic field, denoted by h -. The analytic class number formula will show that 
the product of - B1,x yields the positive sign. 

The theorem and its proof are due to Iwasawa [Iw 7]. It was generalized 
to composite levels m by Sinnott [Silo In the composite case, one cannot deal 
any more with a single element e, but one has to deal with the module 
generated by Stickelberger elements of all intermediate levels 

for all divisors d of m. A similar situation had already arisen in the analogous 
situation in dimension one higher, concerning the Stickelberger elements 
formed with B2 rather than, Bl> in the Kubert-Lang series [KL 2], [KL 3], 
[KL 5]. 
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2. Stickelberger Ideals and Bernoulli Distributions 

§2. Bernoulli Numbers 

We recall first some general notions concerning distributions, defined by 
Mazur following the work of Iwasawa. 

Let {X,,} be a sequence of finite sets, and suppose given a sequence of 
surjective maps 

so that we can consider the projective limit 

For convenience, we took our family of sets indexed by the positive 
integers. In applications, it often occurs that the sets are ordered by the 
positive integers ordered by divisibility. For instance, the family of sets 
Z/ N", arises in the sequel. We shall also consider the projective family 

with a fixed prime number p, and n = 0, 1, 2, .... In each case, the connecting 
homomorphism 

for MIN is reduction mod M, denoted by rM' 

This type of projective family will also arise in isomorphic form as 
follows. We have an isomorphism 

1 
NZ/Z~Z/NZ 

given by multiplication with N. We then have a commutative diagram 

1 
N Z/Z~Z/NZ 

NIMI I,M 
I 
MZ/Z~Z/MZ 

where the left vertical arrow is multiplication with N/ M, and the right arrow 
is reduction mod M. Thus the system 

is also a projective system, ordered by divisibility. 
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§2. Bernoulli Numbers 

Let us now return to the general projective system {Xn}. For each n suppose 
given a function CPn of Xn into an abelian group V. We say that the family 
{CPn} is compatible if for each n and x E Xn we have 

CPn(X) = 2: CPn+l(Y)' 
:7tn -1Y=X 

The sum is taken over all the elements of Xn+1lying above x. In what follows, 
we often omit the subscripts, and write ny = x, for instance. 

Let K be a ring of operators on V. Let f be a function on Xm for some 
integer m, with values in K. If n ;::: m, then we view f as defined on Xn through 
the natural projection on X m• We conclude at once from the compatibility 
relation that 

2: f(x)CPn(x) = 2: f(x)CPm(x). 
xeXIl xeXm 

Let X be the projective limit 

with the limit topology, so that X is a compact space. For each n we have a 
surjective map 

For each x E Xn the inverse image r;l(x) is an open set in X, and the totality 
of such open sets for all n, x is a basis for the topology of X. 

A functionf on X is called locally constant if and only if there exists n such 
that f factors through Xn• Such functions are also called step functions, and 
their group is denoted by St(X, K). For each such function, we can define its 
integral 

I f dcp = 2: f(x)CPn(X), 
xeXn 

independent of the choice of n such that f factors through Xn . We then call 
the family {CPn}, or the functional dcp, a distribution on X. It is an additive map 

dcp: St(X, K) -+ V. 

Examples of such maps will be given later with Bernoulli numbers. 
Let K be a complete field with respect to a non-Archimedean valuation, 

and suppose that V is a non-Archimedean Banach space over K, i.e., V is a 
complete vector space, with a norm 

satisfying 

Iv + wi ::; max{lvl, Iwl} v, WE V 

Icvlv = IcIKlviv c E K, v E V. 
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2. Stickel berger Ideals and Bernoulli Distributions 

If <p is bounded, i.e., I <Pn(x) I is bounded for all n, x E Xn> then we say that <P 
is bounded, or quasi-integral for the valuation. For any IE St(X, K) we have 

where IIIII is the sup norm off, and 11<p11 is the sup norm of the values I(Pn(x)l. 
Indeed, if I factors through Xn. then 

by the non-Archimedean property, so our assertion is clear. 
In particular, if IE ceX) is a continuous function on X, then we can 

approximate I uniformly by a sequence {fn} of step functions, and since 
III --.., Inll ~ 0, we get 

Illn - Imll ~ 0 

for m, n ~ 00. Hence the integrals 

f In d<p 

converge, and define the integral 

for such a continuous function, provided that <p is bounded. This will be the 
case in important examples, and bounded distributions are also called 
measures. 

All this is preliminary to defining the distributions which are of importance 
to us, namely the Bernoulli distributions. If x E ZeN) then x/N can be viewed 
as an element of Q/Z. For any t E R/Z we let <t> be the smallest real number 
~ 0 in the residue class of t mod Z. What we want is for each positive integer 
k a polynomial PIc with rational coefficients, leading coefficient 1, such that 
the functions 

form a distribution on the projective system {Z/NZ}. Such polynomials will 
be given by the Bernoulli polynomials. Let the Bernoulli numbers B" be 
defined by the power series 

B 1. 
tOOt" 

F(t) = -t- = 2: B"" 
e - 1 "=0 k. 
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§2. Bernoulli Numbers 

Then for instance 

Bo = 1, 

Observe that 

F( -t) - F(t) = t, 

so that F is almost even, and in particular, we have 

Bk = 0 if k is odd, k # 1. 

We define the Bernoulli polynomials Bk(X) be the expansion 

B2. 

Then it is clear that the Bernoulli numbers are the constant terms of the 
Bernoulli polynomials, that is 

We find: 

Bo(X) = 1, 

The desired distribution relation is implied by the next formula. 

B 3. 

Proof On one hand, we have 

N .. ;:;;/ te(x+a)t = l N~l Nte[(X+a)/N]NT 

a~o e Nt - 1 N a~o e Nt - 1 

On the other hand, summing the geometric series L eat directly from a = 0 
to a = N - 1 and using the definition of the Bernoulli polynomials shows 
that the coefficient of tkfk! is precisely Bk(X), thereby proving the desired 
identity. 
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2. Stickelberger Ideals and Bernoulli Distributions 

Relation B 3 can also be written in the form 

for y E R/Z. This can be interpreted as follows. 

On the projective system 

{~Z/Z} 
the association 

1 
x H>- Mk-1Bk«x») for x E M Z/Z 

defines a distribution. 

Proof If y E (l/MN)Z/Z is one element such that Ny = x, then all 
elements in the inverse image of x by the mapping (N· id) -1 consist of 

y + ~, with t mod N. 

Multiplying B 4 by Mk-1 yields precisely the distribution relation. 
Since the system {(l/M)Z/Z} is isomorphic to the system {Z/MZ}, we can 

also express the distribution relation on the latter. It is convenient to norm­
alize this distribution further and to give it a special symbol. For x E Z/NZ 
we define 

Then the family {Ef!")} forms a distribution on {Z/ NZ}. 

Remark. Historically, this distribution arose in the context of the partial 
zeta functions. Indeed, if x E (Z/ NZ)*, define 

CN(X, s) = L n- S • 

nEX 
n>O 

The Dirichlet series converges only for Re(s) > 1, but it is classical and 
elementary that it can be analytically continued to the whole complex plane, 
and Hurwitz has shown that 
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§2. Bernoulli Numbers 

Furthermore the partial zeta functions themselves satisfy the distribution 
relation. For a further discussion, cf. Example 4 at the end of the chapter. For 
distributions associated with zeta functions in connection with Cartan groups, 
see [KL 10]. 

For the applications, we shall use one more formula concerning the 
Bernoulli polynomials, namely 

B 5. BiX) = Xk - tkXk-l + lower terms. 

This is obvious by the direct multiplication of the series 

For what we have in mind, we don't care about the lower terms, which have 
rational coefficients. 

Let N be a positive integer, and letfbe a function on Z/NZ. We form the 
polynomial 

N-l te(a + X)t 

Flt, X) = a~o f(a) eNt _ 1 . 

We define the generalized Bernoulli polynomials (relative to the function f) 
by 

B 6. 

In particular, the constant term of Bk.tCX) is the generalized Bernoulli number 

For instance, fmay be a Dirichlet character X on Z(N)*, extended to Z/NZ 
by the value 0 on integers not prime to N. Then Bk,x is the generalized Ber­
noulli number of Leopoldt. Directly from the definition, we then find the 
expression 

B 7. 

In terms of the distribution relation, this can be written 
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2. Stickel berger Ideals and Bernoulli Distributions 

The distribution {E?)} is rational valued. We shall be interested in its 
p-adic integrality properties for a prime p. For this purpose, we describe a 
process which integralizes this distribution. For historical comments, see 
below, after Theorem 2.1. 

Let c be a rational number. For N prime to e (i.e., prime to the numerator 
and denominator of e) we define 

for x E ZeN). Multiplication by e or e- 1 is well defined on ZeN) so our 
expression makes sense. If N is a power of a prime p, then we could also take 
e to be a p-adic unit. We can write symbolically 

This distribution satisfies the following properties. 

E 1. Ei~~(x) = <~) _ e<e~x) + e; 1. 

Proof We have 

Er.~(x) = Bl( <~») -eBl( <e~x») 
= <~) _ ~ _ e«e~x) _~) 

whence the assertion is clear. 

E 2. E£~~(x) == Xk-1Ei~~(x) mod k%ck) Z[e, lie], 

where D(k) is a least common multiple of the denominators of the coeffi­
cients of the polynomial Bk(X), 

Proof We work with a representative integer x such that 

O~x~N-1. 

We write 

with an integer b satisfying 0 ~ b ~ N - 1 and Y E Zpje]. Then 

e-1x b <b) --=-+y= -+y +z N N N 
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§2. Bernoulli Numbers 

with some integer z. Since Bk(X) = Xk - tkXk-l + lower terms, we find 
the following congruences mod NI(D(k))Z[c, lie]: 

k-l(X <c-1X) c - 1) == kx N - c -sr- + -2-

and Property E 2 follows by using E 1. 

The values of Ek~~ are in 

I 
kD(k) Z[c, lie]. 

They will be called N-integral if they are p-integral for every prime dividing 
N. 

Theorem 2.1. (i) The values of Ek~~ are N-integral. 

(ii) We have the congruence for every prime p dividing N: 

(iii) If c is an integer prime to 2kN and to the denominators of the Bernoulli 
polynomial Bk(X), then the values of Ek~~ lie in Z. 

Proof For large integer v the values NVlkD(k) are N-integral. Let M = NV. 
The distribution relation yields 

Ek~XX) = L Ekz.;;(y) 
y 

where the sum is taken over, those y mod M which reduce to x mod N. The 
expression for Eiz.;; is obviously N-integral except possibly for the term 
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2. Stickel berger Ideals and Bernoulli Distributions 

(c - 1)/2. But if N is even then c is odd, so (c - 1)/2 is N-integral, and if N 
is odd, then (c - 1)/2 is N-integral. If we apply E 2 to each term Ek~d(y) 
then we see that the first two assertions are proved. 

For case (iii), we take M = (NkD(k))" for large v. The argument then 
proceeds as before, because the only denominators occurring in 

or 

contain only primes dividing NkD(k). 

For k = 1 the integraIizing process already appears in the Stickelberger 
theorem, and was used extensively by Iwasawa. For k > 1, Coates-Sinnott 
obtained integral elements in group rings by this process [C-S 2], Theorem 
1.3 and [C-S 3], Theorem 1. Mazur formulated this integralizing process 
in terms of measure theory and the distribution relation, which allows the 
jacking up argument used to prove Theorem 2.1. 

For the rest of this section, we let N = pn with some fixed prime number p, 
so the distributions are defined on the projective limit of Z(pn), which is 
none other than the p-adic integers Zp. We view the values of the distributions 
to be in Cp , the completion of the algebraic closure of the p-adic numbers. 
We may express Theorem 2. 1 (ii) in the limit as follows. 

Theorem 2.2. Let c be a p-adic unit. Then 

We shall now express Bernoulli numbers in terms of the integralized 
distributions. 

Theorem 2.3. Let c E Z; and let k be an integer ;::: 1 such that ck =1= 1. 
Then 

Proof By definition, 

On the last integral to the right, we make the change of variable 

X I--?> ex, 
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§2. Bernoulli Numbers 

which gives 

The formula we want drops out by using Theorem 2.2. 

Corollary 1 (Kummer Congruence). Let IX be a residue class mod p - 1 and 
IX "# O. Then for even positive integers k == IX mod p - 1, the values (ljk)Bk 
are all congruent mod p, and are p-integral. 

Proof Select c to be a primitive root mod p so that 

ck :;E 1 mod p. 

Then 1 - ck is a unit at p. The values 1 - ck and Xk -1 mod p are independent 
of the choice of k in the residue class mod p - 1, and the corollary then 
follows from the expression of (1jk)Bk as the integral of the theorem. 

Corollary 2 (Von Staudt Congruence). Let k == 0 mod p - 1, and k even. 
Then 

Proof Suppose p odd for simplicity. Let c = 1 + p. An easy induction 
shows that 

Hence 

1 1 
-1 -k = --k (1 + O(p» , -c p 

and so 

because the integral over pZp is == 0 mod p. An approximating sum mod p 
for the integral over Z; is 

p-1 «x) <c-1X) c - 1) X~l X k - 1 P - c p + -2- . 

Since c = 1 + P we have 
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2. Stickel berger Ideals and Bernoulli Distributions 

The desired congruence follows from the fact that 

p-1 

2: Xk == -1 modp. 
x;l 

We leave p = 2 as an exercise. We merely wanted to show how classical 
congruences can be handled systematically from integration theory. 

Let/be any function on Z/NZ. We defined 

In terms of the distribution notation, this can be written 

We shall apply this when / is a character of finite order on Z;, so that / is 
an ordinary Dirichlet character on Z(pn)* for some positive integer n. As 
usual, for such a character, we define its value to be 0 on elements of Z(pn) 
which are not prime to p. Then by definition, for any character l/J of finite 
order on Z; we have the formula for the Bernoulli-Leopoldt numbers 

! Bn.", = r l/J dEn. 
n Jzp 

Note: When l/J = 1 we co not have (l/n)Bn.", = (l/n)Bn because l/J is 0 on 
pZp by definition. 

Theorem 2.4. Let l/J be a character 0/ finite order on Z;. Then 

Proof We write dEn = dEn•c + cn dEnoc-l, or in other words 

~ Bn.", = f l/J dEn.c + f l/J(x)cn dEn(c-1x). 

Integrals are taken over Z;. We let x t-+ cx in the second integral. Then 
l/J(c) comes out as a factor. Using Theorem 2.2 concludes the proof. 
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§3. Integral Stickelberger Ideals 

For any integer n ;::: 1 we have 

1 1 
-B 1<-" = - Bk (modp). n ",CD - k 

Proof Let l/I = ol'-". Choose c to be a primitive root modp, so that 
ck ¢ 1 mod p. By Theorem 2.3 we get 

By Theorem 2.4 we have the congruence mod p: 

because I - l/I(c)c" and 1 - ck are p-units. Since the expression in brackets 
under the integral sign is == 0 (modp), the theorem follows. 

The next sections, §3 through §7, takenfrom Kubert-Lang [KL 8], deal further 
with the integrality properties of Stickelberger ideals. 

§3. Integral Stickelberger Ideals 

Let k be an integer ;::: 2. Let N = p" be a prime power with p ;::: 3 until §S. 
We let: 

G = Z(N)* if k is odd 
G = Z(N)*/ ± 1 if k is even. 
R = RG = Z[G] and Rp = Zp[G]. 
deg: R -+ Z is the augmentation homomorphism, such that 

deg(L mtt<!) = Lma• 
aeG 

This augmentation homomorphism extends to the complex group algebra 
by linearity. 

Rm = ideal of R consisting of those elements whose degree is == 0 mod m. 
If I is an ideal of R, we let 1m = In Rm. 
card G = IGI. 
s(G) = L (1. 

aeG 

For any, E R we have 

,s(G) = (deg ')s(G). 

If J is an ideal of R, we write d = deg J to mean that d is the smallest 
integer ;::: 0 which generates'the Z-ideal of elements deg , with, in J. 
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2. Stickel berger Ideals and Bernoulli Distributions 

Let B/c(X) be the kth Bernoulli polynomial. We let 

()/c(N) = N/C-l Ia~ B/c( <~) )a;l 

()~(N) = N"-l Ia~ (B/c( <~») -B/c(o»)a;l 

where B" = Bk(O) is the kth Bernoulli number. We have: 

deg () =1= 0 and deg ()' =1= 0, for k even. 

In fact, these degrees can be computed easily. We need only that they are 
=1=0 for k even, but the computation is as follows. Suppose k is odd. We use 
the distribution relation. Summing over all primitive elements, i.e., elements 
of pn yields the value of the distribution summed over all elements of level 
pn-l. Continuing in this fashion reduces the computation to level 1. But 

The degree of () arises from the same sum but with the term a = 0 omitted. 
Hence 

1 _ pk-l 
deg () = k B" 

and 

N"-l 
deg ()' = deg () - -k- B"I GI 

or 

These formulas would also be valid for k even, except for our convention to 
take G = Z(N)*/ ± 1. This requires dividing the formulas by 2 to get deg () 
and similarly for ()'. The non-vanishing for k even comes from the functional 
equation of the zeta function. 

Next we give the ideals used in integralizing the distribution. 
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§3. Integral Stickelberger Ideals 

J(k)(N) = ideal of elements ~ m(b)ub such that 

L m(b)bk == 0 (mod N) 

I(k)(N) = ideal of elements Ue - ck with integers c prime to N. 

Since k and N remain fixed, we often write lJ and lJ' instead of lJk(N) and 
lJ~(N). Similarly, we write J(k) and I(k), or J and 1. It is obvious that 

We shall determine the extent to which J =F I in §2. 
We have: 

degI(k)(N) = pt, where t is the maximum integer such that k == 0 mod cp(pt). 

This is obvious, because deg I(k)(N) is generated by the integers 1 - ck with 
c prime to p. 

Theorem 3.1. (i) We-have 

RlJ~ n R = I(k)lJ~. 

In jact, if an element, E R is such that ,lJ' E R, then, E I(k). 
(ii) On the other hand, letting I~k) = ZP/(k), we have 

If an element, E Rp is such that ,lJ E Rp then, E I~k). 

Proof First we prove that for any prime ~ 2, we have 

IlJ' c R, and IplJ c Rp. 

A similar property is due to Mazur and Coates-Sinnott, as mentioned before. 
Indeed, we have 

U;l(UC - Ck)lJk = L Ek~~(a)u;;l 
a.eG 

where 

The p-integrality then follows from Theorem 2.1(i). For other primes we 
need a lemma. 
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2. Stickel berger Ideals and Bernoulli Distributions 

Lemma 1. The polynomial (l/k)(Bk(X) - BiO)) maps Z into Z and maps 
Zz into Zl for every prime I. 

Proof A standard property of Bernoulli polynomials states that 

Hence for any integer m we see recursively that the first assertion of the 
lemma is true. The second, concerning l-adic integers, follows by continuity. 
The lemma is also valid for p = 2. 

We may define E~,c by using Bk(X) - Bk(O) instead of Bk(X) in the 
definition of Ek,c' The lemma shows that /8' c R. 

For convenience we let 

Lemma 2. (i) Let, E R and suppose that eO' E Zp[G] = Rp. Then, EJ. 

(ii) Let, E Rp and suppose that ,8 E Rp. Then, E Jp = ZpJ. 

Proof Write, = L z(b)ab with integral coefficients z(b). Then 

and therefore 

Nk-l «b») -k- ~ z(b)B~ N is p-integral. 

But an elementary formula for Bernoulli polynomials, obtained directly 
from the definition, gives for an integer b, 

Nk-l (b) _ ~ N k- 1 (k) (b)k-I -- Bk - - L.. -- B;-k N ;=0 kiN . 

Comparing the leading term modulo all the lower order terms, and taking 
into account that Bl = -! is p-integral (here we use p # 2), and the Kummer 
theorem that B/ is p-integral for i < p - 1, we find 

Lz(b)bk _ 1 
kN = Omod'j(Zp, 

Multiplying both sides by kN proves the lemma. 
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§3 Integral Stickel berger Ideals 

Lemma 3. Let pS be the smallest power of p such that pS8~ is p-integral. 
Then 

s = n + ordp k. 

We have J<k) () Z = (pS). 

Proof The argument uses the same expression for the Bernoulli polynomial 
as in the previous lemma. We see that 

Nk-l (k) (1 )k-l pS 2. -k- i Bl N is p-integral. 

The leading term is pS/kN. The Bernoulli numbers Bi are p-integral for 
i < p - 1 by Kummer, and for i ;:::: p - 1 the power N k - 1 in front in­
tegralizes (l/N)k-i. It follows that 

pS.. I 
kN IS p-mtegra , 

whence s has the stated value. Since we have already seen that 18' c R, it 
follows that the p-contribution of I () Z is exactly pS. It is clear that I () Z 
is equal to (pS), because we can always select 

c == 1 mod Nand c == 0 mod 1 

for any prime 1 -# p to see that I () Z contains elements prime to I. This 
proves the lemma. 

Lemma 4. We have J = I + ZN, and (J: I) = ps-n = pordk. 

Proof It is clear that N E J. Conversely, write an element of J in the form 

The first term is in I, and the second term is an integral multiple of N. This 
proves the lemma. 

We may now conclude the proof of the theorem. We prove (i). Suppose 
~ E R and ~8' E R. By Lemma 2, ~ E J. By Lemma 4, we know that 

~ == zNmod I for some z E Z. 

We know that 18' c R. Hence zN8' E R. By Lemma 3, it follows that pS 
divides zN, so ~ E I, and the theorem (i) is proved. The part (ii) is proved the 
same way. 
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§4. General Comments on Indices 

Let V be a finite dimensional vector space over the rationals, and let A, B 
be lattices in V, that is free Z-modules of the same rank as the dimension 
of V. Let C be a lattice containing both of them. We define the index 

(A . B) = (C: B). 
. (C:A) 

It is an easy exercise to prove that this index is independent of the choice of 
C, and satisfies the usual multiplicativity property 

(A: D)(D: B) = (A: B). 

Furthermore, if E is a lattice contained in both A and B then 

(A . B) = (A : E) . 
. (B: E) 

We leave the proofs to the reader. 
Suppose that A is not only a lattice, but is an algebra over Z. Let 0 be an 

element of QA = V and let m be a positive integer such that mO E A. Assume 
that 0 is invertible in QA. Then 

(A : AO) = ± de~A 0, 

where the determinant is taken for the linear transformation of QA equal to 
multiplication by O. This is easily seen, because 

(A : AO) = (A : AmO)(AmO : AO) 

and 

(AmO: AO) = (AO: AmO)-l. 

Since mO lies in A, the index (A : AmO) is given by the absolute value of the 
determinant of mO, which is mY det 0, where r is the rank of A. This power 
mT then cancels the other index. 

Note that the determinant can be computed in the extension of scalars by 
the complex numbers. In particular, if A is a semisimple algebra, and is 
commutative, then 

det 0 = nX(O) 
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§5. The Index for k Even 

where X ranges over all the characters of the algebra, counted with their 
mUltiplicities. In the applications, the algebra is essentially a group ring, so 
the multiplicities are 1, and the characters come from characters of the group. 

This will be applied to the case when () = ()(k). We recall the definition of 
generalized Bernoulli numbers according to Leopoldt: 

Thus 

1 
X«() = k Bk,x' 

Note that the Bernoulli number is defined with respect to G, so that for keven, 
we are summing over Z(N)* / ± 1. This convention is the most useful for 
present 'applications in §5 and §6. (We revert to the other convention in §7.) 
For even k, it gives half the other values. 

The classical theorem about the non-vanishing of Bk,x when k and X have 
the same parity gives the desired invertibility of the Stickelberger element ()k 

in the corresponding part of the group algebra over Q. 

§5. The Index for k Even 

We let s = n + ordp k, and t is defined as in §3, to be the maximum integer 
such that k == 0 mod l/J(pt). We regard Ro n R() (for k even) as the Stickel­
berger ideal. We shall prove: 

Theorem 5.1. 

(R • R n R() = Mpordk-t TI + ! B o· 0 - k k,X' 
X,ol 

First observe that since deg () and deg ()' :f= 0 we have 

Ro n R() = Ro n R()'. 

By Theorem 2.1, we conclude that 

R()' n R = J()', and hence R()' n Ro = Jo()'. 

But Ro + JO' = Ra where 

d =' deg J()' = (deg 1)( deg ()'). 
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2. Stickel berger Ideals and Bernoulli Distributions 

In §3 we had noted deg t = pt. The factor deg 0' will cancel ultimately. In 
any case, we have: 

(Ro : Ro () RO) = eRo : Ro () RO') 

= (Ro : 100') 

= (Rd: 10') 

(R : Ie') 
(R: Rd) 

= ~ (R : RO')(RO' : 10') 

= ~ f1 X(O')(R : I). 

The product is taken over all characters X of G. We separate this product 
into a factor with the trivial character, giving deg 0', canceling that same 
factor in d, and the product over the non-trivial characters. For X non-trivial, 
we have X(O) = X(O'). 

In the final step we also wrote (RO' : 10') = (R : I). This is because e' is 
invertible in the group algebra over Q. Hence the map ~ 1-+ ~O' induces an 
isomorphism on R. 

We are therefore reduced to proving a final lemma. 

Lemma. (R: I) = pS where s = n + ordp k. 

Proof We have (R : I) = (R : J)(J: I). Any element ~ in R can be written 
in the form 

From this it is clear that (R : J) = N, and the index (J: I) is obvious, thus 
concluding the proof. 

Remark. Of course we have not determined the sign occurring in the 
product of the Bernoulli numbers. It is the sign which makes the product 
come out positive, and which one determines easily from the functional 
equation of the zeta function and the factorization in L-series. This is irrel­
evant for our purposes here. 

§6. The Index for k Odd 

Assume k is odd. Note that 0 = 0'. Let 

a- = -t(I - 0"-1) 

be the idempotent which projects on the (-I)-eigenspace. It is immediate 
from the definition that 0 is odd, that is, 

a-O = O. 
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The Stickelberger ideal in this case is R() n R = I(), and is odd. We shall 
prove: 

Theorem 6.1. 

(R- : R() n R) = Npordk TI ± 2~ Bk.,l.' 
X odd 

The rest of the section is devoted to the proof. 

Lemma 1. We have R- = 2e-Rand (e- R : R-) = 2t/><N)/2. 

Proof This is the same as Lemma 1 of §1. 

We then proceed as in the even case. First we write 

and then 

(e- R : e- I() = (e- R : e-R()(e- R() : e-I() 

= TI x«()(e- R : e- I) 
xodd 

because () is invertible in e-Q[G]. Furthermore, 

(e- R : e- I) = (e- R : R-)(R- : 2e- I)(2e- I: e-I) 

= (R-: 2e-I) 

because (2e- I: e-I) = 2-t/><N)/2 since e-lis free of rank ¢(N)j2. Finally, 

Lemma 2. (R- : 2e- I) = p' where s = n + ordp k. 

Proof The group 2e- I is generated by elements of the form 

An element e E R- lies in Zeal - a -1) mod I. Hence the same argument as 
in the past case gives the desired index. 

§7. Twistings and Stickelberger Ideals 

The Stickelberger elements ()k should really be indexed by the groups to 
which they correspond. We now want to compare factor groups of the group 
ring by various Stickelberger ideals, twisted in various ways. Consequently, 
it is not useful any more to have G different in the even or odd case. For this 
section, we let N = pn still, and we allow p = 2. We let 
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We define 
Ok.e(pn) = a;;l(ac - Ck)Ok(pn) E Z(pn)[GnJ. 

This makes sense since we know from §l that Ok,e(pn) is p-integral. 
Let V be a Z(Pn)[GnJ-module. We define its twist to be the tensor product 

with the roots of unity, 

V(l) = V 0 /IN' 

Then a in G operates diagonally, 

a(v 0 y) = av 0 ay, and aa(v 0 "I) = a(aav 0 "I)' 

We let "I be a basis for /IN over ZeN). Note that the element a on the right 
makes sense as an element of ZeN) since V 0 JlN is a module over ZeN). 

From the definitions we then get the formula 

TW1. 

resulting from Theorem 2.1 (iii), 

The distribution relation allows us in E 2 to replace N by high powers of N 
at a higher level, and then return to level N to get this congruence. 

In particular, if Ok-I,e annihilates V, then Ok,e annihilates V(l). The argu­
ment simply extracts in a general context the argument given by Coates­
Sinnott [C-S 2J in connection with the ideal Class groups in cyclotomic fields, 
see their Theorem 2.1. 

Take V to be Z(pn)[GnJ itself, so that V(I) is generated by a single 
element al 0 "I. The map 

gives an isomorphism 

Let ~(pn) = ideal of Z(pn)[GnJ generated by the elements Ok,cCpn). Then 
the isomorphism induces a bijection 

Hence we get an isomorphism 

TW2. 

where An = Z(pn)[Gnl is the group ring. 
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We may then pass to the projective limit. The limit of An is the Iwasawa 
algebra. We let,?", be the ideal generated by the elements ()k,c (projective limit 
of ()k,cCpn)). We obtain an isomorphism with the twist, 

A/,?", -+ A(I)/'?"'_l(I). 

This isomorphism permutes the eigenspaces for the action of flp-b and this 
can be interpreted in terms of congruence relations between Bernoulli­
Leopoldt numbers (with characters) in the obvious manner. 

We now make remarks concerning twistings, ideal classes, and modular 
curves. We assume that the reader is acquainted with the latter. Suppose 
N = p is prime '# 2, 3. The Iwasawa-Leopoldt conjecture predicts an iso­
morphism 

where C:- is the p-primary part of the (-I)-eigenspace of the ideal class group 
in Q(flp). On the other hand, Kubert-Lang [KL 7] establish an isomorphism 

where 'i&'O(Xl(P)) is the cuspidal divisor class group on the modular curve 
X1(p), generated by the cusps lying above the relational cusp on Xo(p), 
Consequently, we expect a commutative diagram: 

It remains a problem to give a direct isomorphism at the bottom, from some 
sort of geometric construction. This may in fact lead to a proof of the 
Iwasawa-Leopoldt conjecture. 

§8. Stickelberger Elements as Distributions 

In this section we follow Kubert-Lang [KL 5] to describe a "Stickelberger 
distribution" associated with a distribution on Q/Z, and to give its basic 
properties. 

Let h be a function on Q/Z (with values in some abelian group, but for 
the rest of this section, we shall take values in some algebraically closed field 
F of characteristic 0). We say that h is an ordinary distribution if it satisfies the 
relation 

her) = 2: h(t) 
Dt=r 

for every element r E Q/Z, and positive integer D. The sum is taken over 
those elements t such that Dt = r. In the application we have in mind, h 
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2. Stickelberger Ideals and Bernoulli Distributions 

will be obtained from the first Bernoulli polynomial, and generalizations on 
(Q/ZYk ) lead to the higher Bernoulli polynomials. See [KL 5] for k > 1. 

We let G(N) c:: Z(N)*, writing the isomorphism as a f--+ (Ta. We let h be an 
ordinary distribution as above. We define 

hN(x) = h( <~») for x E ZeN). 

For any functionf on G(N) we define (as usual) 

SN(J, hN) = 2: f(a)hN(a), 
a 

with the sum taken over a E Z(N)*. If we define f on ZeN) to be 0 outside 
G(N) then we see that 

SN(J, hN) = J f dh. 

By abuse of notation, we often write a E G(N) instead of a E Z(N)*. 
Let ZN = (l/N)Z/Z and let r E ZN. We define 

If the values of h are in the field F, then the values of gN are in the group 
algebra F[G(N)]. It is clear that if M is a denominator for r, i.e., r E ZM and 
M divides N, then the image of gN(r) under the canonical homomorphism 
G(N) --?>- G(M) is equal to gM(r). Thus we may define 

g(r) = limgN(r) 

in the injective limit of the group algebras (as vector spaces over F), ordered 
by divisibility, with the injections from one level to a higher one given by 
sending one group element to the sum of all the group elements lying above 
it under the canonical homomorphism. 

Theorem S.l. The function g: Q/Z --?>-lim F[G(N)] is an ordinary distri­
bution. 

Proof Immediate from the definitions. 

We define g to be the Stickelberger distribution associated with h. 

Let AN be the vector space generated by the values g(r) with r E ZN 

(essentially the same as the vector space generated by the values gN(r)). We 
observe that g(O) is a constant multiple of the augmentation element, that is 

h(O) " 
g(O) = I G(N) I L (T. 

aeG(N) 
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§8. Stickel berger Elements as Distributions 

Let X be a character of G(N) and let m = m(x) be its conductor. We define 

where Xm is the character on G(m) determined by X. We let 

G,,(N) = set of characters X such that SCi, h) -=f O. 

Theorem 8.2. The dimension of AN is equal to the cardinality of G,,(N). 

Proof The space generated by the elements gN(r) with r E ZN is clearly a 
G(N)-module since 

We let the idempotent associated with X be the usual 

If M is the conductor of X, then 

as one sees at once from the fact that ra depends only on the residue class of 
a mod M, for a E G(N). Hence AN has a non-trivial x-component if SCi, h) 
-=f O. This shows that the dimension of AN it at least that which we asserted. 

On the other hand, let r E ZN and suppose r has exact period M. Let X be 
any character of G(N). Then 

gN(r)ex = IG(~)I 2: h(ra)i(a)ex 
aeG(N) 

= IG(~)I 2: herb) 2: i(a)ex' 
beG(M) redMa = b 

If the conductor of X does not divide M, then X is non-trivial on the kernel 
of the reduction map 

redM : G(N) --+ G(M), 

and the sum on the right is O. If the conductor of X divides M, then i(a) = 

i(b) on the right, so 

1 "" IG(N)I _ 
gN(r)ex = IG(N)I be~) herb) IG(M)I x(b)ex 

= IG(~1)1 2: h(rb)i(b)ex' 
beG(M) 
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2. Stickel berger Ideals and Bernoulli Distributions 

Since we can write r = a/ M with some a prime to M, a change of variables 
in the sums shows that up to a non-zero constant factor, gN(r )ex is equal to 

We now have to analyze this sum. The next lemma will show that this sum 
is equal to some factor times SmUm, hm). 

Lemma. Let X be a character of G(N) with conductor m. 

(i) If every prime dividing N also divides m then 

(ii) Let p be a prime dividing N but not dividing m. Write N = pnM with 
pi M. Then 

SN(XN, hN) = (1 - Xm(p))SMClM, hM)' 

Proof The first statement is immediate from the distribution relation. Let 
us prove (ii). We have 

L x(a)hN(a) = L x(b) L h(!!"'). 
aeZ(N)' beZ(M)' a = b(M) N 

aeZ(N)' 

By the distribution relation, we know that 

(b) ~ (x) ~ (a) ~ (a) h- = L h- = L h- + L h-· 
M xeZ(N) N aeZ(N)' N a~Z(N)' N 

x=b(M) a=b(M) a=b(M) 

The elements a in ZeN) which are not primitive but are == b mod M are in 
bijection with the elements c E Z(N/p) satisfying the conditions 

a = pc and c == p -la mod M, 

under the map 

C f-? pc 

which sends Z(Njp) into pZ/NZ c ZjNZ. Therefore the sum over primitive 
elements lying above a given b can be expressed as a difference 

~ (a) (b ) ~ (c ) Lh--h--L h -
aeZ(N)' N - M c Njp 
a=b(M) 

(where the sum is taken over c E Z(N/p), c == p-1a mod M) 
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§9. Universal Distributions 

(by the distribution relation). Plugging this into the first relation, and making 
a change of variables b f-+ pb, we find 

(P-1b) SNU, hN) = SMUM, hM) - L X(b)h AT 
lIeZCM)' 

= (1 - XM(P))SMUM, hM)' 

This concludes the proof of the lemma. 

In applying the lemma to the theorem, we note that the x-component is 
at most one-dimensional, and has exactly dimension 1 under the stated 
condition SNCiN, hN) =F O. This concludes the proof of the theorem. 

A distribution can be decomposed as a direct sum of an odd and an even 
distribution, provided that its image is contained in some module on which 
multiplication by 2 is invertible. 

In the next section, we shall prove that the rank of the values on ZN is 
at most 'IZ~I, where Z: is the set of primitive elements in ZN' 

If we take for h the distribution arising from the Bernoulli polynomial 

h(r) = B1«r») if r =F 0, h(O) = 0 

then the non-vanishing of B1 •X for odd characters X shows that h has the 
maximal attainable rank for an odd distribution. Consequently, we find: 

Thoerem 8.3. The Stickelberger distribution g associated with h(r) as 
above is the universal odd ordinary distribution into modules on which 
multiplication by 2 is invertible. 

So far, Theorem 8.3 has been proved only for distributions with values in 
a field of characteristic zero. However, the next section will give a result of 
Kubert showing that the universal distribution is generated on ZN by free 
generators whose cardinality is IZ:I. This will take care of the additional 
integrality possibilities allowed in the statement of Theorem 8.3. 

Later in the book, we shall see that the cyclotomic units in the cyclotomic 
field form an even distribution, which has maximal rank by the class number­
regulator formula, cf. Chapter 3, §3, and Chapter 6, §3. 

The direct sum then yields a distribution of maximal attainable rank. 
This is one method to show th~t the universal distribution in Theorem 9.1(ii) 
has rank IZ:I. 

§9. Universal Distributions 

In this section we give a theorem of Kubert [Ku I], [Ku 2], constructing a free 
basis for the universal distribution on the projective system {(1jN)ZjZ}. In 
[Ku 2] Kubert gives a complete treatment of the ordinary universal distribu­
tion on QkjZk for arbitrary k, as a GLk(Az)-module, where Az is the ring of 
integral finite adeles. Here we limit ourselves to k = 1, and give only the 
abelian group structure. . 
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2. Stickelberger Ideals and Bernoulli Distributions 

For simplicity of notation we let 

1 1 
ZN = N ZjZ, and eN = Nmod Z. 

We let 

g: QjZ --+ some abelian group 

be an ordinary distribution, in other words we suppose that for r E QjZ, 
and a positive integer D we have 

2: g(t) = g(r). 
Dt=r 

It is clear that such distributions form a category, and we wish to construct 
the universal distribution. 

We let zt be the set of primitive elements in ZN, i.e., elements having 
period exactly N in ZN. 

The prime power case 

Let N = pn be a prime power and write N = MD, a factorization with 
M > 1. Let r E Z~. If Dt = r then it is immediate that t E zt (N = prime 
power is used here). The distribution relation shows that g(r) is an integral 
linear combination of the images of the primitive elements g(t). Hence 0 and 
these primitive elements generate the universal distribution, at level N. 

We have 

2: g(t) = g(O) and 
teZN 

2: g(t) = g(O). 
tezN/v 

Hence we get one relation among primitive elements, 

2: g(t) = o. 
teZ/; 

Let 

Let 

Theorem 9.1. (i) The elements g(TN) generate the abelian group generated 
by g(ZN). 

(ii) If g is the universal distribution then the elements g(t) with t E TN are 
free generators. 

(iii) The cardinality of TN is equal to that ofZj{. 

Proof The first statement is obvious from the preceding remarks. The 
cardinality of TN is clearly equal to that of zt. For (ii), we may consider the 
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§9. Universal Distributions 

free abelian group generated by the elements of Z~ and {O}, modulo the 
single linear relation 

2: (t) = O. 
teZN 

We can then define g on Z~ to be the canonical homomorphism in the factor 
group, and for r E Z~ with M -# N and MIN we can define 

g(r) = 2: get), with D = N/M. 
Dt=r 

It is then clear that g defines a mapping on ZN satisfying the distribution 
relation. 

The proof of (ii) is in some sense natural, but in many ways it is better 
to exhibit mappings which are distributions and which have the appropriate 
rank to get the lower bound for the rank of the universal distribution. Cf. 
the end of §8, where we exhibit natural distributions in the theory of cyclo­
tomic fields which have such rank. 

The composite case 

To state the theorem concerning the universal distribution in the com­
posite case, we shall write elements of ZN according to their partial fraction 
decomposition. Let 

N = [Jpfl. 
j;,: 1 

Then 

1 1 
- Z/Z = '-P -Z/Z N Q) pfl 

and 

- = ---2. mod Z a 2: a· 
N pfl 

where ai is well defined mod pfl, while a is well defined mod N. We let: 

TN = set of elements a/N as above, such that either ai is prime to Pi and 
aj -# 1, or ai = O. 

It is then clear that TN has cardinality ¢(N). 

Theorem 9.2. The preceding theorem holds with this definition of TN ,for com­
posite N. 
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2. Stickelberger Ideals and Bernoulli Distributions 

Proof The proof will be a simplification of Kubert's proof by Katz. Let 
AN be the abelian group generated by g(ZN). A distribution having the lower 
bound ,peN) for its rank has been exhibited in §8. Since TN has this cardinality, 
it will suffice to prove that g(TN) generates AN. We first show that the elements 
g(a/N) with a such that ai is prime to p, or al = 0, generate AN. We do this by 
induction. 

Let 

be an arbitrary element of ZN. Write hl = p~al where al is 0 or prime to p. 
If al = 0 then we are through by induction, so we can assume that al is prime 
to p, and 1::;; r < nl. Then: 

by the distribution relation. Since r < nl it follows that 

where a~ is prime to p. 
Inductively, we may now repeat the same argument with respect to P2, 

Pa, . . .. It merely suffices to observe the following. In the first step of the 
argument, when we factored out pi, thus changing hi to Ch if hj is prime to p 
then CI is prime to p. Thus performing the same argument inductively on the 
other primes does not destroy the desired property for those primes which 
have already been taken care of. This concludes the first part of the proof. 

Secondly, we show that we can recover those elements a/N for which aj 
may be equal to 1 from the prescribed set TN. Let 

1 
yE N' Z/Z. 

From the distribution relation, we find: 
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Subtracting yields 

2: g( '~l + Y) == 0 mod AN', 
jmod P11 Pl / 
(f,p) = 1 

where AN' is the group generated by g(ZN')' This yields 

-g(~ + Y) == 
p~l 

2: g(a;l + Y) mod AN" 
a,,' 1 Pl 

(al.Pl)=l 

Observe that the same quantity y occurs on both sides of this relation. We 
may now repeat the procedure inductively on the partial fraction decomposi­
tion of y. If we write 

and say a2 = 1, we get a similar congruence 

-g(~ + Yl) == 
p~l 

where N" = Nlp~2. In this way we reduce the proof to the case when N con­
tains fewer prime factors, and then can apply induction with respect to the 
number of prime factors to conclude the proof. 

§10. The Davenport-Hasse Distribution 

In this section we give a relation of Davenport-Hasse [D-H]. Let Fq be the 
field with q = pn elements, and let q == 1 mod m. We follow the notation of 
Chapter 1, §l. We let p be a prime in Q(f..lq-l) lying above p, and let <.p be a 
prime in Q(f..lq-l> f..lp) lying above p. We write as usual 

a == f3 mod* <.p 

to mean that rxfJ-l == 1 mod msp, where msp is the maximal ideal in the local 
ring at <;p. We use similar notation mod* p or mod* p. We let X, l/! be characters 
on F:, and put 

rex) = - sex, 2). 

Theorem 10.1. (Davenport-Hasse) We have 

where e(l/!, m) = l/!(m-m) T1 rex). 
xm=l 
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2. Stickel berger Ideals and Bernoulli Distributions 

Proof Let um("') be the quotient of the left-hand side by the right-hand side, 
that is 

We have to show umC"') = 1. First note that um("') lies in Q(J.-!Q-1)' This is 
immediate by looking at the action of 0'1,v, cf. GS5 of Chapter 1, §l. From 
the fact that IS("')I = YC; if'" # 1 and IS("')I = 1 if'" = 1, we conclude that 
I um("') I = 1. Similarly, all conjugates of um("') have absolute value 1. Since 
S(", )S(Iii) = ± q, we know that only primes dividing p occur in the factoriza­
tion of S(",). We shall prove that 

(1) Um( "') == 1 mod '-P. 

This will imply that um("') is a unit, and therefore a root of unity. If p # 2, 
this congruence (1) implies that um( "') = 1. If p = 2, we shall give the argu­
ment at the end of the proof. 

To prove the congruence, we simplify the expression in Stickelberger's 
theorem. For any integer k we had defined s(k) = sik) and y(k) = yik) in 
Chapter 1, §2. We let r(k) = rik) be the unique integer such that 

o :::; r(k) < q - 1 and k == r(k) mod q - 1. 

Lemma 1. Let 0 :::; k < q - 1. Then 

k-s(k) 

k! == (-p)p::::T y(k) mod* p. 

Proof By induction. Suppose first that p t k. Then ko :::: 1, and 

s(k) = s(k - 1) + 1 , y(k) = y(k - l)ko. 

The assertion is then obvious from the inductive step for k - 1. Next sup­
pose p I k, so k = pk'. Since 

ord k! = [~J + ... + [~J p p pn-1 

and similarly for k', we see that 

ordp k! - ordp k'! = k'. 

In k! = (k'p)!, the factors not divisible by p give a contribution of 

(p - I)! == -1 modp, 

taken k' times. The product of the factors divisible by p yields k'! pt, where 
t = ordp k'!. The lemma is then immediate. 
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As in Chapter 1, we let 8 = e21tiip. We let n = 8 - 1. Then from 

(8 - 1 + I)" - 1 = 0 

we see at· once that 

nP - 1 == -p mod* n. 

From Stickelberger's theorem and Lemma 1, we conclude that 

(2) 

This reduces the proof of the congruence relation (1) to the proof of such a 
congruence for the expressions on the right-hand side of (2), corresponding 
to the way um(ljJ) is made up from expression r(w- k ) for appropriate values 
of k. We shall prove two relations for the residue function, namely: 

(3) L rex + y) = r(my) + L rex) 
mx~O mx~O 

(4) n rex + y)! == r(my)! m-r(my ) n rex)! 
mx~O mx~O 

In these relations, sums and products are taken over elements x mod q - 1 
such that mx == 0 mod q - 1. The theorem is immediate from these relations, 
taking into account 

applied to y such that 1jJ.= w- Y • 

We prove the two relation& (3) and (4). To begin with, we note that the 
left-hand side and right-hand side of each relation is unchanged when we 
change y in a residue class mod (q - I)Jm. Consequently we may assume that 

q - 1 
0::::; y < --. 

m 

We choose the obvious representatives 

Then 

q - 1 x = v -- with v = 0, 1, ... , m - 1. 
m 

rex) = x, rex + y) = x + y, r(my) = my. 

This makes (3) obvious, and (4) takes the form: 

(5) 
n(Y+V q - 1)! 1 mmy . m = n (v~)! mod* p. 

(my)! m 
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The products are taken for v = 0, 1, ... ,m - 1 and y is taken as above, with ° ::::; y < (q - l)jm. Let F(y) be the left-hand side of (5). Then the right­
hand side of (5) is equal to F(O), and consequently, it suffices to prove that 

F(y) _ * 
F(y _ 1) = 1 mod p, 

with 1 ::::; Y < (q - l)jm, or equivalently 

or also 

n (y + v q - 1) 
mm m 

==lmod*p, I1 (my - v) 

mn-l my + v(q - 1) - 1 d* 
= mo p. 

v=o my - v 

For this it will suffice to prove that each factor in the product is == 1 mod p. 
But the power of p entering in my - v is at most pn-l. Dividing numerator 
and denominator of each factor by my - v shows that 

m _-"-y_-_v_+_v-,,q - 1 d* = mo p. my - v 

This proves the theorem except whenp = 2, when we know only that um(ljJ) = 
± 1. In this case we argue further as in [D-H]. 

Let I be a prime dividing q - 1. Let 

be the decomposition of IjJ into a product of a character of I-power order, and 
a character of order prime to I. Then 

is the corresponding decomposition for IjJm. Let IW be the highest power of I 
dividing q - 1, and let 'zw be a primitive IWth root of unity. Let 

Since IjJz == 1 mod A., it follows that IjJ == IjJz' mod A.. Therefore 

,(IjJ) == (ljJz') mod A. and ,(ljJz) == 1 mod A.. 

In particular, 

64 



Appendix. Distributions 

Since Um(t/J) = ± 1, it follows that um(t/J) = 1, thereby proving the theorem. 

Remark. In [Ya], Yamamoto shows that the Gauss sums form the univer­
sal odd distribution modulo 2-torsion. 

Appendix 

In this chapter we have looked at the distributions which are especially 
relevant to the cyclotomic theory discussed in the rest of the book. It is 
worthwhile to give here a number of examples of distributions occurring 
throughout mathematics, involving various classical objects. We make a list 
of a general nature, including those we have already met. 

(1) The Bernoulli distribution, which is essentially given by a polynomial. 

(2) The Fourier-Bernoulli distribution, giving rise to the Bernoulli distri­
bution, as follows. For real (J we have the Fourier expansion 

Thus we may even define Bk on RjZ, and through this Fourier series, the 
function given at level N by 

satisfies the distribution relation. 

(3) The holomorphic Bernoulli distribution. Let 

and restrict z to the unit circle, Z = e2ni8• Then {Nk-Yk} defines a distribution. 
The real part for k even and imaginary part for k odd are mere homomorphic 
images of this one, and give ri~e to the Bernoulli distribution of (2). 

(4) The partial zeta functions. Let 

00 1 
,(s, u) = 60 (n + u)S 

be the Hurwitz zeta function, for 0 < u :::; 1. For each real number t, let {t} 
be the unique number congruent to t mod Z, and such that 

o < {t} :::; 1. 
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2. Stickel berger Ideals and Bernoulli Distributions 

Then for a E Z(M), the function 

satisfies the distribution relation, namely 

The sum on the left is taken for b in ZeN) reducing to a mod M. 

(5) The gamma distribution. Define 

1 
G(z) = . /_ r(z). 

v2n 

We view G as defined on Q/Z with the origin deleted, but then with values in 
the factor group 

G: Q/Z - {O} --'? C*/Q: 

of the multiplicative group of complex numbers, modulo the multiplicative 
group of all algebraic numbers. The classical identity 

N-l 1 ( .) 1 fl. /- r z +.:Ji =. /- r(Nz)N!-NZ 
;=0 v 2n v 2n 

shows that G defines a distribution. 
RohrIich has conjectured that G is then the universal odd distribution, 

with values in groups where mUltiplication by 2 is invertible. This is a con­
jecture in the theory of transcendental numbers. It also leads to the question 
(in algebraic independence) whether the distribution relations, the oddness 
relations and the functional equations generate an ideal of definition over the 
algebraic numbers for all algebraic relations among the values of the gamma 
function (l/V2n)r, with rational arguments. 

(6) The cyclotomic units, which we have discussed. 

(7) The modular units, which may be defined by their q-expansions, 
namely 

00 

g(a) = _q%B2<alle21lia2<al-ll/2(1 - qz) fl (1 - qnqz)(l - qn/qz) 
n =1 
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and where the value g(a) is to be taken in the multiplicative group of the 
modular function field modulo roots of unity, cf. [KL 3], following the work 
or Ramachandra and Robert. The association 

a H>- g(a) 

is the universal even ordinary distribution on Q2jZ2 - {O}. The ordinary 
Bernoulli distribution (with k = 2) then appears as a homomorphic image of 
this one. 

In the last three examples, the distribution is not defined at O. In such cases, 
it is useful terminology to refer to the distribution as punctured. 

Roughly speaking, I expect that in any classical situation where a distribu­
tion arises naturally, it is universal (odd, even, punctured, as the case may be), 
always subject to taking values in groups where 2 is invertible. 

(8) The Lobatchevski distribution. I am indebted to Milnor for the 
following brief comments which might inspire the reader. Define the 
Lobatchevski function 

o 
A(O) = - iologl2 sin t I dt. 

This is essentially the same as the integral 

o 
- fo logle2ntt - 11 dt. 

Since the function t H>- I e2"it - 11 satisfies the distribution relation, one sees 
at once that A(O) satisfies the distribution relation in the sense that on 
{(1jN)ZjZ} the family {NA(O)} is a distribution, which is odd. 

Let H be hyperbolic 3-space. This is the set of points 

(Xl' X 2, Y) E R x R x R + 

so (Xl> x2) is an ordinary point in the plane, and y > o. We endow H with 
the metric 

dx~ + dx~ + dy2 
y2 

Select four distinct points in the plane, and let T be the tetrahedron in H 
whose vertices are at these points. Then it can be shown that opposite dihedral 
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2; Stickelberger Ideals and Bernoulli Distributions 

angles are equal. (The dihedral angles are the angles between the faces of the 
tetrahedron.) Let a, p, y be the dihedral angles. Then 

a + p + y = 11:, 

and the volume ofthe tetrahedron is precisely given in terms of the Lobatchev­
ski function by 

f f f dXl ~:2 dy = Vol T = 2(a) + 2{f3) + 2(y). 

The search for relations among such volumes had led Milnor to consider the 
Lobatchevski function and its relations, now known as distribution relations, 
and to show that it had the maximum rank (its values being viewed as con­
tained in a vector space over the rationals). Of course, Kubert's construction 
in fact gives free generators over Z. 

Finally, let 0 = Z[C], where C is a primitive cube root of unity. Then 

where Aut H is the group of automorphisms for the Riemannian structure, 
orientation preserving. The tetrahedron is essentially a fundamental domain 
for PSL2(o). This point of view leads into the problem of determining all 
relations for volumes offundamental domains in the higher dimensional case. 
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Complex Analytic Class Number F onnulas 3 

The complex analytic class number formulas date back to the 19th century. 
They relate class numbers of cyclotomic fields and units. They arise by 
factoring the zeta function of a cyclotomic field in L-series, and looking at the 
factorization of the residue. 

§1. Gauss Sums on Z/mZ 

We have to redo the properties developed in Chapter 1, for the ring with 
divisors of zero Z(m) = Z/mZ. The only additional feature arises from the 
presence of non-zero elements which are not units. We let m = f1 p"(P) be 
the prime power product. We then have product decompositions 

Z(m) = I1 Z(p,,(p» and Z(m)* = I1 Z(p"(P»*. 

From the product, for any character X on Z(m)* and any character A. on 
Z(m) we have a decomposition 

If x E Z(m) and x is not prime to m, we define X(x) = o. We let, be a 
primitive mth root of unity (chosen to be e21tI /m over the complex numbers), 
and 

Observe that Z(m) is self dual under the pairing 
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3. Complex Analytic Class Number Formulas 

Let dim. We have a natural surjective homomorphism 

Z(m)-+Z(d) 

and also a surjective homomorphism 

Z(m)* -+ Z(d)*. 

If there does not exist dim and d =1= m such that X factors through Z(d)*, then 
we call X primitive. Again to determine the smallest d such that a given 
character factors through Z(d)*, we may look at prime powers. 

Suppose m = p" is a prime power, and X is a character on Z(P"). Let p' 
be the smallest power of p such that X is trivial on 

For convenience, let us abbreviate 

so 1 + p'v A is a group for any positive integer v. The following criterion is 
immediate. 

X is primitive if and only if r = n. 

The power p' = pT(P) is called the conductor of X. 
In the composite case, we let the conductor be defined by the product 

c(x) = cond(x) = ITp'(P). 
plm 

It is then clear that c(x) is the smallest d such that X factors through Z(d)*. 
We define 

Sex) = Sex, A) = 2: X(X)A(X), 
:;c 

and the sum could be taken only over those x E Z(m)*. It is then obvious that 
we have a decomposition 

Sex, A) = IT Sp(xp, Ap) 
Jl 

where the sum Sp is taken over Z(P"(P»*. 
If d is an integer prime to m, then, as with Gauss sums over finite fields, 

we have 

Sex, Aod) = X(d)S(x, A), 

by making the change of variables x f4 d-1x. 
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On the other hand, if d is not prime to m, we have one new significant 
feature. 

Theorem 1.1. If X is primitive and d is not prime to m, then 

Sex, ;"od) = 0. 

Proof Using the prime power decomposition, we may assume without loss 
of generality that m = pn is a prime power. Abbreviate 

Also without loss of generality, we may assume d = pT for some integer 
r ~ I, and r < n. Form a coset decomposition 

Then 

Sex, )..opT) = L L X(Ut)x(1 + x»)..(prUi) 
i xepn-TA 

= L X(ui»)..(prUt) L x(1 + x). 
i x 

Since X is assumed primitive, it is non-trivial on 1 + pn-TA, and the sum on 
the right is 0, thus proving the theorem. 

From here on we have the same formalism as for Gauss sums over finite 
fields. For any functionf on Z(m) we define its Fourier transform 

Tf(y) = L f(x»)..(-xy). 
XEZ(m) 

Theorem 1.2. (i) We have T2f = mj-. 
(ii) If X is primitive, then 

TX = x(-I)S(x)[l. 

(iii) Again if X is primitive, then 

S(x)S(x) = m. 

Proof Part (i) is proved as for the finite field case. For (ii), if y is not 
prime to m, then TX(Y) = ° by Theorem 1.1. If y is prime to m then we can 
make the usual change of variables to get the right answer. Part (iii) is then 
proved as in the finite field case. 
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3. Complex Analytic Class Number Formulas 

§2. Primitive L-series 

Let X be a character mod m. We consider the DirichletL-series for Re(s) > 1: 

~ x(n) " " 1 L(s, X) = L., -8 = L., x(a) L., s' 
n= 1 n aeZ(m)' nEa n 

Let ( again be a primitive mth root of unity. Then we have 

~ L (a - n)x = {O if n :; a mod m 
m xeZ(m) 1 if n ~ a mod m. 

Indeed, if a ~ n (mod m), then the character x H- (a-n)x is non-trivial on 
Z(m). Consequently we can write the L-series in the form 

1 00 1 
L(s, X) = L x(a) - L L (a-n)x s 

aeZ(m) m n=l x n 

whence also 

1 00 (-nx 
L(s, X) = - L Sex, ..lox) L -8 • 

m xeZ(m) n=l n 

Theorem 2.1. Assume that X is a primitive character mod m. Then 

1 00 (-no 
L(s, X) = - Sex) L i(b) L -8 • 

m beZ(m)' n=l n 

Proof If x is not prime to m then the Gauss sum is 0 by Theorem 1.1. 
If b is prime to m, we can make the change of variables which yields the 
desired expression. 

So far we have worked with Re(s) > 1. We now want to have the value 
of the L-series at s = 1. It is not difficult to prove that the L-series has an 
analytic continuation for Re(s) > O. Of course, it is also known (and a little 
more involved) how to prove the analytic continuation to the whole complex 
plane. For our purposes, to get the value at 1, we can work ad hoc, let s be 
real> 1, and take the limit as s approaches 1. Then we don't need anything 
else here. 
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We recall a lemma about series. 

Lemma. Let {an} be a decreasing sequence of positive numbers, whose limit 
is 0 as n -+ 00. Let {bn} be a sequence of complex numbers, and assume that 
there is a number C > 0 such that for all n, 



§2. Primitive L-series 

i.e., the partial sums of the series {bn} are bounded. Then the series L: anbn 

converges, and in fact 

The proof is immediate using summation by parts. 

We apply the lemma to the series with bn = ,-nb and an = Iins with s 
real > O. The partial sums of the bn are clearly bounded (they are periodic). 

Let 

For Izl < 1 we have 
co n 

-log(I - z) = L: :... 
n=1 n 

As z ~ zo, -log(I - z) approaches -log(1 - zo). On the other hand, let 

z = rzo with 0 < r :::; 1. 

Then the series L: znln converges to L: z~/n as z tends to Zo along the ray 
(that is, r tends to 1). This is again obvious by estimating the tail end of the 
series using the lemma. Consequently, we find: 

Theorem 2.2. If X is a primitive character, then 

L(I, X) = - Sex) L: X(b) 10g(I - ,-b). 
m beZ(m)' 

The picture of the roots of unity looks like in the figure. 

If 

73 



3. Complex Analytic Class Number Formulas 

then the picture shows that 

The branch of the logarithm is determined so that 

-~ < e <~. 
2 2 

Observe that we do not change the sum 

if we replace b with -b. We shall distinguish two cases. 
We say that X is even if X( -1) = 1, and that X is odd if X( -1) = -1. 

We assume m > 2, and m = m(x) is the conductor of X. 

Case 1. X is even. 

In this case, adding the sum with band -b yields 

22x(b)10g(I - (-b) = 2X(b)[10g(1- (b) + 10g(I _ (-b)]. 

With X even, we obtain the formula 

L(l,X) = _Sex) 2 x(b)logil _ (bl. 
m beZ(m)' 

Case 2. X is odd. 

In this case, we let 

( = e21ti/m and b = l, ... , m - 1. 

Then 

log(l - (-b) = 10gl1 - (-bl + i(~ - ~) 

log(l - (b) = logil - (bl - i(~ - ~). 

Thus with X odd, we obtain the formula 

L(I ) = n:iS(x) m~l -(b) (~ _ !) = niS(x) B _. 
, X ,m b~ X m 2 m l,X 
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Remark. Let m be an integer > 1 and let X be a non-trivial character on 
Z(m)*. Then either the conductor of X is odd, or it is even, in which case it is 
divisible by 4. Hence for a primitive character, we cannot have m = 2. 

This is in line with a field theoretic property. Consider the field 

Let m be the smallest positive integer for which we can write K in this fashion. 
Then either m is odd or m is divisible by 4. If m is odd, then the group of 
roots of unity 11K in K consists of ± 11m. If m is even, then 11K = 11m. 

§3. Decomposition of L-series 

For the applications we have in mind, we have to deal with two types of 
fields: The cyclotomic field Q(l1m) for some integer m > 2, and its maximal 
real subfield, over which it is of degree 2. We shall use a language which 
applies to the more general situation of an arbitrary abelian extension of the 
rationals (known to be contained in a cyclotomic field), but the reader may 
limit his attention to the two cases mentioned above. Certain proofs can be 
given ad hoc in these cases, while it is easiest to use general class field theory 
to deal with the general situation. I hope that the extent to which I recall 
certain proofs here will make the material readable to any reader not 
acquainted with class field theory. 

Let K therefore be an abelian extension of Q, and let K+ be its real 
subfield. We let m be the smallest positive integer such that K C Q(l1m) (we 
call m the conductor of K). We assume K i= Q, and as said above, you may 
assume K = Q(f1m) or K = Q(l1m) + • We have a surjective homomorphism 

Z(m)* --+ Gal(K/Q) = GK1Q 

Any character X of GK1Q gives rise to a character on Z(m)*, also denoted by X. 
We let m(x) be its conductor. We may view X as factored through Z(m(x))*, 
in which case we speak of X as the corresponding primitive character. If we 
need to make a distinction between X as character on Z(m)* or the corre­
sponding primitive character on Z(m(x))*, then we denote this primitive 
character by Xo. The context should always make clear which is meant. 

Let 

be the zeta function associated with K. It is a fact that there is a decom­
position 

(K(S) = f1 L(s, X), 
')( 
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3. Complex Analytic Class Number Formulas 

where the product is taken over all the primitive characters induced by 
the characters of GK1Q• We reproduce the proof in the case K = QVtm). In the 
last section we dealt with the L-series in its additive form. Here we use the 
multiplicative form 

L(s, X) = n (1 _ X~»)-1 
where the product is taken over all primes p not dividing mex). All these series 
and products converge absolutely for Re(s) > 1, and what is to be proved 
amounts to formal identities, localized at each prime p. Specifically, the 
decomposition is equivalent to proving for each prime number p: 

f1 (1 - .l.) = n (1 - X(~»). 
Pip N'fJ x P 

It is therefore convenient to let t = p-s. As usual, let 

be the decomposition of p in prime ideals in K. Then 

efr = [K: Q]. 

The identity to be shown is then equivalent to 

(1 - tryT = n (1 - X(P)t). 
x 

Suppose first that pt m. Then e = 1. The prime p generates a cyclic subgroup 
of order fin Z(m)*, 

Z(m)* ~ {p} ~ {I}. 

The value of a character X viewed as character on Z(m)* or as primitive 
character are the same on p. There are f distinct characters on the cyclic 
group {p}, corresponding to the fth roots of unity, each such character 
assigning one of these roots of unity to p. Each one of these characters then 
extends in r possible ways to Z(m)*. Since trivially we have the factorization 

1 - t f = n (1 - ,t), 
s'=1 

we have proved our identity in the case ptm. The argument is, by the way, 
entirely similar if K"# Q(/lm). 

Suppose secondly that plm. Write m = pkm ' with (p, m') = 1. If plm(x) 
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then by definition X(p) = o. If ptm(X) then X factors through Z(m')*. We are 
therefore reduced to proving the identity 

(1 - tty = n (l - X(P)t) 

where the product is taken over those X whose conductor m(x) is not divisible 
by p, and hence such that X factors through Z(m')*. The arguments are then 
identical with the preceding arguments, replacing m by m'. This concludes 
the proof. (Cf. [L 1], Chapter XII, §1.) 

As usual, we let rio r 2 be the number of real and complex conjugate 
embeddings of K. 

If K is real then rl = [K: Q], r2 = o. 
If K is not real, then r1 = 0 and r2 = ·HK: Q]. 

We let· 

N = [K: Q] = NK • 

We assume known the analytic continuation of the zeta function and 
L-series at 1 (cf. [L 1], Chapter VII, [L 2], Chapter XIV). By comparing 
residues, we have the class number formula: 

CNF. 

As usual: 

W = WK = number of roots of unity in K. 

h = hK = class number of K. 

R = RK = regulator of K. 

d = dK = absolute value of the discriminant. 

If K is real, so rz = 0, then W = 2 and the formula reads: 

~1f- = n 1;L(I, X)· 
vd X;<l 

Leopoldt's p-adic analogue will be given in the next chapter. If K is not real, 
then we let h +, R + denote the class number and regulator of its real subfield 
and N+ is the degree of the real subfield, 

N+ = NI2 = r 2 • 

We shall also need another fact whose proof is somewhat more delicate. 
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3. Complex Analytic Class Number Formulas 

Theorem 3.1. We have product expressions; 

(i) Ilmex) = d 
x .. 1 

(ii) { d lf2 if K is real D Sex) = iT2d1l2 if K is not real. 

Proof It is possible to give essentially algebraic proofs for these facts 
(although the sign of the Gauss sums is always a little delicate, involving 
something about the complex numbers). The best way to see the theorem, 
however, is probably as in Hasse [Ha 1], using the functional equations of the 
zeta function and L-series. Indeed, under the change s f-+ I - s, the functions 

if K is real 

dSI2(n-SI2r(s/2»NI2(n-SI2rC ; s) YI2(K(S) if Kimaginary 

are invariant. On the other hand, under the transformation 

S f-+ 1 - s and X f-+ i, 

the following functions (for non-trivial X) 

mex)SI2(n-SI2r(s/2»L(s, X) if X is even 

take on the factor 

v' X( - 1 )mex) 
Sex) 

Dividing the functional equation of the zeta function by the functional 
equation of the L-series, one sees that under s f-+ 1 - s, 

( mdex»)SI2 takes on the factor v' X( - I )m(x) 
SeX) 

The theorem then follows at once. 

If we combine the residue formula, Theorem 3.1, and the expressions for 
the values L(I, X) for primitive characters X found in the last section, we then 
get the following factorizations for the product hR in the two cases. 

K real. 

2N - 1 hR = TI L -X(b) logll - (~(x)l· 
x"l bmodm(x) 
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Warning: In this case, N = N+, h = h + , R = R + and characters are even. 

K imaginary. 

w TI L -X(b)logll - '~<x>I· TI -BI,x· 
X even b mod m(x) X odd 
X*1 

In the real case, we observe that all characters are even. Also the number of 
roots of unity in K when K is real is equal to 2. Otherwise, the formulas are 
just obtained by plugging in. 

It will be convenient to reformulate them slightly, to make the connection 
between imaginary K and the maximal real subfield clearer. We let: 

E = EK = group of units in K 

E+ = EK + = group of units in K+ 

11K = group of roots of unity in K 

C K = group of ideal classes in K. 

Lemma. We have the index 

Proof This is obvious by computing the regulator of the units in K+ with 
respect to K, where local factors of 2 occur in each row of the determinant 
expressing the regulator, whereas a local factor of 1 occurs in the corre­
sponding determinant giving the regulator of the units in K+ . 

Following Hasse, we give a symbol for the index in the lemma, calling it 
the unit index: 

Reading the class number formula in the real case applied to K+, we find: 

Theorem 3.2. For imaginary K, 

h = h+ QW2- NI2 TI -BI,x· 
xodd 

In the next section, we shall analyze more closely the decomposition 
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3. Complex Analytic Class Number Formulas 

where h- is defined as h/h+, and we shall see that h- is an integer. In any 
case, we have the class number formula: 

CNF-. 

In the next section, we shall prove that Q = I if K = Q(fJ.m) and m is a 
prime power. In addition, h- will be interpreted as the order of the (-1)­
eigenspace of the ideal class group. From Theorem 1. I of Chapter 2, we find: 

Theorem 3.3. If m is a prime power, K = Q(fJ.m), G = Gal(K/Q), and.? is 
the Stickelberger ideal, then 

Let p be a prime number. If A is an abelian group, we denote by A(p) its 
p-primary part. As Iwasawa observed [Iw 7], knowing the index immediately 
shows that: 

The group Ci(P) is generated by one element over Z[G] if and only if there 
is a Z[G]-isomorphism 

Indeed, we know that the Stickel berger ideal annihilates the ideal classes, 
so the isomorphism is obvious if there exists one generating element by 
Theorem 1.1 of Chapter 2. 

Let m = p itself. Iwasawa [Iw 7] and Leopoldt [Le 5], [Le 10] have shown 
that ifthe Vandiver conjecture h+ prime to p is true, then the cyclicity follows 
for the p-primary part of C-. (See Chapter 6, §4.) Proving the Vandiver 
conjecture, or the Iwasawa-Leopoldt conjecture that Ci(P) is cyclic over the 
group ring is therefore one of the major problems of algebraic number theory 
today. 

In the Iwasawa-Leopoldt conjecture it is necessary in general to restrict 
the conjecture to the p-primary component. For example, let Fbe an imaginary 
quadratic field Q( v' - p ), and suppose p is such that F is contained in the 
cyclotomic field Q(fJ.p) = K. Then Kover F is totally ramified above p, and 
the Hilbert class field of F lifts to an unramified extension of K of the same 
degree, so the ideal class group CF is a factor group of the ideal class group 
CK , and CF = CF -. It is known that there exist such fields, e.g., Q(v' - 3299), 
for which CF contains a group of type (3,3), see Scholz-Taus sky [S-T]. 
Furthermore, 3 does not divide p - 1, with p = 3299. Consequently all the 
non-trivial eigenspaces for characters of Z(p)* of the local ring group Z3[G] 
are cyclic over Z3. This shows that there cannot be an isomorphism 
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and thus in general, the Iwasawa-Leopoldt conjecture has to be restricted to 
the p-primary component. 

For h+ we also get a formula, and it is convenient to introduce the group 

G = Z(m)*/ ± 1, 

and for each even character X the group 

Gx = Z(mCl))*/ ± 1. 

Then there are exactly N/2 even characters and (N/2) - 1 non-trivial even 
characters. Therefore we obtain the other class number formula: 

CNF+. 

The product over X i= 1 is taken over the non-trivial characters of Gx, or 
equivalently the non-trivial even characters of Z(m)*. This product will be 
interpreted as a determinant of certain units in §5, and it will follow that h+ 
is equal to the index of a certain subgroup of the units in the group of all 
units. 

§4. The (± 1)-eigenspaces 

In this section we analyze in greater detail the factors h + and h - of the 
class number, and the corresponding unit index. We assume that m is odd 
or m == o mod 4. 

Theorem 4.1. Let K = Q(l1m). Then QK = 1 if m is a prime power, and 2 
if m is not a prime power. 

Proof Let E = EK be the unit group in K. For each unit u in E, the 
quotient u/u is a unit, of absolute value 1, and for any automorphism a of 
Kover Q, we have 

a(u/u) = au/au 

because a commutes with complex conjugation (abelian Galois group). 
Hence all conjugates of u/u have absolute value 1. Hence u/u is a root of 
unity. Let 

({J: E -7 11 = 11K 

be the homomorphism ({J(u) = u/u. Then 
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because if u is a root of unity, then q>(u) = u- 2 so the image of q> contains 
the squares. Hence the index of q>(E) in J1 is I or 2 because J1 is cyclic. Further­
more, we see at once: 

QK = 2 if and only if q> is surjective, i.e., q>(E) = J1. 

Assume that m is composite. Let ( be a generator of J1 if m is even, and a 
generator of the odd part of J1 if m is odd. Then I - ( is a unit (elementary 
fact, and easy exercise), and q>(1 - 0 = -(-l, so q>(E) = J1, in other words 
q> is surjective. On the other hand, q>(E+ J1) = J12, so the index is 2 in this case. 

Suppose next that m is a prime power, m = pn. We contend that q>(E) i= J1. 
It will follow that q>(E) = J12, and since the kernel of q> is E+ the theorem also 
follows in this case. Suppose q>(E) = J1. Let ( be a primitive mth root of 
unity, and let u be a unit such that 

Let 

1 - ( 
a = --. 

u 

Then aj-a. = 1 so a = -a. and a is real. But 1 - ( is a prime element above p 
in K and so a is also a prime element, which cannot lie in the real subfield. 
This proves the theorem. 

Theorem 4.2. Let K = Q(J1m). The natural map 

of ideal classes in K+ into the ideal class group of K is injective. 

Proof Let a be an ideal of K+ and suppose a = (a) with a in K. Then 
-a.ja is a unit, and in fact a root of unity as one sees by an argument similar 
to that in Theorem 4.1. Suppose that m is composite. By Theorem 4.1, we 
know that QK = 2 and q> is surjective, so there exists a unit u such that 

uju = -a.ja. 

Then au is real, and generates the same ideal as a, thus proving the theorem 
in this case. 

Suppose that m = pn is a prime power. Let ( be a primitive mth root of 
unity, and let A = 1 - " so A is a prime element above pin K. We can write 
-a. = az with some root of unity, and Ail = - ( is a generator of J1. Hence 

for some positive integer k. Then aAk is real. Since the ideal generated by IX 

comes from K+, and since p is totally ramified in K, it follows that k is even. 
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Hence z is a square in /1, and therefore in the image of cp, say z = u/u for 
some unit u. Then au is real, and generates the same ideal as a, thus proving 
that a is principal, and also proving the theorem. 

Theorems 4.1 and 4.2 are classical, see for instance Hasse [Ha I], Chapter 3, 
for more general results. The elegant proofs given here are due to Iwasawa. 

Theorem 4.3. Let K be an imaginary abelian extension ofQ. Then the norm 
map 

on the ideal class group is surjective. 

Proof We have to use class field theory, which gives the more general 
statement: 

Lemma. Let K be an abelian extension of a number field F. Let H be the 
Hilbert class field of F (maximal abelian unramified extension of F). If 
K n H = F then the norm map N K1P : CK ---';>- Cp is surjective. 

Proof For any ideal class c in K, the properties of the Artin symbol show 
that 

(c, KH/K) restricted to H = (NK1PC, H/F). 

We have natural isomorphisms of Galois groups: 

Gal(KH/K) ~ Gal(H/F) 

KnH=F 

Hence the group (NK1PCK, H/F) is the whole Galois group Gal(H/F), whence 
N K1PCK = Cp since the Artin symbol gives an isomorphism of the ideal class 
group with the Galois group. This proves the lemma. 

The theorem follows at once, because Kover K+ is ramified at the 
archimedean primes, and hence cannot intersect the Hilbert class field of F 
except in F. 

Let T denote complex conjugation. Let 

Cli = (-I)-eigenspace of CK 

= {c E CK such that C1H = I}. 
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Theorem 4.4. Let K = Q(Pm). Then the sequence 

is exact. 

Proof We consider the norm map followed by the injection, 

C norm C inj C 
K---+ K+ ~ K· 

The kernel of this composite map is Ci by definition, so the theorem is 
obvious by what had already been proved. 

Corollary. The quotient h/h+ is an integer, which is the order of the group 
Ci. 

Remark. The integer h - is called the first factor, and h + is called the second 
factor of the class number, in older literature. This is poor terminology since 
the ordering seems arbitrary, and for several years this has been replaced by 
the plus and minus terminology. 

§5. Cyclotomic Units 

Let m again be the conductor of the cyclotomic field Q(l1m), so either m is 
odd> 1 or m is divisible by 4. Let ( be a primitive mth root of unity. For b 
prime to m we let 

Then gb is a unit called a cyclotomic unit. It is easy to see that gb is equal to a 
real unit times a root of unity. Indeed, without loss of generality we may 
assume that b is odd, since (b depends only on the residue class of b mod m. 
Then 

b - 1 
(-Vgb for v = -2-

is real (i.e., fixed under () -1), as one sees immediately from the definitions. 
We let g: be this real unit, uniquely determined up to sign, and call it the 
real cyclotomic unit. 

We let cff be the group of units in Q(l1m) generated by the roots of unity 
and the cyclotomic units. We let cff+ be the group of units in Q(l1m) + generated 
by ± 1 and the real cyclotomic units. Then 

Observe that gb and g -b differ by a root of unity. 
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As before, let N = [QCJ.lm): Q] and let 

N 
r=2"-1. 

Then r is the rank of E, and also the rank of E+. If Ih, ••• , lOr is a basis for 
E+ (mod roots of unity), then the regulator R+ is the absolute value of the 
determinant 

R(E) = R+ = ± det logluaejl 
a.f 

where j = 1, ... , r and a E Z(m)*/ ± 1 and a ~ ± 1 (mod m). It is convenient 
to let 

G = Z(m)*/± 1 

so we may view a E G, a i= 1 in G. 
On the other hand, we may form the cyclotomic regulator 

again with a, bEG, and of course it does not matter if we write gb or g: 
since the absolute value of a root of unity is 1. 

For composite levels m the cyclotomic units are not necessarily inde­
pendent, and so we now turn to prime power level, 

We shall prove in this case that the cyclotomic units are independent. 
Interpreting the regulator as the volume of a fundamental domain for the 

lattice generated by the log vectors of units in Rr, we see that 

Remark. For composite m, as with the index of the Stickelberger ideal, 
it is necessary to consider the group generated by cyclotomic units of all 
intermediate levels to get a group of units of the right rank. 

Theorem 5.1. Let K = Q(flm) and h = hK . Assume m = pn is a prime power. 
Then 
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Proof Let G be any finite abelian group. Then we have the Frobenius 
determinant formula for any function f on G: 

n L x(a)f(a- 1) = det [f(ab- 1) - f(a)]. 
X,H aeG a.b¢ 1 

The proof will be recalled later for the convenience of the reader. It is already 
clear that up to minor changes, this formula yields the theorem, taking into 
account the expression for h+ obtained at the end of §3. We now make these 
changes explicit. 

Lemma 1. We have for G = Z(m)*j ± 1: 

± det logluagbl = n L X(b) 10gl1 - Cbl 
a.b;"l X;"l beG 

= n L X(b) loglgbl· 
X¢l beG 

Proof The first expression comes from the Frobenius determinant formula 
(Theorem 6.2), and the second comes from the fact that for non-trivial X, 

L XCb) 10gl1 - CI = o. 

Lemma 2. Let Gx = Z(m(x»*j ± 1. For prime power m = pn, we have 

L X(b)logll - C~(x)1 = LX(b)logll - C~I· 
N~ NG 

Proof Let mCl) = pS. We write residue classes in Z(pn)* in the form 

y = b + pSc, with 0 ::s; c < pn-s, 

and b ranges over a fixed set of representatives for residue classes of Z(pS)*. 
Instead of the sums over G x and G respectively, it is easier now to work with 
sums over Z(pS)* and Z(pn)* respectively, and then divide by 2. The desired 
relation is then immediate from the identity 

n (X - ,iY) = xm - ym, 
Am~l 

because we get 

L x(y) 10gl1 - C~nl = L X(b)logll - Ct-I· 
ymodpn bmodp-

This proves the lemma. 

Theorem 5.1 is then immediate from the lemmas, and the class number 
formula for h+ obtained from the L-series. 
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It is generally believed that the coincidence of group orders in Theorem 5.1 
does not correspond to an isomorphism of the groups involved. Iwasawa has 
a counterexample at least that C+ is not isomorphic to Ejtf as Galois module. 
Mazur has pointed out that the analogous statement for the case of elliptic 
curves with complex multiplication is definitely false. 

We conclude this section by mentioning the most classical case of the 
quadratic subfield. For our purposes we are interested in the case of the real 
quadratic subfield. Thus for the end of this section, we let 

m = p withp prime =? 2, 3 

and such that K = Q(flm) contains a real subfield F = Q( VD) with D > 0, 
so D = p, and D is the discriminant. Let e > 1 be a fundamental unit of F, 
and hF the class number. From 

where X has order 2, we get 

2hF log e = L(1 ) VD ,x 
S( ) D-l 

= _--..X. L i(a) logll - ,al. 
D a=l 

It is a simple matter of the theory of quadratic fields that the conductor m(x) 
is exactly D (assumed> 0). The explicit value S(x) can be determined in any 
number of ways (via functional equation, via Dirichlet's method as in my 
Algebraic Number Theory, Chapter IV, §3, etc.), and we have S(x) = VD. 
Thus we find: 

Theorem 5.2. For a real quadratic field F = Q(VD) as above, 

2hF log e = - L i(a) logl! - ,al· 
amodD 

We have the tower of fields: 

K 

I 

]'} Z(D)'/± I 

I 
Q 
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Let C be the group of cyclotomic units in K+ and let CF be ± its norm group 
into F, so 

Then CF (mod ± 1) is infinite cyclic. 

Theorem 5.3. 

Proof Let 

(£ = I1 (l - ,a) and (£' = I1 (1 - ,a), 
~~-l ~~--1 

where' is a fixed primitive Dth root of unity. Note that the character X is 
even, so a and - a occur simultaneously in each product. Therefore the norm 
from K+ to F of any real cyclotomic unit 

is a unit in F, and the group generated by these norms (mod ± 1) is infinite 
cyclic, generated by a unit 1'/ > 0 such that 

From Theorem 5.2 we conclude that 

hF log e = log 1'/. 

Thus 1'/ = e\ and since 1'/ (mod ± 1) generates the norms of cyclotomic units 
in K+ , this proves the index relation of Theorem 5.3. 

This index relation is analogous to that of Theorem 5.1 for the full cyclo­
tomic field. Since K+ is totally ramified over F (at the prime p) it follows from 
class field theory that 

hF divides ht. 

(Proof: Let HF be the Hilbert class field of F. Then HF n K+ = F, so 

Since HFK+ /K+ is unramified, it follows by class field theory that hF divides 
M.) 

We shall see later that the Vandiver conjecture asserts that ht is prime to 
p. It would then follow that hF is prime to p also. For tables of some hF' see 
Borevich-Shafarevich, 'Number Theory, Academic Press, p. 424. It has been 
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observed for a long time that hF has very small values, and grows very 
slowly. It is unknown if there are infinitely many real quadratic fields of class 
number 1. 

§6. The Dedekind Determinant 

Let G be a finite abelian group and G = {X} its character group. We have the 
Dedekind determinant relation: 

Theorem 6.1. Let f be any (complex valued) function on G. Then 

n 2: x(a)f(a- 1) = detf(a-1b). 
XEG aEG a.b 

Proof Let Fbe the space off unctions on G. It is a finite dimensional vector 
space whose dimension is the order of G. It has two natural bases. First, the 
characters {X}, and second the functions {c5b}, bEG, where 

c5b(x) = 1 if x = b 

c5b(x) = 0 if x i= b. 

For each a E G let Tafbe the function such that Taf(x) = f(ax). Then 

(TaX)(b) = x(ab) = x(a)x(b), 

so that 

TaX = x(a)x· 

So X is an eigenvector of Ta. Let 

T = 2: f(a-1)Ta. 
aEG 

Then T is a linear map on F, and for each character X, we have 

TX = [2: x(a)f(a- 1)] x· 
aEG 

Therefore X is an eigenvector of T, and consequently the determinant of Tis 
equal to the product over all X occurring on the left-hand side of the equality 
in Theorem 6.1. 

On the other hand, we look at the effect of T on the other basis. We have 

so that Tac5b is the characteristic function of a-lb, and 
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Consequently 

TOb = L f(a- 1)oa-1b 
aeG 

= L f(a-1b)oa. 
aeG 

From this we find an expression for the determinant of T which is precisely 
the right-hand side in Theorem 4.1. This proves our theorem. 

Theorem 6.2. The determinant in Theorem 4.1 splits into 

Therefore 

f1 L x(a)f(a- 1) = det [[(ab- 1) - f(a)]. 
l;<l aeG a.b;<l 

Proof. Let a1 = 1, ... , an be the elements of G. In the determinant 

add the last n - 1 rows to the first. Then all elements of the new first row are 
equal to 2. f(a- 1) = 2. f(a). Factoring this out yields 

1 1 1 

[~f(a)] f(a2~;1) 

f(ana;l) f(ana2 1) .. -I(ana;;l) 

Recall that al is chosen to be 1. Subtract the first column from each one of the 
other columns. You get the first statement. 

On the other hand, the function f can be selected so that the elements 
{f(a)}, a E G, are algebraically independent over Q, and therefore the factori­
zation given in this first statement for the determinant is applicable in the 
polynomial ring generated over Z by the variables f(a). Combining the first 
statement with Theorem 6.1 yields the second relation where the product is 
taken only over X =1= 1. 

Serre has pointed out to me that the determinant relation is due to Dede­
kind, February 1896, who communicated it to Frobenius in March. Cf. 
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T. Hawkins, "New light on Frobenius ... ", Archive for History of Exact 
Sciences 12 (1974), p. 223. 

§7. Bounds for Class Numbers 

In this book we have not emphasized questions having to do with the size 
of the class number. We shall here make some brief remarks concerning 
various possibilities to obtain bounds. We let hm = class number of Q(llm), 
and p is prime ;;:: 3. 

To begin we derive the expression ofthe class number h; as a determinant 
following Carlitz-Olson [Ca-O]. We start with the expression 

h; = 2p TI - !B1•X 
X odd 

= 2p TI -! 2: x(a)<~), 
x odd aeZ(p)' . P 

because the characters are non-trivial, and the term with! drops out. We try 
to rewrite this as a Dedekind determinant over the group 

G = Z(p)*/ ± 1. 

We have 

Let ro be the Teichmuller character such that ro(a) == a mod p. We write odd 
characters as products 

x = roljJ 

where ljJ is even. Then we find 

h; = 2p 1) 4 Ia if/(a)ro(a) ( <~) -< ~a»), 

and this makes sense because the function 

f(a) = ro(a) ( <~) _ < ~a») 

on Z(p)* is actually well defined mod ± I, so is defined on G. This expression 
is now in the form where we can apply the Dedekind determinant, thus getting 
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The size of the determinant is 

p-l 
-2-· 

Let ( be a primitive (p - I)-root of unity. Representatives for elements of G 
are given by the powers (i with 1 ::::; i ::::; (p - 1)/2. The determinant may then 
be taken over indices 

.. 1 P - 1 
l,J = ""'-2-

and w(ab) = (1+1. In the expansion of the determinant, every term contains a 
factor arising from these (i+1, whose product is obviously 1. Consequently 
the determinant is the same as the determinant obtained by omitting these 
(1+ i from each term. 

Let R(a) be the smallest positive integer in the residue class of a mod p. 
Then R(a) is an integer::::; p - 1, and 

<~) = R;a). 

We use the notation R«(I+') and R( _(i+l) to denote similarly the smallest 
positive integers in the residue class of (I+i and _(I+i respectively. Then we 
have proved the following theorem. 

Theorem 7.1. 

where 

Observe that each entry in the determinant Dp is an integer of absolute 
value::::; p - 1. 

The absolute value of the determinant is the volume of the fundamental 
domain of its row vectors, say. This volume is bounded by the product of the 
Euclidean lengths of these vectors (Hadamard inequality). Carlitz [Cal 
observed that this gives the bound 

As Carlitz-Olson relate it, the history of the determinant in Theorem 7.1 
is amusing. The determinant 

p - 1 
det R(ab- 1), a, b = 1, ... , -2-

was known classically as the Maillet determinant, conjectured to be =1= 0 by 
Maillet. Malo computed it for p ::::; 13, and found it equal to the appropriate 
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power of p. He conjectured that it was always so equal, but Carlitz-Olson 
computed a bit further, and found extra factors. They derived that the 
Maillet determinant is equal to the determinant of Theorem 7.1 (up to the 
obvious power of 2), and then also to the class number times that power of 
p by using the expression of the class number as a product of generalized 
Bernoulli numbers (not called that at the time). Thus Malo had missed out 
the class number factor. 

In this book we have entirely left out questions having to do with the size 
of the class number (as distinguished from certain congruence properties). 
We refer the reader to recent papers for these, notably the following which 
contain more extensive bibliographies than we give here. We let hm = class 
number of Q(J1m), and p is prime. 

On the one hand, Carlitz and Carlitz-Olson [Cal, [Ca-O] write h; in 
the form ± D/p(P-3)/2 where D is a certain determinant of dimension (p - 1)/2 
whose entries are integers between 1 and p - 1. Carlitz pointed out that 
Hadamard's inequality immediately gives 

Masley-Montgomery [M-M] also prove the inequalities 

for primes p > 200. Thus the Carlitz bound is reasonably sharp. For applica­
tions of this see Ribet [Ri]. 

For primes p, it has been proved by Uchida [Uch] that hp = 1 if and only 
if p ::; 19. More generally, Masley and Montgomery [M-M] subsequently 
proved that hm = 1 for precisely 29 distinct values of m (always assumed 
;;E 2 mod 4), the largest of which is m = 84. Masley [Mas 2] shows that hm = 2 
if and only if m = 39, 56. For Euclidean cyclotomic fields, see also [Mas 1]. 

93 



4 The p-adic L-function 

In this chapter we return to p-adic integration theory, and give Mazur's 
formulation of the p-adic L-function as Mellin transform. It turns out to be 
more convenient as a basic definition, than Iwasawa's previous formulation 
in terms of power series. The connection is made via Example 2 of §1. We 
derive further analytic properties, whlch allow us to make explicit its value 
at s = 1, thereby obtaining Leopoldt's formula in the p-adic case, analogous 
to that of the complex case. We also give Leopoldt's version of the p-adic 
class number formula and regulator. 

The basic arguments are due to Leopoldt [Le 11]. However, we shall 
follow in §l and §2 a course of Katz, which developed systematically opera­
tions on measures and their corresponding formulation on power series in the 
Iwasawa algebra. In this manner, constructions which appear slightly tricky 
in Leopoldt's paper here become completely natural, and even forced from 
these measure theoretic operations. 

The Leopoldt transform then appears as an extension of an integral 
transform to a somewhat wider class of power series than those with p-adic 
integral coefficients. No use will be made of this, since only integral valued 
measures occur in the analysis of the p-adic L-function, but we include 
Leopoldt's results for completeness, for convenience of reference if the need 
ever arises for them. 

The p-adic L-function in the case of elliptic curves is discussed in Robert 
[Ro], and especially Coates-Wiles [C-W 2], [C-W 3]. See also Lichtenbaum 
[Li 3], and Katz [Ka] for general comments concerning its connection with 
formal groups. For the case of totally real fields, Shintani's evaluation of the 
zeta function [Sh] presumably allows a development of the L-function similar 
to that of the cyclotomic case. 

This chapter is used only in Chapter 7, and it can therefore be omitted 

94 



§1. Measures and Power Series 

without loss of the logical connections. On the other hand, if one leaves out 
the section on the p-adic regulator, then the chapter appears as a natural 
continuation of Chapter 2, and is essentially measure theoretic, independent 
of Chapter 3. 

Throughout, we need the fact that if 0 is the ring of integers in a p-adic 
field, then there is a natural isomorphism 

lim o[XJj«(1 + X)P" - 1) ~ o[X]]. 
+-

The limit is the projective limit, and is called the Iwasawa algebra. This is a 
basic fact of algebra. In the next chapter, we need further facts about this 
algebra and modules over it. For the convenience of the reader, all these 
facts and their proofs will be placed in the next chapter. 

§1. Measures and Power Series 

Let Cp be the completion of the algebraic closure of Qp, and let 0 = 0cp 

be the ring of p-integers in Cpo By a measure J.1 we shall mean an o-valued 
distribution on Zp. This means that for each integer n :2: 0 we have a function 

such that the family {J.1n} is a distribution on the projective system Z(pn). 
Let Cont(Zp, 0) or C(Zp, 0) be the space of continuous functions on Zp 

into 0, with sup norm. As usual, there is a bijection between measures and 
bounded functionals 

A: Cont(Zp, 0) --7 O. 

[A Zp-linear map A is called bounded if there exists C > 0 such that 

IA(cp) I :0:; Cilcpli for all cP E Cont(Zp, 0). 

The inf of such C is called the norm of A, and denoted by IIAII. The bounded 
functionals form a p-adic space. J Indeed, it is clear that any measureJ.1 gives 
rise to a functional 

On the other hand, suppose A. is a bounded functional. If x E Z(pn), let CPx 
be the characteristic function of the set of elements y E Zp such that 

y == xmodpn. 

Define 

J.1,,(x) = A(CPx)' 
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It is then clear that {Iln} defines a measure. Since any continuous function 
on Zp can be uniformly approximated by step functions, it follows easily 
that the correspondence 

is a bijection from o-valued measures on Zp to bounded functionals. 
Furthermore, define the norm 

111111 = sup Illn(x)l, 
n,'" 

taken for x E Z(pn) and all n. Then the map Ill--? dll is easily verified to be 
norm preserving. 

The Iwasawa algebra is obtained as the projective limit 

Ao = lim o[X]/«l + X)pft - 1) ~ o[[Xll, 

and 

o[X]/«1 + X)pn - 1) = o[T]/(Tpft - 1) 

where T = 1 + X. Let Yn = T mod (pn - I), so y~n = 1. Let as usual 

( r) = r(r - 1) ... (r - k + 1). 
k k! 

The function Iln on Z(pn) can be viewed as an element of the group algebra 
o[Yn], namely 

p~: Iln(r)y~ = p~: Iln(r) :~ol C)Xk 

= p~: C~l Iln(r) G) )Xk 
where the right-hand side is read mod (1 + X)pn - 1. Thus 

pn_l pn_l 

2: Jln(r)y~ = 2: Cn,kXk = Pn(X), 
r=O k=O 

where the coefficients Cn,k are given by 

The canonical homomorphism Z(pn+l) ~ Z(pn) maps 
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and we let 

P(X) = limPn(X) 

be the projective limit of these elements in the Iwasawa algebra. We call 
P(X) the power series associated to J1, and also denote it by (PJ1)(X) or 
PJ1(X). Thus 

P: o-valued measures on Zp _ o[[X]] 

is an o-linear map. Conversely, any power series IE o[[X]] defines a com­
patible system of elements in the group algebras o[Yn], so the map P is 
bijective. We write 

1= PJ1 or J1 = J1f 

to mean that I is the power series associated to J1 as above. We call P the 
Iwasawa isomorphism. 

For any x E Zp let 

x(x - 1)·· ·(x - k + 1) (Xk ). 
Ck(x) = k! = 

Since Ck(r) is an integer for any positive integer r, and since Z + is dense in 
Zp, it follows that 

is a polynomial map of Zp int;) itself, and in particular is continuous. 
For fixed n, define 

C<n)( ) = r(r - 1) .. ·(r - k + 1) 
k x k! 

where 0 ::::: r ::::: pn - 1, and r == x mod pn. Then Cfcn) is a step function, 
defined at level n, and 

lim Cfcn) = Ck uniformly. 
n-+CO 

Since the coefficients Cn,k in the polynomial Pn(X) are given by the sum of 
products of J1n and the binomial coefficient, we obtain: 

Theorem 1.1. Let I(X) = L: CkXk E o[[X]]. Then 
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Theorem 1.2. The power series PJ1 is the unique power series f such that for 
z in the maximal ideal of 0, we have 

1 (1 + z)X dJ1(x) = fez). 
Zp 

Proof We have 

We can interchange the sum and integral, apply Theorem 1.1, and we see 
thatPJ1 has the desired property. Uniqueness is obvious since any power series 
is determined by its values. 

Example 1. Let J1 be the Dirac measure at a point s E Zp, that is 

1 <p dJ1 = <pes). 
Zp 

Then the associated power series f is 

f(X) = ~ (S)Xk = (1 + X)s. 
k=O k 

Example 2. Let v be a measure on Zp whose support lies in the open 
closed subset 1 + pZp. Let y be a topological generator of 1 + pZp, for 
instance y = 1 + p. There is an isomorphism 

such that 

By pull back, there exists a unique measure J1 = J1f on Zp such that 

f US dv(u) = 1 yS:': dJ1f(X). 
l+PZp Zp 

By Theorem 1.2, writing yS = 1 + z, we get 

, f US dv(u) = f(yS - 1). 
l+pZp 
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§1. Measures and Power Series 

The power seriesfis not easily determined in terms of v. Iwasawa expressed 
his results on p-adic L-functions in terms of the power series f Mazur gave 
the formulation in terms of the integral, see §3 below. 

Theorem 1.3. (Mahler) A function cp from Zp into 0 is continuous if and only 
if there exist elements an E 0 such that lanl -+ ° and 

cp(x) = I an (X) . 
n=o n 

The sequence {an} is uniquely determined by cpo 

Proof Given a sequence {an} as above, it is clear that the function 

is continuous. For uniqueness, let 

Acp(x) = cp(x + 1) - cp(x). 

Then cp(o) = co, and furthermore 

and 

This proves uniqueness. 
We now prove existence. In the applications, the measures will take values 

in the ring of p-adic integers in a finite extension of Qp. An argument using 
tensor products reduces the general case to this case, and we omit it since we 
have no use for it. The case of a finite extension is then reduced to the case 
when the measure is Zp-valued by taking a basis for the ring of values over 
Zp and projecting on the coordinates. We now handle this case. 

Let B be the Banach space of sequences (an) with an E Zp, and lanl -+ 0, 
under the sup norm. We have a Zp-linear map 

We have to show it is surjective. By completeness of C(Zp, Zp) it suffices to 
prove that a given f E C(Zp, Zp) is congruent to the image of an element 
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4. The p-adic L-function 

of B mod pn for each n, and by a simple recursion, it suffices to do this mod p. 
In other words, it suffices to prove that the map 

given by the same formula as above, is surjective. But 

C(Zp, F p) = U Maps(Z(pN), F p) 
N 

because F p is discrete and finite. 

Lemma. Let 0 ::; k ::; pN. Then the function 

of Zp into F p is periodic of period pN. 

Proof We have to show 

Since 

we prove the lemma by comparing the coefficients of Tk. 

Now we are reduced to showing that 

is bijective. Since both spaces have Fp-dimension pN, the surjectivity follows 
from injectivity, which is proved the same way we proved that the function 
ep(x) has uniquely determined coefficients an. This proves Mahler's theorem. 

Corollary. Iff(X) = .L cnxn and 

then 

so 

Irep dll f I ::; (suplani)llfll ::; Ilfll· 

100 



§2. Operations on Measures and Power Series 

We define the norms: 

Ilfll = sup lenl 
n 

11f111 = sup lf1n(X)1 as before. 
n.:>: 

Theorem 1.4. We have Ilfll = 11f1111. 
Proof Since 

we get trivially Ilfll :::; 11f1/11. Conversely, given a level pn, let Xo E Z(pn) and 
let cp be the locally constant function such that 

cp(Xo) = 1, and cp(x) = 0 if x of Xo, X E Z(pn). 

Then 

and on the other hand, from the corollary of Theorem 1.3, we get 

If cp df11 I :::; Ilfll, 

so 11f1/11 :::; Ilfll as desired. 

§2. Operations on Measures and Power Series 

We shall give a list of integration formulas, or better, a list of operations on 
measures and their corresponding operations on power series. 

Meas O. i df1f = f(O). 
Zp 

Proof Special case of Theorem 1.2 with z = O. 

For the next property, we let 

t/I .,(x) = (1 + z)'" 

if Z E m = maximal ideal of o. Also (with formal groups in mind) we write 

Meas 1. 

x [+] Z = X + Z + zX = (1 + z)(l, + X) - 1. 

t/lzf1f = /lg, where g(X) = f(X [+ ] z). 
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4. The p-adic L-function 

Proof For WE m we have 

f l/Iw d(l/IzJl,) = f l/Iwl/lz dJl, Jzp Jzp 

= L (1 + w)"(l + z)" dJl,(x) 
zp 

= L (I + w + z + wz)" dJl,(x). 
zp 

The property is then clear from the definitions. 

In particular, let C be a pRth root of unity, and let z = C - 1. Then 

and we find: 

Meas2. 

where g(X) = f(C(1 + X) - I) = f(X[+ HC - 1». 

As before, putting T = 1 + X, andf(X) = fGm(T) iffis a rational func­
tion, we can write the power series g(X) in Meas 2 in the form 

Moreover, let ({J be a step function, constant on cosets mod pR. Write the 
Fourier expansion 

({J{x) = 2: rPmc" 
,,""=1 

We find: 

Meas3. ({JJl, = Jlg 

where g(X) = 2: rPmf(C(1 + X) - 1). 
,P"=l 

If f(X) = fGm(T) is a rational function, then 

Let Up = U be the operator 

Uf(X) := f(X) -! 2: f(C(1 + X) - 1). 
P ,P=l 
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§2. Operations on Measures and Power Series 

We call U the unitization operator because of the next property. 

Meas 4. If ({J = characteristic function of Z~, then 

({JJi, = JiUl· 

Proof. We compute trivially the Fourier expansion of ({J: 

Then Meas 3 gives 

g(X) = 2: 4>(C)f(C(1 + X) - 1) = Uf(X), 
'''=1 

as was to be shown. 

Remark. Let A be the formal multiplicative group (cf. Chapter 8). In the 
notation of such groups, we can write the unitization operator in the form 

Uf(X) = f(X) - ! 2: f(X [ + ] z). 
P 2eA" 

Meas 5, Let X be a character on Z:, of finite order with conductor N = 
power of p. Let C be a primitive Nth root of unity, and let 

sex, C) = 2: x(a}Ca. 
aeZ(N)' 

Then 

XJi, = Jig 

where 

g(X) = s<t C) 2: x(a)f(C-a(X + 1) - 1). 
aeZ(N)' 

Iff is a rational function, then 

Proof. It suffices to apply Meas 3 and to compute the Fourier transform 
of X. This is trivial, and we have 

if x == Omodp 

if x == a ¢ 0 modp. 
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4.· The p-adic L-function 

Meas 6. 

where D = (1 + X)Dx. In particular 

Proof Note that 

x = lim (1 + z)X - 1 = lim ljIzCx) - 1. 
2->0 Z 2->0 Z 

Hence for any step function cp we get 

f xcp(x) dJ1f(X) = lim f ljIzCx) - 1 cp(x) dJ1f(X) 
2->0 Z 

= lim f cp(x) dJ1g.(X) 
2->0 

(by Meas 1) 

where 

gz(X) = I(X + Z + :X) - ICX) = (1 + X)f'(X) mod z 

by Taylor's formula. The desired result follows by taking the limit as z -? 0 
and using the non-trivial part of Theorem 1.4, that is: 

Remark. We shall deal throughout with three variables. Let T be the 
variable on the "multiplicative group." We put 

x = T - 1, T=l+X. 

Then Z is the corresponding variable on the additive group. For any power 
series I(X) (with coefficients in a field of characteristic 0) there is a corre­
sponding power series denoted by /*(Z) or IGaCZ) such that 

This last equality makes sense only when I is a rational function. 
The differential operator D then can be expressed in terms of the three 

variables, 

(1 + X)Dx = Dz = TDT • 

The expression in terms of T applies only to rational functions of T (rational 
functions of X). The first two expressions in terms of X and Z apply to 
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§3. The Mellin Transform and p-adic L-function 

arbitrary power series, and for any positive integer k, the expression D"f 
makes sense whether we view f as power series in X or Z. Furthermore, 

Iffis a rational function, this is also equal to (TDT )kfGm(1). 

Meas 7. Let g = Ug so flg is a measure on Z:. Then 

where h is any power series such that Dh = g. 

Proof Since a-1flg(a) is a measure on Z:, there exists a power series f 
such thatfE o[[X]], 

Then 

whence by Meas 6, 

g = Df= DUf 

We let h = Ufto conclude the proof. 

§3. The Mellin Transform and p-adic L-function 

Let (j) be the Teichmuller character. If p is odd, then 

(j): Z: -+ flp-l 

is the character such that (j)(a) == a mod p. If p = 2, then we define (j)(a) = ± 1 
such that 

(j)(a) == a mod 4. 

Then we can write uniquely an element a E Z: as 

a = (j)(a)<a) , 

where <a) == 1 mod p if p is odd, and <a) == 1 mod 4 if p = 2. 
Let fl be a measure. We define its Gamma transform as a function on Zp 

by the integral 

rpfl(S) = i <a)S dfl(a), 
z· p 

and we define its Mellin transform, also as function on Zp, by 

Mpfl(S) = i <a)Sa- 1 dfl(a). 
z~ 
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4.· The p-adic L-function 

It is clear that rpJi and MpJi are continuous in s. (For analyticity, see below.) 
Since the integral is taken on Z;, MpJi depends only on the restriction of 
Ji to ZO;, so if Ji = Jir, then 

If Ji = Ji" we write sometimes Mpf instead of MpJir, and similarly for the 
Gamma transform. 

Note that a-I dJi(a) for a E Z; is also the functional associated with a 
measure, so that the Mellin transform is actually a special case of the Gamma 
transform (of another measure). 

Theorem 3.1. Let g E oUX]] be such that Ug = g, and let h be a power 
series such that Dh = g. Then Uh E o[[X]] and 

rpUh = MpJig. 

Proof This is an immediate application of Meas 7, after integrating the 
function (a)s. 

We now consider the analyticity properties. 

Lemma. Let Ji be a measure on Z;. Then there exists a power series 
hE Zp[[s]], 

00 

h(s) = 2: bnsn 
n=O 

such that bn -+ 0 as n -+ 00, with the property that for all s E Zp, 

h(s) = r (a)S dJi. 
Jz; 

Proof The integral can be written as a sum of integrals over cosets of 
+ pZp (or 1 + 4Z2 if P = 2). Changing the measure appropriately with 

respect to each coset, we are reduced to proving (say for odd p) that for any 
measure Ji, the integral 

has the desired analyticity property. We note that 

f ~ (a - l)n 
= . L. s(s - 1)·· ·(s - n + 1) , dJi(a). 

l+PZp n=O n. 
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§3. The Mellin Transform and p-adic L-function 

But a-I == 0 mod p, and so (a - l)njn! is p-integral for all n. Furthermore, 
(a - l)njn! tends to 0 p-adically as n - 00. Hence we can interchange the 
sum and integral to yield 

where Pn is a polynomial of degree n with integral coefficients, and 

f (a - l)n 
Cn = ,dJl(a) 

l+PZ" n. 

is p-integral, and Cn - O. It is then clear that 2: Pn(s)cn can be written as a 
power series h(s) whose coefficients bn tend to 0 as desired. 

We had the measure E1•c in Chapter 2, with C E Z:. Let s be a p-adic 
variable in Zp. For any c such that X(c)(c)S is not identically 1 we define the 
p-adic L-function Lp by 

-1 
Lp(1 - s, X) = 1 _ X(C)(C)8 MP(XE1,c)(s) 

= 1 _ ~~)(C)8 fz. (a)Sx(a)a- 1 dE1,c(a). 
p 

By the lemma, the integral is analytic as a function of s. The factor in front 
is analytic except when 

X(C)(C)8 = 1. 

If X is non-trivial, we can select C such that X(c) # 1, and then the factor in 
front is also analytic at s = O. 

Theorem 3.2. The value of Lp(l - s, X) is independent of the choice of c, 
and for any positive integer k, 

In particular, if k == 0 mod p - 1, and p is odd, then 

Proof Since the set of sufficiently large integers k == 0 mod p - 1 is dense 
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4. The p-adic L-function 

in Zp, we see that the first assertion follows from the explicit values given at 
integers of the form 1 - k as described. For these, we have: 

1 
= (1 - xw-k(C)Ck) k Bk'l.W- k by Theorem 2.4 of Chapter 2 

= (1 - X(C)(C)k) ~ Bk'l.W-k. 

This proves the theorem. 

Theorem 3.3. Let g = Ug and let h be the power series such that 

Dh = g and h(O) = O. 

Then 

Proof By Meas 7 we have 

The formula is then clear from the definition of U. 

To compute Lp(l, X) we have to work out the power series associated to 
E1 ,c and then apply the formalism of the preceding section systematically 
to get the answer, with s = 0 in Lil - s, X), using Theorem 3.3. 

Proposition 3.4. Let c E Z:. The power series associated with the measure 
E1 ,c is 

1 C 

f1,c = T - 1 - TC - l' with T = 1 + X. 

Proof It is immediate to verify that as power series in X the expression 
on the right-hand side is holomorphic at X = 0, and that its coefficients are 
p-integral because c is a p-unit. Let 

I'.(T) = log T _ clog T . 
J! T-l T"-1 
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§3. The Mellin Transform and p-adic L-function 

Putting T = eZ we find 

/(T) = /*(Z) = eZ ~ 1 - ec:~ 1 

On the other hand, letA,c be the power series associated with E1 ,c, and write 

Since 

it follows from Meas 6 that 

so 

Z'l* c(Z) = '(1 - ck)Bk Zk = /*(Z) = 2.. - ~. './:. L k! T-I T"-l 

It follows that 

as desired. 

Proposition 3.5. Let X be a non-trivial character on Z; with conductor N. 
The power series associated with XE1,c is 

where 

GxCT) = SeX, n L x(a) 1 
N aeZ(N)* ,aT - 1 

Proof. Immediate from Meas 5. 

We shall now assume that c is an integer> 1 prime to p. 
Written in full, the power series for gx,c is 
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4. The p-adic L-function 

If we let 

where: 

-l ranges over cth roots of unity "1= 1, 

a ranges over Z(N)*, 

then it is easy to see (and we carry out the computation below) that 

Furthermore, 

The situation is then set up to apply Theorem 3.3. 
We now prove that Dhx.c = gx. c• Observe that since 2: x(a) = 0, we have 

G (T) = S(x, 0 "" x-(a) _Ca _ = SCl,O "" x-(a) _T_. 
x N -f T - Ca N -f - T - Ca 

Proof Taking the logarithmic derivative of 

TC - cae = n (T - -lca) 
.I. 

we obtain 

Multiplying by sex, O/N proves the lemma. 

The assertion 

follows by using 

and differentiating naively using D = TDT • 
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§3. The Mellin Transform and p-adic L-function 

We shaII recaII below how it is possible to extend the definition of the 
p-adic logarithm uniquely to a continuous function on aII of C; such that 
log p = O. This is the log with which we deal in the next theorem, giving us 
Leopoldt's value of the L-function Lp(s, X) at S = 1. 

Theorem 3.6. Let X be a primitive Dirichlet character with conductor N equal 
to a power of p. Then 

Lil, X) = - sex, 0 2: x(a) 10g(1 _ ,a). 
N aeZ(N)' 

Proof By Theorem 3.3, Proposition 3.5, and the definition of Lp(1, X), we 
find: 

But 

Using the fact that N is the conductor of X and that the sum of a non-trivial 
character over a group is 0, we leave to the reader the verification that 

It follows that 

as was to be shown. 

2: x(a) 10g(1 - A,ap ) = o. 
a 

_ sex, 0 ~ -( ) I 1 - ,ca 
- ---y;.r- -f X a og 1 _ ,a 
= set 0 exec) - 1) 2: x(a) 10g(1 _ ,a), 

a 

Appendix. The p-adic Logarithm 

We recall briefly how to extend the p-adic log to the multiplicative group 
C;. The p-adic log is defined first by the usual series 

x2 
logi1 + x) = x - 2" + .... 
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4. The p-adic L-function 

We shall omit the p as subscript. The series converges for Ixl < I (the 
absolute value is that on Cp , the completion of the algebraic closure of Qp). 
We extend the log to all units of C: as follows. The units have a product 
decomposition 

where j1[p] is the group of roots of unity in F of order prime to p, and U1 is 
the group of units == 1 (mod p), and pip in C:. For each unit u we let (u) 
be its projection on U1 , and we define 

log u = log (u). 

Thus the log has been extended to all units, and it is clear that this extension 
is continuous, and is a homomorphism. 

It· is even possible to extend the log to the whole multiplicative group 
C: (following Iwasawa). We let P be a subgroup of C: containing the 
powers of p, and one tth root of p for each positive rational number t. Then 
the multiplicative group of C: has the product decomposition 

Again we define the log of an element CI. E C: to be the log of its projection 
on U1 • 

We leave it as an exercise to the reader to verify that this extension is 
continuous. It is obviously a homomorphism. In particular, log p = O. 

As for uniqueness, suppose the log has been extended to a continuous 
function on C;, which is a homomorphism into the additive group. Then the 
log has to vanish on all roots of unity. If logp = 0 then 10gpT = 0 for all 
rational numbers r. Given a E C: there exists r such that apT is a unit. Hence 
the extension is determined by its values on units. Furthermore there exists 
a root of unity, such that apT' is == I mod m, where m is the maximal ideal 
of the integers of Cpo Hence the log is determined by its values on elements 
== 1 mod m, where it is defined by the usual power series. This proves 
uniqueness. 

§4. The p-adic Regulator 

Let K be a totally real number field, and let E = EK be the group of units 
of K. Let p be a prime number. Let Ub ... , UT be a family of independent 
units in K, and let 

0"1: K -+ Cp , i = 1, ... , r + I 

be the embeddings of k in the p-adic complex numbers (completion of the 
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§4. The p-adic Regulator 

algebraic closure of Qp). We suppose lTT+1 = id. We define the p-adic regulator 
up to sign, 

Rp(Uh •.. , uT) = ± det log IT,Uj' 

If Uh ... , Ur are a basis for the units (mod roots of unity), we simply call it 
the p-adic regulator, and write 

If K is the real subfield of Q(f.1m), and Iff is the group generated by the real 
cyclotomic units, then we let 

where U1, ••. , Ur generate these cyclotomic units, mod ± 1. 
We leave it to the reader to verify: 

Theorem 4.1. Let K be the real subfield of Q(f.1m). Then 

We know from Theorem 5.1 of the preceding chapter that 

h+ = (E: Iff). 

Let ga (a prime to m) be the cyclotomic units, and g; the corresponding 
real cyclotomic units. From our definition of the p-adic log, we know that 
for any embedding IT: Q(f.1m) -7- Cp , 

Thus in writing down the regulator, we can use the usual form for the 
cyclotomic units, without bothering to write down the extra root of unity. 

We may write the p-adic cyclotomic regulator by the Frobenius determinant 
formula, 

Rp(lff) = det log lT~b = n 2: i(a) log ga, 
a.b;H X"l aeG 

where G = Z(m)*J ± 1. Since 
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4. The p-adic L-function 

and since LaeG x(a) = 0, we may also write this formula in the form 

Rp(cff) = n L x(a) log((a - 1). 
x*l aeG 

The product is taken over all non-trivial characters of Z(m)* j ± 1. 

Theorem 4.2 (Brumer). We have Rp =I ° for the real cyclotomic field 
Q(Pm)+. 

Proof The cyclotomic units are algebraic, and it is a known theorem from 
the theory of transcendental numbers that the logs (p-adic or otherwise) of 
multiplicatively independent algebraic numbers are linearly independent over 
the algebraic numbers. The proof is the p-adic analogue of Baker's proof for 
the corresponding result over the complex numbers, see Brumer [Br], or 
[L 4], before Chapter VIII, Introduction to the Baker method. The proof given 
there applies p-adically. The factorization of the regulator into a product of 
linear forms in logarithms then shows that the regulator is not 0. 

Theorem 4.3 (Leopoldt p-adic Class Number-regulator Formula). Let 
m = pn be a prime power, and K+ = Q(flm) + . Then 

Proof From Theorem 4.1 and the complexly derived index 

of Theorem 5.1 in the preceding chapter, we find: 

±h+ RP(E) = ±Rp(cff) = n n x(a) logp((a - 1) 
X*l aeG 

X even 

n m(x) 1 
= - Sex 2) 2 LP(1, x) 

X*l , 
X even 

by Theorem 3.6, the!- appearing because G = Z(m)*j ± 1, 

by using the complex Theorem 3.1 of Chapter 3. Selecting the sign of the 
regulator Rp appropriately yields the desired formula. 
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Remark. The proof of the formula involves the complex case. Presumably 
there is a direct proof, which is valid for all totally real number fields K. 
Cf. the Appendix of Coates Durham lectures [Co 3], where such a proof is 
given for the characteristic polynomial of a certain Iwasawa module. The 
extent to which analogues of cyclotomic units will ultimately play a role in 
such proofs is not clear at present. 

§5. The Formal Leopoldt Transform 

Let K be a field of characteristic O. Let T be the variable on the multiplicative 
group. We put: 

x = T - 1, T=X+1. 

Then Z is the corresponding variable on the additive group. Note that 

Changing variables gives rise to the notation 

This last equality makes sense only whenfis a rational function. 
For any power series f E K[[X]] we define the Leopoldt transform rf as a 

function on integers ;;::: 0 by 

Zk 
fG.(Z) = 2: rf(k) k!' 

As before we let 

Dx = d/dX, Dz = d/dZ, DT = dJdT. 

Then 

Dz = (1 + X)Dx = TDT, 

and for any integer k ;;::: 0, 

Define coefficients Yn(k) by 

Then 

00 Zk 
(eZ - l)n = 2: Yn(k) " 

k=l k. 

Yn(k) = D~(eZ - l)nlz=o = (TDTY'(T - l)nIT=l 

Yn(k) = 0 if k < n. 
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4. The p-adic L-function 

Lemma. (a) We have 

Yn(k) = i (_l)n-I(~) i". 
1=0 I 

(b) Each integer Yn(k) is divisible by n!. 

Proof As to the first assertion, it is immediate by induction that 

Hence 

has the expression as stated. On the other hand by induction it follows that 
given an integer n, for each integer k there exist integers an> ... , an-Ie such 
that at = 0 if i > 0, and 

(TDT)"(T - l)n = an(T - l)n + nan-leT - 1)n-l + ... 
+ n(n - 1)·· ·(n - k + l)an_,,(T - 1)n-". 

Putting T = 1 yields the second assertion. 

In the light of the lemma, a power series f(X) has the Z-expression 

Consequently, 

f(X) = i i an Yn(~) Z:. 
n=o "=0 n. k. 

'" '" Yn(k) Z" 
ZDzf = n~"~ an fi! (k - 1)! 

= ~ ~ a k Yn(k)Z". 
n~o,,~o n n! k! 

These formulas can be summarized in the following theorem. We let CCZ, K) 
denote the space of functions from Z into K. 

Theorem 5.1. There exists a unique linear map 

r: K[X] -,)0 C(Z, K) 

satisfying anyone of the following equivalent conditions: 

n. 
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§6. The p-adic Leopoldt Transform 

I'2. r(xn)(k) = Yn(k). 
n! n! 

I'3. 

This map also satisfies: 

I'4. r(ZDzf)(k) = krf(k). 

Observe that the Leopoldt transform is defined by I'3 for power series. 
The other two conditions I'1 and I'2 do not make sense for power series. 
However, in the next section, we shall work over a p-adic field K where these 
other conditions do make sense for a suitably restricted set of power series, 
with certain convergence conditions. 

§6. The p-adic Leopoldt Transform 

For simplicity, we suppose that p is an odd prime number. Let K be finite over 
Qp. Let Cp = completion of the algebraic closure of K. We denote the p-adic 
absolute value by I I = lip, normalized so that 

Ipi = lip· 

We define the Leopoldt space: 
2 = 2K = space of power series 

xn 
f(X) = .2 an-,' n. 

such that 

We define the Leopoldt norm 

Ilfliz = max lanl· 
n 

Then2 is a Banach space,and a Banach algebra because Ilfg liz ~ Ilfllzllgllz. 

Theorem 6.1. Iff E 2 then f converges on the disc of elements 

For such x we have 
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4. The p-adic L-function 

Proof Obvious, because 

Ipln,(p-ll :::; In!! and so I an ~~ I :::; lanl· 

We let C(Zp, K) = Banach space of continuous functions on Zp with 
values in K, and the sup norm. 

If a E Zp and pia, we let <a) = o. 

If a E Z: we write 

a = C<a) = w(a)<a) 

where C E jlp-l and <a) == 1 mod p. The Teichmuller character w by definition 
is such that 

w(a) = C. 
If s E Zp, then 

<a)S = lim <a)k 
k-+s 

is defined in the usual way, where k ranges over positive integers approaching 
s p-adically. If a is not prime to p, then we let <a)S = 0 for all s. 

If X is a character on Z:, as usual we put x(m) = 0 if m is divisible by p, 
so 

x(m)<m)S = 0 if plm. 

If X = wa. where a is a residue class modp - 1, and k == a modp - 1, then 
for any positive integer i such that pti, we have 

Theorem 6.2. Let a be a residue class mod p - 1. There exists a unique 
continuous linear map 

satisfying anyone of the following three equivalent conditions: 

r .. 1. ra.((1 + x)m)(s) = wa.(m)<m)S, 

for any integer m ;::: o. 

r .. 2. ra.(x,n)(S) = ~ i (-I)n-t(~)wa.(i)<i)S 
n. n.t=o I 

rex 3. r J(s) = lim rf(m) = lim L anr (X;) (m) 
m m n n. 
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§6. The p-adic Leopoldt Transform 

where the limit is taken over positive integers m satisfying: 

(*) m --7 00, m --7 S p-adica/ly, m == Q( mod p - 1. 

This map also satisfies 

II r .. f II ~ Ilfllo2" 

and for s E Zp, 

r .. 4. r .. «ZDz)f)(s) = sr J(s). 

Proof. Any continuous linear map on the space of polynomials (with 
Leopoldt norm) extends uniquely by continuity to the Leopoldt Banach 
algebra. We shall prove that the linear map 

with values 

is continuous, and has the other properties. Uniqueness is obvious. 
If f(X) = ~ anCXnjn!) lies in !l', then lanl--7 0 as n --7 00. To prove that 

r 01 is continuous, it will therefore suffice to prove that the values 

are bounded. In fact, we shall see that r,.(Xnjn !)(s) is p-integral. This will also 
prove that 

Fix the integer n. Let m range over integers as in r .. 3. Such integers are 
dense in Zp, so it suffices to prove that 

r,.(!;)(m) is p-integral for such m. 

If i == 0 mod p, then imjn! is p-integral for large m. If i ;¢; 0 mod p, and 

i = oo(i)(i), 

then for m close to s p-adicaUy, 
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4. The p-adic L-function 

The Lemma (b) of §2 then concludes the proof that Ilr alii ~ Ilfll9', and the 
arguments also show that 1' .. 1 and 1' .. 3 are satisfied. It is clear that r fJ. also 
satisfies l' a 4, thereby concluding the proof of the theorem. 

We can r 0 the p-adic Leopoldt transform •. 
The Leopoldt transform p-adically with characters of was first used by 

Lichtenbaum [Li 3] to deal with elliptic curves. 
In Theorem 6.5 below we shall prove that r 0 is the p-adic Gamma 

transform already mentioned in §3 when applied to a power series with 
coefficients in o. Hence we may then write 

We recall the operator 

Uf(X) = f(X) - ! L f('(X + 1) - 1), 
P 'P=l 

where the sum is taken over all pth roots of unity,. Then for the special 
polynomial (1 + x)n we have 

and 

Hence 

U«(1 + x)n) = (1 + x)n - ! L ,n(1 + x)n 
p , 

= (1 + X)n (1 - ~ f ,n), 

,n = {Po if pin 
if ptn. 

{o if pin 
Ul+xn-« » - (l + X)n if ptn, 

and in particular, U is a projection operator, i.e., 

The next lemma describes the continuity property of the operator U for 
the Leopoldt norm. 
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§6. The p-adic Leopoldt Transform 

Lemma. 

Proof 

The coefficient of Xkjk! in the above sum is either 0 or 

and Ie - lln-k < I(n - k)q, so the coefficient of an is not a unit atp. But 

is a rational integer, and is therefore =0 modp. Hence 

I 1 (<Xl ) Xk 
P- 2: /(eX + e - I) = p- 2: 2: anbn.k -k' 

{;"l k n=O • 

where bn•k E Z and bn•k = 0 mod p. It is then immediate that 

as desired. 

The next theorems prove for the Leopoldt transform on the Leopoldt 
space results which have already been proved for measures. 

Theorem 6.3. Let m be an integer :2: 0, and m = IX mod p - 1. Then 

ruf(m) = ru/(m). 

Proof The two maps 

of K[X1 ~ C(Zp, K) are equal on the polynomials (1 + xy. For a fixed m 
the maps 

/1-+ raf(m) and /1-+ rV/(m) 

are continuous, so the theorem follows by continuity. 
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4: The p-adic L-function 

Theorem 6.4. For f E .IRK we have 

rof(O) = Uf(O) = f(O) - ! 2: f(C - 1). 
P , .. =1 

Proof The power series for Ufin terms of X or Z have the same constant 
term. Hence 

ruf(O) = Uf(O). 

Taking ex = 0, the theorem is obvious from Theorem 6.3, and the fact that 
C - 1 lies in the domain of convergence off by Theorem 6.1. 

The next theorem resulted from a conversation with Ribet. 

Theorem 6.5. For S EZp andfE o[[X]] we have 

i <a)8 dpAa) = rof(s). 
z· 
" 

Proof By continuity in s, it suffices to prove the theorem when s = k is 
an integer ~ 1 and k == 0 mod p - 1. Let qJ be the characteristic function of 
Z:. Then 

i <a)k dJlf(X) = i XkqJ(X) dJlf(X) 
Z;' z" 

= i Xk dJlutCx) 
Z" 

= DkUf(O) 

= rUf(k) 

= rof(k). 

This proves the theorem. 

We now see that the Leopoldt transform is an extension of the Gamma 
transform to the Leopoldt space. 
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I wasawa Theory and Ideal Class Groups 5 

We shall now study Iwasawa's theory concerning proJective limits in Zp­
extensions. 

The first three sections establish purely algebraic facts about projective 
limits, and finitely generated modules over the power series ring Zp[[X]] 
which appears as the limit of p-adic group rings of cyclic groups. The situation 
is quite similar to modules over principal rings when considering finitely 
generated modules over integrally closed Noetherian domains. Cf. Bourbaki, 
Commutative Algebra, Chapter VII, §4, where a general structure theorem is 
given. For 2-dimensionallocal rings, this was complemented by Serre [Se 1] 
who showed that reflexive modules in that case are free, thus getting a com­
plete result for Zp[[X]]. Here we shall follow Paul Cohen's proof analogous 
to finding elementary divisors by row and column operations. 

We shall also follow Serre's exposition [Se 1], giving the asymptotic estimate 
for the orders of the factor modules. This is applied afterwards to the orders 
of ideal class groups. Iwasawa's original proofs were rather complicated, and 
his point of view was that of projective limits of finite abelian p-groups on 
which r ~ Zp operates continuously, and which are of topologically finite 
type for this action. See [Iw 1], [Iw 6]. Serre [Se 1] saw that there was an 
isomorphism of categories between these objects and Zp[[X]]-modules of 
finite type. He introduced this point of view which simplified the proofs and 
also proved successful in subsequent applications. 

The next three sections deal with arithmetic situations arising as special 
cases (but which historically motivated the general results). We consider 
several modules over the Iwasawa algebra. First, we deal with the projective 
limit of ideal class groups. Class field theory identifies this projective limit 
with a Galois group. The reader unacquainted with class field theory can 
simply take for granted the' isomorphism, which is described as we need it. 
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5.· Iwasawa Theory and Ideal Class Groups 

We follow mostly Serre's exposition [Se 1]. The results are valid for arbitrary 
Zp-extensions, not necessarily cyclotomic ones. 

The final two sections go further into certain Galois groups as modules 
over the Iwasawa algebra, and also describe all possible Zp-extensions of a 
given number field in class field theoretic terms. The Leopoldt conjecture 
would imply that there are precisely '2 + 1 independent ones. This depends 
on the Zp-rank of the closure of the global units in the local units. See §5, 
Theorem 5.2. 

§1. The Iwasawa Algebra 

Let r be a topological group isomorphic to Zp. We write r multiplicatively, 
and let y be a fixed generator, so that the isomorphism may be written 

Let 

Then rn is cyclic of order pn, generated by the image of y. Conversely, a 
compatible system {Yn} of generators in a projective system {r n} of cyclic 
groups of order pn would give rise to a generator y in their projective limit. 

We have a commutative diagram 

where T is a variable. Let X = T - 1, T = X + 1. Then Zp[T] = Zp[X], 
and 

Let 

Then 

and all coefficients other than the leading coefficient are divisible by p. Such 
a polynomial is called distinguished. 

We wish to establish an isomorphism 
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§1. The Iwasawa Algebra 

Let 

We first note that if h is any distinguished polynomial, then 

Zp[X]j(h) ~ A/hA. 

This is immediate from the Euclidean algorithm (see Theorem 3.1), which 
shows that AjhA is free of rank deg hover Zp, and similarly Zp[X]j(h) is free 
of the same rank over Zp. Furthermore this same algorithm shows that the 
natural map 

is surjective, so is an isomorphism. 
We thus obtain a natural map for each n, 

whence a homomorphism 

Theorem 1.1. The homomorphism 13 is an isomorphism. 

Proof A trivial induction shows that 

hn = (1 + X)pn - 1 E (p, X)n+l 

where (p, X) denotes the maximal ideal of Zp[X], generated by p and X. 
It follows that the intersection of the ideals hnA must be 0, whence the kernel 
of 13 is 0. Since 13 is clearly surjective, this proves the theorem. 

Note that the isomorphism 13 depends on the original choice of generator 1. 
The projective limit 

is called the Iwasawa algebra. Given a choice of generator 1, it is identified 
with Zp[[X]] by Theorem 1.1, and then we also call Zp[[X]] the Iwasawa 
algebra. 

We now consider modules over the Iwasawa algebra. 
For each n let Vn be a module over Zp[rn], and suppose we have homo­

morphisms 
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5. Iwasawa Theory and Ideal Class Groups 

compatible with the action of the group rings Zp[rn+ 1 ] and Zp[rn] respec­
tively. We may form the projective limit 

which is then a A-module. 

Examples. In §4 of this chapter, Vn = Cn is the p-primary part of the ideal 
class group, and so the projective limit C is a module over A = Zp[[X]]. In 
Chapter 7, we shall consider projective systems oflocal units as modules over 
the Iwasawa algebra. 

If each Vn is a finite abelian group, or is compact, then the projective limit 
V is compact, and Zp[[X]] operates continuously on V, which is then what we 
call a topological module over Zp[[X]]. (Here and in the sequel, compact 
means compact Hausdorff.) Note that Zp[[X]] itself is compact. 

Nakayama's lemma. Let 0 be a local ring with maximal ideal m, and m-adic 
topology. Let V be a compact topological o-module. 

(i) IfmV = V then V = O. 
(ii) If 0 is compact, and Vim V is finitely generated, then V is finitely 
generated by any set of representatives of Vim v. 
Proof Let U be a neighborhood of 0 in V. Since V is a topological 0-

module, for each x E V there exists an open neighborhood Ux of x and a 
positive integer n(x) such that 

A finite number of neighborhoods Ux cover V. Hence there exists an integer 
n such that mn V c U. But m V = V implies mn V = V, and hence V c U for 
all U. Since V is Hausdorff, it follows that V = 0, which proves (i). 

For (ii), let Xl>' •. , Xs be representatives of Vim V, and let W be the 
o-submodule generated by them. Then W is a continuous image of 0(8), and 
is therefore compact, and closed. Then V/W is compact, and we have 

m(V/W) = V/W. 

Hence V/W = 0, and V = W, thereby proving (ii). 

Next we pass to certain results concerning finitely generated modules over 
the Iwasawa algebra. These will be applied to computing orders of certain 
factor groups (which in §4 will be ideal class groups). The reader may omit 
the rest of this section if he wishes to disregard such computations for the 
moment and merely wishes to concentrate on general structural results. 

Two modules V, V' are said to be quasi-isomorphic if there is a homo­
morphism 

V __ V' 
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§1. The Iwasawa Algebra 

with finite kernel and cokernel. It will be shown in §3 that any finitely 
generated V has a quasi-isomorphism with a finite product 

(*) 

where the jj are distinguished. The first factor A(T) is the free part. The other 
factors are A-torsion modules. 

Suppose now that V is a torsion module such that V/hnV is finite for all 
n. We wish to get an asymptotic formula for the order of V/hnV, Such a 
formula does not change under a quasi-isomorphism, so we are reduced to 
consider the two cases when 

V=A/pm and V=A/f 

for some positive integer m, andfis distinguished. 
In the firs't case we have 

the power series ring over Z(pm). In the second case, A/f is a free module 
over Zp, whose rank is degf It may happen in this second case that 

is not finite. We shall first make the assumption of finiteness to get the 
formula for the order, which is a power of p, so we put 

Theorem 1.2. (i) If V = A/pm then en = mpn. 

(ii) Let V = A/f where f is distinguished of degree d, and assume Vn finite 
for all n. Then for all n sufficiently large, 

en = dn. 

(iii) If V is finitely generated over A such that Vn is finite for all n, then 
there exists a constant c such that 

for all n sufficiently large. In the representation of V as in (*) with 
r = 0, we have 

m = .L mi and d = .L degjj. 
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5. Iwasawa Theory and Ideal Class Groups 

Proof In case (i) we have 

and this is just Z(pm)[TJj(pn - 1), which is a free module of rank p1l over 
Z(pm). Thus the computation of the order is obvious. 

Let us now look at case (ii). For any h E A we let hv be the endomorphism 
of V induced by h. We let 

We have 

pn 
Y1I = Yv, Yv = Xv + 1. 

ypn _ 1 = (X + l)pn - 1 == Xp" (modp), 

f== X d (modp). 

Hence there exists no such that for n > no we have 

Xpn-l == 0 mod (f,p) and xt- 1 == 0 modp, 

and therefore 

Y1I-1 = Yt:"-l == 1 (modp). 

It follows that 

Now 

Y1I+1 - 1 = (1 + Y1I + ... + y~-1)(Y1I - 1) 

= (1 + 1 + ... + 1 + O(p2))(Y1I - 1) 

= pU(Y1I - 1) 

where u is invertible. We have therefore shown that 

Furthermore, (Yno - 1) V is of finite index in V, and is therefore a free 
module over Zp of the same rank d as V. This proves (ii). Case (iii) is then 
obvious, thus proving the theorem. 

Next we consider the case when Vjh1lV is not necessarily finite, but make 
additional hypotheses which still allow us to compute the orders of certain 
factor groups asymptotically, and which are satisfied in the application to 
ideal class groups. 

We let 
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§2. Weierstrass Preparation Theorem 

We say that V is of Iwasawa type if there exist elements Vb ••• , VB E V such 
that, if we put 

Uo = Zp-submodule of V generated by (')I - l)Vand Vi,"" v., 

U" = g"Uo, 

then VjU" is finite for all n. In particular, VjUo is finite. For a module of 
Iwasawa type, we let 

V" = VjU". 

Theorem 1.3. Assume that V is of Iwasawa type. Then the conclusions of 
Theorem 1.2(i), {ii), (iii) remain valid, except that in 1.2(ii) we have to write 
the exponent 

e" = dn + Co 

with some constant co. 

Proof Note that Case (i) is unchanged, only Case (ii) is now slightly 
different, but the proof runs along entirely similar lines as follows. In this 
case, V is Zp-free of rank d. An argument similar to that of Theorem 1.2(ii) 
shows that 

for all n ~ no. Let W = g"o V. Then 

e(Vjg"V) = e(VjW) + e(Wjp"-"oW) = Cl + den - no) 

for some constant Cl> since W has the same Zp-rank as V. This proves the 
theorem. 

§2. Weierstrass Preparation Theorem 

The proof ofthe Weierstrass theorem in this section is due to Manin [Man 1]. 
We start with the Euclidean algorithm. 

Theorem 2.1. Let 0 be a complete local ring with maximal ideal m. Let 

<Xl 

f(X) = 2: alX! 
!=o 

be a power series in 0 [[ X]], such that not all ai lie in m. Sayao, ... , an -1 E m, 
and an E 0* is a unit. Given g E o[[X]] we can solve the equation uniquely 

g = qf+ r, 

with q E o[[X]], r E o[X], and deg r ::; n - 1. 
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5. Iwasawa Theory and Ideal Class Groups 

Proof Let a and 't' be the projections on the beginning and tail end of the 
series, given by 

,,-1 

a: L bjXjl-+ L bjXj = bo + b1 + ... + b"_1X "-1 
1=0 

00 

't': L bjX'1-+ L bjX'-" = b" + b,,+1X + b,,+2X2 + .... 
1=" 

Note that 't'(X"h) = h for any h E o[[X]], and h is a polynomial of degree <n 
if and only if't'(h) = O. 

The existence of q, r is equivalent with the condition that there exists q 
such that 

't'(g) = 't'(qf). 

But 

f = af + X"'t'(f). 

Hence our problem is equivalent with solving 

't'(g) = 't'(qa(f» + 't'(qX"'t'(f) = 't'(qa(f) + q't'(f). 

Note that 't'(f) is invertible. Put Z = q't'(f). Then the above equation is 
equivalent with 

Note that 

a(f). 
't' 0 't'(f). o[[X]] ~ mo[[X]], 

because a(f)/'t'(f) E mo[[X]]. We can therefore invert to find Z, namely 

which proves both existence and uniqueness and concludes the proof. 

Theorem 2.2 (Weierstrass Preparation). The power series f in the previous 
theorem can be written in the form 

where hj E m, and u is a unit in o[[X]]. 
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§3. Modules over Zp[[X]] 

Proof Write 

X" = qf + r, 

by the Euclidean algorithm. Then q is invertible because 

q = Co + c1X + .. . 
f=··· + a"X" + .. . 

so that 

1 == coa" (mod m), 

and Co is a unit in o. We obtain qf = X" - r, and 

f = q-l(X" - r), 

with r == 0 (mod m). This proves the theorem. 

The integer n in Theorems 2.1 and 2.2 is called the Weierstrass degree off, 
and is denoted by 

We see that a power series not all of whose coefficients lie in m can be 
expressed as a product of a polynomial having the given Weierstrass degree, 
times a unit in the power series ring. Furthermore, all the coefficients of the 
polynomial except the leading one lie in the maximal ideal. Such a polynomial 
is called distinguished. 

§3. Modules over Zp[[X]] 

The structure of finitely generated modules over Zp[[X]] was first determined 
by Serre [Se 1] who introduced this point of view in Iwasawa theory. As 
already mentioned, cf. Bourbaki for general structure theorems over integrally 
closed Noetherian domains. Paul Cohen showed how one could give a proof 
along the standard lines of row and column operations, cf. [L 3]. Robert 
Coleman pointed out to me that the inductive step as given in [L 3] had to be 
modified, and I am indebted to him for the exposition given in the lemma and 
Theorem 3.2 below. 

We let A = o[[X]], where 0 is a complete discrete valuation ring. We 
denote by p a prime element of o. By a finite module over 0 we mean a 
finitely generated module annihilated by some power pk and some distin­
guished element A. If 0 = Zp, then "finite" has the usual meaning. 

By a quasi-isomorphism we mean a homomorphism with finite kernel and 
cokernel. We denote a quasi-isomorphism by the sign 

M,...,M'. 
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5. Iwasawa Theory and Ideal Class Groups 

Theorem 3.1. Let M be a finitely generated A-module. There exists a quasi­
isomorphism 

where each jj is a distinguished polynomial, irreducible in o[X], i, j range 
over finite sets o/indices, andA(T) is the product 0/ A taken r times,/or some 
integer r. 

The rest of this section is devoted to the proof. 
Suppose that M has generators Ub .•. , Un. Relative to such generators we 

can form the matrix of relations, whose rows are vectors 

such that 

Since A is Noetherian, a finite number of the rows generate aU of them. 
Performing the usual row and column operations on the matrix amounts 

to changing the generators of the module. We shall describe other operations, 
corresponding to embedding the module in a bigger one with finite cokernel. 

An element A E A is called p-free if A does not lie in pA, in other words, if 
we can apply the Weierstrass preparation theorem to it. 

Suppose that there is a relation of the form 

where ..11 is p-free. We can form the new module M' obtained by adjoining a 
new generator v with the relations 

This can be formalized by considering a direct sum 

M EB (v) 

modulo the desired relations, i.e., modulo the submodule generated by the 
elements 

It is then immediately verified that the canonical map of M into the factor 
module is injective. The factor module M'jM is annihilated by p and ..11, 
whence is finite. Furthermore, the elements v, U2, •.. , Un generate M', and 
have the relation 
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In terms of the relation matrix, this means that we shall allow the following 
operations, replacing the matrix R by a matrix R'. 

o 1. If R contains a row (..1.1> PA2' ... , pAn) with ..1.1 not divisible by p, then 
we let R' be the matrix whose rows consist of 

and the rows of R with first element multiplied by p. 

Observe that in this first operation, we may have ..1.2 = ... = An = O. 
Next suppose that some power p" (k :2: 1) divides all elements of R, but 

that there exists one relation 

p"(Al, ... , An) 

such that ..1.1 is distinguished (or equivalently, ..1.1 is not divisible by p). We may 
then form the module M' obtained by adjoining a new element v with the 
relations 

Again, it is easily verified that M is embedded in M' and that M'jM is finite. 
Note that p"(v - Ul) = O. The relations of the submodule 

are generated by R and the additional relation 

We have a direct sum decomposition 

and the relations of v - Ul are generated by p". To prove the theorem, it 
suffices to consider the first component of M'. Thus our second operation is 
described as follows. 

o 2. If all elements of the first column in R are divisible by p", and if there 
exists one relation (p" ..1.1, ... , p" An) such that ..1.1 is not divisible by p, then 
we let R' consist of R and the new row 

Finally we allow one more operation: 

o 3. If R has a relation of the form 
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5. Iwasawa Theory and Ideal Class Groups 

and there exists an element A not divisible by p such that 

is also a relation, then we may replace R by the matrix R' having the same 
rows as R, except that the row pk(Al' ... , An) is replaced by 

This operation corresponds to the surjection with finite kernel 

Row or column operations, or 0 1, 0 2, 0 3 will be called admissible 
operations. 

Given a matrix R over A, we define 

where (a;j) ranges over all admissible transformations of R which leave 
unaltered the components of the first k - 1 rows. 

Remark. If R' is obtained from R by admissible operations leaving the 
values in the first k - 1 rows unaltered, then 

Let r ;::: 1 be an integer. Suppose that R has the form 

(
All 0 ... 0 0 ... 0) 
b ... iT - 1. T - 1 ~ . . . ~ 
* ... * * ... * 

and 

( ATT ..• ATn) ""' O. 
* ... * 

Assume also that Ali for i = 1, ... , r - 1 is a distinguished polynomial with 
the property that 

deg(k)(R) = deg Akk for k = 1, ... , r - 1. 

Then we shall say that R is in (r - 1 )-normal form. If r = 1 then this condition 
is vacuously satisfied, and is the starting point for the induction of the 
following lemma. 
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§3. Modules over Zp[[X]] 

Lemma. Suppose that R is in (r - 1 )-normal form, with its first r - 1 
diagonal elements All, ... , ..1.r - 1,r-1' Then by admissible transformations, we 
can transform R into a matrix which is in r-normal form, and has the same 
first r - 1 diagonal elements. 

Proof Using 0 1 with respect to each of the first r - 1 rows, we may 
assume without loss of generality that any given power pk (k ~ 0) divides 
all components Ali with i ~ rand j = 1, ... , r - 1, that is all components 
lying below the portion of the matrix which has already been diagonalized. 
Using 0 2, we may then arrange that p does not divide some ..1.11 with i ~ r, 
and j ~ r. After a succession of admissible transformations on the lower right 
matrix 

( ..1.rr •.• Ar) 
*********: 

induced by admissible transformations of R which leave the first r - 1 rows 
fixed elementwise, we may then find some element ..1.i1 with i ~ rand j ~ r 
such that 

degw Ati = deg(r)(R). 

The Weierstrass preparation theorem allows us to assume that this element 
..1.;; is a distinguished polynomial, and 

deg Ali = deg(r)(R). 

Finally, row and column interchanges which do not involve the elements Ai! 
(i = 1, ... , r - 1) allow us to assume that..1.;; = ..1.rr-

There remains to show that we can make all other elements on the rth 
row equal to 0 after appropriate transformations. By the Euclidean Algorithm, 
we may assume that 

deg ..1.Tj < deg ..1.TT for r #- j 

deg ..1.Tj < deg ..1.jj for j < r. 

We first deal with the elements to the right of ..1.TT on the rth row. We may 
assume that ..1.Tj with j > r is divisible by p, otherwise we contradict the 
minimality of the degree of ArT' Using 0 1 repeatedly as before with respect 
to the first r - 1 rows, we may then assume that all elements ..1.T1 with j < r 
are divisible by a high power pk. We then use 0 1 with respect to the rth row, 
to divide all elements ..1.Tj (j #- r) by successive powers of p, thus leading to 
some element ..1.r1' withj' > r not divisible by p, a contradiction of deg ..1.rr = 

deg(r)(R). Thus ..1.0 = 0 for j > r. 

For elements ..1.ri to the left of Am that is withj < r, if some such element 
is not 0, then we may use 0 1 with respect to the rth row to divide by p, 
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5. Iwasawa Theory and Ideal Class Groups 

until we are in the situation where there exists j < r such that ATi is not 
divisible by p, contradicting the facts that 

deg AT; < deg Aii and deg Ajj = deg(J)(R). 

Thus we have put the matrix in r-normal form, and proved the lemma. 

Theorem 3.2. If R is a matrix of relations, we can transform R with a finite 
number of admissible operations into a matrix R' of the form 

( ~1l ~ ••. ~ ~ ... ~) 
o O"'Arr 0···0 
00···00···0 

where Ali are distinguished polynomials. 

Proof By the lemma, we can replace R by a matrix R' of the form 

where All are distinguished polynomials, and 

deg AI! = deg(l)(R) for i = 1, ... , r. 

By the Euclidean Algorithm, we may assume that Ail = 0 or 

deg Aji < deg Ali for j -# i. 

In fact, we contend that Ail = 0 for all j -# i. Suppose otherwise, so that 
Ail -# 0 for some j > r > i, so we have a relation 

(Ail> ... , Ajr> 0, ... , 0) 

not identically O. Let 

Then A is not divisible by p, and AUt = 0 for i = 1, ... , r, so 

(AA!l' ... , AAi" 0, ... , 0) 

is also a relation. By 0 3 we may assume without loss of generality that some 
Ail> ... , Ajr is not divisible by p, and then contradict the minimality condition 
on the Ali' This proves the theorem. 
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We return to the module interpretation, to see that Theorem 3.2 implies 
the theorem. Indeed, any module with matrix of relations R' as in Theorem 
3.2 is isomorphic to 

r 

A,,-r EEl EB AI(Ali)' 
1=1 

Finally, iff, g are distinguished and relatively prime, the map 

A(fg) -7 AI! EEl AI g 

is an embedding with finite cokernel. This allows us to decompose the factors 
AI Ali into a direct sum of factors 

where jj . is distinguished and irreducible, thereby concluding the proof of 
Theorem 3.1. 

§4. Zp-extensions and Ideal Class Groups 

Let Ko be a number field. An extension Koo of Ko is called a Zp-extension if 
it is abelian, and its Galois group is isomorphic to Zp. To give such an 
extension is the same as to give a tower of fields 

"" K"" = U K" :::> ••• :::> K" :::> ••• :::> Ko 
,,=0 

such that K" is cyclic over Ko of degree p". 

Examples. Let p be a prime number. Let 

Kn = Q(JlpR+l) if P is odd 

Kn = Q(JlpR+2) if P is even. 

This gives the cyclotomic Zp-extension over the field Ko. 
More generally, let K be any number field, let 

be the extension obtained by adjoining all p-power roots of unity. Then K(p) 

is abelian over K, and it is easy to see that the fixed field of the torsion sub­
group of Gal(K(P)IK) is a Zp-extension of Ko = K, called the cyclotomic 
Zp-extension. We study it later in the book. Note that a non-totally real field 
K always has non-cyclotomic Zp-extensions, cf. §5. Natural examples can be 
constructed with elliptic curves having complex multiplication, cf. [C-W]. 

We say that a prime ideal .);lo of Ko is almost totally ramified in a Galois 
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5. Iwasawa Theory and Ideal Class Groups 

extension K' if the inertia group of a prime .p in K' over .po is of finite index 
in Gal(K'jKo). We say .po is almost uruamilied if its inertia group is finite. 

We consider the following condition of Iwasawa. 

IW. K" is totally ramified over Ko over a finite number of prime ideals 
.pb ... , .ps lying above p, and is unramified over all other prime ideals. 

Lemma. Let Koo/Ko be a Zp-extension. Then: 

(i) Only a finite number of prime ideals of Ko ramify in Koo, they lie above 
p, and they are almost totally ramified. 

(ii) For some positive integer d, the extension Koo/Kct is a Zp-extension 
satisfying IW. 

Proof Some prime ideal .p of Ko must ramify in Kf:> because class field 
theory says the maximal unramified abelian extension of Ko is finite. Let I 
be the inertia group. It is a closed subgroup of r, and #0, hence equal to 
pmzp for some m, so that .p is almost totally ramified. Over the completion 
Ko.p, the maximal tamely ramified abelian extension is finite. Hence the wild 
ramification group is of finite index in r, thus showing that .p lies above p. 
This proves (i). If we let .pb ... , .ps be the finite number of primes which are 
almost totally ramified; and let 

be the inertia groups, and d = max dt> then Koo/Kd satisfies condition IW 
as desired. 

Assume that condition IW is satisfied. 
The same lemma as in Chapter 3, §4 shows that the norm map between 

any two successive steps in the tower is surjective on the ideal class groups. 
We let Cn = C:!') be the p-primary part of the ideal class group in Kn. Then 
we have a surjective sequence 

and we let 

C = lim proj Cn 

be the projective limit. We may view C as consisting of all sequences 

with Cn E Cn and Cn +l mapping on Cn under the norm map. 
Let Mn be the maximal p-primary abelian unramified extension of Kn, in 
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other words the p-primary part of the Hilbert class field of Kn. There is an 
isomorphism given by class field theory 

such that the following diagram is commutative. 

Cn + 1 -? Gal(Mn +dKn + 1) 

Normi I Restriction 

Cn ----* Gal(M,,/Kn) 

Since K" is totally ramified over Kn, it follows that M" is linearly disjoint 
from Koo over Kn. The lattice of fields looks as follows. We let Moo = U M". 

G 

r 

We let 

Remark. If we replace Ko by Kl then Koo over Kl satisfies the same con­
dition IW, so a number of results proved for Koo over Ko apply a fortiori to 
Koo over K1 • Observe that if}' is a topological generator for r, then 

Theorem 4.1. Assume first that IW is satisfied with s = 1. Let [ be the 
inertia group of any prime above .p in G. Then: 

(i) G = [Gc is a semidirect product, and the restriction of [ to Koo gives 
an isomorphism of [ and r. 

(ii) The commutator group G' = Gb- 1 • 

(iii) We have isomorphisms 
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5. Iwasawa Theory and Ideal Class Groups 

Proof We have an exact sequence 

The image of I in r by restriction to K", is surjective because K", is totally 
ramified over Ko. It is injective because M", is unramified over K", and so 

In Go = {I}. 

This proves (i). If U E Go then uY- 1 is a commutator because r operates on 
Go by conjugation. Hence Gb- 1 c G'. On the other hand, G/Gb- 1 is abelian, 
so the reverse inclusion also holds and (ii) is proved. Finally, Mo is the 
maximal p-primary abelian unramified extension of Ko and so Gal(M ",/ Mo) 
is the smallest subgroup of G containing G' and the inertia group 1. Since G 
is the semidirect product of I and Go, we see that (iii) follows from (ii), and 
conclude the proof of the theorem. 

Corollary. We have an isomorphism 

Cn ~ Gal(Mn/Kn) ~ C/CyPfI_ l ~ Go/GlIn - l • 

Proof Apply the theorem to the situation where Ko is replaced by Kn. 

Next consider the general situation with a finite number of primes. 

Theorem 4.2. Assume that IW is satisfied, with primes %h, ... , ~s. Let Ii be 
the inertia group of ~j in G. Then: 

(i) There is a semidirect product decomposition 

and G' = Gb- 1. 
(ii) Let Uj be a generator for I" and write 

Then 

Co ~ GO/(7:1' ... , 7:., G"/:-1). 

Proof Identical with that of Theorem 4.1, except that in the present more 
general situation, we have to look at the smallest subgroup of G containing 
the commutator group G' and all the inertia groups I j instead of a single 
inertia group 1. 

Corollary. Let Uo be the Zp-submodule of Go generated by the elements 
7:1; ... ,7:8 and Gb- 1. Let 
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§4. Zp-extensions and Ideal Class Groups 

Then 

Cn ~ Gc/Un• 

Proof We apply the theorem to K"" as Zp-extension of Kn. This has the 
effect of replacing y by yp" and O"j by O"r. Then 'rj is replaced by ('rjY", because 
for every positive integer k, we have 

whence for k = pn we obtain 

Then 

U - GyP"-l( )g n - C 'rlo ••• , 'rs n 

where ('rlo"" 'r.) is the group generated over Zp by 'rlo"" 'r •• Since 

gn(Y - 1) = y',n - 1, 

we find Un = Ugn, which proves the corollary. 

It will be easily shown below in Theorem 4.4 that C is finitely generated 
over the Iwasawa algebra. Then Theorem 4.2 and its corollary show that C 
is of Iwasawa type as defined in §I, so that one can apply the counting 
procedure given there, to get an asymptotic formula for the orders of the 
groups Cn. 

I wasawa has conjectured that m = 0 in the case of the cyclotomic tower 
Q(Jl.pn), so that in this case, the order ofthe ideal class group (p-primary part) 
would have the form 

Card Cn = pan+c 

for n sufficiently large, in analogy with the orders of points of p-power order 
on abelian varieties. This conjecture has recently been proved by Ferrero and 
Washington. On the other hand, he has given examples of non-cyclotomic 
Zp-extensions K"" over Ko for which m > O. 

Theorem 4.3. Assume that IW is satisfied with one prime. If Co = {I}, then 
Cn = {I} for all n. 

Proof If Co = I, then Theorem 4.1 shows that C = CY-l. Viewing Cas 
module over Zp[[X]], this means that C = XC. But X is contained in the 
maximal ideal of Zp[[X]]. By Nakayama's lemma, it follows that C = {I}, 
as desired. 
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5. Iwasawa Theory and Ideal Class Groups 

Remark. We could let Kn = Q()l n+l)+ be the real subfield of the cyclo-
p 

tomic field. It is a conjecture of Vandiver in that case that Co is trivial. 
[Remember: By definition, Co = CIf) in this chapter.] Thus the Vandiver 
conjecture may also be formulated by saying that 

ht is prime to p, 

and Theorem 4.3 shows that if this is the case, then hi; is also prime to p 
for all n. 

It is probably so that Vandiver actually never came out in print with the 
statement: "I conjecture etc." In [Va], he proves that if the Fermat conjecture 
is false for x P + yP = zP with relatively prime integers x, y, z such that xyz 
is prime to p, then h+ is divisible by p. Later in the paper, he states: "The 
theorem last mentioned as well as Theorem I indicates that much of the 
writer's work concerning Fermat's last theorem is tending toward the possible 
conclusion that if the second factor of the class number of k«() is prime to I, 
then Fermat's Last Theorem is true." The terminology "Vandiver's con­
jecture" seemed appropriate to me. In any case, I believe it. 

Theorem 4.4. For any Zp-extension the module Cover Zp[[X]] is a finitely 
generated torsion module. 

Proof Suppose first for simplicity that condition IW is satisfied with only 
one prime. Then C/mC is a factor group of C/cr-l, which is none other than 
Co by Theorem 4.1, and is therefore finite. That C is finitely generated is a 
special case of Nakayama's lemma. 

In general, when IW is satisfied but with several primes, then we have to 
use another argument. By Theorem 4.2 we know that 

is finitely generated over Zp of rank uniformly bounded by s. Nakayama's 
lemma again shows that C is finitely generated over the Iwasawa algebra. 
Furthermore, applying Theorem 4.2 to K",/Kn, that is replacing y by ypn, 
shows that 

C/(ypn - l)C 

is also finitely generated over Zp with a similar bound s for the rank. By the 
structure theorem of §3, if V is finitely generated over A, then there is a quasi­
isomorphism 

(*) 

where jj are distinguished. We use this with V = C, writing Vadditively. 
The uniform bound on the rank immediately shows that there cannot be any 
free part, i.e., r = O. This proves Theorem 4.4. 
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§5. The Maximal p-abeIian p-ramified Extension 

The next two sections describe in class-field theoretic terms some properties 
of the Galois group of the maximal p-abelian p-ramified extension of a number 
field, and describe its Zp-extensions. 

Let K be a number field. We let: 

MP(K) = the maximal p-abelian p-ramified extension of K. 

MiJr(K) = the maximal p-abelian unramified extension of K. 

We fix the prime number p and the field K, so we sometimes omit reference 
to them in the notation. 

J = JK = ideles of K, and U is the group of unit ideles, 

U = n Up and JOO = n K;. 
lJ veSco 

In the first product, ,p ranges over the prime ideals of K. We write 

E = EK = units in K. We have an embedding on the diagonal: 

G~b(K) = Gal(Mp(K)jK). 

By class field theory, an abelian extension of K is unramified at primes 
dividing 1 if and only if its associated group in the ideles contains Uz• Conse­
quently we have an isomorphism 

where the bar denotes closure in the idele topology. We have the inclusions 

The first factor group 

is isomorphic to the Galois group of the Hilbert class field, and is finite. 
The second factor group is equal to 
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5. Iwasawa Theory and Ideal Class Groups 

Lemma. 

Proof Let Uif) be the group of units in Up which are == 1 mod pt>. Then 
the groups 

form a fundamental system of neighborhoods for U[P]Joo K*, and their inter­
section is this closure. Intersecting with Up (whose elements have component 
1 at all primes not dividing p) shows that 

Taking the intersection for all n proves the lemma. 

Theorem 5.1. Let H be the p-Hilbert class field of K. Then we have an 
isomorphism 

Gal(Mp(K)jH) ~ p-part of Upj(JpE 

= U~l)j(U~l) n (JpE). 

Again, as p is fixed, we write simply Up(E. By a quasi-isomorphism, we 
shall mean a homomorphism with finite kernel and cokernel. We denote a 
quasi-isomorphism by a single "'. The theorem yields a quasi-isomorphism 

Furthermore, since Up contains an open subgroup of finite index isomorphic 
to Z~K :Ql, by means of the exponential map, say, we have a quasi-isomorphism 

G&b(K) '" Z[K:Ql-r" where r = rank It = r (E) p p , p z" p. 

The Leopoldt conjecture states that rp = r = r1 + r2 - 1. 
Let ZP(K) = composite of all Zp-extensions of K. From the quasi­

isomorphism we find: 

Theorem 5.2. Assume the Leopoldt conjecture for K. Then we have a quasi­
isomorphism 

G~b(K) '" Z~2+1 ~ Gal(Zp(K)jK). 

Proof The first statement comes from the definitions and 

For the second statement; we note that the composite of all Zp-extensions of 
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K has a Galois group embedded in the product of Zp with itself, and as such 
is a torsion free finitely generated module over Zp, whose rank is exactly 
'2 + 1 by the first statement. 

Example. Let K.o = QCJ.l<P»). Let Un be the local units in the completion 
of Kn , congruent to 1 mod .):In' Let U~ be the subgroup of units whose norm 
to Qp is 1. Assume the Vandiver conjecture. Let the notation be as in §4 of 
the preceding chapter. Then we obtain an isomorphism 

Without assuming the Vandiver conjecture, we shall study the projective limit 
of the local groups in Chapter 7. 

§6. The Galois Group as Module over the Iwasawa Algebra 

Let Ko be a number field, K",/Ko any Zp-extension, with Galois group 

r = {y}, 

with topological generator y. Let Q be a p-abelian extension of K", which is 
also Galois over Ko. For each n we let Q n be the maximal subfield of Q which 
is abelian over Kn. 

J I 
l G·G: 
) {In l rn I 

Ko 

The Galois groups are denoted by the letters shown on the diagram. Since Q 

is assumed Galois over Ko and is abelian over K"" it follows that the com­
mutator subgroup is 

in other words, it consists of all elements 

It is frequently useful to view G as an additive module over the Iwasawa 
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algebra. Indeed, rn operates by conjugation on Gal(Q/Kn), and hence on the 
commutator group 

Hence 

lim Gn = G is a compact module over A = Zp[[X]] = lim Zp[rn]. 

Taking Kn as ground field instead of Ko, we obtain mutatis mutandis 

Thus in terms of the Iwasawa algebra, we find 

We denote by the sign'" a quasi-isomorphism of A-modules. 

Theorem 6.1. Let Q be the maximal p-abelian p-ramified extension of K~,. 
Then: 

(i) G = Gal(Q/Koo) is finitely generated over the Iwasawa algebra, and in 
fact 

G/GY-l '" Z~ where p = [Ko : Q] - r p - 1. 

(ii) If Ko satisfies the Leopoldt conjecture, then p = r2, and 

Proof By definition, 

and the rank over Zp of a subgroup of finite index in its Galois group was 
determined to be [Ko: Q] - rp in Theorem 5.2. Taking into account r itself 
shows that G/ XG '" Z~ where p is as stated. Nakayama's lemma then proves 
the first assertion, and (i). Part (ii) is then a matter of definitions. 

Theorem 6.2. Assume that Ko is totally imaginary, and that each Kn satisfies 
the Leopoldt conjecture (namely 

Then there is a quasi-isomorphism 

where Gtor is the A-torsion submodule of G. 
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Proof From the structure theorem, we know that 

On the other hand, 

By Theorem 5.2 we know that 

From the structure theorem, one sees easily that this is possible only if t = r2, 
as desired. 

The above theorems give a sample of Iwasawa's results [Iw 12]. It is 
possible to vary some of the hypotheses to obtain variants. For instance, 
one need not assume the full Leopoldt Gonjecture in Theorem 6.2, merely 
assume that the defect in that conjecture is bounded as function of n. For 
the cyclotomic Zp-extension, this can be proved easily, see for instance Green­
berg [Gr 4]. 
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6 Kummer Theory over Cyclotomic 
Zp-extensions 

In the last chapter we studied the ideal class groups in a Zp-extension of a 
number field. Here we shall consider especially the cyclotomic Zp-extension, 
and then Kummer extensions above it, as in Iwasawa [Iw 12], obtained by 
adjoining pnth roots of units, p-units, and ideal classes of p-power order. 

We also give the Leopoldt-Iwasawa theorem that the Vandiver conjecture 
implies that c- is cyclic, in a precise version for the cyclotomic extension of Q, 
following Kubert-Lang [KL 9]. We prove that the Galois group of the 
Kummer extension obtained by adjoining p-power roots of p-units is 1-
dimensional free over the Iwasawa algebra. As a consequence, we see that 
c- is a quotient of this free module. See Leopoldt [Le 5] and the last Satz 
in [Le 10], as well as Iwasawa [Iw 7], Theorem 2. In the limit, there is an 
analogous (but less precise) statement of Greenberg [Gr 4], see also Coates 
[Co 3], Theorem 5.7. 

For a discussion of the case of totally real number fields, cf. Coates [Co 3], 
[Co 4]. In this connection it is likely that the units conjectured by Stark [St] 
(see also Lichtenbaum's conjectures [Li 2]) will playa significant role similar 
to the one played by the cyclotomic units, to clarify the situation. 

§1. The Cyclotomic Zp-extension 

Let flIP) be the group of p-power roots of unity. Then Q(fl(P)) is the composite 
of an extension of degree p - 1 if p is odd, Q(i) if p = 2, and a Zp-extension 
which is uniquely determined as the fixed field of the (finite) torsion group of 
the Galois group, and will be called the cyclotomic Zp-extension. We denote 
it by ZiQ). It is real. If K is a number field, we let 
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be the composite of K and the cyclotomic Zp-extension. Then CyciK) is a 
Zp-extension of K. If K is totally real, then this cyclotomic Zp-extension is 
also totally real. 

Suppose on the other hand that K contains the pth roots of unity if p is 
odd, and contains i if p = 2. Let qo be the power of p such that the qoth roots 
of unity lie in K. Let 

Then [Kn+l : Knl = p, and 

is Zp-extension of K. Let r = Gal(Koo/Ko) and let 

,,: r ~ 1 + qoZp 

be the canonical representation such that for any pnth root of unity 'we have 

A Galois extension is called p-abelian if its Galois group is a projective 
limit of finite p-abelian groups. We now discuss properties of such extensions 
of Koo which are Galois over Ko. 

For the rest of this section, we assume that Ko contains the pth roots of 
unity if p is odd and i if p = 2. Let An be a subgroup of K;, and let 

We assume that An is stable under r no 

Ordinary Kummer theory gives a pairing 

expressed by the symbol 

for 0' in the Galois group and C( E A~/pn. If y Ern then 

where 0'1 = yay -\ and y is any extension of y to Kn(A~/pn). Indeed, 
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We may also write 

The group A~/P" mod A~/P" n K; has exponent pn, so exponentiating with a 
p-adic integer is well defined. In particular, we may rewrite the functorial 
formula in the form 

We wish to pass to the limit. We could have taken the Kummer pairing on 

writing the symbol <u, rx) without an index n, defined by the same formula. 
The Galois group on the left can be identified with a subgroup of 
Gal(Kn(A~/P")/ Kn), arising from the change of base of the Kummer extension 
from Kn to K",. Let Gn be the Galois group on the left, so 

The field diagram is as follows. 

The group Gn is a rn-module, hence a Z(pn)[rnl = An-module. Hence via the 
natural homomorphism, it is a A-module, where 

A = limAn 

is the Iwasawa algebra, isomorphic to Zp[[X]], and X = Yo - 1, where Yo is a 
fixed generator of r. 

Let 

be an element of A. We define the Iwasawa involution 
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Then X* is also in the maximal ideal (p, X) of A, and 

is an automorphism of A. The functorial formula for the action of Y E r on 
the Kummer symbol can then be expressed in terms of the involution by 

for (J E Gn and IX E A~/pn/(A~/pn () K!). 
In the applications, we also pass to the limit on n for the Kummer pairing. 

We suppose that 

Let 

We have a compatible system of pairings for m ~ n: 

The Galois groups on the left form a projective system, and the Kummer 
groups of field elements on the right of the pairing form an injective system. 
At each finite level, we have a compact-discrete duality. In the limit, we have a 
similar compact-discrete duality 

GA x lim A~/pn/(Ak,pn () K!) -? Jl(P) 

-+ 

with values in the p-primary roots of unity. 
The action of An on Gn is compatible in the projective limit, so the limit 

group GA is a topological compactA-module. We shall investigate its structure 
for various systems {An} obtained from units and ideal classes in the next 
sections. It will also happen that we consider two groups, say 

A ;:::)B, 

in which case Q A ;:::) QB' It is clear in each case that Gal(QA/QB) is aA-module, 
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and that the Kummer pairings and involution described above also apply to 
this intermediate situation. 

§2. The Maximal p-abelian p-ramffied Extension of the 
Cyclotomic Zp-extension 

A Galois extension is called p-abelian if its Galois group is a projective limit 
of finite p-abelian groups. It is called p-ramified if it is unramified at all primes 
(including infinity) not dividing p. We let: 

Mp(K) = the maximal p-abelian p-ramified extension of K. 

.Mi}r(K) = the maximal p-abelian unramified extension of K. 

We fix the prime number p and the field K, so we sometimes omit reference 
to tl;lem in the notation. 

Even if K is infinite over Q we may define Mp(K) and M~r(K) as above. 
It is then immediate that 

where the union is taken over a family of subfields F of K finite over Q, whose 
union is K, and which is cofinal with the family of all subfields of K finite 
over Q. For instance, if K is finite over Q, and Koo is a Zp-extension, then 

Mp(Koo) = U Mp(Kn). 
n 

A similar remark applies for M~r(Kco). 
Throughout this section, we let: 
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Koo = cyclotomic Zp-extension of Ko, and we assume that Ko contains 
the pth roots of unity if p is odd, contains i if p = 2. 

D = maximal p-abelian p-ramified extension of Koo. 

En = units in Kn and E = U En. 

DE = Koo(E1/P"') 

An = group of elements IX in K: such that (IX) = apn where a is (frac­
tional) ideal prime to p, and A = U An. 

DA = U K.,(A~/pn) 
Bn = p-units in Kn = group of elements whose ideal factorization con­

tains only ideals dividing p. 

DB = K.,(BI/P"') . 



§2. The Maximal p-abelian p-ramified Extension of the Cyclotomic Zp-extension 

We have the following diagram of fields. 

It is clear that DA and DB both contain DE' In fact, both A and B contain E. 

Lemma 1. D = DADB. 

Proof By Kummer theory, D is a composite of cyclic extensions. Let 
K",(a l /pm) c D for some a E K",. Then a E Kn for some n. We take n ~ m 
and also such that 

Kn(al /pm) is p-ramified over Kn. 

Then a necessarily has an ideal factorization 

where b is p-primary and a is prime to p. Let h be the class number of Kn, 

and write h = pr d with d prime to p. Then 

where (al) = air. and (ft) = blr.. Furthermore, 

and also 

K (alr./pn+') c 17 (l/pn+r pl/pn+r El/pn+') 
n+r An+r al, ,n+r' 

This proves the lemma. 

Theorem 2.1. The Galois groups Gal(DA/DE) and Gal(DB/DE) are A-torsion 
modules. So Gal(D/DE) is a A-torsion module. 

Proof We shall analyze each Galois group separately, and get a closer 
view of its structure. 
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The extension DA/DE. 
Let GAlE = Gal(DA/DE). For now abbreviate GAlE = G, and let 

The field diagram is as follows. 

It is clear that G = projective limit of the groups Gn, and that Gn is a 
Z(pn)[r nl-module, so in the limit, G is a A-module. 

As in Chapter 5, let: 

Cn = Cl(P)(Kn) = p-primary subgroup of ideal class group of Kn. 

Then we have a homomorphism 

given by 

if (ot:) = apn • If u is a unit in D such that upn E An, then upn E En. The kernel 
of our homomorphism is therefore precisely E~/pn, so we have an injective 
homomorphism 

which is also a A-homomorphism. Let JOt" be its image. Then the Kummer 
pairing is isomorphic to a pairing with An, namely: 

I I 
G" x .91" -------;.. J1,pn 

In addition, this isomorphism is compatible with the limiting process: 

Gn + 1 x .9/,,+1 -?- J1,pn+l 

1 1 1 
Gn x d n --+ Ilpn 
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Hence we get a compact-discrete duality 

G x d -+ JlO» 

where d = direct limit of d,.. By Chapter 5, Theorem 4.4, there exists 
A E A such that CA = 1, so C~ = 1 for all n, and A* = 1 for all n. By Kummer 
duality, for (l E G we get 

Hence (lAO = 1, so A* annihilates G, which is therefore a torsion module over 
A as desired. 

In addition, we note that the direct limits 

lim A~/pn/E~/pn = lim d,. and lim Cn = Coo 
-7 -7 -7 

are equal since any element in Coo has a representative ideal prime to p. 
Consequently we get the additional information: 

Theorem 2.2. The Kummer pairing gives rise to a compact-discrete duality 

Remark. Iwasawa has also shown that C = lim Cn is quasi-isomorphic to 
+-

Hom(lim Cn, Qp/Zp) (see Theorem 11, p. 266 of [Iw 12]). 
-7 

The extension DB/DE' 

Let GBIE = Gal(QB/DE)' For now abbreviate GBIE = G. By the Lemma of 
Chapter 5, §1 we know that there is only a finite number of primes ~b ••• , ~s 
dividingp in some finite extension Kd , such that ~b ... , ~s are totally ramified 
in Koo. Let h be the class number of Kd • Let 

Then 

It is immediate that 

n _ n ( Ill'''' Ill'''') 
~~B-~(;E1I:l ,···,1I:s • 

In particular, the structure theorem for finitely generated A-modules implies 
that G cannot have any free part, so is a A-torsion module. This proves 
Theorem 2.1. 

155 



6. Kummer Theory over Cyclotomic Zp-extensions 

For additional information concerning the fixed field of 

(for referring to A-torsion), cf. for instance Coates [Co 1], Theorem 5. Iwasawa 
has an example showing that there are cases when the fixed field is not 
necessarily DE' 

Theorem 2.3. Assume that there is only one prime in Koo lying above p. 
Then 

where Ep is the group olp-units in K oo , and 

Proof We consider the diagram offields: 

The ideal above p in Qn is principal, say generated by the element An = 

1 - (n' The degree [Kn : Qp] is bounded independently of n, and we have 

where en is the ramification index, bounded by this degree. Taking e to be the 
least common multiple of the integers en shows that .p~ is principal for all n. 
We apply this to the previous discussion of the extension DB = DE(nj:'P"'). 
As ideals we have 

for n sufficiently large, and jn is divisible by arbitrary large powers of p as 
n -+ 00. Furthermore 

It is then clear that DB = DE' 
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§3. Cyclotomic Units as a Universal Distribution 

§3. Cyclotomic Units as a Universal Distribution 

Letp be a prime number. 
Let 81' be the group generated by ±p.<1') (p-power roots of unity) and by 

the elements 
, - 1, with, E p.<1') and, :I: 1. 

We call 81' the cyclotomic p-units. They satisfy the following relations: 

CU 1. 

CU2. 

CU3. 

U-1(' - 1) = _,-1(, - 1) 

I1 (''1 - 1) = ,1' - 1 if ,1' :I: 1. 
.,1'=1 

n (' - 1) =p. 
{I''' = 1 

{primitive 

For this last one, note that the pth roots of unity satisfy 

X1'-l + ... + 1 = O. 

Replacing X by X + 1 yields the equation for' - 1, where, is a pth root 
of unity. The constant term is then p. Replacing X by X1'n - 1 yields the 
equation for the general case, proving CU 3. The other properties are obvious. 

We may rewrite these relations to fit the formalism of distributions as 
follows. Let a E (Q/ZY1') and a :I: O. Define 

Let V = 81'/ ± p.<1') be the factor group of cyclotomic p-units by roots of unity. 

Theorem 3.1. The association of (Q/Z)<1') -+ V given by 

a 1-+ ga (mod roots of unity) 

satisfies the distribution relations except at O. 

The theorem means that for a :I: 0 we have 

and is obvious in the light of CU 2. 

Let Vn = 81'.10/ ± p.1''' be the factor group by roots of unity of p-units at 
level ~n, i.e., generated by the roots of unity, and the elements, - 1 where 
, is a pnth root of unity :I: 1. Whether we take , to be primitive or not to 
generate Vn is immaterial since the distribution relation shows that we get 
all of them from the primitive ones. 
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6. Kummer Theory over Cyclotomic Zp-extensions 

Let <§;t = Gal(Q{Jlp")/Q) mod U -1' The next theorem is due to Bass [Ba]. 

Theorem 3.2. The group <§;t operates simply transitively on the primitive 
elements of Vn, and the induced homomorphism 

is an isomorphism. 

Proof The homomorphism is obviously surjective. It is injective because 
Z[<§;t] is torsion free, andthe ranks of the two groups are equal. This proves 
the theorem. 

Theorem 3.3. The factor group Vm/Vnfor m ;::: n has no torsion. 

Proof The embedding of Vn into Vm corresponds to the embedding of 
group rings 

Z[<§;t] ~ Z[<§~] 

which sends an element Uc on the element L Ub, where the sum is taken over 
U b E <§ ~ (c), the set of elements in <§ ~ which project on U c under the canonical 
map 

If an element 

2: 2: k(b)Ub' k(b) E Z, 
c be~!(c) 

is a torsion element with respect to Z[<§;t], then all the coefficients k(b) for 
b E <§~(c) must be equal to each other, and hence the element already lies 
in Z[<§;t], as was to be shown. 

Analogues of Theorem 3.2 and 3.3 in the modular case are proved in the 
Kubert-Lang series [KL 2, 3, 4, 5]. In that case, it is also shown that there are 
no units except the modular ones. Here in the cyclotomic case, say for the 
p-primary component, it is the Vandiver conjecture whether the factor group 
E/~ is without p-torsion. 

For the rest of this section, it is convenient to use ~n to denote the proper 
group of cyclotomic units, i.e., the group of units of the form 

rca. , 

where rc = , - 1, , is a primitive pnth root of unity, and ct = LbeZ(p")' k(b)Ub 
is an element of Z[<§n]o of degree 0, i.e., 

2:k(b) = 0. 

158 



§3. Cyclotomic Units as a Universal Distribution 

Theorem 3.4. Let p be odd, and let c be a primitive root mod p2. Then En 
is generated over Z[~n]o by the element 

(e _ 1 
v = <1enln = --, (- 1 

Proof We write an element IX of degree 0 in the form 

IX = 2: k(b)(<1b - 1), 

and observe that <1b - 1 is divisible in the integral group ring by <1e - 1 
because <1e is a generator of the cyclic group ~n. This proves the theorem. 

For p = 2 one has an analogous result using for c an element == 1 mod 4 
such that c generates 1 + 4Z2 • The group ~n = Gal(Q(j.tpn)jQ) is not cyclic 
but a pro~uct of a cyclic group of order 2 and ~;t, which is cyclic. 

It is convenient t6 reformulate the above theorem by passing to ~;t. 

Theorem 3.5. Let c be a generator of I + 4Z2 if p = 2, and a primitive 
root mod p2 if p > 2. Let 

. if (e - 1 . V. 
Vn = lmage 0 y=-r In n, 

and let vg be the subgroup of Vn represented by units (not just p-units). 
Then we have an isomorphism 

so V~ is free of rank 1 over Z[~;t ]0. 

Proof Clear. 

The composite case. 

Let V be the group of cyclotomic units of all levels, modulo the group of roots 
of unity. Then V is torsion free. 

Let c = ( ... , Cp , ••• ) be a vector with a component Cp E Z: for each p 
such that Cp is a primitive root mod p2 if p is odd, and C2 == 1 mod 4 and 
generates 1 + 4Z2 if P = 2. We have an associated automorphism <1e on the 
full cyclotomic extension of Q. 

Let a E Q/Z and a ¢ Z. We define 

. . <1e(e21t1a - 1) 
h(a) = Image III Vof 21tla 1· e -

Then h is an ordinary distribution in the sense of Chapter 2, §8 if we define 
h(O) = o. . 
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Theorem 3.6. This distribution is the universal even ordinary distribution with 
value 0 at 0, and values into abelian groups on which multiplication by 2 is 
invertible. 

Proof On (l/N)Z/Z the group generated by the image of h has rank 

!IZ(N)*I - 1, 

which according to Kubert's Theorem 9.1(iii) of Chapter 2 is the maximal 
possible rank (the value 0 at 0 gives rise to the -1). The Kubert generators 
in TN/ ± 1 must therefore be free generators, and the canonical map from,the 
universal distribution to h must be an isomorphism. 

The above is more or less Bass' theorem in a different formulation. (Also, 
as Bass states it, there is some difficulty with 2-torsion.) The idea of interpret­
ing it in terms of the cyclotomic units forming a universal distribution is due 
to Kubert-Lang [KL 3], where a similar result is proved for the modular 
units. The essential step in the proof here is of course Kubert's theorem cited 
above, combined with the independence of the units. In the cyclotomic case, 
this comes back to the non-vanishing of the regulator, i.e., L(1, X) ¥- O. In the 
modular case, see [KL 2] and [KL 5]. 

§4. The Iwasawa-Leopoldt Theorem and the Vandiver Conjecture 

For simplicity throughout this section we assume that p is an odd prime. Also 
throughout this section, we let: 

K" = Q(P(Pl) and Ko = Q(/lp) , 

'§ = Gal(K",/Q), 

'§n = Gal(Kn/Q), 

'§;t = '§n mod 0' -1 as in the preceding section. 

Rn = Z(pn)['§n]' and R = projective limit of Rn. 

Remark. It is easy to see that 

R ~ A[Go] 

where A is the usual Iwasawa algebra. 

h;t = class number of K;t. 

We assume the Vandiver conjecture that h;t = (En: tS'n) is prime to p. 

Qn = K",(V~/pn) = K",(g~~~n. By the Vandiver conjecture, 

Q n = K",(Ei~~n). 

Q = U Q n = K",(Ei/P"') = K",(tff~/P"'). 
Gn = Gal(Qn/K;,) and G = Gal(Q/K",). 
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We shall now develop the theory of Gas R-module following the exposition 
of [KL 9]. We use an upper minus sign to denote, as usual, the (-I)-eigen­
space. This applies for instance to R -, G -, etc. 

Theorem 4.1. Assuming the Vandiver conjecture, we have G = G-, and G 
is a I-dimensional free module over R - . 

Proof. By the Vandiver conjecture and Theorem 3.3 we have 

Let us abbreviate for simplicity 

Then the Kummer theory pairing discussed in §l can be described more 
explicitly as follows. From Theorem 3.2 we write an isomorphism 

using formal linear combinations with coefficients in (l/p'n)Zp/Zp. We have a 
model for Kummer duality, through the pairing 

such that 

This pairing induces a perfect duality 

as follows immediately from the formula 

where p is complex conjugation, or for that matter any element of C§'n' 
Therefore we have an isomorphism of the Kummer pairing in terms of the 
group rings, 
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6. Kummer Theory over Cyclotomic Zp-extensions 

and this isomorphism is compatible with the limiting process, which can be 
represented by a diagram in terms of the group rings for m ~ n: 

R;;' 1 R+ 
X -;;r m --7- J-lp" 

P 

1 r r 
R;; x l. R+ p71 n 

--7- J-lpn 

It is then clear that 

G = lim Gn :::: lim R;; = R-, 

as desired. 

One would expect the units whose existence is conjectured by Stark [St] 
to playa similar role over totally real fields. 

Theorem 4.2. Let Cn = CI(Pl(Kn) be the p-primary part of the ideal class 
group of Kn and let C = projective limit of the Cn under the norm map. 
Under the Vandiver conjecture, we have C = C-, and C- is cyclic as a 
A-module. In fact, the maximal un ramified p-abelian extension of K" is 
contained in Q, so we have a natural surjective map 

G --7- Go :::: C, 

the first map by restriction and the second by class field theory. 

Proof The field diagram (once the theorem is proved) is as follows. 

GiL} \ Go 
K", 

What we have to do is to show that the maximal p-abelian unramified exten­
sion of K", is in fact contained in Q. The rest of the theorem is then obvious 
from Theorem 4.1. It will suffice to prove that a finite cyclic unramified 
p-abelian extension of K", is contained in Q. 

Let K",((X) be unramified, with some element (X such that (Xp! lies in K",. 
We first show that we may select (X to be real. By Vandiver's conjecture, we 
have G6 = 1 so Go = Gc. Let a be a generator for Gal(K", ((X)j K",). Then 

a(X = '(X for some pth root of unity,. 

Let p be complex conjugation. Then pap-l = pap = a- 1 since G = G-. 
Hence pap(X = ,-1(X, and therefore 

aa = ,a, 
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§4. The Iwasawa-Leopoldt Theorem and the Vandiver Conjecture 

so that u(aja.) = a/a.. Thus a/a. = b lies in K". But the norm of b from K" 
to K:' is 1 (obvious), so by Hilbert's Theorem 90, there exists p E Koo such 
that PIP = b. Then a.p is real, and Koo(a.) = K,,(a.P). This shows that we may 
assume a. real. 

For n sufficiently large, a.pt lies in Kn+, and Kn+(a.) is unramified over K; 
because p is odd. Hence we have an ideal factorization 

for some fractional ideal a in Kn+. The class of this ideal is principal by 
Vandiver's conjecture. It is then immediate that 

for some unit u, thereby concluding the proof. 

In the next theorem we let 

Theorem 4.3. (i) For m ~ n we have an injection 

(ii) Under the Vandiver conjecture we have Hl(r m,m Em) = 0, so 

is injective. 

Proof Let a be an ideal representing an element of en, becoming principal 
in Km, say a = (a.) with a. E Km. For any element u E r m,n we have ua = a. 
Hence ua. is equal to a. times some unit. The association 

a 1-+ cocycle class of (ua./a.) 

is a homomorphism of Ker( en -i>- em) into HI of the units, which is immedi­
ately verified to be injective. 

Assume now the Vandiver conjecture. Let em be the group of cyclotomic 
units. Then Em/em has order prime to p, so 

For simplicity let Wm = J1pm+1. Then we have exact sequences 

and 
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6. Kummer Theory over Cyclotomic Zp-extensions 

whence exact cohomology sequences 

and 

Since Hl(Z) is trivial and Hl(Vm) is trivial (by elementary facts of cohomology 
of finite groups, and Theorem 3.2), it will now suffice to prove that Hl(Wm) 
is trivial. By the theory of the Herbrand quotient (cf. for instance Chapter IX, 
§I of my Algebraic Number Theory), the orders of Hl(Wm) and HO(Wm) are 
equal. However, 

where N m•n is the norI1l. Thus finally it suffices to prove that every p-power 
roo~ of unity in Kn is the norm of an element in Wm• Let , be a generator of 
Wm• The elements of the Galois group are represented by p-adic integers of 
the form 

1 + xpn+l with x E Zjpm-nz. 

Taking the norm yields 

Nm•n' = n ,1+xpn = ,pm-n 
X 

which is a primitive element in Wn and thus shows that HO(Wm) is trivial. 
This concludes the proof of the theorem. 

Let K be a number field and let K' be an abelian extension with Galois 
group G. We assume that K and K' are stable under complex conjugation. 
We say that the extension K' of K is odd (resp. even) if its Galois group is in 
the (-I)-eigenspace (resp. the I-eigenspace) for complex conjugation. 

Lemma. If IXpn +1 E Kn+, then Kn(lX)jKn is an odd extension. 

Proof Clear. 

From the lemma, it follows that QE/Koo is an odd extension, because the 
units are generated by real cyclotomic units and roots of unity. 

Theorem 4.4. Under the Vandiver conjecture, the Kummer duality gives rise 
to a compact discrete duality 

and also 
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Proof By Theorems 2.2, 2.3 and Lemma 1 of §2 we know that Q = QA 

and that 

Gal(QjQE ) is dual to C",. 

Taking eigenspaces for complex conjugation yields the first assertion. As to 
the second, we know from Theorem 4.2 that 

and Q E is an odd extension of Qnr. Again considering the eigenspaces yields 
the second assertion. 
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7 Iwasawa Theory of Local Units 

Iwasawa [Iw 8], [Iw 10] developed a theory of local units analogous to the 
global theory, taking projective limits, especially in the cyclotomic tower, and 
getting the structure of this projective limit modulo the closure of the cyclo­
tomic units. He considers eigenspaces for the characters of Gal(KoJQp ) where 
Ko = Qi() with a primitive pth root of unity (. Since the cyclotomic units are 
essentially real, we consider only even non-trivial characters. Then the eigen­
space is isomorphic to AJ(g), where g is a power series which is essentially the 
p-adic L-function. 

The first section deals with the classical Kummer-Takagi exponents at the 
first level QiO, where ( is a primitive pth root of unity, p odd. This is used in 
combination with Nakayama's lemma afterwards to get corresponding results 
in the cyclotomic tower. Throughout this chapter we assume that p is odd. 

Coates-Wiles [C-W 4] have extended this theory to the case of elliptic 
curves with complex multiplication. In the process they have found sub­
stantial simplifications for Iwasawa's proofs, and the exposition of this 
chapter is essentially due to them. Note especially their generalization of the 
Kummer homomorphism to all levels-a key to the whole theory. Such a 
homomorphism extends to other formal groups besides the multiplicative 
group, and a quite general statement has also been given by Coleman [Col]. 

On the whole, this chapter may be viewed as giving a good introduction 
to the theories of Coates-Wiles. I am much indebted to them for keeping me 
up on their work. 

§1. The Kummer-Takagi Exponents 

Let ( be a primitive pth root of unity, where p is an odd prime. Let Ko = 

QiO. We let 0, ~ be the integers and prime ideal of Ko respectively, and 
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let 

n='-l. 

Let Uo be the group of units == 1 mod ,p in Ko. We let Go = Gal(Ko/Qp), and 

be the homomorphism such that 

For simplicity of typography in this section we shall write % instead of %0' 

LetfE Zp[[X]]. We recall the variables 

T= 1 + X = eZ , 

and the differential operator 

D = (1 + X)Dx = Dz = TDT • 

This last equality holds only for rational functions of X (or T). 
Let U E Uo so U == 1 mod,p. Let f be a power series == 1 mod (p, X) such 

that 

U = f(n). 

We then say thatfis a power series associated with u. Such a power series is 
well defined up to a multiple of the irreducible polynomial h(X) of n over Zp. 
Let J, fl be associated with u, so f == fl mod h. Since fl is a unit power series, 
there exists a power series g such that 

Then 

and 

Dflf = Dfllfl + multiples of h and h'. 

Since h is an Eisenstein polynomial, it follows that 

Dk-l(Dflf)(O) [= Dk 10gf(O)] is well defined mod p for 1 :0; k :0; P - 2. 
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We define the Kummer homomorphism for these values of k by 

((lk(U) = Dk-I(Dflf)(O) modp. 

It is indeed clear that 

is a homomorphism. By the change of variables X = eZ - 1, the formula 

Dk -I( Dflf)(O) 

is also valid for f as function of Z, i.e., if we set 

then 

We now develop systematically certain properties of the Kummer homo­
morphism. These will be extended in the Coates-Wiles manner later to all 
levels. 

K 1. If h, f2 are associated with units Ul, U2, then hf2 is associated with 
U1U2. Iff is associated with U and a E Zp, then f(x)a is associated 
with ua• 

Proof The homomorphic property is clear, and has already been mentioned. 
The statement for a E Zp follows from positive integers by continuity. 

K 2. Iff is associated with u, then a power series associated with u(1 is 

f«(1 + X)"«1) - 1). 

Proof Ifu = fen) andf= 1 + ... , then 

u(1 = f«l + n)>«<1) - 1). 

So the property is obvious. Furthermore, 

f«1 + X)'«tT) - 1) = f(e"«1)Z - 1). 

The next property then follows from the chain rule in terms of the 
variable Z. 

K 3. 
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Let X be a character of Go. Let 

eCl) = ~ 1 L i(a)a 
P aeGo 

be the corresponding idempotent in the group algebra Zp[GoJ. Write X = x!1. 
for some residue class oc mod p - 1. Let u == 1 mod p. Put 

ue(X) = uCl)· 

K 4(i). If k == oc mod p - 1 then <Pk(uCl)) = <piu). 

K 4(ii). If k ';iE oc mod p - 1 then <Pk(uCl)) = o. 
Proof By K 2 and K 3 we find 

<Pk(Ue(X») = xk(eCl))<pk(U). 

The property follows by orthogonality of characters. 

The units 

1 - nk for k = 1, 2, ... 

generate Uo topologically. We shall be especially interested in the values of k 
satisfying 1 :$ k :$ P - 2, and we shall orthogonalize these units with respect 
to the characters of Go. We let 

where we abbreviate 

Lemma. We have 11k == 1 - nk mod nH !, for 1 :$ k :$ P - 2. 

Proof We have 

11k == n (1 - (Ca - l)k)-X- lc(a) mod nP - 1 

== n (1 + x-k(a)(Ca - l)k). 

as was to be shown. 
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Theorem 1.1. Let 1 ~ k, j ~ p - 2. 

(i) <Pk(1]k) = - k mod p. 

(ii) <Pk(1]j) = 0 if k =? j. 

Proof The second assertion is a special case of K 4(ii). As to the first, 

An associated power series of 1 - nk isJ(X) = 1 - Xk, and 

Then 

-k 
f'IJ(X) = 1 _ Xk 

00 

DflJ(X) = -k(l + X) 2: XVk 
v=o 

00 

= -kez 2: (eZ - l)vk 
v=o 

Hence 

Dk-l(DJIJ)(O) = -k 

as desired. 

By the lemma, and a trivial recursion procedure, any unit == 1 mod .p has 
a product expression 

and the exponents tk are called the Kummer-Takagi exponents. They are well 
defined modp. 

Theorem 1.2. Let u be as above. Then 

Proof Immediate, from K 4 and the fact that <Pk is a Zp-morphism. 

The Kummer Generators 

The rest of this section will not be needed, but is included for completeness 
of reference, and as an introduction to [C-W 2], [C-W 4]. It is convenient to 
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phrase the results in terms of the Lubin-Tate formal groups, so for the rest 
of this section, we assume that the reader is acquainted with the basic facts 
of these groups as explained in §1 and §2 of the next chapter, as well as the 
existence of the logarithm on such groups, as explained in §6 of the next 
chapter. 

Let A be a Lubin-Tate formal group over the -IJ-adic field K, and associated 
prime 1t. We let B be the basic Lubin-Tate group associated with the 
Frobenius polynomial 

Let Wbe the local parameter on B, and Z the parameter on the additive group, 
so we have 

Z = lB(W) == Wmod Wq-l 

by Lemma 2 of §6 in the next chapter. 
Let 

ga(W) = bo + b1W + ... 

be a power series with coefficients in K, and let 

be the power series obtained by putting gB(W) = gGa(la(W)). Then it is clear 
that 

bk = dk for k = 0, ... , q - 1. 

Taking the logarithmic derivative, i.e., the operator 

g~g'/g 

for any power series g, we then obtain: 

Lemma. If 
00 

g~/ga(W) = 2: Ck,BWk-l 
k=l 

00 

g;;a/gGa(Z) = 2: Ck,GaZk- 1 
k=l 

then 

Ck,B = Ck,Ga for k = 1, ... , q - 2. 
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Proof This is trivial from the chain rule, writing 

Let Wo be an element of E" such that 

wg- 1 + 1t = O. 

The field 

is tamely ramified, with different .pg-2. 
Let U be a unit in Ko, and let g E o[[W]] be a power series such that 

u = g(wo). 

If glis another such power series, then 

g(W) = gl(W)h(W) 

where heW) is the irreducible polynomial of Wo over K. From this it is 
immediate that 

g'/g(wo) is well defined modulo .pg-2, and lies in o. 

In particular, if we write 

00 

g'/g(wo) = 2: c/cw~-\ with C/c E 0, 
/C=l 

then C/c is well defined mod .p for 1 .:=:; k .:=:; q - 2. We define 

«J/c(U) = C/c for 1 .:=:; k .:=:; q - 2. 

Then it is clear that 

is a homomorphism, which we shall call the Kummer homomorphism of degree 
k. We shall determine the value of this homomorphism in special interesting 
cases. 

The units 

1 - w~, with k = 1,2, ... 

form a topological system of generators for the units == 1 mod .po in 00' Let 

Go = Gal(Ko/K) , so Go ;:::; Ilq-l' 
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There is a character X of Go into f1q -1 such that 

awo = x(a)wo. 

To avoid technical complications, we now assume that K = Qp so that 
o = Zp. We let 

be the idempotent in the group ring Zp[Gol for the character Xk. If u is a 
unit ~ 1 mod we' we can define 

in the obvious manner. We pick a sequence of integers mE Z approaching t 
p-adically, and the ordinary powers urn approach a limit, which is by 
definition ut• 

We orthogonalize a basis for the units. We let 

17k = (1 - W~)"k, for k = 1, .. . ,p - 1. 

Then: 

(i) 17k == 1 - w~ mod ~~+1. 

(ii) a17k = 17~k«1), i.e., 17k E Uo(k), where Uo(k) is the xk-eigenspace of Uo, and 
Uo are the units == 1 mod ~o in Ko• 

The second statement is obvious by the standard properties of the idem­
potent ek. For the first, we simply expand the product 

as was to be shown. 

17k == n (1 - w~)-x-k(a)a mod w~+1 

== n (1 - x(a)kw~)-x-k(a) 

== (1 + W~)P-1 
== 1 - w~ 

Theorem 1.3. Let j, k = 1, ... , p - 2. Then: 

(i) ({Jk(17J) = 0 if k # j. 

(ii) ({Jk(17k) = -k modp. 

Ifu is a unit == 1 mod ~o and 
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then 

1 
Ik == -" ({Jk(U) modp. 

Proof Taking the logarithmic derivative formally, we have: 

d10g _ d10gn (1 k( ) k)-xk(a) -- 11k - -- - X cr Wo 
dwO dwO a 

_ kXk(cr)Wk -1 _ "-k(cr) 0 -7 -x 1 - Xk(cr)W~ 
<Xl 

= k L L Xki(cr)W~(f+1)-1. 
i=O a 

Forj = 0 we get a term k(p - 1)w~-1 == _kW~-1 mod wg- 2 • This shows that 
((Jil'fk) = -k. On the other hand, if k(j + 1) - 1 s p - 3, we have 

k(j + 1) S P - 2 so kj s p - 3. 

Then 

xki is not trivial, 

so the orthogonality relations show that the coefficient of the corresponding 
power of Wo is O. This proves (i) and (ii). The last assertion then follows from 
the homomorphic property of the map ({Jk, thus proving the theorem. 

Let d = {at} be a finite family of integers prime to p, and let.AI = {ni} 
be a finite family of integers satisfying 

Let 

Then u is a cyclotomic unit, and u == 1 mod -Po. 

Theorem 1.4. Let 

Then 

1k = i2 Bk L nta~ mod p. 

where Bk is the Bernoulli number. 
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Proof Let A be the formal multiplicative group, B the special Lubin­
Tate group associated with it. The power series 

corresponds to the power series gB(W) such that 

where' is a pth root of unity. Directly from the definition of the Bernoulli 
numbers, 

Z oo ZIc 
ez _ 1 = 2: Bk -k , 

Ic=O • 

it follows trivially that 

g'aa/gGa(Z) = a + Ic~O ~! BIc ak ZIc-l. 

Since the operation g r+ g' /g sends multiplication to addition, the theorem 
follows from Lemma 1 of §6 in the next chapter, and Theorem 1.3. 

§2. Projective Limit of the Unit Groups 

Let: 

Kn = Qp(Wn), Wn = {tpn+l. 

On, i:'n = integers and maximal ideal in Kn respectively. 

Un = units == 1 mod i:'n in Kn. 

U~ = units whose norms to Qp are equal to 1 

= units which are infinitely divisible in the projective system of 
units under the norm maps N m,n with m ~ n. 

We have given two conditions describing U~, and it is easy to prove that they 
are equivalent. Indeed, we have the formula for the norm residue symbol: 

where Nn is the norm from Kn to Qp. If Nnu = 1 then u is a norm from Km 
for every m. Conversely, if the left-hand side is 1 for all m, then 

Nnu == 1 modpm 

for all positive integers m, so Nnu = 1. This proves the equivalence. 

Let: 

Gn = Gal(Kn/Qp) and Goo = Gal(Koo/Qp). 

rn = Gal(Kn/Ko) and r = lim rn = Gal(KoojKo). 
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7. Iwasawa Theory of Local Units 

Note that Go operates on Kn, Un, U~ and 

Gn ~ r n X Go, while G '" ~ r x Go. 

Let'l' be a topological generator of r. Then P" = Gal(Koo/Kn) is generated 
by')"'". 

We have an exact sequence of Galois modules 

1- U~ _ Un Nt» subgroup of Z:-1. 

From this sequence we conclude that for each character X of Go and X =F 1, 

In the next lemma, by rankzp we mean (as usual) the rank of a module modulo 
torsion over Zp. 

Lemma 1. (i) rankzp Un(x) = pn. 

(ii) If X =F 1, Xo then 

Un(x) ~ Z':"). 

Proof The integers On contain a free submodule over the group ring 

and for large r, 1 + pTon is Galois-isomorphic to the above submodule under 
the exponential map, and is contained in Un with finite index, so the first 
part of the lemma is clear. 

For the second part, the only torsion in Un consists of the roots of unity 
Wn, which is a xo-eigenspace. Hence for X =F 1, Xo we have an isomorphism 

as desired. 

We consider the groups Un as forming a projective system under the norm 
maps, and we let 

U = lim Un 
+-

be the projective limit. Then from the definition of U~ we see that also 
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§2. Projective Limit of the Unit Groups 

Note that U is a topological, compact Zp-module, and also aA-module, where 

If U is an element of U, then we view U as a vector 

U = ( ... , Un,"') 

with components Un E Un such that Nm.num = Un for m ;::: n, and we also write 

Lemma 2. U has no Zp-torsion. 

Proof Otherwise there exists a fixed power pT and an element U = lim Un 
such tha,t uf = I for all n. Then Un is a root of unity, and if Un =1= 1 for some n, 
then the order of Um becomes arbitrarily large as m becomes large, which is 
impossible. 

Theorem 2.1. For each character X =1= 1, Xo of Go there is a A-isomorphism 

U(x) ~ A. 

In other words, U(x) is free of dimension 1 over A. 

The proof will occupy the rest of this section, and will result from a 
sequence of lemmas. A "natural" basis element for U(x) over A will be given 
in the next section. 

We shall apply Galois and class field theory in a manner similar to the 
global case. For simplicity of notation, if X is a r-module, we let: 

X(n) = Xj(ypn - 1)X and x(n) = fixed elements under i,n. 

For simplicity of notation, throughout this section, denote by Kitb the 
maximal p-abelian extension of' Kn, and similarly let K~ be the maximal 
p-abelian extension of Koo. We have a tower of fields 

Recall that r operates by conjugation on Gal(K':,bJKoo). 

Lemma 3. If X =1= 1 then we have isomorphisms 

Gal(K:bjKoo)(x) ~ Gal(K':,bJKoo\n)(x) 

~ Gal(Kitb j Kn)(x). 

177 



1. Iwasawa Theory of Local Units 

Proof This is clear from the fact that K:b is the maximal abelian extension 
of Kn contained in K:,b, together with the exact sequence 

together with the fact that the last term is ~ Zp. 

The Galois group Gal(K:b/Kn) is isomorphic by class field theory with the 
completion of K: under the topology of subgroups of finite index. There is a 
topological isomorphism as abelian groups 

Given a choice of prime element 1t in KfI> the isomorphism has the form 

The completion of K: in the topology of subgroups offinite index is therefore 

as abelian groups (not Galois modules), where 

Z = rI ZI (product taken over all primes I). 
I 

On the other hand we have an exact sequence of Galois modules 

Since Go operates trivially on Z, for each X =f: 1 of Go we have an isomorphism 

The isomorphism of local class field theory 

K:/PP-l ~ Gal(K:b/Kn) 

preserves the r and Go structures of both groups. Passing to the projective 
limit over n, it follows from the previous isomorphism that 

whence we obtain the next theorem from Lemma 3. 

Theorem 2.2. For X =f: 1 we have an isomorphism 

178 
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Lemma 4. Let M be a finitely generated A-module such that 

M/(yJ,n - I)M 

is free over Zp of rank pn for all n. Then M is quasi-isomorphic to A. 

Proof Obvious from the structure theorem in Chapter 5. 

The lemma is applied to the unit groups, using Lemma 1 and Theorem 2.2. 
We therefore conclude that there is an exact sequence of A-modules 

0-+ A -+ U(x) -+A -+ B-+ 0 

where A, B are finite. Since U has no Zp-torsion by Lemma 2, it follows that 
A = O. The next lemma will conclude the proof. 

Lemma 5. In the exact sequence, we have B = O,/or X # 1, "0' 

Proof From the exact sequence 

o -+ U(x) -+ A -+ B -+ 0 

we get the exact (cohomology) sequence 

[This is no big deal in the present instance. The last map is obtained by taking 
an element b E B(n), lifting back to any c E A, and sending c r+ (ypn - 1 )c. This 
is well defined in UCx)/(ypn - I)UCx), and the sequence is trivially verified to 
be exact.] 

Trivially A(n) = O. Hence we obtain an injection 

o -+ B(n) -+ U(x)(n) ~ UnCx) by Theorem 2.2. 

But UnCx) has no torsion by Lemma l(ii). Hence 

B(n) = 0 for all n. 

Since B is finite, this implies that B = 0, and proves Theorem 2.1. 

§3. A Basis for UCx) over A 

For each n ;::: 0 we let Wn = f1.pn+l, and we fix a family of primitive pn+lth 
roots of unity Cn E Wn such that 

We let 

Xn = Cn - 1. 

179 



7. Iwasawa Theory of Local Units 

The notation remains that of the preceding section. If (j E G ctJ then there is 
an isomorphism 

such that for all n, 

As before, we let 

be the corresponding isomorphism at the first level. If X is a character of Go, 
with values in !lp-l, then 

X = x~ 

for some k determined mod p - 1. 
Given X # 1, Xo we shall construct an element ~ E U such that the element 

is a basis of U(x) over A. It is natural to construct ~n of the form 

where b E Z;, and w is the Teichmuller character. We have divided by web) 
so that ~n == 1 mod ,).In' For each n :;:>: 1 we want that 

But Xn is a root of (1 + X)P = Cn-l so the equation for b - Xn over Kn - 1 is 

(1 + b - y)P - Cn-l = 0, 

and from the constant term we see that 

Thus 

{l + b)P = 1 + b, so (1 + b)P-l = 1. 

Therefore we select any 

b = A-I, with any A # 1 and A E !lp-l 
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§3. A Basis for Uu) over A 

to get the desired b. A choice of A determines such en and we write 

e~) instead of en 
if we wish to emphasize the dependence on A. Since 

w(b)1' = w(b), 

it follows that for n ~ 1, 

and so the elements en form a projective system in U. 

Lemma 1. Given X = x~ 1= 1, Xo there exists A E !lp-l such that if we let 
b = A-I, and 

then: 

(ii) eoU) = eU)· eo generates UoU) over Zp. 

Proof We shall check below that for a suitable choice of A (depending 
on k) the Kummer-Takagi exponent given by Theorem 1.2 is ¢. 0 mod p. 
Then eoU) generates Uo(X)/UoU)P, and hence generates UoU) over Zp by 
Nakayama's lemma. 

Now for the computation of the Kummer-Takagi exponents, we need only 
compute IPk(eO) by K 4. We have 

b 
eo = web) (1 - xo/b). 

The associated power series is 

b 
J(X) = web) (1 - X/b). 

Then 

J'/J(X) = -~ 1 _IX/b = -~ v~ (X/bY, 

We want to prove that 

Dkd(DflJ) ¢. 0 mod p. 
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7. Iwasawa Theory of Local Units 

We have 

, X+ 1 1 
Dflf= (1 + X)f If(X) = -- = 1 + --. X-b T-l 

But D = TDT • Hence it will suffice to prove that for 2 :$; k :$; p - 2 we have 

By induction, it is immediately shown that 

(TD )m(_I_) = + n m - 1 + Pm(T, 1) 
T T - 1 - (T - l)m+l 

where P m(T, 1) is a polynomial in 1 of degree :$; m - 2, with coefficients in 
Z[T]. Hence 

The numerator l k - 2 + Pk-1(l, 1) is a polynomial in 1 of degree:$; p - 4. 
It is clearly not identically zero mod p, and so it has at most p - 4 roots mod p. 
We can therefore choose 1 # 1 in !1p-l such that A. is not a root of the 
polynomial mod p. This completes the proof. 

Theorem 3.1. Let X # 1, Xo. We can choose A. E !1p-l such that the element 

generates U(x) over A, i.e., 

U(x) = A· e(x), 

and such an element is a free basis for U(x) over A. 

Proof We know from Theorem 2.2 that 

Uo(x) = U(X)/(y - l)U(x), 

and so by Lemma 1, e(x)· e generates U(x) mod rnA' U(X). By Nakayama's 
lemma, it follows that e(X) generates U(x) over A. Since U(X) ~ A by Theorem 
2.1, such a generator is also a basis, thereby proving the theorem. 

§4. The Coates-Wiles Homomorphism 

In this section we give the extension of the Kummer homomorphism to all 
levels, based on a refinement of the associated power series. 
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Theorem 4.1. To every element u E U there is a unique power series f E Zp[[ X]] 
such that 

This power series satisfies fiX) == 1 mod (p, X), and the map 

is a homomorphism of U into the multiplicative group of power series 
== 1 mod (p, X). 

We first note that uniqueness is obvious since a power series has only a 
finite number of zeros (Weierstrass preparation theorem). 

The proof of existence will proceed via several steps, which also develop 
systematically other properties of these series. First: 

cwo. 1 
fiX) = - (b - X) 

web) 

is the power series associated with our element ~. Indeed, 

Next we note two formal properties of the power series fu which is called the 
associated power series to u. 

CW 1. If a E Zp then the power series associated with ua is fu(x)a. 

Proof This is first obvious when a is a positive integer, and is then true 
for all a E Zp by continuity. 

CW 2. If h is associated with u, and (J E Goo, then there is a power series 
associated with u", namely 

fua(X) = h«(1 + X)>«a) - 1). 

so the property is obvious from the definitions. 

We are now ready to prove the theorem, i.e., we must show that every u 
has an associated power series. The two properties CW 1 and CW 2 show 
that the set of elements in U having an associated power series is a A[GoJ­
submodule of U, and contaips ~. So it contains A[GoK In particular, taking 
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Theorem 3.1 into account, we have already shown that it contains U(yJ for 
all X of 1, Xo. This is enough for the applications we have in mind. 

For the remaining eigenspaces of X = 1 or Xo, the element e does not 
suffice to generate these spaces, and one must show how to find an associated 
power series for additional elements generating these spaces. This is not too 
difficult and will be left to the reader, especially since a generalization of the 
associated power series to all Lubin-Tate formal groups has been given by 
Coleman [Col]. 

Let as usual 

D = (1 + X)Dx = Dz. 

Since fu l ffu has coefficients in Zp, it is clear that 

For each integer k ;::: 1 we define the Coates-Wiles homomorphism ({Jk on 
Uby 

We see that ({Jk: U -l>- Zp maps U into Zp by the preceding remark. 

CW 3. For a E Goo, ((Jk(U") = x(a)k({Jk(u), 

Proof If U f--+ u" then CW 2 gives the power series associated with u", and 
the assertion is then obvious by the chain rule applied to 

CW 4. Let X = x~ where ('f. is a residue class mod p - 1. 

(i) If k == ('f. mod p - 1, then ({Jk(U(x» = ({Jk(U), 

(ii) If k ;t= ('f. mod p - 1, then ((Jk(U(x» = O. 

Proof Let e(x) be the idempotent associated with X. Then by CW 1 and 
CW 3 we find 

The property follows by orthogonality of characters. 

CW 5. For U E U and g E A = Zp[[X]], we have 

((Jk(g'U) = g(X(y)k - 1)({Jk(u), 

Proof The assertion is true when g(X) = 1, and when g(X) = 1 + X = Y 
by CW 3. Thus it is true when g(X) = X, i.e., 
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§4 .. The Coates-Wiles Homomorphism 

The property follows for arbitrary polynomials by induction, and arbitrary g 
by continuity. 

Theorem 4.2. Given a congruence class r:J. mod p - 1, there exists a power 
series ha such that for any k == r:J. modp - 1, we have 

If r:J. is even :f= 0 mod p - 1, then we can choose A such that 

is a unit, and ha is a unit in Z1'[[X]]. 

Proof Let 

f1(X) = D log~(X) = (1 + X)f~/~(X). 

Then by Meas 6 of Chapter 4, 

CfJk(e) = Dk-IJ1(O) = f Xk- 1 d/1h(x). 
Z" 

Then a computation shows that 

for some measure /1. By decomposing the integral over co sets of /11'-1 in Z: 
we can write 

f w(a)a<a)S d/1(a) = 2: f as d/1r(a) 
Zj, rel'''_l l+1'Z" 

where /1r is a measure with support in 1 + pZ1'. By Example 2 of Chapter 4, 
§ 1, we conclude that for each r there is a power series J,. such that 

f as d/1r(a) = J,.(X(y)8 - 1), 
l+1'Z" 

and we let 

h= 2: J,.. 
rel',,_l 
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7. Iwasawa Theory of Local Units 

Then for k == CI. modp - 1, we get 

h(x(y)k - 1) = L. w(ay<a)k dJ1(a) 
p 

This concludes the proof of the existence of h. There remains to show that 
({)k(eo.,» is a unit-it is then trivial that h is a unit power series. But this last 
property is clear from Lemma 1 of §3, as was to be shown. 

§5. The Closure of the Cyclotomic Units 

Let rffn be the group of cyclotomic units, i.e., the group generated by 

Wn = ± J1pn+1 and elements 

where ( is primitive pn + lth root of unity. Let: 

Vn = closure of rffn n Un in Un = ;jn,l 

V = lim Vn• 
+-

If we wish to preserve the rff-notation, then we may write 

V = lim ;jn,l = ;j 00,1' 
+-

The group Vn is a Zp[Gol-module, and V is a A-module. Since rffnl Wn comes 
from the real subfield, x-eigenspaces occur only for even characters X of Go. 

Before analyzing the projective limit of Vn, we recall in the p-adic context 
some facts about finite levels. In the global fields, we have an isomorphism 

where the index on the right indicates the augmentation ideal. Cf. Theorem 3.2 
of Chapter 6. Since the cyclotomic units are independent over Zp by the 
non-vanishing of the p-adic regulator, we obtain a Gn-isomorphism 

Hence for each even X i= 1, 
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§5. The Closure of the Cyclotomic Units 

Let c E Z; be a primitive root mod p2, and let 

Cn - 1 
Vn = w(c) C:;' _ l' 

Then Vn == 1 mod lJn. Furthermore for any even character X # 1 the element 

lies in tfn' so in Vn(X). (The root of unity w(c) disappears when we project on 
the eigenspace for X.) Note that the elements Vn form a compatible system in 
the cyclotomic tower, that is 

We let 

Then 

Vex) = lim vn(x) = lim v~(X). 

Theorem 5.1. For each even character X # 1 we have 

and hence 

Vex) = A· vex). 

Proof Immediate from Theorem 3.2 of Chapter 6. 

We note that the power series associated with the element v is 

x 
heX) = w(c) (1 + xy - 1 

Let X be an even character of Go, and X # 1. Let e = e(l) be the con­
structed element of U such that e(x) is a basis for U(x) over A. We have 

U(x) = A· e(x) and Vex) = A . vex)· 

Let us write 
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7. Iwasawa Theory of Local Units 

Theorem 5.2. Let X = x~ be an even character =I=- 1. We have an isomorphism 

U(y)/V(x) ~ A/gxA. 

The power series gx (determined up to a unit in A) can be selected such that 
it is equal to the power series g satisfying 

for any even positive integer k such that k == IX mod p - 1. 

Proof We have 

q>iv) = q>1e(v(x)) 

= gix(y)1e - l)q>Ie(~(x)) 

= gix(y)1e - 1)q>Ie(~) 

= g(x(y)1e - 1)(1 _ ple-l)-l, 

byCW4 

byCW5 

byCW4 

where g = gxha., and ha. is the power series of Theorem 4.2. Since ha. is a unit 
power series, g and gx generate the same Ae(x)-ideal. There remains to prove 

But 

So for k ~ 2, 

, 1 + X c(1 + xy 
(1 + X)f,,/f,,(X) = -X - (1 + xy - 1 

eZ cecz 
- eZ - 1 - eCz - 1 

= Df"/f,,. 

q>1e( v) = Die - l( Df"ff,,)(O) 

1 
= (1 - cle)"kBIe 

by the definition of Bernoulli numbers. This concludes the proof. 

The values of the power series g show that it is essentially the p-adic 
L-function. 

Remark. In this chapter we have proved a local statement which would be 
immediate if one had the global Vandiver conjecture, as explained in Chapter 6, 
§4. The corresponding global conjecture can also be formulated as follows. 
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§5. The Closure of the Cyclotomic Units 

Let Kn = Q(p,(P»), and let K':,b be the maximal p-abelian p-ramified 
extension of Kn. Let X be any even character 1= 1. Then there is a quasi­
isomorphism 

where gx is as in Theorem 5.2. 
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8 Lubin-Tate Theory 

This chapter reproduces with little change the approach to local class field 
theory given by Lubin-Tate [L-T]. Using special power series associated with 
prime elements in a p-adic field, they construct maximal abelian totally 
ramified extensions by means of torsion points on formal groups, thus 
obtaining a merging of class field theory and Kummer theory by means of 
these groups. 

The theory applies in particular to the cyclotomic case. The p"th torsion 
point on a suitable group will be seen to be the classical cyclotomic numbers 

, - 1 

where' is a p"th root of unity. 

§1. Lubin-Tate Groups 

Let 0 be a ring. By a formal group over 0 we mean a power series 

F(X, Y) E o[[X, Y]] 

in two variables satisfying the three conditions: 

FG 1. F(X, Y) = X + Y(mod degree 2). 

FG 2. F(X, F(Y,Z)) = F(F(X, Y), Z). 

FG 3. F(X, Y) = F(Y, X). 

Strictly speaking, our formal groups should be called commutative one­
parameter formal groups, but we won't deal with any others. The expression 
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mod degree 2 means modulo the power series of degree ;::: 2. Using the 
associativity with Y = Z = 0 it follows at once that 

F(X, Y) == X + Ymod XY, 

i.e., F(X, 0) = X and F(O, Y) = Y. 
It is an easy matter to show recursively that given a formal group as above, 

there exists a unique power series "l(X) such that 

"l(X) == - X (mod degree 2) 

and 

F(X, "l(X)) = F("l(X), X) = o. 

If this could not be proved, we would assume it as an axiom. We leave the 
proof as an exercise. For the more extensive foundations of formal groups in 
any number of variables, cf. Frohlich [Fr]. 

Example. The formal multiplicative group Gm is defined by 

F(X, Y) = X + Y + XY = (1 + X)(1 + Y) - 1. 

If a is a positive integer, and [a] denotes "addition" on Gm a times, then 

[aleX) = (1 + x)a - 1. 

If M is an algebra over 0 (always assumed commutative) and M is nilpotent 
(in the sense that every element of M is nilpotent-some positive power of 
the element is 0) then the formal group F defines an additive group law on the 
set of elements of M, by the association 

(x, y) I--? F(x, y) 

for x, y in M. Instead of F(x, y) we would also write 

F(x, y) = X +F y, or x [+ ] y, or x [+ ]F y. 

The set of elements of M with this group law could be denoted by M F • On 
the other hand, it is useful to use a slightly different notation. We view F as 
defining a functor 

We may also denote this functor by a letter like A (or AF if we wish to make 
the reference to F explicit), and then denote 

MF = A(M) 
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to be the set of points of A in M. As a set, it consists of the elements of M, 
and it is also an additive group with the group law determined as above. 

Suppose that 0 is a complete valuation ring, with quotient field K and 
maximal ideal mK' We also write 0 = OK' Then mK = m is topologically 
nilpotent, in the sense that arbitrarily large powers of an element tend to O. 
For any positive integer k, m/mk is a nilpotent o-algebra, and A(m/mk) is a 
group, as we saw. By continuity, it follows that A(m) is also a group. Addition 
between elements x, y in m is again given by 

(x, y) 1-+ F(x, y). 

Let L be any algebraic extension with valuation ring 0L and maximal ideal 
mL' Then we also have the completion OL if L is infinite over K, with maximal 
ideal mL , and it is clear that A(mL ) can again be defined as group with the 
group law given by the same formula as above. 

By an endomorphism of the formal group F (or A F), we mean a power 
series I( X) such that 

I(F(X, Y» = F(f(X),/(Y». 

We say that I is defined over 0 if the coefficients of I lie in o. It is then clear 
that such an endomorphism defines an endomorphism of A(m) by the 
association 

X 1-+ I(x) , for x in m. 

Similarly, a homomorphism I of a formal group F into a formal group F' is a 
power series such that 

I(F(X, Y» = F'(f(X),f(Y». 

This relation could also be written 

I(X +F Y) = I(X) +r I( Y). 

Such homomorphism induces a group homomorphism 

A(m)....,.. A'(m), 

where A'(m) is the group whose underlying set is m, and whose group law is 
that determined by F'. 

We shall be interested in a special kind of formal group. From now on, 
we assume that OK is a discrete valuation ring, and we let n be a prime 
element in mK' We assume that oK/mK is finite with q elements. We let: 

~ = set of power series lEO [[ X]] such that 

I(X) == nXmod degree 2 

I(X) == xq mod n. 
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Example. The power series (polynomial) f(X) = xq + nX is an element 
of ff,., actually its simplest element, which will be called the special or basic 
Frobenius polynomial associated with n. 

Example. Let 

f(X) = (1 + X)P - 1 = XP + ... + px. 

Thenf(X) is an element of~. 

The elements of ff,. will be called the Frobenius power series determined 
by n. 

Theorem 1.1. To each Frobenius power series f in ff,. there exists a unique 
formal group Ft (defined over 0) such that f is an endomorphism of Ft. 

The formal group associated withf(X) = xq + nX in Theorem 1.1 will be 
called the special or basic Lubin-Tate group associated with the. prime n. 

The proof of this theorem will follow from a general lemma, as will the 
fact that the formal group Ft then admits 0 in a natural way as a ring of 
endomorphisms commuting withf 

Lemma. Let f and g be Frobenius power series in ff,.. Let 

be a linear form with coefficients aj i~ o. There exists a unique series 
F(XI, ... , Xn) E O[[XI' ... , Xn]] such that 

and 

f(F(XI, ... , Xn)) = F(g(XI), ... , g(Xn))· 

Proof We abbreviate X = (Xl' ... , Xn) and g(X) = (g(Xl ), ... , g(Xn)). 
We show by induction on r that the congruences 

FrCX) == L(X) mod deg 2 and f(Fr(X)) == Fr(g(X)) mod deg r + 1 

have a solution Fr(X) in o[X] which is unique mod deg r + 1. This is true 
for r = 1 with Fl(X) = L(X). Suppose it true for r ~ 1. We let 

Fr+l = Fr + Hr+l 
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where Hr+l is a homogeneous polynomial of degree r + 1 with coefficients 
in o. We have: 

f(Fr+l(X» == f(F,(X» + nHr+1(X) mod deg r + 2 

Fr+l(g(X» == Fr(g(X» + nr+1Hr+1(X) mod deg r + 2. 

To satisfy the desired relation up to degree r + 1, we must take 

H (X) = f(F,(X» - Fr(g(X» mod deg r + 2. r+1 nr+1 _ n 

The coefficients are in 0 because 

f(Fr(X» - F,(g(X» == (Fr(X»q - Fr(Xq) == 0 (mod n). 

It is then clear that 

F(X) = lim Fr(X) E o[[X]] 

is the desired unique solution satisfying the conditions of the lemma. 

Addendum to the lemma. The completeness of 0 was not assumed or used 
in the proof Furthermore, the proof shows that F, is the only power series 
with coefficients in an extension field of K satisfying the conditions of the 
lemma. 

Theorem 1.1 is immediate from the lemma. Indeed, F, is the unique power 
series F(X, Y) such that 

F(X, Y) == X + Ymod deg 2, 

and 

f(F(X, Y» = F(f(X), f( Y». 

The other two formal group properties are seen to be satisfied by showing 
that the left-hand side and right-hand side of FG 2 (resp. FG 3) are each the 
unique solution of a system of conditions as in the lemma. 

We call F, the Lubin-Tate formal group associated withf If we want to 
use the other notation, we also write it A(f), or simply A if the reference to 
f is clear from the context. 

We shall now see that Ft admits 0 as a ring of endomorphisms in a natural 
way. We prove slightly more. For each pair of elements f, g E ~ and a E 0, 

we let a"g or [a]t,g denote the unique solution of 

a"g(X) == aXmod deg 2 

fo a"g = a"g 0 g. 

We write a, or [a], instead of at" for simplicity. 
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Theorem 1.2. The association a 1-+ af is an injective ring homomorphism of 
o into End(Ff), such that 

More generally, the association a 1-+ af,g is an injective additive homo­
morphism ofo into Hom(Fg, F,), satisfying the composition rule 

and 

[a + bJ"g(X) = F,(a"g(X), b"g(X» 

= a"g(X) +F/ b"g(X). 

Proof In each case, one checks immediately that both the left-hand side 
and right-hand side of the desired identity are solutions of the type given in 
the Lemina, whose solution is unique. 

It is clear that if J, g E:F.. then the element 1, ,g is an isomorphism between 
Fg and F,. Thus the isomorphism class of F, is uniquely determined by n. 

Furthermore, from Theorem 1.2, we may also view F, as an o-module via 
the operation a, for a E 0, and the above isomorphism is obviously an 
o-isomorphism. 

As a matter of notation, we shall use the three notations 

to denote the same power series. After a while, the polynomial f in :F.. 
becomes mostly irrelevant, and we think in terms of the group law A. Thus 
aA or [aJ when A is fixed become more satisfying to work with. 

Let L be the completion of an algebraic extension of K. Then we may view 
A(mL) as an o-module in the obvious way. The operation of 0 on A(mL) is 
given by 

Of course, if L is finite over K, then L is equal to its own completion. By 
functoriality, we also see that the formal isomorphisms 1"g induce isomor-
phisms . 

In view of this isomorphism, it is often convenient to omit f or g from the 
notation and write [aJ(x) for the operation of 0 on A(md for x in mL' 

Let L be a Galois extension, with Galois group Gover K. The operations 
of elements of G on L extend to the completion by continuity, so we may 
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8. Lubin-Tate Theory 

replace L by its completion. Since the power series aI,g, au, Ft have coeffi­
cients in 0, it is then clear that the operations which they define on mL 

commute with the action of G on mL • 

§2. Formal p-adic Multiplication 

Again we let OK be a discrete valuation ring with quotient field K, which we 
assume complete. We let mK be the maximal ideal, and let q = card oK/mK 
be finite, a power of the prime p. We let/be a Frobenius power series over 0, 

associated with the prime element n in m K , and we let Ft or A = A(f) be 
the corresponding Lubin-Tate group. 

For each a E 0, we let Aa(f) be the set of elements x in the maximal ideal 
mKa. of the algebraic closure of K such that 

In other words, Aa is the kernel of [aJ. If a is a unit, then Ker at = 0, so we 
are really concerned with A"n for positive integers n. Of course, Aa depends 
on / so we should write Aa( /). However, if g is another Frobenius power 
series in ° associated with the same n, then the isomorphism I"g induces an 
isomorphism 

which commutes with Galois isomorphisms. Further, if 0' is an automorphism 
of Ka over K, then 

so Aa(f) is a Galois module, and the extension 

K(Aa(f» over K 

is independent of the choice of/in~. We shall see in a moment that it is a 
separable extension, whence it is a Galois extension, and is finite for a 1= ° 
because a non-zero power series has only a finite number ofzeros (Weierstrass 
preparation, or more naively, use the power series X q + nX in ~). 

Consider the case n = I, so consider K(A,,). Then 

K(A,,) = K(x) 

where x is a root of xq + nX = 0, x 1= 0, or in other words, x is a root of 

xq-l + n = O. 

196 
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Thus K(An) is a Kummer extension (since the (q - l)th roots of unity are 
in K), with abelian Galois group, cyclic of order q - I, and totally ramified 
over n. 

Let x E An and x =1= O. The map 

gives a homomorphism of 0 into An, whose kernel is obviously no. Since 
An has q elements, it follows that 

An ~ o/no 

as o-module. In particular, Endn An ~ o/no, and 

Autn An ~ (o/no)*. 

We have a representation 

x: Go = Gal(K(An)/K) -7 Autn A" ~ (o/no)*. 

Since Go and (o/no)* have the same cardinality, namely q - I~ it follows that 
this representation is an isomorphism. 

We have similar results in the nn-tower. 

Theorem 2.1. (i) The group Ann is a free I-dimensional module over o/nno. 

(ii) K(A"n) is abelian over K, totally ramified, and we have a natural 
isomorphism 

x: Gal(K(A"n)/K) ~ (o/nno)*. 

Proof Let (Xl> X2, ... , xn) be a sequence with Xk E A,h such that Xl =1= 0 
and ntCxk) = Xk-l' Without loss of generality we may assume 

f(X) = xq + nX. 

For k > I we see that Xk is a root of 

Relatively to the field K(A"n-l) this is an Eisenstein equation, and so we have 
shown inductively that K(A"n) is totally ramified. Since Ann is stable under 
the Galois action, and since the equation 

is separable, it follows that K(A"n)/K is Galois. As before, we get a repre­
sentation of the Galois group in Autn Ann. The map 
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induces an injection of 0/1C"0 into A"n, whence an o-isomorphism by counting 
cardinalities, and it follows as for n = I that we have an isomorphism as in 
(ii), thus proving the theorem. 

Passing to the limit, we may form the projective limit T,,(A), consisting of 
all infinite vectors 

such that 1Clxn) = Xn -1 and 1Cf(XO) = o. It is then immediate that T,,(A) is 
a free I-dimensional module over o. 

Let 

Kn = K(A "n +1 ), Koo = U Kn· 

Then Koo is an abelian, totally ramified extension of K, and 

x: Gal(Koo/K) ~ 0* 

in the natural way. If u is a unit in 0*, then we have a corresponding element 
of the Galois group, denoted by uu, which is such that 

Uu = [U]f-1 

in the representation on T,,(A(f». If we wish to omit the reference to f, we 
simply write [u]. Thus on a vector as above, we have 

It is also convenient to have a notation for the representation of the Galois 
group in 0*. We let 

be this representation, where GK = Gal(Ka./K), such that 

I ax = [x(u)lr(x) for x E A(1t). 

Example. We shall now give the standard example with the formal 
multiplicative group 

F(X, Y) = X + Y + XY. 

Over the p-adic integers 0 = Zp we have the Frobenius series given by 

f(X) := (1 + X)P - I = XP + ... + pX 
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associated with the prime p. Let A be the corresponding Lubin-Tate formal 
group. Then in fact A is defined by the power series 

F,(X, Y) = F(X, Y), 

i.e., A is the formal multiplicative group. Then Apn consists of those elements 
in the maximal ideal of the algebraic closure satisfying the equation 

(1 + Xr - 1 = 0 

and these elements are none other than 

, - 1, 

where, is a-p"th root of unity. 

Theorem 2.2. The prime n is a norm/rom every extension K(Ann). 

Proof Consider first the bottom level of the tower K(An) over K, obtained 
from the equation 

xq-l + n = O. 

Let Ct be a root. Then 

(_I)q-l N(Ct) = n. 

If q is odd then n is the norm of Ct. If q is even then q - 1 is odd, the degree 
[K(An) : K] is odd, and - 1 itself is a norm. Hence n is the norm of - Ct. 

This proves the theorem in case n = 1. For the proof in general, let n = XQ, 

and let 

be such that 

Thus Xl is an element of An' Xl :f: 0, and X,,_l is a norm of ±x" from the 
field K(x,,) over K(X"_l)' The argument is similar and equally trivial, as 
desired. 

Theorem 2.3. Let B be the special Lubin-Tate group associated with the 
prime n and the Frobenius polynomial xq + nX. Let' E !iq-l' Then: 

(i) 
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8. Lubin-Tate Theory 

(ii) If F(X, Y) is the group law for B, and 

F(X, Y) = X + Y I ajjXi yf, 

then Ojj = 0 unless i + j == 1 (mod p - 1). 

Proof Let Xn be a generator of B"n+l such that 

Since Xo is a root of Xq-l + re = 0 it follows by a trivial recursion that the 
irreducible polynomial for Xn over K is a polynomial in Xq-l. Therefore we 
can find an automorphism 

such that O"nXn = 'xn. Since elements of the Galois group commute with [re], 
there exists an element 0" E Gal(K,,,/K) such that 

By Theorem 2.1 there exists a E oi such that O"Xn = [a](xn) for all n. Since 
O"q-l = 1, it follows that a is a (q - l)th root of unity. But also 

so , - a == 0 mod X n• This is impossible since both " a are in J!q-l> unless 
, = a, thereby proving (i). 

Secondly, for every' E J!q-l we have 

Then (ii) follows immediately. 

§3. Changing the Prime 

We shall now analyze what happens when going from one primere to another 
prime re' = reu where u is a unit of OK' Since we have to refer to the primes, 
we let 

We let A' be the Lubin-Tate group associated with re', so 

We let L be the completion of the maximal unramified extension of K, with 
ring of integers 0L' We let Knr be the maximal unramified extension of K, 
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and 0nr its valuation ring, with maximal ideal mnr• We let cp be the Frobenius 
automorphism of Knr, extended by continuity to L. 

Theorem 3.1. Let J, f' be Frobenius power series over 0, associated with the 
primes n, n' respectively. Let e be a unit of 0L such that e"'/e = u. (Such 
units exist.) Then there exists a unique isomorphism 

defined over 0L which commutes with the operation ofo, that isfor all a in 0. 

o 0 af = af' 0 0, 

and such that 

O(X) == eXmod deg 2. 

This power series 0 satisfies 

0'" = 0 0 UfO 

Proof The existence of the unit e such that e"'/e = u is easily obtained by a 
recursive procedure, and is left to the reader. We then construct a power series 
O(X) = eX + ... to satisfy 0'" = 00 Uf as follows. Let Ol(X) = eX. Suppose 
we have found Or(X) of degree r such that 

Of (X) == Or(u,(X)) mod deg r + 1. 

We wish to find some element b E Jh such that the series 

satisfies the same congruence to one higher degree. We have: 

Or+ leX) ,= Of (X) + b'" xr+l 

Or+l 0 Uf(X) = Or 0 u,(X) + bUf(XY+1. 

The condition on b is therefore that 

b'" - bur+l = c, 

where c is the (r + l)th coefficient of Or 0 u,(X) - Of (X). Write b = aeT+l. 
The condition on b is equivalent with the condition 
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8. Lubin-Tate Theory 

A recursive procedure, letting a,,+l = a" + xnn+1 shows that we can solve 
for x at each step to make the equation valid mod n", whence solve the 
equation for a in 0L. This concludes the construction of e. 

We shall now see that e almost satisfies the other conditions of the theorem, 
and that it is easy to adjust it to get these other conditions exactly. Let 

g = eo n/ 0 e- 1. 

It is obvious that eo Ff 0 e- 1 commutes with eo n/ 0 e- 1 = g. We contend 
that g is a Frobenius power series associated with n', and has coefficients in 
° = OK. Once we have proved this contention, we then conclude that the 
power series 

has the properties characterizing FiX, Y) (it is obvious that this power series 
is congruent to X + Y mod deg 2). The Lemma and addendum to Theorem 1.1 
show that the power series is equal to FiX, Y). Similarly, we verify that 
eo af 0 e- 1 has the properties which characterize ag, so is equal to ago In this 
manner, we have proved the theorem except for the fact that 

is an isomorphism from Ff to Fg. Replacing e by Il',g 0 e then concludes the 
proof. 

All that remains to be done is settle the contention. We have: 

Also, 

en/e-1(X) = eUfnfe-1(X) = e<P(f(e- 1(X))) 

== e<P(e-1(X)Q) mod n 

== e<P(e-<p(xq)) mod n 

modn. 

There remains only to prove that the coefficients of en;e -1 lie in 0, and it 
suffices to show that they are fixed under the Frobenius automorphism cp. 
We have: 

which concludes the proof of the theorem. 
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§4. The Reciprocity Law 

Let Knr as before be the maximal unramified abelian extension of K. Local 
class field theory would immediately show that the composite field 

is the maximal abelian extension of K. On K("l we have a good model for the 
Galois group given by the association 

af-+ [a], aEo*, 

and on Knr we have the Frobenius automorphism, which generates the 
Galois group. We wish now to give an independent proof that the field K("l Knr 
is independent of the choice of n, and that the structure of the Galois group 
is in fact determined independently of that choice also. 

Theorem 4.1. The field K("lKnr is independent ofn. Let a E K*. Write 

for some unit u, and some integer m. Let r ,,(a) be the automorphism of 
K("lKnr such that: 

ria) = 0',. on K("l 

ria) = <pm (<p = Frobenius) on Knr. 

Then the association a f-+ ria) is independent of the choice of n. 

Proof Let L be the completion of Knr as in the preceding section. Let A 
be the Lubin-Tate formal groups associated with the prime n, and let A' 
be associated with the prime n'. Since A and A' are isomorphic over L by 
Theorem 3.1, it is clear that 

However, Knr is algebraically closed in L. The two totally ramified extensions 

become equal when lifted to L. By elementary field theory, they must be 
equal as extensions of K nr, thus proving the first assertion in the theorem. 

The set of prime elements n' generates the multiplicative group K*. To 
prove the independence of ria) from the choice of n, it will therefore suffice 
to prove that for all n', 

r ,,(n') = r ".(n'). 
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These automorphisms coincide on Knr since they both give rise to the 
Frobenius element. It will therefore suffice to prove that they coincide on 
K(1<'l. We keep the notation of Theorem 3.1.' Write n' = un with some unit u. 
Since r 1C,(n') = identity on K(1C'l, we are reduced to showing this same property 
for rin'). 

Let f be a Frobenius power series associated with n. The field K(1t'l is 
generated by the elements O(x) with x E A(1Cl(f). Hence we are reduced to 
showing that such elements are fixed by rin'). Indeed: 

r 1C(n')e(x) = r iu)r in)e(x) 

= r ,,(u)e'P(x) 

= O'P(u, -l(X)) 

= O(x). 

This concludes the proof of the theorem. 

One may now use local class field theory to guarantee that K(1Cl Knr is the 
maximal abelian extension of K. Let 

be the norm residue symbol mapping K* into Gal(Kab/ K) from local class 
field theory. Then we find 

r(a) = (a, Kab/K). 

Indeed, both automorphisms induce the Frobenius automorphism on Knr> 
and for any prime element n, both automorphisms induce the identity on 
K(1C>, since n is a norm from every finite subextension of K(1Cl by Theorem 2.2. 
Since r(a) and (a, Kab/K) coincide on all prime elements, they coincide on 
K*. 

§5. The Kummer Pairing 

It should be clear that the formalism offormal groups is completely analogous 
to the classical formalism on the multiplicative group or the group of Witt 
vectors. In a similar way, one can develop "Kummer theory" completely 
analogously to the standard way (cf. for instance Algebra, Chapter VIII, §8), 
or the way Witt did it in characteristic p for his vectors (Crelle 1935-1936). 
The possibility of doing this in the context of Lubin-Tate groups was first 
noted by Frohlich [Fr]. Of course, some new phenomena arise. Applications 
to explicit reciprocity laws as in Coates-Wiles [C-W 2] and Wiles [Wi] will 
be postponed to a later chapter. 

Let A be a Lubin-Tate group associated with the prime n. We let 
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so Ko = K(A,J We let 0" be the ring of integral elements in K" and let V" 
be its maximal ideal. We write A(V,,) as usual for the set of elements V" with 
the group law defined by A. We define a pairing 

A(V,,) x K: _ A"n+l. 

Let x E A(V,,), let t be an element of A(V",) such that [n"+l]t = x, and let 
a E K,,*. Note that actually t E A(V2"+1). Define the symbol 

where G'rz = (a, K:b/K,,) is the automorphism of K:b over K" arising from 
local class field theory. Then it is clear that (x, a) lies in A"n+l and is inde­
pendent of the choice of t such that [n"+ l]t = x. We call it the local (Kummer) 
symbol (relative to the formal group A and the multiplicative group). If we 
want to specify A in the notation we write 

<x, a)~. 

Example. The formal multiplicative group. For p :; 1 mod V" and a E K~ 
we define the classical norm residue symbol 

(p, a)" = <p - 1, a)~ + 1, 

where A is the formal multiplicative group. 

The local symbol trivially satisfies the following properties. 

LS 1. It is oK-linear in x and multiplicative in a. 

In particular, the symbol induces a pairing 

and it is clear that in the pairing 

A(V,,) x K: _ A"n+l 

the kernel on the left is exactly [n"+l]A(V,,), because if x is not a [n,,+l]_ 
multiple in A(V,,), then its [n,,+l] root t generates a proper extension of Kn, 
so the Galois group operates non-trivially. 

LS 2. If e: A - A I is an isomorphism over 0 between two Lubin-Tate groups 
associated with the same prime n, then 

(x, a)~' = e«e-1(x), a)~). 
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LS 3. If (J is an automorphism of Kab over K then 

LS 4. <x, oc)" = 0 if and only ifoc is a norm from K,,(t), where [n"+l]t = x. 

This last property uses a fact from local class field theory which could be 
proved from the Lubin-Tate formalism, but which we shall take for granted. 
Otherwise, the other properties are obvious. 

As an application of LS 4, let Nm,,, denote the norm from Km to K" for 
m ~ n. Then the orthogonal complement of A"n+l under the pairing is given 
by 

LS 5. Let m ~ n and let Nm,,, denote the norm from Km to K". Then for 
x E A(.):),,) and oc E K: we have 

In other words, Nm,,, is the transpose of [nm-,,]. 

Again this is clear from the functorial properties of the norm residue symbol 
which we assume. We can then define the symbol in a limit situation as 
follows. We let 

T(K!) = group of sequences (oco, OCl, • , .) with oc" E K: such that for 
all n ~ 0, 

Thus T(K!) is just the projective limit of the groups K;' under the norm 
mappings. We may then define a pairing 

A(.):)co) x T(K!) -+ T,.{A) 

by letting 

On the right-hand side, the components <x, ocm)m are defined for all m 
sufficiently large, i.e., m ~ n such that x E A(p,,). The components <x, OCk)k 

for k < n may then be defined by applying the appropriate power of [n] to 
the nth component. Property LS 5 shows that this is well defined. The pairing 
is oK-linear in x and multiplicative in oc E T(K!). 
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Of course it is a considerable restriction on an element a:n in K; to be 
liftable to an infinite vector of consecutive norms. In fact, let Nn be the norm 
from Kn to K, and let 

N;; l(nZ) = group of elements a: E K: whose norm Nna: is a power of n. 

Lemma 1. We have N;;l(nZ) = n Nm.nK:;. 
mO!:n 

Proof Suppose Nna: E nZ. Then 

because n is a norm from each extension Km by Theorem 2.2. Hence a: is a 
norm froll). Km , thus proving one inclusion. 

Conversely, suppose that a: is a norm from each Km for m ~ n. Then 

Let Nn!Y. = nTu where u is a unit in K. Since n is a norm from Km by 
Theorem 2.2, we conclude that 

(u, Km/K) = 1 for all m. 

Hence u == 1 mod Vm for all m, so u = 1. This proves the reverse inclusion, 
and proves the lemma. 

LS 6. If p is odd then 

(i) <a:, a:)n = O. 

Whether p is odd or even, we have 

(ii) <a:, -a:)n = 0, 

(iii) <x, -l)n = 0 iford" X ~ e + 1 

and so 

(iv) <a:, a:)n = 0 if ord" a: ~ e + 1. 

Proof Letfn(X) be a Weierstrass polynomial such that 

[nn+l](X) = fn(X)g(X) 
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where g(X) is a unit power series in o[[X]]. Let t be a root of fn(X) = IX. 

The extension Kn(t) is independent of the choice of t. Thus, if we factor 
fn(X) - IX into irreducible polynomials over Kn, say 

S 

fn(X) - IX = f1 fn.iX), 
i=1 

then for each j we obtain Kit) by adjoining a single root of fnJX) to Kn. 
Therefore, if Cn,i denotes the constant term of fn,lX), and d is the common 
degree of the irreducible polynomials fn,i then we conclude that (- 1 )dcn'i 
is a norm. But 

S 

-IX = f1 Cn,i' 
i=1 

Hence -IX = (_1)dS times a norm, and (_I)dS = (_I)qn+l is a norm. This 
proves the first two assertions. For the last two (relevant only for p = 2), 
it is clear from bilinearity that 

[2]<x, -I) = o. 

If ordn IX ~ e + 1, then IX = [2]y for some y, and so <IX, -I) = 0, thus 
proving the last two assertions. 

The following lemma gives information on the factor group 

by showing that near the origin, the operator [7t] operates very regularly. We 
let 7tn denote a prime element in Kn. 

Lemma 2. Assume k > qn. Then A(7t7t~on) = [7t]A(7t~on)' 

Proof The inclusion ~ is obvious. We prove the reverse inclusion. Let 
z = 7t7t~t with t E On. We must solve 

~ + 7tX = z with x = 7t~y and y EOn' 

This is equivalent to 

But k > qn implies that qk > qn(q - 1) + k, so we are reduced to solving 

fey) = ayq + y - t = 0 

with a divisible by 7tn • Sincef(t) == 0 mod 7tn , andf'(t) == 1, Hensel's lemma 
does it. 
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As consequences of the lemma, we find for instance: 

A(nn+ 20n) c [nn+l]A(iJn) 

A(n~n+l+lon) c [n]A(iJn). 

This second inclusion comeS from using k = q" + 1. 

Theorem 5.1. Let Wj be elements of iJ" for i = 1, ... , q"+l, such that 
ordlln Wi = i. Then these elements generate A(iJn) mod [n]A(iJ,,), and therefore 
generate A(iJn) mod[nn+l]A(iJn) over o. 

Proof Since X + A Y == X + Y mod deg 2, given x E iJn we can find 
a1 E 0 such that 

x -A [adw1 == 0 mod iJ~, 

because, [adw1 == a1w1 mod iJ~. We may then proceed recursively to find 
a2' ... , aqn + 1 such that 

By the lemma, this congruence also holds mod[n]A(iJn). Hence the Wj generate 
A(iJn) mod[n]A(iJn), whence by Nakayama's lemma, they also generate 
A(iJn) mod[n"+1]A(iJn)· This proves the theorem. 

The special case when K = Qp is of importance in the cyclotomic theory 
(and elsewhere), and some refined statements can be given as in the next two 
theorems due to Coates-Wiles [C-W 1], [C-W 2]. 

Theorem 5.2. Assume K = Qp. Then A(iJn)/[n,,+1]A(iJn) isfree over 0/n"+10. 
Suppose that A is the basic Lubin-Tate group. Let I be the set o/integers i 
satisfying 

1 ::::; i < pn+1 with (i, p) = 1, or i = pn+1. 

Let Xo be a non-zero element of A" and let 

(Xci, Xl>"" Xn, ... ) 

be an element ofT,,(A), that is [n]xk+1 = Xk' Then the elements 

{x!,} with i E I 

form a basis. 

Proof For i E I we let Wi = x~. On the other hand, if pT divides i exactly, 
we take 

Wi = [nT](xUP'). 
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This shows that the elements x~ with i E I generate A(.pn) mod[nn+lJA(.pn), 
over o. 

There remains to prove that they are linearly independent mod nn+lo. 
We first show that they are linearly independent in A(.pn)/[n]A(.pn) over o/no. 
Suppose we have a relation 

(*) 

where 2:A indicates the sum with respect to the group law of A, and some 
coefficient ai is a unit, say ak. We may assume ak = 1. 

Case 1. k < pHI. For any x E.pn we know that 

[n]x = xP + ... + px. 

Either the term xP dominates this expression, in which case ordpn x is divisible 
by p, or some other term dominates, which means that 

p. ord x > pn(p - 1) + ord x, 

so ord x > pn, and ord [n]x > pn+l. This implies that we cannot have a 
relation of congruence (*) because as with ordinary addition, if y, y' E A(.pn) 
and ord y i= ord y' then 

ord(y + A y') = min(ord y, ord y'). 

Hence there cannot be any cancellation in the sum of the left-hand side of 
(*), thus concluding the proof in Case 1. 

Case 2. k = pn + 1. Then by Case 1 we may suppose that ai is divisible by 
n for all i i= k, and therefore x~n+l lies in [n]A(.pn). We use the hypothesis 
that A is the basic Lubin-Tate group, and then there exists y E .pn such that 

But x~n ~ Xo and xg -1 = - n. The above equation is clearly impossible if y 
is not divisible by Xo because the orders on the left-hand side cannot match 
the order on the right-hand side. Then we divide by xoP to find 

Reading this equation mod .pn yields a solution of 

yP - y == unit modp, 

in the residue class field Z/pZ, which is impossible. This proves the theorem. 
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§6. The Logarithm 

Theorem 5.3. Assume that K = Qp, and that K(A,,) does not contain the 
pth roots of unity. Then the local pairing 

is exact on both sides, i.e., the kernels are 0 on both sides. 

Proof In Theorem 5.2 we have determined the order of 

It is a standard exercise of local algebraic number theory [L 1], Chapter II, 
§3 to determine that 

where pT is the order of the group of p-power roots of unity in Kn. If K(A,,) 
does not contain /lp then neither does Kn. Hence 

has the same order as A(Pn)/[nn + l]A(Pn), and we know that the kernel on the 
left is trivial. Since A"n+l is cyclic in the present case, it follows by the duality 
of finite abelian groups that the kernel on the right of the pairing must also 
be trivial, as desired. 

Remark. When the pth roots of unity are in K(A,,), in particular when 
A = Gm, the above argument definitely shows that the kernel on the right is 
non-zero. 

§6. The Logarithm 

Let A be a formal group, defined by a power series F(X, Y) over some ring 0 

with quotient field K of characteristic O. It can be shown that there exists an 
isomorphism 

with the additive group, i.e., a power series with coefficients in some extension 
of K such that 

A(X +F Y) = A(X) + A( Y), 

A(X) == X mod deg 2. 

The + sign on the right-hand side is the ordinary addition. That power series 
is then uniquely determined, and its coefficients lie in K. It is called the 
logarithm on A, and we write A = AA if we need to refer to A explicitly. 
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8. Lubin-Tate Theory 

Example. Suppose A = Gm is the formal multiplicative group. Then the 
log is given by 

A(X) = 10g(1 + X), 

where the log here is the usual series from calculus. 

It is easy to show that any endomorphism of Ga is given by multiplication 
with a scalar, i.e., if a power series h satisfies 

h(X + Y) = h(X) + h(Y), 

then h(X) = aX for some constant a. Hence the uniqueness of the log AA 
follows at once. In this section we shall prove its existence for Lubin-Tate 
groups, and additional properties, following Wiles [W] in preparation for the 
explicit reciprocity laws. 

Lemma 1. The limit 

A(X) = lim ~ n~(X) n 

exists, and gives a formal isomorphism of the Lubin-Tate formal group A 
with the additive group Ga. 

Remark. The limit is to be understood in the following sense. Each term 

is a power series. By the existence of the limit, we mean that for each k, 

exists as n ---7 00, and then A(X) is defined to be .I CkXk. The convergence will 
not be uniform in k. 

Proof of the lemma. We look at the difference 

LT n~+T(X) - ~ n~(X) = LT (nA 0 n~(X) - nTn~(X)). n n n 

Let 

where 

j 2. 2, 
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§6. The Logarithm 

and the coefficients al7) are in OK. Then the right-hand side of the required 
difference is equal to 

We are interested in the coefficients of monomials of degree::;; k for a fixed k. 
Reading all expressions mod Xk + 1 we see that we may assume 

i ;::; n + 1 - (k + I). 

Hence nnx + gn(X) is divisible by nn-k. Similarly, the power series expression 
for gr is divisible at least by nr- k • Since gr has degree ;::; 2 it follows that 
glnn X + gn(X» is divisible at least by 

Dividing by nn+r shows that the required difference tends to 0 as n --l>- 00. 

This proves that the desired limit exists. 

It is clear that A(X) == X mod deg 2. 
There remains to prove that A satisfies the homomorphism property. We 

have: 

~ n1(X +A Y) = ~ (n1X +A n1 Y) 
n n 

where Clj are the coefficients of the formal group 

For each fixed k, m the coefficient of Xk ym in the sum on the right-hand side 
tends to 0 as n tends to infinity, so the additivity follows. 

Lemma 2. The log AA commutes with the action of 0, that is, 

For the basic Lubin-Tate group B, if 

<Xl 

AB(X) = X + L aiXi 
1=2 

then ai = 0 unless i == I·mod q - 1. 
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8. Lubin-Tate Theory 

Proof The function X 1---+ AA(aA(X)) is an additive formal power series. 
such that 

AiaiX)) == aX mod deg 2. 

The uniqueness of the logarithm shows that this function is aAA' 
For the basic Lubin-Tate group, we take a = , where , is a primitive 

(q - l)th root of unity, and apply Theorem 2.3 to conclude the proof. 

Lemma 3. (i) Let A' denote the formal derivative dAfdX. Then A~(X) has 
coefficients in o. 

(ii) The series AiX) can be written in the form 

where gj(X) E o[[X]]. In particular, it converges on the maximal ideal. 

(iii) Suppose q ~ 3 and let x E Ka have ord" x ~ 1. Then 

Aix) == x mod x 2. 

Proof For (i) we differentiate with respect to Y the relation 

and get 

A~(F(X, Y))D2F(X, Y) = A~( Y). 

We then put Y = 0, and find 

But from F(X, Y) == X + Y mod deg 2, it follows that D2F(X, 0) is a power 
series whose constant term is 1, and with coefficients in o. This proves the 
first assertion. 

As for (ii), it suffices to prove the result for the basic Lubin-Tate group 
whose Frobenius power series is given by 

because if",: A --'>- B is an isomorphism such that ",(X) == X mod deg 2, then 
AA = AB 0 "'. 
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§6. The Logarithm 

It also clearly suffices to prove the following statement: 

The power series [nn](X) lies in the module 

withj ~ 0, k ~ 1 andj + [logq k] ~ n. 

We prove this by induction. It is obvious for n = 1. Assume it for n. Let 

Then 

It is immediate that nfn{X) satisfies the induction hypothesis with respect to 
n + 1. For"the termfn(X)q, it will consist of cross terms which binomial-type 
coefficients divisible by p, hence by n, thus satisfying the desired conditions 
on the exponents, or terms 

The logq of the exponent of X is increased by one, and so the desired in­
equality is also satisfied. This proves (ii). 

Part (iii) is obvious from (ii). 

Observe that in the simplest case of the ordinary log, 

X2 
log(l + X) = X - "2 + .... 

If P = 2, the first term after X gives trouble. If p = 3, the next term which 
might give trouble is 

X3 
3' 

but in this case, the assumption ordp x ~ 1 shows that (iii) holds. After that, 
things only get better. 

Lemma 4. Let eACZ) be the power series (with coefficients in K) which is 
the inverse of AA(X). Let D be the disc in mKa consisting of those elements z 
such that 

1 
ord z > --. 

" q - 1 
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s. Lubin-Tate Theory 

Then eA(Z) converges on this disc, and induces the inverse isomorphism to 
AA, on the groups 

For z in this disc we have 

ord z = ord Aiz) = ord eiz). 

Proof Let y ED, Y # O. Define 

Then for i > 0, 

1 
2y(X) = - AiyX). 

y 

1 yql I . qi - 1 . 
ord - - = (q - 1) ord y - 1 > -- - 1. 

Y nl q - 1 

By Lemma 3, it follows that 2y(X) has integral coefficients. Let Ey be the 
power series such that Ey o2y(X) = X. Replacing X with y 1 X we see that 
Ey(Z) = y1eiyZ). Since Ey has integral coefficients (because Ay(X) = 

X + higher terms), we conclude that 

1 
- eiyZ) y 

has integral coefficients. Let eiZ) = 2: anZn. Then anyn-l is integral for all 
n and all yin D. It follows that in fact, anyn tends to 0 (p-adically) as n tends 
to infinity for each y in D. Furthermore, we then conclude that 

for all y in D, and in particular, 

ord eiy) ;::; ord y. 

On the other hand, again using Lemma 4, it is immediate that for x in D, 
we have 

Since eA and AA give inverse mappings, we get 

thus proving Lemma 4. ' 

216 



§7. Application of the Logarithm to the Local Symbol 

We may then recover immediately a lemma proved in connection with 
Theorem 5.1. 

(ii) AAA(.\ln) ~ nOn' 

Proof Clear. 

Lemma 5. The kernel of AA in the maximal ideal of the algebraic closure of 
K is precisely A tor , the group of torsion points on A, or in other words, the 
group A(n>. 

Proof A point x is a torsion point if and only if [nn]x is a torsion point 
for some positive integer n, or for every large positive integer n. But [nn]x 
approaches 0, and for large n, lies in the neighborhood of 0 where the 
exponential and log on A give inverse mappings. Since on the additive group, 
there are no elements of finite order, it follows that the kernel of AA is precisely 
A(">. 

§7. Application of the Logarithm to tile Local Symbol 

We recall that the finite extension Kn is self dual as a vector space over K 
by means of the trace. This means we have a non-degenerate K-linear pairing 

given by 

(x, y) J--+ Tn(xy). 

Let a be an ideal in Kn. We denote by a.l the set of elements y E Kn such that 

Tixy) E 0 = OK' 

Of course, we have the notion of perpendicularity with respect to any given 
pairing, and the context will always make clear which is meant. We have 

a.l = Homo(a, 0). 

Indeed, let ljJ: a ~ 0 be a o-homomorphism. Then ljJ can trivially be extended 
to a K-linear functional Kn ~ K denoted by the same letter. But then for some 
a E Kn we have 

ljJ(x) = Tn(xa) for all x E Km 
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8. Lubin-Tate Theory 

and CI. E a.L by assumption. Our identification of a.L with Homo(a,o) then 
follows at once. If'Il" = 'IlKnIK is the different, then 

We return to the pairing given by the local symbol 

We had already noted as a consequence of LS 4 that 

Observe that we are dealing with two orthogonality signs: One referring to 
the local symbol, and one referring to the duality 

(where the trace is viewed as having values in the factor group Kjo), applied 
in particular to an ideal 

Then we have the pairing 

Since Ker AA = Ator, we have Ker AA n K" = A"n+1. Applying the log map 
of A, we get a pairing 

Let a = AA(~n)' so the factor group on the left is ajn"+la. In the light of the 
exact duality 

there exists a unique group homomorphism 

such that for x E A(~,,) and CI. E Ain+1 we have 

LS 7. 
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This formula has been written without abbreviations, but of course in the 
future we frequently omit indices A, n, etc. If U E Gal(KRjK) and U 1--+ x(u) 
is its representation in 0* on T,,(A), then 

LS 8. 

Proof We have 

and also 

Butuxn = [X(U)]Xnby the definition of x, withx(u) EO*. Using [ab] = [a][b] 
and Tn(uy) = Tn(Y) concludes the proof of IS 8. 
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9 Explicit Reciprocity Laws 

Iwasawa [Iw 8} proved general explicit reciprocity laws extending the classical 
results of Artin-Hasse, for applications to the study of units in cyclotomic 
fields. These were extended by Coates-Wiles [CW 1] and Wiles [Wi] to 
arbitrary Lubin-Tate groups. Although Wiles follows Iwasawa to a large 
extent, it turns out his proofs are simpler because of the formalism of the 
Lubin-Tate formal groups. We essentially reprod'uce his paper in the present 
chapter. 

We assume that K is a finite extension of Qp (i.e. has characteristic 0) 
because we want to use the logarithm. 

We allow p = 2, and I am indebted to R. Coleman for showing me how 
Wiles' paper extends with essentially no change to that case, by using (ii), 
(iii), (iv) of LS 6, and the minus sign in DL 6. 

We let: 

A = Lubin-Tate group associated with the prime element n. 

We let: 

(Xo, Xl, ... ) E T,,(A) with Xo =F O. 

Nn = norm from Kn to K, and Nm.n = norm from Km to Kn for m :::: n. 

Tn = trace from Kn to K. 

We abbreviate < , )n to < , ) unless we wish to specify the level at which 
the symbol is taken. 
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§1. Statement of the Reciprocity Laws 

N;.l(rcZ) = subgroup of K: consisting of those elements whose norm to K 
lies in rcZ (i.e., is a power of rc). 

= n Nm.nK! by Lemma 1 of Chapter 8, §5. 
m.,n 

T(K!) = group of vectors (cto, ctl> •.. ) with ctn E K: such that 

§1. Statement of the Reciprocity Laws 

Theorem 1.1. Suppose ct E On and ct == 1 mod .\:.In. Then 

and 

<Xn, ct)n = [rcLl (Nnct- 1 - l)]Xn. 

Proof By the formalism of the norm residue symbol, we know that 

Hence [Nnct]xn = Xn by the Lubin-Tate theory, so the first assertion is clear. 
We choose t = X2n+l so that [rcn+1]t = Xn. Then 

Since (ct, Kn(t)/Kn) = (Nnct, Kn(t)/K) we obtain from Lubin-Tate theory 

<Xn, ct) = [Nnct-1]t -A t 

= [Nnct-1 - l]t. 

Using the first congruence and the fact that [rcn+1]t = Xn yields the theorem. 

Coronary 1. Let ct == 1 mod .\:.In. Assume that K is unramified over Qp. Then 

where the log is the ordinary log on the multiplicative group. 

Proof Since n is unramified, we can write 
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9. Explicit Reciprocity Laws 

where z == 0 modpn+l. Since p -# 2 it follows that 

Hence 

Since K is unramified over Qp, we have 1t '" p, and the corollary follows. 

Corollary 2. Let A = Gm be the formal multiplicative group. Let , be a 
primitive pn + lth root of unity, and let ct == 1 mod Pn' Then 

Proof Special case of Corollary 1. 

The law of Corollary 2 is one of Artin-Hasse's laws, obtained here by 
Wiles as a special case of the Lubin-Tate formalism. We have written the 
symbol with the usual parentheses, transfering its meaning to the multiplica­
tive group. 

We shall now state the main result of this chapter. Let ct E K~. Let 
r = ordvn ct. Let g(X) = crr + ... be a power series in o[[X]] with a unit 
Cr such that 

Of course, there exist infinitely many such power series. Let 

D = d/dX 

be the ordinary derivative of formal power series, so that 

Dg(X) = g'(X). 

Define 

The operator DnL depends on the choice of element 

(XQ, Xl, ... ) E TiA), 

and it depends on the choice of g. We shall see later to what extent it does 
not depend on g. 
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We define 

Again this dep~nds on the choice of g. 
Let x E A(Vn) and let O(m E K:f:. In Lemma 3.2 we shall give conditions 

under which the symbol 

is well defined mod nn + 1 independently of m. These conditions involve either 
x being sufficiently divisible in A(Vn), or m being sufficiently large. The value 
of the symbol lies a priori in K/nn+lo, but it will turn out that under suitable 
conditions, its value lies in o/nn+lo, so that it can be viewed as an operator 
on A"n+1. This was the reason for selecting the bracket in the notation. 
Precisely, the conditions are as follows. 

Condition (i) m ~ 2n + 1 and there exists an integer 

k ~ [nI2] + 2(n + 1) 

k ~ max{[n/2] + 2(n + 1), e + I} ifp = 2, 

Condition (li) m ~ nand ord" x ~ [n/2] + 2. 

Theorem 1.2. Let x E A(Vn) and 0( E K:. Suppose 0( = Nm.nO(mfor some 
O(m E K;:. Under either one of the conditions (i), (ii), the symbol [x, O(m]m 

has value in o/nn+lo and we have equality 

An important case is that when 

0( = (0(0, 0(10 ••• ) E T(K!). 

Thus O(n satisfies an infinitely regressive norm-divisibility condition. In that 
case we may define the symbol 

[x, O(] = [x, O(m]m 
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9. Explicit Reciprocity Laws 

for arbitrarily large m, and its value will be the same for any m ;:::: 2n + 1. 
It gives the formula 

Example. The formal multiplicative group. For P == 1 mod fl" and IX E K: 
we defined the classical norm residue symbol 

([3, lX)n = <P - 1, IX)~ + 1, 

where A = Gm• Consider the special case when K = Qp and 11: = p. Let , 
be a primitive pn+lth root of unity. Then 

xn = , - 1. 

We have AA(X) = 10g(1 + X), so 

1'( ) _ 1 _ Y-l AA Xn - 1 + Xn -." • 

Let x E flri = Gm(fln). Then we find for m ;:::: 2n + 1: 

1 
(x, lX)n = ,. where v = pm+l T m (~log (1 + x) DXm log IX). 

This is Iwasawa's formula [Iw 10]. 

Finally there is another Artin-Hasse reciprocity law generalized by Coates­
Wiles to the Lubin-Tate case for level O. 

Theorem 1.3. Let x E A(fl5) and IX E Kt. Then the symbol [x, lX]o has values 
in oireo, and we have 

The rest of the sections will be devoted to the proofs. 

§2. The Logarithmic Derivative 

In this section we investigate systematically the logarithmic derivative, when 
it is well defined (modulo certain powers of the prime), and also to what 
extent the mapping On(lX) is well defined. We let: 

'iln = different of K" over K; 

'ilm,,, = different of Km over K" for m ;:::: n. 

Then 
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§2. The Logarithmic Derivative 

These are immediate by considering the basic Lubin-Tate generators Wn , 

satisfying the equations: 

wg- 1 + n = 0 and W~+l + nWn+l - Wn = O. 

The relative difference is obtained by taking the derivative, and evaluating at 
Wo and Wn+l respectively. The given values fall out. 

Let rx E Kn and write rx as a power series 

rx = g(xn) with g(X) = crX" + higher terms 

and Cr equal to a unit. Let g(X) = X"h(X). Then 

g'/g(X) = i + h'/h(X). 

Hence g'/g(xn) is integral if r = 0, and in any case lies in V;l. If 

are two power series whose values at Xn are equal to rx, and f(X) is the 
irreducible polynomial of Xn over K, then 

for some power series cp(X) E o[[X]]. Hence 

This shows that g' /g(xn) is well defined modulo the different. 

DL 1. The map DnL is a homomorphism 

and the image of the units lies in On mod :!In. 

This is obvious from the previous discussion. Since A'(X) is a power series 
starting with I and with integral coefficients, it follows that A'(xn) is a unit. 
Hence from the definition of bn. we find: 

DL 2. The map bn is a homomorphism 

Its image lies in n-nV;l mod :!loon, and the image of the units lies in 
n-n mod :!loon. 
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9. Explicit Reciprocity Laws 

As the elements of Kt are generated by powers of Xn and units, the com­
putation of ~n is reduced to ~n(xn) and ~n(units). Note: 

DL 3. For a E Gal(Ks,/ K), and IX E Kt, 

~,,(IX(J) = x(a)~,,(IX)"'. 

Proof Write IX = g(x,,) as usual. Then 

alX = g(ax,,) = g([x(a)]x,,). 

Thus we let g.,.(X) = g([x(a)](X», so that 

On one hand, we have 

(1) n" 0 (IX)'" = _1_ g'/g(ax ) = _1_ g'([x(a)1x,,) 
" A.'(ax,,) "A'(ax,,) alX 

On the other hand, since A 0 [x(a)](X) = x(a)A(X), we find 

(2) X(axn)[x(a)]'(x,,) = x(a)A.'(x,,). 

Furthermore 

(3) 

and 

g.,.'(X) = g'([x(a)J(X)[x(a)]'(X). 

Putting (1), (2), (3), (4) together yields the desired property. 

DL 4. Let m :2: n and let IX be a unit in Kt. Then 

Om(lX) == ~,,(IX) mod :!loom. 

Proof The proof is similar to DL 3. We know that 

so by the chain rule, 
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§2. The Logarithmic Derivative 

We have the representations 

where 

Since IY. is assumed to be a unit, the power series g starts with a unit, and so 
does the power series gm, so both these power series can be used to compute 
the logarithmic derivative. The rest of the proof then follows immediately 
from the chain rule and the definitions. 

DL 5. Let m :?: n, and IY.m E K;:. Then 

bn(Nm.nlY.m) == Tm.nbm(lY.m) mod On' 

Proof Without loss of generality we may assume that m = n + 1. We 
first deal with the case when IY.m is a unit. W,e find: 

(}n(Nm.nlY.m) = bm(1JIY.~) == ~bm(IY.~) byDL4 

= L x(u)bm(lY.m)", by DL 3. 
" 

The sums are taken over U E Gal(Km/Kn). For such U we must have 

X(U) == 1 mod xn+l 

because [x(u)] is the identity on A"n+!. Since bm(lY.m)" lies in x-mom = x-<n+l)om, 
the desired congruence follows. 

It will then suffice to prove DL 5 next for IY.m = X m, because of the multi­
plicativity of the function (). For simplicity, let us first suppose that the 
Frobenius power series associated with the Lubin-Tate group is in fact a 
polynomial, 

[x](X) = f(X) = xX + ... + xq, 

and that the coefficient of xq is exactly 1. For instance, the basic Lubin-Tate 
group and the formal multiplicative group are of this type. Under this 
additional assumption, we have in fact the stronger property with equality 
instead of the congruence: 

DL6. 

Remark. The minus signs are there to take care of the case p = 2. If p i= 2, 
they can be omitted. 
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9. Explicit Reciprocity Laws 

Proof We may again suppose m = n + 1. We have (as in the proof of 
Theorem 2.2 of Chapter 8) 

The formula to be proved amounts to 

We have Xn = feXn+l), and since A(f(X» = 1l:A(X), we have 

(A 0 f)'(X) = A'(f(X»f'(X) = 1l:A'(X). 

We put X = Xn+b and see that the formula amounts to 

We replace Xn by f(xn+1) = 1l:Xn+l + ... + X~+1' Let a = Xn+l' Standard 
orthogonality relations of elementary algebra (see for instance Algebra, 
Chapter VII, §6) yield 

Tn+l.n(;:~a;) = 1 if i = q 

= 0 if i 'I:( q. 

This proves what we wanted. 

The proof of DL 5 in general when am = Xm follows exactly the same 
pattern, but we end up only with the asserted congruence. We give the details. 

By the Weierstrass theorem, we may factor in On, 

f(X) - Xn = g(X)h(X) 

where 

g(X) = bo + ... + bq_1xq-l + xq, 

heX) = Co + clX + ... is a unit power series, Co E o~. 

Then f'(Xn+l) = g'(xn+1)h(xn+l)' Proceeding as before, we are reduced to 
proving the congruence 

228 



§3. A Local Pairing with the Logarithmic Derivative 

Again we replace x" by f(xn +1)' From the factorization we have 

Hence 

From the orthogonality relation, we obtain a contribution of 1 from the trace 
of one term. From the definition of the different (which is precisely g'(xn + 1)) 
it is then clear that the traces of all the other terms are == 0 mod .jJn, as desired. 

Property DL 5 can be expressed in the projective limit as usual. Let 

T(Ko%",) = projective limit of the additive groups Kn/on under the 
trace maps, 

= group of vectors (zo, Zl> •.. ) with Zn E Kn/on such that 

Then the map 

given by 

is well defined, and is a homomorphism. 

§3. A Local Pairing with the Logarithmic Derivative 

Having derived the necessary formalism for the values of Dn(ct), we may now 
combine this with the logarithm on A to define the symbol 

Lemma 3.1. The symbol [x, ctlm is well defined mod nn+l in each ofthefollow­
ing cases: 

(i) x E A(.jJ,,) and m ;::: 2n + 1; 

(ii) x E A(.jJ~qn) and m ;::: n. 

Proof By DL 2 we know that Dm(ct) is well defined mod :Doom. Hence the 
symbol is defined mod n" + 1 if 
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9. Explicit Reciprocity Laws 

By the definition of the different 'Il,;;-l = n- m'Ilo1om, this is equivalent with: 

nm-n-2A(X)'Il~ is integral. 

It will even be shown that in case (i), nm-n-2A(x)'Ilo is integral. 
For future reference, we prove congruences which imply the above, and 

list them systematically. 

C 1. If x E A(Vn) and m ~ 2n + 1 then 

TmG A(X)Om) c nn+1o. 

C 2. If x E A(v~qn) and m ~ n then 

Tm(~ A(X)'IloOm ) c nn+1o. 

C 3. If x E A(v~qn'Ilo) and m ~ n then 

Observe that the 'Ilo does not occur inside the trace in eland C 3. Only C 1 
and C 2 are needed for Lemma 3.1 but C 3 will be needed for Lemma 3.2. 
We now give the proofs. 

Suppose first that m = 2n + 1 (the worst case of (i)). We have to verify 
that 

nn -1 A(X)'Ilo is integral. 

Recall that ord" 'Ilo = (q - 2)/(q - 1). 
By Chapter 8, §6, Lemma 3 we know that A(X) is a power series in x whose 

terms are either integral, or at worst with a factor 

~I • 
j' and 1 ~ 1. n 

Suppose x E A(VlI). Then 

d lI-l1()<"1'"\ 1 j 1 . q - 2 or n A x ""'0 ~ n - + q n( 1) - 1 + --1· q q - q-

We need the right-hand side ~ O. For i ::; n - 1 this is obvious, because 
n - 1 - i ~ 0 and the other terms are positive. For i ~ n the estimate is 
equally easy. 

Suppose next that x E A(v~qn) and only that m ~ n, say m = n which is 
the worst case. Then x ·lies in the disc of" good" convergence for the log and 
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exponent, and thus 

2 
ord A(X) = ord x ~ --I' q-

For C 2, it suffices to verify that n - 2 A(X)'l) 5 is integral, or equivalently 

2 q-2 
-2 + -- + 2-- ~ 0, q-2 q-l 

which is obviously the case. The proof for C 3 is the same. 

We remark that in the range where the symbol is well defined, it is OK-linear 
in x and multiplicative in IX. In any case, within the ranges of Lemma 1, we 
view the symbol as having values in 

The next lemma will show that the value [x, IXm]m is independent of m when 
IXm is the component of an infinite vector 

a = (ao, al> ... ) E T(K!), 

and m is sufficiently large. We define [x, IX] to be this value. 

Lemma 3.2. Let k ~ m ~ n. Let IXm E K;: and ak E Kit be such that 

Then 

in either case." 

(i) x E A(Vn) and m ~ 2n + 1; 

(ii) x E A(V~qn'l)o) and m ~ n. 

Proof We have: 

1 == n Tm(A(X)t>mCNk.mak)) mod nn+l 

1 == n Tm(A(X)Tk.mt>k(ak)) by DL 5 and C 1 or C 3 

= ! Tk(A(X)t>kCak)) n 
= [x, adk, 

as was to be shown. 
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§4. The Main Lemma for Higbly Divisible x and IX = Xn 

Only the statement of the main lemma will be used later, and we recommend 
to the reader to read the next sections before reading the proof of the main 
lemma. 

Lemma 4.1. Let x E A(Vn). Suppose that 

ord" x ~ [nI2] + 1 + 2e, 

where e is the ramification index of Kover QI'. Then 

<x, xn>n = [x, xn]~(xn). 

Proof First we remark that for the applications, the exact nature of the 
order condition on x is irrelevant, and the reader will find it easier just to 
assume that the lemma is being proved under the assumption 

ord" x ~ [nI2] + 50,OOOe, 

or any other high multiple of e, which would do just as well. Also, instead 
of [nI2], any expression like [n l - e] would do just as well. In the next section 
it will be shown how to use a duality to lower back such expressions to the 
precise ones which we ultimately want. 

We let ord" x ~ 't(n) , and derive sufficient conditions (also more or less 
necessary) for the method of proof to yield the lemma. 

During the course of the proof we shall constantly be interchanging 
logarithms with the first term in the expansion. If ord" x ~ 1 then 

If p is odd, we even have 

x 2 
A.(x) == x mod -

1t 

A.(x) == x mod x 2• 

Furthermore, if ord" y ~ e then 

2 

log(l + y) == y mod ~ . 

The formula to be proved is 
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We first want to replace A(X) by x on the right-hand side. It suffices for this 
that 

Since A'(xn) is a unit, this is equivalent with 

(1) 
q - 2 1 

2 .. (n) - n - 3 + --1 - n( 1) ~ o. q - q q-

Certainly .. (n) ~ (nI2) + 2 suffices. Again since A'(Xn) is a unit, proving the 
formula for all x is equivalent to proving 

This will be done by the sequence of following steps. 

Step 1. <A'(Xn)X, xn> = <x + Xm xn> 

Step 2. <xn + x, xn> = [-I]<xn' Xn + x> 

Step 3. <Xn, Xn + x> = < Xn, 1 + :n)· We then apply the basic re­

ciprocity law of Theorem 1.1 to show that this is equal to 

to conclude the proof. 

Step 1. We shall use the expression involving the mapping l/!n in Chapter 8, 
§7, formula LS 7, namely 

<x, xn> = [Tn(A(X)l/!n(xn)]ixn), 

=:= [Tn(xl/!n(xn)1A(xn). 

Indeed, A(X) == x mod nnt(n) and Tn(n2t(n)l/!n(xn» == 0 mod nn+\ because the 
image of l/!n is contained in AA(Pn).L, and 

Therefore we need 
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9. Explicit Reciprocity Laws 

For this it suffices that 

(2) 2't(n) ~ n + 2. 

Again 'ten) ~ (nI2) + 2 suffices. 
Since A'(xn) is a unit, we may replace x by A'(xn)x to obtain 

By Taylor's formula, using the fact that A'(X) has integral coefficients, and 
A(Xn) = ° we get 

provided that also 'ten) ~ e. So let us make 

n 
'ten) ~ 2 + 1 + 2e. 

As we have already seen that 

we may replace A'(xn)x by A(X + xn) to conclude the proof of Step 1. 

Step 2. Formally, this is just the alternating property LS 6 of the symbol 
<0(,0(> = 0, but the proof has to be adjusted because the groups involved on 
the right and left do not playa symmetric role. We have: 

° = <xn + x, Xn + x> = < Xn + x, 1 + :n) [+ ] <xn + x, xn> 

= «Xn + x)[-]xn' 1 + :n) 

[+ ] < Xn, 1 + :n) [ + ] <xn + x, xn> 

= < (xn + x)[ -] Xm 1 + :n) 

[ + ] <xm Xn + x> [ + ] <xn + x, xn>. 

There remains to prove that the first term on the right is 0, and for this it 
suffices to show that 
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with positive integers r, d such that 

(3) r + ed;;::: n + 1. 

Let F(X, Y) be the group law on A. Since F(O, Y) = Yand F(X, 0) = X 
we see that 

F(X, Y) == X + Ymod XY. 

It follows at once that 

(x + xn) [-] Xn == 0 mod x == 0 mod n«n). 

But then we may take 

(4) r = 'ten) - 1. 

To solve 1 + y = uPd with some unit u, for y = x/xn, we use the fact that 
the ordinary log and exp preserve the order ~m the disc of elements z such that 
ordp Z > l/(p - 1). It follows that we can take any integer d satisfying 

or in terms of n, 

1 o ~ d < ordp y - --1' p-

(5) 
'ten) 1 1 

O~d<-- n( 1)---1' e eqq- p-

For instance it suffices that 

1 o ~ d < - 'ten) - 1. e 

Picking't(n) = [n/2] + 1 + 2e suffices. This concludes Step 2. 

Step 3. Let y = x/xno and t:I. = 1 + y. We have: 

<Xn, Xn + x) = <xno 1 + y) 

= [n:+1 (Nn(1 + y)-l - l)LeXn)' 

We contend that 

whence it follows that 

<Xn, Xn + x) = [ - nL1 Tn(y)L(Xn), 

thereby concluding the proof of the main lemma. 
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9. Explicit Reciprocity Laws 

To prove the contention, write N n(1 + y)-l = 1 + Z, with 

(Cf. Theorem 1.1.) Then 

log Nn(l + y)-l = Tn(log(1 + y)-l) 

== -Tn(Y) mod TnHy2on). 

This amounts to the same type of congruence as before, and is obviously 
satisfied. This concludes the proof of the main lemma. 

§5. The Main Theorem for the Symbol <x, xn)n 

Theorem 5.1. We have the equality 

<x, xn)n = [x, xm]~(xn) 

under either of the following conditions: 

(i) x E A(.):ln) and m ~ 2n + 1 

(ii) x E A(.):l~qn~o) and m ~ n. 

Proof By LS 5 of §5 in the preceding chapter, we have for m ~ n 

This shifts the burden of the proof to level m, and [1tm-n]x is divisible 
approximately of order m (asymptotically for m -+ (0). Specifically, to apply 
the main lemma of the preceding section, we want to take m so large that 

ord,,[1tm- n]X ~ [mI2] + 1 + 2e. 

Since 

it suffices to take m ~ 4(n + 1) + 4e. 
Let x' = [1tm - n]x. We apply the main lemma of the preceding section to 

x' instead of x and m instead of n, to conclude that 

<x, IXn)n = [[1tm- n]x, IXm]A(Xm) 

= [1tm -n ~ Tm(A(X)Om(xm) t (xm). 
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We write this as 

This means in particular that nm-na is integral. On the other hand, there 
exists b E 0 such that 

Hence we have the congruence 

whence it follows that a is integral and also that 

which concludes the proof of the equality between the symbols under either 
condition (i) or (ii) according to Lemma 3.2. 

The next theorem shows how one can refine the conditions of Theorem 4.1, 
with a more precise definition ofthe symbol bn(Xn) for the special case rx = Xn. 

Theorem 5.2. Assume that the Frobenius power series associated with the 
Lubin-Tate group A has the form 

f(X) = xq + ... + nX, 

i.e., is a polynomial of degree q with leading coefficient 1. Define more 
precisely 

Then for x E A(.j:)n} we have 

Proof First observe that the elements - Xm form a vector 

(-Xo, -Xl> ... ) E T(K!), 

i.e., each is the norm of the successive one. Instead of using Lemma 3.2, 
however, which relied on DL5, we may now use directly the more precise 
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9. Explicit Reciprocity Laws 

relation DL 6 which gives an equality implying the stronger statement: 

1 
= it Tn(A(x)Tm.nc5m( -xm» 

1 = - Tn(A(x)c5n( - xn», n 

The value c5m( -xm) is here taken to be specifically (l/nm)(1/A'(xm)xm), rather 
than up to a congruence. 

Example 1. Take A = Gm to be the formal multiplicative group. Then it 
satisfies the hypothesis of Theorem 5.2, and we obtain another reciprocity 
law of Artin-Hasse: 

where 

[x, -xn] = Ll Tn (.I log(l + x») 
p Xn 

Xn = , - 1, 

and, is a primitive pn+lth root of unity. 

Example 2. Take again A = Gm, let p #- 2 and let B be the special Lubin­
Tate group, corresponding to the Frobenius polynomial 

x p - 1 + p = o. 

We contend that: 

<xh, xo> = 0 if i is an integer prime to p, or i > p. 

<xg, xo> = Xo. 

Proof For the first statement, we have by multiplicativity: 

o = <xh, xh> = [i]<xh, xo>. 

If i is prime to p, this proves our assertion because Ap is a p-group. If i > p, 
then one sees from the formula with the trace that the symbol gives O. 

The more interesting case is <xg, xo). We could work directly on the 
multiplicative group as was done classically, but the functorial formula LS 2 
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§6. The Main Theorem for Divisible x and rx = unit 

of §5 in Chapter 8 shows that it suffices to prove the result on the special 
group, where 

xg- 1 = -po 

By Lemma 2 of §6 in Chapter 7 (the logarithm for the special group) we know 
that 

Aix) = x + terms of degree ;::: p. 

Hence 

= To( -1) (mod p) 

= 1 (modp). 

This proves the assertion. 

§6. The Main Theorem for Divisible x and rx = nnit 

Theorem 6.1. Let x E A(.):l,,) and suppose 

ord" x ;::: [nI2] + 2, ifp is odd 

ord" x ;::: max{[nI2] + 2, e + I} if p = 2. 

Then for any unit rx we have 

<x, rx>" = [x, rx]~(x,,). 

Proof The units are generated by f.lq -1 and the units == 1 mod .):l". If 
rx E f.lq -1 then both sides of the equation are trivially equal to O. So we deal 
with the units == 1 mod .):l". A (topological) set of generators for these units 
consists of the elements 

1 - ex", with j = 1, 2, ... , 

where e is a (q - 1 )th root of unity. The elements x~ form additive generators 
for A(,pn) over 0, and in our case, we need consider just those powers with i 
satisfying 

ord" x~ ;::: [nI2] + 2. 
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It suffices to prove the lemma for the symbol (x~, 1 - eX~)n with such values 
of i. We shall reduce the proof to the case (x, xn). 

We start with the symbol [x~, 1 - ex~]. Since 

-jex~-l -j ~ 
"n{l - ex~) = ..1.'( )(1 _ i) = X() L.. eTx"'./, Xn Xn Xn Xn r=l 

we find 

[X~, 1 - ex~] = -::11 i Tn(;_(Xni) ..1.'( 1) eTx"'./). 
n r=l Xn Xn 

_ ~ ~ T (i 1 r Ti) 
- n + 1 L.. n Xn , '( ) e Xn n T=l JI. Xn Xn 

00 

= - j L [eTx~+TJ, Xn]. 
r=l 

The above formal steps are obviously justified. First the sums taken mod nn + 1 

are actually finite, and second we have replaced A(Y) by y and vice versa 
twice in the range where this applies. The equality takes place in Klnn+1o 
where the symbol [x, 0:] takes its values. 

By Theorem 5.1 we know that 

[eTxi +TJ X ] (x ) = (~TXi+TJ X ) n,nAn li'n'n" 

Therefore 

00 

[x~, 1 - ex~]ixn) = [-j] LA (erx~+TI, Xn), 
r=l 

and this latter sum is taken on A. Since (x, -I) = 0 by LS 6 if ord" x is big 
enough, it will therefore suffice to prove the next and final result. 

Theorem 6.2. Suppose 

ord" x~ ~ [nI2] + 2 ifp is odd 

ord" x~ ~ max{[n/2] + 2, e + I} if p = 2. 

Let j ~ 1. Then 
00 

(Xi Xi 1> - [ .] "" (r i + rl ) no e n - n - - ] L..A e Xn ,Xn n' 
r=l 

Proof Let F be the group law on A. Since 

.F(X, y) == X + Y mod XY, 
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we obtain for x, y E .):l,,, 

x [ + ] y == x + y mod xy and x [ - ] y == x - y mod xy. 

This will be applied when ord" x and ord" y ~ [nI2] + 2, so that 

ord" xy ~ n + 3. 

In that case, A(n"+30 ,,) c [n"+l]A(.):l,,), so addition on A and addition on Ga 
are interchangeable on the left of the symbol 

(x,a)" 

under the condition ord" x ~ [nI2] + 2. 
This b~ing said, we find: 

o = <x~(ex' - 1), x~(ex' - 1» 

= <ex~+J - x~, x~) [ + ] <ex~+i - x~, ex' - I) 

= <ex~+i, x~) [+ ] <ex~+J, ex' - I) [- ] <x~, ex~ - I) 

whence 

<x~, ex' - I) = <ex~+J, ex~ - I) [+ ] <ex~+I, x~). 

Note that <x, e) = 0 for all e E jlq-l. 

Recursively we obtain 

co 

<x~, ex' - I) = LA <erx~+rJ, X~+<r-l)J) 
r=l 

co 

= "" <erxl +rJ x-J) 
L..A "'" r=l 

co 

= [-j] LA <erx~=rJ, x,,). 
r=l 

Observe that the sums are in fact finite since for large r the left-hand side of 
each symbol in the sum is highly divisible, so the symbol is o. Hence the above 
formal steps are valid, and the theorem is proved. 

The special case when n = 0 is often interesting for its own sake. The 
next lemma may be omitted in the proof of Theorem 7.1 or Theorem 1.2, 
but is useful for the proof of. Theorem 7.2. 
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Lemma 6.3. Assume that B is the special Lubin-Tate group with Frobenius 
power series xq + nX. Let Wo E B". Then for i ~ 2 and j ~ 1 we have the 
same formula with n = 0 as in the previous lemma, namely 

co 

<wi, W6 - 1>0 = [-j] 2:B <wi/ri, Wo>o· 
r=1 

Proof By Theorem 2.3(ii) of Chapter 8, we know that the group law on 
B satisfies 

F(X, Y) = X + Y + terms of degree ~ q. 

If x, y E .):l02 it follows that 

But .):l~q c [n]B(.):lo). Hence again addition on A and addition on Ga are 
interchangeable on the left of the symbol <x, IX>o under the stated conditions, 
and the rest of the proof is then identical with that of Theorem 6.2. 

§7. End of the Proof of the Main Theorems 

Theorem 7.1. Let x E A(.):l,,) and let 

Assume that 

k ~ [nj2] + 2(n + 1) ifp is odd 

k ~ max{[nj2] + 2(n + 1), e + I} ifp = 2. 

Then [x, IXm] lies in ojn'H1o for 2n + 1 ~ m ~ k, and we have 

for such m. 

Proof The theorem has already been proved when IX is a power of Xn or 
when IX E jiq-1' We may therefore assume that IX is a unit == 1 mod .):In' We 
reduce the theorem to the result of the preceding section in exactly the same 
manner that Theorem 5.1 was reduced to the main Lemma 4.1. This time 
we need 

ord,,[nk-n]x ~ [nj2] + 2 if p is odd 

ord,,[nk-nJx ~ max{[nj2] + 2, e + I} if p = 2. 
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Clearly then, the lower bound on k given above is sufficient. The proof is 
then identical with that already given for Theorem 5.1, as desired. 

For the case n = 0, special features arise, and we next give a generalization 
to Lubin-Tate groups of another explicit formula of Artin-Hasse. 

Theorem 7.2. Assume p l' 2. Let x E A(p~) and a E Kt. Then 

1 
[x, aJo = - To(A{x)bo(a» n 

is well defined mod n, lies in o/no, and we have 

<x, a)o = [x, aJg(xo). 

Proof Since A(Xo) = 0 it follows that A(Po) = A(p~) = p~. This shows 
that [x, aJi> is well defined mod n because <5o(a) is well defined in POl mod<Ilo. 

By formula LS 2 of Chapter 8, §5 it suffices to prove the theorem when 
A = B is the special Lubin-Tate group. In that case we already know the 
result when a = Xo or when a E jlq-l' We may therefore assume that a is a 
unit == I mod Po. In that case, we follow the same arguments as in the proof 
of Theorem 6.1 using Lemma 6.3 instead of Theorem 6.2. The reader can 
check that each step is valid, to conclude the proof. 
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