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Translators' Preface 

... if one wants to make progress in mathematics one should study 
the masters not the pupils. 

N.H.Abel 

Heeke was certainly one of the masters, and in fact, the study of Heeke L
series and Heeke operators has permanently embedded his name in the fabric 
of number theory. It is a rare occurrence when a master writes a basic book, 
and Heeke's Lectures on the Theory of Algebraic Numbers has become a 
classic. To quote another master, Andre Weil: "To improve upon Heeke, in 
a treatment along classical lines of the theory of algebraic numbers, would 
be a futile and impossible task." 

We have tried to remain as close as possible to the original text in pre
serving Heeke's rich, informal style of exposition. In a very few instances we 
have substituted modern terminology for Heeke's, e.g., "torsion free group" 
for "pure group." 

One problem for a student is the lack of exercises in the book. However, 
given the large number of texts available in algebraic number theory, this is 
not a serious drawback. In particular we recommend Number Fields by 
D. A. Marcus (Springer-Verlag) as a particularly rich source. 

We would like to thank James M. Vaughn Jr. and the Vaughn Foundation 
Fund for their encouragement and generous support of Jay R. Goldman 
without which this translation would never have appeared. 

Minneapolis 
July 1981 

George U. Brauer 
Jay R. Goldman 
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Author's Preface to the 
German Original Edition 

The present book, which arose from lectures which I have given on various 
occasions in Basel, G6ttingen, and Hamburg, has as its goal to introduce 
the reader without any knowledge of number theory to an understanding 
of problems which currently form the summit of the theory of algebraic 
number fields. The first seven chapters contain essentially nothing new; as 
far as form is concerned, I have drawn conclusions from the development of 
mathematics, in particular from that of arithmetic, and have used the notation 
and methods of group theory to develop the necessary theorems about 
finite and infinite Abelian groups. This yields considerable formal and 
conceptual simplifications. Nonetheless there will perhaps be some items of 
interest for the person who is familar with the theory, such as the proof of 
the fundamental theorem on Abelian groups (§8), the theory of relative 
discriminants (§36, 38) which I deal with by the original construction of 
Dedekind, and the determination of the class number without the zeta
function (§50). 

The last chapter, Chapter VIII, leads the reader to the summit of the 
modern theory. This chapter yields a new proof of the most general quadratic 
reciprocity law in arbitrary algebraic number fields, which by using the 
theta function, is substantially shorter than those proofs known until now. 
Even if this method is not capable of generalization it has the advantage of 
giving the beginner an overview of the new kinds of concepts which appear 
in algebraic number fields, and from this, of making the higher reciprocity 
theorems more easily accessible. The book closes with the proof of the 
existence of the class field of relative degree two, which is obtained here as 
a consequence of the reciprocity theorem. 

As prerequisites only the elements of differential and integral calculus and 
of algebra, and for the last chapter the elements of complex function theory, 
will be assumed. 

VB 



Vlll Author's Preface to the German Original Edition 

I am indebted for help with corrections and various suggestions to Messrs, 
Behnke, Hamburger, and Ostrowski, The publisher has held the plan of the 
book, conceived already before the war, with perserverance which is worthy 
of thanks, and despite the most unfavorable circumstances, has made pos
sible the appearance of the book My particular thanks are due to him for 
his pains, 

Mathematical Seminar 
Hamburg 
March 1923 

Erich Hecke 
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CHAPTER I 

Elements of Rational Number Theory 

§1 Divisibility, Greatest Common Divisors, 
Modules, Prime Numbers, and the Fundamental 
Theorem of Number Theory 

For the time being the objects of arithmetic are the whole numbers, 0, ± 1, 
± 2, ... which can be combined by addition, subtraction, multiplication and 
division (not always) to form integers. Higher arithmetic uses methods of 
investigation analogous to those of real or complex numbers. Moreover it 
also uses analytic methods which belong to other areas of mathematics, such 
as infinitesimal calculus and complex function theory, in the derivation of 
its theorems. Since these will also be discussed in the latter part of this book, 
we will assume as known the totality of complex numbers, a number domain, 
in which the four types of operations (except division by 0) can be carried out 
unrestrictedly. The complex domain is usually developed more precisely in 
the elements of algebra or of differential calculus. In this domain the number 
1 is distinguished as the one which satisfies the equation 

1· a = a 

for each number a. All successive integers are obtained by the process of 
addition and subtraction from the number 1, and if the process of division 
is then carried out the set of rational numbers is obtained as the totality of 
quotients of integers. Later, from §21 on, the concept of "integer" will be 
subjected to an essential extension. 

In this introductory part the basic facts of rational arithmetic will be 
presented, briefly, as far as they concern divisibility properties of integers. 



2 I Elements of Rational Number Theory 

While, from two rational integers a, b, integers are always obtained in 
the form a + b, a - b, and a . b, alb need not be an integer. If alb is an integer, 
a special property of a and b is present, which we wish to express by the 
symbol h I a, in words: h dirides a, or h goes evenly into a, or h is a diL'isor 
(factor) of a, or a is a multiple of h. Each integer a ( i= 0) has the trivial divisors 
± a, ± 1; a and - a have the same divisors; the only numbers which divide 
every number are the two "units" 1 and - 1. An integer a, different from 
zero, always has only finitely many divisors, as these cannot be larger in 
absolute value than lal; on the other hand every non-zero integer divides O. 

If b i= 0 and integral, then, among the multiples of b which are not larger 
than a given integer a there is exactly one largest multiple, say qb, and there
fore a - qb = r is a non-negative integer which is less than Ibl. This integer 
r, uniquely determined by a and b by the requirement 

a = qb + r, q integral, 0 ::;; r < Ibl 
is called the remainder of the division of a by b, or the remainder of a modulo 
b. The statement b I a is thus equivalent to r = O. 

If we now direct our attention to the common divisors c of two integers 
a, b which satisfies c I a and c I b, then there is. to begin with, a uniquely de
termined greatest common divisor (abbreviated GCD); we denote it by 
(a, b) = d. According to this definition we always have d ?: 1. In order to 
find properties of this number (a, b) we consider that we always have d I ax + 
by for all integers x, y. If we now consider the set of all numbers L(x, y) = 
ax + by, where x, y runs through all the integers, then d is obviously also 
the GCD of all L(x, y); for it divides all L(x, y) and there is no larger number 
with this property, since there can be no larger number which divides both 
a = L(l, 0) and b = L(O, 1). Among the positive integers L(x, y), let do = 
L(xo, Yo) be the smallest; thus from 

L(x, y) > 0 it immediately follows that L(x, y) ?: do. (1) 

We now show that each n = L(x, y) is a multiple of do and that d = do· 

Let the remainder r of n mod do be determined by 

r = n - q . do = L(x - qxo, Y - qyo)· 

Here we have 0::;; r < do; however by (1) it would follow from r > 0 that 
r ?: do. Thus we can have only r = 0, i.e., n = qdo. Accordingly the num
bers L(x,y) are identical with the multiples of do for each multiple qdo = 
L(qxo,qyo) also appears among the L(x, y). Consequently do is likewise the 
GCD of all L(x, y), hence it is identical with d. In particular this yields: 

Theorem 1. If (a, b) = d, then the equation 

n = ax + by 

is solvable with integers x, y if and only if din. 
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Moreover it follows from this that every common divisor of a and b 
divides the GCD of a, b. 

To ascertain the GCD one uses, as is well-known, a process which goes 
back to Euclid, the so-called Euclidean algorithm. The main point of this 
algorithm consists of reducing the calculation of (a, b) to the calculation 
of the GCD of two smaller numbers. It follows from a = qb + r that the 
common divisors of a and b are identical with those of band r, hence we 
have (a, b) = (b, r). Assume a > 0, b > 0 for the sake of convenience, set 
a = aI' b = a2 because of symmetry, and then let the remainder of a1 mod a2 
be a3' In general let 

ai + 2 be the remainder of ai mod ai + 1 for i = 1, 2, ... 

as long as the remainder can be determined, that is, ai+ 1 > 0, and indeed let 

Since, according to this procedure, the ai form a monotone decreasing 
sequence of integers for i ~ 2, the process must reach an end after finitely 
many steps, which will occur when the remainder becomes zero. Suppose 
ai+ 2 = O. Since 

(aI' a2) = (a2, a3) = ... (ai' ai+ 1) 

= (ai+ 1, ai+ 2) = (ak+ 1, ak+ 2) 

= (ak + 1, 0) = ak + 1, 

the last non-vanishing remainder ak+ 1 is the GCD sought. 
In the proof of Theorem 1 we have used only one property of the set 

of numbers L(x, y), namely the property that this set is a module. Here 
we define: 

Definition. A system S of integers is a module if it contains at least one number 
different from 0 and if along with m and n, m + nand m - n also always 
belong to S. 

Thus if m belongs to S, then m + m = 2m, m + 2m = 3m ... belong to 
S; moreover m - m = 0, m - 2m = -m, m - 3m = -2m'" belong to S. 
Hence, in general, mx belongs to S for each integer x provided m belongs 
to S, and consequently mx + ny also belongs to S for integers x, y if this 
holds for m, n. 

We can prove the following very general theorem about modules with 
the help of the proof of Theorem 1. 

Theorem 2. The numbers in a module S are identical with the multiples of 
certain number d. d is determined by S up to the factor ± 1. 

For the proof we consider that S contains positive numbers in any case. 
Let d be the smallest positive number occurring in S. If n belongs to S, then 
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by what has gone before, n - qd also belongs to S for each integer q, in 
particular so must the remainder of n mod d, which is <d but ;:::0, and 
thus must =0. Consequently each n from S is a multiple of d and since d 
belongs to S so do all multiples of d. Let d' be a second number which also 
has the property: the numbers of S are identical with the multiples of d'
then d must be a multiple of d' and conversely, that is, d' = ± d. 

If in an arbitrary linear form a1x t + a2x2 + ... + anxn with integral 
coefficients one lets the Xl' .•. , Xn run through all integers, then the range 
of values defined in this way is obviously a module. Hence in particular 
we have 

Theorem 3. The range of values of an arbitrary linear form in n variables with 
integral coefficients, not all vanishing, is identical with the range of values of 
a certain form of one variable d . x. Here d is the GCD of the coefficients of the 
original form. 

In order that the equation (a so-called Diophantine equation) 

k = a1xI + a2x2 + ... + anx. 

be solvable in integers Xl' ... , Xn, it is necessary and sufficient that the GCD 
of ai' ... , an divides k. 

If (a, b) = 1, we call a and b coprime or relatively prime. By Theorem 1, in 
order that (a, b) = 1, the solvability of 

ax + by = 1 

in integers x, y is necessary and sufficient. 
As the most important rule of calculation with the symbol (a, b) we state: 

Theorem 4. For every three integers a, b, c, where c > ° 
(a,b)c = (ac,bc). (2) 

In fact if(a, b) = d, then the equation acx + bcy = cd follows by Theorem 1 
from the known solvable equation ax + by = d; consequently cd is a multiple 
of (ae, be), again by Theorem 1. On the other hand, however, cd is a common 
divisor of ae, be and hence must be equal to (ae, be). 

In addition we note the concept of least common multiple of two numbers 
a and b. This is the smallest positive number v which is divisible by a as 
well as by b. For this number we have 

la· bl 
v=-d-' where (a, b) = d. (3) 

For by (2), 

(~,~)=1, v = (~v,~v} 
However ab/d is a common divisor of (a/d)v and (b/d)v and thus it divides v, 
that is, v;::: labl/d; on the other hand, ab/d is a number which is divisible 
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by a as well as by b, and consequently it has absolute value ~ v. Hence ab/d 
can only be = ± v. 

Since the numbers divisible by a and by b form a module and v is the 
smallest positive number occurring in it, every number divisible by a and by 
b must be a multiple of v. 

We now turn to the multiplicative decomposition of a number a. If, except 
for the trivial decomposition into integral factors, in which one factor is ± 1 
and the other is ± a, there is no other, we call a a prime number (or prime). 
Such numbers exist, e.g., ± 2, ± 3, ± 5, . .. . We do not wish to count the 
units ± 1 as prime numbers. If, for the sake of simplicity, we restrict ourselves 
to the decomposition of positive numbers a into positive factors we see first 
of all that every a > 1 is divisible by at least one positive prime number since 
the smallest positive factor of a, which is > 1, obviously can only be a prime. 
Now we split off a prime number Pl from the number a by the decomposition 
a = Plal , if al > 1 we again split off another prime P2 from al by al = P2a2' 
and so on. Since the al , a2' ... form a decreasing sequence of positive integers 
we must arrive at an end of the process after finitely many steps, that is, 
some ak must be = 1. With this, a is represented as a product of primes 
Pl . P2 ... Pk· Hence the primes are building blocks from which each integer 
can be built up by multiplication. We now have 

Theorem 5. (Fundamental Theorem of Arithmetic). Each positive number> 1 
can be represented in one-and except for the order of the factors-in only 
one way as a product of primes. 

For this it is sufficient to show that a prime P can divide a product of 
two numbers a . b only if it divides at least one factor. But this follows from 
Theorem 4. Namely, if the prime number does not divide a, then as a prime 
it cannot have any factor at all in common with a, hence (a,p) = 1. Then 
for each positive integer b, we have by Theorem 4 

(ab,pb) = b. 

Now if P I ab, then we must also have pi b, i.e., the prime p divides the other 
factor b of the product abo This theorem carries over at once to a product 
of several factors. 

In order to prove Theorem 5 we consider two representations of a positive 
number a as a product of powers of distinct positive primes Pi' qi' 

By what was just proved each prime q divides at least one prime factor of 
the left-hand side and is thus identical with some Pk. Thus the ql' ... , qk 
agree with Pl' ... , Pro except possibly for order; hence we also have k = r. 
We choose the numbering so that Pi = qi. Now if corresponding exponents 
were not equal, say a l > b 1> then after division ofthe equation by q~1 it follows 
that the left-hand side still has the factor Pl = q1> but the right-hand side 
no longer has this factor. Hence al = b l and in general ai = bi. 
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With this theorem about the unique decomposition of each number into 
prime factors we have a substantially different method of deciding the 
questions treated above, e.g., whether a given number b divides another 
number a, how (a, h) or the least common multiple of a and b is found, etc. 
Specifically, if we think of a and b as decomposed into their prime factors 
PI' ...• Pro 

a = p~'p~2 . .. P~' 

h = p~' p~2 ... p~". 

where zero is also allowed for the exponents ai' bi' then obviously b I a holds 
if and only if we always have ai ;;::: bi' Moreover we have 

di = min(ai' bJ, i = 1, 2, ... , r, 

to = p~' p~2 ... p~r, ei = max(a i , b;l, i = 1,2, ... , r. 

The existence of infinitely many primes follows immediately from the fact 
that 

Z = PI . P2 ... Pn + 1 

is a number which is not divisible by any of the primes PI' ... , Pw Hence 
z is divisible by at least one prime number distinct from PI' ... , Pn and con-
sequently if there are n primes, then there are n + 1 primes. 

§2 Congruences and Residue Classes 

By the preceding section, an integer n =F 0 immediately determines a distri
bution of all integers according to the remainder which they yield mod n. 
We assign two integers a and b which have the same remainder mod n to 
the same residue class mod 11 or more simply, the same class mod n, and write 

a == b (mod 11), (a is congruent to b modulo n), 

which is equivalent to 11 I a-b. If a is not congruent to b relative to the 
modulus 11 we write a =!= b (mod 11). a == 0 (mod n) asserts that a is divisible by 
n. Each number is called a representative of its class. Since the different 
remainders mod n are the numbers 0, 1,2, ... , Inl - 1, the number of dif
ferent residue classes mod n is Inl. The following easily verified rules hold 
for calculations with congruences: if a, b, e, d, n are integers, n =F 0, then we 
have: 

(i) a == a (mod /1). 
(ii) If a == b (mod n), then b == a (mod /1). 

(iii) If a == b (mod /1) and b == e (mod n), then a == e (mod 11). 
(iv) If a == b (mod n) and e == d (mod 11), then a ± c == b ± d (mod n). 
(v) If a == b (mod n), then ae == be (mod n). 
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In general from a == b (mod n) and c == d (mod n) it follows that ac == bd 
(mod n). In particular we have d< == bk (mod n) for each positive integer k 
whenever a == b (mod n). By repeated application of (iv) and (v) we obtain: 
if a == b (mod n), then f(a) == f(b) (mod n) when f(x) is an integral rational 
function of x (polynomial in x) with integral coefficients. 

Hence, to put it briefly, we can calculate with congruences of the same 
modulus in exactly the same way as with equations as far as the integral 
rational operations (addition, subtraction, multiplication) are concerned. 
With division it is different. If ca == cb (mod n), it does not follow that 
a == b (mod n), for the hypothesis means nlc(a - b). Now if (n, c) = d, we 
further have 

(~'J)=I, nlc d d (a - b); 

hence by Theorem 4, 

~ I a - b, I.e., a == b (mod ~ ). 

F or example: It does not follow from 5 . 4 == 5 . 1 (mod 15) that 4 == 1 (mod 15), 
but rather only mod(15/5) = 3. Hence we have 

Theorem 6. If ca == cb (mod n), then 

a == b (mod~} where (c,n) = d, 

and conversely. 

In connection with this there is the fact: 

A product of two integers may be congruent to zero mod n although neither 
of the factors has this property. 

For example 2 . 3 == 0 (mod 6) although neither 2 nor 3 is == 0 (mod 6). 
Concerning the connection between congruences relative to different moduli 
we see directly from the definition: if a congruence holds mod n, then it 
also holds modulo each factor of n, in particular also modulo - n. Further
more, if 

a == b (mod n1) and a == b (mod nz), 
then 

a == b (mod v), 

where v is the least common multiple of n1 and n2 • 

Since the residue classes modulo n and the residue classes modulo - n 
coincide, it is sufficient to investigate the residue classes modulo a positive n. 

A system of n integers which contains exactly one representative from 
each residue class mod n will be called a complete system of residues mod n. 
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Since a complete system of residues mod n consists of Inl distinct numbers, 
Inl incongruent numbers modulo n always form a complete system of residues 
mod n, e.g., the numbers 0, 1, 2, ... , Inl- 1. More generally 

Theorem 7. Itx j ,x2 •..• ,xnforms a complete system of residues mod n(n > 0), 
then ax! + b, ... , aXn + b is also such a system, as long as a and b are integers 
and (a, n) = 1. 

For by Theorem 6 the n numbers aXi + b (i = 1,2, ... , n) are likewise 
incongruent numbers modulo n. 

A representation of a residue system with respect to a composite modulus, 
which is often useful, is given by the following: 

Theorem 8. If a" a2 , ... , an are pairwise relatively prime integers, then a 
complete residue system mod A, where A = a j a2 •.• an. is obtained 111 the form 

if the Xi independently run through a complete residue system mod aj (i = 1, 
2, ... , n). Here the Ci may be arbitrary integers relatively prime to ai • 

The number of these L values is IAI and they are incongruent mod A 
since from the congruence mod A 

the same congruence follows modulo each ai . Since 

A 
-- == ° (mod ad for k "# i, 
ak 

we have for i = 1, 2, ... , n 

Moreover by Theorem 6, since (Ci' a;) = 1 and (A/ai' a;) = 1, we get Xi == X; 

(mod aJ Two numbers L, as they occur in Theorem 8, are thus always 
incongruent mod A. 

In exactly the same way one can prove that one obtains a complete system 
of residues mod a' b if we let the quantity X in x + by run through a complete 
system of residues mod b, and independently let the quantity y run through 
a complete system of residues mod a. 

A characteristic of each residue class mod n is the greatest common 
divisor which an arbitrary number from the class has in common with n. 
This really depends only on the class, since if a == b (mod n), then a = b + qn 
with integral q, and hence each common factor of a and n is also a common 
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factor of band n and conversely. Thus it makes sense to speak of the GCD 
oj a residue class mod nand n. 

In particular we ask for the number oj residue classes mod n which are 
relatively prime to n. This number is the Euler function q>(n). To begin with, 
q>(n) is easily determined for the case n = r/', a power of a positive prime p, 
as q>(r!') is the number of those numbers among 1, ... , t which are not 
divisible by p. Among these the number divisible by p is the number of 
multiples of p between 1 and r/', hence pk-l, and thus 

q>(Pk) = pk - pk-l = t(1 -t)' 
In order to determine q>(n) for composite n we now prove the 

Lemma. q>(ab) = q>(a)q>(b) if (a, b) = 1. 

One obtains, by Theorem 8, a complete system of residues mod ab in the 
form ax + by, if x runs through a complete system of residues mod b, and 
y runs through a complete system of residues mod a. However, in order 
that such a number be relatively prime to ab, i.e., relatively prime to a as 
well as to b, it is necessary and sufficient that (ax, b) = 1 and (by, a) = 1, i.e., 
since (a, b) = 1: (x, b) = 1 and (y, a) = 1. Hence one obtains the numbers 
ax + by relatively prime to ab if we let x run through the residue classes 
which are relatively prime to b mod b, and y run through those relatively 
prime to a mod a; hence the lemma is proved. By repeated application, if 
n is decomposed into its positive prime factors, we obtain: 

for n = pi'pi2 ••• p~r, 

(4) 

In the product p must run through all positive primes which divide n. 
The complete system of residue classes mod n relatively prime to n is 

called a reduced system oj residues mod n. It contains q>(n) classes, and a 
system of one representative from each class is called a complete reduced 
system oj residues mod n. As in Theorem 7 one proves: 

IJ Xl> X2, ... ,Xh is a complete reduced system oj residues mod n, then 
axl , aX2, ... , aXh is also such a system, provided (a, n) = 1. 

From this we obtain a highly important fact about each number a rela
tively prime to n. Since each of the numbers axl , . .. , aXh is congruent 
mod n to one of the numbers Xl' ... ,Xh by the above, then the product of 
the numbers ax!> ... , aXh is congruent to the product Xl ... Xk , that is, 

ahxlx2 ... Xh == X1 X2 ... Xh (mod n) 
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and since each x is relatively prime to n, we obtain 

ah = 1 (mod n), 

and with this, since h = <p(n), 

Theorem 9. (Fermat's Theorem). For each number a relatively prime to n 

a",(n) == 1 (mod n). 

In particular if n is a prime p (> 0), then <pep) = p - 1, and after multipli
cation by a we have, for each integer a, the congruence 

aP == a (mod p). (5) 

The significance of this theorem and the kernel of its proof really becomes 
understandable in Chapter II when we introduce the general group concept 
into these investigations. The theorem contains a statement about the solu
tions of the congruence xP - x == 0 (mod p) and forms the basis for the theory 
of higher congruences. 

§3 Integral Polynomials, Functional Congruences, 
and Divisibility mod p 

If we let ourselves be guided in the further development of the ideas pre
sented up to now by the analogies with algebra, then the next goal is the 
investigation of polynomials f(x) with integral coefficients with regard to 
their behavior relative to a modulus n, and then the question of solvability 
of a congruence f(x) == 0 (mod n) in integers x. 

By an integral polynomial f(x) = Co + C1 X + ... + CkXk we understand 
such a polynomial, where Co' Ct , ... , Ck are integers. Two integral polyno
mials f(x) and g(x), where g(x) = ao + atx + ... + akxk, are said to be 
congruent modulo n or 

f(x) == g(x) (mod n), 
if 

Ci == ai (mod n) for i = 0, 1, 2, ... , k. 

(For constants, i.e., polynomials of degree 0, this concept of congruence 
agrees with the one used up to now.) Thus this definition concerns the 
behavior of f(x) and g(x) identically in the variable x, not only for special 
values of x. For this reason even iffor all integer values Xo we have 

f(xo) == g(xo) (mod n), 

the polynomials f(x) and g(x) need not be congruent as the example 

x P == x (mod p) 
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(for p a prime) shows. By Fermat's theorem this is a correct numerical con
gruence for each integer x, but the polynomials xP and x are not congruent 
to each other. 

For these functional congruences exactly the same rules of calculation 
(i)-(v) in §2 hold as for numerical congruences, and the proof is likewise 
simple; for this reason we will not go into it. 

Definition. For two integral polynomials f(x) and g(x), f(x) is said to be 
divisible by g(x) mod n if there is an integral polynomial gl(X) such that 

f(x) == g(X)gl(X) (mod n). 

If moreover a is an integer such that 

f(a) == 0 (mod n), 

then a is called a root of f(x) mod n. 

If a is a root of f(x) mod n and a == b (mod n), then obviously b is also a 
root of f(x) mod n. 

The connection between roots mod n and divisibility mod n is shown by 
the following fact: 

Theorem 10. If a is a root of the integral polynomial f(x) mod n, then f(x) is 
divisible by x - a mod n and conversely. 

Since f(a) == 0 (mod n) we have 

f(x) == f(x) - f(a) (mod n). 

However (f(x) - f(a) )/(x - a) is an integral polynomial, g(x), since for each 
positive m 

is an integral polynomial and f(x) - f(a) is an integral combination of 
expressions xm - am. Hence 

f(x) == (x - a)g(x) (mod n). 

The converse is trivial. 
However if f, g, gl are integral polynomials and 

f(x) == g(X)gl(X) (mod n), 

then a root a of f(x) mod n need not be a root of g(x) or gl(X) mod n, as one 
might conjecture by analogy with algebra. For example, we have 

x2 == (x - 2)(x - 2) (mod 4). 
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4 is a root of x 2 mod 4 but not a root of x - 2 mod 4. Only for prime moduli 
do we have 

Theorem 11. rl fix) = g(X)gl(X) (mod pl, where p is a prime, then each root 
of fix) mod p is a root of at least one of the two polynomials g(x), g 1 (x) mod p. 

If for the integer a, f(a) = 0 (mod p), then 

g(a)· gl(al = f(a) = 0 (mod pl. 

If the prime p divides the product g(a) . gl (a), then it divides one of the two 
factors. 

Theorem 12. An integral polynomial fix) of degree k has no more than k 
incongruent roots modulo a prime p, unless ftx) = 0 (mod p), in which case all 
coefficients are divisible by p. 

The theorem is true for the polynomials of degree 0, the constants. For if 
fix) = Co is independent of x, then fix) = 0 (mod p) has either 0 solutions~ 
when p does not divide co~or it has more than 0 solutions-namely every 
integer if Co is divisible by p, that is, the polynomialf(x) = 0 (mod pl. Suppose 
now that our theorem has been proved for polynomials of degree:::; k - 1. 
Then we show it is correct for polynomials of degree k. If a is a root of 
fix) (mod pl, then by the proof of Theorem 10 we may set 

fix) = (x - a)fl(x) (mod p), 

where f1 (x) is of degree at most k - 1. By Theorem 11 each root of fix) mod p 
is either a root of f1(x) or a root of x - a mod p (or both). However 
x - a = 0 (mod p) has only one incongruent solution and f1(x) = 0 (mod p) 
has either at most k - 1 incongruent solutions, in which case fix) has at 
most k - 1 + 1 = k solutions, or the polynomial f1 (x) = 0 (mod pl. In the 
latter case the polynomial fix) is =0 (mod pl. Thus the theorem is proved 
by complete induction. 

The theorem is not correct for composite moduli, as the example x 2 - 1 
modulo 8 shows. This second-degree polynomial has four incongruent roots 
mod 8, namely x = 1,3,5, 7. 

Theorem 13. If for two integral polynomials fix) and g(x) 

fix) . g(x) = 0 (mod p), p a prime, 

then either fix) = 0 (mod p) or g(x) = 0 (mod p) or both. 

Suppose the theorem is false, i.e., neither fix) nor g(x) is = 0 (mod pl. 
Then let all terms of fix) and g(x) which are divisible by p be omitted and 
two nonvanishing polynomials f1 (x), gl (x) are obtained, all of whose coef-
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ficients are not divisible by p, while at the same time 

f(x) == flex) (mod p), 

g(x) == gl(X) (mod p); 
it follows that 

fl(x)gl(x) == 0 (mod p). 

13 

The highest-degree term in fl(x)gl(x) must thus be == 0 (mod p) on the one 
hand, on the other hand however it is equal to the product of the highest 
terms of flex) and gl(X). Since p is a prime and all terms of flex) and gl(X) 
are not divisible by p, the product of such terms is also not divisible by p. 
Consequently the hypothesis is false, and the theorem is proved. 

Definition. An integral polynomial is called primitive if its coefficients are 
relatively prime, i.e., if for each prime p, f(x) "¥= 0 (mod p). 

Then Theorem 13 obviously allows the following formulation: 

Theorem 13a (Theorem of Gauss). The product of two primitive polynomials 
is again a primitive polynomial. 

§4 Congruences of the First Degree 

The polynomials of degree 1 and their roots mod n can be dealt with easily. 
This leads to the theory of congruences with one or several unknowns. 

Let the integers a, b, n (n > 0) be given. What statements may be made 
about the solutions x, in integers, of 

ax + b == o (mod n)? (6) 

Since all the numbers of a residue class appear at once as solutions, if there 
are any, we ask only for the incongruent solutions mod n. The answer is 

Theorem 14. The congruence (6) has exactly one solution mod n if (a, n) = 1. 

For by Theorem 7, ax + b falls exactly once into the residue class 0 if x 
runs through a complete system of residues mod n. 

If, however, (a, n) = d and (6) is solvable, then the congruence is also true 
mod d and for b it yields the condition 

b == 0 (mod d). 

Then by Theorem 6, (6) is equivalent to 

~ x + ~ == 0 (mod S) 
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and this equation has, by Theorem 14, exactly one solution Xo mod(njd). All 
solutions of(6) are thus the numbers 

n 
x = Xo + dY 

with integral y and among these there are exactly d different ones mod n. 

They are obtained if y is allowed to run through a complete residue system 
modd. 

In the case (a, n) = d > 1, (6) is thus solvable if and only if dl b. Then the 
number of distinct solutions mod n is equal to d. 

The congruence (6) is equivalent to an equation ax + b = nz, with z inte
gral, i.e., its solution is equivalent to the Diophantine equation ax - nz = - b. 
Of course an application of Theorem 1 to this equation also leads to the 
above result. In particular, if (a, n) = 1, the congruence 

ad == 1 (mod n) 

always has exactly one solution a' determined mod n, and the solution of 
the more general congruence ax + b == 0 (mod n) is obtained, by multiplying 
by d, in the form 

x == -db (mod n). 

Moreover by Theorem 9 we can take the number a",(n)-l for a'. 

We can consider several linear congruences, with one unknown x but 
relative to different moduli brought into the form 

If x and y are two numbers which satisfy this system, then x - y is divisible 
by each ni , hence also by the least common multiple v of nl , ••. , nk , that is, 
x == y (mod v); conversely, if x is a solution of (7), and x == y (mod v), then y 
is also a solution of(7). Thus the solutions of(7), in case such a solution exists, 
are uniquely determined mod v. We are interested only in the most important 
case: 

Theorem 15. The k congruences (7) have exactly one solution determined 
mod nl n2 ... nk if the moduli are pairwise relatively prime. 

F or with Theorem 8 in mind let us set 

v v v 
x = - Xl + - X 2 + ... + - xk 

nl n2 nk 

and determine the Xi from the congruences 

r 
-Xi == ai (mod nJ 
ni 

(i = 1, 2, ... , k) 
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which is always possible by Theorem 14 on account of the hypothesis. An 
x obtained in this way is a solution of (7). 

The investigation of the roots of polynomials of higher degree mod n 
then leads to congruences of higher degree in one unknown. In order to be 
able to attack the elements of this much more complicated theory we must 
think through the calculations with residue classes more precisely. We will 
encounter the essential relationships which were presented here several 
times, in the following sections, in still different forms, so that it is useful to 
extract the concept which is capable of so many different kinds of realizations 
and to make it the object of the investigation. This is the group concept. 
The following chapter is devoted to it. 



CHAPTER II 

Abelian Groups 

§5 The General Group Concept and Calculation 
with Elements of a Group 

Definition of a Group. A system S of elements A, B, C ... is called a group 
if the following conditions are satisfied: 

(i) There is a prescription (rule of composition) given according to which 
from an element A and an element B, a unique element of S, say C, is always 
obtained. 

We express this relation symbolically 

C = AB or (A B) = C. 

This composition need not be commutative with respect to the elements A 
and B, that is, AB and BA may be different. 

(ii) The associative law is true for this composition: For every three 
elements A, B, C, 

A(BC) = (AB)C. 

(iii) If A, A', B are any three elements of S, then the following are to hold: 

If AB = A'B, then A = A'. 

If BA = BA', then A = A'. 

(iv) For every two elements A, B, in S, there is an element X in S such that 
AX = B and an element Yin S such that YA = B. 

If the system S contains only finitely many different elements-let their 
number be h-then (iv) is automatically satisfied as a consequence of (i) and 
(iii). To prove this, let X in AX run through the h different elements Xl, ... X h 

16 
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of the group. Then, by (i), AX always represents an element of the group, and 
by (iii) the h elements so obtained differ from one another. Consequently in 
this way each element of the group appears exactly once, in particular this 
holds for the element B, thus there is an X such that AX = B. In an analogous 
fashion one can deduce the second part of (iv). 

If the group contains infinitely many different elements it is called an 
infinite group; otherwise it is called a finite group of order h, where h is the 
number of its elements. 

The group property does not automatically belong to a system S but only 
with respect to a definite type of composition. With one type of composition 
S may be a group, while the same elements need not form a group under a 
different kind of composition. 

Examples of groups are the system of all integers with composition by 
addition and the system of all positive numbers (integers and fractions) with 
composition by multiplication. 

On the other hand the system of positive integers alone with composition 
by multiplication does not form a group, because requirement (iv) is not 
satisfied. 

Furthermore if we consider two integers as equal whenever they are 
congruent relative to a definite modulus n, then the system of residues mod n 
with composition by addition forms a finite group of order n. 

In exactly the same way the system of residues mod n, which are relatively 
prime to n, with composition by multiplication forms a group of order cp(n). 
In all these examples the rule for composition is commutative. An example 
of a noncommutative group is the system of all rotations of a regular body, 
e.g., a die, about its midpoint which brings the body back to cover itself. 
Here the composition of two such rotations A and B, which is called AB, 
is to be that rotation which is obtained if first B and then A is performed. 

The set of all permutations of n digits forms a finite group. Composition 
of the permutation A with B means the permutation AB which results from 
the performance of B followed by the performance of A. 

If two groups (fj1 and (fjz are given whose elements are to be denoted by 
the indices 1 and 2 respectively and if a well-defined invertible correspondence 
(denoted by ...... ) can be exhibited such that if Al ...... Az and Bl ...... B z, then 
AlBl ...... AzBz, then we call the two groups (fjl and (fjz isomorphic. Two 
isomorphic groups are only distinguished by the way in which the elements 
are denoted and the way in which the operation of combination is denoted. 
Hence all properties which are expressible strictly in terms of the group 
axioms (i)-(iv) and which hold for one group, are also satisfied by isomorphic 
groups. Thus isomorphic groups are not to be viewed as different for group
theoretic investigations. 

Now let (fj be a group. In the following its elements are to be denoted by 
capital Latin letters. The product of two elements of (fj is defined by the 
existence of the composition according to (i). We now define the product of 
k elements by complete induction. 
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Definition. Suppose we have already defined the element AI ' A2 ' , , An of S 
which is to denote the product of n arbitrary elements AI' A 2 , ' , , , An' Then 
we define the product of n + 1 arbitrary elements AI, ' , , ,An+ I of GJ by the 
equation 

We now prove the 

Lemma. For an arbitrary integer k 2: 3 

AI 'A 2 ' , 'Ak = Al '(A 2 ' A3 ' , 'Ak), 

For k = 3 this is obviously true, according to the associative law (ii), If 
however the theorem is true for k = n, then also for k = n + 1 as we have 

AI'A2"'An+l =(A 1'A 2 "'An)'A,,+1 =Al'(A2'A3"'An)'An+l 

= Al '(A 2 ' A3'" An+tl, 

Thus the lemma is proved in general. 
Moreover it follows for 1 < I < k 

(AI' A 2 '" A,)(A'+I '" Ak) = [(AI' A2 '" A,-d' A,J(A'+1 '" Ak) 

= (AI' A2 ' , , A,_ d(A,A,+ 1 ' , , Ak), 

that is, the two inner parentheses may be shifted one place to the left in the 
original product without the result being changed, Consequently the inner 
parentheses can also be shifted as many places as desired to the right or to 
the left and thus 

(A 1A 2 '" A,HAl+ I ,,' Ak) = AI' A 2 '" Ak 

entirely independently of where the parentheses stand, Hence in a product 
of two expressions in parentheses, the parentheses may be omitted without 
the result being changed and one can easily prove the theorem for several 
expressions in parentheses by complete induction: 

Theorem 16. A product of r + 1 expressions in parentheses 

(A 1 ' , , AnHAn, + 1 ' , , An,) , (An2 + 1 ' , , An,) , , , (An r + 1 ' , , Ak) 

does not change if the parentheses are removed and is thus independent of the 
position in which the parentheses stand and therefore is equal to AI' A2 ' , , A k , 

Theorem 17. In every group there is exactly one element E such that 

AE = EA = A 

fOr every element of the group, E is called the unit (identity) element, 

By (iv), to each A there is an E such that 

AE = A, thus also YAE = YA, 
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If Y runs through all elements of the group, then, by (iv) this also holds for 
YA = B, hence BE = B holds for each B, and E is independent of B. 

Moreover there likewise exists an E' such that for each A 

E'A = A. 
For A = E it follows that 

E'E=E, 

and from AE = A it follows that for A = E' 

E' E = E', hence E = E', 

and the theorem is proved. This unit element may be omitted as a component 
ofa product. Thus it plays the role of the number 1 in ordinary multiplication 
and it will also be denoted by 1. 

Finally, again by (iv), for each A there is again an X and a Y such that 

AX=E, YA =E. 

From this it follows by composition with Y that 

YAX = YE, hence EX = YE, X = Y. 

We call the element X uniquely defined in this way by A the inverse element 
(or inverse) of A and we denote it by A -1. It is defined by 

A·A- 1 =A- 1 ·A=E. 

We can now introduce the powers of an element A: 
By Am we understand a "product" of m elements, for positive m, each of 

which is = A. Then by Theorem 16 for positive integers m, n 

Furthermore by Theorem 16 

Am. (A-1)m = E, 

that is, (A -l)m is the reciprocal of Am, thus = (Am)-l. We denote this element 
by 

Finally for each A we set 

Exactly as in elementary algebra one proves for these powers with arbitrary 
integral exponents: 

Theorem 18. For all integers m, n 

and 
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An equation between elements of a group in one unknown can be solved 
with the help of the inverse. By multiplication by A - j it follows that 

if AX = B, then X = A- 1B 
and 

if Y A = B, then Y = BA- 1 

§6 Subgroups and Division of a 
Group by a Subgroup 

Now a subset of the elements of (fj may form a group under the same rule 
for composition. Such a group is called a subgroup of (Y). Let a fixed subgroup 
be denoted by U; let U j, U 2, ... be the different elements (finitely or infinitely 
many) belonging to U. If A is an arbitrary element of (fj then let us denote 
the totality of elements A U i (i = 1,2, ... ) by 

AU = (AU j ,AU2 , .. . ). 

The elements of (I) may now be arranged in a sequence of the form AU; 
These sequences are called cosets. We then have 

Lemma. If two easels AU, BU haue one element in common, then they have 
all elements in common, thus they agree except for order. 

To prove this let AU" = BUb be a common element. Then it follows that 
B = A U aU;; 1, hence 

BU = (AU a U;;jU 1,AUa U;;lU 2 ••. . ). 

However UaU b- 1 Ui runs through all elements of U for i = 1,2, ... because 
of the group property (iv) of U, hence in fact AU and BU agree. 

The number of different elements occuring in a coset AU is obviously 
independent of A; it is equal to the order of U. Let this order be called N 
(where N may also be = 'Xl). Each element A of (fj actually appears in one 
such coset, e.g., A occurs in AU because in any case the unit element must 
belong to U, since it is a group, and AE = A. Thus we obtain each element 
of (fj exactly once if we run through all elements of the different sequences. 
In symbols we express this by the equation 

(f) = Al U + A2 U + ... 
where Aj U, A2 U, ... denote the distinct co sets of this kind. 

Now in case (fj is a .finite group of order h, then the order N of U is also 
finite and then the number of different cosets is also finite, say = j. Since each 
element of (fj occurs in exactly one coset and exactly N different elements are 
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contained in each coset, we have 

h=j·N 
and thus we have shown 

Theorem 19. In a finite group of order h, the order N of each subgroup is a 
divisor of h. 

The quotient h/N = j is called the index of the subgroup relative to (fj. 

In case (fj is an infinite group, then the order of U as well as the number of 
different co sets can be infinite and at least one of these cases must obviously 
occur. Furthermore, the number of different co sets is called the index of U 
relative to (fj whether this index is finite or not. 

Our further investigations deal first with finite groups. 
A system S = (U I , U 2 , •.• ) of elements which belong to a finite group 

forms a subgroup of (fj as soon as it is known that each product of two 
elements U again belongs to S. For the group axioms (ii) and (iii) are satisfied 
automatically, (i) holds by assumption, and with finite groups (iv) is a con
sequence of the remaining axioms. 

For example, all the powers of an element A with a positive exponent 
always form a subgroup of (fj. These powers cannot all be different, since (fj 
contains only finitely many elements. From Am = An it follows that Am- n = E. 
Hence a certain power of A with exponent different from zero is always = E. 

In order to gain an overview of those exponents q for which Aq = E, we 
note that these exponents obviously form a module since from Aq = E and 
Ar = E it follows that Aq±r = E. Hence by Theorem 1 these q are identical 
with all multiples of an integer a (> 0). This exponent a, uniquely determined 
by A, is called the order of A. This exponent has the property: 

A r = E if and only if r == 0 (mod a). 

The only element of order 1 is E. More generally 

Theorem 20. If a is the order of A, then 

if and only if 
m == n (mod a). 

Consequently among the powers of A there are only a distinct ones, say 
AO = E, A 1 , ••• , Aa- 1 , and by the above these form a subgroup of (fj of 
order a. Moreover from Theorem 19 we have 

Theorem 21. The order a of each element of (fj is a divisor of the order h of (fj 
and hence 

for each element A. 
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§7 Abelian Groups and the Product of Two 
Abelian Groups 

The groups which occur in number theory are almost exclusively those 
whose composition laws are commutative: AB = BA for all of its elements. 
Groups of this kind are called Abelian groups. In this and the next section 
we will undertake a more precise investigation of the structure of an arbitrary 
finite Abelian group. In the following, 6) denotes a finite Abelian group of 
order h. 

Theorem 22. If a prime number p divides the order h of (I), then there is an 
element of order p in 6). 

Let C I , C 2 , ••• , Ch be the h elements of 6) and let CI 'C 2 ' ... , ('h be their 
respective orders. We form all products 

(8) 

in which each Xi runs through a complete residue system mod ci . Then we 
obtain C1 . ('2 ... Ch formally different products, among which are all elements 
of (f). Since a representation of the unit element is at once obtained from two 
different representations of the same element all elements occur equally 
frequently, say Q times in the form (8). Hence 

cjcz···ch=h·Q. 

The prime number p, which divides h, must therefore divide at least one Ch 

say CI . Then 

is an element of order p by Theorem 20. 

Theorem 23. Let h = a l . a2 ... ar and suppose that the integers ai' ... , ar 

are pairwise relatively prime. Then each element C of 6) can be represented 
in one and only way in the form 

C = Al . Az ... Ar 
with the conditions 

A~' = Al2 = ... = A~r = E. 

For let r integers n l , ... , nr be determined so that 

which is always possible by Theorem 3 because of the assumption about 
the ai . If we then set 
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then by Theorem 21 
Ai' = Chn, = E 

and with this 
c = Al . A2 ... AI· 

is represented in the required form. To see the uniqueness of the representa
tion let C = Bl . B2 ... Br be yet another representation of this type. Then 

(9) 

However, since composition is commutative, a fact which is used at this 
point for the first time, it follows from (9) that 

Now since hlal is a multiple of each a2, a3' ... , a .. the factors with the 
indices 2, 3, ... , r must be equal to E by the hypotheses about the Ai, Bi, 
hence 

Since (ai, hla l ) = 1, there are integers x, y with al x + (hlady = 1 and re
calling that 

we have 

In general, it follows in this fashion that Ai = Bi and with this the uniqueness 
of the representation of C. 

If a; is the number of different elements A with the property 

then obviously the totality of these forms a subgroup of G) of order a; because 
the product of two elements of this kind again has the same property. In 
any case by Theorem 23 we have 

(10) 

We see that we must have a; = ai' for if p is a prime, and pia;, then by 
Theorem 22 there exists among the elements A with Aa, = lone of order p, 
hence pi ai· Therefore a; has no prime factors other than those of ai. Since 
the ai are pairwise relatively prime, we must have, by Equation (10), a; = aj. 

With this we have proved: 

Theorem 24. If cl h, (hlc, c) = 1 (c > 0), then the totality of elements of G} with 
the property 

forms a subgroup of G} of order c. 

Theorem 23 makes plain the necessity to introduce a special notation 
for the relation of the group G} to the r subgroups AI, ... Ar from which 
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OJ can be built up by this theorem. One can define OJ simply as a "product" 
of these subgroups. However, if starting out from two groups Ojl and Ojz 

one merely wishes to define a group OJ which has Ojl and Ojz as subgroups 
and which is then to be called the product ofthese groups, one must consider 
that at the outset the product of an element of Ojl with an element of Ojz has 
no meaning at all yet. 

For this reason we proceed as follows: We denote the elements of the 
Abelian group OJ; (i = 1,2) with the subscript i. We now define a new group 
whose elements are pairs (AI' Az) and we set 

(1) (AI, Az) = (B l , Bz) means Al = Bl and Az = B z· 
(2) The rule of composition for these pairs is to be (AI' Az) . (B l , Bz) = 

(A1Bl,AzBz)· 

In this way the h) . hz new elements (h; is the order of OJ;) are combined to 
form an Abelian group OJ. The unit element of this group is (E l , Ez), where 
E; is the unit element of OJ;. The hi elements (AI, Ez), where Al runs through 
the group OJ) obviously form a subgroup of OJ and this group is isomorphic 
to Ojl; likewise the group of elements (E l , Az) is isomorphic to Ojz. The two 
subgroups have only the one element (El,Ez) in common. Each element 
from OJ can be represented in exactly one way as a product of two elements 
of the two subgroups: 

Finally we define 

(3) (Al,Ez) = AI' (E),A z) = Az, thus in particular El = Ez· 

This use of the symbol" =" is permissible, since the relation" =" is still not 
defined between elements of OJ, Ojl, and Ojz, and composition of elements 
defined as equal yields again equal elements. We call the group OJ defined 
in this way by (1), (2), (3), with the hlhz elements A1Az the product of the 
two groups OJ) and Ojz and we write 

OJ = Ojl . Ojz = Ojz . Ojl· 

With this terminology it then follows immediately from Theorem 23 that 
the formation of products is associative: 

Theorem 25. Each finite Abelian group can be represented as a product of 
Abelian groups whose orders are powers of primes. 

§8 Basis of an Abelian Group 

Now we can prove the following theorem which gives us full information 
about the structure of the most general finite Abelian group. 

Theorem 26 (Fundamental Theorem of Abelian Groups). In each Abelian 
group OJ of order h (> 1) there are certain elements B l , ... ,Br with orders 
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hl' ... , hr respectively (hi> 1) such that each element of 6) is obtained in 
exactly one way in the form 

where the integers Xi each run through a complete system of residues mod hi 
independently of one another. Moreover the hi = pk' are prime powers and 
h = hl . hz ... hr· 

r elements of this kind are called a basis for 6). 

By our previous results the truth of this theorem is obtained at once for 
arbitrary h, as soon as it is proved for all Abelian groups of prime-power 
order. 

Hence let h = pk be the order of 6), where p is a prime and k is an integer 
~ 1. Then the order of each element of 6) has a value plZ, where 0 ~ 0( ~ k, 

0( integral. 
A system of m elements A1, ••• , Am with orders al' ... ' ~ is called 

independent if from A1' . A? ... A:,m = E it follows that 

Xi == 0 (mod ai) for i = 1, 2, ... , m. 

For example, each element A is an independent element. The product of 
powers of m independent elements obviously forms a group which contains 
exactly al . az ... am different elements. If A1, .•• , Am are independent then 
the m + 1 elements A1, ..• , Am, E are always independent and conversely. 
We now always agree on a numbering of the independent elements, such 
that the orders form a decreasing sequence: 

a1 ~ az ~ a3 ... ~ am ~ 1. 

Let this system of numbers a 1 , az, ... ,am be called the system of rank 
numbers of At. ... , Am or the rank R of At. ... , Am. We now determine a 
definite ordering of the systems R. Let two independent systems 

Ai of order ai = plZ' 

B of order b = pP. q q 

(i = 1,2, ... , m), 

(q = 1, 2, ... ,n) 

be given. In case m i= n, and say m > n, we define Pn + 1 = Pn+ z = ... = Pm = 
O. Both systems are said to be of equal rank if O(i = Pi for all i = 1, ... , m. 
Otherwise the rank of (A, ... ,Am) is called higher or lower than the rank of 
(Bl' ... ,Bn), according as the first nonvanishing difference O(i - Pi is > 0 or 
< o. Thus the omission or the addition of elements E does not change the 
rank. If the rank of (Al' ... ) is higher than the rank of(Bl' ... ) and the rank 
of(Bl' ... ) is higher than that of(C1 , •.. ), then the rank of(A 1, ••. ) is higher 
than the rank of (C1, .•. ). Obviously there are at most hh possibilities for 
the ranks of systems of elements independent of one another and distinct 
from E; consequently there are systems of independent elements of highest 
rank. We will call such systems maximal systems for short. Let B1, ••• , Br 
be a maximal system in which there is no element = E. We show that B1, ... , 

Br is a system of basis elements. For this we must only verify that each 
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element of ffi is representable as a product of powers of the Bi-and for this 
the following lemmas suffice: 

Lemma (a). No element among the elements B I , ... , Br can be a pth power 
of an element of ffi. 

If we had Bm = CP then the system obtained from the B I , ... ,Br by 
replacing Bm with C and possibly changing the numbering would also be 
independent, but obviously of higher rank than the maximal system B I , ... , 

B" which is impossible. 

Lemma (b). If we replace one of the B, say Bm, in the system B I , ... , Br by 

where u i= 0 (mod p), but the Xi are arbitrary integers, then the rank does not 
change and the new system is again a maximal system. 

A has the same order as Bm, since the orders of Bm+ b ... , Br are not 
larger than that of Bm, and thus are divisors of the order of Bm. Moreover, 
each product of powers from A, Bm+ b ... , Br is representable as a product 
of powers of Bm, Bm + b ... , B" and conversely. Consequently the new 
system is also independent and thus it is a maximal system. 

Lemma (c). If an element CP is representable as a product of powers of the 
B;, then the same holds for C. 

If, in fact, 
CP = B1' ... B~r, (11) 

then all Xi are == 0 (mod pl. For if Xm = u were the first exponent which is 
not divisible by p, then let Bm be replaced by 

in the system of the Bi . This new system would be again a maximal system 
by (b), but it would contain the pth power of one of its elements, namely A, in 
contradiction to (a). Consequently, in (11), we may set X = PYi with integral 
Yi and hence 

(C-IB~'··· B:r)P = 1. 

If C were not representable as a product of powers of the Bi , then this would 
also hold for all cn with n i= 0 (mod p) and we would also have in the paren
thesis above 

C' = C - I B~' ... B:r i= 1; 

hence C' would be an element of order p. Consequently the r + 1 elements 
B I , B2 , .•• , B" C' would also be independent, correctly arranged according 
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to decreasing order (as the order of B is greater than 1 and hence ~ p). 
However they would have a higher rank than the maximal system Bb ... ,Bn 
which is impossible. Hence the assumption is false and (c) is proved. 

By repeated application of (c) however, the represent ability of each 
element A of (fj through the Bi is obtained. For if A is of order pm, then 

AP~ = 1 

is certainly representable by the B i• Hence, by (c), Apm-l is also representable 
by the B;, and thus also Apm- 2 if m > 1 and so on until we arrive at APo = A 
itself. 

The elements of a basis for (fj are not uniquely determined by (fj. Certain 
properties ofthe basis are nevertheless characteristic of (fj itself. The number 
e = e(p) of those basis elements whose order is divisible by the prime p is 
considered the most important constant determined by (fj alone; we call e 
the basis number belonging to p. Its independence of the choice of basis 
elements is shown by 

Theorem 27. If P is a prime, then the number of different elements of (fj with 
the property 

AP = 1 

is equal to pe, where e is the basis number belonging to p. 

H B 1, B 2 , ..• , Be are those basis elements whose orders are powers of p, 
then from 

we have the sequence of congruences 

pX; == 0 (mod h;) i = 1,2, ... , r, 

hence for i = e + 1, ... , r since (h, pi) = 1, 

Xi == 0 (mod h;) 

and for i = 1,2, ... , e, since hi = pk', 

Xi == 0 (mod ; ). 

Conversely the latter congruence has as a consequence the equation AP = 1. 
The number of solutions of each of these congruences which are incongruent 
mod hi is 1 for i = e + 1, ... , rand p for i = 1, 2, ... , e. Consequently the 
number of incongruent systems of solutions is pe. 

The statement is also correct if p does not divide the order h of the group, 
for then e = O. 

The simplest Abelian groups are obtained by raising one element to a 
power: AO= 1,A,A2, ... and A- 1,A- 2, ... Hall elements of an Abelian 
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group are powers of a single element A, the group is called cyclic, and A is 
called a generator of the group. Here we have 

Theorem 28. An Abelian group (fl of order h is cyclic if and only if for each 
prime p dividing 11, the number of elements A with AP = 1 is equal to p. 

By the preceding theorem the condition is equivalent to: the basis number 
belonging to p should be = l. 

The condition is necessary. Namely if 

C, C2, ••• , Ch -' I , Ch = 1 

are the h elements of (I), then from AP = 1 it follows that for A = ex 

px == 0 (mod h) and x == 0 (mod ~)-
that is, x has one of the p values hlp, 2hlp, ... , pl1lp mod h, and conversely 
we thus also obtain p different elements A with AP = 1. 

The condition, however, is also sufficient; for if h = p~' ... p~r is the de
composition of h into different prime factors then, by hypothesis, only one 
basis element belongs to each Pi; hence all elements of (fl are of the form 

A = B~' ... B~r, 
where 

B~' = 1 with h = pt'. 
One then obtains h different elements, hence all elements of (fl, if one forms 
the successive powers of 

c = BI . B2 ... Br • 

If u is the order of C, then by the basis property of the B it follows that 

u == 0 (mod hi) for i = 1, 2, ... , r, 

and since the hi are pairwise relatively prime, u is divisible by h = hI' .. h" 
hence = h, since u cannot be greater than h. 

§9 Composition of Cosets and the Factor Group 

If U is a subgroup of the Abelian group (fl, hence itself Abelian, then U gives 
rise to another group as follows. By ~6 the cosets AU are uniquely deter
mined along with U. The number of cosets is hi N where N is the order of 
U; we denote them by R I , R z, .... We now set up a law of composition 
between the R's with the following observation. If Al and A~ are elements 
of R 1 , A z and A~ are elements of R 2 , then AIA2 and A~A~ belong to the 
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same coset R 3 • Since 

where U 1> U z are elements of U, then A~ A~ = Al Az U 1 U z (here we use the 
fact that the composition of elements of (l) is commutative). Since AlAz and 
A ~ A~ differ only by a factor from U they therefore belong to the same coset 
R3. Hence R3 is uniquely determined by Rl and Rz. We write 

Rl . R z = R 3 · 

The group axioms (i)-(iii) are obviously satisfied with this composition. 
Furthermore this composition is obviously commutative. Consequently the 
cosets R form an Abelian group m of order hjN. 

Definition. The group m defined in this way is called the factor (quotient) 
group of U. Its order is equal to the index of U. One writes 

m = (l)jU. 

We can also describe it as follows: the factor group is obtained from (l) 
if one considers two elements of (l) as not being different whenever they 
differ only by an element of U, where moreover we retain the composition 
rules ofU. 

We will apply these concepts to advantage in the case where U is the 
group of those elements of (l) which can be represented as the pth power of 
elements of (l), where p is a prime dividing h. In particular this subgroup U 
may now be denoted by Up. We have 

Theorem 29. The order of (l)jUp is pe if e is the basis number of (l) belonging 
to p. The group (l)jUp is isomorphic to the group of elements C of (l) for which 
cP = 1. 

In fact we see from Theorem 26 that each element X of (l) can be repre
sented in the form 

where Bl , ... , Be are the basis elements belonging to the prime p and the 
e numbers Xl' ... , Xe are uniquely determined mod p by X, while AP is a 
suitably chosen pth power, i.e., an element from Up. Such an element X is a 
pth power if and only if all Xi are == 0 (mod p). Consequently the number of 
cosets determined by Up is equal to the number of different systems Xi mod p, 
i.e., = pe. The pth power of each coset is identical with the system Up, i.e., 
in the group (l)jmp of order pe, each element, if it is not the unit element, 
has order p. Hence (l)jUp must contain exactly e basis elements, each of 
order p. By Theorem 27 the group of all C with CP = 1 has the same structure. 
Moreover it is seen that the e cosets 

BiU i = 1, 2, ... , e 
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form a system of basis elements in the factor group, and the e elements 

B?;/p i = 1, 2, ... , e 

are basis elements in the group of those C with CP = 1. Hence the two groups 
are isomorphic. 

§10 Characters of Abelian Groups 

Since the law of composition in an Abelian group, like ordinary multiplica
tion, is commutative, those elements which satisfy the symbolic equation 
Ah = 1 behave formally like the hth roots of unity, thus like certain numbers. 
The question arises whether it is not possible to transform the investigation 
of Abelian groups entirely into a problem about numbers, perhaps of the 
following kind: 

To each element A of a given Abelian group (fj there is to be assigned a 
number, denoted by X(A), in such a way that for every two elements A, B 
from (fj 

X(A) . X(B) = X(AB). (12) 

The composition of the elements thus corresponds to multiplication of the 
assigned numbers. 

The construction of all these "functions" X(A) is obtained according to 
the fundamental theorem in the following way. 

Let the trivial solution "x (A) = 0 for all A" be discarded. 
First we must have 

X(E) = 1 

for the unit element since for each A 

X(A)X(E) = X(AE) = X(A). 

Next, if B1, ..• , Br is a basis for (fj, then by repeated application of (12) 
it follows that for 

X(A) = X(B1Y' ... X(Br)Xr. 
(13) 

Consequently X(A) is known for each element A as soon as it is known for 
the r basis elements Bi. However these values X(Bi) are not arbitrary, but 
rather they must be chosen in such a way that all systems of exponents Xi 
which lead to the same A also yield the same value X(A) in (13). That is, X(Bi) 
must be a number such that 

X(BiY; 

depends only on the value of Xi mod hi. Since 1 = X(E) = X(B7;) = X(Bit', 
we have X(Bi) "# 0 and thus it is an hith root of unity. 
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However this condition is also sufficient. To prove this let 

m = 1, ... , r, be any hmth roots of unity 

(am an arbitrary integer). 

Then we define 

(14) 

Since, in fact, the expression X(A) only depends on which residue class 
mod hm the Xm are contained in, and since this is uniquely determined by 
the element A, X(A) is therefore uniquely defined by these Xm and also satisfies 
the requirement (12). Now there are exactly hm different roots of unity of 
degree hm corresponding to the values am = 1,2, ... , hm. Consequently there 
exist exactly h = hl . h2 ... hr formally different functions X(A), for which no 
two are identical for all elements, since they differ for at least one basis 
element. With this we have proved: 

Theorem 30. There are exactly h distinct functions X(A) which have the 
property: x(AB) = X(A) . X(B) and X(A) is not = 0 for all elements A of (fj. 

Each X is an hth-root of unity. 

Each such function X(A) is called a group character or character of (fj. 
Among the characters X(A) there is one which is = 1 for all A; it is called 

the principal character. Conversely, there exists exactly one element, namely 
E, such that X(E) = 1 for every character. 

The characters themselves can be combined again to form a group of 
order h. For if Xl(A) and X2(A) are characters, then f(A) = Xl(A)· X2(A) also 
satisfies the defining equation of ax, hence it is also a character of (fj. If X(A) 
runs through all characters and if Xl(A) is a fixed character, then X(A)Xl(A) 
also runs through all characters of (fj. Ifwe understand by IA a sum extended 
over all h elements A of (fj and by Ix a sum extended over all h characters 
X, then we have 

Theorem 31. 

{
h if X is the principal character, 

IA x(A) = 0 if X is not the principal character, 

Ix x(A) = {Oh if A = E, 
if A =IE. 

The first half of each statement is trivial, as each summand = 1. If B is an 
arbitrary element, then along with A, AB also runs through h all elements 
of (fj, hence 

L x(A) = L x(AB) = x(B) L X(A), thus (1 - x(B)) L x(A) = O. 
A A A A 
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Now if X is not the principal character, then X(B) # 1 for at least one B, 
hence LA is equal to O. 

Likewise let Xl be an arbitrary character. Then we have 

I x(A) = I Xl(A)x(A) = X1(A) L x(A) 
x x x 

(1 - X1(A)) L x(A) = o. 
x 

If A # E, then for at least one character X1(A) # 1, hence Ix is equal to o. 
The element A is determined uniquely by the h numbers Xn(A), where Xn 

are the h characters for n = 1,2, ... , h. For if a second element B had the 
same values Xn(B), then we would have Xn(AB- 1) = 1 for all n, and AB- 1 

would be the unit element, thus A = B. 
The h numbers Xn(A) are, however, not arbitrary. On the contrary the 

following holds: 

Theorem 32. If A is an element of order f, then Xn(A) is an fth root of unity. 
Among the h numbers Xn(A), n = 1, ... , h, all fth roots of unity occur equally 
often, namely hlf times. 

To begin with, since AI = 1: Xn(A)I = Xn(AI) = Xn(1) = 1. Thus the first 
part of the theorem is true. Now if ( is an arbitrary fth root of unity, let us 
consider the sum 

h 

I (C 1Xn(A) + C 2xiA2) + ... + CIXn(AI)) = s. 
n=1 

Since by hypothesis Am is not the unit element for 1 < m < f-if we exclude 
the trivial case f = 1, that is, A = E-, it follows by Theorem 31, that if we 
split the sum into f individual sums, then S = h. 

On the other hand the term inside each set of parentheses is equal to 
B + B2 + ... + BI , where 

Hence it is equal to 0 or f, depending on whether B # or = 1, that is, according 
to whether Xn(A) # ( or = '- If k denotes the number of characters Xn(A) 
for which Xn(A) = ( it follows that S = kf. Therefore if we combine this with 
the first result we get 

kf= h, 

independently of (, which was to be proved. 
Moreover the group of characters is isomorphic with the group (fj itself. To 

see this we assign to the basis element Bq a primitive hqth root of unity, say 

(q = e21ti/hq. 
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Then each character X(A) is represented uniquely in the form 

X(A) = XI'(A)X~2(A) ... X~r(A), 
where 

A = B1'··· B~r, 

by the r basis characters 

XiA) = (;q (q = 1, 2, ... , r), 

33 

where the Yq are uniquely determined integers mod hq. If we now assign the 
element 

to the character 

then an isomorphism between the group of characters and the group m is 
obviously determined. 

Every subgroup can be determined with the help of the characters of an 
Abelian group. If one takes some distinct characters Xl> Xz, ... , Xk of m, then 
the totality of elements U for which Xl(U) = Xz(U) = ... = b(U) = 1 obvi
ously forms a subgroup U of m, since along with two elements Uland U z 
the product U 1 . U z also has this property. 

Moreover it can be seen, as follows, that each subgroup U of m can be 
obtained in this way: let U be an arbitrary subgroup of m; the factor group 
m/U whose elements are the different cosets AU is also an Abelian group, 
and accordingly it has exactly j characters which are denoted by Al(AU), 
).z(AU), ... ,).j(AU). With the help of these we define a character by fixing 

Xk(A) = Ak(AU) for k = 1,2, ... ,j. 

For each k this determination is unique since each element A belongs to 
only one coset. Moreover for any two elements A and B of m we always have 

Xk(A) . Xk(B) = Ak(AU) . Ak(BU) = Ak(ABU) = Xk(AB); 

consequently Xk(A) is actually a character of the group m. The various char
acters AdAU), k = 1,2, ... ,j, have the value 1 simultaneously only for the 
unit element of the group m/U, that is, only for the coset which is identical 
with U. Hence the j characters Xk(A) are all equal to 1 precisely for those 
elements A which belong to U. That is, the subgroup U is to be defined as 
the totality of those elements A for which the j conditions 

Xk(A) = 1 for k = 1, 2, ... ,j (15) 
are satisfied. 

However these j conditions, which each single element A from U must 
satisfy, are not independent of one another as, along with Xl and Xz, 
Xl . Xz = X3 also occurs among the Xk; thus the condition X3(A) = 1 already 
follows from the two conditions Xl(A) = X2(A) = 1. In order to find the 
number of mutually independent conditions among the j conditions (15), 
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we consider that the Ak , which define the Xk uniquely, form a group isomorphic 
to (fj/ll since they are exactly the characters of (fj/ll. Hence they are rep
resentable by a basis, say AI, ... , Ara , where ro is the number of basis elements 
of (fj/ll. That is, each character Ak is a product of powers of these ro characters. 
Hence it follows from the ro conditions 

Xl (A) = X2(A) = ... = Xra(A) = 1 

that all j conditions (15) are satisfied for A and with this it follows that A 
belongs to ll. If hi is the order of the basis character Ai and (i (i = 1,2, ... , ro) 
are arbitrarily given hith roots of unity, then moreover there is always a 
coset All such that Ai (All) = (i for i = 1,2, ... , roo Thus we have proved 

Theorem 33. If II is a subgroup of (fj and if the factor group (fj/ll has ro 
basis elements, then among the h characters of (fj there are ro characters Xi 
with order hi, a power of a prime, (i = 1,2, ... , ro) such that the ro conditions 

(i = 1,2, ... , ro) 

are satisfied for all elements A of II and only for elements A of ll, while on 
the other hand there always exist elements Bin (fj for which those ro characters 
Xi (B) are arbitrarily prescribed hith roots of unity. 

§11 Infinite Abelian Groups 

The theory of infinite Abelian groups has still not been developed in any 
direction as completely as the theory of finite Abelian groups developed 
above. The few theorems on infinite Abelian groups which exist refer to 
groups which are specialized still further. The concepts and facts which have 
an application to arithmetic in the further course of our presentation will be 
explained in this section. Moreover the theory of infinite Abelian groups 
will be used only later from Chapter IV on in the theory of fields. 

In an infinite group (fj we distinguish elements of finite order and those 
of infinite order, according as some power of the element is equal to E or 
not-of course the zeroth power is excluded. As will be shown later with 
examples, it may happen that an infinite Abelian group has only elements 
of infinite order (except E) or only elements of finite order. 

We call a system of finitely many elements of (fj, AI, A 2 , ..• ,An T 1 , 

T 2 , ••• , Tq , independent if a relation 

AiIA~2 ... A;rTlI ... T~q = 1 

with integral x, y implies that all Xi = 0 and each Yi == 0 (mod hi), where each 
A has infinite order and each Ti has finite order hi' In this case the expression 
on the left obviously represents different elements if each x runs through 
all integers (positive and negative) and each Yi runs through a complete 
residue system mod hi' 
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A system of finitely or infinitely many elements of (fj: Ai (i = 1,2, ... ), 
Tk (k = 1,2, ... ) (Ai of infinite order, Tk of finite order), is called a basis for 
(fj if each element of (fj can be represented in the form 

A1tA22 ... TitT~2 ... = C, 
where 

(1) the exponents Xi and Yk are integers and only finitely many are =1= 0, 
(2) the exponents Xi are determined uniquely and the exponents Yk are 

determined uniquely mod hk by C. 

Obviously any finite set of elements of a basis must be independent. 
The requirement that the hk are powers of a prime will not be imposed 

here for the sake of simplicity. 
A basis is called finite if it consists of finitely many elements. 

Theorem 34. If an infinite Abelian group (fj has afinite basis, then each subgroup 
of (fj also has a finite basis. 

Let B1, B2 , ••• , Bm be a basis of (fj where B1 , ••• , B, are the elements of 
infinite order and B,+ 1, ... , Bm are those of order h1' ... , hrn -,. We consider 
the systems of exponents of all products of powers 

U = Bit ... B~m 

which belong to U, where, in addition, the last u,+ 1, ... ,urn are to run 
through all numbers, not just the numbers which are distinct mod hi, as 
long as the product belongs to U. By the group property of U, however, we 
obviously have that along with the system of exponents (U1, .•. , urn) and 
(u~, ... , u;"), the systems (u 1 + u~, ... , Urn + u;") and (U1 - u~, ... , Um - u;") 
also correspond to elements U. In particular we keep in mind the elements 

(1 ~ k ~ m) (16) 

belonging to U for a definite k, thus for which U1 = ... Uk-1 = O-there are 
such elements, since if all Ui = ° the unit element of U is obtained-then 
the totality of possible first exponents Zk in (16) forms a module of integers 
in the sense of §1, as long as we do not always have Zk = 0. However, all 
numbers of this module are identical with the multiples of a certain integer; 
consequently, if we do not always have Zk = 0, there is an element Uk in U 
with one such rk =1= 0, 

such that Zk in (16) is a multiple ofthis rk • From the Uk with this rk-possibly 
infinite in number-we pick out a definite one for each k = 1, ... , m, 
where we set Uk = E and r k = ° in case we always have Zk = ° for this kin (16). 

We show that each element in U is representable as a product of these 
elements U 1, ... , U m' Let 

U = Bit ... B~m 
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be an element ofU. By the preceding discussion U1 is a multiple ofrb U1 = v1r1 , 

and hence 
(17) 

is a product only of powers of B 2 , ... , Bm , which also belongs to U by the 
group property. If we should have 1'1 = 0 and U 1 = E, then we should take 
L'1 = O. Likewise, in (17), U2 must be a multiple of 1'2 in case this element is 
-# 0, U2 = L'2r2' Moreover ifrz = 0 then U2 must be = 0 and we take Vz = O. 
In any case then UU1vl Ui"2 is an element ofU and representable as product 
of powers only of B 3 , ... , Bm etc. until we arrive at the unit element and 
obtain a representation 

The U1 , .•• , Ur are of infinite order if they are -# E, the other U's are 
of finite order. 

The products of powers of the Ur+ I , ... , Urn form a finite Abelian group 
and can hence be represented by a basis C l , ... , Cq , by Theorem 26. We 
assert that UI> ... , Un C l , ... , eq form a basis for U if we omit the elements 
Ui = E. First, each element U can be represented by the U I , ... , Urn, hence 
also by the U I , ... , Un e l , ... , eq . Now if 

(18) 

is a representation of the unit element where L'i = 0 is assumed for Ui = E 
(i.e., ri = 0), then by substitution of the Bi in place of the Ui and Ck , it follows 
that 

~'t/'1 = 0: 

hence either VI = 0 or /'1 = O. However, in the latter case we also have V 1 = 0 
as a consequence of our convention. Likewise Vz = 0, ... , Vr = O. Further
more, since the ek form a basis of the finite group, then in (18) each Ck must 
be a multiple of the order of ek . Now since each element is represented the 
same number of times by the U i as by the Ci , hence the same number of 
times as the unit element, these elements actually form a basis for U as was 
to be proved. 

Those infinite Abelian groups in which no element of finite order except 
E appears are of chief interest. We call such groups torsion-free groups, the 
others mixed groups. 

Along with a torsion-free group (fj each subgroup of (fj is also torsion-free. 
In particular, let U be a subgroup of (fj of finite index (§6). Then a certain 
power of each element of (fj with exponent different from zero must always 
belong to U. For if A is an element of (fj, then the cosets 

AU, A 2U, ... , Amu 

are not all distinct, since the index is assumed to be finite. Thus for some n 
Amu = AnU, that is, A m - n must belong to U, with m - n -# O. Hence in the 
above proof applied to (f) and U the case r k = 0, Uk = E can obviously never 



§ll Infinite Abelian Groups 37 

occur, since, in fact, a system of values Zk =1= 0, Zk+ 1 = ... = Zm = 0 always 
exists, so that 

Uk = Bkk belongs to U. 

From this we have immediately 

Theorem 35. If ijj is a torsion-free Abelian group with finite basis B l , ... , Bh , 

then every subgroup U of ijj with finite index has a basis U 1, ... , Un of the form 

U 1 = B'i"B'i12 ... B~'n, 

U 2 = B'i22 ... B~2n, 

Un = B~nn, 

with r ii =1= 0 for i = 1, 2, ... , n. 

Theorem 36. The index of U in ijj is j = Irll . r22 ... rnnl. 

For the proof we must determine the maximum number of elements 
which can exist in ijj such that no two differ by a factor in U. We first show 
that an element 

B~IB22 ... B~n, 

where all IXil < rii, belongs to U only if all Xi = O. By the definition of the 
U i in the preceding proof Xl must be divisible by rll and since IX11 < r ll 
we must have Xl = O. However then X2 must be divisible by r 22 and must 
consequently also be = 0 etc. 

From this it follows that among the j = Irll . r22 ... rnnl elements 

Bi' . Bi2 ... B~n, O:$; Zi < r ii (19) 

no two can differ by a factor in U. Hence there are at leastj different cosets
each represented by one of these elements. On the other hand, however, we 
obtain all elements of ijj from these elements if we multiply them by all 
elements of U, and hence j is the exact value of the index. To see this note 
that for an arbitrary product of the Bk , Bk + 1, ... , Bm 

we can always determine an integer bk such that 

PU-bk - BZkBz;d I ••• 
k - k k+ 1 , 

where the first index Zk satisfies the condition 0 :$; Zk < r kk • Obviously Zk is 
the smallest positive remainder of X k mod rkk' By applying this conclusion 
repeatedly we see that for each A in ijj a sequence of exponents b1, ..• , bn 

can be found such that 



38 II Abelian Groups 

is an element of the system (19). Consequently, A differs from this element 
only by a factor in U. 

We now investigate the connection between different systems of bases of 
a group (fj in order to find properties of bases which are determined by (fj 

alone. 

Theorem 37. If a torsion-free Abelian group (fj has afinite basis ofn elements 
B b ... , Bn, then n is the maximal number of independent elements of (fj, 

independent of the choice of basis. 

Since the B l , ... , Bn are independent in any case, there are n independent 
elements in (fj and thus we need only show that n + 1 elements in (fj are not 
independent. In fact, between n + 1 arbitrary elements 

Ai = B~i1 . BCF ... B~in (i = 1,2, ... ,n + 1) 

there is the relation 

if we choose the n + 1 integers Xi so that they satisfy the n linear homogeneous 
equations 

n+1 

L XiCik = D 
i~ 1 

(k = 1,2, ... ,n). 

As is known this is always possible since the coefficients Cik are integers. 

Theorem 38. From a basis B 1, ••• , Bn of a torsion-free Abelian group (fj one 
can obtain all systems of bases B;, ... , B~ of (fj in the form 

(i = 1,2, ... ,n) 

where the system of exponents are arbitrary integers aik with determinant ± 1. 

To begin with, the B; always form a basis. To see this we need only show 
that the Bi can be represented through the B;. The equation 

is satisfied if the integers x are chosen so that the n equations 

{
D, ifi #- m, 

Xl ali + X2 a2i + ... + xnani = 1 'f' 
, 1 1= m, 

hold. Since the determinant of the (integral) coefficients is = ± 1 and the 
right side is also integral, the Xi are uniquely determined integers. 

Secondly, if n elements 

B; = BiB ... B~in (i = 1,2, ... ,n) 

form a basis, then Bq must be representable through the B;, 

(q = 1, ... ,n) 
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and if the B's are substituted for the B"s, then the n2 equations 

± bqicik {O ~ff q oF kk' 
i=1 1 1 q = , 

39 

are obtained, by the basis property of the B's. The determinant of this array 
is thus = 1; on the other hand, however, by the mUltiplication theorem of 
determinant theory, the determinant is equal to the product of the two 
determinants \bik\ and \Cik \. Hence each of these integers must divide 1, and 
therefore each integer is itself = ± 1; thus \Cik\ = ± 1. 

Finally by combining the last three theorems we obtain 

Theorem 39. If (fj is a torsionjree Abelian group with a finite basis B 1 , ••• , B n , 

U a subgroup of finite index j, then U also has a finite basis U 1, ... , Un> and 
the determinant \aik\ in the n equations 

(i = 1,2, ... ,n) 

is always equal to j in absolute value. 

The last assertion holds for the special basis mentioned in Theorem 36. 
The passage from the special basis U' to an arbitrary basis U is done by 
Theorem 38 using an array of exponents with determinant ± 1. However, 
in the passage from B to U we obviously obtain an array of exponents whose 
determinant is equal to the product of the determinants which appear in the 
passage from B to U' and from U' to U, and hence which is equal to ±j. 

Finally we formulate a simple criterion for U to be of finite index. 

Theorem 40. If (fj is a group with a finite basis B 1 , ••• , Bm , then a subgroup 
U is of finite index if and only if a power of each element of (fj belongs to U. 

If the Nhth power (Nh > 0) of Bh belongs to U and if we set 

N=N1N 2 ···Nm , 

then B~ also belongs to U and consequently the Nth power of each element 
likewise belongs to U. Hence each element of (fj differs from some 

(0 :=; Xi < N) 

by a factor in U; therefore there are at most Nm different co sets, represented 
by the above elements. Thus the index of U is finite. 

Conversely in the case of a finite index the infinitely many cosets 

AU, A2U, A3U, ... 

cannot all be distinct, thus a power of A must belong to U. 
We also note that the definition of a factor group (fj/U carries over without 

change from finite groups to infinite Abelian groups, where it is of no concern 
whether the group (fj has a basis. 



CHAPTER III 

Abelian Groups in Rational 
Number Theory 

§12 Groups of Integers under Addition and 
Multiplication 

In the elementary theory of rational numbers we are constantly dealing with 
Abelian groups. The set of integers has the properties: 

(i) a + b is an integer if a and b are integers; a + b = b + a, 
(ii) a + (b + c) = (a + b) + c, 

(iii) If a + b = a' + b, then a = d. 
(iv) For each a and b there is an integer x such that a + x = b. 

Thus under composition by addition, the set of integers (positive and 
negative) forms an infinite Abelian group 63. The unit element is the number 
zero: a + 0 = a. This group is obtained by composition of the element 1 
with itself. Hence we are dealing with a torsion-free group with one basis 
element, thus with a cyclic group. The integers of a module also obviously 
form an Abelian group and indeed a subgroup of 63. What we proved 
earlier about a module in Theorem 2 is expressed as follows in the termi
nology of group theory: Every subgroup of an infinite cyclic group is again 
a cyclic group. 

The module of those numbers divisible by a fixed number k forms a 
subgroup Uk of (l). The index of Uk is the number of distinct integers which 
differ by an element not in Uk. that is, which have a difference that is not a 
multiple of k. Hence the index of Uk is equal to the number of integers which 
are incongruent mod k. that is, = k (k assumed> 0). What we called a coset 
in group theory is here the system of numbers which arise by composition 
ofa definite number a with all elements of Uk, thus which arise by adding on 

40 
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all multiples of k. The cosets are thus simply the different residue classes 
mod k. The composition of cosets which led us to the factor group <fj/Uk 

appears here as a composition of residue classes mod k, which will be 
designated as addition of residue classes. 

Thus the k residue classes mod k, with composition by addition, form 
an Abelian group which is isomorphic to the factor group <fj/Uk • 

In all these cases we are dealing with cyclic groups, thus with very simple 
groups. The investigation of another kind of composition, multiplication, 
is more important and more difficult. 

We first show that the positive integers do not form a group under com
position by multiplication, since the group axioms (i)-(iii) hold but (iv) does 
not: namely, for integers a, b there does not always exist an integer x with 
ax = b. However if we add the fractions then we see: 

Under composition by multiplication the positive rational numbers form an 
infinite Abelian group, and indeed a torsion-free group Wl. The unit element is 
the number 1. The theorem about unique decomposition of integers into 
prime factors obviously asserts: 

The positive primes form an infinite basis in the group Wl. 
The simplest subgroups of Wl are obtained, say, in the form of rational 

numbers for whose representation only certain (finitely or infinitely many) 
primes are needed. 

By adding on the negative rational numbers (0 excluded) we obtain an 
extended group, in which one element of finite order, namely -1, occurs. 

We now wish to compose the residue classes mod n by a kind of multi
plication. If A and B are two residue classes mod nand a l == a2 (mod n), 
b l == b 2 (mod n) are two representatives of A and B, then we have alb I == a zb2 

(mod n); the residue class to which a l . bl belongs is determined by the 
classes A, B, independent of the choice of representatives. We write A . B or 
more briefly AB for the class defined by A and B in this way. Obviously 
AB = BA and A(BC) = (AB)C. However the residue classes mod n do not 
form a group, since RoA = RoB for each A, B, where Ro denotes the residue 
class of zero; hence axiom (iii) is not satisfied. 

However, if A and B are residue classes mod n which are relatively prime 
to n, then this also holds for AB. And it follows from ab = a'b (mod n) that 
a == a' (mod n), if band n are relatively prime. With this we have proved: 

Theorem 41. The system of residue classes mod n does not form a group with 
composition by multiplication. However, the <p(n) residue classes prime to n 
form an Abelian group under composition by multiplication. Let this group be 
simply called the "group of residue classes mod n" and let it be denoted by 
9\(n). The unit element is the class which contains 1. 

From this fact we immediately infer Fermat's theorem as a consequence 
of Theorem 21 on groups: if (a, n) = 1 then A",(n) = E or a",(n) == 1 (mod n). 

We pose the problem of giving the structure of this finite Abelian group. 
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§ 13 Structure of the Group 9t(n) of the Residue 
Classes mod n Relatively Prime to n 

First we reduce the investigation of 91(n) to the case where n is a power of a 
prime by means of 

Theorem 42. Suppose (nh n2) = 1, n = III . 112' Then 

To prove this we assign to each element A of 91(11) a pair of elements C l 

from 91(11 1) and C2 from 91(112) as follows: If a is a number in A, then choose 
any two numbers c1, C2 according to the conditions 

(20) 

The residue class C 1 of C J mod n1 is determined uniquely by A, likewise the 
residue class C z of C2 mod 112 , We set 

A = (C 1,C2 ) 

where C 1 belongs to 91(nd and C2 belongs to 9i(l1z). Conversely if C1 and Cz 
are two numbers relatively prime to /1 1 and /12 respectively, then by The
orem 15, since (nl' tl2) = 1, there is an a determined uniquely by the modulus 
n = 111 . 112 which satisfies (20). Moreover it obviously follows from 

that 
AA' = (C 1C'I'CZC'z). 

Thus the group 9i(I1) is represented as a product of the groups 9i(11 1) and 
9i(112)' 

It follows by repeated application of the theorem for a product of different 
primes Ph P2, ... , Pk that 

9i(p~lp~2 ... p~k) = 9i(p~1)9i(p~2)9i(p~k). 

Therefore the investigation of 9i(/J) is reduced to the case where 11 is a power 
of a prime. 

Theorem 43. If P is a prime, then the group 9i(p) of residue classes mod p is a 
cyclic group of order p - 1. 

By Theorem 27, we need only show that if q is a prime dividing p - 1, 
then the number of classes A with Aq = 1 is equal to q (by Theorem 22 it 
must be at least q). However, the number of these classes A is identical with 
the number of integers a which are incongruent mod p and which satisfy 
aq == 1 (mod p), that is, with the number of different roots of x q - 1 == 0 
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(mod p). By Theorem 12 this number is at most equal to the degree q, because 
the modulus is a prime. Consequently it is precisely equal to q. 

Hence there is a generating class mod p. Each number g from this class 
is called a primitive root mod p. Accordingly g is a primitive root mod p 
if g, g2, g3, ... , gP-l are all incongruent mod p. The powers gO, where 
(u, p - 1) = 1, and only these, are again primitive roots. There are cp(p - 1) 
different primitive roots mod p. 

Theorem 44. If P is an odd prime, then the group of residue classes modulo 
each power pa is cyclic. 

The order of this group is h = cp(pa) = pa - 1 (p - 1). Here we may take 
rJ. 2 2. The primes dividing hare p and the prime divisors q of p - 1. If e is 
the basis number which belongs to p in 9t(pa), then pe is the number a of 
solutions of 

(21) 

which are incongruent mod pa. By Fermat's theorem each such a is == 1 
(mod p). We assume a#- 1 and a = 1 + upm, where pm is the highest power 
of p dividing a-I; hence we have 

m 21, (u,p) = 1. (22) 

It follows from (21) that 

(23) 

We now expand the pth power by the binomial theorem and note that, for 
a prime p, all binomial coefficients 

( p) pep - l)(p - 2) ... (p - k + 1) 
k = 1 . 2 . 3 ... k (for k = 1,2, ... , p - 1) 

are divisible by p, since the numerators are divisible by p while the denomina
tors are not divisible by the prime p. We now wish to show for m in (23) that 
m 2 rJ. - 1. If we have m .::;; rJ. - 2, then it would follow from (23) that 

(1 + upm)p == 1 (mod pm + 2), 

(1 + upmy = 1 + (nupm + ... + C ~ 1)ur1pm(p-l) + uppmp. (24) 

Since p> 2 and m 2: 1, all terms from the third on are divisible by pm+2, 
that is, 

(1 + upmy == 1 + Upm+ 1 (mod pm+ 2). 

Hence it follows from (24) that 

upm+l == 0 (mod pm+2), 
l.e., 

u == 0 (mod p) 
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in contradiction to (22). Therefore in (23), a = 1 + upm with m;::: IX - 1. 
However, among these numbers there are at most p which are incongruent 
mod p~. 

The basis number e which belongs to p for the group is thus ~ 1, hence = 1. 
The easiest way to see that the basis number for the primes q is also equal 
to 1 is the following. By Theorems 23 and 24, the elements of the group of 
classes mod pa can be represented in the form 

A·B 

where B runs through the p - 1 classes with BP-1 = 1, and A runs through 
the p"-l classes with Apa-l = 1. We thus need only check that the subgroup 
of the B's is cyclic. Now if a is a primitive root mod p, then since a == aP == 
aP2 == ... == apa - 1 = b, b is also such a number. Hence the numbers b, b2 , ••. , 

bP - 1 are different mod p, thus a fortiori mod pIX, while their (p - 1)th powers 
are == 1 (mod pIX). Hence the group of classes B is represented by the powers 
of the class of b. Therefore it is cyclic and Theorem 44 is proved. 

The exceptional case of the prime 2 is treated by 

Theorem 45. The groups 9'l(2) and 9'l(4) are cyclic. If IX ;::: 3 then the group 
9'l(2a) of order h = cp(2a) = 2a- 1 has exactly two basis classes. One is of order 
2, the other of order h/2 = 2a- 2• 

The statements are trivial for the moduli 2 and 4. Thus suppose IX ;::: 3. 
The group of classes mod 2" has order h = cp(2a) = 2,,-1. The number of 
incongruent solutions of x 2 == 1 (mod 2a) is 22, that is, e = 2, because x must 
be odd in any case, x = 1 + 2v, and consequently 

0== Xl - 1 == (1 + 2V)l - 1 == 4v(v + 1) (mod 2") 

v(v + 1) == 1 (mod 2a - 2 ). 

Obviously only one of the factors can be even and it must then be divisible 
by 2a - 2, that is, 

v=2a - 2wor v=-1+2a - l w 

x = 1 + 2a - 1 w or x = -1 + 2a - 1w 

with integral w. Each such x is, in fact, also a solution of x 2 == 1 (mod 21Z). 
Exactly four of these numbers are incongruent modulo 2a, namely for 
w = 0 and 1. 

However since there exist two basis classes in this group of order h = 2a - 1, 

each class can be of order at most h/2. If a class of order h/2 exists, then this 
class must also be a basis class of degree h/2; the other class then has order 2. 
We show that the class represented by the number 5 has order h/2 = 2,,-2 
modulo 2". To see this we show that 

52k 1= 1 (mod 2") for IX ;::: 3 and k < IX - 2, 
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but 
52.- 2 == 1 (mod 21X). 

Obviously this is equivalent to 

52.- 2 = 1 + 21Xu, where u is odd (IX ;::: 3). 

Since 25 = 1 + 8 . 3, the equation is true for IX = 3. If it is true for IX in general, 
then it follows by squaring that 

52.- 1 = (1 + 21Xu)2 = 1 + 21X + lU + 22IXU2 = 1 + 21X + lu(l + 2IX - 1u). 

Therefore we have the validity of the assertion for IX + 1. 
We observe further that for composite moduli n, the group 9l(n) is not 

cyclic in general. If p is a divisor of cp(n), then, by Theorem 42, the basis 
number e(p) of 9l(n), which belongs to p, is equal to the sum of the basis 
numbers ei(p), which belong to p in 9l(pi;), where p = p~lp~2 ... is the decom
position of n into primes. However for odd Pi' 2 is a divisor of cp(pi;) and 
consequently ei(2) = 1. Thus if two odd primes divide n, so does e(2) for 
9l(n) ;::: 2. Hence the group is not cyclic. 

§14 Power Residues 

With the help of the theorems before us, the foundations of the theory of 
power residues, that is, the solvability of binomial congruences of the form 

x q == a (mod n) (25) 

can easily be developed. If we restrict ourselves to the cases where the fol
lowing hypotheses are satisfied: 

q is a positive prime, n is odd and a power of a prime, say pIX, (a, n) = 1, 

then the solutions x, if any, are likewise relatively prime to the modulus pIX, 
and the problem of the solvability of (25) in integers can be formulated in 
group-theoretic fashion as follows: 

Let a class A be given in the group of residue classes mod pIX. How many 
elements X are there in the group such that 

x q = A? 
We distinguish two cases: 

1. The prime q does not divide the order of the group h = cp(plX). Then 
there is exactly one element X of the desired sort. To see this let the integers 
m, n be determined so that qm + hn = 1, which is possible since (q, h) = 1. 
Since X h = 1, it follows from xq = A that 

X = x qm + hn = (Xqr = Am 

and this element actually satisfies x q = A. 
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2. q divides h = cp(p'). By Theorem 44 there is an element C (of order h), 
whose powers yield all elements of the group. We set 

A = Ca', x= Cx 

with integral d and x, which are completely determined mod h. By Theo
rem 20, it follows from 

that 
xq == a' (mod h) 

and conversely. However, since q I h, this congruence is solvable in integers x 
only if 

ql d, 

and then it has exactly q different solutions mod h. That is, the equation 
X q = A has either no solutions or exactly q distinct solutions X. Since C is a 
primitive class, the condition q I d is equivalent to 

Ahjq = Ca'hjq = (Ch)a'lq = 1. 

Returning to numbers from residue classes we see that we have proved 

Theorem 46. The congruence 

x q == a (mod p') 

where q, p are primes, p #- 2 (a, p) = 1, has exactly one solution x in integers 
if q does not divide cp(p'). However if q divides cp(p'), then the equation has 
q solutions, and indeed exactly q, if 

a"'(P")/q == 1 (mod p'). (26) 

If the exponent is also relatively prime to the modulus, that is q #- p, 
then Condition (26) allows a still simpler formulation. For, since q is a 
prime, but q #- p, it follows from q I cp(p') that 

, p - 1 
q I p - 1, q = -- integral, 

q 
and (26) reads 

aP·- 'q == 1 (mod p'); 

hence in particular, because of Fermat's theorem we also have 

aq ' == 1 (mod p). 

(26a) 

(27) 

This congruence, which has the solvability of x q == a (mod p) as a conse
quence, also conversely has (26) as a consequence. Specifically for each prime 
p, it follows from 

m == n(mod p'), m = n + xp' (integral x), 
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that 

mP = (n + xpry = nP + (~)xpr + ... == nP (mod pr+1) 

mP = nP (mod pr+ 1), 
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since the binomial coefficients (k) are divisible by p for k = 1, 2, ... , p - 1 
as we have already used above once (see p. 43); thus (26) follows from 27. 

If q I p - 1, then (27), which does not depend any more on the exponent 
IX, is also a condition for the solvability of x q == a (mod p"). Hence 

Theorem 46a. If q is a prime factor of p - 1, p an odd prime, and (a, p) = 1, 
then the congruence x q == a (mod p") is solvable if and only if it is solvable 
mod p. For this it is necessary and sufficient that 

d P - 1 )/q == 1 (mod p). 

Then there are q solutions incongruent mod p". 

As moduli, the powers 2" require special treatment because of Theorem 45. 

Theorem 47. With odd q and a, the congruence x q == a (mod 2") always has 
exactly one solution. For q = 2 and odd a, x2 == a (mod 2") is solvable for 
rx ;;::: 3 if and only if it is solvable mod 8, that is, if a == 1 (mod 8), and indeed 
the number of incongruent solutions in this case is equal to 4. For a == 1 (mod 4), 
x2 == a (mod 4) has two solutions, otherwise it has no solutions for odd a, and 
x2 == a (mod 2) always has a solution. 

The first part (q odd) is proved exactly as above in Case 1. Since, by 
Theorem 45, the classes mod 2" (rx ;;::: 3) can be represented in the form Bi'B~2, 
where Bf = Br- 2 = 1, then we see as above in Case 2 that only those classes 
A = W'B~2, where a1 = 0, a2 even, can be represented in the form X2. And 
then there are as many classes X with X 2 = B~2 as there are classes with 
X 2 = 1, that is, 22 = 4. A simple form of the solvability condition for x2 == a 
(mod 2") with IX ;;::: 3 a == 1 (mod 8) arises as follows: 

If x2 == a (mod 2") (IX ;;::: 3) is solvable (let x = Xo be a solution), then the 
congruence is also solvable mod 2a+ 1. For let an integer z be determined so 
that 

(xo + 2,-l Z? - a = x6 - a + 2'xoz + 22,-2Z 2 == 0 (mod 2'+1) 

which, since 
21X - 2 = rx + (IX - 2);;::: IX + 1, 

leads to the solvable congruence 

x6 - a 
~ + XoZ == ° (mod 2). 
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If X 2 == a (mod 8) is solvable, then the congruence is consequently also 
solvable mod 2a. However, as we see by trying out the other cases, this 
congruence is solvable only for a == 1 (mod 8). 

From this we immediately obtain an overview of the solutions of 

x q == a (mod n) (28) 

for composite n. Suppose (a, n) = 1. In order that the congruence be solvable 
mod n it must be solvable modulo each power of a prime which divides n. 
If n = p~'p~2 ... p~r, where the Pi are distinct primes, and if N; is the number 
of different solutions mod pf' of 

zq == a (mod pf'), 

then the number of different solutions of (28) is 

To see this assume that the r numbers z 1, ... , Zr are solutions of zt == a 
(mod pf') and then let us determine x from 

x == Zi (mod pi'), (i = 1,2, ... ,r). 

Then 
xq == zt == a (mod pi'), 

hence 
x q == a (mod n). 

x is uniquely determined mod n by the Zi. Two different systems Zi and z; 
lead to the same x mod n if and only if Zi == z; (mod pi') for i = 1,2, ... , r. 
On the other hand every solution x of (28) is also a system of solutions of 
the r single congruences, namely Zi = x. Consequently N 1 N 2 •.. N r is the 
exact number of solutions of (28) mod n. 

§15 Residue Characters of Numbers mod n 

In closing these investigations we finally wish to connect the numbers a 
considered relative to a modulus n with the concepts, developed in §lO, 
related to characters of Abelian groups. 

The elements of the group ffi(n) are the different residue classes mod n 
which are relatively prime to n, and hence, as an Abelian group, there is 
assigned to these elements a system of h = <p(n) characters. Let a be an 
integer from one such class A. Then corresponding to each character X(A) 
we define a number-theoretic function 

x(a) = X(A), 
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for each integer a, relatively prime to n, which has the following properties: 

(1) x(a) = X(b), if a == b (mod n). 
(2) x(a)x(b) = x(ab). 
(3) x(a) # ° for all a relatively prime to n. 

We complete this definition for the remaining integers by fixing 

(4) x(a) = 0, if (a, n) > l. 

Statements (1 )~(3) are valid for this extended system of arguments where a 
is allowed to run through all integers. 

Each function x(a) with the properties (1)~(4) is called a residue character 
of a mod n. There are exactly h = <p(n) different residue characters mod n 
and by Theorem 31 we have 

(k) = {o if X is not the principal character, 
k ~d n X <p(n) if X is the principal character. 

(29) 

Here again we call that character which is equal to 1 for all a relatively prime 
to n the principal character. The summation k mod n under L signifies that 
the index k runs through a complete residue system mod n. In an analogous 
manner we have 

L X(k) = {o if k ¥= 1 (mod n), 
x <p(n) if k == 1 (mod n). 

(30) 

With the help of residue characters mod n we now wish to give a different 
formulation of the conditions for the solvability of a congruence 

x q == a (mod n) 

which were developed in the preceding section. Here we will make the 
hypothesis: 

(q, n) = 1, q prime, and (a, n) = 1. 

Thus the class A of a should be a qth power in the group 9l(n). Now the qth 
powers of all classes form a subgroup Uq of 9l(n). By Theorem 29, the order 
of the factor group is 9l/Uq = qe, where e = e(q) is the basis number belonging 
to q in 9l(n) and e is at the same time the number of basis elements in 9l/Uq • 

Consequently, by Theorem 33, there exist exactly e characters for 9l(n) and 
thus exactly e residue characters mod n 

X 1 (a), X2(a), ... , Xe(a) 

such that the e equations Xi(a) = 1 (i = 1,2, ... ,e) are the necessary and 
sufficient conditions for the class A of a to be a qth power. These e characters 
are independent of one another in the sense that there are always numbers 
a for which these e characters are arbitrarily given qth roots of unity. 

Until now only the fact that 9l(n) is a finite Abelian group was used; the 
finer structure plays a role only when we try to represent e as a function of 
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q and n. Now if n is a power of a prime pa, then e(q) = 0 for odd p if q does not 
divide <p(pa), and e(q) = 1 if q I <p(pa), since the group 91(pa) is cyclic. However 
if n is composite and odd, n = p~1 ... p~r. then by Theorem 42, e(q) for 91(n) 
is equal to the number of those Pi for which q I <p(pfi}. 

Each residue character x(a), which is equal to 1 for all qth powers a, is 
called a qth power character of a mod n. By Theorem 33, each qth power 
character is representable as a product of powers by the basis characters 
Xl' ... , I.e· 

The simplest case, which will concern us exclusively in what follows, is 
the case with q = 2, where we are concerned with the classes which can be 
represented as squares. The corresponding power characters are then called 
quadratic characters. 

§16 Quadratic Residue Characters mod n 

An integer (I relatively prime to n is called a quadratic residue mod 11, or 
simply a residue mod n if the congruence 

x2 == (I (mod 11) 

is solvable in integers x. In the other case a is called a nonresidue mod n. 
By the preceding section the conditions for the solvability are that the e(2) 
given residue characters mod n, for a, have the value 1. Each of the characters 
x(a) is a square root of unity, hence it can only have the value ± 1. 

To begin with, if n = p is an odd prime, then the corresponding e(2) = 1, 
as 2 divides p - 1 and the group 91(p) is cyclic. Thus among the p - 1 
characters mod 11 there is exactly one, say x(a), which is a square root of 
unity but not always = + 1 and x(a) = + 1 is the condition that a is a 
quadratic residue mod p. We set 

x(a) = (~) 
By its definition this character is equal to ± 1 for each a not divisible by p. 

Thus we have 

(1) (~) = (~.) if a == a' (mod pi, 
(2) (~) = (~)(~), 
(3) (a;)=l, 
(4) (~) is not equal to 1 for some a, 

where (1', (I, b are integers not divisible by p. The symbol (~) is defined by 
these properties a/one, for each (I relatively prime to p, since by (1) and (2), 
it is a residue character mod p, by (3) this character has only the values ± 1, 
and by (4), it is not always = + 1. Hence the residue classes A for which it 
is 1 form a subgroup of 91(p) to which all squares belong. Thus its index is 
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::; 2 but > 1 and therefore exactly = 2. Hence (~) = + 1 for the quadratic 
residues a mod p and equal to - 1 for the nonresidues mod p. 

If we recall that since 

aP- 1 - 1 == 0 (mod p), 

(a(P-l)/2 + 1)(alP-l)/2 - 1) == 0 (mod p), 

then in view of Theorem 46a, (~) should be defined as the one of the two 
numbers ± 1 for which 

(~) == alP - 1 )/2 (mod p). (31) 

Legendre introduced the residue symbol (~) into number theory in this 
manner. 

The number of incongruent quadratic residues mod p is (p - 1)/2, so 
the number of nonresidues = p - 1 - (p - 1)/2 = (p - 1)/2; hence there 
are just as many residues as nonresidues mod p. 

By Theorem 46a, the condition (~) = + 1 is at the same time the condition 
that a is a quadratic residue mod p". The number of residues mod p" is 
also equal to the number of nonresidues mod p", namely = cp(pa)j2 = 
p"-l(p _ 1)/2 (0: > 1). 

For a composite, and for the time being, odd n = p~'p~2 ... p~r, the con
dition that a is a residue mod n is given by e(2) equations for a certain set 
of e(2) characters mod n. Here e(2) = r. The number of quadratic residues 
mod n is cp(n)/2', hence for r > 1 it is not equal to the number of nonresidues. 
By what was done at the end of §14, the conditions that a is a residue mod n 
are that a is a residue modulo each prime Pi which divides n, that is, that the 
r equations 

(;J = 1 (i = 1, 2, ... , r) 

hold. As we know, for the modulus 2a(0: 2 3), the group 9\(2') is no longer 
cyclic, but it has two basis elements. The decision as to whether or not a is 
a quadratic residue mod 2' cannot be made by statements about one residue 
character mod 2" but rather for this we need two pieces of information. For 
the time being we omit the introduction of a residue symbol mod 2a, and only 
later, in §46, will we return to it. 

On the other hand we define a symbol (%) for composite odd n. Let 

n = p~' ... p~r, n odd. 
We set 

provided the elements on the right side have a meaning, that is, if (a, n) = 1. 
Finally let 

(~) = 0 if (a, n) > 1. 
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For this extended symbol, we have, by definition, 

(~l) -- (_a;') , if a == a' (mod n), 

(:h) = (~). G) 
for arbitrary integers a, d, b whether they are relatively prime to n or not. 
Hence this symbol is also a residue character mod n. However we recall 
once more that for composite n, no conclusion can be drawn from the value 
Gf) as to whether a is a quadratic residue mod n or not. If a is a residue mod n, 
then (*) = + 1 but not conversely. 

Legendre and before him, in special cases, Euler, had already made the 
following remarkable discovery about this residue symbol, which has many 
consequences for all of number theory and which as the law of quadratic 
reciprocity is formulated today as follows: 

For positive odd a, n, 

(~) = (s} _1)((a-I)/2)((n-I);2). 

Beyond this, the so-called completion theorems hold: 

(~1~) = (_I)(n-I)/2, n odd> 0 

(~) = (_ I )(n L 1)/8, 11 odd. 

After Legendre published an attempted proof, which was to be sure incom
plete in an essential point, Gauss (1796), who was nineteen years old, suc
ceeded in finding the first proof which he published in 1801 in his classical 
work Disquisitiones Arithmeticae. Since then many different proofs have been 
given for the reciprocity law; the index in Bachmann's book contains 45 
entries; eight proofs are due to Gauss alone. 

Modern number theory dates from the discovery of the reciprocity law. 
By its form it still belongs to the theory of rational numbers, as it can be 
formulated entirely as a simple relation between rational numbers; however 
its content points beyond the domain of rational numbers. Gauss himself 
recognized this. He first attempted to carryover the arithmetic concepts to 
the complex integers a + b J'- 1 where a, b are integers and he succeeded in 
finding and proving a similar law for fourth power residues. (It was probably 
this success of complex number theory which induced him to introduce 
complex numbers, which were viewed at that time with mistrust and used 
only occasionally as having equal rights with real numbers in the remaining 
parts of analysis). He recognized that Legendre's reciprocity law represents 
a special case of a more general and much more encompassing law. For this 



§16 Quadratic Residue Characters mod n 53 

reason he and many other mathematicians have looked again and again for 
new proofs whose essential ideas carryover to other number domains in 
the hope of coming closer to a general law. The last decisive step was taken 
by Kummer through his introduction of ideal prime factors. Then Dedekind 
laid the foundations for the general theory of algebraic number fields, and, 
with this available, the formulation and the proof of the most general reci
procity law for qth power residues, where q is a prime, was finally achieved 
by Hilbert and his student Furtwiingler. 

The development of algebraic number theory has now actually shown 
that the content of the quadratic reciprocity law only becomes understand
able if one passes to general algebraic numbers and that a proof appropriate 
to the nature of the problem can be best carried out with these higher meth
ods. However, it must be said of the elementary proofs that they possess 
rather the character of supplementary verification. 

For this reason we will dispense entirely with a presentation of an ele
mentary proof. Rather we set ourselves the problem of carrying over the 
concepts of rational number theory, in particular the concept of integer, to 
other domains of numbers, where new relations between rational integers 
will also be obtained, e.g., the reciprocity law itself will be presented as a 
side result. 



CHAPTER IV 

Algebra of Number Fields 

§17 Number Fields, Polynomials over Number 
Fields, and Irreducibility 

Definition. A system of complex numbers is called a number field (or, more 
briefly, afield) if it contains more than one number and if along with the 
numbers a and {3 it always contains a + {3, a - {3, a{3, and, if (3 oj:. 0, a/{3. 

This means that all rational operations can be performed unrestrictedly 
within the system. Following Kronecker the term domain of rationality is 
also used in place of the term field. The additional condition, that the system 
is to contain more than one element, only excludes the system which con
sists of just a zero element, which satisfies the remaining conditions of the 
definition. 

The concept of a field is related to the concept of a group. By definition, 
the numbers of a field form an infinite Abelian group under composition by 
addition. Furthermore the numbers of the field, excluding 0, also form an 
Abelian group under composition by multiplication. 

Examples of number fields are: 

The system of all rationaillumbers. 
The system of all real numbers. 
The system of all complex numbers. 
The system of all numbers of the form R(w), where R(x) runs through all 

rational functions of x with rational numbers as coefficients, where w is a 
fixed number. 

Since a/a = 1, each field thus contains the number 1, and thus also 
1 + 1 = 2, 1 - 1 = 0 etc. Thus it contains all integers and hence also all 

54 
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quotients of these, that is, all rational numbers. For this reason, the field of 
rational numbers, which we will denote by k(1) is called the absolute domain 
of rationality. This field is contained in every number field. 

In this chapter we will be concerned with the algebra of number fields 
while, after introduction of certain numbers of the field as integral numbers, 
the arithmetic properties of number fields will be dealt with in the remaining 
chapters. 

Now let k be an arbitrary number field. By a polynomial over k we mean 
a polynomial all of whose coefficients are numbers from k. The quotient of 
two polynomials over k is called a rational function over k. If f(x) and g(x) 
are polynomials over k, then, as is known, if g(x) is of degree at least 1, two 
polynomials q(x) and r(x) can be determined so that 

f(x) = q(x)g(x) + r(x), (32) 

where the degree of r(x) is less than that of g(x). We call r(x) the remainder 
of f(x) mod g(x). The coefficients of q(x) and r(x) can be calculated entirely 
from those of f(x) and g(x) by means of rational operations, and hence these 
coefficients likewise belong to k. If r(x) is equal to 0, then f(x) is said to be 
divisible by g(x) or g(x) divides f(x); in symbols 

g(x)lf(x). 

If, in (32), the degree m off(x) is less than the degree n of g(x), then q = ° and 
r(x) = f(x). On the other hand, if m ~ n, then the degree of q(x) is equal to 
m - n, q(x) is not 0, and the degree of r(x) is < n. Hence if each of the two 
polynomials f(x) and g(x) is divisible by the other, then they differ only by 
a constant factor. The trivial factors of any polynomial f(x) are the constants, 
that is, the polynomials of Oth degree, and the polynomials cf(x). A poly
nomial, a(x - oc), of the first degree has no factors other than these trivial 
ones. By the fundamental theorem of algebra each polynomial of degree n 
can be decomposed in exactly one way into n factors of degree 1 such that 

where c is a constant different from zero and oc1, ••• , OCn are n coincident or 
distinct complex numbers. Thus if we admit arbitrary coefficients for the 
polynomials, then the polynomials of Oth degree play the same role as the 
units ± 1 and the polynomials of degree 1 play the same role as the primes 
in investigations about divisibility. 

If we restrict ourselves to polynomials over a fixed number field k, then 
these relationships are quite different. We call a polynomial f(x) irreducible 
over k, or indecomposable over k, if f(x) cannot be represented as a product 
of two polynomials over k neither of which is a constant. 

Accordingly, for example, every polynomial over k of degree 1 is irre
ducible over k. However since the fundamental theorem asserts nothing 
about whether roots oc of f(x) belong to k, polynomials of higher degree 
may also be irreducible over k. For example, x 2 + 1 is obviously irreducible 
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over the field of real numbers. Because of this we must leave the problem of 
the exact nature of polynomials irreducible over k, without discussing it 
here, and be satisfied with their existence. 

The most important fact concerning polynomials over k is stated in the 
following theorem: 

Theorem 48. Two arbitrary nonzero polynomials flex) and f2(x) over k have 
a uniquely determined greatest common divisor d(x), that is, there is a poly
nomial d(x) with leading coefficient 1, such that 

d(x) I f2(x) 

and every polynomial which divides fl (x) and fix), also divides d(x). 
Moreover, d(x) can be represented in the form 

d(x) = gl(x)fl(x) + g2(x)f2(x), (33) 

where gl(X) and g2(X) are polynomials over k, and thus d(x) is also a polynomial 
over k. 

The proof is well known from elementary algebra, yet no importance is 
attached there to the nature of the numerical coefficients which appear. For 
this reason we reproduce quite briefly a proof based on the proof of the 
analogous fact for rational numbers (Theorems 1 and 2). Among the poly
nomials 

L(x) = U l (x)fl (x) + u2(x)f2(x), 

where Ul (x) and U2(X) run through all polynomials over k, we consider such 
a polynomial with leading coefficient 1 whose degree is as small as possible. 
Let d(x) be such a polynomial and suppose that (33) holds. If d(x) is of 
degree 0, then it is = 1 and hence it divides flex) and f2(x). But even if it is 
of higher degree, it must divide flex), for let the remainder rex) of flex) 
mod d(x) be determined 

flex) = q(x)d(x) + rex) 

rex) = flex) - q(x)d(x) 

r = fl - qd = fl - q(gdl + gz/2) = (1 - qgl)fl - qg2f2· 

Thus this rex) also has the form L(x), while its degree (as a remainder 
mod d(x)) is less than the degree of d(x). Consequently it cannot have 
coefficients different from 0, hence it is 0. Thus d(x)lfl(x); in exactly the 
same way we see that d(x)lf2(x). 

However by (33) each common divisor of fl(x) and f2(x) divides d(x). If 
a polynomial do(x) has the property stated in the first part of the theorem, 
then d(x)ldo(x) holds as well as do (x) I d(x), consequently do(x) and d(x) 
differ by only a constant factor; since their leading coefficients are 1, do(x) = 
d(x). 
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We write (f1(X), f2(x» = d(x) and call f1(x) and f2(x) relatively prime if 
d = 1. The greatest common divisor of two polynomials is completely 
defined by this alone, not only relative to a definite field k, while, in general, 
the property of irreducibility of a polynomial is relative to the field k to 
which it belongs. 

We have immediately from Theorem 48: 

Theorem 49. If a polynomial f(x), irreducible over k, has a common zero 
x = oc with a polynomial g(x) over k, then f(x) is a divisor of g(x) and hence all 
zeros of f(x) are zeros of g(x). 

For (f(x),g(x» is at least divisible by x - oc and thus not = 1. On the 
other hand f(x) has no factors over k other than cf(x). Consequently 
(f(x),g(x» = cf(x) andf(x)lg(x). 

In particular an irreducible polynomial over k, of degree n, has exactly n 
distinct roots, since otherwise it would have a common zero with the deriv
ative rex), which is also a polynomial over k but of degree n - 1, and hence 
it would have to divide rex), which cannot be the case. 

§18 Algebraic Numbers over k 

Suppose that a number e is a root of a polynomial P(x) over k. Among all 
polynomials over k, with leading coefficient 1, which have this root e, there 
is one of smallest degree. This polynomial is necessarily irreducible over 
k-since otherwise e would already be a root ofa divisor of this polynomial
and hence by Theorem 49 it is fully determined by e and k. 

The degree n of this polynomial is called the degree of e with respect to k, 
or the relative degree of e. The n roots of this polynomial, e1, e2 , ••• , en-

surely distinct from one another-are called the conjugates of e with respect 
to k or the relative conjugates of e. Each of the numbers ej is called an 
algebraic number over k. If k = k(l) is the field of rational numbers, then in 
this notation the reference to k is omitted. Thus in particular a number e is 
called an algebraic number if it is a root of a polynomial with rational co
efficients. 

Obviously the numbers in k itself are the numbers of relative degree 1. 
For further investigation we need the symmetric function theorem from 
algebra, which we formulate as follows: 

Let oc 1 , oc2 , ••• ,OCn be n independent variables and let f1' f2' ... ,fn be 
their n elementary symmetric functions which are the coefficients of the 
polynomial in x: (x - o( 1)(x - o( 2 ) ..• (x - ocn). Then every symmetric poly
nomial S(oc 1, •.. , ocn) in oc 1 , ... , ocn can be represented as a polynomial of f1' 

f2'··· ,f.: 
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The coefficients oI G can be calculated Fom those oI S entirely by the opera
tions oI addition, subtraction, and multiplication. 

If the theorem is applied twice in succession, then we obtain: If 131' ... ,/3m 

are m additional independent variables and <PI' ... , <Pm are their elementary 
symmetric functions, and if S(ex l , ... ,exn ; 131' ... ,/3m ) is a polynomial of the 
n + m arguments which remains unchanged under each permutation of the 
ex among themselves and under each permutation of the 13 among themselves, 
then S can be represented as a polynomial of the II' ... , f" and <P 1, ... , <Pm: 

S(CX I ,··· .CXn; 131"" ,13m) = GU;,··· ,j~, <pj, ... , <Pm)· 

The coefficients of G can be calculated from those of S by addition, subtrac
tion, and multiplication. 

From this we note first of all: 

Theorem 50. II ex, 13 are algebraic numbers over k, then the same is true lor 
cx + 13, 'Y - 13, cxf3. and, if" /3 i= 0, for cx! 13· 

IfCXIo ...• CXn are the conjugates of cx and /3 10 ... ,13m are those of 13 with 
respect to k, then the elementary symmetric functions of cx, as well as those 
of 13, are numbers in k. The product 

m 

H(x) = TI TI (x - (cxi + 13k)) 
k= 1 i= 1 

as a symmetric function in thecx, and in the 13, is then a polynomial over k 
by reason of the fundamental theorem just stated, and ex + 13 is to be found 
among its roots, which accordingly is an algebraic number over k. This 
likewise follows for cx - 13 and cxf3. 

Withcx!f3 our method breaks down since the analogous product is not a 
polynomial in the 13 and hence the fundamental theorem cannot be applied. 
However if 13 i= 0, then let us set x = 11Y in the irreducible equation for 13 
over k 

and let us multiply by ym. The polynomial in y obtained in this way then has 
the root 1/13, and this number is thus likewise an algebraic number over k; 
consequently by what has gone before, the product cx(l! 13) = ex! 13 is also an 
algebraic number over k. 

Theorem 51. II w is a root oI a polynomial 

<p(xJ = xm +cxxm - 1 + f3x m - 2 + ... +;. 

whose coefficients are algebraic numbers over k, then w is also an algebraic 
number over k. 

Supposecx i runs through the conjugates of cx, 13k runs through the con
jugates of 13 etc. Then by the theorem on symmetric functions, the polynomial 
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i, k • ... , s 

as a symmetric expression in the conjugates has coefficients in k; since 
F(w) = 0, w is an algebraic number over k. 

§19 Algebraic Number Fields over k 

Each algebraic number () over k obviously generates a field, the totality of 
all rational functions of () with coefficients in k. Let this field be denoted by 
K«(); k) or more simply by K«()) and let us say of it that it arises by adjunction 
of () to k. Likewise, by the adjunction of several algebraic numbers 0(, 13, y, ... 
over k to k, we obtain a field K(O(, 13, y, ... ; k) whose numbers are the rational 
functions of 0(, 13, y, ... with coefficients in k. 

Theorem 52. Every field obtained by adjunction of several algebraic numbers 
over k can also be generated by adjunction of a single algebraic number over k. 

Obviously, it is enough to prove the theorem for the adjunction of two 
numbers. Thus let 0(1' ... , O(n be the n conjugates of a number 0(1 ofrelative 
degree nand 131,' .. , 13m the m conjugates of 131 of relative degree m. We will 
show that with suitable choice of u and v in k the number UO(l + Vf3l = W ll 

is a number generating the field K(O(l' 131; k). We must prove that 0(1 and 131 
themselves-consequently also every number from K(O(b 131; k)-are rep
resentable as rational functions of W ll with coefficients from k. 

For this purpose we choose u and v as rational numbers in such a way 
that the nm numbers 

(i = 1, 2, ... ,n; k = 1,2, ... ,m) 

are all distinct. This is possible since what is required is that for all pairs of 
indices i, k and i', k', 

U(O(i - O(i') + V(f3k - 13k') #- 0 

is to hold except if i = i' and k = k' hold simultaneously. The coefficients in 
these linear functions of u, v never both vanish simultaneously as the O(i are 
distinct from one another and the 13k are distinct from one another. Hence 
we must choose u/v (u =I- 0, v =I- 0) different from the finitely many numbers 

13k - 13k' i#-i',k#-k'; 

then the W ik are all distinct and are roots of the polynomial over k 

nm 

H(x) = n (x - (UO(i + Vf3k)) = L ChXh. 
i,k h= 0 
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We now try to construct a rational function of x which takes the values #k 
for x = W lk (k = 1,2, ... , m). Recalling the Lagrange interpolation formula 
let us consider the expression 

This <P(x) is a polynomial in k. For since H(w jk ) = 0 

is obviously a polynomial in x and W jk with coefficients in k, hence 

11 

<P(x) = L L #kG(X, tW. j + V#k) 
j= I k=] 

is a polynomial in x, whose coefficients are polynomial expressions in the 
ex i , fJk with coefficients in k, which are moreover formally symmetric in the 
quantities ex], ... , XIl as well as the quantities fJl' ... , Pm. Consequently these 
coefficients belong to k and <P(x) is a polynomial in k. If we set x = W 11 ' then 
G(W11' w jk ) vanishes, except if i = 1 and k = 1, since W 11 is different from the 
remaining Wik by construction. However from this it follows that 

<P(W 11 ) #1 =-----------. 
G(W]I'W tl ) 

We show in an analogous manner that tXt can also be expressed in terms of 
W 11 and with this we have proved 

K(a l , PI; k) = K(w ll ; k). 

Hence it is enough to restrict ourselves to fields which arise by adjoining 
a single algebraic number over /e 

Now let IJ be an algebraic number of degree n over k. Then the following 
holds for numbers in K({}; k): 

Theorem 53. Every number in K(IJ) is obtained exactly once in the form 

a = Co + cIO + ('202 + ... + C"_IO"--] 

where the Co' ... , cll - 1 run through all numbers of the groundfield k. 

(34) 

To prove this suppose ex = P(O)/Q(O), Q(O) =1= O. Then Q(x) does not have 
the root 0 in common with the function fIx) belonging to () which is irreduc
ible over k; hence by Theorem 49, Q(x) is relatively prime to fIx). Thus there 
are two polynomials R(x) and H(x) over k such that 

1 = Q(x)R(x) + f(.x)H(x), 
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and since f(e) = 0, 
1 = Q(e)R(e) 

p(e) 
(X = Q(e) = p(e)R(e) = F(e), 
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where F(x) = P(x)R(x) is again a polynomial over k. Finally let g(x) be the 
remainder of F(x) mod f(x), which is also a polynomial over k of degree 
::; n - 1. Then 

F(x) = q(x)f(x) + g(x), 

F(e) = g(e), 

so that in fact (X is put into the form (34). If there are two polynomials g(x) 
and 9 1 (x) over k, of degree at most n - 1, such that g( e) = 9 1 (e), then g(x) -
gl(X) is a polynomial over k with the root 8, whose degree is < n. Thus 
g(x) - gl(X) is identically 0, that is, the coefficients of g(x) and gl(X) agree. 

Theorem 54. Every number g(e) of the field K(8) is likewise an algebraic 
number over k of degree at most n. The relative conjugates of a number (X = g(e) 
are the distinct numbers among the numbers g(8;) (i = 1,2, ... ,n). Each con
jugate to (X appears equally often among the g(8J 

For if e 1 , ••• , en are the conjugates of 8 with respect to k, we form the 
product 

n 

F(x) = IT (x - g(e;)). 
i= 1 

The coefficients of this polynomial are integral rational combinations of 
81, ... , en' which are moreover symmetric in 81, ... , en and whose coeffi
cients belong to k. Consequently F(x) is a polynomial over k and thus every 
number g(8i) is an algebraic number over k. Further if <p(x) is a polynomial, 
among whose roots just one of the numbers (Xi = g(8i) occurs, then all the (Xi 

are roots of <p(x). Namely the polynomial <p(g(y)) over k has a root y = 8i 

in common with f(y) and hence, by Theorem 49, it vanishes for all y = 
81, ••• ,en; consequently, <p(x) vanishes for each x = (Xl' ••• , (Xn. 

Moreover, if IJ'(x) is the irreducible polynomial over k with leading co
efficient 1 which has (Xl as a root, then IJ'(x) is a divisor of F(x). Let IJ'(x)q be 
the highest power of IJ' dividing F(x). Now if F(x)/IJ'(x)q were not constant, 
then it would have a (Xi' a root of F, as a root; consequently it would still be 
divisible by IJ'(x), contrary to the assumption about q. Hence for a certain 
integer q 

That is, the n numbers 

(Xi = g(8;) (i = 1,2, ... ,n) 
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represent all conjugates to each ex;; however they represent each conjugate 
q times. Consequently, n is the largest relative degree which a number ex in 
K(e) can have with respect to k, and, with this, n is identified as a number 
determined by the field K( e) alone, which is independent of the choice of the 
generating number e. Thus n is called the relative degree of the .field K(e) 
with respect to k. Hence the degree of each number of K(e) is a divisor of the 
degree of the field. 

We now modify the concept of the conjugate, keeping in mind the above 
theorem, by the following: 

Definition. If n is the relative degree of K(e) with respect to k and if ex = gee) 
is a number of K(e), of degree n/q, then the system of n numbers IX; = gee;) 
(i = 1,2, ... , n) will be called the conjugates of ex in the field K(e) with respect 
to k. These are the conjugates of ex with respect to k, each one taken q times. 

Accordingly the system of these conjugates as a whole depends only on 
ex, the ground field k, and the field K, but it is independent of the choice of 
the generating e. Since in the future we will be dealing exclusively with this 
concept of conjugate, the qualifier "in the field K(e) with respect to k" will 
be omitted in general for the sake of simplicity. 

Once we have brought the conjugates of the generating number e into a 
definite order by the numbering el e2 , ..• , en' then the n conjugates of an 
arbitrary number IX in K(O) acquire a definite numbering by representing ex 
in the uniquely determined form gee) by Theorem 53 and then calculating 
the number g(Oi) as the conjugate IXi. We shall consider such a determina
tion as done, then we prove: 

Theorem 55. Each rational equation R(ex, [3, y, ... ) = ° between numbers 
IX, [3, y, ... in K(e) with coefficients in k remains true if IX, [3, y, ... are replaced 
by the conjugates with the same index. 

As a rational function of IX, [3, y, ... , R is identical to the quotient of two 
integeral rational expressions P and Q 

P(ex, [3, y, ... ) 
R(ex,[3'Y' ... )=Q( [3, ) 

IX, , y, ... 
in ex, [3, y, .... 

If we substitute for ex, [3, y, ... in R their representations as polynomials 
in e, 

ex = gee), [3 = h(e), y = r(e), . .. , 

then Q becomes a polynomial in e, which does not vanish for the numerical 
value e, as it is equal to the number Q(IX, [3, y, ... ). Consequently, it does not 
vanish for any of the conjugates eI , ... , en. However, since R = 0, the 
numerical value in the numerator 

p(g(e), heel, r(e), ... ) = 0. 
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Hence this polynomial in 0 must vanish for all conjugates Oi' i.e., 

P(rJ.i, /3;, Yi' ... ) = O,} 
Q(rJ.i' /3i' Yi' ... ) i= 0, 

(i = 1,2, ... ,n). 

Thus the n numerical values 

R(rJ.i, /3;, Yi' ... ) = 0, (i = 1,2, ... , n) 

which was to be proved. 
In particular, it follows for each two numbers rJ., /3, in K(O) 

rJ.. + /3. = (rJ. + /3). 1- l - 0 

since, for example, for rJ. = g(e) and /3 = h(O), 

g(O)h(e) = r(e), 

rJ.. (rJ.) 
/3:={3;' 
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where g, h, r are polynomials of degree :s; n - 1. By the above theorem, from 
this one equation for the numerical value e the n equations 

g(ei)h(e;) = r(e;) 
follow, that is, 

(i = 1,2, ... ,n). 

§20 Generating Field Elements, Fundamental 
Systems, and Subfields of K(8) 

Theorem 56. A number rJ. in K(O) belongs to the ground field k if and only if 
it is equal to its n conjugates. A number rJ. in K(e) has degree n with respect to 
k if and only if it is distinct from all its conjugates. The latter condition is at 
the same time necessary and sufficient for the number rJ. to generate the field 
K(O). 

The first two statements follow immediately from Theorem 54 and the 
definition which follows it. Moreover, if rJ. in K(O) is to generate the field K(O), 
thus if K(O) = K(rJ.) is to hold, then the degree of rJ. must be equal to the 
degree of K(O), that is, it must be = n. Therefore the conjugates of rJ. must 
all be different. However, if rJ. i = g(Oi) are all different for i = 1,2, ... , n, 
then 0 can be expressed rationally in terms of rJ., and hence all numbers from 
K(O) are also contained in K(rJ.). 

In order to express e in terms of rJ. we conclude that 

" " H(x) = n (x - rJ.i ) = n (x - g(O;)) 
i= 1 i= 1 
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is a polynomial in k, as in the proof of Theorem 52. Likewise 

H(x) 
-- = G(x, 0(;) 
x - O(i 

is a polynomial in the quantities x, O(i with coefficients in k. Hence 

as a symmetric expression in a1, ... , an, is also a polynomial over k, from 
which it follows for x = O(i that 

a. = c1>(0(;) 
I G(O(i'O(;)' 

because the denominator is certainly =I- ° by definition. 
Until now we have represented each number from K(a) as a linear com

bination of 1, a, a2 , ... , an - 1 with coefficients in k. However for very many 
purposes more freedom in the choice of these basis elements is desirable. 

We call n numbers w(l), W(2), ... ,w(n) a fundamental system of K(a) if 
every number 0( in K(a) can be represented in the form 

n 

0( = L XiW(i) 

i~ 1 

with coefficients Xi in k. 

Theorem 57. In order that the numbers 

n 

w(i) = L Cikak - 1 

k~l 

(C ik numbers in k) (35) 

form a fundamental system of K(a), it is necessary and sufficient that the 
determinant Ilcikll =I- 0. 

Obviously we need only investigate when the numbers 1, a, ... , en- 1 

can be represented in terms of the W(i) as 

n 

ap - 1 = '\' a .Wli ) L. pI 
i= 1 

(p = 1, ... ,n) (api numbers in k). (36) 

First, if the determinant in (35) is =I- 0, then the n equations for the unknowns 
1, a, ... , ()n-1 can be solved and these can be obtained as linear combinations 
of the w(i), with coefficients which are derived by rational operations on the 
Ciko and thereby belong to k. 

Secondly, if a representation of the ()k -1 in terms of the w(i), as in (36), is 
possible, then let us substitute the expression (35) for W(i) into it to obtain 

n 
lJP- 1 _ '\' ()k-1 
u - L. apiCik (p = 1, ... ,n). 

i,k= 1 
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However since no linear homogeneous relation holds between 1, 9, ... , f!'-1 
with coefficients in k, unless all coefficients are 0, we have 

" {O ifp::l:k, 
()kP = .L akicip = 1 'f = k ,= IIp . 

Thus the determinant II{)kPIi is = 1 and on the other hand it is equal to 
the product lIakill'llcjpll; hence the determinant of the Cip::l: 0. 

Theorem 58. The n numbers uP), ... , w(") in K(O) form a fundamental system 
if and only if there is no linear relation 

" L UjW(i) =0 (37) 
i= 1 

with coefficients in k except if all Ui = 0. 

The n numbers W(i) of this type are said to be linearly independent. For, in 
the notation used above it would follow from (37) that 

" " 
0= L Ui L CikOk - 1 

i= 1 k= 1 

and as before, if the Uj belong to k and are not all = 0, 

" L UiCik = 0, (k = 1, ... ,n); 
i= 1 

thus 

However, if this determinant is =0, then the system is not a fundamental 
system, and thus, as is known, the n homogeneous equations for Uj 

" L UiCik = ° (k = 1, ... ,n) 
i= 1 

are solvable and indeed there is a solution among the nonvanishing solu
tions which is obtained by rational operations from the coefficients Cik ' 

hence which also belongs to k. For this solution we then have 

" L UjW(i) =0. 
i= 1 

Hence the number at: also determines the coefficients in 

" 
at: = L x,w(i) 

i=l 

uniquely, if these coefficients also belong to k. 
Let the determinant formed by the n numbers W(i) and their n conjugates 

be denoted by 
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(The index k designates the row of the determinant; the index i designates 
the column.) It follows from (35) that 

L1(w(1), ... ,wIn»~ = Ilcikll· L1(1,0, ... ,£r- 1 ). 

By Theorem 57 this determinant is =f. ° for each fundamental system and 
only for fundamental systems since by a known formula 

01 of O~-I 

O2 O~ O~-I 

L1(1, 0, ... ,on-I) = 1 03 O~ 03- 1 TI (Oi - Ok), 
1 ~i<k::;n 

On 02 n on-I n 

and therefore =f. 0. The determinant is a polynomial function of 01, ... , On 
with coefficients in k (even in k(1». If any of the 0i are permuted, then this 
determinant changes at most by the factor ± 1, thus its square is also sym
metric in 01, •.. , On and hence is a number of the ground field k. The same 
also holds for L12(Wb ... ,Wn)' Obviously this number is also independent 
of the numbering of the conjugates. 

As in the second half of the proof of Theorem 58, it is easily obtained 
that among the n + 1 quantities of the field K, say /3(1), /3(2), ... , /3(n+ 1), there 
is always a linear relation 

n+1 

I Ui/3(i) = 0, 
i=l 

where the U i denote numbers in the ground field k, which are not all 0. 
Thus the degree n of K can also be defined as the maximum number of linearly 
independent elements in K. 

Finally let us consider the field K(O) not relative to k, but relative to 
another field K(IX), which is an algebraic field in its own right, say of degree 
mover k, generated by the number IX which satisfies an irreducible equation 
of degree m in k. Suppose moreover that IX occurs in K(O). Accordingly, 
K(O) is an algebraic field of degree q ~ n over K(IX), since the generating 
number 0 already satisfies an equation of degree m with coefficients in k, 
thus a fortiori in K(IX). K(IX) is called a subfield of K(O). If we regard K(IX) as 
the ground field, then every quantity in K(O) can be brought into the form 

W = Yo + YI0 + ... + YQ_l 0Q - 1 

in a unique way, where the quantities yare numbers in K(IX). Likewise, every 
number in K(IX) thus admits a unique representation 

Co + C11X + ... + Cm_l lXm -I, 

where the coefficients Ci belong to k. Consequently each w admits a unique 
representation as a linear combination of the mq quantities lXi(j< (i = 0, 
1, ... , m - 1; k = 0,1, ... , q - 1) with coefficients in k. Hence these mq 
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numbers also form a fundamental system of K(O) (with respect to the ground 
field k), hence mq = n, q = n/m. With this the following theorem is proved: 

Theorem 59. If IX is a number of degree mover k and if /3 is a number of degree 
q over K(IX; k), then the field K(IX, /3; k) has degree mq over k. Furthermore 
ijOl,' .. , On (n = mq) are the conjugates of a generating number of K(IX,/3; k) 
with respect to k, then these conjugates decompose into m sequences with q 
elements in each sequence; here the q numbers of a sequence are always the 
conjugates with respect to K(lXi), where 1X1' ... , IXm are the m conjugates of IX 
with respect to k. 

A field K(/3; k), which is identical with all conjugate fields K(/3i; k) (i = 
1, ... ,n) is called a Galois field or a normal field with respect to k. A number 
field K(IX; k) is always contained as a subfield of a Galois field. This follows 
from the proof of Theorem 52 for the field which arises by adjunction of all 
relatively conjugate numbers 1X1' ... ,lXn is obviously a Galois field with 
respect to k. 

From now on we will be concerned exclusively with those numbers which 
are algebraic with respect to k(l); these will simply be called algebraic. Let 
us merely mention the following about other kinds of numbers: 

Numbers which are not algebraic are called transcendental. Liouville l 

(1851) first proved that there are transcendental numbers, by giving at the 
same time a method of constructing arbitrarily many such numbers. Later 
George Cantor2 (1874) furnished a quite different proof which shows that 
the set of transcendental numbers has an even higher cardinality than the 
set of algebraic numbers. Until now it has only rarely been possible to 
decide whether a definite given number is transcendental or not. General 
methods for this are not known. Hermite3 (1873) has proved transcendency 
for e, Lindemann4 (1882) for n; later these proofs were greatly simplified by 
Hilbert, Hurwitz, and Gordan5 • 

1 Liouville, Sur des classes tres etendues de quantites dont la valeur n'est ni algebrique, ni 
meme fI!ductible it des irrationnelles algebriques. Journal de Mathernatiques pures et appliquees, 
Ser I.T.16 (1851). 

2 Cantor, Uber eine Eigenschaft des Inbegriffes aller rellen algebraischen Zahlen. Crelles 
Journalf. d. reine u. angew. Mathern. Vol. 77 (1874). 

3 Hermite, Sur la fonction exponentielle. Cornptes rendus T. 77 (1873). 

4 Lindemann, Uber die Zahl n. Mathern. Annalen Vol. 20 (1882). 

5 The three papers can be found in Mathern. Ann. Vol. 43 (1892). 



CHAPTER V 

General Arithmetic of 
Algebraic Number Fields 

§21 Definition of Algebraic Integers, Divisibility, 
and Units 

The concepts which were developed in the preceding chapter with respect to 
a ground field k are now to be understood with respect to the absolute field 
k = k(1). To develop the foundations of an arithmetic of algebraic numbers 
we first need a definition of algebraic integer. The following requirements 
can be reasonably imposed on a concept of integer. 

(1) If·:x and {J are algebraic integers, then so are ':x + {J, IX - {J, and :xli. 
(2) If an algebraic integer is rational, then it is an ordinary integer. 
(3) If IX is an algebraic integer, then the conjugates (with respect to k(l)) are 

also algebraic integers. 

By (1) each rational integral expression of algebraic integers with rational 
integral coefficients would be an algebraic integer. In particular, by (3), all 
elementary symmetric functions of an algebraic integer and its conjugates 
would then be algebraic integers. On the other hand they are rational and 
hence, by (2), they are rational integers. If :x is an algebraic integer, then the 
coefficients in the irreducible equation for IX in k(l) with leading coefficient 1 
would have to be rational integers. Accordingly we define: 

Definition. An algebraic number IX of degree n is called an algebraic integer 
if in the irreducible equation for 'X in k(l) with leading coefficient 1, all 
coefficients are rational integers. 

Henceforth we will always understand by "integer" an algebraic integer. 
Requirements (2) and (3) are obviously satisfied for these integers. 

68 
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Theorem 60. If rI. satisfies any equation at all with integral coefficients whose 
leading coefficient is equal to 1, then rI. is an integer, 

Let <p(x) = xN + a1 xN ~ I + ' .. + aN with rational integral a's and <p(rI.) = O. 
Moreover let 

be the irreducible polynomial in k(1) which has rI. as a root and in which the 
Ci are already assumed to be relatively prime rational integers, with Co > O. 
By Theorem 49 we have f(x) I <p(x). Thus 

<p(x) b' g(x) 

f(x) b 

is a rational polynomial over k(1) where we may assume the polynomial g(x) 
to be integral with relatively prime coefficients, by suitable choice of the 
rational integers band b'. It follows from 

b<p(x) = b'f(x)g(x) 

that b = b', since, by "Theorem 13a, f(x) . g(x), as a product of two primitive 
polynomials is again primitive, and <p(x) is also primitive. Moreover, by 
comparing leading coefficients we learn from <p(x) = f(x)g(x) that Co must 
divide the leading coefficient of <p, which is 1; hence Co = 1 completing the 
proof. 

In order to verify whether an algebraic number is an integer, we will most 
often use this theorem, which unlike the definition does not require the 
verification of the irreducibility of a polynomial. 

Theorem 61. The sum, difference, and product of two integers is again an 
integer. Hence every rational integral function (polynomial) of integers with 
rational integral coefficients is again an integer. 

For if rl.1, ... , rl.n are the conjugates of a number rI. and if 131, ... ,13m are 
the conjugates of a number 13, then 

n m 

F(x) = IT IT (x - (rl.i + 13k)) 
i=1 k=1 

is a polynomial in x whose coefficients are symmetric in rl. 1 , .•. , rl.n and 
131, ... ,13m· Since the elementary symmetric functions of the rI. as well as 
those of the 13 are rational integral functions then, by hypothesis, F(x) is an 
integral polynomial over k(1) by the fundamental theorem on symmetric 
functions. Consequently its root rI. + 13 is an integer. The assertions about 
rI. - 13 and rl.I3 are proved similarly. 
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In a manner quite similar to that above and by Theorem 51 we conclude: 

Theorem 62. If w is a root of an equation 

where'Y, fJ, ... , ;. are integers, then w is also an integer. 

For example the mth root of an integer is again an integer. 

Theorem 63. Every algebraic number 'Y can be transformed into an integer by 
multiplication by a suitable nonzero rational number. 

To prove this assume that 

is an equation for 'Y with rational integral coefficients and Co #- O. Then by 
multiplication by cz -1 we obtain an integer equation for y = coX with leading 
coefficient 1, which has the root co'Y. 

The definition of divisibility arises along with the concept of integer. 
An integer 'Y is said to be divisible by the integer f3( f3 #- 0), if 'Y/ fJ is an 

integer; in symbols we write fJ I 'Y. 

If [31'Y and [31 y, then [31 )_'Y + fl( for arbitrary integers i, fl, for 

is an integer by Theorem 61. 
An integer I: is called a unit it' l/D is also an integer. 
If (; divides 1, then (; also divides 1 . 'Y = 'Y, that is, B divides every integer 

'Y. The conjugates of each unit (with respect to k(l)) are also units, and each 
divisor of a unit and each product of units is also a unit. 

If two integers IX, [3 differ only by a factor which is a unit, then 'Y and 13 
are called associates. 

I n order that an integer F. be a unit it is necessary and sufficient that the 
product of all conjugates of B be equal to ± 1. 

For the product £1[;2· .. £n as a symmetric function, is a rational integer a, 
and as a product of units it is also a unit, i.e., a 11 and thus a = ± 1. However 
if £182 ... Gn = ± 1, then 1/8 1 = ±f:2 .•• Bn is an integer and therefore 8 1 is a 
unit. 

Obviously all roots of unity are units and indeed they have absolute 
value 1. However, there are infinitely many other units, for example 2 ± ~, 
since 

1 ,-
-~7=2-v3, 
2 + y3 

1 r 
~----;::c = 2 + V 3 
2 -)3 
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are obviously integers. £ = 2 - .j3 is < 1 and > 0, and hence there are 
arbitrarily small numbers among the powers £, £2, £3, .... Thus the multiples 
N £k (N = ± 1, ± 2, ... ,k = 1,2, ... ) of these numbers are obviously every
where dense in the real line and moreover they are all integers belonging to 
the field K(.j3). This fact-ifthe real algebraic integers are ordered according 
to magnitude, there exists no next integer to a given integer-has as a 
consequence that the many methods of proof with which we became ac
quainted in rational number theory cannot be carried over to algebraic 
numbers. 

Every integer a ( =F 0) has infinitely many "trivial" divisors namely £ and 
£a, where £ runs through all units. But a is also decomposible into integers 
in a nontrivial way, 

neither of which factor is a unit, if a is not a unit. Hence there are no irre
ducible numbers in the domain of all algebraic integers; thus there is surely 
no analogue to rational primes. 

Rather in order to obtain irreducible numbers, we must first restrict the 
domain of admissible numbers to the point where we operate only with the 
numbers of a certain number field of degree n. 

§22 The Integers of a Field as an Abelian Group: 
Basis and Discriminant of the Field 

We lay the foundations for further investigations of a definite algebraic 
number field K(e), which is generated by the algebraic number e of degree n. 
It is no restriction to assume e is an integer since we can always transform 
e into a integer by multiplication by a rational integer. We fix a definite 
numbering for the conjugates of e; in this way according to §19 a definite 
numbering of the conjugates of each number in K is also defined. From now 
on the conjugates are to be denoted by superscripts. 

Moreover, for each number a of the field K we set: 

Norm of a = N(a) = a(1)a(2) .•• a(n); hence N(af3) = N(a)N(f3). 

Trace of a = S(a) = a(l) + a(2) + ... + a(n); hence S(a + 13) = S(a) + S(f3). 

These quantities are rational numbers and they are rational integers if a is 
an integer. We have N(a) = ° only if a = O. 

Theorem 64. The integers of K form a (torsion-free) Abelian group under 
composition by addition. This group has n basis elements. Thus there are n 
integers w 1 , ... ,wn in K such that if the Xi run through all rational integers 
in the expression 
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we obtain each integer in K exactly once. The numbers ware called a basis 
of the field. 

The first part follows directly from Theorem 61. In order to prove the 
second part, we first investigate those integers p of the field which have a 
representation in the form 

p = Co + c 1 0 + ... + cn _ Ion - I 

with rational c. The c's can be determined from the n conjugate equations 

(i = 1, 2, ... , n) 

since the determinant L1(1,O,e2 , ..• ,en - 1 )"# O. The solution yields L1 . Ck 

equal to a determinant, among whose elements only the p(i) and the powers 
of the O(i) occur. In any case this determinant is an algebraic integer A k , since 
p and () are algebraic integers. However, 

Ak A L1 
C ----"--k - L1 - L12 

implies that Ak L1 = L12 Ck is a rational integer, for this number is an integer 
since Ak and L1 are integers, and rational since Ck and L12 are rational. Con
sequently Ck is a rational number, 

where Xk is a rational integer and the denominator D = 1L121 is independent 
of p. The system of all numbers 

I () 1)2 ()n-l 

:x = Xo D + Xl D + X2 D + ... + X n - l D' 

where the Xi run through all rational integers, thus contains all integral 
numbers of the field. Moreover the system perhaps contains nonintegers, 
and in any case forms a (torsion-free) Abelian group (with composition by 
addition) with a basis of n elements namely liD, ()ID, ... , en-liD. Hence by 
Theorem 34 the subgroup of integers of the field contained in this group 
likewise has a basis. By Theorem 40 this subgroup is of finite index since 
D· :x (that is, in the sense of group theory: the Dth power of each element) 
is obviously an integer and belongs to the subgroup. Consequently, by 
Theorem 35 the basis for the integers in the number field also consists of 
n elements, say WI' ... , W n • By Theorem 38 two different systems of basis 
elements, say lXi and Wi' are connected by a relation 

n 

lXi = L CikWk 
k= 1 

(i = 1,2, ... ,n), 

with rational integral Cik , whose determinant is ± 1. Consequently 
L12(W], ... ,wn) is independent of the choice of basis and is determined 
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completely by the field itself. Since in any case the Wi represent 1, e, ... , en - 1 

by linear combinations, they form a fundamental system and consequently 
,12 ¥- O. 

Definition. The number ,12(Wi> ... ,wn) which is independent of the choice 
of basis Wi> ... ,Wn is called the discriminant of the field and will be denoted 
by d. It is a nonzero rational integer. 

We see without difficulty that 1,12(a1, ... ,an)1 is always?: Idl for a funda
mental system of integers ai' and is equal to Idl if and only if the fundamental 
system forms a basis for the field. For this reason the basis for the field is 
also called a minimal basis. 

It is appropriate to introduce the concept of a module here. By a module 
of integers in a field K we mean a system of integers in K, which along with 
a and /3 always contains a + /3 and a - /3, and also contains a number 
different from O. 

Thus the numbers of a module form a (torsion-free) Abelian group under 
composition by addition which is a subgroup of the group of all integral 
elements of the field, and hence by Theorem 34 also possesses a basis of k 
elements, where 0 < k ~ n. We call such a module a k-rank module (module 
of rank k). We will be dealing only with n-rank modules. Such modules are 
obviously identified by the fact that they contain n linearly independent 
numbers. 

§23 Factorization of Integers in K(R): Greatest 
Common Divisors which Do Not Belong to the 
Field 

We now direct our attention to the multiplicative decomposition of the 
integers of a field. An integer a is called irreducible in K if a cannot be repre
sented as a product of two integers, neither of which is a unit. The property 
of being irreducible thus does not belong to a number in itself but can only 
be considered with respect to a definite field. Every rational prime is irreduc
ible in k(1), but, for example, 3 is reducible into j3 j3 in K(j3). 

Are there irreducible numbers also in algebraic fields of degree higher 
than 1, and can every integer of the field be represented as a product of 
these numbers in (essentially) one way? 

We will determine numerical examples such that the uniqueness of the 
decomposition does not always hold and we will try to find the reason for 
this. 

We consider the field K(j=s). The generating number e = j=s is a 
root of x2 + 5 = 0 and as a nonreal number it surely does not satisfy any 
equation of lower degree in k(1), hence it is of degree 2 over k(1). Hence all 
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numbers in K(,) -5) have the form 

with 1'1 and 1'2 rational. The conjugate of a will be denoted by a'. Thus 

a' = r J - r2'.j'~. hence (cxT = a. 

The integers in K(j=-S) are the numbers m + n.j=S with m, n rational 
integers. In order that cx be an integer it is necessary and sufficient that 
cx +cx' and wx' be (rational) integers, that is, 

2r J and -rf + 5d 
must be integers. 

Accordingly, 1'1 and 1'2 can have denominators at most 2. We set r1 = gd2, 
1'2 = g2/2. Thus we should have 

gi + 5g~ . .' .2 ? -4- mtegral. that IS, gl + 5g2 == 0 (mod 4). 

All squares are == 0 or 1 (mod 4). From this it follows that gl and g2 must 
be even, hence 1'1 and 1'2 must themselves be integers. 

There are no units other than ± 1 in the field K(R). For a unit 
t: = m + n R we must have 

± 1 = N(t;) = [; . 13' = m 2 + 5n 2 . 

If n cf. 0, then the quantity m2 + 511 2 :2: 5; hence we must have n = 0, m = ± 1. 
The following integers are irreducible in K(j=S): 

Ci. = 1 + 2,) -5, 

Ci.'=1-2....;i-5, 

{3 = 3, 

p = 7. 

If (3 = 3 were decomposable into yb and )" b were not units, then we would 
have 

9 = N(3) = N(y) . N(b). 

However a decomposition of 9 into integral rational factors, none of which 
= 1, is only possible as 3 . 3. Consequently we necessarily have 

N(,;:) = N(b) = 3 

and hence for }' = x + y . .j - 5 with integral x, y, 

which is obviously impossible. Hence {3 = 3 is irreducible and in exactly the 
same way p = 7 is shown to be irreducible. Finally if IX were decomposable 
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into yb, N(y) =I 1 and N(b) =I 1, then we would have 

N(y) . N(b) = N«(1.) = 2l. 

Thus either N(y) = 3, N(b) = 7 or vice versa. But we have just shown that 
there cannot be any "I with N(y) = 3. Thus (1. and hence also its conjugate (1.' 
are irreducible. 

The number 21 is thus shown to be decomposable in two essentially distinct 
ways as a product of irreducible numbers in K(R): 

21 = rxrx' = 3 . 7. 

To understand this fact, that the irreducible number 3 indeed divides the 
product (1.(1.', but divides neither (1. nor (1.', we note that the two numbers (1. 
and 3 in K(R) have indeed no factor in common in K(R) (except ± 1), 
but that they have a common factor (not a unit) which belongs to another 
field. For the squares 

rx 2 = -19 + 4R 
[32 = 9 

are divisible by the integer 

which is not a unit: 

rx 2 = (2 + R)(-2 + 3R) 

[32 = (2 + R)(2 - R). 

Thus (1.2/ A, [32/ A are integers, and hence by Theorem 62 the square roots 

a b 

JX'JX 
are also integers. Likewise 

rx,2 = (-2 + R)(2 + 3R) 

p2 = 72 = (2 + 3R)(2 - 3R) 

are divisible by 
x=2+3R; 

hence 
rx' p 

JX'JX 
are integers. Furthermore the number JI (which does not belong to the 
field K(R)) has precisely the properties of a greatest common divisor of 
rx and [3: Each integer w-in K(R) or not-which divides (1. and [3, also 
divides JX, and any integer which divides JX is also a divisor of (1. and [3. 
The last fact is self-evidently a direct consequence of the definition of divis
ibility. In order to prove the first assertion we make use of the fact that the 
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number ,/1. can be represented in the form 

A:x + BfJ = v} 

with integers A, B (of course not belonging to K(,j - 5)), for example, 

2x 
A = -----=c' 

'/ ), 
B = _ (4 - ,j - 5 )f~ . 

'\Ii) 

Hence if OJ I x and (}) I fl, then it follows in fact from (38) that wi '\Iiic. 

The double decomposition 
:x:x' = {Jp, 

into irreducible factors in K(,j - 5), occurs in such a way that 

:x = "i;."i~X', 
/ = ,/7:,,'-z, 

f3 = .J A,\/iX, 

P = '/Z,\/'/, 

and the four factors not belonging to the field in the product 

21=viiv',,/-/vi -1.' 

(38) 

can be put together in several ways so that they yield numbers in K, although 
every pair of the numbers has no common factor. 

We formulate these two most important results as follows: 

(i) It may happen that two numbers, irreducible in K(Vi'~ 5), which do not 
differ only by a unit factor, have a common factor, which then does not 
belong to the field. 

(ii) The totality of integers in K('\I/ - 5) which are divisible by an irreducible 
number :x in K need not agree with the totality of integers in K(v'=5) 
which are divisible by a nonunit factor of:x (not belonging to K). 

For example, Ct is irreducible, Vi. is a factor of :x, the number fJ = 3 is 
divisible by vi). but not by x, although f3 belongs to the field K(,\/r~5). 

Neither of these properties can occur in the field k(I). This is true since 
two irreducible numbers which do not differ only by a unit factor are always 
two different (thus relatively prime) prime numbers, say p, q from which 1 
can be formed as a combination: 

I = px + 4Y 

with integral rational x, y. From this it follows that all common factors of 
p and 4 must divide 1, and hence are units. 

Furthermore if p is again a prime and q; is an arbitrary integer (not a unit 
and possibly not rational) which divides p then the set of all rational integers 
which are divisible by q; is a module and hence by Theorem 2 identical with 
all multiples of a rational integer n. Then p must divide n because otherwise 
1 could be formed as a combination of p and n, and q; would then divide 1. 
Hence n = ± p, that is, each rational number divisible by q; is divisible by p, 
provided q; is not a unit and is a divisor of p, where p is prime. 
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We have thus arrived at the insight that in the higher algebraic fields 
the irreducible numbers are not the ultimate building blocks from which all 
numbers of the field can be put together, that they do not have the property 
just stated for primes. 

It is now a question of extending the domain of numbers so that we 
consider also those numbers which appear as the GCD of numbers of the 
field, as JI and JX above, without belonging to the field. Indeed we need 
not consider the individual ft, JX themselves exactly, for in the investigation 
within K we do not have to keep separate two algebraic numbers which have 
the property that every number divisible by the one number in K is also 
divisible by the other. 

Consequently we will simply seek to characterize a number A, not belong
ing to K, by giving all numbers of the field which are divisible by A. 

Such a system of in tegers has the property: if r:J. and f3 belong to the system 
and ;. and Ji are arbitrary integers of the field, then Ac( + Jif3 belongs to the 
system. A result arising much later in the presentation of our theory is that 
the converse also holds: if a set of integers in K has this property, then there 
is an algebraic integer A, possibly not belonging to the field K, such that the 
set consists of all numbers of the field divisible by A. Such a set should thus 
be regarded conceptually as a number and will be called an ideal following 
Dedekind. Kummer, who earlier investigated these relations in the case of 
cyclotomic fields, the first person to do so, and who should be regarded as 
the creator of ideal theory, called such numbers A, which appear as the 
GCD of elements of the field without belonging to the field, ideal numbers 
of the field. 

In the theory of ideals which is explained in what follows, we should 
always keep in mind that an ideal serves only to characterize a certain 
number not belonging to the field, by operations within the field, as this 
anticipation of results indicates. In the domain extended by ideals the concept 
of primes and the fact of unique decomposition into primes will be found 
again, exactly as in rational number theory. 

§24 Definition and Basic Properties of Ideals 

Definition. A system S of integers of the field K is called an ideal in K (for 
short: an ideal) if whenever C( and f3 belong to S, every combination ).C( + Jif3 
with arbitrary integer coefficients ;., Ji in K, also belongs to S.l 

Thus the property of being an ideal does not belong in an absolute sense 
to a system S, but only in reference to a specific field K. Hereafter ideals will 

1 From §31 on, a somewhat more general definition of ideal is used, in which nonintegral 
numbers are also admitted. 
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be denoted by German letters a, b, C, . .. . The ideal which consists of the 
single number 0 may be denoted by (0); in several respects it plays a special 
role. Two ideals a, b are said to be equal (a = b) if they contain exactly the 
same numbers. 

Examples of ideals are: 

I. The set of numbers S which is represented by a specific linear form 
~]Xl + ... + ~,x" with x], ... , x, integers in K, where ~1""'~' run 
through all integers in K. This set of numbers is called the range of values 
of the form. We denote this ideal by (X1' ... ,xJ 

II. The set of integers in K which are divisible by a definite integer A, no 
matter whether A belongs to the field or not. 

A final result of our theory, as has already been mentioned, will be that 
every ideal is of the form I as well as of the form II (§33). For the time being 
we show: 

Theorem 65. Every ideal a can be written in the form (X1' ... ,x,) with the x 
suitably chosen integers in K. Moreover, we may even take r ~ n. 

The numbers of an ideal a which is not (0) (the case a = (0) is trivial) 
obviously form an infinite Abelian group, under composition by addition, 
which is a subgroup of the group of all integers in K. Consequently by 
Theorem 34 the ideal II has a basis, whose size is ~ n. On the other hand, 
by Theorem 37, the number of elements in this basis is equal to the number 
of independent elements in a; hence it is = n, since, indeed, if x (0: i= 0) 
belongs to a, the n independent elements 0:, 00:, e2 0:, ... , en - 1,X must also 
belong to a. Thus in each ideal a i= (0) there are exactly n numbers 0: 1 , ... , x" 
such that 

represents all numbers of the ideal exactly once, if x], ... , Xn run through 
all rational integers. Such a system 0:]> ... , x" is called a basis of the ideal 
(or ideal basis). According to the definition the numbers in a simultaneously 
form the range of values of the form 

We have (0:1, ... ,x,) = (f3j, ... ,[JJ if and only if each 0: can be linearly 
represented by the f3 and if each f3 can be linearly represented by the x with 
integer coefficients in K. Thus in particular, if w is an arbitrary number in 
a, A an integer in K. 

a = (x], ...• x,) = (x 1, •.. ,x"w) = (X1 - AW, X2"" ,x"w). (39) 

An ideal a is called a principal ideal if there is an integer x such that a = (x). 
Note that for two principal ideals (x) and (f3), (x) = (f3) if and only if x and 
f3 are associates, i.e., they differ only by a unit factor. 
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Every ideal in the field k(1) is a principal ideal by Theorem 2, since it is 
a module if it is #- (0). On the other hand, the ideal (1 + 20, 3) in the 
field K(0) is not a principal ideal because of what was said in the preceding 
section. This ideal consists of all numbers divisible by ji. 

If 

then 

since 

m 

implies that 
rtJ3k = L }'ilJ.1kmA1Bm 

I,m 

with integral A, J.1 and conversely each A1Bm is a combination of the rtJ3k • 

By the product ab of two ideals a = (rt1, ... ,rtr ) and b = (/31>' .. ,/3p ) we 
mean the ideal 

ab = (rt1/31,' .. ,rt i /3b" . ,rtr /3p ) 

thus defined uniquely by a and b. 
It follows directly from this definition that multiplication of ideals is 

commutative and associative: 

ab = ba, a(be) = (ab)e. 

We set a = a1 and for each positive rational integer m we set am+ 1 = ama 
so that ap + q = aPaq as with ordinary powers. 

We call an ideal a divisible by an ideal e or e a factor (divisor) of a if e #- (0) 
and there is an ideal b such that a = be. In symbols we write e I a. 

The connection between divisibility of numbers and of ideals is made by 
the following fact: The principal ideal (rt) is divisible by the principal ideal 
(y) #- (0) if and only if the number rt is divisible by the number y. 

This follows since (rt) = (y)(/31, ... , /3r) = (y/31, ... ,y/3r) implies 
rt = Li AiY/3i = Y Li Ai/3i with integers Ai; hence y I rt. Conversely, if y I rt, then 
for some integer /3, rt = y/3, and we also have (rt) = (y) . (/3) and (y) I (rt). 

The unit ideal (1) consists of all integral elements of the field. If an ideal 
contains the number 1, then it contains all integers, and is thus = (1). For 
each ideal a #- (0) 

a = a' (1), ala, (1)la, and al(O). 

Each ideal a has the "trivial" factors a and (1). 

Definition. An ideal p is called a prime ideal if it is different from (1) and has 
no factors other than p and (1). 

We do not yet know whether there are prime ideals. 
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Indeed the fact that divisibility of ideals can be reduced to divisibility of 
numbers, that not only the converse holds, is of basic significance for the 
foundations of ideal theory by virtue of the following theorem: 

Theorem 66. For each ideal a there is an ideal b different from (0) such that 
ab is a principal ideal. 

The different ways of laying the foundations of ideal theory are distin
guished in the proof of this theorem. Here we will use a method of Hurwitz 
which was greatly simplified by Steinitz. It rests on a generalization of the 
theorem of Gauss about polynomials which have algebraic integers as 
coefficients: 

Theorem 67. Let 

A(x) = (J.pxP + (J.p_1XP-l + ... + (J.o, B(x) = f3rxr + f3r_l xr - 1 + ... + 130 

be polynomials with integer coefficients, (J.p' f3r =f. O. Then if an integer 6 
divides all coefficients 'r of 

C(x) = A(x) . B(x) = 'YsXS + Ys_1Xs + Ys_1 Xs - 1 + ... + Yo 

it also divides all products (J.if3k' 

In order to prove this assertion, we need the following two lemmas: 

Lemma (a). If 

f(x) = bmxm + bm_Ixm- 1 + ... + b1x + 13 0 

is a polynomial with integral coefficients and p is a root, then f(x)/(x - p) 
also has integer coefficients. 

To begin with, (jmP is an integer in any case, as we see immediately by 
Theorem 62 in a manner similar to that of the proof of Theorem 63. 

Moreover the lemma is true for m = 1, in which case f(x) I (x - p) = (j I , 
where p = -13 0 113 1 , 

Suppose that this lemma has already been proved for all polynomials of 
degree :::; m - 1. Since 

cp(x) =f(x) - (jmxm-1(x - p) 

is obviously an integral polynomial of degree:::; m - 1 with p as a root, 

cp(x) f(x) . m - 1 
--=---0 X 
X - P x _ P m" 

is thus integral. Therefore the same holds for f(x)/(x - p), whence Lemma 
(a) follows by complete induction. 
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Lemma (b). If, in the above notation 

f(x) = Jm(x - Pl)(X - P2) ... (x - Pm), 

then Jm P1P2 ... Pk is an integer for each k with 1 s: k s: m. 
This follows by repeated application of Lemma (a) from which we obtain 

f(x) = Jm(x - Pl) ... (x - pd 
(x - Pk+ l)(X - Pk+ 2) ... (x - Pm) 

as an integral polynomial whose constant term is ±JmPl ... Pk' 
We now arrive at the proof of Theorem 67 as follows: let the decompo

sition into linear factors be 

A(x) = ap(x - Pl)(X - pz) ... (x - pp) 

B(x) = f3,(x - a l)(X - a 2) ... (x - aJ 

By hypothesis 

has integral coefficients, hence by Lemma (b) each product 

apf3, . P P ... P a ... a 
c5 "1 n2 ni ml mk 

(40) 

is an integer, where nl , ••• , ni and likewise ml , ... ,mk are any distinct 
indices (i s: p, k s: r). However, since ajap and f3k/f3, are elementary sym
metric functions of the P and of the a, aif3k/J is a sum of terms of the form 
(40), and consequently an integer, as was to be proved. 

We are now finally able to prove Theorem 66 about ideals. Let a = 
(a l , ... ,a,). We form the integral polynomial 

g(x) = a l x + a2x2 + ... + a,x' 

and the conjugate polynomials 

(i = 1,2, ... ,n) 

among which the original polynomial g(x) occurs, say for i = 1. The product 
n 

F(x) = I1 g(i)(x) = L cpxP 
i= 1 p 

as a symmetric function of the conjugates is a polynomial with integral 
rational coefficients Cpo F(x) is divisible by g(x) and the quotient 

F(x) n . 
h(x) = - = I1 g(l)(X) 

g(x) i= 2 

is thus a polynomial with coefficients in K which are moreover integers, say 

h(x) = f3 1 x + f32x2 + ... + f3mxm 
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with the f3i integers in K. If we denote the GCD of the rational integers cp 

by N, so thatf(x)/N is a primitive polynomial, and set 

b = (f3I' ... ,f3m), 

then we assert that the equation 

nb = (N) 

is true. Now nb = ( ... ,cI.Jh, ... ). By Theorem 67, N divides all !Y.JJb since it 
divides each coefficient of g(x)h(x). Hence 

!Y. if3k = AikN 

where i.ik is an integer, and thus all 'Y.d3k and consequently all numbers of nb 
belong to (N). Secondly, however, N is the GCD of all the coefficients cp of 
h(x)g(x), and hence there are rational integers x p ' such that 

N = CIX I + C2 X 2 + .... 
Each c is a sum of products !Y.if3k; consequently N is representable in the form 

N = L Uik'Y. if3k 
i.k 

with J1.ik integers (actually rational integers). Thus N and all numbers of (N) 
belong to nb, that is, (N) = nb. 

By reason of the preceding theorem we see the uniqueness of division of 
ideals: 

Theorem 68. If nb = nc, then if n "# 0, b = c. 

To see this we determine an ideal m such that nm = (<5) is a principal ideal. 
Then 

nmb = nmc, (!Y.)b = (!Y.)c. 

The latter equation asserts that !Y. times every number from b is of the form 
!Y. times a number from c, that is, every number ofb belongs to c, and likewise 
the converse is true; thus b = Co 

And now we obtain a new definition of divisibility: 

Theorem 69. An ideal c = (Yt, ... ,rr) is a divisor of n = (!Y. I , ... ,!Y.m ) if and 
only if every number of n belongs to c. 

If c In, then there is a b = (f3I' ... ,f3p ) for which b "# (0) and 

(!Y. I,··· ,!Y.m ) = (f3, ... ,f3p ). (YI'··· ,rr) = ( ... ,f3irk'·· .); 

hence every number !Y. of n can be represented in the form 

!Y. = ~ ;"ikf3irk = JI }'k (tl Aik f3i) 

with integral )"ik and thus belongs to c. 
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Conversely if every number in a is also a number in c, then for all integers 
Aik there exist integers flpk for which 

L }·ikai = L flpkY p; 
i p 

then for each 0 = (6 b ... ,6s) 

L L Aikai6k = L L fl pkY p6k, 
k i k p 

that is, each number in aO belongs to co. Now let us choose 0 so that cO = (6) 
is a principal ideal (6 =1= 0). If aO = (Pl,P2, . .. ), then each Pi is a number 
from (6); thus it is of the form Ai 6 with integral }.i and hence 

(P1,P2, ... ) = (6)(A1,A2'· .. ), 

aO = cO· (A 1 ,A2 , •. . ), 

a=c·(A1,A2, ... ), i.e., cia. 

As an immediate consequence of this theorem we emphasize: 
Let a be an ideal which is not = (0). 
The integer a occurs in a if and only if a I (a). If a I (a) and a I (/3), then also 

a I (Aa + fl/3) for all integers A, fl· 
It follows from ab = (1) that a = (1) and b = (1). 
If each of two ideals is a divisor of the other, then they are equal. 

§25 The Fundamental Theorem of Ideal Theory 

Theorem 70. For every two ideals a = (aI' ... ,a,), b = (/31' ... ,/3s) which are 
not both = (0), there is a uniquely determined greatest common divisor 0 = (a, b) 
which has the following property: 0 is a divisor of a and b. Furthermore if 01 1 a 
and 011b, then 01 is a divisor of o. Indeed 0 = (a 1, ... ,a,,/31' ... ,/3J 

We show that 0 = (ab ... ,a,,/31, ... ,/3s) has the stated properties of 
divisibility. Since every sum "number in a + number in b" obviously belongs 
to 0, then all the numbers of a and of b belong to 0, and consequently by 
Theorem 69 0 I a and 0 lb. 

Moreover if 01 1 a and 01 1 b, then all numbers of a and of b and conse
quently also each sum "number in a + number in b" belong to Ob that is, 
each number orb belongs to 01. Again we have 0110. 

If an ideal O2 likewise has this property, then 0210 and 0 I O2 thus 0 = O2 . 

Consequently 0 is uniquely determined by this property. 
We see, accordingly, that an ideal a = (a 1 , •.. , a,) can be regarded as the 

GCD of the principal ideals (a 1 ), (a 2 ), ... , (aJ 
We conclude immediately from the expression for 0 that 

c . (a, b) = (ca, cb). (41) 
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Thus from this follows a part of the fundamental theorem: 

Theorem 71. If p is (j prime ideal and pi ob, then p divides either 0 or b or both. 

For ifp does not divide the factor b, then 

(p, b) = 0), 

since, as a prime ideal, p has no factors except (1) and p. It follows from (41) 
that 

0= 0(1) = o(p, b) = (op,ob) 

and since p lob, p must divide o. 
From this we obtain, as in rational number theory (Theorem 5), that a 

representation of an ideal as a product of prime ideals is possible, if at all, 
only in one single manner, except of course for the order of the factors. 

However, we are still missing the proof that a decomposition into prime 
ideal factors is always possible. For this we must show: 

(a) Every ideal 0 which is not (0) has only finite many divisors. 
(b) Every proper divisor of 0 (0 #- (0)) has fewer divisors than o. 

F or the proof of (aJ we recall that every ideal 0 which is not (0) divides 
a certain principal ideal (IX), and that each divisor of 0 is also a divisor of 
(IX). Thus it is sufficient to verify the finiteness of the number of divisors of 
each principal ideal (IX), and here we may take IX as a rational integer, since 
IX I N(IX) implies (IX) I N(IX) and N(IX) = N is such a number. 

By Theorem 69, an ideal (N) is divisible only by those ideals 0 in which 
N occurs. Now let n = (lXI' ... ,lXr) be a divisor of (N), hence let N occur in 
o. It is sufficient to assume r ::;; 11, since, for example, we can indeed choose 
for the lXi a basis for n. Now 

(lXI' ... ,lXr) = (lXI' ... ,IX" N) = (IXI - N Ai> IX z - N Az, ... ,lXr - N I,,, N) 

is true for arbitrary integers ;'i' We show that the Ai can be chosen so that 
the lXi - N I'i belong to a definite finite range of values. Let WI' ... , Wn be a 
basis for the field. To each integer IX = XIW I + ... + XnWn, an integer 
Ie = Ul WI + ... + UnWn (Xi and Ui rational integers) can obviously be deter
mined so that in 

IX - N), = (Xl - Nuilw i + ... + (xn - NUnlwn 

the 11 rational integers Xi - NUi belong to the interval 0, ... , N - 1. Among 
these numbers, which we call "reduced mod N" for the moment, there are 
only INln distinct ones. We now choose the Ai so that all numbers lXi - AiN 
are reduced mod N; then the, at most, n numbers lXi - AiN belong to a 
definite finite set of numbers determined only by N, and hence they can give 
rise to only finitely many distinct ideals n; that is, (N) has only finitely many 
divisors and Lemma (aJ is proved. Now in order to prove Lemma (b), let 
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e be a proper divisor of a. Thus a = be where b #- (1), e #- a. Then e surely 
does not have a as a divisor, and consequently e has at least one less divisor 
than a. 

Now at least one prime ideal must occur among the finitely many, say m, 
divisors of a which are not =(1), unless a itself is (1). Namely the divisor 
or divisors which have as few divisors as possible are obviously prime 
ideals by Lemma (b). Consequently, we can split off a prime ideal PI from 
a, a = PIal' where a1 has at most m - 1 divisors which are #- (1). In case 
we do not have a1 = (1), we can again split off a prime ideal P2 from aI' 
where a2 has at most m - 2 divisors #- (1), a = P1P2a2 and so on. Since the 
aI' a2, ... always have decreasing numbers of divisors, the process must 
come to an end after finitely many steps, which can only occur if ak = (1). 
Then a = PI P2 ... Pk is represented as a product of prime ideals, and we 
have proved 

Theorem 72 (Fundamental Theorem of Ideal Theory). Every ideal in K dif
ferent from (0) and (1) can he written in one and only one way (except for order) 
as a product of prime ideals. 

§26 First Applications of the Fundamental Theorem 

We see at once that this theorem on ideals can be used in the investigation 
of divisibility properties of numbers, e.g., this theorem gives an entirely new 
method for deciding whether or not an integer a is divisible by an integer [3. 
By §24 we must investigate whether (CI.) is divisible by ([3). First we decompose 
both ideals into their distinct prime factors: 

(a) = P~'P22 ... p~k 

([3) = p~lp~2 ... pfk 

(a i ~ 0), 

(hi ~ 0). 

By the fundamental theorem, [3 divides a if and only if ai - hi ~ 0 for i = 

1,2, ... , k. 

Theorem 73. There are infinitely many prime ideals in each field. 

Each rational prime p defines an ideal (p), and moreover if p and q are 
distinct positive primes, then (p, q) = 1 in the sense of our ideal theory, since 
the number 1 occurs in the form px + qy in (p, q). Consequently, the same 
primes never divide (p) and (q); hence there are at least as many prime ideals 
as there are positive primes p. 

We now simplify the notation in that when designating principal ideals (a) 
we omit the parentheses whenever there is no danger of misunderstanding; 
however we must keep in mind that from the equality of the ideals a and [3 
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it only follows that: a = fJ x unit. Likewise, in all statements which concern 
the divisibility of an (a), we replace the ideal by the number a. Thus a is 
divisible by 0 means that (a) is divisible by o. The statement fJ I a already has 
meaning, it actually agrees with ([3) I (a) by what we have done earlier. The 
greatest common divisor of a j , ... ,a, is accordingly the ideal 0 = (at, ... ,a,). 
If this ideal = (1), then we call the numbersa j , ... , a, relatively prime. In 
order that the numbers be relatively prime it is necessary and sufficient that 
o contains the number 1, that is, that there are integers ;"; in K such that 

It follows from 0 I a and 0 I [3 that 0 I Aa + f.J.[3 for all integers A and f.J. in K. 

Theorem 74. If 0 and b are ideals distinct ji-om (0), then there is always a 
number w for which 

(w,ob) = o. 

This w then obviously has a decomposition w = oe where (e, b) = 1. 
Thus the theorem asserts that each 0 can be made into a principal ideal by 
multiplication with such a e which is relatively prime to the given b. 

For a proof, let Pj, ... , p, be all the distinct prime ideals which divide 
ob, and let 0 = p~l ... p~r (a; ;:::: 0). We define the r ideals b j , ... , b, by 

(i = 1, ... , r) 

so that b; is relatively prime to Pi' but contains all remaining prime ideals 
p to a higher power than in o. Since these b; in their totality are relatively 
prime, there are numbers 6; in b; such that 

()j + 62 + ... + 6, = 1. 

Here 6; is divisible by b;, hence by all Pk (k =1= i). Consequently, since 1 is not 
divisible by Pi' 6; is surely not divisible by Pi. 

We now determine r numbers a;, such that pfil a; but pfi+ 1 does not 
divide a;, which is obviously always possible since for this to happen a; need 
only be a number from pf' which does not occur in pfi + 1. Then the number 

w = a l 61 + a262 + ... + a/>, 

has the property asserted in Theorem 74. For each of the prime ideals p; 
occurs in r - 1 summands at least to the power pf'+ j; however, it occurs 
precisely to the power pfi in the ith summand; consequently w is divisible 
by precisely the a;th power of j);. but no higher power. 

By taking ob itself as a principal ideal [3, which is divisible by 0, we obtain 

Theorem 75. Every ideal 0 can be represented as the greatest common divisor 
of two elements of the .field: 0 = (w, [3). 
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§27 Congruences and Residue Classes Modulo 
Ideals and the Group of Residue Classes under 
Addition and under Multiplication 

We now carryover the concept of congruence in rational number theory to 
ideal theory. Only slight modifications are needed in the methods of proof 
used earlier, which we deal with very briefly. 

For two integers IX, fJ and an ideal a, which is always assumed to be different 
from 0 in this section, 

IX == fJ (mod a) (IX congruent to fJ mod a) 
is to mean 

a IIX - fJ· 
I[ a does not divide IX - fJ, then we write IX ;f= fJ (mod a). 
These congruences satisfy the same rules of calculation given in §2 for 

congruences in the rational number field and in the case where IX, fJ and a 
are rational numbers, they mean exactly the same things as earlier. 

All numbers which are congruent to each other mod a form a residue 
class mod a. 

Theorem 76. The number of residue classes mod a is finite. If the number 
of residue classes is denoted by N(a) and if 1X1' ••• , IXn is a basis for a, then 
N(a) = 1.1 (1X1' ••• ,lXn)/JdI. For a principal ideal a = IX, N(a) = IN(IX)I. 

The numbers of a form a subgroup of the group (fj of all integers of the 
field. The different cosets in (fj determined by a obviously form the different 
residue classes mod a. Hence the number of distinct residue classes mod a 
is the index of a in (fj. This index is finite. For if IX is any nonzero number 
in a, then the positive rational number a = IN(IX) I also belongs to a, since 
IX I N(IX), and consequently the product a x arbitrary integral field element 
belongs to a. Thus in group-theoretic terms the ath power, in the sense of 
composition, of each element of (fj belongs to a. Consequently by Theorem 40 
the index of a is finite; it is denoted N(a) (norm of a). I[ 1X1> ••• ,lXn is a basis 
for a, W 1, ... , Wn a basis for (fj, then there exists a system of equations 

n 

lXi = L CikWk 
k=1 

(i = 1,2, ... ,n), 

with rational integers Cik, and by Theorem 39 the absolute value of the 
determinant IICikll is equal to the index N(a). On the other hand, by passage 
to the conjugates 

and since 
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we thus have 

With a principal ideal (IX) we obviously obtain a basis of the form (XW b ... ,(XWn 

thus 
N(a) = IN«(X)I. 

Theorem 78. For given (X and /3 the congruence 

(X~ == /3 (mod a) 

can be solved by an integer ~ in K if and only if «(X, all /3. If «(X, a) = 1, then 
the solution is completely determined mod a. 

If we assume «(X, a) = 1 to begin with, and let ~ run through a system of 
N(a) numbers which are incongruent mod a, then (X~ runs through all the 
residue classes mod a, for it follows from (X~1 == (X~2 (mod a) that al (X(~ 1 - ~2)' 
However, since (IX, a) = 1 we must have a I ~ 1 - ~ 2, that is, ~ 1 == ~ 2 (mod a) 
by the fundamental theorem. Thus, among the numbers IX~, one from the 
residue class of /3 also occurs. For the same reason the solution is obviously 
determined uniquely mod a. 

Moreover if we now have «(X, a) = b and there is an integer ~o with 
(X~o == /3 (mod a), then (X~o = /3 + p, where alp. Thus blp and bl(X~o - p, 
that is, b I /3. 

Conversely, if 
b I /3, /3 = bb, 

then let us set (X = bal> a = oa2 so that (a1, a2) = 1, and let us determine a 
number J.l = mal such that (J.l, a1 ba2) = al> thus (m, ba2) = 1. This is possible 
by Theorem 74. Then ba1lma1bb, hence (X I J.l/3 and the congruence 

J.l~ == J.l/3 (mod a2) (X 

is solvable for ~ by what has just been proved, since (J.l, a2) = (mal' a2) = 1 
follows from (m, a2) = 1 and (a1, a2) = 1. From a21 J.l~ - (J.l/3/IX) it follows that 

(Xa21 «(XJ.l~ - J.l/3), 
i.e., 

ba1a21(J.l)«(X~ - /3), 

ba21 m«(X~ - /3), 

(as (m,ba2) = 1), i.e., (X~ == /3 (mod a). 

ba1a2Ima1«(X~ - /3) 

ba21(X~ - /3 

Two numbers congruent modulo a have the same GCD with a so this 
property is thus a property of the whole residue class. The number of residue 
classes relatively prime to a is denoted by cp(a). 
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Theorem 79. For two ideals a and b, we always have 

N(ab) = N(a) . N(b). 

Let r1. be a number divisible by a such that (r1., ab) = a. If we let ~i 
(i = 1,2, ... , N(b)) run through a complete system of residues mod b and let 
11k (k = 1,2, ... ,N(a)) run through a complete system of residues mod a, 
then no two of the numbers r1.~i + 11k are congruent mod abo On the other 
hand, each integer p is congruent mod ab to one of these numbers r1.~i + 11k· 
For let 11k be determined so that 

11k == P (mod a) 

and then let ~ be determined so that 

r1.~ == P -11k (mod ab). 

Since (r1.,ab) = a and alp -11k this congruence can be solved by Theorem 78 
and ~ can be determined mod b so that ~ can be chosen equal to ~i. Conse
quently the N(a)· N(b) numbers r1.~i + 11k form a complete system of residues 
mod ab and thus there must also be N(ab) of them. 

Theorem 80. If (a, b) = 1, then cp(ab) = cp(a) . cp(b) and in general 

cp(a) = N(a) f1 (1 -~( )) 
pia N P 

where p runs through the distinct prime divisors of a. 

To see this let ex be chosen so that (ex, ab) = a and /3 so that (/3, ab) = b. 
Then if ~ runs through a complete system of residues mod band 11 runs 
through such a system mod a in r1.~ + /311 we obtain a complete system of 
residues mod abo These numbers are relatively prime to ab if and only if 
(~,b) = 1 and (11, a) = 1. 

For a power pU of a prime ideal p, the numbers which are not relatively 
prime to pa are those which are divisible by p. Among these there are 
N(pa-l) = (N(p))u-l incongruent modulo pU. Therefore 

cp(pU) = N(p)a _ N(p)U-l = N(pa) (1 __ 1_). 
N(p) 

Theorem 81. The norm of a prime ideal p is a power of a certain rational 
prime p, N(p) = pl. f is called the degree of p. Every ideal (p), where p is a 
rational prime, can be decomposed into at most n factors. 

For each prime ideal p divides certain rational numbers and consequently 
also certain rational primes p. Suppose that pip, p = pa. Then N(p) = 
N(p) . N(a) and consequently the rational integer N(p) divides N(p) = pn; 
hence N(p) = pI and f :5; n. If we think of (p) as decomposed into its prime 
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factors p = PI P2 ... Pr' then the positive rational integers N(PI) ... N(Pr) 
have as product N(p) = pn, while none of these integers is = 1; thus their 
number r must be ::; 11. 

In this way we obtain one of the few statements which connect the degree 
of a field with other properties of the numbers of the field. If it is known that 
a rational prime p is decomposable into k ideal factors in a number field, 
then the degree of the field is at least = k. 

One proves, as we did Theorem 12 about rational primes: 

Theorem 82. A congruence modulo a prime ideal P 

xm+aIxm- 1 +···+am_lXm- 1 +am,=O(modp), 

with integer coefficients a, has at most m solutions x which are incongruent 
modulo p. 

The system of N(a) residue classes mod a again forms an Abelian group 
under composition by addition in that two integers a and P determine by 
their sum a + P another residue class mod a which depends only on the 
classes of a and p. Let the Abelian group of order N(a) which is defined in 
this way be called mea). Theorem 19 of group theory (Ah = E) asserts that 
for all a 

a . N(a) '= 0 (mod a), 

since the unit element is represented by the residue class of O. In particular 
it follows that for a = 1 

N(a) '= 0 (mod a) (42) 

In general the group mea) is not cyclic as it is in the field K(l). For example let 
a = (a) where a is a positive rational integer. Since a number Xl WI + ... + XnWn 

(where the Xi are rational integers and the Wi a basis of the field) is divisible 
by a if and only if all Xi are divisible by a, we obtain all residue classes mod a 
exactly once in the form XlWl + ... + X"W" where 0::; Xi < a. Consequently, 
for each prime p dividing a there exist exactly n basis classes whose order 
is a power of p. Moreover, for a prime ideal P we have: 

Theorem 83. The group of residue classes mod P is an Abelian group m(p) 
of order N(p) = pf under composition by addition and the number of basis 
elements is equal to the degree f of the prime ideal p. 

For since pip, the number of residue classes whose elements a satisfy the 
congruence 

pa,= 0 (modp) 

is equal to the number of all residue classes, thus pi. Consequently, by 
Theorem 27, f is equal to the number of basis elements. Therefore there are 
exactly f elements WI' ... , wf such that all residue classes mod p are obtained 
exactly once by the representatives X 1W 1 + ... + xfwf, where the rational 
integers Xi satisfy the inequalities 0 ::; Xi < p. 
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Thus the group m(p) is cyclic for the prime ideals of degree 1 and only for 
these. The prime ideals of degree 1, of which an infinite number always 
exist, as will be seen in §43, playa decisive role in investigations of number 
fields. 

Moreover the system of residue classes mod a relatively prime to a, forms 
a finite Abelian group under composition by multiplication in that two 
numbers rx, f3 relatively prime to a determine, by their product, a residue 
class rx . f3 mod a, which is completely determined by the residue classes of 
rx and f3 and which is, of course, also relatively prime to a. Thus we have 
exactly as before 

Theorem 84. The residue classes mod a relatively prime to a, under composition 
by multiplication, form an Abelian group of order <p(a), which will be denoted 
by 9\(a). For each prime ideal p, 9\(p) is a cyclic group. 

A number p whose powers yield all classes of 9\(p) is called a primitive 
root mod p. 

In particular for a prime ideal p and every integer rx of the field the general
ization of Fermat's theorem 

rxN (I') == rx (mod p) 
holds. 

On the other hand we cannot conclude from this that all groups 9\(pa) 
are cyclic. 

Those classes of 9\(p) which can be represented by a rational number 
obviously form a subgroup of 9\(p); these are the classes of 1, 2, ... , p - 1, 
if N(p) = pI. These classes are also distinct mod p, since a rational integer 
a, not divisible by p, is relatively prime to pin k(1); thus the number 1 occurs 
in the form ax + py. Consequently (a) and (p) are also relatively prime in 
K and therefore (a,p) = 1 and a is not divisible by p. For each class A of 
this subgroup, which thus consists of p - 1 elements, AP-l is the unit class. 
Since the entire group 9\(p) is cyclic, there are no more than p - 1 classes 
C for which Cp - 1 = 1. Thus the subgroup of the rational residue classes of 
9\(p) is identical with the group of classes whose (p - 1)th power is the unit 
class. With this we obtain 

Theorem 85. In order that a number rx be congruent to a rational number 
mod p, it is necessary and sufficient that rxP == rx (mod p). 

§28 Polynomials with Integral Algebraic Coefficients 

To conclude these elementary considerations about congruences we consider 
functional congruences. They playa decisive role in the foundations which 
Kronecker gave for ideal theory. Indeed, even today, certain facts of ideal 
theory can be proved most easily with these methods. 
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In this section a polynomial is an integral rational function of an arbitrary 
number of variables X), ... , X m , in which the coefficients of the various products 
of powers are all integers in K. 

A polynomial P(x), ... , xm) is said to be == 0 (mod a) if all coefficients 
are divisible by a. Moreover two polynomials P and Q are congruent to 
each other mod a if the polynomial P - Q == 0 (mod a). For polynomials 
which reduce to constants, this agrees with the definition of congruence of 
numbers. 

Theorem 86. Ifp is a prime ideal, and iffor two polynomials P and Q the product 

P(x j , ... , xm)· Q(x), ... , xm) == 0 (mod p), 

then at least one of the polynomials is == 0 (mod pl. 

The theorem is true for polynomials of 0 variables, that is, for constants. 
We show that it is correct in general by passing from m to m + 1. Assume 
it is already proven for all polynomials with m or fewer variables. Each 
polynomial of m + 1 variables can be put into the form 

P(Xo, ... ,xm ) = I xZPk(Xj, ... ,xm ) 

k 

where the Pk are polynomials in x), ... ,Xm . Obviously P == 0 (mod p) means 
that all Pk == 0 (mod pl. Without loss of generality we may replace P and Q 
by polynomials which are congruent to them mod p in which the terms with 
the highest powers of X o are not congruent to zero, provided not all members 
are congruent to zero. If the leading terms are xi;? p(x 1> ... ,xm) and 
x'bQq(x j , ••• ,xm), then the highest term of PQ in X o is equal to the product 
xg+ q P pQq and it follows from 

that 

However since we are dealing here with polynomials in m variables, at least 
one of the factors must be == 0 (mod p). That is, either in P(xo, ... ,xm) or in 
Q(xo, ... ,xm ) there is no term which is not == 0 (mod p). Thus one of the 
two polynomials P, Q must be == 0 (mod p). 

Furthermore from this it follows that if p" and pb are the highest powers 
of a prime ideal p which divides all coefficients of the polynomials 
A(x 1 , ... ,xm ) and B(x 1 , ... , xm) respectively, then pa+b is the highest power 
of p which divides all coefficients of the product A(x j, ... , xm) . B(x 1, ... , Xm)· 

To prove this we choose integers, say IX), IX2' in K such that 
(IX j /IX2 )A(x j , ••. , xm) is a polynomial which has coefficients not all divisible 
by p. For this purpose we choose 

::1.2 = ap", IX j = am, where (a,p) = (m,p) = 1. 
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In an analogous fashion we choose /31 and /32 to be integers such that 
(/3d/32)B(X1' ... ,xm ) also has integer coefficients which are not all divisible 
by p. Then, by Theorem 85 the product 

1X1 /31 
_. -/3 A(x1,··· ,xm)· B(x1,··· ,xm) = C(x1,··· ,xm) 
1X2 2 

is a polynomial which is not == 0 (mod p), while A . B = (1X2/32/1X1/31)C also 
has integer coefficients. Hence pa+b is precisely the highest power of p 
dividing A . B because of the numerical factor 1X2/32/1X1/31. 

We now define the content, J(P), of a polynomial to be the ideal which 
is equal to the GCD of the coefficients of P. Then it follows from what has 
been proved: 

Theorem 87. The content of a product of two polynomials is equal to the 
product of the contents of the two factors. 

With this we have achieved a considerable strengthening of Kronecker's 
Theorem 67 and also the generalization of Theorem 13 of Gauss to several 
variables and arbitrary algebraic number fields. 

If in a valid congruence for a polynomial mod a, we replace the variables 
Xl' ... by integers of the field K to which the ideal a belongs, then obviously 
we obtain a valid numerical congruence mod a between the integers in K. 
Finally from 

IXN(!» == IX (mod p) (43) 

for each integer IX, it follows that for each polynomial P(X1' ... ,xm ) 

P(Xb··· ,xm t(l') == P(x~(!»,x~(!», ... ,x~(!») (mod p). (44) 

This statement is obviously true for a polynomial which consists of only a 
single term by (43). Suppose that it has already been proved for polynomials 
which contain at most k terms. Now if G is such a polynomial and IX is any 
integer of K, then for each positive rational prime p 

(G(Xb ... ,xm ) + IXX'i' ... x;:,mY == GP + IXpx~al ... x:;.am (mod p) 

because, by the properties of the binomial coefficients (n, the difference of 
the two sides of this equation has only coefficients which are divisible by p. 

By repeatedly raising this congruence to powers we obtain 

(G + IXX~l ... Xa,;)pf == Gpf + IXPf xfa 1 •• ·xp~am (mod p) 

for each positive rational integer f. If the prime ideal p divides (p), then this 
congruence is also true mod p. If in addition N(p) = pI, then by our assump
tion about G, the truth of the assertion (44) also follows for the polynomial 
in parentheses, which has at most k + 1 terms. Consequently, (44) holds in 
general. 



94 V General Arithmetic of Algebraic Number Fields 

§29 First Type of Decomposition Laws for Rational 
Primes: Decomposition in Quadratic Fields 

As we have established the connection between the rational primes and the 
prime ideals of an algebraic number field in §27, the question of the exact 
nature of these relations naturally arises. We are interested in the following 
three points: 

(1) How many different prime ideals of a given number field divide a given 
rational prime? 

(2) What are the degrees of these prime ideals? 
(3) To what power do they divide p? 

We first mention a result concerning (3) of great generality, for which we 
are indebted to Dedekind: 

The prime ideals dividing the discriminant of the field have the characteristic 
property that they and only they are divisible by a power of a prime ideal 
higher than the first. (Compare §§36, 38.) 

On the other hand our knowledge about the answers to (1) and (2) is 
extremely slight. At this time we can make a general and exhaustive statement 
about the number and degree of a prime ideal dividing some prime p only 
for quite special kinds of algebraic fields. These fields are completely charac
terized by a property of their "Galois groups" as defined in algebra 2 • Thus 
two formally entirely different types of decomposition laws, with which we 
now wish to become acquainted, appear. With all remaining fields we have, 
at this time, no idea at all even of the approximate nature of the decompo
sition laws valid in these fields. 

Before the investigation of the two known kinds of fields we make a 
general remark about Galois fields. 

Each ideal a = (aI' ... ,a,) of a field determines a sequence of n ideals 
aU) (i = I, ... ,n) which arise from a when all numbers of a are replaced by 
the conjugates with the same upper index i; obviously ali) = (a\i), ... ,:x~i)). 
These n ideals form the conjugate ideals to a. By Theorem 55 each valid 
congruence remains valid, if we replace all numbers occuring in the congru
ence by their conjugates. 

In a Galois field (end of §20) the conjugate ideals can be multiplied with 
one another since these ideals belong to the same field. Hence we have 

Theorem 88. For each ideal a of a Galois field the principal ideal (N(a)) = 
a(1)a(2) ... a(n) (compare with Theorem 107). 

2 These are the fields whose generating numbers can be represented by radical signs laid one 
upon the other. The corresponding equations are the so-called algebraically solvable equations 
with rational coefficients. 
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For the proof, we form the polynomial P(x) = oclx + OC2X2 + ... + oc,x' 
from a new variable x and a = (oc l , ... ,oc,) where the GCD ofthe coefficients 
= a. The product of the conjugate polynomials 

n 

f(x) = n (oc~)x + ... + OC~i)X') 
i= 1 

is then a polynomial with rational integral coefficients whose GCD we set 
= a, where a is a rational integer. Since 1 is a linear combination of the 
coefficients of (l/a)f(x), the ideal (a) is also the GCD of the coefficients as 
an ideal in the field under consideration. Hence, by Theorem 87, 

a(1)a(2) ••• a(n) = (a). 

Now obviously the conjugates have equal norm. Consequently on applying 

N(a(l» ... N(a(n» = N(a(i)t = N((a» = lain 
we have 

N(a(i» = ± a, (N(a(i)) = (a) = a(l) ... a(n), 

for each i, and the theorem is proved. This relation justifies the name norm 
for the number of incongruent elements mod a. 

In particular, for a prime ideal of degree f 
pI = N(p) = p(1) ... pIn). 

Consequently, no prime ideals other than the conjugate prime ideals 
divide p. Furthermore if p is not divisible by the square of any prime ideal, 
then among the p(1), ... ,p(n) each is repeated f times and p is the product 
of the k = n/ f distinct prime ideals among the n conjugate prime ideals pli)o 

Hence if a rational prime p in a Galois field is a product of k prime ideals 
which are distinct, then these prime ideals are conjugate and have the same 
degree f = n/k which is thus a divisor of n. 

We now turn to the quadratic number field which may be assumed, 
without loss of generality, to be generated by the root of an equation x2 -

D = 0, where D is a (positive or negative) rational integer which is not 
divisible by any square except 1. This field K(Ji5) is a Galois field; its 
numbers can be brought into the form 

oc = x + yJi5 

in a unique way, where x, yare rational. Here Ji5 is an arbitrarily fixed 
value of the two roots. Let the conjugate of oc be denoted by oc', 

oc' = x - yJi5, (oc')' = OC. 

In order that oc be an integer it is necessary and sufficient that 

oc + oc' and ococ' 
are integers. 



96 V General Arithmetic of Algebraic Number Fields 

If 2x and x 2 - D"/ are integers, then since D was assumed squarefree, y 
as well as x can have denominator at most 2. If we set x = u/2, y = v/2 with 
rational integers u, v then 

u2 - Dl} == 0 (mod 4). 

If D == 2 or 3 (mod 4), then since a square can only be congruent to 0 or 
1 mod 4 it obviously follows that u, v are both even; consequently x and y 
are both integers. However, if D == 1 (mod 4), then it follows that u == v 
(mod 2). Hence rx is an integer if 

(a) D == 2, 3 (mod 4): rx = x + y,/15; x, y both integers; a basis for K(JD) 
is 1, JD and the discriminant d = 4D, 

(b) D == 1 (mod 4): rx = g + v(1 + JD)/2; g = (u - v)/2, v an integer; a 
basis for K(JD) is 1, (1 + JD)/2 and the discriminant d = D. 

Thus in each case if d is the discriminant 

d+,jd. b. 
1 ---- IS a aSlS 
'2 ' 

for both these numbers are integers and their discriminant is equal to d. We 
now prove the decomposition theorem: 

Theorem 89. Let p be a rational prime which does not divide d. Then p splits 
in the field K(Jd) into two distinct prime ideals p, p' provided the congruence 

x 2 == d (mod 4p) (45) 

can be solved in rational integers x. If, however, the congruence cannot be 
solved, then p is a prime ideal in K(Jd). 

If the prime p which does not divide d splits in K(Jd), then p can only 
split into prime factors p, p' which are of degree 1. By Theorem 85, each 
integer in K is congruent mod p to a rational number, and hence there is a 
rational integer r such that 

From this it follows that 

d + Fd 
r == 2 -,j (mod p). 

2r - d == Jd (mod 2p), 

(2r - d)2 == d (mod 4p). 

Moreover this congruence between rational numbers is also true mod 4p. 
Hence x = 2r - d is a solution of (45). The ideal 

( d+Jd) a = p, r - 2 
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is obviously divisible by p and 

I _ (2 (_ d + 01) (_ d - 01) (2r - d)2 - d) 
00 - p, p r 2 ,p r 2 ' 4 

_ ( ) ( _ d - 01 _ d + 01 (2r - d)2 - d) 
- p p, r 2' r 2' 4p . 

However, the last ideal factor is = (1), for this ideal contains p and the 
difference between the second and the third numbers, which is 01; thus this 
ideal contains the two relatively prime numbers p and d. Finally we obtain 
from this 

I ( d-01) p = p, r - 2 . 

The two prime ideals are moreover distinct, thus relatively prime, as (p, p') 
contains the two coprime numbers p, d. 

Conversely, if x is a solution of (45), then the number 

x + 01 w =---'--
2 

is obviously an integer; moreover w/p is not an integer, as ((w - W/)/p)2 = 
d/p2 is not an integer. Thus, since p does not divide w or w', but does divide 
the product w w', p cannot be a prime ideal. Thus it splits in K(01) into two 
prime factors which are distinct from one another by the above. 

Moreover if q is an odd prime factor of d, then the ideal 

q = (q, d +201) = (q, - d ~ 01 + d) = (q, d -201) = q', 

2 _ ,_ ( d + 01 d - 01 d(d - 1)) 
q - qq - q q, 2 ' 2 ' 4q . 

However, by the definition of the discriminant d, d(d - 1)/4q is certainly 
not divisible by q, that is, d(d - 1)/4q is relatively prime to q. Consequently 
q2 = q and q is the unique prime ideal dividing q. 

Finally, in case d is even, 2 is also the square of a prime ideal, namely 
the square of q = (2, JD) for D == 2 (mod 4) or of q = (2, 1 + JD), if D == 3 
(mod 4). 

Ifwe now keep in mind that by §14, since d == 0 or 1 (mod 4), the solvability 
of (45) for an odd prime p is equivalent to the solvability of y2 == d (mod p), 
then we can also formulate this theorem as follows: 

Theorem 90. If P is an odd prime, then in a quadratic field with discriminant d 

p splits into two distinct factors of degree 1, if (~) = + 1. 
P splits into two identical factors of degree 1, if (~) = O. 
P is itself a prime ideal (of degree 2), if (~) = -1. 
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The prime 2 splits into two distinct factors, if d is odd and a quadratic residue 
mod 8; 2 is itself a prime ideal, if d is odd and a quadratic nonresidue mod 8. 
If d is even, 2 is a square. 

§30 Second Type of Decomposition Theorem for 
Rational Primes: Decomposition in the Field 
K(e21ti/m) 

We now investigate the fields generated by mth roots of unity, where m is a 
rational integer > 2. The mth roots of unity are the m roots of xm - 1 = 0, 
hence they are algebraic integers. The primitive mth roots of unity are the cp(m) 
numbers e21tia/m, where (a, m) = 1; these numbers are not roots of unity of 
lower order. If we form 

m-l 

g(x) = I1 (xk - 1), 
k=l 

then a root of g(x) is also a root of f(x) = xm - 1 if and only if it is a non
primitive mth root of unity. Consequently 

xm -1 
F(x) = d(x) , where d(x) = (I(x), g(x», 

is a polynomial with rational integral coefficients all of whose roots are 
primitive mth roots of unity. Finally, since among the primitive mth roots 
of unity each root is a power of every other root, the field K(e 21ti/m ) is a 
Galois number field of degree h :s; cp(m). (That the degree is exactly cp(m), i.e., 
F(x) is irreducible, will not be needed in this section and will emerge as a 
side result in §43.) 

We set ( = e 21ti/m and keep in mind, that according to the proof of Theo
rem 64 all integers of k(D can be uniquely represented in the form 

where the ri are rational numbers such that their denominators are all 
divisors of a fixed integer D, the discriminant of F(x). 

Now let p be a rational prime which does not divide D, and let D' be 
determined so that D'D == 1 (mod pl. Then we see that in each residue class 
modp in k(D there exist numbers for which ro, r1 , ••. are all rational integers, 
since for each integer w 

w == DD'w (mod p), 

and by the above the DD'ri are rational integers. Hence we do not need to 
first construct a basis for the field in the investigation of p. 
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Lemma. If the prime p does not divide D . m, then for each integer OJ of the 
field K(O, 

OJpf == OJ (mod p). 

Here f is the smallest positive exponent such that pI == 1 (mod m). 

For the proof we think of OJ as chosen in its residue class so that 

OJ = ao + a 1 ( + ... + ah _ 1 (h - 1 

with rational integers ai' Then, by (44), for the integral polynomial 

Q(x) = ao + a1x + ... + ah_ 1xh- 1 

over k(l), we derive the functional congruence 

Q(x)P == Q(xP) (mod p), more generally (Q(xW f == Q(xPf) (mod p). 

We obtain a valid numerical congruence from the functional congruence if 
we replace x by the algebraic number (, and thus the lemma is proved. 

Theorem 91. If the prime p does not divide D . m, then p is not divisible by the 
square of a prime ideal in K((). 

For if p21 p, then let us choose a number OJ which is divisible by p but not 
by p2. It follows from the lemma that 

OJpf == OJ (mod p2). 

Since pI ~ 2, and therefore OJpf == 0 (mod p2), 

OJ == 0 (mod p2), 

contrary to the hypothesis. 

Theorem 92. If the prime p does not divide D . m, and if f is the smallest 
positive exponent such that pI == 1 (mod m), then p splits into exactly e = hI! 
distinct prime factors in K((). Each factor has degree f. 

Let p be a prime factor of p of degree fl' Then, by (43), for each integer OJ 

in K(O, 
(46) 

and this congruence holds for each integer OJ with no value smaller than fl' 
Hence by the lemma we have f1 :::;; f. On the other hand, it follows from (46) 
for OJ = ( that 

(pf! == ((mod p). 

Here, however, we must have ph == 1 (mod m), for otherwise (pI! would be 
a primitive mth root of unity different from ( and (pI! - ( would be a factor 
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of the discriminant D of F(x). Thus p would be a factor of D, contrary to 
hypothesis. 

However by the definition off, the equation j~ = f follows from pf' == 1 
(mod m) and fl ::;; f. 

Since, by Theorem 91, the conjugate prime ideals divide p only to the 
first power, then, by the remark in §29, p splits into exactly hlf factors and 
everything is thereby proved. 

Accordingly, the field K(() is closely related to the group of residue 
classes mod m in the field k(I). Primes which belong to the same residue class 
mod m split in K(() in exactly the same way-except for finitely many excep
tions. Later, in §43, we will also show that the field K(() has degree «J(m), 
thus the same degree as the group 91(m) in k(1). Finally we state without 
proof that the so-called Galois group of K(() is isomorphic to the group 
91(m). 

For these reasons K(() is called a class field which belongs to the classi
fication of rational numbers into residue classes mod m. 

It is known from the theory of cyclotomic numbers that K(() contains 
one or more quadratic fields and each quadratic field is also always contained 
in a K((). Then we see that from the decomposition laws in K(() we can 
deduce those in every subfield, and in this way we obtain, for quadratic 
fields, an entirely different decomposition law than the one we found in the 
preceding section. The comparison of the two then yields the proof of the 
quadratic reciprocity laws 3 mentioned in §16. 

§31 Fractional Ideals 

We now introduce fractional ideals-systems of numbers which may also 
contain nonintegral numbers ofthe field and, when they contain only integers, 
agree with the ideals discussed until now. 

A system S of integral or fractional numbers of the field is to be called an 
ideal from now on if: 

(1) Along with t/. and /3, ).(X + 11/3 belongs to S, where I. and 11 are arbitrary 
integers in K. 

(2) There exists a fixed non-zero integer v such that the product (v x each 
number of S) is an integer. 

Ideals which contain only integers will be designated as integral ideals, 
the other ones will be designated as fractional ideals. Two ideals are said to 
be equal if they contain exactly the same numbers. 

j The idea of this proof of the quadratic reciprocity law originates with Kronecker. Compare. 
say, the representation of this proof in Hilbert's Bericht tiber die Theorie der algebraischen 
Zahlkorper, §122. This proof is not used in this book. The connection is shown in principle 
in the field K( ,J=- 3), of third roots of unity, in which both forms of the decomposition law hold. 
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Theorem 93. Each ideal 9 is the range of values of a linear form 

where P1' ... ,Pr are certain integers or fractions in g, while the ~i run through 
all integers in K. We write 9 = (P1' ... ,p,). 

Let v be chosen for 9 according to (2). Then all products of v with the 
numbers in 9 obviously form an integral ideal a=(a1, ... ,ar) and then 
9 = (a1/v, ... ,ar/v). 

If a1, ... , an is a basis for the integral ideal a, then, if we again regard 9 
as an infinite Abelian group, adv, ... ,an/v is obviously a basis for g. 

The product of two ideals 9 = (Y1' ... ,Yr) and r = (P1' ... ,Ps) is defined 
in the same way as for integral ideals: 

gr = ( ... ,YiPk," .), 

and this multiplication is also commutative and aSSOCIatIve. Each ideal 
9 #- (0) can be made into an integral ideal by multiplication by a suitable 
integral ideal (v). Consequently it can also be made into a principal ideal (w) 
by multiplication by an appropriate integral ideal. 

If 9 #- (0), then it follows from gr = g1) that r = 1). 
The proof is word for word the same as for Theorem 68. 
If gl and g2 are arbitrary ideals, gl #- (0), then there is exactly one r such 

that 
gl r = g2' 

One writes r = g2/g1, and calls r the quotient of g2 and gl' This notation is 
meaningful only for gl #- (0). 

Let us choose a #- (0) so that ag1 = (w) is a principal ideal; thus (w) #- O. 
Ifag2 = (P1"" ,Pr)' we set 

Then in fact a92 = (w)r = ag 1r, g2 = glr, and, by what has been said before, 
r is uniquely determined. 

The equation ajb = c/O is accordingly equivalent to aO = bc; in particular 
for each ideal m #- (0), 

a am 
b bm' 

a 
-=a 
(1) , 

m 
- = (1). 
m 

Thus each ideal can be represented as the quotient of two relatively prime 
integral ideals which we designate, as with numbers, as numerator and 
denominator. In particular each fractional principal ideal w can also be 
represented as a quotient of integral ideals which we again express by an 
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equation 

omitting parentheses. 
With fractional ideals we also wish to speak of divisibility in the sense 

that a I b or a divides b is to mean that b/a is an integral ideal. If a and bare 
integral ideals, then this definition agrees with the earlier definition of 
divisibility. 

Accordingly, an integer w occurs in an ideal 9 if and only if(w) is divisible 
by g, that is, (w) has a decomposition 

(w) = mg, 
with m an integral ideal. 

Hence the number 1 occurs in all ideals which are the reciprocals of 
integral ideals a, that is, equal to l/a, and only in such ideals. 

If an ideal 9 is represented as the quotient of two relatively prime ideals 
a and b, then we define the norm of g: 

N(a). a 
N(g) = N(b)' If 9 = r;' 

This equation is also correct if a, b are not relatively prime or if they are 
fractional ideals. Again we have 

N(gl . g2) = N(gl) . N(g2)' 

Between the basis and the norm there is again the relationship: 
If 1J(l> ••• , IJ(n is a basis for g, then 

N(g) = I ,1 (lJ(l'jj' ,lJ(nl (47) 

To prove this choose an integer v#-O so that vg is an integral ideal b, with 
basis 131' ... ,13m· Then 13dv, ... , 13n/v is a basis for 9 and 

N( ) = N(b) = ,1(131,··· ,13n) 
9 N(v) IN(v)IJd 

L1(~' ... ,~) 
Jd 

§32 Minkowski's Theorem on Linear Forms 

In the subsequent development of algebraic number theory, the concept of 
magnitude will now play an essential role whereas earlier everything de
pended on the concept of divisibility and the formal algebraic processes. 
The most important method here is a theorem about the solvability oflinear 
inequalities by rational integers which goes back to Dirichlet and which was 
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subsequently extended and sharpened considerably by M inkowski. This 
theorem and its proof is quite independent of the theories which were treated 
earlier. It reads as follows: 

Theorem 94. Assume we are given n linear homogeneous expressions 

n 

Lp(x) = L apqxq (p = 1,2, ... ,n), 
q=l 

with real coefficients apq' whose determinant D = lapql is different from zero, 
as well as n positive quantities Xl' ... , X n, for which 

Xl • X2 •.• Xn ~ IDI· 
Then there are always n rational integers Xl' •.• , Xn , not all equal to 0, such 
that 

(p = 1, ... ,n). (48) 

The proof is along the lines of Minkowski's contribution to the geometry 
of numbers. To begin with we ask: "What can we say about the quantities 
X if the n inequalities (48) have no solution in rational integers Xq # O?" We 
show that under these conditions Xl . X2 ••• Xn < IDI. 

To this end, we consider the parallelotope in the space of n dimensions 
with Cartesian coordinates Xl' ... , Xn such that 

(p = 1,2, ... ,n) 

and think of the same parallelotope displaced parallel to itself so that its 
center, that is, the point 0, ... , 0, corresponds to all lattice points gl' ... , gR' 
where the gi run through all rational integers. In this way we have infinitely 
many parallelotopes IIg !. •.•• gn given by 

(p = 1, ... ,n). 

If (48) cannot be solved no two of the parallelotopes have a point in common. 
For if a point (x) belongs to the two parallelotopes IIg , ••••• 9n and IIg\, •••• g;" 

then from 

and 

it follows by subtraction that 

ILp(g - g')1 ::5: xp' 

that is (48) would have a solution Xq = gq - g~. 
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Consequently the sum of the volumes of all the II which belong to a 
definite square IXql ::; L (q = 1,2, ... ,n) must be less than the volume (2Lt 
of this square, from which the assertion follows immediately. To see this we 
first let c be a number such that the coordinates of all points of the initial 
figure II o ..... 0 are all ::; c in absolute value. Then in any case all IIgj • ...• gn 

such that 
(q = 1, ... ,n) 

belong to the square IXql ::; L + c. Since from ILp(x - g)1 ::; 'Xp/2 and Igql ::; L 
it follows that IXql = IXq - gq + gql ::; IXq - gql + Igql ::; c + L. Hence if L is 
a positive rational integer, then there are (2L + 1)" such IIgj , • ..• 9n and their 
total volume is 

(2L + 1)nJ::; (2L + 2c)", 

where J is the volume of a single II. After division by L" and passage to the 
limit as L -+ Cf) it follows that 

J::;1. 

On the other hand we have 

J = r .. J dX 1 ... dXn = 11[- r .. f dYl ... dYn 
ILpixl1 <: X P ' 2 I)'pl <: xpi2 

Thus if these inequalities cannot be solved in integers except 0, ... , 0, then 
'X l' ... , Xn ::; IDI· However, in this assertion the sign < necessarily holds 
since the unsolvability for the values Xl' ... , Xn implies, by continuity, the 
unsolvability for sufficiently near larger values of the 'X whose product must 
thus likewise be still ::; IDI. Therefore the product of the original 'X is neces
sarily < IDI. 

Moreover, with this, we have proved that if the product of the X is equal 
to IDI or greater, then the inequalities (48) must have a solution in integers. 

Later, we will take the Lix) to be the conjugates of a linear form and 
complex coefficients must also be allowed. By a simple modification of the 
above theorem we obtain in this connection: 

Theorem 95. Let n linear forms Lp(x) = L~~ 1 apqXq (p = 1, ... , n) be given 
with real or complex coefficients whose determinant D #- 0. Moreover if one 
of the forms is not real, we assume the complex conjugate of a form also occurs 
among the Lp(x). Finally let Xl' ... , Xn be positive quantities such that if the 
forms L,(x) and Lp(x) are complex conjugate, Xa = 'Xp. Then there are rational 
integral x q , not all vanishing, such that 

(p = 1, ... , n), 

if 
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To prove this we replace the system Lp(x) by that system of real forms 
L'(x) which arises if the real and imaginary components of the Lp(x) are 
considered by themselves. We take L~(x) = Lp(x) if Lix) is a real form; on 
the other hand if L",(x) and Lp(x) are conjugate imaginary and, say, a < [3, 
then we set 

L '( ) = Lix) + Lp(x) 
'" x 2' 

In the latter case we define 

and, on the other hand, 

in the first case. 

L ' ( ) = L",(x) - Lp(x) 
p x 2i' 

The system of real forms L' now obviously has a determinant D' with 

where r 2 denotes the number of pairs of complex conjugate forms among 
the Lp(x). Hence since X'l ... x~ ;;::: ID'I, there are rational integers xq , which 
are not all 0, such that 

(p= 1, .. . ,n). 

For a nonreal form L",(x) we now have 

IL,,(xW = L~2(X) + L'/(x) ::;; X~2 + x'/ = x; 
from which the stated theorem follows. 

§33 Ideal Classes, the Class Group, 
and Ideal Numbers 

We can now attack the problem which we posed in §23, at the beginning of 
the ideal theory, namely, we can investigate whether all ideals of a field can 
always be represented by numbers, which perhaps belong to other fields. 
To this end we introduce the concept of equivalence and with it a partition 
of all ideals of K into classes as follows: 

Definition. Two integral or fractional ideals a,b are said to be equivalent, in 
symbols 

a ~b, 

if they differ only by a factor which is a principal ideal, that is, if there is a 
(integral or fractional) principal ideal (m) # (0) such that 

a = mb. 
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This concept of equivalence has the following properties: 

(1) a ~ o. 
(2) From a ~ b it follows that b ~ o. 
(3) From 0- band b ~ e it follows that a ~ c. 
(4) From a ~ b it follows that oc ~ be and if e #- (0) the converse also holds. 

The collection of all ideals equivalent to a fixed a forms an ideal class. In 
particular all principal ideals (#- 0) are equivalent to each other. They form 
the principal class. 

By (4), the classes can be immediately made into an Abelian group. If by 
a and b we understand any ideals in the classes A and B respectively, then 
by (4) the product ob belongs to a class determined by A and B alone and 
does not depend on the choice of a and b within their class. We denote the 
class of ob by AB and with this we have defined a composition of ideal classes, 
under which the ideal classes form a (finite or infinite) Abelian group, the 
class group of the field K. The unit element is the principal class. 

The passage from ideals to ideal classes corresponds precisely to the 
passage from numbers to residue classes with respect to a modulus since 
the collection of integral and fractional ideals of K which are #- (0) obviously 
forms an infinite Abelian group under ordinary multiplication. (This group 
has a basis of infinitely many elements, in the sense of §11, namely the set 
of all prime ideals.) This group 9Jl contains the subgroup of all principal 
ideals (#- 0). The latter subgroup will be denoted by ~. Moreover, the class 
group defined above is obviously the factor group 9Jl/~. Indeed its elements 
are the different co sets which consist of all ideals which differ only by an 
element of ~, that is, by a factor which is a principal ideal. 

It is one of the principal problems of number theory to investigate the 
finer structure of these class groups. They play an essential role in almost all 
statements about the numbers in K. Yet our knowledge about the class 
group in general fields is still extremely slight. We state the most important 
general fact in the following theorem: 

Theorem 96. In each ideal class of K there is an integral ideal whose norm is 
~ IJliI. Thus the numb~r of ideal classes in K is finite. 

To prove this let a be an integral ideal in the class B- 1, where B is an 
arbitrarily given class. If oc l , ••• , OCn denotes a basis of 0, then, by Theorem 95, 
there are rational integers Xl' ... , X n , not all vanishing, such that 

Iw(i)1 = Iktl OC~)Xkl ~ I iLl I (i = 1, ... , n) 

where Ll = Ll(oc l , ... ,ocn) = N(a)Jli is the determinant of the oc(i). Thus we 
have for the product of these conjugates w(i) 

IN(w)1 ~ ILl I = N(o)IJliI· (49) 
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Now, by definition, OJ is a nonzero integer, which is divisible by a; hence OJ 

has a decomposition 
OJ = ab 

where b is a certain nonzero integral ideal. Obviously b lies in the class B, 
which is reciprocal to B -1, as ab ~ (1). Then it follows from (49) that 

N(b) ::;; Jd (50) 

whereby the first part is proved. 
However there are only finitely many integral ideals whose norms have 

a given value z, for, by (42) in §27, they must be divisors of the ideal (z). Con
sequently, there are also only finitely many integral ideals, whose norms lie 
below a given bound, as the norms are rational integers. Hence there are 
only finitely many integral ideals b which satisfy Condition (50); thus the 
number of distinct ideal classes in K is finite. 

Henceforth the class number will be denoted by h. As an immediate con
sequence of the finiteness of h we obtain from Theorem 21 : 

Theorem 97. The hth power of each ideal in K is a principal ideal. 

From this we can finally prove the statement formulated in §24. 

Theorem 98. For each ideal a in K there is a number A which generally does 
not belong to the field K, such that the numbers of a are identical with those 
numbers of the field K which are divisible by A. 

By Theorem 97 ah is equal to a principal ideal (OJ). The number A = ::/W 
has the asserted property for if at: is a number in a, then at:h belongs to ak and 
therefore at:h/OJ is an integer and at:/::/W = at:/A is thus also an integer. 

Conversely if at: is a number of the field such that at:/ A is an integer, then 
at:h/OJ is an integer, that is, at:h/ah is an integral ideal. By the fundamental 
theorem at:/a is also an integral ideal, that is, at: occurs in a. 

Because of the group property of the ideal classes, the numbers A which 
are needed to represent all ideals of the field K can now be chosen in such a 
way that they all belong to a field of relative degree hover K, and indeed in 
the following way: 

If h > 1, then as a finite Abelian group the class group has a basis, say the 
classes B 1 , ••• , Bm with orders C1' ... , Cm respectively. If we now choose an 
ideal bq (q = 1, ... ,m) from each class, then by the definition of a basis, each 
ideal a is equivalent to exactly one product of powers 

(0::;; Xq < cq ; q = 1, ... ,m). (51) 

That is, we obtain all ideals 9 (integral and fractional) exactly once if in 

(52) 
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we let the number p run through all numbers of the field which are not 
associated and Xq run through all rational integers with the conditions (51). 
Thus if we determine the number Bq for each bq according to Theorem 98, 
where 

then obviously to each 9 of the form (52) there is assigned the number 

1 = pB~1 ... B~,m (53) 

such that the numbers of 9 are identical with those numbers of the field 
which are divisible by 1. If, in (53), we let p run through all numbers of the 
field, as well as the associated numbers, then we obtain a system of numbers 
which is called a system of ideal numbers for K. This system splits into h 
classes of ideal numbers, corresponding to the ideal classes. Each class 
contains the numbers (53) with the same system of exponents x q , and the 
set of all numbers of the same class (0 included) is closed under addition and 
subtraction. The set of all nonzero ideal numbers is also closed under 
multiplication and division. In this sense each ideal of K is really represent
able by a number in the sense of Theorem 98. 

This representation has gained a particular significance in the more recent 
investigations in analytic number theory. Yet, above all, it should be explicitly 
stated that the number field K(Bl' ... ,Bm) which has relative degree h with 
respect to K, is in general not identical to the so-called Hilbert class field of K. 

§34 Units and an Upper Bound for the Number of 
Fundamental Units 

In this and the following section we will gain a complete overview of the 
units which exist in a field K by proving a fundamental theorem of Dirichlet 
which is formulated later. The existence in K of infinitely many units is in 
general, along with the necessity of introducing the concept of an ideal, the 
second essential criterion which distinguishes the higher algebraic number 
fields from the field of rational numbers. 

First of all, the set of all units of the field K obviously forms an abelian 
group under composition by multiplication. Let this group of all units be 
denoted by <t. The group W, of all roots of unity in K, which contains at 
least two elements, namely ± 1, is contained as a subgroup in <t. 

Lemma (a). There are at most finitely many integers in K, which together 
with all their conjugates, do not exceed a given constant in absolute value. If 
all the conjugates of an integer in K have absolute value 1, then this integer is 
a root of unity. 
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Assume for the integer rx in K that the inequalities IrxU)1 ::; C hold, for 
i = 1,2, ... , n. Then from this an upper bound for the absolute values of 
the elementary symmetric functions of the rxu>, depending only on C and n, 
follows immediately. However these functions have integral rational values 
and they are the coefficients of the equation of degree n with roots rx(i); hence 
only finitely many possibilities exist for these coefficients. Therefore there 
are only finitely many equations of nth degree whose roots are integers and 
at the same time are all ::; C in absolute value. 

Moreover, if rx is an integer in K and IrxU)1 = 1 for i = 1, ... , n, then the 
same holds for all infinitely many powers rxq (q = 1, 2, ... ). By what has just 
been proved, these cannot all be distinct. Consequently some power rxq is 
= 1 and rx is a root of unity. 

Theorem 99. The group lID of all roots of unity in K is finite, and indeed it is 
a cyclic group of order w ~ 2. 

Since all roots of unity, including all conjugates, have absolute value 1, 
the first assertion follows from the lemma. Moreover if p is a prime dividing 
the order of lID, then the number of solutions of xP = 1 is equal to pI, and 
thus, by Theorem 28, the basis number of the group lID belonging to p is 
equal to 1. Thus the group is cyclic. 

For further investigations we introduce a definite numbering of the 
conjugate fields K(p). Let 8 be a number generating the field K and suppose 
that among the conjugates 8(1), 8(2), ... , 8(r') are real, and the remaining 2r2 
of the 8(P) are nonreal. In fact, assume that 

8(p+r 2 ) is complex conjugate to 8(p) for p = r l + 1, ... , r l + r2. 

By §19, this numbering carries over to the conjugates of all numbers in K, 
and thus we also have for each number rx in K, rx(l), ... , rx(r ll real and 

Irx(p+r2 )1 = Irx(p)1 for p = r l + 1, .. ·,1'1 + r2· 

Finally we define 

thus 

for p = 1,2, ... , r l , 

for p = r l + 1, ... , n; 

rl + r2 

I ep = n. 
p~l 

Now our goal is the following fundamental theorem of Dirichlet: 

(54) 

Theorem 100. The group (f of all units in K has a finite basis. Furthermore 
this basis consists of precisely r = r l + r2 - 1 elements of infinite order, 
while the remaining basis elements are roots of unity. 
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Thus this means: 
There are r + 1 units (, 111, '12' ... , '1" where ( is a wth root of unity, such 

that each unit of the field is obtained exactly once in the form 

where aI, ... , ar are all rational integers and a can only take the values 0, 1, 
2, ... , w - 1. The r units '11, ... , '1r are called fundamental units of the field. 

As preparation for the proof, which we will treat in this and the next 
section, we recall that k units 81 , ... , 8k of infinite order (that is, those which 
do not belong to W) are said to be independent in the sense of group theory, 
if a relation 

(55) 

with rational integers a only exists if all a1 = ... = an = O. However, along 
with the one relation (55) the analogous ones always hold for all conjugates 
and hence 

(i = 1,2, ... , n) 
or 

k 

L am logI8~)1 = O. (56) 
m=1 

(Here we mean the real values of the logarithms). Conversely, by Lemma (a), 
it follows immediately from the fact that relations (56) hold with rational 
integers a for all i = 1, 2, ... , n, that 81, ... , 8k cannot be independent since 
then the number 

would be an integer of K, which along with all conjugates would have 
absolute value 1. Hence it would be a root of unity with its wth power = 1. 
Now, however, from the r equations 

k 

L Ym logI8~)1 = 0 for i = 1,2, ... , r 1 + r2 - 1 (57) 
m= 1 

(for some Y), the truth of these equations follows automatically for the 
remaining indices i = r1 + r2 , ... , n. For since 8m is a unit 

'1 +r2 

L ep logI8~)1 = 0 (m = 1,2, ... , k), 
p=1 

and hence 

k 'l+r2-1 k 

er , +r2 L rm 10g18~' +r2 )1 = - L ep L rm logI8~)1 = 0; 
m=1 p=1 m=1 

hence (57) is also true for i = r 1 + r 2 and with this it is true, by (54), for 
i = 1, 2, ... , n. Consequently the k units 81 , ... ,8k are independent if and 
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only if the r linear homogeneous equations for the k unknowns Yl, ... , Yk 
k 

L Ym logl8~1 = 0 (i = 1,2, ... ,r) (58) 
m=l 

have no solutions in rational integers Y except Ym = O. 
Next we obtain an upper bound for the number k of independent units 

by the following 

Lemma (b). If the r relations (58) hold for the k units 8l> 82 , ... , 8k with some 
real Ym' which are not all zero, then r such relations also hold with rational 
integers Ym, which are not all zero. 

Obviously it is enough to prove this for those units which are not roots 
of unity. Suppose we choose a number q such that the r equations among 
the units 81, 82 , ..• ,8q - 1 

q-l 
L IXm logl8~1 = 0 (i = 1, ... , r) 

m=l 

hold only for IXl = ... = IXq -1 = 0 and on the other such that between the 
q units such a system 

q 

L 13m logI8~)1 = o. (i = 1,2, ... ,r) (59) 
m=l 

holds with real 131' ... ,f3q not all vanishing. Thus 2 :$; q :$; k, and by the 
assumption about q we necessarily have f3q #- 0 and the q - 1 quotients 
f3t1f3q, ... , f3q- tlf3q in (59) are uniquely determined. Lemma (b) will be proved 
once we show that these q - 1 quotients f3m/f3q (m = 1,2, ... ,q - 1) are 
rational numbers. 

If we set 
13m 
f3q = -IXm, (m = 1,2, ... ,q - 1), 

then it is a matter of checking the n equations 
q-l 

logI8~i)1 = L IXm logl8~1 (i = 1,2, ... , n). (60) 
m=l 

More generally, we now consider all units '1 whose logarithms can be repre
sented in the form 

q-l 
10gl'1(i)1 = L Pm logI8~)1 (i = 1,2, ... ,n) (61) 

m=l 

with some real Pm. If this representation is at all possible, the Pm are uniquely 
determined by '7 (because of the hypothesis about q). Among the systems 
(p 1, ... ,p q - 1) which appear here there are only finitely many whose elements 
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all have absolute value < 1, since for the corresponding 1J we have 

q-l 

jlogl1J(i)lj S m~l IlogIE~)11 (i = 1,2, ... ,n) 

and by Lemma (a) there can only be finitely many integers of the field with 
this property. Let H be the number of distinct systems P with IPil s 1. On 
the other hand, the set of all systems (PI, ... ,Pq -1) appearing in (61) has 
the property that along with (p l' ... ,p q _ 1) the system 

(Npl - nJ, Np2 - n2 , ••• , Npq_1 - nq _ I ), 

where N, n l , n2 , ••. , nq - 1 are arbitrary rational integers, also occurs in this 
set. Now for each N the nj, ... , nq -1 can be chosen so that for all numbers 
IN Pi - nil s! and for different values of N, if PI is irrational, the numbers 
N PI - nl always have different values. Thus, infinitely many systems 
(PI' ... ,Pq - d are obtained, where allipil < 1, contrary to what was proved 
above. Hence neither PI nor P2,' .. ,Pq -1 can be irrational, so all am in (60) 
are rational, and the lemma is proved. 

Moreover, we obtain at the same time, with respect to the denominators 
which may appear in the Pm' that there exists a fixed rational integer M i= 0, 
which depends only on EI, ... ,Eq - 1 but not on 1J in (61), such that MPm is 
a rational integer. In abbreviated notation, if PI has the form alb with rational 
integers a, b (b > 0), then among the numbers INP1 - nil, there are exactly 
b distinct numbers, namely 0, lib, ... , b -lib, which are < 1. Consequently 
b is not greater than the number H, defined above, of all systems (PI, ... , 

Pq -1) where alllpd < 1; thus H !Pl is an integer, and hence we may choose 
M = H 1. With this we have proved: 

Lemma (c). Assume that f;1o ... , Gk are units such that the r equations 

k 

L }'m 10g1G~1 = ° (i = 1,2, ... ,r), 
m=l 

with Yrn real, hold only for I'm = 0. Then there is a fixed rational integer M =f. ° 
such that the n expressions 

k 

L Pm 10gIE~)1 
m=l 

can be = 10gl1JU)1 (for i = 1,2, ... , n), where 1] is a unit in K, only if MPm is a 
rational integer. 

Furthermore, from Lemmas (b) and (c), it follows immediately that the 
number k of independent units of infinite order is at most r since for k > r 
the r linear homogeneous equations (58) for the k unknowns YJ, ... , Yk can 
surely be solved by real nonvanishing values, as the coefficients are real. 
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Moreover, from (c) we have: 

Lemma (d). The group m of all units has a finite basis, and the number k of 
basis elements of irifinite order is ::; r. 

For the prooflet Cl' ... , Ck be k units of infinite order and suppose there 
do not exist k + 1 independent elements of infinite order. Then, by (b) and 
(c), for each unit I] in K a system of equations 

k 

10gll](i)1 = L gm 10glc~)1 
m=1 M 

(i = 1,2, ... ,n) 

holds, for a certain positive rational integer M, where the gm are rational 
integers. From this it follows by Lemma (a) that 

where ( is a root of unity in K, that is, a wth root of unity. Hence we have 

with rational integral x. We now consider4 the totality of products of powers 
of the k + 1 numbers 

with arbitrary but fixed values of the roots. The set of these numbers form a 
(mixed) Abelian group for which HI,' .. , Hk+ 1 is a basis. By what has 
already been proved, the group (f of all units of K is contained as a subgroup, 
and indeed as a subgroup of finite index, since the M th power of each element 
belongs to (f. Thus, by Theorem 34, (f also has a finite basis, and the number 
of basis elements of infinite order in (f is ::; k. However, in any case, the wth 
powers of all units, hence also the k independent units c~, c2', ... , c;:" must 
occur among the products of powers of these base elements of infinite order. 
Consequently the number of these basis elements is exactly = k, and Lemma 
(d) is proved. 

§35 Dirichlet's Theorem about the Exact Number 
of Fundamental Units 

For a complete proof of Dirichlet's Theorem 100, we must still verify that 
the number k, which so far we have seen to be ::; r, is exactly equal to r = 

r l +r2 -1. 
Since n = rl + 2r2, r = !(n + r1 ) - 1 and thus r = 0 only if n + r1 = 2, 

that is, n = 2, r1 = 0 or n = 1, r1 = 1. These are the cases of the imaginary 
quadratic field and the trivial case of the rational number field. 

4 Here we recall the analogous method for the verification of the existence of a basis in §22. 



114 V General Arithmetic of Algebraic Number Fields 

Lemma (a). If I' = 0, the group (£: is identical to the group 'ill of the roots of 
unity in K. 

For in the imaginary quadratic field it follows immediately from N(e) = 

± 1 that ,,(1). 8(2) = + 1, and since 1£(1)1 = 1£(2)1, this unit, along with its 
conjugate has absolute value 1; hence this unit is a root of unity. 

Lemma (b). If I' > 0, then to each system of real numbers c1 , .•. , cn not all 
vanishing, there is associated a unit £ such that 

This second important conclusion in Dirichlet's train of thought rests on 
Minkowski's Theorem 95. 

If Xl, ... , Xn are n positive quantities such that 

X1'%2"'%n=l~dl, 
;;.{p+r2 = xp for p = 1'1 + 1, .. ·,1'1 + 1'2' 

then by Theorem 95 there is a nonzero integer CI. in K (whose norm thus has 
at least absolute value 1) such that 

Irx(i)1 S %i for i = 1,2, ... , n, 1 S I N(rx) I s ./d. 
From this it follows that 

>~~i_=~~ 
~X1"'Xn IJdI' 

(Moreover we may conclude from this that Idl > 1, for if Idl = 1 the equality 
sign would have to hold in each of these inequalities.) For this number rx, 
the expression 

L(x) = L em 10glrx(m)1 
m=l 

satisfies 

where A is chosen independent of rx and the x. The r quantities Xl, ... , Xr 

are positive numbers which can be chosen arbitrarily, so we can find a 
sequence of systems X\h), ... , X~h) (h = 1,2, ... ) such that 

r 

L em log ;;.{~) = 2Ah (h = 1,2, ... ), 
m=l 
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and for the corresponding CXh we have 

IL(cxh) - 2Ahl < A 

A(2h - 1) < L(CXh) < A(2h + 1). 
Consequently 

(62) 

while at the same time 
I N(cxh) I ::; I Jill· 

These infinitely many principal ideals (CXh) whose norms are not greater than 
Jil, cannot all be distinct; hence there must exist at least two distinct indices 
hand m such that 

(CXh) = (cxm ), hence IXm = ecxh, 

where e is a unit in k. For this e, by (62), 

L(CXh) =1= L(cxm) = L(ecxh) 

L(e) = L(ecxh) - L(CXh) =1= 0, 

and Lemma (b) is proved. From this we obtain 

Lemma (c). If r ~ 0, then the number k of independent units of the field is 
exactly = r. 

By (b) there is a unit e1 such that 

10gle~1)1 =1= O. 

Then if r > 1, there is likewise a unit e2 such that 

IIOgle\1)1 10gle~1)11 =1= 0 
logle\2)1 logle~2)1 

and so on. Thus we conclude from (b) the existence of r units e1, ••• , er for 
which the determinant 

loglen ... loglen 

It follows immediately from the nonvanishing of this determinant that none 
of these units is a root of unity and, at the same time, that the r linear homog
eneous equations for 'Y1' ... , 'YT 

T 

I 'Ym 10gle~1 = 0 (i = 1,2, ... , r) 
m=l 

have the single solution 'Y1 = 'Y2 = ... = 'YT = O. Consequently, by the theo
rems of the preceding section the number k of independent units of infinite 
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order is exactly = r, and together with Lemma (d), the validity of Dirichlet's 
unit theorem, Theorem 100, is established. 

By Theorem 38, §11, we see at once that between two systems of units in 
K:l11"'" 11, and [;1"'" E;" equations of the form 

(m = 1,2, ... ,r) 

hold, where the (m are roots of unity, while the amk are rational integers with 
determinant ± 1. Thus for each system of fundamental units of K the abso
lute value of the determinant 

10gll1n ... 10gll1t>i 

has the same nonzero value; thus this value is a constant of the field. 
The absolute value R of the determinant 

= ±R 

is called the regulator R of the field K. 

§36 Different and Discriminant 

In this section we concern ourselves with deeper properties of the discrimi
nant d of the field K. Hitherto d was defined rather formally as the deter
minant of a basis of the field; we now try to find a definition of d based on 
intrinsic properties, which then has the advantage that it can be carried over 
to relative fields (§38). 

We first define the different of the number rx(p) in K(p) as the number 

b(rx(p») = TI (rx(p) - rx(h»). 
h*p 

If F(x) is the nth-degree polynomial with rational coefficients and leading 
coefficient 1 which has the n quantities :x(1), ... , rx(n) as roots, then obviously 

(63) 

Accordingly, b(rx(p») is a number in K(p) and, by Theorem 54, it vanishes if 
and only if rx is a number of lower degree than n. We then find the value 

d(:x) = TI (rx(i) - :x(k)f 

n~i>k?!:.l 

for the discriminant of the number rx. 
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Now let a (1' 0) be an arbitrary ideal in K with the basis lXI' ••• , IXn' 

Theorem 101. The set of numbers A in K, for which the trace 

n 

S(AIX) = L: A(P)IX(P) = integer (64) 
p=1 

for each number IX in a, forms an ideal m. Here ma is an ideal independent of 
a, determined only by the field K, and it is the reciprocal of an integral ideal b. 
A basis for m can be formed from the n numbers PI> ... ,Pn which are deter
mined along with their conjugates by the equations 

(i,k = 1,2, ... ,n) (65) 

where eik = 1 if i = k, otherwise eik = O. 

PROOF. The numbers A with the property (64) cannot have arbitrarily large 
ideal denominators. This is true since the hypothesis is equivalent to n 
equations 

(k = 1,2, ... ,n), 

where the gk are rational integers, and from the n linear equations for 
A(1), ... , A(n) these A(i) are obtained as quotients of two determinants. The 
denominator is the fixed determinant of the lX~i) which is equal to N(a).jd. 
The numerator is an integral polynomial in the 1X~1. Consequently there is an 
integer w depending only on the IX, such that WA is an integer. Moreover, if 
Al and A2 belong to this set of A, then for all integers ~l> ~2 

S((AI~I + A2~2)IX) = S(AI~IIX) + S(A2~2IX) 
is also an integer, since ~11X, ~21X belong to the ideal a; thus Al~1 + A2~2 also 
belong to the set of A. By §31 this set is thus an ideal which depends on a and 
is denoted by m = m(a). Furthermore we have am(a) = m(l) which is thus 
independent of a since if A belongs to m(a), then for each~, S(AlXk~) is also an 
integer, that is, AlXk belongs to m(l). Conversely, if p. belongs to m(l) and 
PI' ... , Pn denotes a basis for l/a, then IXPk is an integer and hence S(P.PklX) 
is an integer, that is, the products of p. with every number in l/a belong to 
m(a), thus p. belongs to am(a). 

Moreover m(l) is the reciprocal of an integral ideal b, as the number 1 
obviously belongs to m(l). Consequently 

1 
m = m(a) = ab' 

where b is an integral ideal independent of a. 
Finally if we define the n2 numbers p<,P) by the uniquely solvable equations 

n 

L: P\P)IX}f') = eik (i,k = 1,2, ... ,n) (65) 
p=l 
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and if we set 
(k = 1, 2, . . . , n), 

where Ie satisfies (64), then we also have 

Consequently 

and the fJl' ... ,fJn form a basis for m(a), provided they are numbers in K. 
The latter fact is obtained directly from the representation of the solutions 
of (65) as a determinant. Alternatively by multiplication by .c>:~q) and summa
tion over i we can deduce from (65) the equivalent system of equations 

P P 

and from this we can deduce 

or 

I mp)S(C>:jC>:k) = C>:kP), 
i~l 

Since the coefficients on the left-hand side are now rational, the fJ~P) are 
numbers in K(p). Hence Theorem 101 is proved. 

For later applications (Chapter 8), we formulate this result in yet another 
way: 

Theorem 102. IfC>:l' ... , 'C>:n are basis elements of the ideal a, then the n se
quences of numbers fJ\P), ... , fJ~P) (p = 1, ... , n), which are defined by (65), are 
conjugate sequences of numbers in K, and fJl' ... , fJn forms a basis for 1jab. 

Since, moreover, 

and by (47) 

we have 

Theorem 103. N(b) = i4 

This ideal b defined by Theorem 101 is called the different or the basic 
ideal of the .field. 
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Now in order to discover the fundamental connection between this dif
ferent of the field and the differents of the numbers in K, we must investigate 
the set of numbers in K which can be represented in the form 

G(O) = ao + alO + a202 + ... + an_l(1'-l 

with rational integers ai' Let 0 be an integer which generates the field K. Let 
the set of numbers g(O) with rational integers ai be called a number ring or an 
integral domain and let it be denoted by R(O). In the first place, the numbers 
of the ring certainly form a module with basis elements 1, e, 02, ... , en - l , 

and secondly they are closed under multiplication. 

Lemma (a). Each number (X of the field, for which b(X is integral can be rep
resented in the form 

p 
(X = F'(O) 

where p is an integer of the ring R(O) and F'(O) is the different of e as in (63). 

For the proof we consider the polynomial in x 

G( ) = ~ (i) F(x) 
x L... (X ll(i)' 

i= 1 X - v . 
where 

n 

F(x) = Il (x - O(i) = Co + ClX + ... + cn_lxn- 1 + cnxn. 
i= 1 

G(x) is a polynomial with rational integral coefficients since 

and hence 

F(x) 

x-e 
F(x) - F(O) = ± Ch I xroh-r-1 

X - 0 h=l O,;r";h-l 

n 

G(x) = L Ch I xrs«(Xoh-r-l). 
h=l O";r,,;h-l 

(66) 

However since (Xb is integral by hypothesis, the traces appearing here are 
rational integers by Theorem 101. If we set x = 0 in (66) we obtain 

G(e) 
(X = P(O), 

where, in fact, G(e) is a number of the ring. 
From this it follows that P(O) . (X is an integer if b(X is integral, thus F'(O) 

has the decomposition 
F'(e) = bf (67) 

where f is an integral ideal. 
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Lemma (b). For each numher p which belongs to the ring R({}), we hace 

S(F~&j) = integer. 

Obviously this assertion needs only to be proved for p = 1, e, ... , fJ" - l, 

where it follows directly from the so-called Euler formulas 

I _~~~ __ = {o for k = 0, 1, 2, ... , n - 2, 
i= 1 FU)(')) 1 for k = 11 - 1. 

These formulas follow, as we mention for the sake of completeness, from 
the Lagrange interpolation formula 

" ()(i)k+ 1 F(xj {XUl for k = 0,1. ... , n - 2, 

i~l T(fF') :~=--i~i) = x" - F(xj for k = 11 - I, 

if we set x = ° (or also if we expand in powers of l/x after division by F(x)). 

Theorem 104. All numbers of the ideal f = F(O)/D belong to the ring R(e), and 
if all numbers o( an ideal a belong to the ring R(e), then a is divisible by f. 

If w == ° (mod f), then lL = wi FW) is a number with denominator b, and 
by Lemma (a), lLF(Oj must be a number of this ring. Hence the first part of 
our theorem is proved. 

Conversely, if all numbers of a are numbers of the ring, then by Lemma (b) 
S(lL/F(O)) is an integer for all numbers lL in a. Consequently, by Theorem 101, 
I/F(e) is a number of the ideal m(a) = 1/ab; thus FW) = bf divides ab so 
f I a, which was to be proved. 

This theorem thus yields a new definition of f; f is the GCD of all ideals 
in K which contain only numbers o( the ring. The ideal f is called the conductor 
of the rinu· 

Lemma (c). There are ailvays rings R(O) in K whose conductor f is not divisihle 
by an arbitrary prime ideal p. 

If w is an integer divisible by p but not p2, then the expression 

(68) 

obviously represents all residue classes mod ph + 1, if i'o, ... , ~'h run indepen
dently through a complete system of residues mod p. Now let 0 be a primitive 
root mod p such that for the number, 

w = ()!I/(pj - Ii 

which is divisible by p is not divisible by p2. (If 0 does not have the latter 
property, then nonetheless e + n surely does as long as n is a number which 
is divisible by p but not by p2.) Moreover, by a modification mod p2 we can 
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arrange that e is different from all of its conjugates, and in addition 

e == 0 (mod a), where p = pea, (a, p) = 1, 

and p is the rational prime which is divisible by p. 
If we now let II; in (68) run through the N(p) numbers 

0, e, e2, ... ,8N(v)-1 
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(69) 

which are incongruent mod p, we see that each residue class mod ph can be 
represented by a number of the ring R(8). But then, if(69) holds, the conductor 
f of the ring cannot be divisible by p. For if 

N(bf) = pka, where (a, p) = 1, 

then to begin with, by the above, to each integer (J) there is a number P of 
the ring such that 

n = (J) - P == 0 (mod pek). 

Here naek is divisible by F(8) = bf, as the decomposition 

na8k n8kN(bf) N(bf) nek 
F(8) bfpk bf pekQk 

shows by (69). Hence by Lemma (a), this number can be represented in the 
form 

na8k 

F(8) 
h PI 

t us n = a8k ' 

where PI is a number in R(e). However, then 

aek(J) = a8k(p + n) = a8kp + P1 

is likewise a number of the ring, and the ideal aek (which is not divisible by 
p) contains only numbers of the ring. Thus by Theorem 104 it is divisible 
by f; consequently f is also not divisible by p. From this we immediately 
obtain the main theorem of this theory: 

Theorem 105. The greatest common divisor of the differents Ci(8) of all integers 
e in K is equal to the different b of the field. 

It is a noteworthy fact that in contrast to the different, the discriminant d 
of the field is indeed a common divisor of the discriminant d(e) of all integers 
() in K, but need not be the greatest common divisor of the sames. 

5 R. Dedekind, Uber den Zusammenhang zwischen der Theorie der Ideale und der Theorie 
der hi:iheren Kongruenzen, and: Uber die Diskriminanten endlicher Ki:irper, Abh. d. K. Ges. d. 
Wiss zu Giillingen 1878 and 1882 and as well the later papers of Hensel in Crelles Journal, 
Vol. 105 (1889) and Vol. 113 (1894). 
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§37 Relative Fields and Relations between Ideals 
in Different Fields 

We now turn to the problem of how to modify the concepts which were 
developed in the preceding sections to the case in which the field K is no 
longer considered relative to k(l), but rather to any algebraic number field 
k which is a subfield of K. Of course the ideal theory developed until now 
holds in k just as in K. Can a relationship be found between the ideals in K 
and the ideals in k? 

We agree to denote elements of K (numbers or ideals) by capital letters, 
while small letters always denote elements in k. Let K have relative degree 
m with respect to k (compare §20, Theorem 59), while the degrees of K and 
k with respect to the rational number field are Nand n respectively. Then 

N =n·m. 

Furthermore, q arbitrary numbers :Xl, ... , :Xq of k define an ideal in K 
and an ideal in k, both ideals to be denoted by (cx l , ... ,cxq ) which we dis
tinguish by 

(70) 

Moreover, if a number f3 belongs to a, then it of course also belongs to ilL 
The converse is also true: 

Lemma (a). If f3 belongs to Ill, then, provided (70) holds, f3 also belongs to a. 

If an equation 

with integers Th in K holds, then the equations 

(i = I, 2, ... , m) 

with the corresponding relative conjugates also hold and by multiplication 
it follows that 

Obviously, for indeterminates Xl' ... , xq , the expression 

(71) 

is a homogeneous polynomial in Xl, ... , Xq of degree m where 
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These coefficients y, as symmetric integral expressions in the r~i), are integers 
in k. For Xh = ct.h (h = 1,2, ... ,q) Equation (71) is thus a number from the 
ideal am. Consequently rr/am is an integer; hence p/a is also an integer, 
that is, P occurs in a. 

Thus, by (70), if we have a further pair of corresponding ideals, 

b = (Pl'··· ,Ps)k and ~ = (Pl'··· ,Ps)K' 

then we have 

Lemma (b). If a = b, then m: = ~ and conversely. 

The first part is obvious. For the converse, if m: = ~, then each P belongs 
to m:, and by Lemma (a) it then also belongs to a. Likewise each ct. belongs 
to ~, thus also to b; consequently a = b. 

Let us now assign to each ideal a in k an ideal m: in K by the following 
prescription: we set a = (ct. l , ... ,ct.q)k and define m: = (ct. l , ... ,ct.q)K. By 
Lemma (b) this prescription yields an ideal m: fully determined by a (inde
pendent of the representation of a) and indeed in this way we obviously 
arrive at every ideal in K which can be represented as the GCD of numbers 
of the ground field. This correspondence, expressed by symbols 

(72) 

according to Lemma (b) is moreover a unique one-to-one mapping. Conse
quently, we have 

Theorem 106. By (72) there exists a well-defined invertible correspondence 
between all ideals in k on the one hand and all ideals in K which can be rep
resented as the GCD of numbers in k on the other hand, such that for an arbi
trary number ct. in k the two statements "ct. belongs to a" and "ct. belongs to m:" 
are true simultaneously, if (72) holds. Moreover we also have 

ab +=! m:~, if a +=! m: and b +=! ~. 

Definition. We thus call two ideals connected by (72) equal to one another 
and we say that the ideal m: in K lies in the field k. 

Since the relation" =" between ideals of different fields has not yet been 
defined, this definition contains no contradiction to earlier stipulations. By 
Theorem 106 the following rules hold: 

(1) From a = m: and a = b it follows that b = m:. 
(2) From a = m: and b = m: it follows that a = b. 
(3) From a = m: and m: = ~ it follows that a = ~. 
(4) From a = m: and b = ~ it follows that ab = m:~. 
(5) From aP = m:p it follows that a = m: (p a rational integer). 
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The meaning of these assertions is that the relation "=" between ideals 
in different fields is a generalization of the already defined relation, likewise 
indicated by the symbol" = ," between ideals of the same field. 

Thus, by the above definition, we can decide whether two symbols 

are to be regarded as equal or not. Here K is to be regarded as an extension 
field of k. However in some cases the two symbols can already have a meaning 
in a subfield K' of K, and now we wish to see whether from equality in one 
field one can also deduce equality in other fields. 

In fact this is the case since if K' is an extension fIeld of k but a subfield 
of K, such that A belongs to K', then it obviously follows immediately from 

(73) 
that 

(IX 1,··· ,IXq)K = (A 1,··· ,As)K' 

Conversely, however, if the latter equation is valid, then by the second part 
of Lemma (b) applied to the extension field K of K', Equation (73) is also 
valid in K'. 

Accordingly the symbol (IX1' ..• ,IXq ) defines the same ideal in every field 
in which it has any meaning at all. And now we can decide whether or not 
two ideals a l and a2 , which are defined as the GCD of numbers of two 
arbitrary fields k l' k2 respectively, are equal. To do this consider any field 
K which contains k I as well as k2 and determine whether or not these two 
GCDs are equal in K in the sense of our very first definition of equality of 
ideals (§24). The result is the same in all fields. Thus in the notation a = 

(lXI' ... ,IXq) we need not make reference to a definite field. By rule 4 the 
product of two ideals 0, b is an ideal which is completely determined by 
o and b; the same holds for the quotient and the GCD. 

In particular the statement 'The algebraic integers lXI' ... , IXq are relatively 
prime (have the GCD (1))" is independent of reference to a special number 
field and is equivalent to the statement 'There are algebraic integers ;'1' ... . I.q 

for which 
i' 1 IX 1 + ... + i.qIXq = 1." 

It is then a remarkable fact, which follows immediately from our stipulations, 
that if any integers A with this property exist, they may always be chosen 
from the number field, which is generated by lXI' ... ,IXq. 

It should be emphasized, however, that although an ideal 0 distinguishes 
a definite number field in this way, in general a does not lie in each number 
field in the sense of the above definition. For example 

holds because the square is equal to (5). Thus, for example, a belongs to the 
two quadratic number fields k(~iO) and k(J5) but not to the field k(1). 
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The property of being a prime ideal belongs to an ideal only with respect 
to a definite field in which it lies. 

If we now connect these concepts with the theorems in §33 about ideal 
numbers, then we obtain the following: If a is an ideal in k and ah is equal to 
the principal ideal (0)) in k, then the equation 

a = (ifcO) 

has meaning according to our present stipulation and indeed it is a valid 
equation. Furthermore, if the number A in the system of ideal numbers of 
k is assigned to the ideal a, then likewise a = (A) holds. The set of all ideal 
numbers belongs to a field of relative degree hover k, and this fact can then 
also be expressed as follows: if h is the class number of k, then there is a 
relative field of relative degree hover k in which all ideals of k become 
principal ideals. The relative field is not uniquely determined by this require
ment, by any means. Also its class number need not be 1. 

§38 Relative Norms of Numbers and Ideals, Relative 
Differents, and Relative Discriminants 

If A is some number in K and if A(i) (i = 1, ... ,m) are its relative conjugates 
with respect to k, then 

Sk(A) = A(l) + A(2) + ... + A(m) 

Nk(A) = A(l) . A(2) ... A(m) 

are called the relative trace and the relative norm of A respectively (with 
respect to k). They are numbers in k. If Sand s denote the traces in K and 
in k, with respect to k(1), likewise Nand n denote the norms in K and in k, 
then, by Theorem 59, 

S(A) = s(Sk(A)); N(A) = n(Nk(A)). (74) 
The number 

m 

bk(A(q») = IT (A(q) - A(i») 
i= 1, i*q 

is called the relative different of A(q) in the field K(q) with respect to k; it is a 
number in the field K(q). If 

m 

<1>(x) = IT (x - A(i») = xm + OC 1 Xm - 1 + ... + OCm - 1 X + OCm 

i= 1 

(where the OCr are obviously numbers in k), then 
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The product 

i::s i<q:'S,rti i= 1 

is called the relative discriminant of A; it is a number in k. 
If III is an ideal in K, then the relative conjugate ideal Illli) arises if one 

replaces each number A in III by A(i). Obviously for two ideals III and ~ 
we have 

Definition. The ideal 

j'<\('ll) = '1(11) . '11(2) ... Illlmi 

is called the relative norm of 1]( with respect to k. We have N k(I](~) = 

N k (lll) . Nk(~)' 

Theorem 107. The ideal .t\>\('lI) is an ideal in k. If k is the field of rational 
numbers, then N k(lll) = (N(Ill)). 

To begin let 1]1 = (A j, .•. ,A,) be an integral ideal, where the Ai are 
numbers in K. Then, by §28, for any variables u l , ... , u" the content of the 
conjugate polynomials 

F(i)(uj = A\i)U j + ... + A;i)us 

is equal to Ill li ). Hence, by Theorem 87, 

1ll(1 I ... Ill lmi = J(F(1 I) ... J(F1m») = J(F1l) ... F1m »). 

However the polynomial 

Q(u) = F(l I. FI21 ... F(m) 

is obviously a polynomial over k; thus J(Q) is an ideal in k. Thus the first 
part of Theorem 107 is proved, if we recall that each ideal can be written as 
the quotient of two integral ideals, and by definition 

N (I]l) = ~1«1ll) 
k ~ Nk(~)' 

For the proof of the second part of Theorem 107, let h be the class number 
of K. Then I]lh = (A), where A is a certain number in K, and 

Nk(l]l)h = N k (lll h) = N((A)) = (N(A)). 
Since 

± N(A) = N(lllh) = N(l]l)h = a\ where a = N(Ill), 

we have 
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Thus Theorem 88 of §29, which was only proved in the case of Galois 
fields, is now seen as valid for every number field, and at the same time the 
terminology "norm of m" for the number of residue classes mod m has 
received its justification. 

Theorem 108. For each prime ideal ~ of K there is exactly one prime ideal p 
in k which is divisible by ~. Then 

Nk(~) = pit, 

where fl is a natural number ~ m. fl is called the relative degree of ~ with 
respect to k. p splits into at most m factors in K. 

By Theorem 107 Nk(~) is an ideal in k which, by definition, is divisible 
by~. If Nk(~) is decomposed into its prime factors, then by the fundamental 
theorem ~ must divide at least one of these prime ideals in k. If ~ were to 
divide two distinct prime ideals PI> P2 in k then it would also have to be a 
divisor of (Pl, P2) = 1, which, however, cannot be the case. Thus there exists 
exactly one prime ideal P in k which is divisible by ~. If the decomposition 
of P into prime ideals in K is, say, 

P = ~ 1 . ~2 ... ~v, 

then it follows that for the relative norm 

Nk(~l) . Nk(~2)' .. Nk(~v) = Nk(p) = pm. 

By the preceding theorem, each factor on the left is an ideal in k and by this 
equation each factor must be a power of p. Therefore 

N(~;) = pI, and f1 + f2 + ... + fv = m; 
hence 

/; ~ m and v ~ m. 

Theorem 109. If N denotes the norm in K and n denotes the norm in k, then 
for each ideal m in K 

To begin with, this assertion follows immediately for each number A in 
K, by (74). By Theorem 107, or also by consideration of the principal ideal 
mh, the result is also obtained for each ideal in K. 

Theorem 110. If the relative degree of the prime ideal ~ is equal to 1, then 
each number in K is congruent modulo ~ to a number in k. 

By Theorem 108, N(~) = n(p)It; hence for fl = 1 the number ofresidue 
classes mod ~ in K is equal to the number of residue classes mod p in k. 
However if a number a in k is divisible by ~, then (a, p) is divisible at least 
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by ~, so that (:x, p) =1= 1. Hence as an ideal in k, (:x, p) is necessarily = p. Con
sequently a system of incongruent numbers mod p in k is also incongruent 
mod ~ and thus there are n(p) = N(~) incongruent numbers modulo ~ in k. 

We take special note of the following fact: If a number A in K is equal to 
its relative conjugates then, by Theorem 56, it is a number in k. However the 
corresponding statement is not valid for ideals. For example the ideal (,/5) 
is equal to its conjugates with respect to k(1) in K(./5), but ("Is) is not an 
ideal in k(l). 

Finally the concepts in §36 can be extended to relative fields and lead to 
a definition of relative discriminant. 

Definition. The set of numbers Ll in K, such that for each integer A in K the 
relative trace Sk(LlA) is an integer forms an ideal 931 in K. Furthermore, 

is an integral ideal and is called the relative different of K with respect to k. 

The proof that 9Jl and !\ are ideals runs parallel to that of Theorem 101. 

Theorem 111. If 'D and!) are the differents of K and k respectively, then for 

the relative differents nk the relation 

(75) 
holds. 

PROOF. If Ll is a number in K such that Llnk!) is integral, then by the definition 
ofnk , 

bSk(LlA) is integral (76) 

for each integer A, since for each number ~ in k which is divisible by b 

Sk(LlA~) = ~Sk(LlA) 

is an integer. From the definition ofl), s(SdLlA)) is an integer by (76). Hence 
S( Ll A) is an integer and th us 

'DLl is integral if!'k . bLl is integral. 

Conversely, if nLl is integral, then for each integer A in K and each integer 
~ in k, S(LlA¢) is integral; hence 

s(Sk(LlA¢) = s(~Sk(LlA)) 

is an integer. Thus 

bSk(LlA) is integral, that is, Sk (p LlA) is integral 

if p is any number ofb in k and hence p Ll!\ is integral. Thus we have shown 
that if nLl is integral, :DkbLl is also integral, from which Theorem 111 follows. 
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The meaning of the relative different which already emerges from this 
simple equation (75) will become yet more evident when we prove the 
following fact, which can also serve as the definition of :'tlk • 

Theorem 112. The relative different of K is the GCD of all relative differents 
of integers of K with respect to k. 

For the proof of this theorem we must proceed almost exactly as in the 
proof of Theorem 105. 

If 8 is an integer generating the field K, then the relative ring Rk(8) is the 
set of all numbers 

0: 0 + 0: 18 + ... + O:m _ 1 8m - 1 

where 0:0 , ... ,O:m-l run through all integers in k. If <1>(x) is the irreducible 
polynomial over k with leading coefficient 1 which has the root 8, then we 
have the following lemmas which are proved as in §36: 

Lemma (a). If A is an integer in K such that A:'tlk is integral, then A can be 
represented in the form 

B 
A = C/J'(8)' 

where B is a number in Rk(8). Thus <1>'(8) is divisible by :'tlk . 

Lemma (b). For each number Bin Rk(8) 

Sk (<1>~8») is integral. 

Theorem 113. The GCD of all ideals in K which contain only numbers in 
R k (8) is !y, where !Y:'tlk = <1>'(8). 

Lemma (c). Corresponding to each prime ideal ~ in K there is a relative ring 
Rk(O), where ~ does not divide !Y = <1>'(8):'tl; 1. 

To see this let p be the prime ideal in k which is divisible by ~, 

p = ~eml' where (m,~) = 1. 

Let A be a primitive root mod ~ such that each integer in K is congruent 
to a number in Rk(A) modulo each power of ~, and such that 

A == 0 (mod m). 

Finally let /3 be a number in k which is divisible by C/J'(A) = :'tlk!y and assume 
that ph is the highest power of p dividing /3. Then an appropriate power of 
/3, say 0: = /3\ furnishes a decomposition into two numerical factors in k, 

0: = iT· J.l, where iT = phb, (J.l,p) = 1. 

0: == 0 (mod !y:'tlk). 
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Then let us determine, for an arbitrarily given integer ,1 in K, a number r 
in Rk(A), such that 

,1 == r (mod -pehb). 

The number BflA hh = (,c1 - T)pAII/J is then divisible by !)k~ = <P'(A), since 

BpAhb np BAhb 'l. BAhb .. 
p'(A) = !)k6 -n- = !"klj ''behbl!!hb IS mtegral. 

If we apply Lemma (a), we thus obtain a representation 

,1,uAhb = number in Rk(A) 

for each ,1, from which by Theorem L13, ,uAhb generates an ideal which is 
divisible by 6. Thus, in any case, it follows that (Y is prime to -p. 

With this Theorem 112 is also proved. 
We then define the relative discriminant of K with respect to k to be the 

relative norm of the relative different of K. By Theorem 103 the discriminant 
ideal with respect to k(1), defined in this way, is then the same as the ideal 
(d), where d is the discriminant of K. However we must distinquish the 
discriminant of a field, which is a well-defined number d, from the relative 
discriminant of the same field with respect to k(I), which is an ideal, namely 
(d). 

To finish the investigations about differents we finally prove the following 
theorem, which is tied to the general problem which we posed at the beginning 
of §29 for the ground field k = k(l): 

Theorem 114. fl a prime ideal'll in K divides a prime ideal p in k to a higher 
power than the first, then -p is afactor of the relative different of K with respect 
to k. Thus there can only exist finitely many prime ideals'll of this kind. 

For a proof, let the decomposition ofp in K be 

p = -pel!!, where (I!!, -p) = 1, e ::?: 2. 

For each integer A in K we now have, by the often used properties of the 
binomial coefficients (~), 

Sk(AjP == Sk(AP) (mod pi, hence also mod p, 

if p is the rational prime which is divisible by p. If we now choose 

A == 0 (mod -pe-ll!!), 
then since e ::?: 2 

AP==O(modp) and Sk(AP)==O(modp). 

Hence, by (77), it follows from (78) that 

Sk(A) == 0 (mod p) if A == 0 (mod 'lle-l~l). 

(77) 

(78) 

(79) 
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Now let 0( be a nonintegral number in k with ideal denominator p, 

a 
0(=

p' 
(a,p) = 1. 
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By (79), if A runs through all numbers of ~e-lm:, that is, all numbers of 
a/~, then 

O(Sk(A) = Sk(O(A) is integral. 

Thus by definition ~ divides the relative different 'tlk • 

The converse of Theorem 114 is also valid but more difficult to prove. 
Here we only treat the special case of relative Galois fields K. 

Theorem 115. Suppose that K is identical with all relative conjugate fields 
with respect to k (that is, suppose that K is a relative Galois field). Then the 
only prime ideals of K dividing the relative different 'tlk of K are those which 
divide a prime ideal of k to a power higher than the first. 

Up is a prime ideal in k and ~ is a prime divisor ofp whose square does 
not divide p, then the relatively conjugate prime ideals ~(i) also divide p to 
exactly the first power. The relative norm pI of ~ is the product of all the 
~(i), and the latter split into sets, each consisting of f primes which coincide 
with one another; there are exactly mlf distinct ones among the ~(i). Let 
~(1), •.• , ~(J) be those which are identical with ~. 

For the proof of Theorem 115 it suffices, by Theorem 112, to display a 
number A in K whose different is not divisible by this ~. We choose A to be 
a primitive root mod ~ which is divisible by p~ - 1. Now, by the above, 
~(I+ 1), ... , ~(m) are different from ~ so 

;(i) is divisible by ~ for i = f + 1, ... , m. 

Consequently, 

A(i) == ° (mod~) for i = f + 1, ... ,m. 

On the other hand, if 
m 

<1>(x) = TI (x - A(r») 
r=l 

is a polynomial over k, then, by (44), 

(<1>(x))n(p) == <1>(xn(P») (mod p); 

consequently in any case <1>(x) == ° (mod ~) has the roots 0, A, An(p), ... , 
An(p)f - '. Since A is a primitive root mod ~, these f + 1 numbers are surely 
distinct mod ~. Because of the decomposition of <1>(x) into factors there 
must occur at least f + 1 distinct numbers mod ~ among the numbers 
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A(1l, ... , A(m), and since the last m - f are congruent to zero mod'll, 
A (11, ... , A (f) are distinct mod'll. The relative different 

bk (A(1)) = (A(1) - A(2)) ... (A(1) _ Aim)) 

is thus not divisible by 'lJ and our theorem is proved. 

§39 Decomposition Laws in the Relative 
Fields K(~) 

We now investigate, as a most important example, the decomposition laws 
of prime ideals of a ground field k in a relative field K which arise by adjoining 
an l-th root of some number J1 in k. In this case we make the 

Hypothesis: The field k contains the lth root of unity ( = e21rill, where 
I is a positive rational prime (possibly 2). 

Lemma. The numbers I - (a (a ¥= 0 tmod I) are all associated. They satisfy 
the ideal equation 

(80) 

To see this let a and a 1 be rational integers coprime to t. Then we determine 
a positive rational integer b such that 

Consequently, 

1 _ ((II 

1 _ (a 

ab == a l (mod I), thus (a 1 = (ab. 

1 _ .e(ln 
_____ s_ = 1 + ~a + ~2a + _ .. + (Ib--l)a 
l ea •• • 
-~ 

is an integer and the same follows for the inverse quotient; thus this quotient 
must be a unit. 

Moreover the polynomial 

1 + x + x 2 + --. + x l - 1 = Xl - 11 = (x _ ()(x _ (2) ... (x _ (1- 1), 
x-

evaluated at x = 1 yields 

t = (1 - ()(I - (2) ... (1 _ (1-1), 

from which the ideal equation (80) follows, by what we have just done. 
Moreover, from this lemma we infer the fact that the field k(O has degree 

exactly 1- 1. For by §30 the degree of k(O is at most cp(l) = 1- 1. On the 
other hand, the prime I becomes the (I - l)st power of an ideal in k((); 
consequently, by Theorem 81, the degree is at least 1- 1, thus exactly 1- 1. 
Moreover, 1 - ( is accordingly also a prime ideal in ke~. 
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Theorem 116. If J.1 is a number in k which is not the Ith power of a number 
in k, then the field K(J/t; k) has the relative degree I with respect to k. The 
field K(J/t; k) is identical with its relative-conjugate fields. 

The number M = J/t (suppose that the value of the root is somehow 
fixed) satisfies the equation Xl - J.1 = 0, whose roots are the I numbers 

:aM (a=O,l .... ,I-l). 

In any case all relative conjugates of M must occur among them. Let these 
conjugates be the m (m S I) numbers elM, ... ,:amM. As a relative norm 
of M, their product is a number in k; accordingly Mm belongs to k, but so 
does MI = J.1. Since 1 is a prime if m < I, then m is relatively prime to l. Con
sequently M itself can be represented as a product of powers of MI and M m 

and thus is a number in k, in which case the relative degree is = 1. Therefore 
the only possibilities are m = 1 or m = I; with this the theorem is proved. 

From here on we assume that the relative degree of K(1p; k) is equal to 
I. The numbers M 1 = ~ and M 2 = ~rjl2 obviously generate the same 
relative field if an equation 

holds, where CI. is a number in k and a and h are rational integers not divisible 
by I. Each number in K can be put in the form 

A = Cl.o + Cl. 1M + ... -+- (X1-1 Ai ! 1 

in exactly one way, where the Cl.o,' ..• CI., _ 1 are numbers in k. The rela
tive conjugates of A are obtained by replacing M s~lccessjvely by :M, 
:2 M, .... :/-1 M. In general sA denotes that number among the relative 
conjugate numbers which arises if M is repbced by : Ai: 

sA = (Xo + Cl.t(:M) + Cl.2(CH)2 + .. +- "XI_l((Jvll11 

sM = (M. 

For each rational integer n (n ~ 1) 

slA = sA, 

so that we always have 

for each positive rational integer m. These I "suhstnetlOns" s, s 2. . , ./ then 
obviously form a cyclic group of order I, where Sl pLlys the rde of the unit 
element. The negative powers of s are then defined as in §5 : 

sOA = A, s-IA = Sl-IA, s-"A = s1((-lJA (11 > 0) 

From Theorem 55 it follows immedia1ely that iTery rational equa[wn 
between the numbers AI, A 2 , ... in K with coefficiellis in k remains valid !J 
AI> A 2 , ... are replaced simultaneously by sA l' sA 2 , "lind consequently also 
if AI, Az",. are replaced by smAb smA" 
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Because of this fact, the cyclic group: (s, ,,2, ... ,,,1-1, Sl) is called the 
Galois group of the field K with respect to k and K is called a relatively 
cyclic field with respect to k. 

Since the relative degree I is a prime, by Theorem 54 a number A in K 
is either distinct from all numbers sA, s2A, ... , SI-1 A or it is equal to all 
these numbers. 

We also use the substitution symbol stll with ideals so that sm'll is to denote, 
among the ideals conjugate to 'l1, that ideal which arises when all numbers 
A in '11 are replaced by smA. 

Theorem 117. On!.v the jill/owing possi/Jilities exist for the behavior o{ a prime 
ideal p o{ k under passage to K: 

p remains a prime ideal in K, 
p becomes the Ith power o{ a prime ideal ill k, 
p becomes the product o{ I distinct prime ideals in K. 

Let 'l3 be a prime ideal in K which divides p. Then, by Theorem 107, thc 
relative norm of 'l3 is 

'l3' s'l3'" sl-l'l3 = pil, 

where f; is the relative degree of 'l3; thus no prime ideal other than the prime 
ideals sm'l3 divides p. Now if'l3 is equal to one of the sm'l3 (m ot 0 (mod I)), 
and consequently equal to all sm'l3, we then have, for a rational integer a 

p = 'l3a . 

By taking relative norms it follows that pi = pilU, I = f~ a; thus a = 1 and 
p remains a prime ideal in K or a = I and p becomes the Ith power of a prime 
ideal 'l3. On the other hand if 'l3 is distinct from all relatively conjugate 
ideals then a decomposition 

p = 'l3u • (s'l3t' ... (Sl- l'lW' I 

holds. If we apply the substitutions 05, ,,2, ... , SI-1 to this, we obtain 

a=a1="'=a/_!, 
and 

p = ('l3 . s'l3 ... SI- 1 'l3)U = pi ,a 

l=f!a, a=fl=1. 

In this case p is the product of I distinct conjugate ideals 'l3, ... , Sl- 1 'l3, 
which are all of relative degree 1. 

Theorem 118. Suppose that the prime ideal p divides the number J1 exactly to 

the power pa. Then, if a is not divisible by I, p becomes the Ith power of a prime 
ideal in K: p = 'l31• However if a = 0 and p does not divide I, then p becomes 
the product of I distinct prime ideals in K provided the congruence 

jJ == ~/ (mod p) 



§39 Decomposition Laws in the Relative Fields K(i/i) 135 

can be solved by an integer ~ in k. On the other hand p remains a prime ideal in 
K if this congruence cannot be solved. 

PROOF. I. If a is not divisible by I, then we may assume a = 1. To see this we 
choose an integer f3 in k which is divisible by p but not by p2. Then since 
(a, l) = 1, we can choose the rational integers x, y in such a way that J.l* = 
J.lxf3IY is divisible by p but not by p2, while if generates the same relative 
field as ,j/l. Thus the new exponent for this J.l* is a = 1, which we thus wish 
to assume already for J.l. Taking the lth power of the ideal 

~ = (p, ,j/l), 

we obtain ~l = (pl,J.l) = p. Thus, by Theorem 108, ~ is a prime ideal in K. 
II: Suppose that a is divisible by I. Then we again wish to replace J.l by 

some J.l* = J.lf3- a = J.l(f3-a l l)1 which generates the same field K = K(.fii*) and 
where the corresponding exponent a = o. 

II(l): Suppose that p divides neither I nor J.l, and that there exists a ~ in 
k such that 

J.l == ~l (mod p). 

Accordingly p divides the product 

J.l- ~l = (M - ~)(sM -~) ... (SI-IM - ~). (81) 

However it divides no factor, since, then, as an ideal in k it would have to 
divide all (relatively conjugate) factors, thus also the difference of two factors, 
that is, 

However, since p is relatively prime to M, it would have to divide Ca _ Cb, 

that is, by the lemma it would have to divide I, contrary to hypothesis. Thus 
p is not a prime ideal in K and 

is a factor of p which is distinct from 1 and which is distinct from its relative 
conjugates. Obviously the relative norm is p. 

II(2): Suppose that p divides neither I nor J.l and that p splits into I distinct 
factors in K, 

p = ~. s~ ... Sl-l~. 

Then ~ has relative degree 1. By Theorem 110, each number in K is thus 
congruent to a number in k modulo ~, hence there is a ~ such that 

M == ~ (mod ~); 

the relative norm of M - ~, that is, J.l - ~l, is hence divisible by the relative 
norm of ~, that is, 

J.l == ~l (mod p). 

Thus Theorem 118 is proved. 
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So just as the decomposition of a prime p in the quadratic field Kh/~l) 
is connected with quadratic residues in k(1), we see in general the connection 
between the decomposition of p under passage to K(~; k) with the Ith 
power residues in the field k. The decomposition of factors of I is given by 
the following theorem: 

Theorem 119. Let [ he a prime factor of 1 - C, which divides 1 - C exactly to 
the ath power: 1 - C = 1"1 1, Suppose that I does not divide JI. Then I splits 
into I factors which are distinct from one another in K(~; k) if the congruence 

(82) 

can be solved hy a number ~ in k. The ideal I remains prime in K if the COI1-

gruence 
(83) 

can indeed he solved, but (82) cannot be solved. Finally, I becomes the lth power 
of a prime ideal in K, if the congruence (83) is also unsolvable. 

I: The solvability of (82) is identical with the decomposition of I into 
distinct factors in K. Namely from I = £I . s£l ... Sl-I £I, where the conjugates 
are distinct from one another, it follows as in the proof of Theorem 110 
that every integer in K is congruent to an integer in k modulo every power 
of i!. Thus to each rational integer b there corresponds ~ in k such that 

M - ~ == 0 (£lb); 

consequently the relative norm of this number M - ~ is divisible by Nk(i!l = 
Ib and thus fl == ~I (mod Ib) is solvable for r Conversely suppose that fl == 
~I (mod [al + I). Let p be a nonintegral number in k which can be represented 
as a quotient 

r 
P = f' (r, I) = 1, 

with an integral number ideal r which is relatively prime to 1. Then the 
number A = p(M - 0 is an integer for it is a root of the polynomial 

fIx) = (x + p~)l - (/fl 

= Xl + C) p~XI-1 + G)p2~2XI-2 + ... + C ~ 1 )pl-l~l-l X + pl(~I- fl)· 

The binomial coefficients are divisible by I, hence by assumption and by (80) 
they are divisible by [a(l- 1), so that pl- l[a(l- 1) is an integer, and the constant 
term is an integer by (82). If we set £I = ([, A), then this ideal is not 1, as 
Nk(A) = p'(~' - Jt) is divisible by 1. Furthermore £ is coprime to all conjugates, 
since the number 

A - sA = pM(l - 0, 
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which is obviously relatively prime to I, is contained in (2, s2). Hence I con
tains a factor in K which is distinct from all conjugates; thus, by Theorem 117, 
it splits into I factors which are distinct from each other. 

II: If J.l. = ~Ioal) is solvable, then we see in the same way that A = p(M - ~) 
is an integer in K whose relative different is relatively prime to I. Conse
quently, by Theorem 114, I cannot be the Ith power of a prime ideal in K, 
and hence, if (82) is unsolvable, 1 does not split into I distinct factors, by I. 
Thus, by Theorem 117, I must also be a prime ideal in K. 

III: Suppose that J.l. == ~Ioal) is unsolvable and let u be the highest exponent 
for which J.l. == ~I (mod I") is solvable. In any case u 2:: 1 since, by Fermat's 
theorem, every number is congruent to an lth power modulo I. Moreover 
u is not divisible by I. For if 

J.l. == ~I (mod Ibl), 0 < b ~ a-I, 

can be solved, then this congruence can also be solved modulo Ibl + 1 since 
if A. is an integer in k such that 

A. is divisible by Ib but not by Ib + 1, 

then for every integer w 

(~ + ..lW)1 == ~I + ..lIWI (mod Ibl + 1) 

provided b ~ a - 1. But since Wi represents every residue class modulo I, w 
can be determined in such a way that 

J.l. - (~+ ..lW)1 == 0 (Ibl + 1), 

from which it follows, since u < ai, that u is not divisible by I. Let u = bl + v 
(0 < v ~ I - 1), and u < ai, and let 

p be a number with ideal denominator lb. 

Then we see as above that A = p(M - ~) is an integer which is not divisible 
by I, if J.l. == ~I (mod I"), but N k(A) is divisible by IV. Hence 2 = (I, A) is an 
ideal in K which is different from I and from (1). Thus 1 is not a prime ideal 
in K and since case I does not hold, then by Theorem 117,1 can only be the 
lth power of a prime ideal in K. 

Moreover, we obtain immediately from Theorem 118 and 119 

Theorem 120. The relative discriminant of K(.f/i; k) with respect to k is equal 
to 1 if and only if J.l. is the lth power of an ideal in k, and at the same time, 
provided J.l. is chosen relatively prime to I, the congruence J.l. == ~I (mod(1 - 0 1) 

can be solved by a number ~ in k. 

As was mentioned previously, the discriminant of a field can never be 
equal to ± 1. Now it is a fundamental fact for all of arithmetic that the relative 
discriminant with respect to number fields other than k(l) can very easily 
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be equal to 1. This development originates with Kronecker. Hilbert recog
nized the significance of these fields for general arithmetic and based the 
theory of the higher reciprocity laws on them. There is, for example, the 
theorem 6 that a field K(4Ii); k) with relative discriminant 1 exists if and only 
if the number of ideal classes 7 in k is divisible by I. Such a relative field is 
called a Hilbert class field of k. 

6 For these problems compare §54-58 in Hilbert's Zahlbericht as well as Hilbert's basic paper 
Uber die Theorie der relativ Abelschen Zahlkiirper, Acta mathematica, Vol. 26 (1902) and 
Gottinger Nachrichten 1898. The contributions of Hilbert have been continued and partly 
brought to a conclusion by Furtwangler in a long sequence of papers (the two most impor
tant are: Allgemeiner Existenzbeweis fUr den Klassenkiirper eines beliebigen algebraischen 
Zahlkiirpers Math. Ann. Vol. 63 (1906) and Die Reziprozitatsgesetze fiir Potenzreste mit 
Primzahlexponenten in algebraischen Zahlkiirpern I,II,III, Math. Ann. Vol. 67. 72, 74 (1909 
through 1913). 

? In the case I = 2. the foundations must be laid for a more narrow class concept. (Compare 
with the last section of this book.) 



CHAPTER VI 

Introduction of Transcendental Methods 
into the Arithmetic of Number Fields 

§40 The Density of the Ideals in a Class 

In 1840, Dirichlet, in his pioneering paper "Recherches sur diverses appli
cations de l'analyse infinitesimale a la theorie des nombres" (Crelles Journal, 
Vol. 19. Werke Vol. 1 p. 411), showed how the powerful methods of the 
analysis of continuous variables can be used in the solution of purely arith
metic problems. These methods have become of great significance for 
the arithmetic of number fields. Even today the problem of the class number 
and the problem ofthe distribution of prime ideals are still only approachable 
by these transcendental methods, and at this time they still completely evade 
a purely arithmetic treatment. 

In this chapter we discuss the two problems mentioned and their solutions 
by Dirichlet's methods. 

The basic fact which Dirichlet discovered 1 is that one may speak of a 
"density" of ideals in a fixed class of ideals of a field K, and that this density 
is the same for all classes of ideals of K. Indeed, to be more precise the fol
lowing theorem holds: 

Theorem 121. Let A be an arbitrary class of ideals of K, and let Z(t; A) 
denote the number of integral ideals in the class A whose norm is ~ t. Then 
the limit 

lim Z(t; A) = X 

t-if; t 

1 Dirichlet developed his results only for quadratic fields and not for the ideals discussed here 
but in the context of quadratic forms (compare §53). The considerations were carried over to 
general algebraic number fields by Dedekind. 

139 
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exists, lind is yil'f'n hy the jC)l"Il1ula 

%= 
II; \ili 

lI'hich is independent of A and is determilled by the field alOilC. 

(The notation is that of ~~34_ 351. 
Proof: Let 0 be an integral ideal of the class A-I, reciprocal to .-1. S'J that 
each ideal of A becomes a principal ideal by multiplication by o. Accon:Lngly, 
for each integral ideal b in A there exists a single principal ideal ((Il) wtll..:h is 
divisible by b such that 

nb = (f). 

Consequently Z(t: A) is equal to the number of nonassociatcJ 11ll~gral 

numbers w of the field which are divisible by n and whose norm is :c: ! . N( 0) 
in absolute value. 

We now attempt i.o extract a single dement from \~ach system OLhSI1Ciated 
numbers by means of inequalities. For this purpose let I:j, 1;2- ... , i:,. be a 
system of r basic units as in §35. To each number (Ij of the field dil1erent 
from 0, there is a uniquely determined system of real numbers C I) <' 2' ... , c,. 
such that for the first r conjugates we have: 

(f)lp\ 

log --,:c~c:: = C I 10gisV'JI + ... + (,. iogls~p)1 
yN(w) 

([1=1,2, .. ,r). (84) 

Let us call the Ci the exponents of w. Again cp = I if Kip) is reaL c'n = 2 
otherwise. Then since 

r T I 

I " l'()gl-",r)i =, () 
.!-.... L P ,:{'k! - . ~ 

Equation (84) also holds for [i=- r + I and consequently for all conjugates. 
Now since by Theorem 100 each unit has the form 

where; is one of the existing ro,)ts of UIllty in the held K, I,vhi!c the lIIi are 
rational integers, then the system of associated ('j has the exponc:1ts 

c,. "Ill,. 

Consequently, to each (!) there is cm a~sociated number who:..; l'x}lonents 
satisfy the conditions 

(i = L_ .. ,J) 

Furthermore among the elements associated to (!) tilere are exactly IV distinct 
elements of this kind. From this it follows thal \1' ZiT; A) is equal to the 
number of those integral clements of the field which arc divisible hy 0 and 
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whIch satisfy the conditions 

IN(w)1 = loP) . W(2) ••• w(n)1 ~ N(o)t (85) 

log I n~(P) I = ± cq logI8~)I; 
-V N(w), <1=1 

o ~ Cq < 1 (p = 1, ... ,n). 
(86) 

However, in order that w be divisible by 0 it is necessary and sufficient that 
n 

w(p) = L XklXl!') (p= 1,2 .... ,n) (87) 
k=1 

with rational integers X1' .•• , X n , where lXI' •.• , IXn denotes a definite basis 
of the ideal o. Consequently, W • Z(t; A) is the number of rational integers 
Xl> ... , Xn which satisfy the three conditions (85), (86), (87), where not all 
Xi = o. 

Ifwe now choose arbitrary real values for the X;, then to the corresponding 
W(pl there is associated a uniquely determined real number cq, by Equation 
(86), provided all w(p) =f. O. Now let X 1, ... , Xn be the Cartesian rectangular 
coordinates of a point in n-dimensional space and, to begin with, consider 
only those points which do not lie on one of the manifolds w(p) = 0 of lower 
dimension. Then Inequalities (85) and (86) obviously define, in the comple
mentary space, a domain Bt lying entirely in finite space; for we have 

n~ i Cq logl'~ 'I r;yv-
/w(PJI = I~ N(w)leqo 1 ~ V tN(a)e,M, (p = 1,2, ... ,n) 

where M denotes the absolute value of the numerically largest of the values 
10g!G~)I. We now complete the domain Bt to a closed domain B~ which 
likewise still lies in finite space, by adding on to Bt those finitely many parts 
of the linear manifold w(p) = 0 which moreover satisfy the conditions 

Iw(p)1 ~ e,M1 f N(Q); (p = 1,2, ... ,n) 

and at least one w(p) = O. The number of lattice points Xl> ... , Xn (that is, 
the points with rational integer coordinates) which belong to this closed 
domain B~, is the number w . Z(t; A) increased by 1 (corresponding to the 
origin). However, the number of lattice points is asymptotically equal to the 
volume of this domain. To see this we set Xk = h::[t and then the domain B~ 
in the x-space goes over into the domain B! in y-space. The lattice points x 
correspond to those points y whose coordinates have the form 

rational integer 

::[t 
thus it is the y-space covered with a net of cubes with length of edges Iliff, 
and by the definition of volume, or of the multiple integral, we thus have 

w· Z(t· A) f f lim ' = ... dY1··· dYn = J. 
t~ 00 t (HI) 
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At the same time Bi is that domain which is described by the following 
inequalities. Let us set 

o/P) = L Yklx!f') (p = 1,2, ... ,n) 
k=1 

and now we have 
o < Iw(1) . W(2) ••• w(n)1 ::; N(a) 

10gl~1 = ± cq 10glc?)1 
::j N(w) q= I 

with 0 ::; cq < 1 (p, q = 1,2, ... ,r) or 

Iw(P)1 ::; erM::j N(a) and at least one w(p) = o. 
Since this last condition defines only manifolds of lower dimension, this 
part of the domain makes no contribution to the n-fold integral and these 
conditions can be omitted. 

To evaluate the integral J we introduce the real and imaginary parts of 
the w(p) as new variables in place of the y's. 

We set 
Zp = w(P) for p = 1,2, ... ,rj, 

zp + iZp+r2 = w(P) for p = r l + 1, ... ,rl + r2' 

so that the functional determinant (as in Theorem 95) 

I ~(ZI' ... ,zn) 1= 2- r2 N(a)IJdI· 
C(YI' ... ,Yn) 

If we then introduce polar coordinates for zp and zp+r2: 

and if we set 

(P r > 0, 0::; qJp-r[ < 2n, p = rl + 1, ... ,rl + r2), 

zp+r2 = Pp sin qJp-r, 

p=I,2, ... ,rj, 

for the sake of symmetry, then 

and the domain Bi is described in the new variables by 
r+ I 

o < TI Iplp::; N(a) 
p=1 
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The integration with respect to the ({Ji can be carried out; besides we need 
only integrate over the portion of the domain with PI > 0, ... , Pr1 > 0, if 
we put the factor 2r1 before the integral. Thus we obtain 

2r1 +r21{2 

J = N(a)IJdI r·· I Pr1+ 1 • Pr1+ 2 ··· Pr1+ r2 dPI dp2··· dPr+l 

2'1 +r2 n'2 

= N(a)IJdl r·· Idvldv2 ···dvr+l 

if we introduce v = p'kk. Then the conditions for the Vi read: 

° < VI . V2 ... Vr+ 1 S N(a), 

Finally we introduce the Cb ... , Cr as new variables in place ofthe Vi and set 

u = VI . V2 ... Vr+ 1, 

and we thus obtain 

log Vp = ep log u + ep ± Cp 10gleY')I, 
n q= 1 

8(Vl,· .. ,Vr+1 ) 

8(u, Cb ... ,Cr) 

Finally we obtain 

u 
= ±R. 

2r1 +r2nr2 N(a) 2r1 +r2nr2 R 
J = R r du I ... Idc dc ... dc = -.,.--,=--

N(a)IJdI Ju=o O$cq<1 1 2 r IJdI' 

and with this Theorem 121 is proved. 

§41 The Density of Ideals and the Class Number 

If we apply the limit equation just proved for each individual ideal class 
and then sum over all classes, we obtain at once the connection, found by 
Dirichlet and Dedekind, between the density of integral ideals of the field 
and its class number, namely 

Theorem 122. Let Z(t) denote the number of integral ideals of the field whose 
norm is :::;; t. Then 

lim Z(t) = hx 
t-+ Xl t ' 

(88) 

where h is the class number of the field. 
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The number Z(t), in whose definition the concept of class does not occur 
anymore, can now be calculated by another method, namely with the help 
of our knowledge of the decomposition of rational primes in the field. In 
this way the class number is connected with the decomposition laws, and 
thereby in certain cases a remarkably simple expression for the class number 
can be derived, of which no other way has led until now. 

If F(rn) denotes the number of integral ideals of the field whose norm is 
equal to the positive number rn, then obviously 

Z(t) = I F(rn). 
m=! 

Here I~= I means that the summation index rn runs through all rational 
integers for which 1 ::;; rn ::;; t. Now, moreover, for two rational integers a, b 

F(ab) = F(a) . F(b) if (a, b) = 1. (89) 

For, from two integral ideals a and b with N(a) = a, N(b) = b, an ideal 
c = ab arises with N( c) = abo And conversely if c is an integral ideal with 
norm ab, let us set 

(90) 

from this it follows by multiplication that 

2 (ab) alb! = (c ,ca, cb,ab) = c c,a,b, c = c. 

By passage to the conjugate, we obtain from (90) that N(ad, as a divisor 
of an, is thus coprime to band N(bd is coprime to a, while the product 
N(al) . N(b!) = abo Consequently, N(ad = a, N(bd = b, and c is thus de
composed into two factors whose norms are a and b respectively. The 
assertion (89) follows from this. 

Generally, by use of this formula, the calculation of F(rn) can be reduced 
to the calculation of F(pk) where pk is a power of a prime. 

The calculations for determining F(pk), and with this F(rn), are now 
simplified considerably by the introduction of a new function, by which the 
limit process (88) is transformed into a limit process which is more con
veniently accessible to calculation. This function is the zeta-Junction oj 
Dirichlet -Dedekind. 

§42 The Dedekind Zeta-Function 

By a Dirichlet series, we mean a series of the form 

~ an. 
L.. s' 

n=! n 

where at> a2, ... is a given sequence of numbers, s is a variable which assumes 
only real values in the following discussion, and the symbol nS denotes the 



§42 The Dedekind Zeta-Function 145 

positive value of the power. The an are called the coefficients of the series. 
In case the series converges, it represents a function of s. 

Lemma (a). The series L:'= 1 11ns converges for s > 1, and represents a con
tinuous function of s, the so-called Riemann zeta-function ((s). Moreover 

lim (s - l)((s) == 1. 
s-+1 

It follows from the definition of the definite integral that 

in + 1 dx < ~ < in dx 
In xS nS In-1 xS 

(n> 1). 

Hence the series converges for s > 1; consequently, as a series with only 
positive continuous terms it represents a continuous function ((s), and 

foo dx < ((s) < foo dx + 1, 
1 X S 1 X S 

1 < (s - l)((s) < s 

from which the limit relation follows. 

Lemma (b). Let us set 

S(m) = a1 + a2 + ... + am; hence an = S(n) - S(n - 1). 

If there exists a number a (a> 0) for which the quotient 

IS~~)I < A, (m=1,2, ... ) (91) 

where A is a constant independent of m, then the series L:'= 1 anlns converges 
for s > a and represents a continuous function of s. 

Namely, for all positive integers m and h 

m+h an m+h S(n) - S(n - 1) 
L s= L S 

n=m n n=m n 

=S(m+h)_S(m-l)+ m+h-1 Sn (~_ 1 ) 
(m + h)S mS n~m () nS (n + l)S . 

Since 
1 1 f,n+1 dx 
nS - (n + 1)' = s n xS+ l' 

it thus follows, if we keep (91) in mind, that for s > a 

Im+hanl< 2A +As ioo~= 2A +~_1_. 
n~m nS ms- a Jm x s- a + 1 ms- a S - a ms- a 
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Consequently, the series converges for s > (J, and indeed uniformly in each 
interval (J + b s s S (J + b' (where b' > b > 0); thus it represents a continuous 
function of s there. 

Lemma (c). If in the above notation 

lim SCm) = C 

m~f m ' 

then, if s approaches 1 (from s > 1), 

• f an 
hm (s - 1) L -. = C. 
s-l n=ln 

By (b) the series converges for s > 1. If we set 

Sen) = en + enn, 

where lim.~ x c. = 0 by hypothesis, and 

x a 
cp(s) = L ~, 

n= I n 

then, as above, it follows that for s > 1 

Icp(s) - c((s)1 = s IJI ne. s.:+ I x~: II < s JI lenl in+ I ~~. 
For an arbitrary b > 0 we now choose an integer N such that le.1 < b for 
n ?: N, and we choose C in such a way that le.1 < C for all n. It then follows 
that 

N - I f,. + I dx. x f,n + I dx I(s - 1)cp(s) - c(s - 1)(s) I < Cs(s - 1) '~I' -; + 6s(s - 1) ~. x' 

< Cs(s - 1) log N + 6s(s _ 1) r CD dx. 
IN XS 

Since the last expression tends to 6 as s tends to 1, we have 

lim {(s - 1)cp(s) - c(s - 1)(s)} = 0 

and, keeping (a) in mind, our Lemma (c) is proved. 
We now assign to each algebraic number field k a function of a continuous 

variable s, the so-called zeta-function of k, namely 

v ,,1 
Sk(S) = .:;;- N(a)S' (92) 

which Dirichlet introduced for quadratic fields and which Dedekind intro
duced for arbitrary k. Here a is to run once through all ideals of k which are 
different from zero. If we use the notation F(n) from the preceding section, 
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then the series can also be written as 

and from Theorem 122 and Lemmas (b) and (c) we obtain 

Theorem 123. (k(S) is defined by the convergent series (92) for s> 1 as a 
continuous function of s and as s approaches 1 

lim (s - 1Kk(s) = h. 
s-l 

From this formula we now have a chance of calculating h if we express (k{S) 
in an essentially different form with the help of the prime ideals of k. 

Theorem 124. For s > 1, the equation 

(93) 

holds where p runs through all distinct prime ideals p of k. 

To begin with, this product converges, since LI> 1jN(p)S converges as the 
constituent of the series for (k(S). For a single factor we obtain a convergent 
series of positive terms 

1 1 1 
1 _ N{p)-S = 1 + N(p)S + N{p2)' + ... (94) 

If we multiply these expressions in a purely formal way for all p, then we 
obtain a series with terms 

1 
N{p~lp~2 ... p~r)S' 

where each product of powers of prime ideals appears exactly once in the 
norm symbol. However, by the fundamental theorem we obtain each 
integral ideal of k exactly once in this form, that is, all terms of the convergent 
series (k(S) appear exactly once. Since the series converges absolutely for 
s > 1 in each single factor and the product converges for s > 1, the equality 
of the values of the series, that is, the validity of (93), follows from the formal 
agreement of the terms of the series. 

Theorem 125. Following Dedekind the determination of the class number h is 
reduced to the determination of the prime ideals of the field by the equation 

1 
h'x=lim(s - 1)0---

s-l I> 1 __ 1_ 
N(p)S 

(95) 
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This fundamental fact is only another way of writing (88), as has been 
mentioned already; however, it is more convenient as a starting point for 
the further calculation than the former equation. 

While a useful expression for the class number can now be derived in 
those fields, where the decomposition of the rational primes p is known 
(compare §51, where the calculation is carried out for quadratic fields), in 
the reverse direction we can also derive results about the prime ideals from 
Theorems 123 and 124 if we make use only of the fact that in any case h . x 
is different from zero. This will be discussed in the next sections. 

§43 The Distribution of Prime Ideals of Degree 1, 
in Particular the Rational Primes in Arithmetic 
Progressions 

From Theorem 123, we obtain immediately: The Dedekind zeta-function 
'k(S) becomes infinitely large to the first order, as S approaches 1, so that 

log (k(S) = log s ~ 1 + g(s), (96) 

where g(s) is a function which remains bounded as s tends to 1. From the 
product representation (93) we then have 

Theorem 126. If P 1 runs through the distinct prime ideals of degree one in k, 
then, for s > 1, 

1 1 
L N( )S = log -=-1 + gl(S), 
1'1 P1 s 

(97) 

where gl(S} clgain remains bounded as s tends to 1. Hence there are irifinitely 
many prime ideals of degree one in k. 

Proof: Let P r run through the distinct prime ideals of degree f for f = 
1, 2, ... , 11. (Of course PI need not exist for each f.) Since at most 11 distinct 
prime ideals of k divide a given rational prime p then, in any case, for s > L 

1 1 
J .5 n ---1 - ~ n 1 n = ((fst· 

1'1 1 --- ~V(p~)' p (1 - pIS) 
Thus as s tends to 1, the product over PI remains between two fixed 

positive bounds for f 2: 2. The fact that (k(S) becomes infinite is thus brought 
about by the prime idea! P1 ai0nc, and indeed by passing to the logarithm, 

]og;k('l" -- ~ 10g( 1 - N(~l)S) + f(s), (98) 
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where again f(s) remains bounded. However, since N(p1) 2:: 2, we have for 
s2::1 

-IOg(1 - N(:d s) = N(:l)S + CP(ph S), 

1 1 1 1 
0:::; CP(ph s) = 2 N(p1)2s + "3 N(p1)3s + ... 

and hence the sum over 13 1 is 

that is, bounded for s 2:: 1. Hence, in combination with (98) it follows that 

remains bounded as s tends to 1, and with this, by (96), we have proved (97). 
Hence if s approaches 1 the sum over 131 becomes arbitrarily large and thus 
it must consist of infinitely many terms. 

This general theorem, valid for every algebraic number field, now permits 
us to prove very important facts of rational arithmetic, which relate to the 
distribution of primes. 

We choose the field of mth roots of unity for the field k. By Theorem 92, 
the norms of the prime ideals of degree 1 are precisely the rational primes 
with the congruence property p == 1 (mod m) except for finitely many ex
ceptions. Consequently, from Theorem 126 follows 

Theorem 127. There are irifinitely many positive rational primes with the 
property p == 1 (mod m). 

If no is the degree of the field of mth roots of unity (which by §30 is no 
larger than cp(m», then exactly no distinct prime ideals of k divide such a 
number p, and Equation (97) thus reads 

1 1 
no L s = log --1 + 91(S). 

p=l(m) P s -
(99) 

Dirichlet has shown how one can also obtain information about the 
existence of primes in other residue classes mod m by relatively simple 
formal considerations. For this purpose we introduce the residue characters 
modulo m, as they were defined in §15. 
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Theorem 128. If x(n) denotes a residue character of n mod m, then the Dirichlet 
series 

f x(n) 
L(s,xl = L --", 

n=l It 

is absolutely convergent for s > 1 and as long as s > 1 we have the product 
representation 

1 
L(s, X) = TI --

p 1 _ X(p) 
ps 

(100) 

in which p runs through all positive rational primes. If moreover, X is not the 
principal character, then the il?finite series for L(s, X) is convergent even for 
s> O. 

First of all the absolute convergence of the series and the product rep
resentation for .~ > 1 are obtained immediately from the fact that the coeffi
cients x(n) are not larger than 1 in absolute value, as x(n) is either a root of 
unity, or, in case (n, m) > 1, equal to O. Since the rule 

x(ab) = x(alx(b) 

holds for all pairs of positive integers a, b, we now obtain 

1 X(p) X(p2) 
---= 1 +~+~-+ ... 

X(p) pS p2s 
1--· 

p' 

for each individual factor of the infinite product; by absolute convergence 
we thereby obtain Equation (100) from this by multiplication, in the same 
way as above in the proof of Theorem 124. 

Finally, if X is not the principal character Xl mod m, then, by the basic 
property of characters, Ln x(n) = 0, where n runs through any complete 
system of residues mod m. Thus if the integer x = Y . m + r, where y and r 
are integers and 0 S r < m, then 

Int X(II)I = In~l x(n) + nt x(n)1 = IJo x(n)1 s m 

is thus bounded as x grows to infinity and, by Lemma (b) of the preceding 
paragraph, the Dirichlet series converges for s > O. In particular it follows 
from this that if X is not the principal character, the functions L(s, X) are also 
still continuous at the point s = 1. 

Theorem 129. For each character X mod m, if s > 1. 

log L(s, xl = '\' x(~l + g(s, X), 7 p 

where g(s, xl remains bounded as s approaches 1. 
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If we define the log function, for s > 0, by the convergent series 

log 1 = X(p) + ~ X(p2) + ~ X(p3) + ... = X(p) + f(s,p) 
X(p) ps 2 p2s 3 p3s pS p2S' 

1--pS 

where obviously 
If(s,p)1 s 1 for p ~ 2, s ~ 1, 

then the sum of these expressions, extended over all positive primes, con
verges for s > 1, and thus this sum represents one ofthe infinitely many values 
of log L(s, X). Then Theorem 129 holds for this value. 

Moreover, for the principal character X = Xl we have, more precisely, 

1 
L(S,XI) = log s _ 1 + H(s), 

where H(s) remains finite for s ~ 1. 
For if we choose the field k(l) for k in (97), then we obtain that 

1 1 
"--log-7 ps s-l 

(101) 

remains finite as s -+ 1; on the other hand XI(P) is equal to 1 in general and 
different from 1 (i.e., equal to 0) only for the finitely many primes p which 
divide m. Thus (101) is, in fact, proved. 

In order to go from here to sums which are extended only over the primes 
of a residue class mod m, let a be an arbitrary rational integer which is 
coprime to m and let b be a rational integer such that 

ab == 1 (mod m). 

Then, as long as s > 1, if Lx denotes a sum to be extended over all characters 
X mod m, we have 

L X(b) log L(s, X) = L X(b) L X(:) + L X(b)g(s, X)· 
x x p p x 

The last sum, which we denote by f(s), remains finite in any case as s tends 
to 1. However, in the double sum 

L X(b)X(p) = L X(bp) = {O,( ) 
x x <pm, 

so that we obtain 

if bp ¢ 1 (mod m), 

if bp == 1 (mod m), 

1 L X(b) log L(s, X) = <p(m) L s + f(s), (102) 
x p=a (mod m) p 

where the sum is to be extended only over the positive primes p which are 
== a (mod m). 
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Finally, let us now allow s to tend toward the critical value 1. On the 
left-hand side, by (101), the term which is formed by the principal character 
X = X 1 becomes infinitely large and positive. Thus if the remaining summands 
remain finite, the entire left-hand side of (102) grows beyond all bounds. 
Consequently the sum on the right must contain infinitely many terms; 
hence there are infinitely many p which are == a (mod m). 

Accordingly, the verification of the following assertion remains the es
sential point in Dirichlet's train of thought: 

If X is not the principal character, then the quantities log L(s, X) remain 
finite as s tends to 1. 

Since these L(s, X) are continuous functions of s, for s > 0, by the last 
part of Theorem 128, the assertion is identical with 

Theorem 130. If X is not the principal character, then 

L(I, X) = lim L(s, X) ¥- o. 
s~ 1 

The nonvanishing of the L-series is now an immediate consequence of 
the fact that (k(S) becomes infinite to the first order at s = 1. For by (102) 
it follows for a = b = 1 that 

1 I log L(s, X) = q>(m) L s + G(s), 
x P" 1 (mod m) p 

and, if we use (99), it follows from this that 

q>(m) 1 I log L(s, X) = -log --1 + G1(s) 
x no s-

(103) 

with G(s) and G1(s) remaining finite. On the left-hand side only the term 
corresponding to the principal character Xl (s) becomes infinitely large, by 
(101), and for the remaining part we thus obtain 

L log L(s, X) = (q>(m) - 1) log ~ 1 + G2(s), 
X*Xl no s 

( 
1 )('P(ml!nOl - 1 Il L(s, X) = -, - eG2 (s). 

X*Xl 5-1 

As has been mentioned already, we have q>(m) ::?: no. The right-hand side 
now becomes infinitely large as s tends to 1, if q>(m) > no, while the product 
on the left surely remains finite, since this holds for each factor. Thus it 
follows first that q>(m) = no; secondly, then, the entire right-hand side is 

which as an exponential quantity surely does not tend to O. Hence this is 
also the case for the left-hand side, that is, since each factor on the left has 
a finite limit, Theorem 130 is in fact true. 

With this, as shown above, the famous result of Dirichlet is proved. 
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Theorem 131. If (a, m) = 1, then there are itifinitely many positive primes p, 
for which p == a (mod m). That is p = mx + a represents a prime infinitely 
often for x = 1,2,3, .... 

As a side result we obtain 
cp(m) = no 

from the proof, that is, the exact degree ofthe field of mth roots of unity also 
follows from the decomposition laws. With this it is thus proved that the 
algebraic equation for ( = e21[ijm is irreducible over the field of rational 
numbers. 

If we go once more through the chain of conclusions which led us to the 
proof of Theorem 131, then the verification that L(I,X) =1= ° appears as the 
most difficult point, and this verification was carried out from Equation (103) 
and the fact that the function (k(S) becomes infinite to the first order at s = 1. 
This last fact was again based on the theorems in §40 about the density of 
ideals, in whose proofs the entire theory of units was required. It is now of 
importance that instead of these number-theoretic methods, more precise 
knowledge of the function-theoretic properties of the L(s, X) can be used 
with the same success. Several remarks about this follow for purposes of 
orientation. 

To begin with, it can be proved by Lemma (b), §42, that L(s, X) is differ
entiable at s = 1 (by term wise differentiation of the series) and that hence, 
if L(I, X) = 0, this function would have a zero of at least the first order at 
s = 1, for then 

lim L(s, X) = lim L(s, X) - L(l, X) = dL(s, X) I 
s~ls-1 s~l s-1 ds s=l 

exists. On the other hand, the product of all cp(m) series is a convergent series 
with only positive terms for s > 1. For if p is an element of order f in the 
group of residue classes mod m, then, by Theorem 32, the cp(m) numbers X(p) 
are all fth roots of unity, each root occurring equally often. Thus 

0(1 _ X(P)) = (1 _~)e 
pS pIs ' ( = cp(m)) 

e f ' 

and accordingly Ox L(s, X) is a series with positive coefficients, and indeed 
> 1 for all s > 1. Now since the series L(s, Xl) corresponding to the principal 
character agrees with (s), except for unimportant factors, this series becomes 
infinite to the first order at s = 1. Furthermore, since the remaining L(s, X) 
either become zero to at least the first order at s = 1 or in any case have a 
finite limit, at most one single factor L(s, X) can be equal to zero. And indeed, 
the X for which this happens must then be a real character (which takes only 
the values ± 1, 0, that is, a quadratic character mod m). For if X is not a real 
character, then the conjugate imaginary function X is likewise a character 
mod m, but different from X, and the vanishing of L(I, X) implies the non
vanishing of the conjugate imaginary quantity L(I, X) which, by the above, 
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cannot occur. Thus we need only verify that L(1, X) ~ 0 for all quadratic 
characters X. 

M erten~·2 has proved this assertion by a dircct estimate of all the real 
terms of the series. In this way we obtain a proof of Dirichlet's theorem which 
is independent of the theory of fields. 

Dirichlet himself used the quadratic reciprocity law with which it is seen 
that the series L(s, X) corresponding to real characters appear as factors in 
the zeta-functions of certain quadratic number fields, and so, for this reason, 
cannot be zero at s = 1. In contrast to the proof given above he does not 
need the arithmetic of cyclotomic fields, but only that of quadratic fields. 

Pure function-theoretic proofs comprise the latter group: they are capable 
of the farthest generalization. In these proofs the functions L(s, X) are in
vestigated as analytic functions of the complex variahle s. It is shown that 
the L(s, X) are regular analytic functions of s for all finite values of s with the 
exception of L(s, X d which has a pole of the first order only at s = 1. Now if 
one of the I.-series were zero at ," = 1, the product of all these series would 
have to be a regular function of s everywhere in the finite plane. The contra
diction is then obtained, with the help of a general theorem of function 
theory, from the fact that such a Dirichlet series with positive coefficients 
must have at least one singular point in the finite plane. 3 

This idea, which is the foundation of Dirichlet's method of introducing 
group characters, is capable of far-reaching generalization. We can start, 
instead of from the classification of rational numbers in k(l) by residue 
classes mod m, with the numbers of any field, which are divided, in another 
way, into classes which form an Abelian group.4 Finally Theorem 126 can 
also be directly applied to other fields instead of k(e27ri !m), even to relative 
fields. Moreover, each time we obtain verification ofthe existence of infinitely 
many primes (prime ideals) of the ground field with certain properties from 
a knowledge of the decomposition laws. These contributions will be carried 
out more precisely in the next chapter (*48) for quadratic fields. 

2 Mertens Uber das Ni<.:htverschwinden Dirichletscher Reihen mit reellen Gliedern. Sitzunfjsher. 
d. Akad. d. Wiss. ill Wiell. math.-IUltW·W. K lasse. Vol. 104 (1895). 

3 See E. Landau, Handbuch der Lehre von der Verteilung der Primzahlen (Leipzig 1909) Vol. 
I §121; or Heeke. Uber die L-Funktionen und den Dirichletschen Primzahlsatz fUr einen 
beliebigen Zah1korper, Nach/'. v.d. K. Ges. d. Wissensch. zu GOttinfjen 1917. 

4 A general contribution in this direction is due to H. Weber, Uber Zahlengruppen in algebra
ischen Korpern I,Il,IlI. Math. Ann. 48, 49, 50, (l897~1898). 



CHAPTER VII 

The Quadratic Number Field 

§44 Summary and the System of Ideal Classes 

The quadratic number field, which was already treated as an example in §29 
is to be discussed in more detail in this chapter. First we recall once more 
what was proved in §29. 

Let D be a positive or negative rational integer, different from 1, and 
divisible by no rational square except 1. The number JD then generates the 
most general quadratic field. Its discriminant is 

d = {D' if D == 1 (mod 4), 
4D, if D = 2 or 3 (mod 4). 

In each case 1, (d + jd)/2 is a basis. Each integer of the field has the form 
CI. = (x + yjd)/2 with rational integers x, y. An odd positive prime p splits 
into two distinct or equal prime factors or remains irreducible according to 
whether the quadratic residue symbol (%) has the value 1, 0, or -1. 

We now define the quadratic residue symbol with denominator 2, but only 
for those numbers d which are discriminants of quadratic fields. 

If d is even, let (4) = 0. If d is odd, let (4) = + 1 if d is a quadratic residue 
mod 8, and (4) = -1 if d is a quadratic nonresidue mod 8. 

Then the decomposition law for the number 2 in k(jd) reads exactly the 
same formally as the law stated above for odd p. 

In a real quadratic field the number of fundamental units is equal to 1 by 
Theorem 100. Since the only real roots of unity are ± 1, the numbers ± a" 
(n = 0, ± 1, ± 2, ... ), where a is a fundamental unit, are all the units of the 
field; the latter is obviously uniquely determined by the additional condition 
£ > 1. All the units '1 = (x + y jd)/2 are obviously obtained from the solution 

155 
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of the equation N(I1) = ± I, that is, 

x 2 - dy2 = ±4 (104) 

with rational integers x and y. This is the so-called Pell equation. 
In imaginary quadratic fields every unit 11 is a root of unity. For d < 0 the 

above equation (where of course the upper sign must hold) has solutions only 
for d ::?: - 4 except for the trivial solutions, Y = 0, x = ± 2. that is, 11 = ± 1. 
Indeed for d = - 4. the equation has the two additional solutions x = 0, 
y = ± 1, and for d = - 3 the equation has four additional solutions x = ± 1, 
Y = ± I. Thus the number It' of roots of unity in k(vi-'=-3), the field of the 
third root of unity, is equal to 6 and the number of roots of unity in k(-vi':::::-T) 
is eq ual to 4. In all other quadratic fields it is equal to 2. 

We now try to find a method from the general theory to decide whether 
or not two ideals a. b of a quadratic field are equivalent and, by this, to give 
a complete system of nonequivalent ideals, thus also to calculate the class 
number. 

Since N(b) = bb' is a rational principal ideal, the equivalence a ~ b means 
the same thing as ab' ~ 1: thus we must decide whether a given ideal is a 
principal ideal. If the integral ideal a is a greatest common divisor of two 
principal ideals (a,!j), then a is the content of the form au + f3v. Consequently 
aa' = N(a) is the content of (au + f3v)(a'u + f3'v) =aa'u2 + uu(a'f3 + ct.{1') + 
f3f3'u 2 , that is, N(a) is the greatest common divisor of the rational numbers 
cJ.a', a'f3 + af3', f3r)'. If the positive rational number n is obtained for this GCD, 
then the additional question is whether ± n is the norm of an integer of the 
field and then moreover if N(w) = ±n whether the equation (w) = (a, 13) is 
correct. This is again the case if and only if 'X/wand f3lw are integers, for in 
this case the ideal (a/co./jiw) is an integral ideal with norm 1 by construction, 
thus it is itself equal to (1). 

Thus the only difficulty is in finding all different principal ideals (co) whose 
norm has a given value. This leads to the problem of finding all rational 
integers x, y for which (if we set co = (x + y~d)/2) 

(lOS) 

For imaginary quadratic fields all solutions can be obtained easily in finitely 
many attempts. Since d < 0 we need test only those pairs of rational integers 
x, y for which 

Ivlidilyl 2~n, 

that is, we determine, by calculation, for which rational integers y with 
o ::;; y ::;; 21 J n/d 1 the expression 'vi 4n +cly2 is a rational number. 

In order to find the solutions of (lOS) with d> 0, in the real quadratic 
field, knowledge of a unit different from ± 1 (not necessarily the fundamental 
unit) is required. If we assume 

u + v,jd 
11 =-- --

2 
(v> 0) 
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is a unit in k(Jd) with I] > 1, then among the numbers r:t. = wt( (n = 0, 
± 1, ± 2, ... ) associated to a given w we can surely find one such that 

1 S I~I < 1]2 

(compare Equation (86)). It is thus sufficient, for our problem, to look only 
for those solutions w = (x + yJd)/2 for which these inequalities are also 
satisfied. The inequalities can also be written in the form 

Iw'l s Iwl < IW'11]2 or Iwll] -2 < Iw'l s Iwl 
or, since Iww'l = n, 

JI1 s Iwl < I])n 

I] -1)n < Iw'l s )n. (106) 

Moreover if we assume w > 0, then by Equation (105) with the plus sign, 
w' > 0 and it follows from (106), by addition, that 

(1]-1 + 1)JI1 < x < (I] + 1))n; (107) 

on the other hand, by Equation (105) with the minus sign, 

(rJ- 1 + 1))n < yJd < (rJ + 1»)n. (108) 

In any case we need only examine whether a finite number of values x, y 
satisfy Equation (105). Then we can determine by simple division whether 
among the numbers w = (x + yJd)/2 found in this way, there are still 
associated numbers. 

Obtaining a unit I] can be achieved in various ways. The proof of Dirichlet's 
unit theorem (Lemma (b) in §35) yields a process immediately. This is essen
tially a matter of expanding Jd as a continued fraction. The result of §52 
about tIie class number will yield another expression for a unit in k(Jd) 
which can also be built up from the dth roots of unity. 

In any case, in this way a method is given of deciding by finitely many 
rational operations, whether two given ideals of a quadratic number field 
are equivalent. 

In order to find the class number in this way, we keep in mind that, by 
Theorem 96, an integral ideal exists in each class whose norm S I Jd I· 
Hence we first list all integral ideals whose norms satisfy this condition. To 
begin with, this can be done for prime ideals by the decomposition theorems 
(§29), and from this we find all ideals of this type by multiplication. Then the 
class number is the number of nonequivalent ideals among these finitely 
many ideals. It is useful to clarify the relationships with several numerical 
examples. 

1. k(.J=1), k(-/=3), and k(J±2) have class number h = 1. The next 
smallest integers to I Jdl are 1, 1, 2 respectively. In the first two fields there 
is an integral ideal with norm s 1 in each class; this ideal is necessarily (1), 
thus a principal ideal. In k(J±2) we moreover have to investigate the ideals 
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with norm 2. Here 2 becomes the square of a prime ideal P; this is obviously 
= (8), so it is a principal ideal. 

2. In k(.j7) with d = 28, the ideals with norms 2, 3,4, 5 are to be found. 
Here the primes 2, 3, 5 now split into prime ideals as follows: 

2 = p~, 5 itself is a prime ideal. 

Hence there is only one ideal with norm 4, namely p~ = 2, thus a principal 
ideal. Thus, except for the principal class, only the classes represented by 
Pz, P3, P3 occur. We find, by trial 2 = 3z - 7 . l z, that is, P2 = (3 + .j7), 
thus P2 '" 1. Since P2 '" p~, 3 + .j7 and 3 - .j7 must be associated, hence 
the quotient 

= 3 + .j7 = (3 + .j7)2 = 8 3 '7 
Yf 3-J'? 2 + '>/' 

is a unit. Ifp3 were a principal ideal (a + b.j7), then 

±3 = aZ - 7bz, thus ±3 == aZ (mod 7) 

would have to hold. Accordingly, only the lower sign can hold, as + 3 is a 
nonresidue mod 7. Thus, for b, by (l08) we need only test the values b with 

(9 - 3.j7)J'3 < bJ28 < (9 + 3.j7)J'3, 
that is, 

0< b < (JH + !)Jj < 3 + .,p;, 
Already b = 1 yields 

a=)-3+7'1 2 =2 

0< b ~ 5. 

so that P 3 = (2 + .j7) is a principal ideal. So here also h = 1. 
3. By the calculations in §23 the class number of k(P) is diff~rent from 

1, since it was shown there that the ideal P3 = (3,4 + p) is not a principal 
ideal; however p~ = (2 + p) is indeed a principal ideal. By the above, 
since d = - 20, the ideals with norms 2, 3,4 are to be investigated. We obtain 
2 = pL here P2 is not a principal ideal, since 2 is not of the form aZ + 5bz. 
The only ideal with norm 4 is the principal ideal P~ = 2; finally since P3P3 = 3 
and p~ - 1, P3 '" P3 and, except for the principal class, the ideal classes 
represented by P2, P3 occur here. If P2 were not equivalent to P3' we would 
have exactly three distinct classes, and because of the group property the 
third power ofp2 would have to be a principal ideal; it would follow already 
that since p~ '" 1, P2 '" 1 which is not the case. Thus P2 - P3 and conse
quently h = 2. 

4. In k() - 23), d = - 23; the values 2, 3, 4 are possible for the norm. 
We have 

(-i 3 ) = +1, 

(-;3) = + 1, 
2 = P2P~ 

3=P3P3' 

Hence the ideals with the norms 2, 3, 4 are 

(l09) 
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Obviously the last one is a principal ideal. In order that pz ~ P 3, we would 
have to have P2P~ ~ 1. Since N(P2P'3) = 6 we must see whether 6 is the 
norm of a number; this is the case 

6 = x 2 + 23y2 
4 

which only holds for x = ± I, y = ± 1. Hence there are exactly two principal 
ideals with norm 6, and these are conjugate so that either PZP3 or PZP3 are 
equal to a principal ideal. Let the notation relative to the conjugates be 
chosen so that P2P~ .~ l. Consequently by (l09) at most 

remain as nonequivalent ideals. The ideal pz is equivalent neither to p~ nor 
to p~; indeed, however, P2 ~ p/, which means d ~ 1. Then N(pi) = 8 and 
8 is the norm of the integer (3 + Fi3 )/2, which is obviously divisible by 
no rational number except ± 1. The only ideals, however, which are without 
rational factors and which have norm 8 are p~ and p~ 3 and consequently 
one of these, and hence also the other, is a principal ideal. 

Thus we find h = 3 and the three classes 

P2' p~, p~ ~ 1 
as representatives. 

§45 The Concept of Strict Equivalence and the 
Structure of the Class Group 

For the investigation of quadratic fields it is useful to introduce a some
what modified concept of equivalence. 
Definition. We call two nonzero ideals a, b of the quadratic field k equiv
alent in the strict sense, if there is a number A in k such that 

a = ;.b and N(I,) > 0. 
We write 

a::::::b 

and consider a and b in the same ideal class in the strict sense. 
The classes can be combined in the manner familiar to us to form an 

Abelian group. If ffil is the group of all nonzero ideals, i>o is the group of all 
principal ideals (J1) with N(J1) > 0, and i> is the group of all nonzero principal 
ideals where multiplication means multiplication of ideals, then the ideal 
classes in the strict sense are cosets or residue classes which arise from the 
decomposition of ffil modulo i>o; the factor group ffil/i>o is the group of 
ideal classes in the strict sense. Here the unit element is the system of ideals 
in i>o. The class group, in the sense used until now, is the factor group ffil/i>. 
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It follows from a ~ b that a ~ b. Conversely, if a .~ b, then obviously 
a ~ b or a ~ bJd. A class in the wider sense thus splits into at most two 
classes relative to the strict concept of equivalence. Hence the class number 
ho in the strict sense is also finite and :s:; 2h. 

Since the number f1 is determined only up to a unit factor by the ideal 
equation a = ,LIb, the two concepts of equivalence are identical if in each 
complete sequence of associated numbers some with positive norm occur. 
That is, if k is imaginary or k is real and the basic unit in k has norm - L 
then 110 = h. 

In the cases yet remaining in which k is real and each unit in k has norm 
± 1, a and a.jd are obviously not equivalent in the strict sense, and then 
ho = 211. 

Now the main problem is to investigate the structure of the class group. 
However, at present, only a very small part of this has been achieved. The 
result is formulated in the following theorem. 

Theorem 132. The basis number of the strict class group belonging to 2 is 
eo(2) = 1 - I, where t denotes the numher of distinct primes which divide the 
discriminant d rd'k. 

By Theorem 28, we must show that there exist exactly 2' - 1 classes in k 
whose square is the strict principal class. For this purpose we keep in mind 
that the t distinct prime ideals q 1, ...• q" which divide d. have the property 
that their square is a rational principal ideal, thus ~ 1, by the decomposition 
laws mentioned above. We first show that each ideal a with a2 ~ 1 is neces
sarily equivalent to a product of powers of these q. From a2 ~ 1 and aa' ~ 1, 
it follows that 

a 
- ~ 1 
a' ' 

a 
-='1 a' . 

where 'X is a number with positive norm, which we also take> 0 if it is real. 
It is a quotient of two conjugate ideals. hence N('X) = 1. Consequently, this 
number is also a quotient of two conjugate numbers, 

l+w 
'X = _.---

1 + w'· 

The ideal 

a a' 

1 + w 1 + w' 

is equal to its conjugate, hence by the decomposition laws 
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where r is a rational number and the ai are 0 or 1. However, this means 

as claimed since N(l + w) = w(l + W,)2 > o. 
Such integral ideals in k(J(i), which are equal to their conjugates but 

which do not contain a rational factor (except ± 1), are called ambiguous 
ideals. Ideal classes which are equal to their conjugates are called ambiguous 
classes. Furthermore the above proof shows that an ambiguous ideal occurs 
in each ambiguous class. 

Now we must still show that among the t ambiguous classes Q1, ... ,Qt 
which are defined by q b ... , qt respectively, there are exactly t - 1 indepen
dent classes (in the sense of group theory). Now if there is a relation 

Q~' ... Q~t = 1, (110) 

which is not the trivial relation where all ai are even, then there is a number 
a such that 

a = q~' ... q~t, N(a) > o. (111) 

Here we then have (a) = (a'), a = I'/a', where 1'/ is a unit, N(I'/) = + 1. We now 
distinguish three cases: 

(a) d < 0, where we at once assume d < -4, since for d = - 3 or d = -4 
our Theorem 132 is already seen to be true because of h = 1 and t = 1. Then 
there are only the units ± 1 in k, hence 

a= ±a', a = r(J(it (n = 0 or 1), (112) 

where r is a rational number. With n = 0 all exponents ai in (111) are even. 
With n = 1 at least one ai is odd, since d is not a square. 

(b) d> 0 and the norm of the fundamental unit is -1. Here 1'/ > 0 
because N(a) > O. Hence 1'/ = 8 2n with n a rational integer. Since 

we thus obtain 

2 8 
8 =--

8' 

(8J(it (-8'J(it' 

8J(i 

-8'J(i 

a = r(8J(i)" (113) 

with rational r. Again, to an even n there corresponds a system of exponents 
ai consisting only of even numbers. With n odd at least one ai is odd. 

(c) d > 0 and the norm of the fundamental unit 8 (8 > 0) is + 1. Here 

1+8 
8 = 1 + 8" 

a = r(l + 8)n. 

(1 + 8)" 
1'/ = (1 + 8,)n' (114) 
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The ideal (1 + c) is equal to its conjugate, but surely not equal to any rational 
principal ideal. For if 

1 + c = r1Ck 

held with rational 1'1' then we would have 

1 + c 2k 

c = 1 + c' = c , cZk - 1 = 1 

which is not the case. Consequently, (1 + c) has a decomposition 

(1 + c) = rational ideal x q~1 ... q~t, 

where at least one of the exponents bt is odd. 
Thus in each case we obtain that if a decomposition (111) for rt holds, 

where the exponents ai are not all even, then rt must be of one of the three 
forms (112), (113), (114), where n is odd. Consequently the exponents ai in 
(110) are uniquely determined modulo 2. Hence there is at most one nontrivial 
relation between the t classes Q 1> ••• ,Qt. Conversely, however, there is 
actually one such relation as the decomposition of the principal ideals (in 
the strict sense) .jd, [;.jd, 1 + c shows in the cases (a), (b), (c) respectively, 
where at least one of the exponents ab ... , at is odd. 

This means that among the classes Q, there are exactly t - 1 independent 
ones; thus Theorem 132 is proved. 

We formulate two important consequences of this: 

Theorem 133. If the discriminant d of k(.fd) is divisible by a single prime 
(t = 1), then ho and hence also h is odd and thus, provided d > 0, the norm 
of the fundamental unit = - 1. 

Theorem 134. If d is the product of two positive primes qb q2, which are 
== 3 (mod 4), then either q1 or qz is the norm of a principal ideal in the strict 
sense in k(JCi~qz). 

To begin with the norm of each unit = + 1 in such a field. For from 
N(rt) = -1 for rt = (x + y.jq1qz)/2 it would follow that 

-4 == XZ (mod Q1qZ); 

thus -1 would be a quadratic residue mod Q1. However, by Equation (31) 
in §16, the residue symbol is 

(~11) = (_I)(Ql-l)/z = -1. 

Moreover, it follows from the proof above that an equivalence 

(115) 
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holds in k(.jqlq2), where al and a2 are not both even. If both were odd, 
then we would have qlq2 = .jQ1Q2 ~ 1, thus there would be a unit '1 such 
that N('1.jQ1Q2) > 0, that is, N('1) = -1, which is impossible as has just 
been shown. Hence we may take one of the exponents = 1, the other = 0 
in (115); thus Theorem 134 is proved. 

Since in the field ho = 2h must hold, in view of Theorem 132, there remains 
the possibility that h is perhaps odd. This is actually the case here, as one can 
convince oneself without difficulty by a proof analogous to that of Theorem 
132. 

§46 The Quadratic Reciprocity Law and a 
New Formulation of the Decomposition Laws in 
Quadratic Fields 

Theorem 135. If p and Q are odd positive primes, then we have the relations 

(I) C/) = (_1)(p-l)/2, 

(II) (~) = (*)( _1)«p-l)/2)«q-l)/2), 

(III) (i) = (_1)(p2- 1 )/B, 

We obtain the first formula directly from the definition of the residue 
symbol, Equation (31) in §16. We can also deduce it from field theory, in a 
somewhat more involved way, but analogous to the subsequent proof of 
(II) and (III) as follows: If (~l) = + 1, then p splits in k(J=1) and since 
ho = 1, p is the norm of a principal ideal x; hence p = a2 + b2• Since each 
square is == 0 or 1 (mod 4), we hence have p == 1 (mod 4). Conversely, if 
p == 1 (mod 4), then, by the second part of Theorem 133, the number - 1 
is the norm of an integer t: = (a + bJP)/2 in k(JP), hence -4 == a2 (mod p), 
that is, -1 is a quadratic residue mod p; with this (I) is proved. 

In the proof of (II) we distinguish three cases: 
1. Suppose p == Q == 1 (mod 4). We show that (~) and (*) are simultaneously 

+ 1 and, consequently, also simultaneously -1. Thus they are equal to one 
another, as required by the claim in this case. 

For if (*) = + 1, then the prime p splits into two distinct factors p, lol' in 
k(J(j). Moreover, we can set 

h x + yJq 
po=lX= 2 ' 

where IX is a number of positive norm; thus 

4pho == x 2 (mod Q). 



164 VI! The Quadratic Number Field 

Accordingly pho is a quadratic residue mod q, and since ho is odd by Theorem 
133, p itself is a residue mod q, that is, (~) = + 1. Since the hypothesis is 
symmetric in p and q, Formula (II) is proved in our case. 

2. Suppose q == 1 (mod 4), p == 3 (mod 4). It follows from (;) = + 1, as 
above, that also (~) = + 1 ; therefore by (I), ( ~P) = (-=f)(f) = + 1. 

Conversely, if l 7) = + 1, we conclude in the same way with the help of 
,----- q 

the field k(~ - pi, that (p) = + 1; thus we always have 

(-~!) = G} that is, (~) = (~). 
in accordance with (II). 

3. Finally if p == q == 3 (mod 4), then we can likewise draw the conclusion 
that 

(~J?) = + 1 implies (~q) = -1, 

but the converse cannot be proved in this way. For this we go over to the 
field k( J"i}q) in which, by Theorem 134, p or q is the norm of an integer 
(x + y)PclJl2. Suppose 

4p = x 2 _ pqy2. 

Here x must be divisible by p, x = pu, so 4 = pu 2 - qy2. From this equation 
we obtain 

that is, 

(~) = + 1 and (~ q) = + 1, 

(~) = -1; 

hence (~) and (;) are different and (II) is also true. 
Finally in order to prove Formula (III), we assume that (~) = + 1. Then 

p splits in k( J2) and since h = ho = 1, p is the norm of an integer, 

p = x 2 _ 2y2. 

From this it follows that p == x 2 (mod 8), if y is even and p == x 2 - 2 (mod 8), 
if .v is odd, that is. since x is odd, p == ± 1 (mod 8). 

Conversely, if p == ± 1 (mod 8), then we go over to the field k(.f ± p) in 
which ho is odd by Theorem 133. In this field 2 splits into distinct factors by 
the decomposition laws; consequently 2 is a quadratic residue mod p. 

Thus we have shown 

G) = + 1 if and only if p == ± 1 (mod 8). 

However, this is equivalent to (III). 
We now generalize the formula to the case where the two numbers 

p and q are composite positive odd numbers. The symbol introduced by 
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Legendre whose "denominator" is a prime was also defined for composite 
denominators at the end of §31. It should now be noted that the same 
reciprocity formulas also hold for this "Jacobi symbol." 

For the prooflet a and b be any odd integers. Since 

we have 
(a - l)(b - 1) == 0 (mod 4), 

ab - 1 == a - 1 + b - 1 (mod 4) 

ab - 1 a- 1 b - 1 
-2- == -2- + -2- (mod 2). 

In the same way it follows from 

that 
(a2 - 1)(b2 - 1) == 0 (mod 16) 

a2b1 - 1 a1 - 1 b2 - 1 
--8- == -8- + -8- (mod 2). 

(116) 

(117) 

By repeated application of this process we thus obtain for r odd integers 

Pb"" P. 
PI . Pl' .. P. - 1 = ± Pi - 1 (mod 2) 

2 i~ I 2 

(PI . Pl ... p.f - 1 • pf - 1 
8 = i~1 -2 - (mod 2). 

Now suppose that the positive odd numbers P and Q are decomposed into 
their prime factors 

P = PI . P2 ... p" Q = ql . q2 ... qs· 

Then, by the definition in §31 and by application of(116) and (117), 

(-1) (-1) (-1) (-1) i (p,-I)/2 p = p; . p; ... p: = (-1)'"' = (_l}(P-I)/2, (118) 

(2) i ( L1)/8 P =(-l)'='P' = (_l)(Pl-1)/8 (119) 

and finally 

( P).(;)=._ Il (Pi)=(_l}j,(P,-1)/2 kt (Qk-I)/2_ Il (q~) 
Q ,-I, ... ,. qk ,-I, ... ,. p, 

k~I, ... ,s k~I, ... ,s 

(~) = (;)(_l}«P-l)/2)'«Q-1)/Z). (120) 

Finally we further extend the definition to negative denominators, by setting 

(121) 
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Then in order to formulate the reciprocity laws for negative numbers we 
use the symbol sgn a (read signum a): 

sgn a = {
+1 
-1 

if a> 0, 

if a < O. 

Note that lal = a . sgn a. With the help of this symbol we obtain at once 
from (116) that for odd P 

(;1) = (_l)(1P1-1)/2 = (_l)(P-l)/2+(sgnP-l)(2. 

Consequently for odd P, Q 

(~) = Cg; P)( I~I) 
= ( _l)«sgn P- 1 )/2)(Q - 1)/2) +«sgn P - 1)/2)(sgn Q- 1 )/2) ( I~I )

Moreover, by (120) 

( I~I ) = ( l~l ) = ( 1;1 > _l)«IPI-l)/2)(IQI-l)/2) 

= (;) ( _l)«sgn Q- 1 )!Z)(<lPI- 1 )/Z)+((IPI- 1 )/2)(<lQI- 1 ),2). 

Finally we obtain from these formulas 

Theorem 136. (General Quadratic Reciprocity Law) IfP and Q are odd ratio
nal integers, then 

(~l) = (_l)(P-l)/h(sgn P-l)!2, 

(~) = (;) . ( _ I )«P-l)/2)(Q-l)/2)+«Sgn P- 1 )/2)(sgn Q- 1 )/Z). 

Finally we generalize the definition of the residue symbol to even denom
inators, although we restrict the numerator. By Theorem 45 the residue 
class group mod 8 and modulo higher powers of 2 is no longer cyclic, but 
instead it has two basis classes. Each odd number is == ( -lt5 b (mod 2k) 
(k :2': 3), where the exponent a is uniquely determined mod 2 and the exponent 
b is uniquely determined mod 2k - 2 . The numbers with a == 0 (mod 2) form a 
cyclic subgroup of m(2k ); these are the numbers which are == 1 (mod 4). 
Among the classes of this subgroup, those classes which are squares are to 
be fixed by a single character. Corresponding to this we define: 
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Definition. If a is a rational integer == 0 or 1 (mod 4) we set 

() ( ) { 
0, if a == 0 (mod 4), 

~ = ~2 = + 1, ~f a ~ 1 (mod 8), 
-1, If a = 5 (mod 8). 

167 

(122) 

By Theorem 136, (~) = (~) if the first symbol has a meaning. Moreover for 
two such numbers a and a' it follows that 

(~) = (~) if a == a' (mod 8) 

( a ~ a') = G) . (~} 
Finally, in general we set 

(123) 

for arbitrary denominators, if a == 0 or 1 (mod 4). This definition remains in 
agreement with the stipulation in §44 because each field discriminant is 
== 0 or 1 (mod 4). 

Theorem 137. If d is the discriminant of a quadratic field and n, m are positive 
integers, then 

(~) = (~) ifn == m (mod d), (124) 

(~) = (~). sgn d ifn == -m (mod d). (125) 

Accordingly, (~) thus represents a residue character mod d for positive n. 
F or the proof we must split off the highest power of 2 dividing d, n, m. Let 

m = 2cm' 

with odd d', n', m'. 
Case 1: a > O. The case b > 0 is trivial here, since then, by hypothesis, 

we must have c > 0, and both symbols in (124) and (125) have the value zero. 
Thus suppose that b = c = O. Then by Theorem 136 

e":') = (~y (~) = (_l)a(n 2 -1)18 (;,)C _1)«n-l)/2)(d' -1)/2) (126) 

and the analogous equation holds for m. Since d is divisible at least by 4, 
the first factors for nand m agree. The same holds true for the other two 
factors in case n == m (mod d); however if n == -m (mod d), then the factors 
differ precisely by the factor sgn d'. 
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Case 2: a = 0, thus d == 1 (mod 4). 

(127) 

from which the assertion can be read off immediately. 
Now we see from this theorem that the decomposition law for quadratic 

fields, as it was proved in §29, is indeed formally of a quite different type 
than that for cyclotomic fields, but on the other hand shows a great similarity 
relative to content. Theorem 137 shows that if two positive primes belong to 
the same residue class mod d, then they split in exactly the same manner in 
k(jd). Thus k(Jd) is also a class field which belongs to a classification of 
the rational numbers mod d. For if we consider those numbers n for which 
(%) has the same nonzero value to be of the same "type," then the positive 
integers relatively prime to d split into two types. By Theorem 137 all natural 
numbers congruent to a mod d belong to the same type as a. Consequently, 
one type consists of certain ~qJ(d) residue classes mod d, which are relatively 
prime to d. If we assume that ai' a2, .... am (m = ~qJ(d)) are the numbers 
which are incongruent mod d which belong to the same type as 1 (all qua
dratic residues mod d occur among them), then the decomposition law reads: 

Let p be a positive prime relatively prime to d and let .f be the smallest 
positive exponent such that pf is congruent to one of the numbers a1> . .. , am 
modulo d. Then p splits into 21f distinct prime ideals in k(jd). All of these 
have degree f. 

In particular, if the discriminant d is an odd prime, d = (_1)(q-I)!2q, then 
by Formula (126), (%) = (~) and moreover 

C) == n(q-l)/2 (mod q). 

The exponent f, which has just been discussed, is thus the smallest positive 
exponent for p for which 

pf(q - 1 )i2 == 1 (mod q). 

§47 Norm Residues and the Group of 
Norms of Numbers 

By means of the quadratic field k(jd), a distinguished group of residue 
classes among the rational numbers is defined for each modulus n. Namely, 
let n be a rational integer. In the group 91(n) of residue classes relatively 
prime to n we then consider those residue classes which can be represented 
by norms of integers in k(jd). These obviously form a subgroup of 91(n), 
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which we call the group of norm residues mod n (for the field k(..jd», and 
which we denote by 9l(n). In particular, an integer a which is relatively 
prime to n is called a norm residue mod n, if there is an integer rx in k such that 

a == N(rx) (mod n), 

otherwise a is called a norm nonresidue mod n. (Those a not relatively prune 
to n thus remain quite outside of consideration in this sense.) 

It will now be shown that in general 9l(p) and 9l(p) are identical; these 
two groups are distinct only if the prime p divides the discriminant d. 

Theorem 138. If the odd prime p does not divide the discriminant d, then each 
rational integer relatively prime to p is a norm residue mod p for k(..jd). 

We distinguish two cases in the proof. 
1. p splits into two distinct factors p and pi, of degree 1, in k(..jd). Then 

there is a number n in k(..jd) which is divisible by p but not by pi, and for 
each integer rx 

N(n'rx + n) == n'2rx (mod pl. 
From this it follows that the rational numbers N(n'rx + n) run through a 
complete system mod p, hence also mod p, if rx runs through a complete 
system of residues mod p. 

2. p is irreducible in k(..jd), thus p is a prime of degree 2. Let p be a prim
itive root mod pin k(..jd). Then 

pP == pi (mod p) and hence N(p) == pP+ 1 (mod pl. (128) 

For if the quadratic function f(x) = x 2 + ax + b with integral coefficients 
has the roots p, pi, then the functional congruence 

f(x)P == f(xP) (mod p) 

implies 

0== f(pP) == (pP - p)(pP - pi) (mod p), 

from which (128) follows. Hence the residue classes of 

N(pa) == pa(p+ 1) (mod p) 

are mutually distinct, for a = 1, 2, ... , p - 1, since two powers of p yield 
the same residue class only if the exponents are congruent mod (N(p) - 1), 
that is, mod(p2 - 1). Hence there are N(pa) rational residue classes modulo p 
which are relatively prime to p. 

Theorem 139. If the odd prime q divides the discriminant d of k(..jd), then 
exactly one half of the classes of 9l(q) are norm residues mod q, and indeed 
these are the classes of 9l(q) which can be represented as the square of a class. 
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If q is the prime ideal of k(.Jd) which divides q, then each number 0( in 
k is congruent to a rational number mod q, say r. However, since q = q' it 
follows from 0( == r (mod q) that 0(' == r (mod q) and 

N(O() == r2 (mod q), hence also mod q, 

that is, if (r, q) = 1, 

(N~O(») = + 1. 

Conversely if the condition (~) = + I is satisfied, then there is a rational 
integer x with a == x2 (mod q), and since a == N(x) (mod q), a is a norm 
residue. Moreover we see that for arbitrary composite moduli m, n: 

Lemma. Suppose that (m, n) = 1. Then if for each a there exist two integers 
r:t. and fJ in k(.Jd) such that 

a == N(r:t.) (mod m) and a == N(fJ) (mod n), 

there is also an integer y in k(.Jd) for which 

a == N(y) (mod mn). 

To see this we choose positive exponents b, c such that 

mb == 1 (mod n) and nC == 1 (mod m) 

(say b = <pen) and c = q>(m». Then 

y = nCO( + mbfJ 

has the asserted properties. 
As far as the prime 2 is concerned, we consider the group 9t(2a) for a = 2 

or 3. 

Theorem 140. If the discriminant d of k(.Jd) is odd, then each odd number is 
a norm residue mod 8. However, if d is even, then exactly half of all incongruent 
odd numbers mod 8 are norm residues mod 8. 

For the proof we test the residue classes in k(.Jd) mod 8. We find, with 
0( = x + y.Jd and d odd, that 

x = 0,1,2,1 

y = 1,0,1,2 

N(r:t.) == 3, 1, 7, 5 (mod 8), if d == 5 (mod 8) 

N(O() == 7, 1, 3, 5 (mod 8), if d == 1 (mod 8) 

and thus the first assertion is proved. 



§47 Norm Residues and the Group of Norms of Numbers 171 

We deal with the second part of the theorem in the same manner. For 
even d exactly the following residue classes mod 8 appear as norm residues 
mod 8: 

N(rx) == 1 or 5 (mod 8), if 
d 
- == 3 (mod 4) 
4 

N(rx) == 1 or -1 (mod 8), if 
d 
- == 2 (mod 8) (129) 
4 

d 
N(rx) == 1 or 3 (mod 8), if - == 6 (mod 8). 

4 

Note that for d/4 == 3 (mod 4) the only norm residues mod 4 lie in the residue 
class of 1 mod 4, hence also that 91(4) is different from 91(4). 

We now wish to express this state of affairs somewhat more clearly by 
using the general concepts of group theory from §1O. Only the norm residues 
modulo the divisors of d will be of interest. Let qb q2, ... , qt be the t distinct 
positive primes dividing d, with the exception that when d is even, the number 
qt denotes the highest power of 2 dividing d. Then for each i = 1, ... , t the 
group 91(q;) of the norm residues in k(Jd) is a group of index 2 in m(qJ 
By Theorem 33, the fact that a class in m(q;) belongs to this subgroup is 
thus expressed by the fact that a completely determined character of the 
group m(q;) has the value 1 for this class. This character Xi(n) can be given 
immediately, where we denote the representative of the residue class by the 
argument n, as is common with residue classes. For by Theorem 139 

Xi(n) = (;i) if qi is odd. (130) 

The group 91(8) has two basis classes, each of order 2; consequently it has 
three distinct subgroups of index 2, and as (129) shows, each of these also 
appears once as 91(8). The three quadratic characters mod 8 which are 
different from 1 are 

(_I)(n-l)/2, (_I)(n 2 -1)/8, (_1)(n-l)/2+(n 2 -1)/8, 

and for even d we thus find the last character 

( _1)(n-1)/2, if 
d 
4 == 3 (mod 4), 

XtCn) = C - 1)(n2 -1)/8, if 
d 
4 == 2 (mod 8), (131) 

( _1)(n-l)/2+(n2 -1)/8, if 
d 
4 == 6 (mod 8), 

that is, 

Xt(n) = (_I)a(n 2 -1)/8+«d'-I)/2)(n-1)/2) ifd = 2ad', d' odd. (132) 
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In view of the lemma, it thus follows immediately that 

Theorem 141. The group 91(d) of norm residues mod d for a quadratic field 
with discriminant d has index 2t in 9\(d), where t is the number of distinct prime 
factors of d. In order that a number n be a norm residue mod d, it is necessary 
and sufficient that the t residue characters 

Xi(n) (i = 1, ... ,t) 

defined by (130) and (132), have the value + 1. 

To make a study of the literature easier let us note that Hilbert also 
defined the norm residue concept for those numbers n which are not coprime 
to p, and that in the remaining cases the definition has a different form: 

Definition of the Hilbert norm residue symbol: Let nand m be rational 
integers, m not a square, p a prime (including 2). If the number n is congruent 
to the norm of an integer in k(fo) modulo each power pe, then let us set 

(n~m)=+l 
and call n the norm residue of the field k(fo) mod p. In each other case let 
this symbol be equal to -1, and let n be called a norm nonresidue mod p. 

If n is not divisible by p and p divides the discriminant of k(fo), then 

( n,d) q: = Xi(n) (qi odd) 

( n,d) 2 = Xi(n) (d even). 

On the other hand, if p does not divide nd, then we have r~d) = + 1. 

§48 The Group of Ideal Norms, the Group of 
Genera, and Determination of the Number of 
Genera 

As in the case of norms of numbers, the norms of ideals of k can now also 
be studied. Those residue classes mod d which can be represented by norms, 
taken to be positive, of ideals of k(J{1) relatively prime to d obviously form a 
subgroup of 9\(d). Let this subgroup be called the group of ideal norms 
mod d and let it be denoted by 3(d). 9\(d) is obviously a subgroup of 3(d). 
For if a class mod d can be represented by the norm of a number N(IY.), then 
N(IY. + dx) belongs to the same class for x a rational integer, and for sufficiently 
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large x N(rx + dx) is obviously positive. Thus it is the norm of the principal 
ideal (rx + dx). 

Since the structure of 91(d) is already known to us by Theorem 141, we 
need only investigate the factor group 3/91. Since 91 has order <p(d)/2', the 
order of 3(d) is a multiple of this number; on the other hand, the order is 
a divisor of the order <p(d) of 91(d). Consequently the degree of 3/91 is 
equal to 2", where the integer u ::s; t. The first principal result will be the 
equation n = t - 1; the second important result will be the disclosure of 
the connection of this group with the group of ideal classes and Theorem 133. 

The factor group J/91 arises if we do not regard as distinct norms of 
ideals which differ mod d only by a factor which is the norm of a number in 
k. For these ideals we obtain a division into classes which we can define in 
a useful way as follows: 

We consider two integral ideals a and b in k, coprime to d, to be of the 
same genus if there is a number rx in k such that 

IN(a)1 == N(rx)IN(b) I (mod d). 

In the manner familiar to us we combine the genera in k to form the 
Abelian group of genera by defining the product of two genera Gl and Gz as 
that genus to which the ideal a l . a2 belongs, where a l and a2 are ideals 
from Gl and G2 respectively. The group of genera is obviously isomorphic 
to the group J/91. The unit element of this group is called the principal 
genus; it is that genus which contains the ideal 1, thus the principal ideal, 
in the strict sense. Ideals which are equivalent in the strict sense obviously 
belong to the same genus if they are coprime to d; consequently each genus 
consists of a certain number of ideal classes in the strict sense. Since the 
classes which belong to the principal genus-let their number be f-ob
viously form a subgroup of the class group, f is a divisor of ho, and each 
genus contains exactly f classes. If g denotes the number of different genera, 
then 

ho = g . f. 
The square of each genus is the principal genus. Namely, if for each a, we 

set a = IN(a)l, we have 

Thus the order g of the group of genera must be a power of 2, g = 2", as we 
already found above for the group J/91. However, we obtain at once a more 
precise statement about u if we keep in mind that the number of distinct 
classes, which can be represented as squares is, by Theorem 133 exactly 
ho/2,-l because of Theorem 129. Consequently, 

u::s;t-l. (133) 

Now to prove the equation u = t - 1, we attempt to construct the group 
characters for the group of genera. We obtain these at once from the t 
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functions Xi(n) of the preceding section. For each norm residue n mod d, the 
Xi(n) have the value 1. If we now define for each integral ideal a from k(jd), 
relatively prime to d, the t functions 

(i = 1, ... ,t), (134) 

then each }!i(a) has the same value for ideals of the same genus. Moreover, 
}!i(ab) = }!i(a) . }!i(b), so we have: 

Theorem 142. The t functions }!i(a) are group characters of the genus rep
resented by a. 

Now by §1O, the group of characters of an Abelian group is isomorphic 
to the group. There are u independent elements in the group of genera and 
no more, because this group is of order 2u and each element has at most 
order 2. Consequently, there are also exactly u independent characters. 
Hence, among the t characters at least t - u relations must hold. That is, 
since t - u ~ 1: 

Theorem 143. At least one relation must hold for all ideals a of the field which 
are coprime to d, namely, 

! 

Il }!~i(a) = 1, 
i= 1 

where the rational integers Ci are independent of a and are not all divisible 
by 2. 

Thus for t = 1 the equation 

(l(a) = Xl(jN(a)j) = 1 

must hold. In fact this is exactly one part of the quadratic reciprocity law, 
which has not been used until now (in §47 and 48). We see that the proof of 
this equation is essentially reduced to the fact that ho is odd for fields with 
t = 1, as in our proof in §46. 

Conversely, we now wish to obtain the equation 
t 

Il (i(a) = 1 (135) 
i= 1 

from the quadratic reciprocity law. For this we show that for each positive 
integer n relatively prime to d the equation 

(136) 

is valid. For odd d we have 

t t (n) ( n ) (n) Il Xi(n) = Il - = = - , 
i=1 i=1 qi ql···qt d 
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and, by (127), this quantity is equal to the reciprocal symboL However, if 
q, = 2a (a > 0) and d = 2ad', then 

'-I ( ) U Xi(n) = ~, , 
I-I 

x,(n) = (_It(n2 -1)/8 +«d' -1)/2)(n-I)/2) 

and (136) likewise follows from (126). 
From this we now obtain at once the character relation (135) for prime 

ideals of degree 1. Namely, for such a = p, by the decomposition theorems, 
we have (Ntp») = + 1. However if a is a prime ideal of degree 2, then N(a) is 
a rational square, hence each riCa) = 1. However, if (135) is valid for each 
prime ideal not dividing d, then it is also valid for each a with (a, d) = 1. 

The fact that the number of genera g is exactly 2' -I is now proved most 
easily with the use of transcendental methods if we show that there is only 
the one relation (135) between the t characters riCa) and hence that there 
are t - 1 independent characters fi(a) of the group of genera, whose degree 
is at least 2'-1, consequently exactly 2'-1, by (133). 

Theorem 144. Let ej, e2, ... , e, be t numbers ± 1 such that e l . ez ... e, = 1. 
Then there are infinitely many prime ideals p of degree 1 in k(Jd) for which 

y;(p) = ei (i = 1,2, . , . , t). 

If we set N(p) = p, then the assertion obviously states that there are 
infinitely many rational primes p which satisfy the conditions 

Xi(P) = ei (i = 1, . , . , t) 
and 

(~) = +1. 

By (136), the last condition is now a consequence of the first t conditions, 
since el . ez .. , e, = + 1. Thus we need only keep these conditions in mind. 

Since each Xi(n) is a residue character mod qi, the single equation 

Xi(n) = ei 

thus requires that n belong to certain residue classes mod qi' and there are 
always such rational integers n. The fact that the t equations hold simulta
neously thus requires that n belong to certain residue classes modulo each 
of the t moduli qi' By Theorem 15, this means that n belongs to certain 
residue classes mod q 1 . qz ... q, that is, n belongs to certain residue classes 
mod d (which are of course relatively prime to d). Now however, by Theorem 
131, in each residue class mod d which is relatively prime to d, there are also 
infinitely many positive rational primes. Thus our theorem is proved. 

We proved the existence of these primes by the theory of cyclotomic fields 
ofthe Id Ith roots of unity in §43. It is important that the existence of infinitely 
many p with ;(;{p) = ei can also be deduced from the theory of quadratic 
fields alone (as well as by transcendental methods) as we still wish to show 
in §49. 
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As already shown above, it follows from Theorem 144 that g = 2/- 1, thus 
f = ho/2/-1. That is, the number of classes in the principal genus is equal to 
the number of those ideal classes which can be represented as squares of 
classes. Thus we have proved: 

Theorem 145. (Fundamental Theorem of Genera). In the quadratic field with 
discriminant d the number of genera is equal to 21 - 1. A complete system of 
independent characters of the genus group is formed from any t - 1 of the 
functions 

Yi(a) = Xi(IN(a)i) (i = 1, ... ,t). 

In order that an ideal class be a square, it is necessary and sufficient that it 
belongs to the principal genus. 

Gauss first found this theorem and gave a purely number-theoretic proof 
for it. Such a proof is also presented in Hilbert's Bericht. 

From the last part of the above theorem we can further conclude that 
in order for the ideal a, relatively prime to d, to be equivalent to the square 
of an ideal, it is necessary and sufficient that IN(a)1 be a norm residue mod d, 
that is, that the congruence 

IN(a)1 == x2 (mod d) 

be solvable with x a rational integer. Then the ideal norm IN(a)1 is also the 
norm of an integral or fractional number of the field. For from a ~ b2 there 
follows the existence of a number oc, of the field, with 

N(oc) > O. 
Hence 

IN(a) I = N(oc) ·IN(b2)1 = N(oc)· N(b)2 = N(ocb), where b = IN(b)l. 

§49 The Zeta Function of k(J"d) and the 
Existence of Primes with Prescribed Quadratic 
Residue Characters 

In order to express the zeta-function ((s) of k( Jd) by simpler functions, we 
consider those factors in the infinite product 

1 
(k(S) = IJ 1 - N(p) s' 

which are derived from prime ideals p which divide a definite rational 
prime p. By the decomposition laws we see at once that this partial product 

Q(1 - N(p)-S) = (1 - P-S)(1 - (~)p-) 
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Consequently (k(S) becomes the product 

1 1 
(k(S) = n 1 _ s • n (d) , 

p p p 1 __ p-s 
p 

where p runs through all positive primes, which likewise converges for s > 1. 
Hence 

(k(S) = (s) . L(s) 

L(s) ~ IT 6 . 
p 1 __ p-s 

P 

(137) 

If we substitute this expression for (k(S) into Formula (95) for the class 
number, then we obtain 

h . x = lim L(s). (138) 

From this we conclude that L(s) tends to a finite limit different from 0 as 
s approaches 1. Now we wish to derive results about the distribution of the 
symbol (%) from this fact in a manner similar to that used in §43. It follows 
from (138) that 

lim log L(s) is finite. (139) 

As with L(s, X) in §43, we find 

log L(s) = - ~ log ( 1 _ (~)p-s) 

00 1 (d)m 
= ~ m'f1 mpms p 

= ~ (~) ~ + H(s), 

where H(s) is a convergent Dirichlet series for s > !, which thus has a limit 
as s -+ 1. Hence by (139) 

lim L (~) -.!. is finite. 
s-->l p p P 

(140) 

This assertion is obviously still true if we omit finitely many p from the sum, 
and consequently also if we replace d by an integer differing from d by a 
rational square. That is, 

Theorem 146. If a is an arbitrary positive or negative rational integer, which 
is not a square, then the function 

L(s; a) = L (~)-.!. 
p>2 p p 

has a finite limit as s -+ 1. 
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A formalism similar to that of §43 then leads us to 

Theorem 147. Let aj, G2, ... , ar be any rational integers such that a product 
of powers 

is a rational square only if all Ui are even. Moreover, let Cl> C2' ... , Cr take 
arbitrary values ± 1. Then there are infinitely many primes p which satisfy 
the conditions 

(~) = Ci for i = 1, 2, ... , r. 

For the proof we set, for the sake of symmetry, 

1 
L(s; 1) = L s 

p>2 P 

(141) 

(a function which grows beyond all bounds as s ~ 1 by §43), and we form 
the sum 

L C~'C~2 ... c~rL(s; a~' . a~2 ... a~r) = cp(s) (142) 
Ul • .•.• Ur 

consisting of 2' terms (s> 1), where each U i runs through the values 0, 1. 
Thus the definition of L yields 

As can be easily seen, in this sum over p, only the terms p-s in which p 
satisfies Conditions (141) of the assertion have a nonzero factor (and in 
fact the factor 2'), except for the finitely many p dividing a. Now 

lim cp(s) = 00 
s~ 1 

since L(s, 1) grows beyond all bounds in each sum (142), while, by our 
hypothesis, all remaining L(s; a) remain finite by Theorem 146. Consequently, 
infinitely many nonzero terms must also appear in (143) and our theorem 
is proved. 

In particular, from this it follows for r = 1: 

In each quadratic field there are infinitely many prime ideals of the first 
degree as well as of the second degree. 

If, in the notation of the preceding section we choose the ai = ± qi and 
r = t, so that each ai itself is a discriminant of a field and the product 
al . a2 ... at is exactly d, then by Formula (136) applied to each individual 
field k( Ji;), 

(i = 1, ... , t) 
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and thus Theorem 144 of the preceding section has been proved without 
the Dirichlet theorem on primes, that is, without the theory of cyclotomic 
fields. 

§50 Determination of the Class Number of k(Jd) 
without Use of the Zeta-Function 

We now turn to a determination of the number h of ideal classes (in the 
wider sense) by the methods of Chapter 6. At first we wish to undertake this 
determination, as in §41, just from the density of ideals, without use of Ck(S), 
Afterwards we wish to apply the formally more elegent method of Theorem 
125 with the help of Ck(S), 

To use the first method we must determine the function F(n), the number 
of integral ideals of the field with norm n. By (89), F(ab) = F(a)F(b) for a 
and b relatively prime. 

Lemma. For each power pk of the prime p, 

k (d) k (d)i F(pk) = L i = 1 + L -
i=O P i=1 P 

(144) 

Case (a): (~) = -1. If N(a) = p\ then we must have a = p" with positive 
rational u; hence 2u = k, i.e. 

F(pk) = {1, if k even 
0, if k odd 

in agreement with Equation (144). 
Case (b): (~) = 0. p is the square of a prime ideal p, and it follows from 

N(a) = pk that a = pU, so u = k and F(pk) = 1. 
Case (c): (~) = + 1. p is the product of two distinct prime ideals p, p' and 

it follows from N(a) = pk that a = p" . p'"' with u + u' = k. Then, for 
u = 0, 1, ... ,k, the k + 1 pairs of numbers u, k - u yield exactly k + 1 
distinct ideals a and we obtain 

as asserted in the lemma. 

Theorem 148. For each natural number n we have 

F(n) = L (~), 
min m 

where m runs through all distinct positive divisors of n. 

If we decompose n into its distinct prime factors 

n = p~l . p~2 ... p~r, 
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then 

r ki (d) F(n) = F(p~l) . F(p~2) ... F(p~r) =.n L :i 
,=1 Ci=O p, 

( d) (d) F(n) = " =" - . _ ~ C1 C2... Cr ~ m 
c,-O, ... ,k, P1PZ Pr min 
C2":' 0, ... , k2 

We henceforth set 

(~) = x(n), n > 0 

in order to thereby emphasize the fact already proved by Theorem 137, that 
for positive n, (~) is a residue character mod d. 

We now substitute the expression found for F(n) into Formula (88) of 
§41 and we obtain 

L F(n) 1 
h . x = lim n,;x = lim - L L x(m). 

x-+ 00 X x-+ 00 X n:=; x min 

In the finite double sum we set (with m' integral) 

n=m'm', L F(n) = L x(m), 
n:$x m.m'>O 

rn· m':s;;x 

where m, m' run through all natural numbers whose product is :'5: x. Thus 
m' is to run through those integers with the property 

x 
1 :'5:m':'5:-, 

m 

whose number is [x/m], where [u] denotes the largest integer :'5: u. Conse
quently we obtain 

L F(n) = L x(m) [~] 
1 Sn$X 1 :$m$x m 

x(m) ([x] x) = x L - + L x(m) - - - . 
l::;m:5:x m l::s;m:s;x m m 

After division by x the first sum has the limit 

I x(m), 
m=l m 

as x -+ 00, since the series converges for s = 1 by Theorem 128 since it is the 
series L(s, X) for s = 1. Thus we obtain 

00 x(n) . 1 ([x] x) h . x = L - + hm - L x(n) - - - . 
n=l n x~oo X l';;n,;;x n n 
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However, the last limit is equal to 0, by the following general limit 
theorem: 1 

Let al> a2, ... be a sequence of coefficients such that 

lim ! L an = 0 and L lanl s; x for all x > O. 
x-co X n.:S:x n:::;,:x 

Then 

By the proof of Theorem 128, these hypotheses agree for an = x(n). Thus we 
obtain 

h· x = f x(n). 
n= 1 n 

(145) 

In the next section this equation will be proved in a shorter way using the 
zeta-function and accordingly the sum will be treated further. 

§51 Determination of the Class Number with the 
Help of the Zeta-Function 

In §49 we have already represented (k(S) as ((s) . L(s) where 

1 
L(s) = n 1 ( ) -s 

p - X P P 
and concluded from this that 

h . x = lim L(s). 
..... 1 

(137) 

(138) 

Now since x(n) is a residue character mod d for natural numbers n, the 
function defined by (137) is identical with some L(s, X) from §43 and 

L(s) = f x(~) 
n=1 n 

from which, by Theorem 128, the equation 

00 x(n) 
h· x = L(1) = L s 

n=1 n 
(145) 

follows, which we have just obtained in §50 without using the zeta-function. 
Ifwe compare the two proofs of this formula, then we see, by the decomposi
tion laws, that the representation of (k(S) as ((s)L(s) means the same thing as 
the determination of F(n) by Theorem 148 as far as content is concerned. 

1 For this theorem compare E. Landau, Uber einige neuere Grenzwertsiitze. Rendiconti del 
Circolo Matematico di Palermo 34 (1912). 
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We now know that for the quadratic field with discriminant d 

210g c: 

Iyldl 
if d > 0 and G is the fundamental unit, c: > 1, 

:K= 
2rr 

if d < 0; (w = 2 for d < -4). 

Thus, for positive d we obtain from (145) the remarkable 

Theorem 149. The expression 

represents a unit of infinite degree in k(,,/d) with d > O. And 

is a rational integer such that this unit is the larger of the two roots of the 
equation 

x2 - Ax + 1 = 0. 

The rational integer A can thus also be calculated numerically by esti
mating the remainder of the convergent series L(I) and with this we have a 
transcendental method for finding a unit in real quadratic fields. 

However, in each case the series L(l) can be summed in a very visible way, 
and in particular a surprisingly simple expression is obtained for h for 
imaginary quadratic fields. 

Since x(n) is a periodic function of the integral argument n with period 
Idl for 11 > 0, the idea of expanding x(n) in a kind of finite Fourier series 
seems natural. Thus we try to determine the Idl quantities en (n = 0, 1, ... , 
Idl - 1) in such a way that 

Idl- 1 
x(a) ,= L cn("n (146) 

11=0 

for 
a = 0, 1, ... , jdl- 1. 

These Idllinear equations for the Cn can certainly be solved uniquely, as the 
determinant of the coefficients (an is surely different from O. For the calcula
tion it is useful to define x(n) and Cn for arbitrary n, therefore for negative 
rational integers 11, by setting 

x(n) = x(m) and Cm = Cn , if n == m (mod d). 

With this equation (146) is true for each rational integer a. 
(For x(n) with negative n, this does not always correspond to the condition 

x(n) = (*), since by our earlier agreement (*) = (! .).) 
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By Theorem 137, we obtain 

x(n) = X( -n)· sgn d, 

and from this follows an analogous property of Cn. For if we set 

X( -a) = L cn(-an, 

n 

183 

(147) 

where n runs through an arbitrary complete system of residues mod d, then 
since the same holds for - n, we obtain 

X( -a) = L cn(an, x(a) = L C n sgn d (an. 
n 

Since the Cn are uniquely determined by (146) 

C- n = Cn sgn d. 

n 

(147a) 

We will take up the determination of the Cn later; however, even now we can 
put L(I) into an essentially different form: 

00 () 00 1 Idl- 1 

L(I) = L X n = L - L ciqn. 
n=1 n n=1 n q=O 

Now as is known from (q =f. 1, 1(1 = 1, 

00 (qn 

-log(l - (q) = L -, 
n= 1 n 

in particular, this series converges for q i= 0 (mod d). Thus we must have 
Co = 0 since L:'= 1 lin diverges but the whole series L(l) converges. Hence 
we write 

Idl-1 00 (qn 

L(l) = L cq L -. 
q=1 n=1 n 

If we take the terms with q and with Idl- q together and we consider (147a), 
we obtain 

I ldl - 1 00 (qn + sgn d· C qn 

L(l) ="2 J1 cq n~1 n 

and thus obtain two essentially different expressions for d > 0 and for 
d < 0: 

1. d < 0 
. 2nqn 

Idl- 1 00 sm ldf 
L(l) = i L Cq L 

q=1 n=1 n 

However, it is known that 

~ sin 2nnx (1 ) 
L... --- = n 2 - x for 0 < x < 1. 

n=1 n 
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Hence 
ni .Idl-I q 

L(1) = "2 I Cq - nz ~ Cq -Idl . 
q q- 1 

By (146), if we set a = 0 the first sum is equal to 0, hence 

ni Idl-l 

L(l) = -w n~l nCn 

2. d> 0 

wi Idl-l 

11= --I ~I I ncw 
2.Jd n=1 

d-I d-l 
= - I Cq logl1 - (ql = - I Cq 10gle1tiqld - e-rriQldl, 

q=! q=l 

(148) 

where Re(u) denotes the real part of u and the last symbol log denotes the 
real value. Thus 

-IJdld-l . nn 
h = ---- I Cn log Slll-. 

210g£n=1 d 
(149) 

In the two final formulas for h, the Cn must still be calculated from Equations 
(146), which will now be done. 

§.52 Gauss Sums and the Final Formula 
for the Class Number 

To derive Cn we obtain immediately from the defining equations, by multipli
tion by cam and summation over a mod d, 

Idl- 1 Idl- 1 Idl- ! 

2.: X(a)C am = 2.: en I (a(n-m) = em ·Idl 
a=O n=O a= 0 

lldl-I x(-l) 
en = - I x(a)C an = -' - L x( -a)C an 

Idl a=O Idl a 

1 Idl-I 
= - I x(a)("". 

d a=O 

This last sum is called a Gauss sum. Gauss first investigated it and obtained 
its value, where the chief difficulty is the determination of the sign. In this 
section we wish to establish only its simplest properties, and to postpone 
closer investigation to the next chapter, where we treat the analogue of Gauss 
sums for arbitrary algebraic number fields. 
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In this section we set, for an arbitrary discriminant d of a quadratic field 
and an arbitrary rational integer n, 

G(n, d) = L x(a)e27tian/ldl (150) 
a mod d 

where 
X( -a) = x(a) sgn d 

and for a positive a 

x(a) = (~). 
It follows from the definition that 

G(nt> d) = G(n2' d) if ni == n2 (mod d). 

We show moreover that calculating G(n, d) can be reduced to calculating 
G(n, q), where q is a discriminant which is divisible only by a single prime. 
For this purpose, we set, in the notation of §47, in case t> 1, 

d = (±qI) . (±q2) ... (±qt), 

where the signs are chosen so that each ± qi itself is a discriminant. Moreover, 
we define the residue character 

() ( ±qr) } Xr n = --
n (r = 1, ... , t), n > 0, 

Xr( -n) = Xr(n) sgn (±qr) 

(151) 

so that the Gauss sum G(n, ± qr) can also be formed from the Xr(n). Finally, 
we choose a special system of residues a mod d, namely, 

a=aI 11+ ... + at 11, 
qi qt 

where each ar is to run through a complete system of residues mod qr. Here 

x(n) = XI(n) . X2(n) ... Xt(n) 

Xr(a) = Xr(ar) . Xr ( I:; ) 
G(n, d) = L Xr(aI) ... Xt(at)e27tin(aliql + ... +a,jq,)c 

al ... .. at 

with 

c = Ii Xr(11). 
r= 1 qr 

(152) 

Hence we have 
t 

G(n, d) = C n G(n, ± qr), c = ±1. (153) 
r= 1 

From this equation we obtain 

G(n, d) = 0 if(n, d) -=I: 1, (154) 
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for if n has one odd prime qr as a common factor with d, then for this qr 

G(n, ±qr) = G(O, ±qr) = L Xr(a) = ° 
by Theorem 31, since Xr is a character mod qr' However, if nand d have 2 
as a common factor, then G(n, - 4) or G(n, ± 8) appears as the last factor in 
the product (153). But for even n this product is 0, as one can convince 
oneself by a calculation. 

As the third property for G we find that for rational integers c, n 

G(cn,d) = x(c)G(n, d), if(c,d) = 1. (155) 
For 

X(c)G(cn, d) = L x(ac)e21tinaClldl = G(n, d), 
amodd 

since, along with a, ac also runs through a complete system of residues mod d. 
Since X2(C) = 1, the assertion then follows. 

Theorem 150. For each rational integer n 

G(n,d) = x(n)G(1,d), 
_ () G(I, d) 

Cn-X n -d-' 

For ifn and d are not coprime, then by (154) both sides of the first equation 
are equal to 0. However, if (n, d) = 1, then we choose c in (155) in such way 
that cn == 1 (mod d); thus X(c) = x(n). 

For the complete determination of Cn we are only lacking the value of 
G(I, d), which is independent of n. 

Theorem 151. G2(1, d) = d. 

By Equation (153) we need only prove the theorem for those d which are 
divisible by only a single prime. For d = - 4 or d ± 8 the truth follows by a 
direct calculation. However for \d\ an odd prime we find 

q-1 q-1 

G2(1, ±q) = L x(a)x(bKa+b = L x(a) L x(abW+ ab 
a.b a= 1 b= 1 

q-1 q-1 

= L x(b) L (b+ l)a. 
b=l a=l 

Now 
( 1) 

{
a, if(n, q) = 1, 

1 + (n + . . . + ( q - n = 
q, if n == ° (mod q). 

Thus 
G2(1, ±q) = - L X(b) + (q - l)X( -1) 

b= - 1 (mod q) 

= qX(-l) - L X(b) = ±q. 
bmodd 
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Now the problem arises of finding which of the two values of Jd defines 
the number G(l, d), which was given in a transcendental way by means of 
the exponential function. This is the famous problem of determining the 
sign of the Gauss sums, which we will settle in the next chapter. 

Theorem 152. The class number h of the quadratic field with discriminant d 
has the value 

P Idl-l (d) 
h = -W n~l n n ' 

O . na 
Sind 

h=-P- Iog a , 

2 log eO' nb 
Sin-

b d 

P = -iG(1,d) = + 1 for d < -4. 
IJdI -

P = G(1, d) = + 1 for d > o. 
IJdI -

In the second expression a and b run through those numbers 1, 2, ... , d - 1 
for which 

(~) = -1, (~) = +1 

respectively. The final result will be that we always have P = + 1 (§58). The 
formula for the class number of an imaginary field then becomes remarkably 
simple, and from its structure it appears to belong completely to elementary 
number theory. In spite of this, until now no one has succeeded in proving 
this formula by purely number-theoretic methods without the transcendental 
techniques of Dirichlet. Up to now we have not been able to even show that 
the expression for h is always positive by other methods. At present we can 
only take this formula, which is still completely incomprehensible to us, as 
a fact for calculations. 

The second formula behaves likewise. In particular, we obtain from it the 
fact that the quotient OalOb is a unit of the field k(Jd). This latter formula 
can also be proved rather easily from the theory of the 2dth roots of unity, 
to which this number obviously belongs. However, until now it also has not 
been proved by purely number-theoretic methods that this unit is > 1 and 
that it is connected with the class number in the manner described above. 

§53 Connection between Ideals in k(Jd) and 
Binary Quadratic Forms 

To conclude this chapter we present the connection between the modern 
theory of quadratic fields and the classical theory of binary quadratic forms, 
for which Gauss laid the foundations. 
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By a binary quadratic jc)rm in the variables x, y we mean an expression 
of the form 

F(x, y) = AX2 + Bxy + Cy2, 

where the coefficients of the form, A, B, and C, are quantities independent 
of x and y and not all O. Obviously such a form can always be represented 
as a product of two homogeneous linear functions of x, y: 

F(x, y) = (:xu + {lY)(:X'x + {3'y). (156) 

The four quantities :x, fl, :x', {3' are, of course, not uniquely determined by 
A, B, C. For example, if A i= 0 

( -- B + ,/l31---'::'4I1C )( r- B - '-1//3 2 - 4AC ) 
F(x, Y) = -V Ax +-----------;::.:..--- y -y' Ax + r y . 

2-y'A 2'-1 A 

By comparing coefficients we confirm at once that 

(157) 

This expression is called the discriminant (or also the determinant) of the 
form. 

H we apply a homogeneous linear transformation 

(158) 

to the variables x, y, then F(x, y) is transformed into a quadratic form in 
x', y'. If we choose the form (156), then 

F(ax, + by" eX I + dytl 

= ((:xa + {3C)Xl + (:xb + {Jd)yd(((/a + {3'C)XI + (:x'b + {3'd)ytl 

= A,xi + Bjx1YI + C1yi = FtV(" yd· 

The connection between the A, B, C, and the Ab BI , C 1 does not matter 
for us. However, we note that for the discriminant, 

2 laa + {3c :xb + {3d 12 
Dl = B, - 4A 1 C l =. {3 

a'a + 'e a'b + {3'd 

= la, P,1 2
1a b1

2
, :x {3 c d 

(159) 

D, = D(ad - be)2. 

If the discriminant of the transformation, ad - be, is different from 0, then 
conversely the form FI(x" Yl) transforms into the original form F(x, y) by a 
suitable transformation of x" YI' For it follows from (158) that 

dx - bv 
XI = ad - b~' 

-ex + ay 
h= . 
. ad - be 
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This transformation is said to be reciprocal (inverse) to the transformation 
(158). Its determinant is Ij(ad - bc). 

We now consider exclusively those transformations where the coefficients 
a, b, c, d are rational integers with determinant ad - bc = + 1, the so called 
integral unimodular transformations. The reciprocal of such a transformation 
likewise has this property, as the above formulas show. 

Definition. If a form F(x, y) is transformed into the form F1(Xh yil by an 
integral unimodular transformation, then we say F is equivalent to F 1, in 
symbols 

By what has just been demonstrated, we also have F 1 '" F, as F 1 is 
transformed to F by the reciprocal transformation. Thus the equivalence is 
symmetric in F and F l' Furthermore F ~ F always holds. 

Lemma (a). If 
F 1 '" F and F 1 '" F 2 

holds for the three quadratic forms F, F 1, F 2, then 

F~F2' 

In fact if there are two unimodular transformations with integral coeffi
cients a, b, c, d and ab bb Cb dl respectively, for which 

F(ax + by, cx + dy) = Fl(x, y) and Fl(alx + bly, ClX + dly) = F2(x, y), 

then, in the first equation, we set 

From now on we omit the index 1 from the variables Xb Yl whose designa
tion does not really matter. By combination with the second equation it 
then follows that 

F«aa1 + bC1)X + (ab 1 + bdl)y, (cal + dCl)X + (cb l + ddl)y) = F2(x, y). 

The arguments of F are obtained from x, y by an integral homogeneous 
linear transformation, and the determinant of its coefficients is 

laal + bCl ab l + bdll 
d b dd = (ad - bc)(ald1 - blc l) = 1. 

cal + Cl C 1 + 1 

That is, F ~ F 2' Thus the equivalence is transitive. 
By a class of equivalent forms we mean the collection of all forms which 

are equivalent to a given form, say F, and we call F a representative of the 
class. By (159), all forms of a class have the same discriminant. 

We restrict ourselves mainly to real forms, that is, to those forms with 
real coefficients. ifF is a real form, then the same holds for all forms equivalent 
to F. 
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Theorem 153. If D is the discriminant of F and D > 0, then F(x, y) may take 
positive as well as negative values for appropriate real values of x, y. If D < 0, 
then either the value of F is ~ 0 for all real x, y or F(x, y) ::::; 0 for all real 
x, y; F(x, y) = 0 is possible only for x = y = 0. 

For the proof we consider the decomposition 

( B)2 D A . F(x, y) = Ax + 2 y - 4 y2. 

Now if D = B2 - 4AC < 0, then we must have A of- 0 and it follows from 
the equation that 

AF(x, y) ~ 0, 

where the equality sign holds only if y = 0 and Ax + !y = 0, that is, x = y = 
O. Consequently, F(x, y) always has the sign of A if x 2 + y2 of- 0. 

On the other hand, if D > 0, then, to begin with, suppose that A of- O. 
Then 

A . F(1,0) = A2 > 0 

A . F(B, -2A) = -DA2 < 0; 

hence both signs are possible for F and F can obviously also be zero for real 
x, y without x and y both vanishing. 

If D > 0 and A = 0, then the equation 

F(x, y) = y(Bx + Cy) 

shows the truth of the assertion. 
The form F is called indefinite if D > 0; on the other hand it is called 

definite if D < 0, and in the latter case it is called positive definite (respectively 
negative definite) if F(x, y) ~ 0 (respectively F(x, y) ::::; 0). 

From now on we consider integral forms exclusively, that is, forms with 
integral coefficients. The discriminant D is obviously congruent to 0 or 
1 (mod 4). 

Now let e be the discriminant of the quadratic field k(.je). We wish to 
develop a method by which we can assign to each ideal class of k(.je) (in the 
strict sense) a class of equivalent forms with discriminant e. 

F or this purpose let a be an arbitrary integral ideal of a given class of 
k(je). 

We let 
1X1' 1X2 be a basis for a, for which 
1X11X~ - 1X21X'1 = N(a).je is positive or 
positive imaginary. 

To each ideal a we assign the form 

F( ) = (1X1X + 1X2Y)(IX'lX + IX~Y) 
x, y IN(a) I 

(161) 
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This form obviously has rational integral coefficients, as the divisor of 
the coefficients of the numerator is equal to the product an' = N(o) by 
Theorem 87. Furthermore, by Equation (157) the discriminant is 

D _ (OC 1OC2 - oc2oc'd2 _ 
- N(O)2 - e. 

If a form F is derived from the ideal 0 in this way, then we say: F belongs 
to 0 and we write F --+ o. 

With e < 0 we obviously obtain only positive definite forms, for the first 
coefficient is 

Lemma (b). For each indefinite (e > 0) or positive definite (e < 0) integral 
form F with discriminant e there is an ideal 0 such that F --+ o. 

To begin with, the form F(x, y) = AX2 + Bxy + Cy2, where B2 - 4AC = 
e, is a primitive polynomial since if p divides A, B, C, then e/p2 must also be 
a discriminant, which is possible only for discriminants of fields when 
p = ± 1. We now consider the ideal 

= (A B - Je) 
m '2 ' 

where Je denotes the positive (respectively positive imaginary) value. By 
Theorem 87, N(m) = m . m' is the content of the form 

( Ax + B -2 Je y) ( Ax + B +2 Je y) = AF(x, y) 

N(m) = IAI. 
Consequently the two numbers A and (B - Je)/2 in m are a basis for m, 
since the square of their determinant has the value N 2(m)e. Hence in exactly 
the same way OC1 = AA and OC2 = A(B - Je)/2 is a basis for Am if A is a num
ber in k (A i= 0). Since 

this basis still has Property (161) if 

AA'A > 0. 
Hence we choose 

(1) if e < 0, A = 1 (since by hypothesis A is then> 0), 
(2) if e > 0 and A > 0, again A = 1, 
(3) if e > 0 and A < 0, A = )e. 
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Then in each case 

and consequently F --+ i"nt. 

Theorem 154. Equivalent forms belong to equivalent ideals (in the strict sense) 
and conversely. 

We obtain 

F( ) = (:XIX + :X2Y)(C/I X + IX~Y) 
X, Y IN(a)1 

G( ,) = (f3l x + f32y)(f3'IX + f3~y) 
X,} IN(b)1 ' 

(162) 

respectively from the basis IXb IX2 for a and the basis f3b f32 for b. Thus the 
two bases have Property (161). 

Now if F ~ G, then there are rational integers a, b, c, d, with ad - bc = 1 
such that 

F(ax + by, cx + dy) = G(x, y), 

((aIXI + CI(2)X + (blXl + d:X2)Y) . ((aIX~ + CIX~)X + (bIX~ + dIX~)Y) 
IN(a)1 

(163) 

(f3l x + f32y)(f3~X + f3~y) 
N(b) 

Since the quotients - f321f31 and - f3~/f3~ are defined uniquely (except for 
order) as the zeros of G(x, 1), we have 

aIX I + ClX2 f31 f3'1 -=-----=- = - or -
bIXI + dIX2 f32 f3~' 

Thus there is a A such that 

aIX I + CC(2 = )·f31 or Af3'1 

bC(1 + d:X2 = i.f32 or Af3~. 

In both cases we have by (163) 

--I _IN(a)1 0 
I.A - N(b) > . 

Consequently only the first of these two cases can hold, as in the second we 
would have 

(ad - bC)(C(IC(~ - IX2IX'd = -U'(f3If3~ - f32f3'd 

contrary to the assumption (161). 
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Since ad - bc = 1, AP1' AP2 is now also a basis for a; thus 

a = A(Pl, P2) = A . b 
a ~ b. 
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Conversely, suppose that a ~ b and A. is a number with positive norm 
such that a = A.b. Then API> A.P2 must be a basis for a which thus arises from 
1Xi> 1X2 by an integral transformation with determinant ± 1. Hence there are 
rational integers a, b, c, d, such that 

aa l + ca2 = APt> bcxl + dcx2 = AP2' 

It follows from Property (161) for both pairs and N(A) > 0 that ad - bc = + 1 
and 

AA.' = I N(a) I 
N(b) 

and from this Equation (163) follows, that is, F - G. 
By virtue of the fact stated in Theorem 154, the ho ideal classes of k(Jd) 

are assigned in a well-defined and invertible manner to the classes of forms 
of discriminant e (when e < 0 only to the positive definite forms). The number 
of nonequivalent integral forms with discriminant d is hence finite, and indeed 
equal to ho, or, with e < 0 equal to 2ho, if we include positive definite and 
negative definite forms. For example, each positive form with discriminant 
-4 is equivalent to x 2 + y2, since k(J=4) has class number 1. 

A large part of ideal theory can then be translated into the language of 
the theory of forms and vice versa. The latter is of particular interest for 
the classical theory of reduced forms, with the help of which it is possible 
to set up, by inequalities, a complete system of nonequivalent forms and to 
give, with this system, a far more convenient process for setting up all ideal 
classes than in §44.2 

The theory of units (with norm + 1) again appears in the theory of forms 
in the following way. All integral unimodular transformations which take 
a given form into itself can be listed. In fact for each unit e with N(B) = + 1, 
along with CXl and CX2' BCXl and BCX2 is also always a basis for n, and thus there 
is a relation 

where a, b, c, d are rational integers with determinant ± 1. If F again is taken 
as in (162), then obviously 

F(ax + by, cx + dy) = F(x, y). 

2 This reduction theory likewise appears in the theory of elliptic modular functions which has 
a close relationship to quadratic number fields. Compare, for example, Klein-Fricke Vorl. iib. 
d. Theorie d. Ellipt. Modulfunktionen, Leipzig 1890-1892, Vol. 1,243-269, Vol. II, 16\-203, 
as well as H. Weber, Elliptische Funktionen and algebraische Zah/en (= Lehrbuch d. Algebra 
Vol. III) 2nd edition, Braunschweig 1908. 
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To a large extent the theory of forms is concerned with the problem of 
which numbers can be represented by F(x, y) if x, y run through all pairs of 
rational integers. Obviously this goes back to the problem of which numbers 
appear as norms of integral ideals in a given ideal class. 

The difficult composition theory of classes of forms can be expressed 
very simply in the language of ideal theory if composition of forms is defined 
by that of the ideal classes. 

The investigation of those forms whose discriminant is Q2e, where Q 
denotes a rational integer, is reduced to the number ring in k(Je) with 
conductor Q (§36). Of the numbers which occur in an ideal, only those which 
belong to this ring will be considered. In this way the concept of ideals of a 
ring and the concept of ideal classes arise. These concepts are then applied 
to a class of forms of discriminant Q2e. 



CHAPTER VIII 

The Law of Quadractic Reciprocity in 
Arbitrary Number Fields 

§54 Quadratic Residue Characters and Gauss Sums 
in Arbitrary Number Fields 

We first encountered Ga\lss sums when determining the class number of 
quadratic fields. Expressions of this type occur in many other problems and 
Gauss was the first to recognize the great importance which these sums 
have in number theory. His attention was directed to the connection between 
these sums and the quadratic reciprocity law and he showed how a proof 
for the reciprocity law is obtained by determining the value of these sums. 
Today we know a number of methods of evaluating these sums. Among 
them there is a transcendental method, due to Cauchy, which is of particular 
interest since it is capable of generalization. 

The concept of the Gauss sum for an arbitrary algebraic number field 
was formulated by the author in 1919. 1 The Cauchy method of determining 
the value can in fact be carried over, thereby yielding a transcendental proof 
of the quadratic reciprocity law in each algebraic number field. This proof 
is to be presented in the following. 

We lay the foundations for the investigation of an algebraic number field 
k, of degree n. First we will extend the concepts and theorems of §16, about 
quadratic residues, to the field k. We can be very brief here, as we have become 
sufficiently acquainted with the basic general group-theoretic concepts. 

An integer or an integral ideal in k is called odd if it is relatively prime 
to 2. 

1 The so-called Lagrange resolvents in the theory of cyclotomic fields are generalizations in 
another direction. 
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Definition. Let P be an odd prime ideal in k, rx an arbitrary integer in k which 
is not divisible by p. We call'Y. a quadratic residue mod p and set 

(n = + 1, 

if there is an integer ~ in k such that (Y. == ~2 (mod pl. In the other case we 
call (Y. a quadratic nonresidue mod p and we set 

(~) = -1. 

Finally we set 

(~) = 0 if rx == 0 (mod pl. 

By Theorem 84 we see, as in §16, that for each integer'Y. the symbol (~) 
denotes that one of the three numbers 0, 1, -1 for which 

0:(N(p)-1):2 == C}mod pl. (164) 

If we have to deal with residue symbols in different number fields, we will 
distinguish them by attaching an index. 

For integers 0:, f3 we have, once again, 

(~) = (~} if rx == f3 (mod p) 

(0: ~f3) = (~)(~} 
Now let an odd integral ideal n be decomposed into its prime ideal factors 

n = PI . pz ... Pro 

We then define for an arbitrary integer 0: (in k) 

(~) = (:J. C~J··· (~). (165) 

Thus this symbol is zero if rx is not relatively prime to n, otherwise it is ± 1. 
We again have the rules of calculation 

(~)=(~} ifrx==f3(modn) 

C!) = (~). (~) 
for any integers rx and {3. If k is the field of rational numbers, then the two 
definitions (164) and (165) agree with the earlier ones in §16. 
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We now assign a sum to each nonzero integer or fraction w of k in the 
following manner: 

Let b denote the different of k and let bw be represented as the quotient 
of relatively prime integral ideals a and b: 

b 
w = ab; (a,b) = 1. 

By Theorem 101 the trace S(wu) is a rational integer for each integer v which 
is divisible by a. Consequently for integral v the number 

depends only on the residue class to which v belongs mod u. If we now 
form the sum 

C(w) = L (166) 
!1 mod a 

where Il runs through some complete system of residues mod a, then we 
obtain a number which depends only on w, and which is independent of 
the special choice of the system of residues. We call such a sum a Gauss 
sum in k which belongs to the denominator u. We agree here that an addition 
to the L sign, like "/1 mod a" is to mean that the summation letter Il is to 
run through a complete system of residues mod u possibly with further side 
conditions which will be stated. 

In the rational number field these C(w) are formally different from the 
Gauss sums defined in §52; however, as we will see at once, the latter can be 
reduced to the C(w). If the denominator a is = 1, then obviously C(w) = 1. 

We write 
eX = exp x 

whenever the formulas become more easily visible in this way. 

Lemma (a). Let bw have denominator a. Then, if a #- 1, 

L e2rriS(/lw) = O. 
J1. mod a 

If IX is an integer, then /1 + a runs through a complete system of residues 
mod u whenever Il does. If we denote the value of the above sum by A, then 
we have 

(167) 

The exponential factor cannot be equal to 1 for each integer a, since then 
S(aw) would always be a rational integer and so, by Theorem 101, bw would 
have to be an integer contrary to the hypothesis. Hence it follows from (167) 
that A = O. 

If XI, %2, a are integers, relatively prime to the denominator a ofbw, then 

(168) 
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since pry. runs through a complete system of residues mod ° simultaneously 
with j1; thus C(X2W) = C(X20(2W). However, for j1 an integer, 

S(j12XIW) - S(f1?X20(2W) = S(j12(Xl - X20(2)W) 

is then a rational integer because of the hypothesis; hence 

C(X20(2W) = C(X1W). 

We show moreover that the Gauss sums belonging to the denominator 
° can be reduced to those with denominator 01 and 02, if ° = °1°2 and the 
integral ideals 01 and 02 are relatively prime. 

To prove this let c1, C2 be auxiliary integral ideals such that 

02 C2 = 0(2 

are integers and (0, C1 (2) = 1. In (166) we set 

f3 bC1 C2 
W = --, where f3 = - ... -. 

0(10(2 v 

We obtain a complete system of residues mod 01 in the form 

j1 = PI0(2 + P20(j, 

where each of PI and P2 run through a complete system of residues mod 01 

and mod 02 respectively. Then 

hence 

(169) 

Using Equation (169), the calculation of C(w) can be reduced to the calcula
tion of a Gauss sum, whose denominator is a power of a prime ideal. 

For odd denominators the reduction can be carried still further, namely 
until the denominators are prime ideals. 

For let the denominator ° = pa be the power of an odd prime ideal p, 
with a ~ 2. If c again denotes an integral auxiliary ideal which is not divisible 
by p, such that pc = 0( is a number, then 

f3 bca 
W = - where f3 = -

O(a' b ' 

and we have the recursion formula 

c(~) = N(P)C(j~2) (170) 

The sum on the right obviously belongs to the denominator pa - 2. 

To prove our formula, we choose a complete system of residues mod pa 
in the form 



§54 Quadratic Residue Characters and Gauss Sums in Arbitrary Number Fields 199 

where 
tl mod pa- 1, p mod p 

each run through a complete system of residues. Then 

C (f3) " " {2 ·S ((tl + paa-l)2f3)} - = L.. L... exp nz aa I' mod pa-l p mod p (Xa 

L _ {exp {2niS (tl2!)} L exp {2niS (2tlP f3)}}. 
I' mod pa 1 a p mod p a 

By Lemma (a) the sum over P is equal to zero if 2tl is not divisible by p, 
that is, (since p is odd) if tl is not divisible by p. In the other case this sum is 
equal to N(p), since each of its terms is equal to 1. Consequently 

c(~) = N(p) L _ exp {2niS (tl2!)}. 
a I' mod pa 1 a 

1'=0 (modp) 

Thus tl is assumed to run through all numbers va where v is a complete 
system of residues mod pa-2, that is, the asserted Equation (170) is true. 

By repeated application of this formula, for even a, we arrive at the sum 
c(f3), which belongs to the denominator 1 and thus is equal to 1. Thus we 
obtain 

Lemma (b). If the denominator of bf3/aa is equal to pa, where p is an odd 
prime ideal which divides a precisely to the first power, then 

if a is even, 

if a is odd. 

A similar reduction is possible for prime ideals p which divide 2. However, 
we do not need to use this in later applications. 

Theorem 155. Suppose that the denominator a of 'ow is an odd ideal. Then for 
every integer x which is relatively prime to a 

C(xw) = (~) C(w). 

To begin with, the theorem is true if a is a prime ideal p, since if we apply 
Lemma (a), we have 

L (J1.) e2 1[iS(l'w) = L ((J1.) + 1) e21[iS(l'w). 

I'modp P I'modp P 

In this second sum only those terms where tl is a quadratic residue mod p 
have a value different from zero, except for the term which corresponds to 
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the residue class J1 = O. Hence the value of this sum is 

1 + 2 I e2rriS(/11w) 

/1 2 

where J12 now only runs through the distinct quadratic residues, excluding 
O. This is precisely the sum C(w), since each square except 0 occurs in this 
sum exactly twice. Hence 

C(w) = I (~) e2rriS(l1w). 

p mod I' P 
(171) 

If we replace J1 by J1"K, a process which does not change the value of the sum, 
we obtain the equation stated in the theorem. 

By Lemma (b) the assertion is also valid if the denominator G is a power 
pa of a prime ideal since, for even a, (~) = (:)a = 1 and the Gauss sum 
actually has the same value for wand for "KW. However, by what has just 
been proved, the additional factor (:) = (;a) appears for odd a. 

Finally, Formula (169) then immediately implies the truth of our theorem 
for an arbitrary odd denominator. 

We deduce from (171) that in fact the sums G(I,d), defined in §52 for the 
rational number field, are closely connected to the Gauss sums C(w); and 
if C(w) is determined, then G(1, d) is also determined. 

Finally we further conclude from (169) and Lemma (b): 

Theorem 156. If the Gauss sum C(w) belongs to the denominator G, and if G 

is the square of an odd ideal then 

C(w) = IjN(G)I. 

§55 Theta-Functions and Their Fourier Expansions 

The analytic tool which will lead to the determination of the Gauss sums is 
the theta-function of n variables. The two concepts are connected in the 
following way. 

Let us take the ground field k = k(l) as the simplest case. We then in
vestigate the function of r defined by the following series: 

O(r) = -rrtm 2 e . 
m=-x 

This series (a so-called simple theta-series) converges as long as the real part 
of r is positive. The imaginary axis is seen to be the natural boundary 
("singular line") of the analytic function 8(r). Now we investigate the behavior 
of O(r) as r approaches the singular point r = 2ir, where r is a rational 
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number. It is seen that 8(r) becomes infinite and that 

lim Jr8(r + 2ir) 
t~O 

201 

exists. This limit is the Gauss sum q - r) defined in the preceding section, 
except for unimportant numerical factors. Moreover, the behavior of 8(r) 
can be determined in yet a second way. There exists a "transformation 
formula" for 8(r): 

8G) = Jr8(r). 

By this formula the behavior of 8(r) at the point r = 2ir is related to the 
behavior of 8(r') at the point 

, 1 2i 
r =-= --. 

2ir 4r 

As stated above, the behavior of the latter is related to the Gauss sum 
q1/4r). By comparing the two results we obtain a relation between qr) 
and q -1/4r) from which qr) can be determined and from which, with the 
help of the formulas of the preceding section, the reciprocity law follows. 

Suppose that the field k has degree n, and that k as well as all of its con
jugate fields k(p) are real. Then in place of the simple theta-series, the n-tuple 
theta-series L e ~1t(tltl(1)2+ tZ,u(2)2 + ... +tn ,U(n)2) 

I' 

arises, where t1> ... , tn are variables with positive real part, and the summa
tion is to be extended over all integers J1 of the field k. In this series, we set 
tp = w + 2iw(p) where w is a number from k and let the positive quantity w 
tend to zero. 

Finally, if k is a general algebraic number field, among whose conjugates 
k(l), ... , k(r) are real and the remaining conjugates are not real, then we 
again have to investigate an n-tuple series. But then we do not get by with 
one and the same function of t 1 , .•• , tn to obtain all sums qw), but rather 
we need the functions 

~ exp { -n pt1 tplJ1(p)1 2 + 2ni pt1 w(P)J1(P)2}, 

which depend on w, in the neighborhood of the point t1 = t2 = ... = tn = O. 
Here J1 again runs through all integers of k. 

Even in this sketch of the proof, we should note what these arguments 
have in common with the transcendental methods of Chapter VI. The fact 
is that precise knowledge of the behavior of an analytic function in the neigh
borhood of its singular points is a source of number-theoretic theorems. 

Because the absolute values ofthe J1(P) appear in the individual terms, the 
derivation of the necessary formulas in the most general case becomes more 
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complicated. In order to make the main ideas of the proof more easily 
understandable, we first discuss in the next section the formally simpler case 
in which all conjugate fields of k are real. 

To begin with, we develop the train of thought which leads to the defini
tion and exposition of the theta-series and their transformation formulas. 

By a quadratic form in the n variables x I, X 2, ... , Xn we mean an expression 
of the form 

Q(XI"" ,xn) = L: aikxixk = allxi + 2a12xlx2 + "', 
i.k= I 

where the coefficients aik are real or complex quantities independent of 
x 10 ... , Xn with the symmetry property aik = aki · 

A quadratic form with real coefficients is called positive definite, if for all 
real XI, ... ,Xn 

and the equality sign holds only for Xl = X2 = ... = 0. For example 
xi + x~ + ... + x~ is a positive definite form in Xlo ... , X .. 

Lemma (a). For each positive definite form Q(x 10 ... ,xn) there is a positive 
quantity C, such that for all real X I, ... , Xn 

(172) 

By hypothesis Q( Y1, ... , Yn) > ° for all points of the n-dimensional 
sphere yi + y~ + ... + y~ = 1. Consequently the continuous function Q has 
a positive minimum c on the surface of the sphere, that is, 

Q(YI' ... , Yn) ?: c ifY'i + ... + y~ = 1. 

Thus if we set 

(i= 1,2, ... ,n), 

for arbitrary real Xi not all 0, Formula (172) then follows. 

Theorem 157. Let Q(x l , ... ,xn) = I7.k=1 aikxixk be a quadratic form with 
real or complex coefficients such that the real part of Q is positive definite. 
Moreover, let U10 •.. , Un be real variables. Then 

(173) 
ml.···. mn=-x 

is an absolutely convergent series and thus represents a function T(u1o ... ,un}· 
This function, together with all its derivatives with respect to the Ui' is contin
uous and moreover has period 1 in each of the variables. 
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The series (173) is called an n-tuple theta-series. 
To prove this let the real part of Q be denoted by Qo. By Lemma (a) there 

is a positive e such that 

QO(ml + UI" .. , mn + un) ~ e«mi + UI)2 + ... + (mn + Un)2). 

Furthermore 
n _ -xc I: (m,+u,)2 le-xQI = e xQo ::; e i=1 • 

Ifwe now restrict the real numbers Ui to a domain Iuil ::; C/2, then we obtain 

I - QI -xc.2: (mr-Cfm;l)+K eX::; e ,= I , 

where K is an appropriate constant. 
However, since the inequality 

ImII + ... + Imnl ::; .In(mi + ... + m;) ::; e.Jn(mi + ... + m;) 

is true for every e > 0, provided that 

we obtain the estimate 

le-xQI ::; exp{ -ne(1 - eC.J1I)(mi + ... + m;) + K}. 

(174) 

If we take e sufficiently small, then a = e(1 - eC.J1I) > ° and the terms of 
the given series are thus smaller in absolute value than the corresponding 
terms of the obviously convergent series with constant terms 

L e-xa(m~+'" +m~)+K 

nlt. .. . , mn 

(with at most finitely many exceptions which do not satisfy (174)). Thus the 
series of absolute values of (173) is uniformly convergent and the sum is 
a continuous function of UI' ... , Un' This function T(Ub ... ,un) has period 
1 in each of the variables. For example, if we replace the summation index 
mi by mi - 1, T(UI + 1, U2' ... ,un) is transformed to T(U1o' .. ,Un)' 

In the same way we can see that the series which arise from T by differen
tiating term wise, one or more times, converge uniformly. Since 

n 

Q(ml + Ub ... , mn + un) = Q(mb ... ,mn) + 2 L aikmiuk + Q(ut> ... ,un), 
i,k= 1 

it is sufficient to investigate the termwise differentiation of 
n 

L exp{ -nQ(mb'" ,mn) - 2n L aikmiuk}' 
ml . ...• mn i,k= 1 

Under differentiation, products of powers of mlo ... , mn and linear com
binations of such expressions are adjoined to the individual terms as factors. 
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Since Iml < elml we have 

(Ci;;::: 0) 

and, reasoning as above, we then have the uniform convergence of the 
differentiated series. Therefore the theorem is completely proved. 

We now obtain the transformation formula for the theta-function, which 
we discussed at the beginning of this section, by expressing the periodicity 
of the function T in terms of its development in a Fourier series and indeed 
by using the following fact which we quote from analysis. 

Let cp(u 1 • ••• , un) be a (real or complex) function of n real variables, which 
is periodic with period 1 in each argument. Moreover, suppose that all partial 
derivatives of cp up to order 2n are continuous. Then cp can be expanded in an 
absolutely convergent Fourier series 

mI.·.· ,mn 

in which the coefficients have the following values: 

For n = 1 this theorem is usually proved in textbooks in analysis. Then 
it can easily be proved in general by induction on n. 

If we set cp equal to the theta-function, which indeed does satisfy our 
hypotheses, then we obtain 

for the coefficients, where we set dU = dUl dU2 ... dUn- Now we interchange 
summation and integration, which is permissible because of the uniform 
convergence and then we introduce U 1 - kl' ... , Un - kn as new variables 
of integration. As a result the k b ... , kn disappear from the integrand; 
instead they appear in the limits of integration and we obtain 

a(mb' .. ,mn) 

The sum of all these integrals can be written as a single integral over the 
entire infinite space and with this we have proved: 

Theorem 158. The n-tuple theta-function 
+w 

e-7tQ(m1 +Ul.···. mn+un) 

ml.···,mn=-oo 
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admits the representation 

+oc-
a( (m))e - 2rri(ml Ul + ... + mnun) 

ml,···.mn =-o'J 

where 

We now wish to substitute specially chosen forms for Q and then evaluate 
the integrals. 

§56 Reciprocity between Gauss Sums in Totally 
Real Fields 

In this section we assume that the algebraic number field k in which we 
investigate the Gauss sums of §54 is totally real, that is, all conjugate fields 
k(p) are real. Moreover let a denote a nonzero ideal in k (of- 0) with basis 
()(b' .. , ()(n' Then by t 1 , •.. , tn we understand, for the time being, n positive 
real variables and we choose for the quadratic form Q of Theorem 158 

Q(Xb ... ,xn) = I t p(()(<j')X1 + ... + ()(~)xy, 
p=1 

which is obviously positive. The corresponding theta-function is 

where 

8(t,z;a)= I exp{-n ± til1(P) + Zp)2}, 
f1 III a p= 1 

n 

Zp = I ()(~P)Uq 
q=1 

(p = 1, ... ,n). 

(175) 

(176) 

In the series (175) 11 runs through all numbers in a exactly once. The 
Fourier coefficients a(mb ... ,mn) from Theorem 158 have the values 

a(m b ···, mn) = I--+: f exp { -n J1 tpz~ + 2ni J1 mpUp}dU, 

where the zp are again connected with the variables of integration up by (176). 
We now introduce the zp as variables of integration in this integral. The 

inverse of Equations (176) is 
n 

Uk = I f3C:)zp (k = 1, ... ,n), 
p=1 
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where by Theorem 102, the numbers fJ b ... , fJn form a basis for the ideal 
l/aO in k. We then have 

L mkuk = L ;.(P)zp (177) 
k=l p=l 

where Ie = L~= 1 fJkmk is a number from l/aO. 

a((m)) = ~_l_Q f-":J exp{-n ± tpz~ + 2ni ± ;,(P)Zp}dZ1 ... dZn-
iN(a).y di p= 1 p= 1 

Now for positive t and real), we have 

-rr;.2/1 f + f. 2 + 2 .' 02· f + x (. 0 , )2 e e-n:tz ItU.Zdz == e- 1tA It e-ntz-lA,t dz == ~_,_, 
-Yo -ox ~t 

(178) 

where ..jr denotes the positive value. Thus the coefficient a is the product of 
n such integrals, and with this we finally obtain from the theorem of the 
preceding section: 

Theorem 159. The theta-series defined by (175) also admits the representation 

8(t, Z; aj 

1 
{ 

n' (p)2 n } 

"" "" Ie ."" (p) = --- --r°:--~- 1... exp -n 1... - - 2m 1... Ie zp . 
N(a)iJdiyt 1 · t 2 ··· tn Ainl:ab p=1 tp p=l 

(179) 

On the right side Ie runs through all numbers of the ideal l/aO in k. 

We now see at once that this equation also holds for nonreal t, provided 
only that the real part of each tp is positive. For then the real part of l/tp is 
also positive and the series on both sides of the formula represent analytic 
functions of t b ... , tn' which are regular for 9t(tp) > 0 (p = 1, ... ,n) by the 
uniform convergence in t. Thus the above formula also holds for arbitrary t 
which belong to the right half-plane, if by Jt;, we understand those single
valued analytic functions which are positive for positive t and thus whose 
argument lies between - n/4 and + n/4, where we set 

/t-·-· -. t- = Ji . J{ ... It 
'II n vlv2 'In-

If we take Z 1 = ... = zn = 0 and write f instead of a, then we conclude 
from Theorem 159: 

Theorem 160. The transformation formula 

1 (1 1) 8(t;f)= _ " . 8 -;~ 
N(r)iydiyt1 ... tn t TO 

(180) 
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holds for the functions of tb ... , tn 

O(t; f) = O(t,O; f) = L: exp{-n ± tpJ.l(P)2}. 
I' in f p= 1 

Moreover, we deduce from Theorem 159 

Lemma (a). If the complex variables t 1, • •• , tn simultaneously tend to zero in 
such a way that the real parts of 11tp tend to plus irifinity, then 

lim -Jt1 ••• tnO(t,z; a) = 1 Jd' 
t-O N(a) d 

independently of z. 

For if we denote the smallest of the n numbers 9l(1Itp) by r, then 

Jexp{-n ± .!. A(P)2}J ~ exp{-nr ± A(P)2} ~ e-1trC(m~+" '+m~), 
p= 1 tp p= 1 

where, according to (172), c is a suitably chosen positive constant independent 
of the tpo The sum on the right side of (179) with the term ml = ... = mn = 0 
excluded is thus numerically 

~ L: e-1trCm2 - 1 < 1 + 2 L: e- 1trCm - 1 = 1 + ~ -1trc - 1 ( 
00 )n ( 00 )n ( 2 -1trc )n 

m=-oo m=l 1 e 

from which Lemma (a) follows if we take the limit as r --+ 00. 

Formula (180) will now yield the relation we sought between two Gauss 
sums in k if we take f = 1. Let OJ be a number different from zero in k and let 
bOJ have denominator a and numerator b: 

b 
OJ = ab' (a, b) = 1. 

In (180) we set 
t = x - 2iOJ(p) P , f = 1, 

where x is a positive quantity. 
Now, by Lemma (a), we determine how both sides of (180) behave as x 

approaches O. 
To begin with, 

O(x - 2iOJ; 1) = L exp{-n: ± (x - 2iOJ(P»)J.l(P)2} 
/l p=l 

= L: e21tiS(rop2) L: exp{-n ± x(v(p) + p(P»)2} 

p mod Q v in Q p= 1 

since J.l = v + p runs through all integers of the field if p runs through a 
complete system of residues mod a and v runs through all numbers from a. 
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Here the inner sum over v is again a theta-series, hence 

e(x - 2iw; 1) = I e21tiS(p2ro)e(x,p; a). 
pmoda 

Finally by Lemma (a) we have 

lim xn/ze(x - 2iw; 1) = C(w) , 
X-'O N(a)IJdI 

where C(w) denotes the Gauss sum of §54. 

(181) 

In exactly the same way we deduce the behavior of the right side in (180) 
at x = O. We set 

1 i 
- = 2 (p) + 'P' 
tp w 

and thus the real part of l/rp is 

ill - =-_. (1) 4W(p)2 

'p x' 

as x -+ 0 it grows beyond all bounds. Furthermore, by c we mean an integral 
auxiliary ideal so that cb is a principal ideal cb = 15, and (c,2b) = 1. The 
numbers of lib are then of the form /-lIb where /-l runs through all numbers 
in c. In this way we obtain 

(1 1) {n ( i) /-l(P)2} e t; b = .u~< exp -n P~I 'p + 2w(p) b(P)2 . 

Now let 
bc2 a 

b I be the denominator of 4wb2 = 4b· (182) 

Then let us set Ji = V + P in this sum, where p runs through a complete 
residue system mod b l , in which each element is divisible by c and v runs 
through all numbers ofblc. We obtain 

e(!)) = L e-21tiS(p2/4roo2) I exp{-n i: ~:)2 (v(P) + p(P)f} 
t b p mod b v in b 1 < P = I 15 

p",O«) 

I e-21t;S(P2/4roo2)e(;z, p; ble). 
p mod b1 
p",O«) 

Thus by Lemma (a) we know that if x, that is, 'P' tends to zero 

where we set 

~i! J'~(~;2'n eG;~) = N(bl>~)IJdI' 
A= L 

pmodb 1 
p ",0«) 

- 2ltiS(p2/4roo2) e . (183) 
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From our convention for the meaning of the square root signs we have 

. 1 
hm-I n'21 
x~O x 

tl ... tn 1 
N(c5)2 = IN(2wc5)I ' 

so that we can also write 

lim X"/2() (~; ~) = I N(2wc5) I . A. 
x-->O t b IN(b l c)JCiI 

(184) 

Finally, after multiplication by X n/2, if we then let the quantity x tend to 
zero in Formula (180) with f = 1 and keep in mind that in the denominator 

lim J(x - 2iw(!) ... (x - 2iw(n» 
x-->O 

it follows from (181), (184), and Idl = N(b) that 

C(w) = IJdI. JFi(2W) A. e(lti/4)S(sgnro) 

N(a) N(b l ) 

C(w) = 1JN(2f))1 e(1ti/4)S(sgnro)A 

IJN(a)1 N(b l ) 

Now the quantity A is likewise a Gauss sum and it indeed belongs to the 
denominator b1. For if oe denotes an integer divisible by c such that oe/c is 
coprime to b l , then we can replace p by poe in (183), and let p run through a 
complete system of residues mod b 1; from this we see that 

A=C(-4~~:). 
If we set oe/c5 = y, we finally obtain 

Theorem 161. The reciprocity 

C(w) = 1JN(2f))1 e(lti/4)S(Sgnw)c( __ I_ 2). 
IJN(a)1 N(b 1 ) 4w Y 

holds between the Gauss sums where a denotes the denominator of bw, and 
b denotes the numerator ofbw. Moreover, bi is the denominator of a/4b and 
y is an arbitrary number of the field such that by is integral and relatively 
prime to bl . 

The method of proof, with which we have just become acquainted, will 
become more transparent if it is first carried out for the special case where 
the different b of the field is a principal ideal, because the introduction of 
an auxiliary ideal c becomes superfluous. 
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§57 Reciprocity between Gauss Sums in 
Arbitrary Algebraic Number Fields 

Now let the number field k of degree n be arbitrary and let the conjugates 
be numbered as in §34, such that for all numbers !l in k, !lIP) is real for 
p = 1,2, ... , r l while !lIP) is the complex conjugate of !l(p+r2) for p = rl + 
1, ... , r 1 + r2' We now consider the function 

(}(t,z,W; 0) = I'~a exp { -n pt [tpl!l(P) + ZpI2 - 2iw(P)(!l(P) + Zp)2]}, (185) 

belonging to an arbitrary nonzero ideal 0 of k, where !l runs through all 
numbers of 0 and the symbols have the following meaning: 

tp> 0 for all p = 1, ... , n, 

tp+r2 = tp for p = r l + 1, ... , rl + r2, 

zP' w(p) real for p = 1,2, ... , "1, 

Zp+r } . {zp W(p+2r2 ) are complex conjugates to w(p) for p = rl + 1, ... , rl + r2' 

If ai' ... , an again denotes a basis for 0, and we set 
n 

!lIP) = L al!)mk, 
k=1 

(186) 

where the U b ... ,Un are real and ml , .•. ,mn are rational integers, then 
we see that the exponent appearing in (185) is a quadratic form in 
m l + Ub ... , mn + Un whose real part is positive definite. Consequently 
the series converges and Theorem 158 can be applied ot it. 

The Fourier coefficient here has the following value: 

a«m)) = f:~: f exp { -n pt [tplzpl2 - 2iw(P)z; - 2impup] }dU, (187) 

where the z 1, ... , Zn are again related to the variables of integration Ub ... , Un 

by (186). If we express the u's in terms of the z's then, by Theorem 102, the 
exponent takes the following form as does the analogous formula in the 
preceeding paragraph: 

n 

-n L [tplzpl2 - 2iw(P)z; - 2iJc(P)zp], 
p=1 

where 

is a number in l/ob and the f3 form a basis for l/ob defined by 

± f3~P)al!) = {O for q ~ k, 
p= 1 1 for q - k. 
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We now introduce the real and imaginary parts of the zp as real variables 
of integration in place of the up- We set 

zp = xp + iYp} 1 
. p = '1 + ,···,'1 + '2 

Zp+'2 = Xp - ZYp 
and 

p = 1, ... , '1' 

The functional determinant of the Ul> ••• , Un with respect to the x, Y has 
absolute value 

IN(a)JCiI' 
(188) 

as was used already in §40 and the exponent becomes 

'1 
-n L (tp - 2iaiP»x~ 

p=l 
'1 -'2 

-n L [2tp(X~ + y~) - 2i(w(P)(xp + iYp)2 + w(P)(xp - iYp)2)] 
P='1 + 1 

'1 '1+12 

+2ni L A(P)Xp + 2ni L [A(P)(Xp + iyp) + X(P)(xp - iyp)]. 
p=1 P='1+1 

(The bar again denotes the complex conjugate.) By this substitution the 
integral in (187) becomes a product of, single integrals, each with respect 
to one of the variables Xl>"" x' I ' and a product of'2 double integrals with 
respect to the '2 pairs x P' yp. 

For p = 1, ... , '1 we obtain 

(189) 

Here the square root should be taken with real part positive. 
The double integrals are of the following form 

+00 

J = SS exp{ -2m(x2 + y2) + 2ni(w(x + iy)2 + w(x - iy)2 
-00 

+ A(X + iy) + X(x - iy))} dx dy. 

Now if w = 0, we obtain, just as before, the value of the integral: 

e( - 2"/t)I';1 2 

J = ifw = O. 
2t 
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On the other hand if w #- 0, then we bring the quadratic form in x, y 
into the form of a sum of squares by introducing the real variables u, v: 

JW(x + iy) = u + iv 

J1ij(x - iy) = u - iv. 

Here we choose some fixed JW, and we choose J1ij as its complex conjugate. 
For the functional determinant we obtain 

8(x, y) 

8(u, v) 

1 1 
--
JWJ1ij 

and the exponent in the integrand now reads 

1 

~' 

u2 + v2 
( A A ) - 2rct I I + 4rci(u2 - v2 ) + 2rci - (u + iv) + --= (u - iv) 

w JW J1ij 

( 2m ) 2 ( Ie A ) = -~ + 4rci u + 2rci JW + J1ij u 

( 2m ) 2 ( iA (J ) + -~ - 4rci v + 2rci JW - JfiS v. 

Thus J is represented as a product oftwo simple integrals and indeed we find 

(190) 

a formula which is clearly still valid for w = O. 
If we choose A and w real in this expression, then the exponent is exactly 

twice the exponent appearing on the right-hand side of (189). 
Finally for a(mb ... ,mn) we obtain the value 

'1 '1+'2 
W(t,w) = TI .Jtp - 2iw(p)· TI .Jt~ + 4Iw (p)1 2 

p=l p=r,+1 

A(P) = L f3<,{)mq • 

q=l 

Here the square roots are to be taken with positive real parts. 
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If, in (185), we choose Zb ... , z. as well as Ub •.. , u. equal to zero, then 
we obtain the following transformation formula: 

Theorem 162. The transformation formula 

e(t,o,w; f) = ~ e('t,o,x; f:); (192) N(f)1 dIW(t,w) IJ 

is true for the function defined by (185), where the relation between t, wand 
't, x is given by (191). 

In order to find the behavior of the two theta-series appearing here as 
we approach t1 = t2 = ... = t. = 0, we must know the behaviorofe(t,z,w; f) 
at this point. This is determined by 

Lemma (a). Let 0"1(td, a2(t2), ... , a.(t.) be functions of tb ... ,t. respectively 
such that ap+ r2 = (ip for p = rl + 1, ... , rl + r2 and ap is real for 
p = 1,2, ... ,rl. Then ift l, ... , t. tend to ° Simultaneously, 

independently of z, provided 

To prove this we need only apply Theorem 158 to the series and substi
tute the value of the coefficient a found above. Specifically if we choose the 
number A to denote a single term in place of mb ... , m., we have 

n 
2,,; E ;,(p)Zp 

e(t,z,t·a;f)=M L b(A)e p=l (193) 
;. in llfb 

with the values 

M= 1 
N(f)IJdIW(t, to") 

b(A) = exp - rc L 2 - 2rci L p 2 • { 
n IA(P)1 2 • A(p)2(i } 

p=l tp(l + 41apl ) p=l til + 41apl ) 

Now since 

lim.Jtl ... t .M= 1 lim.Jtl···t.= 1 
1--->0 • N(f)IJdII--->o W(t, ta) N(f)IJdI 

and if we move the term with A = ° to the other side, in the series in (193), 
then we obtain the inequality 
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from which we can read off the statement of Lemma (a) in the same way as 
in the preceding section. 

We now obtain a Gauss sum if, in (192), we take w equal to a number in 
k different from ° and f = 1 : 

b 
w = ab' (a, b) = 1. 

We have 
O(t,O,W; 1) = L e21tiS(plro)0(t,p,0; a). 

pmoda 

Thus by Lemma (a) 

. ~(w) 
11m .Jt l ... tnO(t,O,w; 1) = ---
t~O N(a)I.Jd1 

(194) 

To investigate the right-hand side of(192) we introduce an auxiliary integral 
ideal c such that 

cb = b is a number in k and (c,4b) = 1. 
Moreover let 

b I be the denominator of 4~ . 

Again it follows directly from the definition of the theta-series that 

By (191) we now have 

tp 
where (J p = 4w(p) , 

Lemma (a) can again be applied to the last theta-series if we let the t, that is, 
the r, tend to zero, so we obtain 

lim ~ o(r,o,x;~) = 1 L e-21tiS(pl/4robl). (195) 
t~O -vN(5f b N(b 1c)I.Jd1 pmodbl 

p =O(e) 
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As was proved at the end of the preceding section, the last sum is again 
C( - y2/4w), where y is an arbitrary number in k for which 

by is integral and relatively prime to b l' 

Then Equation (195) can be written 

(196) 

(197) 

Finally if, after multiplication by ~ t I ... tn' we let all the t tend to zero in 
Formula (192), and keep in mind that 

lim W(t,w) = I~N(2w)le-(1tij4)S(sgnro), 
t-->O 

where 

S(sgn w) = sgn w(l) + ... + sgn w(r ll 

then we obtain from (194) and (197): 

( = 0 if r 1 = 0), (198) 

Theorem 163. The reciprocity 

C(w) = I IN(2b) I e(1tij4)S(sgn ro)e (- y2) 
I~N(a)1 N(bd 4w 

(199) 

holds for Gauss sums in k. Here a, b are relatively prime integral ideals, w = 
blab, b l is the denominator of a/4b and y and S(sgn w) are defined by (196) 
and (198). 

This equation agrees formally with the conclusion of the preceding sec
tion, where, however, it was proved only for totally real fields. 2 

§58 The Determination of the Sign of Gauss Sums 
in the Rational Number Field 

Formula (199) makes it possible for us to determine the value of Gauss 
sums. In this section we wish to undertake this determination for the field 
of rational numbers and to settle the question raised at the conclusion of 
§52, Theorem 152. 

The different of k(l) is 1. 

2 L. J. Mordell (1920), proved this reciprocity formula for quadratic fields without the theta
function, by using only the Cauchy integral theorem: On the reciprocity formula for the Gauss's 
sums in the quadratic field, Proc. a/the London Math Soc., Ser. 2, Vol. 20 (4). A related formula 
can already be found in A. Krazer, Zur Theorie der mehrfachen Gausschen Summen, Weber 
Festschrift (1912). 
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Thus if a, b are relatively prime rational integers, then 

c (~) = I e2ni (n 1 bia). 

a n mod Q 

For odd a the reciprocity formula, Theorem 163, asserts 

c (~) e(7ti/4) sgn a (_ a) e(nii4) sgn a . 
-- = C ~ = I e- 2m(n 2 a/4) 

lfol 2fi 4 2fi n~4 

c( ~a) = 2(1 + e-(ni/2)a) = 2(1 + (-w) = 2(1 - ia) 

e(ni!4)sgna = ,/2 (1 + i sgn a) 
2 

C G) ~ ht + i ,gn all I _ ") ~ {~ 
-Ja I 

cG) = J( _1)(a 1)!2a, for a> 0, 

if a > 0, a == 1(4) 

if a > 0, a == 3(4) 

where the root is to be taken positive (respectively positive imaginary). On 
the other hand, for primes a we have 

C(~1 ) = I (~)e2ni(nilal) 
lal nmod a a 

by (171). However, we have for an odd discriminant a = d, by (127), 

(~) = (~) for n > 0. 

Hence we have for odd prime discriminant a 

I c: e 2ni(n!lai) = J( _1)<lal lal-1 ( ) 

n= 1 n 

where the root is to be taken positive (positive imaginary). 
For odd field discriminant d, by Equation (150), the Gauss sum G(I, d) 

is thus 

G(I, d) = Jd if d is an odd prime, (200) 

with Jd equal to a positive or positive imaginary quantity. 
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Now if d1 and d2 are two odd relatively prime discriminants, then by §52 

G(I,d1d2) = L (~) (~)e2"i(n/ld'd21l 
nmodd,d2 d1 d2 

= ( I~:I )( I~:I )G(I,d1)G(I,d2 ) 

= ( _l)((sgn d, -1)/2)«sgn d2 -1)/2)G(1, d1)G(1, d2 ). 

From this it follows that if (200) holds for two relatively prime discriminants 
db d2 , then it is also valid for the product. Consequently, (200) is also true 
for each odd discriminant. 

Finally G(l, -4) and G(I, ±8) must still be calculated. We find 

G(1, -4) = 2i, G(I,8) = 21J21, G(l, -8) = 2ilJ2l. (201) 

Finally, if u is an odd discriminant and q is a discriminant without odd prime 
factors, then by (152) and (153) in §52 we again have 

G(l,qu) = (~)(~) G(I, q)G(1, u) = (_1)«Sgn q-l)/2)«Sgn U-l)/2)G(1,q)G(1, u), 

from which, with the values (201), it finally follows that 

Theorem 164. The Gauss sums G(I, d) for the discriminant d of a quadratic 
number field have the value 

G(l,d) =.jd 
with positive (respectively positive imaginary) root. 

The numerical factor p in the class number formula of Theorem 152 thus 
has the value + 1 as was already stated there. 

§59 The Quadratic Reciprocity Law and the 
First Part of the Supplementary Theorem 

We will now derive the quadratic reciprocity law for an arbitrary algebraic 
number field from Formula (199). First we define: 

An integer in k is said to be primary if it is odd and congruent to the 
square of a number in k modulo 4. 

A number 0( in k is said to be totally positive, if among its conjugates, the 
rl numbers 0((1), ••• , O(rtl are positive. 

If all the fields conjugate to k are not real (rl = 0), then each number in 
k is said to be totally positive. Even then we may not overlook the fact that 
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the statement "Cl is totally positive" has a meaning only with respect to a 
given field which contains Cl. For example -1 is not totally positive in k(I), 
however it is indeed totally positive in the field k(i). 

In order to make the simple ideas underlying our proof clear, we first 
make the simplifying assumption that the different b of the field k is a prin
cipal ideal (in the broadest sense), that is, there is a number 15 in k such that 

(b) = ll. 

Now let Cl and 13 be two relatively prime odd integers. If in (199) we set 

then 

1 

" = b' II = Cl/J, b = 1, 

c (~) = e(1ti/4)S(sgn apo) C (- 'Xf3). 

I-J N( 'Xf3) I I-J N(8) I 415 

Moreover by (169) and Theorem 155 

If we now assume that all Gauss sums with odd denominator and also all 
those with denominator 4 are different from 0 (which will be proved generally 
afterwards) then we can apply the reciprocity formula to the three sums 
which occur: 

(202) 

Now if at least one of the numbers 'X, 13, say 'X, is primary, then we have 
by (168) 

and it follows from (202) for 'Xf3 = 1 that 

In this way we obtain 

(~) . (~) = e(lti/4)S(sgn afJo- sgn ao- sgn fJii+sgn 0). 
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However, for real 0(, {3, 15 

sgn O(f3J - sgn 0(15 - sgn {3J + sgn 15 = (sgn 0( - l)(sgn {3 - 1) sgn 15 

== 0 (mod 4). 

Hence 

(0() (f3) ! «sgn a(PJ-l)/2)«sgn P(pJ -1)/2) 
- . - = ( - l)p = 1 • 

{3 rx 

And this is the quadratic reciprocity law for two odd relatively prime numbers 
of which at least one is primary. 

We now omit any special assumptions about the field k. The general case 
in which the different of k is not a principal ideal is made formally more 
complicated by the fact that we must still introduce accessory auxiliary ideals 
into the proof. 

Lemma (a). All Gauss sums which belong to odd denominators are nonzero. 

If C(w) is a sum belonging to the odd denominator a, then we obtain all 
sums with denominator a in the form C(xw), where x runs through a reduced 
residue system mod a. For if C(Wl) also belongs to the denominator a, then 
the integer x can be determined so that that b(xw - WI) is an integral ideal 
and for this ideal C(xw) = C(Wl) by (168). However, by Theorem 155 C(xw) 
only differs from C(w) by the factor ± 1. Thus it is enough to verify the non
vanishing of a single Gauss sum which belongs to the denominator a. 

Let us choose, corresponding to a, an integral odd ideal c relatively prime 
to a such that 

acb = x is an integer in k. 

By (169) the sum C(1/4x) can be represented as a product of three Gauss 
sums, belonging respectively to the denominators 4, a, c. Consequently for 
the proof of our lemma it is sufficient to show that C(1/4x) =1= O. However 
this follows from (199), for w = 1/4x, because the sum on the right-hand side 
of that equation belongs to the denominator 1 and hence = 1. 

Lemma (b). Each Gauss sum which belongs to the denominator 4 is =1= O. 

To prove this let a be an odd ideal such that ab is some number x. Then, 
for each odd integer Ji., C(1/Ji.x) =1= 0 by Lemma (a). Thus, by (199), we also 
have 

c( -y;XJi.) =1= O. 

However, if cp is any number of the field such that bcp has denominator 4, 
then there is an odd integer Ji. for which 

b (cp + y2;Ji.) is an integral ideal. 
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Since 

( - i,2UIl) 
C(cp) = c ~4 - , 

we have C(cp) is also oF O. 
Now let a and /J be odd relatively prime integers in k. Let 

b 
W== 

b 

where b is integral and relatively prime to af3. By (169) and Theorem 155 
we have 

(203) 

We now apply Theorem 163 to each of these three sums. In this case we have 
b l = 4b and 

1 
-~--~~ 

1·../ N(8b)1 

Hence we again express -J N(8b) as a Gauss sum by taking a = /J = 1 in this 
equation, by which the left-hand side becomes 1. By substitution we obtain 

(OJ) ,(OJ) (-/a) (-y 2 /J) C-C-- C--C--
a /J 40J 40J 

( ) 
= v(a,fl) ( ,2 f3) ( 2)' (f) -",a-" 

C -- C ---'- C ~/-
af3 40J 40J 

(204) 

where 
v( li., fJ) = e(7ti/4)S(sgn wtx + sgn (1)/3 ~ sgn wa.!3 - sgn (0) 

is independent of OJ since for real OJ, iX, f3, sgn Wix + sgn OJf3 - sgn OJa/J -
sgn OJ = -sgn OJ(sgn ix - l)(sgn f3 - 1) is divisible by 4 and consequently 

2: «sgn ,(p) - I); 2)«sgn P(p) - 1)/2) 
v(a, f3) = ( -l)'~' (205) 

We make the dependence of the right-hand side of (204) on the accessory OJ 
clearer by splitting the Gauss sum with denominator 4b into two such sums 
with denominators 4 and b. Namely, we represent y as the quotient of two 
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integral ideals, say 
e 

I' = b' where (e,4b) = 1, 

and choose an auxiliary integral ideal m such that 

yZ mez 
J-l- = -- is set equal to x. 

W b 
bm = J-l odd; 

Then by (169) and Theorem 155 we have 

and we obtain three more equations if we replace a by 1, {J, a{J. Furthermore 
XJ-l = w(jz where (j = me is an integer. In this way we finally obtain from 
(203) and (204) 

(206) 

where W is now an arbitrary number of the field for which bw is integral 
and odd. 

If we assume that at least one of the numbers a, (J, say a, is primary, then 
by (168) 

c( -:a) = c( -4w), 

and from this follows 

Theorem 165 (Law of Quadratic Reciprocity). For two odd relatively prime 
integers a, {J of which at least one is primary 

(a) ({J) ! «sgn alP) ~ l)!Z)(sgn Pcp) ~ 1)/2) - . - =(_I)p-l 
{J a 

The unit on the right is surely + 1 if at least one of the two numbers a, {J 
is totally positive. 

From this we deduce the following fact for the residue characters of 
certain distinguished numbers. Let {J be a unit or the square of an odd ideal 
so that in any case (~) = + 1 for each odd relatively prime a, by definition. 
If we now choose a such that 

a = ae2 and a is totally positive and primary, 
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then by Theorem 165 

(n = (~) = (~) = + 1, 

that is, 

Theorem 166. Each odd ideal a, which can be made into a totally positive 
primary number by multiplication by a square ideal, has the property 

(~) = +] 

for all units and squares of ideals t: as long as they are relatively prime to a. 

We will prove in the next section that the converse of this theorem also 
holds. 

In addition, Equation (206) yields the value (t)(~) in every case where 
ct and (J are odd nonprimary numbers. If we set 

with fixed w, then 

r(ctl) = r(a2) ifctl == ct2~2 (mod 4) 

for some odd ~; and (206) becomes 

(.~) . (f) = ,( (J) r(a)r({J). 
(J ct L ct, r( IX{J) , 

valid for all odd relatively prime ct and {J. 

(207) 

The second supplementary theorem concerns the case where one of the 
numbers IX, {J is no longer odd. 

Suppose that the integer 2 splits into two ideal factors Ir, such that r is 
odd, while I contains no odd prime factor: 

I, = Ir, (2, r) = 1. 

Let ct be an odd number relatively prime to ;., W = bib, (b,2IX2) = 1. From 
the equation 

which is true by Theorem 155, we conclude, by applying the reciprocity 
formula (199), that 

c __ ,-(
_,,2 IX) 
4w2 e(7ti/4)S(sgn Awa-sgn wa) 

( -'/IX)' c--
4w 

I,,) N(i.) 1 
(208) 
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In particular for rx = 1, we obtain from this 

(-'l) C 4WA e(1ti/4)S(sgn AW - sgn w) 

1 = -----===---c( ~~2) I~N(A)I 
(209) 

Now as in the preceding proof, since 4A and b are relatively prime, 

c( ~~:rx) = c( -;:rx)c( -~xrx) = (~)c( -:AX)C( -;:rx), 
c( ~~rx) = (~)c( -:x)c( -~~rx). 

Again in the special case rx = 1, if we divide we have 

(210) 

where finally we can still replace X~ by w. If we divide (210) by (209) and 
apply (208) we find 

(211) 

The Gauss sums with denominator 4A = 41t can again be reduced to those 
with denominator 41 and t by (169). Then, if we choose auxiliary ideals 
m, n which are odd and relatively prime to trx and for which 

AlP 
Al = 1m, P = tn, (J =-T = mn, 

we have 
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Finally if we set rx = 1 and substitute the results in (211), we obtain 

Here p is an arbitrary odd number which is divisible by I. These last sums 
depend only on the behavior of rx mod 41. In particular if we choose rx to be 
a quadratic residue mod 41, then we obtain 

Theorem 167. If I is an integral ideal without odd prime factors and A is an 
integer with the decomposition A = II, where I is an odd integral ideal, then 

()o) (rx) t «sgn a(p) - 1 )/2)(sgn A(P) - 1 )/2) __ =(_l),e l 

rx I 

if the odd number rx is a quadratic residue mod 41 and relatively prime to A. 

§60 Relative Quadratic Fields and Applications 
to the Theory of Quadratic Residues 

We now consider the field K = K(Jj1, k) which is generated, relative to k, 
by the square root of a number f.1 in k. The theorems in §39 with I = 2 hold 
for this field. It is useful to introduce a residue character which deviates 
somewhat from the quadratic residue symbol. 

Definition. For an arbitrary prime ideal V in k we set 

Q(f.1, V) = 

1, if V splits into two distinct 
factors in K(-/ii, k). 

-1, if V remains irreducible in 
K(Jj1,k). 

0, if V is the square of a prime 
ideal in K(-/ii, k). 

By the results of §39, Q(f.1, V) is defined for all prime ideals if f.1 belongs to k 
but JIt does not. Moreover we have 

Q(f.1, V) = @ if V is odd and does not divide f.1 (212) 

Q(f.1rx 2 , V) = Q(f.1, V) for each rx -1= ° in k. 

Moreover for arbitrary integral ideals a ( -1= 0) in k we set 

(213) 
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if a has the decomposition 

a = p~1 ... p::,m 

and for each square /12 in k 

Q(/12, a) = 1. 

Thus we have for two integral ideals a, b in k 

Q(/1, ab) = Q(/1, a)Q(/1, b). 

Finally for odd a, which are relatively prime to the integers /1 and v, we have 

Q(/1V, a) = Q(/1, a)Q(v, a). 

In the rational number field the introduction of this symbol would be 
superfluous, since there the number /1 can always be assumed to be free of 
unnecessary square factors. But in other fields, where the class number is 
even, /1 can have accessory square factors which can not be avoided. 

With the help of the symbol Q, the zeta-function of K can be expressed 
through that of k and an additional series, as was shown in §49 for the 
quadratic fields. For if ~ denotes a prime ideal of K then, in the notation 
of Theorem 108, the relative norm with respect to k is N k(~) = P or p2 and 
N(~) = n(p) or n(p2), where p is the prime ideal in k which is divisible by 
~. In the infinite product 

we extract those factors which can be derived from all prime divisors ~ of 
a fixed p. For these factors we then have 

n (1 - N(~)-S) = (1 - n(p)-S)(1 - Q(/1,p)n(p)-S) 
'llll> 

and hence 

(K(S) = (k(S)Z(S) 

Z(s) = n 1 =" Q(/1,a). 
l> 1 - Q(/1, p)n(p) S ~ n(a)' 

By the formula for the class number in Theorem 123 

1. (K(S) 
Im-

s-+ 1 (k(S) 

is equal to a finite nonzero value and thus we conclude: 

Theorem 168. lim log Z(s) is finite. 
s-+ 1 
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From this fact we obtain the analogue of Theorem 147: 

Theorem 169. Let 111> 112, ... ,11m be integers in k such that a product of 
powers 1111 ... l1~m is the square of a number in k only if all the exponents 
X1o' .. , Xm are even. Let C10 C2, ... , Cm be arbitrary values ± 1. Then there 
are infinitely many prime ideals p in k which satisfy the m conditions 

For by the hypothesis, the square root of each of the 2m - 1 products 
of powers 11 = 1111 ... l1~m (Xi = 0 or 1, not all Xi = 0) defines a relative 
quadratic field K( JIj., k). However, it now obviously follows as in §49, that 
for s > 1 

I n(l_Q(I1,P))=_"Q(I1,P)+ ( ) 
og p n(p)' 7 n(p)' qJ I1,S, 

where qJ(l1, s) tends to a finite limit as s -> 1. Hence by Theorem 168 the 
first sum on the right also has this property. Consequently 

also remains finite since, by (212), this sum differs from the former only in 
finitely many terms. The prime on the summation sign is to indicate that p is 
only to run through the odd prime ideals which do not divide 1110 112, ... ,11m' 
On the other hand it again follows from the fact that (k(S) becomes infinite 
as s -> 1 that 

L(s, 1) = I' ~1~ -> 00. 
p n(p)S 

Consequently, the left-hand side of the equation 

xl •... 'xm=O,l 

becomes infinite as s -> 1 since only a single term becomes infinite. However, 
on the right-hand side only those terms whose p satisfy the requirement of 
our assertion remain. Consequently there must be infinitely many p of this 
type. 

This existence theorem is the most important aid in the proof of the 
converse of Theorem 166 and Theorem 167, which we will now carry out. 
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§61 Number Groups, Ideal Groups, and 
Singular Primary Numbers 

227 

In subsequent investigations we are concerned with those factor groups of 
Abelian groups which are determined by the squares of elements. If ffi is 
an Abelian group and Uz is the subgroup of squares of all elements of ffi, 
we wish to designate each of the co sets which are defined by Uz as a complex 
of elements of ffi. The factor group ffi/U 2 is the group of complexes by §9. 
The unit element in the factor group is the principal complex, that is, the 
system of elements of U2 • The square of each complex is the principal 
complex. If ffi is a finite group, there are exactly 2e different complexes where 
e is the basis number of ffi belonging to 2. The number of independent 
complexes, that is, the number of independent elements of ffi/Uz, is then e. 

We now introduce an important series of groups, complexes, and related 
constants: 

1. The units of k form a group under composition by multiplication. The 
number of different unit complexes is 2m, where m = (n + rl)/2, since there 
are rl + rz - 1 = m - 1 fundamental units and in addition there is still a 
root of unity in k whose square root does not lie in k. 

2. All the nonzero numbers of k form a group under composition by 
multiplication. Thus the system of all numbers cx~z, where cx is fixed and ~ 
runs through all numbers of k is a number complex. If we designate the rl 
values ± 1 given by sgn we!), ... , sgn w(r') as the sequence of signs of a 
number w in k, then all numbers of the same number complex have the 
same sequence of signs. (For rl = ° we understand the sequence of signs to 
be the number + 1.) The group of all totally positive number complexes 
forms a subgroup of index 2" in the group of all number complexes. For 
if r l > 0, there are numbers w in k with an arbitrarily prescribed sequence 
of signs. To see this let () be a generating number of k; then the rl expressions 
ao + al()(i) + ... + art_l()(i)rt-l(i = 1, ... ,rl) take on each system of real 
values for real a. Hence for rational a they take on each combination of signs. 

3. In the group of ideal classes of k, there are exactly 2e different class 
complexes, where e denotes the basis number belonging to 2 of the class 
group. 

4. Those number complexes whose numbers are squares of ideals in k 
form a subgroup in the group of all number complexes. The order of this 
subgroup is 2m+e. For by 3, there are e ideals 01' ... , Oe which define e 
independent class complexes and whose squares are principal ideals, say 
or = CXi (i = 1,2, ... ,e). The e numbers CXl> ••• , CXe define e independent 
number complexes. If w is a number which is the square of an ideal c in k, 
then c is equivalent to a product of powers of the 01' ... ' oe and, after 
multiplication by a suitable unit, w differs from a product of powers of 
CXl> ••• 'CXe by a square factor. We call a number in k singular, if it is the 
square of an ideal in k. Thus there are m + e independent singular number 
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complexes. They are represented by exl> ... ,rxe and m units from the m 
independent complexes. 

5. Let p denote the number of independent singular number complexes 
which consist of totally positive numbers. Accordingly there are 2P singular 
totally positive number complexes. The 2m + e singular number complexes thus 
indicate numbers with only 2m + e - P different sequences of signs. 

6. We regard two nonzero ideals a, b in the same strict ideal class and 
all a and b equivalent in the strict sense if a/b can be set equal to a totally 
positive number of the field. We again write a;;::: b. The strict classes are 
again combined into an Abelian group, the strict class group. Those strict 
classes which contain a principal ideal in the broader sense form a subgroup 
of index h. The principal ideals obviously define at most 2" distinct strict 
classes. Thus the strict class group has order at most 2"h. Let eo be the basis 
number belonging to 2 of this strict class group. We denote the group of the 
strict ideal class complexes by 30. Its order is thus 2eo . By determining the 
order of 30 in a second way we obtain the equation 

(214) 

To see this we denote that subgroup of 30 whose class complexes can be 
represented by principal ideals (in the broader sense) by 5. Then by the 
general theorems on groups, the order of 30 is equal to the order of the 
factor group 30/5 multiplied by the order of 5. Now the factor group 
30/5 has order 2e. For if b l , b2 , ... , be are representatives of the e inde
pendent class complexes (in the broader sense), then the 2e products of 
powers b = b~' ... b:e (Xi = 0 or 1) define exactly 2e distinct cosets in 30 
with respect to 5. On the other hand to each ideal a there exists a product 
of powers b and a square of an ideal e2 such that a ~ bel; hence a = rxbe 2 

for a certain number rx. The complex to which a belongs thus differs from 
the complex to which b belongs by the complex of ex, that is, a complex from 
the group 5. Hence the order of 30/5 is equal to 2e . 

Now a principal ideal (.1') belongs to the unit element of 30 if and only 
if (y) is equivalent to the square of an ideal in the strict sense, that is, if i' is 
equal to a totally positive number multiplied by a singular number, that is, 
if and only if y can be made totally positive by multiplication by a singular 
number. Of the 2" possible sequences of signs for }' exactly 2m + e - p are 
realized by singular numbers by 5, so that the principal ideals define exactly 
2'1-(m+e-p) distinct strict ideal class complexes. Hence this is the order of 
5. Thus assertion (214) is proved. 

7. Among the odd residue classes mod 4 there are exactly 2" distinct 
residue class complexes mod 4. It follows from (2 == 1 (mod 4) that ( == 1 
(mod 2), ( = 1 + 2w with w an integer. Among these numbers there are 
N(2) = 2" incongruent ones mod 4. 

8. We consider two numbers ex and /3 to be in the same strict residue class 
mod a, if ex == /3 mod a and ex//3 is totally positive. In each residue class mod a 
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moreover there are obviously numbers rx whose 1'1 conjugates have the same 
sign as the arbitrarily given integer w since rx + xIN(o)lw belongs to the 
same residue class mod 0 as rx for each rational integer x and has the desired 
sign properties for all sufficiently large x, Thus each residue class mod 0 splits 
into exactly 2r1 strict residue classes mod o. In particular there are thus 
2"+rl distinct strict residue class complexes mod 4. 

9. Let I be a prime factor of 2. Among the odd residue classes mod 41, 
there are 2" + 1 distinct residue class complexes mod 4I. It follows from e == 1 
(mod 41) that ~ = 1 + 2w with w an integer and with w satisfying the condition 
w(w + 1) == 0 (mod I). Thus w == 0 or 1 (mod I) and this yields exactly 
2N(2) = 2"+ 1 incongruent numbers for ~ mod 41. In the corresponding 
fashion there are 2n + r1 + 1 distinct strict residue class complexes mod 41. 

10. The singular numbers which are at the same time primary numbers 
without being squares claim our main interest. Such numbers are called 
singular primary numbers. By Theorem 120 the singular primary numbers 
w yield those fields K( -J w, k) which have relative discriminant 1 with respect 
to k. Suppose that there exist q independent complexes of Singular primary 
numbers. Then by 4, q ~ m + e. The 2m + e different singular number complexes 
thus define 2m +e - q distinct residue class complexes mod 4, since precisely 
2q of these are primary, that is, they belong to the principal complex of 
residue classes mod 4. 

11. Likewise let qo denote the number of independent complexes of singular 
primary numbers which are totally positive. The 2m +e different singular number 
complexes thus define only 2m + e - qo distinct residue class complexes mod 4 
in the strict sense, because each 2qO of the singular number complexes define 
the same strict residue class complex mod 4. 

12. Finally we are led, by Theorem 166, to a new classification of all odd 
ideals modulo 4. Two integral odd ideals are considered to be in the same 
"ideal class mod 4" if there is a square ideal e2 in k such that 0 ~ be2 and 
integers rx, f3 can be chosen so that rxa = f3bc 2 with rx == f3 == 1 (mod 4). The 
composition of these classes defined by multiplication of ideals determines 
the "class group mod 4"; let it be denoted by ~. 

To determine the order of ~ we introduce the subgroup ,£) of those 
classes of ~ which can be represented by odd integral principal ideals. The 
order of ~ is then equal to the order of,£) multiplied by the order of the 
factor group ~/,£). Now this factor group has order 2e since if bi> ... , be are 
odd representatives of the e independent ideal class complexes, then the 2e 

products of power b~1 ... b:e = b (x; = 0 or 1) define exactly 2e distinct 
cosets in ~ with respect to ,£). Furthermore for each odd ideal 0 there exists 
one of these products b and an odd ideal square e2 such that 0 ~ be2 . Thus 
the equation rxa = f3be 2 holds with odd numbers ct, f3. By multiplying by the 
same numerical factor on both sides, we can assume that rx == 1 (mod 4). 
Consequently 0 and f3b belong to the same ideal class mod 4. However f3b 
and b differ only by an ideal in,£) and hence each coset in ~ is also represented 
by some b, that is, ~/,£) actually has order 2e . 
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In order to make further progress in determining the order of f> we 
consider that in any case two odd integers 11, rz define principal ideals (/d 
and (/z) from the same ideal class mod 4, whenever 11 and (z belong to the 
same residue class complex mod 4. The ideal class mod 4 to which the ideal 
(1) belongs consists of all odd ideals (/') for which /' is congruent to a singular 
number mod 4. By 10 moreover, singular numbers define exactly 2m + e - q 

distinct residue class complexes mod 4. Consequently among the 2" residue 
class complexes mod 4 each 2m + e - q belong to the same ideal class mod 4. 
Thus the order of f> is 2 n -(m+c- q). From this we obtain 

the order of ~ is equal to 2n - m + q = 2m - r , +q. 

13. If r 1 > 0, then in the corresponding fashion we define the group ~Q 
of strict ideal classes mod 4. We consider two odd ideals 0 and b to be in the 
same strict ideal class mod 4, if there is a square of an ideal eZ such that 
o ~ bez and the numbers 7. and f3 can be chosen so that 7.0 = f3be z, 7. == f3 == 1 
(mod 4) and moreover 7. and f3 are totally positive. 

The order of ~o is determined in a manner similar to that in which the 
order of ~ is determined. If f>o is the subgroup of ~o which is represented 
by odd principal ideals, then the order of ~o!f>o is again 2e . However, by 11, 
the order of f>o is found to be 2 n + r,-(m+e- qo ), since among the 2 n+ r , strict 
residue class complexes mod 4, each 2 m + e - qo differ by a singular number 
complex. 

Hence 
the order of ~Q is equal to 2"+r, -m+qo = 2 m + q". 

§62 The Existence of the Singular Primary Numbers 
and Supplementary Theorems for the 
Reciprocity Law 

Now we determine q and qo by a very simple enumeration method. 

Lemma (a). We hare qo ::; e and q ::; eo. 

Suppose that there are qo independent totally positive singular primary 
numbers w[, wz, ... , WqO and let us consider the qo functions 

i = 1, ... , qQ, 

of the odd ideal o. These depend only on the ideal class complex to which 0 

belongs. For if 0 - be2 holds with odd 0, b, c and if the odd numbers 7. and 
f3 are chosen so that 7.0 = f3bc 2 , then if we assume the Wi relatively prime to 
,7.0, we obtain 

2 (Wi) (Wi) (Wi) ;(i(7.0) = ;(i(f3be ) =7.0 = f3bc 2 = /3b . 



§62 The Existence of the Singular Primary Numbers 231 

However, by the reciprocity law, we have 

for each integer}' which is relatively prime to 2Wi since Wi is primary and 
totally positive. The last symbol, moreover, is + 1 because Wi is singular. 
Hence it actually follows that 

( Wi) (Wi) . 2 Xi(U) = -; = b = Xi(b) If U ~ be . 

Furthermore, since XI(U I U2) = X(u I ) . X(u2), the qo functions Xi(U) are group 
characters of the group of ideal class complexes, by §10. By Theorem 169 
they are also independent characters. On the other hand, by Theorem 33 
the group of ideal class complexes has exactly e independent characters 
since this group has order 2e ; hence qo ~ e. 

When we get to the bottom of the concept of strict equivalence we prove 
the relation q ~ eo in analogous fashion. 

Lemma (b). Let eb ... , ern+e be m + e independent singular numbers. Then 
the m + e functions of the odd ideal U 

(i = 1, 2, ... , m + e) 

form a system of independent group characters of the group 'Bo. 

It again follows from Theorem 165 that these functions are group char
acters of 'Bo. Theorem 169 shows that they are independent. 

By the general theorems on groups of §10 we thus have 

m + e ~ m + qo, 

since by 13 the order of 'Bo is m + qo. Hence qo 2 e and consequently, by 
Lemma (a), we have qo = e. With this lemma the following two theorems are 
proved. 

Theorem 170. There are exactly e independent singular primary numbers, say 
WI' ... ,W., which are totally positive. Here e is the basis number belonging 
to 2 of the group of broader ideal classes of the field. The e characters Q(wi , u) 
form the complete system of characters of the group of class complexes. 

Theorem 171. In order that an odd ideal U can be made into a totally positive 
and primary number of the field by multiplication by the square of an ideal, 
it is necessary and sufficient that the conditions 

Q(e,u) = + 1 

are satisfied for every singular number e. 
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If we consider the group 113 instead ofmo, it follows in analogous fashion: 

Lemma (c). Let GI> ... , Gp be the p = eo + m - rl independent totally positive 
singular numbers. Then the p functions Q(8i' 0) (i = 1, ... ,p) form a system of 
independent group characters of the group 113 for odd o. 

Since 113 has order 2rn - r [ +q, it again follows from this that 

m-1"j +q2p=m-rj +eo, eo::;q. 

Hence by lemma (a) eo = q, and thus 113 has order 2P• With this we have 
proved: 

Theorem 172. There are exactly eo independent singular primary numbers, 
say WI' ... 'wea • Here eo is the basis number belonging to 2 of the group of 
strict ideal classes of the field. The eo characters Q(w;, 0) form the complete 
system of characters of the group of the strict class complexes for odd o. 

Theorem 173. In order that an odd ideal 0 can be made into a primary number 
of the field by multiplication by a square of an ideal, it is necessary and sufficient 
that the conditions 

Q(8,O) = + 1 

are satisfied for each totally positive singular number 8. 

One usually calls Theorems 171 and 173 the first supplementary theorem. 
In similar fashion we obtain the converse of Theorem 167 which concerns 

the residue character modulo numbers which are not odd. We call an odd 
integer rt. hyperprimary modulo I, where I denotes a prime factor of 2, if 
rt. == e (mod 4I) can be satisfied by a number ¢ in k. Thus the hyperprimary 
numbers modulo I define the principal complex of residue classes mod 41. 
By Number 9 of the preceding section there are 2"+ 1 distinct complexes 
mod 41 but only 2" distinct complexes mod 4. Hence each complex mod 4 
contains exactly two distinct complexes mod 41. Hence the primary numbers 
define exactly two distinct residue class complexes mod 41. Let these be 
denoted by Rl and R2 , where we choose R j as the principal complex mod 41. 

Theorem 174. If the prime ideal I which divides 2 belongs to the principal class 
complex in the strict sense, then all eo independent singular primary numbers 
are also hyperprimary modulo l. On the other hand, in the other case, only 
eo - 1 independent singular primary numbers are also hyperprimary modulo l. 

Proof: Let e be an odd ideal chosen so that Ie 2 = A is a totally positive 
number, which is possible in the first of the cases stated in Theorem 174. 
Then for each odd number rt., which we assume at first to be relatively prime 
to Ie, we have by Theorem 167 

G) = (~)(:2) = + 1, 
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provided r:x belongs to the complex R l . If we now just consider the functions 
(~) = Q(A, r:x) for primary numbers r:x, then we have Q(A, r:xl) = Q(A, r:x2) if r:x l 
and r:x2 belong to the same complex Rl or R2. Moreover, Q(A,r:x l r:x2) = 
Q(A, r:xl)Q(Ic, r:x2), so that Q(}" r:x) is a group character of the group of order two 
which is formed from the elements R l , R2 where R~ = Rl . Nevertheless this 
character is not the principal character; for by Theorem 169 there are in
finitely many prime ideals p for which (~) = - 1 while the characters Q(8, p) 
are equal to + 1 for each of the p independent totally positive squares 8 of 
ideals. Then by Theorem 173, p can be made into a primary number by 
multiplication by a suitable m2 , say r:x = pm2 . Then Q(A,r:x) = (~) = -1. 
Consequently Q(A, r:x) is the uniquely determined group character of the 
group (Rb R 2 ) which is not the principal character; hence it is = 1 if and 
only if the primary number r:x belongs to R b that is, if r:x is also hyperprimary 
modulo l. Now for each singular primary number W we have Q(A, w) = + 1, 
thus all odd singular primary numbers modulo I are also hyperprimary 
modulo l. 

Secondly, if I does not belong to the principal class complex in the strict 
sense, then let us choose an odd ideal r such that Ie = Ir is a totally positive 
number. Since r also does not belong to the strict principal class complex, 
there are, by Theorem 172, among the eo singular primary numbers exactly 
eo - 1 independent numbers, say W2, ... , weD' such that Q(Wi> r) = + 1 for 
i = 2, 3, ... ,eo, and one number Wb independent of these numbers, for 
which Q(w b r) = -1. This Wl is then surely not hyperprimary modulo I for 
otherwise 

would hold, by Theorem 167, while the product is equal to -1 by the defini
tion of Wl' Hence Wl belongs to the complex R2 mod 41. Therefore every 
primary number belongs to the complex Wl or wi mod 41. If, however, the 
odd numbers r:x and [3 belong to the same complex mod 41, then, if we set 
x(a) = (~)(~), we have 

x(r:x) . X([3) = X(r:x[3) = 1 

because r:x[3 is hyperprimary mod I, that is, 

X( r:x) = X([3)· 

Consequently, none of the numbers W2' ... , weD can belong to the complex 
R2 represented by Wb since then X(W2) would be = -1, while X(W2) is equal 
to 1 by the definition of W2' Consequently, W2, ... , weD are hyperprimary 
modulo I and W 1 is not; with this Theorem 174 is proved. 

Theorem 175. Let A = Ir be a totally positive number, r an odd ideal, and let 
I be a prime factor of 2. In order that the primary integer r:x, which is relatively 
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prime to A, be hyperprimary, it is necessary and sufficient that 

Theorem 167 asserts that the condition is necessary. The proof of the 
preceding theorem shows in the following way that it is sufficient. First 
suppose that I is equivalent in the strict sense to the square of an ideal. 
Then we can find integers {3, p, A such that 

},{32 = }'op, Ao = Id 
p = rd, Ao, p totally positive, 

where {3 is odd and relatively prime to IXr. Then 

and as shown above, (~) = + 1 is the necessary and sufficient condition 
that the primary number IX is also hyperprimary. 

However, if I is not in a principal class complex, then there is indeed a 
singular primary number Wi> for which ('"/) = -1; and 1, Wl represent 
simultaneously the two distinct residue class complexes mod 41 which arise 
from primary numbers. If IX and w~ (a = ° or 1) belong to the same complex 
mod 41, then by Theorem 166 X(IX) = X(w~) = (-l)Q. Thus X(IX) = + 1, if IX is 
hyperprimary mod I; otherwise X(IX) = -1. 

Theorem 175 is called the second supplementary theorem. 

§63 A Property of Field Differents and the 
Hilbert Class Field of Relative Degree 2 

In conclusion we wish to make two applications of the reciprocity law. The 
first deals with the ideal class to which the different b of the field belongs. 

Theorem 176. The different b of the field k is always equivalent to the square 
of an ideal in k. 

If we choose an integer W in k, which is divisible by b with the decom-
position 

W = ab, a odd, 

then, by Theorem 170, we need only show for the proof of our theorem that 
for each singular totally positive primary number a, such that (a, a) = 1, the 
residue symbol is (!) = + 1. 
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To prove this we go back to Formula (199) for Gauss sums and use 
Theorem 156 which determines the value of a sum that belongs to a square 
denominator. By (169) we decompose the sum C(4';.,) belonging to the de
nominator 4a, where (e, a) = 1, into a sum with denominator 4 and a sum 
with denominator a, by introducing an odd auxiliary ideal c such that 

ac = a number IX, 

Then by (169) 

and if e is primary, the right-hand side is 

In particular, it follows for e = 1 that 

and consequently 

(215) 

We now apply reciprocity formula (199) to the last sums, by which these sums 
transform into sums with denominator e, which can be determined directly 
by Theorem 156. 

We obtain 

c (~) = I r;;12\(~) I e C7ti/4 )SCsgn ro,)C (_ y2W). 
I~N(4a)1 .J H \~) e 

Likewise 

c(~) 
4w = I ~ N(2) leC7ti/4)SCSgn ro). 

I~N(4a)1 

Thus it follows from (215) that 

( _y2W) 

(~) = e C7ti /4 )SCsgnro.-sgnro) C -e-

a I~N(e)1 
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is valid for each primary number a relatively prime to a. If we now assume 
that a is also a singular number then, by Theorem 156, we obtain the value 
I,J N(a)1 for the sum C( - y2wla). Consequently 

(~) = e(1tiI4)S(sgn we - sgn w) if w = aD, a odd, 

and a is a singular primary number, (a, a) = 1. 
Finally if, in addition, a is totally positive, it follows that ({) = + 1 and, 

by Theorem 170, that a as well as the different 0 belongs to the principal 
class complex. 

Since the differents of relative fields compose according to Theorem 111, 
it also follows from what has just been proved: 

The relative different Tlk of a field K with respect to a subfield k is always 
equivalent to the square of an ideal in k. 

Moreover, since the relative norm of Tlk is equal to the relative dis
criminant of K with respect to k, we see that the relative norm is also equiv
alent to a square in K. Thus we have shown 

Theorem 177. If the ideal Ok in k is the relative discriminant of a field with 
respect to k, then Ok is equivalent to a square in k. 

As a second application of the reciprocity theorem we wish to investigate 
the Hilbert class fields of k of relative degree 2. Following Hilbert we call a 
field unramified with respect to k if its relative discriminant is equal to 1. 
The unramified fields which are obtained by adjoining to k the square root 
of a number in k can then be specified, for, by Theorem 120, these fields 
arise by adjoining the square root of a singular primary number in k. 
However, the number of distinct complexes of singular primary numbers 
in k is equal to 2eo - 1 by Theorem 172 (the square numbers are not to be 
considered as singular primary numbers). 

Hence we have 

Theorem 178. Relative to k there are exactly 2eo - 1 distinct unramified fields 
of relative degree 2. 

Accordingly, these fields are related to the ideal classes of k. If the class 
number, in the strict sense, of k is odd, then there is no unramified field of 
relative degree 2 at all. The connection with the ideal classes shows up 
even more clearly in the formulation of the decomposition theorem. 

Theorem 179. Let w be a singular primary number. Then there is a subgroup 
ffi(w) of order ho/2 in the group of the ho ideal classes in the strict sense such 
that a prime ideal p splits in the field K(vIw, k) if and only if p belongs to ffi(w). 
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The set of odd ideals r, for which Q(w, r) = + 1, determines a subgroup 
of order 2eo - 1 in the group of class complexes in the strict sense, by Theo
rem 172. Since each class complex consists of hal2eo classes in the strict 
sense, the odd ideals r with Q(w, r) = + 1 are identical with the odd ideals 
which lie in the ho/2 strict classes of this group G>(w). 

Moreover, this also holds for the prime ideals I which divide 2 since by 
Theorem 119 we have Q(w, l) = + 1 for the splitting symbol defined in §60, 
if the odd number w is congruent to the square of a number in k mod I2 c+ 1, 

where Ie is the highest power of I dividing 2. In the other case Q(w, l) = - 1 
for odd w. Now, however, w is primary and I2 c+ 1 and 4/2c are relatively 
prime; hence Q(w, l) is = + 1 if and only if w is a quadratic residue mod 41. 
However, by Theorem 175 only the ideal class to which I belongs actually 
satisfies this condition. For if ;. = Ir is totally positive and r is odd, then w is 
hyperprimary relative to I if and only if (~) = + 1. 

Because of this close relation to the ideal classes, the fields K(jW, k) are 
called the class fields of k. 

In the manner in which we have laid the foundations for the theory of 
relatively quadratic fields, the reciprocity law appears as the first result; the 
existence of class fields appears as a consequence of this law. In the classical 
development of Hilbert and Furtwangler (also in the investigation of residues 
of higher powers) the train of thought runs in the reverse direction. First the 
existence of class fields is proved by another method which, by the way, is 
very complicated. Their connection with ideal classes is then discussed, and 
from this the reciprocity law is then derived. For this the so-called Eisenstein 
reciprocity law is an indispensible aid. One proceeds in this way in all cases 
which are concerned with fields of relative degree higher than 2. No tran
scendental functions have yet been discovered which, like the theta-functions 
of our theory, yield a reciprocity relation between the sums which occur for 
higher power residues in place of the Gauss sums. A new and very fruitful 
contribution which is related to that of Hilbert has been made by T akagi3 

who also has succeeded in gaining a complete overview of all relative fields 
of k, which are "relatively Abelian," that is, which have the same relation to 
k as cyclotomic fields do to k(l). 

3 Uber eine Theorie des relativ-Abelschen Zahlkiirpers, Journal of the College of Science, 
Imperial University of Tokyo, Vol. XLI (1920). 



Chronological Table 

Euclid (about 300 B.c.) 
Diophantus (about 300 A.D.) 
Fermat (1601-1665) 
Euler (1707-1783) 
Lagrange (1736-1813) 
Legendre (1752-1833) 
Fourier (1768 -1830) 
Gauss (1777 -1855) 
Cauchy (1789 -1857) 
Abel (1802-1829) 
Jacobi (1804-1851) 
Dirichlet (1805-1859) 
Liouville (1809-1882) 

238 

Kummer (1810-1893) 
Galois (1811-1832) 
Hermite (1822-1901) 
Eisenstein (1823-1852) 
Kronecker (1823 -1891) 
Riemann (1826-1866) 
Dedekind (1831-1916) 
Bachmann (1837-1920) 
Gordan (1837-1912) 
H. Weber (1842-1913) 
G. Cantor (1845-1918) 
Hurwitz (1859-1919) 
Minkowski (1864-1909) 



References 

The reader will find further expositions of the theory presented in this book in the fol
lowing books: 
P. Bachmann, Allgemeine Arithmetik der Zahlkorper (= Zahlentheorie, Vol. V). Leipzig 

1905. 
--- Die analytische Zahlentheorie (= Zahlentheorie, Vol. II). Leipzig 1894. 
--- Grundlehren der neueren Zahlentheorie, 2nd edition. Berlin-Leipzig 1921. 
--- Die Lehre von der Kreisteilung und ihre Beziehungen zur Zahlentheorie. Leipzig 

1872. 
P. G. Lejeune-Dirichlet, Vorlesungen uber Zahlentheorie, Herausgegeben und mit 

Zusatzen versehen von R. Dedekind, 4th edition. Braunschweig 1894. 
R. Fueter, Synthetische Zahlentheorie. Leipzig 1917. 
---Die Klassenkorper der komplexen Muitiplikation und ihr Einfluss auf die 

Entwickelung der Zahlentheorie. (Bericht mit ausfiihrlichem Literaturverzeichnis.) 
Jahresbericht der Deutschen Mathematiker-Vereinigung, Vol. 20 (1911). 

K. Hensel, Zahlentheorie. Leipzig 1913. 
D. Hilbert, Bericht fiber die Theorie der algebraischen Zahlkorper. Jahresbericht der 

Deutschen Mathematiker- Vereinigung, Vol. 4 (1897). Here one also finds references 
to the older literature. 

L. Kronecker, Vorlesungen uber Zahlentheorie, Herausgegeben von K. Hensel. Vol. 1. 
Leipzig 1913. 

E. Landau, Handbuch der Lehre von der Verteilung der Primzahlen, Vois. 1,2. Leipzig 
1910. 

--- Einfohrung in die elementare und analytische Theorie der algebraischen Zahlen 
und der Ideale. Leipzig 1918. 

H. Minkowski, Diophantische Approximationen. Eine Einfuhrung in die Zahlentheorie. 
Leipzig 1907. 

H. Weber, Lehrbuch der Algebra, Vois. 1-3, 2nd edition. Braunschweig 1899-1908. 
(Vol. 3 is entitled Elliptische Funktionen und algebraische Zahlen.) 

239 



Graduate Texts in Mathematics 

Soft and hard cover editions are available for each volume up to Vol. 14, hard cover only from Vol. 15. 

1 TAKEUTI/ZARING. Introduction to Axiomatic Set Theory. 
2 OXTOBY. Measure and Category. 2nd ed. 
3 SCHAEFFER. Topological Vector Spaces. 
4 HILTON/STAMMBACH. A Course in Homological Algebra. 
5 MACLANE. Categories for the Working Mathematician. 
6 HUGHES/PIPER. Projective Planes. 
7 SERRE. A Course in Arithmetic. 
8 T AKEUTI/ZARING. Axiomatic Set Theory. 
9 HUMPHREYS. Introduction to Lie Algebras and Representation Theory. 2nd 

printing, revised. 
10 COHEN. A Course in Simple Homotopy Theory. 
11 CONWAY. Functions of One Complex Variable. 2nd ed. 
12 BEALS. Advanced Mathematical Analysis. 
13 ANDERSON/FuLLER. Rings and Categories of Modules. 
14 GOLUBITSKy/GUlLLEMIN. Stable Mappings and Their Singularities. 
15 BERBERIAN. Lectures in Functional Analysis and Operator Theory. 
16 WINTER. The Structure of Fields. 
17 ROSENBLATT. Random Processes. 2nd ed. 
18 HALMos. Measure Theory. 
19 HALMos. A Hilbert Space Problem Book. 
20 HUSEMOLLER. Fibre Bundles. 2nd ed. 
21 HUMPHREYS. Linear Algebraic Groups. 
22 BARNES/MACK. An Algebraic Introduction to Mathematical Logic. 
23 GREUB. Linear Algebra. 4th ed. 
24 HOLMES. Geometric Functional Analysis and Its Applications. 
25 HEWITT/STROMBERG. Real and Abstract Analysis. 4th printing. 
26 MANES. Algebraic Theories. 
27 KELLEY. General Topology. 
28 ZARISKIISAMUEL. Commutative Algebra I. 
29 ZARISKIISAMUEL. Commutative Algebra II. 
30 JACOBSON. Lectures in Abstract Algebra I: Basic Concepts. 
31 JACOBSON. Lectures in Abstract Algebra II: Linear Algebra. 
32 JACOBSON. Lectures in Abstract Algebra III: Theory of Fields and Galois 

Theory. 
33 HIRSCH. Differential Topology. 
34 SPITZER. Principles of Random Walk. 2nd ed. 
35 WERMER. Banach Algebras and Several Complex Variables. 2nd ed. 
36 KELLEy/NAMIOKA. Linear Topological Spaces. 
37 MONK. Mathematical Logic. 
38 GRAUERT/FRITZSCHE. Several Complex Variables. 
39 ARVESON. An Invitation to C*-Algebras. 
40 KEMENy/SNELL/KNAPP. Denumerable Markov Chains. 2nd ed. 
41 APOSTOL. Modular Functions and Dirichlet Series in Number Theory. 



42 SERRE. Linear Representations of Finite Groups. 

43 GILLMAN/JERISON. Rings of Continuous Functions. 

44 KENDIG. Elementary Algebraic Geometry. 

45 LOE vE. Probability Theory. 4th ed. Vol. I. 

46 LOEvE. Probability Theory. 4th ed. Vol. 2. 

47 MOISE. Geometric Topology in Dimensions 2 and 3. 

48 SACHS/WU. General Relativity for Mathematicians. 

49 GRUENBERG/WEIR. Linear Geometry. 2nd ed. 

50 EDWARDS. Fermat's Last Theorem. 

51 KLINGENBERG. A Course in Differential Geometry. 

52 HARTSHORNE. Algebraic Geometry. 

53 MANIN. A Course in Mathematical Logic. 

54 GRAvER/WATKINS. Combinatorics with Emphasis on the Theory of Graphs. 

55 BROWN/PEARCY. Introduction to Operator Theory. Vol. 1: Elements of 

Functional Analysis. 

56 MASSEY. Algebraic Topology: An Introduction. 

57 CROWELl/Fox. Introduction to Knot Theory. 

58 KOBLITZ. p-adic Numbers, p-adic Analysis, and Zeta-Functions. 

59 LAN<i. Cyclotomic Fields. 
60 ARNOLD. Mathematical Methods in Classical Mechanics. 

61 WHITEHEAD. Elements of Homotopy Theory. 

62 KARGAPOLOv!MERZIJAKOv. Fundamentals of the Theory of Groups. 

63 BOLLOBAS. Graph The()ry~An Introductory Course. 

64 EDWARDS. Fourier Series. 2nd ed. Vol. I. 

65 WELLS. Differential Analysis on Complex Manifolds. 

66 WATERHOUSE. Introduction to Affine Group Schemes. 

67 SERRE. Local Fields. 

68 WEIDMANN. Linear Operators in Hilbert Spaces. 

69 LANG. Cyclotomic Fields II. 

70 MASSEY. Singular Homology Theory. 

71 FARKAS/KRA. Riemann Surfaces. 

72 STILLWELL. Classical Topology and Combinatorial Group Theory. 

73 HUNGERFORD. Algebra. 
74 DAVENPORT. Multiplicative Number Theory. 
75 HOCHSCHILD. Basic Theory of Algebraic Groups and Lie Algebras. 

76 IITAKA. Algebraic Geometry. 
77 HECKE. Lectures on the Theory of Algebraic Numbers. 

78 BURRIS/SANKAPPANAvAR. A Course in Universal Algebra. 

79 WALTERS. An Introduction to Ergodic Theory. 
80 ROBINSON. A Course in the Theory of Groups. 

81 FORSTER. Lectures on Riemann Surfaces. 




