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Ta Mainzy and Regina 



"U niversal algebra has been looked on with 
some suspicion by many mathematicians as 
being comparatively useless as an engine of 
investigation." 

Alfred North Whitehead 
[Whitehead 1897, preface] 

"General classifications of abstract systems 
are usually characterized by a wealth of ter­
minology and illustration, and a scarcity of 
consequential deduction." 

Garrett Birkhoff 
[Birkhoff 1935, page 438] 

"Since Hilbert and Dedekind, we have known 
very weil that large parts of mathematics can 
develop logically and fruiiful!y from a small 
number of weil-chosen axioms. That is to say, 
given the bases of a theory in an axiomatic 
form, we can develop the whole theory in a 
more comprehensible way than we could other­
wise. This is what gave the general idea of the 
notion of mathematical structure. Let us say 
immediately that this notion has since been 
superseded by that of category and functor, 
which includes it under a more general and 
convenient form." 

Jean Dieudonne 
[Dieudonne 1970, page 138] 



Preface 

In the past decade, category theory has widened its scope and now inter­
acts with many areas of mathematics. This book develops some of the 
interactions between universal algebra and category theory as well as some 
of the resulting applications. 

We begin with an exposition of equationally defineable classes from the 
point of view of "algebraic theories," but without the use of category theory. 
This serves to motivate the general treatment of algebraic theories in a 
category, which is the central concern of the book. (No category theory is 
presumed; rather, an independent treatment is provided by the second chap­
ter.) Applications abound throughout the text and exercises and in the final 
chapter in which we pursue problems originating in topological dynamics 
and in automata theory. 

This book is a natural outgrowth of the ideas of a small group of mathe­
maticians, many of whom were in residence at the Forschungsinstitut für 
Mathematik of the Eidgenössische Technische Hochschule in Zürich, 
Switzerland during the academic year 1966-67. It was in this stimulating 
atmosphere that the author wrote his doctoral dissertation. The "Zürich 
School," then, was Michael Barr, Jon Beck, John Gray, Bill Lawvere, Fred 
Linton, and Myles Tierney (who were there) and (at least) Harry Appelgate, 
Sammy Eilenberg, John Isbell, and Saunders Mac Lane (whose spiritual 
presence was tangible.) 

I am grateful to the National Science Foundation who provided support, 
under grants GJ 35759 and OCR 72-03733 A01, while I wrote this book. 

I wish to thank many of my colleagues, particularly Michael Arbib, 
Michael Barr, Jack Duskin, Hartrnut Ehrig, Walter Felscher, John Isbell, 
Fred Linton, Saunders Mac Lane, Robert Part\ Michael Pfender, Walter 
Tholen, Donovan Van Osdol, and Oswald Wyler, whose criticisms and 
suggestions made it possible to improve many portions of this book; and 
Saunders Mac Lane, who provided encouragement on many occasions. 
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Introduction 

"Groups," "rings," and "lattices" are definable in the language of finitary 
operations and equations. "Compact Hausdorffspaces" are also equationally 
definable except that the requisite operations (ofultrafilter convergence) are 
quite infinitary. On the other hand, systems of structured sets such as "topo­
logical spaces" cannot be presented using only operations and equations. 
While "topological groups" is not equational when viewed as a system of sets 
with structure, when viewed as a system of"topological spaces with structure" 
the additional structure is equational; here we must say equational "over 
topological spaces." 

The program of this book is to define for a "base category" :Yt -a system 
of mathematical discourse consisting of objects whose structure we "take 
for granted"-categories of :Yt-objects with "additional structure," to classify 
where the additional structure is "algebraic over :Yt," to prove general 
theorems about such algebraic situations, and to present ex am pies and appli­
cations of the resulting theory in diverse areas of mathematics. 

Consider the finitary equationally definable notion of a "semigroup," a 
set X equipped with a binary operation x . y which is associative: 

(x· y) . z = x . (y . z). 

For any set A, the two "derived operations" or terms 

(with ab ... , a6 in A) are "equivalent" in the sense that one can be derived 
from the other with (two) applications of associativity. The quotient set of 
all equivalence classes of terms with "variables" in A may be identified with 
the set of all parenthesis-free strings a 1 ... an with n > 0; call this set AT. 
A function ß:B -- CT extends to the function 

BTLcT 

whose syntactic interpretation is performing "substitution" of terms with 
variables in C for variables of terms in BT. Thus, for each A, B, C, there is 
the composition 

a p >cß a ß# 
(A -- BT, B -- CT) -- A -- CT = A -- BT -- CT 

There is also the map 

which expresses "variables are terms." T = (T, 1], 0) is the "algebraic theory" 
corresponding to "semigroups." 



2 Introduction 

In general, an algebraic theory (of sets) is any construction T = (T, 1], 0) 
of the above form such that 0 is associative, I] is a two-sided unit for 0 and 

(A~B~BT)Q(B~CT) = A~B~CT 

AT-algebra is then a pair (X, () where ~: XT ---+ X satisfies two axioms, 
and a T-homomorphism f:(X, () ) (Y, 8) is a function f:X ---+ Y 
whieh "preserves" the algebra structure; see section 1.4 for the details. 

If T is the algebraic theory for semigroups then "semigroups" and "T­
algebras" are isomorphie eategories of sets with strueture in the sense that 
for eaeh set X the passage from semigroup structures (X, e) to T-algebra 
struetures (X, ~) defined by 

is bijective in such a way thatf:(X, e) ) (Y, *) is a semigroup homo­
morphism if and only if it is a T-homomorphism between the corresponding 
T-algebras. 

The situation "over sets," then, is as follows. Every finitary equational 
dass induces its algebraic theory T via a terms modulo equations construc­
tion generalizing that for semigroups, and the T-algebras recover the original 
dass. The "finitary" theories-those which are indueed by a finitary equa­
tional dass-are easily identified abstractly. More generally, any algebraic 
theory of sets corresponds to a (possibly infinitary) equationally-definable 
dass. While the passage from finitary to infinitary increases the syntactie 
complexity of terms, there is no increase in complexity from the "algebraic 
theories" point of view. It is also true that many algebraic theories arise as 
natural set-theoretic eonstructions before it is dear wh at their algebras should 
be. Also, algebraic theories are interesting algebraic objeets in their own 
right and are subject to other interpretations than the one we have used to 
motivate them (see seetion 4.3). 

An examination ofthe definition ofthe algebraic theory T and its algebras 
and their homomorphisms reveals that only superficial aspects of the theory 
of sets and functions between them are required. Precisely what is needed is 
that "sets and functions" forms a category (as defined in the section on pre­
liminaries). Generalization to the "base category" is immediate. 

The relationship between the four chapters ofthe book is depicted below: 

Chapter 1 Chapter 2 
Algebraic theories of sets Trade secrets of category theory 

~ j 

Chapter 3 
Algebraic theories in a category 

1 
Chapter 4 
Some applieations and interaetions 
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The first chapter is a selfcontained exposition (without the use of category 
theory) of the relationships between algebraic theories of sets and universal 
algebra, finitary and infinitary. The professional universal algebraist wishing 
to learn about algebraic theories will find this chapter very easy reading. 

The second chapter may be read independently of the rest of the book, 
although some ofthe examples there relate to Chapter 1. We present enough 
category theory for our needs and at least as much as every pure mathema­
tician should know! The section on "objects with structure" uses a less 
"puristic" approach than is currently fashionable in category theory; we hope 
that the reader will thereby be more able to generalize from previous knowl­
edge of mathematical structures. 

The third chapter, which develops the topics of central concern, draws 
heavily from the first two. The choice of applications in the fourth chapter 
has followed the author's personal tastes. 

Why is the material of the third chapter useful? WeIl, to suggest an 
analogy, it is dramatic to announce that a concrete structure of interest (such 
as a plane cubic curve) is a group in a natural way. After aIl, many naturaIly­
arising binary operations do not satisfy the group axioms; and, moreover, 
a lot is known about groups. In a similar vein, it is useful to to know that a 
category of objects with structure is algebraic because this is a special prop­
erty with nice consequences and about wh ich much is known. 

Many exercises are provided, sometimes with extended hints. We have 
avoided the noisome practice of framing crucial lemmas used in the text as 
"starred" exercises of earlier sections. For lack of space we have, however, 
developed many important topics entirely in the exercises. 

Reference a.b.c refers to item c of section b in Chapter a. Depending on 
context, d.e refers to section e of Chapter d or to item e of section d of the 
current chapter. 



Preliminaries 

The reader is expected to have some background in set-theoretic pure 
mathematics. We assurne familiarity with the concept of function f: X ----> y 
between sets and a minimum of experience with algebra and topology, e.g. 
the definitions of "topological space," "continuous mapping of topological 
spaces," "group," and "homomorphism of groups." 

A variety of notations are employed for the evaluation of a function f 
on its argument x. Usually we write xf instead of fx or f(x) (although d(x, y), 
for the distance between two points in a metric space, is chosen over (x, y)d). 
Another notation for xf is <x, f>. This notation is especially convenient 
when x or f is a long expression. We also employ the "passage arrow" f--+ 
and write x ~ xf which is read "x is sent to xf". This notation is useful 
when defining functions. 

The composition of functions 

X~Y~Z 

will be written fg or f.g. Thus x(fg) = x(f.g) = (xf)g. For any set X, the 
identity function of Xis the function idx:X ) X defined by x(idx) = x. 
It is clear that for any f:X ---> Y we have idx.f = f = f.id y • This may 
be expressed by the commutative diagram. We say the diagram commutes 

idx 
X--------?» X 

Y--------~ 
idy 

because all composition paths between the same sets in the diagram are 
the same function. Similarly, the familiar associative law of composition, 
(fg)h = f(gh), is expressed with a commutative diagram. Because of the 

f W--------+) X 

gh 

Y-------~)Z 
h 
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assoeiative law,fgh: W )Z is weil defined; and it is this prineiple that 
allows eommutative diagrams to display effeetively the result of eomposing 
long ehains of functions. 

The theory of eategories, funetors between eategories, and natural trans­
formations between funetors-to the extent that it is needed-is developed 
gradually beginning with Chapter 2. Sinee eertain funetors and natural trans­
formations arise naturally in Chapter 1, these eoneepts are defined here. A 
category ff is defined by the following data and axioms. 

Datum 1. There is given a dass Obj(ff) of ff-objects. 

Datum 2. For each ordered pair (A, B) of ff-objects there is given a dass 
ff(A, B) offf-morphismsjrom A to B. IffE ff(A, B), A is the domain off 
and B is the codomain of f (see Axiom 3). 

Datum 3. For each ff-object A there is given a distinguished ff-mor­
phism idA E ff(A, A) called the identity of A. 

Datum 4. For each ordered tripie (A, B, C) of ff-objects there is given 
a composition law 

ff(A, B) x ff(B, C) ) ff(A, C) 

(f, g) f---+ fg 

Axiom 1. Composition is associative, that is givenfE ff(A, B), g E ff(B, C) 
and h E ff(C, D) then (fg)h = f(gh) E ff(A, D). 

Axiom 2. IffE ff(A, B) then (idA)f = f = f(id B ). 

Axiom 3. If(A, B) i' (A', B') then ff(A, B) n ff(A', B') = 0. 
"Sets and funetions" form a eategory whieh we will denote henceforth by 

Set. Thus a Set-objeet is an arbitrary set and Set(A, B) is the set offunetions 
from A to B. Identities and eomposition are defined in the way al ready dis­
eussed. Axiom 3 asserts that for the purposes of eategory theory, a funetion 
is not properly defined unless the set it maps from and the set it maps to 
are included in the definition. Thus the polynomial x2 thought of as mapping 
all the real numbers into itself is a different funetion from x2 thought of as 
mapping all the nonzero real numbers into the set of all real numbers. 

The reader should reeognize at onee that "topologieal spaees and eon­
tinuous mappings" as weIl as "groups and group homomorphisms" are two 
furt her examples of eategories. 

If ff is an arbitrary eategory we will write f:A ~B to denote fE 
ff(A, B). We will also use f.g as an alternate notation to fg. Axioms 1, 2 
ean be expressed as commutative diagrams just as we did earlier for the 
eategory Set. Let ff and !i? be two eategories. A functor, H, from ff to !i? 
is defined by the following data and axioms: 

Datum 1. For each ff-object A, there is given an !i?-object AH. 

Datum 2. For each ff-morphism offormf:A ~B there is given an 
!i? -morphism of form fH: AH ) BH. 
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Axiom 1. H preserves identities; that is,for every .%-object A, (idA)H = 

idAH• 

Axiom 2. H preserves composition, that is, given f: A ----> Band 
g:B ~ C in.%, (f.g)H = fH.gH:AH ) CH in 2. 

We use the notation H:.% ) 2 if H is a functor from .ff to 2. 
Suppose now that H, H':.% ) 2 are two functors between the 

same two categories. A natural transformation rx Fom H to H' is defined by 
the following datum and axiom: 

Datum. F or each.% -object A there is given an 2 -morphism Arx: AH -----> 

AH'. 

Axiom. F or each .% -morphism f: A ----> B the following square of 2-
morphisms is commutative: 

AH ____ ~f_H ____ ~)BH 

Arx Brx 

i.e., Arx.fH' = fH.Brx. 

AH'------~)BH' 
fH' 

We use the notation rx: H ----'> H' when rx is a natural transformation 
[rom H to H'. 



Chapter 1 

Algebraic Theories of Sets 

This chapter is a selfcontained introduction to algebraic theories of sets. 
Category theory is not used in the development. The motivating example of 
equationally-definable classes is eventually seen to be coextensive with alge­
braic theories with rank. Compact Hausdorff spaces and complete atomic 
Boolean algebras arise as algebras over theories (without rank) whereas com­
plete Boolean algebras do not. 

1. Finitary Universal Algebra 

In this section we define (finitary) equationally-definable classes. Further 
systematic study offinitary universal algebra is referred to the literature (see 
the notes at the end of this section) but some of the standard examples are 
developed in the exercises. 

There are a number of ways to define the concept of a group. Here are 
three of them: 

1.1 Definition. A group is a set X equipped with a binary operation 
m:X x X -- X (multiplication), a unary operation i:X -- X (inversion) 
and a distinguished element e E X (the unit) subject to the equations 

xymzm = xyzmm 
xem = x = exm 

xixm = e = xxim 

for all x, y, z in X. 

(m is associative) 
(e is a two-sided unitfor m) 
(xi is the multiplicative inverse of x) 

(Notice the use, in 1.1, of parenthesis-free "Polish notation," e.g. xymzm 
instead of( (x, y)m, z)m. A formal proofthat this notation works is given below 
in 1.11.) 

1.2 Definition. A group is a set X equipped with a binary operation 
d:X x X -- X (division) subject to the single incredible equation 

xxxdydzdxxdxdzddd = y 

for all x, y, z in X. It is proved in [Higman & Neumann, '52] tbat a bijective 
passage from 1.1 to 1.2 is obtained by xyd = xyim. The structure of 
"xxxdydzdxxdxdzddd" is examined in 1.13 below. 

1.3 Definition. A group is a set X equipped'with a binary operation m 
such that m is associative and admits unit and inverses, i.e., such that there exists 
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a unary operation i and a distinguished element e of X subject to the equations 
of I.I. 

Very roughly speaking, group theory is an algebraic theory and 1.1, 1.2, 
1.3 are presentations of that theory. (Actually, the empty set is a group ac­
cording to 1.2 but not according to 1.1 and 1.3; to remedy this one should 
modify 1.2 by requiring a distinguished element e satisfying xed = x.) The 
first two are equational presentations in that they take the form of a set of 
operations subject to a set of equations, whereas the third is not an equational 
presentation because existential quantification is not equationally express­
ible. We devote this section to setting down, in precise terms, the definition 
of a finitary equational presentation (Q, E) and the resulting equationally­
definable dass (or variety) of all (Q, E)-algebras. 

1.4 Definition. An operator domain is a disjoint sequence of sets, Q = 

(Qn:n = 0, 1,2 ... ). Qn is the set of n-ary operator labels of Q. 

We remark, as an aside, that an operator domain may be viewed as a 
directed graph whose nodes are natural numbers and whose edges terminate 
at 1. Thus a directed graph suitable for "groups" as in 1.1 is 

i 

(BI----e --4lQ~_m---l0 
This point of view is a natural precursor to viewing an operator domain as 
a category, an approach which receives only brief treatment in this book (see 
1.5.35, the notes to section 3, Exercises 2.1.25-27 and Exercise 3.2.7). 

An Q-algebra is a pair (X, <5) where X is a set and <5 assigns to each w in 
Qn an n-ary operation <5",:xn ) X. Given Q-algebras (X, <5) and (Y, y), 
an Q-homomorphism from (X, <5) to (Y, y) is a function f:X ~ Y which 
commutes with the Q-operations, that is,for all W E Qn and n-tuples (Xl' ... , x n) 

of X, we have (Xl> ... , xn)<5ro f = (xd, ... , xnf)yW' Denoting the passage of 
(Xl' ... , xn) to (xd, ... , xnf) by 1":Xn --------+ y n, this may be equivalently 
written as the commutative square: 

1" 
Xn----=-----~) y n 

X-------~) y 
f 

y", (1.5) 
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1.6 Example. Define Qa = {e}, QI = {i}, Q2 = {m}, Qn = <P for aB 
n > 2. Then every group (as in 1.1) is an Q-algebra, but not conversely. The 
Q-homomorphisms between groups are ordinary group homomorphisms. 

An equational presentation, as is yet to be defined, should consist of a 
pair (Q, E) where Q is an operator domain and E is a set of Q-equations. To 
properly formulate "Q-equation" we must formalize the construction of ex­
pressions such as xxmzm and xxim . 

.1.7 Definition. Let A be a set. A word in A is an n-tuple of elements of A 
with n an integer >0; n is the length of the word. We will write al a2 ... an 
instead of (al> ... , an) to convey the feeling of "word in the alphabet A." An 
expression such as al azm is a word in the appropriate "alphabet" A. In 
general, let Q be an operator domain, set IQI to be the union of all Qn, and 
define an Q-word in A to be a word in the disjoint union A + IQI; (the dis­
joint union of the sets X, Y is the set X + Y = (X x {O}) u (Y x {I})). 
Notationally, we will use separate symbols for elements of A and elements of 
IQI and write Q-words as words in A u IQI. If Q is as in 1.6, abmcm, eam, and 
ei are all Q-words in A; unfortunately, so are nonsense words such as mmamib. 
An Q-term in A is an Q-word in A which can be derived by finitely many 
applications of 1.8 and 1.9 below: 

(1.8) a is an Q-term in A for all a E A. 

(l.9) If W E QII and PI' ... ,Pn are Q-terms in A, then PI ... PnW is an 
Q-term in A. 

The set of aB Q-terms in A will be denoted AQ. 
Intuitively, an Q-word in A is a term if and only if it has the appearance 

of a weB-defined function in finitely-many variables of A. For example, if 
Q is as in 1.6 and if A has at least three distinct elements a, b, ethen the 
doubleton {abmcm, abcmm} is the essence of the associative law; for if 
(X, 6) is any Q-algebra and if (Xl' Xz, X3) is any 3-tuple of elements of X then 
by virtue of the substitution "Xl for a, X2 for b, X3 for c", abmcm induce·s the 
ternary operation ((XI> x2)6,m x 3)6m on X and abcmm similarly induces a 
ternary operation on X; (X, 6) satisfies the associative law if and only if these 
ternary operations are the same. This motivates 

.1.10 Definition. Fix any convenient (effectively enumerated, see, e.g., 
[Hermes '65, page 11]) set V ofabstract variables, V = {VI' v2,···, vn ... }. 
For example, V might be the set ofpositive integers. An Q-equation is a double­
ton {el> e2 } ofQ-terms in V. An equational presentation is a pair (Q, E) where 
Q is an operator domain and E is a set of Q-equations. 

The equational presentation corresponding to 1.1 is Q as in 1.6 and E = 

{ {v l v2mv3m, Vlv2v3mm}, {vlem, vd, {evlm, vrJ, {vlivlm, e}, {vlvlim, e} }. 
This overly formal notation is difficult to read and in most situations we 
use the more colloquial "eI = e2'" use parenthetical notation instead of 
Polish notation, and write x, y, z ... for VI' Vz, v3 .... Thus, E as above is 



10 

written: 

((x, y)m, z)m = (x, (y, z)m)m 
(x, e)m = x = (e, x)m 

(xi, x)m = e = (x, xi)m 

Algebraic Theories of Sets 

We now set forth to formalize the means which allowed us to make actual 
operations out of terms in the style that we accomplished this for abmcm in 
the preceding paragraph. 

1.11 Uncoupling Lemma. Let A be a set and let Q be an operator domain. 
Then for each pE AQ of word 1ength greater than 1 there exists a unique 
integer n greater than 0 and unique W E Qn and n-tuple (P1' ... , Pn) E AQn 
such that P = P1 ... Pnw. 

Proof. Since P is constructed from (l.8) and (1.9) and has more than one 
symbol, it is clear that there exists a representation P = P1 ... Pnw as in the 
statement and that n and ware unique. We must prove that if P = q 1 ... q"W 
is another such representation, then Pi = qi for all i. It is helpful to define 
the integer-valued valency map, val ([Cohn '65, p. 118]), on the set of all 
Q-words in A by val(w) = 1 - m (for all w E Qm), val(a) = 1 (for all a E A), 
val(b1 ... bm) = val(b 1) + ... + val(bm). Since an Q-formula q can be con­
structed from (1.8) and (1.9), val(q) = 1 and val(s) > 0 for any left segment 
s of q (where, if q = b1 ... bm, the left segments of q are the m Q-words 
b1 •.. bk for 1 ~ k ~ m). The crucial observation is: 

(1.12) If s is a proper left segment of Pi· .. Pn and if SE AQ, then s is a 
left segment of Pi. (For otherwise, there exists i ~ k < n and a left segment 
t of Pk + 1 such that s = Pi ... Pkt: it follows that 1 = val(s) = val(pi ... Pkt) = 

k - i + 1 + valet) and i - k = valet) ~ 0 (i.e., if t is empty then k > i), the 
desired contradiction). 

Applying 1.12 to s = ql' we see that q1 is a left segment of P1. Symmet­
rically P1 is a left segment of qb so P1 = q 1· Therefore, P2 ... PuW = qz ... qnw 
and we can apply 1.12 to prove pz = qz· Similarly, P3 = q3' ... ,Pn = qn- 0 

The uncoupling process of1.11 can be geometrically depicted by the "tree" 

Each Pi has shorter length than the original term. Each Pi of length greater 
than 1 can be similarly decoupled until we obtain the complete derivation 
tree of the term in which all terminal branches are terms of length 1, that is 
variables or O-ary operations. 
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1.13 Example. The derivation tree of xxxdydzdxxdxdzddd as in 1.2 is 

xxxdydzdxxdxdzddd 

I 
d 

--------x xxdydzdxxdxdzdd 

I 
d 

--------------~ xxdydzd xxdxdzd 

I I 
d d 

/~ /~ 
xxdyd z xxdxd z 

I I 
d d 

/~ /~ 
xxd y xxd x 

I I 
d d 

/~ /~ 
x x x x 

Since the derivation of Q-terms is unique we have: 

1.14 Principle of Finitary Aigebraic General Recursion. Let Q be an 
operator domain and let A be a set. To define a function !/J on AQ it suffices to 
specify 

(1.15) a!/J for all a E A. 

(1.16) (PI··· Pnw)!/J in terms of Pi!/J and w. D 

1.17 Example (Substitution of Variables in Terms). Let f:A --+ B be 
a function (substituting variables in B for variables in A). By algebraic general 
recursion we may define the function jQ: AQ ) BQ by 

(a,fQ) = aj 
«(PI· .. PnW), jQ) = (Pb jQ) ... (Pm jQ)W 
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Thus, <aaadbdcdaadadcddd, fQ) = xxxdydzdxxdxdzddd if af = x, bf = y, 
cf = z. In the picture of 1.13, we plug in the appropriate terminal branches 
x, y, z and chase up the tree. 

1.18 Example (The Total Description Map). Let (X, 6) be an Q-algebra. 
The total description map 6@ : X Q , X is defined by algebraic general 
recursion: 

Clearly, the total description map accomplishes what we wanted: it makes 
operations out offormulas, although we should note the role of 1.17 in inter­
preting variables as arguments. We are finally ready for: 

1.19 Definition. Let Q be an operator domain, and let (X, 6) be an Q­
algebra. For each V-tuple r:V ---> X there is an interpretation map r# defined 
by r# :VQ , X = rQ.6@. Notice that r# can be defined directly by alge­
braic general recursion: vr# = vr, (PI··· Pnw)r# = (Plr#, ... Pnr#)6w- If 
{eI' e2} is an Q-equation, say that (X, 6) satisfies {eI' e2} if elr# = e2r# for 
all r:V ---> X. If (Q, E) is an equational presentation, an (Q, E)-algebra is 
an Q-algebra which satisjies E, that is satisfies every equation in E. The class 
of all (Q, E)-algebras is said to be an equationally-definable dass of algebras, 
or a variety of algebras. For example, the equationally-definable dass de­
fined by the presentation in 1.10 is "groups" as in 1.1. 

The above construction of interpretation maps is based on an important 
principle. Notice, first, that 1.9 defines an Q-algebra structure on AQ (and 
we will always regard AQ as an algebra in this way). We can now state 

1.20 Principle of Finitary Algebraic Simple Recursion. Let Q be an oper­
ator domain, let (X, 6) be an Q-algebra and let f:A ----> X be a function. 
Then there exists a unique Q-homomorphism f#: AQ ) (X, 6) ex­
tending .f. 

Proof· By 1.14 there exists unique function f# such that af# = af and 
(PI· .. Pnw)f# = (pd#, ... ,Pn.f# )6w • 0 

To help explain the terminology of 1.20, recall that a sequence x:N----4 
X (where N = {O, 1,2, 3 ... }) is defined by simple recursion if there exists 
an endomorphism 6: X -----+ X such that xn + I = xn6. The general recursion 
of 1.14 amounts to "mathematical induction" (see the notes at the end ofthis 
section). Observe that if X = {a, b} and if xis defined by Xo = Xl = a, X n = 

b for n > 1, then x is not definable by simple recursion. This situation is an 
instance of 1.20 and 1.14, corresponding to the operator domain 
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Notes for Seetion 1 

The founder of universal algebra-the study of finitary equational 
classes-is Garrett Birkhoff [Birkhoff '35]. We refer the reader to the texts 
of [Cohn '65], [Grätzer '67], and [Pierce '68]. Ofthese, Grätzer's is the most 
complete, in our judgment, and has the largest bibliography. Pierce is rec­
ommended for infinitary universal algebra (not treated in the other two) 
which we will study in section 5, but in a different way. In the three texts cited 
above, the concept of "variety" is defined relatively late in the book: 

Author 
Number of 

pages 
Page "variety" is 

first defined 
- ---~-- ~--

Cohn 
Grätzer 
Pierce 

333 
368 
143 

162 
152 
124 

Thus, section 1 provides a rapid introduction not available in the expository 
literature, to our knowledge, at this writing. (We hasten to add that, in the 
three books above, "variety" is viewed as but one of a number of central 
topics.) 

Lemma 1.11 was proved for unary and binary operations by [Menger 
'30], for arbitrary finitary operations by [Schröter '43] and [Gerneth '48], 
and for infinitary operations by [Felscher '65]. 

Q-terms are the usual terms ofmathematicallogic (cf. [Bell and Slomson 
'71, page 70]), AQ is known as an "absolutely free Q-algebra" in the literature 
of universal algebra. 

In set theory, "recursion" and "induction" have taken on special meanings 
(see [Monk '69, Chapter 13]). In particular, it would appear to be inappro­
priate to call 1.14 "algebraic induction." 

Exercises for Section 1 

1. If you do not already know them, look up the definitions of "monoid," 
"ring," "lattice," and "real vector space." Give finitary equational pre­
sentations for these objects. Further hints can be found in [Cohn '65, 
pages 50-55]. 

2. In 1.7 we defined the set of words in A to be the union A u A 2 U A 3 .... 

More properly, we should have insisted on the disjoint union A + A 2 + 
A 3 .... To prove this is necessary, give an example of a set A such that 
A and A 2 have elements in common. 

3. Give an example of an equational presentation such that every algebra 
has exactly one element. 

4. (J6nsson and Tarski). Give an example of an equational presentation 
with one binary operation and two unary operations such that every 
algebra with at least two elements is infinite. [Hint: make the binary 
operation bijective.] 
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5. Let Q have one unary operation and no other operations. Show that the 
Q-terms in A may be identified with the set A x N. 

6. Let S be the set of all Q-homomorphisms from (X, 6) to (X', 6'). Then 
S is a subset ofthe topological space (X')X, the Tychanoff cartesian power 
of co pies of X' with the discrete topology. Prove that S is closed. 

7. Let y: AQ ----> AQ be a bijective Q-homomorphism. Prove that y-1 is 
also an Q-homomorphism. Prove that y maps A bijectively onto A and 
that y = fQ for f:A ~ A, af = ay. [Hint: use 1.11.] 

8. Ianov's program schemata (see [Rutledge '64 and the bibliography 
there]) provide a "dual" concept to Q-terms. Fix an operator domain 
Q with Qo = 0. An initialized Q-flowchart scheme is a finite directed 
graph, with a distinguished "initial" node, in which every node of out­
degree n > 0 is labelIed with an element of Qn; the nodes of outdegree 
o are called exits. A partial function from X to Y is a function from a 
subset of X to Y. An Q-coalyebra is a pair (X, 6) where X is a set and 
6 assigns to 0) E Qn a partial function 6 w: X ----> n . X [where n . X = 

X + ... + X (n times)]. 
(a) Regarding a flowchart scheme as an "abstract program" and an 

Q-coalgebra as a "machine," show that "running the program" results 
in a partial function X ~ s . X (where s is the number of exits), 
a semantic interpretation of the scheme. [Hint: to compose partial 
functions, x(fy) is defined if xf and (xf)y are.] 

(b) Let Ql = {IX}, Q2 = {ß, y}. Formalize how the flowchart scheme on 
the left can have the semantic interpretation shown on the right. 

Yes 

(The computed partial function is from the set of integers to itself 
and is constantly 1 with domain all x :( 1.) 
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(c) Construct a scheme with four nodes which is equivalent to that in 
(b) in the sense that both have the same interpretation in all co­
algebras. Why can't two distinct Q-terms have the same interpretation 
in every Q-algebra? 

9. "Lattices" constitute an equationally-definable dass (e.g., see exercise 
3.2.l0d). A lattice is modular if (x /\ b) v a = (x v a) /\ b whenever 
a ::s; b. Prove that modular lattices constitute an equationally-definable 
dass. 

2. The Clone of an Equational Presentation 

We opened the book with the observation that two equational presenta­
tions, 1.1 and 1.2, were "equivalent." There are three ways to make this 
precise and, happily, they coincide (see Theorem 2.17 below). An equational 
presentation (Q, E) provides us explicitly with sets of terms AQ and equiva­
lence relations EA on AQ, where pEAq means "p and q have the same inter­
pretation in all (Q, E)-algebras"; for example if (Q, E) corresponds to 1.1, 
aibimi and bam have the same meaning in all groups. The set AT = AQ/EA 
of equivalence dasses turns out to be presentation independent and to possess 
all the algebraic invariants so long as we indude the formal description of 
the ways in which formulas combine with each other. Making all of this 
precise is the goal of this section. 

For the time being, fix an equational presentation (Q, E). 

2.1 Definition. For each set Adefine an equivalence relation EA on AQ 
by EA = {(p, q):for all (Q, E)-algebras (X, 6) and allfunctions f:A ----"X, 
pf# = qf#}· It is obvious that EA is an equivalence relation. We denote the 
quotient set AQ/EA by AT (T for "theory"), and the canonical projection by 
Ap: AQ ) AT. We will also adopt the notation [p] E AT for the equiva­
lence class < p, Ap> of p. 

2.2 Proposition. For each set A, there exists a unique Q-algebra struc­
ture on AT making Ap an Q-homomorphism, that is [P1] ... [Pn]w = 

[P1 ... Pnw] is weIl defined. Moreover, AT is an (Q, E)-algebra. 

Proof. The first statement is obvious from the definition of EA and the 
fact (1.20) that each f# is an Q-homomorphism. Enroute to the second state­
ment we make two observations: 

(2.3) Whenever f:(X l> 61) ) (X 2,62) and g:(X z, 62)---~ 
(X 3,63) are Q-homomorphisms, so is fg: (X l> 6d ) (X 3,63), (This 
is obvious from Definition 1.5; notice that (j'gt = rgn.) 

(2.4) For all g:V ----" AQ and {el> e2} in E, (e1g#, e2g#) E EA. (Proof: 
For every (Q, E)-algebra (X, <5) and functionf:A ----"X, g# f# :VQ---> 
(X, <5) is an Q-homomorphism by 2.3 so that by 1.20 g#f# has the form h# 
where h is the restriction of g# f# to V. Since (X, 6) satisfies {e 1, e2}, e1g# f# = 

e2g#f#; since f is arbitrary, we are done with 2.4.) 
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To complete the proof, let r: V ~ AT be a function. By the axiom of 
choice (but see exercise 1) there exists a function g: V --+ AQ such that 
g.Ap = r. Since g#.Ap is an Q-homomorphism (by 2.3 and the first part of 
the proof), and the restriction of g#.Ap to V coincides with r, we have from 
1.20thatg#.Ap = r#. Sinceg# maps equations into EA (2.4) and Ap identifies 
elements of EA , AT satisfies E as desired. 0 

AT is called the Fee (Q, E)-algebra generated by A. The map 
Ap: AQ ) AT presents AT by "generators and relations," and "free" 
means that there are just enough relations to satisfy E, but no more. To a 
category theorist, this intuitively correct formulation would be justified by 
the following result: 

2.5 The Universal Property of AT. For each set Adefine the insertion­
of-the-variables map All: A ) AT by < a, All) = [a]. Then for every 
(Q, E)-algebra (X, 0) and every function f:A ~ X there exists a unique 
Q-homomorphism f## : A T ) (X, 0) extending f. 

Proof. Consider the diagram below. The unique Q-homomorphism 

AC )AQ Ap )AT 
./ 

/ 
,/ 

,/ 

r / 

/ /f## 
/ 

,/ 

(X, b)Y 

f# :AQ ) (X, 0) of 1.20 respects EA by the definition of EA , and this 
induces a unique function f# #: AT ) (X, 0) which is a homomor­
phism because 

(2.6) Given a surjective Q-homomorphism g:(X b od ----
(X 2 , ( 2 ), an Q-algebra (X 3 , ( 3 ), and a function h:X2 ) X 3 , if gh is an 
Q-homomorphism, then so is h. 

The proof of 2.6 and the uniqueness of f# #: A T ) (X, b) may be 
safely left to the reader. 0 

When E is empty, 2.5 re duces to 1.20. It will gradually become clear that 
1.20 is the pivotal theorem in transforming a set-theoretic symbol-manipula­
tive analysis of algebra into a categorical one. 

Let us turn now to the promised formalization ofthe way formulas com­
bine with each other. To this end, let us think of Pi ... PnW in AQ not so 
much as an n-ary opyration indexed by W as an n + l-ary operation in 
Pi' ... , Pm w. More specifically, if P E BQ with variables (see exercise 10) 
bb ... , bn and if qb ... ,qn E CQ, we may substitute qi for bi to get (qJp E CQ, 
the clone composition of qi' ... ,qm p. This includes the case of Pi ... PnW 
above ifwe set B = V, P = Vi ... vnW, C = A, qi = Pi- For another example, 
ifQhasbinary +,unaryi,andnullarye,p = b3ibi +b2 +,qi = e,q2 = cii, 
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q3 = CIC2 + then (qJp = C1C2 +ie+c1i+. We expect clone composition to 
be "associative." To make this come true, let us think of (q;)p as a binary 
operation po (qJ For uniformity, we should replace p by a tuple (Pj) of p's 
and define (Pj) 0 (qi) as the tuple Pj 0 (qJ Here is the formal definition: 

2.7 Definition. The clone of (Q, E) is the category Set(Q, E) whose objects 
are sets A, B, C ... and whose morphisms 0'.: A ~ B arefunctions 0'.: A ~ 
BT. Composition is defined by 

(A ~a B) 0 (B --'!..... C) = A ~ BT ~ CT (2.8) 

Identity morphisms are defined by 

AIJ:A ---+AT (2.9) 

Throughout the book we will adopt the following notational conventions: 
morphisms in Set(Q, E) are distinguished from functions by the use of single­
headed arrows. The symbol far the Set(Q, E)-identity of A will always be AIJ, 
whereas the symbol for the identity function of A will always be idA ; thus 
idAT will never mean ATIJ:AT ) AT, but one ofidAT:AT--~ 
AT ar idAT : A T A. The symbol 0 will be used for clone composition 
as in 2.8, whereas ordinary composition of functions can be denoted with a 
period. 

Let us verify that the formal definition meshes with what motivated it. 
First suppose that E is empty so that a map ß: B ~ C is a function 
ß:B ~ CQ, that is a B-tuple (qb:b E B) of terms in C. If p E BQ has set 
of variables (specifically, the terminal branches of the derivation tree of p 
which are not nullary operations) {bI' ... , bn } then pß# is clearly the unique 
term in CQ whose derivation tree is built down from that of p by substituting 
the derivation tree of qb, for each occurrence of bi ; in short, pß# = po (qb)' 
Moreover, if we have a function O'.:A ~ BQ, that is an entire tuple (Pa), 
then 0'.0 ß = 0'. . r is the A-tuple Pa 0 (qb) as advertised. Expression (2.9) 
asserts that "variables are terms." 

Even if Eis arbitrary, clone composition is at the level of representatives, 
that is 

(2.10) 

Proof. Given O'.:A ~ BQ and ß:B -----+ CQ we must show that the 
two paths from A to CT shown below are equal: 

0'. ß# 
A --------+) BQ -----'-----+) CQ 

Bp Cp 

BT ------;;---~) CT 
(ß.Cpl 
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It suffices to prove that the square is commutative. This is true for variables 
bE BQsince <b, Bp.(ß.Cp)#) = <b,BlJ.(ß.Cp)#) = <b,ß·Cp) = <b,r.Cp). 
Since all fOUf maps in the square are Q-homomorphisms, we are done by 
2.3 and 1.20. D 

2.11 Proposition. Set(Q, E), as defined in 2.7, is indeed a category. 

Proof. Consider IX:A ----, B, ß:B ----, C and 'I: C ----, D. It is im­
mediately clear from the diagram that we have 

B 

ß 
BlJ 

BT--------~----~ ß# --------4) DT 
'1# 

(2.12) 

Thus (IX 0 ß) 0 'I = (lX.r) 0 'I = lX.r.y# = 1X.(ß.y#)# IX 0 (ß 0 'I). That 
AlJ.1X # = IX is clear. We now make explicit the trivially true but important 
principle: 

If(X, 6) is an Q-algebra, idx:(X, 6) ----~) (X, 6) 

is an Q-homomorphism. 

From 2.13 and 2.5 it follows that 

(AlJ)# = idAT , 

In particular, IX 0 BlJ = 1X.(BlJ)# = IX. D 
for all sets A. 

(2.13) 

(2.14) 

Notice that 2.5 provides a bijection between morphisms A ~ Band 
Q-homomorphisms A T ~ BT; the requisite passages are 

A-'~BI-I ------»AT~BT 

AT~BT, )A~B 

since (AlJ)# = idAT and (IX 0 ß)# = (lX.r)# = IX# .ß#. Thus Set(Q, E) may be 
identified with the category of (Q, E)-algebras of form AT. 

2.15 Example. Let Q have binary +, unary i and nullary e. Set A = {1}, 
B = {b, x}, C = {c, y}, D = {d, z}. Set IX = xie+b+, ßb = cC+, ßx = y, 
Ye = dz+i, 'Iv = e. Then IX 0 ß = yie+cc+ +, (ß 0 Yh = dz+idz+i+, 
(ß 0 Y)x = e, ~ll1d IX 0 (ß 0 'I) = (IX 0 ß) 0 'I = eie+dz+idz+i++. Notice 
"BlJ 0 ß = ß" reduces to the tautology that ifwe substitute b for band x for x 
then (ßb ßx) is transformed into itself, whereas "IX 0 AlJ = IX" says that 
xie + b + is left invariant by substituting x for x and b for b. 

The reader should notice that OUf proof of 2.11 is a formal consequence 
of 2.5 and the fact that sets and functions form a category. 
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2.16 Definition. The monoid of (.0, E), denoted V(.Q, E), is the endo­
morphism monoid of V in the eategory Set(.Q, E). 

2.17 Theorem. Let (.0, E) and (.0' , E') befinitary equational presentations 
as defined in 1.10. Then the following three statements are equivalent and 
define the equivalenee relation of struetural equivalenee on finitary equational 
presentations. 

(2.18) The category (.0, E)-alg of(.Q, E)-algebras and .Q-homomorphisms 
(see 2.3 and 2.13) is isomorphie as a eategory of sets with strueture to (.0', E')-alg, 
that is, for each set X there exists a bijection O/X from the set of an (.0, E) 
structures, b, on X to the set of an (.0', E') structures, b' , on X subject to the 
joint condition that for every function f:X ~ Y, (.0, E)-structure b on X 
and (.0, E)-structure y on Ythenf:(X,!5) ) (Y, y) is an .Q-homomor­
phism if and only if f:(X, !5o/x ) ) (Y, yo/y) is an .Q'-homomorphism. 

(2.19) The clones Set(.Q, E), Set(.Q', E') are isomorphie; that is, for each 
set X there exists a bijection XA:XT ) XT' subject to preservation 
of variables and preservation of eomposition 

xT-----:::::-::---~)XT' 
XA 

(a 0 ß).CA = (a.BA) 0 ' (ß.CA) for an 
a:A ----+BT, ß:B----+CT. 

(2.20) The monoids V(.Q, E) and V(.Q', E') are isomorphie not just as 
abstract monoids but in the stronger sense that there exists a bijective map 
r:VT ) VT' composing with which yields a monoid isomorphism: 

Vtf·r = Vtf' 
(a 0 ß).r = (a.r) 0 ' (ß.r) 

and subject to the requirement that r preserves true eonstants, in the sense 
that there exists a bijection r 0 such that 

ro 
4JT- - - - - - - -~4JT' 

VT--------+) VT' r 
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where x, x' are the unique morphisms <p ---+ VT, <p ---+ VT'. (The termi­
nology "true constants" is explained in 5.13 -.) 

Proof. (2.18) implies (2.19). By 2.5, there exists a unique Q-homomor­
phism X2:XT ) XT' (where XT' is an (Q, E)-algebra by virtue of 
t/lx·j.) such that preservation of variables holds. To prove that composition 
is preserved, consider the diagram 

a p# 
A-------+) BT----'---~) CT 

BA CA 

BT"------:;---+) CT' 
(ß·CAt 

where the bottom morphism of the square can be regarded as Q-homo­
morphism with the help of t/I- 1. The remaining details are similar to the 
proof of 2.1 0 and need no repeating. 

(2.19) implies (2.20). Set r = VA. That composing with r is a monoid 
isomorphism is clear, and it suffices to prove 

<p T __ --<.<P_A __ -+) <p T' 

VT--------+) VT' r 

To this end, x#.r = (id",T 0 x).r = (id"'T.<pA) 0 ' (x.r) = <pA 0 ' x' = <pA.X'#. 
(2.20) implies (2.18). Let us begin by observing that we have symmetry: 

it is easy to check that r- 1 enjoys the same properties as r. Next, let us 
make some comments about the empty set as an algebra. <p can be an 
Q-algebra in at most one way and this occurs if and only if Qo = <p; in this 
case, <p is an (Q,E)-algebrafor arbitrary E, the uniquefunction <p ) (X, b) 
is an Q-homomorphism for any b, and the same is true in the other direction 
(X, b) ----. <p, except that the only such function is id",. Notice further 
that Qo = <p if and only if <p T = <p. Our sole use of the preservation of true 
constants consists in the conclusion that Qo = <p if and only if Qü = <p, 
and we may now forget about the empty set in establishing 2.18. (The reader 
may wish to consult exercise 7 at this point.) 
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For each nonempty set X define the desired I/Jx of 2.18 by bl/Jx = b' 
where for all w' in Q~, 

(2.21) 

where r: V------'> X is any function such that vir = Xi; in ca se n = 0 let r 
be arbitrary (but here we require that X be nonempty). For an example 
see exercise 9. We need: 

2.22 Lemma. (Xl>"" xn)b;", as in 2.21 is independent ofthe choice ofr. 

Proof. Observe that for any a: V------'> VT we have 

rx# 
VT--------+) VT 

r r 

VT'-----::-o--~) VT' 
(rxr)## 

(2.23) 

since a#.r = (id vT 0 rx).r = (idvT.r) 0 ' (ar) = (rxr)##. Define f:V ~ V by 

vJ= I {
V' 

VI 
if n ~ 1 and 1 ~ i ~ n 
otherwise 

and set a:V - VT to be f. V1J. Let X, b, w', r be as in 2.21. Observing 
that a#.r# = (f.r) # (use 2.5), we have 

<[VI'" VnW'], r-I.r#) 

= «[ VI](ar) ##, ... , [Vn] (ar) ## )W', r-I.r#) 

= <[VI'" VnW'](rxr)##, r-I.r#) 

= <[VI'" VnW'],r-l.a#.r#) 

= <[VI' .. VnW'], r-I.(f.r)#) 

(r preserves variables; 
notation as in 2.2) 

(by 2.23) 

which completes the proof of 2.22 since the final expression depends only 
on the restriction of r to {VI> ... ,vn }. 

Lemma 2.22 plays an essential role in showing that if b' = blj;x as in 
2.21 then (X, b') satisfies E'. To do this it suffices to establish 

Vp' r- I 
VQ'------'---~) VT'------~) V T 

(2.24) 

(X, b, b') 
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for arbitrary 1': V-X (i.e., if {eI> e2} IS 1ll E' then elr### = ezr### 
be ca use (e I, V p') = (e z, V p') ). We prove this by algebraic general recursion: 

Basis step: Each path sends v to VI'. 

Recursive step: Let p = PI ... Pno/ with both paths agreeing on Pi' 

Let rx, ß: V ) VT satisfy Vlrx = [VI' .. Vnw'], Viß = [p;]. Then 
(Vb rx 0' ß) = [p] by 2.10. Then 

([p], r-1.r#) 
= (VI, (rxr- l ) 0 (ßr- 1)r# 
= ([VI'" VnW']r- l , (ß.r-l.r#)#) (use 2.5) 
= (Vb ß·r- 1.r#), ... , (Vn, ß.r-l.r#»)(5~, (by 2.22) 
= (PI r ### , ... , Pnr ### )(5;0' 
= pr### 

The remaining details of the proof that 2.18 holds are easy. If 
j:(X, (5) ) (Y, y) is an Q-homomorphism between (Q, E)-algebras, 
then r#..f = (r..f)# by 2.5, so that 

«(xr. ... , x")(5~,,f) = ([VI'" Vnw'], r-l.r#..f) 
= ([VI'" VnW'], r-l.(r..f)#) 
= (XrJ, ... , xnj)y~, 

so that j:(X, (5,/Ix) ) (Y, yt/Jy) is an Q'-homomorphism. t/Jx l is 
defined symmetrically. Ify' = (5 "fix 1 'fix then 

(Xl>"" Xn)Y~' = ([VI'" Vnw'], r- 1.r#) 
= ([VI'" VnW'], r###) 

= (Xl' ... , Xn)(5~, 

The proof of 2.17 is complete. 0 

Notes for Seetion 2 

(by 2.24) 

The term "clone"-an acronym for "closed set of operations"-is attri­
buted to P. Hall in [Cohn '65, III.3]. The earliest published paper we know 
of which deals with the algebra of clone composition is [Menger '46]. See 
also [Felscher '68, '72 2.1], [Menger '59], [Schmidt '62], [Schweizer and 
Sklar '69], [Whitlock '64], and the bibliographies there. 

The general concept of "isomorphism of categories of sets with structure" 
used in 2.18 will be formalized in section 3 of Chapter 2. This definition was 
given by [Mal'cev '71, p. 59] under the term "structural equivalence" which 
we have adopted in 2.17. Mal'cev indicated that such isomorphisms between 
categories of (Q, E)-algebras are induced by transformations at the level of 
syntax ([Mal'cev '58]) and precise statements and proofs were provided by 
[Felscher, '68, '69, '72] and [Hoehnke, '66]. In this connection, r: VT --....... 
VT' of 2.20 should be regarded as "interpreting T-terms as T'-terms" and 
2.21 asserts that "the Q-interpretation of w' is provided by r- 1". (Cf. also the 
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logicians' "interpretations between theories," e.g. [Enderton '72, section 2.7].) 
More general clone homomorphisms will appear in 3.2.8. 

Theorem 2.17 is a "folklore theorem" which has not, to our knowledge, 
appeared in print before; however, see [Felscher '72, 2.1.8, 2.3.2]. 

Exercises for Seetion 2 

1. The axiom of choice asserts that for every onto function f:X ~ Y 
there exists a "choice function" c: Y ~ X such that cf = idy. From 
the point of view of "naive" set theory one simply chooses for each y any 
cy with cyf = y(sincefis onto) anddefines yc = cy. From thepoint ofview 
ofaxiomatic set theory (see [Monk '69, Chapter 3], [Lawvere '64], [lech 
'73, Chapter 1]) this cannot be established from the other "standard" 
axioms unless Y is finite. Show that the axiom of choice in the proof of 
2.2 can be avoided by restricting r: V ~ AT to the finite set of vari­
ables occurring in et and ez. 

2. Prove that the axiom of choice, as defined in exercise 1, is equivalent to 
the following: for every function f:X ~ Y with X nonempty there 
exists g: Y ~ X with fgf = f. 

3. Let Q have a single n-ary operation wand let E possess the equation 
{(wt, ... , wn)w, wd whenever W t , ... , Wn E V are such that not all W i are 
distinct. Show that AT = {[ a]: a E A} if A has less than n elements and 
that AT is infinite otherwise. 

4. Let Q be a finitary operator domain and let E, E' be two sets of Q-equa­
tions. Prove that (Q, E) and (Q, E') are structurally equivalent if and only 
if Ev = E~ 

5. Exercise 4 may be generalized as folIows. Let (Q, E t ), (Qz, E z) be two 
finitary equational presentations. Let Q be the operator domain defined 
by Qn = (Qt)n + (Qz) .. Prove that (Q1' Ed and (Qz, Ez) are structurally 
equivalent if and only if (Edv = (Ez)v' 

6. Attempt to prove 2.11 by generalizing the notations of 2.15. 
7. Let T, T' correspond respectively to the equational presentations "one 

nullary operation e and no equations" and "one unary operation u to­
gether with the equation {vt u, vzu }." Prove that there exists a bijection 
r:VT ------7 VT' composition with which is a monoid isomorphism 
(i.e., the first two conditions of 2.20 hold). Observe that these equational 
presentations are not structurally equivalent by considering the empty 
algebra. 

8. Write out an explicit description of V(Q, E) for the (Q, E) of exercise 5 
of section 1. 

9. Let Q have one binary operation m and no equations and let Q' have one 
ternary operation t with single equation (x, y, a)t = (x, y, b)t. Define 
r:VQ ------7 VT' by the recursion 

vr = v 
pqmr = [p][q][vt]t 
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Show that r is a structural equivalence in the sense of 2.20 and that b', 
as in 2.21, is given by (x, y, z)b; = (x, y)bm• 

10. Given P E AQ, the set var(p) of variables occurring in p is defined in the 
obvious way by algebraic recursion: 

var(a) = {a} 
var(Pl ... Pnw) = var(Pl) U ... u var(Pn) 

Given an (Q, E)-algebra (X, b), prove that if r, s: A ~ X agree on 
var(p) then [p Jr # = [p Js #. Verify that this description of var(p) agrees 
with the one given in 2.10-. 

11. Verify that 2.23 is equivalent to (0( ° ß).r = (O(.r) 0' (ß.T). 
12. Verify that "groups" as in 1.1 is structurally equivalent to "groups" as in 

1.2 (as modified in 1.3 + ). 
13. Without peeking at Chapter 2, formulate adefinition of "isomorphism 

of categories" to formalize our assertion of 2.14 + that Set(Q, E) may be 
"identified" with the category of (Q, E)-algebras of form AT. 

14. Verify that the proof of 2.22 is valid when n = O. 
15. Let Q have a single nullary operation and let E be empty. Show that 

Set(Q, E) may be identified with the category of sets and partial functions. 

3. Algebraic Theories 

Roughly speaking, the algebraic theory of an equational presentation 
(Q, E) is its equivalence dass in the various senses of 2.17. In this section 
we describe Set(Q, E) as an "algebraic" object without reference to any (Q, E). 
The definition is so elementary that, unlike the situation in 1.10, no intrinsic 
structure of sets is referred to; we need only to know that sets and functions 
form a category. To this end: 

3.1 Definition. Fix an arbitrary category :f{". :f{" is the base category. 
Not until Chapter 3 will we use the full generality of 3.1. Right now, the 

reader will do well to pretend that :f{" is a familiar category such as sets, 
topological spaces, or groups. 

3.2 Definition. An algebraic theory (in clone form) in :f{" is a tripie 
T = (T, 1], 0), where 

T is an object function, assigning to each object A of :f{" another object, 
AT, "of T -terms with variables in A." 

1] is an assignment to each object A of:f{" an "insertion-of-the-variables" 
map A1]:A ) AT. 

° is an assignment to each ordered tripie (A, B, C) of objects in :f{" a 
"done-composition" function 

:f{"(A, BT) x :f{"(B, CT) _----'0'-----...... ) :f{"(A, CT) 

Before stating the axioms on T we establish some notations. First of all, we 
use the same notational conventions as in 2.7. In addition, we recognize that 
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each ff-morphism j:A ~ Binduces jiJ:A --- B defined by 

P=A~B~BT 
The axioms on T, then, are: 
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(3.3) (ex 0 ß) 0 y = a 0 (ß 0 y) for all ex:A ~ B, ß:B----r C and 
y:C~D 

a 0 BI] = a 
jiJ 0 ex = j.a 

for all 
for all 

a:A~B 

j:A----+B, ex:B~C 

This defines a category, ff T, with the same objects as ff, composition 0, and 
identity morphisms I] (set j = idA to prove that AI] 0 a = a). ff T is called 
the Kleisli category oj T. 

3.4 Example. Let (Q, E) be an equational presentation and let T, 1], 0 

be as in 2.1, 2.9, and 2.8. Then (T, 1], 0) is an algebraic theory in Set and 
SetT = Set{Q, E). To prove this we must check 3.3; indeed,fd 0 ex = jJ.ex # = 
j.{BYJ.a #) = j.ex. 

3.5 Example. Sets and Relations. A relation from a set A to a set B is a 
subset a ofAx B. We may write aexb for (a, b) E ex. Since aab if and only if 
bE aa, where aex = {b E B:aexb}, there is a natural bijective correspondence 
between relations from A to Band functions from A to BT, where BT is 
the power set of B, that is, the set of all subsets of B. Given another relation 
from B to C, call it ß, there is a well-known composition a(ex 0 ß)c if and only 
ifthere exists bEB with aexb and bßc; or, in the second notation, (a, a 0 ß) = 

{c E C: there exists bE aex with CE bß}. Define AYJ:A ) AT by <a, AYJ) = 

{al. It is easy to check that (T, YJ, 0) is an algebraic theory in Set. 

3.6 Example. Matrices. Let R be a ring with unit. If B is a set, a vector 
in B is a B-tuple of "scalars" (that is, elements of R) ()'b: bEB) such that all 
but finitely many A.b = O. Let BT denote the set of all vectors in B. An A x B 
matrix is a function ex:A ~ BT (where we think of aa as a row vector and 
b as indexing columns). Given an A x B matrix ex and a B x C matrix ß 
define their composition ex 0 ß by the usual matrix multiplication formula 
(a,ex ° ß'>c = LbEB(aaMbß)C" DefineAll:A )ATby(a,AYJ) = 6a,where 
6a is the Kronecker 6, 6I: = 0 if a =1= b, 6~ = 1. It is routine to check that 
(T, ~7, 0) is an algebraic theory in Set. In fact, T comes from a suitable (Q, E) 
(see exercise 1). 

3.7 Example. Let ff be the category of topological spaces and con­
tinuous maps and let G be a topological group. For each space Biet BT be 

the topological space B x G. A map ex:A ~ BT amounts to a pair (jr) 
of continuous maps, j: A ~ B,.t: A ~ G. If ß = (:r): B > CT, 

define ex ° ß = (f::.t) where *:G x G ) G is the (continuous) 
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( idA ) group-multiplication map. Define AI]: A ) AT by A = e ,where 

e:A ----+ Gis constantly the group unit. It is not hard to prove that (T, 1], 0) 
is an algebraic theory in ff. 

In the first two seetions of this book we extracted the algebraic theory of 
a bunch ofalgebras. In section 4, we willlearn how algebras can be defined in 
terms oftheir theory. The point of Examples 3.5, 3.6, and 3.7 is that algebraic 
theories can arise naturally without first knowing wh at the algebras are. The 
reader might ponder just what kind of algebras are defined by these three 
examples; they are all relatively famous examples of "structures." 

Our immediate goal is to reformulate algebraic theories in clone form 
as algebraic theories in monoid form, with considerable technical gains. We 
begin by fixing an arbitrary algebraic theory T = (T, 11, 0) (in clone form) 
in a category ff and studying some formal consequences ofAxiom 3.3. 

3.8 Tripie Product Law. Given f:A --> B, ß:B -r C and y:C -r D, 
f.ß 0 y is weil defined. For (f.ß) 0 y = (f,1 0 ß) 0 y = po (ß 0 y) = f.(ß 0 y). D 

3.9 Compatibility of Compositions. Given f: A ----+ Band g: B ----> C, 
then (f.g),1 = f ,1 

0 g11. Proof: (f.g)J = f.g.CI] = f.gL1 = fL1 0 g,1. D 
3.10 Proposition. 1f for f:A ----> B we define fT:AT -----+) BT = 

idAT 0 f iJ , T is afunctor. 

Proof. (idA)T = idAT 0 (idA)LI = idAT 0 AI] = idAT. If also g:B ~ C, 
(f.g)T = idAT 0 (f.g)J = idAT 0 j"J 0 g,1 = fT 0 g,1 = fT.idBT 0 g,1 = 

fT.gT. D 
Let us explore this new construction in some previous examples. In the 

(Q, E) case, fT = idAT 0 f,1 = Cf':l)#. From the diagram of 2.5 and 1.20, 
fT:AT ) BT is determined by 

[aJfT = [afJ 
[PI' .. PnwJfT = [PIJfT' .. [PnJfTw 

When E is empty, fT is the fQ of 1.17. In some sense, then, fT is "substitu­
tion ofvariables"; but this must be taken with a grain ofsalt since an equation 
such as {v I VI im, e} in group theory makes it impossible to define the variables 
of an equivalence class of formulas. 

Let us pin down fT in the context of Example 3.5. The change in point 
of view in passing from idAT : AT ) AT to idAT:AT ' A con­
verts an uninteresting identity function into the E-relation: S idAT a if and 
only if a E S. fL1:A -"> BT sends a to {af}. Therefore, <S, idAT 0 f,1 > = 

{b E B: there exists a ES with bE {af}} = {af:a ES}, and fT is the direct 
Image map. 

Since T is now a functor, it makes sense to ask if I] is a natural trans­
formation: 

3.B Proposition. 11 is a natural transformationfrom the identity functor 
of ff to T; that is,for all f: A ----+ B we have 
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A ____ A_17..!..-__ 4-> AT 

f fT 

B -------4-) BT 
Blf 

Proof. AlffT = A17 0 pj (see 3.12) = P = f·B17· 0 
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The functoriality of T also allows us to state the counterpart of "f LI 0 a = 

f.a" on the other side: 

3.12 Proposition. For all a:A ~ B, g:B ~ ewe haue a 0 gLl = 
a.gT. 

Proof. a 0 gd = a.idBT 0 g,j = a.gT. 0 
Let us return briefly to AQ. While 1.11 provided us with a unique deriva­

tion tree for each formula, there is more than one way in which one could 
choose to assemble the tree from its pieces. The associative law of clone 
composition may be regarded as the statement that different assembling 
procedures build the same tree. To be specific, let us consider the example 
of 2.15 where the formula eie + dz + idz + i + + in DQ was broken up in two 
different ways: 

(e)ie + (dz + idz+ i+ ) + 
(e)ie +(dz+ i)(dz+ i)+ + 

It is not necessary to introduce parentheses as formal symbols to make 
these distinctions. Let us agree to interpret the parentheses enclosing p in 
(p) as the des ire to consider the formula p E AQ as a mere variable in (AQ)Q. 
Thus (e)ie+(dz+ idz+ i+)+ and (e)ie + (dz + i)(dz+ i)+ + become elements 
of (DQ)Q of word lengths 6 and 8, respectively. Since AQ is an Q-algebra, 
it has a total description map (1.18) Afl:(AQ)Q ) AQ which is the 
unique Q-homomorphism that preserves variables (i.e., sends (p) to p). In 
short, Afl is the desired map which removes the parentheses. (AQ)Q has 
enough structure to define clone composition and Afl can express the asso­
ciative law! 

Let us return now to the general T. There is no problem in defining 
"formulas of formulas." It is obvious that we in fact get a functor TT by 
defining ATT= (AT)T, fTT= (fT)T. To see how to define fl, observe 
that in the Q-case, Afl = (idAQ) # = idAQQ.(idAQ) # = idAQQ 0 idAQ. This 
motivates the general definition of fl. We sum up the structure of fl in four 
axioms and go on to see that (T, lf, fl) is co extensive with (T, 17, 0). 

3.13 Definition. F or each object A of :f{" define a :f{" -morphism 
AWATT ) AT by Afl = (idATT:ATT , AT) 0 (idAT : 
AT , A). 
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The reader may check that in 3.7, A.u:A x G x G ------~ 
A x G is the continuous map which sends (a, g, h) to (a, g*h). In 3.5, A.u is 
the union map sending the collection s# of subsets of A to its union {a E A: 
there exists SE d with a ES}. 

3.14 Kleisli Composition Law. For each ß:B ~ C define ß# :BT----> 
CT = (ßT:BT ) CTT).(C.u:CTT ) CT). Then for all 
IX:A~Bandß:B~C,IXo ß = a·ß#· 

Proof. IX 0 ß = IX 0 (ß.idcT ) = IX 0 ß Ll 0 idcT = IX.ßT 0 idcT = IX.(ßT.idcTT ) 0 

idcT = IX.(ßTtl 0 idcTT 0 idcT) = a.(ßT Ll 0 C.u) = IX.ßT.C.u. 0 
We will see in the next section that the correct interpretation of 3.14 is 

the obvious one: algebraic theories really are like the motivating example 
Set(Q, E). The next two statements establish the four axioms on .u we men­
tioned earlier. 

3.15 Proposition. .u: TT --~) T is a natural transformation, that is 
for all f:A ~ B we have 

fTT 
ATT----~------4)BTT 

B.u 

AT -----------4) BT 
fT 

Proof. A.u.fT = A.u 0 f = idATT 0 idAT 0 fJ = idATT 0 fT = 

idATT.fTT.B.u (by 3.14). 0 
3.16 Proposition. For every object A E .ff, the following diagrams 

commute: 

AT------A-T~~-----4)ATT~(------A~~-T-----AT 

AT 

ATTT------A~.u-T----~)ATT 

ATT-------------4)AT 
A.u 
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Proof. ATlJ.Af.1 = ATI].idATToidAT = ATI] 0 idAT = idAT. AI]T.Ap = 

idAT 0 Al7(by 3.14) = idAT. Af.1T.Af.1 = idATTT 0 Af.1 = idATTT 0 idATT 0 idAT = 

ATflo idAT = ATp.(idAT)T.Af.1 = ATf.1.Af.1. 0 
3.17 Definition. An algebraic theory (in monoidform) in a category % is 

a tripIe (T, 1], fl) where T is afimctorfi'om % to %, I] is a natural transformation 
from the identity fil11Ctor of % to T, and fl is a natural transformationfrom TT 
to T, all such that the three diagrams of 3.16 commute for euery object A of %. 

The reason for the terminology "monoid form" lies in the analogy with 
the diagrams (see exercise 4) that define an ordinary monoid. Think of fl as 
a "binary multiplication" and I] as a "unit"; the diagrams of 3.16 say that 
"fl is associative and I] is a two-sided unit for fl." We agree with [Mac Lane 
'71, p. v] that "monoid" is one of the central concepts of category theory and 
we will see in Chapter 3 (3.2.6) how (T, 1], fl) really is a monoid. 

3.18 Theorem. In any category %, the passage from algebraic theories 
in clone form (T.I], 0) to algebraic theories in monoidform (T, 1], fl) defined by 
3.10,3.11,3.13,3.15, and 3.16 is bijective. 

Proof. The inverse passage can only be achieved by the formula of 3.14. 
Let us prove this is weil defined. We have rI. 0 BI] = rI..BI]T.Bfl = rI.. The 
associative law is proved as in 2.11 because we can recapture 2.12: (ß.y#)# 
(ß·y#)T.Dfl = (ß·yT.Dfl)T.Dfl = ßT.yTT.DflT.Dfl = ßT.yTT.DTll.Dfl = 
ßT.Cfl.yT.Dfl = ß#.y#. The rest of 3.3: fJ 0 rI. = (f.BI]).rl.T.Cfl = 

f.rI..CTI].Cfl = f.rI.. Passing from (T, 1], 0) to (T, 1], f.1) to (T, 1], 0'), 0 = 0' by 
3.14. Now let us pass from (T, 1], fl) to (T, 1]. 0) to (T, 1], fl'). To prove that 
fl = Jl' we use the only axiom about (T, 1], fl) we have not used already, 
namely that T preserves identity maps: Afl' = idATT 0 idAT = idATT. 
(idAT)T.Afl = Afl· 0 

We elose this section with two fascinating examples of algebraic theories 
in Set. In section 5 we will identify the algebras of these theories respectively 
as complete atomic Boolean algebras and compact Hausdorff spaces! 

3.19 Example. The Double Power-Set Theory. F or each set X let XT be 
the set of all collections of subsets of X. XTTT is quite complicated. For 
future and present convenience we established some helpful notations: 

d E XT a collection of subsets of X 
A E ,,1' 
XEA 

~E YTT 
13 E.qß 

:JlJE13 
tifEZTTT 
CEtif 

a subset of X 
an element of X 
a collection of subsets of YT 
a subset of YT 
an element of YT 
a collection of subsets of ZTT 
a subset of ZTT 

~ E C an element of ZTT 
XE A E d E A E d E A E .vi E A TTT 

Given an X-tuple (g&x:x E X) of elements of YT and a Y-tuple ((e'y:Y E Y) of 
elementsofZTdefine(g&Jo(~y)by((:Jljx)o(~ynX = {C c Z:{YE Y:CE(e'y} 
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E 8ßx }. Define <x, X'i) = prin(x) E XT, where prin(x) is the principal ultra­
filter on x (see 3.21) defined by prin(x) = {A c X:xEA}. The proofthat 
(T, 11,0) is an algebraic theory is left as an exercise. For f:X -----> Y, fT is 
defined by (s1, fT) = {B c Y:Bf- 1 E d}. X{t:XTT ) XT is de­
fined by (d, Xp) = {A c X: {d E XT:A E d} E d}. 

3.20 Definition. Let T be an algebraic theory in Set, and let r assign to 
each set A a subset Ar of A T. r is a subtheory of T if far all A, the image of 
AI1 is a subset of A r (thereby defining the map AI1':A -----> Ar) and if fol' 
all ccA -----> Br emd ß:B ------> cr, the image of 

(A ~ Br~ BT) 0 (B ~ cr~ CT) 

is a subset ofCr (thereby defining r:t. 0' ß:A ) cr). Clearly (r, 11', 0') 
is a theory if r is a subtheory. 

3.21 Example. The Ultrafilter Theory. The reader has probably heard of 
ultrafilters before, but no matter if not. We will postpone a discussion of the 
elementary properties of ultrafilters until 5.24, taking for the moment one of 
the many well-known equivalent definitions. An ultrafilter oll on a set X is 
a collection of subsets of X satisfying 

(3.22) If n > 0 and Ab' .. , An E 0Zt then Al n ... n An is nonempty. 
This is called the finite intersection property. 

(3.23) If A is any subset of X then either A E 0Zt or X - A E 0Zt, where 
X - A = {x E X:x 1; A} is the complement of A in X. 

The ultrafilter theory is sufficiently interesting to deserve the special sym­
bol fl. (We willlearn in 2.2.8 how "ß" comes from "beta-compactification".) 
For each set X define Xß to be the set of all ultrafilters on X. If T is the 
theory of 3.19, Xß is a subset of XT. We show now that ß is a subtheory of 
T. It is obvious that prin(x) is an ultrafilter. Now let 0Zt = ((8ßJ 0 (Y5y))x E CT 
where each !Jßx is an ultrafilter on Band each Y5 y is an ultrafilter on Z. Let 
Cl"'" C Il E 0Zt. Therefore, Bi = {y E Y:Ci E Y5y} E 8ßx for all 1 :0:;; i:O:;; n. 
Since !Jßj; is an ultrafilter, there exists Y E B l n ... n Bn' As Y5y is an ultra­
filter and Cl'" ., CIl E Y5y, Cl n ... n C Il =F tjJ. Now let C be any subset of 
Z and suppose that C 1; 0Zt. Therefore, {y E Y: CE Y5y } 1; !Jßj;. Since !Jßj; and 
each Y5 y are ultrafilters, {y E Y:Z - CE Y5y } = {y E Y: C 1; Y5y } E !Jß:ö and 
Z - CE 0Zt. The proof that fl is an algebraic theory is complete. 0 

Notes for Section 3 

Our Definition 3.2 of "algebraic theory in clone form" has its origins not 
so much in the "abstract clones" of P. Hall [Cohn '65, p. 132] or the work 
on clones cited in section 2 as in the fundamentally different approach of 
[Lawvere '63]. Aversion of Lawvere's definition is given in 5.35. Abrief 
textbook treatment of universal algebra in Lawvere's formalism appears in 
[Pareigis '70] and in [Schubert '72, Chapter 18]. See also [Kock '68] and 
[Wraith '70]. 

The "algebraic theories in monoid form" of 3.17 were first defined in the 
appendix to [Godement '58] where they were called "standard construc­
tions." The first paper relating these standard constructions with universal 
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algebra was provided by [Eilen berg and Moore '65J who called them 
"tripies." The term "monad" is favored by [Mac Lane '71, chapter VI]. At 
this writing, whether to call them tri pies or monads is regarded by some as 
controversial. Our use of "algebraic theory" counters the argument that this 
term is pre-empted by Lawvere on the grounds that Lawvere's theories and 
triples-monads are coextensive. 

The passage from T (in monoid form) to .ff T was given by [Kleisli '65]. 
This suggested Definitions 3.2 and 3.18 (wh ich are new). For an axiomatiza­
tion of (T, 1], (- )#) see Exercise 12. 

Exercises for Section 3 

1. Construct a finitary equational presentation whose associated algebraic 
theory is that ofExample 3.6. (Rint: (Q, E)-algebras are R-modules; AT 
is the weak direct sum of A co pies of R.) 

2. The construction of 3.7 can be done in Set for each abstract group G. 
Show that this algebraic theory comes from a finitary equational presen­
tation. (Rint: Q has only unary operations and they are the elements 
of G.) 

3. Show that r = idBT 0 ß for ß:B ----, C. Using this as adefinition, 
reprove the theory of 3.14. See Exercise 12 below. 

4. A monoid (X, m, e) is a set X equipped with a binary associative operation 
m:X x X ---> X with a two-sided unit e E X. Express the associative 
law as a commutative diagram. Similarly, recognizing that e is a function 
e: 1 --> X from the one-element set 1, express the unit laws as a commu­
tative diagram. (Rint: see 3.2.3.) 

5. An algebraic theory T in Set is affine ([Wraith '70J) if 1 T = 1 (i.e., 1 is 
a one-element set and "1 T = 1" means "1 T again has one element"). 
Let T be arbitrary, let tA:A ------> 1 be the unique function and identify 
11]: 1 ------> 1 T with the corresponding element of 1 T. Prove that A To = 

{p E AT: <p, t A T) = 11]} is a subtheory ofT which is affine. 
6. [Wraith '70J Let R be the field of real numbers and let T be the algebraic 

theory of real matrices as in 3.6. Show that the affine subtheory of T 
(as in exercise 5) is given by ATo = {(Aa): LAa = I}. Show that stochastic 
matrices (all Aa ;): 0) is an affine subtheory of T o. 

7. Let T be the algebraic theory of 3.5. Show that "finite subsets" and 
"nonempty sub sets" form subtheories of T. 

8. Let T correspond to an equational presentation such that, in each equa­
tion, the same set of variables is used on both sides. Given p E AT define 
d p = {S cA: p is in the image of (incs) T} where incs denotes the 
inclusion map S ---> A. Show that AT 0 = {d p: pE AT} is a subtheory 
of the double power-set theory of 3.19. 

9. Let T: Set~ Set be an arbitrary functor. A composition law on T is an 
assignment to each pair (X, Y) of sets a function cx. y:XTY x YT ----+ 

XT which is natural in X and dinatural [Mac Lane '71, Chapter IX, 
section 4J in Y; that is, givenf:X ----7 X' and g: Y -- Y' we have the 
commutative squares (where fTY and XT9 meau, respectively, compose 
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XTY X YT-----'cx:.:J . ..:.Y--~) XT XTY ' x YT XP x id )XTY x YT 

fT id x gT CX.Y 

X'TY x YT------~)X'T 
cX'. Y 

XTY' x Y'T-----~) XT 
cx. Y' 

with fT, g on the appropriate side). Prove that there is a bijective corre­
spondence between composition laws on T and natural transformations 
J.l: TT ----> T. (Hint: to define XJ.l, inject XTTinto XTXT x XTTby 
using idxT as the first coordinate and follow with cx• XT; converse1y, 
given a: Y ----> XT and b E YT define (a, b)cx. Y = (b, aT.XJ.l).) 

10. Show that any intersection of subtheories is a subtheory. 
11. Show that n1]: n ----> nß is a bijection if n is finite. 
12. The motivation for Definition 3.2 stressed (-)# as more basic than 0, 

and an alternate definition is easily given. An algebraic theory in extension 
form is T = (T, 1], (- )#) with T and 1] as in 3.2, and with (-)# assigning 
to each 0(: A ----> BT an "extension" 0( #: A T ) BT subject to the 
three axioms "A1].O(# = 0(," 2.14, and 2.12. Show that extension form and 
clone form are coextensive via the passages 2.8 and 0(# = idAT ° 0(. We 
have preferred clone form because the associative law for ° is more 
natural in appearance than 2.12. 

4. Tbe Algebras of a Tbeory 

The example of(D, E)-algebras raises the question if an arbitrary algebraic 
theory T in a category :% has algebras. Theorem 2.17 teaches us that if T 
is coextensive with its algebras, the way to describe them is as a category 
"of :% -objects with structure"; specifically, for each object A of :% we 
should provide a set {e} of T -algebra structures ~ on A and, more important, 
we should define when a :%-morphismf:A ~B is a T-homomorphism 
from the T-algebra (A, ~) to the T-algebra (B, 8). We begin by reexamining 
(D, E)-algebras and discover how to describe them in the language of 
T, 1], 0, J.l which gives rise to the concept of aT-algebra. The main result of 
this section is that the algebras of a finitary equational presentation are the 
same thing as the algebras of a finitary algebraic theory. Enroute, we intro­
duce product algebras, subalgebras, and quotient algebras and prove the 
Birkhoff variety theorem. 

4.1 Proposition. Let (D, E) be a jinitary equational presentation (J .10) 
and let T = (T, 1], 0, J.l) be the algebraic theory (3.2,3.17,3.18) corresponding 
to (D, E) as in(2.1, 2.9, 2.8, 3.13).Then 

(4.2) For each D-algebra (X, 15), (X, 15) satisfies E if and only if there 
exists a function ~:XT ~X, called the structure map of(X, 15), such that 
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XQ 
Xp 

)XT 
I 

I 
I 

1/ii; 
I 
I~ 

I 

X"" 

where b@ is defined in 1.18 and Xp is defined in 2.1. 
(4.3) If(X, b) is an (Q, E)-algebra then its structure map ~:XT~X 

is the unique Q-homomorphism such that 

X ____ X_IJ.!....-_---+) XT 

X 

that is, ~ = (idx)# (as in 2.5). 
(4.4) Forfixedw E Qm define, for each set X, a function Xw:Xn --~ 

XTby «xt. ... , xn), Xw) = [Xl··· XnW]. Thenwisanatural transformation, 
that is for every functionJ:X ~ Ywe have 

Xw x n --~=-----+) XT 

JT 

y n ----:-::----~) YT 
YW 

where r is defined in 1.4 and JT is defined by 3.10. The Q-structure, b, on 
X is recaptured by 

Xw Xn _______ ~) XT 

(4.5) 

X 

for all w E Q .. 
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(4.6) The structure map of the (Q, E)-algebra XT (2.2) is Xp.: 
XTT ,XT. 

(4.7) If (X, <5) and (Y, y) are (Q, E)-algebras with structure maps 
~:XT ->X and e: YT -> Y then a function J:X -------> Y is an Q­
homomorphism if and only if 

XT------~J_T----~)YT 

e 

X-------~) Y 
J 

ProoJ. Let (X, <5) be an Q-algebra and ass urne that ~ exists as in 4.2. 
For each r: V --X, r # = rQ.<5@ (1.19), so that if {e l , ez} E E we have 
elr# = (eb rQ.xp.O = (ez, rQ.xp.O (2.4 with g = V1J.rQ) = e2r#, and 
(X, <5) satisfies E. Conversely, if (X, <5) is an (Q, E)-algebra then, using 2.5, 
define ~ = (idx)# and observe that the diagram of 4.2 commutes because all 
are Q-homomorphisms and the diagram clearly commutes on the variables 
XE X. The naturality condition on (jj is clear from the remarks on JT in 
3.10+. Expression 4.5 is checked by «(xb ... ,xn),X(jj.O = ([xl'''xnw], 
Ö = (Xl' .. XnW, <5@) = (Xb ... , Xn)<5ro , the last being the Definition (1.18) 
oJ <5@. Since Xp. = idxTT 0 idxT = idxTT.(idXT) # = (idXT) #, Xp. is the struc­
ture map of XT. Let us turn to 4.7. For any functionJ, the diagram commutes 
restricted to variables, that is we have X 1J.~.f = J = f. Y1J.e = X 1J.fT.e. For 
any functionJ, ~,fT, and e are always Q-homomorphisms. Thus ifJis also 
an Q-homomorphism, the diagram commutes. The converse is clear from 
4.4, 4.5, and the dia gram 

X(jj ~ 
Xn------------~)XT------~----~)X 

JT J 

Yn _______ ~) YT--------+) Y 0 
Y(jj e 

The preceding proposition motivates: 

4.8 Definition. Let Yt' be an arbitrary category and let T be an algebraic 
theory in Yt'. AT-algebra is a pair (X, ~) where X is an object oJ Yt' and 
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~: XT ~ X is a morphism in %, ca lied the structure map of (X, ~), which 
satisfies 4.9 and 4.10 below. 

XII 
X-----'----~) XT 

X 

XTT ___ --'~_T __ ~) XT 

XIl 

XT -------~) X 
~ 

(See Exercise 11 for an alternate axiomitization.) 

(4.9) 

(4.10) 

~f (X, ~) and (Y, 8) are T-algebras, a T-homomorphism from (X, ~) to (Y, 8) 
is a % -morphism f: X ~ Y such that 

XT-----~f-T-----4)YT 

8 (4.11) 

X -----f-:----~) Y 

Because T is a functor, idx:(X, ~) ) (X, ~) is a T-homomorphism, 
and f.g:(X, ~) ) (X", C) 1S a T-homomorphism so long as 
f:(X, ~) ) (X', (') and g:(X', ~') ) (X", C) are. This gives us 
a category %T of T-algebras and T-homomorphisms and a "forgetful 
%-object" functor UT:%T ) %. 

While all definitions in 4.8 were motivated by the considerations of 4.1, 
it is surprising that we do not have to say more. Let us examine the heuristics 
somewhat further. Expressions 4.9 and 4.10 represent the idea that "~ = 

(idx)#." The role of 4.9 here is clear, and 4.10 is a special case of 4.11: "~ is 
a T-homomorphism from (XT, XIl) to (X, ~)." It is reasonable to want 
X 11 to be the algebra structure of X Tin view of 4.6, and it is consistent with 
oUf philosophy to assert so since (XT, Xp) is aT-algebra (two ofthe diagrams 



36 Aigebraic Theories of Sets 

of 3.16). Even more striking is the fact that we can characterize algebraic 
simple recursion by a universal mapping property: 

4.12 The Universal Property of (AT, AJl). Let T be an algebraic theory 
in a category ff, let (X, ~) be aT-algebra and let f:A --X be a 
ff-morphism. Then there exists a unique T-homomorphism f#: 
(A T, AJl) ) (X, ~) such that 

A _______ A_~~ __ ~)AT 

1 

X.t 

/ 

/ 

1[# 
I' 

/ 

(cf. 2.5). Moreover, the formula for f# is given by 

f# =AT~XT~X 

(cf. r# = rQ.(j@in 1.19). 

(4.13) 

Proof. We have already remarked that (AT, AJl) is aT-algebra. fT: 
(AT, AJl) ) (XT, X Jl) is a T-homomorphism precisely because 
Jl is natural (3.15). ~:(XT, XJl) ) (X,~) is a T-homomorphism 
by (4.10). Therefore, f# as in 4.13 is a T-homomorphism. Because ~ is natural 
(3.11), we have A~.f# = A1J.fT.~ =f.X1J.~ =f(using 4.9). It remains to 
show uniqueness, and this is where (for the first time) the law "A1JT.AJl = 
idAT" of 3.16 gets used. Suppose g:AT-------.X satisfies A1J.g = fand 
AJl.g = gT.~. Since T is a functor we have A~T.gT = fT. That g =.r is 
now clear from the diagram 

fT 
AT 

~ 
ATT----~~----~ 

The proof is complete. 0 

A T --------------~) X 
g 

We have now completely justified the motivation for 4.9 and 4.10: if 
(X,~) is aT-algebra then ~ = (idx)#. If the reader has been keeping score, 
she will have noticed that the axiom "(idA)T = idAT" is the only axiom about 
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T = (T, 1], p) that has not been interpreted. As it turns out, this axiom is 
crucial in proving that ffT determines T (cf. 2.17). While we will not prove 
this result until Chapter 3 (3.2.11) the idea is basically as folIows: Suppose 
(AT', p') is aT-algebra and I]':A ~AT' is a .ff-morphism such that 
(A T', p'; 11') also enjoys the same universal property as (A T, All; AI]) as in 
4.12. Consider the diagram: 

AT 

9 

A------'---~)A T' (4.14) 

h 

'AT 

where 9 and h are the unique T-homomorphisms making their respective 
triangles commute. Thus g.h is the unique T-homomorphism leaving I] 
invariant. idAT is a .ff -morphism leaving I] invariant. Because T preserves 
identities, idAT is a T-homomorphism, so must coincide with g.h. Symmetri­
cally, h.g = idAT,. In most categories (such as ff = Set) 9 and h are considered 
mutually inverse isomorphisms, that is (AT, Ap, AI]) and (A T', p', 1]') are as 
"abstractly equal" as any two such things could be. We will comment further 
on "isomorphisms in a category" in chapter 2 (2.1.4). Right now, we put the 
finishing touch on 4.1 : 

4.15 Theorem. Let (Q, E) be a finitary equational presentation and let T 
be its algebraie theory as in 4.1. Then SetT and the eategory of (Q, E)-algebras 
are isomorphie eategories of sets with strueture, that is for eaeh set X the passage 
from an (Q, E)-strueture b to its strueture map ~ as in 4.2 is bijeetive onto the 
T-algebra struetures on X, andfor eaehfunetionf:X ~ Y, (Q, E)-struetures 
band y and eorresponding strueture maps ~ and G, f:(X, b) ) (Y, y) 
is an Q-homomorphism if and only if f:(X, ~) ) (Y, G) is a T-homo­
morphism. 

Proof. Most of the work was done in 4.1. We have only to prove that 
if (X, ~) is aT-algebra then there exists an (Q, E)-algebra (X, b) whose 
structure map is ~. Define g:XQ --->X by 9 = Xp.~. On variables, 
xg = (x, X1].~ > (see the definition of I] in 2.5) = x (by 4.9). Now consider 
the formula PI ... PnW in XQ. As in the discussion of 3.12+ the elements 
[p;] in XT may be thought of as variables in XTQ giving rise to 
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([PI])' .. ([Pn])w in XTQ. Since XI1:XTT ) XT = (idXT)# we 
have < [([PI]) ... ([Pn])w], X 11) = [PI' .. Pnw]. From 4.10 we have a 
commutative diagram 

XTQ ___ X_T"""p __ -+) XTT ____ X"""I1 __ --)-) XT 

XQ ---------+) XT--------+> X 
Xp ~ 

(where the first square can be proved by the reasoning of2.10, and is actually 
a special case of the diagram of 2.10). Putting it together: 

(P1'" Pnw)g = <[PI'" Pnw], 0 
= «[PI])' .. ([Pn])w, XTp.XI1·0 

= «[PI])' .. ([Pn])w, ~Q.xp·O 
= < [[Pl]~ ... [Pn]~w], 0 (by 1.17) 

= ([Pl]~' ... , [Pn]~)6w 
where the Q-algebra (X, 6) is defined by 4.5. Comparing these facts about 
9 with 1.18, we have 9 = 6@. It is then immediately clear from the equation 
X p.~ = 6 C<I and from 4.2 both that (X, 6) satisfies E and that its structure 
map is~. 0 

4.16 Example. Topological Transformation Groups. Let % be the ca te­
gory of topological spaces and continuous maps and let T be the algebraic 
theory corresponding to the topological group G as in 3.7; 11 for this theory 
is described in 3.13 + AT-algebra is a topological space X together with a 
continuous map ~: X x G --)0 X subject to 

xe = x (for all x E X) 

x(g*h) = (xg)h (for all x E X, g, hE G) 

where we have written xg for (x, g)~. This is a well-known mathematical 
structure known as a topological transformation group with phase group G 
[Gottschalk and Hedlund '55, Definition 1.01]. The T-homomorphisms are 
continuous maps f which are equivariant, i.e. (xg)f = (xf)g. This example 
is one of the rare instances where the T -description coincides with the 
traditional one. 

4.17 Example. Semigroups. A semigroup is a set X together with a 
binary operation *:X x X --)0 X which is associative: (x*y)*z = x*(y*z). 
For example, every monoid is, in part, a semigroup but if X has at least two 
elements and x*y = x then (X, *) is a semigroup which cannot be made 
into a monoid. Clearly, semigroups are the same thing as (Q, E)-algebras 
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with one binary operation symbol * and one equation {V 1V Z*V3*, V1 V ZV3**}. 
Let us describe the algebraic theory. For each set X, define XT to be the 
set of all words in X, as in 1.7. XT is a semigroup under the binary operation 
of concatenatiol1: 

(Xl' .. Xm YI ... Ym) If--------.... ) Xl ... Xn.V! ... Ym' 

That concatenation is associative is obvious. Define XI] by (X, Xtl) = x. 
If J: X --+ (Y, *) is a function to the underlying set of a semigroup, 
(Xl' .. xn)J# = XIJ*· .. *XnJ is clearly the unique Q-homomorphism ex­
tendingJ. By the uniqueness argument of 4.14 we have described the algebraic 
theory of (Q, E); for example 0 is defined by 2.8. It is becoming clearer wh at 
we meant by the "pivotal" role of the universal property in our remarks of 
2.5 +. The structure map ~ of the semigroup (X, *) maps Xl ... XII to 
Xl * ... *xn. Expression 4.5 amounts to the recovery: x*y = (xy)~. Con­
versely, let us start with aT-algebra (X, ~), define x*Y = (xy)~ and see how 
the associative law gets proved. Note first of all that X/1 = (idXT)# converts 
words of words to words by deleting parentheses; for example, the word 
(xlxZ)(Y)(ZIZZZ3) of length 3 in XTTis mapped to the word XIXZYZlzzZ3 of 
length 6 in XT. The essence ofthe associative law is that the word xyz can be 
broken up both into (xy)(z) and into (x)(yz). Thus, (xyz)~ = «(xy)(z), X/1.0 = 
«(xy)(z), ~T.O = «(xy)~(z)~, 0 = (x*y)*z. Similarly, using (x)(yz), (xyz)~ = 

x*(y*z). 
The reader must be curious as to the meaning ofT-algebras for arbitrary 

Tin the category of sets; in fact, for T as in 3.5, 3.19, or 3.21. By the time we 
have finished section 5, it will be clear that T-algebras are always (Q, E)­
algebras so long as Q is not restricted to finitary operations. The technical 
convenience of the finitary restriction has been great. The uncoupling 
Lemma 1.11 and its many successive consequences are much more cumber­
some with infinitary formulas and the reader would have perhaps been 
much confused ifwe had attempted this. Let us devote the rest ofthis section 
to isolating the "finitary" algebraic theories and proving that they are 
coextensive with finitary universal algebra. 

4.18 Definition. Let T be an algebraic theory in Set. T is finitary iJ Jor 
every set X and every element XE XT there exists an integer n ~ 0, a Junction 
r:VII --+ X (where VII denotes the set oJ the first n variables(J .10), {Vb' .. , Vn}), 
and an element P E VnT such that <p, rT) = X. Our re fe ren ce to Vn provides 
the interpretation "T is finitary if formulas in XT have only finitely-many 
variables." It is an easy exercise, however, to show that any set with n elements 
can replace V n-

4.19 Proposition. Let (Q, E) be a finitary equational presentation and 
let T be the corresponding algebraic theory as in 4.1. Then T is finitary. 

Proof. Let [q] E XT. Let {xb ... , xn} be the finite set of variables 
occuring in q. Define the obvious bijection s:Vll --+ {Xb ... , xn}, ViS = Xi> 

and define p = (q, (S-l)Q). Define r:Vn --+ X by L'ir = Xi' The proof is 
easily completed (and is also valid when n = 0). 0 
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4;20 Example. The algebraic theory of 3.5 is not finitary. Given any 
r:Vn ~X, rT is the direct image map, as was pointed out in 3.10+. 
Since every subset ofVn is finite, the image ofrTconsists only offinite subsets 
of X and this will not exhaust XT if X is infinite. 0 

While we have postponed the definition of "isomorphism of theories" 
for Chapter 3, the uniqueness argument of 4.14 practically gives the definition 
away and certainly makes it clear that if two algebraic theories are so 
different that one is finitary and the other is not, then they cannot have the 
same categories of algebras. In particular, if T is not finitary (as in 4.20) its 
algebras cannot be presented using finitary operations and equations because 
of 4.19. Our terminology suggests that finitary theories do not have this 
problem; before proving this we establish a well-known theorem of Garrett 
Birkhoff. 

4.21 Definition. Let Q be an operator domain as in 1.4. Given a family 
«X;, bi): i E 1) of Q-algebras, the cartesian product set X = nXi (see 2.1.5) 
admits a unique Q-algebra structure b such that for all i E I the projection pri: 
(X, b) ) (Xi' bi) is an Q-homomorphism, namely ( (xl), ... , (x7) )bro = 

«xl, ... , x7)(bi)ro:i E I). (X, b) is called the cartesian product algebra of the 
algebras (Xi' bi). For example, if (X, *) and (Y, $) are semigroups, the binary 
operation on the product X x Y is «Xl, y1), (x2, y2))If------~ 
(X1*X2, y1$y2). In case I is empty, the cartesian product algebra is the one­
element set 1 provided with its unique Q-algebra structure. Let (X, b) be 
an Q-algebra. A subset A of X is a subalgebra of (X, b) if A is closed under 
the operations of X, that is for each co E Qm bro:Xn ) X maps An into A. 
If A is a subalgebra of (X, b) there exists a unique algebra structure bo on A 
such that the inclusion map (A, bo) C ) (X, b) is an Q-homomorphism; A 
qua algebra will still be called a subalgebra. For example, if (X, b) is a group 
(with respect to either of 1.1 or 1.2) then its subalgebras are more usually 
called subgroups. An Q-algebra (Y, y) is a quotient algebra of (X, b) if there 
exists a surjective Q-homomorphism of (X, b) onto (Y, y). For example, the 
two element group is a quotient group of the group of integers. A bijective 
Q-homomorphism f:(X, b) ) (Y, y) is an isomorphism (note: f- 1 is 
also one) and such (X, b) and (Y, y) are said to be isomorphic. Isomorphie 
algebras are "abstractly the same" (see 2.1.4 and exercise 10). By 2.17, since 
"product," "subalgebra," "quotient algebra," and "isomorphie" are deseribed 
in the language of homomorphisms, these concepts do not depend on the 
presentation (Q, E). 

4.22 Birkhoff Variety Theorem. Let Q be an operator domain and let si 
be a class of Q-algebras. Then a necessary and sufficient condition that si is 
the class of (Q, E)-algebras for some set E of equations is that si is closed 
under products subalgebras and quotients (that is, the product algebra of any 
family of algebras in si is again in si and whenever (X, b) is in si so are all 
its subalgebras and quotient algebras). In either case, si is said to be a variety 
of Q-algebras. 

Proof. To prove that the conditions are necessary, ex amine the 
diagrams: 
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r# 
VQ-------------+ VQ 

A (L.------~)X X -------~) Y 
h 

and use the following principles: To prove that two elements of the product 
X are equal, it is necessary and sufficient to prove this followed by each 
projection (perfectly true even when the index set is empty). To prove that 
two elements of Aare equal it is necessary and sufficient to prove that they 
are identified by the inclusion map i. Because h is onto we may invoke the 
axiom of choice (section 2, exercise 1) to choose s:V ----* X such that s.h = r. 
Let us turn to the proof of sufficiency. Let E be the set of all equations 
{er. ez} c VQ such that for every algebra (X, b) in si and every function 
r: V ----+ X it is the case that r# identifies e l and ez. Trivially, all algebras in 
si satisfy E. Let (X, b) be an arbitrary (Q, E)-algebra. We will show that 
(X, b) is a quotient of a sub algebra of a product of elements of si. If T is 
the algebraic theory of (Q, E) as in 4.1, the structure map of (X, b) is an 
Q-homomorphism onto, so it suffices to show that XT is isomorphie to a 
subalgebra of a product of elements of si. To do this we resort to a standard 
argument and show that XT admits enough homomorphisms to elements 
of si to separate points, that is: 

(4.23) If [p] =1= [q] E XT then there exists an algebra (A, y) in si and 
a map r:X ~A such that [p]r# =1= [q]r#. 

To prove 4.23, let X n = {xr. ... , xn} be the finite set of all variables in 
X occurring in either p or q and let a:Vn -----+ X n be the obvious bijection, 
Via = Xi' Then there exist formulas p', q' E VnQ with < p', aQ> = p and 
< q', aQ> = q (cf. the proof of 4.19). Reasoning as in 2.10, we have the com­
mutative diagram 

aQ aT 

XQ------~)XT 
Xp 

so that, in particular, [p'] =1= [q'J. By the definition of E there exists (A, y) 
in si and s:Vn -------+ A such that s# :VnQ ) (A, y) distinguishes p' and 
q'. Since A cannot be empty, a-1.s extends (in many ways perhaps) to a 
function r 
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s 
Vn----------------~)·A 

a 
/' /'r 

/' 
/' 

." 
/' 
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Since [p ]r# = <pi, s#) the proof of 4.23 is complete. The rest of the proof 
is based on very general principles. For each pair (t, u) of distinct elements 
of X T choose At, u in d and a homomorphism rt, u: X T I At, u which 
maps t and u to different values. Let A be the product algebra of (At, u: 
t =1= u E XT) and define a single homomorphism r: XT -------+ A by ([p ]r)t, u = 
[p ]rt , U. By construction, r is injective. The proof is complete by the following 
standard fact which we leave to the reader for verification. 

(4.24) If f:(X, (5) ) (Y, y) is an injective Q-homomorphism then 
its image Xf c Y is a subalgebra of (Y, y) and the map g:X -----+ Xf, xg = 
xf is an isomorphism. (For a hint, see 4.32.) 0 

We have already seen that the passage from a finitary equational presen­
tation to its theory is a well-defined injection from equivalence c1asses of 
presentations as in 2.18 into isomorphism c1asses of finitary theories 
("isomorphism" being informally defined by 4.14). We conc1ude this section 
with a proof that this passage is bijective so that "finitary universal algebra 
is the study of finitary algebraic theories in Set." 

4.25 Theorem. Let T be a finitary algebraie theory in Set. Then there 
exists an equational presentation (Q, E) sueh that T-algebras and (Q, E)­
algebras are isomorphie as eategories of sets with strueture (as defined in 
4.15). 

Proof. Define Qn = {n} x VnT where Vn is as defined in 4.18. The first 
coordinates ass ure that (Qn:n = 0,1, ... ) is a disjoint sequence ofsets as re­
quired by 1.4; for convenience we will drop the "n" from the notation, how-
ever. Fix W E Qn- Define a map X6J:Xn ) XT for each set X by 
«XI> ... , x n), X6J) = <w, rT:VnT I XT) where r:Vn -----+X is de-
fined by vir = Xi. Then 

(4.26) 6J is a natural transformation; that is for every function f: X -----+ 
Ywe have 

X6J xn -------------+) XT 

fT 

Y n --------..".o------~) YT Yw 
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The proof of 4.26 is an immediate consequence of the fact that (r.f)T = 

rTfT. As might have been expected, we assign an Q-algebra structure 6 to 
the T-algebra (X, ~) by setting 6w = X OJ.~. It is immediately clear from 4.26 
and a glance at the diagram 

XOJ ~ X" --------4) XT-----=.---~) X 

fT f 

Y"-------,:---~) YT-------~) Y 
Y6J e 

that aT -homomorphism is an Q-homomorphism. To prove, conversely, that 
an Q-homomorphism is a T -homomorphism it is sufficient to prove that 
every element XE XT is in the image of XOJ for some w, that is, there must 
exist some integer n, some element W E V"T, and some function r: VII ----> X 
such that <w, rT) = x; but this is precisely the definition "Tis finitary." In 
particular, consideration of f = idx and the fact that T is a functor allows 
us to see that if ~ i= ~' then 6 i= 6'. Let d be the class of all Q-algebras 
which arise from T -algebras as above. It is clear that, to finish the proof, it 
is sufficient to find a set E of equations such that d = all (Q, E)-algebras. 
By 4.22 we need only show that d is closed under products, subalgebras, 
and quotients. We will give particular attention to the verification since 
it gives us our first encounter with "universal algebra in the language of 
T -algebras." 

(4.27) Let (Xi> ~;) be a family of T-algebras, and let X = [1X; be the 
cartesian product set. Then there exists a unique ~: XT ------+ X such that 
(X, ~) is aT-algebra and each projection pr;:(X, ~) I (Xi> U is a 
T-homomorphism. Not surprisingly, (X, ~) is called the cartesian product 
T-algebra. 

To prove 4.27, observe that there exists a unique function ~: XT ------+ X 
such that 

XT-----'.(p~r..!.,,!;)...:.T--4_) X; T 
I 
I 
I 

~I 

J, 
X --------~) X; pr; 

is commutative for all i, namely «x. 0); = <x, (pr;)T.~;). As usual, this is 
consistent with the case that the set ofindices i is empty. We must show that 
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(X, ~) is aT-algebra. Consider 

Everything commutes except perhaps (?). But now apply the principle that 
to prove that two functions into X are equal it is necessary and sufficient to 
prove that they are equal followed by each projection; which is exact1y what 
we know. The other algebra law is proved by the same reasoning: 

XJl 

XT------~~~----~ 

This finish es 4.27 and also establishes that .xl is c10sed under products, since 
both products are the unique structure making projections homomorphisms. 

(4.28) Let (X, ~) be aT-algebra and let A be a subset of X with inc1usion 
map i:A ~ X. Say that A is a T-subalgebra oJ (X,~) if there exists a 
factorization: 



4. The Algebras of a Theory 45 

iT 
AT------~)XT 

I 
I , 

~o, 

-l-
A -------_+_) X 

In common with the family (pr i ) of 4.27, i:A c- X has the virtue that to 
prove two elements of Aare the same it is necessary and sufficient to prove 
this followed by i. The same reasoning as in 4.27 guarantees, then, that 
(A, ~o) is aT-algebra, so that A is aT -subalgebra of (X, ~) if and only ifthere 
exists aT-algebra structure on A making i a T -homomorphism. To prove 
that d is closed under subalgebras it is still necessary to show that an Q­
subalgebra of(X, ~) is a T-subalgebra. Let A be an .Q-subalgebra. For Ci E AT 
there exists r:Vn -----+A and W E VnT with (w, rT) = Ci. For 1 ~ j ~ n set 
aj = vI. By hypothesis, o",:Xn ) X maps An into A. Therefore, 
(Ci, iT.O = (w, rT.iT.O = (w, (r.i)T.O = (al> ... ,an)o", E A. As Ci E AT 
is arbitrary, the proof that d is closed under subalgebras is complete. 

(4.29) If H: Set ) Set is any functor and if f: X ~ Y is surjective 
than fH:XH ) YH is also surjective. This is a consequence of the 
axiom of choice. Let d: Y - X be a choice function such that d.f = idy • 

As H is functorial, dH.fH = idYH• It follows immediately that fH is sur­
jective, since ify E YH then (:x, fH) = Y if x = (y, dH). 

(4.30) Let (X,~) be aT-algebra. A surjectionf:X -----+ Y is aT-quotient 
algebra of(X, ~) ifthere exists a factorization () 

XT----~f~T-----4)YT 
I 

, 
,() 

I 

-1-
X-------f------~) Y 

This definition is reasonable precisely because both fT and fTT are sur­
jective and surjective maps g:A - B have the property that to prove h, 
h': B ~ C are equal it suffices to check that g.h = g.h'. Thus, for example, 
if () exists it is unique. Moreover, the algebra laws are quite clear from 
essentially the same two diagrams used in 4.27 (substitute Y for Xi' f for 
pri, and () for ~i). Therefore fis aT-quotient algebra of (X, ~) if and only if 
there is a necessarily unique T-algebra structure () on Y making f a T­
homomorphism. To show that d is closed under q\lotient algebras it suffices 
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to show that if fis an Q-quotient algebra via the Q-structure y, then f is a 
T-quotient algebra. To this end we invoke the axiom of choice to get a 
choice function d: Y ---> X with d.f = idy . Define 8: YT ----+ Y = (dT: 
YT----+XT).(~:XT----+X).(f:X--->Y). We will show fT.8 =~.f. Let 
XE XT. There exists r: Vn ---> X and W E V" T with <w,rT) = x. Then 

<x, ~.f) = 

(w, rT.~.f) = 

(v 1 r, ... , vnr)Dwf = 

(v 1rf, ... , vnlf)yeo = 

(v 1rf·df, ... , v",f·df)yw = 
(v 1rfd,. , ., v"rfd)Dwf = 

(w, (rfd)T.~.f) = 

<x, fT.dT.~.f) 

The proof of 4.25 is complete. 0 

(definition of Deo) 

For use in the next section, we prove a further result about T-subalgebras. 
One expects that each subset A ofa T-algebra (X, ~) generates a T-subalgebra 
(A) of(X, 0 by "dosing up A und er the T-operations." For ex am pie, ifT 
is as in 4.17, (A) = {a 1 ···an:a 1 , ••• ,an EA}. In general, one expects to 
consider those "terms" in XT which "have variables in A," that is, are in the 
image of iT: AT ____+ XT for i: A ---> X the indusion map, and then define 
<A) to be the image in X ofiT.~:AT ----+X. The following theorem shows 
that this works. 

4.31 Theorem on Generated Subalgebras. Let T be an arbitrary algebraic 
theory ofsets, let (X, 0 be aT-algebra andfor each subset A of X with inclusion 
map i:A--->X define <A) c X to be the image ofiT.~. Then Ac (A), if 
A c B then <A) c (B), (md« A» = <A). <A) is a subalgebra of (X, ~) 
and is contained in any other subalgebra of (X, ~) which cantains A. 

Praaf. Let us first record another expected general fact: 
(4.32) Iff:(X,~) ) (Y, 8) is a T-homomorphism, then the image 

of f is a subalgebra of (Y, 8). 
To see why, let I be the image of f with indusion map i:I ~ Y and let 

p: X ------> I be the unique function with f = p.i, that is xp = xf. As p is onto, 
there exists d: I ~ X with d.p = id[ by the axiom of choice. Define y: 

pT )IT XT------~------~ 

I 

I 
I 

IY 

I 

~ 

iT 
--------------~)YT 

8 

X--------------~ ) I ----.,--------7) Y 
p 
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IT -----+ I by y = dT.~.p. Then pT.y.i = pT.dT.~.p.i = pT.dT.pT.iT.e = 
pT.iT.e. As pT is surjective (by 4.29), y.i = iT.e as desired. 

Now we return to the proof of 4.31 proper. The diagram 

iT 
AT------~----~)XT 

Arr 

A --------------~) X 

is commutative because '1 is natural and Xrr.~ = idx. This proves that 
A c (A). It is obvious that (A) c (B) whenever A c B. Since iT.~: 

(AT, All) ) (X, ~) is a T -homomorphism, (A) is a subalgebra of 
(X, ~) by 4.32. From the definition of "subalgebra" it is obvious that if B 
is a subalgebra, B = (B). Therefore «A» = (A) and whenever A is 
contained in the subalgebra B, (A) c (B) = B. 0 

Notes for Seetion 4 

Aigebras of an algebraic theory in monoid form were defined by [Eilen­
berg and Moore '65, (2.6)]. While they recognized that groups arise as SetT, 
their main example is AT = A @ A (where .Yt is the category of modules 
over the commutative ring Rand A is an R-algebra) whose algebras are the 
A-modules. 

It was Jon Beck who first perceived that "tripies" describe universal 
algebra in the category of sets. The atmosphere at that time is best conveyed 
by quoting two paragraphs from Beck's thesis [Beck '67, pages 72-73]. The 
quote is verbatim (except that our reference numbers have been used), and 
immediately follows a discussion of groups in the style of 4.17. 

The example of groups is typical. It is known that all algebraic categories in the 
sense of [Lawvere '63] are tripleable over sets, with respect to their usual underlying 
set functors. [Linton '66] has shown that over sets this is almost the whole story: 
admitting infinitary operations one gets equational categories of algebras, and over the 
base category of sets tripleableness is equivalent to equationality. 

Over other base categories, tripleableness does not seem to have any such standard 
interpretations. It is the proposal of this paper that tripleableness be regarded as 
a new type of mathematical structure, such as algebraic, equational, topological, 
ordered, .... 

In the above, "tripleable over sets" means "of the form SetT." The first 
published proof that tripies capture equational c1asses is the "isomorphism 
theorem" of [Linton '69, pages 36-50]. This book, with the theorems culmi­
nating in 5.40 and 5.45, offers the first expository proof of these results. See 
also [Felseher '72, 4.1]. 
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The Birkhoffvariety theorem was proved in [Birkhoff'35, theorems 6, 9]. 
The ideas in 4.21~4.31 are interesting in their own right; for a different 
proof of 4.25 see 5.40 below. A much more general proof of 4.32 will be given 
in 3.4.17. 

Exercises for Section 4 

1. Starting from the point of view that the structure of an (Q, E)-algebra 
(X, 6) can be described by a function ~:XT > X (e.g. x*y = (xy)~ 

in 4.17), expand the heuristics of 4.11 + into a motivation for the defini­
tion of "algebraic theory in monoid form." 

2. In the proof of 4.15 we did not explicitly show that, for a fixed set X, 
the passage from 6 to ~ is injective. Show that this follows from 4.7. 

3. A semilattice is a partially ordered set in wh ich every pair of elements 
has a supremum. Let T be the algebraic theory of nonempty finite 
subsets (cf. exercises 7, 10 of section 3). Show that See may be identified 
with the category of semilattices and functions which preserve binary 
suprema. [Hint: the structure map is "supremum."J 

4. Prove that the double power-set theory of 3.19 is not finitary. 
5. Why is "groups" not a variety in "monoids"? 
6. Show that a subsemigroup of a group need not be a subgroup even if 

it is a group. (Hint: the units are different !) 
For the following three exercises (implicit in [Birkhoff'35, page 141J) 

fix an algebraic theory T in Set. A variety in SetT is a collection of T­
algebras closed under the formation of products, subalgebras, and 
quotients. 

7. For any collection f![ of T-algebras, show that the class Var(f![) of all 
quotients of subalgebras of products of elements of f![ is a variety and 
is the smallest variety containing f!l'. 

8. Given (X, ~; A) where (X, ~) is aT-algebra and A is a subset of X such 
that <A) = X, define Var[X, ~; AJ to be the class of all T-algebras 
(Y, 8) such that every function f: A ~ Y extends to a unique T-homo­
morphismr :(X,~) ) (Y, 8). Show that Var[X,~; AJ is a variety. 

9. Let f!l' be any collection of T-algebras and let A be a fixed set. Define 
.'F to be the set of all (X, ~; f) such that (X, ~) E f![ and f:A ~ X. 
Consider the product T-algebra P and function 6 defined by 

Define AT' to be the subalgebra of P gene ra ted by the image of 6. Show 
that T' extends to an algebraic theory and that SetT' may be identified 
with Var(f!l'). Conclude that if f![ consists of finitely many finite algebras 
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then, if A is finite then AT' is finite. (Hint: show that AT' has a universal 
property in Var(:?l") and proeeed as in 2.7.) This generalizes [Birkhoff 
'35, Theorem 11]. :![ must be a "small set" in order that P be definable; 
see the "primer on set theory" at the end of this ehapter. 

10. This exereise should help the reader to appreeiate why isomorphie 
algebras are "abstraetly the same." 
(a) There are four monoid struetures on the two-element set {x, y} whose 

multiplieation tables are shown below: 

1 
2 
3 

xx 
x 
x 
y 

xy 
y 
y 
x 

yx yy 
y x 
y y 
x y 

4 x x x Y 

Show that 1 and 3 are isomorphie and that 2 and 4 are isomorphie, 
but that no other two are isomorphie. 

(b) Prove that "isomorphism" is an equivalenee relation. 
(e) (Cf. 2.3.1 below.) If (Y, y) is an (Q, E)-algebra and if f:X ---> Y is 

a bijeetion, prove that there exists unique 6 such thatf:(X, 6) ----> 

(Y, y) is an Q-homomorphism and then that (X, 6) is an (Q, E)-algebra 
and that f is an isomorphism. 

(d) Isomorphie struetures "enjoy the same properties." Verify this for 
groups with respeet to the following properties: "possesses three 
normal subgroups"; "has no elements of finite order"; "admits a 
surjeetive homomorphism from the group of integers." 

11. Let T be an algebraie theory in X. Show that the following axioms on 
~: XT ) X (suitable for theories presented in extension form as 
in exereise 3.12) are equivalent to 4.9 and 4.10. 

Axiom 1. XYJ.~ = idx (same as 4.9). 
Axiom 2. For all IX, ß:A l XT, if IX.~ = ß.~ then IX#.~ = 

r.~:AT ) X. 
This version of the algebra axioms is sometimes more useful than 

the original one in diseovering wh at the T -algebras are beeause T need 
not be iterated and beeause, when T is finitary, A ean be assumed finite 
(see exereise 5.21.) 

12. In any eategory x', let id denote the theory AT = A, AI1 = idA , fog = 

f.g. Show that U id : X id ) .ff may be identified with the identity 
ftmetor of X. 

13. Using the diagram 

G,) 
A ------7-) BT x BT' 

AT x AT' 
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as a hint, define the product of two algebraic theories in Set and prove 
that it is again a theory. If T = id x id (see exercise 12) show that SetT 
is the equationally-definable dass corresponding to one binary operation 
and the equations aa = a, (ab)(cd) = ad. 

14. [J6nsson and Tarski '61]. Let T be a theory in Set admitting a finite 
algebra with at least two elements. Let A be a finite set. 
(a) If T corresponds to "groups," show that there exists finite B c AT 

such that <B) = AT and An B = 0. 
(b) If BeAT and <B) = AT, prove that card(A) ~ card(B). [Hint: 

let (X, ~) be a finite algebra with at least two elements; the map 
X A -> X B sending J to the restriction of J# is injective.J 

5. Infinitary Theories 

In this section we restrict our attention, once again, to algebraic theories 
in the base category Set of sets and functions. We define the syntactic rank 
(the number of variables needed to write formulas) and the semantic rank 
(the number of variables needed by the operations on actual algebras) for 
an algebraic theory, and prove they are equal. Examples such as complete 
semilattices, complete atomic Boolean algebras, and compact Hausdorff 
spaces demonstrate that interesting mathematical structures arise as the 
algebras of infinitary theories. Bounded theories are coextensive with equa­
tionally definable dasses of algebras (with perhaps infinitary operations). 
In general, theories are coextensive with "tractable large" equational pre­
sentations. We prove the theorem of [Gaifmann '64J and [HaIes '64J that 
complete Boolean algebras do not constitute a tractable equational dass. 

Some useful facts about set theory which relate to this section are pre­
sen ted in a "primer" at the end. 

Let us fix an algebraic theory T = (T, 11, 0, fl) in the category of sets. We 
begin by dassifying the trivial theories. 

5.1 Lemma. Let 0 be the empty set and let 1 denote a one-element set. 
Then 

1. The unique jimction 1 T ---+ 1 is aT-algebra. 
2. 0 is aT-algebra in at most one way and this occurs if and only if 

0T = 0 (cf. the proof of "2.20 implies 2.18"). 
3. Up to isomorphism, there exists exactly one algebraic theory T such 

that 1 is the only T-algebra; it is characterized by "XT = 1 Jor all sets X." 
4. Up to isomorphism, there exists exactly one algebraic theory T such 

that 1 and 0 are the only T-algebras; it is characterized by "XT = 1 Jor all 
nonempty sets X and 0T = 0." The proof is safely left as an exercise. 0 

For obvious reasons, let us call the two algebraic theories of 5.1 trivial, 
and all other algebraic theories of sets nontrivial. We now further characterize 
the nontrivial theories. Notice that the second condition in the proposition 
below expresses that no equation of form "Vi = v/' for distinct variables Vi 

and Vj can be deduced in a nontrivial theory. 
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5.2 Proposition. The following conditions on T are equivalent: 
1. T is nontrivial. 
2. For each set X, XYJ:X , XT is injective. 
3. T: Set , Set is a faithfitl functor, that is, whenever f, g: X ---> Y 

are distinct fimctions then fT, gT: XT , YT are again distillct ftmc-
tions. 

Proof· I implies 2. By hypothesis, some T-algebra has at least two ele­
ments. By forming a suitably large cartesian power (as in 4.27), for each set 
X we can construct aT-algebra (Y, 8) and an injective function f: X ----'> Y. 
From the naturality square (3.11) we have XI1.(fT.8) = f. YYJ.8 = f.id y = f 

X-__ ......;f ___ 4> Y 

XYJ YYJ 

XT--------4) YT 
fT 

is injective. As XYJ is injective followed by so me other function, X'1 is itself 
surely injective. 

2 implies 3. If f i= 9 and YYJ is injective then f· Y'1 i= g. YYJ, so XYJ.fT i= 
Xt7.9T. Since fT and gT are T-homomorphisms, fT i= gT. 

3 implies I. This is clear, since neither of the two functors involved in the 
trivial theories are faithful. 0 

5.3 Definition Let X be a set. For finitary T(4.18), Theorem 4.25 allows 
us to treat elements of X T as "E-equivalence classes ofT-terms"; or "symbolic 
operations." We view this as a linguistic or a syntactic concept. In general, 
let us call elements of XT syntactic operations in X (with respect to T). For 
example, 312+21 + + + is a syntactic operation in X = {1, 2, 3} with 
respect to to the theory of abelian groups. Such a symbol in duces a semantic 
operation of abelian group theory in the sense that given any abelian group 
(Y, +) we get an actual function 

y x -----... , Y:(Yb Yz, h) 11-------> Y3.hYz + YZYl + + + 

We have in fact explored the passage from syntactic to semantic operations 
quite generally in the proof of 4.25 (specifically, 4.26 and the formula "bw = 

X w.C). Let us try to axiomatize semantic operations in their own right. At 
the very least, such an operation rx must assign to each T-algebra (Y, 8) a 
function (Y, 8)rx: Y x , Y. Since homomorphisms are expected to 
commute with aB operations, we should also require the commutative square 
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fX 
YX--------+) y,X 

(Y, 8)rx (Y',8')rx 

Y --------+) Y' 
f 

(5.4) 

whenever f:(Y, 8) ) (Y', 8') is a T-homomorphism (and fX sends the 
X-tuple y:X ~ Y in Y to the X-tuple y.f:X ) Y' in Y', that is fX 
sends the X-tuple (Yx:x E X) in Y to the X-tuple (yxf:x E X) in Y'). Let us 
notice that "raising to the Xth power" is a functor ( l: Set ) Set. Let 
us denote UT :SetT ) Set (as in 4.8) by U for short, and the composite 
functor U.( l :See ) Set by UX • Then wh at we have stipulated 
about rx may be summed up by saying: "rx is a natural transformation from UX 

to U." Let this property define a semantic operation in X (with respect to T). 
To give credibility to this new point of view-that the operations may be 
defined after the homomorphisms are-we prove the following theorem: 

5.5 Theorem. Let T be an algebraic theory in Set and let X be a set. Let 
(Dx(T) be the set of natural transformations ji'om the functor ( l (as defined in 
5.4) to T. Defining U and UX as in 5.4, let (Dx(T) be the set of natural trans­
formationsji-om UX to U (that is, semantic operations in X). Then the passage 

XT ) (Dx(T) 

w r-----+ ( )X ~ T 

<X_--,--f~) Y, Y6.i) = <w,XT 

is bijective, with inverse 

Further, the passage 

(Dx(T) ) XT 
rxl ,<idx,Xrx) 

XT ) C::0x(T) 

W f------+ UX ~ U 

fT ) YT) 

Y6J (Y,8)w = Yx --~) YT --~) Y 

is bijective, with inverse 
(Dx(T) ) XT 

rx f-I ------+) <XI1, (XT, Xfl)rx) 

(5.6) 

(5.7) 

(5.8) 

(5.9) 

Proof. The passage 5.6 is well defined, that is 6.i is a natural transforma­
tion, precisely because given f:X ~ Y and g: Y ~Z, (f.g)T = fT.gT. 
It then follows from the definition of a T-homomorphism that 5.8 is well 
defined. Let us check that 5.6 and 5.7 are inverse. Starting with w, we have 
<idx, X6.i) = <w, (idx)T) = w;startingwithlX,foreachf:X ~ Ywehave 
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the naturality equation Xr:t..fT =fx.ylY., so that, defining w = <idx,Xr:t.), 
we have <f, Yw) = «idx, Xr:t.), fT) = <idx, fX.Yr:t.) = <f, Yct), that is 
w = ct. Let us turn to 5.8 and 5.9. Starting with w, <XI], (XT, X f1)w) = 
<XI], XTw.Xf1) = <w, XI]T.Xf1) = w (by 3.16). Starting with ct, for each 
f:X ~ Yandeach T-algebrastructureeon YwehavetheT-homomorphic 
extension f# = fT.e:(XT, Xf1) ) (Y, e) of 4.13, and hence 
the naturality square 

(XT, Xf1)r:t. 

XT--------+) Y 
fT.e 

(Y, e}r:t. 

Setting w = <XI], (XT, Xf1}r:t.) , we have <f, (Y, e)w) = <f, yw.e) = 
<XI], (XT, Xfl}ct·fT.e) = <XI], (fT.el.(Y, e)ct) = <XI].fT.e, (Y, e)ct) = 
<f.YI].e,(Y,e}ct) = <f,(Y,e)r:t.). 0 

Passages (5.7) and (5.9) say that naturality is a very powerful constraint, 
for the natural transformations involved are determined by the value on just 
one element of just one of the components! 

5.10 Definitions. Let w E XT be a syntactic operation in X. The arity of 
w is deJined to be the smallest cardinal nurnber "of the set of variables of a 
formula representing w" or, more precisely, ar(w) = Min (n : n is a cartiinal anti 
there exists f: n ---+ X such that w is in the image off T: nT ) X T). 
Thus, 4.18 says that T is finitary if and only if every syntactic operation has 
finite arity. For example, with the help of the unique map f: 0 ~ X, we 
see that the syntactic operation [xx - 1] of group theory has arity o. Wh at 
is the arity of a semantic operation? Let us first consider a function 
tjJ: AX ) A. It may happen that tjJ is independent of some of the argu­
ments in X. More precisely, given SeX, let res:Ax ) AS denote the 
restriction map sending f: X -----> A to its S-restriction (which is just the 
inc1usion map of S composed with f); then there exists at most one factoriza­
tion 
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S is a support of ljJ if such a factorization exists (and ljJ is independent of the 
elements of X not in S). A subset S of Xis a support ofthe semantic operation 
ce U X ----7 U if S is a support of (Y, B)a: Y x ) Y for every T­
algebra (Y, B). The arity of a: U X ----+ U is dejined by "ar(a) = Min(n:n 
is a cardinal and there exists a support ofa of cardinal n)." For example, let 
x and x' be distinct elements of X. Then sending f: X ----+ Y to .xi + x'f 
is a semantic operation in X with respect to abelian group theory whose 
arity is 2. S is a support if and only if {x, x'} c S. We must not infer from 
this example that the interseetion of all supports is a support, however. 
For the ultrafilter theory of 3.21, if 0/1 E X ß, then the set of supports of the 
semantic operation is precisely 0/1! (See exercise 3.) 

We now show that syntactic arity and semantic arity coincide: 

5.11 Theorem. Let T be an algebraic theory of sets, let X be a set, and 
let w E XT be a syntactic operation in X with corresponding semantic opera-
tion w: UX ) U as in 5.5. Then wand w haue the same arity. 

Praof. ar(w):( ar(w). There exist f:ar(w) ----7 X and h E (ar(w))T 
with< h, fT) = w. Let S = {uf: U E ar(w)} be the image of f with inclusion 
map i:S ---4 X and define p:ar(w) ----7 S by up = uf, so that f = p.i. Set 
p = < h, pT) E ST. Because the restriction map is a natural transformation 
res: ( l ---4 ( )S, it follows from 5.7 that we have 

for every T-algebra (Y, B), which shows that S, whose cardinal is at most 
ar(w), is a support of w. 

ar(w) :( ar(w). First suppose ar(w) > 0, so that there exists a nonempty 
subset S of X of cardinal ar(w) which is a support of w. Since S is not empty, 

S1] admits at least one extension 9 through the inclusion map i as shown 
above. Because S is a support of wand iT:(ST, Sf.l) ) (XT, Xf.l) is a 
T-homomorphism, we have the commutative diagram 
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iT 

Define p = (SYj,l/J) E ST. Then (p,iT) = (SYj,l/J.iT) = (i.g,l/J.iT) 
(g, (ST, Sfl)w.iT) = (g, iTx.(XT, Xfl)(ij) = (g.iT, (XT, Xfl)W) 
(i.g.iT,r) = (SYj.iT,r) = (i.XYj,r) = (XYj,(XT,Xfl)W) = w. Now 
suppose that ar(w) = O. The above argument is still valid-that is, g still 
exists-providing ST =1= 0 (where, now, S = 0). Otherwise, 0 is an alge­
bra and there exists a factorization 

0 X 065 
>0 
71 

/ 

/ 
I 

I 
I 

I 

0 0 =1 

which is a contradiction. D 
5.12 Example. Let T be the algebraic theory obtained from the equa­

tional presentation of semigroups in 4.17 by adjoining the additional equa­
tion {V 1V2V3**, V I V2*}. Let X = {VI' V2 }, and set w = V I V2*. It is clear that 
ar(w) < 2. The following model (which is actually the free T-algebra on two 
generators) 

x y xy yx xx yx 
x xx xy xx xy xx xy 
y yx yy yx yy yx yy 
xy xy xy xy xy xy xy 
yx yx yx yx yx yx yx 
xx xx xx xx xx xx xx 
yy yy yy yy yy yy yy 

shows that ar(w) ~ 2. By 5.11, ar(w) = ar(w) = 2. 
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Let us pause to consider two kinds of constants in universal algebra 
which appeared incognito in the last stages of the proof of 5.11. A function 
f: X ---> Y is constant if for all x, x' in X we have xf = x'f; this must be the 
case if X has at most one element. Given W E nT, W is constant if (X, ~)(V is 
constant for all T-algebras (X,~) and w is a true constant if ar(w) = o. 
We have: 

5.13 Proposition. Let T be an algebraic theory in Set. Then 0 is a T­
algebra if and only if 0T = 0 (cf. 5.1 (2)). If 0 T =1= 0, every constant is Cl 

true constant. 

Proof. If 0 is aT-algebra, the existence of ~: 0T ---')0 0 guarantees 
0T = 0· Conversely, if 0T = 0,0 = (0T, 0f-l) is aT-algebra. Assurne 
0T =1= 0 and let w E nT be constant. Since 0 is not aT-algebra, ar(w) = O. 
By 5.11, ar(w) = O. 0 

It is possible to be constant without being true. Let Ql = {u}, Qn = 0 
for n =1= 1 and let E have the single equation {v1u, v2u}. Then an (Q, E)­
algebra is (X, b) where b:X ---> X is constant. 0 is an (Q, E)-algebra. If 
w = XU E {x} T, w is constant but ar(w) = 1. 

5.14 Definition. Let T be an algebraic theory in Set. Say that T is bounded 
01' that T has rank if there exists a cardinal N for which every syntactic operation 
has arity less than N, i.e. for all sets X and for all w E XT, ar(w) < N. If T 
is bounded, set M to be the least cardinal for which all syntactic operations 
have arity less than M. By 5.l1, M is also the least cardinal such that every 
semantic operation has arity less than M. The rank ofT is defined to be M -1 
if M is finite, and M otherwise. A bounded theory whose rank is ~ ~o is 
finitary (4.18). Any other theory is injinitary. The algebraic theory for groups 
has operations of arbitrarily large finite arity such as "Xl' ...• x n" of arity 
n; therefore, the rank ofthis theory is equal to ~o. In Example 5.12, the rank 
is 2. 

We turn now to describing some interesting algebraic theories ofinfinite 
rank. 

5.15 Example. Complete and Pamally Complete Semilattices. Afinitely 
complete semilattice is a partiaBy ordered set (X, ~) in which every finite sub­
set has a supremum (and in particular the empty supremum 0, which is the 
least element). To be a homomorphism f:(X, ~) ) (X', ~') of semi­
lattices, we require that f preserves all finite suprema (which is strictiy 
stronger than requiring f to be order preserving). It is weB known that semi­
lattices and their homomorphisms have an equational presentation as 
folIows. Let (Q, E) be the equational presentation for monoids (X, +,0) 
("+" E Q2' "0" E Qo with equations (x + y) + z = x + (y + z), x + 0 = 
x = 0 + x) which are abelian (add the equation x + y = Y + x) and idem­
potent (add the equation x + x = x). On the one hand, each semilattice with 
least element 0 and binary supremum operation + is an (Q, E)-algebra. Then 
again, given an (Q, E)-algebra (X, +, 0), we are forced to define x ~ y if and 
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only if the supremum of x and y is y i.e., x + y = y. It is easy to check that 
these passages are mutually inverse in such a way that semilattice homo­
morphisms are just Q-homomorphisms. More generally, let M be a fixed 
infinite cardinal. An M-camplete semilattice is a semilattice (X, ~) for wh ich 
every subset of X of cardinalless than M has a supremum. The M-complete 
homomorphisms are required to preserve all n-ary suprema lor n < M. 
Finitely complete semilattices are ~o-complete semilattices. A camplete semi­
lattice is a semilattice (X, ~) in which every subset of X has a supremum; 
the homomorphisms preserve all suprema. The Boolean O"-rings used in mea­
sure theory are, in part, ~ l-complete semilattices. In a complete lattice every 
subset A has an infimum also, namely Inf(A) = Sup(x:x ~ a for all a E A). 
If X is the set of all open subsets of the real numbers (in the usual topology) 
and ~ is indusion, then (X, ~) is a complete semilattice where suprema are 
ordinary unions, but the infimum of a family of open sets is the interior of the 
set-theoretic intersection. The indusion map of (X, ~) into the complete 
semilattice of all subsets of the real numbers is a complete semilattice homo­
morphism which does not preserve the infimum of the countable family 
[( -1/n, l/n): n = 1, 2, 3, ... ]. It is because of the homomorphisms that we 
distinguish between complete semilattices and complete lattices. 

It is easy to check that if (Q, E) describes semilattices as above, there is a 
bijective correspondence between Q-terms in X and finite subsets of X (note 
that the words of 4.17 reduce to subsets since order and repetition no longer 
matter, and we must add the empty set to accommodate the true constant 0). 
The structure map (4.2) of a semilattice (X, +,0) is the function wh ich assigns 
to each finite subset of X its (X, +, O)-supremum. Can we create an algebraic 
theory T such that XT is the set of all subsets of X and the typical T -structure 
map ~:XT ~X describes the supremum map ofa complete semilattice? 
We can. Let T be the algebraic theory of 3.5 (and, as was mentioned in 
3.13+,11: TT -----> T is the union map, whereas we showed in 3.10+ that 
fT:XT ) YT is the direct image map). If sup:XT ) X is an 
arbitrary function then the T -algebra equations 4.9 and 4.1 0 are dearly equiv­
alent to 

1. sup{x} = x for all x E X 
2. sup(usi') = sup(sup A:A E si') for all families of subsets si' E XTT 

whereas a T-homomorphism f:(X, sup) ) (X', sup') preserves sup: 
3. (sup(A))f = sup(af:a E A) for all subsets A E XT. 
We have at once that the passage from a complete semilattice to its 

supremum map is a well-defined injection into the T-algebra structures and 
that homomorphisms are the same on both sides of the fence. The problem 
is to prove that if (X, sup) satisfies (1) and (2) above then, via x ~ y if and 
only if sup{x, y} = y, X becomes a complete semilattice whose supremum 
map is sup. We first check reflexivity, antisymmetry, and transitivity. x ~ x 
by (1) and if x ~ y and y ~ x then x = sup{x, y} = y. Suppose x ~ yand 
y ~ z. Using (1) and (2), sup{x, z} = sup{sup{x}, sup{y, z}} = sup({x} u 
{y,z}) = sup{x,y,z} = sup({x,y} u {z}) = sup{sup{x,y},z} = sup{y,z} = 
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z, that is x ~ z. Let A be a subset of X. For aB aEA, sup{a,sup(A)} = 
sup({a} u A) = sup(A) proving that sup(A) is an upper bound of A. If xis 
another upper bound of Athen sup {sup(A), x} = sup(A u {x}) = 

sup( u( {a, x}: a E A)) = sup {sup {a, x}: a E A} sup {sup {x} } = x, so sup(A) ~ 
x. This eompletes the verifieation that T"algebras are eoextensive with eom­
plete semilattiees. 

To deal with M-eomplete semilattiees it seems natural to "truneate" T at 
M by defining XT M = {A c X:A has eardinal <M}. Is TM a subtheory 
ofT in the sense of 3.20? Sinee every singleton subset is in XT M the eondition 
on 1] is true. There is a problem, however, with staying closed under eom­
position. Given o::A ----4 BT and ß:B ----4 CT then (0: 0 ß)a = u{bß: 
bE ao:}. If 0: faetors through BT M (i.e., ao: has eardinal < M) and ß faetors 
through CT M (i.e., eaeh bß has eardinal < M) we would hope that (0: 0 ß)a 
also has eardinal < M. A moment's thought shows that this eondition 
amounts to a rewording ofthe definition (see the prim er on set theory at the 
end of this seetion ) of a regular eardinal. We formalize with: 

(5.16) M is a regular cardinal if and only if TM is a subtheory of T, 
where T is the theory of 3.5 and XTM consists ofthose subsets of X qf cardinal 
< M. By essentiaBy the same proof as in the eomplete ease, the T M-algebras 
(where M is an infinite eardinal) are just the M-eomplete semilattiees. 

5.17 Example. Complete Atomic Boolean Algebras. A Boolean algebra 
is a eommutative ring with unit (X, +, 0, jux, 1) (where "jux" indieates that 
we will write multiplieation by juxtaposition) in whieh multiplieation is idem­
potent: xx = x. See [Hairnos '63]. The standard example is the set of aB 
subsets of a set A where + is symmetrie differenee, 0 is the empty set, jux is 
interseetion, and 1 is A. By the well-known theorem of Stone ([Stone '36, 
Theorem 70J) every Boolean algebra is isomorphie to a Boolean subalgebra 
of subsets of some set. By the diseussion in 5.15, we know (X, jux, 1) is a semi­
lattiee. In view of the Stone theorem, it is more natural to define x ~ y if and 
only if xy = x whieh looks more like "A c B if and only if A n B = A." In 
any ease, a Boolean algebra is a partiaBy ordered set. A complete Boolean 
algebra is a Boolean algebra whieh has all suprema and infima. A homomor­
phism of eomplete Boolean algebras must not only be a ring homomorphism, 
but must pr es erve as weB all infima and suprema. After 5.15, one might expeet 
that eomplete Boolean algebras arise as the algebras over some theory. This 
is not the ease, as we prove in 5.48. This ehanges if we impose further restrie­
tions, however. In any partiaBy ordered set (X, ~) x E X is an atom if xis 
not the least element and if y < x implies y is the least element; that is, the 
atoms are the minimal elements of X - {O}. (X, ~) is atmnic if every element 
is the supremum ofthe atoms beneath it. In partieular, we know what a eom­
plete atomie Boolean algebra iso The set of aB subsets of A is a eomplete 
atomie Boolean algebra (A is the union ofits singleton subsets). It is possible 
to prove that, up to isomorphism, these are the only eomplete atomie Boolean 
algebras. 
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We turn now to the proofthat the complete atomic Boolean algebras may 
be identified with the algebras over the double power-set theory of 3.19. 
Unlike the situation of 5.15, we do not know how to interpret the structure 
map. So let us begin by seeing in wh at sense an element si E XT looks like 
a syntactic formula in X. It actually iso First, we record what most readers 
already know (and the rest should check for themselves): any Boolean ring 
(X, +,0, jux, 1) is a lattice with binary infima x /\ y = xy, binary suprema 
x v y = x + Y + xy and unique complements (that is, for all x there is 
unique x' with x /\ x' = ° and x v x' = 1) namely x' = x + 1. According 
to the definition ofl1 in 3.19 the element x E Xis the "variable" prin(x) E XT. 
For A c X, n(prin(x):x E A) = {B c X:A c B}. Since (prin(x))' = {B c X: 
x '/= B}, we have n(((prin(x))':x '/= A) = {B c X:B cA}. It follows at once 
that si is the syntactic formula: 

si = U n({prin(x):xEA} u {((prin(x))':x,/=A}) 
Ac .• I 

This immediately forces us to define 

5.18 Definition. !f X is a complete atomic Boolean algebra, the structure 
map of X is defined by 

XT~X 
si f-I ------+) Sup(A1:A E si) 

whereAif = Inf(A u {x':x'/=A}. 

5.19 Proposition. If Xis a complete atomic Boolean algebra and if A c X 
then 

if A = {x: x ;): xo} and 
X o is an atom 
otherwise 

Proof. Set B = {x:x ;): Aif}. That A c Bis obvious. Now suppose that 
x'/= A, so that A1 :( x'. If also XE B then Aif = ° or, contrapositively speaking, 
Aif= B whenever Aif i= 0. If ° :( x < Aif then x '/= B = A, x < Aif :( x' and 
x < x' which is possible only if x = 0, and this establishes that Art is an atom. 
Let Xo be any atom and set A = {x: x ;): xo}. If x '/= A, that is if x /\ Xo i= xo, 
we must have x /\ Xo = ° and so Xo = (x /\ xo) v (x' /\ xo) = x' /\ Xo 
proving that x' E A. Therefore Aif = Inf(A) = Xo as desired. 0 

For any set X andsubset A c X, define A* c XT by A* = {si:A E si}. 
We then have the following: 

5.20 Proposition. Let X be a complete atomic Boolean algebra with struc­
ture map ~:XT ~X as in5.18. Thenfor every subset B c X with Be i= 0, 
B* = BC 1 . 

Proof. By 5.19, ifBrti= OthenBrtisanatomandB = {x:x;): Bif}.BC l = 
{si:Sup(A :AEsi);): Brt}. But for ,s;(EBC\ Sup(A~:AEsi) > ° so that 
there exists A E ,s;( with A4 > O. As Aif is an atom, Aq = Bif and, by 5.19, in 
fact A = B. Therefore BC 1 simplifies to B*. 0 
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It is now clear that the strueture map ~: X T ~ X of the eomplete 
atomie Boolean algebra X does satisfy the T-algebra laws 4.9 and 4.10 
whieh amount to 

Sup(Aif:XEA) = x forallxEX 
Sup(A4:A*ESl) = Sup(A4:AC 1 Esi) for all si E XTT. 

(5.21) 

The first law, by 5.19, is the statement that every x is the supremum of the 
atoms beneath it. The seeond law follows at onee from 5.20. 

If we start with aT-algebra (X, ~), X beeomes a eomplete atomie Boolean 
algebra by 

x + Y = (prin(x) + prin(y))~ (the seeond "+" is symmetrie differenee) 
xy = (prin(x) n prin(y))~ 

o = 0~ (0 is the empty family) 
1 = (2X)~ (2X is the set of all subsets of X) (5.22) 

Sup A = (dA)~ where dA = {B c X:B n A i= 0} 
Inf A = (dA)~ where dA = {B c X:A c B} 

A4 = {Ag 

The T-homomorphism eondition 4.11 reads as 

(Sup (A4:A E d))f = Sup(B4:Bf-l E d) for all d E XT. (5.23) 

One needs to prove that (5.22) is indeed a eomplete atomie Boolean algebra 
strueture whose strueture map is ~, that every eomplete atomie Boolean 
algebra satisfies 5.22 with respeet to its strueture map, and that 5.23 is 
equivalent to preserving +, jux, 1, Sup, and Inf. All this ean be done with 
the proper ehoiees of .d's in 5.21 and d's in 5.23, and we leave it as a 
ehallenging exercise to the reader. 

5.24 Compact Hausdorff Spaces. Topologieal spaees ean be studied 
from the point of view of knowing whieh ultrafilters eonverge where, as 
deseribed below. A topologieal spaee X is eompaet Hausdorff precisely 
when eaeh ultrafilter eonverges uniquely, giving rise to a funetion ~:X ß ~ 
X whieh makes it not entirely surprising that these spaees are the same 
thing as ß-algebras (3.21). For use later as weIl as now we set down the 
theory rather eompletely. 

5.25 Characterization of Ultrafilters. Let 0/1 be a eolleetion of subsets 
of a set X having the finite interseetion property (3.22). Then the following 
five eonditions on 0/1 are equivalent and make 0/1 an ultrafilter on X. 

1. For all A c X either A or its eomplement X - A belongs to 0/1 
(this is 3.23). 

2. If {Ab' .. , All} is a finite partition of X then exaetly one Ai belongs 
to 0/1. 

3. XE 0/1; and, if Ab' .. ,All are subsets of X whose union belongs to 
0/1 then at least one Ai belongs to 0/1. 
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4. ilI1 cannot be extended to a larger collection with the finite intersection 
property and ilI1 is nonempty. 

5. If A is a subset of X and A f/; ilI1 then A has empty intersection with 
so me element of ilI1. 

Proof Hints. Clearly (3) implies (2), (2) implies (1), and we have (1) 
implying (3) since (X - Al), ... (X - An), (Al U ... U An) have empty 
intersection. (1) implies (4): If F E g; :::J ilI1 and F f/; 07/ then X - FE OU so 
that g; doesn't have the finite intersection property. (4) implies (5): If A f/; OU 
then ilI1 u {A} doesn't have the finite intersection property and U In' .. n 
Un n A = 0 with U i E ilI1. If U = U 1 n ... n Un f/; Oll then similarly 
U n VI n ... n Vm = 0 with V; E ilI1, a contradiction. (5) implies (1): 
If A n U = 0 and (X - A) n V = 0 with U, V E ilI1 then U n V = 0, 
a contradiction. 0 

If g; c 2X and A c X, say that A is dose to g; if there exists n > 0 and 
F b ... , Fn E g; with A :::J F 1 n ... n Fw g; is a filter on X if g; =f. 0, 
o f/; g; and every set close to g; is in g;. An ultrafilter ilI1 is a filter since 
Oll u {A} has the finite intersection property if A is close to ilI1. 

5.26 Characterization ofPrincipal Ultrafilters. The following conditions 
on an ultrafilter Oll on X are equivalent. 

1. ilI1 = prin(x) (as in 3.19) for some x E X. 
2. nill1 =f. 0· 
3. Some finite subset of X belongs to ilI1. 

The x in (1) is unique. ilI1 is called a principal ultrafilter, and the principal 
ultrafilter on x. 

Proof. (2) implies (3): if XE nill1, ilI1 u {x} has the finite interseetion 
property. (3) implies (1): there exists x E X with {x} E OU by 5.25 (3); as ilI1 is 
a filter, prin(x) c ilI1; as prin(x) is maximal, prin(x) = ilI1. 0 

Since every ultrafilter on X contains X, the only ultrafilters on a finite 
set are the principal ones. No concrete example of a nonprincipal ultrafilter 
is known (see the notes at the end of this section). The next theorem uses 
Zorn's lemma to prove that nonprincipal ultrafilters must exist. 

5.27 Plenitude of Ultrafilters; Characterization of Filters. For g; c 2x 

the following are equivalent. 
1. g; is a filter. 
2. g; =f. 0, 0 f/; g;, every super set of an element of g; is in g; and for 

all n > 0 and subsets Ab' .. , An of X, Al n ... n An E g; if and only if each 
AiEg;. 

3. g; is the intersection of a nonempty family of ultrafilters. 
4. g; = n( OU: ilI1 is an ultrafilter and g; c ilI1}. 

Proof Hints. To show that (1) implies (4) we must prove that for A f/; g; 
there exists an ultrafilter ilI1 with A f/; ilI1 but g; c OU. As A is not close to g;, 
g; u {X - A} has the finite intersection property. By Zorn's lemma, 
g; u {X - A} c ilI1 for some ultrafilter ilI1. 0 
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Let fI be a topology of open sets on X. It is entirely in the right spirit 
to say that an ultrafilter dIt on X is close to a point x with respect to fI if 
every neighborhood of xis close to (and therefore in) dIt. Formally, an ultra­
filter dIt converges to x with respect to fI, written dIt ---g-'" x (or just dIt ~ x) 
if dIt ::::> 9lx (where 9lx = {N c X: x E N°} is the set of fI -neighborhoods of 
x). Since 9lx is a filter and a subset is open if and only if it is a neighborhood 
ofeach ofits points, we have A is open ifand only if A E 1l(Il(dIt:dIt ~x): 
XE A), that is 

(5.28) A is open if and only if A belongs to each ultrafilter which converges 
inside it. In particular, the convergence relation determines the topology. 

The following theorem can be found in many standard texts, or can be 
taken as definition: 

5.29 Theorem. A topological space is compact if every ultrafilter con­
verges to at least one point. A topological space is Hausdorffif every ultrafilter 
converges to at most one point. 0 

Since Pis a subtheory ofthe double power-set theory of3.19,j:X -----+ Y 
induces fß:Xß ) Yß via (dIt, fß> = {B c Y:Bf- 1 E dIt}. It is easy 
to see that (dIt,Jß> is also {B c Y:B ::::> Affor some A E dIt}. 

5.30 Characterization of Continuity. Let (X, fI) and (X', fI') be topo­
logical spaces and let f: X ----+ Y be a function. Then fis continuous if and 
only ifwhenever dIt ~x, (dIt,Jß> > xf. 

Proof. Suppose f is continuous, dIt ~ x and V E 9lxJ ' As Vf- 1 E 
9lx c dIt, V E (dIt, fß>. Conversely, noting that the inverse image of an 
ultrafilter is again an ultrafilter, we have dIt = (dIt,Jß>f- r ::::> (91xJ)f-l 
whenever dIt ~x, so that 9lx ::::> (91xJ)f- 1 and fis continuous. D 

We have presented enough background material to establish the interest­
ing result that compact Hausdorff spaces are the same thing as p-algebras. 
Let us relativize our notation in 5.20 - to the subtheory p and define A * = 
{dIt E Xß:A E dIt}. The algebra laws 4.9 and 4.10 condense to 

(prin(x))~ =x for aIl x EX 
{A c X:A*Edg = {A c X:AC 1 Edg for aIl d E Xßß. 

(5.31) 

Suppose (X, fI) is a compact Hausdorff space with convergence map 
~: X ß ~ X. Since x belongs to each of its neighborhoods, it is clear that 
(prin(x))~ = x. Now let d E Xßß and set x = {A c X:A* E dg and 
y = {A c X: AC 1 E dg. Suppose x =f. y. Then there exist disjoint open 
sets A, B with XE A and y E B; (for the reader who is using 5.29 as the defini­
tion of Hausdorff: otherwise, 9lx U 9ly has the finite intersection property 
and extends to an ultrafilter). By definition, A * E .sl and BC 1 E d. By 5.28, 
C is open if and only if CC 1 c C*. As B is open and d is closed under 
supersets, B* E d. Therefore, (A 11 B)* = A* 11 B* =f. 0, which is the de­
sired contradiction. This proves that the passage from fI to ~ is weIl defined; 
it is injective by 5.28 and homomorphisms are the same on both sides by 
5.30. We must show that given an abstract p-algebra (X, ~) there is a compact 
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Hausdorff topology :T whose convergence map is (. As discussed above, if 
what we say is true then A E:T if and only if AC 1 c A*. It turns out that 
there is an equivalent definition whose immediate properties are more useful. 

5.32 Definition. Given an abstract p-algebra (X, () and A c X, A is open 
if for all UZt E Xß with UZt ( E A there exists U E 01' such that U* ( c A. 

It is obvious that 0, X are open and that finite intersections and unions 
of open sets are open; therefore the collection :T of all open sets forms a 
topology on X. Suppose UZt E Xß and N E 9lq/~' There exists U E Oll with 
U*( c N°. Since prin(u) E U* and (prin(u))( = u (by the first algebra axiom) 
for every LI E U, U c N and NE UZt. This proves that UZt -yUZt(. 

5.33 Lemma. For any subset B 0/ X, the :T-closure B- 0/ Bis contained 
in B*(. 

Proof. This is where we really use the algebra axioms. First of all, if 
i: B ---+ X is the inclusion map then clearly B* is just the image of 
iß:Bß ) Xß, so that B*( isjust <B) as in 4.31. In particular, B c B*( 
and (B*()*( = B*(. To show B*( is :T-closed, we must show, given UZt~ ~ B*(, 
that there exists U E UZt with U*( n B*( = 0. Suppose not. Then {U*: 
U E UZt} U {B*(C I} has the finite intersection property and is contained 
in some ultrafilter .9l E Xßß. By 5.25(4), {A c X: A * E.9l} = UZt. Setj/ = 

{A c X:AC 1 E .9l}. Then B*( Er. By the second algebra axiom, UZt( = 

jI ( E (B*()*( = B*(, the desired contradiction. D 
We can make quick work of the remaining details. Let UZt E Xß and 

suppose x E X with UZt( i= x. Since {x} - c {x}*( = {x}, X - {x} is open 
and there exists U E UZt with U*( c X - {x}. By 5.33, x tf. U- and there 
exists NE 9lx with N n U = 0. In particular, N tf. UZt, so UZt does not con­
verge to x. We have proved that the convergence relation of the topology 
:T is (. As ( is a function, :T is compact Hausdorff. D 

We are now ready to extend the definitions of section 1 to the infinitary 
case. 

5.34 Definitions. Extending 1.4, an operator domain is a disjoint family 
of sets, Q = (Qn: n is a cardinal). As before, an Q-algebra is a pair (X, (5) where 
X is set and (5 assigns to each W E Qn an n-ary operation (5 w: X n ) X. 
Q-homomorphisms are defined exactly as in 1.5 giving rise to the category, 
Q-alg, of Q-algebras and an obvioLis underlying set functor U: Q-alg -----> 

Set. Paralleling 5.3, for each cardinal n an n-ary operation of Q is a natural 
transformation IX: un ~ U. An n-ary Q-equation is a doubleton {IX, IX'} where 
IX and IX' are n-ary operations of Q. An Q-equation is an n-ary Q-equation for 
some n. An equational presentation is a pair (Q, E) where Q is an operator 
domain as just defined and E is a class of Q-equations. We are specifically 
permitting E to be a large set (see the "prim er" at the end of this seetion). 
An Q-algebra (X, (5) satisfies the Q-equation {IX, IX'} just in case (X, (5)1X = 

(X, (5)IX'. An (Q, E)-algebra is an Q-algebra which satisfies every equation in E. 
This defines the category (Q, E)-alg whose objects are the (Q, E)-algebras and 
whose morphisms are the Q-homomorphisms. Let U E: (Q, E)-alg ------> 

Set denote the underlying set functor. By Theorem 5.5, the finitary definition 
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of 1.19 can be recaptured by setting Qn = 0 when n is infinite and using 
only ~o-ary equations. The eategory of (Q, E)-algebras is ealled an equa­
tionally-definable dass. 

5.35 The Lawvere Theory. Let T be an algebraic theory in Set. If T is 
bounded, the regular rank of T is the smallest infinite regular cardinal greater 
than or equal to the rank of T. The Lawuere theory of T is the category 
Law(T) whose objects are {all cardinal numbers} {all cardinal numbers less 
than the regular rank ofT} accordingly as T is unbounded or bounded. Thus, 
Sup(m i E n) E Law(T) whenever all mi and n are. A morphism (X: m ______ 
n in Law(T) is a morphism (X: n ~ m in SetT (see 3.2), that is a function 
(X: n ---> mT (Notice how we use different types of arrows to identify which 
category we mean). Composition and identities are defined just as in SetT' 
specifically 

(m ~ n) * (n ~ p) = (p ~ n) 0 (n ~ m) 
ß aT m~ = p~nT~mTT~mT 

(where * denotes the composition operation in Law(T)), and nry: n -----... n 
provides the identities. Since SetT is a category, so is Law(T). 

Our definition of aT-algebra has so far stressed the monoid form (T, 11, /1) 
of T. We now show how to express 4.9 and 4.10 referring only to the clone 
form (T, ry, 0) of T; also, see exercise 11 of section 4. 

5.36 Lemma. Let T be an algebraie theory inSet. F or eaeh set X and fune­
tion ~:XT ) X we may attempt to define afunetor M~: Law(T) --------t 
Set as folIows. On objeets, nM~ = x n. Let (X: n ____ mE Law(T). F or eaeh i E m 
we haue (Xi E nT and so, using 5.6,afunetion X&i:xn ) XT. Colleeting 
this m-tupTe together, we haue a singlefunetion (X&i: i E m):Xn -----~ 

Xyn'. Define (XM~:I1M~ ) mM~ by 

M - x n (Xoi:iEm) XTm ~m xm (X ~- ) ~ 

Then M~ is afunetor if and only if(X, ~) is aT-algebra. 

Proof. All finite cardinals and in particular 1 are in La w(T). M ~ preserves 
iden ti ti es if and only if X ryn . ~n: x n ) x n is the identity of x n and 
this is equivalent to 4.9. We will show that M~ preserves composition if and 
only if ~ satisfies 4.10. First two remarks: 

5.37 Remark. Given ß: 1 ~ n (i.e., ß E n T) and (X: 11 ~ m then the 
following diagram of natural transformations ( t ----+ T is commutative: 

( t ----'-( &"",i_: i_E_I1-'} __ -t> T n 

lTß 
TT r 
T 
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To prove this, 5.7 teIls us we have only to check equality ofthe values assigned 
by the mth components to idm• Indeed, <id,m (mfi.i:i E n).mT{J.mfl) = <ce 
n -mT, mT{J.mfl) = <ß, aT.mfl) = ß 0 a = <id"" m(ß 0 a)A). 

5.38 Remark. For any function ~:XT ) X, 4.10 is commutative 
restricted to the elements in the image of (0 - XT)T (that is, restricted 
to the interpretation in (XTT, XTfl) of the true constants). To prove this, 
one need only observe that (0 -XT)T.Xfl and (0 -XT).~T are al­
ready equal, both being the unique T-homomorphism (0T, 0fl) ---~ 
(XT, Xfl). 

Now consider the following diagram induced by a: m _______ n and 
ß:n~p: 

xm 

~ xr C )Xn 

I 
l(XT{J) II }X{Jj) (5.39) 

X«a * ßU A ~TP XTTP )XTP 

}Xfl)P III l~p 
XTP 

~P 
)XP 

The two boundary paths from xm to XP are equal precisely when M~ preserves 
composition whereas III is equivalent to 4.10 (as p can equal 1). land II 
always commute (by 5.37 and the naturality of ßj). It is now dear that if 4.10 
holds then M~ preserves composition. Using 5.38, to prove the converse it 
is sufficient to show that given XE XTT not in the image of (0 - XT)T 
there exist m, nE Law(T), a:m ~ n, ß:n - 1 and h:m -x such that 
<h,(Xfi.i:iEn).XT{J) = x. This amounts to "unravelling x as a word of 
words" and can be done as follows: Since XE (XT)T there exists n E Law(T) 
and I:n-XT such that x is in the image of IT, that is <I, XT{J) = 

<ß, IT) = x for some ß E nT. By our hypothesis on x, we may assume 
n > O. For each i E n we can find, similarly, mi E Law(T), gi:mi ~X and 
i'i E miT with <gi' XYi) = <ri' gi T ) = hEXT. By the definition of the 
objects of Law(T), m = Sup(mi: i E n) E Law(T). Since m is equipotent with 
the disjoint union of the mi there exists a family (ini: i E n) of injections 
ini : mi ------7 m with disjoint images and such that the union of the images 
is m. One checks routinely that 

()m~()mi~ T 

is a natural transformation and hence has form &i for unique ai E mT. This 
defines a:m ~n. There exists unique h:m -x such that in)1 = gi for 
all i E n. We have <h, (Xfi.JXT{J) = «gi' Xy): i E n)XT{J = U;: i E n)XT{J = 

<I, XT{J) = x. 0 
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We are now ready to prove the extension of 4.25 to infinitary algebraic 
theories. Rather than relying on a Birkhoff variety argument, we will present 
the operations and equations explicitly and prove that they work. In par­
ticular, this provides a different (and more informative) proof of 4.25. 

5.40 Theorem. Let T be an algebraie theory in Set. Then there exists an 
equational presentation (Q, E) as in 5.34, with Qn = 0 ifn f/= Law(T) (see 5.35), 
and every equation n-ary Jor some nE Law(T), such that T-algebras and (Q, E)­
algebras are isomorphie as eategories oJ sets with strueture (as dejined in the 
statement oJ 4.15). 

ProoJ. Define (Q, E) as follows: 

Qn = {n} x nT 

Qn = 0 
if nE Law(T) 

if n f/= Law(T). (5.41) 

Denoting the underlying set functor from Q-alg by U, each a E nT becomes 
an n-ary operation iX: un ----+ U of Q by (X, o)iX = oa:xn ----+ X (where 
we write a E Qn for the more cumbersome (n, a)). Define the equations E by 
E = EI U E 2 U E 3 where 

EI is the dass ofall equations {UP ~ un ~ U, uP ~ um L U} corre­
sponding to (p, n, m, a, b, a, ß) such that p, n, m E Law(T), a: 11 ---+ P and 
b:m ------> p are functions, a E I1T, ß E mT subject to the conditions that p 
is the union ofthe image of a and the image of band <a, aT) = <ß, bT) E pT. 

E 2 is the single equation {[;J: U ----+ U, id: U ----+ U} (thinking of 
11]: 1 ------> 1 T as an element of QtJ. 

E 3 consists ofthe dass of equations {;,;jJ: um ) U, um §!. un L 
U} corresponding to all (m, n, a, ß) with a: m _______ n and ß: n _____ 1 in Law(T). 

5.42 Proposition. If h: A ------+ B is injeetive, so is hT: AT ) BT. 

ProoJ. We consider three cases: If A is nonempty we cau extend the 
identity function of A to s as showu below: 

A h 
~B 

1 

Is 
I 
I 

'" A 

Then, since hT.sT = idAT, hT is injective. If A is empty and AT is also 
empty then hT is injective (as is any function from the empty set). Finally, 
consider A = 0 but 0T =F 0. Then there exists a function s:B ------+ 0T. 
As hT.s# is the unique T-homomorphism from (0T, 0f.l) to itself, hT.s# 
id01 and hT is injective. 
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5.43 Proposition. An Q-algebra (X, 15) satisfies EI if alUi only ifthere exists 
a (necessarily unique) fimction ~: XT ---+ X such that for all 0: E Qn 

xa x n -------""*)XT 
I 
I 

I~ 
I 

I 

'" X 

Proof. If x E XT then there exists nE Law(T), f:n ---+ X and 0: E I1T 
such that <0:, fT) = x, and we are forced to define x~ = <f, 15,,). Suppose 
now that m E Law(T), g:m -----+ X and ß E mT are again such that <ß, gT) = 

X. For ~ to be weIl defined, we must be able to prove that <f, 15,,) = <g, bp). 
Let SeX be the union of the images of fand g. There exists p E Law(T) 
and a bijection t/J: p -----+ S. Define a: n ---> p and b: m ---+ p by a = Tt/J - I 

and b = ?l.t/J - 1, where I: n -----+ Sand ?l: m -----+ S are defined by the dia gram 

X 

finc 
I I g 

11 ) S +(--------

~Io/~ 
above. Define h:p ---> X = t/J.inc. Then (0:, aT)hT = <o:,fT) = <ß, gT) = 

<ß, bT)hT. Since hT is injective by 5.42, (0:, aT) = <ß, bT). Therefore, 
there is an equation in EI corresponding to (p, n, m, a, b, 0:, ß). If (X, 15) 
satisfies this equation, <f, b,,:Xn ----> X) = <a.h, brx ) = <h, (a· - ).15,,: 
XP ) X) = (h, (b· - ).bp:XP ) X) = <g, bp: 
xm ) X). Hence ~ is weIl defined if (X, 15) satisfies EI. Conversely, 
suppose ~ is weIl defined and we have an equation in EI corresponding to 
(p, n, m, a, b, 0:, ß). Then for every h: p -----+ X we have (h, (a . - ).15,,: 
XP ) X) = <a.h, xa.~:xn ) X) = <0:, (a.h)T)~ = 

<0:, aT)hT.~ = <ß, bT)hT.~ = <h, (b· - ).bp:XP ) X), and 
(X, 15) satisfies all equations in EI. This completes the proof of 5.43. 

The remaining details are old hat. If (X, 15) satisfies EI giving rise to ~: 
XT ) X, then the precise content of 5.36 is that (X, 15) satisfies E 2 and 
E 3 if and only if (X, ~) is aT-algebra (although one must notice that the 
proof of 5.36 made it clear that to prove M ~ preserves composition one could 
always assurne p = 1). The inverse passage from (X, ~) to (X, 15) and the 
proof that the two sorts of homomorphism are the same is achieved exact1y 
as in 4.25. 0 
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5.44 Definitions. Let si be an arbitrary category and let U: si --+ Set 
be afimctor. As in 53, define Ux : si ) Setfor each set X by UX = U.( )x. 
If 11 is a cardinal, U is tractable at n providing the class of all natural trans­
formations from un to U is a small set (see the "primer" at the end of this 
section). U is tractable if U is tractable at n for every cardinal n. An 
equational presentation (Q, E) (as in 534) is tractable just in case U E: 
(Q, E)-alg ) Set is tractable. 

If T is an algebraic theory in Set, UT is tractable by Theorem 5.5. It 
follows that any (Q,E) which presents SetT (e.g. as in 5.41) is tractable, which 
imposes a necessary condition on (Q, E) in order that it present Set T for 
some T. Happily, tractability is sufficient: 

5.45 Theorem. Let (Q, E) be an equational presentation as in 534. Pro­
viding (Q, E) is tractable, there exists an algebraic theory T in Set such that 
T-algebras and (Q, E)-algebras are isomorphic as categories of sets with struc­
ture (as defined in the statement of 4.15). 

Informal comments in lieu of proof. For each (small) set Adefine a 
(perhaps large) set AQ "inductively" by 

a E AQ for all a E A 

whenever W E Qn and (pi:i E 11) is an n-tuple in AQ then (pi:i E n)w E AQ 
(cf. 1.8, 1.9). 

Despite the highly intuitive appeal, the proof that we have a principle 
of algebraic recursion (cf. 1.14) and, in particular, the proof that AQ makes 
any sense is difficult and will not be given in this book (see the notes at the 
end of this section). Accepting algebraic recursion makes the rest proceed 
smoothly. Define EA as in 2.1 and then set AT = AQjEA• At some stage in 
the argument it becomes dear that the tractability assumption forces AT to 
be a small set. The infinitary versions of 2.2 and the universal property 2.5 
are established using the old proofs, and (as was remarked in 2.16-) the 
ability to build an algebraic theory around T is a formal consequence of 
this universal property. The remaining details are a straight-forward rehash 
of 4.1 and 4.15. 0 

We will offer a rigorous (but different sort of) proof of 5.45 in Chapter 3 
(see 3.1.26). 

We dose the section with two examples of nontractable equational 
presentations. 

5.46 Complete Lattices Are Not Tractable at 3. The dass of complete 
lattices and homomorphisms which simultaneously preserve supremum and 
infimum is equationally presentable but not tractable at 3. Let us observe 
first that complete semilattices (as in 5.15) are equational as a consequence 
of 5.5 and 5.41; in fact, a study of that construction allows us to throw away 
some of the operations and equations, and the following is an equational 
presentation of complete semilattices: 

Qn = {SuPn} for each cardinal n. 
(5.47) 
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where EI consists of the equations SUPn(af) = SUPn(~f) indexed by each 
instance of a pair a, b: n --> m of surjections; E2 is the single equation 
SUPl(X) = x; and E3 consists of the equations SUPp(SuPm(rJ):i E p) = 

SUPn(f), where (m ~ n: i E p) is a family of functions such that the union of 
the images covers all of n. (Of course, each side in any of the above equations 
is a natural transformation in accordance with the Definition 5.34; E j is 
trying to say (and does!) that SupiJ) = Supn(g) whenever J, g: n --> X have 
the same image). 

Define a new operator domain Q' by Q~ = {Inq and define Q' -equations 
E' by substituting "In[" for "Sup" in each of the equations in E above. Since 
supremum in a partially ordered set (X, ~) is the same thing as infimum in 
the partially ordered set (X, ~), our interpretation of the operators in 5.47 
was biased, and we may be comfortable in viewing complete semilattices as 
(Q', E')-algebras as weIl. It is now c1ear that complete lattices is a full sub­
category of(Q u Q', E u E')-algebras, and all that is missing is the guarantee 
that the Sup operators induce the same partial order as the Inf operators, that 
is that "Supz(x, y) = y if and only if Infz(x, y) = x." The equational way to 
say this is the well known absorptive laws: 

Inf2(x, Supz(x, y)) = x 
SUP2(X, Inf2(x, y)) = x 

Now that we have seen that complete lattices are equational, let us explore 
the tractability properties of the underlying set functor U. U has only six 
2-ary operations name1y the true constants 0 = SUP0' 1 = Inf 0 the two 
projections and SUP2' Inf2 (as is easy to check directly). It is at least mildly 
surprising that by adding one new variable we get not only infinitely many 
operations, but a large set of them. A proof of this can be found in [HaIes 
'64, section 3]. While HaIes' proof is too involved to present here, the con­
struction is quite simple. For each ordinal i define a 3-ary operation ri as 
follows: 

ro(x, y, z) = x 

r i + 1 = Supz(x, Inf2(y, SUP2(Z, Infz(x, SUP2(y, Inf2(z, rJ))))) 

r i = SUPn(t/Jr/j < i) if i is a limit ordinal (and t/J is a 
conveniently prechosen bijection with 
the cardinal n). 

What HaIes did was to construct for each pair of ordinals an example of a 
complete lattice on which the corresponding operations differ. The same 
proof shows that there are infinitely many 3-ary operations even for just 
finitely-complete lattices. 

5.48 Complete Boolean Algebras Are Not Tractable at ~o. The dass of 
complete Boolean algebras and homomorphisms wh ich simultaneously pre­
serve supremum and complement (and hence everything else such as intima, 
+ etc.) is equationally presentable but not tractable at ~o. The reader may 
provide her own favorite equational presentation; for us, it is easiest to view 
a complete Boolean algebra as a complete lattice which is distributive and 
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complemented. To this end, adjoin a single unary operator, c, to the operator 
domain of 5.47 and impose the equations of 5.47 together with four new ones: 

Infz(Supz(x, y), z) = Sup2(Inf2(x, z), Inf2(y, z)) 

Supz(Inf2(x, y), z) = Inf2(Sup2(x, z), SUP2(Y, z)) 

SUP2(X, cx) = Infe 
Inf2(x, cx) = SUPe 

To check that we really have a Boolean algebra here, sceptics should note 
that x + Y = Inf2(Sup2(x, Y), C Infix, y)). 

With the help of exercise 19, it is not hard to prove, as is certainly suggested 
by 5.5, that the class of n-ary operations of any equational presentation con­
tains a subalgebra freely generated by n, i.e., with the universal property of 
4.12 with respect to algebras and homomorphisms (although is not neces­
sarily a genuine algebra because it may be built on a large set). It suffices to 
show, then, that the assumption that we have a complete Boolean algebra F 
and a function '1: ~o ---+ F with the universal property 

that every function f: ~o ---+ C to a complete Boolean algebra C extends 
uniquely to a complete Boolean homomorphism tjJ:F ~ C, leads to the 
conclusion that F admits a surjection to every ordinal number. In fact, by 
4.12 and 4.14 this proves immediately that complete Boolean algebras is not 
T -presentable. 

Since the image of tjJ (as above) is a complete Boolean sub algebra of C 
containing the image of the sequence f, it is sufficient to construct, given an 
ordinal (J., a complete Boolean algebra C possessing a subset equipotent with 
(J. and a sequence f: ~o ~ C such that no proper subalgebra of C contains 
the image of f. 

Let X be an arbitrary topological space. For each subset U of X let Ul. 
denote the complement of the closure of U. U is a regular open set if U is the 
interior of its closure, that is U = Ul.l.. An important result (see [Halmos 
'63, §4, §7]) is that the set of all regular open sets forms a complete Boolean 
algebra with 

Supn(Ui:iEn) = IntCIs(u(Ui:iEn)) 
Infn(Ui:i E n) = Int CIs( n(Ui:i E n)) 

c(U) = Ul. 

Fix an infinite ordinal (J. and provide the set (J. with the discrete topology. 
Let N = {O, 1,2, ... } be the set of natural numbers, and let X = (J.N have 
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the product topology. If (Sn: n E N) is a sequence of subsets of (X then {f EX: 
f,. E Sn} is closed since it is the cartesian product of the closed sets Sn. Fot 
nE N and S c (X, An,s = {f E X:f,. E S} is a typical subbasic open set; as 
mentioned above, it is also closed. As an clopen sets are regular open sets, 
An, s is a regular open set. In particular, for n E N and ß < (X, An, p = {f EX: 
f,. = ß} is a regular open set. For n, mE N, Bn,m = {f E X:f" :::; Im} is 
closed (use nets) as is its complement (use nets again), so Bn,m is a regular 
open set. Let flB be the complete Boolean subalgebra of regular open sets 
generated by the countable family of an Bn,m's and an An,p's (for finite ordinals 
ß), where "subalgebra generated by" means "the intersection of an containing 
subalgebras"). No proper subalgebra of flB contains this countable family. 
Since the Ao,p are pairwise distinct, the proof is completed by proving that 
all Ao,p E flB. To do this we will establish "for all n E N, An,p E flB" for each 
ß < (X by transfinite induction. We already know this for finite ß, which 
provides the basis. Now suppose this is true for ß < y; we must prove it for y. 

Fix nE N. As u(An,p:ß < y) = {f E X:f" < y} is clopen, Sup(An,p: 
ß < y) = u(An,p:ß < y) which proves that {f E X:f" < y} E flB. It follows 
thatthesetCn,m = {fEX:f,,:::; Imorim < y} = Sup(Bn,m,{fEX:fm < y}) 
belongs to flB. Set Cn = Inf(Cn,m:m E N) = Int(n(Cn,m:m E N)). We claim 
that Cn = {f EX:f" :::; y}. On the one hand, given gE X with gn :::; y then 
for all m E N either gn :::; gm or else gm < gn :::; Y so we have 9 E Cn, m' Thus, 
{ fEX:f" :::; y} is a subset of n( Cn, m: m E N) and is (subbasic) open, so is con­
tained in Cn• Conversely, suppose given I E Cn• Then some basic open neigh­
borhood of I is contained in n( Cn, m: m E N), that is there exists a nonempty 
finite subset F of N such that every function agreeing with I on F is in every 
Cn, m' Define 9 E X by 

ifmEF orm = n 
other:wise 

There exists m' E N with g(m') = y. Since 9 E Cn, m' and "g(m') < y" is false, 
we have f" = gn :::; gm' = Y as desired. This proves that {f E X:f" :::; y} be­
longs to flB. Noting that {f E X:f" :::; y} and {f E X:f" < y} are both clopen 
and in flB we conclude that An, y = {f E X:f" :::; y} - {f E X:f" < y} = 
Inf({fEX:f,,:::; y},{fEX:f" < y}.l) EflBandwearedone. 0 

Primer on Set Theory 

We outline a few concepts from set theory which were needed in this 
section. The outline is easily filled in by consulting [Monk '69J and is some­
what expanded in the exercises. See also [Mac Lane '71,1.6]. Another primer 
appears at the end of section 3.1. 

Ordinals, as defined below, are sets of sets. The smallest ordinal, denoted 
0, is the empty set. If x is an ordinal, the next biggest ordinal is its successor 
s(x) = x u {x}. Thus each integer n induces the ordinal n = 8"(0). In normal 
usage we write n rather than n. The first infinite ordinal ro is the union of 
the chain 0 c 1 c 2· ... The next ordinals are the sn(ro) and usn(ro). More 
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formaIly, a set of sets x is E-transitive if whenever y E X and z E y then Z E x. 
An ordinal is a sets of sets x such that x is E-transitive and such that for all 
y E x, y is E-transitive. If x, y are ordinals then (using the "axiom of regularity") 
exactly one of"x E y," "x = y," "y E x" occurs ([Monk 9.9]) so that the dass 
Ord of all ordinals is linearly ordered via x ~ y if x = y or XE y. If Xis a 
nonempty set of ordinals then n{x:x E X} is an ordinal and is in X ([Monk 
9.10]); in particular, X has a least element. Further, for ordinals x, y, x ~ Y 
holds if and only if x c y. 

Every ordinal x satisfies x = {y:y is an ordinal and y < x} ([Monk 9.13 
(iii)]). This establishes the (first) principle of transfinite induction [Monk 
10.1]: to define a function on an ordinal x it suffices to define f(y) for all 
y < x. We used this in 5.48. An ordinal x is a successor ordinal if x has form 
s(y) (i.e., "x-1 exists") and x is a limit ordinal if x =F 0 and x is not a successor 
ordinal. ro is the smallest limit ordinal. The (second) principle of transfinite 
induction [Monk 10.4] asserts: to define a function f on an ordinal x it 
suffices to define f(O), to define f(y + 1) in terms of f(y) whenever y + 1 < x 
and to define f(y) in terms of {f(z):z < y} whenever y is a limit ordinal 
and y < x. Cf. the construction of r i in 5.46. The "algebraic recursion" of 
the proof comments of 5.45 generalizes transfinite induction. 

A cardinal is an ordinal which is not equipotent ("equipotent" means 
"in bijective correspondence with") with a smaller ordinal. The finite ordinals 
n are cardinals. ro is also a cardinal but qua cardinal it is customary to call 
it ~o. s(ro) is not a cardinal. Given any set A there exists a unique cardinal x 
(using the axiom of choice) such that A and x are equipotent ([Monk 18.3]); 
x is the cardinality of A, x = card(A). A is uncountable if card(A) > ~o; 
otherwise, A is countable. If A admits an injection into or a surjection from 
B then card(A) ~ card(B). As discussed above, the cardinals constitute a 
linearly ordered dass such that every nonempty subset has a least element. 
If x is a cardinal, x+ denotes the next largest cardinal. There is no largest 
cardinal, that is, x+ always exists ([Monk 18.13]). If (Xi: i E 1) is a family of 
cardinals, their sum LXi is the cardinality of the disjoint union {( y, i): y E Xi} 
of the sets Xi ([M onk 20.1]). A cardinal x is regular ([M onk 21.18]) if x is 
infinite and if for every family (Xi: i E 1) of cardinals with each Xi < x and 
card(I) < x, it is the case that LXi < x. Starting with ~o and defining 
~n+ 1 = (~n)+' L~n is the smallest infinite cardinal which is not regular. 
For any infinite cardinal x, x+ is regular ([Monk 21.14]). 

A chain in a partially ordered set (X, ~) is a subset C of X such that 
whenever x, y E C either x ~ y or y ~ x. m is a maximal element of (X, ~) 
if for every x E X it is false that x > m. Zorn' s lemma asserts: if every chain 
in (X, ~) has an upper bound (i.e., there exists u in X, not necessarily in C, 
such that u ~ c for every c in C) then (X, ~) has at least one maximal 
element. The theorem works if(X, ~) is empty since the empty set is a chain 
with no upper bound. It is weIl known that Zorn's lemma is equivalent to 
the axiom of choice ([Monk section 16]). In the context of the proof hints 
to 5.27, X is the set of all families fF with the finite intersection property, 
fF ~ t:§ means fF c t:§ and a maximal element is an ultrafilter by 5.25 (iv). 
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Paradox: it is easy to prove that the set Ord is an ordinal ([Monk 9.7]). 
Thus Ord E Ord, i.e. Ord < Ord, which is impossible. Also, the Russell 
Paradox: let R be the set of all sets of sets x such that x t/= x; then R is a set 
of sets, but if R E R then R t/= R whereas if R t/= R then R E R. The way these 
paradoxes are resolved is by insisting that certain "dasses" such as Ord 
and R above are "impredicatively defined" (that is, there is obvious "self­
definition" in phrases such as "the ordinal of all ordinals" and "the set of 
all sets of sets") and are not bona fide sets. For example, Ord is not really 
an ordinal because it is not a set. 

To truly resolve the crises of the preceding paragraph would lead us far 
afield from the subject matter ofthis book. We refer the reader to [Mac Lane 
'71,1.6] for adescription of some related problems and of the "one universe" 
set theory that is adequate for our needs. (See also [Fraenkel, Bar Hillel 
and Levy '73, 11.7].) In brief, there is a "universe" U modelling the "set of all 
sets." A small set is an element of U. A subset of U which is not an element 
of U is a large set. Thus Ord and R above are large sets. Any set which admits 
an injection from or a surjection to every cardinal is a large set. A cartesian 
product of a family of small sets indexed by a small set is a sm all set; on the 
other hand, the cartesian product of all small sets is a large set. Apriori, 
there is no reason why l1Jx(T) or l1Jx(T) need be small sets, but this is proved 
in 5.5. The dass of operations of an operator domain as in 5.34 will be a 
large set unless there exists a cardinal N such that Qn = 0 whenever n > N. 
The intended meaning of "tractable" in 5.44 is that "AQ/EA " in the spirit of 
2.1 is a small set for all A even though AQ may be large. 5.43 asserts that the 
fr~e lattice on 3 generators is a large set. The category Set ofsets and functions 
has as objects small sets. 

Notes for Section 5 

Our trivial algebraic theories were dubbed "inconsistent" by [Lawvere 
'63, page 51]. The idea that algebraic operations are natural transformations 
(our semantic operations) is due to Lawvere (see [Lawvere '63, page 69, 
Theorem 1]) and was emphasized by Linton (see [Linton, '66, '69]). Lawvere 
defined algebras as set-valued functors as in 5.36. The inverse passages 5.6 
and 5.7 is an instance ofthe weIl-known Yoneda lemma ([Yoneda '54]) of 
category theory; see [Mac Lane '71]. [Lawvere '63, pages 52-53] called 
our constants definable constants and our true constants expressible con­
stants; our 5.13 is his proposition 5. 

Examples 5.15, 5.17 were weIl known to the Zürich school. It was also 
known ([Linton '66, section 5]) that compact Hausdorff spaces were repre­
sentable as the algebras of a suitable theory; according to Barr (personal 
communication), he, Beck, and Linton convinced themselves, in 1965, that 
the constructions of 5.24 could be given (and this appeared in [Manes '67, 
'69]). See also [Pan~ '71] (presented in [Mac Lane '71, VI. 9]). [Semadeni 
'74-A] and cf. [Gonshor '74]. 

It was pointed out to us by M. H. Stone that a perfectly modern definition 
of nonprincipal ultrafilter was given in 1908! by F. Riesz ([Riesz '08, p. 23]). 
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His five axioms for a collection of subsets Oll of a set to be an "ideale 
verdichtungstelle" are: (1) every superset of an element of 01' is again in Oll; 
(2) if A, B are disjoint and if their union is in Oll then A E Oll or B E Oll; (3) the 
intersection oftwo elements ofOll is again in Oll; (4) Oll is maximal with respect 
to properties (1)-(3); (5) the intersection of all elements of Oll is empty. See 
[Bell and Slomson '71 J for the use of ultrafilters in model theory (and 
Chapters 5, 6 there for details concerning the structure of ultrafilters per se). 
The axiom of choice, which is equivalent to Zorn's lemma, was used to 
prove the "ultrafilter theorem" (every filter is contained in an ultrafilter) 
used in 5.27. There exist models of (Zermelo-Frankel) set theory in which 
(1) the ordinal co has no nonprincipal ultrafilters or (2) every infinite set has 
at least one nonprincipal ultrafilter but the ultrafilter theorem fails or (3) the 
ultrafilter theorem holds but the axiom of choice fails. See [Jech '73, page 82, 
page 132, Theorem 7.1]. Since one expects any "actual construction" of a 
nonprincipal ultrafilter to build one on co in any model of set theory, it is 
popular to assert that "it is impossible to construct any example of a non­
principal ultrafilter"; at this writing, however, this assertion is only a con­
jecture. 

The characterization oftopological concepts in the language of ultrafilter 
convergence can be found in [Choquet '48J; we thank H. R. Fischer and 
O. Wyler for pointing out this reference. 

Infinitary universal algebra begins with the founding paper [Birkhoff'35J 
where algebraic recursion is assumed without comment. A number of works 
have been devoted to a rigorous construction of free Q-algebras when Q is 
infinitary but bounded: [Diener '66J, [Felscher '65, '72J, [Harzheim '66J, 
[Henkin, Monk and Tarski '71J, [Kerkhoff '65J, [Lowig '52, 57J, and 
[Stominski '59]. Stominski's monograph provides (among other things) a 
treatment along the lines of section 1. Kerkhoff's construction of free Q­
algebras, quite similar to 1.1.7, strikes us as being the simplest: given a set A, 
let B be the set of aB subsets of the set of aB (finite) words on the set 

A + u{n:Qn i= 0} + uQn 

observe that B is an Q-algebra via 

W~B 

and set AQ to be the Q-subalgebra of B generated by { {a}: a E A}. 
Unbounded universal algebra was first recognized by [Linton '66, '69J 

and 5.35-5.45 is an adaptation of Linton's work. Felscher proved that 
(Q, E)-algebras are coextensive with functors on the Lawvere theory in 
[Felscher '69, '72 3.2]. 

[Birkhoff '35, Theorem 27J proved that the free finitely-complete lattice 
on 3 generators is infinite, attributing the question to [Klein '34]. The proof 
of 5.48 was given independently by [Gaifmann '64J and [HaIes '64]. The 
simpler proof we presented is from [Solovay '66]. 
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Exercises for Seetion 5 

1. Recall that "characteristic function" establishes a bijection between 
subsets of X and functions X --> 2, where 2 = {O, 1} so that, in partic­
ular, a collection of subsets of X is a function 2x -- 2. Also recall that 
an I-indexed family of functions (/;:X ~ Y) corresponds to the 
single function J: X -+ yl. 
(a) Let T be the double power-set theory of 3.19. Thinking of XT as the 

set of functions from 2x to 2, show that IJ sends x to the xth projec­
tion prx :2x ) 2 and that the characteristic function of x(a 0 ß) 
is given by 

(b) (Kock-Lawvere) Let S be any algebraic theory in Set and let (2, e) be 
an S-algebra structure on 2. Define XS~ to be the set ofS-homomor­
phisms from the (cartesian power) algebra (2, e)X to (2, e). Show 
that S is a subtheory of the double power-set theory as in (a). See 
also exercise 11 of 2.3. 

2. In this exercise we abstract the structure of the set of supports of a func­
tion ljJ:Ax ~A. In case A = 0, X =1= 0 and the set ofsupports of 
ljJ is the set of all nonempty subsets of X. This case is singular and we 
concentrate on the case with A =1= 0. A quasifilter on a set X is a non­
empty collection ff of subsets of X satisfying (i) every superset of an 
element of ff is in ff, and (ii) the intersection of two elements of ff is 
again in ff. 
(a) If ljJ: AX ~ A is any function, with A nonempty, show that the 

set of supports of ljJ is a quasifilter on X. [Rint: if F, G have empty 
intersection, prove directly that ljJ is constant; otherwise define func­
tions e, J, g as shown below with ae, cJ, dg identities; also, see ex­
ercise 21 of 2.1.J 

F n G ____ a ___ ~) G - - e 
- -+FnG 
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F )X- - ---+F c 
I f 
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(b) If :!Ji is any quasifilter on X, prove that :!Ji is the set of supports of 
its characteristic function 2x ----> 2. 

(c) Prove that :!Ji is a quasifilter on X if and only if (iii) XE :!Ji, and 
(iv) for all F, G c X, F n GE :!Ji if and only if F, GE :!Ji. 

(d) Let Qo = {e}, Q1 = {.}, Q" = 0 otherwise. 2 = {0,1} is an Q­
algebra with (je = 1 and (j. defined by 

1 ° 

:[ffiJ 
Show that :!Ji is a quasifilter on X if and only if its characteristic 
function (2, ~l ) (2, ~) is an Q-homomorphism. 

(e) Let AT = {:!Ji::!Ji is a quasifilter on X}. Show that AT is a subtheory 
ofthe double power-set theory. [Hint: use (d) and exercise 1.] 

(f) [Day '75]. A partially-ordered set is directed if each two elements 
have an upper bound. Let T be the quasifilter theory of (e). Show 
that Set T may be identified with the category whose objects are 
complete lattices satisfying 

Inf(SupAi:iEl)) = Sup(Inf(ai:iEl):(ai)EJ1A;) 

for each family (AJ of directed subsets, and whose morphisms pre­
serve all infima and all suprema of directed subsets. [Hint: cf. 5.17; 
if :!Ji E XT, we have 

:!Ji = U n (prin(x) ).] 
Fe:F XEF 

3. Let J3 be the ultrafilter theory of 3.21. 
(a) For Ol/ E Xß, show that Ol/ is the set of supports of the semantic 

operation dfi. 
(b) Show that Ol/ is an ultrafilter on X if and only if its characteristic 

function is a Boolean ring homomorphism 2x --+ 2. 
(c) Recapture the result that J3 is a subtheory of the double power-set 

theory by combining (b) and exercise 1. 
4. Let AT = {:!Ji::!Ji is a filter on X}. Show that T is a subtheory of the 

double power-set theory. [Hint: in the context of exercise 2d, add the 
true constant e' and let (je' = 0.] Wyler [to appear] presents the T­
algebras as "interval-like" complete semilattices with compact topology. 

5. Why is "Xl x 2mx3mx4 ... " not a valid infinitary operation? 
6. Prove that J3 is unbounded. [Hint: look up the definition of "uniform 

ultrafilter".] 
7. Establish that the Boolean algebra of Lebesgue-measureable sub sets of 

(say) the unh interval is countably complete and atomic but that the 
quotient algebra modulo "equal almost everywhere," while still a 
countably-complete Boolean algebra, is nonatomic. 
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8. As mentioned in the proof of 5.48, the regular open sets of any topolog­
ical space form a complete Boolean algebra. What conditions on the 
space force this algebra to be atomic? 

9. With respect to the axioms for an ultrafilter given by Riesz in the notes, 
show that his axioms are equivalent to ours but that (4) is implied by 
the other axioms. 

10. Prove that a uniform space is complete if and only if every Cauchy 
ultrafilter converges. [Hint: prove that if two convergent filters do not 
converge to exactly the same sets of points then their intersection is not 
Cauchy; then use the ultrafilter theorem.J 

11. Let.si be a collection of subsets of X and define dO = {!Jl! E X ß: for an 
U E !Jl! there exists A E d with A cU}. Show that {d": d c 2X } is the 
set of an closed subsets of the topological space (Xß, X f.1). 

12. Prove that any variety (cf. exercise 6 + of section 4) of ß-algebras wh ich 
contains at least one algebra having two or more elements must be the 
variety of an ß-algebras. [Hint: let 2 be the unique two-element ß­
algebra; show that the inclusion Xß c 2(2 X

) is a ß-subalgebra.J 
13. Show that if T is not trivial then the syntactic operation 111: 1 ----+ 1 T 

has arity 1. 
14. In the context of 5.36, show that a T -homomorphism from (X, ~) to 

(Y, 8) is the same thing as a natural transformation from M~ to Me. 
15. Let W E XTandlet Sbe a subset of Xwith inclusion map i:S ~ X. Show 

that S is a support of w if and only if W is in the image of iT: ST --~ 
XT. [Hint: study the proof of 5.11.J 

16. Say that T is atomic if every operation has a minimal support, that is, 
for all W E XT there exists a support S of w such that no proper subset 
of S is a support of w. Prove that every finitary theory and the power-set 
theory are atomic but that the ultrafilter theory is not atomic. 

17. Prove that the double power-set theory is not atomic. [Hint: for gg E XT 
and SeX define ggS = {A c X: there exists B E gg such that AnS = 

B n S}; then gg c ggS; show that S is a support of gg if gg = ggs.J 
18. Our discussion of the supremum-infimum duality in 5.48 should not be 

misconstrued as effecting changes in the algebraic theory itself; in fact, 
for T the power-set functor, show that intersection is not a natural 
transformation TT ~ T. 

19. Let (Q, E) be an equational presentation and let U:Q-alg ) Set, 
V:(Q, E)-alg ) Set be the underlying set functors. 
(a) For each set nIet A(n) be the class of natural transformations from 

un to U. For each W in Qm, w: um ) U induces the structure 
of an Q-algebra on A(n) by (pi:i E m)bw = (Pi)W. Define 1111:n----+ 
A(n) by (i,I111) = pri: un ) U. Show that the intersection of 
all subalgebras of A(I1) containing the image of n has the universal 
property of 4.12 that all Q-algebra valued functions from n admit a 
unique extension to an Q-homomorphism. 

(b) Similarly, construct the perhaps large free (Q, E)-algebra by re­
peating the construction of (a) for the classB(n) of natural transfor-
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mations from vn to V [Hint: to prove that B(n) satisfies E show that 
B(n) may be identified with A(n)IEn in a sense similar to that of 2.1]. 

20. In this exercise we indicate how compact abelian groups arise as the 
algebras over a theory in Set. Webegin by reviewing some of the theory 
of character groups (see e.g. [Hewitt and Ross '63J, [Pontrjagin '46J). 
Let S denote the circle group, that is, the compact metric abelian group 
of complex numbers of modulus 1 with complex multiplication as group 
operation. For each locally compact abelian group C, the character 
group CII of C is the locally compact abelian group of all continuous 
homomorphisms from C to S with neighborhood basis at the origin 
{U(P, n):P is a compact subset of C and n = 1,2,3 ... } where U(P, n) 
is the set of all characters X in CII such that lxx - 11 < 1/n for all x in 
P. If C, D are locally compact abelian groups then the passage from 
f:C ~ D to fA:D II I CII , where xfA = f.x, establishes a bijec­
tion between the two sets of continuous homomorphisms. The map 
C -----+ (CII)II which sends c to "evaluate at c" is a topological isomor­
phism, so "( CII)II = C." C is compact if and only if CII is discrete. 
(a) For each set A, consider the discrete group (ignore the natural prod­

uct topology!) SA offunctions from A to Sand let AT denote the 
underlying set ofthe compact abelian group (SAt. Let AI1:A-----+ 
AT send a to the projection pra:SA I S. Given ß:B ~ CT, 
define the homomorphism I/I:Sc ----+SB by fl/l = (b 1--+ fßb) and 
hence the map ß#:BT I CT by ß# = 1/1 11 • Prove that (T, 11,0) 
is an algebraic theory in Set where oe 0 ß = oe.ß#. 

(b) Let C be a compact abelian group with underlying set ICI- Define 
a function ~: ICI T I ICI by X~ = c where c is the unique element 
of C such that the restriction of X: SICI -----+ S to CII is "evaluate 
at c." Prove that (ICI. ~) is aT-algebra. 

(c) Complete the proof that "compact abelian groups and continuous 
homomorphisms" = "T-algebras and T-homomorphisms." 

The next two exercises provide insight into the algebra definition of 
exercise 4.11 for theories in Set. 
21. A cardinal n is a generating cardinal for the algebraic theory T in Set 

if every p in XT admits a factorization 

p = (1 =A 1 ) ~ A 2 - ••• -----,. Ak ~ X 

such that for an1 ~ i ~ k and a E Ai' ar(aoei) < n·, where 

n" = {nn + 1 (if n is finite) 
(if n is infinite) 

If T has a generating cardinal, the least one is the generating rank of T. 
(a) Show that T has generating rank 2 if SetT = monoids. 
(b) A comparison algebra [Kennison '75J is an (Q, E)-algebra where Q 

has a single operation C of arity 4 and E consists of the following 
five equations: 
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aaxyC = x 

abxyC = baxyC 
abxxC = x 

ababC = b 
abtuvwCfuuwCC = abtfCabuuCabvuCabwwCC 
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(see exercise 3.3.8). Show that the corresponding algebraic theory 
has generating rank 3. [Hint: show abxyC = yabyWabxWW if 
tuv W = tuvtC] 

(c) Prove that "generating rank:::;; rank." 
(d) Let n be a generating cardinal for T and let ~: X T ) X satisfy 

"X1J.~ = idx" and "for all rx, ß:A , XT with card(A) < n°, if 
rx.~ = ß.~ then rx# .~ = ß# .C. Prove that (X, ~) is aT-algebra. [Hint: 
use exercise 4.11; let AT k be the subset of those elements of AT 
wh ich, in the definition of "gene rating cardinal" above, admit a 
factorization of size k; prove "for arbitrary A and rx, ß: A ) X T, 
if rx.~ = ß.~ then <p, rx#.O = <p, ß# .0 for all p E AT k" by induction 
on k; the assumptions on ~ provide the basis; if pE ATk+ b the basis 
argument also proves (rxk + 1 0 rx).~ = (rxk+ 1 0 ß).~; now use the induc­
tion hypothesis.] 

22. Let T be an algebraic theory in Set, let si be an arbitrary class of sets 
and let ~:XT ) X satisfy X1J.~ = idx. Prove that the following 
two conditions are equivalent: 
(a) For every rx, ß:A ) XT with A E si, if rx.~ = ß.~ then rx#.~ = 

r.~. 
(b) "~ commutes with si-ary operations", i.e., for every A E si and 

W E AT, the following diagram commutes: 

(XT, X/l)W 
XTA------------------------------~)XT 

X A -------------~) X T-----------------+) X Xw ~ 

[Hint: to prove (b) from (a), for arbitrary rx consider ß = rx.~.x1J.] 
23. [Michael '51]. Let off be the category of compact Hausdorff spaces and 

continuous maps. For A in .x, topologize the set, AT, of closed subsets 
of A by designating as open sub basis the family { U*: U open in A} where 
U* = {S E AT:S (\ U -=f. 0}. Show that AT is compact Hausdorff, that 
A1J:A-----AT, af----+{a} is continuous, that ifrx:A----->BT is con­
tinuous then 

rx# :AT -------» BT, SI f------» U{arx:a ES} 
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is well-defined and continuous and hence that (T, 1], 0), \I. 0 ß = \I..ß#, is 
an algebraic theory in x. [Hint: the only detail not readily available 
in Michael's paper is the continuity of \1.#; to this end, it suffices for open 
U in B to check that U*(\I.#)-l = (U\I.- 1)*.] We do not know how to 
interpret the T -algebras, but they clearly have to do with "continuous 
selections." 

24. Let \I. be a regular cardinal, let T have rank ~ \I. and let (X, ~) be T­
algebra possessing an inclusion-minimal set A of generators with 
card(A) = \1.. Show that every set generating (X, ~) has cardinal ~ \I. 

(and hence that any two minimal sets of generators have the same 
(cardinal). [Hint: if < B) = X then for b in B choose Sb c A with 
card(S,b) < \I. and bE <Sb); as USb = A, card(B) ~ \1..] 

Exercises for the Primer on Set Theory 

A. A left-to-right picture of the first few ordinals is 

o 1 2 ... 11 ••• ro s( ro) S2( ro) ... 

Extend the picture to the right as far as you can. Then prove that the set 
of all countable ordinals is uncountable. [Hint: consider the least un­
countable ordinal.] 

B. Prove Cantor's theorem: for any set A, card(2A ) > card(A) (where 2A 

means the set of all sub sets of A). [Proof outline: no f:A --------> 2A can 
be surjective since (cf. Russell's Paradox) the set {a E A: a ~ af} is not 
in the image of f.] Conclude that, for any cardinal x, x+ exists and 
x < x+ ~ 2x . Look up the "generalized continuum hypothesis" which 
asserts that x+ = 2x • 

C. Use Zorn's lemma to prove that there exists a family fi' of circles 
(boundary and interior) in the plane such that no two intersect (meaning, 
also, that no two are tangent) and yet so "densely distributed" that any 
circle not already in fi' must intersect a circle already in fi'. Observe 
that your argument makes no use of the structure of circles. 

D. Zorn's lemma was introduced in [Zorn '35] where its equivalence with 
the axiom of choice was noted (and proved in [Kneser '50]). The fol­
lowing proof outline is an adaptation of Banaschewski '53. [Assume no 
maximal element exists. (i) For each chain C there exists u(C) in X 
strictly greater than each element of C. The sole use of the axiom of 
choice is the existence of this choice function u from chains to elements; 
if you believe II really exists then Zorn's lemma is "true." (ii) Define C 
to be the set of all chains C such that (a) every nonempty subset of C 
has a least element and (b) for every x in C, x = ll(CJ where Cx is the 
chain of all y in C with y < x. (iii) Prove that for every C in C the chain 
C+ = C U {1l(C)} is again in C. (iv) If C, D E C exact1y one of"C = D," 
"C c D, C i= D, and C = D x for some x in D," "D c C, D i= c, D = Cx 

for some x in C" holds (this takes some work). (v) W = uC E C. 
(vi) ll(W) E W, the desired contradiction.] 
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E. Use Zorn's lemma to prove that for any two sets X, Y, either X admits 
an injection into Yor Y admits an injection into X. [Proof outline: use 
the partially ordered set of all (A, f) with A c X and f: A ----+ Y injec­
tive; show that a maximal (A, f) is such that f is onto or A = x.] 

F. Selfreference is not really a set-theoretic phenomenon. Consider the 
truth value of the senten ce "this sentence is false." 



Chapter 2 

Trade Secrets of Category Theory 

This ehapter provides a selfeontained introduetion to some elementary 
topies in eategory theory. Familiar eonstruetions of set theory are generalized 
to an arbitrary eategory. "Sets with strueture" generalizes to "objeets with 
strueture," providing a universe in whieh to diseuss "algebraic structure." 

1. The Base Category 

A proviso sueh as "all spaces are assumed Hausdorff and all maps are 
assumed eontinuous" is the mathematical author's way of saying "let 
Hausdorff topological spaces and eontinuous maps be the base category." 
The most familiar base category is the category Set of sets and functions. In 
this section, we explore how some familiar constructions involving sets and 
functions can be described in more arbitrary categories. 

1.1 Assumption. For the balance ofthis section,jix a category yt. We 
will assume that ff is locally small (also: ,x' has small hom-sets) in the sense 
that for each pair (A, B) the dass ff(A, B) is a small set (as dejined in the primer 
on set theory of section 1.5). 

Set is certainly locally small. In a category of"structured sets" morphisms 
from X to Y are determined as functions from the underlying set of X to 
that of Y," therefore all categories of structured sets are locally small. In pure 
category theory one is interested in "funetor categories" (see exercises 1, 2.9 
and 3.2.5) such as the category whose objeets are functors from Set to itself 
and whose morphisms are natural transformations (obviously an important 
category with regard to the material in Chapter 1); this category is not locally 
small. We are therefore making some concessions to everyday mathematics 
in insisting that ff be loeally small. The numerous examples we will draw 
upon in this chapter are by and large restricted to categories of sets with 
structure. lust to see what is abstractly possible, let us note two different 
sorts of category. 

1.2 Example. If ff has only one object, then the set M of all morphisms 
of ff consists solely of endomorphisms of the unique object (where, in any 
category, an endomorphism is a morphism whose domain and codomain coin­
eide). Composition is an everywhere-defined associative operation on M and 
the identity map ofthe unique object is a two sided unit. ff is the same thing 
as a monoid. 

1.3 Definitions. A preordered dass is a (perhaps large) dass C equipped 
with a reflexive and transitive binary relation. A preordered category is a cate­
gory in which there is at most one morphism from A to B for each pair (A, B) 
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olobjeets. For all practical purposes the two notions are the same (define 
A ~ B to mean there exists a morphism from A to B). Henceforth we will 
treat preordered dass es as if they were. categories. 

1.4 Isomorphisms in a Category. It is traditionally dear when two 
structured sets of the same sort are "abstractly the same." This occurs just 
in case there is a "structure-preserving" bijection, called an isomorphism, 
between them; in actual context, the following definition of "isomorphism" 
usually coincides with the intuitively most natural concept of "structure­
preserving relabeIling." The morphism I: A --> B is defined to be an iso­
morphism in X just in case there exists a morphism 1- 1: B ---+ A in X 
such that I.f - 1 = idA and I -1.f = idB • In Set, I is an isomorphism if and 
only if I is a bijection. For X = groups and homomorphisms, I is an iso­
morphism if and only if I is a bijective homomorphism. For X = topological 
spaces and continuous maps, I is an isomorphism if and only if I is a homeo­
morphism (it is not sufficient that I be a continuous bijection). Two objects 
A, B in X are isomorphie in X if there exists an isomorphism I: A --> B 
in .ff. Isomorphism is an equivalence relation, often written "~", on the 
objects oLff. One ofthe most fundamental philosophical principles in cate­
gory theory is: isomorphie objeets are abstraetly the same. Since the construc­
tions of category theory are, as a rule, unique only "up to isomorphism," 
we should never lose sight of what categorical isomorphism me ans. For 
example, in the category of metric spaces and continuous maps, "isomorphic" 
only means "homeomorphic" which may or may not be adequate, depending 
on context. 

A monoid is a group if and only if all of its morphisms are isomorphisms. 
A preordered dass is partially ordered (that is, ~ is antisymmetric as weIl 
as reflexive and transitive) if and only if every isomorphism is an identity 
morphism. 

1.5 Products. In set theory, the product of a family (Ai: i E I) of sets is 
the set A of all I-tuples (ai:i EI) with each ai E Ai' The function A -+ A j 

which sends (aJ to aj is called the jth projection function. If A' is a set and 
if we are given functions Ii: A' ---+ Ai then there exists a unique function 
I: A' ---+ A such that f.Pi = Ii for all i EI; I is defined by al = (aIi: i EI). 

Given a family of objects (Ai: i E I) in a category X, a produet oI(Ai: i E I) 
with respeet to X is an object A of X and an I-tuple of x-morphisms of 
form Pi: A ---+ Ai possessing the "universal property" that whenever A' is 
an object of X similarly equipped with an I -tu pIe of X -morphisms of form 
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fi: A' -------> Ai there exists a unique :ff -morphism f: A' -------> A such that 
f.Pi = fi for an i E 1. ("Universal property" is a vague term which refers to 
a construction whose central feature is the existence of a unique morphism 
subject to a categorical property.) The morphisms Pi are called projeetions. 

1.6 Proposition. Any two produets of(Ai:i E 1) are isomorphie. 

Proof. Suppose Pi: A -------> Ai and qi: B -------> Ai are both products of 
(AJ Consider the unique induced maps as shown below: 

A 
I 
I 

1 

fl 
1 

"j.-

B 

1 

gl 
1 Pi 

"" A 

Then (fg)Pi = f(gp;) = fqi = Pi = (idA)Pi for an i E I, which proves fg = idA­
Similarly, gf = idB • Therefore fis an isomorphism transforming one set of 
projections into the other (which would seem to be as isomorphic as two 
products could possibly be without being equal). D 

Two things are worth noticing in the above proof: it works for an uni­
versal properties; it required two of the three category axioms. 

Because of 1.6, we can think in terms of the product of (Ai) and write it 
as TIAi. In practice, "TIA;" is either any convenient choice of-or the iso­
morphism dass of all-l -tupIes Pi: A ----+ Ai with the universal property; far 
most categarical purposes, these distinctions do not matter. In some con­
texts, the notation "TIA;" means just the object A, e.g. as in "consider Pj: 
TIAi ) A/ which is synonymous with "let Pi:A ----+ Ai be a product 
of(A;)". 

The "size" of a product is the size of I. The smallest product is the empty 
product (i.e., I is empty), which it is standard to call a terminal objeet of :ff, 
often denoted by the symbol LA terminal object is the same thing as an 
object A possessing the universal property that far an objects A' there exists 
a unique map A' ~ A. In Set, a terminal object is a I-element set, which ex­
plains the notation "1." The category of all sets which do not have exactly 
one element and functions does not have a terminal object. Unary products 
always exist (idA : A -------> Ais one.) Binary products are better written Al x 
A z. :ff has small produets if TI Ai exists for every family (Ai: i E 1) of objects 
of:ff with lasmall set. Similarly,:ff hasfinite produets, has eountable produets 
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and so on accordingly as [lAi exists for finite families, far countable families, 
et cetera. 

Several examples follow and more appear in the exercises. 

1. 7 Example. Set has products, the usual ones. The category of finite s,ets 
and functions has finite products (the usual ones). The fact that an infinite 
product (in the usual sense) of finite sets is not necessarily finite strongly sug­
gests but does not prove that finite sets does not have products. To justify 
OUf intuition, notice that morphisms 1 --+ X are essentially the same thing 
as elements of X. Using the universal property of a product, this proves that 
the elements of[lA i are indeed in bijective correspondence with the elements 
of the usual product. 

1.8 Example. The category of topological spaces and continuous func­
tions has products; one provides the usual cartesian product set with what 
is normally called the product topology, or the topology of pointwise con­
vergence. A net (ai, a) converges to (a;) in [lAi if and only if for all i, a;, a con­
verges to a;. This statement both characterizes the product topology and 
amounts to the universal property. 

1.9 Example. The category of metric spaces and distance-decreasing 
maps (we call the function f: (X, d) ) (X', d') distance decreasing iffor 
all x, y E X, d'(xj, yf) ::::;; d(x, y)) has finite products and many other~but not 
all~products. Since all constant functions are distance decreasing, we can 
use the one-element metric space as in 1.7 to argue that if (A, d) = [l (Ai, di) 
A must be the usual product of the sets Ai' Because projections must be 
distance decreasing, we must have d( (ai), (b;)) ::::;; Sup(d;(a;, b;): i E I). It is now 
easy to prove that [l(A;, d;) exists if and only if Sup(di(a;, b;): i E I) is finite far 
every pair (a;), (bi) in the usual product set A; and then (A, d) is the product 
where d is this supremum. For any fixed M, any family of metric spaces of 
diameter::::;; M has a product which is itself of diameter::::;; M. 

(1.10) In a preordered dass, products are exactly the same thing as infima. 

1.11 Proposition. Let:ft have products and let T be an algebraic theory 
in:ft. Then the category :ftT ofT-algebras has products. 

Proof. Let (A;, ~;) be a family of T-algebras and let Pi: A ---> A; be a 
product diagram in :ft. By the universal property, there exists a unique mor­
phism ~: AT ----+ A such that 

(p;)T 
A T-----'~=-----+) Ai T 

I 
I 
I 

~I 
I 

J-
A ----------+> A; 

Pi 
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Although 1.4.27 was nominal1y restricted to Set, the reasoning there is 
perfectly general and proves that (A, ~) is aT-algebra. It remains to estab­
lish the universal property. Suppose we have given T-homomorphisms 
J;:(B, ß) ) (Ai' O. There exists a unique x-morphism J:B -----+ A 
such that J,Pi = J; for all i. In the diagram below, we must show that the 

J;T 

JT Pi T 1 
>AT >AiT BT------~----~ 

ß ~i 

B--------------~ 

I 
)A )Ai 

f Pi 

J 
j; 

leftmost square commutes given that all the outer rectangles do. But this 
follows immediately from the universal property, since the leftmost square 
is commutative followed by each Pi' 0 

The above proposition is our first encounter with "categorical universal 
algebra." 

In all of the examples of products so far, there is no evidence that the 
underlying set of the product structured set, when it exists, is not always the 
usual product set. The following is such a counterexample. 

1.12 Example. Consider the category whose objects are metric spaces 
with base point (X, d, x) (the "base point" xis simply an arbitrary element of 
X) and distance-decreasing base-point preserving (i.e., xJ = x') functions. 
Every family (X;, di , xJ has a product (X, d, x) where X is the sub set of the 
usual product of the Xi consisting of al1 tuples (xJ with the property that 
Sup(di(Xi , Xi)) is finite. As in 1.9, dis defined by d((xJ, (yJ) = Sup(di(Xi , yJ: 
i E 1) which is guaranteed to be finite by the definition of X and the fact that 
each di satisfies the triangle inequality. (xJ provides the base point. The pro­
jections are the restrictions ofthe usual ones. In general, X is a proper subset 
of the usual product set. 

1.13 Equalizers. Given sets Ab A 2 and two functions J, g: Al ------> A 2 

the inclusion map i of the subset A = {x E Al: xJ = xg} on which J and 9 
agree can be characterized up to isomorphism by the following universal 
property: for every function i' : A' -----+ Al such that i'f = i' 9 there exists a 
unique function h: A' -----+ A such that hi = i' (since the image of l' is con-
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tained in A, h is defined by a'h = a'i'). Given morphisms f, g:A 1 ) A 2 

in a category:Jt, an equalizer of(f, g) is an object E and a morphism i:E ----+ 

A with the following universal property: 
(1) i.f = i.g 

f 
E A ---------+)A ----~---~) 1 ) 2 
~ g 

, 
h' i' , , 

'E' 

(2) Given i' with i'.f = i'.g, there exists unique h with h.i = i'. 
By the same sort of reasoning as in 1.6, equalizers are unique up to iso­

morphism. We speak of the equalizer of fand g and write eq(f, g) to denote 
any convenient representative of-or the entire isomorphism dass of-all 
equalizers i:E --> A of f, g:A 1 ~ A z. :Jt has equalizers if eq(f, g) exists 
for every pair f, g:A 1 ~ A 2 • 

Most categories of sets with structure have equalizers via the appropriate 
"substructure" on the subset of points on which fand g agree. For topological 
spaces, use the relative topology. For metric spaces (either 1.9 or 1.12) just 
restrict the metric to the subset. For groups and homomorphisms, the subset 
in question is a subgroup. The latter, or course, is another instance of cate­
gorical universal algebra. 

1.14 Proposition. Let .ff have equalizers and let T be an algebraic theory 
in ,7(". Then the category :JtT of T-algebras has equalizers. 

Proof. Let f, g:(A, ~) ) (B, 8) be T-homomorphisms and let 
i:E -----A = eq(f, g) in :Jt. Consider the diagram: 

ET iT fT 
)BT >AT 

I gT 
) 

I 
I 

~Ol 8 

4- f 
E >A )B 

g ) 

We have (iT.~)f = iT.(~f) = iTfT.8 = (if)T.8 = (i.g)T.8 = iT.~.g. From 
the universal property, we obtain a unique ~o with ~o.i = iT.~. We need to 
show on the one hand that (E, ~o) is aT-algebra (since then surely i becomes 
a T-homomorphism) and on the other hand that the universal property is 
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satisfied (which amounts to the assertion that if (E', y) is aT-algebra and if 
J:E' -------+ Eis a Jf'-morphism then J:(E', y) ) (E, ~o) is a T-homo­
morphism providingJ.i: (E', y) ) (A, 0 is). Consideration ofthe details 
of why this worked for products (see 1.4.27 and 1.11), shows that the result 
was a formal consequence of the fact that when two maps into a product 
are the same fonowed by each projection the two maps were al ready equal. 
Applying the same concepts, the proof is completed by observing 

1.15 Proposition. W henever i: E ---> A is the equalizer oJ two morphisms 
J, g:A ) B in Jf' and whenever two morphisms t, u:E' ) E have 
the property that t.i = u.i, then t = u. The proof of 1.15 is clear, since if i' 
denotes the common value of t.i and u.i, i'.f = i'.g and t and u are both the 
unique morphism induced by i'. D 

1.16 Example. The category of nonempty sets and functions does not 
have equalizers. For let J, g: A -----> B be a pair of functions between non­
empty sets which do not agree on any element of A: if i: E --+ A satisfied 
i.f = i.g then, since an objects are nonempty sets, there exists x E E and J 
and g agree on xi, a contradiction. A category theorist believes that a category 
without equalizers is "incomplete" and regards with suspicion statements 
such as "all sets will be assumed nonempty" which preface many books and 
papers; to her, this is like assuming that an complex numbers are nonzero. 

1.17 Example. (Suggested by M. Barr.) Let Jf' be the category whose 
objects are abelian groups which have no elements of order 2 and which are 
2-divisible (i.e., for an x there exists y with 2y = x), and whose morphisms 
are group homomorphisms. Given J, g:A -----> B in Jf', let Eo be the sub­
group {a E A: aJ = ag}, define Ek + 1 = 2Ek and set E to be the intersection 
of an Ek. Then E is 2-divisible (if x is in E let Yk in Eo satisfy 2kYk = x; as 
A has no elements of order 2, 2Yk+ 1 = Yk, so that 2Yl = x with Y1 in E). It 
is then clear that the inclusion map of E is the equalizer of J, g in Jf'. For 
a specific case, let Q be the additive group of rational numbers, let Z be the 
subgroup of integers and consider the canonical projection and zero map: 

e 
Q-----:::----~t Q /Z o 

Here Eo = Z whereas E = O. Thus Jf' has equalizers but they are not con­
structed at the level Set. 

1.18 Limits. A diagram sc he me ,1 is given by a set N(,1) of nodes and 
a specification to each ordered pair (i, j) of nodes a set ,1(i, j) of edges Jrom 
i to j, satisfying the axiom that ,1(i, j) is disjoint from ,1(i', j'} if (i, j) =1= (i', j'). 
For ex am pie, any category is a diagram scheme where the objects are the 
nodes and the morphisms are the edges. A diagram in a category Jf' is a pair 
(,1, D) where ,1 is a diagram scheme and D assigns to each node i E N(,1) an 
object Di of Jf', and then D assigns to each edge rI. E ,1(i,j) a Jf'-morphism 
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Da:D; ----> Dj . A lower bound of a diagram (LI, D) is a pair (L, 1/1) where L is 
an object of:ft and 1/1 assigns to each node i E N(A) a:ft -morphism 1/1; ofform 
I/I;:L----> D; such that 

~D' 

l~ D, 

I/I~Dj 
commutes for every edge IX E A(i, j). A limit of the diagram (.1, D) is a lower 
bound (L, 1/1) with the universal property that whenever (L', 1/1') is another 
lower bound there exists a unique :ft -morphism f: L' ~ L such that 

L 
1/1; 

~D; 
Pt" , , 

f', 1/1 i , 
'L' 

is commutative for an nodes i. 
(1.19) If:ft is a preordered category, a lower bound of(A, D) is an object 

L with L :S; D; for an i. L is a limit if and only if L = Inf(D;) 
(1.20) Let I be an arbitrary set, and define .1 by N(A) = I, A(i, j) = 0 

for an i, j E I. For each category :ft, a diagram of form (.1, D) is the same 
thing as an I-indexed family of objects of :ft. For such diagrams, "limit" 
means "product." 

There is an alternate equivalent definition oflower bounds which is useful 
in practice. A sub set F of N(A), for a given diagram scheme .1, is canedfinal 
if for an jE N(A) with j 1= F there exists i E F with A(i, j) "# 0. Given (.1, D), 
a lower bound relative to F is a pair (L, 1/1) where L is an object of :ft and 1/1 
assigns to each i E F a :ft-morphism 1/1; of form I/I;:L ~ D; subject to the 
conditions that the outer (solid) square of the diagram 

L 
1/1; )D; 

" "-
"-

"-

1/1 ;' 
"- 1/1. ,J Da 

"-
"-

"-
"- )!. 

Di , 
Da' 

>D j 
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is commutative for all i, i' E F, jE N(L1), (X E L1(i, j), (x' E L1(i', j) and that the 
triangle IjIi.Da = IjIj is commutative whenever i, jE F, (X E L1(i, j). So long as F 
is final, it is obvious that "restricting to F" is a bijective passage from lower 
bounds of (,1, D) to lower bounds relative to F of (,1, D) whose inverse is 
obtained by defining IjIj as indicated in the diagram above. For all practical 
purposes, lower bounds relativized to a final set are the same as lower 
bounds. 

(1.21) Let ,1 have two nodes and two edges as shown: 

____ -::-___ ~~ U 

ß 

A diagram (,1, D) in ff is any pair of ff-morphisms with the same domain 
and codomain. Given such a diagram J, g: A ----+ B, a lower bound relative 
to the final set {t} is a ff -morphism i: E ---> A such that if = i.g. Limits of 
such diagrams are the same thing as equalizers. 

By exactly the same reasoning used in 1.6, we have that any two limits of 
the same diagram are isomorphie. We speak of the limit of (L\, D) and write 
lim D to denote any convenient representative of-or the equivalence dass 
of all-limits of(L1, D). A diagram scheme ,1 is small if N(L1) is a small set and 
if L1(i, j) is a small set for all i, j. ff has small limits and % is small complete 
if for every diagram (,1, D) in f[ with ,1 small, (,1, D) has a limit. A category 
may have some large limits. For example, ifL1 has two nodes i,j with L1(j, i) = 

o but L1(i, j) a large set and if (,1, D) is a diagram such that only two distinct 
morphisms Di ---> Dj are among the Da, lim D is just the same as the equalizer 
of the two morphisms involved. On the other hand, if f[ is not preordered, 
so that there exist objects A, B admitting at least two distinct morphisms 
J, g:A ----+ B then, for each dass I, there are 21 distinct I-tuples of mor­
phisms from A to B. Therefore, if the product P of I co pies of B exists, there 
are at least 21 %-morphisms from A to P; since % is locally smalI, no such 
P can ex ist if I is a large set. With the exception of preordered dasses, locally 
small categories never have large products. 

The following quite remarkable theorem guar an tees that most familiar 
categories have small limits and justifies our preoccupation with products 
and equalizers. 

1.22 Theorem. f[ has small limits if and only if % has small products 
and equalizers; in that case, any smalllimit can be represented as the equalizer 
oJ a pair oJ maps between two products. 

Proof. Let (,1, D) be a diagram in.% with ,1 small. The following diagram 
defines (using the universal property ofthe rightmost product) the morphisms 
J and g. Let (E, k) = eq(f, g). Defining IjIi as above, (E, IjI) = lim D. The 
proof follows immediately, since 

(1) For any object E', an assignment IjI' of IjI;:E ----+Di for all i E N(L1) 
corresponds to a single morphism ~/:E ) I1(D i :i E N(L1)). 
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E ___ --'-'-k __ ~) n Di-----.;.---+ 
i/KiJ) 

f '", ) n D· 
g 

) i,jeN(J) J 
ae J(i,j) 

Pa 

Da )Dj Di--------~------~ 

(2) (E',Ij/)asin(l)isalowerboundof(LI,D)ifandonlyifl/t'J= l/t'.g. 0 
1.23 Duality. The dual or opposite of a monoid M is the monoid MOP 

sharing the same set of elements with M but whose composition * is defined 
by x * y = yx. Again, the dual or opposite of a preordered class (X, ~) is 
the preordered class (X, ~rp = (X, ~) (where, of course, x ~ y means 
y ~ x). Both of these are instances of a more general construction. The dual 
or opposite of a category .1{' is the category .1{'0P defined as follows. The 
objects of .1{'0P are the same as the objects of .1{'. We define morphisms by 
.1{'0P(A, B) = .1{'(B, A). As in the case of clones (1.2.7), two different categories 
share the same objects and some notational distinction is in order: let us 
write f:A ----<B to mean f:B --+ A in .1{'. Then composition in .1{'0p is 
defined by 

(A ~B)(B'~ C) = (C ~ B)(B ~ A) 

The identities are provided by idA:A ( A = idA:A ) A. The 
category axioms are clear and it is obvious that .1{'0p is locally small if .1{' iso 
Moreover, (.1{'°prp = .1{', so .1{'0P is a typical category. If S(.1{') is a statement 
about an arbitrary category .1{', Sop is the statement defined by SOP(.1{') = 
S(.1{'°P). For example, consider the statement 

S(.1{'):Given f:A - Band g:B --+ C in.1{', 
if fand g have right inverses, so does f.g 

The statement is true in every .1{' since if f1 : B --+ A and g 1 : C --> B with 
f.f1 = idA and g.g1 = idB then (f.g)(g1.f1) = idA' We deduce that SOP(which 
has the same domain as S) is also universally true. From the point of view 
of .1{', sop asserts that the composition of maps having a left inverse again 
has a left inverse. Notice that if.1{' and .P are dual to each other the situation 
is abstract1y symmetrie; we do not know if "A ~ B" refers to .1{' or to .P. 
From the "base category" point of view, one of the categories is "real" and 
the other "abstract" (e.g. consider Set and SeeP). This contextual asymmetry 
is one of the reasons duality is useful. The principle of categorical duality is: 
Sop is universally true ifS iso Duality cuts the work in half, as will be illustrated 
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with frequency hereafter. Even when we are interested in specific "concrete" 
categories, duality forces us to look at some rather abstract ones. 

1.24 Co-Concepts. The dual of "freeble" is cofreeble. For example, if 
f: A ----> B in ff then B is the domain off in ffOP and hence is the codomain 
of f in ffop op = ff which is consistent with our original terminology. A 
more precise algorithm is 

and one usually doesn't bother with the hyphens (but note: co-complete, 
co-optimal). 

1.25 Coproducts. A diagram (we can now use that term with aplomb) 
ini: Ai -- A is a coproduct in ff if, of course, ini: A ------{ Ai is a product 
in ffoP. It follows at once from the dual of 1.6 that coproducts are unique up 
to isomorphism (note: coisomorphisms are isomorphisms). 

The notation for coproducts is UA i • Binary coproducts are better written 
A + B. The empty coproduct is a coterminal object which it is more standard 
to call an initial object. A common symbol for an initial object is O. 

Abstractly, product and coproduct are the same concept. But let us 
explore what coproducts look like in some familiar contexts. 

(1.26) In Set, UAi exists and is the disjoint union {(i, a): i EI and a E Ai}. 
The ith injection (it is standard to call the coproduct coprojections injections) 
ini sends a E Ai to (i, a). The universal property is easy: 

The unique fis defined by (i, a)f = a/;. 0 is the empty set. 
(1.27) The category oftopological spaces and continuous functions has 
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coproducts. Provide the disjoint union at the level of sets with the largest 
topology making all the injection functions continuous (a set in UA i is open 
if and only if its intersection with each Ai was already open). 

U nlike the situation for products, familiar categories of sets with structure 
tend to have coproducts but the underlying set of the coproduct is different 
from the disjoint union. 

(1.28) The category of abelian groups has coproducts. U Ai is usually 
called the direct sum, and is written EB Ai; it consists ofthe subgroup of IlA i 

of all tuples (a;) such that ai = 0 for all but at most finitely many i. The ith 
injection map sends a to the I-tuple (b)a:j E 1) where "b" denotes the 
Kronecker delta. For the universal property, J is defined by J = Lh (where 

Ai 
In; ) EBA i 

I 
I 

I 
If 

I 
/ 

BIl 

the sum is pointwise finite). 

1.29 Co equalizers. A diagram 

f 
) B 

q 
A >Q 

g ) 

in :x: is a coequalizer if, of course, q = eq(f, g) in :x:op • 

(1.30) Set has coequalizers. GivenJ, g: A ~ BIet R be the intersection 
of all equivalence relations on B containing {(aJ, ag):a E A}. Set Q = B/R 
with canonical projection q:B ~ Q. Then q = coeq(f, g). Clearly, f.q = 

g.q. 

J )B q 
A >Q 

g ) 
I 

I 
/ 

q' /h 
/ 

/ 

Q''''-

Now suppose given q' as shown above with J.q' = g.q'. Then S = {(bi> bz): 
b1 q' = bzq'} is an equivalence relation on B containing R. h is uniquely 
defined by (bR)h = bq'. 
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(1.31) The category of topological spaces and continuous functions has 
coequalizers. Construct the coequalizer at the level Set as in 1.30 and assign 
Q the quotient topology. 

(1.32) The category of abelian groups and homomorphisms has co­
equalizers. Given J, g: A ~ B, define q: B ~ Q to be the canonical pro­
jection B ) B/lm(f - g). If Z is the additive group of integers 
and Zz is the 2-element group, 

° q Z----.:::...----*~ Z --------7-) Zz 
2 

is the coequalizer in "abelian groups" although the coequalizer in Set is 
infinite (see exercise 22). An abelian group is torsionjree if each of its elements 
is of infinite order. Then 0, 2: Z ~ Z is in the category of torsion-free 
abelian groups although Zz is not; but, in general, the category of torsion­
free abelian groups does have coequalizers (namely B -----> Q ~ Q/T, where 
Q is the coequalizer in the category of abelian groups and T is the torsion 
subgroup of Q consisting of all elements of finite order). Thus, coeq(O, 2) = ° 
in the category of torsion-free abelian groups. 

(1.33) In a preordered dass, given J, g: A ------> B, J = 9 so that idB = 

coeq(f, g). 

1.34 Colimits. Given a dia gram scheme LI define the dual scheme Llop 
by N(LlOP) = N(LI), LloP(i, j) = LI (j, i). If (LI, D) is a diagram in :f{, define the 
diagram (Ll OP, DOP) in :f{0P by (DOP)i = Di and, for a E LlOP(i,j), (DOP)a = Da: 
Di --< Dj • A subset C of N(LI) is cofinal if C is final qua subset of N(LlOP), 
i.e., for all j E N(LI), j f/: C, there exists i E C with LI(j, i) #- 0. If Cis cofinal, an 
upper bound oJ(LI, D) relative to Cis a lower bound of(LlOP, DOP) relative to C, 
that is a pair (L, t/I) where L is an object of :f{ and t/I assigns a morphism 
t/li:Di -----* L to each i E C in such a way that the square (and triangle *) 

* 
t/lj 

Dj'--------~ 

t/lj' 

is commutative for allj,j' E C, for all i E N(LI) and for all a E LI(i, j), a' E LI(i, j') 
(and * holds when also i E C). An upper bound of(LI, D) is an upper bound of 
(LI, D) relative to C = N(LI). An upper bound (L, t/I) is a colimit of (LI, D) 
just in case it is a limit of (LlOP, DOP), i.e., just in case it is an upper bound with 
the universal property displayed below with respect to other upper bounds 
(L', t/I'): 
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Di 
I/Ii )L 

/ 
/ 

/ 

1/1; / 
/ 

/ 
L'\t. 

The notation for colimits is colim D. By the dual of 1.22, a category is small 
cocomplete if and only if it has coproducts and co equalizers. 

1.35 Various Epimorphisms. "Surjective" is an important property of 
functions. As it turns out, there are numerous categorical definitions wh ich 
characterize "surjective" in Set; we will content ourselves with three of them. 

Let I: A ----+ B in ff. I is split epi or I is a split epimorphism if I has a 
left inverse, that is if there exists d: B ----+ A in ff with df = idB. I is a 
co equalizer if 1= coeq(g1> g2) for some pair g1> g2:C -----+A. I is epi or 
I is an epimorphism if for all pairs t, u:B ----+ T such that I.t = I.u, t = u. 

1.36 Hierarchy Theorem for Epimorphisms. A split epimorphism is a 
co equalizer and a coequalizer is an epimorphism. 

Proof. If I: A ----+ B is split epi with df = idB then I = coeq(idA,I.d). 
That coequalizers are epi is dual to 1.15. D 

Epimorphisms are important in diagram chasing. A typical situation is 
shown below. Assume that we wish to prove that (?) commutes given that 

) 

? 

) 

the peripheral diagram and the two triangles do. There is no problem if we 
know p is an epimorphism. 

(1.37) In Set, all epimorphisms are split and all three concepts mean 
"surjective." The axiom of choice says that surjections are split epi. Since 
any function I: A ----+ B composes equally with the characteristic functions 
XB' X1mU) : B ) {O, l} it is clear that epimorphisms are surjective. 

(1.38) In the category of Hausdorff spaces and continuous maps 
I:A ----+ B is a coequalizer if and only if I is surjective and B has the quo­
tient topology induced by I, and I is epi if and only if the image of I is a 
dense subset of B. The first statement and half of the second are referred to 



96 Trade Secrets of Category Theory 

exercise 11. We must show that every epimorphism has a dense image. For 
any I: A -------* B, let 1 be the closure of the image of I and form (B + B)11 
as shown below: 

B B+B (B + B)/1 

There are injections in 1 , in2 : B ) B + Band a canonical projection 
p:B + B ) (B + B)11. Since I.(in1.p) = f.(in 2.p), we have that 
I = B when I is epi. (We leave it as an exercise to prove that (B + B)/1 is 
Hausdorff.) 

(1.39) In the category of abelian groups and homomorphisms, epimor­
phisms are the same thing as surjective homomorphisms. Surely surjective 
homomorphisms are epi. Given a homomorphism I: A -------* B, let 1 be the 
image of I and let p: B -------* BI1 be the canonical projection. Then I.p = 1·0. 
If I is epi, p = 0 which implies that I = B. 

(1.40) Epimorphisms need not be surjective in SetT. Consider the inclu­
sion map i:N -----t Z ofthe natural numbers into the integers as a homomor­
phism ofrings or ofmonoids, take your choice; in either category, i is epi. To 
prove it, observe that any monoid homomorphism, I, detined on Z satisties 
( - n)I· (n)I = e for every nE N, thereby forcing ( - n)I = (nI) -1. 

(1.41) A Boolean (j-algebra is a Boolean algebra with countable suprema 
and countable intima (see 1.5.17). A fundamental structure in measure theory 
is a set together with a sub Boolean (j-algebra of subsets. By a homomorphism 
of Boolean (j-algebras we mean a Boolean algebra homo mo rphi sm which 
preserves the countable suprema and intima. It is an open quest ion whether 
epimorphisms are surjective in this category. 

1.42 Proposition. Given I:A -------* Band g:B -------* C in .f, then (/) 11 
I, gare epi, so is I.g; if I, gare split epi, so is I.g; (2) 1II·g is epi, so is g; if 
I.g is split epi, so is g. 

Prool. (1) The split version was illustrated in 1.23. For epimorphisms, 
if (f.g).t = (f.g).u then g.t = g.u and t = u. (2) For epimorphisms, if g.t = 
g.u then surely (f.g).t = (f.g).u so that t = u; for split epimorphisms, if 
d.(f.g) = id, surely (dj).g = id. 0 

The analog of 1.42 for co equalizers is not always true (see 1.57 and 1.58). 

1.43 Various Monomorphisms. The dual concepts to split epi, coequal­
izer, and epi are split mono (or split monomorphism), equalizer, and mono 
(or monomorphism). Thus,f:A -------* B is split mono ifthere exists s:B -------* A 
with I.s = idA , I is an equalizer if 1= eq(gl> g2) far some pair gl' 
g 2: B ~ C and I is mono if for aB pairs t, u: T -----t A such that t.f = u.f 
we have t = u. Dual to 1.36 and 1.42 we have at once. 
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1.44 Proposition. Split monos are equalizers and equalizers are monos. 
If fand g are mono or split mono, so is f.g. If f.g is mono or split mono, so 
isf· 0 

(l.45) In Set, mon os are the same thing as injective functions (use con­
stant functions for t and u). Given any subset A of a set X, it is easy to con­
struct functions f, g:X ~ Y with A = eq(f, g), and this makes it dear 
that all monos are equalizers. In fact, if f:A ------+ Bis mono and A is non­
empty, then f is split mono (if I = Im(f), let s = f - 1 on land any element 
of A elsewhere). The indusion map of the emptyset into a nonempty one is 
mono, but never split mono. 

1.46 Proposition. Let T be an algebraic theory in %. A T-homomorphism 
f:(A, ~) ) (B, 8) is a monomorphism in %T if and only iff:A ~ B 
is mono in %. 

Proof. Clearly, mono in % implies mono in %T. For the converse, 
let t, u: C ------+ A be arbitrary morphisms in %. Let t#, u# be the unique 
homomorphic extensions of t, u as provided by the universal property of 
(CT, Cf1) (see 1.4.12) and shown below (the breaks in the arrows denotes 
that the morphisms are only in %, not in %T). 

t# f 
(CT, Cf1) ~ (A, ~)----'----~) (B, 8) 

\ u' ;f. 
C"\ctl 

If tf = uf then t #f = Li #f (as they are both homomorphisms and agree 
on the generators) so that t# = u #, and t = u. 0 

Comparing 1.46 with 1.40 and 1.41 we see that SetT behaves more pre­
dictably with respect to monos than with epimorphisms. 

It is dear that if % is a "category of sets with structure", injective mor­
phisms will be mono in %. The following example shows that sometimes 
monos are not injective functions. 

(1.47) Let % be the category of 2-divisible abelian groups as in 1.17. 
Let A be the multiplicative group of non-zero real numbers and set 
f:A ~ A to be the the squaring homomorphism xf = x 2. Since f iden­
tifies x and -x, f is not injective. But f is mono. For let t, u: T ~ A with 
tf = u.f. Let XE T. Then y2 = x for some y, and xt = y2 t = (yt)2 = 

yif = yuf = xu, as desired. 

1.48 Image Factorization. The categorical view of the image of a func­
tion f is as a factorization f = p.i with p surjective and i injective. An axi­
omatic theory appears in 3.4.1. We present here two of the many possible 
such theories in an arbitrary category. Given a morphism f:A ~ B in 
%, a coequalizer-mono factorization off is a factotization f = p.i with p a 
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coequalizer in :Yt and i a monomorphism in $. The dual concept is epi­
equalizer lactorization, that is I = p.i with p an epimorphism and i an 
equalizer. 

1.49 Proposition. Coequalizer-mono lactorizations are unique up to 
isomorphism. 

Prool. Suppose p.i = I = p'.i' with p, p' coequalizers and i, i' mono-

morphisms. There exists a, b with p = coeq(a, b). As a.p'.i' = a.p.i = b.p.i. = 
b.p'.i' and i' is mono, a.p' = b.p' so there exists a unique g such that p.g = p'. 
Since p is epi, g.i' = i. Symmetrically, there exists h:I' ---+ I with p'.h = P 
and h.i = i'. Either because p is epi or i is mono, g.h = idI . Symmetrically, 
h.g = idr · D 

1.50 Corollary. Given I:A ---+ B in :Yt, the lollowing three conditions 
on I are equivalent: (1) I is an isomorphism; (2) I is a coequalizer and I is 
mono; and (3) I is an equalizer and I is epi. 

Prool· If I is a coequalizer and I is mono, l.id = I = id.1 are two 

coequalizer-mono factorizations of I, giving rise to 1- 1 as above. D 
Examples such as 1.38 and 1.40 show that a morphism which is epi and 

mono need not be an isomorphism. 
:Yt has coequalizer-mono lactorizations if every morphism in :Yt has a 

coequalizer-mono factorization. For example, Set has coequalizer-mono 
factorizations and epi-equalizer factorizations and they both coincide with 
surjective-injective factorizations. 

(1.51) The category of topological spaces and continuous maps has 
coequalizer-mono factorizations and epi-equalizer factorizations. Given a 
continuous map I:A ---+ B with image factorization I = p.i at the level 
of sets we can provide Im(f) with the quotient topology induced by p, in 



1. The Base Category 99 

which case i is continuous and (p, i) is a co equalizer-mono factorization of 
J, or we can provide Im(f) with the subspace topology induced by i, in which 
case p is continuous and (p, i) is an epi-equalizer factorization. The details 
are left as exercises. 

A well-known way to construct the image factorization of a function 
J: A -----> B is to divide out by the equivalence relation, E, oJ J (where E is 
the equivalence relation on A given by E = {(x, y): xJ = yJ}). Let p be the 

canonical projection as shown. Since xEy if and only if xJ = yJ, (xE)i = xJ 
is a well-defined injection. Thus J = p.i is a coequalizer-mono factorization 
of J. We now explore the possibility that this construction can be imitated 
inx. 

Consider a diagram scheme LI with three nodes i, j, k and just two edges, 
IX E LI (i, k) and ß E LI (j, k). A diagram (LI, D) in :ff" looks like 

B 

g 

A ----J---4) C 

(i.e., Da = J and Dp = g). Since {i,j} is final, lim D is an object P of X 
equipped with two morphisms a:P -----+ A and b:P -----+ B such that a.f = 

b.g, and universal with this property as shown below: 

--------~------~)B 

a g 

A ---------+) C 
J 
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The square a.f = b.g is called a pullback square, (P, a, b) is the pullback of 
(f, g, C) and b is the pullback off along g. (The dual concept is called a pushout.) 
In Set, P is constructed as the subset {(a, b):af = bg} ofAx B with a and b 
the restrictions of the coordinate projections. In particular, if f = g, P is the 
equivalence relation off. In this case, a glance at 1.30 shows that the canonical 
projection C ---4 ClP is the co equalizer of (a, b). 

Consider a morphism f: A - B in Yl. The kernel pair of f is the pull­
back (E, a, b) of (f, f, B). Let us ass urne that this kerne! pair exists and that 
p:A ---4 C = coeq(a, b) also exists. Define i: C -+ B as shown below by 
the universal property of a coequalizer 

a )A f 
E ) )B 

b ?I 
/ 

/ 

/i (1.52) 
/ 

/ 

C/ 

(since a.f = b.f). As we see shortly, the factorization f = p.i is a very good 
candidate for the coequalizer-mono factorization of f. 

1.53 Lemma. Let p:A ---4 1 be a coequalizer in Yl. Then ifthe kernel 
pair of p exists, p is the coequalizer of its kernel pair. 

Proof. We ass urne that p = coeq(a', b') for some a', b':E' -----+ A. 

/ 
/ 

" E 

/ 

g / 
'/ 

E' / 

a 

b 

p 
) 1 
/ 

/ 
/ 

/ 
/ 

/ 

I'~ 

Let a, b:E lAbe the kernel pair of p. Suppose p' is given with 
a.p' = b.p'. Since a'.p = b'.p there exists unique g with g.a = a', g.b = b'. 
Therefore, a'.p' = b'.p', as desired. D 

1.54 Proposition. Let f:A ---4 B in Yl. 1f f has a kernel pair with a 
coequalizer, then thefactorization 1.52 is the only candidatefor a coequalizer-



1. The Base Category 101 

mono Jactorization oJ J; that is, if J has a coequalizer-mono Jactorization it is 
isomorphic to the Jactorization oJ 1.52. 

ProoJ. Let J = p.i be a co equalizer-mono factorization of J, and let 
a, b:E ---->, A be the kernel pair of J. Because i is mono, a pair a', b': 

a J 
E -------'''----~~ A -------~) B 

b 

c 

E' : A satisfies a'f = b'f if and only if it satisfies a'.p = b'.p. It 
follows that (a, b) is also the kernel pair of p. By 1.53, p = coeq(a, b). Since 
the morphism i: C ----> B of 1.52 is unique, the proof is complete. 0 

1.55 Proposition. Let T be an algebraic theory in Set. Then SetT has co­
equalizer-mono Jactorizations and they are constructed at the level oJ sets. 

ProoJ. Let J:(A, IX) , (B, ß) be a T-homomorphism. Let J = 

(p:A ----> C).(i: C ----> B) be the usual image factorization at the level ofsets. 
By 1.4.31, there exists a unique T-algebra structure y:CT , C on C 
such that p and i become T-homomorphisms. Let a, b:E -------> A be the 

(E'6)---:--~:(T\ f Ißl 
(C', y') ~ g - (C, y) 

kernel pair of J in Set. By analyzing the proof of 1.22 in the context of 1.11 
and 1.14, it is clear that there exists a unique 6: E T -------> E by virtue of which 
a and b become T-homomorphisms, (and then a, b:(E, 6) , (A, IX) is 
in fact the kernel pair of J in See, a fact we do not need to use here). By 1.54, 
it will suffice to show that p = coeq(a, b) inSetT. Suppose p':(A, IX) --~ 
(C', y') with a.p' = b.p'. Since p = coeq(a, b) in Set, there exists a unique func­
tion g: C ~ C' with p.g = p'. We must show that g is a T-homomorphism. 
This amounts to a slightly updated version of 1.2.6: 

(J .56) Given an algebraic theory in Set, a surjective T-homomorphism 
p :(A, IX) , (C, y), aT-algebra (C', y') and a Junction g: C ~ C' such 
that p.g is a T-homomorphism, then g:(C,y) '(C',y') is again a T­
homomorphism. 
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To prove 1.56, we use just the sort of diagram that appeared in the adver­
tisement for epimorphisms of 1.36 +, namely: 

AT~ 
CT----"'----+ 

rt..p 
y ? y' 

c -------~) C' g 

Crucial is the use of 1.4.29 which guarantees that pT is epi. D 
1.57 Proposition.. Let :;I{'have coequalizer-mono jactorizations. Then 1.42 

is true jor coequalizers, that is, given j: A -----> Band g: B -----> C in :;I{' we 
have 

(1) if j, gare coequalizers then so is j.g, and 
(2) if j.g is a coequalizer, so is g. 

Prooj. We prove (2) first. Let 9 = p.i be a coequalizer-mono factoriza-

A 
j 

) B 
g 

>C 

\ 
]' 

i' 
) ] 

tion, and then let j.p = p'.i' be a coequalizer-mono factorization. As p'(i'.i) 
is a coequalizer-mono factorization of f.g, i'.i is an isomorphism by 1.49. 
Since i is both split epi and mono, it follows from 1.50 that i is an isomorphism. 

To prove(I), letj = coeq(a, b) and let p.ibe a coequalizer-mono factoriza­
tion of f.g. Since i is mono we have a.p = b.p which induces unique h with 

'A----j--~) B---...:..g--~>C 
I 

I 
Ih 
I 

..v 
] 
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with J.h = p. As J is epi, h.i = g. By (2), i is a coequalizer and hence, by 1.50, 
an isomorphism. D 

The following example shows that even a category with all sm all limits 
and colimits (and all factorizations as in 1.52 in particular) need not necessar­
ily have coequalizer-mono factorizations. 

(1.58) Let % be the category of abelian groups with no element of order 
4 (that is 4x = ° implies 2x = 0) and group homomorphisms. Products, 
equalizers, and coproducts (1.28) are formed just as they are in the category 
of all abelian groups. The proof that this category has coequalizers will be 
postponed until 3.7.13. Therefore, % has all sm all limits and colimits. Let 
Z, Zz, and Z4 denote, respectively, the abelian groups of integers, integers 
modulo 2, and integers modulo 4. The homomorphism 2:Z --* Z (sen ding 
x to 2x) is the equalizer of the morphisms p, O:Z --7 Z2 in % (p is the ca­
nonical projection). Composing 2:Z --* Z with itself gives the % -morphism 
4:Z --* Z. While 4:Z --* Z is the equalizer of p, O:Z --* Z4 in the cate­
gory of all abelian groups, Z4 is not in %. Suppose that there exists J, 
g:Z --* A in % with 4 = eq(f, g). As 4J(I) = 4g(1) and A is in %, 2(f(1) -
g(1)) = 0, that is, 2.f = 2.g and there exists a unique h:Z --* Z with 
h.4 = 2. Since 4n = 2 has no solution in Z, we get a contradiction to the 
assertion that 4: Z --* Z was an equalizer. By the dual of 1.57, it folio ws 
that % does not have epi-equalizer factorizations. %ÜP, then, is a category 
with small limits and colimits in which the composition of coequalizers is 
not a co equalizer and hence which does not have coequalizer-mono factoriza­
tions. 

1.59 Generators and Co generators. A fixed object, G, of % can be 
used to make actual sets out of % -objects and actual functions out of %­
morphisms. If Ais a %-object write "a E A" just in case a: G --7 A in %. 
Each %-morphism J:A --* B acts functionally on elements since if a E A 
we literally have aJ E B. Notice that aCidA) = a and a(fg) = (af)g. G is a 
generator if morphisms are distinguished by their functional action; more 
precisely, given J, g: A -----+ B in % with J #- g there exists a: G --7 A E A 
with aJ #- ag. 

The prototype example of a generator is % = Set and G = 1. Actually, 
every nonempty set is a generator in Set. More generally, ifT is an algebraic 
theory in Set and A is a nonempty set then the free algebra (AT, Ap) is a 
generator in SetT. In the category oftopological spaces and continuous maps 
or the category ofmetric spaces and distance-decreasing maps (1.9) 1 is again 
a generator. 

An object C of % is a cogenerator in % if, of course, C is a generator in 
X'oP, that is if, when J, g: A --* B with J #- g, there exists h: B --7 C with 
Jh #- gh. 

If I is a set and A is an object of %, the Ith power oJ A, AI, is the 
product of I copies of A. 

1.60 Proposition. Let C be an o~;ect oJ % and ass urne that the power 
Cl exists Jor all srnall sets I. Then C is a cogenerätor if and only if Jor all 
%-objects B the evaluation rnap, evB, oJ B is a rnonornorphisrn, where eVB is 
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defined by the diagram: 

eVB B -----"-----+> CX(B, C) 

f 

C 

Praaf, This is an easy exercise; note that .ff must be locally small. 0 
(1.61) The circle group S (i.e., the complex numbers of modulus 1) is a 

co generator in the category of abelian groups. While this result is well known 
(the phrase is "there exist enough homomorphisms to the circle"), it is not 
particularly easy to prove. It follows from 1.60, that every abelian group is 
isomorphie to a subgroup of a product of circles. 

(1.62) In Set, every set with at least two elements is a cogenerator. 
(1.63) Let.ff be the category of complete semilattices and supremum­

preserving functions (1.5.15). Let C be the two-element lattice {O, 1} with ° ~ 1. Then C is a co generator. It suffices to show that whenever a =1= b in 
the complete semilattice X then there exists h: X ---> C with ah =1= bh. If 
a < b, define h by xh = 0 if x ~ a, and xh = 1 otherwise. If a 1: b, define 
h by xh = 0 if x ~ b, and xh = 1 otherwise. 

(1.64) The category of groups and homomorphisms does not have a co­
generator. Given any set X, consider those bijections from X to itself wh ich 
leave fixed all but finitely many elements; such bijections, which are essen­
tially permutations of a finite set, have parity, that is, are either even or odd. It 
is well known that the group of all even permutations of the set X forms a 
simple group if X has any number of elements greater than 4. In particular, if 
C is a would-be co generator there exists a simple group S of cardinallarger 
than that of C. Since ids =1= 0, there exists a nonzero homomorphism f: S ---> 

C. Since S is simple, the kernel of f is either zero or all of S, and either is 
impossible. 

1.65 Monosubobjects. Let i: A ------+ X, j: B ------+ X be monomorphisms 
with codomain X. If there exists t:A ~B with tj = i then t is unique 
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(as j is mono) and t is a monomorphism (as i is mono) and we write: i :( j. 
This defines a reflexive and transitive relation on the dass of monomorphisms 
with eodomain X. i and j are isomorphie if i :( j and j :( i; note that t as 
above is indeed an isomorphism and that "isomorphie" is an equivalenee 
relation. An isomorphism dass of X-valued monomorphisms is called a 
monosubobjeet of X. Writing [i] for the isomorphism dass of the mono 
i: A --> X, "[i] :( [j] if i :( j" is weIl defined and defines a partial ordering 
("indusion") on the dass of monosubobjects of X. 

(1.66) In Set, the passage from [i] to the image of i is weIl defined and 
establishes a bijeetion from the set of monosubobjects of X to the set of 
subsets of X. 

1.67 Direct Images. If:ft has coequalizer-mono faetorizations, eaeh 
morphism f:A ----'>B induces the "direct image map" [i]f = [j] where 
(p, j) is any coequalizer-mono factorization of i.f. The diagram below shows 

P A-------------------------------+) I 

~ /:i 
t u/x f >Y~li 

A'-------------------------------+) I' 
p' 

that if [i] = Ci'] and (p',j') is a coequalizer-mono factorization of i'f then 
[j] = [j'] (i.e., as u is an isomorphism, (up,j) is another coequalizer-mono 
faetorization of i'.f). 

1.68 Inverse Images. If:ft has pullbacks, every morphism f: X ----'> Y 
induees the "inverse image map" [i]f -1 = [j] where j is a pullback of i 

j pullback 

X ---------------.+) Y 
f 

along f. To see that j is mono, if ~j = uj then tgi = tjf = ujf = ugi and, 
since i is mono, tg = ug. Therefore, t = v = u where v is the unique map 
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induced by 

X ----/---4) y 

The proof that [jJ = [f] if [iJ = [i'J and that the whole construction is 
independent of the choice of pullback is an easy exercise. 

Notes for Section 1 

The open question of(1.41) was raised by [Linton '66, page 93]. Example 
1.58 is due to [Isbell '64, page 7J; see also [KeIly'69]. 

The following table should aid the reader in seeking out some of the 
expository literature of category theory. The last three columns record, in 
rough terms, the number of pages devoted to the subject matter covered, 
respectively, in sections 1, 2, and 3 of this chapter. 

Author Language Pages 1 2 3 

Arbib and Manes '75 English 160 70 40 15 
Bucur and Deleanu '68 English 224 30 30 2 
Brinkmann and Puppe '66 German 107 30 6 0 
Ehresmann '65 French 358 60 20 10 
Felscher '65-A German 65 15 10 4 
Freyd '64 English 164 26 20 0 
Goguen et al. '75 English 85 18 16 0 
Hasse and Michler '66 German 358 30 0 40 
Herrlich and Strecker '74 English 400 102 93 9 
Mac Lane '71 English 262 57 44 1 
Mitchell '65 English 273 24 35 0 
Pareigis '70 English 268 40 50 0 
Schubert '72 English 385 49 26 0 

Exercises for Section 1 

1. Let:;f' be the category whose objects are functors from the category of 
compiete Boolean aigebras to the category of sets and whose morphisms 
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are natural transformations. Use 1.5.5 and 1.5.48 to prove that :% is not 
10eaBy smaB. 

2. Given f: A -----* B in :%, prove that f is an isomorphism if and only if 
there exist g: B -----* A and h: B -----* A such that fg = idA and hg = idB • 

3. Show that a monoid M has binary produets (qua eategory) if and only 
if M is isomorphie to M x M. For infinite X, show that (2X, (1) is such 
a monoid. 

4. Analyze the foBowing eategories for eompleteness and cocompleteness. 
(a) monoids and monoid homomorphisms 
(b) groups and group homomorphisms 
(e) veetor spaces over a field and linear maps 
(d) topologieal abelian groups and continuous homomorphisms 
(e) rings and ring homomorphisms 
(f) fields and ring homomorphisms 

5. Let :% be the eategory of metrie spaees and distanee-deereasing maps 
(as in 1.9) and, similarly, let !l! be the category of metric spaces of diameter 
at most M and distance-decreasing maps. Show that :% fails to have 
binary eoproduets whereas !l! has aB coproduets. Show that both 
eategories have coequalizers. [Rint: set coeq(f, g) = Y/R where R = 
{(y, y'):yh = y'h for aB h in the category with fh = gh} with metric 
d(yR, zR) = Sup(d(ah, bh):fh = gh as above and a E yR, bE zR).] 

6. Let:% be the eomplete poset 2 = {O, I} with ° < 1 qua eategory. Prove 
that 2 is large eomplete and large cocomplete. 

7. Give explieit constructions for limits and colimits in Set based on 1.22. 
8. This exereise provides a reason why limits are more intuitive than 

eolimits. Let :% be a (loeally small) category and let (Lf, D) be a dia­
gram in :%. Each objeet A induces the set-valued funetor :%(A, -): 
:% ) Set represented by A whose value on the objeet X is 
the set :%(A, X) and whose value on the morphism f:X -----* Y is the 
function -f::%(A, X) ) :%(A, Y) defined by g --->gf 
(cf. 1.59). Via -.Da::%(A, Di ) ) :%(A, D), (Lf, :%(A, D)) 
is a diagram in Set. If (L, IjJ) is a lower bound of D, the triangle 

is eommutative so that (:%(A, L), - .tjJ) is a lower bound of :%(A, D). 
(a) Prove that (L, tjJ) is a limit of D if and only if for every objeet A of 

:%, (:%(A, L), -.tjJ) is a limit of :%(A, D) in Set. 
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(b) For each A in X, the functor x( -, A):xop ) Set 
corepresented by A is the functor xOP(A, -). Prove that (L, t/J) is 
a colimit of D if and only if for every object A of X, (,Jf'(L, A), t/J. -) 
is a limit of X(D, A) in Set. 

9. A "disjoint union" of categories is defined in the obvious way. Show 
that X = xop holds if and only if X is a disjoint union of abelian 
monoids. [Hint: take note ofAxiom 3 in the definition of a category.] 

10. Let X be the category whose objects are sets and whose morphisms 
f: X ---" Y are relations, that is, the Kleisli category of the theory of 
1.3.5. Show that the identity function on objects and the passage from a 
relation to its inverse defines a functor from X to xop which establishes 
an isomorphism of categories (see the next section) X ~ xop. 

11. Let X be the category of topological spaces and continuous maps and 
let 2 be the category of Hausdorff topological spaces and continuous 
maps. Given f:X ---" Y in X show that fis a coequalizer if and only 
if f is surjective and Y has the quotient topology induced by f (i.e., a 
subset B of Y is open if and only if Bf 1 is open in X); establish the 
same result in 2. Show that in both categories, eq(f, g) is the sub set on 
which fand g agree provided with the subspace topology; and show that 
eq(f, g) is a closed subset in the Hausdorff case. 

12. Say thatf: A ---" B in X is a regular epimorphism iffor every h: A ---" C 
satisfying "for every pair t, u: T ) A, if tf = uf then th = uh" 
there exists unique h:B ---" C with fh = h. 

)A f T >B 
u ) 

I 
I 

I 
Ih 

I 
I 

Cl'-

(a) Prove that every co equalizer is a regular epimorphism and that 
every regular epimorphism is an epimorphism. 

(b) Prove that fis an isomorphism if and only if fis a regular epimor­
phism and f is a monomorphism. 

(c) Prove that if fis a regular epimorphism and if the kernel pair of f 
exists then f is a coequalizer (namely the coequalizer of its kernel 
pair). 

13. A category X satisfies the axiom of choice if every epimorphism in X is 
split epi. (Cf. exercise 1 of section 1.2.) Prove that the category of vector 
spaces over a field satisfies the axiom of choice. [Hint: by the axiom of 
choice in Set, every vector space has a basis.] 

14. Given arbitrary morphisms i:A ---->X, j:B ---->X say that i and j are 
equivalent if there ex ist factorizations: 
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The equivalence dass< i) is a generalized subobject of X. Show that, in 
any category :f, the passage Ci] 1---7 <i) from monosubobjects to gen­
eralized subobjects is well defined and injective but that this passage 
is surjective if and only if every morphism in :f factors as a split epi 
followed by a mono. 

15. Say that a pair p, q: E ---> X of functions is an equivalence relation if 
the induced function E ) X x X is injective and is such that its 
image is an equivalence relation on X. In the spirit of exercise 8, say 
that a pair p, q: E ---> X of morphisms in a category :f is an equivalence 
relation if for every object A, the pair of functions 

-.p 

-.q 

is an equivalence relation. 
(a) Translate the four conditions on - .p, -.q into simple diagrammatic 

statements about p, q in :f. 
(b) Prove that the kernel pair of a morphism is always an equivalence 

relation. 
(c) Construct an example in the category of topological spaces and 

continuous maps of an equivalence relation which is not a kernel 
pair. [Hint: "discretize" a kernel pair.] 

16. Consider the commutative diagram 

A ___ --=-f ___ 4) B ---.-.-:;:.g---4) C 

a b c 

A'----------..+) B'----------..+) C' 
f' if 

(a) Show that ifboth squares are pullbacks then the outer rectangle is a 
pullback. 

(b) Prove that if the rightmost square and the outer rectangle are pull­
backs then the leftmost square is a pullback. 
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17. An object P in a category :f( is projective if for every epimorphism 
e: A ----+ Band morphism f: P ----+ B there exists g: P ----+ B with 

./ 
./ 

./ f 
./ 

./ 
./ 

k 
A-------~) B e 

g.e = f. 
(a) Let T be an algebraic theory in Set. Prove that every free T-algebra 

is projective in SetT. 
(b) Let:f( be any category which has a projective generator. Prove that 

the pullback of an epimorphism along any morphism is again an 
epimorphism. 

18. A Kleisli algebra is a pair (M, T) where M is a monoid (qua one-object 
category) and T is an algebraic theory in M. 
(a) Show that a Kleisli algebra is the same thing as a quintuple 

(M, " e; 0, 1]) where (M, " e) and (M, 0,1]) are monaids satisfying the 
law (x . 1]) ° Y = x . y for all x, y. [Hint: clone form!J 

(b) Show that (M, +,0; 0, 1]) is a Kleisli algebra if (M, +,0) is an 
abelian monoid, 1] + 11 = 0 and x 0 y = x + Y + 1]. In this case, 
show that T is the identity functor and that J1 = 1]. 

19. A subobject classifier in a category :f( possessing a terminal object 1 is 
a pair (Q, t) where Q is an object of :f( and t: 1 --> Q is (necessarily) a 
monomorphism such that the pullback of t along any morphism exists 
and, in fact, the passage from X:X ----+ Q to [tJx~ 1 establishes a bijection 

[tJx- 1 -------+) X 

x 

1 ------:----~) Q 

between .%(X, Q) and the set ofmonosubobjects (it must be a small set if 
:f( is locally small!) of X. If A is a subobject of X the corresponding 
XA: X -----> Q is the "characteristic morphism" of A. 
(a) Prove that aB subobject classifiers are unique up to isomorphism 

[Hint: use exercise 16.J 
(b) Prove that 2 is a subobject classifier in Set. 
(c) Let :f( be the category whose objectsare topological spaces and 
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whose morphisms are functions which are continuous, open, and 
closed. Prove that the two-element discrete space is a subobject 
classifier. 

(d) Let M be a monoid. An M-set is a pair (X,~) where ~:X x 
M ) X, (x, m) 1---------+ xm satisfies xe = x and x(mm') = 

(xm)m'. If (X,~) and (Y,8) are M-sets, and equivariant map f: 
(X, ~) ) (Y, 8) satisfies (xf)m = (xm)f. Set Q = {A c M: 
AM cA} and define an M -set structure on Q by Am = {x E M: 
xm E A}. Show that Q is a subobject classifier in the category of 
M-sets and equivariant maps. 

20. Given ametrie space (X, d) and an element x of X show that d(x, -): 
(X, d) ) R (where R has the usual metric) is distance 
decreasing. Conclude that R is a cogenerator in the category (1.9) of 
metric spaces. An object K of (any category) :f(' is injective if K is pro­
jective in :f('0p (as defined in exercise 17) that is, if for every f: A ~ K 

A--------------~)B 
I 

f 
I 

K)t. 

I 

and mono i: A --> B there exists an extension g: B ~ K with i.g = f. 
Prove McShane's theorem ([McShane '34, Theorem 1]): R is injective 
in the category of metric spaces. [Rint: if f is defined and distance 
decreasing on a subset A, xg = Sup{af - d(x,a):aEA} is a suitable 
extension.] 

21. Given the commutative diagram in :f(' shown below and an arbitrary 

A ____ .:.:..a ___ -).) B _____ e ___ ~) A 

b d b 

C )D )C 
c f 

g 
ae = idA 

cf = idc 
dg = idB 

B 
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funetor H::ft ------> 2 prove that 

AH----a-H-----+> BH 

bH dH 

CH------~)DH 
eH 

is a pullbaek diagram in 2. [Hint: if t: T ----> C, u: T ---> B satisfies 
te = ud then (ue)b = ud! = tcf = t and (ue)a = ueadg = uebeg = tcg = 

udg = u.] Reeonsider the hint in 1.5 exereise 2(a) with H: Set -----> SetOP 

defined by BH = AB, using the result above to show that 

is a pushout in Set if F n G is nonempty. 
22. Let T be a finitary theory in Set and let J, g:(X, ~) ) (Y, 8) be a 

pair of T-homomorphisms whose image S in Y x Y eontains the diag­
onal. Prove that the coequalizer of J and g exists and is constructed at 
the level Set. [Hint: the equivalence relation generated by S is the union 
of the chain (SS-l t of subalgebras and so is itself a subalgebra.] 

23. Investigate "isomorphie" in the following categories of metric spaces: 
Metric spaces and Lipsehitz maps (i.e. for some fixed M > 0, d(xJ, yJ) ::::; 
M d(x, y)); metrizeable topologieal spaces and continuous maps; metrie 
spaces of diameter at most 1 and Lipschitz maps. 

24. Let T be a theory in Set and let S be a subtheory of T. Show that 
rank(S) :;s; rank(T). [Hint: it suffices to prove that the square is a 

iS nS -------~) AS 

nT ---------7) AT 
iT 
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pullback whenever n is a nonempty subset of A; use exercise 21.J 
In the following three exercises we describe algebraic theories in Set in 

a style elose to the original formulation by [Lawvere '63]. See exercise 3.2.7 
for a generalization to arbitrary categories. 
25. (For Set only.) An algebraic theory in coproduct form is a pair (2,11) 

where 2 is a category with the same objects as Set (we let oe:A ~ B 
mean oe E 2(A, B)) and 11 provides specified coproduct diagrams 

(1 ~A:aEA) 

in 2 for each set A. 
(a) Given (L, 11), show that (T, 11, ( - )#) is an algebraic theory in extension 

form (Exercise 1.3.12) if AT = 2(1, A), <a, A11 > = (A11)a and if 

A11 
A ------:...--+) 2(1, A) 

(AI1)a 
1----------------~ 

2(1, B) B 

(b) Given (T, 11, ( - )#), show that (2,11) is a theory in coproduct form 
if 2 is the Kleisli category of (T, 11, 0) (oe 0 ß = oe.ß#) and (A11)a = 
< a, A11 > : 1 ) AT. 

(c) CIarify and prove: the passages of(a) and (b) are mutually inverse up 
to isomorphism. 

26. A jinitary Lawvere theory is a pair (2,11) where 2 is a category with 
Ob(2) = N (we write oe:n ~ m if oe E 2(m, n)) and IJ assigns coproduct 
diagrams 

n 

h 

m 

(1 ~n:iEn) 

in 2 for every n in N. 
(a) Let (2, IJ) be a finitary Lawvere theory. For each set A let ,dA be the 

diagram scheme with nodes all (n, f) with n in N and f: n ---+ A and 
with edges h shown below, and let DA be the ,dA-diagram in Set: 

Dn = 2(1, n) 1 
oe , n 

A T 
oe hl1 

, n ,m Dm = 2(1, m) 
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where hl1 is defined by the coproduct property 

/ 

/ 

Define AT = colim DA with canonical injections r~, 1): Dn -----+ AT. 
Define AI1:A ~ AT by (a, AI1> = (111, r~,a»' Given a:A ~ BT, 
define a#: A T ) BT by the co limit property 

Dn 
r~,1) 

)AT 
/ 

/ 
/ 

/ # 
/ a 

/ 

"-
BT 

where, using the finiteness of n to choose a factorization 

j a 
n ----------+) A -------4)BT 

" ?f 
" 

we define 

" " " ,/ 

./ 

(ß ' " ./rB i: Z E n) " ./ (m,g) 

" ./ " ./ "::!D ,/ 
m 

,/ 

(1--:'" n)t/I(n, I) = (1 ~ n ~ m)rt:.., g) 

,/ 

Prove that (T, 11, ( - )#) is a well-defined finitary algebraic theory in 
extension form. 

(b) Show that the passage in (a) is bijective up to isomorphism. [Hint: 
for the inverse passage, restriet the construction of exercise 25(b) 
to N.] 

(c) State and prove the obvious generalization of(b) for arbitrary regular 
cardinals. [Hint: the existence of the factorization j.a = (ß;).rt:.., g) 

requires regularity.] 
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27. Let X be a fixed set. Verify that (2, '1) is a finitary Lawvere theory if 
2(n, m) = partial functions from X x n to X x m and <x, (n'1D = 

(x, i). Observe that this theory is much more naturally described this 
way than in (T, '1, 0) form. This theory is named [X, 1] in [Elgot '75, 
Section 2.3]. A hint of the connection with computer science lies in 
observing that the interpretations of schemes as in exercise 1.1.8 are 
morphisms in [X, 1]. An open problem is to formulate the role played 
by the algebras of the theories that arise in the context of the paper of 
Eigot mentioned above. 

2. Free Objects 

The free T-algebras of 1.4.12 can be described in terms of the underlying 
% -object functor UT : %T ) % and, hence, abstracted to the level of 
any functor U: d -----> .ff; we will say that such functors "have a left 
adjoint." Examples and standard existence theorems are given. Paralleling 
the development in section 1.2, we observe that every adjointness induces an 
algebraic theory. 

2.1 Definition. Let U:.91 -----> y{' be a functor and let K be an object 
of %. Afree d-object over K with respect to U is a pair (F, '1) where F is an 
object of d and '1: K ------> FU is a morphism in % subject to the universal 
property that whenever (A, f) is another such pair (that is, A is an object in 
.si and f: K -----+ A U in %) there exists a unique .si-morphism f#: F -----> A 

K '1 F 
I 1 

1 1 

If#U If# 
1 1 

'" "+" 
AU A 

such that '1.f# U = f. For us, the fundamental example is 2.3 below; our first 
such encounter was 1.1.20. For general heuristics, think of % as the base 
category and d as a category of f{' -objects with additional structure with 
'''forgetful'' functor U (for more on this, see section 3). F is the object "freely 
generated by the generators K" and '1 represents "inclusion ofthe generators". 
The universal property says that "a %-morphism on K with values in an 
d-object admits a unique .si-morphic extension." 

2.2 Proposition. Free objects are unique up to isomorphism. 

Proof. Suppose that (F, '1) and (F', '1') are both free over K with respect 
to U. Consider the unique d-morphisms g and h as shown in the diagram 
on the following page: 
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FU F 
1 1 

1 

IgU Ig 
1 1 

1]' ...y ...y 
)F'U F' 

1 1 

1 1 

IhU Ih 
I] 1 1 

I I 
...y ...y 

FU F 

Since 1].(gh)U = l].gU.hU = I] = 1].(idF)U, gh = idF . Symmetrically, hg = 

idF,. Therefore, 9 and h are mutually inverse isomorphisms the U of wh ich 
converts each I] into the other; it seems hard to imagine a more stringent 
isomorphism statement! 0 

The reader might compare 2.2 with 1.4.14. 

2.3 Example. If T is an algebraic theory in the category .ff then, for 
each K in .ff, (KT, KJl; KI]) is a free .ffT-object over K with respect to 
UT:.ffT ) .ff. This is the content of 1.4.12. Notice that the two uses 
of the symbol "1]" are coherent. 

2.4 Example. Let U be the forgetful functor from the category of topo­
logical spaces and continuous maps to the category of sets and functions. 
For each set niet Fn be the set n provided with its discrete topalogy. Let 
1]:n ----> FnU be the identity function of n. Then (Fm 1]) is free over n with 
respect to U. 

2.5 Example. Let d be the category whose objects are fields and whose 
morphisms are unit-preserving ring homomorphisms. Let n be a set with two 
elements. Then there exists no free field (F, 1]) over n with respect to the 
forgetful functor U:d ----> Set. For suppose such (F, 1]) existed. Let Z2 be 
the two element field and let f: n ----> Z2 U be a bijection. From the first 
diagram below and the dual of 1.42 we see that 1] is injective. Now consider 

t1 )FU I] 
>FU n n 

f#U l/J = O#U 

f 0 

Z2 U Z2 U 
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the extension ljJ of the zero map 0 as shown. Since 1] is injective, the kernel 
of ljJ is not O. Since ljJ maps 1 to 1, the kernel of ljJ is not F. This contradicts 
the well-known fact that no field ,has a nontrivial ideal. 

Fields come very close to being presentable by finitary operations and 
equations; the problem is that "multiplicative inverse" is not a unary opera­
tion since it is not defined at O. Example 2.5 says that, from the categorical 
point of view, field theory is far from being part of universal algebra. 

2.6 Various Subcategories. Let 'Ii be the category of categories and 
functors. A subcategory of.x is a 'Ii-monosubobject of X as defined in 1.65. 
Consideration of the three morphism category 

makes it clear that H: fi? -----+ X is a monomorphism if and only if H is 
injective on morphisms or, equivalently, the associated functions 

L~LH 

fi?(L I, L 2 ) -------) X(LIH, L 2H) 

are injective. 
By a literal subcategory of .ff we mean a category fi? with Obj(fi?) c 

Obj(x) and fi?(L I, L 2 ) C X(L I, L 2 ), i.e., a subclass of x-morphisms closed 
under identities and composition. The arbitrary subcategory [H] is re­
presented by the inclusion functor of the literal subcategory 

In the future, the term "literai" will not be used even though it may have 
been intended. This paralleis the conventions used in Set where, almost 
always, subobjects are intended to be literal subsets. 

A subcategory fi? of xis full if for every LI, L 2 in fi? and f: LI -----+ L 2 

in X, f is in fi?; or, in the fussy "nonliterai" language, given Li> L 2 in fi? 
andf: LIH ) L 2H in .x, there exists (necessarily unique) 1: LI -----+ 

L 2 in fi? with JH = f. Thus, fuH subcategories of X are in bijective cor­
respondence with subclasses of Obj(x). For ex am pIe, if X is the category 
of topological spaces and continuous maps, "Hausdorff spaces" defines a fuH 
subcategory whereas "Hausdorff spaces and continuous open maps" defines 
a subcategory which is not full. 

Let fi? be a subcategory of X and let K be an object in x. A refiection 
of K in fi? is a free fi?-object over K with respect to the inclusion functor 
U: fi? -----+ X. It is common to delete U from the picture of the universal 
property, as shown on the following page, but we must keep in mind the 
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K------~ry------~)F 
I 

f 
I 

LIt-

I 

proviso that Fand L are objects in se and that (in case se is not full) f# is 
again required to be in se. In this context, I] is called the reflection map. 
se is a reflective subcategory of.ff just in case every object of K has a reflec­
tion in se. 

2.7 Abelianizing a Group. Abelian groups is a fun reflective subcategory 
of groups and homomorphisms. The failure of a group G to be abelian is 
measured by each instance of "ab =f. ba," that is by the set C = {ab(ba) -1: a, 
bEG} of commutators. If N is the normal subgroup genera ted by C, then 
GINisabelianbecauseaNbN(bNaN)-1 = (ab(ba)-1)N = N.Letl]:G~ 

GIN be the canonical projection. To check that I] is the reflection map, we 

G 
ry 

~ GIN 
I 

I 
I 

Ir 
I' 

I 

Alt-

are forced to define (aN)f# = af. This is weH defined since the kernel of fis 
anormal subgroup of Gwhich, because A is abelian, contains C. 

2.8 The ß-Compactification of a Topological Space. Compact Hausdorff 
spaces form a full reflective subcategory oftopological spaces and continuous 
maps. We will prove that an arbitrary topological space has a compact 
Hausdorff reflection by making use of the algebraic theory ß of 1.3.21. 

The reader should first refresh herself on the notations used in 1.5.24. 
One change: to reserve I] for the current reflection map of interest, we write 
prin: X ) Xß for the principal ultrafilter map. The secret is the follow­
ing commutative diagram associated with a set X, a compact Hausdorff space 
(= ß-algebra) (C, ~) and a continuous map lj!:(Xß, Xf1) ) (C, ~). 

What we can read at once from this diagram is: 
(2.9) For each ultrafilter 0/1 on X, (O/1Jß) --~> 0/1lj!. In particular, by 

1.5.30, if:T is a topology on X then f: (X, :T) ) (C, ~) is continuous 
if and only if (0/1 § x implies 0/1lj! = xf). 

Fix a topological space (X, :T). Define a binary relation Ro on the set 
Xß by O/1Ro1/' if and only if 0/1 and 1/' converge to a common point with 
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fß 

(prin)ß IjIß 1 
Xß ) Xßß >Cß 

id Xtt 

X-------~) Xß -----:---~) C 

I prm J 
f 

respect to :Y. Let R be the smallest closed equivalence relation on (Xß, Xll) 
containing Ro. Let f):X ) Xß/R be the canonical projection. As is weIl 
known from topology (but see 3.1.13 where it turns out to be an important 
structural fact in universal algebra) the space F = Xß/R in the quotient 
topology induced by (Xß, Xtt) and f) is again compact Hausdorff. We will 
show that 1] = prin.f): (X, :Y) ) F is the desired reflection map. 
To prove that 1] is continuous, we use 2.9 with C = F, ljI = f) and f = 1]. Let 
ollT x. Since also prin(x)--y-'" x, Oll Roprin(x), and d/tf) = prin(x)f) = X1] 

as we desired. To establish the universal property, letf:(X, :Y) ) (C, 0 
be continuous with (C, ~) a ~-algebra. It takes only 1.4.12 to produce the 
unique continuous ljI shown below: 

1] 

(X, :Y) 
prin 

) (Xß, Xtt) 
el 

) F 
\ / 

\ 
/ 

/ 

\1jI / 

\ / /f# 
\ / 

41 / 

(C, ~)k 

Since f is continuous, it follows from 2.9 that whenever d/t Ro 1/, that is, 
whenever UZt y x 7 1/, then d/tljl = xf =f/IjI. Since the kernel pair of ljI 
is a closed equivalence relation it must contain R as weIl, and f# is induced 
as desired. 

2.10 A Nonfull Refl.ective Subcategory. Let X be the category of par­
tially ordered sets and order preserving maps and let ff' be the subcategory of 



120 Trade Secrets of Category Theory 

complete partially ordered sets and supremum-preserving maps. Examples 
abound to show ff' is not full. Let (X, ::;:;) be an arbitrary partially ordered 
set and set F = {A c X: whenever x ::;:; a and a E Athen XE A}. With in­
clusion as partial order, F is complete and in fact ordinary intersection 
and union provide the infima and suprema. To establish the universal prop-

(X, ::;:;) 
I] )F 

1 
1 

1 

1 
If# 

1 

C" 

erty, define XI] = {y E X:y ::;:; x} (which is clearly order preserving) and 
define Af# = Sup(af:a E A), which makes sense since Cis complete. That 
f# is supremum preserving and that f ::;:; I].f# is true for any function f. 
To prove that f ~ I].f#, we need to know that f was order preserving. 

2.11 Cofree Objects. The duality theory of 1.23 extends quite weIl to 
functors, essentially as a special case of the dual of a diagram as discussed 
in 1.34. Given a functor U: d ~ ff define the functor uoP: d OP --~ 
ffop by AUop = AU and (f:A ---<B)UOP = fU:AUop (BUoP. 
Given an object K of ff, a cofree d -object over K with respect to U is a free 
dOP-object over K with respect to uoP. If (C, e) is cofree over K with respect 
to U, the picture of the universal property is 

C CU e 
-t- -t-
I I 
I f U ' f#1 # I 

I 
I I 

A AU 

2.12 Example. Let U be the forgetful functor from topological spaces 
to sets as in 2.4. For each set niet Cn be the set n provided with its indiscrete 
topology and let e: Cn U ) n = idn- Then (Cm e) is cofree over n with 
respect to U. 

2.13 Example. Let ff be the category of groups and homomorphisms. 
Say that a group Gis a torsion-generated group ifthe elements offinite order 
generate the group. Then the full subcategory ff' of all torsion-generated 
groups is coreflective. Let G be a group and set C to be the subgroup of G 
generated by all elements of finite order, with inclusion map e. If f: T ----+ G 
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and T is torsion-generated, then it is clear that Im(f) c C, which defines /#. 

C 
8 =;c 

" \ 
\ 

\ 
/# \ '/ 

\ 

\T 

2.14 Example. Let X 0 be a set and consider the functor - x X 0: 

Set ) Set which sends /: A ----* B to / x id: A x X 0 -------> B x X o. 
Then for any set Y, (yxo, 8: yXo x X o ) Y) is the cofree set over 
Y with respect to - xX 0, where 8 is the evaluation map, (f, X)8 = xf. It 

yXo yXo x X o 
___ 8 ____ +> y 

1- '" 1 1 

1/ 
1 # /# x id l 

1 f 
I I 

I 
A A x X o 

is clear that /# exists uniquely via< x, a/#) = (a, x)f. 

2.15 Adjointness. An adjointness is a 6-tuple (d, $', U, F, 1], 8) where 
d and :f{' are categories, U: d ----)o:f{' and F::ff ----)0 d are functors 
and 1]:idff ) FU and 8: UF ----)oidM' are natural transformations, 
subject to the so called "triangular identities" 

U _______ U~1] ____ -+ F ________ ~1]F ____ -+ 

8U (2.16) 

U F 

The diagrams of 2.16 are "objectwise." Thus, the first triangle asserts that 
AU1]:AU ) AUFU (which uses the action of U on objects) when 
composed with AeU :AUFU ) AU (which uses the action of U 
on morphisms) is idAU:AU ) AU for every object A in d. With the 
period notation: AU1].AeU = idAU' Some of the formalism concerned with 
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the ways funetors and natural transformations interaet is developed at the 
end of this seetion. 

There is an immediate duality theory for adjointness. First eonsider the 
pieture of the adjointness (S'i, ff, U, F, 1], s) 

U )X si( 
F 

U 
UI} )UFU F 

1]F 
------~------7)FUF 

sU Fs 
id 

U F 

Now, stare at: 

FOP 
,;floP -(----=------~) .dop 

uop 

id id 

We have at onee 

2.17 Duality Principle for Adjointness. If(S'i, ff, U, F, 1], e) is an adjoint­
ness then so is (ffOP, si°P, FOP, uop, S, 1]). 

We now justify the overlap in notations between free objeets, eofree 
objeets, and adjointness: 

2.18 Theorem. Let U: si -------> ff be a Junctor. Then the Jollowing two 
conditions on U are equivalent: 

1. For every object K in ff there exists a.Ji'ee object over K with respect 
to U. 

2. There exists an adjointness affarm (si, ff, U, F, 1], s). 

Praaf. (1) implies (2). Let (KF, K1]) be free over K with respect to U. 
Given J: K ----+ L in ff, the universal property forces the definition of 



2. Free Objects 123 

fF:KF ) LF so as to make 1]: idff ) FU a natural transforma-
tion: 

K K1] )KFU KF 
I I 

I I 

f IfUF 
I 

IfF 
I 

I 

-1-

'" L 
L1] 

)LFU LF 

The functorial equations, (f.g)F = f F.gF and (idK)F = idKF, are immediate 
consequences of the universal property. The first triangle in 2.16 forces us 
to define e by Ae = (idAU)#: 

AU 
AU1] )AUFU AUF 

I I 
I 

:AeU 
IA 
I e 

I I 

'" '" AU A 

üf general interest, is the formula 
(2.19) For allf:K ----+ AU,j# = fF.Ae, which is seen from 

K ____ K_1].L...-_~) KFU 

f fFU 

AU __ ---:;....A..:...U....!.1]_~) AUFU 

AeU 
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Finally, look at the two diagrams: 

id 

/ AU A,U \ 
AU----..:...I]-~) AU FU------~) AU 

fU fUFU ? fU 

BU 
BUI] 

)BUFU 
EeU 

>BU 

\ I 
id 

K 
KI] 

)KFU 

KFU--_K-F_U~I]-~)KFUFU 

KF8U 
id 

KFU 

The first shows tha t A8.f = (f U) # = f U F.Ee for all f: A -------> B in si, that 
is, that 8 is natural; the second establishes the second triangle in 2.16 by 
showing that I]F.F8 = (idFU)#. 

(2) implies (1). Let (si, %, U, F, 1], 8) be an adjointness and let K be an 
object in Yf. We wish to show that (KF, KI]) is free over K with respect to 
U. Letf:K ------->AU be given. We expect thatf# will be defined as in (2.19), 
so define f# that way. The diagram 
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K ____ K .... '1'---_ ___..) KF U 

f fFU 

AU------A-U~n-----..)AUFU 

AeU 
id 

'AU 

proves that Kn.J# = f. Suppose also, ljJ:KF ---» A satisfies Kn.ljJU = f· 
Then 

id 

/ K F KF, \ 
KF------n-'----4) KFU F-------------.+) KF 

fF 

proves that ljJ = f# . 0 

ljJUF 

AU F------------4) A 
Ae 

With the help of 2.17 we see that the dual of 2.18 reads as folIows: 

2.19 Theorem (Dual to 2.18). Let F::ft' ) si be a functor. Then 
there exists an adjointness of form (si, :ft', U, F, n, e) if and only if for every 
object A in si there exists a cofi'ee :ft' -object over A with respect to F. 0 

If (si, :ft', U, F, n, e) is an adjointness, there are bijections 

si(KF, A) ~ :ft'(K, AU) 

for all K in:ft' and A in si. This looks quite like the definition ofthe adjoint 
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U* ofthe operator U between Hilbert spaces: 

(xU*, y) = (x, yU) 

This analogy is responsible for the "adjoint" in adjointness. Indeed, given 
an adjointness as above we say that F is a Zeft adjoint to U and that U has 
F as a Zeft adjoint; symmetrically, U is a right adjoint to Fand F has U as a 
right adjoint. We also rephrase either ofthe two equivalent statements about 
U in 2.18 by saying that U has a Zeft adjoint. 

2.20 The AIgebraic Theory of an Adjointness. Let (d, Yl', U, F, 1], c:) be 
an adjointness. For the very general reasons discussed in 2.31, T = FU: 
Yl' -----> Yl' is a functor and 

id;r ~ T TT = F(UF)U JL=FeU) FU = T 

are natural transformations. For each object A of d, the diagrams 

A U ____ A_U_I]"--_~) A UT 

c:U 

AU 

AUTT--~A~c:~U~T __ ~)AUT 

AU/1 Ac:U 

A UT----:-:-----t) AU 
Ac:U 

are immediate consequences of 2.15, which is surely reminiscent of 1.4.9 
and 1.4.10. In fact, by setting A = KF, and directly observing that I]T./1 = 

(I1F.Fc:)U = idT , we have all of the diagrams of 1.3.16, that is T = (T, 1], /1) 
is an algebraic theory in Yl'. T is called the algebraic theory induced by the 
adjointness (d, Yl', U, F, 11, c:). Noting that U transforms the naturality square 

AUF __ ~·~fU_F __ ~)BUF AUT--~f~U~T--~)BUT 

Ae 

A ---------t) B 
f 

into AeU BeU 

AU -------+) BU 
fU 

the passage from A to (AU, AeU) describes a functor tJ>:d ------> Yl'T such 
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that the following diagram of functors commutes: 

(2.21) 

Notice that (2.21) forces the definition of q;, on morphisms. q;, is called the 
semantics comparison functor of the adjointness (si, X, U, F, 1], ß). Roughly 
speaking, q;, measures the extent to which the object A in si is the X -object 
AU "with algebraic structure" (see 3.2 exercise 9). For example, if T is an 
algebraic theory in X and if U = UT we have (from the proofs of 1.4.12 and 
2.18) a canonical adjointness (xT , x, UT , pT, 1], ß) where KpT = (KT, Kfl) 
and (K, ~)ß = ~:(KT, Kfl) ) (K, ~); it is obvious that the alge­
braic theory of this adjointness is exactly Ton the nose and that the semantics 
comparison functor is the identity functor. 

We turn our attention now to the problem of characterizing when an 
arbitrary functor has a left adjoint. We begin with an important necessary 
condition. 

2.22 Proposition. Let U: si ~ .x have a left adjoint. Then U pre­
serves limits; that isfor every diagram (LI,D) in si (see 1.18) andfor every 
limit (L, lj;) C?f(LI, D), (LU, lj;U) is a limit ofthe x-diagram (LI, DU). 

Proof. Let (si, x, U, F, 1], ß) be an adjointness. Let (K, r) be a lower 
bound of(LI, DU). For a E LlU,}) we have 

K" (r,j'U \ K -----'----4» KFU---'----'"'-------4-) DiU 

J.u 
Dp 

which shows that rr.Da = rj, that is, that (KF, r#) is a lower bound of 
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(LI, D). This induces a unique map f: KF ---tl L with f.ljJi = rr for all i. 

As shown below, f# = Kt}.fU:K --~l LU satisfies ftt,.lj;;U = ri for 

K ____ K--l..t} ---.+) KFU ___ -"-f_U __ .--..+) LU 

lu 
aB i. Ifalso g:K ----+ LU is such that g.ljJiU = ri for all i, then the diagrams 

K 
g 

)LU 

f,u 
DiU 

KF 
gF )LUF La )L 

prove that g# .lj;i = rr for all i, so that g# = f, and f# = gas desired. 0 
2.23 The Solution Set Condition. Let U: si ~ yt be a functor and 

let K be an object in $'. U satisjies the solution set condition at K providing 
there exists a sm all set g K of pairs (S, s) with S in .sI and s: K ----+ SU having 
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the property that for all pairs (A,f) with J: K --> AU there exists (S, s) in 
ff K and ljJ: S --> A with s.ljJ U = f. Of course the set of all pairs (A, f) has 

K---------5~'------~)SU S 

J fu f 
AU A 

such a property, but it is not necessarily a sm all set. If U has a left adjoint, 
on the other hand, {(KF, K1])} is a one-element solution set for K. 

2.24 General Adjoint Functor Theorem (p. Freyd). Assume that d is a 
locally small (J.1) category which has smalilimits (1.21 + ). Let U:d ~ :ft 
be a fimctor. Then necessary and sufficient Jor the fimctor U to have a leJt 
adjoint are the three conditions: 

1. U preserves small products (i.e., if Pi:A --> Ai is a product in d and i 
ranges over a small set then Pi U: A U ) Ai U is a product in ff). 

2. U preserves equalizers (i.e., ffh = eq(f, g) in d then hU = eq(fU, gU) 
in :ft). 

3. U satisjies the solution set condition at KJor every Kin:ft. 

Proof. We have already observed the necessity of these eonditions, so 
we eoneentrate on the suffieieney. Let us point out at onee that U preserves 
all sm all limits beeause d has all smalllirnits and because ofthe construetion 
used to prove 1.22. Fix K in :ft. Our objeet is to produee a free d-object 
(F, 1]) over K with respeet to U. For later use it is helpful to break the proof 
into two steps. First, we will construet a weakly Jree d-object over K with 
respect to U, this being a pair (F', 1]') with the weakened universal property, 
shown below, that for all (A, f) there exists at least one ljJ: F' ----- A in d 

K 
1]' 

)F'U F 
I I 

I I 

IljJU ljJl (not necessarily 
I I unique) 

..J... ..j,-
AU A 

with lJ'.ljJ U = J. To this end, let ff K be a solution set for K as in 2.23; in 
essence, we are trying to find a one-element solution set (F', 1]') to replaee 
ff K' Set F' = [l(S:(S, s) E ff K) in d. Of course the existenee of F' depends 
crueially on the smallness eondition on ff K' Sinee U preserves produets, 
PsU:F'U ) SU is a produet in:ft giving rise to a unique map 1]' with 
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K ___ -----'YJ'---' ---~) F' U 

fu 
SU 

~ 
'AU 

YJ'.pp = s for all (S, s) E !/' K. If (A, f) is an arbitrary pair then, by the defini­
tion of !/'K, there exists (S, s) E!/'K and r:s ~ A in d with s.ru = f. 
Setting 1jJ:F' ~ A = ps.r, we have YJ'.IjJU = Jas desired. 

Extending slightly the definition of 1.13, say that a collective equalizer of 
a set C ofmorphisms from Al to A 2 is a map i:E ----> Al universal with the 
property that ix = iy whenever x, y E C; that is ix = iy for all x, y E C and 
whenever i'x = i'y for all x, y E C then there exists unique h with h.i = i'. 

The second ofthe promised two steps is the proofis the following lemma: 

2.25 Lemma. Let U:d ~ % be aJunctor, let K be an object in %, 
and let (F', YJ') be a weaklyJree /#-object over K with respect to U with the 
property that the set C = {F' ~F':YJ'.xU = YJ'} has a collective equalizer 
i:F ----> F' which is preserved by U (that is iU is the collective equalizer oJ 
{xU:x E C}). Assume Jurther that every pair oJ d-morphisms has an equalizer 
and that U preserves these equalizers. Then, Jor suitable YJ, (F, YJ) is Fee over 
K with respect to u. 

Before proving 2.25, let us record that its hypotheses are available in the 
context of 2.24. We have already constructed a weakly free (F', YJ'). Since d 
is locally smalI, any set of endomorphisms of F' will have a collective equalizer 
(this being just a limit by the obvious extension of 1.21) which is preserved 
by U. Thus, the proof of 2.25 completes as weil the proof of 2.24. 

ProoJ. As iU is the collective equalizer of {xU:x E C} and since 
YJ'.xU = YJ'.yU for all x, y E C (the definition of C), there exists unique 

iU xU 
~F'U FU )F'U ) 

Pt: yU 
\ 

\ 

YJ\ 
\ 

YJ' 
, 

'K 

YJ with YJ.iU = YJ'. It is obvious that (F, YJ) is also weakly free over K with 
respect to U. Wh at we must prove is that whenever 1jJ, 1jJ':F ~ Aare 
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iU ru 
Fu--------------~)F'U--------------~ 

f jU 

iU K --------------~) FU ---------.::....::.-----~) F' U 
I] 

ljI U 1jI' U 

AU 

si-morphisms such that 1].IjIU = 1].IjI'U, then ljI = 1jI'. Form j = eq(ljI, 1jI') 
in si so that jU = eq(IjIU, ljI'U) in .ff. Since 1].IjIU = 1].IjJ'U, there exists 
unique fwithf.jU = 1]. Since (F', 1]') is weakly free, there exists r: F' ----+ E 
with I]'.ru = f. Set x:F' ~ F' = r j.i. Reading off the diagram above, 
we see that 1]'.xU = l].iU = 1]', and XE C. As idF" E C, i.x = i, that is we 
have i.r j.i = idF.i. Since i is a monomorphism, i.r j = idF. It follows that 
ljI = i.r j.1jI = i.r.j.IjI' = 1jI'. We are done. 0 

2.26 Example. Let si be the category of topological groups and con­
tinuous group homomorphisms and let U: si ----+ ff be the forgetful 
functor to topological spaces and continuous maps. Then U has a left ad­
joint. The proof illustrates the use of 2.24. Clearly .91 is locally small. The 
way one constructs products in si is to provide the product group with the 
product topology. With regard to equalizers, the subspace topology on a 
subgroup makes for a topological subgroup. Therefore all side conditions 
on si and conditions (1) and (2) in 2.24 are obvious at a glance. To prove 
(3), fix a topological space K, set !/ to be the set of all cardinals less than or 
equal to the cardinality of the free group generated by K, and define !/ K = 

{(S, s):S E si, s:K ~ SU E ff and the underlying set of S belongs to !/}. 
!/ K is a small set. Consider arbitrary (A,j). Let I be the algebraic subgroup 

__________ s ______ ~)SU 

ru 

IU 

AU /u 
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of A generated by the image of J made into a topological group by using the 
subspace topology. Then the indusion map i: 1----7 A is a morphism in $. 

Since the cardinal of I is in g (cf. 1A.31) there exists S E g and a bijection 
T: S -----+ I. It is dear that there exists a unique topological group structure 
on S making T a topological group isomorphism (specificaIly, a subset of S 
is open just in case T of it was open and s * s' = (sT' sT)T- 1). Finally, define 
s = g.(TU) (in the diagram above). 

2.27 Example. Let U: $ -----+:f{" be the forgetful functor from the 
category of metric spaces and distance-decreasing maps (1.9) to the category 
of topological spaces and continuous maps. Then U does not have a left 
adjoint. An easy way to see this is to know that it is rare for an uncountable 
product of metrizeable topological spaces to be metrizeable. For a specific 
example, we may cite [Hewitt and Ross '62, Theorem 8.11] which asserts if 
I is an uncountable set and if K is a denumerably infinite discrete space, 
then K 1 is not normal (and hence, not metrizeable). But K is metrizeable by 
the discrete metric d which keeps all distinct pairs of points exactly one unit 
apart. The product (K, d)I exists in $ (1.9) but is not preserved by U, so we 
invoke 2.22. 

2.28 Example (J. R. IsbeIl). There exists a set-valued functor U:$ ~ 
Set [rom the category of groups and group homomorphisms which preserves 
limits but which does not have a left adjoint. Let I be the proper dass of 
all cardinals and for each rx E I let Sa be a simple group of cardinality ;;, rx 
(1.64). Define GU = f1($(Sa, G):rx E 1). Then GU is a small set because "zero" 
is the only homomorphism from Sa to G if the cardinal of Sa exceeds that 
of G. If lj.r: G -----+ G' E $, define lj.rU by (UrJ, lj.rU) = U".lj.r). That U is a 
functor is dear. We leave the proofthat U preserves products and equalizers 
to the reader (see exercise 13). Suppose that (F, 11) were [ree over the I-element 
set 1 with respect to U. Fix ß E I with Sß of larger cardinal than F. Define 
(ga) E SßU by ga = 0 except when rx = ß when gß = idsß . Then there exists 
lj.r: F -----+ S ß with 11 ß.lj.r = idsß , the desired contradiction. 

A comparison ofthe methods of 1.64 and 2.28 suggests a possible relation­
ship between "not having a cogenerator" and "not satisfying the solution set 
condition." This is in fact the case: 

2.29 Special Adjoint Functor Theorem (P. Freyd). Let $ be a category 
sati,'ifying 

1. $ is Zocally small and has small limits. 
2. $ is well-powered; that is Jor each object A in $ the class oJ mono­

subobjects oi A (1.65) is a small set. 
3. $ has a cogenerator (1.59). 

Let U: $ -----+ :f{" be a Junctor to the (locally small) category :f{". Then a 
necessary and sufficient condition that U have a ZeJt adjoint is that U preserves 
products and equalizers. 

Proof. Fix K in .::f'. By 2.24,. we need only show that the conditions on 
.91 guar an tee that U satisfies the solution set condition at K. Let C be a 
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cogenerator in sd and let P be the cartesian power object Cff(K, CU) in si. 
This is meaningful, since ff is 10caHy small. Since sd is weH powered, there 
exists a sm all set Y of objects in cr4 such that every subobject of P is rep­
resented by a monomorphism with domain in Y. Set Y K = {(S, s): SE Y 
and s:K --+ SU}. Then Y K is a small set, again since ff is locally small. 
Now consider an arbitrary pair (A, f) with j:K --+ AU. Consider the 
cartesian power Q = Cs/(A, C) which we may since cr4 is locally sm all. For 
each x:A --+ ein sd we have j.xU:K ) CU in ff, wh ich induces 
unique aas shown below: 

s­
I 
I 

I 
a l 

I 

_ + P = Cff(K, CU) 

pullback 

I Px 

:~ 
:a~c 

-J, -J, 
A ---------+) Q = CS.1(A, C) 

eVA 

The evaluation map eVA (1.60) is a monomorphism because Cis a cogenerator, 
that is A may be thought of as a subobject of Q. Because s?d has sm all limits 
we may take the inverse image of A under a (1.68) which is a subobject of 
P; that is, there exists a pullback square as shown above with S E Y. Because 
U preserves small limits, U of the above square is still a pullback and PU 

K ...... 

.... .... ~SU ---------+~ PU 

~ 
aU aU CU 

~ AU------~)QU~PJU 
evAU 

and QU are still powers of CU as shown. In particular, we can define eVK 
as in 1.60. For each x:A --+ C we have eVK·aU.(pJU = evdPf.xU)U = 

j.xU (definition of eVK) = j.(ev A-Px)U = j.ev A U.(pJU. As (Px)U is an arbi­
trary product projection, evK.aU = j.ev AU. Thereexists unique swith s.aU = 

j and s.iU = eVK' In particular, s.aU = j. As (S, s) E Y K, we are done. 0 
We mention now another property of functorial adjointness reminiscent 

of operators on Hilbert space. 
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2.30 Composition Theorem for Adjoints. Let V 1 : si , f!}) and V z : 
f!}) ) ((l be fimctors wh ich have a left adjoint. T hen V 1 V z: si ------> 

Cfl has a left adjoint; indeed, if(sI, f1JJ, Vb F 10 1]10 e1) and (f1JJ, ((l, V z, F Z, 1]20 ez) 
are adjointnesses, then so is (si, Cfl, V 1V Z, FzF b 1]Z.FZ1]1VZ' V 1ezF 1 .ed. 
"(V 1 V z)* = VI vr" 

Proof. Fix C in Cfl. We check the universal property for the advertised 
C1] = C1]z·CF zl71 V z. Let f: C ) A V 1 V z be given. There exists unique 

, / , / 

~ \t 
AV 1 V Z 

I/J:CFz ) AV 1 with C1]z.I/JVz = f. Thus, there exists unique f : 
CF zF 1 ) A such that CF z1] 1.f # V 1 = I/J. It is now trivial to check 
that f# is unique with respect to the property that C1]z.CF z1] 1 V z.f # V 1 V Z = 

f. As regards the formulas in the composite adjointness, the construction of 
2.18 immediately provides everything except perhaps the formula for e; but 
by 2.17, this must be dual to the formula for 1]. 0 

As has been elear since 1.3.16, and again in 2.16, there are various ways 
in which functors and natural transformations interact. We elose this section 
by formalizing some of these interactions. Additional development is pro­
vided in 3.2.6. 

2.31 The Godement Calculus. Given functors F 10 F z, F 3::f( -----> 

!E and natural transformations r: F 1 ~ F z and rr: F z ~ F 3 the point­
wise composition or "horizontal composition" r.rr: F 1 ) F 3 is defined, 
using composition in the category fE, by A(r.rr) = Ar.Arr. Naturality 1S 

seen at on ce from the diagram 

A 
Ar Arr 

AF 1-------~) AF z ---....:...::.=-----4) AF 3 

f 

B BF 1-------4) BF z--------+) BF 3 
Br Brr 

Now consider the functors F:% ~fE, G10 Gz:!E ) At, H: 
At ~ JV and let r: G1 ~ Gz be a natural transformation. Define 
Fr:FG1 ) FGz by A(Fr) = (AF)r. The naturality of Fr is a special 
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case of the naturality of r: 

A 
AFr 

AFG 1---------+) AFGz 

f 

B BFG 1---B-F-r---+> BFGz 

Also, define rH: G 1 H , G2H, using the action of H on morphisms, by 
X(rH) = (X r)H. Hr is natural because the functor H preserves the commuta­
tivity of the appropriate naturality square: 

X 

f 

y 

The Godement ruies are: 

Given 

then (rG)H = r(GH):F1 GH -------'>,F2 GH. We write rGH. 

Given 

then F(Gr) = (FG)r:FGHl -------*, FGHz. We write FGr. 

Given 

then (Fr)H = F(rH):FG1H -------*, FG 2H. We write FrH. 

Given 

then F(r.a)H = FrH.FaH:FG1H , FG 3H. 
The proof of these assertions is routine and is left to the reader. 

Notes for Section 2 

Adjoint functors were introduced by [Kan '58]. The result of 2.8 is weIl 
known (see e.g. [Kelley '55, page 153J) although attention is usually restricted 
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to the completely regular case since it is feit, for reasons unclear, that 1'/ 
should be a subspace. The algebraic theory of 2.20 originates with [Huber 
'61, Theorem 4.2]. The adjoint functor theorems of2.24, 2.29 were present in 
Freyd's 1960 Princeton dissertation and appeared as [Freyd '64, Chapter 3, 
exercises J, M]. Examples similar to 2.28 may be found in [Gabriel and 
Ulmer '71, page 176]. 

Further remarks concerning the history of adjointness can be found in 
[Felseher '65, introduction] and [Mac Lane '71, pages 103, 132]. 

Exercises for Seetion 2 
1. Retrace the developments in 1.2.5-1.2.14 replacing the underlying set 

functor from (.0, E)-algebras with an arbitrary functor which has a left 
adjoint. 

2. Using weH-known properties of metric completion, show that complete 
metric spaces is a fuH reflective subcategory of the category of metric 
spaces and distance-decreasing maps as in 1.9. 

3. Show that partially ordered sets is a fuH reflective subcategory of the 
category of reflexive and transitively ordered sets and order-preserving 
maps. [Hint: divide out by antisymmetry.] Let X be a set and let Y be 
the coHection of aH families of subsets of X with reflexive and transitive 
ordering d :::;; f!J ifthe topology generated by d (i.e., with d as subbase) 
is contained in the topology generated by f!J; show that the reflection of 
(Y, :::;;) may be identified with the set oftopologies on X. 

4. Let .Yt be the category of M-sets of exercise 1.19(d). Prove that the 
underlying set functor from .Yt has both left and right adjoints. [Hint: 
for any set A, the free M -set has underlying set A x M and the cofree 
M-set has underlying set AM.] 

5. Let!: M ----+ N be a monoid homomorphism, i.e., a functor between 
one-object categories. Open question : if! has a left adjoint must ! be 
an isomorphism? 

6. Let !:X --> Y be a function and regard the order-preserving inverse­
image map ! - 1 : 2 y ) 2x as a functor between partially ordered 
categories. Show that ! - 1 has both left and right adjoints. [Hint: direct 
image provides the left adjoint; the right adjoint can be discovered using 
the universal property on singletons.] 

7. A category .Yt is cartesian closed if.Yt has finite products and if, for every 
object A, the functor - x A:.Yt ----+.Yt has a right adjoint. Prove 
that the category of M-sets (exercise 1.19(d)) is cartesian closed (cf. 2.14). 

8. A propositional logic is a cartesian closed category .Yt such that for aH 
objects p, q, .Yt(p, q) has at most one element. The objects of .Yt are 
"propositions" and the reflexive and transitive order p :::;; q determining 
.Yt may be interpreted "there exists a proof of q given p." Study the 
adjunction induced by fixed p noting that e establishes modus ponens 
as a rule of inference. Consider the case where .Yt is the usual Boolean 
algebra of propositions. 
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9. If x, 2 are categories, the jimctor category 2:f{ has as objects all 
functors .ff ------> 2, has as morphisms natural transformations and has 
as composition and identities the pointwise ones. Establish that 2·:f{ is 
a category. Isomorphisms in 2'Y;c are called natural equivalences. Show 
that the natural transformation r: F ----> G is a natural equivalence if 
and only if each Ar is an isomorphism in 2. Show that the category of 
M-sets as in exercise 1.19 is the same thing as SetM. 

10. Let U:.sI ~ Set be a set-valued functor. U is representable if there 
exists an .sI-object A such that F is naturally equivalent to d(A, -) 
(see exercise 1.8); show that this representing object A is unique up to 
isomorphism. Prove that U is representable if and only if there exists a 
free object over 1 with respect to U. More gene rally, for any functor 
U:.sI ~ f1ß and object B of fJ8, show that there exists a free object 
over Bwithrespectto Uifandonlyiff1ß(B, (- )U):d ) Set 
is representable. 

11. Prove the Y oneda lemma: given U: d ~ Set and A in d, the dass of 
natural transformations from d(A, -) to U is a small set, indeed is in 
bijective correspondence with AU. [Hint: generalize 1.5.6, 1.5.7.J 

12. Show that 2:ff is at least as complete, or as cocomplete, as 2 iso [Hint: 
given a diagram in 2:ff, to define the needed functor use the obvious 
pointwise construction on objects and use the universal property in 2 
to induce the action on morphisms.J 

13. If 2 is complete (so that exercise 12 establishes the completeness of 
2:ff) show that the full subcategory of 2:ff oflimit-preserving functors is 
dosed under limits. Use this observation and exercise 1.8 to prove that 
the functor U of 2.28 is limit preserving. Why is this functor not repre­
sentable? Show that the underlying set functor from complete Boolean 
algebras to sets is representable even though it does not have a left 
adjoint. Thus "left adjoint" implies "representable" and "representable" 
implies "limit preserving" but neither of these implications is reversible. 

14. Say that d is a SAFT category if d is a locally small, small complete, 
well-powered category with a cogenerator (so that, by the Special Ad­
joint Functor Theorem 2.29, every limit preserving functor from d to a 
locally small category has a left adjoint). Prove that the category of metric 
spaces of diameter at most 1 and distance-decreasing maps is a SAFT 
category. [Hint: modify exercise 1.20.J Show that the category of Banach 
spaces and linear maps of norm at most 1 is a SAFT category. [Hint: 
the product is a subset ofthe product set; use the Hahn-Banach theorem 
to prove that the scalar field (wh ich may be either real or complex) is 
an-in fact injective-cogenerator.J Show that the "unit disc" functor 
from Banach spaces to metric spaces has a left adjoint. Why does the 
"underlying metric space" functor not have a left adjoint? 

15. Ametrie space with base point is (X, d, xo) where (X, d) is a metric space 
and the "base point" Xo is any element of X. Let X be the category of 
metric spaces with base point and distance-decreasing base point pre-
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serving maps. The following sums up, in more categorical language, 
some of the constructions of [Arens and Eells '56, section 2]. 
(a) Show that the forgetful functor from Banach spaces (as in exercise 

14) to X has a left adjoint. 
(b) Let (F, 11) be the free Banach space over (X, d, xo) with respect to the 

functor in (a). Prove that 11 is an isometry into. [Hint: for each x in 
X the scalar-valued map d(x, -) - d(x, xo) is distance-decreasing.] 

16. A cartesian closed category with a subobject classifier (see exercises 7, 
1.19) is called a topos. In previous exercises it has been observed that the 
category SetM of M-sets is a topos. Prove, more generally, that Set"" is a 
topos for any small category sll. [Hint: use the Yoneda lemma (exercise 
11) to define FG and Q.] 

17. Prove the truncated adjoint functor theorem: Let rx be any cardinal ;::: 1. 
Let U: sll ------+ X be a functor. An rx-small set is a set of cardinal less 
than rx; and rx-product in sll is an I-indexed product with I of cardinal 
less than rx. Assume that .si has rx-products and equalizers of pairs. Then 
U has a left adjoint if and only if U preserves rx-products, U preserves 
equalizers, and for every K in X there exists a solution set g such that 
gis rx-small and such that, for every (S,f) E g, the set of all x: S ---"> S 
with f.xU = fis rx-smal1. 

18. Let.si be the category ofrings and unit-preserving ring homomorphisms, 
let X be the category of abelian groups and homomorphisms, and let 
U:.si ------+X be the forgetful functor. Use the general adjoint functor 
theorem to prove that U has a left adjoint. Then show that the free ring 
over an abelian group is given by the well-known integral group ring 
construction. 

19. Let X be the category of topological spaces and continuous maps. If I 
denotes the unit interval, show that - x I: X ------+ X has a right 
adjoint. [Hint: use the compact-open topology.] If Xis any topological 
space, show that - x X: X ------+ X preserves coproducts but need 
not have a right adjoint if X is not locally compact Hausdorff. For any 
two topological spaces X, Y the tensor product X ® Y of X and Y is 
the set X x Y provided with the largest topology such that the maps 
y 1--------+ (x, y) (for all x) as weIl as the maps x 1--------+ (x, y) (for all y) are 
continuous. Show that - ® X: X -------> X has a right adjoint for 
every space X. [Hint: pointwise convergence] 

20. Use the general adjoint functor theorem to prove that the forgetful 
functor from the category of compact groups to the category of topolog­
ical spaces as weIl as the forgetful functor from the category of compact 
groups to the category of groups have left adjoints. 

21. A weak limit of a diagram (LI, D) is a lower bound (L, t/J) such that given 
any other lower bound (L', t/J') there exists (not necessarily unique) 
f: L' ---"> L with f.t/Ji = t/J; for all i. 
(a) Show that a morphism f: A ---"> Bis a monomorphism if and only 

if the commutative square 
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id A --------'.---~) A 

id f 

A ----------+> B 
f 

is a weak pullback. 
(b) Show that any functor which preserves weak limits must also pre­

serve limits. [Rint: generalize (a).J 
22. Prove Huber's theorem: Let (d, %, U, F, 11, e) be an adjointness and 

let (Tb 111, 111) be an algebraic theory in d; then (FT 1 U, I1.FI11 U, 
FT1eT1 U.FI11 U) is an algebraic theory in %. [Rint: use 2.20 and 2.30.J 

23. [Bergman '75]. Let :1(" be the category of rings with unit, let 2 be the 
category of groups and let GLn :% ) 2 (for fixed n) be the 
"general linear group" functor whose action on morphisms sends (aij) 
to «aij,f»). Show that GLn has a left adjoint. 

3. Objects with Structure 

In a base category %, whatever "structure" an object K has is implicit 
and treated as a primitive concept. In this section, we axiomatize "categories 
of %-objects with additional structure." This provides a suitable universe 
in which to place categories of %-objects with algebraic structure (that is, 
%T). The theory is also interesting in its own right. 

3.1 Categories of Jf'-Objects with Structure. Let % be a (fixed base) 
category. A literal category, ((5, of X'-objects with structure (the more general 
"category of .ff -objects with structure" is defined in 3.3) is defined by the 
following two data and two axioms: 

C(j assigns to each object K of % a dass C(j(K) of C(j-structures on K. A 
C(j-structure is a pair (K, s) with SE C(j(K). 

For each ordered pair (K, s; L, t) of C(j-structures, C(j assigns a subset 
C(j(s, t) of %(K, L) ofC(j-admissible %-morphismsfrom (K, s) to (L, t); to denote 
that f: K ----+ L is in C(j(s, t) we will write f:(K, s) ) (L, t) or f: s -+ t 
(if necessary, imposing additional decoration should more than one C(j be in 
the picture). 

The two axioms are 

Axiom of Composition. If f: s -+ t and g: t -+ Li then f.g: t ----+ u. 

Structure is Abstract. If f: K ----+ L is an isomorphism in % then for all 
tE C(j(L) there exists unique s E C(j(K) such thatf:s -+ t andf-l:t ) s. 
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It follows from these axioms that idK : s ----'> s for an s E ~(K). As a 
result, there is a category-also denoted ~-with objects an ~-structures 
and as morphisms all ~-admissible Jf'-morphisms. There is also the obvious 
underlying :Yt-objeetjimetor U:~ ----'>:Yt which on objects sends (K, s) to K. 

We have not insisted that ~(K) is always a small set; when this is the case 
we say that ~ is small over :Yt. 

As a typical ex am pie, we may regard "topological groups" as a category 
of groups with structure. Here, :Yt is the category of groups, ~(K) is the set 
of an topologies on the set K compatible with the group structure, and a 
group homomorphism is admissible just in case it is continuous. 

3.2 Various Functors. Let U: .91 ----'> f!lJ be a functor. U is Jaithjid if 
for each pair (A, A') of objects in .91, the passage from J: A ----+ A' to 
JU:AU ) A'U is injective. For any object B in f!lJ there is a constant 
Junetor U B: .91 ) f!lJ which sends every object to Band every morphism 
in .91 to the identity map of B. Notice that no constant functor from the 
category of groups to the category of sets is faithful. The picture of a 

o 

1 
o 
o 

1 
o 

o 

1 
o 

1 
o 

functor from a 4-object category to a 3-object one illustrates the principle 
that the dass of morphisms which constitutes the image of a faithful functor 
need not be dosed under composition; i.e., it isfalse, even for faithful functors, 
that "the image of a subcategory is a subcategory." This pathology dis­
appears ifwe add either the condition that U be injective on objects (so that 
[U] is a subcategory) or the stipulation that U be fun; U is Juli if for every 
pair (A, A') of .91-objects, the passage fromJ:A ----+A' to JU:AU -------> 

A' U is surjective. Thus the subcategory [H] is fun in the sense of 2.6 if and 
only if H is full. U is an isomorphism oJ categories, and the categories s# and 
f!lJ are isomorphie, if U is bijective on objects, fun and faithful. Equivalently, 
U is an isomorphism in the category of categories and functors. U is a Juli 
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representative subcategory oJ f!ß if U is a fun subeategory sueh that every 
objeet of f!ß is isomorphie to an objeet of the form AU. U is a Jull replete 
subcategory oJ f!ß if every objeet isomorphie to an objeet in U is already in U. 
Thus U is an isomorphism if and only if U is a fun, representative, replete 
subeategory. 

There is no doubt that isomorphie eategories should be treated as ab­
straetly the same for an eategorieal purposes. The multiplieity of funetorial 
definitions suggested above allows many eoneepts of "nearly isomorphie" 
of whieh the most fundamental is equivalence (see e.g. [Mae Lane '71, page 
18J). Although we will avoid a serious diseussion of this point, it is worth­
while to observe that with respeet to internal properties of a eategory, as 
exemplified by the material in seetion 1, the existenee of a full and faithful 
funetor U: d ---+ f!ß sueh that every objeet in f!ß is isomorphie to an objeet 
ofform AU, forees d and f!ß to have very similar strueture (e.g. with respeet 
to having eoequalizer-mono faetorizations). On the other hand, eonsider the 
pieture (below) of a fun representative subeategory between two preordered 
eategories: 

o 

o 

o 
fJI 

With respeet to suitably external properties, d and f!ß seem quite different. 
For example, d has one endofunetor, but f!ß has four. 

3.3 Concrete Categories. Let.:1(" be a (fixed base) eategory. A concrete 
category over .:1(" is a pair (d, U) where d is a eategory and U: d ---+.:1(" 
is a faithfulfunetor. A homomorphism H: (d, U) ) (f!ß, V) oJ eonerete 
eategories is a funetor H: d ---+ f!ß whieh is over .:1(" in the sense that the 
diagram 

H 
d----------------~ 

\$ 
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of functors commutes (on objects and on morphisms). Notice that if H is 
such a homomorphism, (si, H) is a concrete category over f!lJ. The diagram 

H' 
-----=:..::.---~) si' -----=~--4),r;1" 

U' 
U" 

shows that the composition of homomorphisms is again one. With this 
composition, and using identity functors, we get the category Con(%) whose 
objects are concrete categories and whose morphisms are the homomor­
phisms defined above. Notice that there is no guarantee that Con(.x) is 
locally small if % iso If <C is a literal category of % -objects with structure with 
underlying %-object functor U then (<C, U) is an object in Con(%). Ex­
tending but slightly the definition in 3.1, a concrete category (si, U) will be 
caIled a category of % -objects with structure if there exists a literal category 
of % -objects with structure <C such that (.91, U) is isomorphic to <C in Con(%). 
Notice, incidentally, that if H: (si, U) ) (.qß, V) E Con(%) then if 
H: si ~ f!lJ is an isomorphism of categories then H- 1: f!lJ ) si is 
automaticaIly over %; that is, for functors over %, there is no difference 
between isomorphisms in Con(%) and isomorphisms of categories. 

The full subcategory of Con(%) consisting of all categories of sets with 
structure will be denoted as Struct(%). By definition, Struct(.x) is a fuIl 
replete subcategory of Con(%). This reflects our confidence that the in­
variants in a given category of structured objects will be implicit in the 
forgetful functor, a principle which has been with us since 1.2.17. In the 
sequel we will freely write "let <C E Struct(%)," and assume notationaIly that 
<C is literal (as in 3.1) when the properties under discussion are isomorphism 
invariant. 

Let (si, U) be an arbitrary concrete category over %. For each object K 
of % define si K to be the class of aIl objects A in .91 such that AU = K. If 
<C E Struct(%), <C K, and <C(K) are, clearly, essentiaIly the same thing. Carrying 
the analogy further, given f: K ~ L in % and si E si K, B E ,91 L say that 
f is admissible from A to B if there exists 1jJ: A ---+ B with ljJ U = f; this 
definition seems in the right spirit because ljJ is unique when it exists. For 
each K there is a canonical preordering (i.e., a reflexive and transitive relation) 
on si K defined by A ~ B if and only if idK : A ) B is admissible. The 
preordered class (si K, ~) is called the fibre over K. For <C E Struct(%), 
(<C(K), ~) is even partiaIly ordered (that is, ~ is antisymmetrie as weIl) since 
"structure is abstract" guarantees that if idK : s ~ t and idK : t ~ s then 
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s = t. In general, (d, U) in Con($") is antisymmetrie if all of its fibres are 
partially ordered dasses. 

3.4 Antisymmetrization Theorem. "Antisymmetrie" is a full refleetive 
replete subeategory of Con($"). The antisymmetrie refleetion funetor of eaeh 
eonerete eategory is always full, faithful, and surjeetive on objeets. 

Proof. Define the equivalence relation A '" B on the objects of d by 
A '" B ifand only if AU = K = BU and idK:A ) B, idK:B ) A 
are admissible, and let [A] denote the eq uivalence dass of A. Extend '" to 
an eq uivalence relation on the dass of all morphisms of d by 1/1: A ~ B '" 
1/1': A' -----> B' if and only if [A] = [A'], [B] = [B'] and I/IU = I/I'U. De­
fine a category [d] with objects all [A], morphisms [d] ([A], [B]) = 

{[I/I]II/I:A ) B}, [1/11] [1/12] = [1/111/12]' id[Al = [idAJ. It is routine to 
check that all this is well-defined, giving rise to the functor [ ] : d ) [d] 
which is full, faithful and surjective on objects. There exists a unique functor 
[U]: [d] ) $" such that [].[U] = U, and ([d], [U]) is an anti­
symmetrie concrete category over $". If H: (d, U) ) (.?ß, V) E 

Con($"), and if (.?ß, V) is antisymmetrie, the desired unique r is defined by 
[A]r = AH. 0 

To illustrate the ideas in 3.4, let d be the category of metric spaces and 
contin uous maps and let U: d -----> Set be the underlying set functor. Then 
([ d], [U]) is isomorphie in Con(Set) to the category of metrizeable topolog­
ical spaces and continuous maps. 

3.5 Structural Reflection Theorem. Let (d, U) be a eonerete eategory 
over $". The following three statements are true: 

1. (d, U) has arefleetion in Struet($"). 
2. Ift[>:(d, U) ) (C6', V) E Con($") with (C6', V) E Struct($") then 

t[> is arefleetion of(d, U) in Struct($") if and only if t[> is full and every objeet 
in C6' is isomorphie to an objeet ofform At[>. 

3. If(d, U) is antisymmetrie then its refleetion map in Struct($") is afull 
representative subeategory. 
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Praaj. Consider the situation shown below, where (~, V) and (~', V') 

are in Struct(Jf') and cf> is full and representative. Let C be a ~-object. By 
hypo thesis, there exists an isomorphism J:Acf> ~ C. Set j = IU. Since 
~' satisfies "structure is abstract" there exists cr such that j: AH ~ cr 
and its inverse are admissible. To see that r is well defined on objects, 
suppose also that g:A'cf> ) C is an isomorphism and that C' is unique 
such that g: A' H ) C' and its inverse are admissible. Since cf> is fuH and 
T(g) -1: A cf> ) A' cf>, j.g - 1 is admissible from A to A' and hence, via 
H, from AH to A'H.lt follows that idcv = j-1.(f.g-1).g is admissible from 
cr to C'; and symmetrically, idcv is admissible from C' to cr so that they 
are equal. To complete the "if" of (2) it is necessary to verify that if j: C 1 ---+ 

C2 is admissible in ~ then j:c 1r ) c2r is admissible in ~', that 
Acf>r = AH and that r is unique with these properties; we leave this as an 
easy exercise. 

By combining 3.4 with the above, we have only to establish that if (si, U) 
is antisymmetric then there exists (~, V) in Struct(Jf') and cf>:(sI, U) -----'> 

(~, V) in Con(Jf') such that cf> is a full representative subcategory. This is 
done as follows. For fixed K in Jf', consider the class of aB pairs (A, f) with 
j: K ---+ AU an isomorphism. Given two such pairs (A, f) and (A', 1'), say 
that(A,j) ::;; (A',j') ifforeverypair(g,B) withg:K ---+BU,ifj.g:A --..... 
B is admissible then so is 1'.g: A' ) B. Then ::;; is reflexive and transitive, 

A'U~ 9 

Au~K---""":::---~)BU 

so "(A,j) ~ (A', 1') if(A,j) ::;; (A', 1') and (A',j') ::;; (A,j)" is an equivalence 
relation. Let ~(K) be the class of all ~-equivalence classes [A, fJ of pairs 
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(A,f). If[A,f] E ce(K), [B, g] E ce(L) and h:K ----+ Ldefine h to be admissible 
from [A, fJ to [B, g] if and only if I.h.g - 1 : A j B is admissible in 
d. This is weIl defined, since if (A, f) ,... (A',f') and (B, g) ,... (B', g) we argue 
asfollows: asI.h.g- 1:A j B and(A,f) ~ (A',j'),1'.h.g- 1 :A' --~ 
B; as (B', g') ~ (B, g), g.(g')-1:B j B'; therefore (1'.h.g- 1).g.(g')-1 = 
1'.h.(g,)-1:A' j B' is admissible. A<P is defined to be [A, idAUJ. 
The numerous omitted verifications are left as an easy calculation. D 

3.6 Summary. We have shown that an arbitrary concrete category over 
% admits a full and faithful functor over % to a category of % -objects with 
structure whose image contains an isomorph of every object, and that all 
such functors are isomorphie (2.2 !). Our remarks in 3.2 suggest that, for our 
purposes, a concrete category and its structural reflection have very similar 
properties. 

Here is a typieal example of structural reflection. Let d be the category 
of groups and homomorphisms, let Z be the group of integers and define 
U:d -----l- Set as folIows. Set AU = d(Z, A). For I:A ----+B in d, set 
(x,IU) = x.f. Then (d, U) is a concrete category over Set whieh is, in fact, 
antisymmetric. It does not satisfy the existence condition in "structure is 
abstract." If U': d ~ Set is the usual underlying set functor, then (d, U') 
E Struct(Set). It is obvious how to make AU into a group isomorphic to A, 
thereby defining the full representative subcategory <P:(d, U) ---~ 
(d, U') which is the structural reflection of (d, U). This justifies our intuition 
that "U and U' are practically the same." 

3.7 Constructions in Struct(%). Regardless of the nature of %, 
Struct(%) has products. id.)f":% j % (which is in Struct(%) via 1-
element fibres and all maps admissible) is the terminal object. More generally, 
given any family (ce i : i E 1) in Struct(%), the product ce is defined by 

~(K) = n cei(K) 
ieI 

if and only if for all i. 

With the obvious projection homomorphisms ce ---+ cei (sen ding (K, (Sj)) to 
(K, sJ) it is routine to verify that ce is the categorical product. Ifce E Struct(%) 
and if &> is a full replete subcategory ofce then the axioms of3.1 hold (construct 
what is needed in ce and observe it is in &» so that &> is in Struct(%). Products 
and full replete subcategories are often used together to create new structures 
out of old. "Topological groups" is a typieal example over % = Set. Let ce 1> 

ce 2 E Struct(Set) be "spaces" and "groups." Then ce 1 X ce 2 is the category of 
"topologized groups," the objects being sets equipped with (unrelated) topo­
logical and group structure. "Topological groups" is then a fuH replete sub­
category of ce 1 X ce 2' 
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We now begin to classify structure. Of fundamental importance in this 
book is: 

3.8 Aigebraic Structure. ((3 E Struct(%) is algebraic over % if there 
exists an algebraic theory T in % such that C(i is isomorphie in Struct(%) 
to %T. (d, U) E Con(%) is weakly algebraic if its structural reflection (3.5) 
is algebraic. 

3.9 Discretely-Ordered Structure. It is sometimes the case that "bijective 
admissible maps are isomorphisms"; for example, this is true for groups but 
false for topological spaces. We now formalize when this is true. A preordered 
set (X, ::::;) is discrete if ::::; is the equality relation, that is if x ::::; y then x = y. 
C(i E Struct(%) is discretely ordered if for every K, the fibre (((3(K), ::::;) is dis­
crete. This is equivalent to stipulating that whenever f:(K, s) ) (L, t) 
isadmissiblewithf:K ~Lan isomorphism in %, then alsof- 1 :t ----> 

s. (Proof: there exists uniq ue t' with f: s ~ t' and f - 1 : t' ) s; since 
f-1.f:t' ) t, t' ::::; t and t' = t.) Notice that 

(3.10) Algebraic implies discretely ordered. 
(3.11) Any product of discretely ordered categories of ;Y-objects with 

structure is aga in discretely ordered; anyfull replete subcategory ofa discretely 
ordered category is again discretely ordered. 

3.12 Duality. The dual (d, utP of the concrete category (d, U: 
d ) .Y) over % is the concrete category (o(;Jii'°P, UOP) over %OP where 
(cf. 1.34) uop: dOP %OP is defined by 

AUOP = AU 

(A __ J----« R)UOP = AU ~ BU 

Passing from a concrete category to its dual establishes an isomorphism of 
categories Con(y't) ~ Con(.xOP), the action on homomorphisms being de­
picted below: 

H d--------+) !!J 

\~ v ) 

HOP 
dop--------?) !!J0P 

\1 Jf'OP 

It is clear that, by restriction, duality establishes an isomorphism Struct(Jf') ~ 
Struct(Jf'OP). Because of duality, our work in classifying structure is "cut in 
half"; for even if our original aim was to study only categories of sets with 
structure, it would have been necessary to consider the much more abstract 
idea of a category of Seep-objects with structure in order to take advantage of 
duality. 
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"Discretely ordered" is selfdual in that c(f is discretely ordered over :It if 
and only if'6'°P is discretely ordered over :lt0P. On the other hand, "algebraic" 
is not a self-dual property. Say that c(f is coalgebraic over :It if, of course, '6'0p 
is algebraic over :lt0P. 

3.13 Closure Operators and Interior Operators. Let the category :It be 
a partially ordered class. Consider an algebraic theory T = (T, 1], 11) in :It. 
To say T is a functor is only to say T is an order-preserving endomorphism. 
The existence of I] and J1 translate to the properties x ~ xT and xTT = xT. 
Therefore T is just what is usually called a closure operator on :It (and it is 
more standard to write x- instead of xT); i.e., the other axioms are guaran­
teed to hold because all diagrams in :It commute. :ltT is just the full sub­
category of closed elements, that is all x such that x- ~ x. As is wen known, 
if :It is a complete partially-ordered set (including the empty intimum 1) 
then the full subcategory .xl or :It is algebraic over :It if and only if .xl is 
closed under intima (for the inverse passage, detine x- = Inf(y: x ~ y)). 
Dually, .xl is coalgebraic over :It if and only if .xl is closed under suprema. 
As discussed furt her in exercise 10, .xl is coalgebraic over :It if and only if 
.xl can be constructed, up to isomorphism, as the coalgebras over an algebraic 
cotheory. In the partially ordered case, an algebraic cotheory is usually called 
an interior operator, being an order-preserving endomorphism 0 satisfying 
XO ~ x and xOo = XO • The coalgebras are the open elements. 

Well known constructions in topology are "the smallest topology making 
a family of functions from a set to a bunch of spaces continuous" and, dually, 
"the largest topology making a family of functions from a bunch of spaces to 
a set continuous." This is easy to formulate in Struct(:It): 

3.14 Optimal and Co-Optimal Families. Let '6' be a literal category of 
:It -objects with structure (for convenience, as the extension of the ideas to 
arbitrary concrete categories will be obvious). A family (not necessarily 
small!) of admissible maps of form 

(K, s) ---'...J-->, (Li' U 

is optimal if whenever (K', s') is a '6'-structure and g:K' -----> K is a :It­
morphism such that g.f;: s' -----> ti is admissible for all i then g: s' ---+ s 
is also admissible. An optimal map is a one-element optimal family. Consider 
the situation 

K _f.,-,-i ----+, (L;, t;) 

(i.e., /;: K ---+ Li is a family of :It -morphisms and ti E '6'(Li)). An optimal 
lift of (/;: K ---+ (Li' tJ) is a structure s E '6'(K) such that f;: (K, s) ------+ 

(Li' t i) is an optimal family. Optimal lifts, when they exist, are unique in view 
of the antisymmetry of '6'. 

Dually, a family /;:(L;, t;) , (K, s) is co-optimal if the family 
/;:(K, s) ( (Li, tJ of admissible morphisms of '6'0P E Struct(jf'oP) is 
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optimal; that is, specificaIly, ifwhenever (K', s') is a C6 -structure and g: K ----> 

K' is a X'-morphism such that 

j; 
(L;, tJ ---'::"':--4) (K, s) 

/ 

};.g 
I 

i 
(K', s') 

/ 
/g 

/ 
/ 

K' 

};.g is admissible for all i then 9 is also admissible, 

K 

3.15 Example. Let C6 E Struct(Set) be topological spaces and continuous 
maps. Any family (not necessarily small!) k K ) (L;, ff i ) has optimal 
lift !f E C6(K), where a subbase for !f is all sets of form U fi- 1 with U E ff i• 

This is a weH known construction in topology and such !f is conventionally 
called the "smallest" or "weakest" topology making all J; continuous since 
if !f' E C6(K) makes each J; continuous then!f' => !f; from the point of view 
of the fibre (~(K), ~) we have !f 1 ~ !f 2 if and only if !f 2 c !f b which 
explains why we avoid such terminology. Any family k(L;, ff;) ----> 

K has a co-optimal lift !f, namely !f = {U c K: for all i, U f i- 1 E ff i }. The 
definitions "optimal family" and "co-optimal family" make sense when (};) 
is the empty family. The empty optimal !ift in C6(K) is the indiscrete topology 
whereas the empty co-optimal lift is the discrete topology. 

3.16 Example. If T is an algebraic theory in %, if (LI, D)-write D i = 

(Li, ~;)-is a diagram in %T and if (K, t/J) is a limit of (LI, DUT ) in % then 
the unique morphism ~:KT ) K such that each t/Ji becomes a T­
homomorphism renders (K, ~; t/J) a limit of D in %T (the proof is easy and 
is given in 3.1.19 below). It is true, moreover, that t/Ji:(K, ~) ) (Li, ~J 

K'T ___ "-f_T __ --+> KT ___ ..Lt/J!.-i T __ ~) LiT 
I 
I 
I 

~I 

-!-

~i 

K'---------+) K ---------+) L,' 
j' t/Ji 
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is optimal in x T . To prove this, observe (as shown above) that if ~'.f.t/Jj = 

fT.t/Ji T.~j for all i then ~'.f = fT.~ since both maps are induced by the same 
universal property (cf. 3.1.20). 

It is not true that all families in xoT have optimal lifts. For example, if 
.% = Set then an inclusion A c (X, 0 cannot lift unless A is a subalgebra of 
(X, ~) (see 1.4.31 which asserts that A = (A> if and only if the inclusion of 
A lifts to a homomorphism). 

3.17 Construction ofLimits. Let rg E Struct(X). The functor U: 
rg --------+ X constructs limits if for every (not necessarily small!) diagram 
(LI, D) in rg and every limit (K, t/J) of (LI, DU) in X the family t/Jj:K--------+ 
Dj = (L j, tJ has an optimal lift s. It follows at once that t/Ji:(K, s) -------+ 

(Li> t il is a limit of D in rg; thus, if U constructs limits, then rg has and U 
preserves whatever sorts of limit X has. Example 3.16 shows that UT : 

x T ) X constructs limits. 
Dually, U: rg --------+ X constructs colimits if UOP: rgop ) xop con-

structs limits, that is, whenever t/Jj:D j ------> K is such that (K, lj;) is a colimit 
of (LI, DU), it has a co-optimal lift (which is then a colimit of D in ((5'). UT : 

x T ) X rarely constructs colimits (e.g. Example 1.28 shows that 
coproducts of abelian groups are not built on disjoint unions; see also 
section 7 ofChapter 3). By 3.15, the underlying set functor from topological 
spaces constructs both limits and colimits. 

3.18 Example. Let U be the forgetful functor from the category of 
Banach spaces and norm-decreasing maps to the category of metric spaces 
with base point (as described in exercise 2.15). Then U constructs limits but 
fails to construct infinite coproducts (which in the Banach space category 
are obtained by completing the weak direct sum with the "sum" norm). 

3.19 Example. The underlying set functor from real vector spaces con­
structs limits but fails to construct coproducts. On the other hand, the 
underlying abelian group functor from real vector spaces constructs both 
limits and co limits. 

3.20 Optimal Substructures and Co-Optimal Quotient Structures. Let 
((} E Struct(Set). If (K, s) is a rg-structure, a subset A of K is an optimal subset 
of (K, s) if the inclusion map A --------+ (K, s) has an optimal lift. Dually, a 
surjection f: K -------t L is a co-optimal quotient of (K, s) if f has a co-optimal 
lift. While many such rg admit numerous sorts of"substructure," the optimal 
ones are almost always an important type. Similarly for quotients. We illus­
trate with examples, pausing to prove a lemma useful here and in section 3.1 : 

3.21 Lemma. Let rg E Struct(x) emd let f, g, h be rg-morphisms such 
that fh = gh. The following two statements are true: 

1. 1f h is co-optimal and if h = coeq(f, g) in :f{" then h = coeq(f, g) in rg. 
2. 1f h = coeq(f, g) in rg and if h is epi in X then h is co-optimal. 
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Praof. Consider the diagram shown below. For the first statement, 

f h 
(K, s) _______ ~~ (L, t)-----~) (M, u) 

9 // 
// 

// 
x z / / Y 

// 
// 

1'" (N, v) 

/ 

" N 

/ 

/y 
/ 

M 
/ 

/ 

if fx = gx with x in ce as shown then there exists unique y in :ft with hy = x; 
y is admissible since h is co-optimal. For the second statement, if y is in :ft 
and x = hy is admissible then there exists unique z in ce with hz = hy. As h 
is epi in :ft, z = y in :ft and y is admissible. 0 

3.22 Example. In See, optimal subsets are subalgebras and co-optimal 
quotients are surjective T-homomorphisms (see 1.4.30 and 1.56). Notice that 
rings or semigroups have ideals (one- or two-sided) and groups have normal 
subgroups, so that there are more specialized subobjects. 

3.23 Example. Let ce be topological groups in Struct(Set). Optimal 
subsets are subgroups (which we provide with the subspace topology) whereas 
co-optimal quotients are quotient groups-i.e., the kernel pair of the surjec­
tion in question must be a subgroup ofthe product-(which is provided with 
the quotient topology). The situation changes for separated groups. Here, 
optimal subsets are closed subgroups and co-optimal quotients must satisfy 
the additional condition that the kerne! pair is closed in the product topology. 

3.24 Example. Let ce be Banach spaces and norm-decreasing linear 
maps in Struct(Set). Optimal subsets are c10sed linear subspaces. The coequal­
izer h = coeq(f, g) in ce is formed by dividing out by the closed subspace 
K = ker(f - g) and imposing the quotient norm 110:11 = Inf{llxll:x + K = 

o:}. From this and Lemma 3.21 it follows that the co-optimal quotients are 
the coequalizers, i.e., are those surjections h for which the kernel pair of h 
is a c10sed linear subspace of the product. 

3.25 Example. Letf:A ---> A be the squaring homomorphism on the 
nonzero reals in the category of 2-divisible abelian groups, so that f is the 
noninjective monomorphism of 1.47. Notice that f is not optimal since the 
absolute value function A ----+ A is not a homomorphism even though Ixl2 = 

x 2 . The optimal subsets are the subgroups which, as groups, are 2-divisible. 

3.26 Example. Let ce be the category of C"' manifolds and Cao mappings. 
The optimal subsets are the well-known submanifolds. For a proof see [Lang 
'72, page 25]. 

We now introduce an important property in Struct(:ft): 
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3.27 Definition. Cf} E Struct(X) is fibre-complete if every (not necessar­
ily smalI!) family .t;: K ------> (L;, tJ has an optimal lift and if every family 
j;:(L;, tJ ) K has a co-optimal lift. Notice that each fibre (Cf}(K), :::;;) 
is indeed complete since for any sub set A of Cf}(K), the infimum of A is the 
optimal lift ofthe A-indexed family idK:K ) (K, a) and the supremum 
of A is constructed, dually, as a co-optimal lift. 

3.28 Proposition. 1f Cf} E Struct(x) isfibre complete then U:Cf} ----+ X 
has left and right adjoints. 

Proof. The free object over K is the least element 0 of (Cf}(K), :::;;), that 
is, the co-optimal lift of the empty family out of K; the reasoning is "f: 

K 
idK ) (K, O)U K 

1 1 
1 1 

1 / 

f /1 1 
I f 

/ / 

" Il 
(L, s)U L 

(K,O) ) (L, s) is admissible if and only if it is admissible preceded by 
every element of the empty family" and this is true for every f: K ------> L. 
Dually, the cofree object is the greatest element 1 of Cf}(K). 0 

3.29 Proposition. 1f Cf} E Struct(x) is fibre complete then U: Cf} ----+ X 
constructs limits and co limits. A morphism h: (L, t) ) (M, u) in Cf} is a 
coequalizer in Cf} if and only if h is co-optimal and is a coequalizer in X. 

Proof. The first statement follows immediately from the definition in 
3.17. If h = coeq(f, g) in Cf} then h = coeq(f, g) in X because U has a right 
adjoint and, hence, must preserve colimits. By 3.21, h is co-optimal. Con­
versely, let h be co-optimal and let h = coeq(f, g) in X. Let s be the optimal 
lift of f, g: K ------> (L, t). It follows from 3.21 that h = coeq(f, g) in Cf}. 0 

3.30 Example. Topological spaces is fibre complete over sets as dis­
cussed in 3.15. Other "topological categories" are fibre complete (see [Wyler 
'71-A]). For example let Cf} be the category ofuniform spaces and uniformly 
continuous mappings in Struct(Set). Then Cf} is fibre complete. Given 
j;: K ) (L;, Y;), the optimal lift is the uniformity dlt whose entourages 
are supersets of finite intersections of subsets of K x K of form aLt; x/;)- 1 

with a E Y;. Co-optimal lifts do not have an equally direct description but 
must exist in view of the following useful 

3.31 Proposition. Let Cf} E Struct(x). Then if every family j;: K ~ 
(L;, t;) has an optimal lift, Cf} is fibre complete. 
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Proof. We must show that k(K i , s;) ) L has a co-optimal 
lift. Let B be the set of all U E rtf(L) such that /;: Si ---> u is admissible for all 
i. B is nonempty since the empty optimal lift is in B. Let t be the optimal lift 

/; 
(K i , s;)-----~) (L, t) 

11/ ,\dL 

/;g gl (L, u) 

// 
(M, v) 

of the B-indexed family idL:L----> (L, LI). Suppose given g:L---> (M, v) 
such that /;g: Si ----> V is admissible for all i. Let LI be the optimal lift of 
g: L ---> (M, v). As u is optimal, u belongs to Band g: t ---4 V is admissible 
being the composition of idL:t ----> LI and g:u ---4 v. 0 

3.32 Proposition. Any product in Struct(%) (as described in 3.7) of 
jibre-compiete categories is jibre compiete. 0 

3.33 "Type Theory". Let (n, k) be a pair of non-negative integers. An 
(n, k)-structure is a pair (K, s) where K is a set and s is an element of K"pk 

where K" is the n-fold cartesian power and p k is the kth iterate of the power 
set operator, KP = 2K . For example, a topology of open subsets of K is a 
(1, 2)-structure, a uniform structure of entourages on K is a (2, 2)-structure, 
a ternary operation K 3 ---4 K is (via its graph) a (4, l)-structure, a partially 
ordered set is a (2, l)-structure. and a set with base point is a (1, O)-structure. 
For k > 0 define fibre-complete categories in Struct(Set), rtf(n. k), and rtf(n, k), 

whose objects are the (n, k)-structures. Say that f: (K, s) ) (L, t) is 
admissible in rtf(n, k) if the direct image ~f" is a subset of t; whereas f: 
(K, s) ) (L, t) is admissible in rtf(n, k) if the inverse image t(fn)-l is a 
subset of s. Given /;: K ----> (L, t;), the optimal lift in (t'(n, k) is the inter­
section of all t i ( (/;)") - 1 whereas the optimal lift in (t'(Il, k) is the union of aU 
t i ( (/;)") - 1. Given k (K;, s;) ) L, the co-optimal lift in rtf(n, k) is the 
union of aU Si(/;)" whereas the co-optimal lift in rtf(n. k) is the i-indexed inter­
section of the families {A: A( (/;)") -1 E sd. Thus topological spaces, ternary 
algebras, and partiaUy ordered sets are fuU replete subcategories, respectively, 
of rtf(1· 2), rtf(4, 1)' and rtf(2, 1)' 

3.34 Pulling Back Structure. Let rtf be in Struct(%) and let 2 be a fuU 
replete subcategory of % with inclusion functor i. The pul/back of rtf aiong 
2 is the category fJ}J in Struct(%) defined by 

(if K is in 2) 

(if K is not in 2) 

The @l-admissible maps between two fJ}J-structures are defined to be all the 
rtf-admissible maps. The axioms of 3.1 are cleaL As shown in 3.35 
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j 
!?P -----------7) ~ 

v w U (3.35) 

2-------------~ 

(which is a pullback in the category of categories and functors), !?P is a full 
replete subcategory of ~ and !?P is in Struct(2). 

For example, if X is topological spaces, ~ is topological groups and 2 
is Hausdorff (or just T 0) spaces, !?P is separated topological groups. 

3.36 Proposition. Let ~ be in Struct(X) and let 2 be a fitll replete 
subcategory of X. Then if ~ is jibre complete over X, its pullback !?P along 
2 is again jibre complete over 2. 

Proof. If k(L, s) ) (Li, ti) is optimal in ~ with Land all Li in 
2 then this family is a fortiOl'i optimal in !?P. This is all we need check by 
3.31. 0 

3.37 Definition. H: ~ ---> Ijj) in Struct(X) is taut if H preserves op­
timal families, that is k (K, s)H ) (Li> tJH is optimal in Ijj) whenever 
.t;:(K, s) ) (Li> tJ is optimal in ~. Dually, H is cotaut if H preserves 
co-optimal families. Examples are developed in the exercises. 

In 3.33 we saw how familiar categories of sets with structure admit 
natural representations as fuH replete subcategories of fibre-complete cate­
gories. Such embeddings are often taut but rarely cotaut. In exercise 12 it is 
shown that every category of x-objects with structure admits a simulta­
neously taut and cotaut embedding as a full replete subcategory of a fibre­
complete category. 

Notes for Seetion 3 

While the definition of "a category of X -objects with structure" is an 
obvious one, there is very little literat ure on the subject. The earliest reference 
(with X = Set) we know of is [Krishnan '51]. Jezek, in his treatise [Jezek 
'70], refers to a 1958 paper of Mal'cev (cf. [Mal'cev '71, page 52]). See also 
[Ehr:esmann '65, page 55] (which is presented in [Bucur and Deleanu '68, 
page 84]), [Bourbaki '57], [Blanchard '71], and [Guitart '74]. Traditionally, 
"concrete category" means over Set. 

Not every locally small category d admits a U: d ----> Set such that 
(d, U) is concrete over Set (see [Isbell '63, Example 2.4] and [Freyd '64, 
page 108]). For necessary and sufficient conditions for concreteness over Set 
see [Freyd '73]. 
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Exercises for Seetion 3 
1. Prove that the category of reflexive and transitively ordered sets and 

order-preserving maps is isomorphic in Struct(Set) to the category of 
topological spaces in which every intersection of open sets is open and 
continuous maps. [Hint: x :( y if and only if XE {y} -]. Use this as an 
aid to constructing the lattice of all topologies on a three-element set; 
there are 29 such topologies and 9 homeomorphism c1asses. 

2. Exercise 1 raises the question whether a "familiar presentation" of a 
category C6' in Struct(Set) can be recovered from the isomorphism c1ass 
of C6' in Struct(Set). 
(a) Show that a standard presentation of "abelian group" can be re­

covered. [Hint: The object Z of integers is distinguished by the facts 
that it admits infinitely many endomorphisms and is such that when­
ever A admits a monomorphism into Z then either A is an initial 
object or A admits an isomorphism to Z; define an element of A to 
be a map from Z to A; for any A the canonical map A + A -----; 
A x A is an isomorphism and the map A x A = A + A -----; 
A which is the identity of A preceded by each coproduct injection 
defines addition of elements.] 

The hint in (a) achieved much more than was required since it 
used only the category and not the underlying set functor. Consider: 

(b) Show that a standard presentation of "monoid" can be recovered. 
[Hint: Since U:C6' ----> Set is given, the required n-ary operations 
will be natural transformations un ---; U; there are only two 2-ary 
operations which are not constant and are associative (because each 
such operation is a wcrd on two symbols containing say n occur­
rences of the first and m of the second, and the equations imposed 
on n and m by associativity are very restrictive-it is perfect1y valid 
to reason first in the "standard" category so long as all transits under 
isomorphism in Struct(Set)) and either one will do (after all, M ~ 
MOP is an automorphism of the category so there is no categorical 
way to make this choice).] 

In practice, "recovery" problems are difficult and ad hoc. It is 
not known at this writing whether there exist "real" categories in 
Struct(Set) which cannot be recovered. 

3. Let C6' be a category of :It -objects with structure. An object S in C6' is a 
Sierpinski object if for every X in C6' the family of all C6'-admissible maps 
X ---; S is optimal. 
(a) Let C6' be topological spaces and continuous maps in Struct(Set). Let 

S = {O, 1} be the well-known Sierpinski space (i.e., {l} is open, {O} 
is not open). Show that S is a Sierpinski object. 

(b) Let C6' be the category of real CCO manifolds and differentiable map­
pings in Struct(Set). Show that the real line is a Sierpinski object. 
[Hint: any chart at p agrees with a globally defined CCO map on some 
neighborhood of p.] 
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(c) Let C(f in Struct(%) be fibre complete and let S be any object of C(f. 

Let f!J be the fuH replete subcategory of all C for which the family 
of all admissible maps C ~ S is optimal. Prove that f!J> is fibre 
complete with taut embedding in C(f and reflective in such a way 
that the reflector is again over %. Observe that S is a Sierpinski 
object in f!J. 

4. Show that Struct(%) has equalizers. [Hint: the obvious ones.] 
5. Let Cat/% be the category whose objects are pairs (si, U) with U: 

si ~ % an arbitrary functor and whose morphisms are functors 
over % just as in 3.3. Show that every such (si, U) has a reflection in 
Con(%), and hence in Struct(%). [Hint: keep the same objects and 
divide out by the obvious equivalence relation on morphisms.] 

6. Show that the reflectivity of partially ordered sets in reflexive and tran­
sitively ordered sets (cf. exercise 3 of section 2) is a corollary of 3.4. 

7. Let C(f be in Struct(Set). Prove that C(f is isomorphic to topological spaces 
and continuous maps in Struct(Set) if and only ifthere exists a "Sierpinski 
space" S with underlying set {O, I} satisfying the following five conditions: 
(a) Every family J;:X ~ S has an optimal lift. 
(b) The supremum map SUp:SI ) S is admissible for every set I. 
(c) The infimum map Inf:SI ) S is admissible for every finite set I. 
(d) S is a Sierpinski object in C(f as defined in exercise 3. 

If (X, s) is in C(f say that a subset A of X is open in (X, s) if its 
characteristic function is admissible to S. Say that a family of open 
subsets is a subbase if the corresponding family of characteristic 
functions to S is an optimal family. The final condition is: 

(e) If si is a subbase and if A is open then A is a union of finite inter­
sections of elements of si. 

In particular, this solves the recovery problem for topological 
spaces (in the sense of exercise 2). 

8. Let T:Set ) Set be an arbitrary functor. AT-model is a pair (X, 0 
where ~: X T -----+ X is a relation from X T to X, i.e., ~ is a subset of 
XT x X. Say that f:(X, 0 ) (Y, 8) is aT-model map if fT x f: 
XT x X ) YT x Y maps ~ into (but not necessarily 
onto) 8. 
(a) Show that the resulting category, T-mod, in Struct(Set) is fibre-

complete. [Hint: the optimal lift ~ of J;: X ) (1;, 8J is the inter-
section of all 8i(J;T x J;)-l.] 

(b) If(X,~) is aT-model and if Ais a subset of X define A- = {XEX: 
there exists W E AT with x = <w, (incA)T)}. A is closed if A = A -. 
Show that A c A - and that A c B implies A - c B -. Show that 
every intersection of closed sets is closed. [Warning: in general, A­
may be smaller than the intersection of all closed sets containing A.] 

(c) If (X, 0 is aT-model say that a subset A of X is open if whenever 
(w, x) E ~ with XE A there exists Wo E AT with <wo, (incA)T) = w. 
Show that the open sets form a topology on X. 
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(d) LetS = ({O, I}, s)wheres = ({O, l}T x {O}) u ({l}T x {I}). Show 
that the following three conditions on T are equivalent: (i) the 
passage from T-models to topological spaces described in (c) is a 
homomorphism over Set from T -mod to topological spaces and con­
tinuous maps; (ii) given a pullback diagram as shown below with P 

P----------4-) A 

X----------4-) Y 

nonempty and with i injective, T of the diagram is aga in a pullback; 
(iii) for every T-model (X, ~), the open sets of(X, ~) are the admissible 
S-valued maps. 

(e) Let T = ß and let ~ be the convergence relation of a topology. Show 
that "closed" and "open" have their usual meanings. Show that this 
embedding of topological spaces in T -mod is taut but not cotaut. 

(f) Let XT be the set offilters on X with functorial action <ff',fT) = 

{B c Y: Bf - 1 E ff'} (cf. exercise 4 of section 1.5). A convergence 
structure [Fischer '74J is aT-model (X, ~) subject to the three axioms 
(i) (prin(x), x) E ~; (ii) if (ff', x) E ~ and if '§ ::::> ff' then ('§, x) E ~; 

(iii) if (ff', x) E ~ and if ('§, x) E ~ then (ff' (\ '§, x) E ~. Show that the 
category of convergenc;e structures is fibre complete with taut reflec­
tive embedding in T -mod; show that this embedding is not cotaut. 
The closed sets of (b) and the induced topology of (c) coincide with 
the usual notions in the theory of convergence structures. Verify that 
T satisfies the pullback condition of (d). 

9. Let (T, 11, /1) be an algebraic theory in Set. If R:X ~ Y is a relation, 
ReX x Y with projections p:R ~ X, q:R ~ Y, define RT: 
XT , YT to be the image of (pT, qT):RT -------> 

XT x YT. [Warning: T does not preserve composition of relations.J 
(a) Let (X, ~) be aT-model (as in exercise 8). Prove that the conditions 

(i) and (ii) below are equivalent. 

X ____ X....!11 ___ ~) XT ~T XTT ----"c...:........--'"7J XT 

(i) 

X XT--------y, X 
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(Here, single-headed arrows are relations, double-headed arrows 
are functions considered as relations via their graph, and composition 
is composition of relations; the inequalities specify inclusions of 
relations-these diagrams do not commute in general). These axioms 
generalize the T-algebra axioms. 

(ii) ~ = (XIJ-l)- (where X'1- 1 :XT ' Xis the relational 
inverse of the graph of X IJ and ( - ) - is the operator of exercise 8(b) 
ofthe T-model (XT, Xli) x (X, ~)). 

(b) AT-model is aT-model satisfying either ofthe equivalent conditions 
of (a). Prove that A - is closed in any T-model. Verify that the fuIl 
subcategory T-mod of aIl T-models in T-mod is fibre complete with 
taut reflective embedding. 

(c) Prove Barr's theorem [Barr '70]: p-mod = topological spaces and 
continuous maps. (When T is the filter theory (see exercise 4 of 
seetion 1.5) it is not known at this writing what sort of "convergence 
structure" characterizes the T-models.) 

(d) AT-model (X, ~) is compact if for every w in XT there exists x in X 
with (w, x) in~; HausdorJfifwhenever both (w, x) and (w, y) are in ~ 
then x = y; Tl if whenever « x, X IJ), y) is in ~ then y = x. Prove 
that these adjectives take on their usual meaning when T = p. Show 
that each of these properties is closed under products. Observe that 
the compact HaudorffT-models are precisely the T-algebras. 

(e) Prove the generalized ß-compactification theorem: every T-model 
has aT-algebra reflection. [Hint: the proof of 2.8 goes through.] 

10. A coalgebraic theory in a category f is an algebraic theory G = 

(G, 8,0,6) in f üp• A G-coalgebra (in terms of f) is just aG-algebra 
(in terms of f ÜP); the co algebra axioms then look like 

X---....---e;~--~) XG 

X8 

X 

X -----.:...~ ------+) X G 

X6 

XG------~)XGG 
~G 

(a) Verify that the coalgebraic theories on a partiaIly ordered category 
are interior operators, as discussed in 3.13. 

(b) Let T = (T, '1, Ii) be an algebraic theory in f. Show that (G, 8, 6) is 
a coalgebraic theory in fT where (K, ~)G = (KT, KIi), (K, ~)e: 
KG ) K = ~,(K, ~)6:KG ) KGG = KIJT.(For 
many T in Set, the coalgebras of the induced cotheory in T -algebras 
can be identified with Set; see [Barr '69]). 
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(c) Let:% be a category and let K be an object. The category ::f{" /K of 
objects over K is that category in Struct(:%) with objects all pairs 
(A, f) withf:A ~ K and admissible maps ljJ:(A, f) I(B, g) 
allljJ:A ----+ B satisfying f = ljJ.g (cf. Cat/:% in exercise 5). Assurne 
that K x A exists for all A. Define a coalgebraic theory in :% by 
AG = K x A, Ae:K x A ) A = A-projection, A!5: 
K x A I K x K x A = L1 X idA where L1:K----+ 
K x K is the "diagonal map," i.e., is idK when followed by either 
projection. Show that the category of G-coalgebras is isomorphic 
over :% to :% /K. 

11. (Cf. exercise 1.5.1.) Let ~ be in Struct(Set), let s E ~(2) where 2 = {O, 1} 
and ass urne that (2, s)X exists for all X (via the optimal lift of all projec­
tions 2x -- (2, s)). Set XTs to be the set of all subsets of X whose 
characteristic function is admissible from (2, s)X to (2, s). Prove that Ts 

is a subtheory of the double power-set theory. 
12. In this exercise we develop a "fibre-completion" for arbitrary ~ in 

Struct(:%). 
(a) For K in :% consider all (L, t, a) with t in ~(L), a:L ----+ K and say 

that (L, t, a) ~ (L', t ' , a') if for aH f:K ----+ (M, u) we have 

(L,t)~ f 

~K-----='--~) (M, u) 

(L"t')~' 

"if a'f:t' -----+ u then af:t ----+ u." Define ~co.oPt(K) to be the dass 
of all ~ -antisymmetry dasses [L, t, a] and define the admissibility 
of f by [L, t, afJ ~ [L', t', a'J. Show that H:~ -----+ ~oPt defined 
by (K, s)H = (K, [K, s, idK ]) is a taut and cotaut fuH replete subcate­
gory over:%, thateachmorphismf:(K, [L, t, a]) ) K ' 
has co-optimal lift [L, t, afJ and that H is an isomorphism if ~ 
already had this property that single morphisms admit co-optimal 
lifts. 

(b) For A a subset of ~(K) define ~sup(A) (if it exists) to be the co­
optimal lift of the A-indexed family idK:(K, a) I K. A is a 
~-ideal on K if(i) given s ~ a with s in ~(K) and a in Athen s is in 
A and (ii) given B c A such that s = ~suP(B) exists in ~(K), then 
s is in A. Let ~id(K) be the dass of ~-ideals on K and say that f: 
(K, A) I (L, B) is admissible in ~id if for every s in A there 
exists tin B such that f:s ---+ t is admissible in ~. Assuming that ~ 
has the property that single morphisms admit co-optimal lifts (as in 
(a)), prove that ~id is fibre-complete, that H: ~ -----+ ~id defined by 
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(K, s)H = (K, {t:t ::::; s}) is a taut and cotaut fuH replete subcategory 
over %, and that H is an isomorphism if~ was already fibre complete. 

(c) What are the dual constructions to (a) and (b)? Look up the 
MacNeille "completion by cuts" of a partiaHy ordered set [MacNeille 
'37] and investigate the possibility of using this construction instead 
of ideals in (b). 

(d) Let H be as in (a) and let J:~ ---+ ~ be a functor over % with ~ 
fibre complete. Define r by rxr = (1 in ~(K) such that the family 
a:(L, t)J ~ (K, (1) indexed by aH (L, t, a) with [L, t, a] = rx is 
co-optimal in~. Show that r is a functor over % satisfying Hr = J 

___ --.-..,;H=-__ -4) ~co.opt 
/ 

/ 

and "if F' is another functor over % with HF' = J then r ::::; F'." 
It is an open question how to characterize any ofthe fibre-completion 
constructions by universal properties involving functors over %. 

(e) Show that if~ can be represented as a fuH replete subcategory ofany 
fibre-complete category which is smaH over % then (~co.oPt)id is smaH 
over %. [Hint: use (d).] 

(f) Let ~ in Struct(Set) be the subcategory ofSethaving aH sets as objects 
but with !:X ---+ Y admissible if and only if X and Y have the 
same cardinality. Show that ~ cannot be represented as a fuH replete 
subcategory of any fibre-complete category which is smaH over X. 

13. Let Fib(Set) be the fuH replete subcategory of Struct(Set) of aB fibre 
complete categories which are smaH over Set. Show that Fib(Set) is 
cartesian closed (as defined in exercise 7 of section 2). [Hint: if~, ~ 
are in Fib(Set) define ~'C(X) to be the set of aH order-preserving maps 
l/Ifrom(~(X), ::::;)to(~(X), ::::;},andsaythat!:(X,l/Id ~ (Y,l/I2) 
is admissible ifwhenever !:s -- t in ~,f:Sl/ll ~ tl/l2 in ~.] 

14. (R. Pare.) Show that an arbitrary functor H admits a factorization H = 

H 
d-------~)r!J 

/ 
/ 

R / 
/L 

/ 
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FL where Fis a fuH subeategory and L has a right adjoint. [Hint: to 
define Cfi adjoin to the eoproduet eategory of si and !!J all morphisms 
AH --> B, eonsidered as Cfi-morphisms from A to B; Fand Rare 
injeetions and L is defined by AL = AH, BL = B.J 

15. Let T be an algebraie theory in Set and fix a set I and an element p 

of IT. For I, g: I -----+ X say that I ~ P g if land g agree on a support 
ofp. 
(a) Prove that ~ p is an equivalenee relation on Xl [Hint: use ex er­

eise 1.5.2.J 
(b) Set P X = Xl / ~ p. If (X, () is aT-algebra show that I~ P g implies 

that <p,j#) = <p,g#), so that m(x) = {[fJEPX:<p,/#) = x} is 
well-defined. 

When T = J3 and p has no finite supports, P X is the well-known ultra­
product eonstruetion. For (X, ~) a J3-algebra, m(x) is ealled the monad 01 x 
in nonstandard topology. The definition of m(x) extends easily to T-models 
as in exereise 9. 



Chapter 3 

Algebraic Theories in a Category 

This chapter serves as an introduction to categorical universal algebra. 
Necessary and sufficient conditions for a functor U: .91 ) :f{ to be a 
category of algebras are provided. Theories in :f{ are interpreted as monoids 
in the category of endofunctors of :f{. Epimorphic quotient theories charac­
terize the abstract Birkhoff subcategories; when the base category is regular, 
the Birkhoff subcategory generated by a class .91 of algebras is the class of 
aB quotients of subalgebras of products of elements of d. As a generalization 
of topological algebra, for each fibre-complete category Cf} over Set the 
category of aB (X, s, ~) with s a Cf}-structure and (X, ~) aT-algebra in such 
a way that the T-operations are admissible in Cf} is seen to be algebraic over Cf}. 

Given two algebraic theories in Set, the category of bialgebras-the two 
sorts of operation commute with each other-is studied; it is often itself 
algebraic. A general colimit theorem is applied to prove that many categories 
of algebras have sm aB colimits. 

1. Recognition Theorems 

This section provides a number of useful theorems which stipulate 
necessary and sufficient conditions for an arbitrary (not necessarily faithful) 
functor U: .91 ) :f{ to be (in fact in Struct(:f{) and) isomorphic in 
Struct(:f{) to UT::f{T ) :f{ for some algebraic theory T in :f{. Special 
theorems for the ca se :f{ = Set are presented and, in particular, we are 
able to prove two theorems (1.26 and 1.27) which fiB in the gaps left in 
Chapter l. 

Definition 2.3.8 admits a mild generalization: 
(1.1) An arbitrary functor U: .91 -----'>:f{ is algebraic if (~<;{, U) is in 

Struct(:f{) (see 2.3.3) and (.91, U) is algebraic as in 2.3.8; in other words, 
U is algebraic if and only if there exists an algebraic theory T in :f{ and an 
isomorphism qJ: .91 -----'> :f{T over :f{ as shown below: 

d----qJ----+-) :f{T 

This section is devoted to characterizing algebraic functors. A necessary 
condition that U be algebraic is that U have a left adjoint (1.4.12). This 
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will always be one of the sufficient conditions. This is not too unsatisfactory 
in view of the existence theorems of 2.24 and 2.29; since these theorems tell 
us little about the specific structure of the adjointness, it is important to 
complete the list of sufficient conditions with properties of U which are 
independent of adjointness. The first clue along these lines is the following 
commutative diagram associated with any algebra (X, ~) over an algebraic 
theory (T, 1J, fl) in ff. 

1 
xT------x--T~1J----+)XTT------X~fl~--~)XT 

~T (1.2) 

X 
X1J 

)XT )X 

I J 
idx 

The obvious abstraction is a diagram of form 

idB 

d f 1 
B )A )B 

h g h (1.3) 

C )B )c 

I 
d' h 

J 
idc 

Given 

f ) h )c A g ) B ( d' d ( 
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in a category x, (f, g, h; d, d') is a contractible coequalizer (also: (f, g, h) 
is a contractible coequalizer with (d, d') as contraction) if the diagram of 1.3 
is commutative. A diagram 

A-----"-I----+~ B ___ -...:..:h:...-__ 4) C 
g 

in a category X is an absolute coequalizer iffor every functor H:.Yl ~!l?, 
hH = coeq(fH, gH); since H may be the identity functor, every absolute 
co equalizer is a coequalizer. 

1.4 Proposition. Let (f, g, h; d, d') be a contractible coequalizer in a 
category X. Then (f, g, h) is an absolute coequalizer. 

Proof. Let H:x ~2 be any functor. It is obvious that (fH, gH, 
hH; dH, d'H) is again a contractible co equalizer in 2, so it suffices to prove 
that h = coeq(f, g). Suppose f.h' = g.h' as shown below. Then h.d'.h' = 

I 
>B h 

A ) >c 
g / 

/ 
/ 

h' /d'.h' 
/ 

/ 

C'~ 

d.g.h' = d.f.h' = h'; the uniqueness of d'.h' is seeure since h is (split) epi. D 
Pan:: [Pan!! '71, Proposition 5.3J proves that if (f, g, h) is an absolute 

co equalizer then there ex ist n ~ 1 and dO, d1, ... , dn as shown below 

I ) 
h >c A g ) B ( dO 

( d1 

( dn 

subject to a set of commutativity conditions which make it clear, as in the 
proof of 1.4, why (f, g, h) is an absolute coequalizer. It is not true that 
every absolute coequalizer is contractible [Pan:: '71, page 86]. 

It is easy to prove that if (f, g, h) is an absolute coequalizer then h is 
split epi (see exercise 1). The following is a sort of converse: 

1.5 Proposition. Let h: B ----> C be split epi in X and let d': C -- B 
be any right inverse for h. Assume that the kernel pair f, g: A ----'> B oI h 
exists. Then there exists d:B ----'>A such that (f, g, h; d, d') is a contractible 
co equalizer. 
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ProoJ. Consult diagram 1.3. The desin:id d is uniquely induced by 
the universal property of a kernel pair. 0 

As a consequence of 1.5, dividing out by an equivalence relation always 
gives rise to an absolute coequalizer diagram in Set. 

1.6 Proposition. Let J, 9 : A --)0 Band h: B --)0 C be given in a category 
%, with h = coeq(f, g). Then the Jollowing two conditions are equivalent: 

1. There exist d: B --)0 A and d': C --)0 B such that (f, g, h; d, d') 
is a contractible coequalizer. 

2. There exists d: B ----+ A such that 1.7 below commutes 

A ___ ---:.:....f ___ -+) B ____ d ___ -+) A ___ --'-f ___ -+J 

9 9 (1.7) 

B-------~) A -------~)B 
d 9 

that is, d.f = idB and J.d.g = g.d.g. 

Prooj. If (f, g, h; d, d') is a contractible coequalizer as in 1.3 then 
j.d.g = f.h.d' = g.h.d' = g.d.g. Conversely, suppose d:B --)0 A exists 
subject to 1.7. As J.d.g = g.d.g and h = coeq(f, g), there exists a unique 
d':C -----+ B such that h.d' = d.g; as h is epi and h.d'.h = d.g.h = dIh = h, 
d'.h = idc· 0 

1.8 Definitions. Let U: d -----+ % be a Junctor. U creates coequalizers 
of U -absolute pairs if whenever we are given a pair oJ maps f, g: A --)0 B 
in d and a morphism h:BU ) K in % such that (fU, gU, h) is an 
absolute coequalizer in %, we may conclude that h has a unique lift Ti (that is, 
there exists a morphism Ti:B ---> K in d such that KU = K and Tiu = h, 
and if h':B ---> K' E d is such that K'U = K and hU = h then K' = K 
and h' = Ti); and then, moreover, Ti = coeq(f, g) in d. Similarly, U creates 
coequalizers oJ U -contractible pairs if whenever we are given a pair of maps 
f, g:A --)0 B in d and a morphism h:BU ) K in $' such that there 
exist d and d' with respect to which (fU, gU, h; d, d') is a contractible 
coequalizer in %, we may conclude that (just as before) h has a unique lift 
Ti; and, moreover, Ti = coeq(f, g) in d. 

We are now ready to prove the fundamental recognition theorem: 
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1.9 Characterization Theorem for Algebraic Functors (J. Beck). Let 
U:d ---<x be afunctor which has a left adjoint (as defined in 2.2.19+). 
Then the jollowing three conditions on U are equivalent: 

1. U is algebraic (1.1); 
2. U creates coequalizers of U -absolute pairs (1.8); and 
3. U creates coequalizers of U -contractible pairs (1.8). 

Proof. 1 implies 2. There is no loss in generality in assuming that 
U = UT:$"T ) $" for so me algebraic theory T in $". Suppose 
that f, g:(L, 0) ) (M, y) in $"T and h:M ----> K in $" are such 
that (f,g, h) is an absolute coequalizer in $". In particular, hT = coeq(fT,gT) 
in $". Consulting the diagram below, 

LT ______ -=~--~ 
fT 

)MT 
gT 

) 
___ ---.:.;h:....:T __ ~) KT 

I 

o y 

I 

I~ 
I 

f 
)M 
) L ----------4-g 

'" -----h----+) K 

we have that fT.y.h = gT.y.h thereby inducing a unique $"-morphism 
~: KT ) K such that y.h = hT.~. It is useful to prove the following 
lemma, which is also an apprepriately general statement of some ideas 
used previously (cf. 1.2.6,2.1.56). 

1.10 Lemma. Let T be an algebraic theory in $" and suppose given 
a commutative square 

LT ____ ..:..:h...:;;.T __ ---).) KT 

y 

L --------------+> K 
h 

with (L, y) aT-algebra and with h, hT and hTT epi in Yt. Then (K, ~) is a 
T-algebra and h:(L, y) ) (K, ~) is co-optimal in $"T. 

Proof. We leave this as an exercise in diagram pasting with the following 
hints: to prove KIJ.~ = idK prove that h.KIJ.~ = hand use the fact that h 
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is epi; to prove Kfl.1; = I;T.I;, similarly use "hTT is epi"; the argument in 
2.1.56 proves that h is co-optimal since h T is epi. 0 

Returning to the proof of 1.9, h, hT, and hTT are coequalizers and are 
epimorphisms in particular, so 1.10 completes the proof of "1 implies 2" 
in view of 2.3.21. "2 implies 3" is obvious from 1.4. 

3 implies 1. By 2.2.18 there exists an adjointness ofform (sI,x, U,F, 1/, e). 
Let T = (T, IJ, fl) be the induced algebraic theory in X (2.2.20) and let 
iP:sI ----> x T be the semantics comparison functor as in 2.2.21. We will 
show iP is an isomorphism. 

(i) The fundamental observations. Let (K,I;) be an arbitrary T-algebra. 
Consider the pair of sI-morphisms 

KFe 
KFU F ---..::.=-"----~~ KF 

I;F 

Then U of this pair is the pair of X -morphisms 

Kfl 

Since (X fl, I;T, 1;; XTIJ, X IJ) is a contractible co equalizer (see 1.2) there exists, 
by hypothesis, a unique si -morphism ~: KF ------+ K such that ~U = 1;; and, 
moreover, ~ = coeq(KFe,I;F) in .SII. We observe further that because 
KIJ.~U = KIJ.I; = idK , ~ = (idK )# = Ke. 

(ii) iP is bijective on objects. Using the notations of (i), for arbitrary (K, 1;) 
we have KiP = (KU, KeU) = (K, 1;) and this proves iP is surjective on objects. 
If AiP = (K,I;) = A'iP then, by (i), Ae:KF ) A = Ke = A'e: 
KF ) A', and A = A' in particular. 

(iii) iP and U are faithful. Consulting the diagram 2.2.21, since UT is 
faithful, iP is faithful if and only if U is faithful. We choose to prove that U 
is faithful. Let f, g:A ----> B in si be such that fU = gU. Because of the 
naturality squares: 

Ae A UF---------*) A 

fUF gUF f g 

BUF-----~----+)B 
Be 

it suffices to observe that Ae = coeq(AUFe, AeUF) (as proved in (i) and (ii)) 
so that Ae is epi in si in particular. 
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(iv) l/> is juli. Let A, B be objects of d and let J:AU , BU be a 
T-homomorphism Al/> ~ Bl/>, that is, in the notation of(i), we have: 

KFu----~J-F-U----7)LFU 

K---------+) L 
J 

where Al/> = (K, ~) and Bl/> = (L,8). Since ~ is a co equalizer in d and 
~U = ~ is a coequalizer in :ff, it follows from 2.3.21 that ~ is co-optimal in 
d. Therefore,j:A ~ B is admissible in d. The proofis complete. 0 

Let (d, U) E Struct(Set) be a categary of sets with structure. If A E d 
and if R is an equivalence relation on the set AU with coardinate projections 
p, q:R ~ AU, say that R is a congruence on A if R lifts to R in d such that 
RU = Rand p, q:R ~ Aare admissible in d. If (d, U) is algebraic, we 
would expect that the canonical projection 8: A ) AU / R has a unique 
lift to d which is, moreover, co-optimal. On the other hand, the important 
co equalizer in the proof ofthe Beck theorem of 1.9 replaces (p, q) with the pair 

All 
A TT -----'----~: AT 

~T 

which does not have the appearence of an equivalence relation (e.g., write 
down some specific examples far the semigroups theory of 1.4.17). We turn 
out attention now to a special restatement of 1.9 for Set which reconciles the 
disparity. 

1.11 Separators. Consider the diagram scheme (2.1.18) LI with four 
nodes and four edges as shown below: 

Let :ff be any category. A pair J, g: K ~ L of morphisms in :ff in du ce 
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the L1-diagram 

~K 

L ~L 
K 

the limit of which, if it exists, is called the separator oJ J and g. Since {i1, iz } 
is final, the separator of J and g may be thought of as an object S equipped 
with two K-valued morphisms p, q:S ~ K such that pf = qf and p.g = 

q.g and universal with this property, that iS,given p', q':S' --> K such that 
p'f = q'f and p'.g = q'.g then there exists unique IjI:S' ~ S such that 
ljI.p = p' and ljI.q = q'. 

g 

L S'- - - - - - - ~S L 

Given a morphism J: K ~ L, the kernel pair of J is the same thing as the 
separator of J and J. ff has separators if every pair J, g have a separator; in 
particular, if ,% has separators then :ff has kernel pairs. Set has separators. 
S is the subset of K x K of all pairs (x, y) such that xJ = yJ and xg = yg, 
and p, q are the coordinate projections. 

1.12 Definition. Let (d, U) be a category oJ sets with structure. Then 
U creates quotients oJ congruences if whenever we are given an object A oJ d 
and a congruence R on A (as defined in 1.11-), we may conclude that the 
canonical projection 8:A ) AUjR has a unique lift 8:A ~ AjR (in 
the sense oJ 1.8); and then, moreover, 8 is co-optimal in d. 
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1.13 Characterization Theorem for Algebraic Structure on Sets. Let 
(si, U) E Struct(Set) be a category of sets with structure. Then U: si ----> Set 
is algebraic if and only if the following three conditions are sati~ed: 

1. U has a left adjoint; 
2. si has separators (1.11); and 
3. U creates quotients of congruences (1.12). 

Proof of necessity. This follows immediately from 1.4.12,2.1.11,2.1.14, 
2.1.22, 1.5, and 1.9. 

Proof of sujficiency. By 1.9, it is enough to prove that U creates co­
equalizers of U-contractible pairs. To this end, suppose given a pair 
f, g:A ---> B ofmorphisms in si and functions h:BU ----> K, d:BU ----> 

AU and d':K ----> BU such that (fU, gU, h; d, d') is a contractible co­
equalizer in Set. 

Claim: It is sufficient to find a congruence R on B, with co ordinate pro­
jections p, q:R --->BU, such that h = coeq(p, q) in Set. 

For suppose such R exists. Since the canonical projection 8:BU --..... 
BUjR is also a co equalizer of (p, q), there exists an isomorphism r: 
BUjR ) K such that 8.r = h as shown below: 

~
BUjR 

8 I 
I 

BU 'r 

~i 
As U creates quotients of congruences, 8 lifts uniquely to 8: B ---> BjR and 
this lift is co-optimal. As (si, U) E Struct(Set), there exists unique K such 
that KU = K and r:BjR ) K and r-1:K ) BjR are admis­
sible. It is clear that h:B ---> K is then the unique admissible lift of h: 
B U --- K and is co-optimal (being the composition of a co-optimal with 
an isomorphism) so is the coequalizer by 2.3.21. This proves the claim. 

Consider the function d.gU:BU ) BU. Let R be the kernel pair 
of d.gU in Set; that is R = {(x, y):x, Y E BU and (x, d.gU) = (y, d.gU)}. 
Then R is an equivalence relation on BU. We will show that R is the desired 
congruence. Let p, q:R ---> BU be the co ordinate projections. We show 
first that h = coeq(p, q). Consult diagram 1.3 and the diagram shown on 
the following page. We have p.h = p.d.fU.h = p.d.gU.h = q.d.gU.h = q.h. 
As fU.d.gU = gU.d.gU (see 1.6) there exists a unique function a:AU -----+ 

R such that a.p = fU and a.q = gU. Therefore, if h':BU -----+ K' is a 
function such that p.h' = q.h', then also fU.h' = gU.h' inducing the desired 
unique ß:K ----+ K' such that h.ß = h'. 
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BU 

d.gU 

h ----------------+)K 

h' 

I 
I 

Iß 
I 

..J, 
K' 

To complete the proof we must demonstrate that R is a congruenee. To 
prove this we will have to appeal onee again to the fact that U creates quo­
tients of congruences. We will work around the following diagram : 

P 

T R 
/ / q 

I / 

/ 6 / 
I '/ d 

/ / 

/ 

aU 
R I = CU ______ -:-______ ~~ A u ______ --'g"-U ______ -+) B U 

qlU bU 

I 
1')' fU d.gU 

-J,. P 
R ~BU d.gU 

)BU 
q 

As kernel pairs are separators, the kernel pair (E, a, b) of g exists in d. 
Beeause aU.jU.d.gU = aU.gU.d.gU = bU.gU.d.gU = bU.jU.d.gU, there 
exists a unique function y:EU ~ R such that y.p = aU.jU and y.q = 

bU.jU. Define R I to be the separator of aU.jU and bU.jU in Set. Clearly, 
R I is an equivalence relation on EU. In fact, R I is a eongruenee (proof: the 
separator (C, PI, qd of a.j and b.j exists in d by hypothesis; sinee U pre­
serves limits (2.2.22) (CU, PI U, P2U) is aseparator of aU.jU and bU.jU, 
so is isomorphie to R I with its co ordinate projections; but then, since (d, U) 
is in Struct(Set), we may transport the isomorphism CU ~ R I or, even better, 
assume that (C, PI' P2) was over R I to begin with). 
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Claim: It is sufficient to prove that y = coeq(Pi U, qi U) in Set 
For then, arguing as in the previous claim, y admits a co-optimal lift 

y:E ----+ R; but then, since y.p = a.f and y.q = b.f are admissible, so are 
P and q. This supports the second claim. 

Our method will be to show that (Pi U, qi U) is the kernel pair ofy and that 
y is split epi (and hence a coequalizer) so that, by 2.1.53, y = coeq(Pi U, qi U). 

(PiU, q1U) is the kernel pair ofy: since piU and q1U compose equally 
with aU.fU, Pi U.y and ql U.y compose equally with p. Similarly, Pi U.T and 
ql U.y compose equally with q. Therefore (cf. 1.20) Pl U.y = qi U.y. Suppose 
that t.y = u.y (see the diagram above). Then, clearly, t and u compose equally 
with aU.fU and bU.fU, inducing the desired unique map T ----+ CU. 

T is split epi: as (EU, aU, bU) is the kernel pair of gU (2.2.22) and p.d.gU = 
q.d.gU there exists a unique function c5:R ----> EU such that c5.aU = p.d 
and c5.bU = q.d. Since d.fU = idBU (1.3) c5.y.p = P and c5.y.q = q so c5.y = 
idR • The proofis complete. 0 

1.14 Compact Groups. Let si be the category of compact (Hausdorff) 
topological groups and continuous homomorphisms. We illustrate the use 
of 1.13 by proving that the underlying set functor U: d -----7 Set is algebraic. 
We use the general adjoint functor theorem of 2.2.24 to see that U has a left 
adjoint. d has products (the Tychanoff topology) and equalizers (the subset 
on which two continuous homomorphisms agree is a closed subgroup) which 
U preserves. In particular, note that d has separators. The solution set 
condition is not hard: given a function f:n ----+ GU, f factors 

,/ 

,/ 
,/ 

,/ 

a,/ 
,/ 

,/ 

:>fHU 
,/ , 

'. ,lU 
, 

,/ "" n ----f---4) GU 

where H is the closure of the subgroup generated by the image of f. It is clear 
that the cardinal of H is bounded as a function of the cardinal of n (see 
exercise 2) and so H can be chosen to range over a small set up to isomor­
phism; the crucial point in this argument is that H E d, that is "the closure 
of a subgroup is a subgroup." This completes the proof that every set freely 
generates a compact group. The structure of such groups is another question 
which the general adjoint functor theorem does not answer. 

That U creates quotients of congruences follows from standard facts 
about compact groups. A congruence R on G is the same thing as an equiv­
alence relation which is a closed subgroup of G x G (an injective continuous 
map from a compact space to a Hausdorff space is a homeomorphism into). 
The quotient group GIR provided with the quotient topology is compact (a 
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continuous image of G) and Hausdorff (R is closed). Should this argument 
be unconvincing, notice that G/R = G/H where H is the closed normal sub­
group {g E G:(g, e) E R} and consult [Hewitt and Ross '63, Theorem 5.21]. 

We will prove later in 6.5 that compact groups are algebraic because 
compact spaces (1.5.24) and groups (1.4.15) are. 

1.15 Definition. Say that the funetor U: d ------7 % ereates limits if 
whenever we are given a (not neeessarily small) diagram (LI, D) in d and a 
limit t/J:L ----> DU for (LI, DU) in % we may eonclude that there exists a 
unique lift (I, i!i) of (L, t/J)(that is Iu = L, (i!ij:I ------7 DJU = t/Jj:L------7 
Dp and given (A, r) with AU = Land rp = t/Jj then A = Land r i = 

i!iJ; and, moreover, (I, i!i) is a limit of D in d. 
Clearly "creates limits" implies "constructs limits" as in 2.3.17. 

1.16 Proposition. 1f U: d ------7 % ereates limits then the following 
statements are true: 

1. (d, U) E Struct(%)(2.3.3)and is discretely ordered (2.3.9); 
2. 1f % is loeally small then dis loeally smalI; 
3. 1f % is weil powered (2.2.29(2)) (md has kernel pairs then d is weil 

powered; and 
4. Urefleets isomorphisms, that is if f: A ----> B in d is such that 

f U: A U ) B U is an ismno"rphism in %, then f was an isomorphism in d. 

Proof. (1). If f, g:A ----> B with fU = gU then idAU = eq(fU, gU) 
so that idA , being the unique lift of idAU , is the equalizer of fand g. This 
proves that U is faithful. If h: A U ) K is an isomorphism in % we may 
choose to regard it as a unary product so that h - 1 has a unique lift h - 1 : 

A' ) A which is again a unary product, that is, an isomorphism. It is 
clear by now that U refiects isomorphisms and that the concrete category 
(d, U) is discretely ordered and so is a fuH representative subcategory 
<[J: d ------7 ((j of some ((j in Struct(%) (2.3.5). But <[J is onto on objects, for 
if C E ((j there exists A E d and an isomorphism f: A<[J ------7 C; there exists 
(as above) an isomorphism f: A ----> A' over f in d; since f - 1.f: C -----> 

A'<[J and ((j is discretely ordered, A'<[J = C. 
(2). This is true because U is faithful. 
(3). Fix A E d. If i:S ---> A is mono so is iU:SU ) AU because 

id 
S--------------~)S 

id 

s --------------~) A 

id 
SU------------~) SU 

id iU 

SU--------~) AU 
iU 
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the rightmost square above is a pullback whenever the leftmost square is 
(consider the kernel pair of iU). It is now clear that the passage from i to 
iU is a well-defined function from monosubobjects of A into monosub­
objects of AU. It suffices to prove that this function is injective. To this end, 
let i:S --> A and i':S' - A be monos and suppose there exists an iso­
morphism f:SU --> S'U of subobjects as 

s,u~ 

f AU 

~ SU 

shown above. Then the rightmost square shown below is a pullback diagram, 

idsu S ------"=---4) S 

f 

idsu 
SU-----'""""-----~) SU 

f iU 

S'----------+) A S'U---~_:__-~) AU 
tU i' 

so must lift to a pullback diagram in si as shown on the left, above. As idsu 
and f are isomorphisms in si, (idsu)-l.f and f-1.idsu are the desired si­
morphisms showing that (S, i) and (S', i') represent the same subobject 
ofA. 0 

1.17 Reck Functors. A functor U:si --> % is a Beck jimctor if U 
creates limits and if U creates coequalizers of U-absolute pairs. 

The proof of the following theorem is an easy exercise: 

1.18 Proposition. The product (2.3.7) of any family of Beck jimctors in 
Struct(%) is again a Beck functor. 0 

1.19 Proposition. Every algebraic functor is Beck. 

Proof. Let U: si --> % be algebraic. Ry 1.9, it suffices to show that 
U creates limits. We may ass urne without loss of generality that U = UT for 
some algebraic theory T in %. Let (,1, D) be a diagram in si = %T and 
write D; = (K;,~;). Let l/!;:L- K; be a limit of DU in %. For r:J. E ,1(i,j) 
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we have 

which proves that (t/li)# = t/I;T.ei:LT ) K; is a lower bound of 
(.1, DU), and there exists a unique e:LT ----. L such that 

LT ___ t/l"""i'-T __ --+) Ki T 
I 
I 
I 

el 
I 

-l-
L ----t/l-:--i ---~) Ki 

It is now worth our while to make explicit the following general lemma 
which includes 2.1.15 as a special case: 

(1.20) Ift/l:L-- D is a limit of(.1, D) in % then the family (t/li:L---+ 
Di) is (collectively) mono in the sense that given any pair ofmaps t, u: T---+ 
L such that t.t/I; = U.t/li for all i, t = u. The proofis trivial: the common value 
t.t/li = U.t/li: T ) Di is a lower bound of (.1, D) and t, u are both the 
unique induced map. 

The remaining details of 1.19 are too similar to 1.4.27 and 2.1.11 to 
bear repeating. 0 

The following result is easily pieced together from the adjoint functor 
theorems 2.2.24, 2.2.29, and 1.9, 1.16, and 1.19. Notice, also, that if 
U: d ----. % creates limits then d has and U preserves whatever limits 
% has. 

1.21 Proposition. Let U: d ----. % be a functor and assume that .Y{' 

is locally small and has small limits. The following statements are true: 
1. U is algebraic if and only if U is Beck and U satisfies the solution set 

condition at K for every object K of %. 
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2. 1J si has a cogenerator and if either si or :fl is weil powered, U is 
algebraic if and only if U is Beck. D 

Using 1.13 instead of 1.9, 1.21 takes the following form: 

1.22 Proposition. Let U: si ----+ Set be a set-valued Junctor. The 
Jollowing statements are true: 

1. U is algebraic if and only if U creates limits, U creates quotients oJ 
congruences, and U satisfies the solution set condition at K Jor every set K. 

2. 1J si has a cogenerator, U is algebraic if and only if U creates limits 
and U creates quotients oJ congruences. D 

1.23 Compact Abelian Groups. Let si be the category of compact 
(Hausdorff) abelian groups and continuous homomorphisms and let 
U: si ----+ Set be the underlying set functor. Then U is algebraic. The 
circle group SI is a co generator in si [Hewitt and Ross '63, Theorem 22.17]. 
The proof that U creates limits will be left as an easy exercise. The proof 
that U creates quotients of congruences is essentially the same as in 1.14. 
While the circle group is, in fact, a co generator in the category of locally 
compact abelian groups the forgetful set-valued functor V from this category 
is not algebraic. By 1.16 and 1.19 it is enough to observe that V does not 
reftect isomorphisms. For example, let G be any locally compact abelian 
group which is not discrete and let H be the same group with the discrete 
topology; then the identity function J:H ------> Gis a continuous homomor­
phism of locally compact abelian groups which is not an isomorphism. 

The next theorem is just right to patch up the gap we left in 1.5.45. 

1.24 Characterization Theorem for Algebraic Structure on Sets. Let 
(si, U) E Struct(Set) be a category oJ sets with structure. Then U: s;{ ----+ Set 
is algebraic if and only if the Jollowing three conditions are satisfied: 

1. U is tractable (1.5.44); 
2. U creates limits (J .15); and 
3. U creates quotients oJ congruences (1.12). 

ProoJ oJ necessity. This follows immediately from 1.5.5 and 1.22. 

ProoJ oJ sujjiciency. Fix a set n. By 1.22, it is enough to show that U 
satisfies the solution set condition at n. Since U is tractable at n, the class 
nT of all natural transformations from un to U is a small set. Let n1]: n ~ 
nT map i to the ith projection Pi: un ----+ U. We will show that nT lifts to 
an sI-object nT (i.e., (nT)U = nT) in such a way that {(nT, n1])} is a one­
element solution set. The crucial observation is: 

(1.25) Define a diagram (LI, D) in si as follows. The nodes of LI are pairs 
(A,j) with A in si and J:n ------> AU in Set and an edge a:(A, f) -----> 

(A',J') is an sI-morphism a:A ------> A' such that J.aU = 1'; D(A,J) = 

A and Da = a. Define ljJ(A,J):nT ) AU by <w, ljJ(A,J) = <f, Aw: 
AUn ) AU). Then (nT, ljJ) is the limit of DU in Set. 
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Let us prove 1.25. To see that (nT, I/J) is a lower bound of DU, we use 

~AU AOJ A Un --_":'=~--4-) AU 

nT aU 
aU 

~A'U 
A'un------~)A'U 

A'OJ 

the structure of nT. Let OJ E nT and suppose that a: A -----+ A' is an edge of 
D; then <OJ, I/J(A, f)-aU) = <f, AOJ.aU) = <'f, (aUt.A'OJ) = <f.aU, A'OJ) = 

<!" A'OJ) = <OJ, ~/(A,n)' Now let (L', I/J') be another lower bound of DU. 
Define T: L' ---7 nT by 

Aun~AU 

f I ) <x, I/J'(A, n) 

To prove that xT E nT for all x E L', let a: A -----+ A' in si; (it will be helpful 
to glance at the triangle and square above). For all f:n -----+ AU we have 
<f, A(xr).aU) = <x, 1/J'(A,n·aU) = <x, 1/J'(A',f.aUl) = <f.aU, A'(xr) = 

<f, aun.A'(xr). Since <x, T.Ij;(A,n) = <f, A(xr) = <x, 1/J'(A,n) we have 

nT~ 

r AU ,pe: 
L'~A'fl 

Suppose also that A: L' ---7 nT satisfies A.I/J(A, Jl = I/J'(A, Jl' Then for all A 
in ,91 and f:n ~AU we have <f, A(xA) = <xA, I/J(A,Jl) = <x, 1/J'(A,Jl) 
which proves A = r. The proof of 1.25 is complete. To complete the main 
proof, since U creates limits there exists unique nT in si such that (nT)U = 

nT and I/J (A, n : nT ) A is admissible in si for all (A,f). Since 

n ____ n_1]"--__ 4-) nT 

AU 

is commutative for every (A,f), the proof is complete. 0 
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1.26 Theorem (Same as 1.5.45). Let (Q, E) be an equatianal presentatian 
as in 1.5.34.1f (Q, E) is tractable (asin 1.5.44), the underlying set functor 
U: (Q, E)-alg ) Set is algebraic. 

Praaf. We use 1.24. It suffices to show that U creates limits and that U 
creates quotients of congruences. Let (,1, D) be a diagram of (Q, E)-algebras 
and write Di = (Xi' 6J Assume that (L, 1/1) is a limit of DU in Set. Let OJ E Qn­

If r:J. E ,1(i, j) we have 

tjlj 

1 
Ln ) X7 x~ 

I I/I? Dn J 

'" 

6 I w 6i, w 6 j, w 

I 

'+' 1/1 i Da; 
L )Xi 'j I 

I/Ij 

which shows that (1/I7.6i,o,).D", = 1/I'J.6j,w, i.e., that (L", I/In.6_"J is a lower 
bound of DU. It follows that the;fe exists unique 6w :L" ~ L such that 
6w.l/li = 1/17.6i, w for an i; or, in other words, that there exists a unique Q­
algebra structure 6 on L such that l/Ii:(L, 6) ) (Xi' 6J is an Q-homo­
morphism for an i. If p, q: um ~ U with {p, q} E Ethen far an i we have 
(L, 6)P.l/Ji = 1/I?(Xi, 6i)p = 1/17·(Xi, 6Jq = (L, 6)q.l/li' It follows from 1.20 
that (L, 6)p = (L, 6)q, and (L, 6) satisfies E. To prove that ((L, 6), 1/1) is a 
limit for D it suffices to show (2.3.17) that I/Ii: (L, 6) ) (Xi' 6J is an 
optimal family. Let f:(X, y) ) L be such that f.l/li :(X, y) -----+ 

(Xi> 6J is an Q-homomorphism far an i. Then in the diagram below, all 

fn I/I? 
X"--------------~)Ln---------------X7 

X ----------+) L ---------+) Xi 
f I/Ii 

commutes except possibly the leftmost square; now use 1.20. 
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Let R be a congruence on the (Q, E)-algebra (X, b) with co ordinate 
projections p, q: R ----+ X. By definition (1.11-) there exists an (Q, E)-
structure (R, y) such that p, q:(R, y) ) (X, b) are Q-homomorphisms. 
For each W E Qn, define bw:(X/Rt ) X/R by (xJj)bw = (Xi)b,ß. If 
(Xi> Yd E W then (Xi)b(O = (Xi, yJpnbw = (Xi' yJywp and (Ydbw = (Xi, yJYroq 

pn 

q" 

Yro 

p 

) X n 
) 

en 
---::.....-----*> (X/R)" 

bw 

q ~X R ___ ----::--__ ---+ ----e--~) X/R 

similarly, so that ((xJbw (yJbw) = (Xi' yJyro E R, which proves that b(O is 
weIl defined. As e":xn ~ (X/R)" is onto, b is the unique Q-algebra 
structure on X/R making e an Q-homomorphism. The facts that (X/R, b) 
satisfies E and that e:(X, b) ) (X/R, b) is co-optimal both follow 
from the fact that en is onto for every set n, as is c1ear from the following two 
diagrams: 

en x n ---=-------*> (X /R)" 

(X, b)1X (X, b)ß (X/R, b)1X (X/R, b)ß (IX, ß E E) 

X ----e-----*> X/R 

en fn xn -----~) (X/R)"------"----~) yn 

X----:e-----*> X /R ---f---~) y D 

Let si be the category of complete Boolean algebras of 1.5.48 and let 
U:si ----+ Set be the underlying set functor. We proved in 1.5.48 that U is 
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not algebraic. On the other hand, the proof of 1.26 shows that an equational 
presentation, tractable or not, always has an underlying set functor 
(Q, E)-alg ) Set which creates limits and which creates quotients of 
congruences. The problem with complete Boolean algebras is tractability. 

1.27 Theorem. Let (Q, E) be an equational presentation as in 1.5.34 and 
assurne that (Q, E) is bounded, i.e., there exists a cardinal 11 0 such that 
Jor all n ): 110 , Qn is empty. Then the underIying set Junetor U: (Q, E)-
aIg ) Set is algebraic. 

ProoJ. As just mentioned above, the proof of 1.26 shows that U creates 
limits and that U creates quotients of congruences. By 1.22 (1) it suffices to 
prove that for an arbitrary set S, U satisfies the solution set condition at S. 
Given an (Q, E)-algebra (X, 6) and a function J: S ---> X let A be the inter­
seetion of all Q-subalgebras of (X, 6) containing J(S). It is obvious that A is 
itself an Q-subalgebra. Moreover, if {p, q} E E is an n-ary equation then the 
naturality squares 

(A,6)p 
~A An 
) 

(A,6)q 

in 

(X,6)p 
~X X n 

(X,6)q 

(where b is the subalgebra structure on A and i:A ---> Xis the inc1usion map) 
prove that (A, b) is an (Q, E)-algebra, since i is a monomorphism. We c1early 
have a factorization 

/" 

;y(A,6) 

By the condition that (Q, E) is bounded, b ranges over a small set once A is 
fixed. To complete the proof, then, it is enough to show that there exists a 
cardinal number r:t., depending only on Q and S, such that the cardinality of 
Ais at most r:t.. 
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The remainder of the proof assurnes some familiarity with ordinal and 
cardinal arithmetic (see the primer on set theory at the end of this section), 
but we have tried to speIl things out so that the inexperienced reader can 
still grasp the flavor of the proof. Let us mention that, for cardinals ß and y, 
ß + Y is the cardinality ofthe disjoint union ofthe sets Y and ß and, similarly, 
ß x Y and pr denote (again somewhat ambiguously) the cardinalities of the 
cartesian product ß x Y and the set of all functions from Y to ß, respectively. 
By the axiom of choice, if ß is an infinite cardinal then ß = ß x ß. Recall 
that, if ß is an ordinal (in particular, if ß is a cardinal) then "y < ß" and 
"y E ß" are the same statement and such y is itself an ordinal. If (Yi: i E 1) is 
a family in ß then Sup(yJ is the least element of the set of upper bounds in 
ß of (Yi), this being the least element 0 of ß if I is empty and being the ordinal 
ß in case no such upper bounds exist. 

Let us turn to the proof. 0( is constructed as folIows. Let 0(1 be any infinite 
cardinal > card(S) and > card(Qn) for all n. This is possible because (Q, E) 
is bounded. Let 0(2 be any infinite cardinal > every n for which Qn is non­
empty. This is possible, again because (Q, E) is bounded. Define 0( = 0(~2. We 
will show that card(A) ~ 0(. An outline of our approach is as folIows: 

Step 1. We construct a transfinite tower Ap of subsets of X, starting 
with Ao = j(S), defining each succeeding stage by applying the Q-operations 
to the preceding ones. 

Step 2. We prove that Aa is an Q-subalgebra containing j(S) and con­
clude, therefore, that Aa contains A. 

Step 3. We prove that card(Aa ) ~ 0(. 

If we carry out this program then the proof is complete. The reader may 
want to consider the case 110 = ~o (that is, (Q, E) is finitary) for additional 
intuition. 

Step 1. Define a subset Ap of X for each ß < 0( by 

Ao = j(S) 

Ap = U(Ay:Y < ß) U (~" c5w«U(Ay:Y < ß)t) 

for ß > o. 
Define Aa = U Ap• 

ß<" 

Step 2. Aa is a subalgebra of (X, c5) containing j(S) as folIows: j(S) = 
Ao c Aa. To show that Aa is a subalgebra, let W E Qn and let (ai: i E n) E (Aat. 
We must show that c5w(aJ E Aa• For each i E n there exists ß(i) < 0( with 
ai E Ap(i). Define Ci = Sup(ß(i): i E n). Since n ~ 0(2 = 0(2 X 0(2,O(n = «(J(~2)" = 
O(la2 x n) ~ O(la2 x a2) = 0(~2 = (J( and there exists a surjection tjJ:O( -- O(n. F or 
i E n let Bi denote {tjJp(i):ß < ß(i)} CO(. Since card(Bi) ~ card{ß:ß < ß(i)} = 
ß(i) < 0(, Bi i= 0( and there exists (Yi: i E n) E O(n with Yi rf. Bi for all i. By the 
definition of tjJ, there exists ß < 0( with (tjJjj(i)) = (yJ. There cannot exist i E n 
with ß(i) > ß since then Yi = tjJp(i) E Bi which contradicts the definition of 
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Yi· Therefore ß(i) ~ 13 for all i and C( = Sup(ß(i)) ~ 13 < rt.. Therefore b",(a;) E 

Aa c Aa as desired. 
Step 3. card(Aa ) ~ rt. as follows. We have card(Ao) ~ card(S) < rt. 1 ~ rt.. 

Now let 0 < ß < rt. and assume that card(Ay) ~ rt. for all Y < ß. Then 
card(U(Ay:)! < ß)) ~ ß x rt. ~ rt. X rt. = rt.. Therefore, far ca E Q", 

card(bw((U(Ay:Y < ß)t)) ~ card((U(Ay:Y < ß)n ~ (ß x rt.t 
~ (rt. x rt.t = rt." ~ rt. 

(the last statement was observed in step 2). Therefore, 

card(Ap) ~ rt. + card(U(Qn x rt.: Qn "# 0)) 

~ rt. + card(U(rt. 1 x rt.: Qn "# 0)) 
~ rt. + (rt.2 X rt. 1 X rt.) ~ rt. + rt. = rt.. 

By transfinite induction, card(Ap) < rt. for all ß < rt.. Then card(Aa) = 

card(U(Aß:ß < rt.)) ~ ß x rt. = rt.. D 
1.28 Proposition. Given the commutative diagram oJ jimctors the Jollow-

ing statements are true: 

U 
d-------~) !!J 

1. If W creates coequalizers oJ W-absolute pairs and if V creates co­
equalizers oJ V-absolute pairs then U creates coequalizers oJ U-absolute pairs. 

2. IJ Wand V create limits ami if V preserves limits then U creates limits. 

Proof. 1. Suppose J, g:A 1 ----+ A 2 in si and h:A 2 U ) BE gg 
are such that (.fU, gU, h) is an absolute coequalizer. We must show that there 
exists a unique lift h:A2 ----+ A in d with hU = hand that moreover h = 
coeq(.f, g) in d. Applying V and observing that (obviously) any functorial 
image of an absolute coequalizer is an absolute co equalizer, (.fW, g W, h V) is 
an absolute co equalizer in %. 

JW hV 
Al W ________ ~~ A 2 W ----'-------~) BV 

gW 
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By the hypo thesis on W there exists a unique lift h: A2 -----> A with h W = 

hV; and, moreover, h = coeq(f, g) in d. Given an sd-morphism h':A2 ------+ 

A',h'U = hifandonlyifh'UV = hV(as VcreatescoequalizersofV-absolute 
pairs) if and only if h'W = h V. Since h'W = h V has unique solution h' = h, 
h'U = h has unique solution h as desired. 

2. Let (il, D) be a diagram in .91 and let I/Ji: B -----> Di U be a limit of 
(il, DU) in!!ß. We must show that there exists a unique lift li!i:A ------+ Di in 
.91 with li!iU = I/Ji and that moreover (A, li!) is a limit of(il, D) in d. Applying 
V, and using the hypo thesis that V preserves limits we have that I/Ji V: 
BV ) DiW is a limit of (il, DW) in :J{. The remaining details are 
based on the same principles as the corresponding parts of the proof of (1). D 

The following result is a major theorem in universal algebra: 

1.29 Sandwich Theorem. Assume given a commutative diagram of 

functors and assume that V is aZgebraic and that .91 has co equalizers. Then the 
following statements are true: 

1. U has a Zeft adjoint if and onZy if W does. 
2. If W is aZgebraic, so is U. 

Proof. Since V has a left adjoint, if U has a left adjoint then W has a left 
adjoint by 2.2.30. In view of 1.9 and 1.28 it suffices to prove that if W has a 
left adjoint then so does U. We may, and do, ass urne without loss of generality 
that f!4 = :J{T and V = UT for an appropriate algebraic theory T in :J{. Let 
(.91, :J{, W, F', r!" B') be an adjointness (2.2.18) and fix (K, ~) E f!4. We must 
find (A, f) free over (K, ~) with respect to U. Our method of proof will not 
involve the adjoint functor theorems. 

(1.30) The fundamental observations: KF'U has the form (KF'W, BK: 
KF'WT ) KF'W). Defined-morphisms a, b:KTF' ) KF' 
as folIows: 

a = KTF' K~'TF' , KF'WTF' __ 9k::..-F_' --+, KF'WF' __ KF_'_E'--+, KF' 

b = ~F':KTF' ) KF' 

Letp:KF' ) A be any d-morphism. Then Kl(pW:K ) AW 
is a T-homomorphism from (K, ~) to AU if and only if a.p = b.p in d. 

The proof of 1.30 can be read off of the following large diagram : 
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KrJ'T pWT 
KT -------..!.------~) KF'WT -----'------7) AWT 

~~' (1) KF~ 10, 
KTF'W K11'TF'W) KF'Wl::~: ;:'W 

/KF'~IJ' 
KF'WF'W (2) 

(3) 

y 
(1) ~F'B'W ' 

~KF'W 
(4) 

pW 

K-----,,.,...-,-----?) KF'W---------=,...--------~) AW 
KIJ' pW 

Here, AU = (AW, y:AWT ) AW). The regions (1) all commute be­
cause IJ' is a natural transformation; (2) commutes, being one of the triangular 
identities (2.2.16); (3) commutes because pU is a morphism in f!J; KIJ'.pW: 
(K,~) ) AU is a T-homomorphism ifand only ifthe perimeter 
ofthe diagram commutes; and (4) commutes ifand only if(a.p)W = (b.p)W. 
Therefore a.p = b.p implies that KIJ'.pW is a T-homomorphism. Conversely, 
if KIJ'.pW is a T-homomorphism then at least KTIJ'.(a.p)W = KTIJ'.(b.p)W; 
but since (KTF', KTIJ') is free over KT with respect to W, a.p = b.p. 

The rest is easy. Let p:KF' ) A = coeq(a, b) in d. Since a.p = b.p, 
f = KIJ'·pW:(K,~) ) AU is a T-homomorphism. Let A' in 
d be arbitrary and let f': (K, ~) ) A' U be any T -homomorphism. As 
(KF', KIJ') is free over K with respect to W, there exists unique p': KF' --..... 

KIJ' 
>KF'W 

pW 
>AW 

\ / 

\ 
/ 

/ 

\p'W / 

\ / /IjIW 
\ / 

41 / 

A'Wk 
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A' in .91 such that K1J'.p'W = 1'. Since 1':(K, ~) ) A'U was assumed 
a T-homomorphism it follows that a.p' = b.p' so that, since p = coeq(a, b), 
there exists a unique l/!:A --> A' in .91 such that p.ljJ = p'. The remaining 
details are dear. 0 

In the context of 1.29, if Wand V are algebraic then U is just a homo­
morphism (as in 2.3.3) from (.91, W) to (!?4, V); 1.29 then asserts that homo­
morphisms between algebraic categories are themse!ves algebraic (assuming 
the existence of coequalizers; theorems that assert ffT has colimits will appear 
later in section 7). It is pleasant to report that SetT is always small co-complete 
(7.10). For the immediate present let us offer a simple proof of 

1.31 Lemma. If U: .91 -----+ Set is a set-valued algebraic functor then 
.91 has co equalizers. 

Proof. Let f, g:A l -----+ A z be admissible morphisms in d. Let S = 

{ (a J, al g): alE AlU}' Let R be the intersection of all congruences (defined 
in (1.11-) on A z containing S. We argue that R is a congruence as folIows: 
Let (R i : i E 1) be the set of all congruences on A z which contain S. Define a 
diagram scheme ,1 with N(,1) = I u {t, t'} where t, t' ~ I and such that 
,1(i, j) has exactly one element if i E land jE {t, t'} but is empty otherwise. 
Define the diagram (,1, D) in Set by D i = R i for i E I, Dt = D t , = A z U, Da = 

first or second co ordinate projection Ri --+ Al accordingly as IX E ,1(i, t) or 
IX E ,1(i, t'). Then I is final. (R, l/!), where l/!i:R -----+ R i is the indusion map, 

R 

is a limit of (,1, D). Since U creates limits, it is now dear that R is again a 
congruence. 

By 1.13, the ordinary canonical projection AzU ) AzUjR lifts 
uniquely to 8:Az -----+ A in ,x( and 8 = coeq(p, q) where p, q:R --> A z is 
an appropriate lift ofthe coordinate projections of R; (actually, such lifts are 
unique because U creates limits and congruences live over the kerne! pair 
of a homomorphism). Now let h:Az -----+ A 3 in .91 be such that f.h = g.h. 
Let E = {(x, y):xh = yh}. Then E is a congruence on Az because (E, a, b) is 
the kernel pair of h in Set (if a, bare the coordinate projections) and so admit 
a unique lift (E, CI, b) in .91 because U creates limits. 
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A'~ 
a e 

E------""------~) A ---------?) A 
/t" ) 2 \ , , , \1jJ 

\ 
~ 

A 3 
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Since f.h = g.h, S is a subset of E. Therefore, R is also a subset of E, and 
r.h = q.h inducing the desired unique 1jJ.1jJ is admissible by 2.1.56. 0 

1.32 Examples of Algebraic Homomorphisms over Set. By 1.29 and 1.31, 
every homomorphism V:(si, W) ) (gß, V) with W:si --..... Set 
and V: gß ------> Set algebraic is itself algebraic V: si ------> gß and in partic­
ular has a left adjoint F:gß ------> /4. We give a few specific examples. Let 
si be rings (with unit) and unitary ring homomorphisms, let gß be monoids, 
and let V be the obvious forgetful functor. If M is a monoid, MF is usually 
called the monoid ring over M; this is best known when M is a group and then 
MF is called the integral group ring over M. [Mac Lane '63, Chapter IV, 
section 1]. Or, let si be associative linear algebras over a fixed commutative 
ring R with unit and let gß be Lie algebras over R. There is a well-known 
homomorphism V which transforms the associative algebra A into a Lie 
algebra on the same underlying set with Lie bracket given by [x, yJ = 

xy - yx. For a Lie algebra L, LF is called the universal enveloping algebra 
over L [Jacobson '62, Chapter V]. Our previous Example 2.2.7 arises from 
si = abelian groups and gß = groups. Compact abelian groups (1.23) admits 
obvious homomorphisms to, say, compact spaces, abelian groups, and 
monoids; all of these functors must have left adjoints. 

1.33 Proposition. Let V: si ------> ff be the inclusion of a full replete 
refiective subcategory. Then V is algebraic. 

Proof. There exists a left adjoint F: ff ------> si to V such that V F is 
the identity functor of si. We will use 1.9. Let 

fV 
AV _____________ -+~BV-----~h~----~)K 

gV 

be an absolute coequalizer in ff. By applying F, we have 

f hF A ------''-------+~ B ---------+) KF 
9 
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which is again a coequalizer in d. Similarly applying FU, we have 

fU 
)EU 

fFU 
AU >KFU 

gU 
) 

/ 

/ 
/ 

h 
/ 

/t/J 
/ 

K~ 

that fFU = coeq(fU, gU) and there exists a unique isomorphism t/J: 
KFU ) Kin % such thatfFU.t/J = h. By the definition of"replete" 
in 2.3.2, t/J :KFU ) K has a unique lift t/f:KF ) A. The remaining 
details are c1ear. D 

1.34 Corollary. Afull replete reflective subcategory is closed under limits. 

Proof. 1.33 and 1.19. D 
1.35 The Composition of Algebraic Functors Need Not Be Aigebraic. Let 

d be the category of abelian groups with algebraic forgetful functor V: 
d ------+ Set. Let f!}J be the fuH replete subcategory of torsion-free abelian 
groups (a group is torsion-free if it has no elements of finite order). Then f!}J 

is reflective (the reflection of Ais 8:A ----> AIC where Cis the torsion sub­
group of A-the "C" of 2.2.13; since A is abelian, Cis simply the subset of 
elements of finite order). By 1.33, the inc1usion functor U: f!}J ------+ d is 
algebraic. Although UV: f!}J ) Set has a left adjoint (2.2.30), UV is not 
algebraic. Let 2 be a two-element set and let (T, 1], fl) be the algebraic theory 
in Set whose algebras are the abelian groups. Then (2TT, 2Tfl) and (2T, 2fl) 
are in f!}J since free abelian groups are torsion free. Let (2, ~) be the two-element 
group. Then 

2TT _______ ~~ 2T -------~) 2 
2fl 

~T 

is a contractible coequalizer in Set which has no lift to f!}J since the two­
element group is not torsion free. D 

We conc1ude the section with a pair ofresults about "puHing back struc­
ture" as in 2.3.34. 

1.36 Proposition. Let (&, V) E Struct(2) be the pullback of (d, U) E 

Struct(%) along thefull replete subcategory 2. Then thefollowing three state­
ments are valid: 
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j 
[JjJ---~---~) d 

v U 

-------~)Y.r 

1. If U creates coequalizers of U-absolute pairs then V creates coequal­
izers of V-absolute pairs. 

2. If U creates limits and if i preserves limits then V creates limits. 
3. If U has a left adjoint F: Y.r ~ oQ[/ and if either FU: Y.r ) Y.r 

maps 2 into 2 or [JjJ is reflective in d then V has a left adjoint. 

Proof. 1. Let 

fV 
P 1 V _______ ~~ P 2 V ___ --'h"--__ ~) L 

gV 

be an absolute co equalizer in 2. Then 

jjU hi 
P l.iU ----"-''-----~~ P 2jU----~---~) Li 

gjU 

is an absolute coequalizer in Y.r so that there exists a unique lift Ti: P 2j ~ A 
with Tiu = hi; and, moreover, Ti = coeq(fj, gj) in d. As AU = Li, A is in 
f!jJ. The rest is dear. 

2. The proof is similar to that of (1). Let D be a diagram in [JjJ and let 
tjI:L -----+ DV be a limit of DV. As i preserves limits, tjli:Li ~ DjU is a 
limit of DjU in Y.r and there exist unique lifts Ifi:L -----+ Dj with lfiu = tjli; 
and, moreover, (L, Ifi) is a limit of Dj. As LU = Li, L is in [JjJ. The rest is dear. 

3. If FU maps 2 into 2 then for all L E 2, (LiF)U E 2, that is, LF E 

f!jJ; but then LF is afortiori free over L with respect to V. The second statement 
follows immediately from 2.2.30. D 

1.37 Countable Aigebras. Let (Q, E) be an equational presentation with 
each Qn countable and with Qn empty when n is infinite (i.e., (Q, E) is a familiar 
everyday finitary equational presentation). Then the forgetful functor from 
countable (Q, E)-algebras to countable sets is algebraic. This is an easy appli­
cation of 1.36 with i:2 -----+ Set being "countable sets." The detail to check 
is that L T is countable when L iso Rut this is dear from 1.1.7. 
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1.38 Proposition. Let (&I', V) E Struct(2) be the pullback of (si, U) E 

Struct(ff) along thefull replete subcategory 2 and let W be the commOI1 value 

V 

j 
-------4) si 

W 
U 

2---------~ 

of Vi andjU as shown above. Assumefitrther that &I' is refiective in si and that 
there exists afill1ctor s:Y[ --> 2 with i.s = idy (e.g. if 2 is either refiective 
or corefiective in ff). Then if U is algebraic, W is algebraic. 

Proof. W has a left adjoint by 2.2.30. Suppose that 

fW h 
Pi W ----____ ---7~ Pz W ----.:.:----4-) K 

gW 

is an absolute co equalizer in ff. We will show that K E 2. As Pi Wsi = 

PiVisi = PiVi = PiW and, similarly, P 2 Wsi = PzW, (fW,gW,hsi) is a 

co equalizer in ff and there exists an isomorphism tjJ: Ksi ---+l K such that 
hsi.lj; = h. Since 2 is replete, K is in 2. D 

Primer on Set Theory 

We extend the primer on set theory at the end of section 1.5 with a few 
facts on cardinal arithmetic which will help the uninitiated in reading the 
proof of 1.27. Proofs can be found in [Monk '69, Chapter 4]. For cardinals 
IY., ß their sum IY. + ß, product rx x ß, and exponential ßa are defined as in the 
proof of 1.27. We have 
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(Cl + ß) + Y = Cl + (ß + y) 
Cl+ß=ß+Cl 

(Cl x ß) x y = Cl X (ß X y) 
ClXß=ßXCl 

(yßt = y(ß x al 

Moreover, if Cl! ~ Cl z then for all ß 

ß + Cl! ~ ß + Clz 

ß X Cl! ~ ß X Cl z 
ßa1 ~ ß"2 

Cl~ ~ Cl1 
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A proof that Cl x Cl = Cl when Cl is infinite (which is one of the equivalent 
forms ofthe axiom ofchoice!) appears as [Monk, Theorem 21.10]. 

Notes fOT Seetion 1 

The characterization theorem of 1.9 was proved by J. Beck circa 1965 and 
remained an "untitled manuscript" until it appeared in Beck's thesis [Beck 
'67, Theorem 1]. 1.4-1.6 is due to Beck. The emphasis on U-absolute co­
equalizers follows [Pare '71]. The proof of 1.13 is an adaptation of [Duskin 
'69] (see exercise 7) and [Linton '66]. While a direct proof of 1.13 (bypassing 
1.9) is neither difficult nor Ion ger, the proof offered darifies what is needed 
to relate contractible coequalizers to the more intuitive coequalizers of con­
gruences. The grandfather of all of these theorems is [Lawvere '63, theorem 1, 
page 79]. See also [Felseher '68-A]. 1.25 is based on the "codensity tripie" 
construction known to the Zürich school at least as early as 1965 and de­
scribed in [Appelgate and Tierney '69, section 3] (who discuss the dual notion 
of "model-induced cotriple") and [Linton '69]; see also exercise 3.2.12. 1.27 
is adapted from [Pierce '68, Proposition 4.1.3]. 1.29 (in the case of finitary 
theories of sets) was emphasized by Lawvere (see [Lawvere '63, theorem, 
page 94]) and is weIl known to universal algebraists (see e.g. [Cohn '65, 
III.4.2]). For generalizations of 1.29 see [Dubuc '68, Theorem 1], [Huq '70, 
Main Theorem] and [Tholen '76, Proposition 6]. 

Exercises fOT Seetion 1 

1. Given h: A ------* B, prove that h is an absolute epimorphism (i.e., for every 
functor H, hH is an epimorphism) if and only if his a split epimorphism. 
[Hint: let H be the appropriate representable functor.] 

2. In the context of 1.14, show that the cardinality of H is at most the 
cardinality of the set of all ultrafilters on the set n x ~o. 

3. Let f, g: A ------* B, d: B ------* A satisfy f dg = gdg and df = idB. Prove that 
if eq(dg, idB) exists then (f, g, d) extends to a contractible coequalizer 
(f, g, h; d, d'). 

4. For any category :ff let:ff- be the category whose objects are morphisms 
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in :f{ and whose morphisms are commutative squares: 

A ____ ({J ___ ~) A 

I J 

B -------~)]3 
1/1 

(Here, (({J, 1/1) is a morphism from I to J). Given (f, g, h) with Ih = gh, 
show that (f, g, h) extends to a contractible coequalizer if and only if 
(f, h):g ) h is a split epimorphism in :f{~. 

5. Show that the intersection (infimum) ofsubobjects represented by mon os 
11 :S1 ~ K, I2:S2 --K coincides with the subobject represented 
by j:P --K in the pullback 

j 12 

-------~)K 

11 

(in the sense that if the pullback exists they are equal). Show that if 
I, g: K --Land if K x K, ker pair (f) and ker pair (g) ex ist, then the 
separator of land g is just the intersection of ker pair (f) and ker pair 
(g). 

6. (M. Barr, personal communication.) Let U: ~ -- Set in Struct(Set) 
construct finite limits and have the property that for all admissible 
I:(X, s) ) (Y, t) the image XI is an optimal subset of(Y, t). Many 
algebraic categories in mathematics are over such a base category. This 
exercise (the crux of the construction of 1.13; also, see the next exercise) 
provides insight as to how to interpret ~ as in 1.2 as the co equalizer of a 
congruence. 

Specializing the definition ofthe text, an optimal congruence on (X, s) 
is an optimal subset R of(X, s) x (X, s) which is an equivalence relation. 
(a) Given optimal sub sets R, S on (X, s) show that R- 1 = {(y, x):(x, y) E 

R} and RS = {(x, z): for some y, (x, y) E Rand (y, z) ES} are optimal 
subsets of (X, s). 

(b) Let(f,g, h; d, d')beacontractiblecoequalizerin~.SetR = {(al, ag): 
a E A}. Show that RR -1 is the smallest optimal congruence con­
taining Rand that h is "dividing out by RR - 1." [Hint: to prove that 
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R is a sub set of RR -1, observe that aJ = (aJd)J, ag = (agd)J, (aJd)g = 

(agd)g.] 
7. [Duskin '69, Theorem 3.2.] Let % have finite limits and let U:sI ~ 

%. Prove that U is algebraic if and only if (a) U has a left adjoint; (b) si 
has separators; (c) given an equivalence relation p, q:A -->B in si (see 
section 2.1 exercise 15) such that (pU, qU) extends to a contractible co­
equalizer (pU, qU, h; d, d') in %, h admits a unique lift which is, more­
over, coeq(p, q) in si. [Hint: a proof of the same assertion, substituting 
"kernel pairs" for "equivalence relations" in (c) follows the proof of 1.13 
and is itself an interesting result; to prove the assertion as stated requires 
more work.] 

8. A pair of maps J, g: A --+ B is reflexive if there exists d: B --> A with 
df = idB = dg. (In Set, (f, g) is reflexive if and only if {(aJ, bJ): a E A} is 
a reflexive relation.) In the context of 1.29, show that it is enough to 
postulate that every reflexive pair of sI-morphisms has a co equalizer. 

9. Whereintheproofof1.27didweusethefactthatU(Ay :Y < ß)isasubset 
of Aß? 

10. (M. Barr.) A Beck functor U:sI~:Jß is erude if whenever h = 

eoeq(f, g) then hU = coeq(fU, gU). 1 is an iso la ted terminal objeet of 
si if 1 is a terminal object of si and if, for each A, every morphism 1 --> A 
is an isomorphism (e.g. the empty set is an isolated initial object of Set). 
A Beck funetor U:sI~:Jß is vulgar if given J, g:A 1 ----+A2 , 

h:A2 ~A3 in si such that A3 is not an isolated terminal object and 
such that (fU, gU, hU; d, d') is a contractible co equalizer in:Jß for some 
d, d', then (f, g, h) is an absolute coequalizer in si. Prove that, given Beck 
funetors UI:sI ':Jß, Uz::Jß ,C(j, U3:C(j~f!.&, if UI is 
emde and if U 3 is vulgar then U IU 2 U 3 is Beek. Also, if U land U z are 
vulgar prove that U IU Z is vulgar. 

11. Given a dia gram 

f 
A ___ ---::--__ ~ 

9 
~B 

u 

a 
)E 

b 
) 

D ________ ~ 

w x 

J 
~ B A _______ --? 

9 

h 
-----..:..:.....----4) C 

v 

e 
--------~) F 

y 

h ---------+) C 
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with ju = ta, gu = tb, ax = wj, bx = wg, lw = uc, cy = xh, ux = idB, 

and vy = idc (it is not necessary that tw = idA ), prove that if c = 

coeq(a, b) then h = coeq(f, g). 
12. Let T be an algebraic theory in Set. AT-algebra (X, ~) is an algebraic 

generator (cf. [Lawvere '63, section 2 ofChapter III]) ifthe representable 
functor SetT((X, ~), -):SetT ) Set is weaklyalge­
braic. Show that for nonempty 11, (n T, nfl) is an algebraic generator. [Hint: 
use exercises 10, 11 with respect to the functor U 3 = (- t: Set ----'> 

Set.] 
13. A jinitary phylum (cf. [Birkhoff and Lipson '70], [Grätzer '69] and 

[Higgins '63]) is a pair (P, Q) where Pis a nonempty set and Q = (Qw) 
is a disjoint family of(possibly empty) sets indexed by words w = P1 ... Pli 
on the alphabet P oflength n > 0. A (P, Q)-algebra is a pair (X, b) where 
X = (X(p)) is a P-indexed family of sets and b assigns to each W E 
QP1 ... P"+l a function bro :X(P1) x ... x X(PIl) ) X(PIl+ 1). A 
(P, Q)-homomorphismj:(X, b) ) (X', b') is a family offunctions of 
formj(p):X(p) ) X'(p) satisfying 

j(P1) x ... X j(Pn) 

X'(P1) x ... X X'(Pn) -----+) X'(Pn+ 1) 
b~) 

(For examples refer to the papers cited above.) 
Let Set P denote the obvious (functor) category whose objects are 

families (X(p): pEP) and whose morphisms are families (f(p)). Show that 
the category of(P, Q)-algebras is algebraic over Set P• [Hint: free algebras 
are constructed in [Birkhoff and Lipson '70, Proposition 15].] 

For further generalizations see [Benabou '66], [Davis '67], [Walters 
'69], and [Hoehnke '74]. 

14. Construct interesting examples of algebraic homomorphisms U: 
SetS ) SetT over Set for which the "indusion ofthe generators" 
morphism is (i) always injective, (ii) always surjective, (iii) neither ofthese. 

15. Let M be a monoid. Define:ffM in Struct(:ff) to be the category whose 
objects are pairs (A, s) with s: M ) :ff(A, A) a monoid homomor­
phism, and whose morphisms j :(A, s) ) (B, t) satisfy the fol­
lowing diagram (for aB m E M). 



1. Recognition Theorems 

f 
A ---------+> B 

A ---------+) B 
f 
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(a) Show that U::ffM ):ff is both Beck and co-Beck. [Hint: 
simplify (:ffMtP.J 

(b) Show that U::ffM ) :ff is algebraic providing each object of 
:ff has an M-fold copower and, dually, show that U is coalgebraic 
providing each object of:ff has an M-fold power. [Hint: the cofree 
o bject over A is AM with action L m . - : AM ) AM defined by 
(Lm .- )prm, = pr",m"J This generalizes exercise 2.2.4. 

The right adjoint of (b) is an example of "right Kan extension 
along the functor e: 1 ---> M" [Mac Lane '71, Chapter X, section 3]. 

(c) Let M = G be a compact (separated) topological group and let :ff 
be the category of Banach spaces and norm-decreasing linear maps. 
Objects of :ffG are "representations of G by isometries in a Banach 
space." Let si be the full subcategory of continuous representations 
(A, s), i.e., the map G ----+ A, g f---7 aSg is continuous for each a in A, and 
let V: d -----+:ff be the restriction of U. Show that V is coalgebraic. 
[Hint: The co-Beck condition is easy. The cofree object over A is the 
subspace [G, AJ of continuous functions in AG; the only hard part 
is showingthat G ) ([G, AJ, [G, AJ)is continuous and 
for this [Hewitt and Ross '63, Theorems 4.9, 4.15J are helpful.J 

In the context of (c), if C is the complex ground field, a scalar 
multiple of a morphism [G, CJ ) C is an "integral" and the 
co-Kleisli composition of two such integrals is their convolution 
[Hewitt and Ross '63, sections 14, 19]. 

(d) (open question) It would be interesting to generalize (c) when Gis 
locally compact. One is tempted to set [G, A J to be the continuous 
functions which vanish at infinity and to set d to be those represen­
tations for which the maps g f--+ aSg are continuous and vanish at 
infinity; discover why this doesn't work. 

16. In this exercise we indicate how commutative C*-algebras arise as the 
algebras over a theory in Set with rank t'{l (where t'{l = (t'{o)+). By a 
commutative C*-algebra we mean a commutative complex Banach al­
gebra with unit and involution x f--+ x* satisfying Ilxx*11 = Ilx112. Let d 
be the category of commutative C*-algebras and algebra homomor­
phisms which preserve the involution and the unit. As is well known, such 
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homomorphisms are necessarily bounded of norm 1. The underlying set 
functor will not do since 
(a) Prove that d has products but that the underlying set functor does 

not preserve products. 
(b) Let U:d --+ Set be the unit disc functor. Let D denote the unit 

disc of the complex plane and, for any compact Hausdorff space Y, 
let C(Y) denote the C*-algebra of continuous complex-valued func­
tions on Y in the sup norm. Show that C(DX) is the free C*-algebra 
over X with respect to U. [Hint: Xf/ assigns to x its evaluation map 
J 1--+ xJ; if Ais a C*-algebra there is no problem extending g: X ~ 
A to the subalgebra-with-involution generated by the evaluations; 
prove that this partial extension is uniformly continuous and use the 
Stone-Weierstrass theorem to extend the rest of the way.J 

(c) Prove that if M is any metric space and ifJ:M1 --+ M is uniformly 
continuous then J has a countable support. [Hint: for each integer 
n > 0 there exists finite Fn c I such that d(aJ, bJ) < 1/n if a and b 
agree on Fn ; consider the union ofthe sets Fn ]. Use this to prove that 
the algebraic theory T induced in Set by the adjointness of (b) is of 
rank ~1' 

(d) Prove that the semantics comparison functor t[J:d --+ SetT is a 
full representative subcategory (so that (d, U) is weakly algebraic). 
[Hint (suggested by J. R. IsbeIl): let (X, ~) be aT-algebra (i.e., it 
suffices to establish the Beck condition for U-contractible coequal­
izers as in 1.2); the set ofscalar multiples of {O}~-l c XT is a closed 
ideal of C(DX) and so has form {f: HJ = O} for some closed subset H 
ofDx; show that (X,~) is T-isomorphic to C(H).J 

For similar results see [Negrepontis '71J, [Isbell '74J, and 
[Semadeni '74]. Isbell has in fact shown that the (unit disc of) real 
Banach algebras isomorphic to C(X, R) have an equational presen­
tation in terms of the five operations: 

O-ary: 1 
1-ary: x 1---+ - x 

x 1---+ Max(Min(2x, 1), -1) 
2-ary: x, y 1--+ xy 

00 

~o-ary:(xi) 1------+ I riXi 
i= 1 

It is not known whether a nice (e.g. finite) set of equations can be 
provided. 

17. In this exercise we establish the (unpublished) theorem of Linton which 
asserts that "a category algebraic over complete atomic Boolean algebras 
is also algebraic over Set." The suggested method ofproofis due to Manes 
and Pan!. 
(a) Given J,g:A----+B and h:B----+C in .Yt' such that hH = 

coeq(f H, gH) for H any of the representable functors .Yt'(A, -), 
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:ff(B, -) or :ff(C, -), prove that (f, g, h) is an absolute coequalizer. 
[Hint: prove direct1y that h = coeq(f, g); conclude that hH = 

coeq(f H, gH) whenever H is fuH and faithful; now use 2.2.22 and 
exercise 2.3.14.J 

(b) Establish the 3 x 3 lemma ([Duskin '69, O.4J): Given 

f' 

h 
A12-------~) Au 

a' b' a" b" 

)A A21 _______ ~ 
) 22 

h' 
-------~) A 23 

g' 

c c' C" 

f" 
)A A31 _______ ~ 
) 32 

h" 
-------~) A 33 

g" 

such that f' c' = CF" g' c' = cg" haff = a'h' hb" = b'h' h' c" = c'h" -) , , , , , 
a'c' = b'c'; c, c', and h are epi; h' = coeq(f', g'), c" = coeq(a", b"); 
prove that h" = coeq(f", g"). 

(c) See exercise 10 for terminology. Let U: d ---> fJB be an algebraic 
functor and let d have the property that given any object X which 
is not an isolated terminal object, X is projective with respect to 
coequalizers, that is, whenever h: Y --Z is a coequalizer then for 

X 
I 

I 

I 
gl 

-+­
Y-------------~ 

h 

aH f:X ------> Z there exists g:X -- Y with gh = f. Show that U 
is vulgar. [Hint: given f, g:A --B, h:B --C with C (and hence 
A, B) not isolated terminal and (fU, gU, hU) an absolute coequal­
izer, for X any of A, B, C, X [;: X U F ) X is split epi-dx.x [; = 

id-giving rise to the absolute equalizer diagram 



196 A1gebraic Theories in a Category 

d Xf..dx X ___ """";';'A,X ___ +) XUF _______ ~~ XUF 

id 

Apply (a) and (b) to the diagram 

(XUF, A) ____ ~~(XUF, B)----~) (XUF, C) 

(XUF, A) ____ ~~ (XUF, B)----~) (XUF, C) 

(X, A) ____ --+~ (X, B)----.--...+) (X, C) J. 
(d) Use the Beck theorem to show that the structural reftection U ofthe 

functor Set ( -, 2): SetOP ) Set corepresented by the 
2-element set is algebraic. Then check that U is isomorphie to the 
category of complete atomic Boolean algebras of 1.5 [Hint: show that 
the algebraic theory induced by the obvious adjoint is the double 
power-set theory.J 

This resuIt is generalized in [Pan~ '74J where it is shown that 
Q(-):ßop ) ß is weakly algebraic for any topos (exercise 
2.2.16) ß. Since it is easy to prove that any topos has finite limits, 
this provides an elegant way to see that a topos must also have finite 
colimits. 

(e) Use exercise 10 to conclude that if(d, U) in Struct(SetOP) is algebraic 
then (.91, Set( (- )U, 2)) is weakly algebraic over Set. 

Pan:: and Linton have shown [private communication] that (e) 
does not generalize to an arbitrary topos. 

The cohomology and humology of groups, rings, associative, or 
Lie algebras over a commutative ring and other (Q, E)-algebras has 
been of interest since the 1940's; see [Cartan and Eilenberg '56J, 
[Mac Lane '63] and the references cited there. More recently, Andre, 
Appelgate, Barr, Beck, and Rinehart followed by Duskin, Van Osdol, 
and others (see [Duskin '74, '75], [Van Osdol '73] and their biblio­
graphies) have used the algebraic theory T to define the cohomology 
of aT-algebra, thereby unifying and clarifying older cohomology 
theories as weIl as contributing new ones. This work was anticipated 
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by [Godement '58, appendix] who defined OUf "algebraie theories 
in monoid form" but not their algebras. 

The subjeet of"triple eohomology" is much vaster than exercises 
18-24 below indieate. 

In its widest sense, a cohomology theory on X is a funetor H: 
X'op • d where d is an abelian eategory ([Freyd '64], 
[Mitehell '65]). While such H may "lose information," that is we may 
have KH and LH isomorphie without K and L being isomorphie, H 
may eonveniently classify important properties of objeets in X. For 
OUf purposes, we fix d to be the eategory of abelian groups. A cochain 
complex is a diagram 

----->'A" 
dn+ I 

----->. An+ 1 - ... 

in d satisfying dn.d" + 1 = 0; equivalently, Im(dn) c Ker(d" + 1). An 
element of An, Ker(dn + 1), Im(d") is ealled, respeetively, an n-cochain, 
n-cocycle, n-coboundary. The quotient group Ker(dn + 1 )jIm(d") is the 
cohomology group in dimension n of the eoehain eomplex; this eon­
struetion is funetorial (where morphisms of eoehain complexes are 
diagram morphisms). In praetiee, a cohomology theory on X usually 
arises by defining a cochain complex valued funetor on x ÜP, so that 
there is a sequence of cohomology theories, one in each dimension. 

18. Let X have finite produets. An abelian group in X (cf. 3.2.3 and [Eckmann 
and Hilton '62]) is a quadrupie (Y, +, i,O) where the x-morphisms 
+: Y x Y . Y, i: Y -----> Y, 0: 1 -----> Y satisfy the usual 
aXIOms: 

+ x id Y x Y x Y----'---'---+) Y x Y 

id x + + 

Y x Y ----+'----~) Y 

C~) cg) 
Y-------~) Y x Y*"(--------Y 
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Y x Y 

(prz) 
pr 1 

) Y x Y Y 
C~) 

) Y x Y 

+ ~1 + 

Y ~Y 
(a) Show that an abelian group in the category of topological spaces is 

the same thing as a topological abelian group. 
(b) Show that for each object Y in :f{ there is a bijective correspondence 

between abelian group structures (Y, +, i, 0) and functorialliftings F 

:f{0P ___ E. - - - ~d 

Set 

as shown above, where the unnamed functor is the forgetful functor 

from abelian groups. [Hint: A f+o , Y = 

~) 
A -------+, Y X Y ~ Y.] 

Thus it is possible to define abelian group objects in any (locally 
small) category; but we continue to use the original definition for 
clarity. 

19. Let T be an algebraic theory in :f{ and let F be an arbitrary functor 
:f{0P ~ d. For each T-algebra (X, ~), consider the diagram of abelian 
groups 

dO d' d" 
O------>'(XT,Xjl)F _ ... ------->, (XTn+l, X Tnjl)F 

d"+ , 
---------->, (XTn + z, XTn + 1 jl)F - ... 

induced by the "canonical resolution" ofT-homomorphisms 

~~Tz--
~ ~T 

X~XT~XTz+--XjlT-­
Xjl 

"'--XT jl--
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aeeording to the alternating sum formula 
n 

dn+ 1 = ~Tn+ 1 F + L (_1)k+ l(XTkJ.JTn-k)F 
k=O 

Verify that this eonstruetion defines a funetor from CxT)"P to the eategory 
of eoehain eomplexes. 

20. Let T be an algebraie theory in :ff and let (Y, 8; +, i, 0) be an abelian 
group in :ffT, indueing a funetor as in (18b) and henee, for eaeh T-algebra 
(X, ~), the eoehain eomplex of (19): 

o da , [XT, Y] ~ ... ___ d"_---->, [XTn+l, Y] 
(F+ 1 ____ ~) [Xyn+2, Y] - ... 

(where [XTn+l, Y] denotes the abelian group :ffT«XTn +l, XTnp), 
(Y, 8)), with dn + 1 given by 

n 
(XT"+ 1 __ u_-+, Y)dn+ 1 = ~Tn+ 1.a + I (_l)k+ l(XTkpTn - k.a) 

k=O 

The nth ("tripie") cohomology group, Hn(X, ~), of(X, ~) with coefficients in 
(Y, 8; +, i, 0) is the n-dimensional eohomology group, Ker(dn + 1 )/Im(dn), 

of this eomplex. 
Show that HO(X, ~)maybeidentified with theabeliangroup:ffT«X, ~), 

(Y, 8)). [Hint: ~ = eoeq(XJ.l, ~T) in :ffT.] 

The next exereise summarizes [Beek '67, Theorem 5] and deals with 
an interpretation of H 1(X, ~). The reader will have to work hard to ex­
pand the hints into proofs! 

21. (a) Let the notation be as in 20. We introduee the notation Zl(X, ~) for 
the subgroup ker(d2) of 1-eoeycies in [XTT, Y]. Show that the 
passages 

yf-+a = (Xp.sT.y.pry - ~T.sT.y.pry)E[XTT, Y] 

(where s = X GJ , Y x X) 

X 

a ) (Y x X)T--~y---+) Y x X 

pry 

Y 
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establish mutually inverse bijections between Zl(X, ~) and the set of 
all T-algebra structures y on Y x X which satisfy 
(i) prx:(Y x X, y) ) (X,~) is a T-homomorphism, 

and 
(ii) Y x (Y x X) ~ (Y x Y) x X ~ Y x X is a T-homomor­

phism from (Y, 8) x (Y x X, y) to (Y x X, y). 
(b) Via (a), identify H 1(X, ~) with the group of all equivalence classes of 

y under the equivalence relation generated by the following relation: 
y "-' y' if there exists q: Y x X ----> Y such that 

( q ):(Y x X, y) -----~) (Y x X, y') 
prx 

is a T-homomorphism and such that 

+ x id Y x Y x X------+)Y x X 

id x q q 

Y x Y --------+) Y 
+ 

(c) A principal object over (X,~) is (E, y, p, m, s) where p:(E, ~) ----> 

(X, ~) and m:(Y, 8) x (E, y) -------+ (Y, 8) are T-homomorphisms and 
s: X ----7 Eis a:f{' -morphism subject to the following four conditions: 

id x m 
Y x Y x E -=-=--~~-~) Y x E C~) 

E --------+) Y x E 

+ x id m 

Y x E m >E E 

(Y,8) x (E, y) 
m 

) (E, y) X 
s 

prE pullback in :f{'T p P 

(E, y) ) (X, ~) 
X 

P 
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A morphism of principal objects is a T-homomorphism which pre­
serves m and p (but ignores the choice of "seetion" s). Show that 
isomorphism classes of principal objects correspond to elements of 
H 1(X, ~). [Rint: (m, prE, p) is an absolute coequalizer using 1.5; use 
the pullback property to define the :/{" -morphism (5 as shown below: 

E -------~) X 
p 

and show that 

is a product diagram in :/(". 
(d) m: Y x E ----> E is an action of Y on E if the first two diagrams of 

(c) hold (see exercise 3.2.4). Let:/{" = Set. Say that the action (Y, E, m) 
is fixpoint-free if (q, - )11'1: Y ) E is injective for each q in E. 
In the context of (c), show that elements of H 1(X, ~) correspond to 
(suitable isomorphism classes of) fixpoint-free actions whose orbit­
space is a quotient T-algebra isomorphie to (X, ~). 

(e) [Duskin.] Let:/{" = Set, let T = ~ and let Y = {O, 1} be the two­
element compact group. Let E be the circle of radius 2, with are 
length parameter q, 0 :::;; q < 4n. Then E is a ~-algebra and Y acts 
freely via 

qO = q; ql = q + 2n (mod 4n) 

Show that the orbitspace is the circle Sand conclude that H 1(S) "# O. 
[Rint: E is connected whereas the trivial principal bundle S x Y 
is not.] 

[Van Osdol '75] has shown how to identify l-cocycles with 
certain functors (:/{"1)0P ) Set. 

For results in higher dimensions see [Duskin '74, '75]. 
Essentially nothing is known about the relationship between the 

"tripie" cohomology of ~-algebras and the various cohomologies of 
algebraic topology. We record a few elementary comments con­
cerning "Eilenberg-Steenrod" axioms ([Eilenberg and Steenrod '52]). 

22. Let T be an algebraic theory in Set and let :/{" be the category whose 
objects are (X, ~ Ä) with A a subalgebra of(X, ~) and whose morphisms 
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f:(X,~, A) , (X,~, A) are T-homomorphisms f:(X,~) ----+ 

(X,~) such that f maps A into A. Fix an abelian group (Y, e; +, i, 0) in 
SetT. We use the notations of 20. 
(a) If (A, ~o) is a subalgebra of (X, ~) with inclusion j, show that 

dü d1 

o ~ [XT, YJA --

O~[X1L ~ 
YT.(-I 

O~[AT, YJ ~ 

jyn+l.( _ ):[XTn +1, YJ ' [Ayn+l, YJ is a co­
chain complex morphism whose pointwise kernel [XTn +1, YJA = 

Ker(jTn + 1 .( -)) is a subcomplex of [Xyn+l, Y]. Verify that the 
passage (X, ~, A) I , [Xyn+ \ YJA is functorial, thereby 
defining cohomology groups Hn(x, ~, A). It follows from a standard 
theorem ([Mac Lane '63, H.4.1 J) that each (X, ~, A) induces a "long 
exact sequence" 

0-----'>, HO(X, ~) -----'>, HO(A, ~o) ------'>, HO(X, ~, A) 
------'>, H1(X, ~) , H 1(A, ~o) - ... 

Let 0 denote the sub algebra of(X, ~) generated by the empty set. Show 
that [0, YJ = 0 and conclude that Hn(x, ~, 0) = Hn(X, ~). Thus the 
long exact sequence is also induced by the %-diagram 

(A, ~o, 0) -----'>, (X, ~, 0) -----'>, (X, ~, A). 

(b) In the general context of (20), show that Hn(XT, XJ1) = 0 if n > O. 
[Hint: construct a "contracting homotopy" ([Mac Lane '63, page 41 J) 

0--- [XT, YJ ) (XT2 , YJ ) [XT 3 , YJ 
/ / / 

/ / / 

so/ / 
Sl/ 

/ 
S2/ 

/ 
/ 

./ ./ ./ ./ 

./ ./ 
k. -k./ 

0--- [XT, yJ-k ) [XT 2 , yJ-k./ ) [XT 3, YJ 

(Sn) by setting Sn = X1]Tn.( -) for n ~ 1.J This establishes the "di­
mension axiom": H n(1 T, IJ1) = O. 

(c) Show that ß: Set----+ Set preserves binary coproducts. [Hint: use 
1.5.25 (3).J 

(d) Assume that T: Set , Setpreserves binary coproducts. Prove 
the "excision axiom": if f:(X, ~,A) , (X, ~, A) induces a bi-
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jeetionfromX - AtoX - AthenWf:Hn(X,~,A)------> 
Hn(x, ~, A) is an isomorphism for all n ? O. [Rint: to prove Hilf is 
injeetive, let a, b in [Xyn+l, Yh be n-eoeycles with fyn+l.a -
fTn+1.b = dn(t) for some t in [Xyn, Y]A then a - b = dn(c) where 
ein [XTn, Y]xis indueed by the eoproduet property: 

yyn kTn 
A----"------4) XTn+(------- (X - A)yn 

o 

1 

le 
1 

-1-

III 

Y +-( -- XT" ( (X - A)Tn 
kTn 

To show Hnfis onto, let a in [XTn+ 1 , Y]A be an n-eoeycle and show 
that f T n + 1.a = a, where a in [X T n + 1, Y]Ä is defined by 

YTn +1 kT"+ 1 ATn + 1 _--'~ __ ---+) X yn+ 1 ~(---_____ (X _ A)yn+ 1 

I 
I 

o II( 

'I--
Y4-(---a-- Xyn +1 ( jTn +1 (X - A)yn+l.] 

We do not know the extent to whieh the homotopy axiom holds. 
23. For K in %, the eategory (%, K) of o~jects over K has as objeets all (A, a) 

with a:A ---> K, and has as morphisms f:(A, a) ) (B, b) all 
f:A ---> B with f.b = a. 
(a) Show that (%, K) has finite produets when % has pullbaeks. 
(b) Let T be an algebraie theory in % and let (Z, y) be aT-algebra. Show 

that the obvious forgetful funetor (%T, (Z, y)) ) (%, Z) is 
algebraie with algebraie theory (A, a)T = (AT, a#), (A, a)ij = Art: 
(A, a) ) (AT, a#), (A, a)j1 = Af1:(ATT, (a#)#) -----+ 

(AT, a#). 
(e) [Beek '67.] Let.si be the eategory of abelian groups in (.%, R), where 

% is the eategory of eommutative rings with unit and unitary ring 
homomorphisms. An objeet of .si, then, is a ring homomorphism 
f: Y ---> R with addition defined on eaeh rf - 1 and whose zero is 
a group homomorphism z:R ---> Y satisfying zf = id. Show that 
the struetural refleetion of U:.si ------+ Set defined by (Y,.f, +, z)U = 

Ker(f) is isomorphie over Set to the eategory of right R-modules. 
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[Hint: for a in Ker(f) and r in R, ar is the Y-product (0, a)(r, 0), 
identifying Y with R x Ker(f) as abelian groups; conversely, invent 
the "semi-direct product" of R with an R-module.J 

Many algebraic cohomology theories coincide with tri pIe coho­
mology at the level (%T, (Z, y)) with coefficients in a "(Z, y)-module," 
that is, an abelian group in (%T, (Z, y)) (see [Beck '67J for examples). 
In such ca ses, the need for a more complex theory is explained by the 
lack of nontrivial abelian groups in %T. 

(d) In the category of commutative rings, prove that the zero ring is the 
only abelian group. 

24. [Duskin '75.J This exercise outlines how the Cech cohomology group of 
a topological space may be defined using tripie cohomology; the reader 
familiar with the standard definition should verify that the following 
agrees with the usual construction. Let X be a topological space, let Olt 
be an open cover of X and let Y be a topological abelian group. Let % 
be the category of topological spaces and continuous maps. Let Z be 
the coproduct in % of the elements of Olt (each having the subspace 
topology) and let y:Z ----> X be the co diagonal map, i.e., inu.y is the 
inclusion for each U in Olt. 
(a) Using the notations of exercise 23, show that U = "pullback along 

y" 

(%, X)+-( ______ ) (%, Z) 
F 

U 

(see the diagram above) is algebraic with left adjoint F = "composi­
tion with y." Denote the corresponding algebraic theory in (%, Z) 
by T. 

(b) Since idx:X ) X is the terminal object in (%, X) it is a T-
algebra. Interpret the "canonical resolution" (exercise 19) of this 
algebra. [Hint: in degree n consider n-fold intersections of elements 
of Olt.J 

(c) Show that Y, via pry : Y x X ~X, is an abelian group in (%, X) 
in a natural way. 

The resulting first tri pIe cohomology group is naturally denoted 
as H 1(X, Olt). The Cech group is then the co limit 

H(X) = colim H 1(X, Olt) 
dJI 

2. Theories as Monoids 

In this section we explicate the analogy between monoids and algebraic 
theories in monoid form (1.3.17) by demonstrating that both are examples 
ofthe more general notion of"monoid in a monoidal category." The obvious 
monoid homomorphisms J,: T ----> S are identified with the homomorphisms 
V:(%s, US ) ) (.xT , UT ) over %. 
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2.1 Monoids in a Monoidal Category. An (ordinary) monoid is a tripIe 
(X, m, e) where X is a set and m:X x X ---+X is a binary associative opera­
tion having e E X as a two-sided unit. A "monoidal" category should be a 
category provided with whatever additional structure seems appropriate to 
allow the context for the definition of an ordinary monoid. 

Define the product XIX· .. x X n ofthe categories Xi (n > 0) to have 
as objects all ordered n-tuples (Ab . .. , An) with Ai an object of Xi and to 
have as morphisms (Al' ... ' An) ) (BI' . .. , Bn) all n-tuples 
(fl, ... ,fn) withkA i -- Bi in Xi· Composition is given by (fl, ... ,.[,,)(gb ... ,gn) = 

(!lgb· .. , fngn) al1d id(A •..... An) = (idA" ... , idAJ Thel1 if X has binary 
products A x B, x: X X X ---+ X is a functor, the action on morphisms 
being given by 

! 
A -------7) A' 

r f x g 1 
A x B - - - - -+ A' X B' 

1 1 
B -------~) B' g 

(Notice that the definition requires us to choose a fixed product 

A--A x B---+B 

for each pair of objects (A, B).) Each three objects A, B, C induce the 
"associativity isomorphism" (A, B, C)a: A x (B x C) ) (A x B) x C 
by 

A x B 

A x (B x C) - - - - ~(A x B) x C 
(A, B, C)a 

B x C --------7) C 
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where l/!:A x (B x C) --~l A X B is defined by 

A 

l/! 
A x (B x C)- - - - - -+A x B 

B x C ------~) B 

We leave it as an exercise for the reader that (A, B, C)a is an isomorphism 
and that both a and a- 1 are natural transformations of functors from.Yt x 
.Yt x .Yt to .Yt; that is, a is a natural equivalence (as defined in 2.5 beIow). 
Similarly, if .Yt has a terminal object 1, the projections Ab: 1 x A ~ A, 
Ac:A x 1 ~ A are natural equivalences of functors from .Yt to itseif. 

We may then set .Yt = Set and observe that an ordinary monoid is 
(X, m, e) where m:X x X ~X and e: 1 --+X are morphisms satisfying 

a m x id 
X x (X x X)----~)(X x X) x X--------+) X x X 

id x m m 

X x X--------------------------------------+)X m 

e x id id x e 1 x X ----~---.::..=....---+) X X X+(------ X x 1 

Wehave motivated the foIIowing definition: 
(2.2) A monoidal category is a 6-tuple (.Yt, @, I, a, b, c) where .Yt is a 

category, @:.Yt x .Yt ~.Yt is a functor, I isan object of .Yt (the "unit for 



2. Theories as Monoids 207 

@"), and (A, B, C)a:A @ (B @ C) j (A @ B) @ C, Ab:1 @ A ---+ A, 
Ac:A @ 1 ~A are natural equivalences subject to the commutativity ofthe 
following three diagrams : 

A @ (B @ (C @ D)) ~ (A @ B) @ (C @ D) ~ «A @ B) @ C) @ D 

id@ a a@id 

A@«B@C)@ D) -----a----~) (A@(B@C))@D 

A@(l@C)-_a--+)(A@1)@C 
b -- ~ 1 @ 1 1 
~ 

c 

The reader should check that these axioms hold for the motivating example 
(ff, x, 1, a, b, c). 

Let (ff, @, 1, a, b, c) be a monoidal category. A monoid in (ff, @, 1, a, b, c) 
is a tripie (K, m, e) where m:K x K ~K and e:1 ~K are ff-morphisms 
subject to the laws 

K@(K@K)---a--'-+)(K@K)@ K ___ m_@:::::.x...;;;id~_~) K@K 

id@m m 

K @ K---------~m~--------~) K 

(2.3) 
e @ id id @ e 1@ K ----..::~-~) K @ K+(----..::~--K @1 
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A l110naid hal11ol11orphisl11 j:(K, 111, e) -----» (K', m', e') is a %-morphism 
f:K ----+K' such that 

~K 

I~ f 

e~K' 

f0f 
K0 K--~--'--~)K' 0 K' 

m 111' 

K-------~)K' 
f 

(2.4) 

With the evident composition and identities, the (%, 0, I, a, b, e)-monoids 
form a category. 

2.5 Functor Categories. It is an important observation in many areas 
ofmathematics that the homomorphisms between two objects ofinterest can 
be structured itself so as to become such an object. Witness "function space" 
theory in analysis or vector spaces of linear maps; also, see exercise 5. In 
category theory, it is the case that the functors between two categories .si and 
% form a category %.sd. Such categories are called funetar eategories (cf. 
section 2.2, exercise9). Specifically, the objects of %.sd are functors H:.sI ---> 
% and a morphism rx: H 1 ---> H 2 is a natural transformation. Composition 
is horizontal composition (2.2.31). The identities are provided by A(idH ) = 

idAH. As mentioned in 2.1, the isomorphisms in %.sd are called natural equiv­
alenees and are the same thing as natural transformations each of whose 
components is an isomorphism in %. 

2.6 Theories as Monoids. Let % be an arbitrary category. Then the 
functor category %:ff becomes a monoidal category in a natural way. Given 
F, G:% --->X define F 0 G = FG, their usual composition; explicitly, 
K(FG) = (KF)G and for f:K ----+K', f(FG) = (fF)G. Given rx:F ----+F' 
and ß:G----+G' define rx 0 ß:FG--->F'G'-which we will write simply 
as rxß (not to be confused with the functor category composition rx.ß)- as the 
path from FG to F'G' in the square shown below: 
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This is called the vertical composition of a and ß. The two paths are the same 
because ß is a natural transformation. Fß, aG', aG, F'ß are all natural trans­
formations and we have Fß.aG' = aß = aG.F'ß. @:Jf" x Jf" --+~. is a 
well-defined functor which is strictly associative on objects and morphisms. 
The following diagrams will aid the reader in the verification. 

F~FG 
~ß 

IY.GH 
FGH ------~) F'GH 

FG ~ 

________ aG' 

~F'G' 

FßH F'ßH 

FG' H ___ a_G_'_H __ ~) F'G' H 

7'ß' 
IY.'ß' 

aG'H F'G'y 

FG" 
~F'G" 

a ~F"G" 
F'G'H-----~) F'G'H' 

F'G'y 

The unit object I is just the identity functor idx< Jf" ) Jf". The re­
maining verification that (Jf"X', comp, idX', id, id, id) is a monoidal category 
will be left to the reader; this statement effectively sums up the rules of the 
Godement calculus (2.2.31; see exercise 2). We have written comp instead of 
<8J since this seems more natural. (Jf".Jf", comp, id) is astriet monoidal category 
in the sense that a, b, e are all identity transformations, a pleasant property. 

According to 2.3, a monoid of (Jf"X', comp, id) is the same thing as an 
algebraic theory (T, 1], f.1) in Jf" in monoid form (1.3.17). Since the monoids of 
a monoidal category form a category we have learned, now, that the algebraic 
theories in a category form a category. By 2.4 a theory map kT ---+ T' is a 
natural transformation .,1,: T ---+ T' such that the following two diagrams 
commute: 

TT ___ A_A __ ~) T'T' 

T --------4) T' 
.,1, 

(2.7) 

The composition of the theory map .,1,: T ---+ T' and .,1,': T' ----7 T" is just 
.,1, • .,1,': T ) T". 
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The following proposition shows how to translate the definition of"theory 
map" for theories in clone form (1.3.2). 

2.8 Proposition. Let T = (T, 1], 0, fl) and T' = (T', 1]', 0', fl') be algebraic 
theories in :It and let K2: KT ) KT' be given for each K E:It. The 
following two conditions are equivalent: 

1. 2: T ~ T' is a theory map as in 2.6, that is, 2 is a natural transfor­
mation T ~ T' subject to the diagrams 2.7. 

2. KI].K2 = KI]' for alt K E:It; also, "composition with Je" preserves 
Kleisli composition: (IX 0 ß).C2 = (IX.B2) 0' (ß.C2) for all IX: A ~ BT, ß: 
B~CT. 

Praof. 1 implies 2. Recall 1.3.14 and use 

A ___ IX __ ~) BT ___ ..!.-ß_T __ ~) CTT ____ C.!...fl __ ---*> CT 

BA CA 

B T' --ß-T-'-~> CTT' C2 T' > CT' T' --C-p,-, --7) CT' 

2 implies 1. To prove that Je: T ~ T' is naturalletf:A ~B and re­
call 1.3.10. We have fT.B2 = (id AT 0 P).B2 = AA ü' (fd.B2) = AA 0' 

(f.BI]') = A2fT' (the last step by 1.3.12). Also, Afl.A2 = (idATT 0 idAT).A2 = 

AT __ ,,-f_T_-+) BT 

A2 B2 

AT' ------')0) BT' 
fT' 

ATT A2A >A T'T' 

~ATT'~ 

AT--------)-) AT' 
AA 

(idATT.AT2) 0' (idAT.A},) = AT2 0' A2 = AT2.A},T'.Afl' = AU.Afl'. 0 
2.9 Proposition. Let T and T' be algebraic theories in :It. Then each 

theory map 2:T ~T' induces a homomorphism V:(:ltT ', Ur) ----~ 
(:ltT , UT ) defined by (X, t:XT' ) X)V = (X, XA.~':XT -----) 
X). Conversely, each such homomorphism V induces a theory map 2 defined by 
X},:XT ) XT' = 

XT Xn'T) XT'T _t_.x~) XT' 

where (XT', ~x) is defined to be (XT', Xfl')V. Moreover, the two passages are 
mutualty inverse bijections. 
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Froof. A to V is welf defined. 

XI1 xT------~f-T----~)YT 

XA XA YA 

XT' 
f T' 

XT'----"'----~) YT' 

~' 

x 

~' 

X-------~) Y 
f 

XTT _____ X_A_T __ ~) XT'T __ --"-C_T __ ~) XT 

XH XT'A 

PT' 
X T'T' ----'.,,'----~) XT' 

~' 

XT------~) XT'--------+) X 
XA ~' 

V to A is well defined. 

Xn' 
X -----'-., --~) X T' 

X17 XT'17 

XT------~) XT'T------~)XT' 
X17'T ~x 

()' 



212 Algebraic Theories in a Category 

CI. ßT Cj1 
A----~) BT---'---4-) CTT -------'------4-) CT 

CYf'TT 
j1 natural CYf'T 

CT'TT ___ C_T...!..' j1-~) CT'T 

Yf' natural 

~ 
CT'T 

CT'Yf'T l'd 
T theory 1 

BT'T ---------~) CT'T'T Cj1'T ) CT'T I (ß,CYf'T·~dT'T 

~B V preserves T -homomorphisms 

~c 
T-algebra 

~c 

~c 

BT' -ß=T='---+> CTT' CYf' TT') CT' TT' ~c T' ) CT' T' -----::C::-j1..,-' --4-) CT' 

V to A. to V, V = V. Let (X, 0 be aT-algebra and let (X, e) = (X, ~')V. 
(X, OV = (X, XYf'T.~x.O. As theT-homomorphism ~':(XT', Xj1') --~ 

Xn'T Y; XT----"'----+) XT'T ___ =."x'"--__ ~) XT' 

~' 

XT----e----+) X 

(X, 0 is preserved by V, we have the diagram above. 
A. to V to ::1:,::1: = A.. The result follows from 

XT ____ -=X:.::.,A.:..:-___ -+) XT' 

XYf'T 

X T'T ----:=-:------+) XT' T',..., --::-::--:---~) XT' 
XT'A. Xj1' 
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since (XT', X,u')V = (XT', XT'kX,u'). 0 
2.10 Theorem. Let Th(ff) be the eategory of algebraie theories T in ff 

and theory maps kT ~T' as in 2.7 and let Alg(ff) be thefull subeategory 
of Struct(ff) of all algebraie ftmetors. Then the passages of 2.9 establish a 
jull representative subeategory (2.3.2)(Th(ff))OP ) Alg(ff). 

Proof. The only details left to check are the preservation of identities 
and composition, and these are immediate: 

XJe.~ = ~ if XJe = idXT 

(XJe.xX).C = X},.(XJe'.~") 0 
2.11 Corollary. Let (d, U) and (d', U') E Struct(ff) be algebraie so that 

there exist algebraie theories T, T' in ff with (d, U) isomorphie to (ffT, UT ) 

and (d', U') isomorphie to (ffT', UT '). Then (d, U) and (d', U') are isomorphie 
if and only if T and T' are isomorphie. 0 

2.12 Ti as a theory map. If T is a theory in ff then'1 : id - T is a 
theory map '1 : (id, id, id) ) T and the corresponding homomor-
phism is just U T : .)f'T ) ff. 

2.13 Abelianization of a Free Group. Let ffT' be abelian groups and let 
ffT be groups. Then the abelianization (2.2.7) ofthe free group (XT, X,u) is 
the free abelian group (XT', X,u') and the canonical projection Je: T ----> T' 
is the theory map which corresponds to the inclusion from abelian groups 
into groups. 

2.14 Complete Atomic Boolean Algebras as Compact Spaces. Let T be 
the double power-set theory of 1.3.19 whose algebras are complete atomic 
Boolean algebras (1.5.17). Let ~ be the ultrafilter theory of 1.3.21 whose alge­
bras are the compact Hausdorff spaces (1.5.24). Then inclusion is a theory 
map ~ ~ T, inducing a homomorphism V from complete atomic Boolean 
algebras to compact Hausdorff spaces. Another description of V is as folIows: 
Let X be a complete atomic Boolean algebra with set of atoms A. Then the 
function 

X~2A 

xl ) {aEA:a ~ x} 

is an isomorphism of complete atomic Boolean algebras. Thus X is isomor­
phie to the A-fold power of two-element Boolean algebras. Since V must 
preserve products (1.28) (2A )V must be the Tychonoff product oftwo-element 
discrete spaces. 

Notes for Seetion 2 

Mac Lane has referred to "monoid" as a candidate for the fundamental 
notion of category theory [Mac Lane '71, preface]. Monoidal categories are 
a subject of much current research interest in category theory; see [Dubuc 
'70J, [Kelly, Laplaza, Lewis, and Mac Lane '72J, and the bibliographies 
there, as weil as the exercises. Theorem 2.10 is implicit in [Lawvere '63, 
section 1 of Chapter IIIJ and was proved in [Applegate '65]. 
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Exercises for Seetion 2 

1. Let H::ft x se ----+J!1 be a "prefunetor" assigning to eaeh objeet (K, L) 
an objeet(K, L)H oL/l! and to eaehmorphism(f, g):(K, L) -------+ 

(K', L') a morphism (f, g)H:(K, L)H ) (K', L')H. Show 
that H is a funetor if and only iffor every (K, L), H(K, -): se ------> 

J!t is a funetor and H( -, L)::ft ).~ is a funetor. 
2. Prove that (:ftff , eomp, id, id, id, id) is a monoidal eategory from the 

Godement rules of 2.2.31, and eonversely. 
3. Asymmetrie monoidal eategory is a monoidal eategory equipped with a 

symmetry natural equivalenee (A, B)d:A ® B ---> B ® A satisfying 

A ® (B ® C) ___ a __ ~) (A ® B) ® C ___ d __ ~) C ® (A (8) B) 

id ® d a 

A ® (C ® B) ---a--~) (A ® C) ® B --d-®-id--+> (C ® A) (8) B 

d A ® B------+)B ® A 

A®B 

d 
A®I-----~) I(8)A 

A 

Verify the following examples of symmetrie monoidal eategories and 
their monoids. 
(a) (:ft, x 1, a, b, e, d) for any category with finite produets (this is the 

cartesian monoidal structure). :ft = topological spaees produces 
topological monoids (the multiplication isjointly eontinuous). When 
:ft is the category of categories and funetors, the monoids are striet 
monoidal eategories. 

(b) Let ~ in Struct(Set) be fibre complete. Define (X, s) ® (Y, t) = 

(X x Y, s ® t) where s ® t is the co-optimal lift of the maps 
(X, s) f-----+ X x Y, x f-----+ (x, y) (y E Y), (Y, t) ------+ X x Y, 
y f-----+ (x, y) (x EX). Define I to be the empty co-optimal lift in 
~(1). The monoids are characterized by having separately admissible 
multiplieations. 

(c) Let:ft be the eategory of abelian groups, let ® be the usual tensor 
products and let I = Z. The monoids are rings with unit. 

4. Let (X, m, e) be a monoid in the monoidal category :ft. Define AT = 
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A 0 X,AI1 = c-1.(id 0 e),a 0 ß = a.(ß 0 id).(a-1).(id 0 m).Showthat 
T = (T, 11, 0) is an algebraic theory in %. %T is the category of(X, m, e)­
actions. Examine the previous exercise for well-known examples of 
actions. Show that each monoid homomorphism induces a theory map. 

5. Asymmetrie monoidal category is closed if - 0 A: % ----> % has a 
right adjoint for every object A (cf. the cartesian closed categories of 
seetion 2.2, exercise 7). The cofree object over B with respect to - 0 A 
is denoted BA, so that 

C0A ,B 

C_BA 

and, setting C = I, "elements" I ---'> BA are in bijective correspondence 
with morphisms from A to B. Using this as an aid, show that all of the 
specific examples of exercise 3 are closed, except "topological spaces." 

6. Show that the forgetful functor from the category of (%, 0, I, a, b, c)­
monoids to % is Beck. 

7. In this exercise we present an account of Lawvere's original theories as 
elevated to arbitrary categories by Linton. A Lawvere theory in % is a 
category !T with the same objects as % together with a functor R: 
%OP , !T such that R is the identity function on objects and such 
that R has a left adjoint. A morphism tjJ:(!T, R) , (!T', R') is a 
functor ljJ with RIjJ = R' as shown below: 

The category of(R, !T)-algebras is that Cf} in Struct(%) with Cf}(A) the class 
of all functors H:!T ----> Set such that 

Set 

commutes. f:(A, H) ----->, (A', H') is Cf}-admissible just in case 
- .f: %(B, A) , %(B, A') describes a natural transforma­

tion from H to H'. 
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(a) 1J T = (T, 1], 0) is an algebraic theory in clone form in :% show that 
(5, R) is a Lawvere theory in :% where 5 = (:% TtP, AR = A, 
JR = JA. [Hint: a left adjointness for R is AL = AT, (a:A _____ 
B)L = a#:AT ( BT (see 1.5.35 for the ---.. notation), Al: 
A ----, ALR = idAT:A , AT, A1]:ARL ( A = A1]: 
AT ( A; here the "1]" and "8" of 2.2.15 are being written "1" 

and "1]."J 
(b) If A:T ----- S is a theory map as in 2.7, show that a:BT --< 

A I ) a.BA:BS ( A describes a morphism between the 
associated Lawvere theories. 

(c) Show that (a) and (b) establish the category of algebraic theories (as 
in 2.10) as a fuH representative subcategory of Lawvere theories. 
[Hint: given (5, R) with associated adjointness (L, !, 1]) (using the 
same notation as in (a)) set AT = ARL, A1]:A -->ARL = A1]: 
ARL ( A, (a:A ---->BT) 0 (ß:B ---->CT) = a.r where ß#: 
BRL ) CRL = ßRL.CRIL J. 

(d) If (A, ~) is aT-algebra as in 1.4.8 show that (A, H) is an algebra 
over the associated Lawvere theory where a: B _____ C induces 
:%(B, A) ) :%(C, A) by J:B ---->A I ) a.f#: C ) A. 

(e) Using the construction of (d), show that the two sorts of algebra 
categories are isomorphie in Struct(:%). [Hint: given H, define ~ to 
be the value ofidA ofthe map :%(A, A) ) :%(AT, A) induced 
by a:A ----" AT.J 

In short, the two approaches to algebraic structure are equivalent. 
Lawvere's original definition (only slightly generalized in 1.5.35) 

is not, strictly speaking, a special case of the above. See exercise 
2.1.26. 

In general, one could replace R: :%OP ) 5 with ROP: 
:% ) 5°P-so that algebras are functors 5°P ---->Set-with­
out changing the theory, and this is often done in the literat ure. Our 
choice of notation seems most consistent with 1.5.35-1.5.40. How­
ever, Linton has pointed out to us that the opposite notation is 
essential for universal algebra relative to closed or not necessarily 
symmetrie monoidal categories. 

8. (a) [Kock '69.J Generalizing exercise 1.17d, show that for any set X, 
Set( -, X):SetOP ) Set is algebraic. IfTx = (Tx, 1]x, J1x) 
is the induced algebraic theory, observe that AT x = A (A X

). 

(b) Let T: Set ) Set be any functor and let X be any set. Show 
that the passage from the natural transformation y: T ----+ T x to 
the function 

~ = XT __ x)._-+) X(X X ) P'idx) X 

is bijective. [Hint: Y oneda lemma!J 
(c) Let T be an algebraic theory in Set. Show that the passage of (b) 

establishes a bijection between T-algebras (X, ~) and theory maps 
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Je: T -----+ T x. Interpretation: n}, interprets elements of nT as n-ary 
operations xn ~ X in the expected way. 

9. (a) [Manes '67, 1.4.2.J Let U:d -----> % have a left adjoint and let 
g; be the fuH subcategory generated by objects ofthe form KF where 
F is left adjoint to U. Let S be an algebraic theory in !f' and let 
H: % ----->!f' be any functor. Show that for any functor J: g; -----+ 

!f's with J.Us = i.U.H there exists a unique functor r:d ----->!f's 

J 

d- - - r 

U 

%--------------~)!f' 
H 

with i.r = J and r. US = U H. [Hint: if T is the algebraic theory in 
% induced by U and F, each d-object A induces, via the semantic 
comparison functor, aT-algebra structure on AU, H of whose 
corresponding contractible co equalizer diagram lifts to !f's to define 
Ar.J 

(b) Consider the category whose objects are functors U: d ~ % (for 
fixed %) with a left adjoint and whose morphisms H: (d, U) ------> 

(d', U') are functors H:d ----->d' over % (i.e., HU' = U). Show 
that the semantics comparison functor of (d, U) is a reftection of 
(d, U) in the fuIl subcategory of algebraic functors over %. 

\ 

'r 
\ 

~ 
ffs 

[Hint: let U have left adjoint Fand let rJ> be the semantics comparison 



218 Algebraic Theories in a Category 

funetor as shown above; eaeh T-algebra (A,~) induees the pair 
AFsH, ~FH:AFUFH l AFH, US of whieh extends 
via ~ to a eontraetible eoequalizer whose lift defines (A, ~)r; for 
uniqueness, use (a).] The earliest result ofthis type is [Maranda '66]. 

10. ([ Appelgate '65], [Manes '67, 1.4.5].) Let T be a theory in 2, let S be a 
theory in X, and let H: X ~ 2 be a funetor. A funetor r: X S -----> 

2 T is said to be over H if r.uT = US.H, generalizing the ease H = id. 
A theory map relative to H is a natural transformation A:HT ~ SH 
satisfying 

HT ____ A __ ~) SH HTT __ ...;..A;.....T_--*) SHT--....;:S..;...:A_~) SSH 

HT-------------)-) SH 
A 

(a) Show that the passage (A, ~:AS ~ A)r = (AH, AA.~H) estab­
lishes a bijeetion between funetors r over Hand theory maps A 
relative to H. [Hint: if (AS, Af.1s)r = (ASH, ~A:ASHT -----> 

ASH), define AA = AlJsHT.~A-] 
(b) Let H:x ~ 2 be the underlying set funetor from topologieal 

spaees. Interpret the unique eontinuous (surjeetive) map indueed by 
the identity funetion [rom diserete X to the spaee (X, ,) between their 
ß-eompaetifieations as a theory map relative to H; show that the 
eorresponding r is the identity funetor on eompaet Hausdorff spaees. 

(e) Compute the theory map relative to H in the eontext shown below: 

Rings ___ r __ -+) Abelian groups 

Monoids --------)-) Sets 
H 

[Hint: reeall from 1.32 the theory for rings over monoids.] 
(d) Let T be the algebraie theory in Set eorresponding to lattiees [i.e., 

(Q, E)-algebras with two binary eommutative assoeiative idempotent 
operations /\ and v satisfying x /\ (x V y) = x = x v (x /\ y)]. 
Let Poset be the eategory of partially-ordered sets and order-pre­
serving maps. Prove that the forgetful funetor Set T -----> Poset (via 
x ::::; y if x /\ y = x) is algebraie by using the general adjoint fune-
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tor theorem and the Beck theorem. Show that the theory map 
Je: HT l SH induced by 

id PosetS = Set T _____ ~) Set T 

Poset ---___ ---~) Set 
H 

is componentwise surjective. 
11. A topological space is a Cantor space if it is homeomorphic to a cartesian 

power of copies of the discrete two-element space. It is well known that 
every compact Hausdorff space is a continuous image of a closed subset 
of a Cantor space. Give a more conceptual proof than [Kelley '55, page 
166, exercise OJ by proving that ßX is closed in 2(2X l. 

12. ([Lawvere '63, Chapter III, Theorem 2J, [Linton '66, seetion 2].) Let 
U:d ~ Set be a tractable functor (1.5.44). For each set n, let nT be 
the set of natural transformations from un to U. Define ml:n ~ nT, 
il ) pri:Un l U. Given rx:n 1 ~ n2T, ß:n2 ~ n3 T define 
(i, rx 0 ß> = (ß/j E n2).rxi: Un3 ) U (i E n1). 

(a) Prove that T = (T, 1'/, 0) is an algebraic theory in Set. 
(b) Define <P:d----+SetT by A<P = (AU'~A) where, for wEAUT, 

W~A = (id AU, Aw). Show that <P is a well-defined functor over Set 
and that <P is an algebraic reflection in that for any H: d ~ SetS 
with H. US = U there exists unique r: SetT l SetS in Struct(Set) 
with <p.r = H. [Hint: using the notation of 1.25, I/!(A, fl: 

(nT, np,) l A<P is a (created) limit which must be pre­
served by r; now use exercise 9(a).J 

(c) Prove that every set-valued functor with a left adjoint is tractable and 
that the <P of (b) is isomorphie to the semantic comparison functor 
in this case. 

The induced T we call the algebraic completion oj U. The <P of 
(b) is, of course, called the semantic comparisonjunctor oj U. 

(d) Show that if dis skeletally small (i.e., has a small fuH representative 
subcategory) then every functor U: d ~ Set is tractable. 

(e) The category d of finite sets is skeletally small. Show that the alge­
braic completion of the inclusion functor into Set is the ultrafilter 
theory, with semantic comparison functor "finite discrete space." 
[Hint: each ultrafilter on n induces an element of nT since finite sets 
are compact spaces; conversely, given w E nT, show that 2w: 2n ~ 

2 is a Boolean homomorphism.J 
For more about algebraic completion over Set see section 6, 

exercise 8. 
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13. (Zürich school; cf. [Linton '69, page 29].) Given U:si -----+ %, let K 
be an object of %. Let (K, U) be the diagram scheme with nodes (A, f), 
f:K -------> AU, and with edges e:(A,f) ) (A',!,) all e:A -------> A' 
such that f.eU = !,. Consider the obvious diagram D:(K, U) -----> 

%, D(A,f) = AU, De = eU. Say that U is tractable iffor every K, D has 
a limit. 
(a) Show that U: si -----+ Set is tractable in the sense above if and only 

if U is tractable in the sense of 1.5.44. 
(b) Let U:si -----+ % be tractable and let ljJK;(A,f):KT -------> 

AU be the corresponding limit. Define yt, 0 according to the foHowing 
hints: 

KT ___ ljJ_K..:..;(..:..A..:..,!..:..)_~) AU 
1\ 

\ 
\ 

\ 
11 \ 

\ 
\ 

K 

'f 

MT __ ..:..ljJ_M...:,;.:.,.(A.:..;' !...:,)-~) A U 
1\ 

\ 

'\ 
'\ 
LT 

ljJ L;(A, ß.ojJ M; (A. J)) 

Verify that T = (T, yt, 0) is an algebraic theory in % and that gT and 
11 are given by 

L T ___ ljJ_L..:..;(A..:..,..:..!_) -~) AU 
1\ 

'\ 
'\ 

\ 
gT '\ 

'\ 
'\ 
KT 

ljJ K,(A, g!) 

ljJ K;(A,!) 
KT------~)AU 

1\ 
'\ 

'\ 
'\ 

KIl '\ 
'\ 

'\ 
KTT 

ljJ KT'(A 'p ) 
, , KT,(A. J) 

(c) Show that rP:si -----+ %T, ArP = (AU, ljJAU; (AU,idAU )) is an algebraic 
reflection of U. [Hint: use the construction ofpart (b) ofthe previous 
exercise.] 

14 Let 2:T -------> T' be a theory map with corresponding V:%T' ~ 
%T. Show that K2:(KT, KIl) ) (KT', KIl')V is a T-
homomorphism. 

15. (See exercise 12.) Let U: si -----+ Set be faithful and tractable such that 
U is a cogenerator in the functor category Setd . Prove that the semantic 
comparison functor of U is fuH. [Hint: let f:ArP -----+ BrP; let a, b: 
UAU ) Q be the cokernel pair ofthe inclusionj:si(A, -) -----.,. 
UAU so that j = eq(a, b); there exists pointwise mono ljJ: Q -------> Un for 
n sufficiently large; for each i in n, f commutes with the U -operations 
a.ljJi' b.ljJi: UAU ) U; evaluate at idAU to deduce that fE 
si(A, B).] 
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16. (The contravariant representation theorem [Linton '70].) Let si be locally 
small and let J in si be such that the power ;n exists for every set n. 
Then sI( -, J):sdop ) Set has 11 r---+ Jn as left adjoint, giving 
rise to the double dualization theory J. 
(a) Let T be a theory in Set such that every monomorphism in SetT is 

an equalizer. Write lAI for AUT and [A, B] for SetT(A, B). Let J be 
an injective co generator (Exercises 2.1.20 and 2.1.59) of SetT. Prove 
that the structural refiection of [ -, J]: (SetT)OP ) Set is 
obtained, via the semantic comparison functor <P:(SetT)OP -----> 

SetJ, as the full subcategory over Set of See of all A for which the 
evaluation map 

A~J(A.]> 

is injective, where J is the J-algebra (IJI, prid : JI]I") ) J) 
and < -, - ) means J-homomorphisms. For each set A, show that 
the T-homomorphic extension of 

A~J(IJ\A) 

is injective and establishes a theory isomorphism of T with J; thus 
T is a double-dualization theory. 

(b) Let Set T be Boolean rings with unit and let J = 2. Show that SetJ 

is compact Hausdorff spaces and that <P identifies (SetT)OP with the 
full subcategory of totally disconnected spaces. This captures part 
of Stone duality. 

See [Kock '69] for more on double dualization theories, [Reynolds '74] 
for an extension of the contra variant representation theorem, and 
[Negrepontis '71] for a discüssion of Gelfand duality (cf. exercise 1.16) 
and the compact-discrete Pontrjagin duality (cf. exercise 1.5.20.) 

17. Let.ff have pullbacks and let T be a theory in :ff". 
(a) Prove that iA:EA -----+ AT = eq(ATI1, AI1T) exists for all A. 
(b) Prove that AI1 = eq(A Tr1, AI1T) for all A if and only if T refiects 

isomorphisms and i AT is mono for al! A. [Hint: if AI1 = eq(A T11, 
AI1T) and fT is an isomorphism, f- 1 is induced by the equalizer 
property; converse1y, if f:A ----+ EA with f.iA = AI1, use a pullback 
of form 

A T -----=--~) EA T 
AI1 T 

to show that fT is an isomorphism.] 
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(c) Given f:A ~ B with BI1 split mono and fT an isomorphism, 
prove that f is an isomorphism. [Hint: use (b) and exercise 2.1.21.] 
Conclude that T reftects isomorphisms for every nontrivial T in Set. 

18. Let T be an arbitrary theary in Set, let S be the subsets theory and let 
P be the double power-set theory. Define Aa: A T ) AP, P f-----+ set 
of supports of P (as in 1.5.10.) 
(a) Prove that a:T ~ P is a theory map if and only if far every 

f:A ~ Band mono i:1 ~B the squares 

11] 
1 ---------+) 1T 

iT iT 

AT------~) BT 
fT B -------~) BT 

BI] 

1/1 
1TT---~--~)1T 

iTT iT 

BTT-------+)BT 
B/1 

are pullbacks. 
(b) Prove that cr:T ~ P is a theory map if and only if T preserves 

the pullback 

1 -------~) 1 

B -------~) 2 
XI 

for each 1 c Band XIT:2T --~) 2 is aT-algebra. [Hint: use 
exercise 8.] 

(c) Show that S is a subtheory of P in two ways: 

AS 
,4(prin) 

) AP AS--~)AP 

B If--------+) {S: S ::J B} B If-----~) {S:S n B =F 0} 
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[Hint: a complete atomic Boolean algebra is a complete semilattice 
in two ways.] 

(d) Say that T is variabled if ():T ---+ Pis a theory map which factors 
through prin: 

T----...:..()------+) P 
'\ 

\ 
'\ 

var\ prin 
'\ 

\ 

~ 
S 

Show that var:T ~ S is a theory map ifT is variabled. For finitary 
T, prove that T is variabled if and only if T admits an equational 
presentation such that, in each equation, the same set of variables 
appear in each term (cf. exercise 1.3.8.) 

(e) If T is variabled, show that (A, ~) is a compact T-model [exercise 
2.3.9(d)] if ~ = {(p, x):x E var(p)} for all sets A. 

19. [Bergman '75.] Let si be the category of groups but!et U:si --+ Set 
be the subfunctor of the forgetful functor defined by G U = {x E G: x2 = 

e}. An involution algebra is a tripie (X, m, e) with m:X2 --+ X, e EX 
subject to 

exm = e 
xem = x 

xxm = x 

xymym = x 

xyzmm = xzmymzm 

Prove that the algebraic completion (as in exercise 12) of U is the 
equationally-definable dass of involution algebras. 

20. [Guitart '75.] A theory with involution in :f is a pair (T,1) where T is 
an algebraic theory in :f and 1::f T --> :f T is an involution on the 
Kleisli category of T, that is, 1 is the identity on objects and 12 = id on 
morphisms. A contravariant monad in :f IS a tripie (F, i, ljJ) where 
F::f --+ :f0P, Ai:A -->AF, AljJ:AF ) AF2 are subject to 
the four equations 
(i) for all f: A ---+ B,j.Bi.BljJ = Ai.AljJ.f F2 , 

(ii) for allf:A ---+ B, AljJ.fF2 .BiF.BljJ = AljJ.fF2 , 

(iii) for all A, AFi.AFljJ.AljJF.AiF = idAF, 

(iv) for all A, AFljJ.AljJF.AiF.AljJ = AFljJ.AljJF. 
(a) Prove that the passage from (T, 1) to (F, i, ljJ) defined by KF = KT, 

Ai = AI1, fF = CI.# where CI.: ---+ BT = (f.A11)1 and AljJ = (idATI)# 
establishes a bijection between theories with involution and contra­
variant monads. [Hint: given (F, i, ljJ) set AT = AF, AI1 = Ai, CI. # = 
AljJ.Cl.F2 .BljJF.BiF:AT ) BT; for CI.:A ---> BT, 
Cl.1 = Bi.BljJ.Cl.F.] 

(b) Show that (T, 1) is a theory with involution in Set if T is the power­
set theory and 1 provides a relation with its inverse. Compute the 
corresponding contra variant monad. 
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(c) Show that (F2, i.1jI:id , F2 , FtF:F4 , F2 ) is an 
algebraic theory for each contravariant monad (F, i, 1jI). Observe 
that in (b) this constructs the double power-set theory. 

3. Abstract Birkhoff Subcategories 

We define when the full replete subcategory d of %T is an abstract 
Birkhoffsubcategory. When % = Set, d is Birkhoffifand only if dis closed 
under products, subalgebras, and homomorphic images. In general, Birkhoff 
subcategories are classified as pointwise epimorphic quotient theories 2: 
T --> T'; thus if dis Birkhoffthen d is algebraic over %. 

For the purposes ofthis section fix a category % and an algebraic theory 
T = (T, 1], 0, fl) in %. 

3.1 Abstract Birkhoff Subcategories of .xT. Let d be a full replete sub­
category of %T. d is an abstract Birkhoff subcategory of %T providing 

1. For every X in %, the T-algebra (XT, Xfl) has a reftection X2: 
(XT, Xfl) , A in d such that (X2)UT is epi in %, and 

2. d is closed under UT-split epimorphisms, that is, given A in d and 
f:A --+ (X, ~) in %T such thatfUT is a split epimorphism in % then (X, ~) 
is in d. 

3.2 Lemma. Let si be afull replete subcategary of %T. Assurne thatfor 
each X in %, (XT, Xfl) has a refiectian in d which we will (choose and) denate 
byX},:(XT, Xfl) ) (XT, ~x:Xr'T , XT). Thenthere 
exists unique (1]', 0') such that "T' = (T, 1]', 0') is an algebraic theory admitting 
2:T --+ T' as a theory map and (XT, Xfl')V = (XT, ~x)" holds, where 
V:%T' , %T corresponds to 2 as in 2.9. 

Praof· Givenß:B --+ Cr'letß#:(BT, Bfl) ---->, (Cr', ~dbethe 

BI] B2 )BT 

DT 

unique T-homomorphism with BI].ß# = ß, and let ß##:(BT, ~B) ----+ 

(CT, ~d be the unique T-homomorphism such that B2.ß## = ß#. For 
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y:C ~ DT' we clearly have ß##.y## = (ß.y##)##. For CI.:A ~ BT', define 
CI. 0 ß = CI..ß##. Then (Cl 0' ß) }' = (CI..ß##):y## = CI..(ß:y##)## = Cl 0' (ßc' I'). 
Define XYJ':X ) XT' by XYJ' = XII.X},. Then for j:A ~ B, (f.BI]') 0' 

ß = j.BYJ.B}"r # = j·ß· Also the diagram 

B ____ B~II __ --*) BT ____ B~A~ _ _4) BT' 

id id 
BYJ 

BT -----,,---_4) BT' 
BA 

shows that (BYJ.BA)## = idBT" so CI. 0' BYJ' = CI..(BYJ.BA)## = CI.. Given a: 
A ~ BT and b:B ~ CT we have 

A ___ ---.:a:.:-__ ~) BT ___ --=.B.:..:.A ___ ~) BT' 

CT---------4» CT' 
CA 

(where BA.(b.C},)## = (b.CA)# = b#.C}" as CA is a T-homomorphism). This 
shows that T' = (T', YJ', J1') is an algebraic theory and that A: T ----> T' is a 
theory map. To seethat (XT', XJ1')V = (XT', ~x), that is, that ~x = XT'A.xJ1', 
observe that ~x:(XT'T, XT'J1) ) (XT', ~x) and XT'A: 
(XT'T, XT'J1) ) (XT'T', ~XT') are T-homomorphisms 
by definition and that XJ1':(XT'T', ~XT') ) (XT', ~x) is a 

XTYJ' 

1 
XT' ------~) XT'T -------+) XT'T' 

XT'YJ XT'A 

id XJ1' 

XT' 

T-homomorphism since, by 1.3.13, XJ1' = idxT'T' 0' idxT' = (idXT't#. Now 
consult the diagram above. Finally, we check that (I]', 0') is unique with these 
properties. Clearly XYJ' = XYJ.xA is forced. By 1.3.14, we must have CI. 0' ß = 

CI..ß### where r## : (BT', BJ1') ) (eT', CJ1') is the unique 
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T -homomorphism such that Bl(ß### ß. Applying V, ß###: 
(BT', ~B) ) (eT', ~d is a T-homomorphism such that BYJ. 
B)".ß### = ß· Therefore, ß### = ß##· 0 

3.3 Theorem. Let W: d -----> x T be an abstract Birkhoff subeategory 
of X T . Let T, )":T-----+T and V:.X-T' ) X T be indueed by d as in 
3.2. Then V and Ware isomorphie, that is, there exists an isomorphism of 
eategories as shown below: 

X T ' _ d 

~TI 
In partieular, (d, U) is algebraie in Struct(X), where U = WUT. 

Froof. The passage from ~ to X A.~ is injective because X).. is an epimor­
phism in X, so that V is injective on objects. The diagram below 

X).. P 
XT >XT''') X 

fT fT' f 

YT-------~) yT'--------+) Y 
y).. e' 

shows that f:(X, 0 ) (Y, e') is a T-homomorphism if and only if 
f:(X,OV ) (X, 8')V is a T-homomorphism (X), is epi!). Therefore, 
V is a fuB subcategory. Let (X, ~) E d. There exists a unique T-homomor-

PT 
XT'T----''''-----+) XT-----, 

XT'), X).. 

PT' 
XT'T'----""----+) XT' 

XJ1' 

'---~XT'------:--~) X+-----' 
C 
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phism(':(XT', (x) ) (X, ()(fornotation, see 3.2) suchthat X),.(' = 

(. As (' is a T-homomorphism we have the perimeter of the diagram above. 
Since XT'), is epi, Xfl.(' = ('T'.('. That Xr((' = idx follows immediately 
from 

X 

XI1 

(' 

This proves that d is contained in V. Conversely, if (X, (') is in X T' then 
(': (XT', (x) ) (X, X lc.(') is a UT-split epi, which proves that V is 
contained in d. D 

The next theorem is a categorical generalization of 1.4.22. 

3.4 Birkhoff Variety Theorem. Let V:(d, U) ) (.X""T, UT ) be a 
homomorphism in Struct(Jf} Then thefollowing two statements are equivalent. 

1. "d is a jull subeategory of X T closed under the formation of produets, 
subalgebras, and quotients," that is, V is an abstract Birkhoff subeategory of 
x T as defined in 3.1. 

2. "d is afull subeategory of Jf'T obtained by imposing additional equa­
tions to the operations and equations that present T-algebras," that is, (d, U) 
is algebraie and the theory map },: T ---> T' corresponding to V is such that 
XA is epi in X for all X (where T' such that (d, U) and (XT ', UT') are isomor­
phie is unique up to isomorphism by 2.11). 

Proof. 1 implies 2. This has already been done in the proofs of 3.2 and 
3.3. 

2 implies 1. The proof that V is a full subcategory follows from the fact 
that XA is epi just as in the proof of 3.3. V is replete on general principles 
because (d, U) and (XT, UT ) are both in Struct(X). (XT', Xfl)V = (XT', (x) 
where (x = XT'A.xfl. Therefore the diagram 

XU 

1 
XTT 

XAT 
)XT'T 

XT'A 
>XT'T' 

Xp. (x Xp.' 

XT--------------.."..--~)XT' 
XA 
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proves that X),:(XT, Xfl) ) (XT', ~x) is a T-homomorphism. 
Let (Y, e') be aT-algebra and let I:(XT, Xfl) ) (Y, e')V be a 
T-homomorphism. As J = (X1JI)T'·e':(XT', Xfl') ----------+ 

(Y, e') is a T-homomorphism, J:(XT', ~x) ) (Y, e')V is a T­
homomorphism. The diagram below proves that X).J = land J is unique 
with this property because XA is epi in %. This proves that (XT', ~x; XA) 
is a reflection of (XT, X fl) in V. 

...--__ XT _______ ..:.;X:.;.A:.-______ --4) XT' 

X1JT X1JT' 

XTT ), is natural XTT' 

id IT' 

Xfl YT---":"Y':":')'--~) YT' 

I T-homomorphism (J' 

L---4XT----------------~) Y 
I 

To see that V is closed under UT-split epimorphisms let (X, 0 be a T­
algebra, let I:(X, XA.O ) (Y, e) be a T-homomorphism, and let 
d: Y -----+ X E % be such that dI = idy . It is sufficient to prove that there 
exists a T-homomorphism e':(yT', ~y) ) (Y, (J) such that 

YT __ --=-Y:.::..A --4) YT' 
I 

/ 
y\l. 

I 

le' 
I 

I' 

since the same diagrams used in the proof of 3.3 (for 0 prove that (Y, (J') must 
be aT-algebra. As is seen from the diagram below, the desired e' is dT'.~'.f. 
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.--__ YT ___ -'Y;....;.A."--__ -+) YT' 

dT' 

dT XT' 

id 

fT f 

~-~YT------8------~)Y 0 

The next result follows immediately from 3.2, 3.3, and 3.4. 

3.5 CoroUary. Let.91 and [14 be two abstract Birkhoff subcategories of 
:ffT and assume thatfor all X in:ff there exists (XT', ~x) in.91 n [14 and a T­
homomorphism XA.:(XT, XJl) I (XT', ~x) which is simulta­
neously a reflection of (XT, XJl) in .91 and in [14. Then.91 = [14. 0 

We now explicate the situation in the category of sets. 

3.6 Theorem. Let T be an algebraic theory in Set and let.91 be afull sub­
category ofSetT with inclusion functor V:.9I ----+ SetT. Then the following 
conditions are equivalent: 

1. V is closed under the formation of products, subalgebras, and quotient 
algebras in the sense of 104.22. 

2. V is an abstract Birkhoff subcategory as in 3.1. 
Proof. 1 implies 2. .91 has and V preserves small limits. If f: 

(X, ~) I (Y, 8) is a T-homomorphism with (Y, 8) in .91 then the T­
subalgebra Xf of (Y, 8) (1.4.32) is again in .91 and there is a commutative 
diagram 

~(Xf,e,) 

(X~ 
j-~(Y,8) 
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As the cardinal of Xj is at most as large as the cardinal of X, it follows from 
the general adjoint functor theorem of 2.2.24 that every T-algebra has a re­
flection in $. Moreover, all such reflections are surjective. To prove it, let 
r:x --> Adenote the reflection of the T-algebra X in si. Let (p, i) be the 
image factorization of r. Since X r is in $ there exists unique p: A ----* X r 

A 
I 
I 

r I 
IP 
I 

P ..v 
X >xr 

r 

A 

with r.p = p. As r.p.i = p.i = r, P.i = idA and i is surjective. Therefore, r 
is surjective. It is clear that V is closed under UT-split epimorphisms since, 
with:ff = Set, this is the same as "$ is closed under quotients." 

2 implies 1. Define f!4 to be the full subcategory of all T -algebras which 
are a quotient of a subalgebra of an element of $. Clearly, f!4 is closed und er 
quotients or, equivalently, f!4 is closed und er UT-split epimorphisms. Now 
let r:(XT, Xf.1) ----;-*A be a reflection of (XT, Xf.1) in $ with r 
surjective. Let Q E f!4 so that there exists A 1 in $, a subalgebra S of A 1 with 
inclusion i:S-----+A 1 and a surjective T-homomorphism q:S-->Q. Let 
j:(XT, Xf.1) ) Q be an arbitrary T-homomorphism. Using the 

r 
(XT, Xf.1) --------~) A 

'- / \ 
" / \ " / 

h2 / \ I 
/ \ 11 

Q 

\ 

"'" ----------------~)A1 
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axiom of choice there exists a function g:X --S such that g.q = X1J.f. 
Therefore, g#.q = f. There exists a unique T-homomorphism hl:A ----- Al 
with T.h i = g#.i. As T is surjective, Im(h 1) = Im(T.hd = Im(g#.i) and there 
exists unique T-homomorphism h2 :A -----S with h2.i = h1• As i is mono, 
T.h 2 = g#. We have T.(h 2 .q) = g#.q = fand h2.q is unique with this property 
because T is epi. By 3.5, d = r!ß and d is closed under subalgebras and 
quotients. Since V creates limits (1.28) V is closed under products. 0 

3.7 Abelianization of a Group. Abelian groups is a Birkhoff subcategory 
of groups. This is clear both from 1.4.22 and from 2.13 via 3.4. 

3.8 Simple Theories. Quotient groups of a group are the same thing as 
normal subgroups; quotient rings of a ring are the same thing as ideals. 
Theorem 3.4 asserts that (componentwise epimorphic) quotient theories of a 
theory may be identified with abstract Birkhoff subcategories. Let T be an 
algebraic theory in Set. SetT and {1} are always Birkhoff subcategories of 
Set T. If 0 is aT-algebra, then {0, 1} is also a Birkhoff subcategory. Any other 
Birkhoff subcategory of SetT is called proper. T is a simple theory if See 
possesses no proper Birkhoff subcategories. For example, let T be the double 
power-set theory of 1.3.19 whose algebras are complete atomic Boolean 
algebras (1.5.17). Then T is simple. For let d be a Birkhoff subcategory con­
taining an algebra A which has at least two elements. Then the two-element 
Boolean algebra 2 is a sub algebra of A, so belongs to d. Let (X, e) be an 
arbitrary T -algebra. Then the cartesian power 2(2 X

) is isomorphic to (XT, X /1), 
so (X, e) belongs to d. 

Notes for Section 3 
Some form of 3.4 was known to the Zürich school (see [Manes '67, 

section 1.6]). 3.1-3.4 we believe to be new. 

Exercises for Section 3 

1. Show that the ultrafilter theory and the power-set theory are simple. 
2. Let T be a bounded theory in Set of rank IY. and let ß = IY. (if IY. is infinite), 

ß = 21Y. (if IY. is finite). 
(a) Show that every T-algebra is a quotient of a subalgebra of a product 

of subalgebras of (ßT, ß/1) so that "every bounded theory is singly 
genera ted as a Birkhoff subcategory of itself." [Hint: this is much like 
1.4.23; if p # q in XT observe that p and q are in AT where A c X 
has cardinal at most IY..] 

(b) Show that SetT has at most 2ßTx ßT distinct Birkhoff subcategories. 
[Hint: if A:T ~ S is a pointwise onto theory map, (ßS, ßfls) gen­
erates SetS as in (a).] 

3. Let Q have a single unary operation and let T be the corresponding alge­
braic theory in Set. Show that T admits but countably many Birkhoff 
subcategories. Give equational presentations. [Hint: quotient theories 
correspond to monoid quotients of the natural numbers.] 

4. Let T be an algebraic theory in Set. A congruence R on aT-algebra 
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(X, ~) isjidly invariant ifevery T-endomorphismJ:(X,~) ) (X,~) 
is such that I x I maps R into R. 
(a) If A:T ------+ S is a theory map and if X is a set, show that the kernel 

pair of X A is a fully invariant congruence on (XT, X fl). 
(b) For any set X, show that the passage from R to the dass f?ß of aB 

T-algebras with the property that each T-homomorphism g from 
(XT, X fl) is such that R is contained in the kernel pair of gis a well­
defined function from fully invariant congruences on (XT, Xfl) to 
Birkhoff subcategories of SetT. 

(c) Starting with R, passing to f?ß as in (b) and then to R as in (a), show that 
R = R. [Hint: R c R is trivial; conversely, let A correspond to f?ß 
and show that the canonical projection p:(XT, Xfl) ------7 

(XTjR, 0) factors through XA by choosing, for each I:X -7 Q, a 
function g: X ------+ XT such that g.p = land applying fuH invariance 
to g#.] 

(d) Starting with f?ß, passing to R as in (a) and then to ij as in (b) show 
that f?ß c ij. 

(e) Assurne that T is bounded of rank IX and that X is the disjoint union 
of two copies of IX. Show that (a) and (b) establish a bijective corre­
spondence between fuHy invariant congruences on (XT, Xfl) and 
Birkhoff subcategories of SetT. [Hint: in the context of (d) we must 
show that ij c f?ß; for (Y, 0) in jj it suffices to show, given p, q in YT 
with <p, YA) = <q, YA), that pO = qO; there exists a function I: 
X ------+ Y and a subset i:A -+X such that i.f is injective and with 
both p and q in the image of iT.fT; now consult the diagram 

A T ___ .:...;A.:...;A __ --..:,.) A T' 

iT iT' 

R tXT 
XA 

>XT' 

IT IT' 

YT 
YA 

)YT' 
/ 

/ 
/ 

0 / 
/ 

/ 

Y\!. 
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and use the fact that iT'.fT' is injective.] This generalizes a standard 
theorem (see e.g. [Cohn '65, IV.1.2]). 

5. (a) ([Scott '56].) Let T be any algebraic theory in Set. Show that T has 
at most 22T b< 2T simple Birkhoff subcategories (and hence only finitely 
many if 2T is finite). 

(b) Show that every nontrivial finitary T in Set possesses a simple 
Birkhoff subcategory. [Hint: construct a maximal proper fuHy in­
variant eongruenee using Zorn's lemma; beeause operations are 
finitary, each nested union of subalgebras is a subalgebra.] 

(c) (Open question.) Does there exist an algebraic theory T in Set pos­
sessing no simple Birkhoff subeategories? Any non trivial T eorre­
sponding to a bounded equational presentation will contain simple 
Birkhoff subcategories because, by imposing equations, there is a 
non trivial finitary Birkhoff subeategory. 

6. (a) In Set, show that A:T ---> S is an epimorphism in the eategory of 
theories and theory maps if and only if the corresponding V: 
SetS ) SetT is injeetive on objeets. [Hint: use exercise 8 of 
section 2.] 

(b) Show that the A corresponding to V:monoids ) semigroups 
is an epimorphism in the category of theories in Set but that each 
XA is injective and not onto. Observe that V is not fuH. 

(c) Show that V:groups ) monoids over Set is a fuH non-
Birkhoff subcategory such that Xk(XT, Xf.1T) ------> 

(XS, Xf.1s)V is an epimorphism in the category ofmonoids. 
(d) (Open questions.) Is there an interesting example of an epimorphism 

of theories whose V is not injective on objects? How does one char­
acterize those A whose V is a full subcategory? A sufficient condition 
for V to be fuH is that X Ais an epimorphism in x T • IsbeH has proved 
a "Beth definability theorem" for fuH V over Set; see [Isbell '73]. 

7. Let T be an algebraic theory in Set. The T-algebra (X, ~) is simple if X 
has at least two elements and if (X, ~) has no quotients other than itself 
and 1. Show that if T is finitary and nontrivial then there exists a simple 
T -algebra. [Hint: ehoose any T -algebra with at least two elements and 
use Zorn's lemma to construct a maximal proper congruence.] This 
result does not generalize to infinitary theories (see [Nelson '74].) 

8. For any set X, define CX :X4 ) X by 

(a, b, x, y)Cx = {; 
if a = b 
if a =f. b 

Show that the simple comparison algebras [see the previous exercise 
and exercise 1.5.21(b)] are precisely those isomorphie to an (X, Cx). 
[Hint: if R is a eongruence on (X, Cx) and if(a, b) E R then ((a, b, x, y)Cx, 
(a, a, x, y)Cx) E R; if(X, C) is simple and a, b are such that (a, b, x, y)C =f. 
(a, b, x, y)C x' consider the congruenee {(x, y): C(a, b, x, t) = C(a, b, y, t) 
for all t}.] 
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4. Regular Categories 

In 2.1.48 we defined two types of image factorization for morphisms in a 
category. In a given category, there may be a multiplicity of other "~nice" ways 
to construct epi-mono factorizations of morphisms. In this section we axi­
omatize rather than specify such image factorization systems. A regular cate­
gory will be defined to be a category together with an image factorization 
system satisfying certain completeness and smallness conditions. Regular 
categories provide a proper setting in which to characterize abstract Birkhoff 
subcategories as subcategories closed under products, "subalgebras," and 
"quotient algebras." 

4.1 Image Factorization Systems. An image factorization system in a 
category:f{' is a pair (E, M) where E and Mare subclasses of the class of mor­
phisms of:f{' satisfying the following four axioms: 

(4.2) E and Mare subcategories of :f{'. 
(4.3) Every element of Eis an epimorphism and every element of M is 

a monomorphism. 
(4.4) Every isomorphism is both in E and in M. 
(4.5) Every f:A -------> Bin:f{' has a unique E-M factorization. More pre­

cisely, there exists (e, m) with e E E and m E M such that f = e.m (so that the 
codomain of e is the domain of m-we denote it as Im(f» and whenever 

(e', m') satisfies e' E E, m' E M, f = e'm' there exists a (necessarily unique by 
4.3) isomorphism ljJ with e.ljJ = e' and ljJ.m' = m. 

4.6 Duality Principle. If (E, M) is an image factorization system in :f{' 

then (M, E) is an image factorization system in :f{'Üp. D 
4.7 Coequalizer-Mono and Epi-Equalizer Factorizations. Assurne that 

$0 has coequalizer-mono factorizations. Then (E, M) is an image factorization 
system if E = all coequalizers and M = all monomorphismso This follows 
at once from 2.1.57 (1), 2.1.44, 2.1.36, and 2.1.49. Dually, if:f{' has epi-equalizer 
factorizations the E = epimorphisms and M = equalizers forms an image 
factorization system in :f{'. 

4.8 Hausdorff Spaces. Let .% be the category of Hausdorff topological 
spaces and continuous maps. Then :f{' has three reasonable image factoriza­
tion systems. $' has epi-equalizer factorizations; he re E = all maps with 
dense image and M = all homeomorphisms onto closed subspaces. There is 
no problem in verifying the image factorization axioms; hints to see that 
these are epi-equalizer factorizations can be found in 2.1.38 . .% has co­
equalizer-mono factorizations and they are constructed at the level of all 
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topological spaces. To see this, let f:A --+ B E :f{" and construct the co­
equalizer-mono factorization off in all topological spaces as in the diagram 
of 2.1.54; here, E is Hausdorff because E is a subspace ofAx A and Cis 
Hausdorff because C admits a continuous injection into B. Thus E = all 
surjections which induce the quotient topology and M = all injections. 
Finally, E = all continuous surjections and M = all homeomorphisms onto 
a subspace is a third image factorization system, as is easy to check. 

We now derive some formal consequences of the image factorization 
axioms. For the next six propositions we fix a category :f{" provided with a 
specific image factorization system (E, M). 

4.9 Proposition. If f:A --+ B is both in E and in M then f is an 
isomorphism. 

Proof. This is a formal consequence of 4.5. Use the same argument as 
in 2.1.50. 0 

4.10 Diagonal FiII-In Proposition. Given the commutative square 

A e )B 
/ 

/ 
/ 

/ 

f 
h/ 
/ 9 

/ 
/ 

/ 
/ 

Je. 
C m )D 

with e E E and m E M there exists unique h with e.h = fand h.m = g. 

Proof. The uniqueness assertion is clear since eis epi (4.3) or since m is 
mono and, in fact, either triangle implies the other. To establish existence 
let (ei' mi) be the E-M factorization of 9 and let (e2' m2) be the E-M factor­
ization of f as shown below. Then (e2' m2m) and (ee i , mi) are both E-M 

A ____ e"--__ ___+_) B 

Im(f)~ - - -Im(g) 

C ---------+) D m 
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factorizations of fm = eg giving rise to I/J as shown by 4.5. Now define 
h:B ~ C = e1·ljJ·m Z• 0 

4.11 Proposition (E Determines M). Let t: C ~ D have the property 
that for every commutative square of form 

A 
e )B 

/ 
/ 

,,-
,,-

f 
h/ 

/ g 
,,-

/ 
,,-

,,-
k. 

C >D 

with e E E there exists h:B -----7 C with e.h = f. Then tE M. 

Proo.f. Let (e, m) be the E-M factorization of t. Then there exists h: 

C 
e 

) Im(t) 
/ 

/ 
,,-

,,-

idc 
h/ 

/ m 
/ 

,,-
,,-

,,-
k. 

C )D 

Im(t) ) C such that e.h = idc. As e is epi, h.t = m. Since m is mono 
and h.e.m = h.t = m, h.e = id1ffi(tj' Therefore h is an isomorphism. Using 4.4 
and 4.2 we have t = h-1mE M. 0 

Propositions 4.10 and 4.11 show that M is determined by E in a straight­
forward way. This is useful in a context where there is a natural candidate for 
E since there is only one M to try! DuaUy, E is determined by M and similar 
comments apply. 

4.12 Stability Proposition. Ifmi: Ci -----> Di is afamily in M and if [1Ci 
and [1Di exist in :ft then [1mi: [1Ci [1Di (defined by ([1mJ,pj = 

Pi-mj) is in M. Given a pul/back square 

C ____ :...t ---~) D 

C1----m-----+) D 1 

with m E M then also t E M. 
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Proof. We use 4.11 to prove both statements. Consider a commutative 
square f.ITmi = e.g with e E E as shown below. By 4.10, there exists hj: 

A 
e )B 

,;' 
// 

,;' / 
,;' / h,;' 

f ,;' / g 
,;' / 

,;' 
/ ,;' 

,;' 

ITm/ .k 
ITCi 

/ 
) ITDi 

/ 
/ 

Pj 
/ hj 

Pj / 
/ 

/ 
~ 

Cj mj )Dj 

B ---+ Cj with e.hj = f,pj for allj. Let h be the unique morphism such that 
h,pj = hj. Then e.h.pj = f,pj for allj, so e.h = f. Tuming to the second state­
ment, consider a commutative square f.t = e.g with e E E. 

idB 
B--------~~------, 

\\ 

\ \ 
\ \ 
\ \ 
\ \h 
\ \ 
\ \ 
\ \ 

h1 \ \ 

\ ~ 

A -----'----~ 

f g 

\ C -----'----~) D 

\ 

\ 
\ f1 

\ 
~ 
C1--------m--------~)D1 
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By 4.10 there exists hl:B ~ Cl with e.l1 l = f.fl and hl.m = g.gl. By the 
pullback property, there exists unique h:B --> C such that h.f1 = 11 1 and 
h.t = g. We have e.h.t = e.g = f.t and e.h.f1 = e.h l = f.fl. Therefore (1.20) 
e.h = f. D 

The next proposition generalizes 2.1.57 (2). 

4.13 Proposition. Let f:A --> Band g:B --> C in %. Then if f.g E 

M, fE M. 1f f.g E Ethen g E E. 

Proof. By duality, it suffices to prove the second statement. Let (e, m) 
be an E-M factorization of g and let (eI' md be an E-M factorization of f.e. 
By 4.10 there exists h such that (h.md.m = idc as shown below. 

A 
f·g 

)C 
/ 

/ 
/ 

h/ 
/ 

e l / idc 
/ 

/ 
/ 

/ 
Je. 

Im(f.e) -m;+ Im(g) m )C 

Therefore m is mono and split epi, so is an isomorphism, and g = e.m is in 
E. D 

4.14 Proposition. Every split mono is in M. Every split epi is in E. 

Proof· We need only prove the first statement. We use 4.1l. Let 

A e )B 
/ 

/ 
/ 

/ 

f 
g.d/ 

/ g 
/ 

/ 
/ 

/ 
Je. 

C )D 

t: C ----'> D be split mono so that there exists d: D --> C with t.d = idc. Let 
e.g = f.t be a commutative square with e E E. Then e.(g.d) = f·t.d = f· D 

4.15 Regular Categories. A regular category is a triple (%, E, M) where 
% is a locally sm all category with smalllimits, (E, M) is an image factorization 
system in % and % is E co-well-powered (cf. 2.2.29 (2)) as is explained imme­
diately below. 

If Ais an object in % and e:A --> Q, e':A --> Q' E E, define e ~ e' if 
there exists f, g with e.f = e' and e'.g = e. As e and e' are epi by 4.3, fand g 
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~Q 
A~, fg 

~QI 
are mutually inverse isomorphisms. Hence it is natural to call a ~-equiv­
alence dass [e ] of E-morphisms with domain A an E-quotient object of A. 
Compare with the dual of 2.1.65. :It is E co-well-powered providing the dass 
E(A) of E-quotient objects of A is a small set for every object A in :It. 

The following proposition is easily proved by the reader. 

4.16 Proposition. Let (:It, E, M) be a regular category and let (d, U) E 

Struct(:It) be jibre-complete. Dejine 

Ei = {e E d:e is co-optimal and eU E E} 

Mi = {mEd:mUEM} 
E2 = {eEd:eUEE} 
M2 = {m E d:m is optimal and mU E M} 

Then (d, E b Mi) and (d, E2, M 2 ) are regular categories. 0 
4.17 Proposition. Let (:It, E, M) be a regular category and let T = 

(T, 1], 0, Ji) be an algebraic theory in:lt such that eT E E whenever e E E. Dejine 

e = {e E :ltT:eUT E E} 
MT = {m E :ltT:mUT E M} 

Then (:ltT , ET, MT) is a regular category. 

Proof. All is obvious except 4.5. To this end, let f: (X, ~) ) (Y, 8) 
be a T-homomorphism and let (e, m) be the E-M factorization off:X ~ Y 
in:lt. Let J denote Im(f). By diagonal fill-in, there exists unique 80 :JT ---+ 

J such that eT.80 = ~.e and 80.m = mT.8. It is crucial, however, that we 
know eT is in E. Since m is mono (4.3), (1,80 ) is aT-algebra (use the reasoning 
of 1.4.28). The remaining details are dear. 0 
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The previous proposition is lirnited by the rather unnatural requirement 
that T preserve E. But this is no problem if % = Set (1.4.29) and we have at 
once the 

4.18 Corollary. Let T be an algebraic theory in Set. Let E be the class of 
surjective T -homomorphisms and let M be the class of injective T -homomor­
phisms. Then (SetT, E, M) is a regular category. D 

Using 1.13 and 2.1.46 it is not hard to show that, in the context of the 
previous proposition, E is the dass of coequalizers in See and M is the dass 
of monomorphisms in See. 

4.19 Hausdortf Spaces. All three image factorization systems on % = 
Hausdorff spaces as in 4.8 render % a regular category. The following hint 
is useful to prove E co-well-powered for E = maps with dense image: if X 
is Hausdorff and A is a dense subset of X then each element of X is the limit 
of an ultrafilter on A and such ultrafilters converge uniquely; therefore the 
cardinality of X is at most the cardinality of the set of all ultrafilters on A. 

4.20 Quasivarieties. Let (%, E, M) be a regular category. A quasivariety 
in (%, E, M) is a full replete subcategory :16 of % such that every object A of 
% admits a refiection e:A - Bin:16 such that e E E. 

The following theorem serves to motivate the definition of a regular 
category. 

4.21 Quasivariety Theorem. Let (%, E, M) be a regular category and let 
:16 be afull replete subcategory of %. Then:16 is a quasivariety in (%, E, M) if 
and only if :16 is closed under limits and closed under M in the sense that if 
m:A -B E M and B E f:J then A E:16. 

Proof. First assume that :16 is a quasivariety. :16 is dosed under limits by 
1.34. Let m:A - BE M with B E:16. Let e:A - B' be the refiection of A 

A _____ e ____ ~) B' 

, 
, 
'f , 

/ 

in:16 so that there exists (unique) f:B' ----+ B with e.f = m. By 4.13 and 4.9, 
eis an isomorphism. As:16 is replete, A is in:16. 

Conversely, let :16 be dosed under limits and closed under M. To prove 
that :16 is refiective we make use of the general adjoint functor theorem 
2.2.24. The inclusion functor U::16 ---+ % preserves products and equal­
izers by hypothesis, and we have only to check the solution set condition. 
Let f:A - B E % with BE:16. Let (e, m) be the E-M factorization of f. 
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~Im(f) 

A m 

~B 
Then Im(!) E fIJ since m E M and Im(f) can be made to range over a small 
set of objects since e E E. 

This completes the argument that each A in ff has a reflection r: A ~ B 
in fIJ. We must show that r is in E. Let (e, m) be the E-M factorization of r. 
As we know Im(r) E fIJ there exists unique f with r.f = e. As r(f.m) = r,f.m = 

B 

f 

A ____ ~e~_-+) Im(r) 

m 

B 

idB and f is split mono and epi (f is epi because eis) so f is an isomorphism 
and r = e.f-l is in E. 0 

It is often true that if (E, M) is an image factorization system in ff then 
every equalizer is in M. For example, this occurs for all three image factoriza­
tions systems of 4.8. This allows the simplification expressed in the following 
corollary which recaptures the most prevalent definition of quasivariety in 
the literature, namely a dass dosed under products and subobjects. 

4.22 Corollary. Let (ff, E, M) be a regular category such that every 
equalizer is in M. Then ajitll subcategory fIJ of ff is a quasivariety if and only if 
fIJ is closed under products and closed under M. 

Proof. This follows at once from 2.1.22. 0 
4.23 Theorem. Let (ff, E, M) be a regular category and let T be an alge­

braic theory in ff such that eT E E whenever e E E. A full replete subcategory 
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~ of X T is an E-BirkhoJf subeategory of x T if ,rJB is an abstract Birkhoff sub­
category of x T (3.1) such that the reflection X},:(XT, Xf.1) ----~ 
(XT, ~x) of each free T-algebra is such that X A:XT , XT is (not only 
an epimorphism, but) in E. The following two statements are true: 

1. ~ is an E-BirkhoJf subeategory of x T if ami only if :]I is closed under 
limits, closed under M (i.e., closed under MT in the sense of 4.17), and closed 
tinder UT-split epimorphisms. 

2. 1f every equalizer is in M then ~ is an E-BirkhoJf subeategory of X T 

if and only if ~ is closed under produets, closed under M, and closed under 
UT-split epimorphisms. 

Proof. Let:]l be an E-Birkhoff subcategory. Then ~ is closed under 
UT-split epimorphisms by definition. In the context of the diagram 

U is algebraic by 3.3 and, by 1.28 (2), ~ is closed under limits. To prove that 
~is closed under M, let m:(X,~) , (B, ()) be a T-homomorphism with 
(B, ()) in :]I and mE M. In the context of the regular category (x, ET, MT) of 
4.17 there exists a diagonal fill-in h, as shown in the diagram below, where f 
is induced by the reflectiün property and we are using the hypothesis that 
XA:XT , XT E E. Sincehisa UT-splitepimorphism(X/1.xA-h = idx) 

(XT, Xf.1) 
X}, 

) (XT, ~x) 
/ 

,/ 
,/ 

,/ 

~ IJ-. ,/ f 
,/ 

,/ 

,/ 

,/ 
k 

(X, ~) m ) (B, ()) 

and (XT, ~x) is in :]I, (X, ~) is in ~ as desired. The remaining details follow at 
on ce from 4.21 and 4.22. D 

It is a consequence of 4.23 that E-Birkhoff subcategories are quasivarieties 
and that all T-algebras, not just the free ones, have E-reflections in the sub­
category. Theorem 4.23 also provides an alternate proof of 3.6. 

4.24 Noniteration Lemma. Let (X, E, M) be a regular eategory in which 
every equalizer is in M. Define operators onfull replete subeategories d of X 
by P(cW') = the class of all objeets isomorphie to a produet of elements of d, 
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M(d) = the class of all objects admitting an M-morphism into some element 
of d, and S(d) = the class of all objects admitting a split epimorphism from 
some element of d. Then MP(d) is the quasivariety generated by d (i.e., s# c 
MP(d), MP(d) is a quasivariety, and i/d c :J& and f!J is a quasivariety then 
MP(d) c f!J). Similarly, SMP(d) is the smallest quasivariety :J& containing d 
and closed under S in the sense that S(:J&) c f!J. 

Proof. Clearly P, M, and S are all operators ° which are closure oper­
ators, that is, which satisfy d c O(d),O(d) c 0(f!J) whenever d c :J& and 
OO(d) c O(d). For any such closure operator, O(d) is the smallest O-closed 
f!J containing d (where, of course,:J& is O-closed just in case O(:J&) c f!J) since 
d c O(d), OO(d) c O(d) and if d c f!J with 0(f!J) c :J& then O(d) c 

O(:J&) c :J&. For another general observation, if 0 1 and Oz are closure oper­
ators and ifOz0 1 is again a closure operator (note that d c OzOl(d) and 
OzOl(d) c OZOl(:J&) if d c f!J are always true) then OzOl(d) is the smallest 
:J& containing d and closed under 0 1 and Oz. To see this, observe that d c 

0201(d) c 010Z01(d) c OZ010201(d) c OzOl(d), and if d c f!J with 
01(:J&) c :J&andOz(:J&) c f!JthenOz0 1(sl) c OZOl(f!J) c Oz(f!J) c f!J. 

These generalities aside, let us establish the first statement of the 
lemma. It follows immediately from 4.12 that PM(d) c MP(d). Therefore 
MPMP(d) c MMPP(d) c MP(d) and MP is a closure operator. Similarly, 
we prove the second statement ofthe lemma by proving that SeM P) is a closure 
operator. The diagrams below make it clear that PS(d) c SP(d). Now 

consider a pullback square as shown below with m:B ~ Q in M and 
s:A ~ Q a split epimorphism. It follows from 4.12 that m':P ---4 Ais in 
M whereas if d.s = idQ then, applying the pullback property to idB and 
m.d:B ) A, we see that s' is a split epimorphism. Therefore MS(d) c 

m' 
P --------+) A 

s' s 

B ---------7) Q 
In 
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SM(d}. We have SMPSMP(~#) c SMSPMP(d) c SSMPMP(d) c SMP(d). 
We use 4.22 to prove that MP(d) and SMP(d) are quasivarieties. 0 

A trivial modification of the proofs of 4.24 and 4.23 (2) produces the 

4.25 Theorem. Let (X, E, M) be a regular category in which every equal­
izer is in M emd let T be an algebraic theory in X such that eT is in E whenever 
eis in E. Let (XT, ET, MT) be the regular category of4.17, and let:!Jj be afull 
replete subcategory of X T. Then STMTp (d) is the E-Birkhoff subcategory 
generated by d, where ST(d) is the class of all T-algebras admitting a UT_ 
split epimorphism fi'om an algebra in d. 0 

In light of the previous result, we suggest that the reader look anew at 
the proof of 1.4.22 where (X, b) was shown to be a quotient of a subalgebra 
of a product of elements of d. 

4.26 Hausdorff Transformation Groups. Let X be the category oftopo­
logical spaces and continuous maps. Let E be the class-of continuous sur­
jections (= epimorphisms) and let M be the class of optimal injections 
(= equalizers). Then (.x, E, M) is a regular category in which every equalizer 
is in M. Let G be a topological group and let T be the algebraic theory of 1.3.7 
whose algebras (1.4.16) are topological transformation groups. If f: X ----> Y 
is a continuous surjection then f x id:X x G ---+ Y x G is again a con­
tinuous surjection. Therefore the context of 4.23 (2) and 4.25 is available. Let 
!!JJ be the Hausdorff transformation groups. :!Jj is closed under products (a 
product ofHausdorff spaces is Hausdorft). It is also clear that if Y is Hausdorff 
and if X admits a continuous injection into Y then X is also Hausdorff. This 
implies that !!JJ is closed both under MT and ST. Therefore Hausdorff trans­
formation groups is a Birkhoff subcategory of X T and, in particular, Haus­
dorff transformation groups is algebraic over topological spaces. The specific 
structure of the algebraic theory in X that does the job is by no means clear, 
but we know that it exists. 

Notes for Section 4 
The concept of "image factorization system" has been studied by many 

and dates back at least as far as [Mac Lane '48]. The simplicity and elegance 
of the development of these axioms makes it surprising that they do not 
appear in most ofthe expository literature; indeed, the only books mentioned 
in the "reader's guide" following section 2.1 which mention image factoriza­
tion systems are [Arbib and Manes '74J and [Herrlich and Strecker '74]. Our 
treatment was infiuenced by [Barr '71]. 

In proving a special ca se of the quasivariety theorem ([Schmidt '66, 
Theorem 2J), Schmidt states [page 74J that a categorical generalization 
" ... ought to be contained in any future text book or monograph on General 
Algebra." We have complied. 

Exercises for Section 4 
1. (E, M) is a factorization system in X if 4.2, 4.4, and 4.5 are satisfied. 

(a) Prove that every factorization system satisfies 4.10. [Hint: to prove 
that h is unique, consider its E-M factorization.J 
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(b) Prove that 4. ll-modified so that the condition on h reads "e.h = f 
and h.t = m-holds for any factorization system. [Hint: to prove 
h.e = id1m(I)' use the uniqueness of (e, m).] 

(c) Show that 4.12 and 4.14 hold for any factorization system. 
2. Let yt be the category ofmetric spaces with base point as in 2.1.12. Verify 

that (yt, E, M) is a regular category with respect to the following three 
choices of (E, M): 
(a) E = coequalizers, M = injective maps; 
(b) E = surjective maps, M = isometries onto a subspace; 
(c) E = maps with dense image, M = isometries onto a c10sed subspace. 
(d) Show that the forgetful functor (not the unit disc functor!) from the 

category of normed linear spaces and norm-decreasing linear map­
pings to yt is algebraic. [Hint: special adjoint functor theorem.] 

(e) With E as in (c) and T as in (d), show that "Banach spaces" is an E­
Birkhoff subcategory of normed linear spaces. [Hint: use the Hahn­
Banach theorem to prove that T preserves E.] 

3. Let (E, M) be an image factorization system in yt. 
(a) If F, G: d -----'> yt are functors and a: F ----+ G is a natural trans­

formation, let 

AF~AI~AG 
be an E-M factorization of Aa for all A. Show that I is a functor in a 
unique way so as to ren der e: F ----+ land m: I ----+ G natural trans­
formations. Use this construction to show that (E, M) is an image 
factorization system for the functor category ytsJ where E is the c1ass 
of alla with each Aa in E, and M is alla with Aa in M. 

(b) If kT ----+ S is a map oftheories in yt and if 

KT~KI~KS 
is an E-M factorization of KA, show that I has unique theory structure 
such that e:T ----+ land m:I --- S are theory maps. 

(c) When (yt, E, M) is regular, show that-in the context of (b}--the 
E-Birkhoff subcategory corresponding to e:T ----+ I is the smallest 
E-Birkhoff subcategory of ytT containing all T-algebras of form 
(X, ~)V, where V:yts ) ytT corresponds to A. 

(d) Let T be a theory in Set and let (X, ~) be aT-algebra with correspond­
ing theory map A: T -- T x as in exercise 8 of section 2. Prove that 
the image e:T ----+ I as in (b) is the smallest Birkhoff subcategory of 
SetT containing (X, ~). Conc1ude that the free I-algebra on n gener­
ators is the T-subalgebra of (X, ~)(X') generated by the n projection 
functions. 

4. Let (yt, E, M) be the regular category of topological linear spaces and 
continuous linear maps, where M is the subcategory ofhomeomorphisms 
into. Show that the quasivariety generated by the scalar field is locally 
convex spaces. 

5. (a) Let (yt, E, M) be a regular category and let J be an object in yt. Show 
that the quasivariety MP(J) generated by J consists of all objects K 
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whose evaluation map (2.1.60) 

K----..!!---? 

is in M. [Hint: use 4.13.J In particular, J is a cogenerator in the quasi­
variety it generates. 

(b) In contradistinction to exercise 2a of section 3, show that if there is 
at least one morphism between every pair of % -objects and if % has 
no cogenerator (e.g. the category of groups, 2.1.64) then no small set 
of objects generates % as a quasivariety. 

6. Let T be an algebraic theory in an arbitrary category .ff. A T-equation 
is an arbitrary pair of morphisms of form e, e': K ~ AT. AT-algebra 
(X, ~) satisfies e = e' iffor every f:A ~ X we have e.f# = e'.f#. A full 
replete subcategory of %T is equational if it consists of an T-algebras 
satisfying some c1ass of equations. Prove the following version of Birk­
hoff's theorem (cf. [Hatcher '70J, [Herrlich and Ringel '72J): If(%, E, M) 
is a regular category with E the c1ass of an coequalizers, then the E­
Birkhoff subcategories coincide with the equational c1asses in %T for any 
T such that T preserves E. [Hint: if f!J is E-Birkhoff, the appropriate 
equations are the kernel pairs of the AA.'s.J 

7. Let (E, M) be an image factorization system on % and let T be an alge­
braic theory in % such that T preserves E. Let (X, ~) be aT-algebra and 
let m:A ~ X be in M. Show that <A) = Im(mT.~) is the sub algebra 
generated by A in the sense of 1.4.31. 

8. Let See be the equationally-definable c1ass corresponding to one binary 
operation and no equations. Let f!J be the fun subcategory of all (X, m) 
with m:X2 -----> X bijective. Then f!J is equationally-definable (see 
exercise 1.1.4.) Show that f!J is c10sed neither under subalgebras nor 
under quotient algebras. As an interesting aside, we note that R. Dia­
conescu has proved that f!J is a topos (exercise 2.2.16); it would be nice 
to have a direct construction of exponential objects, Q and 1 + 1. 

5. Fibre-Complete Algebra 

The concept of a topological algebra is wen known. One provides an 
Q-algebra (X, b) with a topology in such a way that each operation bw : 

x n ) Xis continuous from the product topology on x n to the topology 
on X. In this section we define this concept replacing topological spaces with 
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an arbitrary fibre-eomplete eategory in Struct(Set) and replacing Q-algebras 
with T -algebras for T an arbitrary algebraie theory in Set. The main result 
is the obvious generalization of "topological algebras is algebraic over topo­
logical spaees." A Birkhoff subcategory argument is used. 

Let (d, V) E Struct(ff) be fibre eomplete and let (ffT, V~ E Struct(ff) 
be algebraic. Consider (YJ, W) = (d, V) x (ffT, VT) in Struct(.%)(2.3.7) and 
the assoeiated pullbaek diagram 5.1 in the eategory of eategories and funetors 

YJ ____ V-=..2 ---~) Jf'T 

W 

d -----::-c:----~ 
V 

(5.1) 

(cf. 2.3.35). Clearly (&I', V 1) is in Struct(d) via YJ(K, s) = g :(K, e) is a T­
algebra} and, similarly, (YJ, V 2) is in Struet(X'·T). It is easily seen that (YJ, V 2) 
is fibre eomplete over ffT (cf. 2.3.36). We now prove 

5.2 Theorem. In the context of 5.1 above, (YJ, V 1) is algebraic. 

Proof. For (K, s) in d, let ff(K, s) denote the dass of all (f, L, e, t) such 
that f:K --> L E Jf', f:(K, s) ) (L, t) is admissible in d, and (L, e) 
is aT-algebra. Then 

.r#= JT.~ (KT ---'---'------'----)0) (L, t):(f, L, e, t) E ff(K, s)) 

has an optimal lift SE (KT). Define(K, s)f = (KT,s). Then K1J:(K, s) --~ 
(K, s)fisadmissible,sinceif(f, L, e, t) E ff(K, s)thenK1J.f# = f:(K, s)--+-
(L, t) is admissible. Moreover, if ß:(Kz, S2) ) (K 3, s3)f is admissible, 
so is ßT.K 3P:(Kz, s2)f ) (K 3, s3)f E ff(K z, S2) so that if 
also a:(K b SI) ) (K 2 , s2)f is admissible, a 0 ß = a.ßT.K 3P is ad-
missible (K b S1) ) (K 3, s3)f. This defines an algebraie theory T = 

(f, ry, jl) in d. We note at onee that for f:(K, s) ) (L, t), ff = 

id(K. s)1' 0 fJ = fT qua ff -morphism, al!d J[Ji = id(K. s)1'T 0 id(K.5)1' = X P 
qua ff-morphism. We will show that (dT, VT) and (YJ, VI) are isomorphie 
in Struet(d) by the straightforward passage (K, s; ~) I ) (K, s, e). For 
let e:(K, s)f ) (K, s) be aT-algebra. This is clearly asserting only that 
e:KT --+ K is aT-algebra such that e:(K, s)f ) (K, s) is admissi­
ble; but the latter statement is automatieally true sinee e:(K, s)1' --~ 
(K, s) E ff(X, s) (take f = idK). Therefore, (K, s; e) I • (K, s, e) is a 
bijeetion. Moreover, a T-homomorphism f:(X, s; e) ) (Y, t; ~) is, 
by definition, just an admissible map f: (X, s) ) (Y, t) whieh is also a 
T-homomorphism(X, e) --+ (Y, 8);thatis, a morphismf: (X, s, e) ---t 
(Y, t, 8) in YJ. 0 



248 Algebraic Theories in a Category 

(5.3) T ofthe proof of 5.2 is called the canonicallift ofT to d. 

5.4 Proposition. Let 2: Tl ----+ T 2 be a theory map of algebraic theories 
in X. Let Tl' T 2 be the canonicallifts to d as in 53. Then 2:T 1 ----+ T 2 is a 
theory map. 

Proof. It suffices to show that K},:(K, s)1\ ) (K, s)T 2 is ad-
missible in d for all (K, s) in d. Using the notations of the proof of 5.2, let 
(f, L, ~2' t) E ff 2(K, s). Define ~ 1 = L}"~2' Then (K, ~ 1) is a Tl-algebra (see 

K2 KT 1----~--~) KT 2 

L2 
LT 1 -------"*) LT 2 

~2 
~1 

(L, t) 

2.9) so, from the diagram above K2.fT2'~2 = fTl'~l E ff 1(K, s) lS 

admissible. D 
5.5 Corollary. If f!}j is afull replete subcategory of x T and if ~ consists 

of all (K, s, ~) with (K, ~) in f!Ij then ~ is an abstract Birkhoff subcategory of 
d T if f!Ij is an abstract Birkhoff subcategory of x T • 

Proof. Use the co-optimal lift of X2:XT ) XS. D 
The following theorem shows that not all interesting Birkhoff sub ca te­

gories of d T are of the form fj. 

5.6 Theorem. Let T be an algebraic theory in Set, let (d, U) be fibre 
complete in Struct(Set), and let Cf} be the category with. 

Objects: tripies (X, s, ~) such that (X, s) E d, (X, ~) is aT-algebra, andfor 
all semantic operations (1.53) IX: (UTt ) UT the induced operation 
(X, ~)IX: XI! ) X is admissible from (X", sI!) to (X, s) (where S" is the 
optimal lift ofthe projections Pi : XI! ---+ (X, s), i.e., the product (23.29) in d). 

Morphisms: f:(X, s, ~) ) (Y, t, e) such that f:(X, s) ---~ 
(Y, t) is admissible in d and f: (X, ~) ) (Y, e) is a T -homomorphism. 

Then the underlying d-object jimctor V: Cf} ---+d is algebraic. (The 
theorem is sharpened in 5.11 below.) 
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Praof. Let T be the canonicallift of T to d (5.3). (Set, surjections, in­
jections) is a regular category. It follows from 4.16 that (d, E, M) is a regular 
category with E = admissible surjections and M = optimal injections. Since 
T preserves surjections (1.4.29), r preserves E (as remarked in the proof of 
5.2, fr is the function fT). Since Cfi is a full replete subcategory of d T it 
suffices to show that Cfi is c10sed under products, "optimal injective T-homo­
morphisms into" and "T-homomorphisms wh ich are split epimorphisms in 
d out of," since then Cfi is an E-Birkhoff subcategory of d T (use 4.23(2) noting 
that, by 2.3.29, the optimal injective maps are exactly the equalizers in d) 
and algebraic over d in particular (3.3). 

(5.7) Cfi is c10sed under products. Given (Xi, S" ~;) in Cfi with product 
Pi:(X, S, ~) ) (Xi' Si, ~i) in d T we have, for each o::(UTt -------> 

UT the commutative diagram 

(p;)" Xn ______ 4> (Xit 

(X, 00: 

X-------4)X, 
Pi 

SinceF:(K", Sn) ) (U, tn)isadmissiblewheneverf:(K, s) ----> 

(L, t) is (it is categorically induced by the universal property of the second 
product), (p;)":(Xn, sn) ) (yn, tn) is admissible. (Xi' ~;)o: is ad­
missible from (X:', si) to (Xi, SJ by hypothesis. Since Pi:(X, s) -------> 

(X" s;) is an optimal family, (X, ~)o::(xn, sn) ) (X, s) is admis­
sible, that is, (X, s, ~) is in Cfi. 

(5.8) Cfi is c1osed, in fact, under all optimal T-homomorphisms into. The 
argument is essentially the same as 5.7. If f: (X, s, ~) ) (y, t, 8) is an 
optimal T-homomorphism with (y, t, 8) in Cfi then for each semantic opera-
tion o::(UT)" ) UT we have the commutative square 

f" xn ________ ~) yn 

(X, ~)o: (y, 8)0: 

X-------4) Y 
f 

to prove that (X, ~)o:.f -and so (X, ~)o:- is admissible. 
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(5.9) C(j is closed under UT-split epimorphisms. Let (X, s, ~) E C(j and let 
j:(X, s, ~) , (Y, t, 8) E d T and d:(Y, t) , (X, s) E d satisfy 
d.f = idy • Consider the diagram 

id 

Yn _______ d_n ______ 7)Xn ______ ~j_n ______ ~)1 
(Y,8)rt. 

X -----------+> Y 
j 

induced by the semantic operation rt.:(UTt ' UT . Then (Y, 8)rt. = 

dn.(X, ~)rt..f:(yn, n ) (Y, t) is admissible. 0 
The proof of 5.6 does not provide much information about the nature of 

the algebraic theory in d which gives rise to V. The following elementary 
observation greatly simplifies this problem. 

5.10 Taut Birkhoff Subcategories. In the context of 5.1, let C(j be an 
abstract Birkhoff subcategory of f!l (of course, U 1 is known to be algebraic 

C(j----------------~ 

by 5.2) with the additional property that C(j is taut as in 2.3.37, that is, C(j has 
the property that whenever J;: P ---> Ci is a family of morphisms in f!l with 
each Ci in C(j such that J;U 1 constitutes an optimal family in d, then Pis also 
in C(j. Under these conditions, the algebraic theory in d giving rise to V is 
very simple to describe in the style of the T of 5.2. For each (K, s) in ,Rf let 
C(j(K, s) denote the subclass of $'(K, s) of all (f, L, ~, t) such that (L, t, ~) E C(j. 
Define (K, s)T = (KT, s) where s is the optimal lift of the family 

J#=JT.~ (KT --"----"---'----+) (L, t): (f, L, ~, t) E C(j(K, s» 
Then (KT, s, Kf.1) E C(j by the hypothesis that C(j is taut. If (KT, s) is as in the 
proof of 5.2, then idKT : (KT, s) ) (KT, s) is admissible because 
C(j(K, s) c $'(K, s). Moreover, if g:(KT, s, Kf.1) , (L, t, ~) E f!J> 
with (L, t, ~) E C(j then g:(KT, S, Kf.1) ) (L, t, ~) E C(j because, 
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(L, t, ~) 
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setting f = K1].g, g = r = fT.~ with Cf, L, ~, t) E ~(K, 8). Therefore idKT : 

(KT, s, Kfl) ) (KT, S, Kfl) is the reflection (K, 8)). of( (K, 8)T, 
(K, s)JJ.) in ~. It follows from the constructions in 3.2 and 3.3 that t is the 
algebraic theory for V with 1], 0, T as a functor and fl aIl at the level of T (just 
as for f in 5.2). 

Returning to the context of 5.6, we have: 
(5.11) The algebraic theory in d giving rise to V: ~ -----> d is given by 

(X, s)T = (XT, s) where sis the cartesian!ift ofthe family (KT ~(L, t): 
there exists ~ with (L, t, ~) E ~ and g:(KT, Kfl) ) (L, ~) a T-homo-
morphism). K1]:(K, s) ) (K, 8)T is admissible and ifrx:(K 1, 8tJ--..... 
(KZ,82ft and ß:(Kz,8z) ) (K 3, s3)T are admissible then so is 
rx 0 ß:(K b sd ) (K 3 , 83)T thereby providing the 1] and 0 for the 
algebraic theory t = (T, 1], 0). To prove this, we must only be sure that 5.10 
applies. But this is clear by the proof of 5.6, 5.7, and 5.8. 

5.12 Topological Aigebras. By 5.6, if ~ is any category of topological 
algebras and d is the category oftopological spaces then the forgetful functor 
V: ~ -----> d is algebraic and has a left adjoint in particular. We deduce that 
there exists a free topological group, -ring, -lattice, -complete atomic Boolean 
algebra, and even a free topological compact space over an arbitrary topo­
logical space. Moreover, 5.11 teIls us that to construct these objects we start 
with the free group, -ring, -lattice, -complete atomic Boolean algebra, 
-compact space over the underlying set of the topological space and provide 
this with the appropriate topology. 

Notes for Section 5 

The theory of this section is from [Manes '67, Chapter 3]. Similar things 
have been done by Wyler ([Wyler '71J), Wischnewsky ([Wischnewsky '73J), 
and others (consult the bibliographies of the papers cited above). 

It is interesting to remark that A. A. Markov's 1945 monograph [Markov 
'45, 201-246J devotes 45 pages to proving, among other things, that there 
exists a free topological group (his definition is the same as ours-a universal 
mapping property) over a completely regular space. Not surprisingly, 
Markov found an appropriate topology on the free group over the underlying 
set of the space. A more modern proof of Markov's theorem appears as 
[Hewitt and Ross '63, Theorem 8.8J where the reader will recognize, in con­
text, aversion ofthe adjoint functor theorem. The reader may wish to attempt 
to generalize theorems about free topological groups as found in [Thomas 
'74J, or the papers of Morris (see [Morris '73J and the bibliography there). 
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It is known ([Swierczkowski '64]) that if T is finitary and X is a com­
pletely regular Hausdorff space, then the inclusion of the generators, l1x, into 
the free topological T-algebra is a closed subspace; it is interesting to ask 
how far this can be generalized. 

Exercises for Seetion 5 

1. A partially ordered group is (X, s, ~) where (X, s) is a group, (X, ~) is a 
partially ordered set and the following laws hold: if x ~ y and a ~ b 
then xa ~ yb; if x ~ y then y - 1 ~ X - 1. Show that partially ordered 
groups is algebraic over partially ordered sets. [Hint: start with the 
canonical lift of the theory for groups to the fibre-complete category of 
preordered sets, pull back along the property of partially ordered sets 
using 1.36, and then use an E-Birkhoff subcategory.] 

2. [Manes '67, 3.4.9.] Let A be the (real or complex) scalar field. A topological 
linear space is a A-vector space X which is topologized in such a way that 
addition X x X ~ X and scalar multiplication /1 x X ~ X are con­
tinuous. Show that topologicallinear spaces and continuous linear maps 
is algebraic over topological spaces. [Hint: the topology on A requires 
a Birkhoff subcategory of the "topological A-vector spaces" of 5.12; 
observe that split epimorphisms are co-optimal.] 

3. (cf. [Morris '70, Theorem 1.13].) Let X be a nonempty topological space 
and let T be a non trivial finitary theory in Setwith 0T =F 0. Prove that 
the free topological T-algebra F over X is not connected. [Hint: let F' 
be the T-algebra F with the discrete topology; consider the continuous 
T-homomorphic extension of any function from X to F' which is con­
stantly so me element not in 0T.] 

4. (a) Let T be an algebraic theory in ff and suppose that (E, M), (E, IV!) are 
image factorization systems on ff, ffT such that EUT c E and 
IV! UT c M. Prove that T preserves E. [Hint: use 4.11 and the diagram 

A ____ ,;;..,e ___ -4) B 

I 

I 

h I 
I 

I 

I 
I 

AT eT I 
-------~) BT 

I ,/ 

I ,/ 

/' 
/ /' 

/ h#,/ 

I ,/ 
,/ 

/ /' 

/ /' 

\l-k, /' 

C -----:=----~) D 
111 

to prove that if eis in Ethen eT is in E.] 
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(b) In the context of 5.3 with:% = Set prove that f preserves co-optimal 
surjections. [Hint: use (a).J Thus, for E = co-optimal surjections, 
Theorem 4.23 applies; note, however, that the proof of 5.6 breaks 
down. 

5. [Manes '72.J Let (d, U) in Struct(Set) be fibre complete, let T be an 
algebraic theory in Set and let '?l be a fuH replete subcategory of(d, U) x 
(SetT, U~. Let 2 be a fuH replete subcatgeory of 001 such that if J: 
(X, s) ) (Y, t) is an admissible surjection in d with (X, s) in 2 
then also (Y, t) is in 2. Consider the puHbacks 

[l} 1 ) M P('?l) 

',,~ 1 
u )' )ST"' 
2--------------~)d 

Assume furt her that whenever (Y, t, 8) is in MP('?l) andJ:(X, s) -----+ 

(Y, t) is admissible in 001 with (X, s) in 2 there exists an 2 -structure s on 
XT such that J# :(XT, s) ) (Y, t) is admissible in d. Prove that 
U has a left adjoint, V is algebraic, and qJ is the semantic comparison of 
of U; moreover, qJ is a fuH refiective subcategory. [Hint: use 1.36; the 
assumptions guarantee that the f of 5.3 maps 2 into 2; the left adjoint 
to qJ works by restricting the left adjoint SMP('?l) ) MP('?l); left 
adjoints to U and V can be chosen so that 

2 

which forces qJ to be the semantics comparison functor by exercise 9(a) 
of section 2.J 

6. In this exercise we illustrate a technique to prove algebraicity without 
direct verification of the Beck condition. We outline a proof that Banach 
spaces are algebraic over metric spaces with base point (see exercise 2(d) 
of section 4). 
(a) Define'?l in Struct(Set) by setting '?leX) to be the set of aH pairs (d, A) 

where d: X x X ---+ Ru {oo} is a "premetric" and A is any subset 
of X and by definingJ:(X, d, A) ) (Y, e, B) to be admissible 
just in case f is "decreasing" (i.e. Pd ~ e pointwise) and J maps A 
into B. Prove that '?l is fibre complete. 

Let T be the algebraic theory in Set whöse algebras are vector 
spaces (scalars may be either real or complex) with canonicallift f 
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to C(j as in 5.3. The plan of attack is summarized by the following 
diagram: 

BAN-------~)NLS--------~)PLS-------~)QLS---------+)C(jf 

CM P----_+_) MET --------*> fi'---------4-

(b) Let QLS ("quasinormed linear spaces") be the fuH subcategory ofC(jf 
of all (X, d, A, ~) whose "norm" Ilxll = d(x, 0) satisfies IIAxl1 ~ lAlllxii 
and Ilx + yll ~ Ilxll + Ilyll and which are s~ch that A = {O}. Show 
that QLS is a Birkhoff subcategory of C(jT, and hence that U 1 is 
algebraic. 

(c) Let fi' be the fuH subcategory of aH (X, d, A) with d < 00 and A i= 
0, and let PLS ("pseudonormed linear spaces") be the pullback 
along fi'. Use the previous exercise to prove that U 2 is algebraic. 
[Hint: given J:(X, d, A) ) (Y, e, {O}, ~) in C(j with d < 00 

and A i= 0, a suitable fi'-structure ca,.4) on the vector space XT 
is a( (..lx), (/lx)) = I lAx - /lxi d(a, x) where a is any element of A, 
and A = {O}.] 

(d) Let MET be the fuH subcategory of fi' of metric spaces with base 
point and let CMP be the fuH subcategory of MET of complete 
metric spaces with base point. Verify that the pullbacks along MET 
and CMP are the usual categories, NLS and BAN or normed linear 
spaces and Banach spaces (with contractive linear maps). Use 1.36 
and 1.38 to prove that U 3' U 4, and U are algebraic. 

7. Let L be a complete lattice. Define the category Set(L) in Struct(Set) of 
L-Juzzy sets ([Goguen '73], [Goguen '67]) to have as objects all (X, X) 
where X:X ~L is any function ("degree of membership") and J: 
(X, X) ) (X', X') is admissible just in case xX ~ xIx' for all x in 
X. (See also exercise 4.3.10.) 
(a) Prove that Set(L) is fibre complete. 
(b) Consider the algebraic theory in Set whose algebras are Boolean 

algebras. The four elements of the free Boolean algebra on one 
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generator x has the lattice structure shown above; the meaning of 
these elements is: x is definitely assigned either "true" or "false," x' 
is then given the opposite truth value, T is "true" and F is "false." 
Noting that Set = Set(1) and that a single generator is the I-fuzzy 
set id: 1 ---> 1, it is natural to investigate the free L-fuzzy Boolean 
algebra (in the sense of 5.6) over the L-fuzzy set id: L -- L. 

(c) Let L be the two element lattice. Determine the structure of the free 
L-fuzzy Boolean algebra over id: L ---> L. [Hint: it has sixteen ele­
ments, coinciding as a Boolean algebra with the free complete atomic 
Boolean algebra generated by a two-element set.] 

8. Let (d, V) be fibre-complete over Set. Recall from exercise 3(b) ofsection 
2 that d is a symmetric monoidal category. 
(a) Prove that .01 is closed as defined in exercise 5 ofsection 2. [Hint: the 

exponential object BA-which we write hence as [A, B] -is the set 
of admissible maps from A to B with the "subspace of the product" 
structure, i.e., the restricted projections are optimal.] Observe that 
[A, - ]:d ) d and [ -, A]:dop ) d are func­
torial. A theory T in d is enriched if for all A, B, C in d the map 

[A, BT] ® [B, CT] ---» [A, CT] 

rf.,ß~rf.°ß 

is admissible in d. 
(b) IfT is enriched, show that the passages as in 1.5.6 and 1.5.7 establish 

a bijection from d -morphisms w: I ---> AT (i.e., elements of AT) to 
natural transformations [A, - ] ) T. [Hint: the only new de­
tail is proving that f I ) <w, fT) is admissible from [A, X] to 
XT; to this end consider the 

[A,X] 
-.X~ ) [A, XT] inid ) [AT, AT] ® [A, XT] 

----*) [AT, XT] prm ) XT 

map shown above.] 
(c) For each A let VA be the composition 

d T ~.w [A,-1 d 

Show that if T is enriched, the passages of 1.5.8 and 1.5.9 establish a 
bijective correspondence between morphisms I ~ AT and natural 
transformations from VA to V. 

(d) Using the bijections 

A----~) [B, X] 

A ® B -----~) X 

B -------}) [A, X] 
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show that [-, XJ:dop ) .91 has [ -, XJ:d ------? 

d OP as a left adjoint. Show that the induced algebraic theory T[x] in 
.91 is enriched. 

(e) Generalizing exercise 8 of section 2, show that if T is enriched then 
aT-algebra structure on X corresponds to a theory map from T to 
T[xJ 

It is clear by now that much of the theory developed in this book 
for the base category of sets will generalize to a fibre-complete cate­
gory over Set. The reader may wish to develop some of this theory 
herself. Actually, the proper setting for a general theory of enriched 
algebraic theories is, at least, in asymmetrie monoidal closed cate­
gory. See, e.g., [Bunge '69J, [Dubuc '70J, [Kock '70, '71 J, [Linton 
'69-A J, [Pfender '74J, [Wiesler and Calugareanu '70J, and the biblio­
graphies there. 

9. We continue exercise 8 by constructing a large class of enriched theories. 
(a) Given a theory T in .91 show that T is enriched if and only if for all 

B, e the map 
[B, eTJ (-)# ) [BT, eTJ 

ß f--+ ß# 

is admissible in d. [Hint: see exercise 1.3.12.J 
(b) Conclude that the canonicallift f of a theory T in Set is rarely en­

riched, but that the theory S in .91 corresponding to C(5 as in 5.6 is 
always enriched. [Hint: we have 

(- )# 
[B, eSJ --~---4» [BS, eSJ 

eslB --------+) es 
IBlm 

where IBI is the underlying set of Band eslBI is the cartesian power.J 
This result improves [Manes '67, 3.4.6]. 

10. (er. [H. Neumann '67, page 9].) Let (.91, U) be fibre complete over Set, 
let E be the class of admissible surjections, and let T be any enriched (see 
exercise 8) theory in .91 such that T preserves E. Given aT-algebra (X, ~), 
suppose given an d-morphism T:A --+ X such that 
(i) For each f: A --+ X there exists a unique T-homomorphism 

1jJ:(X,~) ) (X,~) such that T.1jJ = f. 
(ii) The family of all T-endomorphisms of (X, ~) is optimal in oS?!. 
(iii) Given x =1= y in X there exists a T-endomorphism ljJ of (X, ~) with 

xljJ =1= yljJ. 
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Show that (X, ~, r) is the free algebra over A in the E-Birkhoff sub­
category of <r;1T generated by (X, ~). [Hint: prove the analog of exercise 
3(d) of section 4 and use the diagram 

A-----'---~) X - - - -
I 
Itj; 
I 

'+' 
X ]. 

11. For any algebraic theory T in Set, show that compact Hausdorff T­
algebras forms a full reflective subcategory of topological T-algebras. 
[Hint: use the general adjoint functor theorem.J Show that the forgetful 
functor from compact T-algebras to topological spaces is algebraic. 
[Hint: use the Beck theorem and 2.2.30.J The free compact T-algebra 
over aspace generalizes the well-known Bohr compactification which is 
just the case when T is the theory for groups. 

6. Bialgebras 

We consider bialgebras which are sets that are simultaneously equipped 
with algebra structure from two algebraic theories in such a way that each 
operation of one sort commutes with those of the other sort. Unless both 
theories have a rank, the question of whether the bialgebra category is alge­
braic over sets is a delicate one. "Completely commutative" algebras are 
characterized. 

It is clear that the definition of ~ in 5.6 works if we replace (d, U) with 
any category of sets with structure which constructs products (2.3.17). In 
particular, we may consider what happens when (d, U) is algebraic. 

6.1 BiaIgebras. Let Sand T be algebraic theories in Set. An S-T bialge­
bra is a tripIe (X, ~, e) such that (X, ~) is an S-algebra, (X, e) is aT-algebra, 
and for all semantic T-operations (1.5.4+) o::(u~n ) UT , (X, e)o:: 
(X, ~t ) (X,~) is an S-homomorphism. A homomorphism of 
S-T bialgebras f:(X,~, e) ) (X', ~', e') is a function f:X ----)- X' 
wh ich is simultaneously an S-homomorphism and a T-homomorphism. The 
resulting category of sets with structure will be denoted SetS 0 T and 
the underlying set functor from bialgebras will be denoted US 0 T: 

SetS 0 T ) Set. 

6.2 Groups with Operators. Let X be a set. A group with operators 
indexed by X is a tripIe (G, ~,e) where (G, ~) is a group and e assigns to each 
element x of X a group endomorphism ex:(G, ~) ) (G, ~) (cf. [Van der 
Waerden '53, section 43J). Let S be the algebraic theory for groups and let T 
be the algebraic theory induced by the equational presentation with one 
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unary operation for each element of X and no equations. Then groups with 
operators are just S-T bialgebras. 

6.3 Bimodules. Let Rand S be rings. A left R-module is an abelian 
group A together with a function 

RxA---.A (I', a)~ ra 

satisfying (rr1)a = r(r1a), r(a + b) = ra + rb and (I' + r')a = ra + r'a as 
weIl as la = a. It is dear, using an equational presentation with one binary 
operation and a unary operation for each element of R that left R-modules 
constitute an algebraic category of sets with structure. Similarly a right 
S-module is an abelian group A equipped with a function (a, s) ---+ as sat­
isfying a(ssl) = (as)sl' (a + b)s = as + bs, a(s + s') = as + as', al = a. 
Again, right S-modules are algebraic over sets. Let the algebraic theories 
induced by the rings Rand S in this way be denoted by .R and S. respectively. 
An R-S bimodule ([Mac Lane '63, V.3]) is a tripIe (A, ~, 8) such that (A, ~) 
is a left R-module, (A, 8) is a right S-module, and r(as) = (ra)s. Thus an R-S 
bimodule is the same thing as an .R-S. bialgebra. The proof is safely left to 
the reader with the hint that the next example is most of the work. 

6.4 Abelian Groups. Let T be the theory whose algebras are abelian 
groups. If(X,~) is aT-algebra then (X,~,~) is a T-T bialgebra. To prove it, 
observe that "zero," "minus," and "plus" are T-homomorphisms. This state­
ment would not be true for a non-abelian group. In fact let S be the theory 
whose algebras are groups and let (X, ~, 8) be an arbitrary S-S bialgebra. 
Then~ = 8and(X,~) = (X, 8)isabelian.(Write(X,~) = (X, m, e),(X, 8) = 

(X, m', e'). Since the S-operation e': 1 -------+ (X, ~) is an S-homomorphism, 
e' = e. Since the S-operation m':(X, ~)2 ) (X, 0 is an S-homomor­
phism, we have the law axmbymm' = abm'xym'm. Taking x = e = b, we de­
duce m = m'. Taking a = e = y we then deduce xbm = bxm.) In particular, 
a T-T bialgebra is the same thing as aT-algebra. 

6.5 Compact Algebras. Let T be an algebraic theory in Set. Let P be the 
algebraic theory for compact Hausdorff spaces (1.5.24). A compact T-algebra 
is a P-T bialgebra. Because of the Tychonoff product theorem, (in the re­
stricted form: a product of compact Hausdorff spaces is compact Hausdorft), 
a compact T-algebra is the same thing as a topological T-algebra (5.12) 
whose underlying topological space is compact Hausdorff. 

6.6 Compact Compact Spaces. It is dear that the empty space and the 
one-element space are P-P bialgebras. It turns out that there are no others. 
For let (X, ~, 8) be a P-P bialgebra and suppose that X has at least two ele­
ments. Then any two element sub set of X is simultaneously a subalgebra of 
(X, ~) and of (X, 8) (a finite subset of a Hausdorff space is dosed) and it is a 
general fact that if (X, ~, 8) is an S-T bialgebra and (A, ~o, 80 ) is such that 
(A, ~o) is an S-subalgebra whereas (A, 80 ) is a T-subalgebra of (X, ~, 8) then 
(A, ~o, 80 ) is again an S-T bialgebra (see 6.9 below). Therefore the two element 
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set 2 = {O, I} with its unique compact Hausdorff topology rx is a ~-~ bi­
algebra (2, rx, rx). To show this is not true, contradicting the existence of 
(X, ~, 0) above, we will prove that if Xis any infinite set and if Oll is any non­
principal ultrafilter on X then the corresponding ~-operation oll: 2x --> 2 
is not continuous. We leave the foBowing two simple facts as exercises for 
the reader. 

1. Capitalizing on the bijection between subsets A of X and character­
istic functions XA: X --> 2 we regard the elements of 2x as subsets of X. 
Then a typical basic open set in the Tychonoff topology for X \copies of dis­
crete 2 is B(G.H) = {A c X:A n G = H} where Gis a finite subset of X and 
He G. 

2. o'ft: 2x --> 2 is the characteristic function of Oll, that is Aoll = 1 if 
and only if A E Oll. 

Accepting these facts, it is easy to prove that oll is not continuous. Consider 
the inclusion-ordered directed set of finite sub sets of X. This may be com­
fortably regarded as a net in 2x. This net converges to X since if X E B(G. H) 

then H = X n G = G and so F n G = H for aB finite subsets F contain­
ing G, i.e., there exists G with FE B(G. H) for all F ::J G. On the other hand 
Foll = ° for all finite subsets F whereas Xoll = 1. 

6.7 Symmetry Proposition. Let Sand T be algebraic theories in Set. 
Then (X, ~, 0) is an S-T bialgebra if and only if (X, 0, ~) is a T -S bialgebra. 

Proof. Earlier work in 1.4.25 and 1.5.40 introduced the principle that 
a functionf:X ~ Yis an S-homomorphism (X, ~) --> (Y, 0) ifand only 
if f commutes with the S-operations. To make this perfectly clear, consider 
the diagram (see 1.5.5) 

X& ~ x n ----=.c'------4) XS -----=-----+) X 

fS f (6.8) 

y n ----------+) YS ---------+) Y 
Y& 0 

induced by W E nS. The rightmost square commutes if and only if f is an 
S-homomorphism whereas the outer rectangle commutes if and only if f 
commutes with the S-operation w. It is immediate that if fis an S-homo­
morphism then f commutes with all S-operations and the converse is true 
providing every element of XS is in the image of X& for some w, and this is 
the case by 1.5.5. 

The result of 6.7 is therefore not surprising: each T-operation is an S­
homomorphism if and only if each T-operation commutes with each S­
operation and this surely sounds like a symmetric statement. Here is the 
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formal proof. Let (X, ~, 8) be an S-T bialgebra and let ß:(uS)m , US 
be an S-operation. To prove (X, ~)ß:(X, 8)m , (X, 8) is a T­
homomorphism it suffices to prove that (X, ~)ß commutes with (X,8)rY. 
where rY.:(UT)n ) UT is an arbitrary T-operation, i.e., we must show 
that the following diagram is commutative: 

(xm)n ____ ( (_X_' ~--,-)ß_)n_---?-) X" 

(X,8)rY. 

X m -------~) X 
(X, ~)ß 

This diagram is obtained by pasting together three pie ces as shown below. 

((X, ~)ß)n 

I (X, ~)"ß 1 
(Xm)" ) (xn)m )Xn 

2 

((X, 8)rY.)'" 
3 

(X,8)rY. (X,8)mrY. 

X"' 
(X, ~)ß 

)X 

Square 3 commutes because the T-operation (X, 8)rY. is an S-homomorphism. 
To explain triangles 1 and 2, <I> is the canonical isomorphism 

(xm)n ~ X(lnxn) ~ (xn)m 

sending f: n -----> x m to g: m ---> x n where jgi = ifj for all i in m and j in 11. 

To establish 1, consult the diagram shown below. 

(xm)" 
<I> ) (xn)m (X, ~)"ß )Xn 

4 

(prJIn 
5 

prj 
prj 

Xm 

(X, ~)ß 
>X 
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Triangle 4 is easily verified directly and 5 holds because prj is an S-homo­
morphism from (X, ~)n to (X, ~). Together, 4 and 5 verify that 1 holds followed 
by each product projection. Similarly, tri angle 2 is verified by using the 
diagram 

X n -------~) X 
(X,8)rx o 

6.9 Lemma. Let S andT be algebraie theories in Set. Then SetS 0 T, whieh 
is obviously a full replete subeategory ofSetS x SetT, is a "Birkhoff subeate­
gory" in the sense that (even though SetS x Set T may not be algebraie over Set) 
SetS 0 T is closed under produets, subalgebras, and quotients. In partieular, 
US 0 T : SetS 0 T ) Set is a Beek funetor. 

Proof. The second statement is obvious from the first using 1.19 and 
1.18. We turn to the proof of the first statement (which is hardly a surprise 
since the bialgebra condition is eq uational; cf. 1.4.22). All three closure prop­
erties can be established simultaneously by proper interpretation of the 
following generic cube induced by f:(X,~, 8) ) (Y, C 8') in SetS x 
SetT and rx:(UTt ) UT (where (X,~)" = (xn, ~n), (Y, on = (Y", (~,)n). 

f ns 
Xns----------~----------------7)YnS 

,/ (X, 8).S r:: (Y,8').S 

~--------------------~j.-n--------------~>~(')" 
~ 
XS--------------~--------- )YS 

/ fS y,8')Y 
(X, 8)" /' (:;;, 

X >Y 
f 

Of the six fa ces of the cube, all commute except possibly the left and right 
sides (f is both an S-homomorphism and a T-homomorphism). 

If the right side commutes, that is, if (Y, C 8') is an S-T bialgebra, then 
the left side at least commutes when followed by f. Therefore, if (X, ~, 8) is 
the product of the bialgebras (Y!, ~;, 8J and f runs over the product pro­
jections we deduce that (X, ~, 8) is also abialgebra; and, with the same 
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reasoning, if (Y, C B') is abialgebra and f is injective then (X, ~, B) is a 
bialgebra. 

If the left side commutes then the right side commutes at least when pre­
ceded by FS. Therefore, if (X, ~, B) is abialgebra and if fis surjective then 
fns is also surjective (by 1.4.29 with H = (tS) and (Y, ~', B') is also a 
bialgebra. D 

6.10 Theorem. Let Sand T be bounded (1.5.14) algebraic theories in Set. 
Then US 0 T:SetS 0 T ) Set is algebraic. 

Praof. By 6.9, 1.19, 1.18, 3.6, and 3.3 it is sufficient to prove that the 
underlying set functor U: SetS x Set T -----> Set is algebraic. By 1.5.40, present 
SetS as (Qs, Es)-alg and SetT as (QT, ET)-alg. It is obvious that if Qn = (QsL + 
(QT)n and E = Es + ET that U is isomorphic to the underlying set functor 
from (Q, E)-algebras. Since Sand T are bounded, it follows from the construc­
tion in 1.5.40 that there exists a cardinal no with Qn = 0 for all n > Ho. By 
1.27, U is algebraic. D 

(6.11) Let S, T be algebraic theories in Set. The tensor product of Sand T 
exists providing US 0 T: SetS 0 T ) Set is algebraic; in this case, 
the corresponding algebraic theory is denoted by S ® T. With the exception 
of the bounded ca se, as in 6.10, the question of the existence of the tensor 
product seems to be a subtle one. Isbell has shown ([Isbell '72, 3.11]) that 
S ® T does not exist if S is the theory whose algebras are real vector spaces 
and T is suitably chosen. 

(6.12) By 6.9, 1.18, 1.19, and 1.22(1) it is clear that a necessary and suf­
ficient condition that S ® T exists is that US 0 T satisfies the solution set con­
dition. To verify the solution set condition at n we consider an S-T bialgebra 
(X, ~, B) and a subset A of X whose cardinal is at most that of n (i.e., we are 
thinking of A as the image of an n-tuple n ---> X in X) and we attempt to 
show that there exists a cardinal cx, depending only on n (and not on X) such 
that the S-T subalgebra of X generated by A has cardinal at most cx. One 
possible procedure is to try to construct this sub algebra by alternately closing 
up under the two sorts of operations. Let <B>s denote the S-subalgebra gen­
erated by Band define <B>T similarly. Then we can form 

«A>S>T 

but this may fail to be an S-subalgebra. Again, 

«<A>S>T>S 
may fail to be a T-subalgebra. This procedure may be iterated not only 
countably often but transfinitely often (by taking the union before continuing 
anew the S, T iterations) without achieving an S-T subalgebra, and indeed 
this is wh at one should expect if, in (X, ~, B), there were no relation between 
~ and B. One might hupe, however, that the bialgebra relation is strong 
enough so that there exists a stage (i.e., an ordinal) before which an S-T sub­
algebra is found and depending only on n. In this case, the solution set con­
dition at n is clear by 1.4.31. As a very special case we have the following 
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6.13 Lemma. Let S, T be algebraic theories in Set. Then S @ T exists 
providing whenever (X, ~, 8) is an S-T bialgebra and A is an S-subalgebra of 
(X, ~), the T-subalgebra of (X, 8) generated by A is still an S-subalgebra of 
(X, ~). 

Proof. To fully complete the discussion preceding the lemma, we note 
that the S-T subalgebra of(X, ~,8) generated by the subset Ao of Xis «AO)S)T 
which has cardinal at most that of AoST. 0 

Since the bialgebra condition of 6.1 involves operations, it is natural, 
before attempting to apply 6.13, that we detour to explore the relationships 
between the "subalgebra generated by" operator< )T and T-operations. The 
reader should recall the notations and results of 1.5.5. We will write just 
< > instead of < >T when only one algebraic theory is in the picture. 

6.14 Proposition. Let T be an algebraic theory in Set and let f: 
(X,~) ) (Y,O)beaT-homomorphism. ThenforallA c X, <A)f= (Af>. 

Praof. Let i:A -+ X be an inclusion map and let (p,j) be the image 
factorization of i.f. Consider the diagram 

iT 
AT------~~----~)XT 

~ jT ~ 
(Af)T >YT 

l' 
A -------'-------~) X 8 

~ ~ 
Af ) Y 

j 

Using 1.4.31, we have <Af) = Im(jT.8). But this is the same as Im(pT.jT.8) 
since pT is surjective (1.4.29). Thus <Af> = Im(iT.~.f) = <A) f· D 

(6.15) Let T be an algebraic theory in Set and let (X, ~) be aT-algebra. 
The n-ary operations of (X, ~), denoted (!)n(X, ~), is the sub set of XiX') defined 
by 

(!)n(X, ~) = {(X, ~)(X:(X E (!)n(T)) 

where (!)n(T) is as in 1.5.5. 

6.16 Proposition. Let T be an algebraic theory in Set and let (X, ~) be 
aT-algebra. Thenfor each set n, (!)n(X, ~) is the subalgebra of(X, ~)(X") gen­
erated by the projections {Pi:xn ----+ Xli E n}. 
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ProoJ. Let (Y, e) denote the T-algebra (X, ~yxn). Let p:n -----> Y be the 
injeetive passage i ----+ Pi- Sinee p is isomorphie to the inclusion of {p;:i E n} 
it follows from 1.4.31 that <{Pi:iEn}) = Im(pT.O). For arbitrary WEilT 
andJ:n ----+ X we have the diagram 

pI! (prJ)" n" --------7-) Y" ___ .....::.....:c.;.. ___ -+> X"----, 

IlW Yw Xw 

nT ----=---~) YT --------*>XT 
pT (prJ)T 

(X,Ow 

e 

Y ---------+) X ~---' 
prJ 

Sinee p.prJ:n , Y ----+ X = J, <w, pT.O)prJ = <idm nw.pT.O)prJ = 

<p.pr J' (X, ~)w) = (f, (X, ~)w). Thus, pT.O is the map that sends W to 
(X, ~)w. As pT.e is a homomorphism with image (I7"(X, ~), the proof is eom­
plete by 1.4.31. 0 

6.17 Proposition. Let T be an algebraic theory in Set, let (X, ~) be a 
T-algebra, and let A be a subset oJ X with inclusion map i:A ----+ X. Then the 
Jollowing two statements are true: 

1. <A) = i(17 A(X, ~); that is, XE <A) if and only if there exists W E AT 
such that <i, (X, ~)w) = x. 

2. A is a subalgebra oJ(X, ~) if and only if A is "closed under all A-ary 
operations," that is,for alt W E AT, there exists aJactorization 

iA 
AA ----------+) X A 

I 
I 
I 

l/!I 

-!, 

(X, ~)w 

A -------~) X 

ProoJ. 1. Fora E A, (Pm pri:X(XA) ) X) = a. Using6.l4 
and6.16wehave <A) = <{Pa:a E A}pr;) <{Pa:a E A})pri = ((17 A(X, ~))pri = 
im A(X, ~). 
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2. If A is a subalgebra by virtue of ~o: A T ) A, the desired fac-
torization is ljI = (A, ~o)w. Conversely, suppose ljI exists. Evaluating at idA, 

<i, (X, Oeo) = <idA , ljI) E A so that, by (I), <A) = i(DA(X,~) C A. 0 
(6.18) Let T be an algebraic theory in Set, let (X, 0 be aT-algebra, let 

A c X, and letj:<A) ---> X be the inclusion map. Asj":<A)" ----+ 

(X, ~t is a T-homomorphism and an inclusion map, <A)" is a subalgebra of 
(X, ~)n (1.4.32). Since A c <A), An c <A)n; as the latter is a subalgebra it 
follows that <An) c <A)". Say that subalgebras commute with powers in T 
if for all T-algebras (X, ~), subsets A of X and sets n we have <An) = <AY 

6.19 Theorem. Let S be an algebraic theory in Set such that subalgebras 
commute with powers in S. Then for all algebraic theories T in Set, S (8) T 
exists. 

Proof. We use 6.13 (interchanging the roles of Sand T, which is valid by 
6.7). Let (X, ~,O) be an S-T bialgebra. Let (A, 00 ) be a T-subalgebra of(X, 0), 

(X,O)w 

A-------~) B -------~) X 

let B = <A)s, and let wEBT. Setf = (X, O)w. By 6.17(2) it suffices to prove 
that (BB)f c B. But asfis an S-homomorphism, we use 6.14and thediagram 
above to obtain (BB)f = «AB)s)f = «AB)f)s c <A)s = B. 0 

We have already observed that S (8) T need not exist if S-algebras are real 
vector spaces; such S has rank ~o. On the other hand there exist theories S 
without rank such that S (8) T always exists: 

6.20 Theorem. Let p be the ultrafilter theory whose algebras are compact 
Hausdorff spaces (1.5.24). Then fol' every algebraic theory T in Set, p (8) T 
exists. 

Proof. By 6.19 it suffices to prove that subalgebras commute with 
powers in p. This amounts to saying that if (X, ~) is a compact Hausdorff 
space, and if Ais a sub set of X, then CIs(An) = (CIs(A))" for every set n, where 
"CIs" is the closure operator ofthe product space (X, ~)". For completeness, 
we prove this well-known fact from topology which is true, in fact, for any 
topological space (X, T) as folIows. Let (xi:i E n) E (CIs(A))n and let U be a 
neighborhood of (x;) in xn. To show: U n An i= 0 (far then (x;) E CIs(An)). 

By standard properties of the product topology we have (x;) E ITVi c U 
where each Vi is open in (X, .:1) (in fact Vi = X for all but finitely-many i). 
Since each Xi E CIs(A), there exists Yi E A n Vi. But then (y;) E U n An. 0 
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It is an immediate application of 6.20 that compact groups and compact 
abelian groups (cf. 1.23) are sets with algebraic structure. 

6.21 Proposition. Let S, T be algebraic theories in Set. Then if every 
synatactic S-operation has arity 1 (1.5.10) then S ® T exists. 

ProoJ. By 1.5.40, SetS may be thought of as (Q, E)-alg where Q has only 
unary operation labels. Let X be a set and let (fu:XS ----> XS[u E Q) be 
the free S-algebra on X, i.e., XS is the free algebra and (fu) is its Q-structure. 
Since every equation in E has form U l ... U" = V 1 ... Vm or U l ... U" = id 
and T is a functor, (fJ:XST ) XST) is an S-algebra. Since JJ: 
(XST, XSf.1T) ~ (XST, XSf.1T) is a T-homomorphism, XST 
is an S-T bialgebra. Define YJ:X -----+ XST by = XYJS.xSYJT. Let (Y,~, 8) 
be an S-T bialgebra with S-structure (~u: Y ----> Y) and let g:X -----+ Y 
be a function. As shown below let gl be the S-homomorphic extension of 

YJs >XS XSYJT )XST ____ ~!u~T ____ ~)XST 
'-

'-
...... 

...... 
'- gl 

...... 

I 

I 
I 
I g2 ...... 

...... 

I 

I 
Ig 
I 2 

I 
--V 
Y 

{-­

--------------~) Y 

g and let g2 be the T-homomorphic extension of gl. Then XSYJT.g2.~u = 

gl·~u = Ju-gl = Ju.xSYJT·g2 = XSYJT.fuT.g 2 ; as g2' j~T and ~u are T-homo­
morphisms, g2.~u = JuT.g2' and g2 is an S-homomorphism. We have proved 
that US@T satisfies the solution-set condition. D 

We conclude this section with some remarks on "completely commu­
tative" algebras. 

(6.22) Let T be an algebraic theory in Set and let (X, () be aT-algebra. 
(X, ~) is completely commutative if (X, ~, ~) is a T-T bi algebra, i.e., every 
T-operation is a T-homomorphism. By 6.7, (X, ~) is completely commutative 
if and only if 

((xi/i E n)(a:j E m)(p = ((Xi/j E m)~p:i E n)~a 

holds for all n-ary cc(UT)" ) uT, m-ary ß:(UT)m ) uT and 
(Xi) E xnxm (where (a abbreviates (X, Öx). T is commutative if every T­
algebra is completely commutative. Thus (6.4) the completely commutative 
groups are the abelian groups and "abelian groups" is a commutative theory. 
Commutative rings are not completely commutative in "rings" however (e.g. 
multiplication is not a homomorphism ofthe additive structure). 

6.23 Proposition. Let T be an algebraic theory in Set and let (Y, 8) be a 
T-algebra. Then (Y, 8) is completely commutative if and only if Jor every T-
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algebra (X, ~) theset A = {f:X ~ YIJisaT-homomorphism(X,~)--,> 
(Y, On is a subalgebra oJ (Y, O)x. 

ProoJ. Assurne that (Y, 0) is completely commutative and let 0: be an 
n-ary T -operation. By 6.17(2) it suffices to show that J = (.fJra is in A if each 
j; is in A (where (yX, ,) denotes (Y, O)·\) Let ß be an m-ary T-operation. Since 
a T-homomorphism is the same thing as a function which commutes with 
T-operations (6.8) it suffices to show that (x)~P! = (xJ)Oß for (Xj) E X m• 

To this end, first observe that since pr x: (Y, O)x , (Y, 0) is a T -homo­
marphism, operations on (Y, O)X are "pointwise," i.e., far (gJ E (yXt and 
x E X, X(gJ'2 = (xgJO". We therefore have 

(as each}; E A) 

= ((xj };: i E n)O,,:j E m)Oß (as (Y, 0) is completely commutative) 

= «x j , (};J'a):j E m)Oß = (xj)JOß' 

Conversely, if Ais always a sublagebra, consider the case (X, ~) = (Y, Ot. 
Since A is a sub algebra containing the n projections Pi: Y" ~ Y it follows 
from 6.16 that @n(Y, ~) c A. D 

The following result par allels 6.9 and is left to the reader: 

6.24 Proposition. Let T be an algebraic theory in Set. Then the com­
pletely commutative T-algebrasJorm a Birkhoff subcategory oJSetT . D 

6.25 Lack of Completely Commutative Lattices. A [attice is a partially 
ordered set in which each two dements have an infimum and a supremum. 
Equivalently, a lattice is an (Q, E)-algebra where Q has two binary operation 
labels "Inf" and "Sup" and E consists of the following eight equations: 

Inf is associative, commutative, and idempotent; 
Sup is associative, commutative, and idempotent; 
Inf and Sup satisfy the absorptive laws (see 1.5.46). 

The verification of equivalence is left as an exercise. The empty lattice and 
the one-element lattice are the only completely commutative lattices. For 
suppose X were a completely commutative lattice with distinct elements x, y. 
Since at least one of x, y is strict1y less than Sup(x, y), X possesses a sublattice 
isomorphic to the two-element lattice 0, 1 with ° < 1. By 6.24 it suffices to 
observe that the two-element lattice is not completely commutative. This is 
clear from the obervation that 1 = Inf(Sup(O, 1), Sup(l, 0)) =f. Sup(Inf(O, 1), 
Inf(1, 0) = 0, i.e., Sup is not a lattice homomorphism. 

6.26 Complete Semilattices Are Completely Commutative. Let T be the 
power-set theory whose algebras are complete semilattices (1.5.15). For IX E 
nT (i.e., IX is a subset ofn) the corresponding operation (X, ~)IX:X" ----> 

X on a complete semilattice (X, ~) sends J:n -----+ X to the supremum of 
IXJ c X. That (X, ~) is complete1y commutative is the familiar fact that 
suprema commute with each other. 
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Notes for Seetion 6 

Tensor products of algebraic theories were considered by [Freyd '66J, 
[Manes '67J, [Lawvere '68J, and [Isbell '72]. In IsbeIl's formulation, the 
tensor product oftwo algebraic theories always exists as some sort oftheory, 
though is not always an algebraic theory of course. Theorems 6.19 and 6.20 
appear in [Manes '69]. Proposition 6.23 was proved in [Freyd '66J and 
[Linton '66-A]. Commutative theories in closed categories are treated in 
[Kock '71]. 

The term "bi algebra" has an alternative meaning in the literature, namely 
"coalgebra in the category of algebras." 

Exercises for Seetion 6 

1. Prove that if subalgebras commute with powers in T then T is affine in 
the sense of exercise 5 of 1.1.3. Show that the converse fails for the sto­
chastic matrix theory (exercise 6, 1.1.3). 

2. Show that the category oftheories in Set and theory maps does not have 
finite coproducts although the full subcategory oftheories with rank has 
small coproducts. [Hint: use exercise 8 of section 2.J 

3. ([Freyd '66].) Let T, S in Set each possess at least one constant operation 
(1.5.13 -). 1fT ® S exists, prove that T ® S has a unique constant. 

4. Let R be a ring. Show that R-modules forms a commutative theory if and 
only if R is a commutative ring. Let R[ x J denote the ring of one-variable 
polynomials over R. Show that R[ x ]-modules are the algebras over the 
theory of R-modules tensored with the theory corresponding to a single 
unary operation. 

5. ([Lawvere '63J, [Freyd '66J, [Manes '67].) A semiadditive category is a 
category d together with the structure of an abelian monoid on the set 
dCA, B) for each pair (A, B) in such a way that for each f: A' -----> A and 
g:B----->B', f.-.g:d(A,B) ) d(A',B') is a monoid homo­
morphism. An additive category is a semiadditive category such that each 
monoid dCA, B) is even a group. Just as a ring is a one-object additive 
category, a semiring is a one-object semiadditive category (i.e., just like 
a ring but no additive inverses). If R is a semiring, an R-semimodule is an 
abelian monoid X on which R acts X ® R ~ X, (x, r) f------+ xr subject 
to the usual laws (x + x')r = xr + x'r, x(r + r') = xr + xr', x(rr') = 

(xr)r'; if R is a ring, then, an R-module is an R-semimodule which is a 
group. Of course such module categories are algebraic over Set. Let AM 
and AG denote, respectively, the theories in Set whose algebras are 
abelian monoids and abelian groups. 
(a) For any T in Set show that T-AM bialgebras is a semiadditive cate­

gory and that T -AG bialgebras is an additive category. [Hint: "zero" 
and "plus" are T-homomorphisms.] 

(b) IfAx A exists for an object A in the semiadditive category d show 
that 
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(~) (~) 
A--------~)A x A+-(--------A 

is a coproduct diagram in si. [Rint: add the pieces.J 
(c) If SetT is semiadditive (respectively, additive) show that T @ AM 

(T @ AG) exists and coincides with T. [Rint: using (b), define the 
necessary operations as T-homomorphisms.J 

(d) If T is finitary and SetT is semiadditive (respectively, additive) show 
that SetT coincides with the category of semimodules (modules) over 
the semiring (ring) 1 T. [Rint: if (x 1, ... , Xn)W is aT-operation, it de­
composes as (0, Xl' ... ,xn)w + ... + (XI> ... , Xn- 1, O)w.J 

(e) For any theory T in Set, prove that an epimorphism in the category 
of T-AG bialgebras is a co equalizer. [Rint: given an epimorphism 
f: X ~ Y, set q = coeq(f, 0) in the category of abelian groups; 
then q is obtained by dividing out by the abelian group congruence 
R = {(Yl,Yl):Yl - YlEIm(f)}; since "minus":Y x Y--> Y is a 
T-homomorphism, R is also a T-congruence, and q = coeq(f, 0) in 
the category of bialgebras; as f is epi, q = O.J 

(f) Let si be the additive category of torsion-free abelian groups. Show 
that Z --> Z, n ~ 2n is an epimorphism but not a coequalizer. Con­
clude that there is no algebraic functor si ---- Set. 

See also [Isbell '64J, [Johnson and Manes '70J, and the references 
there. 

6. A topological group is monothetic if one of its elements generates a dense 
subgroup. [Rewitt and Ross '63, Theorem 25.12J prove, using character 
theory, that: "There is a largest compact monothetic group Go, in the 
sense that every compact monothetic group is a continuous homo­
morphic image of Go." Give a proof using the theory of this section. 

7. Let (~ be in Struct(Set) and let (X, s), (Y, t) be '6'-structures. By a bi­
admissible map (X, s); (Y, t) ---+ (Z, u) we mean a function f:X x 
Y----Z such that (x,-)f:(Y,t) )(Z,u) and (-,y)f: 
(X, s) ) (Z, u) are admissible for all X in X, Y in Y. A tensor 
product of (X, s) and (Y, t) is a pair ((X, s) @ (Y, t), 1) such that T:(X, s); 
(Y, t) ---+ (X, s) @ (Y, t) is bi-admissible and possessing the universal 
property that whenever f:(X, s); (Y, t) ---+ (Z, u) is biadmissible, there 

T 
X x Y---~) (X, s)@(Y,t) 

I 

f 
I 

-.J 
(Z, u) 

exists a unique t{; with T.t{; = f. 

I 

It{; 
I 

I 
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(a) Show that any fibre-complete category has tensor products by the 
construction of exercise 3(b) of section 2. 

(b) For any algebraic theory T in Set show that every pair ofT-algebras 
has a tensor product. [Bint: define (X, () (8) (Y, 8) = (X x Y)TjR 
where R is the intersection of all congruences of the form R J = 

{(x, y):xj# = yj#} with j:(X, (); (Y, 8) ------7 (Z, y) bi-admissible.J 
(c) ([Freyd '66J, [Linton '66-A].) If T is a commutative theory in Set 

show that See is a closed category with the tensor product of (b). 
(d) Show that the passage from (Z, u) to the set of bi-admissible maps 

(X, s); (Y, t) ------7(Z, u) describes a functor U:'fi' ~ Set such that 
(X, s) (8) (Y, t) exists if and only if there exists a free 'fi' -object over 1 
with respect to U. Give an alternate proof of (b) using the adjoint 
functor theorem. 

8. ([Kennison and Gildenhuys '71].) Let U:.sI ------7 Set be a functor such 
that AU is finite for all A in.sl. Let.sl have and U preserve finite products. 
Suppose given, also, a finitary theory S in Set such that 'I': c~ ------7 SetS 
is a fuH subcategory over Set closed under S-subalgebras. 
(a) Show that.sl is a fuH subcategory of S (8) p-algebras. [Bint: a finite 

product of discrete spaces is discrete.J 
(b) Show that U is tractable [Bint: in the notation of exercise 13 of 

section 2, D: (n, U) ) Set has a limit because the fuH sub­
category [n, UJ of all j: n ----> AU with j#: nS ------7 A'I' onto is small 
and final; it is necessary to know that .si is closed under 
S-subalgebras.J 

We set out to identify the equational completion <P:.sI ------7 Set T 

of U as the Birkhoff subcategory f1J generated by .si in SetS0P . 

____ <P ____ ~) Set T 

r v 

SetS 0P -------~) SetP 

(c) Let Ic: S (8) P ----> T be the theory map corresponding to r. Prove that 
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if each ,ü is surjective then r is an isomorphism onto f!!J. [Hint: use 
the universal property of tP.] 

(d) Complete the argument by proving that nA is surjective. [Hint: as 
n}, is a T ® ~-homomorphism, Im(nA) is closed; if X: S -----> T cor­
responds to SetT -----> SetS, Im(X) c Im(A) so it suffices to show 
Im(nX) is dense; as V is limit preserving and AtPV is finite, the 
topology on nT corresponding to (nT, I1fl) V is the optimal lift of 
t/In, (A, j): nT ) AU where (A, f) ranges over [n, U] and AU 
is a finite discrete space; the subbasic open set {a }t/I; iA, j)' if non­
empty, intersects the image of nA' because nA'.t/In; (A, j) is onto; since 
[n, U] is aposet with infima (U preserves products), subbasic open 
sets are basic.] 

9. A directed set is a partially ordered set in which every two elements have 
a lower bound. A profinite group is a compact group which can be pre­
sen ted as the limit, in the category of compact groups, of a diagram of 
finite groups whose diagram scheme is a directed set. Use exercise 8 to 
prove that the equational completion of the category of finite groups is 
the category of profinite groups. 

10. Show that the one-element solution set of 6.21 is in fact the free S-T 
bi algebra. 

11. [Isbell '73-A.] Construct a finitary theory T in Set such that every 
epimorphism in Set T is onto but not every epimorphism in Set T0T is 
onto. [Hint: one binary operation will do.] In the paper cited, Isbell 
provides an example of a finitary T for which 'every subalgebra of a free 
algebra is free but for which not every T-epimorphism is onto. 

12. Let Set T be Boolean algebras. Show that SetT0 P = complete atomic 
Boolean algebras. [Hint: if S is the double power-set theory, define 
SetS ) Set T0 P by recalling that A = 2At(A) for each complete 
atomic Boolean A.] 

13. (We learned this from F. E. J. Linton.) Let W be a nontrivial algebraic 
theory in Set, let CI. be an infinite cardinal and let H: SetW ) (Set)OP 
preserve products of size < CI.. (Example: the maximal ideal functor from 
Boolean algebras preserves finite products.) Let T be a theory of rank 
~ CI.. Show that if there exists a nontrivial T -W bialgebra then there exists 
a nontrivial T-S bialgebra for every nontrivial theory S. [Hint: let (X, ~,8) 
be a nontrivial T- W bialgebra and let (Y, y) be a nontrivial S-algebra; 
if Z = (X, 8)H, each T-operation f:xn ----JoX induces fH:Z ---+ 

11 x Z, defining 

which, by checking the equations of 1.5.40, determine a T-structure.] 
14. (M. Barr.) For T a nontrivial theory in Set, show that 1 T = 1 if and 

only if for every pair (X, ~), (Y, 8) of T-algebras and pair of subsets 
A c X, BeY, (A) x (B) = (A x B). Conclude that if 1 T = 1 then 
T ® S exists for every finitary S. [Hint: given 1 T = 1 it suffices to show 
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(A) x Be (A x B); if xEA, x = (aJ]5with p in AT and a; in A; 
as 1T = 1, (a;, b)pE(A x {b}); conversely, consider {I} c 1T; the 
last statement is dear from the proof of 6.19.J 

7. Colimits 

Most categories ofinterest have small colimits. In this seetion we establish 
a few theorems to support this contention. 

7.1 Definition. Let LI be a diagram scheme. The category $',1 01 LI­
diagrams in % has diagrams (LI, D) in % as objects and has as morphisms 
X:D -----> E, N(LI)-indexed collections Xi:D; --.. E; subject to the commu­
tativities 

DJ.-----------------+)EJ. Xj 

for all r:I. E LI (i,j). As diagrams are like functors, so morphisms of diagrams 
are like natural transformations. %,1 forms a category with pointwise com­
position (XX'); = xi.xi and pointwise identities (idD); = idD • 

Each object K of % induces the constant diagram K 'in %,1 defined by 
Ki = K, Ka = idK • Notice that an upper bound (L, l/J) of Dis the same thing 
as a diagram morphism l/J: D ----> L. The constant diagram construction 
defines the embedding functor 

% 
() 

)%,1 

K K 

11 
) 11 

L L 

where r K ----> L is the diagram morphism f = I; (warning: these are not 
the only diagram morphisms K ---+ L). 

The existence of colimits is related to the embedding functor as folIows: 

7.2 Lemma. Let (LI, D) be a diagram in %, let ():% ------> %,1 be the 
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embedding ftlnetor of 7.1, and let (L, t/t) be an upper bound of D. Then (L, t/t) 
is a eolimit of D if and only if(L, t/t) isfree over D with respeet to (). 

Proof. Just compare the picture of the universal property of a free 
(L, t/t) over D with the definition of a colimit: 

Di t/ti )L L 
/ I 

I I 
/-

If 
Ti 

,I 
I 

/ 
~ _'I-

M M 0 
The following proposition suggests that the adjoint functor theorems can 

be used to prove that colimits exist: 

7.3 Proposition. Let LJ be a diagram seheme and let ():% ----> %.1 be 
the embedding funetor of 7.1. Then () preserves limits. 

Proof. Let (1", E) be a diagram in :.%. and let (L, t/t) be a limit of E. Let 
us write E-nodes asj and use superscripts for 1"-diagrams to avoid notational 
confusion with LJ-diagrams. We must show that (L, (t/tir:L ) (Ei) ) 
is a limit ofthe diagram E in %.1. Let (D, Tj:D ---+ (Ein be a lower bound 
of E in %.1. Then for each i E N(LJ), (Dio TJ is a lower bound of E, inducing 

unique Ai:Di ----> L such that Ai.t/ti = Ti. To see that A:D ---+ L is a 
diagram morphism consider 
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As Tj:D -7 (Ej) is a diagram morphism for allj E N(L), Da·Ai,.lj;j = Ai.IV 
But as (Ij;j:j E N(L) is a limit, Da.Ai' = Ai as desired. D 

The next two theorems are immediate consequences of 7.2 and 7.3: 

7.4 Theorem. Let x' be a locally small category which has small limits 
and let ,1 be a diagram scheme. Then necessary and sufficientfor every diagram 
(,1, D) in X to have a colimit is that the embedding jimctor (): X ------+ XLI 
of 7.1 satisfies the solution set condition. 

Proo/. This is an immediate consequence of 2.2.24, in view of 2.1.22, 7.2, 
and 7.3. D 

7.5 Theorem. Let X be a locally small category which has small limits, 
is weil powered, and has a cogenerator. Then ,ff has small colimits, 

Proo/. This is similar to the proof of 7.4 with the special adjoint functor 
theorem of 2,2.29 replacing 2.2.24. We remind the reader that here it is 
important to know that X.1 is locally small and this is why we must require 
that ,1 be a small diagram scheme. D 

A familiar fact about partially ordered sets is that if all infima exist (small 
limits!) then so do all suprema. This is easily seen to be a corollary of 7.5. 

As a prelude to the next theorem we need adefinition: 

7.6 Definition. Let (,1, D) be a diagram in X. A quasi-co limit of D is an 
N(,1)-indexed family ('i: D i ------+ C) of X -morphisms with the property that 
for each upper bound (A, n of D there exists (not necessarily unique) f: C --> 

A such that 'i.f = Ti for all i. In case (,J is itself almver bound of D, it is a weak 
colimit of D (cf. the weakly free objects in the proof of 2.2.24). Thus every 
co limit of D is a weak co limit of D and every weak colimit of D is a quasi­
colimit of D. Notice that a weak coproduct of (D i : i E N(,1) is a quasi-colimit 
of D. 

We now present what we consider to be the most useful colimit theorem 
in practice: 

7.7 Colimit Theorem. Let (x, E, M) be a regular category (4.15) and let 
C(6 be a category of x-objects with structure (2.3.1) with forgetful functor 
U: (f} -7 ,ff satisfying the following three conditions: 

1. C(6 has small limits. 
2. U has a left adjoint. 
3, Givenf:(K, t) ) (L, s) in C(6 with E-M factorization 

f=K~1~L 

in X, m:I -->(L, s) has an optimal lift (2.3.14). 
Let ,1 be a small diagram scheme. Then if each ,1-diagram in X has a 

quasi-co limit, each ,1-diagram in C(6 has a colimit. 

Prao/. Since X is locally small (4.15) so is C(6. Hence, by 7.4, we need 
only show that (): C(6 ------+ C(6L1 satisfies the solution set condition at the object 
D ofC(6L1. The construction is shown in the diagram below: 
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Ei 
Ti 

~C 
YJ )F 

;I 
/ 

mi r t# 

T· S 

We are using broken arrows to denote x-morphisms and solid arrows to 
denote morphisms admissible in «;J. Here ~/: D ---.. A in «;Jod is arbitrary (i.e., 
(A, t/!) is a lower bound of D) and (T, m) is the factorization to be constructed 
with (S, T) ranging over a small set depending only on D. It suffices to show 
that such S ranges over a small set [1', for then T ranges over the small set 

U U «;J(Di , S) 
8EY' iEN(od) 

Here we have used the fact that Ais small. Let (eh m;) be an E-M factorization 
of t/! i. E becomes a LJ -diagram in X by diagonal fill-in: 

and it is dear that (A, m;) is a lower bound of E. Hence, if (C, T) is a quasi­
colimit of E there exists t: C ---> A with Ti.t = mi . Let (F, YJ) be free over C 
with respect to U and let t#: F ---.. A be the unique «;J-admissible extension 
of t. Let (e, m) be an E-M factorization of t# in x. By hypothesis, m admits 
an optimal lift S. Define Ti = ei.Ti.YJ.e. As Ti.m = t/!i is admissible and m is 
optimal, Ti is admissible. Moreover, (S, T) is a lower bound of D because 
(A, t/!) is and m is a monomorphism. Finally, we must be sure that S ranges 
over a small set. But S is determined by the family (Ei: i E N(LJ)) and the latter 
ranges over a small set because X is E co-well-powered. 0 
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Another useful colimit theorem is: 

7.8 Theorem. Let fE be a fit/I reflective subcategory of:ff and let (LI, D) 
be a diagram in fE. Then Ir D has a co limit in :ff, D has a co limit in fE. 

Proof. Let (K, ljJ) be a colimit of D qua diagram in:ff and let 1]: K ~ 
L be a reflection of K in fE. If (L', r) is a lower bound of D with L' E fE 

Di 
ljJi 

~K 
I] 

)L 
I 

/ 
./ 

I /' 

If 
/' 

/ 

1 /' 
/'g 

/' 

'Y 
/' 

/' 
L'K 

there exists unique f:K ----> L' with ljJJ = ri and, as L' E fE, there exists 
unique g:L ----> L' with I].g = f· 0 

The foIIowing coroIIaries of7.7 and 7.8 show that most ofthe categories 
mentioned in this book have smaII colimits. 

7.9 Corollary. Let (:ff, E, M) be a regular category and let T = (T, 1], J1) 
be an algebraic theory in :ff such that T preserves E. Then if.x has small weak 
coproducts (7.6),:ffT has small colimits. 

Proof. It is straightforward to apply 7.7. :ffT has smaII limits by 2.1.11, 
2.1.14, and 2.1.22. Of course, UT::ffT ) :ff has a left adjoint. Condition 
3 of 7.7 is clear from the proof of 4.17. 0 

7.10 Corollary. If T is an algebraic theory in Set, SetT has small 
colimits. 0 

7.11 CoroHary. Let (:ff, E, M) be a regular category with small weak 
coproducts. Then :ff has small colimits. 0 

7.12 Corollary. Let (d, U) E Struct(Set) be fibre complete, let T = 

(T, 1], J1) be an algebraic theory in Set, let f be the canonicallift of T to d as 
in 5.3, and let i1ß be any full reflective subcategory of d T (e.g., the various 
Birkhoff subcategories considered in section 5). Then i1ß has small co limits. 

Proof. As noted in the proof of 5.6, if E = admissible surjections and 
if M = admissible injections then (d, E, M) is a regular category and f 
preserves E. By 7.9, d T has small colimits. By 7.8, i1ß has small colimits. 0 

7.13 Example. Let:ff be the category of abelian groups with no element 
of order 4 as in 2.1.58. Thought of as a fuII subcategory of the category of 
abelian groups, :ff is clearly closed under products and subgroups, so is a 
quasivariety by 4.22. It foIIows from 7.8 that :ff has small colimits. 0 
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Notes for Seetion 7 

Theorem 7.7 is new although similar to many results in the folklore; see 
[Tholen '74J; the astute reader will observe that part of the hypothesis there 
is unnecessary. Concerning co-completeness in ffT, results have been 
obtained by [Barr '70-A J, [Linton '69J, [Schubert '72, section 21.3J, and 
[Ulmer '69]. lt is still an open problem whether or not ffT must have all 
sm all colimits if ff has all smalllimits and colimits. 

Exercises for Section 7 

1. Prove that the category of complete Boolean algebras does not have 
countable copowers but does have coequalizers. 

2. Prove that if UT:SetT ) Set preserves coproducts, then T is the 
algebraic theory corresponding to the monoid 1 T. [Hint: since T pre­
serves coproducts and every set is the coproduct of its elements, T is 
naturally equivalent to 1 T x -.J 

3. Show that the category of small categories and functors has small co­
limits. [Hint: use 7.11 with E the dass of all functors H: si -----7 {Jß such 
that iJ8 is the subcategory generated by the set ofmorphisms offormJH.J 

4. Show that the category of Banach spaces and norm-decreasing linear 
maps has small colimits. 

5. Let T be an algebraic theory in a category ff and let LI be a diagram 
scheme. Prove that ifT preserves co limits oftype LI then ffT has colimits 
oftype LI. 

6. (a) Show that the forgetful functor from the category of small categories 
and functors to the category of sm all diagram schemes and mor­
phisms of diagram schemes has a left adjoint. [Hint: the general ad­
joint functor theorem works; better, show that the free category over 
a diagram retains the same nodes as objects and generates co m­
positions freely.J 

(b) If (LI, D) is a small diagram in an arbitrary category ff and if J is 
the free category over LI, show that there exists a unique functor jj 

LI--------------~)J 
/ 

/ 

and that the co limit of D exists if and only if the colimit of jj exists. 
(c) Prove that a category has small colimits if and only if it has small 

coproducts and every reflexive (see exercise 8 of seetion 1) pair has 
a coequalizer. [Hint: in the dual ofthe proof of2.1.22, J, g is reflexive 
if the diagram is a functor.J 
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7. (Linton.) Let T be an algebraic theory in a category ;% with small co­
products and assurne that, in ;%T, every reflexive pair ofhomomorphisms 
between free algebras has a coequalizer. Prove that ;%T has small co­
limits. [Hint: use exercise 6(c); given reflexiveJ, g:(K,~) I (L,O), 
(K + LT, {L) = (KT, {L) + (LTT, {L) in ;%T and the pair 

is reflexive so has coequalizer (Q, y); (L, 0) -----+ (Q, y), the desired co­
equalizer of J and g, is the factorization resulting from the fact that 
(L, 0) = coeq(L{L, 0 T) in ;%T; the free algebra over the initial object is 
initial in ;%T; to construct the coproduct of the nonempty family 
(Ai, 0, define a ;%-morphism u and T-homomorphisms J, g: 
(U(AiT»T I (UAi)Tby 

AiT 

J, g is reflexive and q = coeq(J, g) exists in ;%T; the desired coproduct 
has injections ini.(UAi)'1.q.] 

8. Let;% have small colimits and let T be an algebraic theory in ;% such 
that T preserves coequalizers of reflexive pairs. Prove that ;%T has small 
colimits. [Hint: this combines exercises 5 ·and 7 but there is a subtle point; 
observe that in the hint of 7 for the construction of the coequalizer in 
;%T of J and g the proof goes through if J, gare known only to be reflexive 
in ;%.] 

9. Let T be an algebraic theory in Set, let (.91, U) in Struct(Set) be fibre 
complete, and let ce be any taut Birkhoff subcategory of d T as in 5.10. 
Show that the colimit of any small diagram in ce is obtained by providing 
the colimit in See with the appropriate .91 -structure. [Hint: in d T the 
co-optimal lift works; if (X, s, ~) is in d T, set t to be the optimal lift of 
the family J:X -----+ (Y, u) indexed by all (f, Y, 0, u) such that J: 
(X, s, ~) I (Y, u, 0) is in d T with (Y, u, 0) in ce and show that 
idx:(X, s, ~) I (X, t, ~) is the reflection in ce]. 
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10. [Banaschewski and Nelson '75.J Give an example of a co-complete 
intractable equational dass for which the free algebra on n generators 
fails to exist unless n is empty. [Hint: consider small modules over a 
large ring.J 

11. Let i: si -- fJO be a subcategory for which there exists U: fJO -----> si 
with i. U = id.v/. Let L1 be a diagram scheme. Prove that if fJO has weak 
co limits of type L1 then so does si. 



Chapter 4 

Some Applications and Interactions 

Diverse applications of algebraic theories have already been offered in 
the text and exercises. In this chapter we present a detailed account of some 
interactions between algebraic theories and problems originating in topo­
logical dynamics and in automata theory. The latter is at the forefront of 
the research frontier. 

1. Minimal Algebras: Interactions with Topological Dynamics 

A central problem in abstract topological dynamics is the classification 
of compact minimal orbit closures. We show that similar questions apply 
to "dynamic" algebraic theories of sets-the motivating example being a 
special case-and observe that the problems center upon the nature of the 
monoid of unary operations. 

Fix an algebraic theory T in Set. 

1.1 Definition. AT-algebra (X, ~) is minimal if X is nonempty and if 
(X, ~) contains no proper, nonempty T-subalgebra. 

If 0T i= 0 then every T-algebra is nonempty and possesses a unique 
minimal subalgebra, namely the subalgebra generated by the empty set. For 
example, if T corresponds to "rings with unit," {O, I} is the unique minimal 
subring of every ring. This situation is very uninteresting. If T is the theory 
corresponding to "semigroups" then 0T = 0. Here it is not the case that 
every semigroup possesses a minimal semigroup; consider the semigroup 
of natural numbers greater than ° under addition. 

1.2 Lemma. Let I:(X, ~) ) (Y, 8) be a T-homomorphism. II I is 
onto and (X, ~) is minimal then (Y, 8) is minimal. Conversely, if( Y, 8) is minimal 
and X is nonempty then I is onto. 

Proof. If Bis a nonempty subalgebra of(Y, 8), A = BI -1 is a nonempty 
subalgebra of (X, ~) since UT creates pullbacks. Similarly, if X is nonempty, 
Im(.f) is a nonempty subalgebra of (Y, 8). 0 

We now introduce the motivating example. 

1.3 Compact Transformation Groups. Each monoid M gives rise to an 
algebraic theory TM whose algebras are M-sets (cf. exercise 2.1.19d, 1.3.7, 
1.4.l6, and exercise 3.2.4). Specifically, XTM = X x M, X1J:X --> X x M 
sends x to (x, e), and XJl:X x M x M --+ X x M sends (x, g, h) to (x, gh); 
a TM-algebra = M-set (X, ~:X x M --+ X) satisfies xe = x, x(gh) = (xg)h, 
where (x, g)~ is denoted xg. 
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Let G be a group. A compact transformation group with phase group G 
is simply a ß @ T G-algebra, that is, a compact Hausdorff G-set X such that 
x I---> xg is continuous for all 9 in G. Note that ~: X x G ----> Xis continuous 
if G is considered as a discrete space and X x G has the product topology. 
The above definitions may be repeated where now G is a topological group 
and ~ is required to be jointly continuous. The resulting transformation 
groups then form a Birkhoff subcategory of ß @ T G-algebras (see exercise 1). 
Since all concepts we study in this section (e.g. "minimal subalgebra") have 
the same meaning relative to a Birkhoff subcategory as opposed to the 
ambient category of algebras, the topology on the phase group is unimportant 
to uso We note, however, that many problems of abstract topological 
dynamics were motivated by qualitative problems arising from the local 
solutions to differential equations in Euclidean space where G is the topo­
logical group R. 

H X is a compact transformation group, the orbit of x in X is the subset 
xG = {xg:g E G} of X; thus xG is the TG-subalgebra generated by X. X is 
a minimal orbit closure if every orbit is dense; since the proofs of 3.6.19,3.6.20 
show that the ß @ TG-subalgebra generated by x is the closure (xG)- of xG, 
this coincides with the definition in 1.1. 

We now give an example of a minimal orbit closure: 

1.4 The Spinning Circle. Let G = Z, the discrete group of integers 
under addition. Let the space X be a circle of circumference 1 and let ° < 8 < 1 be an irrational number. Set f:X -------+ X to be the homeomor­
phism "rotate 8 units of circumference counterclockwise." Define xn = xr. 
Then X is a compact transformation group. Let x, y be arbitrary elements 
of X. Roll X along the real axis starting with x at the origin: 

-1 
I 

-28 
I 

-8 o 

y 
I 

I 
8 

I 
28 

1 

y + 1 
I 

I 
38 

I 
48 

Then the orbit xG of x touches the axis at the points n8 whereas y touches 
the axis at the points y + m. To prove that X is minimal, it suffices to find, 
given sm all ß > 0, integers n and m such that I(y + m) - n81 < ß. 

Let H be the topological subgroup {m + n8:m, nE Z} of R. Suppose ° 
were an isolated point of H, i.e., {O} is open. Since for all h in H, h' ~ hh' is 
a homeomorphism, {h} is op')n, and H is discrete. The intersection of H 
with the unit interval [0, 1J, being compact and discrete, is finite. Let [A] 
denote the largest integer ~ }_. Since n8 - [n8] is in H n [0, 1] for all n in 
Z there exists n i= n' with (n - n')8 = [n8] - [n'8], contradicting the irra­
tionality of 8. Thus ° is in fact not an isolated point of Hand there exists h 
in H with ° < h < ß. Let M be the integer such that Mh ~ y ~ (M + l)h. 
Then Iy - Mhl < ß. Write Mh = -m + n8. Then I(y + m) - n81 = 

Iy - (-m + n8)1 < ß as desired. 0 
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For x in X let <x) denote the T-subalgebra generated by x. Then (X, ~) 
is minimal if and only if Xis nonempty and X = <x) for all x in X. Intu­
itively, a typical element of <x) is obtained as the value of an n-ary operation 
(\0 on the n-tuple constantly x, that is the value of x under the unary operation 
x(jw' = (x)bw • We now set forth to formalize this observation. (See 1.8 below.) 

1.5 Definition. Given the T-algebra (X, ~), the enveloping monoid E(X, ~) 
of (X, ~) is the T-subalgebra of (X, ~)x generated by idx. 

1.6 Theorem. Let ),:(1 T, l.u) ) E(X, ~) be the unique T-homo-
morphism such that <lI], A) = idx. Then )~ is the reflection of (1 T, 1.u) in the 
Birkhoff subcategory SMP(X, ~) generated by (X, ~) (see 3.4.25; we use S for 
ST and M for MT; here S, M me an "onto," "injective"). 

Proof. Clearly E(X, ~) is in MP(X, ~). Let f:(l T, 1.u) ) (Z, y) 
be a T-homomorphism with q:(Y, 8) ) (Z, y) a surjective T-homo­
morphism from the subalgebra (Y, 8) of the product algebra (X, ~)I and 
consider the diagram below: 

1----

(1 T, 1.u) -----~) E(X, ~) ----.:......:"-'---~) (X, ~) 
" / \ 

" 

/ 

/q; 
I 

/ \ 
\ 

\I/J 
\ 

" / \ 
~~ .:,j 

(Y, 8) ---~) (X, ~)I 

q 

(Z, y) 

There exists g: 1 ----+ Y with <g, q) = <11],f) so that g#.q = f. For each 
i in I define Xi = (11], g#.pr). There exists unique T-homomorphism I/J: 
E(X, ~) ) (X, ~l such that I/J.pri is the restricted projection prXi" 
Since <idx, I/J)pri = <idx, prx ,) = Xb <idx, I/J) = <lI], AI/J) = <lI], g#) E Y 
so that Im(l/J) c Y giving rise to q; as shown. Thus q;.q is a T-homomorphism 
such that ),.q;.q = f. Uniqueness is clear because ), is onto. D 

As an immediate corollary of 1.6 we see that (E(X, ~), idx) is the free 
algebra on one generator in the Birkhoff subcategory SMP(X, ~) of SetT. 

For each 9 in 1 T, let us write ~g for the more cumbersome (X, ~)g: 
X ) X induced by the passage of 1.5.8. We have: 
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1.7 Proposition. The map k(l T, l.u) -----+) E(X, ~) of 1.6 is in fact 
the fimction g 1----+ ~g. 

Praof. Let g: 1 ----+ 1 T and x: 1 ---+ X be arbitrary elements. Using 1.5.8, 
1.5.6, and 1.4.13, <x, ~g) = <x, 19.0 = <g, xT.O = <g, x#). As <111, x#) = 

x = <idx, prx ) (where prx:E(X, ~) ) (X,~) is the restricted pro­
jection) = <111, ;Lprx ), x# = .tprx ' Thus x<g, A) = <g, .tprx ) = <g, x#) = 

x~g. 0 
It follows that E(X, ~) is not only aT-algebra, but a submonoid 01" X x_ 

i.e., ~g~h = ~gh where (ghf is the horizontal composition gJi-thereby 
accounting for the term "enveloping monoid." E(X, 0 is, in short, the monoid 
1S of unary operations of the theory S corresponding to SMP(X, ~). The 
map A:(1 T, 1.u) ) E(X,~) is a T-homomorphism and a monoid 
homomorphism. k(1 T, 1.u) ) E(1 T, l.u) is an isomorphism (since 
both are free on one generator in SMP(1 T, 1.u)). If (Y, e) is in SMP(X, ~) 
there is a canonical T - and monoid surjective homomorphism E(X, ~) --.... 
E( Y, e); it is just a )" replacing T by S, and is described as the passage ~g 1----+ ego 

Monoid multiplication E(X,~) x E(X,~) ) E(X,~) is not a T-
homomorphism in general. For p in E = E(X, ~), let Lp:E -----> E be the 
left multiplication q I---> pq and, similarly, let R p : E -----> E be the right 
multiplication q 1----+ qp. The diagrams 

X 

Rp 
E -----'-----..+) E 

pr" 

X-------ry.) X 
P 

show that L p is always a T-homomorphism and that R p is a T-homomor-
phism whenever p: (X, ~) ) (X, ~) is a T -homomorphism. 

1.8 Proposition. Let (X, ~) be aT-algebra, set E = E(X, ~), and let x be 
an element of X. Then <x) = xE where xE = {xp:p E E}. 

Praof. prAX, ~l ) (X, ~) maps E onto xE so <x) c xE. 
By 1.7, xE = {x~g:g E 1 T} so that xE c <x) by 3.6.17. 0 

The reduction of the study of minimal algebras to theories with only 
unary operations can be formalized. Let ET be the monoid E(1 T, 1.u) in­
ducing (as in 1.3) the algebraic theory ET. The passage Q x ET ---+ QT, 
(q, g) I ) <g, qT) is a theory map whose induced functor from T­
algebras to ET-sets interprets the T-algebra (X, ~) as the ET-set (X, (~g)). The 
important observation is that (X, ~) is a minimal T-algebra if and only if 
(X, (~g)) is a minimal Erset since, by 1.8, the singly-generated subalgebras 
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are the same. In some sense, then, the study of minimal algebras could be 
carried out entirely in the context of M-sets. We remark here that ifT = TM 
corresponds to M-sets then, as is easily verified, ET = M, so that ET is an 
arbitrary monoid. 

Our approach will be to use the monoid structure of E(X, ~) to study 
minimal subalgebras of (X, ~). Recall that a right ideal of a monoid M is a 
subset I of M such that IM c I. A minimal right ideal is a nonempty right 
ideal which properly contains no other nonempty right ideals. We have: 

1.9 Lemma. Let (X, ~) be aT-algebra and set E = E(X, ~). Let I be a 
subset of E. The following three statements are true: 

1. IfI is a T-subalgebra of Ethen I is a right ideal ofE. 
2. For p in E, the T-subalgebra <p) generated by p is the set pE = 

{pq:q E E}. 
3. I is a minimal subalgebra of E if and only if I is a minimal right ideal 

ofE. 

Proof. 1. The diagram 

E ____ R:....:..... ___ ~) EI 

E 

shows that the map R sen ding p to the right multi pi icati on q >----> qp from 
I into E is a T-homomorphism. Thus the inverse image (pullback!) of the 
subalgebra II of EI under R, which is the subset {p E E: I p c I} is a sub­
algebra of E containing idx and, hence, is all of E. 

2. Thinking of(E, idx} as the free algebra on one generator in SMP(X, ~), 
Lp:E -------> E is the unique homomorphism sen ding idx to p and hence its 
image pE is <p). Note that "< -)" has the same effect in different Birkhoff 
subcategories. 

3. I is a minimal right ideal if and only if I = pE for all p in I whereas 
I is a minimal sub algebra if and only if I = <p) for all p in I. D 

In the case of compact transformation groups, two special properties 
hold. Every nonempty compact transformation group contains a minimal 
orbit closure; this follows easily from Zorn's lemma since in a compact 
space the intersection of a nest of nonempty closed sets is nonempty. Also, 
there exists a "universal" minimal orbit closure in the sense of the following 
definition: 

1.10 Definition. The T-algebra (X, ~) is a universal minimal T-algebra 
if the following three conditions hold: 

1. (X,~) is a minimal T -algebra. 
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2. If (Y, 8) is a minimal T -algebra there exists a T -homomorphism from 
(X, ~) to (Y, 8); (such homomorphisms must be onto by 1.2). 

3. Every T-elldomorphism (X, ~) ----> (X, ~) is an isomorphism. 
It is clear from the definition that any algebra satisfying the first two 

properties is isomorphie to the universal minimal one if it exists. 
The eorresponding monoid-theoretie notions are: 

1.11 Definition. Let M be a monoid. A coalescent ideal of M is a minimal 
right ideal I of M with the property that whenever p, q, r are in I and satisfy 
pq = pr then q = r; i.e., the Zeft multiplications of the monoid I are injective. 
M is dynamic if M has a coalescent ideal. T is dynamic if E(l T, Ifl) is dynamic. 
We have: 

1.12 Proposition. In order that every nonempty T-algebra possess a 
minimal subalgebra and that there exist a universal minimal T -algebra it is 
necessary and sufficient that T be dynamic. 

Proof. Wefirst prove necessity. Let E = E(l T, Ifl) and let! be a minimal 
subalgebra of E. Sinee I satisfies the first two properties of 1.10, I is the 
universal minimal T-algebra. By 1.9, I is a minimal right ideal. For all p 
in M, Lp : E ----> Eis a T -endomorphism and hence its restrietion Lp : I ----+ 

I is an isomorphism. In particular, L p :l ---> 1 is injeetive for p in 1, and 
I is a coaleseent ideal of E. 

Conversely, let 1 be a coaleseent ideal of E = E(l T, IJ1). 1 is a minimal 
algebra by 1.9. Sinee every nonempty T-algebra admits a homomorphism 
from (1 T, 1fl) and (1 T, 1fl) is isomorphie to E, every nonempty T-algebra 
eontains a minimal sub algebra. It is similarly clear that I admits a T-homo­
morphism to every minimal T-algebra. Letf:1 ~ 1 be a T-homomorphism. 
Then f is onto. To prove that f is injeetive we need the following lemma: 

1.13 Lemma. Let M be a dynamic monoid with coalescent ideal J, and 
let p be in J. Then the unique u in J with pu = pis a left unit of J. 

Proof. The existenee of u with pu = p follows from pJ = J by mini­
mality and such u is unique beeause Lp:J ---> J is injeetive. We must show 
that uq = q for arbitrary q in J. As uJ = J there exists r in J with ur = q; 
but pq = pur = pr so that q = r. 0 

Returning to the proof of 1.12, let u in I be a left unit of I. As in the proof 
of1.9, R:E ---> II sen ding pto the restrieted rightmultiplieation Rp:I ---> 1 
is a T-homomorphism whose image, by 3.6.14, is the enveloping monoid 
of I. Since these R p are then the unary operations of 1 (by 1.7), we have 
f.R p = Rp.j for all p in E. In partieular, for p in I, pf = (up)f = uRpf = 

uf R p = pLu! so that f = Lu! is injeetive. 0 
We now turn to a property whieh provides many examples of dynamie 

theories. 

1.14 Definition. A monoid M is compactible if there exists a compact 
H ausdorff topology on M such that each feft multipZication Lp : M ----> M 
is continuous. T is compactible if E(l T, Ifl) is compCli;tible. 



286 Some Applications and Interactions 

1.15 Proposition. If there exists a theory map ß -+ T, T is compactible. 

Proof. For any T-algebra (X, ~) and p in E = E(X, ~), Lp:E --------+ E 
is a T-homomorphism. Now use the corresponding V:See ) Setß. 

1.16 Theorem Every compactible monoid is dynamic. Hence every com­
pactible theory is dynamic. 

Proof. Let M be compactible. Provide M with a compact Hausdorff 
topology rendering the left multiplications continuous (and hence closed). 
M is a nonempty closed right ideal and, by compactness, the intersection 
of a chain of nonempty closed right ideals is a nonempty closed right ideal. 
By Zorn's lemma there exists a minimal closed right ideal I. We will show 
that I is a coalescent ideal. Since pE is closed for any p in E, pE = I for all 
p in I and I is a minimal right ideal. Let p be in I. We must show that the 
restricted left multiplication L p : I ---> I is injective. We first need the lemma: 

1.17 Lemma. Every nonempty closed subsemigroup of M possesses an 
idempotent. 

Proof. S is a subsemigroup if SS c S. Let F be a nonempty closed sub­
semigroup. By a similar proofto the one above, F possesses a minimal closed 
subsemigroup S. For p in S, 0 i= pS c S, (pS)(pS) c pSSS c pS and pS 
is closed, so pS = Sand there exists u in S with pu = p. Set R = {s ES: 
us = u}. R is clearly a subsemigroup. As the equalizer of the continuous 
functions Lu and "constantly u," R is closed. Since uS = S (as argued above), 
R is nonempty. Thus R = Sand uu = LI as desired. D 

Returning to the proof of 1.16, let q, r be in I and such that pq = pr. 
Define F = {s E I:ps = p}. Then Fis a closed subsemigroup of M which 
is nonempty since pI = I. By the lemma, F contains an idempotent u. Thus 

1. uu = u, pu = p. 
Next we observe 

2. ut = t for all t in I. 
To prove it, let ur' = t (as uI = 1) and observe ut = uut' = ut' = t. Moreover, 

3. There exists a in I with ap = u. 
To prove this, let pa = u with a in I and let ab = u similarly; then p = pu = 

pab = ub = b, and ap = u. Finally, we have q = uq = apq = apr = ur = r. D 

Summing up so me of the consequences of 1.10-1.16, for any algebraic 
theory T, ß ® T (wh ich exists by 3.6.20) is dynamic (there is always a theory 
map from S to S ® T because S-T bialgebras are S-algebras) and we have 
that every ß ® T-algebra possesses a minimal subalgebra and there exists 
a universal minimal ß ® T-algebra. The same comments apply to any 
Birkhoff subcategory of SetP ® T. This fully includes the case of compact 
transformation groups. 

1.18 A Noncompactible Dynamic Monoid. Let G be any countably in­
finite group. Then G is a coalescent ideal of G so G is dynamic, but G is not 
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compactible. For suppose G were provided with a compact Hausdorff 
topology with all L p continuous. Since (Lp ) -1 = Lq with q = p - 1, Lp is a 
homeomorphism. Since {p} L r = {q} if r = p - 1 q, if any point of G is isolated 
then al! are and G is discrete, a contradiction. It suffices, then, to make the 
following observation: Euery countably irifinite compact H ausdorff space has 
at least one isolated point. For let X be such aspace. By the Baire theorem 
[Kelley '55, Theorem 6.34J every countable family of dense open sets has 
den se intersection. Since the family of all sets with a finite complement has 
empty intersection, there exists a finite set F whose complement is not dense. 
Consequently, there exists a nonempty open subset G of F. If x is in G, x 
is an isolated point since {x} is the intersection of the open sets G, X -
{xd,. " ,X - {xn } where G - {x} = {Xl' ... , xn}. 

1.19 Distal Transformation Groups. A compact transformation group 
X with phase group G is distal if whenever X =f. y in X there exists a neigh­
borhood a of the diagonal in X x X such that (xg, yg) rf: a for all g in G. 
The reader should recal! that a compact Hausdorff space is uniquely uni­
formizeable with the neighborhoods of the diagonal as the entourages. In 
the case when X is metric, the condition is "there exists [; > 0 such that 
d(xg, yg) > [; for all g." In other words, "distinct points were far apart in the 
past and will remain far apart in the future." For example, let X be the 
annulus, that is the subset of the plane of all points whose polar coordinates 
(r, B) satisfy 1/2 ~ I' ~ 1. Let G be the group ofreal numbers under addition, 
representing "time." A particularly simple dynamical system is "X spins at 
a constant rate," i.e., (1'0' Bo)t = (ro, Bo + yt) where y is constant. This system 
is the solution of the differential equation 

x' = -yy 
y' = yx 

with initial value conditions x(O) = X o, y(O) = Yo, as can be checked by 
differentiating 

x(t) = ro cos(Bo + yt) 
y(t) = ro sin(Bo + yt) 

This system is distal because d(x, y) = d(xt, yt) holds for all x, y, t. On the 
other hand, consider the system (ro, 0o)t = (1 - e- t2(1 - ro), 00) which solves 

x' = 2t(cos Bo - x) 

y' = 2t(sin Bo - y) 

This system is not distal because (ro, Bo)t approach es (1, Bo)t as the absolute 
value of t gets large. 

The content ofthe next proposition is that pointwise limits ofthe homeo­
morphisms ~g: X -- X for g in G determine asymptotic behavior. 

1.20 Proposition. Let (X,~) be a ~ @ TG-algebra, that is a compact 
transformation group with phase group G, and set E = E(X, ~). Then (X, ~) 
is distal if and only if each p:X -----> X in Eis injectiue. 
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Proof. First suppose (X, ~) is distal and consider p in E and x i= y 
in X. There exists an open neighborhood ofthe diagonal Ci such that (xg, yg) 1= 
Ci for all g in G. p is the pointwise limit of a net gi with each gi in G. As Ci is 
open, (xp, yp) 1= Ci and in particular xp i= yp. Conversely, suppose each p in 
E is injective and consider x i= y in X. Suppose that for all neighborhoods 
ofthe diagonal Ci, there were some g" in G with (xg", yga) E Ci. By compactness, 
there exists a subnet gp which converges to some p in E. Since the intersection 
of all closed ß is the diagonal and since (xp, yp) is in every closed ß, x = y. 0 

We have motivated: 

1.21 Definition and Theorem. Let T be a dynamic theory (J.l 1). Then 
the following jive conditions on aT-algebra (X, ~) are equivalent and dejine 
a distal T -algebra: 

1. E = E(X, ~) is a subgroup of bijections of X. 
2. Every element of E is injective. 
3. E is a minimal T-algebra. 
4. If(Y, e) is in the Birkhoff subcategory, SMP(X, .~), generated by (X, ~) 

then the subalgebra generated by any element of Y is minimal. 
5. The subalgebra generated by any element of(X,~) x (X,~) is minimal. 

Praof. We begin with a usefullemma: 

1.22 Lemma. Let M be a monoid and let I be a minimal right ideal of M. 
Then I is coalescent if and onl y if for every p in I there exists a in I such that 
ap is a left unit of I. 

Proof. If I is coalescent then, given p, we may define u as in 1.13 and 
then a as in (3) of the proüf of 1.16. Conversely, let pq = pr with p, q, r in I 
and let ap be a left unit. Then q = apq = apr = r. 0 

As an immediate consequence of 1.22 we have that any monoid quotient 
of a dynamic monoid is dynamic; for any surjective monoid homomorphism 
preserves minimal right ideals (cf. 1.2) and the condition "for all p there 
exists a such that ap is a left unit." It follows also that the theory corresponding 
to any Birkhoff subcategory of a dynamic theory is dynamic. 

We return to the proof of 1.21: 
1 implies 2: obvious 
2 implies 3: Since E is a quotient of E(1 T, 1/t), E is dynamic and possesses 

a coalescent ideal I. It suffices to show that E = I in view of 1.9. Let u in I 
be idempotent. As I => uE it suffices to show u = idx ; but this is clear since 
LI is injective. 

3 implies 4: Since E(Y, e) is aT-quotient of E, E(Y, e) is a minimal T­
algebra. Now use 1.2 and 1.8. Note: Y might have been empty. 

4 implies 5: obvious 
5 implies 1: Suppose x i= y in X. The subalgebra <x, y) of(X,~) x (X,~) 

isjust {(xp, yp):p E E} as is clear from consideration ofthe T-homomorphism 
p I ) (xp, yp); since this subalgebra is minimal by hypothesis and is 
not contained in the diagonal sub algebra, it cannot intersect the diagonal 
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so that, for aIl p in E, xp i= yp. Thus 2 holds so, as proved above, 3 holds, 
and using 1.9, pE = E for aH p in E. Given p, then, there is a q in E with pq = 

idx . As q is injective, p and q are mutuaIly inverse bijections so that q = p-1 
and q is in E. 0 

1.23 Corollary. Let T be adynamie theory. Then the class 01 all distal 
T-algebras is a Birkhoff subcategory 01 See. 

Proof. That "distal" is closed under subalgebras and quotient algebras 
is immediate from 1.21 (4) and (5). Now let (X, ,:;) be the product of the 
family (X;, U of distal algebras. The diagram 

X------=p:-:"r-i ---~) Xi 

shows that ':;9 = Il,:;y so that ':;9 is injective. 0 

Notes for Section 1 

The theory of this seetion originates with the work of Robert EIlis. See 
[EHis '58, '60, '60-A, '69] and [EHis and Gottschalk '60]. Minimal T-algebras 
were studied in [Manes '67, '69-A]. For more on this sort of topological 
dynamics we refer the reader to [EHis '69]; for relationships with the quali­
tative theory of differential equations see [Nemytskii and Stepanov '60]. 

Exercises for Section 1 

1. (a) Let X, H, Y be topological spaces with X compact and Y Hausdorff 
and consider a commutative square of functions 

X x H ___ ..:..:.a ___ ---+) X 

1 x id 1 

Y x H-------~) Y 
b 

where 1 is continuous and onto and Cl is continuous. Prove that b 
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is continuous. [Hint: let IJ71 be an ultrafilter on Y x H converging 
to (y, h); the inverse image of dlt in X x H contains an ultrafilter 
converging to a point of form (x, h), a.f of which is the desired 
convergent point in Y.J 

(b) Let:Y be any topology on the monoid M and let :!lJ be the dass of 
all P ® TM-algebras (X,~, 8) such that 8:(X,~) x M ------> (X,~) is 
jointly continuous. Prove that :!lJ is a Birkhoff subcategory. [Hint: 
for quotients, use (a).J 

2. Show that E(X,~) is a submonoid of XX by proving that {p E Xx: 
Fp c E(X, ~)} is a subalgebra of XX for any subset F of Xx. 

3. For any T-algebra (X, ~), show that E(X,~) ) E(E(X, ~)), 
~g I------> - .~g is a T -monoid isomorphism. 

4. Show that every minimal semigroup has one element. [Hint: the semi­
group generated by an element of a minimal one cannot be infinite; a 
finite semigroup is compactible, hence has an idempotent.J Show that 
the multiplicative semigroup of a Boolean ring is a distal semigroup. 

5. ([Ellis '60J, [Manes '69-A].) Let M be a monoid and consider the set 
Mß ofultrafilters on the set M. For 0Zt, "f' in Mß define 0Zt . ''/'' = {A c M: 
3V in 1/'rfv in V3U in 0Zt with Uv cA}. 
(a) Prove that (Mß, " prin(e)) is a monoid and that prin: M ) Mß 

is a monoid homomorphism. 
(b) Show that dl" prin(p) = <0Zt, Rpß> and prin(p)' 0Zt = <0Zt, Lpß>. 
(c) Prove that Mß is the free compact M-set on one generator. [Hint: 

the M-action is induced by °71 1-----+ IJ71 . prin(p) for p in M; given 
f:M ------> X equivariant with X a compact M-set, with continuous 
extension f#: Mß ) X, f# is equivariant because for all p in 
M the set {0Zt E Mß:(dlt· prin(p))f# = <dlt,.r.Lpf>} is dense and 
dosed.J 

Let 'fl in Struct(Set) be the category whose objects are monoids 
equipped with compact Hausdorff topology such that each left 
multiplication is continuous and whose morphisms are continuous 
monoid homomorphisms. 

(d) Prove that Mß is the free 'fl-object over M with respect to the forgetful 
functor from 'fl to monoids. [Hint: if f: M ------> N is a monoid 
homomorphism with N in 'fl, N is a compact M-set via 11m = <11, mf> 
so that the continuous extension f# :Mß ) N is equivariant 
by (c); for fixed 0Zt, the set {1/ E Mß:(dl" "r)f# = OZtf# '1/f#} is 
dense and closed.J Condude that 'fl is algebraic over Set via a 
compactible theory. 

6. (a) Prove the Cayley theorem: for any monoid M, p 1-----+ R p embeds M 
as a submonoid of MM. 

(b) Prove that, for any set X, the monoid XX is compactible. [Hint: 
consider the one-point compactification of X - {x}.J Thus every 
monoid is a submonoid of a compactible one. 

(c) For X an infinite set, set M = {J E XX:f = idx or f is injective 
and the complement of the image of fis countably infinite}. Show 
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that M is a submonoid of XX and that M has a unique minimal 
ideal which, however, has no idempotents (so that M is not dynamic). 

7. Let M be a compactible monoid. Show that all minimal right ideals 
of Mare closed (in any compact Hausdorff topology rendering the left 
multiplications continuous) and that if I, J are two minimal right ideals 
of M then there exists p in J such that L p restricts to an M-set iso­
morphism of I onto J. 

8. Let G be a discrete group and let Y be a family of normal subgroups 
of G of pairwise relatively prime finite indices. 
(a) Prove the generalized Chinese remainder theorem: given S 1, ... , Sn 

in Y and g 1> •.. , gn in G then there exists x in G such that xgj-1 
is in Sj for all i = 1, ... , n. [Hint: it is an easy consequence of 
[Hall '59, 1.5.3 and 1.5.6] that whenever S =f=. S' in Y then #(S n S') = 

(# S)( # S'), where # denotes index in G; if Sj is defined to be n(Sj: 
j =f=. i) then #Sj and #Sj are relatively prime and there exists, by 
Euler's theorem, an integer nj such that (# SJnj - 1 is a multiple of 
# Sj; set Xi = gfi where Ni = (# Sdnj; by Lagrange's theorem, X j 
is in gjSj whereas for j =f=. i, X j is in Sj; set x = Xl ... xn-] 

(b) Look up and recover the Chinese remainder theorem as a corollary 
of the result of (a). 

(c) (W. H. Gottschalk.) For each S in :7, GIS is a compact transforma­
tion group with G-action [s]g = [sgJ. Show that the product trans­
formation group 

TI(GIS:S E Y) 

is a minimal orbit closure. [Hint: this statement is just a rewording 
of the result of (a).] 

9. ([Manes 69-AJ.) For each monoid M and set A, M A is an M-set with 
action fm = f.Rm• M is quasicompactible if M has a minimal right ideal 
and if for every set A and function f:A ~ M, fM = (fM)*, where * 
denotes the closure operator of the product topology on M A induced 
by the discrete topology on M. A sub set Ll of a monoid M is a division 
set if for all p, q in M there exists x in M such that bpx = bq holds for 
all bELl. 
(a) Prove that every compactible monoid is quasicompactible. [Hint: 

fM is even closed in the compact product topology.] 
(b) Prove that every quasicompactible monoid has a minimal right ideal 

and a maximal division set. [Hint: if I is a minimal right ideal, each 
singleton subset of I is a division set; if Ll", is a chain of division sets 
and f is the inclusion function of uLl", then for all p, q in M, fq is 
in (fpM)*.] 

(c) Prove that every monoid which has a minimal right ideal and a 
maximal division set is dynamic. [Hint: given p in I there exists x 
in M with bpx = () for all () in Ll; set u = px in I; as Ll u {u} is a 
division set, u is idempotent, hence a left unit of I; ap is a left unit 
if pa = u with a in I.] 
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It is shown in [Manes '69-A] that none of the three implications 
can be reversed. 

10. Let T be adynamie theory, let (X, ~) be aT-algebra, let E = E(X, ~) 
and let I be a minimal right ideal of E. x, y in X are distal if xp "# yp 
for all p in E and x, y are proximal if x, y are not distal. 
(a) ([ Auslander '63, Theorem 2].) Show that if (X, ~) is minimal and 

if f:(X, ~) , (X, ~) is a T-endomorphism with f "# idx, then 
x, xf are distal for all x in X. [Rint: ifthere exists x with x, xf proximal 
then xp = xfp for some p in E; as xpE = X, xpq = x for some q 
in E; as x is in eq(j, idx), f = idx, a contradiction.] 

(b) ([ Auslander '63, Theorem 4].) Let (X, ~) be minimal. Prove that 
(X, ~) is a universal minimal set in SMP(X, ~) if and only if for every 
x, y in X there exists a T-endomorphism f:(X, ~) , (X, 0 
such that xJ, y are proximal. [Rint: if p, q are in I let ap be a left 
unit of I; then (pLqa)ap = (q )ap, Lqa is a T -endomorphism of land 
- .ap is in E(I) using exercise 3; conversely, it suffices to show 
I ---+ X, P ~ xp is injective for any fixed x in X; if xp = xq and y 
is in X let xJ, y be proximal; as xJr' = yr' for some r' in E, xii' = yr 
for l' in 1"1 cl; if rs = 'q, yq = xfrs = xpr ; as f is independent of 
of q, yp = xpf also.] 

(c) Let (X, ~) be minimal. Prove that the following three conditions are 
equivalent: (i) (X, ~) is potentially free on one generator in the sense 
that there exists x in X such that for all y in X there exists a T­
endomorphism f:(X,~) , (X, 0 with xf = y; (ii) (X,~) is 
homogeneaus in the sense that given y, z in X there exists a T­
automorphism f.(X,~) , (X,~) with yf = z; (iii) (X, ~) is 
distal and free on one generator in SMP(X, ~). [Rint: for '(i) implies 
(ii)', let xg = y, xg' = z; if wg = x and xg" = w then gg" = idx ; 
set f = g-l g'; for '(ii) implies (iii)' use (a) and (b).] 

2. Free Aigebraic Theories: The Minimal Realization of 
Systems 

A problem common to systems engineering and finite-state automata 
theory is to build an optimal system realizing a prescribed input/output 
response function. In this seetion we describe systems as algebras over a 
free algebraic theory and present a minimal realization theorem. 

2.1 Minimal Realization of Automata. For a fixed set X of input sym­
bols and a fixed set Y of outputs, an automaton is (Q, Ci, T, ß) where Q is a set 
of (internal) states, Ci: Q x X ---+ Q is the dynamies, or state-transition 
function, T E Q is the initial state, and ß: Q ---+ Y is the output function. F or 
example, a coin-operated vending machine is an automaton where a possible 
X is {quarter, dime, nickel, slug; choice 1, choice 2; coin return} and a 
possible Y is {candy bar, peanuts, contents of co in hopper, nothing}. To run 
the vending machine, one puts in an appropriate sequence of input symbols 
such as "dime, nickel, dime, choice 1" obtaining, hopefully, the sequence of 
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outputs "nothing, nothing, nothing, candy bar" of which the last output is 
regarded as the response of the automaton to the sequence of inputs. In 
general, let X* be the free monoid generated by X of all strings Xl ... X n 

inc1uding the empty string A. The reachability map of the automaton is the 
map r:X* ---> Q with the interpretation that the internal state resulting 
from the input string w is wr, i.e., (using algebraic general recursion (1.1.14)) 

Ar = "C 

(wx)r = (wr, x)6 (for w in X*, X in X) 

The input/output response of the automaton is the map I:X* -- y 
defined by I = r.ß. The observability map of the automaton is the function 
0': Q ---'> yx* such that qO' is the input/output response which would result 
if q (rather than "C) were the initial state. The automaton is reachable if I' is 
onto, i.e., "every state is used." The automation is observable if 0' is injective; 
since qO' represents the total effect ofthe state q on the input/output response, 
observability guarantees that "different states have different effect." 

The vending machine example illustrates the principle that we may know 
the response of a system without knowing the details of its dynamies. An 
arbitrary function I:X* -- Y is called a response. An al.ltomaton M = 

(Q, 6, "C, ß) realizes I, or is a realization 01 I, if its input/output response 
coincides with I. It is intuitively c1ear that any optimal realization of I must 
be at least reachable and observable. The general theory of this section will 
establish that all reachable and observable realizations of I are isomorphie 
and that one always exists (although it need not have only finitely many 
states even if X and Y are finite). 

2.2 Example. Let X = {a, b}, Y = {t, u, v}, Q = {qo, ql' qz, q~, q3,{j}, 
"C = qo and consider the automaton M whose state graph is shown below: 

a'heB 
b 

a 
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Here the label qjy denotes that the state labelled q has output qß = y, 
whereas (q, x)c5 is the unique state at the terminus of the arrow labelled x 
emanating from the state labelled by q. This automaton is not reachable 
since there is no way to get to the state q. The response I = qoO" is the 
function X* -+ Y which sends elements ofaX*a = {awa:w E X*} to t, 
elements of bX*b to u and everything else to v. M is not observable since 
q2 0" = q~O", both being the function sending X*b to u and everything else to 
v. The following state graph depicts the (unique) reachable and observable 
realization of I: 

b 

b a 

a b 

We now provide the definitions to categorize the constructions of 2.1 : 

2.3 Input Processes and Output Processes. Let % be an arbitrary cate­
gory. A process in % is an endofunctor X:% ---> %. For any process X, 
the category Dyn(X) 01 X-dynamics has as objects all pairs (Q, c5) where 
c5:QX ) Q and as morphisms all I:(Q, c5) ) (Q', c5') such that 

QX __ --"-I_X __ ~) Q' X 

c5' 

Q-----:----4) Q' 
I 

(2.4) 

Morphisms in Dyn(X) are called X-dynamorphisms. It is evident that 
U:Dyn(X) ) % is in Struct(%). An X-automaton is (Q, c5, I, T, Y, ß) 
where (Q, c5) is an X-dynamics and T:I -+ Q, ß:Q ------> Y are morphisms in 
%. The automata of 2.1 are recaptured by setting % = Set, using - x X: 
Set ) Set for the process and setting 1 = 1. In general, Q, I, Y are, 
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respectively, the state object, initial state object, and output object, ""C is the 
initial state, and ß is the output morphism. 

X is an input process if U: Dyn(X) ) % has a left adjoint. The 
free dynamics over A with respect to U will be denoted (AX(aJ, Allo; A'1). The 
unique dynamorphie extension of the initial state, as shown below, is the 

I ____ I'1-'--__ ~) I X@ ___ ...:.Il:..:.llo~_~) I X@X 

""C 

I 
I 

Ir 

I 

-!-

rX 

Q------~) QX 
(j 

(2.5) 

reachability map r:(lX~" lllo) ) (Q, 6). The response map is then 
defined to be the %-morphism r.ß:IX@ ) Y. Accordingly, IX'!' is 
called the object of inputs. 

X is an output process if U: Dyn(X) ) .ff has a right adjoint. 
In this case, the cofree dynamics over A with respect to U will be denoted 
(AX(," , AL; AA). The unique dynamorphie coextension of the output mor­
phism, as shown below, is the observability map a:(Q, 6) ) (YX@, YL). 

YL YA YX@X-----==-=-----?) YXCci---.::...::..:---=---4)Y 

aX 

+" 
I 
I 
la 

I 
I 

QX------~) Q 
(j 

ß (2.6) 

X = - x X 0 is both an input- and an output process in Set. AX0; = 

A x Xö, Allo: A x Xö x X 0 ---> A x Xö sends (a, w, x) to (a, wx) and 
AI']:A ----> A x Xö sends a to (a, A). We observe that the two diagrams 

AI'] Allo A ------'---~) A x Xö +< ---'-'"'--- A x Xö x X 0 

I 
I 

f 
I 
If# f# x id 

-!-
Q +( -----::---- Q x X 0 
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amount to the algebraic recursion 

(a, A)f# = af 

(a, wx)f# = ((a, wf#), x)c5 

AX@ = A(x(';>, AL:AX@ x X o ----+ AX@ sends (g, x) to Lx.g where Lx is 
the left translation endomorphism of Xö which sends w to xw, and AA: 
AX@ lAis "evaluate on the empty string," i.e., g f-+ Ag. The diagrams 
expressing the couniversal property: 

AL AA AX@xX 0 --:...::::=----~~ AX@ ----==----~ 
t 
I 
I 

f#1 

I 
I 

Q x X 0 ---c5----+) Q 

amount to the algebraic recursion 

(A, qf #> = (q,J> 

(xw, qf#> = (w, «(q, x)c5,J#» 

which proceeds simultaneously on all elements of Q. It is easy to check that 
the reachability and observability maps of 2.1 are given by 2.5 and 2.6. 

2.7 Decomposable Systems. Let % be any category. If every object A 
has a countably infinite copower A§ and countably infinite power A§ then 
X = id.Jt'" is both an input- and an output process in %, with AX@ = A§ 
and AX@ = A§. Here Al] = ino, AA = pro, and I-lo and L are defined by 

A 

The universal and co universal properties may be read from the following 
diagram in which f# and g# are defined using ordinary simple recursion 
(see 1.1.20+): 

g#.pro = g 

g#.prn+ 1 = c5.g#.prn 



2. Free Algebraic Theories: The Minimal Realization of Systems 297 

A 
lllo >A§ AlLo )A§ 

I 

I 

f 
Ir 
I 

f# 

+ 
Q ) Q 

I 

I 
I 

g# g#1 
g 

I 

"" B§ BL ) B§ ---------------+)B 

As explained in the notes, the term "decomposable" is for historical reasons. 

2.8 Controlling a Physical System. Due largely to the efforts of R. 
KaIman (see [KaIman, Falb and Arbib '69]) a major portion of the qualita­
tive study of controlled dynamical systems is subsumed in the study of 
decomposable systems in the category of real vector spaces and linear maps. 
For an excellent elementary introduction see [Padulo and Arbib '74]. Some 
of these ideas are illustrated in the following example. Consider aspring 
with constant k and mass m, influenced by gravity and the motions of the 
piston to which it is attached. An input to this system is a function v defined 

1 
v 

on the closed interval [0, t*] (subject to naturallimitations such as "piece­
wise continuous" and "Iv(t)j < A far some maximum amplitude A") whose 
interpretation is that v(t) is the force acting on the piston at time t. The 
output ofthe system is the displacement, x, ofthe spring from its equilibrium 
position at time t*. A possible control problem associated with this system 
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is to bring the system to rest in minimum time given the initial state of the 
system. 

The differential equation expressing Newton's second law far this system 
IS 

mx=mg-kx+v 

where () denotes "derivative with respect to time" and g is the acceleration 
of the Earth's gravitation al field. Thus 

x = g - w 2 x + (1jm)v 

where w 2 = kjm. Set q = (~} the state-vector ofthe system. Then 

q = C) = Aq + Bu, A = (_~2 ~} B = G} u = g + (1jm)v 

We next assurne that the system can be discretized in the sense that we 
ass urne there exists a "quantum" of time, LI t, such that 

q(t + Llt) = q(t) + q(t) Llt 

is approximately true at every time t. Such Llt is often called the cycle time 
since, in practice, it represents the internal dock time of computers moni­
toring the system. We have 

q(t + Llt) = (_!)2 ~) q(t) + G) u(t) 

The system has been reduced to the decomposable system (Q, t5, I, 'C, Y, ß) 
in the categary ofvector spaces and linear maps where Q = R 2, I = R = Y 
and 

t5 = (1 1) 
_w2 1 ' 'C =G) and ß = (1,0) 

The object ofinputs, IXCG, = R§ is the vector space ofall sequences (un:n = 

0, 1,2, ... ) of real numbers far which Ull = ° for all but finitely many n. 
Each such input (un) is regarded as a step approximation of a function 
u(t)-with Un corresponding to the input u(t* - n Llt)-which in turn deter­
rnines the input v(t) by v(t) = m(u(t) - g). 

We now turn our attention to the relationship between input processes 
and free algebraic theories. 

2.9 Free Aigebraic Theories. The category A of monoids and monoid 
homomorphisms in the monoidal category (ff, (8), I, a, b, c), as in 3.2.3 and 
3.2.4, is (dearly) a category of ff -objects with structure with underlying 
ff-object functor U:A ~ ff. Accordingly, a free monoid over K is, 
simply, a free A-object over K with respect to U. As discussed in 3.2.6, free 
algebraic theories are defined as a special case. Hence, if X: ff ~ ff is 
an endofunctor in the arbitrary category ff, a free algebraic theory over X 
is an algebraic theory X(", = (X@, 1], f1) in ff together with a natural trans­
formation p: X -------+ X(O possessing the universal property that far each 
algebraic theary T = (T, 1]T, f1T) in Yt and- each natural transformation 
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x P )X'@ x(a 

/ / 
/ / 

/ / 

~# /)./ (2.10) 
/ ' / 

/ / 
\t. \t. 

T T 

A: X -----> T there exists a unique morphism of theories Je#: Xc;, ) T 
such that the horizontal composition p),# is just Je. 

Before stating the next theorem it is helpful to establish some notations. 
Let X be an input process in :f{'. For each (Q, 6) in Dyn(X), the run map oJ 
(Q, 6) is defined to be the unique dynamorphic extension 6@ of idQ : 

Q ___ .....:Q=-1]'--_~) QX@+(---=Q:c...J.l::;....o_-QX@'X 
I I 

, 
,6@ 

I 

~ ~ 
Q +( ---6---QX 

(2.11) 

This includes the 6@ of 1.1.18 by 2.16 below. In the context of 2.1 for example, 
6@ is conventionally written 6*, and is the function 6*:Q x X* -> Q which 
sends (q, Xl ... X n) to the state that would be reached if the automaton were 
started in state q and inputs Xl' ... , Xn were applied in that order. 

From the definition of 8 in the proof of 2.2.18, we have at once that 
(Q, 6)8 = 6@:(QX@, QJ.lo) ) (Q, 6). It then follows at once 
from the constructions in 2.2.20 that 

2.12 Lemma. 1J X is an input process in :f{' then the algebraic theory in 
.ff induced by the adjointness 

Dyn(X) ( ) .ff 

is XCai = (X@, 1], /1) where J.l = J.l~. The semantics comparison Junctor 

rI>:Dyn(X) -----» .ffx'"' 

is given by (Q, 6)rI> = (Q,6@). D 
We then have: 

2.13 Theorem. Let X be an input process in .ff with induced algebraic 
theory X('" as in 2.12. Define Ap:AX ) AX@ by 

Ap = AX A~X) AX@X Allo ) AX@ (2.14) 

Then U: Dyn(X) ) .ff is algebraic, the inverse rI> - 1 : .ffXld ---..... 
Dyn(X) to the semantics comparison Junctor being given by (Q, ~)rI>-l = 

(Q, Qp.~). Further, (Xca', p) is the Jree algebraic theory over X. 
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Proof. By the Beck theorem of 3.1.9, to prove that Dyn(X) is algebraic 
over ff we need only establish that U creates coequalizers of U-contractible 
pairs; here, the details are so similar to the proof of 3.1.9 "1 implies 2" that 
we will omit them. By the proof of 3.1.9 "3 implies 1," the semantics com­
parison functor is an isomorphism. The diagram 

QX QI1X Qllo 

proves that Qp.b@ = b so that the inverse to tJ> is as advertised (functoriality 
is clear from the discussion below). To show that X@ is the free algebraic 
theory over X we must first observe that p is natural; but I1X is natural 
and Ilo is natural since f X@ is a dynamorphism by definition (see 2.2.18 
"(i) implies (ii)"). Now consider 2.10 with T and A arbitrary. Define V: 
ffT , Dyn(X) by (Q, e) V = (Q, QA..e). V is a well-defined homo­
morphism in Struct(ff) because A is natural. Let A#:X@ , T be the 
theory map corresponding to V.tJ>:ffT , ffx<a as in 3.2.9; then we 
have 

The diagram 

Ax-------A~p----~)AX@ 

ATX ATp 
)ATX@ 

ATA. (ATA..AIlT)@ 

AT )ATT AIlT )AT 

I J 
id 
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proves that p),# = ),. If also p.tjJ = )., the corresponding homomorphism 
V' : X T ) XX:" is such that V. <I> - 1 is the passage 

(Q, ~) 1-1 --~) (Q, QX 

which proves, since Qp.QtjJ = QA, that V = V' and hence A# = tjJ. 0 
The converse is often true: 

2.15 Theorem. Let X be a locally small well-powered category which 
has small limits. Then if X: $. ----> X has a free algebraic theory, X is an 
input process. 

Proof. Let (X@, t1, j1.; p) be the free algebraic theory over X and let A 
be an object in X. Since U: Dyn(X) ) X clearly creates limits it 
suffices to show-by the general adjoint functor theorem-that (AX@, 
AX@p.Aj1.; Ary) is a one-element solution set for A (and is then in fact the 
free dynamics over A by the proof of 2.13). Let (Q, b) be an X-dynamics and 
let f:A --) Q. Let g> be the full subcategory of Dyn(X) of all X-dynamics 
admitting a dynamorphism, U of which is mono, into apower of co pies of 
(Q, b). Essentially the same arguments as in 3.4.24 make it clear that g> is 
closed under limits. By construction, (Q, b) is a cogenerator in g>. By the 
special adjoint functor theorem (it is not necessary to first prove that f/J­
monomorphisms are monomorphisms in X since the crucial monomorphism 
i: S --> P of the proof of 2.2.29 is created as a monomorphism in X) g> ~ X 
has a left adjoint. Let T be the corresponding theory in X and let ~: QT ~ 
Q be the corresponding structure map, ~ = (idQ)#, so that 

QTX-----~~X----~)QX 

Q------~----~)QT------~~_----~)Q 

I Q~T 'J 
id 

where bQ is the X -dynamical structure of the free g>-object over Q. Since bQ 

describes a natural transformation TX --) T, so too does A:X --) T 
defined by 

QA = QX A"rX ) QTX ~ QT 

There exists a theory map l:X@ ----> T such that p.l = A. Thus, by 3.2.9, 
(Q, Ql.~) is an X@-algebra and there exists a unique XC"-homomorphism g 
extencling f as shown below. But then Qp.Q),.~ = QA.~ = QryTX.bQ.~ = 
(QryT.~)X.b = b so that g is an X -dynamorphic extension of f as desired. 0 
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An All AX@p 
A------'·,"---~) AX'!( +(---=-=L:.r---AX@X@ +-( ---'---- AX@X 

/ 
/ 

I 
I g 

I 

I 
/ 

gX 

~ ~ QI Qp 
Q +( ---=-- QT+-< --'='--- QX@ +-( ----="'---- QX 

t I 
b 

2.16 Algebra Automata. Let Q be an operator domain as in 1.5.34 and 
define X Q: Set ) Set by 

QXQ = U Qn 

Then Dyn(XQ) is, essentially, the category of Q-algebras and Q-homo­
morphisms. By 3.1.27, if Q is bounded then XQ is an input process. Unless 
Q has only unary operations-in which case XQ = - X Ql recaptures 
2.l-XQ is not an output process (see exercise 1). 

For finitary Q, XQ-automata are interpreted as tree processors in com­
puter science (see [Bobrow and Arbib '74, section 3-4]). We hint at the 
reason. Consider the arithmetic expression 

p = -J x 2 + (x - 5f 
Let Qo = {5}, Ql = {( )2, F} and Q2 = {+, -}. Set Q = R, 1 = {x}. For 
each real number ,:1 ~ Q, the reachability map r:1X'fi ) Q evaluates 
express ions in.one variable. For example, p(,) = <p, r). More realistically, 
Q should be the finite set of all internal computer bit configurations used to 
code real numbers and ß: Q ----"* Y should refiect internal-to-external coding. 

We conclude this section with a minimal realization theorem, pausing 
to define morphisms of automata: 

2.17 Definition. Let X:ff ---> ff be a process and let M = (Q, b, 1, 
" Y, ß), M f = (Qf, bf, 1, Cf, Y, ßf) be two X-automata with the same initial 
state and output objects. A simulation tjJ: M ---> M f Fom M to M f is a 
dynamorphism tjJ:(Q, b) ) (Qf, bf) which commutes with input and 
output: 



2. Free Algebraic Theories: The Minimal Realization of Systems 303 

This defines a category of :It -objects with structure. 
1f (E, M) is an image factorization system in :It then, if X is an input 

process, M is reachable if r:1Xcä ) Q is in E; if X is an output process, 
M is observable if 0": Q -------> YX(a is in M. 

2.18 Minimal Realization Theorem. Let (E, M) be an image factorization 
system in:lt, let X be an input process and an output process in:lt, and assume 
that at least one of the following conditions holds: 

1. X preserves E; 
2. X@ preserves E; 
3. E is the dass of all coequalizers; or 
4. E is the dass of all epimorphisms. 

T hen for every response f: I X@ ~ Y there exists a reachable and observable 
realization MI = (QI' c5 I' I, r I' Y, ß I) off. Any such MI is a terminal object 
in the category of reachable realizations of fand simulations and any such 
MI is an initial object in the category of observable realizations of fand 
simulations; thus MI is unique up to isomorphism. 

Proof. If I/J:(Q, (5) ) (Q', c5') is a dynamorphism and if I/J = e.m 
is an E-M factorization of I/J, then there exists a unique X -dynamical structure 
making e and m dynamorphisms. This is clear from the dia gram 

if X preserves E and, similarly, follows at onee from 2.13 and the proof of 
3.4.17 if X@ preserves E (i.e., the structure map ~": Q" X@ ) Q" 
indueed by diagonal fill-in satisfies the algebra axioms beeause ~"X@ and 
~"XCi! X@ are epi). The reader may easily formalize the argument 

AX@~B 

AX@~BX@ 

A~BX@ 

:It -morphism 
dynamorphism 

X"-morphism 

to prove that X'" has X Cä as a right adjoint; thus Xc", preserves E if E is as in 
(3) or in (4). . 

Given f:1X@ ) Y, let f#:(lX@, l!lo) ) (YX@, YL) be 
the unique dynamorphie coextension of f. Define QI' rI' 0"1 as the E-M 
factorization of f# as shown below. Then, as we have just observed, there 
exists unique c5I:QIX ) QI admitting rl and 0"1 as dynamorphisms. 
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f# 
lXIi< ----------"----------,1» YX1a 

11] YA 

I -------~) Qf -----::----~) Y 
~ ßf 

Then 1'1 = (1"f)# if 1"f = 11]·1'1' (JI = (ßI )# if ßI = (Jf· YA and M f = 

(Qf, (j I' I, 1"1' Y, ß I) is a reachable and observable realization of f. Now 
suppose that M = (Q, (j, I, 1", Y, ß) is another reachable realization of f. By 

1'1 (J f 
IXCiI ----"----+> QI ------''-----+> Y Xc" 

r 

-+-1 
I 1 

t/! I 1 cP 
1 I 
1 I 
I~ 

Q 

(J 

diagonal fill-in there exists unique Ij;: Q ~ QI with r.t/! = r I and t/!.(J f = (J. 
t/! is a dynamorphism because rX or r Xli, is epi and rand r4 are dynamor­
phisms, and t/! is a simulation. Similarly, if M is an observable realization of 
f then there exists unique cp: QI -------- Q with I' f'CP = rand cp.(J = (J fand 
such <p is a dynamorphism because either rfX or r fX!<' is epi. 0 

It is possible to define minimal realizations for input processes which 
are not output, namely as terminal reachable realizations. Theorem 2.18 
shows that these coincide with reachable and observable realizations for 
input processes which are output as weIl. It is possible to show that, for 
X = X Q as in 2.16, every response f:IXIJi' ) Y has a minimal realiza­
tion if Q is finitary, but not so if Q has infinitary operation labels (see exercises 
10, 11). This shows that the existence of minimal realizations is not an 
automatie consequence of sm all limits and colimits and suggests it is a 
"finitary" condition. 

Notes for Section 2 

Categorical automata theory is a new field of research interest (see 
[Manes '74-A] and the bibliography there). The approach to realization 
theory discussed in this section is due to M. A. Arbib and the author (see 
[Arbib and Manes, '74-B, '74-C] and their seq uels). 

In the literature of algebraic linear system theory it is conventional to 
view the linear system (j: Q ~ Q, 1": I ----> Q as a special case of a (- x I)-
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automaton in Set via the injective passage 

(O,T)~G}Q x I--Q 

which capitalizes on the fact that binary products are also coproducts in 
the category of vector spaces and linear maps. In this sense, a linear system 
is an automaton b: Q x 1 -- Q which is "decomposable": (q, x)b = qo + 
XT. 

Theorem 2.15 is adapted from [Barr 70-A, 5.10]. 

Exercises for Seetion 2 

1. (a) Prove that if XQ is an output process in Set then Qn is empty whenever 
n =1= 1. [Rint: by the Beck theorem, Dyn(XQ ) ) Set is co-
algebraic, so creates colimits.J 

(b) ([ Arbib and Manes '75, 5.8].) Generalizing (a), prove that if X is an 
input- and an output process in Set then X is naturally equivalent 
to - x IX. [Rint: the desired natural equivalence T: - x IX--+ 
Xis defined by (q, x)QT = (x, qX); since X@ preserves coproducts, 
we may assume x'a~ = - X IX'"; T.p: - x IX __ - X Ix,a is 
natural, so corresponds to a function IX ~ 1X("'; prove directly 
that QT is injective and surjective.J 

2. ([Barr '70-A, 5.11, 5.12].) Let X:Jf' ~ Jf' be an arbitrary endo­
functor. 
(a) Prove that if(Q, 0) is an initial object in Dyn(X) then 0: QX ) Q 

is an isomorphism. [Riflt: there exists unique tjJ:(Q, 0) ----+ 

(QX, oX) and 0.tjJ = (tjJ.o)X = id.J 
(b) Let Q be such that (QX@, Qflo; QIJ) exists and Q + R exists for all R. 

Prove that 
Q~QX@( Q!lü QX@X 

is a coproduct diagram in Jf'. [Rint: it suffices to show that b = 

(QIJ, flo):Q + QX@X ) QX@ is an isomorphism; define a new 
process X: Jf' ~ Jf' by RX = Q + RX; then (Q, b) is an initial 
object in Dyn(X).J 

3. This result has been long in the folklore. It was first published in an 
automata-theoretic context by [Goguen '72]. Let Jf' have and let 
X: Jf' ~ Jf' preserve countable coproducts. Prove that X is an input 
process. [Rint: QX@ = U QX" is the "classical" free monoid construc­
tion.J 

4. [Adamek '74J, [Trnkova, Adamek, Koubek and Reiterman '75J; cf. 
[Barr 70-A J, [Dubuc '73]. Let Jf' be a small co-complete category and 
let M be a subclass of monomorphisms satisfying the following four 
conditions: 

Coproduct injections are in M. 
1f fand g are in M so is their coproduct f + g. 



306 Some Applications and Interactions 

Given an ordinal-indexed ascending chain in M, the injections to the 
colimit are in M ami the colimit-induced map owing to an upper bound 
whose componellts are in M is again in M. 

% is M well-powered. 
For Y:% ---> % any funetor, any f:1 --+ 1Y may be transfinitely 
iterated through the ordinals: 

A Jo={ AY h=JoY, Ay2 __ ... AYro = eolim Ayn 

A yro ~ A yro+ 1 is eolimit-indueed ... 

Notiee that if Y preserves M then eaeh fis in M. 
(a) Let X:% ---> % preserve M and fix 1 in %. Prove that the 

following three eonditions are equivalent: 
(i) The free dynamies (IXI", 1/10) over 1 exists. 
(ii) If Y: $' ----> % is defined by A Y = 1 + AX and if f: 1 ----> 1 Y 

is the first injeetion then the iteration of f (as above) stops, i.e., 
fa is an isomorphism for some rx. 

(iii) There exists A in % with A ~ 1 + AX. 
[Hint:for(ii)implies(i)setlX = 1ya, 1/10 = inz.f;l;for(i)implies 
(iii) use exereise 2 (b); for (iii) implies (i) eonstruet eanonieal mor­
phisms 1ya ----> A in M and use well-poweredness.] 

(b) As a eorollary to (a), show that X: Set , Set is an input proeess 
if and only if eard(rxX) ~ rx for arbitrarily large eardinals rx. 

(e) Show that the power-set funetor is not an input proeess in Set. 
(d) In Set, use (b) to show that a quotient funetor of an input proeess 

is an input proeess. Generalize this result by using a Birkhoff sub­
eategory argument. 

(e) Construet an example of an input proeess in Set such that XI" is 
unbounded. [Hint: define AX = {t/I: t/I is an injeetive funetion from 
asingulareardinalintoA} U {oo}, (t/I,fX) = t/I.fift/l.fisinjeetive, 
all other values of fX = 00; eard(AX) = eard(A) if eard(A) is an 
infinite regular eardinal.] This example justifies the need to have 
Y depend on 1 in part (a). 

5. For arbitrary X: % ---> %, a Peano algebra is a diagram 

Q~R..!- RX 

satisfying (i) the diagram is a eoproduet; (ii) whenever (Q', <5') is in 
Dyn(X) and %(Q, Q') is nonempty then %(R, Q') is nonempty (this 
eondition always holds if % = Set); (iii) Q generates (R, <5) in the sense 
that any two dynamorphisms from (R, <5) whieh agree preeeded by '1 are 
equal. Let M be the dass of all %-morphisms whieh are the eolleetive 
equalizer of a eountable family of maps. Assume that % has and X 
preserves eolimits of aseending ehains !,,:A Il ---> An + 1 with eaeh f.. in 
M. Prove that eaeh Peano algebra is free, i.e., prove that R = QXe". 
[Hint: eonsider 
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Q-----'----~ +------'---- RX 

Q'+-( ---b-' --- Q' X 

here, go is arbitrary, hn is defined by ""l.hn = f, b.hn = gn-l.b'" and 
gn+l = hnX;defineEn = eq(hm:m ~ n);thenE = colimEnisadynamics 
through which f factors because X preserves the colimit; E = R because 
Q generates R.] 

It is standard to say that the Q-algebra (R, b) is a Peano algebra if 
(i) whenever W E Qm w' E Qn" f E Qn, j' E Qn' are such that fb m = j'bm" 

then n = n', W = w', and f = j' and (ii) the set Q of elements not of 
form fbm generates (R, b). It is clear that this concept coincides with the 
Peano algebras relative to X Q in the sense of exercise 5. It has been 
noted by [Lowig '52], [Stomiii.ski '55], [Diener '66], and [Felseher '72] 
that Peano Q-algebras are free; this can be proved for finitary Q as in 
exercise 5. It is interesting to ask which input processes not of the form 
X Q are such that "Peano implies free" is true, and to speculate upon the 
possibility that such new Peano algebras will playa role in the syntax 
of universal algebra. 

6. X: Set I Set is jinitary if, for all A, every element ofAX has finite 
support, i.e., is in the image of fX for some f:n --t A with n finite. 
(a) Show that X is finitary if and only if X is a quotient functor of Xg 

for some finitary operator domain Q. [Hint: use Qn = nX.] Conclude 
from exercise 4 (d) that a finitary functor is an input process. 

(b) For n > 1, show that AXn = {S c A:S is nonempty and has at 
most n elements} is finitary and that Dyn(X) is the category of sets 
equipped with asymmetrie n-ary operation. 

Note that AX~ can be defined "syntactically" by the scheme 

A c AX~ 

If p, q E AX~ then {p, q}W.E AX~ 
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where {p, q} = {q, p} is literally a doubleton. It is interesting to ask 
for which finitary X such a syntactic construction of X" is possible. 

(c) If X is finitary, show that the Adamek algorithm for AX ,a [exercise 
4(a) (ii)J stops at ~o for all A. Study this algorithm in detail for 
- x X 0' ( - )2 and X 2 as in (b). 

7. Let f:X* ------> Y be a function. Using the proof of 2.18, prove that the 
minimal realization off (with respect to - x X: Set ) Set, I = 1) 
is constructed as the subdynamics Qf = {Lwf:w E X*} c y X' with 
initial state fand output pr1 , where Lw: X* ) X* is the map 
w' 1------+ ww'. Derive M f for f as in 2.2 using this approach. 

8. Let X = {a}, Y = {O, I}, f = XL:X* ) Y where L = {am:m is 
prime} c X*. Prove that Qf is infinite (and hence that all realizations 
of f have infinitely many states). 

9. Let X = {dime, choice 1, choice 2} = {d, 1, 2}, Y = {candy bar, pea­
nuts, nothing} = {c, p, n}, and let f: X* ------> Y be the vending machine 
response (d1X*)f = c, (d2X*)f = p, otherwise f = n. Use exercise 7 to 
construct the state graph of M f. [Hint: there are five states.J 

10. (See [Anderson, Arbib and Manes '74, 3.12J for a more abstract treat­
ment.) Let Q be finitary and let I, Y be arbitrary sets. Prove that any 
f: I Xi; ) Y has a minimal realization, that is a terminal reachable 
realization as discussed in 2.18 +. [Hint: define E f = {(p, q): pTf = qTf 
for all translations T} c IX~ x IX~; here, an elementary translation is 
an endomorphism u:IXri ) IX~ for which there exists n > 0 and 
W E Qn such that u is obtained from (flot:(JXmn , IX~ by 
fixing n - 1 of the arguments, and a translation is the identity or is a 
composition of elemwtary translations; use the fact that Q is finitary 
to prove that Ef is a congruence; set Qf = IX~/Ef; if M is another 
reachable realization with reachability map r, then if pr = qr and if T is 
an e!ementat·y translation, pTf = prtß = qTf, so that (p, q) E E f.J For 
the case of - x X:Set ) Set, I = 1, show that u:X* ------> X* 
is a translation if and only if w'u = w'w for some w in X*. Conclude 
that, for any f:X* ------> Y, Ef = {(v, w):LJ = L,J}. This is known 
in automata theory as the Nerode/Raney/Myhill equivalence off. 

11. ([Anderson, Arbib and Manes '74,3.15].) 
(a) Let X: Set ------> Set be an input process. Suppose given an ascending 

chain (Rn) of congruences on IX@ such that the equivalence relation 
R = uRn is not a congruence. Prove that the canonical projection 
f:IX(ri ------> Y = IX@/R has no minimal realization. [Hint: if M f 

exists, its universal property guarantees that each Rn is contained in 
the kerne! pair of r f; this implies that R = ker pair rr is a congruence.J 

(b) Let Q have a single operation W of countably-infinite arity and let 
I = {O, 1,2 ... }. Prove that there exists f:IX~ ) Y with no 
minimal realization. [Hint: define ljJ: I X Ca ) I Xc" = hX'a, where 
nh = Max(n - 1,0); define Rn = ker pair ljJn and apply (a); to 
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show that R is not a subalgebra, define Pn = (012 ... nOOOO .. . )0) 
and observe that (Po, Pn) E Rn but that ((PoPoPo .. . )0), (POP1P2 .. . )0)) 
is not in R.] Our construction requires the sort of infinitary syntax 
we avoided in section 1.5. 

The question of when I: I X'" ) Y has a minimal realization 
has been considered by [Adamek '74] and [Trnkova '74, 75]. [Trnkova 
'75, Proposition 3] improves (b) above: 

Suppose there exists an infinite cardinal lI. :( card(IX(U) for 
which there exists P in lI.X such that P is not in the image of IX 
for any I:A ~ lI. with card(A) < lI.. Then there exists a sub set 
of I X@ whose characteristic function has no minimal realization. 

The hypotheses of Trnkova's theorem hold in (b) with lI. = ~o; but her 
construction, even for this X, is difficult. 

3. Nondeterminism 

Algebraic theories are used to model "fuzzy theories." W e use this 
approach to extend the ideas of the previous section to "nondeterministic 
automata theory," discovering emoute a rapprochement with Beck dis­
tributive laws. 

Given a set Q and two elements q, qo of Q, there are many ways to measure 
the "degree of certainty" that q = qo. We may know that q is in A for some 
subset A of Q; that is, "subset" is such a measure. Then again, for each r in 
Q we may consider the probability AI" that q = r with respect to which }'qO 

is the "certainty" that q = qo. Without further ado, we have: 

3.1 Definition. Let % be a category. AIuzzy theory in % is an algebraic 
theory T = (T, e, 0, m) in %. (Since other algebraic theories enter the picture 
later, we write e for 11 and m for p.) 

The heuristics motivating 3.1 are as follows. For each object Q, QT 
is the "object of degrees of T-uncertainty over Q." We may view QT as a 
"cloud of fuzzy states, the values of Qe: Q ----> QT representing the 'crisp' 
or 'pure' states." A morphism lI.:A ~ B = lI.:A ~ BT is a "T-fuzzy 
morphism from A to B." The fundamental assumption is that the structure 
of "uncertainty" lies in knowing how fuzzy morphisms compose which is, 
of course, the role of 0. The interpretation of aT-algebra (Q, ~) is as a 
"decider"; that is, ~ is "a way of assigning a pure state to each fuzzy one in 
such a way that pure states are assigned themselves and consistent with the 
causality implied by the operation of fuzzy morphism composition." 

The "subset" uncertainty measure mentioned above corresponds to T 
as in 1.3.5, where fuzzy morphisms are relations. Interesting subtheories are 
"finite subsets," "nonempty subsets," "QT = Q + {0};" in the first three 
cases the algebras are suitably complete semilattices and in the last case 
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the algebras are sets with base point. The "probability" uncertainty corre­
sponds to the subtheory of the matrices theory of 1.3.6 given by Q T = all 
(I..b:b E B) with each Ab ~ 0 and l)b = 1, that is, QT is the set ofprobability 
distributions on Q. Fuzzy morphisms are then row-stochastic matrices and 
the proof that 'probability distributions' forms a subtheory reduces to the 
well-known result that a composition of row-stochastic matrices is again 
row-stochastic. While every convex subset of areal vector space is an algebra 
over this theory there are other examples (see exercise 1). 

3.2 Credibility Values. Let M be a monoid "of credibility values" and 
let TM be the associated algebraic theory in Set as in 1.3. Given the fuzzy 
morphism a:A ~ B x M, if aa = (b, m) then "aa = b with credibility m." 
The monoid multiplication determines how credibilities combine. This 
ex am pIe seems apt for M the unit interval under multiplication. 

3.3 L-Relations ((Goguen '67, Seetion 6]). Let L be a camplete distribu­
tive lattice, that is, a complete lattice in which for each x in L the map 
x /\ (- ):L ) L preserves suprema. L induces a fuzzy theory 
(T, e, 0) as folIows. AT = LA. Ae: A ) AT sends a to its "characteristic 
function" Xa:A ~ L defined by a'Xa = 1 (the greatest element of L) if 
a' = a, a'Xa = 0 (the least element of L) otherwise. Given a:A ~ LB, 

ß:B ~ LC then r!. 0 ß:A __ LC is given by 

c(r!. 0 ß)a = SUp((Cßb) /\ (br!.a):b E B) 

Complete distributivity is used to prove that the theory axioms are satisfied. 
Notice that sets and relations is recovered by taking L to be the two element 
lattice. 

The remainder of this seetion is concerned with the extension of the 
realization theory of the previous section to "fuzzy systems." We begin with 
a motivating example. 

3.4 Example. Let X have one element, let Y be the set of subsets of 
{a, b, c, d}, and let f: X* ~ Y be the response 

f: a/b/c/d//ab/ac/ad 

(i.e., fis a sequence, fo = {a}, f4 = f7 = {a, b}; // denotes a return point for 
cycling). U sing 2.18 it is clear that the state graph of the minimal realization 
of fis 
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It is possible to build the following "multiple branching" realization of f 
which has fewer states: 

For the first four cycle times this system runs as before; but then the state 
q3 splits into the "fuzzy state" {q 1> q} emitting output {a, b} thence transiting 
to the fuzzy state {q2, q} emitting output {a, c} and so forth, so that the 
response is again f. 

The dynamics of this multiple branching system takes the form 6: Q x 
X ---> QT where QT is the set of nonempty subsets of Q. This motivates 
the study of dynamics ofform 6:QX ) QT where X is an input process 
in a category % and T is a fuzzy theory in %. As pointed out in the notes, 
the concepts introduced in this abstract setting have elucidated certain 
aspects of realization theory even for the much-studied situation where 
6:Q x X ~ Q is a relation. 

Let us begin the general discussion in the specific context of the multiple 
branching system above by pointing out a specific structural fact: if X is 
a set and T is the "nonempty sub set" theory, there is a canonical map 

QT x X ~ (Q x X)T 
(A, x) 1------* A x {x} 

(3.5) 

Each multiple branching dynamics 6:Q x X ---> QT in duces the ordinary 
dynamics 6":QT x X ---> QT by 

6" = QT x X ~ (Q x X)T ~ QT 

Here, 6# is the unique union-preserving extension of 6. The reader should 
check that, for the multiple branching machine of 3.4, 6° is as expected, e.g. 
({qz,q3})6" = {Q3,q1>q}. 

For the case of general X and T we have: 

3.6 Definition. Let X:% ----* % be a functor and let T = (T, e, m) 
be an algebraic theory in %. A distributive law qf X over T is a natural trans-
formation Je: T X ) X T satisfying 

TX----~:..:....' --4) XT 
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TTX __ --.;;T..:...A:....-_~) TXT ___ AT __ ~) XTT 

mX Xm 

TX---------------~)XT 
A 

The term "distributive law" comes from the distributive law of ring 
theory as will gradually be explained below. 

The following proposition generalizes 3.5: 

3.7 Proposition. Let X be a set and let T = (T, e, m) be an algebraic 
theory in Set. Then 

QT x X ~ (Q x X)T 
(p, x) I ) (p, inx T) 

(where inx:Q ~ Q x X sends q to (q, x)) is a distributive law of - x X 
over T. 

Proof. This is an easy consequence of the diagrams 

Q ___ --.,;i;;:;;n~x __ -+) Q x X Q ___ Q=e __ ----+) QT . 

f f x id 

Q'----:-in-x-~) Q' x X Q x X (Q x X)e ) (Q x X)T 

Inx in TT 
QT----"::.....-~) QT x X QTT x) (Q x X)TT 

QA Qm (Q x X)m 

(Q x X)T QT----..,.--~) (Q x X)T D 
inxT 

3.8 Example. The distributive law of ring theory asserts that multipli­
cation distributes over addition in the sense that we have 
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(Xl + ... + Xn)' (Yl, + " .. + Yn) = X1Yl + X1Yz + ... + XnYm 

The corresponding distributive law in the sense of 3.6 is constructed as 
follows. Let T be the theory for abelian groups and write a typical element 
of the free abelian group Q T as '[Pqq where nq E Z (e.g. the formal sum 
2q - r has nq = 2, nr = - 1, all other n, = 0). Let QX = Q x Q so that 
X = X Q where Qz = {.}, Qn = 0 if n =f. 2; accordingly, we write a typical 
element of QX as q . r rather than (q, r). Define Ä.: TX ) XT by 

QT x QT~(Q x Q)T 
I nqq . I IV 1-1 ---~) I nqnr(q . r) 
q r q, r 

We leave it as an exercise to check that Ä. is a distributive law. The precise 
sense in which a ring is aT-algebra and an X-dynamics which satisfies the 
above distributive law is discussed in exercise 6(e) below. 

As motivated by our earlier discussion, distributive laws provide the 
key to "running" fuzzy systems. We have: 

3.9 Fuzzy Systems. A Ä.-automaton with respect to a fuzzy theory (i.e., 
an algebraic theory) T in X, functor X:X ~ X and distributive law 
Ä.: IX ) XT, is a 7-tuple M = (Q, <5, I, T, Y, e, ß) where (Y, e) is a T­
algebra and 

QX~QT 

Notice that ß generalizes a map of form Q ~ Y. 
Associated with the Ä.-automaton M as above is the X -automaton M· = 

(QT, <5°, I, T, Y, ß#) where 

<5. = QTX~QXT~QT 

In case IX@ (the free X-dynamics over 1) exists, the response of M is defined 
to be the response of MO (as defined in 2.3). Thus, while the definition of a 
Ä.-automaton is independent of Ä., its response is not. 

The reader should check that the deterministic and multiple branching 
machines of 3.4 have the same response (using the distributive law of 3.5 
to run the latter). 

3.10 A Probabilistic System. Consider the problem of designing a 
vending machine subsystem to accept fifteen cents. This means that the 
machine should reach a "successful" state s from its initial state qo just in 
case the input sequence is one of dn, nd, nnn where d represents "dime" 
(ten cents) and n represents "nickel" (five cents). The following state graph 
describes the deterministic minimal realization of this subsystem; (it is 
minimal regardless of whether we regard the output to be the state, ß = idQ 

für Q = {qo, q 1, q2, s, v} (as is natural for a subsystem) ür choose ß to be 
the characteristic function of {s}). Suppose now that there is a probability d' 
für a dime and n' for a nickel üf premature transition to the "overflow" state 
v. The deterministic diagram below must be modified to take account ofthese 
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probabilities; thus, for example, the n-transition from ql to q2 now occurs 
only with probability 1 - n' and there is an n-transition with probability 
n' from q 1 to v, and so forth. If T is the stochastic matrix theory discussed in 
3.1 and A. is the canonical distributive law of X = - x {d, n} over T of 3.7, 
then our probabilistic system is sensibly modelled as the (T, X, A.)-automaton 
M = (Q, 0, 1, '!, [0, IJ, ß) described as follows. o:Q x {d, n} -----+ QT 
assigns to (q, x) the probability distribution on Q of transition from q with 
input x so that, for example, 

(ql> n)o = (0 0 1 - n' 0 n') 

where the ordering on Q is qo, ql' q2' s, v. As is easily checked, 0" assigns 
the convex transformations corresponding the row-stochastic matrices given 
by 0, so that 

o 0 1 - d' 0 d' o 1- n' 1 0 n' 
000 I-d' d' o 0 1- n' 0 n' 

(-, d)oO = 000 0 1 (-,n)oO = o 0 0 1- n' n' 
000 0 1 o 0 0 0 1 
000 0 1 o 0 0 0 1 
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A natural initial state is r = (1 0000) (i.e. we start in state qo with probability 
1). If r:{d, n}* ) Q denotes the reachability map of M·, it is easily 
checked that (dn)r = (nd)r = (000 a 1 - a) whereas (nnn)r = (000 b 1 - b), 
where a = (1 - d')(1 - n') and b = (1 - n')3. The unit inter val [0, 1J is a 
convex set in the usual way, and hence aT-algebra. Let ß: Q ------+ [0, 1 J 
send s to 1 and everything else to O. Then if f = r.ß# is the response of M, 
we have, e.g., (nnn)f = (1 - n')3. In general, wf is the probability that w 
will lead to state s. 

In the previous seetion we saw that the reachability and observability 
morphisms, fundamental in the discussion of system response, were X­
dynamorphisms. For A a distributive law of X over T, we shall see that the 
appropriate generalization for the needs of fuzzy system response is from 
"X-dynamorphism" to "homomorphism of A-algebras." We begin with a 
definition. 

3.11 Definition. Let A: TX ) XT be a distributive law of X over 
T as in 3.6. A A-algebra is a tripie (Q, c5, ~) where (Q, c5) is an X -dynamics and 
(Q,~) is aT-algebra subject to the A-Iaw that ~:(QT, QJc.c5T) ------> 

(Q, ~) is an X-dynamorphism: 

QTX __ ---"--~X~_--+) QX 

QA 

QXT 

c5T 

QT-------+) Q 
~ 

(3.12) 

The category %" of },-algebras may be regarded as a category of .ff -objects 
with structure-indeed a full subcategory of Dyn(X) x %T in Struct(%)­
by defining a A-homomorphismf:(Q, c5,~) ) (Q, c5', 0 to be a simul­
taneous X-dynamorphism and T-homomorphism. 

3.13 Example. LeU be the distributive law of3.7. Writing qc5x = (q, x)c5, 
thediagram 
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lllx .; x id Q T------="--~) Q T x X---=-----)-> Q x x 

(Q x X)T 

15T 

QT------~) Q 
.; 

shows that the Ä-law holds if and only if 15x is a T-homomorphism for all x 
in X. Identifying Dyn(X) with SetX(ii as in 2.13, we see that See is isomorphie 
in Struet(Set) to SetX'" @T whieh is algebraie over Set(see 3.6.21). We shall 
prove below in 3.15 that :%A is always algebraie over X'. 

3.14 Example. Let T be the identity theory in :%, QT = Q, Qe = idQ, 

ex 0 ß = ex.ß. For any X::% ----+:%, Ä = idx: TX ) XT is a dis­
tributive law and, sinee (Q, .;) is aT-algebra if and only if .; = idQ, :%). is 
isomorphie to Dyn(X) in Struct(Jf} Thus the theory of Ä-algebras generalizes 
Dyn(X). 

The next two theorems present the fundamental faets about Ä-algebras. 
The proofs of these theorems make crucial use of the axioms assumed about 
Ä in 3.6. 

3.15 Theorem. Let X be an input process in :% with indueed algebraie 
theory Xc'" = (X',\ 1], Ji), let T = (T, e, m) be an algebraie theory in :%, and 
let J,: T X ) X T be a distributive law of X over T. Let U 1::% A --~ 
Dyn(X), U2 :Dyn(X) ):%, and U = U 1 U2 ::%). ):% 
be the forgetful funetors. Then the following three statements are valid: 

1. U 1 is algebraie and the eorresponding algebraie theory in Dyn(X) is 
isomorphie to the theory t = Cl', e, m) defined asfollows: 

(Q, (5)T = (QT, QTX Q;' ) QXT ~ QT} 

(Q,15)e = Qe:(Q,15) ) (Q,15)T 
(Q, (5)m = Qm:(Q, (5)TT ) (Q, (5)T 

2. The algebraie theory in :% indueed by the faet that U has a left a~joint 
is isomorphie to the theory T* = (T*, e*, m*) defined by 

QT* = QX(BT 

Qe* = QI].QX'''e = QlJe = Qe.QIJT 
Qm* = QX@TX(<lT (QX"d;..Q/lOTl'"r QX("TT QX';'m) QX'dT 
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(see 2.13 for the definition afp and see 2.11). 
3. U is in fact algebraic, the semantic camparison Junctar ifJ: ff). ---+ 

ffT* being given by 

and the inverse passage ifJ- 1 being given by 

(Q, tj;)ifJ- 1 

= (Q, QX Qp) QX Cn ~ QXG1T ~ Q, QT ~ QX("T ~ Q) 

Proof. Since T is an algebraic theory in ff, the proof that t is an 
algebraic theory in Dyn(X) requires only that we check that t is functorial 
and that e and mare dynamorphisms. This is clear from the three diagrams: 

QTX fTX ) RTX QX QeX ) QTX 

QA. RA. 

fXT QXT ---"-------+) RXT 

(jT yT 

QT ------~) RT 
JT 

QA. 

QXT 

(jT 

Q ----Q-e----+) Q T 
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QTTX __ -=Q,-m_X __ ~) QTX 

QA 

QTXT 

QAT Q~QXT /m 
QXTT 

ÖT 

ÖTT 

QTT----------~)QT 
Qm 

in which all three axioms for a distributive law have been used. It is clear 
that aT-algebra is the same thing as (Q, ö, e) where (Q, ö) is an X-dynamics, 
(Q, e) is aT-algebra, and e:(Q, Ö)1' ) (Q, Ö) is a dynamorphism; but 
this last condition is just the A-law 3.12. This completes the proof of (1). 

The formulas for T* are direct consequences of 2.2.30 and 2.2.20. Thus 
m* = F 2F 1[;*U 1 U 2 where 

(Q, (5, ~)e* == QF 2F 1 U 1e2F l) (Q, (5)F 1 --"-' ----+) (Q, (5, ~) 
= (QXe"T, QX~IA.QJ1o T, QX@e) b'''T ) (QT,Q},.ÖT,Qe) --~) (Q,Ö,e) 

Similarly, the formula for the semantics comparison functor follows from 
2.2.20. To complete the proof of the theorem we must show that <P- 1 is 
weIl defined and inverse to <P. To begin, the diagrams 

T ___ .....;1)'-T __ ~) XCi'T 

e 

id 
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TT--------------~~----------4 

~X@1T 
m idl m* 

X@TT ___ _ 

T--------------------------------~ 
I1 T 

prove that I1T:T -----> T* is a theory map so that, by 3.2.9, (Q, t/t)cP- 1 is 
at least an X-dynamics and aT-algebra. Now consider the diagram 

id 

As a first use of diagram 3.16, we have QX@YA.(QX@A.Q/loT)T.QX@m = 

QX@mX.(QX@),.Q/lo T) which establishes the A-Iaw at least for (QX@T, 
Qm*)cP- 1 . Now, one expects the full subcategory of (Q, b, ~)'s satisfying the 
A-Iaw to be closed under products, subobjects, and epimorphisms split at 
the level of ff because the A-Iaw is "an equation." That this is so follows 
from diagram 3.17. (The only case important to this proof is that in wh ich 
(Q, b, ~) satisfies the A-Iaw and the X-dynamorphism and T-homomorphism 

(3.16) 
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Q'T~ fTX fX)Q'X 

Q'}, ~ ~X / 
QTX----~----~)QX 

Q}J 
Q' XT~-f-X-T-QXT 

OTl 
0' (3.17) 

b'T /T ~ )Q~ 

Q'T ---------------~,------------~) Q' 

j is split epi in Jf"; since jTX is epi, we deduce that (Q', 0', ~') satisfies the 
Je-Iaw as weIl.) But cP -1 is functorial, as is clear from the diagrams 

QX 
jX 

)Q'X QT 
jT 

) Q'T 

Ql'l 
jX(li 

1Q'p 
Ql]T Q'l]T 

Qxea >Q'X(Q 

QX@,l 1Q'X@, QXe"T 
jX@T 

>Q'X@T 

jX0T QX@T ) Q'XeGT 

0/1 10/' 

t/t' 

Q 
j 

) Q' Q 
j 

) Q' 

Since 1jJ:(QXeiiT, Qm*)cp-1 ) (Q, t/t)cp-1 is an X-dyna­
morphism T-homomorphism split epl m %, it is now clear that cp-1 
is a well-defined functor. Very similar arguments are used to show that 
(Q, t/t)CP-1cp = (Q, t/t). For we read from 3.16 that (Qx(aT, Qm*)cp-1 = 
(QX@T,QXiiJe.Q/loT,QX@m) so that (Qx(a)T, Qm*)cp-1cp = (QXG'T, Qm*); 
then, because t/t:(QX(iLT, Qm*) ) (Q, t/t)cp-1cp is a T*-homo­
morphism, it follows immediately from 3.1.9 that (Q, t/t)cp-1cp = (Q, t/t). 

The last detail to check is that if (Q, 0, ~)CP= (Q, t/t), so that t/t = oC<\ T.~, 
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that (Q, ljI)(p-l = (Q, b, ~). This follows from the diagrams 

Q T __ --=Q:::....c11_T_---+> QXilT 

id l' 
QT 

1< 
Q 

QX~QX" ~X~:T 
b QXT ________ . 

bT~ 
QT 

1< 
Q ---------:-id-------~> Q 

321 

recalling from 1.4.13 that bT.~ is the unique T-homomorphic extension of 
b. 0 

3.18 Theorem. Let X be an output process process in X, let T = (T, e, m) 
be an algebraic theory in X, and let Je: TX , XT be a distributive law 
ofX over T. Then theforgetfulfunctor X" ---> X T has a right adjoint. Using 
notations as in 3.15 and 2.3, the cofree A-algebra over the T -algebra (Y, 8) is 
(YX(ii, Y L, 8#) with coinclusion of the generators YA: (YX ra , 8#) -------> 

(Y,8), where 8# is obtained from 8 as the unique dynamorphic coextension 
ofthe unique T-homomorphic extension (YA)# as shown in the diagram below: 

YA 
(YX<0, YL)-----~) Y 

Pt" 
\ 

\ 

\ 
\ 

(YX<0, YL)T 

(YA)# 

(Y,8) 

(YA)# 

(YX,a T, YX(Q.m) 
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Praaf. We first show that (YX(a, 8#) is aT-algebra. The diagram 

YA YAT 

shows tha~ YX(aie.8# = idyx,a' since YX(a;e:(YX«i' YL) ---------> 

(YXea;, YL)T is a dynamorphism. Similarly, the diagram 

--------------~Y 

establishes first that YX~,m.8#.YA and 8# T.8#.YA are equal T-homomor­
phisms and thus that YXl",m.8# and 8# T.8# are equal dynamorphisms. That 
(YX@, YL, 8#) is a A-algebra is clear since 8# is a dynamorphism. As 8#. YA = 

(YA)"' = YAT.8, YA:(YX@, 8#) ) (Y, 8) is a T-homomorphism. 
Now suppose given a A-algebra (Q, c5, ~) and a T-homomorphism f: 

(Q, (5) ---> (Y, 8). Let r:(Q, (5) ) (YX@, YL) be the unique dynamor­
phie coextension of f. It suffices to show that r:(Q,~) ) (YX@, 8#) 
is a T -homomorphism. This is clear from the diagram 



3. Nondeterminism 323 

\ 
\ 

r\ 'j 
\ 

\ 

" (Q, 6, ~) 

QT fT >YT 

~~ YX(ii'T 

e 

since ~.r and rt.8# are dynamorphisms. 0 
For the balance of this section we fix an input and output process X: 

ff --+ ff, an algebraic theory T = (T, e, m) in ff and a distributive law 
A:TX ) XT of X over T. We use the notations introduced after 3.15 
without special mention. 

Generalizing the M· of 3.9 (see 3.20), we now present a "state-free" 
algebraic version of a fuzzy system: 

3.19 Implicit ,i-Automata. An implicit ,i-automaton is an 8-tuple M = 

(Q, b, ~,I, 'f, Y, 8, 7J) where(Q, b, ~)is a ,i-algebra,'f:I --+ Q is aff-morphism 
and, 73:(Q, ~) ) (Y, e) is a T-homomorphism. 

Observe that when T = (id, id, id) and ,i = id, "implicit ,i-automaton" 
and ",i-automat on" coincide with "X-automaton." 

The X -reachability map ofthe implicit ,i-automaton M is the unique dyna­
morphic extension r:(lX1n , Ipo} ) (Q, 6) of T. The reachability map 
of M is the T -homomorphic extension r# : (1 x a T, I Po, I Xii m) --------> 

(Q, b, ~) ofr. As is clear from the proof of3.15, r# may be viewed as the unique 



324 Some Applications and Interactions 

},-homomorphic extension of r: 

............... r 
...... 

The response of NI is then the composition f = r.13:1X'" ) Y. 
The observability map of NI is the unique A-homomorphic coextension 

of13: 

In the next two propositions we show that A-automata and implicit 
A-automata compute the same responses. 

3.20 Proposition. Let M = (Q,o:QX ) QT, I, r, Y, e, ß) 
be a },-automaton. Then MO = (QT, 0·, Qm, I, r, Y, ß#) as defined in 3.9 is 
an implicit },-automaton and the response of M (as dejined in 3.9, i.e., as in 2.3) 
is the response of M· (as dejined in 3.19). 

Proof. That (QT, 0·, Qm), with o· = Q},.o#, is a A-algebra follows from 

QTTX 
QmX 

) QTX 

Qn1 
QTXT QA 

QAT1 
QXm 

QXTT >QXT 

0#T1 10# 

QTT 
Qm 

>QT 

The assertion about the responses is clear from the definitions. 0 
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To prove the converse of 3.20 we need to have a way of associating a 
),-automaton M to an implicit A-automaton 1\1.. This can be done in such a 
way that the state-object can be taken to be "any subobject generating Q as 
aT-algebra" in the following precise sense: 

3.21 Definition. Let (Q, ~) be aT-algebra. A scoop of (Q, ~) is a tripie 
(Q, i, c) where i:Q ---> Q, c:Q ~ QT are such that c.i.# = id. By 1.4.31, if 
% = Set then for each (Q, i) there exists a scoop of form (Q, i, c) if and only 

Q c )QT< Qe 
Q 

i# 
id 

Q 

if the image of Q in Q generates Q as aT-algebra. Of course there always 
exists at least one scoop, namely (Q, id, Qe). 

3.22 Proposition. Let M = (Q, b, ~, I, T, Y, e, ß) be an implicit A­
automaton and let (Q, i, c) be any scoop of Q. Then the A-automaton M = 

(Q, 6, I, T, Y, e, ß) where 

6 = QX~QX~Q~QT 
r - c 

T=I--->Q~QT 
i - ii ß=Q--->Q--->Y 

has the same response as M. 

Proof. Since c.i# = idQ we have 

iX 
QX---~--~) QX 

QT------~) Q 
i# 

It follows that iXT.bT.~ = (iX.b)# = (6.i#)# = 6#j#. We therefore have the 
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diagram 

J# 

):X~--i-X-T--------~-------------+)QT 

QA )QXT~(5T 
~ QT 

A-Iaw 

We also clearly have (since 71 is a T-homomorphism) 

Thus i#:(QT, J., I, 't, Y, p#) I (Q, b, 1,1', Y, ß) is a simula-
tion of X -automata and, in particular, M and M have the same response. 0 

Although its significance is smaller than we might have hoped, the 
minimal realization theorem for X -automata (2.18) has a straightforward 
generalization to implicit A-automata: 

3.23 Proposition. Let (E, M) be an image Jactorization system in ;Y{ such 
that X@T preserves E. Let I, (Y, ()) befixed. ThenJor every J:1X(iiJ I Y 
there exists an implicit A-automaton M = (Q, b, ~, 1', ß) such that the response 
oJ M is J, the reachability map r#: I X@T I Q is in E, and the observ­
ability map a:Q ----+ YX@ is in M. 1J M' also satisfies these three con­
ditions then M and M' are isomorphie (i.e., there exists an isomorphism "': 
(Q, b, ~) ------+ (Q', b', ~') oJ A-algebras such that 1'.", = 1", "'·71' = 73). 

ProoJ. Using the notations of 3.18, J extends to a A-homomorphism 
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J:(IXOY, Ipo, Im) -------» (YX(a;, YL, e,J as shown below: 

IX@---~-~Y 
! 

(where it is easily eheeked that (f#)# = ] = (j~)#). Using the same reasoning 
as in 2.18 (2), as x(ay preserves E, the E-M image 

of flifts uniquely to Je-algebra homomorphisms. The remaining details follow 
the proof of 2.18. 0 

For the remainder of the seetion we fix :ft = Set. Example 3.31 below 
will clarify why the previous proposition is at best a first step towards a 
minimal realization theory for fuzzy systems. 

3.24 Isolated Elements. Let (Q, ~) be aT-algebra. Reeall [rom 1.4.31 that, 
if Ais a subset of Q, then <A) = Im(iT.~) is the sub algebra of(Q, ~) generated 
by A. Say that q in Q is an isolated element o!{Q, ~) if q eannot be generated 
by applying the T-operations to the other elements, that is, if q rfo <Q - {q}). 
When T is the theory whose algebras are semilattiees (1.5.15), i.e., QT is the 
set offinite subsets ofQ qua subtheory ofthe theory of 1.3.5, isolated elements 
are more eommonly ealled join-irreducibles. In the semilattiee shown below 

g~ 
e 

/ 
c 
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(i.e., a v b = c, e ~ g, etc.), the cirded elements are the join-irreducibles. 
Now let T be the stochastic matrix theory of 3.1 +. Each convex subset Q 
of areal linear space may be viewed as aT-algebra. In this context, isolated 
elements are called extreme points. For example, the extreme points of a plane 
convex polygon are its vertices. In both of these examples we may speculate 
upon the observation that the isolated elements form a minimal set of gen­
erators. We always have: 

3.25 Proposition. Let Q be the subset 01 isolated elements 01 the T -algebra 
(Q, ~) and let R c Q generate (Q, ~), i.e., <R) = Q. Then Q c R. 

Proo.f. For q E Q, since q E <R) it is false that R is a subset of Q - {q}. 0 

3.26 Extremal-State Algebra. A large part of the theory of finite­
dimensional vector spaces concerns "change of coordinates." At the other 
extreme we have: The T-algebra (Q, ~) is extremal state if the subset Q of 
isolated elements of (Q, ~) generates (Q, ~). In this case, elements of Q are 
called the states of (Q, ~). By 3.25, such Q is the unique minimal set of gen­
erators of (Q, ~). A nonzero vector space is not extremal state. Every free 
monoid is extremal state, the states being the words of length one. Since the 
three-element group is the submonoid generated by either of its nonunit 
elements, it is false that a quotient of an extremal-state algebra need be 
extrem al state. A subalgebra of an extremal-state algebra may fail to be 
extremal state (e.g. the interior of a convex polygon has no extreme points). 
Moreover, an extremal-state algebra can sometimes be embedded in an ex­
tremal state algebra with fewer states (e.g. any plane convex polygon can be 
embedded as a convex subt:et of the interior of a triangle). 

The theory T is extremal state if every finitely-generated T-algebra is 
extremal state. 

We are now ready for: 

3.27 Definition. Let (Y, 8) be aT-algebra and let I:IX(~~ ) Y be a 
response. A finite-state minimal realization 01 I is an implicit A-automaton 
Ni = (Q, (5, ~, 'f, ß) satisfying 

1. I is the response 01 Ni; 
2. (Q,~) is extremal state and the set Q 01 states is finite; and 
3. No implicit A-automaton satisfying (1), (2) has Iewer states than the 

number 01 elements 01 Q. 
Some observations about finite-state minimal Ni: 
(3.28) As Q generates Q, i#:(QT, Qm) ) (Q, ~) is onto (where 

i:Q ----> Q is indusion) and so there exist scoops (Q, i, c) giving rise to a dass 
of A-automata with state set Q and response I. If a A-automata realization of 
I had state set R strictly smaller than Q then-assuming the free T-algebra 
on a finite set of generators is extremal state (which is true for the dassical 
examples of fuzzy automata theory, as discussed below)-we would con­
tradict the minimality of Q. Thus 3.27 captures the flavor of "realizing I with 
fewest states." 
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(3.29) 1fT is the identity theory then every T-algebra has form (Q, idQ) 

and is extremal state with state set Q and the concept of a A-algebra is just the 
concept of an X -dynamics. Given a finite-state minimal realization, M, of f 
as in 3.27, M is reachable (else the image ofr becomes the state-set ofa smaller 
realization), and M is observable (else the image of (J becomes the state-set 
of a smaller realization). It follows from the proof of 2.18 that M is isomorphic 
to M J. This shows that 3.27 generalizes the deterministic minimal realization. 

We will see shortly that even if the realization of 3.23 is extremal state 
with finitely many states, it need not be minimal; and that, moreover, the 
minimal realization need not have surjective reachability map. The explana­
tion is not difficult: as pointed out in 3.26, an extrem al state A-algebra may 
weil be a A-subalgebra of an extremal state A-algebra with even fewer states. 
We first pause to prove: 

3.30 Proposition. Let T be the subset theOl'Y of 1.3.5 (the algebras are 
complete semilattices, 1.5.15) 01' either of the subtheories "finite subsets," 
"finite nonempty subsets" (whose algebras are, respectively, finitely complete 
semilattices and semilattices). Then T is extremal state. 

Proof. The proofis essentially the same in all cases. A finitely-generated 
T -algebra (Q, ~) is necessarily finite and we may define subsets Sm Qn according 
to the following inductive scheme: 

So = (0) 

Qn is the set of minimal elements of Q - Sn if Sn i= Q, and need not be 
defined if Sn = Q 

Sn+ 1 = <Qo u ... u Qn) 

By finiteness we reach SN = Q. Clearly Q is generated by Qo u ... U QN - 1 

SO that it suffices to show that if q is in Qn with ° < n < N, then q is join 
irreducible. Suppose that q = al v ... vam with no ai = q. If m = 0, then 
(depending on whether or not the empty supremum is aT-operation) either 
q E (0) contradicts that q is in Qn or else Qo = {q} and q is not in <Q - {q}). 
Otherwise m > ° and each ai < q. It follows that no ai is in Q - Sn so that 
q is in <Sn) = Sm the desired contradiction. 0 

Notice that the above proof gives a simple algorithm to find join-irre­
ducibles in a finite semilattice! Notice, too, that the semilattice of infinite 
subsets of an infinite set has no join-irreducibles. 

3.31 Example. Let us return to the response f: X* ) Y of 3.4. We 
will show that the realization of 3.23 has six states, whereas the five-state 
realization given in 3.4 turns out to be minimal. Here, we are dealing with 
"multiple-branching" realizations and we take T to be the "nonempty finite 
subsets" theory and A as in 3.5; (Y, 8) is the inclusion semilattice of subsets 
of {a, b, c, d}. By 3.13, a A-algebra is a semilattice (Q, ~) with dynamical struc­
ture 8:Q x X ~ Q in such a way that 8:Q ~ Q preserves nonempty 
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finite suprema (recall that X has only one element here). 1t is easy to check 
that the T-algebra (yx*, e~) of 3.18 is just the product T-algebra (Y, ef' (see 
exercise 3). ~ 

Let us compute the realization M of 3.23. Here, Q is the image of ]: 
X*T ) y X ' which, thinking of] as (f#)#, is just the c10sure under 
nonempty unions of the X*-closure of I E YX*. Recalling from 2.3 that the 
X -dynamical structure on y X ' is g, X 1----* Lx.g (where X = {x}), the X*­
c10sure of I is routinely computed: 

I = a/b/c/d//ab/ac/ad 
Ix = b/c/d//ab/ac/ad 

Ix2 = c/d//ab/ac/ad 
Ix3 = d//ab/ac/ad 

Ix4 + 3k = //ab/ac/ad 
fX5+3k = //ac/ad/ab 
Ix 6 + 3k = //ad/ab/ac 

The inc1usion relationships among I, ... ,fx6 are as shown below: 

It is c1ear from 3.25 that the join-irreducibles of Q are those elements of 
I, ... ,Ix6 which cannot be written as the supremum of a subset of the re­
maining six. Checking that Ix6 = Iu Ix3 (as remarked above, the semi­
lattice structure in yX* is elementwise union), the join-irreducibles are then 
Q = {j, ... ,Ix5 } as circ1ed above. 

A scoop c:Q ----> QT, is just a function wh ich assigns to each element 

Q- - c - - -- _ _ ~ Q T+-( __ ---=::Q..!-YJ ___ Q 

i# 
id 
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of Q a choice of representation as a supremum of elements of Q. To compute 
the corresponding }.,-automaton with state set Q as in 3.22 it is not necessary 
to know the value of c on all elements of Q (which is fortunate since it requires 
considerable combinatorics to compute (2). Thus, to define (j: Q x X -----+ 

QT we need only know the values of c on elements ofform Lx.q, that is, on 
the set {f.:"(, ... , fx 6 }. Recalling the proof of 3.23 (specifically, we refer to the 
formulas "r f = l1].1"f, ß f = (J f· Y A" of 2.18), M has I E: Q as initial state and 
has output map g l---+ (A)g; thus to define the initial state ofthe correspond­
ing }.,-automaton we need only the value of c on I, and c is not needed at all 
to define the output map. Of course, qc = {q} (for q in Q) is the only reasonable 
choice in view of the definition of "isolated element." Moreover, (fx 6 )c = 

{I,Ix3 } is forced since, as it happens, there is no other way to write Ix6 as 
a supremum of elements of Q. Hence there is only one }.,-automaton which 
can be obtained as in 3.22 by scooping]\l[ (even though c possibly extends in 
more than one way to (2); it is given by: 

It is already clear from 3.4 that M is not minimal in the sense of 3.27. 
Indeed, we can discover this five-state realization as follows. Let a in y X* be 
constantly {a}. Then {f, ... ,fx6 , a} is X*-closed. Since L x .( _): yx* ) 

yx* preserves nonempty suprema, the union-closure R of {J, ... , Ix 6 , a} is 
a }.,-subalgebra of (yx*, YL, 8#) (see exercise 4). The inclusion relations on 
{J, ... ,fx6 , a} are: 

where indeed,Ix4 = Ix u a andIx 5 = Ix6 u a. Thus R = {I,Ix,Ix 2 ,Ix3 , a} 
are the states of R. The values of a scoop c:R ~ RT restricted to {f} u 
Lß = {I,f.x,Ix 2 ,Ix3,Ix4 , a} are clearly forced to be rc = {r} (for r in R), 
(.fx4 )c = {Ix, a}. (Notice that c can take either of two values on Ix 6 .) The 
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corresponding A-automaton is then 

which is precisely the system of 3.4. The implicit A-automaton R is not 
reachable as ä is not in Q. The implicit ),-automaton Re which runs R (3.20) 
is not reachable either since, e.g., {f, ä} cannot be reached. Nonetheless, 
R is minimal (we leave to the reader the ad hoc argument that j cannot be 
realized with only four states). 

Notes for Seetion 3 

"Classical fuzzy automata theory" is studied in [Starke '72J and [Paz 
'71 J; for further references, consult the bibliographies there. Fuzzy set theory 
(ajuzzy set is a pair (Q, p) where Q is a set and p:Q -- [0, 1J is a unit 
interval valued "degree of membership" function) was invented by Zadeh 
([Zadeh '65J) and has found many applications (see [Goguen '67, '74J). A 
general theory of fuzzy systems, based on "pseudoclosed categories" rather 
than algebraic theories, is found in [Ehrig et al '74J and Example 3.4-3.31 is 
their 10.6; the concept of "scoop" was modified from their 10.3 (see exercise 
12). The idea of running a fuzzy automaton using a "fuzzy theory" inter­
pretation of T and a Beck distributive law was posed by Elisabeth Burroni 
([Burroni '73J), but this was not pursued to a minimal realization theory. 
The approach of this section is due to M. A. Arbib and the author ([ Arbib 
and Manes '75-A J). 

Almost all problems concerning the minimal realization of fuzzy systems 
are uninvestigated at this writing. For example, the ideas ofthis section effect 
a rapproachement between multiple-branching realizations and combina­
torial problems of finite semilattices. We conjecture that the stochastic 
matrix theory is extremal-state. Perhaps a modification along the lines of 
exercise 1 below can establish this; observe that the free stochastic algebra 
on a finite set is the standard affine simplex in Euclidian space. 

Exercises for Seetion 3 

1. (Linton.) Let T be the stochastic matrix theory. 
(a) Verify that a convex sub set ofa real vector space is aT-algebra. 
(b) Let Q = {a, b}. Via "probability of a," identify QT with the unit 

interval [0, 1]. Define e: Q T -- Q by Ae = 1 if and only ifA. = 1. 
Show that (Q, e) is aT-algebra. [Hint: if(p;.) is in [0, 1JT, ~P;.A = 1 
if and only if Pl = 1.J Conclude that not every T-algebra may be 
embedded in a real linear space. 

(c) Doubly-generated T-algebras can be classified by observing that a 
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congruence on 2T is an equivalence relation on 2T which is convex 
(in the usual sense) as a subset oft he unit square 2T x 2T.Observing 
that whenever R is a congruence and (Je, fl) is in R then [A, fl J x 
[A, {lJ c R, each such R is seen to be the union of the diagonal and 
A x A where A is a (closed, open, or half-open) interval in [0, 1]. 
Verify these facts and show that every two-element T-algebra is iso­
morphic to the one in (b). Show that, similarly, there is only one 
three-element doubly-generated T -algebra and that there are no other 
finite doubly-generated T-algebras. 

One interpretation ofthese doubly-generated stochastic algebras 
is as an immediate generalization of Zadeh's unit interval. 

2. Let Y = {O, I}. Each response f:X* ~ Y is then the characteristic 
function XA of a subset ("language") A of X*. A system realizing such a 
response is called an acceptor (i.e., M "accepts" w in X* if w is in A). Let 
X = {x, y} and let A = y*{x, y}. 
(a) Show that the deterministic minimal realization of XA has four states. 

[Hint: for z in X, B c X*, LzB = {w:zw E B}; the four states are 
A, y*x u y*, {A}, 0.J 

(b) Show that the canonical "multiple-branching" realization of3.23 and 
3.22 (where T is "nonempty finite subsets") has unique scoop, has 
three states, and is minimal in the sense of 3.27. 

(c) Let T be "all finite subsets". Show that the canonical realization of 
3.23 and 3.22 has only two states and is minimal; indeed, is given by 

x,y 
y 

(formally, writing qo = A and ql = {A}, (qo, x)i5 = {qd, (qo, y)i5 = 
{qo, qd, (ql' x)i5 = (ql' y)i5 = 0). According to 3.9, the interpreta­
tion of "i5 = 0" is that "the computation halts." 

3. When:Yt = Set, the only input- and output process is ofthe form - x X 
(see exercise 2.1(b)). For arbitrary T, show that (yX ', YL)T has dynamics 
YX'T x X ) YX*T, (p, x) I ) <p, (Lx. - )T). Estab­
lish the diagram 

(Lx·-)T YX*T __ ~ ___ -+) YX'T 

~ 
~'~w YT 

y X* --------+) Y prxw 
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[Hint: the square is the definition of 8# of 2.3 and the triangle is the 
inductive hypothesis.J Conclude that (yx*, 8#) is the product T-algebra 
(Y,8)x*. 

4. Let Il be a distributive law of X over T. Show that the unique ),-homo­
morphic extension off: A -----> (Q, b, ~) can be constructed as the unique 
T-homomorphic extension ofthe unique dynamorphic extension as indi-

An AX(aj e -----.-'--'---?> AX@--------?)AX(ßT 
\ / 

\ 

\ 
\ 

\ / 

~ JI: 

(Q, b, ~) 

/ 
/ 

/ 
/ 

/ 

cated above. Conclude that, when:f{" = Set, if Ais a subset ofa Il-algebra, 
then the Il-subalgebra generated by A is just the T-subalgebra of the 
X@-subalgebra generated by A. Can you generalize this statement to 
regular categories? 

5. Show that the semilattice R of 3.31 can be embedded as a subsemilattice 
of a finite semilattice with only fom join-irreducibles. 

6. In this exercise we relate the distributive laws of 3.6 to the distributive 
laws studied by Beck ([Beck '69J). Let S = (S, 1'/, /l) and T = (T, e, m) be 
algebraic theories in :f{". A distributive law ofS aver T is a distributive law 
Il: TS ----+ ST of S over T satisfying the additional requirement that 
Il is a theory map from S to S relative to T in the sense of exercise 3.2.10, 
that is we require the diagrams: 

TS----~Il~----?)ST 

T 

TSS----~Il~S-------?)STS------S-}-,----~)SST 

/lT 

TS---------------------?)ST 
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(a) Let X be an input proeess in ff and let A: TX ------> XT be a dis­
tributive law of X over T. Recalling that AX@:Y has X-dynamieal 
strueture AX@A.A.uoT:AX@TX ) AX@T, define J: 
T X@ ) XCd;T as the unique dynamorphie extension 

1JT 

TX----A---~) XT 

Prove that A f---* J establishes a bijeetive eorrespondenee between 
distributive laws of X over T and distributive laws of X@ over T. 

If A: TS ---)0 ST is a distributive law of S over T, a A-algebra is 
(Q, y, ~) where (Q, y) is an S-algebra and (Q, ~) is aT-algebra subjeet 
to the A-law 

QTS----~~S----~)QS 

QA 

QST 

yT 

Q T------------~) Q 
~ 

(b) In the eontext of (a), prove that the eategory of A-algebras is isomor­
phie to the eategory of J-algebras. 

(e) If Ais a distributive law of S over T then, mimicking the proof of3.15, 
prove that ffA ~ .ffs is algebraie and that ffA ~ ff is algebraie 
with algebraie theory 

ST = (ST, id ~ ST, STST SU) SSTT 11 m ) ST) 

(d) If A is a distributive law of S over T, prove that ffA ~ .ffT is 
algebraie. 
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(e) This is the proper formulation of3.8. Let:ff = Set, let S be the theory 
far monoids, and let T be the theory for abelian groups. Prove that 
k TS - ..... ST defined by 

QTS~QST 
m TI I nq,iq 11------------>, I nq, ... nqm(ql ... qm) 

i= 1 Q Qm 

is a distributive law of S over T. Verify that },-algebras are rings. 
7. Let M be a monoid and let TM be the corresponding theory in Set of 

1.3. For any theory S in Set, S ® TM exists by 3.6.21. 
(a) Show that A},:AS x M , (A x M)S as in 3.7 is a distri-

butive law of TM over S (as in exercise 6) and that See = SetS@TM. 
(b) Let T = (2(- XMl, 1],0) be the "relations with credibility" theory 

obtained by setting S to be the "subsets" theory. Verify that 

Q~2QxM 

ql ,{(q,e)} 

and that, given ccA __ 2BxM and ß:B __ 2exM, 

(0: 0 ß)a = {Ce, mm'):3 b, m, m' with (b, m) E O:a> (e, m') E ßb} 

8. ([ Alagic '74]; cf. [Applegate '65], [Manes '67, 1.7], [Meyer '72].) Let 
X::ff ----> :ff be an endofunctor and let T = (T, e, m) and S = (S, e', m') 
be theories in :ff. A natural transformation A: SX ----> X T is an inverse­
state transformation providing the following diagrams are commutative: 

e'X 
X--------------~)SX 

XT 

SSX------S-A----~)SXT------A-T----~)XTT 

m'X Xm 

SX ------------------7) XT 
A 

(a) Let (_),1::ff , :ff T be the functor of 1.3.9. Prove that the 
passage X --> )" QA:QSX ) QXT = (idQs:QS--r Q)X 
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.ff----x----+) .ff 

establishes a bijective correspondence from liftings X as above to 
inverse-state transformations, with inverse passage 

- a - aX BA J, ---+ X, (A ~ B)X = AX ----+ BSX ----+ BXT 

(b) Let Z:.ff ----+.ff be an input process, let X have a right adjoint 
X', and let A.:ZX , XT be a natural transformation. Prove 
that there exists a unique inverse-state transformation A: Zi"X ----> 

XT such that 

[Hint: 

ZX I1 X )Z@X 
/ 

/ 
/ 

/ 
/A 

/ 

" XT 

ZX 
A. 

>XT 

Z ------4) XTX' 
~ 

/ 
/ 

/ 
/ 

/ 
/ 

/ 
/ 

/ 

where zVi ---->, XTX' is a theory map.] 
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(c) When X = idj(', an inverse-state transformation is just a theory map 
).: S ----+ T. Study the structure of X for various examples of theory 
maps. Observe that X does not commute with the underlying %­
object functors in general. 

(d) When'S = T, an inverse-state transformation .1 isjust a distributive 
law of X over T. H, also, X is an input process, prove that the cor­
responding lift X: % T ) % T is an input process in % T with 
AX'" = AX(O on objects. Observe, further, that an X-automaton is 
the same thing as a .1-automaton for which the output algebra (Y, 0) 
is a free T -algebra, and that the responses coincide. 

(e) The following example illustrates the computer science origins of 
inverse-state transformations. See the bibliography of [Alagic '74J 
for more about applications of inverse-state (and also direct-state) 
natural transformations in computer seien ce. We thank Jim Thatcher 
for calling our attention to this example. In the context of (d), let 
X = - x X 0 with X 0 = {D, I} (for "derivative" and "identity"), 
let Z = XQ where Ql = {S} (for "sine") and Qz = { +, m} and let T 
be the theory whose algebras are rings equipped with two unary 
functions labelIed "c" and "s" (e.g. the reals with "eosine" and "sine"). 
Define .1o:ZX ) XT as folIows: 

AAO 
AZ x X 0 ------+) (A x X o)T 
(ab +, D) (a, D)(b, D) + 
(abm, D) (a, I)(b, D)m(a, D)(b, 1)m+ 
(aS, D) ) (a, 1)C(a, D)m 
(ab +,1) (a, I)(b, 1) + 
(abm, 1) (a, 1)(b, 1)m 
(aS, 1) (a, 1)S 

Verify that .10 is natural and construct its extension .1: Z(i'X ---~ 
XT. 

9. In this exercise we speculate on "internal equality" for fuzzy states. Let 
T be a fuzzy theory in Set. Let 2 = {O, I}. 2T is the object of T-truth 
values. F or an y set A, define the coefficient map coetT: A T ) 2 TA 
and the internal equality map eq: A T x AT ) 2 T as folIows. 
Set coetT = a# where a:A ----+ 2TA , a I ) xl a:.2e. Define eq(p, q) = 
<q, (coetT(p) )#). . 
(a) Let T be the subsets theory. Interpret 2T = {<p, {O}, {I}, 2} as "no 

information," "false," "true," and "maybe." Show that 

{

no information 

eq(A, B) = false 
true 

maybe 

if A = <p or B = <p 
if A =f. <p =f. Band A (\ B = <p 
if A = B = {x} for some x 

otherwise 

(b) Compute coetT and eq for T = L-fuzzy relations. [Hint: an element 
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of 2T is a "degree of membership" together with a "degree of non­
membership."] 

(c) For T = stochastic matrices, show that coeff(}.u) sends a to J,u and 
that eq(p, q) is "the prob ability that independent observations of 
p, q are equal." Compare this interpretation with (a). 

10. Zadeh's fuzzy sets and Goguen's generalizations (see the notes) support 
the philosophy that the set QT of fuzzy states should be ordered by 
"degree of membership."In this exercise we provide some axioms and 
give a common framework for universal relational algebra and Goguen's 
category of L-fuzzy sets. 

Let T be an algebraic theory in Set. A degree relation on T is an assign­
ment to each set A, a reflexive and transitive relation ~ on AT subject to: 

(Uniformity axiom) For all ccA----+BT, a#:AT ) BT pre-
serves ~. 

(Causality axiom) If a: A ----+ AT and p in AT are such that au ~ p 
for all a in A, then pa# ~ p. 

The uniformity axiom ensures, for example, that isomorphie sets 
induce isomorphie orders. The causality axiom states that the causal 
operations on fuzzy states (which "build trees of trees") cannot increase 
the degree. 

For any functor X: Set ) Set, let [X, T, ~] be the category of 
sets with structure with objects all pairs (A, 6) with 6: AX ) AT, 
and with morphisms f:(A, 6) ) (A', 6') such that 

AX 
fX 

)BX 

~ 6' <t, 6fT) ~ <t, fX.6') 
for all t in AX 

AT 
fT 

)BT 

In the examples below, verify that ~ is a degree relation on T. In the first 
three, Q refers to an arbitrary operator domain. 
(a) Let X = XQ,letTbethesubsetstheory,andletS l ~ S2beinclusion. 

Show that [X, T, ~] may be identified with the category of relational 
Q-algebras whose objects are pairs (A, 6) such that 6 assigns to each 
W E QIt an n-ary relation 6",:A" ~ A and whose admissible maps 
f:(A,6) ) (A', 6') are defined by the requirement that when­
ever ((ai), a) E 6"" ((aJ), a!) E 6~. 

(b) Let X = X Q, let B T = B + 1 as the subtheory "at most one element" 
of the subsets theory, and let ~ be inclusion. Show that [X, T, ~ ] 
may be identified with the category of partial Q-algebras whose 
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objects are pairs (A, c5) where c5 assigns to each W E Qn a partial func­
tion c5 ro :An A and whose admissible mapsf:(A, c5) ----+ 

(A', c5') are defined by the requirement that whenever (a;)c5ro is defined 
then so, too, is (aJ)c5~, and, moreover, (a;)c5 ro f = (aJ)c5~. 

(c) Let X = X Q , let T be the stochastic matrix theory, and define p ::::;; q 
to mean the support of p (in the sense of 1.5.10) is contained in the 
support of q; specifically, (A'a) ::::;; (A~) if whenever Aa =1= 0 then also 
A~ =1= O. Show that the morphisms in [X, T, ::::;;J are characterized by 
the requirement that "if(aj)c5ro = a with nonzero probability then also 
(aJ)c5~ = af with nonzero probability." 

(d) Let AX = 1 for all A, let T be the theory induced by a complete dis­
tributive lattice L as in 3.3, and let ::::;; be pointwise. Show that 
[X, T, ::::;;J = Goguen's Set(L) (as in exercise 3.5.7). 

(e) Generalizing exercise 3.5.7, show that [X, T, ::::;;J is fibre complete 
whenever (A T, ::::;;) is a complete lattice for every A. 

11. Let T be the stochastic matrix theory. Show that an element in a convex 
subset of areal vector space is an extreme point if and only if it is an 
isolated point in the topology of exercise 2.3.8( c). To what extent can this 
be generalized to arbitrary T-algebras? 

12. This exercise explicates how scoops in the sense of[Ehrig et. al. '74, 10.3J 
give rise to scoops as in 3.21. Let X be an output process, let M be a 
A-automaton as in 3.9 and let f: A ---+ Q, g: Q I AT satisfy 

Q ___ ---..;..(J __ ~ 

AT 

Assume that (J#:QT ---+1 YX@hasasplitepi-monofactorization 

Q 
Prove that (A, i, c) is a scoop of Q (which is a T-subalgebra of (YX@, 0#) 
where 

i = A __ f'----+l Q Qe I QT--P_l Q 
g# 

C = Q ---=------+1 Q T --"---------+1 AT 
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