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To Mainzy and Regina



“Universal algebra has been looked on with
some suspicion by many mathematicians as
being comparatively useless as an engine of
investigation.”

Alfred North Whitehead
[ Whitehead 1897, preface]

“General classifications of abstract systems
are usually characterized by a wealth of ter-
minology and illustration, and a scarcity of
consequential deduction.”

Garrett Birkhoff
[Birkhoff 1935, page 438]

“Since Hilbert and Dedekind, we have known
very well that large parts of mathematics can
develop logically and fruitfully from a small
number of well-chosen axioms. That is to say,
given the bases of a theory in an axiomatic
form, we can develop the whole theory in a
more comprehensible way than we could other-
wise. This is what gave the general idea of the
notion of mathematical structure. Let us say
immediately that this notion has since been
superseded by that of category and functor,
which includes it under a more general and
convenient form.”

Jean Dieudonné
[Dieudonné 1970, page 138]



Preface

In the past decade, category theory has widened its scope and now inter-
acts with many areas of mathematics. This book develops some of the
interactions between universal algebra and category theory as well as some
of the resulting applications.

We begin with an exposition of equationally defineable classes from the
point of view of “‘algebraic theories,” but without the use of category theory.
This serves to motivate the general treatment of algebraic theories in a
category, which is the central concern of the book. (No category theory is
presumed ; rather, an independent treatment is provided by the second chap-
ter.) Applications abound throughout the text and exercises and in the final
chapter in which we pursue problems originating in topological dynamics
and in automata theory.

This book is a natural outgrowth of the ideas of a small group of mathe-
maticians, many of whom were in residence at the Forschungsinstitut fiir
Mathematik of the Eidgendssische Technische Hochschule in Ziirich,
Switzerland during the academic year 1966—67. It was in this stimulating
atmosphere that the author wrote his doctoral dissertation. The “Ziirich
School,” then, was Michael Barr, Jon Beck, John Gray, Bill Lawvere, Fred
Linton, and Myles Tierney (who were there) and (at least) Harry Appelgate,
Sammy Eilenberg, John Isbell, and Saunders Mac Lane (whose spiritual
presence was tangible.)

I am grateful to the National Science Foundation who provided support,
under grants GJ 35759 and DCR 72-03733 AO01, while I wrote this book.

I wish to thank many of my colleagues, particularly Michael Arbib,
Michael Barr, Jack Duskin, Hartmut Ehrig, Walter Felscher, John Isbell,
Fred Linton, Saunders Mac Lane, Robert Paré, Michael Pfender, Walter
Tholen, Donovan Van Osdol, and Oswald Wyler, whose criticisms and
suggestions made it possible to improve many portions of this book; and
Saunders Mac Lane, who provided encouragement on many occasions.
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Introduction

3%

“Groups,” “rings,” and “lattices” are definable in the language of finitary
operations and equations. “Compact Hausdorff spaces” are also equationally
definable except that the requisite operations (of ultrafilter convergence) are
quite infinitary. On the other hand, systems of structured sets such as “topo-
logical spaces” cannot be presented using only operations and equations.
While “topological groups” is not equational when viewed as a system of sets
with structure, when viewed as a system of “topological spaces with structure”
the additional structure is equational; here we must say equational “over
topological spaces.”

The program of this book is to define for a “base category” #—a system
of mathematical discourse consisting of objects whose structure we “take
for granted”—categories of 4 -objects with “additional structure,” to classify
where the additional structure is “algebraic over £.,” to prove general
theorems about such algebraic situations, and to present examples and appli-
cations of the resulting theory in diverse areas of mathematics.

Consider the finitary equationally definable notion of a “semigroup,” a
set X equipped with a binary operation x - y which is associative:

(x-y)z=x(y 2
For any set A, the two “derived operations” or terms
ay - [ay - ((a3 - a4)  (as - ae))], (ay - ay) - [a3 - (aq - (as - ag))]

(with a,, . .., g in A) are “equivalent” in the sense that one can be derived
from the other with (two) applications of associativity. The quotient set of
all equivalence classes of terms with “variables” in A may be identified with
the set of all parenthesis-free strings a, - - - a, with n > 0; call this set AT.
A function f:B —— CT extends to the function

b1"'bn_‘—‘>ﬁb1"’ﬁbn

whose syntactic interpretation is performing “substitution” of terms with
variables in C for variables of terms in BT. Thus, for each A, B, C, there is
the composition

(A—>BT, B 1) —> 425 cT = 42 BT s T
There is also the map

A-2 AT,  ab—a

which expresses “variables are terms.” T = (T, g, ©) is the “algebraic theory”
corresponding to “semigroups.”
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In general, an algebraic theory (of sets) is any construction T = (7, 7, ©)
of the above form such that - is associative,  is a two-sided unit for ¢ and

4B 2B -BLscy=4a B cT

A T-algebra is then a pair (X, &) where &: X T —— X satisfies two axioms,
and a T-homomorphism f:(X, )———(Y, 0) is a function /: X ——Y
which “preserves” the algebra structure; see section 1.4 for the details.

If T is the algebraic theory for semigroups then “semigroups” and “T-
algebras” are isomorphic categories of sets with structure in the sense that
for each set X the passage from semigroup structures (X, ) to T-algebra
structures (X, &) defined by

() =Xy ey,

is bijective in such a way that f:(X, ) ——— (Y, *) is a semigroup homo-
morphism if and only if it is a T-homomorphism between the corresponding
T-algebras.

The situation “over sets,” then, is as follows. Every finitary equational
class induces its algebraic theory T via a terms modulo equations construc-
tion generalizing that for semigroups, and the T-algebras recover the original
class. The “finitary” theories—those which are induced by a finitary equa-
tional class—are easily identified abstractly. More generally, any algebraic
theory of sets corresponds to a (possibly infinitary) equationally-definable
class. While the passage from finitary to infinitary increases the syntactic
complexity of terms, there is no increase in complexity from the “algebraic
theories” point of view. It is also true that many algebraic theories arise as
natural set-theoretic constructions before it is clear what their algebras should
be. Also, algebraic theories are interesting algebraic objects in their own
right and are subject to other interpretations than the one we have used to
motivate them (see section 4.3).

An examination of the definition of the algebraic theory T and its algebras
and their homomorphisms reveals that only superficial aspects of the theory
of sets and functions between them are required. Precisely what is needed is
that “sets and functions” forms a category (as defined in the section on pre-
liminaries). Generalization to the “base category” is immediate.

The relationship between the four chapters of the book is depicted below:

Chapter 1 Chapter 2
Algebraic theories of sets Trade secrets of category theory

Chapter 3
Algebraic theories in a category

Chapter 4
Some applications and interactions
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The first chapter is a selfcontained exposition (without the use of category
theory) of the relationships between algebraic theories of sets and universal
algebra, finitary and infinitary. The professional universal algebraist wishing
to learn about algebraic theories will find this chapter very easy reading.

The second chapter may be read independently of the rest of the book,
although some of the examples there relate to Chapter 1. We present enough
category theory for our needs and at least as much as every pure mathema-
tician should know! The section on “objects with structure” uses a less
“puristic” approach than is currently fashionable in category theory; we hope
that the reader will thereby be more able to generalize from previous knowl-
edge of mathematical structures.

The third chapter, which develops the topics of central concern, draws
heavily from the first two. The choice of applications in the fourth chapter
has followed the author’s personal tastes.

Why is the material of the third chapter useful? Well, to suggest an
analogy, it is dramatic to announce that a concrete structure of interest (such
as a plane cubic curve) is a group in a natural way. After all, many naturally-
arising binary operations do not satisfy the group axioms; and, moreover,
a lot is known about groups. In a similar vein, it is useful to to know that a
category of objects with structure is algebraic because this is a special prop-
erty with nice consequences and about which much is known.

Many exercises are provided, sometimes with extended hints. We have
avoided the noisome practice of framing crucial lemmas used in the text as
“starred” exercises of earlier sections. For lack of space we have, however,
developed many important topics entirely in the exercises.

Reference a.b.c refers to item c of section b in Chapter a. Depending on
context, d.e refers to section e of Chapter d or to item e of section d of the
current chapter.
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The reader is expected to have some background in set-theoretic pure
mathematics. We assume familiarity with the concept of function f: X —— Y
between sets and a minimum of experience with algebra and topology, e.g.
the definitions of “topological space,” “continuous mapping of topological
spaces,” “group,” and “homomorphism of groups.”

A variety of notations are employed for the evaluation of a function f
on its argument x. Usually we write xf instead of fx or f(x) (although d(x, y),
for the distance between two points in a metric space, is chosen over (x, y)d).
Another notation for xf is {x, f>. This notation is especially convenient
when x or f is a long expression. We also employ the “passage arrow” >
and write x —— xf which is read “x is sent to xf”. This notation is useful
when defining functions.

The composition of functions

x-Ly %z

will be written fg or f.g. Thus x(fg) = x(f.g) = (xf)g. For any set X, the
identity function of X is the function idy: X ——— X defined by x(idy) = x.
It is clear that for any f:X ——— Y we have idy.f = f = f.idy. This may
be expressed by the commutative diagram. We say the diagram commutes

X idy > X
/
\ f
Y >Y

because all composition paths between the same sets in the diagram are
the same function. Similarly, the familiar associative law of composition,
(foyh = f(gh), is expressed with a commutative diagram. Because of the

2% f > X
gh
fa g
Y
h
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associative law, fgh: W————Z is well defined; and it is this principle that
allows commutative diagrams to display effectively the result of composing
long chains of functions.

The theory of categories, functors between categories, and natural trans-
formations between functors—to the extent that it is needed—is developed
gradually beginning with Chapter 2. Since certain functors and natural trans-
formations arise naturally in Chapter 1, these concepts are defined here. A
category X" is defined by the following data and axioms.

Datum 1. There is given a class Obj(H") of A -objects.

Datum 2. For each ordered pair (4, B) of A -objects there is given a class
H (A, B) of A '-morphisms from A to B. If fe A (A, B), A is the domain of f
and B is the codomain of f (see Axiom 3).

Datum 3. For each A -object A there is given a distinguished A -mor-
phism id ;€ A (A, A) called the identity of A.

Datum 4. For each ordered triple (A, B, C) of A -objects there is given
a composition law

H'(A, B) x A (B, C) ———— A(4, C)
(f’g)'_—’fg

Axiom 1. Composition is associative, that is given fe #'(4, B),ge #'(B, C)
and h e A°(C, D) then (fg)h = f(gh) e 4 (A, D).

Axiom 2. Iffe (A, B) then (id,)f = f = f(idp).

Axiom 3. If (A, B) # (A, B') then # (A, B) n A'(4', B) = (.

“Sets and functions” form a category which we will denote henceforth by
Set. Thus a Set-object is an arbitrary set and Set(4, B) is the set of functions
from A to B. Identities and composition are defined in the way already dis-
cussed. Axiom 3 asserts that for the purposes of category theory, a function
is not properly defined unless the set it maps from and the set it maps to
are included in the definition. Thus the polynomial x? thought of as mapping
all the real numbers into itself is a different function from x? thought of as
mapping all the nonzero real numbers into the set of all real numbers.

The reader should recognize at once that “topological spaces and con-
tinuous mappings” as well as “groups and group homomorphisms” are two
further examples of categories.

If A is an arbitrary category we will write f: A —— B to denote fe
(A, B). We will also use f.g as an alternate notation to fg. Axioms 1, 2
can be expressed as commutative diagrams just as we did earlier for the
category Set. Let £ and % be two categories. A functor, H, from A" to &
is defined by the following data and axioms:

Datum 1. For each A -object A, there is given an & -object AH.

Datum 2. For each A -morphism of form f: A —— B there is given an
L-morphism of form fH: AH BH.
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Axiom 1. H preserves identities; that is, for every A -object A, (id)H =
idAH-

Axiom 2. H preserves composition, that is, given f:A —— B and
gB—> CinA',(fgH = fHgH:AH CHin%.

We use the notation H: ' ———— # if H is a functor from 4" to Z.

Suppose now that H, H' : 4’ ——— & are two functors between the
same two categories. A natural transformation o from H to H' is defined by
the following datum and axiom:

Datum. Foreach A -object A there is given an £ -morphism Ao: AH ——
AH'.

Axiom. For each A -morphism f: A——— B the following square of %-
morphisms is commutative:

AH JH >BH
Ao Bo
AH’ >BH'
fH

ie., Aoa.fH = fH.Ba.
We use the notation o: H —— H’ when « is a natural transformation
from H to H'.



Chapter 1
Algebraic Theories of Sets

This chapter is a selfcontained introduction to algebraic theories of sets.
Category theory is not used in the development. The motivating example of
equationally-definable classes is eventually seen to be coextensive with alge-
braic theories with rank. Compact Hausdorff spaces and complete atomic
Boolean algebras arise as algebras over theories (without rank) whereas com-
plete Boolean algebras do not.

1. Finitary Universal Algebra

In this section we define (finitary) equationally-definable classes. Further
systematic study of finitary universal algebra is referred to the literature (see
the notes at the end of this section) but some of the standard examples are
developed in the exercises.

There are a number of ways to define the concept of a group. Here are
three of them:

1.1 Definition. A group is a set X equipped with a binary operation
m:X x X —— X (multiplication), a unary operation i:X — X (inversion)
and a distinguished element e € X (the unit) subject to the equations

Xymzm = xyzmm (m is associative)
XxXem = X = exm (e is a two-sided unit for m)
Xixm = e = xXim (xi is the multiplicative inverse of x)

forallx,y,zin X.

(Notice the use, in 1.1, of parenthesis-free “Polish notation,” e.g. xymzm
instead of ((x, y)m, z)m. A formal proofthat this notation works is given below
in 1.11)

1.2 Definition. A group is a set X equipped with a binary operation
d:X x X —— X (division) subject to the single incredible equation

xxxdydzdxxdxdzddd = y

forall x, y, z in X It is proved in [Higman & Neumann, ’52] that a bijective
passage from 1.1 to 1.2 is obtained by xyd = xyim. The structure of
“xxxdydzdxxdxdzddd” is examined in 1.13 below.

1.3 Definition. A group is a set X equipped-with a binary operation m
such that m is associative and admits unit and inverses, i.e., such that there exists



8 Algebraic Theories of Sets

a unary operation i and a distinguished element e of X subject to the equations
of 1.1.

Very roughly speaking, group theory is an algebraic theory and 1.1, 1.2,
1.3 are presentations of that theory. (Actually, the empty set is a group ac-
cording to 1.2 but not according to 1.1 and 1.3; to remedy this one should
modify 1.2 by requiring a distinguished element e satisfying xed = x.) The
first two are equational presentations in that they take the form of a set of
operations subject to a set of equations, whereas the third is not an equational
presentation because existential quantification is not equationally express-
ible. We devote this section to setting down, in precise terms, the definition
of a finitary equational presentation (@2, E) and the resulting equationally-
definable class (or variety) of all (@, E)-algebras.

1.4 Definition. An operator domain is a disjoint sequence of sets, Q =
(Q,:;n=0,1,2...). Q, is the set of n-ary operator labels of Q.

We remark, as an aside, that an operator domain may be viewed as a
directed graph whose nodes are natural numbers and whose edges terminate
at 1. Thus a directed graph suitable for “groups™ as in 1.1 is

This point of view is a natural precursor to viewing an operator domain as
a category, an approach which receives only brief treatment in this book (see
1.5.35, the notes to section 3, Exercises 2.1.25-27 and Exercise 3.2.7).

An Q-algebra is a pair (X, 0) where X is a set and & assigns to each w in
Q, an n-ary operation 6,:X" ——— X. Given Q-algebras (X, 6) and (Y, y),
an Q-homomorphism from (X, 6) to (Y, y) is a function f:X —— Y which
commutes with the Q-operations, that is, for all w € Q,, and n-tuples (x,, . . ., X,)
of X, we have (x4, ..., X)0,f = (xif, ..., X.f)y, Denoting the passage of
(X155 X)) tO (X1 fs. .., x,f) by f*: X" —— Y", this may be equivalently
written as the commutative square:

X" / > y™
J Yo (1.5)
A 4
X >
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1.6 Example. Define Q, = {e}, @, = {i}, Q, = {m}, Q, = ¢ for all
n > 2. Then every group (as in 1.1) is an Q-algebra, but not conversely. The
Q-homomorphisms between groups are ordinary group homomorphisms.

An equational presentation, as is yet to be defined, should consist of a
pair (@2, E) where Q is an operator domain and E is a set of Q-equations. To
properly formulate “Q-equation” we must formalize the construction of ex-
pressions such as xxmzm and xxim.

1.7 Definition. Let A be a set. A word in A is an n-tuple of elements of A
with n an integer >0; n is the length of the word. We will write aa, - - - a,
instead of (a,, . . ., a,) to convey the feeling of “word in the alphabet A.” An
expression such as a,a,m is a word in the appropriate “alphabet” 4. In
general, let Q be an operator domain, set |Q| to be the union of all Q,, and
define an Q-word in A to be a word in the disjoint union A + |Q[; (the dis-
joint union of the sets X, Y is the set X + ¥ = (X x {0}) u (Y x {1})).
Notationally, we will use separate symbols for elements of 4 and elements of
|2| and write Q-words as words in A U |Q|. If Q is as in 1.6, abmcm, eam, and
eiare all Q-words in 4; unfortunately, so are nonsense words such as mmamib.
An Q-term in A is an Q-word in 4 which can be derived by finitely many
applications of 1.8 and 1.9 below:

(1.8) aisan Q-termin A for all a e A.

(1.9) If weQ, and py,...,p, are Q-terms in A, then p; - p,w is an
Q-term in A.

The set of all Q-terms in A will be denoted AQ.

Intuitively, an Q-word in A4 is a term if and only if it has the appearance
of a well-defined function in finitely-many variables of A. For example, if
@ is as in 1.6 and if A has at least three distinct elements a, b, ¢ then the
doubleton {abmem, abcmm} is the essence of the associative law; for if
(X, 6) is any Q-algebra and if (x,, x,, x3) is any 3-tuple of elements of X then
by virtue of the substitution “x, for a, x, for b, x; for ¢”, abmem induces the
ternary operation ((xq, X;)d,, X3)6,, on X and abcmm similarly induces a
ternary operation on X ; (X, &) satisfies the associative law if and only if these
ternary operations are the same. This motivates

1.10 Definition. Fix any convenient (effectively enumerated, see, e.g.,
[Hermes °65, page 11]) set V of abstract variables, V. = {vy, Vg, ..., Uy... }.
For example, V might be the set of positive integers. An Q-equation is a double-
ton {ey, e,} of Q-terms in V. An equational presentation is a pair (2, E) where
Q is an operator domain and E is a set of Q-equations.

The equational presentation corresponding to 1.1 is Q asin 1.6 and E =
{{vyv,mvsm, viv,03mm}, {viem, vy}, {evym, vy}, {vyivym, e}, {v,v(im,e}}.
This overly formal notation is difficult to read and in most situations we
use the more colloquial “e; = e,,” use parenthetical notation instead of
Polish notation, and write x, y, z. .. for v;, v,, v3.... Thus, E as above is
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written:

(Ce, y)m, zym = (x, (¥, 2)m)m
(x,e)ym = x = (e, X)m
(xi, x)m = e = (x, xi)m

We now set forth to formalize the means which allowed us to make actual
operations out of terms in the style that we accomplished this for abmem in
the preceding paragraph.

1.11 Uncoupling Lemma. Let A be aset and let Q be an operator domain.
Then for each p e AQ of word length greater than 1 there exists a unique
integer n greater than 0 and unique w € Q, and n-tuple (py, ..., p,) € AQ"
such that p = p, - - - p,o.

Proof. Since p is constructed from (1.8) and (1.9) and has more than one
symbol, it is clear that there exists a representation p = p, - - - p,w as in the
statement and that n and w are unique. We must prove thatifp = ¢, - - - g,
is another such representation, then p; = g; for all i. It is helpful to define
the integer-valued valency map, val ([Cohn 65, p. 118]), on the set of all
Q-words in 4 by val(®@) = 1 — m (for all @ € Q,,), val(a) = 1 (for all a € A4),
val(b, - - - b,) = val(by) + --- + val(b,). Since an Q-formula g can be con-
structed from (1.8) and (1.9), val(g) = 1 and val(s) > 0 for any left segment
s of g (where, if ¢ = b, - - - b,,, the left segments of q are the m Q-words
b, -+ b, for 1 < k < m). The crucial observation is:

(1.12) Ifsis a proper left segment of p; - - - p, and if se AQ, then sis a
left segment of p;. (For otherwise, there exists i < k < n and a left segment
tof i, suchthats = p, - - - p,t;itfollowsthat 1 = val(s) = val(p; - - - pt) =
k —i+ 1+ val(t) and i — k = val(t) = 0 (i.e., if r 1s empty then k > i), the
desired contradiction).

Applying 1.12 to s = ¢,, we see that ¢, is a left segment of p,. Symmet-
rically p, is a left segment of ¢, so p; = q,. Therefore, p, - p,w = q, - g,
and we can apply 1.12 to prove p, = q,. Similarly, p; = ¢3,...,pp = ¢,» [

The uncoupling process of 1.11 can be geometrically depicted by the “tree”

D1 Pa

@

Py Dn

Each p; has shorter length than the original term. Each p; of length greater
than 1 can be similarly decoupled until we obtain the complete derivation
tree of the term in which all terminal branches are terms of length 1, that is
variables or O-ary operations.
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1.13 Example. The derivation tree of xxxdydzdxxdxdzddd as in 1.2 is

xxxdydzdxxdxdzddd
X xxdydzdxxdxdzdd
xxdydzd xxdxdzd
xxdyd xxdxd
xxd xxd

x/ d \x x/ d\x

Since the derivation of Q-terms is unique we have:

1.14 Principle of Finitary Algebraic General Recursion. Let Q be an
operator domain and let A be a set. To define a function y on AQ it suffices to
specify

(1.15) ay for all a e A.
(1.16) (py - pyo) in terms of paf and w. []

1.17 Example (Substitution of Variables in Terms). Let /:4——B be
a function (substituting variables in B for variables in A). By algebraic general
recursion we may define the function fQ: 4Q ———— BQ by

a, fQ) = af
<(p1 o 'pnw)af‘g> - <p1*fQ> T <pmf9>w
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Thus, <aaadbdcdaadadcddd, fQ) = xxxdydzdxxdxdzddd if af = x, bf =y,
¢f = z. In the picture of 1.13, we plug in the appropriate terminal branches
X, y, z and chase up the tree.

1.18 Example (The Total Description Map). Let(X, J) be an Q-algebra.
The total description map 6°: XQ ———— X is defined by algebraic general
recursion:

x6%¢ = x
(p1- - Pa)d0® = (p10°,. .., pud™)d,

Clearly, the total description map accomplishes what we wanted: it makes
operations out of formulas, although we should note the role of 1.17 in inter-
preting variables as arguments. We are finally ready for:

1.19 Definition. Let Q be an operator domain, and let (X, 0) be an Q-
algebra. For each V-tuple r:N —— X there is an interpretation map r* defined
by r*:VQ ——— X = rQ.0“. Notice that #* can be defined directly by alge-
braic general recursion: vr” = vr, (p, - p)yr’ = (pyr*, - par”)o,. If
{e1, e,} is an Q-equation, say that (X, 8) satisfies {e,, e,} if e;r * = e,r* for
all »:V—— X. If (Q, E) is an equational presentation, an (Q, E)-algebra is
an Q-algebra which satisfies E, that is satisfies every equation in E. The class
of all (Q, E)-algebras is said to be an equationally-definable class of algebras,
or a variety of algebras. For example, the equationally-definable class de-
fined by the presentation in 1.10 is “groups” as in 1.1.

The above construction of interpretation maps is based on an important
principle. Notice, first, that 1.9 defines an Q-algebra structure on AQ (and
we will always regard AQ as an algebra in this way). We can now state

1.20 Principle of Finitary Algebraic Simple Recursion. Let Qbeanoper-
ator domain, let (X, §) be an Q-algebra and let f:4 —— X be a function.
Then there exists a unique ©-homomorphism f*:40Q ——— (X, 6) ex-
tending f.

Proof. By 1.14 there exists unique function f* such that af * = af and
(pl e pnw)f# = (plf#a te apnf#)aco' D

To help explain the terminology of 1.20, recall that a sequence x:N ——
X (where N = {0,1,2,3...}) is defined by simple recursion if there exists
an endomorphism §: X ——— X such that x,,, ; = x,6. The general recursion
of 1.14 amounts to “mathematical induction” (see the notes at the end of this
section). Observe thatif X = {a, b} and if x is defined by xo = x; = a,x, =
b for n > 1, then x is not definable by simple recursion. This situation is an
instance of 1.20 and 1.14, corresponding to the operator domain

©® X
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Notes for Section 1

The founder of universal algebra—the study of finitary equational
classes—is Garrett Birkhoff [ Birkhoff "35]. We refer the reader to the texts
of [Cohn ’65], [ Gritzer ’67], and [ Pierce ’68]. Of these, Gritzer’s is the most
complete, in our judgment, and has the largest bibliography. Pierce is rec-
ommended for infinitary universal algebra (not treated in the other two)
which we will study in section 5, but in a different way. In the three texts cited
above, the concept of “variety” is defined relatively late in the book:

Number of Page “variety” is

Author pages first defined
Cohn 333 162
Gritzer 368 152
Pierce 143 124

Thus, section 1 provides a rapid introduction not available in the expository
literature, to our knowledge, at this writing. (We hasten to add that, in the
three books above, “variety” is viewed as but one of a number of central
topics.)

Lemma 1.11 was proved for unary and binary operations by [ Menger
’30], for arbitrary finitary operations by [Schroter 43] and [Gerneth "48],
and for infinitary operations by [Felscher "65].

Q-terms are the usual terms of mathematical logic (cf. [ Bell and Slomson
"71, page 70]), AQ is known as an “absolutely free Q-algebra” in the literature
of universal algebra.

In set theory, “recursion” and “induction” have taken on special meanings
(see [Monk ’69, Chapter 13]). In particular, it would appear to be inappro-
priate to call 1.14 “algebraic induction.”

Exercises for Section 1

1. If you do not already know them, look up the definitions of “monoid,”
“ring,” “lattice,” and “real vector space.” Give finitary equational pre-
sentations for these objects. Further hints can be found in [Cohn ’65,
pages 50-55].

2. In 1.7 we defined the set of words in 4 to be the union 4 U A2 U 43 - - -.
More properly, we should have insisted on the disjoint union 4 + A% +
A3 --- . To prove this is necessary, give an example of a set 4 such that
A and A? have elements in common.

3. Give an example of an equational presentation such that every algebra
has exactly one element.

4. (Jonsson and Tarski). Give an example of an equational presentation
with one binary operation and two unary operations such that every
algebra with at least two elements is infinite. [ Hint: make the binary
operation bijective. ]
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5

6.

7.

Algebraic Theories of Sets

Let Q have one unary operation and no other operations. Show that the

Q-terms in A may be identified with the set 4 x N.

Let S be the set of all Q-homomorphisms from (X, §) to (X', §’). Then

S is a subset of the topological space (X")*, the Tychanoff cartesian power

of copies of X’ with the discrete topology. Prove that S is closed.

Let g: AQ —— AQ be a bijective Q-homomorphism. Prove that g~ ! is

also an @-homomorphism. Prove that g maps A bijectively onto 4 and

that g = fQ for f:A —— A, af = ag. [Hint: use 1.11.]

Ianov’s program schemata (see [Rutledge ’64 and the bibliography

there]) provide a “dual” concept to Q-terms. Fix an operator domain

Q with Q, = &. An initialized Q-flowchart scheme is a finite directed

graph, with a distinguished “initial” node, in which every node of out-

degree n > 0 is labelled with an element of Q,; the nodes of outdegree

0 are called exits. A partial function from X to Y is a function from a

subset of X to Y. An Q-coalgebra is a pair (X, §) where X is a set and

d assigns to w € Q, a partial function §,:X —— n- X [wheren- X =

X + -+ 4+ X (ntimes)].

(a) Regarding a flowchart scheme as an “abstract program” and an
Q-coalgebra as a “machine,” show that “running the program” results
in a partial function X —— s+ X (where s is the number of exits),
a semantic interpretation of the scheme. [Hint: to compose partial
functions, x(fg) is defined if xf and (xf)g are.]

(b) Let @, = {a}, Q, = {B, y}. Formalize how the flowchart scheme on
the left can have the semantic interpretation shown on the right.

l/

'\

Yes

—x

(The computed partial function is from the set of integers to itself
and is constantly 1 with domain all x < 1.
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(c) Construct a scheme with four nodes which is equivalent to that in
(b) in the sense that both have the same interpretation in all co-
algebras. Why can’t two distinct Q-terms have the same interpretation
in every (2-algebra?

9. “Lattices” constitute an equationally-definable class (e.g., see exercise
3.2.10d). A lattice is modular if (x A b) v a = (x v a) A b whenever

a < b. Prove that modular lattices constitute an equationally-definable

class.

2. The Clone of an Equational Presentation

We opened the book with the observation that two equational presenta-
tions, 1.1 and 1.2, were “equivalent.” There are three ways to make this
precise and, happily, they coincide (see Theorem 2.17 below). An equational
presentation (2, E) provides us explicitly with sets of terms AQ2 and equiva-
lence relations E, on AQ, where pE ,q means “p and ¢ have the same inter-
pretation in all (22, E)-algebras”; for example if (Q, E) corresponds to 1.1,
aibimi and bam have the same meaning in all groups. The set AT = AQ/E,
of equivalence classes turns out to be presentation independent and to possess
all the algebraic invariants so long as we include the formal description of
the ways in which formulas combine with each other. Making all of this
precise is the goal of this section.

For the time being, fix an equational presentation (@, E).

2.1 Definition. For each set A define an equivalence relation E  on AQ
by E, = {(p, q):for all (2, E)-algebras (X, 8) and all functions f:4A —— X,
pf " = qf"}. It is obvious that E , is an equivalence relation. We denote the
quotient set AQ/E, by AT (T for “theory™), and the canonical projection by
Ap:AQ ———— AT. We will also adopt the notation [ p] € AT for the equiva-
lence class {p, Ap> of p.

2.2 Proposition. For each set A, there exists a unique Q-algebra struc-
ture on AT making Ap an Q-homomorphism, that is [p,]---[p,]Jo =
[p:--- paw] is well defined. Moreover, AT is an (2, E)-algebra.

Proof. The first statement is obvious from the definition of E, and the
fact (1.20) that each f* is an Q-homomorphism. Enroute to the second state-
ment we make two observations:

(2.3) Whenever f:(X,0,) ——(X,,d,)and g:(X,, 5,) ——————
(X3, 03) are Q-homomorphisms, so is fg:(X,, §,) ————— (X3, 53). (This
is obvious from Definition 1.5; notice that ( fg)" = f"g")

(24) Forall g:V—— AQ and {e;, ¢,} in E, (e,9%, e,9%) € E ;. (Proof:
For every (2, E)-algebra (X, §) and function f:4 —— X, g f* :VvQ ——
(X, d) is an Q-homomorphism by 2.3 so that by 1.20 g*f* has the form #*
where /1 is the restriction of g* f* to V. Since (X, §) satisfies {e, e,},e,9%f* =
e,g”f7; since f is arbitrary, we are done with 2.4
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To complete the proof, let r:V —— AT be a function. By the axiom of
choice (but see exercise 1) there exists a function ¢g:V——— AQ such that
g.Ap = r. Since g”*.Ap is an Q-homomorphism (by 2.3 and the first part of
the proof), and the restriction of g*.Ap to V coincides with r, we have from
1.20 thatg*.4p = r*. Since g* maps equations into E , (2.4) and A4p identifies
elements of E, AT satisfies E as desired. []

AT is called the free (Q, E)-algebra generated by A. The map
Ap:AQ———— AT presents AT by “generators and relations,” and “free”
means that there are just enough relations to satisfy E, but no more. To a
category theorist, this intuitively correct formulation would be justified by
the following result:

2.5 The Universal Property of AT. For each set A define the insertion-
of -the-variables map An:A AT by <(a, Anp> = [a]. Then for every
(@, E)-algebra (X, 6) and every function f: A —— X there exists a unique
Q-homomorphism f** : AT (X, &) extending f.

Proof. Consider the diagram below. The unique Q-homomorphism

AC > AQ Ap >AT
7
7
7
# Ve 7
f / L f
7
7
'd
(X, 90)

f*:AQ (X, &) of 1.20 respects E, by the definition of E,, and this
induces a unique function f*#: 4T —————— (X, §) which is a homomor-
phism because

(2.6) Given a surjective Q-homomorphism g:(X,, ;) ——>
(X5, 8,), an Q-algebra (X3, d5), and a function h: X, —— X5, if gh is an
Q-homomorphism, then so is A.

The proof of 2.6 and the uniqueness of f*#: AT ———— (X, §) may be
safely left to the reader. []

When E is empty, 2.5 reduces to 1.20. It will gradually become clear that
1.20 is the pivotal theorem in transforming a set-theoretic symbol-manipula-
tive analysis of algebra into a categorical one.

Let us turn now to the promised formalization of the way formulas com-
bine with each other. To this end, let us think of p; - - - p,® in AQ not so
much as an n-ary operation indexed by w as an n + l-ary operation in

Pis - - - Pw @. More specifically, if p e BQ with variables (see exercise 10)
by,...,b,andifq,, ..., q, € CQ, we may substitute g, for b; to get (g;,)p € CL,
the clone composition of q,, - . ., q, p. This includes the case of p, - - - p,w

aboveifweset B = V,p = v; - - v,w,C = A,q; = p;. For another example,
if Q has binary +, unary i, and nullary e, p = bib; +b,+,q; = €,q, = ¢4,
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qs = cyc,+ then (gq;)p = cyc, +ie+cqi+. We expect clone composition to
be “associative.” To make this come true, let us think of (g;)p as a binary
operation p ° (¢;). For uniformity, we should replace p by a tuple (p;) of p’s
and define (p;) ° (g;) as the tuple p; ° (g;). Here is the formal definition:

2.7 Definition. The clone of (Q, E) is the category Set(Q, E) whose objects
aresets A, B, C . .. and whose morphisms o: A Bare functionso: A ——
BT. Composition is defined by

42B-BLcy=a—25BT . CT (2.8)

Identity morphisms are defined by
An:A —— AT (2.9)

Throughout the book we will adopt the following notational conventions:
morphisms in Set(€2, E) are distinguished from functions by the use of single-
headed arrows. The symbol for the Set(Q2, E)-identity of A will always be Ay,
whereas the symbol for the identity function of A4 will always be id,; thus
id 45 will never mean ATy:AT —— AT, but one of id;: AT ———
ATorid,;: AT ———— A. The symbol ° will be used for clone composition
as in 2.8, whereas ordinary composition of functions can be denoted with a
period.

Let us verify that the formal definition meshes with what motivated it.
First suppose that E is empty so that a map f:B—— C is a function
fp:B—— CQ, that is a B-tuple (g,:b € B) of terms in C. If p e BQ has set
of variables (specifically, the terminal branches of the derivation tree of p
which are not nullary operations) {b,, . .., b,} then pf” is clearly the unique
term in CQ whose derivation tree is built down from that of p by substituting
the derivation tree of g, for each occurrence of b;; in short, pf* = p ° (gy).
Moreover, if we have a function a: 4 —— BQ, that is an entire tuple (p,),
then a° B = o+ B* is the A-tuple p,°(q,) as advertised. Expression (2.9)
asserts that “variables are terms.”

Even if E is arbitrary, clone composition is at the level of representatives,
that is

([paD) ° (Las)) = ([pa° (@)]) (2.10)

Proof. Givena:A —— BQ and :B —— CQ we must show that the
two paths from A4 to CT shown below are equal:

#
A i > BQ 2 —>CQ
Bp Cp
BT >CT
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It suffices to prove that the square is commutative. This is true for variables

b e BQsince (b, Bp(B.Cp)*> = (b, Bn.(B.Cp)* > = {b, .Cp> = <b, p*.Cp).
Since all four maps in the square are Q-homomorphisms, we are done by
2.3 and 1.20. []

2.11 Proposition. Set(Q, E), as defined in 2.7, is indeed a category.

Proof. Consider «:4A —— B, f:B—— C and y:C —— D. It is im-
mediately clear from the diagram that we have

B

By

BT 7 >CT - >DT
(By")* = B7y7. (2.12)

Thus (e B)oy = (B?) ey = ap?y* = w(fy?)* = a o (B ° y). That
Ano* = « is clear. We now make explicit the trivially true but important
principle:

If (X, §) is an Q-algebra, idy:(X, §) ———— (X, )  (2.13)

is an Q-homomorphism.

From 2.13 and 2.5 it follows that
(An)* = id,y,  forall sets A4. (2.14)

In particular, & © By = o(By)* = o. []
Notice that 2.5 provides a bijection between morphisms A — B and
Q-homomorphisms AT —— BT; the requisite passages are

A2 Bi AT =2, BT
AT L BT A2 B

since (An)* = id ¢ and (x° By = («.f#)* = o*.p*. Thus Set(2, E) may be
identified with the category of (©, E)-algebras of form AT.

2.15 Example. Let Qhave binary +, unary i and nullary e. Set 4 = {1},
B ={bx}, C={cy}, D=1{dz}. Set « = xie+b+, B, = cc+, B, =y,
Y. =dz+i, y,=e Then a°f = yietcc++, (f°y)p = dz+idz+i+,
Boy)=e and a°(f°y) =(aop)oy = eiet+dz+idz+i++. Notice
“Bn o f = B” reduces to the tautology that if we substitute b for b and x for x
then (B,, B.) is transformed into itself, whereas “o° Ay = o” says that
xie+b+ is left invariant by substituting x for x and b for b.

The reader should notice that our proof of 2.11 is a formal consequence
of 2.5 and the fact that sets and functions form a category.
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2.16 Definition. The monoid of (Q, E), denoted V(Q, E), is the endo-
morphism monoid of V in the category Set(Q, E).

2.17 Theorem. Let(Q, E)and (X, E') be finitary equational presentations
as defined in 1.10. Then the following three statements are equivalent and
define the equivalence relation of structural equivalence on finitary equational
presentations.

(2.18)  The category (R, E)-alg of (2, E)-algebras and 2-homomorphisms
(see 2.3 and 2.13) is isomorphic as a category of sets with structure to (€', E')-alg,
that is, for each set X there exists a bijection 1y from the set of all (Q, E)
structures, ¢, on X to the set of all (€', E’) structures, &', on X subject to the
joint condition that for every function f: X —— Y, (Q, E)-structure é on X
and (@, E)-structure y on Y then (X, §) ——— (Y, 7) is an Q-homomor-
phism if and only if f:(X, i) (Y, yyy) is an Q-homomorphism.

(2.19)  The clones Set(L, E), Set(2', E') are isomorphic; that is, for each
set X there exists a bijection X1: XT X T’ subject to preservation
of variables and preservation of composition

X.
/ Xn'
XT ~7

—>XT'

(@ ° B).CA = (a.BA) ' (B.CJ) for all
o:A—— BT, p:B——CT.

(220) The monoids V(2, E) and V(@2, E’) are isomorphic not just as
abstract monoids but in the stronger sense that there exists a bijective map
I''VT———— VT’ composing with which yields a monoid isomorphism:

I = Vy'
(@ p).I' = (aI') " (B.I)
and subject to the requirement that I" preserves true constants, in the sense
that there exists a bijection I'y such that

r

¢T- — — — = O — =0T
x# x/#
VT >VT
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where x, x' are the unique morphisms ¢ — VT, ¢ — VT". (The termi-
nology “true constants” is explained in 5.13 )

Proof. (2.18) implies (2.19). By 2.5, there exists a unique Q-homomor-
phism XA:XT XT' (where XT' is an (Q, E)-algebra by virtue of
Wx1-) such that preservation of variables holds. To prove that composition
is preserved, consider the diagram

#
A d >BT A >CT
BJ, lcx
BT >CT’
(B.CA*

where the bottom morphism of the square can be regarded as Q-homo-
morphism with the help of ™. The remaining details are similar to the
proof of 2.10 and need no repeating.

(2.19) implies (2.20). Set I = V). That composing with I" is a monoid
isomorphism is clear, and it suffices to prove

6T ¢7 >$T"
x# x/#
vT T >VT

To this end, x* .I" = (idyg ° x).I" = (idyr.¢4) @' (x.I') = pA° x' = PAx"".

(2.20) implies (2.18). Let us begin by observing that we have symmetry:
it is easy to check that I'"! enjoys the same properties as I". Next, let us
make some comments about the empty set as an algebra. ¢ can be an
Q-algebra in at most one way and this occurs if and only if Q, = ¢; in this
case, ¢ isan (Q, E)-algebra for arbitrary E, the unique function ¢ — (X, 6)
is an Q-homomorphism for any §, and the same is true in the other direction
(X, ) — ¢, except that the only such function is id,. Notice further
that Q, = ¢ if and only if $T = ¢. Our sole use of the preservation of true
constants consists in the conclusion that Q, = ¢ if and only if Qp = ¢,
and we may now forget about the empty set in establishing 2.18. (The reader
may wish to consult exercise 7 at this point.)
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For each nonempty set X define the desired x of 2.18 by dyry = &'
where for all @’ in Q,,

(X1s v os Xp)00 = {[vy -+~ 0,0 ], "L ?) (2.21)

where r: V—— X is any function such that v;r = x;; in case n = 0 let r
be arbitrary (but here we require that X be nonempty). For an example
see exercise 9. We need:

2.22 Lemma. (xy,...,X,)0, asin 2.21 is independent of the choice of r.

Proof. Observe that for any «: V—— VT we have

#
VT °‘ > VT
r r (2.23)
VT T ST

since a*.I" = (idyy ° @).I = (idy7.I) ' (aI') = (al')**. Define f:V — V by

oif = v; fn>zlandl <i<n
Y7 lv,  otherwise
and set o:V—— VT to be f.Vy. Let X, §, ', r be as in 2.21. Observing
that a®.r* = (f.r)* (use 2.5), we have
oy v ], T70r%)
= [v])??, ... [v, ]l ), T~ 1r*) (I" preserves variables;
= oy v @) *, 1) notation as in 2.2)
= oy v ], T La®r?) (by 2.23)
= [vr 00 L TN
which completes the proof of 2.22 since the final expression depends only
on the restriction of r to {v,, ..., v,}.

Lemma 2.22 plays an essential role in showing that if §' = Sy as in
2.21 then (X, ¢) satisfies E’. To do this it suffices to establish
Vp' r-t

vV >VT’ >VT

(2.24)

(X, 9,0
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for arbitrary r:V—— X (ie, if {e;, e,} is in E’ then e;r*** = e,r ¥**
because (e, Vp'> = (e,, Vp'>). We prove this by algebraic general recursion:
Basis step: Each path sends v to vr.
Recursive step: Let p = py - - - p,0’ with both paths agreeing on p;.

Let o, f:V——— VT satisfy v,a = [v; - 0,0 ], v, = [p;]- Then
vy, 0o B> = [p] by 2.10. Then

p], T 1%
= oy, (@) e (Br=1r?
= [vy v 0L (BT~ Lr %)™ (use 2.5)
= (v, BT 1™, 0, (o BT 1r*))5,,  (by 2.22)

= (plr### P " ###)520’

= pr #HH

The remaining details of the proof that 2.18 holds are easy. If
(X, §)—————(Y,y) is an Q-homomorphism between (Q, E)-algebras,
then r*.f = (r.f)” by 2.5, so that

<(x1> cets xn)ézu’» f> = <[Ul o Unw/]s F“I'r#'f>
= v v ], TN
= (xlfa cees xnf)y::o’

so that f:(X, 6yx) ——————— (Y, pry) is an Q-homomorphism. yx! is
defined symmetrically. If y = §"yrx '¢x then

(15 Xy = [0y 00" ], TN %y
= <[UI T U,,(D’], r###> (by 224)
= (xls AN xn)ééo’

The proof of 2.17 is complete. []

Notes for Section 2

The term “clone”—an acronym for “closed set of operations”—is attri-
buted to P. Hall in [Cohn 65, I11.3]. The earliest published paper we know
of which deals with the algebra of clone composition is [Menger *46]. See
also [Felscher 68, *72 2.1], [Menger *59], [ Schmidt *62], [ Schweizer and
Sklar *69], [ Whitlock ’64], and the bibliographies there.

The general concept of “isomorphism of categories of sets with structure”
used in 2.18 will be formalized in section 3 of Chapter 2. This definition was
given by [Mal’cev 71, p. 59] under the term “structural equivalence” which
we have adopted in 2.17. Mal’cev indicated that such isomorphisms between
categories of (Q, E)-algebras are induced by transformations at the level of
syntax ([ Mal’cev ’58]) and precise statements and proofs were provided by
[Felscher,’68,°69,’72] and [ Hoehnke, 66 ]. In this connection, I':VT ———
VT’ of 2.20 should be regarded as “interpreting T-terms as T'-terms” and
2.21 asserts that “the Q-interpretation of w' is provided by I' "1”, (Cf. also the
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logicians’ “interpretations between theories,” e.g. [ Enderton 72, section 2.7].)
More general clone homomorphisms will appear in 3.2.8.

Theorem 2.17 is a “folklore theorem” which has not, to our knowledge,

appeared in print before; however, see [ Felscher °72, 2.1.8,2.3.2].

[N

Exercises for Section 2

. The axiom of choice asserts that for every onto function f: X —— Y

there exists a “choice function” ¢: Y —— X such that ¢.f = idy. From
the point of view of “naive” set theory one simply chooses for each y any
c,withc,f = y(since fis onto) and defines yc = c,. From the point of view
of axiomatic set theory (see [ Monk ’69, Chapter 3], [ Lawvere *64], [Jech
*73, Chapter 1]) this cannot be established from the other “standard”
axioms unless Y is finite. Show that the axiom of choice in the proof of
2.2 can be avoided by restricting r: ¥V ——— AT to the finite set of vari-
ables occurring in e; and e,.

Prove that the axiom of choice, as defined in exercise 1, is equivalent to
the following: for every function f: X —— Y with X nonempty there
exists g: Y —— X with fyf = f.

Let Q have a single n-ary operation w and let E possess the equation
{(wy, ..., w)w, w;} whenever wy, ..., w, € V are such that not all w; are
distinct. Show that AT = {[a]:a e A} if 4 has less than n elements and
that AT is infinite otherwise.

Let Q be a finitary operator domain and let E, E’ be two sets of Q-equa-
tions. Prove that (2, E) and (Q, E’) are structurally equivalent if and only
if E, = E

Exercise 4 may be generalized as follows. Let (@, E,), (Q,, E,) be two
finitary equational presentations. Let Q be the operator domain defined
by Q, = (2,), + (Q,),. Prove that (Q,, E,) and (Q,, E,) are structurally
equivalent if and only if (E,), = (E,),-

Attempt to prove 2.11 by generalizing the notations of 2.15.

Let T, T’ correspond respectively to the equational presentations “one
nullary operation e and no equations” and “one unary operation u to-
gether with the equation {vu, v,u}.” Prove that there exists a bijection
I''VT —— VT’ composition with which is a monoid isomorphism
(i.e., the first two conditions of 2.20 hold). Observe that these equational
presentations are not structurally equivalent by considering the empty
algebra.

Write out an explicit description of V(Q, E) for the (2, E) of exercise 5
of section 1.

. Let Q have one binary operation m and no equations and let Q' have one

ternary operation ¢ with single equation (x, y, ajt = (x, y, b)t. Define
I':'VQ ——— VT’ by the recursion

o =v
pgmI” = [p][q][v,]t
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Show that I' is a structural equivalence in the sense of 2.20 and that &',
as in 2.21, is given by (x, y, 2)d;, = (X, )0

10. Given p € AQ, the set var(p) of variables occurring in p is defined in the
obvious way by algebraic recursion:

var(a) = {a}
var(p, - - - p,w) = var(py) v - - U var(p,)

Given an (Q, E)-algebra (X, 8), prove that if r, s:4A —— X agree on
var(p) then [p]r* = [p]s?. Verify that this description of var(p) agrees
with the one given in 2.10—.

11. Verify that 2.23 is equivalent to (o © f).I" = (a.I) ' (B.I).

12. Verify that “groups” as in 1.1 is structurally equivalent to “groups” as in
1.2 (as modified in 1.3+).

13. Without peeking at Chapter 2, formulate a definition of “isomorphism
of categories” to formalize our assertion of 2.14 + that Set(2, E) may be
“identified” with the category of (Q, E)-algebras of form AT.

14. Verify that the proof of 2.22 is valid when n = 0.

15. Let Q have a single nullary operation and let E be empty. Show that
Set(Q, E) may be identified with the category of sets and partial functions.

3. Algebraic Theories

Roughly speaking, the algebraic theory of an equational presentation
(Q, E) is its equivalence class in the various senses of 2.17. In this section
we describe Set(Q, E) as an “algebraic” object without reference to any (2, E).
The definition is so elementary that, unlike the situation in 1.10, no intrinsic
structure of sets is referred to; we need only to know that sets and functions
form a category. To this end:

3.1 Definition. Fix an arbitrary category .#". 4 is the base category.

Not until Chapter 3 will we use the full generality of 3.1. Right now, the
reader will do well to pretend that ¢ is a familiar category such as sets,
topological spaces, or groups.

3.2 Definition. An algebraic theory (in clone form) in A is a triple
T = (T, 1, °), where

T is an object function, assigning to each object 4 of " another object,
AT, “of T-terms with variables in A4.”

1 is an assignment to each object A of #" an “insertion-of-the-variables”
map An: A ———— AT.

o is an assignment to each ordered triple (4, B, C) of objects in " a
“clone-composition” function

#(A, BT) x # (B, CT) ——=>— (A, CT)

Before stating the axioms on T we establish some notations. First of all, we
use the same notational conventions as in 2.7. In addition, we recognize that
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each A -morphism f: 4 —— B induces f“: 4

B defined by

f4=4-LB 2 ,BT
The axioms on T, then, are:
(33) (xep)ey=ac(fey) for all a:4——B, f:B——C and

y:C——D

a° By = o for all o0:A——-B

froa = fau forall  f:A——B, o:B——C
This defines a category, 4y, with the same objects as 2", composition °, and
identity morphisms # (set f = id, to prove that Ay ° o = a). # ; is called
the Kleisli category of T.

3.4 Example. Let (2, E) be an equational presentation and let T, 7, ©
be as in 2.1, 2.9, and 2.8. Then (T, 5, °) is an algebraic theory in Set and
Set, = Set(, E). To prove this we must check 3.3; indeed, f4°ca = f4.a* =

f(Bna?) = fa.

3.5 Example. Sets and Relations. A relation from a set A to a set Bis a
subset o of A x B. We may write axb for (a, b) € a. Since aob if and only if
b € ao,, where ax = {b € B:anb}, there is a natural bijective correspondence
between relations from A to B and functions from A to BT, where BT is
the power set of B, that is, the set of all subsets of B. Given another relation
from B to C, call it §, there is a well-known composition a{a ° f)c if and only
if there exists b € B with aab and bfic; or, in the second notation, {a,a ° > =
{c € C:thereexists b € anx with ¢ € bf}. Define An: A ——— AT by {a, An) =
{a}. It is easy to check that (7, 5, ©) is an algebraic theory in Set.

3.6 Example. Matrices. Let R be a ring with unit. If B is a set, a vector
in B is a B-tuple of “scalars” (that is, elements of R) (1,:b € B) such that all
but finitely many 4, = 0. Let BT denote the set of all vectorsin B.An 4 x B
matrix is a function a: A —— BT (where we think of ax as a row vector and
b as indexing columns). Given an 4 x B matrix o and a B x C matrix
define their composition o ° § by the usual matrix multiplication formula
Ca,o0° By = Y peplan)y(bp).. Define An: A ——— AT by (a, An) = & where
0% is the Kronecker 6, 65 = 0 if a # b, 82 = 1. It is routine to check that
(T, n, ) is an algebraic theory in Set. In fact, T comes from a suitable (Q, E)
(see exercise 1).

3.7 Example. Let 4 be the category of topological spaces and con-
tinuous maps and let G be a topological group. For each space B let BT be

the topological space B x G. A map a:4 —— BT amounts to a pair <f>

f/
of continuous maps, f:4A—— B, f":A——G.If = <Z,>:B ——CT,
define a° § = < fg{? f’)’ where #:G x G ———— G is the (continuous)
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e id
group-multiplication map. Define An:A ——— AT by 4 = 1eA>, where

e: A —— G is constantly the group unit. It is not hard to prove that (T, 5, °)
is an algebraic theory in %",

In the first two sections of this book we extracted the algebraic theory of
a bunch of algebras. In section 4, we will learn how algebras can be defined in
terms of their theory. The point of Examples 3.5, 3.6, and 3.7 is that algebraic
theories can arise naturally without first knowing what the algebras are. The
reader might ponder just what kind of algebras are defined by these three
examples; they are all relatively famous examples of “structures.”

Our immediate goal is to reformulate algebraic theories in clone form
as algebraic theories in monoid form, with considerable technical gains. We
begin by fixing an arbitrary algebraic theory T = (T, 5, °) (in clone form)
in a category " and studying some formal consequences of Axiom 3.3.

3.8 Triple Product Law. Given f:4 — B, f:B— C and y:C — D,
f-Beyis well defined. For (f.B)ey = (f*eB)oy=f"(Boy)=f(B°y. [

3.9 Compatibility of Compositions. Given /4 —— Band g:B——C,
then (f.g)* = f4 ¢ g% Proof: (f.9) = f.g.Chp = fg?= g4 []

3.10 Proposition. If for f:A —— B we define fT:AT —— BT =
idyr ° f4, T is a functor.

Proof. (id)T = id,;°(id,)* = id r ° Ay = id,4. If also g:B — C,
(f@PT = idyr° (f9)? = idyr° f° g = fT o g* = fTidgr ° g* =
fTgT. []

Let us explore this new construction in some previous examples. In the
(@, E) case, fT = id,r° f4 = (%)% From the diagram of 2.5 and 1.20,
fT:AT ———— BT is determined by

[a]lfT = [af]
[Py P fT = [p)f T [Pa)f T

When E is empty, f T is the fQ of 1.17. In some sense, then, T is “substitu-
tion of variables”; but this must be taken with a grain of salt since an equation
such as {v;v,im, e} in group theory makes it impossible to define the variables
of an equivalence class of formulas.

Let us pin down f'T in the context of Example 3.5. The change in point
of view in passing from id,;:AT ———— AT toid7: AT —— A con-
verts an uninteresting identity function into the e-relation: S id 7 a if and
only if ae S. f*:A—— BT sends a to {af }. Therefore, {S, id,p° f*) =
{b e B: there exists a € S with be {af }} = {af:ae S}, and f T is the direct
image map.

Since T is now a functor, it makes sense to ask if # is a natural trans-
formation:

3.11 Proposition. 1 is a natural transformation from the identity functor
of A to T that is, for all f:A —— B we have
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A An >AT
f fT
B B >BT

Proof. AnfT = Ane° f* (see 3.12) = f* = f.By. []
The functoriality of T also allows us to state the counterpart of “f 4o o =
f.o” on the other side:

3.12 Proposition. For all w:A —— B, g:B ——— C we have 0.° g* =
oagT.

Proof. a°g®= aidgrog?= agT. []

Let us return briefly to AQ. While 1.11 provided us with a unique deriva-
tion tree for each formula, there is more than one way in which one could
choose to assemble the tree from its pieces. The associative law of clone
composition may be regarded as the statement that different assembling
procedures build the same tree. To be specific, let us consider the example
of 2.15 where the formula eie+dz+idz+i+ + in DQ was broken up in two
different ways:

ac(fey)  (e)ie+(dz+idz+i+)+
(e B)ey  (elie+(dz+i)dz+i)+ +

It is not necessary to introduce parentheses as formal symbols to make
these distinctions. Let us agree to interpret the parentheses enclosing p in
(p) as the desire to consider the formula p € AQ as a mere variable in (4Q)Q.
Thus (e)ie+(dz+idz+i+)+ and (e)ie+(dz+i)(dz+ i)+ + become elements
of (DR2)Q of word lengths 6 and 8, respectively. Since AQ is an Q-algebra,
it has a total description map (1.18) Au:(AQ)Q ————— AQ which is the
unique Q-homomorphism that preserves variables (i.e., sends (p) to p). In
short, Au is the desired map which removes the parentheses. (AQ)Q has
enough structure to define clone composition and Au can express the asso-
ciative law!

Let us return now to the general T. There is no problem in defining
“formulas of formulas.” It is obvious that we in fact get a functor TT by
defining ATT = (AT)T, fTT = (fT)T. To see how to define u, observe
that in the Q-case, Au = (id,,)* = id g0 (id40)* = id 00 © id4o. This
motivates the general definition of u. We sum up the structure of u in four
axioms and go on to see that (7, #, ) is coextensive with (T, , °).

3.13 Definition. For each object A of A define a A -morphism

Ap:ATT——— 5 AT by Ap = (idpp ATT AT) > (id g
AT A).
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The reader may check that in 3.7, Au:4 x G x G
A x G is the continuous map which sends (a, g, h) to (a, g*h). In 3.5, Ay is
the union map sending the collection <7 of subsets of 4 to its union {a € A:
there exists S € .o/ with a e S}.

3.14 Kleisli Composition Law. For each f:B — C define f#:BT ——
CT = (BT:BT CTT)(Cu:CTT ———— CT). Then for all
oA Band $:B——C,a° B = a.p”.

Proof. wa°f =a°(Bidcy) =a°B4°idey = afT °ider = a(fTidcrr) ©
ider = a(fT4° idepr 0 ider) = a(fT4° Cu) = a.fT.Cu. [

We will see in the next section that the correct interpretation of 3.14 is
the obvious one: algebraic theories really are like the motivating example
Set(2, E). The next two statements establish the four axioms on p we men-
tioned earlier.

3.15 Proposition. u:TT ——— T is a natural transformation, that is
for all f:A—— B we have

ATT JTT >BTT
Ap Bu
AT 7T >BT

Proof. Au.fT = Au-° f = idypp © idyp © f2 = idypr o fT =
id rr.f TT.Bu (by 3.14). []

3.16 Proposition. For every object Ae A, the following diagrams
commute:

AT
AT 1 > ATT < AnT AT
Ap
id i,y
AT
ATTT AT >ATT
ATpu Ap
v
ATT AT
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Proof. ATnAp = ATnidrpeid,r = ATyeidyy = idyq. AnT.Ap =

id 47 ° An(by 3.14) = id 47 ApT.Ap = id 4ppr° Ap = id 4ppr o id jpr e idyp =
ATpeidyr = ATp(id )T Ap = ATpAp. []

3.17 Definition. An algebraic theory (in monoid form) in a category A’ is
atriple(T, n, p) where T is a functor from A" to A", n is a natural transformation
from the identity functor of 4" to T, and u is a natural transformation from TT
to T, all such that the three diagrams of 3.16 commute for every object A of 4.

The reason for the terminology “monoid form™ lies in the analogy with
the diagrams (see exercise 4) that define an ordinary monoid. Think of u as
a “binary multiplication” and # as a “unit”; the diagrams of 3.16 say that
“u is associative and # is a two-sided unit for p.” We agree with [ Mac Lane
’71, p. v] that “monoid” is one of the central concepts of category theory and
we will see in Chapter 3 (3.2.6) how (T, #, u) really is a monoid.

3.18 Theorem. In any category A, the passage from algebraic theories
in clone form (T. n, °) to algebraic theories in monoid form (T, n, p) defined by
3.10,3.11, 3.13, 3.15, and 3.16 is bijective.

Proof. The inverse passage can only be achieved by the formula of 3.14.
Let us prove this is well defined. We have o ° By = «.ByT.Bu = o. The
associative law is proved as in 2.11 because we can recapture 2.12: (.y%)* =
(By*)T.Du = (ByT.DW)T.Du = BTyTT.DuT.Dy = BTyTT.DTu.Dy =
BT.Cu.yT.Du = B*.y*% The rest of 3.3: f4 o a = (f.By).aT.Cu =
fa.CTy.Cu = f.o. Passing from (T, #, °) to (T, 5, u) to (T, #n, "), © = ' by
3.14. Now let us pass from (T, #, u) to (T, n.°) to (T, n, ). To prove that
u = i we use the only axiom about (T, #, u) we have not used already,
namely that T preserves identity maps: Ay = id q °idyr = idypr.
(idn)TAp = Ap. []

We close this section with two fascinating examples of algebraic theories
in Set. In section 5 we will identify the algebras of these theories respectively
as complete atomic Boolean algebras and compact Hausdorff spaces!

3.19 Example. The Double Power-Set Theory. For each set X let XT be
the set of all collections of subsets of X. XTTT is quite complicated. For
future and present convenience we established some helpful notations:

oeXT a collection of subsets of X
Aeof a subset of X

xeA an element of X

BeYTT a collection of subsets of YT
Be%# asubset of YT

BeB anelement of YT

e ZTTT a collection of subsets of ZTT
Ce¥ asubset of ZTT

ZeC an element of ZTT

xededecAeAdecAedec ATTT

Given an X-tuple (%,:x € X) of elements of YT and a Y-tuple (¢,:y € Y) of
clements of ZT define (8,) ° (¢,) by ((8,)°(6,))s = {C = Z: {ye Y:Ce¥,}
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€ & }. Define (x, Xn) = prin(x) e X T, where prin(x) is the principal ultra-
filter on x (see 3.21) defined by prin(x) = {4 = X:x e A}. The proof that
(T, n, °) is an algebraic theory is left as an exercise. For /X — Y, fT is
definedby (o/, fT) = {B< Y:Bf 'e o} Xu: XTT ——— X T is de-
finedby (o, Xpy)={Ac X: {4 ecXT:Aesl}ed).

3.20 Definition. Let T be an algebraic theory in Set, and let T’ assign to
each set A a subset AT’ of AT. T’ is a subtheory of T if for all A, the image of
Ay is a subset of AT’ (thereby defining the map An':A —— AT') and if for
all a:A —— BT’ and $:B —— CT’, the image of

(4~ BT'— BT) > (B - CT'— CT)
is a subset of CT’ (thereby defining o. ' f: A ——— CT"). Clearly (T, ', ©')
is a theory if T” is a subtheory.

3.21 Example. The Ulirafilter Theory. The reader has probably heard of
ultrafilters before, but no matter if not. We will postpone a discussion of the
elementary properties of ultrafilters until 5.24, taking for the moment one of
the many well-known equivalent definitions. An ultrafilter % on a set X is
a collection of subsets of X satisfying

(322) If n>0and A4,,...,A4,e% then A, n--- N A, is nonempty.
This is called the finite intersection property.

(3.23) If A is any subset of X then either Ae % or X — A e %, where
X — A = {xe X:x ¢ A} is the complement of 4 in X.

The ultrafilter theory is sufficiently interesting to deserve the special sym-
bol B. (We will learn in 2.2.8 how “B” comes from “beta-compactification™.)
For each set X define Xf to be the set of all ultrafilters on X. If T is the
theory of 3.19, X is a subset of X T. We show now that B is a subtheory of
T. It is obvious that prin(x) is an ultrafilter. Now let % = ((#,) ° (¥,)); € CT
where each %, is an ultrafilter on B and each €, is an ultrafilter on Z. Let
Cy,...,C,e. Therefore, B; = {ye Y:C,e¥,} € B, for all 1 <i<n
Since %; is an ultrafilter, there exists ye B; n -+ N B,. As %, is an ultra-
filter and Cy,...,C,e %, C; n---n C, # ¢. Now let C be any subset of
Z and suppose that C ¢ %. Therefore, {ye Y:C e %,} ¢ 8;. Since %, and
each %, are ultrafilters, {ye V:Z — Ce%,} = {ye Y:C¢%,} € %B;, and
Z — C e 9. The proof that B is an algebraic theory is complete. []

Notes for Section 3

Our Definition 3.2 of “algebraic theory in clone form” has its origins not
so much in the “abstract clones” of P. Hall [Cohn *65, p. 132] or the work
on clones cited in section 2 as in the fundamentally different approach of
[Lawvere 63]. A version of Lawvere’s definition is given in 5.35. A brief
textbook treatment of universal algebra in Lawvere’s formalism appears in
[Pareigis *70] and in [Schubert *72, Chapter 18]. See also [Kock "68] and
[Wraith °70].

The “algebraic theories in monoid form” of 3.17 were first defined in the
appendix to [Godement ’58] where they were called “standard construc-
tions.” The first paper relating these standard constructions with universal
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algebra was provided by [Eilenberg and Moore ’65] who called them
“triples.” The term “monad” is favored by [Mac Lane ’71, chapter VI]. At
this writing, whether to call them triples or monads is regarded by some as
controversial. Our use of “algebraic theory” counters the argument that this
term is pre-empted by Lawvere on the grounds that Lawvere’s theories and
triples-monads are coextensive.

The passage from T (in monoid form) to 4 ; was given by [Kleisli *65].
This suggested Definitions 3.2 and 3.18 (which are new). For an axiomatiza-
tion of (T, #, (—)¥) see Exercise 12.

Exercises for Section 3

1. Construct a finitary equational presentation whose associated algebraic
theory is that of Example 3.6. (Hint: (Q, E)-algebras are R-modules; AT
is the weak direct sum of 4 copies of R.)

2. The construction of 3.7 can be done in Set for each abstract group G.
Show that this algebraic theory comes from a finitary equational presen-
tation. (Hint: Q has only unary operations and they are the elements
of G.)

3. Show that B# = idg;°f for f:B—— C. Using this as a definition,
reprove the theory of 3.14. See Exercise 12 below.

4. A monoid (X, m, e)is a set X equipped with a binary associative operation
m:X x X — X with a two-sided unit e e X. Express the associative
law as a commutative diagram. Similarly, recognizing that e is a function
e:1 — X from the one-element set 1, express the unit laws as a commu-
tative diagram. (Hint: see 3.2.3.)

5. An algebraic theory T in Set is affine ([Wraith *70]) if 1T =1 (ie., 1 is
a one-element set and “1T = 1” means “1T again has one element”).
Let T be arbitrary, let t,: A —— 1 be the unique function and identify
17:1 — 1T with the corresponding element of 1T. Prove that AT, =
{pe AT:{p,t,T) = 1y} is a subtheory of T which is affine.

6. [Wraith *70] Let R be the field of real numbers and let T be the algebraic
theory of real matrices as in 3.6. Show that the affine subtheory of T
(asin exercise 5)is given by AT, = {(4,): Y4, = 1}. Show that stochastic
matrices (all 4, = 0) is an affine subtheory of T,

7. Let T be the algebraic theory of 3.5. Show that “finite subsets” and
“nonempty subsets” form subtheories of T.

8. Let T correspond to an equational presentation such that, in each equa-
tion, the same set of variables is used on both sides. Given p € AT define
o/, ={S  A:p is in the image of (incg)T} where incg denotes the
inclusion map S — A. Show that AT, = {/,:pe AT} is a subtheory
of the double power-set theory of 3.19.

9. Let T: Set——— Set be an arbitrary functor. A composition law on T is an
assignment to each pair (X, Y) of sets a function ¢y y: XTY x YT —
XT which is natural in X and dinatural [Mac Lane *71, Chapter IX,
section 4] in Y; that is, given f: X —— X’ and g: Y —— Y’ we have the
commutative squares (where f 7Y and X T¢ mean, respectively, compose
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.
XTY x YT ‘x.y >XT X710 % yT—2X2 X vy oyt
TY x id T id x gT Cx. y
f g X,
X'TY x YT s >X'T XTY x Y'T o >XT

with f T, g on the appropriate side). Prove that there is a bijective corre-
spondence between composition laws on T and natural transformations
u:TT — T. (Hint: to define Xy, inject XTTinto XT*" x XTTby
using idy; as the first coordinate and follow with cy yr; conversely,
given a:Y —— XT and b e YT define (a, b)cx, y = <b, aT . Xp>.)

10. Show that any intersection of subtheories is a subtheory.

11. Show that ny:n — nf is a bijection if n is finite.

12. The motivation for Definition 3.2 stressed (—)* as more basic than °,
and an alternate definition is easily given. An algebraic theory in extension
formis T = (T, n,(—)*) with T and 5 as in 3.2, and with (—)” assigning
to each a: 4 —— BT an “extension” a*: AT ——— BT subject to the
three axioms “An.o” = «,” 2.14, and 2.12. Show that extension form and
clone form are coextensive via the passages 2.8 and o® = id 47 ° 0. We
have preferred clone form because the associative law for ° is more
natural in appearance than 2.12.

4. The Algebras of a Theory

The example of (2, E)-algebras raises the question if an arbitrary algebraic
theory T in a category .#" has algebras. Theorem 2.17 teaches us that if T
is coextensive with its algebras, the way to describe them is as a category
“of A -objects with structure”; specifically, for each object A of A4~ we
should provide a set {¢} of T-algebra structures £ on 4 and, more important,
we should define when a # -morphism f: 4 —— B is a T-homomorphism
from the T-algebra (4, ¢) to the T-algebra (B, ). We begin by reexamining
(Q, E)-algebras and discover how to describe them in the language of
T, 1, °, u which gives rise to the concept of a T-algebra. The main result of
this section is that the algebras of a finitary equational presentation are the
same thing as the algebras of a finitary algebraic theory. Enroute, we intro-
duce product algebras, subalgebras, and quotient algebras and prove the
Birkhoff variety theorem.

4.1 Proposition. Let (Q, E) be a finitary equational presentation (1.10)
and let T = (T, n, °, ) be the algebraic theory (3.2, 3.17, 3.18) corresponding
to (2, E) as in(2.1, 2.9, 2.8, 3.13).Then

(4.2) For each Q-algebra (X, 6), (X, d) satisfies E if and only if there
exists a function é: X T —— X, called the structure map of (X, 8), such that



4. The Algebras of a Theory 33

XQ >XT

5@ / é

where 6% is defined in 1.18 and Xp is defined in 2.1.
(4.3) If(X,d)is an (Q, E)-algebra then its structure map &: XT —— X
is the unique Q-homomorphism such that

X X1 >XT
X

that is, ¢ = (idyx)™ (as in 2.5).

(4.4) Forfixed w e Q,, define, for each set X, a function X &: X"
XTby{(x1,...,X%,), X®> = [x{ - x,w]. Then @ is a natural transformation,
that is for every function f: X —— Y we have

Xd

X" >XT
/" fT
J
Y 75 >YT

where f” is defined in 1.4 and f'T is defined by 3.10. The Q-structure, §, on
X is recaptured by

X Xo >XT
¢ (4.5)
%
X

for all w e Q,.
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(4.6) The structure map of the (Q, E)-algebra XT (2.2) is Xu:
XTT ———XT.

(4.7) If (X, 6) and (Y, y) are (Q, E)-algebras with structure maps
&:XT——X and 0:YT ——Y then a function /X — Y is an Q-
homomorphism if and only if

XT /T >YT
g }0
X >Y
f

Proof. Let (X, §) be an Q-algebra and assume that & exists as in 4.2.
For each r:V —X, r* = rQ.6% (1.19), so that if {e;,e,} € E we have
er® = (e, 1QXp.E> = (e, QX p.E> (2.4 with g = V.rQ) = e,r”, and
(X, 8) satisfies E. Conversely, if (X, 8) is an (Q, E)-algebra then, using 2.5,
define ¢ = (idy)* and observe that the diagram of 4.2 commutes because all
are Q-homomorphisms and the diagram clearly commutes on the variables
x € X. The naturality condition on & is clear from the remarks on f7T in
3.10+. Expression 4.5 is checked by {(x;,...,x,), X@.E> = {[x; - x,00],
EY = {(xy 0 x,0, 6% = (x4, ..., X,)0,, the last being the Definition (1.18)
of 6. Since Xy = idypr © idyr = idyrr.(idyr)? = (idxr)?, Xu is the struc-
ture map of X T Let us turn to 4.7. For any function f, the diagram commutes
restricted to variables, that is we have Xn.&.f = f = f.Yn.0 = Xn.fT.0. For
any function f, & f T, and # are always Q-homomorphisms. Thus if f'is also
an Q-homomorphism, the diagram commutes. The converse is clear from
4.4, 4.5, and the diagram

X" X0 >XT < > X
fr fT S
v
Yn > >
Yo YT 0 0

The preceding proposition motivates:

4.8 Definition. Let " be an arbitrary category and let T be an algebraic
theory in . A T-algebra is a pair (X, &) where X is an object of A" and
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E:XT —— X is a morphism in A", called the structure map of (X, &), which
satisfies 4.9 and 4.10 below.

X

X u >XT

£ (4.9)
X

XTT T >XT
Xu £ 4.10)

XT > X

¢

(See Exercise 11 for an alternate axiomitization.)
If (X, &) and (Y, 0) are T-algebras, a T-homomorphism from (X, &) to (Y, 0)
is a A -morphism f: X —— Y such that

XT ST >YT

¢ Ja @.11)
> Y

X 7

Because T is a functor, idy: (X, &)
and f.g:(X, & (X", &) is a T-homomorphism so long as
[(X, 9 (X', &) and g:(X', &) (X", &") are. This gives us
a category 4T of T-algebras and T-homomorphisms and a “forgetful
A -object” functor UT: ¢™T A.

While all definitions in 4.8 were motivated by the considerations of 4.1,
it is surprising that we do not have to say more. Let us examine the heuristics
somewhat further. Expressions 4.9 and 4.10 represent the idea that “¢ =
(idyx)”.” The role of 4.9 here is clear, and 4.10 is a special case of 4.11: “¢ is
a T-homomorphism from (X7, Xu) to (X, £).” It is reasonable to want
X to be the algebra structure of X T in view of 4.6, and it is consistent with
our philosophy to assert so since (X T, X ) is a T-algebra (two of the diagrams

(X, &) is a T-homomorphism,
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of 3.16). Even more striking is the fact that we can characterize algebraic
simple recursion by a universal mapping property:

4.12 The Universal Property of (AT, Ap). Let T be an algebraic theory
in a category &, let (X, &) be a T-algebra and let f:4 —— X be a
A -morphism. Then there exists a unique T-homomorphism f7:
(AT, Apy) ——— (X, &) such that

A An SAT
/

(cf. 2.5). Moreover, the formula for f* is given by
f*=AaT 5 XTS5 X (4.13)
(cf. r* = rQ.6% in 1.19).

Proof. We have already remarked that (AT, Ay) is a T-algebra. fT:
(AT, Ap) ————— > (XT, Xp) is a T-homomorphism precisely because
u is natural (3.15). (X T, Xy) —————— (X, &) is a T-homomorphism
by (4.10). Therefore, f * as in 4.13 is a T-homomorphism. Because # is natural
(3.11), we have An.f* = An.fT.¢é = f.Xn.¢ = f (using 4.9). It remains to
show uniqueness, and this is where (for the first time) the law “AyT.Au =
id47” of 3.16 gets used. Suppose g:AT —— X satisfies An.g = f and
Apg = gT.L Since Tis a functor we have AyT.gT = fT. That g = 7 is
now clear from the diagram

T
AT f
AnT
T
ATT g >SXT
idAT Ap ¢
AT - > X

The proof is complete. []

We have now completely justified the motivation for 4.9 and 4.10: if
(X, &) is a T-algebra then & = (idy)*. If the reader has been keeping score,
she will have noticed that the axiom “(id,)T = id ;" is the only axiom about
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T = (T, », ) that has not been interpreted. As it turns out, this axiom is
crucial in proving that # determines T (cf. 2.17). While we will not prove
this result until Chapter 3 (3.2.11) the idea is basically as follows: Suppose
(AT', i’y is a T-algebra and #:A —— AT’ is a # -morphism such that
(AT, i'; n') also enjoys the same universal property as (AT, Au; An) as in
4.12. Consider the diagram:

AT
n
g
Y]' v
A SAT (4.14)
h
4
v
AT

where g and h are the unique T-homomorphisms making their respective
triangles commute. Thus g.h is the unique T-homomorphism leaving 7
invariant. id,; is a 2 -morphism leaving # invariant. Because T preserves
identities, id , is a T-homomorphism, so must coincide with g.h. Symmetri-
cally, h.g = id ;.. In most categories (such as #* = Set) g and h are considered
mutually inverse isomorphisms, that is (AT, Au, An) and (AT, W, n’) are as
“abstractly equal” as any two such things could be. We will comment further
on “isomorphisms in a category” in chapter 2 (2.1.4). Right now, we put the
finishing touch on 4.1:

4.15 Theorem. Let (Q, E) be a finitary equational presentation and let T
be its algebraic theory as in 4.1. Then Set! and the category of (R, E)-algebras
are isomorphic categories of sets with structure, that is for each set X the passage
from an (Q, E)-structure § to its structure map & as in 4.2 is bijective onto the
T-algebra structures on X, and for each functionf: X —— Y, (Q, E)-structures
0 and y and corresponding structure maps & and 0, f:(X, §) ——— (Y, )
is an Q-homomorphism if and only if f:(X, &) (Y, 0) is a T-homo-
morphism.

Proof. Most of the work was done in 4.1. We have only to prove that
if (X, &) is a T-algebra then there exists an (£, E)-algebra (X, 6) whose
structure map is ¢ Define g: XQ ——X by g = Xp.&. On variables,
xg = {x, Xn.£) (see the definition of # in 2.5) = x (by 4.9). Now consider
the formula p, - - - p,w in XQ. As in the discussion of 3.12+ the elements
[p;] in XT may be thought of as variables in XTQ giving rise to
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([p D) ([pa])w in XTQ. Since Xu:XTT XT = (idyp)” we

have <[([p.])- - ([p.))), XuD> = [p; - - pw]. From 4.10 we have a
commutative diagram

XTQ XTp >XTT Xp >XT
£Q ET Jé
X0 % >XT : > X

(where the first square can be proved by the reasoning of 2.10, and is actually
a special case of the diagram of 2.10). Putting it together:

(1 Paw)g = [Py pu], £
={([p ) ([Pa)ew, XTp.X .8 >
= [p ) ([Pa)w, EQ.Xp.2>
= ([[p)¢" - [Pu)éw], &> (by 1.17)
= ([p:dé. ..., [Pa]O)S,,

where the Q-algebra (X, o) is defined by 4.5. Comparing these facts about
g with 1.18, we have g = 6 It is then immediately clear from the equation
Xp.& = 6 and from 4.2 both that (X, §) satisfies E and that its structure
mapis &[]

4.16 Example. Topological Transformation Groups. Let 4 be the cate-
gory of topological spaces and continuous maps and let T be the algebraic
theory corresponding to the topological group G as in 3.7; u for this theory
is described in 3.13+ A T-algebra is a topological space X together with a
continuous map £: X x G — X subject to

Xe = X (for all x € X)
x(gxh) = (xg)h (forallxe X, g9, heG)

where we have written xg for (x, g)é. This is a well-known mathematical
structure known as a topological transformation group with phase group G
[Gottschalk and Hedlund 55, Definition 1.01]. The T-homomorphisms are
continuous maps f which are equivariant, i.e. (xg)f = (xf)g. This example
is one of the rare instances where the T-description coincides with the
traditional one.

4.17 Example. Semigroups. A semigroup is a set X together with a
binary operation *:X x X — X which is associative: (x#*y)xz = x*(y*z).
For example, every monoid is, in part, a semigroup but if X has at least two
elements and x*y = x then (X, *) is a semigroup which cannot be made
into a monoid. Clearly, semigroups are the same thing as (2, E)-algebras
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with one binary operation symbol * and one equation {v,v,%v3%, v,v,05%*}.
Let us describe the algebraic theory. For each set X, define X T to be the
set of all words in X, as in 1.7. X T is a semigroup under the binary operation
of concatenation:

(xlu'xmyl'”.Vm)= Xy Xy Y1 Ve

That concatenation is associative is obvious. Define X7 by {x, Xn) = x.
If f:X ——(Y,*) is a function to the underlying set of a semigroup,
(x; - x)f* = x,f*--#*x,f is clearly the unique Q-homomorphism ex-
tending f. By the uniqueness argument of 4.14 we have described the algebraic
theory of (@, E); for example © is defined by 2.8. It is becoming clearer what
we meant by the “pivotal” role of the universal property in our remarks of
2.5+. The structure map & of the semigroup (X, *) maps x; - X, to
X% - -+ #x,. Expression 4.5 amounts to the recovery: x*y = (xy)¢. Con-
versely, let us start with a T-algebra (X, &), define x*y = (xy)& and see how
the associative law gets proved. Note first of all that Xy = (idy;)* converts
words of words to words by deleting parentheses; for example, the word
(%1 %,)(¥)(z,2,25) of length 3 in X TTis mapped to the word x;x,yz,z,23 of
length 6 in X T. The essence of the associative law is that the word xyz can be
broken up both into (xy)(z) and into (x)( yz). Thus, (xyz)é = {(xy){(z), Xpu.> =
Lxy)(z), ET.E> = {(xy)e(2)E, £ = (x#*y)*z. Similarly, using (x)(yz), (xyz)¢ =
x#( y*z),

The reader must be curious as to the meaning of T-algebras for arbitrary
T in the category of sets; in fact, for T as in 3.5, 3.19, or 3.21. By the time we
have finished section 5, it will be clear that T-algebras are always (£, E)-
algebras so long as Q is not restricted to finitary operations. The technical
convenience of the finitary restriction has been great. The uncoupling
Lemma 1.11 and its many successive consequences are much more cumber-
some with infinitary formulas and the reader would have perhaps been
much confused if we had attempted this. Let us devote the rest of this section
to isolating the “finitary” algebraic theories and proving that they are
coextensive with finitary universal algebra.

4.18 Definition. Let T be an algebraic theory in Set. T is finitary if for
every set X and every element X e X T there exists an integer n = 0, a function
r:V, — X (whereV, denotes the set of the first nvariables(1.10),{v,, ..., v,}),
and an element p e V, T such that {p, rT > = X. Our reference to V, provides
the interpretation “T is finitary if formulas in X7 have only finitely-many
variables.” It is an easy exercise, however, to show that any set with n elements
can replace V,,

4.19 Proposition. Let (Q, E) be a finitary equational presentation and
let T be the corresponding algebraic theory as in 4.1. Then T is finitary.

Proof. Let [q]e XT. Let {x;,...,x,} be the finite set of variables
occuring in g. Define the obvious bijection s:V, —— {xy, ..., X,}, ;s = X;,
and define p = {q, (s"1)Q)>. Define r:V, —— X by vy = x;. The proof is
easily completed (and is also valid when n = 0). []
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4.20 Example. The algebraic theory of 3.5 is not finitary. Given any
r:V,—— X, rT is the direct image map, as was pointed out in 3.10+.
Since every subset of V,, is finite, the image of ¥ T consists only of finite subsets
of X and this will not exhaust X T if X is infinite. []

While we have postponed the definition of “isomorphism of theories”
for Chapter 3, the uniqueness argument of 4.14 practically gives the definition
away and certainly makes it clear that if two algebraic theories are so
different that one is finitary and the other is not, then they cannot have the
same categories of algebras. In particular, if T is not finitary (as in 4.20) its
algebras cannot be presented using finitary operations and equations because
of 4.19. Our terminology suggests that finitary theories do not have this
problem; before proving this we establish a well-known theorem of Garrett
Birkhoff.

4.21 Definition. Let Q be an operator domain as in 1.4. Given a family
((X;, 8;):i € I) of Q-algebras, the cartesian product set X = [[X; (see2.1.5)
admits a unique Q-algebra structure & such that for all i € I the projection pr;:
(X, 8) ——— (X, 8;) is an Q-homomorphism, namely ((x}), . . ., (x]))d, =
((xL, ..., xXN6;),:i€ ). (X, d) is called the cartesian product algebra of the
algebras (X;, §;). For example, if (X, *) and (Y, $) are semigroups, the binary
operation on the product X x Y is ((x!, y%), (x?, y*))1
(x'#x2, y*$y?). In case I is empty, the cartesian product algebra is the one-
element set 1 provided with its unique Q-algebra structure. Let (X, d) be
an Q-algebra. A subset A of X is a subalgebra of (X, 8) if A is closed under
the operations of X, that is for each w € Q,, 8,,: X" ———— X maps A" into A.
If A is a subalgebra of (X, 8) there exists a unique algebra structure 6, on A
such that the inclusion map (A4, 6;) —— (X, 8) is an Q-homomorphism; A
qua algebra will still be called a subalgebra. For example, if (X, J) is a group
(with respect to either of 1.1 or 1.2) then its subalgebras are more usually
called subgroups. An Q-algebra (Y, y) is a quotient algebra of (X, d) if there
exists a surjective Q-homomorphism of (X, §) onto (Y, y). For example, the
two element group is a quotient group of the group of integers. A bijective
Q-homomorphism f:(X, §) ——— (Y, y) is an isomorphism (note: f ' is
also one) and such (X, ) and (Y, y) are said to be isomorphic. Isomorphic
algebras are “abstractly the same” (see 2.1.4 and exercise 10). By 2.17, since
“product,” “subalgebra,” “quotient algebra,” and “isomorphic” are described
in the language of homomorphisms, these concepts do not depend on the
presentation (2, E).

4.22 Birkhoff Variety Theorem. Let Q be an operator domain and let <
be a class of Q-algebras. Then a necessary and sufficient condition that of is
the class of (Q, E)-algebras for some set E of equations is that < is closed
under products subalgebras and quotients (that is, the product algebra of any
family of algebras in of is again in o/ and whenever (X, 6) is in </ so are all
its subalgebras and quotient algebras). In either case, </ is said to be a variety
of Q-algebras.

Proof. To prove that the conditions are necessary, examine the
diagrams:

2%
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>»X VQ veQ
(r.i)*
. M T#
pri r S
A ¢ - >X X
i h

and use the following principles: To prove that two elements of the product
X are equal, it is necessary and sufficient to prove this followed by each
projection (perfectly true even when the index set is empty). To prove that
two elements of A are equal it is necessary and sufficient to prove that they
are identified by the inclusion map i. Because 4 is onto we may invoke the
axiom of choice (section 2, exercise 1) to choose s:V — X such that s.h = r.
Let us turn to the proof of sufficiency. Let E be the set of all equations
{ey, e,} = VQ such that for every algebra (X, §) in .o/ and every function
r:V — X it is the case that r* identifies e, and e,. Trivially, all algebras in
o satisfy E. Let (X, ) be an arbitrary (Q, E)-algebra. We will show that
(X, 9) is a quotient of a subalgebra of a product of elements of .. If T is
the algebraic theory of (@, E) as in 4.1, the structure map of (X, §) is an
Q-homomorphism onto, so it suffices to show that X T is isomorphic to a
subalgebra of a product of elements of .. To do this we resort to a standard
argument and show that X T admits enough homomorphisms to elements
of o/ to separate points, that is:

(4.23) If[p] # [¢g] € X T then there exists an algebra (4, y) in ./ and
a map r:X — A such that [p]r* # [q]r*.

To prove 423, let X, = {x;,..., x,} be the finite set of all variables in
X occurring in either p or g and let a:V, — X, be the obvious bijection,
v;a = x;. Then there exist formulas p’, ¢’ e V,Q with {(p,aQ)> = p and
{q',aQ) = q (cf. the proof of 4.19). Reasoning as in 2.10, we have the com-
mutative diagram

Vp

V.Q >V, T
af aT
Y v

—>XT
XQ X5

so that, in particular, [ p'] # [¢]. By the definition of E there exists (4, y)
in o/ and s:V,, —— A such that s*:V,Q ————— (4, y) distinguishes p’ and
gq'. Since A cannot be empty, a”'.s extends (in many ways perhaps) to a
function r
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X/

Since [ p]r* = <p, s*) the proof of 423 is complete. The rest of the proof
is based on very general principles. For each pair (¢, u) of distinct elements
of XT choose 4, , in o/ and a homomorphism r, ,: X T ———— 4, , which
maps ¢t and u to different values. Let A be the product algebra of (4, ,:
t # ue X T)and define a single homomorphismr: XT —— Aby ([ p]r).. =
[ p].. .. By construction, r is injective. The proof is complete by the following
standard fact which we leave to the reader for verification.

(424) If (X, 6) ——— (Y, y) is an injective Q-homomorphism then
its image Xf < Y is a subalgebra of (Y, y) and the map g: X — Xf, xg =
xf is an isomorphism. (For a hint, see 4.32.) []

We have already seen that the passage from a finitary equational presen-
tation to its theory is a well-defined injection from equivalence classes of
presentations as in 2.18 into isomorphism classes of finitary theories
(“isomorphism” being informally defined by 4.14). We conclude this section
with a proof that this passage is bijective so that “finitary universal algebra
is the study of finitary algebraic theories in Set.”

4.25 Theorem. Let T be a finitary algebraic theory in Set. Then there
exists an equational presentation (Q, E) such that T-algebras and (Q, E)-
algebras are isomorphic as categories of sets with structure (as defined in
4.15).

Proof. Define Q, = {n} x V,T where V, is as defined in 4.18. The first
coordinates assure that (Q,:n = 0, 1,...) is a disjoint sequence of sets as re-
quired by 1.4; for convenience we will drop the “n” from the notation, how-
ever. Fix we Q,. Define a map X@:X"——— XT for each set X by
(X1, eees X)), XOY = {w, rT:V, T ———— XT » where r:V, — X is de-
fined by vy = x;. Then

(4.26) @ is a natural transformation; that is for every function f: X —
Y we have

Xd

X" >XT
I fT

¥

y" >YT
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The proof of 4.26 is an immediate consequence of the fact that (r.f)T =
rT.fT. As might have been expected, we assign an Q-algebra structure § to
the T-algebra (X, &) by setting §,, = X®.£. It is immediately clear from 4.26
and a glance at the diagram

X" Xo >XT < > X
fr fT lf
Y SYT >Y
Yo 0

that a T-homomorphism is an Q-homomorphism. To prove, conversely, that
an Q-homomorphism is a T-homomorphism it is sufficient to prove that
every element X € X T is in the image of X & for some w, that is, there must
exist some integer n, some element w € V, T, and some function r: V,, —— X
such that {w, rT) = X; but this is precisely the definition “Tis finitary.” In
particular, consideration of ' = idy and the fact that T is a functor allows
us to see that if £ # & then 6 # 0. Let o/ be the class of all Q-algebras
which arise from T-algebras as above. It is clear that, to finish the proof, it
is sufficient to find a set E of equations such that ¢ = all (Q, E)-algebras.
By 4.22 we need only show that &7 is closed under products, subalgebras,
and quotients. We will give particular attention to the verification since
it gives us our first encounter with “universal algebra in the language of
T-algebras.”

(427) Let (X;, &) be a family of T-algebras, and let X = []X; be the
cartesian product set. Then there exists a unique ¢: XT —— X such that
(X, &) is a T-algebra and each projection pr;:(X, &) ———(X,, &) is a
T-homomorphism. Not surprisingly, (X, &) is called the cartesian product
T-algebra.

To prove 4.27, observe that there exists a unique function é: XT —— X
such that

XT (pry) T >X,T

13

|
|
VI
<l &

|
{
b'e

pri > Xi

is commutative for all i, namely (KX, £)); = (X, (pr;)T.¢;». As usual, this is
consistent with the case that the set of indices i is empty. We must show that
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(X, &) is a T-algebra. Consider

X pri
lX n
idy| 2 XT priT

Everything commutes except perhaps (?). But now apply the principle that
to prove that two functions into X are equal it is necessary and sufficient to
prove that they are equal followed by each projection; which is exactly what
we know. The other algebra law is proved by the same reasoning:

&r

X, 1T >X.T
Xip
(pr)TT X,T
XTT T oxT pri

Xu (pr)T 4
v

XT > X

¢

This finishes 4.27 and also establishes that .o/ is closed under products, since
both products are the unique structure making projections homomorphisms.

(4.28) Let (X, &) be a T-algebra and let A be a subset of X with inclusion
map i:A<— X. Say that A is a T-subalgebra of (X, &) if there exists a
factorization:
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AT i >XT

l@

In common with the family (pr;) of 4.27, i:4 < X has the virtue that to
prove two elements of 4 are the same it is necessary and sufficient to prove
this followed by i. The same reasoning as in 4.27 guarantees, then, that
(4, &) is a T-algebra, so that A is a T-subalgebra of (X, &) if and only if there
exists a T-algebra structure on 4 making i a T-homomorphism. To prove
that o/ is closed under subalgebras it is still necessary to show that an Q-
subalgebra of (X, &) is a T-subalgebra. Let A be an Q-subalgebra. Forae AT
there exists r:V, — 4 and w e V, T with <, *rT) = @ For 1 < j < nset
a; = v;r. By hypothesis, §,:X" X maps A" into A. Therefore,
a,iT.E) =, rTiT.E)Y = Lo, (rh)TE) = (ay,...,a)0,€ A. AsGe AT
is arbitrary, the proof that <7 is closed under subalgebras is complete.

(4.29) IfH: Set—— Setis any functor and if f: X — Y is surjective
than fH:XH YH is also surjective. This is a consequence of the
axiom of choice. Let d: Y — X be a choice function such that d.f = id,.
As H is functorial, dH.fH = idyy. It follows immediately that fH is sur-
jective, since if y € YH then (X, fH) = Jif x = {3, dH).

(4.30) Let (X, &) bea T-algebra. A surjection f: X —— Y is a T-quotient
algebra of (X, &) if there exists a factorization 6

|
|
I
Soy

[
i
A

AN
>

i

XT /T >YT
I
I
I
L

|
\
>Y

X

f

This definition is reasonable precisely because both fT and fTT are sur-
jective and surjective maps g: 4 —— B have the property that to prove h,
I:B ==} C are equal it suffices to check that g.h = g.h'. Thus, for example,
if 0 exists it is unique. Moreover, the algebra laws are quite clear from
essentially the same two diagrams used in 4.27 (substitute Y for X, f for
pr;, and 0 for &;). Therefore f is a T-quotient algebra of (X, ¢) if and only if
there is a necessarily unique T-algebra structure 6 on Y making f a T-
homomorphism. To show that .o/ is closed under quotient algebras it suffices
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to show that if f is an Q-quotient algebra via the Q-structure y, then fis a
T-quotient algebra. To this end we invoke the axiom of choice to get a
choice function d: Y — X with d.f = idy. Define 6: YT — Y = (dT:
YT — XT)(E:XT — X)(f: X —Y). We will show fT.60 = £.f. Let
x e XT. There exists :V, — X and w e V, T with {w, rT) = X. Then
X EfD =
o, rTE.f) =
(0175 ..., 010 f = (definition of )
(Ulrfa crt vn'f))’w
(wfdf, ..., vpfdf Yy,
(Ulrfdv et Un':fd)émf =
o, (ifd)T.L.f> =
(X, fTAT.Ef
The proof of 4.25 is complete. []

For use in the next section, we prove a further result about T-subalgebras.
One expects that each subset A of a T-algebra (X, &) generates a T-subalgebra
(A of (X, &) by “closing up A under the T-operations.” For example, if T
is as in 4.17, <A) = {a, -+ a,:ay, ..., a,€ A}. In general, one expects to
consider those “terms” in X T which “have variables in 4,” that is, are in the
image of iT:AT —— X T for i: A — X the inclusion map, and then define

{ A to be the image in X of iT.&: AT —— X. The following theorem shows
that this works.

I

4.31 Theorem on Generated Subalgebras. Let T be an arbitrary algebraic
theory of sets, let (X, &) be a T-algebra and for each subset A of X with inclusion
map i:A — X define {A) = X to be the image of iT.E. Then A < {A), if
A < B then {A) = {B), and {{ AY) = {A). {A) is a subalgebra of (X, &)
and is contained in any other subalgebra of (X, &) which contains A.

Proof. Let us first record another expected general fact:

4.32) Iffu(X,& (Y, 0) is a T-homomorphism, then the image
of f is a subalgebra of (Y, 6).

To see why, let I be the image of f with inclusion map i:] — Y and let
p: X — I be the unique function with f = p.i, that is xp = xf. As p is onto,
there exists d:I — X with d.p = id; by the axiom of choice. Define y:

XT pT >IT ir >YT

|
|
|
4 1y 0
|
\’
I - Y

X >

A4
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IT—— 1 by y = dT.E.p. Then pT.y.i = pT.dT.Epi= pTdT.pT.iT.0 =
pT.iT.0. As pT is surjective (by 4.29), y.i = iT.0 as desired.
Now we return to the proof of 4.31 proper. The diagram

iT

AT >XT
A
An t&
A - > X

1

is commutative because # is natural and X#.£ = idy. This proves that
A < (A). It is obvious that {A) = (B) whenever A = B. Since iT.L:
(AT, Ap) ——— (X, &) is a T-homomorphism, (A4} is a subalgebra of
(X, &) by 4.32. From the definition of “subalgebra” it is obvious that if B
is a subalgebra, B = {(B). Therefore ((4)) = (A) and whenever 4 is
contained in the subalgebra B, {4) < (B) = B. []

Notes for Section 4

Algebras of an algebraic theory in monoid form were defined by [Eilen-
berg and Moore ’65, (2.6)]. While they recognized that groups arise as Set”,
their main example is AT = 4 ® A (where " is the category of modules
over the commutative ring R and A is an R-algebra) whose algebras are the
A-modules.

It was Jon Beck who first perceived that “triples” describe universal
algebra in the category of sets. The atmosphere at that time is best conveyed
by quoting two paragraphs from Beck’s thesis [Beck *67, pages 72—73]. The
quote is verbatim (except that our reference numbers have been used), and
immediately follows a discussion of groups in the style of 4.17.

The example of groups is typical. It is known that all algebraic categories in the
sense of [Lawvere *63] are tripleable over sets, with respect to their usual underlying
set functors. [Linton ’66] has shown that over sets this is almost the whole story:
admitting infinitary operations one gets equational categories of algebras, and over the
base category of sets tripleableness is equivalent to equationality.

Over other base categories, tripleableness does not seem to have any such standard
interpretations. It is the proposal of this paper that tripleableness be regarded as
a new type of mathematical structure, such as algebraic, equational, topological,
ordered, .. ..

In the above, “tripleable over sets” means “of the form Set™.” The first
published proof that triples capture equational classes is the “isomorphism
theorem” of [ Linton *69, pages 36—50]. This book, with the theorems culmi-
nating in 5.40 and 5.45, offers the first expository proof of these results. See
also [Felscher *72, 4.1].
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The Birkhoff variety theorem was proved in [ Birkhoff ’35, theorems 6, 9].
The ideas in 4.21-4.31 are interesting in their own right; for a different
proof of 4.25 see 5.40 below. A much more general proof of 4.32 will be given
in 3.4.17.

Exercises for Section 4

1. Starting from the point of view that the structure of an (£, E)-algebra
(X, 8) can be described by a function &: XT ——— X (e.g. x*y = (xy)¢
in 4.17), expand the heuristics of 4.11 + into a motivation for the defini-
tion of “algebraic theory in monoid form.”

2. In the proof of 4.15 we did not explicitly show that, for a fixed set X,
the passage from § to & is injective. Show that this follows from 4.7.

3. A semilattice is a partially ordered set in which every pair of elements
has a supremum. Let T be the algebraic theory of nonempty finite
subsets (cf. exercises 7, 10 of section 3). Show that SetT may be identified
with the category of semilattices and functions which preserve binary
suprema. [ Hint: the structure map is “supremum.”]

4. Prove that the double power-set theory of 3.19 is not finitary.

5. Why is “groups” not a variety in “monoids”?

6. Show that a subsemigroup of a group need not be a subgroup even if
it is a group. (Hint: the units are different!)

For the following three exercises (implicit in [ Birkhoff *35, page 141])
fix an algebraic theory T in Set. A variety in SetT is a collection of T-
algebras closed under the formation of products, subalgebras, and
quotients.

7. For any collection ' of T-algebras, show that the class Var(%) of all

quotients of subalgebras of products of elements of & is a variety and

is the smallest variety containing %

Given (X, &; A) where (X, &) is a T-algebra and A is a subset of X such

that (4> = X, define Var[X, &; 4] to be the class of all T-algebras

(Y, 0) such that every function f: 4 —— Y extends to a unique T-homo-

morphism f7* :(X, &) ——— (Y, 0). Show that Var[ X, ¢; A] is a variety.

9. Let & be any collection of T-algebras and let 4 be a fixed set. Define
Z to be the set of all (X, &; f) such that (X, &) e% and f:4 — X.
Consider the product T-algebra P and function § defined by

Define AT’ to be the subalgebra of P generated by the image of 6. Show
that T’ extends to an algebraic theory and that Set™ may be identified
with Var(%). Conclude that if 2" consists of finitely many finite algebras

o

[TX, 9:(X, &5 N e
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10.

11.

12.

13.

then, if 4 is finite then AT is finite. (Hint: show that AT" has a universal
property in Var(%) and proceed as in 2.7.) This generalizes [Birkhoff
’35, Theorem 11]. & must be a “small set” in order that P be definable;
see the “primer on set theory” at the end of this chapter.

This exercise should help the reader to appreciate why isomorphic
algebras are “abstractly the same.”

(a) There are four monoid structures on the two-element set {x, y} whose

multiplication tables are shown below:

XX Xy yx yy

1 b y y X
2 x y y y
3 y X X y
4 X x X y

Show that 1 and 3 are isomorphic and that 2 and 4 are isomorphic,

but that no other two are isomorphic.

(b) Prove that “isomorphism” is an equivalence relation.

(c) (Cf. 2.3.1 below.) If (Y, y) is an (Q, E)-algebra and if /: X — Y is
a bijection, prove that there exists unique d such that f:(X, J)
(Y, y)isan Q-homomorphism and then that (X, é)is an (2, E)-algebra
and that f is an isomorphism.

(d) Isomorphic structures “enjoy the same properties.” Verify this for
groups with respect to the following properties: “possesses three
normal subgroups”; “has no elements of finite order”; “admits a
surjective homomorphism from the group of integers.”

Let T be an algebraic theory in 2. Show that the following axioms on

&EXT X (suitable for theories presented in extension form as

in exercise 3.12) are equivalent to 4.9 and 4.10.

Axiom 1. Xn.& = idy (same as 4.9).
Axiom 2. For all o, f:A—— XT, if a.é = B.£ then o*.& =

B*EAT — X,

This version of the algebra axioms is sometimes more useful than
the original one in discovering what the T-algebras are because T need
not be iterated and because, when T is finitary, 4 can be assumed finite
(see exercise 5.21.)

In any category ., let id denote the theory AT = A, Ay = id,, f°og =

f-g. Show that U™: %79 — % may be identified with the identity

functor of .

Using the diagram

>BT x BT’

AT x AT’
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as a hint, define the product of two algebraic theories in Set and prove

that it is again a theory. If T = id x id (see exercise 12) show that Set”

is the equationally-definable class corresponding to one binary operation

and the equations aa = a, (ab)(cd) = ad.

14. [Jonsson and Tarski ’61]. Let T be a theory in Set admitting a finite

algebra with at least two elements. Let A be a finite set.

(a) If T corresponds to “groups,” show that there exists finite B =« AT
such that (B = AT and A n B = (J.

(b) If B < AT and {B) = AT, prove that card(A4) < card(B). [Hint:
let (X, &) be a finite algebra with at least two elements; the map
X* — XP® sending f to the restriction of f/* is injective.]

5. Infinitary Theories

In this section we restrict our attention, once again, to algebraic theories
in the base category Set of sets and functions. We define the syntactic rank
(the number of variables needed to write formulas) and the semantic rank
(the number of variables needed by the operations on actual algebras) for
an algebraic theory, and prove they are equal. Examples such as complete
semilattices, complete atomic Boolean algebras, and compact Hausdorff
spaces demonstrate that interesting mathematical structures arise as the
algebras of infinitary theories. Bounded theories are coextensive with equa-
tionally definable classes of algebras (with perhaps infinitary operations).
In general, theories are coextensive with “tractable large” equational pre-
sentations. We prove the theorem of [Gaifmann ’64] and [Hales *64] that
complete Boolean algebras do not constitute a tractable equational class.

Some useful facts about set theory which relate to this section are pre-
sented in a “primer” at the end.

Let us fix an algebraic theory T = (T, 5, °, y) in the category of sets. We
begin by classifying the trivial theories.

5.1 Lemma. Let (J be the empty set and let 1 denote a one-element set.
Then

1. The unique function 1T — 1 is a T-algebra.

2. & is a T-algebra in at most one way and this occurs if and only if
BT =  (cf. the proof of “2.20 implies 2.18”).

3. Up to isomorphism, there exists exactly one algebraic theory T such
that 1 is the only T-algebra; it is characterized by “XT = 1 for all sets X.”

4. Up to isomorphism, there exists exactly one algebraic theory T such
that 1 and (& are the only T-algebras; it is characterized by “XT = 1 for all
nonempty sets X and JT = . The proof is safely left as an exercise. []

For obvious reasons, let us call the two algebraic theories of 5.1 trivial,
and all other algebraic theories of sets nontrivial. We now further characterize
the nontrivial theories. Notice that the second condition in the proposition
below expresses that no equation of form “v; = v;” for distinct variables v,
and v; can be deduced in a nontrivial theory.
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5.2 Proposition. The following conditions on T are equivalent:
1. T is nontrivial.
2. Foreachset X, Xn: X

XT is injective.

3. T:Set Set is a faithful functor, that is, whenever f,9: X ——Y
are distinct functions then T, gT:XT YT are again distinct func-
tions.

Proof. I implies 2. By hypothesis, some T-algebra has at least two ele-
ments. By forming a suitably large cartesian power (as in 4.27), for each set
X we can construct a T-algebra (Y, #) and an injective function f: X — Y.
From the naturality square (3.11) we have Xn.(fT.0) = f.Y3.0 = fidy = f

X / >Y
Xn JYn
XT T >YT

is injective. As X is injective followed by some other function, X# is itself
surely injective.

2 implies 3. If f # g and Yy is injective then f.Yy # ¢.Yn,so Xn.f T #
Xn.gT.Since fT and gT are T-homomorphisms, fT # ¢gT.

3 implies 1. This is clear, since neither of the two functors involved in the
trivial theories are faithful. []

5.3 Definition Let X be a set. For finitary T (4.18), Theorem 4.25 allows
us to treat elements of X T as “E-equivalence classes of T-terms”; or “symbolic
operations.” We view this as a linguistic or a syntactic concept. In general,
let us call elements of XT syntactic operations in X (with respect to T). For
example, 312+21+ + + is a syntactic operation in X = {1, 2, 3} with
respect to to the theory of abelian groups. Such a symbol induces a semantic
operation of abelian group theory in the sense that given any abelian group
(Y, +) we get an actual function

Y Yi(y, Voo V3) s Y3y Vo F Yo + + +

We have in fact explored the passage from syntactic to semantic operations
quite generally in the proof of 4.25 (specifically, 4.26 and the formula “§, =
X@.&”). Let us try to axiomatize semantic operations in their own right. At
the very least, such an operation ¢ must assign to each T-algebra (Y, 0) a
function (Y, 0)a: Y*¥ ————— Y. Since homomorphisms are expected to
commute with all operations, we should also require the commutative square
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fX

>Y'X

(Y, 0)a (Y', 0 (5.4)

h<

7 Y

whenever f:(Y, 0) (Y’, 8') is a T-homomorphism (and f* sends the
X-tuple y:X —— Y in Y to the X-tuple y.f: X ——— Y’ in Y/, that is ¥
sends the X-tuple (y,:x e X) in Y to the X-tuple (y,f:xe X)in Y'). Let us
notice that “raising to the X'th power” is a functor ( )*: Set —————— Set. Let
us denote UT:SetT ———— Set (as in 4.8) by U for short, and the composite
functor U.()*:Set” Set by U*. Then what we have stipulated
about o may be summed up by saying: “« is a natural transformation from U*
to U.” Let this property define a semantic operation in X (with respect to T).
To give credibility to this new point of view—that the operations may be
defined after the homomorphisms are—we prove the following theorem:

5.5 Theorem. Let T be an algebraic theory in Set and let X be a set. Let
Ox(T) be the set of natural transformations from the functor ()* (as defined in
5.4)to T. Defining U and UX as in 5.4,let Oy(T) be the set of natural trans-
formations from U* to U (that is, semantic operations in X). Then the passage

XT ——— 0(T)
o——s ()X 25T (5.6)
X —L Y, Y0 = <o, XT—22 YT

is bijective, with inverse

O(T) ——— XT sq
o b———— {idy, Xop (5.7)

Further, the passage

XT 0x(T)

w—UX 2, U (5.8)

(Y, 05 =y¥—22 ,yr— % .y

is bijective, with inverse

Ox(T) —— XT (59)

ot Xn, (XT, Xy '

Proof. The passage 5.6 is well defined, that is @ is a natural transforma-
tion, precisely because given f: X —— Y and g:Y — Z, (f.9)T =fT.gT.
It then follows from the definition of a T-homomorphism that 5.8 is well
defined. Let us check that 5.6 and 5.7 are inverse. Starting with w, we have
{idy, X&) = <, (idy)T) = w;starting with., foreach f: X —— Y we have
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the naturality equation Xo.fT =f*.Yo, so that, defining w = {(idy, X,
we have (f, Y&) = idy, Xap, fTY = {idy, fX.Ya)> = {f, Ya, that is
& = o. Let us turn to 5.8 and 5.9. Starting with w, (X, (XT, Xp)d) =
{Xn, XTd.Xpy = {w, XnT.Xp)y = w (by 3.16). Starting with «, for each
f:X — Yandeach T-algebra structure 6 on Y we have the T-homomorphic
extension f* = fT.0:(XT, Xy) ——— (Y, 6) of 4.13, and hence
the naturality square

XTX (ng)X )YX
(XT, X (% B)a
XT 7T0 >Y

Setting @ = (X7, (XT, Xpo), we have {f, (Y, O)@d)> = <f, Y®.0) =
(X, (XT, Xpo.f T.0) = {Xn, (fT.O*(Y, O)) = {Xn.fT.0, (Y, O)a) =
<fXn0,(Y, 0)) = {f, (Y, 0). []

Passages (5.7) and (5.9) say that naturality is a very powerful constraint,
for the natural transformations involved are determined by the value on just
one element of just one of the components!

5.10 Definitions. Let w € X T be a syntactic operation in X. The arity of
w is defined to be the smallest cardinal number “of the set of variables of a
Sformula representing w” or, more precisely, ar(w) = Min (n: nis a cardinal and
there exists f:n — X such that w is in the image of fT:nT XT).
Thus, 4.18 says that T is finitary if and only if every syntactic operation has
finite arity. For example, with the help of the unique map f: @ —— X, we
see that the syntactic operation [xx~!] of group theory has arity 0. What
is the arity of a semantic operation? Let us first consider a function
Y: AX —— A. It may happen that y is independent of some of the argu-
ments in X. More precisely, given S < X, let res: 4¥ ———— A5 denote the
restriction map sending f: X —— A to its S-restriction (which is just the
inclusion map of S composed with f); then there exists at most one factoriza-
tion

AX




54 Algebraic Theories of Sets

S is a support of Y if such a factorization exists (and  is independent of the
elements of X not in S). A subset S of X is a support of the semantic operation
o:U¥ —— U if S is a support of (Y, O)o: Y*¥ ———— Y for every T-
algebra (Y, 0). The arity of a:U* —— U is defined by “ar(o) = Min(n:n
is a cardinal and there exists a support of o of cardinal n).” For example, let
x and x’ be distinct elements of X. Then sending f: X — Y to xf + xf
is a semantic operation in X with respect to abelian group theory whose
arity is 2. S is a support if and only if {x, x'} = S. We must not infer from
this example that the intersection of all supports is a support, however.
For the ultrafilter theory of 3.21, if % € X B, then the set of supports of the
semantic operation is precisely %! (See exercise 3.)
We now show that syntactic arity and semantic arity coincide:

5.11 Theorem. Let T be an algebraic theory of sets, let X be a set, and
let w e XT be a syntactic operation in X with corresponding semantic opera-
tion &:UX ——— U as in 5.5. Then w and & have the same arity.

Proof. ar(@) < ar(w). There exist f:ar(w) —— X and h e (ar(w))T
with{h, fT ) = w. Let S = {uf:u e ar(w)} be the image of f with inclusion
map i:S — X and define p:ar(w) —— S by up = uf, so that f = p.i. Set
p = <{h,pTye ST. Because the restriction map is a natural transformation
res:()¥ — ()5, it follows from 5.7 that we have

YX Yo SYT
YS

for every T-algebra (Y, 0), which shows that S, whose cardinal is at most
ar(w), is a support of @.

ar(w) < ar(®). First suppose ar(@) > 0, so that there exists a nonempty
subset S of X of cardinal ar(@) which is a support of @. Since S is not empty,

S > X

Sn %y

Sy admits at least one extension g through the inclusion map i as shown
above. Because S is a support of @ and iT:(ST, Sy) —— (XT, Xp) is a
T-homomorphism, we have the commutative diagram
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res ~ T

res P
STS”

Define p = (Sy, > € ST. Then {p,iT ) = Sy, Y.iT > = {ig, Y.iT> =
g, 8T, Swa.iT) = (g, iT*(XT, Xpwa) = {g.iT, (XT, Xpd) =
igiT, Ty = {SniT, 'y = i Xn, T) = {Xn,(XT, Xp)@) = w. Now
suppose that ar(®) = 0. The above argument is still valid—that is, g still
exists—providing ST #+ ¢ (where, now, S = (). Otherwise, (J is an alge-
bra and there exists a factorization

which is a contradiction. []

5.12 Example. Let T be the algebraic theory obtained from the equa-
tional presentation of semigroups in 4.17 by adjoining the additional equa-
tion {v;v,03%*, vyv,*}. Let X = {v;, v,}, and set w = v;v,*. It is clear that
ar(w) < 2. The following model (which is actually the free T-algebra on two
generators)

X y Xy yx XX yx

x l xx xy xXx xy XX xy
y ooy Yy yx Yy yx Yy
Xy l Xy Xy Xy Xy Xy xy
yx yx yx yx yx yx yx
XX xx XX xx xx XX xx
Yy yy yy yy yy Yy yy

shows that ar(®) > 2. By 5.11, ar(w) = ar(®) = 2.
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Let us pause to consider two kinds of constants in universal algebra
which appeared incognito in the last stages of the proof of 5.11. A function
f:X — Y is constant if for all x, x" in X we have xf = xf’; this must be the
case if X has at most one element. Given w € nT, w is constant if (X, &)@ is
constant for all T-algebras (X, ¢) and w is a true constant if ar(w) = 0.
We have:

5.13 Proposition. Let T be an algebraic theory in Set. Then ¢ is a T-

algebra if and only if GT = & (cf. 5.1(2)). If T + &, every constant is a
true constant.

Proof. 1If ¢f is a T-algebra, the existence of &: (JT —— (J guarantees
T = @. Conversely, if T = &, & = (FT, ) is a T-algebra. Assume
T + & and let w € nT be constant. Since Jf is not a T-algebra, ar(®) = 0.
By 5.11, ar(w) = 0. []

It is possible to be constant without being true. Let Q; = {u}, Q, = &
for n #+ 1 and let E have the single equation {v,u, v,u}. Then an (2, E)-
algebra is (X, 6) where §:X — X is constant. (F is an (Q, E)-algebra. If
w = xue {x}T, o is constant but ar(w) = 1.

5.14 Definition. Let T be an algebraic theory in Set. Say that T is bounded
or that T has rank if there exists a cardinal N for which every syntactic operation
has arity less than N, i.e. for all sets X and for all we X T, ar(w) < N.If T
is bounded, set M to be the least cardinal for which all syntactic operations
have arity less than M. By 5.11, M is also the least cardinal such that every
semantic operation has arity less than M. The rank of T is defined to be M — 1
if M is finite, and M otherwise. A bounded theory whose rank is < is
finitary (4.18). Any other theory is infinitary. The algebraic theory for groups
has operations of arbitrarily large finite arity such as “x; - - -+ x,” of arity
n; therefore, the rank of this theory is equal to &,. In Example 5.12, the rank
is 2.

We turn now to describing some interesting algebraic theories of infinite
rank.

5.15 Example. Complete and Partially Complete Semilattices. A finitely
complete semilattice is a partially ordered set (X, <) in which every finite sub-
set has a supremum (and in particular the empty supremum 0, which is the
least element). To be a homomorphism f:(X, <) ——— (X', <’) of semi-
lattices, we require that f preserves all finite suprema (which is strictly
stronger than requiring f to be order preserving). It is well known that semi-
lattices and their homomorphisms have an equational presentation as
follows. Let (@, E) be the equational presentation for monoids (X, +, 0)
(“+7 e Q,, “0” e Q, with equations (x + y) + z=x+ (y + 2,x + 0 =
x = 0 + x) which are abelian (add the equation x + y = y + x) and idem-
potent (add the equation x + x = x). On the one hand, each semilattice with
least element 0 and binary supremum operation + is an (Q2, E)-algebra. Then
again, given an (2, E)-algebra (X, +, 0), we are forced to define x < yifand
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only if the supremum of x and yis yie, x + y = y. It is easy to check that
these passages are mutually inverse in such a way that semilattice homo-
morphisms are just Q-homomorphisms. More generally, let M be a fixed
infinite cardinal. An M-complete semilattice is a semilattice (X, <) for which
every subset of X of cardinal less than M has a supremum. The M-complete
homomorphisms are required to preserve all n-ary suprema for n < M.
Finitely complete semilattices are Ny-complete semilattices. A complete semi-
lattice is a semilattice (X, <) in which every subset of X has a supremum;
the homomorphisms preserve all suprema. The Boolean o-rings used in mea-
sure theory are, in part, ¥,-complete semilattices. In a complete lattice every
subset A has an infimum also, namely Inf(4) = Sup(x:x < a for all a € A).
If X is the set of all open subsets of the real numbers (in the usual topology)
and < is inclusion, then (X, <) is a complete semilattice where suprema are
ordinary unions, but the infimum of a family of open sets is the interior of the
set-theoretic intersection. The inclusion map of (X, <) into the complete
semilattice of all subsets of the real numbers is a complete semilattice homo-
morphism which does not preserve the infimum of the countable family
[(=1/n,1/n):n = 1,2,3,...]. It is because of the homomorphisms that we
distinguish between complete semilattices and complete lattices.

It is easy to check that if (Q, E) describes semilattices as above, there is a
bijective correspondence between Q-terms in X and finite subsets of X (note
that the words of 4.17 reduce to subsets since order and repetition no longer
matter, and we must add the empty set to accommodate the true constant 0).
The structure map (4.2) of a semilattice (X, +, 0) is the function which assigns
to each finite subset of X its (X, +, 0)-supremum. Can we create an algebraic
theory T such that X T is the set of all subsets of X and the typical T-structure
map &: XT —— X describes the supremum map of a complete semilattice?
We can. Let T be the algebraic theory of 3.5 (and, as was mentioned in
313+, u: TT —— T is the union map, whereas we showed in 3.10+ that
fT:XT —— YT is the direct image map). If sup: XT ——— X is an
arbitrary function then the T-algebra equations 4.9 and 4.10 are clearly equiv-
alent to

1. sup{x} =xforallxeX

2. sup(usf) = sup(sup 4: A4 € /) for all families of subsets .o/ € XTT
whereas a T-homomorphism f:(X, sup) (X', sup’) preserves sup:

3. (sup(4))f = suplaf:aec A4) for all subsets 4 XT.

We have at once that the passage from a complete semilattice to its
supremum map is a well-defined injection into the T-algebra structures and
that homomorphisms are the same on both sides of the fence. The problem
is to prove that if (X, sup) satisfies (1) and (2) above then, via x < y if and
only if sup{x, y} = y, X becomes a complete semilattice whose supremum
map is sup. We first check reflexivity, antisymmetry, and transitivity. x < x
by (1)andif x < yand y < x then x = sup{x, y} = y. Suppose x < y and
y < z. Using (1) and (2), sup{x, z} = sup{sup{x}, sup{y, z} } = sup({x} u
{3, 2}) = sup{x, y,z} = sup({x, y} U {z}) = sup {sup{x, y},z} = sup{y,z} =
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z, that is x < z. Let 4 be a subset of X. For all ae 4, sup{a, sup(4)} =
sup({a} U A) = sup(4) proving that sup(4) is an upper bound of 4. If x is
another upper bound of A then sup{sup(4), x} = sup(4 U {x}) =
sup(U({a,x}:a e A)) = sup{sup{a,x}:ae A} sup{sup{x}} = x,sosup(4) <
x. This completes the verification that T-algebras are coextensive with com-
plete semilattices.

To deal with M-complete semilattices it seems natural to “truncate” T at
M by defining XTy, = {4 < X:A has cardinal <M}. Is Ty, a subtheory
of T in the sense of 3.207 Since every singleton subset is in X T, the condition
on 7 is true. There is a problem, however, with staying closed under com-
position. Given «a:4 —— BT and f:B—— CT then (x°fB), = u{bg:
b € ao}. If o factors through BT, (ie., ax has cardinal <M) and f factors
through CT), (i.e., each bf has cardinal < M) we would hope that (« ° B),
also has cardinal <M. A moment’s thought shows that this condition
amounts to a rewording of the definition (see the primer on set theory at the
end of this section) of a regular cardinal. We formalize with:

(5.16) M is a regular cardinal if and only if T\ is a subtheory of T,
where T is the theory of 3.5 and X T\, consists of those subsets of X of cardinal
<M. By essentially the same proof as in the complete case, the T,,-algebras
(where M is an infinite cardinal) are just the M-complete semilattices.

5.17 Example. Complete Atomic Boolean Algebras. A Boolean algebra
is a commutative ring with unit (X, +, 0, jux, 1) (where “jux” indicates that
we will write multiplication by juxtaposition) in which multiplication is idem-
potent: xx = x. See [Halmos ’63]. The standard example is the set of all
subsets of a set A where + is symmetric difference, 0 is the empty set, jux is
intersection, and 1 is 4. By the well-known theorem of Stone ([ Stone ’36,
Theorem 701) every Boolean algebra is isomorphic to a Boolean subalgebra
of subsets of some set. By the discussion in 5.15, we know (X, jux, 1) is a semi-
lattice. In view of the Stone theorem, it is more natural to define x < yifand
only if xy = x which looks more like “4 < Bifand onlyif A n B = 4.” In
any case, a Boolean algebra is a partially ordered set. A complete Boolean
algebra is a Boolean algebra which has all suprema and infima. A homomor-
phism of complete Boolean algebras must not only be a ring homomorphism,
but must preserve as well all infima and suprema. After 5.15, one might expect
that complete Boolean algebras arise as the algebras over some theory. This
is not the case, as we prove in 5.48. This changes if we impose further restric-
tions, however. In any partially ordered set (X, <) x € X is an atom if x is
not the least element and if y < x implies y is the least element; that is, the
atoms are the minimal elements of X — {0}. (X, <)is atomic if every element
is the supremum of the atoms beneath it. In particular, we know what a com-
plete atomic Boolean algebra is. The set of all subsets of 4 is a complete
atomic Boolean algebra (4 is the union of its singleton subsets). It is possible
to prove that, up to isomorphism, these are the only complete atomic Boolean
algebras.
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We turn now to the proof that the complete atomic Boolean algebras may
be identified with the algebras over the double power-set theory of 3.19.
Unlike the situation of 5.15, we do not know how to interpret the structure
map. So let us begin by seeing in what sense an element .o/ € X T looks like
a syntactic formula in X. It actually is. First, we record what most readers
already know (and the rest should check for themselves): any Boolean ring
(X, +,0,jux, 1) is a lattice with binary infima x A y = xy, binary suprema
X v y=x+ y+ xy and unique complements (that is, for all x there is
unique x’ with x A X’ = 0and x v x’ = 1) namely x' = x + 1. According
to the definition of # in 3.19 the element x € X is the “variable” prin(x) e X T.
For A « X, n(prin(x):xe A) = {B = X:A < B}. Since(prin(x)) = {B < X:
x ¢ B}, we have n(((prin(x)):x ¢ 4) = {B = X:B < A}. It follows at once
that .« is the syntactic formula:

o = | ) n({prin(x):xe A} U {((prin(x)):x ¢ 4})
Aedd

This immediately forces us to define

5.18 Definition. If X is a complete atomic Boolean algebra, the structure
map of X is defined by )
XT =X
oA ooy Sup(A*: A € )
where 4° = Inf(4A U {x":x ¢ A}.
5.19 Proposition. If X is a complete atomic Boolean algebra andif A = X
then

Xo ifA={x:x > x,}and
Af = Xo IS an atom
0 otherwise

Proof. SetB = {x x = A*}. That A = Bis obvious. Now suppose that
x ¢ A,sothat A* < x'.Ifalso x € Bthen A* = 0 or, contrapositively speaking,
A= B whenever 4° # 0.If0 < x < A*then x¢ B = A4, x < A* < x’ and
x < x’ which is possible only if x = 0, and this establishes that 4% is an atom.
Let x, be any atomand set 4 = {x:x > x,}. If x ¢ 4, thatisifx A x, # X,
we must have x A xo = 0 and s0 xg = (x A Xo) V (X' A Xo) = X' A Xo
proving that x’ € A. Therefore 4* = Inf(4) = x, as desired. []

Forany set X andsubset 4 = X, define A* = XTby A* = {/: 4 € o}.
We then have the following:

5.20 Proposition. Let X be a complete atomic Boolean algebra with struc-
turemap &: XT —— X asin 5.18. Then for every subset B = X with B # 0,
B* = B¢™L

Proof. ByS5.19,if B* # Othen B*isanatomand B = {x:x > B*}. B¢~ ! =
{:Sup(A :A e o/) > B*. But for o/ € BE™!, Sup(4*: 4 € .o/) > 0 so that
there exists A € o with A% > 0. As A% is an atom, 4* = B%and, by 5.19, in
fact A = B. Therefore B~ ! simplifies to B*. []
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It is now clear that the structure map ¢: X T —— X of the complete
atomic Boolean algebra X does satisfy the T-algebra laws 4.9 and 4.10
which amount to

Sup(d’:xe A) = x  forallxe X

‘ _ . _ _ 5.21
Sup(A*:A* € o) = Sup(A*: AE" 1 e A) forall of € XTT. 5-21)

The first law, by 5.19, is the statement that every x is the supremum of the
atoms beneath it. The second law follows at once from 5.20.

If we start with a T-algebra (X, &), X becomes a complete atomic Boolean
algebra by

x + y = (prin(x) + prin(y))¢& (the second “+” is symmetric difference)
xy = (prin(x) N prin(y))¢
0=g¢ (& is the empty family)
1 = (2%)¢ (2% is the set of all subsets of X) (5.22)
Sup A = (o 4)¢ where A, ={Bc X:BnA#J}
Inf A = (A4 where o4 ={Bc X:Ac B}
A = {A}¢

The T-homomorphism condition 4.11 reads as
(Sup (4*:A e o))f = Sup(B*:Bf "'esf) forallof e XT. (523)

One needs to prove that (5.22) is indeed a complete atomic Boolean algebra
structure whose structure map is &, that every complete atomic Boolean
algebra satisfies 5.22 with respect to its structure map, and that 523 is
equivalent to preserving +, jux, 1, Sup, and Inf. All this can be done with
the proper choices of .7’s in 5.21 and o/’s in 5.23, and we leave it as a
challenging exercise to the reader.

5.24 Compact Hausdorff Spaces. Topological spaces can be studied
from the point of view of knowing which ultrafilters converge where, as
described below. A topological space X is compact Hausdorff precisely
when each ultrafilter converges uniquely, giving rise to a function &: X ——
X which makes it not entirely surprising that these spaces are the same
thing as B-algebras (3.21). For use later as well as now we set down the
theory rather completely.

5.25 Characterization of Ultrafilters. Let % be a collection of subsets
of a set X having the finite intersection property (3.22). Then the following
five conditions on % are equivalent and make % an ultrafilter on X.

1. For all 4 < X either 4 or its complement X — A belongs to %
(this is 3.23).

2. If{A,,..., A4,} is a finite partition of X then exactly one A; belongs
to %.

3. Xe%;and, if 4,,..., A4, are subsets of X whose union belongs to
9 then at least one A4; belongs to %.
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4. 9 cannot be extended to a larger collection with the finite intersection
property and % is nonempty.

5. If Ais a subset of X and 4 ¢ % then 4 has empty intersection with
some element of %.

Proof Hints. Clearly (3) implies (2), (2) implies (1), and we have (1)
implying (3) since (X — A4,),...(X — A4,), (4, u---uU 4,) have empty
intersection. (1) implies 4): If Fe # > % and F ¢ % then X — Fe % so
that % doesn’t have the finite intersection property. (4) implies (5): If A ¢ %
then % U {A} doesn’t have the finite intersection property and Uy n -+ n
UnAdA=¢ with Uje. If U=U;n---nU,¢% then similarly
UnVin---nV,= with V,e%, a contradiction. (5) implies (1):
fAnU=gand (X —A)nV=g with U, Ve then UnV = ¢,
a contradiction. []

If # < 2¥Xand 4 < X, say that A is close to & if there exists n > 0 and
F,,...,F,e# with A> F n---nF,. F is a filter on X if F # (&,
&5 ¢ F and every set close to & is in &. An ultrafilter % is a filter since
U © {A} has the finite intersection property if 4 is close to %.

5.26 Characterization of Principal Ultrafilters. The following conditions
on an ultrafilter # on X are equivalent.

1. % = prin(x) (as in 3.19) for some x € X.

2. NU# .

3. Some finite subset of X belongs to %.

The x in (1) is unique. % is called a principal ultrafilter, and the principal
ultrafilter on x.

Proof. (2) implies (3): if x e n%, % U {x} has the finite intersection
property. (3) implies (1): there exists x € X with {x} € % by 5.25 (3); as % is
a filter, prin(x) ¢ %; as prin(x) is maximal, prin(x) = #. []

Since every ultrafilter on X contains X, the only ultrafilters on a finite
set are the principal ones. No concrete example of a nonprincipal ultrafilter
is known (see the notes at the end of this section). The next theorem uses
Zorn’s lemma to prove that nonprincipal ultrafilters must exist.

5.27 Plenitude of Ultrafilters; Characterization of Filters. For & < 2%
the following are equivalent.

1. & is afilter.

2. F # I, ¢ F,every superset of an element of & is in & and for
alln > Oandsubsets A,..., A, of X, 4; n -+ n A, e & if and only if each
A;e F.

3. & is the intersection of a nonempty family of ultrafilters.

4. F = N(U:% is an ultrafilter and F < %).

Proof Hints. To show that (1) implies (4) we must prove that for A ¢ &
there exists an ultrafilter % with 4 ¢ % but & < %. As A is not close to &,
ZF u {X — A} has the finite intersection property. By Zorn’s lemma,
F U {X — A} < % for some ultrafilter %. []
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Let 7 be a topology of open sets on X. It is entirely in the right spirit
to say that an ultrafilter % on X is close to a point x with respect to J if
every neighborhood of x is close to (and therefore in) 4. Formally, an ultra-
filter % converges to x with respect to J, written 4 —= x (or just % —— x)
if % > N, (where N, = {N = X:xe N°} is the set of 7 -neighborhoods of
x). Since 9, is a filter and a subset is open if and only if it is a neighborhood
of each of its points, we have A is open if and only if A € N(N(%: % X):
x € A), that is

(5.28) Aisopenifand only if A belongs to each ultrafilter which converges
inside it. In particular, the convergence relation determines the topology.

The following theorem can be found in many standard texts, or can be
taken as definition:

5.29 Theorem. A topological space is compact if every ultrafilter con-
verges to at least one point. A topological space is Hausdorff if every ultrafilter
converges to at most one point. []

Since B is a subtheory of the double power-set theory of 3.19, /1 X — Y
induces fB:XB YB via (%, fB) = {B = Y:Bf ™' e #}. It is easy
to see that <%, fB) is also {B = Y:B > Affor some A € %j].

5.30 Characterization of Continuity. Let (X, ) and (X', ) be topo-
logical spaces and let f: X —— Y be a function. Then f is continuous if and
only if whenever % — x, {%, fB> xf.

Proof. Suppose f is continuous, # —x and VeN,,. As Vf~'e
N, = U, Ve B Conversely, noting that the inverse image of an
ultrafilter is again an ultrafilter, we have % = (%, fByf "' = O, )f '
whenever % —— x, so that 0, = (N, ,)f "' and f is continuous. []

We have presented enough background material to establish the interest-
ing result that compact Hausdorff spaces are the same thing as p-algebras.
Let us relativize our notation in 5.20 — to the subtheory B and define A* =
{% € XB:A € U}. The algebra laws 4.9 and 4.10 condense to

(prin(x))é =xforallxe X

{(Ac X:A*ed)é={Ac XA T ed}e  forall o € XPP. (5:31)

Suppose (X, ) is a compact Hausdorff space with convergence map
&:XP —— X. Since x belongs to each of its neighborhoods, it is clear that
(prin(x))¢ = x. Now let o7 € XBB and set x = {4 = X:4%* e o/ }¢ and
y={A c X:A¢ ' e o/ }¢ Suppose x # y. Then there exist disjoint open
sets A, B with x € A and y e B; (for the reader who is using 5.29 as the defini-
tion of Hausdorff: otherwise, %, U N, has the finite intersection property
and extends to an ultrafilter). By definition, A* € .o/ and B~ ! € «/. By 5.28,
C is open if and only if C£™' = C*. As B is open and .o/ is closed under
supersets, B* e .«7. Therefore, (4 N B)* = A* n B* # (&, which is the de-
sired contradiction. This proves that the passage from 7 to & is well defined;
it is injective by 5.28 and homomorphisms are the same on both sides by
5.30. We must show that given an abstract B-algebra (X, &) there is a compact



5. Infinitary Theories 63

Hausdorff topology 7~ whose convergence map is £. As discussed above, if
what we say is true then 4 € 7 if and only if 4671 = A*. It turns out that
there is an equivalent definition whose immediate properties are more useful.

5.32 Definition. Given an abstract B-algebra (X, &)and A < X, A is open
if for all % € XB with UE € A there exists U € U such that U*¢ < A.

It is obvious that ¢, X are open and that finite intersections and unions
of open sets are open; therefore the collection 7 of all open sets forms a
topology on X. Suppose # € Xp and N € W, There exists U € % with
U*¢ < NO, Since prin(u) € U* and (prin(u) )¢ = u (by the first algebra axiom)
for every ue U, U < N and N € %. This proves that % —— %¢E.

5.33 Lemma. For any subset B of X, the T -closure B~ of B is contained
in B¥¢,

Proof. This is where we really use the algebra axioms. First of all, if
i:B—— X is the inclusion map then clearly B* is just the image of
ip: B ——— XB, so that B*& is just (B) as in 4.31. In particular, B < B*¢
and (B*&)*¢ = B*&. To show B*E is 7 -closed, we must show, given % ¢ ¢ B¥E,
that there exists U e # with U*¢ n B¥¢ = (. Suppose not. Then {U*:
Ue %} v {B*¢£™!} has the finite intersection property and is contained
in some ultrafilter 7 € XBB. By 5.254), {4 =« X:A*e o} = U. Set ¥~ =
{A = X:4¢7 1 e o). Then B*¢é € ¥7. By the second algebra axiom, #¢ =
V& e (B*E)*E = B*¢, the desired contradiction. []

We can make quick work of the remaining details. Let % € Xp and
suppose x € X with #¢ # x. Since {x}~ < {x}*¢ = {x}, X — {x} is open
and there exists U e # with U*¢ =« X — {x}. By 5.33, x¢ U~ and there
exists N e ft, with N n U = (. In particular, N ¢ %, so % does not con-
verge to x. We have proved that the convergence relation of the topology
J is & As & is a function, I is compact Hausdorff. []

We are now ready to extend the definitions of section 1 to the infinitary
case.

5.34 Definitions. Extending 1.4, an operator domain is a disjoint family
of sets, Q = (Q,:n is a cardinal). As before, an Q-algebra is a pair (X, ) where
X is set and & assigns to each w € Q, an n-ary operation J,: X" —— X.
Q-homomorphisms are defined exactly as in 1.5 giving rise to the category,
Q-alg, of Q-algebras and an obvious underlying set functor U:Q-alg ———
Set. Paralleling 5.3, for each cardinal n an n-ary operation of Q is a natural
transformation o.: U" —— U. Ann-ary Q-equation is a doubleton {o, o} where
o and o are n-ary operations of Q. An Q-equation is an n-ary Q-equation for
some n. An equational presentation is a pair (Q, E) where Q is an operator
domain as just defined and E is a class of Q-equations. We are specifically
permitting E to be a large set (see the “primer” at the end of this section).
An Q-algebra (X, 8) satisfies the Q-equation {a, '} just in case (X, d)a =
(X, 8)'. An (9, E)-algebra is an Q-algebra which satisfies every equation in E.
This defines the category (2, E)-alg whose objects are the (Q, E)-algebras and
whose morphisms are the Q-homomorphisms. Let Ug:(Q, E)-alg ———
Set denote the underlying set functor. By Theorem 5.5, the finitary definition
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of 1.19 can be recaptured by setting Q, = & when n is infinite and using
only Ny-ary equations. The category of (Q, E)-algebras is called an equa-
tionally-definable class.

5.35 The Lawvere Theory. Let T be an algebraic theory in Set. If T is
bounded, the regular rank of T is the smallest infinite regular cardinal greater
than or equal to the rank of T. The Lawvere theory of T is the category
Law(T) whose objects are {all cardinal numbers} {all cardinal numbers less
than the regular rank of T} accordingly as T is unbounded or bounded. Thus,
Sup(m; € n) € Law(T) whenever all m; and n are. A morphism o:m —
n in Law(T) is a morphism a:n ——m in Sety (see 3.2), that is a function
a:n ——mT (Notice how we use different types of arrows to identify which
category we mean). Composition and identities are defined just as in Set,
specifically

(m=nyx(nLp) = (p-Lrn)e (n2-m)

=p—LnT L mTT 2 mT

(where * denotes the composition operation in Law(T)), and ny:n ——n
provides the identities. Since Sety is a category, so is Law(T).

Our definition of a T-algebra has so far stressed the monoid form (T, 1, p)
of T. We now show how to express 4.9 and 4.10 referring only to the clone
form (T, n, °) of T; also, see exercise 11 of section 4.

5.36 Lemma. LetT beanalgebraictheoryinSet. For each set X and func-
tion £: X T ——— X we may attempt to define a functor M;:Law(T) ———
Set as follows. On objects,nM; = X". Letoa:n — me Law(T). Foreachie m
we have o; € nT and so, using 5.6, a function X8;: X" ——— X T. Collecting
this m-tuple together, we have a single function (X&;:i € m): X"
XT™. Define oM ;:nM; ——————— mM, by

(Xd;:iem)

aM, = X" xTm X
Then M, is a functor if and only if (X, &) is a T-algebra.

Proof. Allfinite cardinals and in particular 1 are in Law(T). M, preserves
identities if and only if X%" - &: X" —————— X" is the identity of X" and
this is equivalent to 4.9. We will show that M, preserves composition if and
only if ¢ satisfies 4.10. First two remarks:

5.37 Remark. Given f:1 ——n (ie.,, f € nT) and a:n ——m then the
following diagram of natural transformations ()" — T is commutative:

(@:ien)

>T"

g

TT

(Bea) lﬂ

T

( )m
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To prove this, 5.7 tells us we have only to check equality of the values assigned
by the mth components to id,. Indeed, {id,, (ma;:ie n).mThmud = {ua:
n——-smT, mTBmud = {B,aT.mud = f°a = <id,, m(f > o)*>.

5.38 Remark. For any function &: XT X, 4.10 is commutative
restricted to the elements in the image of (¢ —— X T)T (that is, restricted
to the interpretation in (X T7T, X Ty) of the true constants). To prove this,
one need only observe that (J —— XT)T.Xu and (¢f —— XT).ET are al-
ready equal, both being the unique T-homomorphism (& T, u)
(XT, Xp.

Now consider the following diagram induced by a:m —— n and
p:n— p:

xm
(Xa;)

XT" ¢ > X"
¢T”
XTT? > XT?
l(xu)t' 111 l@v
XT? z >X?

The two boundary paths from X™ to X? are equal precisely when M, preserves
composition whereas III is equivalent to 4.10 (as p can equal 1). I and II
always commute (by 5.37 and the naturality of ;). It is now clear that if 4.10
holds then M, preserves composition. Using 5.38, to prove the converse it
is sufficient to show that given X e X T'T not in the image of (¢ — XT)T
there exist m, ne Law(T), o:m —— n, f:n 1 and h:m — X such that
¢h,(X&;:ien.XTB) = X. This amounts to “unravelling X as a word of
words” and can be done as follows: Since X € (X T)T there exists n € Law(T)
and f:n —— X T such that X is in the image of fT, that is {f, XT) =
B, fT )= X for some fenT. By our hypothesis on X, we may assume
n > 0. For each i € n we can find, similarly, m; e Law(T), g;:m; —— X and
y; e mT with {g;, X9;> = {y;,¢;T> = fie XT. By the definition of the
objects of Law(T), m = Sup(m;:i € n) € Law(T). Since m is equipotent with
the disjoint union of the m; there exists a family (in;:i € n) of injections
in;:m; —— m with disjoint images and such that the union of the images
is m. One checks routinely that

(25 (s T

is a natural transformation and hence has form &, for unique «; € mT. This
defines o:m —— n. There exists unique h:m —— X such that in.h = g, for
all ie n. We have <h, (X8;,).XTB) = ({gi, X3,>:ie )X T = (f;:ien)XTh =
(LXTRy =x [
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We are now ready to prove the extension of 4.25 to infinitary algebraic
theories. Rather than relying on a Birkhoff variety argument, we will present
the operations and equations explicitly and prove that they work. In par-
ticular, this provides a different (and more informative) proof of 4.25.

5.40 Theorem. Let T be an algebraic theory in Set. Then there exists an
equational presentation (Q, E) as in 5.34,with Q, = & if n ¢ Law(T) (see 5.35),
and every equation n-ary for some n € Law(T), such that T-algebras and (Q, E)-
algebras are isomorphic as categories of sets with structure (as defined in the
statement of 4.15).

Proof. Define (Q, E) as follows:

Q, = {n} x nT if n e Law(T)
Q= if n ¢ Law(T). (541)

Denoting the underlying set functor from Q-alg by U, each « € nT becomes
an n-ary operation &@:U" —— U of Q by (X, )& = J,: X" —— X (where
we write o € Q, for the more cumbersome (n, «)). Define the equations E by
E = E, U E, U E; where )

E, isthe class of all equations {U? > U" 25 U, UP 25 U™ 15 U} corre-
sponding to (p, n, m, a, b, a, B) such that p, n, me Law(T), a:n — p and
b:m —— p are functions, o« € nT, B e mT subject to the conditions that p
is the union of the image of a and the image of band &, aT)> = <{B, bT) € pT.

E, is the single equation {177:U —— U, id: U —— U} (thinking of
1n:1 —— 1T as an element of Q,). ) )

E; consists of the class of equations {o@: ur ——m——u,u" @,y L,
U} corresponding to all (m, n, o, f) witho:m —— nand f:n —— 11in Law(T).

5.42 Proposition. If h: A —— B is injective, so is hT: AT ————— BT.

Proof. We consider three cases: If 4 is nonempty we can extend the
identity function of 4 to s as shown below:

h

A

A4

A = - —W

Then, since hT.sT = id,y, hT is injective. If 4 is empty and AT is also
empty then AT is injective (as is any function from the empty set). Finally,
consider 4 = ¢ but T # (. Then there exists a function s:B — F7T.
As hT.s* is the unique T-homomorphism from (T, Fp) to itself, hT.s* =
id; and AT is injective.
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5.43 Proposition. An Q-algebra(X, o) satisfies E if and only if there exists
a (necessarily unique) function £: XT — X such that for all a € Q,

X" X SXT
5

|
1
1g
A |
|
¥
X

Proof. If Xe XT then there exists ne Law(T), f:n —— X and a € nT
such that <o, f T> = X, and we are forced to define X¢ = {f, §,>. Suppose
now that m € Law(T), g:m — X and f € mT are again such that {f, gT)> =
X. For £ to be well defined, we must be able to prove that {f, §,> = <g, dp).
Let S « X be the union of the images of f and g. There exists p € Law(T)
and a bijection y:p —— S. Define a:n — p and b:m ——spbya = fap ™!
and b = gy~ !, where f:n —— Sand §:m —— S are defined by the diagram

above. Define h:p — X = r.inc. Then <o, aTYhT = (o, fT) = {B,gT)> =
{P,bT>hT. Since hT is injective by 542, {a, aT)» = {B, bT>. Therefore,
there is an equation in E; corresponding to (p, n, m, a, b, o, f). If (X, 5)
satisfies this equation, {f, 6,: X" —— X> = {a.h, 6,y = <{h, (a- —).0,:
X X5 = (b, (b —)0p: XP ———————X) = (g, &
X™ ——— X». Hence ¢ is well defined if (X, 8) satisfies E,. Conversely,
suppose ¢ is well defined and we have an equation in E; corresponding to
(p, n, m, a, b, a, f). Then for every h:p —— X we have <h, (a- —).0,:
X? X) = Lah, Xg.é:X"—X> = (o, (aW)T)¢ =
o, aTHhT.E = {B, bTORT.E = <h, (b- —).05: X ———————— X), and
(X, 9) satisfies all equations in E;. This completes the proof of 5.43.

The remaining details are old hat. If (X, §) satisfies E, giving rise to &:
XT —— X, then the precise content of 5.36 is that (X, ) satisfies E, and
E; if and only if (X, &) is a T-algebra (although one must notice that the
proof of 5.36 made it clear that to prove M, preserves composition one could
always assume p = 1). The inverse passage from (X, &) to (X, 6) and the
proof that the two sorts of homomorphism are the same is achieved exactly
asin 4.25. []
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5.44 Definitions. Let o7 be an arbitrary category and let U:.of —— Set
be a functor. As in5.3,define U* : sf ——— Set for each set X by U¥ = U.()*.
If nis a cardinal, U is tractable at n providing the class of all natural trans-
Sformations from U" to U is a small set (see the “primer” at the end of this
section). U is tractable if U is tractable at n for every cardinal n. An
equational presentation (Q, E) (as in 5.34) is tractable just in case Ug:
(R, E)-alg Set is tractable.

If T is an algebraic theory in Set, UTis tractable by Theorem 5.5. It
follows that any (€,E) which presents SetT (e.g. as in 5.41) is tractable, which
imposes a necessary condition on (€, E) in order that it present Set™ for
some T. Happily, tractability is sufficient:

5.45 Theorem. Let (2, E) be an equational presentation as in 5.34. Pro-
viding (Q, E) is tractable, there exists an algebraic theory T in Set such that
T-algebras and (Q, E)-algebras are isomorphic as categories of sets with struc-
ture (as defined in the statement of 4.15).

Informal comments in lieu of proof. For each (small) set A define a
(perhaps large) set AQ “inductively” by

acAQforallae 4

whenever w € Q, and (p;:i e n) is an n-tuple in AQ then (p;:i e n)w e AQ
(cf. 1.8, 1.9).

Despite the highly intuitive appeal, the proof that we have a principle
of algebraic recursion (cf. 1.14) and, in particular, the proof that 4Q makes
any sense is difficult and will not be given in this book (see the notes at the
end of this section). Accepting algebraic recursion makes the rest proceed
smoothly. Define E, as in 2.1 and then set AT = AQ/E,. At some stage in
the argument it becomes clear that the tractability assumption forces AT to
be a small set. The infinitary versions of 2.2 and the universal property 2.5
are established using the old proofs, and (as was remarked in 2.16—) the
ability to build an algebraic theory around T is a formal consequence of
this universal property. The remaining details are a straight-forward rehash
of4.1and 4.15. []

We will offer a rigorous (but different sort of) proof of 5.45 in Chapter 3
(see 3.1.26).

We close the section with two examples of nontractable equational
presentations.

5.46 Complete Lattices Are Not Tractable at 3. The class of complete
lattices and homomorphisms which simultaneously preserve supremum and
infimum is equationally presentable but not tractable at 3. Let us observe
first that complete semilattices (as in 5.15) are equational as a consequence
of 5.5 and 5.41; in fact, a study of that construction allows us to throw away
some of the operations and equations, and the following is an equational
presentation of complete semilattices:

Q, = {Sup,} for each cardinal n.

E=E UE, UE, (547)
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where E, consists of the equations Sup,(af) = Sup,(bf) indexed by each
instance of a pair a, b:n — m of surjections; E, is the single equation
Sup,(x) = x; and Ej; consists of the equations Sup,(Sup,(I';f):i € p) =
Sup,(f), where (m -5 n:i € p) is a family of functions such that the union of
the images covers all of n. (Of course, each side in any of the above equations
is a natural transformation in accordance with the Definition 5.34; E; is
trying to say (and does!) that Sup,(f) = Sup,(g) whenever f, g:n — X have
the same image).

Define a new operator domain Q' by 2, = {Inf,} and define Q"-equations
E’ by substituting “Inf” for “Sup” in each of the equations in E above. Since
supremum in a partially ordered set (X, <) is the same thing as infimum in
the partially ordered set (X, =), our interpretation of the operators in 5.47
was biased, and we may be comfortable in viewing complete semilattices as
(2, E')-algebras as well. It is now clear that complete lattices is a full sub-
category of (Q U @', E U E')-algebras, and all that is missing is the guarantee
that the Sup operators induce the same partial order as the Inf operators, that
is that “Sup,(x, y) = y if and only if Inf,(x, y) = x.” The equational way to
say this is the well known absorptive laws:

Infy(x, Sup,(x, y)) = x
Sup,(x, Infy(x, y)) = x

Now that we have seen that complete lattices are equational, let us explore
the tractability properties of the underlying set functor U. U has only six
2-ary operations namely the true constants 0 = Sup,, 1 = Inf; the two
projections and Sup,, Inf, (as is easy to check directly). It is at least mildly
surprising that by adding one new variable we get not only infinitely many
operations, but a large set of them. A proof of this can be found in [ Hales
’64, section 3]. While Hales’ proof is too involved to present here, the con-
struction is quite simple. For each ordinal i define a 3-ary operation I'; as
follows:

FO(xa Vs Z) =X

I;+1 = Sup,(x, Inf,(y, Sup,(z, Inf,(x, Sup,(y, Infy(z, I))))))

I'; = Sup,(yI';:j < i) if i is a limit ordinal (and ¥ is a
conveniently prechosen bijection with
the cardinal n).

What Hales did was to construct for each pair of ordinals an example of a
complete lattice on which the corresponding operations differ. The same
proof shows that there are infinitely many 3-ary operations even for just
finitely-complete lattices.

5.48 Complete Boolean Algebras Are Not Tractable at N,. The class of
complete Boolean algebras and homomorphisms which simultaneously pre-
serve supremum and complement (and hence everything else such as infima,
+ etc.) is equationally presentable but not tractable at ;. The reader may
provide her own favorite equational presentation; for us, it is easiest to view
a complete Boolean algebra as a complete lattice which is distributive and
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complemented. To this end, adjoin a single unary operator, c, to the operator
domain of 5.47 and impose the equations of 5.47 together with four new ones:

Inf,(Supa(x, y), 2) = Sup,(Infy(x, z), Infy(y, 2))
Sup,(Infy(x, y), 2) = Infy(Sup,(x, 2), Supa(y, z))
Sup,(x, cx) = Infy
Inf,(x, cx) = Supy

To check that we really have a Boolean algebra here, sceptics should note
that x + y = Inf,(Sup,(x, ), ¢ Infy(x, y)).

With the help of exercise 19, it is not hard to prove, as is certainly suggested
by 5.5, that the class of n-ary operations of any equational presentation con-
tains a subalgebra freely generated by n, i.e., with the universal property of
4.12 with respect to algebras and homomorphisms (aithough is not neces-
sarily a genuine algebra because it may be built on a large set). It suffices to
show, then, that the assumption that we have a complete Boolean algebra F
and a function n:N, —— F with the universal property

R, 1 F

CL

that every function f:%, —— C to a complete Boolean algebra C extends
uniquely to a complete Boolean homomorphism : F —— C, leads to the
conclusion that F admits a surjection to every ordinal number. In fact, by
4.12 and 4.14 this proves immediately that complete Boolean algebras is not
T-presentable.

Since the image of  (as above) is a complete Boolean subalgebra of C
containing the image of the sequence f, it is sufficient to construct, given an
ordinal «, a complete Boolean algebra C possessing a subset equipotent with
o and a sequence f:%, —— C such that no proper subalgebra of C contains
the image of f.

Let X be an arbitrary topological space. For each subset U of X let U+
denote the complement of the closure of U. U is a regular open set if U is the
interior of its closure, that is U = U**. An important result (see [ Halmos
’63,84,§7]) is that the set of all regular open sets forms a complete Boolean
algebra with

Sup,(U;:ie n) = Int Cls(u(U;:i € n))
Inf,(U;:i e n) = Int Cls(~(U;:i e n))
oU) = Ut

Fix an infinite ordinal « and provide the set o with the discrete topology.
Let N = {0, 1,2,...} be the set of natural numbers, and let X = oN have
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the product topology. If (S,:n € N) is a sequence of subsets of o then { f € X:
J.€8,} is closed since it is the cartesian product of the closed sets S,. For
neNand S c o, 4,5 = {f € X:f, €S} is a typical subbasic open set; as
mentioned above, it is also closed. As all clopen sets are regular open sets,
A, s 1s aregular open set. In particular, forne Nand f < o, 4, ; = {f e X:
fo = B} is a regular open set. For n, meN, B, ,, = {fe X:f, < f,} is
closed (use nets) as is its complement (use nets again), so B, ,, is a regular
open set. Let # be the complete Boolean subalgebra of regular open sets
generated by the countable family of all B, ,’s and all 4, ;s (for finite ordinals
B), where “subalgebra generated by” means “the intersection of all containing
subalgebras™). No proper subalgebra of 4 contains this countable family.
Since the A, ; are pairwise distinct, the proof is completed by proving that
all 4y 5€%. To do this we will establish “for all ne N, 4, ;€ #” for each
B < a by transfinite induction. We already know this for finite 8, which
provides the basis. Now suppose this is true for § < y; we must prove it for y.

Fix neN. As U4, 5:f <y) = {feX:f, <y} is clopen, Sup(4, s
B <y) = U(4, 5:B < y) which proves that {f e X:f, < 7} € 4. It follows
thatthesetC, ,, = {fe X:f, < fporf,, <y} = SupB, m{f € X:f < 7))
belongs to 4. Set C, = Inf(C, ,,:m e N) = Int(n(C, ,,:m € N)). We claim
that C, = {f e X:f, < 7}. On the one hand, given g € X with g, < y then
for all m e N either g, < g,, o1 else g,, < g, < 7 so we have g € C,,_,,. Thus,
{f e X:f, < y}isasubset of ~(C,, ,,:m e N)and is (subbasic) open, so is con-
tained in C,. Conversely, suppose given f € C,. Then some basic open neigh-
borhood of f is contained in N(C, ,,:m € N), that is there exists a nonempty
finite subset F of N such that every function agreeing with f on F is in every
C, n Define g € X by

NS fmeForm=n
In = v otherwise

There exists m' e N with g(m’) = y. Since g € C, ,» and “g(m’) < y” is false,
we have f, = g, < g, = 7y as desired. This proves that {f e X:f, < y} be-
longs to 4. Noting that { f € X :f, < y} and {f € X:f, < y} are both clopen
and in # we conclude that 4, , = {fe X:f, <y} — {feX:f, <y} =
Inf({feX:f, <y} {feX:f, <y})e B and we are done. []

Primer on Set Theory

We outline a few concepts from set theory which were needed in this
section. The outline is easily filled in by consulting [ Monk ’69] and is some-
what expanded in the exercises. See also [Mac Lane *71, 1.6]. Another primer
appears at the end of section 3.1.

Ordinals, as defined below, are sets of sets. The smallest ordinal, denoted
0, is the empty set. If x is an ordinal, the next biggest ordinal is its successor
s(x) = x U {x}. Thus each integer n induces the ordinal n = 5"(0). In normal
usage we write n rather than n. The first infinite ordinal ® is the union of
the chain 0 = 1 < 2---. The next ordinals are the s(®) and Us"(®). More
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formally, a set of sets x is e-transitive if whenever y € x and z € y then z € x.
An ordinal is a sets of sets x such that x is e-transitive and such that for all
y € x, yis e-transitive. I x, y are ordinals then (using the “axiom of regularity”)
exactly one of “x € y,” “x = y,” “y € x” occurs ([Monk 9.9]) so that the class
Ord of all ordinals is linearly ordered via x < yifx = yorxey. lf X isa
nonempty set of ordinals then n{x:x € X} is an ordinal and is in X ([ Monk
9.10]); in particular, X has a least element. Further, for ordinals x, y, x < y
holds if and only if x = y.

Every ordinal x satisfies x = {y:yis an ordinal and y < x} ([Monk 9.13
(iii)]). This establishes the (first) principle of transfinite induction [Monk
10.1]: to define a function on an ordinal x it suffices to define f(y) for all
y < x. We used this in 5.48. An ordinal x is a successor ordinal if x has form
s(y) (e, “x~1 exists”) and x is a limit ordinal if x # 0 and x is not a successor
ordinal. ® is the smallest limit ordinal. The (second) principle of transfinite
induction [Monk 10.4] asserts: to define a function f on an ordinal x it
suffices to define f(0), to define f(y + 1) in terms of f(y) whenever y + 1 < x
and to define f(y) in terms of {f(z):z < y} whenever y is a limit ordinal
and y < x. Cf. the construction of I'; in 5.46. The “algebraic recursion” of
the proof comments of 5.45 generalizes transfinite induction.

A cardinal is an ordinal which is not equipotent (“equipotent” means
“in bijective correspondence with™) with a smaller ordinal. The finite ordinals
n are cardinals. ® is also a cardinal but qua cardinal it is customary to call
it No. s(w) is not a cardinal. Given any set A there exists a unique cardinal x
(using the axiom of choice) such that 4 and x are equipotent ([ Monk 18.3]);
x is the cardinality of A, x = card(A4). A is uncountable if card(4) > No;
otherwise, A4 is countable. If A admits an injection into or a surjection from
B then card(A4) < card(B). As discussed above, the cardinals constitute a
linearly ordered class such that every nonempty subset has a least element.
If x is a cardinal, x* denotes the next largest cardinal. There is no largest
cardinal, that is, x* always exists ([Monk 18.13]). If (X;:i € I) is a family of
cardinals, their sum ) x; is the cardinality of the disjoint union {(y,i):y€ X}
of the sets x; ((Monk 20.1]). A cardinal x is regular ([Monk 21.18]) if x is
infinite and if for every family (x;:i e I) of cardinals with each x; < x and
card(I) < x, it is the case that Y x; < x. Starting with N, and defining
N,+1 = (N)*, YN, is the smallest infinite cardinal which is not regular.
For any infinite cardinal x, x* is regular ([Monk 21.14]).

A chain in a partially ordered set (X, <) is a subset C of X such that
whenever x, y e C either x < y or y < x. m is a maximal element of (X, <)
if for every x € X it is false that x > m. Zorn’s lemma asserts: if every chain
in (X, <) has an upper bound (i.e., there exists u in X, not necessarily in C,
such that u > ¢ for every ¢ in C) then (X, <) has at least one maximal
element. The theorem works if (X, <) is empty since the empty set is a chain
with no upper bound. It is well known that Zorn’s lemma is equivalent to
the axiom of choice ([Monk section 16]). In the context of the proof hints
to 5.27, X is the set of all families &# with the finite intersection property,
F < % means F < % and a maximal element is an ultrafilter by 5.25 (iv).
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Paradox: it is easy to prove that the set Ord is an ordinal ([Monk 9.7]).
Thus Ord € Ord, ie. Ord < Ord, which is impossible. Also, the Russell
Paradox: let R be the set of all sets of sets x such that x ¢ x; then R is a set
of sets, but if R € R then R ¢ R whereas if R ¢ R then R € R. The way these
paradoxes are resolved is by insisting that certain “classes” such as Ord
and R above are “impredicatively defined” (that is, there is obvious “self-
definition” in phrases such as “the ordinal of all ordinals” and “the set of
all sets of sets”) and are not bona fide sets. For example, Ord is not really
an ordinal because it is not a set.

To truly resolve the crises of the preceding paragraph would lead us far
afield from the subject matter of this book. We refer the reader to [ Mac Lane
*71,1.6] for a description of some related problems and of the “one universe”
set theory that is adequate for our needs. (See also [Fraenkel, Bar Hillel
and Levy *73, I1.7].) In brief, there is a “universe” U modelling the “set of all
sets.” A small set is an element of U. A subset of U which is not an element
of U is a large set. Thus Ord and R above are large sets. Any set which admits
an injection from or a surjection to every cardinal is a large set. A cartesian
product of a family of small sets indexed by a small set is a small set; on the
other hand, the cartesian product of all small sets is a large set. A priori,
there is no reason why 0,(T) or Ox(T) need be small sets, but this is proved
in 5.5. The class of operations of an operator domain as in 5.34 will be a
large set unless there exists a cardinal N such that Q, = ¢S whenever n > N.
The intended meaning of “tractable” in 5.44 is that “AQ/E ,” in the spirit of
2.1 is a small set for all 4 even though AQ may be large. 5.43 asserts that the
free lattice on 3 generators is a large set. The category Set of sets and functions
has as objects small sets.

Notes for Section 5

Our trivial algebraic theories were dubbed “inconsistent” by [ Lawvere
’63, page 51]. The idea that algebraic operations are natural transformations
(our semantic operations) is due to Lawvere (see [Lawvere 63, page 69,
Theorem 1]) and was emphasized by Linton (see [ Linton, ’66,°69]). Lawvere
defined algebras as set-valued functors as in 5.36. The inverse passages 5.6
and 5.7 is an instance of the well-known Yoneda lemma ([ Yoneda ’54]) of
category theory; see [Mac Lane *71]. [Lawvere 63, pages 52—53] called
our constants definable constants and our true constants expressible con-
stants; our 5.13 is his proposition 5.

Examples 5.15, 5.17 were well known to the Ziirich school. It was also
known ([Linton ’66, section 5]) that compact Hausdorff spaces were repre-
sentable as the algebras of a suitable theory; according to Barr (personal
communication), he, Beck, and Linton convinced themselves, in 1965, that
the constructions of 5.24 could be given (and this appeared in [ Manes "67,
’69]). See also [Paré *71] (presented in [Mac Lane *71, VI. 9]). [ Semadeni
"74—A] and cf. [ Gonshor "74].

It was pointed out to us by M. H. Stone that a perfectly modern definition
of nonprincipal ultrafilter was given in 1908! by F. Riesz ([Riesz ’08, p. 23]).
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His five axioms for a collection of subsets % of a set to be an “ideale
verdichtungstelle” are: (1) every superset of an element of % is again in %,
(2)if A, B are disjoint and if their union is in % then A € % or B e % ;(3) the
intersection of two elements of % is again in % ; (4) % is maximal with respect
to properties (1)—(3); (5) the intersection of all elements of % is empty. See
[Bell and Slomson ’71] for the use of ultrafilters in model theory (and
Chapters 5, 6 there for details concerning the structure of ultrafilters per se).
The axiom of choice, which is equivalent to Zorn’s lemma, was used to
prove the “ultrafilter theorem” (every filter is contained in an ultrafilter)
used in 5.27. There exist models of (Zermelo-Frankel) set theory in which
(1) the ordinal @ has no nonprincipal ultrafilters or (2) every infinite set has
at least one nonprincipal ultrafilter but the ultrafilter theorem fails or (3) the
ultrafilter theorem holds but the axiom of choice fails. See [ Jech *73, page 82,
page 132, Theorem 7.1]. Since one expects any “actual construction” of a
nonprincipal ultrafilter to build one on ® in any model of set theory, it is
popular to assert that “it is impossible to construct any example of a non-
principal ultrafilter”; at this writing, however, this assertion is only a con-
jecture.

The characterization of topological concepts in the language of ultrafilter
convergence can be found in [Choquet *48]; we thank H. R. Fischer and
O. Wyler for pointing out this reference.

Infinitary universal algebra begins with the founding paper [ Birkhoff 35]
where algebraic recursion is assumed without comment. A number of works
have been devoted to a rigorous construction of free Q-algebras when Q is
infinitary but bounded: [Diener '66], [ Felscher ’65, *72], [Harzheim ’66],
[Henkin, Monk and Tarski *71], [Kerkhoff ’65], [Lowig ’52, 57], and
[Stominski °59]. Stomifiski’s monograph provides (among other things) a
treatment along the lines of section 1. Kerkhoff’s construction of free Q-
algebras, quite similar to 1.1.7, strikes us as being the simplest: given a set 4,
let B be the set of all subsets of the set of all (finite) words on the set

A+ unQ, # g + vQ,
observe that B is an Q-algebra via

B" B
S0 < n)b——— {ntu {nowia < n,we S}
3 1 af

and set AQ to be the Q-subalgebra of B generated by {{a}:ae A}.

Unbounded universal algebra was first recognized by [Linton 66, *69]
and 5.35-5.45 is an adaptation of Linton’s work. Felscher proved that
(Q, E)-algebras are coextensive with functors on the Lawvere theory in
[Felscher 69,772 3.2].

[ Birkhoff °35, Theorem 27] proved that the free finitely-complete lattice
on 3 generators is infinite, attributing the question to [ Klein 34 ]. The proof
of 5.48 was given independently by [Gaifmann *64] and [Hales 64]. The
simpler proof we presented is from [Solovay ’66].
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Exercises for Section 5

1. Recall that “characteristic function” establishes a bijection between
subsets of X and functions X — 2, where 2 = {0, 1} so that, in partic-
ular, a collection of subsets of X is a function 2% — 2. Also recall that
an I-indexed family of functions (f;: X —— Y) corresponds to the
single function f: X — Y.

(a) Let T be the double power-set theory of 3.19. Thinking of X T as the
set of functions from 2* to 2, show that # sends x to the xth projec-
tion pr,:2¥ ——— 2 and that the characteristic function of x(a ° f)
is given by

22 Gyp:yeY) 2Y ia_) 2

(b) (Kock-Lawvere) Let S be any algebraic theoryin Set andlet (2, &) be
an S-algebra structure on 2. Define X S, to be the set of S-homomor-
phisms from the (cartesian power) algebra (2, £)* to (2, &). Show
that S is a subtheory of the double power-set theory as in (a). See
also exercise 11 of 2.3.

2. In this exercise we abstract the structure of the set of supports of a func-
tion y:A¥ —— A. Incase 4 = &, X # ¢ and the set of supports of
 is the set of all nonempty subsets of X. This case is singular and we
concentrate on the case with 4 # (. A quasifilter on a set X is a non-
empty collection & of subsets of X satisfying (i) every superset of an
element of & is in &, and (ii) the intersection of two elements of Z is
again in .

(a) If y: A¥ —— A is any function, with 4 nonempty, show that the
set of supports of i is a quasifilter on X. [Hint: if F, G have empty
intersection, prove directly that s is constant; otherwise define func-
tions e, f, g as shown below with ae, ¢f, dg identities; also, see ex-
ercise 21 of 2.1.]

FnG 4 >G— — — — £ — = 3FAG
b d b
F > X—— - - - == - >F
c | f
|
|
lg
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(b) If # is any quasifilter on X, prove that & is the set of supports of
its characteristic function 2X — 2.

(c) Prove that # is a quasifilter on X if and only if (iii) X € #, and
(iviforall F,G =« X, FnGe # ifand only if F, Ge #.

(d) Let Q, = {e}, @, = {}, Q, = & otherwise. 2 = {0, 1} is an Q-
algebra with 6, = 1 and §_defined by

1 0
1 1 0
0 0 0

Show that & is a quasifilter on X if and only if its characteristic
function (2, £ ——— (2, &) is an Q-homomorphism.

(e) Let AT = {#:% isa quasifilter on X }. Show that AT is a subtheory
of the double power-set theory. [ Hint: use (d) and exercise 1.]

(f) [Day *75]. A partially-ordered set is directed if each two elements
have an upper bound. Let T be the quasifilter theory of (e). Show
that Set™ may be identified with the category whose objects are
complete lattices satisfying

Inf(Sup 4;:ie I)) = Sup(Inf(a;:ie I):(a;) € T14;)

for each family (A4;) of directed subsets, and whose morphisms pre-
serve all infima and all suprema of directed subsets. [Hint: cf. 5.17;
if # € XT, we have
7 = U () (prin(x)).]
Fe# xeF

. Let B be the ultrafilter theory of 3.21.

(a) For % € XB, show that % is the set of supports of the semantic
operation 7.

(b) Show that % is an ultrafilter on X if and only if its characteristic
function is a Boolean ring homomorphism 2*¥ — 2.

(c) Recapture the result that B is a subtheory of the double power-set
theory by combining (b) and exercise 1.

. Let AT = {#: is a filter on X}. Show that T is a subtheory of the
double power-set theory. [Hint: in the context of exercise 2d, add the
true constant ¢ and let §, = 0.] Wyler [to appear] presents the T-
algebras as “interval-like” complete semilattices with compact topology.

. Why is “x,x,mx3mx, - - - ” not a valid infinitary operation?

. Prove that B is unbounded. [Hint: look up the definition of “uniform
ultrafilter”.]

. Establish that the Boolean algebra of Lebesgue-measureable subsets of
(say) the unit interval is countably complete and atomic but that the
quotient algebra modulo “equal almost everywhere,” while still a
countably-complete Boolean algebra, is nonatomic.
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8.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

As mentioned in the proof of 5.48, the regular open sets of any topolog-
ical space form a complete Boolean algebra. What conditions on the
space force this algebra to be atomic?

With respect to the axioms for an ultrafilter given by Riesz in the notes,

show that his axioms are equivalent to ours but that (4) is implied by

the other axioms.

Prove that a uniform space is complete if and only if every Cauchy

ultrafilter converges. [Hint: prove that if two convergent filters do not

converge to exactly the same sets of points then their intersection is not

Cauchy; then use the ultrafilter theorem. ]

Let o be a collection of subsets of X and define &/° = {# € X p: for all

U € % there exists A € o/ with A = U}. Show that {«/*:.o/ < 2*} is the

set of all closed subsets of the topological space (X, X ).

Prove that any variety (cf. exercise 6+ of section 4) of B-algebras which

contains at least one algebra having two or more elements must be the

variety of all B-algebras. [Hint: let 2 be the unique two-element -
algebra; show that the inclusion XB < 22 is a B-subalgebra.]

Show that if T is not trivial then the syntactic operation 1:1 — 1T

has arity 1.

In the context of 5.36, show that a T-homomorphism from (X, &) to

(Y, 0) is the same thing as a natural transformation from M, to M,.

Let w € X T and let S be a subset of X with inclusion mapi:S — X.Show

that S is a support of @ if and only if @ is in the image of iT:ST ————

XT. [Hint: study the proof of 5.11.]

Say that T is atomic if every operation has a minimal support, that is,

for all w € X T there exists a support S of @ such that no proper subset

of S is a support of @. Prove that every finitary theory and the power-set
theory are atomic but that the ultrafilter theory is not atomic.

Prove that the double power-set theory is not atomic. [Hint: for # e XT

and S < X define #° = {4 = X: there exists Be # suchthat A n S =

B S}; then # = %5; show that S is a support of B if # = %5.]

Our discussion of the supremum-infimum duality in 5.48 should not be

misconstrued as effecting changes in the algebraic theory itself; in fact,

for T the power-set functor, show that intersection is not a natural

transformation TT — T.

Let (Q, E) be an equational presentation and let U:Q-alg

V:(Q, E)-alg ——— Set be the underlying set functors.

(a) For each set n let A(n) be the class of natural transformations from
U” to U. For each w in Q,,, &: U™ ——— U induces the structure
of an Q-algebra on A(n) by (p;:i e m)d,, = (p;)®. Define ny:n ——
A(n) by (i, np) = pr;:U" ——— U. Show that the intersection of
all subalgebras of A(n) containing the image of n has the universal
property of 4.12 that all Q-algebra valued functions from »n admit a
unique extension to an Q-homomorphism.

(b) Similarly, construct the perhaps large free (2, E)-algebra by re-
peating the construction of (a) for the class-B(n) of natural transfor-

Set,
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mations from V" to ¥V [Hint: to prove that B(n) satisfies E show that
B(n) may be identified with A(n)/E, in a sense similar to that of 2.1].

20. In this exercise we indicate how compact abelian groups arise as the

algebras over a theory in Set. We begin by reviewing some of the theory

of character groups (see e.g. [Hewitt and Ross *63], [Pontrjagin *46]).

Let S denote the circle group, that is, the compact metric abelian group

of complex numbers of modulus 1 with complex multiplication as group

operation. For each locally compact abelian group C, the character
group C" of C is the locally compact abelian group of all continuous
homomorphisms from C to S with neighborhood basis at the origin

{U(F, n):F is a compact subset of Cand n = 1,2,3.. .} where U(F, n)

is the set of all characters y in C* such that |xy — 1| < 1/n for all x in

F. If C, D are locally compact abelian groups then the passage from

f:C——Dto f*:D" ——— C", where yf" = f.y, establishes a bijec-

tion between the two sets of continuous homomorphisms. The map

C —— (C")" which sends c¢ to “evaluate at ¢” is a topological isomor-

phism, so “(C*")* = C.” C is compact if and only if C" is discrete.

(@) For each set A, consider the discrete group (ignore the natural prod-
uct topology!) S* of functions from A to S and let AT denote the
underlying set of the compact abelian group (S4)". Let Ay: 4 ——
AT send a to the projection pr,:S4 S. Given f:B——CT,
define the homomorphism :S¢ —— 8% by fiy = (b+— fB,) and
hence the map f#:BT ——— CT by # = y". Prove that (T, #, ©)
is an algebraic theory in Set where o © f = o.f*.

(b) Let C be a compact abelian group with underlying set |C|. Define
afunction ¢:|C|T ——— |C| by ¢ = ¢ where c is the unique element
of C such that the restriction of X:SIl —— S to C" is “evaluate
at ¢.” Prove that (|C|, ¢) is a T-algebra.

(c) Complete the proof that “compact abelian groups and continuous
homomorphisms” = “T-algebras and T-homomorphisms.”

The next two exercises provide insight into the algebra definition of

exercise 4.11 for theories in Set.
21. A cardinal n is a generating cardinal for the algebraic theory T in Set

if every p in XT admits a factorization

P:U:Al)i’Az—"'

A =X
such that for all 1 < i < k and a € A4,, ar(ax;) < n®, where
. Jn+1 (if » is finite)
"= (if n is infinite)
If T has a generating cardinal, the least one is the generating rank of T.
(a) Show that T has generating rank 2 if Set™ = monoids.
(b) A comparison algebra [Kennison *75] is an (£, E)-algebra where Q

has a single operation C of arity 4 and E consists of the following
five equations:
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22.

aaxyC = x abxxC = x
abxyC = baxyC ababC = b
abtuvwCHtwCC = abttCabutiCabvtCabwwCC

(see exercise 3.3.8). Show that the corresponding algebraic theory
has generating rank 3. [Hint: show abxyC = yabyWabxWW if
tuwW = tuvtC.]

(c) Prove that “generating rank < rank.”

(d) Let n be a generating cardinal for T and let £: X T X satisfy
“Xn.t = idy” and “for all «, B: A XT with card(4) < »n°®, if
ol = B.Etheno”.& = B*.&”. Prove that (X, ¢)is a T-algebra. [Hint:
use exercise 4.11; let AT, be the subset of those elements of AT
which, in the definition of “generating cardinal” above, admit a
factorization of size k; prove “for arbitrary A and o, $: 4 ———— X T,
ifo.l = B.Ethen{p, a”.&) = (p, p*.&) forall pe AT,” by induction
on k; the assumptions on ¢ provide the basis; if pe AT, ;, the basis
argument also proves (o4 © @).& = (044, © B).&; now use the induc-
tion hypothesis. |

Let T be an algebraic theory in Set, let o7 be an arbitrary class of sets

and let &:XT ——— X satisfy X#.& = idy. Prove that the following

two conditions are equivalent:

(a) For every o, f:A ——— XT with A e o, if 0.& = B.£ then o* .& =
p*

(b) “¢ commutes with «/-ary operations”, ie., for every 4 € .o/ and
w € AT, the following diagram commutes:

XT, Xp)&
XT4 T, X1 >XT
¢4 4
x4 = —>XT c > X
w

[Hint: to prove (b) from (a), for arbitrary o consider f = o.&.X#.]

. [Michael ’51]. Let ¢ be the category of compact Hausdorff spaces and

continuous maps. For 4 in ¢, topologize the set, AT, of closed subsets
of 4 by designating as open subbasis the family {U*: U open in A} where
U*= {Se AT:S n U # &}. Show that AT is compact Hausdorff, that
An:A—— AT, a+— {a} is continuous, that if «:4 —— BT is con-
tinuous then

" :AT ——— BT, S+——|J{av:ae S}
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is well-defined and continuous and hence that (T, 7, ©), « ° f = a.p7, is
an algebraic theory in 2. [Hint: the only detail not readily available
in Michael’s paper is the continuity of a*; to this end, it suffices for open
U in B to check that U*(«*)~! = (Ua~')*.] We do not know how to
interpret the T-algebras, but they clearly have to do with “continuous
selections.”

Let o be a regular cardinal, let T have rank < « and let (X, &) be T-
algebra possessing an inclusion-minimal set A4 of generators with
card(4) = o. Show that every set generating (X, &) has cardinal > «
(and hence that any two minimal sets of generators have the same
(cardinal). [Hint: if {(B) = X then for b in B choose S, < 4 with
card(S,) < o and b e (S,); as {JS, = A4, card(B) > «.]

Exercises for the Primer on Set Theory

. A left-to-right picture of the first few ordinals is

012---n - os) s* o)

Extend the picture to the right as far as you can. Then prove that the set
of all countable ordinals is uncountable. [Hint: consider the least un-
countable ordinal.]

Prove Cantor’s theorem: for any set A, card(24) > card(4) (where 24
means the set of all subsets of A). [Proof outline: no f: 4 — 24 can
be surjective since (cf. Russell’s Paradox) the set {a e A:a ¢ af} is not
in the image of f.] Conclude that, for any cardinal x, x™ exists and
x < x* < 2% Look up the “generalized continuum hypothesis” which
asserts that x* = 2~

Use Zorn’s lemma to prove that there exists a family & of circles
(boundary and interior) in the plane such that no two intersect (meaning,
also, that no two are tangent) and yet so “densely distributed” that any
circle not already in & must intersect a circle already in %#. Observe
that your argument makes no use of the structure of circles.

Zorn’s lemma was introduced in [Zorn ’35] where its equivalence with
the axiom of choice was noted (and proved in [Kneser *50]). The fol-
lowing proof outline is an adaptation of Banaschewski *53. [ Assume no
maximal element exists. (i) For each chain C there exists u(C) in X
strictly greater than each element of C. The sole use of the axiom of
choice is the existence of this choice function u from chains to elements;
if you believe u really exists then Zorn’s lemma is “true.” (ii) Define C
to be the set of all chains C such that (a) every nonempty subset of C
has a least element and (b) for every x in C, x = u(C,) where C, is the
chain of all y in C with y < x. (iii) Prove that for every C in C the chain
C* = C u {u(C)} is again in C. (iv) If C, D e C exactly one of “C = D,”
“C< D,C #+ D,andC = D, forsomexinD,”“D < C,D # C,D = C,,
for some x in C” holds (this takes some work). (v) W= uCeC.
(vi) u(W) e W, the desired contradiction. ]
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E. Use Zorn’s lemma to prove that for any two sets X, Y, either X admits
an injection into Y or Y admits an injection into X. [ Proof outline: use
the partially ordered set of all (4, f) with A < X and f:4 — Y injec-
tive; show that a maximal (A4, f) is such that f is onto or 4 = X.]

F. Selfreference is not really a set-theoretic phenomenon. Consider the
truth value of the sentence “this sentence is false.”



Chapter 2
Trade Secrets of Category Theory

This chapter provides a selfcontained introduction to some elementary
topics in category theory. Familiar constructions of set theory are generalized
to an arbitrary category. “Sets with structure” generalizes to “objects with
structure,” providing a universe in which to discuss “algebraic structure.”

1. The Base Category

A proviso such as “all spaces are assumed Hausdorff and all maps are
assumed continuous” is the mathematical author’s way of saying “let
Hausdorff topological spaces and continuous maps be the base category.”
The most familiar base category is the category Set of sets and functions. In
this section, we explore how some familiar constructions involving sets and
functions can be described in more arbitrary categories.

1.1 Assumption. For the balance of this section, fix a category KA. We
will assume that A is locally small (also: A" has small hom-sets) in the sense
that for each pair (A, B) the class A (A, B) is a small set (as defined in the primer
on set theory of section 1.5).

Set is certainly locally small. In a category of “structured sets” morphisms
from X to Y are determined as functions from the underlying set of X to
that of Y, therefore all categories of structured sets are locally small. In pure
category theory one is interested in “functor categories” (see exercises 1, 2.9
and 3.2.5) such as the category whose objects are functors from Set to itself
and whose morphisms are natural transformations (obviously an important
category with regard to the material in Chapter 1); this category is not locally
small. We are therefore making some concessions to everyday mathematics
in insisting that ¢ be locally small. The numerous examples we will draw
upon in this chapter are by and large restricted to categories of sets with
structure. Just to see what is abstractly possible, let us note two different
sorts of category.

1.2 Example. If % has only one object, then the set M of all morphisms
of A" consists solely of endomorphisms of the unique object (where, in any
category, an endomorphism is a morphism whose domain and codomain coin-
cide). Composition is an everywhere-defined associative operation on M and
the identity map of the unique object is a two sided unit. " is the same thing
as a monoid.

1.3 Definitions. A preordered class is a (perhaps large) class C equipped
with a reflexive and transitive binary relation. A preordered category is a cate-
gory in which there is at most one morphism from A to B for each pair (A, B)
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of objects. For all practical purposes the two notions are the same (define
A < B to mean there exists a morphism from A4 to B). Henceforth we will
treat preordered classes as if they were. categories.

1.4 Isomorphisms in a Category. It is traditionally clear when two
structured sets of the same sort are “abstractly the same.” This occurs just
in case there is a “structure-preserving” bijection, called an isomorphism,
between them; in actual context, the following definition of “isomorphism”
usually coincides with the intuitively most natural concept of “structure-
preserving relabelling.” The morphism f: 4 —— B is defined to be an iso-
morphism in 2 just in case there exists a morphism f"1:B—— A in A~
such that f.f ! = id, and f ~1.f = idg. In Set, f is an isomorphism if and
only if f is a bijection. For 2#° = groups and homomorphisms, f is an iso-
morphism if and only if 1 is a bijective homomorphism. For #* = topological
spaces and continuous maps, f is an isomorphism if and only if f is a homeo-
morphism (it is not sufficient that f be a continuous bijection). Two objects
A, B in A are isomorphic in A if there exists an isomorphism f:4 — B
in & . Isomorphism is an equivalence relation, often written “=”, on the
objects of #". One of the most fundamental philosophical principles in cate-
gory theory is: isomorphic objects are abstractly the same. Since the construc-
tions of category theory are, as a rule, unique only “up to isomorphism,”
we should never lose sight of what categorical isomorphism means. For
example, in the category of metric spaces and continuous maps, “isomorphic”
only means “homeomorphic” which may or may not be adequate, depending
on context.

A monoid is a group if and only if all of its morphisms are isomorphisms.
A preordered class is partially ordered (that is, < is antisymmetric as well
as reflexive and transitive) if and only if every isomorphism is an identity
morphism.

1.5 Products. In set theory, the product of a family (4;:i € I) of sets is
the set A of all I-tuples (g;:i e I) with each a; € A;. The function 4 — A4;
which sends (4;) to a; is called the jth projection function. If A" is a set and
if we are given functions f;: A’ —— A; then there exists a unique function
f:A' —— Asuch that f.p;, = f;foralliel; fis defined by af = (af;:iel).

Given a family of objects (4;:ie I) in a category ¢, a product of (A;:ie I)
with respect to A is an object A of " and an I-tuple of # -morphisms of
form p;: A —— A; possessing the “universal property” that whenever A’ is
an object of 4" similarly equipped with an I-tuple of # -morphisms of form

A Pi >A.

13
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fi:A' —— A, there exists a unique J# -morphism f: 4" —— A such that
f.p; = f; forall ie I. (“Universal property” is a vague term which refers to
a construction whose central feature is the existence of a unique morphism
subject to a categorical property.) The morphisms p; are called projections.

1.6 Proposition. Any two products of (4;:i € I) are isomorphic.

Proof. Suppose p;: A —— A; and q;: B —— A, are both products of
(A4;). Consider the unique induced maps as shown below:

A
I

|
|
|

f

l
¥
B

|

|

gt

Di

1

l

v

A
Then (f9)p; = f(gp;) = fq; = p; = (idy)p; for all i € I, which proves fg = id,,.
Similarly, gf = idg. Therefore f is an isomorphism transforming one set of
projections into the other (which would seem to be as isomorphic as two
products could possibly be without being equal). []

Two things are worth noticing in the above proof: it works for all uni-
versal properties; it required two of the three category axioms.

Because of 1.6, we can think in terms of the product of (4;) and write it
as [ [A;. In practice, “| [A;” is either any convenient choice of—or the iso-
morphism class of all—I-tuples p;: A —— A; with the universal property; for
most categorical purposes, these distinctions do not matter. In some con-
texts, the notation “[ [4,” means just the object 4, e.g. as in “consider p;:
[[4; —— A;” which is synonymous with “let p;: A —— A, be a product
of (4;)”.

The “size” of a product is the size of I. The smallest product is the empty
product (i.e., I is empty), which it is standard to call a terminal object of A",
often denoted by the symbol 1. A terminal object is the same thing as an
object A possessing the universal property that for all objects A’ there exists
a unique map A’ — A. In Set, a terminal object is a 1-element set, which ex-
plains the notation “1.” The category of all sets which do not have exactly
one element and functions does not have a terminal object. Unary products
always exist (id ,: 4 —— A is one.) Binary products are better written 4; X
Ay A has small products if | [A; exists for every family (4;:i e I) of objects
of # with I a small set. Similarly, ¢ has finite products, has countable products
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and so on accordingly as [ [A; exists for finite families, for countable families,
et cetera.
Several examples follow and more appear in the exercises.

1.7 Example. Sethas products, the usual ones. The category of finite sets
and functions has finite products (the usual ones). The fact that an infinite
product (in the usual sense) of finite sets is not necessarily finite strongly sug-
gests but does not prove that finite sets does not have products. To justify
our intuition, notice that morphisms 1 — X are essentially the same thing
as elements of X. Using the universal property of a product, this proves that
the elements of | [ 4; are indeed in bijective correspondence with the elements
of the usual product.

1.8 Example. The category of topological spaces and continuous func-
tions has products; one provides the usual cartesian product set with what
is normally called the product topology, or the topology of pointwise con-
vergence. A net (g; ,) converges to (4;) in [ [4; if and only if for all i, g; , con-
verges to g;. This statement both characterizes the product topology and
amounts to the universal property.

1.9 Example. The category of metric spaces and distance-decreasing
maps (we call the function f:(X, d) (X", d&) distance decreasing if for
allx, ye X, d'(xf, yf) < d(x, y)) has finite products and many other—but not
all—products. Since all constant functions are distance decreasing, we can
use the one-element metric space as in 1.7 to argue that if (4, d) = [][(4;, 4))
A must be the usual product of the sets A4;. Because projections must be
distance decreasing, we must have d((;), (b;)) < Sup(d;(a;, b;):i e I). It is now
easy to prove that [ [(4;, d;) exists if and only if Sup(d;(a;, b;):i € I) is finite for
every pair (a;), (b;) in the usual product set 4; and then (4, d) is the product
where d is this supremum. For any fixed M, any family of metric spaces of
diameter <M has a product which is itself of diameter <M.

(1.10) Inapreordered class, productsare exactly the same thing as infima.

1.11 Proposition. Let ¢ have products and let T be an algebraic theory
in A". Then the category A’ of T-algebras has products.

Proof. Let (4;, &) be a family of T-algebras and let p,:4 —— A4; be a
product diagram in J¢". By the universal property, there exists a unique mor-
phism ¢: AT —— A such that

AT (p)T

—>A; T

A4
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Although 1.4.27 was nominally restricted to Set, the reasoning there is
perfectly general and proves that (A4, &) is a T-algebra. It remains to estab-
lish the universal property. Suppose we have given T-homomorphisms
fi:(B, ) ———— (A, &;). There exists a unique J -morphism f:B —— A
such that f.p; = f; for all i. In the diagram below, we must show that the

£T

BT /T >AT Pl AT

0 ¢ <

Vv v

B 7 >A ~ >4,
J

leftmost square commutes given that all the outer rectangles do. But this
follows immediately from the universal property, since the leftmost square
is commutative followed by each p;. []

The above proposition is our first encounter with “categorical universal
algebra.”

In all of the examples of products so far, there is no evidence that the
underlying set of the product structured set, when it exists, is not always the
usual product set. The following is such a counterexample.

1.12 Example. Consider the category whose objects are metric spaces
with base point (X, d, X) (the “base point” X is simply an arbitrary element of
X) and distance-decreasing base-point preserving (i.e., xf = x’) functions.
Every family (X, d;, X;) has a product (X, d, x) where X is the subset of the
usual product of the X; consisting of all tuples (x;) with the property that
Sup(d;(x;, X;)) is finite. As in 1.9, d is defined by d((x;), (¥;)) = Sup(di(x;, y;):
i e I) which is guaranteed to be finite by the definition of X and the fact that
each d; satisfies the triangle inequality. (X;) provides the base point. The pro-
jections are the restrictions of the usual ones. In general, X is a proper subset
of the usual product set.

1.13 Equalizers. Given sets A,, 4, and two functions f, g: 4, —— A,
the inclusion map i of the subset A = {x € A;:xf = xg} on which f and g
agree can be characterized up to isomorphism by the following universal
property: for every function i': A" —— A, such that i'f = i'g there exists a
unique function h: A" —— A4 such that hi = i’ (since the image of i’ is con-
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tained in 4, h is defined by a’'h = a'i’). Given morphisms f, g: A, —— 4,
in a category A, an equalizer of (f, g) is an object E and a morphism i: E —
A with the following universal property:

(1) if = ig
i / N
E >A, 3 A,
K g
\
\
A 4
\
\
\El

(2) Given i’ with i’.f = i'g, there exists unique h with h.i = 7.

By the same sort of reasoning as in 1.6, equalizers are unique up to iso-
morphism. We speak of the equalizer of f and g and write eq( f, g) to denote
any convenient representative of—or the entire isomorphism class of—all
equalizers i:E — A of f, g: A, —— A,. A" has equalizers if eq(f, g) exists
for every pair f,g: A, — A,.

Most categories of sets with structure have equalizers via the appropriate
“substructure” on the subset of points on which f and g agree. For topological
spaces, use the relative topology. For metric spaces (either 1.9 or 1.12) just
restrict the metric to the subset. For groups and homomorphisms, the subset
in question is a subgroup. The latter, or course, is another instance of cate-
gorical universal algebra.

1.14 Proposition. Let " have equalizers and let T be an algebraic theory
in A . Then the category AT of T-algebras has equalizers.

Proof. Let f,g:(4, &) ————— (B, 0) be T-homomorphisms and let
i:E—A = eq(f, g) in A". Consider the diagram:

] ST N
ET al >AT 3 BT
| gT
|
|
fol f 9
|
Y i f N
E > A 3B
g

We have (iT.&).f = iT(¢f) =iTfT.0 =(if)T.0 = (i.g)T.0 = iT.E.g. From
the universal property, we obtain a unique &, with &,.i = iT.£. We need to
show on the one hand that (E, £,) is a T-algebra (since then surely i becomes
a T-homomorphism) and on the other hand that the universal property is
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satisfied (which amounts to the assertion that if (E’, y) is a T-algebra and if
f:E'—— E is a A -morphism then f:(E’,y) ——— (E, &,) is a T-homo-
morphism providing f.i: (E', y) ——— (4, &) is). Consideration of the details
of why this worked for products (see 1.4.27 and 1.11), shows that the result
was a formal consequence of the fact that when two maps into a product
are the same followed by each projection the two maps were already equal.
Applying the same concepts, the proof is completed by observing

1.15 Proposition. Whenever i: E — A is the equalizer of two morphisms
f,g9:A—— B in A" and whenever two morphisms t, u:E' ———— E have
the property that t.i = u.i, then t = u. The proof of 1.15 is clear, since if ¢’
denotes the common value of t.i and w.i, i'.f = i'.g and t and u are both the
unique morphism induced by . []

1.16 Example. The category of nonempty sets and functions does not
have equalizers. For let f, g: A —— B be a pair of functions between non-
empty sets which do not agree on any element of A4: if i:E — A satisfied
i.f = i.g then, since all objects are nonempty sets, there exists x € E and f
and g agree on xi, a contradiction. A category theorist believes that a category
without equalizers is “incomplete” and regards with suspicion statements
such as “all sets will be assumed nonempty” which preface many books and
papers; to her, this is like assuming that all complex numbers are nonzero.

1.17 Example. (Suggested by M. Barr.) Let ¢ be the category whose
objects are abelian groups which have no elements of order 2 and which are
2-divisible (i.e., for all x there exists y with 2y = x), and whose morphisms
are group homomorphisms. Given f, g:4A —— B in 4, let E, be the sub-
group {a € A:af = ag}, define E, ., = 2E, and set E to be the intersection
of all E,. Then E is 2-divisible (if x is in E let y, in E, satisfy 2%y, = x; as
A has no elements of order 2, 2y,.; = y, so that 2y, = x with y, in E). It
is then clear that the inclusion map of E is the equalizer of f, g in J#". For
a specific case, let Q be the additive group of rational numbers, let Z be the
subgroup of integers and consider the canonical projection and zero map:

0
Q $Q/Z
0

Here E, = Z whereas E = 0. Thus ¢ has equalizers but they are not con-
structed at the level Set.

1.18 Limits. A diagram scheme A is given by a set N(4) of nodes and
a specification to each ordered pair (i, j) of nodes a set A(i, j) of edges from
i to j, satisfying the axiom that A(i, j) is disjoint from A(#, j') if (i, j) # (7, J).
For example, any category is a diagram scheme where the objects are the
nodes and the morphisms are the edges. A diagram in a category 4" is a pair
(4, D) where 4 is a diagram scheme and D assigns to each node i € N(4) an
object D; of ", and then D assigns to each edge a € 4(i, j) a #-morphism
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D,:D; —— D;. A lower bound of a diagram (4, D) is a pair (L, ) where L is
an object of ¢ and i assigns to each node i € N(4) a #"-morphism y; of form
Y;:L —— D, such that

D,
/
I D,
\
D;

commutes for every edge a € A(i, j). A limit of the diagram (4, D) is a lower
bound (L, ) with the universal property that whenever (L', y') is another
lower bound there exists a unique #"-morphism f:L’ — L such that

L i >D,
k\
\
AN f
\
\ L’

is commutative for all nodes i.

(1.19) If A is a preordered category, a lower bound of (4, D) is an object
L with L < D, for all i. L is a limit if and only if L = Inf(D))

(1.20) Let I be an arbitrary set, and define 4 by N(4) = I, A, j) = &
for all i, je I. For each category .4, a diagram of form (4, D) is the same
thing as an I-indexed family of objects of 2. For such diagrams, “limit”
means “product.”

There is an alternate equivalent definition of lower bounds which is useful
in practice. A subset F of N(4), for a given diagram scheme 4, is called final
if for all j € N(4) with j ¢ F there exists i € F with A(i, j) # &. Given (4, D),
a lower bound relative to F is a pair (L, ) where L is an object of 2#” and y
assigns to each i € F a #-morphism ; of form ;: L —— D; subject to the
conditions that the outer (solid) square of the diagram

L - >D,
N
N
N

TNy

N .

J

~N
Wi < D,
~N
~N
~N

s W
D >D
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is commutative for all i, ' e F, j e N(4), o € A, j), o' € A(7', j) and that the
triangle y;.D, = ; is commutative whenever i, j € F, a € A(i, j). So long as F
is final, it is obvious that “restricting to F” is a bijective passage from lower
bounds of (4, D) to lower bounds relative to F of (4, D) whose inverse is
obtained by defining ; as indicated in the diagram above. For all practical
purposes, lower bounds relativized to a final set are the same as lower
bounds.
(1.21) Let 4 have two nodes and two edges as shown:

a N
t LU
7

B

A diagram (4, D) in A is any pair of 2#-morphisms with the same domain
and codomain. Given such a diagram f, g: A —— B, a lower bound relative
to the final set {¢} is a #"-morphism i: E — A such that i.f = i.g. Limits of
such diagrams are the same thing as equalizers.

By exactly the same reasoning used in 1.6, we have that any two limits of
the same diagram are isomorphic. We speak of the limit of (A, D) and write
lim D to denote any convenient representative of—or the equivalence class
of all—limits of (4, D). A diagram scheme 4 is small if N(4) is a small set and
if A(i, j) 1s a small set for all i, j. 4 has small limits and ¢ is small complete
if for every diagram (4, D) in A4~ with 4 small, (4, D) has a limit. A category
may have some large limits. For example, if 4 has two nodes i, j with A(j, i) =
& but A(i, j) a large set and if (4, D) is a diagram such that only two distinct
morphisms D; — D; are among the D,, lim D is just the same as the equalizer
of the two morphisms involved. On the other hand, if 4 is not preordered,
so that there exist objects 4, B admitting at least two distinct morphisms
f, g:A —— B then, for each class I, there are 2! distinct I-tuples of mor-
phisms from A4 to B. Therefore, if the product P of I copies of B exists, there
are at least 2! 2 -morphisms from A4 to P; since " is locally small, no such
P can exist if [ is a large set. With the exception of preordered classes, locally
small categories never have large products.

The following quite remarkable theorem guarantees that most familiar
categories have small limits and justifies our preoccupation with products
and equalizers.

1.22 Theorem. ¢ has small limits if and only if A" has small products
and equalizers; in that case, any small limit can be represented as the equalizer
of a pair of maps between two products.

Proof. Llet(4, D)beadiagram in ¢ with 4 small. The following diagram
defines (using the universal property of the rightmost product) the morphisms
f and g. Let (E, k) = eq(f, g). Defining ; as above, (E, ) = lim D. The
proof follows immediately, since

(1) For any object E’, an assignment ' of y;: E —— D, for all i € N(4)
corresponds to a single morphism y': E [1(D;:i e N(4)).
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D; >D;

(2) (E',y)asin(1)isalower bound of (4, D)ifand only if y'.f = ¢'.g. []

1.23 Duality. The dual or opposite of a monoid M is the monoid M*°
sharing the same set of elements with M but whose composition * is defined
by x * y = yx. Again, the dual or opposite of a preordered class (X, <) is
the preordered class (X, <) = (X, =) (where, of course, x > y means
y < x). Both of these are instances of a more general construction. The dual
or opposite of a category A is the category 4 °® defined as follows. The
objects of ™ are the same as the objects of #". We define morphisms by
A (A, B) = A (B, A). As in the case of clones (1.2.7), two different categories
share the same objects and some notational distinction is in order: let us
write f:A ——B to mean f:B-—> A in & . Then composition in 4" is
defined by _

(A L<B)(B-2<C) = (C-% B)(B-L> 4)
The identities are provided by id,;:4 ——A4 = id,:4 ——— A. The
category axioms are clear and it is obvious that 2#"°" is locally small if %" is.
Moreover, (#°)® = A, so A °F is a typical category. If S(-¢) is a statement
about an arbitrary category ¢, S is the statement defined by S*(#") =
S(°°P). For example, consider the statement

S(A"):Given f:A—>Band g:B— Cin A,
if / and g have right inverses, so does f.g

The statement is true in every ¢ since if f; : B—— A and g, : C —— B with
f.f; = id,and g.g, = idg then (f.g9)(g;.f;) = id,. We deduce that S (which
has the same domain as S) is also universally true. From the point of view
of #, S° asserts that the composition of maps having a left inverse again
has a left inverse. Notice that if #” and .# are dual to each other the situation
is abstractly symmetric; we do not know if “4 — B” refers to 4" or to Z.
From the “base category” point of view, one of the categories is “real” and
the other “abstract” (e.g. consider Set and Set?). This contextual asymmetry
is one of the reasons duality is useful. The principle of categorical duality is:
S°P is universally true if S is. Duality cuts the work in half, as will be illustrated
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with frequency hereafter. Even when we are interested in specific “concrete”
categories, duality forces us to look at some rather abstract ones.

1.24 Co-Concepts. The dual of “freeble” is cofreeble. For example, if
f:A —— Bin A then B is the domain of f in 2#"°" and hence is the codomain
of f in A °°°P = % which is consistent with our original terminology. A
more precise algorithm is

remove
prefix

113 £

CO

and one usually doesn’t bother with the hyphens (but note: co-complete,
co-optimal).

1.25 Coproducts. A diagram (we can now use that term with aplomb)
in;: A; —— A is a coproduct in A if, of course, in;: 4 ——— A, is a product
in 2#°°F. It follows at once from the dual of 1.6 that coproducts are unique up
to isomorphism (note: coisomorphisms are isomorphisms).

The notation for coproducts is | [4;. Binary coproducts are better written
A + B.The empty coproduct is a coterminal object which it is more standard
to call an initial object. A common symbol for an initial object is 0.

Abstractly, product and coproduct are the same concept. But let us
explore what coproducts look like in some familiar contexts.

(1.26) InSet,]| | 4; exists and is the disjoint union {(i, a):ie Iand a € 4;}.
The ith injection (it is standard to call the coproduct coprojections injections)
in; sends a € 4, to (i, a). The universal property is easy:

i 1n; ]—[/ Ai

/
/

/

f '
/
BV—

A

The unique f is defined by (i, a) f = af;. 0 is the empty set.
(1.27) The category of topological spaces and continuous functions has
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coproducts. Provide the disjoint union at the level of sets with the largest
topology making all the injection functions continuous (a set in [ [4; is open
if and only if its intersection with each A; was already open).

Unlike the situation for products, familiar categories of sets with structure
tend to have coproducts but the underlying set of the coproduct is different
from the disjoint union.

(1.28) The category of abelian groups has coproducts. [ [ 4; is usually
called the direct sum, and is written @ A;; it consists of the subgroup of [ ]4;
of all tuples (g;) such that a; = O for all but at most finitely many i. The ith
injection map sends a to the I-tuple (6ja:je I) where “6” denotes the
Kronecker delta. For the universal property, f is defined by f = ) f; (where

A, L >®D A

fi /f

the sum is pointwise finite).

1.29 Coequalizers. A diagram

f q

A B >0
g

v

in ¢ is a coequalizer if, of course, ¢ = eq(f, g) in A"

(1.30) Set has coequalizers. Given f, g: A —— Blet R be the intersection
of all equivalence relations on B containing {(af, ag):ae A}. Set Q = B/R
with canonical projection q:B — Q. Then g = coeq(f, g). Clearly, f.q =
g.q.

Now suppose given ¢’ as shown above with f.¢' = g.g". Then S = {(b, b,):
b,q' = b,q'} is an equivalence relation on B containing R. h is uniquely
defined by (bR)h = bq'.
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(1.31) The category of topological spaces and continuous functions has
coequalizers. Construct the coequalizer at the level Set as in 1.30 and assign
0 the quotient topology.

(1.32) The category of abelian groups and homomorphisms has co-
equalizers. Given f, g: A —— B, define q: B —— Q to be the canonical pro-
jection B B/Im(f — g). If Z is the additive group of integers
and Z, is the 2-element group,

0
y4 1 >7,
2

Z

L 2 4

is the coequalizer in “abelian groups” although the coequalizer in Set is
infinite (see exercise 22). An abelian group is forsion-free if each of its elements
is of infinite order. Then 0, 2:Z — Z is in the category of torsion-free
abelian groups although Z, is not; but, in general, the category of torsion-
free abelian groups does have coequalizers (namely B — Q —— Q/T, where
Q is the coequalizer in the category of abelian groups and T is the torsion
subgroup of Q consisting of all elements of finite order). Thus, coeq(0, 2) = 0
in the category of torsion-free abelian groups.

(1.33) Ina preordered class, given f, g:A —— B, f = gso thatidg =
Coeq(f7 g)

1.34 Colimits. Given a diagram scheme 4 define the dual scheme A
by N(4°%) = N(4), 4@, j) = A(j, i). If (4, D) is a diagram in ¢, define the
diagram (4°°, D) in " by (D), = D, and, for o e 4°°(i, ), (D**), = D,:
D; ——D;. A subset C of N(4) is cofinal if C is final qua subset of N(4),
ie., forall je N(4), j ¢ C, there exists i € C with 4(j, i) # . If C is cofinal, an
upper bound of (4, D) relative to C is a lower bound of (4°", D°?) relative to C,
that is a pair (L, ) where L is an object of .#" and  assigns a morphism
Y;:D; —— L to each i € C in such a way that the square (and triangle )

D, 2 > D,

J

is commutative for all j, j’ € C, for all i ¢ N(4) and for all a € A(i, j), o' € 4, J')
(and = holds when also i € C). An upper bound of (4, D) is an upper bound of
(4, D) relative to C = N(A). An upper bound (L, i) is a colimit of (4, D)
just in case it is a limit of (4°P, D°P), i.e., just in case it is an upper bound with
the universal property displayed below with respect to other upper bounds

(L, §):
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The notation for colimits is colim D. By the dual of 1.22, a category is small
cocomplete if and only if it has coproducts and coequalizers.

1.35 Various Epimorphisms. “Surjective” is an important property of
functions. As it turns out, there are numerous categorical definitions which
characterize “surjective” in Set; we will content ourselves with three of them.

Let f:A—— Bin . f is split epi or f is a split epimorphism if f has a
left inverse, that is if there exists d:B—— A in & with d.f = idg. fis a
coequalizer if f = coeq(yg,, ¢,) for some pair g,, g,:C —— A. f is epi or
f is an epimorphism if for all pairs ¢, u:B—— T such that fit = fiu, t = u.

1.36 Hierarchy Theorem for Epimorphisms. A split epimorphism is a
coequalizer and a coequalizer is an epimorphism.

Proof. If f: A —— Bis split epi with d.f = idg then f = coeq(id4, f.d).
That coequalizers are epi is dual to 1.15. []

Epimorphisms are important in diagram chasing. A typical situation is
shown below. Assume that we wish to prove that (?) commutes given that

e T

AN
7

>
7

the peripheral diagram and the two triangles do. There is no problem if we
know p is an epimorphism.

(1.37) In Set, all epimorphisms are split and all three concepts mean
“surjective.” The axiom of choice says that surjections are split epi. Since
any function f: 4 —— B composes equally with the characteristic functions
XB> Xyp(s) - B———— {0, 1} it is clear that epimorphisms are surjective.

(1.38) In the category of Hausdorff spaces and continuous maps
f:A—— B s a coequalizer if and only if f is surjective and B has the quo-
tient topology induced by f, and f is epi if and only if the image of f is a
dense subset of B. The first statement and half of the second are referred to
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exercise 11. We must show that every epimorphism has a dense image. For
any f:A —— B, let I be the closure of the image of f and form (B + B)/I
as shown below:

B B+ B (B + ByI

There are injections in,, in,:B———— B + B and a canonical projection
p:B + B—— (B + B)/I. Since f.(in,.p) = f(in,.p), we have that
I = B when f is epi. (We leave it as an exercise to prove that (B + B)/I is
Hausdorft.)

(1.39) In the category of abelian groups and homomorphisms, epimor-
phisms are the same thing as surjective homomorphisms. Surely surjective
homomorphisms are epi. Given a homomorphism f: 4 — B, let I be the
image of f and let p: B—— B/I be the canonical projection. Then f.p = f.0.
If fis epi, p = 0 which implies that I = B.

(1.40) Epimorphisms need not be surjective in Set™. Consider the inclu-
sion map i:IN — Z of the natural numbers into the integers as a homomor-
phism of rings or of monoids, take your choice; in either category, i is epi. To
prove it, observe that any monoid homomorphism, f, defined on Z satisfies
(—n)f-(n)f = e for every ne N, thereby forcing (—n)f = (nf)™".

(1.41) A Boolean g-algebra is a Boolean algebra with countable suprema
and countable infima (see 1.5.17). A fundamental structure in measure theory
is a set together with a sub Boolean g-algebra of subsets. By a homomorphism
of Boolean o-algebras we mean a Boolean algebra homomorphism which
preserves the countable suprema and infima. It is an open question whether
epimorphisms are surjective in this category.

1.42 Proposition. Given f:A —— B and g:B —— C in A, then (1) If
f,g are epi, so is f.g; if f, g are split epi, so is f.g;(2) If f.g is epi,sois g, if
f.g is split epi, so is g.

Proof. (1) The split version was illustrated in 1.23. For epimorphisms,
if (f.9).t = (f.g).u then g.t = gu and t = u. (2) For epimorphisms, if g.t =
g.u then surely (f.g).t = (f.g).u so that ¢t = u; for split epimorphisms, if

d(f.g) = id, surely (df)g = id. []
The analog of 1.42 for coequalizers is not always true (see 1.57 and 1.58).

1.43 Various Monomorphisms. The dual concepts to split epi, coequal-
izer, and epi are split mono (or split monomorphism), equalizer, and mono
(or monomorphism). Thus, f: A —— B is split mono if there exists s:B —— A
with f.s = id,, f is an equalizer if f = eq(g,, g,) for some pair g,,
g,:B ——— Cand f is mono if for all pairs t, u: T — A such that t.f = u.f
we have ¢ = u. Dual to 1.36 and 1.42 we have at once.
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1.44 Proposition. Split monos are equalizers and equalizers are monos.
If f and g are mono or split mono, so is f.g. If f.g is mono or split mono, so
isf. []

(1.45) 1In Set, monos are the same thing as injective functions (use con-
stant functions for ¢ and u). Given any subset 4 of a set X, it is easy to con-
struct functions f, g:X —— Y with 4 = eq(f, g), and this makes it clear
that all monos are equalizers. In fact, if f: 4 —— B is mono and A is non-
empty, then f is split mono (if I = Im(f), let s = f~* on I and any element
of A elsewhere). The inclusion map of the empty-set into a nonempty one is
mono, but never split mono.

1.46 Proposition. Let T be an algebraic theory in 4. A T-homomorphism
f(A, &) ———— (B, 0) is a monomorphism in A’ if and only if f:A —— B
is mono in A'.

Proof. Clearly, mono in % implies mono in #T. For the converse,
let t, u:C —— A be arbitrary morphisms in . Let ¢*, u* be the unique
homomorphic extensions of ¢, u as provided by the universal property of
(CT, Cp) (see 1.4.12) and shown below (the breaks in the arrows denotes
that the morphisms are only in ", not in A7),

i . f
(CT, Cw) 5(4, &) > (B, 0)

s
o/

If t.f = u.f then t*.f = u?.f (as they are both homomorphisms and agree
on the generators) so that ¥ = u” andt = u. []

Comparing 1.46 with 1.40 and 1.41 we see that Set” behaves more pre-
dictably with respect to monos than with epimorphisms.

It is clear that if 2" is a “category of sets with structure”, injective mor-
phisms will be mono in 2. The following example shows that sometimes
monos are not injective functions.

(1.47) Let " be the category of 2-divisible abelian groups as in 1.17.
Let A be the multiplicative group of non-zero real numbers and set
f:A —— A to be the the squaring homomorphism xf = x2. Since f iden-
tifies x and —x, f is not injective. But f is mono. For let ¢, u: T —— A with
tf =uf. Let xe T. Then y? = x for some y, and xt = y*t = (yt)? =
ytf = yuf = xu, as desired.

1.48 Image Factorization. The categorical view of the image of a func-
tion f is as a factorization f = p.i with p surjective and i injective. An axi-
omatic theory appears in 3.4.1. We present here two of the many possible
such theorjes in an arbitrary category. Given a morphism f:4 — B in
A, a coequalizer-mono factorization of f is a factorization f = p.iwithp a
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coequalizer in ¢ and i a monomorphism in . The dual concept is epi-
equalizer factorization, that is f = p.i with p an epimorphism and i an
equalizer.

1.49 Proposition. Coequalizer-mono factorizations are unique up to
isomorphism.

Proof. Suppose p.i = f = p’.i’ with p, p’ coequalizers and i, i/ mono-

e

morphisms. There exists a, b with p = coeq(a, b). As a.p’.i = a.p.i = b.p.i. =
b.p'.i" and i’ is mono, a.p’ = b.p’ so there exists a unique g such that p.g = p'.
Since p is epi, g.i' = i. Symmetrically, there exists h:I’ —— I with p’h = p
and h.i = i'. Either because p is epi or i is mono, g.h = id;. Symmetrically,
hg = id;.. []

1.50 Corollary. Given f:A —— B in X", the following three conditions
on f are equivalent: (1) f is an isomorphism; (2) f is a coequalizer and f is
mono; and (3) f is an equalizer and f is epi.

I/

Proof. 1If f is a coequalizer and f is mono, f.id = f = id.f are two

coequalizer-mono factorizations of f, giving rise to f~! as above. []

Examples such as 1.38 and 1.40 show that a morphism which is epi and
mono need not be an isomorphism.

A" has coequalizer-mono factorizations if every morphism in # has a
coequalizer-mono factorization. For example, Set has coequalizer-mono
factorizations and epi-equalizer factorizations and they both coincide with
surjective-injective factorizations.

(1.51) The category of topological spaces and continuous maps has
coequalizer-mono factorizations and epi-equalizer factorizations. Given a
continuous map f:A4 —— B with image factorization f = p.i at the level
of sets we can provide Im(f) with the quotient topology induced by p, in

i
|
l
l
|
4«
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which case i is continuous and (p, i) is a coequalizer-mono factorization of
f, or we can provide Im( f) with the subspace topology induced by i, in which
case p is continuous and (p, i) is an epi-equalizer factorization. The details
are left as exercises.

A well-known way to construct the image factorization of a function
f:A—— B is to divide out by the equivalence relation, E, of f (where E is
the equivalence relation on A4 given by E = {(x, y):xf = yf}). Let p be the

A >B

Y/E

canonical projection as shown. Since xEy if and only if xf = yf, (xE)i = xf
is a well-defined injection. Thus f = p.i is a coequalizer-mono factorization
of f. We now explore the possibility that this construction can be imitated
in A,

Consider a diagram scheme 4 with three nodes i, j, k and just two edges,
aed (i kyand p e 4 (j, k). A diagram (4, D) in " looks like

B
lg
7 >C

(ie., D, = f and D; = g). Since {i, j} is final, lim D is an object P of A~
equipped with two morphisms a:P — A and b: P — B such that a.f =
b.g, and universal with this property as shown below:

A

b/

v
o]
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The square a.f = b.g is called a pullback square, (P, a, b} is the pullback of
(f, 9, C)and bis the pullback of f along g. (The dual concept is called a pushout.)
In Set, P is constructed as the subset {(a, b):af = bg} of A x Bwithaandb
the restrictions of the coordinate projections. In particular, if f = g, P is the
equivalence relation of f. In this case, a glance at 1.30 shows that the canonical
projection C — C/P is the coequalizer of (a, b).

Consider a morphism f:4 —— B in . The kernel pair of f is the pull-
back (E, a, b) of (f, f, B). Let us assume that this kernel pair exists and that
p:A —— C = coeq(a, b) also exists. Define i:C — B as shown below by
the universal property of a coequalizer

E 3 A

P /i (1.52)

(since a.f = b.f). As we see shortly, the factorization f = p.iis a very good
candidate for the coequalizer-mono factorization of f.

1.53 Lemma. Let p:A —— I be a coequalizer in A". Then if the kernel
pair of p exists, p is the coequalizer of its kernel pair.

Proof. We assume that p = coeq(da’, b’) for some o, b":E' —— A.

Let a, b:E———— A be the kernel pair of p. Suppose p’ is given with
a.p’ = b.p'. Since a'.p = b'.p there exists unique g with g.a = a, gb = b'.
Therefore, a'.p’ = b'.p’, as desired. []

1.54 Proposition. Let f:4 —— B in . If f has a kernel pair with a
coequalizer, then the factorization 1.52 is the only candidate for a coequalizer-
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mono factorization of f; that is, if f has a coequalizer-mono factorization it is
isomorphic to the factorization of 1.52.

Proof. Let f = p.i be a coequalizer-mono factorization of f, and let
a, b:E ———— A be the kernel pair of f. Because i is mono, a pair a’, b’":

E 3 A >B

C

E'———3 A satisfies a'.f = b'.f if and only if it satisfies a'.p = b'.p. It
follows that (a, b) is also the kernel pair of p. By 1.53, p = coeq(a, b). Since
the morphism i:C —— B of 1.52 is unique, the proof is complete. []

1.55 Proposition. Let T be an algebraic theory in Set. Then Set™ has co-
equalizer-mono factorizations and they are constructed at the level of sets.

Proof. Let f:(A, ) ——— (B, ) be a T-homomorphism. Let [ =
(p:A — C).(i:C — B) be the usual image factorization at the level of sets.
By 1.4.31, there exists a unique T-algebra structure y:CT ——— C on C
such that p and i become T-homomorphisms. Let a, b:E — A be the

(E, 8) 3(4, 0) > (B, B)

(C,y)€ = —=(C,y)

kernel pair of f in Set. By analyzing the proof of 1.22 in the context of 1.11
and 1.14, it is clear that there exists a unique 6: ET ——— E by virtue of which
a and b become T-homomorphisms, (and then a, b:(E, §) ——— (4, «) is
in fact the kernel pair of f in Set”, a fact we do not need to use here). By 1.54,
it will suffice to show that p = coeq(a, b) in Set™. Suppose p':(4, &) ———
(C, vy with a.p’ = b.p’. Since p = coeq(a, b) in Set, there exists a unique func-
tion g:C —— C’ with p.g = p’. We must show that g is a T-homomorphism.
This amounts to a slightly updated version of 1.2.6:

(1.56) Given an algebraic theory in Set, a surjective T-homomorphism
p:(4, o) ————(C, y), a T-algebra (C', y") and a function g:C — C’ such
that p.g is a T-homomorphism, then ¢g:(C,y)———(C',y") is again a T-
homomorphism.
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To prove 1.56, we use just the sort of diagram that appeared in the adver-
tisement for epimorphisms of 1.36 4+, namely:

(p-9)T
gT

cT >C'T

C 7 >C

Crucial is the use of 1.4.29 which guarantees that pT is epi. []

1.57 Proposition. Let A have coequalizer-mono factorizations. Then 1.42
is true for coequalizers, that is, given f:A —— B and g:B — C in A" we
have

(1) if f, g are coequalizers then so is f.g, and

(2) if f.g is a coequalizer, so is g.

Proof. We prove (2) first. Let g = p.i be a coequalizer-mono factoriza-

A > B g >C
r— 57
1

tion, and then let f.p = p'.i’ be a coequalizer-mono factorization. As p'(i’.i)
is a coequalizer-mono factorization of f.g, i'.i is an isomorphism by 1.49.
Since iis both split epi and mono, it follows from 1.50 that i is an isomorphism.

To prove(1),let f = coeq(a, b)and let p.i be a coequalizer-mono factoriza-
tion of f.g. Since i is mono we have a.p = b.p which induces unique h with

> B
|
|
|

g —>C
h
l i
|
¥
1
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with f.h = p. As fisepi, h.i = g. By (2), iis a coequalizer and hence, by 1.50,
an isomorphism. []

The following example shows that even a category with all small limits
and colimits (and all factorizations as in 1.52 in particular) need not necessar-
ily have coequalizer-mono factorizations.

(1.58) Let £ be the category of abelian groups with no element of order
4 (that is 4x = 0 implies 2x = 0) and group homomorphisms. Products,
equalizers, and coproducts (1.28) are formed just as they are in the category
of all abelian groups. The proof that this category has coequalizers will be
postponed until 3.7.13. Therefore, #" has all small limits and colimits. Let
Z, Z,, and Z, denote, respectively, the abelian groups of integers, integers
modulo 2, and integers modulo 4. The homomorphism 2:Z —— Z (sending
x to 2x) is the equalizer of the morphisms p, 0:Z — Z, in & (p is the ca-
nonical projection). Composing 2:Z —— Z with itself gives the 2#"-morphism
4:7Z —— Z. While 4:Z —— Z is the equalizer of p, 0:Z — Z, in the cate-
gory of all abelian groups, Z, is not in 2. Suppose that there exists f,
g:Z —— Ain # with4 = eq(f, g). As4f(1) = 4¢g(1)and Aisin A", 2(f(1) —
g(1)) = 0, that is, 2.f = 2.g and there exists a unique h:Z — Z with
h.4 = 2. Since 4n = 2 has no solution in Z, we get a contradiction to the
assertion that 4:Z —— Z was an equalizer. By the dual of 1.57, it follows
that #" does not have epi-equalizer factorizations. 2#"°%, then, is a category
with small limits and colimits in which the composition of coequalizers is
not a coequalizer and hence which does not have coequalizer-mono factoriza-
tions.

1.59 Generators and Cogenerators. A fixed object, G, of 4" can be
used to make actual sets out of #"-objects and actual functions out of ¢ -
morphisms. If 4 is a £ -object write “a € A” just in case a:G —— A4 in A
Each #"-morphism f:A4 —— B acts functionally on elements since if a € 4
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