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Preface

This book arose from a course taught for several years at the Univer-
sity of E‘vry—Val d’Essonne. It is meant primarily for graduate students
in mathematics. To make it into a useful tool, appropriate to their knowl-
edge level, prerequisites have been reduced to a minimum: essentially, basic
concepts of topology of metric spaces and in particular of normed spaces
(convergence of sequences, continuity, compactness, completeness), of “ab-
stract” integration theory with respect to a measure (especially Lebesgue
measure), and of differential calculus in several variables.

The book may also help more advanced students and researchers perfect
their knowledge of certain topics. The index and the relative independence
of the chapters should make this type of usage easy.

The important role played by exercises is one of the distinguishing fea-
tures of this work. The exercises are very numerous and written in detail,
with hints that should allow the reader to overcome any difficulty. Answers
that do not appear in the statements are collected at the end of the volume.

There are also many simple application exercises to test the reader’s
understanding of the text, and exercises containing examples and coun-
terexamples, applications of the main results from the text, or digressions
to introduce new concepts and present important applications. Thus the
text and the exercises are intimately connected and complement each other.

Functional analysis is a vast domain, which we could not hope to cover
exhaustively, the more so since there are already excellent treatises on the
subject. Therefore we have tried to limit ourselves to results that do not
require advanced topological tools: all the material covered requires no
more than metric spaces and sequences. No recourse is made to topological
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vector spaces in general, or even to locally convex spaces or Fréchet spaces.
The Baire and Banach-Steinhaus theorems are covered and used only in
some exercises. In particular, we have not included the “great” theorems of
functional analysis, such as the Open Mapping Theorem, the Closed Graph
Theorem, or the Hahn-Banach theorem. Similarly, Fourier transforms are
dealt with only superficially, in exercises. Our guiding idea has been to
limit the text proper to those results for which we could state significant
applications within reasonable limits.

This work is divided into a prologue and three parts.

The prologue gathers together fundamentals results about the use of
sequences and, more generally, of countability in analysis. It dwells on the
notion of separability and on the diagonal procedure for the extraction of
subsequences.

Part I is devoted to the description and main properties of fundamental
function spaces and their duals. It covers successively spaces of continuous
functions, functional integration theory (Daniell integration) and Radon
measures, Hilbert spaces and L? spaces.

Part II covers the theory of operators. We dwell particularly on spectral
properties and on the theory of compact operators. Operators not every-
where defined are not discussed.

Finally, Part III is an introduction to the theory of distributions (not in-
cluding Fourier transformation of distributions, which is nonetheless an im-
portant topic). Differentiation and convolution of distributions are studied
in a fair amount of detail. We introduce explicitly the notion of a fundamen-
tal solution of a differential operator, and give the classical examples and
their consequences. In particular, several regularity results, notably those
concerning the Sobolev spaces W1?(R¢), are stated and proved. Finally, in
the last chapter, we study the Laplace operator on a bounded subset of R<:
the Dirichlet problem, spectra, etc. Numerous results from the preceding
chapters are used in Part III, showing their usefulness.

Prerequisites. We summarize here the main post-calculus concepts and re-
sults whose knowledge is assumed in this work.

— Topology of metric spaces: elementary notions: convergence of sequences,
lim sup and lim inf, continuity, compactness (in particular the Borel-
Lebesgue defining property and the Bolzano—Weierstrass property), and
completeness.

— Banach spaces: finite-dimensional normed spaces, absolute convergence
of series, the extension theorem for continuous linear maps with values
in a Banach space.

— Measure theory: measure spaces, construction of the integral, the Mono-
tone Convergence and Dominated Convergence Theorems, the definition
and elementary properties of L? spaces (particularly the Hoélder and
Minkowski inequalities, completeness of LP, the fact that convergence
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of a sequence in L? implies the convergence of a subsequence almost
everywhere), Fubini’s Theorem, the Lebesgue integral.

— Differential calculus: the derivative of a function with values in a Banach
space, the Mean Value Theorem.

These results can be found in the following references, among others: For
the topology and normed spaces, Chapters 3 and 5 of J. Dieudonné’s Foun-
dations of Modern Analysis (Academic Press, 1960); for the integration
theory, Chapters 1, 2, 3, and 7 of W. Rudin’s Real and Complez Analysis,
McGraw-Hill; for the differential calculus, Chapters 2 and 3 of H. Cartan’s
Cours de calcul différentiel (translated as Differential Calculus, Hermann).

We are thankful to Silvio Levy for his translation and for the opportunity
to correct here certain errors present in the French original.

We thankfully welcome remarks and suggestions from readers. Please send
them by email to hirsch@lami.univ-evry.fr or lacombe@lami.univ-evry.fr.

Francis Hirsch
Gilles Lacombe
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Notation

If A is a subset of X, we denote by A° the complement of Ain X.If A C X
and B C X, we set A\ B = AN B¢. The characteristic function of a subset
A of X is denoted by 14. It is defined by

1 ifz € A,
@ ={y s ¢A

N, Z, Q, and R represent the nonnegative integers, the integers, the
rationals, and the reals. If E is one of these sets, we write E* = E \ {0}.
We also write RY = {z € R : 2 > 0}. If a € R we write a* = max(0, a)
and a~ = — min(a, 0).

C denotes the complex numbers. As usual, if z € C, we denote by Z the
complex conjugate of z, and by Re z and Im z the real and imaginary parts
of z.

If f is a function from a set X into R and if a € R, we write {f > a} =
{z € X : f(z) > a}. We define similarly the sets {f < a}, {f > a},
{f < a}, ete.

As usual, a number z € R is positive if x > 0, and negative if z < 0.
However, for the sake of brevity in certain statements, we adopt the con-
vention that a real-valued function f is positive if it takes only nonnegative
values (including zero), and we denote this fact by f > 0.

. Let (X,d) be a metric space. If A is a subset of X, we denote by A and
A the closure and interior of A. If z € X, we write ¥ (z) for the set of
neighborhoods of z (that is, subsets of X whose interior contains z). We
set

B(z,r) ={y € X :d(z,y) <r}, B(z,r)={y€ X :d(z,y) <r}.
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(We do not necessarily have B(zx,r) = B(z,r), but this equality does hold
if, for example, X is a normed space with the associated metric.) If X is a
normed vector space with norm || - ||, the closed unit ball of X is

B(X)={z e X:|lefl < 1}.

When no ambiguity is possible, we write B instead of B(X). If A is a subset
of X, the diameter of A is

d(A) = sup d(z,y).
z,yEA

If AC X and B C X, the distance between A and B is

d(A,B) = inf  d(z,y),
(A, B) b s (z,y)

and d(z, A) = d({z},A) for z € X.

We set K = R or C. All vector spaces are over one or the other K. If
E is a vector space and A is a subset of E, we denote by [A] the vector
subspace generated by A. If E is a vector space, A, B are subsets of F, and
AeK,wewrite A+ B={z+y:x€ A,y € B} and \A = {)\z:z € A}

Lebesgue measure over R%, considered as a measure on the Borel sets of
Rd, is denoted by A;s. We also use the notations dA\s(z) = dz = dx; .. .dz,.
We omit the dimension subscript d if there is no danger of confusion.

If z € R?, the euclidean norm of z is denoted by |z|.



Prologue: Sequences

Sequences play a key role in analysis. In this preliminary chapter we collect
various relevant results about sequences.

1 Countability

This first section approaches sequences from a set-theoretical viewpoint.
A set X is countably infinite if there is a bijection ¢ from N onto X;
that is, if we can order X as a sequence:

X ={p(0),¢(1),...,0(n),...},

where ¢(n) # ¢(p) if n # p. The bijection ¢ can also be denoted by means
of subscripts: ¢(n) = z,. In this case

X ={z0,21,...,Zn,...} = {Tn}nen-

A set is countable if it is finite or countably infinite.

Ezamples
1. N is clearly countably infinite. So is Z: we can write Z as the sequence
Z ={0,1,-1,2,-2,3,-3,...,n,-n,...}.

Clearly, there can be no order-preserving bijection between N and Z.
2. The set N? is countable. For we can establish a bijection ¢ : N — N2
by setting, for every p > 0 and every n € [p(p+1)/2, (p+1)(p+2)/2),

o(n) = (n_p(p; 1), P(P2+3) _n).
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This complicated expression means simply that we are enumerating N2
by listing consecutively the finite sets A, = {(¢,7) € N®: g+ = p}, cach
in increasing order of the first coordinate:

s N ———— ~
N = {(0’0)7 (071)7 (170)’ (0’ 2)’ (171)’ (270)’ (0’ 3)’ (1)2)’ T }'

We see that explicitly writing down a bijection between N and a count-
able set X is often not at all illuminating. Fortunately, it is usually unnec-
essary as well, if the goal is to prove the countability of X. One generally
uses instead results such as the ones we are about to state.

Proposition 1.1 A nonempty set X is countable if and only if there is a
surjection from N onto X.

Proof. If X is countably infinite there is a bijection, and thus a surjection,
from N to X. If X is finite with n» > 1 elements, there is a bijection
¢ :{1,...,n} - X. This can be arbitrarily extended to a bijection from N
to X.

Conversely, suppose there is a surjection ¢ : N — X and that X is
infinite. Define recursively a sequence (n,), € N by setting ng = 0 and

npe1 = min{n: p(n) ¢ {p(no), p(m),...,¢(n,)}} forpeN.

This sequence is well-defined because X is infinite; by construction, the
map p — ¢(n,) is a bijection from N to X. O

Corollary 1.2 If X is countable and there ezists a surjection from X to
Y, then'Y is countable.

Indeed, the composition of two surjections is surjective.
Corollary 1.3 FEvery subset of a countable set is countable.
Indeed, if Y C X, it is clear that there is a surjection from X to Y.

Corollary 1.4 IfY is countable and there ezists an injection from X to
Y, then X is countable.

Proof. An injection f : X — Y defines a bijection from X to f(X). If
Y is countable, so is f(X), by the preceding corollary. Therefore X is
countable. O

Corollary 1.5 A set X is countable if and only if there is an injection
from X to N.

Another important result about the preservation of countability is this:

Proposition 1.6 If the sets X1, X5, ..., X, are countable, the Cartesian
product X = X, x Xy X -+ x X, is countable.
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Proof. It is enough to prove the result for n = 2 and use induction. Suppose
that X; and X, are countable, and let fi, f2 be surjections from N to
X1, X> (whose existence is given by Proposition 1.1). The map (nq,n2) —
(f1(n1), f2(n2)) is then a surjection from N 2 to X. Since N? is countable,
the proposition follows by Corollary 1.2. O

We conclude with a result about countable unions of countable sets:

Proposition 1.7 Let (X;)icr be a family of countable sets, indezed by a
countable set I. The set X = |J X; is countable.

i€l
Proof. If, for each i € I, we take a surjection f; : N — X, the map
f I xN — X defined by f(i,n) = fi(n) is a surjection. But I x N is
countable. 0

Note that a countable product of countable sets is not necessarily count-
able; see Example 5 below.

Ezamples and counterezamples

1. Q is countable. Indeed, the map f : Z x N* — Q defined by f(n,p) =
n/p is surjective and Z x N* is countable.

2. The sets N™, Q", Z", and (Q + iQ)™ are countable (see Proposition
1.6).

3. R is not countable. For assume it were; then so would be the subset
[0, 1], that is, we would have [0, 1] = {2, }nen. We could then construct a
sequence of subintervals I, = [ap, by] of [0, 1] satisfying these properties,
for alln € N:

Ins1 C I, zn¢ I, d(I,)=3"""1

The construction is a simple recursive one: for n = 0 we choose Iy
as one of the intervals [0, 3], [2,1], subject to the condition zo ¢ Io;
likewise, if I,, = [an, bs] has been constructed, we choose I, 41 as one
of the intervals [a,, an +3"""1], [b, —37 "1, b,], not containing z41.
By construction, [,y In = {x}, where z is the common limit of the
increasing sequence (a,) and of the decreasing sequence (b,). Clearly,
z € [0,1], but = # z, for all n € N, which contradicts the assumption
that [0,1] = {zp }nen-
More generally, any complete space without an isolated point is un-
countable; see, for example, Exercise 6 on page 16.
Note also that if R were countable it would have Lebesgue measure zero,
which is not the case.

4. The set #(N) of subsets of N is uncountable. Indeed, suppose there is
a bijection ¢ : N - #(N), and set

A={neN:n¢p(n)} e 2(N).
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Since ¢ is a surjection, A has at least one inverse image a under . We
now see that a cannot be an element of A, since by the definition of A
this would imply a ¢ ¢(a) = A, nor can it be an element of N'\ A, since
this would imply a € ¢(a) and hence a € A. This contradiction proves
the desired result.

This same reasoning can be used to prove that, if X is any set, there can
be no surjection from X to £ (X). This is called Cantor’s Theorem.
. The set ¥ = {0,1}N of functions N — {0,1} (sequences with values
in {0,1}) is uncountable. Indeed, the map from ?(N) into € that as-
sociates to each subset A of N the characteristic function 14 is clearly
bijective; its inverse is the map that associates to each function ¢ : N —
{0,1} the subset A of N defined by A = {n € N: p(n) = 1}.

We remark that ¢, and thus also £(N), is in bijection with R (see
Exercise 3 on the next page).

. The set R\ Q of irrational numbers is uncountable; otherwise R would
be countable.

. The set P;(N) of finite subsets of N is countable; indeed, we can define
a surjection f from {0} U, ey~ N? (which is countable by Proposition
1.7) onto #¢(N), by setting

fl0)=2 and f(ni,...,np) = {ny,...,np} forallpeN"

. The set Q[X] of polynomials in one indeterminate over Q is countable,
because there is a surjective map from J,cy- Q° (which is countable
by Proposition 1.7) onto Q[X], defined by

f(QI,--'an):Q1+Q2X+...+qpxp—l.

We can show in an analogous way that the set Q[X1,...,X,] of poly-
nomials in n indeterminates over Q is countable.

. If & is a family of nonempty, pairwise disjoint, open intervals in R,
then & is countable. Indeed, let ¢ be a bijection from N onto Q. For
J € #, let n(J) be the first integer n for which ¢(n) € J. The map
&/ — N that associates n(J) to J is clearly injective, so & is countable
by Corollary 1.5.

FExercises

1. Which, if any, of the following sets are countable?

a. The set of sequences of integers.

b. The set of sequences of integers that are zero after a certain point.

c. The set of sequences of integers that are constant after a certain
point.

2. Let A be an infinite set and B a countable set. Prove that there is a

bijection between A and A U B.
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3. Let ¥ = {0,1}".
a. Let f: € — [0,2] be the function defined by

fa) =3

z) = —.

n=0 n

Prove that f is surjective and that every element of [0,2] has at
most two inverse images under f. Find the set D of elements of [0, 2]
that have two inverse images under f; prove that D and f~!(D) are
countably infinite.

b. Construct a bijection between % and [0, 2], then a bijection between
% and R.

4. Let X be a connected metric space that contains at least two points.
Prove that there exists an injection from [0, 1] into X. Deduce that X
is not countable.

Hint. Let z and y be distinct points of X. Prove, that, for every r €
[0, d(z,y)], the set

Sr={te X :d(z,t) =}

is nonempty.

5. Let A be a subset of R such that, for every x € A, there exists n > 0
with (z, z +7) N A = @. Prove that A is countable.

Hint. Let x and y be distinct points of A. Prove that, given n,e > 0, if
the intervals (z, z +7) and (y, ¥ + €) do not intersect A, they do not
intersect one another.

6. Let f be an increasing function from I to R, where I is an open,
nonempty interval of R. Let S be the set of discontinuity points of
f.If z €I, denote by f(z4) and f(z_) the right and left limits of f at
z (they exist since f is monotone).

a. Provethat S={z e I: f(z_) < f(z4)}.

b. For z € S, write I, = (f(z-), f(a:...)). By considering the family
(Iz)zes, prove that S is countable.

c. Conversely, let S = {z,}nen be a countable subset of I. Prove that
there exists an increasing function whose set of points of discontinu-
ity is exactly S.
Hint. Put f(z) = 35202714, 1o0)(@)-

7. More generally, a function on a nonempty, open interval I of R and
taking values in a normed space is said to be regulated if it has a left
and a right limit at each point of I. Let I be a regulated function from
ItoR.

a. Let J be a compact interval contained in I. For € > 0, write

J. = {z € J: max(|f(zs) - f(@)], If(z) — F(z_)]) >e}.
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Prove that J. has no cluster point.

Hint. Prove that at a cluster point of J. the function f cannot have
both a right and a left limit.

Deduce that J. is finite.

c. Deduce that the number of points z € I where the function f is

discontinuous is countable.

8. Let A and B be countable dense subsets of (0,1). We want to construct
a strictly increasing bijection from A onto B.
a. Suppose first that A is the set

A={p279:p,qe N*, p<2%}.

i. Prove that A is countable and that, if z is an element of A, there
exists a unique pair (p,q) of integers such that z = p2~9, with
g € N* and p < 29 odd.
ii. Write B = {z,, : n € N} and define the map f : A — B induc-
tively, as follows:
- For g =1, set f(3) = o.
— Suppose the values f(p2~*) have been chosen for 1 < k < ¢
and 1 < p < 29. We then define f(p2=97!), for p < 29*! odd,
by setting f(p2~7"!) = z,, where

e minm e w1 (5t ) <o < (50))

(by convention, we have set f(0) =0 and f(1) = 1).
Prove that f(z) is well-defined for all € A; then prove that
f is a strictly increasing bijection from A onto B.

iii. Deduce from this the case of arbitrary A.

9. A bit of set theory

a.

Let I be an infinite set. The goal of this exercise is to prove, using
the axiom of choice, that there exists a bijection from I to I x N.
Recall that a total order relation < on a set I is called a well-ordering
if every nonempty subset of I has a least element for the order <.
Recall also that every set can be well-ordered; this assertion, called
Zermelo’s azxiom, is equivalent to the axiom of choice. Let < be a
well-ordering on I. The least element of I is denoted by 0. If z € I,
denote by z + 1 the successor of x, that is, the element of I defined
by
z+1=min{yel:y >z}

Thus, every element of I, except possibly one, has a successor. A
nonzero element of I that is not the successor of an element of I is
called a limit element. If z is an element of I, we define (if possible)
an element x + n, for integer n, by inductively setting z + (n+ 1) =
(z+mn)+1.
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i. An example: suppose in this setting that I = N? and that < is
the lezicographical order on N?:

(n,m) < (n',m') <= (n<n')or (n=n"and m <m').

Check that this is a well-ordering. If (n,m) € I, determine
(n,m) + 1. What are the limit elements of I?

ii. Let £ € I. Prove that £ can be written in a unique way as
z =1z +n, where n € N and z’ is 0 or a limit element.

iii. Let ¢ be a bijection from N x N onto N. Define a map F' from
I x N to I by F(z,m) = &' + ¢(n,m), where z = 2’ + n is the
decomposition given in the preceding item. Prove that F' is a
bijection.

b. Let X be a set and A a subset of X. Suppose there exists an injection
i: X — A. We wish to show that there is a bijection between X
and A.

i. A subset Z of X is said to be closed (with respect to 1) if i(Z) C
Z.If Z is any subset of X, the closure Z of Z is the smallest
closed subset of X containing Z. Prove that Z is well-defined for
every Z C X.

il. Set Z = X \ A. Let ¥ : X — X be the map defined by

_fi(z) ifzeZ,
¢($)—{x ifre X\Z.

Prove that 1 is a bijection from X onto A.

c. Cantor-Bernstein Theorem. Let X and Y be sets. Suppose there is
an injection f : X — Y and an injection g : Y — X. Prove that
there is a bijection between X and Y. (Note that this result does
not require the axiom of choice.)

Hint. fogis an injection from Y to f(X), and the latter is a subset
of Y.

d. Let X and Y be sets. Suppose there is a surjection f : X — Y and
a surjection g : Y — X. Prove that there is a bijection between X
and Y. (You can use the preceding result. Here it is necessary to use
the axiom of choice.)

e. Let I be an infinite set, let (J;);cr be a family of pairwise disjoint
and nonempty countable sets, and set J = |J;; Ji- Prove that there
exists a bijection between I and J.

2 Separability

We consider here a type of “topological countability” property, called sepa-
rability. A metric space (X, d) is called separable if it contains a countable
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dense subset; that is, if there is a sequence of points (z,) of X such that
for all z € X and € > 0, there is n € N such that d(z,,z) < €.

It is easy to check that this condition is satisfied if and only if every
nonempty open subset of X contains at least one point from the sequence
(zn). Thus, the notion of separability is topological: it does not depend on
the metric d except insofar as d determines the family of open sets (the
topology) of X.

Ezamples

1. Every finite-dimensional normed space is separable. Recall that on a
finite-dimensional vector space, all norms are equivalent, that is, they
determine the same topology. This reduces the problem to that of R™
or C". But it is clear that Q" is dense in R™, and that (Q + iQ)" is
dense in C™.

2. Compact metric spaces
Proposition 2.1 FEvery compact metric space is separable.

Proof. If n is a strictly positive integer, the union of the balls B(w, ;1;),
over z € X, covers X. By the Borel-Lebesgue property, X can be
covered by a finite number of such balls: X = U}I;1 B(a:;', %) It is
then clear that the set

D={z}:neN" 1<j<Jp}
is dense in X. a

3. o-compact metric spaces. A metric space is said to be o-compact if it
is the union of a countable family of compact sets.
For example, every finite-dimensional normed space is o-compact. In-
deed, in such a space E any bounded closed set is compact, and E =
Usnen B(0,n). It will turn out later, as a consequence of the theorems of
Riesz (page 49) and of Baire (page 22) that infinite-dimensional Banach

spaces are no longer o-compact; nonetheless, they can be separable.
Proposition 2.2 Every o-compact metric space is separable.

This is an immediate consequence of Propositions 2.1 and 1.7.

Proposition 2.3 If X is a separable metric space and Y is a subset of
X, then Y is separable (in the induced metric).

Proof. Let (z,) be a dense sequence in X. Set

% = {(n,p) € N x N*: B(zn,1/p)NY # 2}.
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For each (n,p) € %, choose a point z,, , of B(zn,1/p)NY . We show that the
family D = {zp, p, (n,p) € Z} (which is certainly countable) is dense in Y.
To do this, choose z € Y and € > 0. Let p be an integer such that 1/p < €/2;
clearly there exists an integer n € N such that d(z,z,) < 1/p. But then
z € B(z,,1/p) NY; therefore (n,p) € Z and d(z,znp) < 2/p < e. O

Ezample. The set R \ Q of irrational numbers, with the usual metric, is
separable. This can be seen either by applying the preceding proposition,
or by observing that the set D = {qﬁ 1q€ Q} is dense in R \ Q.

By reasoning as in Example 9 on page 4, one demonstrates the following
proposition:

Proposition 2.4 In a separable metric space, every family of pairwise
disjoint nonempty open sets is countable.

We will now restrict ourselves to the case of normed spaces. The metric
will always be the one induced by the norm.

A subset D of a normed vector space F is said to be fundamental if
it generates a dense subspace of E, that is, if, for every x € E and every
€ > 0 there is a finite subset {z1,...,z,} of D and scalars Ay,...,Ap € K

such that
n
xr — Z Aj.’l,‘j
=1

Proposition 2.5 A normed space is separable if and only if it contains a
countable fundamental family of vectors.

<eE.

Proof. The condition is certainly necessary, since a dense family of vectors
is fundamental. Conversely, let D be a countable fundamental family of
vectors in a normed space E. Let 2 be the set of linear combinations of
elements of D with coefficients in the field @ = Q (if K = R) or Q +iQ
(if K = C). Then 2 is dense in E, because its closure contains the closure
of the vector space generated by D, which is E. On the other hand, 2 is
countable, because it is the image of the countable set |J,cy-(Q™ x D™)
under the map f defined by

n
f(/\l,...,)\n,.’l:l,...,a:n)=Z/\j$j- o
i=1

Remark. Recall that in a normed space any finite-dimensional subspace is
closed, since it is complete. It follows that a family of vectors whose span
is finite-dimensional (in particular, a finite family) is fundamental if and
only if its span is the whole space.

A free and fundamental family of vectors in a normed space E is called
a topological basis for E.
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Proposition 2.6 A normed space is separable if and only if it has a count-
able topological basis.

Proof. The “if” part follows immediately from the preceding proposition.
To prove the converse, it is enough to consider an infinite-dimensional
normed space E. By the preceding proposition, E has a fundamental se-
quence (z, ). Now define by induction

no = min{n € N : z,, # 0}
and, for every p € N,
np+1 = min{n € N: 2z, ¢ [ZTng, .-, Zn,]}-

Since E is infinite-dimensional by assumption, the sequence (n,) is well-
defined (see the preceding remark). By construction, the family (z,,)pen
is free and generates the same subspace as (z,,)nen. Therefore it is funda-
mental. O

Fxercises

1. Let X be a metric space. We say that a family of open sets (U;)ier of
X is a basis of open sets (or open basis) of X if, for every nonempty
open subset U of X and for every z € U, there exists i € I such that
reU;CcU.

a. Let % be an open basis of X. Prove that any open set U in X is the
union of the elements of % contained in U.

b. Prove that X is separable if and only if it has a countable open basis.
Hint. If (z,) is a dense sequence in X, the family

(B(zn, 1/(P+1)))n,p€N

is an open basis of X. Conversely, if (Uy) is an open basis of X, any
sequence (z,) with the property that z, € U, for every n is dense
in X.
2. Let X be a separable metric space.
a. Prove that there is an injection from X into R.
Hint. Let (Vy)nen be a countable basis of open sets of X (see the
preceding exercise). Consider the map from X into #(N) that takes
zeXto{neN:zecV,}
b. Prove that there is an injection from the set % of open sets of X
into R.
Hint. Prove the injectivity of the map U — £?(N) that associates
to each open set U in X theset {ne N:V, c U}.
3. Let X be a separable metric space.
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a. Let f : X — R be a function, and let M be the set of points of X
where f has a local extremum. Prove that f(M) is countable.
Hint. Let M be the set of points of X where f has a local maximum
and let % be a countable open basis of X (see Exercise 1). Prove
that there is an injection from f(M™) into %.

b. Prove that a continuous function f : R — R that has a local ex-
tremum at every point is constant.

4. Lindelof’s Theorem. Prove that a metric space X is separable if and

only if every open cover of X (that is, every family of open sets whose
union is X) has a countable subcover (that is, some countable subset of
the cover is still a cover).
Hint. “Only if”: Let (V;,) be a countable basis of open sets of X (see
Exercise 1) and let (U;);cr be an open cover of X. Take n € N. If V,, is
contained in some U;, choose an element i(n) of I such that Vi, C Uy(y);
otherwise, choose i(n) € I arbitrarily. Prove that the family (Uj(n))nen
covers X. For the converse, one can work as in the proof of Proposition

2.1.

5. Let X be a separable metric space and let % be an uncountable family
of open sets in X. Prove that there exists a point of X that belongs to
uncountably many elements of % .

6. Theorem of Cantor and Bendizon. Let X be a separable metric space.
Prove that there is a closed subset E of X, with no isolated points, and
a countable subset D of X such that X = EUD and END = @.
Hint. One can choose for E the set of points of X that have no countable
neighborhood.

7. Let p > 1 be a real number. Denote by #? the set of complex sequences
a = (a,) such that the series ¥ |a,|P converges. Give ¢P the norm

ol = (5 |an|”)w.

neN

Also, denote by ¢ the set of bounded complex sequences, with the
norm

llallo = sup |ax|.
neN

Finally, denote by cg the subset of ¢>° consisting of sequences that tend

to 0.

a. Prove that 7 and ¢ are Banach spaces.

b. What is the closure in £°° of the set of almost-zero sequences (those
that have only finitely many nonzero terms)?

c. What is the closure of #P in £°°?

d. Prove that cg, with the norm || - ]|, is a separable Banach space.

e. Prove that ¢P is separable.
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f. Prove that £*° is not separable.
Hint. Check that {0,1}N C £ and that, if a, 3 are distinct elements
of {0,1}N, then ||a — B|lcc = 1. Then use Proposition 2.4 and the
fact that {0,1}" is uncountable.

g. Prove that the set of convergent sequences, with the || - ||oc norm, is
a separable Banach space.

8. Let I be a set. If f : I — [0,400) is a map, denote by ), f(i) the
supremum of the set of all finite sums of the form )7, ; f(i), where
J C I is finite.

a. Prove that, if 3, ; f(i) < +oo, the set J = {i € I : f(i) # 0} is
countable.
Hint. Check that J = |J,,, o En, where, for each positive integer n,
weset B, ={iel: f(i)>1/n}.

b. Let p > 1 be a real number. Denote by ¢P(I) the vector space con-
sisting of functions f : I — C such that ), ;|f(¢)[? < +oo. We
define on ¢P(I) a map || - ||, by setting

17l = (Zv(iw’)w.

i€l

Prove that || - ||, is a norm, for which ¢7(I) is a Banach space.
c. Prove that ¢P(I) is separable if and only if I is countable.

3 The Diagonal Procedure

In this section we introduce a method for passing to subsequences, called
the diagonal procedure, and present some of its applications. Recall that a
subsequence of a given sequence (z, )nen is a sequence of the form (25, )reN,
where (ng)ren is a strictly increasing sequence of integers. Such a sequence
k + ny can also be considered as a strictly increasing function ¢ : N = N.
The subsequence (z,, ) can then be written (z,))ken- Since the function
¢ is uniquely determined by its image A = ¢(N) (for n € N, the value of
¢(n) is the (n + 1)-st term of A in the usual order of N), the subsequence
(%, (k))ken is determined by the infinite set A; we can denote it by (zn)nea-
We will use all three notations in the sequel.

Theorem 3.1 Let (Xp,dp)pen be a sequence of metric spaces, and, for
every p € N, let (zn p)nen be a sequence in Xp. If, for every p € N, the set
{Zn,p : n € N} is relatively compact in X,, there exists a strictly increasing
function ¢ : N = N such that for every p € N the sequence (Ty(n),p)neN
converges in Xp.

Recall that a subset Y of a metric space X is called relatively compact
in X if there exists a compact K of X such that Y C K, or, equivalently,
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if the closure of Y in X is compact. In terms of sequences, Y is relatively
compact if and only if every sequence in Y has a subsequence that converges
in X (though the limit may not be in Y).

The remarkable part of the theorem is that the function ¢ that defines
the different subsequences does not depend on p.

Proof. Thanks to the assumption of relative compactness, one can induc-
tively construct a decreasing subsequence (A, ) of infinite subsets of N such
that, for every p € N, the sequence (2, p)neca, converges in X,,. The diag-
onal procedure consists in defining the map ¢ by setting

¢(p) = the (p + 1)-st element of Ay,

Thus ¢(p+1) is strictly greater than the (p+ 1)-st element of A1, which
in turn is greater than the (p + 1)-st element of A, which is ¢(p). Thus ¢
is strictly increasing. Moreover, for every p € N the sequence (T, (n),p)n>p
is a subsequence of the sequence (Zn p)neca,, because, if n > p, we have
¢(n) € A, C Ap. Therefore the sequence (Zy(n),p)nen converges. O

Consider again a sequence (X, dp)pen of metric spaces (where dy, is the
metric on X,). Put
X =J] Xp;

pEN

recall that this product is the set of sequences £ = (z,)pen such that
z, € X, for each p € N. It is easy to check that the expression

+o00
d(z,y) = 3277 min (dp(@p,up), 1)

p=0

defines a metric d on X; this is called the product distance on X. For
this metric, a sequence (z"),en of points in X converges to a point z € X
if and only if lim, o0 z, = z for every p € N.

If the metric spaces (X,,d,) are all equal to the same space (Y,6), we
write X = YN, Then X is the set of sequences in X, or, what is the same,
the set of maps from N into Y, with the metric of pointwise convergence.

One can then rephrase Theorem 3.1 as follows:

Corollary 3.2 (Tychonoff’s Theorem) If (X,)pen is a sequence of com-
pact metric spaces and X = HpeN X, is the product space (with the product
distance), X is compact.

This follows immediately from the definition of the product metric, from
Theorem 3.1, and from the characterization of compact sets by the Bolzano—
Weierstrass property.
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Ezample. The space € = {0,1}", with the product distance

d(z,y) = ZZ "|Zn = Ynl,

is compact. It is easy to see that the map € — [0, 1] defined by

+00
flz)=2 Z 37" 1z,
n=0

is a continuous injection, whose image is the Cantor set (which is therefore
homeomorphic to %).

Precompactness

We now give another application of the diagonal procedure. We start with a
definition. A subset A of a metric space is precompact if, for every € > 0,
there are finitely many subsets A;, As,..., A, of A, each of diameter at
most ¢, such that A =J;_, A

Remarks

1. Clearly, every precompact subset is bounded. The converse is false, as
can be seen from the example of the unit ball in an infinite-dimensional
normed vector space (compare Theorem 1.1 on page 49). Precompact
sets are also called totally bounded.

2. Unlike relative compactness, which is a relative property, precompact-
ness involves only the intrinsic (induced) metric of the subspace.

3. Unlike compactness, precompactness is not a topological notion. It de-
pends crucially on the metric; see Exercise 2 below, for example.

4. Each of the following two properties is equivalent to the precompactness
of a subset A of a metric space X:

— For every € > 0 there exist finitely many points z, ..., z, of A such
that A C Uj_, B(zj,¢).
— For every € > 0 there exist finitely many points z,,...,z, of X such

that A C Uj_, B(zj,¢).
The proof is elementary.

Theorem 3.3 Let X be a metric space. Every relatively compact subset
of X is precompact. The converse is true if X is complete.

Proof. The first statement follows directly from the definitions, from the
Borel-Lebesgue property of compact sets, and from the fact that A C X
implies A C U ¢ x B(,¢) for every € > 0.
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Now suppose that X is complete and that A C X is precompact. Let
(zn)nen be a sequence of points in A. To prove that it has a convergent
subsequence, it is enough to find a Cauchy subsequence. For every p € N,
let A%, .. A” be subsets of A of diameter at most 1/(p+ 1) and covering
A. We w111 construct by induction a decreasing sequence (Bp)pen of infinite
subsets of N such that, for every p € N, there is an integer j < N, for which
{xp}peBp C A?

Construction of By: since all terms of the sequence (zn)nen (of which
there are infinitely many) are contained in A, which is the union of the
finitely many sets A9, ..., A‘}VO, there is at least one of these sets, say Ago,
containing infinitely many terms z,. (This is the pigeonhole principle.) We
then set By = {n € N:z, ¢ A) }.

To construct By from By, the idea is the same: the terms of the sub-
sequence (Zn)neB, are all contained in the union of the finitely many sets
APHL ., AR +1 . therefore at least one of the sets contains infinitely many
terms of the subsequence We define By as the set of indices of these
terms.

Having constructed the B,, we define a strictly increasing function ¢ :
N — N by setting

©(p) = the (p + 1)-st element of By.

Then, for every p € N and every integer n > p, we have ¢(n) € B,. By the
construction of the B, we see that

1
d(Tp(n) Tpny) < o for all n,n’ > p.

Thus the sequence (z,(n)) is a Cauchy sequence. O

Fxercises

1. Let (Xp,dp)pen be a sequence of nonempty metric spaces, and let X be
the product space with the product metric.
a. Prove that (X,d) is separable if and only if each space (X,,d,) is
separable.
b. If ne N, z € X and r > 0, write

U(z,n,r) = {y € X : dy(zp,yp) <r for all p<n},

and define = {U(z,n,r):z € X,ne N, r > 0}.
i. Show that all the sets U(xz,n,r) are open in X.
ii. Take ¢ € X and r > 0. Prove that if 0 < p < r/2, there exists
an integer n € N such that z € U(z,n, p) C B(z,r).
iii. Show that % is a basis of open sets of X (see Exercise 1 on
page 10).
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iv. Let D be a dense subset of (X, d). Prove that the set
%p = {U(z,n,1/q) :z€ D,neN, ge N}

is a basis of open sets of X. Prove that, if D is infinite, there
exists a surjection from D onto %p.

Hint. When D is uncountable, one must use Exercise 9a on
page 6.

. If z and y are real numbers, we write d(z,y) = |z — y| and é(z,y) =

larctan z — arctany|. Prove that 6 is a metric on R equivalent to the
usual metric d; that is, the two metrics define the same open sets. Show
that (R, d) is precompact, but (R, d) is not.

. Prove that every precompact metric space is separable.
. Prove that a metric space X is precompact if and only if every sequence

of elements in X has a Cauchy subsequence.

. Helly’s Theorem. Let (fy,) be a sequence of increasing functions from a

nonempty interval I C R into R, such that for every x € I the sequence
(fn(z)) is bounded.

a.

Prove that there is a subsequence (f,(n))nen such that, for every
z € QN I, the sequence (f,(n)(T))nen converges. For such values of
z, set g() = limp 00 fio(n) (T)-

. Extend g to all of I by setting, for x € I'\ Q,

g(z) =sup{g(y) :y € QNI and y < z}.

Prove that g(z) is well-defined for all z € I and that the function g
is increasing on I.

. Let C be the set of points of I where g is continuous. We know from

Exercise 6 on page 5 that the set D = I'\ C is countable. Prove that,
for every z € C, the sequence (f,(n)(z)) converges toward g(z).
Hint. Let z € C. Prove that, if y,z € QNI with y < z < z, we have

9() < liminf(fo(n)(2)) < limsup(f,n)(2)) < 9(2).

. Using the diagonal procedure again, prove that there exists a subse-

quence (f,(y(n))) Such that, for every €I, the sequence ( f¢(¢(n))(z))
converges.

. Let X be a complete metric space, nonempty and with no isolated

points. We will show that X contains a subset that is homeomorphic
to the set € = {0,1}N with the product distance.

i. Let B be an open ball in X with radius r > 0. Prove that there
exist disjoint closed balls B; and B, of positive radii at most
r/2, and both contained in B.
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ii. Let 60 = U,en-{0,1}" be the set of finite sequences of 0s and 1s.
Let u = (uo,%1,...,un—-1) € {0,1}" and v = (vo, v1,...,Vm-1) €
{0,1}™ be elements of %y. We say that u is an initial segment
of v if n <m and u; = v; for all i < n. We say that v and v are
incompatible if u is not an initial segment of v and v is not an
initial segment of u.

Prove that one can construct a map u — B, that associates to
every u € %y a closed ball B, of X, of positive radius, satisfying
these properties:
— If u is an initial segment of v, then B, C ﬁu.
— If u and v are incompatible, B, N B, = @.
— If u has length n, the radius of B, is at most 27™.
Hint. One can start by defining B(g) and B(;), then work by
induction on the length of the finite sequences: suppose the B,
have been constructed for all sequences u of length at most n,
and give a procedure for constructing the B, for sequences u of
length n + 1.

iii. If @ € ¥, define the set

Xo = U B,.
u€%o
u an initial segment of a
(Naturally, we say that a finite sequence (uo,...,un—1) is an
initial segment of « if u; = o; for all i < n.) Prove that X,
contains a single point, which we denote z,.
iv. Prove that the map z : a — z, is a continuous (and even Lip-
schitz) injection from ¥ into X.
v. Deduce that € and (%) are homeomorphic.
b. Prove that every complete separable space is either countable or in
bijection with R. In particular, this is the case for every closed subset
of R.
Hint. One can use Exercise 2 on page 10, the Cantor-Bendixon The-
orem (Exercise 6 on page 11), Exercise 3 on page 5, and Exercise 9b
on page 7.
. Prove that the space ¥ = {0,1}", with the product distance, is homeo-
morphic to ¥ x €.
Hint. One can show that the map

(mn)nGN = (($2n)n€N> ($2n+1)neN)

is a continuous bijection between ¥ and € x €.

. Let A be a subset of a normed vector space E. Prove that A is pre-
compact if and only if A is bounded and, for every £ > 0, there exists
a finite-dimensional vector subspace F. of E such that d(z, F;) < ¢ for
all x € A.



18 Prologue: Sequences

9. Let E be a normed space.

a. Let A be a nonempty subset of E. Prove that there is a (unique)
smallest closed convex set containing A. This set is called the closed
convez hull of A, and we will denote it by ¢(A).

b. Let A be a precompact subset of E.

i. Set M = sup, 4 ||z|| and, for every € > 0, define a subset of E,
A.={z € E:|z| < M and d(z, F.) < ¢},

where F is a finite-dimensional vector space such that d(z, F¢) <
¢ for every = € A (see Exercise 8). Prove that, for every € > 0,
the set A. is a closed convex set containing A.

ii. Set Ag =, <e<1 Ac. Prove that the set Ap is convex, closed,
and precompact. (Use Exercise 8.)

iii. Deduce that ¢(A) is precompact.

c. Suppose that E is a Banach space. Prove that if A is a relatively
compact subset of E, then ¢(A4) is compact.

4 Bounded Sequences of Continuous Linear Maps

We now use the denseness and separability results given earlier, together
with consequences of the diagonal procedure, to study bounded sequences
of continuous linear maps. We start with some notation.

Notation. Let E and F be normed vector spaces over the same field K.
We denote by L(E, F') the space of continuous linear maps from E to F.
In general, we use the same symbol || - || for the norms on E, on F' and on
L(E, F). The latter norm assigns to T € L(E, F') the number

ITHl = sup{||Tz| : z € E and ||z|| < 1}.

Recall that, if F' is a Banach space, so is L(E, F'). We use also the following
notations: L(E) = L(E, E), and E' = L(E,K); we call E’ the topological
dual of E.

Recall also that in a normed space E, a subset A is said to be bounded

if it is contained in a ball; that is, if the set of norms of elements of A is
bounded.

The first proposition deals with the case where F' is a Banach space.

Proposition 4.1 Consider a normed space E, a fundamental family D
in E, and a Banach space F. Consider also a bounded sequence (T),)nen of
elements of L(E, F). If, for every = € D, the sequence (Tnx)nenN converges
in F, there ezists an operator T € L(E, F) such that

lim T,z =Tz foreveryze€ E.

n—+o0o
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Proof. Let M > 0 be such that |T,|| < M for all n € N. It is clear
that the sequence (T,z) converges for any element z of the vector space
[D] generated by D. Now take z € E and € > 0. Since D is a fundamental
family, there exists y € [D] such that ||z—y|| < ¢/(3M). The sequence (Ty)
converges; therefore there is a positive integer N such that | T,y — Tpy|| <
€/3 for all n,p > N. By the triangle inequality we deduce that, for any
n,p > N,

1wz — Tyzll < | Tz — Tayll + | Tny — Toyll + | Tpy — Tzl <e.

Thus (T, z) is a Cauchy sequence in F, and therefore convergent. For every
z € E we then set Tz = lim,_,o0 Tz. The map T thus defined is certainly
linear, and, since ||Tz| < M|z| for all z € E, it is also continuous. O

Corollary 4.2 (Banach—Alaoglu) Let E be a separable normed space.
For every bounded sequence (Ty,)nen in E', there are a subsequence (Ty, )keN
and a continuous linear form T € E’ such that

lim T,,,z =Tz forallzcE.
k—o0
Warning: the sequence (T,,) does not necessarily converge in E’; that
is, || Tn, — T'|| does not in general tend toward 0.

Proof. Choose M > 0 such that ||T,|| < M for every n € N, and let (2p)pen
be a dense sequence in E. For every positive integer p, we have

|Thzp| < M||zp|| for all n € N.

Therefore the set {T,,zp}nen is relatively compact in K. By Theorem 3.1,
there exists a subsequence (7,,) such that, for every p, the sequence of
images (Tnkx,,) xen converges in K. Now apply Proposition 4.1. O

This is not necessarily true if E is not separable; see, for example, Exer-
cise 3 below.
A weaker result than Proposition 4.1 holds when F' is any normed space:

Proposition 4.3 Consider normed spaces E and F, a fundamental set
D in E, a bounded sequence (Ty,) in L(E,F) and a map T € L(E, F). If
the sequence (T, z) converges toward Tz for every point x € D, it does also
for every z € E.

Proof. By taking differences we can suppose that T = 0. Set

M = sup | T ||
neN

and take € E. For every y € [D], we have

1Tnzll < Mz -yl + | Tnyll-
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Since T,y — 0, we get limsup,,_, o, ||Tnz|| < M|z —y||. This holds for every
y € [D], and [D] is dense in E; therefore

lim ||Thz| =0. a
n—00

FEzxercises

1. Consider normed spaces E and F, a bounded sequence (T,)nen in
L(E,F), and an element T € L(E, F). Prove that, if lim,_, o Thz =
Tz for every = € E, the limit is uniform on any compact subset of E.

2. Consider a normed space E, a Banach space F', and a bounded sequence
(Tn)nen in L(E, F). Prove that the set of points z € E for which the
sequence (T, x) converges is a closed vector subspace of E.

3. Consider the space E = ¢ of Exercise 7 on page 11. Prove that the
sequence (T},) of E’ defined by T,,(z) = z,, has no pointwise convergent
subsequence in E.

4. Let E be a separable normed vector space, and let (z,)pen be a dense
sequence in E. Denote by B the unit ball of E’, that is,

B={T € E :|T(z)| < ||z for all z € E}.
For T and S elements of B, we define the real number

+o00
d(T,S) =2 P min(|T(z,) — S(z)], 1).

p=0

a. Prove that d is a metric on B. If (T;,) is a sequence of elements of B
and if T € B, prove that

d(Tp,T) >0 <= Ty(z) > T(z)forallzcE.

b. Prove that the metric space (B, d) is compact.

5. Riemann integral of Banach-space valued functions. Let [a,b] be an in-
terval in R and let E be a Banach space. We want to define the integral
of a continuous function and, more generally, of a regulated function
from [a, b] into E.

a. Integral of staircase functions. A staircase function from [a,b] to E
is one for which there is a subdivision zg =a < z; < --- < zp, = b
of [a,b] and vectors vy, ...,v,—1 in E such that, for every i <n —1
and every z € (x;,T;y1), we have f(z) = v;. The integral of such a
function f over [a,b] is defined by

n—1

b
1) = [ f@)da = Y (@i = 2o

=0
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We denote by & the vector space of all staircase functions on [a, b],
with the uniform norm: ||f|lec = supg¢iqp |l f(z)||. Check that I is
a continuous linear map from & to E, with norm b — a. Check also
that, if f € &, Chasles’s relation holds for arbitrary o, 8,7 € [a, b]:

/jf(w)dw=/:f(m)dw+fjf(w)dw,

where, by convention, we set
v u
/ fz)dz = —/ f@)dz ifu>w.
u v

. Prove that a function from [a,b] to E is regulated (Exercise 7 on
page 5) if and only if it is the uniform limit of a sequence of staircase
functions.

Hint. “Only if” part: Let f be a regulated function from [a, b] to E,

and choose € > 0. Prove that there is a subdivision a = 7o < z; <

-+ < Zp, = b of [a, b] such that, for every i and every z,y € (z;, Zit+1),

we have || f(z) — f(y)|| < e. Deduce the existence of a staircase

function g such that || f(z) — g(z)|| < € for every z € [a, b].

“If” part: Since E is complete, f has a left limit at a point z if and

only if, for every € > 0, there exists n > 0 such that || f(y)—f(2)|| < e

for all y,z € (z — 1, z).

i. Let %p([a,b], E) be the space of bounded functions from [a, b]
into E, with the uniform norm: || f||oo = sup,¢(a,y | f(z)||- Prove
that % ([a,b], E) is a Banach space.

ii. Let Z be the set of regulated functions from [a, b] into E. Prove
that Z is a closed subspace of #y([a,b], E). Thus, Z with the
uniform norm is a Banach space.

. Integral of a regulated function. Prove that I can be uniquely ex-

tended into a continuous linear map J on all of £, of norm b — a.

(One can use the theorem of extension of Banach-space-valued con-

tinuous linear maps.) For every f € %, the image of f under the

map is of course denoted by

b
J(f) = / f(z) da.

. Check that Chasles’s relation (see item (a)) holds for all regulated
functions. Check also that, if F is a continuous linear form on E and
if f € #Z, then F o f is a regulated function from [a, b] into K, and
that

b
F(J(f)) = / F(f(2)) dz.
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f. Prove that, for every function f in %,

/ ’ Heyda]| < / 17 @) dz-

g. If A = (zq,...,2,) is a subdivision of [a, b], and if £ = (§o,-...,6n—1)
is such that &; € [zj,2j41] for 0 < j <n —1, we set

n—1
S(8,6(f) =Y £(&)(@is1 — z5)-
j=0
Prove that, if (AP, £P) is a sequence of subdivisions whose maximal
step size tends to 0, and if f is any function in %, then S(AP, £P)(f)
converges to f: f(z)dz.
Hint. One can start with the case of a staircase function f, then use
Proposition 4.3.

6. The Baire and Banach-Steinhaus Theorems. Let X be any metric space.
Two players, Pierre and Paul, play the following “game of Chogquet”:
Pierre chooses a nonempty open set U; in X, then Paul chooses a
nonempty open set V; inside Uy, then Pierre chooses a nonempty open
set U, inside Vi, and so on. At the end of the game, the two players
have defined two decreasing sequences (U, ) and (V) of nonempty open
sets such that

U,2V,DUp,41 foreveryneN.

Note that N,y Un = N,pen Va; we denote this set by U. Pierre wins

if U is empty, and Paul wins if U is nonempty. We say that one of the

players has a winning strategy if he has a method that allows him to
win whatever his opponent does. Therefore, the two players cannot both
have a winning strategy; a priori, it is possible that neither does.

a. Prove that, if X has a nonempty open set O that is a countable
union of closed sets F,, with empty interior, Pierre was a winning
strategy.

Hint. Pierre starts with U; = O and responds to each choice V,, of
Paul’s with V,, \ F,,.

b. Prove that, if X is complete, Paul has a winning strategy.

Hint. If (F,) is a decreasing sequence of closed sets in X whose
diameter tends to 0, the intersection of the F,, is nonempty.

c. Application: Baire’s Theorem. Let X be a complete space. Prove
that an open set of X cannot be the union of a countable family of
closed sets with empty interior.

d. Corollary: The Banach-Steinhaus Theorem. Consider a Banach space
E, a normed vector space F, and a family (T;,)nen of elements of
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L(E, F) such that, for every z € E, the set {||Tn(z)| : n € N} is
bounded. Prove that {||T5|| : » € N} is bounded.
Hint. Show that there exists k € N such that the set

Fr ={z € E:|Ty(2)|| <k for all n € N}

has nonempty interior, and therefore contains some open ball B(a,);
then show that, for every n € N,

1
<- T, .
Il < 7 (sup I1Tm(@)] + )

e. Prove that an infinite-dimensional Banach space cannot have a count-
able generating set. For example, R[X] cannot be made into a Ba-
nach space.

Hint. If this were not the case, the space would be a countable union
of closed sets with empty interiors.

f. Let (T,,) be a sequence of continuous linear operators from a Banach
space E into a normed vector space F, having the property that,
for every z € FE, the sequence (T, (z)) converges. Prove that the
map T : E — F defined by T(z) = limp_y00 Tn(z) is linear and
continuous.

g. i. Let f be a function from R to R. Prove that the set of points
where f is continuous is a Gs-set in R, that is, a countable in-
tersection of open sets in R.

Hint. Define, for each n € N*, the set C,, consisting of points
z € R for which there exists an open set V containing z and
such that | f(y) — f(2)| < 1/n for all y, z € V. Prove that the sets
C, are open.

ii. Prove that Q is not a G5 in R.
Hint. If it were, R would be a countable union of closed sets with
empty interior.

iii. Prove that there is no function from R to R that is continuous
at every point of Q and discontinuous everywhere else.

iv. Prove that there exist functions from R to R that are discontin-
uous at every point of Q and continuous everywhere else.
Hint. Use Exercise 6¢ on page 5. More directly, if {z, }nen is an
enumeration of Q, the function f defined by f(z) =0ifz ¢ Q
and f(zn) = 1/(n+1) for every n € N has the desired properties.

7. An invariant metric on a vector space E is a metric d on E such that
d(z,y) =d(z—y, 0) forall z,y € E.

If d is an invariant metric on E, we set |z| = d(z,0) for € E. (Note
that the map |- | thus defined is not necessarily a norm on E.) A vector
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space with an invariant metric d is said to have Property (F) if the

metric space (E,d) is complete and, for every k € K, the map z — kz

is continuous from E to E. For example, every Banach space with the

norm-induced metric has Property (F).

Let E be a vector space having an invariant metric with Property (F).

Let F be a normed vector space, with norm | - ||.

a. Let H be a family of continuous linear maps from E to F such that,
for every x € E, the set {T(z)}recn is bounded. Prove that, for every
€ > 0, there exists § > 0 such that

IT(z)|| <e forall z € E with |z| < § and for all T € H;

in other words, limy_,o 7(z) = 0 uniformly in T € H.
Hint. Take € > 0 and, for each k € N*, set

Fo={z€E:|T(z/k)| <eforall T € H}.

Using Baire’s Theorem (Exercise 6), prove that at least one of the
F}, say Fy,, contains an open ball B(a, ). Then use the fact that Fj,
is a symmetric convex set (symmetry here means that —Fj, = F,)
and the continuity of the map = — 2koz.

b. Let (T,,) be a sequence of continuous linear maps from E to F such
that, for every z € E, the sequence (T,(z)) converges. Prove that
the map from F to F defined by

T(z) = ngg}w To(z)

is linear and continuous. (This generalizes Exercise 6f above.)

We will be able to apply this result to sequences in 9.(X) (Exercise
10 on page 92) or in L?, for 1 < p < oo (Exercise 12 on page 168).
See also Exercises 1 on page 147 and 1 on page 163.
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The Space of Continuous Functions
on a Compact Set

Introduction and Notation

We will consider throughout this chapter a compact, nonempty metric space
(X,d), and we will study the K-vector space (for K = R,C) of continu-
ous functions from X to K, which we denote by CX(X), or simply C(X)
when no confusion is likely. We give C(X) a commutative multiplication
operation: for f,g € C(X) the product fg is defined by

(f9)(x) = f(z)g(x) forallz e X.

The constant function 1 is the unity element for this multiplication. We
say that C(X) is a commutative algebra with unity.
The space C®(X) also has an order relation <, defined by

f<g < f(z) <g(z) for all z € X;

it is only a partial order, of course. For any f,g € CR(X), there exist a
least upper bound and a greatest lower bound for f and g:

sup(f, g)(z) = max(f(z), g(x))
inf(f, g)(z) = min(f(z), 9(x))

That the functions thus defined are continuous can be seen, for example,
from the following equalities:

sup(f,9) = 5(fF+9+1f—gl), inf(f,9)=3(f+g—1f—gl)-

} for all z € X.
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We denote by C+(X) the set of continuous functions from X to R*. If
f € CR(X), we write f* = sup(f,0) and f~ = —inf(f,0) (note that we
use the same symbol for a constant function and its value). We therefore
have

@) =(f@)", F@=>@)", f=f-f, fl=F+f".

1 Generalities

We give C(X) the uniform norm over X, denoted by || - | and defined by
£l = max|f(=)]

The corresponding topology is called the topology of uniform conver-
gence, since a sequence in C(X) converges to f € C(X) in this norm if
and only if it converges uniformly to f on X.

Clearly, [|fgll <[Ifll lgll and [[|f[ ]| = [If]| for all f,g € C(X).
Proposition 1.1 C(X) is a separable Banach space.

Proof. The reader can check that C(X) is a Banach space. We show sepa-
rability. Since X is precompact, for every n € N* there exist finitely many
points z7,...,z7% of X such that X = U 1 B(z7},1/n). We therefore set,
for j < N,

(1/n - d(=, m;‘))+

N, +
Yo (1/n—d(z,2}))
From the choice of the points z7, we see that the denominator does not
vanish for any z € X. Therefore, ¢, ; € C*(X),

en,j(z) =

Y eni=1, and  gu;(2)=0 ifd(z,z})>1/n.

The set {¢n; : » € N*and 1 < j < N,} is certainly countable. We will
show that it is a fundamental family in C(X); this suffices by Proposi-
tion 2.5 on page 9.

Take f € C(X) and € > 0. Since X is compact, the function f is uni-
formly continuous on X. Take > 0 such that, for all z,y € X with
d(z,y) < n, we have |f(z) — f(y)| < . Let n € N be such that 1/n < .
For every x € X,

fz) - Zf )nj(2)| =

N,
Y _(f@) — £()¢n,i()
J=

Ny
_Z f(@) = (@] #n.s(@)-
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Since ¢n,; vanishes outside the ball B(z7,1/n), and so outside B(z},7), we
see that, for every z € X,

|f(z) = f(2}) n,3(z) < e@n,j(z)-

Thus, for every z € X,

N, Nn
f(z) —Zf(.z‘?)(pn,j(z) SEZ‘P%J’("’) =¢&.
Jj=1 j=1

It follows that

<g

N
|73 e
j=1
which concludes the proof. O

We recall a sufficient criterion for uniform convergence (and therefore
convergence in C(X)) that is often convenient:

Proposition 1.2 (Dini’s Lemma) Let (f,)nen be an increasing sequence
in C®(X) (this means that f, < f,41 for all n). If the sequence (f,) con-
verges pointwise to a function f € C(X), it also converges uniformly to f.

Proof. Take € > 0. For every n € N we set Q, = {z € X : fo(z) >
f(z) — €}. Clearly, (2,) is an increasing sequence of open subsets in X
whose union is X. By the Borel-Lebesgue property, there is an integer N
such that Qn = X, so that fy(z) > f(z) —¢ for all z € X. Thus, for every
integer n > N, we have f(z) —e < fn(z) < f(z) for all x € X. This proves
that ||f — full <e. O

Remarks

1. Clearly, one can replace “increasing” by “decreasing” in the statement
of Dini’s Lemma.

2. The assumption that the pointwise limit f is continuous is essential. For
example, the decreasing sequence (f,) of continuous functions on [0, 1]
given by f,(x) = 2" converges pointwise, but not uniformly, on [0, 1].

Ezample. Define by induction on n a sequence of polynomial functions
(Py) on [—1,1], as follows:

PO :07
Poy1(z) = Po(z) + 3(2® — P3(z)) forallm € N.

We check that, for every n € N, we have 0 < P,(z) < Ppy1(z) < |z| for all
z € [—1,1]. For n = 0 this is clear; suppose by induction that it is true for
some n > 0. Then, for all z € [-1,1],

0 < Poy1(2) < Poya(z) = |2|— (|z] = Pat1(2)) (1= (|2 + Pasr(2))) < l2l.
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Then the sequence (P,)nen is increasing and bounded, and therefore it
converges pointwise to a function f. For z € [—1,1], we see that 0 <
f(z) < |z| and f2?(z) = x?, by taking to the limit the defining recursive
relation of the P,. Therefore f(z) = |z|, and Dini’s Lemma applies. This
proves that the polynomial sequence (P,) converges uniformly to |z| on
[-1,1].

We will generalize this result in the next section, demonstrating that
every continuous function in [—1,1] is the uniform limit of a sequence of
polynomial functions (Weierstrass’s Theorem).

Ezercises

1. Show that there exists a sequence (Py)nen in L(C(X)) such that, for
all n € N, the map P, has finite rank (that is, P,(C(X)) is a finite-
dimensional vector space), has norm 1, is positive (that is, P,(f) > 0
for all f > 0), and satisfies

lim P,f=f forall f e C(X).
n—+o00

2. Let p be a bounded, strictly increasing continuous function from R to
R. Set p(—o0) = limg—,_o p(z) and p(+00) = limz 100 p(z). Also set
X = [—00,+00] = RU {—00, +00}, and define a map dp, : X2 - R by
dp(z,y) = |p(z) - p(y)| Prove that dj, is a metric on X, that the metric
space (X, dp) is compact, that d, induces on R the usual topology, that
R is dense in (X,dp), and that (R,dp) is precompact. Prove also that
the topology thus defined on X (that is, the family of open sets defined
by dp) does not depend on p.

3. Let (fn)nen+ be a sequence of continuous functions on R* defined by

1-2z/n)* ifzx<mn,
0 if z > n.

fo(z) = {

Prove that the sequence (f,) converges uniformly in [0,+00) to the
function f : x> e %.
Hint. Extend the functions f, to have the value 1 on [—00,0] and
the value 0 at +oo. Then apply Dini’s Lemma in the compact space
[—00, +00] introduced in Exercise 2.

4. A generalization of Dini’s Lemma. Consider a compact metric space
X, and elements f and {fp}nen of C(X). Assume that there exists a
constant C > 0 such that

|f — fo+ql SC|f — fp| for all p,q € N.

Prove that if the sequence (f,) converges pointwise to f, it converges
uniformly to f. (One can look at the proof of Dini’s Lemma for inspi-
ration.)



2 The Stone-Weierstrass Theorems 31

5. Ideals in C(X). Let X be a compact metric space and J an ideal in
the ring (C(X),+, ). Denote by Z the set of points z in X such that
g(x) =0forallge J.

a. Prove that, if Z is empty, J contains a function g such that g(z) >0
for all z € X. Deduce that J = C(X).

b. For a € X, set J, = {g € C(X) : g(a) = 0}. Prove that J, is
a maximal ideal; that is, the only ideal that strictly contains J, is
C(X).

c. Conversely, prove that, if J is a maximal ideal, there is a unique
point a of X such that J = J,.

d. Prove that J = {f € C(X): f(z) =0 for all z € Z}.

Hint. Let f € C(X) vanish everywhere in Z. To find an element of
J that is 2e-close to f, one can do this:

i. Let K be the set of points x of X for which |f(z)| > €. Prove
that there exists g € J such that g(z) > 0 for all z € K and
g(z) >0forall z € X.

ii. Prove that, for all large enough n, the function f, defined by

_r ™
b= e

is in J, and that ||f, — f]| < 2e.

2 The Stone-Weierstrass Theorems

We now state denseness criteria for the subspaces of C(X). These criteria
are consequences of this fundamental lemma:

Lemma 2.1 Suppose X has at least two elements. Let H be a subset of
CR(X) satisfying these two conditions:

a. For all u,v € H, the functions sup(u,v) and inf(u,v) also lie in H.
b. If z1,z2 are distinct points in X and a;,as are real numbers, there
ezists u € H such that u(z1) = a1 and u(z2) = az.

Then H is dense in C®(X).

Proof. Take f € CR(X) and &€ > 0. We want to find an element of H that
is e-close to f. First fix £ € X. By assumption b, for every y # z there
exists u, € H such that uy(z) = f(z) and uy(y) = f(y).

For y # z, set Oy = {&’ € X : uy(2') > f(2') — €}. This is an open
set that contains y and z; therefore X = Uy Sz O,. By the Borel-Lebesgue
property, X can be covered by finitely many sets Oy: X = U;=1 Oy;, with
yj # z for all j. Now set v; = sup(uy,,...,Uy,). A simple inductive argu-
ment, using assumption a, shows that v, € H. On the other hand,

vz(z) = f(z) and wy(z') > f(z') —eforall 2’ € X.
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Now make z vary and set, for each z € X,
Q= {z' € X :v.(2') < f(z') + €}

Thus ), is an open subset of X containing z; a new application of the

Borel-Lebesgue property allows us to choose finitely many points z1,...,Z,
of X such that Q,,...,Q;, cover X. Finally, set v = inf(vg,, ..., vz,)
Thenv e H and f —e <v < f +¢;thatis, ||[f —v|| <e. d

A subset H of C(X) is called separating if, for any two distinct points
z,y of X, there exists h € H with h(z) # h(y). A subset H of C®(X) is
called a lattice if, for any f,g € H, the functions sup(f, g) and inf(f,g)
also lie in H. Notice that a vector subspace of CR(X) is a lattice if and
only if, for every element h of H, the function |h| is in H as well (the “only
if” part follows from the relation |h| = sup(h,0) — inf(h,0), and the “if”
part from equations (x) on page 27).

We can then deduce from Lemma 2.1 the following theorem:

Theorem 2.2 If H is a separating vector subspace of C®(X) that is a
lattice and contains the constants, then H is dense in C®(X).

Proof. If X has a single element, the result is clear. Suppose X has at least
two elements; we just need to check assumption b of the lemma. Let z; and
z2 be distinct elements of X. Since H is separating, there exists h € H such
that h(z;) # h(z2). If a; and a; are real numbers, the system of equations

{/\h(xl) +p=o
/\h(xz) + 1= Qg2

clearly has a unique solution (A,u) € R? For such (), ), we see that
(AR + p)(z1) = a; and (A + p)(z2) = ag; moreover, Ah + p € H, since H
is a vector space containing constants. 0

Ezample. Let H be the set of Lipschitz functions from X to R, that
is, the set of functions A from X to R for which there is a constant C >
0 (depending on h) such that |h(.z’) - h(y)l < Cd(z,y) for all (z,y) €
X2, Such a C is called a Lipschitz constant for h, and h is said to be
C-Lipschitz. Clearly, H is a vector subspace of CR(X) containing the
constant functions. H is also a lattice: the absolute value of a Lipschitz
function is Lipschitz as well, since

| 1h(z)] = [R@)I] < [A(z) = h(y)|-

Finally, H is separating since, for  # y, the function h : z — d(z,2) is
Lipschitz with constant 1 and satisfies 0 = h(x) # h(y). Therefore H is
dense in CR(X).
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We now deduce from Theorem 2.2 another denseness criterion, where the
assumption that H is a lattice is replaced by an assumption of closedness
under multiplication. More precisely, we assume we have a vector subspace
H of C(X) that is a subalgebra of C(X); this means that fg € H for
f,9 € H. Since fg=1((f + g)> — f? — ¢%), this condition is equivalent to
H being a vector space such that the square of every element of H is in H.

Theorem 2.3 (Stone—Weierstrass Theorem, real case) Every sepa-
rating subalgebra of CR(X) containing the constant functions is dense in

CR(X).

Proof. If H is a separating subalgebra of CR(X) containing the constants,
so is its closure H. Therefore it suffices to show that H is a lattice and to
apply Theorem 2.2. Thus, let f be a nonzero element of H. We saw in the
example on page 29 that there exists a sequence (P,) of polynomials over
R that converges uniformly on [—1, 1] to the function  +— |z|. But then the
sequence of functions (P,(f/| f|)) converges uniformly to |f|/|| f]|, so | f| is
the uniform limit of the sequence (|| f|| P»(f/||f||))- Since H is a subalgebra
of CR(X), all terms in this sequence are in H; therefore so is their uniform
limit |f|. This shows that H is a lattice. a

Ezamples

1. The set of Lipschitz functions from X to R satisfies the assumptions of
Theorem 2.3.

2. Suppose X is a compact subset of R%, and let H be the set of polynomial
functions (in d variables) from X to R:

H={zw P(z): PeR[Xy,..., X4}

Clearly, H is a subalgebra of C®(X) containing the constants; on the
other hand, if x and y are distinct points in X, they differ in at least
one component: for example, z; # y;. But then the polynomial X; takes
different values at z and at y. Thus H is separating and hence dense in
CR(X).

In the particular case where d = 1 and X is a compact interval [a, b]
in R, this result is known as Weierstrass’s Theorem. In fact, there
are several explicit methods to associate to an element f € CR([a, b])
a sequence of polynomials (P,) that converges uniformly to f on [a, b];
see, for example, Exercises 3 and 2 below.

Note that, as a consequence of Weierstrass’s Theorem, the set of mono-
mials {1,z,z?%,...,2z",...}, considered as functions on [a,b] (for a < b)
forms a topological basis of C([a, b]) (We thus recover, in particular,
the fact that C® ([a,b]) is separable.)

Remark. In the preceding theorem, one cannot replace C®(X) by C(X),
as the following example shows. Set U = {z € C : |2| = 1}, and let H be
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the set of polynomial functions from U in C:
H= {2z P(z2): P e C[X]}.

H is certainly a separating subalgebra of CC(U) (the function Z : z — z is
an element of H, and Z(2) # Z(2') if z # 2), and it contains the constants.
But H is not dense in CC(U). Indeed, since

2w . .
/ emoewde =0
0

for every n € N, we get
27
h(e*?)e*®ds = 0
0
for all h € H. By taking uniform limits, we conclude that the same equality
holds for h € H. On the other hand, the function Z : 2 — Z is an element
of CC(U), yet

2m
/ Z(e)e®df = 2.
0

Thus Z ¢ H, and H is not dense in C¢(U).

Thus, in the complex case an additional assumption is necessary. We will
suppose in this case that the subset H of C¢(X) is self-conjugate; this
means that h € H implies h € H, where the conjugate h of h is defined by
h(z) = h(z).

Theorem 2.4 (Stone—Weierstrass Theorem, complex case) FEvery
separating subalgebra H of CC(X) that is self-conjugate and contains the
constant functions is dense in C¢(X).

Proof. Set Hp = {h € H : h(z) € R forallz € X}. Clearly, Hg is a
subalgebra of CR(X) containing the constants. Now, if f € H, the real
and imaginary parts of f lie in Hp, since H is self-conjugate and Re f =
(f+ £)/2,Im f = (f — f)/(2i). If z; and z; are distinct points in X, there
exists by assumption h € H such that h(z,) # h(z2). Therefore there exists
g € Hg such that g(z) # g(z2): just take g = Reh or g = Imh as needed.
It follows that Hy is separating, hence dense in C®(X), by Theorem 2.3.
Since C¢(X) = C®(X) + iC®(X) and H contains Hg + i Hg, the proof is
complete. O

Ezamples

1. The set of Lipschitz functions from X to C is dense in C€(X).

2. If X is compact in ]Rd, the set of functions from X to C defined by
complex polynomials in d variables is dense in C¢(X). In particular, if
[a,b] (with a < b) is a compact interval in R, the set of restrictions to
[a,b] of the monomials 1,z,z2%,...,z",... forms a topological basis of

CC([U,, b])
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If X is a compact set in C%, the set H defined by
H={z€Xw P(2,2): P C[Xy,..., Xa,V1,..., Yd]}

is dense in CC(X).

In the particular case whered =1 and X =U = {2z € C: |z| = 1}, we
see that H is the vector space generated by the functions Z? : 2 — 27,
with p € Z. Indeed, if z € U we have z = z~1. Thus, the family (Z7)pez
(which is clearly free) is a topological basis of C* (U).

Let CX. be the set of continuous functions from R to K that are periodic
of period 27, with the uniform norm on R, namely,

£l = max |£(z)| = max |f(@)]

z€(0,27)

Lemma 2.5 The map from CC(U) to C§, that associates to ¢ €
CC(U) the function f given by f(0) = p(e®) for every real 8 is a sur-
jective isometry.

Proof. Only the surjectivity requires proof. For z € U, denote by argz
some real number such that ‘€% = z. We know that argz is defined
modulo 27 and that there exist choices of arg z that vary continuously
in the neighborhood of a given point (for example, if zo € U and 2 € U
with |z — zg| < 1, we can take arg z = arg zp+ Arccos Re(z/z)). Thus,
if f € CS,, the function ¢ defined by p(z) = f(argz) is well-defined
and continuous in U, and f(8) = ¢(e*) for all 6 € R. O

It follows from the preceding example that the family (ep)nez of ele-
ments of CS, defined by e,(f) = e is a topological basis of C§,.. By
taking the real and imaginary parts of the functions e,, we deduce that
the set B = {1} U {cn, Sn}nen, with ¢, (z) = cosnz and s,(z) = sinnz,
forms a topological basis of C¥., and thus also of C§,.. A linear combi-

nation of functions of B is called a trigonometric polynomial.

Note that one can explicitly determine a sequence of trigonometric poly-
nomials that converges toward a given function f € CX. (see Exercise 2
below).

Let X and Y be compact metric spaces. We denote by C(X)®C(Y') the
vector subspace of C(X x Y) generated by the functions f®g : (z,y) —
f(z)g(y) with f € C(X) and g € C(Y). It is clear that C(X)®C(Y) is
a subalgebra of C(X X Y) containing the constants and, when K = C,
self-conjugate. 1t is also separating: if (z1,v1) # (z2,y2) we have, say,
z1 # Zo, and then the function d(-,z;) ®1: (z,y) — d(z,z,) (where d
is the metric on X) is an element of C(X) ® C(Y') separating (z1,y1)
and (z2,y2). Thus C(X) ® C(Y) is dense in C(X x Y).
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FEzxercises

1.

Let D be a dense subset of CR(X). Prove that, for all f € C®(X), there
exists an increasing sequence of elements of D that converges uniformly
to f.

Hint. For each positive integer n, prove that there is an element f,, of
Dsuchthat f—-2""< f, < f—2"""L

. Dirac sequences

a. Let (¢n)nen be a sequence of continuous functions from R™ to R,
with nonnegative values, and satisfying these properties:
~ Jgm n(z)dz =1 for every integer n.
— For every € > 0, limp 4 o0 fmZe(pn(:v)dm = 0, where |- | denotes
a norm on R™,

Let f be a bounded, continuous function on R™. Prove that the
sequence (¢n, * f) converges to f uniformly on every compact subset
of R™. Recall that ¢, * f is defined by

nr D@ = [ entif@-ndy= [ onle-u)fwdy

b. For eachn € N, set ¢, = f_ll(l —z2)"dz, and let ©, be the function

from R to R defined by

(1-2®)" e, if|z| <1,
xIr) =
#n() {0 otherwise.

i. Prove that the sequence () satisfies the hypotheses of part a.

ii. Deduce that every continuous function on [0,1] is the uniform
limit on [0, 1] of a sequence of polynomial functions.
Hint. Deal first with the case of a function f satisfying f(0) =
f(1) = 0, by showing that, if f is the extension of f having
the value 0 outside [0, 1], then ¢, * f coincides in [0,1] with a
polynomial function.

c. Fejér’s Theorem. Let f be a continuous function from R to C, peri-
odic of period 27. Let D,, and K, be the functions defined by

n m—1
Da@)= Y €™, Kn(2)=— Y Dale).
n=0

k=—n

If h,g € CS,, we write

heg@) =5 [ b -9y

(this equals g * h(x)).
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i. Prove that K, (2k7) = n for k € Z and that, for all z ¢ 27Z,

1 —cosnzx

Kn(z) = n(l —cosz)’

us
Show also that 51; / K,(z)dz = 1 and that, for all € € (0, 7),

Xy

ngglml K,(z)dz =0.

ii. Prove that the sequence of functions (K, * f) converges uniformly
to f on R.

iii. Express D, * f, then K, * f, in terms of the partial sums S,, of
the Fourier series of f, which, as we recall, are given by

n ) 1 T )
ikx . —ikt
n — s —_—— t.
S, (iII) E Cié with Ck 2 f (t)e d

k=—n T

iv. Deduce that every continuous function periodic of period 27 is
the uniform limit of a sequence of trigonometric polynomials.
3. Another demonstration of Weierstrass’s Theorem: Bernstein polynomi-

als. The functions in this exercise are real-valued (K = R).

a. Korovkin’s Theorem. For i € N, we denote by X*® the element of
C([0,1]) defined by X*(z) = z*. We also set 1 = X and X = X!
Let (T,) be a sequence of positive elements in L(C([0, 1])) (positivity
here means that f > 0 implies T,(f) > 0, or again that f < g
implies T,,(f) < Tn(g)). Assume that, for i =0, 1,2, the sequence of
functions (7,,(X*))nen converges to X* uniformly on [0, 1]. We want
to show that, for all f € C([0,1]), the sequence (T,,f) converges
uniformly to f on [0,1].

i. Let f be a continuous function on [0, 1]. Define the modulus of
uniform continuity of f as the function wy : R** —» R* whose
value at n > 0 is

we(m)= sup |f(z) - Fv)|-
(z,y)E[0,1]2
jz—y|<n

Check that w¢(n) is well-defined for all 7 > 0, and that wy(7)
tends to 0 as 7 tends to 0. Now fix > 0.

ii. Prove that, for all z,y € [0, 1],

170) ~ $0)] <yl + 2w — L2

(One can deal separately with the cases |z—y| <7 and |z~y| >n.)
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If z,y € [0,1], set gy(z) = (z — y)°. Prove that, if z,y € [0,1],
we have, for every n € N,

(T)@) ~ ST )@ < 0y T @) + 212 (7)),
Set hp(z) = (Tngz)(z). Prove that the sequence of functions (h,)
converges uniformly to 0 in [0, 1].

Hint. Tpge(z) = (TnX? - 2XT, X + X?T,1)(2).

. Deduce that limsup,_, o [|[Tnf — fll < ws(n). Wrap up the

proof.

b. Let f be a function from [0, 1] to R. For every integer n > 1, define
the polynomial B, (f) by

ii.
iii.

Ba(f)(&) = Y s (5)ata -2y
k=0

. Prove that

X1-X
B.(xf) = xBu(5) + XK ),
where B}, (f) represents the derivative of the polynomial B, (f).
Compute By(1), Bn(X), and B, (X?) for every n € N.

Prove that, for every f € C([0,1]), the sequence (B,(f)) con-
verges uniformly to f.

4. Another proof of Fejér’s Theorem

a. Let (T},) be a sequence of positive elements of L(CR ) (see Exercise 3a
for the definition of positivity) such that the sequence of functions
(Tn(f))nen converges to f uniformly on R when f is each of the
three functions z — 1, £ — cosz, and z — sinz. Prove that, for all
f € CR, the sequence (T, f) converges uniformly to f.

Hint. Argue as in Exercise 3a, considering the interval [—m, 7] and
replacing (z — y)%/n? by (1 — cos(z—y))/(1 — cosn).

b. Let (K,) be the sequence of functions defined in Exercise 2c. Take
f € CR . Derive from the preceding question another proof that the
sequence (K, * f) converges uniformly to f on R.

5. Let X be a compact interval in R and let H be the set of elements of

C(X) defined by polynomial functions with integer coefficients.

a. Prove that, if X and Z intersect, H is not dense in C(X).

From now on in this exercise we assume that X C (0,1). We denote by

(pn) the strictly increasing sequence of prime numbers and by (P,) the

sequence of elements of C(X) defined by

Py(z)=1—2P" — (1 —x)P".
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. Prove that, for every integer n, the function P,/p, is an element of

H, and that 1/P, belongs to H.

Prove that, for every k € Z”*, the constant function z — 1/k is an
element of H. (You might start with the case of k prime.)

Deduce that H is dense in C(X).

6. Equidistributed sequences and Weyl’s Criterion

a.

Let E be the vector space generated by the functions from [0,1] to
C of the form 1, 3. Prove that every continuous function from [0, 1]
to C is the uniform limit of functions in E.

. A sequence (up)pen of points in [0, 1] is called equidistributed if, for

every [a,b] C [0,1],

<n:
lim Card{p<n:up€ [a,b]} _ b—
n—+o0o n+ 1

Prove that, if (up)pen is an equidistributed sequence of points in
[0,1] and f : R — C is any continuous function periodic of period 1,
then

Jim —— Zf(up / £t)de.

Hint. Check that this is true 1f f € E, then use denseness (compare
Proposition 4.3 on page 19).

. Prove the converse.

Hint. One might start by showing that, if [a,b] C [0,1] and € > 0,
there exist continuous functions f and g from [0,1] to R such that
£(0) = (1), 9(0) = g(1), f < 1o < g and

N OLES

Deduce that a sequence (up)pen of points in [0, 1] is equidistributed
if and only if, for every A € N*, the Weyl criterion is satisfied:
1 n
lim —— e

n—soon + 1
p=0

2imAup _ 0

. Ezample. Take a € R\ Q and, for every p € N, set u, = {pa} =

pa — |pa|, where |pa| denotes the integer part of pa. Prove that
the sequence (up) is equidistributed.

. Same question with the sequence (u,) defined by u, = {p*}, where

a€(0,1).

Hint. Consider I, = [;"e*™**"dz, for A a fixed positive integer.
Prove, by change of variables and integration by parts, that I, =
O(n'~2). Next show that

n
I, - § :e2z7rAp

p=0

= 0(n%).
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7. Particular cases of the Tietze Extension Theorem
a. Let Y be a metric space and X a nonempty compact subset of Y.
Denote by C,(Y') the vector space consisting of continuous, bounded
functions from Y to K, with the norm defined by

I£1l = sup| f(y)|-
yeEY

On C(X) we take the uniform norm, also denoted by [ -|. Now
consider the linear map @ : Cp(Y) — C(X) defined by restriction to

X:
i.
ii.

e
(=2
(=1

iv.

V.

®(f) = fix for every f € Cy(Y).

Prove that C,(Y') is a Banach space.
Prove that, if f € Cy(Y), there exists f € Cy(Y) such that

®(f) = @(f) and ||f|| = || @(f)]|-
Hint. If ®(f) # 0, one can choose

7=x( ) Iel

where x : K — K is defined by x(z) = £/max(|z|, 1).

i. Prove that im ® is dense in C(X).

Hint. Use the Stone—Weierstrass Theorem.

Let g be an element of C(X) that is the uniform limit of a se-

quence (®(f)).

A. Prove that one can assume, after passing to a subsequence if
necessary, that ||®(fn+1) — ®(f)|| < 27" for every n.

B. Forn € N, choose h, € Cbo(Y') such that ®(hy,)=(fn— fn-1)
and ||k, = ||<I>(fn — fn_l)” (where f_; = 0 by convention).
The existence of the h, was proved in ii above. Prove that
the series Y.~ ; h,, converges in Cy(Y). Denote its sum by h.

C. Prove that ®(h) =

Deduce from the preceding facts that every function g € C(X)

can be extended to a function f € Cp(Y) such that || f]] = ||g]l.

b. Let (Y,d) be a metric space and let A be a nonempty subset of Y.
Let f be a Lipschitz function from A to R, with Lipschitz constant
C. Set

9(v) = inf (f(z) + Cd(z,y)) forallyeY.

Prove that g is a Lipschitz extension of f, also with constant C.
8. Stone-Weierstrass Theorem in R. We denote by CX(R) (or Co(R)) the
space of continuous functions f from R to K such that

zllyrzloo f(ZL') = zEr-‘\I—loo f((l,') -

We give this space the uniform norm: ||f|| = supxemlf(z)l. We again
denote by U the set of complex numbers of absolute value 1, which is
compact in the metric induced from C.
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a. i. Prove that Cy(R) is a Banach space.

ii.

iii.

ii.

Define a map ¢ from R onto U\ {—1} by setting (z) = e2 Arctanz,
Prove that ¢ is a homeomorphism between R and U\ {—1}, the
inverse homeomorphism being ¥(z) = tan(; Arg z), where Argz
denotes the argument of z in the interval (—m, 7). Check that
limg 400 9(2) = limz—s 0 () = —

Prove that a function f on R belongs to Co(R) if and only if the
function f defined on U by

{f(¢(z)) if z# -1,

f(z) if z=-1

belongs to C(U). Prove that the map f — f defines an isometry
between Cp(R) and the set of elements of C(U) that vanish at
-1.

i. Let H be a vector subspace of Co(R) satisfying these conditions:

A. f2c Hforall fe H.

B. If z and y are distinct points of R, there exists f € H such
that f(z) # f(y)-

C. For any z € R, there exists f € H such that f(z) # 0.

D. In the complex case, H is self-conjugate (that is, f € H
implies f € H).

Prove that H is dense in Co(R).

Hint. Apply Stone-Weierstrass to the compact space U and to

the set H consisting of functions of the form f+a,with fe H

and a € K.

Conversely, prove that every dense subset H of Cy(R) satisfies

conditions B and C above.

c. f a € C\ R, we set p,(z) = (a + z)~!. Prove that the family
{¢a}acc\r is fundamental in C§ (R).
Hint. Prove first that ¢2 = limp_0(@a — Pat+r)/h in the sense of
convergence in Co(R). Deduce that the closure of the vector space
generated by the ¢, satisfies conditions A-D of part b above

Let H be the set of functions from R to R of the form z — e==" P(z),

with P € R[X].

i.

ii.

TakereNandaE(O 1). For n € N and z € R, set Rn(z) =
e~ gt a™/n!. Prove that the sequence of functions (Ry) con-
verges uniformly on R to the zero function.

Hint. Prove that if u, = supr]R|Rn(:v)l, then

Jlim (upi1/un) = a.
Deduce that the function f, , : = — e~(1+9)2" 2™ belongs to H.

Hint. One can use Taylor’s formula with integral remainder to
approximate Pl by polynomials.
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iii. Prove that the function go, : z — e—(1+a)’e% yr belongs to H.
Hint. Write g = (1 + a)""/?f, (VI +az) and use part ii
twice.

iv. Applying the facts above to a = v/2 — 1, show that H is dense
in CR(R).

e. Denote by CX(R) or C.(R) the set of continuous functions f from

R to K that vanish outside a compact interval in R (that depends

on f). We assume in the sequel that K = C.

i. Prove that C.(R) is dense in Co(R). (Use part b above or give a
direct proof.)

ii. For ¢ € C.(R), set

#(z) = /R V() dy.

Prove that ¢ € Co(R).

Hint. Show first that, if a < b, the function z — f: e*Ydy lies
in Co(R). Then approximate ¢ by staircase functions.
iii. If p,9 € C.(R), define

(0 *¥)(@) = /R oz — y)(y)dy.

Prove that ¢ * ¢ € C.(R) and that m = <foq[;
iv. Deduce that the set {@},ec.(r) is dense in Co(R).
Hint. To check conditions B and C, one can compute the integral
f0+°° eYe~¥dy and approximate the function
Y+ 1(0,+00)(¥) 7Y
in L'(dy) by functions in C.(R).

3 Ascoli’s Theorem

In this section we present a criterion of relative compactness in C(X).
Let xo be a point of X. A subset H of C(X) is called equicontinuous
at z¢ if, for all £ > 0, there exists n > 0 such that

|h(z) — h(zo)| <& forall h € H and all z € X with d(z,z0) < 7.

H is called equicontinuous if it is equicontinuous at every point of X. It
is called uniformly equicontinuous if, for all € > 0, there exists > 0
such that

|h(w) - h(y)l <e forall h€ H and all z,y € X with d(z,y) <.

Since X has been assumed compact, these two notions are in fact equiva-
lent:
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Proposition 3.1 A subset of C(X) is equicontinuous if and only if it is
uniformly equicontinuous.

Proof. Tt is enough to show necessity. Let H be an equicontinuous subset
of C(X), and let £ > 0 be a real number. By assumption, for every z € X
there exists 7, > 0 such that |h(y) — h(z)| < /2 whenever h € H and
d(z,y) < 1. By the Borel-Lebesgue property, we can choose finitely many
points 1, . .., z, such that the balls B(z;, 7z, /2) cover X. Now let n be the
smallest of the 7,/2, and let  and y be points in X such that d(z,y) < 7.
Choosing j such that z € B(z;,7s,/2), we see that ,y € B(z;,s,), s0

|h(y) — h(z)| < |h(y) — h(z;)| + |h(z) — h(z;)| <& forallhe H. O

Ezamples

1. Every finite subset of C(X) is equicontinuous.

2. Every subset of an equicontinuous set is equicontinuous.

3. A finite union of equicontinuous sets is equicontinuous.

4. Any uniformly convergent sequence of functions in C(X) consitutes an
equicontinuous set (exercise).

5. If C is a positive real number, the set of C-Lipschitz functions from X
to K is equicontinuous.

Proposition 3.2 Let (f,) be an equicontinuous sequence in C(X) and
let D be a dense subset of X. If, for all x € D, the sequence of numbers

(fa(z)) converges, the sequence of functions (f,) converges uniformly to a
function f € C(X).

(Compare this result with Proposition 4.1 on page 18.)

Proof. Tt suffices to show that (f,) is a Cauchy sequence in C(X). To do
this, take ¢ > 0. By assumption, there exists 7 > 0 such that, whenever

d(z,y) <m,
|fn(x) — fa(y)| <€/5 forallneN.

Since X is precompact, il can be covered by finitely many balls of radius n:
X = U;=0 B(z;,n). Since D is dense, each ball B(z;,n) contains at least
one point y; from D. Since, by assumption, the sequences (fn(y;))nen
are Cauchy sequences, there exists a positive integer N such that, for any
integer j <,

|Fn(ys) — foly;)| <€/5 for alln,p > N.

Now let z be a point in X, and let j be an integer such that € B(z;,7).
Then, for n,p > N,

|£a(@) = fo(@)| < | fn(@) = Frl(@)| | fn(ws) = Fu @) |+ | FuW3) — Fo(95))]
+H fo(Ws) = Fol@s) |+ | Fol2) — fol21)| <e.
Thus, | fn — fpl| <€ for all n,p > N, and (f,) is a Cauchy sequence. [
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We deduce from this our main result:

Theorem 3.3 (Ascoli) A subset of C(X) is relatively compact in C(X)
if and only if it is bounded and equicontinuous.

Proof. For the “only if” part, let H be a relatively compact subset of C(X).
Then H is certainly bounded; this is true in any metric space. We must
show it is equicontinuous. Fix € > 0. Since H is precompact, we can choose
finitely many elements fo, ..., fr in H such that the balls B(f;,&/3) cover
H. Since the finite family (f;);<r is uniformly equicontinuous, there exists
7 > 0 such that |f;(z) — f;(y)| < &/3 for all j < r, whenever d(z,y) < 7.
It follows that, if f € H and d(z,y) < n, then

|f(@) = F)| < |f(@) = @) + [ f3(@) = £i@)] + | fiy) - FW)| <e,

where j is chosen so that || f — f;|| < €/3. This shows that H is equicontin-
uous.

For the converse, suppose H is bounded and equicontinuous. X is com-
pact, hence separable. Thus it contains a countable dense subset D. Let
(fn) be a sequence in H. For every point z in D, the sequence of numbers
(fn())nen is bounded by supjcg ||hl|; thus, by Theorem 3.1 on page 12,
there exists a subsequence (fn, ),y Such that (fn,(z)),cy converges for all

z € D. By Proposition 3.2, we deduce that the sequence (fy, )ren converges
in C(X). a

Remark. The preceding proof also shows that, if H is an equicontinuous
subset of C(X), the following properties are equivalent:

— H is bounded.
— There is a dense subset D of X such that, for all x € D, the set
{f(z)}sen is a bounded subset of K.

(This equivalence can also be proved directly.)

Ezample. Consider compact metric spaces X and Y, an element K of
C(X xY), and a Borel measure p on Y having finite mass (p(Y) < +00).
We define a linear operator T from C(Y) to C(X) by setting

Tf(z)= /;,K(a:,y)f(y)du(y) forall fe C(Y)and z € X.

Recall that B(C(Y)) denotes the closed unit ball in C(Y):

B(C(y))={fec®):Ifl <1}

Proposition 3.4 The image under T of the closed unit ball of C(Y) is a
relatively compact subset of C(X).
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We say that T is a compact operator from C(Y) to C(X) (see Chap-
ter 6).

Proof. 1t is clear that T(B(C(Y))) is bounded by

M = .
u(Y) - gglea))((xYlK (z,9)]

On the other hand, K is uniformly continuous on X x Y; in particular, for
all €, there exists 7 > 0 such that

|K(x1,y)—K(z2,y)| <e forallyeY and 1,22 € X with d(z1,z2) < 7.

Thus, for all f € B(C(Y)), we have |Tf(z1) — Tf(z2)| < pu(Y)e. There-
fore the subset T'(B(C(Y))) of C(X) is equicontinuous, and we can apply
Ascoli’s Theorem. O

FExercises

1. For each n € N, let f, be the function from [0,1] to R defined by
fn(z) = z™. At what points in the interval [0, 1] is the family {f,}nen
equicontinuous?

2. a. Let X be a metric space and (f,,) a sequence in C(X). Prove that, if
{fn}nen is equicontinuous at a point z of X, for any sequence (z,,)
of X that converges to = the sequence (f,(x) — fn(zn)) converges
to 0.

b. Set fn(z) = sinnz. Prove that {f,}nen is not equicontinuous at any
point z of R.
Hint. Consider the sequence (z,) defined by z, = = + 7/(2n).

3. Let X be a compact metric space. Prove that, if H is an equicontinuous
subset of C(X), the closure H of H in C(X) is equicontinuous.

4. Let X be a compact metric space, and let H be an equicontinuous family
of elements of C(X).

a. Prove that the set of points = of X such that the set {f(z): f € H}
is bounded is open and closed.

b. Assume that X is connected. Prove that, if there exists a point z € X
for which {f(z) : f € H} is bounded, H is a relatively compact
subset of C(X).

5. a. For a € (0,1), let C*([0,1]) be the set of functions f from [0, 1] to

R such that
_ |f(z) - f(v)|
|fla= sup “—F——=
0<z,y<1 |f'3 - yl
]

is finite (such an f is called a Holder function of ezponent ). As
usual, we denote by || - || the uniform norm.
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i. Prove that C%(]0,1]), with the norm ||-|la = |-|a + /-], is &
Banach space.

ii. Prove that B(C([0,1])), the closed unit ball in C*([0,1]), is a
compact subset of C([0, 1]).

iii. Suppose 1 > (3> a > 0.
A. Take f € C?([0,1]). Prove that, for all n > 0,

|fla < max(|flgn®, 2[fln~®).

Deduce that, if (f,) is a bounded sequence in CP that con-
verges uniformly to f € C?, then || fn — flla = 0.

B. Deduce that B(C?([0,1])) is compact in C*([0,1]).

. Let m be a nonnegative integer. We give C™(([0, 1]) the norm defined

by

m

Ifllm =2 sup [fP(z)].

k—o0 Z€ 0,1]
i. Prove that with this norm C™ ([0, 1]) is a Banach space.
ii. Prove that if m and n are nonnegative integers such that m > n,
then B(C™([0,1])) is a relatively compact subset of C™([0,1]).

(You might start with m = 1 and n = 0.) Is the ball B(C™([0,1]))
closed in C™([0,1])?

. Take m € N and a € (0,1). Denote by C™**([0,1]) the vector

space consisting of functions of C™ ([0, 1]) whose m-th derivative is
an element of C([0,1]), and define on this vector space a norm
Il - lm+a by setting || fllm+a = || fllm + [f(m)|a-
i. Prove that C™*+%([0,1]), with the norm || - ||;m+a, is a Banach
space.

ii. Take p,q € R such that ¢ > p > 0. Prove that B(C([0, 1)) is a
relatively compact subset of C?([0,1]).

6. Ascoli’s Theorem in R

a. Let f, be the function defined for all z € R by

min(1l,n/z) ifz #0,

f"(w)z{l if 2 = 0.

Prove that the subset {f,}nen of Co(R) is bounded and equicontin-
uous (see Exercise 8 on page 40 for the definition of Co(R)), but the
sequence (f,) has no uniformly convergent subsequence.

Hint. The sequence (f,,) converges pointwise but not uniformly to
the constant function 1.

. Let H be a subset of Co(R). Prove that H is relatively compact in

Co(R) if and only if it is bounded and equicontinuous at every point
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of R and satisfies that condition that for any € > 0 there exists A > 0
such that

Ih(w)l <e forallh€ H and z € R with |z| > A.

Hint. Use Ascoli’s Theorem in the space C(U) (refer again to Exer-

cise 8 on page 40).
7. A particular case of Peano’s Theorem. Let f be a continuous function
from [0,1] x R to R for which there exists a constant M > 0 such that

|f(z,t)| < M(1+|z|) forallte[0,1] and z € R.

a. Let n be a positive integer. We define points z}, for 0 < j < m, by
setting z§ = 0 and

iii.

ii.

iii.

1 ,
m;.‘+1=z;‘+;f(f—l,x;-‘) for0<j<n-1.

. Prove that [27| < (1+ M/n)) —1<eM —1for 0 <j<n.
ii.

Let ¢, be the continuous function on [0, 1] that is affine on each
interval [j/n, (j+1)/n] and satisfies ¢, (j/n) = z} for 0 < j <
n. That is, for 0 < j <n—1and t € [j/n, (j+1)/n] we have
—any (i l) I gn
en(t) =27 + (t n f( , xj).

n

Prove that for s,t € [0,1] we have |pn(t) — <pn(s)| < MeM|t—s|.
For s € [0,1], set

n—1

Yau(s) = D Lji/m, <f+1)/n)(3)f(%’ “’"(%))

=0

¢
Prove that ¢, (t) = / Yn(s)ds for all t € [0,1].
0

i. Show that there exists a subsequence (¢n, )ken that converges

uniformly on [0, 1] to a function ¢ € C([0, 1]).

Prove that the sequence (¥n, )ken converges uniformly on [0,1)
to £ (s, p(s)).

Deduce that ¢(t) = [ f(s,¢(s)) ds for all ¢ € [0,1]; then prove
that ¢ is of class C! on [0, 1] and satisfies the differential equation

¢'(t) = f(t, o)) forallte(0,1],
¢(0) = 0.

Is the ¢ constructed above the only one that satisfies these con-
ditions?

(*)
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8. Let X be a compact metric space and H a subset of C(X).

a. Suppose H is relatively compact. Prove that for all € > 0 there exist
constants C > 0 and B > 0 such that d(f, L8) < e forall f € H,
where L2 denotes the set of C-Lipschitz functions on X with uniform
norm at most B, and d is the metric associated with the same norm.
Hint. Use the fact that Lipschitz functions are dense in C(X).

b. Show the converse.

Hint. Prove that L2 is precompact, and finally that so is H.
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Locally Compact Spaces
and Radon Measures

In this chapter we study a representation, in terms of measures, of positive
linear forms on spaces of continuous functions; this representation leads to a
description of the topological dual of such spaces. It is useful in applications
to consider functions defined on metric spaces somewhat more general than
compact spaces, namely, locally compact ones.

1 Locally Compact Spaces

A metric space (X, d) is called locally compact if every point in X has
a compact neighborhood; equivalently, if for every x € X there exists a
compact K of X whose interior contains z; equivalently, if for every x € X
there exists r > 0 such that the closed ball B(z,r) is compact. Local
compactness is clearly a topological notion.

Any compact space is obviously locally compact. The spaces R? and
C?, for d > 1, and more generally all normed spaces of finite nonzero
dimension yield a first example of locally compact but noncompact spaces.
The famous theorem of F. Riesz states that, conversely, the only locally
compact normed spaces are those of finite dimension:

Theorem 1.1 (F. Riesz) Let X be a normed space, with open unit ball
B and closed unit ball B. The following properties are equivalent:

i. X is finite-dimensional.
ii. X is locally compact.
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iii. B is compact.
iv. B is precompact.

Proof. Property i implies ii because closed balls in a finite-dimensional
normed space are compact. If ii is true, there exists 7 > 0 such that
B(0,7) = rB is compact; this implies iii. That iii implies iv is obvious.
Thus the only nontrivial part of the theorem is iv = i.

Suppose that B is precompact. Then there is a finite subset A of X such
that

Bc |J B(z,3)=A+3B.
T€EA

Let Y be the (finite-dimensional) vector space generated by A; then B C
Y + 27!B. One can easily show by induction that, for any integer n > 1,
we have B C Y + 27 "B, and therefore

Bc (Y +27"B).
n>1
In particular, if £ € B, there exists for all n > 1 a y, € Y such that
|lz—yn|| < 27™. We deduce that B C Y. Since Y is finite-dimensional, hence
complete, hence closed in X, it follows that B C Y and, by homogeneity,
X=Y. O

We remark that any space with the discrete metric (defined by d(z,y) =1
if £ # y and d(z,z) = 0) is locally compact.

Here is a simple but important consequence of the definition of local
compactness.

Proposition 1.2 If X is a locally compact space, there exists for every
z € X and for every neighborhood V of x a real number r > 0 such that
B(zx,r) is compact and B(z,7) C V.

Proof. Just choose r = min(r’,r"), where r’ and r” are such that B(z,r’)
is compact and B(z,r") C V. O

Corollary 1.3 Let X be locally compact. If O is open in X and F is
closed in X, the intersection Y = ONF (with the induced metric) is locally
compact.

Proof. Take z € Y. By the preceding proposition, there exists r > 0 such
that B(z,r) is compact and contained in O. Then B(z,7)NY = B(z,r)NF
is compact. o

In particular, every open set in a finite-dimensional normed space is
locally compact.
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Corollary 1.4 Consider a locally compact space X, a compact subset K
of X, and open subsets Oy,...,0, of X covering K. There exist compact
sets K1, ..., K, with K; C O; for each j and such that

n
K C U f{j.
j=1
Proof. By Proposition 1.2, for all points z of K there exists j € {1,...,n}

and a compact set K, such that z € K, C K, C O;. By the Borel-
Lebesgue property, K can be covered by finitely many of these interiors:

p
K c |J k...

i=1

Now set K; = Uy, co, Ka: for 1 < j <n. Then

p
UK 3U U &..=|JE.2K;

j=1 K.,CO; i=1
and, sure enough, K; C O;. O
The next result is about the separability of locally compact spaces.

Proposition 1.5 Let X be a locally compact space. The following prop-
erties are equivalent:

i. X is separable.

ii X is o-compact.
. There ezists a sequence (Ky) of compact sets covering X and such that
K, C Kn+1 for alln € N.

Proof. Tt is clear that iii implies ii. The implication ii = i is a particular
case of Proposition 2.2 on page 8.

Now suppose that X is separable and let (z,) be a sequence dense in
X. Set A = {(n,p) € N x N*: B(z,,1/p) is compact}; we will show that
the family & = (B(&n,1/D))(n,p)ca covers X. Take z € X and let 7 > 0
be such that B(z,r) is compact. Then take p € N* such that 1/p < r/2
and n € N such that d(z,z,) < 1/p. One sees that x € B(zn,1/p) C
B(z,2/p) C B(z,r). Therefore B(z,,1/p) is compact and z belongs to
some element of #. This shows that i implies ii.

Finally, we show that ii implies iii. Suppose that X is o-compact and
let (L) be a sequence of compact sets that cover X. We construct the
sequence (K,) by induction, as follows: set Ko = Lo and, for n > 1, choose
K, such K,,_1 UL,_; C K, (using Corollary 1.4). O

A sequence (K,,) of compact sets that covers X and satisfies K, C K n+1
for all n is said to exhaust X.
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Proposition 1.6 Let (K,) be a sequence of compact sets that ezhausts a

metric space X. For every compact K of X there ezists an integer n such
that K C K,,.

Proof. The open sets K, cover K. By the Borel-Lebesgue property, K is

in fact contained in a finite union of sets K,: but Uj<n K K. O

Continuous Functions on a Metric Space

We now introduce various spaces of continuous functions on a metric space
(X,d).

We denote by Cg( (X), or simply by Cy(X), the vector space over K con-
sisting of bounded continuous functions f : X — K; recall that f being
bounded means that sup,¢x|f(z)| < +oo. We give Cf(X) the uniform
norm (or norm of uniform convergence), defined by

I£1l = sup| f(z)].
z€X

With this norm, CK(X) is a Banach space.

We say that a function f : X — K tends to zero at infinity if for all
€ > 0 there exists a compact subset K of X such that |f(z)| < € for all
z ¢ K. We denote by CX(X) or Cy(X) the vector space over K consisting
of continuous functions X — K that tend to 0 at infinity. It is easy to
check that Cp(X) is a closed subspace of Cy(X); therefore Co(X) with the
uniform norm forms a Banach space.

We remark that Dini’s Lemma (Proposition 1.2 on page 29) can be gen-
eralized to CX(X):

Proposition 1.7 Let (fn)nen be an increasing sequence in C&(X), con-
verging pointwise to a function f € CX(X). Then (f») converges uniformly

to f.

Proof. We show that the sequence (g, ) defined by g, = f — f, converges
uniformly to 0. Given € > 0, there exists a compact K such that go(z) < e
for all z ¢ K. By Dini’s Lemma, there exists an integer n such that g,(z) <
¢ for all z € K. Since the sequence (g,,) is decreasing, this implies that for
all p>n and all z € X we have 0 < gp(z) <e. O

The support of a function f : X — K, denoted Supp f, is the clo-
sure of the set {z € X : f(z) # 0}. Thus Supp f is the complement of
the largest open set where f vanishes, this latter set being of course the
interior of f~1({0}). We denote by CX(X) or C.(X) the vector space over
K consisting of the functions X — K having compact support. Clearly
C.(X) is a vector subspace of Cy(X), but not in general a closed one;
see Corollary 1.9 below, for example. Naturally, if X is compact we have

Ce(X) = Co(X) = Cp(X) = C(X).
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Finally, we denote by C; (X), Cif (X), and C}(X) the subsets of CR(X),
CR(X), and CR(X) consisting of functions that take only positive values.

Proposition 1.8 (Partitions of unity) Let X be locally compact. If K
is a compact subset of X and Oy,...,0, are open subsets of X that cover
K, there egist functions ¢, ..., o, in CX(X) such that 0 < ¢; < 1 and
Supp p; C O; for each j and

Z(p]-(:z:) =1 forallz € K.
j=1

Proof. Let K;,...,K, be the compact sets whose existence is granted by
Corollary 1.4. We just have to set, for z € X,

d(z, X\ K;)
pj(z) = n Caag
d(z,K)+Y p_, d(z, X\ Kk)
In particular, Supp p; C K; C O;. O

A family (¢1, ..., p,) satisfying the conditions of the proposition is called
a partition of unity on K subordinate to the open cover Oy,...,0,.

Corollary 1.9 If X is locally compact, C.(X) is dense in Co(X).

Proof. Take f € Co(X) and € > 0. Let K be a compact such that |f(z)| < €
for all z ¢ K. Applying Proposition 1.8 with n = 1 and O; = X, we find a
¢ € CR(X) such that 0 < ¢ < 1 and ¢ = 1 on K. Then fp € C.(X) and
If = foll <e. 0

Corollary 1.10 Let X be locally compact and separable and let O be open
in X. There exists an increasing sequence () of functions in C}H(X), each
with support contained in O, and such that lim,_, 1 ¢n(z) = 1o(z) for all
zeX.

Proof. O is a locally compact separable space, by Corollary 1.3 above and
Proposition 2.3 on page 8. By Proposition 1.5 there exists a sequence of
compact sets (K,) such that K, C Io{n+1 for all n and |J,,cy Kn = O.
By Proposition 1.8 there exists for each n a map ¢, € CR(X) such that
0 < ¢n <1, pnlk, =1, and Supp ¢, C K,+1. The sequence (y¢,) clearly
satisfies the desired conditions. a

To conclude this section, we observe that Cy(X) is a algebra with unity,
that C.(X) and Cy(X) are subalgebras of C,(X) (without unity if X is not
compact), and that CR(X), CX(X) and CR(X) are also lattices.
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FEzxercises

1.

a. Let X be a metric space. Prove that, if there exists a real number
r > 0 such that all closed balls of radius r in X are compact, then
X is complete.

b. Find a locally compact metric space X such that, for all z € X,

there is a compact closed ball of center = that is noncompact.

Find a locally compact metric space that is not complete.

Find a complete metric space that is not locally compact.

& o

. a. Let (X;,d;) and (X2,ds) be locally compact metric spaces. Prove

that X; x Xs, together with the product metric given by d(z,y) =
dy(z1,91) + d2(22,y2), is locally compact.
b. Let ((Xp, dp))pen be a sequence of locally compact, nonempty met-
ric spaces, and set X = HpeN Xp, with the product metric d (see
page 13).
i. Take £ € X and r € (0,1]. Prove that if n and n' are integers
satisfying 2~™ < r < 2=™, then

H{a:p} X H Xp C B(z,r) C H Bp(zp, 2P1) X H Xp,
p=0

p>n p=0 p>n'

where B,(-,-) and B(-,-) represent open balls in (X, dp) and
(X, d), respectively.

ii. Prove that (X, d) is locally compact if and only if all but a finite
number of factors (X,,dp) are compact.

. Let X be a metric space and Y a subset of X.

a. Prove that B(z,r)NY C B(z,r) NY forallz € Y and r > 0. Deduce
that, if B(z,r) NY is compact, then B(z,7)NY CY.

b. Suppose that Y, with the induced metric, is locally compact. Show
that there exists an open subset O of X such that Y = ONY. This
gives a converse for Corollary 1.3.

Show that an infinite-dimensional Banach space cannot be o-compact.

Hint. Use Baire’s Theorem (Exercise 6 on page 22).

. a. Prove that every metric space that can be exhausted by a sequence

of compact sets is locally compact.
b. Find a o-compact metric space that is not locally compact.

. Baire’s Theorem, continued. Let X be a metric space. Recall from Ex-

ercise 6 on page 22 the game of Choquet between Pierre and Paul.

a. Prove that Paul has a winning strategy if X is locally compact.
Deduce that in X no open set can be a union of a countable family
of closed sets with empty interior.

Hint. The intersection of a decreasing sequence of nonempty com-
pact sets cannot be empty.
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b. Take X = R\ Q, with the usual metric. Prove that X is neither

complete nor locally compact (you can use Exercise 3 above, for ex-
ample), but that Paul nonetheless has a winning strategy, so Baire’s
Theorem is valid in X.
Hint. Take an enumeration of the rationals, say Q = {r,}nen. Show
that, whenever Pierre plays U,,, Paul can respond with V,, = I, \ @,
where I, is a nonempty open interval in R such that I, \Q c U,,
d(I,) < 1/n,and r, & I,.

7. Alezandroff compactification. Let (X, d) be a separable and locally com-
pact metric space. Set X = X U {00}, where oo is a point that does not
belong to X. We wish to define on X a metric that extends the topology
of X and that makes X compact. To do this, let (Va)nen be a countable
basis of open sets in X (see Exercise 1 on page 10), and put

% = {(p,q) € N*: V,, C V, and V, is compact }.

This set is countable; let % = {(pn,qn)}nen be an enumeration of it.
For each n, let ¢, be an element of C.(X) such that 0 < ¢, <1
everywhere and ¢, =1 on V,,, and whose support is contained in V,,,.
Put ¢,(00) = 0. Then, for z,y € X, define

5(z,y) = 22 " |en(z) — on(¥)|-

n=0

a. Prove that ¢ is a metric on X.

. Let (zj)jen be a sequence in X. Prove that lim;, o d(z;,00) = 0
if and only if, for any compact K in X, there is an integer J such
that z; ¢ K for j > J. (In this case we say that the sequence (z;)
tends to infinity.)

c. Let (z;)jen be a sequence in X and z a point in X. Prove that
lim;_, 4 o d(z;,z) = 0 if and only if lim;_, 1 6(z;,z) = 0. Together
with the preceding result, this shows that the convergence of se-
quences in X, and therefore the topology of (X, ), does not depend
on the choice of d and 4.

d. Prove that (X, 6) is a compact metric space.

e. Prove that X is compact if and only if oo is an isolated point of X.

f. We now suppose that X = R®. Prove that X is homeomorphic to
S4, the (euclidean) unit sphere in R4*!, that is,

d+1
Sa = {z € R4 . Z:cf = 1},

i=1

=2

with the distance induced by the euclidean norm in R,
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10.

11.
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Hint. Use stereographic projection, the map ¢ : ¢ — R defined by
¢(0,...,0,1) = oo and

Zj

80(13):( ) for z # (0,...,0,1).
1<j<d

1—-z441

g. Prove that Co(X) can be identified with the space of continuous
functions on X that vanish at co.

h. Deduce that Cy(X) is separable.

i. Prove that the Stone-Weierstrass Theorem, stated in Exercise 8b on
page 41 for R, generalizes to the case where R is replaced by X.

j- Ascoli’s Theorem in Co(X). Prove that a subset H of Co(X) is rel-
atively compact in Cp(X) if and only if it is bounded and equicon-
tinuous and satisfies the condition that for every € > 0 there exists
a compact subset K of X such that |h(z)| < € for every z € X \ K
and every h € H.

. Let X be a locally compact space. Prove that X is separable if and only

if Co(X) contains a function taking positive values everywhere.
Hint. X is separable if and only if it is o-compact.

. Let (X,d) be a metric space.

a. Prove that Cy(X) and Co(X), with the uniform norm, are Banach
spaces.

b. Prove that X is compact if and only if every continuous function
from X into R is bounded.
Hint. Show that, if X is not compact, there exists a sequence (Zn)nen
in X having no convergent subsequence and a sequence (r)nen of
positive real numbers tending toward 0 and such that the balls
B(zp,rn) are pairwise disjoint. Then consider ZneN ne,, where
on(x) = (1 —d(z,zn)/r)*.

c. Prove that Cy(X) is separable if and only if X is compact.
Hint. Suppose that X is not compact and define, for each a €
{0,1}N, a function f, by setting fo = X, cn Q@n¥n, Where the @,
are as in part b. Prove that f, € Cp(X) and that || fo — fg|| = 1 if
a # . Then use Proposition 2.4 on page 9. (Side question: Among
the functions f,, how many have compact support?)

Tietze FExtension Theorem, continued. Let X be a locally compact

space, K a compact subset of X, and f a continuous function K — K.

Prove that there exits a function f € Cc(X) such that flx = f and

171 = maxeere ()]

Hint. Use Exercise 7 on page 40 and Proposition 1.8 above.

Extend the result of Exercise 1 on page 30 to the case where X is

separable and locally compact and C(X) is replaced by Co(X).

Hint. One can use Exercise 7 to reduce the problem to the one covered

by the original result.
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12. Topology of uniform convergence on compact sets. Let X be a separa-
ble, locally compact metric space and (K,) an exhausting sequence of
compact sets of X. Let C(X) be the vector space consisting of continu-
ous functions from X into K. For each element f of C(X) define a real
number ¢(f) as

+o0
q(f) =Y 2" min(L, |f|x.),

n=0

where || - || k,, represents the uniform norm on K,.

a.
b.

Prove that the map d: (f, g) — q(f—g) is a metric on C(X).

Let (fx)ren be a sequence of elements of C(X) and let f be an
element of C(X). Prove that (fi) converges to f uniformly on every
compact of X if and only if limg_ 400 d(fk, f) = 0.

Prove that the metric space (C(X),d) is complete.

. Forn € N, let (¢n,p)pen be a dense sequence in C(K,). We know by

Exercise 10 above that we can extend each ¢y , to a function ¢, , €
Cc(X). Prove that the family (Pn,p)(n,p)en? is dense in (C(X),d).

. Deduce that the metric space (C(X), d) is separable and that C.(X)

is dense in (C(X),d).
Deduce that (Cp(X),d) and (Co(X),d) are complete if and only if
X is compact (see Exercise 9b above).

. Ascoli’s Theorem in C(X). Let H be a subset of C(X). Prove that

H is relatively compact in (C(X),d) if and only if it satisfies the
following conditions:

— H is equicontinuous at every point of X.

— For every point z of X, the set {h(z)}recq is bounded.

Hint. Carry out the diagonal procedure using Ascoli’s Theorem on
each compact K.

2 Daniell’s Theorem

This section approaches integration from a functional point of view. We as-
sume the reader is familiar with the set-theoretical approach to integration,
where a measure is defined as a o-additive function on sets.

Notation. Let X be any nonempty set. We denote by # the vector space
over R consisting of all functions from X to R. This space, with the usual
order relation, is a lattice: If f and g are elements of &,

(sup(f, 9))(z) = max(f(z),g(z)) and (inf(f,g))(z) = min(f(z),g(x)).

If (fn) is a sequence in & and f is an element of ., we write f,  f to
mean that the sequence (f,) is increasing and converges pointwise to f;
the meaning of f, \, f is analogous.
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As before, we use the same symbol for a constant function and its value.

If m is a measure on a o-algebra of X, we denote by .#!(m) the subspace
of Z consisting of m-integrable functions. As usual, we denote by L!(m)
the quotient vector space of £!(m) by the equivalence relation given by
equality m-almost everywhere, endowed with the norm defined by | f|| =
J |fl dm (we use the same symbol f for an equivalence class and one of its
representatives). The normed space L!(m) is then a Banach space.

During the remainder of this section, we consider a vector subspace L of
& that is a lattice (this is equivalent to saying that f € L implies |f| € L)
and satisfies the following condition:

There ezists a sequence (¢y,) in L such that @, /1. (*)

We will denote by o(L) the o-algebra generated by L, that is, the smallest
o-algebra of X that makes all elements of L measurable. Finally, let .Z be
the set of functions from X to R that are o(L)-measurable.

Lemma 2.1 .Z is the smallest subset of & that contains L and is closed
under pointwise convergence (the latter condition means that the pointwise
limit of any sequence in .Z is also in .%).

Proof. 1t is clear that a minimal set satisfying these conditions exists. Call
it A.

— A is a vector subspace of F and a lattice, and it contains the constants.

Proof. If A € R, the set {f € & : A\f € #} contains L and is closed
under pointwise convergence, so it contains %&. Therefore f € % and
A€ R imply \f € &.

Similarly, for every g € L, the set {f € & : f + g € &} contains &,
so the sum of an element of L and one of & is in %B. Using the same
reasoning again we deduce from this that, for every f € 4, the set
{he€ Z:f+he B} contains B. Thus the sum of two elements of B
is in %, and & is a vector space.

Since L is a lattice we see by considering the set {f € & : |f| € 8}
that 4 is a lattice as well. That £ contains 1 and therefore all constants
follows from condition (x). O

— We now show that Z = £. Set J = {A C X : 14 € #}. By the
preceding paragraphs, . is a o-algebra. If f € L and a € R, the charac-
teristic function of the set {f > a} is the pointwise limit of the sequence
(inf(n(f —a)*, 1)), and so belongs to &, and {f > a} € Z. Thus the
elements of L are J-measurable, which implies that (L) C 7; in other
words, 14 € & for A € o(L). Since every o(L)-measurable function is
the pointwise limit of o(L)-measurable piecewise constant functions, we
deduce that ¥ C % and, by the minimality of 4, that .¥ = A. O
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Ezample. Let X be a metric space. Recall that the Borel o-algebra of
X is the smallest o-algebra of X that contains all open sets of X, and that
the corresponding measurable functions are called Borel functions.

Proposition 2.2 If X is a metric space, the set of Borel functions from
X to R is the smallest subset of F that contains all continuous functions
from X to R and is closed under pointwise convergence.

Proof. Let L be the set of continuous functions from X to R. Then L
is a lattice and satisfies (x), since 1 € L. On the other hand, let % be
the Borel o-algebra of X. Certainly every continuous function on X is %-
measurable, so o(L) C %B. Conversely, every open set U of X is contained
in o(L): to see this, note, for example, that U is the inverse image of the
open set R* under the continuous function f defined by f(z) = d(z,U®).
Thus # C o(L), which implies & = o(L). Now apply Lemma 2.1. O

Remark. One should not confuse .# with the set of pointwise limits of
sequences in L, which is generally strictly smaller that .£. In the situation
of the preceding example, this smaller set is called the set of functions of
first Baire class: see Exercise 4.

The rest of this section is devoted to the proof of the following result:

Theorem 2.3 (Daniell) Let u be a linear form on L satisfying these
conditions:

1. p is positive, that is, if f € L satisfies f > 0 then p(f) > 0.
2. If a sequence (fy) in L satisfies fn, \( 0, then lim,_, o u(fn) = 0.

Then there ezists a unique measure m on the o-algebra o(L) such that
Lc £'(m) and u(f)=/fdm for all f € L.

Uniqueness of m. Suppose that two measures m; and m; satisfy the stated
properties. Let (¢,,) be a sequence satisfying condition (x) on page 58. For
every n € N and every real A > 0, the set

{ fez: / inf(f*, A\pp) dmy = / inf(f+, /\(pn)dmg}

equals ., by the minimality of .# (proved in Lemma 2.1) and the Domi-
nated Convergence Theorem. Making n go to infinity, then A, we conclude
by the Monotone Convergence Theorem that [ f+dm; = [ f* dmy for all
f € Z. Therefore. m; = mz on o(L). O

Ezistence of m. The proof of existence is rather long and is carried out in
several steps. First of all, let % be the set of functions from X into R that
are pointwise limits of increasing sequences of elements of L. The measure
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m is constructed by first extending the linear form p to % (steps 1-3),
then to the space L! defined in step 6 below. Some properties of L! and of
1 are established in step 7, allowing us to conclude the proof in step 8.

1. The set % contains the positive constants, is closed under addition and
multiplication by nonnegative reals, and for any pair (f,g) of elements
of % , we have sup(f,g) € % and inf(f,g) € % . Moreover % is closed
under pointwise convergence of increasing sequences.

Proof. Only the last assertion requires elaboration. Let (f,) be an in-
creasing sequence in % converging toward an element f of #. By
assumption, there exists, for any n € N, a sequence (gn m)men in L
that is increasing and converges to f,. For each m € N, set h,, =
SUPg<pn<m 9n,m- It is clear that (h,,)men is an increasing sequence in L
and that Inm < hm < fm if m > n. Making m go to infinity in this
inequality, we get f, < lim,, o0 hm < f; then making n go to infinity,
we get hp, /' f, which shows that f € . O

2. Let (fn) and (gn) be increasing sequences in L, converging pointwise to
elements f and g of % , respectively. If f < g, then

i < 1 < .
Jm p(fa) < lHm p(gn) < 400
Proof. By linearity and positivity, the linear form u is increasing on L
(f < g implies L(f) < L(g)). On the other hand, for each n € N, we
have inf(fn, gm) /* fn as m goes to infinity, 50 limm—4o0 4 (inf(fn, gm))
= u(frn), by assumption 2 of the theorem applied to the sequence

(fn — inf(frn, gm))m. It follows that u(f,) < limm— oo (gm) for all
n € N, and this shows the result. O

3. We extend p to % by setting u(f) = limp 400 u(frn), where f € %
and (f,) is an increasing sequence in L that converges to f pointwise.
By step 2, p is well-defined and increasing on %, and it takes values
in (—o0, +00]. Moreover, y is additive (that is, u(f + g) = u(f) + u(g)
for f,g € %) and, for all f € % and every nonnegative real \, we
have p(Af) = Ap(f), with the usual convention 0-0o = 0. Now, if (fy,)
is an increasing sequence in % that converges to f € F pointwise,

w(f) = limpy o0 p(fn)-

Proof. By step 1, f is in % . Using the same notation as in the proof of
that step, we can write

N(f)z lim ﬂ(hm)g lim  p(fm);

m—+4-o00 m—+00

the reverse inequality is a consequence of the fact that p is increasing
in%. O



2 Daniell’s Theorem 61

4. We now extend p to —% by setting u(—f) = —u(f) for f € %. This
gives no rise to inconsistencies: if f € % N (—%), then f+ (—f) =0
and therefore u(f) + p(—f) = 0 and p(f) = —p(—f). It is also clear
that

w(g—h)=p(g) —u(h) ifge% andhe -%.
In particular, if g €  and h € —%, then h < g implies p(h) < p(g).

5. Let ¥ be the set consisting of elements f € & such that there exist
g € % and h € —% with p(g) and p(h) finite and b < f < g. For
f eV, weput

p*(f) =inf{u(g):9 € % and g > f} € R,
px(f) =sup{u(h) :he —% and h < f} € R.

The following properties follow easily from steps 3 and 4:
— For every f € ¥ and every nonnegative real A we have p.(f) <
p*(£), (=) = —pa(f), *(Af) = Au*(f), and pa(Af) = A (f)-
— For every pair (f1, f2) of elements of ¥, we have p*(fi + f2) <
p*(f1) + p*(f2) and pa(f1 + f2) = p*(f1) + pe(f2)-
— For every pair (fi1, f2) of elements of ¥ such that fi; < fz, we have
W (f1) < 1*(f2) and pa (1) < palfo).

6. We extend p to the set L! = {f € ¥ : p*(f) = u«(f)} by putting
w(f) = p*(f) = p«(f), for f € L. This definition is clearly consistent
with the ones given in steps 3 and 4 for elements of % and —% . Note
that L! is a vector space containing L and that u is a positive linear
form on L!.

7. Some properties of L* and p
a. The vector space L' is a lattice.

Proof. Notice first that an element f of # belongs to L! if and only
if for all € > 0 there exist g € % and h € —% suchthat h,< f < g
and p(g) — p(h) = p(g — h) <e.
Now take f € L' and € > 0, and choose g € % and h € —% as
just described. Then g* and h~ are in %, and g~ and h* are in
—%; furthermore, h* + g~ < |f| < h~ + g*. On the other hand,
p(h™ +g%) —ph* +97) =plg—h) <e. O
b. Let (f,) be an increasing sequence in L' that converges pointwise to
a function f. In order that f € L', it is necessary and sufficient that
limy, 400 p(fr) < +00 and that there be an element g of % such
that f < g. If this is the case, p(f) = limp 400 #(fn)-
Proof. The condition is clearly necessary; we show sufficiency. Since
f > fo, there exists h € —% such that p(h) is finite and h < f.
At the same time, p.(f) > limp 400 (fn). Now take € > 0. There

exists a sequence (g,) in % satisfying fo < go, #(g0) < p(fo) +¢/2
and, for all n € N*,

fn - fn—l <gn and [l,(g,n) < l‘(fn _ fn—l) + 9—n—1,
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Set [ = inf(zpGN gp,g). Then | € % by step 1; also, l > f and

+o0o
p) <D nlgp) < lim p(fa) +¢
p=0

(see step 3). It follows that f € ¥ and

B (f) = pe(f) = _lm_p(fr). a

n—+00

. Let (fy) be a sequence in L converging pointwise to f. If there exists

an element g of ¥ such that |f,| < g for alln € N, then f € L' and

B(f) = limp 400 u(fn)-

Proof. Clearly f € ¥ and, for all n, the function h,, defined by
hp,= lim inf fg

p—+00 n<k<p

belongs to ¥. Moreover, h,, / f. We deduce, by an application of
7a and two of 7b, that f € L' and u(f) < liminfg_, o0 u(fx). One
shows likewise that u(f) > limsupy_, | o, #(fi)- d

.IfgeL! and f € & satisfy0< f < g, then f € L'.

Proof. Assume g € L! satisfies g > 0. The set
{f € £ :inf(f*,g) € L'}

contains L, by steps 6 and Ta; by step 7c, it is closed under point-
wise convergence. Therefore it contains ., by Lemma 2.1. This im-
plies the desired result: if f € £ and 0 < f < g, then f = ft =
inf(f*,g) € L. O

8. Definition of the measure m. For A € o(L), we set m(A) = p(1,) if

14 € L' and m(A) = +oo otherwise. All that remains to do is prove
that m satisfies the properties stated in the theorem.

— o-additivity of m. If A and B are disjoint elements of o(L), there

are two possibilities: either 14 and 1g are both in L!, in which
case m(A U B) = m(A) + m(B); or one of 14 and 1p is not in
L', in which case neither is 14up (by step 7d), and we still have
m(AU B) = m(A) + m(B). Now let (A,) be an increasing sequence
of elements of o(L), with union A. If all the 14, are in L', we have
limy, o m(A,) = m(A) by step 7b; otherwise, by 7d, we have
14 ¢ L' and 14, ¢ L! for large enough n, and lim,_, , o m(4,) =
+00 = m(A).

Finally, take f € L'N.¢ with f > 0. The function f is the pointwise
limit of an increasing sequence of piecewise constant positive func-
tions that belong to .#, and so also to L' by step 7d. By applying



2 Daniell’s Theorem 63

the Monotone Convergence Theorem to the measure m and using
property 7b for u, we conclude that f € #*(m) and [ f dm = p(f),
and in fact that this equality holds for all f € L! N % and so for
f € L since L C L' N #. This proves Theorem 2.3. a

The next proposition follows quickly from the preceding proof.

Proposition 2.4 Under the same assumptions and with the same nota-
tion as in Theorem 2.3, the space L is dense in the Banach space L*(m).

Proof. We maintain the same notation. It suffices to show that if A is in
o(L) and m(A) is finite then for every ¢ > 0 there exists an element ¢
of L such that pu(|1a — ¢|) < e. If £ > 0, there exists ¢ € % such that
14 <4 and p(¢) < p(la) +&/2. Now let ¢ € L be such that ¢ < 1 and
() < p(g) +e/2. Since |14 — ¢l < (1 — 1a) + (3 — @) and ¢ € Lt by
step 7b, the desired result follows. O

FExercises

1. a. Let Q be a set and ¥ a o-algebra on Q (recall that the pair (€2, X)
is then called a measure space). Let L be a vector subspace of the
space of real-valued Y-measurable functions, such that L is a lattice,
o(L) = X, and L contains an increasing sequence that converges
pointwise to 1.

i. Let m; and m, be measures on (2,X). Prove that, if L C
LY (mq) N £ (my) and [ fdmy = [ fdm, for all f € L, then
m; = may.

ii. Let m be a measure on (2,X) and h a complex-valued ¥-mea-
surable function such that, for all f € L, the product fh is
in #'(m) and [ fhdm = 0. Prove that h vanishes m-almost
everywhere.

b. Assume that © = R? and that ¥ is the Borel o-algebra. Let Q be
the set of subsets of R% of the form [a1,b1] X -+ X [ag,bg], With
aj,b; € R and a; < b;. A Borel function h from R? to C is called
locally integrable if fc |h(:c)| dz < +oo for all C € Q, where dx is
Lebesgue measure on R%. Prove that if a locally integrable function
h : R® - C satisfies Joh(z)dz = 0 for all C € Q, it vanishes
dz-almost everywhere.

Hint. Prove that [ f(z)h(z)dz = 0 for all f € CR(RY).

c. Let m be a Borel measure on R and let h be an m-integrable Borel
function from R to C. Prove that if

/em‘h(y) dm(y) =0 forallz eR,

then h vanishes m-almost everywhere.
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Hint. Prove, using Fubini’s Theorem and Exercise 8e on page 42,

that [ f(y)h(y)dm(y) = 0 for all f € Co(R).

d. Prove likewise that, if m; and m, are Borel measures of finite mass

on R such that
/ ¥ dmy (y) = / edmy(y) forall z € R,

then m; = ma.

2. The monotone class theorem. Let 2 be a set. A subset J of #(Q) is

called a monotone class if it satisfies the following properties:

-Qe .

-IfT,Se Z and T C S,then S\T € J.

— For every increasing sequence (T, )nen in 7, the set |J, oy Tn is in

7.

Let ¢ be a subset of (1) closed under finite intersections (this means
that the intersection of two elements of ¢ is in ¢). Show that the small-
est monotone class containing ¢ is closed under finite intersections, and
therefore is a o-algebra.

Hint. Use for inspiration the proof of Lemma 2.1 on page 58. More
precisely, denote by 7 the smallest monotone class containing ¢; show
first that the set of T € 7 such that TN A € Z for all A € 4 coincides
with .

3. Let X be a locally compact and separable metric space.

a. Set L = CR(X). Prove that L satisfies the assumptions of this sec-

tion. In the sequel, as in the proof of Theorem 2.3, we will denote
by % the set of pointwise limits of increasing sequences in L.

. Take f € %. Prove that f is lower semicontinuous (which means

that for all real a the set {f > a} is open) and that the set {f < 0}
is relatively compact.

. Let f be a lower semicontinuous function from X to R taking non-

negative values.

i. Prove that, for all point z of X,

f(x)= sup ().
peCH(X)
p<f

ii. Let (K,,) be a sequence of compact sets exhausting X. Prove that
for every n € N* there exists @, € C(X) such that ¢, < f and
en(x) > f(z) —1/n for all z € K.

iii. Prove that the sequence (yp,) converges pointwise to f; then
prove that f € %.

d. Let f be a lower semicontinuous function from X to R such that the

set K = {f < 0} is compact.
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i. Prove that f is bounded below.

ii. By reducing to the case treated in the preceding question, deduce
that fe %.
Hint. If K is nonempty, consider the function f + ¢, with ¢ €
CI(X) such that ¢ = —inf,ecx f(z) on K.
e. Deduce that N (-%) = CX(X).
. Functions of first Baire class. A function from R to R is of first (Baire)
class if it is the pointwise limit of a sequence of continuous functions
from R to R. We denote by £ the set of such functions. If f is a function
from R to R, we write ||f|| = sup,cg|f(2)| (so ||f|| can be +o0). We
say that a function f from R to R is F,-measurable if, for every open
subset U of R, the set f~!(U) is an F,, that is, a union of countably
many closed subsets of R.

a. Prove that the uniform limit of a sequence of functions of first class
is a function of first class.
Hint. Let (f,) be a sequence of elements of % that converges uni-
formly to a function f. After passing to a subsequence if necessary,
we may assume that ||f — fp|] < 27" for every n € N. Thus f is the
uniform limit of the series of functions 7 n(fn — fan—1) (where by
convention f_; = 0). Prove that there exists, for each integer n > 1,
a sequence (¥ )ren of continuous functions that converges pointwise
to fn — fn—1 and satisfies ||k|| < 27™*2 for all k € N. Then prove
that the sequence of functions (v,,) defined by

Yo =7 +93 +--+¢n

converges pointwise to f — fp.

b. Prove that every function of first class is F,-measurable.
c. Prove that £ is not closed under pointwise convergence.
Hint. Let (fm)men be the sequence in % defined by

= 1l lrz)?n.
fm(x) nll}I-Poo cos(m! 7x)
Prove that it converges pointwise to the function 1g; then use Exer-
cise 6g-ii on page 23 to show that 1g ¢ 4.
d. Let f be a function of first class from R to R.

i. Let (Up)nen be a basis of open sets of R (see Exercise 1 on
page 10) and, for each n € N, set A, = f~1(Uy,) \ Int(f~1(Uy)).
Prove that all the A, are F,’s having empty interior, and that
the set of points where f is not continuous is | J,, ¢y An-

ii. Deduce that the set of points where f is continuous is a G5 (that
is, the complement of an F,) and is dense in R.

Hint. Use Baire’s Theorem, Exercise 6 on page 22.



66

2. Locally Compact Spaces and Radon Measures

iii. Use this to give another proof that the function 1q is not of first
class.

. Let (Ux)ren be a sequence of open sets in R and set G = [y Uk-

Prove that there exists a function f of first class such that G =
77({o}).

Hint. Prove that, for every k € N, there exists a continuous function
fi such that Uy = f;'(R*). Then, for k € N and z € R, set gi(z) =
limy_, 400 €~™%(®). Prove that the function f = i 27 kgy satisfies
the desired conditions.

. Let f be a bounded and F,-measurable function from R to R. We

wish to show that f is of first class. Choose (a,b) € R? such that
a < band f(R) C [a,b]. Choose also € > 0 and a subdivision (ag = a,
ai,...,an =>) of [a,b] with step at most & (this means that 0 <
a; —a;—1 <eforl<i<n).

i. Prove that, for each i € {1,...,n}, there exists f; € & such that
f71{0}) = {ai-1 < f < a;}. In the sequel we will also write
fO = f'n.+l =1

ii. For each i € {1,...,n}, set

i—1 n+1 <P2
ei=]1f =1 f 9== 0=
j=0 j=it+1 i+ ¥

Prove that g; € 8. (Note that ¢? + 1? is never zero.)

iii. Set g = ag + Y., (a; — ai—1)gi. Prove that g € % and that
lg—fll <e.

iv. Prove that f ¢ 4.

. Prove that every F,-measurable function f is of first class.

Hint. If f is unbounded, consider f = (1 +ef)~1.

. A function from R to R is of second (Baire) class if it is the pointwise

limit of a sequence of functions of first class. (Earlier we saw an
example of a function of second class that is not of first class). By
working as in the preceding questions, prove that a function f is of
second class if and only if the inverse image under f of every open
set in R is a countable union of G5 sets.

. Infinite product of measures, o-compact case. Let X = RN be the set
of sequences £ = (z,)nen in R, endowed with the product distance
(defined on page 13). Consider a measure p on the Borel o-algebra
of R satisfying u(X) = 1—in other words, a probability measure on R.
Denote by L the set of functions ¢ on X for which there exist an integer
n € N and a function f € CR(R™*") such that (z) = f(zo,...,Tn).
Define a linear form ® on L by setting, for ¢(z) = f(zo,...,Zn),

¥(p) = [ @, 2)duao) . duan).



2 Daniell’s Theorem 67

a. Prove that ® is well-defined on L (note that the representation
o(z) = f(zo,...,Zn) is not unique).
b. Prove that the set L satisfies the conditions of page 58.
c. Let #(X) be the Borel o-algebra of the space X.
i. Let D be a countable and dense subset of X, and let %p be
the basis of open sets of X defined in Exercise 1b on page 15
(with X, = R for all p). Prove that %p C o(L) and deduce that
PB(X) C o(L) (use Exercise la on page 10).
ii. Prove that all elements of L are continuous functions on X and
deduce that B(X) = o(L).
d. We wish to show that condition 2 of Daniell’s Theorem is satisfied.
i. Take a € (0,1). Prove that, for all n € N, there exists a compact
K, of R suck that pu(K,) > 1—a™*!. Then put K™ = [T7_, K;
and K = jjg K;. Thus, for each n, the set K (") js compact in
R™*! and K is compact in X (by Tychonoff’s Theorem).
ii. Prove that, for alln € N,

/ Ign+1\ k) (Z0s - - - Tn) Ap(To) - . . dp(Tn) < o
Hint. Check that the set R™ \ K(® is contained in the union of
the sets (R\Kp) x R"™!, R x (R\ K1) x R"?, R? x (R\K3) x
R™3, ...

ili. Let (¢k)ren be a decreasing sequence in L converging pointwise
to 0. Prove that, for all £k € N,

a
1-a’

®(pk) < sup k() + [kl
z€EK
where || - || denotes the uniform norm on X. Deduce that
im @ =0.
kgl-}‘loo (Wk) 0

(You might apply Dini’s Lemma (see page 29) to the compact
space K, then make a vary.)

e. Show that there exists a unique probability measure v on X such
that

/R » f(xoy- . zn) du(zo) - . . dp(z,) = A f(zo,. .. ,zpn) dv(z),
for all n € N and f € CR(R™"!). This measure is denoted v = pN.

f. More generally, let (X,)nen be a sequence of o-compact metric
spaces, each X, having a probability measure p,. Prove that there
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exists a unique probability measure v on the space X = [[ ..y Xn
(endowed with the product distance) satisfying the equality

/ f(zo,...,xn)duo(xo)...dun(zn):/ f(zo,...,zn) dv(z)
X(n) X

for all n € N and f € CR(X™) (where X = [T7_, X;).

3 Positive Radon Measures

In all of this section we consider a locally compact and separable metric
space X . We denote by #(X) the Borel o-algebra of X. A Borel measure
on X is a measure on #B(X). If m is a Borel measure, the mass of m is, by
definition, m(X) = [dm < +oo0. The measure m is finite on compact
sets if m(K) is finite for every compact K of X.

Proposition 3.1 Let m be a Borel measure on X. There exists a largest
open set O such that m(O) = 0.

The complement of this set is called the support of m, written Supp(m).

Proof. Let % be the set of all open sets Q of X such that m(§2) = 0. This
set is nonempty since it contains @. Set O = (Jqc4 §2; this is an open set,
which we must prove has m-measure zero. If K is compact and contained in
O, it can be covered by finitely many elements of % . Each of these elements
has measure zero, so m(K) = 0. But O is o-compact (being locally compact
and separable), so it too has measure zero, by the o-additivity of m. O

Ezamples

1. For a € X, the Dirac measure at a is the measure J, that assigns
the value 1 to a Borel set A if it contains the point a, and the value 0
otherwise. The support of J, is clearly {a}.

2. Take X = R? and let A; be Lebesgue measure on X (considered as a
Borel measure). Naturally, the support of A4 is R

3. Take g € C*(R?) and let m be the Borel measure on R? defined by
m(A) = [ g1adAg, for any Borel set A. Clearly, every Borel function f
such that fg is Lebesgue-integrable is m-integrable, and

/fdm=/fgd/\d.

We now check that the support of m equals the support of g. Using the
continuity of g one shows easily that an open set Q2 of R< has m-measure
zero if and only if g = 0 on €; this is equivalent to Q@ C g~!({0}). In
the notation of Proposition 3.1, this implies that O = Int(g~*({0})), so
the support of m is the same as that of g.
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A positive Radon measure on X is a linear form on CX®(X) that
assigns a nonnegative value to every f € C®(X) such that f > 0—in
short, a positive linear form on CX(X). We denote by 9+ (X) the set
of positive Radon measures. This set is clearly closed under addition and
multiplication by nonnegative scalars. On the other hand, by linearity, if
p e MH(X) and if f,g € CR(X) satisfy f < g, then u(f) < u(g). As an
immediate consequence we have:

Lemma 3.2 If p is a positive Radon measure on X,

()| < u(lfl) for all f € CR(X).

If K is compact in X, we denote by CX (X) (or by Ck (X), if no confusion
can arise) the set of elements of CX(X) whose support is contained in K.
Clearly C¥(X) is a subspace of CX (X), closed with respect to the uniform
norm || - || on CK(X). Henceforth these spaces CK (X) will always be given
this Banach space structure induced from the one on CK (X).

Proposition 3.3 Let p be a positive Radon measure on X. For every
compact set K in X, the restriction of p to CX(X) is continuous; that is,
there exists a constant Cx > 0 such that

O] < CxlIfll for all f € CR(X).
(We say that p is continuous on CR(X).)

Proof. Let K be compact in X. By Proposition 1.8 on page 53, there exists
vk € CF(X) such that 0 < px < 1 and px = 1 on K. Then, for all
f € CR(X), we have |f| < [[fl| px, and, by Lemma 3.2, [u(f)| < u(/f]) <
Il n(ek). O

If m is a Borel measure on X finite on compact sets, one immediately
checks that the map p defined on CX(X) by

w(f) = /fdm for all f € CR(X)

is a positive Radon measure. The main theorem of this section states,
among other things, that all positive Radon measures on X arise in this
way:

Theorem 3.4 (Radon—Riesz) For every positive Radon measure p on
X there exists a unique Borel measure m finite on compact sets and such
that

u(f) = /fdm for all f € CR(X).
The map p — m thus defined is a bijection between MM+ (X) and the set of

Borel measures finite on compact sets, and it commutes with addition and
multiplication by nonnegative scalars.
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Proof. This will follow as a particular case of Daniell’'s Theorem. Set
L = CR(X). This space satisfies the assumptions stated on page 58: in
particular, property (x) follows from Corollary 1.10 on page 53. Now take
p € M*(X); we will show that assumption 2 of Theorem 2.3 is satisfied.
Let (f) be a decreasing sequence in L approaching 0 pointwise. Each f,
has support contained in the compact set K = Supp fo. Thus, by Dini’s
Lemma, (f,) tends to 0 uniformly on K: in other words, f, — 0 in CR(X).
By Proposition 3.3, u(fn) — 0.

Next we check that o(L) = #(X). Since every continuous function on X
is a Borel function, the smallest s-algebra that makes all elements of L mea-
surable is certainly contained in &(X); that is, o(L) C $B(X). Conversely,
#B(X) C o(L) because every open subset O of X is o(L)-measurable. In-
deed, with the notation of Corollary 1.10, an element z € X belongs to O
if and only if there exists n € N with ¢,(z) > 0. Thus O is the (countable)
union of the sets ;! ((0, +00)), which are (L )-measurable since the func-
tions ¢, are elements of L. Therefore O is o(L)-measurable and we finally
conclude that o(L) = B(X).

Finally, we see that a Borel measure m on X is finite on compact sets if
and only if L C #!(m). It now suffices to apply Theorem 2.3 to derive the
existence and uniqueness of m. The remaining statements of the theorem
are easy to check. O

In the sequel we will often identify a positive Radon measure p with
the Borel measure m it defines. In particular, we use Z§(u) or £¢(m)
interchangeably for the space of m-integrable K-valued Borel functions,
and L (p) or Li (m) for the associated quotient Banach space. As usual,
we omit the subscript K if no confusion is possible. Similarly, we can write
Supp i for Supp m, etc.

As a consequence of the preceding proof and of Proposition 2.4, we get:

Proposition 3.5 Let u be a positive Radon measure. The space CR(X)
is dense in the Banach space L} (u).

This of course implies that CS(X) is dense in L& ().

We now look at positive linear forms on CX(X). Denote by mr; (X) the
set of positive Radon measures y of finite mass. Note first that a positive
Radon measure p of finite mass can immediately be extended to a linear
form m, on C¥(X); just set, for all f € CR(X),

malf) = [ fau

where, as announced earlier, we make no distinction between the Radon
measure and the Borel measure it defines. The linear form m, thus de-
fined makes sense (since every continuous function bounded over X is -
integrable), and it is clearly continuous: its norm in the topological dual of
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CR(X) is at most u(X). The next proposition asserts essentially that this
process yields all positive linear forms on CX (X).

Proposition 3.6 For every positive linear form m on CX(X) there erists
a unique positive Radon measure p of finite mass and such that m = m,,
or equivalently such that

m(f)=/fd;t for all f € CF(X).

Thus the map p — m,, is a bijection between sm+ (X) and the set of positive
linear forms on CX(X).

Proof. The uniqueness of u clearly follows from the inclusion of CR(X) in
CR(X). The important point is existence.

We first show that m is continuous. If not, there exists a sequence (f»)
in CR(X) such that, for all n, || f,|| < 1 and |m(f,)| > n. By replacing f,
by |fn|, we can assume that f, € Cf (X) (note that m(|frn|) > Im(fn)| > n
because m is positive). Now set f = En—l fn/n?; this function is in Cf (X
because the series converges absolutely. But, for all integer N > 1,

Mz
3 |-

o~ m(fn)
m(f) >y =5 >
n=1 n=1
so m(f) = 400, an impossibility. It follows that m is continuous on CX(X).
Its restriction to CR(X) is a positive Radon measure p. Let (¢,,) be an
increasing sequence in C} (X) converging pointwise to 1. By the Monotone
Convergence Theorem,

= K = li <
/du n—l—l)l-}—loo/<pn dp=lim m(pn) < mi,

where ||m|| is the norm of m in the topological dual of CX(X). Thus p has
finite mass and m,(f) = m(f) for all f € CR(X). Since CR(X) is dense in
CR(X) and since m,, and m are continuous, we get m = m,,. a

Remark. The preceding proof also shows that the mass u(X) of 4 equals
the norm of the linear form m, in CX(X)'.

The rest of this section is devoted to examples.

3A Positive Radon Measures on R and the Stieltjes Integral

Let o be an increasing function from R to R. We will construct from a an
integral —in other words, a positive linear form f — [ f do— generalizing
the Riemann integral (which will correspond to the case a(z) = z).
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First fix a < b. For f € CR([a,b]) and A = {zg =a <z < -+ < Tp = b}
a subdivision of [a, b] with step §(A) = maxi<j<n(T; — Tj-1), We write

n—1

Sa(f) = E (a(zj41) — a(zy)) X ]f(z)
j=0 3y Lj+1
and

6a(f) = ¥ (alzj) — alz) _min f(a).

e z€[z;,zj41]

One checks easily the inequalities

0<5a(f) = 6a(f) < (Ot(b)—oz(a))I |f(z) - fW)],

max
z—y|<6(A)
x,ye[a,b]

so lims(a)—0(Sa(f) —Sa(f)) = 0 since f is uniformly continuous on [a, b].
Next, suppose A; and A, are subdivisions of [a,b] with A; C Az, by which
we mean that every subdivision point of A; is a subdivision point of A,.
Then

GAl(f) < GAz(f) and SA2(f) < SAl (f)
It follows from all this that

m SA(f)Z lim GA(f)

S‘;p Salf) = 12f Sa(f) = 5(2)—)0 5(A)—0

The common value of these four expressions is denoted by f: fda. Thus,

n—1

b
[ fda= i, 6 olasen) = ot

uniformly with respect to sequences (&, . . .,&n—1) such that &; € [z}, Tj4+1]
for 0 < j < n— 1. We deduce that the map from C®([a,b]) to R defined by
f— f: f da is a positive linear form.

Ifa <b<cand f € C®([a,c]), Chasles’s relation is satisfied:

/acfdoz:/abfda-)—/b'cfda.

Therefore, if f € CX(R), the expression f: f da does not depend on the
choice of an interval [a, ] containing the support of f. We denote this ex-
pression by [ f da. Thus, the map f — J f da is a positive Radon measure
on R. The associated Borel measure finite on compact sets (Theorem 3.4)
is written da, and is called the Stieltjes measure associated with a.
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Lemma 3.7 Let a be an increasing function from R to R. If a and b are
real numbers with a < b, then

do((a,b]) = a(bs) - afas),
where a(ay) and a(by) denote the right limits of o at a and b.

Proof. Let (¢5)n>1 be a sequence in C®(X) such that 0 < ¢, <1, 0, =1

on [a+1/n, b—1/n], and v, =0on R\ [@a + 1/(n+1), b — 1/(n+1)]. Then

a(b—%) —a(a+-71—1) S/(pndQSa(b—-n—lﬁ)—a(a—l- %H)

By passing to the limit, we get

da((a, b)) = a(b-) — aay), (*)

where a(z_) is the left limit of o at z. This is true for any a and b with
a < b. Applying it to the terms of the sequences (a,), (b,) defined by
an = b—1/n, b, = b+1/n and taking the limit, we deduce that da({b}) =
a(by) — a(b-), which, together with (*), yields the desired relation. O

This formula will allow us to demonstrate that, conversely, every positive
Radon measure on R is a Stieltjes measure.

Theorem 3.8 Let pu be a positive Radon measure on R. There ezists a
unique increasing right-continuous function a with a(0) =0 and p = da.

Proof. Uniqueness is clear since, by the preceding discussion, if « is right-
continuous and vanishes at 0, it is determined everywhere:

—p((z,0]) ifz <0,
a(z)=4¢0 ifz=0,
p((0,z]) ifz>0.
Conversely, define a by these relations. Then a is right-continuous and
vanishes at 0. Also, for a < b we have a(b) — a(a) = p((a,b]) (one checks
the various possible situations of 0 with respect to a and b).

Now suppose f € CR(R) is supported within [a, 8], and let A = {z;}o<j<n
be a subdivision of [a, b]. Then

n—1
/fd# = Z/fl(z,-,:cj+1]dﬂ
=0
and so, since p((z;, Tj41]) = a(zj1) — a(z;),

&a(f) < ] fdu < Sa(f)-
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By taking the limit we deduce that

/fdu=/abfda=/fda,

which concludes the proof. O

Remarks

1. By the same reasoning, if u is a positive Radon measure of finite mass on
R, there exists a unique increasing, bounded, right-continuous function
a such that limy—, o a(z) = 0 and p = do. It is given by a(z) =
p((—o00,z]). In this situation « is called the distribution function
of the measure u. For example, the distribution function of the Dirac
measure &, is Y, = 1[5 400)-

2. Suppose «a is an increasing function of class C! on R. Then

/fda = /f(z)a’(a:) dz for all f € CR(R).

In short, da = o' dz.

Indeed, suppose f € CR(R) is supported within [a,b] and let A =
{z;}o<j<n be a subdivision of [a,b]. By the Mean Value Theorem, for
each j € {0,...,n—1} there exists &; € [z, ;41] such that a(zj41) —
a(z;) = o/ (&5)(zj41 — z;). Therefore

n—1

3 F&) (elmien) — alzy) = Y f(&) (&) (2541 — 25)-
=0

Jj=0

n

J
Now it is enough to use the definition of the Stieltjes integral and that
of the Riemann integral.

3B  Surface Measure on Spheres in R®
For r > 0, we consider the sets

B,={zeR%:|z|<r}, S.={zeR*:|z|=r}.
Here we will denote Lebesgue measure on R¢ simply by .

Theorem 3.9 There ezists a unique family (0,),cg+- 0f positive Radon
measures on R satisfying these conditions:

1. Suppo, C S, for every r > 0.
2. For all f € C(RY) and r > 0,

[1@ o) =i / £ (ru) don ().
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3. For all f € C(R%) andr >0,

/B r f(@)d\(z) = /0 ( / f(x) do'p(z)) dp.

We call o,., for each r > 0, the surface measure on S,.

Proof. Uniqueness. If a family (o,),cgr++ satisfies conditions 2 and 3, we
must have, for all f € C(R?),

), 1@0@

=ﬁwmm
r=1

which determines uniquely the Radon measure o; and thus also the o, by
condition 2. (Note that conditions 2 and 3 are enough to prove uniqueness,
so condition 1 is a consequence of 2 and 3.)

Ezistence. Let ¢ be the function from R** x S; to (R%)* defined by
@(r,u) = ru. Then ¢ is a homeomorphism and ¢~!(z) = (|z|,z/|z|). If A
is a Borel set in Sy, we write

A=p((0,1) x A) = {z € R?: 0 < |z| < 1 and z/|z| € A}.
A is a Borel set in R%. We then put
01(A) = d - A(A).

Visibly o, is a Borel measure of finite mass on S;, and can also be regarded
as a Borel measure on R? with support contained in S;. Next we define,
for every Borel set A in S,

or(A) = r¢ 1oy (A7)

Likewise, o, is a Borel measure supported within S,. The family (o) thus
defined certainly satisfies conditions 1 and 2; we need only check 3.

Let A be a Borel set in S; and let 71,72 be real numbers such that
0 < r; <7ry. Then

Ae([r1,m2) x A)) = A(p((0,72) x A)) — A(((0,71) x A))
— A(raA) — A(r1 A) = é(rg — 1901 (A).

On the other hand,

/ ( / Lo([r1,r2) x 4) (2) dap(z)) dp = / :2 o,(pA)dp = / ™ 1a1(A) dp

T1

= 20 - hon(4)



76 2. Locally Compact Spaces and Radon Measures

Therefore

[t 1a( ) 3@ = [ 16,0) ( [1a@/o)doy(@)) ap

and this for all Borel sets A of S; and for any 1, 72 with 0 < 7y < 7. It
follows that if 0 < a < b we have, for all f € C([a,b]) and all g € C(S1),

b
opidA= opld )d.
/w([a,b]xsl)(f®g) 4 /a(/(f®g) ¢ ' do, | dp

Since C([a, b)) ®C(S1) is dense in C([a,b] x Sl) (see Example 5 on page 35),
we obtain, for all f € C(y([a,b] x S1)),

‘[P([a,b]xsl) fdr= /ab (/fdap) dp.

Since ¢([a, b] x Sl) = By \ B,, this proves condition 3. O

Remarks

1. Since A is invariant under orthogonal linear transformations, so are the
or. In particular, the support of ¢, equals S;.. In fact, up to a multiplica-
tive factor, o, is the unique measure supported within S, and invariant
under orthogonal transformations: see Exercise 17 below.

2. Property 3 generalizes to all positive Borel functions on R?: If f is such
a function, then

Jran= [T ([rao)ao= "5 ( [ 051 dor@)) p < 4o

By taking f = 1p,, we obtain, in particular,

/dm =d-\Bi);

this is the area of S;. Indeed, by the preceding discussion,

/\(Bl):/fd/\:/olpd_l(/dal(x)) dp = é/dol(z).

Also, for any nonnegative Borel function h on R,

[ Hieae = ( / dm) / " A th(o)dp < +oo

since [ h(|pz|) doy(z) = h(p) [ do.
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FExercises

Unless otherwise stated, X is a locally compact separable metric space.

1. Let p be a positive Radon measure on X. Show that Suppp is the
complement of the largest open subset O of X such that any function
f in CR(X) with support contained in O satisfies pu(f) = 0.

2. Prove that Proposition 3.1 holds when X is any separable metric space,
not necessarily locally compact.

Hint. Use the existence of a countable basis of open sets (Exercise 1 on
page 10).

3. A particular case of the Vitali-Carathéodory Theorem. Let p be a posi-
tive Radon measure on X. Prove that for every p-integrable and bounded
function f from X to R and for all € > 0, there exists an upper semi-
continuous function u and a lower semicontinuous function v such that
u < f<wvand [(v—u)du <e. (We say that u is upper semicontinuous
if —u is lower semicontinuous.)

Hint. Go over the proof of Daniell’s Theorem (page 59) and use the
result in Exercise 3 on page 64.

4. Let p be a positive Radon measure on X and take f € Li(u). Prove that

there exist p-integrable and lower semicontinuous functions f and f_
with values in [0, +00], such that f = fi — f_ u-almost everywhere. (As
in the case of real-valued functions (Exercise 3 on page 64), a function
g with values in [—o00,+00] is called lower semicontinuous if the set
{9 > a} is open for all a € R.)
Hint. Show that there exists a sequence (¢,) in CR(R) that converges
to f in L} (1) and p-almost everywhere and such that u(lcpn — Pn+1 I)
27" for all n € N. Then set fi = ¢ + 3720 (¢nt+1 — pn)t and f-
05 + XnZo(Pns1 — on)

5. Regularity of Radon measures. (This is a sequel to Exercise 3 on page 64.)
Let 1 be a positive Radon measure on X.

IIA

a. Prove that, for every Borel set A of X,
u(A) = inf { / hdp : h is lower semicontinuous and h > 1 A} .

b. Let A be a Borel set in X such that p(A) is finite.

i. Take € > 0. Let h be a lower semicontinuous function such that
h>14 and [hdu < p(A) + ¢, and set

) u(A)+e

Prove that A C U and that u(U) < p(A) + 2¢.
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iii.
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Deduce that
w(A) = inf{u(U) : U is open and U D A}.

Check that this is still true if u(A) = oo (this is obvious). A
measure p satisfying this equality for all Borel sets A is called
outer regular.

c. Let U be an open subset of X. Prove that

p(U) = sup{u(K) : K is compact and K C U}.

Hint. U is o-compact.
d. Let A be a Borel set of finite measure p(A).

1.

ii.

iii.

ii.

Let € > 0. Justify the existence of:

— anopenset U in X containing A and such that p(U)<p(A)+e;

- an open set V in X containing U \ A and such that u(V) < 2¢;

- a compact set K in X contained in U and such that u(K) >
uU) —e.

Finally, set C = K \ V. Prove that C C A and that u(C) >

u(A) — 3e.

Deduce that

u(A) = sup{u(K) : K is compact and K C A}.

Generalize to the case of an arbitrary Borel set A. A measure
satisfying this equality for all Borel sets A is called inner regular.
Hint. By exhausting X with a sequence of compact sets, prove
that A is the union of an increasing sequence of Borel sets of
finite measure.

i. Prove that for every Borel set A of X and all € > 0 there exists

an open set U in X such that A C U and u(U \ A) <e.

Prove that for every Borel set A of X and all € > 0 there exists
an open set U and a closed set F in X such that F C A C U
and p(U\ F) <e.

Hint. Apply the preceding result to A and X \ A.

6. Lusin’s Theorem. Let m be a positive Radon measure on X.

a. Let f be a Borel function on X with values in [0, 1]. Prove that,
for any open set O of finite measure and any € > 0, there exists a
compact K C O such that m(O \ K) < ¢ and the restriction f|x is
continuous on K.

Hint. Use Proposition 3.5, Exercise 15 on page 155 and the fact that
m is inner regular (see Exercise 5d).

b. Extend the preceding result to all Borel functions f from X to K.

Hint. First reduce to the case where f takes values in R*, then

consider f = f/(1 + f).
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c. Deduce that every Borel function f from X to K satisfies this prop-
erty:
(L) For every € > 0, there exists an open set w in X such that
m(w) < € and the restriction of f to X \ w is continuous.

Hint. Consider an increasing sequence (Op)nen of relatively com-
pact open sets that covers X. For each n, there exists a compact
K, C O, for which m(O, \ K,) < €27 ""! and f|k, is continuous.
Now set w = ,,(On \ K»). Prove that (X \ w) N O, C K, for every
n; then conclude the proof.

d. Show that a function f from X to K satisfies Property L if and only
if there exists a Borel function that equals f m-almost everywhere.
Hint. To prove sufficiently, use the fact that m is outer regular (Ex-
ercise 5b).

. a. Let p be a positive Radon measure on X, with support F. Let f €
C.(X) be such that f(z) =0 for all z € F. Prove that [ fdu = 0.

b. Let A = {an}n<n be a finite subset of X and p a positive Radon
measure on X . Prove that the support of p equals A if and only if y is
a linear combination of Dirac measures d,,, with positive coefficients.

c. Let A = {a,} be a countable subset of X. For f € C.(X) write

w(f) = 27" f(an).

neN

Prove that 4 is a positive Radon measure on X whose support is the

closure of A.

. a. Let F be a closed subset of X. Prove that F' is the support of a
continuous function f from X to R if and only if F' coincides with
the closure of F.

b. Let p be a positive Radon measure on X. We denote by %! (1)
the space of locally p-integrable functions on X, by which we mean
Borel functions 9 : X — K such that 159 € #*(u) for any compact
K of X. (For example, every continuous function on X is locally p-
integrable.) Fix a ¢ € %! (1) taking nonnegative values. For f €
Ce(X), write

un = [wran

Prove that v is a positive Radon measure. Prove that

Suppv C {% # 0} N Supp y,

with equality if 9 is continuous.
c. For f € C.(R?), write

v(f) = /R f(z,2) da.



80 2. Locally Compact Spaces and Radon Measures

Prove that v is a positive Radon measure on R? and determine its
support.
Is there a continuous function ¢ on R? such that

o) = [ Hewie) dedy

for all f € C.(R?)?

9. a. Let m be a positive linear form on C®(X). Show that there exists
a compact K in X such that any f € C®(X) that vanishes on K
satisfies m(f) = 0.

Hint. Exhaust X by a sequence (K,) of compact sets. Show that, if
there is no K as stated, there exists a sequence (f,) of elements of
C*(X) such that, for each n € N, the function f,, vanishes on K,
and m(f,) > 0. Then consider f =Y, .y fn/m(fn)-

b. Let MF(X) be the set of positive Radon measures with compact
support. To every u € 97 (X), associate the positive linear form m,,
on C®(X) defined by

m(f) = / fdu for f € CR(X).

Prove that the map p — m,, is a bijection between 90t} (X) and the
set of positive linear forms on CR(X).
Hint. See the proof of Proposition 3.6 (page 71) for inspiration.
10. Vague convergence. We say that a sequence (in)nen of positive Radon
measures on X converges vaguely to p € M+ (X) if

pn(f) = p(f) for all f € Ce(X).

a. An ezample. Let (an)nen be a sequence in X with no cluster point.
Prove that the sequence (d,, )nen converges vaguely to 0.
b. Another example. Suppose X = (0,1). Prove that the sequence (i)

defined by
1 n—1
Hn = ﬁ Z ak/n
k=1

converges vaguely to Lebesgue measure on (0, 1).

c. Let () be a sequence in 9+ (X) such that, for all f € C(X), the
sequence (pn(f)) converges. Prove that the sequence (u,) is vaguely
convergent.

d. Let p be a positive Radon measure and A a relatively compact Borel
set whose boundary has p-measure zero. Prove that, if (in)nen is a
sequence in 9T (X) that converges vaguely to u, then

lim pn(A) = p(A).-

n—+o00
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Hint. Show the existence of an increasing sequence in C’Jr (X) that
converges pointwise to the characteristic function of A, and of a
decreasing sequence in C} (X) that converges pointwise to the char-
acteristic function of A. Then consider the lim sup and lim inf of the
sequence (pn(A)).

e. Let (un) be a sequence in M*(X) such that

sup /fdun < 400 forall f € CH(X).

neN
(Check that this condition is satisfied if and only if sup,, ¢y pn (K) is
finite for every compact K of X.)
Prove that the sequence (i) has a vaguely convergent subsequence.
Hint. Exhaust X by a sequence of compact sets (Kp,) and apply
Corollary 4.2 on page 19 to each of the separable Banach spaces
Ck, (X).

11. a. Let (fn) be a sequence of increasing functions from R to R such that
the series ) fn converges pointwise on R to a function f. Prove that
the series E o dfn converges vaguely to df (see Exercise 10).
Hint. Cons1der ¢ € CH(R), a compact interval [a,d] in R containing
the support of ¢, and a subdivision {z;}o<j<n of [a,b]. Prove that,
for every integer [ € N,

n—1 +00
> #(@)(F(@ga1) = f(z) = el D (fild) = fia))

k=141
I n-1
<Y 0@y (Frleinn) — filzy))
k=0 j=0
n—1
o(x;) (f(zj41) — f(z5))-
=0

b. Ezample. Let (a,,) be a sequence in R and (c,,) a sequence in R such
that 3,y cn < +00. Prove that the series of measures ), cnda,
converges vaguely to a positive Radon measure whose distribution
function is f = Z 0¢nYa,, where Yo, = 1[5, 1o0)-

12. Narrow convergence. We say that a sequence (i, )nen of positive Radon
measures of finite mass on X converges narrowly to p € ﬂﬂ}“ (X) if

pn(f) = p(f) for all f € Cy(X).

Every narrowly convergent sequence is vaguely convergent (Exercise 10).

a. A counterezample. Let (an)nen be a sequence in X with no cluster
point. Prove that the sequence (44, )nen does not converge narrowly
to 0.
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. Let p be a positive Radon measure of finite mass and A a Borel

set whose boundary has p-measure zero. Prove that, if (i, )nen is a
sequence in EUI}L(X ) that converges narrowly to p, then

Jim gin(A) = p(A).

Hint. Work as in Exercise 10 above.

. Let (un) be a sequence in 9} (X) and suppose p € M} (X). Prove

that the sequence (u,) converges narrowly to p if and only if it
converges vaguely to g and lim,,_, ;o0 tn(X) = p(X).

Hint. For the “if” part, fix f € C; (X) and € > 0. Show that there
exists a function @ € CH(X) such that & <1 and [(1 - a)dy < ¢;
then write

pn(f) = w(f) = pn(af) = plaf) + un((1-0) f) — p((1-a)f).

. Theorem of P. Lévy. If v is a positive Radon measure of finite mass

on R, we denote by # the function defined on R by
U(z) = /e“’dll(t).

Let (un)nenN be a sequence in imf (R) and g an element of EUI}L(R)
Prove that (u,) converges narrowly to u if and only if the sequence
of functions (i) converges pointwise to f.

Hint. Prove that if (ji,) converges pointwise to f, then ([ du,) con-
verges to [ du and there exists a dense subspace H in C§ (R) such
that

lim hdu, = /hdp forall he H

n—+oo

(see Exercise 8¢ on page 42). Conclude with Proposition 4.3 on
page 19.

. Let 4 be a positive Radon measure on X. Suppose the support K

of p is compact. Show that there exists a sequence (u,) of Radon
measures of finite support contained in K that converges narrowly
to u (see Exercise 12).

Hint. Take n € N*. Construct a partition of K into finitely many
nonempty Borel sets (Kp p)p<p, of diameter at most 1/n. Then, for
each p < Py, choose a point z, p, in Kp p and set

Hn = Z #(Kn,p)‘szn,p'

p<P,

b. Generalize to the case of any positive Radon measure of finite mass.

14. Let g be a Borel function on R taking nonnegative values and locally

integrable (see Exercise 1b on page 63). Let a be a real number. Consider
the function G on R defined by G(z) = [ g(t) dt.
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a. Prove that
/ fdG = / f(z)g(z)dz for all f € CX(R),

where dz is Lebesgue measure on R.

Hint. If [a, b] is an interval containing the support of f and {z;}o<j<n
is a subdivision of [a, b], and if we take for each j € {0,...,n— 1} a
point &; € [z, Zj41)], then

n—1 b
f EJ' G Tj+1) — G\T; f(g 1 Tj,Tj41 ) ( )
WOICCMELED /(Z Dieses®)9

Now use the Dominated Convergence Theorem.
b. Prove that the equality of the preceding question holds when f is
any positive Borel function.

Recall that [ e~*"dz = \/r. For all real ¢ > 0, put

+o0
I'(t)= / i~ le % dzx.
0

Let sq be the area of the unit sphere in R¢, that is, the mass of the
surface measure of the unit sphere in R?%. Prove that sq = 27%2/T'(d/2).
Deduce the Lebesgue measure of the unit ball in R

Hint. Compute [pa e~12” dz in two ways.

Let 07 be the surface measure of the unit sphere S; in RC.

a. Suppose d = 2. Prove that, for any Borel function f from R? to R*,

2m
/f doy, = f(cos b, sin @) db.
0

Hint. Use polar coordinates.
b. Suppose d = 3. Prove that, for any Borel function f from R® to R*,

27
/f do, = / f(cos@ cos p, sinf cos p, sin ) cos p df dyp.
0 —-m/2

Hint. Use spherical coordinates.

Let o be a positive Radon measure on R? whose support is contained
in the unit sphere S;. Assume ¢ is invariant under orthogonal llnear
transformatlons that is, for any orthogonal endomorphism O of R? and
any f € C(R%),

[109)do(@) = [ 1@ dot@)
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Show that there exists a function h, from R* to C such that
/ei“’yda(y) = ho(|u|) for all u € R?,

where u - y is the scalar product of v and y in R%. We define ho,

analogously, starting from the surface measure o, on S;.
Prove that, for all t € R,

/ o (tlul) dory (u) = / o (tly]) do (),

and so that h,(t) = he, () ([ do)/([ do1).

. Deduce that

[ do
[ doy

o = o1.

Hint. Generalize to R? the result of Exercise 1d on page 64.

18. Infinite product of measures, compact case. Consider the space

X =|o, l]N = {:c = (Zp)neN : Tn € [0,1] for all n € N},

and give it the product metric

d(z,y) = Y 27"|zn — yul-
n=0

With this metric, X is compact, by Tychonoff’s Theorem. Consider also
a sequence (my)pen Of probabitity measures— that is, Borel measures
of mass 1 —on [0, 1].

a. Show that, for each n € N, the function that maps z € X to =, €

b.

[0,1] is continuous (in fact, Lipschitz).
For n € N, denote by F;, the set of functions from X to R of the
form
z > f(Zo,-.-,Zn),
with f € C®([0,1]™*!). Prove the following facts:
i. F, is a vector subspace of CR(X) for all n € N.
ii. F,, C Fy; foralln e N.
iii. F = |J,cn Fr is a dense vector subspace of C®(X) with the
uniform norm | - ||.

. For each n, we define a linear form u, on F;, by associating to the

element
p:z f(To,...,Zn)

of F,, the real number

in () = / / @0y, Tn) dmo(o) . . dimn ().



3 Positive Radon Measures 85

Prove that, if ¢ € Fy, then pp(p) = pn(yp) for all p > n. Deduce the
existence of a linear form x on F' such that

u(p) = pn(p) foralln €N and ¢ € F,.

Then show that, for ¢ € F, we have |/4(<p)| < |l¢ll and ¢ > 0 implies
p(p) > 0.

d. Prove that the linear form p extends in a unique way to a positive
Radon measure on X.

e. More generally, let (X,,),cn be a sequence of compact metric spaces
and, for each n € N, let m,, be a probability measure on X,,. Let
X = HneN X, be the product space, with the product metric. By
working as in the preceding questions, prove that there exists a
unique probability measure p on X satisfying

[ 1@ 30) dma(zo) ... () = /x £ (@0, 2n) du(z)
for all n € N and all f € CR(X™), where X™ = [[7_, X;. (We
thus recover the result of Exercise 5 on page 66 in thls partlcular
case.)

19. Haar measure on a compact abelian group. Let X be a compact metric
space having an abelian group structure. We assume that addition is
continuous as a map from X2 to X.

We denote by B the set of continuous linear forms on C®(X) of norm
at most 1. We recall from Exercise 4 on page 20 that B can be given a
metric d for which d(un, ) — 0 if and only if

lim pn(f) = p(f) forall f € C(X),

n—-+00

and that the metric space (B, d) is compact. One can check that the set

P of positive Radon measures of mass 1 on X is a nonempty, convex,

closed subset of B, and that the topology induced by d on P is that of

vague convergence.

a. Markov-Kakutani Theorem. Let K be a nonempty, compact, convex
subset of (B, d).

i. Let ¢ be a continuous affine transformation from K to K (ajﬁne
means that for any (u,p’) € K% and any a € [0,1] we have
olap + (1—a)p') = ap(p) + (1 — a)p(y')). Prove that ¢ has
at least one fixed point in K —in other words, there is a point
A € K such that p(A) =
One can work as follows: Let 1 be any element of K and, for any
n € N, set

fin = n+1Zso(u)

=0
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A. Check that u, € K for each n € N.

B. Let (un,) be a subsequence of the sequence (u,) that con-
verges (with respect to d) to A € K. Prove that, for each
integer k, we have (1 + n)(¢(tn,) — Kn,) € 2B.

C. Deduce that ¢(A) = A.

ii. Let J be a family of continuous affine transformations of K such
that any two elements of .7 commute. For each ¢ € Z denote
by F, the set of fixed points of .

A. Prove that all the F, are nonempty, compact, convex subsets
of (B,d).

B. Suppose 7 = {p,¢'}. Prove that ¢'(F,) C F,. Deduce that
v and ¢’ have a common fixed point.

C. Now make no assumption on . Prove that all the elements
of Z have at least one common fixed point. (Start with
finite, then use compactness.)

b. For p € M*(X) and £ € X we denote by 7,4 the positive Radon

measure on X defined by mu(f) = [ f(z + y) du(y).

i. Prove that 7,(P) C P for all z € X. Deduce that there exists
p € P such that 7,u = p for all z € X.

ii. Prove that there exists a Borel measure s on X such that u(X)=1
and

/ £ du(t) = / f(@+t)du(t) forall f € C(X)and z € X.

We call i a Haar measure on X.

. Uniqueness of Haar measure. Let u and v be Haar measures on X.

Prove that u = v.
Hint. Take f € C(X). Using Fubini’s Theorem, compute in two
ways the integral

[[ 16+ dute) aviw).

4 Real and Complex Radon Measures

The framework here is the same as in the previous section. A real Radon
measure on X is by definition a linear form x on CR(X) whose restriction
to each space C% (X), for K compact in X, is continuous; that is, such that
for any compact K of X there exists a real Cx > 0 such that

()] < CkIfl| for all f € CR(X).
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We denote by 9MR(X) the set of real Radon measures. We also call the
elements of this set linear forms continuous on CX(X); for an equivalent
definition of this notion of continuity, see Exercise 5. By Proposition 3.3,
M+ (X) c MR(X). Conversely, every real Radon measure is the difference
of two positive Radon measures:

Theorem 4.1 Let p be a real Radon measure on X . For each f € CF(X),
ut
! p*(f) = sup{u(g) : g € CI(X) and g < f},
p=(f) = —inf{u(g) : g € CF (X) and g < f}.
Then ut and p~ can be uniquely extended to positive Radon measures and
p=pt—p.
Proof

1. We first check that the definition of u*(f) given in the statement makes
sense. If f € CF(X) has support K, then for all g € CF(X) such that
g < f we have g € C®(X), so

u(g) < |u(9)| < Ckllgll < CklIfIl-

Thus p*(f) is well-defined and 0 < p*(f) < Ck||f|. It is also clear
that for A real and nonnegative we have ut(A\f) = Ap™(f).

2. The essential point is the additivity of u* on C}(X). Take fi,f2 €
CH(X). That u*(f1 + f2) = pt(fi) + p*(f2) will follow from the set
equality

{9eCH(X):g< fi+ fo}
={9eCiX):9g<h}+{geCI(X):9< fo}.
One of the inclusions is obvious and the other can be checked quickly:
Suppose g € C}H(X) satisfies g < fi + f2. Put gy = inf(g, f1) and
g2 =g — g1 =sup(0, g—f1). We see that 0 < g; < f1,0< g2 < fo, and
g =91+ g
3. The same properties hold for . On the other hand, if f € C}(X),
wF(f) — u(f) =sup{u(g — f) : 9 € CF(X) and g < f}
= —inf{u(f —g): 9 € CF(X) and g < f}
= —inf{u(h) : h€ CH(X) and h < f} = p~(f).

Therefore u(f) = u* () - u~(f).
4. We now extend u* and p~ to CR(X) in the only possible way: Given

h € CR(X) we take f,g € CH(X) such that h = f — g (for example,
f=ht and g = h™). Since u* must be linear on CX(X), we must set

pt(h) = pt () — ut(g).
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This definition does not depend on the choice of a decomposition for A.
For if h = f' — ¢’ with f’,¢’ > 0, then f + ¢’ = f' + ¢ and, by the
additivity of u* on CF(X), we have u*(f) — u*(g) = p* (f') — u*(g").
One can easily see that the u* defined in this way is indeed linear and
so belongs to 9™ (X). We extend u~ similarly, and we use item 3 to
show that y = u*t — p~. a

Remarks

1. The decomposition g = p* — = defined in Theorem 4.1 is minimal in
the following sense: If u = p; — pp with py, po € M+ (X), there exists a
positive Radon measure v on X such that u; = u* +vand po = p~ +v.
Indeed, it is clear, in view of the definition of u*, that u*(f) < pi(f) for
all f € CH(X). One easily deduces from this that the Radon measure
on X defined by v = yu; — ut is positive. (And of course v = py — p~
as well.)

2. Using the same construction, we obtain an analogous decomposition for
continuous linear forms on a normed space E that has an order relation
making it into a lattice and satisfying the following conditions, for all
f,g€ Eandall A€ R™:

- 0<g < f implies ||g|| < [l f|l;
— f >0 implies Af > 0;
- f<gifandonlyifg— f >0.

A bounded real Radon measure on X is by definition a linear form
¢ on CR(X) continuous with respect to the uniform norm on C¥(X); that
is, one for which there exists a constant C > 0 such that

lu(NI < CIfIl for all f € CF(X).

We denote by QJZ]}‘(X ) the set of bounded real Radon measures on X; this
is clearly a vector subspace of MR (X).

Since C¥(X) is dense in the Banach space CX (X ) with the uniform norm,
every bounded real Radon measure extends uniquely to a continuous linear
form on CX(X); this allows us to identify E)JI“} (X) with the topological dual

of CR(X).

Proposition 4.2 Ewvery bounded real Radon measure is the difference of
two positive Radon measures of finite mass. More precisely, if p € UJI"} (X),
the Radon measures ut and pu~ defined in Theorem 4.1 have finite mass

and
lull = / dut + / du,

where ||p|| is the norm of p in the dual of CR(X).
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Proof. We first see that, for any f € CH(X),

1 (f) +p=(f) = sup{u(g — h) : g,h € CH(X) and g,k < f}
= sup{p(p) : ¢ € C(X) and [¢| < f}.
In particular, p*(f) + p=(f) < ||pll||f]l- Applying this inequality to all

terms of an increasing sequence of functions in C} (X) that converges point-
wise to 1, we get [dut + [dp~ < ||p||. Conversely, if f € CR(X), then

)] = () — u= (D] < i+ () + 1 (F) < ( Jawr+ [ d;r) T

(Here we used Lemma 3.2.) a

Remark. The decomposition g = p* —p~ with p*, u~ € M+ (X) is unique
if we insist that ||u|| = [dut + [dp~. Indeed, if p = p1 — p2 is a second
decomposition of this form, the Radon measure v = pu; — p+t = py — p~ is
positive (see Remark 1 above) and [ duy + [dpz = [dp* + [dp™+2 [ dv.

Finally, we define complex Radon measures and bounded complex
Radon measures by substituting C for R in the preceding definitions.
We denote by 9 (X) and sm}?(x ) the corresponding spaces. In particu-
lar, M?(X ) can be identified with the topological dual of C§ (X). Since
CE(X) = C*(X)+iCR(X), a real Radon measure p gives rise in a unique
way to a complex Radon measure, which we also denote by p, as follows:

p(f) = u(Re f) +ip(lm f) for all f € CE(X).

Then 2*(X) C MC(X) and MF(X) C M (X). Actually,
ME(X) = MR (X) +iMmR(X),  ME(X) = MY (X) + MR (X).
For, if p € MC(X), we define Re i by setting
Repu(f) = Re(u(f)) for all f € CF(X),

and likewise for Im . Then g = Rep + iImu. Such a decomposition is
unique.

For p € Sﬁnf( (X), we define the integral of a bounded Borel function f
on X as follows:
-~-IfK=R,put [fdu=[fdu*t — [fdu.
-IfK=C,put [fdu= [fdRep)+i[ fd(Imp); that is,

/fdu:/fd(Re#)+—/fd(Reu)‘+i/fd(Imu)+—iffd(lmu)‘-

We define the Borel measure of a subset A of X as u(A) = [ 14 dp.
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FEzxercises

Throughout this set of exercises, X is a locally compact separable metric
space.

1. Prove that 9R(X), with the order relation defined by
pu<v <<= v-peMmt(X),

is a lattice.

Hint. Show first that if 4 € 9R(X) and we write |u| = u* + = in the

notation of Theorem 4.1, then |u| = sup(u, —u).

2. a. Fix p € MK (X). Show that there exists a largest open set O such

that any f € CX(X) whose support is contained in O satisfies u(f) =
0. (Use partitions of unity.) The complement of this largest open set
is called the support of u and is denoted Supp . By Exercise 1 on
page 77, this definition coincides with the one introduced earlier for
positive measures.

b. Prove that if 4 € 9®(X) then Suppp = Supput U Supp i~ in the
notation of Theorem 4.1, and that if 4 € 9 (X) then

Supp 1 = Supp(Re 1) U Supp(Im p).

3. a. Fix p € M*(X), and extend x to a linear form on CE(X). Prove
that |u(f)] < (1f]) for all f € CE(X).
Hint. Let a be a complex number of absolute value 1 such that
ap(f) = ‘u(f)[ Prove that I,u I = p(Re(af)).

b. Let p be a bounded real Radon measure. By reasoning as in the
previous question, show that y has the same norm in the topological
duals of CR(X) and of C§ (X).

c. Fixpe iml}((X). Prove that |u(A)| < ||ul| for any Borel set A of X.
Hint. In the case K = C, put v = (Rep)t + (Rep)™ + (Imp)* +
(Imp)~ and consider a sequence (fn)nen of Cc(X) that converges
to 14 in L'(v) and such that 0 < f, < 1 for all n € N. Prove that
wu(A) = limy, 4o u(fn) and wrap up.

4. Let p be a positive Radon measure on X and take ¥ € L'(u). Prove

that the relation
~ [rvau

defines a bounded Radon measure on X and that ||v| = [ |¢|dp.
Hint. Let s be a function defined on X such that sy = |[¢)| and s =0
on {9 = 0}. Prove that, for all ¢ > 0, there exists a g € C.(X) such
that [ |¢||g — s|du < € and that, in addition, g can be chosen so that
llgll < 1. Now estimate [ |3|dp — v(g).
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5. We say that a sequence (f,,) in C.(X) converges in C.(X) to f € C(X)
if it converges uniformly to f and there exists a compact subset K
of X containing the support of every f,. Let p be a linear form on
CX(X). Prove that p € ¥ (X) if and only if the image under u of
every sequence of functions in C.(X) that converges to 0 in C.(X) is a
sequence that converges to 0 in K.

6. We say a sequence (u,,) in X (X) converges vaguely to p € MX(X) if

Jlm pn(f) = p(f) for all f € CF(X).

a. Let (1,) be a sequence in 9% (X) such that, for all f € CX(X), the
sequence (n(f)) converges. Prove that the sequence (pn,) converges
vaguely.

Hint. Let (K,) be a sequence of compact sets that exhausts X. Ap-
ply to each space C}'%P (X) the result of Exercise 6f on page 23.
b. Let (¢n) be a sequence in 9M(X) such that, for all f € C.(X),

/.fdun

Prove that the sequence (i, ) has a vaguely convergent subsequence.
Hint. Work as in Exercise 10e on page 81, using the Banach~Stein-
haus Theorem (Exercise 6d on page 22).

7. We say that a sequence (p,) in M (X) converges weakly to pe My (X) if

sup < +00.

neN

n—+o0

lim /fd,un = /fdu for all f € Co(X).

a. Let (1) be a sequence in M ;(X). Prove that a sufficient condition
for it to converge weakly is that, for all f € Cp(X), the sequence
(f f ditn)nen should converge.
Hint. Use Exercise 6f on page 23.

b. Prove that any bounded sequence (u,) in 9%;(X) (one for which
sup,en [|&n|l < +00) has a weakly convergent subsequence.
Hint. The space Co(X) is separable by Exercise 7h on page 56, so
it is enough to use the Banach—Alaoglu Theorem, page 19.

c. Prove that a sequence (i) in 9M;(X) converges weakly if and only
if it converges vaguely (see Exercise 6) and is bounded.

d. Find a sequence (p,,) in SJI}L (X) that converges weakly but not nar-
rowly (see Exercise 12 on page 81).

8. Let H be a relatively compact subset of M ;(X) (we identify this space
with the topological dual of Cy(X)). Prove that there exists a positive
Radon measure A of finite mass on X such that any A € £(X) having
A-measure zero also has p-measure zero for all p € H. (The measures
i € H are then said to be absolutely continuous with respect to A.)



92

10.

11.

12.

2. Locally Compact Spaces and Radon Measures
Hint. Define A = ) . Z:;l 27"=iy(u?), where the ul* are elements
of H chosen so that, for every n € N*, the balls B(u?f, 1/n), ...,
B(pu? , 1/n) cover H, and where we write, for p € M;(X), v(p) =
pt+p~ if K=R and v() = (Rep)t + (Rep)™ + (Imp)t + (Imp)~
if K = C. You might use Exercise 3c.

. Prove that the topological dual of Cy(X) is separable if and only if X

is countable.
Hint. Prove that, if X = {z,}nen, the family {0, }nen is fundamental
in (Co(X))'. For the “only if” part, you might show that [|d, — | = 2
for any two distinct points a,b € X, and then use Proposition 2.4 on
page 9.
Give C(X) the metric d of uniform convergence on compact sets, defined
in Exercise 12 on page 57. Prove that the topological dual of (C(X),d)
can be identified with the space 9t.(X) of Radon measures with com-
pact support (the support of a Radon measure was defined in Exercise
2 above).
Hint. Argue as in Exercise 9 on page 80.
Let L be a continuous linear form on Co(X) and let (f,) be a bounded
sequence in Cp(X). Prove that if (f,) converges pointwise to f € Co(X)
then lim, 4o L(fn) = L(f).
Hint. Use the Dominated Convergence Theorem.
Two Borel measures p; and ps of finite mass on X are called mutually
singular if there exists a Borel set A in X such that p;(A4) = p1(X)
and p(A) = 0. Let p be a bounded real Radon measure on X and let
p1 and po be positive Radon measures of finite mass on X such that
B= p1 — K2
a. Assume that p; and ps are mutually singular. Prove that ||| =
#1(X) + pa(X).
Hint. Let € > 0. Write ¢ = 14 — 1x\a. Prove that there exists a
function f € CR(X) such that ||f — ¢|lL1(u,+ps) < € Let f be the
function defined on X by

OR

Check that f € CR(X), then show that w(f) > p1(X) + pa(X) —e.

Deduce that ||| > p1(X) + p2(X). The opposite inequality is easy.
b. Prove the converse.

Hint. Suppose ||u|| = p1(X) + p2(X). Let (fn) be a sequence of

elements of C®(X) such that u(f,) — |1/ and |f.| < 1. Prove that

/f?:dﬂl - pi(X), /ff{duz - 0.

Deduce the existence of a subsequence (f} ) that converges ;-
almost everywhere to 1 and ps-almost everywhere to 0. Conclude.

f(=) if [f(2)] <1,

sign f(z) otherwise.
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c. Let u be a bounded real Radon measure on X. Show that there
exists a unique pair (p1,u2) of mutually singular positive Radon
measures of finite mass such that p = p; — po; show that pu; = pt
and py = p~.

13. Functions of bounded variation. Let f be a real-valued function on an
interval [a, ] of R. If A = {z;}o<;<n is a subdivision of [a, b], we write

n—1
V(£,8) =Y |f(zin) - flz5)];
7=0
we also write V(f,a,b) = sup,V(f,A). We say that f is of bounded
variation on [a,b] if V(f, a,b) is finite. We say that a function f : R - R
is of bounded variation on R if the expression

V(f)= sup V(f,a,b)
(a,b)eR?
a<b

is finite.

a. Let f be a monotone function on [a,b]. Prove that f is of bounded
variation on [a, b] and compute V(f,a,b).

b. Prove that the set BV (a,b) of functions of bounded variation on
[a,b] is a vector space and that f — V(f,a,b) is a seminorm on
BV (a,b). Prove that for f € BV (a,b) we have V(f,a,b) = 0 if and
only if f is constant on [a, b].

c. Let BVy(a,b) be the space of functions f of bounded variation on
[a,b] such that f(a) = 0. Prove that f — V(f,a,b) is a norm on
BVy(a,b) with respect to which this space is complete.

d. Take f € BV(a,b). Prove that for a < c < d < e < b we have

i. V(f7c,d) + V(fvdae) = V(f,C,e),

i, [£(0) - £(@)| < V(f,c,).
Deduce that the functions z — V(f,a,z) and z — V(f,a,z) — f(z)
are increasing functions from [a, ] to R™.

e. Take f € BV(a,b). Prove that if f is right-continuous at a point

¢ € [a,b), so is the function z — V(f,c,z). Likewise, if f is left-
continuous at ¢ € (a,b], so is z = V(f, ¢, z).
Hint. If £ — V(f,c,z) is not right-continuous at c, there exists a
real number 7 > 0 such that V(f,c,z) > 7 for all z € (c,b]. Now
construct by induction a sequence (z,) such that, for all n € N,
¢ < Tpy1 < Tp < b and V(f,zpy1,2n) > m; then deduce that
V(f,¢,b) = +00, which is absurd.

f. Prove that a function f from [a,b] to R is of bounded variation if
and only if there exist two increasing functions g and h from [a, b] to
R* such that f = g—h. Prove that if f is right-continuous at a point
¢ € [a,b), then g and h can be chosen to satisfy the same condition.
An analogous statement holds for left-continuous functions.
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14.

15.

2. Locally Compact Spaces and Radon Measures

We resume the notation and terminology of Exercise 13. Let f and g
be real- or complex-valued functions defined on an interval [a,b] of R.
If A = {z;}o<j<n is a subdivision of [a,b] and if ¢ = (co,...,Cn-1) is
such that ¢; € [z;,z;41] for all i <n — 1, we write

n—1
Sac(fr9) =Y fle)(9(i) — g(zs))-

i=0
If, as 6(A) approaches 0, the sequence (Sa, c( f,9)) has a limit uniform

with respect to ¢, this limit is denoted by f fdg.

a. Prove that, if f is continuous and g is increasing, f fdg is well-
defined and coincides with the definition given on page 72. Prove
that if g € BV (a,b), the linear form L on C([a, b]) defined by L(f) =
f f dg is continuous and has norm at most V'(g,a,b).

b. Integration by parts. Let f and g be rea.l— or complex-valued functions
from [a,b] to R or C. Prove that f fdg is defined if and only if
f gdf is, and that in this case

/ fdg+ / gdf = (b)g(b) - f(a)a(a)

(use summation by parts on the finite sums Sa (f, 9))-

c. Second Mean Value Theorem. Let f be an increasing function from
[a,b] to RT and let g be a Lebesgue-integrable function from [a, b]
to R. Show that there exists £ € [a, b] such that

b b
/ f(t)g(t)dt = f(b) / g(t) dt.
a ¢

This is called the Second Mean Value Theorem.
Hint. One can assume that f(a) = 0. Set G(z) = f g(t) dt. Prove

that
/ f(®g(t)d / £dG = / Gdf.

d. Let f be a function of bounded variation on R. Suppose that f(x)
tends to 0 both as £ — +o00 and as £ — —oo. Show that there exists
a constant C > 0 such that, for every nonzero real number ¢,

+o00

f(z)e *®dz| < Tk

—00

We continue with the notation and terminology of Exercises 13 and 14.
A function f of bounded variation on R is called normalized if it is right-
continuous and lim;_, o f(z) = 0. We denote by NBV(R) the vector
space consisting of normalized functions of bounded variation from R
to R.
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a. Prove that every element of NBV (R) can be written as the difference
of two increasing and right-continuous functions that approach 0 at
—00.

b. Prove that the map f — V(f) is a norm on NBV(R).

c. If f € NBV(R), we define a linear form py on Co(R) by

a
ust) = tim_ [ pdf forall g € Co(X).
—a

Check that py is well-defined, that py € Ms(R), and that |us| <

V(f), where ||puf|| is the norm of ps in Co(R)'.

i. Suppose f,g € NBV(R) satisfy uy = pq. Prove that f = g.
Hint. Using part a above, prove that f(a) = py((—oo, a]) for all
aeR.

ii. Let f € NBV(R) be increasing. Prove that V(f) = ||us]|.

iii. Take f € NBV(R). Prove that there exist bounded, increasing,
right-continuous functions f; and f_ such that f = f — f_ and
gl = V(f4+) + V(£-). Deduce that V(f) < [lusll-

iv. Prove that the linear map L : f + pys is a bijective isometry
from NBV(R) onto the topological dual of Co(R).

d. Prove that NBV(R) is a nonseparable Banach space. (That it is non-
separable is elementary: Consider the uncountable family consisting

of functions Y, = 1(g,40), With a € R.)



3
Hilbert Spaces

This chapter is devoted to a class of normed spaces that is particularly
important in both theory and applications.

1 Definitions, Elementary Properties, Examples

In all of this chapter we consider a vector space E over K = R or C. A
scalar product on E is a map (-|-) from E x E to K satisfying these
conditions:

a. For all y € E, the map (-|y) : E — K defined by = + (z|y) is linear.
b. - IfK=R:forallz,y € E, (y|z) = (z|y) (symmetry).
- IfK=C:forallz,y € E, (y|z) = (z|y) (skew-symmetry).
.Forallz € E, (z|z) ¢ RT.

c
d. Forallz € E, (z|z) =0 if and only if z = 0.

A map that satisfies the first three conditions but not necessarily the
fourth is called a scalar semiproduct.

A space E endowed with a scalar product is called a pre-Hilbert space
or scalar product space, further qualified as real if K = R or complex
if K = C. We leave out this qualification if no confusion is possible or if K
need not be specified.

Remark. Suppose (-|-) is a map from E x E to K that satisfies the first
two conditions in the definition of a scalar product. Fix z € E; if K = R,
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the map (z|-) : y — (z|y) is linear from E to R. If K = C, the same map
is skew-linear; that is, for all z,y,z € E and all \,u € C,

(x| My + p2) = Az |y) + i(z] 2).

Also, as a consequence of the first two conditions in the definition of a
scalar product, we have, for z,y € E:

-HIK=R:(z+ylz+y)=(z]z)+ (¥|y) +2(z|y)
- IfK=C:(z+ylz+y)=(z|z)+ (y|y)+2Re(z|y).

Ezxamples
1. Let E = R% If a,,...,aq are nonnegative real numbers, the equation
(zly) = Z?:x a;z;y; defines on E a scalar semiproduct, which is a

scalar product if and only if all the a; are positive. If a; = 1 for all j,
this is called the euclidean scalar product, and E together with this
scalar product is called d-dimensional canonical euclidean space.
Similarly, if E = C? and a4,...,aq are nonnegative reals, a scalar
semiproduct on E is defined by (z|y) = Z;Ll a;x;J;, and this is a
scalar product if all the a; are positive. If a; = 1 for all 7, this is called
the hermitian scalar product, and E together with this scalar prod-
uct is called d-dimensional canonical hermitian space.

2. Let X be a locally compact separable metric space, y a positive Radon
measure on X, and E = CX(X). The equations

(119)= [1@9()du(e) H#K =R,
(719 = [F@s@) duta) TK=C

define on E a scalar semiproduct, which is a scalar product if and only
if Suppu = X.

3. Fix a > 0, and let E = CX be the set of continuous functions from R
to K periodic of period a. The equations

1 [ .
(F19) =3 [ I@9le)ds KK=R,
0
1 [ —_ .
(flo) =3 [ r@i@ds tK=C
0
define a scalar product on F.
4. Let m be a measure on a measure space (2, %) and let & = _#£Z(m) be

the space of .#-measurable functions f from 2 to K that are square-
integrable, that is, satisfy [ |f|?dm < +oo. (That this is a vector space
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follows from the inequality | f +g|? < 2(|f|> +|g/?).) We give & a scalar
semiproduct by setting

(f|9)=/fgdm ifK =R,
(fly)=/fgdm if K =C.

This scalar semiproduct induces a scalar product on the space E =
L (m) defined as the quotient of & by the relation of equality m-almost
everywhere.

5. An important particular case of the preceding situation is the following.
Let I be any set and let & = #(I) be the discrete o-algebra on I —the
one containing all subsets of I. On the measure space (I, #) we take
the count measure m, defined by m(A4) = Card(A) < +oo. (If I is
countable, one can regard it as a locally compact separable metric space
by giving it the discrete metric, defined by d(z,y) =1 if z # y; then m
is a positive Radon measure on I.) We generally use subscript notation
for functions on I: thus ¢ = (;);er. If = takes nonnegative values, we
use the notation ), ; z; to denote Jzdm < +00. One easily checks

that
in = sup in < +o00,
i€l JeZi () ey

where 2¢(I) is the set of finite subsets of I. The space % () in this
case is denoted by £ (I) and, for every x € €g(I), we write ), ; z; =
J zdm. Similarly, we write £%(I) = %Z(m). (See also Exercises 7 on
page 11 and 8 on page 12.)

Since the only set of m-measure zero is the empty set, we have L% (m) =
% (I); thus this space has a scalar product structure defined by

(@|y) = =iy HK=R,
el

(@|y) =) =g fK=C.
el

We omit 7 from the notation when I = N.
Here is a fundamental property of scalar semiproducts.

Proposition 1.1 (Schwarz inequality) Let E be a vector space with a
scalar semiproduct (-|-). For every z,y € E,

(@ 19)]'< @)y ]y)-
Proof. One can assume K =C. If z,y € E,

(x+tylz+ty) = (z|z) +2tRe(x|y) +t*(y|y) >0 forallteR.
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Consider the expression on the left-hand side of this inequality as a poly-
nomial in ¢, taking only nonnegative values. If (y|y) = 0, the polynomial
is at most of first degree and must be constant, so 0 = (Re(z|y))? <
(z|z)(y|y) =0.1If (y | y) # 0, the polynomial is of second degree and must
have negative or zero discriminant; again (Re(z |y))2 < (z|z)(y | y)-

Now let u be a complex number of absolute value 1 such that

|(z|y)| = u(z|y) = (uz|y) = Re(uz|y).
We see that |(z|y)|2 < (uz|uz)(y|y) = (| z)(y|y), since ua = 1. O

Corollary 1.2 Let E be a vector space with a scalar product (-|-). The
ezpression ||z|| = (x| z)'/? defines a norm on E.

Proof. Tt is enough to check the triangle inequality. We have
lz +ylI” = llz]* + llyll* + 2Re(z| y)
2
<zl + llyl? + 2l Iyl = (ll=Il + llyll)" O

From now on, unless we specify otherwise, we will denote the scalar
product on any space E by (-|-), and the associated norm by || -||. For
example, if E = L?(m), as in Example 4 above,

1= ([ |f|2dm)1/2-

Jall = (Zw)m.

el

If E = (1),

Note that, in any scalar product space, the scalar product can be recov-
ered from the norm: If K = C, we have

Re(z|y) = 3 ((lz+yl)* = ll® - lyl*),
Im(z |y) = 3 ((lz +iyl)? — lllI* - llylI*),

and in the real case the first of these equalities holds.

Corollary 1.3 Let E be a scalar product space. For every y € E, the
linear form ¢, = (-|y) is continuous and its norm in the topological dual
E' of E equals ||y||.

Proof. By the Schwarz inequality, lapy(z)l < |lz|l |lyll for all z € E, so ¢, €
E" and |jpy|| < [ly]l. At the same time, ¢, (y) = [ly|%, so [lpyll = lly}. O

Thus the map y +— ¢, is an isometry from E to E’, linear if K = R and
skew-linear if K = C. We will see in Theorem 3.1 below that this isometry
is bijective if the space E is complete.
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Proposition 1.4 (Equality in the Schwarz inequality) Two vectors
z and y in a scalar product space satisfy I(rc|y)| = ||lz|| llyll i and only
if they are linearly dependent.

Proof. The “if” part is obvious. To show the converse, suppose for example
that K = C and that |(z|y)| = |lz|| [ly||- Let ¢ be a complex number of
absolute value 1 such that Re(e(z |y)) = |(z|y)|- Then || ||z]ly—¢|lyllz||* =
0 (expand the square), so ||z||y — €]|y||z = 0. O

An immediate, but useful, consequence of the definition of the norm in
a scalar product space is the parallelogram identity:

Proposition 1.5 If x and y are elements of a scalar product space,

T—y
2

2
r+y
e

2
] — 1 (a2 + 1?).

Orthogonality

Two elements z and y of a scalar product space E are orthogonal if
(z]y) = 0; in this case we write z L y. The orthogonality relation L thus
defined is of course symmetric. The orthogonal space to a subset A of
E is, by definition, the set Al consisting of points orthogonal to all the
elements of A. Thus, in the notation of Corollary 1.3,

At = n ker(ypy).

yeA

It follows that AL is a closed vector subspace of E. At the same time, z
belongs to A if and only if A C ker ¢,; since ker ¢, is closed, this inclusion
is equivalent to [A] C ker ¢, where [A] is the span of A (the vector space
consisting of linear combinations of elements of A). Thus

A* = ()"

Two subsets A and B of E are called orthogonal if z | y for any z € A
and y € B. The following relation between orthogonal vectors, called the
Pythagorean Theorem, is immediate:

Proposition 1.6 If x and y are orthogonal vectors in a scalar product
space,
2
lz+yl* = llzl® + lyl*.

This result extends by induction to a finite number of pairwise orthogonal
vectors &1, ..., Zn: || 52, 2412 = iy llzs12.

A scalar product space that is complete with respect to the norm defined
by its scalar product is called a Hilbert space. . Here are the fundamental
examples:
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1. Every finite-dimensional scalar product space is a Hilbert space.
2. If m is a measure on a measure space (§2, %), the space L?(m) with the
scalar product defined in Example 4 above is a Hilbert space.

In particular, the space ¢2(I) of Example 5 above is a Hilbert space, for
any set I. (This particular case is in fact the general case; see Theorem 4.4
below and Exercise 11 on page 133).

FEzercises

1. Let E be a normed vector space over C. Prove that the norm || - || comes
form a scalar product if and only if it satisfies the parallelogram identity:

Iz +yl? + llz — ylI> = 2(ll=]1? + [lyI?) for all (z,y) € E*
Prove that in this case the scalar product that defines || - || is
(@ly) = ;(lz+y)? — llz — yl® + illz + iyl)* — illz —iyl?). ()

Hint. To show sufficiency you might consider the map (-|-) defined by
(*) and prove successively that it satisfies these properties:

. (z|z) = ||z||2 forall z € E.

. (z|y) = (y] ) for all (z,y) € E2

c(z+ylz) =2(z|2/2) +2(y|2/2) for all (z,y,2) € E3.

. (z+ylz) =(z]2)+ (y]|2) for all (z,y,2) € E3.

. (Az]y) = A(z|y) for all (z,y) € E? and X € C.

2. Assume that (z,) and (y,) are sequences contained in the unit ball of a
scalar product space, and that (z,, |y,) — 1. Prove that ||z, —yn|| = 0.

3. Let X be a compact metric space of infinite cardinality and let 1 be a
positive Radon measure on X, of support X. Give the space F = C(X)
the scalar product defined by (f |g) = [ fgdp.

a. Let a be a cluster point of X. Prove that there exists a sequence of
pairwise disjoint balls (B(an,&n))nen such that limg_, o arn = a.

b. Prove that, for every integer n € N, there exists a continuous func-
tion ¢, on X supported inside B(an,&,) and satisfying |¢,| < 1 and
en(an) = (=1)"

c. Prove that the series ¥ ¢, converges pointwise, uniformly on com-
pact sets of X \ {a}, and in L?() to a continuous function on X \ {a}
that has no limit at the point a.

d. Deduce that F is not a Hilbert space.

4. Let 2 be an open subset of C, considered with the euclidean metric.
We denote by H(2) the space of holomorphic functions on 2 and by
H?(£2) the subspace of H(2) consisting of holomorphic functions f on
Q such that [ [,|f(z+iy)|? dz dy < +00. We recall that H (1) is closed

T

=)
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in C(2) with the metric of uniform convergence on compact sets of 2.
We give the space H2({2) the scalar product defined by

a.

b.

C.

(flg) = / f(z + iy) 9@ + i) dedy.

Take f € H(Q). Prove that, if B(z,r) C ,
2 z +iy)dzd
S = [[, ferwaay
Deduce that, if f € H2(Q),

£ o)l < <= W1

where || - || denotes the norm coming from the scalar product.
Prove that, if K is a compact contained in {2,
1

sup | f(z)] < 171
2€K

vrd(K, C\)

for every f € H%(Q).
Prove that H?(Q) is a Hilbert space.

5. Let I be a set and = = (z;);cr a family of points in K.

a.

C.

Suppose z € £k (I) and set £ = Y ic1 Ti- Prove the following property:

(P) For every ¢ > 0, there exists a finite subset K of I such that,
for any finite subset J of I containing K, I{ - Zie J xil <e.
Conversely, suppose there exists £ € K such that Property (P) is

satisfied. Prove that z € ¢k (I) and that £ = ), ; z:.

Hint. Assume first that K = R. Setting I = {i € I : z; > 0} and
I, = I\ I, show that under the assumption of Property (P) we have
doier, Ti < +ooand Y, (—x;) < 400 .

Suppose I is countably infinite. Prove that z € £ (I) if and only if,
for any bijection ¢ : N — I, the series Z Ty(n) converges. Prove
that in this case Y70 To(ny = Y es Ti-

Hint. To show that the condition is sufficient, reduce to the case
K = R. Then prove that if either series ), =i or Y e, (—:)
diverges (I; and I; being defined as above), there exists a bijection
¢ : I = N such that the series Z Ty(n) does not converge.

n=0

n=0

6. Hilbert cube. Take ¢ = (Cp)nen € €2 and let C be the set of elements z
of £2 such that |z, | < |¢,| for all n € N. Prove that C is compact.
Hint. Use Tychonoff’s Theorem.

7. If a = (an)nen is a sequence of positive real numbers, we denote by

&G

the vector space consisting of sequences of complex numbers v =

(un)nen such that the series Y a,|u2| converges.
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a. Prove that the formula

(u,v) = Z OnUn T

neN

defines a scalar product on £2.
b. Prove that the map

it (Up)n — (\/(Eun)n

is a linear isometry from ¢2 onto ¢2. Deduce that ¢2 is a Hilbert
space.

c. Let a and b be sequences of positive real numbers. Prove that if the
sequence (a,/b,) tends to 0, the closed unit ball in £? is a compact
subset of £2.

Hint. Use Exercise 8 on page 17.
d. If s is a real number, we define on Z a measure p; by setting

ps({n}) = (1 +n?)*/? foralln € Z,

and we put H® = L?(u,). Prove that for 7 < s we have H®* C H"
and the closed unit ball in H?® is a compact subset of H".

. Hilbert completion. Let & be a vector space with a scalar semiproduct

(+|+). Write p(z) = (z|z)'/2. By the Schwarz inequality, the map p
satisfies the triangle inequality: p(z + y) < p(z) + p(y) for all z,y € &.
In other words, p is a seminorm.

Consider the vector space & consisting of sequences (z,,) that are Cauchy
with respect to p (that is, satisfy lim, m—s+co P(Tn — Zm) = 0). Define a
relation Z on & by setting

(mn) Z(yn) <= n.l_lr_{‘oo P(Tn —yn) = 0.

Z is easily seen to be an equivalence relation compatible with the vector

space structure of &. We denote by E the quotient vector space of & by

2, and by ® the canonical map from & to E (which associates to each

element of & its equivalence class modulo %).

a. Let = and y be elements of E. Prove that if ®((z»)) = = and
®((yn)) = v, the sequence ((zn|yn))nen converges and its limit
depends only on z and y.

b. Prove that the equation (®((z5)) | ®((yn))) = limp_ 400 (2n | yn) de-
fines a scalar product on E. We denote by || - || the associated norm.

c. If z is an element of &, we denote by Z the image under ® of the
constant sequence equal to z. Prove that the map from & to E
defined by z — £ is linear and that ||&|| = p(z) for all z € &.

d. Prove that the set Eg = {Z : z € &} is dense in E.
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e. Prove that E is a Hilbert space. (Show first that every sequence in
Ey that is Cauchy in the norm of F converges in E.)

The space FE is called the Hilbert completion of &. Such a space is
unique in a sense to be made precise in the next question.

f. Let (E7, (-|-)") be a Hilbert space such that there exists a linear map
L : & - E~ whose image is dense in E~ and such that ||L(m)||~: p(z)
for all 2 € &. Prove that there exists a surjective isometry H from
E onto E~ such that H(&) = L(z) for all z € &.

2 The Projection Theorem

One of the main tools that make Hilbert spaces interesting is the Projection
Theorem. We assume that E is a Hilbert space and we denote by (- |-) its
scalar product, by || - || its norm, and by d the metric defined by the norm.

Theorem 2.1 Let C be a nonempty, closed, convex subset of E. For every
point x of E, there exists a unique point y of C such that

Iz -yl = d(z, C).

This point, called the projection of x onto C and denoted by Pc(x), is
characterized by the following property:

yeC and Re(z—y|z—y) <0 forallzeC. (%)

Proof. Fix z € E. We first show the existence of the projection of z onto
C. By the definition of § = d(z, C), there exists a sequence (y,) in C such
that

1
lz — yall?® < 6% + - for alln > 1.

Applying the parallelogram identity to the vectors z — y, and = — yp, for
n,p > 1, we obtain

2 2

Yn — Y
| = z(lz = yml® + llz — pll*).-

”:E_ Yn + Yp
2

2

Since C is convex, (yn + yp)/2 is in C, so i|lyn — ypll> < 3(1/n + 1/p),
which proves that (y,) is a Cauchy sequence in C and so converges to an
element y of C, which must certainly satisfy ||z — y||? = 62.

Now let y; and y, be points of C with ||z — y1]| = ||z — 32| = 4. By
applying the parallelogram identity as before, we get ||y1 — y2/|2 < 0, which
says that y, = y2. This shows that P(z) is unique.

Finally, we check that the point y = Pc(z) satisfies property (). If z € C
and ¢ € (0,1], the point (1 — t)y + tz belongs to C (which is convex), so

|z — (1 = t)y —tz||* > |l= — %,
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or, after expansion,
2|y — z||* + 2tRe(z —y|y — 2) > 0.

Dividing by ¢ and making ¢ approach 0, we get

Re(z —y|z—1y) <0.
Conversely, suppose a point y of C satisfies (x). Then, for all z € C,

e —z)1? = Iz — y) + (y — 2)II?
=z —yl* + lly — 2> + 2Re(z —y |y — 2) > |z —ul*,

so y = Po(x). O

Remarks

1. In the case K = R, the characterization (*) —where Re disappears —
says that Pc(z) is the unique point y of C such that, for all z € C, the
angle between the vectors z — y and z — y is at least /2.

2. The conclusion of the theorem remains true if we suppose only that E
is a scalar product space and that the convex set C is complete with
respect to the induced metric — for example, if C is contained in a finite-
dimensional vector subspace of E. Indeed, this assumption suffices to
ensure that the sequence (y,) of the proof converges to a point of C.

Condition (*) allows us to show that Pc is a contraction, and therefore
continuous.

Proposition 2.2 Under the assumptions of Theorem 2.1,
|Pc(z1) — Po(z2)|| < lloy — 22|l for all 21,22 € E.

Proof. Set y; = Pc(x1) and y2 = Pco(x2). First,

Re(z1—22 | y1—y2) = Re(z1 —y2 |91 —y2) +Re(y2 — 22 [ 41— 2)

= Re(z1 —y1 | 1 —y2) +|ly1 — v2lI* + Re(y2— 22 | Y1~ 92)
> [y —2ll®.

Thus, by the Schwarz inequality, ||y; — y2(12 < llz1 — 22|l ly1 — v2ll, and
finally (ly1 — vzl < [|z1 — z2||- O

We now consider projections onto vector subspaces of E.

Proposition 2.3 Let F' be a closed vector subspace of E. Then Pr is a
linear operator from E onto F. If x € E, the image Pr(x) is the unique
element y € E such that

yeEF and z—yeFt
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Proof. Condition (*) of Theorem 2.1 becomes
yeF  and Re(z —y|z—y) <0 forallzeF.

Now, if y € F and X € C*, the map 2’ — z = y + A2’ is a bijection from F
onto F. Condition (x) is therefore equivalent to

y€F  and Re(A(z —y|2')) <0 forallz’€ Fand A€C,
and this in turn is obviously equivalent to
yeF and r—yeFL
That P is linear follows easily. O
Corollary 2.4 For every closed vector subspace F of E, we have
E=FoF*
and the projection operator on F associated with this direct sum is Pp.

Proof. For z € E, we can write z = Pp(z)+ (z—Pp(z)) and, by Proposition
2.3, Pp(z) € F and = — Pr(x) € F+. On the other hand, if z € F N F*,
then (z|z) = 0 and so z = 0. O

Remark. Proposition 2.3 and Corollary 2.4 remain valid under the weaker
assumption that E is a scalar product space and F is complete in the
induced metric —in particular, if F is finite-dimensional (see Remark 2 on
page 106).

Under the preceding assumptions, Pr is called the orthogonal projec-
tion (operator) or orthogonal projector from E onto F. The image
Pr(z), for z € E, is the orthogonal projection of = onto F.

Corollary 2.5 For every vector subspace F of E,
E=FoF*.
In particular, F is dense in E if and only if F+ = {0}.
Proof. Just recall that F+ = FL. O

This very useful denseness criterion is now applied, as an example, to
prove a result that will be generalized in the next chapter by other methods.

Proposition 2.6 Let u be a positive Radon measure on a locally compact,
separable metric space X. Then C.(X) is dense in L%(u).
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Proof. We write F = C.(X). If f is an element of FX, then [¢fdu =0
for all ¢ € C.(X). Thus, for all ¢ € CR(X),

[e®entau= [orer) du
[etmntau= [omp-an

By the uniqueness part of the Radon—Riesz Theorem (page 69), these equal-
ities hold for any nonnegative Borel function . Applying them to the char-
acteristic functions of the sets {Re f > 0}, {Re f < 0}, {Im f > 0}, and
{Im f < 0}, we conclude that f = 0 pu-almost everywhere; that is, f = 0 as
an element of L?(u). We finish by using Corollary 2.5. a

We conclude this section with an alternate form of Corollary 2.5.

Corollary 2.7 If E is a Hilbert space and F' is a vector subspace of E,
then F = F++,

Proof. Clearly F C FLL. Therefore, since F1+ is closed, F ¢ F++. On
the other hand, we have E = F @ F+ and E = F11 @ F1. The result
follows immediately. d

Ezercises

1. Let E be a Hilbert space.
a. Let C; and C; be nonempty, convex, closed subsets of E such that
C; C Cs. Prove that, for all z € E,

| Pey () — Po,(2)||” < 2(d(z, C1)? - d(=, C2)?).

Hint. Apply the parallelogram identity to the vectors x — Pg, ()
and z — Pc, ().
b. Let (C,) be an increasing sequence of nonempty, convex, closed sets
and let C be the closure of their union.
i. Prove that C is closed and convex.
ii. Prove that lim, . Pc,(z) = Pc(z) for all z € E.
Hint. Start by showing that
nHI-Poo d(z,Cy) = d(z,C).
c. Let (C,) be a decreasing sequence of nonempty, convex, closed sets
and let C be their intersection.

i. Prove that, if C is nonempty,

lim Pc, (z) = Pc(z) forallz € E.

n—-+4o00
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ii. Prove that, if C is empty,

lim d(z,C,)=+00 forallze E.
n—+00
(In particular, if one of the C,, is bounded, C is nonempty. This
result is false if we only assume E to be a Banach space: take,
for example, E = C([0,1]) and C, = {f € E : |f| £ 1, f(0) =1,
and f(z) = 0 for all z > 1/n}.)
2. a. Let a be a nonzero element of a Hilbert space E. Prove that, for all

z€eE, | |
1y (z]a)
d(:z:, {a} ) = el

b. Take E = L2([0,1]) (see Example 2 on page 124) and let F be the
vector subspace of F defined by

Fz{feE:/OIf(x)dxzo}.

Determine F1. Compute the distance to F of the element f of E
defined by f(z) = e*.

3. Let m be a measure on a measure space (§2, %) and let (A,)nen be a

sequence of measurable subsets of 2 that partitions 2. For every n € N

define
Bn={1 e [ -, rlam= o}.

Prove that the E,, are pairwise orthogonal and that their union spans
a dense subspace in L?(m). For each n € N, write down explicitly the
orthogonal projection from L?(m) onto E,.
4. Let P be a continuous linear map from a Hilbert space E to itself.
a. Prove that P is an orthogonal projection (onto a closed subspace of
E) if and only if P2 = P and ||P|| < 1.
b. Prove that, if P is an orthogonal projection,

(Pz|y) = (z| Py) = (Pz|Py) forallz,ye€E.

5. Let cgo be the set of sequences of complex numbers almost all of whose
terms are zero, endowed with the scalar product

(@|y) =) @i
i€N
Let f be the linear form on cgg defined by
Z;
f@ =2 71

ieN
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a. Prove that f is continuous.

b. Set FF = ker f. Prove that F is a closed vector subspace strictly
contained in cpp and that F+ = {0}. (Thus the assumption that E
is complete cannot be omitted from the statement of Corollary 2.4.)

Let u be a positive Radon measure on a compact metric space X, with
support equal to X. Consider the scalar product space E = C(X) with
scalar product defined by (f|g) = [ fgdp. If A is a closed subset of X,
we write E4 = {f € C(X) : f(z) =0 for all x € A}.

Let A be a closed subset of X.

a. Prove that there exists an increasing sequence (f,) of functions in
E 4, each with support X \ A, that converges pointwise to 1x\ 4.

b. Prove that (Ea)* = Exvz.

Hint. Prove that, if g € (E4)*, then [1x\alg|>dp = 0.

c. Take g € C(X). Prove that d(g,Ea)? = [1a]g|*>du. Deduce that
E 4 is dense in E if and only if u(A) = 0. Prove also that g admits a
projection onto E 4 if and only if it vanishes on the boundary of A.

d. Suppose X has no isolated points. Prove that there exists a closed
subset A of X with empty interior and such that u(A) > 0. Check
that, for such an A, (E4)* = {0} but E, is not dense in E.

Hint. If there exists a € X such that p({a}) > 0, one can take
A = {a}. Otherwise, consider a countable dense subset of X and use
the fact that u is regular (Exercise 5 on page 77).

Let m be a measure on a measure space (2, #). Suppose m is o-finite;

that is, Q is a countable union of elements of % of finite m-measure.

Define L%(m)® L?(m) as the vector space generated by functions of the

form (z,y) — f(x)g(y), with f, g € L?(m). Prove that L?(m) ® L?(m)

is dense in L%(m x m).

Hint. Let (A,) be an increasing sequence of elements of % of finite

measure and covering €. Let F be an element of the orthogonal space

to L?(m) ® L?(m) in L?(m x m). Prove that, for all n € N, the set
consisting of all T € # x # such that

i F(z,y) dm(z) dm(y) = 0
TA(AnXAn)

contains {A x B : A,B € #} and is a monotone class; this term is
defined in Exercise 2 on page 64. Deduce from the same exercise that
F=0.

. The bipolar theorem. Let E be a complex (say) Hilbert space. If A is a

nonempty subset of E, the polar of A is defined as
A® ={z € E:Re(z|y) <1 forall y € A}.

The set A% is called the bipolar of A.
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a. Prove that the polar of any nonempty subset of E is a closed convex
set containing 0.

b. Deduce that, if A is a nonempty subset of E, the closed convex hull
of AU {0} (see Exercise 9 on page 18) is contained in A%.

c. We now want to show the reverse inclusion. Let C' be the closed
convex hull of AU {0} and take z € A%.

i. Prove that Re(z — Pc(z) | Po(z)) > 0.
ii. Prove that, for all € > 0,

1
£+ Re(z — Po(z) | Po(z))

(z — Pc(z)) € A°.

Deduce that ||a: - Pc(:c)”2 < ¢, and so that z € C.

d. Let A be a convex subset of E containing 0. Prove that A = A%.

e. Let A be a vector subspace of E. Prove that A® = AL, (We thus
recover the equality 4 = A1+))

3 The Riesz Representation Theorem

We assume in this section that E is a Hilbert space. The Riesz Represen-
tation Theorem, which we now state, describes the topological dual of E.

Theorem 3.1 (Riesz) The map from E to E' defined byy — ¢y = (- |y)
is a surjective isometry. In other words, given any continuous linear form
@ on E, there ezists a unique y € E such that

p(z) = (z|y) forallz € E,

and, furthermore, |||l = ||y||-

Proof. That this map is an isometry was seen in Corollary 1.3. We now
show it is surjective. Take ¢ € E’ such that ¢ # 0. We know from Corollary
2.4 that E = kerp @ (ker @), since, ¢ being continuous, ker ¢ is closed.
Now, ¢ is a nonzero linear form, so ker ¢ has codimension 1. The space
(ker )+ therefore has dimension 1; it is generated by a vector e, which we
can choose to have norm 1. Set y = p(e)e if K = C, or y = p(e)e if K = R.
Then ¢, (e) = ¢(e) and ¢, = 0 on ker ¢. It follows that ¢, and ¢ coincide
on (ker p)* and on ker , so ¢ = @,. O

We recall that this isometry is linear if K = R and skew-linear if K = C.
The rest of this section is devoted to some important applications of
Theorem 3.1.
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3A  Continuous Linear Operators on a Hilbert Space

Recall that L(E) denotes the space of continuous linear maps (or operators)
from E to E. We use the same symbol for the norm in E and the associated
norm in L(E). We denote by I the identity on E.

Proposition 3.2 Given T € L(E), there ezists a unique operator T* €
L(E) such that

(Tz|y) =(z|T*y) forallz,yckE.
Moreover, ||T*| = ||T|l.

T* is called the adjoint of T'.

Proof. Take y € E. The map ¢, o T : z +— (Tz|y) is an element of E', so
by Theorem 3.1 there exists a unique element of E, which we denote by
T*y, such that

(Tz|y) =(z|T*y) forall xc E;

moreover ||T*y|| = |l¢y o T|| < ||ly|||IT|l- The uniqueness of such a T*y
easily shows that T* is linear; at the same time, by the preceding inequality,
IT*|| < |IT)|- Moreover, if z € E,

ITz|?* = (Tz|Tz) = (z| T*Tz) < ||| 1T | Tl
which implies that ||Tz| < ||z|| ||T*||, and so that ||T|| < || T*||. d

The properties in the next proposition are easily deduced from the defi-
nition of the adjoint.

Proposition 3.3 The map from L(E) to itself defined by T — T* is
linear if K = R and skew-linear if K = C. It is also an isometry and
an involution (that is, T** = T for T € L(E)). We have I' = I and
(TS)* =8*T* for oall T, S € L(E).

Ezamples

1. Take E = R? with the canonical euclidean structure. The space L(E)
can be identified with the space My(R) of d x d matrices with real
entries. Then T* is the transpose of T. If £ = C¢ with the canonical
hermitian structure, the space L(E) can be identified with My4(C) and
T* is the conjugate of the transpose of T'.

2. The next example can be regarded as an extension of the preceding one
to infinite dimension. Let m be a measure on a measure space (£, %).
Suppose m is o-finite; that is,  is a countable union of elements of &
of finite m-measure. This entails we can use Fubini’s Theorem. We place
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ourselves in the Hilbert space E = L?(m), and take K € L?(m x m). If
f € E, we define Tk f(z) for m-almost every z by

Tif(@) = [ K@) /@) dmiy)

Since, by the Schwarz inequality,

/</|K(w, y)| If(y)ldm(y))zdm(x)
< (16 in) [ i) dmie i) <+

this expression defines an element Tk f of E such that

1Tk £I? < 11 / / |K (z,9)|* dm(z) dm(y),

which shows that T is a continuous linear operator on E whose norm is
at most the norm of K in L%(m x m). By Fubini’s Theorem, if f,g € E,
we have, in the case K = C,

(TS 19) = [ ) ( [x@, y)mdmu)) dm(y) = (f | Tx-g),

where we have put K*(z,y) = K(y,z). Thus T = Tk-. Naturally, in
the case K = R, we get the same result with K*(z,y) = K(y, ).

The next property will be useful in the sequel.
Proposition 3.4 For every T € L(E), we have |TT*|| = |T*T| = || T2
Proof. Certainly | T*T|| < ||T||2. On the other hand,
|ITz|* = (T |Tz) = (x| T*Tz) < |l=|*|T*T],
which shows that |T||2 < ||T*T||. Therefore | T*T| = ||T||? and, applying
this result to T*, we get | TT*|| = ||T*||% = ||T||%. O

An operator T € L(E) is called selfadjoint if T = T™*. We also call
such operators symmetric if K = R and hermitian if K = C. By the
preceding proposition, if T is selfadjoint then || 72| = || T'||2.

Ezamples

1. For every operator T € L(E), TT* and T*T are selfadjoint.

2. In Example 2 on the preceding page, Tk is selfadjoint if and only if, for
(mxm)-almost every (z,y), we have K(z,y) = K(y,z) (if K = R) or
K(z,y) = K(y,z) (if K = C). This condition is clearly sufficient and it
is necessary by Exercise 7 on page 110.
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3. Every orthogonal projection operator is selfadjoint (see Exercise 4 on
page 109).

Note that, if T is a selfadjoint operator, (Tz|z) € R for all z € E. We
say that T € L(FE) is positive selfadjoint if

(Tz|z) € Rt forallz € E.

Warning! If E is a function space, this notion of positivity has nothing to
do with the condition f > 0 = T'f > 0. In particular, in Example 2 above,
Tk is positive selfadjoint if, for all f € L?(m),

/ K(z,y) f(2)F) dm(z) dm(y) > 0,

and it is positive in the other sense if K > 0, which is altogether different.
One checks immediately that, for all T € L(E), the operators TT* and
T*T are positive selfadjoint.
The last result of this section gives another expression of the norm of a
selfadjoint operator.

Proposition 3.5 Assume E # {0}. For every selfadjoint operator T €
L(E),
|IT|| = sup{|(Tz|z)| : = € E and ||z|| = 1}.

Proof. Let v be the right-hand side of the equality. Clearly v < ||T’|| and,
for all z € E, |(Tz|z)| < 7v|lz||>. Assume for example that K = C, and
take y,z € F and A € R. Then

[(T(y+22) |y £A2)| = |(Ty|y) £ 2ARe(Ty | 2) + A*(Tz | 2)| < 7 lly+ Azl
We deduce, by combining the two inequalities, that
4|\ [Re(Ty| 2)| < v(lly + Azl* + lly = A=ll?) = 27 (Ilyl* + A?[1]1%),

and this holds for any real A. We conclude that |Re(Ty | z)| < 7yl =,
from the condition for a polynomial function on R of degree at most 2
to be nonnegative-valued. Now it is enough to choose z = Ty to obtain
ITy|l < «lly|| for all y € E, and hence ||T|| < 7. O

3B Weak Convergence in a Hilbert Space
We say that a sequence () in E converges weakly to z € E if

ngr}rloo(mn |ly)=(z|y) forallyeE.

In this case z is called the weak limit of the sequence (z,). Clearly a
sequence can have no more than one weak limit.
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One deduces immediately from the Schwarz inequality that a sequence
(zn) of E that converges to a point z of E in the sense of the norm of E (one
for which lim,_, { ||z — z|| = 0) also converges weakly to z. The converse
is generally false. For example, it is easy to check that the sequence (z,)

in E = (2 defined by
@y =g T

0 otherwise

converges weakly to 0, whereas ||z,|| = 1 for all n. For this reason we
sometimes call convergence in the sense of the norm strong convergence.

The next proposition pinpoints the relationship between weak and strong
convergence.

Proposition 3.6 Let (z,) be a sequence in E that converges weakly to x.
Then

im i > .
liminf |lz,| > |2
Moreover, the following properties are equivalent:

1. The sequence (z,) converges (strongly) to x.
2. limsup, , o 2]l < [la]|
3. limps oo [[2a]l = |12l

Proof. First,
2 : s
{ = <
l2]* = lim |(@|2n)| < [lo] liminf |2,

which proves the first statement. At the same time, ||z — z,||* = ||z|> +
|z )2 — 2Re(zn | 2), so

. . 2
limsup ||z — z,||? < (limsup [za]))” - |l2I1%
n—+o00 n—+o00

which yields the equivalence between 1 and 2. The equivalence between 2
and 3 follows immediately from the first statement. O

The Riesz Representation Theorem enables us to prove the following
version of the Banach—Alaoglu Theorem in a Hilbert space.

Theorem 3.7 Any bounded sequence in E has a weakly convergent sub-
sequence.

Proof. Suppose first that E is separable. Let (z,,) be a bounded sequence in
E. In the notation of Theorem 3.1, the Banach—Alaoglu Theorem (page 19)
applied to the sequence (y;,) guarantees the existence of a subsequence
(zn,) and of a ¢ € E’ such that

lim ¢, (y) =¢(y) forallyeckE.
k—-+o0
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By Theorem 3.1, there exists an element z € E such that ¢ = ¢z, which
proves the theorem in the separable case.

We turn to the general case. Let (z,) be a bounded sequence in E and
let F be the closure of the vector subspace of E spanned by {zn}nen. By
construction, this is a separable Hilbert space. The first part of the proof
says that there exists a subsequence (z,,) and a point z € F such that

Jm (zn, |y) = (z]y) forallyeF.

Since this equality obviously takes place also if y € F1, it suffices now to
apply Corollary 2.4. O

The fact that any continuous linear operator has an adjoint allows us to
prove the following property.

Proposition 3.8 Let (z,) be a sequence in E converging weakly to x.
Then, for all T € L(E), the sequence (Tz,) converges weakly to Tz.

Proof. For every y € E,

lim (Tzn|y) = lm (za|T"y) = (|T"y) = (Tz|y). o

n—+o00

FEzxercises

1. Theorem of Laz-Milgram. Galerkin approzimation. Let E be a real
Hilbert space and a a bilinear form on E. Assume that a is contin-
uous and coercive: this means that there exist constants C > 0 and
a > 0 such that

la(z,y)| < Clizll lyll  for all z,y € E,
a(z,z) > of z||? for all z € E.

a. i. Show there exists a continuous linear operator T on E such that
a(z,y) = (Tz|y) forallz,yecE.

ii. Prove that T'(E) is dense in E.

iii. Prove that ||Tz|| > a||z|| for all z € E. Deduce that T is injective
and that T(F) is closed.

iv. Deduce that T is an isomorphism from E onto itself.
b. Let L be a continuous linear form on E.

i. Deduce from the preceding questions that there exists a unique
u € F such that

a(u,y) = L(y) forallye E.
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ii. Now suppose that the bilinear form a is symmetric and define,
forx € E,
®(z) = a(z,z) — L(z).

Prove that the point u is characterized by the condition

®(u) = Izlgg ®(z).

c. We return to the notation and situation of question 1b-i. Let (E,) be
an increasing sequence of closed vector subspaces of E whose union
is dense in E.
i. Prove that, for any integer n € N, there exists a unique u, € E,
such that
a(un,y) = L(y) forally€ E,.
Check, in particular, that if E,, has finite dimension d,,, determin-
ing u,, reduces to solving a linear system of the form A,U, =Y,,

where A, is an invertible d,, X d,, matrix, which, moreover, is
symmetric and positive definite if a is symmetric.

ii. Prove that, for any n € N,
C
lu —un| < 5 d(u, Ep).

Deduce that the sequence (u,) converges to u.
Hint. Take y € E,. Prove that

a(U—Up, U—Up) = a(U—Up, u—1Y)

and deduce that au — u,|| < Cllu —y|-
2. Lions-Stampacchia Theorem (symmetric case). Consider a real Hilbert
space E, a nonempty, closed, convex set C in E, a continuous and co-

ercive (Exercise 1) bilinear symmetric form a on E, and a continuous
linear form L on E. Let J be the function defined on E by

J(u) =a(u,u) —2L(u) forallue€ E.

Prove that there exists a unique ¢ € C such that J(c) < J(v) for all
v € C, and that c is characterized by the following condition:

a(c,v—c) > L(v—c) forallveC.

Hint. By the Lax-Milgram Theorem (Exercise 1), there exists a unique
element u of E such that a(u,v) = L(v) for all v € E. Check that
J(v) = a(v—u, v—u)—a(u,u), then work in the Hilbert space (E,a).

3. Reproducing kernels. Let X be a set and # the vector space of complex-
valued functions on X.
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a. Consider a vector subspace E of .# endowed with a Hilbert space
structure such that, for all z € X, the linear form defined on E by
f — f(z) is continuous.

i. Prove that there exists a unique function K from X2 to C sat-
isfying these conditions:
— For all y € E, the function K(-,y): z — K(z,y) liesin E.
~ For all f € E and y € X, we have (f|K(-,y)) = f(y).
We call K the reproducing kernel of E.
ii. Prove:
A. For all z,y € E, we have K(z,y) = K(y, 7).
B. For all n € N* all (¢,...,&,) € C", and all (z,1,...,2,) €

X™, we have
3 Kz a,)ks > 0.
=1 j=1
iii. Prove that the family {K(-,y)}yex is fundamental in E.

b. Conversely, consider a function K from X? to C satisfying properties
A and B above.

i. Let & be the vector subspace of .# spanned by {K(-,y)}yex.
Prove that the relation

(ZAjK(-,xj) ZﬂkK(’,yk)) = ZZK(yk,wj))\jﬁk
j=1 k=1

i=1k=1
defines a scalar semiproduct on &. Check, in particular, that this
expression does not depend on the representations involved.

ii. Let (E7,(-|-)") be the Hilbert completion of & and let L be the
associated canonical map from & to E~ (Exercise 8 on page 104).
Define an application ¥ : E~— % by

U(p)(z) = (0| LK (-, 2)))"

Prove that ¥ is injective.

iii. Derive a Hilbert space structure for E = ¥(E~), with respect to
which K is the reproducing kernel.

c. Suppose X = R and fix a Borel measure p of finite mass on R. If
h € L?(u), denote by f;, the element of # defined by

fulz) = / et h(2) du(t).

i. Prove that the map h — f), thus defined on L%(u) is injective
(see Exercise 1c on page 63).
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ii. Set E = {fn:h € L%(u)}. For h,k € L?(p), set

(al fi) = / hE dp.

Prove that E is a Hilbert space having as a reproducing kernel
the function K (z,y) = [ e®*(=~¥) du(t).
d. Let Q be open in C. Prove that the Hilbert space H2(f2) defined in
Exercise 4 on page 102 has a reproducing kernel. This is called the
Bergman kernel.

4. Let E be a Hilbert space over C, distinct from {0}. If T € L(E), write
n(T) = sup{|(Tz|z)| : ||=l| = 1}.
a. Prove that
n(T) <||T|| £ 2n(T) for all T € L(E). (%)

Hint. For the second inequality, draw inspiration from the proof of
Proposition 3.5 to show that, for every z,y € F and S € L(E),

|(Sz1y) + (Sy|2)| < 2n(S) Il ]l

Then set S = AT and y = ATz, were A is a complex number of
absolute value 1 such that A\2(T?%z |z) € R™.

b. Prove that (*) would be false if E were a Hilbert space over R.

c. Prove that, if E has dimension at least 2, the constant 2 in (%) cannot
be replaced by a smaller real number.
Hint. Let u and v be orthogonal vectors in E, each of norm 1. Con-
sider the operator defined on E by

TOwu+pv+w) =M forall \,p € K and w € {u,v}*.

d. Prove that the map T + n(T) is a norm on L(E) equivalent to the
norm || -||.
5. Let F be a Hilbert space over C.
a. Take T € L(E). Prove that T is hermitian if and only if (Tz |z) € R
for all z € E.
Hint. In the notation of Exercise 4, T=T"* if and only if n(T—T*) =0.
b. Deduce that an operator T on E is positive hermitian if and only if
(Tz|z) € R for all z € E.
6. Let T be a positive selfadjoint operator on a Hilbert space E.
a. Prove that

|(Tz|y)|’< (Tz|2)(Ty|y) forallz,y € E.

Hint. Prove that (z,y) — (Tz|y) is a scalar semiproduct on E and
so satisfies the Schwarz inequality.
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b. Derive another proof of Proposition 3.5 in this case.

7. Let P be a continuous linear operator on a Hilbert space . We assume
that P is a projection (P% = P). Prove that the following properties are
equivalent:

~ P is an orthogonal projection operator.
~ P is selfadjoint: P = P*.

- P is normal: PP* = P*P.

- (Pz|z) = |Pz|? for all z € E.

8. Consider a Hilbert space E and an element T € L(E).

a. Prove that ker T* = (imT)*. Deduce that imT = (ker T*)*, then
that im 7" = F if and only if T* is injective.

b. Assume T is positive selfadjoint. Prove that an element z € E sat-
isfies Tz = 0 if and only if (Tz|z) = 0 (use Exercise 6a above).
Deduce that T is injective if and only if (Tz|z) > 0 for all z # 0.

9. An ergodic theorem. Consider a Hilbert space E and an element T €
L(E) such that ||T|| < 1.

a. Prove that an element z € F satisfies Tx = z if and only if (Tz | z) =
lz||2. (Use the fact that equality in the Schwarz inequality implies
collinearity.) Deduce that ker(I — T') = ker(I — T*).

b. Show that (im(I — T))t = ker(I — T') (use Exercise 8a above) and
deduce that

E=kerI -T)®im(I -T).

c. Forn > 1, set

I+T+---+T"
n+1 '

Show that lim,_, 4 Tnz = Pz for all z € E, where P is the orthog-
onal projection onto ker(I — T').
Hint. Consider successively the cases z € ker(/ —T), = € im(I —-T),
and z € im(I — T). In this last case, you might use Proposition 4.3
on page 19.

10. Let E be a Hilbert space.

a. Prove that every weakly convergent sequence in E is bounded.
Hint. Use the Banach-Steinhaus Theorem (Exercise 6d on page 22).

b. Let (z,) and (y,) be sequences in E. Prove that if (z,) converges
weakly to  and (y,) converges strongly to y, the sequence ((z», | yn))
converges to (z|y). What if we suppose only that (y,) converges
weakly to y 7

T, =

11. Let (z,) be a sequence in a Hilbert space E. Prove that if, for all y €
E, the sequence ((zn |y)) is convergent, the sequence (z,) is weakly
convergent.

Hint. Use Exercise 6f on page 23.
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13.

14.

15.

16.

17.
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Let K be a compact subset of a Hilbert space E. Prove that every

sequence in K that converges weakly also converges strongly.

Prove that in a finite-dimensional Hilbert space every weakly convergent

sequence is strongly convergent. You might give a direct proof, not using

Exercises 10 and 12.

Let D be a fundamental subset of a Hilbert space E. Prove that if (z,) is

a bounded sequence in E and if lim, 4 oo (Z |y) = (z|y) for ally € D,

then (z,) converges weakly to z. Prove that the assumption that (z,)

is bounded is necessary (see Exercise 10a above).

a. Let (z,) be a weakly convergent sequence in a Hilbert space and let
z be its weak limit. Prove that z lies in the closed convex hull of the
set {Zn}nen-

Hint. Let C be the closed convex hull of the set {z,}nen. Prove that
z = Pox.

b. Let C be a convex subset of a Hilbert space E. Prove that C is closed
if and only if the weak limit of every weakly convergent sequence of
points in C is an element of C.

Banach—-Saks Theorem.

a. Let (z,) be a sequence in a Hilbert space E converging weakly to
z € E. Prove that there exists a subsequence (z,,) such that the
sequence (yi) defined by

1
yk:%(mnx +$n2+"'+xnk)

converges (strongly) to .
Hint. Reduce to the case where z = 0. Then construct (by induction)
a strictly increasing sequence (ny) of integers such that, for all £ > 2,

I(znl lzﬂk)l S l/k’ I(l‘nz |znk)| S l/k’ e l(xnk—l ixnk)l S l/k

Then use Exercise 10a.
b. Deduce another demonstration of the result of Exercise 15.
A particular case of the Browder Fized-Point Theorem. Let C be a
nonempty, convex, closed and bounded subset of a Hilbert space E.
a. Let T be a map from C to C such that

||T(z) - T(y)” <|lz—y| forallz,yeC.

i. Let a be a point of C. For every n € N* and z € C, define

1 -1
Tu(@) = ~a+ ~—T(a).

Show that there exists a unique point z,, € C such that T, (z,) =
Tn.
Hint. The map T, is strictly contracting.
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ii. Let (z,,) be a weakly convergent subsequence of the sequence
(), tending to the weak limit = (see Theorem 3.7). Set y, ==
T, —a and y = £ — a. Prove that, for all n > 2,

2n —2
2n—1

llynll® < Re(yn | y).

Deduce that the sequence (z,,) converges strongly to z, that
z € C, and that T'(z) = z.
iii. Prove that the set {z € C : T(z) = z} is convex, closed, and
nonempty.
Hint. To show convexity, take xo,z; € C such that T'(z¢) = zo
and T(z,) = z; and, for ¢t € (0, 1], set z; = tz; + (1 — t)xo. Prove
that
o — 21| = || T(ze) — zo|| + ||z1 - T(xt)”
Using the case of equality in the Schwarz inequality, deduce that
T(zt) = T¢.
b. Let J be a family of maps from C to C such that
- ToS=8oTforall T,S € 7, and
- |T(z) - T)|| < llz — y| for all T € F and z,y € C.
Suppose also that F is separable. Show that there exists a point
z € C such that
T(x)y=x forallT e 7.

Hint. Show first that there exists a metric that makes C' compact;
then argue as in Exercise 19a on page 85.

18. Consider a nonempty, convex, closed and bounded subset C of a real
Hilbert space E, and a differentiable function J from E to R. Recall
that J is called convez on C if, for any pair (u,v) of points in C' and
any 8 € [0,1],

J(0u+ (1 - 0)v) <0J(u)+ (1 -6)J(v).

By definition, the gradient of J at u, denoted by VJ(u), is the element
of E that the Riesz Representation Theorem associates to the derivative
map J'(u).

a. Prove that J is convex on C if and only if, for all (u,v) € C?,

J(v) = J(u) + (VJ(u) |v—u).
In particular, deduce that, if J is convex, it is bounded below over

C.

b. Prove that if J is convex there exists at least one point u, € C such
that

J(uy) :Jreng(u).
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You might proceed in the following way: Let m be the infimum
on the right-hand side, and let (u,) be a sequence in C such that
limy, 400 J(Up) = m.
i. Prove that (u,) has a weakly convergent subsequence (uy, ).
ii. Let u, be the weak limit of (u,, ). Prove that u, € C (see Exer-
cise 15).
iii. Prove that J(u.) = m.
c. Under the same hypotheses and with the same notation, prove that

the set Co = {u« € C': J(us) = m} is convex and closed. Prove also
that u € Cy if and only if (VJ(u)|v—u) >0 for allv € C.

d. An ezample of a convex function. Take T € L(E) and ® € E’, and
set J(u) = (Tu|u) + ®(u). Prove that J is convex on E if and only
if the operator T + T* is positive selfadjoint.

4 Hilbert Bases

We consider a scalar product space E. A family (X;)ics of elements of E
is called orthogonal if X; | X; whenever i # j. For such a family, the
Pythagorean Theorem implies that, for any finite subset J of I,

2

Y x| =X

e e

Here is an immediate consequence of this:

Proposition 4.1 An orthogonal family that does not include the zero vec-
tor is free.

Proof. Let J be a finite subset of I and let (\;);cs be elements of K such

that -, ; A; X; = 0. Then
2
DMKl =Y NI =0,
jed j€J
which clearly implies that A\; = 0 for all j € J. O

An orthogonal family all of whose elements have norm 1 is called or-
thonormal. The preceding proposition shows that such a family is free.
A fundamental orthonormal family in E is called a Hilbert basis of E.
Thus a Hilbert basis is, in particular, a topological basis.

We give some fundamental examples.
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Ezamples

1. Suppose a > 0 and let CX be the space of continuous functions periodic
of period a from R to K, with the scalar product defined on page 98.
For n € Z, we set

en(x) — e21‘.1rnz/a.

It is straightforward to show that the family (e,)nez is orthonormal in

CE. As in the particular case of Example 4 on page 35, this family is

fundamental in C$ with the uniform norm. Since the norm associated

with the scalar product never exceeds the uniform norm, the family

(en)nez is a Hilbert basis of the scalar product space CS. It follows

easily that the family

2 2 2
{1, V2 cos —Wx, V2sin 2—7rx, .oy V2co0s —Zﬁz, V2sin %z, }
a a

is a Hilbert basis of the scalar product space CX, for K =R or K = C.

2. If Ais a Borel set in R, we denote by L2(A) the space L?(), A) associated
with the restriction of Lebesgue measure to the Borel sets of A. Let E =
L2((0,1)). Clearly L%((0,1)) = L%([0,1]), since A({0}) = A({1}) = 0.
We now set e,(z) = €™ for n € Z and z € (0,1). Then (en)nez is
an orthonormal family in LZ((0,1)). We also know, by Proposition 2.6
on page 107, that C.((0,1)) is dense in L?((0,1)). Now, C.((0,1)) can
be identified with a subspace of C,, the space of continuous functions
periodic of period 1 (every element f of C.((0,1)) extends uniquely to a
continuous function periodic of period 1 on R), and every element of C,
is the uniform limit of a sequence of linear combinations of functions e,
extended to R by 1-periodicity (Example 4 on page 35). We deduce, by
comparing norms as in the preceding example, that the family (e, )nez
is a Hilbert basis of LZ((0,1)). As before, it follows that

{1, \/§cos27ra:, \/isin27r.7:, cee \/5c0s27rna:, \/isin27rnz, ...}

is a Hilbert basis of L%((0,1)), for K=R or K=C.
More generally, if a,b € R and a < b, the family (f,)rcz defined by

1
vb—a

is a Hilbert basis of LZ ((a, b)). One can also, in an analogous way, obtain
a real Hilbert basis of L% ((a, b)).

3. Consider the space E = £2(I) of Example 5 on page 99. For j € I, we
define an element e; of E by setting e;(j) = 1 and e;(i) = 0 if i # j.
The family (e;);er is obviously orthonormal. We now show that it is
fundamental. To do this, take z € E and ¢ > 0. By the definition of the
sum ), |z:|?, there exists a finite subset J of I such that

e2imnz/(b—a) forall z € (a,b)

fa(z) =
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D lmff = lmf? = Yl < €.
i€l\J el i€J

But then

2
= Z |.’l:i|2 Sé‘z.

i€I\J

Thus the family (e;) er is a Hilbert basis of E.

T — E .’L'jej

Jjed

The main properties of orthonormal families follow from the next propo-
sition, which is elementary.

Proposition 4.2 Let {e;};cs be a finite orthonormal family in E, span-
ning the vector subspace F. For every x € E, the orthogonal projection
Pr(z) of x onto F is given by

Pp(z) =) (z]ej)e;.
jed

As a consequence,

lz* =

+3Y|@le)|™.

jeJ

= (z|e;)e

jeJ

Proof. To prove the first statement, it is enough to show that the vec-
tor y = ), ;(z]ej)e; satisfies the conditions characterizing Pr(z) (see
Proposition 2.3 and the remark on page 107). Now, it is clear that y € F'
and that (z —y|e;) = 0 for all j € J, which implies z — y € F1. The rest
of the theorem follows immediately from the Pythagorean Theorem. O

An important, though easy, first consequence is the Bessel inequality:
Proposition 4.3 Let (e;)ics be an orthonormal family in E. For all z €
E, we have

2
> l@le)]” < lel*.
i€l
(In particular, the family ((z|e;))icr lies in €2(I).)
The next result characterizes the case of equality in the Bessel inequality.

Theorem 4.4 (Bessel-Parseval) Let (e;)icr be an orthonormal family
in E. The following properties are equivalent:

1. The family (e;)icr is a Hilbert basis of E.
2. |z)? = Xier (=] e,~)|2 for all z € E (Bessel equality).
3. (219) = Ties (2l )] v) for all 2,y € E.
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Thus, if (e;)icr is a Hilbert basis of E, the map from E to ¢*(I) defined
by x> ((z|e:))ier is a linear isometry. This isometry is surjective if and
only if E is a Hilbert space.

Proof

i. Assume property 1 holds. Then, for all z € E and all ¢ > 0, there
exists a finite subset J of I such that the distance from z to the span
of {€;};es is at most €. By Proposition 4.2,

2 2
Dollen)” =Y lzlen)]” > llzl* ™
jel jed
By making € go to 0 and taking Bessel’s inequality into account, we
obtain 2.
ii. Conversely, suppose property 2 holds. Then, for all z € F and all ¢ > 0,
there exists a finite subset J of I such that zj€J|(x lej)|? > llzl|*—e2;
thus, by Proposition 4.2,

m—Z(xlej)ej <e.

jed

This shows that the family (e;);cs is fundamental, and so property 1.

iii. The equivalence between 2 and 3 can be derived immediately from the
expression of the scalar product in terms of the norm, valid for any
scalar product space (see the remark following Corollary 1.2).

iv. If the isometry is surjective, E is isometric to £2(I) and hence complete.

v. Finally, suppose E is a Hilbert space and let (z;)ics be an element of
£2(I). Set a = Y, |z:|%. There exists then an increasing sequence (J5)
of finite subsets of I such that, for all n € N, 3, lz;|2 > a—27"
(we can assume that I is infinite, since the finite case is elementary).
Put un, =) ;c; zie;. Then, if n <p,

lup —unl® = Y el <27
i€Jp\Jn

Since E is complete, we deduce that the sequence (u,) converges to an
element z of E. But
z |zi|* = a.

1€UnJn

Hence, for any i ¢ |J,, Jn, we have x; = 0 and
(z]e:) = lim (un]ei) =0.

Ifi € U, Jn, then (z|e;) = limp400(un|e:) = ;. Thus (z]e;) = z;
for all i € I, which proves the surjectivity of the isometry. O
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Remark. More precisely, steps i and ii of the proof show that, if (e;):cs is
an orthonormal family in E, the equality

2
lz* = (= e
i€l
characterizes those points z that belong to the closure of the span of the
family (e;)icy.

We shall see that the inverse image of (z;)ic; under the isometry E —
£%(I) of the preceding theorem can be considered as the sum ), ; ze; in
a sense made precise in the following definition:

A family (X;)ier in a normed vector space E is called summable in E
if there exists X € E, called the sum of the family (X;);cr, satisfying the
following condition: For any & > 0, there exists a finite subset J of I such
that

”X - Z X;|| <e for any finite subset K C I containing J.

i€eK

In this case we write

X=) X.

il

It is easy to see that the sum of a summable family is unique. Observe
that, in the case E = K, a family (z;);cs is summable in K if and only
if (z4)ier € e,}((I ), and in this case the definition just given for the sum
coincides with the one given in Example 5 on page 99 (see Exercise 5 on
page 103). Naturally, if I = N and if the family (X;);en is summable, the
series 3.7°% X; converges in E, with Yt Xi= 1% X;. The converse is
false, even for E = K: see Exercise 2 below.

Theorem 4.5 Let (e;)ics be a Hilbert basis of E. For any element z of E,
T = Z(w | e:)e;.
el

Proof. By Proposition 4.2, we know that, for any finite subset J of I,

2
=zl = 3 |zl ey)]”

jed

z- Y (zle;)e;

jed

Now just apply the definitions and property 2 of Theorem 4.4. O

Ezample. Consider again the situation of Example 1 on page 124: the
space CS, with a Hilbert basis (e,) defined by e,(z) = €. If f € CS,
and n € Z, set

27

lf) = (flen) = 5 [ f)ewaa.
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The sequence (¢, (f))nez is the sequence of complex Fourier coefficients
of f. Thus, for all f € CS,,

1 2 2 2
i, 1 de =3l
At the same time we have
f=Y enlfen (x)

neZ

in the sense of summability in the space C§, with the norm associated
with the scalar product. Recall that in general the series of functions
Y nez cn(f)en does not converge uniformly to f; therefore equality (x)
does not hold in general in C%,, with the uniform norm. (It holds when f is
of class C!, for example; see Exercise 15 below). On the other hand, since
the scalar product space CS, is not complete, the isometry from C§, to
¢%(Z) defined by f ~ (cn(f))nez is not surjective; hence not all elements
of ¢2(Z) are sequences of Fourier coefficients of continuous functions.

Complex Fourier coefficients can be defined analogously for functions
f € L?((0,1)), by setting c,(f) = fol f(z)e~ %2 dx (see Example 2 on
page 124). Bessel’s equality remains valid in this case, as does equality
(%) in the sense of the norm of L2((0,1)), which, unlike CS,, is complete.
Thus the isometry from L2((0,1)) to ¢2(Z) defined by f — (cn(f))nez is
surjective.

The rest of this section is devoted to the problem of existence and con-
struction of Hilbert bases.

Proposition 4.6 (Schmidt orthonormalization process) Suppose
that N € {1,2,3,...} U {+0o} and let (fn)o<n<n be a free family in E.
There ezists an orthonormal family (en)o<n<n of E such that, for each
nonnegative integer n < N, the families (ep)o<p<n and (fp)o<p<n span the
same vector subspace of E.

Such a family can be constructed by setting

1
eo = —— fo
|l foll
and, for0<n< N -1,
1
Tn41 = fn+1 - Pnfn+1 and €ntl1 = mmn+l,
n

where P, is the orthogonal projection onto the span of the family (fp)o<p<n-

Proof. We show that the sequence (e, )nen defined in the statement satisfies
the desired conditions. First, since the family (f,) is assumed to be free, it
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is clear that x,, # O for all n, and so that e, is defined for all n. Let E,
and F, be the vector subspaces of E spanned by, respectively, (ep)o<p<n
and (fp)o<p<n. Trivially, Eq = Fy. Suppose that E, = F, forn < N —1.
Clearly ep+1 € Fpt1, s0 Enyy C Fpyq. Moreover fpy1 € Epy1, which
shows the reverse inclusion. Hence, E,, = F, for all 0 < n < N. At the
same time, for each n > 1 the vector e,y is, by construction, orthogonal
to F;, and thus to E,. Therefore the family (e,)o<n<n is orthonormal. O

Remark. The family (en)o<n<n can be recursively constructed using the
following algorithm:

zo = fo, eo = Zo/||oll,
n

Tnt1 = fni1 — Z(fn+llej)ej, ent1 = Tnt1/[|Tn1
J=0

(see Proposition 4.2).

Corollary 4.7 A scalar product space is separable if and only if it has a
countable Hilbert basis.

Proof. According to Proposition 2.6 on page 10, the condition is sufficient.
By the same proposition, separability implies the existence of a free and fun-
damental family (f,)nen. Applying the Schmidt orthonormalization pro-
cess to the family (f,) we obtain a family (e,) that is a Hilbert basis. O

Two scalar product spaces are called isometric if there exists a sur-
jective isometry from one onto the other. Theorem 4.4 has the following
consequence:

Corollary 4.8 An infinite-dimensional Hilbert space is separable if and
only if it is isometric to the Hilbert space £2.

FExercises

1. Prove that every orthonormal sequence in a Hilbert space converges
weakly to 0.
2. Summable families in normed vector spaces. Let (X;)icr be a family in
a normed vector space E.
a. Suppose E is finite-dimensional. Show that (X;);er is summable if
and only if Y7, ; | X;]| < +oo0.
Hint. Reduce to the case E = K and use Exercise 5 on page 103.
b. Make no assumptions on E, but suppose I is countably infinite.
i. Prove that, if the family (X;);cs is summable with sum X, we
have, for any bijection ¢ from N onto I,

+00
X =Y Xym)
n=0
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ii. Suppose, conversely, that the series E::(’) X, (n) converges for
any bijection ¢ : N — I. Prove that the family (X;);cs is
summable.

Hint. Let ¢ be a bijection from N onto I and set

+o00
X =Y Xym)
n=0

Prove that, if )., X; # X, there exists € > 0 with the following
property: For any integer n € N, there exists a finite subset
A of {n, n+1, n+2,...} such that |3 ,c4 Xok)|| > €. Deduce
the existence of a sequence (A,)nen of pairwise disjoint finite
subsets of N such that HZkGAn X<p(k)|| > ¢ for every n € N,
then the existence of a bijection ¥ : N — I such that the series
Z::a Xy(n) does not satisfy the Cauchy criterion and so does
not converge.

c. Suppose that E is a Hilbert space, I is arbitrary, and (X;):cs is

an orthogonal family. Show that the family (X;)ic; is summable if
and only if )., [ Xi||*> < +oc. (You might draw inspiration from
the last part of the proof of Theorem 4.4.) Deduce that, in any
infinite-dimensional Hilbert space, there exists a summable sequence
(Xn)nen such that )7 || Xy| is infinite. (In fact, the Dvoretzki-
Rogers Theorem asserts that there is such a sequence in any infinite-
dimensional Banach space. The next question presents another sim-
ple example of this situation.)

. Let X be an infinite metric space, and take E = Cy(X), with the

uniform norm, denoted | - ||.

i. Show that there exists in X a sequence (B(an, rn))neN of pair-
wise disjoint nonempty open balls.

ii. Show that, for each integer n € N, there exists a continuous
nonnegative-valued function f, on X supported within B(a,, )
and having norm || f,|| =1/(n+1).

iii. Show that the sequence (f,)nen is summable in E and that the
series ) || fnl| diverges.

3. Let A be a subset of Z and let E4 be the vector subspace of L%([0, 27])

defined by

Ejy = {f € L*([0,27]) : 2ﬂf(alc)e‘"“” dr=0forallne A}.
0

a. Show that E4 is closed and determine a Hilbert basis of E4.
b. What is the orthogonal complement of E4?
c. Write down explicitly the operator of orthogonal projection onto E4.
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4. Legendre polynomials. If n is a nonnegative integer, we define a polyno-
mial P, as

Fa(a) = gy g (@ 1"
a. Show that the family (\/ n+ % Pn)neN is a Hilbert basis of the space

L2([-1,1)).
b. Deduce an explicit expression for the orthogonal projection from
L?([-1,1]) onto the space R,[X] of polynomial functions of degree
at most n.
5. Hermite polynomials. Consider the Hilbert space E = L?(u), where p
is the positive Radon measure defined on R by

1
plp) = T /R o(z)e */2dz for all p € C.(R).

a. Show that, for every n € N, there exists a unique polynomial P, of
degree n such that
ar , _ 2 270 =
T (€77 = (-1 Pa).
b. Foreachn € N, set P, = P, / v/n!. Show that (Py) is an orthonormal
family in E.
c. i. Takep € C.(R). Show that there exists a sequence of polynomials
(Pn)nen such that
: —z2%/8 _ —z2%/8
Jm pa(z)e = p(z)e
uniformly on R.
Hint. Use Exercise 8d on page 41 and perform a change of vari-
ables.
ii. Deduce that (p,)nen converges to ¢ in E.
d. Show that the family (P,) is a Hilbert basis for E.
6. Chebyshev polynomials. Let p be the positive Radon measure on [—1, 1]
defined by

ulp) = /1 o(x)(1 —2%)"2dz  for all p € C([-1,1]).
1

For z € [-1,1], set To(z) = 4/1/7 and
Tn(z) = \/2/mcos(n arccos ) for n > 1.

Show that, for every n € N, the function T, is the restriction to [—1,1]
of a polynomial of degree n and that (T,)nen is a Hilbert basis for

L?(p).
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7. Laguerre polynomials. Let p be the positive Radon measure on R* de-

fined by

+o00
u(p) = / p(z)e~®dz for all p € C(R™).
0

For each n € N, set

—(e7"z™).

Lu@)= S 2

. Show that L,, is a polynomial of degree n for every n € N.

i. Compute the scalar product (X k|Ln), for 0 < k < n, where
Xk x> 2k,
ii. Deduce that (Ly)pen is an orthonormal family in the space E =

L2().

. Show that, if a is a nonnegative real number,

+00 400 B B 2 1
Z(/o e *Lp(z)e d:c) =21

n=0

Deduce that the function f, : £ — e~ lies in the closure in E of
the vector space spanned by the sequence (L,).

. Show that the family (fn)nen+ is fundamental in Co(R™). (Use

the Weierstrass Theorem and a change of variables, or the Stone-
Weierstrass Theorem in R*: see Exercise 7i on page 56.) Deduce
that (Ln)nen is a Hilbert basis for E.

. Gaussian quadrature. Let p be a positive Radon measure on a compact
interval [a,b] in R (where a < b). Suppose the support of p is not finite.

a. Show that there exists a Hilbert basis (P,)nen of L (1) such that,

for every n € N, P, is the restriction to [a, b] of a real polynomial of
degree n.

. Show that, for n > 1, P, has n distinct roots in (a, b).

Hint. Using the fact that [ P,dy = 0, show that P, has at least
one root of odd multiplicity in (a,b). Now let z;,...,z, be the
roots of odd multiplicity of P, in (a,b). By considering the integral
J Pp(z)(z — 21) ... (x — ) du(z), prove that r = n.

c. Fixn > 1 and let z,,...,z, be the roots of P,.

i. Show that there exists a unique n-tuple (4, ..., A,) of real num-
bers such that, for every k € {0,...,n — 1},

/3: du(zx ZAw
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ii. Show that, for every polynomial P of degree at most 2n — 1,

/Pdu = iA,-P(a:i).

=1

Hint. Write P = Q + RP,, where R and @ are polynomials of
degree at most n — 1.

iii. Show that, for every i € {1,...,n},

[T -2 duta) = Ao - 7
J#i j#i
Deduce that A; > 0.

d. Now make n vary and denote by mgn) yeens zﬁl") the roots of P, and
by (A(ln) yeens Aﬁ," ) the coefficients determined in the preceding ques-
tion. Show that, for every continuous function f on [a, b],

kNS () g (m)
[rau=tim 3 AP 5

=1

Hint. Use Proposition 4.3 on page 19.

. Let D be a dense subset and (e;);c; an orthonormal family in a scalar

product space E. Show that there exists a surjection from D onto I.
Deduce that any orthonormal family in a separable scalar product space
is countable.

Let & be the vector space spanned by the family of functions (e,)rer
from R to C defined by e,(z) = 2.

a. Show that, if f and g are elements of &, the value

T —_—
(t19)= glim o [ ros@a

is well defined and that the bilinear form thus defined is a scalar
product on &.

b. Show that the family (e,)rcg is a Hilbert basis of &, and that & is
not separable (see Exercise 9 above).

c. Let E be the Hilbert completion of & (Exercise 8 on page 104). Show
that the family (é,)rcr (where we use the notation of Exercise 8 on
page 104) is a Hilbert basis of E, and deduce that there exists a
surjective isometry between E and £2(R).

Hilbert bases in an arbitrary Hilbert space

a. Let E be a scalar product space.
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i. Show that F contains a maximal orthonormal family (that is, an
orthonormal family that is not strictly contained in any other).
Hint. Use Zorn’s Lemma (which is apparently due to Kuratowski),
one of the various equivalent forms of the axiom of choice:

Let < be an order relation on a set &, satisfying the following
condition: Every subset of &/ that is totally ordered by < has an
upper bound. Then &/ has a mazimal element.

ii. Show that if E is a Hilbert space every maximal orthonormal
family is a Hilbert basis for E. (Use Corollary 2.5.) Thus, with
the axiom of choice, every Hilbert space has a Hilbert basis.

b. Let (e;)icr and (f;);jcs be Hilbert bases of a Hilbert space E.
i. For j € J we write I; = {i € I : (e;| fj) # 0}. Show that all the
sets I; are nonempty and countable and that I = ;¢ ; I;.
ii. Deduce that there exists a bijection between I and J.
Hint. Use Exercise 9 on page 6.

c. Show that two Hilbert spaces are isometric if and only if there is a
bijection between their Hilbert bases. In particular, £2(I) and ¢2(J)
are isometric if and only if there exists a bijection between I and J.

Let ¢ € L?((0,1)) be such that o(t) + ¢(t+3) = 0 for every t € (0, 3).
Extend ¢ to a function periodic of period 1 on R (also denoted ¢). Then
set o = 1 and, for every integer n > 1, set ¢, (t) = @(2""'t). Show
that (¢, )nen is an orthogonal family in L2((0, 1)).

Haar functions. Consider the family of functions (Hp)pen defined on
[0,1] by Hp =1 and, forn € Nand 1 < k£ <27,

V2r ifze ((2k-2)27"7, (2k—1)2771),
Hyrpe-1(z) = | —v27 ifz e ((2k-1)27"7), 2k x 27°70),
0 otherwise.

a. Show that (H,)yen is an orthonormal family in L([0, 1]).
b. Let f € L?([0,1]) be such that fol fHpdz = 0 for every p € N. Set
F(y) = [} f(z)dz.
i. Show that, for every n € N and for every integer k such that
1<k<om

2k —2 2k -1 2k
ii. Deduce that F' = 0. (Note that F is continuous.)

iii. Deduce that f = 0, then that (Hp)pen is a Hilbert basis of
L*([0,1]).
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In the sequel we will write, for each integrable function f on [0, 1]
and each p € N,

~ 1 p ~
fo= /0 f@ By de,  sp(f)@) =Y fuHy(a).

q=0

c. For p € N, we denote by .#, the set of maximal open intervals on
which the functions Hy, with ¢ < p, are constant: If p=2"+k -1
withneNand 1<k <2",

i-1 2-1) 2
R CEDI R (G '
p oan+1’ 9n+1 1<j<2k on+1 2n+1 kt1<j<an

(Note that £, has p + 1 elements.) Moreover, let F, be the set of
functions defined on (0,1), constant on each interval I € .#,, and
such that

f(2) = 1(f(@s) + f(z)) forallz e (0,1),

where f(z4) and f(z_) are the right and left limits of f at z. Show
that (Hy)q<p is an orthonormal basis of Fj,.
d. Suppose f € L!([0,1]).

i. Take p € N. Denote by f* the element of F, whose constant
value on each interval I € %, of length I(I) is

1
10) /I f(z)dz.

Show that, for every nonnegative integer ¢ < p, we have qu = fA,;.
Deduce that sp(f) = sp(f*)-

ii. Deduce that, for every integer p € N and every interval I € %,

so(F)(t) = 1_(11“) /1 f(g)dz foralltel.

e. Let f € C®([0,1]).

i. Take p € N. Show that, for every I € .#,, there exists a point
zy € I such that

sp(f)(t) = f(zy) foralltel.

ii. Deduce that, for every p € N,

Jmax [sp(f)(2) - f(2)] <
sup{|f(z) - f()| : =,y €[0,1], |z —y| < 2/p}.
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iii. Deduce that the series 3" f, H, converges uniformly to f in [0, 1].

14. Rademacher functions. For every integer n > 1 we define a function rp,
on the interval [0,1] by

1 ifze ((k—-1)27", k2") with 0 < k < 2™, k odd,
m(z) =< —1 ifze ((k—1)27™, k27") with 2 < k < 2", k even,

0 otherwise.

Observe that r, = (1/v2n~1) Zf;;-, H,, where the H,, are the Haar

functions defined in Exercise 13.

a. Show that (r,)n>1 is an orthonormal family in L2([0,1]). Deduce
that, if (an) € €2, the series ¥ ., anry converges in L2([0,1]).

b. 1i. Prove that, if 8i,..., 3, are nonnegative integers whose sum is

p, we have
@) B (B _
o (261)! ... (26n)!
ii. Let a1, ..., a, be nonnegative integers and

I=/0 ri'(z)...ro"(x) dz.

Show that I = 1 if all the o; are even and that I = 0 in any
other case.

Hint. Observe that, for every j > 1, we have 7';‘-’ = 1 almost
everywhere; this allows us to reduce to the case where all the ¢;
equal