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Preface 

This book arose from a course taught for several years at the Univer­
sity of Evry-Val d'Essonne. It is meant primarily for graduate students 
in mathematics. To make it into a useful tool, appropriate to their knowl­
edge level, prerequisites have been reduced to a minimum: essentially, basic 
concepts of topology of metric spaces and in particular of normed spaces 
(convergence of sequences, continuity, compactness, completeness), of "ab­
stract" integration theory with respect to a measure (especially Lebesgue 
measure), and of differential calculus in several variables. 

The book may also help more advanced students and researchers perfect 
their knowledge of certain topics. The index and the relative independence 
of the chapters should make this type of usage easy. 

The important role played by exercises is one of the distinguishing fea­
tures of this work. The exercises are very numerous and written in detail, 
with hints that should allow the reader to overcome any difficulty. Answers 
that do not appear in the statements are collected at the end of the volume. 

There are also many simple application exercises to test the reader's 
understanding of the text, and exercises containing examples and coun­
terexamples, applications of the main results from the text, or digressions 
to introduce new concepts and present important applications. Thus the 
text and the exercises are intimately connected and complement each other. 

Functional analysis is a vast domain, which we could not hope to cover 
exhaustively, the more so since there are already excellent treatises on the 
subject. Therefore we have tried to limit ourselves to results that do not 
require advanced topological tools: all the material covered requires no 
more than metric spaces and sequences. No recourse is made to topological 
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vector spaces in general, or even to locally convex spaces or Frechet spaces. 
The Baire and Banach- Steinhaus theorems are covered and used only in 
some exercises. In particular, we have not included the "great" theorems of 
functional analysis, such as the Open Mapping Theorem, the Closed Graph 
Theorem, or the Hahn-Banach theorem. Similarly, Fourier transforms are 
dealt with only superficially, in exercises. Our guiding idea has been to 
limit the text proper to those results for which we could state significant 
applications within reasonable limits. 

This work is divided into a prologue and three parts. 
The prologue gathers together fundamentals results about the use of 

sequences and, more generally, of countability in analysis. It dwells on the 
notion of separability and on the diagonal procedure for the extraction of 
subsequences. 

Part I is devoted to the description and main properties of fundamental 
function spaces and their duals. It covers successively spaces of continuous 
functions, functional integration theory (Daniell integration) and Radon 
measures, Hilbert spaces and L1' spaces. 

Part II covers the theory of operators. We dwell particularly on spectral 
properties and on the theory of compact operators. Operators not every­
where defined are not discussed. 

Finally, Part III is an introduction to the theory of distributions (not in­
cluding Fourier transformation of distributions, which is nonetheless an im­
portant topic). Differentiation and convolution of distributions are studied 
in a fair amount of detail. We introduce explicitly the notion of a fundamen­
tal solution of a differential operator, and give the classical examples and 
their consequences. In particular, several regularity results, notably those 
concerning the Sobolev spaces Wl,1'(JR d ), are stated and proved. Finally, in 
the last chapter, we study the Laplace operator on a bounded subset of JRd: 
the Dirichlet problem, spectra, etc. Numerous results from the preceding 
chapters are used in Part III, showing their usefulness. 
Prerequisites. We summarize here the main post-calculus concepts and re­
sults whose knowledge is assumed in this work. 

- Topology of metric spaces: elementary notions: convergence of sequences, 
lim sup and lim inf, continuity, compactness (in particular the Borel­
Lebesgue defining property and the Bolzano-Weierstrass property), and 
completeness. 

- Banach spaces: finite-dimensional normed spaces, absolute convergence 
of series, the extension theorem for continuous linear maps with values 
in a Banach space. 

- Measure theory: measure spaces, construction of the integral, the Mono­
tone Convergence and Dominated Convergence Theorems, the definition 
and elementary properties of L1' spaces (particularly the Holder and 
Minkowski inequalities, completeness of L1', the fact that convergence 
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of a sequence in LP implies the convergence of a subsequence almost 
everywhere), Fubini's Theorem, the Lebesgue integral. 

- Differential calculus: the derivative of a function with values in a Banach 
space, the Mean Value Theorem. 

These results can be found in the following references, among others: For 
the topology and normed spaces, Chapters 3 and 5 of J. Dieudonne's Foun­
dations of Modern Analysis (Academic Press, 1960); for the integration 
theory, Chapters 1, 2, 3, and 7 of W. Rudin's Real and Complex Analysis, 
McGraw-Hill; for the differential calculus, Chapters 2 and 3 of H. Cartan's 
Cours de calcul differentiel (translated as Differential Calculus, Hermann). 

We are thankful to Silvio Levy for his translation and for the opportunity 
to correct here certain errors present in the French original. 

We thankfully welcome remarks and suggestions from readers. Please send 
them by email tohirsch@lamLuniv-evry.frorlacombe@lamLuniv-evry.fr. 

Francis Hirsch 
Gilles Lacombe 
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Notation 

If A is a subset of X, we denote by A C the complement of A in X. If A c X 
and B eX, we set A \ B = An B C • The characteristic function of a subset 
A of X is denoted by 1 A. It is defined by 

1 ( ) = {I if x E A, 
A X 0 if x¢: A . 

N, Z, Q, and lR represent the nonnegative integers, the integers, the 
rationals, and the reals. If IE is one of these sets, we write IE* = IE \ {O}. 
We also write lR+ = {x E lR : x 2: O}. If a E lR we write a+ = max(O,a) 
and a- = - min(a, 0). 

<C denotes the complex numbers. As usual, if z E <C, we denote by z the 
complex conjugate of z, and by Rez and Imz the real and imaginary parts 
of z. 

If f is a function from a set X into lR and if a E lR, we write {f > a} = 
{x EX: f(x) > a} . We define similarly the sets {f < a}, {f 2: a}, 
{f ~ a}, etc. 

As usual, a number x E lR is positive if x > 0, and negative if x < O. 
However, for the sake of brevity in certain statements, we adopt the con­
vention that a real-valued function f is positive if it takes only nonnegative 
values (including zero), and we denote this fact by f 2: o. 

Let (X, d) be a metric space. If A is a subset of X, we denote by A and 
A the closure and interior of A. If x E X, we write Y(x) for the set of 
neighborhoods of x (that is, subsets of X whose interior contains x). We 
set 

B(x,r) = {y EX: d(x,y) < r}, B(x,r) = {y EX: d(x,y) ~ r}. 
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(We do not necessarily have B(x, r) = B(x, r), but this equality does hold 
if, for example, X is a normed space with the associated metric.) If X is a 
normed vector space with norm 11·11, the closed unit ball of X is 

B(X) = {x EX: IIxll ~ I} . 

When no ambiguity is possible, we write B instead of B(X). If A is a subset 
of X, the diameter of A is 

d(A) = sup d(x,y). 
x,yEA 

If A C X and B eX, the distance between A and B is 

d(A,B) = inf d(x,y), 
(x,y)EAxB 

and d( x, A) = d( {x}, A) for x EX. 
We set OC = JR or C. All vector spaces are over one or the other OC. If 

E is a vector space and A is a subset of E, we denote by [AJ the vector 
subspace generated by A. If E is a vector space, A, B are subsets of E, and 
>. E OC, we write A + B = {x + y : x E A, y E B} and >'A = {>.x : x E A} . 

Lebesgue measure over JR d, considered as a measure on the Borel sets of 
JRd, is denoted by >'d. We also use the notations d>'d{X) = dx = dXl . . . dXd . 
We omit the dimension subscript d if there is no danger of confusion. 

If x E JRd, the euclidean norm of x is denoted by Ixl. 



Prologue: Sequences 

Sequences playa key role in analysis. In this preliminary chapter we collect 
various relevant results about sequences. 

1 Count ability 

This first section approaches sequences from a set-theoretical viewpoint. 
A set X is countably infinite if there is a bijection I{J from N onto X; 

that is, if we can order X as a sequence: 

X = {1{J(O),I{J(l), ... ,I{J(n), ... }, 

where l{J(n) f. I{J(P) if n f. p. The bijection I{J can also be denoted by means 
of subscripts: l{J(n) = X n . In this case 

X = {XO,Xl, ..• ,Xn , ••• } = {Xn}nEN. 

A set is countable if it is finite or countably infinite. 

Examples 

1. N is clearly count ably infinite. So is Z: we can write Z as the sequence 

Z = {O,1,-1,2,-2,3,-3, ... ,n,-n, ... }. 

Clearly, there can be no order-preserving bijection between Nand Z. 
2. The set N2 is countable. For we can establish a bijection I{J : N ~ N2 

by setting, for every p ?: 0 and every n E [p(p + 1) /2, (p + 1) (p + 2) /2), 

l{J{n) = (n _ p(p; 1), p(p; 3) - n). 
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This complicated expression means simply that we are enumerating N2 

by listing consecutively the finite sets Ap = {( q, r) E N2 : q + r = p}, each 
in increasing order of the first coordinate: 

2 ~~, ,.. , 
N = {(O,O), (0,1), (1,0), (0, 2), (1,1), (2,0) , (0,3), (1,2), . . . }. 

We see that explicitly writing down a bijection between N and a count­
able set X is often not at all illuminating. Fortunately, it is usually unnec­
essary as well, if the goal is to prove the countability of X . One generally 
uses instead results such as the ones we are about to state. 

Proposition 1.1 A nonempty set X is countable if and only if there is a 
surjection from N onto X . 

Proof. If X is count ably infinite there is a bijection, and thus a surjection, 
from N to X. If X is finite with n ~ 1 elements, there is a bijection 
<p : {I, . .. , n} ~ X. This can be arbitrarily extended to a bijection from N 
toX. 

Conversely, suppose there is a surjection <p : N ~ X and that X is 
infinite. Define recursively a sequence (np)p E N by setting no = 0 and 

np+l = min{ n : <p(n) ¢ {<p(no), <p(nt}, . . . ,<p(np)}} for pEN. 

This sequence is well-defined because X is infinite; by construction, the 
map p H <p(np) is a bijection from N to X. 0 

Corollary 1.2 If X is countable and there exists a surjection from X to 
Y, then Y is countable. 

Indeed, the composition of two surjections is surjective. 

Corollary 1.3 Every subset of a countable set is countable. 

Indeed, if Y eX, it is clear that there is a surjection from X to Y. 

Corollary 1.4 If Y is countable and there exists an injection from X to 
Y, then X is countable. 

Proof. An injection f : X ~ Y defines a bijection from X to f(X). If 
Y is countable, so is f(X), by the preceding corollary. Therefore X is 
countable. 0 

Corollary 1.5 A set X is countable if and only if there is an injection 
from X to N. 

Another important result about the preservation of countability is this: 

Proposition 1.6 If the sets Xl, X 2, ... , X n are countable, the Cartesian 
product X = Xl X X2 X ... X Xn is countable. 
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Proof. It is enough to prove the result for n = 2 and use induction. Suppose 
that Xl and X 2 are countable, and let iI, h be surjections from N to 
Xl, X 2 (whose existence is given by Proposition 1.1). The map (nl' n2) H 
(iI(nl),h(n2)) is then a surjection from N2 to X. Since N2 is countable, 
the proposition follows by Corollary 1.2. 0 

We conclude with a result about countable unions of countable sets: 

Proposition 1.1 Let (Xi)iEI be a family of countable sets, indexed by a 
countable set I. The set X = U Xi is countable. 

iEI 

Proof If, for each i E I, we take a surjection Ii : N -+ Xi, the map 
f : I x N -+ X defined by f(i,n) = fi(n) is a surjection. But I x N is 
countable. 0 

Note that a countable product of countable sets is not necessarily count­
able; see Example 5 below. 

Examples and counterexamples 

1. Q is countable. Indeed, the map f : Z x N* -+ Q defined by f(n,p) = 
nip is surjective and Z x N* is countable. 

2. The sets Nn, Qn, Zn, and (Q + iQ)n are countable (see Proposition 
1.6). 

3. lR is not countable. For assume it were; then so would be the subset 
[0,1]' that is, we would have [0, 1] = {Xn}nEN. We could then construct a 
sequence of subintervals In = [an, bn] of [0, 1] satisfying these properties, 
for all n E N: 

The construction is a simple recursive one: for n = ° we choose 10 
as one of the intervals [0, ~], [~, 1], subject to the condition Xo rJ. 10; 
likewise, if In = [an, bn] has been constructed, we choose In+! as one 
of the intervals [an, an + 3-n - l ], [bn - 3-n - l , bn], not containing Xn+!. 
By construction, nnEN In = {x}, where x is the common limit of the 
increasing sequence (an) and of the decreasing sequence (bn). Clearly, 
x E [0,1]' but x i= Xn for all n E N, which contradicts the assumption 
that [0,1] = {Xn}nEN. 
More generally, any complete space without an isolated point is un­
countable; see, for example, Exercise 6 on page 16. 
Note also that if lR were countable it would have Lebesgue measure zero, 
which is not the case. 

4. The set 9I'(N) of subsets of N is uncountable. Indeed, suppose there is 
a bijection <p : N -+ 9I'(N), and set 

A = {n EN: n rJ. <p(n)} E 9I'(N). 



4 Prologue: Sequences 

Since cp is a surjection, A has at least one inverse image a under cpo We 
now see that a cannot be an element of A, since by the definition of A 
this would imply a ¢ cp( a) = A, nor can it be an element of N \ A, since 
this would imply a E cp( a) and hence a E A. This contradiction proves 
the desired result. 
This same reasoning can be used to prove that, if X is any set, there can 
be no surjection from X to 9i'(X). This is called Cantor's Theorem. 

5. The set '{/ = {O, I}N of functions N ~ {O, I} (sequences with values 
in {O, I}) is uncountable. Indeed, the map from 9i'(N) into '{/ that as­
sociates to each subset A of N the characteristic function lA is clearly 
bijective; its inverse is the map that associates to each function cp : N ~ 
{O, I} the subset A of N defined by A = {n EN : cp(n) = I} . 
We remark that '(/, and thus also 9i'(N) , is in bijection with JR (see 
Exercise 3 on the next page). 

6. The set JR \ Q of irrational numbers is uncountable; otherwise JR would 
be countable. 

7. The set 9i'f(N) of finite subsets of N is countable; indeed, we can define 
a surjection I from {O} U UPEN' NP (which is countable by Proposition 
1. 7) onto 9i' J (N), by setting 

1(0) = 0 and 

8. The set Q[XJ of polynomials in one indeterminate over Q is countable, 
because there is a surjective map from UPEN' QP (which is countable 
by Proposition 1. 7) onto Q [X], defined by 

l(qI, ... ,qp) = ql + q2X + ... + qpXp- 1. 

We can show in an analogous way that the set Q[X1 , •.. , XnJ of poly­
nomials in n indeterminates over Q is countable. 

9. If td is a family of nonempty, pairwise disjoint, open intervals in JR, 
then td is countable. Indeed, let cp be a bijection from N onto Q. For 
J E td, let n(J) be the first integer n for which cp(n) E J. The map 
td ~ N that associates n(J) to J is clearly injective, so td is countable 
by Corollary 1.5. 

Exercises 

1. Which, if any, of the following sets are countable? 
a. The set of sequences of integers. 
h. The set of sequences of integers that are zero after a certain point. 
c. The set of sequences of integers that are constant after a certain 

point. 
2. Let A be an infinite set and B a countable set. Prove that there is a 

bijection between A and A U B. 



3. Let~={O,lY'. 

a. Let f : ~ ----+ [0,2J be the function defined by 

+00 
~xn 

f(x) = L- 2n ' 
n=O 

1 Countability 5 

Prove that f is surjective and that every element of [0,2J has at 
most two inverse images under f. Find the set D of elements of [0, 2J 
that have two inverse images under f; prove that D and f-l(D) are 
count ably infinite. 

h. Construct a bijection between '(j' and [0, 2J, then a bijection between 
'(j' and JR. 

4. Let X be a connected metric space that contains at least two points. 
Prove that there exists an injection from [0, 1 J into X. Deduce that X 
is not countable. 
Hint. Let x and y be distinct points of X. Prove, that, for every r E 
[0, d(x,y)], the set 

Sr = {t EX: d(x, t) = r} 

is nonempty. 
5. Let A be a subset of R such that, for every x E A, there exists 'TJ > 0 

with (x, x + 'TJ) n A = 0. Prove that A is countable. 
Hint. Let x and y be distinct points of A. Prove that, given 'TJ, c > 0, if 
the intervals (x, x + 'TJ) and (y, y + c) do not intersect A, they do not 
intersect one another. 

6. Let f be an increasing function from I to JR, where I is an open, 
nonempty interval of JR. Let S be the set of discontinuity points of 
f. If x E I, denote by f(x+) and f(x-) the right and left limits of fat 
x (they exist since f is monotone). 
a. Prove that S = {x E I: f(x-) < f(x+)}. 
h. For xES, write Ix = (J(x-),J(x+»). By considering the family 

(Ix)xES, prove that S is countable. 
c. Conversely, let S = {Xn}nEN be a countable subset of I. Prove that 

there exists an increasing function whose set of points of discontinu­
ity is exactly S. 
Hint. Put f(x) = 2:!:O 2-n l[xn ,+00)(x). 

7. More generally, a function on a nonempty, open interval I of Rand 
taking values in a normed space is said to be regulated if it has a left 
and a right limit at each point of I. Let I be a regulated function from 
I to JR. 

a. Let J be a compact interval contained in I. For c > 0, write 

J" = {x E J: max(lf(x+) - f(x)l, If(x) - f(x-)I) > c}. 
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Prove that Je has no cluster point. 
Hint. Prove that at a cluster point of Je the function! cannot have 
both a right and a left limit. 

h. Deduce that J€ is finite. 
c. Deduce that the number of points x E I where the function I is 

discontinuous is countable. 
8. Let A and B be countable dense subsets of (0, 1). We want to construct 

a strictly increasing bijection from A onto B. 
a. Suppose first that A is the set 

A = {p2-q : p,q E W, P < 2q}. 

i. Prove that A is countable and that, if x is an element of A, there 
exists a unique pair (p, q) of integers such that x = p2-q , with 
q E N· and p < 2q odd. 

ii. Write B = {xn : n E N} and define the map I : A -+ B induc­
tively, as follows: 

- For q = 1, set 1(4) = Xo· 
- Suppose the values l(p2- k ) have been chosen for 1 ::; k ::; q 

and 1 ::; p < 2q. We then define l(pTq-l), for p < 2q+I odd, 
by setting !(p2- q - 1 ) = x n , where 

. { (p - 1) (p + 1) } n = mm mEN: I 2q+l < Xm < I 2q+l 

(by convention, we have set 1(0) = 0 and 1(1) = 1). 
Prove that I(x) is well-defined for all x E A; then prove that 
I is a strictly increasing bijection from A onto B. 

iii. Deduce from this the case of arbitrary A . 

9. A bit 01 set theory 
a. Let I be an infinite set . The goal of this exercise is to prove, using 

the axiom of choice, that there exists a bijection from I to I x N. 
Recall that a total order relation::; on a set I is called a well-ordering 
if every nonempty subset of I has a least element for the order ::; . 
Recall also that every set can be well-ordered; this assertion, called 
Zermelo's axiom, is equivalent to the axiom of choice. Let ::; be a 
well-ordering on I . The least element of I is denoted by O. If x E I, 
denote by x + 1 the successor of x, that is, the element of I defined 
by 

x + 1 = min{y E I: y > x} . 

Thus, every element of I, except possibly one, has a successor. A 
nonzero element of I that is not the successor of an element of I is 
called a limit element. If x is an element of I, we define (if possible) 
an element x + n, for integer n, by inductively setting x + (n + 1) = 
(x + n) + 1. 
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i. An example: suppose in this setting that I = N2 and that ~ is 
the lexicographical order on N2: 

(n,m) ~ (n',m/) ~ (n < n') or (n = n' and m ~ m /). 

Check that this is a well-ordering. If (n, m) E I, determine 
(n, m) + 1. What are the limit elements of I? 

ii. Let x E I. Prove that x can be written in a unique way as 
x = x' + n, where n E N and x' is 0 or a limit element. 

iii. Let <p be a bijection from N x N onto N. Define a map F from 
I x N to I by F(x,m) = x' + <p(n,m), where x = x' + n is the 
decomposition given in the preceding item. Prove that F is a 
bijection. 

b. Let X be a set and A a subset of X. Suppose there exists an injection 
i : X -7 A. We wish to show that there is a bijection between X 
and A. 

i. A subset Z of X is said to be closed (with respect to i) if i(Z) c 
Z. If Z is any subset of X, the closure Z of Z is the smallest 
closed subset of X containing Z . Prove that Z is well-defined for 
every Z C X. 

ii. Set Z = X \ A. Let 'ljJ : X -7 X be the map defined by 

'ljJ(x) = {i(X) ifxEZ,_ 
x if x E X \ Z. 

Prove that 'ljJ is a bijection from X onto A. 

c. Cantor- Bernstein Theorem. Let X and Y be sets. Suppose there is 
an injection j : X -7 Y and an injection 9 : Y -7 X. Prove that 
there is a bijection between X and Y. (Note that this result does 
not require the axiom of choice.) 
Hint. jog is an injection from Y to j(X), and the latter is a subset 
ofY. 

d. Let X and Y be sets. Suppose there is a surjection j : X -7 Y and 
a surjection g : Y -7 X. Prove that there is a bijection between X 
and Y. (You can use the preceding result. Here it is necessary to use 
the axiom of choice.) 

e. Let I be an infinite set, let (Ji)iEI be a family of pairwise disjoint 
and nonempty countable sets, and set J = UiEI Ji. Prove that there 
exists a bijection between I and J. 

2 Separability 

We consider here a type of "topological countability" property, called sepa­
rability. A metric space (X, d) is called separable if it contains a countable 
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dense subset; that is, if there is a sequence of points (xn) of X such that 

for all x E X and c > 0, there is n EN such that d(xn, x} < c. 

It is easy to check that this condition is satisfied if and only if every 
nonempty open subset of X contains at least one point from the sequence 
(xn ). Thus, the notion of separability is topological: it does not depend on 
the metric d except insofar as d determines the family of open sets (the 
topology) of X. 

Examples 

1. Every finite-dimensional normed space is separable. Recall that on a 
finite-dimensional vector space, all norms are equivalent, that is, they 
determine the same topology. This reduces the problem to that of an 
or en. But it is clear that Qn is dense in Rn, and that (Q + iQ)n is 
dense in en. 

2. Compact metric spaces 

Proposition 2.1 Every compact metric space is sepamble. 

Proof. If n is a strictly positive integer, the union of the balls B(x, k), 
over x EX, covers X . By the Borel-Lebesgue property, X can be 
covered by a finite number of such balls: X = u;: 1 B (xj , k). It is 
then clear that the set 

D = {xj : n E N*, 1 ~ j ~ I n } 

is dense in X . o 
3. a-compact metric spaces. A metric space is said to be u-compact if it 

is the union of a countable family of compact sets. 
For example, every finite-dimensional normed space is a-compact. In­
deed, in such a space E any bounded closed set is compact, and E = 
UnEN B(O, n) . It will turn out later, as a consequence of the theorems of 
Riesz (page 49) and of Baire (page 22) that infinite-dimensional Banach 
spaces are no longer a-compact; nonetheless, they can be separable. 

Proposition 2.2 Every a-compact metric space is sepamble. 

This is an immediate consequence of Propositions 2.1 and 1.7. 

Proposition 2.3 If X is a sepamble metric space and Y is a subset of 
X, then Y is sepamble (in the induced metric). 

Proof. Let (Xn) be a dense sequence in X. Set 

dlt = {(n,p) E N x N* : B(xn, lip) n Y f= 0}. 
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For each (n,p) E %', choose a point xn,p of B(xn, IIp)ny . We show that the 
family D = {xn,p, (n, p) E %'} (which is certainly countable) is dense in Y. 
To do this, choose x E Y and c > O. Let p be an integer such that lip < c/2; 
clearly there exists an integer n E N such that d(x, xn) < lip. But then 
x E B(xn' lip) n Y; therefore (n,p) E %' and d(x, xn,p) < 21p < c. 0 

Example. The set JR. \ Q of irrational numbers, with the usual metric, is 
separable. This can be seen either by applying the preceding proposition, 
or by observing that the set D = {qJ2 : q E Q} is dense in JR. \ Q. 

By reasoning as in Example 9 on page 4, one demonstrates the following 
proposition: 

Proposition 2.4 In a separable metric space, every family of pairwise 
disjoint nonempty open sets is countable. 

We will now restrict ourselves to the case of normed spaces. The metric 
will always be the one induced by the norm. 

A subset D of a normed vector space E is said to be fundamental if 
it generates a dense subspace of E, that is, if, for every x E E and every 
c > 0 there is a finite subset {Xl.' .. , xn} of D and scalars AI, . .. ,An E lK 
such that 

Proposition 2.5 A normed space is separable if and only if it contains a 
countable fundamental family of vectors. 

Proof. The condition is certainly necessary, since a dense family of vectors 
is fundamental. Conversely, let D be a countable fundamental family of 
vectors in a normed space E. Let ~ be the set of linear combinations of 
elements of D with coefficients in the field Q = Q (if lK = JR.) or Q + iQ 
(if lK = C) . Then ~ is dense in E, because its closure contains the closure 
of the vector space generated by D, which is E. On the other hand, ~ is 
countable, because it is the image of the countable set UnE]\/' (Qn X Dn) 
under the map f defined by 

n 

f(Al."" An, Xl, " " Xn) = L AjXj. 
j=l 

o 

Remark. Recall that in a normed space any finite-dimensional subspace is 
closed, since it is complete. It follows that a family of vectors whose span 
is finite-dimensional (in particular, a finite famiiy) is fundamental if and 
only if its span is the whole space. 

A free and fundamental family of vectors in a normed space E is called 
a topological basis for E . 
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Proposition 2.6 A normed space is separable if and only if it has a count­
able topological basis. 

Proof. The "if' part follows immediately from the preceding proposition. 
To prove the converse, it is enough to consider an infinite-dimensional 
normed space E . By the preceding proposition, E has a fundamental se­
quence (xn). Now define by induction 

no = min{n EN : Xn # o} 

and, for every pEN, 

Since E is infinite-dimensional by assumption, the sequence (np) is well­
defined (see the preceding remark). By construction, the family (Xnp)pEN 
is free and generates the same subspace as (xn )nEN. Therefore it is funda­
mental. 0 

Exercises 

1. Let X be a metric space. We say that a family of open sets (Ui) iEI of 
X is a basis of open sets (or open basis) of X if, for every nonempty 
open subset U of X and for every x E U, there exists i E I such that 
x E Ui C U. 
a. Let %' be an open basis of X. Prove that any open set U in X is the 

union of the elements of %' contained in U. 
b. Prove that X is separable if and only if it has a countable open basis. 

Hint. If (xn) is a dense sequence in X , the family 

is an open basis of X. Conversely, if (Un) is an open basis of X, any 
sequence (xn) with the property that Xn E Un for every n is dense 
in X. 

2. Let X be a separable metric space. 
a. Prove that there is an injection from X into lR. 

Hint. Let (Vn)nEN be a countable basis of open sets of X (see the 
preceding exercise). Consider the map from X into .9(N) that takes 
x E X to {n EN: x E Vn }. 

b. Prove that there is an injection from the set %' of open sets of X 
into JR . 
Hint. Prove the injectivity of the map U -t .9(N) that associates 
to each open set U in X the set {n EN : Vn C U} . 

3. Let X be a separable metric space. 
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a. Let f : X ---+ IR be a function, and let M be the set of points of X 
where f has a local extremum. Prove that f(M) is countable. 
Hint. Let M+ be the set of points of X where f has a local maximum 
and let 'f£ be a countable open basis of X (see Exercise 1). Prove 
that there is an injection from f (M+) into 'f£. 

h. Prove that a continuous function f : IR ---+ IR that has a local ex­
tremum at every point is constant. 

4. Lindelof's Theorem. Prove that a metric space X is separable if and 
only if every open cover of X (that is, every family of open sets whose 
union is X) has a countable subcover (that is, some countable subset of 
the cover is still a cover). 
Hint. "Only if": Let (Vn ) be a countable basis of open sets of X (see 
Exercise 1) and let (Ui)iEI be an open cover of X. Take n E N. If Vn is 
contained in some Ui , choose an element i(n) of I such that Vn C Ui(n); 
otherwise, choose i(n) E I arbitrarily. Prove that the family (Ui(n»nE N 
covers X. For the converse, one can work as in the proof of Proposition 
2.1. 

5. Let X be a separable metric space and let 'f£ be an uncountable family 
of open sets in X. Prove that there exists a point of X that belongs to 
uncountably many elements of 'f£ . 

6. Theorem of Cantor and Bendixon. Let X be a separable metric space. 
Prove that there is a closed subset E of X, with no isolated points, and 
a countable subset D of X such that X = E U D and EnD = 0 . 

Hint. One can choose for E the set of points of X that have no countable 
neighborhood. 

7. Let p ~ 1 be a real number. Denote by tP the set of complex sequences 
a = (an) such that the series E lanlP converges. Give tP the norm 

Also, denote by /.00 the set of bounded complex sequences, with the 
norm 

I/al/ oo = sup lanl. 
nEN 

Finally, denote by Co the subset of £00 consisting of sequences that tend 
to O. 

a. Prove that £P and /.00 are Banach spaces. 
h. What is the closure in i'~o of the set of almost-zero sequences (those 

that have only finitely many nonzero terms)? 
c. What is the closure of £v in tOO? 
d. Prove that co, with the norm 1/ ,1100, is a separable Banach space. 
e. Prove that £v is separable. 
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f. Prove that foo is not separable. 
Hint. Check that {O, l}N C foo and that, if a, f3 are distinct elements 
of {O,lF\ then lIa - f31100 = 1. Then use Proposition 2.4 and the 
fact that {O, 1 p'l is uncountable. 

g. Prove that the set of convergent sequences, with the 11·1100 norm, is 
a separable Banach space. 

S. Let I be a set. If f : I -t [0, +00) is a map, denote by LiEf f(i) the 
supremum of the set of all finite sums of the form LiEJ f(i), where 
J c I is finite. 

a. Prove that, if LiEf f(i) < +00, the set J = {i E I : f(i) =I- O} is 
countable. 
Hint. Check that J = Un>O En, where, for each positive integer n, 
we set En = {i E I: f(i) > lin}. 

h. Let p 2: 1 be a real number. Denote by fP(/) the vector space con­
sisting of functions f : I -t C such that LiEf If(i)IP < +00. We 
define on fP(I) a map 1I·lIp by setting 

( )
l/P 

IIfllp = ~ If(iW . 

Prove that II· lip is a norm, for which fP(I) is a Banach space. 
c. Prove that £P(l) is separable if and only if I is countable. 

3 The Diagonal Procedure 

In this section we introduce a method for passing to subsequences, called 
the diagonal procedure, and present some of its applications. Recall that a 
subsequence of a given sequence (Xn)nEN is a sequence of the form (Xnk )IcEN, 
where (nk)IcEN is a strictly increasing sequence of integers. Such a sequence 
k 1-7 nlc can also be considered as a strictly increasing function tp : N -t N. 
The subsequence (xnk ) can then be written (X<p(k»)kEN. Since the function 
tp is uniquely determined by its image A = tp(N) (for n EN, the value of 
tp(n) is the (n + l)-st term of A in the usual order of N), the subsequence 
(X<p(k»)kEN is determined by the infinite set A; we can denote it by (Xn)nEA. 

We will use all three notations in the sequel. 

Theorem 3.1 Let (Xp, dp)PEN be a sequence of metric spaces, and, for 
every PEN, let (Xn,p)nEN be a sequence in Xp' If, for every pEN, the set 
{xn,p : n E N} is relatively compact in Xp, there exists a strictly increasing 
function tp : N -t N such that for every pEN the sequence (x<p(n),p)nEN 

converges in Xp' 

Recall that a subset Y of a metric space X is called relatively compact 
in X if there exists a compact K of X such that Y c K, or, equivalently, 
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if the closure of Y in X is compact. In terms of sequences, Y is relatively 
compact if and only if every sequence in Y has a subsequence that converges 
in X (though the limit may not be in Y) . 

The remarkable part of the theorem is that the function t.p that defines 
the different subsequences does not depend on p. 

Proof. Thanks to the assumption of relative compactness, one can induc­
tively construct a decreasing subsequence (An) of infinite subsets of N such 
that, for every pEN, the sequence (Xn,p)nEA p converges in Xp. The diag­
onal procedure consists in defining the map t.p by setting 

t.p(p) = the (p + 1)-st element of Ap. 

Thus t.p(p + 1) is strictly greater than the (p + 1 )-st element of Ap+l, which 
in turn is greater than the (p + 1)-st element of Ap, which is t.p(p). Thus t.p 
is strictly increasing. Moreover, for every pEN the sequence (x<p(n) ,p)n~p 
is a subsequence of the sequence (Xn,p)nEAp ' because, if n ;::: p, we have 
t.p(n) E An CAp. Therefore the sequence (x<p(n) ,p)nEN converges. 0 

Consider again a sequence (Xp, dp)PEN of metric spaces (where dp is the 
metric on Xp). Put 

recall that this product is the set of sequences x = (XP)PEN such that 
xp E Xp for each pEN. It is easy to check that the expression 

+00 
d(x,y) = LTPmin(d,,(xp,yp), 1) 

p=o 

defines a metric d on X; this is called the product distance on X. For 
this metric, a sequence (Xn)nEN of points in X converges to a point x E X 
if and only if limn --+oo x~ = Xp for every pEN. 

If the metric spaces (Xp, d,,) are all equal to the same space (Y,6), we 
write X = yN . Then X is the set of sequences in X, or, what is the same, 
the set of maps from N into Y, with the metric of pointwise convergence. 

One can then rephrase Theorem 3.1 as follows: 

Corollary 3.2 (Tychonoff's Theorem) If(Xp)pEN is a sequence of com­
pact metric spaces and X = I1PEN Xp is the product space (with the product 
distance), X is compact. 

This follows immediately from the definition of the product metric, from 
Theorem 3.1, and from the characterization of compact sets by the Bolzano­
Weierstrass property. 
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Example. The space <t> = {O, l}N, with the product distance 

+00 
d(x,y) = LTnlxn - Yn!, 

n=O 

is compact. It is easy to see that the map <t> ~ [0,1] defined by 

+00 
f(x) = 2 L 3-n - I x n 

n=O 

is a continuous injection, whose image is the Cantor set (which is therefore 
homeomorphic to <t». 

Precompactness 

We now give another application of the diagonal procedure. We start with a 
definition. A subset A of a metric space is precompact if, for every c > 0, 
there are finitely many subsets AI, A2 , • .. ,An of A, each of diameter at 
most c, such that A = U;=l A j . 

Remarks 

1. Clearly, every precompact subset is bounded. The converse is false, as 
can be seen from the example of the unit ball in an infinite-dimensional 
normed vector space (compare Theorem Lion page 49) . Precompact 
sets are also called totally bounded. 

2. Unlike relative compactness, which is a relative property, precompact­
ness involves only the intrinsic (induced) metric of the subspace. 

3. Unlike compactness, precompactness is not a topological notion. It de­
pends crucially on the metric; see Exercise 2 below, for example. 

4. Each of the following two properties is equivalent to the precompactness 
of a subset A of a metric space X: 

- For every c > ° there exist finitely many points x I, • . . ,Xn of A such 
that A c U;=l B(xj,c). 

- For every c > ° there exist finitely many points Xl, ... ,Xn of X such 
that A c U;=l B(xj,c). 

The proof is elementary. 

Theorem 3.3 Let X be a metric space. Every relatively compact subset 
of X is precompact. The converse is true if X is complete. 

Proof. The first statement follows directly from the definitions, from the 
Borel- Lebesgue property of compact sets, and from the fact that A c X 
implies .it C UXEX B(x,c) for every c > 0. 
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Now suppose that X is complete and that A c X is precompact. Let 
(Xn)nEN be a sequence of points in A. To prove that it has a convergent 
subsequence, it is enough to find a Cauchy subsequence. For every pEN, 
let Af, . .. , A~ be subsets of A of diameter at most l/(p+ 1) and covering 
A. We will con~truct by induction a decreasing sequence (Bp)PEN of infinite 
subsets of N such that, for every pEN, there is an integer j ::; Np for which 
{XP}PEB" C Aj. 

Construction of Bo: since all terms of the sequence (Xn)nEN (of which 
there are infinitely many) are contained in A, which is the union of the 
finitely many sets AY, ... , A~o' there is at least one of these sets, say AJo' 
containing infinitely many terms Xn . (This is the pigeonhole principle.) We 
then set Bo = {n EN: Xn E AJo} ' 

To construct Bp+1 from Bp, the idea is the same: the terms of the sub­
sequence (Xn)nEB" are all contained in the union of the finitely many sets 
Af+l, . .. , APN+1 ; therefore at least one of the sets contains infinitely many 

»+1 
terms of the subsequence. We define Bp+1 as the set of indices of these 
terms. 

Having constructed the Bp, we define a strictly increasing function cp : 
N -+ N by setting 

<p(p) = the (p + 1 )-st element of Bp. 

Then, for every pEN and every integer n ?: p, we have cp(n) E Bp- By the 
construction of the Bp, we see that 

1 
d(x<p(n) , x<p(n'») :::; p + 1 for all n, n' ?: p. 

Thus the sequence (xcp(n» is a Cauchy sequence. o 

Exercises 

1. Let (Xp, dp)PEN be a sequence of nonempty metric spaces, and let X be 
the product space with the product metric. 
a. Prove that (X, d) is separable if and only if each space (Xp, dp) is 

separable. 
h. If n EN, x E X and r > 0, write 

U(x,n,r) = {y EX: dp(XP,yp) < r for all p:::; n}, 

and define %' = {U(x,n,r) : x E X, n E N, r > a} . 
i. Show that all the sets U(x, n, r) are open in X . 

ii. Take x E X and r > O. Prove that if 0 < p < r /2, there exists 
an integer n E N such that x E U(x, n, p) C B(x, r). 

iii. Show that %' is a basis of open sets of X (see Exercise 1 on 
page 10). 
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iv. Let D be a dense subset of (X,d). Prove that the set 

UUD = {U(x,n, l/q): xED, n EN, q E N*} 

is a basis of open sets of X. Prove that, if D is infinite, there 
exists a surjection from D onto UUD. 
Hint. When D is uncountable, one must use Exercise 9a on 
page 6. 

2. If x and yare real numbers, we write d(x, y) = Ix - yl and o(x, y) = 
I arctan x - arctanyl. Prove that 0 is a metric on JR equivalent to the 
usual metric d; that is, the two metrics define the same open sets. Show 
that (JR,o) is precompact, but (R, d) is not. 

3. Prove that every precompact metric space is separable. 
4. Prove that a metric space X is precompact if and only if every sequence 

of elements in X has a Cauchy subsequence. 
5. Helly's Theorem. Let (In) be a sequence of increasing functions from a 

nonempty interval I c JR into R, such that for every x E I the sequence 
(In(X)) is bounded. 

a. Prove that there is a subsequence (f",(n»)nEN such that, for every 
x E Q n I, the sequence (I",(n)(X))nEN converges. For such values of 
x, set g(x) = limn--+oo f",(n)(x). 

h. Extend 9 to all of I by setting, for x E I \ Q, 

g(x) = sup{g(y): y E Q nI and y < x}. 

Prove that g( x) is well-defined for all x E I and that the function 9 
is increasing on I . 

c. Let C be the set of points of I where 9 is continuous. We know from 
Exercise 6 on page 5 that the set D = 1\ C is countable. Prove that, 
for every x E C, the sequence (J",(n)(x)) converges toward g(x). 
Hint. Let x E C. Prove that, if y, z E Q n I with y < x < z, we have 

g(y) ::; lim inf(J",(n) (x)) ::; limsup(i",(n)(x)) ::; g(z). 
n--+oo n--+oo 

d. Using the diagonal procedure again, prove that there exists a subse­
quence (f ",(t/J(n») such that, for every x E I, the sequence (J ",(t/J(n» (x)) 
converges. 

6. a. Let X be a complete metric space, nonempty and with no isolated 
points. We will show that X contains a subset that is homeomorphic 
to the set «j = {O,l}N with the product distance. 

i. Let B be an open ball in X with radius r > O. Prove that there 
exist disjoint closed balls BI and B2 , of positive radii at most 
r /2, and both contained in B. 
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ii. Let '6'0 = UnEN' {O, l}n be the set of finite sequences of Os and Is. 
Let U = (uo, U1, ..• , un-d E {O, l}n and v = (vo, V1, ••. , vm-d E 
{o,l}m be elements of '6'0. We say that u is an initial segment 
of v if n ::; m and Ui = Vi for all i < n. We say that U and v are 
incompatible if u is not an initial segment of v and v is not an 
initial segment of u. 
Prove that one can construct a map u f-t Bu that associates to 
every u E '6'0 a closed ball Bu of X, of positive radius, satisfying 
these properties: 
- If u is an initial segment of v, then Bv C Bu. 
- If u and v are incompatible, Bu n Bv = 0. 

- If u has length n, the radius of Bu is at most 2-n . 

Hint. One can start by defining B(o) and B(1), then work by 
induction on the length of the finite sequences: suppose the Bu 
have been constructed for all sequences u of length at most n, 
and give a procedure for constructing the Bu for sequences u of 
length n + 1. 

iii. If a E '6', define the set 

u 
uE'Co 

u an initial segment of 0 

(Naturally, we say that a finite sequence (uo, ... , Un-1) is an 
initial segment of a if Ui = ai for all i < n.) Prove that Xo 
contains a single point, which we denote Xo. 

iv. Prove that the map x : a f-t Xo is a continuous (and even Lip­
schitz) injection from '6' into X. 

v. Deduce that '6' and x('6') are homeomorphic. 
h. Prove that every complete separable space is either countable or in 

bijection with JR. In particular, this is the case for every closed subset 
of JR. 
Hint. One can use Exercise 2 on page 10, the Cantor-Bendixon The­
orem (Exercise 6 on page 11), Exercise 3 on page 5, and Exercise 9b 
on page 7. 

7. Prove that the space '6' = {O, 1}ili, with the product distance, is homeo­
morphic to '6' x '6'. 
Hint. One can show that the map 

(Xn)nEN f-t ((X2n)nEN, (X2n+l)nEN) 

is a continuous bijection between '6' and '6' x '6'. 
8. Let A be a subset of a normed vector space E. Prove that A is pre­

compact if and only if A is bounded and, for every c > 0, there exists 
a finite-dimensional vector subspace FE: of E such that d(x, FE:) ::; c for 
all x E A. 
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9. Let E be a normed space. 
a. Let A be a nonempty subset of E. Prove that there is a (unique) 

smallest closed convex set containing A. This set is called the closed 
convex hull of A, and we will denote it by c(A). 

h. Let A be a precompact subset of E. 
i. Set M = sUPxEA IIxll and, for every t: > 0, define a subset of E , 

Ae = {x E E: Ilxil :S M and d(x,Fe):S c:}, 

where FE is a finite-dimensional vector space such that d(x, FE) :S 
c: for every x E A (see Exercise 8). Prove that, for every t: > 0, 
the set AE is a closed convex set containing A. 

ii. Set Ao = nO<E<l A E • Prove that the set Ao is convex, closed, 
and precompacC (Use Exercise 8.) 

iii. Deduce that c(A) is precompact. 

c. Suppose that E is a Banach space. Prove that if A is a relatively 
compact subset of E, then c(A) is compact. 

4 Bounded Sequences of Continuous Linear Maps 

We now use the denseness and separability results given earlier, together 
with consequences of the diagonal procedure, to study bounded sequences 
of continuous linear maps. We start with some notation. 

Notation. Let E and F be normed vector spaces over the same field oc. 
We denote by L(E, F) the space of continuous linear maps from E to F. 
In general, we use the same symbol 11·11 for the norms on E, on F and on 
L(E, F). The latter norm assigns to T E L(E, F) the number 

IITII = sup{IITxll : x E E and Ilxll ::; I}. 

Recall that, if F is a Banach space, so is L(E, F). We use also the following 
notations: L(E) = L(E, E), and E' = L(E, OC); we call E' the topological 
dual of E . 

Recall also that in a normed space E, a subset A is said to be bounded 
if it is contained in a ball; that is, if the set of norms of elements of A is 
bounded. 

The first proposition deals with the case where F is a Banach space. 

Proposition 4.1 Consider a normed space E, a fundamental family D 
in E, and a Banach space F. Consider also a bounded sequence (Tn)nEN of 
elements of L(E, F). If, for every xED, the sequence (TnX)nEN converges 
in F, there exists an operator T E L(E, F) such that 

lim Tnx = Tx for every x E E. 
n-++oo 
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Proof. Let M > 0 be such that IITnll ::; M for all n E N. It is clear 
that the sequence (Tnx) converges for any element x of the vector space 
[D] generated by D. Now take x E E and € > O. Since D is a fundamental 
family, there exists Y E [D] such that Ilx-YIl ::; c/(3M). The sequence (TnY) 
converges; therefore there is a positive integer N such that IITnY - TpYIl ::; 
c/3 for all n,p ~ N. By the triangle inequality we deduce that, for any 
n,p~N, 

Thus (Tnx) is a Cauchy sequence in F, and therefore convergent. For every 
x E E we then set Tx = limn -+oo Tnx. The map T thus defined is certainly 
linear, and, since IITxl1 ::; Mllxll for all x E E, it is also continuous. 0 

Corollary 4.2 (Banach-Alaoglu) Let E be a separable normed space. 
For every bounded sequence (Tn)nEN in E', there are a subsequence (Tn.)kEN 
and a continuous linear form TEE' such that 

lim Tnkx = Tx for all x E E. 
k-+oo 

Warning: the sequence (Tnk ) does not necessarily converge in E'; that 
is, IITnk - Til does not in general tend toward o. 
Proof. Choose M > 0 such that IITnll ::; M for every n E N, and let (XP)PEN 

be a dense sequence in E. For every positive integer p, we have 

Therefore the set {TnXp}nEN is relatively compact in IK. By Theorem 3.1, 
there exists a subsequence (Tnk ) such that, for every p, the sequence of 
images (Tnkxp)kEN converges in lK. Now apply Proposition 4.1. 0 

This is not necessarily true if E is not separable; see, for example, Exer­
cise 3 below. 

A weaker result than Proposition 4.1 holds when F is any normed space: 

Proposition 4.3 Consider normed spaces E and F, a fundamental set 
D in E, a bounded sequence (Tn) in L(E, F) and a map T E L(E, F). If 
the sequence (Tnx) converges toward Tx for every point xED, it does also 
for every x E E. 

Proof. By taking differences we can suppose that T = o. Set 

M = sup IITnl1 
nEN 

and take x E E. For every Y E [DJ, we have 
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Since TnY -+ 0, we get limsuPn-too IITnxl1 :S Mllx-YII. This holds for every 
Y E [D], and [D] is dense in E; therefore 

lim IITnxll = O. 
n-too 

o 

Exercises 

1. Consider normed spaces E and F, a bounded sequence (Tn)nEN in 
L(E, F), and an element T E L(E, F). Prove that, if limn-t+oo Tnx = 
Tx for every x E E, the limit is uniform on any compact subset of E. 

2. Consider a normed space E, a Banach space F, and a bounded sequence 
(Tn)nEN in L(E, F). Prove that the set of points x E E for which the 
sequence (Tnx) converges is a closed vector subspace of E. 

3. Consider the space E = foo of Exercise 7 on page 11. Prove that the 
sequence (Tn) of E' defined by Tn(x) = Xn has no pointwise convergent 
subsequence in E . 

4. Let E be a separable normed vector space, and let (XP)PEN be a dense 
sequence in E. Denote by B the unit ball of E', that is, 

B = {T E E' : IT(x)1 :S IIxll for all x E E}. 

For T and S elements of B, we define the real number 

+00 

d(T,S) = LTPmin(IT(xp) - S(xp)l, 1). 
p=O 

a. Prove that d is a metric on B. If (Tn) is a sequence of elements of B 
and if T E B, prove that 

d(Tn' T) -+ 0 ¢=} Tn(x) -+ T(x) for all x E E . 

b. Prove that the metric space (B, d) is compact. 

S. Riemann integral of Banach-space valued functions. Let [a, b] be an in­
terval in IR and let E be a Banach space. We want to define the integral 
of a continuous function and, more generally, of a regulated function 
from [a, b] into E. 
a. Integral of staircase functions. A staircase function from [a, b] to E 

is one for which there is a subdivision Xo = a < Xl < ... < Xn = b 
of [a, b] and vectors VI, ... , Vn-l in E such that, for every i :S n - 1 
and every x E (Xi, Xi+J), we have f(x) = Vi. The integral of such a 
function f over [a, b] is defined by 

b n-l 
1(1) = 1 f(x) dx = L(Xi+1 - Xi)Vi. 

a i=O 
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We denote by g the vector space of all staircase functions on [a, b], 
with the uniform norm: 11/1100 = SUPxE[a ,b]ll/(x)lI. Check that I is 
a continuous linear map from g to E, with norm b - a. Check also 
that, if 1 E g, Chasles's relation holds for arbitrary a,{3" E [a,b] : 

i{3 I(x) dx = i'Y I(x) dx + 1{3 I(x) dx, 

where, by convention, we set 

l V 1 (x) dx = - 1u 1 (x) dx if u > v. 

b. Prove that a function from [a, b] to E is regulated (Exercise 7 on 
page 5) if and only if it is the uniform limit of a sequence of staircase 
functions. 
Hint. "Only if" part: Let 1 be a regulated function from [a, b] to E, 
and choose c > o. Prove that there is a subdivision a = Xo < Xl < 
... < Xn = b of [a, b] such that, for every i and every x, y E (Xi, Xi+l), 

we have II/(x) - l(y)11 ~ c. Deduce the existence of a staircase 
function g such that 11/(x) - g(x)1I < c for every X E [a, b]. 
"If" part: Since E is complete, 1 has a left limit at a point X if and 
only if, for every c > 0, there exists 'f/ > 0 such that IIf(y)- l(z)11 < c 
for all y, z E (x - 'f/, x). 

c. i. Let §b([a, b], E) be the space of bounded functions from [a, b] 
into E, with the uniform norm: 11/1100 = sUPxE[a,b]lI/(x)lI . Prove 
that §b([a, b], E) is a Banach space. 

ii. Let IJl be the set of regulated functions from [a, b] into E. Prove 
that IJl is a closed subspace of §b([a, b], E) . Thus, IJl with the 
uniform norm is a Banach space. 

d. Integral 01 a regulated lunction. Prove that I can be uniquely ex­
tended into a continuous linear map J on all of 1Jl, of norm b - a. 
(One can use the theorem of extension of Banach-space-valued con­
tinuous linear maps.) For every 1 E 1Jl, the image of 1 under the 
map is of course denoted by 

J(f) = lb I(x) dx. 

e . Check that Chasles's relation (see item (a)) holds for all regulated 
functions. Check also that, if F is a continuous linear form on E and 
if 1 E 1Jl, then F 0 1 is a regulated function from [a, b] into OC, and 
that 

F(J(f)) = lb F(f(x))dx. 
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f. Prove that, for every function f in f£, 

g. If!:J. = (xo, ... , xn) is a subdivision of [a, bJ, and if ~ = (~o, ... '~n-l) 
is such that ~j E [Xj, xHt] for 0 S; j S; n - 1, we set 

n-l 
S(!:J.,~)(J) = L f({j)(xHI - Xj)' 

j=o 

Prove that, if (!:J.P, e) is a sequence of subdivisions whose maximal 
step size tends to 0, and if f is any function in f£, then S(!:J.P,~P)(J) 

converges to J: f(x) dx. 
Hint. One can start with the case of a staircase function f, then use 
Proposition 4.3. 

6. The Baire and Banach-Steinhaus Theorems. Let X be any metric space. 
Two players, Pierre and Paul, play the following "game of Choquet": 
Pierre chooses a nonempty open set U1 in X, then Paul chooses a 
nonempty open set VI inside UI , then Pierre chooses a nonempty open 
set U2 inside VI, and so on. At the end of the game, the two players 
have defined two decreasing sequences (Un) and (Vn ) of nonempty open 
sets such that 

Un ;2 Vn ;2 Un+1 for every n E N. 

Note that nnEN Un = nnEN Vn; we denote this set by U. Pierre wins 
if U is empty, and Paul wins if U is nonempty. We say that one of the 
players has a winning strategy if he has a method that allows him to 
win whatever his opponent does. Therefore, the two players cannot both 
have a winning strategy; a priori, it is possible that neither does. 

a. Prove that, if X has a nonempty open set 0 that is a countable 
union of closed sets Fn with empty interior, Pierre was a winning 
strategy. 
Hint. Pierre starts with U1 = 0 and responds to each choice Vn of 
Paul's with Vn \ Fn. 

h. Prove that, if X is complete, Paul has a winning strategy. 
Hint. If (Fn) is a decreasing sequence of closed sets in X whose 
diameter tends to 0, the intersection of the Fn is nonempty. 

c. Application: Baire's Theorem. Let X be a complete space. Prove 
that an open set of X cannot be the union of a countable family of 
closed sets with empty interior. 

d. Corollary: The Banach-Steinhaus Theorem. Consider a Banach space 
E, a normed vector space F, and a family (Tn)nEN of elements of 
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L(E,F) such that, for every x E E, the set {IITn(x)11 : n E N} is 
bounded. Prove that {IITnll : n EN} is bounded. 
Hint. Show that there exists kEN such that the set 

Fk = {x E E: IITn(x)1I :::; k for all n E N} 

has nonempty interior, and therefore contains some open ball B (a, r) ; 
then show that, for every n EN, 

IITnl1 :::; ~ (sup IITm(a)1I + k). 
r mEN 

e . Prove that an infinite-dimensional Banach space cannot have a count­
able generating set. For example, R.[X] cannot be made into a Ba­
nach space. 
Hint. If this were not the case, the space would be a countable union 
of closed sets with empty interiors. 

f. Let (Tn) be a sequence of continuous linear operators from a Banach 
space E into a normed vector space F, having the property that, 
for every x E E, the sequence (Tn(x)) converges. Prove that the 
map T : E -+ F defined by T(x) = limn-too Tn(x) is linear and 
continuous. 

g. i. Let f be a function from R. to R. . Prove that the set of points 
where f is continuous is a G,s-set in R., that is, a countable in­
tersection of open sets in R.. 
Hint. Define, for each n E N*, the set Cn consisting of points 
x E R. for which there exists an open set V containing x and 
such that If(y) - f(z)1 < lin for all y, z E V . Prove that the sets 
Cn are open. 

ii. Prove that Q is not a G,s in R.. 
Hint. If it were, R. would be a countable union of closed sets with 
empty interior. 

iii. Prove that there is no function from R. to R. that is continuous 
at every point of Q and discontinuous everywhere else. 

iv. Prove that there exist functions from R. to R. that are discontin­
uous at every point of Q and continuous everywhere else. 
Hint. Use Exercise 6c on page 5. More directly, if {Xn}nEN is an 
enumeration of Q, the function f defined by f(x) = 0 if x rJ. Q 
and f (xn ) = 1 I (n + l) for every n E N has the desired properties. 

7. An invariant metric on a vector space E is a metric d on E such that 

d(x , y) = d(x-y, 0) for all x, y E E. 

If d is an invariant metric on E, we set Ixl = d(x,O) for x E E . (Note 
that the map 1·1 thus defined is not necessarily a norm on E.) A vector 
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space with an invariant metric d is said to have Property (F) if the 
metric space (E,d) is complete and, for every k E lK, the map x rl kx 
is continuous from E to E . For example, every Banach space with the 
norm-induced metric has Property (F). 
Let E be a vector space having an invariant metric with Property (F). 
Let F be a normed vector space, with norm II . II. 
a . Let H be a family of continuous linear maps from E to F such that, 

for every x E E, the set {T(x) hEH is bounded. Prove that, for every 
c > 0, there exists {) > 0 such that 

IIT(x)11 ~ c for all x E E with Ixl ~ {) and for all T E H; 

in other words, limx~o T(x) = 0 uniformly in T E H. 
Hint. Take c > 0 and, for each k E N* , set 

Fk = {x E E: IIT(x/k)11 ~ c for all T E H}. 

Using Baire's Theorem (Exercise 6), prove that at least one of the 
Fk,say Fko, contains an open ball B(a, r). Then use the fact that Fko 
is a symmetric convex set (symmetry here means that - Fko = Fko) 
and the continuity of the map x rl 2kox. 

b. Let (Tn) be a sequence of continuous linear maps from E to F such 
that, for every x E E, the sequence (Tn (x)) converges. Prove that 
the map from E to F defined by 

is linear and continuous. (This generalizes Exercise 6f above.) 
We will be able to apply this result to sequences in Wlc(X) (Exercise 
10 on page 92) or in L~ , for 1 < P ~ 00 (Exercise 12 on page 168). 
See also Exercises 1 on page 147 and 1 on page 163. 
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FUNCTION SPACES 
AND THEIR DUALS 



1 
The Space of Continuous Functions 
on a Compact Set 

Introduction and Notation 

We will consider throughout this chapter a compact, nonempty metric space 
(X, d), and we will study the OC-vector space (for OC = JR, C) of continu­
ous functions from X to OC, which we denote by CIK.(X), or simply C(X) 
when no confusion is likely. We give C(X) a commutative multiplication 
operation: for f, 9 E C(X) the product fg is defined by 

(fg)(x) = f(x)g(x) for all x E X. 

The constant function 1 is the unity element for this multiplication. We 
say that C(X) is a commutative algebra with unity. 

The space ClR(X) also has an order relation:::;, defined by 

f :::; 9 {:::::::::} f(x):::; g(x) for all x E Xj 

it is only a partial order, of course. For any f,g E ClR(X), there exist a 
least upper bound and a greatest lower bound for f and g: 

sup(f,g)(x) = max(f(x),g(x)) 
inf(f,g)(x) = min(f(x),g(x)) 

} for all x E X. 

That the functions thus defined are continuous can be seen, for example, 
from the following equalities: 

sup(f,g) = Hf + 9 + If - gl), inf(f, g) = Hf + 9 -If - gl) · (*) 
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We denote by C+(X) the set of continuous functions from X to JR+. If 
I E ClR(X), we write 1+ = sup(f,O) and 1- = - inf(f, 0) (note that we 
use the same symbol for a constant function and its value). We therefore 
have 

1 Generalities 

We give C(X) the uniform norm over X, denoted by 11·11 and defined by 

11I11 = max I/(x)1 
xEX 

The corresponding topology is called the topology of uniform conver­
gence, since a sequence in C(X) converges to I E C(X) in this norm if 
and only if it converges uniformly to I on X. 

Clearly, Illgll ::; 1IIIIIIgii and 111I111 = 11I11 for all I,g E C(X) . 

Proposition 1.1 C(X) is a separable Banach space. 

Proof. The reader can check that C(X) is a Banach space. We show sepa­
rability. Since X is precompact, for every n E N* there exist finitely many 
points xf, ... , XNn of X such that X = uf::\ B(xj, lin). We therefore set, 
for j ::; N n , 

(lln-d(x,xj))+ 
'Pn,j(x) = N n +. 

Ek;l (lin - d(x, x k )) 

From the choice of the points xj, we see that the denominator does not 
vanish for any x E X. Therefore, 'Pn,j E C+(X), 

Nn 

L'Pn,j = 1, 
j=l 

and 'Pn,j(x) = 0 if d(x, xj) ~ lin. 

The set {'Pn,j : n E N* and 1 ::; j ::; Nn } is certainly countable. We will 
show that it is a fundamental family in C(X)j this suffices by Proposi­
tion 2.5 on page 9. 

Take I E C(X) and t: > O. Since X is compact, the function I is uni­
formly continuous on X. Take 'fJ > 0 such that, for all x, y E X with 
d(x, y) < 'fJ, we have I/(x) - l(y)1 < t:. Let n E N be such that lin < 'fJ. 
For every x E X, 

N n 

::; L I/(x) - l(xJ) I 'Pn,j(x). 
j=l 
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Since 'Pn,j vanishes outside the ball B(xj, lin), and so outside B(xj, TJ), we 
see that, for every x EX, 

If(x) - f(xj) I 'Pn,j(X) S e'Pn,j(x). 

Thus, for every x EX, 

It follows that 

lit -~f(Xj)"n,jll ~-, 
which concludes the proof. o 

We recall a sufficient criterion for uniform convergence (and therefore 
convergence in C(X)) that is often convenient: 

Proposition 1.2 (Dini's Lemma) Let (fn)nEN be an increasing sequence 
in CIR(X) (this means that fn S fn+l for all n) . If the sequence (fn) con­
verges pointwise to a function f E C(X), it also converges uniformly to f. 

Proof. Take e > O. For every n E N we set On = {x EX: fn(x) > 
f(x) - e}. Clearly, (On) is an increasing sequence of open subsets in X 
whose union is X. By the Borel-Lebesgue property, there is an integer N 
such that ON = X, so that fN(X) > f(x) -e for all x E X. Thus, for every 
integer n 2: N, we have f(x) - e < fn(x) S; f(x) for all x E X. This proves 
that Ilf - fnll S; e. 0 

Remarks 

1. Clearly, one can replace "increasing" by "decreasing" in the statement 
of Dini's Lemma. 

2. The assumption that the pointwise limit f is continuous is essential. For 
example, the decreasing sequence (fn) of continuous functions on [0,1] 
given by fn(x) = xn converges pointwise, but not uniformly, on [0,1] . 

Example. Define by induction on n a sequence of polynomial functions 
(Pn ) on [-1,1]' as follows: 

Po =0, 

Pn+l(x} = Pn(x) + ~(x2 - P~(x) for all n EN. 

We check that, for every n E fIl, we have 0 S Pn(x) S Pn+l(x) S Ixl for all 
x E [-1,1]. For n = 0 this is clear; suppose by induction that it is true for 
some n 2: O. Then, for all x E [-1,1]' 

OS Pn+l(x) S Pn+2(X) = Ixl- (lxl-Pn+l(x»)(l-Hlxl+Pn+l(x») S Ixl · 



30 1. The Space of Continuous Functions on a Compact Set 

Then the sequence (Pn)nEN is increasing and bounded, and therefore it 
converges pointwise to a function f. For x E [-1, 1], we see that 0 S; 
f(x) S; Ixl and P(x) = x2 , by taking to the limit the defining recursive 
relation of the Pn . Therefore f(x) = lxi, and Dini's Lemma applies. This 
proves that the polynomial sequence (Pn ) converges uniformly to Ixl on 
[-1,1]. 

We will generalize this result in the next section, demonstrating that 
every continuous function in [-1, 1] is the uniform limit of a sequence of 
polynomial functions (Weierstrass's Theorem) . 

Exercises 

1. Show that there exists a sequence (Pn)nEN in L(C(X» such that, for 
all n E N, the map Pn has finite rank (that is, Pn(C(X» is a finite­
dimensional vector space), has norm 1, is positive (that is, Pn(f) 2 0 
for all f 2 0), and satisfies 

lim Pnf = f for all f E C(X). 
n--++oo 

2. Let p be a bounded, strictly increasing continuous function from R to 
R. Set p(-oo) = limx--+_oop(x) and p(+oo) = limx--++oop(x). Also set 
X = [-00,+00] = R U {-oo,+oo}, and define a map dp : X 2 -7 R by 
dp(x, y) = Ip(x) - p(Y)I . Prove that dp is a metric on X, that the metric 
space (X, dp ) is compact, that dp induces on R the usual topology, that 
R is dense in (X, dp), and that (R, dp) is precompact. Prove also that 
the topology thus defined on X (that is, the family of open sets defined 
by dp) does not depend on p. 

3. Let (fn)nEW be a sequence of continuous functions on R+ defined by 

fn(x) = {(I -x/n)n ~f x S; n, 
o If x> n. 

Prove that the sequence (fn) converges uniformly in [0, +00) to the 
function f : X>-t e- x . 

Hint. Extend the functions fn to have the value 1 on [-00,0] and 
the value 0 at +00. Then apply Dini's Lemma in the compact space 
[-00, +00] introduced in Exercise 2. 

4. A generalization of Dini's Lemma. Consider a compact metric space 
X, and elements f and {fn}nEN of C(X). Assume that there exists a 
constant C > 0 such that 

Prove that if the sequence (fn) converges pointwise to f, it converges 
uniformly to f. (One can look at the proof of Dini's Lemma for inspi­
ration.) 
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5. Ideals in C(X). Let X be a compact metric space and J an ideal in 
the ring (C(X), +, . ). Denote by Z the set of points x in X such that 
g(x) = 0 for all 9 E J. 
a. Prove that, if Z is empty, J contains a function 9 such that g(x) > 0 

for all x E X. Deduce that J = C(X). 
b. For a E X, set Ja = {g E C(X) : g(a) = a}. Prove that Ja is 

a maximal ideal; that is, the only ideal that strictly contains Ja is 
C(X). 

c. Conversely, prove that, if J is a maximal ideal, there is a unique 
point a of X such that J = Ja . 

d. Prove that j = {J E C(X) : I(x) = 0 for all x E Z}. 
Hint. Let IE C(X) vanish everywhere in Z . To find an element of 
J that is 2c:-close to I, one can do this: 
i. Let K be the set of points x of X for which I/(x)1 ~ c:. Prove 

that there exists 9 E J such that g( x) > 0 for all x E K and 
g(x) ~ 0 for all x E X. 

ii. Prove that, for all large enough n, the function In defined by 
ng 

In = I 1 +ng 

is in J, and that IIln - III ::; 2c:. 

2 The Stone-Weierstrass Theorems 

We now state denseness criteria for the subspaces of C(X). These criteria 
are consequences of this fundamental lemma: 

Lemma 2.1 Suppose X has at least two elements. Let H be a subset 01 
CiR(X) satisfying these two conditions: 

a. For all u, v E H, the functions sup( u, v) and inf( u, v) also lie in H. 
h. If Xl, X2 are distinct points in X and al, a2 are real numbers, there 

exists u E H such that U(Xl) = al and U(X2) = a2 . 

Then H is dense in CIR(X). 

Proof. Take f E CiR(X) and c: > O. We want to find an element of H that 
is c:-close to I. First fix x EX. By assumption b, for every y =f. x there 
exists uy E H such that uy(x) = I(x) and uy(y) = fey). 

For y =f. x, set Oy = {x' EX: uy(x') > f(x') - c:}. This is an open 
set that contains y and x; therefore X = Uy# Oy. By the Borel-Lebesgue 
property, X can be covered by finitely many sets Oy: X = U;=l 0Yi' with 
Yj =f. x for all j. Now set Vx = sup( uyt , ... ,uyJ. A simple inductive argu­
ment, using assumption a, shows that Vx E H. On the other hand, 

vx(x) = I(x) and vx(x') > f(x') - c: for all x' E X. 
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Now make x vary and set, for each x E X, 

Ox = {x' EX: vX(x' ) < f(x' ) +c}. 

Thus Ox is an open subset of X containing x; a new application of the 
Borel-Lebesgue property allows us to choose finitely many points Xl , .. . , xp 
of X such that OX!, .. . , OXp cover X. Finally, set v = inf(vx!, . .. , vxp ) . 

Then v E Hand f - c < v < f + c; that is, IIf - vII :S c. 0 

A subset H of C(X) is called separating if, for any two distinct points 
x , y of X, there exists h E H with h(x) -I- h(y). A subset H of CIR(X) is 
called a lattice if, for any f, 9 E H, the functions sup(f, g) and inf(f, g) 
also lie in H . Notice that a vector subspace of CIR(X) is a lattice if and 
only if, for every element h of H, the function Ihl is in H as well (the "only 
if" part follows from the relation Ihl = sup(h,O) - inf(h,O), and the "if" 
part from equations (*) on page 27). 

We can then deduce from Lemma 2.1 the following theorem: 

Theorem 2.2 If H is a separating vector subspace of c lR (X) that is a 
lattice and contains the constants, then H is dense in CIR(X) . 

Proof If X has a single element, the result is clear. Suppose X has at least 
two elements; we just need to check assumption b of the lemma. Let Xl and 
X2 be distinct elements of X. Since H is separating, there exists h E H such 
that h(xd -I- h(X2). If 0:1 and (}:2 are real numbers, the system of equations 

{ )"h(Xl) + J.t = 0:1 

)"h(X2) + J.t = (}:2 

clearly has a unique solution ().., J.t) E 1R? For such ().., J.t), we see that 
()"h + J.t)(xd = 0:1 and ()"h + J.t)(X2) = (}:2 ; moreover, )"h + J.t E H, since H 
is a vector space containing constants. 0 

Example. Let H be the set of Lipschitz functions from X to JR, that 
is, the set of functions h from X to JR for which there is a constant C 2: 
o (depending on h) such that Ih(x) - h(Y)1 :S Cd(x, y) for all (x, y) E 
X2. Such a C is called a Lipschitz constant for h, and h is said to be 
C-Lipschitz. Clearly, H is a vector subspace of CIR(X) containing the 
constant functions. H is also a lattice: the absolute value of a Lipschitz 
function is Lipschitz as well, since 

Ilh(x)I-lh(y)ll:s Ih(x) - h(y)l · 

Finally, H is separating since, for X i= y, the function h : z f-t d(x, z) is 
Lipschitz with constant 1 and satisfies 0 = h(x) i= h(y) . Therefore H is 
dense in C IR (X). 
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We now deduce from Theorem 2.2 another denseness criterion, where the 
assumption that H is a lattice is replaced by an assumption of closed ness 
under multiplication. More precisely, we assume we have a vector subspace 
H of C(X) that is a subalgebra of C(X); this means that fg E H for 
f, 9 E H . Since f 9 = H (f + g)2 - P - g2), this condition is equivalent to 
H being a vector space such that the square of every element of H is in H. 

Theorem 2.3 (Stone-Weierstrass Theorem, real case) Every sepa­
rating subalgebra of CIR(X) containing the constant functions is dense in 
CIR(X). 

Proof If H is a separating subalgebra of CIR(X) containing the constants, 
so is its closure H. Therefore it suffices to show that H is a lattice and to 
apply Theorem 2.2. Thus, let f be a nonzero element of H. We saw in the 
example on page 29 that there exists a sequence (Pn ) of polynomials over 
lR that converges uniformly on [-1, I] to the function x f-t Ixl. But then the 
sequence offunctions (Pn(f IllfII)) converges uniformly to Iflillfll, so If I is 
the uniform limit of the sequence (lIfll Pn(f Illfll)). Since H is a subalgebra 
of CIR(X), all terms in this sequence are in H; therefore so is their uniform 
limit If I· This shows that H is a lattice. 0 

Examples 

1. The set of Lipschitz functions from X to JR satisfies the assumptions of 
Theorem 2.3. 

2. Suppose X is a compact subset of JRd, and let H be the set of polynomial 
functions (in d variables) from X to lR: 

Clearly, H is a subalgebra of CIR(X) containing the constants; on the 
other hand, if x and yare distinct points in X, they differ in at least 
one component: for example, Xj f:. Yj . But then the polynomial Xj takes 
different values at x and at y. Thus H is separating and hence dense in 
CIR(X) . 
In the particular case where d = 1 and X is a compact interval [a, b] 
in JR, this result is known as Weierstrass's Theorem. In fact, there 
are several explicit methods to associate to an element f E CIR ([a, bJ) 
a sequence of polynomials (Pn ) that converges uniformly to f on [a, b]; 
see, for example, Exercises 3 and 2 below. 
Note that, as a consequence of Weierstrass's Theorem, the set of mono­
mials {I, x, x2 , ..• ,xn , ... }, considered as functions on [a, b] (for a < b) 
forms a topological basis of C ([a, bJ). (We thus recover, in particular, 
the fact that CIR ([a, b]) is separable.) 

Remark. In the preceding theorem, one cannot replace CIR(X) by CC(X), 
as the following example shows. Set 1U = {z E C : Izl = I}, and let H be 
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the set of polynomial functions from U in C: 

H = {z H P(z): P E qX]}. 

H is certainly a separating subalgebra of CC (U) (the function Z : z H z is 
an element of H, and Z(z) i- Z(z'} if z i- z'), and it contains the constants. 
But H is not dense in CC (U). Indeed, since 

for every n EN, we get 

121< h(eiO)eiO dO = 0 

for all hE H. By taking uniform limits, we conclude that the same equality 
holds for hE fl. On the other hand, the function Z : z H Z is an element 
of CC(U), yet 

121< Z(eiO)eiO dO = 211". 

Thus Z ¢ fl, and H is not dense in CC(U). 

Thus, in the complex case an additional assumption is necessary. We will 
suppose in this case that the subset H of CC (X) is self-conjugate; this 
means that h E H implies h E H, where the conjugate h of h is defined by 
h(x) = h(x). 

Theorem 2.4 (Stone-Weierstrass Theorem, complex case) Every 
separating subalgebra H 0/ CC (X) that is self-conjugate and contains the 
constant functions is dense in CC (X). 

Proof Set HR = {h E H : h(x) E R for all x E X}. Clearly, HR is a 
subalgebra of ClR(X) containing the constants. Now, if / E H, the real 
and imaginary parts of / lie in HR, since H is self-conjugate and Re / = 
(f + /)/2, 1m / = (f -/)/(2i). If Xl and X2 are distinct points in X, there 
exists by assumption h E H such that h(xt} i- h(X2). Therefore there exists 
9 E HlR such that g(Xl) i- g(X2): just take 9 = Reh or 9 = Imh as needed. 
It follows that HR is separating, hence dense in CIR(X), by Theorem 2.3. 
Since CC(X) = CR(X) + iCR(X) and H contains HlR + iHR, the proof is 
complete. 0 

Examples 

1. The set of Lipschitz functions from X to C is dense in CC(X). 
2. If X is compact in ]Rd, the set of functions from X to C defined by 

complex polynomials in d variables is dense in CC (X). In particular, if 
[a, bJ (with a < b) is a compact interval in JR, the set of restrictions to 
[a, bJ of the monomials 1, X, X2, . . . ,xn , . .. forms a topological basis of 
CC ([a,b]). 
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3. If X is a compact set in Cd, the set H defined by 

is dense in CC(X). 
In the particular case where d = 1 and X = U = {z E C : Izl = I}, we 
see that H is the vector space generated by the functions ZV : z ~ zV, 
with p E Z. Indeed, if z E U we have z = Z-l. Thus, the family (ZP)PEZ 
(which is clearly free) is a topological basis of CC(lU). 

4. Let Cf1r be the set of continuous functions from R to ][{ that are periodic 
of period 271", with the uniform norm on it, namely, 

Ilfll = max \f(x)\ = max If(x)\. 
xEIR XE[O,21r] 

Lemma 2.5 The map from CC (U) to Cf1r that associates to cp E 
CC(lU) the function f given by f(O) = cp(eiO ) for every real 0 is a sur­
jective isometry. 

Proof Only the surjectivity requires proof. For z E U, denote by arg z 
some real number such that eiargz = z. We know that argz is defined 
modulo 271' and that there exist choices of arg z that vary continuously 
in the neighborhood of a given point (for example, if Zo E lU and z E U 
with Iz-zol < 1, we can takeargz = argzo+ Arccos Re(zJzo)). Thus, 
if f E C~1T' the function cp defined by cp(z) = f(argz) is well-defined 
and continuous in lU, and f(O) = cp(eiO ) for all 0 E JR. 0 

It follows from the preceding example that the family (en)nEZ of ele­
ments of C~1T defined by en(O) = einO is a topological basis of C~7r' By 
taking the real and imaginary parts of the functions en, we deduce that 
the set B = {I} U {cn , Sn}nEl'I, with cn(x) = cosnx and sn(x) = sin nx, 
forms a topological basis of C~7r' and thus also of ci".. A linear combi­
nation of functions of B is called a trigonometric polynomial. 
Note that one can explicitly determine a sequence of trigonometric poly­
nomials that converges toward a given function f E C~ (see Exercise 2 
below). 

5. Let X and Y be compact metric spaces. We denote by C(X)®C(Y) the 
vector subspace of C(X x Y) generated by the functions f ®g : (x, y) ~ 
f(x)g(y) with f E C(X) and 9 E C(Y). It is clear that C(X) ® C(Y) is 
a subalgebra of C(X x Y) containing the constants and, when ][{ = C, 
self-conjugate. It is also separating: if (Xl, Yl) ::/:- (X2' Y2) we have, say, 
Xl ::/:- X2, and then the function d(·, Xl) ® 1 : (x, y) ~ d(x, xt} (where d 
is the metric on X) is an element of C(X) ® C(Y) separating (Xl, Yl) 
and (X2' Y2). Thus C(X) ® C(Y) is dense in C(X x V). 
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Exercises 

1. Let D be a dense subset of GIR (X). Prove that, for all I E Gill: (X), there 
exists an increasing sequence of elements of D that converges uniformly 
to I. 
Hint. For each positive integer n, prove that there is an element In of 
D such that 1- 2-n ~ In ~ 1- 2-n - 1• 

2. Dirac sequences 

a. Let (CPn)nEN" be a sequence of continuous functions from JRm to JR, 
with nonnegative values, and satisfying these properties: 

- fIR '" CPn (x) dx = 1 for every integer n. 
- For every e > 0, limn --++oo ~xl~t:CPn(x)dx = 0, where 1·1 denotes 

a norm on JR n . 

Let I be a bounded, continuous function on JR m. Prove that the 
sequence (CPn * !) converges to I uniformly on every compact subset 
of JRm . Recall that CPn * I is defined by 

(CPn * f)(x) = ( CPn(Y)/(x - y) dy = ( CPn(x - y)/(y) dy. 
1111:'" 11R'" 

b. For each n EN, set Cn = f 1 (1 - x 2 ) n dx, and let CPn be the function 
from JR to JR defined by 

if Ixl S; 1, 

otherwise. 

i. Prove that the sequence (CPn) satisfies the hypotheses of part a. 

ii. Deduce that every continuous function on [0,1] is the uniform 
limit on [0, 1] of a sequence of polynomial functions . 
Hint. Deal first with the case of a function I satisfying 1(0) = 

1(1) = 0, by showing that, if j is the extension of I having 
the value ° outside [0, 1], then CPn * j coincides in [0, 1] with a 
polynomial function. 

c. Fejer's Theorem. Let I be a continuous function from JR to C, peri­
odic of period 211". Let Dn and Kn be the functions defined by 

n 

Dn(x) = L eikx , 

k=-n 

If h, g E Gi'll"' we write 

1 J'II" h * g(x) = 211" -'II" h(x - y)g(y) dy 

(this equals g * h(x)). 
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i. Prove that Kn(2k1[") = n for k E Z and that, for all x (j. 21["Z, 

K() 1-cosnx 
n x = n(l _ cosx)' 

1 111' Show also that 21[" _7\" Kn(x) dx = 1 and that, for all c E (0,1["), 

lim 111' Kn(x) dx = O. 
n--?+oo E 

ii. Prove that the sequence of functions (Kn *!) converges uniformly 
to f on R . 

iii. Express Dn * f, then Kn * f, in terms of the partial sums Sn of 
the Fourier series of f, which, as we recall, are given by 

n 

Sn(x) = L Ck eikx , 
k=-n 

with Ck = - f(t)e-·ktdt. 1 fIT . 
21[" _7\" 

iv. Deduce that every continuous function periodic of period 21[" is 
the uniform limit of a sequence of trigonometric polynomials. 

3. Another demonstration of Weierstrass's Theorem: Bernstein polynomi­
als. The functions in this exercise are real-valued (lK = R). 
a. Korovkin's Theorem. For i E N, we denote by Xi the element of 

C([O, 1]) defined by Xi(X) = Xi . We also set 1 = X O and X = Xl. 
Let (Tn) be a sequence of positive elements in L( C([O, 1])) (positivity 
here means that f 2: 0 implies Tn(!) 2: 0, or again that f ~ 9 
implies Tn(J) ~ Tn(g)) . Assume that, for i = 0, 1,2, the sequence of 
functions (Tn(Xi))nEN converges to Xi uniformly on [0,1]. We want 
to show that, for all I E C([O,l]), the sequence (Tn!) converges 
uniformly to I on [0, 1] . 

i. Let I be a continuous function on [0,1]. Define the modulus of 
uniform continuity of f as the function w/ : R+* -t R+ whose 
value at 11 > 0 is 

W/(11) = sup If(x) - f(y)l· 
(x,Y)E[O,lj2 

Ix-yIS'1 

Check that W/(11) is well-defined for all 11 > 0, and that W/(11) 
tends to 0 as 11 tends to O. Now fix 11 > O. 

ii. Prove that, for all x, y E [0, 1], 

/I(x) - f(y)/ :::; W/(11) + 2(x - y)211~1I. 
11 

(One can deal separately with the cases Ix-yl:::;11 and Ix-YI >11.) 
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iii. Ifx,y E [0,1]' set gy(x) = (X-y)2. Prove that, ifx,y E [0,1]' 
we have, for every n EN, 

I(Tnf)(x) - l(y)Tn(I)(x)1 :::; wf(1J)Tn(I)(x) + 2"~" (Tngy)(x). 
1J 

iv. Set hn(x) = (Tngx)(x). Prove that the sequence offunctions (hn) 
converges uniformly to 0 in [0,1]. 
Hint. Tngx(x) = (TnX2 - 2XTnX + X2Tn1)(x). 

v. Deduce that limsuPn_Hoo IITnl - III :::; wf(1J) . Wrap up the 
proof. 

h . Let I be a function from [0,1] to R. For every integer n 2: 1, define 
the polynomial Bn (J) by 

Bn(J)(x) = t C~/(~)xk(l - xt-k. 
k=O 

i. Prove that 

Bn(Xf) = XBn(J) + X(I: X) B~(J), 

where B~ (J) represents the derivative of the polynomial Bn (J)' 
ii. Compute Bn(l), Bn(X), and Bn(X2) for every n EN. 

iii. Prove that, for every I E C([O,I]), the sequence (Bn(J)) con­
verges uniformly to f. 

4. Another prool 01 Fejer's Theorem 
a. Let (Tn) be a sequence of positive elements of L( C~7T) (see Exercise 3a 

for the definition of positivity) such that the sequence of functions 
(Tn(J))nEN converges to I uniformly on R when I is each of the 
three functions x H 1, x H cos x, and x H sinx. Prove that, for all 
I E C~7T' the sequence (Tn!) converges uniformly to f. 
Hint. Argue as in Exercise 3a, considering the interval [-11",11"] and 
replacing (x - y)2/1J2 by (1 - cos(x-y))/(1 - COS1J) . 

h. Let (Kn) be the sequence of functions defined in Exercise 2c. Take 
I E C~7T' Derive from the preceding question another proof that the 
sequence (Kn *!) converges uniformly to I on R. 

5. Let X be a compact interval in R and let H be the set of elements of 
C(X) defined by polynomial functions with integer coefficients. 
a. Prove that, if X and Z intersect, H is not dense in C(X) . 
From now on in this exercise we assume that X C (0,1). We denote by 
(Pn) the strictly increasing sequence of prime numbers and by (Pn) the 
sequence of elements of C(X) defined by 
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h. Prove that, for every integer n, the function Pn/Pn is an element of 
H, and that 1/ Pn belongs to fl. 

c. Prove that, for every k E Z *, the constant function x ~ 1/ k is an 
element of fl. (You might start with the case of k prime.) 

d. Deduce that H is dense in C(X). 
6. Equidistributed sequences and Weyl's Criterion 

a. Let E be the vector space generated by the functions from [0, 1] to 
C of the form 1 [a,bJ. Prove that every continuous function from [0, 1] 
to C is the uniform limit of functions in E. 

h. A sequence (Up)PEN of points in [0,1] is called equidistributed if, for 
every [a, b] C [0,1], 

lim Card{p ~ n: up E fa, b]} = b _ a. 
n-t+oo n + 1 

Prove that, if (Up)PEN is an equidistributed sequence of points in 
[0,1] and f : lR -t C is any continuous function periodic of period 1, 
then 

1 n 11 
lim - Lf(up) = f(t)dt. 

n-+oo n + 1 0 p=o 
Hint. Check that this is true if fEE, then use denseness (compare 
Proposition 4.3 on page 19). 

c. Prove the converse. 
Hint. One might start by showing that, if [a, b] C [0,1] and € > 0, 
there exist continuous functions f and g from [0, 1] to lR such that 
J(O) = J(I), g(O) = g(I), J ~ l[a,bJ ~ g and 

11 (g(t) - J(t)) dt ~ E:. 

d. Deduce that a sequence (Up)PEN of points in [0,1] is equidistributed 
if and only if, for every>. E N*, the Weyl criterion is satisfied: 

1 n . 
lim --~ e2•7r >.up = O. 

n-too n+ 1 ~ p=o 

e. Example. Take a E lR \ IQ and, for every pEN, set up = {pa} = 
pa - lPa J, where lPa J denotes the integer part of pa. Prove that 
the sequence (up) is equidistributed. 

f. Same question with the sequence (up) defined by Up = {pal, where 
aE(0,1). 
Hint. Consider In = f1n e2i7r>'x" dx, for>. a fixed positive integer. 
Prove, by change of variables and integration by parts, that In = 
O(n1- a ). Next show that 

lIn - t e2i7r>'p" I = O(na). 
p=o 
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7. Particular cases 01 the Tietze Extension Theorem 
a. Let Y be a metric space and X a nonempty compact subset of Y . 

Denote by Cb(Y) the vector space consisting of continuous, bounded 
functions from Y to lK, with the norm defined by 

11/11 = supi/(y)i· 
yEY 

On C(X) we take the uniform norm, also denoted by 11·11 . Now 
consider the linear map ~ : Cb(Y) ---t C(X) defined by restriction to 
X: ~(f) = Ilx for every I E Cb(Y) . 
i. Prove that Cb(Y) is a Banach space. 

ii. Prove that, if I E Cb(Y), there exists 1 E Cb(Y) such that 
~(j) = ~(f) and 11111 = 1I~(f)II · 
Hint. If <P(f) =1= 0, one can choose 

1 = xCI<P{f)lI)li~(f)II, 
where X : OC ---t lK is defined by X(x) = x/max(lxl, 1). 

iii. Prove that im <P is dense in C(X). 
Hint. Use the Stone-Weierstrass Theorem. 

iv. Let 9 be an element of C(X) that is the uniform limit of a se­
quence (<P(fn»). 
A. Prove that one can assume, after passing to a subsequence if 

necessary, that li~(fn+t} - ~(fn)1I ::; 2-n for every n. 
B. Forn EN, choose hn E Cb(Y) such that ~(hn)=ip(fn- In-1) 

and IIhnll = lIip(fn - In-dll (where 1-1 = 0 by convention). 
The existence of the hn was proved in ii above. Prove that 
the series L~=o hn converges in Cb(Y). Denote its sum by h. 

C. Prove that ip(h) = g. 

v. Deduce from the preceding facts that every function 9 E C(X) 
can be extended to a function I E Cb(Y) such that Ilfll = IIgll. 

h. Let (Y, d) be a metric space and let A be a nonempty subset of Y. 
Let I be a Lipschitz function from A to JR, with Lipschitz constant 
C. Set 

g(y) = inf (I(x) + Cd(x, y») for all y E Y. 
xEA 

Prove that 9 is a Lipschitz extension of f, also with constant C. 
8. Stone-Weierstrass Theorem in JR. We denote by C<f(lR) (or Co(JR» the 

space of continuous functions I from JR to OC such that 

lim I(x) = lim f(x) = O. 
X--+-oo x--++oo 

We give this space the uniform norm: 11111 = SUPXElRi/(x)i. We again 
denote by U the set of complex numbers of absolute value 1, which is 
compact in the metric induced from C. 



2 The Stone-Weierstrass Theorems 41 

a. i. Prove that Go (JR) is a Banach space. 
ii. Define a map tp from JR onto U\ {-I} by setting tp(x) = e2iArctan x. 

Prove that tp is a homeomorphism between JR and U \ { -1 }, the 
inverse homeomorphism being 1jJ(z) = tan(! Arg z), where Arg z 
denotes the argument of z in the interval (-71",71"). Check that 
limx-Hao tp(x) = limx ---+_ao tp(x) = -l. 

Hi. Prove that a function f on R belongs to Go(R) if and only if the 
function j defined on U by 

j(z) = {f(1jJ(Z)) ~f z f.= -1, 
o Ifz=-l, 

belongs to G(U). Prove that the map f f-t j defines an isometry 
between Go(R) and the set of elements of G(U) that vanish at 
-l. 

h. i. Let H be a vector subspace of Go(R) satisfying these conditions: 
A. f2 E H for all f E H. 
B. If x and yare distinct points of R, there exists f E H such 

that f(x) f.= fey)· 
C. For any x E JR, there exists f E H such that f(x) f.= O. 

D. In the complex case, H is self-conjugate (that is, f E H 
implies f E H). 

Prove that H is dense in Go(R). 
Hint. Apply Stone-Weierstrass to the compact space U and to 
the set fI consisting of functions of the form f + a, with f E H 
and a E oc. 

H. Conversely, prove that every dense subset H of Go(lR) satisfies 
conditions B and C above. 

c. If a E C \ R, we set tpa(x) = (a + X)-l. Prove that the family 
{'Pa}aEC\IR is fundamental in G~ (lR). 
Hint. Prove first that 'P~ = limh--+O('Pa - 'Pa+h)/h in the sense of 
convergence in Go(R). Deduce that the closure of the vector space 
generated by the 'Pa satisfies conditions A- D of part b above. 

d. Let H be the set offunctions from R to R. of the form x f-t e-x2 P(x), 
with P E IR[X]. 
i. Take r E N and a E (0,1). For n E N and x E JR., set Rn(x) = 

e-x2 x2n+r an/n!. Prove that the sequence of functions (Rn) con­
verges uniformly on R. to the zero function. 
Hint. Prove that if Un = SUPxEIRIRn(x)l, then 

lim (un+1/un) = a. 
n--+oo 

H. Deduce that the function fa,r : X f-t e-(l+a)x2 xr belongs to H. 
Hint. One can use Taylor's formula with integral remainder to 
approximate e-ax2 by polynomials. 
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iii. Prove that the function ga,T : x >--+ e-(l+a)2x2 xT belongs to fl. 
Hint. Write ga,r = (1 + a)-r/2fa,r(~x) and use part ii 
twice. 

iv. Applying the facts above to a = J2 - 1, show that H is dense 
in C~(lR). 

e. Denote by C~(1R) or Cc(JR) the set of continuous functions f from 
R to II{ that vanish outside a compact interval in JR (that depends 
on f). We assume in the sequel that IK = C. 
i. Prove that Cc(JR) is dense in Co(R). (Use part b above or give a 

direct proof.) 
ii. For cp E Cc(R), set 

<p(x) = L eixycp(y) dy. 

Prove that <p E Co (JR). 
Hint. Show first that, if a < b, the function x >--+ f: eixy dy lies 
in Co (JR). Then approximate cp by staircase functions. 

iii. If cp, 'ljJ E Cc(JR), define 

(cp * 'ljJ)(x) = L cp(x - y)'ljJ(y)dy. 
_ A A 

Prove that cp * 'ljJ E Cc(JR) and that cp * 'ljJ = cpt/J. 
iv. Deduce that the set {<P}CPECc(IR) is dense in Co(JR). 

Hint. To check conditions Band C, one can compute the integral 
fo+ oo eixYe-Ydy and approximate the function 

y>--+ l(o,+oo)(y)e-Y 

in £l(dy) by functions in Cc(JR). 

3 Ascoli's Theorem 

In this section we present a criterion of relative compactness in C(X). 
Let Xo be a point of X. A subset H of C(X) is called equicontinuous 

at Xo if, for all c; > 0, there exists 1] > ° such that 

Ih(x) - h(xo)1 < c; for all h E H and all x E X with d(x,xo) < 1]. 

H is called equicontinuous if it is equicontinuous at every point of X. It 
is called uniformly equicontinuous if, for all c; > 0, there exists 1] > 0 
such that 

Ih(x) - h(Y)1 < c; for all hE H and all X,y E X with d(x,y) < 1]. 

Since X has been assumed compact, these two notions are in fact equiva­
lent: 
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Proposition 3.1 A subset of C(X) is equicontinuous if and only if it is 
uniformly equicontinuous. 

Proof. It is enough to show necessity. Let H be an equicontinuous subset 
of C(X), and let c> 0 be a real number. By assumption, for every x E X 
there exists "1x > 0 such that Ih(y) - h(x)1 < c/2 whenever h E Hand 
d(x, y) < "1x. By the Borel- Lebesgue property, we can choose finitely many 
points Xl, ... ,Xr such that the balls B(xj, "1Xj /2) cover X. Now let "1 be the 
smallest of the "1xj/2, and let X and y be points in X such that d(x,y) < "1. 
Choosing j such that X E B(xj, "1x)2), we see that x, y E B(xj, "1xJ, so 

Ih(y) - h(x)1 ~ Ih(y) - h(Xj)1 + Ih(x) - h(Xj)1 < c for all hE H. 0 

Examples 

1. Every finite subset of C(X) is equicontinuous. 
2. Every subset of an equicontinuous set is equicontinuous. 
3. A finite union of equicontinuous sets is equicontinuous. 
4. Any uniformly convergent sequence of functions in C(X) consitutes an 

equicontinuous set (exercise). 
5. If C is a positive real number, the set of C-Lipschitz functions from X 

to II{ is equicontinuous. 

Proposition 3.2 Let (fn) be an equicontinuous sequence in C(X) and 
let D be a dense subset of X. If, for all XED, the sequence of numbers 
(In(x)) converges, the sequence of functions (fn) converges uniformly to a 
function f E C(X). 

(Compare this result with Proposition 4.1 on page 18.) 

Proof. It suffices to show that (fn) is a Cauchy sequence in C(X). To do 
this, take c > O. By assumption, there exists "1 > 0 such that, whenever 
d(x, y) < "1, 

Ifn(X) - fn(y)1 < c/5 for all n E N. 

Since X is precompact, il can be covered by finitely many balls of radius "1: 
X = U;=oB(xj,"1). Since D is dense, each ball B(xj,"1) contains at least 
one point Yj from D. Since, by assumption, the sequences (fn(Yj))nEN 
are Cauchy sequences, there exists a positive integer N such that, for any 
integer j ~ r, 

Ifn(Yj) - fp(Yj) I < c/5 for all n,p;::: N. 

Now let x be a point in X, and let j be an integer such that x E B(xj,"1). 
Then, for n,p;::: N, 

ifn(X)- fp(x)1 ~ Ifn(x)- fn(Xj)I+lfn(Yj)- fn(Xj)I+lfn(Yj)- fp(Yj) I 
+lfp(Yj)- fp(Xj)I+lfp(x)- fp(Xj) I < c. 

Thus, Ilfn - fpll < c for all n,p;::: N, and (fn) is a Cauchy sequence. 0 
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We deduce from this our main result: 

Theorem 3.3 (Aseoli) A subset of C(X) is relatively compact in C(X) 
if and only if it is bounded and equicontinuous. 

Proof For the "only if" part, let H be a relatively compact subset of C(X). 
Then H is certainly bounded; this is true in any metric space. We must 
show it is equicontinuous. Fix e > O. Since H is precompact, we can choose 
finitely many elements fo, ... ,fr in H such that the balls B(fj, e /3) cover 
H. Since the finite family (Ii )js,r is uniformly equicontinuous, there exists 
"l > 0 such that IIi(x) - fj(y)1 < e/3 for all j ::; r, whenever d(x, y) < "l. 
It follows that, if f E Hand d(x, y) < "l, then 

If(x) - f(y)1 ::; If(x) -li(x)1 + IIi(x) - fj(Y) I + Ifj(Y) - f(y)1 < e, 

where j is chosen so that II f - fj II < € /3. This shows that H is equicontin­
uous. 

For the converse, suppose H is bounded and equicontinuous. X is com­
pact, hence separable. Thus it contains a countable dense subset D. Let 
Un) be a sequence in H. For every point x in D, the sequence of numbers 
(fn(X»nEN is bounded by sUPhEH Ilhll; thus, by Theorem 3.1 on page 12, 
there exists a subsequence (J n.) kEN such that (J n. (x») kEN converges for all 
xED. By Proposition 3.2, we deduce that the sequence (f nk hEN converges 
in C(X). 0 

Remark. The preceding proof also shows that, if H is an equicontinuous 
subset of C(X), the following properties are equivalent: 

- H is bounded. 
- There is a dense subset D of X such that, for all xED, the set 

{J(x)} JEH is a bounded subset of oc. 

(This equivalence can also be proved directly.) 

Example. Consider compact metric spaces X and Y, an element K of 
C(X x Y), and a Borel measure J.L on Y having finite mass (J.L(Y) < +00). 
We define a linear operator T from C(Y) to C(X) by setting 

Tf(x) = Iv K(x, y)f(y) dJ.L(y) for all f E C(Y) and x E X . 

Recall that B(C(Y») denotes the closed unit ball in C(Y): 

B(C(Y») = {J E C(Y) : Ilfll ::; I}. 

Proposition 3.4 The image under T of the closed unit ball of C(Y) is a 
relatively compact subset of C(X). 
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We say that T is a compact operator from C(Y) to C(X) (see Chap­
ter 6). 

Proof. It is clear that T(B(C(Y))) is bounded by 

M=j.t(Y) max IK(x,y)l. 
(x,y)EXxY 

On the other hand, K is uniformly continuous on X x Y; in particular, for 
all € , there exists 'TJ > ° such that 

IK(Xl,y)-K(X2,y)1 <€ for all yEY and Xl,X2 E X with d(xl> x2) < 'TJ. 

Thus, for all f E B(C(Y)), we have ITf(xt} - Tf(X2)1 S; j.t(Y)€. There­
fore the subset T(B(C(Y))) of C(X) is equicontinuous, and we can apply 
Ascoli's Theorem. 0 

Exercises 

1. For each n E N, let fn be the function from [0,1] to JR defined by 
fn(x) = xn . At what points in the interval [0,1] is the family {In}nEN 
equicontinuous? 

2. a. Let X be a metric space and (fn) a sequence in C(X). Prove that, if 
{fn}nEN is equicontinuous at a point x of X, for any sequence (xn) 
of X that converges to x the sequence (In(x) - fn(xn)) converges 
to 0. 

h. Set fn(x) = sin nx. Prove that {In}nEN is not equicontinuous at any 
point x of JR . 
Hint. Consider the sequence (xn) defined by Xn = x + 7r/(2n). 

3. Let X be a compact metric space. Prove that, if H is an equicontinuous 
subset of C(X), the closure fI of H in C(X) is equicontinuous. 

4. Let X be a compact metric space, and let H be an equicontinuous family 
of elements of C(X). 
a. Prove that the set of points x of X such that the set {J(x) : f E H} 

is bounded is open and closed. 
h. Assume that X is connected. Prove that, if there exists a point x E X 

for which {f(x) : f E H} is bounded, H is a relatively compact 
subset of C(X). 

5. a. For 0: E (0,1), let Co ([0, 1]) be the set of functions f from [0,1] to 
JR such that 

If 1o = sup 
0:5x,y9 

x.,ey 

If(x) - f(y)1 
Ix-ylo 

is finite (such an f is called a Holder function of exponent 0:). As 
usual, we denote by II . II the uniform norm. 
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i. Prove that Ca ([O,I]), with the norm 11·lla = 1·la + 11·11, is a 
Banach space. 

ii. Prove that B(Ca([O, 1])), the closed unit ball in Ca([O, 1]), is a 
compact subset of C([O, 1]). 

iii. Suppose 1 > {J > a > 0. 

A. Take I E C i3 ([0, 1]). Prove that, for all", > 0, 

Ilia ~ max(I/Ii3",i3-a , 211/11",-a). 

Deduce that, if (In) is a bounded sequence in Ci3 that con­
verges uniformly to I E Ci3 , then II/n - Ilia -+ 0. 

B. Deduce that B(Ci3([O, 1])) is compact in CQ([O, 1]). 

h. Let m be a nonnegative integer. We give cm([o, 1]) the norm defined 
by 

m 

1I/IIm = L sup I/(k)(x)l· 
k=O zE(O,I] 

i. Prove that with this norm Cm([O, 1]) is a Banach space. 

ii. Prove that if m and n are nonnegative integers such that m > n, 
then B(Cm([O, 1])) is a relatively compact subset of Cn([O, 1]). 
(You might start with m = 1 and n = 0.) Is the ball B(Cm([O, 1])) 
closed in cn([o, I])? 

c. Take mEN and a E (0,1). Denote by cm+a([o, 1]) the vector 
space consisting of functions of Cm([O, 1]) whose m-th derivative is 
an element of CQ([O, 1]), and define on this vector space a norm 
II . Ilm+a by setting 1I/llm+a = 1I/IIm + I/(m)la. 

i. Prove that Cm+Q([O, 1]), with the norm II . Ilm+a , is a Banach 
space. 

ii. Take p, q E JR such that q > p 2 o. Prove that B (Cq ([0, 1])) is a 
relatively compact subset of CP([O, 1]). 

6. Ascoli's Theorem in JR 

a. Let In be the function defined for all x E JR by 

In(x) = {min(l, nix) ~f x of- 0, 
1 If x = o. 

Prove that the subset {fn}nEN of Co(JR) is bounded and equicontin­
uous (see Exercise 8 on page 40 for the definition of Co(JR)), but the 
sequence (In) has no uniformly convergent subsequence. 
Hint. The sequence (In) converges pointwise but not uniformly to 
the constant function 1. 

h. Let H be a subset of Co(JR). Prove that H is relatively compact in 
Co (JR) if and only if it is bounded and equicontinuous at every point 
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of JR and satisfies that condition that for any € > 0 there exists A > 0 
such that 

,hex), < € for all hE H and x E JR with Ixl ~ A. 

Hint. Use Ascoli's Theorem in the space C(U) (refer again to Exer­
cise 8 on page 40). 

7. A particular case 01 Peano's Theorem. Let I be a continuous function 
from [0, 1] x JR to JR for which there exists a constant M > 0 such that 

'/(x, t), ::; M(l + Ixl) for all t E [0,1] and x E JR. 

a. Let n be a positive integer. We define points xj, for 0 ::; j ::; n, by 
setting x8 = 0 and 

xjH = xj + ~ I (~, xj) for 0 ::; j ::; n - 1. 

i. Prove that Ixjl ::; (1 + M/n)j - 1 ::; eM - 1 for 0 ::; j ::; n. 
ii. Let <Pn be the continuous function on [0, 1] that is affine on each 

interval [j / n, (j + 1) / n] and satisfies <Pn (j / n) = xj for 0 ::; j ::; 
n. That is, for 0 ::; j ::; n - 1 and t E [j/n, (j+1)/n] we have 

CPn(t) = xj + (t - ~)/(~, xj). 

Prove that for s, t E [0,1] we have 'CPn(t) - CPn(s) , ::; MeMlt - sl . 
iii. For s E [0,1], set 

'l/Jn(s) = ~ l[j/n, (jH)/n)(S)/(~' cpn(~)). 

Prove that <Pn(t) = lot 'l/Jn(s) ds for all t E [0,1]. 

h. i. Show that there exists a subsequence (cpnk)kEN that converges 
uniformly on [0,1] to a function 'I' E C([O, 1]). 

ii. Prove that the sequence ('l/Jnk)kEN converges uniformly on [0,1) 
to I(s,cp(s)). 

iii. Deduce that cp(t) = J; I(s,cp(s)) ds for all t E [0,1]; then prove 
that 'I' is of class C l on [0, 1] and satisfies the differential equation 

{ 
cp/(t) = I(t,cp(t)) 

'1'(0) = O. 

for all t E [0,1], 

Is the 'I' constructed above the only one that satisfies these con­
ditions? 
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8. Let X be a compact metric space and H a subset of C(X). 

a. Suppose H is relatively compact. Prove that for all € > 0 there exist 
constants C > 0 and B > 0 such that d(f, LiD :S € for all f E H, 
where Lg denotes the set of C-Lipschitz functions on X with uniform 
norm at most B, and d is the metric associated with the same norm. 
Hint. Use the fact that Lipschitz functions are dense in C(X). 

h. Show the converse. 
Hint. Prove that Lg is precompact, and finally that so is H. 



2 
Locally Compact Spaces 
and Radon Measures 

In this chapter we study a representation, in terms of measures, of positive 
linear forms on spaces of continuous functionsj this representation leads to a 
description of the topological dual of such spaces. It is useful in applications 
to consider functions defined on metric spaces somewhat more general than 
compact spaces, namely, locally compact ones. 

1 Locally Compact Spaces 

A metric space (X, d) is called locally compact if every point in X has 
a compact neighborhoodj equivalently, if for every x E X there exists a 
compact K of X whose interior contains Xj equivalently, if for every x E X 
there exists r > 0 such that the closed ball 13(x, r) is compact. Local 
compactness is clearly a topological notion. 

Any compact space is obviously locally compact. The spaces IRd and 
Cd, for d 2:: 1, and more generally all normed spaces of finite nonzero 
dimension yield a first example of locally compact but noncompact spaces. 
The famous theorem of F. Riesz states that, conversely, the only locally 
compact normed spaces are those of finite dimension: 

Theorem 1.1 (F. Riesz) Let X be a normed space, with open unit ball 
B and closed unit ball 13. The following properties are equivalent: 

i. X is finite-dimensional. 
ii. X is locally compact. 
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iii. B is compact. 

iv. B is precompact. 

Proof. Property i implies ii because closed balls in a finite-dimensional 
normed space are compact. If ii is true, there exists r > 0 such that 
B(O, r) = rB is compact; this implies iii. That iii implies iv is obvious. 
Thus the only nontrivial part of the theorem is iv ~ i. 

Suppose that B is precompact. Then there is a finite subset A of X such 
that 

Be U B(x,~) = A + ~B. 
xEA 

Let Y be the (finite-dimensional) vector space generated by Aj then B C 

Y + 2- 1 B. One can easily show by induction that, for any integer n 2: 1, 
we have BeY + 2-n B, and therefore 

Be n(Y + TnB). 
n~1 

In particular, if x E B, there exists for all n 2: 1 a Yn E Y such that 
Ilx-Ynll < 2-n . We deduce that BeY. Since Y is finite-dimensional , hence 
complete, hence closed in X, it follows that BeY and, by homogeneity, 
X=Y. 0 

We remark that any space with the discrete metric (defined by d(x, y) = 1 
if x i:- Y and d(x, x) = 0) is locally compact. 

Here is a simple but important consequence of the definition of local 
compactness. 

Proposition 1.2 If X is a locally compact space, there exists for every 
x E X and for every neighborhood V of x a real number r > 0 such that 
B(x, r) is compact and B(x, r) C V. 

Proof. Just choose r = min(r', r"), where r' and r" are such that B(x, r') 
is compact and B(x, r") C V. 0 

Corollary 1.3 Let X be locally compact. If 0 is open in X and F is 
closed in X, the intersection Y = 0 n F (with the induced metric) is locally 
compact. 

Proof. Take x E Y. By the preceding proposition, there exists r > 0 such 
that B(x, r) is compact and contained in O. Then B(x, r)ny = B(x, r)nF 
~oo~~. 0 

In particular, every open set in a finite-dimensional normed space is 
locally compact. 
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Corollary 1.4 Consider a locally compact space X, a compact subset K 
of X, and open subsets 0 1"", On of X covering K. There exist compact 
sets Kl"'" Kn with K j C OJ for each j and such that 

Proof By Proposition 1.2, for all points x of K there exists j E {l, . . . , n} 
and a compact set Kx such that x E Kx C Kx C OJ . By the Borel­
Lebesgue property, K can be covered by finitely many of these interiors: 

Now set K j = UK"'i COj KXi for 1 :s; j :s; n. Then 

P 

U KXi = UKx; :::>K; 
j=1 j=1 K"'iCOj i=l 

and, sure enough, K j C OJ . o 
The next result is about the separability of locally compact spaces. 

Proposition 1.5 Let X be a locally compact space. The following prop­
erties are equivalent: 

i. X is separable. 
ii. X is a-compact. 

iii. There exists a sequence (Kn) of compact sets covering X and such that 
Kn c Kn+l for all n E N. 

Proof It is clear that iii implies ii. The implication ii =* i is a particular 
case of Proposition 2.2 on page 8. 

Now suppose that X is separable and let (xn ) be a sequence dense in 
X. Set A = ((n,p) EN x N* : B(xn , lip) is compact}; we will show that 
the family ~ ~ (B(xn , l/P))(n,p)EA covers X. Take x E X and let r > 0 
be such that B(x,r) is compact. Then take p E N* such that lip < r/2 
and n E N such that d(x, x n ) < lip. One sees that x E B(xn , lip) C 
B(x,2/p) C B(x, r). Therefore B(xn , lip) is compact and x belongs to 
some element of $. This shows that i implies ii. 

Finally, we show that ii implies iii. Suppose that X is a-compact and 
let (Ln) be a sequence of compact sets that cover X. We construct the 
sequence (Kn) by induction, as follows: set Ko = Lo and, for n ~ 1, choose 
Kn such K n- 1 U Ln- l C Kn (using Corollary 1.4). 0 

A sequence (Kn) of compact sets that covers X and satisfies Kn C Kn+l 
for all n is said to exhaust X. 
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Proposition 1.6 Let (Kn) be a sequence of compact sets that exhausts a 
metric space X. For every compact K of X there exists an integer n such 
that K C Kn. 

Proof. The open sets Kn cover K. By theo Borel-Lebesg!le property, K is 
in fact contained in a finite union of sets Kn: but Uj~n K j = Kn . 0 

Continuous Functions on a Metric Space 

We now introduce various spaces of continuous functions on a metric space 
(X,d) . 

We denote by C~(X), or simply by Cb(X), the vector space over OC con­
sisting of bounded continuous functions f : X ~ OC; recall that f being 
bounded means that SUPxEX If(x)1 < +00. We give C~(X) the uniform 
norm (or norm of uniform convergence), defined by 

Ilfll = suplf(x)l· 
xEX 

With this norm, C~(X) is a Banach space. 
We say that a function f : X -+ OC tends to zero at infinity if for all 

c > 0 there exists a compact subset K of X such that If(x)1 < c for all 
x (j. K. We denote by Clf"(X) or Co(X) the vector space over OC consisting 
of continuous functions X -+ OC that tend to 0 at infinity. It is easy to 
check that Co(X) is a closed subspace of Cb(X); therefore Co(X) with the 
uniform norm forms a Banach space. 

We remark that Dini's Lemma (Proposition 1.2 on page 29) can be gen­
eralized to C~(X): 

Proposition 1.7 Let (fn)nEN be an increasing sequence in C~(X), con­
verging pointwise to a function f E C~(X). Then (fn) converges uniformly 
to f. 

Proof. We show that the sequence (gn) defined by gn = f - fn converges 
uniformly to O. Given c > 0, there exists a compact K such that go(x) ::; c 
for all x (j. K . By Dini's Lemma, there exists an integer n such that gn(x) ::; 
c for all x E K. Since the sequence (gn) is decreasing, this implies that for 
all p ~ n and all x E X we have 0::; gp(x) ::; c . 0 

The support of a function f : X -+ OC , denoted Supp f, is the clo­
sure of the set {x EX: f (x) i= O}. Thus Supp f is the complement of 
the largest open set where f vanishes, this latter set being of course the 
interior of f-l({O}) . We denote by C~(X) or Cc(X) the vector space over 
OC consisting of the functions X -+ OC having compact support. Clearly 
Cc(X) is a vector subspace of Co(X), but not in general a closed one; 
see Corollary 1.9 below, for example. Naturally, if X is compact we have 
Cc(X) = Co(X) = Cb(X) = C(X). 



1 Locally Compact Spaces 53 

Finally, we denote by C:(X), C(i(X), and C:(X) the subsets of C~(X), 
C~(X) , and C~(X) consisting of functions that take only positive values. 

Proposition 1.8 (Partitions of unity) Let X be locally compact. If K 
is a compact subset of X and 0 1, . .. ,On are open subsets of X that cover 
K, there exist functions CP1, . . . ,CPn in C~ (X) such that 0 ~ CPj ~ 1 and 
SUPPCPj C OJ for each j and 

n 

I: CPj(x) = 1 for all x E K . 
j=l 

Proof. Let KI, ... , Kn be the compact sets whose existence is granted by 
Corollary 1.4. We just have to set, for x EX, 

In particular, SUPPCPj C K j C OJ . o 

A family (CP1, ... , CPn) satisfying the conditions of the proposition is called 
a partition of unity on K subordinate to the open cover 0 1 , . • • , On. 

Corollary 1.9 If X is locally compact, Cc(X) is dense in Co(X). 

Proof. Take f E Co(X) and c > O. Let K be a compact such that If(x)1 < c 
for all x ¢:. K. Applying Proposition 1.8 with n = 1 and 0 1 = X, we find a 
cP E C~(X) such that 0 ~ cP ~ 1 and cP = 1 on K. Then jcP E Cc(X) and 
Ilf - jcpll ~ c. 0 

Corollary 1.10 Let X be locally compact and separable and let 0 be open 
in X. There exists an increasing sequence (CPn) of functions in C:(X), each 
with support contained in 0, and such that limn-HOC CPn(x) = lo(x) for all 
xEX. 

Proof. 0 is a locally compact separable space, by Corollary 1.3 above and 
Proposition 2.3 on page 8. By Proposition 1.5 there exists a sequence of 
compact sets (Kn) such that Kn C Kn+l for all nand UnEN Kn = O. 
By Proposition 1.8 there exists for each n a map CPn E C~ (X) such that 
o ~ CPn ~ 1, CPnlKn = 1, and SUPPCPn C Kn+l' The sequence (CPn) clearly 
satisfies the desired conditions. 0 

To conclude this section, we observe that Cb(X) is a algebra with unity, 
that Cc(X) and Co(X) are subalgebras of Cb(X) (without unity if X is not 
compact), and that C~(X), C~(X) and C~(X) are also lattices. 
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Exercises 

1. a . Let X be a metric space. Prove that, if there exists a real number 
r > 0 such that all closed balls of radius r in X are compact, then 
X is complete. 

h. Find a locally compact metric space X such that, for all x EX, 
there is a compact closed ball of center x that is noncompact. 

c. Find a locally compact metric space that is not complete. 
d. Find a complete metric space that is not locally compact. 

2. a . Let (XI,dt) and (X2 ,d2 ) be locally compact metric spaces. Prove 
that Xl x X 2 , together with the product metric given by d(x, y) = 
d l (Xl, yI) + d2(X2, Y2), is locally compact. 

h. Let ((Xp, dp))PEN be a sequence of locally compact, nonempty met­
ric spaces, and set X = rIpEN X P' with the product metric d (see 
page 13). 

i. Take x E X and r E (0,1]. Prove that if nand n' are integers 
satisfying 2-n < r :::; 2-n', then 

n ~ 

II{xp} x II Xp C B(x,r) C II Bp(xp,2Pr) x II X p, 
p=o p>n p=o p>n' 

where Bp( . " ) and B( . " ) represent open balls in (Xp, dp) and 
(X, d), respectively. 

ii. Prove that (X,d) is locally compact if and only if all but a finite 
number of factors (Xp, dp) are compact. 

3. Let X be a metric space and Y a subset of X. 
a . Prove that B(x, r)nY C B(x, r) n Y for all x E Y and r > O. Deduce 

that, if B(x, r) n Y is compact, then B(x, r) nYc Y. 
h. Suppose that Y, with the induced metric, is locally compact. Show 

that there exists an open subset 0 of X such that Y = 0 n Y. This 
gives a converse for Corollary 1.3. 

4. Show that an infinite-dimensional Banach space cannot be a-compact. 
Hint. Use Baire's Theorem (Exercise 6 on page 22). 

5. a. Prove that every metric space that can be exhausted by a sequence 
of compact sets is locally compact. 

h. Find a a-compact metric space that is not locally compact. 
6 . Baire '8 Theorem, continued. Let X be a metric space. Recall from Ex­

ercise 6 on page 22 the game of Choquet between Pierre and Paul. 

a. Prove that Paul has a winning strategy if X is locally compact. 
Deduce that in X no open set can be a union of a countable family 
of closed sets with empty interior. 
Hint. The intersection of a decreasing sequence of nonempty com­
pact sets cannot be empty. 
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h. Take X = R \ Q, with the usual metric. Prove that X is neither 
complete nor locally compact (you can use Exercise 3 above, for ex­
ample), but that Paul nonetheless has a winning strategy, so Baire's 
Theorem is valid in X. 
Hint. Take an enumeration of the rationals, say Q = {rn}nEJII . Show 
that, whenever Pierre plays Un, Paul can respond with Vn = In \ Q, 
where In is a nonempty open interval in JR such that In \ Q C Un , 
d(In) ::; lin, and Tn ~ In. 

7. Alexandroff compactification. Let (X, d) be a separable and locally com­
pact metric space. Set X = X U { 00 }, where 00 is a point that does not 
belong to X. We wish to define on X a metric that extends the topology 
of X and that makes X compact. To do this, let (Vn)nEJII be a countable 
basis of open sets in X (see Exercise 1 on page 10), and put 

~ = {(p,q) E N2 : Vp C Vq and Vp is compact }. 

This set is countable; let 0/1 = {(Pn, qn)}nEN be an enumeration of it. 
For each n, let I{)n be an element of Cc(X) such that 0 ::; I{)n ::; 1 
everywhere and I{)n = 1 on Vpn , and whose support is contained in Vqn · 

Put I{)n(oo) = O. Then, for x,y E X, define 

+00 
c5(x,y) = L Tn Il{)n(X) - I{)n(y)j. 

n=O 

a. Prove that 8 is a metric on X. 
h. Let (Xj)jEJII be a sequence in X. Prove that limj-++oo c5(xj, 00) = 0 

if and only if, for any compact K in X, there is an integer J such 
that Xj ~ K for j 2 J. (In this case we say that the sequence (Xj) 
tends to infinity.) 

c. Let (Xj)jEJII be a sequence in X and x a point in X. Prove that 
limj-++ood(xj,x) = 0 if and only if limj-++oo c5(xj, x) = O. Together 
with the preceding result, this shows that the convergence of se­
quences in X, and therefore the topology of (X, 8), does not depend 
on the choice of d and 15. 

d. Prove that (X, 8) is a compact metric space. 
e. Prove that X is compact if and only if 00 is an isolated point of X. 
f. We now suppose that X = JRd. Prove that X is homeomorphic to 

Sd, the (euclidean) unit sphere in JRd+l , that is, 

{ d+l} 
Sd = x E JRd+l : :~::>~ = 1 , 

t=l 

with the distance induced by the euclidean norm in JRd+l. 
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Hint. Use stereographic projection, the map t.p : Sd -+ r defined by 
t.p(0, .. . , 0, 1) = 00 and 

t.p(x) = J ( X' ) 

1 - Xd+l l~j~d 
for x i- (0, .. . ,0,1) . 

g. Prove that Co(X) can be identified with the space of continuous 
functions on X that vanish at 00. 

h. Deduce that Co(X) is separable. 
i. Prove that the Stone-Weierstrass Theorem, stated in Exercise 8b on 

page 41 for R., generalizes to the case where R. is replaced by X. 
j. Ascoli's Theorem in Co(X). Prove that a subset H of Co(X) is rel­

atively compact in Co(X) if and only if it is bounded and equicon­
tinuous and satisfies the condition that for every c > ° there exists 
a compact subset K of X such that Ih(x)1 < c for every x E X \ K 
and every h E H. 

8. Let X be a locally compact space. Prove that X is separable if and only 
if Co(X) contains a function taking positive values everywhere. 
Hint. X is separable if and only if it is a-compact. 

9. Let (X, d) be a metric space. 
a . Prove that Cb(X) and Co(X) , with the uniform norm, are Banach 

spaces. 
h. Prove that X is compact if and only if every continuous function 

from X into R. is bounded. 
Hint. Show that, if X is not compact, there exists a sequence (Xn)nEN 
in X having no convergent subsequence and a sequence (rn)nEN of 
positive real numbers tending toward ° and such that the balls 
B(xn' rn) are pairwise disjoint. Then consider EnEN nt.pn, where 
t.pn(x) = (1 - d(x,xn)/rn)+. 

c. Prove that Cb(X) is separable if and only if X is compact. 
Hint. Suppose that X is not compact and define, for each a E 

{O,l}N, a function la by setting la = EnEN ant.pn, where the t.pn 
are as in part b. Prove that la E Cb(X) and that lila - l.all = 1 if 
a i- (3. Then use Proposition 2.4 on page 9. (Side question: Among 
the functions la , how many have compact support?) 

10. Tietze Extension Theorem, continued. Let X be a locally compact 
space, K a compact subset of X, and I a continuous function K -+ 1K. 
Prove that there exits a function i E Cc(X) such that ilK = I and 
Ilill = maxxEK I/(x)l · 
Hint. Use Exercise 7 on page 40 and Proposition 1.8 above. 

11. Extend the result of Exercise 1 on page 30 to the case where X is 
separable and locally compact and C(X) is replaced by Co(X). 
Hint. One can use Exercise 7 to reduce the problem to the one covered 
by the original result. 
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12. Topology of uniform convergence on compact sets. Let X be a separa­
ble, locally compact metric space and (Kn) an exhausting sequence of 
compact sets of X. Let C(X) be the vector space consisting of continu­
ous functions from X into lK. For each element f of C(X) define a real 
number q(f) as 

+00 
q(f) = L Tn min(l, 1IfIIKJ, 

n=O 

where II· 11K" represents the uniform norm on Kn. 
a. Prove that the map d: (f,g) H q(f-g) is a metric on C(X). 
h. Let (fk)kEN be a sequence of elements of C(X) and let f be an 

element of C(X). Prove that (fk) converges to f uniformly on every 
compact of X if and only if limk-Hoo d(fk, f) = O. 

c. Prove that the metric space (C(X), d) is complete. 
d. For n E N, let (CPn,p)PEN be a dense sequence in C(Kn). We know by 

Exercise 10 above that we can extend each CPn,p to a function rpn,p E 
Cc(X). Prove that the family (rpn,p)(n,p)EN2 is dense in (C(X), d). 

e. Deduce that the metric space (C(X), d) is separable and that Cc(X) 
is dense in (C(X), d). 

f. Deduce that (Cb(X),d) and (Co(X),d) are complete if and only if 
X is compact (see Exercise 9b above). 

g. Ascoli's Theorem in C(X). Let H be a subset of C(X). Prove that 
H is relatively compact in (C(X),d) if and only if it satisfies the 
following conditions: 

- H is equicontinuous at every point of X. 
- For every point x of X, the set {h(x)hEH is bounded. 

Hint. Carry out the diagonal procedure using Ascoli's Theorem on 
each compact Kn. 

2 Daniell's Theorem 

This section approaches integration from a functional point of view. We as­
sume the reader is familiar with the set-theoretical approach to integration, 
where a measure is defined as a a-additive function on sets. 

Notation. Let X be any nonempty set. We denote by $ the vector space 
over R consisting of all functions from X to JR. This space, with the usual 
order relation, is a lattice: If f and 9 are elements of $, 

(sup(f,g))(x) = max(J(x),g(x)) and (inf(f,g))(x) = min(J(x),g(x)). 

If (fn) is a sequence in $ and f is an element of $, we write fn /" f to 
mean that the sequence (fn) is increasing and converges pointwise to fj 
the meaning of f n \. f is analogous. 
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As before, we use the same symbol for a constant function and its value. 
If m is a measure on a O"-algebra of X, we denote by 2'1 (m) the subspace 

of § consisting of m-integrable functions. As usual, we denote by V(m) 
the quotient vector space of 2'1(m) by the equivalence relation given by 
equality m-almost everywhere, endowed with the norm defined by Ilfll = 
f If I dm (we use the same symbol f for an equivalence class and one of its 
representatives) . The normed space V(m) is then a Banach space. 

During the remainder of this section, we consider a vector subspace L of 
$ that is a lattice (this is equivalent to saying that f E L implies If I E L) 
and satisfies the following condition: 

There exists a sequence (<Pn) in L such that <Pn /' 1. ( * ) 

We will denote by 0"( L) the O"-algebra generated by L, that is, the smallest 
O"-algebra of X that makes all elements of L measurable. Finally, let 2' be 
the set of functions from X to JR that are O"(L )-measurable. 

Lemma 2.1 2' is the smallest subset of § that contains L and is closed 
under pointwise convergence (the latter condition means that the pointwise 
limit of any sequence in .5t' is also in 2'). 

Proof. It is clear that a minimal set satisfying these conditions exists. Call 
it ~. 

- ~ is a vector subspace of $ and a lattice, and it contains the constants. 

Proof. If A E JR, the set {J E § : Af E ~} contains L and is closed 
under pointwise convergence, so it contains ~. Therefore f E ~ and 
A E JR imply AI E ~. 
Similarly, for every gEL, the set {J E $ : f + 9 E ~} contains ~, 
so the sum of an element of L and one of ~ is in ~. Using the same 
reasoning again we deduce from this that, for every f E ~, the set 
{h E $ : f + h E ~} contains ~. Thus the sum of two elements of ~ 
is in ~, and ~ is a vector space. 
Since L is a lattice we see by considering the set {J E $ : If I E ~} 
that ~ is a lattice as well. That ~ contains 1 and therefore all constants 
follows from condition (*). 0 

- We now show that ~ = 2'. Set f7 = {A eX: lA E ~} . By the 
preceding paragraphs, f7 is a O"-algebra. If f ELand a E JR, the charac­
teristic function of the set {J > a} is the pointwise limit of the sequence 
(inf(n(f-a)+, 1)), and so belongs to~, and {J > a} E f7. Thus the 
elements of L are f7-measurable, which implies that O"(L) C f7; in other 
words, lA E ~ for A E O"(L) . Since every O"(L)-measurable function is 
the pointwise limit of 0"( L )-measurable piecewise constant functions, we 
deduce that .5t' c ~ and, by the minimality of ~, that 2' = ~. 0 
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Example. Let X be a metric space. Recall that the Borel u-algebra of 
X is the smallest a-algebra of X that contains all open sets of X, and that 
the corresponding measurable functions are called Borel functions. 

Proposition 2.2 If X is a metric space, the set of Borel functions from 
X to JR is the smallest subset of g: that contains all continuous functions 
from X to JR and is closed under pointwise convergence. 

Proof. Let L be the set of continuous functions from X to JR. Then L 
is a lattice and satisfies (*), since 1 E L. On the other hand, let ~ be 
the Borel a-algebra of X. Certainly every continuous function on X is ~­
measurable, so a(L) c ~. Conversely, every open set U of X is contained 
in a(L): to see this, note, for example, that U is the inverse image of the 
open set JR* under the continuous function f defined by f(x) = d(x, UC). 
Thus ~ c a(L), which implies ~ = a(L). Now apply Lemma 2.1. 0 

Remark. One should not confuse .!l' with the set of pointwise limits of 
sequences in L, which is generally strictly smaller that .!l'. In the situation 
of the preceding example, this smaller set is called the set of functions of 
first Baire class: see Exercise 4. 

The rest of this section is devoted to the proof of the following result: 

Theorem 2.3 (Daniell) Let p, be a linear form on L satisfying these 
conditions: 

1. P, is positive, that is, if f E L satisfies f ~ 0 then p,(f) ~ O. 
2. If a sequence (fn) in L satisfies In '\t 0, then limn-t+oo p'(fn) = O. 

Then there exists a unique measure m on the a-algebra a(L) such that 

and p,(f) = J f dm for all f E L. 

Uniqueness of m. Suppose that two measures ml and m2 satisfy the stated 
properties. Let (CPn) be a sequence satisfying condition (*) on page 58. For 
every n EN and every real .x ~ 0, the set 

equals .!l', by the minimality of.!l' (proved in Lemma 2.1) and the Domi­
nated Convergence Theorem. Making n go to infinity, then .x, we conclude 
by the Monotone Convergence Theorem that J f+ dml = J f+ dm2 for all 
f E .!l'. Thereforeml = m2 on a(L). 0 

Existence of m. The proof of existence is rather long and is carried out in 
several steps. First of all, let 'P/ be the set of functions from X into lR. that 
are pointwise limits of increasing sequences of elements of L. The measure 
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m is constructed by first extending the linear form J.l to tP/ (steps 1- 3), 
then to the space L1 defined in step 6 below. Some properties of L1 and of 
J.l are established in step 7, allowing us to conclude the proof in step 8. 

1. The set tP/ contains the positive constants, is closed under addition and 
multiplication by nonnegative reals, and for any pair (f, g) of elements 
oftP/, we have sup(f,g) E tP/ and inf(f, g) E 'P/. Moreover'P/ is closed 
under pointwise convergence of increasing sequences. 

Proof. Only the last assertion requires elaboration. Let (fn) be an in­
creasing sequence in tP/ converging toward an element I of ~. By 
assumption, there exists, for any n E N, a sequence (gn,m)mEN in L 
that is increasing and converges to In. For each mEN, set hm = 
sUPO<n<m gn ,m' It is clear that (hm)mEN is an increasing sequence in L 
and that gn,m ::; hm ::; 1m if m ~ n. Making m go to infinity in this 
inequality, we get In ::; limm-Hoo hm :S I; then making n go to infinity, 
we get hm )' I, which shows that I E 'P/. 0 

2. Let (fn) and (gn) be increasing sequences in L, converging pointwise to 
elements I and 9 of tP/, respectively. II I :S g, then 

Proof. By linearity and positivity, the linear form J.l is increasing on L 
(I ::; 9 implies L(f) ::; L(g)). On the other hand, for each n EN, we 
have inf (f n, gm) )' In as m goes to infinity, so limm-Hoo J.l (inf (f n, gm) ) 
= J.l(fn) , by assumption 2 of the theorem applied to the sequence 
(In - inf(fn, gm) )m. It follows that J.l(fn) ::; limm-Hoo J.l(gm) for all 
n EN, and this shows the result. 0 

3. We extend J.l to tP/ by setting JL(f) = limn-Hoo JL(fn), where I E tP/ 
and (fn) is an increasing sequence in L that converges to I pointwise. 
By step 2, J.l is well-defined and increasing on tP/, and it takes values 
in (-00, +ooJ. Moreover, JL is additive (that is, JL(f + g) = JL(f) + J.l(g) 
for I, 9 E tP/) and, for all I E 'P/ and every nonnegative real A, we 
have JL(Af) = AJL(f), with the usual convention 0 '00 = O. Now, if (fn) 
is an increasing sequence in 'P/ that converges to I E ~ pointwise, 
JL(f) = limn-Hoo JL(fn). 

Proof. By step 1, I is in tP/. Using the same notation as in the proof of 
that step, we can write 

the reverse inequality is a consequence of the fact that J.l is increasing 
in 'P/. 0 
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4. We now extend J.L to -'P/ by setting J.L( - f) = -J.L(f) for I E 'P/. This 
gives no rise to inconsistencies: if I E 'P/ n (-'P/), then 1+ (- f) = 0 
and therefore J.L(f) + J.L( - f) = 0 and J.L(f) = -J.L( - f). It is also clear 
that 

J.L(g - h) = J.L(g) - J.L(h) if 9 E 'P/ and hE -'P/. 

In particular, if 9 E 'P/ and h E -'P/, then h ~ 9 implies J.L(h) ~ J.L(g) . 
5. Let 1/ be the set consisting of elements I E $ such that there exist 

9 E 'P/ and h E -'P/ with J.L(g) and J.L(h) finite and h ~ I ~ g. For 
IE 1/, we put 

J.L*(f) = inf{J.L(g) : 9 E 'P/ and 9 ~ f} E R, 

J.L*(f) = sup{J.L(h) : h E -'P/ and h ~ f} E R. 

The following properties follow easily from steps 3 and 4: 
- For every I E 1/ and every nonnegative real ). we have J.L* (f) ~ 

J.L*(f), J.L*( - f) = -J.L*(f), J.L*().f) = ).J.L*(f), and J.L*().f) = ).J.L*(f). 
- For every pair (h,h) of elements of 1/, we have J.L*(h + h) ~ 

J.L*(h) + J.L*(h) and J.L*(h + h) ~ J.L*(h) + J.L*(h) · 
- For every pair (h, h) of elements of 1/ such that h ~ 12, we have 

J.L*(h) ~ J.L*(h) and J.L*(fI} ~ J.L*(h)· 
6. We extend J.L to the set L1 = {f E 1/ : J.L*(f) = J.L*(f)} by putting 

J.L(f) = J.L*(f) = J.L*(f), for I E L1 . This definition is clearly consistent 
with the ones given in steps 3 and 4 for elements of 'P/ and -'P/ . Note 
that L1 is a vector space containing L and that J.L is a positive linear 
form on L1. 

7. Some properties 01 L1 and J.L 
a. The vector space L1 is a lattice. 

Proof Notice first that an element I of $ belongs to L1 if and only 
if for all c > 0 there exist 9 E 'P/ and h E -'P/ such that h ~ I ~ 9 
and J.L(g) - J.L(h) = J.L(g - h) ::; c. 
Now take I E L1 and c > 0, and choose 9 E 'P/ and h E -'P/ as 
just described. Then g+ and h- are in 'P/, and g- and h+ are in 
-'P/; furthermore, h+ + g- ::; III ~ h- + g+. On the other hand, 
J.L(h- + g+) - J.L(h+ + g-) = J.L(g - h) ~ c. 0 

h. Let (fn) be an increasing sequence in L1 that converges pointwise to 
a lunction I. In order that I E £1, it is necessary and sufficient that 
limn-Hoo J.L(fn) < +00 and that there be an element g 01'P/ such 
that I ~ g. II this is the case, J.L(f) = limn .. -t+oo J.L(fn). 
Proof The condition is clearly necessary; we show sufficiency. Since 
I ~ 10, there exists h E -'P/ such that J.L(h) is finite and h ~ I· 
At the same time, J.L*(f) ~ limn-Hoo J.L(fn). Now take c > o. There 
exists a sequence (gn) in 'P/ satisfying 10 ::; go, J.L(go) ::; J.L(fo) + c/2 
and, for all n E N*, 

In - In-1 ::; gn and J.L(gn)::; J.L(fn - In-I} + 2-n- 1c:. 
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Set 1 = inf (EpEN gp, g). Then 1 E ~ by step I; also, 1 ~ f and 

+00 
p,(l) ::; " p,(gp)::; lim p'(fn) + c L...J n~+oo 

p=o 

(see step 3). It follows that f E "f/ and 

o 

c. Let (fn) be a sequence in L1 converging pointwise to f . If there exists 
an element 9 of"f/ such that Ifni::; 9 for all n E N, then f E L1 and 
p,(f) = limn~+oo p'(fn) . 

Proof. Clearly f E "f/ and, for all n, the function hn defined by 

belongs to "f/. Moreover, hn /' f. We deduce, by an application of 
7a and two of 7b, that f E L1 and p,(f) ::; lim inf k~+oo p,(fk) . One 
shows likewise that p,(f) ~ limsuPk~+oo p,(fk). 0 

d. If 9 E L1 and f E ~ satisfy 0 ::; f ::; g, then f E L1 . 

Proof. Assume 9 E L1 satisfies 9 ~ O. The set 

contains L, by steps 6 and 7a; by step 7c, it is closed under point­
wise convergence. Therefore it contains~, by Lemma 2.1. This im­
plies the desired result: if f E ~ and 0 ::; f ::; g, then f = f+ = 
inf(f+,g) E L1. 0 

8. Definition of the measure m. For A E O'(L), we set m(A) = p,(IA) if 
IA E L1 and m(A) = +00 otherwise. All that remains to do is prove 
that m satisfies the properties stated in the theorem. 

- O'-additivity of m. If A and B are disjoint elements of O'(L), there 
are two possibilities: either IA and IB are both in L1, in which 
case m(A U B) = m(A) + m(B); or one of lA and IB is not in 
L1, in which case neither is IAuB (by step 7d), and we still have 
m(A U B) = m(A) + m(B). Now let (An) be an increasing sequence 
of elements of O'(L), with union A. If all the IAn are in L1, we have 
limn~+oo m(An) = m(A) by step 7b; otherwise, by 7d, we have 
IA 1. L1 and IAn 1. L1 for large enough n, and limn~+oo m(An) = 
+00 = m(A) . 

- Finally, take f E Li n ~ with f ~ O. The function f is the pointwise 
limit of an increasing sequence of piecewise constant positive func­
tions that belong to ~, and so also to L1 by step 7d. By applying 
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the Monotone Convergence Theorem to the measure m and using 
property 7b for JL, we conclude that f E 21(m) and If dm = JL(f), 
and in fact that this equality holds for all fELl n 2 and so for 
f E L since L C Ll n 2. This proves Theorem 2.3. 0 

The next proposition follows quickly from the preceding proof. 

Proposition 2.4 Under the same assumptions and with the same nota­
tion as in Theorem 2.3, the space L is dense in the Banach space Ll(m). 

Proof. We maintain the same notation. It suffices to show that if A is in 
u(L) and m(A) is finite then for every c > 0 there exists an element cP 
of L such that JL(IIA - cpl) < c. If c > 0, there exists 1jJ E 'W such that 
lA :::;: 1jJ and JL(1jJ) :::;: JL(1A) + c/2. Now let cp E L be such that cp :::;: 1jJ and 
JL(1jJ) :::;: JL(cp) + c/2. Since IIA - cpl :::;: (1jJ - lA) + (1jJ - cp) and 1jJ E Ll by 
step 7b, the desired result follows. 0 

Exercises 

1. a. Let 0 be a set and E a u-algebra on 0 (recall that the pair (0, E) 
is then called a measure space). Let L be a vector subspace of the 
space of real-valued E-measurable functions, such that L is a lattice, 
u(L) = E, and L contains an increasing sequence that converges 
pointwise to 1. 

i. Let ml and m2 be measures on (0, E). Prove that, if L C 
.2"l(md n .2"1 (m2) and If dml = If dm2 for all f E L, then 
ml = m2· 

ii. Let m be a measure on (0, E) and h a complex-valued E-mea­
surable function such that, for all f E L, the product fh is 
in .2"l(m) and I fhdm = o. Prove that h vanishes m-almost 
everywhere. 

h. Assume that 0 = JRd and that E is the Borel u-algebra. Let Q be 
the set of subsets of JRd of the form [aI, bll x ... x [ad, bd], with 
aj, bj E JR and aj :::;: bj . A Borel function h from JRd to C is called 
locally integrable if Ie ih(x)i dx < +00 for all CEQ, where dx is 
Lebesgue measure on JRd. Prove that if a locally integrable function 
h : lRd -+ C satisfies Ie h(x) dx = 0 for all CEQ, it vanishes 
dx-almost everywhere. 
Hint. Prove that J f(x)h(x) dx = 0 for all f E C~(JRd). 

c. Let m be a Borel measure on JR and let h be an m-integrable Borel 
function from JR to C. Prove that if 

J eiXYh(y)dm(y) = 0 for all x E JR, 

then h vanishes m-almost everywhere. 



64 2. Locally Compact Spaces and Radon Measures 

Hint. Prove, using Fubini's Theorem and Exercise 8e on page 42, 
that J I(y)h(y)dm(y) = 0 for all I E Go(lR.). 

d. Prove likewise that, if ml and m2 are Borel measures of finite mass 
on JR. such that 

J e ixy dml(y) = J e ixy dm2(y) for all x E JR., 

then ml = m2. 
2. The monotone class theorem. Let 0 be a set. A subset f/ of 91'(0) is 

called a monotone class if it satisfies the following properties: 
- OE f/. 
- If T, S E f/ and T c S, then S \ T E f/. 
- For every increasing sequence (Tn)nEN in f/, the set UnEN Tn is in 

f/. 
Let \1 be a subset of 91'(0) closed under finite intersections (this means 
that the intersection of two elements of \1 is in \1). Show that the small­
est monotone class containing \1 is closed under finite intersections, and 
therefore is a a-algebra. 
Hint. Use for inspiration the proof of Lemma 2.1 on page 58. More 
precisely, denote by f/ the smallest monotone class containing \1; show 
first that the set of T E f/ such that Tn A E f/ for all A E \1 coincides 
with f/. 

3. Let X be a locally compact and separable metric space. 

a. Set L = G~(X). Prove that L satisfies the assumptions of this sec­
tion. In the sequel, as in the proof of Theorem 2.3, we will denote 
by 'PI the set of pointwise limits of increasing sequences in L. 

b. Take I E <?/. Prove that I is lower semicontinuous (which means 
that for all real a the set {f > a} is open) and that the set {f < O} 
is relatively compact. 

c. Let I be a lower semicontinuous function from X to R taking non­
negative values. 

i. Prove that, for all point x of X, 

I(x) = sup ip(x). 
CPEC;;<X) 

cp<5.! 

ii. Let (Kn) be a sequence of compact sets exhausting X. Prove that 
for every n E N* there exists ipn E G;;(X) such that ipn ~ I and 
c,on(x) > I(x) - lin for all x E Kn. 

iii. Prove that the sequence (ipn) converges pointwise to I; then 
prove that I E <?/. 

d. Let I be a lower semicontinuous function from X to R such that the 
set K = {f < O} is compact. 
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i. Prove that I is bounded below. 

ii. By reducing to the case treated in the preceding question, deduce 
that I E tfI. 
Hint. If K is nonempty, consider the function I + <p, with <p E 

ct(X) such that <p = - infxEx I(x) on K. 

e. Deduce that tfI n (-tfl) = C:(X) . 
4. Functions 01 first Baire class. A function from JR to JR is 01 first (Baire) 

class if it is the pointwise limit of a sequence of continuous functions 
from JR to JR. We denote by $ the set of such functions . If I is a function 
from JR to JR, we write 11/11 = SUPxEIRi/(x)i (so 11/11 can be +00). We 
say that a function I from JR to JR is Fu -measumble if, for every open 
subset U of JR, the set l-l(U) is an Fu , that is, a union of countably 
many closed subsets of R. 

a. Prove that the uniform limit of a sequence of functions of first class 
is a function of first class. 
Hint. Let (fn) be a sequence of elements of $ that converges uni­
formly to a function I. After passing to a subsequence if necessary, 
we may assume that III - Inll ~ 2-n for every n EN. Thus I is the 
uniform limit of the series of functions LmEN(fn - In-d (where by 
convention 1-1 = 0) . Prove that there exists, for each integer n 2': 1, 
a sequence (<P~hEN of continuous functions that converges pointwise 
to In - In-l and satisfies 11<p~11 ~ 2-n+2 for all kEN. Then prove 
that the sequence of functions (1/Jn) defined by 

1/Jn = <pf + <P'i + . .. + <p~ 

converges pointwise to 1-/0. 
h. Prove that every function of first class is Fu-measurable. 
c. Prove that $ is not closed under pointwise convergence. 

Hint. Let (fm)mEN be the sequence in $ defined by 

Im(x) = lim cos(m!7rx)2n . 
n-4+oo 

Prove that it converges pointwise to the function 1Q; then use Exer­
cise 6g-ii on page 23 to show that 1Q ¢. $. 

d. Let I be a function of first class from JR to JR. 

i. Let (Un)nEN be a basis of open sets of JR (see Exercise 1 on 
page 10) and, for each n EN, set An = f-l(Un) \ Int(f-l(Un)). 
Prove that all the An are Fu's having empty interior, and that 
the set of points where f is not continuous is UnEI\( An. 

ii. Deduce that the set of points where f is continuous is a G Ii (that 
is, the complement of an Fu) and is dense in JR. 
Hint. Use Baire's Theorem, Exercise 6 on page 22. 
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iii. Use this to give another proof that the function IQ is not of first 
class. 

e. Let (Uk)kEN be a sequence of open sets in R and set G = nkEN Uk· 
Prove that there exists a function I of first class such that G = 
I-I({O}) . 
Hint. Prove that, for every kEN , there exists a continuous function 
!k such that Uk = 1;I(R*). Then, for kEN and x E R, set gk(X) = 

limn-Hoo e-nf~(x). Prove that the function I = Et~ 2-kgk satisfies 
the desired conditions. 

f . Let f be a bounded and Fu-measurable function from R to R . We 
wish to show that I is of first class. Choose (a, b) E R2 such that 
a < band f(R) C [a, b] . Choose also e > 0 and a subdivision (ao = a, 
aI, ... , an = b) of [a, b] with step at most e (this means that 0 ~ 
ai - ai-l ~ e for 1 ~ i ~ n). 
i. Prove that, for each i E {I, ... , n}, there exists Ii E ~ such that 

li-I({O}) = {ai-l ~ I ~ ail . In the sequel we will also write 
10 = In+l = l. 

ii. For each i E {I, .. . , n}, set 

i-I n+l 

<Pi = II fJ, 1/1i = II h, 
j=O j=i+l 

Prove that gi E ~. (Note that <p~ + 1/1; is never zero.) 
iii. Set g = ao + E~l (ai - ai-t)gi. Prove that g E ~ and that 

IIg - fll ~ e. 
iv. Prove that I E ~. 

g . Prove that every Fu-measurable function I is of first class. 
Hint. If I is unbounded, consider j = (1 + ef)-l. 

h. A function from R to R is of second (Baire) class if it is the pointwise 
limit of a sequence of functions of first class. (Earlier we saw an 
example of a function of second class that is not of first class) . By 
working as in the preceding questions, prove that a function f is of 
second class if and only if the inverse image under f of every open 
set in R is a countable union of G Ii sets. 

5. Infinite product of measures, O"-compact case. Let X = RN be the set 
of sequences x = (Xn)nEN in R, endowed with the product distance 
(defined on page 13). Consider a measure JL on the Borel a -algebra 
of R satisfying JL(X) = I - in other words, a probability measure on R. 
Denote by L the set of functions <P on X for which there exist an integer 
n E N and a function I E C~(Rn+l) such that <p(x) = f(xo, ... ,xn). 
Define a linear form ~ on L by setting, for <p(x) = I(xo, ... , xn), 

~(<p) = ( I(xo , ... ,xn) dJL(xo) ... dJL(xn) . 
JRn+l 
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a. Prove that <P is well-defined on L (note that the representation 
cp(x) = f(xo, . .. ,xn } is not unique} . 

h. Prove that the set L satisfies the conditions of page 58. 
c. Let .96'(X) be the Borel a-algebra of the space X. 

i. Let D be a countable and dense subset of X, and let 'ft'D be 
the basis of open sets of X defined in Exercise 1b on page 15 
(with Xp = R for all p). Prove that 'P/D C a(L) and deduce that 
.96'(X) C a(L) (use Exercise 1a on page 10). 

ii. Prove that all elements of L are continuous functions on X and 
deduce that .96'(X) = a(L) . 

d. We wish to show that condition 2 of Daniell's Theorem is satisfied. 

i. Take a E (0,1). Prove that, for all n EN, there exists a compact 
Kn of R such that J.l(Kn ) ~ 1-an+1. Then put K(n) = n;=o K j 

and K = rrj~ K j . Thus, for each n, the set K(n) is compact in 
Rn+I and K is compact in X (by Tychonoff's Theorem). 

ii. Prove that, for all n EN, 

Hint. Check that the set R n \ K(n) is contained in the union of 
the sets (R\Ko) x Rn - 1 , R x (R\KI) x Rn - 2 , R2 x (R\K2 ) x 
Rn - 3 , . ••• 

iii. Let (CPk)kEN be a decreasing sequence in L converging pointwise 
to O. Prove that, for all kEN, 

where II . II denotes the uniform norm on X. Deduce that 

(You might apply Dini's Lemma (see page 29) to the compact 
space K, then make a vary.) 

e. Show that there exists a unique probability measure v on X such 
that 

for all n E Nand f E C~ (R n+I ) . This measure is denoted v = J.lN . 

f. More generally, let (Xn)nEN be a sequence of a-compact metric 
spaces, each Xn having a probability measure J.ln. Prove that there 
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exists a unique probability measure 1/ on the space X = I1nEN Xn 
(endowed with the product distance) satisfying the equality 

[ f(xo, ... , xn) dJ.Lo(xo) ... dJ.Ln(xn) = [ f(xo, ... , xn) dl/(x) 
iX(n) ix 

3 Positive Radon Measures 

In all of this section we consider a locally compact and separable metric 
space X. We denote by ~(X) the Borel a-algebra of X. A Borel measure 
on X is a measure on ~(X) . If m is a Borel measure, the mass of m is, by 
definition, m(X) = J dm :::; +00. The measure m is finite on compact 
sets if m(K) is finite for every compact K of X . 

Proposition 3.1 Let m be a Borel measure on X. There exists a largest 
open set 0 such that m(O) = o. 

The complement of this set is called the support of m, written Supp( m) . 

Proof. Let 'P/ be the set of all open sets 0 of X such that m(O) = O. This 
set is nonempty since it contains 0. Set 0 = UOE"l/ 0; this is an open set, 
which we must prove has m-measure zero. If K is compact and contained in 
0, it can be covered by finitely many elements of 'P/ . Each of these elements 
has measure zero, so m(K) = o. But 0 is a-compact (being locally compact 
and separable), so it too has measure zero, by the <1-additivity of m. 0 

Examples 

1. For a EX, the Dirac measure at a is the measure 6a that assigns 
the value 1 to a Borel set A if it contains the point a, and the value 0 
otherwise. The support of 6a is clearly {a} . 

2. Take X = JRd and let Ad be Lebesgue measure on X (considered as a 
Borel measure) . Naturally, the support of Ad is JRd . 

3. Take g E C+(JRd ) and let m be the Borel measure on JRd defined by 
m(A) = J glA dAd, for any Borel set A. Clearly, every Borel function f 
such that f 9 is Lebesgue-integrable is m-integrable, and 

We now check that the support of m equals the support of g. Using the 
continuity of 9 one shows easily that an open set 0 of JRd has m-measure 
zero if and only if 9 = 0 on f.!; this is equivalent to 0 C g-1 ({O}). In 
the notation of Proposition 3.1, this implies that 0 = Int (g-1 ( {O} )), so 
the support of m is the same as that of g. 
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A positive Radon measure on X is a linear form on C~(X) that 
assigns a nonnegative value to every I E C~(X) such that I 2 O-in 
short, a positive linear form on C~(X). We denote by 9Jt+(X) the set 
of positive Radon measures. This set is clearly closed under addition and 
multiplication by nonnegative scalars. On the other hand, by linearity, if 
f.L E 9Jt+(X) and if I,g E C~(X) satisfy I :::; g, then f.L(f) :::; f.L(g). As an 
immediate consequence we have: 

Lemma 3.2 If f.L is a positive Radon measure on X, 

1f.L(f) I :::; f.L(I/I) for all I E C~(X). 
If K is compact in X, we denote by C~(X) (or by CK(X), if no confusion 

can arise) the set of elements of C~(X) whose support is contained in K. 
Clearly CNX) is a subspace of Cr (X), closed with respect to the uniform 
norm 11·11 on Cr(X). Henceforth these spaces C~(X) will always be given 
this Banach space structure induced from the one on Cr(X). 

Proposition 3.3 Let f.L be a positive Radon measure on X. For every 
compact set K in X, the restriction of f.L to c}} (X) is continuous; that is, 
there exists a constant CK 20 such that 

1f.L(f) I :::; CK IIIII for all IE C}}(X). 

(We say that f.L is continuous on C~(X).) 

Proof Let K be compact in X. By Proposition 1.8 on page 53, there exists 
i.pK E C;t(X) such that 0 :::; i.pK :::; 1 and i.pK = 1 on K. Then, for all 
IE C}}(X), we have III :::; 11/11 i.pK, and, by Lemma 3.2, 1f.L(f) I :::; f.L(I/I) :::; 
11/11f.L(i.pK). 0 

If m is a Borel measure on X finite on compact sets, one immediately 
checks that the map f.L defined on C~(X) by 

f.L(f) = J f dm for all I E C~(X) 

is a positive Radon measure. The main theorem of this section states, 
among other things, that all positive Radon measures on X arise in this 
way: 

Theorem 3.4 (Radon- Riesz) For every positive Radon measure f.L on 
X there exists a unique Borel measure m finite on compact sets and such 
that 

f.L(f) = J f dm for all I E C~(X) . 
The map f.L f-t m thus defined is a bijection between 9Jt+(X) and the set 01 
Borel measures finite on compact sets, and it commutes with addition and 
multiplication by nonnegative scalars. 
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Proof This will follow as a particular case of Daniell's Theorem. Set 
L = C~(X). This space satisfies the assumptions stated on page 58: in 
particular, property (*) follows from Corollary 1.10 on page 53. Now take 
p E VJl+(X); we will show that assumption 2 of Theorem 2.3 is satisfied. 
Let (In) be a decreasing sequence in L approaching 0 pointwise. Each In 
has support contained in the compact set K = Supp 10. Thus, by Dini's 
Lemma, (In) tends to 0 uniformly on K: in other words, In -+ 0 in C~(X). 
By Proposition 3.3, p(fn) -+ O. 

Next we check that (T(L) = ~(X). Since every continuous function on X 
is a Borel function, the smallest (T-algebra that makes all elements of L mea­
surable is certainly contained in ~(X); that is, (T(L) c ~(X). Conversely, 
~(X) C (T(L) because every open subset 0 of X is (T(L )-measurable. In­
deed, with the notation of Corollary 1.10, an element x E X belongs to 0 
if and only if there exists n E N with <fin(x) > O. Thus 0 is the (countable) 
union of the sets <fi~l (0, +00)), which are (T(L)-measurable since the func­
tions <fin are elements of L. Therefore 0 is (T( L )-measurable and we finally 
conclude that (T(L) = ~(X). 

Finally, we see that a Borel measure m on X is finite on compact sets if 
and only if L C 21(m). It now suffices to apply Theorem 2.3 to derive the 
existence and uniqueness of m . The remaining statements of the theorem 
~~~~. 0 

In the sequel we will often identify a positive Radon measure f-L with 
the Borel measure m it defines. In particular, we use 2i(p) or 2i(m) 
interchangeably for the space of m-integrable ][{-valued Borel functions, 
and L~(f-L) or L~(m) for the associated quotient Banach space. As usual, 
we omit the subscript ll{ if no confusion is possible. Similarly, we can write 
Supp f-L for Supp m, etc. 

As a consequence of the preceding proof and of Proposition 2.4, we get: 

Proposition 3.5 Let p be a positive Radon measure. The space C~(X) 
is dense in the Banach space L~ (f-L) . 

This of course implies that ~(X) is dense in Lt(p). 

We now look at positive linear forms on C~(X) . Denote by VJlj(X) the 
set of positive Radon measures f-L of finite mass. Note first that a positive 
Radon measure f-L of finite mass can immediately be extended to a linear 
form mJ.' on C~(X); just set, for all I E C~(X), 

mJ.'(I) = f I dp, 

where, as announced earlier, we make no distinction between the Radon 
measure and the Borel measure it defines. The linear form mJ.' thus de­
fined makes sense (since every continuous function bounded over X is f-L­
integrable), and it is clearly continuous: its norm in the topological dual of 
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c~(X) is at most J.l(X) . The next proposition asserts essentially that this 
process yields all positive linear forms on c~(X). 

Proposition 3.6 For every positive linear form m on C~(X) there exists 
a unique positive Radon measure J.l of finite mass and such that m = mJ.t, 
or equivalently such that 

m(f) = J I dJ.l for all f E c~(X). 

Thus the map J.l H mJ.t is a bijection between rot] (X) and the set of positive 
linear forms on c~ (X). 

Proof. The uniqueness of J.l clearly follows from the inclusion of C~(X) in 
C~(X) . The important point is existence. 

We first show that m is continuous. If not, there exists a sequence (fn) 
in C~(X) such that, for all n, Illnll ~ 1 and Im(fn) I ~ n . By replacing fn 
by Ifni , we can assume that In E ct(X) (note that m(llnl) ~ Im(fn) I ~ n 
because m is positive). Now set I = E!~ fn/n2 ; this function is in ct(X) 
because the series converges absolutely. But, for all integer N ~ 1, 

N N 

m(f) ~ L m(~n) ~ L~' 
n n 

n=l n=l 

so m(f) = +00, an impossibility. It follows that m is continuous on C~(X). 
Its restriction to c~(X) is a positive Radon measure J.l. Let (Y'n) be an 

increasing sequence in ct(X) converging pointwise to 1. By the Monotone 
Convergence Theorem, 

where IImll is the norm of m in the topological dual of C~(X). Thus J.l has 
finite mass and mJ.t(f) = m(f) for all f E c~(X) . Since c~(X) is dense in 
C~(X) and since mJ.t and m are continuous, we get m = mJ." 0 

Remark. The preceding proof also shows that the mass J.l(X) of J.l equals 
the norm of the linear form mJ.t in C~(X)'. 

The rest of this section is devoted to examples. 

3A Positive Radon Measures on R and the Stieltjes Integral 

Let a be an increasing function from lR. to lR.. We will construct from a an 
integral - in other words, a positive linear form f H f f da - generalizing 
the Riemann integral (which will correspond to the case a( x) = x) . 
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First fix a < b. For IE CIR([a,b]) and 6 = {xo = a < Xl < ... < Xn = b} 
a subdivision of [a,b] with step 8(6) = max1~j~n(Xj - xj-d, we write 

and 

One checks easily the inequalities 

0:::; Se:.(J) - 6e:.(J) :::; (a(b) - a(a)) max I/(x) - I(y)!, 
Ix-yl~6(e:.) 

x,yE[a,bj 

so lim6(e:.)-40(Se:.(J) - 6e:.(J)) = 0 since I is uniformly continuous on [a, bJ. 
Next, suppose 6 1 and 6 2 are subdivisions of [a, b] with 6 1 c 6 2 , by which 
we mean that every subdivision point of 6 1 is a subdivision point of 6 2 . 

Then 

It follows from all this that 

sup6e:.(J)=infSe:.(J)= lim Se:.(J)= lim 6e:.(J). 
e:. e:. 6(e:.)-40 6(e:.)-40 

The common value of these four expressions is denoted by J: I do:. Thus, 

uniformly with respect to sequences (~o, ... , ~n-d such that ~j E [Xj, Xj+ll 

for 0 :::; j ::; n -1. We deduce that the map from ORela, b]) to R defined by 

I H J: I da is a positive linear form. 
If a ::; b :::; c and I E CIR ([a, c]), Chasles's relation is satisfied: 

Therefore, if I E C~ (R.), the expression J: I da does not depend on the 
choice of an interval [a, b] containing the support of I. We denote this ex­
pression by J I da. Thus, the map I H J I da is a positive Radon measure 
on JR. The associated Borel measure finite on compact sets (Theorem 3.4) 
is written da, and is called the Stieltjes measure associated with a. 
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Lemma 3.7 Let a be an increasing function from R. to R.. If a and bare 
real numbers with a < b, then 

where a(a+) and a(b+) denote the right limits of a at a and b. 

Proof Let (I.pn)n<,:l be a sequence in C~(X) such that ° ~ I.pn ~ 1, I.pn = 1 
on [a+l/n, b-l/n], and I.pn = ° on R. \ [a + 1/(n+1), b - 1/(n+1)]. Then 

a (b - ~) - a ( a + ~) ~ J I.pn da ~ a (b - n ~ 1) - a ( a + n ~ 1 ) . 
By passing to the limit, we get 

da«a,b)) = a(L) - a(a+), 

where a(x_) is the left limit of a at x. This is true for any a and b with 
a < b. Applying it to the terms of the sequences (an), (bn ) defined by 
an = b -1 / n, bn = b + 1 / n and taking the limit, we deduce that da( {b }) = 
a(b+) - a(L), which, together with (*), yields the desired relation. 0 

This formula will allow us to demonstrate that, conversely, every positive 
Radon measure on R. is a Stieltjes measure. 

Theorem 3.8 Let J.L be a positive Radon measure on R.. There exists a 
unique increasing right-continuous function a with a(O) = ° and J.L = da. 

Proof Uniqueness is clear since, by the preceding discussion, if a is right­
continuous and vanishes at 0, it is determined everywhere: 

{ 
-J.L(x, 0]) 

a(x) = ° 
IL«O, xl) 

if x < 0, 

if x = 0, 

if x> 0. 

Conversely, define a by these relations. Then a is right-continuous and 
vanishes at 0. Also, for a < b we have neb) - a(a) = 1L«a,b]) (one checks 
the various possible situations of ° with respect to a and b) . 

Now suppose f E C~(R.) is supported within [a, b], and let Jj. = {Xj }O$j$n 

be a subdivision of [a, b]. Then 
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By taking the limit we deduce that 

f f dp, = lb f dct = f fda, 

which concludes the proof. o 

Remarks 

1. By the same reasoning, if p, is a positive Radon measure of finite mass on 
JR, there exists a unique increasing, bounded, right-continuous function 
a such that limx -+_ oo a(x) = ° and p, = da. It is given by a(x) = 

p,« -00, xl). In this situation a is called the distribution function 
of the measure p,. For example, the distribution function of the Dirac 
measure 8a is Ya = l[a,+oo). 

2. Suppose a is an increasing function of class CIon JR. Then 

f f dct = f f(x)a'(x) dx for all f E C~(JR). 

In short, da = a'dx. 
Indeed, suppose f E C~ (JR) is supported within [a, b] and let ~ = 
{Xj}o:'::;j$n be a subdivision of [a,b]. By the Mean Value Theorem, for 
each j E {O, ... ,n-l} there exists {j E [Xj, xj+d such that a(xHt}­
a(xj) = a'({j)(xHI - Xj). Therefore 

n-l n-l 

L f({j) (a(xHl) - a(xj)) = L f({j)a'(~j)(Xj+l - Xj). 
j=O j=O 

Now it is enough to use the definition of the Stieltjes integral and that 
of the Riemann integral. 

3B Surface Measure on Spheres in 1R d 

For r > 0, we consider the sets 

Br = {x E JRd : Ixl < r}, Sr = {x E JRd : Ixl = r}. 

Here we will denote Lebesgue measure on JRd simply by A. 

Theorem 3.9 There exists a unique family (O'r)rEIR+' of positive Radon 
measures on Rd satisfying these conditions: 

1. SUPPO'r C Sr for every r > 0. 
2. For all f E C(ad ) and r > 0, 

f J(x) dnr(x) = r d - 1 J f(ru) dnl (u). 
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3. For all f E C(JRd) and r > 0, 

lr f(x) d-\(x) = for (/ f(x) cJqp(X)) dp. 

We call (h, for each r > 0, the surface measure on Sr. 

Proof. Uniqueness. If a family (O"r)rEIR+. satisfies conditions 2 and 3, we 
must have, for all f E C(JRd) , 

which determines uniquely the Radon measure 0"1 and thus also the (h , by 
condition 2. (Note that conditions 2 and 3 are enough to prove uniqueness, 
so condition 1 is a consequence of 2 and 3.) 

Existence. Let <p be the function from JR+* x SI to (JRd)* defined by 
<p(r,u) = ru. Then <p is a homeomorphism and <p-l(X) = (Ixl,x/lxl) . If A 
is a Borel set in S 1, we write 

A = <p(0, 1) x A) = {x E JRd: 0 < Ixl < 1 and x/lxl E A}. 

A is a Borel set in JRd. We then put 

Visibly 0"1 is a Borel measure of finite mass on SI, and can also be regarded 
as a Borel measure on JRd with support contained in SI . Next we define, 
for every Borel set A in Sr, 

Likewise, O"r is a Borel measure supported within Sr. The family (l7r) thus 
defined certainly satisfies conditions 1 and 2; we need only check 3. 

Let A be a Borel set in SI and let rl, r2 be real numbers such that 
o < rl < r2. Then 

On the other hand, 
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Therefore 

and this for all Borel sets A of SI and for any rI, rz with 0 < rl < r2. It 
follows that if 0 < a < b we have, for all f E C([a, b]) and all 9 E C(Sd, 

1 U ® g) 0 cp-Id>" = lb (Iu ® g) 0 cp-I dap) dp. 
cp([a,bl x S!) a 

Since C([a, bJ) ®C(Sd is dense in C([a, b] x SI) (see Example 5 on page 35), 
we obtain, for all f E C(cp([a,b] x Sd), 

1 lb(/) f d>" = fda 0 dp. 
cp([a ,bl x S!) a . 

Since cp([a, b] x SI) = Bb \ Ba , this proves condition 3. o 

Remarks 

1. Since>.. is invariant under orthogonal linear transformations, so are the 
ar . In particular, the support of ar equals Sr. In fact , up to a multiplica­
tive factor, ar is the unique measure supported within Sr and invariant 
under orthogonal transformations: see Exercise 17 below. 

2. Property 3 generalizes to all positive Borel functions on JRd: If f is such 
a function, then 

By taking f = 1BI , we obtain, in particular, 

1 001 = d · >..(Bd; 

this is the area of S 1. Indeed, by the preceding discussion, 

Also, for any nonnegative Borel function h on JR + , 

ld h(lxl) dx = (I 001) 1+00 
pd-Ih(p)dp::; +00 

since f h(lpxj) 001 (x) = h(p) fool. 
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Exercises 

Unless otherwise stated, X is a locally compact separable metric space. 

1. Let J.L be a positive Radon measure on X. Show that Supp J.L is the 
complement of the largest open subset 0 of X such that any function 
f in C~(X) with support contained in 0 satisfies J.L(f) = O. 

2. Prove that Proposition 3.1 holds when X is any separable metric space, 
not necessarily locally compact. 
Hint. Use the existence of a countable basis of open sets (Exercise 1 on 
page 10). 

3. A particular case of the Vitali- Caratheodory Theorem. Let J.L be a posi­
tive Radon measure on X. Prove that for every J.L-integrable and bounded 
function f from X to lR and for all c > 0, there exists an upper semi­
continuous function u and a lower semicontinuous function v such that 
u::; f ::; v and f(v - u) dJ.L ::; c. (We say that u is upper semicontinuous 
if -u is lower semicontinuous.) 
Hint. Go over the proof of Daniell's Theorem (page 59) and use the 
result in Exercise 3 on page 64. 

4. Let J.L be a positive Radon measure on X and take f E L~ (J.L). Prove that 
there exist J.L-integrable and lower semicontinuous functions f + and f­
with values in [0, +00], such that f = f + - f _ J.L-almost everywhere. (As 
in the case of real-valued functions (Exercise 3 on page 64), a function 
g with values in [-00, +00] is called lower semicontinuous if the set 
{g> a} is open for all a E lR.) 
Hint. Show that there exists a sequence (<Pn) in C~(lR) that converges 
to fin LMJ.L) and J.L-almost everywhere and such that J.L(I<Pn - <Pn+ll) ::; 
2-n for all n EN. Then set f+ = <Pt + E~:O(<Pn+l - <Pn)+ and f- = 
<Po + E~:O(<Pn+l - <Pn)-' 

5. Regularity of Radon measures. (This is a sequel to Exercise 3 on page 64.) 
Let J.L be a positive Radon measure on X. 

a . Prove that, for every Borel set A of X, 

J.L(A) = inf {J hdJ.L : h is lower semicontinuous and h ~ 1A}' 

h. Let A be a Borel set in X such that J.L(A) is finite. 

i. Take c > O. Let h be a lower semicontinuous function such that 
h ~ 1A and f hdJ.L ::; J.L(A) + c, and set 

{ J.L(A) + c } 
U = x EX: hex) > J.L(A) + 2c . 

Prove that A c U and that J.L(U) ::; J.L(A) + 2c. 



78 2. Locally Compact Spaces and Radon Measures 

ii. Deduce that 

J.t(A) = inf{J.t(U) : U is open and U :J A}. 

iii. Check that this is still true if J.t(A) = 00 (this is obvious). A 
measure J.t satisfying this equality for all Borel sets A is called 
outer regular. 

c. Let U be an open subset of X. Prove that 

J.t(U) = sup{J.t(K) : K is compact and K c U}. 

Hint. U is a-compact. 
d. Let A be a Borel set of finite measure J.t(A). 

i. Let c > O. Justify the existence of: 
- an open set U in X containing A and such that J.t(U)::;J.t(A)+c; 
- an open set V in X containing U \ A and such that J.t(V) ::; 2c; 
- a compact set K in X contained in U and such that J.t(K) ~ 

J.t(U) - c. 
Finally, set C = K \ V. Prove that C c A and that J.t(C) > 
J.t(A) - 3E. 

ii. Deduce that 

J.t(A) = sup{J.t(K) : K is compact and K c A} . 

iii. Generalize to the case of an arbitrary Borel set A. A measure J.t 
satisfying this equality for all Borel sets A is called inner regular. 
Hint. By exhausting X with a sequence of compact sets, prove 
that A is the union of an increasing sequence of Borel sets of 
finite measure. 

e. i. Prove that for every Borel set A of X and all E > 0 there exists 
an open set U in X such that A c U and J.t(U \ A) ~ E. 

ii. Prove that for every Borel set A of X and all c > 0 there exists 
an open set U and a closed set F in X such that F cAe U 
and J.t(U \ F) ~ c. 
Hint. Apply the preceding result to A and X \ A. 

6. Lusin's Theorem. Let m be a positive Radon measure on X. 
a. Let I be a Borel function on X with values in [0, 1]. Prove that, 

for any open set 0 of finite measure and any c > 0, there exists a 
compact K c 0 such that m(O \ K) < E and the restriction 11K is 
continuous on K. 
Hint. Use Proposition 3.5, Exercise 15 on page 155 and the fact that 
m is inner regular (see Exercise 5d). 

h. Extend the preceding result to all Borel functions I from X to lK. 
Hint. First reduce to the case where I takes values in R +, then 
consider j = 1/(1 + I). 
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c. Deduce that every Borel function f from X to IK satisfies this prop­
erty: 

(L) For every c: > 0, there exists an open set w in X such that 
m(w) < c: and the restriction of f to X \ w is continuous. 

Hint. Consider an increasing sequence (On)nEN of relatively com­
pact open sets that covers X . For each n , there exists a compact 
Kn C On for which m(On \ Kn) < c:2-n - 1 and flKn is continuous. 
Now set w = Un(On \ Kn). Prove that (X \ w) nOn C Kn for every 
n; then conclude the proof. 

d. Show that a function f from X to IK satisfies Property L if and only 
if there exists a Borel function that equals f m-almost everywhere. 
Hint. To prove sufficiently, use the fact that m is outer regular (Ex­
ercise 5b). 

7. a. Let J.L be a positive Radon measure on X, with support F. Let f E 
Cc(X) be such that f(x) = 0 for all x E F . Prove that J f dJ.L = O. 

h. Let A = {an}nSN be a finite subset of X and J.L a positive Radon 
measure on X . Prove that the support of J.L equals A if and only if J.L is 
a linear combination of Dirac measures Jan with positive coefficients. 

c. Let A = {an} be a countable subset of X. For f E Cc(X) write 

J.L(f) = E 2-nf(an). 
nEN 

Prove that J.L is a positive Radon measure on X whose support is the 
closure of A. 

8. a. Let F be a closed subset of X . Prove that F is the support of a 
continuous function f from X to lR if and only if F coincides with 
the closure of F. 

h. Let J.L be a positive Radon measure on X. We denote by 2\~c(J.L) 
the space of locally J.L -integrable functions on X, by which we mean 
Borel functions 'Ij; : X ---+ IK such that lK'Ij; E Sfl(J.L) for any compact 
K of X . (For example, every continuous function on X is locally J.L­
integrable.) Fix a 'Ij; E 2\~c (J.L) taking nonnegative values. For f E 
Cc(X), write 

v(f) = f 'lj;f dJ.L . 

Prove that v is a positive Radon measure. Prove that 

Supp v C {'IjJ =f:. O} n Supp J.L, 

with equality if 'Ij; is continuous. 
c. For f E Cc CR2 ) , write 

v(f) = fa f(x, x) dx . 
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Prove that v is a positive Radon measure on R2 and determine its 
support. 
Is there a continuous function 1/J on R 2 such that 

v(J) = ( l(x,y)1/J(x,y)dxdy 
}JR2 

for all IE Cc(R2)? 
9. a. Let m be a positive linear form on CIR(X). Show that there exists 

a compact K in X such that any I E CIR(X) that vanishes on K 
satisfies m(f) = O. 
Hint. Exhaust X by a sequence (Kn) of compact sets. Show that, if 
there is no K as stated, there exists a sequence (In) of elements of 
C+(X) such that, for each n E N, the function In vanishes on Kn 
and m(Jn) > O. Then consider I = EnEN In/m(Jn). 

h. Let !JJtt(X) be the set of positive Radon measures with compact 
support. To every J.l E !JJtt(X), associate the positive linear form mil 
on CIR(X) defined by 

mll(J) = ! I dJ.l for I E CIR(X). 

Prove that the map J.l >---+ mil is a bijection between !JJtt(X) and the 
set of positive linear forms on CIR(X). 
Hint. See the proof of Proposition 3.6 (page 71) for inspiration. 

10. Vague convergence. We say that a sequence (J.ln)nEN of positive Radon 
measures on X converges vaguely to J.l E !JJt+(X) if 

J.ln(J) -+ J.l(J) for all I E Cc(X) . 

a. An example. Let (an)nEN be a sequence in X with no cluster point. 
Prove that the sequence (DaJnEN converges vaguely to O. 

h. Another example. Suppose X = (0,1). Prove that the sequence (J.ln) 
defined by 

1 n-l 

J.ln = - L::Dk/n n 
k=l 

converges vaguely to Lebesgue measure on (0,1). 
c. Let (J.ln) be a sequence in !JJt+(X) such that, for all I E C:(X), the 

sequence (J.ln(J)) converges. Prove that the sequence (J.ln) is vaguely 
convergent. 

d. Let J.l be a positive Radon measure and A a relatively compact Borel 
set whose boundary has J.l-measure zero. Prove that, if (J.ln)nEN is a 
sequence in !JJt+(X) that converges vaguely to J.l, then 

lim J.ln(A) = J.l(A). 
n--++oo 
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Hint. Show the existence of an increasing sequence in ct (X) that 
converges pointwise to the characteristic function of ..4, and of a 
decreasing sequence in ct(X) that converges pointwise to the char­
acteristic function of A. Then consider the lim sup and lim inf of the 
sequence (J1.n (A) ) . 

e. Let (J1.n) be a sequence in OO1+(X) such that 

sup JI dJ1.n < +00 for all I E ct(X). 
nEN 

(Check that this condition is satisfied if and only if sUPnEN J1.n(K) is 
finite for every compact K of X .) 
Prove that the sequence (/In) has a vaguely convergent subsequence. 
Hint. Exhaust X by a sequence of compact sets (Kp) and apply 
Corollary 4.2 on page 19 to each of the separable Banach spaces 
CKp(X). 

11. a. Let (In) be a sequence of increasing functions from lR to lR such that 
the series LIn converges pointwise on lR to a function I. Prove that 
the series L~:O dIn converges vaguely to dl (see Exercise 10). 
Hint. Consider cp E ct (lR), a compact interval [a, b] in lR containing 
the support of cp, and a subdivision {Xj }O~j~n of [a, b]. Prove that, 
for every integer lEN, 

n-l +00 

L cp(Xj) (J(xi+d - I(xj)) -iicpii L (Jk(b) - h(a)) 
j=O 

I n-l 

:::; L L cp(Xj) (Jk(xi+d - Ik(Xj)) 
k=O j=O 
n-l 

:::; L cp(Xj) (J(xi+d - I(xj)) . 
j=O 

b. Example. Let (an) be a sequence in lR and (cn) a sequence in lR+ such 
that LnEN Cn < +00. Prove that the series of measures Ln>o cn8a,. 
converges vaguely to a positive Radon measure whose distribution 
function is f = L~:OCnYa,., where Ya,. = l(a,.,+oo)· 

12. Narrow convergence. We say that a sequence (J1.n)nEN of positive Radon 
measures of finite mass on X converges narrowly to /l E OO1j(X) if 

Every narrowly convergent sequence is vaguely convergent (Exercise 10). 
a. A counterexample. Let (an)nEN be a sequence in X with no cluster 

point. Prove that the sequence (8a ,.)nEN does not converge narrowly 
to O. 
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h . Let IL be a positive Radon measure of finite mass and A a Borel 
set whose boundary has IL-measure zero. Prove that, if (ILn)nEN is a 
sequence in lJRj(X) that converges narrowly to IL , then 

lim ILnCA) = /L(A). 
n-t+oo 

Hint. Work as in Exercise 10 above. 
c. Let (ILn) be a sequence in lJRj(X) and suppose /L E lJRjCX). Prove 

that the sequence (ILn) converges narrowly to J.L if and only if it 
converges vaguely to IL and limn-t+oo ILn (X) = IL(X). 
Hint. For the "if' part, fix f E ct(X) and c > O. Show that there 
exists a function a E C:CX) such that a :::; 1 and I(1 - a) dIL :::; c:; 
then write 

ILn(f) - IL(f) = ILn(a!) - J.LCa!) + ILn((1-a)f) - IL((1-a)f). 

d. Theorem of P. Levy. If v is a positive Radon measure of finite mass 
on JR, we denote by v the function defined on JR by 

vex) = j eitxdv(t). 

Let (ILn)nEN be a sequence in VJlj(JR.) and IL an element of lJRj(JR). 
Prove that (ILn) converges narrowly to IL if and only if the sequence 
of functions (fLn) converges pointwise to fL. 
Hint. Prove that if (fLn) converges pointwise to fL, then (f dILn) con­
verges to I dIL and there exists a dense subspace H in C~ (lR) such 
that 

lim jhdILn = jhdIL for all h E H 
n-t+oo 

(see Exercise 8e on page 42). Conclude with Proposition 4.3 on 
page 19. 

13. a. Let IL be a positive Radon measure on X. Suppose the support K 
of IL is compact. Show that there exists a sequence (ILn) of Radon 
measures of finite support contained in K that converges narrowly 
to IL (see Exercise 12). 
Hint. Take n E N*. Construct a partition of K into finitely many 
nonempty Borel sets (Kn,p)p..s.p,. of diameter at most lin. Then, for 
each p :::; PN , choose a point xn,p in Kn,p and set 

J.Ln = L IL(Kn,p)ox,. ,p, 
p..s.P,. 

h. Generalize to the case of any positive Radon measure of finite mass. 
14. Let 9 be a Borel function on lR taking nonnegative values and locally 

integrable (see Exercise Ib on page 63) . Let a be a real number. Consider 
the function G on lR defined by G(x) = J: get) dt. 



3 Positive Radon Measures 83 

a. Prove that 

! I dG = ! I(x)g(x) dx for all I E C~(]R), 

where dx is Lebesgue measure on ]R. 
Hint. If [a, b] is an interval containing the support of I and {Xj }o::;j::;n 
is a subdivision of [a, b], and if we take for each j E {O, . .. ,n - I} a 
point ~j E [Xj, Xj+l], then 

Now use the Dominated Convergence Theorem. 
b. Prove that the equality of the preceding question holds when I is 

any positive Borel function. 

15. Recall that fIR e-x2 dx = .j7r. For all real t > 0, put 

Let Sd be the area of the unit sphere in ]Rd, that is, the mass of the 
surface measure of the unit sphere in ]Rd. Prove that Sd = 27rd / 2/r(d/2). 
Deduce the Lebesgue measure of the unit ball in ]Rd. 
Hint. Compute flR d e-1x12 dx in two ways. 

16. Let a1 be the surface measure of the unit sphere 81 in ]Rd. 
a. Suppose d = 2. Prove that, for any Borel function I from ]R2 to ]R+, 

! I da1 = 121< I( cos (), sin (}) d(}. 

Hint. Use polar coordinates. 
b. Suppose d = 3. Prove that, for any Borel function I from ]R3 to ]R+, 

f 121<11</2 
Ida1 = I(cos(}coscp, sin (}cos cp, sincp) cos cpd(} dcp. 

o -1< /2 

Hint. Use spherical coordinates. 
17. Let a be a positive Radon measure on ]Rd whose support is contained 

in the unit sphere 8 1 . Assume a is invariant under orthogonal linear 
transformations; that is, for any orthogonal endomorphism 0 of]Rd and 
any I E C(]Rd), 

f f(Ox) da(x) = f f(x) da(x). 
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a. Show that there exists a function hu from ]R + to C such that 

J eiu'Ydn(y) = hu(lul) for all u E ]Rd, 

where u . y is the scalar product of u and y in ]Rd. We define h<rl 
analogously, starting from the surface measure 0'1 on SI. 

h. Prove that, for all t E ]R+, 

J hu(tlul)dnl(u) = J hU1(tlyl)dn(y), 

and so that h<r(t) = hUI (t) (J dn)/(J dnl ) . 

c. Deduce that 
fdn 

0' = f dn1 0'1· 

Hint. Generalize to ]Rd the result of Exercise Id on page 64. 
18. Infinite product of measures, compact case. Consider the space 

x = [0, I]N = {x = (Xn)nEN : Xn E [0,1] for all n EN}, 

and give it the product metric 

00 

d(x, y) = L 2-nlxn - Ynl· 
n=O 

With this metric, X is compact, by Tychonoff's Theorem. Consider also 
a sequence (mn)nEN of probabitity measures - that is, Borel measures 
of mass I-on [0,1]. 
a . Show that, for each n EN, the function that maps x E X to Xn E 

[0,1] is continuous (in fact, Lipschitz). 
h. For n EN, denote by Fn the set of functions from X to ]R of the 

form 
X H f(xo, . . . , xn ), 

with f E C IR ([0, l]n+l). Prove the following facts: 
i. Fn is a vector subspace of CIR(X) for all n EN . 

ii. Fn C Fn+l for all n EN. 
iii. F = UnEN Fn is a dense vector subspace of C IR (X) with the 

uniform norm II . II· 
c. For each n, we define a linear form J.Ln on Fn by associating to the 

element 
cp : x H f(xo, ... ,xn ) 

of Fn the real number 
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Prove that, if <P E Fn, then J-Lp(<p) = J-Ln(<P) for all p 2 n. Deduce the 
existence of a linear form J-L on F such that 

J-L(<p) = J-Ln(<P) for all n EN and <P E Fn. 

Then show that, for <P E F, we have 1J-L(<p)1 ~ 1I<p1I and <P 2 0 implies 
J-L(<p) 2 o. 

d. Prove that the linear form J-L extends in a unique way to a positive 
Radon measure on X. 

e. More generally, let (Xn)nE]\! be a sequence of compact metric spaces 
and, for each n E N, let mn be a probability measure on X n . Let 
X = fInE]\! Xn be the product space, with the product metric. By 
working as in the preceding questions, prove that there exists a 
unique probability measure J-L on X satisfying 

for all n E N and all f E CIR(x(n»), where x(n) =:' fIj=o X j . (We 
thus recover the result of Exercise 5 on page 66 in this particular 
case.) 

19. Haar measure on a compact abelian group. Let X be a compact metric 
space having an abelian group structure. We assume that addition is 
continuous as a map from X 2 to X. 
We denote by B the set of continuous linear forms on CIR(X) of norm 
at most 1. We recall from Exercise 4 on page 20 that B can be given a 
metric d for which d(J-Ln, J-L) -t 0 if and only if 

lim J-Ln(f) = J-L(f) for all f E C(X), 
n-t+oo 

and that the metric space (B, d) is compact. One can check that the set 
P of positive Radon measures of mass 1 on X is a nonempty, convex, 
closed subset of B, and that the topology induced by don P is that of 
vague convergence. 
a. Markov- Kakutani Theorem. Let K be a nonempty, compact, convex 

subset of (B, d). 

i. Let <P be a continuous affine transformation from K to K (affine 
means that for any (J-L, J-L') E K2 and any a E [0, 1] we have 
<p(aJ-L + (l-a)J-L') = a<p(J-L) + (1 - a)<p(J-L')). Prove that <P has 
at least one fixed point in K - in other words, there is a point 
A E K such that <p(A) = A. 
One can work as follows: Let J-L be any element of K and, for any 
nEN,set 

1 n . 
J-Ln = - L <p'(J-L). 

n + 1 i=O 



86 2. Locally Compact Spaces and Radon Measures 

A. Check that J.Ln E K for each n EN. 

B. Let (J.Lnk) be a subsequence of the sequence (J.Ln) that con­
verges (with respect to d) to A E K. Prove that, for each 
integer k, we have (1 + nk)(<p(J.Lnk) - J.Lnk) E 2B. 

C. Deduce that <peA) = A. 
ii. Let g be a family of continuous affine transformations of K such 

that any two elements of g commute. For each <P E g denote 
by Fcp the set of fixed points of <po 
A. Prove that all the Fcp are nonempty, compact, convex subsets 

of (B,d). 

B. Suppose g = {<p,<p'}. Prove that <p'(Fcp) ~ Fcp . Deduce that 
<p and <p' have a common fixed point. 

C. Now make no assumption on g. Prove that all the elements 
of g have at least one common fixed point. (Start with g 
finite, then use compactness.) 

h. For jL E 9Jt+(X) and x E X we denote by TxJ.L the positive Radon 
measure on X defined by TxjL(f) = J f(x + y) dJ.L(Y)· 

i. Prove that Tx(P) C P for all x E X. Deduce that there exists 
jL E P such that TxJ.L = J.L for all x E X . 

ii. Prove that there exists a Borel measure J.L on X such that jL(X)=l 
and 

! f(t) djL(t) = ! f(x + t) djL(t) for all f E C(X) and x E X. 

We call jL a Haar measure on X. 

c. Uniqueness of Haar measure. Let J.L and v be Haar measures on X. 
Prove that jL = V. 

Hint. Take f E C(X) . Using Fubini's Theorem, compute in two 
ways the integral 

! ! f(x + y) djL(x) dv(y). 

4 Real and Complex Radon Measures 

The framework here is the same as in the previous section. A real Radon 
measure on X is by definition a linear form jL on C~(X) whose restriction 
to each space C~(X), for K compact in X, is continuous; that is, such that 
for any compact K of X there exists a real CK ~ 0 such that 
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We denote by 9J1IR(X) the set of real Radon measures. We also call the 
elements of this set linear forms continuous on C~(X); for an equivalent 
definition of this notion of continuity, see Exercise 5. By Proposition 3.3, 
9J1+(X) C 9J1IR(X). Conversely, every real Radon measure is the difference 
of two positive Radon measures: 

Theorem 4.1 Let J.l be a real Radon measure on X . For each f E c;t(X), 
put 

J.l+(f) = sup{J.l(g) : 9 E C;;(X) and 9 ::; J}, 

J.l-(f) = -inf{!L(g) : 9 E C;;(X) and g::; J}. 

Then J.l+ and J.l- can be uniquely extended to positive Radon measures and 
J.l=J.l+ -J.l- . 

Proof 

1. We first check that the definition of J.l+(f) given in the statement makes 
sense. If f E c;t(X) has support K, then for all 9 E c;t(X) such that 
g::; f we have 9 E C~(X), so 

J.l(g)::; 1J.l(g) I ::; CKllgll::; CKllfll· 

Thus J.l+(J) is well-defined and 0 ::; J.l+(f) ::; CK Ilfll. It is also clear 
that for>. real and nonnegative we have J.l+(>.f) = >,J.l+(f). 

2. The essential point is the additivity of J.l+ on C;t(X). Take h, iz E 

c;t(X). That J.l+(h + iz) = J.l+(fd + J.l+(iz) will follow from the set 
equality 

{g E C;;(X) : 9 ::; h + iz} 

= {g E C;;(X) : 9 ::; ft} + {g E C;;(X) : 9 ::; iz}. 

One of the inclusions is obvious and the other can be checked quickly: 
Suppose 9 E c;t (X) satisfies 9 ::; h + iz. Put gl = inf(g, ft} and 
g2 = 9 - gl = sup(O, g-h)· We see that 0 ::; gl ::; h, 0::; g2 ::; iz, and 
9 = gl + g2· 

3. The same properties hold for J.l-. On the other hand, if f E c;t(X), 

J.l+(f) - J.l(f) = sup{J.l(g - f) : 9 E C;;(X) and 9 ::; J} 

= - inf{J.l(f - g) : 9 E C;;(X) and 9 ::; J} 

= - inf{J.l(h) : hE C;;(X) and h ::; J} = J.l-(f). 

Therefore J.l(f) = J.l+(f) - J.l-(f). 
4. We now extend J.l+ and J.l- to C~(X) in the only possible way: Given 

h E C~(X) we take f,g E C;t(X) such that h = f - 9 (for example, 
f = h+ and 9 = h-). Since J.l+ must be linear on C~(X), we must set 
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This definition does not depend on the choice of a decomposition for h. 
For if h = l' - g' with 1',g' ~ 0, then f + g' = f' + 9 and, by the 
additivity of JL+ on C:(X), we have JL+(f) - J.L+(g) = J.L+(f') - JL+(g') . 
One can easily see that the J.L+ defined in this way is indeed linear and 
so belongs to VJt+(X) . We extend JL- similarly, and we use item 3 to 
show that JL = J.L+ - JL-. 0 

Remarks 

1. The decomposition J.L = JL+ - JL- defined in Theorem 4.1 is minimal in 
the following sense: If J.L = JLI - JL2 with JLI,JL2 E VJt+(X), there exists a 
positive Radon measure v on X such that JLI = JL+ + v and JL2 = JL- + v. 
Indeed, it is clear, in view of the definition of JL+, that JL+(f) S JLI (f) for 
all f E C:(X) . One easily deduces from this that the Radon measure 
on X defined by v = JLI - JL+ is positive. (And of course v = J.L2 - JL­
as well.) 

2. Using the same construction, we obtain an analogous decomposition for 
continuous linear forms on a normed space E that has an order relation 
making it into a lattice and satisfying the following conditions, for all 
f, gEE and all ). E JR+*: 

- 0 S 9 S f implies Ilgll s IIfll; 
- f ~ 0 implies ).j ~ 0; 
- f s 9 if and only if 9 - f ~ o. 

A bounded real Radon measure on X is by definition a linear form 
J.L on C~(X) continuous with respect to the uniform norm on C~ (X) ; that 
is, one for which there exists a constant C ~ 0 such that 

We denote by VJt'(X) the set of bounded real Radon measures on X ; this 
is clearly a vector subspace of VJtIR(X) . 

Since C~(X) is dense in the Banach space C~(X) with the uniform norm, 
every bounded real Radon measure extends uniquely to a continuous linear 
form on C~(X); this allows us to identify VJt,(X) with the topological dual 
of C~(X). 

Proposition 4.2 Every bounded real Radon measure is the difference of 
two positive Radon measures of finite mass. More precisely, if JL E VJt,(X), 
the Radon measures JL+ and J.L- defined in Theorem 4.1 have finite mass 
and 

IIJLII = J dJL+ + J dJ.L-, 

where IIJLII is the norm of J.L in the dual of C~(X) . 
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Proof. We first see that, for any I E C;;(X), 

JL+(J) + JL-(J) = sup{JL(g - h) : g, hE C;;(X) and g, h ~ I} 

= sup{JL(CP) : cP E C~(X) and Icpl ~ I} . 

In particular, JL+(J) + JL-(J) ~ IIJLIIIIIII. Applying this inequality to all 
terms of an increasing sequence of functions in C;; (X) that converges point­
wise to 1, we get J dJL+ + J dJL- ~ IIJLII. Conversely, if I E C~(X), then 

IJL(J) I = IJL+(J) - JL-(J)I ~ JL+(IID + JL-(IID ~ (f dJL+ + f dJL- ) 11111· 

(Here we used Lemma 3.2.) o 
Remark. The decomposition JL = JL+ -JL- with JL+, JL- E VJt+(X) is unique 
if we insist that IIJLII = J dJL+ + J dJL-. Indeed, if JL = JLI - JL2 is a second 
decomposition of this form, the Radon measure v = JLI - JL+ = JL2 - JL- is 
positive (see Remark 1 above) and J dJLI + J dJL2 = J dJL+ + J dJL- + 2 J dv. 

Finally, we define complex Radon measures and bounded complex 
Radon measures by substituting C for lR. in the preceding definitions. 
We denote by VJtc(X) and ~(X) the corresponding spaces. In particu­
lar, ~(X) can be identified with the topological dual of C~(X). Since 
C~(X) = C~(X) +iC~(X), a real Radon measure JL gives rise in a unique 
way to a complex Radon measure, which we also denote by JL, as follows: 

JL(J) = JL(Re J) + iJL(Im J) for all lEe; (X). 

Then VJtIlt(X) C VJtC(X) and VJt,(X) c ~(X). Actually, 

VJtc(X) = VJtIR(X) + iVJtIlt(X), ~(X) = VJt,(X) + iVJt,(X). 

For, if JL E VJtC(X), we define ReJL by setting 

ReJL(J) = Re(JL(J)) for all I E C~(X), 

and likewise for 1m JL. Then JL = Re JL + i 1m JL. Such a decomposition is 
unique. 

For JL E VJt~ (X), we define the integral of a bounded Borel function I 
on X as follows: 

- IfOC = JR, put J IdJL = J IdJL+ - J IdJL-. 

- If OC = C, put J I dJL = J I d(ReJL) + iJ I d(ImJL); that is, 

f I dJL = f I d(ReJL)+ - f I d(ReJL)- +if I d(ImJL)+ -i f I d(ImJL)-. 

We define the Borel measure of a subset A of X as JL(A) = J 1A dJL. 
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Exercises 

Throughout this set of exercises, X is a locally compact separable metric 
space. 

1. Prove that mllR(X), with the order relation defined by 

is a lattice. 

Hint. Show first that if J.L E mllR(X) and we write IJ.LI = J.L+ + J.L- in the 
notation of Theorem 4.1, then IJ.LI = sup(J.L, -J.L) . 

2. a. Fix J.L E mlK(X) . Show that there exists a largest open set 0 such 
that any IE C'f (X) whose support is contained in 0 satisfies J.L(f) = 
O. (Use partitions of unity.) The complement of this largest open set 
is called the support of J.L and is denoted Supp J.L. By Exercise 1 on 
page 77, this definition coincides with the one introduced earlier for 
positive measures. 

h. Prove that if J.L E mllR(X) then SUPPJ.L = SUPPJ.L+ U SUPPJ.L-, in the 
notation of Theorem 4.1, and that if J.L E VJ1C(X) then 

SUPPJ.L = Supp(ReJ.L) U Supp(ImJ.L). 

3. a. Fix J.L E ml+(X), and extend J.L to a linear form on ~(X). Prove 
that jJ.L(f)j ::; J.L(l/1) for all I E C~(X). 
Hint. Let a be a complex number of absolute value 1 such that 
aJ.L(f) = jJ.L(f)j . Prove that jJ.L(f)j = J.L(Re(af)). 

h . Let J.L be a bounded real Radon measure. By reasoning as in the 
previous question, show that J.L has the same norm in the topological 
duals of C~(X) and of C~(X) . 

c. Fix J.L E ml~(X). Prove that jJ.L(A)j ::; IIJ.LII for any Borel set A of X. 
Hint. In the case][{ = C, put v = (ReJ.L)+ + (ReJ.L)- + (ImJ.L)+ + 
(ImJ.L)- and consider a sequence (fn)nEN of Cc(X) that converges 
to 1A in Ll(V) and such that 0 ::; In ::; 1 for all n E N. Prove that 
J.L(A) = limn-HOC J.L(fn) and wrap up. 

4. Let J.L be a positive Radon measure on X and take 1/J E L1 (J.L). Prove 
that the relation 

v(f) = J 11/J dJ.L 

defines a bounded Radon measure on X and that IIvll = J 11/J1 dJ.L. 
Hint. Let s be a function defined on X such that s1/J = l"pl and s = 0 
on {1/J = O} . Prove that, for all € > 0, there exists agE Cc(X) such 
that J 11/Jllg - sl dJ.L ::; € and that, in addition, 9 can be chosen so that 
Ilgll ::; 1. Now estimate J 11/J1 dJ.L - v(g) . 
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5. We say that a sequence (fn) in Cc(X) converges in Cc(X) to I E Cc(X) 
if it converges uniformly to I and there exists a compact subset K 
of X containing the support of every In. Let JL be a linear form on 
C~(X). Prove that JL E rotK(X) if and only if the image under JL of 
every sequence of functions in Cc(X) that converges to 0 in Cc(X) is a 
sequence that converges to 0 in 1K. 

6. We say a sequence (JLn) in rotlK(X) converges vaguely to JL E rotlK(X) if 

lim JLn(f) = JL(I) for all I E C:(X). 
n-++oo 

a. Let (JLn) be a sequence in rotlK(X) such that, for all f E C-:(X), the 
sequence (JLn (I») converges. Prove that the sequence (JLn) converges 
vaguely. 
Hint. Let (Kp) be a sequence of compact sets that exhausts X. Ap­
ply to each space C}} (X) the result of Exercise 6f on page 23. 

p 

b. Let (JLn) be a sequence in rot(X) such that, for all I E Cc(X), 

~~~ I I I dJLnl < +00. 

Prove that the sequence (JLn) has a vaguely convergent subsequence. 
Hint. Work as in Exercise 10e on page 81, using the Banach- Stein­
haus Theorem (Exercise 6d on page 22). 

7. We say that a sequence (JLn) in rotf(X) converges weakly to JL E rotf(X) if 

lim II dJLn = II dJL for all I E Co(X) . 
n-++oo 

a. Let (JLn) be a sequence in rotf(X). Prove that a sufficient condition 
for it to converge weakly is that, for all I E Co(X), the sequence 
(J I dJLn)nEN should converge. 
Hint. Use Exercise 6f on page 23. 

b. Prove that any bounded sequence (ILn) in rotf(X) (one for which 
sUPnEN IIJLnll < +00) has a weakly convergent subsequence. 
Hint. The space Co(X) is separable by Exercise 7h on page 56, so 
it is enough to use the Banach-Alaoglu Theorem, page 19. 

c. Prove that a sequence (JLn) in rotf(X) converges weakly if and only 
if it converges vaguely (see Exercise 6) and is bounded. 

d. Find a sequence (JLn) in rotj(X) that converges weakly but not nar­
rowly (see Exercise 12 on page 81). 

8. Let H be a relatively compact subset of rotf(X) (we identify this space 
with the topological dual of Co(X». Prove that there exists a positive 
Radon measure A of finite mass on X such that any A E ~(X) having 
A-measure zero also has JL-measure zero for all JL E H. (The measures 
JL E H are then said to be absolutely continuous with respect to A.) 
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Hint. Define A = EnEl'I' E!:l 2-n- i v(J.Lf), where the J.Lf are elements 
of H chosen so that, for every n E N*, the balls B(J.Lf, lin), . .. , 
B(J.Lt, lin) cover H, and where we write, for J.L E rotf(X), v(J.L) = 
J.L+ + J.L- if JI{ = 1R. and v(J.L) = (ReJ.L)+ + (ReJ.L)- + (ImJ.L)+ + (ImJ.L)­
if JI{ = C. You might use Exercise 3c. 

9. Prove that the topological dual of Co(X) is separable if and only if X 
is countable. 
Hint. Prove that, if X = {Xn}nEN, the family {8Xn }nEN is fundamental 
in (Co(X))' . For the "only if' part, you might show that 118a - c5bll = 2 
for any two distinct points a, b EX, and then use Proposition 2.4 on 
page 9. 

10. Give C(X) the metric d of uniform convergence on compact sets, defined 
in Exercise 12 on page 57. Prove that the topological dual of (C(X), d) 
can be identified with the space rotc(X) of Radon measures with com­
pact support (the support of a Radon measure was defined in Exercise 
2 above). 
Hint. Argue as in Exercise 9 on page 80. 

11. Let L be a continuous linear form on Co(X) and let (In) be a bounded 
sequence in Co(X). Prove that if (In) converges pointwise to f E Co(X) 
then limn-HCXl L(ln) = L(I). 
Hint. Use the Dominated Convergence Theorem. 

12. Two Borel measures J.Ll and J.L2 of finite mass on X are called mutually 
singular if there exists a Borel set A in X such that J.Ll (A) = J.Ll (X) 
and J.L2(A) = O. Let J.L be a bounded real Radon measure on X and let 
J.Ll and J.L2 be positive Radon measures of finite mass on X such that 
J.L = J.Ll - J.L2· 
a. Assume that J.Ll and J.L2 are mutually singular. Prove that IIJ.LII = 

J.Ll (X) + J.L2(X), 
Hint. Let c > O. Write 'P = lA - lX\A' Prove that there exists a 
function f E C:(X) such that IIf - 'PIILl(1'1+1'2) ~ c. Let j be the 
function defined on X by 

j(x) = {f(X) if If(x)1 ~ 1, 
sign f (x) otherwise. 

Check that j E C~(X), then show that J.L(j) ~ J.Ll(X) + J.L2(X) - c. 
Deduce that IIJ.LII ~ J.Ll(X) + J.L2(X), The opposite inequality is easy. 

h. Prove the converse. 
Hint. Suppose IIJ.LII = J.Ll(X) + J.L2(X), Let (In) be a sequence of 
elements of C~(X) such that J.L(ln) -+ IIJ.LII and Ifni ~ 1. Prove that 

J f;t dJ.L 1 -+ J.Ll(X)' J f;tdJ.L2 -+ O. 

Deduce the existence of a subsequence (I;tk) that converges J.Ll­
almost everywhere to 1 and J.L2-almost everywhere to O. Conclude. 
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c. Let J.t be a bounded real Radon measure on X. Show that there 
exists a unique pair (J.ti, J.t2) of mutually singular positive Radon 
measures of finite mass such that J.t = J.ti - J.t2; show that J.ti = J.t+ 
and J.t2 = J.t-. 

13. Functions of bounded variation. Let f be a real-valued function on an 
interval [a, b] of JR. If ~ = {Xj }O~j~n is a subdivision of [a, b], we write 

n-i 

V(J,~) = L If(xi+d - f(Xj)l; 
j=O 

we also write V(J, a, b) = sup~ V(J, ~). We say that f is of bounded 
variation on [a, b] if V(J, a, b) is finite. We say that a function f : JR -+ JR 
is of bounded variation on JR if the expression 

is finite. 

V(J) = sup V(J,a,b) 
(a,b)EIR2 

a<b 

a. Let f be a monotone function on [a, b]. Prove that f is of bounded 
variation on [a, b] and compute V(J, a, b). 

h. Prove that the set BV(a, b) of functions of bounded variation on 
[a, b] is a vector space and that f f-4 V (J, a, b) is a semi norm on 
BV(a, b) . Prove that for f E BV(a, b) we have V(J, a, b) = 0 if and 
only if f is constant on [a, b]. 

c. Let BVo(a,b) be the space of functions f of bounded variation on 
[a,b] such that f(a) = O. Prove that f f-4 V(J,a,b) is a norm on 
BVo(a, b) with respect to which this space is complete. 

d. Take f E BV(a, b) . Prove that for a ::; c < d < e ::; b we have 

i. V(f, c, d) + V(f, d, e) = V(J, c, e), 
ii. If(c) - f(d)1 ::; V(f,c,d). 
Deduce that the functions x f-4 V(f,a,x) and x f-4 V(J,a,x) - f(x) 
are increasing functions from [a, b] to JR +. 

e. Take f E BV (a, b). Prove that if f is right-continuous at a point 
c E [a, b), so is the function x f-4 V(J,c,x). Likewise, if f is left­
continuous at c E (a,b], so is x f-4 V(f,c,x). 
Hint. If x f-4 V (f, c, x) is not right-continuous at c, there exists a 
real number", > 0 such that V(f, c, x) > ", for all x E (c, b]. Now 
construct by induction a sequence (xn ) such that, for all n E N, 
c < Xn+l < Xn < band V(f, Xn+l, xn) > ",; then deduce that 
V(J,c,b) = +00, which is absurd. 

f. Prove that a function f from [a, b] to JR is of bounded variation if 
and only if there exist two increasing functions 9 and h from [a, b] to 
JR + such that f = 9 - h. Prove that if f is right-continuous at a point 
c E [a, b), then 9 and h can be chosen to satisfy the same condition. 
An analogous statement holds for left-continuous functions. 



94 2. Locally Compact Spaces and Radon Measures 

14. We resume the notation and terminology of Exercise 13. Let I and 9 
be real- or complex-valued functions defined on an interval [a, b] of JR. 
If ~ = {Xj}o<;j<;n is a subdivision of [a,b] and if C = (Co, ... ,Cn-I) is 
such that Ci E [Xi, Xi+l] for all i ::::; n - 1, we write 

n-I 

Se:.,c(f,g) = E I(Ci){g(XHd - g(Xi)). 
i=O 

If, as 6(~) approaches 0, the sequence (Se:.,c(f,g)) has a limit uniform 

with respect to c, this limit is denoted by I: I dg. 
a. Prove that, if I is continuous and 9 is increasing, I: I dg is well­

defined and coincides with the definition given on page 72. Prove 
that, if 9 E BV(a, b), the linear form L on C([a, b]) defined by L(f) = 
I: I dg is continuous and has norm at most V(g, a, b). 

h. Integration by parts. Let I and 9 be real- or complex-valued functions 
from [a, b] to JR or C. Prove that I: I dg is defined if and only if I: 9 dl is, and that in this case 

lb I dg + lb gdl = I(b)g(b) - I(a)g(a) 

(use summation by parts on the finite sums Se:.,c(f,g)). 
c. Second Mean Value Theorem. Let I be an increasing function from 

[a, b] to JR+ and let 9 be a Lebesgue-integrable function from [a, b] 
to JR. Show that there exists { E [a, b] such that 

lb I(t)g(t) dt = I(b) ib 
get) dt. 

This is called the Second Mean Value Theorem. 
b 

Hint. One can assume that I(a) = o. Set G(x) = Ix get) dt. Prove 
that 

lb I(t)g(t) dt = -lb I dG = lb G df. 

d. Let I be a function of bounded variation on JR. Suppose that I(x) 
tends to 0 both as X -+ +00 and as X -+ -00. Show that there exists 
a constant C > 0 such that, for every nonzero real number t, 

I r+oo . I C Loo I(x)e-·txdx ::::; ItT· 

15. We continue with the notation and terminology of Exercises 13 and 14. 
A function I of bounded variation on JR is called normalized if it is right­
continuous and limx--+_ oo I(x) = o. We denote by NBV(JR) the vector 
space consisting of normalized functions of bounded variation from JR 
to JR. 
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a. Prove that every element of NBV (JR) can be written as the difference 
of two increasing and right-continuous functions that approach 0 at 
-00. 

h . Prove that the map I H V(f) is a norm on NBV(JR). 
c. If IE NBV(JR), we define a linear form ILf on Co(JR) by 

J.Lf(CP) = lim fa cpdl for all cp E Co(X) . 
a--++oo -a 

Check that J.Lf is well-defined, that J.L, E VR,(JR), and that liJ.Lfll ~ 
V(f) , where IIJ.Lfll is the norm of J.Lf in Co(JR)'. 

i. Suppose I,g E NBV(R) satisfy J.Lf = J.Lg . Prove that I = g. 
Hint. Using part a above, prove that I(a) = J.Lf (( -00, an for all 
a E JR. 

H. Let IE NBV(JR) be increasing. Prove that V(f) = IIJ.Lfll . 
iii. Take IE NBV(JR). Prove that there exist bounded, increasing, 

right-continuous functions 1+ and I_such that I = f+ - I_and 
liJ.Lfli = V(f+) + V(f-). Deduce that V(f) ~ 1iJ.L,Ii · 

iv. Prove that the linear map L : I H J.L, is a bijective isometry 
from NBV(JR) onto the topological dual of Co(JR). 

d. Prove that NBV (JR) is a nonseparable Banach space. (That it is non­
separable is elementary: Consider the uncountable family consisting 
of functions Ya = l[a.+oo), with a E JR .) 



3 
Hilbert Spaces 

This chapter is devoted to a class of normed spaces that is particularly 
important in both theory and applications. 

1 Definitions, Elementary Properties, Examples 

In all of this chapter we consider a vector space E over lK = lR or C. A 
scalar product on E is a map (. 1 . ) from E x E to lK satisfying these 
conditions: 

a. For all Y E E, the map ( ·1 y) : E -+ lK defined by x t-+ (x 1 y) is linear. 
b. - If OC = lR: for all x, y E E, (y 1 x) = (x 1 y) (symmetry). 

- If lK = C: for all x, y E E, (y 1 x) = (x 1 y) (skew-symmetry). 
c. For all x E E, (x 1 x) E JR+. 
d. For all x E E, (x 1 x) = 0 if and only if x = o. 

A map that satisfies the first three conditions but not necessarily the 
fourth is called a scalar semiproduct. 

A space E endowed with a scalar product is called a pre-Hilbert space 
or scalar product space, further qualified as real if lK = lR or complex 
if lK = C. We leave out this qualification if no confusion is possible or if lK 
need not be specified. 

Remark. Suppose ( . 1 . ) is a map from E x E to OC that satisfies the first 
two conditions in the definition of a scalar product. Fix x E E; if OC = lR, 
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the map (x I· ) : y t-+ (x I y) is linear from E to JR. If IK = C, the same map 
is skew-linear; that is, for all x, y, z E E and all A, Jl E C, 

(x lAY + Jlz) = .\(x I y) + jL(x I z). 

Also, as a consequence of the first two conditions in the definition of a 
scalar product, we have, for x, y E E: 

- If lK = R: (x + y I x + y) = (x I x) + (y I y) + 2(x I y). 
- If li{ = C: (x + y I x + y) = (x Ix) + (y I y) + 2 Re( x I y). 

Examples 

1. Let E = JRd. If al," " ad are nonnegative real numbers, the equation 
(x I y) = E;=l ajxjYj defines on E a scalar semiproduct, which is a 
scalar product if and only if all the aj are positive. If aj = 1 for all j, 
this is called the euclidean scalar product, and E together with this 
scalar product is called d-dimensional canonical euclidean space. 
Similarly, if E = Cd and al, ... , ad are nonnegative reals, a scalar 
semiproduct on E is defined by (x I y) = E;=l ajxj'Yj, and this is a 
scalar product if all the aj are positive. If aj = 1 for all j , this is called 
the hermitian scalar product, and E together with this scalar prod­
uct is called d-dimensional canonical hermitian space. 

2. Let X be a locally compact separable metric space, Jl a positive Radon 
measure on X , and E = C~(X). The equations 

(f I g) = J f(x)g(x) dJl(x) if OC = JR, 

(f I g) = J f(x)g(x) dJl(x) if OC = C 

define on E a scalar semiproduct, which is a scalar product if and only 
if SUPPJl = X. 

3. Fix a > 0, and let E = C~ be the set of continuous functions from JR 
to IK periodic of period a. The equations 

l1a (fIg) = - f(x)g(x)dx 
a 0 

if OC = JR, 

l1a (f I g) = - f(x)g(x) dx 
a 0 

if OC = C 

define a scalar product on E. 
4. Let m be a measure on a measure space (n, $) and let g = .zi(m) be 

the space of $-measurable functions f from n to ][{ that are square­
integrable, that is, satisfy J Ifl2 dm < +00. (That this is a vector space 
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follows from the inequality If + gl2 :::; 2(lf12 + IgI 2).) We give C a scalar 
semiproduct by setting 

(llg)= jfgdm iflK=lR, 

(llg)= jf9 dm iflK=C. 

This scalar semiproduct induces a scalar product on the space E = 
L~ (m) defined as the quotient of C by the relation of equality m-almost 
everywhere. 

5. An important particular case of the preceding situation is the following. 
Let I be any set and let.9" = fJiJ(I) be the discrete a-algebra on I -the 
one containing all subsets of I. On the measure space (I, §) we take 
the count measure m, defined by m(A) = Card(A) :::; +00. (If I is 
countable, one can regard it as a locally compact separable metric space 
by giving it the discrete metric, defined by d(x, y) = 1 if x "I Yj then m 
is a positive Radon measure on I .) We generally use subscript notation 
for functions on I: thus x = (Xi)iEI . If x takes nonnegative values, we 
use the notation EiEI Xi to denote f x dm :::; +00. One easily checks 
that 

EXi = sup EXi:::; +00, 
iEI JE[J#/(I) iEJ 

where &j(I) is the set of finite subsets of I . The space 2~(m) in this 
case is denoted by l'~(I) and, for every x E l'k(I), we write EiEI Xi = 
f xdm. Similarly, we write l'i(I) = 2~(m). (See also Exercises 7 on 
page 11 and 8 on page 12.) 
Since the only set of m-measure zero is the empty set, we have L~ (m) = 
l'i (I)j thus this space has a scalar product structure defined by 

iEI 

(xIY) = EXdh iflK = C. 
iEI 

We omit I from the notation when I = N. 

Here is a fundamental property of scalar semiproducts. 

Proposition 1.1 (Schwarz inequality) Let E be a vector space with a 
scalar semiproduct ( . I . ). For every x, Y E E, 

Proof. One can assume lK = C. If x, Y E E, 

(x+tylx+ty) = (xix) +2tRe(xly) +t2 (yly) ~ 0 for all t E R . 
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Consider the expression on the left-hand side of this inequality as a poly­
nomial in t, taking only nonnegative values. If (y I y) = 0, the polynomial 
is at most of first degree and must be constant, so 0 = (Re(x I y»2 ::; 
(x I x)(y I y) = O. If (y I y) =I 0, the polynomial is of second degree and must 
have negative or zero discriminant; again (Re(x I y))2 ::; (x I x)(y I y). 

Now let u be a complex number of absolute value 1 such that 

j(xly)j = u(xly) = (uxly) = Re(uxly)· 

We see that j(x I y)j2 ::; (ux I ux)(y I y) = (x I x)(y I y), since uu = 1. 0 

Corollary 1. 2 Let E be a vector space with a scalar product ( . I . ). The 
expression IIxll = (x I X)1/2 defines a norm on E . 

Proof. It is enough to check the triangle inequality. We have 

IIx + Yl12 = IIxl12 + lIyll2 + 2 Re(x I y) 

::; IIxll2 + IIyl12 + 211xlillyll = (lIxll + lIyll( 0 

From now on, unless we specify otherwise, we will denote the scalar 
product on any space E by ( ·1· ), and the associated norm by 11·11. For 
example, if E = L2(m), as in Example 4 above, 

( )
1/2 

Ilfll = ! Ifl2 dm . 

Ilxll = (L:IXiI2)1/2. 
iEI 

Note that, in any scalar product space, the scalar product can be recov­
ered from the norm: If][( = C, we have 

Re(x I y) = H(llx + YII)2 -lIxll 2 -lIyI12), 

Im(x I y) = H(llx + iyll)2 -lIxll2 -llyI12), 

and in the real case the first of these equalities holds. 

Corollary 1.3 Let E be a scalar product space. For every y E E, the 
linear form 'Py = ( . I y) is continuous and its norm in the topological dual 
E' of E equals IIYII. 

Proof. By the Schwarz inequality, j'Py(x)j ::; Ilxlillyll for all x E E, so 'Py E 
E' and lI<pyll ::; Ilyll· At the same time, 'Py(Y) = Ily11 2 , so II'Pyll = Ilyli. 0 

Thus the map y H 'Py is an isometry from E to E', linear if ][{ = 1R and 
skew-linear if][{ = C. We will see in Theorem 3.1 below that this isometry 
is bijective if the space E is complete. 
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Proposition 1.4 (Equality in the Schwarz inequality) Two vectors 
x and y in a scalar product space satisfy I(x I y)1 = IIxllllyll if and only 
if they are linearly dependent. 

Proof The "if' part is obvious. To show the converse, suppose for example 
that][{ = C and that l(xly)1 = IIxIiIIYII. Let c be a complex number of 
absolute value 1 such that Re(c(x I y)) = I(x I y)l. Then" II xllY- c llyllxl12 = 
o (expand the square) , so IIxlly - cllYlix = O. 0 

An immediate, but useful, consequence of the definition of the norm in 
a scalar product space is the parallelogram identity: 

Proposition 1.5 If x and yare elements of a scalar product space, 

Orthogonality 

Two elements x and y of a scalar product space E are orthogonal if 
(x I y) = 0; in this case we write x ..1 y. The orthogonality relation ..l thus 
defined is of course symmetric. The orthogonal space to a subset A of 
E is, by definition, the set A 1. consisting of points orthogonal to all the 
elements of A. Thus, in the notation of Corollary 1.3, 

A1. = n ker(tpy). 
yEA 

It follows that A1. is a closed vector subspace of E . At the same time, x 
belongs to A1. if and only if ACker tpx; since ker 'Px is closed, this inclusion 
is equivalent to [A] C kertpx, where [A] is the span of A (the vector space 
consisting of linear combinations of elements of A). Thus 

Two subsets A and B of E are called orthogonal if x ..1 y for any x E A 
and y E B. The following relation between orthogonal vectors, called the 
Pythagorean Theorem, is immediate: 

Proposition 1.6 If x and yare orthogonal vectors in a scalar product 
space, 

This result extends by induction to a finite number of pairwise orthogonal 
vectors Xl, .. . ,Xn : III:j=1 Xjl12 = I:j=lllxjI12. 

A scalar product space that is complete with respect to the norm defined 
by its scalar product is called a Hilbert space . . Here are the fundamental 
examples: 
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1. Every finite-dimensional scalar product space is a Hilbert space. 
2. If m is a measure on a measure space (fl, §), the space L2(m) with the 

scalar product defined in Example 4 above is a Hilbert space. 

In particular, the space £2(1) of Example 5 above is a Hilbert space, for 
any set I . (This particular case is in fact the general case; see Theorem 4.4 
below and Exercise 11 on page 133). 

Exercises 

1. Let E be a normed vector space over C . Prove that the norm 11 · 11 comes 
form a scalar product if and only if it satisfies the parallelogram identity: 

Prove that in this case the scalar product that defines 11· 11 is 

Hint. To show sufficiency you might consider the map ( . I . ) defined by 
( *) and prove successively that it satisfies these properties: 

a. (x I x) = IIxll 2 for all x E E. 
b. (xly) = (ylx) for all (x,y) E E2. 
c. (x + y I z) = 2(x I z/2) + 2(y I z/2) for all (x, y, z) E E3. 
d. (x+ylz) = (xlz) + (ylz) for all (x,y,z) E E3. 
e. (Axly) = A(xly) for all (x,y) E E2 and A E C. 

2. Assume that (xn) and (Yn) are sequences contained in the unit ball of a 
scalar product space, and that (xn I Yn) -7 1. Prove that IIxn - Ynll -7 O. 

3. Let X be a compact metric space of infinite cardinality and let J.l be a 
positive Radon measure on X, of support X . Give the space E = C(X) 
the scalar product defined by (J I g) = f f 9 dJ.l. 
a. Let a be a cluster point of X . Prove that there exists a sequence of 

pairwise disjoint balls (B(an,en»nEN such that limn--++ooan = a. 
b. Prove that, for every integer n E N, there exists a continuous func­

tion tpn on X supported inside B(an, en) and satisfying Itpnl ~ 1 and 
tpn(an) = (_I)n . 

c. Prove that the series E tpn converges pointwise, uniformly on com­
pact sets of X \ { a }, and in L2 (J.l) to a continuous function on X \ { a} 
that has no limit at the point a. 

d. Deduce that E is not a Hilbert space. 
4. Let fl be an open subset of C, considered with the euclidean metric. 

We denote by H(fl) the space of holomorphic functions on fl and by 
H2(fl) the subspace of H(fl) consisting of holomorphic functions f on 
fl such that f fnlf(x+iy)/2dxdy < +00. We recall that H(fl) is closed 
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in C(O) with the metric of uniform convergence on compact sets of O. 
We give the space H2(O) the scalar product defined by 

(j I g) = Ii f(x + iy) g(x + iy) dxdy. 

a. Take I E H(O). Prove that, if B(zo, r) c 0, 

I(zo) = ~ Jr ( I(x + iy) dx dy. 
7rr J B(zo,r) 

Deduce that, if IE H2(O), 

1 
I/(zo)l::; '- 11111, 

y7rr 

where 11·11 denotes the norm coming from the scalar product. 
b. Prove that, if K is a compact contained in 0, 

1 
~~k I/(z)1 ::; fod(K, C\O) 11/11 

for every I E H2(O). 
c. Prove that H2(O) is a Hilbert space. 

5. Let 1 be a set and x = (Xi)iEf a family of points in IK. 
a. Suppose x E £i (I) and set ~ = LiEf Xi' Prove the following property: 

(P) For every e > 0, there exists a finite subset K of 1 such that, 
for any finite subset J of 1 containing K, I~ - LiEJ Xi I ::; e. 

b. Conversely, suppose there exists ~ E IK such that Property (P) is 
satisfied. Prove that x E £k (1) and that ~ = :LiEf Xi. 

Hint. Assume first that IK = lR.. Setting 11 = {i E 1 : Xi ~ O} and 
12 = I\lt, show that under the assumption of Property (P) we have 
LiEfl Xi < +00 and :LiE 12 (-Xi) < +00 . 

c. Suppose 1 is countably infinite. Prove that X E £i (1) if and only if, 
for any bijection '(J : N ---t I, the series :L~~ x<p(n) converges. Prove 
that in this case :L~~ x<p(n) = :LiEf Xi· 

Hint. To show that the condition is sufficient, reduce to the case 
][( = JR. Then prove that if either series :LiEh Xi or :LiEI2 (-Xi) 
diverges (It and 12 being defined as above), there exists a bijection 
'(J : 1 ---t N such that the series L~~ x<p(n) does not converge. 

6. Hilbert cube. Take c = (Cn)nEN E £2 and let C be the set of elements x 
of £2 such that IXnl ::; Icnl for all n E N. Prove that C is compact. 
Hint. Use Tychonoff's Theorem. 

7. If a = (an)nEN is a sequence of positive real numbers, we denote by 
£~ the vector space consisting of sequences of complex numbers u = 
(Un)nEN such that the series Lanlu;1 converges. 
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a. Prove that the formula 

(U, v) = L anUnVn 
nEN 

defines a scalar product on e~. 
h. Prove that the map 

ia : (un)n f---t (~Un)n 

is a linear isometry from e~ onto e2 . Deduce that e~ is a Hilbert 
space. 

c. Let a and b be sequences of positive real numbers. Prove that if the 
sequence (an/bn) tends to 0, the closed unit ball in e~ is a compact 
subset of e~. 
Hint. Use Exercise 8 on page 17. 

d. If s is a real number, we define on Z a measure /1s by setting 

and we put HS = £2(/1s). Prove that for r < s we have H S c Hr 

and the closed unit ball in HS is a compact subset of Hr. 
8. Hilbert completion. Let g be a vector space with a scalar semiproduct 

(.,.). Write p(x) = (x, X)1/2 . By the Schwarz inequality, the map p 
satisfies the triangle inequality: p( x + y) ::; p( x) + p(y) for all x, y E g. 
In other words, p is a seminorm. 
Consider the vector space g consisting of sequences (xn ) that are Cauchy 
with respect to p (that is, satisfy limn, m--++oo p( Xn - xm ) = 0). Define a 
relation fJR on g by setting 

{::::::? lim p(xn - Yn) = O. 
n--++oo 

fJR is easily seen to be an equivalence relation compatible with the vector 
space structure of g. We denote by E the quotient vector space of g by 
fJR , and by <P the canonical map from g to E (which associates to each 
element of j its equivalence class modulo fJR). 
a. Let x and Y be elements of E . Prove that if <P((Xn)) = x and 

<P((Yn)) = y, the sequence ((xn ' Yn))nEN converges and its limit 
depends only on x and y . 

h. Prove that the equation (<P((xn)) ' <P((Yn))) = limn--++oo(xn' Yn) de­
fines a scalar product on E. We denote by II· II the associated norm. 

c. If x is an element of g, we denote by x the image under <P of the 
constant sequence equal to x . Prove that the map from g to E 
defined by x H X is linear and that IIxil = p(x) for all x E g . 

d. Prove that the set Eo = {x : x E g} is dense in E. 
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e. Prove that E is a Hilbert space. (Show first that every sequence in 
Eo that is Cauchy in the norm of E converges in E.) 
The space E is called the Hilbert completion of g. Such a space is 
unique in a sense to be made precise in the next question. 

f. Let (E-, ( ·1· n be a Hilbert space such that there exists a linear map 
L : g -+ E-whose image is dense in E- and such that IIL(x)ll- = p(x) 
for all x E g. Prove that there exists a surjective isometry H from 
E onto E- such that H(x) = L(x) for all x E g. 

2 The Projection Theorem 

One of the main tools that make Hilbert spaces interesting is the Projection 
Theorem. We assume that E is a Hilbert space and we denote by ( . I . ) its 
scalar product, by II . II its norm, and by d the metric defined by the norm. 

Theorem 2.1 Let C be a nonempty, closed, convex subset of E . For every 
point x of E, there exists a unique point y of C such that 

Ilx - y!l = d(x, C). 

This point, called the projection of x onto C and denoted by Pc(x), is 
characterized by the following properly: 

Y E C and Re(x - Y I z - y) ~ ° for all z E C. 

Proof. Fix x E E . We first show the existence of the projection of x onto 
C . By the definition of 6 = d(x, C), there exists a sequence (Yn) in C such 
that 

1 Ilx - Ynl12 ~ 62 + - for all n ?: 1. 
n 

Applying the parallelogram identity to the vectors x - Yn and x - YP' for 
n, p ?: 1, we obtain 

Since C is convex, (Yn + yp)/2 is in C, so ~IIYn - yp!l2 ~ Hl/n + I/p), 
which proves that (Yn) is a Cauchy sequence in C and so converges to an 
element Y of C, which must certainly satisfy Ilx - YI12 = 62. 

Now let Yl and Y2 be points of C with IIx - yI\1 = Ilx - Y2!1 = 6. By 
applying the parallelogram identity as before, we get IIYl - Y211 2 ~ 0, which 
says that Yl = Y2 . This shows that Pc (x) is unique. 

Finally, we check that the point Y = Pc(x) satisfies property (*). If z E C 
and t E (0,1], the point (1 - t)y + tz belongs to C (which is convex), so 

Ilx - (1 - t)y - tzl12 ?: !Ix _ y112, 
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or, after expansion, 

t211Y - Zll2 + 2tRe(x - Y I Y - z) ~ o. 
Dividing by t and making t approach 0, we get 

Re(x - Y I z - Y) ::; O. 

Conversely, suppose a point y of C satisfies (*). Then, for all Z E C, 

IIx - ZII2 = II (x - y) + (y - z)1I2 

= IIx - yII 2 + lIy - Zll2 + 2Re(x - Y I Y - z) ~ IIx _ y1l2, 

so Y = Pc(x). o 

Remarks 

1. In the case II{ = JR., the characterization (*) - where Re disappears ­
says that Pc(x) is the unique point Y of C such that, for all Z E C, the 
angle between the vectors x - Y and z - y is at least 7r /2. 

2. The conclusion of the theorem remains true if we suppose only that E 
is a scalar product space and that the convex set C is complete with 
respect to the induced metric - for example, if C is contained in a finite­
dimensional vector subspace of E. Indeed, this assumption suffices to 
ensure that the sequence (Yn) of the proof converges to a point of C. 

Condition (*) allows us to show that Pc is a contraction, and therefore 
continuous. 

Proposition 2.2 Under the assumptions of Theorem 2.1, 

IlpC(xd - Pc(X2) II ::; IIXI - x211 for all XI,X2 E E. 

Proof Set Yl = Pc(xd and Y2 = Pc(X2)' First, 

Re(xI -x21 YI-Y2) = Re(xI -Y21 YI -Y2) + Re(Y2 -x21 Yl -Y2) 

= Re(xI-YII YI-Y2)+IIYI-Y211 2+Re(Y2- x21 YI-Y2) 

~ IIYI -Y211 2. 

Thus, by the Schwarz inequality, IIYI - Y211 2 ::; IIXI - x21111Yl - Y211, and 
finally IIYI - Y211 ::; IIXI - x211. 0 

We now consider projections onto vector subspaces of E. 

Proposition 2.3 Let P be a closed vector subspace of E. Then PF is a 
linear operator from E onto P. If x E E, the image PF(x) is the unique 
element Y E E such that 

yEP and x - Y E P.1.. 
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Proof. Condition (*) of Theorem 2.1 becomes 

Y E F and Re(x - y I z - y) SO for all z E F. 

Now, if Y E F and A E C*, the map z' t---+ Z = Y + >'z' is a bijection from F 
onto F. Condition (*) is therefore equivalent to 

Y E F and Re(A(x - y I z'») SO for all z' E F and A E C, 

and this in turn is obviously equivalent to 

yEF and x - Y E F~. 

That PF is linear follows easily. o 

Corollary 2.4 For every closed vector subspace F of E, we have 

and the projection operator on F associated with this direct sum is PF. 

Proof. For x E E, we can write x = PF(X)+(X-PF(x)) and, by Proposition 
2.3, PF(X) E F and x - PF(X) E F~. On the other hand, if x E F n F~, 
then (x I x) = 0 and so x = o. 0 

Remark. Proposition 2.3 and Corollary 2.4 remain valid under the weaker 
assumption that E is a scalar product space and F is complete in the 
induced metric-in particular, if F is finite-dimensional (see Remark 2 on 
page 106). 

Under the preceding assumptions, PF is called the orthogonal projec­
tion (operator) or orthogonal projector from E onto F. The image 
PF(x), for x E E, is the orthogonal projection of x onto F. 

Corollary 2.5 For every vector subspace F of E, 

In particular, F is dense in E if and only if F~ = {O} . 

Proof. Just recall that F~ = F~ . o 

This very useful denseness criterion is now applied, as an example, to 
prove a result that will be generalized in the next chapter by other methods. 

Proposition 2.6 Let JL be a positive Radon measure on a locally compact, 
separable metric space X. Then Cc(X) is dense in L 2 (JL). 



108 3. Hilbert Spaces 

Proof. We write F = Cc(X). If f is an element of pl., then J <p! dJ.L = a 
for all <p E Cc(X). Thus, for all <p E C~(X), 

J <p(Ref)+dJ.L= J <p(Ref)-dJ.L, 

J <p (1m f)+ dJ.L = J <p(lmf)- dJ.L. 

By the uniqueness part of the Radon- Riesz Theorem (page 69), these equal­
ities hold for any nonnegative Borel function <po Applying them to the char­
acteristic functions of the sets {Ref> a}, {Ref < a}, {Imf > a}, and 
{1m f < a}, we conclude that f = a J.L-almost everywhere; that is, f = a as 
an element of L2(J.L). We finish by using Corollary 2.5. 0 

We conclude this section with an alternate form of Corollary 2.5. 

Corollary 2.7 If E is a Hilbert space and P is a vector subspace of E, 
then F = pl.l.. 

Proof. Clearly P C Fl.l.. Therefore, since pl.l. is closed, F c Fl.l.. On 
the other hand, we have E = F EEl pl. and E = pl.l. EEl pl. . The result 
follows immediately. 0 

Exercises 

1. Let E be a Hilbert space. 
a. Let C l and C2 be nonempty, convex, closed subsets of E such that 

C l C C2 . Prove that, for all x E E, 

Hint. Apply the parallelogram identity to the vectors x - Pc, (x) 
and x - PC2(X). 

b. Let (Cn ) be an increasing sequence of nonempty, convex, closed sets 
and let C be the closure of their union. 

i. Prove that C is closed and convex. 
ii. Prove that limn--++oo pc .. (x) = Pc{x) for all x E E. 

Hint. Start by showing that 

lim d(x, Cn) = d(x, C). 
n--++oo 

c. Let (Cn ) be a decreasing sequence of nonempty, convex, closed sets 
and let C be their intersection. 

i. Prove that, if C is nonempty, 

lim pc .. (x) = Pc(x) for all x E E. 
n--++oo 
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ii. Prove that, if G is empty, 

lim d(x, Gn) = +00 for all x E E. 
n-*+oo 

(In particular, if one of the Gn is bounded, G is nonempty. This 
result is false if we only assume E to be a Banach space: take, 
for example, E = G([O, 1]) and Gn = {f E E : III ::; 1, 1(0) = 1, 
and I(x) = 0 for all x ~ l/n}.) 

2. a. Let a be a nonzero element of a Hilbert space E. Prove that, for all 
XEE, 

.L l(xla)1 
d(x, {a} ) = lIall . 

h. Take E = L2([0, 1]) (see Example 2 on page 124) and let F be the 
vector subspace of E defined by 

Determine F.L. Compute the distance to F of the element I of E 
defined by I(x) = eX. 

3. Let m be a measure on a measure space (n, $) and let (An)nEN be a 
sequence of measurable subsets of n that partitions n. For every n E N 
define 

En = {I E L2(m): f I/ldm = o}. 
In\An 

Prove that the En are pairwise orthogonal and that their union spans 
a dense subspace in L2(m) . For each n E N, write down explicitly the 
orthogonal projection from L2(m) onto En . 

4. Let P be a continuous linear map from a Hilbert space E to itself. 
a. Prove that P is an orthogonal projection (onto a closed subspace of 

E) if and only if p 2 = P and IIPII ::; 1. 
h. Prove that, if P is an orthogonal projection, 

(Pxly) = (x I Py) = (Px I Py) for all x,y E E. 

5. Let Coo be the set of sequences of complex numbers almost all of whose 
terms are zero, endowed with the scalar product 

(x I y) = LXiYi. 

iE N 

Let I be the linear form on Coo defined by 

'" Xi I(x) = ~ i + 1 . 
iEN 
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a. Prove that f is continuous. 
b. Set F = ker f . Prove that F is a closed vector subspace strictly 

contained in Coo and that F.l.. = {o}. (Thus the assumption that E 
is complete cannot be omitted from the statement of Corollary 2.4.) 

6. Let J-t be a positive Radon measure on a compact metric space X, with 
support equal to X. Consider the scalar product space E = C(X) with 
scalar product defined by (I I g) = J f 9 dJ-t. If A is a closed subset of X , 
we write EA = {J E C(X) : f(x) = 0 for all x E A}. 
Let A be a closed subset of X. 

a. Prove that there exists an increasing sequence (In) of functions in 
EA, each with support X \ A, that converges pointwise to lX\A' 

b. Prove that (EA).l.. = EX\A . 
Hint. Prove that, if g E (EA).l.., then J lX\A Igl2 dJ-t = O. 

c. Take g E C(X). Prove that d(g, EA)2 = J lA Igl2 dJ-t. Deduce that 
EA is dense in E if and only if J-t(A) = o. Prove also that g admits a 
projection onto EA if and only if it vanishes on the boundary of A. 

d. Suppose X has no isolated points. Prove that there exists a closed 
subset A of X with empty interior and such that J-t(A) > O. Check 
that, for such an A, (EA).l.. = {O} but EA is not dense in E. 
Hint. If there exists a E X such that J-t( {a}) > 0, one can take 
A = {a}. Otherwise, consider a countable dense subset of X and use 
the fact that J-t is regular (Exercise 5 on page 77). 

7. Let m be a measure on a measure space (fl, $). Suppose m is a-finite; 
that is, fl is a countable union of elements of $ of finite m-measure. 
Define L2 (m) 181 L2 (m) as the vector space generated by functions of the 
form (x, y) H f(x)g(y), with f, g E L2(m). Prove that L2(m) 181 L2(m) 
is dense in L2(m x m). 
Hint. Let (An) be an increasing sequence of elements of $ of finite 
measure and covering fl. Let F be an element of the orthogonal space 
to L2(m) 181 L2(m) in L2(m x m). Prove that, for all n E N, the set 
consisting of all T E $ x $ such that 

j" [ F(x, y) dm(x) dm(y) = 0 
lTn(AnxAn ) 

contains {A x B : A, B E $} and is a monotone class; this term is 
defined in Exercise 2 on page 64. Deduce from the same exercise that 
F=O. 

8. The bipolar theorem. Let E be a complex (say) Hilbert space. If A is a 
nonempty subset of E, the polar of A is defined as 

AO = {x E E: Re(xly)::; 1 for all YEA}. 

The set AOO is called the bipolar of A. 
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a. Prove that the polar of any nonempty subset of E is a closed convex 
set containing O. 

h. Deduce that, if A is a nonempty subset of E, the closed convex hull 
of A U {O} (see Exercise 9 on page 18) is contained in AOo. 

c. We now want to show the reverse inclusion. Let C be the closed 
convex hull of Au {O} and take x E AOo. 

i. Prove that Re(x - Pc(x) I Pc (x)) 2: o. 
ii. Prove that, for all e > 0, 

1 (x _ Pc(x)) E AO. 
e + Re(x - Pc(x) I Pc(x)) 

Deduce that IIx - Pc(x)112 ::; e, and so that x E C. 

d. Let A be a convex subset of E containing O. Prove that A = AOo. 
e. Let A be a vector subspace of E. Prove that AO = A-1 . (We thus 

recover the equality A = A -1-1.) 

3 The Riesz Representation Theorem 

We assume in this section that E is a Hilbert space. The Riesz Represen­
tation Theorem, which we now state, describes the topological dual of E. 

Theorem 3.1 (Riesz) The map from E to E' defined by y f-7 <py = ( . I y) 
is a surjective isometry. In other words, given any continuous linear form 
<p on E, there exists a unique y E E such that 

<p(x) = (x I y) for all x E E, 

and, furthermore, 11<p11 = Ilyli· 

Proof. That this map is an isometry was seen in Corollary 1.3. We now 
show it is surjective. Take <p E E' such that cp i o. We know from Corollary 
2.4 that E = ker <p EB (ker cp)-1, since, cp being continuous, ker <p is closed. 
Now, <p is a nonzero linear form, so ker <p has codimension 1. The space 
(ker cp)-1 therefore has dimension 1; it is generated by a vector e, which we 
can choose to have norm 1. Set y = <p(e) e if lK = C, or y = <p(e)e if lK = JR. 
Then <py (e) = <p( e) and <Py = 0 on ker <po It follows that <py and <p coincide 
on (ker<p)-1 and on kercp, so cp = <Py. 0 

We recall that this isometry is linear if lK = JR and skew-linear if lK = C. 
The rest of this section is devoted to some important applications of 

Theorem 3.1. 
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3A Continuous Linear Operators on a Hilbert Space 

Recall that L(E) denotes the space of continuous linear maps (or operators) 
from E to E. We use the same symbol for the norm in E and the associated 
norm in L(E). We denote by I the identity on E. 

Proposition 3.2 Given T E L(E), there exists a unique operator T* E 
L(E) such that 

(Tx I y) = (x I T*y) for all x, y E E. 

Moreover, IIT*II = IITII. 

T* is called the adjoint of T. 

Proof Take y E E. The map 'Py 0 T: x H (Tx I y) is an element of E', so 
by Theorem 3.1 there exists a unique element of E, which we denote by 
T*y, such that 

(Txly) = (x I T*y) for all x E E; 

moreover IIT*yll = II'Py 0 Til ~ IIYII IITII. The uniqueness of such a T*y 
easily shows that T* is linear; at the same time, by the preceding inequality, 
IIT*II ~ IITII· Moreover, if x E E, 

IITxll 2 = (Tx I Tx) = (x I T*Tx) ~ IIxli IIT*II IITxll, 

which implies that IITxll ~ IIxll IIT*II, and so that IITII ~ IIT*II. 0 

The properties in the next proposition are easily deduced from the defi­
nition of the adjoint. 

Proposition 3.3 The map from L(E) to itself defined by T H T* is 
linear if IK = JR and skew-linear if IK = C. It is also an isometry and 
an involution (that is, T** = T for T E L(E)). We have I* = I and 
(TS)* = SOT' for all T, S E L(E). 

Examples 

1. Take E = JRd with the canonical euclidean structure. The space L(E) 
can be identified with the space Md(JR) of d x d matrices with real 
entries. Then T* is the transpose of T. If E = Cd with the canonical 
hermitian structure, the space L(E) can be identified with Md(C) and 
T* is the conjugate of the transpose of T. 

2. The next example can be regarded as an extension of the preceding one 
to infinite dimension. Let m be a measure on a measure space (0, $). 
Suppose m is o--finite; that is, 0 is a countable union of elements of $ 

of finite m-measure. This entails we can use Fubini's Theorem. We place 
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ourselves in the Hilbert space E = £2(m), and take K E £2(m x m). If 
fEE, we define TK f(x) for m-almost every x by 

TKf(x) = j K(x,y)f(y)dm(y) . 

Since, by the Schwarz inequality, 

j (jIK(x,y)llf(y)1 dm(y)Y dm(x) 

:::; jV(y)12 dm(y) jjIK(x,y)12 dm(x)dm(y) < +00, 

this expression defines an element TK f of E such that 

which shows that TK is a continuous linear operator on E whose norm is 
at most the norm of Kin £2(m x m). By Fubini's Theorem, if f,g E E, 
we have, in the case lK = C, 

where we have put K*(x,y) = K(y,x) . Thus Tj( = TKo. Naturally, in 
the case lK = JR, we get the same result with K*(x, y) = K(y, x). 

The next property will be useful in the sequel. 

Proposition 3.4 For every T E £(E), we have IITT*II = IIT*TII = II TIl 2. 
Proof Certainly IIT*TII :::; IIT112. On the other hand, 

IITxl12 = (Tx I Tx) = (x I T*Tx) :::; IlxI121IT*TII, 

which shows that IITI12 :::; IIT*TII. Therefore IIT*TII = IITI12 and, applying 
this result to T*, we get IITT* II = IIT* 112 = IITII2. 0 

An operator T E £(E) is called selfadjoint if T = T*. We also call 
such operators symmetric if lK = JR and hermitian if lK = C. By the 
preceding proposition, if T is selfadjoint then IIT211 = IITII2. 

Examples 

1. For every operator T E £(E), TT* and T*T are selfadjoint. 
2. In Example 2 on the preceding page, TK is selfadjoint if and only if, for 

(m x m)-almost every (x, y), we have K(x, y) = K(y, x) (if lK = JR) or 
K(x,y) = K(y,x) (iflK = C). This condition is clearly sufficient and it 
is necessary by Exercise 7 on page 110. 
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3. Every orthogonal projection operator is selfadjoint (see Exercise 4 on 
page 109). 

Note that, if T is a selfadjoint operator, (Tx I x) E JR for all x E E. We 
say that T E L(E) is positive selfadjoint if 

(Txlx) E JR+ for all x E E. 

Warning! If E is a function space, this notion of positivity has nothing to 
do with the condition f ~ 0 ==} T f ~ o. In particular, in Example 2 above, 
TK is positive selfadjoint if, for all f E L2(m), 

J J K(x, y)f(x)f(y) dm(x) dm(y) ~ 0, 

and it is positive in the other sense if K ~ 0, which is altogether different. 
One checks immediately that, for all T E L(E), the operators TT* and 

T*T are positive selfadjoint. 
The last result of this section gives another expression of the norm of a 

selfadjoint operator. 

Proposition 3.5 Assume E =I- {O}. For every selfadjoint operator T E 
L(E), 

IITII = sup{I(Tx I x)1 : x E E and IIxll = I}. 

Proof. Let 'Y be the right-hand side of the equality. Clearly 'Y ::; IITII and, 
for all x E E, i(Txlx)i ::; 'YllxI12. Assume for example that IK = C, and 
take y, z E E and oX E JR . Then 

i(T(y±oXz)ly±oXz)i = i(Tyly)±2oXRe(Tylz)+oX2(Tzlz)i ::;'Ylly±oXzI12. 

We deduce, by combining the two inequalities, that 

4loXliRe(Ty I z)i ::; 'Y(lIy + oXzl1 2 + Ily - oXzll 2) = 2'Y(lIyI12 + oX21I z I12), 

and this holds for any real oX. We conclude that iRe(Tylz)i ::; 'Yllyllllzll, 
from the condition for a polynomial function on JR of degree at most 2 
to be nonnegative-valued. Now it is enough to choose z = Ty to obtain 
IITyl1 ::; 'Y Ilyll for all y E E, and hence IITII ::; 'Y. 0 

3B Weak Convergence in a Hilbert Space 

We say that a sequence (xn ) in E converges weakly to x E E if 

lim (xn Iy) = (xIY) for all y E E. 
n~+(J() 

In this case x is called the weak limit of the sequence (xn ). Clearly a 
sequence can have no more than one weak limit. 
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One deduces immediately from the Schwarz inequality that a sequence 
(Xn) of E that converges to a point x of E in the sense of the norm of E (one 
for which limn--Hoo IIxn - xii = 0) also converges weakly to x . The converse 
is generally false. For example, it is easy to check that the sequence (xn) 
in E = £2 defined by 

( ). _ {I if j = n, 
Xn J - o otherwise 

converges weakly to 0, whereas IIxnll = 1 for all n. For this reason we 
sometimes call convergence in the sense of the norm strong convergence. 

The next proposition pinpoints the relationship between weak and strong 
convergence. 

Proposition 3.6 Let (xn) be a sequence in E that converges weakly to x . 
Then 

liminfllxnll 2: IIxll· n-++oo 

Moreover, the following properties are equivalent: 

1. The sequence (xn) converges (strongly) to x. 

2. limsuPn-++oo Ilxnll ~ IIxli. 
3. limn-++oo Ilxnll = IIxll. 

Proof First, 

which proves the first statement. At the same time, IIx - xnl1 2 = IIxI1 2 + 
IIxnll2 - 2 Re(xn Ix), so 

limsupllx-xnll 2 ~ (limsupllxn ll)2 -lIxII 2 , 
n-++oo n-++oo 

which yields the equivalence between 1 and 2. The equivalence between 2 
and 3 follows immediately from the first statement. 0 

The Riesz Representation Theorem enables us to prove the following 
version of the Banach--Alaoglu Theorem in a Hilbert space. 

Theorem 3.7 Any bounded sequence in E has a weakly convergent sub­
sequence. 

Proof Suppose first that E is separable. Let (xn) be a bounded sequence in 
E. In the notation of Theorem 3.1, the Banach- Alaoglu Theorem (page 19) 
applied to the sequence (CPXn) guarantees the existence of a subsequence 
(xnk ) and of a cP E E' such that 

lim CPnk(y) = cp(y) for all y E E. 
k-++oo 
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By Theorem 3.1, there exists an element x E E such that <p = <Px, which 
proves the theorem in the separable case. 

We turn to the general case. Let (xn) be a bounded sequence in E and 
let F be the closure of the vector subspace of E spanned by {Xn}nEN. By 
construction, this is a separable Hilbert space. The first part of the proof 
says that there exists a subsequence (Xn.) and a point x E F such that 

lim (xn• I y) = (x I y) for all y E F. 
k-++oo 

Since this equality obviously takes place also if y E Fl. , it suffices now to 
apply Corollary 2.4. 0 

The fact that any continuous linear operator has an adjoint allows us to 
prove the following property. 

Proposition 3.8 Let (xn) be a sequence in E converging weakly to x . 
Then, for all T E L(E), the sequence (Txn) converges weakly to Tx. 

Proof For every y E E , 

lim (Txn I y) = lim (xnIT*y) = (xlT*y) = (Tx I y). 0 
n-++oo n-++oo 

Exercises 

1. Theorem of Lax- Milgram. Galerkin approximation. Let E be a real 
Hilbert space and a a bilinear form on E. Assume that a is contin­
uous and coercive: this means that there exist constants C > 0 and 
a > 0 such that 

ia(X,y)i ::; Cllxllilyll 
a(x, x) ~ allxl1 2 

for all x,y E E, 

for all x E E. 

a. i. Show there exists a continuous linear operator T on E such that 

a(x, y) = (Tx I y) for all x, y E E. 

ii. Prove that T(E) is dense in E. 

iii. Prove that IITxl1 ~ all xii for all x E E . Deduce that T is injective 
and that T(E) is closed. 

iv. Deduce that T is an isomorphism from E onto itself. 
h. Let L be a continuous linear form on E. 

i. Deduce from the preceding questions that there exists a unique 
u E E such that 

a(u, y) = L(y) for all y E E . 
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ii. Now suppose that the bilinear form a is symmetric and define, 
for x E E, 

<I>(x) = 4a(x, x) - L(x). 

Prove that the point u is characterized by the condition 

<I>(u) = min <I>(x). 
xEE 

c. We return to the notation and situation of question 1 b-i. Let (En) be 
an increasing sequence of closed vector subspaces of E whose union 
is dense in E . 

i. Prove that, for any integer n EN, there exists a unique Un E En 
such that 

a(un,y) = L(y) for all y E En . 

Check, in particular, that if En has finite dimension dn, determin­
ing Un reduces to solving a linear system of the form AnUn = Yn, 
where An is an invertible dn x dn matrix, which, moreover, is 
symmetric and positive definite if a is symmetric. 

ii. Prove that, for any n EN, 

c Ilu - unll ~ - d(u, En). 
a 

Deduce that the sequence (un) converges to u. 
Hint. Take y E En . Prove that 

and deduce that allu - unll ~ Cllu - YII . 
2. Lions-Stampacchia Theorem (symmetric case). Consider a real Hilbert 

space E, a nonempty, closed, convex set C in E, a continuous and co­
ercive (Exercise 1) bilinear symmetric form a on E, and a continuous 
linear form L on E. Let J be the function defined on E by 

J(u) = a(u,u) - 2L(u) for all u E E . 

Prove that there exists a unique c E C such that J(c) ~ J(v) for all 
v E C, and that c is characterized by the following condition: 

a(c, v-c) ~ L(v-c) for all v E C. 

Hint. By the Lax- Milgram Theorem (Exercise 1), there exists a unique 
element u of E such that a(u, v) = L(v) for all vEE. Check that 
J(v) = a(v-u, v-u) -a(u, u), then work in the Hilbert space (E, a) . 

3. Reproducing kernels. Let X be a set and $ the vector space of complex­
valued functions on X. 
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a. Consider a vector subspace E of $ endowed with a Hilbert space 
structure such that, for all x EX, the linear form defined on E by 
f ~ f(x) is continuous. 

i. Prove that there exists a unique function K from X 2 to C sat­
isfying these conditions: 

- For all y E E, the function K(·, y) : x ~ K(x, y) lies in E. 
- For all fEE and y E X, we have (JIK( .,y») = f(y)· 

We call K the reproducing kernel of E. 

ii. Prove: 

A. For all x,y E E, we have K(x,y) = K(y,x). 
B. For all n E N*, all (6"'.'~n) E en, and all (x!, ... ,xn ) E 

xn, we have 
n n 

LLK(Xi,Xj)(i~j ~ O. 
i=l j=l 

iii. Prove that the family {K(. ,y)}YEX is fundamental in E. 

b. Conversely, consider a function K from X 2 to C satisfying properties 
A and B above. 

i. Let g be the vector subspace of $ spanned by {K ( . , y)} yE X . 

Prove that the relation 

defines a scalar semiproduct on g. Check, in particular, that this 
expression does not depend on the representations involved. 

ii. Let (E-, ( . I . n be the Hilbert completion of g and let L be the 
associated canonical map from g to E- (Exercise 8 on page 104). 
Define an application lit : E- ---+ $ by 

lIt(cp)(x) = (cpIL(K(-,x»)-: 

Prove that lit is injective. 

iii. Derive a Hilbert space structure for E = IIt(E-), with respect to 
which K is the reproducing kernel. 

c. Suppose X = JR and fix a Borel measure J.t of finite mass on JR. If 
hE L 2 (J.t), denote by !h the element of $ defined by 

h(x) = f eitxh(t) dJ.t(t). 

i. Prove that the map h ~ fh thus defined on L 2 (J.t) is injective 
(see Exercise Ic on page 63). 
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ii. Set E = Uh : h E L2(J.l)}. For h, k E L2(J.l), set 

Uh I fk) = f hkdJ.l. 

Prove that E is a Hilbert space having as a reproducing kernel 
the function K(x,y) = f eit(x-Y)dJ.l(t). 

d. Let 0 be open in C. Prove that the Hilbert space H2(O) defined in 
Exercise 4 on page 102 has a reproducing kernel. This is called the 
Bergman kernel. 

4. Let E be a Hilbert space over C, distinct from {O}. If T E L(E), write 

n(T) = sup{I(Tx I x)1 : Ilxll = I}. 

a. Prove that 

n(T) ~ IITII ~ 2n(T) for all T E L(E) . 

Hint. For the second inequality, draw inspiration from the proof of 
Proposition 3.5 to show that, for every x, y E E and S E L(E), 

I(Sx I y) + (Sy I x)1 ~ 2n(S) IIxlillyll· 
Then set S = >"T and y = >"Tx, were>.. is a complex number of 
absolute value 1 such that >..2 (T2x I x) E 1R+ . 

h. Prove that (*) would be false if E were a Hilbert space over 1R. 
c. Prove that, if E has dimension at least 2, the constant 2 in (*) cannot 

be replaced by a smaller real number. 
Hint. Let u and v be orthogonal vectors in E, each of norm 1. Con­
sider the operator defined on E by 

T(>..u + J.lV + w) = >..v for all >",J.l E][{ and W E {u,v}l.. 

d. Prove that the map T f--7 n(T) is a norm on L(E) equivalent to the 
norm 11·11. 

5. Let E be a Hilbert space over C. 
a. Take T E L(E). Prove that T is hermitian if and only if (Tx I x) E IR 

for all x E E . 
Hint. In the notation of Exercise 4, T = T* if and only if n(T - T*) = O. 

h. Deduce that an operator T on E is positive hermitian if and only if 
(Txlx) E 1R+ for all x E E. 

6. Let T be a positive selfadjoint operator on a Hilbert space E . 
a. Prove that 

I(TxIY)12~ (Tx I x)(Ty I y) for all x,y E E. 

Hint. Prove that (x, y) H (Tx I y) is a scalar semiproduct on E and 
so satisfies the Schwarz inequality. 
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h. Derive another proof of Proposition 3.5 in this case. 

7. Let P be a continuous linear operator on a Hilbert space E . We assume 
that P is a projection (P2 = P). Prove that the following properties are 
equivalent: 

- P is an orthogonal projection operator. 
- P is selfadjoint: P = po. 
- P is normal: PP" = P" P . 
- (Px I x) = IIPxll 2 for all x E E . 

8. Consider a Hilbert space E and an element T E L(E). 
a. Prove that kerT" = (imT)J.. Deduce that imT = (kerT*)J., then 

that im T = E if and only if T* is injective. 
h. Assume T is positive selfadjoint. Prove that an element x E E sat­

isfies Tx = 0 if and only if (Tx I x) = 0 (use Exercise 6a above) . 
Deduce that T is injective if and only if (Tx I x) > 0 for all x ::J. o. 

9. An ergodic theorem. Consider a Hilbert space E and an element T E 

L(E) such that IITII s; l. 
a. Prove that an element x E E satisfies Tx = x if and only if (Tx I x) = 

IIx1l2 . (Use the fact that equality in the Schwarz inequality implies 
colIinearity.) Deduce that ker(I - T) = ker(I - T*). 

h. Show that (im(I - T»J. = ker(I - T) (use Exercise 8a above) and 
deduce that 

E = ker(I - T) EE7 im(I - T) . 

c. For n 2: 1, set 
I+T+···+Tn 

Tn =------
n+l 

Show that limn-Hoo Tnx = Px for all x E E, where P is the orthog­
onal projection onto ker(I - T) . 
Hint. Consider successively the cases x E ker(I -T), x E im(I -T), 
and x E im(I - T). In this last case, you might use Proposition 4.3 
on page 19. 

10. Let E be a Hilbert space. 

a. Prove that every weakly convergent sequence in E is bounded. 
Hint. Use the Banach- Steinhaus Theorem (Exercise 6d on page 22) . 

h. Let (xn ) and (Yn) be sequences in E. Prove that if (xn) converges 
weakly to x and (Yn) converges strongly to y, the sequence ( Xn I Yn») 
converges to (x I y). What if we suppose only that (Yn) converges 
weakly to y? 

11. Let (xn ) be a sequence in a Hilbert space E. Prove that if, for all y E 

E, the sequence (xn I y») is convergent, the sequence (xn ) is weakly 
convergent. 
Hint. Use Exercise 6f on page 23. 
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12. Let K be a compact subset of a Hilbert space E. Prove that every 
sequence in K that converges weakly also converges strongly. 

13. Prove that in a finite-dimensional Hilbert space every weakly convergent 
sequence is strongly convergent. You might give a direct proof, not using 
Exercises 10 and 12. 

14. Let D be a fundamental subset of a Hilbert space E. Prove that if (xn) is 
a bounded sequence in E and if limn-++oo(xn I y) = (x I y) for all y ED, 
then (Xn) converges weakly to x. Prove that the assumption that (xn) 
is bounded is necessary (see Exercise lOa above). 

15. a. Let (xn) be a weakly convergent sequence in a Hilbert space and let 
x be its weak limit. Prove that x lies in the closed convex hull of the 
set {Xn}nEN. 
Hint. Let C be the closed convex hull of the set {Xn}nEN. Prove that 
x = Pcx. 

b. Let C be a convex subset of a Hilbert space E. Prove that C is closed 
if and only if the weak limit of every weakly convergent sequence of 
points in C is an element of C. 

16. Banach-Saks Theorem. 
a. Let (xn) be a sequence in a Hilbert space E converging weakly to 

x E E. Prove that there exists a subsequence (xnk ) such that the 
sequence (Yk) defined by 

1 
Yk = k (Xnl + xn2 + ... + xnk ) 

converges (strongly) to x. 
Hint. Reduce to the case where x = o. Then construct (by induction) 
a strictly increasing sequence (nk) of integers such that, for all k 2: 2, 

Then use Exercise 10a. 
b. Deduce another demonstration of the result of Exercise 15. 

17. A particular case of the Browder Fixed-Point Theorem. Let C be a 
nonempty, convex, closed and bounded subset of a Hilbert space E. 
a. Let T be a map from C to C such that 

IIT(x) - T(Y)II :::; IIx - yll for all x,y E C. 

i. Let a be a point of C. For every n E N* and x E C, define 

1 n-l 
Tn(x) = -a+ --T(x). 

n n 

Show that there exists a unique point Xn E C such that Tn(xn) = 
X n · 

Hint. The map Tn is strictly contracting. 
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ii. Let (xnk ) be a weakly convergent subsequence of the sequence 
(xn ), tending to the weak limit x (see Theorem 3.7) . Set Yn = 
Xn - a and Y = x-a. Prove that, for all n ~ 2, 

Deduce that the sequence (xnk ) converges strongly to x, that 
x E C, and that T(x) = x. 

iii. Prove that the set {x E C : T(x) = x} is convex, closed, and 
nonempty. 
Hint. To show convexity, take xo, Xl E C such that T(xo) = Xo 
and T(xd = Xl and, for t E [0,1]' set Xt = tXI + (1- t)xo. Prove 
that 

Ilxo - xIII = IIT(xd - xoll + IIxl - T(xdll · 

Using the case of equality in the Schwarz inequality, deduce that 
T(xt} = Xt· 

h. Let g be a family of maps from C to C such that 

- T 0 S = SoT for all T, S E g, and 
- IIT(x) - T(Y)II :::; Ilx - yll for all T E g and x, y E C. 

Suppose also that E is separable. Show that there exists a point 
X E C such that 

T(x) = X for all T E g. 

Hint. Show first that there exists a metric that makes C compact; 
then argue as in Exercise 19a on page 85. 

18. Consider a nonempty, convex, closed and bounded subset C of a real 
Hilbert space E, and a differentiable function J from E to JR. Recall 
that J is called convex on C if, for any pair (u, v) of points in C and 
any 8 E [0,1], 

J(8u + (1 - 8)v) S; fJJ(u) + (1 - fJ)J(v). 

By definition, the gradient of J at u, denoted by VJ(u) , is the element 
of E that the Riesz Representation Theorem associates to the derivative 
map J'(u). 
a. Prove that J is convex on C if and only if, for all (u, v) E C2 , 

J(v) ~ J(u) + (VJ(u)lv-u). 

In particular, deduce that, if J is convex, it is bounded below over 
C. 

h. Prove that if J is convex there exists at least one point u* E C such 
that 

J(u.) = inf J(u). 
uEC 
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You might proceed in the following way: Let m be the infimum 
on the right-hand side, and let (un) be a sequence in C such that 
limn-Hoo J(un ) = m. 

i. Prove that (un) has a weakly convergent subsequence (unk ). 

ii. Let u* be the weak limit of (unk ). Prove that u* E C (see Exer­
cise 15). 

iii. Prove that J(u*) = m. 

c. Under the same hypotheses and with the same notation, prove that 
the set Co = {u* E C : J(u*) = m} is convex and closed. Prove also 
that u E Co if and only if ('\7 J(u) ! v - u) ~ 0 for all v E C. 

d. An example of a convex function. Take T E L(E) and <I> EE', and 
set J(u) = (Tu! u) + <I>(u). Prove that J is convex on E if and only 
if the operator T + T* is positive selfadjoint. 

4 Hilbert Bases 

We consider a scalar product space E. A family (Xi)iEI of elements of E 
is called orthogonal if Xi 1.. Xj whenever i i j. For such a family, the 
Pythagorean Theorem implies that, for any finite subset J of I, 

Here is an immediate consequence of this: 

Proposition 4.1 An orthogonal family that does not include the zero vec­
tor is free. 

Proof. Let J be a finite subset of I and let P.'j)jEJ be elements of OC such 
that LjEJ)..j Xj = o. Then 

II L)..jXj112 = L !)..j!2I1X jIl2 = 0, 
jEJ JEJ 

which clearly implies that )..j = 0 for all j E J. o 

An orthogonal family all of whose elements have norm 1 is called or­
thonormal. The preceding proposition shows that such a family is free. 
A fundamental orthonormal family in E is called a Hilbert basis of E. 
Thus a Hilbert basis is, in particular, a topological basis. 

We give some fundamental examples. 
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Examples 

1. Suppose a > 0 and let C: be the space of continuous functions periodic 
of period a from JR to IK, with the scalar product defined on page 98. 
For n E Z, we set 

en(x) = e2innx/a. 

It is straightforward to show that the family (en)nEZ is orthonormal in 
~. As in the particular case of Example 4 on page 35, this family is 
fundamental in ~ with the uniform norm. Since the norm associated 
with the scalar product never exceeds the uniform norm, the family 
(en)nEZ is a Hilbert basis of the scalar product space C~. It follows 
easily that the family 

{ In 27r In. 27r In 27rn In. 27rn } 1, v2cos-x, v2sm-x, ... , v2cos -x, v2sm -x, .. , 
a a a a 

is a Hilbert basis of the scalar product space C:, for IK = R or ][{ = C. 
2. If A is a Borel set in JR, we denote by L2(A) the space L2(>., A) associated 

with the restriction of Lebesgue measure to the Borel sets of A. Let E = 
L2«0,1». Clearly L2«0,1)) = L2([0,1]), since >'({O}) = >'({1}) = O. 
We now set en(x) = e2innx, for n E Z and x E (0,1). Then (en)nEZ is 
an orthonormal family in L~«O, 1». We also know, by Proposition 2.6 
on page 107, that Cc«0,1» is dense in L2«0,1». Now, Cc«O, 1)) can 
be identified with a subspace of CI , the space of continuous functions 
periodic of period 1 (every element f of Cc«O, 1» extends uniquely to a 
continuous function periodic of period I on JR), and every element of C I 
is the uniform limit of a sequence of linear combinations of functions en 
extended to lR by I-periodicity (Example 4 on page 35). We deduce, by 
comparing norms as in the preceding example, that the family (en)nEZ 
is a Hilbert basis of L~«O, 1». As before, it follows that 

{I, v'2 cos 27rx, v'2 sin 27rx, ... , v'2 cos 27rnx, v'2 sin 27rnx, ... } 

is a Hilbert basis of Li«O, 1», for IK = R or IK = C. 
More generally, if a, bE R and a < b, the family (fn)nEZ defined by 

fn(x) = v'b1_ a e2i1rnx!(b-a) for all x E (a, b) 

is a Hilbert basis of L~«a, b)). One can also, in an analogous way, obtain 
a real Hilbert basis of Li«a,b». 

3. Consider the space E = £2(1) of Example 5 on page 99. For j E I, we 
define an element ej of E by setting ej(j) = 1 and ej(i) = 0 if i oJ. j. 
The family (ej)jEI is obviously orthonormal. We now show that it is 
fundamental. To do this, take x E E and € > O. By the definition of the 
sum EiEI /Xi/2, there exists a finite subset J of I such that 
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L IXil2 = L IXil2 - L IXil2 ~ e2 . 

iEIV iEI iEJ 

But then 

\Ix - LXjejll2 = L IXil2 ~ e2 • 

jEJ iEIV 

Thus the family (ej)jEI is a Hilbert basis of E. 

The main properties of orthonormal families follow from the next propo­
sition, which is elementary. 

Proposition 4.2 Let {ejhEJ be a finite orthonormal family in E, span­
ning the vector subspace F. For every x E E, the orthogonal projection 
Fp(x) of x onto F is given by 

As a consequence, 

Fp(x) = L (x I ej)ej . 
jEJ 

IIxI1 2 = Ilx- L(xlej)ejI12 + LI(xlej)12. 
jEJ jEJ 

Froof. To prove the first statement, it is enough to show that the vec­
tor y = L:jEJ(x I ej)ej satisfies the conditions characterizing Fp(x) (see 
Proposition 2.3 and the remark on page 107). Now, it is clear that y E F 
and that (x - y I ej) = 0 for all j E J, which implies x - y E Fl. . The rest 
of the theorem follows immediately from the Pythagorean Theorem. 0 

An important, though easy, first consequence is the Bessel inequality: 

Proposition 4.3 Let (ei)iEI be an orthonormal family in E. For all x E 
E, we have 

L I(x I ei)1 2 ~ Ilx11 2 • 

iEI 

(In particular, the family ((x I ei»)iEI lies in £2(1).) 

The next result characterizes the case of equality in the Bessel inequality. 

Theorem 4.4 (Bessel-Parseval) Let (ei)iEI be an orthonormal family 
in E. The following properties are equivalent: 

1. The family (ei)iEI is a Hilbert basis of E. 

2. IIxl1 2 = L:iEI I(x I ei)1 2 for all x E E (Bessel equality). 

3. (x I y)r= L:iEI (x I ei)(ei I y) for all x, y E E. 
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Thus, if (ei)iEI is a Hilbert basis of E, the map from E to £2(1) defined 
byxH (Xlei))iEI is a linear isometry. This isometry is surjective if and 
only if E is a Hilbert space. 

Proof 

i. Assume property 1 holds. Then, for all x E E and all E > 0, there 
exists a finite subset J of I such that the distance from x to the span 
of {ejhEJ is at most E. By Proposition 4.2, 

JEI jEJ 

By making E go to 0 and taking Bessel's inequality into account, we 
obtain 2. 

ii. Conversely, suppose property 2 holds. Then, for all x E E and all E > 0, 
there exists a finite subset J of I such that LjEJI(x I ej)12 ~ IIxl12 _c2; 
thus, by Proposition 4.2, 

This shows that the family (ei)iEI is fundamental, and so property l. 
iii. The equivalence between 2 and 3 can be derived immediately from the 

expression of the scalar product in terms of the norm, valid for any 
scalar product space (see the remark following Corollary 1.2). 

iv. If the isometry is surjective, E is isometric to £2 (1) and hence complete. 
v. Finally, suppose E is a Hilbert space and let (Xi)iEI be an element of 

(2(1). Set a = LiEI IXi I2. There exists then an increasing sequence (In) 
of finite subsets of I such that, for all n E N, LiOn IXil2 ~ a - 2-n 

(we can assume that I is infinite, since the finite case is elementary). 
Put Un = LiOn Xi ei. Then, if n < p, 

Ilup - un ll 2 = L IXil2 ~ 2-n . 

iEJp\J" 

Since E is complete, we deduce that the sequence (un) converges to an 
element x of E. But 

L IX il2 = a. 
iEU"Jn 

Hence, for any i ~ Un I n , we have Xi = 0 and 

If i E Un I n. then (x lei) = limn-Hoo(Un lei) = Xi· Thus (x I e;) = Xi 
for all i E I, which proves the surjectivity of the isometry. 0 
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Remark. More precisely, steps i and ii of the proof show that, if (ei)iEI is 
an orthonormal family in E, the equality 

IIxII 2 = 2: I(x I ei)12 

iEf 

characterizes those points x that belong to the closure of the span of the 
family (ei)iEf . 

We shall see that the inverse image of (Xi)iEI under the isometry E -t 

£2(1) of the preceding theorem can be considered as the sum L iEI Xiei in 
a sense made precise in the following definition: 

A family (Xi)iEI in a normed vector space E is called summable in E 
if there exists X E E, called the sum of the family (Xi)iEI, satisfying the 
following condition: For any c > 0, there exists a finite subset J of I such 
that 

IIX -&; XiII ~ c for any finite subset K c I containing J. 

In this case we write 

iEI 
It is easy to see that the sum of a summable family is unique. Observe 
that, in the case E = OC, a family (Xi)iEI is summable in OC if and only 
if (Xi)iEI E £"k (I) , and in this case the definition just given for the sum 
coincides with the one given in Example 5 on page 99 (see Exercise 5 on 
page 103). Naturally, if I = N and if the family (Xi )iEN is summable, the 
series L;=o;; X i converges in E, with LiEf Xi = L;=O;; Xi. The converse is 
false, even for E = oc: see Exercise 2 below. 

Theorem 4.5 Let (ei)iEI be a Hilbert basis of E. For any element x of E, 

x = 2: (x I ei)ei. 
iEI 

Proof. By Proposition 4.2, we know that, for any finite subset J of I, 

Now just apply the definitions and property 2 of Theorem 4.4. 0 

Example. Consider again the situation of Example 1 on page 124: the 
space q:7r with a Hilbert basis (en) defined by en(x) = einx . If f E Cf7r 
and nEZ, set 
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The sequence (cn (J) )nEZ is the sequence of complex Fourier coefficients 
of I. Thus, for all I E cf,.., 

1 12,.. 
271' I/(x)1 2 dx = E 1c..(J)1 2

• 
o nEZ 

At the same time we have 

in the sense of summability in the space Cf,.. with the norm associated 
with the scalar product. Recall that in general the series of functions 
LnEZ Cn (J) en does not converge uniformly to I; therefore equality (*) 
does not hold in general in Cf,.. with the uniform norm. (It holds when I is 
of class Cl, for example; see Exercise 15 below). On the other hand, since 
the scalar product space Cf,.. is not complete, the isometry from cf,.. to 
£2(Z) defined by I I-t (Cn(J))nEZ is not surjective; hence not all elements 
of e2 (Z) are sequences of Fourier coefficients of continuous functions. 

Complex Fourier coefficients can be defined analogously for functions 
I E L2((0,1)), by setting cn(J) = Jol/(x)e-2i,..nxdx (see Example 2 on 
page 124). Bessel's equality remains valid in this case, as does equality 
(*) in the sense of the norm of L2((0, 1)), which, unlike Cf,.., is complete. 
Thus the isometry from L2((0, 1)) to £2(Z) defined by I I-t (Cn(J))nEZ is 
surjective. 

The rest of this section is devoted to the problem of existence and con­
struction of Hilbert bases. 

Proposition 4.6 (Schmidt orthonormalization process) Suppose 
that N E {1,2,3, ... } U {+oo} and let (In)O$.n<N be a free family in E. 
There exists an orthonormal family (en)o<n<N of E such that, for each 
nonnegative integer n < N, the families (e;)o$.p$.n and (Jp)O$.p$.n span the 
same vector subspace of E. 

Such a family can be constructed by setting 

1 
eo = 11/011 fo 

and, for 0 ::; n < N - 1, 

1 
and en+! = IIxn+ll1 Xn+l, 

where Pn is the orthogonal projection onto the span of the family (Jp )O$.p$.n. 

Proof. We show that the sequence (en)nEl'I defined in the statement satisfies 
the desired conditions. First, since the family (In) is assumed to be free, it 
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is clear that Xn =I 0 for all n, and so that en is defined for all n . Let En 
and Fn be the vector subspaces of E spanned by, respectively, (ep)o~p~n 
and (fp)O~p~n. Trivially, Eo = Fo . Suppose that En = Fn for n < N - 1. 
Clearly enH E Fn+1 , so EnH C FnH . Moreover fn+l E En+1, which 
shows the reverse inclusion. Hence, En = Fn for all 0 ::; n < N . At the 
same time, for each n ;::: 1 the vector enH is, by construction, orthogonal 
to Fn and thus to En. Therefore the family (en)O~n<N is orthonormal. 0 

Remark. The family (en)O<n<N can be recursively constructed using the 
following algorithm: -

Xo = fo, eo = xo/lixoll, 
n 

XnH = fnH - L (fnHlej)ej, enH = xnH/llxn+lll 
j=O 

(see Proposition 4.2) . 

Corollary 4.7 A scalar product space is separable if and only if it has a 
countable Hilbert basis. 

Proof According to Proposition 2.6 on page 10, the condition is sufficient. 
By the same proposition, separability implies the existence of a free and fun­
damental family (fn)nEN. Applying the Schmidt orthonormalization pro­
cess to the family (fn) we obtain a family (en) that is a Hilbert basis. 0 

Two scalar product spaces are called isometric if there exists a sur­
jective isometry from one onto the other. Theorem 4.4 has the following 
consequence: 

Corollary 4.8 An infinite-dimensional Hilbert space is separable if and 
only if it is isometric to the Hilbert space £2. 

Exercises 

1. Prove that every orthonormal sequence in a Hilbert space converges 
weakly to O. 

2. Summable families in normed vector spaces. Let (Xi)iEI be a family in 
a normed vector space E. 
a. Suppose E is finite-dimensional. Show that (Xi)iEI is summable if 

and only if LiEI IIXi li < +00. 
Hint. Reduce to the case E = ][{ and use Exercise 5 on page 103. 

h. Make no assumptions on E, but suppose I is countably infinite. 
i. Prove that, if the family (Xi)iEI is sum mabie with sum X, we 

have, for any bijection cp from N onto I, 

+00 
X = LX<p(n). 

n=O 
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ii. Suppose, conversely, that the series L!:O Xcp(n) converges for 
any bijection <p : N ~ I. Prove that the family (Xi)iEf is 
summable. 
Hint. Let <p be a bijection from N onto I and set 

+00 

X = L:Xcp(n)' 
n=O 

Prove that, if LiEf Xi =f:. X, there exists c > 0 with the following 
property: For any integer n EN, there exists a finite subset 
A of {n, n+1, n+2, .. . } such that II LkEA X<p(k) II ~ c. Deduce 
the existence of a sequence (An)nEN of pairwise disjoint finite 
subsets of N such that II LkEAn Xcp(k) II ~ c for every n E N, 
then the existence of a bijection 'l/J : N ~ I such that the series 
L!:O X"'(n) does not satisfy the Cauchy criterion and so does 
not converge. 

c. Suppose that E is a Hilbert space, I is arbitrary, and (XdiEf is 
an orthogonal family. Show that the family (Xi)iEf is sum mabie if 
and only if LiEf IIXi l12 < +00. (You might draw inspiration from 
the last part of the proof of Theorem 4.4.) Deduce that, in any 
infinite-dimensional Hilbert space, there exists a summable sequence 
(Xn)nEN such that LnEN IIXnll is infinite. (In fact, the Dvoretzki­
Rogers Theorem asserts that there is such a sequence in any infinite­
dimensional Banach space. The next question presents another sim­
ple example of this situation.) 

d. Let X be an infinite metric space, and take E = Cb(X), with the 
uniform norm, denoted II . II· 
i. Show that there exists in X a sequence (B(an,rn»)nEN of pair­

wise disjoint nonempty open balls. 

ii. Show that, for each integer n EN, there exists a continuous 
nonnegative-valued function fn on X supported within B(an, rn) 
and having norm Ilfnll = 1/(n + 1). 

iii. Show that the sequence (fn)nEN is summable in E and that the 
series LnEN IIfnll diverges. 

3. Let A be a subset of Z and let EA be the vector subspace of L2([0, 211"]) 
defined by 

a. Show that EA is closed and determine a Hilbert basis of EA . 
b. What is the orthogonal complement of EA? 
c. Write down explicitly the operator of orthogonal projection onto EA. 
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4. Legendre polynomials. If n is a nonnegative integer, we define a polyno­
mial Pn as 

Pn(X) = ~'dcJ!l. (x2 - It). 2nn. xn 

a. Show that the family (../n + ~ Pn)nEN is a Hilbert basis of the space 
L 2 ([-I,I]). 

b. Deduce an explicit expression for the orthogonal projection from 
L 2 ([-I, 1]) onto the space Rn[X] of polynomial functions of degree 
at most n. 

5. Hermite polynomials. Consider the Hilbert space E = £2(J.L), where J.L 
is the positive Radon measure defined on R by 

J.L(cp) = !:: ( cp(x)e-x2/ 2dx for all cp E Cc(lR). 
v 27r Jilt 

a. Show that, for every n EN, there exists a unique polynomial Fn of 
degree n such that 

cJ!I. 2/ 2/2 -_(e- X 2) = (-1)ne- x Pn(X). 
dxn 

b. For each n E N, set Pn = Fn/-..Jni. . Show that (Pn ) is an orthonormal 
family in E. 

c. i. Take cp E Cc(lR). Show that there exists a sequence of polynomials 
(Pn)nEN such that 

uniformly on R . 

lim Pn(x)e-x2/ 8 = cp(x)e- x2/ 8 
n-++oo 

Hint. Use Exercise 8d on page 41 and perform a change of vari­
ables. 

ii. Deduce that (Pn)nEN converges to cp in E. 
d. Show that the family (Pn ) is a Hilbert basis for E. 

6 . Chebyshev polynomials. Let J.L be the positive Radon measure on [-1, 1] 
defined by 

J.L(cp) = [11 cp(x)(1 - X2)-1/2dx for all cp E C([-I, 1]) . 

For x E [-1,1]' set To(x) = ../I/7r and 

Tn(x) = ../2/7rcos(n arccos x) for n;::: 1. 

Show that, for every n EN, the function Tn is the restriction to [-1, 1] 
of a polynomial of degree n and that (Tn)nEN is a Hilbert basis for 
£2 (J.L). 
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7. Laguerre polynomials. Let /l be the positive Radon measure on JR+ de­
fined by 

For each n EN, set 

a. Show that Ln is a polynomial of degree n for every n EN. 
h . i. Compute the scalar product (Xk I Ln), for 0 :=:; k :=:; n , where 

Xk:x~xk. 

ii. Deduce that (Ln)nEN is an orthonormal family in the space E = 
L 2 (Jl ). 

c. Show that, if a is a nonnegative real number, 

1 

2a+l 

Deduce that the function JOt : x ~ e-ax lies in the closure in E of 
the vector space spanned by the sequence (L n ). 

d. Show that the family (fn)nEN0 is fundamental in Co(R+). (Use 
the Weierstrass Theorem and a change of variables, or the Stone-­
Weierstrass Theorem in JR+: see Exercise 7i on page 56.) Deduce 
that (Ln)nEN is a Hilbert basis for E. 

8. Gaussian quadrature. Let Jl be a positive Radon measure on a compact 
interval [a, bJ in R (where a < b). Suppose the support of Jl is not finite. 

a. Show that there exists a Hilbert basis (Pn)nElII of L~(Jl) such that, 
for every n EN, Pn is the restriction to [a, bl of a real polynomial of 
degree n. 

h. Show that, for n ~ 1, Pn ha.'l n distinct roots in (a, b) . 
Hint. Using the fact that I Pn dJl = 0, show that Pn has at least 
one root of odd multiplicity in (a, b) . Now let Xl , ... , xr be the 
roots of odd multiplicity of Pn in (a , b). By considering the integral 
I Pn(X )(X - Xl) . . . (X - xr)dJl(X), prove that r = n. 

c. Fix n ~ 1 and let xl, ... , Xn be the roots of Pn-

i. Show that there exists a unique n-tuple (AI , . . . , An) of real num­
bers such that, for every k E {O, ... , n - I}, 

f xkdJl(x) = tAix~. 
i=l 
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ii. Show that, for every polynomial P of degree at most 2n - 1, 

J Pdp, = t AiP(Xi). 
i=l 

Hint. Write P = Q + RPn , where Rand Q are polynomials of 
degree at most n - l. 

iii. Show that, for every i E {I, ... , n}, 

J [I (x - xj)2dp,(x) = Ai [I (Xi - Xj)2. 
J.,..l J.,..l 

Deduce that Ai > O. 

d. Now make n vary and denote by xin), ... , x~n) the roots of Pn and 
by (Aln), . .. , A~n)) the coefficients determined in the preceding ques­
tion. Show that, for every continuous function f on [a, bj, 

! f dp, = lim ~ A(n) f(x(n»). 
n--++oo L....J l l 

i=l 

Hint. Use Proposition 4.3 on page 19. 

9. Let D be a dense subset and (ei)iEI an orthonormal family in a scalar 
product space E. Show that there exists a surjection from D onto I. 
Deduce that any orthonormal family in a separable scalar product space 
is countable. 

10. Let g be the vector space spanned by the family of functions (er)rEIR 
from IR to C defined by er(x) = eirx . 

a. Show that, if f and 9 are elements of g, the value 

1 jT _ 
(f I g) = lim -T f(t)g(t) dt 

T--++oo 2 -T 

is well defined and that the bilinear form thus defined is a scalar 
product on g. 

h. Show that the family (e r )rEIR is a Hilbert basis of g, and that g is 
not separable (see Exercise 9 above). 

c. Let E be the Hilbert completion of g (Exercise 8 on page 104). Show 
that the family (er )rEIR (where we use the notation of Exercise 8 on 
page 104) is a Hilbert basis of E, and deduce that there exists a 
surjective isometry between E and £2(1R). 

11. Hilbert bases in an arbitmry Hilbert space 

a. Let E be a scalar product space. 
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i. Show that E contains a maximal orthonormal family (that is, an 
orthonormal family that is not strictly contained in any other). 
Hint. Use Zorn's Lemma (which is apparently due to Kuratowski), 
one of the various equivalent forms of the axiom of choice: 
Let -< be an order relation on a set £lI, satisfying the following 
condition: Every subset of £lI that is totally ordered by -< has an 
upper bound. Then £lI has a maximal element. 

ii. Show that if E is a Hilbert space every maximal orthonormal 
family is a Hilbert basis for E. (Use Corollary 2.5.) Thus, with 
the axiom of choice, every Hilbert space has a Hilbert basis. 

h. Let (ei)iEI and (!J)jEJ be Hilbert bases of a Hilbert space E. 

i. For j E J we write I j = {i E I : (ei I fj) =f. o}. Show that all the 
sets I j are nonempty and countable and that 1= UjEJ I j . 

ii. Deduce that there exists a bijection between I and J. 
Hint. Use Exercise 9 on page 6. 

c. Show that two Hilbert spaces are isometric if and only if there is a 
bijection between their Hilbert bases. In particular, e2 (I) and e2 (J) 
are isometric if and only if there exists a bijection between I and J. 

12. Let <P E L2((0, 1» be such that <p(t) + <p(t+~) = 0 for every t E (0, ~). 
Extend <p to a function periodic of period 1 on lR (also denoted <p). Then 
set <Po = 1 and, for every integer n ~ 1, set <Pn(t) = <p(2n- 1t). Show 
that (<Pn)nEN is an orthogonal family in L2((0, 1». 

13. Haar functions. Consider the family of functions (Hp)PEN defined on 
[0,1] by Ho = 1 and, for n E Nand 1 ::; k ::; 2n , 

{ 
ffn if x E ((2k - 2)2-n -1, (2k - 1)2-n - 1), 

H 2n+k-l(X) = -ffn if x E ((2k - 1)2-n -1, 2k x 2-n - 1), 

o otherwise. 

a. Show that (Hp)PEN is an orthonormal family in L2([0, 1]). 

h. Let f E L2([0, 1]) be such that Jo1 f Hp dx = ° for every pEN. Set 
F(y) = J~ f(x) dx. 

i. Show that, for every n E N and for every integer k such that 
1 ::; k ::; 2n , 

_F(2k - 2) 2F(2k -1) _ F(~) = o. 
2n+ 1 + 2n+1 2n+1 

ii. Deduce that F = o. (Note that F is continuous.) 

iii. Deduce that f = 0, then that (Hp)PE N is a Hilbert basis of 
L2([0,1]). 
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In the sequel we will write, for each integrable function f on [0, 1] 
and each pEN, 

p 

sp(f)(x) = 'LjqHq(x). 
q=O 

c. For pEN, we denote by .fp the set of maximal open intervals on 
which the functions Hq , with q ::; p, are constant: If p = 2n + k - 1 
with n E Nand 1 ::; k ::; 2n , 

{ (j -1 j)} {(2(j -1) 2j )} 
.fp = 2n+1' 2n+l U 2n+l' 2n+1 . 

1$j$2k k+1$j$2n 

(Note that .fp has p + 1 elements.) Moreover, let Fp be the set of 
functions defined on (0,1), constant on each interval I E .fp, and 
such that 

f(x) = Hf(x+) + f(x-)) for all x E (0,1), 

where f(x+) and f(x-} are the right and left limits of fat x. Show 
that (Hq)q$p is an orthonormal basis of Fp. 

d. Suppose f E L1([0, 1]). 

i. Take pEN. Denote by f* the element of Fp whose constant 
value on each interval I E .fp of length l(1) is 

l(~) 1 f(x) dx. 

Show that, for every nonnegative integer q ::; p, we have jq = JJ. 
Deduce that sp(f) = sp(f*). 

ii. Deduce that, for every integer pEN and every interval I E .fp, 

sp(f)(t) = l(~) 1 f(x) dx for all tEl. 

e. Let f E CIR([O, 1]). 

i. Take pEN. Show that, for every I E .fp, there exists a point 
XI E I such that 

sp(f)(t) = f(XI) for all tEl. 

ii. Deduce that, for every pEN, 

max ISp(f)(x) - f(x)1 ::; 
XE[O, l] 

sup{lf(x) - f(y)1 : x, y E [0,1], Ix - yl ::; 2/p}. 
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iii. Deduce that the series 1: jqHq converges uniformly to f in [0, 1]. 

14. Rademacher functions. For every integer n ~ 1 we define a function rn 
on the interval [0, 1] by 

{
I if x E «k - 1)2-n, k2-n) with 0 ~ k ~ 2n, k odd, 

rn(X) = -1 if x E «k -1)2-n, k2-n) with 2 ~ k ~ 2n, keven, 

o otherwise. 

~ 2n 1 Observe that Tn = (1/v2n - 1 ) 1:p=;n-l Hp , where the Hp are the Haar 
functions defined in Exercise 13. 
a. Show that (Tn}n>l is an orthonormal family in L2( [0,1]). Deduce 

that, if (an) E f2~the series 1:n>l anTn converges in L2([0, 1]) . 
h. i. Prove that, if f31, . . . , f3n are-nonnegative integers whose sum is 

p, we have 
(2p)! (f31)!." (f3n)! < pP 

p! (2f31)!' . . (2f3n)! - . 

ii. Let aI, ... , an be nonnegative integers and 

1= 101rrl(X) . . . T~n(X)dX . 

Show that I = 1 if all the aj are even and that I = 0 in any 
other case. 
Hint. Observe that, for every j ~ 1, we have T; = 1 almost 
everywhere; this allows us to reduce to the case where all the aj 
equal 0 or 1. 

iii. Let a1, . . . ,an be real numbers and set Sn = E;=l ajTj . Show 
that , for every pEN, 

10
1 

Sn(x)2p dx ~ pP (~a; r. 
c. Take (an) E [2 and let I be the sum in L2([0,1]) of the series 

En~l anTn · Show that f E LP([O, 1]) for every real p ~ 1. 

d. Let F be the closure in L2([0, 1]) of the vector space spanned by the 
sequence (rn)n~ l. 

i. Let G be the vector space spanned by the functions Ie : X f--+ x-e, 
where e < ~. Show that the projection PF.l. is injective on G. 
Hint. Use part c above and the equality 

G n ( n LP([O, 1])) = {O}. 
p2:1 

ii. Deduce that F.L has infinite dimension. 
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iii. Show that, for any finite family (r~)n~N in L2([0, 1]), the family 
(rn)n~l U (r~)n~N is not fundamental in L2([0, 1]). 

15. Let 1 be a function of class C 1 from [0, I] to C such that 1(0) = 1(1). For 
nEZ, set cn(l) = Jo1 l(x)e-2i7rnX dx. Show that the series of functions 
E!:-oo en (I)e2i7rnx converges uniformly on [0, I]. Then show that, for 
every x E [0,1]' 

+00 
I(x) = L cn(l)e2i7rnx. 

n=-oo 

Hint. Show that en (I') = 2i 7rnen (I) and, using Bessel's equality for 1', 
deduce that 

n=-oo 
16. a. Let 1 be a function of class C1 from [0, I] to C such that 1(0) = 1(1). 

Show that 

1111(x)12 dx -111 I(x) dxl2 ~ 4~21111'(x)12 dx 

and that equality takes place if and only if 1 is of the form I(x) = 
A + /-Le2i7rX + ve-2i7rx , with A, /-L, v E C. 
Hint. Use Bessel's equality, considering the Hilbert basis of L2«0, 1)) 
defined in Example 2 on page 124. 

h. Let 1 be a function of class C l from [0, I] to C. Show that 

1 111(x)12 dx -Ill I(x) dxl2 ~ :21llf'(x)12 dx 

and that equality takes place if and only if 1 is of the form I(x) = 
A + /-L cos 7rX, with A, /-L E C. 
Hint. Argue as in the preceding question, considering the even func­
tion from [-1, I] to C that extends J. 

c. Let 1 be a function of class C2 from [0, I] to C such that 1(0) = 
1(1) = 0. Show that 

t ll'(x)1 2dx ~ ~ [11f"(x)1 2dX 10 7r 10 
and that equality takes place if and only if 1 is of the form I(x) = 
A sin 7rX with A E C. 

d. Wirtinger's inequality. Let 1 be a function of class C l from [0, I] to 
C such that 1(0) = 1(1) = 0. Show that 

t ll(x)1 2dx ~ ~ [1If'(x)1 2 dx 10 7r 10 
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and that equality takes place if and only if I is of the form I(x) = 
>. sin 7rX, with>' E C. 
Hint. Extend I into an odd function. 

17. Biorthogonal systems. Let E be a Hilbert space. We say that two se­
quences (fn)nEN and (gn)nEN in E form a biorthogonal system in E if, 
for every i,j E N, 

{
I if i = j, 

(h , gj) = 0 if i ::j: j. 

Suppose that (en)nEN is a Hilbert basis of E and that (fn)nEN is a 
sequence in E such that, for every finite sequence (an )n:5N in 1K, 

where () is a real constant such that 0 ~ () < 1. 

a. Show that, for every lEE, the series E~:O (f' en)(en - In) con­
verges in E. Denote its limit by K f. 

h. Show that the map K thus defined is a continuous linear operator 
on E, of norm at most (). 

c. Set T = 1- K. Show that Ten = In for each n EN, and that T has 
a continuous inverse, which we denote by U. 

d. For each n E N, set gn = U*en. Show that the sequences (fn)nEN 
and (9n)nEN form a biorthogonal system in E. 

e. Show that, for every lEE, 

nEN nEN 

Deduce that the two families (fn)nEN and (9n)nEN are fundamental 
inE. 

f. Show that, for every lEE, 

18. Suppose that E is a separable Hilbert space and let (en) be a Hilbert 
basis of E. For every pair (x, y) of points in the closed unit ball B of E, 
set 

d(x,y) = f I (x-:n' en)l. 
n=O 
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a. Show that d is a metric on B and that a sequence (Xn) of points of 
B converges in (B, d) to a point x E B if and only if it converges 
weakly to x. 

b. Show that the metric space (B, d) is compact. 

19. Gram matrices and Gram determinants. Let E be a scalar product space 
over JR. If Xl, ... , Xp are elements of E, the Gram matrix of (Xl' ... ' Xp) 
is by definition the p x p matrix G( Xl, ... , xp) whose (i, j) entry is ai,j = 
(Xi I X j ). The determinant of this matrix is called the Gram determinant 
of the p-tuple (Xl, .. . , Xp). 
a. Show that the Gram determinant of a linearly dependent family of 

vectors in E vanishes. 
b. Suppose that the family (Xl, ... ,Xp) is free. Let {el, . . . ,ep } be an 

orthonormal basis of the vector space spanned by {Xl, ... , xp}. Let 
M = (mi,j) be the matrix of change of basis (thus Xj = Ef=l mi,jei 
if 1 ::::: j ::::: p). Show that G(Xl, ... , xp) = MT M, where MT denotes 
the transpose of M. Deduce that det G(Xl' ... ' xp) > 0. 

c. Let {Xl, . . . , xp} be a free family in E, spanning the subspace F. 
Show that, for every X E E, 

Hint. Let y be the orthogonal projection of X onto F. In the calcu­
lation of det G(x, XI. ... , xp), replace X by (x - y) + Y and use the 
fact that the determinant depends linearly on the first column. 

d. i. Let al, ... , ap be positive reals and A the p x p matrix whose 
(i,j) entry is ai,j = 1/(ai+aj). Show that 

p ()2 detA=2-PIT~ IT aj-ak 
a· a· + ak j=l J lSj<kSp J 

Hint. Work by induction. 

ii. Suppose that E = L2 «0,1)). For every nonnegative real num­
ber T, define an element Ir of E by Ir(x) = xr. Let Tl, . .. , Tp 
be pairwise distinct nonnegative reals and let F be the vector 
space spanned by the functions Ir\, ... , Irp. Show that, for every 
integer n EN, 

p ( )2 d2 F __ 1_ n-Tj 
Un, ) - 2n + 1 IT n + T' + 1 

J=l J 

20. Muntz's Theorem. Let (rp)PEN be a strictly increasing sequence of non­
negative reals. For any real number r ~ 0, denote by Ir the function 
defined on [0,1] by Ir(x) = xr. 
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a. Consider the space E = L2((0, 1)) with its Hilbert space structure. 

i. Show that the family (frp)PEN is fundamental in E if and only 
if, for every integer n EN, 

where Fp is the vector space spanned by (frj )o~j~p" 
Hint. Start by showing that the family (fn)nEN is fundamental. 

ii. Show that the family (frp )PEN is fundamental in E if and only if 

L1/rp = +00. 
p:::>:l 

Hint. Calculate log (d(fn, Fp)) using Exercise 19d-ii. 

h. We now place ourselves in the space H = CIR([O, 1]), considered with 
the uniform norm. 

i. Suppose the family (frp)PEN is fundamental in H. Show that 
LP:::>:l 1/rp = +00. 

ii. Conversely, suppose that Lp:::>:l 1/rp = +00, ro = 0, and rl ~ 1. 

A. Show that L:p:::>:21/(rp-1) = +00. Deduce that the space of 
C l functions on [0, 1 J vanishing at 0 is contained in the closure 
of the vector subspace of H spanned by the family (frp )PEN' . 
Hint. Let J be a C l function vanishing at O. Approximate 
f' in the space L2((0, 1)) by linear combinations of functions 
Jrp-l . 

B. Deduce that the family (frp)PEN is fundamental in H. 

21. Hilbert-Schmidt operators. Let E be an infinite-dimensional separable 
Hilbert space. 

a. i. Let (en)nEN and (fP)PEN be Hilbert bases for E. Show that, for 
T E L(E), 

+00 +00 

L IITen ll 2 = LilT· Jp II2 S; +00. 
n=O p=O 

Deduce that 
+00 +00 

L IITen l1 2 = L IITJp I12. 
n=O p=O 

We fix from now on a Hilbert basis (en)nEN for E and we denote 
by .JIt'(E) the vector space consisting of T E L(E) such that the 
expression IITII2 = (L:~:O IITen Il 2)l/2 is finite. Such a T is called 
Hilbert-Schmidt operator on E . 
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ii. Show that .Ye(E) i- L(E) and that IITII ~ IITI12 for every T E 
.Ye(E). Show that II ·112 is a norm on .Ye(E) , with respect to 
which .Ye(E) is a Hilbert space. This is called the Hilbert-Schmidt 
norm. 
Show that any element T in L(E) of finite rank (that is, such 
that im T is finite-dimensional) is Hilbert-Schmidt. 
Hint. Consider a Hilbert basis of E that is the union of a basis 
of ker T and a basis of (ker T).L. 

iii. Take T E .Ye(E). For n ~ 0, denote by Pn the operator of 
orthogonal projection onto the span of {ej : 0 ~ j ~ n}. Show 
that, for every positive integer n, the composition T Pn belongs 
to .Ye(E), and that limn-Hoo liT - TPn l1 2 = o. Deduce that the 
set of operators of finite rank is dense in .Ye(E). 

h. Suppose that E = L2(m), where m is a O"-finite measure on a measure 
space (n, $) (such that L2(m) is separable). Choose a Hilbert basis 
(en)nEN for E. 
i. Show that the family (en,p)n,PEN defined by en,p = en ® ep is a 

Hilbert basis for L2(mxm). (Recall the notation (en®ep)(x, y) = 

en(x)ep(Y).) 
Hint. See Exercise 7 on page 110. 

H. Consider K E L2(m x m), and let TK be the operator from E to 
E defined by 

TKf(x) = f K(x, y)f(y) dm(y) for all fEE. 

For (n,p) E N2, set 

kn,p = (K I en,p) = (TKep I en), 

where we use the same notation for the scalar products in L 2 (mJ 
and L2(m x m). Show that 

and so that TK E .Ye(E). 
iii. Conversely, take T E .Ye(E). For n,p E N we write kn,p 

(Tep I en). 
A. Show that Ln,PEN Ikn,pl2 < +00. 
B. Let K be the element of L2(m x m) defined by 

K = L kn,pen,p. 
n,pEN 

Show that T = TK. Hence, the map K H TK is a surjective 
isometry from L2(m x m) onto .Ye(L2(m)). 



4 
V Spaces 

1 Definitions and General Properties 

We first establish the notation and definitions that we will use throughout 
this chapter. The most basic results are recalled without proof; the reader 
can consult, for example, the first part of Chapter 3 of W . Rudin's Real 
and Complex Analysis (McGraw-Hill). 

We consider a measure space (X,$) - that is, a pair consisting of 
a set X and a O"-algebra $ - and a measure m on $. For every real p 
in the range 1 :::; p < 00, we define .if~(m) as the space of $-measurable 
functions f from X to II{ such that J IflP dm < +00. We denote by.ifK(m) 
the space of $-measurable functions f from X to II{ for which there exists 
a nonnegative real number M (depending on f) such that if(x)i :::; M 
m-almost everywhere. We can leave II{ and/or m out of the notation when 
there is no danger of confusion. 

By extension, a function f with values in II{ and defined m-almost every­
where on X is said to belong to .if~(m) if it equals m-almost everywhere 
some function of .if~(m) in the original sense. 

In the study of these spaces .ifP, an essential role is played by the Holder 
inequality, a generalization of the Schwarz inequality (which corresponds 
to the case p = p' = 2). 

Theorem 1.1 (HOlder inequality) Suppose p, p' E (1, 00) satisfy 

1 1 
-+-=l. 
p p' 
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(We say that p and pi are conjugate exponents.) If f E 271 and 9 E 2 71' , 
the product Ig lies in 21 and 

( )
1/71 ( )1/71' f 1191 dm ~ f 1/171 dm ! IglP'dm 

We define the vector space Lk(m) as the quotient vector space of 2nf(m) 
by the equivalence relation !!i of equality m-almost everywhere (in other 
words, we identify in LP functions that coincide m-almost everywhere). The 
vector space L~ (m) is a lattice. Except when explicitly stated otherwise, 
our notation will not distinguish between an element of U(m) and its 
representatives in 2 p (m). 

If 1 E L~(m) with 1 ~ P < 00, we define 

if I E L~(m), we set 

1111100 = min{M:::=: 0: Ifl ~ M m-almost everywhere}. 

Obviously, these expressions do not depend on the representative chosen 
for I. One can show that, for 1 ~ P ~ 00, the map 11·1171 thus defined is a 
norm on L~(m). 

By convention, 1 and 00 are conjugate exponents. The Holder inequality 
can be rephrased as follows: 

Proposition 1.2 Let p and pi be conjugate exponents with 1 ~ p, pi ~ 00. 

For every f E L~(m) and 9 E L~(m) we have Ig E Lk(m) and 

Illglll ~ Ilfl\p I\glipl • 

Example. In the remainder of this chapter, we will say simply that "m is 
a Radon measure" to mean that X is a locally compact and separable 
metric space, $ is the Borel a-algebra on X , and m is a positive Radon 
measure on X, considered as a Borel measure. In this situation, for every 
IE Cb(X), 

11/1100 = sup{lf(x)1 : x E Suppm}. 

Suppose moreover that the support of m equals X. Then Ilflloo = 11/11 
for every function f E Cb(X), where Ilfll, as usual, is the uniform norm 
of 1 on X. In other words, the map that associates to an element f of 
Cb(X) (with the uniform norm) its class modulo !il: is an isometry (and 
in particular an injection) from Cb(X) to LOO(m) (with the norm 11·1\00)' 
If I is a Borel function, there exists a greatest open set 0 of X such 
that I(x) = 0 for m-almost every x of 0 (to see this, one might reason 
as in the proof of Proposition 3.1 on page 68). The complement of 0 is 
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called the essential support of I. If I is continuous, we see that the 
essential support of I is exactly the support of I (thanks to the assumption 
Suppm = X). Moreover, by definition, two Borel functions that coincide 
almost everywhere have the same essential support. Hence we can define 
without ambiguity the essential support of a class modulo [fl as the essential 
support of any of its representatives. In the sequel, if I is a class of functions 
modulo [fl, we will refer to the essential support of I as simply the support 
of I, and we will denote it by Supp I as well. 

One fundamental property of the LP spaces is completeness: 

Theorem 1.3 (Riesz-Fischer) Ill::; p ::; 00, the space L~(m) with 
the norm II . lip is a Banach space. 

Now suppose I is a set, ~ = &'(I) is the discrete 17-algebra on I, and m 
is the count measure on I (Example 5 on page 99). Then the space L~(m) 
(with X = I) is denoted by iP(I), or more simply by i P if 1= N (compare 
Exercises 7 on page 11 and 8 on page 12). In this case, 

1 ::; p 5: q ::; 00 => ik(!) C f~(I) 

and Ilxllq ::; IIxllp for every x E ik (I). 
By contrast, when m has finite mass (m(X) < 00), the inclusions go in 

the opposite direction: 

15: p 5: q 5: 00 => L~(m) C L~(m) 

and, for every I E L~(m), 

as can be checked using the HOlder inequality. 
More generally, we have the following interpolation result: 

Proposition 1.4 II JELl n Loo, then IE LP lor every p E (1,00), and 

In addition, ill::; p < 00, £1 n Loo is dense in LP. 

Proof If I E Loo and 1 < p < 00, we clearly have I/IP ::; 1/11I11I~1 
m-almost everywhere, which proves the first assertion of the proposition. 

Now suppose that 1 5: p < 00 and that I E LP. Since IIIP is a positive 
integrable function, there exists an increasing sequence (CPn)nEN of positive, 
integrable, piecewise constant functions that converges almost everywhere 
to IIIP. Set 

a(x) = {I(X)I/I(X)/ if I(x) =I 0, 
o if I(x) = o. 
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Then the sequence (a'P~/p) is a sequence in Ll n LOO that converges almost 
everywhere to f, being bounded above in absolute value by If I· By the 
Dominated Convergence Theorem, this sequence converges to f in LP. 0 

Remark: denseness of piecewise constant functions in LP. The preceding 
proof shows also that, if p E [1, +00), every positive element of LP is the 
limit in LP of an increasing sequence of positive, integrable, piecewise con­
stant functions. By taking linear combinations, we deduce that integrable 
piecewise constant functions are dense in LP for p E [1, +00). Note that 
this is false if p = 00 and if m has infinite mass (see Exercise 8 below). 
Nonetheless, one sees easily that every positive element f of Loo is the 
limit in Loo of an increasing sequence of (not necessarily integrable) posi­
tive piecewise constant functions. For example, one can take the sequence 
(fn)nEN defined by 

2n_l 

fn = M L k2-n 1{Mk2-n <f~M(k+l)2 -n}, 
k=O 

with M = 1111100' It follows that the set of piecewise constant functions is 
dense in LOO. 

We now study other denseness results. We start with a convenient ele­
mentary lemma. 

Lemma 1.5 For each nonnegative real a, define a map ITa : OC -+ OC by 
setting ITo(x) = 0 and 

ax 
ITa(x) = ( ) if a > O. max a,lxl 

Then, for every x E OC, we have IITa(X)1 ~ min (a, Ixl) and, if Ixl ~ a, then 
ITa(x) = x. Moreover, 

IITa(X) - ITa(Y)1 ~ Ix - yl for all x, y E OC. 

Proof It is clear that ITa is exactly the projection map from the canonical 
euclidean space R. (or the canonical hermitian space C, as the case may 
be) onto B(O, a) . The claims made are then obvious; the last of them can 
be seen as a particular case of Proposition 2.2 on page 106. 0 

The following theorem generalizes Proposition 2.6 on page 107, which 
represents the case p = 2. 

Theorem 1.6 If m is a Radon measure, the space Cc(X) is dense in 
LP(m) for 1 ~ P < +00. 
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Proof The case p = 1 was proved in Chapter 2, Proposition 3.5 on page 70. 
Suppose 1 < p < 00. By Proposition 1.4, it suffices to approximate I E 
L1 n L<XJ in the sense of the II · llp norm. Thus, fix I E L1 n L<XJ and let ('Pn) 
be a sequence in Cc(X) that converges to I in L1. Set 1/Jn = lIlIflloo ('Pn), 
using the notation of Lemma 1.5. Then 1/Jn E Cc(X) and 

Now I = lIlIfHoo (I) and so, since by Lemma 1.5 the maps lIa are contract-
ing, 

which proves the result. o 

Remark. If m is a Radon measure of support X, the closure of Cc(X) in 
L<XJ(m) is Co(X) (which is distinct from L<XJ(m) if X is infinite). 

Corollary 1.7 11m is a Radon measure, the space LP(m) is separable lor 
1 ~ P < 00. 

Proof Let (Kn) be a sequence of compact sets exhausting X. Since 

Cc(X) = U CK" (X), 
nEJII 

it suffices, by the preceding theorem, to show that each CK " (X) is separable 
with respect to the II· lip norm. But CK" (X) is separable with respect to 
the uniform norm II ,11, and 1IIIIp ~ 11111 m(Kn )1 fp for every I E CK" (X). 
This proves the result. 0 

Remark. The assumption that X is separable is essential in Corollary 1. 7. 
For example, if I is an uncountable set, the space lP(I) is not separable, 
by Exercise 8 on page 12. 

Note also that the space L<XJ is not separable in general; see Exercise 10 
below. 

Exercises 

We consider in these exercises a measure m on a measure space (X, $). 

1. Spaces LP lor 0 < p < 1. Take p E (0,1) . Define the space LP as the set 
of equivalence classes (with respect to equality m-almost everywhere) 
of $-measurable functions I from X to )[{ for which the expression 

Illp = f IIIP dm 

is finite. 
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a. Show that LP is a vector space and that the formula dp(f, g) = II-glp 
defines on LP a metric that makes LP complete. 

h. Suppose that X is an open set in Rd, for d ;:::: 1, and that m is the 
restriction to X of Lebesgue measure on ]Rd. 

i. Show that bounded Borel functions with compact support are 
dense in (LP, dp ). 

ii. Let I be a bounded Borel function on X with compact support, 
and suppose that r > O. Show that I lies in the closed convex hull 
c(B(O,r)) of the ball B(O,r) of LP (see Exercise 9 on page 18). 
Hint. Let K be a parallelepiped in ]Rd containing the support 
of I. Write I in the form 

1 n 

1= - "nllK., n L.J • 
i=l 

where (Kih~i~n is a partition of K n X into n Borel subsets, 
each of measure at most A(K) In. Check that, for n large enough, 
all the functions nllK. belong to B(O,r). 

iii. Deduce that c(B(O,r)) = LP for every r > O. 

2. a. Let p, q, r be real numbers in [1,00) satisfying l/r = l/p+ l/q. Show 
that, if IE LP and 9 E Lq, then Ig E U and 

h. Let I be an $-measurable function from X to 1K. Show that the set 
J defined by 

J = {p E [1,+00) : 0 < f IIIPdm < +oo} 

is a (possibly empty) interval. 
Hint. If r E [p, q] and I E LP n Lq, introduce the real number x E 
[0,1] such that l/r = (x/p) + (l-x)/q. 

c. Let (X, $) be ]R with its Borel IT-algebra, and let m be Lebesgue 
measure. For each p E [1,00]' find an element of LP that belongs to 
no other Lq, for q i- p. 

d. Show that the map from J to ]R defined by 

pM log (f 111Pdm) 

is a convex function. 
e. Show that, for every q E [1,00), 

LqnLoo c n LP 
q~p~oo 
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and that, for every / E Lq n Loo , 

lim II/lip = 11/1100. p-++oo 

Hint. Show that ° < a < 11/1100 implies a ~ lim infp-+oo II/lip. 
3. Take p E (1,00) and let p' be the conjugate exponent of p. Let K 

be a nonnegative-valued Borel function on (0, +00)2 satisfying these 
conditions: 
- xK(xy,xz) = K(y,z) for all x,y,z E (0,+00). 

- 1+00 K(l,z)Z-l/Pdz = k < +00. 

a. Show that 1+00 K(z, l)Z-l/P' dz = k. 

b. Show that the equation 

T/(x) = 1+00 K(x,y)/(y)dy 

defines a continuous linear operator from LP«O, +00)) to itself, of 
norm at most k. 
Hint. First find an upper bound for jT/(x)l, by writing 

K(x, y) = K(x, y)l/p (~) l/w'K(x, y)l/P' (;) l/W' 

and using the Holder inequality. 
c. Suppose in addition that K(l, z) ~ 1 for every z > 0. If c; > 0, set 

kg = 1+00 K(l,z)z-(He)/Pdz, 

/e(X) = l{X~l} x-(Hg)/p, ge(X) = l{x~l} x-(Hg)/p' . 

Check that /e E L1'«O, +00» andge E LP'«O, +00»; then show that, 
for every c; < p/2p', 

1+00 T/e(X)ge(X) dx ~ (kg - 2(p')2C;) II/gllp 11gellp'· 

Deduce that IITII = k. 
d. Show that the maps K defined by K(x, y) = l/(x+y) and K(x, y) = 

l/max(x, y) satisfy the assumptions above for every p E (1, +00). 
Compute the norm of the operator T in these two cases. Recall that, 
for a > 1, 

1+00 ~ = ~sin~. 
o 1 +xQ a a 

(See also Exercise 17 on page 228.) 
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4. Let m and n be a-finite measures on measure spaces (X, $) and (Y, ~), 
and let K be a nonnegative-valued function on X x Y, measurable with 
respect to the product a-algebra $ x f#. Take r, s E [1,00) such that 
s :=:; r. We wish to prove the following inequality: 

([ (Ix K(x, y)8 dm(x) rl8 dn(y)) l/r 

:=:; (Ix ([ K(X,yrdn(y)y/r dm(x)YI8(:=:; +00). (*) 

a. Suppose that s = 1 < r, that K is bounded, and that m and n have 
finite mass. Put 

a = [ (Ix K(x, y) dm(x) r dn(y) < +00, 

b = Ix ([ K(X,yrdn(y)Y/rdm(X) < +00. 

i. Show that 

a = Ix ([ K(x,y)(1x K(X"Y)dm(X')r-1dn(y)) dm(x). 

ii. Applying the Holder inequality to the integral over Y, prove that 
a:=:; ba1/r', where r' is the conjugate exponent of r. 

iii. Deduce (*) in this case. 
h. Show that (*) holds in general if s = 1 :=:; r. 
c. For s arbitrary, reduce to the preceding case by setting k = K8 and 

r = rjs. 
s. We suppose that m is a-finite and fix p E [1, +00). 

a. Let 9 be a measurable function on X such that I 9 E LP for every 
IE LP. Show that 9 E Loo . 
Hint. Show that otherwise one can construct a sequence (Xn)nEN of 
pairwise disjoint measurable subsets of X, each with finite positive 
measure and such that Igl > 2n almost everywhere on X n . Then 
consider the function I defined by 

1= L 1xn r n m(Xn )-1/p. 

nEN 

Show that I E LP and that I 9 <t LP. 
h. For gEL 00 we define a continuous operator Tg on LP by Tg (f) = 9 I. 

Let T be a continuous operator on LP that commutes with all the 
Tg, for 9 E Loo. Show that there exists hE Loo such that T = Th • 

Hint. Construct a positive-valued function 9 such that 9 E LPnLOO. 
Let h = T(g)jg. Show that T(f) = hi for every I E £P n Loo; then 
conclude. 
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6. Suppose that m is a-finite. Let p and r be real numbers such that 
1 ~ r < p, and let 9 be a measurable function such that I 9 E £T for 
every I E LP. 

a. Show that the map <P : I I-t I 9 is continuous from LP to £T. 
Hint. Show that otherwise there exists a sequence Un)n>1 of positive 
functions of £P such that, for every n ~ 1, Il/nllp ~ 1 and Il/ngllr ~ n. 
Then prove, on the one hand, that the function h = L:~:;' n-2 I~ is 
in LP/r and therefore that I = hI/r is in LP, and on the other hand 
that Ig (j. £T. 

h. Deduce that 9 E Lq, where q is given by l/r = l/p+ l/q. 
Hint. Let (An)nEN be an increasing sequence of e:ements of ff with 
finite measure and such that UnEN An = X. Put 

gn = (inf(lgl, n)) IAn. 

Show that 

(J g~dm )I/r ~ II<PII(J g~dm )I/P. 

7. An ordered set (E,~) is called a conditionally complete lattice if every 
nonempty subset of E that has an upper bound has a supremum (least 
upper bound) in E, and every nonempty subset that has a lower bound 
has an infimum in E. 
We consider the space E = L~, for 1 ~ P ~ 00, with the natural order 
defined by 

I ~ 9 {=o} I(x) ~ g(x) m-almost everywhere. 

a. Suppose p = 1. Let ilf be a nonempty family in Li bounded above, 
and let <P/ be the set of its upper bounds. 

i. Show that the expression a = inf {J I dm : I E <P/} is finite. 
ii. Show that there exists a decreasing sequence Un) in tf/ such that 

lim Jln dm = a. 
n-t+CXJ 

Let I be the almost-everywhere limit of Un). Show that IE tf/ 
and that J I dm = a. 

iii. Deduce that I is the supremum of ilf in Li, and so that Li is a 
conditionally complete lattice. 
Hint. If 9 E <P/, show that J inf(f, g) dm = a and deduce that 
I ~ g. . 

h. Suppose that 1 < p < 00. Show that L~ is a conditionally complete 
lattice. 
Hint. If ilf is a nonempty family in L~ bounded above, the set 
{! I/IP-I : I E ilf} is contained in Li. 
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c. i. Show that if m is a-finite L'i' is a conditionally complete lattice. 
Hint. Start by dealing with the case where m has finite mass 
(then LOO c £1). 

ii. Show that this result may be false if m is not a-finite. 
Hint. Take two uncountable disjoint sets A and B. Let X be 
their union, let $ be the set of subsets of X that are countable 
or have countable complement, let m be the count measure on 
$, and set Jd = (l{x})xEA' 

d. Let E be the quotient of the space of $-measurable real functions 
by the relation of equality m-almost everywhere. Give E the natural 
order defined earlier. Show that, if m is a-finite, E is a conditionally 
complete lattice. 
Is the space of $-measurable real functions with the natural order 
a conditionally complete lattice? 

8. Prove that the set of integrable piecewise constant functions is dense in 
Loo if and only if m has finite mass. 
Hint. Take 1 = 1. If m has infinite mass, any integrable piecewise con­
stant function s lies at a distance I/s - 11100 2: 1 from f. 

9. Prove that Ll n Loo is dense in LOO if and only if m has finite mass. 
10. Consider the following property: 

(P) There exists an (infinite) sequence of $-measurable, pairwise dis­
joint subsets of X of positive measure. 

a. Show that, if (P) is satisfied, Loo is not separable. 
Hint. You can use as inspiration the £00 case in Exercise 7 on page 11. 

h. Suppose (P) is not satisfied. Define an atom as any $-measurable 
subset A of positive measure that does not contain any subset B E $ 
with m(B) > 0 and meA \ B) > O. 

i. Show that every measurable subset of X with nonzero measure 
contains at least one atom. 
Hint. Consider the relation ~ defined on the set Jd of elements 
of $ of nonzero m-measure by 

A ~ B {=:> m(B \ A) = O. 

Apply Zorn's Lemma (see Exercise 11 on page 133) to the or­
der relation induced by ~ on the quotient set Jd/~, where ~ is 
equality almost everywhere: 

A ~ B {=:> m(B \ A) = meA \ B) = 0 {=:> A ~ Band B ~ A. 

You might show, in particular, that every totally ordered subset 
of P1;~ has a greatest element. 

ii. Show that there exists a finite sequence (Xn)n::;no of atoms such 
that m(X \ Un::;no Xn) = 0 and 

m(Xn n Xm) = 0 for n =1= m. 
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iii. Show that every § -measurable function coincides m-almost ev­
erywhere with a linear combination of functions 1xn, for n ~ no· 

c. Show the equivalence of the following properties: 

i. (P) is not satisfied. 
ii. Loo has finite dimension. 

iii. Loo is separable. 

iv. Every § -measurable function belongs to 2 00 . 
11. Let L be a vector subspace of 2J (m) n 2rrr (m) satisfying these hy­

potheses: 

- There exists an increasing sequence (<Pn) in L that converges to 1 
m-almost everywhere. 

- The a-algebra a(L) generated by L equals §. 

- PEL for all I E L. 

a. Give the space Li{m) n Lr(m) the norm 11·111 + 11·1100 and denote 
by L the closure of L in that space. Show that I E L implies III E L. 
Deduce that III E L for all I E L. 
Hint. Use the example on page 29 and argue as in the proof of 
Theorem 2.3 on page 33. 

h. Show that L is dense in Ll(m). 
Hint. Apply Proposition 2.4 on page 63. 

c. Deduce that L is dense in L~ (m) for 1 ~ P < 00. 
Hint. If I E L~ (m), you might show that, for every n EN, the 
function sup(inf(f,n<p~), -n<p~) can be approximated in L~(m) by 
a sequence in L. 

12. Let m and jJ, be a-finite measures on measurable spaces (X, §) and 
(Y, ~), and suppose p E [1,00). We denote by LP(m) &;LP(jJ,) the vector 
subspace of LP(m x jJ,) spanned by the functions (x,y) f--7 I(x)g(y), 
with I E U(m) and 9 E LP(jJ,). Show that LP(m) &; LP(jJ,) is dense in 
LP(m x jJ,). This generalizes the result of Exercise 7 on page 110. 
Hint. Apply the result of Exercise 11 above to the measure m x jJ, and 
the space L = (2J(m) n2rrr(m)) &; (2J(jJ,) n2rrr(/L))· 

13. Assume m is a-finite. 
a. Suppose the a-algebra § is separable, that is, generated by a count­

able family of subsets of X. 

i. Show that there exists a countable family ~ of elements of § 
satisfying these conditions: 

- a(f?l) = §, where a(~) is the a-algebra generated by ~. 
- An B E ~ for all A, B E ~. 

- m(A) < +00 for all A E ~. 

- There exists an increasing sequence of elements of ~ whose 
union equals X. 
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ii. Show that the family {1 A} AE~ is fundamental in LP, for 1 < 
p < 00. 
Hint. Apply Exercise 11 above. 

iii. Deduce that, if 1 S p < 00, the space LP is separable. 

iv. Show that, if X is a separable metric space, the Borel a-algebra 
tb'(X) is separable. Derive hence another prooffor Corollary 1.7. 

b. We say that a a-algebra $ is almost separable if there exists a sep­
arable a-algebra $' contained in $ such that, for all A E $, there 
exists B E $' with 

m(A \ B) = m(B \ A) = o. 

i. Show that, if § is almost separable, the space LP is separable 
for every p E [1,00). 
Hint. Use part a. 

ii. Show that if there exists p E [1,00) such that LP is separable, $ 
is almost separable. 
Hint. Consider the a-algebra generated by a sequence of ele­
ments of ,!L>P whose corresponding classes are dense in LP. 

iii. Show that § is almost separable if and only if there exists a 
sequence (An)nEN of measurable subsets of X of finite measure 
such that the sequence (IAn )nEN is fundamental in L1. 

iv. Let $f be the set of elements of $ of finite measure, modulo 
the relation of equality m-almost everywhere. If A, B E §f, we 
write d(A,B) = m(A~B), where A~B = (AUB) \ (An B). 
Show that d makes $f into a complete metric space, separable 
if and only if the a-algebra § is almost separable. 
Hint. ($f, d) can be identified with the subset of £1 consisting 
of (classes of) characteristic functions of elements in $, with the 
metric defined by the norm II . Ill. 

14. Assume p E [1,00). 
a. Let Y' be the set of finite families (An)n~no in $ such that 

- m(An n Am) = 0 if n =1= m, and 

- 0 < m(An) < 00 for every n S no. 

If 01 = (An)n<no is an element of Y', we define an operator Td on 
LP by 

Show that T d is a continuous linear operator on LP, of norm at 
most 1. 

h. If 01 and !Jg are elements of fJ1J, write .s# ~ tb' if every element of tb' 
is contained, apart from a set of measure zero, in an element of 01, 
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and if every element of Jd is, apart from a set of measure zero, the 
union of the elements of flJ contained in it. 
Let Jd = (An)n::;no be an element of fJIJ and let f be a linear com­
bination of functions lA", for n :::; no. Show that, for every flJ E fJIJ 
such that Jd ~ flJ, we have Tgjjf = f. Deduce that, for every c > 0 
and every f E LP, there exists Jd E fJIJ such that 

Hint. Use the fact that the set of integrable piecewise constant func­
tions is dense in LP (see the remark on page 146). 

c. Assume that m has finite mass and that there exists a sequence (Jdn ) 

of fJIJ increasing with respect to ~ and such that .#0 = {X} . Assume 
also that UnEN Jdn generates $ (you can check that there is such a 
sequence if the a-algebra $ is separable: see Exercise 13). Denote by 
Sl'n the set of piecewise constant functions that are constant on each 
element of Jdn. Show that Un Sl'n is dense in LP for 1 :::; p < 00. (You 
could use Exercise 11, for example) . Deduce that, for every f E LP, 
the sequence (T.Il1"f) converges to f in LP. 
Example. Choose for X the interval [0, 1 J, for m the Lebesgue mea­
sure on X, and for $ the Borel u-algebra of X. Find a sequence 
(Jdn ) satisfying the conditions stated above. 

15. We say that a sequence (fn)nEN of $-measurable functions converges 
in measure to a $-measurable function f if, for every c > 0, 

m({x EX : Ifn(x) - f(x)1 > c}) -+ O. 

a. Assume p E [1,00). 
i. Bienayme- Chebyshev inequality. Take f E LP. Show that, for 

every 8 > 0, 

m({x EX: If(x)1 > 8}) :::; 8-Pllfll~· 

ii. Let (fn) be a sequence of elements of LP that converges in LP to 
f E LP. Show that the sequence (f n) converges to f in measure. 

h. Let (fn) be a sequence of measurable functions that converges in 
measure to a measurable function f. 

i. Show that there exists a subsequence (fn.) such that, for every 
kEN, 

ii. For each kEN, let Zk be the subset of X defined by 

Zk = U {x EX: Ifnj{x) - f(x)1 > 2-i}. 
i?,k 

Then set Z = nkEN Zk. Prove that m(Z) = O. 
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iii. Deduce that the sequence (Ink) converges to I m-almost every­
where. 

iv. Show also that, for every e > 0, there exists a measurable subset 
A of X of measure at most e and such that the sequence (Ink) 
converges uniformly to I on X \ A. 
Hint. Choose A = Zk, with k large enough. 

c. Suppose m(X} < +00. Let (In) be a sequence of measurable func­
tions that converges m-almost everywhere to a measurable function 
I. Show that the sequence (In) converges in measure to f. 
Hint. Take e > O. For each integer N EN, put 

AN = {x EX : I/n(x) - l(x)1 ~ e for all n ~ N}. 

Show that there exists an integer N E N for which m(X \ AN) < e, 
and therefore that m(X \ An) < e for every n ~ N. 
Deduce that, for every integer n ~ N, 

m({x E E: I/n(x) - l(x)1 > e}) < e. 

16. Suppose p E [1,00]. Let (In}nEf\! be a sequence in LP such that the series 
L:nEf\! IIln - In+llip converges. Show that the sequence (In) converges 
almost everywhere and in LP. 
Hint. Suppose first that m(X) is finite and prove that in this case 

J 2: lin - In+lldp. < +00. 
nEN 

If m is arbitrary and p < 00, check that the set {x EX: In(x) =I 0 
for some n E N} is a-finite. 

17. Equiintegrability. Assume p E [1,00}. A subset.J't' of LP is called equi­
integrable 01 order p if for every e > 0 there exists 8 > 0 such that, for 
every measurable subset A of X of m-measure at most 8, 

L I/IP dm ~ e for all I E .J't'. 

a. i. Show that every subset .J't' of LP for which 

lim ( I/IP dm = 0 uniformly with respect to IE.J't' (*) 
n-t+oo J{lfl>n} 

is equiintegrable of order p. Deduce that every finite subset of LP 
is equiintegrable of order p. 
Show that, conversely, every bounded subset .J't' of LP that is 
equiintegrable of order p satisfies (*). 
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ii. Take £ c LP. Suppose there exists an element g E LP, nonneg­
ative m-almost everywhere, such that, for every I E £, we have 
III :::; g m-almost everywhere. Show that £ is equiintegrable of 
order p. 

iii. Let (fn)nEN be a sequence in LP that converges in LP to I. Show 
that the family (fn)nEN is equiintegrable of order p. 
Hint. You might check that, if A is a measurable subset of X, 
then 

h. We now assume that m has finite mass. 

i. Let (fn)nEN be a sequence in LP and let I E LP. Show that 
the sequence (fn)nEN converges to I in LP if and only if these 
conditions are satisfied: 

- The sequence (fn)nEN converges in measure to I (see Exercise 
15 above for definition). 

- The family {fn}nEN is equiintegrable of order p. 

ii. Let (fn)nEN be a sequence of elements of LP that converges in 
measure to a function I. Assume that there exists g E LP such 
that Ifni :::; Igl for every n E N. Show that I E LP and that the 
sequence (fn) converges to I in LP. 

iii. Let (fn)nEN be a bounded sequence in LP that converges almost 
everywhere to a function I. Check that I E LP. Then show that, 
for every real q E [1,p), we have limn-too IIln - IIIq = O. 
Hint. Note that if A is a measurable subset of X and if g E LP, 
then fA Iglq dm :::; IIgll~ m(A)l-q/p. 

18. Uniformly convex spaces. A Banach space E is called uniformly convex 
if it has this property: 
If (xn) and (Yn) are sequences in the closed unit ball B(E) of E satisfying 
IIxn + Ynll -+ 2, then IIxn - Ynll -+ o. 
a. Show that every Hilbert space is uniformly convex. 
h. Show that, for n ~ 2, the space IRn with the norm II . lit or the norm 

II . II 00 is not uniformly convex. 
c. Let E be a uniformly convex space. Show that every nonempty con­

vex closed subset of E contains a unique point of minimal norm. 
d. Let E be a uniformly convex space. 

i. Let I be a linear form on E of norm 1 and let (xn) be a sequence 
of elements of E of norm 1. Show that, if I(xn) -+ 1, the sequence 
(xn) converges. 
Hint. You might show that (xn) is a Cauchy sequence, using the 
fact that f(xn + xm) -+ 2 when n, m -+ +00. 
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ii. Deduce that the absolute value of any continuous linear form on 
E attains its maximum in the closed unit ball of E. 

e. Assume p E (1,00). 

i. Show that 

IX;yr::; IxIP;lyIP forallx,yEC. (*) 

ii. Set 0 = {z E C : I z I ::; I}. Show that the function cp defined on 
o by 

11 + ziP 
cp(z) = 1 + Izlp 

is continuous from jj to [0,2P- 1j and that <p(z) = 2P- 1 if and 
only if z = 1. Deduce that, for every 1/ > 0, there exists 8(1/) > 0 
such that, for every (x,y) E 0 2 with Ix - yl 21/, 

iii. Take e > 0 and let I and 9 be points in the closed unit ball of 
LP such that III - gllp 2 e. Set 

E = {x EX: I/(x) - g(x)1 ~ e2-2/ p max(l/(x)l, Ig(x)l)} . 

A. Show that r II - glP dm ::; ePj2. Deduce that lX\E 
r I/IP+lgIP dm>~. 

lE 2 -2 · 2P 

(You might use (*) with x = I and y = -g.) 
B. Show that 

II I ; 9 II: ::; 1 -8 C:/p) 2::1 ' 

where 8 is as in part e-ii above. 
Hint. Use (*) in X \ E and the conclusion of e-ii in E , taking 
1/ = e j22/ P• 

C. Deduce that LP is uniformly convex (Clarkson's Theorem). 

f. Let X be a metric space and give E = Cb(X) the uniform norm 11·11. 
Suppose that X contains a point a that is not isolated, and fix a 
sequence (xn) of pairwise distinct points in X that converges to a. 
For lEE, put 

L(J) = L(-~)nl(xn) . 
nEJII 
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i. Show that L is a continuous linear form on E of norm 2 and that 
IL(f)1 < 2 for all f E B(E). 

ii. Set C = {f E E : L(f) = 2}. Show that C is a nonempty 
closed convex set in E, that 11/11 > 1 for all I E C, and that 
inf/Ec 11/11 = 1. 

19. Suppose m is a Radon measure. If 1 :::; p :::; 00, we denote by Ljoc(m), 
or, more simply, by Lfoc, the set of equivalence classes of functions f 
such that, for every compact K in X, the function lK f lies in LP. We 
denote by L~ the set of elements of LP having compact support (the 
support of an element of LP was defined on page 145). 

a. Show that, if 1 :::; P :::; q :::; 00, then Lfoc c Lfoc and L~ c L~. 
h. Find a metric d on Lfoc such that, for every sequence (fn)nEN in Lfoc 

and every f E Ljoc' the condition limn--++oo d(f, In) = 0 is equivalent 
to the condition that limn--++oo lll K (fn - f)lIp = 0 for every compact 
K of X. Show that Lfoc is complete with this metric. 
Hint. You might work as in Exercise 12 on page 57. 

c. Show that the space ~ is dense in Ljoc with the metric d. 

2 Duality 

We consider again in this section a measure space (X, $) and a measure m 
on ff. We assume here that m is a-finite. We will determine, for 1 :::; p < 00, 
the topological dual (LP), of the space LP. 

So fix p E [1, +00) and let p' be the conjugate exponent of p, so that 
lip + lip' = 1. Note first that every element 9 E LV' defines a linear form 
Tg on LP, as follows: 

Tgf = ! Igdm for all f E LV. 

As an immediate consequence of the Holder inequality, the linear form Tg 
is continuous and its norm in (LV)' is at most that of gin LP'. We will show 
that one obtains in this way all continuous linear forms on LP. 

Theorem 2.1 If 1 :::; p < 00, the linear map 9 f-t Tg defined on LP' by 
(*) is a surjective isometry from LP' onto (LP)'. 

If p = p' = 2, this is of course an immediate consequence of the Riesz 
Representation Theorem (Theorem 3.1 on page 111) in the Hilbert space 
L2. The basic scheme of the proof is to reduce the problem to this case. 
This can easily be done if 1 :::; p < 2, but we will give a proof that is valid 
for every p E [1,00), whose main idea goes back to J. von Neumann. 

Proof The proof of Theorem 2.1 will be carried out in several steps. The 
crucial point is the following lemma. 
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Lemma 2.2 Suppose m has finite mass. Let T be a continuous linear 
form on L:. If T is positive (that is, if T f 2: 0 for every f E L~ such 
that f 2: 0), there exists a measurable function g 2: 0 such that, for every 
f E L~, 

fg E Li and Tf = f fgdm. 

Proof. (All functions are assumed real-valued without further notice.) Since 
the linear form T is positive, we can define on (X,~) a measure A of finite 
mass by setting 

A(A) = T(lA) for all A E ~. 

That>. is a-additive follows easily from the continuity and linearity of T 
(using the Dominated Convergence Theorem, which is allowed because m 
has finite mass). Then we set 

v = >'+m. 

Since T acts on classes of functions, we see that m(A) = 0 implies >'(A) = 0; 
thus, for A E §, 

lI(A) = 0 <¢==> m(A) = 0 =} >'(A) = O. 

Hence the linear form f H J f dA is well defined on L2(V) and we have, for 
every f E L2(1I), 

By the Riesz Representation Theorem (Theorem 3.1 on page 111) applied 
to the Hilbert space L2(v), there exists an element h in L2(1I) such that 

! fdA = ! fhdll for all f E L2(1I). 

In particular, 

O~>'({h<O})= { hdv~O, 
J{h<O} 

which implies that h 2: 0 v-almost everywhere. Likewise, 

>'({h 2: I}) = J hdll2: >'({h 2: I}) +m({h 2: I}), 
{h~l} 

which implies that h < 1 m-almost everywhere and so v-almost everywhere. 
Hence we can choose a representative of h such that 0 ~ h(x) < 1 for every 
xEX. 
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Now let f be an m-integrable piecewise constant function. By (**), (t), 
and (t), 

T f = J f d>' = J f h dm + J f h d>.. 

At the same time, by approximating h with piecewise constant functions 
and using the continuity of T, we see easily that J fhd>' = T(fh). We 
deduce that 

T(f(l- h)) = J fhdm. 

Since this holds for every m-integrable piecewise constant f, it also holds 
for every f E LP(m) such that f 2: 0 (use an increasing approximating 
sequence; see the remark on page 146). Now let f E £P(m) be such that 
f 2: O. For every integer k, inf(J/(l-h), k)E £P(m), so 

T(inf(f, k(l-h))) = J inf( 1 ~ h' k) hdm. 

By making k approach infinity and using again the continuity of T, we get 

Tf= J 1~\ dm. 

Thus, 9 = h/(l - h) serves our purposes. o 
We now get, without having to assume that m has finite mass: 

Lemma 2.3 1fT E (LP)" there exists a measurable function 9 such that, 
for all f E £P, 

fg ELI and Tf = J fgdm. 

Proof. For f E L~, set Td = Re(Tf) and Td = Im(Tf). Then Tl and 
T2 belong to (L~)'. If Lemma 2.3 is true in the real case, we can apply it 
to Tl and T2 to obtain real functions gl and g2, and clearly the function 
9 = gl + ig2 works for T. Therefore we can suppose we are in the real case. 

In this case T can be written as the difference of two continuous and 
positive linear forms on L~ (apply Remark 2 on page 88 to the lattice L~). 
So we can in fact suppose that T is a positive continuous linear form on 
L~, and we do so. 

Since the measure m is a-finite, there exists a countable partition (Kn) of 
X consisting of elements of § of finite measure. For each integer n, let mn 
be the restriction of m to Kn. If f E L~(mn), denote by i the extension 
of f to X taking the value 0 on X \ Kn. The linear form on L~(mn) 
defined by f ~ T(i) then satisfies on Kn the hypotheses of Lemma 2.2. 
Therefore there is a positive measurable function gn on Kn such that, for 
all f E L~(mn), 

fgn E L~(mn) and T(i) = J fgndmn. 
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Now let 9 be the measurable function on X whose restriction to each Kn 
is gn. If f E L~ (m) and f 2 0, we have f = E~:a flKn' the series being 
convergent in L~(m). By the continuity ofT and monotone convergence in 
the integral, we deduce that 

+= += J 
Tf = LT(f1KJ = L 1 fgdm = fgdm. 

n=O n=O Kn 

Thus 9 satisfies the necessary conditions. o 

Lemma 2.4 With the notation of Lemma 2.3, we have 9 E LV' and 
Ilgll p ' ~ IITII~, where II·II~ is the norm in (£P)'. 

Proof Since the measure m is a-finite, there exists an increasing sequence 
(An) of elements of § of finite measure that cover X. 

1. Case p = 1. Suppose the conclusion of the lemma is false. Then the set 
{Igl > IITIID has positive measure, so there exists c > 0 such that the 
set A = {Igl > IITII~ + c} has positive measure. Let a be the function 
that equals Igl/g on {g "I O} and 1 on {g = O}. Then, on the one hand, 

T(a1AnAJ = J 191 dm 2 (IITII~ + c) meA nAn) 
AnAn 

and, on the other, 

There certainly exists an integer n for which meA nAn) > 0, so we 
deduce that IITII~ + c ~ IITlli, which is absurd. 

2. Case 1 < p < 00. Define a as in the preceding case and, for n E N, set 
Bn = An n {Igl ~ n} and fn = 1Bn algIV'-I. Then, for every n, 

so 

(In IgIV' dm) lip' ~ IITII~, 
whence we deduce the result by making n approach infinity. 0 

Thus we have proved the following fact: For every T E (LV)' there exists 
9 E LV' such that 

T = Tg and Ilgllv' = IITII~· 

The proof of Theorem 2.1 will be complete if we show that the map 
9 f--? Tg is injective. Suppose that 9 E LV' and Tg = O. Defining a sequence 
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(An) and a function a as in the proof of Lemma 2.4, we see that, for every 
n, the function 9n = alAn is an element of Ll n Loo , and so 

Tg9n = 1 191 dm = O. 
An 

This proves that 9 = 0 m-almost everywhere. o 
Remark. Theorem 2.1 is false for p = 00. In general, Ll is not isometric to 
the topological dual of Loo, only to a proper subset thereof. (On this topic, 
see Exercises 3,4, and 5 below.) 

Exercises 

In all the exercises, m denotes a a-finite measure on a measure space 
(X,$) 

1. Suppose that X is an open set in JRd (with d ~ 1) and that m is the 
restriction to X of Lebesgue measure on JRd. Fix p E (0,1). Let L be a 
continuous linear map from LP to a normed vector space E, where we 
have given LP the metric dp defined in Exercise 1 on page 147. Show 
that L = o. In particular, the topological dual of (LP,dp ) is {O}. 
Hint. Show that, for every c > 0, the inverse image under L of the 
closed ball B(O, c) of E is a closed and convex neighborhood of 0 in LP. 
Then use the result of Exercise 1 on page 147. 

2. Set X = {O, I} and let v be the measure on .9(X) defined by v( {O}) = 1 
and v( {I}) = 00. Show that LOO(v) is not isometric to the dual of Ll(V). 

3. Recall from Exercise 7 on page 11 that Co stands for the subspace of £00 
consisting of sequences that tend to 0 at infinity. Show that the map 
that associates to each element 9 of £1 the linear form on Co defined by 

Tg : fH Lfn9n 
nEN 

is a surjective isometry from £1 onto c~ . 
4. A realization of the topol09ical dual of £00(I). Let I be an infinite set. 

Denote by A(I) the set of finitely additive functions J.L from .9(1) to 
[0, +00), that is, those satisfying 

J.L(A U B) = J.L(A) + J.L(B) - J.L(A n B) for all A, B E .9(I) 

and J.L(0) = o. 
a. Take J.L E A(I). Define a linear form LI-' on the set of piecewise con­

stant functions on I as follows: If 9 = E~=1 9k1h, where (Ikh9~n 
is a partition of I and 91, . . . ,9n ElK, put 

n 

LI-'(9) = L9kJ.L(h). 
k=1 
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i. Check that LIJ.(g) is well defined for every piecewise constant 
function 9 and that ILIJ.(g) I S; JL(1)llglioo. 

ii. Show that LIJ. can be uniquely extended to a positive continuous 
linear form on (00(1) of norm JL(1), which we still denote by Lw 

b. Show that, for every positive linear form L on (00(1), there is a 
unique JL E A(I) such that L = Lw 

c. Describe the topological dual of (00(1). 
d. i. If f E (1(1) and I ~ 0, define a map JLI on !Ji'(1) by setting 

JLI(A) = L I(i). 
iEA 

Show that JLf E A(1). Write down LIJ.I explicitly. 

ii. It is a classical consequence of the axiom of choice that, given any 
infinite set E, there is a finitely additive function !Ji'(E) -t {0,1} 
that is not identically zerot and assigns to every finite subset of 
E the value 0. Let JL be such a function for the set I. Show that 
there exists no f E (1(1) such that f ~ ° and JL = JLf. Deduce 
that there cannot be I E (1 (1) such that 

LIJ.(g) = Lf(i)g(i) for all 9 E (00(1). 
iEI 

5. About the topological dual of LOO. We say that a linear form T on Loo(m) 
satisfies Property (P) if, for every decreasing sequence (fn) of Lr(m) 
that converges m-almost everywhere to 0, the sequence (Tin) converges 
to 0. 

a. Take 9 E Ll(m). Define the linear form Tg on U"'(m) by setting 

Tg(f) = f fgdm. 

Show that Tg is continuous, that it has Property (P), and that its 
norm in (Loo(m»' equals Ilgllt-

b. Consider a continuous and positive linear form T on Lr(m) that 
has Property (P). Show that there exists a unique 9 ~ ° in Ll(m) 
such that T = Tg • 

Hint. Define a measure A of finite mass on ff by A(A) = T(1A) ' 
Then imitate the proof of Lemma 2.2, using the remark made on page 
146 about the denseness of piecewise constant functions in Loo(m). 

c. Let T be a continuous linear form on Lr (m) that satisfies Property 
(P). Define T+ and T- according to the method of Theorem 4.1 on 

t If /l. is such a function, the set %" = /l. -1 ({ I}) is called an ultmfilter on I. 
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page 87 (see Remark 2 on page 88). Show that T+ and T- belong 
to (L~(m))' and satisfy (P) . 
Hint. Let (fn) be an increasing sequence of positive functions in 
LOO(m) that converges almost everywhere to f E LOO(m) . Show that, 
if g is $ -measurable and 0 S g sf, then 

Deduce that limn-too T+(fn) = T+(f). 
d. Deduce from the facts above that the map from U(m) to (LOO(m))' 

defined by g f--7 Tg is an isometry whose image consists of those 
elements of (LOO(m)), that have Property (P). 

6. The Radon- Nikodym Theorem 
a. Let v be a a-finite measure on $ such that any A E $ of m­

measure zero has v-measure zero. Show that there exists a positive 
measurable function g such that 

v(A) = i gdm for all A E $. 

Hint. Reduce to the case where v has finite mass. Then show that 
the map f f--7 J f dv defined on L 00 ( m) is a continuous linear form 
satisfying Property (P) of Exercise 5, and use the result in the last 
question of that exercise. 

h. Show that this result remains true if we assume that m is a positive 
Radon measure and v is a bounded complex Radon measure on X, 
and do not require g to be positive, but merely in Ll(m). 
Hint. Apply the previous question to the positive measures (Re v)+ , 
(Re v) - , (1m v)+ , and (1m v) - , defined according to the notation of 
Theorem 4.1 on page 87 and the discussion on page 89. 

7. Conditional expectation in LP. Let $' be a a-algebra contained in $ 
and let m' be the restriction of m to $'. Suppose m' is a-finite. 
a. Suppose p E (1,00] . Show that, for every f E LP(m), there exists 

a unique j E LP(m') such that, for every element A of $' of finite 
measure, 

if dm = i j dm'. 

Hint. Let p' be the conjugate exponent of p. Consider the linear 
form on LP'(m') defined by g f--7 J gf dm and apply Theorem 2.1 on 
page 159. 

h. Show that, for every f E U(m), there exists a unique j E L1(m') 
such that, for every element A of $', 
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Hint. Argue as in the preceding question, using Exercise 5d above 
instead of Theorem 2.l. 

c. Suppose p E [1,00] . Show that the map Tp from P(m) to £P(m') 
defined by T(f) = 1 is linear and continuous, and that it satisfies 
IITpll ~ 1, 

1 2: 0 ===> Tpi 2: 0, 

and Tpi = 1 for all 1 E P(m')' where we have identified £P(m') 
with a subspace of LP(m). 

d. Show that Tz is the operator of orthogonal projection from L2(m) 
onto £2(m'). 

e. Show that, if 1 ~ p, q ~ 00, then Tp = Tq on P(m) n Lq(m). Thus 
we can define an operator T on UPE[I,ooJ LP(m) whose restriction to 
each LP(m) is Tp . We call T the operator 01 conditional expectation 
given $'. 

8. Suppose p, q E [1,00) . Let T be a continuous linear map from LP«O, 1)) 
to £q«O, 1)). Show that there exists a function K from (0,1)2 to II{ with 
these properties: For every x E (0, 1), the function y H K (x, y) lies in 
2"P'«O,l» (where p' is the conjugate exponent of p), and 

LX TI(y)dy = 11K(X,Y)/(Y)dY for all 1 E £P«O, 1» and x E (0,1). 

9. Weak convergence in LP spaces. Examples. Let p E [1,00] and p' be con­
jugate exponents. We say that a sequence (fn)nEN in LP(m) converges 
weakly to an element 1 of £P(m) if 

lim jlngdm = jlgdm for all g E LP'(m). 
n--++oo 

To avoid confusion, when a sequence in LP(m) converges in the sense of 
the LP(m) norm we will say here that it converges strongly in LP(m).t 

a. Prove that every sequence in LP(m) that converges strongly also 
converges weakly. 

b. Show that a sequence (fn) in LP(m) converges weakly to 1 E LP(m) 
if and only if it is bounded and, 

- if p = 1, lim {In dm = { 1 dm for all A E § ; 
n --++oo J A J A 

tMore generally, a sequence (fn) in a normed vector space E is said to converge 
weakly to lEE if, for every LEE' , the sequence (LIn) converges to LI. A sequence 
(Ln) in E' is said to converge weakly-* to LEE' if, for every lEE, the sequence 
(Ln/) converges to Lf. The definition given in the text for LP spaces corresponds, in 
the case p = 00, to weak-* convergence in L oo , considered as the topological dual of Ll. 
If 1 < p < 00, LP has LP' as its dual , but LP can also be considered as the dual of LP' 
(Theorem 2.1). In this case, weak convergence and weak-* convergence coincide. 
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- ifp> 1, lim [fndm= [ f dm for all AE§ with m(A) < 00. 
n-Hoo}A }A 

Hint. Use the Banach- Steinhaus Theorem (Exercise 6 on page 22), 
Proposition 4.3 on page 19, and the remark on page 146. 

c. Suppose that 1 < p ~ 00. Show that a sequence (In) in £P converges 
weakly to f E £P if and only if it is bounded and 

lim fn(i) = f(i) for all i E N. 
n-++oo 

d. Schur's Lemma. Show that a sequence in £1 converges weakly if and 
only if it converges strongly (to the same limit). 
Hint. Suppose otherwise. 

i. Show that there exists a sequence (In) of elements of £1 of unit 
norm that converges weakly to 0 and thus, in particular, such 
that fn(i) -+ 0 for every i E N. 

ii. Construct by induction two strictly increasing sequences of in­
tegers (Ij ) and (nj) such that, for every integer j, 

Ij _ 1 +00 
L Ifnj(i)1 ~ ~ and L Ifnj(i)1 ~ ~. 
i=O i=lj+l 

iii. Let h : N -+ ][{ satisfy the following properties: If i is such that 
I j - 1 < i ~ I j , then Ih(i)1 = 1 and fnj(i)h(i) = Ifnj(i)l. Show 
that, for every integer j, 

I j 

L fnj(i)h(i);::'~, 
i=lj_l+l 

and deduce that 

l~fnj(i)h(i)l;::. ~. 
iv. Deduce that the sequence (lnj) does not converge weakly to O. 

Finish the proof. 

e. Suppose that m is Lebesgue measure on the Borel a-algebra of Rd 

and that 1 < p ~ 00. Let f E LP vanish outside the unit ball of Rd 
and have norm 1 in LP. For each n EN, set fn(x) = nd/p f(nx) . Show 
that the sequence (In) is a sequence of norm 1 in LP that converges 
almost everywhere and weakly (but not strongly) to 0 in LP. 

f. Suppose m is Lebesgue measure on the interval (0,1). Show that the 
sequence Un) defined by fn(x) = e2i7rnX converges weakly (but not 
strongly) to 0 in every LP, for 1 ~ p ~ 00, and that it does not 
converge almost everywhere. 
Hint. You might start with the case p = 2 (see Exercise 1 on page 129). 
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10. Weak convergence in LP spaces, continued. Let p E (1,00] and p' be 
conjugate exponents. 
a. Suppose LP'(m) is separable (or, which is the same, that Ll(m) is 

separable: see Exercise 13b on page 154). Show that every bounded 
sequence in LP(m) has a weakly convergent subsequence. 
Hint. Argue as in the first part of the proof of Theorem 3.7 on 
page 115. 

h. Let (In) be a bounded sequence in LP(m). 
i. Show that there exists a l1-algebra $' that is separable (in the 

sense of Exercise 13 on page 153), contained in §, and satisfies 
these properties: 
- For every n E N, fn has a §'-measurable representative. 
- The restriction m' of the measure m to §' is O"-finite. 

ii. Prove that, for every 9 E LP' (m), there exists an element g' E 
LP'(m') such that 

f fgdm = f fg' dm' for all f E LP(m'). 

Hint. Use the operator Tp' defined in Exercise 7 on page 165. 
iii. Show that the sequence (In) has a weakly convergent subse­

quence in LP(m). 
Hint. By Exercise 13 on page 153, the space LP' (m') is separable. 

11. Let (cn )nEZ be a sequence of complex numbers. Define functions Sn and 
Km by setting 

n 

Sn(x) = L Ck eikx , 

k=-n 

1 m-l 

Km(x) = - L Sn(x). 
m n=O 

Show that, if the sequence (Kn) is bounded in LP«-7r,7r», with 1 < 
p ~ 00, there exists an element f of LP« -7r, 7r)) such that 

1 11< . en = - f(x)e- mX dx for all n E Z. 
27r -1< 

Hint. Extract from the sequence (Kn) a subsequence that converges 
weakly in LP« -7r, 7r)) (see Exercise 10). The weak limit of this subse­
quence can be used for f. 

12. We assume that m is a Radon measure and use the notation and defi­
nitions of Exercise 19 on page 159. Fix p E [1,00) and denote by p' the 
conjugate exponent of p. 

a. For 9 E L~', denote by Tg the linear form on Lfoc defined by 

Tgf = f fgdm. 
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Show that this defines a linear isomorphism between L~' and the 
space (Lfoc)' of continuous linear forms on Lfoc (with the metric d) . 
Hint. To prove surjectivity, considerer a continuous linear form T 
on Lfoc' Show that there exists 9 E LP' such that Tl = J 19dm for 
every 1 E LP. Then show that the support of 9 is compact, and finish 
the proof. 

h. A linear form T on L~ is said to be continuous if, for every compact 
K in X, the restriction of T to the space {J E LV : Supp 1 C K} 
with the norm II· lip is continuous. We dep.ote by (L~)' the set of 
continuous linear forms on L~. If 9 E Lfoc' we denote by Tg the 
linear form on L~ defined by Tgl, = J 1 9 dm. Show that this defines 
a linear isomorphism between Lfoc and (L~)'. 
Hint. Take T E (L~)'. Show that, for every compact K, there exists 
a unique gK E L~', supported within K and such that 

T(1Kf) = f 1KlgKdm for all 1 E LP. 

Then show that you can define 9 E Lf~c by setting 1Kg = gK for all 
K compact. Wrap up. 

13. Assume that m(X) < +00 and that there exists a sequence (An)nEJ\i of 
measurable subsets of X such that the sequence (1A,.)nEJ\i is fundamen­
tal in Ll(m) (see Exercise 13b on page 154) . Show that the expression 

111 = L Tn 11 1dml 
nEN An 

defines a norm on V"'(m) and that the subsets of LOO(m) bounded with 
respect to the norm 11·1100 are relatively compact with respect to 1·1. 
(Use Exercises 9 and 10.) Show that the space (LOO(m), 1'1) is complete 
if and only if it has finite dimension. 
Hint. Use Exercise 4 on page 54. 

3 Convolution 

Notation . .In this section, the measure space (X,.9') under study will be 
the space X = ]Rd with its Borel a-algebra .9' = ~(X), and the measure 
will be Lebesgue measure m = >. = dx1 . . • dxd. 

If 1 is a function from ad to OC , we denote by i the function on lRd 
defined by x H l(-x); moreover , if a E JRd, we set Tal(x) = l(x - a). 
The function Tal thus defined is called the translate of 1 by a. The maps 
1 H i and 1 f--1 Tal are linear and preserve measurability. Since Lebesgue 
measure is invariant under symmetries and translations, these operations 
are also defined on equivalence classes of functions modulo sets of Lebesgue 
measure zero. 
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If I is a function (or equivalence class of functions) and a , b E JRd, we 
clearly have 

Tof = f. 

Proposition 3 .1 II 1 ~ p ~ 00, the lamily (Ta)aElRd lorms an abelian 
group 01 isometries 01 LP. 

II 1 ~ p < 00 and I E LP, the map ipf from lR d to LP defined by 
ip f : a ~ Tal is uniformly continuous. 

Proof. The first assertion follows immediately from the remarks preceding 
the theorem (in particular , from the translation invariance of A). 

To prove the second assertion, since IITal - Tb/ lip = IITa-bl - Illp, it is 
enough to show that ipf is continuous at O. Suppose first that I E C c(JRd). 
Then f is uniformly continuous on lRd and so, if € > 0, there exists "l > 0 
such that Iy - y' l < "l implies If(y) - f(y') I < E.. Hence, if lal < T/, 

IITal - flip = (J II(x - a) - f(x)IPdx yIP 
~ E.(A(a + Supp J) + A(SUpp J)) l i p; 

that is to say, 

showing that ip f is continuous at 0 in this case. 
Now, if I is any element of LV , take a sequence (In) in Cc(lRd) converging 

to f in LP (see Theorem 1.6 on page 146). The continuity of ip f at 0 then 
follows from the fact that the functions ip fn converge uniformly to <I> f (since 
II<I>fn(a) - <I>f(a)lIp = II/n - flip)' 0 

When f E L OCJ , the map a ~ Taf from lRd to LOCJ is continuous if and 
only if I has a uniformly continuous representative; see Exercise 6 below. 

Let p,p' E [1 , 00] be conjugate exponents. If f E LP and 9 E LP', the 
convolution of I and 9 is, by definition, the function f * 9 on lRd defined 
by 

(I * g)(x) = J f(x - y)g(y) dy. 

For x E JR d, the function in the integrand is indeed integrable, being the 
product of Txi E LP and 9 E LP'. Thus 1* 9 is well-defined as a function 
on JRd . Using the invariance of Lebesgue measure under translations and 
symmetries, one checks easily that 

I*g=g*f. 
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Proposition 3.2 Let p,p' E [1,00] be conjugate exponents and suppose 
f E LP and 9 E LP'. Then f * 9 is uniformly continuous and bounded, and 

IIf * glloo ~ Ilfllp Ilg llp" 

Moreover, if 1 < p < 00, we have limlxl-Hoo f * g(x) = 0; the same is true 
if p = 1 and 9 has compact support. 

Proof. The Holder inequality yields 

for all x x' E JRd. , , 

the uniform continuity of f * 9 if P < 00 follows because of Proposition 3.l. 
If p = 00, we have p' = 1 and the property remains true since f * 9 = 9 * f · 

We also have Ilf * glloo ~ IIfllplIgllp" by the HOlder inequality and the 
fact that IITxilip = Ilfllp for every x. This implies, in particular, that the 
bilinear map (f, g) H f * 9 is continuous as a map from LP x LP' to Cb(lRd ) 

with the uniform norm. Suppose that f E Cc{lRd) and that 9 E Loo has 
compact support. We claim that 

Supp(f * g) c Supp f + Supp g; 

indeed, Supp f + Supp 9 is compact and for x 1. Supp f + Supp 9 we have 
SUpp(Tx/) n Suppg = (x - Supp!) n Suppg = 0, so (f * g)(x) = O. Since 
Suppf+Suppg is compact, we conclude that f*9 E Cc{lRd ) . The last claim 
of the proposition follows, because Cc(JRd) is dense in LP for 1 ~ P < 00 
and because the uniform limit of a sequence of continuous functions with 
compact support tends to 0 at infinity. 0 

We will now extend the definition of the convolution product. Let f and 
9 be (equivalence classes of) Borel functions. We say that f and 9 are 
convolvable if, for almost every x E JRd, the product (Txi)g lies in L1. If 
f and 9 are convolvable, the convolution of f and 9 is, by definition, the 
equivalence class of functions f * 9 defined almost everywhere by 

(f * g)(x) = J f(x - y)g(y) dy. 

Clearly, f and 9 are convolvable if and only if 9 and f are, and in this case 

f * 9 = 9 * f · 
By reasoning as in the proof of Proposition 3.2, we obtain the following 

property. 

Proposition 3.3 If f and 9 are convolvable equivalence classes of func­
tions, 

Supp(f * g) c Supp f + Supp g. 
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In particular, if for g has compact support, we have 

Supp(f * g) C Supp f + Supp g 

(since, if F is closed and K is compact, F + K is closed). Thus, the con­
volution of two classes of functions with compact support has compact 
support. 

The next theorem presents a sufficient criterion for the existence of the 
convolution. As usual, we set 1/00 = O. 

Theorem 3.4 (Young's inequality) Suppose that p, q E [1,00] satisfy 
l/p + l/q ~ 1, and let r be defined by l/r = l/p + l/q - 1. If f E LP and 
g E Lq, then f and g are convolvable, f * g E Lr, and 

Note that this applies, in particular, to r = p = q = 1. 

Proof 

1. We can assume that r < 00, since r = 00 corresponds to the case q = p' 
treated in Proposition 3.2. Moreover, r < 00 implies p, q < 00 (if P = 00, 
for example, then q = 1 and r = 00). We can also assume that f ~ 0 
and g ~ 0, by substituting If I and Igl for f and g. 

2. Consider first the case where p = 1, 1 ::::; q < 00, and r = q. By applying 
the Holder inequality to the measure m = f.x, we get 

/ (/ ) l/q (/ )l-l/q 
g(x - y)f(y) dy ::::; gq(x - y)f(y) dy f(y) dy 

and 

/ (/ g(x-y)f(y) dYYdX ::::; (// gq(x-y)f(y)dYdX) (/ f(y) dy Y- l 

By Fubini's Theorem and the translation invariance of Lebesgue mea­
sure, the right-hand side of this inequality equals IlglI~ Ilfll~. We deduce 
that g and fare convolvable, that g * f E Lq, and that Ilg * fllq ::::; 
Ilgllq IIflll. The case where q = 1, 1 ::::; p < 00, and r = p is analogous. 

3. Finally, take the case 1 < p, q < 00, so that max(p, q) < r < 00. We 
continue to suppose, without loss of generality, that f, g ~ o. Then 

f(x - y)g(y) = fP/r(x - y)gq/r(y)fl-p/r(x _ y)gl-q/r(y). 

Using the Holder inequality with the conjugate exponents rand r' = 
r/(r-1), we obtain 

/ f(x - y)g(y) dy 

::::; (/ fP(x - y)gq(y) dy y/r (/ (2i (x _ y)g8 (y) dy y-l/r 
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In the second integral on the right-hand side, we use Holder's inequal­
ity with the conjugate exponents p(r-l)/(r-p) and q(r-l)/(r-q) (to 
check conjugacy use the relation 1 I r = 1 I p + 1 I q - 1). We obtain 

---!:.=.L -!..=!l...-J = = (J )p(r-l) (J )q(r-l) Ir - l(x-y)gr-l(y)dy$ r(y)dy gq(y)dy , 

which finally leads to 

J (J I(x-y)g(y)dy Y dx $ (JJ IV(x-y)9q(y)dxdY) II/II;-v IIgll~-q· 

The double integral in this expression equals II/II~ Ilgll~, once more by 
Fubini's Theorem. We deduce that I and 9 are convolvable, that 1* 9 E 
Lr, and that III * gllr $lI/llvllgllq. 0 

Proposition 3.5 Let p, q, r E [1, +ooJ be such that lip + 11q + 1/r ~ 2. 
II I E £P, 9 E Lq, and h E U , then 1* (g * h) and (I * g) * h are well 
defined and belong to £8, where s is given by lis = 1/p+ 11q+ 1/r-2. In 
addition, 

Proof That I * (g * h) and (I * g) * h are well defined and belong to £8 
follows from Theorem 3.4. Next, 

(J * (g * h))(x) = J J I(x - y)g(y - z)h(z)dydz 

= J J f(x - y - z)g(y)h(z) dydz = ((I * g) * h)(x), 

which concludes the proof. (As an exercise, the reader might justify these 
formal calculations, especially the use of Fubini's Theorem.) 0 ' 

Corollary 3.6 The operations + and * make £1 into a commutative ring. 

Proof The convolution product is commutative and, by Theorem 3.4, L1 
is closed under it. Proposition 3.5 says it is also associative. The rest is 
obvious. 0 

In addition, L1 is a Banach space and * is a bilinear map from L1 x L1 
to L1 such that 

III * gill $ 11/111 IIglll for all I, 9 ELI. 

We say that the convolution product makes £1 into a commutative Ba­
nach algebra. 
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Approximations of Unity 

The ring (Ll, +, *) has no unity (see Exercise 1 below). However, there are 
entities that behave under convolution approximately like unity, in a sense 
we now make precise. 

By definition, an approximation of unity or Dirac sequence is any 
sequence (<Pn)nEN in Ll satisfying these properties: 

- For every n EN, we have <Pn ~ 0 and J <Pn(x) dx = 1. 
- For every € > 0, 

lim r <Pn(x) dx = o. 
n-++oo J{lxl>e} 

For example, one can start from any nonnegative-valued function <P E Ll 
such that J <p(x) dx = 1, and set, for n ~ 1, 

<Pn(x) = nd<p(nx). 

A change of variables shows that J <Pn(x) dx = 1; moreover, 

( <Pn(x) dx = r <p(x) dx, 
J{lxl>€} J{lxl>ne} 

and this last expression tends to 0 as n tends to infinity, by the Dominated 
Convergence Theorem. (See also Exercise 2 on page 36.) If, in addition, <P 
is continuous and supported within B(O, 1), the sequence (<Pn) constructed 
in this way is called a normal Dirac sequence. 

The alternative name "approximation of unity" for Dirac sequences is 
explained by the next proposition. 

Proposition 3.7 Suppose p E [1,00) and let (<Pn)nEN be a Dirac se­
quence. If f E LP, then 

f * <Pn E LP and Ilf * <Pnllp :S: IIfllp for every n EN, 

and 
lim f * <Pn = f in £P. 

n-++oo 

Proof. That f * <Pn E LP and IIf * <Pnllp :S: IIfilp follows from Theorem 3.4. 
Further, for almost every x, 

jf(x) - (f * <Pn)(X)j :S: jjf(X) - f(x - y)j <Pn(Y) dy 

( )
I/P 

:S: jjf(X) - f(x - y)jP <Pn(Y) dy , 

the latter inequality being a consequence of Holder's inequality applied to 
the measure <Pn(y)dy. We deduce that 

IIf - f * <Pnll~:S: j IIf - Tyfll~<Pn(y)dy . 
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Now, for every € > 0, we can write 

by breaking R.d into the disjoint union of {Iyl :::::: €} and {Iyl > €}. It follows 
that 

lim sup IIf - f * IPnllp :::::: sup IIf - Tyfllp· 
n--++oo lyl:S;£ 

Now it suffices to apply Proposition 3.1. o 
Remark. If we assume in addition that, for every n EN, the function 
IPn lies in LOO and has compact support, Proposition 3.2 implies that 
f * IPn E Co(R.d ) for every n EN. This happens, in particular, when (IPn) is 
a normal Dirac sequence. In this particular case, we see from the preceding 
calculations that, for any p E [1,00), any f E LP, and any n EN, 

IIf - f * IPnllp:::::: sup IIf - Tyfllp" 
lyl:S;l/n 

This will lead to a criterion of relative compactness in LP. 

Relative Compactness in £P 

Theorem 3.8 Suppose p E [1,00) and let H be a subset of LP. In order 
for H to be relatively compact in LP, it is necessary and sufficient that the 
following three properties be satisfied: 

i. H is bounded in LP. 

ii. lim f If(xW dx = 0 uniformly with respect to f E H . 
R--++oo J{lxl>R} 

iii. lima--+o Tal = f in LP, uniformly with respect to f E H. 

Proof. Since LP is complete, H is relatively compact if and only if it is 
precompact (Theorem 3.3 on page 14). 

Suppose H is precompact. Take € > 0 and let /I, ... ,!k be elements of LP 
such that the balls B(/I, €), ... ,B(fk, €) cover H. In particular, property i 
of the theorem is satisfied. By the Dominated Convergence Theorem, there 
exists Ro > 0 such that, for any R ;::: Ro and any j E {I, ... ,k}, 

( f Ih(xW dx)l/P < €j 
J{lxl>R} 

thus, for any R ;::: Ro and any f E H, 

( f If(xW dx)l/P < 2€. 
J{lxl>R} 
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Similarly, by Proposition 3.1, there exists 'T1 > 0 such that, for any a with 
lal < 'T1 and any j E {1, ... , k}, 

IITa/j - /jllp < e, 

and so, for any a with lal < 'T1 and any I E H, 

Thus, if H is precompact, properties i-iii of the theorem are satisfied. 
Suppose, conversely, that those three properties are satisfied, and fix 

e > O. By property ii, there exists R > 0 such that 

(1 I/(xW dX)l/P < € for all I E H. 
{lxl>R} 

Let ('Pn) be a normal Dirac sequence. As we saw in the remark preceding 
the theorem, we have, for any n ~ 1 and any I E LP, 

III - I * 'Pnllp::; sup III - Tylllp· 
Iyl~l/n 

Hence, by property iii, there exists an integer N E N such that 

II I - I * 'P Nil P < € for all I E H. 

Now, by Holder's inequality, for any x,x' E Rd we have 

where p' is the conjugate exponent of pj whereas the invariance properties 
of the Lebesgue measure imply that 

Thus, for every I E H and every x, x' E IRd , 

and 
1(1 * 'PN)(x)1 ::; Il/IIp II'PNilpl. 

Then it follows from assumptions i and iii and from the Ascoli Theorem 
(page 44) that the subset of C(B(O, R» consisting of the restrictions to 
B(O, R) of the functions (continuous on JRd) 1* i.pN, with I E H, is rel­
atively compact and so precompact in C(B(O, R)). Hence there exists a 
finite sequence (11, . .. , Ik) of elements of H such that, for every I E H, 
there exists j E {I, ... , k} such that 

1 (I * 'PN )(x) - (lj * i.pN )(x)1 ::; €A(B(O, R»-l/P for all x E B(O, R), 
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and so 

111- hllp ~ (1 I/(X)IPdx)1/P + (1 Ih(X)lPdx)1/P 

{lxl>R} {lxl>R} 

+ III - 1* 'PNllp +!lh - h * 'PNllp 

+A(B(0,R»1/P ~up IU*'PN)(X) - (Ii *'PN)(x)l, 
xEB(O,R) 

this last result being obtained via the triangle inequality starting from 

II - Ijl ~ l{ lxl>R} III + l{lxl>R}lhl 

+ II - 1* 'PNI + I/j - h * 'PNI + l{lxl~R} II * 'PN - h * <pNI· 

Pulling everything together we obtain 111- Ijllp ~ 5E, which shows that H 
is precompact. 0 

Exercises 

1. a. Let ('Pn)nEN be a normal Dirac sequence. Show that (<Pn) converges 
almost everywhere to 0. Deduce that it does not converge in L1. 

h. Deduce that the algebra Ll does not have a unity; that is, there is 
no element 9 of L1 such that 1* 9 = I for all I E L1. 

c. More generally, show that, if p E [1,00], there is no element 9 of Ll 
such that 1* 9 = I for all I E LP. 

2. Hardy's inequality. Let p E (1,00) and p' be conjugate exponents. If I 
is a function or equivalence class of functions on (0, +00), define jon 
IR by 

j(x) = eX/PI(eX ). 

Finally, if IE LP«O,+oo)), define 

l1X TI(x) = - I(t)dt 
x 0 

for x > 0. 

a. Show that I E LP«O, +00)) if and only if i E LP(IR) and that, in 

this case, 1I/IILP«o,+oo» = lIiIlLP(IR)' 
h . Let 9 be the function defined on lR by 

g(x) = e-x / p' l[o,+oo)(x). 

Show that 9 E L1(JR) and that, if I E LP«O, +00)), we have fJ = 
i*g. Deduce that T is a continuous linear operator from LP«O, +00)) 
to itself, of notm at most p'. 
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c. For n EN, let In be the function defined on (0, +00) by 

Show that, for every n E N, we have In E LP«O, +00)) and 

Show also that limn4+oo IITlnIILP«O.+oo» = p' . Deduce that T has 
norm p'. Show likewise that, for all x > 0, limn4+oo T In(x) = o. 
(See also Exercise 17 on page 228.) 

3. The convolution product in ep(Z). We say that two functions I and 9 
from Z to Care convolvable if 

L If(n - k)llg(k)1 < +00 for all n E Z. 
kEZ 

If this is the case, the convolution I * 9 is defined by 

(f * g)(n) = L I(n - k)g(k) for all n E Z. 
kEZ 

a. Show that I and 9 are convolvable if and only if 9 and I are, and 
that in this case I * 9 = 9 * I . 

h. Let p, q E [1, ooJ be such that lip + l/q ~ 1, and suppose I E ep(Z) 
and 9 E eq(Z). Show that I and 9 are convolvable, that I *g E er(Z), 
where 11r = lip + l/q - 1, and that III * gllr ~ 1I/IIp Ilgllq· 

c. Show that the normed space e1(Z) with the operation * is a com­
mutative Banach algebra with unity. 

d . i. For m E Z, we denote by <5m the function on Z defined by 
<5m (n) = 1 if n = m and <5m (n) =.0 otherwise. Show that, for 
m, p E Z , <5m * <5p = <5m +p ' 

ii. Let vIt be the set of continuous linear forms ~ on el(Z) that are 
not identically zero and satisfy 

~(f * g) = <I> (f) <I> (g) for all I, 9 E el (Z). 

Let 1lJ be the set of complex numbers of absolute value 1. If u E 1lJ, 
prove that the linear form defined on £1 (Z) by 

<l>u(f) = I: uk I(k) 
kEZ 

belongs to vIt. 
iii. Show that the map u o-t <l>u thus defined is a bijection between 

1lJ and vIt. 
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Hint. If cI> E ./II, there exists <p E eOO(Z) such that 

cI>(f) = L fCk)<p(k) for all f E e1(Z). 
kel 

Now show, using part i, that <pCn + m) = <p(n)<pCm) for every 
n, mE Z; deduce that <p is of the form <p(n) = un, with u E U. 

4. We denote by . the scalar product on ]Rd. 
a. Riemann-Lebesgue Lemma. Show that, if f E L1, 

lim f eix . ~ f(x) dx = O. 
I~I-+oo 

Hint. Show that, if e f. 0, 

F(f,e) = f eix'~f(x)dx = -F(r1T~mI2f,e}. 

Deduce that 12F(f,e)1 ~ IIf - r1T~/1~12fI11. 

h. For f E L1, we define a map j by 

Prove that j E Co(lRd) and that the uniform norm of j is at most 

Ilfllt· 
c. Show that the map cI> : L1 -T CoC]Rd) defined by cI>(f) = j is a 

continuous linear map and that 

ip(f*g)=cI>(f)ip(g) forallf,gEL1 . 

The map cI> is called a morphism of Banach algebras from (U, * ) 
to Co(]Rd) (where the latter space is considered with its ordinary 
multi plication). 

5. The spectrum of the algebra U. The goal of this exercise is to charac­
terize the spectrum of the algebra L1, that is, the set ./II of nonzero 
continuous linear forms ip on L1 such that 

ip(f * g) = ip(f)ip(g) for all f,g E L1. 

Once more we denote by . the scalar product on ]Rd. 
a. Show that, for every ~ E ]Rd, the linear form cI>e defined by 

belongs to ./II . 
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h. Let cp be a bounded continuous function from JRd to C, not identically 
zero and such that 

cp(s + t) = cp(s)cp(t) for all s, t E Rd. 

i. Show that cp(O) = l. 
ii. Show that, for every € > 0, 

lt1
+E •• 'ltdE cp(s)ds = (f CP(S)dS)CP(t) for all t E JRd. 

tl td J[O,Ejd 

Deduce that cp is of class C 1 , and then that 

{}cp {}cp . d 
at (t) = at (O)cp(t) for all] E {I, ... , d} and t E JR . 

J J 

iii. Deduce that there exists ~ E JRd such that cp(t) = eif.·t for every 
t E JRd. 
Hint. Set aj = ({}cp/atj)(O). Show that the function t I-t cp(t)e-a.t 
is constant. 

c. Let cI> be an element of .,(t. 
i. Show that there exists cp E Loo such that 

cI>(f) = J f(x)cp(x)dx for all fELl. 

ii. Show that, for every element f of £1, 

cI>(TaJ) = cI>(f)cp(a) for almost every a E Rd. 

Hint. Show that, for every 9 E Ll, 

J cI>(f)cp(a)g(a) da = cI>(f)cI>(g) = cI>(f * g) 

= J (J f(x - a)g(a) da ) cp(x) dx 

= J cI>(TaJ)g(a) da. 

iii. Deduce that cp has a representative in Cb(JRd ) (which we still 
denote by cp) satisfying 

cI>(TaJ) = cI>(f)cp(a) for all fELl and a E Rd. 

iv. Then show that 

cp(a + b) = cp(a)cp(b) for all a, bE Rd 

and deduce that there exists ~ E Rd such that cp(t) = eif.·t for 
every t E JRd. 
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d. Show that the map ~ H ~~ is a bijection between ]Rd and A. 
6. Suppose 1 E £00. 

a. Show that, if 1 admits a uniformly continuous representative, the 
map ]Rd ---+ Loo given by a H Tal is continuous. 

h. Conversely, suppose the map a H Tal from]Rd to Loo is continuous. 

i. Show that, for almost every x in JRd, 

il(x) - l(x - y)i :::; IITyl - 11100 for almost every y E JRd. 

Hint. Use Fubini's Theorem. 

ii. Let (<Pn) be a Dirac sequence. Show that 

Deduce that 

lim 111 - 1 * <Pnlloo = o. n-4oo 
iii. Show that 1 has a uniformly continuous representative. 

7. Let (<Pn)nEN be a normal Dirac sequence. Show that, for every continu­
ous function 1 on JRd, the sequence (f*<Pn)nEN converges to 1 uniformly 
on every compact of JRd. 

8. Convolution semigroups. Consider a family (Pt)tEIR+* of positive ele-
ments of L1 satisfying these conditions: 

- J Pt(x) dx = 1 for all t > O. 

- Pt+s = Pt * Ps for all t, s > o. 
- limHo J{lxl>£} Pt(x) dx = 0 for all € > o. 

Such a family will be called a convolution semigroup in the sequel. 

a. Suppose P E [1,00). For every 1 E LP, set Pd = Pt * f. Show the 
following facts: 

i. For every t > 0, Pt is a continuous linear map of norm 1 from 
LP to LP. 

ii. PtPs = Pt+s for all t, s > o. 
iii. limHO Pd = 1 in LP for all f E £P. 
iv. For all 1 E LP, the map t H Pd from JR +* to LP is continuous. 

h. The Gaussian semigroup. Show that the family (Pt) defined by 

P (x) = 1 e-lxI2/2t 
t (21ft )d/2 

satisfies the conditions for a convolution semigroup. 
Hint. Recall that J~:: e-x2 dx = ../i. To prove that Pt * Ps = Pt+s, 
use the fact that Lebesgue measure is translation invariant. 
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c. The Cauchy semigroup. Now assume that d 
family (pt} defined by 

1 t 
Pt(x) = ;: t2 + X2 

1. Show that the 

satisfies the conditions for a convolution semigroup. 
Hint. To show that Pt * Ps = PHs, start by checking that 

1 1 1 
t2+(x-y)2 S2+y2 (x2 + (t+s )2)(X2 + (t - S )2) 

( 2X(X- y )+(X2+S2-e) 2XY+(X2+t2_S2)) 
X t2+(X-y)2 + s2+y2 . 

d . Suppose P = 00. Show that properties i and ii are still satisfied, and 
that properties iii and iv are satisfied for 1 E Loo if and only if 1 has 
a uniformly continuous representative. 

e. Show that the result of part a is still true if LP is replaced everywhere 
by the space CoORd) with the uniform norm, or by the space eu,b(JRd) 
of uniformly continuous bounded functions with the uniform norm. 

9. We adopt the definitions and notation of Exercise 19 on page 159, in 
the special case where m is Lebesgue measure on JRd. 
a . i. Suppose P E [1,00) and let H be a subset of LP satisfying condi­

tions i and iii of Theorem 3.8. Show that H is relatively compact 
in Lfoc with the metric d. 
Hint. Revisit the proof of Theorem 3.8. 

ii. Let p, q, r E [1, +00) be such that l/r = l/p + l/q - 1. Show 
that , if G E LP, the set 

is relatively compact in (L,oc' d). 
h. Let p, q, r E [1, +00) be such that l/r = l/p+ l/q-1. Show that any 

function 1 E Lfoc can be convolved with any 9 E L~, and that for 
such functions we have I*g E L,oc and Supp(f*g) c Supp/+Suppg. 

c. Show that, if p,p' E [1,00] are conjugate exponents, the convolution 
of a function 1 E Lfoc and a function 9 E L~' belongs to C(JRd) . 

d. Suppose mE N* U {oo}. Show that, if 1 E Ltoc and 9 is a function of 
class em with compact support, 1 * 9 is of class em and, for every 
(PI , ... ,Pd) E Nd such that Ipi = PI + ... + Pd ~ m , we have 

aipi ( aipi 9 ) axil ... a~d (f * g) = 1 * axil .. . a~d . 

e. Show that this equation remains true if we assume that 1 E L~ and 
that 9 is of class em with arbitrary support. 
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10. Compactness in £P(I), for 0 < p < 00. Let I be a set. 
a. Suppose p E [1,00). Show that a subset H in £P(I) is relatively 

compact if and only if it is bounded and there exists, for every € > 0, 
a finite subset J of I such that 

IIII\Jfllp < € for all f E H. 

(Compare with Theorem 3.8.) 
Hint. Use Exercise 8 on page 17. 

h. Suppose p E (0,1). Consider the space £P(I) with the metric dp de­
fined in Exercise 1 on page 147. Show that the result of the preceding 
question remains valid if we replace II ·llp by 1·lp = dp ( • ,0). 
Hint. Use Exercise 1a on page 148 to adapt the method above. 



Part II 

OPERATORS 



5 
Spectra 

1 Operators on Banach Spaces 

We fix here a Banach space E over IK = lR or C, and we wish to study the 
(noncommutative) Banach algebra L(E) of continuous linear maps from E 
to E, the product operation being composition. We use the same notation 
11·11 for the norm on E and the associated norm on L(E), and we denote 
by I the identity map on E. Thus, I is the unity of the algebra L(E). An 
element T E L(E) is called invertible if it has an inverse in L(E); that is, 
if there exists a continuous linear map S such that TS = ST = I. Because 
composition is associative, T has an inverse in L(E) if and only if it has 
a right inverse (an element U such that TU = I) and a left inverse (an 
element V such that VT = I) in L(E). Clearly, if T is invertible, it is 
bijective and its inverse in L(E) is unique and equals the inverse map T-l. 
Thus, for T E L(E), the following properties are equivalent: 

- T is invertible. 
- T is bijective and T- 1 is continuous. 
- kerT = {O}, im T = E, and T-l is continuous. 

In fact, the map inverse to a bijective continuous linear operator from E 
onto E is always continuous; this follows directly from the Open Mapping 
Theorem, itself a consequence of Baire's Theorem (Exercise 6 on page 22). 
We will not make use of this result here. 

Finally, we note that, if T and S are invertible elements of L(E), the 
composition TS is also invertible and (TS)-l = S-lT- l . 
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We make the convention that TO = I for T E L(E). 

Proposition 1.1 The set ~ of invertible elements in L(E) is an open 
subset of L(E) containing I. The map T>--t T- I from ~ to ~ is continu­
ous. 

More precisely, if To E ~ and liT - Toll < liTo-III-I, then T E ~ and 

+00 +00 
T- I = L(I - To-1TrTo- 1 = LTo-I(I - TTo-1r· 

n=O n=O 

Proof Take To E ~. 

1. First, 

and 
III - TTo-11I = II (To - T)Tolli ::; liT - Toll liTo-III· 

Thus, if liT - Toll < liTo-III-I, the series 

+00 +00 
L(I - To-ITrTo- 1 and LTo-I(I - TTo-Ir 
n=O n=O 

converge absolutely and so converge. At the same time, one easily sees 
by induction that, for all n EN, 

(I - To-ITrTo- I = TO-I (I - TTo-Ir : 

the equality is certainly true for n = 0 and, if it holds for n EN, we 
have 

(I - To-ITr+!To- 1 = (I - ToITr(ToI - TO-ITTo- l ) 

= (I - ToITrTo-I(I - TTo-I) 

= TO-I (I - TTo-Ir+I. 

Thus, the two series are equal. Let S be their sum. 
2. We check that S is indeed the inverse of T. 

ST = STo(To-IT - I) + I) 
+00 +00 

= - L(I - To-ITr+! + L(I - To-ITr = I. 
n=O n=O 

(These manipulations are justified because the product is a continuous 
bilinear map from L(E) x L(E) to L(E) and because the series converge.) 
Likewise, 

TS = (TTo-I - I) + I)ToS 
+00 +00 

= - L(I - TTo-1r+! + L(I - TTo-Ir = I. 
n=O n=O 
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Thus, if liT - Toll < liTo-III-I, the element T is invertible and T- 1 is 
indeed given by the series in question. 

3. In particular, if liT - Toll < liTo-III-I, 

+00 
IIT-1 - To-III::; :E III - To-1Tlln liTo-III 

n=l 

= liTo-III III - To-1TII < II To-111211T - Toll 
1 -III - To-1TII - 1 -liT - Toll liTo-III ' 

which shows that the map T f-t T- 1 is continuous at To. o 
Remark. According to the proof, the map T f-t T- 1 from 5 to L(E) has 
a local series expansion everywhere. This would allow us to show that this 
map is in fact of class Coo. 

Definitions and Notation. Suppose T E L(E). A spectral value of Tis 
any element A E IK such that AI - T is not invertible. The set of spectral 
values of T is called the spectrum of T and is denoted by (j(T). Any 
point of IK that is not a spectral value of T is called a regular value or 
resolvent value of T. The set p(T) = IK \ (j(T) of regular values of T is 
called the resolvent set of T. 

An eigenvalue of T is any element A E IK such that AI - T is not 
injective (so that ker(AI - T) =I- {O}). Thus, every eigenvalue of T is a 
spectral value of T, but the converse is generally false (unless of course if 
E has finite dimension or, more generally, if T has finite rank; see Exercise 
13 below). 

If A is an eigenvalue of T, the space ker( AI - T) is called the eigenspace 
associated with A. We denote by ev(T) the set of eigenvalues of T. 

Example. Take E = C([O, 1]) and let T be the operator that associates to 
lEE the function T I defined by 

T I(x) = foX I(t) dt. 

One sees right away that kerT = {O} and im T = {g E C1([0, 1]) : g(O) = o}. 
Thus T is injective but not surjective: that is, 0 tJ- ev(T) but 0 E (j(T). We 
now show that 0 is the only spectral value of T. 

To this/end, take A =I- 0 and gEE. If lEE satisfies 

Aj-TI=g, 

the function h = TI is an element of C1([0, 1]) such that 

h(O) = 0 and Ah' - h = g. 
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Conversely, if hE C1([O, 1]) satisfies (t), the function f = h' is a solution 
of (**). Now, it is easy to check that the differential equation (t) has as its 
unique solution 

eX />' l x 
h(x) = T 0 g(t) e-t />' dt. 

Therefore (**) is satisfied if and only if 

1 (ex />'lx 
) f(x) = A g(x) + T 0 g(t)e-t/>'dt , 

whence we deduce that ..\ is a regular value of T and that 

(AI - T)-lg){X) = X (g(x) + e:>'lx g(t)e-t/>'dt). 

To summarize, ev(T) = 0, a(T) = {O}, and p(T) = II{ \ {O}. 

Proposition 1.2 Suppose T E L(E). The limit limn-too IITnll l / n exists 
and 

lim IITnll l / n = inf IITnll l/n. 
n-too nEN' 

This value is denoted by r(T). Moreover, the spectrum a(T) is a compact 
subset of II{ and 

1..\1 :s r(T) for all ..\ E a(T). 

In particular, we see that r(T) :S IITII and so 

1..\1 :S IITII for all ..\ E a(T). 

Proof 

1. Set a = infnEN' IITnlll/n. Certainly we have 

a:S liminf IITnll l / n. 
n-t+oo 

Take c > 0 and let no E N* be such that IITnoill/no :S a + c. Given 
n E N*, we can write, by dividing with remainder, n = p(n)no + q(n), 
with p(n) E N, q(n) E Nand 0 :S q(n) < no. Thus 

IITnl1 :S IITn0 IIP(n) IITllq(n). 

Since limn-t+oo q(n)/n = 0 and limn-t+oop(n)/n = l/no, we deduce 
that 

lim sup IITnll l /n :S IITnolll/no :S a + c. 
n-t+oo 

This holds for all c > 0, so limn-t+oo IITnlll/n = a. 
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2. The map A H (AI - T) from IK to L(E) is clearly continuous. Therefore, 
by Proposition 1.1, p(T) is open and aCT) is closed. All that remains to 
show is that (f(T) is bounded by reT). 

3. Take A E IK such that IAI > reT), and consider r E (r(T), IAI). Since 
r > reT), there exists an integer no E N* such that 

IITnl1 ~ rn for all n ~ no. 

The series E~:O A-n-1Tn converges absolutely in L(E) (since r < IAI) 
and it is easy to see that 

and so that A E p(T). Since this holds for all IAI > reT), the proof is 
complete. 0 

We take up again the operator T on E = C([O, 1]) defined by equation 
(*) on page 189. Clearly, IITII = 1. On the other hand, an easy inductive 
computation shows that, for every n E N*, 

l x (x - t)n-l 
TnJ(x) = 0 (n -I)! J(t) dt, 

so that II Tn II ~ lin!, which implies that reT) = O. Here, then, reT) < IITII. 
For T E L(E) and A E peT), write 

R(A, T) = (AI - T)-l. 

Proposition 1.3 Suppose T E L(E). For all A, Il E peT), we have 

R(A, T) - R(Il, T) = (Il- A)R(A, T)R(Il, T) = (Il- A)R(Il, T)R(A, T). 

(This is called the resolvent equation.) Moreover, the map A H R(A, T) 
from the open subset p(T) of IK to L(E) is differentiable and 

Proof First, 

d )2 dA R(A, T) = -(R(A, T) . 

R(A, T) - R(Il, T) = R(A, T) (Ill - T) - (AI - T)) R(Il, T) 

= (Il - A)R(A, T)R(Il, T), 

which proves the resolvent equation. In particular, 

1 h (R(A + h, T) - R(A, T)) = -R(A, T)R(A + h, T), 
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with hElle and A, A+h E p(T). By the continuity of the map A H R(A, T) 
(an immediate consequence of Proposition 1.1) and the continuity of the 
product in L(E), we obtain 

lim -hI (R(A + h, T) - R(A, T)) = -(R(A, T))2, 
h-+O 

which concludes the proof. o 
We know that, if E is finite-dimensional, the spectrum of T can be empty 

if OC = lR but not if OC = C, since d'Alembert's Theorem (the Fundamental 
Theorem of Algebra) guarantees that the characteristic polynomial of T 
has at least one complex root. We shall show that this is also the case in 
infinite dimension. 

Theorem 1.4 Suppose T E L(E). If OC = C, the spectrum aCT) of T is 
nonempty, and 

reT) = max {IAI : A E a(T)}. 

In contrast, T may have no eigenvalues, even when OC = C, as shown by 
the example on page 189. 

The real number reT) is called the spectral radius of T. 

Proof 

1. For Z E p(T), set Rz = R(z, T). By step 3 in the proof of Proposition 
1.2, we know that Izl > reT) implies that 

+00 
R - '"' -n-1Tn z-L...J Z , 

n=O 

the series converging absolutely in L(E). We deduce that, for every 
t E (r(T),+oo), 

+00 
R . - '"' e-i(n+l)Ot-n-lTn 

te,6 - ~ , 

n=O 

the series converging uniformly with respect to () E lR in L(E). Multi­
plying by (teiO)P+l, with pEN, and integrating the result from 0 to 
211', we obtain, by the continuity of the Riemann integral with values in 
L(E) (see Exercise 5 on page 20, for instance), 

Thus, for every pEN and t > reT), 

TP = ~ 121T (teiO)p+l Rte i6 dO. 
211' 0 
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2. We now prove that the spectrum of T is nonempty. Assume the contrary. 
Applying the preceding equality in the case p = 0, we have 

1 1211" ·0 1= - tet Rtei6 dO for all t > r(T). 
27r 0 

But, if we suppose that p(T) = C, the function Jo given by 

1 1271" ·0 Jo(t) = - teO R tei6d() 

27r 0 

is defined and continuous on [0, +00) and is of class Cion (0, +00); 
moreover 

dJo 1 1271" a (iO ) -d (t) = - !'l te Rtei6 dB for all t > o. 
t 27r 0 ut 

(In what concerns differentiation under the integral sign, the Riemann 
integral of functions with values in a Banach space behaves as that of 
scalar functions.) But 

and 

O(iO ) iO d I {) te Rtei6 = e d(zRz ) 

t z z=tei6 

a (·0 ) ·0 d I !lO teO R tei6 = ite' d (zRz) . ' 
u Z z=te,6 

since we saw in Proposition 1.3 that the map Z H Rz from p(T) to L(E) 
is differentiable (holomorphic). Thus 

dJ, 1 1271" a 
-dO (t) = -.- !lO (teiO Rtei6) dO = 0 for all t > o. 

t 2mt 0 u 

We deduce, using the Mean Value Theorem for Banach-space valued 
functions, that Jo is constant on [0, +00), which cannot be the case 
since Jo(O) = 0 and Jo(t) = I for t > r(T). This contradiction shows 
that a(T) is nonempty. 

3. Set p = max{loXl : oX E a(T)}. We know by Proposition 1.2 that p ::; 
r(T). For n E N* and t > p, set 

In(t) = ~ [271" (teiO)n+l Rtei6 dB . 
27r 10 

As before, we see that dJn/dt = 0 on (p,+oo). Thus In(t) = Tn for 
every t > p. Now write M t = max {IiRtei611 : 0 E [0, 27r]}. Then 

II Tn II ::; t n +1 Mt for all n E N* and t > p, 

which implies that r(T) ::; t for every t > p, and so that r(T) ::; p. D 
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Now fix T E L(E). To every polynomial P = ao+ajX + .. ·+anXn with 
coefficients in OC, we can associate the operator peT) E L(E) defined by 

peT) = aoI + alT + ... + anTn. 

Clearly, for any>., J.L E OC and P, Q E OC[X], 

(>.P + J.LQ)(T) = >.P(T) + J.LQ(T), PQ(T) = P(T)Q(T), l(T) = I. 

In other words, the map P I--t peT) from OC[X] to L(E) is a morphism of 
algebras with unity. We will compare the spectrum of peT) with the image 
under P of the spectrum of T. 

Theorem 1.5 (spectral image) 1fT E L(E) and P E OC[X], we have 

with equality if OC = c. 
Proof 

P(a(T» c a(P(T», 

1. Take>. E IK. Since>. is a root of the polynomial P - P(>'), there exists 
a polynomial Q). E IK[X] such that P - P(>.) = (X - >')Q)'. Then 

peT) - P(>.) I = (T - M)Q),(T) = Q),(T)(T - >.I). 

Suppose that P(>.) ¢ a(P(T», and set S = (P(>.)I - p(T»)-I. Then 

(M - T)Q),(T)S = SQ),(T)(>.I - T) = I, 

showing that (>.1 - T) is invertible, with inverse SQ),(T) = Q),(T)S; 
thus>. ¢ aCT). Thus>. E aCT) implies P(>.) E a(P(T», which is to say 
P(a(T» c a(P(T». 

2. Suppose that OC = IC and that P has degree at least 1 (if P is constant, 
the result is trivial). Take J.L E a(P(T»). Write the polynomial P - J.L as 
a product of factors of degree 1: 

P - J.L = C(X - >'1)'" (X - >'n), 

with C =1= O. Then 

peT) - J.LI = C(T - >'11) ... (T - >'nI). 

Since, by assumption, peT) - J.LI is not invertible, one of the factors 
T - >'jI is not invertible. Then, for this value of j, we have >'j E aCT). 
Since P(>'j) = J.L, this shows that J.L E P(a(T)). 0 

Remark. In most of this section, we haven't really needed the fact that 
we are dealing with operators; all we've used is the structure of L(E) as 
a Banach algebra with unity. These results extend to any Banach algebra 
with unity. 
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Exercises 

1. Let T be a continuous operator on a Banach space E. Show that the 
inequality IAI > IITII implies 

2. Let T be a continuous operator on a Banach space E and let (An)nEl'l 
be a sequence in peT) converging to A E :oc. Show that, if the sequence 
(R(An' T)) is bounded in L{E), then A E peT). 
Hint. Show that the sequence (R(An' T» converges in L{E). Let 8 be 
its limit. Show that SCM - T) = (M - T)S = f . 

3. Let X be a metric space. Take E = Cb(X) and let T be a positive 
operator on E (recall that this means that T f ~ 0 for any fEE with 
f ~ 0.) 
a. Show that ITfl :::; Tlfl for every fEE. 

Hint. Take x E X and let a be a complex number of absolute value 1 
such that ITf(x)1 = aTf(x). Show that a Tf(x) = T(Re(aJ)(x). 

h. Take A E OC such that IAI > reT). Show that 

IIR(A, T)II :::;IIR(IAI,T)II · 

Hint. Show that, for every fEE, 

IR(A,T)fl:::; R(lAI,T)lfl · 

c. Deduce that reT) E aCT). 
Hint. Take A E aCT) such that IAI = reT). Consider a sequence 
(An)nEN converging to A and such that IAnl > reT) for every n E N. 
Then use Exercise 2. 

4. Let (An)nEN be a sequence of complex numbers and p a real number in 
the range [1, +00) . Define an operator T on fP by setting 

(Tu)(n) = AnU(n) for all n EN. 

a. Show that T is continuous if and only if the sequence (An) is bounded. 
h. When T is continuous, compute its eigenvalues and spectrum. 

5. Suppose p E [1,00] . Define an operator S on fP by setting 

(Su)(n) = u(n + 1) for all n EN. 

We call 8 the left shift. 

a. If p < 00, show that eveS) = {A E OC : IAI < I} . If p = 00, show that 
eveS) = {A E OC : IAI :::; I} . 

h. Deduce that a(8) = {A E OC : IAI :::; I} in both cases. 
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6. Spectrum of an isometry. Let E be a Banach space and T an isometry 
of E (recall that this means T E L(E) and IITxll = Ilxll for all x E E). 
Set D = {A ElK: I A I < 1}, C = P ElK: I A I = 1}, and jj = Due. 

a. Show that ev(T) C C, that O'(T) cD, and that, if .A E D, 

im(.AI - T) = E ~ .A E peT). 

h. Let (.An)nEf\1 be a sequence in D n peT) converging to A E D. Show 
that .A E peT). 
Hint. Show that IIR(An , T)II ::; 1/(1 - IAnll for every n E Nj then 
use Exercise 2. 

c. Show that D n peT) is open and closed in D. Deduce that D n peT) 
is either empty or equal to D. 

d. Show that the spectrum of T is either contained in C or equal to b. 
Show that the first case occurs if and only if T is surjective. 

e. Assume that E = fP, with p E (1,00], and that T is defined by 
(Tu)(O) = 0 and 

(Tu)(n) = u(n -1) for all nEW. 

(T is called the right shift.) Show that the spectrum of T equals b, 
and that T has no eigenvalues. 

1. Spectrum of a projection. Let E be a Banach space and let P E L(E) 
be such that p 2 = P, P =I- 0, and P =I- I. Show that ev(P) = a(P) = 
{O, I}. (The converse holds if P is assumed hermitian: see Exercise 13 
on page 212.) 

8. Let Sand T be continuous operators on a Banach space E. 

a. Show that ST and T S have the same nonzero spectral values. 
Hint. If U is the inverse of.AI - ST, consider V = I + TUS. 

h. Show that, if S or T is invertible, then O'(ST) = O'(TS). What hap­
pens in the general case? (You might consider the operators Sand 
T introduced in Exercises 5 and 6e above.) 

9. Let X be a compact metric space and take rp E C(X). Let T be the 
operator defined on C(X) by 

Tf = rpf for all f E C(X). 

Show that aCT) = rp(X) and that 

ev(T) = {A ElK: {rp = A} has nonempty interior} . 

What if we consider T as an operator from £P(m) to itself, where m is 
a positive Radon measure on X and p E [1, 00J? 
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10. Let T be the operator defined on C([O, 1]) by 

{ 
% 1(0) 

T(J)(x) = r I(y) dy 

10 Jx2 - y2 

if x = 0, 

if x f- O. 

Show that T is a continuous operator from C([O, 1]) to itself and that 
IITII = 7r /2. Show that every point in the interval (0, 7r /2] is an eigen­
value of T. Compute the spectral radius of T . 

11. Suppose p E [1,00] and let S be the operator on LP«O, 1)) defined by 

Solve the equation 
Aj-SI=g 

for I, as a function of>. E ][{* and 9 E LP«O, 1)). Determine the eigen­
values and spectral values of S. 
Hint. If S 1 = Aj, with 1 E LP«O, 1)) and A E C*, then 1 is of the form 
I(x) = ax2 . 

12. Same questions for the operator T defined on U«O, 1)) by 

TI(x) = 11 xy(l- xy)/(y)dy. 

13. Spectrum 01 a finite-rank operator. Consider a Banach space E and an 
element T E L(E) of finite rank, which means that the image of T is 
finite-dimensional (see, for example, Exercises 11 and 12). 
a. Set F = im T and let TF be the operator on F given by restriction 

of T to F . Clearly, TF E L(F). Show that T and TF have the same 
nonzero eigenvalues. 

b. Take A E ][{* and put S = >.IF - TF E L(F), where IF is the identity 
on F. Assume that S is invertible. Show that A E p(T). 
Hint. Show that AI - T is injective. Then compute 

(>.1 - T)(I + S-IT) 

and deduce that >.I - T is bijective and that its inverse is continuous. 
c. i. Show that a(T) n][{* = ev(T) n][{*. 

ii. Show that, if E is infinite-dimensional, then 0 E ev(T). 
iii. Show that a(T) = ev(T). 

14. Let E be a Banach space and take T E L(E). Denote by F the closure 
of im T. If S E L(E) and S(F) C F, denote by SF the element of L(F) 
that is the restriction of S to F. 
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a. Suppose A E p(T). Show that R(A, T)(F) c F and deduce that 
A E p(TF) and R(A,TF) = (R(A,T»F' 

b. Suppose A E p(TF) \ {o}. Show that (AI - T) is injective and that 
(AI - T)(I + R(A, TF )T) = AI. Deduce that A E p(T) and that 

1 
R(A, T) = A (I + R(A, TF)T). 

c. Deduce from the preceding results that 

a(T) n lIe c a(TF) c a(T). 

d. Show directly that 
r(T) = r(TF). 

Hint. (TF)n = (Tn)F and Tn = (TF)n-1T. 

15. Volterra operators. Suppose K E C([O, 1]2) and let T be the operator 
on C([O, 1]) defined by 

T(f)(x) = 1x 
K(x, y)/(y) dy . 

a. Show that, for every positive integer n and every I E C([O, 1]), 

/rnl(x)/ :::; 11111 IIKIIn x: ' 
n . 

where II ·11 is the uniform norm in C([O, 1]) and in C([O, IJ2). 
b. Determine the spectral radius and then the spectrum of T . 

16. a. Let E be a Banach space endowed with an order relation:::; satisfying 
these conditions: 

- for any 1,9 E E, I:::; 9 if and only if 9 - I ~ 0; 

- for any lEE and A E IR +, I ~ 0 implies V ~ 0; 

- for any 1,9 E E, 0:::; f:::; 9 implies 11/11 :::; 11911· 
(For example, all the function spaces studied in the preceding chap­
ters, such as LV, Cb(X), Co(X), and so on, have these properties 
when given the natural order relation.) Let T E L(E) be a positive 
operator (recall that this means T f ~ 0 for all lEE with I ~ 0), 
and suppose that A E R. +. Show that, if there exists a nonzero ele­
ment I in E such that 

I ~ 0 and TI ~ V, 

then r(T) ~ A. 

Hint. Show that II Tn I II ~ An II I II for every n EN. 
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h. Let <p be a continuous map from [0,1] to [0,1] and K a continuous 
map from [0,1]2 to 1R+. Define an operator T E L(C[O, 1])) by setting 

(",(x) 
Tf(x) = 10 K(x,y)f(y)dy for all f E C([O, 1]) and x E [0,1]. 

i. Prove that, if <p(x) :::; x for every x E [0,1], then r(T) = ° (see 
Exercise 15). 

ii. Suppose there is a point Xo E (0,1) such that 

K(xo, xo) > ° and <p(xo) > Xo· 

Show that r(T) > O. 
Hint. By assumption, there exists 8 > 0 such that, for every 
X,y E [0,1], 

Ix-xol:::; 8 and Iy-xol:::; 8 => K(x, y) ~ 8 and <p(x) ~ x+8. 

Now consider the element f in C([O, 1]) defined by 

f(x) = (8 - Ix - xol)+ 

and show that Ix - xol :::; 8 implies Tf(x) ~ 83/2. Deduce that 
Tf ~ 82 f/2. 

17. Let T be a continuous operator on a Banach space E for which the 
sequence (1ITnll)nEN converges to O. Show that J - T is invertible, that 
the series E~~ Tn is absolutely convergent in L(E), and that its sum 
is (J - T)-l. 
Hint. Show that r(T) < 1. 

18. Consider a compact space X and a linear operator T on C(X). Assume 
that T is positive (if f E C(X) satisfies f ~ 0, then T f ~ 0). 
a. Show that T is continuous and that IITII = IITII1, where the right­

hand side is the norm in C(X) of Tl, the image under T of the 
constant function 1 on X. 
Now suppose that there exists a constant C ~ ° such that, for all 
n E N and all x EX, we have 

n 

0:::; ~)Tjl)(x) :::; C. 
j=o 

h. Show that, given any pair (p, q) of nonnegative integers, we have 
Tp+ql :::; C TP1. Show also that, for every point x in X, the sequence 
«Tn l)(x))nEN converges to O. 

c. Deduce that the sequence of functions (Tn l )nEN converges uniformly 
on X to O. (You might use Exercise 4 on page 30.) 
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d. Deduce that r(T) < 1 and that the series E~=o Tni converges ab­
solutely in C(X) (see Exercise 17). 

19. Let T be a continuous operator on a Banach space E. Show that, for 
every € > 0, there exists 8 > 0 such that 

a(S) C {A E OC : d(A, a(T» < €} for every S E L(E) with liT - SII < 8. 

Hint. Set M = sup {II(AI _T)-lll : d(A,a(T» ~ €}. Show that M is 
finite (see Exercise 1) and that 8 = 1/ M works. 

20. Approximate eigenvalues. Let T be a continuous operator on a Banach 
space E. By definition, and approximate eigenvalue of T is any A E OC 
for which there exists a sequence (Xn)nEN of elements in E of norm 1 
such that limn-Hoc TXn - AXn = O. We denote by aev(T) the set of 
approximate eigenvalues of T. 

a. Suppose A E OC and write Q(A) = infllxlI=l IIAX - TxlI . Show that 
A is an approximate eigenvalue of T if and only if Q(A) = O. Show 
also that the map A H Q(A) from OC to 1R+ is continuous (in fact, 
I-Lipschitz) . 

b. Show that aev(T) is compact and that 

ev(T) C aev(T) C a(T) . 

c. Show that aev(T) contains the boundary of a(T), that is, the set 
a(T) n p(T). In particular, aev(T) is nonempty if OC = C. 
Hint. Use Exercise 2 above. 

d. i. Suppose S E L(E) is not invertible. Show that, if there is C > 0 
such that 

Ilxll :S CIISxl1 for all x E E, 

the image of S is not dense in E. 
Hint. The assumption implies that the map x H Sx from E to 
im S has a continuous inverse U. If im S is dense in E, then U 
can be extended to a continuous linear map from E to E. 

ii. Suppose that A E a(T). Show that, if im(AJ - T) is dense in E, 
then A is an approximate eigenvalue of T. Is the converse true? 

e. Suppose that T is an isometry (see Exercise 6 above). Show that 

aev(T) = a(T) n {A E OC : IAI = I}. 

Hint. One inclusion is obvious. To prove the other, you might use 
Exercise 6. 

f. Find operators T for which the inclusions (*) are strict. 

21. Continuous one-parameter groups. Let E be a Banach space. 
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a. Suppose A E L(E). For t E JR, put 

+00 t n 

P(t) = exp(tA) = L I" An. 
n=O n. 

Show the following facts: 

A. P is a continuous function from JR to L(E). 
B. P(O) = J and P(t + s) = P(t)P(s) for all t, s E JR. 
C. P is of class C1 and dPjdt = AP. 

h. Conversely, consider a function P from JR to L(E) satisfying proper­
ties A and B above; we call the family (P(t))tEIR a continuous!one­
parameter group of operators. 

i. Show that there exists hE JR+* such that Ioh P(s) ds is invertible. 
Fix such an h for now on, and put 

A = (P(h) - J) (Io h P(s) dS)-1 

ii. Show that 

(Io h P(s) dS) P(t) = I t+h P(s) ds for every t E JR, 

and deduce that P satisfies property C above. 
iii. Compute 

d 
dt (P(t)exp(-tA)) 

and deduce that P(t) = exp(tA) for every t E JR. 

2 Operators in Hilbert Spaces 

In this section, we consider the particular case where E is a Hilbert space 
not equal to {O}. We me.ke heavy use of the results established in Section 3A 
of Chapter 3 (pages 112 and following). To simplify the notation we assume 
that ][{ = C, but all results in this section remain true for ][{ = JR (see 
Exercise 1 below). We first give a simple result that links the spectral 
properties of an operator T E L(E) with those of its adjoint T*, defined 
on page 112. 

Proposition 2.1 Suppose T E L(E). Then: 

i. kerT = (imT*).L. 
ii. imT = (kerT*).L. 
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iii. T is invertible if and only if T* is, and in this case 

Proof For x E E, we have x E ker T if and only if 

(Tx 1 y) = (x 1 T*y) = 0 for all y E E, 

which proves the first assertion. The second is a consequence of the first, 
in view of Corollary 2.7 on page 108 and of the equality T** = T. Finally, 
if T is invertible, we have TT- 1 = T-1T = I and, by Proposition 3.3 
on page 112, (T-l)*T* = T*(T-l)* = I. Therefore T* is invertible and 
(T*)-l = (T- 1)* . 0 

The next result follows immediately. 

Corollary 2.2 1fT E L(E), then 

a(T*) = {~: ,\ E aCT)}. 

If'\ E peT), then ~ E p(T*) and 

R(~, T*) = (R(,\, T))*. 

In contrast, there is generally no relation between the eigenvalues of T 
and those of T* (part ii of Proposition 2.1 allows us to say only that ,\ is 
an eigenvalue of T* if and only if the image of ~I - T is not dense). For 
example, if E = £2 and T is the right shift of Exercise 6e on page 196, 
defined by (Tu)(O) = 0 and 

(Tu)(n) = u(n - 1) for all n E N*, 

there are no eigenvalues. But it is easy to see that the adjoint of T is none 
other than the left shift of Exercise 5 on page 195, defined by 

(T*u)(n) = u(n + 1) for all n E N; 

thus ev(T*) = {'\ E C : 1,\1 < I}. 

Recall that an operator T E L(E) is called hermitian if it coincides with 
its adjoint T*. 

Proposition 2.3 The spectral radius and the norm of a hermitian oper­
ator on E coincide. 

Proof If T is hermitian, Proposition 3.4 on page 113 says that IIT211 = 

IITI12. Iterating this property, which we can do because the square of a 
hermitian operator is hermitian, we obtain 
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We conclude that 

since the limit of the sequence (11Tn 1I 1/ n )nEN equals the limit of any of its 
subsequences. 0 

We can now deduce immediately from Proposition 3.4 on page 113 the 
following corollary: 

Corollary 2.4 For T E L(E), 

IITII = Jr(TT*) = Jr(T*T). 

2A Spectral Properties of Hermitian Operators 

Proposition 2.5 Every hermitian operator T on E has the following 
properties: 

i. The eigenvalues of T are real. 
ii. For every A E C, we have :-im-'("""'A~I--"""T=) = (ker(XI - T)).L. 

iii. The eigenspaces of T associated with distinct eigenvalues are orthogo­
nal. 

Proof. Suppose that A is an eigenvalue of T, and let x E E be an associated 
nonzero eigenvector, so that Tx = AX and x -=1= O. Then 

Allxl12 = (AX I x) = (Tx I x). 

Since the operator T is selfadjoint, we have (Tx I x) E lR and so A E R, 
which proves the first part of the proposition. 

The second part is an immediate consequence of the equality im S = 
(ker S*).L, valid for all S E L(E) by Proposition 2.l. 

Finally, if A and JL are distinct eigenvalues of T and if x and yare corre­
sponding eigenvectors, we have 

A(xly) = (Txly) = (X I Ty) = JL(xly), 

since JL E JR. Therefore (x I y) = O. o 
The next theorem states, in particular, that the spectrum of a hermitian 

operator T is also contained in R. 

Theorem 2.6 Let T be a hermitian operator on E. Put 

m = inf {(Tx I x) : x E E with Ilxll = I}, 

M = sup{ (Tx I x) : x E E with IIxll = I}. 

Then a(T) C [m,M], mE a(T), and M E a(T). 
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In other words, [m, M] is the smallest interval containing the spectrum 
ofT. 

Proof 

1. Take.x E C and a nonzero element x in E. Then 

Denote by d(.x) the distance from .x to the interval [m, M]: 

d(.x) = min {I.x - tl : t E [m, MJ}. 

Then, by the Schwarz inequality and the definition of m and M, 

lI.xx - Txllllxli ~ I (.xx - Tx I x)1 ~ d(.x) IIx112. 

It follows that 

II.xx - Txll ~ d(.x) II xII for all x E E. 

Suppose that .x ~ [m, M]. Then d(.x) > 0 and, by (*), .xi - T is injective. 
We now prove that im(.xI - T) is closed. If (Yn)nEN is a sequence in 
im(.xI - T) converging to Y E E, with Yn = .xxn - TXn for each n, 
equation (*) implies that (Xn)nEN is a Cauchy sequence and so converges 
to some x E E, which clearly satisfies .xx-Tx = y. Thus Y E im(.xI -T). 
We then deduce from Proposition 2.5 that 

im(.xI - T) = (ker(XI - T))l.. 

But, since X does not belong to [m, M] either, the operator XI - T is 
also injective. We deduce that .xI - T is a bijection from E onto itself. 
Since, by (*), the inverse of this map is continuous (and has norm at 
most l/d(.x)), we get .x E p(T). Therefore a(T) C [m, M]. 

2. We prove, for example, that m E a(T) . (That M E a(T) follows by 
interchanging T and -T.) Set S = T - mI. By the definition of m, Sis 
a positive hermitian operator. The map (x, y) H (Sx I y) is therefore a 
scalar semiproduct on E . Applying the Schwarz inequality to this scalar 
semiproduct, we get 

I(SxIY)12~(Sxlx)(SYIY) forallx,YEE. (**) 

At the same time, by the definition of m, there exists a sequence (Xn)nEN 
of elements in E of norm 1 such that limn-Hoo(Sxn I xn ) = O. By (**), 
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so that 
IISxnll ~ IIs1I 1/ 2 (SXn I Xn)1/2, 

which implies that limn-Hoc SXn = O. If m were not a spectral value of 
T, the operator S would be invertible in L(E) and Xn = S-1Sxn would 
tend to 0, which is absurd. Therefore m E a(T). 0 

Remark. The second part of this proof did not use the completeness of E . 
Thus m and M are spectral values for any hermitian operator T, even if 
the underlying space E is not complete. In particular, the spectrum of any 
hermitian operator on any scalar product space is nonempty. 

Suppose T is hermitian. Recall that IITII = max(lml , 1M!) (see Proposi­
tion 3.5 on page 114), and that T is called positive hermitian if m ~ 0 (see 
page 114). The next corollary is an immediate consequence of the preceding 
results. 

Corollary 2.7 A hermitian operator T on E is positive hermitian if and 
only if its spectrum a(T) is contained in 1R +. If this is the case, IITII E a(T). 

2B Operational Calculus on Hermitian Operators 

We saw in Section 1 (page 194) that each element T in L(E) defines a 
morphism of algebras PH P(T) from ClX] to L(E). Now, for T hermitian, 
we will extend this morphism and define f(T) for every continuous complex­
valued map f defined on the spectrum of T. 

Let T be a hermitian operator on E. If P = ao+a1X + .. ·+anXn E ClX], 
we write F = 0,0 + o,1X + ... + o,nXn and IPI 2 = PF. 

Proposition 2.8 For every P E ClX], we have (P(T))* = F(T) and 

IIp(T)11 = max Ip(t)l· 
tE<T(T) 

Proof. The first assertion is an immediate consequence of the fact that 
T is hermitian (see Proposition 3.3 on page 112). Next, for P E ClX], 
Proposition 3.4 on page 113 gives 

But, since IPI 2 (T) is positive hermitian, 

by Corollary 2.7. By the Spectral Image Theorem (page 194), we have 
a(IPI 2 (T)) = IPI 2 (a(T)), so 

IIp(T)11 = ( max 1P12(t))1/2 = max Ip(t)l , 
tE<T(T) tE<T(T) 

which concludes the proof. o 
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Theorem 2.9 The map P f-t P(T) defined earlier from ClX] to L(E) 
extends uniquely to a linear isometry I f-t I(T) from G(a(T» to L(E). 
Moreover: 

i. (fg)(T) = I(T)g(T) lor all I,g E G(a(T». 
ii. (f(T»" = f(T) lor all IE G(a(T». 
iii. a(f(T» = l(a(T» lor all IE G(a(T» (spectral image). 

Prool 

1. Let 11 be the subset of G(a(T» consisting of restrictions of polyno­
mial functions to aCT) . By Proposition 2.8, two polynomials P and 
Q that have the same restriction to aCT) must satisfy P(T) = Q(T), 
since IIP(T) - Q(T)II = maxtEu(T) IP(t) - Q(t)1 = O. Therefore the 
map P f-t P(T) defines an isometry from 11 to L(E). By the Stone­
Weierstrass Theorem, 11 is dense in G(a(T» (see Example 2 on page 34). 
Using the fact that L(E) is a Banach space, we can apply the Extension 
Theorem and extend this isometry in a unique way to a linear isometry 
on G(a(T», which must satisfy the first two properties of the theorem 
since it extends a map that does. 

2. If A ¢ I (a(T», the function II (A - f) is continuous on a(T), and clearly 

(AI - I(T»-l = (A ~ I )(T) 

and A E p(f(T» (the norm of the operator (AI - I(T»-l being the 
inverse of the distance from A to l(a(T»). Thus a(f(T» c l(a(T». 

3. Now take I E GR(a(T», I 2:: 0, with I(T) invertible. We wish to 
show that 0 ¢ l(a(T». Since a(f(T» c l(a(T)) c 1R+, it follows that 
-lin is a regular value of I(T) for any n EN", and, by the preceding 
discussion, 

R( -lin, I(T» = (-l/~ _ I) (T). 

Now, the function A f-t R(A,/(T» is continuous on p(f(T», so 

lim R(-l/n,/(T» = R(O,/(T» = -(f(T»-l . 
n-++oo 

At the same time, the map I f-t I(T) is isometric from G(a(T» (con­
sidered with the uniform norm, still denoted by 11·11) to L(E); therefore 

IIR(-l/n,/(T»11 = II-I/~ - I II· 
If I vanished anywhere in aCT), the value of IIR( -lin, I(T»II would go 
to infinity as n -+ +00, which is a contradiction. Therefore I does not 
vanish on aCT), which is to say 0 ¢ l(a(T». 
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4. Finally, take f E C(a(T)) . Suppose that A E p(J(T)). Then the operator 
AI - f(T) is invertible, as are its adjoint XI - f(T) and hence the product 
(AI - f(T))(XI -/(T)) = IA- fI 2(T). Since IA- fl2 is a positive function, 
we can apply step 3 to it. This implies that the function IA - fl2 does 
not vanish on a(T); therefore the same is true of A - f. Thus shows that 
A tt f(a(T)), and so that f(a(T)) C a(J(T)) . 0 

Corollary 2.10 Let f be a continuous function from a(T) to C. The 
operator f(T) is hermitian if and only if f is real-valued. It is positive 
hermitian if and only if f 2: O. 

Proof. The first assertion follows from part ii of Theorem 2.9. The second 
follows from part iii of the same theorem and from Corollary 2.7. 0 

Example. IT T is a positive hermitian operator and if 0: E (0, +00), we can 
define TOt, which is a positive hermitian operator. Then 

T OtTf3 = To+f3 for all 0:, f3 > 0, 

a(TO) = {t<> : t E a(T)} for all 0: > O. 

Moreover, the map 0: H TO is continuous from (0, +00) to L(E). 

Exercises 

1. Let E be a real Hilbert space and T a symmetric operator on E . 

a. Show that the proof of Theorem 2.6, and so also the theorem itself, 
remain valid. Deduce that, if there is a constant C > 0 such that 

(Tx 1 x) 2: Cllxl1 2 for all x E E, 

T is invertible. 
b . Let P = X2 + aX + b be a real polynomial having no real roots. 

Show that P(T) is invertible. 
Hint. P can be written as P = (X +0:)2+f32, with 0: E lR and f3 > O. 
But then, for every x E E, we have (P(T)x 1 x) 2: f321IxIl 2 • 

c. Show that for any P E R[X] we have P(a(T)) = a(P(T)) . (Thus 
the spectral image property is valid for symmetric operators when 
Jl{ = R.) 
Hint. Imitate the proof of Theorem 1.5, using a factorization of the 
polynomial P - J.l over lR and the previous question. 

d. Show that r(T) = IITII = max{IAI : A E a(T)}. 
Hint. For the second equality, one might use part a of this exercise 
and Proposition 3.5 on page 114. 

e. Show that the results of Section 2B remain valid when Jl{ = R. . 
Hint. In view of parts a-d, one can use the same proofs. 
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2. Let A and B be complementary orthogonal subspaces in a Hilbert space 
E , and suppose T E L(E). Assume that T leaves A and B invariant , 
that is, T(A) C A and T(B) C B . Show that 

aCT) = a(l1A) U a(l1B)' 

(You might show the corresponding equality involving the resolvent set.) 
Example. Determine the spectrum of the operator T defined on (2 by 

l+(-l)n 
(Tu)(n) = u(n + 2) + 2 u(n) for all n E N . 

(You might use Exercise 5 on page 195.) 
3. Let E be a Hilbert space and take T E L(E). Denote by aev(T) the 

set of approximate eigenvalues of T (see Exercise 20 on page 200). Also 
put 

i(T) = {(Tx I x) : Ilxll = I}. 
a. Show that the spectrum of T equals aev(T) U {), : A E ev(T')}. In 

particular, aCT) = aev(T) if T is hermitian. 
Hint. Use Exercise 20d-ii on page 200. 

h. Show that aev(T) C i(T). 
c. Deduce that aCT) C i(T). (This generalizes the first part of Theorem 

2.6.) 
d. Deduce that, if K = C, 

reT) ~ sup I(Txlx)1 ~ IITII. 
IIxll=l 

4. Let E be a Hilbert space over C. An operator T on E is said to be 
normal if TT* = T'T. 

a. i. We assume (in this subitem only) that E = £2. Let (An)nEN 
be a bounded sequence on C and let T be the operator on E 
defined by 

Tf(n) = Anf(n). 

Show that T is normal. Recall from Exercise 4 on page 195 that 
the spectrum of T equals the closure of the set {An}nEN . 

ii. Deduce that, if E is infinite-dimensional, every nonempty com­
pact subset of C is the spectrum of a normal operator on E. 
Hint. Use the previous result to handle the case where E is sep­
arable; then handle the general case using Exercise 2. 

h. i. Let T E L(E). Show that T is normal if and only if IITxl1 = 
IIT'xll for every x E E. 

ii. Let T be a normal operator on E. Show that, for every A E C, 

ker(AI - T) = ker(),[ - T*). 
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Deduce, in particular, that A E ev(T) if and only if >. E ev(T*). 
Show also that eigenspaces of T associated with distinct eigen­
values are orthogonal. (Work as in the proof of Proposition 2.5.) 

c. Let T be a normal operator on E. 

i. Show that IITII = reT) . 
Hint. Start by proving that r(TT*) :<:::; r(T)2 . 

ii. Deduce that 

(Use Exercise 3.) 

IITII = sup I(Txlx)l· 
IIxll=l 

5. Let T be a continuous operator on a separable Hilbert space. Show that 
if T is hermitian it has countably many eigenvalues. Show that this 
conclusion still holds if T is only assumed normal (see Exercise 4), but 
not if we make no assumptions on T. 

6. Let (Tn) be a bounded sequence of positive hermitian operators on a 
Hilbert space E satisfying, for every n E N, the condition Tn+1 ~ Tn 
(that is, Tn+! - Tn is positive hermitian). Set M = sUPnEN IITnll. 

a. Take n,m E N such that m < n. Show that Tn,m = Tn - Tm is a 
positive hermitian operator of norm at most M . Using equation (**) 
on page 204 with S = Tn,m, deduce that, for every x E E, 

h. Deduce that for every x E E the sequence (Tnx) converges and that 
the map T defined by T x = limn~+oo Tnx is a positive hermitian 
operator. 

1. Define an operator T on the Hilbert space E = £2«0, +00» by setting 

Tf(x ) = [+00 fey) dy for all fEE and x E (0, +00). 
10 x+y 

It was shown in Exercise 3 on page 149 that 

1+00 Z-1/2 
IITII = --dz = 1r. 

o 1 + z 

a. Let L be the operator on E defined by 

[+00 
Lf(x) = 10 e-XY fey) dy for all fEE and x E (0, +00). 

L is called the Laplace transform operator on £2«0, +00». Show 
that L is a hermitian operator and that L2 = T. Deduce that T is a 
positive hermitian operator and that IILII = Vii. 
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Hint. To prove that L is continuous, one can write, for fEE 
nonnegative-valued, 

[+00 roo 
(Lf(x))2 = 10 e-XYf(y)dy 10 e-XY'f(y')dy'. 

b. Show that im(T) C C((O, +00)) and deduce that 0 is a spectral value 
of T. Show that 0 is not an eigenvalue of T. (Start by showing that 
L is injective.) 

c. Show that [0, 7r] is the smallest interval containing the spectrum of 
T (in fact the two sets coincide). 

8. Let T be a hermitian operator on a Hilbert space E. For f E CR(a(T)) 
and 9 E C(f(a(T))), show that 

(g 0 f)(T) = g(f(T)). 

In particular, if 0: , (3 > 0 and T is positive hermitian, (TOt)!3 = Ta!3. 
9. Explicit construction of the square root of a positive hermitian operator. 

(This exercise is meant to be solved without recourse to the results 
of Section 2B.) Let T be a positive hermitian operator on a Hilbert 
space E. 

a. Suppose in this item that IITII :::; 1, and consider the sequence of 
hermitian operators (Sn) defined by So = 0 and 

Sn+l = ~(I - T + S~) for all n ~ O. 

i. Show by induction on n that 0 :::; Sn :::; Sn+l :::; I for every 
integer n EN, where U ~ V means that U - V is positive 
hermitian. 
Hint. Set U = 1- T. Show by induction that, for every integer 
n EN, the operators Sn and Sn+l - Sn can be expressed as 
polynomials in U with positive coefficients. 

ii. Deduce that there exists a positive hermitian operator S such 
that limn-Hoo Snx = Sx for every x E E. (Use Exercise 6 
above.) 

iii. Set R = 1- S. Show that R2 = T. 
iv. Show that R commutes with every operator on E that commutes 

with T . 

b. Now make no assumption on the norm of T. Show that there exists 
a hermitian operator R such that R2 = T and that commutes with 
every operator that commutes with T. 

10. Let E be a Hilbert space. 
a. Let T be a hermitian operator on E . Show that, if f E C(a(T)), the 

operator f(T) commutes with every operator on E that commutes 
with T. 
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h. Uniqueness of the square root of a positive hermitian operator. Let 
T be a positive hermitian operator on E and set R = Tl/2. Let R' 
be a positive hermitian operator such that (R')2 = T. 

i. Show that RR' = R'R. 
ii. Let X and X' be positive hermitian operators such that X 2 = R 

and (X')2 = R'. Show that, for every x E E, 

IIXyl12 + IIX'yI12 = 0, where y = (R-R')x. 

iii. Deduce that II(R-R')xI12 = 0 for every x E E , and so that 
R=R'. 

c. Let T and S be positive hermitian operators on E such that ST = 
TS. 

i. Show that ST is a positive hermitian operator. 
Hint. One might introduce U = SI/2. 

ii. Show that, if S :::; T (that is, if T - S is positive hermitian), then 
S2:::; T2 . 
Hint. Note that T2 - S2 = (T+S)(T-S) . 

11. Polar decomposition. Let T be a continuous operator on a Hilbert space 
E, and set P = (T*T)I/2. 
a. Show that ker P = ker T and that im P = (ker T).l. 
h. Show that there exists a unique operator U E L(E) such that 

- IIUxl1 = IIxll for every x E (kerT).l, 
- Ux = 0 for every x E kerT, and 
- T=UP. 

Hint. If x E imP and x = Pz, we must have Ux = Tz. 
c. Show that U* U is the orthogonal projection operator onto (ker T).l. 
d. Show that if T is normal (TT* = T*T), then UP = PU. 

Hint. One can use the fact that an operator commutes with p2 if 
and only if it commutes with P (see Exercise lOa, for example) . 

e. Example. Determine the operators U and P when where E = L2(m) 
(m being a measure on a measure space (X, $)) and T is defined 
by 

T/=a/ forall/EE, 

for a fixed a E LOO(m). 
12. Let T be a hermitian operator on a Hilbert space E. Show that every 

isolated point of the spectrum of T is an eigenvalue of T . 
Hint. Let A be an isolated point of a(T). Define a function / on a(T) 
by 

f(t) = {I if t = A, 
o otherwise. 

Then / is continuous on a(T) and /(T) of O. Show that (T-AI)/(T) = 0 
and conclude. (You can also prove that /(T) is the orthogonal projection 
onto ker(T - AI).) 
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13. Let T be a hermitian operator on a Hilbert space and suppose u(T) = 
{O, I}. Show that T is an orthogonal projection operator. 
Hint. The function I defined by I (x) = x 2 - x vanishes on the spectrum 
ofT. 

14. Let m be a measure on a measure space (X, $) and take 'P E LJ;'(m). 
Define an operator T on L2(m) by 

Tu = 'PU for all u E L2(m) . 

Determine the operator I(T), for each continuous function f. 
15. Spectral measure. Let T be a hermitian operator on a Hilbert space E 

and set X = aCT). 
a. Suppose u, vEE. Show that there exists a complex Radon measure 

JLu,v on X such that 

(J(T)u I v) = JLu,v(l) for all I E C(X) . 

Show that, for every u E E, the measure JLu,'U is positive. 
h. Let fA be the space of bounded Borel functions on X, and suppose 

I E fA. Show that the map 

(u, v) H j I dJLu.v 

is a sesquilinear, skew-symmetric, continuous form on E. (Sesquilin­
ear means linear in the first argument and skew-linear in the second.) 
Deduce that there exists a continuous operator on E, which we de­
note by I(T), such that 

(I(T)u I v) = j I dJLu,v for all u, vEE. 

Check that IIf(T)11 ~ SUPxEX I/(x)l · 
Hint. Approximate I by a sequence of functions in C(X) bounded 
by sUPxEX I/(x)l; then use the Dominated Convergence Theorem. 

c. Show that the map from fA to L(E) taking I to I(T) is a morphism 
of algebras and that (I(T»· = f<T) for all I E fA. 

d. Let (In) be a bounded sequence in fA that converges pointwise to a 
function I . Show that limn -++oo In(T)(u) = I(T)(u) for every u E E . 
Hint. Show that limn-++oo(l/n - fl2(T)(u) I u) = O. 

e. Suppose a E X and let I a be the restriction to X of the function 
l(-oo,aJ ' Show that a ~ b implies la(T) ~ Ib(T) (this notation means 
that Ib(T) - la(T) is positive hermitian). Show also that la(T) and 
Ib(T) are orthogonal projection operators, as is Ib(T) - la(T) if 
a < b. 
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Compact Operators 

1 General Properties 

Consider two normed spaces E and F over the same field II{ = IR or C. As 
usual, we denote by L(E, F) the space of continuous linear maps from E to 
F, and use the same notation 11 · 11 for the norm in E, in F, and in L(E, F). 
Thus, if T E L(E, F), we have IITII = sup {IITxll : x E E with II xII ~ I}. 

We say that an element T in L(E, F) is a compact operator if the 
image of the closed unit ball B(E) of E is a relatively compact subset of 
F. We denote by feE, F) the set of compact operators from E to F, and 
we write feE) = feE, E) . 

Clearly, an element T of L(E, F) is a compact operator if and only if the 
image under T of every bounded subset of E is relatively compact in F . 

Note that the Riesz Theorem (page 49) can be expressed as follows: The 
identity map on E is a compact operator from E to E if and only if E is 
finite-dimensional. 

Examples 

1. Every finite-rank operator T from E to F is compact. (Recall that an 
operator is said to have finite rank if its image has finite dimension, 
and infinite rank otherwise. The dimension of the image of a finite-rank 
operator is called its rank.) Indeed, T maps B(E) to a bounded, and 
therefore relatively compact, subset of im T. Since any compact set in 
im T is compact in F, the image TCBCE)) is relatively compact in F. 
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2. Consider compact metric spaces X and Y, a function K E C(X x Y), 
and a (possibly complex) Radon measure JL on Y. We define an operator 
TK from C(Y) to C(X) by 

TKI(x) = J K(x, Y)I(Y) dJL(Y) for all I E C(Y) and x EX. 

(In this situation the map K is called the kernel of the operator T K .) 

The operator TK is compact: this was proved on page 44 when JL is a 
positive Radon measure, and the proof can be immediately adapted to 
the case where JL is not necessarily positive. 

3. Let a and b be real numbers such that a < b, and suppose K E C([a, b]2). 
Let a and f3 be continuous functions from [a, b] to [a, b]. For I E C([a, bJ) 
and x E [a, b], we put 

l lJ(X) 

Tf(x) = K(x, y)l(y) dy. 
o(x) 

The operator T thus defined from C([a, bJ) to itself is compact. 

Proof. Let IIKII be the uniform norm of K. Then, for every f E C([a, b]), 

IITIII ::; IIKllllfll· 
Therefore T(.8(E» is a bounded subset of C([a, b]). On the other hand, 
if Xl, X2 E [a, b] and I E C([a, b]), 

ITI(Xl) - TI(X2)1 

::; IIIII x (IIKII (If3(X2) - f3(xdl + la(x2) - a(xdl) 
+(b-a) sup IK(x 1 ,y) - K(x2 ,Y)I). 

yE[a,bJ 

Since K is a uniformly continuous function on [a, bF, this shows that 
T(.8(E» is an equicontinuous subset of C([a, bJ). The result now follows 
from the Ascoli Theorem (page 44). 0 

In particular, the integration operator 

TI(x) = l x 
I(t) dt 

is a compact operator from C([O, 1]) to itself. 
4. Other examples of compact operators have been seen in the exercises: 

between Holder spaces (Exercise 5 on page 45), the map I H I from 
CP([O, 1]) to cq([O, 11), with q > p > 0; and between discrete Sobolev 
spaces (Exercise 7d on page 104), the map f H I from HS to HT with 
r < s. 
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We now study certain closure properties of compact operators. 

Proposition 1.1 £(E, F) is a vector subspace of L(E, F). 

Proof. Consider compact operators T and S from E to F and elements 
>",JL E K . Then 

(>..T + JLS)(fJ(E)) C >.. T(B(E)) + JL S(fJ(E)). 

But, if K1 and K2 are compact sets in F, the set >"K1 + JLK2' being the 
image of the compact Kl x K2 under the continuous map (x, y) f-t >"x+JLY, 
is also compact. 0 

Proposition 1.2 Let R be a compact operator from E to F. If El and 
Fl are normed spaces and ifT E L(El' E) and S E L(F,Ft} are arbitrary, 
the composition SRT is a compact operator from El to Fl. 

Proof. Indeed, 

SRT(fJ(Et}) C IIT1! S(R(fJ(E))). 

Since a continuous image of a compact set is compact, the result follows. 0 

Corollary 1.3 £(E) is a two-sided ideal of the algebra L(E). 

Proposition 1.4 If F is complete, the limit in L(E, F) of every conver­
gent sequence of compact operators from E to F is a compact operator. 

Proof. Let (Tn)nEN be a sequence of compact operators from E to F that 
converges to T in L(E, F). By Theorem 3.3 on page 14, it suffices to show 
that T(fJ(E)) is precompact. Choose e > 0 and let n E N be such that 
liT - Tnll :::; e/3. We can cover Tn(fJ(E)) with a finite number k of balls 
B(Tn/i, e/3), where It, ... ,!k E fJ(E) . Suppose f E B(E) and let j :::; k be 
such that IITnf - Tn/ill < e/3. By the triangle inequality, IITf - T/ill < e. 
Therefore 

k 

T(B(E)) C U B(T/i,e), 
j=l 

and T(fJ(E)) is precompact. o 
The result of the proposition can fail if F is not complete: see Exercise 

8 on page 222. 

Since every finite-rank operator is compact, as we saw in Example 1 on 
page 213, Proposition 1.4 has the following important consequence: 

Corollary 1.5 If F is complete, every limit in L(E, F) of finite-rank op­
erators is a compact operator. 

This provides a frequently useful criterion for proving that an operator 
is compact. 
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Examples 

1. Let (X, $) and (Y,!1) be measure spaces endowed with a-finite mea­
sures m and p" respectively. Let p E [1, +00) and pi be conjugate ex­
ponents, and suppose K E LP(m x p,). We define an operator TK from 
£P'(p,) to £P(m) by setting, for every f E £P'(p,) and m-almost every 
xE X, 

TK f(x) = J K(x, y)f(y) dp,(y). 

(As in Example 2 on page 213, the map K is called the kernel of the 
operator TK.) Then TK is a compact operator. 

Proof We use the same notation 11 · 11 for the norms in LP(m x p,) and 
in L(LP'(p,), £P(m)). We deduce easily from Holder's inequality and Fu­
bini's Theorem that TK is continuous and that 

Suppose that K is an element of LP(m) ® LP(p,), the vector subspace 
of £P(m x p,) spanned by the elements f ® 9 : (x, y) t---+ f(x)g(y) for 
f E £P(m) and 9 E £P(p,); that is, suppose 

k 

K(x, y) = 'LJj(x)gj(y). 
j=1 

Then the image of TK is contained in the span of the family {II, ... , fk}, 
so TK has finite rank. 
Now, if K E £P(m x p,) is arbitrary, K is the limit in £P(m x p,) of a 
sequence (Kn)nEN in £P(m) ® £P(p,) (see Exercise 12 on page 153). But 
then, by (*), the sequence (TKJnEN converges to TK, showing that TK 
is compact by Corollary 1.5. 0 

Notice that the compactness of the operator considered in Example 2 
on page 213 could be proved by the same method, using Example 5 on 
page 35. 

2. Hilbert-Schmidt operators. Let E be an infinite-dimensional separable 
Hilbert space. If (en)nEN is a Hilbert basis of E, we say that an operator 
T E L(E) is a Hilbert-Schmidt operator if the series of numbers 
E!~ IITen l1 2 converges. One can show (Exercise 21 on page 140) that 
this definition does not depend on the Hilbert basis considered. Now 
let Pn be the orthogonal projection from E onto the span of the family 
(ejh$j~n' One can show that, if T is a Hilbert-Schmidt operator, the 
sequence (T Pn)nEN converges in £(E) to T (see Exercise 21 on page 140 
again). Thus, every Hilbert-Schmidt operator is a compact operator. 
In the case E = L2(m), where m is a a-finite measure on a measure space 
(X, $) (still assuming E separable), the Hilbert-Schmidt operators on 
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E are exactly the operators of the form TK defined in the preceding 
example, with K E L2(m x m) (see Exercise 21 on page 140 once more) . 

We observe that, for many (but not all) Banach spaces F, Corollary 
1.5 has a converse: Every compact operator from E to F is the limit of a 
sequence of operators of finite rank. See Exercise 24 on page 232. 

lA Spectral Properties of Compact Operators 

Consider again an arbitrary normed space E. We do not assume that E is 
complete, but we use nonetheless the notions and notation introduced in 
Chapter 5 (page 189): spectral values, regular values, eigenvalues, spectrum, 
and so on. 

Proposition 1.6 Let T be a compact operator from E to E. 

1. The kernel of the operator I - T has finite dimension. 
2. The image of I - T is closed. 
3. The operator I - T is invertible in L(E) if and only if it is injective. 

Proof 

1. Write F = ker(I - T). Then F is a closed subspace of E and 

B(F) = T(B(F)) c T(B(E)) n F, 

which is compact. By the Riesz Theorem (page 49), F is finite-dimen­
sional. 

2. Take y E im(I - T) and let (xn) be a sequence in E such that 

First case: the sequence (xn) is bounded. Since T is compact, we can 
assume, by passing to a subsequence if necessary, that the sequence 
(Txn) converges to some point Z E E. Then limn-HOC Xn = Y + Z 
and, by the continuity of T, we get Z = T(y+z), which implies that 
y = (y+z) - T(y+z) E im(I - T). 
Second case: the Sequence (xn) is not bounded. For every n EN, set 
dn = d(xn, ker(I - T)). Since ker(I - T) is finite-dimensional by part 1, 
there exists a point Zn E ker(I - T) such that IIxn - znll = dn (indeed, 
the continuous function x f-t d( Xn , x) must achieve its minimum over 
the nonempty compact set B(xn, Ilxnll) n ker(I - T)). 
If the sequence (dn ) is bounded, we can replace Xn by Xn - Zn to reduce 
to the first case; thus y E im(I - T). 
Otherwise, by taking a subsequence, we can assume that the sequence 
(dn)nEl'l tends to +00. Since the sequence (xn -zn)/dn) is bounded, we 
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can assume, again by passing to a subsequence, that T(xn - zn)/dn) 
converges to a point U E E (since T is compact). We deduce that 

lim d;;l(Xn - zn) = U + lim d;;ly = U, 
n~+oo n~+oo 

which implies two things: that Tu = u (by the continuity of T), so that 
u E ker(I - T); and that, for n large enough, IIxn - Zn - dnull < dn. 
But this contradicts the definition of dn . Therefore the sequence (dn ) is 
bounded and y E im(I - T), which proves part 2. 

3. We now assume that the operator I - T is injective. To prove its sur­
jectivity, we will use a general lemma. 

Lemma 1.7 If F is a proper closed subspace of a normed vector space 
G, there exists u E G such that Ilull = 1 and d(u, F) ~ ~. 

Proof Take v E G \ F and set 8 = d(v, F) > O. Certainly there exists 
wE F such that Ilv - wll < 28. Then the point U = Ilv - wll- 1 (v - w) 
works: if Z E F, we have 

1 1 
Ilu-zll = IIv-wll-11Iv-w-lIv-wllzll ~ 28 8 = 2' 

proving the lemma. o 

We now argue by contradiction. Set El = im(J - T) and suppose that 
El i E. For every n E N, set En = im(I - T)n (and set Eo = E). 
We show by induction that, for every n E N, the subspace En is closed, 
En :) En+l' and En i En+1 • 

The claim holds for n = 0 by assumption. Suppose it holds for n EN. 
Clearly, T(En) C En; thus T induces an operator Tn E L(En). The 
set Tn(B(En)) is contained in T(B(E)) n En, which is compact since 
En is closed. Therefore Tn is a compact operator on En. Since En+l = 

(In - Tn)(En), where In is the identity on En, part 2 above applied to 
Tn implies that En+l is closed in En and so in E. It is also clear that 
En+l :) En+2 • Finally, because we assumed 1- T to be injective, the 
subspaces En+l = (I - T)(En) and En+2 = (I - T)(En+d cannot be 
equal since En i En+!. This completes the induction step. 
By applying Lemma 1.7, we now obtain a sequence (Un)nEN such that, 
for every n EN, 

Un E En , Ilunll = 1, and d(un, En+t) ~ ~ . 

Then, for n < m, 

TUn - TUm = Un - Vn,m with vn,m = TUm + (I - T)un E En+1 . 

It follows that 

IITun - Tumll ~ ~ for all n i m. 



1 General Properties 219 

Since every point of the sequence (Un)nEN lies in B(E) , this contradicts 
the relative compactness of T(B(E)) (no subsequence of (TUn)nEN is a 
Cauchy sequence). This contradiction proves that 1- T is surjective. 
There remains to show the continuity of (I - T)-l. Here again we argue 
by contradiction, by assuming that there is a sequence (Xn)nEN that does 
not tend to 0 and such that limn-++oo(xn - Txn) = 0 (this condition 
is equivalent to (I - T)-l not being continuous at 0) . By passing to 
a subsequence if necessary, we can assume that Ilxnll 2: c, for every 
n E N and a fixed c > O. Now put Un = xn/llxnli . Since T is a compact 
operator, we can assume, again by passing to a subsequence, that the 
sequence (TUn)nEN converges to a point vEE. But then limn-+oo Un = 
v, which implies that IIvll = 1 and, by the continuity of T, that v = Tv, 
contradicting the injectivity of 1- T . 0 

We can now state our main theorem, which shows that, as far as spectral 
properties are concerned, compact operators behave almost like operators 
of finite rank (see Exercise 13 on page 197). 

Theorem 1.8 Let T be a compact operator from E to E. 

1. If E is infinite-dimensional, 0 is a spectral value of T. 
2. Every nonzero spectral value ofT is an eigenvalue ofT and has a finite­

dimensional associated eigenspace. 
3. The spectrum of T is countable. If it is infinite, its nonzero elements 

can be arranged in a sequence (An)nEN such that, for all n E N, 

and lim An = o. 
n-++oo 

Proof 

1. Suppose that 0 is not a spectral value of T . Then I = TT- 1 is a com­
pact operator by Proposition 1.2. By the Riesz Theorem (page 49), this 
implies that E is finite-dimensional. 

2. Take A E ]K*. Then A is an eigenvalue of T if and only if I - T I A is not 
injective, and ker(M - T) = ker(I - T I A). On the other hand, A is a 
spectral value of T if and only if I - T / A is not invertible in L(E). Thus 
it suffices to apply Proposition 1.6 to prove assertion 2. 

3 . For assertion 3, it is enough to show that, for every c > 0, there is 
only a finite number (perhaps 0) of spectral values A of T such that 
IAI 2: c. Suppose, on the contrary, that, for a certain c > 0, there exists 
a sequence (An)nEN of pairwise distinct spectral values of T such that 
IAnl 2: c for every n E N. By part 2, all the An are eigenvalues of T . 
Thus there exists a sequence (en) of elements of E of norm 1 such that 
Ten = Anen for every n E N. Since the eigenvalues An are pairwise 
distinct, it is easy to see (and it is a classical result) that the family 
{en}nEN is linearly independent. For each n EN, let En be the span of 
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the n+ 1 first vectors eo, .. . ,en' The sequence (En}nEN is then a strictly 
increasing sequence of finite-dimensional spaces. By Lemma 1.7, there 
exists a sequence (Un}nEN of vectors of norm 1 such that, for every 
integer n EN, 

Un E En+l and d(un, En) ~ ! 
(in fact, since En has finite dimension, we could replace 1 by 1 here). 
Define Vn = oX;;-~lUn. The sequence (vn) is bounded by l/e. Moreover, 
ifn > m, 

But TVm E Em+l C En and (oXn+lI - T}(En+d C En. Thus Vn ,m E En 
and IITvn -Tvmll ~ ! , contradicting the compactness of T (the sequence 
(Vn}nEN is bounded and its image under T has no Cauchy subsequence, 
hence no convergent subsequence) . 0 

Example. We now discuss a compact operator whose spectrum is count­
ably infinite, and we determine this spectrum explicitly. Consider the op­
erator T on the space C([O, 1]) (with the uniform norm) defined by 

Tf(x} = 11
-

x f(t}dt for all f E C([O, 1]). 

We know from Example 3 on page 214 that T is a compact operator. By 
Theorem 1.8, zero is a spectral value of T, but clearly it is not an eigenvalue. 
To determine the spectrum explicitly, it is enough to find the eigenvalues. 
Let oX be an eigenvalue of T and let 9 E C([O, 1]) be a corresponding nonzero 
eigenvector, so that 

oXg(x} = 11
-

X g(t} dt for all x E [O,IJ. 

Since oX is nonzero, 9 is necessarily of class C 1 in [0, 1 J; moreover g( I} = ° 
and 

oXg'(x} = -g(1 - x} for all x E [O,IJ. 

It follows that 9 is of class C 2 in [0, 1 J and that 

9 =I- 0, g(l} = 0, g'(O} = 0, oXg'(I} = -g(O}, (*) 

oXg"(x} = -g(x}/oX for all x E [O,IJ. (**) 

The solutions of the differential equation (**) satisfying g'(O} = ° are the 
functions g( x} = A cos( x/oX}. In order for such a function to satisfy condi­
tions (*), it is necessary that cos(l/oX} = ° and sin(l/oX} = 1, which is to 
say l/oX = 7r/2+2k1r, with k E Z, or yet 

oX = 1 with k E Z. 
7r/2 + 2k1r' 
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Conversely, if A = 1/{-Tr/2 + 2k1r) with k E Z, one easily checks that the 
function 9 defined by g(x) = cos(x/ A) is an eigenvector of T associated 
with A. Thus 

a(T) = {O} U Cr/2: 2k1r : k E Z}. 
We also see that all the eigenspaces of T have dimension 1 and that the 
spectral radius of T is 2/11'. 

Exercises 

1. Let E be an infinite-dimensional Banach space and F any normed vector 
space. Let T be an operator from E to F for which there exists a constant 
0: > 0 such that IITxl1 2:: o:llxll for every x E E. Show that T is not 
compact. 

2. Let (An)nEN be a sequence of complex numbers and let T be the operator 
on fP (where p E [1 , +00») defined by 

TI(n) = Anl(n) for all I E (P and n EN. 

We know from Exercise 4 on page 195 that T is continuous if and only 
if the sequence (An)nEN is bounded. 

a. Show that T is compact if and only if limn-Hoo An = O. 
Hint. You might use Exercise 10 on page 183, for example. 

b. Suppose p = 2. Show that T is a Hilbert-Schmidt operator if and 
only if 

c. Let S be the right shift in iV, where p E [1, +00) (see Exercise 6e on 
page 196). Is S a compact operator? 

d. Suppose that the sequence (An)nEN tends to O. Determine the eigen­
values and the spectral values of TS. 

3. Let X be a compact metric space and suppose rp E C(X). Show that 
the operator Ton C(X) defined by TI = rpl is compact if and only if 
rp vanishes on every cluster point of X. 
Hint. Suppose 'that T is compact and that Irp(x)\ > 0 at a point x E X . 
Then there exists a closed neighborhood Y of x on which Irpl > o. Show 
that the restriction of T to C(Y) is an invertible compact operator in 
L(C(Y)) (to show compactness you will probably need Tietze's Exten­
sion Theorem, Exercise 7a on page 40). Deduce that Y is finite. For the 
converse, use Ascoli's Theorem, page 44. 

4. Let P be a polynomial not vanishing at 0 and let T be a linear operator 
on an infinite-dimensional normed space E. Assume P(T) = O. Show 
that T is not compact. 
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5. Let E be a Hilbert space and suppose T E L(E). Show that T is a 
compact operator if and only if T* is one. 
Hint. Let (Xn) be a bounded sequence in E. Put M = sUPn IIxnll and 
define Yn = T*xn for each integer n. Show that, for every n, mEN, 

Deduce that T* is compact. 
6. a. Let T be a continuous operator on a Hilbert space E. Show that T 

is compact if and only if the image under T of every sequence in E 
that converges weakly to 0 is a sequence that converges (strongly) 
to 0. 
Hint. For the "if' part, use Exercise 12 on page 121 and Proposition 
3.8 on page 116. For the converse, use Theorem 3.7 on page 115. 

h. Show that this result remains true if E = LP(m), where m is a a­
finite measure on a measure space (X, $) and p E (1, +00 ). (Weak 
convergence in LP(m) was defined in Exercise 9 on page 166. You 
can also use Exercise 10 on page 168.) 

c. Show that this result is false if E = pl. 
Hint. Use Exercise 9d on page 167. 

7. Let /J be a positive Radon measure on a compact metric space X, with 
support equal to X. Suppose K E C(X x X). Fix p E [1,00) and denote 
by Ep the space C(X) with the norm induced by that of U(/J). Define 
an operator T from Ep to itself by 

TI(x) = / K(x,y)/(y)d/J(y) for all x E X. 

Show that T is compact, and deduce that the spectrum of T does not 
depend on p. 

8. Let E be the space Cl([O, 1]) with the norm II · liE defined by 

IIfIlE = 11/11 + 1If'1I, 

where 11·11 denotes the uniform norm on [0,1]. Let F be the same space 
C l ([O,l]) with the uniform norm on [0,1]. Let T be the operator from 
E to F defined by 

TI = I for all I E Cl([O, 1]). 

a. Show that the norm of T equals 1. 
h. Show that T is not compact. 
c. Let (Tn) be the sequence in L(E, F) defined by 

Tnl = Bnl for all lEE, 
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where Bn is the Bernstein operator defined in Exercise 3 on page 37. 
Show that each Tn has finite rank and that the sequence (Tn) con­
verges to T in L(E, F). 
Hint. Using the estimates from Exercise 3 on page 37, show that 
liT - Tnll :::; (2n)-1/3. 

d. Deduce that the hypothesis that F is complete cannot be omitted 
from Proposition 1.4 or Corollary 1.5. 

9. Suppose p E [1,00]. Define an operator T on the space LP([O,I]) by 
setting 

TI(x) = 11
-

X I(t) dt for all 1 E LP([O, 1]) and x E [0,1]. 

Show that T is compact and determine its spectrum. 
Hint. Notice that any eigenvector associated with a nonzero eigenvalue 
must be a continuous map. Therefore the eigenvalues can be determined 
as in the text; see page 220. (In particular, the spectrum of T does not 
depend on p.) 

10. Let E and F be Banach spaces and let E and F be dense subspaces of 
E and F, respectively. Consider a compact operator T from E to F. 

a. Show that T can be extended in a unique way to a continuous op­
erator t from E to F. Show that t is compact and that im t c F . 
Deduce that t is also compact, when considered as an operator from 
E to F. 

h. Assume E = F and E = F. Show that T and t have the same 
nonzero eigenvalues and that the eigenspace associated with a given 
nonzero eigenvalue is the same for T and t. 

c. Apply this to Exercise 7 above in order to show that the study of 
the spectrum of the operator T on Ep is reducible to the study of a 
compact operator t on LP(J.L). 

11. Let E be one of C([O, 1]) or LP([O, 1]), where p E [1,00]. Determine the 
spectrum of the operator T from E to itself defined by 

TI(x) = 11 min(x,y)/(y)dy = 1xY1(y)dY +X 11/(Y)dY. 

Hint. Note that T is compact and that an eigenvector 1 of T associated 
with a nonzero eigenvalue is a differentiable function and satisfies 1(0) = 
1'(1) = O. 

12. Let T be the linear operator on L2((0, 1)) defined by 

TI(x) = 11 e-1x-Y1/(y)dy for all 1 E L2((0, 1)) and x E [0,1]. 

a. Show that T is a compact hermitian operator and that IITII :::; 1. 
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b. Suppose f E G([O, 1]) and put 9 = Tf. Show that 9 E G2 ([0, 1]) and 
that g(O) = g'(O), g(l) = -g'(I), and 

g"(x) - g(x) = -2f(x) for all x E [O,IJ. 

c. Conversely, suppose 9 E G2([0, 1]) satisfies g(O) = g'(O) and g(l) = 
-g'(I). Put f = -(g" - g)/2. Show that 9 = Tf· 
Hint. Consider h = 9 - T f. 

d. Show that im T is dense in £2«0,1)) and deduce that ° is not an 
eigenvalue of T. Is ° a spectral value of T? 
Hint. For denseness, note that, by part c, im T contains the space 
G;«O, 1)) of G2 functions with compact support in (0,1). 

e. Show that, if f E G([O, 1]) and 9 = Tf, then 

(Tf I 1) = ~ (fol (lg(xW + Ig'(xW) dx + Ig(lW + Ig(OW). 

Deduce that, for every f E L2«0, 1)), 

(Tf I 1) 2: t IITfIl2. 

f. Show that aCT) C [O,IJ. 
r;-:---,-,,....,..,-

g. For A E (0,1]' set a>. = J(2-A)/ A. Show that A E aCT) if and only if 

(1- an sin a>. + 2a>.cosa>. = O. 

Deduce that aCT) = {O} U {An}nEN, where, for every n EN, 

2 2 
1 + (7r/2 + n7r)2 < An < 1 + (m-)2' 

13. A Sturm-Liouville problem. Suppose 9 E G([O, 1]), and consider the 
differential equation 

(P1')' - qf = g, (E)g 

on the interval [0, 1 J, with boundary conditions 

0:01'(0) - o:d(O) = 0, f301'(I) - f3d(l) = 0. (BC) 

Here q is a continuous function on [0, 1 J and p is a function of class 
G1 on [0, 1] taking positive values only; in addition we assume that 
(0:0,0:1) :f. (0,0) and (/30, (31) :f. (0,0). By definition, a solution of the 
problem (E)g + (BC) is a function f of class G2 on the interval [0,1] 
satisfying conditions (E)g and (BC). 

a. Suppose for now that the boundary value problem (E)o + (BC) has 
only the trivial solution (identically zero) . 
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i. Take a nontrivial solution II of (E)o with oon (0) - odl (0) = 0 
and a nontrivial solution h of (E)o with f3ofHl) - f31h(l) = o. 
Justify the existence of II and h and prove that the expression 

w = (J~(x)h(x) - lI(x)f~(x))p(x) 

is constant and nonzero on [0,1]. 
ii. Define a function G on [0, 1]2 by 

if 0 ~ x ~ y ~ 1, 

ifO~y~x~I. 

(G is the Green's function associated with the problem (E) + 
(BC).) Let T be the operator from C([O, 1]) to itself defined by 

Tf(x) = 101 G(x,y)f(y)dy. 

Show that T is compact and that, if 9 E C([O, 1]), the function 
1= Tg is the unique solution of (E)g + (BC). 

iii. A. Show that im T equals the set of functions of class C2 on [0, 1] 
that satisfy (BC). 

B. Take). E ][{*. Show that ker( >.I - T) equals the set of solutions 
on [0, 1] of the equation 

(py')' _ (q + ).-I)y = 0 

that satisfy (BC). Deduce that ker(>.I - T) has dimension at 
most 1. 

h. Suppose that 0001 = f30f31 = 0, that q is nonnegative-valued, and 
that, if 01 = f31 = 0, then q is not identically zero. Show that the 
problem (E)o + (BC) has only the trivial solution. 
Hint. Let f be a solution of (E)o + (BC). Show that 

101 
q(t) I/(tW dt + 101 

pet) 1f'(tW dt = o. 

c. Study the particular case p = 1, q = 0, ao = f31 = O. Write down 
the corresponding function G. Compare with Exercise II. 

d. Suppose that 00 = f30 = 0 and that q(x) > 0 for every x E (0,1). 

i. Show that 9 ;::: 0 implies - T 9 ;::: 0; thus - T is a positive operator. 
Hint. Suppose 9 ;::: 0 and write I = Tg. Check that I is real­
valued. Suppose next that there exists a point x E [0, 1] such 
that I(x) > 0, and work with a point of [0,1] where I achieves 
its maximum. 
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ii. Deduce that G(x,y) ~ 0 for every (x ,y) E [0,1]2. 

iii. Show that this remains true if we assume only that q ~ O. 
Hint. Approximate q by q + c and prove that the kernel GE, cor­
responding to q + c converges to G. 

14. A particular case of Krein-Rutman Theorem. Let X be a compact met­
ric space. Consider E = CC (X) and let T be a positive compact operator 
from E to itself. We wish to show, among other things, that if T has 
a positive spectral radius r(T), it has a nonzero, nonnegative-valued 
eigenvector associated with the eigenvalue A = r(T) . 
Denote by E+ the set of lEE such that I ~ 0, and define E+* 
E+ \ {O}. 
a. For f E E+* , we put 

r(f) = max{p E R+ : pi ~ Tf} 

and 
r = sup{r(f) : IE E+*} . 

Show that r is well defined and that r = r(T). 
Hint. You might have to use Exercise 3a on page 195. 

b. We suppose for now that if IE E+* then TI(x) > 0 for all x E X . 

i. Show that r > O. 
ii. Show that there exists an element g E E+* such that r = r(g). 

Hint. Check that there exists a sequence (fn)nEN of elements of 
E+* of norm 1 such that limn->+oo r(fn) = r and that, by passing 
to a subsequence, one can assume that the sequence (T In)nEN 
converges to some element g of E. Show that g E E+* and that 
r(g) ~ r. Wrap up. 

iii. Show that Tg = rg. 
Hint. Show that, if Tg -j. rg, we have rTg(x) < T(Tg)(x) for 
every Xj then finish. 

iv. We will show that the eigenspace Er associated with the eigen­
value r has dimension 1. 
A. Show that, if hE E r , the functions (Re h)+ , (Re h)-, (1m h)+ , 

and (1m h) - belong to E r . 

Hint. Work as in part h-iii. Observe that, for example, 

T«Reh)+) ~ (T(Reh»+ = r(Reh)+ . 

B. Let h E Er be such that h ~ O. Show that there exists p ~ 0 
such that h = pg. 
Hint. Consider p = max{A ~ 0 : Ag ~ h} . If h - pg -j. 0, 
we have h(x) - pg(x) > 0 for all x E X, which leads to a 
contradiction. 

C. Deduce that Er is spanned by g. 
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c . Let J.L be a positive Radon measure on X, of support equal to X . 
(Why is there such a measure?) For c > 0, put Tc:1 = TI +c I I dJ.L. 
i. Show that Tc: is a compact operator in E and that Td(x) > ° 

for every I E E+* and x EX. 

ii. Show that, if r > 0, there exists 9 E E+* such that Tg = rg. 
Hint. Let r c: be the positive real number associated with Tc: and 
take gc: E E+* of norm 1 and such that Tc:gc: = rc:gc:. Show that 
rc: ~ r; then that there exists a sequence (Cn)nEN approaching ° 
and such that gC:n converges to g. (Observe that in this case the 
eigenspace associated to r need not have dimension 1.) 

15. Let m be a measure of finite mass on a measure space (X, §), and take 
K E LOO(m x m). Show that, for every p, q E (1, +00), the operator 
T defined from LP(m) to Lq(m) by TI(x) = I K(x,y)l(y)dm(y) is 
compact. 
Hint. Use Example 1 on page 216 and the fact that, if s ~ r, the 
canonical injection I H I from U (m) to £T (m) is continuous. 

16. Take p E [1,00]. Consider a a-finite measure m on a measure space 
(X, §) and a map K : X2 -+ II{ that is measurable (with respect to the 
product a-algebra on X2) and such that the expression 

CK = max (sup J IK(x , y)1 dm(y), sup J IK(x, y)1 dm(X)) 
xEX yEX 

is finite. 
a. Show that the equation 

TKI(x) = J K(x,y)l(y)dm(y) 

defines a continuous operator TK from LP(m) to itself of norm at 
most CK . 
Hint. Write IK(x,y)1 = IK(x,y)11/PIK(x,y)11/p', where p' is the 
conjugate exponent of p. 

h. Suppose that m is Lebesgue measure on the Borel a-algebra of X = 
[0,1] and that K(x, y) = Ix - yl-O, with Q E (0,1). 

i. Check that K satisfies the assumptions of part a. 
ii. For each n E N, set Kn = inf(K, n). Show that the operators 

TKn from LP([O, 1]) to itself are compact. 
Hint. Note that Kn E C([O, 1]2) . 

iii. Show that, for every n E N*, 

C _ < _2_ n-(l-o)/o. 
K Kn - 1- Q 

iv. Deduce that the operator TK from LP([O, 1]) to itself is compact. 
(See also Exercise 21e below.) 
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17. Two examples of noncompact kernel operators. 

a. We consider the operator T defined on LP((O, +00)) in Exercise 3 on 
page 149 and we maintain the assumptions and notation of part c of 
that exercise. Set 'Pe; = E1/Pfe;. Show that li'Pe;lip = 1, 

and that, for every x > 0, 

lim T'Pe;(x) = 0. e;-70 

Deduce that, unless T is the zero operator, it cannot be a compact 
operator on LP((O, +00)). 

h. Let T be the operator defined on LP((O, +00)), with p E (1,00), by 

l1X Tf(x) = - f(y) dy. 
x 0 

Using the last part of Exercise 2 on page 177, prove that T is not a 
compact operator on LP((O, +00)). 

18. For r E [0,1), we define an operator Tr on the Hilbert space [2 by 

a. Show that Tr is compact for any r E [0,1) (see Exercise 2). 
h. Consider a sequence (rn) in [0,1) converging to 1 and a bounded 

sequence (u(n») in [2 converging weakly to u. Show that the sequence 

(u(n) - Trn U(n»)nEf\I 

converges weakly to 0. 
Hint. Show first that, for every v E [2, the sequence (Trn V)nEf\I con­
verges (strongly) to v in [2. 

c. Deduce that, if T is a compact operator from f.2 to itself, then 

lim IITTr - Til = o. 
r-71-

Hint. Reason by contradiction and use Exercise 6a. 
d. Show that, if T is a compact operator from [2 to itself, we have 

lim TrT = lim TrTTr = T 
r-71 - r-71-

in L(l2). 
Hint. Show first that limr -71- TrT = T, using Exercise Ion page 20. 
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19. Hankel operators. For I E LOO([O, 1]), we set 

cn(f) = 11 l(t)e-2i7rntdt for all n E N. 

We associate with 1 a linear map Tj on £2 by setting 

+00 
(Tju)(p) = L u(n)cn+p(f) for all pEN. 

n=O 

a. Suppose U E P. We denote by it the sum in L2([0, 1]) of the series 
E!:Ou(n)e-2i7rnt. Show that, for every integer pEN, 

(Tju)(P) = 11 l(t) it(t) e-2i7rpt dt. 

Deduce that the operator Tj from £2 to itself is continuous and that 
its norm is at most 11/1100. 

h. Show that, if there exists N E N such that 

cn(f) = 0 for all n ~ N, 

the operator Tj has finite rank. Deduce that, if 1 is continuous on 
[0,1] and 1(0) = 1(1), then Tj is compact (as an operator from P 
to itself). 

c. If 1 E LOO([O, 1]) and r E [0,1), put 

+00 
lr(t) = L rn cn(f)e2i7rnt. 

n=O 

i. Show that this series converges uniformly, that Ir is continuous 
on [0,1], and that lr(O) = lr(1). 

ii. Show that if Tj is compact we have 

lim IITjr - Tj II = O. 
r--+ 1 -

Hint. Use Exercise 18d. 
iii. Show that, if T j is compact, there exists a sequence (ipn) in the 

span of the functions t H e2i7rkt (where kEN) such that the 
sequence (TcpJ converges to T j in L(£2). 

20. Let E be a normed space having an order relation ::; compatible with 
addition and multiplication by positive scalars, and such that, for all 
1, gEE, the condition 0 ::; 1 ::; g implies 11111 ::; IIgli. Suppose also that 
the set of nonnegative elements is closed in E. (For example, all the 
function spaces studied in the preceding chapters, such as LP, Cb(X), 
and Co(X), satisfy these properties when given the natural order.) Let 
T be a positive compact operator on E (positive means that T 1 ~ 0 for 
all 1 E E such that 1 ~ 0), and suppose>. E 1R+*. 
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a. Take h E E. Suppose that there exist elements 10 and go of E such 
that 

10 ~ go, Tlo:::: >.fo + h, and Tgo ~ >..go + h. 

Show that the sequences (fn)nEN and (gn)nEN defined by 

Tin - h Tgn - h 
In+! = >.. and gn+l = >.. 

for all n E N converge to two (not necessarily equal) solutions 100 
and goo of the equation 

TI=>.f+h 

satisfying 10 ~ 100 ~ goo ~ go. (In particular, if h = 0 and the 
inequalities 10 ~ 0 and go :::: 0 are not both true, >.. is an eigenvalue 
of T. Compare with Exercise 16 on page 198.) 

h. Take E = C([O, 1]), define T by 

T I(x) = 11 K(x, y)/(y) dy for all I E C([O, 1]) and x E [0,1]' 

where K is a continuous map on [0, 1 J2 with values in [0, ~] , and let 
k be an element of clR ([0, 1]) taking values in [0, 1]. Show that the 
two sequences (fn) and (gn) defined as above with 10 = 0, go = 2, 
h = -k, and>" = 1 converge to the unique solution I of the equation 

I(X)-11K(X,Y)/(Y)dY=k(X) forallxE[O,l]. 

21. Let X and Y be compact metric spaces. 
a. Let IL : Y H ILy be a map from Y to the space VJtK(X) of Radon 

measures on X. Assume that IL is weakly continuous in the following 
sense: for every I E C(X), the map y H J I dILy from Y to lK is 
continuous. (You might check that IL is weakly continuous if and only 
if it takes convergent sequences in Y to weakly convergent sequences 
of measures on X; see exercise 7 on page 91.) For mE VJt(X), denote 
by Ilmil the norm of m, considered as an element of the topological 
dual of C(X). 

i. Define IILI = SUPYEY IIILyll· Show that IILI < +00. 
Hint. Use the Banach-Steinhaus Theorem, page 22. 

ii. Show that the equation 

Tp.I(y) = J I(x) dILy(x) for all I E C(X) and y E Y 

defines a continuous linear operator Tp. from C(X) to C(Y), of 
norm IILI. 
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h. Conversely, prove that, for every continuous linear operator T from 
C(X) to C(Y), there exists a weakly continuous map J.L from Y to 
9Jl(X) such that T = Tw 

c. Let J.L be a weakly continuous map from Y to 9Jl(X). Show that the 
operator Tj.t is compact if and only if J.L is continuous as a map from 
Y to the Banach space 9Jl(X) = C(X)'. 
Hint. Use Ascoli's Theorem, page 44. 

d. Let T be a continuous linear operator from C(X) to C(Y). Show 
that T is compact if and only if there exists a map K from Y x X 
to J[{ and a positive Radon measure m on X such that 

(*) Tf(y) = j K(y,x)f(x)dm(x) for all f E C(X) and y E Y, 

the map K being required to satisfy the following conditions: 
- For every y E Y, the map Ky : x ~ K(y, x) belongs to Ll(m). 
- The map y ~ Ky from Y to Ll(m) is continuous. 

Show also that, in this case, 

IITII = SUPjIK(y,x)ldm(x). 
yEY 

Hint. For necessity, use Exercise 8 on page 91, then the Radon­
Nikodym Theorem (Exercise 6 on page 165), and Exercise 4 on 
page 90. 

e. Take a: E (0,1). Show that the operator T from C([O, I]) to itself 
defined by 

Tf(x) = 11 Ix - yl-Of(y) dy 

is compact. Find its norm. (See also Exercise 16b above.) 
22. Let X be a compact metric space and m a a-finite measure on a measure 

space (n, $). Let p E (1,00) and p' the conjugate exponent. 
a. Let K be a function from X x n to J[{ satisfying these conditions: 

(HI) For every x E X, the function Kx : s ~ K(x, s) belongs to 
LP/(m) . 

(H2) The map x ~ K x takes convergent sequences in X to weakly 
convergent sequences in LP' (m). 

(Weak convergence in LP' is defined in Exercise 9 on page 166.) 

i. Check that (H2) is equivalent to the following property: 

(H2)' For every f E LP, the map x ~ jK(X, s)f(s) dm(s) from X 
to J[{ is continuous. 

ii. Define IKI = sUPxEX IIKx ll p'. Show that IKI is finite. 
Hint. Consider (Kx)xEX as a family of continuous linear forms 
on LP(m) and use the Banach- Steinhaus theorem, page 22. 
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iii. For I E LP(m) and x E X, put 

TK I(x) = J K(x, 8)/(8) dm(8). 

Show that the linear operator TK from LP(m) to C(X) thus 
defined is continuous and has norm IKI. 

b. Conversely, prove that, for every continuous linear operator from 
LP(m) to C(X), there exists a function K from X x n to ][( satisfying 
conditions (HI) and (H2) and such that T = TK . 

Hint. Use Theorem 2.1 on page 159. 
c. Let K be a function from X x n to ][( satisfying conditions (HI) and 

(H2). Show that the operator TK is compact if and only if the map 
x >-t Kx from X to LP'(m) is continuous. 
Hint . Use Ascoli's Theorem, page 44. 

23. Let E be a normed space. Suppose there exists a sequence (Pn)nE N in 
L(E) consisting of finite-rank operators of norm at most 1 and such 
that limn-Hoo Pnx = X for every x E E. (We know that this is the case 
for E = Co(X) when X is a locally compact separable metric space (see 
Exercises 1 on page 30 and 11 on page 56), and also when E = LP(m), 
if p E [1, +00) and m is a measure of finite mass on a measure space 
(X,.9") whose IT-algebra is separable (Exercise 14c on page 155).) 
a. Show that E is separable. 
b. Show that every separable scalar product space has the property 

that we are assuming about E. 
Hint. Let (en)nEN be a Hilbert basis. Take for Pn the projection 
onto the finite-dimensional vector space spanned by (ei ks n· 

c. Show that every compact operator from a normed space F to E is 
the limit in L(F, E) of a sequence of operators of finite rank. 
Hint. If T is a compact operator from F to E, consider Tn = PnT 
and use Exercise 1 on page 20. 

24. (This exercise generalizes the preceding one to the case of nonseparable 
normed spaces.) A normed space E is said to have the approximation 
property if, for every compact K in E, there exists a sequence (Pn)nEN in 
L(E) consisting of operators of finite rank that converges to the identity 
I uniformly on K; in symbols, 

lim sup IlPnx - xii = O. 
n~+ooxEK 

a. Let E be a normed space having this property. Show that every 
compact operator from a normed space F to E is the limit in L(F, E) 
of a sequence of finite-rank operators. 

b. Show that every scalar product space satisfies the approximation 
property. 
Hint. If K is compact, the vector space spanned by K is separable. 
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c. Show that, for every p E [1, +00) and every measure m on a measure 
space (X, $), the space U(m) has the approximation property. 
Hint. For any integer n E N, a compact K in LP(m) can be covered 
by finitely many balls Bur, lin), ... , BUJ;., lin). Now apply the 
result of Exercise 14b on page 154 to each r;. 

25. Let T be a compact operator on a normed space E. Let A be a nonzero 
eigenvalue of T, and put S = T - AI. 
a. Show that, for every integer n, 

kerSn ~ kerSn+l, S(kerSn+l) ~ kerSn, T(kerSn) ~ kerSn. 

h. Deduce that there exists an integer n for which ker sn = ker sn+l . 
Hint. Assuming otherwise, prove that one can construct a sequence 
(xn) such that, for every n, 

Xn E ker sn+l, /lxnll ~ 1, d(xn, ker sn) ~ ~. 

Show that for any two distinct integers m, n, we have IITxn-Txmll ~ 
IA1/2, which is absurd. 

In the sequel n will denote the smallest integer for which ker sn 
ker sn+l. This integer is called the index of the eigenvalue A. 
c. Show that ker sn = ker sn+k for every integer kEN. 
d. Show that ker sn and im sn are closed and that ker sn n im sn = {o}. 
e. Show that the restrictions of Sand sn to im sn are invertible ele­

ments of L(imSn). 
f. Deduce from the preceding results that E = ker sn EB im sn and 

that the projection operators associated with this direct sum are 
continuous. Show also that ker sn is finite-dimensional. 

g. Let JL be an eigenvalue of T distinct from A, having index m. Show 
that 

ker(T - JLI)m ~ im(T - .xJ)n. 

Hint. By Bezout's Theorem, there exist polynomials P and Q such 
that 

P(T)(T - .xJ)n + Q(T)(T - JLI)m = I. 

h. Let (Ak) be the sequence of nonzero eigenvalues of T and (nk) the 
sequence of their indexes. For n EN, denote by Fn and Hn the 
vector subspaces of E defined by 

n 

Fn = Lker(T - Ak)n\ 
k=O 

Show that Fn and Hn are closed, that Fn is finite-dimensional, that 
E = Fn EB Hn, and that the projection operators associated with this 
direct sum are continuous. 
Hint. Work by induction on n. 
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2 Compact Selfadjoint Operators 

A classical theorem of linear algebra says that any normal operator (one 
that commutes with its adjoint) on a complex finite-dimensional Hilbert 
space is diagonalizable with respect to an orthonormal basis. Here we will 
see how this result generalizes to infinite dimension. We will restrict our 
study to compact selfadjoint operators, but the results extend almost with­
out change to compact normal operators on a complex Hilbert space (see 
Exercise 8 below). In contrast, the compactness assumption is essential. 
For instance, one can easily check that the operator T on the Hilbert space 
L2([0, 1]) defined by 

Tf(x) = xf(x) for all f E L2([0, 1]) 

is selfadjoint and has no eigenvalues. 
In all of this section we consider a scalar product space E over II{ = R or 

C and a compact selfadjoint operator T on E. Since we are not assuming 
that E is complete, the general definition of the adjoint (page 112) does 
not work; selfadjoint ness here means that 

(Tx I y) = (x I Ty) for all x,y E E. 

Suppose that T has finite rank. Note that, for every x E E, 

Tx=O (Tx I y) = 0 for all y E E x E (im T)l.; 

thus ker T = (im T)l. and, since im T is finite-dimensional, we have E = 
im T EB kerT (see Corollary 2.4 on page 107 and the remark after it). The 
operator T then induces on the finite-dimensional space im T an invertible 
selfadjoint operator whose eigenvalues equal the nonzero eigenvalues of T 
(this much is clear). Using the standard diagonalization results for hermi­
tian and symmetric operators in finite dimension, we deduce that im T is 
the orthogonal direct sum of the eigenspaces of T associated with nonzero 
eigenvalues, and finally that 

E = E9 ker(AI - T). 
AEev(T) 

We now generalize this diagonalization property to the case where T is 
any compact selfadjoint operator. We assume from now on that T does 
not have finite rank. The argument is based on the following fundamental 
lemma: 

Lemma 2.1 Let S be a compact selfadjoint operator on a scalar product 
space F not equal to {o} . Then S has at least one eigenvalue and 

max {IAI : A E ev(S)} = IISII· 
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Proof. Clearly, if ..\ is an eigenvalue of S, then 1..\1 ~ IISII. On the other 
hand, we know from the remark following Theorem 2.6 on page 203 that 
there exists a spectral value ..\ of S such that 1..\1 = sUPllxll=II(Sxlx)l, 
which equals IISII by Proposition 3.5 on page 114 (whose proof did not use 
the completeness of E). We can assume S =I- 0 (else the result is trivial), so 
..\ is nonzero and must be an eigenvalue, by Theorem 1.8 on page 219. 0 

Theorem 2.2 Let A be the set of eigenvalues of T . Write A * = A \ {O} 
and, for each eigenvalue A, let E>. be the eigenspace ofT associated with A. 

- A is a countable, infinite, bounded subset of IR whose only cluster point 
is O. 

- The eigenspace associated with any nonzero eigenvalue of T has finite 
dimension. 

- Eigenspaces of T associated with distinct eigenvalues are orthogonal. 
- For each nonzero eigenvalue A of T, let P>. be the orthogonal projection 

operator onto E>. . Then 

in the sense of a summable family in L(E). 

The definition of a summable family in a normed vector space was given 
on page 127. 

We remark also that the orthogonal projection onto a finite-dimensional 
vector subspace of a scalar product space E is well defined, even when E 
is not complete; see the remark following Corollary 2.4 on page 107. 

Proof 

1. That all eigenvalues are real and that eigenspaces associated with dis­
tinct eigenvalues are orthogonal comes from parts i and iii of Proposition 
2.5 on page 203, whose proof did not use the completeness of E. That 
eigenspaces associated with nonzero eigenvalues are finite-dimensional 
comes from Theorem 1.8 on page 219. 

2. We prove that A * is infinite. By Lemma 2.1, there exists an eigenvalue ..\ 
of T such that IAI = IITII. Since T is nonzero (recall that T has infinite 
rank), we deduce that A =I- 0 and so that A* is nonempty. Suppose 
that T has finitely many nonzero eigenvalues: A* = {AI, " " Ad. Set 
G = ffi~=l E>.j and F = G.L. Since G is finite-dimensional, E = FEEl G 
(once more by the remark following Corollary 2.4 on page 107). It is 
clear that T(G) c G. Since T is selfadjoint, we quickly deduce that 
T(F) c F . The operator T therefore induces an operator TF from F 
to itself, and we easily check that TF is compact, because F is closed. 
Naturally, TF is a selfadjoint operator on F, and it is nonzero (TF = 0 
would imply im T c G, contradicting the fact that T has infinite rank) . 



236 6. Compact Operators 

By Lemma 2.1, TF has a nonzero eigenvalue A. We see then that A is 
a nonzero eigenvalue of T distinct from all the Aj, for 1 ~ j ~ k, since 
one of its associated eigenvectors lies in F and thus not in G. This is 
a contradiction. It follows that A * is infinite and, by Theorem 1.8 on 
page 219, A is countable and has 0 as its only cluster point. 

3. Let J be a finite subset of A * and put G J = EIhEJ E>.. and FJ = 
GJ. Arguing as above and using Lemma 2.1, we see that T induces 
on FJ a compact selfadjoint operator TFJ whose norm equals IITFJ = 
max>"Eev(TFJ ) [A[. Now observe that, as before, every eigenvalue A of 
TFJ is an eigenvalue of T (this is clear) but does not belong to J , 
since, by construction, FJ intersects trivially all the eigenspaces EJ.I, 
for J.l E J . Therefore ev(TFJ } C A \ J . Conversely, if A E A \ J, the 
orthogonality property of eigenspaces implies that E>.. C GJ = FJ , so 
A is an eigenvalue of TFJ . Therefore ev(TFJ } = A \ J and 

Meanwhile, the operator of orthogonal projection onto G J is L>"EJ P>... 
Thus, for every x E E, we have x - L>"EJ P>..x E F J and 

By orthogonality and the Pythagorean Theorem, we have 

Ilx- LP>..xll ~ [[xII, 
>"EJ 

so we conclude that 

IIT- ~TP>..II ~ >..~:\)A[. 
By the definition of P>.., we have TP>.. = AP>.., so 

IIT- ~AP>..II ~ >..~:\)A[. 

max [A[ . 
>"EAV 

Now take c; > O. Since 0 is the only cluster point of A, the set K of 
eigenvalues A with absolute value at least c; is finite. But then, for every 
finite subset J of A * containing K, 

which proves the third assertion of the theorem. o 
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Remark. More precisely, the preceding reasoning shows that, for every 
finite subset J of A * , 

liT - I:.xp,\ll-:; max IAI· 
'\EJ ,\EA\J 

Corollary 2.3 In the notation of Theorem 2.2, 

imT = E9 E,\. 
'\EA* 

Proof We know that Tx = L:'\EA* AP),.X for every x E E. It follows that 

imT C E9 E,\, 
'\EA' 

and hence imT C E9 E,\ . 
'\EA* 

On the other hand, if A E A *, we clearly have E),. C im T, proving the 
reverse inclusion. 0 

Theorem 2.2 and Corollary 2.3 can be expressed as follows: 

Corollary 2.4 

- The space im T has a countable Hilbert basis Un)nEN consisting of eigen­
vectors of T associated with nonzero eigenvalues. 

- The sequence (/-Ln)nEN of eigenvalues associated with the vectors fn tends 
to 0 and 

Tx = L: I-tn(x I fn)fn for all x E E . 
nEN 

The Hilbert basis Un) is obtained simply by taking the union of all 
the finite Hilbert bases of the eigenspaces of T associated with nonzero 
eigenvalues. Note that in the sequence (/-Ln) each nonzero eigenvalue A of T 
appears d),. times, where d,\ is the dimension of the eigenspace associated 
with E),.. 

The first assertion of Corollary 2.4 says in particular that 

which is to say: 

x = L:(x I fn)fn for all x E im T, 
nEN 

Corollary 2.5 For every x E im T, 

x= L: P,\x. 
'\EA* 
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Corollary 2.6 Suppose that E is complete. Let Po be the operator of or­
thogonal projection onto Eo = ker T. Then 

and 

x = L PAX for all X E E 
AEA 

Proof Since T is selfadjoint, we have Eo = ker T = im Tl.. Therefore, if E 
is complete, E = Eo E!1 im T by Corollary 2.4 on page 107. 0 

If, moreover, E is separable, so is kerT. Thus kerT has a countable 
Hilbert basis, by Corollary 4.7 on page 129. Taking the union of such a 
basis with the Hilbert basis of im T given by Corollary 2.4, we obtain the 
following diagonalization result: 

Corollary 2.1 If E is a separable Hilbert space, it has a Hilbert basis 
consisting of eigenvectors of T. 

This is still true if E is an arbitrary Hilbert space, but then we have to 
use the axiom of choice in order to guarantee the existence of a Hilbert 
basis for ker T and so for E (see Exercise 11 on page 133). 

2A Operational Calculus and the Fredholm Equation 

We assume here that E is complete and we consider a compact selfadjoint 
operator Ton E. If oX is an eigenvalue of T, we denote as above by EA = 
ker( AI - T) the eigenspace of T associated with oX and by PA the orthogonal 
projection onto EA' 

Let f be a bounded function on the set ev(T). We define an operator 
f(T) on E by 

f(T)x = L f(>.)PAx for all x E E. 
AEev(T) 

Since the eigenspaces EA are pairwise orthogonal, we deduce from the Bessel 
equality that 

AEev(T) AEev(T) 

the second equality being a consequence of Corollary 2.6. We deduce that 

IIf(T)11 = sup If(>.)I· 
AEev(T) 
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Therefore, for a compact selfadjoint operator, the operational calculus thus 
defined extends to all bounded functions the calculus defined on page 205 
for continuous functions and in Exercise 15 on page 212 for bounded Borel 
functions. In particular, if /-L E ][{* is not an eigenvalue of T, we have 

(/-LI - T)-lx = I: (/-L - )..)-1 P).,x for all x E E. (*) 
).,Eev(T) 

Suppose to the contrary that /-L is a nonzero eigenvalue of T (so fL E JR*). 
Then im(/-LI - T) is closed, by Proposition 1.6 on page 217, and so equal 
to E;, by Proposition 2.1 on page 201 applied to the hermitian operator 
fLI - T. The operator T induces on E; a compact hermitian operator whose 
set of eigenvalues is ev(T) \ {/-L}, and we can apply (*) to this induced 
operator. We deduce, for x E E;, the following equivalence valid for all 
Y E E;: 

/-LY - Ty = x -<=? Y = I: (fL - )..)-1 P).,x. 
)"Eev(T) 

).,#J.I. 

Next, if x E E; and y E E, we can write y = y + z, with j} E E; and 
Z E Ew It follows that fLY - Ty = x if and only if there exists Z E EJ.I. such 
that 

y = Z + I: (fL - )..)-1 P).,x. 
).,Eev(T) 

).,#J.I. 

To summarize, if we consider the Fredholm equation 

fLy-Ty = x, 

with fL E ][{* and x E E, there are two possible cases: 

- fL is not an eigenvalue of T . Then the equation (**) has a unique solution 
y, given by 

y = I: (fL - )..)-1 P).,x. 
).,Eev(T) 

- fL is an eigenvalue of T. Then the equation (**) has infinitely many 
solutions if x E (ker(fLI - T)).1. and no solutions otherwise. In the first 
case, the solutions are given by 

y = Z + I: (fL - )..)-1 P).,x, 
).,Eev(T) 

).,#J.I. 

with Z E ker(fLI - T). 

This dichotomy is called the Fredholm Alternative Theorem .. 
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2B Kernel Operators 

We study here the particular case of the Hilbert space E = L2(m), where 
m is a a-finite measure on a measure space (X, $). Suppose in addition 
that E is separable. 

Consider a kernel K E L2(m x m) such that K(x, y) = K(y, x) for 
(m xm)-almost every (x, V). The operator T = TK associated to this kernel 
by the equation 

TK I(x) = j K(x, y)/(y) dm(y) 

is a compact selfadjoint operator (see Examples 1 and 2 on page 216). If 
). is a nonzero eigenvalue of T, let d>. be the dimension of the eigenspace 
associated with E>. = ker(>.I - T) . We assume in the sequel that T does not 
have finite rank and, as in Corollary 2.4, we denote by (fn)nEN a Hilbert 
basis of im T consisting of eigenvectors of T and by (J.Ln)nE N the sequence 
of corresponding (nonzero) eigenvalues. 

Proposition 2.8 With the notation and hypotheses above, 

+00 
jjIK(x,Y)12dm(x)dm(y) = LJ.L~ = L d>.).2. 

n=O >'Eev(T) 
>'10 

Proof. Take u E kerT. For almost every y, the fUnction Ky : x H K(x, y) 
lies in E and 

(Ky I u) = j K(x, y)u(x) dm(x) = Tu(y) = O. 

The second of these equalities is true for almost every y: more precisely, 
for every y not in a subset Au of X of measure zero, and which a priori 
may depend on u. But, since E is separable, ker T is also separable. Let 
(Un)nEN be a dense subset of kerT. Then, for every y not belonging to 
the set A = UnEN Au" of measure zero, we have (Ky I un) = 0 for every 
n E N and, because of denseness, (Ky I u) = 0 for every u E kerT. It follows 
that Ky E (kerT).l = imT for almost every y. At the same time, for each 
nEN, 

(Ky I In) = T In(Y) = J.Lnln(Y) = J.Lnln(Y) 

for almost every y. We then deduce from the Bessel equality that, for almost 
every y, 

+00 

jIK(x,Y)1 2 dm(x) = II K y l12 = L J.L~ Iln(Y)12 . (**) 
n=O 

Now just integrate with respect to y to obtain the desired result. 0 

Remark. The preceding proposition is also a direct consequence of Exercise 
21 on page 140. 
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We know from Exercise 7 on page 110 that the space L2(m) ® L2(m) 
is dense in L2(m x m). From the preceding proof, we obtain an explicit 
approximation of the kernel K by elements of L2(m) ® L2(m). 

Proposition 2.9 We have 

+00 
K(x, y) = ~ JLnln(x) In(Y), 

n=O 

the series being convergent in L2(m x m) . 

Proof. Set KN(X,y) = L.~=oJLnln(x)/n(Y). By equality (*) above, for al­
most every y, we have 

+00 
Ky = ~JLnln(Y)ln 

n=O 

in the sense of convergence in L2(m) . Thus, still by Bessel's equality, 

We deduce, integrating this equality with respect to y, that 

+00 
11K - KNII2 = ~ JL;, 

n=N+l 

where 11·11 represents the norm in L2(m x m). This proves the result. 0 

Proposition 2.10 Suppose that <P : x ~ I IK(x, y)12 dm(y) belongs to 
Loo(m) . Then, for every n EN, we have In E £oo(m) and 

+00 
I = ~(f I In) In for every I E im T, 

n=O 

the convergence 01 the series taking place in Loo(m) . 

In particular, (fn) is a fundamental family in the space im T considered 
with the norm of Loo(m). Recall that the convergence in L2(m) of the 
series L~::a(f I In) In and the fact that the sum equals I are consequences 
of Corollary 2.4. 

Proof. For every n E N we have 

In(X) = ~ jK(X, y)/n(Y) dm(y) . 
JLn 
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Therefore In E LOO(m) and Illnlloo ::; JL;;l,JL, where L = 11~1100. We show 
that the series "E~:O(f I In) In satisfies Cauchy's criterion on LOO(m). Let 
I = Tg be an element of im T. For every n E N, (f I In) = (Tg I In) = 
(g I Tin) = JLn(g I In). If k ::; l, 

It.(f I In)ln(x)1 = It. JLn(g I In)ln(x)1 

( 
I )1/2 ( +00 )1/2 

::; ~ l(gllnW ~JL;lfn(xW , 

by the Schwarz inequality. Now, by an earlier calculation (see equality (**) 
on page 240), we have 

+00 

LJL; I/n(X)1 2 = jIK(x,y)1 2 dm(y) ::; L, 
n=O 

which finally implies that 

which proves the result, since the series "E~:O I(g I In)12 converges by the 
Bessel inequality and so satisfies Cauchy's criterion. 0 

Example. An important special case in which the hypothesis of Proposi­
tion 2.10 is satisfied is when m is a Radon measure on a compact space X 
and K is continuous on X x X. In this case, for every lEE, the image 
T I is a continuous function: indeed, if x, x' EX, 

ITI(x) - TI(x')1 ::; sup IK(x, y) - K(x', y)1 m(X)1/211/11. 
yEX 

Thus it is enough to use the uniform continuity 6f K on the compact set 
X x X. Therefore each In is a continuous function and we deduce from 
Proposition 2.10 that, if Suppm = X, we have 

+00 
9 = L(g I In)fn for every 9 = TI E imT, 

n=O 

the series converging uniformly on X; that is, for every lEE, 

+00 
TI = LJLn(f I In) In 

n=O 

(since (g I In) = (TI lin) = (f I Tin) = JLn(f I In)), the series converging 
in the space C(X) considered with the uniform norm. 
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Exercises 

1. Let E be a Hilbert space, (fn)nEN an orthonormal family in E, and 
(ILn)nEN a real-valued sequence that tends to O. Show that the equation 

+00 
Tx = LlLn(xl fn)Jn for all x E E 

n=O 

defines on E a compact selfadjoint operator T. (Thus, the property 
stated in Corollary 2.4 characterizes compact selfadjoint operators whose 
rank is not finite.) 

2. Let T be a compact selfadjoint operator on an infinite-dimensional 
Hilbert space E. Let f be a continuous function on the set a(T). Show 
that f(T) is compact if and only if f(O) = O. (In particular, if T is 
positive, T 1/2 is compact.) 
Hint. For sufficiency use Exercise 1, for example. 

3. Let E be a scalar product space and T a compact selfadjoint operator 
on E. Let A be a nonzero eigenvalue of T. Show that ker(AI - T) = 
(im(AI - T))-L. Deduce that 

ker(AI - T) n im(AI - T) = {O}, 

then that ker( AI - T)2 = ker( AI - T). This shows, in particular, that the 
eigenvalue A has index 1 (see Exercise 25 on page 233), and therefore 
that 

E = ker(AI - T) E9 im(AI - T). 

4. Let T be the operator defined on L2([0, 1]) by 

Tf(x) = 1x 
f(y) dy. 

a. Show that the adjoint of T is given by 

T* f(x) = 11 f(y) dy for all f E L2([0, 1]). 

h. Show that TT* is the operator T introduced in Exercise 11 on 
page 223. Deduce the spectral radius of TT*, then the norm of T. 

5. Deduce from Exercise 11 on page 223 that 

+00 1 71.4 

~ (2n + 1 )4 = 96 ' 

then that 
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6. Take E = L2([0, 1]) and define a function K on [0,IJ2 by 

( ) {
I if x + y :::; 1, 

K x,y = ° if x + y > 1. 

a. Write down explicitly the operator T on E defined by the kernel 
K. Check that T is the extension to L2([0, 1]) of the operator on 
C([O,I]) defined in the example on page 220. 

h. Show that E = im T. Use this to find a Hilbert basis consisting of 
eigenvectors of T. 

c. Deduce that, if 9 E C1 ([0, 1]) and g(l) = 0, then 

g(x) = 2 L (11 g(t) cos«-n"/2 + 2mr)t) dt) cos«7I" /2 + 2n7l") x) 
nEZ 0 

+00 ( 1 ) 
= 2 ~ 10 g(t) cos«2n + 1)7I"t/2) dt cos«2n + 1)7I"x/2), 

the series converging uniformly on [0, 1 J. 
(This result can be obtained using Section 2B above, or using the 
theory of Fourier series by extending 9 to an even periodic function 
of period 4 such that g(2 - x) = -g(x) for every x E [O,IJ.) 

7. Let T be a compact selfadjoint operator on a Hilbert space E. For every 
nonzero eigenvalue A of T, denote by P>. the orthogonal projection onto 
the eigenspace E>. = ker(AI - T). Let x be an element of E. Show that 
the equation 

Ty=x 

has a solution if and only if x E (ker T)J. and 

L 
>'Eev(T) 

>'#0 

and that in this case all the solutions are given by 

""' P>.x y=z+ L...J T with zE kerT. 
>'Eev(T) 

>'#0 

8. Diagonalization of normal compact operators. Let E be a Hilbert space 
over C . A continuous operator T on E is called normal if TT* = 
T*T. You might recall, for subsequent use, the result of Exercise 4b 
on page 208. 
a. Let T be a normal compact operator on E. Show that T has at least 

one eigenvalue A E C of absolute value IITII. 
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Hint. Put Jl = IIT*TII = IITII2. Show that Jl is an eigenvalue of 
T*T, that the associated eigenspace F = ker(JlI - T*T) is finite­
dimensional and is invariant under T and T*, and that T induces 
on F a normal operator TF. Then show that TF has at least one 
eigenvalue ,X and that 1,X1 2 = Jl. (Note that here the fact that the 
base field is C is essential.) 

h. Show that all the results of the preceding section, from page 234 to 
the Fredholm Alternative Theorem, remain true without change for 
a normal operator T (on a complex Hilbert space), with the only 
exception that the eigenvalues of T need not be real in this case (see 
Exercise 4a-ii on page 208). 

c. Let T be a compact operator on E. Show that T is normal if and 
only if 

E = E9 ker(AI - T), 
>'Eev(T) 

the direct sum being orthogonal. (See also Exercise 1.) 
d. An example. Let G be an element of L2([0, 1]), and extend it to 

a periodic function of period 1 on JR. Consider the operator T on 
L2([0, 1]) defined by 

Tf(x) = 11 G(x - y)f(y) dy for all f E L2([0, 1]). 

i. Show that T is a normal compact operator. 
ii. Show that the eigenvalues of T are the Fourier coefficients of G, 

namely, the numbers Cn (G) defined for n E IE by 

cn(G) = 11 G(x)e- 2in1T., dx. 

Show that the corresponding eigenvectors are the vectors of the 
Hilbert basis (en)nEZ defined by en(x) = e2in1T.,. 

iii. Show that, for every f E L2([0, 1]), 

Tf(x) = L Cn(G) cn(f) e2i1Tn." 
nEN 

the series converging uniformly (and absolutely) on [0,1]. 
9. Let T be a compact selfadjoint operator on a separable Hilbert space 

E. For each nonzero eigenvalue ,X of T, let d>. be the dimension of the 
associated eigenspace E>. = ker(AI - T). Show that T is a Hilbert­
Schmidt operator if and only if 

(See also Exercise 10.) 

L d>.,X2 < +00. 
>'Eev(T) 

>'#0 
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10. Singular values of a compact operator. Let E be a Hilbert space and 
suppose T E L(E). For each n E N, define a nonnegative real number 
an(T) by 

an(T) = inf {liT - RII : R E L(E), rank(R) ::; n}. 

We know from Exercise 24 on page 232 that T is compact if and only if 
the sequence (an(T))nEN tends to O. In what follows, we suppose that 
T is compact. 

a. Show that the operator P = (T·T)1/2 is selfadjoint and compact 
(see Exercise 2). 
We denote by (fLn)nEN the sequence of nonzero eigenvalues of P, in 
decreasing order and counted with multiplicity (that is, each nonzero 
eigenvalue ..\ appears d>. times in the sequence (fLn), where d>. is the 
dimension of ker(..\I - P)). The entries of this sequence (fLn) are 
called the singular values of the operator T. 
We denote by (fn)nEN a Hilbert basis of im P such that, for every 
xEE, 

+00 
Px= LfLn(xlfn)ln 

n=O 

(see Corollary 2.4). If T has finite rank N, we use the convention 
that fLn = 0 and In = 0, for n ~ N, the Hilbert basis of im P being 
the finite family (fo, ... , IN-I). 

h. Check that, if T is selfadjoint, its singular values equal the absolute 
values of the eigenvalues of T. 

c. Schmidt decomposition of the operator T. Show that there exists an 
orthonormal family (gn)nEN in E such that 

+00 
Tx = L fLn(X I In)gn for all x E E. 

n=O 

Hint. Put gn = Uln, where U is the operator such that T = UP 
defined in Exercise 11 on page 211. 

d. i. Let R E L(E) be an operator of rank at most n. Show that 
IIT-RII ~ fLn· 
Hint. If Fn is the vector space spanned by the family (fJ)O$.j$.n, 
check that Fn n ker R contains a nonzero element x; then show 
that II(T - R)xll ~ fLnllxll · 

ii. Allakhverdief's Lemma. Deduce that 

fLn = an(T) for all n E N 

and that, in the definition of an(T), we can replace inf by min. 
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e. Suppose from now on that E is separable and fix a Hilbert ba­
sis (en)nE]\/ of E. Denote by \\T\\H the (possibly infinite) Hilbert­
Schmidt norm of T, defined in Exercise 21 on page 140: 

\\Tllk = I: \\Ten \\2. 
nE]\/ 

Show that 

IIT\\k = I: O'n(T)2. 
nE]\/ 

In particular, T is a Hilbert- Schmidt operator if and only if 

f. An operator T is called nuclear if 

I: O'n(T) < +00. 
nEN 

i. Show that, if T is the product of two Hilbert-Schmidt operators, 
then T is nuclear. 
Hint. If T = AB, where A and B are Hilbert-Schmidt operators, 
prove that /-Ln = (Bfn \ A*gn) for every n E N. 

ii. Conversely, prove that, if T is nuclear, it is the product of two 
Hilbert- Schmidt operators. 
Hint. Take the polar decomposition T = UP of T defined in 
Exercise 11 on page 211, and show that T being nuclear implies 
that Upl/2 and p l /2 are Hilbert- Schmidt operators. 

11. Calculation of the eigenvalues: the Courant-Fischer formulas. Let E 
be a Hilbert space distinct from {O} and let T be a compact positive 
selfadjoint operator on E. Order the nonzero eigenvalues of T as /-Lo ~ 
/-Ll ~ .. . ~ /-Ln ~ . . . , where the number of times each eigenvalue appears 
is the dimension of the associated eigenspace. For every pEN, denote 
by 'Yp the set of p-dimensional subspaces of E . The goal of this exercise 
is to prove the formulas 

. (Tx\x) } /-Ln = mm max 2' 
WO/n xEW-L\{O} \\X\\ 

. (Tx\x) 
/-Ln = max mm . 

WO"n+l xEW\{O} \\X\\2 

(In this context, recall Proposition 3.5 on page 114.) Let (fn)nEN be a 
Hilbert basis of im T such that T f n = /-Lnf n for every n EN. 
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a. Show that, if F is a closed subspace of E distinct from {O}, there 
exists an element x of F of norm 1 such that 

(Tx I x) = sup (Ty I y). 
yEF,lIyll=l 

(In particular, we can replace max by sup in the first formula (* )n.) 
h. If n E N, let Wn be the vector space spanned by 10,"" In-l (with 

Wo = {O}). Show that 

max 
xEW .... '{O} 

(Tx I x) 
IIxl1 2 = P-n· 

Hint. Consider the restriction of T to W;.. 
c. Take W E 1"n. Show that Wi. n Wn+1 is distinct from {O} and that, 

for every nonzero element x of Wn+l, 

(Txlx) > 
IIxl1 2 - P-n· 

Deduce from these results the first equality (*)n' (You should check 
in particular that the minimum is attained by the space Wn .) 

d. Take WE 1"n+l ' Show that wnw;' is distinct from {O} and deduce 
that there exists a nonzero element x of W such that 

(Txlx) < 
IIxll2 - P-n· 

Then show the second equality (*)n' (You should check in particular 
that the maximum is attained by the space Wn+d 

e. Application. Let Sand T be compact positive selfadjoint operators 
on E such that S ~ T (that is, T - S is positive selfadjoint). Show 
that P-n(S) ~ P-n(T) for every n EN. 

12. Sturm-Liouville problem, continued. Let p be a function of class CIon 
[0, 1 J taking positive values. Let q be a continuous real-valued function 
on [0,1], and suppose co, Cl E {O, I}. For>. E JR., consider the differential 
equation on [O,IJ given by 

(py')' - (q + >.)y = 0, (EJ 

with boundary conditions 

coy(O) + (1 - co)y'(O) = 0, cly(l) + (1 - cr)y'(I) = O. (BC) 

a. Suppose (in this item only) that q is positive-valued. Let Tp,q be 
the operator on C([O,I]) defined in Exercise 13 on page 224 and 
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characterized by the fact that, for every 9 E C([O, 1]), Tp,qg is the 
unique solution on [0,1] of the equation 

(w')' - qy = 9 

satisfying (BC). Show that Tp,q is negative selfadjoint (that is, -Tp,q 
is positive selfadjoint) and compact on the scalar product space 
C([O, 1]) considered with the norm induced by L2([0, 1]). 

h. Take a> maxxE[O,l] (-q(x)). Show that the set A of real numbers A 
for which (EA) + (BC) has a non identically zero solution forms a 
sequence (An)nEN such that 

a > Ao > Al > ... > An > ... 

and limn~+oo An = -00 (more precisely, the series E;:O(a - An)-2 
converges). The constants An, for n EN, are called critical values of 
the problem (EA) + (BC). 

Hint. We have A E A if and only if 1/(A - a) is an eigenvalue of 
Tp,q+a . 

c. Show that, for every n E N, there exists a solution CPn of (EAn)+(BC) 
such that fo1 ICPnI 2 (t) dt = 1 and that CPn is, up to a multiplicative 
factor, the unique solution of (EAn ) + (BC). Show that the family 
(CPn)nEN is a Hilbert basis of L2([0, 1]) and that, if f E C2 ([0,1]) 
satisfies (BC), the series E;:OU 1 CPn) CPn , where ( ·1 · ) is the scalar 
product in L2([0, 1]), converges uniformly to f. 

d. Suppose that p = 1 and q = 0. Determine the sequences (An) and 
( CPn) in the following cases: 

i. co = 0, C1 = 0; 

ii. co = 0, C1 = 1; 

iii. co = 1, C1 = 1. 

e. Suppose co = C1 = 1. Show that the function CPo does not take the 
value ° in the interval (0,1), and that no other function CPn has this 
property. 

Hint. Show first that CPo 2 ° or CPo ~ 0, using Exercises 13d on 
page 225 and 14 on page 226. Deduce that, if CPo(~) = 0 with ~ E 
(0,1), we must have cp~(~) = ° and therefore CPo = 0, since CPo is a 
solution of (EAO). But this is impossible. 

13. Legendre's equation. Let E be the space C([-I, 1]) with the scalar prod­
uct induced by L2([-I, 1]). 
We define on E a kernel operator T by 

Tf(x) = ill K(x,y)f(y)dy, 
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where 

{ 
~ - log 2 + ~ log ( (1 - y) (1 + x) ) 

K(x, y) = 
~ -log2 + ~ 10g«1 + y)(1 - x») 

if -1 < y:<::; x, 

if 1 > Y ~ x. 

a. Show that T is a compact hermitian operator from E to itself. 
b. Consider on [-1, 1] the differential equation 

(1 - x 2 )y')' = g, 

with gEE. By definition, a solution of (Eg) is a function of class Cl 
on the interval [-1,1] satisfying the equation (Eg) on [-1,1]. Show 
that (Eg) has a solution in E if and only if J~l g(x) dx = 0 and that, 
in this case, all solutions of (Eg) are given by 

y=Tg+C withCEOC, 

the function f = Tg being the unique solution of (Eg) such that 

c. Show that kerT equals the set of constant functions on [-1,1] and 
that im T is the set of elements of E whose integral over [-1, 1] is 
zero. 

d. Show that the operator -Tis positive hermitian. 
Hint. Check that, if gEE, 

/
1 2 

(Tglg) = - _ll(T9)'(x)1 (l-x2 )dx. 

e. Let (Pn)nEN be the sequence of Legendre polynomials defined in 
Exercise 4 on page 131. Show that, for every n E N, 

Use this to find the eigenvalues and eigenvectors of T . Derive another 
proof that -Tis positive hermitian. 

14. About the zeros of a Bessel function. For kEN, the Bessel function Jk 
is defined by 

a. Consider on (0,1] the differential equation 
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i. Find all solutions of the form y = x A. 

ii. Use this to find all solutions of (*) . 
iii. Prove that the only solution y of (*) satisfying 

lim y(x) = 0 and y'(I) + ~y(l) = 0 (**) 
x-tO 

is the zero solution. 

h. For x, t E (0,1]' define 

K(x, t) = v'Xt exp( -llog(x/t)I), 

and set K(x, t) = ° if x = ° or t = O. Define an operator T from 
L2([0, 1]) to itself by 

Tf(x) = 11 K(x,t)f(t)dt for all x E [0,1]. 

Show that T is a compact hermitian operator. 
c. Take f E C([O, 1]) and set F = Tf. 

i. Show that, for every x E (0,1]' 

F(x) = x- 1/21x t3/ 2 f(t) dt + x3/ 211 r 1/2 f(t) dt 

and that F(O) = o. Deduce that F E C 1([0, 1]), F'(O) = 0, and 
F'(I) + F(I)/2 = o. 

ii. Show that FE C 2 (]0, 1]) and that F satisfies on (0,1] the equa­
tion 

F" - ~x-2 F = -2f. (t) 

iii. Show that F is the unique function of class C 2 on (0,1] satisfying 
(**) and (t). 

d. Deduce from all this that the image of T contains the space of func­
tions of class C 2 on (0,1) with compact support. Then show that 
imT is dense in L2([0, 1]), then that T is injective. 

e. Show that, if f E C([O, 1]), 

l1Tf(t)f(t)dt= tITf(1)12 +~ 111(Tf)'(t)12 dt+i 11 r2ITf(t)12 dt. 

Deduce that T is a positive hermitian operator. 
f. Show that a real >. > ° is an eigenvalue of T if and only if the 

equation 

" (2 3) y + --- y=O 
>. 4x2 

has a solution in (0,1] that does not vanish identically and that 
satisfies (**). 
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g. Take -X > O. Study the solutions y of (E >.) of the form y( x) = xC> f (x), 
where f has a power series expansion at O. (Partial answer: a = ~ 
and a = -~.) Deduce that (E>.) has a unique (up to a multiplica­
tive factor) solution H>. such that limx-to H>.(x) = 0, and that this 
solution is given by 

h. Show that, for every x, 

xJo(x) = xJ~ (x) + JI(x). 

Deduce that the eigenvalues of T are the numbers -X > 0 for which 
Jo(y'2/-X) = O. 

i. Show that Jo has a sequence of positive roots 

o < Po < ILl < ... < ILn < ... 

and that 

j. For n E N and x E [0,1], put 'Pn(x) = xl/2JI(lLnX). Show that 
('Pn)nEN is a fundamental orthogonal family in £2([0,1]) and that, 
if f E C~«O, 1)), there exist coefficients cn(f) such that the series 
:E~:O cn(f)'Pn converges uniformly on [0,1], with sum f. 
Remark. An analogous study can be made of the zeros of the function 
Jk, by considering the kernel 

Kk(X, t) = VXt exp( -(k + 1) Ilog(x/t) I)· 

15. Approximate calculation of an eigenvalue of a compact positive self­
adjoint operator. Let T be a compact selfadjoint operator in a Hilbert 
space E satisfying the condition that (Tx I x) > 0 for every x f. O. Let 
Xo be a nonzero element of E. For each n EN, we set 

a. We wish to show that the sequences an and f3n converge to the 
inverse of an eigenvalue of T (the same for both sequences). 

i. Show that 0 < an :::; f3n and that the sequence (f3n) is decreasing. 
ii. Let (fkhEN be a Hilbert basis of E consisting of eigenvectors 

of T, and denote by ILk the eigenvalue associated with fk; we 
assume that the ILk are arranged in nonincreasing order. Let ko 
be the smallest integer k such that (xo I fk) f. O. Show that 

lim Ilxnlil/n = ILko ' 
n-t+oo 
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Deduce that the sequence ({3n )nEN converges to 1/ /-Lko' 

Hint. Note that 

+00 
IIxnl12 = :E I(xo I Tn fj)12. 

j=ko 

iii. Show that an ~ 1/ /-Lko for every n EN. Deduce that the sequence 
(an)nEN converges to 1/ /-Lko' 

h. Stopping criterion. Show that, for every integer n EN, there exists 
an eigenvalue A of T such that 

Ja2 - a2 > la -.!.I fJn n - n A' 

Hint. Observe that IIxn - an xn+111 2 = Ilxn+1112({3; - a;') and use 
Bessel's equality. 



Part III 

DISTRIBUTIONS 



7 
Definitions and Examples 

Distributions, as we shall see, are objects that generalize locally inte­
grable functions and Radon measures on JRd. One of the main attractions 
of the theory of distributions, apart from its unifying power, is the construc­
tion of an extension of the usual differential calculus in such a way that 
every distribution is differentiable infinitely often. This theory has become 
an essential tool, particularly in the study of partial differential equations. 
It has also allowed the precise mathematical modeling of numerous physical 
phenomena. 

The fundamental idea of the theory is to define distributions by means 
of their action on a space of functions , called test functions. Note that 
this idea already appears in the definition of measures by Daniell's method 
(Chapter 2), and in particular in the definition of Radon measures. 

In the first section of this chapter, we introduce the various test function 
spaces. We will be working in an open subset n of JRd. We will often omit 
the symbol n from the notation when n = JRd. 

1 Test Functions 

lA Notation 

- If mEN, gm(n) denotes the space of complex-valued functions on n 
of class Cm , and g(n) the space of those of class Coo. By convention, 
gO(n) = C(n). 
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- An element pENd is called a muItiindex. If P = (PI, . .. , Pd) is a 
multiindex, we define the length of P to be the sum Ipi = PI + ... + Pd, 
and we put p! = PI! ... Pd! . We give Nd the product order: if P and q 
are two multiindices, we write P ~ q if PI ~ ql, ... , Pd ~ qd . If p, q E Nd 

and q ~ p, we put 

P p' p! 
() d ( ) 

q = II q) = q!(p_q)!' 
)=1 ) 

(p.) p.! 
where, as usual, ) represents the binomial coefficient ., ( .) _ . ) , . 

q) a q). p) q). 
- If 1 ~ j ~ d, we often use D j to denote -a . Then, if P is a multiindex, 

X· we write ) 

Dp - DPI DPd _ aipi 
- 1· • . d - a_PI !'l--Pd· 

X"I .•. UX'd 

The differentiation operator DP is also denoted by 

aipi 
-a or a~. 

x P 

By convention, DJ (differentiation of order 0 with respect to any index) 
is the identity map. 
We see that each operator DP, where PENd, acts on the spaces gm(o), 
for Ipi ~ m . We recall the following classical result : 

Proposition 1.1 (Leibniz's formula) Suppose j, 9 E gm(o) . For 
each multiindex P such that Ipi ~ m, 

- If K is a compact subset of ]Rd contained in 0 (equivalently, if K is a 
compact subset of 0) and if mEN, we write 

~K(O) = {J E gm(o) : Suppj C K}. 

We observe that, since K is closed, the property Supp j C K is equiva­
lent to {j i= O} C K, or again to "j = 0 on 0 \ K". 
Denote by X(O) the set of compact subsets of o. Put 

'pm(o) = U ~K(O). 
KEX(O) 

In other words, ~m(o) is the space of functions of class Gm having 
compact support in O. In particular, 'pO(O) = Gc(O). 
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Clearly, m' 2 m implies ~m' (0) C ~m(o) . Now put 

~(O) = n ~m(o). 
mEN 

Thus ~(O) is the space of functions of class Coo having compact support 
in 0; such functions are called test functions on O. Finally, if K is a 
compact subset of 0, we denote by f2K(O) the space of functions of 
class Coo having support contained in K: 

~K(O) = n ~K(O) = {J E C(O) : Suppf C K}. 
mEN 

Thus 

f2(0) = U f2K(O). 
KEX(O) 

Clearly, a function in f2m(o) or ~(O), when extended with the value 0 
on JRd \ 0 , becomes an element of ~m(JRd) or ~(JRd), respectively. Thus, 
~m(o) and f2(0) can be considered as subspaces of ~m(lRd) and ~(JRd), 
respectively. We will often make this identification without saying so ex­
plicitly. Conversely, an element f in f2m(JRd) or f2(JRd) belongs to all the 
spaces ~m(o) or ~(O) such that 0 J Suppf. 

1 B Convergence in Function Spaces 

We will not need to give the function spaces just introduced a precise 
topological structure. It will suffice to define the notion of convergence of 
sequences. 

Convergence in ~K(O) and ~K(O) 

Let K be a compact subset of O. We say that a sequence (fn)nEN in ~K(O) 
converges to f E f2K(O) in f2K(O) if, for every multiindex PENd such 
that Ipi :::; m, the sequence (DPfn)nEN converges uniformly to DPj. An 
analogous definition applies with the replacement of f2j«O) by ~K(O), 
where now there is no restriction on the multi index pENd. 

The convergence thus defined on ~K(O) clearly corresponds to conver­
gence in the norm 1I·II(m) defined on ~K(O) by 

IIfll(m) = .L: II DPf II , 
Ipl~m 

where 11·11 denotes the uniform norm. In contrast, no norm on ~K(O) yields 
the notion of convergence we have defined in that space. 
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Convergence in ~m(o) and ~(o) 

We say that a sequence (<Pn)nEN in ~m(o) converges to <P E ~m(o) in 
~m(o) if there exists a compact subset K of 0 such that 

Supp<p c K and SUPP<Pn c K for all n E N 

and such that the sequence (<Pn)nEN converges to <P in ~r(O). An analogous 
definition applies with the replacement of ~r(O) and ~m(o) by ~K(O) 
and ~(O). 

Convergence in gm(o) and g(O) 

We say that a sequence (fn)nEN in gm(o) converges to 1 E gm(o) if, 
for every multiindex p such that Ipi ~ m and for every compact K in 0, 
the sequence (DP In)nEN converges to DP 1 uniformly on K . An analogous 
definition applies with the replacement of gm(o) by g(O), where now there 
is no restriction on the multiindex pENd. 

For m = 0, the convergence in ceo(O) thus defined coincides with uniform 
convergence on compact subsets (defined in Exercise 12 on page 57). 

We remark that the definitions of convergence of sequences just made 
extend immediately to families (<PA), where A runs over a subset in R. and 
A -t Ao, with Ao E [-00, +00]. 

It is possible to give the spaces ~K (0), gm(o), and g(O) complete metric 
structures for which convergence of sequences coincides with the notions 
just defined (see Exercise 7 on page 265) . In contrast, one can show that 
the convergence we have defined in ~m(o) and ~(O) cannot come from a 
metric structure. 

In fact, the only topological notions that we will use in connection with 
these function spaces are continuity and denseness, and these notions, in 
the case of metric spaces, can always be expressed in terms of sequences. In 
the sequel, denseness and continuity in the function spaces just introduced­
in particular, in ~m(o) and ~(O)-will be defined in terms 01 sequences. 
For example, a subset H of ~m(o) will be called dense in ~m(o) if, for 
every <P E ~m(o), there exists a sequence (<Pn)nEN in H converging to <P 
in ~m(o). Likewise, a function F on ~(O) and taking values in a metric 
space or in one of the spaces just introduced will be called continuous if, for 
every sequence (<Pn)nEN in ~(O) that converges to <P in ~(O), the sequence 
(F(<Pn}}nEN converges to F(<p) in the space considered. One easily checks 
that this is equivalent to saying that the restriction of F to each metric 
space ~K(O), where K is a compact subset of 0, is continuous. 

For example, the canonical injection from ~m(o) into gm(o) -that 
is, the map that associates to each function <P E ~m(o) the same <P consid­
ered as an element of gm (0) - is continuous. This means simply that every 
sequence in ~m(o) that converges in ~m(o) also converges in gm(o) (to 
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the same limit) . Similarly, the canonical injections from ~(O) into 8'(0) 
and into ~m(o) are continuous. 

1 C Smoothing 

We start by showing the existence of nontrivial elements of ~ (recall our 
convention that ~ = ~(JRd)). First take the function p on JR defined by 

{ e- 1/ X ifx>O p(x)- , ° if x S 0. 

Then p E 8'(JR). Indeed, one shows easily by induction that, for every 
integer n E N, p is of class Cn and p(n) is of the form 

/n)(x) = {Hn(1lx )e-1/ x if x> 0, 
° if x S 0, 

where Hn is a polynomial function. 
Next, for x E JRd, we set cp(x) = p(l - IxI2), where, as usual, Ixl means 

the canonical euclidean norm of x in JRd: Ixl2 = x~ + ... + x~. Finally, put 
a = J cp(x) dx > ° and X = cpla. One then checks that the function X 
satisfies the following properties: 

X E ~(JRd), X 2: 0, J X(x)dx = 1, SupPX = 8(0,1). 

In particular, if we put Xn(x) = ndx(nx) for n E N*, the sequence (Xn)nEJII" 
is a normal Dirac sequence (see page 174) consisting of functions of class 
Coo. Such a sequence is also called a smoothing Dirac sequence. 

Now fix a smoothing Dirac sequence (Xn). 

Proposition 1.2 Assume cp E ~m, for some mEN. For every integer 
n 2: 1, the convolution cp * Xn belongs to ~ and 

lim cp * Xn = cp in ~m. 
n--++oo 

Proof. Since the functions cp and Xn have compact support, so does cp* Xn. 
More precisely, 

SUPP(CP*Xn) C Suppcp+SuPPXn C Suppcp+8(0, lin) C Suppcp+8(0, 1). 

At the same time, a classical theorem about differentiation under the inte­
gral sign easily implies, on the one hand, that cp * Xn is of class Coo and so 
cp * Xn E ~, and, on the other, that DP(cp * Xn) = (DPcp) * Xn for Ipi Sm. 
Now, since the support of Xn is contained in 8(0, lin) and J Xn(Y) dy = 1, 
we get 
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and 

sup i(DPcp) * Xn(x) - (DPcp)(x)i ::; 
XElRd 

sup 
x,zEIRd 

Iz-xl~l/n 

Since DPcp is uniformly continuous (being continuous and having compact 
support), we deduce that the sequence (DP(CP*Xn))nEN converges uniformly 
to DPcp. 0 

Corollary 1.3 For every n E N, the space pen) is dense in pm(n). In 
particular, pen) is dense in Cc(n). 

Proof If cp E pm(n), we can consider cp as an element of pm (by extending 
it with the value ° on JRd \ n). Now 

Supp(cp * Xn) C Suppcp + 13(0, lin); 

thereforeSupp(cp*Xn) c n for n large enough-say n> l/d(Suppcp, JRd\n). 
Then, by the preceding proposition, cp * Xn belongs to pen) for n large 
enough, and limn~+oo cp * Xn = cp in pm(n). 0 

Remark. The approximating sequence just constructed preserves positiv­
ity. Therefore, if cp is a positive element of pm(n), there exists a se­
quence (CPn)nEN of positive elements of pen) that converges to cp in pm(n) 
(namely, CPn = cp * Xn). 

iD Coo Partitions of Unity 

We now sharpen Proposition 1.8 on page 53 in the case of lR d. 

Proposition 1.4 If K is a compact subset of JR d and 0 1 , •.• ,On are open 
sets in JRd such that K C Uj=1 OJ, there exist functions cpl, . .. ,CPn in P 
such that 

for j E {I, ... , n}, 

and such that Ej=l 'Pj(x) = 1 for every x E K. 

Proof Set d = d(K, JRd\O), with 0 = Uj=10j (the metric being the 
canonical euclidean metric in JRd). Set K' = {x : d(x, K) ::; d/2}. The set 
K' is compact and, since d > 0, 

K'::l {x: d(x,K) < d/2}::l K. 

Thus K c K' c K' c O. By Proposition 1.8 on page 53, there exist 
functions hI,"" hn in Cc such that 

for j E {I, ... ,n}, 
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and such that '2:7-1 hj(x) = 1 for every x E K'. Define <5 = d(K, jRd\K'), 
'fJj = d(Supp hj, jRa\Oj) for 1 :::; j :::; n , and 

c = ~ min(8, 'fJI, . . . , 'fJn) . 

Let X be the function defined on page 261 and let u be defined by 

u(x) = c-dX(x/c). 

Then u E ~, u 2 0, J u(x) dx = 1, and Suppu = B(O,c) . 
For 1 :::; j :::; n, set CPj = hj * u. Then CPj is of class Coo (this follows 

immediately from the theorem on differentiation under the integral sign) 
and 

Supp CPj C Supp hj + B(O, c) C OJ. 

In particular, CPj E ~. Moreover, ° :::; CPj :::; 1. Finally, if x E K and 
y E B(O,c) , we have x - y E K' and so 

Integrating we obtain 

n 

L hj(x - y)u(y) = u(y). 
j=1 

t cPj(x) = J u(y) dy = 1 for all x E K. 
j=1 

We deduce the following denseness result: 

o 

Proposition 1.5 The space ~(O) is dense in C(O) and in cm(o), for 
every mEN. 

Proof Let (Kn)nEN be a sequence of compact subsets of 0 exhausting O. 
By the previous proposition, there exists, for every integer n EN, an ele­
ment CPn E ~(O) such that 

° :::; CPn :::; 1, CPn = 1 on K n, SUPPCPn C K n+1. 

If f E C(O), we have fCPn E ~(O) for every n E N . If K is a com­
pact subset of 0, there exists N E N such that K C KN (see Proposi­
tion 1.6 on page 52); thus, for every n 2 N and every pENd, we have 
DP(fCPn) = DPf on K. By the definition of convergence in C(O), we deduce 
that limn-Hoo(fcpn) = f in C(O). 

Using the same reasoning, one shows that ~m(o) is dense in cm(o) . 
Moreover, as we saw in Corollary 1.3, ~(O) is dense in ~m(o) . Thus every 
element of ~m(o) is the limit of a sequence of elements of ~(O) in the sense 
of convergence in cm(o) (since the canonical injection from ~m(o) into 
Cm(O) is continuous: see page 260) . This implies, finally, that ~(O) is dense 
in Cm(O) (because Cm(O) is a metric space: see Exercise 7 below). 0 

Remark. This proof also shows that every positive element of Cm(O) (or 
C(O» is the limit in Cm(O) (or in C(O), respectively) of a sequence of 
positive elements of ~(O). 
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Exercises 

Throughout the exercises, n stands for an open subset of JRd. Many of the 
exercises use the result of Exercise 1. 

1. Taylor's formula with integml remainder. Let f be an element of Cn(n) 
(where n ;:::: 1) and let x E n. Take hERd such that [x, x+h] c n. 
Show that 

f(x + h) = f(x) + E (~! ~ DPf(x) hP) 

k= l Ipl=k 

+ (n ~ I)! 11 ~ DP f(x + th) hP(1 - t)n-1 dt , 
o Ipl=n 

where, for P = (PI, ... ,Pd) E Nd and h = (hI' ... ' hd) E JRd, we have 
written 

hP = hf' ... h~d . 

2. Take h E C(JR). Show that the function f defined by 

I(x, y) = hex) - hey) 
x-y 

can be extended by continuity to a function in C(JR 2 ) . 

If we assume merely that h E cn(R), with n ;:::: 1, how smooth is in 
general the function obtained in this way? 

3. Let h E C(JR) be such that h(O) = h'(O) = ... = Mn)(o) = o. Show that 
the function f(x) = x-n - 1h(x) can be extended to an element of C(R). 
What is the value of this new function at O? 

4. Take I E C(JRd ) . Show that f satisfies 

DP f(O) = 0 for all pENd with Ipi :S m 

if and only if there exists a family (CPj)jENd, Ijl=m+l of elements of C(JRd) 

such that 

(where xj = x{' .. . xi,l). 

f(x) = 2: cpj(x)xi 
Ijl=m+l 

5. a. Let E be a closed subset of n. Show that there exists a positive 
function f E C(n) such that E = f-1(0). 
You could work as follows: 

i. First show the result assuming that E is the complement in n 
of an open ball (in the euclidean metric). 

ii. Let (In) be a countable family of functions in C(n). Show that 
there exist positive real numbers J1n such that the series of func­
tions E J1nfn converges in C(n). 
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iii. Wrap up using the fact that 0 \ E is a countable union of open 
balls. 

h. Let E and F be disjoint closed subsets of O. Show that there exists 
a function I in g(O) such that 0 ~ I ~ 1, E = 1-1(0), and F = 
1-1 (1). 
Hint. Let cp and 'IjJ be positive functions in g(O) such that cp-l(O) = 

E and 'IjJ-l (0) = F. Check that I = cp / J cp2 + 'ljJ2 satisfies the desired 
conditions. 

c. Let E be a closed subset of O. Prove that E is the support of a 
function in g(O) if and only if E equals (in 0) the closure of its 
interior. 

6. Borel's Theorem. Let (an) be an arbitrary sequence of complex numbers. 
Show that there exists a function I E g(JR) such that l(k)(O) = ak for 
every integer k. 
Some hints: 

a. Let cp E ~(JR) be such that cp = 1 in [-1, IJ. For n EN, set 

In(x) = a~ xncp(JLnx ). 
n. 

Show that one can choose the JLn in such a way that Illnll(n-l) ~ 2-n 
for every n ~ l. 

h. Show that the series E In converges to a function having the desired 
property. 

7. Topologizing spaces 01 smooth functions 

a. Let K be a compact subset of 0 and take mEN. Show that the 
space ~r(O) with the norm 11·II(m) is a Banach space. 

h. If I, 9 E ~K (0), define 

00 

d(l,g) = L Tmmin(lll-gl!(m), 1). 
m=O 

Show that d is a complete metric on ~K(O) and that a sequence 
converges in this metric if and only if it converges in ~K(O) (in the 
sense defined in the text). 

c. Take mEN and let (Kn)nEN be an exhausting sequence of compact 
subsets of 0 (see page 52). If I,g E gm(o), define 

00 

8'0(1, g) = L 2-n min(111 - gilt), 1), 
n=O 

with 
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Show that 8n' is a complete metric on gm(o) and that a sequence 
converges in this metric if and only if it converges in gm(o) (in the 
sense defined in the text) . 

d. Same questions for the metric 80 defined on g(O) by 

00 

8n(j,g) = L Tffi min(8n'(j,g), 1). 
m=O 

8. a. Let P be the linear operator on ~n(o) defined by 

p I(x) = L ap(x)DP I(x), 
Ipl~m 

where m ::::; n and where each function ap belongs to gn-m(o). Show 
that P is a continuous operator from ~n(o) to .@n-ffi(O). 

h. Suppose the functions ap lie in g(O). Show that P defines a contin­
uous linear operator from '@(O) to ~(O) and from g(O) to g(O). 

9. Suppose U E IRd and <P E ~(IRd). If h E R* , define an element <Ph of 
~(IRd) by setting 

() <p(x + hu) - <p(x) 
<Ph X = h . 

Show that the sequence (<PJ/n)nEN' converges in .@(JRd). Find its limit. 
10. Let <P E ~ be nonzero. If n E N*, set 

1 
<Pn(x) = -cp(x/n) for x E JRd. 

n 

Show that the sequence (CPn)nEN' converges to 0 in g but not in .@. 
11. Let 0 1"", On be open subsets of JRd such that 0 = U7=1 OJ, and take 

cP E ~(O). Show that there exist functions CPl, . .. , CPn in ~(O) satisfying 

SUPPCPj C OJ for all j E {I, .. . ,n} 

and such that E7=1 CPj = cpo Check also that, if cP ~ 0, the functions CPj 
can be chosen to be positive. 

12. a. Let I be a real-valued element of gm(o) or g(O). Show that there 
exist positive-valued functions II, h in gffi(O) or g(O), respectively, 
such that I = II - h. 
Hint. Take II = P + 1 and h = P - I + 1. 

h. Show that analogous results hold for ~m(o) and ~(O) instead of 
gm(o) and g(O). 

13. Suppose I E C(O) satisfies 

f I(x)cp(x) dx = 0 for all cP E '@(O) . 

Show that I = O. 
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14. Let (OJ )jEJ be a locally finite relatively compact open cover of n; that 
is, each OJ is a relatively compact open subset of n, the union UjEJ OJ 
equals n, and, for every compact K in n, the set {j E J : OJ n K =J 0} 
is finite. Show that there exists a family (CPj)jEJ of elements of ~(lRd) 
such that 

SUPPCPj C OJ and 0::::; CPj::::; 1 for all j E J 

and 
L CPj(x) = 1 for all x E n. 
jEJ 

Hint. Let (Kn)nE]\! be an exhausting sequence of compact subsets of n 
such that Ko = 0. For each n E N*, put 

Conside~ a Coo partition of unity (cp'J )jEJn with !espect to the compact 
Kn+l \ Kn and to the finite open family {OJ n (Kn+2 \Kn-d }jEJn. For 
each j E UnE]\!* I n , define 

CPj = L L '.Ok' 
nE]\! kEJn 

where Nj = {n E N*:j E I n }. 

2 Distributions 

2A Definitions 

By definition, a distribution on n is a continuous linear form on ~(n). 
Thus, by what we saw in Section lB, a linear form T on ~(n) is a dis­
tribution if, for every sequence (CPn)nE]\! that converges to 0 in ~(n), the 
sequence (T(CPn))nE]\! tends to 0 (in C); equivalently, if, for every compact 
subset K of n, the restriction of T to the metric space ~K(n) defined 
in Exercise 7 on page 265 is continuous. We denote by ~'(n) the set of 
distributions on n; of course ~'(n) is a vector space. 

If n = ]Rd, we will sometimes use the simplified notation ~' = ~'(]Rd). 
Also, if T is a distribution on nand cP E ~(n), we denote by 

T(cp) = (T,cp) 

the result of evaluating the distribution T at the test function cpo 
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Proposition 2.1 Let T be a linear lorm on ~(O). Then T is a distribu­
tion on 0 il and only if, lor every compact K in 0, there exist mEN and 
C ;::: 0 such that 

Proof The "if' part follows easily from the definitions. Conversely, suppose 
that the criterion is not satisfied. Then there exists a compact subset K of 
o and a sequence (CPn)nEN in ~K(O) such that 

IT(CPn)1 > n IICPnII (n) for every n EN. 

For every n ;::: 1, set 
1 

Wn = n IICPnll(n) CPn· 

Obviously, 1/Jn E ~K(O); moreover, for every mEN, 

II1/Jnll(m) ~ II1/Jnll(n) ~ lin for all n > m . 

Thus the sequence (Wn)nEN converges to 0 in ~K(O). Now IT(Wn)1 ;::: 1 for 
every n EN, so the sequence (T(1/Jn))nEN does not converge to O. Therefore 
T is not distribution on O. 0 

Order 01 a distribution 

A distribution Ton 0 is said to have finite order if there exists an integer 
mEN with the following property: 

For any compact subset K of 0 there exists C ;::: 0 such that 
IT(cp) I ~ Cllcpll(m) for all cP E ~K(O). 

In other words, T has finite order if the integer m that appears in Propo­
sition 2.1 can be made independent of the compact K c O. If T has finite 
order, the order of T is, by definition, the smallest integer m for which (*) 
is satisfied. 

2B First Examples 

Locally integrable functions 

Let Lloc(O) be the space of equivalence classes (with respect to Lebesgue 
measure) of locally integrable functions I on 0; "locally integrable" means 
that, for every compact subset K of 0, 1KI lies in Ll(O), the Ll-space 
corresponding to Lebesgue measure restricted to O. (See Exercise 19 on 
page 159.) If IE L{oc(O), we define a distribution [/l by 

([/],cp) = In cp(x)/(x)dx for all cP E ~(O). 
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One easily checks that [f] is a distribution of order 0 on 0: Given a compact 
subset K of 0, just take C = IK If(x)1 dx in order to get the inequality in 
(*), with m = O. 

Proposition 2.2 Two locally integrable functions on 0 define the same 
distribution if and only if they coincide almost everywhere. 

Proof. Take f E Lfoc(O) such that [f] = O. Because ~(O) is dense in 
Cc(O) = ~O(O) (Corollary 1.3), we see that 

In g(x)f(x) dx = 0 for all 9 E Cc(O) . 

Thus, for every 9 E C~(O), 

In g(x)(Ref(x)t dx = In g(x)(Ref(x)f dx, 

In g(x)(Imf(x)t dx = In g(x)(Imf(x)f dx. 

By the uniqueness part of the Radon-Riesz Theorem (page 69), these equal­
ities are valid for any positive Borel function g. Applying them to the 
characteristic functions of the sets {Re f > O}, {Re f < O}, {1m f > O} and 
{1m f < O}, we deduce that f = 0 almost everywhere. 0 

Thus, the map that associates to each f E Lfoc(O) the distribution [f] E 
~/(O) is injective. By identifying f with If], we can write Lfoc(O) C ~/(O). 
It is in this sense that distributions are "generalized functions". 

From now on we will omit the brackets from the notation if there is no 
danger of confusion, and we will normally not distinguish between a locally 
integrable function and the distribution defined thereby. 

Radon measures 

More generally, every complex Radon measure J.L on 0 defines a distribution 
T, as follows: 

(T, t.p) = J t.p dJ.L for all t.p E ~(O). 
By the very definition of a complex Radon measure, we see that the linear 
form T thus defined is a distribution of order O. Because ~(O) is dense 
in Cc(O) (Corollary 1.3), the map J.L f-t T defined in this way is injective. 
Thus we can identify a Radon measure with the distribution it defines, and 
we can write m1(O) C ~/(O) . 

If J.L is a positive Radon measure, the distribution T it defines is positive, 
that is, 

(T, t.p) ;:::: 0 for any positive t.p E ~(O). 

We now show the converse. 
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Proposition 2.3 Every positive distribution has order O. 

Proof Let T be a positive distribution on O. Let K be a compact subset 
of 11 and let p E fP(11) be such that 0 S; p S; 1 and p = 1 on K. For every 
<P E fPK (11), we have 1<p1 = l<ppl S; 11<p1I p, where IIIPII denotes the uniform 
norm of <po If IP is real-valued, this means that 

We then deduce from the linearity and the positivity of T that IT(<p)1 S; 
1I<p1I T(p). When we no longer assume <P to be real-valued, the decomposition 
<p = Re<p + iIm <p leads to the inequality IT(<p)1 S; 2T(p) IIIPII, which proves 
that T has order O. 0 

We will see later, as a particular case of Proposition 3.1, that in fact every 
distribution of order 0 can be obtained from a Radon measure by means of 
(*) on the previous pages. Positive distributions then correspond exactly 
to positive Radon measures: If a Radon measure J-l satisfies f IP dJ-l ~ 0 for 
every positive <p E fP(11), the remark following Corollary 1.3 implies that 
the same is true for every positive f E Cc(O). 

Distributions of nonzero finite order 

Let m be a positive integer. A simple example of a distribution of order m 
on an arbitrary open set 0 is the distribution T defined by 

(T,<p) = (DP<p)(a) for all <p E fP(O), 

where p is a multiindex of length m and a is any point of O. That T is 
a distribution of order at most m follows directly from the definitions. To 
prove that the order cannot be less than m, consider a function 'Ij; E fP(JRd) 
such that 'ljJ(0) = 1 and Supp'lj; C 8(0,1). For every a > 0, put 

<Po(x) = (x - a)P'ljJ(x - a)/a), 

where, for y E lRd , we have set yP = yi1 • •• y~d. Since the support of lPo is 
contained in 8(a, a), we see that, at least for a S; ao < d(a, IRd\O), we 
have lPo E ~(O). Moreover, we deduce easily from Leibniz's formula that, 
first, (T, <Po) = p! for every a > 0, and secondly, if q is a multiindex of 
length strictly less than m, then 

(Dq<po)(x) = 2: Cr,q(x - a)P-q+r a-1rIDr'lj;(x - a)/a), 
rsq 

so that the uniform norm of Dq<po, when a S; 1, satisfies 
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where the constant Cq depends only on q and on the chosen function '¢. It 
follows that 

Ilcpoll(m-l) ~ Ca, 

where the constant C depends only on '¢. Since all the functions CPo are 
supported in the compact K = R(a, ao), this makes it impossible for con­
dition (*) on page 268 to hold with m replaced by m - 1. Therefore T has 
order exactly m. 

A distribution of infinite order 

Let T be the linear form on ~(R) defined by 

+ <Xl 

(T,cp) = LCP(n)(n) for all cp E ~(R). 
n=O 

Since the intersection of any compact subset of R with Pi! is finite, this sum 
has only finitely many nonzero terms. Moreover, it is clear that, if K is a 
compact subset of Rand N = max(Pi! n K), we have 

I(T,cp)1 ~ Ilcpll(N) for every cp E ~K(R), 

which proves that T is a distribution. 
Now take m E Pi! and set K = [m-~, m+~]. For every cp E ~K(R), 

we have (T, cp) = cp(m) (m). It follows form the preceding example that the 
smallest integer n for which there exists C > 0 with 

I(T,cp)1 ~ Cllcpll(n) for all cp E ~K(R) 

is m. Thus the distribution T cannot have order less than m, and this for 
every m E Pi!. This means T has infinite order. 

2C Restriction and Extension of a Distribution to an Open 
Set 

Let T be a distribution on n and let n' be an open subset of n. We know 
that ~(n') can be identified with a subspace of ~(Q) (by extending each 
function of ~(n') to n with the value 0 on n \ n'). Thus we can define the 
restriction To of T to ~(n'), which is certainly a distribution on n', called 
the restriction of T to n'. Conversely, T is called an extension of To 
to n. 

Remar·k. The expression "restriction of T to n'" is an abuse of language, 
since the domain of T is the set of test functions ~(Q), and not n itself. A 
similar remark applies to "extension of To to Q" . 
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2D Convergence of Sequences of Distributions 

By definition, a sequence (Tn)nEN in ~'(n) converges to T E ~'(n) if 

lim (Tn, ({J) = (T, ({J) for all ({J E ~(n). 
n-++oo 

Therefore this notion is a type of weak convergence. 
This definition extends immediately to families (T>.) in ~'(n), where A 

ranges over a subset ofR and tends to Ao E [-00, +ooJ. For example, when 
we write lime-+o Te = T in ~'(n) we mean that Te:, T E ~'(n) and that 

lim (Te, ({J) = (T, ({J) for all ({J E ~(n). 
e:-+O 

We now give an example of a distribution defined as a limit of distribu­
tions. 

2E Principal Values 

Consider the function x f-t l/x from JR to R. This function is clearly not 
locally integrable on R, but it is on JR*. We will see how we can extend to 
JR the distribution defined by this function on R. * . 

Proposition 2.4 For every ({J E ~(R), the limit 

T(({J) = lim j ((J(x) dx 
e:-+O+ {Ixl>e} x 

exists. The linear form T thus defined is a distribution of order I on JR, 
and is an extension to lR of the distribution [1/xJ E E1'(R*). 

We call T the principal value of I/x and denote it by pv(l/x). 

Proof Take ({J E ~(JR) and A > 0 such that SUpP({J C [-A,A]. If c < A, 

j ({J(x) dx = j-e ({J(x) dx + fA ({J(x) dx 
{Ixl>e} x -A x ie x 

= j-e ({J(x) - ({J(O) dx + fA ({J(X) - ({J(O) dx, 
-A X e: X 

because l/x is an odd function. Since (({J(x) - ({J(O»)/x can be continuously 
extended to the point 0 with the value ({J'(O), we get 

I· j ({J(x) d _jA ({J(X) - ({J(O) d 1m x-x. 
e-+O+ {lxl>C} x -A x 

At the same time, by the Mean Value Theorem, 

11: ({J(X) : ((J(O) dxl ::; 2A 1I({J1I(1). 
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This shows that equation (*) defines a distribution of order at most 1. On 
the other hand, if <P E ~(JR*), there exists a real 8 > 0 such that <P = 0 on 
[-8,8], so 

lim 1 <p(x) dx = 1 <p(x) dx = f <p(x) dx. 
€--+o+ {lxl>€} x {Ixl>o} x JR. x 

This shows that pv(l/x) coincides with [l/x] on ~(JR*). It remains to prove 
that the distribution pv(l/x) has order 1, which will follow if we show that 
it does not have order O. For each integer n 2 2, take 'l/Jn E ~(JR.) such that 
o ::; 'l/Jn ::; 1, SuPP'I/Jn C (0,1) and 'l/Jn = 1 on [l/n, (n-l)/n]. Let <Pn be 
the odd function that coincides with 'l/Jn on JR.+. If K = [-1,1]' we have 
<Pn E ~K(JR.), li<Pnii = 1, and 

(pv(l/x),<Pn) = 2 t 'l/Jn(X) dx 2 210g(n -1). Jo x 

Thus there is no constant C 2 0 such that 

proving the desired result. o 

Another calculation of a principal value is given in Exercise 7 on page 291. 

2F Finite Paris 

In the previous example we used the fact that the function l/x is odd in or­
der to define the distribution pv(l/x) as the limit, when e tends to 0, of the 
distribution defined on JR. by the locally integrable function l{lxl>€}(x)/x. 
If we are dealing with a function that is not odd, this approximation pro­
cedure does not converge, and it is necessary to apply a correction, repre­
sented by a divergent term. This is called the method of finite parts, and 
we will illustrate it with two examples. 

We first introduce some notation that will often be useful. We define the 
Heaviside function, denoted by Y, as the characteristic function of JR. + . 
Thus, for x E JR., we have Y(x) = 0 if x < 0 and Y(x) = 1 if x 2 o. 

Proposition 2.5 For every <P E ~(JR.), the limit 

(T, <p) = lim (1+00 <p(x) dx + <p(0) lOge) 
€--+o+ € x 

exists. The linear form T thus defined is a distribution of order 1 on JR., 
called the finite part ofY(x)/x and denoted by fp(Y(x)/x). 
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Proof Take cp E ~(lR) and A > 0 such that Suppcp c [-A, A] . Then 

1+00 cp(x) dx = fA cp(x) - cp(O) dx + cp(O) log A - cp(O) loge. 
e X e X 

Thus 

lim (1+00 cp(x) dx + cp(O) lOge) = lA cp(x) - cp(O) dx + cp(O) log A, 
e40+ e X 0 X 

and this expression is bounded in absolute value by Ilcpll(l) max(A, Ilog AD, 
by the Mean Value Theorem. It follows that fp(Y(x)/x) is indeed a distri­
bution of order at most 1. 

For each integer n ;::: 2, take 1/Jn E ~(lR.) such that 0 ::; 1/Jn ::; 1, Supp 1/Jn c 
(0,1), and 1/Jn = 1 on [l/n, (n-1)/n]. We see that 

1/Jn E ~[O,lJ(lR.), II1/Jnll = 1, and (fp(Y(x)/x), 1/Jn) ;::: log(n - 1), 

which proves that fp(Y(x)/x) is not of order 0, and so is of order 1. 0 

Other examples of finite parts on lR. will be given in Exercises 3 and 19. 
Here is another example, this time on lR. 2. Put r = J x2 + y2 and 

82 82 

L\ = 8x2 + 8y2' 

Proposition 2.6 For every cp E ~(lR.2), the limit 

(T, cp) = lim (j" f r- 4 cp dx dy - lI'cp(O, 0)e-2 + ~2 L\cp(O, 0) log e) 
e40+ J{r?e} 

exists. The linear form T thus defined is a distribution of order 3 on lR. 2. 

T is called the finite part of 1/r4 and is denoted by fp(1/r4 ). (Note 
that the function 1/ r4 is not locally integrable on lR. 2.) 

Summary of proof Take cp E ~(lR.2) and A > 0 such that Suppcp c 
B(O, A). A quick calculation shows that 

jr f ~ dxdy 
J{r?e} r 

= jr f r- 4 (cp(x, y) _ cp(O, 0) - x 88CP (0, 0) - y 88CP (0, 0) 
J{A? r ?e} x Y 

( X2 82cp 82cp y2 82cp )) 
- 2 ox2 (0,0) + xy oxOy(O, 0) + 2 oy2 (0,0) dxdy 

11' A 
- lI'cp(O, 0) (A -2 - e- 2 ) + -L\cp(O, 0) log - . 

2 e 
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We then deduce from Taylor's formula that the limit given in the statement 
of the proposition exists and is bounded in absolute value by CAiicpii(3), 
with C A > O. Therefore the distribution thus defined has order at most 3. 
It remains to show that it is not of order less than 3. 0 

Exercises 

1. Let ~1R(n) be the set ofreal-valued elements of ~(n). A distribution T 
on n is called real if (T, cp) E JR for every cp E ~IR (n). Show that every 
distribution Ton n can be written in a unique way as T = Tl + iT2' 
where Tl and T2 are real distributions on n. 
Show that real distributions can be identified with continuous linear 
forms on ~1R(n). 

2. Let (Xn)nEN be a sequence of points in n having no cluster point in n. 
Show that the map defined by 

00 

(T, cp) = L (DPn cp) (xn), 
n=O 

where each Pn is a multiindex, is a distribution. Compute its order. 
3. Show that, for every function <p E ~(JR), the limit as E: tends to 0 of 

r <p(~) dx _ 2 cp(O) 
J{lxl?'e} x E: 

exists, and that this defines a distribution (the finite part of 1/x2 ). 

Determine its order. 
4. Take I E C«JRd)*). 

a. Assume there exists a constant C > 0 and an integer n > 0 such 
that, for every x E B(O, 1) \ {O}, 

C 
I/(x)1 ~ ~. 

Show that I extends to a distribution of order at most n on JRd. 
Hint. Consider, for <p E ~(JRd), 

(T, <p) = r I(x)cp(x) dx + r I(x)(<p(x) - Pn(x)) dx, 
J{lxl?l} J{lxl:Sl} 

where Pn is the sum of the terms of order at most n - 1 in the Taylor 
series expansion of <p at O. 

h. Suppose that I is positive and that 

lim ixin I(x) = +00 for all n E N. 
x~O 
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Show that there is no distribution on Rd whose restriction to (Rd)* 
is f. 
Hint. Take <p E ~(R.d) supported in B(O, 4) \ B(O, 1) and such that 
cP = 1 on B(O,3) \ B(O, 2). For n ~ 1, set 

An = _ inf f(x) 
zEB(O.3/n)\B(O.2/n) 

and 

lim !f(x)<pn(x)dx = +00. 
n--t+oo 

5. Let T be a distribution on 0 such that every point in 0 has an open 
neighborhood on which the restriction of T vanishes. Show that T = O. 
Hint. Take <p E ~(O). Cover the support of <p with finitely many sets 
on which T vanishes; then use a Coo partition of unity (or Exercise 11 
on page 266). 

6. Piecing distributions together. Let 0 1 , ... , On be open sets in IRd whose 
union is O. For each j E {I, ... , n}, let Tj be a distribution on OJ. Sup­
pose that, for every pair of integers (i,j) E {I, ... ,n p, the distributions 
Ti and Tj coincide on the open set Oi n OJ. We wish to show that there 
is a unique distribution Ton 0 whose restriction to each OJ is Tj . 

a. Using Exercise 5, prove that such a distribution T must be unique. 
h. For each j E {I, ... , n}, take <pj E ~(Oj). Show that E;=1 CPj = 0 

implies E;=l (Tj, CPj) = O. 
Hint. Use a Coo partition of unity associated with the open sets OJ, 
1 ::; j ::; n, and with the compact K = U;=1 Supp <pj. 

c. Take <P E ~(O). Show that the expression 

n 

(T, <p) = L (Tj, <pj) 
j=l 

is independent of the choice of a family CPl, ..• , <Pn such that 

n 

CPjE~(Oj) foralljE{I, ... ,n} and <P=L<pj· 
j=l 

(The existence of such a family follows from Proposition 1.4; see 
Exercise 11 on page 266.) 

d. Show that the map T defined above is a distribution on 0 having 
the desired properties. 

e. Show that, if each distribution Tj has order at most m, so does T. 
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7. Let 11 be open in JRd and let (fn)nEN be a sequence in Ltoc(11). Show that, 
ifthe sequence (fn) converges in Ltoc(11) to an element I in Ltoc(11), then 
In tends to I in ~/(11). (Convergence in Ltoc(11) is defined in Exercise 
19 on page 159.) 

8. Compute the limit of the sequence of distributions in JRd defined by the 
functions Tn(x) = ndx(nx), where X E L 1 (JRd). 

9. Compute the limit of the sequences of distributions on JR defined by the 
following functions: 

a. Tn(x) = sin nXj 
h. Tn(x) = (sin nx)/x; 
c. Tn(x) = nsin(nx) 1{x~o}; 

d. Tn(x) = Ixl-!.-1/(2n). 

Hint. For parts a, b, and c, you might use the Riemann-Lebesgue 
Lemma (Exercise 4a on page 179) and/or integration by parts. 

10. Study the convergence in ~/(JR*), then in ~/(JR), of the sequence of 
distributions 

n 

Tn = Lak(61/k - L 1/ k), 
k=l 

where (an) is a sequence of complex numbers. 
11. Show that the equation 

+00 
(T, cp) = L cp(n) (1/n) for all cP E ~((O, +00)) 

n=l 

defines a distribution Ton (0, +00) of infinite order, and that T cannot 
be extended to JR. 

12. Find the limit in ~' (JRd) as t: tends to 0 of the family (T,e) defined by 

where Wd is the volume of the unit ball in JRd. 
13. For x E JR and N E N, write 

N sin((N + -21 )x) 
SN(X) = L einx = 

n=-N sin(x/2) 

a. Take cP E ~(JR). Show that, for every p E Z, 

1(2P+l)1r 

lim SN(X)cp(X) dx = 27l"cp(2p7r). 
N-++oo (2p-1)tr 
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Hint. Show that 

1(2P+l)7I" 

SN(X)ip(X) dx 
(2p-l)7I" 

= i: SN(X)(ip(X + 2p1l") - ip(2p1l")) dx + 2?Tip(2p?T); 

then apply the Riemann-Lebesgue Lemma (Exercise 4a on page 179). 
h. Deduce that the sequence of distributions ([SN])NEN converges in 

~'(JR) to 2?T EpEz thpn, where 82pn is the Dirac measure at the point 
2p1l". 
Remark. One can show that the sequence ([SN])NEN (considered as 
a sequence of Radon measures on JR) does not converge vaguely (this 
concept is defined in Exercise 6 on page 91). Compare with Exercise 
1 on page 284. 

14. Let (Cn)nEZ be a family in C such that there exist G ~ 0 and , ~ 0 
satisfying 

Icnl :S Glnl"")" for all n E Z*. 

Show that the series EnEZ Cn [e inx ] converges in ~'(JR) and that the 
sum has finite order. 
Hint. If ip E ~ (JR) with Supp ip C [-A, A] (where A > 0), prove using 
integration by parts that, for every r E Nand n E Z*, 

If einxip(x)dxl:s 2Allipll(r)lnl-r . 

15. Let (fn) be a sequence of functions in £2(0) and suppose I E £2(0). 
a. Show that, if the sequence (fn)nEN converges weakly to I in the 

Hilbert space £2(0), it converges to I in ~'(f2). 
h. Is the converse true? (You might consider, for instance, the open set 

0= (0,1) and the functions In = n1[1/n,2/nj.) 
c. Show that (fn)nEN converges weakly to I in £2(0) if and only if it 

is bounded in £2(0) and converges to I in ~'(f2). 
Recall that every weakly convergent sequence is bounded in £2(f2); 
see Exercise lOa on page 120 (this follows from Baire's Theorem). 
Hint. Show first that ~(O) is dense in £2(f2). 

16. Banach-Steinhaus Theorem in ~'. Let f2 be an open set in JRd. Let (Tn) 
be a sequence of distributions on f2 such that, for every ip E ~(f2), the 
sequence of numbers ((Tn, ip)) is bounded. We wish to show that, for 
every compact K contained in 0 , there exists an mEN and a real 
constant G > 0 such that 

I(Tn,ip)1 :S Gllipll(m) for all ip E ~K(n) and n E N. (*) 

To do this we define, for every kEN, a set 

Fk = {ip E ~K(f2): I(Tn,ip)l:s k for all n EN} . 
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a. Show that each Fk is closed in the metric space 8h(O) defined in 
Exercise 7 on page 265. Deduce that, for at least one ko EN, the 
set Fko has nonempty interior. (Use Baire's Theorem, Exercise 6 on 
page 22.) 

h. Show that each Fk is convex and symmetric with respect to 0 and 
deduce that there exists r > 0 such that the ball B(O,r) (in 8?K(O)) 
is contained in Fko' 

c. Let mEN be such that ~n>m 2-n ~ r /2, and set C = 4ko/r. Show 
that m and C satisfy condition (*) . 

17. Let (Tn) be a sequence of distributions on n such that, for every r.p E 

8?(O), the sequence of numbers ((Tn, r.p)) converges. Show that, for any 
t E (a, b), the linear form T on 8? (n) defined by 

(T, r.p) = lim (Tn, cp) 
n--++oo 

is a distribution on n. 
Is it true that, if all the distributions Tn have order at most m, then so 
does T? 
Hint. Use Exercise 16. 

18. Let (Tt)tE(a,b) be a family of distributions on n. Suppose that, for every 
r.p E 8?(n), the function t ~ (Tt, r.p) is differentiable on (a, b). Show that, 
for any t E (a, b), the linear form dTt/dt defined by 

(dftt ,r.p ) = ! (Tt, r.p) for all r.p E 8?(n) 

is a distribution on O. 
Hint. Use Exercise 17. 

19. Finite part ofY(x)/xa , for a E JR+ 
a. Take m E N*. Prove that, for every r.p E 8?(JR), the limit 

(T, r.p) = lim (1+00 cp(x) dx 
0--+0+ 0 xm 

m-2 r.p(k) (0) 1 r.p(m-l)(o) ) 

- L (m - k - l)k! €m-k-l + (m _ I)! loge 
k=O 

exists and that the linear form T thus defined is a distribution of 
order (at most) m on JR. This distribution is called the finite part of 
Y(x)/xm, and is denoted fp(Y(x)/xm). 

h. Take a E JR+ \ N. Let m be the integer such that m < a < m + l. 
Show that , for every r.p E 8?(JR) , the limit 

. (1+00 r.p(x) m-l r.p(k) (0) 1) 
(T, cp) = o~~+ 0 --;a dx - t; (a - k - l)k! €a-k-l 
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exists and that the linear form T thus defined is a distribution of 
order (at most) m on R. This distribution is called the finite part of 
Y(x)jxO, and is denoted fp(Y(x)jxO). 

20. Complete the proof of Proposition 2.6. 

3 Complements 

In this section, we study under what conditions a distribution can be ex­
tended to test function spaces larger than ~(n), namely ~m(n) or &(n). 
We will introduce to this effect the important notion of the support of a 
distribution. 

3A Distributions of Finite Order 

The next proposition provides a characterization of distributions of finite 
order. 

Proposition 3.1 Let T be a distribution on n and suppose mEN . A 
necessary and sufficient condition for T to have order at most m is that T 
can be extended to a continuous linear form on ~m(n) . The extension is 
then unique. 

Proof Suppose that T has order at most m. Property (*) on page 268 then 
implies that T is continuous (and even uniformly continuous) on the space 
~(n) regarded, topologically speaking, as a subspace of ~m(n). Since ~(n) 
is dense in ~m(n) by Corollary 1.3, we can apply the theorem of extension 
of continuous linear forms. This theorem applies a priori to continuous 
linear forms on normed spaces, but we can reduce the problem to that 
situation by considering the normed spaces ~K(n) . Similarly, since ~(n) 
is dense in ~m(n), this extension is unique. 

In the other direction, it is clear from the definitions that the restriction 
of a continuous linear form on ~m(n) to ~(n) is a distribution of order at 
most m. 0 

Conversely, the restriction to ~(n) of a continuous linear form on ~m(n) 
is a distribution (since a sequence in ~(n) that converges in ~(n) obvi­
ously converges in ~m(n», and it has order at most m by the preceding 
reasoning. Thus we can identify the space of distributions of order at most 
m on n with the space of continuous linear forms on ~m(n), which we 
denote by ~/m(n). We will make this identification from now on, and for 
T E ~/m(n) and cP E ~m(n) we will still denote by (T, cp) the result of 
evaluating T at cpo 

An important particular case, already discussed on page 270, is when 
m = O. Then ~O(n) = Cc(n) and the space ~/O(n) of distributions of 
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order 0 can be identified with the space 9Jt(0) of complex Radon measures 
on O. Consequently, 9Jt(0) = ~'O(O) C ~'(O) and, if <P E Cc(O) and 
J.L E 9Jt(0), we have 

(J.L, <p) = J.L( <p) = J <p dJ.L. 

3B The Support of a Distribution 

Let T be a distribution on O. By definition, a domain of nullity of T is 
an open set 0' contained in 0 and such that the restriction of T to 0' is 
the zero distribution on 0'. 

Proposition 3.2 Any distribution Ton 0 has a largest domain of nullity 
0 0 • 

The complement of this set, 0 \ 0 0 , which is closed in 0, is called the 
support of T and is denoted by SuppT. 

Proof Let qj be the set of domains of nullity of T, and let 0 0 = UOE'~ 0 
be their union. It suffices to show that 0 0 is itself a domain of nullity 
of T . Take cP E ~(no) C ~(O). By the compactness of Supp<p, there 
exist finitely many elements Wl, •.. ,Wn of'f£ whose union contains Supp <po 
By Proposition lA, there exists a Coo partition of unity associated with 
this open cover; that is, there exist functions <PI, • • . ,<Pn E ~ such that 
o :::; <pj :::; 1 and SUPP<Pj C Wj for every j E {l, . .. ,n} and such that 
Ej=l <pj(x) = 1 for every x E Supp<p. It follows that 

Since each <PCPj is supported in the domain of nullity Wj, this implies that 

n 

(T, <p) = L (T, <p<Pj) = o. 
j=1 

This proves that 0 0 is indeed a domain of nullity of T, and by the con­
struction it is the largest such domain. 0 

The support of a complex Radon measure J.L on 0 was defined in Exer­
cise 2 on page 90. Since, for every open set 0, the space ~(O) is dense in 
Cc(O) (Corollary 1.3), one can check easily that this definition coincides 
with the one just given for distributions. 

3C Distributions with Compact Support 

The next proposition characterizes distributions having compact support. 
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Proposition 3.3 Let T be a distribution on O. A necessary and sufficient 
condition for the support of T to be compact is that T have an extension 
to a continuous linear form on 6"(0). The extension is then unique. 

Proof Suppose first that the support of T is compact. Then there exists 
a compact K in 0 whose interior contains the support of T. It follows 
from Proposition 1.4 that there exists P E ~(O) such that 0 ::; p ::; 1 and 
p(x) = 1 for all x E K. We then set, for f E 6"(0), 

t(f) = (T, f p) . 

It is clear that this does define a linear form t on 6"(0). On the other hand, 
if cP E ~(O), we have 

Supp(cp-cPp) C O\K c O\SuppT, 

so that 
(T, cp) = (T, cpp) . 

It follows that t is an extension of T to 6"(0). 
Finally, if (fn) is a sequence in 6"(0) that tends to 0 in g(O), it is easy 

to see from the definitions and from Leibniz's formula that the sequence 
(fnP) tends to 0 in ~(O), so that 

lim (T, fnP) = O. 
n-++oo 

This proves that t is continuous on 6"(0). 
Thus T has an extension t that is a continuous linear form on 6"(0). 

Since ~(O) is dense in g(O), this extension is unique. 
For the converse, assume that T can be extended to a continuous linear 

form t on g(O). Let (Kn)nEN be an exhausting sequence of compact sub­
sets of O. If the support of T is not compact, there exists, for every integer 
n EN, an element CPn of ~(O) such that 

(by the definition of the support of T). Dividing CPn by (T, CPn), if necessary, 
we can assume that 

(T, CPn) = 1. 

Now, we claim that the series L:~:O CPn converges in 6"(0). Indeed, if K 
is a compact subset of 0, then K is contained in some K no ' for no E N; 
but, for every n > no, we have CPn = 0 on Kno and so on K, so the sum 
L:~:O CPn reduces to a finite sum on K, and this for every compact subset 
K of O. So the sum converges in 6"(0). By the continuity of T, it follows 
that the series L:~:O (T, CPn) converges, contradicting our assumption that 
(T, CPn) = 1. D 
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Conversely, the restriction to ~(12) of a continuous linear form on 6"(12) 
is a distribution on 12 (since a sequence in ~(12) that converges in ~(12) 
also converges in 6"(12)), and this distribution has compact support by 
the preceding results. Thus we can identify the space of distributions on 
12 having compact support with the space of continuous linear forms on 
6"(12), denoted by 6"'(12). We will make this identification from now on. In 
particular, for T E 6"'(12) and <P E 6"(12), we will still write T(<p) as (T,<p). 

We remark also that a distribution on S1 with compact support can be 
identified with an element of 6'" (JRd) by setting 

Indeed, if <p is in 6"(JRd) the restriction <PIn of <p to 12 lies in 6"(12) . 

Proposition 3.4 Every distribution T with compact support in 12 has 
finite order. More precisely, there exists an integer mEN and a constant 
C ;:::: 0 such that 

i(T,<p)i ::; CII<pII(m) for all <p E ~(12). 

Proof. Let K be the support of T and let K', K" be compact sets such 
that 

K c K' c K' c K" c K" c 12. 

By Proposition 2.1, there exists a constant C ;:::: 0 and an integer mEN 
such that 

By Proposition 1.4, there exists '1/7 E ~ such that 0 ::; '1/7 ::; 1, '1/7 = 1 on K' 
and Supp'1/7 C K". If <p E ~(12), then <p'1/7 E ~K,,(12) and 

Supp(<p-<p'l/7) c 12\K' c 12\K. 

Since the compact K is the support of T, it follows that there is a positive 
constant C' depending only on C, m and '1/7, and such that 

the last inequality being a consequence of Leibniz's formula. o 

Remark. One can easily deduce from the preceding results that, if T is 
a distribution with compact support, there exists an integer mEN (any 
integer not less than the order of T will do) such that T extends to a 
continuous linear form on 6"m(S1), and that this extension is unique. 
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Exercises 

1. Let (Tn)nEN be a sequence of positive Radon measures that converges in 
~'(n) to a distribution T. Show that T is a positive Radon measure and 
that the sequence (Tn)nEN converges vaguely to T (this term is defined 
in Exercise 6 on page 91). Compare with Exercise 13 on page 277. 

2. Let T be a distribution on R n and suppose cp E ~(Rn) vanishes at every 
point in the support of T . Does it follow that (T, cp) = O? 

3. Let T be a distribution on n with compact support K and order m, and 
suppose cp E ~(n) satisfies the following property: For every multiindex 
P of length at most m and every x in the support of T, we have DO: cp( x) = 
O. We wish to prove that (T, cp) = O. Put Kc = {x E Rd : d(x, K) :::; c}, 
for c > O. 
a. Take 11 > O. By assumption, there exists a real number T"., > 0 such 

that IDPcp(x) I :::; 11, for every x E Kr'l and every multiindex P of 
length at most m. Show that, for every x E Kr'l and every pENd 
such that Ipi :::; m, 

IDPcp(x) I :::; l1d"'-lpl d(x, K)m- 1p1 . 

Hint. You might use reverse induction on n = Ipl, applying at each 
step the Mean Value Theorem on the segment [x, yj, where y is a 
point in K such that d(x, K) = d(x, y). 

h. Suppose X E ~(Rd) has its support contained in B(O, 1) and satisfies 
f X(x) dx = 1. Let Xc be the element of ~(Rd) defined by 

Xc(x) = c X -- dy. -dl (X- y ) 
K2< C 

Show the following facts: 

i. For every c > 0, the support of Xc is contained in K3c; moreover, 
Xc = 1 in K c . 

ii. For every multiindex p we have 

II DPXc II (0) :::; Ilxll(lpl)wdc-lpl, 

where Wd is the volume of the unit ball in Rd. 
c. Show that there exists a constant 0 > 0 (depending only on d and 

m) such that, for every c < T".,/3, 

(Use Leibniz's formula.) 
d. Show that there exists a constant 0' > 0 such that 

Finish the proof. 
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4. Structure of distributions with finite support 

a. Let ft, 12, ... , fn and f be linear forms on a vector space E with the 
property that, for every x E E, 

ft(x) = h(x) = .. . = fn(x) = 0 ==? f(x) = o. 

Show that there exist scalars CI, •.• ,Cn such that f = cdl + ... + 
cnfn . 
Hint. Let E, F, and G be vector spaces, f a linear map from E to 
G, and 9 a linear map from E to F such that ker 9 ~ ker f. Suppose 
F is finite-dimensional. Then there exists a linear map h from F to 
G such that f = hog. (Why?) Apply this result to F = en and 
9 = (h,··· ,in). 

h. Let T be a distribution on an open subset n of JRd, and suppose 
SuppT = {O}. Show that T is given by 

(T, cp) = E cpDPcp(O) for all cp E ~(n), 
Ipl:Sm 

for appropriate constants Cp. 

Hint. Use Exercise 3. 
c. Determine likewise the general form of a distribution whose support 

is finite. 
5. Let (Tn)nEl'I be a sequence of distributions on an open subset n of JRd. 

We assume that the sequence (Tn) converges in ~I(n) and that the 
supports of the distributions Tn are all contained in the same compact 
K . Show that the orders of distributions Tn have a uniform upper bound 
mEN. 
Hint. Use the Banach-Steinhaus Theorem in ~I(n), stated in Exercise 
16 on page 278. 
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Multiplication and Differentiation 

We define in this chapter two important operations involving distributions. 
Again we will be working with an open subset 0 of JRd. 

1 Multiplication 

In this section we define the product of a distribution by a smooth function. 
This definition arises from the following lemma. 

Lemma 1.1 Suppose a E 0"(0). The map <P I-t alP from ~(o) to ~(o) 
is continuous. Likewise, if a E gm(o), with mEN, the map <p I-t alP from 
~m(o) to ~m(o) is continuous. 

In other words, if (<Pn)nEN is a sequence in ~(O) or ~m(o) converging 
to 0 in ~(O) or ~m(o), respectively, the same is true about the sequence 
(a<pn)nEN. 

Proof The lemma follows immediately from Leibniz's formula (page 258) 
and from the fact that, if <Pn E ~(O), the support of a<pn is contained in 
the support of <Pn. 0 

Thus we can define the product of a function and a distribution as follows: 

Definition 1.2 If T E ~/(O) and a E 0"(0), the product distribution aT 
on 0 is defined by setting 

(aT, <p) = (T, alP) for all <P E ~(O). 
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If T E ~'m(o) and a E gm(o), the product aT E ~'m(o) is defined by 

(aT, cp) = (T, acp) for all cp E ~m(o). 

(Recall that ~'m(o) is the set of continuous linear forms on the space 
~m(o) , which by Proposition 3.3 on page 282 can be identified with the 
space of distributions of order at most m). 

That aT really is a distribution follows from the preceding lemma: If 
(CPn)nEN is a sequence in ~(O) or ~m(o) that converges to 0, Lemma 1.1 
implies that the sequence ( (T, acpn) )nEN tends to 0 since T is a distribution. 
Thus aT really is a continuous linear form on ~(O) or ~m(o), as the case 
may be. 

Obviously, if IE Lloc(O) and a E C(O), we have 

a[ll = [all· 

In this sense, this multiplication extends the usual product of functions . We 
will see in Exercise 1 below that this extension cannot be pushed further 
to the case of the product of two arbitrary distributions without the loss of 
the elementary algebraic properties of multiplication, such as associativity 
and commutativity. 

Remark. The definition immediately implies that if a E C(O) the linear 
map T t-+ aT from ~'(O) to ~'(O) is continuous, in the sense that, if 
(Tn)nEN converges to T in ~'(O), then (aTn)nEN converges to aT in ~'(O). 

Proposition 1.3 With the notation introduced in Definition 1.2, we have 

Supp( aT) c Supp a n Supp T 

and, il/3 E C(O) (or /3 E gm(o)), we have 

a(/3T) = (a/3) T. 

Proof. The second claim is obvious. To show the first, take cP E ~(O). 
If Supp cp c 0 \ Supp a, then acp = 0, so (aT, cp) = O. It follows that 
o \ Supp a is contained in 0 \ Supp( aT), so Supp( aT) C Supp a. 

Now if Supp cp c 0 \ Supp T, then 

Supp acp C Supp cp C 0 \ Supp T, 

which implies that (aT, cp) = O. Therefore 0 \ Supp T is contained in 0 \ 
Supp(aT), so Supp(aT) C SuppT. The result follows. 0 

The inclusion in the proposition may be strict . For example, if T = 8 is 
the Dirac measure at 0 in JRd, and if a E C(JRd) is such that a(O) = 0 and 
o E Suppa (say a(x) = x), then aT = a(0)8 = 0 and the support of aT 
is empty, whereas Supp an Supp T = {O}. 
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Division of distributions is an important problem: If 8 E ~'(O) and 
a E 8'(0), is there aTE ~'(O) such that aT = 8? Clearly, if a van­
ishes nowhere in 0, the product T = (1/a)8 is the unique solution to the 
problem, by the second part of Proposition 1.3. In the general case, the 
restriction of T to the open set {x E JRd : a(x) -I- O} is uniquely defined 
by the same equality, but the global problem may have infinitely many 
solutions. Here is an example in dimension 1. 

Proposition 1.4 For every 8 E ~' (1R), there exists T E ~' (JR) such that 
xT = S. If To is such that xTo = 8, the set of solutions of the equation 
xT = S equals {To + C8 : C E C}. 

Proof Take X E ~(JR) such that X(O) = 1. To each <p E ~(JR) we associate 
rp, defined by 

rp(x) = 11 (<p'(tx) - <p(O)x'(tx)) dt. 

One easily checks that rp E ~(JR) and that the map <p H rp from ~(JR) 
to ~(JR) is continuous. Moreover, if x E JR*, rp(x) = (<p(x) - <p(O)x(x))/x. 
Now put 

(T, <p) = (S, rp) for all <p E ~(JR). 

Since <p H r:p is continuous, T belongs to ~'(JR)j since X<p = <p, we get 
xT=S. 

Now take T E ~'(JR) with xT = O. If <p E ~(IR), we have 

0= (xT, rp) = (T, <p - <p(O) X) = (T, <p) - (T, X) (8, <p) . 

It follows that T = (T, X) 8. o 

Here is a particular case. 

Proposition 1.5 Suppose T E ~'(IR). Then xT = 1 if and only if there 
exists C E C such that T = pv(l/x) + C8. 

Note that, in the equality xT = 1, the symbol 1 represents the constant 
function equal to 1, identified with the distribution [1), which is none other 
than Lebesgue measure A. 

Proof. By Proposition 1.4, it suffices to show that xpv(l/x) = 1. To do 
this, take <p E ~(IR). By definition, 

(xpv(l/x),<p) = (pv(l/x), x<p) = lim { (l/x)x<p(x)dx 
€-+o+ J{\xl>€} 

= J <p(x)dx = ([l),<p), 

as we wished to show. o 
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Exercises 

1. Show that it is impossible to define a multiplication operation on the 
set g&' (JR) that is at once associative, commutative and an extension of 
the multiplication defined in the text. 
Hint. Suppose there is such a multiplication and compute in two ways 
the product x<5pv(1jx), where <5 is the Dirac measure at O. 

2. Consider an open set 0 in JRd and elements a E 6"(0) and T E g&'(O). 
Assume that a = I on an open set that contains the support of T. Show 
that aT = T. 

3. Suppose T E g&'(JRd), a E JRd, and mEN. Show that (x - a)PT = 0 for 
every multiindex p of length m + I if and only if T can be written as 

(T, cp) = L cqDqcp(a) for all cp E g&(JRd), 
Iql~m 

with cq E C for Iql :::; m. (As might be expected, by (x - a)P we mean 
the product (Xl- at}PI . . . (Xd- ad)Pd .) 
Hint. Show first that, if (x - a)PT = 0 for every multiindex p of length 
m + 1, the support of T is contained in {a} and so is compact. Using 
Taylor's formula (Exercise I on page 264), prove then that, for every 
cp E g&(JRd), 

4. Suppose S E g&'(JR), a E JR, and mEN. 

a. Choose X E g&(JR) such that x(a) = I and x(k)(a) 
{I, .. . ,m}. Given cp E g&(JR), define a function tp by 

o for k E 

tp(x) = cp(x)- (cp(a)+cp'(a)(x-a)+ · · .+(Ijm!)cp(m)(a)(x-a)m)x(x) 
(x-a)m+l 

if x f:. a, and extend it to x = a by continuity. Show that the map 
cp t--+ tp from g&(JR) to g&(JR) is continuous (in the sense of sequences). 

b. Show that the equality 

(T, cp) = (S, tp) 

defines a distribution on JR that is a solution of the equation 

c. Determine all solutions of the equation (x - a)m+lT = S . 
Hint. Use Exercise 3. 
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5. In each of the following cases, the question is to show the existence 
in ~'(JR.) of solutions T for the equation fT = 8, with 8 E ~'(JR.) 
arbitrary, and to find the general form of the solutions in terms of a 
particular solution To. 
a. Suppose that f E g(JR) and that f has a unique zero a E JR., which 

furthermore is of finite order; that is, there exists an integer m E N* 
such that f<m)(a) =j:. O. 
Hint. Let m be the smallest integer such that f<m) (a) =j:. o. The func­
tion 9 defined by g(x) = (x - a)-m f(x) and extended by continuity 
to x = a belongs to g(JR.) and vanishes nowhere. Then fT = 8 if 
and only if (x - a)mT = g-18. Now apply Exercise 4. 

h. Suppose that f E g(JR.) , that the set of zeros of f has no cluster 
point, and that each zero has finite order. 
Hint. Let (OkhEN be a locally finite cover of JR. by bounded open 
sets, each containing at most one zero of f. Write 8 in the form 
8 = EkEN 8k, where Supp 8k C Ok for each kEN (see Exercise 
14 on page 267). Solve the equation fTk = 8k for each k, using the 
preceding case as inspiration. 

6. a. Show that the distributions T on JR. such that xT = Yare exactly 
those of the form T = fp(Y(x)/x) + Ct5, for C E C. 

h. More generally, prove that, for every m E N*, the distributions 
T on lR such that xmT = Yare exactly those of the form T = 
fp(Y(x)/xm)+ :L:;=~1 Ckt5<k) , for Ck E C (see Exercise 19 on page 279). 

7. a. Prove that the equality 

(ln7r - e <p(x) ln7r+7r / 2 <p(x) ) 
(To, <p) = lim L -.- dx + - .- dx 

e-+O+ n7r-7r/2 sm x n7r+e sm x nEil. 

defines a distribution To of order 1 on JR.. (To is the principal value 
of l/sinx.) 

h. Show that sin x To = 1 and deduce the general form of the solutions 
of the equation sin x T = 1. 

S. Suppose T E ~'(o) and <p E ~(o) are such that, for every multiindex p 
(of length equal to at most the order of T if T has finite order) and for 
every x in the support of T, we have DP<p(x) = O. Show that (T, <p) = o. 
Hint. Apply Exercise 3 on page 284 to the distribution 8 = XT, where 
X is a test function that has the value 1 on an open set containing the 
support of <po 

9. Take T E ~'m(o) and a E gm(o) (or T E ~'(O) and a E g(O)). 
Suppose that, for any PENd such that Ipl S; m (or any pENd, 
respectively), DPa vanishes on the support of T. Show that aT = o. 
(Use Exercise 8) . 

10. Let (Kn)nEN be an exhausting sequence of compact subsets of O. For 
each n E N, let <Pn E ~(O) be such that 0 S; <Pn S; I, <Pn = 1 on K n, and 
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Supprpn c Kn+l ' Show that limn--Hoe> rpnT = T in ~'(O), for every T E 
~'(n) . Deduce that &'(0) is dense in ~'(n) (in the sense of convergence 
of sequences). 

2 Differentiation 

For PENd, the differentiation operator of order P on ~'(O) is defined as 
follows: If T E ~(O), set 

(D'PT, rp) = (-1 )Ipi (T, DPrp) for all rp E ~(n). 

Since the map DP : rp >-t DPrp from ~(n) to ~(O) is continuous, the linear 
form DPT thus defined on ~(n) is indeed a distribution. This map DP is 
also continuous as a map from ~m+lpl(n) to ~m(n), which leads to the 
following property: 

Proposition 2.1 Suppose mEN. For every T E ~'m(n), we have 
DPT E ~'m+lpl(o) and 

(DPT, rp) = (-1 )Ipi (T, DPrp) for all rp E ~m+lpi (n). 

We also use the notation 

{}lplT 
DPT = -- = {}PT 

(}xp x' 

or, if d = 1, 

DT= T' = dT 
dx' 

~T 
DmT = T(m) = -- for mEN, 

dxm 

as for functions . Indeed, the differentiation operator defined above on ~(O) 
extends ordinary differentiation of functions of class C 1 : 

Proposition 2.2 Let mEN and pENd satisfy Ipi ~ m. If f E gm(o) , 
then 

In this equality, the first DP denotes differentiation in the sense of 
distributions as defined above, and the second denotes ordinary differ­
entiation in the sense of functions. 

The proposition is easily obtained by induction on Ipi starting from the 
case Ipi = 1, which is a consequence of the following lemma. 

Lemma 2.3 (Integration by parts) If f E gl(O) and rp E ~l(n), 
then, for every j E {I, . . . , d}, 

In Djfrpdx = - In f Djrpdx. 
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Proof By Fubini's Theorem, we can reduce to the case d = 1, to which 
we apply the classical theorem of integration by parts, taking into account 
that the support of <p is a compact subset of n, so that the "boundary" 
terms vanish. 0 

Examples 

1. Take a E n. The derivatives of the Dirac measure at a (denoted by 8a 

and defined by (8a ,<p) = <p(a)) are given by 

(DP8a ,<p) = (-l)lpIDP<p(a) for all pENd; 

these distributions were studied on page 270. Thus, for every pEN, the 
distribution DP8a has order Ipl. 
In particular, if a = 0 (in which case we write 8 = 80 ) and d = 1, we 
have 

(8', <p) = -<p' (0) = - lim (8h, <p) - (80 , <p) for all <p E ~(n). 
h-tO h 

It follows that 
" 1. 8h - 8 . Q,'(f"\) 
U = 1m - -h- 1n::p H. 

h-tO 

2. The derivative in the sense of distributions of the Heaviside function Y 
is the Dirac measure at 0: indeed, if <p E ~(lR.), 

[+00 
(Y',<p) = - 10 <p'(t)dt = <p(0), 

where we have used, in calculating the integral, the fact that <p has 
compact support. Therefore Y' = 8. 

3. The function x >-+ log(lxl) is locally integrable on lR. and as such defines 
a distribution. We compute its derivative in the sense of distributions. 
If <p E ~(lR.), 

(~ [log(lxl)), <p) = - J <p'(x)log(lxl)dx 

= - lim [ <p'(x) 10g(lxl) dx. 
€-t0+ l{lxl?€} 

Integrating by parts, we deduce that 

(dd [log(lxl)), <p)=- lim (-<p(c) logc+<p(-c) logc- [ <p(x) dX). 
X €-t0+ l{1xl?€} x 

Now, log c( <p( -c) - <p( c)) tends to 0 as c tends to O. Therefore 

d~ [log(lxl)) = pv(~). 
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One shows likewise that 

d~ [Ylogx] = fp(Y~X»). 
The next proposition follows easily from the definitions. 

Proposition 2.4 Suppose pENd. 

1. The application T H DPT from ~'(n) to ~'(n) is continuous in the 
following sense: For every sequence (Tn)nEN in ~'(n) that converges 
to T in ~'(n), the sequence (DPTn)nEN in ~'(n) converges to DPT in 
~'(n). 

2. For every T E ~'(n), 

Supp(DPT) c Supp T. 

We remark that the property of continuity extends immediately to fam­
ilies somewhat more general than sequences. For example, we deduce from 
Example 1 above that 

in ~'(lR). 

s:1I 1· 8' - 8h' 
u = Im---

h--+O h 

Leibniz's formula also generalizes without change: 

Proposition 2.5 (Leibniz's formula) Consider T E ~'(n), a E 6'(n), 
and pENd. Then 

This formula remains true for T E ~'m(n) and a E 6'm+1p1 (n). 

Proof. This is obvious if Ipl = o. Consider the case Ipi = 1. If j E {I, ... , d}, 
we have 

so that 
(Dj(aT), '1') = «(Dja)T + aDjT, '1'). 

Thus Dj(aT) = aDjT + (Dja)T. From here the formula can be extended 
by induction on Ipi as in the case of functions. 0 

Remark. We will show in Chapter 9 (proposition 2.14 on page 334) that 
~(n) is dense in ~'(n) (in the sense of sequences). The preceding propo­
sition then becomes a consequence of Leibniz's formula for functions, to­
gether with the denseness result just mentioned and the continuity of the 
operators of differentiation and of multiplication by a function. 
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By Proposition 2.2, the first derivatives D j ([f]), for j E {I, ... ,d}, of 
a distribution defined by a function f E gl(O) correspond to continuous 
functions on O. We will show that, conversely, any distribution whose first 
derivatives are defined by continuous functions corresponds to a function 
in gl(O). 

Theorem 2.6 Let T E ~'(O). 8uppose that there exists, for every j E 
{I, . .. , d}, a function gj E C(O) such that DjT = [gj]. Then there exists 
f E gl(O) such that T = [fl. 
Proof 

- Suppose first that the result has been proved for the case where 0 is an 
open parallelepiped in JRd: 

d 

0= (a,b) = II(aj,bj ). 
j=1 

We derive the general case. Let 0 be any open set in JRd and let T be 
a distribution on 0 for which there exists, for every j E {I, ... , d}, a 
function gj E C(O) such that DjT = [gj]. Let 'P/ be the set of open 
parallelepipeds contained in O. For every W E 'P/, there exists fw E 
gl(W) such that the restriction of T to W is [fw]. It is clear that, for 
WI, W2 E 'P/ with WI nW2 i= 0, we have fWl = fW2 on WI nW2. Thus there 
exists f E gl(O) such that, for every W E 'P/, the restriction of f to w 
is fw. It follows that every W E 'P/ is a domain of nullity for T - [f], in 
the sense of Proposition 3.2 on page 281. By this same proposition, this 
implies that the support of T - [f] is empty and so that T = [fl . 
Thus we can assume that we are in the case 0 = (a, b) . We argue by 
induction on the dimension d. 

- Case d = 1. Suppose T E ~'(O) satisfies T' = [g] with 9 E C((a,b)). 
Let a: E (a, b). The function G defined by G(x) = J: g(t) dt belongs to 
gl((a, b)) and satisfies [G]' = [g]. Therefore the distribution 8 = T- [G] 
satisfies 8' = o. Now let X E ~((a, b)) be such that J: X(x) dx = 1. We 
define, for each cp E .P((a, b)), a function rp by setting 

rp(x) = cp(x) - (i b cp(t) dt) X(x) for all x E (a,b). 

Then rp E ~((a, b)) and J: rp(x) dx = o. Therefore the function <I> defined 
on (a,b) by 

<I>(x) = i X 
rp(t) dt 

satisfies <I>(x) = 0 if x 1. [minSupprp, maxSupprp]. Thus <I> E ~((a,b)). 
Then 

0= (8',<I» = -(8,<I>') = -(8,rp), 
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so that 

(S,r,p) = lb r,p(t)dt (S,X) = ((S,X), r,p) for all r,p E ~((a,b)). 

Thus, if we set f = G + (S, X), we have f E gl((a, b)) and T = [fl. 
- Suppose the result has been proved for d ~ 1. For (a, b) = rrt!;(aj, bj ) 

take T E ~' ((a, b)) such that, for every j E {I, ... , d+ I}, there exists 
gj E C((a, b)) satisfying DjT = [gj]. Put 

l Xd+1 

G(Xl, ... ,Xd+d= () gd+l(Xl"",Xd,t)dt, 

where Q E (ad+l, bd+d. Using Fubini's Theorem and integration by 
parts, one sees that Dd+l [G] = [gd+tl. The distribution S = T - [G] 
then satisfies Dd+lS = O. 
Take X E ~((ad+l' bd+d) such that fbd +1 X(x) dx = 1. If r,p E ~((a, b)), 
define rj; E ~((a, b)) by 

Jad+1 

Now set l Xd+1 

~(Xl, ... ,Xd+l) = rj;(Xl, ... ,Xd,t)dt. 
ad+l 

As in the case d = 1, we have ~ E ~((a, b)) and 

so that 
(S, r,p) = (S, <jJ 0 X), 

and 
<jJ 0 X(Xl,"" Xd+l) = CP(Xl"'" Xd)x(Xd+l)' 

Consider the distribution U E ~/(rrt=l(aj,bj)) defined by 
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It is clear that the linear form U is indeed a distribution and that, if 
j E {I, .. . ,d}, 

(DjU,1/J) = -(T, (Dj1/J) ® X) = -(T, Dj (1/J ® X) 

= (DjT, 1/J®X) = ([gj]' 1/J®X). 

Consequently, if j E {I, ... , d}, we have DjU = [gj], where 

Thus U satisfies the induction hypothesis and there exists an element 
u E gl(n;=l (aj, bj )) such that U = [u]. Now, for cp E ~«a, b)), we 
have 

(T, cp) = ([G], cp) - ([G], rp ® X) + (U, rp). 
It follows that T = [f] with 

Thus f E C«a,b)) and the derivative in the ordinary sense, of/oXd+l, 
exists on (a, b) and equals gd+l. One shows similarly that the other par­
tial first derivatives of f in the ordinary sense exist and are continuous, 
which implies that f E gl«a,b)). 0 

We deduce from this theorem an important uniqueness result. 

Theorem 2.7 Let n be a connected open subset of Rd and suppose that 
T is a distribution on n such that D j T = 0 for every j E {I, ... , d}. Then 
T = C for some C E C. 

Proof. By the preceding theorem, there exists f E gl(n) such that T = [f] 
and Djf = 0 in the ordinary sense, for all j E {I, . . . , d}. The result 
follows. 0 

Working by induction starting from Theorem 2.6, we see also that, for 
r E Nand T E ~'(n), if DP(T) E C(n) for every multiindex p of length r, 
then T E gr(n). 

We will now study in more detail the case of dimension d = 1, starting 
with a characterization of distributions whose derivative is locally inte­
grable. 

Theorem 2.8 Suppose that n is an open interval in R and that a E n. 
Let T E ~'( n) and fELloe (n) . The follOwing properties are equivalent: 

i. T' = [fl. 



298 8. Multiplication and Differentiation 

ii. There exists C E C such that T = [FJ, with F(x) = C + J: f(t) dt. 

Functions of the form F(x) = C + J: f(t) dt as above are called abso­
lutely continuous on O. Thus, a distribution has for derivative a locally 
integrable function if and only if it "is" an absolutely continuous function. 
Another way to say this is that, if f E Ltoc(O), the function F defined by 
F(x) = C + J: f(t) dt is a primitive of f in the sense of distributions. 

Proof. Suppose 0 = (a, b). Take f E Ltoc«a, b)) and let F(x) = J: f(t) dt. 
Then, for every <p E .@«a, b)), 

Therefore, by Fubini's Theorem, 

([FJ', <p) = jr ( <p'(x)f(t) dt dx _ jr { <p' (x)f(t) dt dx 
J{a<:;.x9<:;'0.} J{0.9<:;,x<:;'b} 

= 10. <p(t)f(t) dt + Lb <p(t)f(t) dt = ([f], <p). 

Thus [FJ' = [fJ and the desired result follows from the uniqueness theorem 
proved earlier (Theorem 2.7). 0 

Still in the case of an open interval 0 = (fL, b) in JR, one can characterize 
distributions whose derivative is positive--which is to say, by Proposition 
2.3 on page 270, those whose derivative belongs to the space 9J1+«a, b)) of 
positive Radon measures on (a, b). Recall that, if 0: is an increasing function 
on (a, b), we can associate to 0: a positive Radon measure on (a, b), namely 
the Stieltjes measure do:, and that we obtain in this way all elements of 
9J1+«a, b)). (We saw this in Section 3A of Chapter 2 (page 71) for the case 
(a,b) = JR, and it extends immediately to the case of an arbitrary open 
interval ( a, b).) 

Theorem 2.9 Suppose that 0 is an open interval in JR, and that T E 

.@'(O). If there exists an increasing function 0: on 0 such that T = [o:J, 
then T' = do: and therefore T' is positive. 

Conversely, if T' is positive, there exists an increasing function 0: on 0 
and a constant C E JR such that T = [0: + iCJ. 

Proof. Set 0 = (a, b). Let 0: be an increasing function on (a, b). Take <p E 
'@(O) and let c, d be such that a < c < d < b and the support of <p is 
contained is [c, dJ. For n E N* and k E {O, ... , n}, set 

d-c 
Xk =c+k--. 

n 
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Then, by definition, 

We perform a summation by parts. Since <p( c) = <p( d) = 0, we have 

n-l n 

L <p(xk)(a(xk+l) - a(xk)) = La(xk)(<p(Xk-d - <p(Xk)). 
k=O k=l 

Consequently, 

Using the Dominated Convergence Theorem, we obtain 

f <pda = - f <p'(x)a(x+) dx. 

(Recall that a(x+) denotes the limit from the right ofthe function a at x.) 
Now, a(x+) = a(x) except at a set of points x that is countable, and so of 
Lebesgue measure zero (see Exercise 6 on page 5) . Therefore 

f <pda = - f <p'(x)a(x) dx, 

so da = [a]'. This proves the first part of the theorem. 
Now suppose that T' is positive. By Proposition 2.3 on page 270, T' is 

a positive Radon measure on n. By Theorem 3.8 on page 73 (applied to n 
rather than JR), there exists an increasing function a such that T' = da (we 
may assume a is right continuous). Then, by the first part of this proof, 
T' = [a]'. Now it suffices to apply the uniqueness theorem (Theorem 2.7) 
to obtain T = [a + G], for G E C. The desired result follows by replacing 
a with a + ReG and G with ImG. 0 

Obviously, in the preceding theorem, we can assume that G = 0 if T is 
real - that is, if (T,<p) E JR for every real-valued <p E ~(n). 

We also see from Theorem 2.9 that every positive Radon measure of finite 
mass J.L on lR is the derivative in the sense of distributions of its distribution 
function F, defined by F(x) = J.L(( -00, xl). Indeed, by Remark 1 on page 74, 
we have J.L = dF. In particular, we recover the result that J.L = F' (x) dx if 
F is of class G1 . 

The next theorem, applicable to a large class of functions of one vari­
able, links the derivative in the sense of distributions with the ordinary 
derivative. 
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Theorem 2.10 Suppose that 0 is an open subset of R. and that f is a 
junction on 0 for which there exist points Xl < '" < Xn in 0 satisfying 
these conditions: 

- I is of class CIon 0 \ {Xl,"" x n }. 

- For every j E {I, ... , n}, I has right and left limits at Xj, which we 
denote by I(xj+} and I(xj-), respectively. 

- The ordinary derivative f' of f, defined on n \ {Xl, ..• , x n }, belongs to 
Lfoc(O}. 

Then 
n 

[I]' = [I'] + L (J(xj+) - f(xj-})r5x j" 

j=l 

Proof Considering separately each of the connected components of 0, we 
can assume that n is an open interval (a, b). Put Xo = a and Xn+l = b. 
Then, if cp E ~(n), we have 

([I]',cp) = -([I],cp') = - t lXj+! I(t}cp'(t}dt, 
j=O Xj 

or yet, integrating by parts (and setting cp(a) = cp(b} = O}, 

([I]', cp) = ~ (l~i+l cp(t)f'(t} dt + f(xj+}cp(Xj} - I«Xj+t}-}Cp(Xj+l}) 

= f cp(t}f'(t} dt + t cp(Xj} (J(xj+) - I(xj-}), 
j=l 

which concludes the proof. o 

By induction on p E N*, we deduce the following corollary. 

Corollary 2.11 Suppose that 0 is an open subset of R. and that f is a 
junction on n for which there exist points Xl < ... < Xn in 0 and an 
integer p E N* satisfying these conditions: 

- I is 01 class CP on 0 \ {Xl,." ,xn }. 
- For every j E {I, ... , n} and every integer k E {O, ... ,p-l}, the right 

and left limits of I(k) at Xj exist. 
- The ordinary p-th derivative I(p) of I, defined on n \ {Xl, ... , xn }, be­

longs to Lfoc(O}. 

Then 

n p-l 

[I](p) = [I(p)] + L L (J(k)(xj+) - l(k)(Xj_})r5i~-l-k). 
j=l k=O 
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Examples 

The following examples are immediate applications of the two preceding 
results. 

1. Recall our notation x+ = max(O, x). Then [x+]' = Y. 
2. We also find that Y' = 6. More generally, if Ya = l[a,+oo), then Y~ = 6a . 

3. [lxI/2]" = 6. 
4. Let f be a function of class CP on JR. Then 

p-l 

[Yf](p) = [Yf(p)] + :Ef(k)(0)6(p-I-k). 
k=O 

In dimension d ;::: 2, Theorem 2.10 has the following partial generalization 
(see also Exercise 15). 

Theorem 2.12 Suppose that d;::: 2 and, if (X2,"" Xd) E JRd - l , write 

OX2, .. . ,Xd = {Xl E lR : (Xl, X2,··., Xd) EO}. 

Let f E Lloc(O) satisfy the following conditions: 

- For almost every (X2,"" Xd) E lRd-l, the map on OX2, ... ,Xd defined by 

Xll-t f(XI,X2, ... ,Xd) 

is continuous on OX2, ... ,Xd and of class C I except at finitely many points 
of OX2, ... ,Xd · 

- The ordinary partial derivative 8f 18xI, defined almost everywhere on 
0, is an element of Lloc(O) . 

Then 

DIlf] = [:!J. 
Of course, an analogous result holds if we replace the subscript 1 by any 

j E {2, . .. ,d}. 

Proof. Argue as in the proof of Theorem 2.10 and apply Fubini's Theorem. 
o 

Examples 

( + ) { 0 if j i= 1, 
1. D j Xl = Y( ) 'f' 1 Xl 1 J = . 
2. Set r = Ixi = Jx~ + ... + x~ and BI = {x E lRd : Ixi < I}. By Theorem 

3.9 on page 74 and Remark 2 on page 76, 

f r-a dx = Sd t rd- I- a dr ::; +00, 
lBI 10 

where Sd is the area of the unit sphere in lRd (Sd = m.vd, where Wd = 
).,(Bd is the volume of BI)' As a consequence: 
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Proposition 2.13 The function x H r- a is locally integrable on JRd 
if and only if a < d. 

Therefore we obtain, as a consequence of Theorem 2.12: 
- If a < d - 1 and 1 :S j :S d, 

- If d ~ 2 and 1 :S j :S d, 

(The local integrability of the derivatives follows from the preceding 
criterion and the fact that IXjl :S r.) 

Exercises 

1. Show that, for every distribution T on an open subset n of JRd and for 
every i, j E {I, ... , d} , 

DiDjT = DjDiT. 

2. a. For h E JRd, let Th be the operator on ~'(JRd) defined by 

(ThT, cp) = (T, cp( . + h)). 

If the distribution T is defined by a locally integrable function f, 
what does ThT correspond to? 
Show that 

in ~'(JRd). 
b. We say of a distribution T on JRd that it does not depend on the 

first variable (say) if T(h1,O, ... ,o)T = T for every hI E JR. Show that 
T does not depend on the first variable if and only if D1 T = O. (See 
also Exercise 6 on page 324.) 
Hint. For any function cp E ~(JRd), find the derivative of the function 
f defined on JR by 

3. Let T be a distribution on JR. Show that T is defined by a Lipschitz 
function if and only if T' E £Ix,. (In particular, Lipschitz functions are 
absolutely continuous.) 
Hint . The "if" part follows from Theorem 2.8. To prove the "only if" 
part, use the first part of Exercise 2, the duality LOO = (L1)', and the 
fact that ~ is dense in L1. 
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4. Let T be a distribution on JRd such that DPT = 0 for every multiindex 
p of length m + 1. Show that T is defined by a polynomial function of 
degree at most m. 
Hint. Work by induction on m. 

5. Let 0 be an open interval in JR. 
a. Show that, if I is an absolutely continuous function on 0 and 9 E 

gl(O), then gi is absolutely continuous on 0 and [gIl' = [g'I + gII]' 
where II is the element of Lfoc(O) defined by [11' = [II1· 
Hint. Write [gIl = g[Il and apply Leibniz's formula. 

h. Let 9 be an absolutely continuous function on 0 and suppose gl E 

Lfoc(O) satisfies [g], = [gIl. Show that there is a sequence (gn)nEN in 
gl (0) such that (g~) converges to gl in Lfoc(O) and (gn) converges 
to gin C(O). 

c. Deduce from this that, if I and 9 are absolutely continuous on 0, so 
is Ig. Write down [Ig]' in this case. 

6. Show that the map defined on .9f(JR2) by 

(T, r.p) = l r.p(x, x) dx 

. d' 'b' F' d' d . ddt aT aT IS a Istn utlOn. ill Its support an Its or er, an compu e "8 +"8' 
7. a. Let (): E JR+ \ N. Show that Xl X2 

~ fp (Y(X)) = -(): fp (Y(X)) . 
dx Xo xo+ 1 

h. Let m E N*. Show that 

~ fp (Y(X)) = -m fp (Y(X)) + (_1)m 6(m). 
dx xm xm+1 m! 

(The finite part of a function X f-4 Y(x)/xo, where (): > 0, was 
defined in Exercise 19 on page 279.) 

c. Use this to find the successive derivatives of fp(Y(x)/x) . 
8. Compute the second derivative, in the sense of distributions on JR, of 

the function I defined by I(x) = max(1-jxj, 0). 
9. We denote by a the surface measure of the unit sphere in JR 2 • Recall 

from Exercise 16 on page 83 that 

/ r.pda = 1027r 
r.p(cos(), sin())d() for all r.p E Cc (JR2 ). 

We set I(x,y) = max(1- Jx2 +y2, 0) and 

if 0 < x2 + y2 < 1, 

otherwise. 
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a. Calculate allax and allay in the sense of distributions on JR2 (show 
in particular that these derivatives are functions). 

h. Take <P E !tJ(JR2) and set 'I/J(p,(}) = <p(pcos(}, psin(}). Show that 

f~ a'I/J 
- pdpdfJ 

(O,l)x(O,211") ap 

J.}; 1 (a<p a<p ) = x- +y- dxdy 
{.,2+y 2<1} Jx2 + y2 ax ay 

= (AI, <p). 

c. Deduce that AI = (j - X in the sense of distributions. 
10. For r > 0, let (jr be the surface measure of the sphere of center 0 and 

radius r in Rd. Show that 

2d (1 ) lim 2" --d-l (jr - 8 = A8 
r-...+O+ r Sdr-

in !tJ1(Rd). 
Hint. Use the Taylor-Young formula and (after having proved them) 
the equalities 

! Xj dar = 0, ! XiXj dar = 0 if i 1= j, ! x; dar = s; rd+!. 

11. Let I be a real-valued function of class C 2 on JRd, satisfying AI = O. 
a. For c: > 0, set gE = (c:2 + J2)1/2. Compute AgE and show that it is a 

positive function. 
h. Show that gE tends to III in !tJ1(JRd) when c: tends to o. 
c. Show that there exists a positive Radon measure J.l on JRd such that 

AlII = J.l in !tJ1(JRd). Show that the support of J.l is contained in 
1-1(0). 

d. Determine J.l by direct calculation when d = 2 and I(x,y) = xy. 
12. Let f! = (a, b) be an open interval in JR. 

a. Let I be a convex function on f!. 
i. Show that, if <p E !tJ(JR), 

<p" = lim h-2(Th<P + Lh<P - 2<p) 
h-...+O+ 

in !tJ(JR), where, if k E JR, Tk<P(X) = <p(x - k). 
ii. Deduce that [fJ" is a positive Radon measure on f!. 

h. Conversely, suppose that T is a distribution on f! and that Til is 
a positive Radon measure on f!. Show that there exists a convex 
function I on f! such that T - [I] is a first-degree polynomial with 
coefficients in C, and that we can assume this polynomial to be zero 
if T is real in the sense of Exercise 1 on page 275. 
Hint. Check that, if a is an increasing function on f! and if C E f!, 
the function I defined by I(x) = Ie" a(t) dt is convex. 
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c. Deduce that a function I is a difference of two convex functions if 
and only if it is continuous, real-valued, and [I]" is a Radon measure 
on (a, b) . 

13. Let n be an open interval in JR. Show that a distribution T on n has 
as its first derivative a Radon measure on 11 if and only if there exists 
a function a of bounded variation on every compact interval contained 
in n (see Exercise 13 on page 93) such that T = [a] . (You might also 
recall Exercise 15 on page 94.) 

14. Let r EN. Show that 

Hint. Use Exercise 13 on page 277. 
15. Let 8 1 be the unit sphere in ad and let 0'1 be its surface measure 

(page 74). For x = (Xl, ... ,Xd) E JRd, write x = (X2, •• • ,Xd) E JRd- 1 

and f = y'1-lxI2 . 

a. Take t.p E C(81) . Extend t.p to the ball Bl = {x E JRd : Ixi < I} by 
setting 

i. Show that the extended 'P is continuous on 131 , 

ii. Show that, for r :::; 1, 

where Br = {x E JRd : Ixi < r}. 
iii. Show that the map 

r 1-7 ( 'P(x) dx 
lBr 

is left differentiable at the point 1, and find its left derivative. 
Deduce that 

iv. Show the same result with x = (Xli ••• ,Xj-l,Xj+lI· " ,Xd). 

h. For p > 0, let 8p be the sphere of center 0 and radius p in JRd and 
let O'p be its surface measure. Let I be an element of Lloc(JRd ) whose 
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restriction to]Rd \ Sp is of class C 1 . Take j E {I, ... , d}, and assume 
that (af/axj) E LI~c(]Rd) and that, for every x ESp, the limits 

f!(x) = lim f(y), 
y-+x 

f~(x) = lim f(y) 
y-+x 

Iyl>p Iyl<p 

exist. 

i. Show that the functions f! and f~ are continuous on Sp. 
ii. Show that 

Dj[fl = [:~] + ; U! - f~)(Tp· 
Hint. Reduce to the case p = 1 by setting fp(x) = f(px)j then 
use the representation of the measure (Tl given in part a. 

iii. Use this result to compute t1f in Exercise 9. 

iv. State and prove a similar result when Sp is replaced by a hyper­
plane in ]Rd. 

16. Consider in ~'(]R) the equation 

2xT' - T = J, 

where J is the Dirac measure at O. 

a. For an arbitrary integer j ~ 1, express the distribution xJ(j) in terms 
of J(j-I). 

h. Determine the solutions of (*) whose support is {O}. (You might use 
the result from Exercise 4 on page 285.) 

c. Let T be a solution of (*). Denote by U and V the restrictions 
of T to (0, +00) and (-00,0), respectively. Thus U E ~'«O, +00)) 
and V E ~'« -00,0)). By computing (x- 1/ 2U), in ~'«O, +00)) and 
«_x)-1/2V)' in ~'«-oo,O)), determine U and V. 

d. Show that, for every (>., J.L) E ]R 2 , the distribution S defined by 

S(x) = >.VxY(x) + J.LV -xY( -x) 

satisfies 2xS' - S = O. 
e. Deduce from this the general form of the solutions of (*). 

3 Fundamental Solutions of a Differential Operator 

Let P be a complex polynomial of degree m in d indeterminates: 

P(X) = L apXi' ... X~d. 
Ipl:Sm 
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P(D) = L apDP , 
Ipl:5m 

which is a lihear combination of differentiation operators, is called a linear 
differential operator of order m with constant coefficients on JRd. 

For example, if P(X) = Xl + ... + XJ, the operator P(D) is exactly the 
Laplacian on JRd: 

d (j2 
P(D) = 6. = L 82 . 

j=l Xj 

If P(D) is such an operator, we define a fundamental solution of P(D) 
as any distribution E E ~'(JRd) such that P(D)E = o. This notion will play 
an important role in the next chapter. For example, if d = 1, the Heaviside 
function is a fundamental solution of the differential operator P(D) = D, 
since Y' = o. The next theorem shows that, if d = 1, every linear differential 
operator with constant coefficients has a fundamental solution. 

Theorem 3.1 Let P(X) = E';o ajXj , where m E N*, aI, .. . , am E IC, 
and am =I- O. Let ep be the solution on JR of the differential equation 

m 

L:ajep(j) = 0 
j=O 

such that ep(m-l)(o) = 1 and ep(j)(O) = 0 for every j :'5 m-2. Then E = 
(l/am) Yep is a fundamental solution of P(D) . 

Proof. As a particular case of Example 4 on page 301, we have 

[Y cp](m) = [Y cp(m)] + 0, 

[Yep](k) = [Yep(k)] for all k :'5 m-l , 

so that 

P(D)E = a;;.l ~aj[ycp](j) = a;;.l [~ajyep(j)] + 0 = o. 0 

Obviously, there is no uniqueness for fundamental solutions: two funda­
mental solutions differ by a solution of the associated differential equation. 

We will now exhibit fundamental solutions of certain classical linear dif­
ferential operators. 

3A The Laplacian 

Consider the Laplace operator, or Laplacian, in dimension d: 

d 82 d 

6. = L: 0 2 = L: D;' 
j=l Xj j=l 
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As before, we set r = Ixl . 

Theorem 3.2 Let E be the distribution on Rd defined by 

- E=rj2 ifd=1, 

1 
- E = 21110g r if d = 2, 

- E = - 1 1 if d 2: 3. 
sd(d - 2) rd- 2 

Then IlE = c5. 

Proof. The case d = 1 was dealt with in Example 3 on page 30l. 

Case d = 2. Suppose d = 2 and let I(x) = logr. Since the first deriva­
tives of the function I do not satisfy the hypotheses of Theorem 2.12, we 
cannot use that theorem directly to compute the Laplacian in the sense of 
distributions. For this reason we approximate in ~/(]R2) the distribution 
[f] by a family ([fe]) of distributions defined by functions whose Laplacian 
we can compute by applying Theorem 2.12 to the functions Ie and to their 
first-order derivatives. We then obtain the Laplacian 1l[/] by passing to 
the limit. 

Thus we define, for € E (0,1), a function Ie by 

if r 2: €, 

if r :::; €, 

where ae and be are real numbers chosen so that the function fe is of class 
C l on ]R2 j that is, so that 

Thus 

Now, if r :::; €, 

and 
1 

2ae€ = -. 
€ 

1 
be = loge - 2' 

2 1 1 ((r)2) 1 1 laer + bel = log - + - 1 - - :::; log - + -. 
€ 2 € r 2 

We deduce that, for every x E ]R2, 

I/e(x)1 :::; Ilogrl + ~j 

thus, by the Dominated Convergence Theorem, 

lim [Ie] = [I] 
e--+O 
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in ~/(lR2). At the same time, for j = 1,2, 

{
Xj/r2 

Dj/e(x) = / 2 
Xj C 

if r ;:::: c, 

if r S; c. 

This function Djle satisfies, by construction, the hypotheses of Theorem 
2.12. We deduce that DJ[/el = [gj], with 

gj (x) = { :2 - 2 :~ if r ;:::: C, 
1/c2 if r S; c. 

Therefore 
2 

~[/el = c2 1B(O,e)· 

An elementary calculation shows that 

lim ~ 1B(o c) = 8 e-tO 1fc ' 

in ~/(lR2); thus, by continuity in ~/(lR2) of the operator ~, 

which proves our result since E = 1/(27r). 

Case d = 3. We work as in the previous case. For c > 0, set 

{
2-d 

le(x) = r 2 b 
aer + e 

if r ;:::: c, 

ifrS;c, 

where ae and be are real numbers chosen so that the function Ie is of class 
C1 on JRd; that is, so that (one concludes after some calculations), 

Thus 

which implies that 

2 -d -d 
ae = -2-c , 

2 2-d(d d-2(r)2) 
acT + be = c "2 - -2- € ' 

OS; le(x) S; ~r2-d. 

Thus, by the Dominated Convergence Theorem, lime-to[/el = [/1 in ~/(JRd), 
with I (x) = r2-d. A calculation similar to the one carried out in the case 
d = 2 yields 
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Now, 

lim ~ IB(oe) = {) 
e-+O WdC ' 

in ~/()Rd); therefore, by the continuity of L\, 

Since dwd = Sd and E = - f /(sd(d - 2)), the result follows. o 

3B The Heat Operator 

We now place ourselves in the space )Rd+I = IR X )Rd, a generic point of 
which will be denoted by (t, x) . For c > 0, we define the heat operator ~ 
by 

Theorem 3.3 For (t, x) E )R X )Rd, let 

r( ) 1 ( ) 1 -lxI 2/(4ct) t, x = (0,+00) t (4C7I"t)d/2 e . 

Then f E Lloc()Rd+l) and ~r = {) in ~/()Rd+l). 

Proof For t > 0, we obtain, by applying the change of variables u = x /.j2ct 
and then FUbini's Theorem, 

( r(t,x)dx = 1 for all t > 0, 
J'dt d 

which in particular proves, by FUbini's Theorem, that f E Lloc{lRd+l) . Now 
take <p E ~()Rd+l) . Then 

/ a ) 1+00 { o<p \ol'<p =- 0 Jrrtd at (t,x)r(t,x) dtdx 

1+001 o<p = -lim ~ (t,x)f(t,x)dtdx . 
e-+O e rrtd VL 

Integrating by parts, we get 
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(%l' V') 

= lim ( [+00 [ V'(t, x) ~ (t, x) dt dx + [ V'(e, x)r(e, x) dX). (*) 
e-tO ic ilRd U~ ilRd 

But, ift > 0, we have r(t, x) = c d / 2r(1, x/../t). Therefore, applying the 
change of variables x = vfc u, we get 

[ V'(e,x)r(e,x)dx = [ V'(e,veu)r(l,u)du. ilRd ilRd 
This expression tends to V'(O) J r(l, u) du = V'(O) as e tends to 0, by the 
Dominated Convergence Theorem. Moreover, r is of class Coo on the com­
plement of the set {t = O} x lR. d, and an elementary calculation shows that 
or I at = c ~r (in the classical sense) on the set {t > O} x lR. d; therefore, if 
e > 0, 

j V'(t, x) 0;: (t,x)dtdx = j cV'(t,x)~r(t,x)dtdx 
{t~c}xlRd {t~c}xlRd 

= j c~V'(t,x)r(t,x)dtdx 
{t~c} xlR d 

(again integrating by parts). Taking the limit, we deduce then from equality 
(*) that 

and so that ~r = 8. o 

3C The Cauchy-Riemann Operator 

The Cauchy-Riemann operator is important in the theory of holomor­
phic functions. It is denoted by 01 oz and is defined, for d = 2, by 

In the sequel, we use the notation z = x + iy. 

Theorem 3.4 In ~'(lR2), 

~ (~) =8. OZ 1I"Z 

Proof. We follow a method analogous to the one used in the proof of The­
orem 3.2. For e > 0, put 

{ liz iflzl>e, 
fe(x, y) = z/e2 if Izl ~ e. 
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Then Ie: is continuous on JR2 and, by Theorem 2.12, 

with 

{

I 
Z2 

gl,e:(X,y) = ~ 

c2 

Thus 

if Izl > c, 

if Izl < cj 
{ 

i 
Z2 

g2,e:(X, y) = _ i. 
c2 

a 1 
ai [/,,1 = c2 18 (0,,,), 

if Izl > c, 

if Izl < c. 

which tends to 7r8 in ~/(1R2) when c tends to O. We have 1/,,(x, y)1 ::; 1/1zl, 
so the Dominated Convergence Theorem implies that [fecI tends to [II in 
~/(JR2), with I(x,y) = liz. Therefore 

~_ [II = lim ~_ [I,,] = 7r8, 
uZ ,,-to uZ 

whence the result. o 

Exercises 

1. Determine a fundamental solution of the differential operator defined 
on JR by P(D) = D2 - 2D - 3. 

2. Let T be the distribution on JR2 defined by the characteristic function 
of the set {(x, y) E JR2 : 0 ::; y ::; x}. Show that 

3. Let E be the fundamental solution of the Laplacian given in Theorem 
3.2. Define a function <I> on (0, +00) by <I>(r) = E(x) and put 

() {
<I>(r) ifr ~ p, 

EP x = 
<I>(p) if r ::; p. 

Show that 
1 tl.EP = - pl-dap , 

Sd 

where a P is the surface measure on the sphere of center 0 and radius p. 
Derive another proof of Theorem 3.2. 
Hint. Use Exercise 15b on page 305. In the case d = 3 (for example), 
you might also use the following more elementary reasoning: 
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a. Reduce to the case p = 1. 

h. Take e E (0,1) . Determine real numbers a", b", and C" such that the 
function <I>" defined by 

is of class Cion [0, +00). 

if t ~ 1, 

if 1 - e ~ t < 1, 

ifO~t<l-e 

Then show that the function <I>" is decreasing and that <I>" = 1 +(e/2) 
on [0, l-eJ. 

c. Put EI(x) = <I>,,(r). Show that the function EI is of class Cion JR3 
and that the family of distributions ([E1J)c>o tends to [-411" E1 J in 
.p'(JR3). 

d. Show that, for every e > 0, A[EI J is a nonpositive-valued locally 
integrable function that vanishes on the complement of the set {x E 
JR 3 : 1 - e ~ r ~ I}. Deduce that there exists a positive Radon 
measure a such that A[E1J = a. 

e. Show that a is invariant under orthogonal transformations, that the 
support of a is contained in the unit sphere Sl in JR3, and that 
J da = 1. Deduce that a = al/(411"). 
Hint. Use Exercise 17 on page 83. 

4. Fundamental solution of Ak, for k E N*. We work in JRd. 
a. Show that, if mE N*, Q: E JR, and 2m < Q: + d, 

Deduce in particular that, if k ~ 2, 

Ak-1r2k-d = (IT (2j - d)) 2k- 1 (k - 1)!r2- d. 
)=2 

h. Show that, if d is odd or d > 2k, there exists a constant C~ (which 
you should determine) such that 

A k(C!r2k- d) = 8. 

c. Similarly, show that, if d is even and d ~ 2k, there exists a constant 
B! such that 

A k(B!r2k- d logr) = 8. 

Hint. In the case d = 2 and k ~ 1, 
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In the case d = 2d' with d' ~ 2 and k ~ d', 

and 

6,k-(d' -1)(r2k - d logr) = 22k - d+l (k - 1)! (k _ d')1 r- 2 
(d' - 2)! . 

Ad'-l -2 __ 1_ Ii: 
.u. r - Cd'-l u. 

d 

It follows in each case that, if we put d = 2d', 

( 1)d'-1 Bk ( )-122-2k ___ ~--.:... ___ _ 
d = Sd (k _ 1)! (k - d')! (d' - 1)! 

d. Deduce from the preceding calculations that, if 2k ~ d+ 1, then 6,k 

has a fundamental solution of class C2k- d - l . 

5. Fundamental solution oj A + 6, in IR3, Jor A E IR. Denote by x = 
(Xl, X2, X3) a generic point in IR3 and, as usual, write r = Ixl. 
a. Take 'P E C2([0, +00)) and set I(x) = 'P(r)jr. 

i. Show that, if 'P(O) = 0, the derivatives DjJ and D;J in ~'(IR3), 
for j E {1, 2, 3}, are locally integrable functions. Write them 
down in terms of 'P, 'P', and 'P". Write down 6,1 as well. 

ii. Deduce an expression for 6,f in the general case. 

Hint. Write I(x) = 'P(r) - 'P(O) + 'P(O)!. 
r r 

h. Take A E IR. Determine the fundamental solutions of the operator 
6, + A having the form E>. (x) = 'P( r) j r. (Distinguish cases according 
to the sign of A.) 

c. Show that if A ~ 0 there exists a unique fundamental solution E>. 
such that limlxl-HCXJ E>.(x) = O. Determine it. Show that this fun­
damental solution satisfies E>.(x) < 0 for all x E (IRd)*. 

d. Show that E>. does not have constant sign if A> O. 
6. Fundamental solution of the wave operator on IR2 . Let El be the distri­

bution on IR 2 defined by the function 

I(t, x) = ~ 1{t>lxl}' 

Show that 

(!22 - ::2) El = 8. 

7. Fundamental solution oJ the wave operator on IR4. Denote by (t,x,y,z) 
a generic point in IR4. If r > 0, denote by Sr the sphere in IR3 of center 
o and radius r, and by ar its surface measure. For 'P E ~(IR4), write 

cp(s,t) = ~ [ 'P(t,x,y,z)OOs(x,y,z) 
471"s }s. 

= ~ [ 'P(t, sx, sy, sz) 001 (x, y, z). 
471" } S1 
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. {j2 f)2 (j2 
WrIte A = ox2 + oy2 + OZ2· 

a. Show that, for every cp E ~(]R4), 

02cp 02rjJ 
ot2 ot2 and 

~ 02rjJ 2 orjJ 
Acp = II 2 + - !:l . 

uS s uS 

Hint. For the second equality, you might use the expression of the 
Laplacian in spherical coordinates and Exercise 16b on page 83. Re­
call that, if we write 

x = rcos 0 cos cp, y = rsinOcoscp, z = r sin cp, 

with 0 E (0,21T) and cp E (-1T/2,1T/2), the Laplacian of a function 
f(x, y, z) = F(r, 0, cp) is given by 

Af = ~ ~ ( r2 0F) + 1 ~ (coscpOF) + 1 o2F. 
r2 or or r2 cos cp ocp ocp r2 cos2 cp 002 

h. Show that the relation 

(E3, cp) = f+oo trjJ(t, t) dt = ( cp(lu:, ~) du for all cp E ~(]R4) io iR3 41T u 
defines a distribution E3 on ]R4 (in fact, a positive Radon measure) 
and that 

( 02 a2 a2 a2 ) 
ot2 - ox2 - oy2 - OZ2 E3 = 0. 

Hint. If v : (s, t) t-+ v(s, t) is a function of class C2 on ]R2, compute 
the derivative of the univariate function h defined by 

ov av 
h(t) = t at (t, t) - t as (t, t) - v(t, t). 

c. Show that the support of E3 equals the set 

{(t,x,y,z) E]R4: t2 = x2 + y2 + z2 and t ~ O}. 

8. Fundamental solution of the wave operator on lR.3. Denote by (t, x, y) a 
generic point in ]R3. If r > 0, denote by Sr the sphere in ]R3 of center 0 
and radius r, and by O"r its surface measure. 
a. Show that the relation 

(E2' cp) = 1+00 4~t (1s. cp(t, x, y) Mt(X, y, Z)) dt for all cp E ~(lR.3) 
defines a distribution on ]R3 and that 

( 02 02 02 ) 
{)t2 - ox2 - oy2 E2 = 0. 

Hint. Start by verifying that, for every compact subset K of]R3, the 
set SUPpE3 n (K x ]R) is compact. Then use Exercise 7. 
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h. Show that E2 is given by the function 

if t > J x2 + y2, 

otherwise. 

Hint. Show that 

and set z = Jt2 -x2 _y2. 



9 
Convolution of Distributions 

1 Tensor Product of Distributions 

We start by proving two preliminary results, which are interesting in their 
own right . In the sequel, d and d' will denote integers greater than or equal 
to I, while 0 and 0' will denote open sets in ]Rd and ]Rd' . 

Theorem 1.1 (Differentiation inside the brackets) Let mEN and 
r E N. 1fT E ~'m(o) and <p E ~m+r(o X 0'), the map on 0' defined by 

y ~ (T, <p(- ,y) 

belongs to ~r(o') and, for every multiindex PENd' of length at most r, 

aipi (aIPI ) ayp(T,<p(.,y)= T, ayp<P(-,y) 

for every yEO' . 
1fT E ~'(O) and <p E ~(O x 0'), the map defined in (*) belongs to ~(O') 

and the relation (**) is valid for all pENd' . 

Proof We carry out the proof in the case T E ~'m(o), <p E ~m+r(o X 0'). 
The other case is very similar. 

Case r = o. Take T E g;I,m(o) and <p E g;lm(o X 0') , and let K and 
K' be compact subsets of 0 and 0', respectively, satisfying Supp <p C 

K X K' . Since, for every multiindex p of length at most m , the function 
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(olplcp)/(oxP) is uniformly continuous (being continuous and having com­
pact support), and since all the functions cp(-,y), with yEO', are sup­
ported within the same compact K, we see that, if (Yn)nEN is a sequence 
in 0' converging to YEO', the sequence of functions (cp(., Yn) )nEN con­
verges to cp(., y) in ~m(o), so the sequence ((T, cp( " Yn») )nEN converges 
to (T, cp( . , y»). We deduce that the map Y H (T, cp( . , y») is continuous on 
0'. Since its support is compact (being contained in K'), this map does 
belong to Cc(n') = ~O(O'). 

Case r = 1. Take T E ~'m(o) and cp E ~m+l(O X 0'), and again let K 
and K' be compact subsets of 0 and 0', respectively, satisfying Supp cp C 

K x K'. For 1 :::; j :::; d', let eJ· be the j-th vector of the canonical basis of 
d' R . Take yEO' . If x E 0 and t i= 0, we have 

Icp(x,y+tej)-cp(x,y)_ oCP(X,y)l:::; sup IOCP(x,y+t'ej )- oCP(X,y)l. 
t oYj t' E [O,tJ oYj oYj 

Using the fact that 0cp/oYj is uniformly continuous, we easily deduce that 
the family of functions 

cpC-, yHej) - cp(- , y) 
t 

converges in ~O(O), as t tends to 0, to (ocp(· ,y»/(oYj). The reasoning 
we have used here for cp can be repeated without change for the partial 
derivatives (olplcp)/(oxP ), for ipi :::; m; therefore 

cp(-, Y + tej) - cp(-, y) 
t 

converges to (ocp(· ,y»/(8Yj) in ~m(o), as t tends to O. It follows that 

(T, cp( . , y+tej» - (T, cp( . ,y» 
t 

has the limit (T, (ocp( . , y» / (oYj» as t tends to 0; that is, the partial 
derivative 

8 
Oyj (T, cp( . ,y» 

exists and satisfies 

8~j (T, cp(. ,y» = (T, 8~j cp( . , y»); 

moreover this is the case for every yEO' and every j E {I , .. . , d'}. Since 
the maps Y H (T, (8cp( . ,y»/(8Yj» are continuous on 0' (by the case 
r = 0), this shows also that Y H (T, cp(. ,y» belongs to ~l(O'), which 
concludes the proof in the case r = 1. 
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The general case follows from the two preceding ones by induction. 0 

Theorem 1.2 The vector space ~(O) ® ~(O') spanned by the functions 

/®g: (x,y) t-+ f(x)g(y), 

with / E ~(n) and 9 E ~(n'), is dense in ~(O x 0'). 

Proof. We use a lemma that allows us to approximate the convolution by 
means of a "discrete convolution": 

Lemma 1.3 Suppose <p, 'IjJ E ~(JRn). For e > 0 and x E JRn, set 

ge:(x) = en L <p(x - eV)'IjJ(eV). 
IIEZ" 

Then ge: E ~(JRn), Suppge: C Supp<p + Supp'IjJ, and 

Proof. The function ge: is defined by a finite sum whose number of terms 
depends only on e (since 'IjJ has compact support). Since each of these terms 
is an element of ~(JRn) and is supported within SUpp<p+Supp'IjJ, the same 
holds for ge:. At the same time, for every PENd, 

DPge:(x) = en L DP<p(x - eV)'IjJ(CV). 
IIEZ" 

Thus the result will be proved if we show that ge: converges uniformly to 
<p * 'IjJ (for then we will be able to apply the same result to DP<p and 'IjJ 
instead of <p and 'IjJ). 

Denote by 11·11 the uniform norm on JRn and set N = maxxESuPPV> Ilxli. 
By the Mean Value Theorem, there exists C > 0 such that, for every 
x,y,y' E JRn, 

l<p(x -- y)'IjJ(y) - <p(x - y')'IjJ(y') I ::; Clly - y'lI· 

For v E zn, set 

Then 

n 

Q~ = IT [Vje, (Vj+l)e). 
j=1 

<p * 'IjJ(x) = L 1 <p(x - y)'IjJ(y) dy, 
IIIIIIS(N/e:)+1 Q~ 
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so that 

!cp*'I/J(x)-ge:(x)!:S L l!cp(x- y)'I/J(y)-cp(x-ve)'I/J(ve)! dy 
II v ll:5(Nfc)+l Q~ 

:SGen+I(2(~ +l)+l)n :SG'e (fore < 1), 

proving the result. o 
Now consider two smoothing sequences, (Xn)nEN and (Xn)nEN, on JRd 

and JRd', respectively. Clearly, (Xn ® Xn)nEN is a smoothing sequence on 
d d' JR x JR . Take cp E ~(O x 0'). Then there exist compact sets K and KI 

in 0 and compact sets K' and K; in 0' such that Supp cp c K X K' and 
K C k l , K' c k;. By Proposition 1.2 on page 261, cp can be approximated 
arbitrarily close, in the metric space ~KI xK; (0 X 0'), by some function 
CP*(Xn®Xn), with n so large that K +Supp Xn C KI and K' +Supp Xn C K; 
(where, as usual, we identify cp with an element of ~(JRd x JRd ) by giving 
it the value 0 outside 0 x 0'). By the lemma, cp * (Xn ® Xn) can in turn be 
approximated arbitrarily close, in the space ~KI xK; (0 x 0'), by a function 
of the form 

ed+d' L Xn(x - ev)Xn(Y - eV)cp(ev,eV), 
vEZd , vEZd ' 

which lies in ~KI (0) ® ~K; (0'). The result follows. o 
By the same method or by induction, one shows that, if OJ is open 

in JRdj for each j E {l,oo.,r}, then ~(Od ® 00 . ® ~(Or) is dense in 
~(Ol x 00. x Or). 

In what follows x will denote a generic point of]Rd and y a generic point 
of ]Rd'. If T is a distribution on 0 and if cp E ~(O), we write, if there is a 
risk of confusion in the space under consideration (0 or 0'), 

(T,cp) = (Tx, cp(x)). 

Likewise, if 8 is a distribution on 0' and if'I/J E ~(O'), we write (8, 'I/J) = 
(8y , 'I/J(y)). 

Proposition 1.4 Suppose T E ~'(O) and 8 E ~'(O'). There exists a 
unique distribution on 0 x 0', denoted T®8 and called the tensor product 
of T and 8, such that 

(T ® 8, cp ® 'I/J) = (T, cp) (8, 'I/J) 

for all cp E ~(O) and'IjJ E ~(O'). Moreover, for every cp E ~(O x 0'), 
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Proof. Uniqueness follows immediately from Theorem 1.2. For existence, 
consider the linear map on .@(O x 0') defined by 

This map is well defined, by Theorem 1.1. Let Kl be a compact subset of 
o x 0', and let K and K' be compact subsets in 0 and 0', respectively, 
such that K 1 C K x K'. Take m, m' E Nand G, G' > 0 such that 

and 
I (S, <p) I ~ G'II<pII(m') for all <p E .@K'(O') 

(see Proposition 2.1 on page 268) . Then, again by Theorem 1.1, there exists 
a constant Gil ~ 0 such that 

Thus, the linear map defined in (*) is indeed a distribution on 0 x 0' 
satisfying the indicated condition, namely 

for all <p E '@(O) and 'l/J E .@(O') . One argues likewise for the expression 
(Tx, (Sy, <p(x, y))), interchanging the roles of x and y. 0 

We see simply that, if 1 and 9 are locally integrable functions on 0 and 
0', respectively, then [/]0 [g] = [J 0 g] . Similarly, the tensor product in the 
sense of distributions of two complex Radon measures equals their tensor 
product in the sense of measures. All of this follows from Fubini's Theorem. 

From the definition we see also that, if T and S are distributions on 0 
and if <p E '@(O x 0) is such that <p(x, y) = <p(y, x) for every (x, y) E 0 x 0, 
then (T 0 S, <p) = (S 0 T, <p). 

Proposition 1.5 Suppose T E .@'(O) and S E .@'(O'). Then: 

i. Supp(T 0 S) = (Supp T) x (Supp S). 
ii. For any PENd and q ENd' , 

a~a~(T 0 S) = (~T) 0 (a~S). 

Proof. If <p is supported within (0\ SuppT) x 0', the support of <p(', y), 
for every YEO', is contained in 0 \ SuppT. Therefore 

It follows that the support of T 0 S is contained in Supp T x 0'; similarly, 
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it is contained in 0 x Supp S, and so also in the intersection of these two 
sets, which is SuppT x SuppS. 

Conversely, if (x, y) E Supp T x Supp S and if (x, y) rt Supp(T 0 S), let 
o denote the complement of the support of T 0 S in 0 x 0'. Then there 
exist open sets 0 1 and O2 containing x and y, respectively, and such that 
o ::) 0 1 X O2. By the definition of x and y, there exist cp E !i}(Od and 
'l/J E !i}(02) such that (T, cp) i 0 and (S, 'l/J) i O. But then cp 0 'l/J E !i}(0) 
and (T 0 S, cp 0 'l/J) i 0, which contradicts the definition of O. Therefore 
SuppT x SuppS c Supp(T0S), and the first assertion of the theorem is 
proved. 

Next, if cp E !i}(0) and 'l/J E !i}(O'), 

({j~{j~(T0S), CP0'l/J) = (-1)lvl+lql(T0S, ({j~CP)0(~'l/J) 

= (-l)lvl+lql(T, {j~cp)(S,~'l/J) 

= «(~T)0(~S), CP0'l/J) . 

Now just apply the denseness theorem (Theorem 1.2) to obtain the second 
part of the theorem. 0 

One can, in a completely analogous way, define the tensor product of 
finitely many distributions. The tensor product thus constructed is asso­
ciative. 

Exercises 

1. Suppose T E !i}'m(o) and S E !i}1n(O') . Show that 

T 0 S E !i}'m+n(o X 0'), 

and that in this situation the formulas in Proposition 1.4 are valid for 
every cp E !i}m+n(o X 0'). 

2. Show that, if T is a distribution on 0, the map S f-+ T 0 S from !i}' (0') 
to !i}'(O x 0') is continuous (in the sense of sequences). Show also that, if 
S is a distribution on 0', the map T H T0S from !i}'(O) to ~'(O x 0') 
is continuous (in the sense of sequences) . 

3. Homogeneous distributions . Let 0 be an open set in IRd such that 

AO c 0 for all A > o. 

If T E ~'(O) and A > 0, define a distribution T).. on 0 by 

(T).., cp) = A -d(T, cp( . / A) for all cp E ~(O) . 

a. Determine T).. if T E L{oc(O). 
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h. A distribution T on 0 is said to be homogeneous of degree a E JR if 

Show that a distribution T on 0 is homogeneous of degree a if and 
only if it satisfies Euler's equation in ~'(O): 

d 

~:::>jDjT = aT. 
j=l 

Hint. You might use Theorem 1.1 to compute the derivative of the 
function A f-t (A-OtT>., ip). 

c. Show that the only homogeneous distributions on JR having support 
{O} are those of the form Ac5(k), with A E C* and kEN. Determine 
their degrees. 
Hint. Use Exercise 4 on page 285. 

d. Show that pv(l/x) is a homogeneous distribution on JR and find its 
degree. What about fp(Y(x)/x) ? 

e. Determine all homogeneous distributions of degree 0 on JR. 
f. Let T be a homogeneous distribution of degree a on 0 and S a 

homogeneous distribution of degree f3 on 0'. Show that T 0 S is a 
homogeneous distribution of degree a + f3 on 0 x 0'. 

g. Show that the distribution (x2Y(X))08' on JR2 is homogeneous; find 
its degree and order. 

4. a. If J <;;; {I, 2, ... , d}, denote by yJ the distribution defined by 

yJ =Y/ 0Y/ 0.··0Yl, 

where y/ = Y (the Heaviside function) if i E J and y/ = 8 other­
wise. What differential operator is Y J a fundamental solution of? 

h. Compute the p-th derivative of the function f defined by f(x) = 
xpY(x). Deduce a fundamental solution of the one-variable differen­
tial operator DP, for pEN. 

c. Determine a fundamental solution E of the d-variable differential 
operator DP, where P = (PI, . . . ,Pd) ENd. 
If PI = P2 = ... = Pd = k with k :2: 2, prove that DP has a funda­
mental solution of class C k - 2 in JRd. 

5. Show that the following relation defines a distribution Ton JR2: 

(T,ip) = lim jr ( ip(x,y) dxdy for all ip E ~(JR2). 
e-+O i{lxl,lvl>e} xy 

Show that T = pV(l/x) 0 pv(l/y). What is the order of T? 
Hint. Introduce ip(x, y) - ip(x, 0) - ip(O, y) + ip(O, 0). 
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6. Distributions that do not depend on a certain variable. (See also Exercise 
2 on page 302.) Let T be a distribution on JRd, where d ~ 2. 
a. Suppose that (OT)/(8xd = o. 

i. Show that, for every 'IjJ E ~(JRd-l), there exists a constant S('IjJ) 
such that 

(T, cp0'IjJ) = S('IjJ) Ia cp(x) dx for all cp E ~(JR). 

Hint. Fix 'IjJ and prove that the linear form U defined on ~(JR) 
by 

(U, cp) = (T, cp0'IjJ) for all cp E ~(R) 

is a distribution and that U' = o. 
ii. Show that the map 'IjJ H S( 'IjJ) is a distribution on JRd - 1 and that 

T = 10S. 

Hint. Take X E ~(JR) such that J X dx = 1. Then 

S('IjJ) = (T, X 0 'IjJ). 

h. Show that, conversely, if there exists S E ~'(JR d-l) such that T = 
10 S, then (8T)/(8xl) = o. 

7. Let T be a distribution on JRd, where d ~ 2. Show that xlT = 0 if and 
only if there exists S E ~'(JR d-l) such that T = J 0 S. 
Hint. Argue as in Exercise 6 and use Proposition 1.4 on page 289. 

2 Convolution of Distributions 

2A Convolution in Sf 

We define first the convolution product of distributions with compact sup­
port on JRd. 

Let T and S be elements of g'~JRd). We know from Proposition 1.5 
that T 0 S is a distribution on JR x JRd with a compact support that 
coincides with Supp T x Supp S. On the other hand, if cp E ~(JRd), the 
function defined on JRd x JRd by (x, y) H cp(x + y) belongs to g(JRd x JRd). 
Proposition 3.3 on page 282 then says that the bracket (Tx0Sy , cp(x + y» 
is well-defined. Moreover, the map from ~(JRd) to g(JRd X JRd) that takes 
cp E ~(JRd) to (x, y) H cp(x + y) is clearly continuous. This leads to the 
following definition: 

Definition 2.1 If T, S E g'(JRd), the convolution of T and S is the 
distribution T * S defined by 

(T * S, cp) = (Tx0Sy , cp(x+y» for all cp E ~(JRd). 
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Proposition 2.2 1fT,S E tC"(]Rd), then T* S E tC"(]Rd) and 

Supp(T * S) C Supp T + Supp S. 

The convolution product is a commutative and associative binary operation 
in tC"(]Rd), having [) (the Dirac measure at 0) as a unity element. In other 
words, the convolution product makes the space tC"(]Rd) into a commutative 
algebra with unity. 

Proof. Let <p E ~(]Rd) . If x (j. Supp<p - SuppS, then 

Supp<p(x +.) n SuppS = (Supp<p - x) n SuppS = 0, 

so (Sy,<p(x + y)) = O. Thus, Supp (Sy, <p( . + y)) C Supp<p - SuppS. It 
follows that, if the support ofT does not intersect Supp<p-SuppS, we have 
(T*S, <p) = 0 and therefore Supp(T*S) c SuppT+SuppS. The rest of the 
proposition follows immediately from the results proved in Section 1. 0 

As a consequence of Proposition 1.5, we have the following fundamental 
property: 

Proposition 2.3 1fT, S E tC"(]Rd) and j E {I, ... ,d}, then 

Dj(T * S) = (DjT) * S = T * (DjS). 

Obviously, this result extends to every differential operator P(D), of any 
order: if T, S E g'(]Rd), then 

P(D)(T * S) = (P(D)T) * S = T * (P(D)S) 

for every polynomial P with complex coefficients. 

2B Convolution in ~' 

One cannot hope to define a convolution product on all of ~' that extends 
the convolution product of functions, because, in general, two locally in­
tegrable functions are not convolvable: for example, 1 * 1 has no meaning. 
We will define the convolution product in ~' in case the supports satisfy a 
condition that we now introduce. 

Definition 2.4 We say that a family of closed subsets H, ... , Fn of]Rd 
satisfies condition (C) if, for every compact subset K of ]Rd, the set 

{(Xl, . •• , xn) E Fl X . . . x Fn : Xl + ... + Xn E K} 

is a compact subset of (]Rd)n. 

Obviously, we could have written this condition with "bounded" instead 
of "compact". 

Let's first give some examples and simple properties. Most of the proofs 
are left as exercises. 
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1. Suppose (FI , ... , Fn) is a family of nonempty closed sets that satisfies 
condition (C). Then every family of closed sets (PI, ... ,pp ) , where 1 ~ 
p ~ nand Pj C Fj for all j E {I, ... ,p}, also satisfies (C). 

2. Clearly, every family of compact subsets satisfies condition (C). 
3. If (FI, ... , Fn) satisfies condition (C), so does the family (FI, ... , Fn, L), 

for every compact L in ]Rd. Indeed, if K is a compact subset of ]Rd, 

{(Xl, ... ,xn, xn+l) E FI x··· x Fn xL: Xl + .. ·+xn+xn+l E K} 

C {(Xl, ... ,xn) E FI X ... x Fn : Xl + ... + xn E K - L} x L, 

and the set K - L is compact. 
It follows by induction that a family of closed sets all or all but one of 
which are compact satisfies property (C). 

4. Let F be a closed subset of ]Rd containing a one-dimensional subspace 
]R u of]R d, where u =f. o. Then the family (F, F) does not satisfy condition 
(C). Indeed, the set 

{(XI,X2) E Ru x]Ru : xl +x2 = O} = {(tu,-tu): t E R} 

is unbounded. 
5. If a, bE JR, the family (( -00, a], [b, +00» does not satisfy condition (C). 

By Example 1 and because JR J (-00,0], neither does the pair (JR, JR+) . 
By contrast, for every al, ... , an E JR, the family 

satisfies (C). In particular, (R.+, ... ,R+) satisfies (C). For a generaliza­
tion to dimension d, see Exercise 4 on page 335. 

6. If (FI, ... ,Fn) satisfies condition (C), the set FI + ... + Fn is closed. 
(Recall that, in general, the sum FI + F2 of closed sets FI and F2 need 
not be closed.) 

1. If (FI , ... , Fn) satisfies condition (C) and if (I, J) is a partition of the 
set {I, ... ,n} (that is, InJ = 0 and IuJ = {l, ... ,n}), then the 
family (F/,FJ) satisfies (C), with FJ = EkE/Fk and FJ = EkEJFk. 

The next step in the construction consists in extending the bracket. If 
cp E g(]Rd), the expression (T, cp) has so far been defined only when T is a 
distribution with compact support on JRd (see Proposition 3.3 on page 282). 
The next proposition allows us to extend this definition to the case where 
SuppT n Suppcp is compact. 

Proposition 2.5 Let 0 be open in JRd. Let T E ~/(O) and cp E g(O) be 
such that Supp Tn Supp cp is compact. Then, if p E ~(O) is a function 
taking the value 1 on an open set containing Supp T n Supp cp, the value of 
(T, pcp) does not depend on p. 
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This value is denoted by (T, cp). 

Proof Take P E ~(O) such that P = 0 on an open set containing Supp T n 
Supp cpo Then the support of P is contained in the complement of Supp T n 
Supp cp, and therefore 

Supp pcp C Supp cp n (JRd \ (Supp Tn Supp cp)) = Supp cp n (JRd \ Supp T), 

which implies that (T, pcp) = O. 
Consequently, if P and p are functions in ~(O) that coincide on an open 

set containing SuppT n Suppcp, we have (T, pcp) = (T, pcp). 0 

Naturally, if T E C/(O) and cp E C(O), we recover the meaning of the 
brackets defined in Proposition 3.3 on page 282. If T E ~' (0) and cp E 
~(O), we recover the usual meaning of the brackets. 

Note that we can define similarly the value of (T, cp) for T E ~/m(o) and 
cp E cm(o) if Supp T n Supp cp is compact. 

We can now define the convolution product of a family of distributions 
whose supports satisfy condition (C) of Definition 2.4. We will say from 
now on that such a family of distributions itself satisfies condition (C). 

Proposition 2.6 Let (T1 , • •• , Tn) be a family of distributions on JRd sat­
isfying condition (C). 

1. If cp E ~(JRd), we define a function tjJ on (JRd)n by 

tjJ(xl, ... , xn) = cp(XI + ... + xn) . 

Then tjJ E C«JRd)n) and Supp(TI 0 ' " 0Tn) n SupptjJ is compact. The 
map defined on ~(JRd) by 

cp H (T10 ... 0Tn, tjJ) 

is a distribution on JRd, denoted TI * . .. * Tn and called the convolution 
ofT1, . .. ,Tn . 

2. For each 1 > 0, let Pl E ~~lRd) be such that Pl = 1 on B(O, l). For every 
open bounded set 0 in JR , there exists a real number 1 > 0 such that 
the restrictions of TI * . .. * Tn and of (Pl' T1) * .. . * (Pl' Tn) to 0 coincide 
for every l' ;::: l. In particular, 

in ~/(lRd). 

In the preceding statement we have PlTj E C'(Rd), so the convolution 
(PlTd * ... * (PlTn) is defined in the sense of Section 2A. Indeed, the pre­
ceding definition coincides with Definition 2.1 when all distributions have 
compact support. 
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Proof. Let n be a bounded open set in JRd and cp an element of ~(n) . We 
know that Supp(TI @ .. . @ Tn) = Supp TI X ... X Supp Tn, so 

Supp(TI @ . . . @ Tn) n Supp rp 

c {(Xl, ... ,Xn) E SuppTI X··· X SUppTn : Xl + ... +Xn EO}. 

By condition (C), we deduce that SUPP(TI @ .. ·@Tn)nSupprp is a compact 
subset of (JRd)n contained in a compact Kn that depends only on n, not on 
cpo Thus, (TI @ ... @Tn, rp) is well defined and coincides with (TI @ ... @Tn, 
(PI@"'@PI)rp) if Kn C (B(O,l»n. Now, 

(TI @ .. ·@Tn, (PI @ .. . @Pl)rp) = (PITI @ ... @ PI Tn , rp) 

= «PITI) * ... * (PITn), cp). 

This shows that TI * ... * Tn is a distribution, and proves the second part 
of the proposition as well. 0 

We now state the essential properties of the convolution product in 
~/(JRd) . 

Proposition 2.7 1. If (T, S) satisfies condition (C), then T * S = S * T. 
2. If (TI, .. . , Tn) satisfies (C), then 

SUPP(TI * . .. * Tn) C Supp TI + ... + Supp Tn· 

3. 8*T=T*8forallTE ~/(JRd). 

Proof. The second part of Proposition 2.6 allows us, by passing to the limit , 
to reduce the problem to the case of distributions with compact support, 
for which these properties were stated in Proposition 2.2. The reasoning is 
straightforward for the proof of parts 1 and 3. We spell it out for part 2. 

If (TI , ... ,Tn) satisfies (C), then, by property 6 on page 326, the set 
F = Supp TI + ... + Supp Tn is closed. On the other hand, if 1 > 0, we 
have Supp(pITj) C SuppTj for every j E {I, .. . ,d} (in the notation of 
Proposition 2.6); thus, by Proposition 2.2, Supp«P1Td * ... * (P1Tn)) C 
F. We deduce that, for every cp E ~(JRd) satisfying Suppcp C JRd \ F, 
Proposition 2.6 yields 

Therefore JRd \ F is a domain of nullity of TI * ... * Tn, which proves part 2 
of the proposition. 0 

Proposition 2.8 (Continuity) Let (Tn)nEN be a sequence in ~/(JRd), 
and let T, S belong to ~/(JRd). Suppose that the sequence (Tn)nEN converges 
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to T in ~/(JR.d), that there exists a closed set Fin JR.d such that Supp Tn C F 
for all n E N, and that (F, SuppS) satisfies (C). Then 

in ~' (JR.d). 

lim Tn * S = T * S n--++oo 

Proof Take'P E ~(JR.d). As above, write cp(x,y) = 'P(x + y). Since the 
family (F, SuppS) satisfies (C), the intersection Suppcp n (F x SuppS) is 
compact. Let P E ~(lR.d X lR.d) satisfy P = 1 on an open set that contains 
this compact. Then, by definition, 

Since the map x rl (Sy, p(x, y)cp(x, y) belongs to ~(lR.d), we deduce that 

lim (Tn * S, 'P) = (Tx, (Sy, p(x, y)cp(x, y))) = (T * s, 'P), 
n--++oo 

which is the desired result. o 

Obviously, this result extends to families (TA), with A ~ Ao (where A 
runs over a subset of lR. and AO E [-00,00]). 

The next proposition explicitly defines the convolution product. 

Proposition 2.9 Suppose (T, ~ satisfies property (C) . Then, for every 
'P E ~(lR.d) , the function rp on JR. defined by 

rp(x) = (Sy, <p(x + y) 

belongs to C(lR.d) , the intersection Supp rp n Supp T is compact, and 

(T * S, 'P) = (T, rp) = (Tx, (Sy, 'P(x + y))) . 

Proof Put K = {(x,y) E SuppT x SuppS : x + y E SUPP'P}. Then the 
support of rp is contained in Supp<p-Supp Sand (Supp 'P-Supp S)nSupp T 
is the projection of K on the first factor. Therefore Supprp n SuppT is 
compact. At the same time, if PI E ~(Rd) satisfies PI = 1 on B(O,l), the 
function 

Plrp: x rl (Sy, PI(X)'P(X + y) 

belongs to ~(JR.d), by Theorem 1.1. Therefore rp is of class Coo on B(O,l) 
for every 1 > 0, which is to say that rp E C(Rd ). 

At the same time, by Proposition 2.8, 

(T * S, 'P) = lim lim (PIT * PI'S, 'P) 
1--++00 I' --++00 

= lim lim (Tx, PI (x)(Sy, PI' (Y)'P(x + y))). 
1--++00 I' --++00 
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Now, if B(O,l') :) Supp<p - SUPPPl, we have 

Supp(<p(x +.» c B(O,l') for every x E SUPPPI. 

Therefore PI' (y) <p( x + y) = <p( x + y). We deduce that 

(T * S, <p) = lim (Tx, Pl(X)(Sy, <p(x + y»). 
1-++00 

By definition, if B(O, I) :) Supp cp n Supp T, then 

which proves the result. o 
This result can be extended to the case where T E 9i?,m(JRd), S E 

9i?1n(JRd), and <p E 9i?m+n(JIld); see Exercise 7 below. 

Corollary 2.10 Let 1 and 9 be elements of LI~JJRd) whose supports sat­
isfy condition (C). Then 1 and 9 are convolvable in the sense of the defi­
nition on page 171; moreover 1 * 9 E Ltoc(JRd) and 

[I] * [g] = [I * g]. 

Proof For every <p E 9i?(JRd), 

111/(x - y)llg(y)II<p(x)1 dxdy = 111/(x)llg(y)II<p(x + y)1 dxdy 

(because Lebesgue measure is invariant under translations); the term on the 
right is finite because the supports of 1 and 9 satisfy condition (C). This 
proves that 1 and 9 are convolvable and that 1 * 9 E Ltoc(JRd). Moreover, 
if <p E 9i?(JRd), we have 

([I * g], <p) = II(X) (I g(y)<p(x + y) dY) dx 

by Fubini's Theorem, and this quantity equals ([I] * [g], <p) by Proposition 
2.9. 0 

Proposition 2.11 (Associativity) Let (TI , T2, T3) be a family of distri­
butions on JRd satisfying (C). The distributions (Tl *T2)*T3 and Tl *(T2*T3) 
are well-defined and coincide. 

Proof By property 1 on page 326, the distributions Tl * T2 and T2 * T3 are 
well defined and, by Proposition 2.7, 

It follows then from properties 1 and 7 on page 326 that the distributions 
(Tl * T2) * T3 and Tl * (T2 * T3) are well defined. 
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In view of this we obtain, by applying Proposition 2.8 several times, 

where, for 1 > 0, we have PI E ~(JRd) and PI = I on B(O, l) . Because the 
convolution product is associative in g/(JRd) (Proposition 2.2), we get 

(PI1Tl * P12T2) * PbT3 = Pl1Tl * (P12 T2 * PI3 T3). 

Then it suffices to use Proposition 2.8 several times again to obtain 

o 
The same reasoning shows that, if (TI" ' " Tn) satisfies (C), one can 

compute the product TI * ... * Tn by grouping the terms in any desired 
way. On the contrary, if (TI, T2 , T3 ) does not satisfy (C), the distributions 
(TI * T2) * T3 and TI * (T2 * T3) may both be defined but not be equal; see 
Example 4 below. 

Proposition 2.12 If (TI"'" Tn) satisfies condition (C), we have 

Dj(TI * ... * Tn) = TI * ... * Tk-I * DjTk * Tk+l * ... * Tn 

for all j E {I, ... , d} and k E {I, ... , n}. This remains so if we replace Dj 
by an arbitrary differential operator of the form P(D). 

Proof Note first that SuppDjTk C SuppTk, so the two sides in the equal­
ity above are well defined (see property 1 on page 326). By associativity 
and commutativity, it suffices to show that, if (T, S) satisfies (C), then 
Dj(T * S) = (DjT) * S . We already know this is so whee T and Shave 
compact support (Proposition 2.3 on page 325). The general case follows by 
passing to the limit, using Proposition 2.8 and the continuity in ~/(JRd) of 
the map T H DjT (as well as the formula for the derivative of a product): 

= DjT* S, 

where the latter equality comes from the fact that liml-++oo(DjPI)T = O. 
o 

Examples 

1. Let P(D) be a linear differential operator with constant coefficients. 
Then, for every T E ~/(JRd), 

P(D)T = (P(D)8) * T. 
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2. Suppose T E ~'(JRd) and a E JRd. The translate of T by a, denoted 
by TaT, is the distribution defined by 

(TaT, cp) = (T, LaCP) for all cP E ~'(JRd), 

where, for every function f , Taf is the translate of f by a: that is, 
Taf(x) = f(x - a) (see page 169). One easily checks, using the in­
variance of Lebesgue measure under translations, that Ta[f] = [Taf] if 
f E Lloc(JRd). 

One deduces immediately from the definitions that 

In particular, if d = 1, 

T ' 5:' T l' 0 - Oh T =u * = Im--* 
h-70 h 

(see equation (*) on page 293); equivalently, 

T' - r T- ThT 
- h~ h . 

3. Let U r be the surface measure on the sphere in JRd having center 0 and 
radius r. In view of Example 1 above, we deduce from Exercise 10 on 
page 304 that , for every distribution Ton JRd, 

Thus, if 

. 2d( U r ) /}.T = hm 2' T * ~ - T . 
r-70+ r Sdr 

Ur 
T=T*--d-l 

Sd r -

for every r > 0 (or at least for r sufficiently small), we have f::..T = O. 
(In this case we say that T is a harmonic distribution.) The converse 
also holds; see Exercise 1 on page 344. 

4. One easily checks that (1 * 0') * Y = 0 and 1 * (8' * Y) = 1, which shows 
that the convolution product is in general not associative. 

2C Convolution of a Distribution with a Function 

Proposition 2.13 Consider T E ~'(JRd) and f E g(JRd), and suppose 
(T, f) satisfies condition (C). Then T * f E g(JRd) and, for all x E JRd, the 
intersection Supp f (x - . ) n Supp T is compact and 

T * f(x) = (Ty, f(x - y)) . 

This remains true ifT E ~'m(JRd) and f E gm+r(JRd) (with m,r EN), 
except that in this case T * f E gr(JRd). 
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Proof. For each 1 > 0, we again fix an element PI of ~(JRd) equal to 1 
on B(0,2. Take T E ~'m(JRd) and J E gm+r(JRd) (or T E ~'(JRd) and 
J E g(JR )), and suppose that (T,1) satisfies (C) . For every compact subset 
K of JRd, the set 

K={(x,Y)ESuPpJxSuppT: x+yEK} 

is a compact subset of JRd x JRd. Denote by K' its projection on the second 
factor; then K' is compact in JRd. For every x E K, 

Supp(J(x-· ))nSuppT = (x-SuppJ)nSuppT 

= {y E SuppT: 3z E SuPPJ such that y+z = x} 

c K'. 

Now take I> maxxEK Ixl + maxyEK' Iyl. For every x E K, the function 
y r--+ PI(Y)PI(X - y) equals 1 on an open that contains K', so 

(Ty, J(x-y) = (Ty, PI(Y)PI(X - y)J(x - y) for all x E K. (*) 

Since the function (x,y) r--+ PI(Y)PI(X - y)J(x - y) lies in ~m+r(JRd x JRd) 
(or ~(JRd x JRd), as the case may be), we deduce from Theorem 1.1 that the 
function x r--+ (Ty, J(x - y)) is of class C r (or COO) in K. This reasoning is 
valid for every compact subset K of JRd, so the function belongs to gr(JRd) 
(or G"(JRd)). 

Now consider r.p E ~(lRd). By the definition of the convolution product 
in G"'(JRd), 

((pIT) * (pt!), r.p) = ((PIT)y, ((pt!)x, r.p(x + y))) 

= (Ty, PI(Y) I PI(X)J(X)r.p(x + y) dX) 

= (Ty, PI(Y) I PI (x - y)J(x - y)r.p(x) dX) 

= (r.p(x) 0 Ty, PI(Y)PI(X - y)J(x - y) 

= I r.p(x) (Ty, PI(Y)PI(X - y)J(x - y)dx. 

Now, applying equality (*) to the compact K = Suppr.p, we see that, for 
1 large enough, 

(Ty, PI(y)PI(X - y) J(x - y) = (T, J(x - . ) for all x E Supp r.p. 

Therefore, making I go to infinity, we obtain, by virtue of Proposition 2.6, 

(T * J, r.p) = I r.p(x)(T, J(x - . ) dx, 

which concludes the proof. D 
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Remarks 

1. In particular, consider a complex Radon measure J.l on ]Rd and a map 
f E C(]Rd) such that (Supp J.l, Supp f) satisfies (C). Then tL* f E C(]Rd) 
and 

tL * f(x) = J f(x - y) dJ.l(Y) for all x E ]Rd. 

For an extension to the case f E Ltoc(lRd ), see Exercise 10 below. 
2. TakeT E P'(Rd ) and f E g(]Rd) such that (T, f) satisfies (C), and recall 

from page 169 the notation /, defined by /(x) = f( -x). By Proposition 
2.13, (T, /) is well defined and 

(T, /) = T * f(O). 

More generally, if T E p'(]Rd), we define a distribution T by 

(T, cp) = (T, 1jJ) for all cP E p(]Rd). 

Clearly, Supp T = - Supp T. Therefore, if (T, S) satisfies (C), so does 
(T,5'). Moreover, 

(T* sf = T* S. 
This follows immediately from the definition of the convolution product 
(Proposition 2.6) and from the obvious fact that (T ® Sf = T ® S. 
As a consequence, by the associativity of the convolution product, we 
conclude that, if (T, S) satisfies (C), we have, for every cP E p(]Rd), 

(T * S, cp) = T * S * IjJ (0) = T * (S * 1jJ)(0) = T * (5' * cpf (0) 

= (T,5' * cp) = (Tx, (SY' cp(x + y»)). 

We thus recover Proposition 2.9. 

We now give an application of Proposition 2.13 to the smoothing of 
distributions. 

Proposition 2.14 For every open r! in ]Rd, the set P(r!) is dense in 
P'(r!). In other words, every distribution on r! is the limit in P'(r!) of a 
sequence of elements of !iJ(S1). 

Proof. Let S1 be open in ]Rd, and let (Kn)nEN be a sequence of compact 
sets exhausting r!. For every n E N, take CPn E P(r!) such that CPn = 1 
on Kn. Also let (Xn)nEN be a smoothing sequence in ]Rd and (XPn )nEN a 
subsequence such that SUPPCPn + SUPPXPn C S1 for every n E N. 

Take T E P'(r!) and write 1/Jn = (CPnT) * XPn for every integer n E N. 
(The distribution CPnT has compact support in r! and so can be identified 
with a distribution on ]Rd with compact support, as explained on page 283; 
see particularly Equation (*) on that page. Thus the convolution product 
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(CPnT) * Xp" does make sense.) By Proposition 2.13 and our assumption 
on the supports of CPn and Xp", we have 1/Jn E !11(O). We will show that 
the sequence (1/Jn)nEN converges in !11'(O) to T, and this will prove the 
proposition. 

To do this, take cP E !11(O). By definition, 

Now, for n large enough, Supp(cp * XPn) C SuppcP - SUPPXPn C Kn, so 
CPn (cp * XPn) = cP * XPn' whence 

The sequence (cp * XPn)nEN converges to cP in !11(O), by Proposition 1.2 
of page 261 applied to every mEN, since (Xn)nEN is also a smoothing 
sequence. Therefore the sequence (1/Jn)nEN converges to T in !11'(O). 0 

Remark. With the notation used in the preceding proof, we see that, for 
a distribution T of order m and any cP E !11m(o), we have 

lim ( CP(X)1/Jn(x)dx = (T,cp). 
n-++ooJn 

Exercises 

1. Compute 8x * 8y, for x, y E ]Rd. 
2. Let P and Q be polynomials in d variables: 

P(x) = L aa xa , Q(x) = L baxa, 
iaiSp iaiSq 

Compute P(D)8 * Q(D)8. 
3. Prove assertions 1, 5, 6, and 7 on page 326. 
4. Let F be a closed subset of ]Rd containing 0 and such that >"F C F for 

all >.. E ]R+. 

a. Show that (F, F) satisfies (C) if and only if F n ( - F) = {O}. 
h . Suppose that F n (-F) = {O} and that F + F c F. (For example, 

F = (]R+)d.) Show that, for every r ~ 1, the family (F, .. . , F), where 
F is repeated r times, satisfies (C). 

5. Let L be the function defined on]Rd by L(x) = a ·x with a E Cd (where 
the dot represents the canonical scalar product in Cd). 
a. If T and S are distributions satisfying (C), prove that 

i. L(S * T) = (LS) * T + S * (LT) , and 
ii. eL(S * T) = (eLS) * (eLT). 
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h. Let P be a polynomial in d variables. 

i. Find a polynomial Q such that, for every T E tf)1, 

ii. Let E be a fundamental solution of P(D). Determine a funda­
mental solution of Q(D). 

c. Derive from this and from Exercise 4 on page 323 a fundamental 
solution of I1~=1 (Dj - aj), where aI, ... ,ad E C. 

6. a. Let P be a polynomial in d variables and T a distribution with 
compact support. Show that T * P is a polynomial. 
Hint. Use Exercise 4 on page 303 (or Proposition 2.13). 

h. Find the limit in tf)1(JRd) of the sequence of polynomials (Pn) on JRd 
defined by 

nd ( JXJ2 )n3 
Pn(x) = 7rd / 2 1 - -:;;: 

c. Deduce that every distribution with compact support is the limit in 
tf)' (JR d) of a sequence of polynomials. 

7. Let m, n E N, and consider T E tf)lm(JRd) and S E tf)ln(JRd) such that 
(T, S) satisfies (C) . Show that T * S E tf)lm+n(JRd) and that 

(T * S, <p) = (Tx, (Sy, <p(x + y))) for all <p E tf)m+n(JRd). 

8. Convolution of measures 
a. Show that, if J-L and v are complex Radon measures on JRd whose 

supports satisfy (C), the convolution J-L * v is a Radon measure on 
JRd and 

(J-L * v, <p) = J J <p(x + y) dJ-L(x) dv(y) for all <p E Cc(JRd). 

(The double integral is defined by decomposing J-L and v into positive 
measures: see page 89.) 
Hint. See Exercise 7 with m = n = O. 

h. Let J-L and v be bounded complex Radon measures on JRd. Show that 
one can define J-L * v by the formula of the previous question and that 
J-L * v is a bounded Radon measure. 

c. Show that the space !JJ1,(JRd), with the convolution product * and 
the norm of (Co (JRd))" is a commutative Banach algebra with unity 
and that LI(JRd) is a closed subalgebra of it (without unity) . 

9. a. Show that, if J-L is a Radon measure on JRd and if <p E Cc(JRd), then 
J-L * <p E C(lRd). 
Hint. See the first remark following Proposition 2.13. 

h. Conversely, let T be a distribution on JRd such that T * <p E C(JRd) 
for every <p E Cc(JRd). 
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i. Let (Xn)nEN be a smoothing sequence. Show that the sequence 
(T * Xn)nEN converges vaguely in the sense of Exercise 6 on 
page 9l. 
Hint. For every <p E Cc(lRd ), 

lim j(T * Xn)(x)<p(x) dx = T * cp(O). 
n~+oo 

ii. Deduce that T is a Radon measure. 

10. Convolution of a measure with a locally integrable function. Suppose JL 
is a complex Radon measure on lR.d, that f E Lloc(lR.d), and that the 
supports of JL and f satisfy (C) . Show that JL * f E Lloc(lR.d) and that 

JL * f(x) = j f(x - y) dJL(Y) for almost every x 

(where the integral is defined by considering a particular Borel function 
representing I) . 

11. a . Let L be a continuous linear map from ~(lR.d) to C(lR.d) , commuting 
with translations. Show that there exists a distribution T E ~/(lR.d) 
such that 

L(<p) = T * <p for all <p E ~(lR.d). 

(You might note that the equality (T,<p) = (L(cp))(O) must hold.) 
h. Let L be a continuous linear map from ~(lR.d) to C(lR.d) commuting 

with each differentiation D j , for 1 :::; j :::; d. Show that there exists a 
distribution T E ~/(lR.d) such that 

L( <p) = T * <p for all <p E ~(lR.d). 

Hint. You might show that L commutes with translations, as follows: 
Take <p E ~ and u E lR.d, and let h be the function defined by 

where Tx't/J(Y) = 't/J(y - x) . Show that all partial derivatives Djh are 
zero. Deduce that h is constant and finish the proof. 

3 Applications 

3A Primitives and Sobolev's Theorem 

The next proposition allows one to recover a distribution with compact 
support from its first derivatives. Thus it is a formula for finding a primitive. 
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Proposition 3.1 lIT E g/(JRd), then 

d 

T= ~ ~(Xj) *D .T, 
Sd ~ rd J 

j=l 

where r = Ixi and Sd is the area 01 the unit sphere in JR.d. 

Proof Let E be the fundamental solution of the Laplacian given in Theo­
rem 3.2 on page 308. A simple calculation using Theorem 2.12 on page 301 
shows that 

1 X· 
DjE = - ~ for all j E {I, ... , d}, 

Sd r 

and this in any dimension d. At the same time, DoE * T = T , since DoE = 8. 
Since T has compact support (so that (E, T) satisfies (C)), we deduce from 
Proposition 2.12 that 

d d 

DoE * T = tl(E * T) = L D;(E * T) = L (DjE) * (DjT). 
j=1 j=1 

Therefore, 
d 

T = E (DjE) * (DjT), 
j=1 

which yields the result. o 

We now introduce the Sobolev spaces Wl,p over JR.d, where 1 :=:; p:=:; 00. By 
definition, the Sobolev space Wl,p(JR.d) is the set of elements I E LP(JRd) 
for which, for every j E {I, . .. ,d} , there exists gj E LP(JR.d) such that 
Dj[/] = [gj]. In the sequel we will omit the brackets, writing simply Djl = 
gj. 

We define on the space Wl ,p(JR.d) a norm 11·lIl,p, as follows: 

d 

1I/1h.p = 1I/IIp + I: IIDj/llp for all I E Wl,p(JRd). 
j=l 

Here 1I·llp is the norm on LP(JR.d). 

Proposition 3.2 The norm II . Ill,p makes Wl,p(JR.d) into a Banach space. 

Proof Let (In)nEN be a Cauchy sequence in Wl,p(JR.d). Since the space 
LP(JR.d) is complete, the sequences (In), (Ddn), ... , (Ddln), which are 
clearly Cauchy sequences in LP(JR.d), converge in LP(JR.d). Let I, gl , . .. , gd 
be their limits in LP(JR.d). Since 'p(JR.d) is contained in LP'(JR.d) (where p' 
is the exponent conjugate to p), we deduce easily from Holder's inequality 
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that the same sequences also converge in ~/(JRd) . Since the operators Dj 
are continuous in ~/(JRd), we deduce that 

by the uniqueness of the limit in ~/(JRd). This shows that f E W 1,p(JRd) 
and that the sequence (fn)nEN converges to f in W 1,p(JRd). D 

Remark. The space W 1,2(JRd) is often denoted by H 1(JRd) and given the 
equivalent norm II·IIHI defined by 

( d )1/2 
IlfllHl = Ilfll~ + t; IIDjfll~ , 

which comes from the scalar product defined by 

d 

(f I g) = ! f(x)g(x) dx + ~! Dj f(x) Djg(x) dx. 
3=1 

Thus H 1 (JRd) is a Hilbert space. 

The next theorem says that, if p is finite, W 1,p(JRd) is continuously em­
beddable in some spaces U(JRd) with r > p, and that, if d < p < 00, it 
is continuously embeddable in Co(JRd) ("continuously embeddable" means 
that W 1 ,p is contained in each of the spaces considered and that the cor­
responding canonical injections are continuous). 

Theorem 3.3 (Sobolev Injection Theorem) Suppose that p E [1,00] 
and that r satisfies 

- r E [p, pdj(d-p)) ifp < d, 
- r E [p, 00) if P = d, 
- r E [P,oo] if P > d. 

Then W 1,p(JRd) C U(JRd) and there exists Cr,p ~ 0 such that 

Ilflir ~ Cr,pllflh,p for all f E W 1,p(JRd). 

Moreover, if d < p < 00, every element ofW1,P(JRd) has a representative in 
Co(JRd). Finally, every element in W1,oo(JRd) has a uniformly continuous 
representative. 

Proof Let -y E ~(lR.d) be such that -y = 1 in a neighborhood of O. Since 
IXjr-dl ~ r 1- d, we have -yxjr-d E LO«JRd) for every a ~ 1 such that 
a(d - 1) < d (see Proposition 2.13 on page 302), and so also for every 
a E [1, dj(d-1)). 
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Let E be the fundamental solution of the Laplacian given by Theorem 
3.2 on page 308. Since ,E has compact support (so that (T, ,E) satisfies 
(C»), we deduce from Proposition 2.12 that 

d d 

T * fl.(TE) = fl.(T * ,E) = 'LDJ(T * ,E) = 'L(DjT) * Dj(TE). 
j=1 j=1 

Now, 
d 

fl.(TE) = (fl.,)E + 2 L Dj,DjE + ,fl.E 
j=1 

(Leibniz's formula). Since fl.E = 8, we get ,fl.E = ,(0)8 = 8. Since E is 
of class Coo on JR \ {O} and since fl., and Dj , vanish near 0, we deduce 
from (*) that 

1] = fl.(TE) - 6 E ~(JRd). 

Similarly, we can show that, for each j E {I, ... , d}, there exists an 1]j E 

~(JRd) such that 

We then get 

Suppose T E W1,p(lRd ). Then T, D1T, ... , DdT E LP and we can 
apply Young's inequality ~Theorem 3.4 on page 172) to equation (**). We 
conclude that T E U(JR ) for every r such that lip + 1/0. - 1 = 1/r, 
where 1 :S a. :S pl(p-1) and a. < dl(d-1). If p :S d, we must have 1 :S 
a. < dl(d-I), so that r E [p, pdl(d-p» (with pdl(d-p) = 00 if p = d). If 
p > d, we must have 1 :S a. :S pi (p -1), so that r E [p, 00 J. In particular, 
we can take a. = pl(p-I) = p' , the conjugate exponent of p. The last part 
of the theorem then follows from Proposition 3.2 on page 171. Finally, the 
existence of constants Cr,p also follows from equation (**) and Young's 
inequality. D 

3B Regularity 

Let rl be open in JRd. If p E [1, ooJ, denote by Lfoc(rl) the set of equivalence 
classes (with respect to Lebesgue measure) of functions on rl such that 
1K f E £P(rl) for every compact K in rl. 

Theorem 3.4 Let T be a distribution on an open set rl in Rd. Suppose 
that p E [1, ooJ and that DjT E Ljoc(rl) for every j E {I, ... , d}. 
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- If p:S d, then T E L[oc(n) for every r E [p, pdj(d-p)). 
- Ifp > d, then T E C(n). 

If p = d, we interpret pdj(d-p) as 00. 

Proof Let K be a compact subset of nand K' a compact subset of n 
whose interior contains K. Let cp E pen) be such that cp = 1 on K'. 
Put D = d(K, n\k') > ° and let, E p(JRd) be such that, = 1 in a 
neighborhood of 0 and Supp, c B(O, Dj2) . If E is the fundamental solution 
of the Laplacian provided by Theorem 3.2 on page 308, we saw in the proof 
of Theorem 3.3 that there exist 'fJ, 'fJ1, .. . ,'fJd E p(JRd) such that 

l:l.(rE) = 'fJ + 8, Dj(rE) = 'fJj + ~,x~ for all j E {1, ... , d} . 
Sd r 

Using formula (**) from the previous page and replacing T by cpT (consid­
ered as a distribution on JRd: see page 283), we obtain 

d 

cpT = -(cpT) * 'fJ + L Dj(cpT) * 'fJj 
j=l 

By Proposition 2.13, (cpT) * 'fJ and the Dj(cpT) * 'fJj, for every j, belong 
to p(JRd). At the same time, 

Supp (DjCP)T * (, :~) ) C (JRd\K') + B(O, Dj2) C (JRd \ K). 

Finally, cpDjT E LP(JRd). We then apply Young's inequality (Theorem 3.4 
on page 172) as in the proof of Theorem 3.3. We conclude that 

n K = JRd \ (JRd\K') + B(O, Dj2)) 

is an open set satisfying K C n K C K' and that the restriction of T to nK 
belongs to U(n K ) if p :S d and r E [p, pdj(p-d)) and to C(nK ) if p > d. 
Since this happens for every compact K, the theorem is proved. 0 

Hypoelliptic Differential Operators 

We now state another fairly general regularity criterion. We start with 
a definition: If P is a polynomial over C, the linear differential operator 
P(D) is said to be hypoelliptic if, for every open subset n of JRd and every 
T E p'(n), 

P(D)T E 6"(n) =* T E 6"(n). 

In particular, if P(D) is hypoelliptic, every solution in p'(n) of the partial 
differential equation P(D)T = 0 is a function of class Coo, and so also a 
solution in the ordinary sense. 
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Theorem 3.5 Any differential operator with constant coefficients having 
a fundamental solution whose restriction to JRd \ {O} is a function of class 
COO is hypoelliptic. 

Proof The proof is analogous to that of Theorem 3.4. Let f2 be an open 
subset of JRd and let K, K' be compact subsets of f2 such that K c K' . 
Write ~ = d(K, JRd\k'). Let cp E ~(f2) have the value 1 on K' and let 
"I E ~(JRd) have the value 1 on a neighborhood of OJ assume also that 
SUPP"l c B(O, ~/2) . Finally, set 

f2K = JRd \ (JRd \ K') + B(O, ~/2)) . 

Then 
Kc f2K CK'. 

Consider a differential operator P(D) having a fundamental solution E of 
class Coo on JRd \ {O}. Let T E ~'(f2) be such that f = P(D)T E g(f2). 
By Leibniz's formula, 

P(D)("!E) = 0 + 1/ with 1/ E ~(JRd) 

and 
P(D)(cpT) = cpf + S with Supp S c (JRd \ K'). 

Then 
P(D)("!E * cpT) = cpT + cpT * 1/ = "IE * cpf + "IE * S, 

that is, 
cpT = -(cpT) * 1/ + "IE * cpf + "IE * S. 

Since 1J and cpf belong to ~(JRd), we deduce from Proposition 2.13 that 
-(cpT)*1J+"IE*cpf E ~(JRd). On the other hand, Supp("!E*S) C JRd\f2K . 
We deduce that the restriction of T to f2K is of class Coo. Since K is 
arbitrary and f2K :J K, this implies that T E g(f2) . 0 

Examples 

The operators A, 'If, alaz (see Chapter 8), as well as Ak for k ::::: 2 (see 
Exercise 4 on page 313), are hypoelliptic. In particular, a harmonic distri­
bution T on f2 is a harmonic function in the classical sensej a distribution T 
on an open subset f2 of JR2 such that aT I az = 0 is a holomorphic function 
on f2. 

If d = 1, every operator is hypoelliptic. 
Conversely, note that, if E is a fundamental solution of a hypoelliptic 

operat.?r P(D), the restriction E of E to JRd \ {O} is of class Coo (since 
P(D)E = 0 E g(JRd \ {O} )) . This allows one to show that, for example, the 
operator 

02 02 

ax2 - ay2 

on JR2 is not hypoelliptic (see Exercise 6 on page 314). 
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3C Fundamental solutions and Partial Differential Equations 

The existence of a fundamental solution for a differential operator allows 
one to find solutions of the corresponding partial differential equation if 
the right-hand side is an operator with compact support. 

Theorem 3.6 Consider a linear differential operator P(D) with cons­
tant coefficients, a fundamental solution E of P(D), and S E C'(JRd). The 
distribution To = E*S satisfies P(D)To = S . Moreover, the set of solutions 
T E ~' (JRd) of the equation 

P(D)T= S 

equals {T = To + U: U E ~1(Rd) such that P(D)U = O}. 

Proof. If S E C'(JRd), Proposition 2.12 yields 

P(D)(E * S) = P(D)E * S = 6 * S = S. 

Set U = T - E * S. Clearly, P(D)T = S if and only if P(D)U = O. 0 

3D The Algebra 91~ 

We now consider the case d = 1 and write 

~~ = {T E ~'(JR): SuppT c JR+}. 

Because (JR+, ... ,JR+) satisfies condition (C), the convolution of two ele­
ments of ~+ is always defined and this operation makes ~+ into a com­
mutative algebra with unity, by Propositions 2.7 and 2.11. We will apply 
this fact to the resolution of linear differential equations with constant co­
efficients and continuous right-hand side. 

Let P(D) = ao + aID + ... + amDm be a linear differential operator with 
constant coefficients such that m ~ 1 and am -=I- O. We know from Theo­
rem 3.1 on page 307 that P(D) has a fundamental solution E = (l/am )Yf, 
where f is the solution on JR of the differential equation P(D)f = 0 satisfy­
ing the conditions f(O) = 1'(0) = ... = f(m-2)(0) = 0 and f(m-l)(o) = 1. 
In particular, E E ~+. It follows that P(D)6 is invertible in the algebra 
~+ and that its (necessarily unique) inverse is E. Thus, for every S E ~+, 
there exists a unique distribution T E ~+ such that P(D)T = S: namely, 
T = E * S. If we take, for example, 1jJ E C(JR+) (and extend it to JR- with 
the value 0), and if we put 

( ) _ {J...- r f(x - y)1jJ(y) dy 
<p x - am 10 

o 

for x ~ 0, 

for x < 0, 
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then, in the sense of distributions, 

P(D)cp = 'IjJ. 

On the other hand, we know from the theory of differential equations that 
the equation P(D)g = 'IjJ on JR+ has a unique solution 9 that satisfies the 
conditions g(O) = g'(O) = ... = g(m- l)(o) = O. Extending 9 to (-00,0] 
with the value 0, we get as well P(D)g = 'IjJ in the sense of distributions. 
We deduce, by identification, that 

1 l x g(x) = - f(x - y)'IjJ(y)dy for all x ~ O. 
am 0 

Applying a similar reasoning to the case x ~ 0, we finally see that, for every 
'IjJ E C(JR), the unique solution 9 of the equation P(D)g = 'IjJ satisfying 
g(O) = g'(O) = ... = g(m-l)(o) = 0 is given by 

1 lx g(x) = - f(x - y)'IjJ(y)dy for all x E JR . 
am 0 

Exercises 

1. Harmonic functions and the mean value property. This exercise is a 
continuation of Exercise 3 on page 312, whose notation we keep. 
a. Show that E - EP E g'(JRd) for every p > O. 
h. Deduce that, for every T E ~'(JRd), 

1 
(E - EP) * 6.T = T - T * -- a . 

Sdpd-l P 

Show that, in particular, any harmonic function f on JRd (that is, 
any f E g2(JR2) satisfying 6.f = 0 in the ordinary sense) satisfies 
the following mean value property: 

1 
f = f * --d -1 a P for all p > O. 

SdP -

(This is converse to the property of Example 3 on page 332.) 
c. Applying (*) to the distribution T = E, prove that 

2. Subharmonic distributions. A distribution is said to be sub harmonic if 
its Laplacian is a positive distribution. (For example, if f is a harmonic 
real-valued function, If I defines a subharmonic distribution: see Exercise 
11 on page 304.) 
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a. Characterize subharmonic distributions on JR. 
Hint. See Exercise 12 on page 304. 

h. Show that a distribution Ton JRd is subharmonic if and only if, for 
every p > 0, 

1 
T * Sdpd-l a p - T 

is a positive distribution. 
Hint. Sufficiency follows from Example 3 on page 332 and necessity 
from equation (*) in Exercise 1. 

c. Show that every subharmonic distribution can be represented by a 
locally integrable function. 
Hint. Revisit the proof of Theorem 3.5 and use Exercise 10 on 
page 337. 

d. Let f and g be locally integrable real functions on JRd, and assume 
f and g are subharmonic (this means that the distributions [fJ and 
[g J are subharmonic). Show that sup(f, g) is subharmonic. 

e. Recall that a function f from JRd to [-oo,ooJ is said to be upper 
semicontinuous if, for every a E JR, the set {f < a} is open. Recall 
also that the pointwise limit of a decreasing sequence of continu­
ous real functions is an upper semicontinuous function with values 
in [-00, +00). Show that, if f is a subharmonic real-valued func­
tion, there exists an upper semicontinuous function j with values in 
[-00, +00) such that f = j almost everywhere. 
Hint. Take again the proof of Theorem 3.5 and note that there exists 
a decreasing sequence in Cc(JRd) that converges pointwise to 'YE. 

3. Harmonic functions and the mean value property, continued. We wish 
to characterize harmonicity on an open set by the mean value property. 
We fix an open subset 0 of JRd and f E C(O), and keep the notation of 
Exercise 1. 
a. Suppose that f is a harmonic function on O. Take x E 0 and p E 

(0, d(x, JRd\O)). Take also e > 0 such that e < d(x, JRd\O) - p. 
Denote by cp an element of Cc(O) such that cp = 1 on B(x, p + e), 
and identify cpf with an element of Cc(JRd). 
i. Show that (E - EP) * fl.(cpf) = ° on B(x,e). 

ii. Deduce that 
1 

cpf = 'Pf * ~ap 
SdP 

on B(x,c). (Use part b of Exercise 1.) 

iii. Show that f satisfies the following mean value property: For all 
x E 0 and all p E (0, d(x, JRd\O)), we have 

f(x) = SdP:- l J J(x - y) dap(Y)· 

Hint. Use the first remark after Proposition 2.13 on page 332. 
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h. Conversely, suppose that, for all x E 0 and all p E (0, d(x, JRd\O)), 
we have 

I(x) = Sd~-l ! I(x - y) dnp(Y) · 

Let K and K' be compact subsets of 0 such that K c K', and take 
<p E Cc(O) such that <p = 1 on K'. 
i. Show that 

1 
<pI = <pI * sdpd-l up 

on K if 0 < p < d(K, (JRd\K')). Deduce that t::.1 = 0 in the 
interior of K. 
Hint. See Example 3 on page 332. 

ii. Show that in this case I is a harmonic function on O. 

c. Show likewise that I is subharmonic (see Exercise 2) if and only if, 
for all x E 0 and all p E (0, d(x, ad\O)), 

I(x) :5 Sd~-l ! I(x - y) dnp(y). 

4. Show that, for every p E [1, +00), the space W1 ,p(JRd) is separable and 
~(JRd) is dense in W1,P(Rd). 
Hint. For separability, note that W1,P(Rd) is isometric to a subspace of 
(LP(JRd))d+l. 

5. a. Show that, if I E Wl,l(R), there exists an element 9 E £l(JR) such 
that r~:: g(x) dx = 0 and J~oo g(t) dt = I(x) almost everywhere. 
Deduce that I has a representative in Co(JR). (By Theorem 3.3, this 
is still true if IE W1,P(JR) for 1 < p < 00.) 

h. Show that there exists I E Wl,2(JR2 ) such that I rJ. L OO (JR2) . 
Hint. Take I with compact support and equal to log(log(1/r)) in a 
neighborhood of O. 

6. Let T be a distribution on an open 0 of JRd. Suppose that DPT E 

Lfoc(O) for every multiindex p of length d + 1. Show that T E C(O) . 
(Apply Theorem 3.4 d+1 times.) Deduce that if DPT E Lfoc(O) for 
every multiindex PENd, then T E C(O) . 

7. Let F be a closed subset of JRd such that 

>"F c F for all >.. E JR + , F n (-F) = {O}, F+F c F. 

Write ~~ = {T E ~'(JRd) : SuppT C F}. Show that the convolution 
product makes ~~ into a commutative algebra with unity. (See Exer­
cise 4 on page 335.) 

8. Denote by y(d) the function on JRd defined by 

y(d)(X) = Y(xt} .. . Y(Xd) . 

Also set F = (JR+)d, a closed set. 
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a. i. Show that y(d) is a fundamental solution of the operator DI . . . D d 
and that the support of y(d) is contained in F . 

ii. Let ~F be the space defined in Exercise 7. Show that, if S E ~F' 
there exists a unique T E ~F such that D I . . . DdT = S. 

b. i. Let T be a distribution on ]Rd supported within a + F, where 
a E ]Rd. Show that the convolution y(d) * T is well defined, that 
Supp(y(d) * T) c a + F and that 
A. if T E Ltoc(]Rd), then y(d) * T E C(Rd); 

B. if T is a Radon measure, then y(d) * T E Lk:c(]Rd) ; 

C. if T is of order at most m with m ~ 1, then y(d) * T is a 
distribution of order at most m - l. 

ii. If r E N*, set Yr(d) = y(d) * ... * y(d) (y(d) appears r times). 
Show that, if T is a distribution with compact support of order 
at most m (with m ~ 0), then y~~2 * T E C(]Rd) . 

c. Let T be a distribution on an open 0 of ]Rd such that, for every 
pE Nd , 

Show that T E C(O). 
Hint. Take cp E ~(O) . Show that DI ... Dd(cpT) E LI(]Rd) and use 
parts a-i and b-i. 

d . Let T be a distribution on an open 0 in ]Rd. Suppose that T and its 
derivatives of all orders have order at most m. Show that T E 6"(0). 
Hint. Start by showing that T E C(O) using parts a-i and b-ii; then 
consider the derivatives of T . 

9. Let J be a nonempty subset of {I, ... , d} and set D J = I1jE J Dj • Show 
that D J is not hypoelliptic if d ~ 2. 
Hint. Use Exercise 4 on page 323. 

10. Local and global structures of a distribution. 
a. Let T be a distribution with compact support of order k on ]Rd. 

Show that there exists a continuous function f such that 

D~+2 D~+2 . . . D~+2[!] = T. 

Hint. Use Exercise 4 on page 323 or Exercise 8b-ii above. 
b. Let T be a distribution on ]Rd. Show that, for every compact subset K 

of ]Rd, there exists a continuous function! and a multiindex pENd 
such that T coincides with DP[!] on ~K • 

c. Let T be a distribution on Rd. Show that there exists a sequence 
(Pn)nEN of multiindices and a sequence (fn)nEN of continuous func­
tions on ]Rd such that 
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Hint. Let (f!n)nElI/ be a locally finite covering of JRd by bounded 
open sets and take a Coo partition of unity (<Pn) subordinate to this 
covering (see Exercise 14 on page 267). Apply the result of the first 
part of this exercise to the distributions <PnT. 

11. We work in JRd, where d ~ 3. 

a. Show that the only harmonic function that tends to 0 at infinity is 
the zero function. 
Hint. Use the mean value property from Exercise l. 

b. Take <P E L~(JRd) (this space was defined in Exercise 19 on page 159) 
and let E be the fundamental solution of ~. Show that the Poisson 
equation 

~f = <P 

has a unique solution in Co (JRd), namely f = E * <po Show that f 
is of class C1 on ad and harmonic on JRd \ Supp<p. Show that if, in 
addition, D1<P, .. . , Dd<P E Loo(lRd), then <p E Cc(JRd), f E g2(JRd), 
and ~f = <p in the ordinary sense. 

12. Solve in ~~ the following equation in T: 

(Y(x) sin x) * T = S, 

where S E ~~. Under what condition on S is the distribution T defined 
by a locally integrable function? 
Hint. Find a differential operator of which Y (x) sin x is a fundamental 
solution. 



10 
The Laplacian on an Open Set 

Conventions. In this whole chapter, !1 will denote an open subset of ]Rd. 
The elements of Ltoc(!1) will always be identified with the distributions 
they define on !1. Recall that, for every p E [1,00], LP(!1) C Ltoc(!1) C 
~' (!1). Differentiation operators should always be understood in the sense 
of distributions, unless otherwise stated. 

If f E Ltoc(!1), we denote by '\If the gradient of f: 

If all derivatives Dl/, . . . , Ddf belong to Ltoc(!1), we also write 

If x = (Xl, ... ,Xd) and Y = (Yl, . . . ,Yd) are elements of Cd, we write 

d 

x·y= :L>jYj. 
j=l 

1 The spaces H1(O) and HJ(O) 

The Sobolev spaces Wl,p(]Rd) over ]R~ and in particular the space Hi (]Rd) = 
W l ,2(lRd ), were defined in Chapter 9, on page 338. One can define in an 
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analogous way the same spaces over an arbitrary open set O. In particular, 
Hl(O) is the space consisting of elements 1 E £2(0) all of whose first 
derivatives Dd, . .. , Ddl belong to £2(0). This space is given the scalar 
product (.,. )HI(O) defined by 

The norms on the spaces £2(0) and Hl(O) will be denoted by 11,11£2(0) 
and 11'IIHI(o), or simply by 11·11£2 and II·IIHI if there is no danger of 
confusion. 

Imitating the proof of Proposition 3.2 on page 338 we obtain this result: 

Proposition 1.1 The scalar product (.,. )HI(O) makes Hl(O) into a Hil­
bert space. 

In dimension d = 1, the Sobolev space Hl(O) has certain particular 
properties. 

Proposition 1.2 Suppose that 0 = (a, b), with -00 ~ a < b ~ +00. 
Every element 1 01 Hl(O) has a continuous representative on 0 (still de­
noted by f) that has finite limits at a and b. Moreover, il a = -00, we have 
limx -+a I(x) = 0; similarly, il b = +00, we have limx-+b I(x) = o. 
Proof. By Theorem 2.8 on page 297, every element of Hl(O) has a contin­
uous representative 1 satisfying, for 0 E 0, 

I(t) = 1(0) + it !,(u) du for all tEO. 

If, for example, b < +00, then L2((0, b)) C £1((0, b)), so f' E £1((0, b». 
Therefore 1 does have a finite limit at b. Similarly, 1 certainly has a finite 
limit at a if a > -00. 

Now suppose that b = +00. Multiplying equality (*) by f'(t) and inte­
grating the resulting equality between 0 and x, we conclude that, if x> 0, 

By Fubini's Theorem, 

1x (it !,(u) dU) !,(t) dt = jr [ 1 {u5,t} !,(u)!,(t) du dt 
° ° J[o,x)2 

= ~ jr [ !'(u)!'(t) dudt = ~ (J(x) - 1(0)( 
2 J[o,x]2 2 

We deduce that 

(**) 



Since the two functions f and f' belong to L2(0), their product f f' belongs 
to Ll(O) by the Schwarz inequality; therefore, by (**), P has a finite limit 
at +00. Since P E Ll(O), this limit can only be O. The reasoning is similar 
Ka=-oo. D 

Remarks 

1. If 0 = JR, we recover the inclusion Hl(JR) c Go(JR), which is a particular 
case of the Sobolev Injection Theorem (Theorem 3.3 on page 339). 

2. This result does not generalize to the case d ;::: 2: if d ;::: 2, there exist 
elements of HI (JRd) having no continuous representative (see Exercise 5 
on page 346). 

When 0 is a bounded interval in JR, an interesting denseness result holds. 

Proposition 1.3 Suppose that 0 = (a,b), with -00 < a < b < +00. 
Then Gl(O) is a dense subspace of Hl(O). 

Proof Clearly Gl([a,b]) is a subspace of Hl(O). Consider an element of 
Hl(O), having a continuous representative f. By the preceding proposition 
(and Theorem 2.8 on page 297), f has a continuous extension to [a, bj and 

f(x) = f(a) + lx f'(t)dt for all x E [a,bj. 

Since Gc(O) is dense in L2(0), the derivative f' is the limit in L2(0) of a 
sequence (<Pn)nEN of elements of Gc(O). For each n E N, set 

fn(x) = f(a) + l x <Pn(t)dt. 

Clearly fn E G1([a, b]) and, for every x E [a, b], 

by the Schwarz inequality. Thus (fn)nEN is a sequence in Gl([a, b]) that 
converges uniformly, and so in L2(0), to the element f . Since, in addition, 
f~ = i.pn for every n, which implies that the sequence (f~)nEN converges to 
f' in L2(0), we deduce that (fn)nEN converges to f in Hl(O). D 

The Space HJ(O) 

This denseness theorem of Gl(O) in Hl(O) remains valid if 0 is a bounded 
open subset of JRd under an additional regularity assumption (for exam­
ple, that 0 be "of class G l ,,). We will not use this result; instead we will 
introduce a subspace of Hl(O) in which ~(O) is dense, namely the space 
HJ(O), which is by definition the closure of ~(O) in Hl(O). The space 
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HJ(n), with the scalar product (.,. )HI, is a Hilbert space by construction, 
being a closed subspace of the Hilbert space HI(n). In the case d = 1, the 
relationship between HJ(n) and HI(n) is simple: 

Proposition 1.4 If n = (a, b), with -00 ~ a < b ~ +00, then 

HJ(n) = HI(n) n co(n). 

In other words, HJ(n) consists of those elements of HI(n) whose con­
tinuous representative tends to 0 at the boundary of n in [-00, +00]. 

Proof Consider an element of HJ (n) having / as its continuous represen­
tative and let ('Pn)nEN be a sequence in pen) that converges to / in HI (n). 
Since the sequence ('Pn)nEN converges to / in L 2 (n) , it has a subsequence 
that converges to / almost everywhere. Replacing it by a subsequence if 
necessary, we can suppose that there is a point a E n such that the se­
quence ('Pn(O»nEN converges to /(0). Then, by the proof of Proposition 
1.2 (and particularly by Equation (**), with / replaced by / - 'Pn), we 
have, for every x E n, 

which proves, by the Schwarz inequality, that the sequence ('Pn)nEN con­
verges uniformly to / on n, and so that / E co(n). 

At the same time, since Cc(n) is dense in L2(n) by Proposition 2.6 
on page 107, since pen) is dense in Cc(n) = pO(n) by Corollary 1.3 on 
page 262, and since there is a continuous injection from Cc(n) into L2(n) 
(so that convergence in Cc(n) implies convergence in L 2 (n», we deduce 
that the space pen) is dense in L2(n). 

Now consider / E Hl(n)nCo(O). First suppose that -00 < a < b < +00. 
Then, for every x E [a, b], we have lex) = f: f'(t) dt and, in particular, t f' (t) dt = o. Let ('l/Jn)nEN be a sequence in pen) that tends to f' in L 2 (n), 

a b 
and set An = fa 'l/Jn(t) dt for n EN. Then 

lim An = [b f'(t) dt = O. 
n~+oo Ja 

b 
Take X E P(O) such that fax(t) dt = 1 and define ipn by 

ipn(x) = 1"" ('l/Jn(t) - AnX(t») dt. 

We then check that ipn E pen), that the sequence ('P~)nEN converges to 
f' in L2(0), and that (CPn)nEN converges to / uniformly and so in L2(0). 
Thus f E HJ(O), which proves the desired result if 0 is bounded. 

Finally, suppose that, for example, a = -00 and b < +00. Let (Pn)nEN 
be a sequence in g(( -00, b» such that, for every n E N, 0 ~ Pn ~ 1, 
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Pn = Ion [-n, b), Pn = 0 on (-00, -n-2]' and Ip~1 :::; 1. By the Dominated 
Convergence Theorem, we see that, on the one hand, the sequence (Pnf)nEN 
converges to I in L2(0) and that, on the other, since (Pnf)1 = p~1 + 
Pn!', the sequence «Pnf)l)nEN tends to II in L2(0). Therefore (Pnf)nEN 
converges to I in HI(O). Moreover, since (Pnf)(b) = 0 and (Pnf)(x) = 0 for 
x:::; -n-2, we can, by the result ofthe preceding paragraph, approximate 
each Pnl by elements of ~«-n-2, b)) in HI«-n-2,b)), and so also in 
HI(O). Thus the result is proved in this case. The cases a> -00, b = +00, 
and a = -00, b = +00 are analogous. D 

Proposition 1.2 says that HI(JR.) c Co(JR.), so Proposition 1.4 implies that 
HI(JR.) = HJ(JR.). The next proposition shows that this remains true in all 
dimensions. It is also clear from Proposition 1.4 that HI(O) -=I- HJ(O) if 0 is 
an interval distinct from JR.. Intuitively, if 0 is a bounded open set in JR.d, the 
elements of HJ(O) are, as in the case d = 1, those elements of HI(O) that 
"vanish on the boundary of 0" . In dimension 1, this expression makes sense 
since the elements of HI(O) have a continuous representative. In higher 
dimensions, the elements of HI(O) are only defined almost everywhere, 
so talking about their value on the boundary of 0, which generally has 
measure zero, makes no sense a priori. Nonetheless, it is possible, if 0 
is sufficiently regular, to define the value of an element of HI(O) at the 
boundary of o. We will not do this; in this regard see Exercises 16, 17, and 
18 below. 

Proposition 1.5 The spaces HI (JRd) and HJ(JRd) coincide. 

Proof. We must show that ~(JR.d) is dense in HI (JRd). Take ~ E ~(JR.d) such 
that ~(O) = 1. For each n E N*, put ~n(X) = ~(x/n). If IE HI (JR.d) , then 
~nl E H1(JR.d) and, by the Dominated Convergence Theorem, the sequence 
(~nf)nEN' converges to I in L 2 (JRd). Moreover, for each j E {I, ... , d}, 

so, again by Dominated Convergence, the sequence (Dj(~nf))nEN converges 
to Djl in L 2 (JRd). Therefore the sequence (~nf)nEN' converges to I in 
H1(JRd). Consequently, the space H1(JRd) consisting of elements of HI (JRd) 
with compact support is dense in H1(JRd). 

Now take I E H1(JRd) and let (Xn)nEN be a smoothing sequence. Then, 
for every n E N, the convolution I *Xn is a function of class Coo on JR.d (this 
follows from the theorems on differentiation under the summation sign) 
whose support is contained in Supp I + Supp Xn. Therefore I*Xn E ~(JR.d). 
On the other hand, by Proposition 3.7 on page 174, the sequence (Xn * f)nEN 
converges to I in L2 (JRd) . Since, in addition, DjU * Xn) = (Djf) * Xn (by 
Corollary 2.10 on page 330 and Proposition 2.12 on page 331), we again 
deduce from Proposition 3.7 on page 174 that the sequence (DjU *Xn))nEN 
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converges to Djf in L2(JRd). It follows that (f * Xn)nEN converges to f in 
Hl(JRd), which concludes the proof. 0 

The next inequality, applicable when f2 is bounded, will play an impor­
tant role later. 

Proposition 1.6 (Poincare inequality) If f2 is a bounded open set in 
JRd (more generally, if one of the projections of f2 on the coordinate axes 
is bounded), there exists a constant C ~ 0 depending only on f2 and such 
that 

Ilull£2(fl) ~ C IIIVuIIIL2(fl) for all u E HJ(f2). 

If f2 is bounded, we can take e = d( f2). 

Proof. By denseness, we just have to show the inequality for every u E 
!t'(f2), that is, for every u E !t'(JRd ) such that Suppu c f2. Suppose for 
example that the projection on f2 onto the first factor is bounded, so there 
exist real numbers A < B such that f2 c [A, BJ x R d - l . Since u is of class 
e l , 

l X1 au 
u(x) = ~(t, X2, ... , Xd) dt for all x E f2. 

A UXI 

It follows, by the Schwarz inequality, that 

lu(x)1 2 ~ (B - A) i B 1 ::112 
(t, X2,···, Xd) dt for all x E f2. 

Integrating this inequality over [A, BJ x JRd - l gives 

Since IDlul ~ IVul, the result is proved. o 

It follows in particular that, if f2 is a bounded open set, nonzero constant 
functions belong to Hl(f2) but not to HJ(f2); thus HJ(f2) =f. Hl(f2). 

The Poincare inequality can be interpreted in the following way: 

Corollary 1.7 Suppose that f2 is a bounded open set (more generally, that 
one of the coordinate projections of f2 is bounded). The map 

is a Hilbert norm on HJ(f2) equivalent to the norm 1I·IIH1(fl). 

Proof. If e is the constant that appears in the Poincare inequality, we have, 
for every u E HJ(f2), 
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which proves the equivalence between the two norms. At the same time, 
we see that the norm lIuIlHJ(O) is defined by the scalar product 

d 

(u I V)HJ(O) = L (Dju I DjV)£2(O). o 
j=1 

Proposition 1.8 For I E HJ(!l), set 

- {Ion!l, 
I = 0 on JRd \ !l. 

Then j E H 1 (JRd) and the map that takes I to j is an isometry between 
(HJ(!l), 11'IIHl(O») and (Hl(JRd), 11·IIHl(JRd»). 

Proof If I E .P(!l) , we clearly have j E 'p(JRd) and Djl = Dd for 
j E {I, ... , d} . Consequently, the map I I-t j is an isometry from .P(!l) , 
with the norm 11 ' IIHl(O), into H 1(JRd) . Since H 1(JRd) is complete, the ex­
tension theorem says that this isometry extends to an isometry I I-t j from 
(HJ(!l), lI ' IIHl(O») to (Hl(JRd), 1I·IIHl(JRd»). Now, convergence in HI im­
plies convergence in L2, so, if (<Pn)nEN is a sequen~e in .P(!l) converging to 
fin HJ(!l), the sequence (<{;n)nEN converges to I in L2(JR ). Since it also 
converges to j in HI (JRd) (by the definition of j) and so also in L2(JRd), it 
follows that j = j , which concludes the proof. 0 

Lemma 1.9 For every u E H 1(JRd) and every hE JRd, 

Proof By Proposition 1.5, the space 'p(JRd) is dense in Hl(JRd). Thus it 
suffices to prove the property for u E 'p(JRd). If u E .P(JRd), we have 

u(x - h) - u(x) = -11 'Vu(x - th) . hdt; 

thus, by the Schwarz inequality, 

Now it suffices to integrate this inequality over JRd using the fact that 
Lebesgue measure is invariant under translations. 0 

We now derive from the preceding results an important compactness 
theorem. 

Theorem 1.10 (Rellich) II n is a bounded open set, the canonical in­
jection u I-t u from HJ(!l) into L2(!l) is a compact operator. 
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In other words, every bounded sequence in HJ(O) has a convergent sub­
sequence in L2(0). 

Proof. Since the map U >-+ ulO from L2(JRd) to L2(0) is clearly continuous, 

it suffices to prove that the map f >-+ i from HJ(O) to L 2(]Rd) is a compact 
operator (where i is as in Proposition 1.8). Let B be the closed unit ball 
in HJ(O), and put B = {j: fEB}. By Proposition 1.8, B is contained in 
the closed unit ball of H 1(JRd). We must show that B is relatively compact 
in L 2 (JRd). To do this, we use the criterion provided by Theorem 3.8 on 
page 175 in the case p = 2. 

Properties i and ii in the statement of that theorem are clearly satisfied 
since, for every fEB, we have lIillL2 :s: 1 and 

f /j(xWdx=O 
J{lxl>R} 

for every R > 0 such that n c B(O, R). On the other hand, B is contained 
in the closed unit ball of HI (ad); thus, by Lemma 1.9, 

which proves property iii. D 

Exercises 

Here 0 is still an open subset of ]Rd. 

1. Show that, if U E HI(O) and v E HJ(O), then 

(Dju/vh2 = -(uIDj v)£2 for j E {l, ... ,d}. 

2. Let (Un)nEN be a sequence in HI(O) that converges in L2(0) to an 
element U E L2(11) and such that, for each j E {I, ... , d}, the sequence 
(DjUn)nEN converges in L2(0) to an element Vj E L2(0). Show that 
U E Hl(I1), that (Un)nEN converges to U in HI(O), and that Vj = Dju 

for each j E {I, ... ,d}. 
Hint. Show that (Un)nEN is a Cauchy sequence in HI(!1). 

3. Let (Un)nEN be a bounded sequence in Hl(O) that converges in L2(n) 
to U E U(O). Show that U E HI(n) and that there exists a subsequence 
(Unk ) kEN such that 

1. uno + ... + Unk 
1m =U 

k-Hoo k + 1 

in H1(n). 
Hint. Use the Banach-Saks Theorem (Exercise 16 on page 121). 
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4. Let H~(n) be the set of elements of Hl(n) having compact support. 
Prove that H~(n) is a dense subspace of HJ(n). 

5. Show that the canonical injection from H1(Rd) to L2(Rd) is not com­
pact. 

6. Suppose U E Hl(n). Show that there exists a sequence (Un)nEN in 8?(n) 
that converges to U in L2(n) and is such that, for every j E {I, ... ,d}, 
the sequence (Djun)nEN converges to Dju in L~oc(n). (Convergence in 
L~oc(n) was defined in Exercise 19 on page 159.) 

7. Suppose that 0. = (a,b) is a bounded interval in R. Show that the best 
constant in the Poincare inequality is (b-a)/7r. 
Hint. Use Wirtinger's inequality, Exercise 16d on page 137. 

8. The Meyers-Serrin Theorem. Let 0. be an open subset of Rd. Show that 
6"(0.) n Hl(n) is dense in Hl(n). 
Hint. Let (nj )jEN be a family of relatively compact open subsets of 0. 
covering 0. and such that no = 0 and OJ C nj+l for every j E N. 
Let (CPj)jEN be a partition of unity relative to the family of open sets 
(nj+2 \ OJ )jEN (see Exercise 14 on page 267). Finally, take a smoothing 
sequence (Xn)nEN on Rd, an element U E H1(n), and € > o. Show that, 
for every j EN, there exists an integer nj E N such that 

SUPP(Xnj *(cpju)) C nj+2 \OJ and II (Xnj*(CPju)) -cpjuIIH1(0) :::;€rj - 1 . 

Then consider v = ~jEN Xnj * (cpju). 
9. The Poincare inequality in Hl(n). (This result generalizes Exercise 16b 

on page 137.) Suppose 0. is a bounded and convex open set in JRd. 
a. Show that the relation 

Tf(x) = 10 Ix - yll-d f(y)dy 

defines a continuous linear operator T from L2(n) to L2(n). 
Hint. Use the Young inequality in JRd (see page 172 and also Exercise 
9b on page 182). 1 f 

h. Take U E C1(n)nLl(n), and put m(u) = vol 0. if: u(x) dx, 8 = d(n). 
Show that, for every x En, 0 

1 8d f 
Iu(x) - m(u)1 :::; vol 0. d 10 Ix - yll-d IVu(Y)1 dy. 

Hint. Prove, then integrate with respect to y, the equality 

U(x) - u(y) = lX-YI I: = ~I . Vu (x + t I~ = :1) dt. 

Deduce that 

lu(x) - m(u)1 :::; ~IO f ( f+oo Ivu (x + t_I
Z
I) I dt) dz, 

vo H 1{zEIRd:lzl~8} 10 z 



358 10. The Laplacian on an Open Set 

where V'u is extended with the value 0 outside O. Then use Theorem 
3.9 on page 74 twice. 

c. Deduce the existence of a constant C > 0 such that 

Hint. Show this inequality for every U E CI (0) n HI (0), then argue 
by denseness, using Exercise 8. 

d. Show that the norm 1·1 defined on Hl(O) by 

lui = lin U(X)dXI + 111V'ulll£2(fl) 

is equivalent to the norm 1I·IIH1(fl). 
10. All functions considered here are real-valued. 

a. Suppose U E HI(O). Show that there exists a sequence (Un)nEI\! in 
~(O) that converges to U almost everywhere and in L2(0) and is such 
that, for every j E {I, ... , d} , the sequence (DjUn)nEI\! converges to 
Dju in Lfoc(O) (see Exercise 6). 

h. Let G E Cl(JR) satisfy 

G(O) = 0, IG'(t)l:<::; M for all t E JR. 

Show that, if U E HI(O), then Go U E HI(O) and 

Dj(G 0 u) = (G' 0 u)Dju 

for every j E {I, ... , d}. In particular, IIG 0 ullHI :<::; MllullHI. 
Hint. Take an approximating sequence (Un)nEI\! of U as in the first 
part of this exercise. Show that (G 0 Un)nEI\! converges to Go U in 
L2(0) and, for every j E {I, ... , d}, the sequence whose general term 
is Dj(G 0 un) = (G' oun)Djun converges to (G' 0 u)Dju in Lfoc(O). 

c. Show that, if G is as above and U E HJ(O), then Go U E HJ(O). 
Hint. Consider again the preceding proof and notice that, if v E 
~(O), then Go v E H1(0) (see exercise 4). 

11. All functions considered here are real-valued. 
a. Show that, for every n E N, there exists a function Gn E C(JR) such 

that IG~(t)1 :<::; 1 for all t E JR and 

Gn(t) = {t-1/2n if t :<::; -lin, 
if t 2 o. 

h. Suppose U E HI(O). Show that u+ E HI(O) and that Dj(u+) 
1{u20}Dju for every j E {I, ... , d}. 
Hint. Compute the limits in L2(0) of the sequence (Gn oU)nEI\! and 
of the sequences (Dj(Gn oU))nEI\!, for j E {I, ... ,d}, using Exercise 
10 for the latter. Then use Exercise 2. 
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c. Show that, if u E Hl(n), 

I{u=o}Dju = 0 for j E {I, ... , d}. 

Hint. Compute Dj(u-). 
d. Let u E HJ(n). Show that u+ E HJ(n). 

Hint. Let (<Pn)nEN be a sequence in ~(n) converging to u in HJ(n) 
and almost everywhere. Then consider the sequence (Gn 0 <Pn)nEN . 

e. Assume either that u E Hl(n) or that u E HJ(n). Show that lui E 
Hl(n) or lui E HJ(n), respectively, and that 

Djlul = I{u~o}Dju-I{u<o}Dju for j E {I, . .. ,d}. 

Deduce that IIlulllHI = lIullHI. 
f. Show that Hl(n) and HJ(n) are lattices. 

12. All functions considered here are real-valued. 
a. Let K be a compact subset of JR of Lebesgue measure zero. 

i. Show that there exists a sequence (<Pn)nEN in Cc(JR) such that, 
for every n EN, we have 0 ~ <Pn :::; 1, <Pn ~ <Pn+l and 

lim <Pn(t) = IK(t) for t E lR. 
n-t+oo 

ii. Take u E Hl(n) and suppose ~n(x) = J; <Pn(t) dt. Show that, 
for every n E N, ~n 0 U E H1(n), (~n 0 U)nEN converges to 0 in 
H1(n), and 

I{uEK}Dju = 0 for j E {I, ... , d}. 

(This generalizes Exercise IIc.) 
Hint. Use Exercises 2 and 10. 

h. Show that, if A is a Borel set in JR with measure zero and u E H1(n), 
we have Vu = 0 almost everywhere on u-1(A). 
Hint. Use the fact that the Radon measure p, defined by 

J <pdp, = J (<p 0 u) IVul2 dx for all <P E Cc(JR) 

is regular (see Exercise 5 on page 77). 
13. All functions considered here are real-valued. 

a. Let G : JR -t JR be a Lipschitz function with Lipschitz constant M 
and satisfying G(O) = o. Show that, if u E Hl(n), then Gou E Hl(n) 
and IIG 0 UIlHI :::; MllullHI. 
Hint. Approximate G by functions 

(l x+(l/n) 11/n ) 
Gn(x) = n x G(t) dt - 0 G(t) dt 

and use Exercises 3 and 10. 



360 10. The Laplacian on an Open Set 

h. Under the same assumptions on G, prove that U E HJ(f2) implies 
Gou E HJ(f2) . 
Hint. Show first that u E ~(f2) implies Go u E HJ(f2) (see Exer­
cise 4) . Then use Exercise 3. 

14. Show that, if f and g belong to HI(f2) n LOO(f2), so does the product 
fg, and that 

Show that if, in addition, f and g belong to HJ(f2), so does fg . 
Hint. Using Exercise 10, prove first that, if h E HI(f2) n LOO (f2), then 
h2 E HI(f2) and Dj(h2 ) = 2hDj h (and similarly with HJ(f2) instead of 
HI(f2)). 

15. Show that every positive element of HJ(f2) is the limit in HI(f2) of a 
sequence of positive elements of ~(f2) . 

Hint. If u is a positive element of HJ (f2), there exists a sequence ('l/Jn)nEN 
of real-valued elements of ~(f2) that converges to u in HI(f2) and al­
most everywhere. Show that there exists a sequence (Gn)nEN in G"(JR) 
such that, for every n EN, we have 0 S; G~ S; 1 and 

G t - -{ 
0 if t < 0, 

n( ) - t - lin if t ~ 21n. 

Show that the sequence (Gn 0 'l/Jn)nEN converges to u in HI(f2) (use 
Exercise 11c). 

16. We wish to show that Co(f2)nHI(f2) c HJ(f2). Take u E C~(f2)nHI(f2) 
and let c.p be a function of class CIon JR such that <p = 0 on [-1, 1] and 
<p = 1 on (-00, -2) U (2, +00). 
a. For n E N*, set Un = <p(nu)u. Show that Un E HI(f2) n Cc(f2). 

Hint. Use Exercise 10. 
h. Show that the sequence (Un)nEN converges to u in HI(f2). 

Hint. Use Exercise 2. 
c. Complete the proof. 

Hint. Use Exercise 4. 

(Note that this exercise yields another proof of the result in the one­
dimensional case.) 

17. Assume that d = 2 and that 

f2 = {x E JR2 : 0 < Ixl < 1}. 

Let c.p be an element of ~(JR) such that <p(t) = 1 if It I S; 1/2 and c.p(t) = 0 
if It I ~ 1. For n E N* and x E f2, put 
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and u(x) = cp(2Ixl). Show that Un E ~(O) for every n E N* and that 
the sequence (Un)nEN converges to U in Hl(O). Deduce that 

HJ(O) n C(O) ct Co(O). 

18. The trace theorem in a half-space. Assume that d ;::: 2 and that 0 = 
(0,+00) X JR.d-l. 

a. Show that the space ~(n) consisting of functions of class Coo on n 
with compact support, is dense in Hl(O). 
Hint. Argue as in the proof of Proposition 1.5, choosing a smoothing 
sequence (Xn)nEN consisting of elements of ~(-O). 

b. Take U E ~(n). Show that, for every x E JR.d-l, 

lu(0,x)1 2 ~ 1+00 (lu(xI,x)1 2 + 1::1 (XI,x)1 2
) dXI. 

Deduce that 
IIU(O, . )1I£2(lRd-1) ~ IluIIH1(0). 

c. Show that there exists a unique continuous linear map /0 from HI(O) 
to L2 (JR.d-l) such that 

IOU = u(O, .) for all u E ~(n). 

d. Show that 

IOU = u(O,') for all u E C(n) n HI(O). 

Hint. Show that every element of C(n)nHI(O) can be approximated 
in C(n) and in HI(O) by a sequence of elements of ~(n). 

e. Green's formula in HI(O). Suppose U,V E HI(O). Show that 

(v, Dju) £2(0) = - (Djv, u) L2(0) for all j E {2, ... , d} 

and that 

(v,D1u)£2(0) = -(D1v,U)£2(0) - (roU,/OV)£2(lRd - 1 ). 

Hint. Use the first part of the exercise. 
f. i. If u E HI (0), denote by it the extension of U to JR.d having the 

value 0 outside O. Show that, for every U E ker/o, 

au au 
for j E {I, ... , d} , 

aXj aXj 

and so that it E H1(JR.d). 
Hint. Use the preceding question. 
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ii. Show that the space ~(O) is dense in ker,),o (with respect to the 
norm 11 · IIH1(n». 

g. Deduce from these results that HJ (0) = kef')'o and that 

HJ(O) n C(D) = {u E C(D) n Hl(O) : u(O, · ) = O}. 

(In this sense, we can say that HJ(O) consists of those elements of 
Hl(O) that vanish on the boundary of 0.) 

19. The maximum principle for the Laplacian in Hl(O). Suppose that 0 is 
bounded. All functions considered will be real-valued. 
If u E Hl(O), we say that u ~ 0 on the boundary 00 of 0 ifu+ E HJ(O). 
(It was proved in Exercise 10 that u + E H I (0) for every u E H I (0) . ) 
a. Show that, if u E C(D) nHl(O) and u(x) ~ 0 for every x E 00, then 

u ~ 0 on 00 in the sense defined above. 
Hint. Use Exercise 16. 

h. Take u E Hl(O) . Show that, if Au :::: 0 (that is, if Au is a positive 
distribution), we have 

u(x) ~ supu for almost every x E 0, 
an 

where sUPan u = inf{l E 1R. : u -l ~ 0 on aO}. 
Hint. Take 1 E JR such that v = (u -l)+ E HJ(O). Using Exercise 
10 show that 'Vv = 0 on {u -l < O} and 'Vv = 'Vu on {u -l :::: O}. 
Deduce that 

111'Vvlll~2(n) = In 'Vu(x) · 'Vv(x)dx ~ 0 

(using Exercise 15) and conclude the proof. 
c. Take u E Hl(O) . Show that Au = 0 implies 

~rgu ~ u(x) ~ s~u for almost every x E 0, 

where infan u = - sUPan ( -u) . 
d. Show that these results remain true if we replace the assumptions 

Au :::: 0 and Au = 0 by, respectively, !L'u :::: 0 and !L'u = 0, where 
!L' is an elliptic homogeneous operator of order 2, that is, a linear 
operator on Hl(O) of the form 

!L'u = " ~ (a .. ~u) L...J ax ' ',1 ax' ' 
l~i,j~d' 1 

with ai,j E L~(O) for 1 ~ i,j ~ d, satisfying the condition that 
there exists a > 0 such that, for almost every x E 0, 

L a i ,j(x){i{j:::: o:l{1 2 for all { E JRd. 
l ~ i ,j~d 
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20. Suppose that 0 is a bounded interval in R. Show that the canonical 
injection of Hl(O) in C(O) is a compact operator. (This is a stronger 
result than Rellich's Theorem in this case.) 
Hint. Show that, if U E Hl(O) and x, YEO, 

(In other words, Hl(O) injects continuously in C 1/ 2 (O), the space of 
Holder functions of order 1/2 on OJ see Exercise 5 on page 45.) Then 
use Ascoli's Theorem or Exercise 5 on page 45. 

21. Suppose that 0 is a bounded open subset of Rd. Let (Un)nEN be a se­
quence in HJ(O). Suppose that the sequence (Un)nEN converges weakly 
in L2(0) and that, for every j E {I, ... , d}, the sequence (aun/aXj)nEN 
is bounded in L2(0). Show that the sequence (Un)nEN converges strongly 
in L2(0). 
Hint. By Exercise lOa on page 120, the sequence (Un)nEN is bounded 
in HJ(O). Then use Rellich's Theorem and Exercise 12 on page 121. 

2 The Dirichlet Problem 

We consider a bounded open subset 0 of Rd. The space HJ(O) is from now 
on given the Hilbert space structure defined by the scalar product 

d 

(u I V)HJ = L (Dju I Djv)L2(O) = 1 '\7u· '\7vdx. 
j=1 0 

We denote by II·IIH' the norm associated with this scalar product. o 
If IE L2(0), a solution of the Dirichlet problem on 0 with right-

hand side I is, by definition, an element U of HJ(O) such that 

D.u = f. 

Classically, to impose a Dirichlet condition on the solution (in the ordi­
nary sense) of a partial differential equation over 0 means stipulating the 
value of the solution on the boundary of o. In the present context, the 
condition U E HJ(O) is of this type, since it amounts, in a sense already 
discussed, to requiring that U "vanish on the boundary of 0" . 

The next proposition gives the so-called variational formulation of 
the Dirichlet problem, which underlies the Galerkin-type algorithms for 
numerical solution of the Dirichlet problem (see Exercise 1 on page 116). 

Proposition 2.1 II IE L2(0), these statements are equivalent: 

- U E HJ(O) and D.u = I. 
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- u E HJ(O) and (u I V)Hl = -(f I vh2 for all v E HJ(O). 
o 

Proof. If 1 E L2(0) and u E HJ(O), we have the following chain of equiv­
alences: 

~u = 1 <=> (~u,rp) = (fICP)£2 for all cP E ~(n) 

d 

<=> L(Dju I Djcp)£2 = -(f I CP)£2 for all cP E ~(O) 
j=l 

<=> (u I CP)Hl = -(f I CP)£2 for all cP E ~(O). o 

The result follows because ~(O) is dense in HJ(O). D 

This will allow us, in particular, to prove the existence and uniqueness 
of the solution of the Dirichlet problem. 

Theorem 2.2 For every 1 E L2(0), the Dirichlet problem on 0 with 
right-hand side 1 has a unique solution u E HJ(O) . The operator 

~-l : L2(0) --* HJ(O) 

1 H u 

thus defined is continuous and has norm at most G, the constant that ap­
pears in the Poincare inequality (Proposition 1.6). 

Proof. If 1 E L2(0), 

l(f I v)£21 ~ GII/IIL211v IIHJ for all v E HJ(O), 

where G is the constant in the Poincare inequality. Thus, the map L : v H 

(v I f)£2 is a continuous linear form on HJ(O) of norm at most GII/II£2. 
Therefore the existence and uniqueness of the solution u, together with the 
inequality IlullHJ :S GII/IIL2, follow immediately (in view of the preceding 
proposition) from an application of Riesz 's Theorem (page 111) to the 
Hilbert space HJ(O). D 

The Dirichlet problem can also be interpreted as a minimization problem: 

Proposition 2.3 Let 1 E L2(0). For every v E HJ(O), put 

These statements are equivalent: 

- u E HJ(O) and ~u = I. 
- u E HJ(O) and Jf(u) = minvE HJ(!1) Jf(v). 



2 The Dirichlet Problem 365 

Proof Suppose hE HJ(f2) . Then 

Therefore, by Proposition 2.1, Au = f implies that 

Thus J, attains its minimum on HJ(f2) at u and only at u. o 

We now study the spectral properties of the Laplacian on f2 with "Dirich­
let conditions". More precisely, we will say that a complex number A is 
an eigenvalue of the Dirichlet Laplacian if there exists a nonzero 
u E HJ(f2) such that Au = AU. Such functions u are the eigenfunc­
tions associated with the eigenvalue A. The eigenspace associated with A 
is the space of u E HJ(f2) such that Au = AU. 

Proposition 2.4 The operator 

T : HJ(f2) -t HJ(f2) 

v H u such that Au = -v 

is an injective, compact, positive selfadjoint operator on HJ(f2) . 

Proof Let J : u H u be the canonical injection from HJ(f2) into L2 (f2). 
Then T = -A- 1 0 J, so, by Proposition 1.2 on page 215, T is compact, 
because A- 1 is continuous (Theorem 2.2) and J is compact (Rellich's The­
orem, page 355). 

On the other hand, if u E HJ(f2) and Tu = w, we have Aw = -u. 
Therefore, by Proposition 2.1, 

(Tu I V)HI = (u I V)L2 for all u, v E HJ(f2), o 

which easily implies that T is selfadjoint, positive, and injective. 0 

It follows that we can apply to the operator T the results established in 
Chapter 6 concerning the spectrum of compact selfadjoint operators. Now, 
if A E C and u E HJ(f2) is nonzero, we have 

Au = AU ~ T(AU) = -u ~ (A =1= 0 and Tu = -~u). 

It follows that A is an eigenvalue of the Dirichlet Laplacian if and only if 
A =1= 0 and -1/ A is an eigenvalue of T, and that in this case the associated 
eigenfunctions are the same. Since T is not of finite rank (its image clearly 
contains ~(f2)) , we deduce from Theorem 2.2 on page 235 and Corollary 
2.7 on page 238 the following properties: 
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Theorem 2.5 1. The set of eigenvalues of Dirichlet Laplacian on f! forms 
a sequence 0> Ao > Al > .. . > An > .,. tending to -00. 

2. The eigenspace associated with each eigenvalue A has finite dimension 
d;. . 

3. Let (JLn)nEN be the decreasing sequence of eigenvalues of the Dirichlet 
Laplacian, where each eigenvalue A is repeated d;. times. There exists a 
Hilbert basis (Un)nEN of HJ(f!) such that 

~un = JLnUn for all n E N. 

Remarks 

1. By Proposition 2.1, 

(un I V)Hl = -JLn(un I v)p for all n EN and v E HJ(f!). o 

In particular, (lIun llp)2 = -1/JLn and (un I Um )L2 = 0 if n =1= m. At 
the same time, the space ~(f!) is dense in L2(f!) (see the proof of 
Proposition 1.4) , and a fortiori HJ(f!) is dense in L2(f!). Since conver­
gence in HJ(f!) implies convergence in L2(f!), the family (un), which is 
fundamental in HJ(f!), is also fundamental in the closure of HJ(f!) in 
L2(f!), namely in L2(f!). It follows that the sequence (y'-JLn Un)nEN is 
a Hilbert basis for L2(f!). 

2. For every n EN, we have Un E g(f!) (see Exercise 8) . Therefore Un 
satisfies the equation 6un = JLnUn in the ordinary sense. 

Using the sequence (Un)nEN and the eigenvalues (JLn)nEN, we will now 
describe the solutions of various partial differential problems with Dirichlet 
conditions. 

2A The Dirichlet Problem 

Proposition 2.6 Suppose f E L2(f!). The solution U of the Dirichlet 
problem on f! with right-hand side f is given by 

+00 
U = - L (fIUn)L2Un, 

n=O 

the series being convergent in HJ(f!). 

Proof. By remark 1 above, (y'-JLn Un)nEN is a Hilbert basis of L2(f!), so 

+00 
f = - L JLn(f I un)p Un, 

n=O 
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with convergence in L2(n). In particular, 

+00 
(11/11£2)2 = L -Iln 1(flun)L2 12 < +00 

n=O 

and, since the sequence (-lln)nEN is increasing and thus bounded below 
by -Ilo > 0, 

+00 

L l(f I un )£21 2 < +00. 
n=O 

Since the sequence (Un)nEN is a Hilbert basis for HJ(n), it follows that the 
series 

+00 
V = - ~)I I Un)L2 Un 

n=O 
converges in HJ(n). Since convergence in HJ(n) implies convergence in 
L 2 (n), which in turn implies convergence in ~'(n), we deduce that, in 
~'(n), 

+00 
D..v = - L Iln(f I Un)L2 Un 

n=O 
(by the definition of the sequence Iln). Likewise 

+00 
1= - L Iln(f I Un)£2 Un, 

n=O 

with convergence in ~'(n). It follows that D..v = I and so that v = u, the 
solution of the Dirichlet problem on n with right-hand side I. 0 

2B The Heat Problem 

Proposition 2.7 Suppose I E HJ(n). There exists a unique function u 
from (0,+00) to HJ(n), differentiable in (0,+00) and satisfying the/ollow­
ing conditions: 

- u'(t) = D..u(t) lor all t > 0. 
- limHo u(t) = I in HJ(n). 

This lunction u is given by 

+00 
u(t) = L (f I Un)H~ et/-'nun for all t > 0, 

n=O 

the series being convergent in HJ(n). If we write u(t)(x) = u(t, x), we have 

( fJ d (P) 
fJt- L fJx2 u=o in~'«O,+oo)xn). 

j=l J 
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The function u is called the solution of the heat problem on f2 with 
initial data 1 and Dirichlet conditions. 

Proof Suppose u satisfies the conditions of the statement. Then 

by Proposition 2.1. It follows that the function t f-t (1Iu(t)II£2)2 is decreas­
ing and, in particular, that 

Ilu(t)IIL2 ~ II/IIL2 for all t > o. 

Consequently, if 1 = 0, we have u(t) = 0 for all t > 0, which proves 
uniqueness. 

Regarding existence, it suffices to check that the given formula is good. 
This is easy if we take into account that J-Ln ~ J-Lo < 0 for every n. D 

2C The Wave Problem 

Proposition 2.8 Suppose I,g E HJ(f2). There exists at most one func­
tion u from JR to HJ(f2), twice differentiable on JR and satisfying these 
conditions: 

- u"(t) = 6.u(t) for all t E JR. 
- u(o) = 1 and u'(O) = g. 

If the sequences (J.tnUIUn)HJ)nEJII and (v'-J.tn(gIUn)HJ)nEN lie in £2, 
such a function u exists and is given by 

for all t E JR, the series being convergent in HJ(f2) . 

Proof Let u satisfy the conditions of the statement. By Proposition 2.1, 

! (lIu'(t)II£2)2 = 2 Re(u"(t) I u'(t») £2 

= -2 Re(u(t) I u'(t») HJ = - ! (1Iu(t)IIHJ( 

It follows that the expression (1Iu'(t)II£2)2 + (1Iu(t)IIHJ)2 does not depend 
on t. In particular, if f = g = 0, we have u(t) = 0 for t E JR, which proves 
uniqueness. 

The proof of existence, as in the previous example, is straightforward. D 
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Here again, if we write u(t)(x) = u(t, x), we conclude that, under the as­
sumptions made in the existence part of Proposition 2.8, the given function 
u is a solution in ~/(JR x JRd) of the equation 

(:t22 - t ::2)U = O. 
j=1 J 

Note that (v;;n) is the sequence of fundamental frequencies of the 
wave u . nEN 

Exercises 

Unless otherwise stated, 0 is a bounded open subset of JRd. 

1. A generalized Dirichlet problem 

a. Suppose I, g11 .. . , gd are elements of L2(0). Show that there exists 
a unique element u in HJ(O) such that 

Show that, in addition, 

d 

~u = 1 + LDjgj . 
j=1 

d 

III'VuIII L2 (0) ::; 011/11£2(0) + L Ilgjll£2(o), 
j=1 

where C is the constant that appears in the Poincare inequality for 
the open set O. 

h. Suppose 1 E L2(0) and 9 E Hl(O). Show that there exists a unique 
element u of Hl(O) such that 

~u = 1 and u - 9 E Hci(O). 

Show that, in addition, 

2. The Sturm- Liouville problem. All functions considered here will be real­
valued. Let a, b E JR be such that a < b and let p and q be elements 
of LOO ((a, b)). Suppose that q ~ 0 and that there exists a real number 
ct > 0 such that p ~ ct. 

a. Show that, for every 1 E L 2 ((a,b)), the equation 

-(pu')' + qu = 1 
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has a unique solution u in HJ((a, b)), and that this solution mini­
mizes over HJ ((a, b)) the functional 

Jf(V) = ~ 1 (pV'2 + qv2)(x) dx -1 (fv)(x) dx. 
(a,b) (a,b) 

Hint. Apply the Lax-Milgram Theorem (Exercise 1 on page 116) to 
the space HJ((a, b)) and to the bilinear form 

a(u, v) = (pu' I V')£2 + (qu I V)£2. (**) 

h. Show that the linear operator T from HJ ((a, b)) to HJ (( a, b)) that 
maps each 1 E HJ (( a, b)) to the corresponding solution of (*) is a 
compact, injective, positive selfadjoint operator on the Hilbert space 
(HJ((a,b)), a), where a is defined by (**). 

c. Show that there exists a Hilbert basis (en)nEN of (HJ((a, b)), a) and 
an increasing sequence (.An)nEN of positive real numbers with limit 
+00 such that 

-(pe~)' + qen = .An en for all n E N. 

Show that the family (A en)nEN is a Hilbert basis for L2((a, b)) . 
d. Show that, if p E Cl([a, b]) and q E C([a, b]), we have en E C2([a, b]) 

for every n EN. Compare Exercise 13 on page 224. 
e. Let "Yp be the set of p-dimensional subspaces of HJ((a, b)) . Show that 

(see Exercise 11 on page 247). Deduce that, if n, {3, /, and IS are real 
numbers satisfying 0 < n :S p :S {3 and 0 :S / :S q :S IS, we have, for 
every n E N, 

Show that, in particular, 

lb (pJ'2 + q12) dx 
.Ao = min =-a"'-_-:--__ _ 

fEHJ«a,b»\{O} lb 12 dx 

and that this generalizes Wirtinger's inequality (Exercise 16d on 
page 137). 
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3. A more general elliptic problem of order 2. Take elements ai,j (for 1 :S 
i,j:S d) and c in LR"(O), with c:S O. Let 2 be the differential operator 
defined by 

2u = L of} (ai,j 00 . u) + cu. 
l~i,j~d X t xJ 

Suppose that there exists a > 0 such that, for almost every x E 0, 

L ai,j(x)~i~j ~ al~12 for all ~ E JRd. 
l~i,j~d 

(In this case the operator 2 is said to be strongly elliptic or uni­
formly elliptic.) We now restrict ourselves to real-valued functions . 
a. Show that 2 is well defined as a linear operator from HJ(O) to 

~'(O). 

h. Show that, for every f E L2(0), there exists a unique u E HJ(O) 
such that 2u = f . 
Hint. Apply the Lax- Milgram Theorem (Exercise 1 on page 116) to 
the space HJ(O) and to the bilinear form 

a(v, w) = L (ai,jDjv 1 Diw)£2 - (cv 1 W)£2. (*) 
l~i,j~d 

c. Show that, if the matrix (ai,j(x»i ,j is symmetric, the solution u E 
HJ(O) of the equation 2u = f is characterized by a certain mini­
mization property. 

d. Suppose that the matrix (ai,j(x»i,j is symmetric. Show that the op­
erator T on HJ(O) that maps f E HJ(O) to the element Tf = u E 

HJ(O) such that -2u = f is a compact, injective, positive selfad­
joint operator on the Hilbert space (HJ(O), a), where a is defined 
by (*). Derive the existence of a Hilbert basis (Un)nEJII of (HJ(O), a) 
and of a decreasing sequence (JLn)nEJII of negative real numbers with 
limit -00 such that 2un = JLnUn for every n E N. Deduce, in par­
ticular, that Propositions 2.6,2.7, and 2.8 extend immediately to the 
case where the Laplacian is replaced by the operator 2 and ( ·1· )Hl o 
is replaced by a. 

e. Let "f'p be the set of p-dimensional subspaces of HJ(O). Show that, 
for every n E N, 

. a(f,f) 
-JLn = WmE!P f mwax,{O} -llfl12 'n+l E L2 

(see Exercise 11 on page 247). Deduce that 

(-JLn) ~ a( -JLn(O» for all n E N, 

where (JLn(O»nEJII is the sequence of eigenvalues of the Dirichlet 
Laplacian on O. 
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4. A mixed problem. We maintain the hypotheses and notation of Exer­
cise 3. Take elements bi E L~(n) and let b be the bilinear form on 
Hl(n) defined by 

1 d a 
b(u, v) = a(u, v) + 0 ~ bi(x) a~ (x)v(x) dx. 

If f E L 2 (n), we consider the following problem (P)f: Determine an 
element u E HJ(n) such that 

b(u,v) = 10 f(x)v(x)dx for all v E HJ(n). 

a. Interpret (P)f as a partial differential problem in HJ(n). 
h. i. Show that, for any € > 0 and any real numbers 0 and [3, 

1 c 
oa < _02 + _a2 • 

/J - 2€ 2/J 

ii. Derive the existence of a real number B > 0 such that, for every 
€ > 0 and u E HJ(n), 

d 1 "au B II 112 B€ 2 o {:-tbi(x) aXi (x)u(x)dx ~ -2c lV'ul L2(0) - T"u l £2(O)' 

c. Deduce from this that, if the diameter of n is small enough, the form 
b is coercive in HJ(n), so the problem (P)f has a unique solution 
for every f E L2(n). 

(We make no assumptions on the diameter of n in the remainder of the 
exercise.) 

d. Show that there exists a constant >'0 > 0 such that the bilinear form 
defined by 

(u, v) f---t b(u, v) + >'0 10 u(x)v(x) dx 

is coercive on HJ (n). 
e. Take f E L2(n). Explain why there is a unique u E HJ(n) such that 

for every v E HJ(n), 

b(u, v) + >'0 10 u(x)v(x) dx = 10 f(x)v(x) dx. 

Then prove that the operator T from L2(n) to L2(n) defined by 
T f = u is compact. 

f. Let E be the vector space of solutions of (P)o. 

i. Show that E is finite-dimensional. 
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ii. Show that (P)f has a unique solution for every element f E 
L2(n) if and only if E = {o}. 

5. Neumann boundary conditions in dimension 1. We restrict ourselves to 
real-valued functions. Suppose that n = (a, b). 
a. Show that, for every! E L 2 (n), there exists a unique u E Hl(n) 

such that 

lb(u'V') (x) dx+ lb(UV) (x) dx = lb f(x)v(x) dx for all v E Hl(n). 

Hint. Use the Riesz Theorem in the Hilbert space Hl(n). 
h. Show that u is the element of Hl(n) that minimizes the functional 

Jf(v) = ~ lb (v,2 + v2)(x) dx -lb 
(fv)(x) dx. 

c. Check that, in this case, u' E Hl(n) and 

-u" + u = f. 
d. Deduce that, for every v E H 1(n), 

lb u'(x)v'(x) dx = u'(b)v(b) - u'(a)v(a) -lb u"(x)v(x) dx 

(you might use Exercise 14 on page 360); then deduce that 

u'(a) = u'(b) = O. 

e. Show that, for every function f E L2(n), there exists a unique func­
tion u E Cl ([a, b]) such that 

-u" + u = f, u'(a) = u'(b) = 0, 

and that if, in addition, ! E C((a, b)), then u E C2 ((a, b)). 
6. A variational problem with obstacles. We restrict ourselves to real-valued 

functions. Fix! E L2(n) and let X be a function on n such that the set 

C = {u E H~(n) : u ~ X almost everywhere} 

is nonempty. 
a. Show that there exists a unique u E C minimizing over C the func­

tional J defined by 

J(v) = !lIvlliIl + (f I v)p for all v E C. 
o 

Show that u is also characterized by the following conditions: 

uE C, 

k V'u'V'(v-u)dx~- k!(V-U)dX forallvEC. 

Hint. Use the Lions-Stampacchia Theorem, Exercise 2 on page 117. 
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h. Now suppose that X E C(O), u E C(O), and u satisfies (*). Show 
that u satisfies 

uE C, 

-~u + f is a positive distribution on 0, (**) 

-~u + f = 0 on w = {u > X}· 

Hint. Prove first the following facts: 

i. If cp E ~(O) and cp ~ 0, then u + cp E C. 
ii. If cp E ~(w), there exists 'fJ > 0 such that u + tcp E C for every 

t E (-'fJ,'fJ). 
c. Suppose that u, X E C(O) and that, DJu E L2(0) for every j E 

{I, ... , d}. Show that, if u satisfies (**), then u satisfies (*). 
d. Suppose in this part that u and X belong to Co(O) and that u satisfies 

(**). Let v E C . 
i. Show that 

In 'Vu(x) . 'V(v - u)+(x) dx ~ -In f(x)(v - u)+(x) dx 

(see Exercise 15 on page 360). 
ii. Show that 

In 'Vu· 'V(u - v)+dx = L 'Vu · 'V(u - v)+dx, 

In f(u - v)+dx = L f(u - v)+dx. 

Hint. For the first equality, use Exercise lIon page 358. 
iii. For n ~ 1, let Wn = (u - v - (1/n))+ . Show that Wn belongs to 

HJ(O) and that the support of Wn is contained in the set {u-X ~ 
lin} . Deduce that (wn)lw E H~(w), then that (u - v)t E HJ(w) 
(see Exercise 4 on page 357) . 

iv. Deduce that 

L 'Vu · 'V(u - v)+dx = - L f(u - v)+dx. 

v. Conclude from the preceding results that u satisfies (*). 
e. Suppose again that u and X belong to Co(O) and that u satisfies 

(**). Let v E C be such that -~v + f is a positive distribution 
on O. Show that v ~ u. (Therefore, under the assumptions stated, 
u is also characterized as the smallest element v E C such that 
-~v+f~O.) 

Hint. Show that ~(u - v) is a positive distribution on wand that 
u-v ~ 0 on ow in the sense of Exercise 19 on page 362. Then deduce 
from this exercise that v ~ u on w. Conclude the proof. 
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7. Let 0 1 and O2 be disjoint open sets in JRd and put 0 = 0 1 U O2 , De­
termine the eigenvalues (An(O)) and the eigenfunctions of the Dirichlet 
Laplacian on 0 as a function of the eigenvalues (An(Od), (An(02)) and 
of the eigenfunctions of the Dirichlet Laplacian on 0 1 and O2 , 

8. Let (Un)nEN be the Hilbert basis of HJ(O) defined in Theorem 2.5, con­
sisting of eigenfunctions of the Dirichlet Laplacian. Let (J.Ln)nEN be the 
corresponding sequence of eigenvalues. Denote by Ek the fundamental 
solution of the operator D,.k defined in Exercise 4 on page 313. We recall 
that, if 2k ~ d + 1, Ek belongs to C2k-d-l(JRd). Moreover, we denote 
by Un the function Un extended to JRd with the value 0 outside O. 
a. Show that, if TJ: denotes the restriction of (J.Ln)k Ek * Un to 0, then 

D,.k(un - TJ:) = 0 

in ~'(O). 
h. Using the fact that D,.k is hypoelliptic, prove that Un E C2k-d-l(0) 

if 2k ~ d + 1. Deduce that Un E C(O). 
9. Let AO be the first eigenvalue of the Dirichlet Laplacian (that is, the 

smallest eigenvalue in absolute value). Show that J-1/AO is the best 
possible constant C in the Poincare inequality. 

10. We retain the notation of Theorem 2.5. 
a. Show that 

2 1 2 1 
1I~1I£2«(l) ~ - AO 1I~IIHJ«(l) for all ~ E Ho (0) 

and that equality takes place if and only if 

D,.~ = AO~. 

Hint. Use the Bessel equality in the space HJ(O) with the basis 
(Un)nEN and in L2(0) with the basis (V-J.Ln Un)nEN. 

h. Let E be the Ao-eigenspace of the Dirichlet Laplacian on 0: 

E = {~E HJ(O) : D,.~ = AO~}' 

Let ER be the set of real-valued elements of E. Show that I~I E EIR 
for every ~ E E IR • 

Hint. Use Exercise lle on page 359. 
c. Recall from Exercise 8 that the elements of E belong to C(O). Take 

~ E EIR and let x E 0 be such that ~(x) = O. Show that, if p < 
d(x, JRd\O), then 

JI~(x - y)1 dap(Y) = 0, 

where a p is the surface measure on the sphere of center 0 and radius 
pin JRd. Deduce that ~ = 0 on B(x, d(x, JRd\O)). 
Hint. Show that D,.(I~I) ~ 0 and use Exercise 3c on page 346. 
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d. Suppose that 0 is connected. Show that a nonzero element of E 
cannot vanish anywhere on O. Deduce that E has dimension 1 and 
that E is generated by a strictly positive function on O. 
Show that no eigenfunction of the Dirichlet Laplacian associated 
with an eigenvalue other than Ao can have positive values every­
where. 

e. What happens to the results of the previous question when 0 is not 
connected? (You might use Exercise 7 for inspiration.) 

11. An asymptotic estimation of the eigenvalues of the Dirichlet Laplacian. 
If 0 is a bounded open set in ad, denote by (JLn(O))nEN the decreasing 
sequence of eigenvalues of the Dirichlet Laplacian on 0, each eigen­
value appearing as many times as the dimension of the corresponding 
eigenspace. Denote by A(O) = {JLn (0) }nEN the set of eigenvalues of the 
Dirichlet Laplacian on O. 

a. Suppose first that 0 = (0, l)d, where 0 < 1 < +00. 

i. Show that, for every p E (N*)d, the real number 

lies in A(O). 
Hint. Show that the function 

2 7rp 'X' 
( )

d/2 d ( ) 
up(x) = l }1 sin f 

is an eigenfunction corresponding to Ap. 

ii. Show that A(O) = {Ap}PE(N")d. 

Hint. Show that the family {Up}PE(N")d is a fundamental or­
thonormal family in L2(0). 

iii. Let r > O. Show that the number of points in the ball B(O, r) in 
ad whose coordinates belong to N* is at least wd((r- Vd)+)d2-d 

and at most Wdrd2-d, where Wd is the volume of the unit ball in 
ad. 

iv. Deduce that, for every n E N, 

v. Deduce that there exist constants 0:, f3 > 0 such that, for every 
nEN, 

_o:n2/d :'S JLn(O) :'S -f3n2/d. 

(More precisely, JLn(O) rv _47r2l-2w;;2/dn2/d .) 
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h. Let 0 and 0' be bounded open sets in ]Rd. Show that, if 0 cO', we 
have 

IJLn(O')1 ::; IJLn(O)1 for all n E N. 

Hint. Use Exercise 11 on page 247 and the fact that, using the 
same proof of Proposition 1.8, we can isometrically inject HJ(O) 
into HJ(O'). 

c. Show that, for every bounded open set 0 in ]Rd, there exist two 
constants an, f3n > 0 such that 

-ann2/ d ::; JLn(O) ::; -f3nn2/ d for all n E N. 

12. Let u: (0,+00) H HJ(O) be the solution of the heat problem 

u'(t) = Lh(t) for all t > 0 

with initial condition limt--+o u(t) = f in HJ(O) (where f E HJ(O)). 
Show that, for every t > 0, 

where .Ao is the first eigenvalue of the Dirichlet Laplacian (the smallest 
eigenvalue in absolute value). 

13. Heat semigroup. 

a. Suppose f E HJ(O) and t > O. Denote by Pd the value at t of the 
solution of the heat problem on 0 with initial data f and Dirichlet 
conditions. Show that 

+00 
Pd = LetpnUlvn)pvn 

n=O 

with Vn = V-JLn Un (in the notation of Theorem 2.5), the series 
being convergent in £2(0). 

h. Deduce that, for every t > 0, Pt extends to a continuous linear 
operator from £2(0) to £2(0) of norm at most etpo . We denote this 
operator again by Pt. 

c. Show the following facts: 

- PHs = PtPs for all t, s > O. 
- limt--+o+ Pd = f in £2(0) for all f E £2(0). 

d. Show that, if f E £2(0), the limit limt--+o+(Pd- J)/texists in £2(0) 
if and only if the series E~:O JL; IUlvn)L212 converges. Show that, 
if this is the case, 



Answers to the Exercises 

Prologue 

- Page 4, Ex. 1. a. No. b. Yes. c. Yes. 

- Page 5, Ex. 3a. D is the set of dyadic numbers: 

D = {kT n : n E N,k E N,O::; k < 2n}. 

- Page 7, Ex. 9a-i. If (n, m) E I, then (n, m) + 1 = (n, m+l). The limit points 
of I are the elements (n,O), for n E N*. 

- Page 11, Ex. 7. b. Co. c. Co. 

Chapter 1 

- Page 30, Ex. 1. With the notation of the proof of Proposition 1.1, 

Nn 

Pn(j) = LI(xj)<Pn,j' 
j=l 

- Page 37, Ex.2c-iii. Dn * 1= Sn, Kn * I = (Ej~~ Sj)jn. 

- Page 38, Ex. 3b-ii. Bn(l) = 1, Bn(X) = X, and Bn(X2) = X2+X(1-X)jn. 

- Page 45, Ex. 1. [0,1). 

- Page 46, Ex. 5b-ii. If m > n, then B(Cm([O, 1])) is not closed in Cn([O, 1]). 

- Page 47, Ex. 7b-iii. Uniqueness does not hold in general, as can be seen from 
the example I(x, t) = /iXT, for which <pet) = ° and <pet) = ej4 are solutions. 



380 Answers to the Exercises 

Chapter 2 

- Page 54, Ex. 1. band c. (O, 1). d. Any infinite-dimensional Banach space: for 
example, C{[O, 1]). 

- Page 54, Ex.5b. The space JR[X] with IIPII = maxx E[O,lj IP{x)l· 
Another example: Q. 

- Page 79, Ex.8c. No. SUPPII = {{x,x) : x E R} . 

- Page 91, Ex. 7d. X = JR, p,n = on, the Dirac measure at n. 

Chapter 3 

- Page 109, Ex.2b. F.l. consists of the constant functions on [0,1] . For f{x) = 
eX, we have d(f, F) = e - 1. 

- Page 109, Ex. 3. The orthogonal projection onto En is f H IAn f· 
- Page 120, Ex. lOb. Set E = £2 and let {Xn)nEN be the sequence defined in 

Section 3B on page 115. It converges to ° weakly and (x n I Xn) = 1 for all n. 
- Page 130, Ex. 3. a. A Hilbert basis for EA is given by {ep}p~A' with ep{x) = 

b. EX = EZ\A . 
c. The orthogonal projection onto EA is given by f H Ep~A (f I ep)ep. 

- Page 131, Ex·4b. fH E;=o{i+ !)(f I Pj)Pj . 
- Page 132, Ex. 7b-i. (Xk, Ln) = ° if k < n; (Xn, Ln) = (-l)nnL 

Chapter 4 

- Page 148, Ex. 2c. Ifp = 00, foo{x) = 1. Ifp E [1,00), 

( )
-1/1' 

fp{X) = Ixl{log2lxl + 1) . 

- Page 149, Ex. 3d. If K{x,y) = l/{x+y), then IITII = rr/sin{rr/p'). 
If K{x,y) = l/max{x,y), then IITII =p+p'. 

- Page 152, Ex. 7d. No - for example, if X has a non §-measurable subset and 
the singletons of X are §-measurable. 

- Page 155, Ex. 14c. Example: sdn = {[kT n , {k + 1)2-n ] : k E {O, ... , 2n -I}}. 
- Page 159, Ex. 19b. If (Kn)nEN is a sequence of compact sets exhausting X, 

one can give Lfoc the metric d(f, g) = E~~ Tn inf{1I1Kn (f -g) III" 1). 
- Page 164, Ex.4c. (£oo(I))' can be identified with the vector space spanned 

by the family {LI"}I"EA(I)' 

Chapter 5 

- Page 195, Ex.4b. ev{T) = {Ai: i E IIi} and a{T) = ev{T). 
- Page 196, Ex. 9. If T is considered as an operator on Lp{m), then ev{T) = 

{A ElK: m{{<p = A}) > O} and a{T) = <p{Suppm). 
- Page 197, Ex. 10. r{T) = rr /2. 
- Page 197, Ex. 11. ev(8) = a(8) = {O, 1/5}. 
- Page 197, Ex. 12. ev{T) = a{T) = {O, {4 + J3i)/60, {4 - J3i)/60}. 
- Page 198, Ex. 15b. r{T) = 0, a{T) = {OJ. 
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- Page 200, Ex. 20/. Let E = lP, P E [1,00] and T defined by (Tu)(O) = 0 and, 
for n E N*, (Tu)(n) = u(n -1). Then ev(T) = ev(T) = 0, 

aev(T) = {A E ][{ : IAI = I}, aCT) = {A E ][{ : IAI :S I}. 

- Page 208, Ex. 2. In the example, 

aCT) = {oX E][{ : IAI :S I} U {oX E][{ : IA - 11 :S I}. 

- Page 211, Ex. 11e. PI = lal/, UI = l{a;o!o}(a/lal)/. 
- Page 212, Ex. 14. I(T)u = (f 0 <p)u. 

Chapter 6 

- Page 221, Ex. 2. e. No. d. ev(TS) = {O} if there exists n 2: 1 such that 
An = 0; otherwise ev(TS) = 0. aCTS) = {O}. 

- Page 223, Ex. 11. aCT) = {O} U {«7r/2) + k7r)-2 : kEN}. 
- Page 224, Ex. 12d. Yes. 
- Page 227, Ex. 14e. One can take J.t = EnEN 2-n8xn , where (Xn)nEN is a dense 

sequence in X. 
- Page 243, Ex . .lb. r(TT*) = 4/7r2 , IITII = 2/7r. 
- Page 244, Ex. 6b. The family (fn)nEZ, with In(x) = V2cos«7r/2 + 2n7r)x). 
- Page 249, Ex. 12d. 

i. An = _n2 7r2, <po = 1, <pn = V2cos(n7rx) if n 2: 1; 

ii. An = -«7r/2) + n7r?, <pn = V2cos«(7r/2) + n7r)x); 
iii. An = -en + 1?7r2 , <pn = V2sin«n + 1)7rx). 

Chapter 7 

- Page 264, Ex. 2. If hE Cn(JR), then I E Cn- l (JR2). 
- Page 264, Ex. 3. The value of I at 0 is h(n+l)(O)/(n + I)!. 
- Page 266, Ex. 9. limn-->+oo <Pl/n = E~=l ujDj<p. 
- Page 275, Ex. 2. The order of T is sUPnEN IPn I. 
- Page 275, Ex. 3. Distribution of order 2. 
- Page 277, Ex. 8. (Jx(x)dx)8. 
- Page 277, Ex. 9. a. O. b. (2Jo+ OO (sinx/x)dx)8 = 7r8. e and d. 8. 
- Page 277, Ex. 10. In P'(JR*) there is convergence for any sequence (an)nEN. 

In P'(JR) there is convergence if and only if the series Et~ ak/k converges. 
- Page 277, Ex. 12. 8. 
- Page 278, Ex. 15b. No. 
- Page 279, Ex. 17. If n = JR and Tn = n(8 l / n - 8), then, for every n E N*, Tn 

is of order 0 and the limit 8' is of order l. 
- Page 284, Ex. 2. No. Example: <p(x) = x in a neighborhood of 0 and T = 8'. 
- Page 285, Ex . ..te. If Supp T = {Xl, ... ,Xr }, then 

r 

(T,<p) = L L Cp,jDP<p(xj), 
j=llplSm 

where m is an upper bound for the order of T. 
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Chapter 8 

- Page 291, Ex. 7b. T = To + E kEZ Ck8k1r' 
- Page 303, Ex. 6. SuppT = {(x,x), x E IR}; T has order ° and (8T)/(f)xl) + 

(8T)/(aX2) = 0. 
- Page 303, Ex. 7c. 

d~:fP(Y(X)/X) = (-I)mmlfp (;~~~) - (~J) 8(m). 

- Page 303, Ex. 8. 81 + LI - 28. 
- Page 304, Ex.9a. (aI/ax) = -1{x2+y2<I}X(X2 + y2)-1/2. 

(af lay) = -1{x2+y2<I}Y(X2 + y2)-1/2. 

- Page 304, Ex. 11. a. i::l.g, = c2((al/ax)2 + (al/ay)2)(c2 + f2)-3/2 . 
d. J <pdp, = 2J <p(O,y)lyl dy + 2J <p(x,O)lxl dx. 

- Page 306, Ex. 15b-iv. Let H be a hyperplane and ii a normal unit vector. We 
set H+ = {x + tii: x E H and t > O} and H - = {x + tii: x E H and t < O}. 
Take j E {I, . . . ,d} and let nj be the j-th component of ii. Finally, denote by 
a Lebesgue measure on H (defined by introducing an orthonormal basis for 
H). Let f E Ltoc(lRd) be such that the restriction to IRd \ H is of class C I and 
such that (af /aXj) E Ltoc(IRd) . Suppose also that 

f+(x) = lim f(y) and f-(x) = lim f(y) 
hEH+ , y;.x hEH - I Y-+X 

exist at every point x of H. Then 

Dj[J] = [:~] + nj(f+ - f-)O'· 

- Page 306, Ex. 16. a. x8(j) = _j8(j-I). b. -8/3. c. U = >'X I/ 2, V = p,(_X)I/2 . 
e. T = -(8/3) + >.JxY(x) + p,y'-XY( -x). 

- Page 312, Ex. 1. E(x) = (e3x - e- X )Y(x)/4. 

- Page 313, Ex·4b. C~ = (Sd2k- l (k-l)lrr:=1(2j -d)r l
. 

- Page 314, Ex. 5. a-i. Dd = ((<p/(r)/r) - (<p(r)/r2»(xj/r), 

a-ii. i::l.f = (<p" (r» /r) - 47r<p(0)8. 
b. If >. > 0, then <p(r) = -(1/47r) cos JX r + C sin JX r. 

If >. = 0, then <p(r) = -(1/47r) + Cr. 
If >. < 0, then <p(r) = -(1/47r) cosh vCXr+ CsinhvCXr. 

c. E),(x) = _e- vCXr /(47rr) . 

Chapter 9 

- Page 322, Ex. 3. a. T),(x) = T(>.x) . c. The degree of 8(k) is -I - k. d. The 
degree of pv(l/x) is -1. The distribution fp(Y(x)/x) is not homogeneous. 
e. T = >'Y(x) + p,Y( - x) . g. (x2y(x» ® 8/ has order 1 and degree 0. 
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- Page 323, Ex. 4. a. yJ is a fundamental solution of DJ = njEJ Dj . 
b. DP(xPY(x)) = p!Y(x). If p 2': 1, then xp-1y(x)/(p - I)! is a fundamental 
solution of DP. c. E = El ® ... ® Ed with Ej(xj) = x;j-1Y(Xj)/(Pj -I)! if 
Pj 2': 1 and Ej = 8 if Pj = O. 

- Page 323, Ex. 5. T has order 2. 
- Page 335, Ex. 1. 8x * 8y = 8x+y • 

- Page 335, Ex. 2. P(D)8 * Q(D)8 = (PQ)(D)8. 
- Page 335, Ex. 5. b-i. Q(X) = P(X1-al, ... , Xd-ad). b-ii. eL E. 

c. n;=l eQjXjY(Xj). 
- Page 336, Ex. 6b. The sequence (Pn)nEN converges to 8. 
- Page 345, Ex. 2a. They are the distributions associated with functions of the 

form f + g, where f is a convex function on JR and g an affine function with 
values in <C. 

- Page 348, Ex. 12. T = 8" + 8. T is locally integrable if and only if 8 E C 1 (JR) 
and 8' is absolutely continuous on JR. 

Chapter 10 

- Page 371, Ex.3c. J(u) = minvEH6 (O) J(v), with 

J(v)=~ L (ai,jDjvIDjvh2-~(cvlv)L2+(flv)L2' 
l:'Oi,j:'Od 

- Page 372, Ex. 4a. u E HJ (0) and 

- Page 375, Ex. 7. If u E HJ (0), then Llu = >.u on 0 if and only if, for i = 1 and 
i = 2, Ui = ulo; E HJ(Oi) satisfies LlUi = >'Ui on Oi. Therefore {>'n(O)}nEN = 
{>'n(Ol)}nEN U {>'n(02)}nEN . 

- Page 376, Ex. lOe. Suppose for example that 0 is the disjoint union of two 
open sets 0 1 and O2, and let >'0(0 1 ) and >'0(02) be the first eigenvalue of 
the Dirichlet Laplacian on 0 1 and O2, respectively. If >'0(0 1 ) = >'0(02) (for 
example, if O2 is a translate of 0 1), then >'0 = >'0(01 ) and E has dimension 2. 
If 1>'0(02)1 > 1>'0(0I)1 (for example, if d = 1 and 0 = (0,2) U (3,4)), then 
>'0 = >'0(0I), E has dimension 1 and every element of E vanishes on 02. 



References 

For certain topics, one can consult, among the books whose level is com­
parable to that of ours: 

- Haim Brezis, Analyse fonctionnelle: theorie et applications, Masson, 
1983. 

- Gustave Choquet, Topology, Academic Press, 1966. 
- Jean Dieudonne, Foundations of modern analysis, Academic Press, 1960; 

enlarged and corrected edition 1969 (vol. 1 of his Treatise on analysis). 
- Serge Lang, Real and functional analysis, Springer, 1983 (2nd edition), 

1993 (3rd edition). 
- Pierre Arnaud Raviart and Jean-Marie Thomas, Introduction a l'analyse 

numerique des equations aux derivees partielles, Masson, 1983. 
- Daniel Revuz, Mesure et integration, Hermann, 1994. 
- Walter Rudin, Real and complex analysis, McGraw-Hill, 1966, 1974 (2nd 

edition), 1987 (3rd edition). 
- Walter Rudin, Functional analysis, McGraw-Hill, 1973, 1991 (2nd edi­

tion). 
- Laurent Schwartz, Analyse hilbertienne, Hermann, 1979. 
- Laurent Schwartz, Mathematics for the physical sciences, Hermann and 

Addison-Wesley, 1966. 
- Claude Zuily, Distributions et equations aux derivees partielles: exerci­

ces corriges, Hermann, 1986. 

It may be interesting to consult the "foundational texts" , among which 
we cite: 



386 References 

- Stefan Banach, Theory of linear operations, North-Holland and Elsevier, 
1987. Original French: Theorie des operations lineaires, 1932, reprinted 
by Chelsea (1955), Jacques Gabay. 

- Frigyes Riesz and Bela Sz.-Nagy, Functional analysis, Ungar, 1955; re­
printed by Dover, 1960. 

- Richard Courant and David Hilbert, Methods of mathematical physics, 
Interscience, 1953. 

- Laurent Schwartz, Theorie des distributions, Hermann, 1966 (revised 
edition). 

Among the great treatises in functional analysis, we mention: 

- Nelson Dunford and Jacob T. Schwartz, Linear operators (3 vols.), In­
terscience, 1958- 1971; reprinted 1988. 

- Robert E. Edwards, Functional analysis: theory and applications, Holt, 
Rinehart and Winston, 1965; reprinted by Dover. 

- I. M. Gel'fand and G. E . Shilov, Generalized junctions, vols. 1, 2, 3, 
and I. M. Gel'fand and N. Y. Vilenkin, Generalized functions , vol. 4, 
Academic Press, 1964- 1968. 

- Michael Reed and Barry Simon, Methods of modern mathematical physics 
(4 vols.), Academic Press, 1972-1980. 

- Kosaku Yosida, Functional analysis, Springer, 1955, 1980 (5th edition). 
- Robert Dautray and Jacques-Louis Lions,Analyse mathematique et cal-

cul numerique (9 vols.), Masson, 1984- 1988. This work is more applied 
that the preceding ones. 

This is but a very partial bibliography on the subject. For more refer­
ences, the reader is encouraged to consult the bibliographies of the books 
listed above. 
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abelian group, 85 
absolutely continuous 

function, 298 
measure, 91 

adjoint operator, 112 
affine transformation, 85 
Alexandroff compactification, 55 
algebra 

Banach, see Banach algebra 
with unity, 27 

Allakhverdief's Lemma, 246 
almost separable a-algebra, 154 
almost-zero sequence, 11 
approximate eigenvalue, 200, 208 
approximation 

of unity, 174 
property, 232 

area of unit sphere, 76, 83 
Ascoli Theorem, 231, 232 

in C(X), for X compact, 44 
in C(X), for X locally compact, 57 
in Co(R), 46 
in Co(X), for X locally compact, 56 

atom, 152 
axiom of choice, 134, 164, 238 

Baire class, 59, 65, 66 
Baire's Theorem, 22, 24, 54, 65, 187 
Banach 

algebra, 173, 179, 194 
space, vi 

Banach-Alaoglu Theorem, 19, 115 
Banach-Saks Theorem, 121, 356 
Banach-Steinhaus Theorem, 22, 120, 

167, 230, 231, 278, 285 
basis of open sets, 10 
Bergman kernel, 119 
Bernstein 

operator, 223 
polynomials, 37 

Bessel 
equality, 125 
function, 250 
inequality, 125 

Bessel- Parseval Theorem, 125 
Bienayme-Chebyshev inequality, 155 
biorthogonal system, 138 
bipolar, 110 
Bolzano-Weierstrass property, vi 
Borel 

a-algebra, 59 
function, 59 
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measure, 68 
set, 124 
Theorem, 265 

Borel- Lebesgue property, vi 
bounded 

function, 52 
Radon measure 

complex, 89 
real,88 

set, 18 
variation 

function of, 93, 95 
normalized function of, 94 
on [a, b), 93 
on JR, 93 

Browder Theorem, 121 

COO, see smooth 
CK (X),C(X),27 
C~(JR), Co(JR) , 40 
Cri(X),53 
C~(X),Co(X), 52 

Ca([O, 1)), for Q > 0, 45 

C~(X), 53 
Cb (X),Cb(X), 52 
Ct(X),53 
C~(X),Cc(X), 52 
C~(X),CK(X), 69 
canonical 

euclidean space, 98 
hermitian space, 98 
injection, 260 

Cantor set, 14 
Cantor's Theorem, 4 
Cantor- Bendixon Theorem, 11 
Cantor- Bernstein Theorem, 7 
Cauchy semigroup, 182 
Cauchy-Riemann operator, 311 
Chasles's relation, 21, 72 
Chebyshev 

inequality, see Bienayme--Chebyshev 
polynomials, 131 

choice, axiom of, see axiom of choice 
Choquet, game of, 22, 54 
Clarkson Theorem, 158 
class, Baire, 59, 65, 66 
closed 

convex hull, 18, 111, 121 

graph theorem, vi 
coercive bilinear form, 116 
commutative 

algebra with unity, 27 
Banach algebra, 173 

compact 
abelian group, 85 
metric space, 8 
operator, 45, 213 

complete, conditionally, 151 
complex 

Fourier coefficients, 128 
Radon measure, 89 
scalar product space, 97 

conditional expectation 
operator of, 166 

conditionally complete lattice, 151 
conjugate exponent, 144 
conjugation, invariance under, 34 
connected metric space, 5, 45 
continuous 

measure, 69 
on C:(X), linear form, 87 
one-parameter group of operators, 

201 
convergence 

in Cc(X), 91 
in measure, 155 
narrow, 81 
of distributions, 272 
of test functions, 259 
strong, 115, 166 
uniform on compact sets, 57 
vague, 80, 91 
weak 

in £f', 166, 168 
in a Hilbert space, 114 
of Radon measures, 91 

weak-*, 166 
convex 

function, 122, 304 
hull, closed, 18, 111, 121 
set, 18, 105, 108, 121, 122 
uniformly, 157 

convolution 
in tP(Z), 178 
of distributions, 324, 327 
of functions, 170, 171 
of measures, 336, 337 



semigroup, 181, 182 
convolvable, 171 
count measure, 99 
countable, 1 
Courant-Fischer formulas, 247 
critical value, 249 

.P(O),.P, 258 

.PK(O) , 'pm(O), .PK(O), 258 
'p'm(o), 280 
d'Alembert's Theorem, 192 
Daniell's Theorem, 59, 67, 70, 77 
diagonal procedure, 12-14, 16, 18,57 
differential operator, 307 

elliptic, 371 
differentiation of distributions, 292 
Dini's Lemma, 29, 30, 67 
Dirac 

measure, 68, 74, 79 
sequence, 36, 174, 261 

normal,174 
Dirichlet 

condition, 363, 368 
Laplacian, 365 
problem, 363 

distribution, 267 
differentiation of, 292 
division of -s, 289 
extension of, 271 
function, 74, 299 
positive, 269 
product of, 287 
restriction of, 271 
translate of, 332 

distributions 
convolution of, 324, 327 

division of distributions, 289 
domain of nullity, 281 
dual, see topological dual 
Dvoretzki-Rogers Theorem, 130 

6"m(o), 6"(0), 257 
6'" (0), 283 
eigenfunction, 365 
eigenspace, 189, 365 
eigenvalue, 189 

approximate, 200 
of the Dirichlet Laplacian, 365 

elliptic differential operator, 362, 371 

Index 389 

equicontinuity 
at a point, 42 
uniform, 42 

equidistributed sequence, 39 
equiintegrable, 156 
ergodic theorem, 120 
essential support, 145 
euclidean 

scalar product, 98 
space, 98 

Euler's equation, 323 
exhaust, 51 
expectation, conditional, 165 
extension 

of a distribution, 271 
theorem for continuous linear maps 

with values in a Banach space, vi 

Fejer's Theorem, 36, 38 
finite 

mass, 70, 145 
on compact sets, 68 
part, 273, 274, 279 
rank operator, 213 

spectrum, 197 
finitely additive, 163 
first Baire class, 59, 65 
Fourier coefficients, 128 
Frechet space, vi 
Fredholm 

Alternative Theorem, 239 
equation, 239 

F" set, 65 
F,,-measurable, 65 
Fubini's Theorem, vii, 112 
function, see under qualifier 
fundamental 

family, 9 
solution of a differential operator, 

307 
theorem of algebra, 192 

Galerkin approximation, 116, 363 
game of Choquet, 22 
Gaussian 

quadrature, 132 
semigroup, 181 

G6 set, 23, 65 
gradient, 122 
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Gram determinant/matrix, 139 
Gram-Schmidt, see Schmidt 
Green's 

formula, 361 
function, 225 

group of operators, one-parameter, 200 

Haar 
measure, 85, 86 
system, 134 

Hahn- Banach Theorem, vi 
Hankel operator, 229 
Hardy's inequality, 177 
harmonic 

distribution, 332, 342 
function, 342, 344, 345 

heat 
operator, 310 
problem, 368 
semigroup, 377 

Heaviside function, 273, 293, 307, 323 
Heily's Theorem, 16 
Hermite polynomials, 131 
hermitian 

operator, 113 
scalar product, 98 
space, 98 

Hilbert 
basis, 123 
completion, 105, 118, 133 
cube, 103 
space, 101 

Hilbert-Schmidt 
norm, 141, 247 
operator, 140, 216, 221, 247 

Holder 
function, 45, 214, 363 
inequality, vi, 143 

holomorphic function, 102 
homogeneous distribution, 322 
hypoelliptic operator, 341 

ideals in C(X), 31 
incompatible, 17 
index of an eigenvalue, 233 
infinite 

countable set, 1 
product of measures, 66, 84 

infinity, 52, 55 

initial segment, 17 
Injection Theorem, Sobolev's, 339 
inner regular, 78 
integration by parts, 94, 292 
invariant metric, 23 
invertible operator, 187 
isolated point of the spectrum, 211 
isometric spaces, 129 
isometry, spectrum of, 196 

kernel of an operator, 214, 216 
Korovkin's Theorem, 37 
Krein-Rutman Theorem, 226 
Kuratowski, 134 

L(E, F), L(E), 18 
Ll(m),58 
Zl(m),58 
~~c(JL), 79 
L2(A), 124 
Z2(m),98 
Z[(m),ZP(m), 143 
f P,l1 
fPC!), f~ (!), 12 
fPC!), f~ (!), 99, 145 
L~ (m), LP(m), 144 
Lfoc(m), Lfoc' 159 
Laguerre polynomials, 132 
Laplace transform, 209 
Laplacian, 307 

with Dirichlet conditions, 365 
lattice, 32, 58, 88 

conditionally complete, 151 
Lax- Milgram Theorem, 116, 370, 371 
Lebesgue integral, vii 
left shift, 195 
Legendre 

equation, 249 
polynomial, 131, 250 

Leibniz's formula, 258, 294 
length of a multiindex, 258 
Levy's Theorem, 82 
lexicographical order, 7 
Lindelof's Theorem, 11 
linear form 

on C:(X), 87 
Lions-Stampacchia Theorem, 117 
Lipschitz 

constant, 32 



function, 32- 34, 43 
locally 

compact, 49 
convex, vi 
integrable, 63, 79 

lower semicontinuity, 64, 77 
Lusin Theorem, 78 

VR+(X), 69 
VRt(X), 80 
VRj(X),70 

rozC(X), VR~(X), 89 
VRc(X), 92 
VRR(X),87 
VR,(X),88 
mass, 68 
maximal orthonormal family, 134 
maximum principle, 362 
mean value 

property, 344, 345 
theorem, vii, 74, 193, 272, 319 
theorem, second, 94 

measure 
convergence in, 155 
of finite mass, 145 
of the unit ball, 83 
space, 63, 143 

metric, invariant, 23 
Meyers-Serrin Theorem, 357 
Minkowski inequality, vi 
modulus of uniform continuity, 37 
monotone class, 64 
morphism of Banach algebras, 179 
multiin<iex, 258 
multiplication, see product 
Muntz's Theorem, 139 
mutually singular measure, 92 

narrow convergence, 81 
Neumann conditions, 373 
Neumann, J. von, 159 
normal 

Dirac sequence, 174,261 
operator, 120, 208, 211, 234, 244 

normalized function of bounded 
variation, 94 

nuclear, 241 

obstacle problem, 373 

Index 391 

one-parameter group, 200 
open 

basis, 10 
mapping theorem, vi, 187 

operator, see under qualifier 
operators, space of, 112 
order of a distribution, 268 
orthogonal 

family, 123 
projection, 107 
projector, 107 
space, 101 
subsets, 101 
vectors, 101 

orthonormal family, 123 
maximal, 134 

outer regular, 78 

parallelogram identity, 101 
partition of unity 

Coo, 262 
continuous, 53 

Peano's Theorem, 47 
periodic function, 98, 124 
piecing distributions together, 276 
Poincare inequality, 354, 357 
Poisson equation, 348 
polar, 110 

decomposition, 211, 246 
polynomial 

Chebyshev, 131 
Hermite, 131 
Laguerre, 132 
Legendre, 131 

positive 
distribution, 269 
function, ix 
linear form, 59, 69, 160 
operator, 30, 195, 225, 226 
Radon measure, 69, 71, 77 

of finite mass, 70 
selfadjoint, 114 

pre-Hilbert space, 97 
precompact, 14 
primitive of a distribution, 298 
principal value, 272, 291 
probability measure, 66 
product 

distance, 13 
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of distribution by function, 287 
of measures, infinite, 66, 84 

projection, 105, 120 
spectrum of, 196 
theorem, 105 

Pythagorean Theorem, 101 

Rademacher system, 136 
Radon measure, 71, 144 

bounded real, 88 
complex, 89 
positive, 69, 77 
positive of finite mass, 70 
real,86 

Radon-Nikodym Theorem, 165 
Radon-Riesz Theorem, 69 
rank, 213 
real 

distribution, 275 
Radon measure, 86, 88 
scalar product space, 97 

regular 
measure, 78 
value, 189 

regulated function, 5, 21 
relatively compact set, 12 
Rellich Theorem, 355 
reproducing kernel, 118 
resolvent 

equation, 191 
set, 189 
value, 189 

restriction of a distribution, 271 
Riemann integral, 20, 71 
Riemann-Lebesgue Lemma, 179 
Riesz Representation Theorem, 111 
Riesz Theorem, 49, 213 
Riesz- Fischer Theorem, 145 
right shift, 196, 202, 221 

scalar 
product, 97 
product space, 97 
semiproduct, 97 

Schmidt 
decomposition, 246 
orthonormalization process, 128 

Schur's Lemma, 167 
Schwarz inequality, 99, 101, 143 

second 
Baire class, 66 
mean value theorem, 94 

self-conjugate, 34 
selfadjoint operator, 113, 234 
semicontinuous, 64, 77, 345 
semigroup, 181, 182, 377 
separable 

u-algebra, 153 
metric space, 7 

separating subset, 32 
sesquilinear, 212 
shift, 195, 196, 202, 221 
u-compact, 8 
singular value, 246 
skew-linear, 98 
skew-symmetric bilinear form, 97 
smooth partition of unity, 262 
smoothing Dirac sequence, 261 
Sobolev 

function, 214 
Injection Theorem, 339 
space, 338 

solution of Dirichlet problem, 363 
spectral 

image, 194, 206, 207 
measure, 212 
radius, 192 
value, 189 

spectrum, 189 
ofL1 , 179 
of a finite-rank operator, 197 
of a projection, 196 
of an isometry, 196 

square root of a positive hermitian 
operator, 210 

staircase function, 20 
stereographic projection, 56 
Stieltjes 

integral, 71 
measure, 72, 298 

Stone-Weierstrass Theorem 
in CC(X), for X compact, 34 
in CR(X), for X compact, 33 
in Co(R), 40 
in Co(X), for X locally compact, 56 

strong 
convergence, 115, 166 
ellipticity, 371 



Sturm-Liouville problem, 224, 248, 
369 

subalgebra, 33 
subharmonic, 344 
summable family, 127, 129 

sum of, 127 
summation by parts, 94, 299 
support, 52, 68, 90 

essential, 145 
of a Borel measure, 68 
of a class of functions, 145 
of a continuous function, 52, 79 
of a distribution, 281 
of a positive Radon measure, 77 
of a Radon measure, 90 

surface measure, 75 
symmetric 

bilinear form, 97 
convex set, 24 
operator, 113 

Taylor formula, 264 
tend 

to infinity, 55 
to zero at infinity, 52 

tensor product of distributions, 320 
test functions, 257, 259 

convergence of, 259 
Tietze Extension Theorem, 40, 56 
topological 

basis, 9 
dual,18 

of £00(1), 163 
of C(X), for X locally compact, 92 
of Co(X), 88 
of C~(X), 89 
of L oo , 164 
of LP, 159 
of LP, for 0 < p < 1, 163 
of a Hilbert space, 111 

vector space, v 
topology, 8 

of uniform convergence, 28 
totally bounded, 14 

trace theorem, 361 
translate 

of a distribution, 332 
of a function, 169 

transpose, 112 
trigonometric 

polynomial, 35 
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Tychonoff Theorem, 67, 103 

ultrafilter, 164 
uniform 

continuity, modulus of, 37 
convergence, topology of, 28 
convexity, 157 
ellipticity, 371 
equicontinuity, 42 
norm, 28, 52 

upper semicontinuity, 77, 345 

vague convergence, 80, 91 
variational formulation, 363 
Volterra operators, 198 
von Neumann, J., 159 

wave 
operator, 314, 315 
problem, 368 

weak 
continuity, 230 
convergence 

in LP, 166, 168 
in a Hilbert space, 114 
of Radon measures, 91 

limit, 114 
weak-* 

convergence, 166 
Weierstrass's Theorem, 30, 33, 37 
well-ordering, 6 
Weyl criterion, 39 
Wirtinger's inequality, 137 

Young's inequality, 172 

Zermelo's axiom, 6 
Zorn's Lemma, 134, 152 
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