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PREFACE TO THE SECOND EDITION

In this edition a large number of errors have been corrected, an occasional
proof has been streamlined, and a number of references are made to recent pro-
gress. These references are to a supplementary bibliography, whose items are
referred to as [S1] through [S26].

A thorough revision was not attempted. The development of the subject in
the last decade would have required a treatment in a much more general con-
text. Itis true that a number of interesting questions remain open in the concrete
setting of random walk on the integers. (See [S19] for a recentsurvey). Onthe
other hand, much of the material of this book (foundations, fluctuation theory,
renewal theorems) is now available in standard texts, e.g. Feller [S9], Breiman
[S1], Chung [S4] in the more general setting of random walk on the real line.
But the major new development since the first edition occurred in 1969, when
D. Ornstein [S22] and C. J. Stone [S26] succeeded in extending the recurrent
potential theory in Chapters IT and VII from the integers to the reals. By now
there is an extensive and nearly complete potential theory of recurrent random
walk on locally compact groups, Abelian ([S20], [S25]) as well as non-
Abelian ([S17], [S2]). Finally, for the non-specialist there exists now an
unsurpassed brief introduction to probabilistic potential theory, in the context of
simple random walk and Brownian motion, by Dynkin and Yushkevich [S8].

In view of the above mentioned developments it might seem that the intuitive
ideas of the subject have been left far behind and perhaps lost their vitality. For-
tunately this is false. New types of random walk problems are now in the stage
of pioneering work, which were unheard of when the first edition appeared.
This came about because the simple model of a single particle, performing a
random walk with given transition probabilities, may be regarded as a crude
approximation to more elaborate random walk models. In one of these a single
particle moves in a random environment, i.e. the transition probabilities are
themselves random variables. In other models one considers the simultaneous
random walk of a finite or even infinite system of particles, with certain types of
interaction between the particles. But this is an entirely different story.



PREFACE TO THE FIRST EDITION

This book is devoted exclusively to a very special class of random
processes, namely to random walk on the lattice points of ordinary
Euclidean space. I considered this high degree of specialization worth
while, because the theory of such random walks is far more complete
than that of any larger class of Markov chains. Random walk occupies
such a privileged position primarily because of a delicate interplay
between methods from Aarmonic analysis on one hand, and from
potential theory on the other. The relevance of harmonic analysis to
random walk of course stems from the invariance of the transition
probabilities under translation in the additive group which forms the
state space. It is precisely for this reason that, until recently, the subject
was dominated by the analysis of characteristic functions (Fourier
transforms of the transition probabilities). But if harmonic analysis
were the central theme of this book, then the restriction to random
walk on the integers (rather than on the reals, or on other Abelian
groups) would be quite unforgivable. Indeed it was the need for a self-
contained elementary exposition of the connection of harmonic analysis
with the much more recent developments in potential theory that
dictated the simplest possible setting.

The potential theory associated with Markov processes is currently
being explored in the research literature, but often on such a high
plane of sophistication, and in such a general context that it is hard
for the novice to see what is going on. Potential theory is basically con-
cerned with the probability laws governing the time and position of a
Markov process when it first visits a specified subset of its state space.
These probabilities satisfy equations entirely analogous to those in
classical potential theory, and there is one Markov process, namely
Brownian motion, whose potential theory is exactly the classical one.
Whereas even for Brownian motion the study of absorption probabilities
involves delicate measure theory and topology, these difficulties evap-
orate in the case of random walk. For arbitrary subsets of the space of
lattice points the time and place of absorption are automatically
measurable, and the differential equations encountered in the study of
Brownian motion reduce to difference equations for random walk. In
this sense the study of random walk leads one to potential theory in a
very simple setting.

vil
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One might ask whether the emphasis on potential theory is a natural
step in the development of probability theory. I shall try to give a
brief but affirmative answer on two different grounds.

(a) After studying the probability laws governing a Markov process
at fixed (non-random) times, one usually introduces the notion of a
stopping time. (We do so in definition 3 of section 3, i.e., in D3.3) A
stopping time T is a random variable such that the event T ># depends
only on the past of the process up to time 2 From that point on we are
concerned with a new process, which is precisely the original process,
stopped at time T. But unfortunately one cannot say much about
this stopped process unless it happens to be Markovian, with transi-
tion probabilities invariant under translation in time. Hence one is led
to ask: For what stopping times is the stopped process of such a simple
type? This question leads directly to potential theory, for it is easy to
see that the stopped process is Markovian with stationary transition
probabilities if and only the stopping time is of the type: T =time of the
first visit of the process to a specified subset of its state space.

(b) Classical Newtonian potential theory centers around the Green
function (potential kernel) G(x,y)=|x—y|~%, and in logarithmic
potential theory (in the plane) this kernel is replaced by A(x,y)=
In |x—y]|. As we shall see, both these kernels have a counterpart in the
theory of random walk. For transient random walk G(x,y) becomes the
expected number of visits to y, starting at x. For recurrent random
walk there is a kernel 4(x,y) such that A4(x,0)+A4(0,y) — A (x,y) repre-
sents the expected number of visits to y, starting at x, before the first
visit to 0. It is hardly an oversimplification, as we shall see, to describe
the potential theory of random walk as the study of existence, uni-
queness, and other basic properties such as asymptotic behavior, of
these kernels. That raises a natural question: How much can one learn
about a random walk from its potential kernel? The answer is: In prin-
ciple, everything. Just as the characteristic function (Fourier trans-
form of the transition function) uniquely determines the transition
function, and hence the random walk, so we shall find (see problems 13
in Chapter VI and 8 in Chapter VII) that 2 random walk is completely
determined by its potential kernel.

I am uncertain about the “prerequisites’ for this book, but assume
that it will present no technical difficulties to readers with some solid
experience and interest in analysis, say, in two or three of the following
areas: probability theory, real variables and measure, analytic functions,
Fourier analysis, differential and integral operators. I am painfully
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aware, however, of a less tangible prerequisite, namely the endurance
required by the regrettable length of the book. In view of the recent
vintage of most of the material many examples and extensions of the
general theory seemed sufficiently full of vitality to merit inclusion.
Thus there are almost 100 pages of examples® and problems, set apart
in small print. While many are designed to clarify and illustrate, others
owe their inclusion to a vague feeling that one should be able to go
farther, or deeper, in a certain direction. An interdependence guide
(following the table of contents) is designed to suggest paths of least
resistance to some of the most concrete and intuitive parts of the
théory—such as simple random walk in the plane (section 15), one-
sided absorption problems, often called fluctuation theory (Chapter
1V), two-sided absorption problems (Chapter V), and simple random
walk in three-space (section 26).

Since most of my work as a mathematician seems to have found its
way into this book, in one form or another, I have every reason to thank
those of my teachers, Donald Darling, William Feller, and Samuel
Karlin, who introduced me to the theory of stochastic processes. I
also owe thanks to J. L. Doob for his suggestion that I plan a book in
this area, and to the National Science Foundation for enabling me to
spend the year 1960-61 in Princeton, where an outline began to take
form under the stimulating influence of W. Feller, G. Hunt, and D.
Ray. In the fall of 1961 much of the material was presented in a seminar
at Cornell, and I owe a great debt to the ensuing discussions with my
colleagues. It was particularly fortunate that H. Kesten’s interest was
aroused by some open problems; it was even possible to incorporate
part of his subsequent work to give the book a ‘“happy ending” in the
form of T32.1 in the last section. (As explained in the last few pages
of Chapter VII this is not really the end. Remarkably enough one
can go further, with the aid of one of the most profound inventions of
P. Lévy, namely the theory of the dispersion function in Lévy’s
Théorie de I'addition des variables aléatoires (1937), which was the
first modern book on the subject of random walk.)

Finally it is a pleasure to thank all those who were kind enough to
comment on the manuscript. In particular, J. L. Doob, H. Kesten,
P. Schmidt, J. Mineka, and W. Whitman spotted a vast number of
serious errors, and my wife helped me in checking and proofreading.

*Throughout the book theorems are labeled T, propositions P, definitions D, and
examples E. Theorem 2 in section 24 will be referred to as T2 in section 24, and as
T24.2 when it is mentioned elsewhere in the text.
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Chapter 1

THE CLASSIFICATION OF RANDOM WALK

1. INTRODUCTION

The simplest definition of random walk is an analytical one. It
has nothing to do with probability theory, except insofar as proba-
bilistic ideas motivate the definition. In other words, probability
theory will “lurk in the background” from the very beginning.
Nevertheless there is a certain challenge in seeing how far one can go
without introducing the formal (and formidable) apparatus of measure
theory which constitutes the mathematical language of probability
theory. Thus we shall introduce measure theory (in section 3) only
when confronted by problems sufficiently complicated that they would
sound contrived if expressed as purely analytic problems, i.e., as
problems concerning the transition function which we are about to
define.

Throughout the book R will denote the space of d-dimensional
integers. In other words R is the set of ordered d-tuples (lattice
points)

x = (%%, 2%, ..., x%), x! = integer for i = 1,2,...,d.

As soon as we have defined what is meant by a random walk, it will be
natural to call R the state space of the random walk.

For each pair x and y in R we define a real number P(x,y), and the
function P(x,y) will be called the transition function of the random
walk. It is required to have the properties
(1) 0 < P(x,y) = P(0,y — x), > P0x) = 1.

z€R
The most restrictive of these properties perhaps is the spatial homo-
geneity expressed by P(x,y) = P(0,y — x), where, of course, y — x is
1



2 THE CLASSIFICATION OF RANDOM WALK

the point in R with coordinates y* — x!, i = 1,2,...,d. It shows
that the transition function is really determined by a single function
p(x) = P(0,x) on R with the properties

0<px), D pla)=1
zeR
In other words, specifying a transition function is equivalent to
specifying a probability measure on R (a non-negative function p(x)
whose sum over R is one).

Now we are finished—not in the sense that there is no need for
further definitions, for there is, but in the sense that all further
definitions will be given in terms of P(x,y). We may even say, in-
formally, that the transition function P(x,y) is a random walk. Quite
formally, we define a random walk as a function P(x,y) possessing
property (1) defined for all pairs x,y in a space of lattice points R, and a
random walk is said to be d-dimensional if the dimension of R is d.!

El The so-called simple random walks constitute a particularly im-
portant class of random walks. If R is d-dimensional, let

a 12
o = [ S 7]
=1

denote the Euclidean distance of the point x from the origin. Then
P(0,x) defines d-dimensional simple random walk if

P0,x) = %1 when |x| = 1,
=0 when |x| # 1.

When d = 1, a somewhat wider class than simple random walk is of
considerable interest. When

P00,1) = p, P(0,-1) =g, p20, ¢20, p+g=1,

we shall call P(x,y) the transition function of Bernoulli random walk.
Since P(0,x) corresponds to our intuitive notion of the probability of a
‘““one-step” transition from 0 to x, it is tempting to denote by P,(0,x) the
probability of an ‘“‘n-step” transition from 0 to x (the probability that a
‘“particle,” starting at 0, finds itself at x after n transitions governed by
P(x,y)). Suppose that # and x are both even or both odd and that |x| < =
(otherwise P,(0,x) will be zero). Then P,(0,x) should be the probability
of 4(x + =) successes in # Bernoulli (independent) trials, where the proba-
bility of success is p (and of failure ¢). These considerations suggest that

1 This definition will serve us in the first two sections. In D3.2 of section 3
it will be superseded by a more sophisticated version.
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we should define P,(0,x) for arbitrary random walk in such a way that we
get for Bernoulli random walk

(1) P,(0,x) = p™ +z)l2q(n—z)/2((n +nx)/2)

when the sum n + x is even and |%| < n, and P,(0,x) = O otherwise. It
is easy to check that one gets just this result from the definition in D1
below, according to which

(2) P,(0,x) = z Z e Z P(0,2,)P(1,25) * * * Py _1,%);

T1ER I2€R Zp - 1€
for if we define the generating function

f(z) = > P(0,x)2", z complex and not zero,
ZER
for Bernoulli random walk, then
f@=pr+d =20

But equation (2) implies that P,(0,x) is the coefficient of 2* in the (Laurent)
series for [ f(2)]", and it is easy to check, using the Binomial Theorem,
that this coeflicient is given by (1). Note that this calculation also suggests
P1 (below) to the effect that the coefficient of [ f(2)]**™ is given by the
convolution of the coefficients of [ f(2)]" and [ f(2)]™.

D1 For all x,yin R, Py(x,y) = 8(x,y) = 1if x = y, 0 otherwise, and

Py(x,9) = P(x,9), Pu(xy) =
z P(x,x)P(%1,%35) ... P(%y_1,5), n = 2.

I1€ER, 1=1,..., n—

Here the sum extends, as briefly indicated, over all (n — 1) tuples
X1y X9y . ooy ¥y_y Of points in R.
Our first result, based on D1, is

P1 For all x,y in R,

Py im(%,y) = Z Py (x,t)Py(t,y) for n = 0, m > 0,
teR
Z P,(x,y) =1, P,(xy) = P,(0,y — x) for n > 0.

YER

Proof: The most natural proof results from the interpretation of
definition D1 as the definition of matrix multiplication. To be sure,
P(x,y) is an infinite matrix, but that makes no difference at all as the
sum in D1 converges absolutely. The first result in P1 is easily
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obtained if one writes out the definition of P, . ,(x,y) according to D1.
The resulting sum is then over x;, %5,..., Xp,n-;. Now (using
absolute convergence) one may perform the summation over all the
variables except x,,. If one then applies D1 to the result, one obtains
precisely the first equation in P1, with x,, taking the place of the variable
of summation t. We leave it to the reader to check the case when
m = 0 or n = 0, where the preceding argument is not strictly correct.

The last two statements of P1 (which incidentally amount to the
assertion that P,(x,y) is again a transition function of a random walk)
are also easy to prove. One simply performs the indicated summation
(over ) or translation (by —x) in D1.

The probability interpretation of P,(x,y) is evident. It represents
the probability that a “particle,” executing the random walk, and
starting at the point x at time 0, will be at the point y at time n. The
next definition concerns a function of the same type: the probability,
again starting at the point x at time 0, that the first visit to the point y
should occur at time n. This function (unlike P,(x,y) it is not a
transition function) will be called F,(x,y). In D2 we shall write {y}
to denote the subset of R consisting of the element y, and R — {y} will
denote the state space R with the point y excluded.

D2 Fy(x,y) = 0, Fi(x,y) = P(x,y),
Fy(x,y) = > P(xx)P(xyxg). . Plx,_ny),  n =2,

for all x,y in R.

The most important properties of F,(x,y) are

P2 (a) F(x,y) = F(0,y — %),
(b) z Fixy) < 1,
© Pe3) = 3 Fien)Pai(3)

for n > 1 and arbitrary x,y in R.

Proof: The truth of part (a) is immediate from D2, using only the
spatial homogeneity of P(x,y). The proof of part (b) is considerably
more delicate. The statement (b) is *“probabilistically obvious” as
the sum in part (b) represents a probability—the probability that the



1. INTRODUCTION 5

first visit to y, starting at x, occurs before or at time n. Fortunately
it is not hard to base an elementary proof on this idea. (The skeptical
reader will observe that we are indeed about to introduce the notion
of measure—but measure of a very simple sort, the total number of
elementary events being countably infinite.)

Let us define as the set of ‘“elementary events” the set of sequences
w of the form w = {xg, %y, Xy, . . ., ¥, .1, ¥,} Where x, = x, and where
Xy, Xg, ..., X, may assume any value in R. Since R is countable,
this set of sequences, which we denote Q,, is also countable. With
each w in Q, we associate the measure

plw) = P(x,x,)P(%1,%5) . . . P(%y,_ 1,%,).
It follows from D1 and P1 that
p(w) = Py(x,y), > plw) = Pyxy) = 1.

[0] weQy, 2y =y] Wey YER
On the other hand, if
4, = [w[weQn;xl F Yy Xy F Vyewoy Xy F Yy X = Y,
1<k<n

then the sets 4, are disjoint subsets of Q,, and it is obvious from D2
that

Flxy) = 2 plw), 1<k<n

weAy
The A, being disjoint, one obtains
2 Fuxy) < > plw) =1
k=1 wedy,

Part (c) can be proved in a similar fashion, but we shall use mathe-
matical induction instead. Suppose that (c) holds when zn =j.
Then one can write, using P1 and the induction hypothesis,

j
P;y1(xy) = tZRP(x,t)P,-(t,y) = tZRP(x,t) kzl Fi(t,9)P;-1(5y)-
However, D2 shows that

> Pa)Fity) = > Pxn)Fyty) + P(xy)Fu(.y)

teR teR—{y}

= Fy1(%y) + P(x,3)Fi ().
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It follows, using the induction hypothesis again, that

i
P 1(%y) = L Fri(x,2)P;_i(3,y) + kZ1 P(x,y)F(3,9)P; - 1(3>¥)

J
j+1

) Fu(%,9)P;+1-m(3:3) + Fi(%3)P{(y,)

m=

i+1
> Fu(®9)P;1-n(3Y)-
m=1

That completes the induction, and also the proof, since (c) is evidently
correct when z = 1.

Next we define, in D3 below, the function G,(x,y) to correspond to
the expected number of visits of the random walk, starting at x, to the
point y within time n. (As soon as we develop the simplest proba-
bilistic apparatus, this function will of course be an expectation, being
defined as a sum of probabilities.) Then we prove, in P3, a result
comparing G,(x,y) to the expected number of visits to the starting
point of the random walk.

D3
Go(x,y) = Z P(x,y), n=01,...,xyeR.
k=0

P3
G.(x,y) < G,(0,0) for n = 0 and all x,y in R.

Proof: As G,(x,y) = G,(x — »,0) in view of P1, it suffices to prove
P3 in the case y = 0 and x # 0. Using part (c) of P2 we have

Guw0) = 3 Pule) = 3 S P (50)P(0,0)

k=1 j=0

and a simple interchange of the order of summation gives
n n—4
Gi(x,0) = > Pi(0,0) > F(x,0).
i=0 =0
Using part (b) of P2,

G,(x,0) < 2 P;(0,0) = G,(0,0).
i=0
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The stage is now set for the most important classification of random
walks, according to whether they are recurrent® or transient (non-
recurrent). The basic idea is that the sum 7., F;(0,0) represents
the probability of a return to the starting point before or at time .
The sequence of the sums >7_, F,(0,0) is nondecreasing as # in-
creases, and by P2 they are bounded by one. Hence they have a
limit, which we shall call F, and F < 1. Therefore it is reasonable to
call the random walk recurrent if F = 1 and transient if F < 1.

Actually it turns out that there is another, equivalent, classification,
based on the number G, the limit of the monotone sequence G,(0,0).
G may be finite or infinite (in which case we write G = + o) and it
will be shown (in P4) that G < co when F < 1 and G = + o when
F = 1. But first we make two more definitions designed mainly to
simplify the notation.

D4
G(x,y) = Zo Py(x,y) < o0 F(xy) = Zl Fy(xy) < 1,
G,(0,0) = G,, G(0,0) = G;  F,(0,0) = F,, F(0,0) = F.

D5 The random walk defined by the transition function P is said to be
recurrent if F = 1 and transient if F < 1.

P4 G = 1 _1 7 with the interpretation that G = + co when F = 1

and F = 1 when G = + o0.

Proof: It would perhaps be natural to use the method of generating
functions, applied to the convolution equation

(1) P,(0,0) = > FP, (0,0, =n2x1,
k=0

which is a direct consequence of P2 (part (c)) and the notation intro-
duced in D4. But P4 can also be obtained directly, as follows.

2 In the general theory of Markov chains it is possible that the probability of
return to the starting point is one for some, but not all, points of the state
space. Such points are then called recurrent or persistent, and the points with
return probability less than one are transient, cf. [31], Vol. 1, p. 353, and [9],
p- 19. As every random walk has the property that either all states are re-
current or all are transient, we shall apply these adjectives directly to the
random walk rather than to its states.
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Summing the convolution equation (1) over n = 1,2,...,m, and
adding Py(0,0) = 1 on each side, gives

m
) Gpn= > FGp o +1, m>1
k=0
Letting m — o0,
G=1+l FGov 21+ G ) F,
+ m:‘g kZ Kom-r 2 1 + z k
for every integer N, and therefore

G=1+ GF.

This proves, by the way, that G = +co when F = 1, since the in-
equality G > 1 + G has no finite solutions.
On the other hand, equation (2) gives

3) 1=G, - Z Gka—kZGm—szFm—kZGm(l—F)’
k=0 k=0

sothat 1 > G(1 — F), which shows that G < oo when F < 1. That
completes the proof of the identity G(1 — F) = 1, and hence of P4.

E2 Consider Bernoulli random walk with P(0,1) = p, P(0,—1) = q.
An easy calculation (see E1) gives P,(0,0) = 0 when 7 is an odd integer,
and

M Pu(00) = (00r(%) = (= 1rttp0r( 7, ")

Since p and g are not arbitrary, but 0 < p = 1 — g, it follows that 4pg < 1.
Thus the Binomial Theorem yields the power series (generating function)

@) 3 17P,(0,0) = (1 — 4pgt)~3

valid for all complex ¢ in the unit disc [¢| < 1. Letting ¢ approach one
through the real numbers less than one (we shall habitually write “¢ » 1”
for this type of limit), it is clear that

3) lim 3 1%P,,(0,0) =

t/1 n=0 n

P2n(0v0)

1Ms 18

P,(0,0) = G < oo.
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It follows from (2), compared to (3), that
_ 1/2
@) G- {(1 4p9)~ 12 < o when p # ¢

when p = ¢ = 1/,.
In view of P4, we have shown that Bernoulli random walk in one-dimension
1s recurrent if and only if p = g = !/,, i.e., simple random walk is the only
recurrent Bernoulli random walk.
For the sake of completeness, let us repeat the above argument, working
with F instead of with G. Setting x = y = 0 in part (c) of P2,

P(0,0) = 5 P y(0,0)F(0,0) for n > 1,
k=0
or

P,(0,0) = anOP,,—,,(O,O)Fk(O,O) + 8(n,0) for n > .

That gives

S mP0,0)= > mP(00) S mF00)+1, O0<t<l
[ n=1

n=0 n=
Replacing ¢ by V2, one concludes from equation (2) that
() D t"Fu(0,0)=1— VI —4pgt, O0<t<l.
0

Again one arrives at the conclusion that
= lim Z t"F,(0,0) = 1 — V1 —4dpg =1
tA/1 p=1
if and only if 4pg = 1, which happens when p = ¢ = 1/,.

In the unsymmetric case (when ? # ¢g) we know from P3 that G(0,x) <
G(0,0) = G < oo for all x in R. For convenience we shall assume that
? > ¢, and proceed to calculate G(0,x), by deriving, and then solving, a
difference equation satisfied by G(0,x). From P1 one obtains

P,.1(0%) = ZR P(0,y)P(y,%) = pPa(1,%) + qPn(— L,x)
ye
= pP,(0,x — 1) + ¢P,(0,x + 1),
forallz > 0 and all x in R. Summation over n > 0 yields
(6) G(0,x) — 8(x,0) = pG(0,x — 1) + ¢G(0,x + 1), x€R.
It is not difficult to solve (6). The associated homogeneous difference
equation
) =pf(x = 1) + ¢f(x + 1)

has the solutions
(7) f(x) = Ary® + Bry®
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where 7, = p/q, ro = 1 are the zeros of the polynomial gt — ¢ + p. Now
we need a “particular” solution ¢(x) of the nonhomogeneous equation

(8) ¢(x) — 8(x,0) = pp(x — 1) + gp(x + 1).

Let us choose ¢(0) = ¢(1) = 0. Then the function ¢(x) has a unique
extension to R which satisfies (8), and it is simple to calculate, recursively,
that

©) o) =0for x>0, ox)=(p— q)-l[(g)' —1] for x < 0.

It follows from the elementary theory of difference equations that G(0,x)
must be obtainable by superposition of functions in (7) and (9), i.e.,

(10) G(0,%) = o(x) + A(%)I +B.

Observe now that the function g(x) in (9) is bounded (since we are assuming
that p > ¢). According to P3 we have G(0,x) < G < co which implies
that 4 = 0. Thus it remains only to evaluate the constant B, using
equation (4), to the effect that

1
G(0,0) = (1 — 4pg)~ 12 = ——.
(0,0) = ( Pq) ?—4¢

From (9) and (10) one therefore obtains the result that B = (p — ¢)~%, and
we have proved that for Bernoulli random walk with p > g,

(» — ¢! for x>0
(11) G(0,x) = (p — q)-l(g)z for x < 0.

One last result, easily within reach of the elementary methods of
this section, is the ““weak”’ ratio ergodic theorem (a ‘‘strong’ version of
which is proved in T5.1 (Theorem 1 of section 5)).

P5 For every random walk

o Ga(xy) _
nlixg G.(0.0) ~ F(x,y) whenever x # y.

Remark: Although the statement of P5 makes no distinction
between recurrent and transient random walk, such a distinction will
nevertheless arise in the proof. The result of P5 is correct in both
cases, but for entirely different reasons! The proof will show further
that in the transient case P5 is false, as it stands, when x = y, whereas
it is obviously correct for recurrent random walk, even when x = y.
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Proof: First we observe that it suffices to prove P5 in the special
case when y = 0. Thus we may use part (c) of P2 in the form

n

Go(%,0) = 8(x,0) + > Py(x,0)

=50 + 5 P0,0) S Fix0)
=0 k=1

so that
Go(w0) _  8(w0) ,Zo £4(0,0) Z F(x,0) .
Gn(O,O) z PJ(O,O) Z PJ(O,O)
§=0 4

In the transient case the denominators have a finite limit, so that one
obtains

_ Gyx0) _ 8(x,0)
Im 00 - "G

for all x in R, and in particular the limit F(x,0) when x # 0.
To obtain a proof when the random walk is recurrent, let

+ F(x,0)

a, = > Fy(x0), b, =P00), nz0
k=0

The problem is then to show that

[\/]:

ba,_;
lim =2 = lim @, = F(x,0).

n— n— o
> b
k=0

For every positive integer /N one can decompose
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This decomposition is valid for all # > N and for every real o, but
we shall of course set « = F(x,0). Since b, is a bounded sequence
such that the series > b, diverges, it is clear that the last two terms
tend to zero as n— 00, for each fixed N. We can now choose
N = N(e) so that |a, — «| < ¢ when n > N. With this choice of
N one obtains

fim | =%—— — F(x,0) | <
n— z bk
k=0

and as e is an arbitrary positive number, the proof of P5 is complete.

E3 Let us now apply P5 to Bernoulli random walk. When p > ¢, P5
tells us that F(0,x) = 1 for every x > 0, since

G(0,%)
G(0,0)

and G(0,x) = (p — ¢)~ %, for every x > 0, according to E2. Inasmuch as
F(0,x) represents the probability that the first visit to x occurs at some
finite time (i.e., that x is visited at all), it was of course to be expected that
F(0,x) = 1 for all positive x when p > ¢g. In this case one would also
expect that F(0,x) < 1 when x < 1, and E2 together with P5 actually
shows that F(0,x) goes to zero geometrically as x— —oco. One obtains

F(0,x) =

F(O,%) = (g)z when # < .

Finally, consider the simple random walk, with p = ¢ = /,. According
to P5,

. G, (0,x)

Nm 50,0

for every x, but it still remains to evaluate the limit function F(0,x). We
know only that F(0,0) = 1, but it would indeed be surprising if there were
a point x, such that F(0,x,) < 1.

In fact, one could argue that F(0,x) = 1 on the following intuitive
grounds. Return to 0 is certain (since F(0,0) = 1). However, a visit to
%, before the first return to 0 is certainly possible, in fact it has a probability
plxo) = 2-'%!.  But once the random walk has reached «x,, the proba-
bility that it will ever return to 0 is F(x,,0) = F(0,—x,), and by symmetry
F(0,~x,) = F(0,x,). Hence we seem to have shown that

1= F(0,0) < 1 = plao) + pxe)F(0,20) = 1 = p(xo)[1 — F(O,x0)]
which implies that F(0,x,) = 1.

= F(0,x)
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The only trouble is that we used certain intuitively plausible facts about
properties of the probability measures induced by the tranmsition function
P(x,y), before having described the method by which probability measures are
to be assigned. In particular we argued that if p(x,) is the probability of
visiting x, before the first return to 0, then the probability of visiting x,
before 0, and then 0, is p(xo)F(x,0). This relation of independence is
indeed a property of any reasonable assignment of probability measure
under which P,(x,y) retains the obvious interpretation as n-step transition
probabilities, but the proof must wait until section 3.

It is, however, of some interest to see if one can show analytically that
F(0,x) =1 when p = ¢, and we offer the following three alternative
methods of proof.

(a) From Stirling’s formula

n! ~ V2 e~ "nt

(here and in the sequel a, ~ b, means that the ratio a,/b, — 1 as n— o0),
one obtains

P,,(0,0) = (—1)"(_1:/2) ~ (mm)=12,

It is equally easy to show that

Py (0,x) ~ (mn)~1/2 when x is an even integer,
Py, 1(0,x) ~ (wn)~12 when x is odd.

Finally, summing on = yields, for every x,
n (k) - 12 n\12
com~+ 5 (5) ~i(z)

e Ga(0x)
FOx) = lim 7 o0 =
(b) A more careful study of the transition functions P,(x,y) (easy for
instance by the methods of Fourier analysis in Chapter IT) shows that one
can dispense with Stirling’s formula and in fact prove a much stronger
result, namely

so that

i [P(0,0) — Pp(0,x)] = lim [G,(0,0) — Go(0,x)] = [x].

n=0

Clearly it follows that

. G,(0x) _
7}1}2 G.(0.0) ~ FO,x) = 1, x€R.
(c) In view of P3
0< G,(0,x) <1
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Furthermore P1 and D3 give

S P(st) G = Gy (o) + Pasa(m) = )l

teR

Now we let # tend to infinity. The left-hand side of the above equation
then tends to

tg; P(x,t)F(t,y).

The right-hand side goes to F(x,y) since G,(0,0) > o and |P, ,,(»,y)| < 1.
Hence

tzn P(x,t)F(t,y) = F(x,),
€
and specializing by setting y = 0, we find that

S P(x,t)F(t,0) = 3F(x + 1,0) + 3F(x — 1,0) = F(x,0).

But this equation has solutions only of the form F(x,0) = ax + b. Since
0 < F0,x) <1 and F(0,0) = 1, we conclude again that simple random
walk in one dimension has the property that F(0,x) = 1 for all x.

2. PERIODICITY AND RECURRENCE BEHAVIOR

We saw in section 1 that recurrence of a random walk manifests
itself in the limiting behavior of G,(0,0) as well as of F,(0,0). But so
far it is not clear exactly how G,(0,x), the expected number of visits of
the random walk to x in time n, depends on the recurrence of the
random walk. The same question of course applies to F,(0,x) and to
F(0,x) which is the probability of a visit (at some finite time) to the
point x.

Certain results are obvious. For example, since G(0,x) < G(0,0) <
oo for every x, it is clear that G(0,x) < oo for all x if the random walk
is transient. But suppose that the random walk is recurrent, so that
G(0,0) = oo. Does it follow that G(0,x) = oo for every x in R?
The answer is no; it is indeed possible to find a recurrent random
walk such that G(0,x)) < oo for some x,€ R. The most trivial
example of this type is the random walk which “stands still,” i.e.,
with P(0,0) = 1. According to our definitions it is recurrent, as
G,(0,0) =n + 1—>00 as n—c0. But clearly G(0,x) = 0 for all
x # 0. Note that we have not even bothered to specify the dimension
of the state space R. It is immaterial as the random walk would not
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“know the difference.” It takes place on the state space consisting
of the origin alone.

Given a state space R of dimension d > 1 and a point x; in R, we
can define a recurrent random walk on R such that G(0,x,) = 0. For
example, let

P(0,2x,) = P(0,—2xp) = gy
P(0,x) = 0 for all other x in R.

This random walk is nothing but simple symmetric one-dimensional
random walk, no matter what the dimension of R. Therefore it is
recurrent, but again it is clear that G(0,x,) = 0. The reason is of
course again that the random walk takes place on a subset (a subgroup,
as it happens) of R which does not contain the point x,.

There is no need to look for other types of examples where G(0,0) =
oo but G(0,x) < oo for some x, because there are none. Instead we
shall begin by formalizing the ideas suggested by the preceding
examples, and then proceed to explain the crucial role of that subset
of the state space R which is actually visited by the random walk.
Given a random walk, i.e., a transition function P(x,y) defined for
x, v in R, we define three subsets of R, called X, R*, and R

D1
2 = [x]| P(0,x) > 0],
R* =[x | P,(0,x) > O for some n > 0],
R=[x|x=y — 2 forsome ye R* and z€ R*].

P1 R* is the set of all finite sums from X including the origin O (the
empty sum). It is also the smallest additive semigroup containingZ. R
on the other hand is the smallest additive subgroup of R which contains R™.

Proof: There is not much to verify apart from the group (semi-
group) axioms. (A semigroup is supposed to be closed under addition
like a group, but not under subtraction, and although it has an
identity (the origin), no other elements in it need have an inverse.)

The origin is in R* by definition. If xis in R*, and x # 0, then
it follows from P,(0,x) > O that there is a finite sequence x;, x,, . . .,
x,_, in R such that

P,(0,x) = P(0,8,)P(%1,%5). . . P(%,_1,%) > 0.

But then P(0,x,) > 0, P(0,x, — x;) > 0, and so on, so that x;,x;, —
xy, etc. are in X. Therefore x = %, + (%3 — %) + --- + (x —
%,_;), is a representation of x as a finite sum of elements of X.
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Conversely, if x = y; + yo +-- - + y,, Withy,eZfori =1,..., 2,
then PO,y,) = P(y: + -+ Ye-v 01+ -+ 3) >0, k=1,2,
..., n, so that

Pn(O’x) = Pn(Oxyl +oee yn)
= P(O:yl)P(yl’yl + J’z) . P(yl + -+ yn—lsx) > 0.

This proves that R* is really the set of all finite sums of elements of Z.

If we use either the characterization of R* just obtained or the one
in D1, it is clear that R* is closed under addition. Hence R* is a
semigroup. There can be no smaller semigroups containing %, since
any such semigroup must contain all finite sums from X, and R* is
just the set of such sums.

R is a group since it is closed under differences, by D1. It con-
tains R* by definition, and there can obviously be no smaller group
than R with these two properties.

The ideas that led to the definition of the sets R* and R enable
us to understand the difference between transient and recurrent
random walk a little better than in section 1. First consider transient
random walk, which offers very little difficulty.

P2 If P(x,y) is the transition function of a transient random walk
with state space R, then

G(0,x) < 0 on R
and
G@O,x) = F(0,x) = 0 on R — R*,

Proof: By P1.3,
G(0,x) = lim G,(0,x) < lim G,(0,0) = G < o,

which proves the first statement. To prove the second one, assume
that the set R — R* is nonempty (otherwise the second statement of
P2 is vacuous). In that case, P,(0,x) = O for xe R — R* for every
n > 0. But then

G(0,x) = > P,0,x) =0, xeR— R¥,
n=0

F(0,x) = > Fy(0,x) < G(0,x) = 0, xeR — R*.
n=1

The last inequality came from D1.2 which implies that
F,(0,x) < P,(0,x), xeR, nx=0.
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In the recurrent case we first prove a few lemmas (P3, P4, P5) of
independent interest, which will later be combined with P2 to give a
complete description (T1) of the basic differences between recurrent
and transient random walk.

P3 If a random walk is recurrent and x € R*, then
G(0,x) = oo.

Proof: If x € R*, we may assume that ¥ # 0 and choose m > 1 so

that P,(0,x) > 0. Then, using P1.1,
Po0)Py() < 5 Po(OPy(t5) = Pryn(0,9)
leR

Summing on # from zero to k, one obtains

P(0,%)Gi(x,%) = Pp(0,%)G(0,0) < i Py n(0,)

m+k m-1
Z Pn(O,x) - z Pn(osx)
n=0 n=0
= Gpos(0,%) — Gp_1(0,).
Letting k- + 00, one finds that
Pm(O»x)G < lim Gm+lc(0’x) - Gm—l(oyx)'
k-

But by P1.4, we know that G = + co0, which proves that
lim G, ,(0,x) = G(0,x) = + 0.
= 0

The next step, still for recurrent random walk, is the investigation
of F(0,x). The obvious probability interpretation of F(0,x) as the
probability of a visit to x, starting at 0, in a finite time is very helpful.
It suggests that F(0,x) = 1 for all x in R*. Actually considerable
work is required to translate this suggestion into mathematical
certainty, and here too the probability interpretation is useful in
suggesting what to do. The probabilistic arguments that follow can
be made rigorous by careful use of certain measure theoretic facts to
be introduced in section 3.

We assume that x € R*, and also (for the moment) that —xe
R — R*. Then the random walk can go from 0 to x with positive
probability. But once at x it can never return to zero, since a transi-
tion from x to 0 is impossible, being equivalent to one from 0 to —x.
Hence it is possible to leave 0 and never to return. This contradicts
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the hypothesis that the random walk is recurrent. Therefore we have
‘““demonstrated” the impossibility of having xe€ R* while —x¢€
R — R*. In other words, recurrent random walk has the property
that x € R* implies —x € R*. But R" is a semigroup, and a semi-
group which contains the inverse (negative) of each element is a
group. Hence R* = R. Now it is easy to go further, and to
conclude that F(0,x) = 1 not only when x € R*, but for all x € R.

We shall choose to disregard this interesting argument, which is
due to Feller [12],* 1951, to obtain the same result by the more
elementary methods of this and the last section.

P4 For arbitrary random walk, x,y € R and n > 0
(a) tezn P(x,8)Go(t,y) = Gria(%) — 8(x.9),
and for recurrent random walk
(b) tEZRP (x)F(ty) = F(x).
Proof: Part (a) follows by computation from P1.1 and D1.3 since
> PGt = > 5 PiPlt)

teR k=0 teR
n+1l

— kzl Pk(x)y) = Gn+1(x,y) -— S(x’y).
Dividing equation (a) by G,(0,0) (which is positive), one finds
4
M) S Py St _ Gied) | Paaalsy) | Say)

& G,(0,0) — G,(0,0) G.(0,0) ~ G,(0,0)
Now let n-—— + o0 in (1). Since G,(0,0)— G = oo, the last two
terms on the right-hand side in (1) tend to zero. Next we observe
that

G(%,y) - Ga(x,y) _
0=z o0 =" lim 700 = T

the inequality being due to P1.3, and the limit due to P1.5.
The boundedness of the ratios G,(x,9)/G,(0,0) implies, by a
dominated convergence argument, that

G2, Gy,
lim > P(x,t) Ggf)yo)) = tzk P(x,t) ,}L‘i{, G,,Ef),%))’

n—>® teR

* Numerals in brackets refer to the Bibliography at the end of the book.
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so that one may conclude, by letting 7z tend to infinity in (1), that
part (b) of P4 is true.

Now we shall see that P4 very quickly leads to
P5 If a random walk is recurrent and x € R*, then also —x e R*.
Further R* = R and
F(0,x) = 1 for all x€ R,
F(0,x) = 0 forall xe R — R.
Proof: We shall work with the special case
> P(xt)F(t,0) = F(x0), «xeR

teR

of P4(b). It follows that
> Pyx,t)F(1,0) = > P(x,2)F(2,0),

tek tek
and by further iterations of the transition operator P(x,y)
Z P, (x,)F(2,0) = F(x,0), m>0, xeR.
teR
Now we take a fixed x, € R*, in order to prove that F(x,,0) = 1.
This is done by setting x = 0 in the last equation, giving
> P, (0,0)F(t,0) = F(0,0) = F = 1.
teR

Since x, € R*, we may select m; > 0 such that P, (0,x,) > 0.
Then

1 = P, (0,0)F(%,,0) + > P, (0,£)F(t,0)
t+ 2o
P (0,60)F (20,0) + 2, Ppo(0,8)
t#xzo
1+ PmO(O,xo)[F(xo,O) - 1],

which proves that F(x,,0) = 1.
Furthermore

A

1 = F(x0,0) = F(0,—x,),

and F(0, — x,) would be zero if —x, were not in R*. Hence —x, is
in R* along with x,, so that R* = R. But then the previous argu-
ments show that F(0,x,) = 1, and it is of course clear that F(0,x) = 0
when x € R — R, if this set has any elements at all. Thus the proof
of P5 is complete.
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Before summarizing the results of P2 through PS5, it is convenient
to simplify matters by focusing attention on the set R. If R = R,
then the statement in P5 that R* = Rreducesto R* = R. Buteven
in the transient case that part of R which is not in R is quite irrelevant
in the following sense. One could always imbed R in a larger group
of dimension d + 1 without affecting the random walk in the least.
So we shall make the definition®

D2 A random walk P(x,y) defined on R is aperiodic if R = R.

If a random walk is periodic (i.e., not aperiodic), then the problem
is badly posed. In other words, if R # R, then the random walk is
defined on the wrong group, or on a coset of the wrong group if it
starts at a point x not in R. It will always be possible to reduce
problems where R # R to the aperiodic case, for the simple reason
that in every case R happens to be group theoretically isomorphic to
R of some dimension d > 0. (See Chapter 11, section 7, for a more
detailed discussion of such considerations.)

As a good example of the simplifications due to aperiodicity we
have

P6 For aperiodic recurrent random walk
. Gy(0,x) _
lim & 00) =
Proof: By P1.5, the limit is F(0,x). But by P5, F(0,x) = 1 for
all x in R* = R, and as the random walk is aperiodic this gives
F(0,x) = 1in all of R.
Finally we summarize the results of P2 through P5 as

1, x € R.

T1 Let P(x,y) be the transition function of aperiodic random walk.
Then there are only two possibilities
(a) (Transient case)

G(0,x) < 0 on R, F(0,0) <1, F(0,x) =0 on R — R",
(b) (Recurrent case)
G(0,x) = 0 on R, F(0,x) =1 on R.
There is nothing to prove, all the statements being immediate from
D2 applied to P2 and P5. Instead we mention an interesting extension

3 Here again our terminology differs from the conventional one in the theory
of Markov chains in [9] and [31]. Our notion of strongly aperiodic random
walk, to be introduced in DS5.1, is far closer to aperiodicity in Markov chains
than the present definition of an aperiodic random walk.
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of T1, which, at this point, we do not have the resources to prove.
It is proved in P24.9 of Chapter VI, and completes the result of T1
for the transient case. It concerns transient random walk only and
asserts that F(0,x) < 1 in the transient case for all x, unless the
random walk is of a very special type which we shall now define.

D3 A random walk is called left continuous if it is one dimensional

and if
P0,—1) > 0 and P(0,x) = 0 for x < — 2.

Stmilarly it is called right continuous if
P0,1) > 0 and P(0,x) = 0 for x > 2.

Note that Bernoulli random walk, with0 < p = 1 — ¢ < 1 is both
left and right continuous, even when modified so that also P(0,0) > 0.
The extension of T1, which will be accomplished when we prove P24.9
in Chapter VI, is

Aperiodic transient random walk has F(0,x) < 1 for all x in R
unless it is
(a) left continuous, with the additional property that

—© < Z xP(0,x) < 0,
itn which case F(0,x) = 1 for all x < 0 and F(0,x) < 1forall x > 0; or
(b) right continuous with the additional property that
+ 00
0< > xP(0x) < o,

T=—0

tn which case F(0,x) = 1 for x > 0, F(0,x) < 1 for x < 0.

At the present stage of development of the theory it is not even
quite obvious that the random walk of type (a) or (b) above is transient.
This matter will be settled in T3.1, where some simple sufficient
conditions are obtained for a random walk to be transient. Now we
turn instead to the task of finding a sufficient condition for recurrence.

Restricting attention to one-dimensional random walk let

Y

D4 m = Z |#|P(0,x) < o0,

T=—~0

and, in case m < o0

0

o= z xP(0,x).

I=— 0
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We saw in E1.2 that Bernoulli random walk, where p turns out to
have the value p — ¢, is recurrent if and only if p = 0. We will
eventually show that every one-dimensional random walk, with
m < o0, has the same property: it is recurrent if p = 0 and transient
otherwise. Intuitively the conclusion that random walks with p # 0
are transient seems quite plausible if not obvious. But it turns out
that this part of the result is the harder one to prove, and so we shall
now consider only the case when u = 0.

The first step of the proof is nothing but the classical weak law of
large numbers for sums of identically distributed random variables.
Clearly P(0,x) can be taken to be the probability measure of an
integer valued random variable. Calling P(0,x) = p(x), one observes
that

Py0,x) = 2> p(x — y)p(y)
YeR
is the convolution of two such measures, and similarly P,(0,x) is the
convolution of the measure p(x) with itself n times. If P(0,x) has
mean p according to D4 (and m < o0) the usual statement of the weak
law becomes

P7 lim z P,(0,x) = O for every ¢ > 0.

n— o z
[zl';—l—ul > €]

We shall not give a proof of this remarkable theorem which is due
to Khinchin [62], 1929, but only point out that no measure theory is
involved as the usual proof* proceeds by elementary careful estimation
of the values of P,(0,x) for large » and |x|. The first step of the
proof of course consists in verifying P7 for the case when P(0,x)
satisfies the additional assumption of finite variance o2, i.e.,

o* = > |x — ul>P(0,x) < oo.

zeR

In that case

1
2 PO <55 > |x— mul?Py(0)

z £
Z_ Z _ul>
[Illn u|>e] [z||n ul €]

2
o
—3 2, 1% = mu|?Py(0x) = —5 >0,

z€R

A

A

as n— 00.

4 To be found in any good introductory text, such as [31], [34], [84].
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Using nothing but P7, Chung and Ornstein [13], 1962, succeeded
in showing that every one-dimensional random walk with m < oo
and pu = 0 is recurrent (earlier proofs used the Fourier analytical
methods developed in the next chapter). Let us therefore suppose
that P(x,y) is a one-dimensional transition function (i.e., R is the set
of integers) with m < oo, u = 0. For every integer N we can assert,
using P1.3, that

€)) Gx(0,0) > —Z—Aﬁl IzIZM Gy(0,x)

for every positive number M. Furthermore

2 2 Gulx) = Z > P0x) > Z 2. Py0,%).

lzl<M = |zl=M k=0 [1l, |<_]

Choosing M = aN, a > 0, we may combine (1) and (2) to obtain

1 N
(3) GN(O 0) = 2 N + 1 kZO ’ﬂ;m Pk(O’x)
From P7 we know, since p = 0 and Y,z P,(0,x) = 1, that
lim z P,0,x) = 1, when a > 0,

K= |z/<ka

and one may conclude from (3) that

) lim G(0,0) >

N-»oo

Since a may be taken arbitrarily small, (4) implies
G = lim G4(0,0) = > Py(0,0) = 0.
N— o k=0

Thus we have proved

P8 If P(x,y) is ome dimensional, m = 3 |x|P(0,x) < oo, and
p = 2 xP(0,x) = 0, then the random walk is recurrent.

Proposition P8 has the partial converse that a random walk with
m < o, u # 0 is transient. As no direct analytic proof seems to be
known, we shall use this difficulty as a motivation for developing the
correct measure theoretical formulation of the theory of random walk
in the next section. One of the most frequently useful measure
theoretical results will be the strong law of large numbers (P3.4),
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Kolmogorov’s [66] (1933) sharpened version of the weak law (P7).
In particular, the strong law (P3.4) will make it quite evident that
every random walk on the line with m < oo, pu # 0 is transient.

3. SOME MEASURE THEORY

First we define what is meant by an arbitrary probability space, and
then we shall specialize to those probability spaces which are useful
in the measure theoretical formulation of random walk problems.
A probability space is a triple (Q, &, P) where

(a) Q is an arbitrary space (collection of “points” w € Q);

(b) & is a so-called o-field, i.e., a collection of subsets 4, B, C,...
of Q which is closed under the operations of countable unions,
intersections, and complementation; in particular the empty set and
the whole space Q are elements of % ;

(c) P is a non-negative set function, defined on &, with the
properties that P[Q] = 1 and >, P[4,] = P[U>_, 4,], when 4,
is a sequence of pairwise disjoint sets in F (i.e., P[-] is a countably
additive probability measure). We shall feel free to use (but actually
we shall rarely need to do so) a few standard notions and theorems
from measure theory® which apply to an arbitrary probability space:

(1) If 4, is a monotone sequence of sets in &, i.e., if 4, D A,
for every k = 1, then

lim B[ (4] =P[ A 4]
n— o k=1 k=1

(2) A real valued function f(w) on Q (which may also assume the
“values” 400 and — o0) is called measurable if the set [w | f(w) < ]
is in & for every real number ¢. A measurable function which
assumes only a finite number of distinct values is called simple. A
sequence of measurable functions f,(w) is said to converge a.e.
(almost  everywhere, or with probability one) if [w|lim,._, . fu(w)
exists] is a set of measure one. Using this terminology, every
measurable function can be represented as the a.e. limit of a sequence
of simple functions. And if a sequence of measurable functions con-
verges a.e., then its limit is also measurable.

5 To be found in [37], [73], or [78].
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(3) If p(w) is a simple function, assuming finite values @, on the
sets A, e F,k = 1,...,n, its integral is defined as

[ ot P = 5 apran
Q k=1
An arbitrary measurable function f(w) is called integrable if

sup [ |p(w)| dP@) < oo,

the supremum being taken over all simple functions such that
|p(w)| < | f(w)| almost everywhere. If f(w) is integrable, then

| f@) a@) = tim [ (o) aR@)

exists and has the same value for every sequence ¢,(w) of simple
functions such that |p,(w)| < | f(w)| and @,(w) converges to f(w)
almost everywhere.

(4) The usual properties of the Lebesgue integral on a finite
interval, such as the Lebesgue dominated convergence theorem,
apply to the integral defined in (3). Of particular importance is the
following special case of Fubini’s theorem. Two integrable functions
f(w) and g(w) are said to be independent if

Plo | f(@) < 4, g(w) < 8] = Plo | f(w) <a]P[w | g(w) < b]

for all real numbers a and 4. If so, then

| 7tlete) dr) = [ fw) ap(@) [ gw) ap(a).
Now we are ready to specialize to a particular probability space,
where Q will be the set of infinite sequences
w = (wy, wy,...), with each w, € R.

Here R is the state space of a given random walk. The o-field & is
defined as follows. First we require & to contain all cylinder sets,
i.e., sets A, of the form

A, =[w|wg=a, kE=12...,n0, nz>0.

where a, € R for each & = 1,..., n, and then we define % to be the
smallest o-field which contains every cylinder set. Finally, in order to
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define the probability measure (in terms of the transition function
P(x,y) of a given random walk), we stipulate that

P[4,] = P(0,2,)P(0,a;)...P(0,a,), n>0

for every cylinder set (the empty product, when n» = 0, is of course
defined to have the value one). It is not difficult to prove the extension
theorem®—that there exists one and only one countably additive
probability measure P[-] defined on the whole of &, which has the
desired values on the cylinder sets. That completes the definition
of a probability space (Q, %, P) corresponding to a given random
walk with transition function P(x,y) and state space R. To this
definition we now add a list of frequently used probabilistic terminol-

ogy.

D1 Measurable functions on the above probability space are called
random variables. In particular we denote the random variables w, by

w, = Xi(w) = X, k=1,2,...,
and their sums by
Sy =0, S, =X, +--- +X,, n> 1
If f(w) = fis a random variable, we write for each x € R
P[f = x] = Plw | flw) = ]
and if f(w) = £ is in addition integrable, then

[ ) apw) = Ex1

is called its expectation (expected value). Finally, when A€ F, the
symbol E[f; A] will denote the expectation E[f(w)p 4(w)] where ¢ 4(w) = 1
for w € A and zero otherwise.

The two most frequently useful corollaries of D1 and of the general
theory of measure and integration preceding it are summarized in

Pl (a) If f(w) = F(S,,8,,...,8,) is any integrable function of
Si,...,S,, then its expected value is
E[f] = > F(%y,%g, . . ., %,)P[S; = %;, S5 = %3,...,
2€R =1, 2,...,n S, = x,]
= Z F(xy, . .., 2,)P(0,%,)P(%1,%3). . . P(%, _ 1,%p).
2eRA=1, 2,....n

6 See [37], p. 157.
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In particular, let f(w) = 1 if S, = x € R, and 0 otherwise. Then
E[f] = P[S, = x] = P,(0,x).

(b) The random wvariables w, = X, are pairwise independent func-
tions. More generally, let I and J be two disjoint subsets of the natural
numbers. Let & | denote the smallest sub-o-field which contains all sets
of the form [w | w, = x] for k€ I and x € R, and define F , in a similar
way. Suppose now that f(w) and g(w) are integruble on (Q, #, P) and
that f(w) is measurable with respect to & and g(w) with respect to F ,.
Then £ and g are independent functions, and

E[fg] = E[f]E[g].

The proof is nothing more or less than an exercise in rewording the
content of D1, with two minor exceptions. The last equation in
part (a) made use of the definition of P,(0,x) in D1.1, and the last
equation in part (b) is Fubini’s theorem as given in equation (4)
preceding D1.

To exhibit the advantage of the language of sets (events) and their
measures in a familiar setting we shall use P1 to give a proof of P1.2.
According to D1.2 we may express F,(x,y) as

F(x,9) =Plx+ S, #yfork=12,...,n—-1;x+ S, =], .
n=1.

If we let T = T(w) denote the first time that x + S, = y, or more
formally

T=min[k|l<kx+ S =y]<w

then T = T(w) is a random variable (measurable function) on the
probability space (€2, %, P). It may or may not assume the value
+ 0 on a set of positive measure—we do not care. What matters is
that we may now write

Fy(%y) = P[T = n],

so that parts (a) and (b) of P1.2, namely

F,(x,y) = F,(0,y — x) and Z Fi(xy) < 1
k=1
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are quite obvious. To prove part (c) of P1.2 we decompose the event
that x + S, = y. Using part (a) of P1 and the additivity of P[-],

n

Py(x,y) =Plx + S, = y] = kZ Plx+S,=yT=4k
=1
= > P[T=k;S, — S, =0]

k=1

(Here we made the observation that S, — S, = 0 when T = % and
x + 8, =y) Now we may apply part (b) of P1 in the following
manner. For each fixed integer £ > 1, let 1 ={1,2,..., k} and
J={k+1,k+2...,n. Then

fk=fk(w)={1ifT=k

0 otherwise,
g = gulw) = {

1ifS, =S, =0
0 otherwise,

are a pair of independent random variables, f,(w) being measurable

with respect to & and g,(w) with respect to % ;. It follows that

E[f.g.] = E[f;]E[g,], and resuming our decomposition of P,(x,y) we

obtain

Pxy) = 3 EIGJE[g] = 3, BT = KIPIS, ~S, =)

k=1

Z Fk(x)y)Pn—k(O:O);
k=1

which proves part (c) of P1.2.

As a rule we shall not give such obvious probabilistic arguments in
all detail. But occasionally they are sufficiently complicated to
warrant careful exposition, and then a more sophisticated notation
than that employed in D1 will be helpful. Instead of working with a
single probability measure P[-] and the associated operator E[-] of
integration we introduce the starting point x of the random walk
directly into the definition.

D2 For each x € R, the triple (Q,, F,, P,) is a probability space
defined as follows. The elements w of Q, are infinite sequences

w = (Xg, X1, Xy, ...) With x5 = x.

7 P[A;B] means P[4 n B].
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Ifd,=[w|x=a,k=1,...,n],n> 0, a, €R, then
P.[A4,] = P(x, a,)P(ay,a,). . .P(a,..1,a,).

The o-field F , is the smallest o-field containing all the cylinder sets A,
and P,[-] is the unique countably additive measure on ¥ ., having the
desired value on cylinder sets. If f(w) = fis integrable on (Q,, #,, P,),
its expectation is defined as

E,[f] = f f(w) dP,(w).

The triple (Q,, F,, P,), being completely specified by the transition
function P(x,y) and the state space R, will be called *‘the random walk
X, = X,(w), starting at the point x, = x.”

When x = 0, it is obvious that the sequence S,, » > 0, defined on
(Q, #, P) by D1 is the same sequence of random variables as x,, for
n > 0, defined on (Qy, F,, Py) by D2. When x # 0, then S, + «
on (Q, #, P) corresponds to x, on (£,, #,, P,), in the sense that

Plx+ S, =yk=1,2..,10 =P[x, =y, k=12...,n]

for every set of points y;, ¥s, ..., ¥, in R.

The advantage in this slight but important shift in our point of
view is particularly important when one works with stopping times.
Roughly speaking, a stopping time T is a random variable which
depends only on the past of the random walk. Thus the event that
T = k is required to be independent of x,;, Xx;q,... In D3
below that will be made precise by saying that the event T = k lies in
the o-field generated by x,, x,, ..., X,. Practically all the stopping
times we shall ever encounter will be of the same simple type: if 4
is a subset of R, then T =T, defined as T = min[k|k > 1,
x;. € A), will be a stopping time; it is called the hitting time of the set
A. (Our systematic study of hitting times will begin with D10.1 in
Chapter III.)

D3 LetT = T(w)be arandom variable, i.e., a measurable function on
(Q,, F,, P,) for each x in R whose possible values are the non-negative
integers and +coo. Let &, denote the smallest sub-o-field of %,
containing all the sets [w | x, = y] for n =0,1,2,...,k, and y e R.
Suppose further that [w | T(w) = kle &, for all k > 0 and all
x€R. Then'T is called a stopping time.
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P2 If T is a stopping time, and F(n,x) an arbitrary non-negative
Sfunction defined for all n > 0 and all x € R, and if F(co, x) = 0, then

E,[F(T, xx.)] = EEx{F(T, x,)]} = Ef > Po(xr, 9)F(T,)]
ye
=-> P.[xr = 2; T = RE[F(kx,)] < o.
2eR k=0
In particular, setting F(n,x) = 1 if n = k and x = y, while F(n,x) = 0
otherwise,
P[T = ks Xryn = 3] = D Po[xr = 2; T = AJP,[x, = y].
R€R

The proof is omitted—the reduction to a problem involving
independent functions is quite natural, and then the result becomes a
special case of part (b) of P1. Instead we illustrate the use of P2 by
giving a still shorter proof of part (c) of P1.2.

Let T, =min[k |k > 1, x, = y]. It is clearly a stopping time
in the sense of D3. Now we have

Py(x,y) =P.[x, =y] = kzl P.[T, =k;x,=y]

= Z Pz[Ty = k; X1y +n—k =y];
k=1

and since xg, = y, the last line of P2 gives

n n
Py(x,y) = kzl P,[T, = k]Py[xn—k =y] = kZ Fk(x’y)Pn—k(yiy)'
= =1

As the next illustration of the use of the measure theoretical notation
in D1 we shall reformulate the definition of recurrence. Let 4, =

[w|S, =0]. Then | JZ-,; 4 is the event that a return to 0 occurs at
some finite time, and

imd, = U4
n— o n=1 k=n

the event that the random walk returns to O infinitely often. We
shall prove, using the definition of recurrence in D1.5, that

P3 P[lim,. . 4,] = 1 if the random walk defining the probability
measure P[-] on (Q, F, P) is recurrent, and P[lim,_, , 4,] = 0 if it is
transtent.
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Proof: Since P[-] is a completely additive measure, the measure
of the intersection of a monotone sequence of sets is the limit of their
measures (see (1) preceding D1). Since the sets \J7., 4, = B,
form a monotone sequence, we have

(1) P[ fim A,,} = lim P[B,].
Now consider the sets
n+m
Bnm = U Ak
k=n

which are easily seen to have measure
m+1
(2)  P[Byal= D P,.1(0t) D> Fyt0), nx=1, m=>0.
fek k=1

In the recurrent case we let m — oo in (2), observing that the sets
B, , increase to B,, so that
) P[B,] = lim P[B,,] = 2. Pu_1(0,0)F(2,0).

teR

But we know from P2.5 that F(¢,0) = 1 for all ¢ such that P,_,(0,¢) >
0. Therefore P[B,] = 1 for n > 1, and equation (1) shows that

P[ Tm A,,] -1
In the transient case one goes back to equation (2), observing that
m+1
(4) P[Bn,m] < Z Pn—l(Ort) Z Pk(tio)
teR k=1
n+m
= > Pj0,0) = G,y u(0,0) — G,_4(0,0),
j=n

nz=1l
If we let m — o0, P1.4 tells us that
P[B,] < G(0,0) — G,_4(0,0) < oo,
so that finally
P[li_m An] = lim P[B,] < G -G =0,

completing the proof of P3.
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The next step brings us to Kolmogorov’s strong law of large
numbers which we shall formulate, without proof,® in the terminology
of DI1.

P4 If an arbitrary random walk has

m= > |x|P(0,x) < 0,
ZER

p= > xP(0,),
IER

then the sequence of random variables S, = X, + --- + X, has the
property that
.S,
P[l‘i‘;z—”] =1

Remark: (a) The theorem makes perfectly good sense, and is
even true, for arbitrary random walk in dimension d = 1. When
d > 1 the mean p is a vector and so are the random variables S,.
However, we shall use only P4 when d = 1.

(b) It is easy to show that the set

n—

[w] limsn—iwz=y,]e.7,

by representing it in terms of a countable number of cylinder sets of

the form [w || S,(w) — nu| > r], where r may be any positive
rational number.

Our immediate goal is the proof of the sufficient condition for one-
dimensional random walk to be transient, which was discussed at the
end of section 2, and which served as motivation for introducing
measure theory. For this purpose the following seemingly (not
actually) weak version of P4 will suffice. We shall assume that
p # 0, let

Cn = [a) l §£ — > I—;—']:
and observe that P4 implies
P[ lim c,,] =0.

8 The first proof, for the case of Bernoulli random walk, is due to Borel [6],
1909. The general version in P4, announced by Kolmogorov twenty years
later, was made possible by his measure theoretic formulation of probability
theory [66]. Many modern texts, such as [23] and [73], contain several
different proofs (Kolmogorov’s as well as proofs based on martingales or
ergodic theory).
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Now we let 4, = [w | S, = 0], and notice that C, was defined so that
A,C C,foralln > 1. Consequently
P[ lim An] = 0.
n-»

Finally, we refer back to P3 where it was shown that the upper limit
of the sequence of sets 4, has measure zero if and only if the under-
lying random walk is transient.

Hence every random walk with m < o0 and p # 0 is transient!
(Our proof is perfectly valid in dimension d > 1.) Combining this
fact, when d = 1, with P2.8, we can assert that

T1 One-dimensional random walk with finite absolute mean m is
recurrent if and only if the mean p is zero.

The ideas of this section are now applied to obtain an amusing
generalization of certain properties of Bernoulli random walk.

E1 It was shown in E1.2 that Bernoulli random walk with p > ¢ has
the property that

(1) G(0,x) =

for x > 0.

p—9q

This result can be extended to arbitrary right-continuous random walk with
positive mean in a surprisingly interesting fashion; we shall assume that

1

POx)=0forx>2 O<p= 2 xP0Ox)

I=—-®
and prove that for such a random walk

(2) G(0,0) = GO,1) = G(0,2) =- - - = ’lb

This is a clear-cut generalization of (1) where p happens to have the
value p — ¢.

First we observe that this random walk is transient according to T1.
Also S,— 4+ (or x,— +00) with probability one, according to the
strong law of large numbers (P4). Consequently, if

T,=min[k|1< k< c0,x, =],
we may conclude that
Py[T, < 0] =1 for y > 1,

as right-continuous random walk cannot “skip” a point in going to the
right. Thus

3 FO9) = 3 ROy =1, y=1.
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Our next observation is that, when x # y,
(4) G(x’y) = F(xry)G(y’y) = F(x,y)G(0,0)

which was contained in P1.5. Calling G(0,0) = G and setting x = 0 in
(4), we get from (3) ,

(5) G(0,y) = G for y > 1.

Thus it remains to show only that the constant G has the value u~*. For
this purpose we use the identity

(6) G(0,x) = 3 G(0,5)P(y,x) + 80,x), xeR.

When x > 1, this identity reduces to the trivial result G = G so we must
consider also negative values of x, although G(0,x) is then unknown. One
can write

k=POD- 5 5 Py

which suggests summing x in (6) from —o0 to 0. Forn>1

0

gﬂ G(0,y) I=Z_ | PO)

S G0 -1

I=-n

Il

0 0
P(yx)+ 2 G(O0,3) > P(yx)

n y=—o z=-n

Hence, letting n— + o0,

Gu =1+ GP(0,1) — ,é_w G(O,y)[l - iw P(y,x)]

=1- 3 coyfi- 3 P(y,xj -1,

y=-—

since

0
> Pyx)=1 wheny< —1.

Z=—0

That completes the proof of (2). In Chapter VI (P24.6) we shall prove
a further generalization of (2). Adhering to the assumption that m < oo,
p > 0, while discarding the hypothesis of right continuity, one can no
longer assert (2). But in P24.6 equation (2) will be shown to remain true
asymptotically, in the sense that

lim G(0,x) =

2z~ +

T
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4. THE RANGE OF A RANDOM WALK®

To illustrate the phenomenon of recurrence from a novel point of
view we shall study a random variable associated in a natural way with
every random walk. The transition function P(x,y) and the dimen-
sion of R will be completely arbitrary. The most natural way to
proceed is in terms of the measure space of D3.1. We had §, = 0,
S, = X; +--- + X,, where the X, are identically distributed in-
dependent random variables with distribution P[X; = x] = P(0,x).
Thus S, represents the position of the random walk at time 7.

D1 For n > 0, R, is the cardinality of the (random) subset of R
which consists of the points 0 = S, S,, ..., S,.

Thus R, (called the range of the random walk in time #) is clearly
a measurable function on (2, #, P) being simply the number of
distinct elements in the sequence Sy, Sy,...,S,, or the number of
distinct points visited by the random walk in time n.

Note that it would be perfectly possible to define the probability
law of R, (and that is all we shall be concerned with) in terms of the
simple analytic setup of section 1. For example,

PR, = 1] = [P(0,0)]"
PR, = 2] = > P(0x)[P(x) + P(x0)] + P(0,0) > P(0,x),
z#0 z#0
but evidently this is not a very convenient representation.
We shall be concerned with a weak law of large numbers for the

sequence R, and we shall say that R,/n converges in measure to the

constant c¢ if
lim P [ 2 ¢

n— 0

>e]=0

for every € > 0. We shall prove the theorem

T1 If a random walk is transient, then R, [n converges in measure to
G-! =1 — F > 0 and, if it is recurrent, R, [n converges in measure to 0
(which equals 1 — F in this case too!).

Proof: First we calculate E[R,]. The formula
n+1
E[R,] = kZ KP[R, = k]
=1

9 The results of this section have recently been extended in several direc-
tions. Central limit and iterated logarithm theorems have been proved for
R, in the transient case, ([S11], [S12], [S14], [S15]) and a strong law of large
numbers for R,/E(R,) in the recurrent case [S13].
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is not useful, so that it is better to go back to D1, in order to represent
R, as a sum of random variables, each of which has value 0 or 1
according as S, equals one of the preceding partial sums or not. We
can write

Rn = i Prs
k=0

where @5 = 1, @(Sy,...,8;) =11if S # 8, for all v =0,1,...,
kE — 1, and ¢, = 0 otherwise. Then, even though the random
variables ¢, are not independent,

E[R,] = > E[g].
k=0
We have, for k > 1,

E[lp,] = P[S, — S,_1 # 0,8, — S5 #0,..., 5, # 0]
S PX, 0, K+ X1 0, X 4o+ Xy £ 0]
=PX; #0,X; +X,#0,..,X; +--- + X, # 0]
—P[S, # 0 for j = 1,2,..., k]

k
1 - Z F40,0),
j=1

in the notation of D1.2. By D1.5
limE[e,] =1—- F=>0,

n— o

where 1 — F = 0 if and only if the random walk is recurrent. It
follows that the averages of E[¢p,] also converge to 1 — F, or

1 12
lim -E[R,] = lim = » E =1-F.
n—o N [ n] n— o nkZO [(Pk]

Finally, to show that R,/ converges in measure to 1 — F, we have
to distinguish between the cases of recurrent and transient random
walk. The easy case is the recurrent one. There we have for
arbitrary ¢ > 0

)
r—
2|7
\Y
L
I

PR, = K < 5 3 KPR, = A

[klke > nel

= lE[Rn]_,l__f =0,
ne €

as n— o0, so that R, /n— 0 in measure.
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In the transient case, a similar estimate (by the method of
Chebychev’s inequality) gives
n2e?

P[R
1 1 R,])2
zzg(ﬂ(Rm)4-;§{l - F‘— E[j;]}.

_n" _ —

- P
Here o*(R,) = E[{R, — E[R,]}?] is the variance of R,, and since we
have shown that E[R,/n] — 1 — F, the proof will be complete if we
can show that

> e] L E[R, - n(1 — F)?]

IA

lim ﬁaz(n,,) =0,

n-—> 0

One calculates as follows:

AR =5 3 5 ew] - | 3 Elwd]

i=0 k=0

S (Elosei] — Elo;Ele.]}

0 k=0

i
<2 > {Elowd - EleEled) + > Elwll
Now we observe that when j < %

E[ep,p,] = P[S; # S, for « < j and S, # S; for B < k]

P[S; # S, for « < jand S, # S; for j < B < &]

PX, #0,X;, +X,_;#0,...,X;, +--- + X, #0;
X, #0, X, + X, #0,.., X, + -+ - X;,1 # 0]

PX;#0,..,X; +---+ X; # 0P[X; #0,...,
X+ -+ X, # 0],

so that forj < k

n

n

A B

Il

E[p;p] < E[@;]E[e;]-
Going back to the estimation of ¢%(R,),

#R) <23 Ele] 5 [Epis - Eod + ER,]

=7+
Given any monotone nonincreasing sequence a; = dg = dg..., it
is easy to see that

n
Z lag-; —a]l =(ar +ax+ - -+ a,_;) — (@541 + -+ + a,)
k=j+1
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assumes its maximum when j = [n/2], the greatest integer in n/2.
Setting a, = E¢, and continuing the estimation, one therefore
obtains

o*(R,) < 2 Zo E[@/JE[R,_pn21 + Riway — Ry] + E[R,].

Since we know that E[R,/n] tends to 1 — F as n— 0, it follows that

2
lim (—7-—(1:—”) < 2(1 — F) lim E[Rn—[nIZJ + Ry — Rn]
n—> n n— 0 n
- 1-F
=2(1—F)[12F+ 5 —(1—F)]=0.

That completes the proof of T1.

The method by which we proved T1 was devised by Dvoretzky
and Erdés ([27], 1951) in the course of a detailed study of the range
R, for simple random walk. One of their results was the strong law

(1) P[lim l—]{1‘=1—F]=1

noo N
for simple random walk, which of course implies T'1. Actually, this
is a general theorem, valid for arbitrary random walk. We shall sketch
a simple proof of (1) which is beyond the scope of this chapter as it
depends on Birkhoff’s ergodic theorem.

E1l In order to establish (1) above, for arbitrary random walk, we shall
introduce the upper and lower bounds

(2) Dn < Rn S Rn.Mv n = 0»

defined as follows.

We choose a (large) positive integer M and define R, ,, as the number of
distinct points counted by “wiping the slate clean” at times M, 2M,
3M,.... To formalize this idea, let Z,{M) be the independent random
variables defined by: Z,(M) = the number of distinct partial sums among
Siat> Sema1s s Swsvm-1, for k=0,1,2,.... Then let

(n/M1+1
R,u = Z Z,(M).
K=0
Clearly this makes R, < R, . We may apply the strong law of large
numbers, P3.4, to the averages of the sequence Z,(M) obtaining

— R _— 1 (/M1+1 1 1
im —?< fim ~ > Z M) = 5, E[Z(M)] = 3; E[Ry].

nowo N n-so N o
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Now we let M — oo, and as it was shown in the proof of T1 that

M-E[R,]—1 — F,
we have
— R
(3) lim =2 <1-—F,
nowo N
with probability one.

Keeping in mind the definition of R, = R (X, X,, ..., X,) as a random
variable on the measure space (Q, %, P) where w, = X;(w), and the X,
are independent with distribution P(0,x) = P[X, = x], we define D, as
the number of points visited in time n which are never revisited at any later
time. 'Thus D, will be a function on the same measure space (Q, &, P),
and its precise definition is

= > ¢
k=0
where

$.=1if X3, +- -+ X,,,#0forv=12...
= 0 otherwise.

It should be obvious that D, satisfies (2); every point which is counted in
determining D, is certainly visited in time 7.

We are now ready to apply the individual ergodic theorem (see [23],
p. 464 or [73], p. 421). Let T be the shift operator on  defined by
(Tw), = w41 = X;,1- It is measure preserving, i.e.,

P[T-14] = P[4], Ae &F,
so that the limit

lim - z f(T¥w)

—’wn

exists with probability one (it may be a random variable) for every integrable
function f on Q. Of course our choice for f is f(w) = Yo(w), so that
J(T*w) = {w) and the limit

D
- k : n

71;1.{2 n g 2 boThw) = h_r.rclo n
exists with probability one. Since (Q, #, P) is a product measure space,
much more can be said: the above limit must in fact be a constant (this is
the so-called zero-one law of Kolmogorov, [23], p. 102), and this con-
stant is

E[f(w)] = E[$po(w)] =P[X; + -+ X, # 0 forall vy > 1] =1 - F.
Therefore we now have, with probability one,

“ lim&‘zlimP—"=l—F,

ﬂ——>® n-—+> 0

and equations (3) and (4) together imply (1).
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Remark: The above proof was discovered jointly with Kesten
and Whitman (unpublished). Not only is it simpler than the proof
of T1 but it also yields interesting generalizations without any
further work. In problem 14 of Chapter VI it is shown how R,, the
number of points swept out in time #, may be replaced by the number
of points swept out by a finite set. 'The limit in (1) is then the capacity
of the set in question. Thus the study of R, takes us into the realm
of potential theory, which will be discussed briefly in sections 13
(Chapter III) and 25 (Chapter VI). To anticipate a little, let us
state the analogue of T1 and El for a three-dimensional Brownian
motion process X(t), the continuous time analogue of simple random
walk in three space (see Feller [31], Vol. I, Ch. XIV). Suppose that
S is a compact subset of three-space. Let x(7) + S denote the
translate of S by the random process x(7). The set swept out by S
in time ¢ is the union of the sets x(7) + S over 0 < 7 < ¢, and we
denote the Lebesgue measure (volume) of the set thus swept out as

R(S) = | U &) + S}

This definition makes sense since Brownian motion, when properly
defined, is continuous almost everywhere on its probability space.
On this space one can then prove, following the method of El, that

lim —&2 R'( 5 _ ¢s)

t—
exists almost everywhere. The limit C(S) is nothing but the ordinary
electrostatic capacity of the set S.

We shall find it convenient, in section 25, to associate a notion of
capacity with each random walk, and it will be seen (see E25.1) that
the limit 1 — F in equation (1) is again simply the capacity of a set
conststing of a single point.

5. THE STRONG RATIO THEOREM

Here we are concerned with ratios of transition probabilities of the
form
Pn(O’x) Pn+1(0)0)
2,00 ™ P00

which will be shown to converge (to the limit one) as # — co, under
suitable assumptions about the transition function P(x,y). This
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result, in T1 below, evidently constitutes a significant improvement
over the weak ratio theorem P1.5. It was first proved by Chung
and Erdés [11], 1951.

This rather deep theorem will in fact “lie fallow” until we reach
the last section of Chapter VII. There we shall be concerned with
ratios of the form

2 Fy(x,0)

Ju(x) = “FF—
Z F,(0,0)
for recurrent random walk, and the proof of the convergence of
J(x) as n— oo will make use of T'1 which concerns the far simpler
ratio P,,,(0,0)/P,(0,0). While P,,,(0,0)/P,(0,0) and even P,(0,x)/

P,(0,0) tend to the ‘“uninteresting”’ limit one, this is not true of

(1) lim Jy(x) = J(x).

Since this fact lies at the heart of the theory of recurrent random
walk, a few remarks, even out of their proper context are called for as
motivation for later work. Long before we are able to prove (in
T32.1) that the ratios J,(x) converge, we shall prove (in Chapters III
and VII) that the series

@ > [PA00) = Pi(50] = a(s)

converges for arbitrary aperiodic random walk. This result is of
course related to the problem of this section as it is much stronger
than P1.5 while unfortunately being too weak to imply that P,(0,x)/
P,(0,0) converges. 'Thus our plan is the following. In this section
we prove, by a rather “brute force” attack, that P,(0,x)/P,(0,0) — 1,
under suitable conditions (T1). Later (in Chapter III for dimension
2 and in Chapter VII for dimension 1) we establish (2), and finally, in
section 32 (Chapter VII), we use (2) and T1 to show that (1) holds,
with the same limit function as in equation (2). Thus, we shall find that
a(x) = J(x) for x # 0, or

. i Fy(x,0)
(3) 3x0) + S5 [Pu00) — P@0)] = lmEi—,  xeR
RN
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for arbitrary aperiodic random walk, recurrent or transient, regardless of
dimension.

It is clear that any set of conditions for the convergence of ratios
like P,(0,x)/P,(0,0) must ensure the positivity of P,(0,0), at least for
all sufficiently large integers n. Observe that a random walk may be
aperiodic, and even recurrent, and still fail to satisfy this condition.
(For simple random walk in one dimension, P,(0,0) = 0 for all odd #.)
Thus we have to strengthen the condition of aperiodicity and we
adopt a definition which may at first sight be complicated but which
will be seen to accomplish what we want. At the same time it will
be weak enough that it will impose no essential restriction. P1 will
show that at least every recurrent random walk may be modified (by
an appropriate change in its space and time scale) so as to be strongly
aperiodic.

D1 A random walk with transition function P(x,y) on R is called
strongly aperiodic if it has the property that for each x in R, the smallest
subgroup of R which contains the set

x+ X =[y|y=x+ =2 where P(0,2) > 0]
is R itself.

Since we shall be interested primarily in recurrent random walk
in this section, it will suffice to study the implications of D1 under
this restriction. (In Chapter II (P7.8) we shall derive a Fourier
analytic characterization of arbitrary strongly aperiodic random walk,
which is used in P7.9 to obtain information concerning the asymptotic
behavior of P,(0,x) as n— co. With this exception strong aperio-
dicity will not be of any real interest to us, until we get to the afore-
mentioned ratio theorem in Chapter VII.)

Pl  For aperiodic recurrent random walk there are two possibilities.

(a) The random walk is strongly aperiodic. In this case, given any x
in R, there is some integer N = N(x) such that P,(0,x) > 0 for all
n= N.

(b) The random walk is not strongly aperiodic. Then there is an
integer s > 2 (the period) such that P,(0,0) > 0 for all sufficiently
large n, while P(0,0) = O when k is not a multiple of s.

Remark: The proof will show that in case (b), when x # 0,
P,(0,x) = 0 unless 7 belongs to an arithmetic progression of the form
n = ks + r, where r depends on x.
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Proof: We begin by observing that the set of positive integers
N = [n]| P,(0,0) > 0] is a semigroup; for if P,(0,0) > 0, P,(0,0) >
0, then P, ,(0,0) > P,(0,0)P,(0,0) > 0. Since the random walk is
recurrent (this assumption is much stronger than necessary), 4" is
nonempty. Hence there are only two possibilities:

(i) the greatest common divisor of the elements of A" is 1,

(i) the greatest common divisor is s > 1.

The proof of P1 will consist in showing that case (i) corresponds to
case (a) in P1 and case (ii) to case (b).

In case (i) P,(0,0) is obviously positive for sufficiently large =.
Similarly, given any x # 0, there exists an integer m such that
P,(0,x) > 0. Therefore

Py m(0,%) = P,(0,0)P,(0,x) > 0

for all sufficiently large n. In case (i) it therefore remains only to
show that the random walk is strongly aperiodic. Thus, choosing
two arbitrary points x and y in R, we must show that y is in the group
generated by x + X. Since P,(0,y) as well as P,(0,0) are positive
for all sufficiently large #, it follows that one can find some n > 0 such
that

y=oy+og+---+o, and 0= -0, — 045~ " — 0y

where oy, . .., 05, are elements (not necessarily distinct) of . This
enables us to represent y as

y= k}: (x + o) — kgl (* + opsi)

which is the desired representation of y as an element of the group
generated by x + Z. Therefore the random walk is strongly
aperiodic.

Finally, suppose we are in case (ii). Let us call —3, the set of
points of the form —(o; + --- + o), 0;€X. Observe that if
x€ —2,, then P,(0,x) = 0 unless n is of the form n = ks — 1,
This is quite clear as the two conditions x € —Z,, and P,(0,x) > 0
imply that P,,,(0,0) = P,(0,x)P(x,0) > 0. Thus we have shown
that points in —Z; can be visited only at times in the progression ks — 1.
Similarly points in —X, can be visited only at times in the progression
ks — 2, and so forth, until we come to the set —Z, which can be
visited only at times ks. Furthermore, each set —X,,, j =0,
1 < r < 5, clearly shares with —Z, the property of being visited only
at times which are in the progression ks — r. Since the random walk
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with transition function P(x,y) is recurrent and aperiodic, we know
from T2.1 that R = R = R*, which is the semigroup generated by
—2. Hence every point of R is in some —2;,,. Thus R is de-
composed into s equivalence classes of points, two points x and y being
equivalent if the arithmetic progression of integers #» on which
P,(0,x) > O for large enough # is the same as that for y. It follows
from P, ,,(0,0) > P,(0,x)P,(x,0) that the points of —X,,, are in the
same equivalence class as those of Z;;, _,. Therefore the equiva-
lence class containing the origin is a group H. (The other equivalence
classes are its cosets!) To complete the proof of P1 we simply
select x from X, _;. Then x + X C Z, and since X; generates the
proper subgroup H of R, we have proved that a random walk with
property (ii) cannot be strongly aperiodic.

It will not suffice to know that the n-step transition function of
strongly aperiodic recurrent random walk is positive for sufficiently
large n. 'We shall require an explicit lower bound which is given by

P2 Let P(x,y) be the transition function of a recurrent strongly
aperiodic random walk. Given any point x in R and any ¢, 0 < € < 1,
there is some N = N(x,€) such that

P,(0,x) = (1 — &) for n > N.

Proof: The random walk is recurrent, so that > P,(0,0) = oo,
which implies that the power series > 2"P,(0,0) has radius of con-
vergence one. Hence

lim [P,(0,0)]!" = 1.

It follows that, given any e with 0 < € < 1,
(1) P,(0,0) = (1 — &)

for infinitely many positive integers n. We also observe that if (1)
holds for n = m, then

(2) Pn(0,0) = [Pn(0,0)]F = (1 — &)™

for every integer £ > 1. Now we pick an arbitrary point x in R,
and from the infinite sequence of integers m for which (2) holds we
select m, as we may by use of part (a) of P1, such that

3) min Py0,x) = 4 > 0.

m<ji<2m
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When n > 2m, we write n = (kR + 1)m + r, 0 < r < m, so that
Py(0,5) > Py, (0:5)Pyn(0,0),
and using (2) and (3),
P,(0,x) = A(1 — &)™ > A(1 — &)™
Even though 4 < 1, we have shown that
lim  P,(0,x)(1 — €)™ > 0, x € R,

n—

for every e between 0 and 1 which implies that P2 is true.

The next lemma concerns a well-known'® exponential lower bound
for the Bernoulli distribution. In terms of Bernoulli random walk it
becomes

P3 Let S, = X, + -+ +X,, in the notation of D3.1, denote
Bernoulli random walk with

0<p=P01)=PX,=1=1-P0,—1) < 1.

There exists a constant a > 0, depending on p, but independent of n,
S

such that
P[|%- @ -1

foralln = 1 and all e > 0.

Proof: For convenience we call T, = n~[S, — n(2p — 1)]. Since
|T,| < 2, P3 is automatically true when € > 2 so that we may assume
that 0 < € < 2. We may also simplify the problem by proving only
that

(1) PT,>e]<e ™ an>1, 0<ex<2

> E] < Ze—a.e’n

for some @ > 0. The proof of (1) with T, replaced by —T, will be
the same, since it concerns the Bernoulli random walk —S,. In
other words, if we prove (1) with @ = a(p), for arbitrary p, 0 < p < 1,
then (1) will hold for —T, with a = a(1 — p) and P3 will hold with

a = min [a(p), a(l - p)].

Using the notation of D3.1, we obtain, for every ¢ > 0 and € > 0,
(2) P[T, = €] < e “E[¢/Tr; T, > €] < e *E[¢'Ts].

10 This is S. Bernstein’s estimate, [84], pp. 322-326.
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Using the independence of the random variables X, (P3.1)

t B

3) E[¢T:] = E[e;k§1<xk—2p+1)] - I’lI E[e‘;<xk-2p+1)]

k=1

= (gl - [ 1 e
Expanding the function

f) = e3P + (1 = ple~

in a Taylor series about the origin, one readily verifies that f(0) = 1,
f(0) =0, f"(0) > 0. Hence there exist two constants &k, > 0,
ky; > 0, depending on p such that

f(x) <1+ kya? < 47
whenever |x| < k;. Therefore it follows from (2) and (3) that

P[T, = €] < e“‘[f(z_t)]n < el —te+ 4k, t2)n)
n

when |2t| < nk;. Now we let ¢ = cne where ¢ > 0 is still to be
determined. Then

P[Tn >e < e~ ne2(c—gk1c?)

when |2ce| < k,. Since € < 2 we may indeed choose a small enough
positive value for ¢ so that 2ce < k, and simultaneously ¢ — 4k,¢c2 > 0.
If we then set a = a(p) = ¢ — 4k,c?, it is clear that we have proved
(1) and hence P3.

We are now in a position to prove the strong ratio theorem (T1).
The proof of Orey [64] uses the elegant device of first imposing the
condition that P(0,0) > 0. In P4 we therefore consider only random
walk with this property, and the subsequent proof of T1 will show
how the assumption that P(0,0) > 0 may be removed.

P4  For every aperiodic recurrent random walk with 0 < P(0,0) =
l—-a<1

P,(0,0)

a lim 2o
® o P a(0,0)
. P0%)
(b) 31:1:0 P,(0,0) ~ 1 for all xeR.

Proof: The assumption that P(0,0) > 0 implies that P,(0,0) > 0
for all # > 0. Therefore we know from P1 that the random walk in
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P4 is strongly aperiodic. That is crucial because it will enable us to
apply P3 in the estimation procedure which follows.
We may decompose

(1) Pn(()’O) = PO[xn = O]
= zn: Po[xn =0;n - i 8(x;_1, X;) = k]
k=0 i=1

according to the number of jumps of the random walk in time #, if
we say that a jump occurs at timej — 1if x;_; # x;. Since P(0,0) =
1 — @, the probability of £ jumps in time # is given by the binomial
distribution

(2) b(n,k,0) = (Z) k(1 — )=k,

But if a jump occurs at time j and if x; = x, then the probability
thatx;,;, = yis

3 Q(x,y) = a~1P(x,y) for x # y

=0 for x = y.

Equation (3) defines a perfectly legitimate transition function Q(x,?y).
We may call its iterates @,(x,y) and conclude from the identity

Pxy) = (1 — @) 8(x,y) + «Q(x,5), xy€eR
that

4) P(0,0) = 3 Qu0.0)b(nka),  n> 0.

Now we shall decompose the sum in equation (4) into two parts
(C = 2ne + Zne) 2ne being over the set of integers & such that
0 < k< 7 and in addition |k — na| < en. Here € is an arbitrary
positive number which will tend to zero later, and 5, .” is simply the
sum over the remaining values of & between 0 and n. We shall use
the exponential estimate in P3 in the evidently correct form

4) S bmka) < 2040 n > 1

for some positive constant 4 which may be chosen independent of .
Finally we use (4) to decompose the ratios

o Pa00) _ 2 Qu00b(mka) 3. Q(0,0)b(nk,q)
SO A (UX0) Ry A (01 B Y (X1)
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In view of (5) and P2, the last term in (6) is bounded above by

Ze—Aezn Ze—Aezn

P,,.(0,0) = (T = o+

for all » > N(8)

whenever 0 < 8§ < 1, so that this term tends to zero as n— co. It
follows that

—  P0,0) o D ne@u(0,0)b(n,k,0)
7y Tm =)
@ I P00 = o T P,,L00)
-_ Zn + l.EIQk(OyO)b(nvk’a)
< lim [ Pn+1(0’0) + Rn.e]'

n—> o

Here R, . is an error term which tends to zero as n— co. (It is of
the form [P,,,(0,0)]7* X" @,(0,0)b(n,k,x) where >'" extends over all
values of k& which are included in the summation >, . but not in
Da+1e. Hence

Zn.el2”b(n’k)a)

Redl = =5 00)

for all sufficiently large n, and tends to zero by previous arguments
using P2 and P3.) Resuming the estimation from (7),

T T n el 0’0 b )k,
e Pri1(0,0) T anw Doy /Qu(0,0)8(n + 1,k,0)
_— b(n,k,x)
< lim max —_—
n=® [k|lk-(n+al<en+1)] b(n + 1,k,c)
n+1—k

= lim max — T -7

n— o [k||k—(n+al<e(n+1)] (n+ 1)1 — o)
.o+ —a+e€) €
Im Enice O tToe

IA

Since € can be taken arbitrarily small, we have shown that

—  P,(0,0)
lim ——— <1,
noo  Ppy1(0,0)

Exactly the same method of proof may be applied to the reciprocal
ratio P, ,(0,0)/P,(0,0) which of course also has upper limit one, so
that part (a) of P4 is proved.
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To prove part (b) of P4, use P1.2 to write
P,(0,x) = > F(0,x)P,_(0,0), n=>1.
k=0

For every positive integer m

m

,X (0,0
lim ngo 0; Z F,(0,x) Pn(é,O)) = ;Zo F(0,%),

n—w noo k=0

where we applied part (a) of P4 to evaluate the lower limit. Since
the random walk is recurrent, the last term tends to one as m — o0, so
that

. P,(0,x)
© =Pzt

To complete the proof of P4, suppose that (b) is false. Then
there is some x, € R where

. n(O xO)
1{1_’rr°10 (0.0) =14+8>1.

We may choose an integer k such that Py(x,,0) > 0. Then

Pn+k 0,0 n 0, n 0’ 0
(1) TéoT) -2 Eo 3)) Bln0) + Pf(ojf))) Pl 0)

y#zo

The left-hand side has limit one as n — 00, so that

1> 3 A0 lim 2o+ (1 + 9Pyx00)

Yy#3Zo n— ©
=1 + 8Py(x,,0) > 1,
providing the contradiction that completes the proof of P4.
Finally we shall drop the hypothesis that P(0,0) > 0, to obtain

T1 For every strongly aperiodic recurrent random walk

. P,0,0) _
@ o Pra00)
(b) lim Eg ;’)‘; 1 for all xeR.

Proof: First observe that it will suffice to prove part (a) only.
For once this is done, the proof of part (b) in P4 may be used to
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obtain (b) here too—it did not depend on the positivity of P(0,0) at
all. Now let s denote the smallest positive integer such that
Py0,0) > 0. Actually any positive integer with this property would
do, and we may of course assume that s > 1, as the case of s = 1 was
settled in P4. It is clear from P1 that such a value of s exists, and
also that the transition function

Q(x’y) = Ps(x’y)

is again the transition function of an aperiodic recurrent random
walk. It satisfies the hypotheses of P4, so that

Q00 . P00)
1 1 M7 = ] —m = 1.
M o 2rei(00) ~ A Bl 1(0,0)

Therefore, as is easy to see, we shall have proved part (a) of T1 if
we show that

. Pyt (0,0)
2) lim ~5-0,0)

One obtains a lower estimate for the ratio in (2) from

(3) Pus1(0,0) = > P(0,x)Pyy(,0).

z€R

=1forl<r<s.

If we apply P4(b) to the ratios

Po(%,0) _ @n(%,0)
P,(0,0) ~ @4(0,0)

then (3) leads to

v

hm Pns+r(0)0) Z P,(O,x) 11m Qn(xyo)

N> P,4(0,0) =M o @r(0,0)
= 2 P(0x)
lzl=M
for every M > 0, so that
. Pus.+(0,0)
(‘” i Fon 2t

The upper bound will come from
P‘n(O’O) = Z Fk(O’O)Pn—k(O)O)) n =z 1)
k=0

with F;(0,0) as defined in D1.2. It is first necessary to verify that
F,(0,0) > O for all sufficiently large values of %, say for all k > N
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(that follows quite easily from the recurrence and strong aperiodicity
of the random walk). Then we choose a positive integer p such that
p(s — 1) = N, and let #— o0 in

P_____("+p)3(0._’0) = "L P(n+p)s—k(0a0).
(5) P"S(O’O) B kzo Fk(O’O) Pns(O’O)

If T1 were false, then (2) would have to fail, and in view of (4) there
would be some value of r, 0 < r < s such that the ratio P,,,,(0,0)/
P,(0,0) has upper limit 1 + 8§ > 1. Let us suppose this to be so.
The coeflicient of this ratio on the right-hand side in (5) is F,;_,(0,0)
which is positive by our choice of p. As the left side in (5) tends to
one, we obtain

(6) 1= (1+ 8)F,_,(0,0)
+ > F(0,0) lim

[klk<sM; k#ps~r]

Pen s s -1(0,0)
P,,(0,0)

for every M > 0. Using (4)
1= (1 + 8)F,_.(0,0) + Z F(0,0) = 1 + 8F,.,(0,0) > 1

k#ps—r
which is the desired contradiction. Hence P, ,(0,0)/P,4(0,0) has
upper limit at most one for every 7, equation (2) holds, and T1 is
proved.

Remark: Although the dimension of the random walk did in no
way seem to affect the proof of T1, we shall see in the next chapter
(T8.1) that T1 has only been proved when d < 2. The reason is
that no aperiodic recurrent random walk exists when d = 3. Of course
there are random walks of dimension d > 3 where all or part of the
conclusion of T1 are valid (for instance simple random walk in any
dimension satisfies (a) of T1). On the other hand, one can easily
exhibit a transient strongly aperiodic random walk that violates T'1.
Any one-dimensional random walk with positive mean will serve as
an example, if P(0,x) > O only at a finite number of points. It can
be shown that P,(0,0) then decreases geometrically, so that not only
T1 is false, but also the crucial estimate in P2-is violated.

Problems

1. For an arbitrary random walk, let
Ena = Gy +n(0,0) — GA(0,0)
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denote the expected number of visits to the origin in the time interval
[mm + n]. Prove that

E,,>E,,foral m>0, n>0.

2. Again for arbitrary random walk prove that

n-1
S Fy(0x) =1, while 3 F,(0x) =1~ > F(0,0)
zeR k=1

ZER
when n > 2.

3. A two-dimensional random walk is defined (in complex notation) by
0 < P(0,1) = P(0,—-1) =p < 1, P(0,;) =1 — 2p,

so that P(0,2) = O for all other 2 = m + ni. Show that this random walk
is transient and calculate F and G.

4. Find the simplest possible expression, in terms of binomial coeffi-
cients, for P,(0,0) for simple random walk in the plane. Apply Stirling’s
formula to show that this random walk is recurrent. This fact—together
with the result of the next problem, constitutes a famous theorem of
Polya [83], 1921.

5. Use Stirling’s formula to show that simple random walk is transient
in dimension d > 3.

6. For an arbitrary aperiodic recurrent random walk x, starting at
Xy = 0, calculate the expected number of visits to the point x # 0, before
the first return to 0. Show that the answer is independent of x (and of the
random walk in question).

7. Repeat the calculation in problem 6 for transient random walk,

8. Explain why (6) and (7) were easy, and why it is harder to calculate

(a) The expected number of returns to 0 before the first visit to x;

(b) The probability of a visit to x before the first return to 0;

(c) The probability of return to 0 before the first visit to x.11

9. Express the probability P[R, > R, _;] that a new point is visited at
time 7 in terms of the sequence F,(0,0). Use your result to prove the
statement of problem 2.

10. The state space R of a random walk is subjected to the following
indignity: the points of R are painted red with probability « and green
with probability 1 — «. The colors of distinct points are independent.
Now we wish to define T, as the first time that the random walk lands on a
red point. Define an appropriate probability space (Q, #, P) on which
T, = min [# | n > 0; x,, € set of red points] is a bona fide random variable,
and on which also x, = Xy_is a random variable.

11 This problem is intended to give a glimpse of the difficulties in store for
us. Large parts of Chapters III and VII are indeed devoted to the three
questions (a), (b), and (c).
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11. Continuing (10), prove that
P[T, > n] = E[(1 — )R], n =0,
Plx, = x] =

o
1_O‘P[T < T,], xeR.

Here T = min[n |z > 0, x, = «], and x, = 0, while R, is the range of
T4.1.
12, Continuing (11), prove that for transient random walk

lim P[eT, > t] = e~ -F¥ t>0.
a0

13. Continuing (11), prove that for simple random walk in one dimension

lim Plex, < y] = F(y)
a=0
for all real y, where F(y) is the distribution function with density

) = F(3) = |y fl .

14. Let A denote the random subset of R constructed, as in problem 10,
by selecting each point of R with probability . If ¢, is the characteristic
function of the set 4 then

Ny(e) = ké:o Pa(X)

may be interpreted as the occupation time of the random set 4 up to time #.
Show that E[N,(«)] = (n + 1)«, and that o2[N,(«)]/n®—>0, so that
N,(«)/n— o.in measure. (A proof of convergence with probability one may
be based on Birkhoff’s ergodic theorem since the sequence g,(x), & =
0,1,2, ... forms a so-called strictly stationary process.) Although all this
goes through for arbitrary random walk, prove that the limit of o2[N,(a)]/n
is finite or infinite exactly according as the random walk is transient or
recurrent. It has the value

o(l — a)(1 + F)/(1 — F).
15. Continuation. For arbitrary transient random walk derive a central

limit theorem for the occupation time N,(«) of a random subset of the state
space with density «. As shown by Whitman,

lim  P[Ny(@) — na < a{na(l — o)(1 + F)/(1 — F)}7]

e S ds
2

y # 0,

1 z
= ——=f e~t212 gy, —0 < x < 00,
V2rJ-w

Hint: Verify that the limiting moments are those of the normal
distribution. This will suffice according to P23.3 in Chapter V.



Chapter 11

HARMONIC ANALYSIS

6. CHARACTERISTIC FUNCTIONS AND MOMENTS '

As in the last chapter R will denote the d-dimensional group of
lattice points x = (¥%, x%, ..., %) where the %' are integers. To
develop the usual notions of Fourier analysis we must consider still
another copy of Euclidean space, which we shall call E. It will be
the whole of Euclidean space (not just the integers) and of the same
dimension d as R. For convenience we shall use Greek letters to
denote elements of E, and so, if R is a-dimensional, the elements of E
will be 8 = (0, 6,, ..., 0;), where each 0, is a real number for
i=1,2,...,d. The following notation will be convenient.

D1 ForxeR,0€kE,

d d d
W2 = D% (62 = (0,  x-0= a4,
1 1 1

Given, as in Chapter I, a random walk which is completely specified
by its transition function P(x,y) on a d-dimensional state space R, we
make the definition

D2 The characteristic function of the random walk is

$(0) = Z P(0,x)e**, 0eE.
Z€ER
Thus ¢(6) is nothing but a special kind of Fourier series, special in
that its Fourier coefficients are non-negative and their sum over R is

1 The material of this section is well known. More detailed expositions are
in [18], [23], [35], [73], and [84], for the one-dimensional case, and the
extension to dimension d = 2 is nowhere difficult. For a deeper study of the
theory of Fourier series, Zygmund’s treatise [106] is recommended.

54
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one. The term ‘“characteristic function” is customarily used in
probability theory for Fourier series, or for Fourier integrals of
probability measures, which are of this special type.

Many important properties of characteristic functions are in fact
general properties of Fourier series. After establishing the ortho-
gonality of the exponential functions in P1, we shall record, in P2, a
very weak form of Parseval’s theorem, which in its usual strong form
amounts to the assertion that the exponential functions form a com-
plete orthonormal set. Then in P3 we shall derive the convolution
and inversion theorems for Fourier series which are elementary as well
as general. From that point on, most of this chapter will deal with
special properties of characteristic functions (properties which do
depend on the non-negativity of the coeficients). Only in section 9,
P9.1, will we return to a general principle, the Riemann Lebesgue
Lemma, which will find important applications in several later chapters.

Our first task is to set up convenient notation for integration on E,
and in particular on the cube C in E with center at the origin and sides
of length 2.

D3 C=[0|0€E,|6] <= fori=1,2...,4d]

and for complex valued functions f(0) which are Lebesgue integrable on C,
the integral over C is denoted by

ffde - fcfdo _ f ...ff”f(()) do, ... do,.

Thus d6 will always denote the volume element (Lebesgue measure in E).
To achieve corresponding economy of notation for summation over R, we
shall write

286 = g when 3 [g)] < oo.

In most of our work f(6) will in fact be a continuous function on C
so that the integral f f d8 is then just the ordinary d-tuple Riemann

integral. The basic result underlying our Fourier analysis will of
course be the orthogonality of the exponential functions

Pl (2#)~¢ fe“’""y) do = (x,y), for every pair x,y in R.

The obvious proof proceeds by reduction to the one-dimensional
case, since the integral in P1 may be written as the product of d
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one-dimensional integrals over the real interval from — = to #. 'Thus
the integral is

¢

d 1 d
il e @ -v*) 4o — 8(x¥, y%) = 8(x,y),
glzﬂfm o= LT85 = 8(s)

which depends only on the fact that for every integer n

1 i ind —_
o f_ne do = §(n,0).

Next we give a very weak form of the Parseval Theorem. Let
a,(x) and ay(x) be two summable complex valued functions on R, i.e.,
we suppose that

Z |ax(x)] < oo for k= 1,2,

Then it makes sense to define their Fourier series, f,(60) and f,(0),
for 6 € E, by

ful0) = > ayx)e=?, k=12

Since the a,(x) are summable, the series defining f,(6) converge
absolutely, so that in fact each f,(f) is a continuous function on E.
Then Parseval’s Theorem is (in the notation of D3)

P2 (@) [ 1u0F@) d6 = 3, e

Proof: Using the summability condition one can interchange
summation and integration on the left so that

(2m)~¢ fflfz do = 3 > ay(w)ag(y)(2m) fe“f-m o,

ZeR YER
and using the orthogonality relation P1 we immediately get P2.
Remark: Actually P2 is valid also under the weaker condition that

D |aw®)|? < oo for k=1, 2.

Under this condition the functions |f; |2, |f,|? and f, f, are all Lebesgue
integrable on C, so that P2 makes perfect sense. In particular, let

£:(6) = £46) = £(O)
a#) = ax(s) = a(w) = @n)~* [e=f(0) .
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Then the two conditions
> la(x)|? < o0 and f|f(0)|2 df < o

are equivalent, and if either of them holds, then

@) [170) 48 = 3 late)"

This is Parseval’s identity which we shall never have occasion to use.
All we shall ever need in our work is Bessel’s inequality, to the effect
that

@n) [170) do = 3 la),

which will be derived in the course of the proof of P9.1.
Returning now to characteristic functions of a random walk, we
prove

P3 If &(0) is the characteristic function of the tramsition function
P(x,y), then for every integer n = 0

(2) $"(0) = > P,(0,x)¢*0 for all § in E,
(b) P,(0,y) = (2m)~¢ f e~ v04%(0) d6 for all y in R.

Proof: It is instructive to prove the first part using the probability
interpretation of the problem. In the notation of D3.1

P,(0,x) = P[S, = 4]

where S, = X; + -+ + X, is the sum of independent d-dimensional
random variables which describes the position of the random walk at
time #. Using P3.1 we obtain

Z P,(0,x)¢"0'* = E[¢0-5.] = E[¢X; ++Xy)]
= EE[eka] = $"(6).

Here we used the independence of the X, and the fact that they each
have the characteristic function ¢(6). This proves part (a), and part
(b) follows by multiplying each side in (a) by e~*? and by integrating
over C.

To illustrate the use of characteristic functions we now turn to a
somewhat sketchy discussion of the behavior of characteristic functions
near § = 0, emphasizing those results which will be most immediately
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useful in deciding whether a random walk is recurrent or not. Some
related results, such as P35, are included because they are indispensable
for work in later chapters. We begin with one-dimensional random
walk, where we pay particular attention to the relations between the
moments of a transition function and the derivatives of its characteris-
tic function at the origin. It is an old and familiar fact in Fourier
analysis that the behavior of a sequence (or function), far out, is
reflected in the behavior of its Fourier series (or transform) near the
origin. In probability theory these connections become particularly
sharp and interesting, because we are dealing with a very restricted
class of Fourier series.

D4 For one-dimensional random walk,
my = > |x|*P(0,x), = #*P(0,x), k=1
p=p, m=my, 0% =p; —pd
We only define ;. when m;, < oo.

P4 In one dimension, when m, < oo, the k*® derivative $*(0) is a
continuous function, and $*(0) = ({)*u,. The converse is false, i.e.
$AN0) may exist without m, being finite, but if ¢®(0) exists, then
my = —¢@(0) < c0.

Proof: If m;, < oo, then
1
Z[H0 + B) = $(O] = 75 (% — 1)e=P(0,5).
Note that, according to D3, the sum extends over all of R. Now

hx {hz|
etz — 1] = ‘J et dt| < f dt = |hx|,
0 0

so that

1

72 | — 1]-|e%| P(0,5) < m,.
Therefore one can interchange this summation over R with the
limiting operation #— 0. This is simply the discrete analogue for

series of the dominated convergence theorem in the theory of Lebesgue
integration. By dominated convergence then,

$(0) = > % (¢"2)e97P(0,x) = i > xe9P(0,x)

and ¢1(0) = ip,. Clearly ¢@(6) is continuous, the defining series
being uniformly convergent. Exactly the same argument applies to
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give the continuity of ¢®(6) when m, < o0 so that the relation
¢®)(0) = (¢)*u; holds.

Where the converse is concerned we offer the following well known
example, leaving the verification to the reader. Let

P(0,x) = c|x|~%(In |x|)~* when |x| = 2, P(0,x) = 0 when |x| < 1,

where the constant ¢ is chosen so that > P(0,x) = 1. Then evidently
m; = oo, while a somewhat lengthy calculation will show that ¢®(0)
exists.

Finally, suppose that

¢(2)(0)

exists. Then it turns out that

#2(0) = lim 7 [6(6) + (= 6) - 2}

which is a more convenient representation for the second derivative at
the origin. It implies

—$@(0) = llmz ( sin 0) P0,x) = hmz (

Consequently, for each n > 0,

> #P(0x) = lim > (Sigxex)zxﬁP(O,x) < — $2(0).

z=-n 620 z=-p

llm ¢(1)(h) ¢(1)(0)

sin Ox

) x2P(0,x).

This shows that m, < oo and the proof of P4 is completed by observing
that the first part of P4 gives my = —¢@(0).

The extension of the converse part of P4 to arbitrary even moments
will never be used and is relegated to problem 1. It is interesting,
and useful, however, that assertions stronger than those in P4 can be
made under further restrictive assumptions on P(0,x). We shall now
consider the case when P(0,x) = 0 for x < 0 and show that one can
then learn something about m, from the first derivative of the
characteristic function.

PS5 If P(0,x) = O for x < 0 and if

0 < — ipIY0) = imi =20 _ ¢ o,
-0 0

then z xP(0,x) = e.
z=0
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Proof: To simplify the notation let p, = P(0,x) for x = n > 0.
Then

& 1 — cos k6 & sin k6
(1) > pe—— g Sp, ke,

—0
- 0 ’ S 0
as §—0. Now the plan of the proof is to use this information to
show that m = 5§ kp, < 0.

The rest of the result will then be an automatic consequence of P4.
We start by breaking up the second sum in (1) into two pieces. The
choice of pieces is dictated by a convenient estimate of sin x to the
effect that

sinx 2 T
> = for |x| < 5
w

2

Let us use the symbol 8 to denote [/26], the greatest integer in 7/26.
When 0 < k < § the above estimate shows that sin k6 > 20k/m.
Therefore

X

2 ip sin k0 > %

0

§ < sin k0
2 et 2 peg
- k=60+1

As 8 — 0, § — oo, the left-hand side in the above inequality tends
to « by (1) and so we can conclude that > kp, < o, provided we
show that the last sum in (2) stays bounded as 6 — 0. This in turn
will be true if we can show that
1 @«

5 2 P
k=6+1

stays bounded as § — 0, and we shall in fact show more, namely that
A(f)—0as § 0.

When k> 8 + 1, k0 = #/2 > 1. Therefore there is a positive
number b such that

512:02b>0 when k> 0 + 1.

A(6) =

1 —

This gives
1 2 sin k6 1 &

iy
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The last term tends to zero in view of the first part of (1), and this
shows that A(6) — 0 and completes the proof.

The next result concerns a necessary and sufficient condition for the
finiteness of the first moment m which is quite different from the
condition in P4. One can extend it to moments of arbitrary odd
order but this matter is again relegated to the problem section
(problem 2).

_ 1 [* Re[l — 4(8)]
P6 ml—é;ﬁm T d0 < oo,

and my, < oo if and only if the function =2 Re [1 — $(0)] is (Lebesgue)
integrable on the interval [ —m,m].

Proof: The real part of the characteristic function is
Re ¢(6) = > P(0,x) cos 6,

and therefore Re [l — ¢(6)] = 0, and the integral in P6, whether
finite or not, equals

1 — cos x8
ZP(O””):/: f T e ¥

in the sense that this series diverges if and only if the integral in P6 is
infinite. To complete the proof it suffices to verify that

1 J‘" 1 — cos x8

5 -n———-—-——l_cosed0=|x], xeR,

This is easily done by using the trigonometric identity

in A
S —
1 — cos x0 2 |2
= = etke x€R.
1 — cos @ ] =4
sin =
2

For higher dimensional random walk (d > 2) we shall be content to
give the analogue of P4 for the first and second moments only, but it
will first be convenient to adopt a sensible notation, which agrees with
that of D4.

D5 m, = Z || P(0,x), p = xP(0,x) if my < o,
my = > [«2P(0%),  QO) = 3 (x-6)°P(0,%) if my < co.
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Note that while m, and m, are scalars, p is of course a d-dimensional
vector. @(6) is called the moment quadratic form of the random walk,
for reasons which will promptly be discernible.

If X = (X,,..., X,) is a vector random variable such that X = x
with probability P(0,x), then evidently

Q(O) = 121 121 E[X,Xj]B,Bj

when the expected values E|X;X;| all exist. But their existence is
assured by the assumption that m, = E|X]|2 < oo, as one can see from
the Schwarz inequality

(6-X)% < |97 X[2.
This inequality implies that @(6) < oo for all 8, and the fact that
E|XX;| < {E|X?|E|X?|}*2 < E|X|?

gives another way of seeing that the coefficients in the quadratic form
Q(6) are well defined.
To illustrate what kind of results can be obtained, we prove

P7 For d-dimensional random walk, d > 1, suppose that m;, < oo.
If « is a vector in E, then

1imM_I_ = fo- .
h=0 h

If, in addition, p = 0 and m, < oo, then

lim
h—=0

_M = 3Q().

Proof: Imitating the proof of P6 up to a point,
(ko) — 1| = | 2 ("= — 1)P(0,)]
< > |eer — 1|P(0,x) < kD |a-x|P(0,x) < hmy|a.
Therefore the dominated convergence theorem gives
}li_rg}ll [¢(he) — 1] = z hm ( ) P(0,x) = to-p.
In the case when p = 0 and m; < 00 we can write

$(ha) — 1 = 5 ("% — 1 — iha-2)P(0,%).
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But for complex z with real part zero there is some ¢ > 0 so that
e — 1 — 2| <¢|z|?3, Re(z)=0.

Hence
D, lems — 1 — iha-x|P(0,%) < ch? D (- x)2P(0,%),
and by the Schwarz inequality
> (a-x)?P(0,x) < |a|?my < oo.

Again therefore, one can interchange limits to obtain the desired
result.

To conclude this section it is only proper to point out that the
Central Limit Theorem certainly belongs to the domain of ideas dis-
cussed here. Although it will play a decidedly minor role in the
theory of random walk we shall sketch the essential ingredients of the
traditional Fourier analytical proof of the Central Limit Theorem for
identically distributed independent random variables.

A monotone nondecreasing function F(f), —c0 <t < o0 is a
distribution function if F(—o) = 0, F(+®) = 1. A sequence of
distribution functions F,(¢) is said to converge weakly to the distribu-
tion function F(¢) if

tim [ g ape) = [~ g0 aF)

for every bounded continuous function g(f), —o0 < t < ©. An

equivalent definition of weak convergence is the statement that F,(¢)

has the limit F(¢) for every real ¢ which is a point of continuity of F(£).
The Fourier transform of a distribution function F (%),

() = f_: S AF(l), -0 < A < oo,

is called the characteristic function of F. If ¢, are the characteristic
functions of a sequence of distributions F,, and if the sequence F,
converges weakly to the distribution F, then ¢, converges to the
characteristic function ¢ of F. Conversely (this is the important con-
tinuity theorem of Lévy, 1925) if the sequence ¢, of characteristic
functions converges pointwise to a function ¢ which is continuous at
A = 0, then F, converges weakly to the (unique) distribution function
F which has ¢ as its characteristic function.

We shall illustrate these facts by proving
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P8 If P(x,y) is the transition function of one-dimensional random
walk with mean p = 0, and variance o> = m, < o, then

lim > P,0x) = F(t),

N>Ry <vnot
where
F 1 t 24
) = — =212 d, -0 < t < 0.
@ vV 2n f—w ¢
Proof: If

F,(t) = > P,0,),
z<~nat
which clearly is a sequence of distribution functions, the proof of P8
will follow from the Lévy continuity theorem, provided we can show
that

® 1 )
lim et an t) = —— f e”'te—tzlzdt = 8_42/2’
anl =05
for all real A. To this end let
$(6) = > P(0,x)e'®®, —o0 < 0 < o,

be the characteristic function of the random walk, defined in D2.
Then a simple calculation yields

° A
L) = 1At JF (1) = n( )
L0 = [ erarm = (==
A e()\ n)
g =1 - w5
where, for every fixed ), the error term €(A,n) tends to zero as 7 tends
to infinity. Consequently

In view of P4,

© 2 n
lim | e*dF,(f) = lim [1 _r M] — o2,
2n n

n— 0 -— 00 n—=»

which proves P8.

7. PERIODICITY

In the terminology of Chapter I, a random walk with d-dimensional
state space R is aperiodic if the group R and the group R are the same
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group. Of course, given any transition function we could artificially
increase the dimension of R (by imbedding R in a space of higher
dimension) and then extend P(0,x) by defining it to be zero, where it
was not previously defined. Therefore it is important to make our
terminology absolutely unambiguous. We shall speak of a d-dimen-
sional random walk only when R has dimension d, and when P(0,x) is
defined for all x in R. This random walk is then said to be aperiodic
if R=R.

Having pointed out how one can trivially make an aperiodic random
walk periodic, by artificially enlarging its state space, we shall now
show that it is almost as easy to replace a periodic random walk by an
aperiodic one, which retains all properties which could possibly be of
any interest. 'This possibility depends on a simple lemma from linear
algebra.

P1 If R, is the group of d-dimensional integers, and if R is a proper
subgroup of R, containing more elements than just the origin, then there
exists an integer k, 1 < k < d, and k linearly independent points in R,
namely x,, x,, . . ., x,, such that R is the additive group generated by
X1, Xgy . - ., X, The integer k is uniquely determined by R, and R is
isomorphic to the group R, of k-dimensional integers.

Proof: A subgroup of R, is a so-called vector-module over the ring
of integers (not a vector space, since the integers do not form a field).
Hence it should be no surprise that the usual proof for vector spaces
([38], p. 18) breaks down. Indeed the theorem is false for modules over
arbitrary rings, but true for modules over principal ideal rings—rings
which like the integers have the property that every ideal is generated
by a single integer. In this case the usual proof ([99], p. 149) proceeds
by induction. Suppose that P1 holds for d < n — 1 (it obviously
does when d = 1), and let X be a submodule (subgroup) of R,. If
the last coordinate of every element of X is 0, then we are obviously
finished, in view of the induction hypothesis. If not, let L denote the
set of all integers which occur as last coordinates of elements of X.
Clearly L forms an ideal, and therefore it consists of all multiples of a
positive integer p.

Now we may choose an element x € X whose last coordinate x" = p.
For every y € X there is some integer r (depending on y, of course)
such that the last coordinate of y — rx is zero. The set Y of all
points y — rx obtained by varying y over X forms a submodule of
R, _,, and by the induction hypothesis, one can find k — 1 < n — 1
linearly independent points x;, &y, . .., %,_; which generate Y. But
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then the set {x;, x5, ..., x,_, #} will clearly generate X. It is a
linearly independent set since the last coordinate of x is not zero, so it
forms a basis for X of dimension k. This implies that X is isomorphic
to R, with k < n; just map x, on the first unit vector of R, x, on the
second, ..., x,_, on the (¢ — 1) st, and x on the last unit vector.
The induction is therefore complete.

Lemma P1 may be used in the following way. Suppose a random
walk P(x,y) on the state space R = R, is given and happens to be
periodic. If R = {0}, then P(x,y) = 8(x,y) and the random walk is
of no interest. Otherwise R is isomorphic to R, with basis x,, x5, . . .,
x, for some k < d. 'Then we can define an operator T which maps R
onto Ry, linearly and one-to-one so that Tx; = £, fori = 1,2,...,k,
where the £, are the unit vectors in R,. On R, we now define the
function @(x,y) so that for x,y in R,

Q(x,y) = P(T " x,T"1y).

It should be clear that @(x,y) is a transition function. Since P > 0,
we have @ > 0. Since T is linear, @(x,y) = @(0,y — x). Finally,
then,

> Q) = > P(0,T %) = yzeﬁP(o,y) =1,

TER ZERy

as P(0,y) = 0 when v is not in R.

By our construction the random walk determined by @ on R, is
aperiodic, and it has all the essential properties of the periodic random
walk defined by P on R. For example,

S Q00 = 5 P00 < o

so that if one of the random walks is recurrent, then so is the other.

E1l One can of course apply similar ideas to stochastic processes which
are almost, but not quite, random walks by our definition. Consider, for
example, the triangular lattice in the plane which consists of all points
(complex numbers) 2z of the form

2 = m + ne™3,

where m and n are arbitrary positive or negative integers or zero. This
lattice, it is easily seen, forms an additive group G, but G is not a subset
of the plane of lattice points R = R,. Nevertheless we shall try to define,
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with G as state space, a stochastic process which, in a reasonable sense, has
transition probabilities of one third from each point z to the neighbors

2+ 1, 2 4 ™8, z 4 "2,
Observing that each point 2z in G has a unique representation as
2 = m + ne™s, mn=20,+1,+2,...,

we may define a linear operator T mapping G on R, in a one-to-one
fashion by

T(z) = T(m + ne™3) = m + ni.
This is clearly a group isomorphism of G onto R;. In particular
T(1) =1, T(e*3) = —1 + 4, T(e"2™8) = —4,

This isomorphism therefore transforms the given process into the bona fide
random walk with transition probabilities

P(0,1) = P(0,—1 + i) = P(0,—i) = 1/3,

and P(0,x) = O for all other x in R = R,. This is a random walk in the
plane with mean vector 4 = 0 and finite second moment m,;. As we shall
see in section 8, T8.1, such a random walk is recurrent. The sense in
which this makes the given process on G recurrent is obviously the follow-
ing. Define @(0,2) = 1/3 for 2 =1, 2 = 23, 2 = ¢~2M3  and zero
elsewhere on G. Then define @(2,25) = @(0,2; — 2;) for all pairs 2;, 2, in
G. Finally, imitating P1.1, let

Qo(z1,32) = 8(3'1,2'2)» Q1(21,%2) = Q(21,%3),
Qn-{-l(zl!zz) = ZG Q(zlyz)Qn(z’zz)v nz= 0-

Then the recurrence of the P-random walk on R, implies that

200,,(0,0) = .

It is obvious that one should let this statement serve as the definition of
recurrence for the process with transition function @.

Now we return to Fourier analysis in order to establish a simple
criterion for aperiodicity, in terms of the characteristic function of a

random walk.

T1 A random walk on R (of dimension d), is aperiodic if and only if
its characteristic function ¢(0), defined for 0 in E (of dimension d) has the
following property: $(0) = 1 if and only if all the coordinates of 0 are
integer multiples of 2m.
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Proof:2 To fix the notation, let

E=10]0cE;d06) = 1]
and let

E,=1[0]|6€cE;(2n)" 16, = integer for k = 1, 2,..., d].
Then the theorem we have to prove takes on the simple form
¢)) E=E,ifand onlyif R = R.

The easy part of (1) is the implication R = R = E = E,. It is
obvious from the definition of $(6) that E, C E, and therefore it
suffices to prove that E C E,. Suppose that 8 is in E. 'This means
that (27)~16-x is an integer for all x such that P(0,x) > 0, or for all x
inZ. (See D2.1 for the definition of £, R*,and R). By the definition
of R*, (2r)~10-x is then an integer for x in R*, and by the definition
of R, (27)~10-x is an integer for all x in R. But we have assumed
that R = R, and therefore (27)~10-x is an integer for each unit
vector in R. By letting x run through the d unit vectors we see that
each component of 0 is a multiple of 27. Thus 6 is in E,, and since ¢
was an arbitrary point in E we have shown that R = R = E C E,.

The other implication, E = E; == R = R, will lead us to a famous
problem in number theory. When the common dimension d of E,
and R is zero, there is nothing to prove. So we shall now assume that
R is a proper subgroup of R and that d = dim (E;) = dim (R) = 1,
and attempt to construct a point 8, in E which is not in E,. Such a
point 6, has to have the property that (27)~16,-x is an integer for all
x in R, and that (27) 16, has some coordinate which is not an integer.
Using P1 we construct a basis ay, ag, .. ., a; of R, with k < d. Ifit
turns out that & = dim (R) < d, we are in the easiest case; for then
we let B be any vector in the d-dimensional space E which is perpen-
dicular to each basis vector, and such that (27)~!8 has some non-
integer coordinate. Now we take 8, = B which gives (27)~16,-x = 0
when x = ay, a,, . . ., a;, and hence when «x is an arbitrary point in R.

Finally suppose that 2 = dim (R) = d. Let

a; = (A1, g, - - -5 Uq)
be the basis vectors of R in the cartesian coordinates of R, and let
d
oA =[x|x= z a, 0 < § < 1]
i=1
Thus &7 is a subset of Euclidean space which we shall call the

3 A brief abstract proof can be based on the Pontryagin duality theorem for
locally compact Abelian groups [74].
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fundamental parallelogram of R. Its vertices (those points such that
each ¢, = Oor 1fori = 1,...,d) belong to R, in fact R is the group
generated by these vertices. Let us call a point of ./ which is not a
vertex an interior point. Since, by hypothesis R # R, it is clear that
some interior point of &/ must belong to R. This implies (as will be
shown in P2 below, and this is the crux of the proof) that the volume V
of o is greater than one.

We shall proceed on the assumption that P2 holds, and begin by
observing that

1 <V = |det 4|

where 4 = (a;), 1,j = 1,2, ..., d, is the matrix whose entries are the
components of the basis vectors a;. Since these basis vectors are
linearly independent, the matrix 4 must be nonsingular. Hence the
determinant of 4~1! is (det 4)~! which is not zero and which is less
than one in magnitude. 'This fact leads to the conclusion that not
every element of 47! can be an integer. Suppose therefore that a
noninteger element has been located in the p*® column of 4-1. In
this case we let §, be this column multiplied by 2, i.e.,

00 = 27T(A_llp) A_12p) ce ey A—ldp)‘

Since A-A~! = I, we have (2n)a,- 8, = 8(k,p), so that (27)~1x-6,
is an integer for x = ay, a,, . .., a4, and by linearity, for all x in R.
Thus 6, satisfies the requirements; it is a point in E which is not in E,,,
and the proof of T1 is complete if we show that

P2  Every fundamental parallelogram which contains an interior
lattice point must have volume greater than one.

Proof: Let us take a large cube, in d-dimensional space, with edge
of length M. The fundamental parallelogram & fits into this cube
approximately M¢/V times, if V is the volume of &/. Since each
congruent (translated) version of &/ accounts for at least two lattice
points (one boundary point and at least one interior one), it follows
that the number of lattice points in the large cube is at least of the
order of 2 M4V -1, But the volume M¢? of the large cube is also
approximately the number of lattice points in the large cube. Hence
one has the “approximate inequality” 2M ¢V ~! < M9, and it is quite
trivial to make the argument sufficiently precise, letting M — oo, to
conclude that 2V -1 < 1. Hence V' > 1.

That completes the proof of P2 and hence of T'1, but we yield to the
temptation of pointing out that the converse of P2 is also true.

P3 If a fundamental parallelogram has volume V > 1, then it must
contain an interior lattice point.



70 HARMONIC ANALYSIS

This is the lemma of Minkowski (1896). As it is valuable for its
applications to number theory rather than probability, the proof is left
to the reader.

It is very convenient to use T1 to obtain further estimates con-
cerning characteristic functions and transition functions. We shall

find it expedient to use some basic facts about quadratic forms. For 6
in E

0.40= 5 S a0,
i=1 j=1

is called a quadratic form if a;; = a;;, i.e., if the matrix 4 = (ay),
i,j = 1,2,...,dis symmetric. Such a form is called positive definite
if

6-4A6 = 0 for all §in E,

and 6- A6 = 0 only when 6 = 0. A positive definite quadratic form
has positive real eigenvalues. These are simply the eigenvalues of the
matrix A and we shall often use the well known estimate (see [38],
Ch. III)
P4 M|0]2 < 6-460 < 2602,  O€E,
if A is positive definite and has eigenvalues 0 < Ay < Ay < --- < A,
With the aid of P4 one obtains the following estimate for the real

part of the characteristic function of a random walk. (Remember
that by D6.3, C denotes the cube with side 27 about the origin in E.)

P5 For d-dimensional aperiodic random walk, d > 1, with character-
istic function ¢(0) there exists a constant X > 0 such that

1 — Re ¢(0) > A|6|?
for all 8 in C.

Proof: Since R = R, of dimension d > 1, one can find d linearly
independent vectors ay, 4, ..., @; in the set Z = [x | P(0,x) > 0].
Suppose that the longest of these vectors has length L = max |a,|.
Then we can conclude that the quadratic form

Qu6) = > (x-6)2P(0,x)

lzisL

is positive definite. This is so because

Qul6) = Z (ay-62P(0,c)
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Since a, €2, k = 1, ..., d, the right-hand side could vanish only if §
were perpendicular to a;, a,, ..., a;. This is impossible as they are
linearly independent, so @(6) is positive definite.

We have
Re [1-¢(0)]=gz [1 — cos x-6]P(0,x)
=2 sinzﬁPO,xZZ izﬂPO,x
3 sint () PO 2 2 3 sine (7)) PO

Since

sin fz-g‘ > 7~ t«x- 6| when |x-6] < m,

2
Re [l — ¢(0)] = = Z (x- 0)2P(0,x).
T 2llzt<L3 6l s 7]
But under the restriction on x that |x| < L we know that |x-8| < =
whenever |6| < #L~1. Therefore

2 2
Re[l — ¢(O)] = 2 (x0)°P(0.%) = 5 Qu(f)
T =L m
for all 6 such that |6] < #L-*. If A; is the smallest eigenvalue of
@.(0), then P4 yields

(1) 1 — Re ¢() > %Alwz for |0] < mL~1,

The sphere defined by |0| < #L~?* is a subset of the cube C, since
L-1 < 1. But now we use T1 which tells us that 1 — Re ¢(8) > 0
when 6 € Cand |6] > wL~t. As1 — Re ¢(6) is a continuous function
on C we have
m= min [l — Reg(d)] > O,
[016eC;|8]l=nL~ 3]

which implies

m

L2
= |6]? for 6€C, |6] = 7L-*.

mw

2 1 — Re ¢(0) =
Combining the two inequalities (1) and (2) we find that P5 has been
proved with A = min [27~2);, mm~2L%] > 0.

The estimate provided by P5 will turn out to be very useful. With
rather little effort it can be converted into statements concerning the
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asymptotic behavior of the transition function P,(0,x) as n— oco.
The simplest statements of this type would be

1 lim P,(0,0) = 0, when P(0,0) # 1,
and a slightly more sophisticated version, namely
(2) lim sup P,(0,x) = 0,

n—+o© IER

the latter being correct in all cases except when P(0,x) = 1 for
some x € R. Note that even (1), although obvious for transient
random walk, is not too easy to prove in the recurrent case, say by the
methods of Chapter I.  But, using Fourier analytical devices, we shall
be able to obtain even sharper results than (2), in the form of an upper
bound on the supremum in (2) which will depend on the dimension d
of the random walk. Since the dimension is the crucial thing, but not
aperiodicity, it will be useful to state

D1 a random walk is genuinely d-dimensional if the group R
associated with the random walk is d-dimensional.

Thus genuinely d-dimensional random walk need not be aperiodic,
but R must have a basis, according to P1, of d linearly independent
vectors d,, ..., a4 in R.  We shall prove the following result

P6 If P(x,y) is the transition function of a genuinely d-dimensional
random walk (d > 1) with the property that®

) Qx,y) = tz P(x,8)P(y,t)
€R
is also the transition function of a genuinely d-dimensional random walk,
then there exists a constant A > 0, such that
4) P,(0,x) < An~92, x€R, n=1.

Furthermore, every genuinely d-dimensional random walk (d = 1), with
the single exception of those where P(0,x) = 1 for some x € R, satisfies

5) P,(0,x) < An~12, xeER, n>1,
for some A > 0.

Proof: It seems best to begin by explaining the usefulness of the
transition function @(x,y) in (3). It clearly is a transition function,
and if

3 This class of random walks has the following equivalent algebraic charac-
terization: the support X of P(0,x) is not contained in any coset of any k-
dimensional subgroup of R, for any k <d.
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$(0) = > P(0,x)ei*?

z€eR

is the characteristic function of the random walk, then @(x,y) has the
characteristic function

$(0) = ER Q0,x)e*? = |§(9)[*

Suppose now that we wish to get an upper bound for P,(0,x).
Clearly

(2t sup Pu(0,5) = sup [exgn(0) a0 < [14(@)|™ o = [yr(o) o,

and the same upper bound is obtained if P,,(0,x) is replaced by
Py, +1(x). Therefore (4) will be true if we can exhibit a constant
B > 0 such that

6) (2m)%Q,(0,0) = J'c 47(0)d8 < Bn-92, > 1.

The stage is now almost set for the application of P5. We must
observe only that we may assume Q(x,y) to be aperiodic. If it were
not, then, as remarked after D1, one might change coordinates to
replace @(x,y) by a symmetric, d-dimensional, aperiodic transition
function @'(x,y) such that @,(0,0) = @,(0,0). (The characteristic
function of @ will be real but it might no longer be non-negative, and
we shall want to use the non-negativity of ; but that is a decidedly
minor point, as it suffices to prove (6) for even values of n.)

As i is real, P5 gives

1 — §(8) = A|9]% feC,
for some A > 0. Thus

0<g(f) <1 —AB2< e, 6eC,
fw(a) do < J e~ 017 g < f e~ 017" gg
(o] C E

= n‘dmf e #e’ do = Bn=42,  n > 1.
E

The constant B is finite, being the integral of the Gaussian function
exp (—A|x|?) over all of Euclidean d-dimensional space. That
completes the proof of (4).

As an illustration of the necessity of a condition of the type we
imposed, consider the two-dimensional aperiodic random walk defined,
in complex notation, by

P(0,1) = P(0,i) = 1/2.
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It is easy to verify that P,,(0,n — in) is of the order of n~1/2 rather
than n~1, the reason being that @(x,y) is one-dimensional in this case.

The proof of (5) is now immediate. As we saw, the true dimension
of the state space of Q(x,y) influences the asymptotic behavior of
P,(0,x). Thus (5) will hold provided (x,y) is at least genuinely one
dimensional, i.e., if @(0,x) > O for at least one x % 0. But an exami-
nation of (3) shows this to be always the case, except when P(0,x) = 1
for some x € R, in which case § is zero dimensional (¢(0,0) = 1).

This section is concluded by showing that P6 is the best possible
result of its type, because there are random walks for which the upper
bound is actually attained, in the sense that

lim »¢/2P,(0,x)
exists and is positive for every x in R of dimension d. P7 and P8 will

serve as preliminaries to the explicit calculation of such limits in P9
and P10.

P7 For aperiodic random walk of arbitrary dimensiond > 1, with mean
vector p = 0, second absolute moment my < 0, Q(0) = Z,g (x- 0)2P(0,x)
is positive definite and

1-4¢06) _1

lim = =

s~0  Q(6) 2

Proof: Since p = 0 we may write
1 — ¢(0) = 3Q(0) + 2 1+ 40-x — 4(0-x)2 — €9*]P(0,x).
Z€R

Observe now that () is positive definite (as shown in the proof of P5
for @,(0) < @(0)) and that by P4 Q(6) > A|6|?> for some A > 0.
Therefore it will suffice to prove that

lim |6]=2 3> [1 + i0-x — }(6-x)% — €**]P(0,x) = 0.

6-0 zeR
Clearly each term of the sum over R, divided by |6|2 tends to zero as
6 — 0. But to interchange the limits we need to establish dominated
convergence. There is some A4 > 0 such that

|1 + 4t — 32 — €| < Ar?

for all real . Therefore
A(6-x)?

1
"y 0. Lin. e i0-z
|6 1+10x——2(0x) e < Gk

< A|x|?
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which yields dominated convergence and completes the proof.
(Observe that P7 represents a considerable refinement of P6.7.)

The next lemma is the analogue of the criterion in T1 for strongly
aperiodic instead of aperiodic random walk.

P8 Strongly aperiodic random walk of arbitrary dimension d > 1
has the property that |$(0)| = 1 only when each coordinate of 0 is a
multiple of 2m.  Conversely, every random walk with this property is
strongly aperiodic.

Proof: For the direct part suppose that |$(6,)] = 1, so that
#(8,) = €' for some real t. It follows that x-6, = ¢ + 2nx for all x
such that P(0,x) > 0, where of course the integer » may depend on x.
Continuing to work with this fixed value of 6,, we select a point 2, in R
such that 2y-6, = ¢ + 2mm, where m is an integer. Now consider the
transition function defined by @(0,x) = P(0,x + 2,), where P(0,x) is
the transition function of the given, strongly aperiodic random walk.
We know from D5.1 that @(0,x) is the transition function of an
aperiodic random walk. Its characteristic function is

WO = 3 QO = 5 P05 + m)ee? = e=%0h(0)

Z€R
Hence
‘l’(eo) - e—izo-ooqs(ao) = e—12000lt = 1,
but since y«(6) is the characteristic function of an aperiodic random
walk we conclude from T1 that 6, is a point all of whose coordinates
are integer multiples of 27.

To prove the converse, suppose that a random walk fails to be
strongly aperiodic. Then we have to exhibit some 6, in E such that
|[#(8)| = 1, and such that not all of its coordinates are multiples of 2.
By D5.1 we can find a point 2, in R such that P(0,x + z,), as a
function of x, fails to be aperiodic. This random walk has the
characteristic function exp (—iz,- 8)$(8). By T1 this function equals
one at some point 8, in E, not all of whose coordinates are multiples
of 2. Hence |§(6,)| = 1, i.e., 8, satisfies our requirements, and the
proof of P8 is complete.

P9 For strongly aperiodic random walk of dimension d > 1 with
mean p. = 0 and finite second moments,

lim (27m)*2P,(0,) = |Q|~Y?, x€R,

where |Q| is the determinant of the quadratic form

Q6) = > (x-6)2P(0,%).

zeR
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Proof:* According to P6.3,
(27n)42P,(0,x) = n‘”z(Zw)'d/zJ $™(0)e~ 1= db.
C
We perform the change of variables 6v'n = «, so that

(27n)3P,(0,x) = (2m)~% f ¢n( ) e do.
| V&
aevnC
With 4 > 0, and 0 < r < 7, one decomposes this integral to obtain
(1)  (2m)iP,(0,x) = (2m)"3 J e~ 19@e % do
E
+ Ij(n,A) + Iy(n,A) + Iy(n,Ay) + Iy(nyr).
The last four integrals, which will play the role of error terms, are

I(nA) = (2m)-% f [qs(:}“—;) - e"?la"(“)] -2 do,

lal<A
Lnd) = —@n [ oo
lel> A
Iy(n,Ayr) = (277)"% f ¢n(\j_) ¢ ‘j: de,
A<lal=srvn
I(ny) = (2m)~5 J _ 4 (\/n) -2 g
lel>rvn; aevnC

Our first task is to show that the principal term gives the desired
limit. If0 < A; < A, < -+ < A, are the eigenvalues of the positive
definite quadratic form @(6), then a rotation of the coordinate system
gives

I, = (2m)% j e~39@ do
E
= (2m)"3 f 73,2, Mk do
E
4.9 © 1, d _1
- (zﬂ)—anf o3t doy, — [HAk] 3
k=1v - k=1

¢ We reproduce the proof of Gnedenko [35], pp. 232-235, with the obvious
modifications when d = 2.
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But the product of the eigenvalues of @ is the determinant |Q| so
that I, = |@| ~¥/2. Since this integral is finite, it is clear that

lim (211')“gf e—%Q(a)e—% do = |Ql_%’
n— o E

and therefore the proof of P9 will be complete as soon as we show that
the sum of the four error terms tends to zero as 7 — 0.
To estimate I;(n,4) we use P7 which implies that

lim &" (i) = e—1e@
n=> o ¢ Vn

for each « in E. Thus I;(n,A) tends to zero as n— oo, for every
A > 0. Next we estimate I4(n,r) by remarking that

L) < noa@myen [ 40 do
[6loeC; |0l > 1]
We know from P8 that |¢(f)| < 1 — 8 for some 8§ = §(r) on the set of
integration. Therefore I (n,r) tends to zero as n— co, whenever
0 < r < m. Now we have to worry only about I, and I;. Using P7
again we can choose r small enough so that

n (%
#(77)
when |a| < rV'n. Then
|I3(n)A)r)| < (27T)_dI2 f e‘*Q((l) da

< e” 1Q(a)

le]> A

for all n. Similarly
|[Io(n,A)| < (2m)~ 92 f e—10@ go

la]> A
is independent of n. Therefore the sum of I, and I; can be made
arbitrarily small by choosing  small enough and 4 large enough, and
that completes the proof of P9.

Remark: The following, slightly stronger form of P9 is sometimes
useful:

Under the conditions in P9
¥) lim [(2mn)iP,(0,x) — |Q| 3=~ *#)] = 0,

uniformly for all x € R.
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This is really an immediate corollary of the method of proof of P9,
It follows from the way the four error terms Iy, I,, I5, and I, were
estimated in the proof of P9 that their sum tends to zero uniformly in x.
Comparing equations (1) and (2), it therefore suffices to show that

3) (@)% [ e300e=% da = || demdiea™ 0
E

In (3) as well as (2), x-@~'x denotes the inverse quadratic form of
@Q(«) = a-Qa. It is easy to verify (3) by making an orthogonal trans-
formation from the a-coordinate system to one where the quadratic
form Q(c) is of the diagonal type. Due to the presence of the ex-
ponential involving x on the left in (3), this calculation is slightly more
complicated than the evaluation of I; in the proof of P9, but no new
ideas are involved.

E2 Simple random walk of dimension d > 1 is not strongly aperiodic.
Nevertheless it is quite easy to modify the proof of P9 appropriately. The
characteristic function, for dimension d, is

$(0) = > P(0,x)e*? = %[cos 6, + + - + cos ;).
Although P,(0,0) = 0 when 7 is odd, we get

o) Pyu(0,0) = (2m)¢ fc [.‘12 él cos ek] ™ 46,

Since the integrand in (1) is periodic in each coordinate 6, with period 2=,
we may translate the cube C by the vector v = (#/2)(1, 1,...,1). Calling
C + v = (', we see that P,,(0,0) is still given by (1), if C is replaced by C".
The point of this translation from C to C’ was that the integrand in (1)
assumes its maximum (the value one) at two interior points of C’, namely
at the origin and at the point =(1,1,...,1). The contributions from
these two points to the asymptotic behavior of P,,(0,0) are the same, since
|$(0)| = |#(0 + w)| when w = =(1,1,...,1). Also the proof of P9 has
shown that the asymptotic behavior of the integral in (1) is unchanged if
we integrate only over arbitrarily small spheres about the points where
|#(6)] = 1. Letting S denote such a sphere, of radius » < =/2, one has

@) P5(0,0) ~ 2(2m)- L [%d kzdl cos ek] * 46,

For small values of |0|

3 lioso—li[l—Zsinz(&‘-)]
G g% =a. 2
2
BN L .} |6] —o.

2d
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Applying the estimate (3) to (2), one obtains for large »

P,,(0,0) ~ 2(27)~¢ f -5 4o

G SR =)

The integral of the Gaussian density is one, so that we have shown, for
d-dimensional simple random walk, that

d a2
Py (0,0) ~ 2(4—11-#-) . asn—> oo

The strong form of P9 given in the remark following its proof is
known as the Local Central Limit Theorem. Although it is an ex-
tremely useful tool, in many applications of probability theory, there
are occasions when one needs even better error estimates (P9 is really
quite poor for large values of |x|, say when |x| is of the order of Vn
or larger). There is a variant of P9 (due to Smith [89], 1953, in the
one-dimensional case) which provides sharper estimates for large |x|.
For us it will be indispensable in section 26, where it will be combined
with P9 to shed light on the asymptotic behavior of the Green function
G(x,y) for three-dimensional random walk.

P10 For strongly aperiodic random walk of dimension d > 1, with
mean p = 0 and finite second moments

lim u- [(2mm)iP,(0,x) — |Q| 3¢~ =™ '®] = 0,

n-—»
uniformly for all x € R.

Proof: Just as in the proof of P9 we write

(2mn)42P,(0,x) = ( )“ L[ f $n(6)e=i0 do.

It is now possible to bring the term |x|? in under the integral sign on
the right. If f(6) is a function with continuous second derivatives,
we have by Green'’s theorem

2 [ foe=swe do = — | 8) e+ o

- f e~ =9 Af(0) d6 + boundary terms.
c 0

le

Here

d 62
= 2. 767
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is the Laplace operator. We may apply this idea to ¢™*(0) whose
second derivatives are continuous by the same proof as in P6.4.
Furthermore the boundary terms vanish since ¢(6) is periodic. In
this way

W) Lm0 = - (7)1 [ e s an

- —@n f Ea ] ()] e

vac

after a dilation of coordinates to « = V6.
From now on the proof proceeds much as did the one of P9, the
principal difference being that we do not rely on

2) lim ¢" (\/ ) = ¢™10@, ack,
n-— n
but use instead
3) fim A [¢n (V".‘:)] _ Ae 9@, ocE.
n-o @ n o

The proof of (3) depends on

@ 2 ()]

P e [
A calculation based on P6.4 and P6.7 shows that
) 312 nA¢> ( \/n) = —my = — ZR |%|2P(0,x),

tim | grad ()| = (@2-02) = e

where @ is the covariance matrix. Applying (2) and (5) to (4) one
obtains (3).
Equation (3) suggests the decomposition
# g rm
6) L @m)P0)

= —(Zﬂ)—gf e~ 7 Ae ©0dy + I, + I + Iy + I,
E
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where the I, are exactly the same type of error terms as in the proof of
P9, but with the Laplacian in the integrand. Thus

-1, = (2,,)—% f A [(ﬁn(_\j__) _ e—%Q(a)] e~ %% da,
lal<4 ¢ "

I, = (27)73 f Ale~39®]e~7 da,

1
la|> A

et [ afrlg)]owe

A<|alsrvn

et [ afefg)]owe

la| > 7v/n; aevnC

The principal term on the right-hand side in (6) is easily seen to have
the right value, i.e.,

lxl 19| —e—m@Q™ 1)

To show that the sum of the four error terms tends to zero uniformly
in x one replaces each integral I, by the integral of the absolute value
of the integrand. That eliminates the dependence on x. The order
in which one eliminates the error terms is the same as in P9. An
examination of (3), (4), and (5) shows the integrand in I; can be
majorized by a bounded function on every finite interval. I therefore
tends to zero for every A > 0, uniformly in x. To deal with I, one
obtains from (4) and (5) that

Ag? (L)
2 Vn

where 1 — § is the upper bound of ¢(f) when 8 € C and |6] > r, and
where &, and k&, are positive constants depending on 7, but independent

of n. Thus I, — 0 for eachr, 0 < r < =, uniformly in x. Next one
disposes of I; by choosing r small enough so that

3 ()

for some M > 0, when |«| < 7v/z.  This shows that I; can be made
arbitrarily small, uniformly in #» and x, by taking A large enough.
Finally, one shows just as in P9 that /, tends to zero as 4 — o0,
uniformly in # and x. 'That completes the proof.

< k(1 — 8Pt 4 Ryl — 8)-2,

< Me—19@
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8. RECURRENCE CRITERIA AND EXAMPLES

The harmonic analysis of transition functions provides elegant
methods for deciding whether a random walk is recurrent or transient.
We begin with a general criterion, proved by Chung and Fuchs [12],
1951, in the more general and more difficult context of arbitrary
(noninteger valued) random walk in Euclidean space.

P1 If 4(0) is the characteristic function of a random walk, then

i [, Re [—) 40 < =
if and only if the random walk is transient.

Proof: The random walk is transient, according to P1.4if and only if

G = Y P,0,0) < co.
n=0
But
G = lim 3 "P,(0,0),

/1 n=0

whether this limit is finite or not. Using P6.3 we have

(2n'G = lim Z m fgsn(e) 2 = lim fl =

Observing that, for 0 < t < 1,

=5 = e [=%m = % [r=wm)

we find

1
4G = lim L
(27)iG = 1;1 fRe [1 — t¢(0)] dé
which proves P1.

This criterion may be used to obtain simple sufficient conditions for
recurrence or for transience. By analogy with T3.1, which states that
one-dimensional random walk is recurrent if m < o0 and u = 0, one
may ask if two-dimensional random walk is recurrent under suitable
assumptions about its moments.
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T1 Genuinely d-dimensional random walk is recurrent if

(a) d=1 and m; < oo, u=0,
or if
(b) d=2 and my; < oo, p=0.

(c) It is always transient when d > 3.

Proof: Part (a) was already proved in Chapter I, but in E1 below
we shall also sketch the proof of Chung and Fuchs [12], which uses P1.
Concerning part (b) we know from P7.9 that

P,(0,0) ~ Cn~1, as 7 — 0,

for some positive constant C, provided that the random walk is
strongly aperiodic. Since the harmonic series diverges, every strongly
aperiodic random walk in the plane, with mean vector u = 0, and
finite second moments, must be recurrent. But the condition of
strong aperiodicity can be eliminated quite easily: we must construct
a new random walk, with transition function (x,y) which is strongly
aperiodic, satisfies the hypotheses in part (b), and for which

> @00 < 3 P00)

This construction is based on the observation that a random walk with
P(0,0) > O is aperiodic if and only if it is strongly aperiodic. (If
P(0,0) > 0, then |¢(60)| = 1 if and only if ¢(f) = 1. Thus the con-
clusion follows from T7.1and P7.8.) If P(x,y)satisfies the hypotheses
in (b) we can certainly find an integer # > 1 such that P,(0,0) > 0.
If the random walk with transition function Py(x,y) is aperiodic, then
it is strongly aperiodic. If not, then we use P7.1 to construct an
isomorphism T of the d-dimensional group generated by the points x
in R where P,(0,x) > 0 onto R, and define

Q(x,y) = P(Tx,Ty).
Now @(x,y) is strongly aperiodic,
@:(0,0) = Py,(0,0), n 20,
so that

2) @.(0,0) < ;io P,(0,0).

By P7.9 the series on the left diverges, and that proves part (b) of T1.
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To prove part (c) we may, if necessary by relabeling the state space,
assume that the random walk is aperiodic as well as genuinely
d-dimensional. Now we observe that

1 t!

Re < » O€E,
T—#(6) ~ Re [T = $(0)]
and conclude from P7.5 that
d
(2m)2G = 1:;1;1 Re1 — t¢>(0)

do

—_— __dl < A7 | —5

SL%U—MW =t LTeE

where X is the positive constant in P7.5. Since the integral of |6] =2
over C is finite when 4 > 3 (introduce polar coordinates!) the proof
of T1 is complete.

Remark: If it were possible to justify the interchange of limits in
P1, then one would have a slightly more elegant criterion:

““d-dimensional random walk is transient or recurrent according as the

real part of [1 — ¢(0)]~ ' is Lebesgue integrable on the d-dimensional
cube C or not.”

This statement is in fact correct. By Fatou’s lemma®

1 1
Re—_df = lim Re ———_ d#0
ﬁ:%—#m .Lﬁel—ww
df = (27)’G < ®

s lim [ Re
Therefore Re [1 — ¢(6)] ! is integrable on C when G < 0, i.e., when
the random walk is transient. But unfortunately no direct (Fourier
analytic) proof is known for the converse. The only proof known at
this time (1963) depends on a number of facts from the theory of
recurrent random walk—to be developed in Chapters III and VII.
Nevertheless we shall present this proof here—it is quite brief and will
serve as a preview of methods to be developed in later chapters. We
shall freely use the necessary facts from these later chapters, without
fear of dishonesty, as the resulting recurrence criterion (T2 below)
will never again be used in the sequel. To avoid trivial but tedious
reformulations we shall work only with aperiodic random walk and
prove

s Cf. Halmos [37], p. 113.
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T2 Aperiodic d-dimensional random walk is transient if and only if
Re [1 — ¢(6)] 1 is integrable on the d-dimensional cube C. (In view of
T1 this is always the case when d > 3.)

Proof: As shown by the argument involving Fatou’s lemma we
need only prove that G < oo when Re[l — #(8)] ! is integrable.
Let us therefore assume that G = o0, and work toward a contradiction.
The random walk is then recurrent and aperiodic, and in this case it is
known that the series

(1 ) = 3, [P00) = Pox0]

converges for all xe R. (That is shown in T28.1 of Chapter VII.)
It is further known that

) a(x) + a(—x) = 2(2m)~9 fcl_l-‘-:% do

_ 2(2ﬂ)-df [1 — cos 6] Re xeR.
(o]

1
——— db,
1 —4(6)
(That follows from P28.4 whend = 1; whend = 2 it is proved earlier,
in P12.1.) Finally it will be shown, in P29.4, that the function
a(x) + a(—x) has an interesting probability interpretation: it repre-
sents the expected number of visits of the random walk x,, n > 0,

starting at X, = x, to the point x, before the first visit to the origin.
Thus, in the notation of P29.4,

3) a(x) + a(—x) = go(%,%) = i Px, = x; T > k],

where T = min [k | k > 0; x,, = 0].

The proof of T2 will now be terminated by studying the asymptotic
behavior of a(x) + a(—x) for large values of x. The Riemann
Lebesgue lemma (which will be proved in P9.1) may be applied to
equation (2) to yield the conclusion that

1
4 lim [a(x) + a(—x)] = 2(2 ’dee———d0<oo.
(4 lim la) + a(—)] = 20m) | Req—ors
On the other hand, we may use equation (3) to obtain the desired

contradiction, in the form

(5) lim [a(x) + a(—x)] = + .

|z]—>
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To achieve this select a positive integer N, and observe that T < oo
with probability one for recurrent random walk. It follows that

a(x) + a(—x) = ;I::OPI[X,C =x;T > k] = Ié:o P.[x, = x]

N N N
~ D Plx, =x;T <K = > Py0,0) — > P,[x; = x;T < k]
k=0 k=0 k=0

For each fixed integer k
P,lx, = ;T < K] < B,[T < ]

= 2 RIT =15 3 Blx = 0] = > Px0)

which tends to zero as |x| — co0. Therefore

lim {a) + a(—] = 3 PA00)

|z|—>

for arbitrary N. As the random walk was assumed recurrent it follows
that (5) holds. The contradiction between (4) and (5) shows that
aperiodic random walk cannot be recurrent when Re [1 — $(0)] ! is
integrable, and hence the proof of T2 is complete.

E1 To prove part (a) of T1 by use of P1, observe that

(1) [ xe [1—:71;7(7)] = [ Re[r— t¢(0)]

when 0 < t < 1 and 0 < « < =, since the real part of [1 — #$(8)]"? is
non-negative. Now

@ ke[| * T e

and, given any € > 0, we may use P6.4 to choose o small enough so that
©) [Im 4(8) | < €| 6],

*) [Re (1 — t8(0)]* < 2(1 — 1)* + 2¢2 [Re (1 — (6))]?

< 2(1 — #)% + 212262
when |6 < «. Consequently, combining (2), (3), and (4),

. 1 “ a8
f_a Re [1 - t¢(9)] doz=(1-1]) 2(1 T2 + 3208

1
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It follows from (1) that

. * 1 1r- dx T
O ] el e
By letting € tend to zero we see that the limit in (5) is infinite, and by P1
the random walk in question is recurrent.

The Fourier analytical proof of part (b) of T1 is so similar to that of
part (a) that we go on to a different problem. We shall prove (without
using the strong law of large numbers that was used in T3.1) that one-
dimensional random walk is transient if m < oo, u # 0. Curiously it seems
to be impossible to give a proof using only P1 and P6.4. But if in addition
we use P6.6, to the effect that the function 6-2 Re [1 — ¢(6)] is Lebesgue
integrable on the interval [—=,7], then the proof is easy. As we may as
well assume the random walk to be aperiodic, we have to show that

N 1
© im [, Re |
for some « > 0. We use the decomposition
1 _Re(1 —¢)+ (1 —t)Red
@ ke [=5] - R g
Re(1—¢)+ 1-t
t(Im¢)* |1 — 24|

Choosing o sufficiently small so that

]d0<oo

[1m g(0) > |15

when |0] < « (this can be done by P6.4), we see that

. [* Re[l — 4(9)] " Re[l — ¢(9)]

%l/lil —amz—degc _n-—w—d0<w
for some ¢ > 0. Now it remains only to estimate the integral of the last
term in (7). 'This integral is decomposed into the sum

1 —1t 1 —~1¢
| T—ar®* | T=p?
t

19l<1 -~ 1-t<|fl<a
- 1—-1 4 do
<(1-1" f do + t_zl.? f s
[l<1-t 1-t<|fl<sa

which remains bounded as ¢ 1, so that (6) is proved.

E2 Consider one-dimensional symmetric random walk with the property
that for some o > 0

0 < lim [#|***P(0,x) = ¢; < 0.
[HEX]
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It is known from T1 that such a random walk is recurrent when a > 1 (for
then the first moment m will be finite). We shall now prove that the
random walk in question is in fact recurrent when o« > 1 and transient when
o < 1. This will be accomplished by investigating the asymptotic
behavior of 1 — ¢(#) as 8 - 0. When « > 2, the second moment exists
and we know from P6.4 that 1 — #(8) ~ ¢,0° for some positive ¢, as 6 — 0.
Thus we may confine the discussion to the case when 0 < o < 2. We
shall prove that

.1 — ¢(6 ® 1—cosx
) lim ——lelif,(—)=c1f_mlT|HT-dx<oo

when 0 < o < 2, and once this is done it is trivial to conclude from P1
that the random walk is transient if and only if 0 < « < 1. To prove (1)
we write

1— ¢(0) = _i [1 — cos n0]P(0,n),

1 — 0 J 1 |ett
@ %() = 3 |l*rePOn) n_()‘ 6] [1 — cos n6].
Letting

f(x) = |x|~@*O(1 — cos x), —00 < x < 00,

observe that (2) becomes

3 1_%%@ = ,.Ew 6] f0) + w_wf(nf’)lolfn

where €, = |n|***P(0,n) — ¢, — 0 as n— oo0. Since

® ® 1—-cosx
f_wf(x)dx=f_ W“’x’

which exists as an improper Riemann integral for every positive « < 2,
we may conclude from (3) that (1) holds if

©

lm 5 16] fnd) = f: F(x) dx.

18|20 n=—

But that is true because the sequence of sums above are just the ordinary
Riemann approximating sums to the integral of f(x).

Observe that when o = 2 the above argument permits us only to assert
(and even then one has to be careful) that (1) holds in the sense that the
integral on the right is infinite. It may be shown, when « = 2, that
1 — ¢(6) behaves like a negative constant times 6% In || for 0 near zero
(see problem 6).

In the next example we shall encounter a specific random walk of

the type discussed in E2 with « = 1. The recurrence of this random
walk will be obvious from the probabilistic context in which it arises.
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E3 Consider simple random walk x, in the plane, starting at x, = 0.
We write x,, in complex form (i.e., for each n > 0, x, = a, + ib,, so that
the random variable a, is the real part of x,, and b, the imaginary part).
Let us now define the stopping time

1 T=min[k|1l < k< oo;a,=Db,).

Thus T is the first time the simple random walk in the plane visits the
diagonal Re (x) = Im (x). According to T1 the simple random walk is
recurrent and by P3.3 this means that T < oo with probability one.

We shall be interested in the hitting place xt rather than in the hitting
time T of the diagonal and define

(2) @(0,n) = Py[xt = n(l + 7)], n=20 +1, +2,....
The foregoing remarks concerning recurrence show that
> Q0Om) =1,
n=-o
or, expressing it differently, @(m,n) = QO0n — m), mn =0, +1,..., is

the transition function of a one-dimensional random walk. In fact, we
can even deduce from T1 that @(m,n) is the transition function of a re-
current one-dimensional random walk (which is just the original simple
random walk in the plane, observed only at those times when it visits the
diagonal Re (x) = Im (x)).

It is of interest to determine §(m,n) explicitly, and we do so, showing
that its characteristic function () is given by

o

3) Wo) = n=z_w Q(0,n)e™® = 1 — sin

—n <0<

9
2 b
Using (3) a simple calculation (which we omit) will show that

2 2 1
(4) Q(0,0) =1 1—1_’ Q(O,n) = ; W—-_l for n #* 0.

In view of E2, equation (4) leads to the already known conclusion that the
random walk defined by ¢(m,n) is recurrent.

Our proof of (3) depends on a trick. Remembering that x, = a, + 7b,,
x, = 0, we define

5) u=vy=0, w,=a, +b, v,=a-—-b, x>l
Then we may write

T=min[k| k> 1, v, = 0], XT=“_2T(1 + ),
and conclude that

©6) $(0) = kz Eo[¢%; T = &].
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The trick we mentioned consists in observing that the sequence of
random variables u, is independent of the sequence v,. One simply checks
that for every pair of positive integers m and n

(7) PO[um — Uy =7V, — Va1 = S]
= Po[“m — Uy = r]PO[vn — Va1 = S].

Moreover, in so doing, one makes the pleasant discovery that the proba-
bility in (7) is zero unless |[r| = 1 and |s] = 1, in which case it is one
fourth. Thus we have observed that w, and v, are a pair of independent
simple one-dimensional random walks.

The rest is easy. Since T depends only on the sequence v,, but not on
the random walk u,, we may apply P3.1 to (6), to obtain

KO = 3 EofeIRo[T = ],

and the observation that u, is a simple random walk gives

)

6\* NT
®) Wo) =3 (cos -) Py[T = k] = Eo[(cos -) ]
k=1 2 2
It remains only to evaluate Eq(sT) for arbitrary s in [—1,1]. T is the
first time of return to zero for the simple random walk v,, and as shown in
equation (5) of E1.2,

) EosT) = 3 s'Fi(0,0) =1 - Vi—&, <L
We conclude from (8) and (9) that

T/ B\2
(10) 0oy =1 J1—(cos ) =1~ sin]g)

which demonstrates (3) and completes this example.

Remark: A very similar problem concerns two independent simple
random walks u, and v,, both starting at the origin. Let

T=min[k|k > 1,u, = v]

denote the first time u, and v, meet, so that uy = vy is the meeting
place. It may be shown that, just as in equations (9) and (10), T and
u, have infinite expectation. It may also be shown (see problem 9)
that

(11)  §(6) = E[¢®*1] = 1 — 3v/{1 — cos 6)(3 — cos 0).
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Whereas E1, E2, and E3 were designed to establish or to disprove
recurrence for specific random walks, the last example is intended to
illuminate general principles. We shall take a brief look at abstract
harmonic analysis on Abelian groups G and exhibit a class of functions
x:(8), g € G, called the characters of G, which exhibit exactly the same
behavior as the exponential functions €'** on R. Actually we shall
discuss only one specific group G, but one whose structure differs
considerably from that of the group of lattice points R.

E4 We take for G the following countably infinite Abelian group.
The elements of G are infinite sequences
g = (e, eé, €3, -..)

where each ¢, = ¢,(g) is either 0 or 1, and only a finite number of 1’s occur
in each g. Addition is defined modulo 2; whenge Gand ke G, g + his
defined by

0 if e(g) = ulh),

(g +h) = 1 otherwise.

Each g in G can be expressed in a unique way as a finite sum of generators
g € G, g, being defined by
ealge) = d(nk), k21, nx1

The identity element of G will be

e=(00,...).
A complex valued function y(g) on G will be called a character of G, if
¢y Ix@) =1, x(e + k) = x(@)x(h) for g, heG.

It follows from (1) that y(e) = 1 (using none of the special properties of G)
and that x(g) is either +1 or —1 for each g in G (because every element of
G is of order 2).

A collection of characters (sufficiently large to be useful) will now be
constructed as follows. Let I denote the interval [—1,1]. Each el
can be represented in binary form (uniquely if one adopts a suitable
convention concerning repeating decimals) as

2 A= kzl g—’,j, where each A, = A(d) = +1 or —1.
Now we define, for each A e I,
(3 x1(8x) = A k>1,

xa(e) = 1

xi(g) = Xl(gtl)Xl(gig) s Xz(gt,,),
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for every g = g;, + &, + '+ + &, € G. Clearly (3) implies that yx,(g) is
a character.

Classical harmonic analysis is based on the orthogonality of the ex-
ponential functions in P6.1. The analogue of this proposition in the
present setting is the orthogonality relation

4) 3| xtowhy an = {}) ﬁ £

where d) is ordinary Lebesgue measure on /. Although the proof of (4),
based on (1), (2), and (3) is not at all difficult, the observation that such
orthogonality relations hold in a very general setting is profound enough
to have played a major role in the modern development of probability and
parts of analysis.® Continuing to imitate the development in section 6,
our next step is the definition of a “transition function”

(5) P(g’h) = P(e’h - g),
satisfying
Pleg) = 0, 2 Pleg) =1

geG

and of its “characteristic function”’
(6) $(X) = ZG Pe,g)xi(g),  Ael
ge

Now we can generalize parts (a) and (b) of P6.3. If we define the
iterates of P(g,h) by

Po(g,h) = 8(g,h),  Pi(g,h) = P(g,h),
Pn+1(g:h) = fga P(g)f)Pn(f»h)i n= 0,

then P6.3(a) becomes

) FO = 3 Plegl®)  Ael 20,
ge
and part (b) of P6.3 turns out to be
1 1
® P(ed) =3 | #O@dh  geC nx0.

The proof of (7) and (8) depends on (4) in an obvious manner.

At this point we have all we need to associate a “‘random walk” on the
group G with a transition function P(g,k) on G. Even the measure
theoretical considerations of section 3 can of course be introduced without

8 See Loomis [74]. There are some indications that much of the theory of
random walk extends to arbitrary Abelian groups; it is even possible that such
an extension might shed new light on purely algebraic problems concerning
the structure of Abelian groups.
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any difficulty. Given a transition function, we may therefore call the
corresponding random walk recurrent, if

9) 5 Piee) = o,

and ask for criteria for (9) to hold, just as was done in this section, in terms
of the characteristic function ¢(A). This is easy, as equation (8) implies
that (9) holds if and only if

(10) > " g d = .

Let us “test our theory” in terms of a very down-to-earth example.
We consider an infinite sequence of light bulbs, and an infinite sequence of
numbers p, such that

b =0, ZPI:=1
k=1

At time 0 all the light bulbs are “off.”” At each unit time ( = 1,2, 3,...)
thereafter one of the light bulbs is selected (the ™ one with probability
Px), and its switch is turned. Thus it goes on if it was off, and off if it was
on. What is the probability that all the light bulbs are off at time ¢t = »?
A moment of thought will show that this is a problem concerning a random
walk on the particular group G under discussion, and that the desired
probability is P,(e,e), provided we define the transition function P(g,k) by

(11) Ple,g) = p,. if g = g, 0 otherwise.

(More specifically, the probability that exactly bulbs number 3, 5, 7, and 11
are burning at time », and no others, is P,(e,g) where g = g5 + g5 + g7 +
£11, and so forth.)

In this “applied” setting the recurrence question of equations (9) and
(10) has some intuitive interest. Equation (10) is equivalent to the state-
ment that with probability one the system of light bulbs will infinitely often be
in the state where they are all off, and we obviously want a criterion in terms
of the sequence {p,} which specifies the problem. (We shall say that the
system is recurrent if {p,} is such that (10) holds.)

By equation (11) we get from (6)

$(A) = é:l Prxa(8x)
and using (3)
KN = 3 puhe

so that (10) becomes

12) S f 11 (él p,,Ak)"d,\ - .

n=0
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Just as in the proof of P1 we can write

® © 1 © 1
(13) Y Piee) = lim Y t"Pyee) = lim5 ). ¢ f ¢"(A)dA
[ 71 0 71 2 o -1
1 dA

= lim =

o2 )L T
Here it is possible to interchange limits and integration, since

i dA dA dA
(14 f.ll—tw): f T—zp f T80

[(Al0(2)50) [A16(2)>0]

The first of these tends to the integral of [1 — ¢(A)]-* by dominated conver-
gence, and to the second integral one can apply the monotone convergence
theorem. Thus (13) and (14) give

& 1 (* dA
(15) Z):P,.(e,e) = 2 f—l mm < o0

Let us now partition the interval [—1,1] into the sets
Ak= [A|A1=A2="'=Ak_1= +1,Ak= —1], kZ 1,
noting that A € 4, implies that

1-2f < ) = X pede < 1= 2ps,

where fi. = p. + pr+1 + -+ Hence (15) yields

w4 #(A)
2 2fe ~ f 1—¢(A) <2 2’

where p(A4.) =2-* is the Lebesgue measure of A4,. Therefore we have
obtained sufficient conditions for recurrence and transcience of the “light
bulb random walk”:

2 1
(16) a sufficient condition for recurrence is Z 2
|
(17) a sufficient condition for transcience is Z ka
k
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Remark: By direct probabilistic methods Darling and Erdés [S5] have
shown that condition (16) is in fact necessary and sufficient for recurrence.
For a generalization to random walk on more general Abelian groups see
[S10].

Remark: The most interesting general result, so far, concerning
random walk on groups is a generalization of T1 due to Dudley [26].
He considers countable Abelian additive groups G, and asks what
groups admit an aperiodic recurrent random walk. In other words,
on what groups G can one define a transition function P(x,y), x,y € G,
such that P(x,y) = P(e,y — x), and

(a) no proper subgroup of G contains [x | P(e,x) > 0],
(b) 2a-0 Pu(ee) = oo,

where e is the identity element and P,(x,y) is defined as in E4? The
answer is that G admits an aperiodic recurrent random walk if and only if
it contains no subgroup which is isomorphic to R; (the triple direct
product of the group of integers). Note that, consequently, it is
possible to define an aperiodic recurrent random walk on the additive
group of rational numbers!

9. THE RENEWAL THEOREM

In the study of random walk, as in any other area of mathematics,
there are some quite indispensable propositions, intimately related to
the subject but not actual goals of the theory. Two such propositions
will be proved here, the Riemann Lebesgue Lemma (P1) and the
renewal theorem (P3). The former belongs in this chapter, being a
basic result in Fourier analysis. The latter does not; it properly
belongs in Chapter VI where its most general form appears as T24.2,
But we shall wish to use P3 long before that and since there is a simple
proof of P3 due to Feller ([31], Vol. 2) which is based on P1, we chose
to put the renewal theorem in this section.

The Riemann Lebesgue Lemma concerns the Fourier coefficients of
functions f(6), integrable on the cube

C=1616] <mk=1,...,d]C E.
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All integrals will be over C, as in D6.3, and d0 is Lebesgue measure
(volume). The space R of lattice points is of the same dimension d
as E, and for a function g(x) on R

lim g(x) = ¢

jz]—»

has the obvious meaning, i.e.,, g is arbitrarily close to ¢ outside
sufficiently large spheres in R.

P1 If f(6) is integrable on C, then

lim | e*%(6)df = 0.

lzl->» Jc

Proof: First we derive Bessel’s inequality: if a function g(6) on C
is square integrable and has Fourier coeflicients

a(x) = (2m)~¢ fe*"og(e) do, x€R,

then

(1 > Ja@)|? < (2n) [ le(o)] d.

ZeR

The proof of (1) is elementary, unlike that of Parseval’s identity which
was mentioned in section 6; for if

au(0) = > ax)é™®,  6ek,
[z] z1<M]

then P6.1 gives
05 @n) [le(®) - eu(®? 40 = @n) [ 14O d0 — 5 Ja(a)]

lz|l=M
for every M > 0, which implies (1).
To prove P1 we now decompose f(6). For every 4 > 0,
J(0) = g4(6) + hy(0), beE
where
£4(0) = f(0) when [f(0)| < 4, 0 otherwise,
hi(8) = f(8) — £4(0).
If a,(x) are the Fourier coefficients of g,(8) and b,(x) those of %,(6),
then

(2) (2m)~¢ fe”"’f((i) df = a,(x) + by(x), x€R.
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Since g4(0) is bounded, it is square integrable, so that (1) implies that
a,(x)— 0 as |x| > c0. Also

@) bu) < @n) (1@l do = @ne [ i@ 0 =,
10117@®)1 > 41
where 8, tends to zero as 4 — co. It follows from (2) that
lim (27)~¢ f ér0f(0) df < Tim ay(x) + lim by(x) < B,
lz]— lz}— lz]
orevery A > 0. By letting A — oo we are therefore able to complete
the proof of P1.

Now we shall apply the Riemann Lebesgue Lemma to the discussion
of certain aspects of aperiodic transient random walk. According to

T2.1
G(0,x) = > P,(0,x) <
n=0

for all x in R, if P(x,y) is the transition function of an arbitrary
transient random walk. We shall prove (a brief discussion of this
result precedes the proof of P3)

P2 For every aperiodic transient random walk

lim [G(0,x) + G(x,0)] exists.

|2]—
Proof: As in the proof of P8.1 we write, for 0 < ¢ < 1,
¢)) z "P,(0,x) = z (2m) - fe‘“”%”(ﬂ) do,
n=0 =0

where ¢(6) is the characteristic function of the random walk. The
dimension is d > 1, and the integration is over the same d-dimensional
cube C as in P1. Replacing x by —« in (1), and adding the two
equations,

ad _g [ cosx-0
(2) ,.Zo ' [P,(0,x) + P,(x,0)] = 2(27) L % 0)
- 2(217)“’fcosx-0Re [1—___1t¢_(9)] a6

so that

@) G0 + G(0) = lim 2or)* eos -0 Re [ | a0
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For convenience, let us call

w,(6) = 2(27)~° Re [ feC, 0<t<l.

el

Now we use the aperiodicity of the random walk to conclude, from
T7.1, that

w(f) = lim w,(f) < o, 6eC — {0}
tA1

exists for every non-zero value of in C. Foreveryrealr,0 <7 < 7
we define the sphere S, = [0 |6] < r]. Then, again using T7.1,
equation (3) may be written

4) GO,x) + G(x,0) = j

Cc-58,

cosx-fw(0)db + limf cos x- 0 w,(0)d6.
tA1 Js,
Now we call

lim wy(0)df = L,
t71 Js,
observing that this limit exists, in view of (4). It is crucial to note,
at several points in the proof, that %,(8) > 0 on C, and hence also
w(0) = 0, w(f) being the limit of w,(f). Setting x = 0 in (4), it
follows from the positivity of w(6) that
0 < L, < 2G(0,0),

and that
limL, =L <

r—0

exists. Now we shall estimate the second integral in (4) with an
arbitrary, fixed, value of x. Given any € > 0 we can choose p > 0
so that |1 — cos x- 0| < eforall 6in S,. It follows (since w,(6) > 0)
that

(1 —-¢L, < limj cos x- 0 wy(0)df < (1 + €)L,
t71 Js,
when 0 < r < p, and since ¢ is arbitrary

(5) limlim | cos x-60 wy(6)df = L.
10 tx1 Js,
Substituting (5) into (4) we obtain
(6) G(0,x) + G(x,0) = lim cos x-0 w(d) d6 + L.

=0 JC-8,
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Now let us set x = 0 in (6). Since w(f) = 0 on C we can conclude
that
@) w(0) is integrable on C.

Hence (6) takes on the simple form
8) G(0,x) + G(x,0) = f cos x- O w(0) dd + L, x € R,
C

and the stage is finally set for the application of the Riemann Lebesgue
Lemma (P1). The function cos x- 6 is the sum of two exponentials,
and as w(0) is integrable we have

lim [G(0,x) + G(x,0)] = L < oo,

|z}—>
which completes the proof of P2.

It is not easy to evaluate the limit in P2 explicitly; nor is it clear,
perhaps, why this limit should be of any interest. Therefore we shall
discuss a special case of obvious interest, namely so called positive
one-dimensional random walk with the property that

P(0,x) = 0 for x < 0.
Obviously every such random walk is transient so that P2 may be
applied. It is more to the point, however, that G(0,x) = 0 for x < 0,
so that P2 reduces to

lim G(0,x) = L < c0.

=+ @

The limit L will be evaluated in P3, where it is shown that

L= i (M - i xP(O,x))

r=1

when p < oo, while L = 0 when p = 0.

This is the now ““classical” renewal theorem in the form in which it
was first conjectured and proved by Feller, Erdés, and Pollard” (1949).
Its name is due to certain of its applications. If T is a positive
random variable, whether integer valued or not, it may be thought of

7 Cf. [31], Vol. 1, p. 286, where Feller credits Chung with the observation
that this theorem is entirely equivalent to a fundamental law governing the
ergodic behavior of Markov chains which was discovered by Kolmogorov [67]
in 1936. Given any probability measure p, = P(0,k) defined on the integers
k = 1, it is easy to construct a Markov chain with states ay, as, . . ., so that py
is the probability that the first return to the state a, occurs at time k. That is
why our renewal theorem follows if one knows that the probability of being in
state @ at time 7 converges to the reciprocal of the mean recurrence time of
state a. But this is exactly the theorem of Kolmogorov.
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as a random span of time. Frequently it is a lifetime, of an individual
in a large population—or of a mass produced article. Suppose now
that identical individuals, or articles, have life times T,, T,, ..., which
are identically distributed independent random variables. If each T,
is integer valued we define the transition function P(x,y) so that

P(0,x) = P[T, = x] for x > 0, k=21,
and P(0,x) = 0 for x < 0. Then, evidently,
P,0x)=P[T, + Ty +:---+ T, = «x], x>0, nx>1,

and

[}

GOx) = > P[T, + Ty + --- + T, = x].
n=1

Thus G(0,x) is a sum of probabilities of disjoint events. We can say
that T, + --- + T, = x if the n'! lifetime ends at time x (for example,
if the #*® individual dies, or if a mass produced article has to be
“renewed” for the n'® time at time x). Thus G(0,x) is the probability
that a renewal takes place at time x, and according to P3 it converges to
the reciprocal of the expected lifetime

p = > xP(0,x) = E[T].

This conclusion is false, when T is integer valued, unless P(0,x) is
aperiodic, or equivalently, unless the greatest common divisor

g.cd. {x | P[T = x] > 0}
has the value one.
P3  For aperiodic one-dimensional random walk with P(0,x) = 0 for
x<0,p=2>",xP(0,x) < o0,

lim G(0,x) =

n—+

(=0 if p = oo).
Proof: If
Gn(o’x) = Z Pk(O’x)
k=0

we have
G,+1(0,%) = 2 P(0,5)G,(t,x) + §(0,x),
teR

and, letting n — o0,

(1) G(0,x) = > P(0,1)G(t,x) + 8(0,x), x€R.

teR
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This equation will be used to determine the value of

@) L= lim G0

=+

which exists according to P2. We shall sum the variable x in (1)
from 0 to n. Observing that P(0,2) = 0 for ¢ < 0 and G(¢,x) = 0
for t > x, one obtains

n

Z > P(0,)G(t,x)

—
Il
M=
Q
—~
=]
=
~

teR

L]
L}
(=]

G(O x) — Z (0,x)[P(0,0) + P(0,1) + --- + P(0,n — )]

G(O 21 - Z P(0,y)]

G(O n — x)f(x),

5 M: ||M= 'RM:

where

1) = ilp(o,x).
Observe that
© 5 =

whether y is finite or not. When p < o0, we let #— oo in

“@ 1 = Z GO — %)f(x)

concluding by a dominated convergence argument from (2) and (3)
that 1 = Lu or L = p~%, which is the desired limit. Finally, when
u = o0, the value of L must be zero, for otherwise the right-hand side
in (4) would tend to infinity as #— co. Hence the proof of P3 is
complete.

Problems

1. Extend P6.4 by proving that m.. < c0 whenever the characteristic
function has a derivative of order 2k at the origin.
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2. Extend the result of P6.6 to

m 3 f”R $(0) — 1 + my(1 — cos 6)
me  2mm, J_, € (1 ~ cos 6)?

do,

mg being finite if and only if the integral on the right exists in the sense of
Lebesgue.

3. Show that two-dimensional random walk is transient if m < oo and if
the mean vector u # 0.

4. Prove that if ¢(6) is the characteristic function of a recurrent random
walk, then so is |$(0)| 2. Consequently two identical, independent, recurrent
random walks, starting at the same point, will meet infinitely often.

5. For what real values of o is

#(6) =1-

0 [:1
sin =

2

the characteristic function of a one-dimensional random walk? For each
such value of «, describe the asymptotic behavior of P(0,x) as |x| — oo.

6. If a one-dimensional random walk satisfies
P0,x) ~ |x|73 as |x|— oo,
what can be said about the asymptotic behavior of 1 — ¢(6) as || — 0?

7. Simple random walk in the plane. In complex notation the random
walk is z,, with z, = 0. If T is the time of the first visit of the random
walk to thelinez=m 4+ m =0, +1,..., let

Q(0,m) = Py[Re (z1) = m].
Show that

i Q(0,m)e'™ = 2 — cos § — V(1 — cos 6)(3 — cos 6).

m= -

8. Continuation. Use the remarks preceding the proof of P6.8 to
calculate

lim Py[Re (zT,) < nx] —00 < X < 00,

where
T, =min[k|k > 1, Im (2,) = n].

9. Let u, and v, be independent simple random walks on the line, with
uy, = v, =0. Let T be the first time they meet. Prove that T < c©
with probability one, and use the result of problem 7 to obtain the character-
istic function of uy = v¢. Is T < o0 also if u, and v, are identical but
independent Bernoulli walks?
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10. Simple random walk in three space. Let Q(0,n) denote the probability
that the first visit to the x%-axis occurs at the point x = (!, x2, %) with
x' = 22 = 0, x® = n. (The starting point is the origin.) Show that if

WO = 3 Qome,

then

— cos 0

(1 - 0] = K(5=2p)

where K is the elliptic integral

2 [#2 dt 2 (2n\2/z\2"
-2 [ et S
) mJo V1 — 2%sin?t nZO n/ \4

11. Continued. If F is the probability to return to zero, explain why

1 2
— — -1 . —
¢=-nr=y | K(3 — 0) a8,

This integral was evaluated by G. N. Watson [104], who showed that
G = 3(18 + 12V2 — 10V3 — 7VE)K?(2V'3 + V6 — 232 — 3)
= 1.5163860591. . ..

Thus the probability that simple random walk in three-space will ever return
to its starting point is F = 1 — G~ = 0.340537330. . ..

12. In the light bulb problem of E8.4, let N, denote the number of bulbs
burning at time # (N, = 0). Show thatfor0 <s<1,0<t < 1

@

> :Tn!E[tN"] = kfjl [cosh (sp,) + tsinh (sp,)],

n=0

E[N,] = 1 > 1 — e,
! 245

[}

Ms
3"‘*

e—s
13. A die is cast repeatedly, the scores are added and p, is the probability
that the total score ever has the value n. What is the limit of p, as n—> o0
(Putnam Competition 1960)? Generalize this problem by proving P9.3
for a “generalized loaded die” with m sides which have the probabilities
491, g2, - - -, gm Of coming up. In other words, prove the renewal theorem
in P9.3, by a simple method which avoids Fourier analysis, for positive
bounded random variables.

14. Is there a recurrent one-dimensional random walk x, which has the
remarkable property that each random walk y, = x, + an is also recurrent,
for arbitrary a € R?

Hint: One of the random walks in problem 5 will do.
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15. A particularly elegant continuous analogue of two-dimensional
simple random walk is the random flight investigated by Lord Rayleigh
(see [103], p. 419). Here

Xn=X1+X2+---+Xn, nZl

where the X are independent complex random variables with {X;| = 1,
whose arguments are equidistributed between 0 and 27. Develop the

requisite Fourier analysis for spherically symmetric functions (see [5],
Ch. 9) to conclude that

3P| <]+ 4BlIx] < 7] =7 [ 00

for n>1, r > 0. When n > 2 the right-hand side is a continuous
function of r, and it follows that
Pl|x,| < 1] = P[|x,| < 1] = 1/(n + 1),
Remark: J,(x) is the Bessel function of order k, which enters the
picture because, for £ = 0,1, 2,...

n
Jk(x) — 21; f_n e—tko+iz sin 8 Jg



Chapter 111

TWO-DIMENSIONAL RECURRENT
RANDOM WALK

10. GENERALITIES

Just about all worthwhile known results concerning random walk
(or concerning any stochastic process for that matter) are closely
related to some stopping time T, as defined in definition D3.3. Thus
we plan to investigate stopping times. Given a stopping time T we
shall usually be concerned with the random variable xr, the position of
the random walk at a random time which depends only on the past of the
process. There can be no doubt that problems concerning xr
represent a natural generalization of the theory in Chapters I and II;
for in those chapters our interest was confined to the iterates P,(0,x)
of the transition function—in other words, to the probability law
governing X, at an arbitrary but nonrandom time.

Unfortunately it must be admitted that the study of arbitrary
stopping times is far too ambitious a program. As an example of the
formidable difficulties that arise even in apparently simple problems
consider the famous problem of the self-avoiding random walk. Let
X, be simple random walk in the plane with x, = 0, and let T denote
the first time that x, visits a point in R which was occupied at some
time less than n. Thus

T=min[k|k > 1;x,e{x0, X5,..., X_1})

This is certainly a stopping time, but one whose dependence on the
past turns out to be of much too elaborate a character to be susceptible
to a simple treatment. Although it is of course possible to calculate
the probability that T = n for any fixed #, the distribution of xg

presents a problem that seems far out of reach; for each x in R, the
105



106 TWO-DIMENSIONAL RECURRENT RANDOM WALK

event “xp = x”’ depends on the entire history of the random walk up
to time T, and T may be arbitrarily large. Even a seemingly more
modest problem, namely that of finding

lim {P[T > ]}

lies beyond the horizon of the present state of the art. (The above
limit, which may be shown to exist without any trouble, holds the key
to a number of interesting physical problems. Its recent calculation
to four presumably significant digits [33], offers no significant clue to
the mathematical complexities of the problem. We shall conclude
this chapter, in example E16.2, by discussing a related but much
easier problem that will nevertheless use in an essential way the results
of this entire chapter.)

That is one of the reasons why our field of inquiry has to be
narrowed. Another reason, of greater depth, was mentioned in the
Preface. We shall study exactly those stopping times which render
the “stopped” random walk Markovian. These will all be of the
same simple type. We shall take a subset 4 C R of the state space.
It will always be a proper nonempty subset, and its cardinality will be
denoted by | 4|, a positive integer if 4 is finite, and |4| = oo otherwise.
And our stopping time will always be of the form

T=T,=min[k|1 <k < 0;x,€ 4],

in other words, T will be the time of the first visit of the random walk to
a set A.

Now we give (in D1 below) the principal definitions using measure
theoretical language, in the terminology of D3.2. This is undoubtedly
the most intuitive way—but nevertheless we repeat the process once
more afterward. In equations (1) through (3), following D1, we
shall give some of these definitions in purely analytical form, in other
words, directly in terms of P(x,y) without the intermediate construction
of a measure space (Q,%,P).

One notational flaw should not be passed over in silence. We shall
define, in D1, a function ¢(x,y) and its iterates @,(x,y). These will
depend on the set 4 and should therefore logically be called @ ,(x,y)
and @ 4 ,(x,y)—but no confusion will result from the omission of 4 as
a subscript.

First we indicate the domain of the functions to be defined. They
will all be real valued; so, if we say that f(x, y)is definedon R x (R — A),
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this means that f(x,y) is defined for every x in R and every y in R but
notin 4 (fmaps R x (R — A)intothe real numbers). We shall define

D1 Q.(x,y) forn=0o0n(R—- 4) x (R- A),
H,™(x,y) for n = 0 on R x A,
H  (x,y) on R x 4,
1 \(,9) on A x A,
24(%,5) on R x R.

The definitions are, in terms of the time T = T , of the first visit to A,

Qn(x»y) = Pz[xn =2 T > n];

H,™(x,y) = P,[xr = y; T = n] for xe R — A,
=0 for xed,n>1,
= 8(x,y) for xe A, n = 0;
Hy(x,y) = P,[x; = y; T < 0] for xe R — A4,

8(x,y) for xe A4;
Iy(x,y) = Pi[x; = y; T < c0];

ga(x,y) = Z Q.(x,y) for xe R — A,ye R — A4,
n=0
= 0 otherwise.

It should be clear how to cast these definitions in a purely analytic
form. For @,(x,y) we define Qu(x,y) = 8(»,5); then Q(x,y) =
Q1(x,y) = P(x,y) when (x,y)isin (R — A) x (R — A). Finally, just
as in P1.1

Qn+1(x!y) = . Z Qn(x’t)Q(t’y)'

cR=4
As for H,™(x,y), withx € R — A, n > 1, we could now simply take
1) Hi®(%3) = 2, Qu-a(=tP(5)).
Alternatively, we could write, when xe R — 4, n > 1,
2) H™xy)= 2 - > Px) - P,y
z1ER-A In-1€R—-A

and then prove the equivalence of (1) and (2). It should also be clear
that H,(x,y), in the case when x € R — 4, is simply

© Hiwy) = 3 i)

Now it is time to employ these definitions to obtain some simple
identities that will be extremely useful in the sequel. One of them
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(P1(b) below) concerns the convergence of the sum defining g 4(x,y)—
which perhaps is not quite obvious from D1; others concern relations
between H,, II,, and g,. In later sections such relations will be
shown to be familiar ones in the mathematical formulation of potential
theory—but that is irrelevant at this juncture.

Pl For arbitrary random walk (recurrent or transient)
(a) Z P(x,t)H \(t,y) — H 4(x,y)

teR
[ g(,y) — 8(x,y) for xe A, ye A,
" |0 for xeR — A4, ye A.

(b) 0 < ga(%,y) < g4(»y) for all xeR, ye R

and if, in addition, the random walk is aperiodic, then
Za(x,x) < o0, xeR.
(c) ForxeR — A, y€eA,
Hy(x3) = 2. g NP(L).
(d) ForxeR — A, ye A,
G(x,y) = D H,x1)G(t,y).

ted

Proof: When x € 4 and y € 4, the left-hand side in P1(a) is
z P(x’t)HA(t)y) - HA(x’y)
teR
= P(x) + > ) P(x,t)H ,(t,y) — 8(x,).

€R —

Thus we have to show that

(%) = P(xy) + > P(xtH,ty), =xcd, yeA.

€R —

Decomposing II 4(x,y) according to the value of T,
M(%y) = Pfxr = ;T < o] = > Plxr = y; T = &
K=1

=Pxr =y T=11+ > Pfxr=y;T = k].
k=2
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Here
Plxr =y; T = 1] = P(x,y),

and when &k > 2,

Il

P2, = ;T = 4] P, = ;% = y; T = 4]

leR-A
= > Pxt)Pfx, =y;T =k — 1].
teR—- A
Hence
Ia(xy) = P(xy) + ZAP(x ) E Py =y T =k - 1]
= P(x,y) + Z P(x,t)P[x; = y;1 < T < 0]
teR—-A

= P@®y) + 2> P(x)H,1y).
teR— A
When x€ R — 4 and y € 4 we have to show that

Hy(x,y) = tZRP(x»t)HA(t’y)’

the right-hand side in P1(a) being zero. This is done, just as in the
first half of the proof, by decomposing H ,(x,y) according to the
possible values of T.

The proof of (b) depends on the interpretation of g,(x,7) as the
expected number of visits of the random walk x, with x, = x to the
point y before the time T of the first visit to the set 4. Since there is
nothlng to prove when either x or y lies in 4, we assume the contrary.
If in addition x # y, then

852) = 3 Qus9) = 5 Rlxy = 3iT > i,

and letting T, = min [k |1 < k < o0, x;, = ),

Z P[x, =y, T, = kT > ]

1

2RI =k <TIPx = 5T >n - A

gA(x’y)

[

8 ||M8 uMS

—Z P.[T, —k<T]ZPy[Xj—y,T>J]

k=1

P[T, <T;T, < OO]gA(y’ ) < g4(9)-
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It follows that for all x,y in R

£4(%y) < g4(9,y)-

The problem of showing that g,(y,y) < o for aperiodic random walk
can be reduced to a slightly simpler one by the observation that
24(»,y) < gg(y,y) when B is a subset of 4. Thus it suffices to let
B = {0}, gs(»,y) = g(x,y), and to show that

g(x,x) < o

when x # 0. This is true for transient, as well as for recurrent
random walk, but for different reasons. In the transient case clearly

g(x,x) < G(x,x) < 0.

In the recurrent case
glxx) =1+ Z P.[x, = x; Ty, > n]
n=1

where T, = min[k |1 < k < o, X, = y]. Since the random walk
is aperiodic, P,[T, < 0] = F(x,0) = 1 by T2.1. In addition it is
easy to see that

PI[TO < T.t] = H(O,z) (x’O) > 0.

But g(x,x) is the expected value of the number of visits to x (counting
the visit at time 0) before the first visit to 0. It is quite simple to
calculate this expectation (it is the mean of a random variable whose
distribution is geometric) and the result of the calculation is

&(%,x) = [H(O.z) (x’O)]_l < 0.

The reader who is reluctant to fill in the details will find that P3 below
yields a much shorter proof that g, (x,x) = g(x,x) < 0.
To prove (c) we decompose H ,(x,y) as follows. For xe R — A4,

yeA,

H (x,y) = Zl t RZ_A Plx, ;= ;T = n;%;, = 5]

]

> Pux,_; = ;T2 n]P(t,y)

n=1 teR—-4A

tezz,: g4(x,t)P(t,y) = tEZR 24(x,t)P(t,y),

which proves (c).
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Part (d) is of absolutely no interest when the random walk is
recurrent, for then both sides are infinite (or possibly both are zero in
the periodic case). However, the proof which follows is quite general.
We write, forxe R — A4, ye A,

G(x’y) Z P (x y) ZO Pz[xn = y]

il
NMs ||
M=

P.[x, =y;T = k]

3
ft
o
b
[]
[

[ \Wgk
1N

P[x =y; T =Fk;xp = 1]

o
m
[
S
I
o
?§'
-

[\/]8
u[\/]

z[T = k, Xy = t]Pt[xn—k = y]

= EA; H A(x,t)G(t,y).

That completes the proof of P1.

o~
m
1S
i
(=)

]
™M
— 3
i

A very simple but powerful technique, successful because the
random variables X, = x,,;, — x, are identically distributed and
independent, consists of reversing a random walk.

D2 If P(x,y) is a random walk with state space R, then the random
walk with transition function P*(x,y) = P(y,x) and with the same state
space is called the reversed random walk. We shall denote by G*(x,y),

Q. *(%,y), H*(x,y), I *(x,5), g4%(%,), etc.,... the functions defined

in D1 for the reversed random walk.
As obvious consequences of this definition
P2 G*(xny) = G(.y)x): Qn*(x,y) = Qn(y’x),
I*(x,y) = T(y,x), £4%(%,y) = ga(y,%),
each identity being valid on the entire domain of definition of the

function in question. Note that, for good reasons, no identity for
H *(x,y) is present in P2.

As the first application of reversal of the random walk we derive an
identity concerning the number of visits N, of a random walk to the
point x € R, before its return to the starting point. We shall set

T
T=min[k|]l <k < 0; x, = 0], N,=28(x,xn).
n=0
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Then the expected value of N, when x, = 0, is

Eo[N.] = Eo[ > 8(s%)] = 5 Pofx, = 5; T > .
But n=0 n=1
Py[x, = x; T > n] = Z P(O’t)Qn—I(tvx):

t#0

where @,(x,y) is defined according to D1 for the set A = {0}. Using
P2, forn > 1

Pix,=xT > n] = t;) PX(1,0)Q, _1*(x,t) = t;) Q.- ¥(x,0)P*(¢,0).

But this is the probability that the reversed random walk, starting at x,
visits O for the first time at time n. Thus

Px, = x; T > n] = F,*x,0), EoN,] = i F *(x,0) = F*(x,0).

This enables us to prove
P3 For recurrent aperiodic random walk
E([N,] = 1 for all x # 0.2
Proof: All that remains is to observe that
F*(x,0) = F(0,x), and by T2.1 F(0,x) = 1 for all x in R.

As a corollary of P3 we get a simple proof that g,(x,y) < oo for all
x and y if the random walk is aperiodic. The reduction to the case
when A = {0} and x = y was accomplished in the proof of P1, and it
is easy to see that

1= Eo[Nz] > Qn(O’x)g(O)(x’x)
for every n > 1. By choosing n so that @,(0,x) > 0 we see that
2oy(%,x) < oo, ‘
As a second application one can prove

P4 For an arbitrary random walk

2 My(x,9) < 1 forall xe 4

yed

Z M (x,y) < 1 for all ye A.

z€d

1 This answers problem 6 in Chapter I. In the theory of recurrent Markov
chains f(x) = Eo[N,] was shown by Derman [21] to be the unique non-
negative solution of the equation f(x) = Pf(x)—which happens to be constant
for recurrent random walk. We shall prove uniqueness in P13.1.

and
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Proof: According to D1
> I(x,y) = P[T < 0] = 1,

veA
where T =min [k |1 < k < o0, X, € 4]. The second part follows
from the observation that Il ,*(x,y) = Il ,(y,x), so that

> Myxy) = > My <1

T€A zeA

by the first part of P4. For recurrent aperiodic random walk P4 will
be strengthened considerably in the beginning of the next section
(P11.2).

Remark: The terminology and notation introduced in this section
will be used throughout the remainder of the book. The rest of this
chapter (sections 11 through 16) will be devoted to two-dimensional
recurrent random walk. For this case a rather complete theory of
stopping times T = T, for finite sets A C R may be developed using
quite elementary methods. These methods provide a good start, but
turn out to be insufficient in other cases—namely for transient random
walk as well as in the one-dimensional recurrent case. Therefore the
theory in this chapter will have to perform the service of motivating
and illustrating many later developments.

11. THE HITTING PROBABILITIES OF A FINITE SET

Through the remainder of this chapter we assume that we are
dealing with aperiodic recurrent random walk in two dimensions.?
Further, all probabilities of interest, i.e., all the functions in D10.1
will be those associated with a nonempty finite subset B of R. The
methods and results will be independent of the cardinality | B| except
in a few places where the case |B| = 1 requires special consideration.

The primary purpose of this section is to show how one can calculate
Hg(x,y) which we shall call the hitting probability measure of the set
B. To begin with, we base the calculation on part (a) of P10.1 from
which one obtains

2 This will be tacitly assumed. Only the statements of the principal theorems
will again explicitly contain these hypotheses.
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Pl ForxeR,yeB,andn =0
S Paoa(x)Hg(t,y) = Hg(x,y) + tzB Ga(xt)[T(ty) — 8(t,9)].

teR

Proof: Operating on part (a) of P10.1 by the transition function
P(x,y) on the left gives

>, Pa(x)H (t,y) — Z P(x,)H (1,y) = Z P(x)[T5(t,y) — 8(2,9)]-
teR
Now we do this again # — 1 times, and the resulting n + 1 equations,
counting the original one, may be expressed in the abbreviated form

PH=H+ 11 -1, P.H=PH+ P(Il -1),...,

P,.,H = P,H + P(Il - I).
Adding these equations, using I to denote the identity operator, one
finds
P,o,H=H+ I+ P+ - -+ P)YII-1).

This shows that P1 holds, if we remember that I + P + ... + P,
stands for

Gu3) = 3 Puls3),

in view of D1.3.

The next lemma uses the recurrence of the random walk in an
essential way. Itis

P2 Z gt y) = Z Ig(y,t) = 1 for every y in B.
teB {eB

Proof: Consider the reversed random walk with transition function
P*(x,y) = P(y,x). If we call II;*(x,y) what one gets if one forms
I1; for the transition function P* in accordance with D10.1, then by

P10.2
Ig*(x,y) = Mg(y,x), for x,y in B.

This fact was already exploited in the proof of P10.4. Since
P,*(0,0) = P,(0,0), it is obvious that the random walk P* is recurrent
whenever the original random walk is recurrent. Therefore P2 will
be proved if we verify that

Z Oy(x,y) = 1, xeB

veB
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for every aperiodic recurrent random walk. Here it is convenient to
use the measure theoretical definition of I, giving

2. Tg(x,y) = P,[Ty < 0] 2 P,[T, < 0],

YeB
sinceT, =min[k|1 < k < 0;%x, =x] > Tz. But

P,[T, < 0] = i Fi(x,x) = i F,(0,0) = F

in the terminology of section 1, and F = 1 since the process is
recurrent. That completes the proof.

Now P2 opens up an important possibility. It enables us to trans-
form P1 into

tezR Pn+1(x7t)HB(t’y)
= Hp(x,y) + gl; [en + Ga(x,0)][5(2,y) — 3(2,3)],

where the ¢, are arbitrary constants (independent of ). We choose
to let ¢, = — G,(0,0) and define

D1 An(%,y) = Gx(0,0) — Gyp(x,y), x,y in R,
a,(x) = A,(x,0), xin R.
At this point P1 has beome

P3 z Pn+1(x»t)HB(t’y)
= HB(x»y) - ; An(xrt)[HB(t’y) - S(t,y)],

forxeR,yeB,n > 0.

The further development is now impeded by two major problems.
We wish to let #— oo in P3 and naturally ask
(i) Does lim ,_, o, A.(,t) exist?
(ii) If the answer to (i) is affirmative, what can be said about the other
limit in P3, namely
lim Z Pn+1(x)t)HB(t’y)?
n—> o tecp
In order not to interrupt the continuity of the presentation we shall

answer these two questions here, and then devote the next two sections
to proving that the answers are correct. In P12.1 of section 12 we
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shall prove in answer to (i) that the limit of 4,(x,y) exists for all x,y
in R, which we record as

Gy lim 4,(x,5) = A(vy),  lim ay(s) = a(x).

The proof of this assertion in section 12 will use in an essential way
two of our assumptions. The first is that the random walk is aperiodic,
which is important, because the limits in question need not exist in
the periodic case. The second assumption is that the dimension of
the process is two. 'This is essential only for the proof and in fact we
shall present a different proof, in Chapter VII, which shows that

lim A,(x,y) = A(x,y)

exists for every aperiodic random walk.
Concerning question (ii), let us try to simplify the problem. If the
answer to (i) is affirmative, then it follows from P3 that
lim Z Pn+1(x)t)HB(t’y)
R teR
exists for every pair x € R, y € B. Let us fix y and call the above sum

Jfa+1(x). TIterated operation by the transition function P(x,y) shows
that

Jraa(%) = %P(x»t)fn(l)-

Here we have used the obvious fact that 0 < f,(x) < 1, to justify an
interchange of summation. As we know that the limit of f,(x) exists,

we may call it f(x), and conclude, again by dominated convergence,
that

f(x) = Z P(x,9)f(»), xeR.

YER

In section 13, P13.1, we shall show, again using the aperiodicity and
recurrence of the random walk, that the only non-negative solutions of
this equation are the constant functions. This means that the limit
we inquired about in (ii) above exists and is independent of x, so we
may call it ug(y) (as it may well depend on y and on the set B) and
record the answer to question (ii) as

() lm > Po(x)Hs(ty) = ps(y), x€R, yeB.

n—® teR

In the remainder of this section we proceed under the assumption
that (i)’ and (ii)’ are correct and this reservation will be explicitly
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stated in the conclusions we obtain in propositions P4 through P8 and
in the main theorem T1 at the end. The reader to whom this
departure from a strictly logical development is abhorrent is invited to
turn to the proof of propositions P12.1 and P13.1 at this point.

By applying (i)’ and (ii)’ to P3 one can immediately conclude
P4 Hy(xy) = ps(y) + ZBA(x,t)[Ha(t,y) = (),
te

for x € R, y € B (subject to (i)’ and (ii)’).

Our next move is to consider a very special case of P4, by restricting
attention to sets B of cardinality two. Nothing is lost, and some
simplification gained by letting the origin belong to B, so that we let
B = {0,b} where b is any point in R except 0. Consider now the two
by two matrix IT5. In view of P2 it is doubly stochastic. This means
that if we call I15(0,6) = II, then II4(5,0) = II,

I15(0,0) = IIg(,0) = 1 — II.
To gain further insight it is of interest to restrict both x and y in P4

to the set B. P4 then conasists of four equations, and keeping in mind
that Hg(x,y) = 8(x,y), we represent them in matrix form as follows:

<1 0) B (F’B(O) #B(b)) oI (a( —b) —a( —b))
0 1 #5(0)  p5(0) —a(b)  a(b)
The above matrix identity shows that IT cannot be zero, and it readily

yields the following solution (in the sense that we think of a(x) as a
known function, and of II, ug(0), up(b) as unknowns).

PS For B= (08}, 520, 140 = gpp > 0
a(b) a(—b)

w0 =y v oy O =@y v a-py
(subject to (i)' and (ii)’).
By substitution of the result of P5 into P4 for values of x not in B

one can now obtain explicit formulas for Hy(x,0) and Hy(x,b) in the
case when B = {0,b}. For example

A(x,0) + A(0,b) — A(x,b)

A(0,b) + A(b,0) '
A result that will be of more lasting interest, however, concerns the
function gg(x,y), in an important special case.

(1)  Hy(xb) = %R, b#0.
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D2 If B = {0}, i.e., the set consisting of the origin, gg(x,y) is denoted
by go)(%y) = &(x.y)-
Thus g(x,y) is the expected number of visits of the random walk,

starting at x, to the point y, before the first visit to 0. We shall show
that

P6 g(x,y) = A(x,0) + A(0,y) — A(x,y), xeR, yeR,
(subject to (i)’ and (ii)’).

Proof: When either x = 0 or y = 0 or both we get g(x,y) =
A(0,0) = 0, as we should, according to D10.1. When x =y,
g(x,y) = g(x,x) is the expected number of returns to x before visiting
0, or

(2) gxx) = 1+ 2(1 ~ Iy = 173,

where IT = Il ,(x,0). Therefore the result of P6 is verified in this
case by consulting the formula for II in P5. Finally, when x # y,
and neither is 0,

(3) £(%,5) = Hp(%,9)8(3,)

by an obvious probabilistic argument. But now the substitution of
the formula (1) for Hy(x,y) and of equation (2) for g(,y) into equation
(3) completes the proof.

We need one last auxiliary result before proceeding to draw con-
clusions from P4 for finite sets B of arbitrary size. It is a subtler
result than perhaps appears at first sight—in fact there are one-
dimensional aperiodic random walks for which it is false, as we shall
discover in Chapter VII.

P7 For x # 0, a(x) > 0; (subject to (i)’ and (ii)’).
Proof: Remember first of all that
a(x) = lim [G,(0,0) — G,(x,0)] = 0
by P1.3, so that only the strict positivity of a(x) is in doubt. Suppose
now that there is a point b # 0 in R where a(x) vanishes. Using
P6 we then have g(b,—b) = 2a(b) — a(2b) =0. Since a(b) =0 and

a(2b) > 0, it follows that g(b, —b) = 0. 'This is impossible in two dimen-
sions as it says that there is no path (of positive probability) from b to
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— b which does not go through the origin. Being precise, it states that
whenever

P(b,x,)P(x1,%5) - - - P(a,,—b) > 0

then at least one of the points x;, x,, .. ., &, is the origin. A simple
combinatorial argument settles the matter. There is a path of
positive probability from any point to any other. Therefore there is
a positive product of the type above, such that not all of the differences

btz +2z,
%
btz
2 7
e
o7b
7
e
7~
e
// 0
//
Zp 1 //
Zb
'
x, — b, x5 — x,,..., —b — x, are multiples of b (parallel to the vector

b). Call these differences y,, ¥,, ..., ¥4, and reorder them so that
the arguments arg (y,) are in nondecreasing order. We can do this
so that, calling the newly ordered set 2y, 2,,...,2,,,, we have
argb < argz, < argz, <...< argz,,, < argb + 2m. Then we
clearly have a path with probability (see diagram)

P(bb + 2)P(b + 2z1,b + 2 + 25) - P(b + -+ + 2,,—0) > 0

which goes from b to —b without going through 0. That proves P7
by contradiction.

We are nearing our goal of expressing Hg, I, and pg in terms of
the function a(x), for arbitrary finite sets B. Since this is a trivial
matter when |B| = 1, but one which requires annoying modifications
in the analysis, we assume from now on that |[B| > 2. The key to the
necessary calculations is the inversion of the operator A(x,y), with x
and y restricted to B. We shall say that the operator A(x,y) restricted
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to the set B has an inverse if there exists a function Kg(x,y), with x and
¥ in B, such that
D3 Z A(x,t)Kg(t,y) = 8(x,y), for x,y in B.
teB
This is just the definition of a matrix-inverse, and according to a
standard theorem of algebra, this inverse is unique, if it exists.

P8 The operator A(x,y), restricted to any finite subset B of R with
|B| = 2 has an inverse Ky (subject to (i)’ and (ii)").

Proof: If P8 were false, there would be a function v(x), x € B,
such that
> o(s)A(s,y) = 0 for y € B,
SEB
and such that v(x) does not vanish identically on B. We shall assume
this to be so and operate by v on the left in P4 (i.e., we multiply P4
by v(x) and sum x over B), obtaining

v(y) = ns(y) D v(x), yeB.

zeB

As pg(y) = 0 on B, we have either ©(y) = 0 on B or ©(y) < 0 on B.
But we know that A(x,y) > 0 since it is the limit of the sequence of
functions A,(x,y) = G,(0,0) — G,(»,y), which are non-negative by
P1.3. The situation is further improved by P7 which adds the
information that 4(x,y) > Ounless x = y. Therefore the operator 4,
with x,y restricted to the set B, represents a matrix, with zeros on the
diagonal, and with all other elements positive. Now this matrix A
has the property that v4 = 0 where v is a nonzero vector, all of whose
components are of the same sign. This is obviously impossible, and
the contradiction proves P8.

Next we introduce the notation
D4 For BC R, 2 < |B| < wx,

Ky(-x) = > Ky(y%), Ka(x) = > Kpxy), =xeR,

yeB yeB

Kg(-+) = Z Z Kp(x,),

zeB yeB
and prove the main result of this section.?

3 The first proof of T1, for symmetric random walk, is in [93], and a complete
treatment in [94], which contains the main results of this chapter, with the
exception of section 16. Partial results may also be found in [43]. Recently
Kemeny and Snell [55] have extended T1 to a very large class of recurrent
Markov chains.
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T1 For aperiodic recurrent random walk in two dimensions, with
BCR, 2 < |B| <,

HB(x»y) = :U“B(y) + tEE; A(xst)[HB(t’y) - S(t’y)]’ X € R’ Yy € B»

where

Ki) > 0 ) = g2 for y B,

My(y) = 8(s3) = Kofo) = 382 for 5,y € B

T1 is subject to the truth of (i)’ and (ii)'.

Proof: Restrict x to B in P4 and operate by Ky on the left in P4.
This yields

(1) Ky(x,y) = Kp(x-)up(y) + Hg(x,3) — 8(x,y)
for x, ye B. Summing x over B one has, in view of P2,
(2 Kg(-y) = Kp(- - Jus(y)-

If we had Kg(--) = O here, it would follow that Kz(-y) = 0 for all y
in B. But then K}, regarded as a matrix operator, would be singular,
which is impossible since Ky has as its inverse the operator A(x,y)
restricted to B. 'Therefore Kg(--) # 0.

Now Kg(-y) = Kg(- - )ug(y) shows that either Kz(-y) = 0 on B or
Ky(-y) <0 on B. Since >,.p Kp(-1)A(t,x) =1 for xe B and A(x,y)
> 0, K(-y) must be non-negative on B so that Kg(--) > 0.

Equations (1) and (2) yield the proper formulas for pg and Ilj.
Finally the proof of T1 is completed by using P4 to express Hy in
terms of pg and Il

12. THE POTENTIAL KERNEL A(x,y)

First we shall prove that

Pl lim 4,(x) = lim > [Py(0,0) — Py(x,y)] = 4(»7)
n— © n-®© =g

exists for aperiodic two-dimensional random walk (and is given by (3)
below).
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Proof: Of course we are interested only in the recurrent case, the
truth of P1 in the transient case being not only obvious, but also quite
irrelevant to the work in the preceding section. The proof will be
Fourier analytical, and we adopt the notation of Chapter II, letting
#(0) denote the characteristic function of the random walk. Using
P6.3 we have

eiz -0

M as) = @) [15 1L = 400 o,

(Equation (1) is the result of a straightforward calculation based on

3 Pies) = (2m) [0 [+ 40) + o + 410 d0)

The 1ntegratlon is over the usual square C = [0 | |6,| < 7;7 = 1, 2]
and it is clearest and simplest to use Lebesgue 1ntegrat10n for the
following reasons. First of all the integrand in (1) is undefined at
60 =0 when 1 —¢(0) =0. Secondly, we then have the dominated
convergence theorem to work with. It will be useful since |1 — ¢7(0)|
<2 and 1 — ¢"(0) tends to zero, as n — oo, almost everywhere on C
(indeed at all but finitely many points). Hence the existence of the
limit in (1) will be assured if we can prove that

/

1 _ eiz-o
@ T

If (2) is true, then we shall know that the limit in P1 exists and has the
representation

is Lebesgue integrable on the square C.

2 Pl
3) a(x) = llm a,(x) = (2m)~ J‘l i 0) x€R.
To prove (2) we use two elementary inequalities,
1 — €= < |«]|6],
and
[T — ¢(0)] = Re [l — 4(6)],
which together imply
1 — elzo ‘ l lel
=40 | = " RelT - 40

Thus it suffices to show that the function on the right is Lebesgue
integrable on the square C.
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This last step uses P7.5 which asserts that for aperiodic random walk
one can find a constant A > 0 such that Re [1 — ¢(6)] > A|6|2 when
0eC. Thus

_ o1
Re [l — 4(8)] = Alf|

and |6]~! is indeed Lebesgue integrable since we are in dimension
d = 2, where
dé J‘ do
=7 < 7 = 2%27% < oo,
fc 1] 19

16l<av2

0eC,

Observe that this completes the proof—but that the same proof would
break down at the very last step in one dimension, due to the fact that

there
EHE
c |0[ - le '

Much more sophisticated methods are required to show (in Chapter
VII) that P1 is true even for one-dimensional random walk.

We proceed to two more results which have a natural proof by
Fourier analysis, and which will be useful in continuing the work of
section 11. The first proposition (P2) is a general law governing the
asymptotic behavior of A(x,y) for two-dimensional aperiodic recurrent
random walk. The second result (P3) is a sharp version of P2, valid
only for a very restricted class of random walks. Incidentally, for
reasons which will appear later, we provide the function A(x,y) with
the name of potential kernel.

P2  Let A(x,y) be the potential kernel of an aperiodic two-dimensional
recurrent random walk. For every fixed pair of points y, and y, in R,

lim [A(x,y,) — A(%,y5)] = 0.

|z] =
Proof: The statement of P2 is clearly equivalent to stating that for
an arbitrary fixed y in R

Jim fa(x +y) — a(®)] =0,

i.e., that given any € > 0, there is a positive M (which may depend on
e and y) such that |a(x + y) — a(x)| < € when || > M. The proof
is based on (3) in the proof of P1, which gives

ax + 3) — a(x) = (2m)"2 f e 2y(6) d,
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where
1 — ¢lve
O 1=m

However, we saw in the proof of P1 that () is Lebesgue integrable on
the square C. Therefore the Riemann Lebesgue Lemma (P9.1) gives

lim | e=9(8) df = 0,

1z]—
which completes the proof of P2,
It is of course of considerable interest to know more about the
asymptotic behavior of a(x) for the simple random walk with P(0,x) = }
when |x| = 1. But it turns out to be hardly more work to discuss a

somewhat larger class of random walks, which satisfies the following
conditions

(a) P(x,y) ts two dimensional, and aperiodic,

(b) p = > xP(0,x) = 0,

(c) Q(6) = > (x-0)2P(0,x) = E[(X-6)7] = 02|6|? < 0,
(d) E[|X]|2*9] = Z |x|2*°P(0,x) < o for some & > 0.

Of course simple random walk satisfies these conditions, and we
also know ('T8.1) that (b) and (c) imply that the random walk is re-
current. In addition (c) introduces the isotropy requirement that ()
be proportional to |#|2 rather than to any positive definite quadratic

form. That is essential and so is (d) in order to obtain a result as
sharp and simple as the following.

P3 A random walk satisfying (a) through (d) has the property that

. 1 1
lim [a(x) - ﬂ_—aaln |x|] =c+ "-r-o—zd.

|z}—> ©

The definition of the constants ¢ and d is:

0<c=(2m)~2 ]d0<oo

f[l —1¢(9) Q)
d=y +Innm— 1—27_ A

where
y=0. 5572 is Euler's constant,

z 1)2 ts Catalan’s constant.
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For the simple random walk, o = 1/2 and
lim [a(x) _2 In |xl] = -l-ln 8 + Z,
|z} = m™ m™ ™
Proof: We begin by checking that
1 2
f) = ———— —
WO =1=5m ~ )
is Lebesgue integrable on the square C. Let us write, as we may in
view of (c),
2 _lop
P(0) = & T= ¢0) x(6),
-4 2 |0|2
X(0) = 167 [0 5 — 1+ 4(6)],
By P6.7
im 1 _2
o T g "

and according to T7.1, 1 — ¢(6)=0 only at 6=0 in the square C.
Therefore it suffices to prove that y(6) is integrable on C.
Now

ozlgj — 1+ $(6) = E[¢*® — 1 — iX.0 — }(:X-6)7],

if X is a random variable with values in R such that

P[X = x] = P(0,x), x€R.
Here we used condition (b) in inserting the useful term :X.6. Now
we use the positive number 8 in condition (d) by making the obvious
assertion that there is some 2 > 0 such that

zz
e — (1 + 3+ ——) < h|z|2+¢

2

for all complex z in the half plane Re 2 < 0. That gives (setting
z = i6-X)

|x(6)] < h|6|~“E[[6-X|**°].
Using the Schwarz inequality and condition (d)
Ix(O)] < h|6]~“E[(|6]*|X|?)***/] = h|6]°~%E[|X|>+’] < M|6]*~2,



126 TWO-DIMENSIONAL RECURRENT RANDOM WALK

for some M < oo. Thus x(6), and hence (), is integrable, for

V2 P
[ 16o-2a0 < | tep-=ao - 2 [ 15 < 0.
c t
16l<7v2 0
The next step is to decompose
1 — elzo

a(x) = (2m)~2
() = @2 | 1 =540

cos x- 6

- ;25(270-2 f l—lf’l"’— d6 + (2m)-2 f (1 — e=9)4(0) db.

The last integral tends to the constant ¢ in P3, by the Riemann
Lebesgue Lemma in P9.1. Therefore the proof of P3, apart from the
calculations for simple random walk, will be complete if we show that

. 1 — cosx: 0 2
|}|1—I?w [277[ Gk —In |x|] =y - A+ Inm
To accomplish this we decompose

1 1 —cosx-0

5 ) o 90 = D) + L)

Here I,(x) is the integral over the circular disc |6] < 7 and Iy(x) is
the contribution from the rest of the square. The proof will be
completed by showing that

lim [I,(x) — In |x|]] = y + lng
|z]—>

and

lim Iy(x)= In2 — % A

|z|—

Introducing polar coordinates it is seen that I,(x) depends only on
%] Speciﬁcally

1 — cos x- 0 O %1 — cos (|x|r sin £)
I(x) = f |9I2 =5 fo dt J; " dar

I0I<

nlz|sint

/2 —
- EJ" dt f 1-cosu,,
o™ 0 u
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Now we shall use as our definition of Euler’s constant*

1 - ©
7=J‘ 1 cosudu_J‘ cosudu'

0 u 1 u

Substitution into the formula for I;(x) yields

/2
L(x) = 1_21-f ['y +In|x| + In(sint) + In7 + by du] dt.
0 n|z| sint
Taking account of
2 (a2
= f In(sin¢)dt = —In 2,
T Jo
and of
/2 3
lim 2 (" at COS% du =0,
lz]=> 0 T Jo
n|z|sint
one has
lim [Iy(x) —In|x]] =y —In2 + Inm,
|z]—>
as was to be shown.
By use of the Riemann Lebesgue Lemma
1 1 — cosx-6
lim I,(x) = lim =— f —_—df
fzl— @ (%) Izl 0 277 6]
1011=7,1621<%
18l=n
_1 49
- 2n |6]2
1011<x,102|<n
16l1zn
Again introducing polar coordinates, one obtains
n/4 n/cos t n/4
lim I(x) = & f dt f & 2 ™ 1n (cos 1) dt.
Izl = o 7 Jo n r 7 Jo

This definite integral may be shown to have the value In 2 — 2)/x.

* This happens to agree (the proof is not quite trivial) with the usual definition
of

y=1lm [ +12+ -+ 1/n — Inn).

n—o
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We omit the explicit evaluation of the limit in P3 for simple random
walk, as this will be done more easily in the beginning of section 15.
The result of P3 for simple random walk has incidentally been obtained
by several authors in a number of quite unrelated contexts, cf. [76],

[96], and Appendix II by Van der Pol in [51].

13. SOME POTENTIAL THEORY

The equation

2, P(x,9)f(9) = f(x), xeR,  orbriefly Pf = f,

YER
is Laplace’s equation in a very thin disguise indeed. When P is the
transition operator of simple random walk in two dimensions, we have

Pf(x) = f(x)
= Hf(x + 1)+ flx — 1) + flx + 9) + flx — 1) — 4(x)),

where we have adopted the complex notation x = (x!,x%) = ! + ix2.
But then Pf — f = (P — I)f where P — I is nothing but the two-
dimensional second difference operator. Hence the equation Pf = fis
the discrete analogue of Laplace’s equation

where f(x) = f(x,,x;) is a twice differentiable function, and therefore
we may expect the solutions of Pf = f to have some properties
reminiscent of those of entire harmonic functions.

Although our results will automatically lead to the far from obvious
conclusion that such analogies can be both useful and far-reaching, the
purpose of this section is quite modest. We shall give a very super-
ficial description of three of the key problems in classical two-dimensional
potential theory. 'The solution of these three problems in the classical
context is quite easy and well known. Admittedly the problems we
shall consider will not explain adequately the basic principles of
potential theory. But it is merely our purpose to use these three
problems to guide us in our treatment of analogous problems we shall
encounter in the study of recurrent two-dimensional random walk.

One last point deserves considerable emphasis: Our three problems
A, B, C below concern classical two-dimensional potential theory,
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which is also known as logarithmic potential theory. The same
problems make sense in three dimensions, in the context of Newtonian
potential theory, but there they have somewhat different answers.
Only in Chapters VI and VII will it become quite clear that the
structure of logarithmic potential theory is that encountered in
recurrent random walk, whereas Newtonian potentials arise in the
context of transient random walk.

The remainder of this section is divided into three parts, where the
three problems A, B, C are first discussed in their classical setting, and
then stated and solved in the context of two-dimensional random walk.

Problem A. Characterize the real valued harmonic functions, i.e.,
functions u(x,y) satisfying Au(x,y) = 0 at every point in the plane.
In particular, what are all the non-negative harmonic functions?

The well-known answer is that u(x,y) must be the real part of an
analytic function. In particular, suppose that wu(x,y) > 0 and
harmonic in the whole plane. Then there exists an entire analytic
function of the form

f(2) = u(x,y) + iv(x,).
The function
gz) = e~/@

is also analytic in the whole plane, its absolute value is

8@ = e,

and since we assume that u(x,y) = 0 everywhere it follows that
|g(z)| < 1 for all 2. But by Liouville’s theorem a bounded entire
function is constant. Therefore u(x,y) is a constant function.

There is another simple proof ([7], p. 146) based on the mean value
property of harmonic functions, which works for every dimension
d > 1. Suppose that u is a non-negative harmonic function, and that
u(x) < u(y), where x and y are two points of d-dimensional space.
To arrive at a contradiction, we integrate u over two (solid) spheres:
one of radius r; with center at x, and another of radius r, with center
at y. Calling I(r,) the two integrals, and V(r,) the volumes of the
two spheres, we have

wx)V(ry) = I(r)),  w(y)V(rs) = I(ry),
so that
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Since u is non-negative, it is evidently possible to let r, and r, tend
to infinity in such a way that the first sphere contains the second,
which implies I(r,) > I(r,), and so that the ratio 7,/r, tends to one.
(Simply give r, the largest possible value so that the sphere around y is
contained in the sphere about x.) Therefore

which shows that u(x) > #(y). This contradiction completes the
proof that non-negative harmonic functions are constant. '

To formulate the analogous random walk problem, we make the
definition
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