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PREFACE TO THE SECOND EDITION 

In this edition a large number of errors have been corrected, an occasional 
proof has been streamlined, and a number of references are made to recent pro
gress. These references are to a supplementary bibliography, whose items are 
referred to as [S1] through [S26]. 

A thorough revision was not attempted. The development of the subject in 
the last decade would have required a treatment in a much more general con
text. It is true that a number of interesting questions remain open in the concrete 
setting of random walk on the integers. (See [S 19] for a recent survey). On the 
other hand, much of the material of this book (foundations, fluctuation theory, 
renewal theorems) is now available in standard texts, e.g. Feller [S9], Breiman 
[S1], Chung [S4] in the more general setting of random walk on the real line. 
But the major new development since the first edition occurred in 1969, when 
D. Ornstein [S22] and C. J. Stone [S26] succeeded in extending the recurrent 
potential theory in· Chapters II and VII from the integers to the reals. By now 
there is an extensive and nearly complete potential theory of recurrent random 
walk on locally compact groups, Abelian ( [S20], [S25]) as well as non
Abelian ( [S17], [S2] ). Finally, for the non-specialist there exists now an 
unsurpassed brief introduction to probabilistic potential theory, in the context of 
simple random walk and Brownian motion, by Dynkin and Yushkevich [S8]. 

In view of the above mentioned developments it might seem that the intuitive 
ideas of the subject have been left far behind and perhaps lost their vitality. For
tunately this is false. New types of random walk problems are now in the stage 
of pioneering work, which were unheard of when the first edition appeared. 
This came about because the simple model of a single particle, performing a 
random walk with given transition probabilities, may be regarded as a crude 
approximation to more elaborate random walk models. In one of these a single 
particle moves in a random environment, i.e. the transition probabilities are 
themselves random variables. In other models one considers the simultaneous 
random walk of a finite or even infinite system of particles, with certain types of 
interaction between the particles. But this is an entirely different story. 



PREFACE TO THE FIRST EDITION 

This book is devoted exclusively to a very special class of random 
processes, namely to random walk on the lattice points of ordinary 
Euclidean space. I considered this high degree of specialization worth 
while, because the theory of such random walks is far more complete 
than that of any larger class of Markov chains. Random walk occupies 
such a privileged position primarily because of a delicate interplay 
between methods from harmonic analysis on one hand, and from 
potential theory on the other. The relevance of harmonic analysis to 
random walk of course stems from the invariance of the transition 
probabilities under translation in the additive group which forms the 
state space. It is precisely for this reason that, until recently, the subject 
was dominated by the analysis of characteristic functions (Fourier 
transforms of the transition probabilities). But if harmonic analysis 
were the central theme of this book, then the restriction to random 
walk on the integers (rather than on the reals, or on o'ther Abelian 
groups) would be quite unforgivable. Indeed it was the need for a self
contained elementary exposition of the connection of harmonic analysis 
with the much more recent developments in potential theory that 
dictated the simplest possible setting. 

The potential theory associated with Markov processes is currently 
being explored in the research literature, but often on such a high 
plane of sophistication, and in such a general context that it is hard 
for the novice to see what is going on. Poteatial theory is basically con
cerned with the probability laws governing the time and position of a 
Markov process when it first visits a specified subset of its state space. 
These probabilities satisfy equations entirely analogous to those in 
classical potential theory, and there is one Markov process, namely 
Brownian motion, whose potential theory is exactly the classical one. 
Whereas even for Brownian motion the study of absorption probabilities 
involves delicate measure theory and topology, these difficulties evap
orate in the case of random walk. For arbitrary subsets of the space of 
lattice points the time and place of absorption are automatically 
measurable, and the differential equations encountered in the study of 
Brownian motion reduce to difference equations for random walk. In 
this sense the study of random walk leads one to potential theory in a 
very simple setting. 

VII 
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One might ask whether the emphasis on potential theory is a natural 
step in the development of probability theory. I shall try to give a 
brief but affirmative answer. on two different grounds. 

(a) After studying the probability laws governing a Markov process 
at fixed (non-random) times, one usually introduces the notion of a 
stopping time. (We do so in definition 3 of section 3, i.e., in D3.3) A 
stopping timeT is a random variable such that the event T>t depends 
only on the past of the process up to time t. From that point on we are 
concerned with a new process, which is precisely the original process, 
stopped at time T. But unfortunately one cannot say much about 
this stopped process unless it happens to be Markovian, with transi
tion probabilities invariant under translation in time. Hence one is led 
to ask: For what stopping times is the stopped process of such a simple 
type? This question leads directly to potential theory, for it is easy to 
see that the stopped process is Markovian with stationary transition 
probabilities if and only the stopping time is of the type: T=time of the 
first visit of the process to a specified subset of its state space. 

(b) Classical Newtonian potential theory centers around the Green 
function (potential kernel) G(x,y) =I x-y 1-1, and in logarithmic 
potential theory (in the plane) this kernel is replaced by A(x,y) = 
In I x-y I· As we shall see, both these kernels have a counterpart in the 
theory of random walk. For transient random walk G(x,y) becomes the 
expected number of visits to y, starting at x. For recurrent random 
walk there is a kernel A(x,y) such that A(x,O)+A(O,y)-A(x,y} repre
sents the expected number of visits toy, starting at x, before the first 
visit to 0. It is hardly an oversimplification, as we shall see, to describe 
the potential theory of random walk as the study of existence, uni
queness, and other basic properties such as asymptotic behavior, of 
these kernels. That raises a natural question: How much can one learn 
about a random walk from its potential kernel? The answer is: In prin
ciple, everything. Just as the characteristic function (Fourier trans
form of the transition function) uniquely determines the transition 
function, and hence the random walk, so we shall find (see problems 13 
in Chapter VI and 8 in Chapter VII) that a random walk is completely 
determined by its potential kernel. 

I am uncertain about the "prerequisites" for this book, but assume 
that it will present no technical difficulties to readers with some solid 
experience and interest in analysis, say, in two or three of the following 
areas: probability theory, real variables and measure, analytic functions, 
Fourier analysis, differential and integral operators. I am painfully 
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aware, however, of a less tangible prerequisite, namely the endurance 
required by the regrettable length of the book. In view of the recent 
vintage of most of the material many examples and extensions of the 
general theory seemed sufficiently full of vitality to merit inclusion. 
Thus there are almost 100 pages of examples* and problems, set apart 
in small print. While many are designed to clarify and illustrate, others 
owe their inclusion to a vague feeling that one should be able to go 
farther, or deeper, in a certain direction. An interdependence guide 
(following the table of contents) is designed to suggest paths of least 
resistance to some of the most concrete and. intuitive parts of the 
theory-such as simple random walk in the plane (section 15), one
sided absorption problems, often called fluctuation theory (Chapter 
IV), two-sided absorption problems (Chapter V), and simple random 
walk in three-space (section 26). 

Since most of my work as a mathematician seems to have found its 
way into this book, in one form or another, I have every reason to thank 
those of my teachers, Donald Darling, William Feller, and Samuel 
Karlin, who introduced me to the theory of stochastic processes. I 
also owe thanks to J. L. Doob for his suggestion that I plan a book in 
this area, and to the National Science Foundation for enabling me to 
spend the year 1960-61 in Princeton, where an outline began to take 
form under the stimulating influence of W. Feller, G. Hunt, and D. 
Ray. In the fall of 1961 much of the material was presented in a seminar 
at Cornell, and I owe a great debt to the ensuing discussions with my 
colleagues. It was particularly fortunate that H. Kesten's interest was 
aroused by some open problems; it was even possible to incorporate 
part of his subsequent work to give the book a "happy ending" in the 
form of T32.1 in the last section. (As explained in the last few pages 
of Chapter VII this is not really the end. Remarkably enough one 
can go further, with the aid of one of the most profound inventions of 
P. Levy, namely the theory of the dispersion function in Levy's 
Theorie de !'addition des variables aleatoires (1937), which was the 
first modern book on the subject of random walk.) 

Finally it is a pleasure to thank all those who were kind enough to 
comment on the manuscript. In particular, J. L. Doob, H. Kesten, 
P. Schmidt, J. Mineka, and W. Whitman spotted a vast number of 
serious errors, and my wife helped me in checking and proofreading. 

*Throughout the book theorems are labeled T, propositions P, definitions D, and 
examples E. Theorem 2 in section 24 will be referred to as T2 in section 24, and as 
T24.2 when it is mentioned elsewhere in the text. 
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Chapter I 

THE CLASSIFICATION OF RANDOM WALK 

1. INTRODUCTION 

The simplest definition ,of random walk is an analytical one. It 
has nothing to do with probability theory, except insofar as proba
bilistic ideas motivate the definition. In other words, probability 
theory will "lurk in the background" from the very beginning. 
Nevertheless there is a certain challenge in seeing how far one can go 
without introducing the formal (and formidable) apparatus of measure 
theory which constitutes the mathematical language of probability 
theory. Thus we shall introduce measure theory (in section 3) only 
when confronted by problems sufficiently complicated that they would 
sound contrived if expressed as purely analytic problems, i.e., as 
problems concerning the transition function which we are about to 
define. 

Throughout the book R will denote the space of d-dimensional 
integers. In other words R is the set of ordered d-tuples (lattice 
points) 

x = (x\ x2 , ••• , x11}, x1 =integer for i = 1, 2, ... , d. 

As soon as we have defined what is meant by a random walk, it will be 
natural to call R the state space of the random walk. 

For each pair x andy in R we define a real number P(x,y}, and the 
function P(x,y) will be called the transition function of the random 
walk. It is required to have the properties 

(1) 0 :s; P(x,y) = P(O,y - x), L P(O,x) = 1. 
:.r:eR 

The most restrictive of these properties perhaps is the spatial homo
geneity expressed by P(x,y) = P(O,y - x), where, of course, y - xis 

1 
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the point in R with coordinates yi - x1, i = 1, 2, ... , d. It shows 
that the transition function is really determined by a single function 
p(x) = P(O,x) on R with the properties 

0 ~ p(x), 2 p(x) = 1. 
zeR 

In other words, specifying a transition function is equivalent to 
specifying a probability measure on R (a non-negative function p(x) 
whose sum over R is one). 

Now we are finished-not in the sense that there is no need for 
further definitions, for there is, but in the sense that all further 
definitions will be given in terms of P(x,y). We may even say, in
formally, that the transition function P(x,y) is a random walk. Quite 
formally, we define a random walk as a function P(x,y) possessing 
property ( 1) defined for all pairs x,y in a space of lattice points R, and a 
random walk is said to be d-dimensional if the dimension of R is d. 1 

El The so-called simple random walks constitute a particularly im
portant class of random walks. If R is d-dimensional, let 

lxl = [ It (x1)2] l/2 

denote the Euclidean distance of the point x from the origin. Then 
P(O,x) defines d-dimensional simple random walk if 

1 
P(O,x) = Zd 

=0 

when lxl = 1, 

when lxl ~ 1. 

When d = 1, a somewhat wider class than simple random walk is of 
considerable interest. When 

P(O,l) = p, P(0,-1) = q, p ~ 0, q ~ 0, p + q = 1, 

we shall call P(x,y) the transition function of Bernoulli random walk. 
Since P(O,x) corresponds to our intuitive notion of the probability of a 
"one-step" transition from 0 to x, it is tempting to denote by P,.(O,x) the 
probability of an "n-step" transition from 0 to x (the probability that a 
"particle," starting at 0, finds itself at x after n transitions governed by 
P(x,y)). Suppose that nand x are both even or both odd and that lxl ~ n 
(otherwise P,.(O,x) will be zero). Then P,.(O,x) should be the probability 
of f(x + n) successes inn Bernoulli (independent) trials, where the proba
bility of success is p (and of failure q). These considerations suggest that 

1 This definition will serve us in the first two sections. In 03.2 of section 3 
it will be superseded by a more sophisticated version. 



1. INTRODUCTION 3 

we should define Pn(O,x) for arbitrary random walk in such a way that we 
get for Bernoulli random walk 

(1) p (0 x) = p<n+z>12q<n-z)/2( n ) 
n ' (n + x)/2 

when the sum n + x is even and lxl ~ n, and Pn(O,x) = 0 otherwise. It 
is easy to check that one gets just this result from the definition in Dl 
below, according to which 

(2) Pn(O,x) = L ,2: · · · ,2: P(O,x1)P(x1,x2)· • ·P(xn_ 1 ,x); 
ZlEli Z2Eli Zn- 1Eli 

for if we define the generating function 

f(z) = ,2: P(O,x)zz, z complex and not zero, 
zeli 

for Bernoulli random walk, then 

f(z) = pz + ~, 
z z :F 0. 

But equation (2) implies that Pn(O,x) is the coefficient of zZ in the (Laurent) 
series for [/(z)]n, and it is easy to check, using the Binomial Theorem, 
that this coefficient is given by (1). Note that this calculation also suggests 
Pl (below) to the effect that the coefficient of [/(z)]n+m is given by the 
convolution of the coefficients of [f(z)]n and [/(z))m. 

Dl For all x,y in R, P0(x,y) = 8(x,y) = 1 if x = y, 0 otherwise, and 

P1(x,y) = P(x,y), Pn(x,y) = 
2 P(x,x1)P(x1,x2) ••• P(xn_ 1 ,y), n ~ 2. 

:r1eB, t= 1,. .. , n-1 

Here the sum extends, as briefly indicated, over all (n - 1) tuples 
x1 , x2 , ••• , Xn- 1 of points in R. 

Our first result, based on D 1, is 

· Pl For all x,y in R, 

Pn+m(x,y) = 2 Pn(x,t)Pm(t,y) for n ~ 0, m ~ 0, 
teB 

2 Pn(x,y) = 1, Pn(x,y) = Pn(O,y - x) for n ~ 0. 
JIEB 

Proof: The most natural proof results from the interpretation of 
definition D1 as the definition of matrix multiplication. To be sure, 
P(x,y) is an infinite matrix, but that makes no difference at all as the 
sum in D1 converges absolutely. The first result in Pl is easily 
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obtained if one writes out the definition of Pm+n(x,y) according to Dl. 
The resulting sum is then over x1, x2 , •• • , Xm+n-l· Now (using 
absolute convergence) one may perform the summation over all the 
variables except Xm· If one then applies D1 to the result, one obtains 
precisely the first equation in P1, with Xm taking the place of the variable 
of summation t. We leave it to the reader to check the case when 
m = 0 or n = 0, where the preceding argument is not strictly correct. 

The last two statements of P1 (which incidentally amount to the 
assertion that Pn(x,y) is again a transition function of a random walk) 
are also easy to prove. One simply performs the indicated summation 
(over n) or translation (by - x) in D 1. 

The probability interpretation of Pn(x,y) is evident. It represents 
the probability that a "particle," executing the random walk, and 
starting at the point x at time 0, will be at the point y at time n. The 
next definition concerns a function of the same type: the probability, 
again starting at the point x at time 0, that the first visit to the point y 
should occur at time n. This function (unlike Pn(x,y) it is not a 
transition function) will be called Fn(x,y). In D2 we shall write {y} 
to denote the subset of R consisting of the element y, and R - {y} will 
denote the state space R with the point y excluded. 

D2 F0(x,y) = 0, F1(x,y) = P(x,y), 

Fn(x,y) = L P(x,x1)P(x1,x2) ••• P(xn_ 1,y), 

for all x,y in R. 

z1e.R- 1111 
i=1,2, ... ,n-1 

The most important properties of Fn(x,y) are 

P2 (a) Fn(x,y) = Fn(O,y - x), 

n 
(b) L Fk(x,y) s 1, 

k=l 

n 
(c) Pn(x,y) = L Fk(x,y)Pn-k(y,y), 

k=l 

for n ;;:: 1 and arbitrary x,y in R. 

n;;:: 2, 

Proof: The truth of part (a) is immediate from D2, using only the 
spatial homogeneity of P(x,y). The proof of part (b) is considerably 
more delicate. The statement (b) is "probabilistically obvious" as 
the sum in part (b) represents a probability-the probability that the 
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first visit to y, starting at x, occurs before or at time n. Fortunately 
it is not hard to base an elementary proof on this idea. (The skeptical 
reader will observe that we are indeed about to introduce the notion 
of measure-but measure of a very simple sort, the total number of 
elementary events being countably infinite.) 

Let us define as the set of "elementary events" the set of sequences 
w of the form w = {x0 , x1, x2, ••• , Xn_ 1, Xn} where x0 = x, and where 
x1 , x2 , ••• , Xn may assume any value in R. Since R is countable, 
this set of sequences, which we denote On, is also countable. With 
each w in On we associate the measure 

p(w) = P(x,x1)P(xl>x2 ) • •• P(xn-l>Xn)· 

It follows from Dl and P1 that 

2 p(w) = Pn(x,y), 2 p(w) = 2 Pn(x,y) = 1. 
[W I wenn ,:rn = Yl wenn yeR 

On the other hand, if 

Ak = [w I wE On; x1 =F y, x2 =F y, .. . , xk_ 1 =F y, xk = y], 
1 ::;; k::;; n, 

then the sets Ak are disjoint subsets of Om and it is obvious from D2 
that 

Fk(x,y) = 2 p(w), 1 ::;; k::;; n. 
we A,. 

The Ak being disjoint, one obtains 

n L Fk(x,y) ::;; L p(w) = 1. 
k=1 wenn 

Part (c) can be proved in a similar fashion, but we shall use mathe
matical induction instead. Suppose that (c) holds when n = j. 
Then one can write, using P1 and the induction hypothesis, 

J 

P1+1(x,y) = 2 P(x,t)Pt(t,y) = 2 P(x,t) 2 Fk(t,y)P1_k(y,y). 
teR teR k=1 

However, D2 shows that 

2 P(x,t)Fk(t,y) = 2 P(x,t)Fk(t,y) + P(x,y)Fk(y,y) 
teR teR-Iy) 

= Fk+ 1(x,y) + P(x,y)Fk(y,y). 
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It follows, using the induction hypothesis again, that 

j j 

Pi+ 1(x,y) = L F~c+l(x,y)P;-~c(Y,y) + L P(x,y)F~c(y,y)P1 _"(y,y) 
k=l k=l 

i+ 1 

= L Fm(x,y)P;+l-m(y,y) + F1(x,y)P1(y,y) 
m=2 

j+l 

= L Fm(x,y)P;+l-m(y,y). 
m=l 

That completes the induction, and also the proof, since (c) is evidently 
correct when n = 1. 

Next we define, in D3 below, the function Gn(x,y) to correspond to 
the expected number of visits of the random walk, starting at x, to the 
pointy within time n. (As soon as we develop the simplest proba
bilistic apparatus, this function will of course be an expectation, being 
defined as a sum of probabilities.) Then we prove, in P3, a result 
comparing Gn(x,y) to the expected number of visits to the starting 
point of the random walk. 

D3 

n = 0, 1, ... , x,y E R. 

P3 

Gn(x,y) :s; Gn(O,O) for n <:: 0 and all x,y in R. 

Proof: As Gn(x,y) = Gn(x - y,O) in view of Pl, it suffices to prove 
P3 in the casey = 0 and x :f:. 0. Using part (c) of P2 we have 

n n k 

Gn(x,O) = L P~c(x,O) = L L F~c_ 1(x,O)P1(0,0) 
k=l k=l 1=0 

and a simple interchange of the order of summation gives 

n n-J 

Gn(x,O) = L P1(0,0) L F1(x,O). 
i=O l=O 

Using part (b) of P2, 

n 

Gn(x,O) :s; L P1(0,0) = Gn(O,O). 
i=O 
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The stage is now set for the most important classification of random 
walks, according to whether they are recurrent 2 or transient (non
recurrent). The basic idea is that the sum L~=l Fk(O,O) represents 
the probability of a return to the starting point before or at time n. 
The sequence of the sums L~= 1 Fk(O,O) is non decreasing as n in
creases, and by P2 they are bounded by one. Hence they have a 
limit, which we shall call F, and F ~ 1. Therefore it is reasonable to 
call the random walk recurrent if F = 1 and transient if F < 1. 

Actually it turns out that there is another, equivalent, classification, 
based on the number G, the limit of the monotone sequence Gn(O,O). 
G may be finite or infinite (in which case we write G = + oo) and it 
will be shown (in P4) that G < oo when F < 1 and G = + oo when 
F = 1. But first we make two more definitions designed mainly to 
simplify the notation. 

D4 
co co 

G(x,y) = L Pn(x,y) ~ oo; F(x,y) = L Fn(x,y) ~ 1, 
n=O n=l 

Gn(O,O) = Gm G(O,O) = G; Fn(O,O) = Fn, F(O,O) = F. 

DS The random walk defined by the transition function P is said to be 
recurrent tj F = 1 and transient if F < 1. 

P4 G = 1 ~ p' with the interpretation that G = + oo when F = 1 

and F = 1 when G = + oo. 

Proof: It would perhaps be natural to use the method of generating 
functions, applied to the convolution equation 

n 
(1) Pn(O,O) = L FkPn-k(O,O), n > 1, 

k=O 

which is a direct consequence of P2 (part (c)) and the notation intro
duced in D4. But P4 can also be obtained directly, as follows. 

2 In the general theory of Markov chains it is possible that the probability of 
return to the starting point is one for some, but not all, points of the state 
space. Such points are then called recurrent or persistent, and the points with 
return probability less than one are transient, cf. [31], Vol. 1, p. 353, and [9], 
p. 19. As every random walk has the property that either all states are re
current or all are transient, we shall apply these adjectives directly to the 
random walk rather than to its states. 
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Summing the convolution equation ( 1) over n = 1, 2, ... , m, and 
adding P 0(0,0) = 1 on each side, gives 

m 
(2) Gm = L FkGm-k + 1, m~l. 

k=O 

Letting m ~ oo, 

m N 

G = 1 + lim L FkGm-k ~ 1 + G L Fk, 
m-+oo k=O k=O 

for every integer N, and therefore 

G ~ 1 + GF. 

This proves, by the way, that G = + oo when F = 1, since the in
equality G ~ 1 + G has no finite solutions. 

On the other hand, equation (2) gives 

m m 

(3) 1 = Gm - L GkFm-k ~ Gm - Gm L Fm-k ~ Gm(l - F), 
k=O k=O 

so that 1 ~ G(1 - F), which shows that G < oo when F < 1. That 
completes the proof of the identity G(1 - F) = 1, and hence of P4. 

E2 Consider Bernoulli random walk with P(0,1) = p, P(0,-1) = q. 
An easy calculation (see El) gives Pn(O,O) = 0 when n is an odd integer, 
and 

(1) 

Since p and q are not arbitrary, but 0 ::; p = 1 - q, it follows that 4pq ::; 1. 
Thus the Binomial Theorem yields the power series (generating function) 

a) 

(2) 2: tnP2n(O,O) = (1 - 4pqt)-112 
n=O 

valid for all complex t in the unit disc It I < 1. Letting t approach one 
through the real numbers less than one (we shall habitually write "t .7' 1" 
for this type of limit), it is clear that 

a) a) 

(3) lim 2: tnP2n(O,O) = 2: P2n(O,O) 
t/1 n=O n=O 

a) 

= 2: Pn(O,O) = G ::; oo. 
n=O 
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It follows from (2), compared to (3), that 

(4) G = { (1 - 4pq)-1/2 < CX) 

+oo 
when p =F q 
whenp = q = 1/ 2 • 

9 

In view of P4, we have shown that Bernoulli random walk in one-dimension 
is recurrent if and only if p = q = 1/ 2 , i.e., simple random walk is the only 
recurrent Bernoulli random walk. 

For the sake of completeness, let us repeat the above argument, working 
with F instead of with G. Setting x = y = 0 in part (c) of P2, 

n 

Pn(O,O) = 2 P,._k(O,O)Fk(O,O) for n ;;::: 1, 
k=O 

or 
n 

Pn(O,O) = 2 Pn-k(O,O)Fk(O,O) + S(n,O) for n ;;::: 0. 
k=O 

That gives 
00 00 00 

2 t"P,.(O,O) = 2 t"P,.(O,O) 2 t"Fn(O,O) + 1, O~t<l. 
n=O n=O n=1 

Replacing t by Vt, one concludes from equation (2) that 
00 

(5) 2 t"F2n(O,O) = 1 - V1 - 4pqt, O~t<l. 
n=O 

Again one arrives at the conclusion that 
00 

F = lim 2 t"F2,.(0,0) = 1 - V1 - 4pq = 1 
1-"1 n=1 

if and only if 4pq = 1, which happens when p = q = 1/ 2 • 

In the unsymmetric case (when p =F q) we know from P3 that G(O,x) ~ 
G(O,O) = G < ex:> for all x in R. For convenience we shall assume that 
p > q, and proceed to calculate G(O,x), by deriving, and then solving, a 
difference equation satisfied by G(O,x). From P1 one obtains 

P,.+l(O,x) = 2 P(O,y)P,.(y,x) = pP,.(1,x) + qPn( -1,x) 
yeR 

pP,.(O,x - 1) + qPn(O,x + 1), 

for all n ;;::: 0 and all x in R. Summation over n ;;::: 0 yields 

(6) G(O,x) - S(x,O) = pG(O,x - 1) + qG(O,x + 1), XER. 

It is not difficult to solve (6). The associated homogeneous difference 
equation 

f(x) = Pf(x - 1) + qf(x + 1) 
has the solutions 

(7) 
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where r1 = pfq, r2 = 1 are the zeros of the polynomial qt 2 - t + p. Now 
we need a "particular" solution tp(x) of the nonhomogeneous equation 

(8) tp(x) - 8(x,O) = ptp(x - 1) + qtp(x + 1). 

Let us choose tp(O) = tp(1) = 0. Then the function tp(x) has a unique 
extension to R which satisfies (8), and it is simple to calculate, recursively, 
that 

(9) tp(x) = 0 for x ~ 0, 

It follows from the elementary theory of difference equations that G(O,x) 
must be obtainable by superposition of functions in (7) and (9), i.e., 

(10) G(O,x) = tp(x) + A(~r +B. 

Observe now that the function tp(x) in (9) is bounded (since we are assuming 
that p > q). According to P3 we have G(O,x) :::;; G < oo which implies 
that A = 0. Thus it remains only to evaluate the constant B, using 
equation (4), to the effect that 

1 
G(O,O) = (1 - 4pq)- 1' 2 = p _ q. 

From (9) and (10) one therefore obtains the result that B = (p - q)-I, and 
we have proved that for Bernoulli random walk with p > q, 

(11) {
(p - q)- 1 for x ~ 0 

G(O,x) = <P- q)-l(~r for x:::;; o. 

One last result, easily within reach of the elementary methods of 
this section, is the "weak" ratio ergodic theorem (a "strong" version of 
which is proved in T5.1 (Theorem 1 of section 5)). 

PS For every random walk 

lim Gn(x,y) F( ) h 
Gn(O,O) = x,y w enever x =F y. 

n-+oo 

Remark: Although the statement of PS makes no distinction 
between recurrent and transient random walk, such a distinction will 
nevertheless arise in the proof. The result of PS is correct in both 
cases, but for entirely different reasons! The proof will show further 
that in the transient case PS is false, as it stands, when x = y, whereas 
it is obviously correct for recurrent random walk, even when x = y. 
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Proof: First we observe that it suffices to prove PS in the special 
case wheny = 0. Thus we may use part (c) of P2 in the form 

n 
Gn(x,O) = ~(x,O) + _L Pk(x,O) 

k=l 
n n-J 

= ~(x,O) + _L P1(0,0) _L Fk(x,O), 
!=0 k=l 

so that 

xeR. 

In the transient case the denominators have a finite limit, so that one 
obtains 

l. Gn(x,O) = ~(x,O) F( O) 
n:~ Gn(O,O) G + x, 

for all x in R, and in particular the limit F(x,O) when x =/: 0. 
To obtain a proof when the random walk is recurrent, let 

n 

an = 2: Fk(x,O), n 2: 0. 
k=O 

The problem is then to show that 

lim an = F(x,O). 
n-+OC> 

For every positive integer None can decompose 
n 

2: bfan-1 
.._J =-0=-:n::---- - a: 

~ bk 
k=O 
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This decomposition is valid for all n > N and for every real a, but 
we shall of course set a = F(x,O). Since bn is a bounded sequence 
such that the series L bn diverges, it is clear that the last two terms 
tend to zero as n---+ oo, for each fixed N. We can now choose 
N = N(E) so that ian - ai < E when n > N. With this choice of 
N one obtains 

n-+ oo 

and as E is an arbitrary positive number, the proof of PS is complete. 

E3 Let us now apply PS to Bernoulli random walk. When p > q, PS 
tells us that F(O,x) = 1 for every x > 0, since 

G(O,x) 
F(O,x) = G(O,O) 

and G(O,x) = (p - q)-1, for every x 2: 0, according to E2. Inasmuch as 
F(O,x) represents the probability that the first visit to x occurs at some 
finite time (i.e., that x is visited at all), it was of course to be expected that 
F(O,x) = 1 for all positive x when p > q. In this case one would also 
expect that F(O,x) < 1 when x < 1, and E2 together with PS actually 
shows that F(O,x) goes to zero geometrically as x ~ - oo. One obtains 

F(O,x) = ( ~) x when x < 0. 

Finally, consider the simple random walk, with p = q = 1/ 2 . According 
toPS, 

l . Gn(O,x) F(O ) 
n:~ Gn(O,O) = ,x 

for every x, but it still remains to evaluate the limit function F(O,x). We 
know only that F(O,O) = 1, but it would indeed be surprising if there were 
a point x0 such that F(O,x0 ) < 1. 

In fact, one could argue that F(O,x) = 1 on the following intuitive 
grounds. Return to 0 is certain (since F(O,O) = 1). However, a visit to 
x0 before the first return to 0 is certainly possible, in fact it has a probability 
p(x0 ) ~ 2-l•o1• But once the random walk has reached x0 , the proba
bility that it will ever return to 0 is F(x0 ,0) = F(O,- x0), and by symmetry 
F(O,- x0) = F(O,x0). Hence we seem to have shown that 

1 = F(O,O) ~ 1 - p(x0 ) + p(x0)F(O,x0 ) = 1 - p(x0)[1 - F(O,x0 )] 

which implies that F(O,x0 ) = 1. 
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The only trouble is that we used certain intuitively plausible facts about 
properties of the probability measures induced by the transition function 
P(x,y), before having described the method by which probability measures are 
to be assigned. In particular we argued that if p(x0 ) is the probability of 
visiting x0 before the first return to 0, then the probability of visiting x0 

before 0, and then 0, is p(x0 )F(x0 ,0). This relation of independence is 
indeed a property of any reasonable assignment of probability measure 
under which Pn(x,y) retains the obvious interpretation as n-step transition 
probabilities, but the proof must wait until section 3. 

It is, however, of some interest to see if one can show analytically that 
F(O,x) = 1 when p = q, and we offer the following three alternative 
methods of proof. 

(a) From Stirling's formula 

n! "' V2rrn e-nnn 

(here and in the sequel an "' bn means that the ratio anfbn-+ 1 as n-+ 00 ), 

one obtains 

P2n(O,O) = (-1)n(-;'2) "'(rrn)- 112. 

It is equally easy to show that 

P 2n(O,x) "' (rrn)- 112 
P2n+ 1(0,x)"' (rrn)- 112 

when xis an even integer, 
when x is odd. 

Finally, summing on n yields, for every x, 

Gn(o,x>,..., t kt1 (~k) -1/2,..., t(z:f'2· 

so that 
F(o ) I. Gn(O,x) 1 

,x = n~n.!, Gn(O,O) = . 

(b) A more careful study of the transition functions Pn(x,y) (easy for 
instance by the methods of Fourier analysis in Chapter II) shows that one 
can dispense with Stirling's formula and in fact prove a much stronger 
result, namely 

00 

L [Pn(O,O) - Pn(O,x)] = lim [Gn(O,O) - Gn(O,x)] = lxl. 
n=O n-+oo 

Clearly it follows that 

I. Gn(O,x) F(O ) 1 
n~n.!, Gn(O,O) = ,x = ' 

(c) In view of P3 

xeR. 
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Furthermore P1 and D3 give 

L P(x,t) gn((~~)) = G (~ O) [Gn(x,y) + Pn+l(x,y) - 8(x,y)]. 
teB n. ' n. ' 

Now we let n tend to infinity. The left-hand side of the above equation 
then tends to 

L P(x,t)F(t,y). 
teB 

The right-hand side goes to F(x,y) since Gn(O,O)- oo and IPn+l(x,y)l :$; 1. 
Hence 

L P(x,t)F(t,y) = F(x,y), 
teB 

and specializing by setting y = 0, we find that 

2 P(x,t)F(t,O) = !F(x + 1,0) + fF(x - 1,0) = F(x,O). 
teB 

But this equation has solutions only of the form F(x,O) = ax + b. Since 
0 :$; F(O,x) :$; 1 and F(O,O) = 1, we conclude again that simple random 
walk in one dimension has the property that F(O,x) = 1 for all x. 

2. PERIODICITY AND RECURRENCE BEHAVIOR 

We saw in section 1 that recurrence of a random walk manifests 
itself in the limiting behavior of Gn(O,O) as well as of Fn(O,O). But so 
far it is not clear exactly how Gn(O,x), the expected number of visits of 
the random walk to x in time n, depends on the recurrence of the 
random walk. The same question of course applies to Fn(O,x) and to 
F(O,x) which is the probability of a visit (at some finite time) to the 
point x. 

Certain results are obvious. For example, since G(O,x) :$; G(O,O) :$; 

oo for every x, it is clear that G(O,x) < oo for all x if the random walk 
is transient. But suppose that the random walk is recurrent, so that 
G(O,O) = oo. Does it follow that G(O,x) = oo for every x in R? 
The answer is no; it is indeed possible to find a recurrent random 
walk such that G(O,x0 ) < oo for some x0 E R. The most trivial 
example of this type is the random walk which "stands still," i.e., 
with P(O,O) = 1. According to our definitions it is recurrent, as 
Gn(O,O) = n + 1- oo as n- 00. But clearly G(O,x) = 0 for all 
x =F 0. Note that we have not even bothered to specify the dimension 
of the state space R. It is immaterial as the random walk would not 
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"know the difference." It takes place on the state space consisting 
of the origin alone. 

Given a state space R of dimension d :2::: 1 and a point x0 in R, we 
can define a recurrent random walk on R such that G(O,x0 ) = 0. For 
example, let 

P(0,2x0 ) = P(0,-2x0 ) = 1/ 2, 

P(O,x) = 0 for all other x in R. 

This random walk is nothing but simple symmetric one-dimensional 
random walk, no matter what the dimension of R. Therefore it is 
recurrent, but again it is clear that G(O,x0 ) = 0. The reason is of 
course again that the random walk takes place on a subset (a subgroup, 
as it happens) of R which does not contain the point x0 • 

There is no need to look for other types of examples where G(O,O) = 
oo but G(O,x) < oo for some x, because there are none. Instead we 
shall begin by formalizing the ideas suggested by the preceding 
examples, and then proceed to explain the crucial role of that subset 
of the state space R which is actually visited by the random walk. 
Given a random walk, i.e., a transition function P(x,y) defined for 
x, y in R, we define three subsets of R, called I:, R +, and R 

Dl 
I: = [x I P(O,x) > 0], 

R+ = [x I Pn(O,x) > 0 for some n :2::: 0], 
R = [x I x = y - z, for some y E R+ and z E R+]. 

Pl R + is the set of all finite sums from I: including the origin 0 (the 
empty sum). It is also the smallest additive semigroup containing I:. R 
on the other hand is the smallest additive subgroup of R which contains R +. 

Proof: There is not much to verify apart from the group (semi
group) axioms. (A semigroup is supposed to be closed under addition 
like a group, but not under subtraction, and although it has an 
identity (the origin), no other elements in it need have an inverse.) 

The origin is in R + by definition. If x is in R +, and x =I= 0, then 
it follows from Pn(O,x) > 0 that there is a finite sequence x1, x2 , ••• , 

Xn_ 1 in R such that 

Pn(O,x) :2::: P(O,x1)P(x1,x2 ) ••• P(xn_ 11x) > 0. 

But then P(O,x1) > 0, P(O,x2 - x1) > 0, and so on, so that x1,x2 -

x1 , etc. are in I:. Therefore x = x1 + (x2 - x1) + · · · + (x -
xn_ 1 ), is a representation of x as a finite sum of elements of I:. 
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Conversely, if x = y 1 + y 2 + · · · + Yn• withyi E ~fori= 1, ... , n, 
then P(O,yk) = P(y1 + · · · + Yk-l• y1 + · · · + Yk) > 0, k = 1, 2, 
... , n, so that 

Pn(O,x) = Pn(O,yl + · · · + Yn) 
~ P(O,y1)P(ylly1 + Y2)· . . P(yl + · · · + Yn-llx) > 0. 

This proves that R+ is really the set of all finite sums of elements of~. 
If we use either the characterization of R+ just obtained or the one 

in D 1, it is clear that R + is closed under addition. Hence R + is a 
semigroup. There can be no smaller semigroups containing ~. since 
any such semigroup must contain all finite sums from~. and R+ is 
just the set of such sums. 

R is a group since it is closed under differences, by Dl. It con
tains R + by definition, and there can obviously be no smaller group 
than R with these two properties. 

The ideas that led to the definition of the sets R + and R enable 
us to understand the difference between transient and recurrent 
random walk a little better than in section 1. First consider transient 
random walk, which offers very little difficulty. 

P2 If P(x,y) is the transition function of a transient random walk 
with state space R, then 

G(O,x) < oo on R 
and 

G(O,x) = F(O,x) = 0 on R - R+. 

Proof: By P1.3, 

G(O,x) = lim Gn(O,x) :S lim Gn(O,O) = G < oo, 
n-. oo n-+ oo 

which proves the first statement. To prove the second one, assume 
that the set R - R+ is nonempty (otherwise the second statement of 
P2 is vacuous). In that case, Pn(O,x) = 0 for x E R - R+ for every 
n ~ 0. But then 

00 

G(O,x) = _2 Pn(O,x) = 0, xER-R+, 
n=O 

00 

F(O,x) = _2 Fn(O,x) :S G(O,x) = 0, xER- R+. 
n=l 

The last inequality came from D1.2 which implies that 

Fn(O,x) :S Pn(O,x), X E R, n ~ 0. 



2. PERIODICITY AND RECURRENCE BEHAVIOR 17 

In the recurrent case we first prove a few lemmas (P3, P4, PS) of 
independent interest, which will later be combined with P2 to give a 
complete description (T1) of the basic differences between recurrent 
and transient random walk. 

P3 If a random walk is recurrent and x E R +, then 

G(O,x) = oo. 

Proof: If x E R+, we may assume that x =f 0 and choose m ;::: 1 so 
that Pm(O,x) > 0. Then, using P1.1, 

Pm(O,x)Pn(x,x) :5: ,2 Pm(O,t)Pn(t,x) = Pm+n(O,x). 
teR 

Summing on n from zero to k, one obtains 

k 

P m(O,x)Gk(x,x) = P m(O,x)Gk(O,O) :5: ,2 P m+n(O,x) 
n=O 

m+k m-1 

= ,2 Pn(O,x) - ,2 Pn(O,x) 
n=O n=O 

= Gm+k(O,x) - Gm-l(O,x). 

Letting k-+ + oo, one finds that 

P m(O,x) · G :5: lim Gm+k(O,x) - Gm_ 1(0,x). 
k-+<Xl 

But by P1.4, we know that G = + oo, which proves that 

lim Gm+k(O,x) = G(O,x) = + 00. 
k-+<Xl 

The next step, still for recurrent random walk, is the investigation 
of F(O,x). The obvious probability interpretation of F(O,x) as the 
probability of a visit to x, starting at 0, in a finite time is very helpful. 
It suggests that F(O,x) = 1 for all x in R+. Actually considerable 
work is required to translate this suggestion into mathematical 
certainty, and here too the probability interpretation is useful in 
suggesting what to do. The probabilistic arguments that follow can 
be made rigorous by careful use of certain measure theoretic facts to 
be introduced in section 3. 

We assume that x E R +, and also (for the moment) that - x E 

R - R+. Then the random walk can go from 0 to x with positive 
probability. But once at x it can never return to zero, since a transi
tion from x to 0 is impossible, being equivalent to one from 0 to - x. 
Hence it is possible to leave 0 and never to return. This contradicts 
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the hypothesis that the random walk is recurrent. Therefore we have 
"demonstrated" the impossibility of having x E R + while - x E 

R - R +. In other words, recurrent random walk has the property 
that x E R + implies - x E R +. But R + is a semigroup, and a semi
group which contains the inverse (negative) of each element is a 
group. Hence R+ = R. Now it is easy to go further, and to 
conclude that F(O,x) = 1 not only when x E R+, but for all x E R. 

We shall choose to disregard this interesting argument, which is 
due to Feller [12],* 1951, to obtain the same result by the more 
elementary methods of this and the last section. 

P4 For arbitrary random walk, x,y E R and n ~ 0 

(a) L P(x,t)Gn(t,y) = Gn+ 1(x,y) - 8(x,y), 
teR 

and for recurrent random walk 

(b) L P(x,t)F(t,y) = F(x,y). 
teR 

Proof: Part (a) follows by computation from Pl.1 and Dl.3 since 
n 

L P(x,t)Gn(t,y) = L L P(x,t)Pk(t,y) 
~R k=O ~R 

n+l 
= L Pk(x,y) = Gn+ 1(x,y) - 8(x,y). 

k=l 

Dividing equation (a) by Gn(O,O) (which is positive), one finds 

(1) 

Now let n--+ +oo in (1). Since Gn(O,O)--+G = oo, the last two 
terms on the right-hand side in (1) tend to zero. Next we observe 
that 

l . Gn(x,y) F( ) 
n:~ Gn(O,O) = x,y ' 

the inequality being due to Pl.3, and the limit due to Pl.S. 
The boundedness of the ratios Gn(x,y)fGn(O,O) implies, by a 

dominated convergence argument, that 

. "' Gn(t,y) "' . Gn(t,y) 
hm L.. P(x,t) G (O O) = L.. P(x,t) hm G (O O)' 

n-+ DC teR n ' teR n-+ DC n ' 
• Numerals in brackets refer to the Bibliography at the end of the book. 
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so that one may conclude, by letting n tend to infinity in (1), that 
part (b) of P4 is true. 

Now we shall see that P4 very quickly leads to 

PS If a random walk is recurrent and x E R +, then also - x E R +. 

Further R + = R and 

F(O,x) = 1 for all x E R, 
F(O,x) = 0 for all x E R - R. 

Proof: We shall work with the special case 

2: P(x,t)F(t,O) = F(x,O), x E R 
tER 

of P4(b). It follows that 

2: P2(x,t)F(t,O) = 2: P(x,t)F(t,O), 
tER tER 

and by further iterations of the transition operator P(x,y) 

2: Pm(x,t)F(t,O) = F(x,O), m ~ 0, xER. 
tER 

Now we take a fixed x0 E R+, in order to prove that F(x0 ,0) = 1. 
This is done by setting x = 0 in the last equation, giving 

2: P m(O,t)F(t,O) = F(O,O) = F = 1. 
tER 

Since x0 E R +, we may select m0 ~ 0 such that P mo (O,x0 ) > 0. 
Then 

1 = P m0 (0,xo)F(xo,O) + 2 P mo(O,t)F(t,O) 
t#:to 

;S; P m0 (0,x0 )F(x0 ,0) + 2: P mo(O,t) 
t#:to 

= 1 + P mo (O,x0 )[ F(xo,O) - 1 ], 

which proves that F(x0 ,0) = 1. 
Furthermore 

1 = F( x0 ,0) = F(O,- x0 ), 

and F(O,-x0 ) would be zero if -x0 were not in R+. Hence -x0 is 
in R+ along with x0 , so that R+ = R. But then the previous argu
ments show that F(O,x0 ) = 1, and it is of course clear that F(O,x) = 0 
when x E R - R, if this set has any elements at all. Thus the proof 
of P 5 is complete. 
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Before summarizing the results of P2 through PS, it is convenient 
to simplify matters by focusing attention on the set R. If R = R, 
then the statement in PS that R+ = R reduces toR+ = R. But even 
in the transient case that part of R which is not in R is quite irrelevant 
in the following sense. One could always imbed R in a larger group 
of dimension d + 1 without affecting the random walk in the least. 
So we shall make the definition 3 

D2 A random walk P(x,y) defined on R is aperiodic if R = R. 

If a random walk is periodic (i.e., not aperiodic), then the problem 
is badly posed. In other words, if R ¥: R, then the random walk is 
defined on the wrong group, or on a coset of the wrong group if it 
starts at a point x not in R. It will always be possible to reduce 
problems where R ¥: R to the aperiodic case, for the simple reason 
that in every case R happens to be group theoretically isomorphic to 
R of some dimension d ~ 0. (See Chapter II, section 7, for a more 
detailed discussion of such considerations.) 

As a good example of the simplifications due to aperiodicity we 
have 

P6 For aperiodic recurrent random walk 

Proof: By Pl.S, the limit is F(O,x). 
all x in R+ = R, and as the random 
F(O,x) = 1 in all of R. 

xER. 

But by PS, F(O,x) = 1 for 
walk is aperiodic this gives 

Finally we summarize the results of P2 through PS as 

Tl Let P(x,y) be the transition function of aperiodic random walk. 
Then there are only two possibilities 
(a) (Transient case) 

G(O,x) < oo on R, F(O,O) < 1, F(O,x) = 0 on R - R+, 

(b) (Recurrent case) 

G(O,x) = oo on R, F(O,x) = 1 on R. 

There is nothing to prove, all the statements being immediate from 
D2 applied to P2 and PS. Instead we mention an interesting extension 

3 Here again our terminology differs from the conventional one in the theory 
of Markov chains in [9] and [31]. Our notion of strongly aperiodic random 
walk, to be introduced in D5.1, is far closer to aperiodicity in Markov chains 
than the present definition of an aperiodic random walk. 
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of T1, which, at this point, we do not have the resources to prove. 
It is proved in P24.9 of Chapter VI, and completes the result of T1 
for the transient case. It concerns transient random walk only and 
asserts that F(O,x) < 1 in the transient case for all x, unless the 
random walk is of a very special type which we shall now define. 

D3 A random walk is called left continuous if it is one dimensional 
and if 

P(0,-1) > 0 and P(O,x) = 0 for x ~ - 2. 

Similarly it is called right continuous if 
P(0,1) > 0 and P(O,x) = 0 for x ;::: 2. 

Note that Bernoulli random walk, with 0 < p = 1 - q < 1 is both 
left and right continuous, even when modified so that also P(O,O) > 0. 
The extension of T1, which will be accomplished when we prove P24.9 
in Chapter VI, is 

Aperiodic transient random walk has F(O,x) < 1 for all x in R 
unless it is 
(a) left continuous, with the additional property that 

00 

- oo < L xP(O,x) < 0, 
x=- co 

in which case F(O,x) = 1 for all x < 0 and F(O,x) < 1 for all x ;::: 0; or 
(b) right continuous with the additional property that 

+oo 

0 < L xP(O,x) < oo, 
x=- oo 

in which case F(O,x) = 1 for x > 0, F(O,x) < 1 for x ~ 0. 

At the present stage of development of the theory it is not even 
quite obvious that the random walk of type (a) or (b) above is transient. 
This matter will be settled in T3.1, where some simple sufficient 
conditions are obtained for a random walk to be transient. Now we 
turn instead to the task of finding a sufficient condition for recurrence. 

Restricting attention to one-dimensional random walk let 
00 

D4 m = L lxiP(O,x) :::; oo, 
x=- oo 

and, in case m < oo 
00 

JL = L xP(O,x). 
x=- oo 
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We saw in E1.2 that Bernoulli random walk, where 1-" turns out to 
have the value p - q, is recurrent if and only if 1-" = 0. We will 
eventually show that every one-dimensional random walk, with 
m < oo, has the same property: it is recurrent if 1-" = 0 and transient 
otherwise. Intuitively the conclusion that random walks with 1-" #- 0 
are transient seems quite plausible if not obvious. But it turns out 
that this part of the result is the harder one to prove, and so we shall 
now consider only the case when 1-" = 0. 

The first step of the proof is nothing but the classical weak law of 
large numbers for sums of identically distributed random variables. 
Clearly P(O,x) can be taken to be the probability measure of an 
integer valued random variable. Calling P(O,x) = p(x), one observes 
that 

P 2(0,x) = 2: p(x - y)p(y) 
yeR 

is the convolution of two such measures, and similarly Pn(O,x) is the 
convolution of the measure p(x) with itself n times. If P(O,x) has 
mean 1-" according to D4 (and m < oo) the usual statement of the weak 
law becomes 

P7 lim 2: Pn(O,x) = 0 for every e > 0. 
n-oo [xl~~-tt~><l 

We shall not give a proof of this remarkable theorem which is due 
to Khinchin [62], 1929, but only point out that no measure theory is 
involved as the usual proof 4 proceeds by elementary careful estimation 
of the values of Pn(O,x) for large n and lxJ. The first step of the 
proof of course consists in verifying P7 for the case when P(O,x) 
satisfies the additional assumption of finite variance a 2 , i.e., 

a 2 = 2: lx - ~LI 2P(O,x) < 00. 
XER 

In that case 

1 2: Pn(O,x) ::::; 22 
lx I n e [xi ;;-tt ><l 

as n-* oo. 

2: lx - n~LI 2Pn(O,x) 
[xll; -ttl><] 

4 To be found in any good introductory text, such as [31], [34], [84]. 
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Using nothing but P7, Chung and Ornstein [13], 1962, succeeded 
in showing that every one-dimensional random walk with m < oo 
and p. = 0 is recurrent (earlier proofs used the Fourier analytical 
methods developed in the next chapter). Let us therefore suppose 
that P(x,y) is a one-dimensional transition function (i.e., R is the set 
of integers) with m < oo, p. = 0. For every integer N we can assert, 
using Pl.3, that 

(1) 

for every positive number M. Furthermore 

N N 

(2) 2: GN(O,x) = 2: 2: Pk(O,x) ~ 2: 2: Pk(O,x). 
lxlsM k=O lxlsM k=O cxlj~js~l 

Choosing M = aN, a > 0, we may combine (1) and (2) to obtain 

1 N 

(3) GN(O,O) ~ 2aN + 1 k~O lxl~a Pk(O,x). 

From P7 we know, since p. = 0 and LxeR Pk(O,x) = 1, that 

lim 2: Pk(O,x) = 1, 
k-+oo lxlska 

when a> 0, 

and one may conclude from (3) that 

(4) 

Since a may be taken arbitrarily small, (4) implies 
00 

G = lim GN(O,O) = 2: Pk(O,O) = oo. 
N-+oo k=O 

Thus we have proved 

PS If P(x,y) is one dimensional, m = L: lxiP(O,x) < oo, and 
p. = L; xP(O,x) = 0, then the random walk is recurrent. 

Proposition P8 has the partial converse that a random walk with 
m < oo, p. =!= 0 is transient. As no direct analytic proof seems to be 
known, we shall use this difficulty as a motivation for developing the 
correct measure theoretical formulation of the theory of random walk 
in the next section. One of the most frequently useful measure 
theoretical results will be the strong law of large numbers (P3.4), 
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Kolmogorov's [66] (1933) sharpened version of the weak law (P7). 
In particular, the strong law (P3.4) will make it quite evident that 
every random walk on the line with m < oo, J.L =I= 0 is transient. 

3. SOME MEASURE THEORY 

First we define what is meant by an arbitrary probability space, and 
then we shall specialize to those probability spaces which are useful 
in the measure theoretical formulation of random walk problems. 
A probability space is a triple (0, ff, P) where 

(a) 0 is an arbitrary space (collection of "points" wE 0); 
(b) ff is a so-called a-field, i.e., a collection of subsets A, B, C, . .. 

of 0 which is closed under the operations of countable unions, 
intersections, and complementation; in particular the empty set and 
the whole space 0 are elements of ff; 

(c) P is a non-negative set function, defined on ff, with the 
properties that P[O] = 1 and 2::'= 1 P[An] = P[U:'=l An], when An 
is a sequence of pairwise disjoint sets in ff (i.e., P[ ·] is a countably 
additive probability measure). We shall feel free to use (but actually 
we shall rarely need to do so) a few standard notions and theorems 
from measure theory 5 which apply to an arbitrary probability space: 

(1) If An is a monotone sequence of sets in ff, i.e., if Ak ~ Ak+l 
for every k ~ 1, then 

(2) A real valued function f( w) on 0 (which may also assume the 
"values" + oo and - oo) is called measurable if the set [ w I f( w) =::;; t] 
is in ff for every real number t. A measurable function which 
assumes only a finite number of distinct values is called simple. A 
sequence of measurable functions fn(w) is said to converge a.e. 
(almost everywhere, or with probability one) if [w llimn ... cofn(w) 
exists] is a set of measure one. Using this terminology, every 
measurable function can be represented as the a.e. limit of a sequence 
of simple functions. And if a sequence of measurable functions con
verges a.e., then its limit is also measurable. 

5 To be found in [37], [73], or [78]. 
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(3) If (]l(w) is a simple function, assuming finite values ak on the 
sets Ak E .'F, k = 1, ... , n, its integral is defined as 

An arbitrary measurable function/( w) is called integrable if 

sup ( l(]l(w)l dP(w) < oo, (/) Jo 
the supremum being taken over all simple functions such that 
l(]l(w)l ~ 1/(w)l almost everywhere. Ifj(w) is integrable, then 

( f(w) dP(w) = lim ( (]ln(w) dP(w) Jo n-+oo Jo 
exists and has the same value for every sequence (]ln( w) of simple 
functions such that l(]ln(w)l ~ I /(w)l and (]ln(w) converges to f(w) 
almost everywhere. 

(4) The usual properties of the Lebesgue integral on a finite 
interval, such as the Lebesgue dominated convergence theorem, 
apply to the integral defined in (3). Of particular importance is the 
following special case of Fubini's theorem. Two integrable functions 
/( w) and g( w) are said to be independent if 

P[w I j(w) ~ a, g(w) ~ b] = P[w I /(w) ~ a]P[w I g(w) ~ b] 

for all real numbers a and b. If so, then 

fo f(w)g(w) dP(w) = L f(w) dP(w) L g(w) dP(w). 

Now we are ready to specialize to a particular probability space, 
where n will be the set of infinite sequences 

w = (w1 , w 2 , ••• ), with each w; E R. 

Here R is the state space of a given random walk. The a-field .'F is 
defined as follows. First we require .'F to contain all cylinder sets, 
i.e., sets An of the form 

An = [w I wk = ak, k = 1, 2, ... , n], n ~ 0. 

where ak E R for each k = 1, ... , n, and then we define .'F to be the 
smallest a-field which contains every cylinder set. Finally, in order to 
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define the probability measure (in terms of the transition function 
P(x,y) of a given random walk), we stipulate that 

P[An] = P(O,a1)P(O,a2) ... P(O,an), n ~ 0 

for every cylinder set (the empty product, when n = 0, is of course 
defined to have the value one). It is not difficult to prove the extension 
theorem 6-that there exists one and only one countably additive 
probability measure P[ ·] defined on the whole of §', which has the 
desired values on the cylinder sets. That completes the definition 
of a probability space (0, §', P) corresponding to a given random 
walk with transition function P(x,y) and state space R. To this 
definition we now add a list of frequently used probabilistic terminol
ogy. 

Dl Measurable functions on the above probability space are called 
random variables. In particular we denote the random variables wk by 

wk = Xk(w) = Xk> k = 1,2, ... , 

and their sums by 

S0 = 0, Sn = X1 + · · · + Xm n ~ 1. 

Iff( w) = f is a random variable, we write for each x E R 

P[f = x] = P[w if(w) = x] 

and iff( w) = f is in addition integrable, then 

L./(w) dP(w) = E[f] 

is called its expectation (expected value). Finally, when A E §', the 
symbol E[f;A] will denote the expectation E[f(w)cpA(w)] where cpA(w) = 1 
for w E A and zero otherwise. 

The two most frequently useful corollaries of D1 and of the general 
theory of measure and integration preceding it are summarized in 

Pl (a) If f(w) = F(S1, S2, ... , Sn) is any integrable function of 
sl> ... ' sm then its expected value is 

E[f] = L F(xl,x2, ... ' Xn)P[Sl = xl, s2 = x2, ... ' 
z1eR,l = 1, 2 ..... n Sn = Xn] 

L F( X 1, ••• , Xn)P(O,x1)P( x1,x2) ••• P( Xn _1,xn)· 
z1eR,l = 1, 2, ... ,n 

6 See [37], p. 157. 
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In particular, let f(w) = 1 if Sn = x E R, and 0 otherwise. Then 

E[f] = P[Sn = x] = Pn(O,x). 

(b) The random variables w 11 = Xn are pairwise independent func
tions. More generally, let I and J be two disjoint subsets of the natural 
numbers. Let !F1 denote the smallest sub-a-field which contains all sets 
of the form [ w J wk = x] for k E I and x E R, and define !F I in a similar 
way. Suppose now thatf(w) andg(w) are intekruble on (0, F, P) and 
that f(w) is measurable with respect to !F1 and g(w) with respect to !F1• 

Then f and g are independent functions, and 

E(fg] = E[f]E[g]. 

The proof is nothing more or less than an exercise in rewording the 
content of D1, with two minor exceptions. The last equation in 
part (a) made use of the definition of P11(0,x) in Dl.1, and the last 
equation in part (b) is Fubini's theorem as given in equation (4) 
preceding D 1. 

To exhibit the advantage of the language of sets (events) and their 
measures in a familiar setting we shall use P1 to give a proof of P1.2. 
According to D1.2 we may express F 11(x,y) as 

Fn(x,y) = P[x + Sk :Fy fork= 1,2, ... ,n- 1;x + Sn =y], 
n;;::; 1. 

If we let T = T(w) denote the first time that x + Sn = y, or more 
formally 

T = min [k J1 :S k, X + sk = y] :S 00 

then T = T(w) is a random variable (measurable function) on the 
probability space (0, !F, P). It may or may not assume the value 
+ oo on a set of positive measure-we do not care. What matters is 
that we may now write 

Fn(x,y) = P[T = n], 

so that parts (a) and (b) of P1.2, namely 

n 

F11(x,y) = F11(0,y - x) and L Fk(x,y) S 1 
k=l 
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are quite obvious. To prove part (c) of Pl.2 we decompose the event 
that X + sn = y. Using part (a) of P1 and the additivity of P[. ], 

n 

Pn(x,y) = P[x + sn = y] = L P[x + sn = y; T = k]7 
k=l 

n 

= L P[T = k; sn- sk = 0]. 
k=l 

(Here we made the observation that Sn - Sk = 0 when T = k and 
X + sn = y.) Now we may apply part (b) of P1 in the following 
manner. For each fixed integer k ~ 1, let I = {1, 2, ... , k} and 
J = {k + 1, k + 2, ... , n}. Then 

f. = ~ (w) = {1 if T = k 
k 1 k 0 otherwise, 

{1 if sn - sk = 0 
gk = gk(w) = 0 otherwise, 

are a pair of independent random variables, fk( w) being measurable 
with respect to .171 and gk(w) with respect to .171. It follows that 
E[fkgk] = E[fk]E[gk], and resuming our decomposition of Pn(x,y) we 
obtain 

n n 

Pn(x,y) = 2 E[fk]E[gk] = L P[T = k]P[Sn- sk = 0] 
k=l k=l 

n 

= L Fk(x,y)Pn-k(O,O), 
k=l 

which proves part (c) of Pl.2. 

As a rule we shall not give such obvious probabilistic arguments in 
all detail. But occasionally they are sufficiently complicated to 
warrant careful exposition, and then a more sophisticated notation 
than that employed in D 1 will be helpful. Instead of working with a 
single probability measure P[ ·] and the associated operator E[ ·] of 
integration we introduce the starting point x of the random walk 
directly into the definition. 

D2 For each x E R, the triple (Ox, .?F:r, P:r) is a probability space 
defined as follows. The elements w of n:r ate infinite sequences 

w = (x0 , x1, x2 , ... ) with x0 = x. 

7 P[A ;B] means P[A n B]. 
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If An = [w I xk = ak, k = 1, ... , n], n 2::: 0, ak E R, then 

P:r[An] = P(x, a1)P(a1,a2) •• • P(an-l•an)· 

The a-field .?F:r is the smallest a-field containing all the cylinder sets An, 
and Px[ ·] is the unique countably additive measure on .?Fx, having the 
desired value on cylinder sets. If f(w) = f is integrable on (Q.z, .?F.z, P.z), 
its expectation is defined as 

The triple ( nz, .fF x• P x), being completely specified by the transition 
function P(x,y) and the state space R, will be called "the random walk 
Xn = Xn( w ), starting at the point x0 = x." 

When X = 0, it is obvious that the sequence sn, n 2::: 0, defined on 
(Q, .?F, P) by D1 is the same sequence of random variables as Xn, for 
n 2::: 0, defined on (no • .fF O• p o) by D2. When X =I= 0, then Sn + X 

on (Q, .?F, P) corresponds to Xn on (Q.z, .?F.z, P.z), in the sense that 

P[x + Sk = Yk• k = 1, 2, ... , n] = P:r[xk = Yk• k = 1, 2, ... , n] 

for every set of points y 1 , y 2 , ••• , Yn in R. 
The advantage in this slight but important shift in our point of 

view is particularly important when one works with stopping times. 
Roughly speaking, a stopping time T is a random variable which 
depends only on the past of the random walk. Thus the event that 
T = k is required to be independent of xk+l• xk+ 2,... In D3 
below that will be made precise by saying that the event T = k lies in 
the a-field generated by x 1 , x 2 , ••• , xk. Practically all the stopping 
times we shall ever encounter will be of the same simple type: if A 
is a subset of R, then T = TA, defined as T = min [k I k 2::: 1, 
xk E A], will be a stopping time; it is called the hitting time of the set 
A. (Our systematic study of hitting times will begin with D10.1 in 
Chapter III.) 

DJ LetT = T( w) be a random variable, i.e., a measurable function on 
( nz, .fF :r• P z) for each x in R whose possible values are the non-negative 
integers and + oo. Let .?Fk,:r denote the smallest sub-a-field of F:r 
containing all the sets [w I Xn = y] for n = 0, 1, 2, ... , k, andy E R. 
Suppose further that [ w I T( w) = k] E .fF k,:r for all k 2::: 0 and all 
x E R. Then T is called a stopping time. 
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P2 If T is a stopping time, and F(n,x) an arbitrary non-negative 
function defined for all n ~ 0 and all x E R, and ifF( oo, x) = 0, then 

Ex[F(T, XT+n)] = Ex{Exy[F(T, Xn)]} = Ex[ L Pn(XT, y)F(T,y)] 
yeR 

00 

= L L Px[xT = z; T = k]E2 [F(k,xn)] ~ 00. 
ZER k=O 

In particular, setting F(n,x) = 1 if n = k and x = y, while F(n,x) = 0 
otherwise, 

Px[T = k; XT+n = y] = L Px[XT = z; T = k]Pz[Xn = y]. 
ZER 

The proof is omitted-the reduction to a problem involving 
independent functions is quite natural, and then the result becomes a 
special case of part (b) of Pl. Instead we illustrate the use of P2 by 
giving a still shorter proof of part (c) of Pl.2. 

Let Ty = min [k I k ~ 1, xk = y]. It is clearly a stopping time 
in the sense of D3. Now we have 

n 

Pn(x,y) = Px[Xn = y] = L Px[Ty = k; Xn = y] 
k=l 

n 

= L Px[Ty = k; XTy+n-k = y], 
k=l 

and since xT. = y, the last line of P2 gives 

n n 

Pn(x,y) = L Px[Ty = k]Py[Xn-k = y] = L Fk(x,y)Pn-k(y,y). 
k=l k=l 

As the next illustration of the use of the measure theoretical notation 
in D 1 we shall reformulate the definition of recurrence. Let An = 
[w I Sn = 0]. Then Uk'= 1 Ak is the event that a return to 0 occurs at 
some finite time, and 

00 00 

lim An= n U Ak 
n-+oo n=l k=n 

the event that the random walk returns to 0 infinitely often. We 
shall prove, using the definition of recurrence in Dl.S, that 

P3 P[limn-+ oo An] = 1 if the random walk defining the probability 
measure P[ ·] on (0, :F, P) is recurrent, and P[limn-+ oo An] = 0 if it is 
transient. 
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Proof: Since P[ ·] is a completely additive measure, the measure 
of the intersection of a monotone sequence of sets is the limit of their 
measures (see (1) preceding D1). Since the sets U~=n Ak = Bn 
form a monotone sequence, we have 

(1) P[ lim An] = lim P[Bn]· 
n-+ao n-+oo 

Now consider the sets 

n+m 
Bn.m = U Ak 

k=n 

which are easily seen to have measure 

m+1 
(2) P[Bn.m] = 2 Pn-1(0,t) 2 Fk(t,O}, n;::: 1, m;::: 0. 

teB k= 1 

In the recurrent case we let m ~ oo in (2), observing that the sets 
Bn.m increase to Bn, so that 

(3) P[Bn] = lim P[Bn.m] = 2 Pn-1(0,t)F(t,O). 
m-+ao teB 

But we know from P2.5 that F(t,O) = 1 for all t such that Pn_ 1(0,t) > 
0. Therefore P[Bn] = 1 for n ;::: 1, and equation (1) shows that 

P[ lim An] = 1. 
n-+ao 

In the transient case one goes back to equation (2), observing that 

m+1 
(4} P[Bn,m] :S L Pn-1(0,t} L Pk(t,O} 

teB k=1 

n+m 
= 2 P;(O,O) = Gn+m(O,O) - Gn-1(0,0), 

f=n 
n;::: 1. 

If we let m ~ oo, P1.4 tells us that 

P[Bn] :S G(O,O) - Gn-t(O,O) < oo, 

so that finally 

P[ lim An] 
n-+ao 

lim P[ Bn] :S G - G = 0, 
n-+"" 

completing the proof of P3. 
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The next step brings us to Kolmogorov's strong law of large 
numbers which we shall formulate, without proof, 8 in the terminology 
of Dl. 

P4 If an arbitrary random walk has 

m = 2: lxiP(O,x) < oo, 
xeR 

p. = 2: xP(O,x), 
xeR 

then the sequence of random variables Sn = X 1 + · · · + Xn has the 
property that 

P [ lim Sn = fL] = 1. 
n-+oo n 

Remark: (a) The theorem makes perfectly good sense, and is 
even true, for arbitrary random walk in dimension d ~ 1. When 
d > 1 the mean p. is a vector and so are the random variables S71 • 

However, we shall use only P4 when d = 1. 
(b) It is easy to show that the set 

[w I lim Sn(w) = p.] E !F, 
n-+oo n 

by representing it in terms of a countable number of cylinder sets of 
the form [w II S 71(w) - np. I > r], where r may be any positive 
rational number. 

Our immediate goal is the proof of the sufficient condition for one
dimensional random walk to be transient, which was discussed at the 
end of section 2, and which served as motivation for introducing 
measure theory. For this purpose the following seemingly (not 
actually) weak verswn of P4 will suffice. We shall assume that 
p. '# 0, let 

and observe that P4 implies 

p[ lim en] = 0. 
n-+oo 

8 The first proof, for the case of Bernoulli random walk, is due to Borel [6], 
1909. The general version in P4, announced by Kolmogorov twenty years 
later, was made possible by his measure theoretic formulation of probability 
theory [66]. Many modern texts, such as [23] and [73], contain several 
different proofs (Kolmogorov's as well as proofs based on martingales or 
ergodic theory). 
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Now we let An = [w I sn = 0], and notice that Cn was defined so that 
An C Cn for all n 2! 1. Consequently 

P[ lim An] = 0. 
n-+ oo 

Finally, we refer back to P3 where it was shown that the upper limit 
of the sequence of sets An has measure zero if and only if the under
lying random walk is transient. 

Hence every random walk with m < oo and p. =F 0 is transient! 
(Our proof is perfectly valid in dimension d > 1.) Combining this 
fact, when d = 1, with P2.8, we can assert that 

Tl One-dimensional random walk with finite absolute mean m is 
recurrent if and only if the mean p. is zero. 

The ideas of this section are now applied to obtain an amusing 
generalization of certain properties of Bernoulli random walk. 

El It was shown in E1.2 that Bernoulli random walk with p > q has 
the property that 

(1) 
1 

G(O,x) = -- for x 2! 0. p-q 
This result can be extended to arbitrary right-continuous random walk with 
positive mean in a surprisingly interesting fashion; we shall assume that 

1 

P(O,x) = 0 for x 2! 2, 0 < p. = L xP(O,x) 
z=- a:> 

and prove that for such a random walk 

(2) 
1 

G(O,O) = G(0,1) = G(0,2) = · · · = -· 
p. 

This is a clear-cut generalization of (1) where p. happens to have the 
valuep- q. 

First we observe that this random walk is transient according to Tl. 
Also Sn- + oo (or Xn- + oo) with probability one, according to the 
strong law of large numbers (P4). Consequently, if 

T11 = min [k J1 ::;; k ::;; oo, xk = y], 

we may conclude that 

P0[T11 < oo] = 1 for y 2! 1, 

as right-continuous random walk cannot "skip" a point in going to the 
right. Thus 

00 

(3) F(O,y) = L Fk(O,y) = 1, y ~ 1.-
k=l 
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Our next observation is that, when x :F y, 

(4) G(x,y) = F(x,y)G(y,y) = F(x,y)G(O,O) 

which was contained in Pl.S. Calling G(O,O) = G and setting x = 0 in 
(4), we get from (3) 

(5) G(O,y) = G for y ~ 1. 

Thus it remains to show only that the constant G has the value f:L - 1 • For 
this purpose we use the identity 

(6) G(O,x) = L G(O,y)P(y,x) + S(O,x), xeR. 
yeR 

When x ~ 1, this identity reduces to the trivial result G = G so we must 
consider also negative values of x, although G(O,x) is then unknown. One 
can write 

00 0 

f:L = P(0,1) - L L P(y,x) l/=1 x= -oo 
which suggests summing x in (6) from - oo to 0. For n;;::; 1 

0 0 

L G(O,x) - 1 = L G(O,y) L P(y,x) 
::=-n yeR x=-n 

00 0 0 0 

= L G(O,y) L P(y,x) + L G(O,y) L P(y,x) 
Y=l z=-·n y=-oo z=-n 

Hence, letting n ~ + oo, 

Gf:L = 1 + GP(O,l)- Y=too G(O,y)[1 - xJoo P(y,x)] 

-1 [ 0 ] = 1 - Y=~oo G(O,y) 1 - x=~oo P(y,x) = 1, 

since 
0 

L P(y,x) = 1 wheny ::s; -1. 
X=- 00 

That completes the proof of (2). In Chapter VI (P24.6) we shall prove 
a further generalization of (2). Adhering to the assumption that m < oo, 
f:L > 0, while discarding the hypothesis of right continuity, one can no 
longer assert (2). But in P24.6 equation (2) will be shown to remain true 
asymptotically, in the sense that 

lim 
Z-+ + 00 

1 
G(O,x) = -· 

f:L 
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4. THE RANGE OF A RANDOM WALK9 

To illustrate the phenomenon of recurrence from a novel point of 
view we shall study a random variable associated in a natural way with 
every random walk. The transition function P(x,y) and the dimen
sion of R will be completely arbitrary. The most natural way to 
proceed is in terms of the measure space of D3.1. We had S0 = 0, 
Sn = X1 + · · · + Xn, where the ~ are identically distributed in
dependent random variables with distribution P[~ = x] = P(O,x). 
Thus Sn represents the position of the random walk at time n. 

Dl For n ~ 0, Rn is the cardinality of the (random) subset of R 
which consists of the points 0 = S0, S1, ••• , Sn. 

Thus Rn (called the range of the random walk in time n) is clearly 
a measurable function on (0, §", P) being simply the number of 
distinct elements in the sequence S0 , S1, ••• , Sm or the number of 
distinct points visited by the random walk in time n. 

Note that it would be perfectly possible to define the probability 
law of Rn (and that is all we shall be concerned with) in terms of the 
simple analytic setup of section 1. For example, 

P[R2 = 1] = [P(0,0)]2 

P[R2 = 2] = 2: P(O,x)[P(x,x) + P(x,O)] + P(O,O) .2; P(O,x), 
Z¢0 Z¢0 

but evidently this is not a very convenient representation. 
We shall be concerned with a weak law of large numbers for the 

sequence Rn and we shall say that Rnfn converges in measure to the 
constant c if 

!~~ P[l~n-C,>£] =0 

for every £ > 0. We shall prove the theorem 

Tl If a random walk is transient, then Rnfn converges in measure to 
G-1 = 1 - F > 0 and, if it is recurrent, Rnfn converges in measure to 0 
(which equals 1 - Fin this case too!). 

Proof: First we calculate E[Rn]. The formula 
n+l 

E[Rn] = 2: kP[Rn = k] 
k=l 

9 The results of this section have recently been extended in several direc
tions. Central limit and iterated logarithm theorems have been proved for 
R.. in the transient case, ([811], [812], [814], [815]) and a strong law of large 
numbers for R../E(Rn) in the recurrent case [813]. 
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is not useful, so that it is better to go back to D1, in order to represent 
Rn as a sum of random variables, each of which has value 0 or 1 
according as Sn equals one of the preceding partial sums or not. We 
can write 

where cp0 = 1, cpk(S1 , ... , Sk) = 1 if Sk =1- Sv for all v = 0,1, ... , 
k - 1, and cpk = 0 otherwise. Then, even though the random 
variables cpk are not independent, 

We have, fork ~ 1, 

E[cpk] = P[Sk- sk-1 =1- o, sk - sk-2 =1- o, ... , sk =1- O] 
= P[Xk =1- o, xk + xk-1 =1- o, ... , xk + ... + X1 =1- OJ 
= P[X1 =1- o, X1 + X2 =1- o, ... , X1 + · · · + xk =1- O] 
= P[Si =1- 0 for j = 1,2, ... , k] 

k 

= 1 - 2: Fi(O,O), 
j= 1 

in the notation of Dl.2. By Dl.S 

lim E[ fPn] = 1 - F ~ 0, 
n-+ oo 

where 1 - F = 0 if and only if the random walk is recurrent. It 
follows that the averages of E[ cpn] also converge to 1 - F, or 

lim ! E[Rn] = lim ! i E[cpk] = 1 - F. 
n-+oo n n-+oo nk=O 

Finally, to show that Rnfn converges in measure to 1 - F, we have 
to distinguish between the cases of recurrent and transient random 
walk. The easy case is the recurrent one. There we have for 
arbitrary € > 0 

1 <X) 2: P[Rn = k] :::;; - 2: kP[Rn = k] 
[kik> n£1 n€ k= o · 

1 1- F 
= -E[Rn]-+-- = 0, 

n€ € 

as n-+ oo, so that Rnfn-+ 0 in measure. 



4. THE RANGE OF A RANDOM WALK 37 

In the transient case, a similar estimate (by the method of 
Chebychev's inequality) gives 

P[l ~n - (1 - F) I > E] ~ n;E2 E[IRn - n(1 - F)l 2] 

= _1 a2(R) + _!_ {1 - F- E[Rn]}2· n2E2 n E2 n 

Here a2(Rn) = E[{Rn - E[RnJl2] is the variance of Rm and since we 
have shown that E[Rnfn] ~ 1 - F, the proof will be complete if we 
can show that 

One calculates as follows : 

n n 

= L L {E[cpicpk] - E[cpi]E[cpk]} 
i=O k=O 

n 
~ 2 L {E[cp,cpk] - E[cpj]E[cpk]} + L E[cpi]. 

OsJ<ksn i=O 

Now we observe that whenj < k 

E[ cp1cpk] = P[S1 1= Sa for a < j and Sk 1= S0 for f3 < k] 
~ P[S1 1= Sa for a < j and Sk 1= S0 for j ~ f3 < k] 
= P[X1 1= o, X1 + X1 _ 1 1= o, ... , x, + . . . + X1 1= o; 

xk 1= o, xk + xk-1 1= o, ... , xk + · · · xi+1 1= O] 
= P[X1 1= 0, ... , X1 + · · · + X1 1= O]P[X1 1= 0, ... , 

X1 + ... + xk-j 1= O], 

so that for j < k 

E[cp1cpk] ~ E[cp1]E[cpk-Jl· 

Going back to the estimation of a2(Rn), 
n n 

a2(Rn) ~ 2 L E[cpi] L [Ecpk-1 - Ecpk] + E[Rn]. 
i=O k=i+1 

Given any monotone nonincreasing sequence a1 ;?! a2 ;?! a3 ••• , it 
is easy to see that 

n 

L [ak-i - ak] = (a1 + a2 + · · · + an-J) - (ai+ 1 + · · · + an) 
k=i+1 
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assumes its maximum when j = [n/2], the greatest integer in n/2. 
Setting ak = Ecpk and continuing the estimation, one therefore 
obtains 

n 

a2(Rn) ~ 2 L E[cp;]E[Rn-[n/21 + R[n/21 - Rn] + E[Rn]. 
J=O 

Since we know that E[Rn/n] tends to 1 - F as n--+ oo, it follows that 

lim a2(~n) ~ 2(1 - F) lim E[Rn-[n/21 + R[n/21 - Rn] 
n-+00 n n-+oo n 

[1- F 1 - F ] 
= 2(1 - F) - 2 - + - 2 - - (1 - F) = 0. 

That completes the proof of Tl. 

The method by which we proved T1 was devised by Dvoretzky 
and Erdos ([27], 1951) in the course of a detailed study of the range 
Rn for simple random walk. One of their results was the strong law 

(1) P [ lim Rn = 1 - F] = 1 
n-+ 00 n 

for simple random walk, which of course implies Tl. Actually, this 
is a general theorem, valid for arbitrary random walk. We shall sketch 
a simple proof of (1) which is beyond the scope of this chapter as it 
depends on Birkhoff's ergodic theorem. 

El In order to establish (1) above, for arbitrary random walk, we shall 
introduce the upper and lower bounds 

(2) n;:::: 0, 

defined as follows. 
We choose a (large) positive integer M and define Rn,M as the number of 

distinct points counted by "wiping the slate clean" at times M, 2M, 
3M, . . . . To formalize this idea, let Zk(M) be the independent random 
variables defined by: Zk(M) = the number of distinct partial sums among 
skM• skM+l• •.• , s(k+l)M-1• fork= 0, 1, 2,.... Then let 

[n/MJ+l 

Rn,M = L Zk(M). 
k=O 

Clearly this makes Rn ~ Rn.M· We may apply the strong law of large 
numbers, P3.4, to the averages of the sequence Zk(M) obtaining 

Rn -.- 1 [n/MJ+l 1 1 
lim - ~ hm - L Zk(M) = M E[Z0(M)] = M E[RM]· 
n-+oo n n-+oo n k=O 
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Now we let M- co, and as it was shown in the proof of T1 that 

M- 1E[RMJ-1- F, 
we have 

(3) -Rn lim - :s; 1 - F, 
n-+ co n 

with probability one. 
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Keeping in mind the definition of Rn = Rn(X1 , X2 , ••• , Xn) as a random 
variable on the measure space (Q, !F, P) where wk = Xk(w), and the Xk 
are independent with distribution P(O,x) = P[Xk = x], we define Dn as 
the number of points visited in time n which are never revisited at any later 
time. Thus Dn will be a function on the same measure space (il, !F, P), 
and its precise definition is 

where 
~k = 1 if xk+l + ... + xk+v =/= 0 for v = 1, 2, ... 

= 0 otherwise. 

It should be obvious that Dn satisfies (2); every point which is counted in 
determining Dn is certainly visited in time n. 

We are now ready to apply the individual ergodic theorem (see [23], 
p. 464 or [73], p. 421). Let T be the shift operator on Q defined by 
(Tw)k = wk+l = Xk+l· It is measure preserving, i.e., 

P[T- 1A] = P[A], A e !F, 
so that the limit 

1 n 
lim - ~ f(Tkw) 

n-+oo n k=O 

exists with probability one (it may be a random variable) for every integrable 
function f on .Q. Of course our choice for f is f(w) = rp0(w), so that 
f(Tkw) = r/sk(w) and the limit 

lim ! i r/s0(Tkw) = lim Dn 
n.-+oo n k=O n-+oo n 

exists with probability one. Since (.Q, !F, P) is a product measure space, 
much more can be said: the above limit must in fact be a constant (this is 
the so-called zero-one law of Kolmogorov, [23], p. 102), and this con
stant is 

E[/(w)] = E[r/s0(w)] = P[X1 + · · · + Xv =/= 0 for all v ~ 1] = 1 - F. 

Therefore we now have, with probability one, 

(4) 1. Rn 1" Dn 1 F Im-~ Im-=-, 
n::;oo n n-+ co n 

and equations (3) and (4) together imply (1). 
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Remark: The above proof was discovered jointly with Kesten 
and Whitman (unpublished). Not only is it simpler than the proof 
of T1 but it also yields interesting generalizations without any 
further work. In problem 14 of Chapter VI it is shown how Rn, the 
number of points swept out in time n, may be replaced by the number 
of points swept out by a finite set. The limit in (1) is then the capacity 
of the set in question. Thus the study of Rn takes us into the realm 
of potential theory, which will be discussed briefly in sections 13 
(Chapter III) and 25 (Chapter VI). To anticipate a little, let us 
state the analogue of T1 and E1 for a three-dimensional Brownian 
motion process x(t), the continuous time analogue of simple random 
walk in three space (see Feller [31], Vol. I, Ch. XIV). Suppose that 
S is a compact subset of three-space. Let x(T) + S denote the 
translate of S by the random process x(T). The set swept out by S 
in time t is the union of the sets x( T) + S over 0 ~ T ~ t, and we 
denote the Lebesgue measure (volume) of the set thus swept out as 

Rt(S) = I U {x(T) + S} I· 
OStSt 

This definition makes sense since Brownian motion, when properly 
defined, is continuous almost everywhere on its probability space. 
On this space one can then prove, following the method of E1, that 

lim ~(S) = C(S) 
t-+ 00 t 

exists almost everywhere. The limit C( S) is nothing but the ordinary 
electrostatic capacity of the set S. 

We shall find it convenient, in section 25, to associate a notion of 
capacity with each random walk, and it will be seen (see E25.1) that 
the limit 1 - Fin equation (1) is again simply the capacity of a set 
consisting of a single point. 

5. THE STRONG RATIO THEOREM 

Here we are concerned with ratios of transition probabilities of the 
form 

Pn(O,x) d Pn+l(O,O) an , 
Pn(O,O) Pn(O,O) 

which will be shown to converge (to the limit one) as n--+ oo, under 
suitable assumptions about the transition function P(x,y). This 
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result, in T1 below, evidently constitutes a significant improvement 
over the weak ratio theorem P1.5. It was first proved by Chung 
and Erdos [11], 1951. 

This rather deep theorem will in fact "lie fallow" until we reach 
the last section of Chapter VII. There we shall be concerned with 
ratios of the form 

CXl 

2: Fk(x,O) 
ln( x) = k:::...:-'n"----

2: Fk(O,O) 
k=n 

for recurrent random walk, and the proof of the convergence of 
ln(x) as n-+ oo will make use of T1 which concerns the far simpler 
ratio Pn+l(O,O)fPn(O,O). While Pn+l(O,O)fPn(O,O) and even Pn(O,x)j 
Pn(O,O) tend to the "uninteresting" limit one, this is not true of 

(1) lim ln(x) = J(x). 
n-+ oo 

Since this fact lies at the heart of the theory of recurrent random 
walk, a few remarks, even out of their proper context are called for as 
motivation for later work. Long before we are able to prove (in 
T32.1) that the ratios ln(x) converge, we shall prove (in Chapters III 
and VII) that the series 

CXl 

(2) 2: [Pn(O,O) - Pn(x,O)] = a(x) 
n=O 

converges for arbitrary aperiodic random walk. This result is of 
course related to the problem of this section as it is much stronger 
than Pl.S while unfortunately being too weak to imply that Pn(O,x)j 
Pn(O,O) converges. Thus our plan is the following. In this section 
we prove, by a rather "brute force" attack, that Pn(O,x)fPn(O,O)-+ 1, 
under suitable conditions (T1). Later (in Chapter III for dimension 
2 and in Chapter VII for dimension 1) we establish (2), and finally, in 
section 32 (Chapter VII), we use (2) and T1 to show that (1) holds, 
with the same limit function as in equation (2). Thus, we shall find that 
a(x) = J(x) for x =f 0, or 

CXl 

(3) o(x,O) + 2: [Pn(O,O) - .Pn(x,O)] XER 
n=l 
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for arbitrary aperiodic random walk, recurrent or transient, regardless of 
dimension. 

It is clear that any set of conditions for the convergence of ratios 
like Pn(O,x)fPn(O,O) must ensure the positivity of Pn(O,O), at least for 
all sufficiently large integers n. Observe that a random walk may be 
aperiodic, and even recurrent, and still fail to satisfy this condition. 
(For simple random walk in one dimension, Pn(O,O) = 0 for all odd n.) 
Thus we have to strengthen the condition of aperiodicity and we 
adopt a definition which may at first sight be complicated but which 
will be seen to accomplish what we want. At the same time it will 
be weak enough that it will impose no essential restriction. Pl will 
show that at least every recurrent random walk may be modified (by 
an appropriate change in its space and time scale) so as to be strongly 
aperiodic. 

Dl A random walk with transition function P(x,y) on R is called 
strongly aperiodic if it has the property that for each x in R, the smallest 
subgroup of R which contains the set 

x + ~ = [y I y = x + z, where P(O,z) > 0] 

is R itself. 

Since we shall be interested primarily in recurrent random walk 
in this section, it will suffice to study the implications of D 1 under 
this restriction. (In Chapter II (P7.8) we shall derive a Fourier 
analytic characterization of arbitrary strongly aperiodic random walk, 
which is used in P7. 9 to obtain information concerning the asymptotic 
behavior of Pn(O,x) as n ~ oo. With this exception strong aperio
dicity will not be of any real interest to us, until we get to the afore
mentioned ratio theorem in Chapter VII.) 

Pl For aperiodic recurrent random walk there are two possibilities. 
(a) The random walk is strongly aperiodic. In this case, given any x 

in R, there is some integer N = N(x) such that Pn(O,x) > 0 for all 
n;;:::; N. 

(b) The random walk is not strongly aperiodic. Then there is an 
integer s ;;:::; 2 (the period) such that Pn8(0,0) > 0 for all sufficiently 
large n, while Pk(O,O) = 0 when k is not a multiple of s. 

Remark: The proof will show that in case (b), when x =F 0, 
Pn(O,x) = 0 unless n belongs to an arithmetic progression of the form 
n = ks + r, where r depends on x. 
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Proof: We begin by observing that the set of positive integers 
.AI = [n I Pn{O,O) > 0] is a semigroup; for if Pn(O,O) > 0, Pm(O,O) > 
0, then Pn+m(O,O) ~ Pn(O,O)Pm(O,O) > 0. Since the random walk is 
recurrent (this assumption is much stronger than necessary), .;V is 
nonempty. Hence there are only two possibilities: 

(i) the greatest common divisor of the elements of .;V is 1, 
(ii) the greatest common divisor iss > 1. 

The proof of P1 will consist in showing that case (i) corresponds to 
case (a) in P1 and case (ii) to case (b). 

In case (i) Pn(O,O) is obviously positive for sufficiently large n. 
Similarly, given any x =1= 0, there exists an integer m such that 
P m(O,x) > 0. Therefore 

Pn+m(O,x) ~ Pn(O,O)Pm(O,x) > 0 

for all sufficiently large n. In case (i) it therefore remains only to 
show that the random walk is strongly aperiodic. Thus, choosing 
two arbitrary points x andy in R, we must show that y is in the group 
generated by x + l::. Since Pn(O,y) as well as Pn(O,O) are positive 
for all sufficiently large n, it follows that one can find some n > 0 such 
that 

y = al + 0'2 + ... + O'n and 0 = - O'n+l - O'n+2 - ••• - 0'2n 

where a1, .•. , a2n are elements (not necessarily distinct) of l::. This 
enables us to represent y as 

n n 

y = I (x + ak) - I (x + an+k) 
k=l k=l 

which is the desired representation of y as an element of the group 
generated by x + l::. Therefore the random walk is strongly 
aperiodic. 

Finally, suppose we are in case (ii). Let us call -l::k the set of 
points of the form - ( a1 + · · · + ak), a, E l::. Observe that if 
x E -l::1, then Pn(O,x) = 0 unless n is of the form n = ks - 1. 
This is quite clear as the two conditions x E -l::1, and Pn(O,x) > 0 
imply that Pn+l(O,O) ~ Pn(O,x)P(x,O) > 0. Thus we have shown 
that points in -l::1 can be visited only at times in the progression ks - 1. 
Similarly points in -l::2 can be visited only at times in the progression 
ks - 2, and so forth, until we come to the set -l::8 which can be 
visited only at times ks. Furthermore, each set -l::is+r• j ~ 0, 
1 ::5: r ::5: s, clearly shares with -l::1 the property of being visited only 
at times which are in the progression ks - r. Since the random walk 
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with transition function P(x,y) is recurrent and aperiodic, we know 
from T2.1 that R = R = R+, which is the semigroup generated by 
-~. Hence every point of R is in some -~;s+r· Thus R is de
composed into s equivalence classes of points, two points x andy being 
equivalent if the arithmetic progression of integers n on which 
Pn(O,x) > 0 for large enough n is the same as that for y. It follows 
from Pm+n(O,O) ;;::: Pm(O,x)Pn(x,O) that the points of -~;s+r are in the 
same equivalence class as those of ~is+<s-r>· Therefore the equiva
lence class containing the origin is a group H. (The other equivalence 
classes are its cosets !) To complete the proof of P1 we simply 
select x from ~. _ 1• Then x + ~ C ~. and since ~. generates the 
proper subgroup H of R, we have proved that a random walk with 
property (ii) cannot be strongly aperiodic. 

It will not suffice to know that the n-step transition function of 
strongly aperiodic recurrent random walk is positive for sufficiently 
large n. We shall require an explicit lower bound which is given by 

P2 Let P(x,y) be the transition function of a recurrent strongly 
aperiodic random walk. Given any point x in Rand any €, 0 < € < 1, 
there is some N = N(x,€) such that 

Pn(O,x) ;;::: (1 - €)n for n ;;::: N. 

Proof: The random walk is recurrent, so that 2: Pn(O,O) = oo, 
which implies that the power series 2: znPn(O,O) has radius of con
vergence one. Hence 

n-+ co 

It follows that, given any € with 0 < € < 1, 

(1) 

for infinitely many positive integers n. We also observe that if (1) 
holds for n = m, then 

(2) 

for every integer k ;;::: 1. Now we pick an arbitrary point x in R, 
and from the infinite sequence of integers m for which (2) holds we 
select m, as we may by use of part (a) of P1, such that 

(3) mm P;(O,x) = A > 0. 
m<JS2m 
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When n > 2m, we write n = (k + 1)m + r, 0 < r ::S: m, so that 

Pn(O,x) ;;:::: Pm+r(O,x)Pkm(O,O), 

and using (2) and (3), 

Pn(O,x) ;;:::: A(1 - e)mk > A(1 - e)n. 

Even though A < 1, we have shown that 

xeR, 
n-+oo 

for every e between 0 and 1 which implies that P2 is true. 
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The next lemma concerns a well-known10 exponential lower bound 
for the Bernoulli distribution. In terms of Bernoulli random walk it 
becomes 

P3 Let Sn = X1 + · · · + Xn, in the notation of D3.1, denote 
Bernoulli random walk with 

0 < p = P(O, 1) = P[Xk = 1] = 1 - P(O, - 1) < 1. 

There exists a constant a > 0, depending on p, but independent of n, 
such that 

p[ I ~n - (2p - 1) I ;;:::: E] ::S: ze-a£2 n 

for all n ;;:::: 1 and all E > 0. 

Proof: For convenience we call Tn = n- 1[Sn - n(2p - 1)]. Since 
!Tnl ~ 2, P3 is automatically true when e > 2 so that we may assume 
that 0 < E ::S: 2. We may also simplify the problem by proving only 
that 

(1) n;;:::: 1, 0 < e ::S: 2. 

for some a > 0. The proof of ( 1) with T n replaced by - T n will be 
the same, since it concerns the Bernoulli random walk - Sn. In 
other words, if we prove ( 1) with a = a(p ), for arbitrary p, 0 < p < 1, 
then ( 1) will hold for - T n with a = a( 1 - p) and P3 will hold with 
a = min [a(p), a(1 - p)]. 

Using the notation of D3.1, we obtain, for every t > 0 and E ;;:::: 0, 

(2) P[Tn ;;:::: e] ::S; e-tEE[e1Tn; Tn ;;:::: e] ::S; e-tEE[efTn ]. 

10 This is S. Bernstein's estimate, [84], pp. 322-326. 
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Using the independence of the random variables Xk (P3.1) 

(3) E[etTn] = E[e~,l<X~c-2P+l>] =IT E[e~<X~c-2P+l>] 
k=l 

= {E[e;;<xl-2p+l)]}n = [pe~(l-p) + (1- p)e-n2tP]n. 

Expanding the function 
f(x) = pez<l-P> + (1 - p)e-xp 

in a Taylor series about the origin, one readily verifies that f(O) = 1, 
j'(O) = 0, j"(O) > 0. Hence there exist two constants k1 > 0, 
k2 > 0, depending on p such that 

f(x) ~ 1 + klx2 ::::;; eklx2 

whenever lxl ::::;; k2 • Therefore it follows from (2) and (3) that 

P[Tn ;::: e] ::::;; e-t£[ j (~) r ::::;; e<-t£+<4k1t2>Jn> 

when l2tl ::::;; nk2 • Now we let t = cne where c > 0 is still to be 
determined. Then 

when l2cel ::::;; k2• Since e ::::;; 2 we may indeed choose a small enough 
positive value for c so that 2ce ::::;; k2 and simultaneously c - 4k1c2 > 0. 
If we then set a = a(p) = c - 4k1c2 , it is clear that we have proved 
(1) and hence P3. 

We are now in a position to prove the strong ratio theorem (T1). 
The proof of Orey [64] uses the elegant device of first imposing the 
condition that P(O,O) > 0. In P4 we therefore consider only random 
walk with this property, and the subsequent proof of T1 will show 
how the assumption that P(O,O) > 0 may be removed. 

P4 For every aperiodic recurrent random walk with 0 < P(O,O) = 
1 - a < 1 

(a) 

(b) lim 
n-+oo 

lim Pn(O,O) = 1, 
n-+oo Pn+l(O,O) 

Pn(O,x) 1 fi ll R 
Pn(O,O) = or a x E . 

Proof: The assumption that P(O,O) > 0 implies that Pn(O,O) > 0 
for all n ;::: 0. Therefore we know from P1 that the random walk in 



5. THE STRONG RATIO THEOREM 47 

P4 is strongly aperiodic. That is crucial because it will enable us to 
apply P3 in the estimation procedure which follows. 

We may decompose 

(1) Pn(O,O) = Po[xn = 0] 

= i P0 [xn = 0; n - i S(x;_ 1, X;) = k] 
k=O j=1 

according to the number of jumps of the random walk in time n, if 
we say that a jump occurs at time j - 1 if X; _ 1 :1= X;. Since P(O,O) = 
1 - a, the probability of k jumps in time n is given by the binomial 
distribution 

(2) 

But if a jump occurs at time j and if X; = x, then the probability 
that X;+l = y is 

(3) Q(x,y) = a- 1P(x,y) for x :/= y 
= 0 for x = y. 

Equation (3) defines a perfectly legitimate transition function Q(x,y). 
We may call its iterates Qn(x,y) and conclude from the identity 

P(x,y) = (1 - a) S(x,y) + a Q(x,y), x,yER 
that 

n 
(4) Pn(O,O) = L Qk(O,O)b(n,k,a), n;::: 0. 

k=O 

Now we shall decompose the sum in equation (4) into two parts 
(L = Ln./ + Ln.£"), Ln./ being over the set of integers k such that 
0 ::;; k ::;; n and in addition lk - nal < €n. Here € is an arbitrary 
positive number which will tend to zero later, and Ln./ is simply the 
sum over the remaining values of k between 0 and n. We shall use 
the exponential estimate in P3 in the evidently correct form 

(5) "' "b( k ) 2 -A£2n L,.n.£ n, ,a ::;; e , n;::: 1 

for some positive constant A which may be chosen independent of €. 

Finally we use (4) to decompose the ratios 

(6) Pn(O,O) = Ln./Qk(O,O)b(n,k,a) + Ln./Qk(O,O)b(n,k,a). 
Pn+1(0,0) Pn+1(0,0) Pn+1(0,0) 
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In view of (5) and P2, the last term in (6) is bounded above by 

whenever 0 < () < 1, so that this term tends to zero as n---+ oo. It 
follows that 

(7) lim 
Pn(O,O) 

lim 
Ln.e'Qk(O,O)b(n,k,a) 

< 
n-+co Pn+1(0,0) - n-+co Pn+l(O,O) 

::::; lim 
[Ln+ 1./Qk(O,O)b(n,k,a) ] 

p (0 0) + Rn,€ ' n-+"' n+1 • 

Here Rn,€ is an error term which tends to zero as n---+ oo. (It is of 
the form [Pn+l(0,0)]- 1 2.,"' Q"(O,O)b(n,k,a) where 2.,"' extends over all 
values of k which are included in the summation Ln./ but not in 
Ln + 1./. Hence 

I I < Ln.€/2"b(n,k,a) 
Rn,€ - p (0 0) 

n+1 • 

for all sufficiently large n, and tends to zero by previous arguments 
using P2 and P3.) Resuming the estimation from (7), 

(8) 
lim Pn(O,O) < lim Ln + 1,/Qk(O,O)b(n,k,a) 

n-+co Pn+l(O,O) - n-+co Ln+ 1,/Qk(O,O)b(n + l,k,a) 

-1. b(n,k,a) 
::::; 1m max 

n-+co lkjlk-(n+1lai:S€(n+1)J b(n + 1,k,a) 

-.- n+1-k 
hm max 
n-+co lkjlk-<n+1lai:S€(n+1)J (n + 1)(1 - a) 

< lim (n + 1)(1 - a + £) = 1 + _£_, 
-n-+co (n+1)(1-a) 1-a 

Since £ can be taken arbitrarily small, we have shown that 

lim Pn(O,O) < l 
n-+co Pn+l(O,O)- . 

Exactly the same method of proof may be applied to the reciprocal 
ratio Pn+ 1(0,0)/Pn(O,O) which of course also has upper limit one, so 
that part (a) of P4 is proved. 
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To prove part (b) of P4, use Pl.Z to write 

n 

Pn(O,x) = L Fk(O,x)Pn-k(O,O), n ;::: 1. 
k=O 

For every positive integer m 

r Pn(O,x) . ~ Pn-k(O,O) ~ 
n~ Pn(O,O) ;::: !~~ k~o Fk(O,x) Pn(O,O) = k~o Fk(O,x), 

where we applied part (a) of P4 to evaluate the lower limit. Since 
the random walk is recurrent, the last term tends to one as m---+ oo, so 
that 

(9) I. Pn(O,x) 1 
lm p (0 0);::: . 

n-+ oo n ' 

To complete the proof of P4, suppose that (b) IS false. Then 
there is some x0 E R where 

lim Pn(O,xo) = 1 + 8 > 1. 
n-+"' Pn(O,O) 

We may choose an integer k such that Pk(x0 ,0) > 0. Then 

(10) PP:(~~~) = Y~o ~:~~:~? Pk(y,O) + ;n~~~oj Pk(x0 ,0). 

The left-hand side has limit one as n---+ oo, so that 

1 ;::: L Pk(y,O) lim ~n((~,~)) + (1 + 8)Pk(x0 ,0) 
y=Fxo n-+oo n ' 

;;::: 1 + 8Pk(x0 ,0) > 1, 

providing the contradiction that completes the proof of P4. 

Finally we shall drop the hypothesis that P(O,O) > 0, to obtain 

Tl For every strongly aperiodic recurrent random walk 

(a) 

(b) 

lim Pn(O,O) - 1 
n-+oo Pn+l(O,O) - ' 

I. Pn(O,x) 1 fi ll R 
n~~ Pn(O,O) = or a X E . 

Proof: First observe that it will suffice to prove part (a) only. 
For once this is done, the proof of part (b) in P4 may be used to 
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obtain (b) here too-it did not depend on the positivity of P(O,O) at 
all. Now let s denote the smallest positive integer such that 
P 8(0,0) > 0. Actually any positive integer with this property would 
do, and we may of course assume that s > 1, as the case of s = 1 was 
settled in P4. It is clear from P1 that such a value of s exists, and 
also that the transition function 

Q(x,y) = P8(x,y) 

is again the trans1t10n function of an aperiodic recurrent random 
walk. It satisfies the hypotheses of P4, so that 

(1) lim Qn(O,O) = lim Pn8(0,0) = 1. 
n-+ex> Qn+l(O,O) n-+ex> P(n+l)s(O,O) 

Therefore, as is easy to see, we shall have proved part (a) of T1 if 
we show that 

(2) lim Pns+r(O,O) = 1 for 1 < r < s. 
n-+ex> Pns(O,O) -

One obtains a lower estimate for the ratio in (2) from 

(3) Pns+r(O,O) = L P,(O,x}Pn8(x,O). 
zeR 

If we apply P4(b) to the ratios 

Pn8(x,O) Qn(x,O) 
=""'~,.;. = ---· Pns(O,O) Qn(O,O) 

then (3) leads to 

ll·m Pns+r(O,O) "" p (O ) 1. Qn(x,O) 
P (0 0) > L.. T ,X 1m Q (0 0) n-+ex> ns • - lzlsM n-+ex> n > 

L Pr(O,x) 
lzi:SM 

for every M > 0, so that 

(4) ~~~ p; ~<6~o~> ~ 1. 

The upper bound will come from 
n 

Pn(O,O) = L Fk(O,O)Pn-k(O,O), n ~ 1, 
k=O 

with Fk(O,O) as defined in D1.2. It is first necessary to verify that 
Fk(O,O) > 0 for all sufficiently large values of k, say for all k ~ N 
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(that follows quite easily from the recurrence and strong aperiodicity 
of the random walk). Then we choose a positive integer p such that 
p(s - 1) ;:::: N, and let n---+ oo in 

(5) P<n+v>s(O,O) = <n~>s Fk(O O) P<n+v>s-k(O,O). 
Pns(O,O) k= 0 ' Pns(O,O) 

If Tl were false, then (2) would have to fail, and in view of (4) there 
would be some value of r, 0 ~ r < s such that the ratio Pns+r(O,O)f 
Pns(O,O) has upper limit 1 + S > 1. Let us suppose this to be so. 
The coefficient of this ratio on the right-hand side in (5) is Fvs-r(O,O) 
which is positive by our choice of p. As the left side in (5) tends to 
one, we obtain 

(6) 1 ;:::: (1 + S)Fvs-r(O,O) 

+ 2: [klk:>M; k~ps-r] 

for every M > 0. Using (4) 

1 2:: (1 + S}Fps-r{O,O} + L Fk(O,O} = 1 + SFps-r{O,O} > 1 
k~ps-r 

which is the desired contradiction. Hence Pns+r(O,O)fPns(O,O) has 
upper limit at most one for every r, equation (2) holds, and Tl is 
proved. 

Remark: Although the dimension of the random walk did in no 
way seem to affect the proof of Tl, we shall see in the next chapter 
(T8.1) that Tl has only been proved when d ~ 2. The reason is 
that no aperiodic recurrent random walk exists when d;:::: 3. Of course 
there are random walks of dimension d ;:::: 3 where all or part of the 
conclusion of Tl are valid (for instance simple random walk in any 
dimension satisfies (a) of Tl). On the other hand, one can easily 
exhibit a transient strongly aperiodic random walk that violates Tl. 
Any one-dimensional random walk with positive mean will serve as 
an example, if P(O,x) > 0 only at a finite number of points. It can 
be shown that Pn(O,O) then decreases geometrically, so that not only 
Tl is false, but also the crucial estimate in P2 is violated. 

Problems 

1. For an arbitrary random walk, let 

Em,n = Gn+m{O,O) - Gm(O,O) 
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denote the expected number of visits to the origin in the time interval 
[m,m + n]. Prove that 

Eo,n ::?: Em,n for all m ;?: 0, n ;?: 0. 

2. Again for arbitrary random walk prove that 

L F 1(0,x) = 1, while L Fn(O,x) = 1 
~R ~R 

when n ;?: 2. 

3. A two-dimensional random walk is defined (in complex notation) by 

0 < P(O, 1) = P(O,- 1) = p < 1, P(O,i) = 1 - 2p, 

so that P(O,z) = 0 for all other z = m + ni. Show that this random walk 
is transient and calculate F and G. 

4. Find the simplest possible expression, in terms of binomial coeffi
cients, for Pn(O,O) for simple random walk in the plane. Apply Stirling's 
formula to show that this random walk is recurrent. This fact-together 
with the result of the next problem, constitutes a famous theorem of 
Polya [83], 1921. 

5. Use Stirling's formula to show that simple random walk is transient 
in dimension d ::?: 3. 

6. For an arbitrary aperiodic recurrent random walk Xn starting at 
x0 = 0, calculate the expected number of visits to the point x 'f. 0, before 
the first return to 0. Show that the answer is independent of x (and of the 
random walk in question). 

7. Repeat the calculation in problem 6 for transient random walk. 
8. Explain why (6) and (7) were easy, and why it is harder to calculate 
(a) The expected number of returns to 0 before the first visit to x; 
(b) The probability of a visit to x before the first return to 0; 
{c) The probability of return to 0 before the first visit to x.U 
9. Express the probability P[Rn > Rn_ 1] that a new point is visited at 

time n in terms of the sequence Fk(O,O). Use your result to prove the 
statement of problem 2. 

10. The state space R of a random walk is subjected to the following 
indignity: the points of R are painted red with probability a and green 
with probability 1 - a. The colors of distinct points are independent. 
Now we wish to define T .. as the first time that the random walk lands on a 
red point. Define an appropriate probability space (0, .?F, P) on which 
Ta = min [n j n::?: 0; Xn E set of red points] is a bona fide random variable, 
and on which also Xa = xTa is a random variable. 

11 This problem is intended to give a glimpse of the difficulties in store for 
us. Large parts of Chapters III and VII are indeed devoted to the three 
questions (a), (b), and (c). 
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11. Continuing (10), prove that 

P[Ta > n] = E[{1 - a)Rn], n;;:: 0, 

a 
P[xa = x] = 1 _ a P[T < Ta], XER. 

Here T = min [n J n;;:: 0, Xn = x], and x0 = 0, while Rn is the range of 
T4.1. 

12. Continuing (11), prove that for transient random walk 

lim P[aT" > t] = e-<l-Flt, t;;:: 0. 
a~o 

13. Continuing (11), prove that for simple random walk in one dimension 

lim P[axa ::; y] = F(y) 
a~o 

for all real y, where F(y) is the distribution function with density 

l eo e-• ds 
f(y) = F'(y) = JyJ -2 • 

IYI S 
y ;6 0. 

14. Let A denote the random subset of R constructed, as in problem 10, 
by selecting each point of R with probability a. If cpA is the characteristic 
function of the set A then 

n 

Nn(a) = L CfA(xk) 
k=O 

may be interpreted as the occupation time of the random set A up to time n. 
Show that E[Nn(a)] = (n + 1)a, and that a2[Nn{a)]/n2 ~ 0, so that 
Nn(a)fn ~a in measure. (A proof of convergence with probability one may 
be based on Birkhoff's ergodic theorem since the sequence cpA(xk), k = 
0, 1, 2, . . . forms a so-called strictly stationary process.) Although all this 
goes through for arbitrary random walk, prove that the limit of a2[Nn(a)]fn 
is finite or infinite exactly according as the rand.om walk is transient or 
recurrent. It has the value 

a(1 - a)(1 + F)/(1 - F). 

15. Continuation. For arbitrary transient random walk derive a central 
limit theorem for the occupation time Nn(a) of a random subset of the state 
space with density a. As shown by Whitman, 

lim P[Nn(a) - na ::; x{na(1 - a)(1 + F)/(1 - F)F'2] 
n~co 

= 1 Jz e-t2f2 dt, 
v21r - oo 

-00 <X< 00, 

Hint: Verify that the limiting moments are those of the normal 
distribution. This will suffice according to P23.3 in Chapter V. 



Chapter II 

HARMONIC ANALYSIS 

6. CHARACTERISTIC FUNCTIONS AND MOMENTS 1 

As in the last chapter R will denote the d-dimensional group of 
lattice points x = (x1, x2, ... , xd) where the x1 are integers. To 
develop the usual notions of Fourier analysis we must consider still 
another copy of Euclidean space, which we shall call E. It will be 
the whole of Euclidean space (not just the integers) and of the same 
dimension d as R. For convenience we shall use Greek letters to 
denote elements of E, and so, if R is ex-dimensional, the elements of E 
will be () = ( 01, 02, •.. , ()d), where each 01 is a real number for 
i = 1, 2, ... , d. The following notation will be convenient. 

Dl For x E R, () E E, 

Given, as in Chapter I, a random walk which is completely specified 
by its transition function P(x,y) on ad-dimensional state spaceR, we 
make the definition 

D2 The characteristic function of the random walk is 

cp( 0) = L P(O,x)e1r·e, () E E. 
reR 

Thus cp(O) is nothing but a special kind of Fourier series, special in 
that its Fourier coefficients are non-negative and their sum over R is 

1 The material of this section is well known. More detailed expositions are 
in [18], [23], [35], [73], and [84], for the one-dimensional case, and the 
extension to dimension d 2: 2 is nowhere difficult. For a deeper study of the 
theory of Fourier series, Zygmund's treatise [106) is recommended. 

54 
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one. The term "characteristic function" is customarily used m 
probability theory for Fourier series, or for Fourier integrals of 
probability measures, which are of this special type. 

Many important properties of characteristic functions are in fact 
general properties of Fourier series. After establishing the ortho
gonality of the exponential functions in Pl, we shall record, in P2, a 
very weak form of Parseval's theorem, which in its usual strong form 
amounts to the assertion that the exponential functions form a com
plete orthonormal set. Then in P3 we shall derive the convolution 
and inversion theorems for Fourier series which are elementary as well 
as general. From that point on, most of this chapter will deal with 
special properties of characteristic functions (properties which do 
depend on the non-negativity of the coefficients). Only in section 9, 
P9.1, will we return to a general principle, the Riemann Lebesgue 
Lemma, which will find important applications in several later chapters. 

Our first task is to set up convenient notation for integration on E, 
and in particular on the cube C in E with center at the origin and sides 
of length 27T. 

D3 C = [ 0 I 0 E E, I 01 I :s; 7T for i = 1, 2, ... , d] 

and for complex valued functions f( 0) which are Lebesgue integrable on C, 
the integral over C is denoted by 

Jf dO= ( f dO= In .. ·In f(O) d01 ••• dOa. Jc -n -n 

Thus dO will always denote the volume element (Lebesgue measure in E). 
To achieve corresponding economy of notation for summation over R, we 
shall write 

_Lg(x) = _Lg(x) when L lg(x)l < oo. 
xeR xeR 

In most of our work f( 0) will in fact be a continuous function on C 

so that the integral J f dO is then just the ordinary d-tuple Riemann 
integral. The basic result underlying our Fourier analysis will of 
course be the orthogonality of the exponential functions 

Pl (27T)-a J e18 ·<x-y> dO = S(x,y), for every pair x,y in R. 

The obvious proof proceeds by reduction to the one-dimensional 
case, since the integral in Pl may be written as the product of d 
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one-dimensional integrals over the real interval from -TT to 1r. Thus 
the integral is 

which depends only on the fact that for every integer n 

1 J" - e1" 8 dB = 8(n,O). 
21T -n 

Next we give a very weak form of the Parseval Theorem. Let 
a1(x) and a2(x) be two summable complex valued functions on R, i.e., 
we suppose that 

L lak(x)l < oo for k = 1, 2. 

Then it makes sense to define their Fourier series, / 1 (B) and / 2( B), 
forB E E, by 

k = 1,2. 

Since the ak(x) are summable, the series defining A( B) converge 
absolutely, so that in fact each A( B) is a continuous function on E. 
Then Parseval's Theorem is (in the notation of D3) 

P2 

Proof: Using the summability condition one can interchange 
summation and integration on the left so that 

and using the orthogonality relation P1 we immediately get P2. 

Remark: Actually P2 is valid also under the weaker condition that 

L lak(x)j2 < oo for k = 1, 2. 

Under this condition the functions l/112 , l/212 and/1] 2 are all Lebesgue 
integrable on C, so that P2 makes perfect sense. In particular, let 

/1(B) =fiB) =/(B), 

a1(x) = a2(x) = a(x) = (2TT)-a f e-lx·8j(B) dB. 
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Then the two conditions 

2 Ja(x)J2 < oo and Jlf(8)J 2 d8 < oo 

are equivalent, and if either of them holds, then 

This is Parseval's identity which we shall never have occasion to use. 
All we shall ever need in our work is Bessel's inequality, to the effect 
that 

which will be derived in the course of the proof of P9.1. 
Returning now to characteristic functions of a random walk, we 

prove 

P3 If c/>( 8) is the characteristic function of the transition function 
P(x,y), then for every integer n ~ 0 

(a) c/>n(8) = 2 Pn(O,x)etx·o for all 8 in E, 

(b) Pn(O,y) = (27T)-d J e-iy·Ocf>n(8) dB for ally in R. 

Proof: It is instructive to prove the first part using the probability 
interpretation of the problem. In the notation of D3.1 

Pn(O,x) = P[Sn = x] 

where sn = xl + ... + xn is the sum of independent d-dimensional 
random variables which describes the position of the random walk at 
time n. Using P3.1 we obtain 

2 Pn(O,x)eiO·x = E[eiO·Sn] = E[eiO·<Xl + ... + Xn>J 
n 

= n E[ei9·Xk] = c/>n(8). 
k~l 

Here we used the independence of the Xk, and the fact that they each 
have the characteristic function r/>( 8). This proves part (a), and part 
(b) follows by multiplying each side in (a) by e- iy·O and by integrating 
over C. 

To illustrate the use of characteristic functions we now turn to a 
somewhat sketchy discussion of the behavior of characteristic functions 
near 8 = 0, emphasizing those results which will be most immediately 
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useful in deciding whether a random walk is recurrent or not. Some 
related results, such as PS, are included because they are indispensable 
for work in later chapters. We begin with one-dimensional random 
walk, where we pay particular attention to the relations between the 
moments of a transition function and the derivatives of its characteris
tic function at the origin. It is an old and familiar fact in Fourier 
analysis that the behavior of a sequence (or function), far out, is 
reflected in the behavior of its Fourier series (or transform) near the 
ongm. In probability theory these connections become particularly 
sharp and interesting, because we are dealing with a very restricted 
class of Fourier series. 

D4 For one-dimensional random walk, 

ILk = ~ xl'P(O,x), k '?!::. 1. 

IL = IL1• m = m1, 

We only define ILk when mk < oo. 

P4 In one dimension, when mk < oo, the kth derivative cp<k>( 8) is a 
continuous function, and cp<k>(O) = (i)kiLk· The converse is false, i.e. 
cfo<l>(O) may exist without m1 being finite, but if cp<2>(0) exists, then 
m2 = - cp<2>(0) < oo. 

Proof: If m1 < oo, then 

i [cp(8 + h) - cp(O)] = i L (ethz _ l)etBzp(O,x). 

Note that, according to D3, the sum extends over all of R. Now 

iethz - ll = ILhz ett dtl =:;; Ehzl dt = ihxl, 

so that 

Therefore one can interchange this summation over R with the 
limiting operation h ~ 0. This is simply the discrete analogue for 
series of the dominated convergence theorem in the theory of Lebesgue 
integration. By dominated convergence then, 

cp<l>(O) = ~ ~ (ethz)e19ZP(O,x) = i ~ xe19ZP(O,x) 

and cp<1 >(0) = i~L1 • Clearly cp<l>(O) is continuous, the defining series 
being uniformly convergent. Exactly the same argument applies to 
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give the continuity of 4><k>(O) when mk < oo so that the relation 
4><k>(O) = (i)kf.Lk holds. 

Where the converse is concerned we offer the following well known 
example, leaving the verification to the reader. Let 

P(O,x) = clxl- 2(ln lxl)- 1 when lxl ~ 2, P(O,x) = 0 when lxl S 1, 

where the constant c is chosen so that 2 P(O,x) = 1. Then evidently 
m1 = oo, while a somewhat lengthy calculation will show that 4><1>(0) 
exists. 

Finally, suppose that 

4><2>(0) = lim 4><1>(h) - 4><1>(0) 
h-+0 h 

exists. Then it turns out that 

4><2>(0) = lim 0
12 [4>(0) + 4>(- 0) - 2], 

8-+0 

which is a more convenient representation for the second derivative at 
the origin. It implies 

( 2 . xO) 2 ""' (sin Ox) 2 
- 4><2>(0) = lim 2 7J sm z P(O,x) = lim L. - 0- x2P(O,x). 

6-+0 8-+0 X 

Consequently, for each n ~ 0, 

n n (sin Ox) 2 

:r=~n x2P(O,x) = !~~ :r~n (f"X x2P(O,x) S - 4><2>(0). 

This shows that m2 < oo and the proof of P4 is completed by observing 
that the first part of P4 gives m2 = - 4><2>(0). 

The extension of the converse part of P4 to arbitrary even moments 
will never be used and is relegated to problem 1. It is interesting, 
and useful, however, that assertions stronger than those in P4 can be 
made under further restrictive assumptions on P(O,x). We shall now 
consider the case when P(O,x) = 0 for x < 0 and show that one can 
then learn something about m1 from the first derivative of the 
characteristic function. 

PS If P(O,x) = 0 for x < 0 and if 

0 S - i4><1>(0) = lim i 1 - 4>( O) = a < oo, 
8-+0 (} 

"' then 2 xP(O,x) = a. 
:r=O 
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Proof: To simplify the notation let Pn = P(O,x) for x = n ~ 0. 
Then 

(1) 
~ 1 - cos k() 0 
L..,Pk 8 ~ , 
0 

~ sink() 
L.., Pk -()-~ a 
0 

as () ~ 0. Now the plan of the proof is to use this information to 
show that m = 2.0' kpk < oo. 

The rest of the result will then be an automatic consequence of P4. 
We start by breaking up the second sum in (1) into two pieces. The 
choice of pieces is dictated by a convenient estimate of sin x to the 
effect that 

sin x 2 7T 
-- >- for lxl < -· x -7T -2 

Let us use the symbol D to denote [7Tf2B], the greatest integer in 7Tj2B. 
When 0 :::; k :::; D the above estimate shows that sin kB ~ 2Bkf7T. 
Therefore 

(2) 
oo sin k() 2 8 oo sin kB 
'fPk -()- ~ ;. k~O kpk + k=:tl PI<-()-· 

As () ~ 0, D ~ oo, the left-hand side in the above inequality tends 
to a by (1) and so we can conclude that '20' kp" < oo, provided we 
show that the last sum in (2) stays bounded as () ~ 0. This in turn 
will be true if we can show that 

1 00 

A(B) = e ~ Pk 
k=8+1 

stays bounded as () ~ 0, and we shall in fact show more, namely that 
A( B) ~ 0 as () ~ 0. 

When k ~ D + 1, k() ~ 1rj2 > 1. Therefore there is a positive 
number b such that 

1 sink() b 0 
-~~ > when k ~ D + 1. 

This gives 

1 00 
[ sin k()] 1 00 1 ( 0 

IA(B)I :::; biBI k~O 1 - Ji8 PI< = biBI k~/k e Jo (1 - cos kt) dt 

1 ( 0 [ 00 1 - cos kt] 
:::; b() Jo k~o Pk ltl dt. 
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The last term tends to zero in view of the first part of (1), and this 
shows that A( B) -+ 0 and completes the proof. 

The next result concerns a necessary and sufficient condition for the 
finiteness of the first moment m which is quite different from the 
condition in P4. One can extend it to moments of arbitrary odd 
order but this matter is again relegated to the problem section 
(problem 2). 

P6 ml = _!_ J11 Re [1 - c/>( B)] dB :::; oo, 
27T -11 1 - cos B 

and m1 < oo if and only if the function B- 2 Re [1 - c/>( B)] is (Lebesgue) 
integrable on the interval [ -?T,?T]. 

Proof: The real part of the characteristic function is 

Re cf>(B) = 2 P(O,x) cos xB, 

and therefore Re [1 - c/>( B)] ~ 0, and the integral m P6, whether 
finite or not, equals 

2 P(O,x) _!_ f11 1 - cos xB dB 
21T -11 1 - cos B 

in the sense that this series diverges if and only if the integral in P6 is 
infinite. To complete the proof it suffices to verify that 

_!_ J11 1 - cos xB dB = jxj, 
21T -11 1 - cos B 

xeR, 

This is easily done by using the trigonometric identity 

( 
. xB)2 

1 - cos xB = sm 2 = I ~ etkel2• 
1 - cos B . B k= 1 

sm 2 
xeR. 

For higher dimensional random walk (d ~ 2) we shall be content to 
give the analogue of P4 for the first and second moments only, but it 
will first be convenient to adopt a sensible notation, which agrees with 
that of D4. 

DS m1 = 2 jxjP(O,x), 

m2 = 2ixi 2P(O,x), 

f:L = 2 xP(O,x) if m1 < oo, 

Q(B) = 2 (x· B)2P(O,x) if m2 < oo. 
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Note that while m1 and m2 are scalars, 1-' is of course ad-dimensional 
vector. Q( 8) is called the moment quadratic form of the random walk, 
for reasons which will promptly be discernible. 

If X = (X1, ••• , Xd) is a vector random variable such that X = x 
with probability P(O,x), then evidently 

d d 

Q(8) = L L E[X,XJ]8,8i 
I= 1 i= 1 

when the expected values EIX1X11 all exist. But their existence is 
assured by the assumption that m2 = EIXI2 < oo, as one can see from 
the Schwarz inequality 

(8· X)2 ~ I8121XI2· 

This inequality implies that Q( 8) < oo for all 8, and the fact that 

EIX,Xil ~ {EIX,2IEIX?i}I'2 ~ EIXI2 

gives another way of seeing that the coefficients in the quadratic form 
Q( 8) are well defined. 

To illustrate what kind of results can be obtained, we prove 

P7 For d-dimensional random walk, d ~ 1, suppose that m1 < oo. 
If a: is a vector in E, then 

1. r/J(ha:) - 1 . 
lm h = tO:·f'· 

ll-+0 

If, in addition, 1-' = 0 and m2 < oo, then 

1. 1 - ifl(ha:) - Ul( ) 
lm h2 --z~a:. 

ll-+0 

Proof: Imitating the proof of P6 up to a point, 

lr/J(ha:) - 11 = I L (eilla·:r- 1)P(O,x)l 

~ L ie'ha·:r - 1IP(O,x) ~ h L ia:·xiP(O,x) ~ hm1ia:l. 

Therefore the dominated convergence theorem gives 

1 (ellla·:r - 1) 
lim -h [ifl(ha:) - 1] = L lim h P(O,x) = ia:·f'· 
ll-+0 ll-+0 

In the case when 1-' = 0 and m2 < oo we can write 

ifl(ha:) - 1 = L (eilla·:r - 1 - iha:·x)P(O,x). 
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But for complex z with real part zero there is some c > 0 so that 

Re (z) = 0. 

Hence 

2 letha·x - 1 - iha·xiP(O,x) :::;; ch2 2 (a·x) 2P(O,x), 

and by the Schwarz inequality 

2 (a·x)2P(O,x) :::;; lal 2m2 < 00. 
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Again therefore, one can interchange limits to obtain the desired 
result. 

To conclude this section it is only proper to point out that the 
Central Limit Theorem certainly belongs to the domain of ideas dis
cussed here. Although it will play a decidedly minor role in the 
theory of random walk we shall sketch the essential ingredients of the 
traditional Fourier analytical proof of the Central Limit Theorem for 
identically distributed independent random variables. 

A monotone nondecreasing function F(t), - oo < t < oo is a 
distribution function if F(- oo) = 0, F( + oo) = 1. A sequence of 
distribution functions Fn(t) is said to converge weakly to the distribu
tion function F(t) if 

!~~ J:"' g(t) dFn(t) = J:"' g(t) dF(t) 

for every bounded continuous function g(t), - oo < t < oo. An 
equivalent definition of weak convergence is the statement that Fn(t) 
has the limit F(t) for every real t which is a point of continuity of F(t). 

The Fourier transform of a distribution function F(t), 

cp(>.) = J:oo eiAt dF(t), -00 < >. < oo, 

is called the characteristic function of F. If rPn are the characteristic 
functions of a sequence of distributions Fm and if the sequence Fn 
converges weakly to the distribution F, then rPn converges to the 
characteristic function cp of F. Conversely (this is the important con
tinuity theorem of Levy, 1925) if the sequence rPn of characteristic 
functions converges pointwise to a function cp which is continuous at 
>. = 0, then Fn converges weakly to the (unique) distribution function 
F which has cp as its characteristic function. 

We shall illustrate these facts by proving 
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P8 If P(x,y) is the transition Junction of one-dimensional random 
walk with mean f:L = 0, and variance a2 = m2 < oo, then 

lim L Pn(O,x) = F(t), 
n-+<Xl z<.Jnat 

where 

1 It F(t) = ---= e-z212 dx, 
v21r - oo 

- CX) < t < CX), 

Proof: If 

F11(t) = L P71(0,x), 
z<.Jnat 

which clearly is a sequence of distribution functions, the proof of P8 
will follow from the Levy continuity theorem, provided we can show 
that 

for all real A. To this end let 

r/>(8) = L P(O,x)e1z9 , - CX) < 8 < oo, 

be the characteristic function of the random walk, defined in D2. 
Then a simple calculation yields 

rf>n(A.) = foo e!At dF11(t) = 4>" (~)· 
-oo aVn 

In view of P4, 

4> (~) = 1 _ A.2 + E(A.,n), 
aVn 2n n 

where, for every fixed A, the error term E(A,n) tends to zero as n tends 
to infinity. Consequently 

lim Joo eV.t dF11(t) = lim [1 - A2 + E(A,n)]" = e-A2 12, 
n-+ oo _ oo n-+ oo 2n n 

which proves P8. 

7. PERIODICITY 

In the terminology of Chapter I, a random walk with d-dimensional 
state space R is aperiodic if the group Rand the group R are the same 
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group. Of course, given any transition function we could artificially 
increase the dimension of R (by imbedding R in a space of higher 
dimension) and then extend P(O,x) by defining it to be zero, where it 
was not previously defined. Therefore it is important to make our 
terminology absolutely unambiguous. We shall speak of a d-dimen
sional random walk only when R has dimension d, and when P(O,x) is 
defined for all x in R. This random walk is then said to be aperiodic 
if R. = R. 

Having pointed out how one can trivially make an aperiodic random 
walk periodic, by artificially enlarging its state space, we shall now 
show that it is almost as easy to replace a periodic random walk by an 
aperiodic one, which retains all properties which could possibly be of 
any interest. This possibility depends on a simple lemma from linear 
algebra. 

Pl If Ra is the group of d-dimensional integers, and if R is a proper 
subgroup of Ra containing more elements than just the origin, then there 
exists an integer k, 1 ::;; k ::;; d, and k linearly independent points in Ra, 
namely x1 , x2 , ••• , xk, such that R is the additive group generated by 
x1 , x2 , ••• , xk. The integer k is uniquely determined by R, and R is 
isomorphic to the group Rk of k-dimensional integers. 

Proof: A subgroup of Ra is a so-called vector-module over the ring 
of integers (not a vector space, since the integers do not form a field). 
Hence it should be no surprise that the usual proof for vector spaces 
([38], p. 18) breaks down. Indeed the theorem is false for modules over 
arbitrary rings, but true for modules over principal ideal rings-rings 
which like the integers have the property that every ideal is generated 
by a single integer. In this case the usual proof ([99], p. 149) proceeds 
by induction. Suppose that P1 holds for d ::;; n - 1 (it obviously 
does when d = 1), and let X be a submodule (subgroup) of Rn. If 
the last coordinate of every element of X is 0, then we are obviously 
finished, in view of the induction hypothesis. If not, let L denote the 
set of all integers which occur as last coordinates of elements of X. 
Clearly L forms an ideal, and therefore it consists of all multiples of a 
positive integer p. 

Now we may choose an element x E X whose last coordinate xn = p. 
For every y EX there is some integer r (depending on y, of course) 
such that the last coordinate of y - rx is zero. The set Y of all 
points y - rx obtained by varying y over X forms a submodule of 
Rn_ 1, and by the induction hypothesis, one can find k - 1 ::;; n - 1 
linearly independent points x1 , x2 , •• • , xk_ 1 which generate Y. But 
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then the set {x1 , x2 , ••• , x"_ 1 , x} will clearly generate X. It is a 
linearly independent set since the last coordinate of x is not zero, so it 
forms a basis for X of dimension k. This implies that X is isomorphic 
to R" with k ~ n; just map x1 on the first unit vector of R", x2 on the 
second, ... , x"_ 1 on the (k- 1) st, and x on the last unit vector. 
The induction is therefore complete. 

Lemma P1 may be used in the following way. Suppose a random 
walk P(x,y) on the state space R = Ra is given and happens to be 
periodic. If R = {0}, then P(x,y) = 8(x,y) and the random walk is 
of no interest. Otherwise R is isomorphic toR", with basis x1 , x2 , ••• , 

x" for some k ~ d. Then we can define an operator T which maps R 
onto R" linearly and one-to-one so that Tx1 = g1 for i = 1, 2, ... , k, 
where the g1 are the unit vectors in R". On R" we now define the 
function Q(x,y) so that for x,y in R" 

Q(x,y) = P(T- 1x,T- 1y). 

It should be clear that Q(x,y) is a transition function. Since P ;;;::: 0, 
we have Q ;;;::: 0. Since T is linear, Q(x,y) = Q(O,y - x). Finally, 
then, 

L Q(O,x) = L P(O,T- 1x) = L P(O,y) = 1, 
zeRk zeRk yeR 

as P(O,y) = 0 when y is not in R.. 
By our construction the random walk determined by Q on R" is 

aperiodic, and it has all the essential properties of the periodic random 
walk defined by P on R. For example, 

co co 

L Qn(O,O) = L Pn(O,O) ~ 00 
n=O n=O 

so that if one of the random walks is recurrent, then so is the other. 

El One can of course apply similar ideas to stochastic processes which 
are almost, but not quite, random walks by our definition. Consider, for 
example, the triangular lattice in the plane which consists of all points 
(complex numbers) z of the form 

where m and n are arbitrary positive or negative integers or zero. This 
lattice, it is easily seen, forms an additive group G, but G is not a subset 
of the plane of lattice points R = R2• Nevertheless we shall try to define, 
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with G as state space, a stochastic process which, in a reasonable sense, has 
transition probabilities of one third from each point z to the neighbors 

z + 1, z + e2111/3, 

Observing that each point z in G has a unique representation as 

z = m + ne11113 , m,n = 0, ± 1, ± 2, ... , 

we may define a linear operator T mapping G on R2 in a one-to-one 
fashion by 

T(z) = T(m + ne"113) = m + ni. 

This is clearly a group isomorphism of G onto R2. In particular 

T(1) = 1, T(e211113) = -1 + i, T(e- 211113) = -i. 

This isomorphism therefore transforms the given process into the bona fide 
random walk with transition probabilities 

P(0,1) = P(0,-1 + i) = P(O,-i) = 1/3, 

and P(O,x) = 0 for all other x in R = R2. This is a random walk in the 
plane with mean vector p. = 0 and finite second moment m2. As we shall 
see in section 8, T8.1, such a random walk is recurrent. The sense in 
which this makes the given process on G recurrent is obviously the follow
ing. Define Q(O,z) = 1/3 for z = 1, z = e211113, z = e- 2111'3, and zero 
elsewhere on G. Then define Q(z1,z2) = Q(O,z2 - z1) for all pairs z1, z2 in 
G. Finally, imitating Pl.l, let 

Qo(zl,z2) = 8(zl,z2), Q1(Z1,z2) = Q(z1oz2}, 

Q,.+ 1(z1,z2) = ~ Q(z1,z)Q,.(z,z2), n ~ 0. 
aeG 

Then the recurrence of the P-random walk on R 2 implies that 

"" ~ Q,.(O,O) = oo. 
n=O 

It is obvious that one should let this statement serve as the definition of 
recurrence for the process with transition function Q. 

Now we return to Fourier analysis in order to establish a simple 
criterion for aperiodicity, in terms of the characteristic function of a 
random walk. 

Tl A random walk on R (of dimension d), is aperiodic if and only if 
its characteristic function cp( 8), defined for 8 in E (of dimension d) has the 
following property: cp( 8) = 1 if and only if all the coordinates of 8 are 
integer multiples of 27T. 



68 HARMONIC ANALYSIS 

Proof:2 To fix the notation, let 

E = r e 1 e E E; <P< e) = 11 
and let 

E0 = [81 8 E E; (27T)- 18k =integer fork = 1, 2, ... , d]. 

Then the theorem we have to prove takes on the simple form 

(1) E = E0 if and only if R = R. 

The easy part of (1) is the implication R = R ~ E = E0 • It is 
obvious from the definition of cp( 8) that E0 C E, and therefore it 
suffices to prove that E C E0 • Suppose that 8 is in E. This means 
that (277)- 18-x is an integer for all x such that P(O,x) > 0, or for all x 
in I:. (See D2.1 for the definition of I:, R +, and R). By the definition 
of R+, (277)- 1 8-x is then an integer for x in R+, and by the definition 
of R, (27T) -le · x is an integer for all x in R. But we have assumed 
that R = R, and therefore (27T) -le · x is an integer for each unit 
vector in R. By letting x run through the d unit vectors we see that 
each component of 8 is a multiple of 27T. Thus 8 is in E0 , and since 8 
was an arbitrary point in Ewe have shown that R = R ~ E C E0 • 

The other implication, E = E0 ~ R = R, will lead us to a famous 
problem in number theory. When the common dimension d of E0 

and R is zero, there is nothing to prove. So we shall now assume that 
R is a proper subgroup of R and that d = dim (E0 ) = dim (R) ~ 1, 
and attempt to construct a point 80 in E which is not in E0 • Such a 
point 80 has to have the property that (Zrr)- 1 80 -x is an integer for all 
x in R, and that (2rr) - 1 80 has some coordinate which is not an integer. 
Using Pl we construct a basis a1 , a 2 , •.• , ak of R, with k ::;; d. If it 
turns out that k = dim ( R) < d, we are in the easiest case; for then 
we let f1 be any vector in the d-dimensional space E which is perpen
dicular to each basis vector, and such that (277) -lfJ has some non
integer coordinate. Now we take 80 = f1 which gives (2rr) -l 80 • x = 0 
when x = a 1 , a2 , ••• , ak, and hence when x is an arbitrary point in R. 

Finally suppose that k = dim ( R) = d. Let 

ai = (an, ai2• · · · • aid) 

be the basis vectors of R in the cartesian coordinates of R, and let 
d 

.9/ = [ x I x = L ~1a1 , 0 ::;; ~~ ::;; 1]. 
1=1 

Thus .9/ is a subset of Euclidean space which we shall call the 

2 A brief abstract proof can be based on the Pontryagin duality theorem for 
locally compact Abelian groups [74]. 
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fundamental parallelogram of R. Its vertices (those points such that 
each g1 = 0 or 1 fori = 1, ... , d) belong to R, in fact R is the group 
generated by these vertices. Let us call a point of d which is not a 
vertex an interior point. Since, by hypothesis R ::1= R, it is clear that 
some interior point of .91 must belong to R. This implies (as will be 
shown in P2 below, and this is the crux of the proof) that the volume V 
of d is greater than one. 

We shall proceed on the assumption that P2 holds, and begin by 
observing that 

1 < V = ldet AI 
where A = (a11), i,j = 1, 2, ... , d, is the matrix whose entries are the 
components of the basis vectors a1• Since these basis vectors are 
linearly independent, the matrix A must be nonsingular. Hence the 
determinant of A - 1 is ( det A) - 1 which is not zero and which is less 
than one in magnitude. This fact leads to the conclusion that not 
every element of A - 1 can be an integer. Suppose therefore that a 
noninteger element has been located in the pth column of A - 1• In 
this case we let 80 be this column multiplied by 277, i.e., 

80 = 277(A-\p, A- 12p, •• • , A- 1dp)· 

Since A·A- 1 =I, we have (277)- 1a~o:·80 = S(k,p), so that (277)- 1x·80 

is an integer for x = a1, a2, ••• , ad, and by linearity, for all x in R. 
Thus 80 satisfies the requirements; it is a point in E which is not in E0 , 

and the proof of T1 is complete if we show that 

P2 Every fundamental parallelogram which contains an interior 
lattice point must have volume greater than one. 

Proof: Let us take a large cube, in d-dimensional space, with edge 
of length M. The fundamental parallelogram .91 fits into this cube 
approximately M d / V times, if V is the volume of .91. Since each 
congruent (translated) version of .91 accounts for at least two lattice 
points (one boundary point and at least one interior one), it follows 
that the number of lattice points in the large cube is at least of the 
order of 2 MdV- 1 • But the volume Md of the large cube is also 
approximately the number of lattice points in the large cube. Hence 
one has the "approximate inequality" 2MdV- 1 ~ Md, and it is quite 
trivial to make the argument sufficiently precise, letting M--+ oo, to 
conclude that 2 V - 1 ~ 1. Hence V > 1. 

That completes the proof of P2 and hence of T1, but we yield to the 
temptation of pointing out that the converse of P2 is also true. 

P3 If a fundamental parallelogram has volume V > 1, then it must 
contain an interior lattice point. 
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This is the lemma of Minkowski (1896). As it is valuable for its 
applications to number theory rather than probability, the proof is left 
to the reader. 

It is very convenient to use T1 to obtain further estimates con
cerning characteristic functions and transition functions. We shall 
find it expedient to use some basic facts about quadratic forms. ForB 
in E 

d d 

B · AB = 2 2 ajAB1 
l=l i=l 

is called a quadratic form if ali = a11, i.e., if the matrix A = (aii), 
i, j = 1, 2, ... , dis symmetric. Such a form is called positive definite 
if 

B·AB ;;::: 0 for all Bin E, 

and B ·A B = 0 only when B = 0. A positive definite quadratic form 
has positive real eigenvalues. These are simply the eigenvalues of the 
matrix A and we shall often use the well known estimate (see [38], 
Ch. III) 

P4 BEE, 

if A is positive definite and has eigenvalues 0 < .\1 :::; .\2 :::; • · · :::; -'a· 
With the aid of P4 one obtains the following estimate for the real 

part of the characteristic function of a random walk. (Remember 
that by D6.3, C denotes the cube with side 27T about the origin in E.) 

PS For d-dimensional aperiodic random walk, d ;;::: 1, with character
istic function cp( B) there exists a constant .\ > 0 such that 

1 - Re cp( B) ;;::: .\I B 12 

for all B in C. 

Proof: Since R = R, of dimension d ;;::: 1, one can find d linearly 
independent vectors a1, a2 , ••• , a a in the set ~ = [ x I P(O,x) > 0]. 
Suppose that the longest of these vectors has length L = max lakl· 
Then we can conclude that the quadratic form 

QL(B) = 2 (x· B)2P(O,x) 
ixi=>L 

is positive definite. This is so because 
d 

QL(B) 2: 2 (ak· B)2P(O,ak)· 
k=l 
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Since ak E ~. k = 1, ... , d, the right-hand side could vanish only if 8 
were perpendicular to a1, a2, ... , ad. This is impossible as they are 
linearly independent, so QL( 8) is positive definite. 

We have 

Re [1 - cp( 8)] = L [1 - cos x · 8]P(O,x) 
:reB 

(X · 8) ""' (X · 8) = 2 L sin2 2 P(O,x) :2: 2 L.. sin2 2 P(O,x) 
:reB l:rlsL 

2 
Re [1 - cp(8)] :2: 2 L (x· 8)2P(O,x). 

17 [:riJ:rlsL; l:r·lllsnl 

But under the restriction on x that lxl ~ L we know that lx· 81 ~ 1T 

whenever 181 ~ 1rL- 1• Therefore 

2 2 
Re [1 - cp(8)] :2: 2 L (x· 8)2P(O,x) = 2 QL(8) 

1T l:rl :SL 1T 

for all 8 such that 181 ~ 1rL - 1 • If ..:\1 is the smallest eigenvalue of 
QL( 8), then P4 yields 

2 
(1) 1- Recp(8) :2:2..:\1 181 2 for 181 ~ 1rL- 1• 

1T 

The sphere defined by I 81 ~ 1rL -l is a subset of the cube C, since 
L - 1 ~ 1. But now we use T1 which tells us that 1 - Re cp( 8) > 0 
when8ECandl81 :2: 1rL- 1• As1- Recp(8)isacontinuousfunction 
on C we have 

m = min [1 - Re cp(8)] > 0, 
lllllleC;IIII<!:nL- lJ 

which implies 

mL2 
(2) 1 - Re cp(8) :2: - 2 181 2 for 8 E C, 181 :2: 1rL - 1 • 

1T 

Combining the two inequalities (1) and (2) we find that PS has been 
proved with..:\ = min [277- 2..:\1, m1r- 2L2] > 0. 

The estimate provided by PS will turn out to be very useful. With 
rather little effort it can be converted into statements concerning the 
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asymptotic behavior of the transition function Pn(O,x) as n---+ oo. 
The simplest statements of this type would be 

(1) lim Pn(O,O) = 0, when P(O,O) -:? 1, 
n-+oo 

and a slightly more sophisticated version, namely 

(2) lim sup Pn(O,x) = 0, 
n-+ oo xeR 

the latter being correct in all cases except when P(O,x) = 1 for 
some x E R. Note that even (1), although obvious for transient 
random walk, is not too easy to prove in the recurrent case, say by the 
methods of Chapter I. But, using Fourier analytical devices, we shall 
be able to obtain even sharper results than (2), in the form of an upper 
bound on the supremum in (2) which will depend on the dimension d 
of the random walk. Since the dimension is the crucial thing, but not 
aperiodicity, it will be useful to state 

Dl a random walk is genuinely d-dimensional if the group R 
associated with the random walk is d-dimensional. 

Thus genuinely d-dimensional random walk need not be aperiodic, 
but R must have a basis, according to P1, of d linearly independent 
vectors a1 , ••• , aa in R. We shall prove the following result 

P6 If P(x,y) is the transition function of a genuinely d-dimensional 
random walk ( d ~ 1) with the property that3 

(3) Q(x,y) = L P(x,t)P(y,t) 
teR 

is also the transition function of a genuinely d-dimensional random walk, 
then there exists a constant A > 0, such that 

(4) P (0 x) < An-a12 
n ' - ' 

x E R, n ~ 1. 

Furthermore, every genuinely d-dimensional random walk ( d ~ 1 ), with 
the single exception of those where P(O,x) = 1 for some x E R, satisfies 

(5) Pn(O,x) :::;; An- 1' 2 , x E R, n ~ 1, 

for some A > 0. 

Proof: It seems best to begin by explaining the usefulness of the 
transition function Q(x,y) in (3). It clearly is a transition function, 
and if 

3 This class of random walks has the following equivalent algebraic charac
terization: the support ~ of P(O,x) is not contained in any coset of any k
dimensional subgroup of R, for any k <d. 
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cp( 0) = L P(O,x)elx·B 
xeR 

is the characteristic function of the random walk, then Q(x,y) has the 
characteristic function 

ifi(O) = L Q(O,x)elx·e = jcp(O)j2. 
xeR 

Suppose now that we wish to get an upper bound for Pn(O,x). 
Clearly 

(27r)d sup P2n(O,x) = sup Je-lx·ecp2n(O) dO~ J!cfo(O)j 2n dO = f,pn(O) dO, 
xeR xeR 

and the same upper bound is obtained if P2n(O,x) is replaced by 
P2n+ 1(x). Therefore (4) will be true if we can exhibit a constant 
B > 0 such that 

(6) (27r)dQn(O,O) = L ,pn(O) dO~ Bn-d12, n 2: 1. 

The stage is now almost set for the application of PS. We must 
observe only that we may assume Q(x,y) to be aperiodic. If it were 
not, then, as remarked after D1, one might change coordinates to 
replace Q(x,y) by a symmetric, d-dimensional, aperiodic transition 
function Q'(x,y) such that Q' n(O,O) = Qn(O,O). (The characteristic 
function of Q' will be real but it might no longer be non-negative, and 
we shall want to use the non-negativity of if; but that is a decidedly 
minor point, as it suffices to prove (6) for even values of n.) 

As ifi is real, PS gives 

1- ,P(O) 2: .\l0j 2, 8eC, 
for some A > 0. Thus 

0 ;S; ifl(8) ;S; 1 - .\101 2 ~ e-AIBI\ 0 E C, 

L ,pn((}) dO :s; L e-Al9l2n d(} ~ L e-AIBJ2n d(} 

= n-d/2 JE e-Alal2 da = Bn-dt2, n 2: 1. 

The constant B is finite, being the integral of the Gaussian function 
exp (- .\jaj 2 ) over all of Euclidean d-dimensional space. That 
completes the proof of (4). 

As an illustration of the necessity of a condition of the type we 
imposed, consider the two-dimensional aperiodic random walk defined, 
in complex notation, by 

P(O,l) = P(O,i) = 1/2. 
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It is easy to verify that P 2n(O,n - in) is of the order of n - 112 rather 
than n- 1, the reason being that Q(x,y) is one-dimensional in this case. 

The proof of (5) is now immediate. As we saw, the true dimension 
of the state space of Q(x,y) influences the asymptotic behavior of 
Pn(O,x). Thus (5) will hold provided Q(x,y) is at least genuinely one 
dimensional, i.e., if Q(O,x) > 0 for at least one x =I= 0. But an exami
nation of (3) shows this to be always the case, except when P(O,x) = 1 
for some x e R, in which case Q is zero dimensional (Q(O,O) = 1 ). 

This section is concluded by showing that P6 is the best possible 
result of its type, because there are random walks for which the upper 
bound is actually attained, in the sense that 

lim nd 12Pn(O,x) 
n-+ oo 

exists and is positive for every x in R of dimension d. P7 and P8 will 
serve as preliminaries to the explicit calculation of such limits in P9 
and P10. 

P7 For aperiodic random walk of arbitrary dimension d ~ 1, with mean 
vector 11- = 0, second absolute moment m2 < oo, Q(8) = ~zeR (x· 8)2P(O,x) 
is positive definite and 

lim 1 - c/>( 8) = !. 
6-+0 Q(8) 2 

Proof: Since 11- = 0 we may write 

1 - cf>( 8) = !Q( 8) + 2 (1 + i8 · x - !( 8 · x)2 - el9·z]P(O,x). 
zeR 

Observe now that Q(8) is positive definite (as shown in the proof of P5 
for QL(8) :s; Q(8)) and that by P4 Q(8) ~ .\181 2 for some A > 0. 
Therefore it will suffice to prove that 

lim 181- 2 2 [1 + i8·x - -!-(8·x)2 - e19·z]P(O,x) = 0. 
6-+0 zeR 

Clearly each term of the sum over R, divided by 181 2 tends to zero as 
8-+ 0. But to interchange the limits we need to establish dominated 
convergence. There is some A > 0 such that 

11 + it - !t2 - e1tl s At2 

for all real t. Therefore 
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which yields dominated convergence and completes the proof. 
(Observe that P7 represents a considerable refinement of P6.7.) 

The next lemma is the analogue of the criterion in T1 for strongly 
aperiodic instead of aperiodic random walk. 

PS Strongly aperiodic random walk of arbitrary dimension d ~ 1 
has the property that I tfo( 8) I = 1 only when each coordinate of 8 is a 
multiple of 21T. Conversely, every random walk with this property is 
strongly aperiodic. 

Proof: For the direct part suppose that lt/J(80)1 = 1, so that 
tfo( 80 ) = e11 for some real t. It follows that x · 80 = t + 2n1T for all x 
such that P(O,x) > 0, where of course the integer n may depend on x. 
Continuing to work with this fixed value of 80 , we select a point z0 in R 
such that z 0 • 80 = t + 2m1T, where m is an integer. Now consider the 
transition function defined by Q(O,x) = P(O,x + z 0 ), where P(O,x) is 
the transition function of the given, strongly aperiodic random walk. 
We know from D5.1 that Q(O,x) is the transition function of an 
aperiodic random walk. Its characteristic function is 

rp(8) = L Q(O,x)elx·e = L P(O,x + z 0)elx·e = e- 12o'8tfo(8). 
xeR xeR 

Hence 
rp(8o) = e-lzo·Botfo(8o) = e-lzo·Boett = 1, 

but since rp( 8) is the characteristic function of an aperiodic random 
walk we conclude from T1 that 80 is a point all of whose coordinates 
are integer multiples of 27T. 

To prove the converse, suppose that a random walk fails to be 
strongly aperiodic. Then we have to exhibit some 80 in E such that 
lt/J(i10)l = 1, and such that not all of its coordinates are multiples of 27T. 
By D5.1 we can find a point z0 in R such that P(O,x + z 0 ), as a 
function of x, fails to be aperiodic. This random walk has the 
characteristic function exp (- iz0 • 8)tfo( 8). By T1 this function equals 
one at some point 80 in E, not all of whose coordinates are multiples 
of 27T. Hence lt/J(80)I = 1, i.e., 80 satisfies our requirements, and the 
proof of P8 is complete. 

P9 For strongly aperiodic random walk of dimension d ~ 1 with 
mean ,._, = 0 and finite second moments, 

lim (2rrn)a' 2Pn(O,x) = IQI- 112, x E R, 
n-+ oo 

where IQI is the determinant of the quadratic form 

Q(8) = L (x· 8)2P(O,x). 
xeR 
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Proof: 4 According to P6.3, 

(27Tn)di2Pn(O,x) = nd12(27T)-dl2 L cpn(O)e-tx·B dO. 

We perform the change of variables Ovn = a, so that 

(27Tn)~Pn(O,x) = (27T)-~ f cf>n(~;) e-'~~ da. 

ae./nc 

With A > 0, and 0 < r < 7T, one decomposes this integral to obtain 

d d i 1 lz·a (1) (2rrn)2Pn(O,x) = (27T)-2 E e-2Q(a)e- .Iii da 

+ 11(n,A) + 12(n,A) + 13(n,A,r) + lin,r). 

The last four integrals, which will play the role of error terms, are 

12(n,A) = -(27T)-2 e-2Q<ale- ,;;; da, d f 1 lz·a 

iai>A 

/ 3(n,A,r) = (27T) -~ I cf>n( ~;;) e-'~; da, 

A< lalsr./7i 

Our first task is to show that the principal term gives the desired 
limit. If 0 < ..\1 ~ ..\2 ~ • • • ~ ,\d are the eigenvalues of the positive 
definite quadratic form Q( 0), then a rotation of the coordinate system 
gives 

• We reproduce the proof of Gnedenko [35], pp. 232-235, with the obvious 
modifications when d ;:::: 2. 
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But the product of the eigenvalues of Q is the determinant jQj so 
that / 0 = jQj- 112• Since this integral is finite, it is clear that 

lim (277)-~ r e-~Q<a>e-'~; da = IQI-~. 
n-+oo JE 

and therefore the proof of P9 will be complete as soon as we show that 
the sum of the four error terms tends to zero as n ~ 00. 

To estimate 11(n,A) we use P7 which implies that 

lim c/>n (~) = e-!Q<a> 
n-+oo Vn 

for each a in E. Thus 11(n,A) tends to zero as n ~ oo, for every 
A > 0. Next we estimate / 4(n,r) by remarking that 

j/4(n,r)j ~ nd12(277)-dl2 f lcf>(O)jn dO. 
[B)BeC; IBJ > r] 

We know from P8 that lcf>(O)j < 1 - S for someS = S(r) on the set of 
integration. Therefore / 4(n,r) tends to zero as n ~ oo, whenever 
0 < r < 77. Now we have to worry only about / 2 and / 3 • Using P7 
again we can choose r small enough so that 

'c/>n (:n) I ~ e-tQ<a> 

when jaj ~ rVn. Then 

j/3(n,A,r)j ~ (277)- 11' 2 f e-tQ<a> da 

lal>A 
for all n. Similarly 

jl2(n,A)I ~ (277)- 1112 f e-tQ<a> da 

lal>A 

is independent of n. Therefore the sum of / 2 and / 3 can be made 
arbitrarily small by choosing r small enough and A large enough, and 
that completes the proof of P9. 

Remark: The following, slightly stronger form of P9 is sometimes 
useful: 

Under the conditions in P9 

(2) lim [(277n)~Pn(O,x) - jQj-~e-tn<z·Q- lz>] = 0, 
n-+oo 

uniformly for all x E R. 
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This is really an immediate corollary of the method of proof of P9. 
It follows from the way the four error terms / 1, / 2 , / 3 , and / 4 were 
estimated in the proof of P9 that their sum tends to zero uniformly in x. 
Comparing equations (1) and (2), it therefore suffices to show that 

(3) (21T)-~ 1 e-~Q<a>e-'~; da = IQI-~e--/n<z·Q- 1 z>. 

In (3) as well as (2), x·Q- 1x denotes the inverse quadratic form of 
Q(a) = a·Qa. It is easy to verify (3) by making an orthogonal trans
formation from the a-coordinate system to one where the quadratic 
form Q(a) is of the diagonal type. Due to the presence of the ex
ponential involving x on the left in (3), this calculation is slightly more 
complicated than the evaluation of / 0 in the proof of P9, but no new 
ideas are involved. 

E2 Simple random walk of dimension d ~ 1 is not strongly aperiodic. 
Nevertheless it is quite easy to modify the proof of P9 appropriately. The 
characteristic function, for dimension d, is 

1 
tfo(B) = ~ P(O,x)e''""9 = (j [cos B1 + · · · + cos Ba]· 

Although Pn(O,O) = 0 when n is odd, we get 

(1) r [1 a ]2n P2n(O,O) = (Z1r)-a Jc (j k~1 cos Bk dB. 

Since the integrand in (1) is periodic in each coordinate Bk with period 2?T, 
we may translate the cube C by the vector v = (?T/2)(1, 1, ... , 1). Calling 
C + v = C', we see that P 2n(O,O) is still given by (1), if Cis replaced by C'. 

The point of this translation from C to C' was that the integrand in (1) 
assumes its maximum (the value one) at two interior points of C', namely 
at the origin and at the point 1r(1, 1, ... , 1). The contributions from 
these two points to the asymptotic behavior of P2n(O,O) are the same, since 
ltfo(B)I = itfo(B + w)l when w = 1r(1, 1, ... , 1). Also the proof of P9 has 
shown that the asymptotic behavior of the integral in (1) is unchanged if 
we integrate only over arbitrarily small spheres about the points where 
ltfo(B)I = 1. Letting S denote such a sphere, of radius r < ?T/2, one has 

(2) P2n(O,O) - 2(21T)-a Is [~ Jl cos Bk rn dB. 

For small values of IBI 

(3) 1 a 1 a [ (B )] -d ~ cos Bk = -d ~ 1 - 2 sin2 2k 
k=l k=l 

1 IBI 2 _1812 - -u-e 2d, IBI-+0. 
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Applying the estimate (3) to (2), one obtains for large n 

P 2n(O,O)"' 2(277)-d L e- 18~2n dO 

79 

r 1812 [ 1 J"" r2 ]"( d )!! "' 2(277)-d JE e-Tn dO = 2 V 217 _""e--. dx 4n17 2 • 

The integral of the Gaussian density is one, so that we have shown, for 
d-dimensional simple random walk, that 

( d )d/2 
P2n(O,O) "' 2 4n17 , as n~ co. 

The strong form of P9 given in the remark following its proof is 
known as the Local Central Limit Theorem. Although it is an ex
tremely useful tool, in many applications of probability theory, there 
are occasions when one needs even better error estimates (P9 is really 

quite poor for large values of lxl, say when lxl is of the order of Vn 
or larger). There is a variant of P9 (due to Smith [89], 1953, in the 
one-dimensional case) which provides sharper estimates for large lxl. 
For us it will be indispensable in section 26, where it will be combined 
with P9 to shed light on the asymptotic behavior of the Green function 
G(x,y) for three-dimensional random walk. 

PlO For strongly aperiodic random walk of dimension d ;:::: 1, with 
mean 11- = 0 and finite second moments 

. lxl 2 [ • 1 ] hm - (277n)2Pn(O,x) - IQI-~e-2n<x·Q- 1 x) = 0, 
n-~> 00 n 

uniformly for all x E R. 

Proof: Just as in the proof of P9 we write 

1:12 (277n)d'2Pn(O,x) = (z:f'2 1:12 L cfon(O)e-ix·e dO. 

It is now possible to bring the term lxl 2 in under the integral sign on 
the right. Iff( 0) is a function with continuous second derivatives, 
we have by Green's theorem 

lxl2 { f(O)e-ix·e dO = - { f(O) ~[e-ix·e] dO 
Jc Jc e 

- ( e-ix·e ~f(O) dO + boundary terms. 
Jc o 

Here 
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is the Laplace operator. We may apply this idea to tfon( 8) whose 
second derivatives are continuous by the same proof as in P6.4. 
Furthermore the boundary terms vanish since <fo( 8) is periodic. In 
this way 

(1) ~ (2TTn)~Pn(O,x) = - (2n )~ ~ f e-t:r·B ~[tfon(O)] dO 
n 1T n Jc e 

= -(277)-~ J e-'~; ~ [<Pn (;;J] da, 

-"lie 

after a dilation of coordinates to a = vne. 
From now on the proof proceeds much as did the one of P9, the 

principal difference being that we do not rely on 

(2) lim <fon (~) = e-tQ<a>, a E E, 
n-+oo Vn 

but use instead 

(3) aEE. 

The proof of (3) depends on 

(4) ~ [<Pn (;n)] 
= ntfon-1 (:;) ~ [<P (:n)] + n(n- l)<fon-2 (:n) I g~ad tfo (:n) 1

2
. 

A calculation based on P6.4 and P6. 7 shows that 

(5) lim n ~tfo (. ~-) = -m2 = - L JxJ 2P(O,x), 
n-+co a ·y n xER 

!~~n2 ~g~ad<fo(:n)l 2 
=(Qa·Qa) =1Qaj2, 

where Q is the covariance matrix. Applying (2) and (5) to (4) one 
obtains (3). 

Equation (3) suggests the decomposition 

JxJ2 a 
(6) - (2TTn)2Pn(O,x) 

n 
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where the Ik are exactly the same type of error terms as in the proof of 
P9, but with the Laplacian in the integrand. Thus 

-/3 = (27T)-~ I ~ [cfon(:,J] e-'~; da, 
A<lalsr"'n 

-/4 = (27T)-~ I ~ [cfon(Jn)] e-'~; da. 
lal > r..!n; ae.,t?ic 

The principal term on the right-hand side in (6) is easily seen to have 
the right value, i.e., 

lxl 2 IQI_! _.!.(z·Q- lz) 
- 2e 2n 

n 

To show that the sum of the four error terms tends to zero uniformly 
in x one replaces each integral Ik by the integral of the absolute value 
of the integrand. That eliminates the dependence on x. The order 
in which one eliminates the error terms is the same as in P9. An 
examination of (3), (4), and (5) shows the integrand in / 1 can be 
majorized by a bounded function on every finite interval. / 1 therefore 
tends to zero for every A > 0, uniformly in x. To deal with / 4 one 
obtains from (4) and (5) that 

~~cpn (Jn) I S k1(1 - S)n-1 + k2(1 - S)n-2, 

where 1 - S is the upper bound of cp( 8) when 8 E C and I 81 ~ r, and 
where k1 and k2 are positive constants depending on r, but independent 
of n. Thus / 4 ~ 0 for each r, 0 < r < 1r, uniformly in x. Next one 
disposes of / 3 by choosing r small enough so that 

~~cpn (:n)l s Me-!Q<a> 

for some M > 0, when lal s rVn. This shows that / 3 can be made 
arbitrarily small, uniformly in n and x, by taking A large enough. 
Finally, one shows just as in P9 that / 2 tends to zero as A~ oo, 
uniformly in n and x. That completes the proof. 
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8. RECURRENCE CRITERIA AND EXAMPLES 

The harmonic analysis of transition functions provides elegant 
methods for deciding whether a random walk is recurrent or transient. 
We begin with a general criterion, proved by Chung and Fuchs [12], 
1951, in the more general and more difficult context of arbitrary 
(noninteger valued) random walk in Euclidean space. 

Pl If c/>( B) is the characteristic function of a random walk, then 

~~rr L Re [1 - 1tcf>(O)] dB < oo 

if and only if the random walk is transient. 

Proof: The random walk is transient, according to P1.4 if and only if 
CX) 

G = 2: Pn(O,O) < oo. 
n=O 

But 
CX) 

G = lim 2: tnPn(O,O), 
t;<1 n=O 

whether this limit is finite or not. Using P6.3 we have 

(27T)dG = lim i tn Jc!>n(O) dB = lim J1 _dOcf>(B)' 
t;< 1 n = o t;< 1 t 

Observing that, for 0 ~ t < 1, 

f dB 
1 - tcf>(B) 

we find 

which proves Pl. 

This criterion may be used to obtain simple sufficient conditions for 
recurrence or for transience. By analogy with T3.1, which states that 
one-dimensional random walk is recurrent if m < oo and p. = 0, one 
may ask if two-dimensional random walk is recurrent under suitable 
assumptions about its moments. 
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Tl Genuinely d-dimensional random walk is recurrent if 
(a) d = 1 and m1 < oo, 11- = 0, 

or if 
(b) d = 2 and m2 < oo, 11- = 0. 

(c) It is always transient when d;::: 3. 

Proof: Part (a) was already proved in Chapter I, but in E1 below 
we shall also sketch the proof of Chung and Fuchs [12], which uses Pl. 

Concerning part (b) we know from P7. 9 that 

Pn(O,O) ""' Cn-1, as n---+ oo, 

for some positive constant C, provided that the random walk is 
strongly aperiodic. Since the harmonic series diverges, every strongly 
aperiodic random walk in the plane, with mean vector 11- = 0, and 
finite second moments, must be recurrent. But the condition of 
strong aperiodicity can be eliminated quite easily: we must construct 
a new random walk, with transition function Q(x,y) which is strongly 
aperiodic, satisfies the hypotheses in part (b }, and for which 

00 00 

L Qn(O,O} ;S; L Pn(O,O}. 
n=O n=O 

This construction is based on the observation that a random walk with 
P(O,O) > 0 is aperiodic if and only if it is strongly aperiodic. (If 
P(O,O) > 0, then lc/>(0)1 = 1 if and only if c/>(0) = 1. Thus the con
clusion follows from T7.1 and P7.8.) If P(x,y) satisfies the hypotheses 
in (b) we can certainly find an integer t ;::: 1 such that P1(0,0) > 0. 
If the random walk with transition function P1(x,y) is aperiodic, then 
it is strongly aperiodic. If not, then we l)Se P7.1 to construct an 
isomorphism T of the d-dimensional group generated by the points x 
in R where P1(0,x) > 0 onto R, and define 

Q(x,y) = P1(Tx,Ty). 

Now Q(x,y) is strongly aperiodic, 

n;::: 0, 
so that 

00 00 

L Qn(O,O} :s; L Pn(O,O). 
n=O n=O 

By P7.9 the series on the left diverges, and that proves part (b) of Tl. 
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To prove part (c) we may, if necessary by relabeling the state space, 
assume that the random walk is aperiodic as well as genuinely 
d-dimensional. Now we observe that 

1 t-l 
Re 1 - tcp( 8) ::;; Re [1 - cp( 8)]' (J e E, 

and conclude from P7.5 that 

(Z1r)"G = lf;ri f:e 1 _ !cp(O) dO 

::;; L Re [1 ~ c/>(8)] d(J ::;; _\-1 L 1 ~f2 
where,\ is the positive constant in P7.5. Since the integral of IBI- 2 

over Cis finite when d ~ 3 (introduce polar coordinates!) the proof 
of T1 is complete. 

Remark: If it were possible to justify the interchange of limits in 
Pl, then one would have a slightly more elegant criterion: 

"d-dimensional random walk is transient or recurrent according as the 
real part of [1 - cp( 8)] - 1 is Lebesgue integrable on the d-dimensional 
cube Cor not." 

This statement is in fact correct. By Fatou's lemma5 

L Re 1 -1 cp( 8) d(J = L It~~ Re 1 - 1tcp( 8) dO 

::;; !~~ L Re 1 _ 1tcp( O) d(J = (Z1r)"G ::;; oo. 

Therefore Re [1 - cp(0)]- 1 is integrable on Cwhen G < oo, i.e., when 
the random walk is transient. But unfortunately no direct (Fourier 
analytic) proof is known for the converse. The only proof known at 
this time (1963) depends on a number of facts from the theory of 
recurrent random walk-to be developed in Chapters III and VII. 
Nevertheless we shall present this proof here-it is quite brief and will 
serve as a preview of methods to be developed in later chapters. We 
shall freely use the necessary facts from these later chapters, without 
fear of dishonesty, as the resulting recurrence criterion (T2 below) 
will never again be used in the sequel. To avoid trivial but tedious 
reformulations we shall work only with aperiodic random walk and 
prove 

6 Cf. Halmos [37], p. 113. 
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T2 Aperiodic d-dimensional random walk is transient if and only if 
Re [1 - 4>(f1)] - 1 is integrable on the d-dimensional cube C. (In view of 
T1 this is always the case when d ~ 3.) 

Proof: As shown by the argument involving Fatou's lemma we 
need only prove that G < oo when Re [1 - 4>( 0)] - 1 is integrable. 
Let us therefore assume that G = oo, and work toward a contradiction. 
The random walk is then recurrent and aperiodic, and in this case it is 
known that the series 

co 
(1) a(x) = L [Pn(O,O) - Pn(x,O)] 

n=O 

converges for all x E R. (That is shown in T28.1 of Chapter VII.) 
It is further known that 

f 1 - COS X· 0 
(2) a(x) +a( -x) = 2(27T)-d Jc 1 _ 4>(0) dO 

= 2(27T)-d L [1 - cos x· 0] Re 1 _
14>(0) dO, xER. 

(That follows from P28.4 when d = 1; when d = 2 it is proved earlier, 
in P12.1.) Finally it will be shown, in P29.4, that the function 
a(x) + a( -x) has an interesting probability interpretation: it repre
sents the expected number of visits of the random walk Xn, n ~ 0, 
starting at x0 = x, to the point x, before the first visit to the origin. 
Thus, in the notation of P29.4, 

co 

(3) a(x) + a(- x) = g<o}(x,x) = L P:r[xk = x; T > k], 
k=O 

where T = min [k I k ~ 0; xk = 0]. 
The proof of T2 will now be terminated by studying the asymptotic 

behavior of a(x) + a(- x) for large values of x. The Riemann 
Lebesgue lemma (which will be proved in P9.1) may be applied to 
equation (2) to yield the conclusion that 

(4) lx~i_?!, [a(x) + a( -x)] = 2(27T)-d L Re 1 _ 14>(0) dO < oo. 

On the other hand, we may use equation (3) to obtain the desired 
contradiction, in the form 

(5) lim [a(x) + a( -x)] = + oo. 
lxl .... co 
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To achieve this select a positive integer N, and observe that T < oo 
with probability one for recurrent random walk. It follows that 

N N 

a(x) + a( -x) ~ L Pr[xk = x; T > k] = L Px[xk = x] 
k=O k=O 

N N N 

L: Px[xk = x; T ~ k] = L Pk(O,O) - L Px[xk = x; T ~ k]. 
k=O k=O k=O 

For each fixed integer k 

Px[xk = x; T ~ k] ~ Pr[T ~ k] 
k k k 

= L Px[T = j] ~ L Px[x1 = 0] = L P1(x,O), 
J=O i=O 1=0 

which tends to zero as !xl ~ oo. Therefore 
N 

lim [a(x) + a( -x)] ~ L Pk(O,O) 
lrl-+oo k=O 

for arbitrary N. As the random walk was assumed recurrent it follows 
that (5) holds. The contradiction between (4) and (5) shows that 
aperiodic random walk cannot be recurrent when Re [1 - tf>( 8)] -l is 
integrable, and hence the proof of T2 is complete. 

El To prove part (a) of T1 by use of P1, observe that 

(1) r .. Re [1 - !.p(O)] dO ~ faRe [1 - 1t<f.(O)] d8 

when 0 ~ t < 1 and 0 < a < 7T, since the real part of [1 - tc/>(8)]- 1 is 
non-negative. Now 

[ 1 ] 1-t 
(2) Re 1 - t<f.(O) ~ [Re (1 - tc/>)] 2 + t2[1m c/>] 2 ' 

and, given any £ > 0, we may use P6.4 to choose a small enough so that 

(3) lim c/>(8) 1 ~ £ 1 81, 

(4) [Re (1 - tc/>(8))]2 ~ 2(1 - t)2 + 2t2 [Re (1 - c/>(8))]2 

~ 2(1 - t)2 + 2t2£ 2 02 

when 181 ~ a. Consequently, combining (2), (3), and (4), 

faRe [1 - !c/>(8)] d8 ~ (1 - t) fa 2(1 - t)2 d! 3t2£ 282 
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It follows from (1) that 

(5) hm Re dB > - = -· . I" [ 1 J 1 I co dx 1T 
!;'1 -11 1 - tcp(B) - 3 -co 1 + £2X 2 3£ 

By letting £ tend to zero we see that the limit in (5) is infinite, and by P1 
the random walk in question is recurrent. 

The Fourier analytical proof of part (b) of T1 is so similar to that of 
part (a) that we go on to a different problem. We shall prove (without 
using the strong law of large numbers that was used in T3.1) that one
dimensional random walk is transient if m < oo, p. =F 0. Curiously it seems 
to be impossible to give a proof using only P1 and P6.4. But if in addition 
we use P6.6, to the effect that the function B- 2 Re [1 - cp(B)] is Lebesgue 
integrable on the interval [ -1r,1T], then the proof is easy. As we may as 
well assume the random walk to be aperiodic, we have to show that 

(6) !~~fa Re [1 _1 tcp(B)] dB < 00 

for some a > 0. We use the decomposition 

(7) Re [-1 -] _ Re (1 - cp) + (1 - t) Re cp 
1 - tcp - [Re (1 - tcp)]2 + t 2 (Im cp)2 

Re (1 - cp) 1 - t 
~ t 2(Im cp)2 + 11 - tc/>1 2. 

Choosing a sufficiently small so that 

lim c!><B>I ~ liB I 
when IBI < a (this can be done by P6.4}, we see that 

I. fa Re [1 - cp(O)] dB J" Re [1 - cp(O)] dB 
~~~ -a t2(Im c/>)2 ~ c _,. IBI2 < 00 

for some c > 0. Now it remains only to estimate the integral of the last 
term in (7). This integral is decomposed into the sum 

I 
IBIS1-t 

1-t I 1-t 
11 - tcf>12 dB+ 11 - tcf>12 dB 

1-t<IBisa 

~ (1 - t)-1 I dB + _1 _-_t . .±. 
t2 !l-2 

IBIS1-t 

which remains bounded as t / 1, so that (6) is proved. 

I 
1-t<IBI:Sa 

dB 
B2' 

E2 Consider one-dimensional symmetric random walk with the property 
that for some a > 0 

0 < lim lxl 1 +aP(O,x) = c1 < oo. 
l:rl-+ co 
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It is known from T1 that such a random walk is recurrent when a > 1 (for 
then the first moment m will be finite). We shall now prove that the 
random walk in question is in fact recurrent when a ;::: 1 and transient when 
a < 1. This will be accomplished by investigating the asymptotic 
behavior of 1 - 4>( 8) as 8 ~ 0. When a > 2, the second moment exists 
and we know from P6.4 that 1 - f/>(8) ,.., c2 82 for some positive c2 as 8~ 0. 
Thus we may confine the discussion to the case when 0 < a~ 2. We 
shall prove that 

(1) 

when 0 < a < 2, and once this is done it is trivial to conclude from P1 
that the random walk is transient if and only if 0 < a < 1. To prove (1) 
we write 

00 

1 - f/>(8) = ~ [1 - cos n8]P(O,n), 
n=-co 

1 - f/>(8) oo 11 la+l 
(2) l8la = n=~oo lnll+aP(O,n) n8 181 [1 -cos n8]. 

Letting 

f(x) = lxl-<1 +a>(1 - cos x), 

observe that (2) becomes 

-00 <X< 00, 

(3) 

where En= lnll+aP(O,n)- c1 ~ 0 as n~ 00. Since 

J oo Joo 1 - COS X 
- oo f(x) dx = - oo lxla+l dx, 

which exists as an improper Riemann integral for every positive a < 2, 
we may conclude from (3) that (1) holds if 

~~~~0 n=~ 00 I 81 f(n8) = J: 00 f(x) dx. 

But that is true because the sequence of sums above are just the ordinary 
Riemann approximating sums to the integral of f(x). 

Observe that when a = 2 the above argument permits us only to assert 
(and even then one has to be careful) that (1) holds in the sense that the 
integral on the right is infinite. It may be shown, when a = 2, that 
1 - 4>( 8) behaves like a negative constant times 82 In I 8 I for 8 near zero 
(see problem 6). 

In the next example we shall encounter a specific random walk of 
the type discussed in E2 with a = 1. The recurrence of this random 
walk will be obvious from the probabilistic context in which it arises. 
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E3 Consider simple random walk Xn in the plane, starting at x 0 = 0. 
We write Xn in complex form (i.e., for each n ~ 0, Xn = an + tbn, so that 
the random variable an is the real part of Xn, and bn the imaginary part). 
Let us now define the stopping time 

(1) T = min [k 11 :s; k :s; oo; ak = bk]· 

Thus T is the first time the simple random walk in the plane visits the 
diagonal Re (x) = lm (x). According to Tl the simple random walk is 
recurrent and by P3.3 this means that T < oo with probability one. 

We shall be interested in the hitting place XT rather than in the hitting 
time T of the diagonal and define 

(2) Q(O,n) = P0[xT = n(l + i)], 11 = 0, ± 1, ± 2, .... 

The foregoing remarks concerning recurrence show that 
00 

L: Q(O,n) = 1, 
n=- co 

or, expressing it differently, Q(m,n) = Q(O,n - m), m,n = 0, ± 1, ... , is 
the transition function of a one-dimensional random walk. In fact, we 
can even deduce from T1 that Q(m,n) is the transition function of a re
current one-dimensional random walk (which is just the original simple 
random walk in the plane, observed only at those times when it visits the 
diagonal Re (x) = Im (x)). 

It is of interest to determine Q(m,n) explicitly, and we do so, showing 
that its characteristic function ,P( 8) is given by 

(3) ,P(8) = n=~ 
00 

Q(O,n)e1n8 = 1 - sin ~~~· -1T :s; 8 :s; 7T. 

Using (3) a simple calculation (which we omit) will show that 

2 2 1 
(4) Q(O,O) = 1 - -• Q(O,n) = - 4n2 1 for n =F 0. 

1T 1T -

In view of E2, equation ( 4) leads to the already known conclusion that the 
random walk defined by Q( m,n) is recurrent. 

Our proof of (3) depends on a trick. Remembering that Xn = an + tbn, 

x0 = 0, we define 

(5) u 0 = V 0 = 0, n ~ 1. 

Then we may write 

T = min [k I k ~ 1, vk = 0], XT = ~T (1 + i), 

and conclude that 

(6) 
00 

,P(8) = L E0 [e1~u"; T = k]. 
k=l 
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The trick we mentioned consists in observing that the sequence of 
random variables Un is independent of the sequence vn. One simply checks 
that for every pair of positive integers m and n 

(7) Po[Um- Um-1 = r; Vn- Vn-1 = s] 
= Po[Um- Um-1 = r]Po[Vn- Vn-1 = s]. 

Moreover, in so doing, one makes the pleasant discovery that the proba
bility in (7) is zero unless lrl = 1 and lsi = 1, in which case it is one 
fourth. Thus we have observed that un and Vn are a pair of independent 
simple one-dimensional random walks. 

The rest is easy. Since T depends only on the sequence v n> but not on 
the random walk un, we may apply P3.1 to (6), to obtain 

and the observation that Un is a simple random walk gives 

(8) 1/J( 8) = J1 (cos ~) k P 0[T = k] = E0 [ (cos ~) T] · 

It remains only to evaluate E0(sT) for arbitrary s in [ -1,1]. T is the 
first time of return to zero for the simple random walk v n> and as shown in 
equation (5) of El.Z, 

ro 

(9) Eo(sT) = L snFn(O,O) = 1 - V1 - s2 , lsi :5: 1. 
n=l 

We conclude from (8) and (9) that 

(10) ,P(B) = 1- )1- (cos~r = 1- sin~~~' 
which demonstrates (3) and completes this example. 

Remark: A very similar problem concerns two independent simple 
random walks un and vn, both starting at the origin. Let 

denote the first time un and v n meet, so that uT = vT is the meeting 
place. It may be shown that, just as in equations (9) and (10), T and 
Ur have infinite expectation. It may also be shown (see problem 9) 
that 

(11) 1 - !V(l - cos 0)(3 - cosO). 
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Whereas El, E2, and E3 were designed to establish or to disprove 
recurrence for specific random walks, the last example is intended to 
illuminate general principles. We shall take a brief look at abstract 
harmonic analysis on Abelian groups G and exhibit a class of functions 
X;.(g}, g E G, called the characters of G, which exhibit exactly the same 
behavior as the exponential functions e!A:l: on R. Actually we shall 
discuss only one specific group G, but one whose structure differs 
considerably from that of the group of lattice points R. 

E4 We take for G the following countably infinite Abelian group. 
The elements of G are infinite sequences 

g = (~:11 €21 €31 ••• ) 

where each ~:k = ~:k{g) is either 0 or 1, and only a finite number of 1's occur 
in each g. Addition is defined modulo 2; when g E G and hE G, g + his 
defined by 

€ (g + h) = {0 if ~:k{g). = ~:k(h), 
k 1 otherwtse. 

Each gin G can be expressed in a unique way as a finite sum of generators 
gk E G, gk being defined by 

k ~ 1, n ~ 1. 

The identity element of G will be 

e = (0,0, ... ). 

A complex valued function x{g) on G will be called a character of G, if 

(1) lx{g)l = 1, x(g + h) = x(g)x(h) for g, he G. 

It follows from (1) that x(e) = 1 (using none of the special properties of G) 
and that x{g) is either + 1 or - 1 for each g in G (because every element of 
G is of order 2). 

A collection of characters (sufficiently large to be useful) will now be 
constructed as follows. Let I denote the interval [ -1,1]. Each ,\ E I 
can be represented in binary form (uniquely if one adopts a suitable 
convention concerning repeating decimals) as 

(2) 
co ,\ 

.\ = 2 2~. where each ,\k = .\k(.\) = + 1 or -1. 
k=l 

Now we define, for each ,\ E J, 

(3) XA(gk) = ,\k, k ~ 1, 
X;.(e) = 1, 
X;.{g) = X;.{g,l)X;.{g,ll) · · · X;.{g1,.), 
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for every g = g11 + g12 + · · · + g1,. E G. Clearly (3) implies that xA{g) is 
a character. 

Classical harmonic analysis is based on the orthogonality of the ex
ponential functions in P6.1. The analogue of this proposition in the 
present setting is the orthogonality relation 

(4) 1 J1 {1 if g = h 2 -1 x,t{g)x,t{h) d'A = o if g ¥= h, 

where d'A is ordinary Lebesgue measure on /. Although the proof of (4), 
based on (1), (2), and (3) is not at all difficult, the observation that such 
orthogonality relations hold in a very general setting is profound enough 
to have played a major role in the modern development of probability and 
parts of analysis. 8 Continuing to imitate the development in section 6, 
our next step is the definition of a "transition function" 

(5) 

satisfying 

P(g,h) = P(e,h - g), 

P(e,g) ~ 0, 2: P(e,g) = 1 
geG 

and of its "characteristic function" 

(6) cfo('A) = 2: P(e,g)xA{g), 'Ael. 
geG 

Now we can generalize parts (a) and (b) of P6.3. If we define the 
iterates of P(g,h) by 

P0{g,h) = 8(g,h), P1{g,h) = P(g,h), 

P,.+l(g,h) = 2: P(g,f)P,.(f,h), n ~ 0, 
teG 

then P6.3(a) becomes 

(7) cfo"('A) = 2: P .. (e,g)xA{g), 'A E J, n ~ 0, 
geG 

and part (b) of P6.3 turns out to be 

(8) 1 J1 P,.(e,g) = 2 _
1 

cfo"('A)xA{g) d'A, ge G, n ~ 0. 

The proof of (7) and (8) depends on (4) in an obvious manner. 
At this point we have all we need to associate a "random walk" on the 

group G with a transition function P(g,h) on G. Even the measure 
theoretical considerations of section 3 can of course be introduced without 

8 See Loomis [74]. There are some indications that much of the theory of 
random walk extends to arbitrary Abelian groups; it is even possible that such 
an extension might shed new light on purely algebraic problems concerning 
the structure of Abelian groups. 
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any difficulty. Given a transition function, we may therefore call the 
corresponding random walk recurrent, if 

"" (9) L Pn(e,e) = 00, 
n=O 

and ask for criteria for (9) to hold, just as was done in this section, in terms 
of the characteristic function cfo(A.). This is easy, as equation (8) implies 
that (9) holds if and only if 

(10) "" J1 n~ -1 cpn(>..) d). = 00. 

Let us "test our theory" in terms of a very down-to-earth example. 
We consider an infinite sequence of light bulbs, and an infinite sequence of 
numbers PI< such that 

"" L PI<= 1. 
1<=1 

At time 0 all the light bulbs are "off." At each unit time (t = 1, 2, 3, ... ) 
thereafter one of the light bulbs is selected (the kth one with probability 
PI<), and its switch is turned. Thus it goes on if it was off, and off if it was 
on. What is the probability that all the light bulbs are off at time t = n? 
A moment of thought will show that this is a problem concerning a random 
walk on the particular group G under discussion, and that the desired 
probability is Pn(e,e), provided we define the transition function P(g,h) by 

(11) P(e,g) =PI< if g = gl<, 0 otherwise. 

(More specifically, the probability that exactly bulbs number 3, 5, 7, and 11 
are burning at time n, and no others, is Pn(e,g) where g = g3 + g5 + g7 + 
gw and so forth.) 

In this "applied" setting the recurrence question of equations (9) and 
(10) has some intuitive interest. Equation (10) is equivalent to the state
ment that with probability one the system of light bulbs will infinitely often be 
in the state where they are all off, and we obviously want a criterion in terms 
of the sequence {PI<} which specifies the problem. (We shall say that the 
system is recurrent if {PI<} is such that (10) holds.) 

By equation (11) we get from (6) 

"" 
cfo(A.) = L PI<'X.J.(gl<) 

1<=1 
and using (3) 

"" 
cfo(A.) = L PI<AI<, 

1<=1 

so that (10) becomes 

(12) 
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Just as in the proof of P1 we can write 

• • 1 • J1 
(13) L Pn(e,e) = lim L tnPn(e,e) = lim -2 L tn q,n(>.)d>. 

o r /1 o r I 1 o -1 

-lim! J1 d>. 
- .,1 2 -1 1- trp(>.)" 

Here it is possible to interchange limits and integration, since 

(14) J1 d>. 
-11- trp(>.) = f d>. f 

1 -t cp(>.) + 
[Aid>Ul:SO] [Aid>Ul>O] 

d>. 
1 - tcp(>.) 

The first of these tends to the integral of [1- cp(>.)]- 1 by dominated conver
gence, and to the second integral one can apply the monotone convergence 
theorem. Thus (13) and (14) give 

(15) .. 1 J1 d>. 
~ Pn(e,e) = 2 _1 1 _ rp(>.) :::;; 00. 

Let us now partition the interval [ -1,1] into the sets 

noting that ,\ e A" implies that 

where A= p" + P~<+1 + · · ·. Hence (15) yields 

where p.(A") = 2-" is the Lebesgue measure of A". Therefore we have 
obtained sufficient conditions for recurrence and transcience of the "light 
bulb random walk": 

(16) 

(17) 

rffi . ond' . fi . ~ 1 
a su ctent c ttton or recu"ence u '-' 2"" = oo 

k=l Jlc 

a sufficient condition for transcience is f 2"1 < oo. 
k=1 pk 
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Remark: By direct probabilistic methods Darling and Erdos [SS) have 
shown that condition (16) is in fact necessary and sufficient for recurrence. 
For a generalization to random walk on more general Abelian groups see 
[810). 

Remark: The most interesting general result, so far, concerning 
random walk on groups is a generalization of Tl due to Dudley [26]. 
He considers countable Abelian additive groups G, and asks what 
groups admit an aperiodic recurrent random walk. In other words, 
on what groups G can one define a transition function P(x,y), x,y e G, 
such that P(x,y) = P(e,y - x), and 

(a) no proper subgroup of G contains [xI P(e,x) > 0], 

(b) L:'=o Pn(e,e) = oo, 

where e is the identity element and Pn(x,y) is defined as in E4? The 
answer is that G admits an aperiodic recu"ent random walk if and only if 
it contains no subgroup which is isomorphic to R3 (the triple direct 
product of the group of integers). Note that, consequently, it is 
possible to define an aperiodic recurrent random walk on the additive 
group of rational numbers! 

9. THE RENEWAL THEOREM 

In the study of random walk, as in any other area of mathematics, 
there are some quite indispensable propositions, intimately related to 
the subject but not actual goals of the theory. Two such propositions 
will be proved here, the Riemann Lebesgue Lemma (Pl) and the 
renewal theorem (P3). The former belongs in this chapter, being a 
basic result in Fourier analysis. The latter does not; it properly 
belongs in Chapter VI where its most general form appears as T24.2. 
But we shall wish to use P3 long before that and since there is a simple 
proof of P3 due to Feller ([31], Vol. 2) which is based on Pl, we chose 
to put the renewal theorem in this section. 

The Riemann Lebesgue Lemma concerns the Fourier coefficients of 
functions f( 8), integrable on the cube 

c = [8ll8kl ~ TT,k = l, ... ,d] c E. 
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All integrals will be over C, as in D6.3, and dO is Lebesgue measure 
(volume). The spaceR of lattice points is of the same dimension d 
as E, and for a function g(x) on R 

lim g(x) = c 
lxl-+ oo 

has the obvious meaning, i.e., g is arbitrarily close to c outside 
sufficiently large spheres in R. 

Pl Iff( 0) is integrable on C, then 

lim f e1x·9j( 0) dO = 0. 
lxl-+oo Jc 

Proof: First we derive Bessel's inequality: if a function g(O) on C 
is square integrable and has Fourier coefficients 

xeR, 

then 

(1) L la(x)l 2 ~ (217)-a Jlg(O)I 2 dO. 
xeB 

The proof of (1) is elementary, unlike that of Parseval's identity which 
was mentioned in section 6; for if 

gM(8) = L a(x)eix·e, 8 E E, 
[XIIXISMl 

then P6.1 gives 

0 ~ (217)-a Jlg(O) - gM(O)I 2 dO = (217)-a f lg(8)l 2 dO - L la(x)l 2 

lxiSM 

for every M > 0, which implies (1). 
To prove P1 we now decomposef(O). For every A > 0, 

where 
f(O) = gA(O) + hA(O), 0 e E 

gA(O) = f(O) when 1/(0)1 ~ A, 0 otherwise, 
hA(O) = f(O) - gA(O). 

If aA(x) are the Fourier coefficients of gA(8) and bA(x) those of hA(O), 
then 

(2) xeR. 
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Since gA(B) is bounded, it is square integrable, so that (1) implies that 
aA(x)-+ 0 as lxl-+ 00. Also 

(3) bA(x)::;; (27T)-a JihA(B)I dB= (27T)-a J /I(B)I dB= fJA 
f811f(8)1 >A] 

where fJA tends to zero as A-+ oo. It follows from (2) that 

lim (27T)-d Jeix·Bj(B) dB ::;; lim aA(x) + lim bA(x) ::;; fJA 
lxl-> oo lxl-> oo lxl-> oo 

or every A > 0. By letting A -+ oo we are therefore able to complete 
the proof of Pl. 

Now we shall apply the Riemann Lebesgue Lemma to the discussion 
of certain aspects of aperiodic transient random walk. According to 
T2.1 

00 

G(O,x) = L Pn(O,x) < 00 
n=O 

for all x in R, if P(x,y) is the transition function of an arbitrary 
transient random walk. We shall prove (a brief discussion of this 
result precedes the proof of P3) 

P2 For every aperiodic transient random walk 

lim (G(O,x) + G(x,O)] exists. 
lxl-> oo 

Proof: As in the proof of P8.1 we write, for 0 ::;; t < 1, 

(1) 

where ~(B) is the characteristic function of the random walk. The 
dimension is d ~ 1, and the integration is over the same d-dimensional 
cube Cas in Pl. Replacing x by -x in (1), and adding the two 
equations, 

~ n -d J cosx·B (2) f=o t [Pn(O,x) + Pn(x,O)] = 2(27T) 1 _ t~(B) dB 

= 2(27T)-d J cos x· B Re [ 1 _~~(B)] dB, 

so that 

(3) G(O,x) + G(x,O) = ~~~ 2(27T)-d J cos X· B Re [1 _\~(B)] dB. 
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For convenience, let us call 

0 E C, 0 ~ t < 1. 

Now we use the aperiodicity of the random walk to conclude, from 
T7.1, that 

w( 0) = lim wt( 0) < oo, 
t;rl 

0 E C- {0} 

exists for every non-zero value of 0 in C. For every real r, 0 < r < 1r 

we define the sphere S, = [OIIOI < r]. Then, again using T7.1, 
equation (3) may be written 

(4) G(O,x) + G(x,O) = i COSX· Ow(O)dO +lim r COSX· Owt(O)dO. 
c-~ t;rl J~ 

Now we call 

lim f wt( 0) dO = L, 
t;<l Js, 

observing that this limit exists, in view of (4). It is crucial to note, 
at several points in the proof, that wt( 0) ~ 0 on C, and hence also 
w( 0) ~ 0, w( 0) being the limit of wt( 0). Setting x = 0 in ( 4 ), it 
follows from the positivity of w( 0) that 

0 s L, ~ 2G(O,O), 
and that 

lim L, = L < oo 
T-+0 

exists. Now we shall estimate the second integral in (4) with an 
arbitrary, fixed, value of x. Given any £ > 0 we can choose p > 0 
so that 11 - cos X· 01 < £for all 0 in SP. It follows (since wt(O) ~ 0) 
that 

(1 - £)L, ~ lim r cos X· 0 Wt(O) dO ~ (1 + £)L, 
t;<l Js, 

when 0 < r < p, and since £ is arbitrary 

(5) lim-lim f cos X· 0 Wt(O) dO = L. 
r-+o t;<l Js, 

Substituting (5) into (4) we obtain 

(6) G(O,x) + G(x,O) = lim i cos X· 0 w(O) dO + L. 
r-+O c-s, 
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Now let us set x = 0 in (6). Since w(8) 2:: 0 on C we can conclude 
that 
(7) w( 8) is integrable on C. 

Hence (6) takes on the simple form 

(8) G(O,x) + G(x,O) = L cos x · 8 w( 8) d8 + L, xeR, 

and the stage is finally set for the application of the Riemann Lebesgue 
Lemma (Pl). The function cos x· 8 is the sum of two exponentials, 
and as w( 8) is integrable we have 

lim [G(O,x) + G(x,O)] = L < oo, 
lzl-> oo 

which completes the proof of P2. 

It is not easy to evaluate the limit in P2 explicitly; nor is it clear, 
perhaps, why this limit should be of any interest. Therefore we shall 
discuss a special case of obvious interest, namely so called positive 
one-dimensional random walk with the property that 

P(O,x) = 0 for x :S 0. 

Obviously every such random walk is transient so that P2 may be 
applied. It is more to the point, however, that G(O,x) = 0 for x < 0, 
so that P2 reduces to 

lim G(O,x) = L < oo. 
z-++ CX) 

The limit L will be evaluated in P3, where it is shown that 

L = ~· (~ = z~l xP(O,x)) 

when ~ < oo, while L = 0 when ~ = oo. 
This is the now "classical" renewal theorem in the form in which it 

was first conjectured and proved by Feller, Erdos, and Pollard7 (1949). 
Its name is due to certain of its applications. If T is a positive 
random variable, vvhether integer valued or not, it may be thought of 

7 Cf. [31], Vol. 1, p. 286, where Feller credits Chung with the observation 
that this theorem is entirely equivalent to a fundamental law governing the 
ergodic behavior of Markov chains which was discovered by Kolmogorov [67] 
in 1936. Given any probability measure P~c = P(O,k) defined on the integers 
k ~ 1, it is easy to construct a Markov chain with states a 1 , a2 , ••. , so that P~c 
is the probability that the first return to the state a 1 occurs at time k. That is 
why our renewal theorem follows if one knows that the probability of being in 
state a at time n converges to the reciprocal of the mean recurrence time of 
state a. But this is exactly the theorem of Kolmogorov. 
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as a random span of time. Frequently it is a lifetime, of an individual 
in a large population-or of a mass produced article. Suppose now 
that identical individuals, or articles, have life times T 1, T 2 , ••• , which 
are identically distributed independent random variables. If each T k 

is integer valued we define the transition function P(x,y) so that 

P(O,x) = P[Tk = x] for x > 0, k ~ 1, 

and P(O,x) = 0 for x ~ 0. Then, evidently, 

Pn(O,x) = P[T1 + T2 + · · · + Tn = x], X > 0, n ~ 1, 

and 
co 

G(O,x) = L P[T1 + T 2 + · · · + Tn = x]. 
n=1 

Thus G(O,x) is a sum of probabilities of disjoint events. We can say 
that T1 + · · · + Tn = x if the nth lifetime ends at timex (for example, 
if the nth individual dies, or if a mass produced article has to be 
"renewed" for the nth time at time x). Thus G(O,x) is the probability 
that a renewal takes place at time x, and according to P3 it converges to 
the reciprocal of the expected lifetime 

p, = L xP(O,x) = E[T]. 

This conclusion is false, when T is integer valued, unless P(O,x) is 
aperiodic, or equivalently, unless the greatest common divisor 

g.c.d. {x I P[T = x] > 0} 

has the value one. 

PJ For aperiodic one-dimensional random walk with P(O,x) = 0 for 
x ~ 0, p, = L:'= 1 xP(O,x) ~ oo, 

lim G(O,x) = !. ( = 0 if p, = oo). 
n-+ +co 1-' 

Proof: If 
n 

Gn(O,x) = L Pk(O,x) 
k=O 

we have 
Gn+ 1(0,x) = L P(O,t)Gn(t,x) + S(O,x), 

teB 

and, letting n-+ oo, 

(1) G(O,x) = L P(O,t)G(t,x) + S(O,x), xeR. 
teB 
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This equation will be used to determine the value of 

(2) L = lim G(O,x) 
X-++ CO 

which exists according to P2. We shall sum the variable x in (1) 
from 0 to n. Observing that P(O,t) = 0 for t :S 0 and G(t,x) = 0 
for t > x, one obtains 

n n n 

1 = 2 G(O,x) - 2 2 P(O,t)G(t,x) 
x=O x=O ~R 

n n 

= 2 G(O,x) - 2 G(O,x)[P(O,O) + P(0,1) + · · · + P(O,n - x)] 
x=O x=O 

n n-x 

= 2 G(O,x)[1 - 2 P(O,y)] 
x=O y=l 

n 

= 2 G(O,n - x)f(x), 
x=O 

where 

"" f(k) = 2 P(O,x). 
X=k+1 

Observe that 

"" 
(3) 2 f(k) = 1-' 

k=O 

whether 1-' is finite or not. When p. < oo, we let n-- oo in 

n 

(4) 1 = 2 G(O,n - x)f(x), 
x=O 

concluding by a dominated convergence argument from (2) and (3) 
that 1 = Lp. or L = p. -l, which is the desired limit. Finally, when 
p. = oo, the value of L must be zero, for otherwise the right-hand side 
in (4) would tend to infinity as n- oo. Hence the proof of P3 is 
complete. 

Problems 

1. Extend P6.4 by proving that m2k < ao whenever the characteristic 
function has a derivative of order 2k at the origin. 
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2. Extend the result of P6.6 to 

ma=-+-- e d8 m1 3 J" R cfl(8) - 1 + m2(1 - cos 8) 
m2 Zmn2 _, (1 - cos 8)2 ' 

m3 being finite if and only if the integral on the right exists in the sense of 
Lebesgue. 

3. Show that two-dimensional random walk is transient if m < co and if 
the mean vector p. =1= 0. 

4. Prove that if cfl(8) is the characteristic function of a recurrent random 
walk, then so is I cfl( 8) 12 • Consequently two identical, independent, recurrent 
random walks, starting at the same point, will meet infinitely often. 

5. For what real values of a is 

c/J(8) = 1 -I sin ~~a 
the characteristic function of a one-dimensional random walk? For each 
such value of a, describe the asymptotic behavior of P(O,x) as lxl-+- co. 

6. If a one-dimensional random walk satisfies 

P(O,x) "" lxl- 3 as lxl-+- co, 

what can be said about the asymptotic behavior of 1 - c/J( 8) as 181-+- 0? 

7. Simple random walk in the plane. In complex notation the random 
walk is Zm with z0 = 0. If T is the time of the first visit of the random 
walk to the line z = m + i, m = 0, ± 1, ... , let 

Q(O,m) = P0[Re (z.r) = m]. 
Show that 

ao 

~ Q(O,m)e1m9 = 2 - cos 8 - V (1 - cos 8)(3 - cos 8). 
m=-ao 

8. Continuation. Use the remarks preceding the proof of P6.8 to 
calculate 

lim P0[Re (zT,.) ~ nx] -co < x < co, 
n-+ao 

where 

Tn = min [k I k ~ 1, lm (zk) = n]. 

9. Let u,. and Vn be independent simple random walks on the line, with 
u 0 = v 0 = 0. Let T be the first time they meet. Prove that T < co 
with probability one, and use the result of problem 7 to obtain the character
istic function of uT = VT• Is T < co also if Un and Vn are identical but 
independent Bernoulli walks? 
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10. Simple random walk in three space. Let Q(O,n) denote the probability 
that the first visit to the x3-axis occurs at the point x = (xl, x2, x3) with 
x1 = x2 = 0, x3 = n. (The starting point is the origin.) Show that if 

00 

,P(fJ) = 2 Q(O,n)etne, 
n=- «> 

then 

[1 - ,P(fJ)]- 1 = K(3 - 2cos (})• 

where K is the elliptic integral 

2 i"' 2 dt K( z) = 7T- o ~-;r==1 =:::;;:2:::::;,;::::::;2;:= v -z sm t 
~ (2n)2(_:)2n. 

n=O n 4 

11. Continued. If F is the probability to return to zero, explain why 

G = (1 - F)-1 = 2~ f,. K(3 - 2cos (J) dfJ. 

This integral was evaluated by G. N. Watson [104], who showed that 

G = 3(18 + 12VZ - 10v3- 7v6)K2(2vf + V6 - 2VZ - 3) 
= 1.5163860591. 0 0. 

Thus the probability that simple random walk in three-space will ever return 
to its starting point is F = 1 - G- 1 = 0.340537330 0 0 0. 

12. In the light bulb problem of E8.4, let Nn denote the number of bulbs 
burning at time n (N0 = 0). Show that for 0 :s; s < 1, 0 :s; t < 1 

co sn <X) 2 I E[tNn] = f1 [cosh (spk) + t sinh (spk)], 
n=O no k=1 

"'sn 1"' 
e-• 2 I E[Nn] =- 2 [1 - e-2spk], 

n=O no 2 k=1 

13. A die is cast repeatedly, the scores are added and Pn is the probability 
that the total score ever has the value n. What is the limit of Pn as n __.,.. oo 
(Putnam Competition 1960)? Generalize this problem by proving P9.3 
for a "generalized loaded die" with m sides which have the probabilities 
q1 , q2 , o 0 0, qm of coming up. In other words, prove the renewal theorem 
in P9.3, by a simple method which avoids Fourier analysis, for positive 
bounded random variables. 

14. Is there a recurrent one-dimensional random walk Xn which has the 
remarkable property that each random walk Yn = xn + an is also recurrent, 
for arbitrary a E R? 

Hint: One of the random walks in problem 5 will do. 
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15. A particularly elegant continuous analogue of two-dimensional 
simple random walk is the random flight investigated by Lord Rayleigh 
(see [103], p. 419). Here 

Xn = xl + x2 + ... + Xn, n <:: 1 

where the Xt are independent complex random variables with IXd = 1, 
whose arguments are equidistributed between 0 and 27T. Develop the 
requisite Fourier analysis for spherically symmetric functions (see [5], 
Ch. 9) to conclude that 

tP[Ixnl < r] + tP[Ixnl ~ r] = r {"" l 1(rt)J0n(t) dt 

for n <:: 1, r > 0. When n <:: 2 the right-hand side is a continuous 
function of r, and it follows that 

P[lxnl < 1] = P[lxnl ~ 1] = 1/(n + 1). 

Remark: Jk(x) is the Bessel function of order k, which enters the 
picture because, fork = 0, 1, 2, ... 

Jk(x) = ..!... J" e-lkB+iz sin 8 d8. 
27T _, 



Chapter III 

TWO-DIMENSIONAL RECURRENT 
RANDOM WALK 

10. GENERALITIES 

Just about all worthwhile known results concerning random walk 
(or concerning any stochastic process for that matter) are closely 
related to some stopping timeT, as defined in definition D3.3. Thus 
we plan to investigate stopping times. Given a stopping time T we 
shall usually be concerned with the random variable xT, the position of 
the random walk at a random time which depends only on the past of the 
process. There can be no doubt that problems concerning xT 
represent a natural generalization of the theory in Chapters I and II ; 
for in those chapters our interest was confined to the iterates Pn(O,x) 
of the transition function-in other words, to the probability law 
governing Xn at an arbitrary but nonrandom time. 

Unfortunately it must be admitted that the study of arbitrary 
stopping times is far too ambitious a program. As an example of the 
formidable difficulties that arise even in apparently simple problems 
consider the famous problem of the self-avoiding random walk. Let 
Xn be simple random walk in the plane with x0 = 0, and let T denote 
the first time that Xn visits a point in R which was occupied at some 
time less than n. Thus 

T =min [k I k;;::; 1; xk e{x0, X1, ... , xk_ 1}]. 

This is certainly a stopping time, but one whose dependence on the 
past turns out to be of much too elaborate a character to be susceptible 
to a simple treatment. Although it is of course possible to calculate 
the probability that T = n for any fixed n, the distribution of xT 
presents a problem that seems far out of reach; for each x in R, the 

105 
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event "xT = x" depends on the entire history of the random walk up 
to time T, and T may be arbitrarily large. Even a seemingly more 
modest problem, namely that of finding 

lim {P[T > n ]ptn 
n->oo 

lies beyond the horizon of the present state of the art. (The above 
limit, which may be shown to exist without any trouble, holds the key 
to a number of interesting physical problems. Its recent calculation 
to four presumably significant digits [33], offers no significant clue to 
the mathematical complexities of the problem. We shall conclude 
this chapter, in example E16.2, by discussing a related but much 
easier problem that will nevertheless use in an essential way the results 
of this entire chapter.) 

That is one of the reasons why our field of inquiry has to be 
narrowed. Another reason, of greater depth, was mentioned in the 
Preface. We shall study exactly those stopping times which render 
the "stopped" random walk Markovian. These will all be of the 
same simple type. We shall take a subset A C R of the state space. 
It will always be a proper nonempty subset, and its cardinality will be 
denoted by !AI, a positiv_e integer if A is finite, and !AI = oo otherwise. 
And our stopping time will always be of the form 

in other words, T will be the time of the first visit of the random walk to 
a set A. 

Now we give (in Dl below) the principal definitions using measure 
theoretical language, in the terminology of D3.2. This is undoubtedly 
the most intuitive way-but nevertheless we repeat the process once 
more afterward. In equations (1) through (3), following Dl, we 
shall give some of these definitions in purely analytical form, in other 
words, directly in terms of P(x,y) without the intermediate construction 
of a measure space (O,~,P). 

One notational flaw should not be passed over in silence. We shall 
define, in Dl, a function Q(x,y) and its iterates Qn(x,y). These will 
depend on the set A and should therefore logically be called QA(x,y) 
and QA.n(x,y)-but no confusion will result from the omission of A as 
a subscript. 

First we indicate the domain of the functions to be defined. They 
will all be real valued; so, ifwesaythatf(x,y)is definedonR x (R- A), 
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this means that f(x,y) is defined for every x in R and every y in R but 
not in A (f maps R x (R - A) into the real numbers). We shall define 

Dl Qn(x,y) for n ~ 0 on (R - A) x (R - A), 
HA<n>(x,y) for n ~ 0 on R x A, 
HA(x,y) on R x A, 
ITA(x,y) on A x A, 
gA(x,y) on R x R. 

The definitions are, in terms of the time T = TA of the first visit to A, 

Qn(x,y) = Px[Xn = y; T > n]; 
HA<n>(x,y) = Px[xT = y; T = n] for x E R - A, 

= 0 for x E A, n ~ 1, 
= S(x,y) for xEA, n = 0; 

HA(x,y) = Px[xT = y; T < oo] for x E R - A, 
= S(x,y) for x E A; 

ITA(x,y) = Px[xT = y; T < oo]; 
OCJ 

gA(x,y) = L Qn(x,y) for x E R - A, y E R - A, 
n=O 

= 0 otherwise. 

It should be clear how to cast these definitions in a purely analytic 
form. For Qn(x,y) we define Q0(x,y) = S(x,y); then Q(x,y) = 
Q1(x,y) = P(x,y) when (x,y) is in (R - A) x (R - A). Finally, just 
as in P1.1 

Qn+ 1(x,y) = L Qn(x,t)Q(t,y). 
teR-A 

As for H}n>(x,y), with x E R - A, n ~ 1, we could now simply take 

(1) HA<n>(x,y) = L Qn-l(x,t)P(t,y). 
teR-A 

Alternatively, we could write, when x E R - A, n ~ 1, 

(2) HA<n>(x,y) = L L P(x,x1) · • • P(xn_ 1 ,y) 
X1ER-A Xn- 1ER-A 

and then prove the equivalence of (1) and (2). It should also be clear 
that HA(x,y), in the case when x E R - A, is simply 

OCJ 

(3) HA(x,y) = L HA<n>(x,y). 
n=l 

Now it is time to employ these definitions to obtain some simple 
identities that will be extremely useful in the sequel. One of them 
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(P1(b) below) concerns the convergence of the sum defining gA(x,y)
which perhaps is not quite obvious from D1; others concern relations 
between HA, IIA, and gA- In later sections such relations will be 
shown to be familiar ones in the mathematical formulation of potential 
theory-but that is irrelevant at this juncture. 

Pl For arbitrary random walk (recurrent or transient) 

(a) L P(x,t)HA(t,y) - HA(x,y) 
teR 

= {IIA(x,y) - <l(x,y) for x E A, yEA, 
0 for x E R - A, y EA. 

(b) 0 ::;; gA(x,y) ::;; gA(y,y) for all x E R, y E R 

and if, in addition, the random walk is aperiodic, then 

(c) ForxER- A, 

(d) For xER- A, 

gA(x,x) < oo, 

yEA, 

xER. 

HA(x,y) = L gA(x,t)P(t,y). 
teR 

yEA, 

G(x,y) = L HA(x,t)G(t,y). 
teA 

Proof: When x E A andy E A, the left-hand side in Pl(a) is 

L P(x,t)HA(t,y) - HA(x,y) 
teR 

= P(x,y) + L P(x,t)HA(t,y) - <l(x,y). 
teR-A 

Thus we have to show that 

IIA(x,y) = P(x,y) + L P(x,t)HA(t,y), xEA, yEA. 
teR-A 

Decomposing IIA(x,y) according to the value ofT, 

00 

IIA(x,y) = Px[xT = y; T < oo] = L Px[xT = y; T = k] 
k=l 

00 

= Px[xT = y; T =:= 1] + L Px[xT = y; T = k]. 
k=2 
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Here 

Px[xT = y; T = 1] = P(x,y), 

and when k 2::: 2, 

Px[Xr = y; T = k] = L Px[x1 = t; XT = y; T = k] 
teR-A 

= L P(x,t)Pt[xT = y; T = k - 1]. 
teR-A 

Hence 
00 

IIA(x,y) = P(x,y) + L P(x,t) L Pt[Xr = y; T = k - 1] 
teR-A k~2 

= P(x,y) + L P(x,t)Pt[xT = y; 1 ~ T < oo] 
teR-A 

= P(x,y) + L P(x,t)HA(t,y). 
tER-A 

When x E R - A and y E A we have to show that 

HA(x,y) = L P(x,t)HA(t,y), 
tER 
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the right-hand side in P1(a) being zero. This is done, just as in the 
first half of the proof, by decomposing HA(x,y) according to the 
possible values of T. 

The proof of (b) depends on the interpretation of gA(x,y) as the 
expected number of visits of the random walk Xn with x0 = x to the 
pointy before the time T of the first visit to the set A. Since there is 
nothing to prove when either x or y lies in A, we assume the contrary. 
If in addition x # y, then 

00 00 

gA(x,y) = L Qn(x,y) = L Px[Xn = y; T > n], 
n~o n~l 

and letting Ty = min [k J1 ~ k ~ oo, xk = y], 
00 00 

gA(x,y) = L L Px[xn = y; Ty = k; T > n] 
k~l n~l 

00 00 

= L L Px[Ty = k < T]Py[Xn-k = y; T > n- k] 
k~l n~k 

00 00 

= L Px[Ty = k < T] L Py[Xi = y; T > j] 
k~l i~O 

= Px[Ty < T; Ty < oo]gA(y,y) ~ gA(y,y). 
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It follows that for all x,y in R 

gA(x,y) ~ gA(y,y). 

The problem of showing that gA(y,y) < oo for aperiodic random walk 
can be reduced to a slightly simpler one by the observation that 
gA(y,y) :::;; g8 (y,y) when B is a subset of A. Thus it suffices to let 
B = {0}, g8 (x,y) = g(x,y), and to show that 

g(x,x) < oo 

when x :F 0. This is true for transient, as well as for recurrent 
random walk, but for different reasons. In the transient case clearly 

g(x,x) < G(x,x) < oo. 

In the recurrent case 
ao 

g(x,x) = 1 + ~ P:t[xn = x; T0 > n] 
n=1 

where Tll = min [k 11 :::;; k < oo, xk = y]. Since the random walk 
is aperiodic, P:t[T0 < oo] = F(x,O) = 1 by T2.1. In addition it is 
easy to see that 

P:t[To < T:t] = II<O.:tl (x,O) > 0. 

But g(x,x) is the expected value of the number of visits to x (counting 
the visit at time 0) before the first visit to 0. It is quite simple to 
calculate this expectation (it is the mean of a random variable whose 
distribution is geometric) and the result of the calculation is 

g(x,x) = [II<O.:t> (x,0)]-1 < oo. 

The reader who is reluctant to fill in the details will find that P3 below 
yields a much shorter proof that g<o>(x,x) = g(x,x) < oo. 

To prove (c) we decompose HA(x,y) as follows. For x E R - A, 
yeA, 

ao 

HA(x,y) = ~ ~ P:t[xn_ 1 = t; T = n; Xr = y] 

which proves (c). 

n=1 teB-A 
ao 

= ~ ~ P:t[xn-1 = t; T ~ n]P(t,y) 
n=1 teB-A 

= ~ gA(x,t)P(t,y) = ~ gA(x,t)P(t,y), 
teB-A teB 
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Part (d) is of absolutely no interest when the random walk is 
recurrent, for then both sides are infinite (or possibly both are zero in 
the periodic case). However, the proof which follows is quite general. 
We write, for x E R - A, yEA, 

co co 

G(x,y) = L Pn(x,y) = L Px[Xn = y] 
n=O n=O 

co n 

= L L Px[Xn = y; T = k] 
n= 0 lc= 1 

co n 

= L L L Px[Xn = y; T = k; Xr = t] 
teA n=O lc=1 

co n 

= L L L Px[T = k, Xr = t]Pt[Xn-lc = y] 
teA n= 0 lc= 1 

t~ t~1 Px[T = k, Xr = t]}L~o P1[xn = y]} 
= L HA(x,t)G(t,y). 

teA 

That completes the proof of Pl. 

A very simple but powerful technique, successful because the 
random variables X1c = x1c + 1 - X1c are identically distributed and 
independent, consists of reversing a random walk. 

D2 If P(x,y) is a random walk with state space R, then the random 
walk with transition function P*(x,y) = P(y,x) and with the same state 
space is called the reversed random walk. We shall denote by G*(x,y), 
Qn *(x,y), HA*(x,y), TIA*(x,y), gA*(x,y), etc., ... the functions defined 
in D 1 for the reversed random walk. 

As obvious consequences of this definition 

P2 G*(x,y) = G(y,x), 
TIA*(x,y) = TIA(y,x), 

Qn *(x,y) = Qn(y,x), 
gA*(x,y) = gA(y,x), 

each identity being valid on the entire domain of definition of the 
function in question. Note that, for good reasons, no identity for 
HA*(x,y) is present in P2. 

As the first application of reversal of the random walk we derive an 
identity concerning the number of visits Nx of a random walk to the 
point x E R, before its return to the starting point. We shall set 

T 

T = min [k I 1 ::5 k ::5 oo; X1c = 0], Nx = L S(x,xn)· 
n=O 
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Then the expected value of Nz, when x0 = 0, is 
T <X> 

Eo[Nz] = Eo(L 8(x,xn)] = L Po[Xn = x; T > n]. 
n=O n=l 

But 
P0 [Xn = x; T > n] = L P(O,t)Qn_ 1(t,x), 

t¢0 

where Qn(x,y) is defined according to D1 for the set A = {0}. Using 
P2, for n ~ 1 

P0 [xn = x; T > n] = L P*(t,O)Qn_ 1*(x,t) = L Qn_ 1*(x,t)P*(t,O). 
t¢0 t¢0 

But this is the probability that the reversed random walk, starting at x, 
visits 0 for the first time at time n. Thus 

<X> 

P0[xn = x; T > n] = Fn *(x,O), Eo[Nz] = L Fn *(x,O) = F*(x,O). 
n=l 

This enables us to prove 

P3 For recurrent aperiodic random walk 

Eo[Nz] = 1 for all x =I= 0.1 

Proof: All that remains is to observe that 

F*(x,O) = F(O,x), and by T2.1 F(O,x) = 1 for all x in R. 

As a corollary of P3 we get a simple proof that gix,y) < oo for all 
x and y if the random walk is aperiodic. The reduction to the case 
when A = {0} and x = y was accomplished in the proof of P1, and it 
is easy to see that 

1 = E0 [Nz] > Qn(O,x)g10>(x,x) 

for every n ~ 1. By choosing n so that Qn(O,x) > 0 we see that 
g10>(x,x) < oo. 

As a second application one can prove 

P4 For an arbitrary random walk 

L llA(x,y) ~ 1 for all x E A 
1/EA 

and 
L llA(x,y) ~ 1 for all yEA. 
xeA 

1 This answers problem 6 in Chapter I. In the theory of recurrent Markov 
chains f(x) = E0[Nz] was shown by Derman {21] to be the unique non
negative solution of the equation f(x) = .Pf(x)-which happens to be constant 
for recurrent random walk. We shall prove uniqueness in Pl3.1. 
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Proof: According to D 1 

2: IIA(x,y) = P,.[T < oo] ~ 1, 
yeA 

where T = min [k 11 ~ k ~ oo, xk E A]. The second part follows 
from the observation that IIA*(x,y) = IIiy,x), so that 

2: IIix,y) = 2: IIA*(y,x) ~ 1 
zeA zeA 

by the first part of P4. For recurrent aperiodic random walk P4 will 
be strengthened considerably in the beginning of the next section 
(P11.2). 

Remark: The terminology and notation introduced in this section 
will be used throughout the remainder of the book. The rest of this 
chapter (sections 11 through 16) will be devoted to two-dimensional 
recurrent random walk. For this case a rather complete theory of 
stopping times T = TA for finite sets A C R may be developed using 
quite elementary methods. These methods provide a good start, but 
turn out to be insufficient in other cases-namely for transient random 
walk as well as in the one-dimensional recurrent case. Therefore the 
theory in this chapter will have to perform the service of motivating 
and illustrating many later developments. 

11. THE HITTING PROBABILITIES OF A FINITE SET 

Through the remainder of this chapter we assume that we are 
dealing with aperiodic recurrent random walk in two dimensions. 2 

Further, all probabilities of interest, i.e., all the functions in D10.1 
will be those associated with a nonempty finite subset B of R. The 
methods and results will be independent of the cardinality IBI except 
in a few places where the case jBj = 1 requires special consideration. 

The primary purpose of this section is to show how one can calculate 
H 8 (x,y) which we shall call the hitting probability measure of the set 
B. To begin with, we base the calculation on part (a) of P10.1 from 
which one obtains 

2 This will be tacitly assumed. Only the statements of the principal theorems 
will again explicitly contain these hypotheses. 



114 TWO-DIMENSIONAL RECURRENT RANDOM WALK 

Pl For x E R, y E B, and n ;;=: 0 

2 Pn+l(x,t)H8 (t,y) = HB(x,y) + 2 Gn(x,t)[II8 (t,y) - S(t,y)]. 
~R ~B 

Proof: Operating on part (a) of P10.1 by the transition function 
P(x,y) on the left gives 

2 P2(x,t)HA(t,y) - 2 P(x,t)HA(t,y) = 2 P(x,t)[II8 (t,y) - S(t,y)]. 
teR teR teB 

Now we do this again n - 1 times, and the resulting n + 1 equations, 
counting the original one, may be expressed in the abbreviated form 

PH= H + II - I, P2H = PH+ P(II - I), ... , 
Pn+lH = PnH + Pn(II - I). 

Adding these equations, using I to denote the identity operator, one 
finds 

Pn+lH = H + (I+ P + · · · + Pn)(II - I). 

This shows that P1 holds, if we remember that I+ P + · · · + Pn 
stands for 

n 

Gn(x,y) = 2 Pk(x,y), 
k=O 

in view of 01.3. 

The next lemma uses the recurrence of the random walk in an 
essential way. It is 

P2 2 II 8 (t,y) = 2 II 8 (y,t) = 1 for every y in B. 
teB teB 

Proof: Consider the reversed random walk with transition function 
P*(x,y) = P(y,x). If we call II 8 *(x,y) what one gets if one forms 
IT 8 for the transition function P* in accordance with 010.1, then by 
P10.2 

II 8 *(x,y) = II 8 (y,x), for x,y in B. 

This fact was already exploited in the proof of P10.4. Since 
Pn *(0,0) = Pn(O,O), it is obvious that the random walk P* is recurrent 
whenever the original random walk is recurrent. Therefore P2 will 
be proved if we verify that 

2 IIB(x,y) = 1, x E B 
!IEB 
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for every aperiodic recurrent random walk. Here it is convenient to 
use the measure theoretical definition of ll8 , giving 

L lls(x,y) = P,r[Ts < oo] ~ Pz[Tz < oo], 
1/EB 

since Tz =min [k 11 :5; k :5; oo; xk = x] ~ T8 • But 
00 00 

Pz[Tz < oo] = L Fk(x,x) = L Fk(O,O) = F 
k=l k=l 

in the terminology of section 1, and F = 1 since the process 1s 
recurrent. That completes the proof. 

Now P2 opens up an important possibility. It enables us to trans
form P1 into 

L Pn+ 1(x,t)H8 (t,y) 
teR 

= H8(x,y) + L [en + Gn(x,t)][ll8 (t,y) - ~(t,y)], 
teB 

where the en are arbitrary constants (independent oft). We choose 
to let en = - Gn(O,O) and define 

Dl An(x,y) = Gn(O,O) - Gn(x,y), x,y in R, 
an(x) = An(x,O), x in R. 

At this point P1 has beome 

P3 L Pn+l(x,t)H8 (t,y) 
teR 

= H8 (x,y) - L An(x,t)[ll8 (t,y) - ~(t,y)], 
teB 

for x e R, y e B, n ~ 0. 

The further development is now impeded by two major problems. 
We wish to let n -+ oo in P3 and naturally ask 

(i) Does lim n->oo An(x,t) exist? 
(ii) If the answer to (i) is affirmative, what can be said about the other 

limit in P3, namely 

lim 2: Pn+ 1(x,t)H8(t,y)? 
n->oo teR 

In order not to interrupt the continuity of the presentation we shall 
answer these two questions here, and then devote the next two sections 
to proving that the answers are correct. In P12.1 of section 12 we 
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shall prove in answer to (i) that the limit of An(x,y) exists for all x,y 
in R, which we record as 

(i)' lim An(x,y) = A(x,y), lim an(x) = a(x). 
n-+ oo n-+ oo 

The proof of this assertion in section 12 will use in an essential way 
two of our assumptions. The first is that the random walk is aperiodic, 
which is important, because the limits in question need not exist in 
the periodic case. The second assumption is that the dimension of 
the process is two. This is essential only for the proof and in fact we 
shall present a different proof, in Chapter VII, which shows that 

lim An(x,y) = A(x,y) 
n-+ oo 

exists for every aperiodic random walk. 
Concerning question (ii), let us try to simplify the problem. If the 

answer to (i) is affirmative, then it follows from P3 that 

lim 2 Pn+ 1(x,t)HB(t,y) 
n-+oo teR 

exists for every pair x E R, y E B. Let us fix y and call the above sum 
fn+ 1(x). Iterated operation by the transition function P(x,y) shows 
that 

fn+l(x) = 2 P(x,t)fn(t). 
teR 

Here we have used the obvious fact that 0 =:;; fn(x) =:;; 1, to justify an 
interchange of summation. As we know that the limit of fn(x) exists, 
we may call it f(x}, and conclude, again by dominated convergence, 
that 

f(x) = 2 P(x,y)f(y), xeR. 
yeR 

In sec~ion 13, P13.1, we shall show, again using the aperiodicity and 
recurrence of the random walk, that the only non-negative solutions of 
this equation are the constant functions. This means that the limit 
we inquired about in (ii) above exists and is independent of x, so we 
may call it P.s(Y) (as it may well depend on y and on the set B) and 
record the answer to question (ii) as 

(ii)' lim 2 Pn+l(x,t)Hs(t,y) = P.s(y}, 
n-+ 00 teR 

xeR, yeB. 

In the remainder of this section we proceed under the assumption 
that (i)' and (ii)' are correct and this reservation will be explicitly 
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stated in the conclusions we obtain in propositions P4 through P8 and 
in the main theorem T1 at the end. The reader to whom this 
departure from a strictly logical development is abhorrent is invited to 
turn to the proof of propositions P12.1 and P13.1 at this point. 

By applying (i)' and (ii)' to P3 one can immediately conclude 

P4 H 8 (x,y) = fL8 (y) + 2: A(x,t)[l18 (t,y) - 8(t,y)], 
teB 

for x E R, y E B (subject to (i)' and (ii)'). 

Our next move is to consider a very special case of P4, by restricting 
attention to sets B of cardinality two. Nothing is lost, and some 
simplification gained by letting the origin belong to B, so that we let 
B = {O,b} where b is any point in R except 0. Consider now the two 
by two matrix 118 . In view of P2 it is doubly stochastic. This means 
that if we call l1 8 (0,b) = 11, then l1 8 (b,O) = 11, 

11B(0,0) = 11B(b,b) = 1 - 11. 

To gain further insight it is of interest to restrict both x andy in P4 
to the set B. P4 then consists of four equations, and keeping in mind 
that H 8 (x,y) = 8(x,y), we represent them in matrix form as follows: 

(1 0) = (fLB(O) fLB(b)) + l1(a( -b) 

0 1 t-L8 (0) fL8 (b) -a(b) 

-a( -b))· 
a( b) 

The above matrix identity shows that 11 cannot be zero, and it readily 
yields the following solution (in the sense that we think of a(x) as a 
known function, and of 11, fL8 (0), fL8 (b) as unknowns). 

PS For B = {O,b}, b "I= 0, 
1 

11 8 (0,b) = a( b) + a(_ b) > 0, 

(O) _ a(b) , 
fLB - a(b) + a( -b) 

(b) _ a( -b) , 
fLB - a(b) +a( -b) 

(subject to (i)' and (ii)'). 

By substitution of the result of PS into P4 for values of x not in B 
one can now obtain explicit formulas for H 8 (x,O) and H 8 (x,b) in the 
case when B = {O,b}. For example 

(1) H ( b) = A(x,O) + A(O,b) - A(x,b) R b O 
B x, A(O,b) + A(b,O) ' X E ' "I= • 

A result that will be of more lasting interest, however, concerns the 
function g8 (x,y), in an important special case. 
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D2 If B = {0}, i.e., the set consisting of the origin, g8 (x,y) is denoted 
by g<o>(x,y) = g(x,y). 

Thus g(x,y) is the expected number of visits of the random walk, 
starting at x, to the point y, before the first visit to 0. We shall show 
that 

P6 g(x,y) = A(x,O) + A(O,y) - A(x,y), x E R, y E R, 
(subject to (i)' and (ii)'). 

Proof: When either x = 0 or y = 0 or both we get g(x,y) = 
A(O,O) = 0, as we should, according to D10.1. When x = y, 
g(x,y) = g(x,x) is the expected number of returns to x before visiting 
0, or 

co 

(2) g(x,x) = 1 + 2 (1 - II)k = II-I, 
k= 1 

where II = II{o.x>(x,O). Therefore the result of P6 is verified in this 
case by consulting the formula for II in PS. Finally, when x =I= y, 
and neither is 0, 

(3) g(x,y) = H<o.y>(x,y)g(y,y) 

by an obvious probabilistic argument. But now the substitution of 
the formula (1) for H8 (x,y) and of equation (2) for g(y,y) into equation 
(3) completes the proof. 

We need one last auxiliary result before proceeding to draw con
clusions from P4 for finite sets B of arbitrary size. It is a subtler 
result than perhaps appears at first sight-in fact there are one
dimensional aperiodic random walks for which it is false, as we shall 
discover in Chapter VII. 

P7 For x =1= 0, a(x) > 0; (subject to (i)' and (ii)'). 

Proof: Remember first of all that 

a(x) = lim [Gn(O,O) - Gn(x,O)] ~ 0 
n-+ co 

by P1.3, so that only the strict positivity of a(x) is in doubt. Suppose 
now that there is a point b =I= 0 in R where a(x) vanishes. Using 
P6 we then have g(b, -b) = 2a(b) - a(2b) = 0. Since a(b) = 0 and 
a(2b) ~ 0, it follows that g(b, -b) = 0. This is impossible in two dimen
sions as it says that there is no path (of positive probability) from b to 
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- b which does not go through the origin. Being precise, it states that 
whenever 

then at least one of the points Xv x2, ••• , xn is the origin. A simple 
combinatorial argument settles the matter. There is a path of 
positive probability from any point to any other. Therefore there is 
a positive product of the type above, such that not all of the differences 

/ 
/ 

/ 

/ 
/ 

x1 - b, x2 - x1 , ••• , - b - Xn are multiples of b (parallel to the vector 
b). Call these differences y 1 , y2 , ••• , Yn+ 1 and reorder them so that 
the arguments arg (yk) are in nondecreasing order. We can do this 
so that, calling the newly ordered set z1, z2 , ••• , Zn + v we have 
arg b ~ arg z 1 ~ arg z2 ~ ••• ~ arg Zn+I ~ arg b + 27T. Then we 
clearly have a path with probability (see diagram) 

which goes from b to - b without going through 0. That proves P7 
by contradiction. 

We are nearing our goal of expressing H 8 , II 8 , and 1-'B in terms of 
the function a(x), for arbitrary finite sets B. Since this is a trivial 
matter when IBI = 1, but one which requires annoying modifications 
in the analysis, we assume from now on that IBI 2: 2. The key to the 
necessary calculations is the inversion of the operator A(x,y), with x 
andy restricted to B. We shall say that the operator A(x,y) restricted 
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to the set B has an inverse if there exists a function K8 (x,y), with x and 
yin B, such that 

D3 L A(x,t)K8 (t,y) = 8(x,y), for x,y in B. 
teB 

This is just the definition of a matrix-inverse, and according to a 
standard theorem of algebra, this inverse is unique, if it exists. 

P8 The operator A(x,y), restricted to any finite subset B of R with 
IBI ~ 2 has an inverse K 8 (subject to (i)' and (ii)'). 

Proof: If P8 were false, there would be a function v(x), x E B, 
such that 

L v(s)A(s,y) = 0 for y E B, 
seB 

and such that v(x) does not vanish identically on B. We shall assume 
this to be so and operate by v on the left in P4 (i.e., we multiply P4 
by v(x) and sum x over B), obtaining 

v(y) = p,8 (y) L v(x), yEB. 
xeB 

As p,8 (y) ~ 0 on B, we have either v(y) ~ 0 on B or v(y) :s; 0 on B. 
But we know that A(x,y) ~ 0 since it is the limit of the sequence of 
functions An(x,y) = Gn(O,O) - Gn(x,y), which are non-negative by 
P1.3. The situation is further improved by P7 which adds the 
information that A(x,y) > 0 unless x = y. Therefore the operator A, 
with x,y restricted to the set B, represents a matrix, with zeros on the 
diagonal, and with all other elements positive. Now this matrix A 
has the property that vA = 0 where vis a nonzero vector, all of whose 
components are of the same sign. This is obviously impossible, and 
the contradiction proves P8. 

Next we introduce the notation 

D4 For B C R, 2 :s; IBI < oo, 

K 8 ( • x) = L K 8 (y,x), KB(x·) = L KB(x,y), xER, 
yeB yeB 

K 8 ( · ·) = L L KB(x,y), 
xeByeB 

and prove the main result of this section. 3 

3 The first proof of Tl, for symmetric random walk, is in [93), and a complete 
treatment in [94], which contains the main results of this chapter, with the 
exception of section 16. Partial results may also be found in [43]. Recently 
Kemeny and Snell [55] have extended Tl to a very large class of recurrent 
Markov chains. 
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Tl For aperiodic recu"ent random walk in two dimensions, with 
B c R, 2 :s; IBI < oo, 

Ha(x,y) = JLs(Y) + 2: A(x,t)[ll8 (t,y) - S(t,y)], x E R, y E B, 
teB 

where 

K 8 (·y) 
K 8 ( • ·) > 0, JLs(Y) = Ks( . . ) for y E B, 

K 8 (x· )K8 ( ·y) 
ll8 (x,y) - S(x,y) = K 8 (x,y) - Ks( . . ) for x, y E B. 

T1 is subject to the truth of (i)' and (ii)'. 

Proof: Restrict x toBin P4 and operate by K 8 on the left in P4. 
This yields 

(1) K 8 (x,y) = K 8 (x· )JL8 (y) + ll8 (x,y) - S(x,y) 

for x, y E B. Summing x over Bone has, in view of P2, 

(2) K 8 ( ·y) = Ks( · · )JLs{y). 

If we had K 8 ( · ·) = 0 here, it would follow that K 8 ( • y) = 0 for ally 
in B. But then K 8 , regarded as a matrix operator, would be singular, 
which is impossible since K 8 has as its inverse the operator A(x,y) 
restricted to B. Therefore K 8 ( • ·) :f: 0. 

Now K 8 ( ·y) = K 8 ( · • )JL8 (y) shows that either Ks( ·y) ~ 0 on B or 
K 8 ( • y) :s; 0 on B. Since LteB Ks( · t)A(t,x) = 1 for x E B and A(x,y) 
~ 0, Ks( ·y) must be non-negative on B so that Ks( · ·) > 0. 

Equations (1) and (2) yield the proper formulas for JLs and ll8 • 

Finally the proof of Tl is completed by using P4 to express H 8 in 
terms of JLs and ll8 . 

12. THE POTENTIAL KERNEL A(x,y) 

First we shall prove that 
n 

Pl lim An(x,y) = lim L [Pk(O,O) - Pk(x,y)] = A(x,y) 
n-+ oo n-+ oo k= o 

exists for aperiodic two-dimensional random walk (and is given by (3) 
below). 
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Proof: Of course we are interested only in the recurrent case, the 
truth of P1 in the transient case being not only obvious, but also quite 
irrelevant to the work in the preceding section. The proof will be 
Fourier analytical, and we adopt the notation of Chapter II, letting 
cfo(O) denote the characteristic function of the random walk. Using 
P6.3 we have 

I 1 _ elx·9 
(1) an(x) = (27r)- 2 1 _ cfo(O) [1 - cfon+l(O)] dO. 

(Equation ( 1) is the result of a straightforward calculation based on 

k~O P~c(x,y) = (27r)-2 I elB·<x-y) [1 + cfo(O) + ... + cfon(O)] dO.) 

The integration is over the usual square C = [0 I I 011 ::;; 1r; i = 1, 2] 
and it is clearest and simplest to use Lebesgue integration for the 
following reasons. First of all the integrand in (1) is undefined at 
0 = 0 when 1 - cfo(O) = 0. Secondly, we then have the dominated 
convergence theorem to work with. It will be useful since 11 - cfon( 0)1 
::::;; 2 and 1 - cfon(O) tends to zero, as n ~ oo, almost everywhere on C 
(indeed at all but finitely many points). Hence the existence of the 
limit in (1) will be assured if we can prove that 

(2) 
1 _ elx·B ' 
1 _ cfo( O) is Lebesgue integrable on the square C. 

If (2) is true, then we shall know that the limit in P1 exists and has the 
representation 

(3) 

To prove (2) we use two elementary inequalities, 

11 - eix·BI ::;; lxiiOI, 
and 

11 - cfo(O)I ~ Re [1 - cfo(O)], 

which together imply 

1

1 - eix·91 I 0 I 
1 - cfo(O) ::;; lxl Re [1 - cfo(O)J' 

xER. 

Thus it suffices to show that the function on the right is Lebesgue 
integrable on the square C. 
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This last step uses P7.5 which asserts that for aperiodic random walk 
one can find a constant A > 0 such that Re [1 - ¢(8)] ~ "18! 2 when 
8 E C. Thus 

IOI 1 
Re [1 - ¢(8)] ~ "IO!' BE c, 

and !OI- 1 is indeed Lebesgue integrable since we are in dimension 
d = 2, where 

r do 
Jc JOT ~ 

dO _ _ 2312rr2 < ,..,.., 
IOI - ""• 

Observe that this completes the proof-but that the same proof would 
break down at the very last step in one dimension, due to the fact that 
there 

r d() f" dx 
Jc 181 = -n TXJ = oo. 

Much more sophisticated methods are required to show (in Chapter 
VII) that Pl is true even for one-dimensional random walk. 

We proceed to two more results which have a natural proof by 
Fourier analysis, and which will be useful in continuing the work of 
section 11. The first proposition (P2) is a general law governing the 
asymptotic behavior of A(x,y) for two-dimensional aperiodic recurrent 
random walk. The second result (P3) is a sharp version of P2, valid 
only for a very restricted class of random walks. Incidentally, for 
reasons which will appear later, we provide the function A(x,y) with 
the name of potential kernel. 

P2 Let A(x,y) be the potential kernel of an aperiodic two-dimensional 
recurrent random walk. For every fixed pair of points y 1 and y 2 in R, 

lim [A(x,y1 ) - A(x,y2 )] = 0. 
lxl-+ oo 

Proof: The statement of P2 is clearly equivalent to stating that for 
an arbitrary fixed y in R 

lim [a(x + y) - a(x)] = 0, 
lxl-+ oo 

i.e., that given any ~: > 0, there is a positive M (which may depend on 
~:andy) such that la(x + y) - a(x)l < ~:when !x! > M. The proof 
is based on (3) in the proof of P1, which gives 

a(x + y) - a(x) = (2rr)- 2 J e1x·0ifi(8) dO, 
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where 
1 - e1Y· 9 

1/J( O) = 1 - q,( of 

However, we saw in the proof of P1 that 1/J(O) is Lebesgue integrable on 
the square C. Therefore the Riemann Lebesgue Lemma (P9.1) gives 

lim fefz·fJ!fo( 0) dO = 0, 
lzl-+ oo 

which completes the proof of P2. 

It is of course of considerable interest to know more about the 
asymptotic behavior of a(x) for the simple random walk with P(O,x) = !
when lxl = 1. But it turns out to be hardly more work to discuss a 
somewhat larger class of random walks, which satisfies the following 
conditions 

(a) P(x,y) is two dimensional, and aperiodic, 

(b) p. = L xP(O,x) = 0, 

(c) Q(O) = L (x· 0)2P(O,x) = E[(X· 0)2] = a2 IOI 2 < oo, 

(d) E[IXI 2 +6] = L lxi 2 +6P(O,x) < oo for some ~ > 0. 

Of course simple random walk satisfies these conditions, and we 
also know (T8.1) that (b) and (c) imply that the random walk is re
current. In addition (c) introduces the isotropy requirement that Q( 0) 
be proportional to 181 2 rather than to any positive definite quadratic 
form. That is essential and so is (d) in order to obtain a result as 
sharp and simple as the following. 

P3 A random walk satisfying (a) through (d) has the property that 

lim [a(x) - ~ ln lxl] = c + ~d. 
~-+oo ~a ~ 

The definition of the constants c and d is: 

where 

0 < c = (2~)-2 f [1 -1q,(O) - Q~O)] dO < oo, 

2 
d=y+ln~--A, 

~ 

y = 0.5572 ... is Euler's constant, 
oo ( -1)n 

A = L (2 1 )2 is Catalan's constant. 
n=O n + 
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For the simple random walk, a 2 = 1/2 and 

lim [a(x) - ~ ln ]xi] = ! ln 8 + 2Y. 
lzl-+oo 7T 7T 7T 

Proof: We begin by checking that 

1 2 
.P( O) = 1 - cp( 8) - Q( 8) 

is Lebesgue integrable on the square C. Let us write, as we may in 
view of (c), 

2 1912 
.P( 9) = a2 . 1 - cp( 8) x( 8), 

x(O) = IOI-4 [a21~2- 1 + cp(O)]· 

By P6.7 

. I Ol2 2 
hm 1 cp( 9) = 2 > 0, 

191-+0 - a 

and according to T7.1, 1 - c/>(9)=0 only at 8=0 in the square C. 
Therefore it suffices to prove that x( 9) is integrable on C. 

Now 

if X is a random variable with values in R such that 

P[X = x] = P(O,x), x E R. 

Here we used condition (b) in inserting the useful term iX· 8. Now 
we use the positive number 8 in condition (d) by making the obvious 
assertion that there is some h > 0 such that 

le2 _ (1 + z +~)I~ hlzl2+6 

for all complex z in the half plane Re z s 0. That gives (setting 
z = iO·X) 

]x(O)] ~ h]0]- 4E[I9·X] 2 H]. 

Using the Schwarz inequality and condition (d) 

]x(O)] ~ h]8]- 4E[(]9]2]X]2)1 Hi2] = h]8]"- 2E[IX]2H] ~ M]8]6-2, 
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for some M < oo. Thus x(O), and hence !f(O), is integrable, for 

The next step is to decompose 

f 1 - elz·9 

a(x) = (277)- 2 1 _ rp(O) dO 

= ;2 (277)- 2 f 1 - ~~~:X· 0 dO + (277) -2 f (1 - elz•O)!f( 0) dO. 

The last integral tends to the constant c in P3, by the Riemann 
Lebesgue Lemma in P9.1. Therefore the proof of P3, apart from the 
calculations for simple random walk, will be complete if we show that 

. [ 1 J1 - COS X· 0 ] 2 
,!~~oo 277 IOI 2 dO- In lxl = y-:; ..\ + ln1r. 

To accomplish this we decompose 

1 J1 - COS X· 0 
27T 1012 dO = /l(x) + /2(x). 

Here / 1(x) is the integral over the circular disc I 01 ~ 7T and / 2(x) is 
the contribution from the rest of the square. The proof will be 
completed by showing that 

lim [/1(x) - In I xi] = y + In ~2 
lzl-+ oo 

and 

lim / 2(x) = In 2 - ~ ..\. 
lzl-+oo 7T 

Introducing polar coordinates it is seen that / 1(x) depends only on 
lxl- Specifically 

I ( ) - _!_ f 1 - cos X· 0 dO - _!_ f2n d rn 1 - cos (lxlr sin t) d 
lx -27T 1012 -27TJo tJo r r 

l9lsn 

2 in/2 nlrlfsin t 1 - COS U d 
=- dt u. 

7T 0 u 
0 
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Now we shall use as our definition of Euler's constant 4 

11 1 - COS U d leo COS U d 
'Y = u- -- u. 

0 u 1 u 

Substitution into the formula for / 1(x) yields 

00 

/ 1(x) = ~ I:'2 [r + ln lxl + ln (sin t) + ln 7T + I co: u du J dt. 

'*lslnt 

Taking account of 

and of 

one has 

21"'2 - ln (sin t) dt = -ln 2, 
7T 0 

00 

21"'2 I lim - dt 
lxl-+ co 7T 0 

nlxlslnt 

cos u du = O, 
u 

lim [/1(x) - ln lxl] = y - ln 2 + ln 1r, 
lrl-+ co 

as was to be shown. 
By use of the Riemann Lebesgue Lemma 

1 - COS X· 0 
1012 dO 

Again introducing polar coordinates, one obtains 

41"'4 in/cos t dr 41"'4 lim / 2(x) = - dt - = - - ln (cost) dt. 
lxl-+ co 7T o n r 7T o 

This definite integral may be shown to have the value ln 2 - 2Aj7T. 

4 This happens to agree (the proof is not quite trivial) with the usual definition 
of 

y = lim [1 + 1/2 + · · · + 1/n - Inn]. 
n ... ., 
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We omit the explicit evaluation of the limit in P3 for simple random 
walk, as this will be done more easily in the beginning of section 15. 
The result of P3 for simple random walk has incidentally been obtained 
by several authors in a number of quite unrelated contexts, cf. [76], 
[96], and Appendix II by Van der Pol in [51]. 

13. SOME POTENTIAL THEORY 

The equation 

2 P(x,y)f(y) = f(x), x E R, or briefly Pf = J, 
yeR 

is Laplace's equation in a very thin disguise indeed. When Pis the 
transition operator of simple random walk in two dimensions, we have 

Pf(x)- f(x) 
= t[J(x + 1) + f(x - 1) + f(x + i) + f(x - i) - 4j(x)], 

where we have adopted the complex notation x = (x1,x2) = x1 + ix2 • 

But then Pf - f = (P - I)f where P - I is nothing but the two
dimensional second difference operator. Hence the equation Pf = f is 
the discrete analogue of Laplace's equation 

o2J o2J 
b.f = !>2 + !>2 = 0, 

uX1 ux2 

where f(x) = f(x1,x2 ) is a twice differentiable function, and therefore 
we may expect the solutions of Pf = f to have some properties 
reminiscent of those of entire harmonic functions. 

Although our results will automatically lead to the far from obvious 
conclusion that such analogies can be both useful and far-reaching, the 
purpose of this section is quite modest. We shall give a very super
ficial description of three of the key problems in classical two-dimensional 
potential theory. The solution of these three problems in the classical 
context is quite easy and well known. Admittedly the problems we 
shall consider will not explain adequately the basic principles of 
potential theory. But it is merely our purpose to use these three 
problems to guide us in our treatment of analogous problems we shall 
encounter in the study of recurrent two-dimensional random walk. 

One last point deserves considerable emphasis: Our three problems 
A, B, C below concern classical two-dimensional potential theory, 
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which is also known as logarithmic potential theory. The same 
problems make sense in three dimensions, in the context of Newtonian 
potential theory, but there they have somewhat different answers. 
Only in Chapters VI and VII will it become quite clear that the 
structure of logarithmic potential theory is that encountered in 
recurrent random walk, whereas Newtonian potentials arise in the 
context of transient random walk. 

The remainder of this section is divided into three parts, where the 
three problems A, B, C are first discussed in their classical setting, and 
then stated and solved in the context of two-dimensional random walk. 

Problem A. Characterize the real valued harmonic functions, i.e., 
functions u(x,y) satisfying au(x,y) = 0 at every point in the plane. 
In particular, what are all the non-negative harmonic functions? 

The well-known answer is that u(x,y) must be the real part of an 
analytic function. In particular, suppose that u(x,y) ~ 0 and 
harmonic in the whole plane. Then there exists an entire analytic 
function of the form 

f(z) = u(x,y) + iv(x,y). 

The function 
g(z) = e-t<z> 

is also analytic in the whole plane, its absolute value is 

lg(z)l = e-U(X.II), 

and since we assume that u(x,y) ~ 0 everywhere it follows that 
lg(z)l ~ 1 for all z. But by Liouville's theorem a bounded entire 
function is constant. Therefore u(x,y) is a constant function. 

There is another simple proof ([7], p. 146) based on the mean value 
property of harmonic functions, which works for every dimension 
d ~ 1. Suppose that u is a non-negative harmonic function, and that 
u(x) < u(y), where x andy are two points of d-dimensional space. 
To arrive at a contradiction, we integrate u over two (solid) spheres: 
one of radius r1 with center at x, and another of radius r2 with center 
at y. Calling I(rk) the two integrals, and V(rk) the volumes of the 
two spheres, we have 

so that 
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Since u is non-negative, it is evidently possible to let r1 and r2 tend 
to infinity in such a way that the first sphere contains the second, 
which implies /(r1) ~ /(r2), and so that the ratio r2/r1 tends to one. 
(Simply give r 2 the largest possible value so that the sphere aroundy is 
contained in the sphere about x.) Therefore 

u(x) > (~)" ~ 1 
u(y) - r 1 

which shows that u(x) ~ u(y). This contradiction completes the 
proof that non-negative harmonic functions are constant. 

To formulate the analogous random walk problem, we make the 
definition 

Dl If P(x,y) is the transition function of a recurrent aperiodic random 
walk, then the non-negative solutions of 

L P(x,y)f(y) = f(x), xeR 
yell. 

are called regular Junctions. 

In the random walk case, the difficulties of problem A (the problem 
of characterizing regular functions) will now be illustrated with three 
examples. 

El Let P(x,y) be the transition function of periodic random walk. 
We don't care whether it is recurrent or not, nor what the dimension is. 
Then R is a proper subgroup of R. Define 

f (x) = 1 for x E R., 
= 0 for x E R - li. 

Then 

Pf(x) = L P(x,y)f(y) = L P(O,y - x)f(y) = 2: P(O,t)f(t + x). 
yell. yell. tell. 

But P(O,t) = 0 unless t is in li., so that 

Pf(x) = L P(O,t)f(t + x). 
teR 

When t E R., then t + xis in R if and only if xis in R. Thus Pf(x) = 0 
when x is in R - R and Pf(x) = 1 when x is in R. Hence f(x) is a non
constant function. This example in fact shows that a periodicity is necessary 
in order that P have the property that all regular functions are constant. 



13. SOME POTENTIAL THEORY 131 

E2 Consider Bernoulli random walk in one dimension, with P(O, 1) = p, 
P(0,-1) = q, p + q = 1, p > q. As was shown in E1.2 there are two 
linearly independent regular functions, when p #- q, namely 

f(x) = 1 and f(x) = (~r 

This shows that we cannot hope to prove that all regular functions are 
constant for transient random walk. 

E3 Dropping the restriction of non-negativity, and calling solutions of 
Pf = f harmonic, let us look at simple symmetric random walk in the 
plane. There are then so many harmonic functions that it is interesting 
to look for harmonic polynomials, 

p(z) = L ak.mxkym, ak.m real, 
k.m 

where z = x + iy, and L: a sum over a finite number of pairs (k,m) of non
negative integers. The degree of p(z) is the largest value of k + m occur
ring in any term of the sum. In the classical theory of harmonic functions 
every harmonic polynomial of degree n can be expressed uniquely as a 
linear combination of 

0 ~ k ~ n. 

In the random walk case one might expect a similar result and so we make 
two conjectures, each reflecting certain essential features of the classical 
result. 

( 1) For each n ;::: 1 there are exactly 2n + 1 linearly independent 
harmonic polynomials of degree n. 

(2) Among the polynomials in (1) there are two which are homogeneous 
of degree n, i.e., polynomials p(z) such that p(tz) = jtjnp(z). 

Following an elegant approach of Stohr [96], we show that (1) is correct, 
but that (2) is false. Two simple lemmas are required. Let V be the 
operator P - I, so that 

Vf(z) = -Hf(z + 1) + f(z- 1) + j(z + i) + f(z- i)] - f(z). 

Lemma 1. If f(z) is a polynomial of degree n or less, then V f(z) is a 
polynomial of degree at most n - 2 (or zero if n = 0 or 1 ). 

Proof: Since V is linear it suffices to apply V to simple polynomials of 
the form x1yk and to check that the result has no terms of degree j + k - 1 
or higher. 

Lemma 2. Let p(z) be a polynomial of degree n - 2 or less (p(z) = 0 
if n = 0 or 1). Then there exists a polynomial q(z) of degree n or less 
such that Vq(z) = p(z). 
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Proof: We may assume n > 2; otherwise the result is trivial. Let us 
write p(z) lexicographically, as 

p(z) = an-2,oxn-2 
+ an-3,1xn-3y + an-3,oxn-3 
+ ... 
+ ao,n-2Yn- 2 + ao,n-3Yn- 3 + · · · + ao,tY + ao.o• 

The first nonvanishing term in this array is called the leading term. Sup
pose it is bx1yk. We make the induction hypothesis that Lemma 2 is true 
for all polynomials with leading term b' xi'yk' "lexicographically later" 
than bx1yk, i.e., satisfying j' < j or j' = j and k' < k. Now 

h( ) - b j k+2 
z - (k + 1)(k + 2) xy 

is a polynomial of at most degree n, and Vh(z), according to Lemma 1 is at 
most of degree n - 2. In addition, it is easy to see that Vh(z) has the same 
leading term as p(z). In the equation 

Vg(z) = p(z) - Vh(z) 

the right-hand side is therefore a polynomial of degree at most n - 2 
which is either identically zero, or has a leading term which is lexico
graphically later than that of p(z). Using the induction hypothesis, the 
above equation has as a solution a polynomial g(z) of degree n or less. But 
if g(z) is such a solution, then 

V[g + h](z) = p(z), 

so that q(z) = g(z) + h(z) is a solution of Vq = p, which is of degree nor 
less. That proves Lemma 2, since the induction can be started by verifying 
the induction hypothesis for constants or linear functions. 

To get the conclusion (1) let us now look at the collection of all harmonic 
polynomials of degree nor less as a vector space Vn over the real numbers. 
We don't know its dimension; in fact, what we want to show is that 

dim V n = 1 + 2 + · · · + 2 = 2n + 1. 
'-----.r---' 

n times 

(if n = 0, V0 consists of the constant function only, so that "1" forms a 
basis; V1 has a basis consisting of the three polynomials 1, x, andy). To 
get a proof for arbitrary n ;::: 0 we consider the larger vector space Wn ::> Vn 
of all (not necessarily harmonic) polynomials of degree less than or equal 
to n. Thus W1 has the same basis as V1 , but W2 has the basis consisting 
of 1, x, y, x2, y 2, and xy. It is easy to see that 

dim Wn = (n + 1)(n + 2). 
2 



13. SOME POTENTIAL THEORY 133 

According to Lemma 1 the linear operator V maps Wn into Wn _ 2 , and 
according to Lemma 2 the mapping is onto. But 

vn = [p(z) I p(z) E Wn, Vp(z) = 0] 

and by a familiar result from linear algebra, the dimension of the null 
space (also called the rank) of the transformation V of Wn onto Wn_ 2 is 

d. V - d" W d" W - (n + 1)(n + 2) (n - l)n- 2 1 1m n - 1m n - 1m n _ 2 - 2 - 2 - n + • 

Hence (1) is proved. 
For each n one can exhibit a basis by calculation. Thus we get, for 

n = 0: 1 
n = 1: x,y 
n = 2: x2 - y 2, xy, 
n = 3: x3 - 3xy2 , 3x2y - y3 • So far (2) is correct, but, going to degree 
n = 4: x4 - 6x2y2 + y4 - x2 - y2, x3y - xys. 

Only one of these is homogeneous of degree 4 as required by (2). Finally, 
increasing n to 

It is therefore impossible, even by forming linear combinations, to 
produce a single homogeneous harmonic polynomial of degree 5. 

After this excursion we return to regular (non-negative harmonic) 
functions and derive the answer to problem A as stated following Dl. 

Pl If Pis the transition Junction of an aperiodic recurrent random 
walk, then the only non-negative Junctions regular relative to P are the 
constant Junctions. 

Proof: 5 Suppose thatf(x) is regular and not constant. Ifj(O) = a 
then there is a point z in R where f(z) = f3 -:f. a. We may obviously 
assume that f3 > a, for otherwise we make a translation such that z 
becomes the origin, and again obtain the situation f3 > a. 

We define the random walk as 

Xn = X + sn = X + xl + ... + Xm 

starting at the point x. Then T = min [k I k ;::: 1; xk = z] is a 
stopping time, and since the random walk is aperiodic and recurrent, 
T < oo with probability one. 

5 Suggested by }. Wolfowitz. For an alternative proof, see problem 1 in 
Chapter VI. 
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Since f is a regular function 

E0[/(x,.)] = 2: Pn(O,x)f(x) = f(O) = a 
zeB 

for every n ;;::: 0. Similarly 

Ez[f(x,.)] = f(x) for all x in R. 

Therefore 

a= E0[/(Xn)] ~ E0 [f(x,.); T ~ n] 

" = L Eo[f(x,.); T = k] 
k=l 

n n 

= L Po[T = k]Ez[f(Xn-k) = L Po[T = k]f(z) 
k=l k=l 

= ,8P0[T ~ n], 

for each n ~ 1. 
Hence 

a '?:. ,8 lim P0[T ~ n] = ,8, ..... .., 
and this contradicts the assumption that ,8 > a. 

In Chapter VI we will encounter several other attacks on this 
problem-in particular an elementary proof of T24.1 to the effect that 
the only bounded regular functions for any aperiodic random walk are 
the constant functions. This weaker result holds in the transient case 
as well. 

The reader is now asked to agree that problems (i) and (ii) raised in 
section 11 have been completely answered. Problem (i) was disposed 
of through P12.1 and (ii) by P1 above., Therefore we have now com
pleted the proof of every statement in section 11, in particular of the 
important T11.1. Now we are free to use Tll.l in proceeding further. 
We shall actually do so in connection with problem C, a little later on. 

Problem B. The classical problem in question is the Exterior 
Dirichlet Problem. Given a bounded domain (simply connected open 
set) in the plane whose boundary oD is a sufficiently regular simple 
closed curve we seek a function u(x) such that 

(i) !l.u = 0 on the complement of D + oD 
(ii) u(x) = <p(x) on oD 
(iii) u(x) is continuous and bounded on the complement of D. 
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This problem is known to have a unique solution. 6 This is also the 
case in the discrete problem as we shall show in P2. The particularly 
simple representation of the solution in P2 below has the following 
classical counterpart. Associated with the domain D is an exterior 
Green functiongv(x,y) defined for x andy outside D. It is a harmonic 
function in each variable, except at the point x = y, where it has a 
logarithmic singularity. When y is a point on the boundary we call 
the exterior normal derivative of gv(x,y) 

8 
Hv(x,y) = on gv(x,y), X E R - (D + 8D), y E 8D. 

Then the solution of the exterior Dirichlet problem has the representa
tion as the line integral 

u(x) = ( Hv(x,y)cp(y) dy. Jan 
As the notation was intended to suggest, H Dis the correct continuous 

analogue of the hitting probability measure Hv(x,y) defined in DlO.l, 
and the Green function gv is also the counterpart of gD in DlO.l. 
(Unfortunately one has to look quite hard for the discrete analogue of 
the above relation between Hv andgv by means of a normal derivative. 
It can be shown to be the very unassuming identity (c) in P10.1.) 

Here is now the random walk counterpart of problem B. The 
dimension of the random walk again is irrelevant to the conclusion 
(the reason being that we treat only recurrent random walk, so that 
d ::;; 2 by T8.1). 

P2 If P is the transition function of an aperiodic recurrent random 
walk, then the exterior Dirichlet problem, defined by 

(i) Pf(x) = f(x) for x in R - B, 
(ii) f(x) = cp(x) for x in B, 

(iii) f(x) bounded for all x in R, 

has the unique solution 

f(x) = L H 8 (x,y)cp(y) 
YEB 

xER. 

Here B is a proper subset of Rand if JBJ = oo, cp(x) is of course assumed 
to be bounded. 

6 For a concise treatment of the two-dimensional case, see [79], Chapter V. 
The result is false when in dimension d ~ 3. 
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Proof: First we check that the solution given in P2 really satisfies 
(i), (ii), and (iii). First of all the series representing f(x) converges, 
since HB(x,y) is a probability measure on B foreachxin R. Condition 
(i) is satisfied in view of part (a) of PlO.l, (ii) is true since Hn(x,y) = 
S(x,y) for x and y both in B, and (iii) is also true since HB is a 
probability measure, so thatf(x) ~ supyeB J<p(y)J. 

To prove uniqueness, suppose that / 1 and / 2 are two solutions and 
let h = / 1 - / 2 • Then h is a solution of the exterior Dirichlet problem 
with boundary value <p(x) = 0 on B. If we define Q(x,y) and its 
iterates Qn(x,y) for x andy in R - B according to DlO.l (Q is simply 
P restricted to R - B), then 

h(x) = L Qn(x,y)h(y) for x E R - B. 
yeR-B 

Now h(x) is bounded, being the difference of two bounded functions, 
so if Jh(x)J ~ M on R, then 

Jh(x)J ~ M L Qn(x,y) = MPx[TB > n] 
yeR-B 

for every x in R - B and every n ~ 0. As the random walk ts 
recurrent and aperiodic 

lim Px[TB > n] ~ lim Px[T(y} > n] = 0, 
n-+ oo n~ oo 

where y is an arbitrary point in B. Therefore h(x) = 0, which proves 
P2. 

Problem C. This problem concerns Poisson's equation. On the 
domain D in problem B, or rather on its compact closure I5 = D + 8D 
a non-negative function p(x) is given. The problem is to find a 
function f(x) on R - D such that 

(i) f);.j(x) = 0 on R - D 
(ii) /);.j(x) = - p(x) on D, 

and finally a third condition is needed in the setup of logarithmic 
potential theory to ensure uniqueness. A very strong but convenient 
one ts 

(iii) f(x) + 2~ [L p(y) tZ"] ln Jxl-+ 0 as Jxl-+ oo. 

In the physical interpretation of this problem p(x) is a given charge 
density on the body D, and f(x) is the potential due to this charge in 
the plane surrounding D. The volume integral in condition (iii) 
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represents the total charge. It is well known [79] that this problem 
has a unique solution, given by 

f(x) = 2~ L p(y) ln lx - yl- 1 dy, xeR. 

The solution as given here turns out to be negative for large lxl. 
In the discrete case it will be more convenient to have it positive, in 
particular since there is no counterpart in the discrete theory for the 
singularity of In lx - yl- 1 at x = y. So there will be a change of 
sign in the discrete formulation of problem C in condition (ii). That 
having been done, as the reader may have guessed, we shall find that 
the kernel ln lx - Yl corresponds to A(x,y) in the discrete theory. 
(The asymptotic evaluation of A(x,y) in P12.3 is highly suggestive in 
this direction. Quite naturally it is the simple random walk in the 
plane which should most closely approximate the continuous analogue, 
because the second difference operator gives in a sense a better approxi
mation to Laplace's operator than does any other difference operator. 
That is the reason why A(x,y) was called the potential kernel in P12.2.) 

Our discrete version of problem C will be further modified by 
replacing (iii) by the condition that the solution of Poisson's equation 
be non-negative. 

D2 When P(x,y) is the transition function of aperiodic recurrent 
two-dimensional random walk, and B C R, 1 ~ IBI < oo, we call a 
non-negative function p(x) such that p(x) = 0 on R - B a charge 
distribution on B. A function f(x) on R is called a potential due to the 
charge p on B if 

(i) Pf(x)- f(x) = 0 for xeR- B, 
(ii) Pf(x) - f(x) = p(x) for x E B, 

(iii) f(x) ~ 0 for x E R. 

Problem C consists in finding the potentials due to a charge p on B. 
A partial solution to this problem will be provided in 

P3 The potential kernel A(x,y) = a(x - y) of a recu"ent aperiodic 
random walk of dimension d = 2 has the property that 

(a) 2: P(x,y)a(y) - a(x) = S(x,O), x E R. 
l/ER 

A solution of problem C is therefore given by 

(b) f(x) = 2: A(x,y)p(y), x E R. 
l/EB 
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Proof: Since the set B is finite, equation (b) is an immediate con
sequence of (a). The proof of (a) happens to be quite lengthy in 
general, but a very quick proof is available for symmetric random walk 
(see problem 3). Going back to fundamentals 

n 

an(x) = 2 [Pk(O,O) - Pk(x,O)], XER, 
k=O 

and one finds 

n 

2 P(x,y)an(Y) = 2 [Pk(O,O) - Pk+l(x,O)] 
yeR k=O 

= an(x) + S(x,O) - Pn+l(x,O). 

Hence, using for instance P7.6 

lim 2 P(x,y)an(Y) = a(x) + S(x,O). 
n-+co yeR 

Unfortunately this does not enable us to conclude, as we would like, 
that one can interchange limits to obtain P3 right away. However, 
one can conclude by an obvious truncation argument (Fatou's lemma 
for sums instead of integrals) that 

2 P(x,y)a(y) ~ a(x) + S(x,O) 
yeR 

for all x in R. Calling the difference f(x) we may write 

2 P(x,y)a(y) = a(x) + S(x,O) - f(x), 
yeR 

where f(x) 2: 0 on R. 
Now we resort to a complicated probabilistic argument, based on 

P11.4. It will yield the useful conclusion that f(x) is constant 
(independent of x). We shall need only the special case of P11.4 
where B = {O,b}, b #- 0. Abbreviating the notation to 

H(x) = H8 (x,O), n = nB{b,O), 

one obtains, setting y = 0 in P11.4, 

H(x) = 11- - [a(x) - a(x - b)]ll. 

Now the transition operator P(x,y) is applied to the last equation on 
the }eft, i.e., X is replaced by t, we multiply the equation through by 
P(x,t) and sum overt. Using part (a) of PlO.l for the left-hand side, 
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and our conclusion that Pa - a = S - f for the right-hand side, one 
gets 

H(x) + IIB(x,O) - S(x,O) 
= p. - II[a(x) + S(x,O) - f(x) - a(x - b) - S(x, +b) + f(x - b)]. 

Here IIB(x,O) should be interpreted as zero when xis not in B. In the 
above equation we now replace H(x) by p. - [a(x) - a(x - b)]II, and 
then set x = 0. The result turns out to be 

II = II[1 - j(O) + j( -b)]. 

Since II is not zero, f(O) = f(- b), and since b is an arbitrary point in 
R - {0}, f(x) is independent of x! 

Now call f(x) = f and return to the equation 

L P(x,y)a(y) = a(x) + S(x,O) - f. 
yeR 

Operating on this equation by the transition operator P on the left, and 
repeating this process n - 1 times gives n + 1 equations (counting 
the original equation). When these n + 1 equations are added some 
cancellation takes place, and the final result is 

L Pn+l(x,y)a(y) = a(x) + Gn(x,O) - nf. 
yeR 

This calls for division by n, and when we let n--+ oo, noting that 

lim a(x) = lim Gn(x,O) = 0, 
n-+oo n n-+CXl n 

we obtain 

0 ~ lim ~ L Pn+l(x,y)a(y) = -f. 
n-+oo n yeR 

Hence f ~ 0, but since we know that f ~ 0, we conclude that f = 0, 
completing the proof of P3. 

Remark: The proof of P11.4 goes through for any recurrent 
aperiodic random walk with the property that 

a(x) = lim an(x) = lim [Gn(O,O) - Gn(x,O)] 
n-+co n-+c:o 

exists. And the proof we just gave of P3 used only P11.4. Hence 
the equation 

L P(x,y)a(y) - a(x) = S(x,O), xeR, 
1/ER 
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holds for every aperiodic recurrent random walk which has a potential 
kernel A(x,y) in the sense that lim an(x) = a(x) exists. 

n-+oo 

In Chapter VII we shall find that the potential kernel A(x,y) does 
exist for every aperiodic recurrent random walk. In addition the result 
of P3 will be strengthened considerably. The stronger version of P3 
for aperiodic two-dimensional recurrent random walk will read: 

lfPf-f= OonR- B,Pf-f= p ~ OonB,andf~ OonRthen 

f(x) = constant + 2 A(x,t)p(t), x E R. 
teB 

In particular the equation 

2 P(x,y)g(y) - g(x) = S(x,O) 
yeR 

has only the non-negative solutions g(x) = constant + a(x). To 
illustrate why the one-dimensional case is going to offer greater 
difficulties, it is sufficient to consider simple random walk in one 
dimension with P(0,1) = P(O, -1) = 1/2. This process is recurrent, 
and it can easily be shown (see E29.1) that 

. 1 In 1 - cos x() 
a(x) = hm an(x) = -2 1 () d() = lxJ. 

n-+oo 1T -n - COS 

However there are now other non-negative solutions of Pg - g = S, 
besides g(x) = a(x) = lxl- In fact, it is easy to check that the most 
general non-negative solution is 

a + lxl + bx with a ~ 0, -1 ~ b ~ 1. 

14. THE GREEN FUNCTION OF A FINITE SET 

This section will complete the potential theory of two-dimensional 
recurrent random walk. We resume where we left off in section 11, 
namely with P11.4 or T.11.1: 

(1) H 8 (x,y) 

= /LB(Y) + 2 A(x,t)[IT8 (t,y) - S(t,y)], XER, yEB, 
teB 

where 2 ~ IBI < oo. When IBI = 1, the situation is of course 
uninteresting since HB(x,y) = 1. 
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In addition to the results which were available when equation (1) 
was derived, we now have P12.2 which says that for fixed y 1 and y 2 

in R, 

(2) 

By combining (1) and (2) we shall prove in a few lines that the hitting 
probabilities HB(x,y) have the following remarkable property. As 
lxl-+ oo, HB(x,y) tends to a limit for each y in B. We shall call this 
limit HB(oo,y) and observe that HB{oo,y) is again, just as is each 
HB(x,y), a probability measure on the set B. In other words, 

HB(oo,y) ~ 0 and L HB(oo,y) = 1. 
yeB 

The intuitive probability meaning of H B( oo,y) is quite obvious. It is 
still the probability of first hitting the set B at the pointy, the initial 
condition being that the random walk starts "at infinity." The 
existence of the limit of HB(x,y) as jxj-+ oo thus implies that the 
phrase "at infinity" has an unambiguous meaning at least for certain 
purposes. The direction of x (say the angle between the segment 0 
to x and the horizontal axis) has no influence on the value of HB(x,y) 
when lxl is very large. In anticipation of certain results in the one
dimensional case in Chapter VII (where the analogous theorem may 
be false) the following explanation for the existence of the limit is 
particularly appealing. The spaceR of dimension 2 is rather "large." 
The random walk starting at x with jxjlarge will traverse a path which 
with high probability winds around the set B many times before hitting 
it. Its final approach to B will therefore be from a direction which is 
stochastically independent of the direction of x. A still more 
picturesque way of saying the same thing is that the particle is almost 
sure to have forgotten which direction it originally came from
provided it came from sufficiently far away. Thus we shall prove 

Tl For aperiodic recurrent two-dimensional random walk, with 
1 :S IBI < oo the limit 

HB(oo,y) = lim HB(x,y), 
)Z)-+00 

yeB 

exists and determines a probability measure on B. If IBI = 1, 
HB(oo,y) = 1 and if IBI ~ 2, then 

KB(·y) 
HB(oo,y) = KB( .. ) = 1-'iY)· 
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K 8 is the inverse of the potential kernel A(x,y) restricted to B, as defined 
in D11.3 and D11.4. 

Proof: When JBJ = 1, there is nothing to prove. When JBJ ~ 2, 
we consult equation (1). The function p.8 (y) in T11.1 is precisely the 
desired limit. Therefore we have to show that the sum in equation 
(1) tends to zero as JxJ ~ oo. Now we fix y, and call 

c(t) = II 8 (t,y) - 8(t,y), t E B. 

In view of P11.2, c(t) has the property that LtEB c(t) = 0. Therefore 
we may express 

L A(x,t)c(t) = L [A(x,t) - A(x,O)]c(t) 
IEB IEB 

as a finite sum of terms which according to equation (2) tend to zero 
as I x I --+ oo. This observation yields 

lim L A(x,t)[II8 (t,y) - 8(t,y)] = 0 
lxl-+00 IEB 

and completes the proof of the theorem. 

El Consider symmetric aperiodic recurrent two-dimensional random walk, 
i.e., we are adding the requirement P(x,y) = P(y,x). When IBI = 2, 
what about H8 (oo,y)? We saw that HB(rn,y) = fL8 (y) in equation (1) 
above and in P11.5 fL8 (y) was calculated: If B = {O,b} 

a( b) 
fLB(O) = a(b) + a( -b)' 

b _ a( -b) . 
fLB( ) - a(b) + a( -b) 

But symmetric random walk has the property that a(x) = a( -x) for all x 
in R (from the definition of a(x) as the limit of an(x)). Therefore we have 

H8 ( oo,y) = 1/2 at each of the two points of B. 

Next we turn to the Green function g8 (x,y) of the finite set B, 
defined in D10.1. When the set B consists of a single point, g8 (x,y) 
was calculated explicitly in P11.6. This leaves only the case JBJ ~ 2, 
for which we shall derive 
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T2 For aperiodic recurrent two-dimensional random walk, and 
2 ~ IBI < C1J 

1 
g8 (x,y) = - A(x,y) - K ( .. ) + L J.t(s)A(s,y) + L A(x,t)J.t*(t) 

B SEB tEB 

+ L L A(x,t)[IIB(t,s) - o(t,s)]A(s,y), x,y E R. 
seB teB 

The matrix II 8 is given by T 11.1 and so are 

KB( ·S) 
fL(s) = fLB(s) = KB( . . )' 

J.t*(t) = fLB*(t) = KB(t·). 
KB(·.) 

Proof: First we check that the formula in T2 gives g8 (x,y) = 0 
when either x or y or both are in B. Supposing that xis in B, 

L A(x,t)[IIB(t,s) - o(t.,s)] = HB(x,s) - fLB(s). 
teB 

The right-hand side in T2 therefore becomes 

1 
- A(x,y) - K ( .. ) + L J.t(s)A(s,y) + L A(x,t)fL *(t) 

B SEB tEB 

+ L H8 (x,s)A(s,y) - L J.t(s)A(s,y) 
SEB SEB 

1 
- A(x,y) - K ( .. ) + L A(x,t),., *(t) + L o(x,s)A(s,y) 

B ~B ~B 

1 
- K ( .. ) + L A(x,t)J.t*(t) = 0. 

B teB 

When y is in B the verification is the same, using in this case 

L [IIB(t,s) - o(t,s)]A(s,y) = HB*(y,t) - fLB*(t) = o(y,t) - fLB*(t). 
SEB 

Here H8 *(y,s) is the hitting probability measure of the reversed 
random walk (D10.2) with P*(x,y) = P(y,x). That is clearly the 
correct result in view of 

A*(x,y) = A(y,x) 
and 

L [IIB(t,s) - o(t,s)]A(s,y) = L A*(y,s)[IIB*(s,t) - o(s,t)] 
SEB SEB 

= HB*(y,t) - fLB*(t). 
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For the rest of the proof we may assume that neither x nor y is in B. 
We shall use a method which is often useful in classical potential 
theory, i.e., we find a "partial differential equation" satisfied by 
g8 (x,y) and solve it. The theory of the Poisson equation in P13.3 
will turn out to provide the appropriate existence theorem. 

The equation we start with is 

(1) H 8 (x,y) - 8(x,y) = L g8 (x,t)P(t,y) - g8 (x,y), 
teR 

for all x,y in R. This is an obvious extension of part (c) of P10.1, to 
the full product space of all pairs (x,y) in R x R. Here, and in the 
rest of the proof, we define H8 (x,y) = 0 for x E R, y E R - B. 

Now we fix a value of x in R - Band let 

(2) u(t) = g8 (x,t) + A(x,t), tER. 

Substitution into equation (1), using P13.3, gives 

(3) L u(t)P(t,y) - u(y) = H 8 (x,y), yER. 
teR 

The next step consists in solving (3) and we shall show that every 
solution of (3) is of the form 

(4) u(y) = constant + 2 H 8 (x,t)A(t,y), yeR, 
teB 

where of course the constant may depend on x. 
First of all we rewrite equation (3) in the form 

(5) 2 P*(y,t)u(t) - u(y) = 0 for y E R - B 
teR 

= p(y) 2:: 0 for y E B, 

where p(y) = H 8 (x,y). Thus u(t) is a solution of Poisson's equation 
discussed in D13.2, and by P13.3 equation (4) indeed is a solution of 
(3). But since P13.3 did not guarantee uniqueness we have to resort 
to other devices to show that ( 4) holds. 

From equation (2) we have about u(t) the a priori information that 

A(x,t) ::;; u(t) ::;; A(x,t) + M(x), 

where 

M(x) = sup g8 (x,t). 
teR 
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Introducing the reversed random walk, we have 

M(x) = sup gB*(t,x) = sup HBu<x>*(t,x)gB*(x,x) 
teR teR 

~ gB*(x,x) = gB(x,x) < oo. 

Thus the function u(t) has the property that u(t) - A(x,t) is bounded, 
and, in view of P12.2,7 this is the same as saying that u(t) - a(- t) is 
a bounded function on R. 

Now let 

w(y) = 2 HB(x,t)A(t,y). 
teB 

Then 

h(y) = u(y) - w(y) = u(y)- a( -y) + 2 HB(x,t)[A(O,y) - A(t,y)] 
teB 

is a bounded function of y (since A(O,y) - A(t,y) is bounded for each 
t according to P12.2). Furthermore u(y) satisfies (5), so that 

2 P*(y,s)h(s) = h(y) for y e R. 
seR 

By P13.1, h(y) = c(x), a constant depending on x of course-and 
therefore we have proved that u(y) = c(x) + w(y) is given by equation 
(4). 

The rest is easy. We now have 

gB(x,y) = -A(x,y) + c(x) + 2 HB(x,t)A(t,y) 
teB 

= - A(x,y) + c(x) + 2 p.(s)A(s,y) 
seB 

+ 2 2 A(x,s)[IIB(s,t) - 8(s,t)]A(t,y). 
seB teB 

To complete the proof of T2, we now have only to show that 

1 
c(x) = - K (· ·) + 2 A(x,t)p.*(t), 

B teB 

but this was done at the very start of this proof, when we verified that 
T2 was correct whenever y is in B. 

7 Observe that we are not using the full strength of P12.2 which states that 
A(x,t) - A(O,t)--+ 0 as It I-+ oo. This seemingly academic point will be 
crucial in section 30, T30.2, where we shall imitate the present proof for one
dimensional random walk. Even then A(x,t) exists and A(x,t) - A(O,t) is a 
bounded function oft, but it may not tend to zero as ltl--+ oo. We shall have 
occasion to refer to this remark in section 30. 
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The result of T2 can be used to develop further the theory along the 
lines of classical logarithmic potential theory. There are no great 
surprises in store as the entire development exactly parallels the 
classical theory. We shall outline the principal facts-delegating the 
proofs to the problem section at the end of the chapter. 

We fix a set B, with cardinality 1 ~ IBI < oo and omit the sub
script Bin H8 , p.8 , K 8 , ll8 , g8 , as this will cause no confusion at all. 
Remember that a charge on B is a non-negative function vanishing off 
the set B. And let us define the potential due to the charge ifJ on B as 

(1) Aifl(x) = L A(x,t)ifl(t), xeR. 
teB 

It may be shown that potentials satisfy the minimum principle; i.e., 
every potential Aifl(x) assumes its minimum on the set B, or rather on 
the subset of B where the charge ifJ is positive (for a proof see T31.2). 

The minimum principle can be shown to imply that among all 
charges ifJ on B with total charge L:reB ifl(x) = 1, there is exactly one 
with the property that its potential is constant on B. This particular 
unit charge is called the equilibrium charge p.*(x) of the set B. It is 
easily shown that 

(2) 

and of course, 

(3) 

p.*(x) = 1 if IBI = 1 
K(x·) 

p.*(x) = K( .. ) when IBI ~ 2, 

1 
Ap.*(x) = K( .. ) when x e B 

1 
~ K(· ·)when xeR- B. 

To make the last and subsequent statements meaningful when IBI = 1, 
we define 

(4) K(· ·) = oo, 
1 

K(· ·) = 0 when IBI = 1. 

The potential Ap.* is called the equilibrium potential of the set B. 
The constant [ K ( · · )] -l, the "boundary value" of the equilibrium 
potential on B, is called the capacity 

(5) 

of the set B. 

1 
C(B) = K(· ·) 
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There are two other equivalent definitions of capacity. It is easily 
shown that there is one and only one constant C such that for every 
unit charge t/J on B 

(6) min Atfo(x) ~ C ~ max Atfo(x). 
xeB xeB 

This constant Cis defined to be the capacity of B, and it is true that 
C = C(B). 

Another useful definition of capacity is in terms of the Green 
function g(x,y) of the set B. It is 

(7) C' = L A(x,t)f'*(t) - lim g(x,y). 
teB IYI-> oo 

It will presently be shown in T3 below that 

lim g(x,y) = g(x,oo) 
IYI-> oo 

exists for all x in R, that C' is indeed independent of x, and finally 
that C' = [K( · · )]- 1• This then is a third definition of capacity. 
Of all the three definitions it is the most useful one in uncovering the 
properties of C(B) as a set function on the finite subsets of R. The 
two most important laws governing C(B) are: 

(8) If B1 C B2 C R, then C(B1 ) ~ C(B2). 

(9) If B1 and B2 have a nonempty intersection, then 

C(B1 U B2) + C(B1 n B2) ~ C(BI) + C(B2). 

The reader who investigates the analogy with classical logarithmic 
theory in [79] will find the name of capacity for C(B) to be a misnomer. 
C(B) is really the discrete analogue of the so-called Robin's constant, 
which is the logarithm of the logarithmic capacity. 

Because of its importance in the study of time dependent phenomena 
in section 16, we single out the asymptotic behavior of gB(x,y) for 
further study. 

T3 For recurrent aperiodic two-dimensional random walk 

lim gB(x,y) = gB(x,oo), x E R 
IYI->oo 

exists for subsets B C R with 1 ~ IBI < oo. 

When B = {b}, 
gB(x,oo) = a(x - b). 
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When lBl ~ 2, 

1 
g8 (x,oo) = L A(x,t)p.8 *(t) - K (· ·)' 

teB B 

* KB(t·) 
where p.8 (t) = KB( . . )' tEB. 

Proof: When IBI = 1, it suffices to assume b = 0. Then 

g8 (x,y) = A(x,O) + A(O,y) - A(x,y), 

by the remarkable result of P11.6 in section 11. By P12.2 

lim g8 (x,y) = a(x) + lim [A(O,y) - A(x,y)] = a(x). 
IYI-+ 00 IYI-+ 00 

The proof when IBI ~ 2 is in fact just as straightforward. One 
simply uses the explicit representation of g8 (x,y) in T2 and then 
applies P12.2 to it. The verification is left to the reader. 

15. SIMPLE RANDOM WALK IN THE PLANE 

The potential kernel for simple random walk can be calculated 
numerically by a very simple iterative scheme. We have 

(1) fl- cosx·8 
a(x) = (217)- 2 1 _ rp(tJ) d8, 

where 
rp( 8) = t[ cos 81 + cos 82], 

but it will turn out to be unnecessary to evaluate this integral except 
for points x on the diagonal x1 = x2 • Using P13.3 one has, first of all, 

(2) -![a(z + 1) + a(z - 1) + a(z + i) + a(z - i)] - a(z) = S(z,O), 

using complex notation for the sake of convenience. The obvious 
symmetry properties of the integral in (1) show that, if z = x + iy, 
Z =X- iy, 

a(z) = a( -z) = a(i) = a( -i) = a(iz) = a( -iz) = a(ii) = a( -ii). 

Hence it suffices to calculate a(z) for z in the half-quadrant 0 ~ y ~ x. 
Setting z = 0 in (2) gives, since a(O) = 0, 

a(1) = a(-1) = a(i) = a(-i) = 1. 
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Next we evaluate the integral in (1) for z = n(1 + i), n ~ 1. 

. 1 J" J" 1 - cos n( ol + 02) a(n + nt) = A _ 2 1 1 ( 0 0 ) d01 d02 
"T1T -:r. -:r. - 2 cos 1 + cos 2 

_ _ 1_ J" J" 1 - cos n( 01 + 02 ) dO dO 
- %2 -:r. -:r. 1 (01 + 02) (01 - 02) 1 2• - cos 2 cos 2 

The transformation ex = (0 1 + 02)/2, {3 = (01 - 02)/2 has Jacobian 
l and transforms the region of integration into the set I oc I + I /31 :::;; 7T. 
Obvious symmetry properties of the integrand enable us to write 

. 1 J" J" 1 - cos 2nex a(n + nt) = -4 2 1 {3 dex df3 rr -:r. -:r. - cos ex cos 

= ~ J" 1 - cos 2nex dex = ! J" sin2 nex dex 
7T -:r. !sin ex! 7T -:r. !sin ex! 

= ~ f" [ i sin (2k - 1)ex] dex 
77 Jo k=l 

The values of a(z) computed so far suffice, by proper use of (2), to 
construct a table for arbitrary values of z. Here is a sample. 

y=O 1 2 3 4 

x=O 0 

1 1 4 -
7T 

8 
-1 

8 16 4-- +- 37T 7T 7T 
2 

17 - 48 92 - 8 8 92 - + 1 
157T 7T 37T 37T 

3 

The first table of this kind was constructed in 1940 by McCrea and 
Whipple [76]. As they pointed out, once one row is filled in it is very 
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easy to obtain the entries in the next one by the following iterative 
scheme. 

y 

X 
0 1 ... n n + 1 

Suppose the numbers corresponding to the black dots are known, i.e., 
we know the values of a(k + im) for 0 ~ m ~ k ~ n. Then one can 
get a(n + 1) since a(n) is the average of a(n + 1), a(n - 1), a(n + i), 
and a(n - i) = a(n + i). Next a(n + 1 + i) is found, n + 1 + i 
being the only neighbor of n + i where the value of a(z) is unknown. 
In this way the values of a(z) in the (n + 1)st column indicated above 
by circles, can be determined in the order indicated by the arrows. 

As lzl ~ oo along the diagonal z = n(l + i) one obtains 

lim [a(z) - ~ ln lzl] 
lzl-+ao 7T 

= lim [! (1 + -3
1 + · · · + 1 ) - ~ ln (nVZ)] 

n-+ao 7T 2n - 1 7T 

=lim[! 2!- !1n2n] -lim[~ i!- ~lnn] + !ln8 
n-+ao 1Tk=lk 7T n-+ao 1Tk=lk 7T 7T 

4 2 1 2 1 
=-y--y+-~8=-y+-~~ 

7T 7T 7T 7T 7T 

But in view of P12.3 this limit must exist as lzl ~ oo, quite independ
ently of the direction of z, so that we have confirmed the limit given 
in P12.3 for simple random walk. 

Furthermore, as pointed out by McCrea and Whipple, the 
approximation of a(z) by 

1 
- [2ln lzl + ln 8 + 2y] 
7T 
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is remarkably good even for rather small values of z. Part of their 
table of the approximate values for 0 :::;; Re (z) < Im (z) :::;; 5 is 

Im (z) 0 1 2 3 4 5 

Re (z) 

0 1.0294 1.4706 1.7288 1.9119 2.0540 
1 1.2500 1.5417 1.7623 1.9312 2.0665 
2 1.6913 1.8458 1.9829 2.1012 
3 1.9494 2.0540 2.1518 

which should be compared to the table of a(z). 

lm (z) 0 1 2 3 4 5 

Re (z) 

0 0 1 1.4535 1.7211 1.9080 2.0516 
1 1.2732 1.5465 1.7615 1.9296 2.0650 
2 1.6977 1.8488 1.9839 2.1012 
3 1.9523 2.0558 2.1528 

As an application of the preceding result let us calculate the hitting 
probabilities HB(x,y) for some finite set B. By T11.1 and T14.1 

for all y E B, x E R. Suppose that the largest distance between any 
two points in B is m > 0. It follows then that KB(t,y) for t E B, 
y E B as well as 

yeB, 

can be expressed in terms of known values of the function a(x) with 
JxJ :::;; m. Furthermore our remarks about the accuracy of approxi
mation of a(x) by (7T)- 1[2ln JxJ + ln 8 + 2y] imply that, when the 
point x is reasonably far away from the nearest point of B (say at a 
distance 3 or more), then 
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will yield an excellent approximation to HB(x,y). Observe that the 
term ln 8 + 2y could be dropped in view of 

L [KB(t,y) - KB(t· )KB( ·y)] = 0, y E B. 
teB KB( · ·) 

Finally, when x is very far away from the set B, HB(x,y) will of 
course be well approximated by HB(oo,y). For the sake of specific 
illustration we let B be the three point set 

Then the operator A(x,y), restricted to the set B, has the matrix 
representation 

0 
4 

1 -
7T 

A = (A(zt>z1)) = 1 0 1 i,j = 1, 2, 3. 

4 
1 0 

7T 

Its inverse is 

-1 
4 
7T 

7T 
KB = 8 -(~r 

1 
4 
7T 

KB(·y) = H· 1- ~·~}· 
so that by T14.1, HB(oo,y) is the vector 

{ 7T 7T-2 7T } 
4(7T - 1)' 2(7T- 1)' 4(7T- 1) . 

The irrationality of the answer reflects its dependence upon the 
entire history of the process, as the probability of any event determined 
by a finite number of steps (say n steps) of the simple random walk 
would necessarily have to be rational (in fact an integer times 4-n). 
There are curious exceptions to this phenomenon, however, as the 
following example shows. 
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The hitting probabilities H 8 ( oo,y) of the set B = { -1 - i, 0, 1 + i} 
"should be" {3 /S!-, 2/8, 3 /8} as "shown" by the following "heuristic" 
argument. The points in B each have four neighbors, not in B, from 
which they may be reached. 

1 +i 

0 

-1-i 

The point 1 + i shares two of its neighbors with the origin. Count
ing each of the shared neighbors as 1/2, this gives the point 1 + i 
three neighbors, the origin two and the point -1 - i three. Assuming 
the chance of being hit proportional to the number of neighbors from 
which this event can take place (and having divided the neighbors up 
fairly !) the hitting probabilities should be those given above. A short 
calculation, just like the one carried out before, confirms that 
{3 /8, 2/8, 3 /8} is the correct answer! 

Now we embark on some calculations for infinite subsets B of R 
which make use of a special property of simple random walk: the con
tinuity of its paths, i.e., the fact that P(x,y) = 0 unless x andy are 
neighbors. 

Let B be the lower half plane, i.e., 

B = [z J lm z ::;; 0]. 

We defineg8 (x,y) as usual, to witg8 (x,y) = 0 unless both x andy are 
in the upper half planeR - B, and in this case D10.1 gives 

CIO 

gB(x,y) = L: Qn(x,y), 
n=O 

where Q(x,y) is the transition function restricted to R - Band Qn its 
iterates. We shall show 

(3) gix,y) = A(x,ji) - A(x,y) for x,y in R - B. 

Here ji = y1 - iy2• 
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The proof is an example of the so-called reflection principle. 8 

Letting T = T 8 denote the time of the first visit of the random walk 
to B, one can write, for x andy in R - Band n ~ 1, 

Pn(x,y) = Pz[Xn = y] = Pz[Xn = y; T > n] + Pz[Xn = y; T ~ n] 
n 

= Qn(x,y) + L Pz[Xn = y; T = k]. 
k=l 

But 

P z[ Xn = y; T = k] = P z[ Xn = ji; T = k] for k ~ n, 

which is quite qbvious although a formal proof proceeds via 

Pz[Xn = y; T = k] = Ez{PxT[Xn-k = y]; T = k} 

= Ez{PxT[Xn-k = ji]; T = k} 
= Pz[Xn = ji; T = k], 

the idea being simply that lm (~) = 0 so that transitions from x... to 
y in time n - k have the same probability as those from X.. to ji in 
time n - k. Hence 

n 
Pn(x,y) = Qn(x,y) + L Pz[Xn = ji; T = k] 

k=l 

= Qn(x,y) + Pz[Xn = ji; T ~ n]. 

The event T ~ n being implied by the event Xn = ji (as x E R - B 
and ji e B), we conclude 

Pn(x,y) = Qn(x,y) + Pn(x,ji), n ~ 1. 

Also P0(x,y) = Q0(x,y) = S(x,y) and P0(x,ji) = 0, so that 
00 00 

gB(x,y) = L Qn(x,y) = L [Pn(x,y) - Pn(x,ji)] 
n=O n=O 

00 00 

= L [Pn(O,O) - Pn(x,ji)] - L [Pn(O,O) - Pn(x,y)] 
n=O n=O 

= A(x,ji) - A(x,y), 

which was promised in equation (3). 

8 The proof of (3) which follows was invented by McCrea and Whipple [76], 
who lamented the fact that it lacked rigor at one point. Their difficulty lay in 
having defined A(x,O) = a(x) by the integral in (1), fully aware, but without 
being able to prove that a(x) = 2:'=o [Pn(O,O) - Pn(x,O)]. 

As for the reflection principle, its roots go back much farther. In physical 
applications it often appears under the name of the method of images. See 
pp. 70 and 335 in [31], Vol. 1, for further comments. 
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To calculate the hitting probabilities H 8 (x,y) of the lower half plane 
B the theorems of sections 11 and 14 are not available, since B is an 
infinite set. Instead we can use the completely general identity 

(4) HA(x,y) = 2 gA(x,t)P(t,y), xeR- A, yeA 
teR 

which was part (c) of P10.1. Due to the symmetry of the present 
problem, nothing of interest is lost if we take the point x = in, n <:: 1 
on the imaginary axis, and the point y = k, - oo < k < oo on the 
real axis. Because of the continuity of the paths, it is only for y on 
the real axis, the boundary of B, that the probability in (4) will be 
positive. In this case (4) gives 

(5) 

and in view of (3) 

(6) H 8 (in,k) = ia[(n + 1)i - k] - ia[(n - 1)i - k]. 

First we let n = 1 and calculate, using (1) 

H 8 (i,k) = ia(2i + k) - ia(k) 

= _1_ In f" COS k81 - COS (k81 + 282) d8 d8 
16rr2 -n _ 11 1 - !(cos 81 + cos 82) 1 2 " 

The evaluation of this integral seems hopelessly tedious, so that 
a different method is indicated (see problem 7 in Chapter II). We let 

00 

cp( 8) = 2 H B( i,k )elkB' 8 real, 
k=- 00 

noting that this Fourier series is a characteristic function, since 

00 

2 HB(i,k) = 1. 
k=- 00 

In addition, 
00 

cpn( 8) = 2 H B( ni,k )elkB. 
k=- 00 

A formal proof of the last identity, based on (5) or (6) would be 
lengthy. The easiest way of getting it is to regard the hitting place Xr 
of the process xn with x 0 = in, as the sum of n identically distributed 
independent random variables with the distribution H 8 (i,k) (the 
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process having to hit the lines Im z = n - 1, n - 2, ... , 0 in suc
cession). Then one gets the difference equation (part (a) of P10.1) 

HB(i,k) = tHB(i,k - 1) + tHB(i,k + 1) + tHB(2i,k) + t8(k,O). 

Taking the Fourier series on each side 

and this quadratic equation has two solutions, the only possible one, 
in view of 14>( 8) I :::;; 1, being 

(7) 4>(8) = 2 - cos 8 - v(l - cos 8)(3 - cos 8). 

A very simple calculation shows that 

(8) lim <f>n (~) = e-IBI. 
n-+oo n 

It so happens that 

-161 - 1 J"" tBx dx e -- e ---, 
7T -oo 1+x2 

is the characteristic function of the Cauchy distribution. Using the 
Levy continuity theorem, mentioned in connection with the Central 
limit theorem in P6.8, one can conclude that 

(9) 
[nx] 1 Jx dt 1 1 

lim ,L H(in,k) =- -1--2 = -2 + - tan- 1 x. 
n-+""k=-oo 7T -oo + t 7T 

To obtain an amusing application of this result, let us consider an 
apparently more complicated problem. Let C be the whole plane 
with the exception of the first quadrant, i.e., 

C = R - [z I Re z > 0 and Im z > 0]. 

What is gc(x,y) when x andy are in R - C? Using the reflection 
principle this question is just as easy to answer as the corresponding 
one answered for the half plane B in equation (3). One simply 
performs two reflections, once in the real axis and once in the imaginary 
one and gets 

(10) gc(x,y) = A(x,ji)- A(x,y) + A(x,-ji)- A(x,-y). 

Now we take for the starting point of the random walk x0 = z = 
r + is, a point in the first quadrant R - C and ask for the probability 
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p(z) that absorption occurs on the real axis rather than on the imaginary 
one. This probability is 

00 1 00 

p(z) = 2: Hc(z,k) = 4 2: gc(z,i + k). 
k=1 k=1 

Using (10) this is 

p(z) = ~ ~ [a(z - k + i) - a(z - k - i) + a(z + k - i) 
k=1 

- a(z + k + i)]. 
Using (6) one finally gets 

00 00 

p(z) = 2: H 8 (is,r - k) - 2: H 8 (is,r+ k), 
k=1 k=1 

or 
r-1 oo 

(11) p(z) = 2: H 8 (is,k) - 2: H 8 (is,k). 
k=-oo k=r+1 

Finally we shall let !z! ~ oo in such a way that 

lim tan- 1 ~ = a, 
lzl-+oo S 

0 <a<~. - - 2 

In other words, !z! ~ oo, z making an angle a with the imaginary axis. 
Nowweapply(9)to(ll),writingr =stan a+ eswheree = e(z)~O. 
The two error terms (a sum of the hitting probabilities from k = stan a 
to stan a + es and another term like it) go to zero in view of (9). 
Hence 

s~na oo 

(12) lim p(z) = lim 2: H 8 (is,k) - lim 2: H 8 (is,k) 
lzl-+oo s-+oo k=- oo s-+oo k=stana 

s~a 2 2 
= 2lim 2: H 8 (is,k) =- tan- 1 (tan a) =-a. 

s-+oo k=O 7T 7T 

Any other answer would of course have been disconcerting (see 
problem 11 ). 

16. THE TIME DEPENDENT BEHAVIOR 

Consider the following simple case of the Exterior Dirichlet problem 
(problem B in section 13). D is a given domain in the plane, and we 
seek a function u(x) such that 

(i) ~u(x) = 0 on the complement of D + 8D, 
(ii) u(x) = 1 on 8D, 

(iii) u(x) is continuous and bounded on the complement of D. 
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This problem has the very unspectacular unique solution, u(x) = 1. 
The situation becomes interesting only when we compare u(x) to the 
solution of a nonstationary problem, which has the above Exterior 
Dirichlet problem as its limiting, or steady-state case. This is the 
following 

Diffusion problem: Find the solutions u(x,t) of 
(i) oujot = !Au, for t > 0, X outside D, 
(ii) u(x,t) = 1 for t > 0, x on oD 

(iii) lim t->O+ u(x,t) = 0 for all x outside D. 

Such problems arise in the theory of heat conduction. The 
solution u(x,t) represents the temperature at the point x at time t in 
the region exterior to the body D. The boundary of D is kept at 
temperature one (condition (ii)) and the initial temperature is zero 
(condition (iii)). It is known that this problem has a unique solution 
u(x,t) and that 

lim u(x,t) = u(x) = 1 off D. 
t-> CIO 

In other words, the temperature of the surrounding medium rises, 
approaching at every point the boundary temperature. 

If this seems obvious, consider as a precautionary measure the 
analogous Dirichlet and Diffusion problems in three dimensions. To 
make everything as simple as possible, let D be the unit sphere. Then 
the exterior Dirichlet problem has at least two solutions 

u(x) = 1 and u(x) = lxl- 1 • 

The solution to the diffusion problem is again unique, but its limit 
behavior is now different, as one finds that 

lim u(x,t) = lxl- 1 • 
t-> CIO 

Thus a compact set in three-space is apparently not "large" enough 
to "warm up the surrounding space" to its own temperature. In the 
next few pages we shall find further hints concerning this phenomenon, 
but the complete probabilistic explanation will not be clear until 
Chapter VII. It is intimately connected with the difference between 
recurrent random walk (such as simple random walk in the plane) and 
transient random walk (every genuinely three-dimensional random 
walk is transient). 

A far more delicate question, and one which is indigenous to the 
recurrent case, concerns the rate of convergence of u(x,t) to the 
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stationary state solution u(x). As conjectured by Kac, and proved by 
Hunt [44], 1956, the answer is 

(1) lim [1 - u(x,t)] ln t = 21Tgv(x,oo). 
t-+ co 

Here gv(x,y) is the exterior Green function of the domain D mentioned 
in the discussion of problem B in section 13, and gv(x,oo) in equation 
(1) is of course the limit of gv(x,y) as JyJ---+ oo. 

The plan of work for the remainder of this chapter is now very 
simple. We shall formulate the discrete analogue of the diffusion 
problem of arbitrary aperiodic recurrent two-dimensional random 
walk, and then try to prove a theorem which corresponds to equation 
(1) above. The content of this theorem will be probabilistically 
interesting. It will concern the probability law governing the time 
TB when the random walk first visits a given set B. This will be the 
first time in this chapter that we are able to obtain a result concerning 
the time dependent behavior of the random walk. All the previous 
results concerned the hitting place Xr8 rather than the hitting time 
TB itself. For example 

HB(x,y) = Pz[Xr8 = y] when x E R - B, 

and even our explicit formula for gB(x,y) gave no information at all 
concerning the distribution of T B· 

We shall use the notation 

Dl T B = min [k I k ~ 1; xk E B], and call 
TB = T when B = {0}, and Rn = P0 [T > n], for n ~ 1, 
1[0 = 0, Fn = P0[T = n]for n ~ 1, Un = P0[xn = 0] 

= Pn(O,O) for n ~ 0. 

Since the random walk is recurrent, T B < oo with probability one 
whenever B is a nonempty finite set. 

The diffusion problem is formulated as follows. The function 
u(x,t) becomes a sequence of functions fn(x) with n ~ 0, x E R, since 
the time parameter must be discrete. The time derivative ofot[u(x,t)] 
then should correspond to fn+ 1(x) - fn(x}, and since the Laplacian 
!d corresponds to the operator P - I, we arrive at the equation 

Pfn - fn = fn + 1 - fn 
or more simply Pfn = fn + 1• Thus the discrete version of the diffusion 
problem consists of the three conditions 

(i) ~yeB P(x,y)fn(Y) = fn+ 1(x}, X E R - B, n ~ 0, 
(ii) fn(x) = 1 for all n ~ 0, x E B, 

(iii) / 0(x) = 0 for all x E R - B. 
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It is a trivial matter to verify that this system of equations has a 
unique solution. The function lo(x) is specified completely for all x 
by (ii) and (iii). Substituting its values into (i) determines l 1(x) on 
R - B. But on B, l 1(x) is given by (ii) so that l 1(x) is uniquely 
determined. And so on, by induction: once In is determined every
where, equation (i) determines In+ 1 on R - B, and then (ii) gives 
ln+l on B. 

To avoid time consuming iteration, we shall simply write down the 
solution, and then verify that (i), (ii), and (iii) hold. Let lo(x) = 0 
on R- B,l0(x) = 1 on B, and for n ~ 1let 

ln(x) = Px[T8 ~ n] for x E R - B, 
= 1 for x E B. 

Conditions (ii) and (iii) hold trivially, and (i) follows from 

Px[T ~ n + 1] = L P(x,y) + L P(x,y)Py[T ~ n], 
yeB yeR-B 

for x E R - B, n ~ 1. 
Therefore the random walk analogue of equation (1) should concern 

the rate of convergence of the sequence 

to zero as n tends to infinity. We shall show that the correct analogue 
of In t in ( 1) is the reciprocal of 

Rn = P0 [T<o> > n] = P0 [T > n]. 

In fact, simple random walk in the plane has the property that Rn is 
asymptotically 1r(ln n)-1, as will be shown later, in El. 

Tl For aperiodic recurrent two-dimensional random walk, let 
B == {0}. Then 

I. Px[TB > n] ( ) ( ) fi . R B 1m p [T ] = g8 x,oo = a x or x tn -
n-+<X> o > n 

where g8 (x,oo) is defined and shown equal to a(x) in T14.3. 

Proof: The proof of this theorem depends entirely on the following 
lemma, which will be proved as soon as we have explained why it 
implies the truth of Tl. 
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Pl For aperiodic recurrent two-dimensional random walk 

1• Rn 1 lm-- = . 
n-+oo Rn+l 

We may write 

"' "' Px[T > n] = 2 Px[T = k + 1] = 2 2 Qk(x,y)P(y,O), 
k=n k=ny*O 

where, of course, Q(x,y) is the transition function P(x,y) restricted to 
R - {0}, and Qn(x,y) are its iterates, i.e., 

Qk(x,y) = Px[xk = y; T > k] for k ~ 1, Q0(x,y) = S(x,y). 

Letting 

"' g(x,y) = g<o>(x,y) = 2 Qn(x,y) 
n=O 

one obtains 
00 

Px[T > n] = 2 2 Qn+k(x,y)P(y,O) = 2 g(x,t) 2 Qn(t,y)P(y,O). 
k=O y*O t*O Y*O 

Setting 

t E R- {0}, 

one has 

(1) X#- 0. 

To complete the proof of Tl it suffices to show that the right-hand 
side in (1) tends to a(x) as n---+ oo. In view of Pl it will suffice to 
prove 

(2) lim L g(x,t)vn(t) = a(x), X#- 0. 
n->oo t*O 

To reduce the problem still further, observe that (2) could easily be 
deduced from 

(3) 

(4) 

(5) 

lim g(x,t) = a(x), 
ltl-> 00 

lim vn(t) = 0 for each t #- 0. 
n-+oo 



162 TWO-DIMENSIONAL RECURRENT RANDOM WALK 

But we know that (3) holds from T14.3. To establish (4) and (5) we 
go back to the definition of vn(t) which implies 

1 
Vn_ 1(t) = R P1[T = n]. 

n 

Introducing the reversed random walk with probability measure P 0 *[ ] 
defined by P*(x,y) = P(y, x), one finds that 

1 
Vn- 1(t) = R P0*[xn = t; T > n] 

n 

P0 *[xn = t; T > n] P0*[xn = t; T > n] 
P0 [T > n] P0 *[T > n] · 

Hence vn_ 1(t) is a conditional probability measure on R - {0}. 
Summing on t over R - {0} gives (4). 

To prove (5) we have to show that for each t 

(6) lim P0 [xn = t; T > n] = O. 
n-+oo Po[T > n] 

Here we have dropped the" stars" as we shall prove (6) for an arbitrary 
aperiodic two-dimensional recurrent random walk. We can select 
the integer m > 0 so that P m(t,O) = a > 0, 

P0 [xn = t; T > n] p (tO) < P0 [n < T :S; n + m] 
P0 [T > n] m ' - P0[T > n] 

or 

P0 [xn = t; T > n] 1 Rn - Rn+m 
---'-'=--::::---;:;:::-----,:----= < - ' P0 (T > n] - a Rn 

and the right-hand side goes to zero as n--+ oo in view of Pl. 
Now the proof of T1 is complete, except for the proof of Pl. But 

P1 is equivalent to 

1• Fn 0 tm -R = , 
n-+ oo n 

and as Fn :S; Un for n ;::: 0 it will suffice to show that 

(7) 1. un 0 tmR = . 
n-+ oo n 

We shall make use of P7.6 to the effect that 

(8) 
A 

un :S; -· n 
n ;::: 1 
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for some constant A > 0. (This requires some care, as (8) is valid 
only when condition (3) in P7.6 is satisfied. But since our random 
walk is recurrent one can find three distinct non-zero points x, not 
colinear, such that P(O,x) > 0, and that suffices to satisfy condition 
(3) in P7.6.) In addition, we only require the identity 

(9) n ~ 0, 

which follows by summing on n in 

n ~ 1, 

which is nothing but P1.2. For each integer m :s; n we have 

n 

1 = _L UkRn-k 
k=O 

:s; (U0 + U1 + · · · + Um)Rn-m + Um+l + · · · + Um 
or 

1 - A (-1- + ... + _1_) 
1 - (Um+l + · · · + Um+k) > m + 1 m + k Rk ~ U U __ --::....A..,--A..,-----A....-....:..., 

o+ .. ·+ m - 1+-+-+ .. ·+-
1 2 m 

for each choice of positive integers k and m. Letting m = [ck] (the 
greatest integer in ck) 

1 - A (-1- + ... + - 1-) ,., 1 - A In (1 + !) m+1 m+k c 

as k--+ oo. Choosing c > 0 so that A In (1 + 1/c) < 1/2, 

1 
Rk ~ 2A Ink 

for sufficiently large k. Hence, using (8) for the second time, 

Uk 2Ink 
Rk :s; -k-

when k is sufficiently large. This upper bound tends to zero, proving 
(7), completing the proof of P1 and hence of Tl. 
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Theorem T1 was worded in a somewhat peculiar manner in order 
to suggest that perhaps 

(1) 1. Px(Ta > n] ( ) R B 
1m p (T ] = g8 x,oo , X E - , 

n--+co 0 > n 

for every set B of cardinality 1 :::;; jBj < oo. Unfortunately the step 
up from IBI = 1 to jBj > 1 causes considerable difficulty, so that we 
refer to the recent ( 1963) literature (60] for the proof of the above 
assertion. As an instructive way of countering the difficulty we offer 
the following attempt at proving (1) for arbitrary finite sets B by 
mathematical induction on the size jBj of B. It has been proved for 
IBI = 1, so that we assume it proved for sets of cardinality p and 
proceed to IBI = p + 1. When IBI = p + 1 we write B = B' u z, 
where jB'l = p, and z is the new point. Then the following equation 
is probabilistically obvious. For x E R - B 

n 
Pz(T8 , > n] = Pz[T8 > n] + L Pz(T8 = k; T8 , > n] 

k=l 
n 

= Pz(Ta > n] + L Pz(T8 = k; JILr8 = z]P2(T8 , > n - k]. 
k=l 

We simplify the notation by writing 

(2) 

where 

bn = P0 (T > n], 
Cn = Pz(T8 = n; JILr8 = z], dn = P2 (T8 , > n]. 

According to the induction hypothesis we know that 

(3) lim abn = g8 .(x,oo), x E R - B'. 
n-+ oo n 

Also, using P1 together with the induction hypothesis, 

(4) 1. dn-k ( ) R B' k 0 1m -b- = gB' Z,OO , Z E - , ~ , 
n-+oo n 

Therefore it seems reasonable to conjecture that 

(5) 
. 1 n co 

!:~ bn"J:1 C~n-k = gs.(z,oo) k~l ck 

= g8 .(z,oo)H8 (x,z) for x, z E R - B'. 
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But if (5) holds, then substitution of (3), (4), and (5) into (2) shows that 

1. Px[TB > n] ( ) ( )H ( ) 
1m p [T ] = gB' X,OO - g 8 • z,OO B X,Z 

n-+oo 0 > n 

for all x in R - B. Observe that 

(6) yER- B, 

which is obtained by decomposing g8 .(x,y) into the sum of the 
expected number of visits to y before hitting B, and those visits toy 
occurring after the first visit to the point z in B. It is obvious how to 
construct a formal proof, using P3.2. In view of T14.3 we can let 
IYI ~ oo in (6). The result is 

1. Px[T8 > n] ( ) 
1m p [T ] = g8 x,oo , 

n-+oo 0 > n 
xER- B, 

which completes the induction and therefore proves (1), assuming that 
(5) is true. 

Finally, we shall derive a sufficient condition for (5), and hence (1) 
to hold. It is quite simply that 

(7) 1~ Rn 
1m-R < oo. 

n-+ oo 2n 

(Before reducing (5) to (7) it should be pointed out that Kesten has 
proved (7) for arbitrary recurrent random walk [60]. And in the two
dimensional case even the limit in (7) exists and equals one. For 
simple random walk this will be verified in E1 below.) 

Now we shall assume (7) and for a fixed point x # 0 in Rand some 
integer M > 0, we consider the sum 

1 n-M 

I(n,M,x) = R _2 Px[T = k]Rn-k· 
"k=M 

Decomposing l(n,M,x) into a sum from k = M to k = [n/2] and 
another one from [ n/2] + 1 to n - M one gets 

l(n,M,x) ~ R"j/"121 Px[M ~ T ~ [n/2]] 
n 

R 
+ R M Px[[n/2] + 1 ~ T ~ n - M] 

n 
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Using T1 we get 
R I(n M x) < ka(x)R [n/21 

' ' - M R n 

for some k > 0, and finally, using (7), 

(8) lim lim I(n,M,x) = 0. 
M-+oo n-+oo 

Using (8) we can show that if, as before 

bn = P0[T > n] = Rn, Cn = Pz[T8 = n; Xrs = z], 

then 
. 1 n oo 

(9) hm b 2 ckbn-k = 2 ck. 
n-+oo 7lk=1 k=1 

This is clear because, given any e > 0, we can choose M such that 

(10) 
-.- 1 n-M -.- 1 n-M 
hm -b 2 ckbn-k s; hm -R 2 Pz[T2 = k]Rn-k 
n ..... oo n k=M n....,oo n k=M 

= lim I(n,M,x- z) < e. 
n....,oo 

And as for the tails, P1 implies that 

. 1 M-1 M-1 

hm b 2 ckbn-k = 2 ck, 
n ..... oo n k=1 k=1 

while 

which tends to zero by Tl. 
But according to ( 4) 

(12) lim dbn = g8 .(z,oo) = g 
n ..... oo n 

where dn = P2 [T8 , > n], as before. Decomposing 

(13) 
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it follows from (10), (11), and (12) that the last term in (13) tends to 
zero as n tends to infinity. And from (9) and (12) we conclude that 

co 

= g8 .(z,oo) L Px[T8 = k; Xra = z] 
k=l 

= g8 .(z,oo)H8 (x,z). 

This is equation (5) so that we have established the sufficiency of condi
tion (7) for (5) and hence for (1). 

El For simple random walk in the plane 

7T 
Rn = P0[T > n] "'-1 - as n-+oo. nn 

Proof:9 We have 

U2n+l = 0, 

and Stirling's formula provides the estimate 

Hence 

1 
U2n"' -• n7T 

n-+ oo. 

1 
U0 + U2 + · · · + U2n "' - ln n, 

7T 

Using the identity 

n ~ 0, 

as in the proof of P1, one obtains 

n-+ oo. 

R2n-2k[Uo + · · · + U2kJ + U2k+2 + · · · + V2n ~ 1. 
Here we let k depend on n, choosing 

k = k(n) = n- [_!!__]· 
ln n 

Then 

U2k -· ln k -· ln (n - k) 
Uo + · · · + ·- ·-

7T 7T 

as n-+ oo, and 

U2k+2 + · · · + U2n"' 0 
9 This proof is from [27]. 
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as n-+ oo. Hence, for each E > 0, 

In (n - k) R2n-2k ;:::: 1 - E 

'IT 

for all large enough values of n, so that 

lim In n Rn ;:::: 1. 
n~oo 7f 

On the other hand, 
n 

1 = 2: RkUn-k;:::: Rn(Uo + · · · + Un), 
k=O 

giving 
-.-Inn 
hm -Rn ~ 1. 

n-+ oo 1T' 

That completes the proof of El. The important thing for our 
purpose is that 

lim Rn = lim In 2n = 1. 
n-ao R2n n-ao Inn 

Hence equation (7) holds and, in view of the discussion following the 
proof of T1, various extensions of T1 are valid for simple random walk. 
The next two examples are devoted to two of these. E2 concerns 
equation (1) which in view of E1 may be written as 

lim Inn P:r[T8 > n] = g8 (x,oo), x E R - B. 
n~ co 1T 

E2 For simple random walk we shall use the above result to obtain a 
novel version of the famous double point problem. Let An denote the 
event that x0, x1, ••• , Xn, the positions of the random walk at times 0, 1, ... , 
up to n, are all distinct. It is known that 

2 < y = lim {P(AnJPin < 3 
n ... oo 

exists. As pointed out in section 10, it requires no great art to calculate 
y quite accurately, but the difficulty of the problem is indicated by the fact 
that it is not even known whether 

1. P(An+l] 1" P(A I A ] 
'm P(A ] = tm n + 1 n 

n-+ oo n n-+ oo 

exists.10 Of course this limit has the same value as the preceding limit, if it 
exists at all. · 

Imitating this problem, while avoiding some of its essential difficulties, 
we define Bn as the event that Xn ¢: {x0, •.• , Xn_ 1}. Thus Bn is the event 

10 See Kesten [816] for the best results, including the existence of the limit 
of P[An+ 2l An], as n -+ oo. 
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that the random walk at time n finds itself at a new point, i.e., one which 
was not visited before. We shall show that 

lim P[Bn+l I Bn] = 1/2. 
n-«> 

Proof: 

P[B I B ] = Po[BnBn+l]. 
n+l n Po[Bn] 

By reversing the random walk it is seen that 

Po[Bn] = Po[T > n] = Rn, 

and similarly, that 

Po[BnBn+d = ,2: P(O,x)Pz[T > n, Tz > n], 
zeR 

where 

T = min [k 11 ~ k, xk = 0], Tz = min [k 11 ~ k, xk = x]. 

Now it is quite clear, from the symmetry of the simple random walk, that 
Pz[T > n, Tz > n] has the same value for each of the four points x where 
P(O,x) > 0. But we prefer to spurn this opportunity to make an apparent 
simplification, in order to prove the result for an arbitrary random walk in 
the plane which is aperiodic, symmetric (P(x,y) = P(y,x)), has the property 
that P(O,O) = 0 and finally is such that T1 holds for sets of cardinality two. 
(This is always true but we have proved it only for simple random walk.) 

For each" fixed x =F 0 we let B = {O,x}. Then 

Pz[T > n; Tz > n] = P0[T > n; Tz > n] 

= _2: P(O,y)Py[T8 > n - 1]. 
yeR-B 

Hence 

1. Pz[T > n; Tz > n] _ "" P(O ) ( ) 1m R - L.. ,yg8 y,oo. 
n-+oo n 'JIEB-B 

Since IBI = 2 and the random walk is symmetric, 

p.(t) = p.*(t) = H 8 (oo,t) = 1/2, t E B 

(see El4.1), and using T14.3, 

1 
g8 (y,oo) = tA(y,O) + tA(y,x) - Ks( .. ) = t[a(y) + a(y - x) - a(x)]. 

Hence we conclude from Pl3.3 that 

,2: P(O,y)g8(y,oo) = ,2: P(O,y)g8 (y,oo) 
yeR-B yeR 

= t[a(O) + 1 + a(x) - a(x)] = 1/2. 
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That gives 

which is the desired result, since Rn = P 0[Bn]· 

E3 Let 

denote the number of visits of the random walk to the origin in time n. We 
propose to show, for every recurrent aperiodic random walk in the plane 
which satisfies equation (7) in the discussion following T1, that 

for all x in R and for every integer m ~ 1. When m = 1, observe that 

Hence the desired result was proved in the course of deriving (8) and (9) 
from condition (7) in the discussion following the proof of Tl. Nor is it 
difficult to extend the argument to the case m > 1. One has 

n 

Pz[Nn = m] = L Pz[T = k]Po[Nn-k = m - 1], 
/<=1 

which leads to a simple proof by induction; for if 

f, _ Po[Nn = m - 1] 1 
n- R -+ 

n 

as n-+ co, then we truncate 

In view of (11) the last term tends to 0 for each fixed M > 0. If M is 
chosen so that I fk - 11 < £ when k ~ M, then we get 

-1. IPz[Nn = m] ll tm R - < £, 
n .... co n 

which completes the proof since £ is arbitrary. 
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Problems 
1. For an entirely arbitrary random walk (recurrent or transient) prove 

that 
TIA(x,x) = TIA(y,y), 

if the set A consists of the two distinct points x andy. 

2. For transient random walk show that 

G(x,O)G(O,y) 
g<o>(x,y) = G(x,y) - G(O,O) · 

3. In this and the next two problems we develop the theory of recurrent 
aperiodic symmetric random walk in the plane by following a different route 
from that in sections 11, 12, and 13. The proof of P12.1 is taken as the 
basis of further developments. It yields 

J1- cosx·8 
a(x) = (2'1T)- 2 1 _ q,(B) d8. 

Now use the monotone convergence theorem (this is not possible if the 
random walk is unsymmetric !) to conclude that for every x e R 

"' _ 2 J 1 - q,(O) cos x· 8 tfk P(x,t)a(t) = (2'1T) 1 _ q,(B) d8 = a(x) + 8(x,O). 

4. Prove that the operator A = A(x,y), restricted to a finite set B, 
IBI > 1, has one simple positive eigenvalue, that its other eigenvalues are 
negative, and that its inverse K has the property 

K(· ·) = L L K(x,y) ::1= 0. 
zeB 1/EB 

Hint: Following the author [93], who imitated Kac [50], suppose that ,\1 

and ..\2 are two distinct positive eigenvalues of A, with eigenfunctions u1(x) 
and u2(x), x e B. Since A is symmetric, u1 and u2 may be taken real and 
such that (u11u1) = (u2,u2) = 1, (u1,u2) = 0. Here (/,g) = L.x£sf(x)g(x). 
One may choose real constants o:1 , o:2 , not both zero, such that v(x) = 
o:1u1(x) + o:2u2(x) satisfies 2:zeB v(x) = 0. Now show by direct computation 
that 

(v,Av) = o:~..\1 + o:~..\2 > 0. 

On the other hand, using the definition of a(x) = A(x,O) in problem 3, 
show that 

(v,Av) = -(2'1T)- 2 fix~ v(x)elz·Br[l- q,(8)]- 1 d8 ~ 0 

with equality if and only if v(x) = 0 on B. 
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5. According to P13.2 the hitting probability function H 8 (x,y) 1s 
uniquely determined by its properties 

(a) 

(b) 

(c) 

L P(x,t)H8 (t,y) - H8 (x,y) = 0, XER- B 
teR 

HB(x,y) = o(x,y), X E B 

\H8 (x,y) \ ~ M for some M < oo. 

Show that the function 

KB(·y) + L A(x,t)[KB(t,y)- KB(t·)KB(·y)] 
KB(- ·) teB KB( · ·) 

has these three properties. This may be done by using only the results of 
problems 3, 4 and of P12.2 and P13.2. Thus T11.1 may be proved for 
symmetric random walk without the manipulations in P11.1 through 
P11.8. 

6. How must the conclusion of P12.3 be modified if one drops the 
"isotropy" assumption (c) to the effect that Q(O) = a 2 \8\ 2? 

7. Verify the properties of capacity, stated without proof at the end of 
section 14. 

8. Let x1 , x2, ••• , Xn denote n fixed distinct points of the plane R, and 
let B denote the set B = {x1 , x2 , ••• , xn,y}. For two-dimensional aperiodic 
recurrent symmetric random walk prove that 

lim HB(oo,y) = 1/2. 
I !II-+"' 

9. Simple random walk in the plane. The random walk, starting at 
x 0 = x # 0 must visit either one, two, three, or all four of the four neigh
bors i, - i, 1, - 1 of the origin before its first visit to 0. Calling N the 
exact number of neighbors visited, calculate 

Pn = lim Pz[N = n], n = 1, 2, 3, 4. 
lzl-+"' 

(It seems amusing that the ratios p 1 :p2 :p3 :p4 are very close to, but not 
quite, 4:3:2:1.) 

10. Does there exist a triangle, whose vertices are lattice points x1 , x2 , x3 

in the plane such that for simple random walk 

H{x1 .z2 ,z3 J(OO,Xt) = 1/3, fori= 1, 2, 3? 

11. Explain why it would have been disconcerting, at the end of section 
15, to obtain any answer other than 2aj7T. 

Hint: The probability p(z) of absorption on the real axis satisfies 

(P - l)p(z) = 0 when Re(z) > 0, Im (z) > 0, 

with boundary values p(k) = 1 for k :2:: 1, p(ik) = 0 for k :2:: 1. Hence 
the continuous analogue of p is a function which is bounded and harmonic 



PROBLEMS 173 

in the first quadrant, with boundary values 1 and 0 on the positive real and 
imaginary axes, respectively. (The solution is the actual hitting proba
bility of the positive real axis for two-dimensional Brownian motion-see 
Ito and McKean [47], Ch. VII, or Levy [72], Ch. VII.) 

12. For simple random walk in the plane let An denote the event that 
Xn #= xk for k = 0, 1, ... , n- 1, i.e., that a new point is visited at time n. 
The point xn + (xn - xn_ 1) is the point which the random walk would 
visit at time n + 1 if it continued in the same direction as that from Xn _ 1 

to Xn. If Bn is the event that Xn + (xn- Xn_ 1) #= xk fork= 0, 1, ... , n, 
show that 

13. For simple random walk in the plane, let T denote the time of the 
first double point (the time of the first visit of Xn to a point which was 
occupied for some n ;;:::: 0). Let 

f(x) = P0[xT = x], h(x) = P0[T, < T], 

where T = min [k I k ;;:::: 0, xk = x], and prove that 

h(x) - L h(y)P(y,x) = o(x,O) - f(x), X E R, 
yeR 

h(x) = L a(x - y)f(y) - a(x), x E R, 
1/ER 

and finally observe that 

E0[a(xT)] = 1, 

14. Generalize the results of problem 13 to arbitrary aperiodic recurrent 
random walk in the plane with E0 [lx1 2 l] < oo, and simultaneously to the 
following class of stopping times: T must have the property that, with 
probability one, the random walk visits each point at most once before time 
T. Note that the generality of this result is precisely the reason why one 
cannot expect to use problem 13 to obtain the numerical value of E0[T] for 
simple random walk. 

15. Simple random walk in the plane. Let A be a finite subset of R, and 
oA the set of those points which lie in R - A but have one or more of 
their four neighbors in A. If a function rp is given on oA, then the interior 
Dirichlet problem consists in finding a function f on A U oA such that 
f = rp on oA and Pf(x) = f(x) for all x EA. Show that this problem has 
a unique solution, namely 

xEA U oA, 

where T = min [k I k ;;:::: 0, xk E 8A]. Does this result remain valid when 
IAI = oo? Can it be generalized to arbitrary aperiodic random walk (by 
defining 8A as R - A)? 



Chapter IV 

RANDOM WALK ON A HALF-LINE1 

17. THE HITTING PROBABILITY OF THE RIGHT HALF-LINE 

For one-dimensional random walk there is an extensive theory 
concerning a very special class of infinite sets. These sets are half
lines, i.e., semi-infinite intervals of the form a :s; x < oo or - oo < 
x :s; a, where a is a point (integer) in R. When B C R is such a set 
it goes without saying that one can define the functions 

Qn(x,y), H 8 (x,y), g8 (x,y), x,y in R, 

just as in section 10, Chapter III. Of course the identities dis
covered there remain valid-their proof having required no assump
tions whatever concerning the dimension of R, the periodicity or 
recurrence of the random walk, or the cardinality of the set B. 

In this chapter, then, the random walk will be assumed to be 
genuinely one dimensional, i.e., according to D7.1 the zero-dimensional 
random walk with P(O,O) = 1 is excluded but no other assumptions 

1 A large literature is devoted to the results of this chapter, usually dealing 
with the more general situation of arbitrary, i.e., not integer valued, sums of 
random variables. In 1930 Pollaczek [82] solved a difficult problem in the 
theory of queues (mass service systems) which was only much later recognized 
to be a special case of the one-sided absorption problem (in section 17) and of 
the problem of finding the maximum of successive partial sums (in section 19). 
The basic theorems in this chapter were first proved by elementary combina
torial methods devised in [91] and [92]. For the sake of a brief unified 
treatment we shall instead employ the same Fourier analytical approach as 
Baxter in [2] and Kemperman in [57]. Kemperman's book contains a bibliog
raphy of important theoretical papers up to 1960. The vast applied literature 
is less accessible since identical probability problems often arise in the context 
of queueing, inventory or storage problems, particle counters, traffic congestion, 
and even in actuarial science. 

174 
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are made concerning periodicity, which plays a very secondary role; 
only occasionally in results like P18.8, P19.4 which involve application 
of the renewal theorem will it be essential that the random walk be 
aperiodic. Similarly, the recurrence of the random walk will not be 
so important here as in Chapter III. When B C R is a finite set it is 
clear that 

(1) L H 8 (x,y) = 1, xeR, 
yeB 

at least in the aperiodic case, if and only if the random walk is re
current. But when B is a half-line it will turn out that the criterion 
for whether (1) holds or not is quite a different one. Let B be a 
right half-line, i.e., B = [xI a ~ x < oo], and consider Bernoulli 
random walk with P(0,1) = p, P(O, -1) = q = 1 - p. When p = q 
the random walk is recurrent so that (1) holds since every point is then 
visited with probability one, and therefore also every subset B of R. 
When p > q the random walk is transient, but (1) is still true since 
every point to the right of the starting point is visited with probability 
one. Hence (1) can hold for transient as well as recurrent random 
walk. For a case when (1) fails one has of course to resort to a 
transient random walk, and indeed Bernoulli random walk with p < q 
provides an example. These examples indicate that it is not quite 
trivial to determine when (1) holds. We shall see, and this is not 
surprising, that (1) is equivalent to the statement that the random 
walk visits the half-line B infinitely often with probability one, 
regardless of the starting point, and an extremely simple necessary 
and sufficient condition for (1) to hold will be given in Theorem T1 
of this section. 

The object of our study is to gain as much information as possible 
about the hitting probabilities H 8 (x,y) and the Green function 
g8 (x,y) of a half-line. To start with the hitting probabilities, one 
might approach the problem by trying to solve the exterior Dirichlet 
problem 

(2) L P(x,t)H8 (t,y) - H8 (x,y) = 0 if x E R - B, y E B 
teR 

together with the boundary condition 

H 8 (x,y) = S(x,y) when x E B and y E B. 

These equations are obviously correct in view of P10.1, part (a). 
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Another possibility would be to utilize part (c) of the same proposition, 
namely 

(3) H 8 (x,y) = L g8 (x,t)P(t,y), xER- B, yEB. 
teR-B 

The methods we will actually use will be based on an identity very 
much like (3). In the process we shall require simple but quite 
powerful methods of Fourier analysis, or alternatively of complex 
variable theory. To avoid convergence difficulties, which one might 
encounter if one tried to form Fourier series like 

L gB(x,y)efY9 
yeR 

(a series which need not converge, as later developments will show) 
one is tempted to introduce generating functions. In other words, 

00 

g8 (x,y) = L Qn(x,y) 
n=O 

is replaced by the series 
00 

L tnQn(x,y), 
n=O 

with 0 =::;: t < 1. It will be unnecessary to give this series a name, 
however, since far more drastic changes in notation are both con
venient, and in accord with tradition in this particular subject. We 
shall, in short, switch back to the notation and terminology in D3.1, 
describing the random walk Xn with x0 = 0, as 

Xn = xl + ... + Xn = sn, 

the X 1 being independent identically distributed integer valued 
random variables with P[X1 = x] = P(O,x). Thus we shall arrange 
matters so that x 0 = 0 as a general rule, and exceptions from this 
general rule will be carefully noted. The principal new definition 
we need for now is 

Dl T = min [n 11 =::;: n =::;: oo; Sn > 0], 
T' = min [n 11 =::;: n =::;: oo; Sn ;::::: 0]. 

Thus T is the first time that the random walk xn is in the set B = 
[1, oo ). It is infinite if there is no first time. In the notation of 
Chapter III, 

00 

P[T < oo] = L H 8 (0,y), 
y=l 

P[ST = y; T < oo] = H 8 (0,y) for y > 0 if B = [1,oo). 
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Similarly 
00 

P[T' < oo] = L D8 .(0,y), 
y=O 

P[ST' = y, T' < oo] = D 8 .(0,y) for y ~ 0 if B' = [O,oo). 

The real work of this chapter now begins with a lemma which 
imitates and extends equation (3) above. 

00 

Pl = L tkE[eiesk; T > k] 
k=O 

= [1 - trf>((!}]- 1{1 - EWe16sT]}, 

for 0 ::;; t < 1, and - oo < (} < oo. The same result holds with T 
replaced throughout by T'. 

Remark (a): When T = oo, tT = 0, so that it is not necessary to 
define e16sT when T = oo. 

Remark (b): We notice that P1 extends (3) as follows. 

00 00 0 

L tkE[e;esk; T > k] = L tk L Qk(O,y)eiey 
k=O k=O y=- oo 

is a Fourier series, its Fourier coefficients being 

00 L tkQk(O,y) when y ::;; 0, 0 when y > 0. 
k=O 

Now we write Pl in the form 

00 

[1 - trf>(B)] L tkE[e16sk; T > k] = 1 - E[!Ye;esT]. 
k=O 

Each side is a Fourier series, and we may equate Fourier coefficients. 
On the left-hand side one uses the convolution theorem (P6.3), 
keeping in mind that 4>( B) is the Fourier series of P(O,x). For y > 0 
(and this is the most interesting case) one gets 

00 0 00 

- L tk+l L Qk(O,x)P(x,y) = - L tkP[T = k; ST = y], y > 0. 
k=O x=- oo k=l 

Changing signs, and letting t /' 1 (i.e., t approaches one from below), 

00 0 

L L Qk(O,x)P(x,y) = P[ST = y], y > 0. 
k=O x=- oo 



178 RANDOM WALK ON A HALF-LINE 

But if B = [1,oo) this is nothing but 
0 

L gB(O,x)P(x,y) = H 8 (0,y), 
Z=- oo 

which we recognize as equation (3). 

Proof of Pl: Although the foregoing considerations can obviously 
be made to yield a proof of P1, we proceed more quickly as follows. 2 

The first identity in P1 is just a matter of definition: 

E[e1118k; T > k] = E[e1118kAk] 

where Ak is a random variable which is one or zero according as 
T > k or T :::; k. So we go on to the important part of P1, writing 

T-1 oo oo 

E L tketosk = E L tketosk - E L tketosk. 
0 0 T 

There are no convergence difficulties, since ltl < 1. Now 
00 

E L tke188k = [1 - t~(0)]- 1 , 
0 

while 
00 00 00 

E L tketosk L E[tT+ketosT+ k] L tkE[tTetosTeto<~+ k -~>]. 
k=T k=O k=O 

But ST+k - ST is independent ofT and ST-here is a typical applica
tion of P3.1(b) in section 3. One obtains 

T-1 
E L tketosk =- [1 

0 

00 

t~(0)]-1- 2 tk~k(8)E[tTet8ST] 
k=O 

= [1 - t~(0)]- 1{1 - EWe1118T]}. 

That concludes the proof of the first part, and the argument for T' 
is omitted, being exactly the same. In fact, it is interesting to observe 
that no use at all was made of the definition of T, other than its 
property of being a stopping time. 

Our observation that P1 is valid for any stopping time T should 
have a sobering influence indeed. As we have so far used none of the 
properties of our special stopping time T it would appear that we are 
still far from our goal-which is to calculate E[tTe1118T], and similar 
characteristic functions, as explicitly as possible. Indeed P1 is of no 
help at all for arbitrary stopping times and whatever success we shall 
have will depend on the special nature of T and T' as hitting times of 
a half-line. 

2 For an even shorter proof of P1 and of P4 below in the spirit of Fourier 
analysis, see Dym and McKean [S7; pp. 184-187]. 
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The results from classical analysis that we now introduce will be 
helpful in working with the very special type of Fourier series, which 
we have already encountered-namely Fourier series of the form 

D2 If a Fourier series ~( 8) = 2.:' = _"' cke1k9 is absolutely con
vergent, i.e., if 2.:'= _"' icki < oo, it will be called exterior if in addition 
ck = 0 for k > 0, and interior if ck = 0 for k < 0. If a complex 
valued function f(z) is analytic in the open disc izi < 1 and continuous 
on the closure izi ~ 1, it is called an inner function. If f(z) is analytic 
in izi > 1 and continuous and bounded on izi ~ 1, then f(z) is called an 
outer function. The symbols ~I> h will be used to denote interior Fourier 
series and inner functions, while !fe, fe will denote exterior Fourier series 
and outer functions. 

P2 Given an interior Fourier series ~1( 8), there is a unique inner 
function / 1(z) such that / 1(e16) = ~1(8) for real 8. Similarly !fe(8) can 
be extended uniquely to f 6(z). 

Proof: The extension of 

IS 
a> 

/ 1(z) = L ckzk, izi ~ 1, 
k=O 

which is an inner function. Uniqueness follows from the fact that 
an analytic function in izi < 1 is determined by its boundary values.3 

The proof for !fe andfe is the same, with izl 2: 1 replacing izl S 1. 

PJ Given a pair / 1 and fe such that 

/ 1(z) = fe(z) when izi = 1, 

one can conclude that there is a constant c such that 

/ 1(z) = c for izi ~ 1, fe(z) = c for izi ~ 1. 

Proof: Define g(z) as / 1(z) when izl < 1, as /e(z) when izl > 1, 
and as the common value of / 1 and fe when izl = 1. Then g is 
analytic everywhere except possibly on the unit circle. However 

3 If there were two functions, their difference would have a maximum 
somewhere in lzl < 1. This contradicts the maximum modulus principle. 
If necessary, consult [1] on this point and concerning the theorems of Morera 
and Liouville which are used below. 
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g is continuous everywhere and also bounded. The continuity of g 
suffices to apply Morera's theorem: one integrates g around a point z0 

with Jz0 J = 1 and verifies that the integral is zero. Morera's theorem 
then guarantees that g is analytic at z0 • Since z0 is arbitrary, g is 
analytic everywhere. But such a function, if in addition bounded, 
reduces to a constant by Liouville's theorem. Thus g(z) = c which 
implies P3. 

A pair of useful inner and outer functions are / 1 and fe defined by 

DJ 
ao tk s" 

f(t • ) __ ~ ;cE[2 ;Sk>Ol 
1 ,z - e 1 

ao tk s" +(t· ) __ ~ ;cE[2 ;Sk<O] 
Je ,z - e 1 

., tk 

c(t) = e- t ;cP[Sk=O]• 

Their crucial importance in our work is due to 

P4 When z = e18 , () real, 0 =::;; t < 1 

1 - tcP(8) = c(t)j1(t;z)fe(t;z). 

Proof: First observe that f 1(t;z) as given in D3 is really an inner 
function of z for 0 =::;; t < 1. One has the estimate 

I~~ E[zSk ;Sk > 0]1 =::;; ~ ~ P[Sk > 0] =::;; ln 1 ~ t 

when JzJ =::;; 1 so that J/1(t;z)J =::;; 1 - t for JzJ =::;; 1, and similarly 
lfe(t;z)i =::;; 1 - t for lzl 2:: 1. Analyticity is also obvious since 

00 tk 00 00 tk L k E[zSk;Sk > 0] = L zn L k P[Sk = n], 
1 n=l k=l 

and so is the fact that / 1 and fe satisfy the appropriate continuity and 
boundedness conditions. 

To check P4, note that in view of JtcP(8)J < 1, 
00 tk k 

1 - tcP(8) = e- t ;cd> (8>, 

00 tk 00 tk L- cPk(()) = L- E[eiBSk] 
k=l k k=l k 

00 tk 
= L k E[ei(JSk; sk > 0] 

k=l 
00 tk 00 tk 

+ L kE[e18sk; sk < 0] + L kP[Sk = 0]. 
k=l k=l 

That gives the desired factorization of 1 - tcP. 
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Now we are ready for the first results of probabilistic interest. 

PS (a) 1 - EWzST] = j 1(t;z), 

(b) 1 - EW'z8T'] = c(t)f1(t;z), 
co 

(c) 2 tkE[z8k;T > k] = [c(t)/e(t;z)]-1, 
lc=O 

co 

(d) 2 tkE[zSk; T' > k] = [fe(t;z)]- 1• 

lc=O 

Here 0 s t < 1, lzl s 1 in (a) and (b), while lzl 2= 1 in (c) and (d). 

Proof: To obtain parts (a) and (c) (the proofs of (b) and (d) are 
quite similar and will be omitted) we let 

co 

ge(z) = 2 tkE[z8k; T > k], 
lc=O 

h1(z) = 1 - EWz8T]. 

One easily verifies that ge(z) is an outer function, according to D2, 
and h1(z) an inner function. An easy way to do this, say in the case 
of ge(z), is to look at 

co 0 co 

ge(ete) = 2 tkE[etesk; T > k] = 2 etey 2 tkP[S~c = y; T > k] 
lc=O y=-co k=O 

which clearly is an exterior Fourier series. In view of P2, ge(z) is an 
exterior function. 

Now we can write P1 in the form 

and in view of P4 

c(t)f1(t;z)fe(t;z)ge(z) = h1(z) 

when lzl = 1. Since / 1, fe, and c(t) are never zero (they are 
exponentials!), 

g (z)J.(t·z)- ht(z) ' 
e e ' - c(t)ft(t;z) lzl = 1. 

By P3 there is a constant k (it may depend on t but not on z) such that 

ge(z)fe(t;z) = k for lzl 2= 1 

h1(z) = kc(t)f1(t;z) for lzl s 1. 
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To determine this constant let z----+ 0 in the last identity (this is one of 
several easy ways of doing it). Clearly 

lim h1(z) = lim f 1(t;z) = 1, 
2-+0 2-+0 

so that k = [c(t)]- 1• Hence 

h1(z) = j 1(t;z), 

which is part (a) of PS and 

g.(z) = [c(t)f.(t;z)]-1 

which is part (c). 

El For one-dimensional symmetric random walk, certain simplifications 
of the formulas in D3, P4, and PS are worth examining in detail. From 
P(x,y) = P(y,x) it follows that P[Sn = k] = P[Sn = -k], or 

E[e188n; Sn > 0] = E[e- 188n; Sn < 0]. 

In other words, 

(1) A(t;z) = J.(t;z) for 0 ~ t < 1 and lzl = 1. 

P4 then gives 

(2) 1 - t4>(8) = c(t) lft(t;e18)12, 

and by PS (a) this becomes 

(3) 1 - t4>(8) = c(t) 11 - E[tTe18Sr]l 2 • 

Equations (2) and (3) constitute a very interesting form of a classical 
theorem in Fourier analysis. In its first and simplest form it is due to 
Fejer [30], 1915, and concerns the representation of non-negative trigono
metric polynomials. It states that if 

n 

rfr(O) = a0 + 2 L [ak cos k8 + bk sin k8] 
k=l 

is non-negative for all real values of 8, then there exists a polynomial of 
degree n 

n 

f(z) = L ckz\ 
k=O 

such that 

(4) rp(8) = lf(e18)l 2 for all real 8. 

Equation (3) of course constitutes a generalization of (4) in the sense 
that 1 - t4>( 8) may be an infinite trigonometric series rather than a trig-
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onometric polynomial. But we get an actual example of (4) by con
sidering a random walk such that P(O,x) = 0 when lxl > nand P(O,n) > 0. 
Then 

n 

1 - tif>(fJ) = 1 - tP(O,O) - 2t 2 P(O,k) cos k8, 
k=1 

and since if>( 8) is real and I¢>( 8) I ~ 1 

1 - t¢>(8) = t/1(8) 

is a non-negative trigonometric polynomial of degree n. Setting 

f(z) = Vc(t) {1 - E(tTz8T]}, 

equation (3) shows that 

1 - t¢>( 8) = t/J( 8) = I f(z)i2 when z = e19 , 

and we have an example of the Fejer representation in equation (4) if we 
can demonstrate that f(z) is a polynomial of degree n in z. But this is 
obvious since 

00 

f(z) = 2 ckzk 
k=O 

with 

ck = Vc(t)S(k,O)- VC(t} ~ P[T =_i;ST=k]t1, 

i=1 

and ck = 0 for k > n since P(O,x) = 0 for k > n, which implies that 

P[T = j; ST = k] ~ P[ST = k] = 0 for k > n. 

Let us apply this result to the determination of E[tT] for simple random 

walk! It is probabilistically obvious that ST = 1. Thus 

t/1(8) = 1 - t¢>(8) = 1 - t cos 8, 

while 

f(z) = V c(t) {1 - zE[tT)}. 

Now we shall solve the equation 

1 - t cos 8 = c(t) 11 - e19E[tT] 12, -00 < 8 < 00 

for c(t) and E[tT]. Expanding the right-hand side, 

[c(t)] - 1(1 - t cos 8) = 1 - 2 cos 8 E[tT] + {E[tT]}2, 

and since 8 is arbitrary, 

t[c(t)] - 1 = 2E[tT), 

[c(t)]- 1 = 1 + {E[tT]}2• 
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There is only one solution if one requires that 0 :S E[tT] < 1 when 0 :::;; 
t < 1, and it is 

For arbitrary symmetric random walk one must of course be satisfied with 
somewhat less. Taking 0 :S t < 1 and 0 :S z = r < 1, PS gives 

Vc(t)[1 _ E[tTrSr]] = e- JJHPrsk=OJ+E[rsk,Sk>Ol} 

_! I ~E[riSkl] = e ak= 1 k , 

where we have used the symmetry property in concluding that 

One can write 

~ ~ ~ ~ ~ L _ E[riSkl] = L rlnl L _ P[Sk = n]. 
k=lk n=-~ k=lk 

The sequence rlnl has the Fourier series 

~ 1 - r 2 L rl"lelnB = 2 , 
n= _ ~ 1 + r - 2r cos 8 

0 :S r < 1, 

and the sequence 

has the Fourier series 
~ 

L c,.e1019 = - In [1 - tcfo(8)], 0 :S t < 1. 
n=-oo 

As both sequences are absolutely convergent one can apply Parseval's 
formula (P6.2) and conclude 

~ 1J" 1-r2 I c,.rlnl = - 2- 1 2 2 8 1n [1 - tcfo(8)] d8. 
n=-~ 7T -zr + r - rcos 

Putting the pieces together, it is clear that we have 

1 J" 1-F2 = eiii -n 1 + r2 -2rcoo9ln [l -td>(B)] ttB, 0 :S t,r < 1. 
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Finally, setting r = 0 in (5) gives 

(6) 1 f" c(t) = elin _,In [1-tti><Bll ao, O~t<l. 

One can of course go further on the basis of (5) and (6). To indicate 
the possibilities we shall let r tend to one in equation (5). The Poisson 
kernel 

K(r 8) = _!_ 1 - r2 
' 21T 1 + r 2 - 2r cos 8 

has the important property (cf. [1] or [105]) that 

!~~ f .. K(r,8)1/J(8) dO = 1/1(0) 

if the function 1/1( 8) is continuous at 8 = 0. And of course 

lim E[tTrSr] = E[tT], 
r;'1 

(regardless of whether T < oo with probability one or not). Thus it 
follows from equation (5) that 

(7) O~t<l. 

But now (7) will yield the answer to the question whether or not T < oo 
with probability one. P[T < oo] = 1 if and only if 

According to D3 

00 

_2; P[T = k] = lim E[tT] = 1. 
k=1 !;'1 

.. 1 
lim c(t) = e-~ ;cP[Sk= 01, 
!1'1 

and this limit is strictly positive by P7.6 which tells us that for some A > 0 

00 1 00 

2: -k P[Sk = OJ ~ A L k- 312 < 00. 
1 1 

Therefore equation (7) gives 

lim {1 - E[tT]} = P[T = oo] = 0, 
tl'1 

so that T < oo with probability one for every symmetric random walk on the 
line (provided, of course, that P(O,O) < 1). 

E2 There is another type of random walk for which very explicit 
results may be obtained, 4 defined in D2.3 as left-continuous random walk. 

4 A far more complete discussion of special classes of random walk which 
permit explicit calculation is given by Kemperman [57], section 20. 
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It is characterized by the property of the transition function P(x,y) that 

P(O,x) = 0 when x < -1, P(O, -1) > 0. 

It will be useful to introduce two analytic functions, to wit 

00 

P(z) = L P(O, n - 1)zn, lzl :::;; 1, 
n=O 

j 1(z) = z - tP(z), lzl :::;; 1, 0 :::;; t < 1. 

In terms of P(z) and .ft(z) one obtains 

(1) 1 - t4>(9) = e-lB[eiB- tP(eiB)] = e-IB .ft (elB), 

where 4>( fJ) is the characteristic function of the random walk. 
Everything that follows depends on the property of ft(z) that for each t, 

0 :::;; t < 1, it has exactly one simple zero in the disc lzl :::;; 1. This zero, 
denoted by r = r(t), is on the positive real axis. This statement is relatively 
easy to verify. First we look for a zero r sa,tisfying 0 :::;; r < 1. This 
means that r = 0 when t = 0, and 

r oo 

- = P(r) = P(O, -1) + L P(O,k - 1)r", 
t k=l 

when 0 < t < 1. Thus we are looking for a point of intersection between 
the straight line rft and the graph of P(r), plotted against r. That there is 
such a point with 0 < r = r(t) < 1 is clear from the intermediate value 
theorem: at r = 0 the straight line is below P(r) since P(O, -1) > 0, and 
at r = 1 the straight line is above, since r 1 > P(l) = 1. To prove 
that this is the only zero in the unit disk, and that it is simple, we use 
Rouche's theorem (cf. [1]). This useful lemma from the theory of analytic 
functions will yield the desired conclusion if we can exhibit a function 
g(z), analytic in lzl < 1 and with exactly one simple zero there, such that 

l.ft(z) + g(z) I < I g(z) I 
on every sufficiently large circle with center at the origin and radius less 
than one. (The content of Rouche's theorem is that the validity of the 
above inequality on a simple closed curve implies that .ft(z) and g(z) have 
the same number of zeros inside this curve.) A very simple choice for g(z) 
works, namely g(z) = -z, for then the inequality reduces to 

t I P(z) I < lzl. 
This is true for 0 :::;; t < 1 and t < lzl :::;; 1, since 

00 

t I P(z) I :::;; t L P(O,n- 1) lzl":::;; tP(0,-1) + lzl [1- P(0,-1)] 
n=O 

< lzl when t < lzl :::;; 1. 
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In terms of the function r(t) our main results concerning left continuous 
random walk are 

(2) 

(3) 

(4) 

J.(t;z) = 1 - r(t)l 
z lzl ;::: 11 0 ~ t < 11 

z- tP(z) 
c(t)};(t;z) = ( ) 1 jzj ~ 11 0 ~ t < 11 z- r t 

c(t) = tP(01 -1). 
r(t) 

The proof parallels very closely that of P5. Equation (1) may be 
expressed as 

(5) 

where 

z- tP(z) 
u1(t;z) = ( ) 1 z- r t 

u0(t;z) = 1 - r(t). 
z 

It is quite easy to verify that u1 and u. are inner and outer functions accord
ing to the definition D2. The singularity of u1(t;z) at the point z = r(t) is 
only an apparent (removable) one since this point is a zero of the numerator 
z - tP(z). Now one uses P4 to go from equation (5) to 

c(t}j;(t;z)f.(t;z) = u1(t;z)u,(t;z)1 lzl = 1. 

Just as in the proof of P5 one has to divide by u1 and by j,. This is possible 
since u1 =F 0 in jzj ~ 1, r(t) being a simple zero. One gets a pair of 
functions 

h (z) = c(t)};(t;z), lzl ~ 1, 
1 u1(t;z) 

h (z) = u,(t;z), lzl ;::: 1, 
• j,(t;z) 

with the desired properties: h1 is an inner function, h, an outer function, 
and h1(z) = h,(z) on jzj = 1. By P3 both functions are constant, and 
have the same value k. To determine k, let lzl- oo. One finds 

lim u,(t;z) = lim J.(t;z) = 1, 
121 .... .., 121 .... .., 

so that k = 1. Therefore 

u.(t;z) = f,(t;z), lzl ;::: 1, 

which gives equation (2}, and similarly (3) comes from the fact that h1 is 
one in jzj ~ 1. Finally equation (4) is obtained by letting z- 0 in 
equation (3). 
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Now it is time to investigate the stopping time T, in the hope of estab
lishing the highly reasonable result that P[T < oo] = 1 if and only if 
p. ~ 0, where p. is the mean of the random walk (D6.4). Using PS and 
equations (3) and (4), 

(6) 1 - E[tTzSTJ = r(t) . z - tP(z). 
tP(0,-1) z- r(t) 

Letting z 7' 1 (along the real axis) 

(7) 1 - E[tTJ = r(t) 
tP(O,-

Thus the question of whether T < oo with probability one hinges upon the 
behavior of r(t) as t 7' 1. But r(t) is defined as the root of the equation 
rft = P(r). It is clear from this definition of r(t) that it is a monotone 
increasing function of t. To get more information we consider three 
separate cases, (i) and (iii) being illustrated in the graph below. 

Case {i): 

P(l}=! 

P(0;-1} 

In this case 

GO 

p. = _L kP(O,k) = P'(1) - 1 > 0. 

/ 
/ I 

/ I 
// I 

k= -1 

r(I}=,P<I 

Case (iJ 

Graph of P(r} 

P(/}=1 

P(0,-1} 

lim r(t) = p < 1, 
t)"l 

Case (iii} 

so that by equation (7) 

lim {1 - E[tT]} = P[T = oo J = 0. 
IJ"] 

Case (ii): 

Now 
lim r(t) = 1, 
t)"l 

but, using the definition of r(t) 

r(/}=1 

1 - t = 1 _ t 1 - P[r(t)] = 1 _ __11.._ 1 - P[r(t)J. 
1 - r(t) 1 - r(t) P[r(t)] 1 - r(t) 
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Hence (7) gives 

~~~ {1 - E[tYJ} = P(O, 1_ 1) [ 1 - ~~~ P~r) 1 1-__P~r)]' 
and 

lim -'- 1 - P(r) = lim 1 - P(r) = P'(1) = p. + 1 = 1, 
rl'l P(r) 1 - r rl'l 1 - r 

so that again 

P[T = oo] = 0. 

Case (iii): II-< 0. 

Again r(t) tends to one as t )" 1 and one can follow the argument in case (ii) 
to obtain 

In Case (iii) it is also of interest to compute P[T' = oo ]. Because the 
random walk is left continuous, 

P[T' = oo] = 1 - F, 

F being the probability of a return to 0 (D1.4). One gets, using PS and 
equation ( 4) 

1 - F = lim c(t)P[T = oo] = -p.. 
tl'l 

Observe that this is equivalent to saying that G = ( -p.)-1, a result which 
was obtained by entirely different methods in E3.1 of Chapter I. 

The general question of when the hitting time T of the right half
line is finite is answered by 

Tl The following four statements are equivalent for genuinely one
dimensional random walk. 

(a) P[T < oo] = 1, 
00 1 

(c) LkP[Sk > 0] = oo, 
1 

(b) 

(d) 

P[T' < oo] = 1, 
00 1 L k P[Sk ~ 0] = oo, 
1 

so that either (c) or (d) serves as a necessary and sufficient condition for 
T and T' to be finite. In the particular case when the first absolute 
moment m = ~ ixiP(O,x) exists, (a) through (d) hold if and only if 

1-' = L xP(O,x) ~ 0. 
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Proof: Setting z = 1 in the first two statements of PS, one has 
.. jl< 

1 - E[tT] = e- t ;; P£s,. > 01, 

1 _ E[tT'] = e- ~ ~ P£S,.<!:01. 

This shows that (a) is equivalent to (c) and (b) to (d). But (c) and 
(d) will be equivalent if we can show that the series L k- 1P[Sk = 0] 
converges. This follows from the estimate in P7.6 in Chapter II, 
but we also offer the following direct proof. From (b) in PS, setting 
z = 0, 

.. jl< 

1 - E[tT'; ~· = 0] = e- t;; P£s,. =01, 

If the series L k- 1P[Sk = 0] were divergent, we could conclude that 

P[T' < oo; ~· = 0] = 1, 

but this implies that P[Xk > 0] = L:'= 1P(O,x) = 0. By applying 
the same argument to the reversed random walk it follows that also 
P[Xk < 0] = 0 so that P(O,O) = 1. But this is a degenerate case 
which we have excluded so that Lk=l k- 1P[Sk = 0] converges and (a) 
through (d) are equivalent. 

For the last part of the theorem we use results from Chapter I. 
If p. > 0, then limn-+oo n- 1Sn = p. > 0 with probability one (this is 
P3.4), so that T < oo. When p. = 0, the random walk is recurrent 
by P2.8 so that every point is visited, and a fortiori every half-line. 
Finally let p. < 0. Then it is a consequence of the strong law of 
large numbers that limn .... oo Sn = -00. Now suppose that we had 
T < oo with probability one. Then, for reasons which must be 
evident, P[Ts < oo] = 1 for every half-line B = [xI b =::;; x < oo]. 
It follows that limn .... oo Sn = + oo, and this contradiction completes 
the proof of Tl. 

18. RANDOM WALK WITH FINITE MEAN 

For the purpose of this section only, let it be assumed that the 
random walk has finite first absolute moment 

00 

m = L: lxiP(O,x) < oo. 
z= -oo 
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In the event that p, ~ 0, it follows from T17.1 of the last section that 
the hitting time T of the right half-line [1,oo) is a random variable, 
in other words, that T < oo with probability one. In this case the 
expectation of T and also of ST is of interest-in fact of far greater 
interest for the theory in the next three chapters than one might guess 
at this point. We begin with 

Pl If p, = 0 then E[T] = oo, and if p, > 0, then 

Proof: 

00 00 1 - EW] 
E[T] = L kP[T = k] = lim L tkP[T > k] = lim 1 , 

k ~ 1 t;< 1 k ~ 0 t,;r 1 - t 

as is verified by straightforward calculation. This limit may be 
finite or infinite. From part (a) of P17.5 

so that 

and 

1- EW] 

1- EW] 
1 - t 

E[T] = lim 
!;'1 

By Theorem T17.1, the series in the last exponent is + oo (diverges) 
when p, = 0, whereas it is finite when p, > 0. (Strictly speaking the 
theorem in question gives this result for the series whose general term 
is k - 1 P[Sk ~ 0] when p, < 0, and we arrive at the desired conclusion 
by considering the reversed random walk P*(x,y) = P(y,x) whose 
partial sums are - Sk.) That completes the proof. 

P2 When p, > 0, E[ST] = p,E[T]. 

Proof: This result in fact holds for a large class of stopping times, 
as is hardly surprising since it is of the form 

E[X1 + · · · + ~] = E[X1]E[T] 

which says that T may be treated as if it were independent of the 
sequence of identically distributed random variables Xi. The usual 
proof is based on Wald's lemma in sequential analysis, which in turn 
may be derived from a simple form of a Martingale system theorem 
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(Doob [23], p. 350). But for the sake of completeness, here is a direct 
proof. 

From P17.1 

~ - i8 1 - E[tTe188.r] 
L. tkE[eiBS" iT > k] = -=---....,...,..,:::- ----="':-:---=-

k=o 1 - tcp(8) -i8 • 

Since p. > 0 we know from P1 that 
00 

2 P[T > k] = E[T] < oo. 
k=O 

Thus it appears reasonable to lett)" 1, and to avoid difficulty on the 
right-hand side .we do this only for such 8 that cp( 8) =F 1. Then 

~ -i8 1 - E[e188T] 
k~o E[eles" i T > k] = 1 - c/>(8)' -i8 , 

when cp( 8) =F 1. Since the random walk is nondegenerate there is a 
deleted neighborhood of 8 = 0 where cp( 8) =F 1. Letting 8- 0, 
assuming only values in this neighborhood, 

-i8 1 
!~ 1 - c/>(8) = ~· 

by P6.4. Thus we conclude 

E[T] = i P(T > k] = ~lim l - E~;18~], 
k=O P,B-+0 -1 

But Sr is a positive random variable and by P6.5 the existence of 

. 1 - E[e188.r] 
hm .8 8-+0 _, 

implies that E[Sr] is finite and equal to this limit. That gives 
E[T] = p.- 1E[Sr] which was to be proved. 

One problem concerning first moments remains to be treated, and 
that turns out to be the most interesting and difficult one. It con
cerns E[Sr] for random walk with mean p. = 0. To illustrate several 
aspects of this problem we return to the examples of section 17. 

El The random walk is symmetric, so the mean is automatically zero, 
the first absolute moment being assumed to exist. However the variance 

co 

u2 = 2 x2P(O,x) 
%=-co 
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may or may not be finite, and that will turn out to be the crux of the 
problem. We start with equation (3) in Example E17.1, and lett/ 1 so 
that 

(1) 1 - cfo(8) = c J1 _ E[etes-r] J2, 

where 

0 < c = lim c(t) = lim e inf~,. In [1-td><en ae < oo. 
!)<1 !)<1 

This much is clear about c from (3) in E17.1. Although one can also 
show without much difficulty that In [1 - cfo(8)] is integrable on the 
interval [ -?T,w] so that 

1 J" c = e:r.i _,InU-rt><enae, 

this fact will not be needed here (see problem 1). 
Now we divide equation (1) by 82 and write 

(2) 1 - cfo(8) = 11 - E[e1e8T] 12 

82 c -i8 , 8 :;6 0. 

The point of this exercise is that when 8 approaches zero, 

lim 1 - c/>(8) = a2. 
e-o 82 2 

We knew this from P6.4 when a2 < oo, and a simple calculation confirms 
that the identity remains correct when a2 = oo, in the sense that the limit 
is then also infinite. 

Considering the two cases separately, we have 

(i) when a 2 < oo 

- = hm . · 
a2 • 11 - E[eiB~] 12 
2c e-o -tO 

If we only knew a little more, namely that also the limit 

. 1 - E[eiesT] 
hm .8 e-o -t 

exists and is positive, then by P6.5, E[ST] would exist and equal this limit. 
This would give the result 

(3) 

This conclusion could be justified by careful Fourier analysis including 
some weakening of the hypotheses in P6.5, but it seems hardly worth the 
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trouble. The additional difficulties we shall encounter in the nonsym
metric case will definitely call for a more sophisticated approach. The 
result, in T1 below, will of course contain the truth of (3) as a special case. 

In case 

(ii) when a2 = oo, heuristic reasoning along the above lines very strongly 
suggests that 

E[ST] = oo. 

That is easy to prove, for if we had E[~] < oo, then from P6.4 one would 
get the contradictory conclusion that 

a2/2c = {E[~]}2 < oo. 

A slightly different formulation of the problem is of considerable 
interest. By proper use of P17.5 one can rewrite equation (1) as 

1 - t/>(8) = {1 - E[e18Sr]}{1 - E[e-18Sr·]}. 

Again dividing by 82 and letting 8-+ 0, one is now led to the conjecture 
that 

(4) 

and of course it looks as though both expectations on the right would be 
finite if and only if a2 is finite. 

E2 For the left-continuous random walk of example E17.2 we found (in 
equation (6)) that 

1 _ E[tTzST] = r(t) z - tP(z). 
tP(O, - 1) z - r(t) 

When 1.1. > 0, we had r(t)-+ r(1) = p < 1 as t ,;r 1, so that a simple 
computation gives 

E[T] = (1 - p);(O, - 1)" 

Also 

1 - E[zST] = p z- P(z), 
P(O,- 1) z- p 

and differentiation with respect to z followed by letting z-+ 1 gives 
E[~] = 1.1.E[T] which illustrates P2. 

Now suppose 1.1. = 0. Then we know that r(t)-+ 1 as t ,;r 1, so that 

1 _ E[zSr] = 1 z - P(z). 
P(O,- 1) z- 1 
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In this case it is quite easy to show that E[ST] < oo if and only if 

"' 
a 2 = 2 k2P(O,k) = P"(l) < oo, 

k= -1 

but we omit the details. 

In one important respect the two preceding examples were mis
leading. It is possible to have a random walk with m < oo, 11- = 0, 
a2 = oo so that nevertheless E[ST) < oo. To find the simplest 
possible example, consider right-continuous random walk, i.e., 
P(O, 1) > 0, P(O,x) = 0 for x > 2. It is clearly possible to choose 
P(O,k) fork = 1, 0, - 1, -2, ... in such a way that 11- = 0 and at the 
same time a2 = oo. But if 11- = 0 we know that T < oo. Now ST 
is a random variable which can assume only the value one. Therefore 
E[ST) = 1 < oo, even though a2 = oo. 

To describe the actual state of affairs in an intuitively pleasing 
fashion it is necessary to consider the behavior of the random walk in 
regard to the left as well as the right half-line. Some new notation is 
unfortunately required for this purpose. 

Dl T* = min [n 11 :::;; n :::;; oo; Sn < 0), 

T'* = min [n 11 :::;; n :::;; oo; Sn :::;; OJ, 

Z = ST, and 

Z = ST'*• Z and Z being defined only when T and T'* are finite 
with probability one. 

What motivates the notation in D1 is of course that T* plays the 
role ofT for the reversed random walk, and T'* the role ofT'. Z and 

Z were introduced mainly to avoid cumbersome notation. They 
were first used (1952) by Blackwell5 and later Feller aptly christened 
them the ladder random variables of the random walk. The "ladder" 
referred to is a sequence Z1 , Z1 + Z2 , ..• , Z1 + · · · + Zn, the Z1 

being independent and distributed as Z. The terms in the ladder 
represent the first positive value of the random walk, the first value 

exceeding the first positive value, and so on. In a similar way Z 
determines a "ladder" to the left of the origin. In the context in 
which such ladders are useful mathematical constructions it is usually 
essential to know whether the "rungs" of the ladder, i.e., the random 

variables Z and Z have finite expectation. And the answer to this 
question is given by 

5 See Blackwell [4] and Feller [31], Vol. I, p. 280. 
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Tl For arbitrary nondegenerate one-dimensional random walk (it is 
not assumed that m < oo ), the following two statements are equivalent: 

(A) T < oo, T'* < oo, E[Z] < oo, and E[-Z] < oo; 

and 

(B) IL = 0, and a 2 < 00. 

Proof: It is fairly easy to show that (A) implies (B). After doing 
so we shall pause and prove several lemmas, namely P3 through PS, 
and the proof of PS will complete the proof of the theorem. 6 

Using P17.4, P17.5 of section 17 and the notation in Dl 

1 - trfo(O) = {1 - EWe18z]}{1 - EW'•e18z]} 

for 0 :;:; t < 1, (} real. Now we let t ;" 1 (this causes no concern) 
and just as in E1 we divide by 82 when (} =F 0. As we are assuming 
(A) it follows from P6.4 that 

lim 1 - ~[el8Z] = E[Z] 
8-+o tO 

and that a similar result holds for Z. This gives us 

lim 1 - 8t( O) = E[Z]E[- Z] < oo. 
8-+0 

Hence 

Re 1 -(}t( 8) = L P(O,x) 1 - ~~s x8 

is a bounded function of 8. Therefore 

M M 1 - cos xO -
_L x2P(O,x) = 2 lim _L P(O,x) 82 :::; 2E[Z]E[- Z] 

x= -M 8-+0 X= -M 

for every M > 0. It follows that the random walk has finite variance, 
and we conclude from P6.4 that the mean IL = 0, and the variance 

a 2 = 2E[Z]E[- Z] < 00. 

That completes the proof that (A) implies (B). 
For the converse we require (for the first time!) a form of the 

Central Limit Theorem (P6.8). 

6 See problem 6 at the end of this chapter for a simple probabilistic proof, 
due to H. Kesten, of the fact that p, = 0, a2 < oo implies E(Z) < oo ; in fact 
p, = 0 and mk+l < oo, k :2::1, implies E(Zk) < oo. 
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P3 Suppose that 1-' = 0 and u 2 < oo. Then 

lim • ~- E[Sn; Sn ~ 0] = • ; , 
n-+oo ·v n ·v 27T 

oo tn 0' 

lim Vf-=t L - E[Sn j Sn ~ 0] = • r,;" 
t;rl n=l n ·v 2 
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Proof: An examination of the proof will show that one may 
assume, without loss of generality, that u2 = 1. Defining 

[.:rnl/2] 

Fn(x) = L Pn(O,t) = P[Sn ::=; Vnx], 
t=- 00 

1 IX t2 F(x) = • ~r~ e-2 dt, 
·v 27T - oo 

we find that the content of the Central Limit Theorem is the 
convergence of Fn(x) to F(x) at every real x. For every A > 0, k > 0 

I Loo x dFk(x) - Loo x dF(x) I 
::=; I LAx dFk(x) - LA x dF(x) I + Loo x dF(x) + Loo x dFk(x). 

The last integral is less than 

~ Loo x2 dFk(x) = ~ E[8~\ Sk2 > Ak] ::=; ~ E[8f] = ~-
Given any E > 0 we now choose A so large that simultaneously 

1 E Joo E (1) - < -, xdF(x) < -· 
A 3 A 3 

Using this A, one can find N such that fork > N 

(2) 

(As an easy way of verifying the last statement, use integration by 
parts. Assuming that A is not a point of discontinuity of Fk(x) for 
any k, one gets 

LAx dFk(x) - LAx dF(x) = A[Fk(A) - F(A)] 

- LA [Fk(x) - F(x)] dx, 
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which gives (2) by use of the dominated convergence theorem). Com

bining (1) and (2) we have 

(3) I Loo x dFk(x) - Loo x dF(x) I < ~: 

for large enough k. But 

roo 1 Jo X dFk(x) = v'k E[Sk; sk ~ 0], 

i oo 1 
x dF(x) = . 1_, 

0 ·y 27T 

and that proves the first part of P3. The second part reduces to 
showing that if a sequence en has a limit as n ~ oo, then 

. . ;-- oo Cntn • ;- . 
hm v 1 - t L . 1_ = v 7T hm en. 
t/1 n=l v n n-+00 

A typical Abelian argument accomplishes the proof, using the fact 
(derivable from Stirling's formula) that 

n~ oo, 

so that as t tends to one 

In the course of proving that (B) implies (A) in T1 we shall be 
able to conclude that 

00 tk 
lim :2; k H - P[Sk > 0]} 
t;<l l 

exists and is finite. In view of the Central Limit Theorem this is a 
power series of the form 
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the "little o" meaning that kak ~ 0 as k ~ oo. To such power 
series one can apply Tauber's theorem [39], the simplest and histor
ically the first (1897) of many forms of the converse of Abel's theorem, 
to conclude that 

P4 lim ~ i {~ - P[Sk > 0]} = i i {~ - P[Sk > 0]}· 
t;<1 1 1 

Now we are ready to resume the proof of T1, and by following a 
rather elaborate route we shall obtain 

PS If p. = 0, a 2 < oo, then 

(a) 
a 

0 < E[Z] = vz e« < oo 

(b) 
- a 

0 < E[-Z] = vze-a < oo, 

where a: is the sum of the convergent 7 series 

(c) 
00 1 {1 } a: = .f k 2 - P[Sk > 0] . 

Proof: First of all it is clear that PS gives more information than 
necessary to complete the proof of Tl. (If (B) holds, then m < oo 
and p. = 0, so that T < oo and T'* < oo by T17.1; further a2 < oo, 
so that PS not only shows that Z and Z have finite moments, but also 
gives their explicit values. Hence a proof of PS will complete the 
proof of Tl.) 

Next we note that it will suffice to prove (a) and (c) in PS. Once 
we have (a) and (c) the same proof which gave (a) and (c) can obviously 
be applied to the reversed random walk. It has for Z the random 
variable - Sr•· Hence E[- Sr•] < oo and since 0 ~ - Z ~ - Sr• 
we have E[ -Z] < oo. But then we can apply the first part of 
theorem T1, which was already proved, and which yielded the 
information that 

a 2 = 2E[Z]E[ -Z]. 

Combined with (a) and (c) this shows that (b) holds. 

7 We shall prove only that the series in (c) converges. However, using 
delicate Fourier analytical methods, Rosen [88] has shown that this series 
converges absolutely. 
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Now we can decompose E[Z], which may be finite or infinite for 
all we know, into 

II 

(1) E[Z] = lim ~ E[S"; T = k] 
II-+ 00 k=1 

II 

lim ~ {E[S"; T > k - 1] - E[S"; T > k]} 
11-+00 k= 1 

= - lim E[S11 ; T > n]. 
11-+ oo 

Using P17.5, part (c), we find that 
00 C10 tic 

~ tiiE[,.S .. ; T > n] = e t,.. Errs~<, sl< s OJ, 

11=0 

for 0 ::;;; t < 1, r > 1. To obtain first moments we differentiate with 
respect to r and subsequently let r '\.1. That gives 

00 00 t" 
(2) ~ tnE[Sn; T > n] = ~ k E[Sk; sk ~ 0] e ~ ~P[SI< s OJ. 

11=0 1 

By Abel's theorem [39], applied to (1) 
00 

E[Z] = - lim (1 - t) ~ tnE[Sn; T > n] ~ oo. 
t;<1 11=0 

Therefore we obtain from (2), after multiplying (2) by (1 - t) and 
letting t 7' 1, 

(3) E[Z] = lim F(t)G(t) ~ oo, 
t?l 

where F(t) and G(t) denote 
.., r:;--. CIO tic 

F(t) = v 1 - t e t ,.. P(s/c s OJ, 

00 t" 
G(t) = - Y1=t ~ k E[S"; S" ~ 0]. 

1 

From P3 we know that 

(4) lim G( t) = ...!!.__. 
t;<1 V2 

(The inequality sign in P3 points the wrong way, but this makes no 
difference at all; just reverse the random walk!) The next step is to 
look at F(t), and for 0 ~ t < 1 

F(t) = e ~ ~{t-Prs/c > oJ}. 

In view of (3) and (4) 

(5) E[Z] = . ~ lim F(t) ~ oo. 
·v 2 t;<1 
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Now there are two possibilities. Either limv1F(t) in (5) is finite, in 
which case we can apply P4 to conclude that 

a "'1 {1 l a E[Z] = - et ;; -z-P[sk > 01J = --= e« < oo 
v'2 vz ' 

so that both (a) and (c) in P5 are proved. Or else (this is the only other 
possibility) 

(6) 

Observe that 

lim F(t) = + oo. 
t;<1 

t - P[Sk > 0] = P[Sk = 0] - {t - P[Sk < 0]}. 

Since 

00 1 L: k P[S~r. = 0] < oo, 
1 

as observed in the proof of T17.1, (6) implies that 

00 tk {1 } lim L: k z - P[Sk < 0] = - oo. 
t;<1 1 

(7) 

Now we retrace all the steps in the present proof, up to equation (5) 
applied to the reversed random walk. Its first positive partial sum is 
- Sr· of the present random walk (in the sense that it has the same 
probability distribution). But then (7) leads to the inevitable conclu
sion that E[- Sr·] = 0 which is impossible since - ST. is by definition 
a random variable whose only possible values are the positive integers. 
Thus (6) is impossible, (a) and (c) hold, PS is proved, and therefore 
also T1 is true. 

As we hinted before, T1 is a powerful tool when used in conjunction 
with the renewal theorem. To prepare for the applications in the 
next section we make some convenient definitions. 

D2 

00 00 

U(z) = L: u(n)zn, V(z) = L: v(n)zn. 
n=O n=O 
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To justify the definition one needs to remark that U(z) and V(z) 
are analytic functions in lzl < 1 without any assumptions concerning 
the random walk. It suffices to show that the exponent in U(z) is 
analytic, and the proof for V(z) is then the same. Clearly 

and by P7.6 the coefficients are bounded uniformly in n, since for 
some A> 0 

oo 1 n L -P[Sk = -n] ~ A L k-a12. 
k=l k k=l 

The power series U(z) and V(z) are identified with analytic func
tions discussed in section 17 by 

P6 lzl < 1, 

lzl < 1. 

The proof of P6 is immediate from D2 above and D17.3. 

Now we shall connect U(z) and V(z) with the ladder random 
variables, but we will of course discuss Z only when T < oo and Z 
only when T'* < oo. 

P7 When T < oo 

(a) 1~1 < 1, 

and when T'* < oo 

(b) U(~) = Vc 1 , 
1 - E[~-z] 

In particular, when p. > 0, (a) holds; when p. < 0, (b) holds, and when 
p. = 0, both (a) and (b) hold. 

Proof: One simply applies part (a) of P17.5 to P6 in order to 
obtain (a) and then part (b) of P17.5 to the reversed random walk to 
get (b). The criteria in terms of the mean p. are immediate from 
T17.1 of the preceding section. 
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Now we are ready to apply the renewal theorem. It will yield 
P8 Let the random walk be aperiodic. If T < oo and E[Z] < oo, 

then 

(a) 

and if T'* < 

(b) 

1 j2 e-a 
limv(n)= = --• 
n-+oo Vc E[Z] C a 

oo and E[ -Z] < oo, then 

lim u(n) = v'C_ 
n-+oo E[ -Z] a 

In particular, if 1-' = 0 and a2 < oo, then both (a) and (b) hold and 

lim u(n) · lim v(n) = 2
2 • 

n-+oo n-.oo a 

Proof: To apply the renewal theorem, P9.3, it is helpful to think 
of a random walk 

Yo= 0, 

where Z1 , Z2 , . . . are independent with the same distribution as the 
ladder random variable Z. If this random walk is aperiodic, and if 
E[Z] < oo, then the renewal theorem gives 

00 1 
lim L Po[Yn = x] = E[Z]. 
X-+00 n=O 

But that is precisely the result desired in part (a), since it follows from 
P7 that 

1 00 

v(x) = . r L P0 [Yn = x]. 
V C n=O 

Finally, the evaluation of the limit in part (a) of P7 comes from PS. 
Therefore it remains only to check that the random walk y n is aperiodic 
if the given random walk has this property. The converse is obvious 
since the possible values of Yn are a subset of the group R of possible 
values of the given random walk. However the statement we need 
is not hard to obtain. In fact, it turns out that plus one is a possible 
value of Ym i.e., that P[Z = 1] > 0. This fact depends on the 
observation that there exists an x ::::; 0 such that P(x,1) > 0. For 
this point x there also exists a path, i.e., a sequence, 

Xl ::::; 0, X2 ::::; 0, ... , Xm _ 1 ::::; 0, Xm = X 
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such that P(O,x1)P(x1,x2) •• • P(xm_ 11x) = p > 0. But then P[Z = 1] 
;;:: pP(x,1) > 0. This construction fails only in one case, namely 
if P(O,x) = 0 for all x s; 0, but in this case the random walk y,. is 
exactly the original random walk. 

That was the proof of part (a) and in part (b) there is nothing new. 
The criterion in terms of p. and a2 comes verbatim from the main 
theorem (T1) of this section. 

EJ The case of symmetric random walk deserves special mention. It is 
clear from D2 that in this case 

U(z) = V(z}, u(n) = v(n). 

Hence also the limits in P8 should be the same, if they exist. That does 
not look obvious, but is true because the definition of a in PS gives 

Vc e« = e i H -!Prsk =OJ+! -Prsk > oJ} = 1. 

Specializing still further (as far as possible) we consider symmetric simple 
random walk. In this case the result of P8 is exact in the sense that (see 
E17.1) 

V2 
U(z) = V(z) = -1 -· -z 

V2 
u(n) = v(n) = - = V2. 

(1 

In order to explain the usefulness of P8, let us anticipate a little. 
In P19.3 of the next section it will be proved that the Green function 
g 8 (x,y) of the left half-line B =[xI x s; -1) can be represented by 

mln(Z,!/) 

(1) Cs(x,y) = L u(x - n)v(y - n), 
n=O 

for x andy in R - B. This representation will be shown to hold for 
every one-dimensional random walk, but in those cases when P8 
applies one can expect to get useful asymptotic estimates. The 
results of Chapter III where we studied gs(x,y) when B was a single 
point or a finite set can serve as a model; for there we had the remark
able formula 

(2) g<01(x,y) = a(x) + a(-y) - a(x - y), 

the statement 

(3) lim [a(x + y) - a(x)] = 0 
lzl-+oo 

was the analogue of P8, and many interesting results were obtained by 
applying (3) to (2). 
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19. THE GREEN FUNCTION AND THE GAMBLER'S RUIN PROBLEM 

The maximum of 0 = x0 , x1 , x2 , ••• , Xno or in other words 
max [S0 , S1 , ••• , Sn] where S0 = 0, can be studied in terms of the 
theory developed so far. It has independent probabilistic interest, it 
may, for example, be related to the gambler's ruin problem men
tioned in the section heading. In fact many other seemingly different 
problems in applied probability theory may be reformulated as 
questions concerning the random variable Mn = max [0, Sv ... , SnJ. 
Furthermore our study of Mn will lead quickly and painlessly to the 
expression for the Green function of a half-line mentioned in equation 
( 1) at the end of the last section. 

Dl Mn = max Sk, 
OSkSn 

n;;:: 0. 

n;;:: 0. 

The random variables T n denote the first time at which the random 
walk attains its maximum Mn during the first n steps. It will play an 
auxiliary role in deriving the characteristic function of Mn. For a 
result of independent interest concerning Tno see problem 7 at the end 
of the chapter. 

One can decompose, for each n ;;:: 0, lzl ~ 1, lwl ~ 1, 

n 
E[zMnWMn -Sn] = L E[zMnwMn -Sn; Tn = k] 

k=O 

n 
= L E[zskWsk -sn; Tn = k] 

k=O 

n 

= L: E[zSk; S0 < sk, S1 < sk, .. . , sk-l < sk; 
k=O 

The last expectation can be simplified as it is clear that the terms 
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up to the second semicolon, are independent of the terms that follow. 
Therefore we get a product of expectations, and if in the second one 
of these one relabels sk+1 - sk = s1, sk+2 - sk = s2, and so forth, 
the result will appear as 

n 
E[zHnwMn- 8n] = 2: E[.zS~<; So< sk, •• . , sk-1 < Sk]E[w- 8n-1<; 

k=O 
So S 0, ... , Sn- k S 0] 

n 
= 2: E[.zS~<; T'* > k]E[w- 8n-~<; T > n- k]. 

k=O 

In the last step we recalled, and used, the definition of the hitting 
times T and T'* ~n D17.1 and D18.1, respectively. 

At this point it is convenient to introduce generating functions. 
The representation of our expectation as a convolution quite strongly 
suggests this, and so for 0 S t < 1 one obtains 

00 00 00 2: tnE[zMnwMn -sn] = 2: tnE[z8n; T'* > n]. 2 tnE[w-Sn; T > n]. 
0 n=O n=O 

It remains only to look up P17.5 to verify that we have proved 

Pl For 0 S t < 1, izl S 1, lwl S 1, 

00 2 tnE[zMnwMn -sn] = [c(t}j1(t;z}fe(t;w- 1}]- 1 • 
n=O 

To illustrate the use of P1 we shall set w = 1 in P1 to obtain some 
simple results concerning Mn, and concerning a limiting random 
variable M, which may or may not exist. 

D2 We say that M = maxk;,;o Sk exists if Iimn-+oo Mn = M < oo 
with probability one. 

Since Mn S Mn + 1 there is a very simple criterion for whether M 
exists or not. It is quite obvious that a monotone sequence of 
measurable functions converges almost everywhere if and only if it 
converges in distribution so that the condition in D2 will be satisfied 
if and only if the probabilities P[Mn = k] have a limit as n---+ oo, and 
the sum of these limits is one. Alternatively, the convergence of the 
characteristic functions to a characteristic function is of course also 
necessary and sufficient. With this in mind it is easy to prove 
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P2 M exists if and only if 
"" 1 

(a) L k P[Sk > 0] < oo, 
1 

and if (a) holds, then 

(b) 

207 

Proof: According to theorem T17.1, T = oo with positive proba
bility if and only if (a) holds. But now it should be intuitively clear 
that T = oo with positive probability if and only if M exists: one 
verifies that limn ... co Sn = - oo, so that M < oo with probability one 
if T = oo with positive probability, while limn ... co Sn = + oo with 
probability one otherwise. We omit the details because it seems more 
amusing to give an alternative purely analytic proof of P2, based on 
the remarks preceding its statement. 

First one verifies, using P1 and the relevant definitions, that 

(1) 
00 co tk 

(1 - t) L tnE[zMn] = e- t jCE[l-z8k:Sk>O] 

n=O 

for 0 ::;; t < 1, izl ::;; 1. Now let us assume that M exists. Then 

lim E[zMn] = E[zM] 
n-+oo 

exists and by Abel's theorem 

"" (2) E[zM] = lim (1 - t} L tnE[zMn]. 
t;rl n=O 

Now set z = 0 in (1) and then let t ,7' 1. Then one gets from (1) 
and (2) 

(3) 
• Cl) tk 

P[M = 0] = hm e- tiC P[S~c> 01 > 0, 
t;rl 

which shows first of all that (a) holds, and secondly that one can also 
let t ,7' 1 in equation (1) with arbitrary izl ::;; 1 to conclude that (b) 
holds. (We have been a little careless in taking the inequality in (3) 
for granted. But it is really easy to see that the existence of M implies 
that P[M = 0] > 0. It is equivalent to showing that M does not 
exist when T is finite with probability one.) 

Finally we suppose that (a) holds. Then, letting t increase to 
one in (1) 

"" ... lim (1 - t) L tnE[zMn] = e- t ~E[l-aS~c:s~c>OJ. 
t;rl n= o 
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In view of the monotonicity of the sequence Mn this implies that 
E[ zMn] has a limit, which is given by (b); and, as remarked immediately 
prior to the statement of P2, we can conclude that M exists (is finite) 
with probability one. 

El Consider the left-continuous random walk of E17.2. It is necessary 
and sufficient for the existence of M that the mean p. be negative. In 
equations (2), (3), and (4) of E17.2 we calculated ft(t;z), J.(t;z) and c(t). 
Applying P1 one gets 

~ tnE[zMn] = [c(t)ft(t;z)J.(t,1)]- 1 = 1 
1 ( )' z- ;~\· 

n=O - r t Z- t Z 

where 
co 

P(z) = L P(O,n - 1)zn. 
n=O 

Using P2 we have, assuming p. < 0, 

E[zM] = lim 1 - t . z - r(t) . 
v1 1 - r(t) z - tP(z) 

When p. < 0 we saw in section 17 that r(1) = 1, and that 

1 - t 1 - P(r) 
~~~ 1 - r(t) = 1 - ~~~ 1 - r = -p., 

so that one obtains 

z- 1 
E[zM] = -p. z - P(z)' p. < 0. 

There is one more question of obvious interest. To find the first 
moment of M, we differentiate the generating function of M to get 

d ( z - 1 ) 
E[M] = -p. !~ dz z- P(z) . 

Because P'(1) = p. + 1, one finds 

E[M] = - 2~ p•(1) ~ oo, 

finite or infinite, depending on whether 
co 

p•(1) = L n(n - 1)P(O,n - 1) 
n=O 

is finite or infinite. Thus E[M] exists in the case under consideration if 
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and only if the random walk has a finite second moment. Indeed it has 
been shown8 that this phenomenon is quite general: 

For every one-dimensional random walk with m < oo and p. < 0, 
00 

E[Mk] < oo if and only if m+k+l = 2: nk+ 1P(O,n) < oo. 
n=O 

Finally we consider the Green function of the half-line and some 
of the very simplest applications. 

DJ If B = [xi - oo < x ~ -1], gB(x,y) = g(x,y) is the Green 
function of Bas defined in D10.1. 

Remark: g(x,y) = 0 when x or y or both are in B, according to 
D10.1, and g(x,y) < oo for all x andy, provided the random walk is 
aperiodic, according to P10.1, part (c). But in view of the special 
nature of our set B one can make a stronger statement. The Green 
function g(x,y) is finite for all x and y regardless of whether the 
random walk is periodic or not. If the random walk is transient, then 
g(x,y) ~ G(x,y) < oo. If it is recurrent, then 

gB(x,y) ~ g<b>(x,y) 

for every point b in B. But even in the periodic case, provided 
P(O,O) < 1, it is always possible to select some b in B such that the 
random walk, starting at x0 = x, has a positive probability of visiting 
the point b before visiting y. For every b which has been so chosen 
it is easy to see that g<b>(x,y) < oo, and that concludes the remark. 

PJ For complex a, b, lal < 1, lbl < 1, 
00 00 

(1 - ab) L L axbYg(x,y) = U(a)V(b), 
x=O y=O 

mln(x,y) 

or g(x,y) = L u(x - n)v(y - n), 
n=O 

where U(a), V(b) and their coefficients u(n) and v(n) are defined in 
D18.2. 

Proof: In the necessary formal manipulations we shall use the 
notation of partial sums Sm and their maxima Mn. It will even be 
necessary to consider the reversed random walk, so that Sn * and Mn * 
will denote the partial sums and maxima of the random walk with 
transition function P*(x,y) = P(y,x). 

8 Cf. Kiefer and Wolfowitz [63]. 
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00 00 

(1 - ab) L L axbYg(x,y) 
x=O y=O 

00 00 00 

= (1 - ab) L L L axbYQn(x,y) 
n=O x=O y=O 

00 00 00 

= (1 - ab) L L L aXbYP[x + sn = y; 
n=O x=O y=O 

X + Si 2: 0 for j = 0, 1, ... 1 n] 
00 00 00 

= (1 - ab) L L L axbYP[Sn * = x - y; 
n=O x=O y=O 

S/ :::;; x for j = 0, 1, ... , n] 
00 00 00 

= (1 - ab) L L L aXbYP[Mn*:::;; X, Mn*- Sn*:::;; y; 
n=O x=O y=O 

Sn* =X- y] 
00 00 00 

L L L aXbYP[Mn* = x; Mn*- Sn* = y] 
n=O x=O y=O 

00 

_ "" E[ M •bM •-s •] -~ an n n. 

n=O 

If the "stars" were not present we would now have from P1 

00 00 

(1- ab) L L aW'g(x,y) = [c(l)/1(l;a)fe(l;b- 1)]- 1 • 

x=O y=O 

But we have stars. According to the definitions of / 1 and /e this 
merely amounts to an interchange of a and b. Another difficulty, 
that of letting t 7' 1 in / 1 and /e was discussed following D18.2 in 
section 18. Using this definition, and P18.6 which followed it, we 
have 

00 00 

(1 - ab) L L axbYg(x,y) 
x=O y=O 

= [c(1)/1(1 ;b)fe(1 ;a- 1)]- 1 

= U(a)V(b) 
oo oo min <x.y) 

= (1 - ab) L L axby L u(x - n)v(y - n). 
x=O y=O n=O 

That completes the proof. 
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By part (c) of P10.1 the hitting probabilities H 8 (x,y) of the half-line 
B are given by 

00 

H 8 (x,y) = 2: g(x,t)P(t,y), xER- B, yEB. 
t=O 

P3 together with P18.8 in the last section gives a way of finding the 
limit of Ha(x,y) as X-++ oo. But at this point it is necessary to 
assume that the random walk is aperiodic. 

P4 For aperiodic random walk with mean 0 and finite variance a 2, 

the hitting probability of a half-line has a limit at infinity. If B = 

[xI - oo < x ~ -1], then 

- e« oo 
lim Ha(x,y) = v'2c- 2: [v(O) + v(1) + 

:r-++oo 0' t=O 

· · · + v(t)]P(t,y), yEB. 

Proof: As u(x) and v(x) both tend to a limit when x-+ + oo (by 
P18.8) one has g(x,y) ~ A [min (x,y) + 1] for some A > 0. The 
random walk has finite second moment, so that one can apply the 
dominated convergence theorem to conclude 

00 00 

lim H 8 (x,y) = lim 2: g(x,t)P(t,y) = 2: lim g(x,t)P(t,y), 
:r-++oo :r-++oo t=O t=O :r-++oo 

and P4 then follows from P18.8 applied to P3. 

Curiously P4 does not give the simplest possible representation for 
the limit of the hitting probabilities. We shall encounter this 
problem again in Chapter VI, where a far more direct approach (also 
based on the renewal theorem) will yield the formula 

z~i~oo HA(x,y) = E[~] P[Z ;::: y], 

where A is the half-line A = [xI x ;::: 1] and Z the ladder random 
variable of D18.1. This result will turn out to hold also when 
E[Z] = + oo, the right-hand side being then interpreted as zero. 

Thus P4 is an incomplete analogue of T14.1 in Chapter III which 
will be completed in P24. 7 of Chapter VI. Although we shall not 
attempt to develop the potential theory for half-lines in any detail, 
the possibility of doing so is evident and now we will present just one 
more crucial step in this direction. ForB a single point (the origin), 
Poisson's equation was found in P13.3 to be 

2: P(x,y)a(y) = a(x), x E R - B. 
yeR-B 
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There was also an adjoint equation, too evident to comment upon, 

~ a(-y)P(y,x) = a(- x), xeR- B. 
yeR-B 

Here B was the origin. In the case of the half-line (say B = 
[ x I x ;:S; - 1 ]), these equations are 

ao 

D4 (a) ~ P(x,y)f(y) = f(x), X;::::: 0, 
y=O 

ao 

(b) ~ g(y)P(y,x) = g(x), X;::::: 0. 
y=O 

In a slightly different context (a) and (b) are known as the Wiener
Hop/ equation, 9 the singular integral equation 

L"" P(x,y)f(y) dy = f(x), x>O 

where 

P(x,y) = p(y - x), s:ao IP(x)l dx < 00. 

We shall now, in PS, exhibit solutions of equations (a) and (b). 
Later, in E27.3 of Chapter VI, potential theoretical methods will 
enable us also to investigate the uniqueness of these solutions. For 
aperiodic recurrent random walk it will be seen that the solutions in 
PS are the only non-negative solutions. 

PS For any one-dimensional recurrent random walk the Wiener
Hop! equation (a) has the solution 

f(x) = u(O) + u(1) + · · · + u(x), x ;::::: 0, 

and (b) has the solution 

g(x) = v(O) + v(1) + · · · + v(x), X~ 0. 

Proof: The theorem is actually valid if and only if both T < oo 
and T* < oo with probability one (see problem 11 in Chapter VI). 
Therefore we shall use only the recurrence in the following way. 
As T* < oo, the left half-line B = [xI x ;:S; -1] is sure to be visited, 
and 

-1 ao 

~ H8 (0,y) = ~ ~ g(O,t)P(t,y) = 1. 
yeB y=-aot=O 

9 See [81] for the first rigorous study; for further reading in this important 
branch of harmonic analysis the articles of Krein [69] and Widom [105] are 
recommended. 
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Observing that g(O,t) = u(O)v(t), and that u(O) = v(O), one obtains 

1 -1 ao 

(1) v(O) = Y~ 
00 
t~ v(t)P(t,y). 

It will be convenient to take an arbitrary x ;;::: 0, and to rewrite (1) in 
the form 

1 ao -1 ao ao 

(2) v(O) = t~ v(t)Y=~ao P(t- y + x,x) = t~ v(t)k=t~+ 1 P(k,x). 

We are now able to prove part (b). It follows from the definition 
of g(x,y) that 

ao 

(3) g(x,y) = L g(x,t)P(t,y) + S(x,y), X;;::: O,y;;::: 0. 
t=O 

Setting x = 0 in (3) 
ao 

g(O,y) = u(O)v(y) = L u(O)v(t)P(t,y) + S(O,y), 
t=O 

and summing on y from 0 to x one obtains 

(4) 
ao z 1 

v(O) + · · · + v(x) = t~ v(t) Y~ P(t,y) + v(O) 

ao t+z 1 
= t~ v(t) k~t P(k,x) + v(O)" 

Now we substitute into equation (4) the expression for [v(O)] - 1 

obtained in (2). Thus 

v(O) + ... + v(x) = t~ v(t)[% P(k,x) + k=t~+ 1P(k,x)} 
That proves part (b) of PS, as 

ao ao 

g(x) = v(O) + · · · + v(x) = L v(t) L P(k,x) 
t=O k=t 

ao k ao 

= L L v(t)P(k,x) = L g(k)P(k,x), X;;::: 0. 
k=Ot=O k=O 

The proof of part (a) may be dismissed with the remark that 
equation (a) is equation (b) for the reversed random walk. The 
above proof therefore applies since the recurrence of a random walk 
is maintained when it is reversed. 
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E2 Consider Bernoulli random walk with P(O, 1) = p < P(O, - 1) = q. 
To calculate g(x,y) as painlessly as possible, observe that g(x,O) = u(x)v(O) 
is the expected number of visits from x to 0 before leaving the right half
line x ~ 0. Since the random walk must pass through 0, this expectation 
is independent of x. Thus u(x) is constant. (The same argument shows, 
incidentally, that u(x) is constant for every left-continuous random walk 
with mean !L ::; 0.) By a slightly more complicated continuity argument 
one can also determine v(x), but for the sake of variety, we shall determine 
v(x) from PS. Equation (b) in PSis 

qg(1) = g(O), pg(n- 1) + qg(n + 1) = g(n), n ~ 1. 

There is evidently a unique solution, except for the constant g(O), namely 

g(n) = [-q- - _p_ (ll.)n] g(O), 
q-p q-p q 

n;;::: 0, 

so that, in view of PS, v(O) = g(O) and 

v(n) = g(n)- g(n- 1) = v(O) (~r for n ~ 1. 

E3 As an amusing application of E2 consider the following random 
variables: 

(a) the maximum W of the Bernoulli random walk with p < q before 
the first visit to (- oo, -1 ], i.e., 

w = max sn> 
O:Sn:ST• 

(b) the maximum W' of the same random walk before the first return to 
0 or to the set (- oo, 0], that is to say 

W' = max Sn. 
OSn:ST'* 

An easy calculation gives 

E[W'] - + E[W] - ~ g(O,n) - ~ v(n) 
- p p - p n~og(n,n)- p n~0 v(O) + v(1) + · · · + v(n) 

= (q - p) ~ (p/q)n n = (q - p) ~ d(n) (P.)n· 
n=l 1 - (pfq) n=l q 

Here d(1) = 1, d(2) = d(3) = 2, d(4) = 3, in short d(n) is the number of 
divisors of the integer n. 

Now we go on to study a class of random walks which exhibit 
approximately the same behavior as the Bernoulli random walk with 
p < q in E2 and E3. We shall state conditions, in P6, under which 
u(x) is approximately constant, and v(x) approximately a geometric 
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sequence. (Of course there will be an analogous class of random walks 
with p. > 0, for which one gets similar results by reversing the process.) 

We impose two conditions. Aperiodicity is one of these, being 
essential for the renewal theorem to apply. The other is a growth 
restriction on P(O,x) for large !x!. It will be satisfied in particular 
for bounded random walk, i.e., when P(O,x) = 0 for sufficiently large 
!xi- Such a growth restriction ((b) and (c) below) is essential. 
Without it, one can show that v(x) will still tend to zero as x ~ + oo, 
but not exponentially. 

Thus we consider one-dimensional random walk satisfying 

(a) P(O,x) aperiodic, m < oo, p. < 0, 
(b) for some positive real number r 

2 rP(O,x) = 1, 
xeR 

(c) for the number r in (b) 

0 < 2 xrP(O,x) = p.<r> < oo. 
xeR 

P6 For random walk satisfying (a), (b), (c), r is uniquely determined 
and greater than one. There are two positive constants k1, k2 such that 

lim u(x) = k1, lim v(x)r = k2 • 
%-+ + 00 %-+ + 00 

Proof: First we obtain the limit behavior of u(x) which is quite 
independent of conditions (b) and (c). One simply goes back to 
P18.8 to obtain 

lim u(x) = Vc_ = k1 > 0, 
x-++oo E[ -Z] 

provided that E[ -Z] < oo. But by P18.2 E[Z] < oo for random 
walk with finite positive mean, and therefore E[-Z] is finite for 
random walk satisfying (a). 

The proof of the second part depends strongly on (b) and (c). 
First consider 

00 

f(p) = 2 pnP(O,n). 
n= -oo 

Condition (b) implies that f(p) is finite for all p in the closed interval 
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IT with endpoints 1 and r (we still have to prove that r > 1, so that 
IT = [1,r]). Now 

00 

f'(p) = L: np11 - 1P(O,n) for p E IT, 
71=- 00 

and 
00 

f"(p) = L: n(n - 1)p71 - 2P(O,n) > 0 
n=- co 

for all pin the interior of IT. The last sum is positive since P(O,n) > 0 
for some n < 0 (for otherwise (a) could not hold). Hence f(p) is 
convex in the interior of IT so that condition (c), which states that 
f'(r) > 0, implies 1 < r. Finally r is unique, for if there are two 
values r 1 and r 2 satisfying (b) and (c), with 1 < r 1 ~ r 2 , then f(p) is 
strictly convex on (1,r2). But by (a) we have f(1) = f(r1) = f(r2) 

which implies r1 = r2 • 

The rest of the proof depends on the elegant device of defining a 
new, auxiliary random walk. Let 

p<T>(x,y) = P(x,y)rll-z, x,yeR. 

Condition (b) implies that p<T> is a transition function of an aperiodic 
random walk, as it gives 

L p<T>(x,y) = 1, 
!IEB 

xeR, 

and obviously p<T> is a difference kernel, it is non-negative, and the 
aperiodicity of P is also preserved. The random walk defined by 
p<T> has positive mean p.<T> in view of (c). Now let g<T>(x,y) be the 
Green function of the half-line B = [xI x ~ -1] for p<T>. Naturally 
we also write 

mln(z.!l) 

g<T>(x,y) = L: u<T>(x - n)v<T>(y - n), 
n=O 

where u<T>(x) and v<T>(y) are defined in terms of p<T> as usual. 
What relation is there, if any, between g<r> and g, u<T> and u, v<T> 

and v? It turns out to be a very simple one. First of all 

(1) g<T>(x,y) = g(x,y)rll-z, x,yeR. 

To prove (1) one has to go back to the formal definition of gin D10.1, 
the identity (1) being formal in nature and seemingly completely 
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devoid of any obvious probability interpretation. Using the obvious 
notation one writes 

<Xl 

g(x,y) = 2: Qn(x,y), 
n=O 

<Xl 

g<r>(x,y) = L Qn<r>(x,y). 
n=O 

For x,y in R - B (otherwise there is nothing to prove), 

Ql<r>(x,y) = P(x,y)rY-x, 

and 

Qn+l<r>(x,y) = L Ql<r>(x,t)Qn<r>(t,y) 
teR-B 

g1ves 

which implies (1). 
Proceeding from (1), 

(2) u<r>(x)v<r>(O) = g<r>(x,O) = r-xg(x,O) = r-xu(x)v(O), 

(3) u<r>(O)v<r>(y) = g<r>(O,y) = g(O,y)rY = u(O)v(y)rY. 

We shall use only (3). The random walk p<r> is aperiodic with 
pos1t1ve mean. To its ladder random variable Z we give the name 
z<r>. Since we know by P18.2 that E[z<r>] < oo, P18.8 gives 

lim v<r>(y) = 1 = k > 0, 
Y- + oo V c<r>E[z<r>] 

where c<r> is c(1) = c for the p<r> random walk. Finally equation (3) 
implies 

. u<rl(O) 
hm v(y)rY = -(O) k = k 2 > 0. 

y-+oo U 

completing the proof of P6. 

E4 Let us paraphrase P6 in a form first considered by Tacklind [98], 
1942, in the context of the gambler's ruin problem. Suppose that a gambler 
starting with initial capital x, plays a "favorable game," or, in random 
walk terminology, that we observe a random walk Xn, with mean fL > 0, 
starting at x0 = x > 0. What is the probability of ruin 

f(x) = Px[Xn ~ 0 for some n ~ 0]? 
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This problem can be reduced to P6 above by reversing the random walk. 
If y,. is the reversed random walk, and if we take y0 = 0, then y,. has 
negative mean - p., and 

f(x) = P0 [y,. ~ x for some n ~ 0]. 

This is a maximum problem of the type treated in P2, and comparing the 
generating function in P2 with the formula for V(z) in D18.2 of the last 
section, one finds that 

f(x) - f(x + 1) = P0 [max y,. = x] 
n:o!:O 

is a constant multiple of the function v(x) for the random walk y,.. So if 
one computes r for this random walk in accord with P6, the result is 

lim [f(x) - f(x + 1)]r• = k3 > 0, 
z-++ oo 

which of course implies the weaker result 

( 1) -l 

lim f(x)r'" = k4 = k3 1 - - > 0. 
:r-+ oo r 

This shows that, in a favorable game, the gambler's probability of ultimate 
ruin decreases exponentially, as his starting capital increases. 

20. FLUCTUATIONS AND THE ARC-SINE LAW 

This section is devoted to a part of the theory of one-dimensional 
random walk which chronologically preceded and led to the develop
ment of the results in the first three sections. In 1950 Sparre 
Andersen discovered a very surprising result concerning the number 
N,. of positive terms in the sequence S0 , S1 , ... , S,., n ~ 0. He 
proved [91] that regardless of the distribution of xl = sl (in fact 
when X 1 is an arbitrary real valued random variable) 

P[N,. = k] = P[Nk = k]P[Nn-k = 0], 0 ~ k ~ n. 

He also found the generating functions and was able to show that the 
limiting distribution of N,. is 

lim P[N,. ~ nx] = 3 arcsin Vx, 0 ~ x ~ 1 
n-+ ex> 1T 

under very general conditions. These conditions (see T2 below and 
also problems 8, 9, and 13) are satisfied for example for symmetric 
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random walk. To understand why this should be surprising, one 
must appreciate the importance of P. Levy's earlier work ([72], 
Ch. VI) on Brownian· motion. It was in this context that the arc-sine 
law first saw the light of day-and thus the myth was firmly estab
lished that its domain of validity was random walk with finite variance 
-random walk in other words which by the Central Limit Theorem 
has the Brownian movement process as a limiting case. 

Dl For real x, O(x) = 1 if x > 0 and 0 otherwise. Nn = 
L~=l O(Sk) when n ~ 1 and N 0 = 0, where Skis the random walk xk 

with x 0 = 0. We shall assume that Xn is arbitrary one-dimensional 
random walk, excluding only the trivial case P(O,O) = 1. 

In this notation, Sparre Andersen's theorem is 

Tl (a) P[Nn = k] = P[Nk = k]P[Nn-k = 0], 0 :::;; k :::;; n, 
and, for 0 :::;; t < 1 

(b) 
DO .., k L P[N, = O]ti = e t ~ P[s,.sol, 

J=O 

(c) 
DO "'fk L: P[N, = j]ti = et ;;P[S,.>Ol. 

J=O 

Proof: Equations (b) and (c) follow immediately from earlier 
results. To get (b) observe that 

P[N 1 = 0] = P[T > j] 
so that 

DO DO 1 - E[tT] L P[N1 = O]t1 = L t'P[T > j] = 1 _ t , 
i=O i=O 

and from P17.5(a) with z = 1 
DO 

L P[N1 = O]t1 = (1 - t)- 1j 1(t;1) 
J=O 

The proof of (c) is similar, being based on the identity 

P[N1 = j] = P[T'* > j]. 

To obtain (a) we resort to an analysis of the same type as, but 
slightly deeper than, that which gave P17.5. Recall the notions of 
absolutely convergent Fourier series, and exterior and interior 
Fourier series introduced in D17.2. Let us call these three classes 
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of functions d, de, d,. Note also that each of these three function 
spaces is closed under multiplication. For example if 4> and 1/J are in 
d 1, then for real 8, 

But then the product is 
ao 

4>(8).p(8) = 2 cketko 
-co 

where ck = 0 for k :S:: - 1, 
n 

Cn = 2 akbn-k for n ~ 0, 
k=O 

so that the product # is again in d ,. 
Following Baxter's treatment [2] of fluctuation theory, we introduce 

the"+ operator" and the" -operator." For arbitrary 

we define 

ao 

4>( 8) = 2 aketko in d 
-co 

ao 

4>+(8) = 2 akeikB, 
k=l 

0 

4>-(8) = 2 aketko. 
k= -ao 

Thus 4>+ is in d 1 and 4>- in de whenever 4> is in d. In other 
words, the " + " and " - " operators are projections of d into the 
subspaces d 1 and de of d. We list the obvious algebraic properties 
of the "+" operator. It is linear, i.e., for arbitrary 4>,1/J in d, 

(a4> + b!fi)+ = a4>+ + b!fi+. 

Since it is a projection, (4>+)+ = 4>+, (4>+)- = 0, and since d+ (the 
set of allf/J such that 1/J = 4> + for some 4> e d) is closed under multi
plication, it is clear that 

(4>+!fi+)+ = 4>+!fi+ when 4>,1/J are in d. 

It is also convenient to define d- in the obvious manner. (Note 
that d- =de, whereas d+ is not d 1 but a subspace of d 1.) d+ 
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and .91- are disjoint, so that an arbitrary cf> in .91 can be decomposed 
uniquely into cf> = c/>1 + c/>2 with c/>1 in .9f+ and c/>2 in .91-. Of course 
c/>1 = c/> +' c/>2 = c/>-. 

Now we are ready to define certain useful Fourier series, and 
leave to the reader the slightly tedious but easy task of checking that 
they are all in .91. They depend on the parameters s, t which will be 
real with 0 ~ s < 1, 0 ~ t < 1. Let 

and 

as usual. 

n 

cf>n(s;O) = 2 skE[e18sn; Nn = k], 
k=O 

00 

,P(s,t; 0) = 2 tncf>n(s ;0), 
n=O 

00 

cf>(O) = 2 P(O,n)e1n8, 
n=- oo 

We require the important identity 

(1) 

n ;;:: 0, 

n;;:: 0. 

The variables s, t, and 0 have been suppressed, but (1) is understood 
to be an identity for each 0 (real), 0 ~ s < 1, 0 ~ t < 1. To prove 
it we write 

n n 
cf>cf>n = 2 skE[el8Sn+ 1; Nn = k] = 2 skE[el8Sn+ 1; Nn+1 

k=O k=O 
n 

= k + 1;Sn+1 > 0] + 2 skE[e18sn+1;Nn+1 = k;Sn+ 1 ~ 0], 
k=O 

where we have decomposed the event that Nn = k in an obvious 
manner. It is easily recognized that this happens to be a decompo
sition of cf>cf>n into its projections on .9f+ and .91-. Hence, using the 
uniqueness of such decompositions, 

n 
(cf>cf>n)+ = 2 skE[e18sn+1iNn+ 1 = k + 1;Sn+1 > 0] 

k=O 
and a comparison of the sum on the right with the definition of cf>n + 1 

shows that 

Similarly one recognizes 
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and upon adding the last two identities one has (1). Multiplying (1) 
by tn+ 1 and summing over n ~ 0, 

or equivalently 

[ifs(1 - st,P)]+ = [ifs(1 - 't,P) - 1]- = 0. 

This says that ifs(1- sttfo) E.!ile, ifs(1 - t,P) E.!il" and, by P17.2, 
these functions can be extended uniquely, ifs(1 - st,P) to an outer 
function ge, and ifs(1 - t,P) to an inner function g1• Thus 

ifs(1 - sttfo) = ge(z), ifs(l - t,P) = g1(z), for lzl = 1. 

Using the factorization 

1 - t~ = c(t)/1(t;z)fe(t;z), lzl = 1 
of P17.4, 

(z) = (z) 1 - st,P = (z) c(st)f1(st;z)fe(st;z), 
ge g, 1 - t,P g, c(t) / 1(t;z)fe(t;z) 

and 

c(st)j,(st;z) g (z) = g (z) fe(t;z) = constant 
c(t) j 1(t;z) 1 e fe(st;z) ' 

since both sides together determine a bounded analytic function. 
The constant (which may depend on sand t) is determined by checking 
that 

This yields 

g1(0) = f 1(st;O) = / 1(t;O) = 1. 

f 1(t;z) 
g,(z) = f 1(st;z) 

and from g1 = ifs(1 - t,P) one gets 

00 

(2) ifs = ~ t'1E[e188n~n] = [c(t)j1(st;e18)fe(t;e18)]- 1• 
n=O 

Equation (2) is still far more general than the proof of T1 requires. 
Thus we specialize, setting 8 = 0, to find 

00 

(3) ~ t71E[~n] = [c(t)j,(st;1)fe(t;1)]- 1 • 
n=O 
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To complete the proof of Tl one has to show that (a) holds. Now 
equations (b) and (c), which have already been proved, may be written 

00 

(4) L P[N; = O]t1 = [c(t)fe(t;l)]-I, 
i=O 

00 

(5) L P[N1 = j](st)' = [J1(st;l)]-1. 
j= 0 

Combining (3), (4), and (5) 

00 00 00 

L tnE[~n] = L P[N; = O]t' · L s'P[N; = j]ti 
n=O i=O i=O 

oo n 

= L tn L P[Nn-k = O]skP[Nk = k]. 
n=O k=O 

Identifying coefficients of tnsk completes the proof of (a) and thus 
of Tl. 

El Symmetric random walk. As shown in Example E 17.1, equation (7), 

so that 

(1) ~ P[N, = O]t' = 1 - E[tT] = (1 - t)-112. 
1=0 1 - t Vc(t) 

It is equally easy to get 

(2) ~ P[N, = J]t' = VC(t} (1 _ t)-112, 
J=O 

for example, by setting z = 1 in P17.4, which gives 

(1 - t) = c(t)j;(t;1)fe(t;1) = t~ P[N, = O]t'}~ 1t~ P[N1 = J]t'} -l. 

For simple random walk it was shown in E17.1 that 

so that 

( ) 1 + Vf"=t"2 ct = 2 , 

V-c( t) = ---===--t ---::== vt + t- v1- t 
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Therefore one can express P[Nn = k] in terms of binomial coefficients. 
With Cn defined by 

co J1 + t L Cntn = _1 __ , 
0 - t 

one finds 

P[Nn = 0] = Cn+l• P[Nn = n] =fen +! 8(n,O), n ~ 0. 

There is no doubt what causes the slight but ugly asymmetry in the 
distribution of Nn. It is the slight but unpleasant difference between 
positive and non-negative partial sums. As indicated in problems 13 and 
14, the corresponding result for random variables with a continuous 
symmetric distribution function is therefore much more elegant. How
ever even in the case of simple random walk one can obtain formally 
elegant results by a slight alteration in the definition of Nn = 8(S0) + · · · 
+ 8(Sn)· One takes 8(S") = 1 if S" > 0, 8(S") = 0 if S" < 0, but when 
Sk = 0, 8(Sk) is given the same value as 8(Sk_ 1). In other words, a zero 
partial sum sk is counted as positive or negative according as sk -1 is 
positive or negative. With this definition it turns out10 that 

P[N2n = 2k + 1] = 0, 

Now we turn to the asymptotic study of Nn and show that even in 
the limit theorems the symmetric random walk continues to exhibit a 
certain amount of asymmetry due to our definition of Nn. We shall 
go to some trouble to exhibit the same kind of almost symmetric 
behavior also for random walk with mean zero and finite variance. 

Pl For symmetric genuinely one-dimensional random walk (i.e., 
when P(x,y) = P(y,x), P(O,O) < 1) 

(a) lim Vtm P[Nn = 0] = . ~ 
n-+ co ·y C 

(b) lim Vtm P[Nn = n] = Vc. 
n-+ co 

For genuinely one-dimensional random walk with mean zero and finite 
variance u2 the limits in (a) and (b) also exist, but their values are now 
ea in equation (a) and e-a in equation (b). The constant cis defined in 
D18.2 and a in P18.5. 

Proof: According to D18.2 and P18.5, 

c = e- ~ ~P[s,.=oJ, a= ~~H- P[S" > 0]}· 
1° Cf. Feller [31], Vol. I, Chapter III, and Renyi [84], Chapter VIII, §11. 
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The series defining c always converges, and that defining a: was shown 
to converge in the proof of P18.5, when p. = 0 and u2 < oo. 

We shall worry only about the asymptotic behavior of P[Nn = 0], 
since the evaluation of the other limit follows a similar path. Using 
part (b) of T1 one gets 

As t )" 1 the right-hand side has a finite limit. This limit is clearly 
ex in the case when p. = 0 and u2 < oo, and by using the fact that 
P[Sn > 0] = P[Sn < 0] it is seen to be Vc when the random walk is 
symmetric. From this point on the proof for both cases can follow 
a common pattern. It will make use of only one simple property of 
the sequence P[Nn = 0] = Pn· That is its monotonicity and non
negativity: Po 2!: PI 2!: • • • 2!: Pn 2!: Pn + 1 · · · 2!: 0. Thus P1 will 
follow from 

P2 If Pn is a monotone nonincreasing, non-negative sequence such that 

(1) 

then 

(2) lim y;; Pn = 1. 
n-+ao 

Proof: We proceed in two stages. The first step uses only the 
non-negativity of Pn· For a non-negative sequence a special case of a 
well known theorem of Karamata 11 asserts that (1) implies 

(3) lim - 1- (Pl + · · · + Pn) = _!_. 
n-+ao Vn y;;: 

This result, incidentally, is the converse of the Abelian theorem used 
in the proof of P18.3. It is not correct in general without the 
assumption that Pn 2!: 0. 

The next step goes from (3) to (2) and uses the monotonicity 
Pn ;;::: Pn+l· It is easier to appreciate the proof if we replace Vn by 
na, 0 < a < 1, the limit by one, and try to show that 

P + ... +P 
P > p and 1 n -+ 1 n - n+l na 

11 See Hardy [39] for a complete discussion of this and other Tauberian 
theorems, and Konig [68] or Feller [31], Vol. 2, for an elegant proof of (3). 
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implies that n1 -aPn-+ a. The technique of the proof even suggests 
the further reduction of taking for p(x) a monotone nonincreasing 
function such that p(x) = Pn when x = n, and such that 

(4) lim x-a r:r: p(t) dt = 1. 
:r:-++oo Jo 

This is of course easy to do, and it remains to show that 

(5) lim x1 -ap(x) = a. 
z~+ao 

For each c > 1, the monotonicity of p(x) gives 

1 ic:r: xp(cx) ~ c _ 1 :r: p(t) dt ~ xp(x). 

Thus 

xp(cx) < Lc:r: p(t) dt - I: p(t) dt < xp(x) • 

I: p(t) dt - (c - 1) I: p(t) dt - L:r: p(t) dt 

Letting x-+ + oo, and using the hypothesis ( 4 ), the second inequality 
gtves 

ca - 1 < lim :r:xp(x) = lim xl-ap(x). 
c - 1 - Z-+00 L p(t} dt z:;;x, 

Using also the left inequality one obtains 

-.- c4- 1 . ca-l hm x1 - 4p(x} ~ -- ~ hm x1 -ap(x). 
:r;-+00 C - 1 :r;-:::;«, 

This holds for arbitrary c > 1, so we let c ~ 1 to obtain 

. c4- 1 
lim x1 -ap(x) = hm --1 =a, 

:r:-+oo c'>ll C -

proving (5) and hence P2 and Pl. 

We conclude the chapter with a form of the arc-sine law. 

T2 Under the conditions of P1 (either symmetry or mean zero and 
finite variance, but not necessarily both) 

(a) 
1 

Vk(n - k) P[Nn = k] =- + o(k,n) 
1T 
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where o(k,n) tends to zero uniformly ink and n as min (k, n - k)--+ oo. 

(b) For 0 ::;; x ::;; 1 

lim P[Nn ::;; nx] = ~arc sin Vx. 
n-+ oo 7T 

Proof: In view of P1 and part (a) of T1, 

Vk(n - k) P[Nn = k] = VkP[N, = k]vn=k P[Nn-k = 0] 

= [ V~1T + o1(k)][ J~ + o2(n - k)] 

1 
= - + o(k,n), 1T 

where o(k,n) has the required property, given any e > o there is some 
N such that o(k,n) < e when k > N and n - k > N. Strictly 
speaking this was the proof for the symmetric case. In the other 
case it suffices to replace Vc by e-a. 

Part (b) is the "classical" arc-sine law, which is valid under far 
weaker conditions than those for (a). (See problems 8 and 9 for a 
simple necessary and sufficient condition.) To derive (b) from (a) 
we may write 

P[Nn::;; nx] = P[Nn::;; [nx]] = ~~~: [~ (1- ~)r 112 (~ + o(k,n))· 

Interpreting the limit as the approximation to a Riemann integral, 

lim _!_ [j_] [~ (1 - ~)] -l/2 = .!. rz dt = ~arc sin Vx· 
n ... oo n1Tk=O n n 17 Jo Vt(l- t) 1T 

As the integral exists the error term must go to zero, and that proves 
T2. 

E2 Consider left-continuous random walk with m < oo, p. = 0, a2 = oo. 
This is an excellent example for the purpose of discovering pathologies in 
fluctuation theory. A particularly ill-behaved specimen of this sort was 
studied by Feller, 12 and it, or rather its reversed version, is known as an 
unfavorable fair game. We shall show that every random walk of this type 
is sufficiently pathological so that it fails by a wide margin to exhibit the 
limiting behavior in Pl and T2. In particular it will follow that the 
hypotheses in Pl and T2 cannot be weakened. 

12 See (31], Vol. I, p. 246. 
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From previous discussions of left-continuous random walk in E17 .2, 
E18.2, and E19.1 we need only the following facts ((1}, (2}, and (3) below). 

(1) 0 ;:S; t < 1, 

where r(t) is the unique positive solution (less than one) of the equation 

(2) r(t) = tP[r(t)]. 

Here P(z) is defined as 

"" P(z) = L P(O,n- 1)z", 
n=O 

where P(x,y) is the transition function of the random walk. Among the 
obvious properties of P(z) are 

(3) P(1) = P'(1) = 1, P"(1) = oo, 

where P'(1) and r(1) denote the limits of P'(z) and P"(z) as z approaches 
one through the reals less than one. 

Our analysis will make use of a theorem of Hardy and Littlewood, the 
forerunner of Karamata's theorem (a special case of which was P2). It 
asserts that when a,. ~ 0 

(4) lim (1 - t) ~ a,.t" = 1 implies lim ! (a1 + · · · + a,.) = 1. 
v1 0 "~"" n 

Using (1}, (2), and (3) we shall study the behavior of 

"" (5) A(t) = (1 - t) L t"P[S,. < 0] 
0 

as t /' 1. We shall show that for any constant a in the interval t ;:S; a ;:S; 1 
it is possible to find a left-continuous random walk with mean zero and 
a2 = oo such that 

(6) lim A(t) =a. 
V1 

But by (4) this implies 

(7) 1 " lim - L P[Sk < 0] = a. 
"~"" n k=1 

It will even be possible to find a left-continuous random walk such that the 
limit in (6), and hence, by an Abelian argument, the limit in (7) fails to 
exist altogether. 

Suppose now that the limit in (7) exists with some a > t or that it does 
not exist at all. In this case the arc-sine law in part (b) of P4 cannot be 
satisfied-for if it were, one would necessarily have 

lim E[N"] = lim ! i P[Sk > 0] = lim ! i P[Sk < 0] = -2
1. 

"~"" n ,. .... "" n k= 1 ,. .... "" n k= 1 
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It is also clear, the random variables Nnfn being bounded, that the limit in 
(7) must exist if the limit of P[N n :s; nx] is to exist as n-+ oo for every x. 
Thus if we carry out our program it will be clear that there are random 
walks for which Nn has no nondegenerate limiting distribution. The 
truth is actually still more spectacular: in problems 8 and 9 at the end of 
the chapter it will be shown that if there is some F(x), defined on 0 < 
x < 1, such that 

lim P[Nn :s; nx] = F(x), 0 <X< 1, 
n-+ oo 

then (7) must hold with some a between zero and one. If a = 1, then 
F(x) = 1; if a = 0, then F(x) = 0; and if 0 < a < 1, then 

(8) . sin 7Ta Jz F(x) = hm P[Nn :s; nx] = -- t-a(l - t)a-1 dt. 
n-oo rr o 

The result of (8) with a = 1- was obtained in T2. If we show, as planned, 
that one can get (8) with a > 1- for suitable left-continuous random walks, 
then of course one can also get (8) with a < l· One simply considers the 
reversed, right-continuous random walk. 

It remains, then, to investigate the limit in (6). Differentiating (1) for 
O:s;t<1 

(9) 

By equation (2) 

(10) r'(t) = P[r(t)] + tr'(t)P'[r(t)]. 

This fact, together with (2) will be used to express A(t) in equation (5) as 
a function of r(t) = r. Clearly r(t) is a monotone function oft so that this 
defines t as a function of r. Moreover r(t)-+ 1 as t-+ 1, because the 
random walk has mean zero, as was pointed out in E 17 .2. 

Using equations (2), (5), and (10), one obtains 

(11) 
r'(t) 

A(t) = t(1 - t) 1 _ r(t) 

r 

P(r)- r r 
1 - r P(r) - rP'(r) 

= [ 1 - P'(r)] 
(1 - r) 1 + r P(r) _ r 

It is therefore clear that (6) will hold with a certain value of a if and only if 

(12) lim _1_ P(r) ~ r =a. 
r;<l 1 - r 1 - P (r) 

It is not hard to construct a left-continuous random walk for which the 
limit in (12) will have any desired value ! :s; a < 1. The limit depends 
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only on the behavior of P(r) and P'(r) near r = 1 and that is determined 
by the behavior of the coefficients P(O,n) for large n. Suppose we consider 
a random walk such that for some integer N > 0, and some c > 0 

(13) 
c 

P(O,n) = ""'ii"+2 for n > N, 
n 

0<a~1. 

The constant c is assumed to be adjusted so that (3) holds, and keeping 
this in mind, an easy calculation shows that (12) holds, and that the limit is 

1 1 
(H) 2 ~ a = a + 1 < 1. 

To get (12) with the limit a = 1 one can of course take a = 0, and get the 
right result, since the random walk with a = 0 will be transient, having 
infinite first moment, so that Nnfn-+ + 1 with probability one. If one 
wants an example where m < oo, so that the random walk remains 
recurrent, one can take 

c 
P(O,n) = (n In n)2 

for large enough n, but this is now a little tedious to check. 
Finally, to produce an example where the limit in (12) fails to exist, 

there is a procedure familiar to all those whose work requires delicate 
asymptotic estimates. One simply decomposes the positive integers into 
blocks or intervals, 

Then one takes two numbers 0 < a1 < a2 < 1, and chooses 

c 
P(O,n) = ~ when n E /1 U I a U /5 U · · ·, n 1 

c 
= -+2 when neJ2U J4U IaU ·· ·· n":a 

It can now be shown that 

--1 - = lim A(t) < lim A(t) = - 1- 1, 
a2 + 1 t;<1 t;<1 a1 + 

provided that the obvious condition is met: the length of the kth interval, 
which is n" - n" -1> must tend to infinity sufficiently fast as k-+ oo. 
This can be arranged at no extra cost, but we omit the details of the 
calculation. 

Remark: The last result of E2 amounted to showing that there 
need not exist a limiting distribution for the occupation time N n of the 
right half-line. This phenomenon is typical of a larger class of 
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results, called occupation time theorems. Consider arbitrary non
degenerate random walk, and let 

(1) B C R, IBI < oo, 97(x) = 1 for x E B, 0 otherwise, 
n 

N,. = L 9'(Sk)• 
k=l 

N,. is then the occupation time of B. A typical question concerns 
the possibility of finding a positive sequence a,. such that 

(2) lim P[N,. :S a,.x] = F(x) 
n-+co 

exists at all continuity points of F(x), and such that F(x) is a non
degenerate distribution (has more than one point of increase). Typ
ical answers are 13 : If d = 1, 1-' = 0, 0 < a 2 < oo, then there is a 
limit distribution F(x) if one takes a,. = Vn (a truncated normal 
distribution). But if d = 1, m < oo, 1-' = 0, a 2 = oo, the situation is 
comparable to that concerning the arc-sine law. There is a one
parameter family of distributions (the so-called Mittag-Leffler 
distributions) which do arise as limits in (2). But there are also 
random walks which cannot be normalized by any sequence a,. to give 
a nondegenerate limit distribution. 

In two dimensions the situation is similar. When the mean is 
zero and the second moments exist, one can show that 

(3) lim P[N,. > x ln n] = e-cz, 0 :::;; x, 
n-+co 

where the constant c is a function of the second moments and of the 
cardinality IBI. It is of course inversely proportional to IBI. 

Problems 

1. For aperiodic symmetric one-dimensional random walk use P7.6 to 
prove that In [1 - tP(O)] is Lebesgue integrable on the interval -7T:::;; 
0 :S 7T. 

2. Continuation. Conclude from problem (1) that for 0 :::;; r :::;; 1 

exp {A~ J" 1 + ! = ;2 
0 In [1 - tP(O)] do} 

1 _ E[r] = 'T7r _,. r r cos . 

exp { .fw f .. In [1 - tP(O)] dO} 

13 For an elementary discussion see [31], Vol. I, Ch. III, and [51], Ch. II. 
Complete results, including necessary and sufficient conditions for the exist
ence of a nondegenerate limit distribution F(x), may be found in a paper of 
Darling and Kac [20]. 
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3. Calculate 
E[tTetBz] 

for the two-sided geometric random walk, given by 

P(O,O) = p, P(O,x} = fp(1 - p)lzl, X=/: 0. 

It is also known that 

2 l.!.. lim P[M,. ~ x E[M,.)] = . ;- .r; e-t2 dt, 
11.-+C:O v "'T 0 

X~ 0. 

This limit theorem ( cf. Erdos and Kac [29) and Darling [19]) may be 
obtained from P19.1 with the aid of the Tauberian theorem in P20.2. 

5. Show that one-dimensional random walk has m < oo and p. = 0 if 
and only if · 

k~J p[j~k~ > E] < 00 

for every E > 0.14 

6. For each n ~ 1, prove that E[~] = 0 and El~l"+ 1 = m,.+l < 00 imply 
E[Z"] < oo. Hint: 

... 0 

E[Z"] = L k" L Cco.«>>(O,x)P(x,k) 
k=l k=l 

... 0 

~ L k" L C<l}(O,x)P(x,k). 
k=l z=-=-aD 

Here gA(O,x) is the expected number of visits of the random walk, starting at 
0, to x, before the first visit to the set A. Now show thatg{u{O,x) is bounded, 
so that for some M < oo 

14 The following elegant extension is due to Katz [53]. One-dimensional 
random walk has mean 0 and absolute moment 

m,. = L; ixi'"P(O,x) < oo, 

if and only if the series 

converges for every E > 0. 

a<::: 1, 
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"' 0 

E[Z•]::;; MI k• L P(x,k) < oo 
k=l z=-oo 

when mn+l < oo. (Due to H. Kesten.) 

7. Let Tn = min [k I 0::;; k ::;; n; sk = Mn] and prove that 

P[Nn = k] = P[Tn = k] for 0 ::;; k ::;; n. 
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8. Let gn<r> = E[(n - NnYJ, r;::: 0, n ;::: 0 where Nn is the number of 
positive partial sums in time n. Prove that 

n-1 
g <r+l) - nu <n - ""' a g (r) n - ~e.n ~ n-m m n;::: 1, r;::: 0, 

m=O 

where an = P[Sn > 0]. Using this recurrence relation prove (following 
Kemperman [57], p. 93) that 

;~~ n-rgn<r> = (1- a)(1- ~) · · · (1- ~) 

for all r ;::: 1 if and only if 

lim al + ... + an = a. 
n~co n 

9. Using the "method of moments" (see P23.3 in Chapter V) conclude 
that 

lim P[Nn ::;; nx] = F(x), -00 <X< 00 
n-oo 

exists if and only if 

exists, and that F(x) is then related to a by 

F(x) = Fa(x) =sin 7Ta t ta- 1(1 - t)-a dt, if 0 < a < 1, 
7T Jo 

F0(x) = 0 if x < 0, 1 if x ;::: 0, 

F1(x) = 0 if x < 1, 1 if x ;::: 1. 

10. For aperiodic symmetric random walk with finite third moment m3 , 

one can use the result of problem 6 to sharpen the statement in P8, to the 
effect that 

lim u(n) = lim v(n) = v'z. 
n-+co n-+oo a 



234 RANDOM WALK ON A HALF-LINE 

Show that one obtains 

0 < ~ [...!!..._ u,. - 1] 
11=0 V2 

~ [...!!..._ v,. - 1] 
11=0 V2 
1 J" [1 - cos 8 2] d8 

= 4w _, ln 1 - rfo( 8) a 1 - cos 8 < oo. 

11. Let X1 , X2 , . . . be independent identically distributed random 
variables, S0 = 0, S,. = X1 + · · · + X,., and M,. = max [S0 , S11 ••• , S,.], 
as in D19.1. Now we define two other sequences Z,. and W,. of random 
variables, with n ~ 0. The first of these is 

Z0 = 0, Z1 = (X1)+, .. . , Z,.+l = (Z,. + X,.+ 1)+, 

where x+ = x if x > 0, and 0 otherwise. The second sequence is defined 
by 

W0 = 0, 

where 8(x) = 1 if x > 0, and 0 otherwise. 
Prove that 

P[M,. = x] = P[Z,. = x] = P[W,. = x] 

for all non-negative integers n and x. The sequence Z,. has applications in 
queueing theory [17]. 

12. For an arbitrary left-continuous random walk, starting at 0, let 
P(z) = L.o P(O,k - 1)zk. If T* is the time of the first visit to the left half 
line, then according to P17.5 and E17.2 

E[tT"] = 1 - /e(t;1) = r(t), 

and for 0 S t < 1, z = r(t) is the unique root of the equation z = tP(z) in 
the disc lzl S 1. By a theorem of Lagrange this equation has the solution 
z = z(t) = L,i aktk, where kak is the coefficient of zk- 1 in [P(z)]k. Fill in 
the details and conclude that 

1 
P[T* = k] = kP[Sk = -1], for k ~ 1. 

For an application outside the theory of random walk consider a simple 
branching process z,. with z 0 = 1. It is defined (see [40]) so that z1 = k 
with given probabilities pk fOI k ~ 0, and z,. + 1 is the sum of z,. independent 
random variables with the same distribution as z1 • Let N = L.o z,. S oo 
denote the "total number of individuals in all generations" (which is finite 
if and only if z,. = 0 for some n). If r(t) is the generating function of N, 
show that it satisfies the same equation as before, i.e., that 

00 

r(t) = t ~ pk[r(t)]k. 
0 
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Finally, call Q(i,j) the probability that z,.+ 1 = j, given that z,. = i. Prove 
that 

1 
P[N = k] = kQ(k,k- 1}, for k ~ 1. 

13. Suppose that X1 , X2 , ••• , are independent real valued random 
variables (not integer valued!) with common distribution 

F(y) = P[Xk ~ y], -00 < y < 00. 

Show, by replacing all Fourier series in the unit circle by Fourier trans
forms in the upper half plane, that every result of Chapter IV remains 
correct, with obvious modifications. 

Now suppose in addition that F(y) is continuous and symmetric, i.e., 
F(y) = 1 - F( -y) for all real y. If 

show that 

(a) 

(b) 

(c) 

(d) 

so that 

(e) 

¢>(8} = J:oo e1811 dF(y}, -00 < 8 < 00, 

0 ~ t < 1, 

k ~ 1, 

k ~ 0, 

00 L E[eiB(2N,. -n>]t" = 11 _ elBt 1-1 
n=O 

1 
v' 1 + t 2 - Zt cos 8, 

E[eiB(2N,. -n>] = P,. (cos 8), 

where P,.(x) is the nth Legendre polynomial. 

14. Imitating the proof of T20.2, conclude that 

1 J1 eiBz lim E[ei8(2N,./n-1l] = - dx = lo(8). 
,. .... oo '11' -1 v'1 - x2 

0 ~ t < 1, 

As pointed out by Renyi [85], 10(8) happens to be the Bessel function of 
order zero, 

00 ( -1)k (8)2k 
lo(8) = k~o (k!)2 2 ' 
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so that the arc-sine law yields a well-known theorem concerning the 
asymptotic behavior of Legendre polynomials: 

nl~~ Pn [COS(~)] = 10(8), -oo < 8 < oo. 

15. Coin tossing at random times (Tlicklind [98]). The compound 
Poisson process x(t) is defined as x(t) = xN<t>• where Xn is simple one
dimensional random walk with x0 = 0. N(t) is the simple Poisson process 
defined for t ~ 0 by N(O) = 0 and 

P[N(t1) = n1o N(t2) = n2 , ••• , N(tk) = nk] 

for real 0 = t 0 < t 1 < · · · < tk and integer valued 0 = n0 ~ n1~ • • • ~ nk. 
Thus x(t) will be a step function; its jumps are of magnitude one, and 
the independent, exponentially distributed time intervals between jumps 
have mean 1/a. Prove that 

[ ] "' (at)k 
P 0~~~~ x(T) ~ n = k~o e-at M P0 [max {0, x1, x2, ... , xk} ~ n] 

{ 
1 for n = 0, 

= n J: e-az 1n<:) dx for n ~ 1. 

Here Jn(x) = i-nJn(ix), and Jn(x) is the Bessel function of the first kind, of 
order n. 



Chapter V 

RANDOM WALK ON AN INTERVAL 

21. SIMPLE RANDOM WALK 

The purpose of this section is to review 1 certain aspects of the 
absorption problem for simple random walk. This problem has quite 
a long mathematical history, which is not surprising as we shall 
recognize it as a boundary value problem of the simplest possible type. 
It is discrete, and the transition function, which plays the role of a 
second-order difference operator, is symmetric. Therefore we shall 
be able to reduce the problem to the diagonalization of certain 
symmetric matrices. 

The absorption problem makes just as good sense for arbitrary 
random walk as for the simple random walk. However, the methods 
used in this section for simple random walk will be seen to fail in the 
general case. The extent of this failure will then motivate the 
development of more powerful techniques in sections 22 and 23. 

We begin with a few definitions which will also, in sections 22 and 
23, serve for arbitrary one-dimensional random walk. We shall 
always exclude the degenerate case when P(O,O) = 1. 

Dl N is a non-negative integer, [O,N] the interval consisting of the 
integers 0, 1, 2, ... , N. 

QN(x,y) = P(x,y) for x,y in [O,N], 

QN°(x,y) = IN(x,y) = S(x,y), QN1(x,y) = QN(x,y), x,y in [O,N], 
N 

QNn+l(x,y) = L; QNn(x,t)QN(t,y) for x,y in [O,N]. 
t=O 

1 For a more complete discussion, see Feller [31], Vol. I, Chs. III and XIV, 
Kac [51], or Renyi [84], Ch. VII, §11. 

237 
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"' KN(x,y) = 2 QNn(x,y), x,y e [O,N], 
n=O 

N 

RN(x,k) = 2 gN(x,y)P(y,N + k) for x e [O,N], k ~ 1, 
y=O 

N 

LN(x,k) = 2 gN(x,y)P(y,- k) for x e [O,N], k ~ 1, 
1/=0 

"' RN(x) = 2 RN(x,k), 
k=l 

"' LN(x) = 2 LN(x,k) for x e [O,N]. 
k=l 

Some of these definitions are old ones, such as that of QNk· It is 
simply the kth iterate of the transition function P(x,y) restricted to the 
set [O,N]. Similarly gN(x,y) was often encountered before, but in the 
terminology of D10.1 it would have to be written in the unappealingly 
complicated form 

gN(x,y) = Ks-[O.NJ(x,y). 

Going on to RN and LN, note that R stands for "right" and L for 
"left." These functions are simply hitting probabilities, and in the 
terminology of D 10.1 we would have had to write 

RN(x,k) = Hs-[O,NJ(x,N + k), 
LN(x,k) = HB-[O,NJ(x, -k), 

for x e [O,N], k ~ 1. 
To calculate these quantities for simple symmetric random walk is 

very easy. If we look at QN(x,y) as an N + 1 by N + 1 square 
matrix (which it is!) then 

0 1 0 

1 0 1 

0 0 0 

0 0 0 

0 0 

0 0 

. ' 
0 1 

1 0 

and it is natural to ask for its eigenvalues and eigenvectors. They are 
given by 
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Pl The eigenvalues of QN are 

(a) 
k + 1 

.\k = cos N + 2 7T, k = 0, 1, ... , N, 

and the associated eigenvectors are 

(b) 
;-2. k+1 

vk(x) = ,J N+2 sm N + 2 TT(x + 1), k = 0, 1, ... , N; 

0 ~X~ N, 
where for k,m = 0, 1, ... , N, 

N 

(c) (vk,vm) = L vk(x)vm(x) = S(k,m). 
x=O 

Proof: Let !:J.N = l:!.N(.\) denote the determinant of QN - >JN. 
Then it is a simple exercise in expanding a determinant in terms of its 
minors to obtain the difference equation 

n = 2, 3, .... 

Direct computation of the two lowest-order determinants gives the 
initial conditions 

Under these conditions the difference equation has a unique solution. 
By standard methods (see E1.2) one gets 

11n(.\) = Ar1n + Br2n 

where r1 and r2 are the roots of the quadratic equation 

x 2 + .\x + -1 = 0. 

Making the substitution .\ = -cos t, one finds that 

X2 - X COS t + t = (X - ~) (X - e;i) = 0, 

so that 2x = e±it, and the general solution of the difference equation 
becomes 

!:J.n(.\) = 2-n[A cos nt + B sin nt]. 

In view of the initial conditions 

A = - .\ = cos t, A cos t + B sin t = 2.\2 - t, 
!1 (.\) = 2-n sin 2t cos nt -: cos 2t sin nt = 2-n sin (n. + 2)t. 

n 2 sm t 2 sm t 
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Hence ~n(,\) = 0 when (n + 2)t is a multiple of rr, but not zero, so 
that one tries (n + 2)t = (k + 1)rr, k = 0, 1, ... , n. That gives the 
eigenvalues in (a) of P1 with the sign reversed. But the sign does not 
matter since 

k + 1 (N- k) + 1 
cos N + 2 7T = - cos N + 2 rr 

for k = 0, 1, ... , N. As we have found N + 1 eigenvalues, (a) is 
proved since a matrix of size N + 1 can have no more. 

The task of verifying that the functions in (b) are eigenfunctions is 
quite straightforward. Indeed it suffices to show that 

QNvk = ,\kvk and (vk>vk) = 1 for 0 ::::; k ::::; N. 

The fact that (vk,vm) = 0 when k =1- m is a basic result in matrix 
theory; two eigenvectors belonging to distinct eigenvalues of a sym
metric matrix are always orthogonal. To get QNvk = ,\kvk one can 
use trigonometric identities, and finally the proof of P1 is completed 
by checking that 

(vk,vk) = N ~ 2 z~ sin2 [~: ~ (x + 1)rr] 

1 N+l [ k + 1 ] 
= 1 - -N 2 2 cos 2 NZ (x + 1 )rr = 1. 

+ %= -1 + 
The spectral theorem for symmetric matrices (see [38], Ch. III) now 

yields, in one stroke, the solution of all our problems. In other words, 
every one of the functions in D 1 above can be expressed in terms of 
the eigenfunctions and eigenvalues of QN. In particular it is worth 
recording that 

N 

P2 (a) QNn(x,y) = 2 ,\knvk(x)vk(y), 
k=O 

N 

(b) CN(x,y) = 2 (1 - ,\k)-1vk(x)vk(y). 
k=O 

There is nothing to prove since these are exactly the spectral 
representations of QN and (I- QN)-1, respectively. The matrix 
I - QN of course has an inverse, since by Pl all its eigenvalues lie 
strictly between zero and one. 

In anticipation of later results it is a good idea to look at the analogous 
eigenvalue problem in the continuous case. The matrix QN - IN is 



21. SIMPLE RANDOM WALK 241 

nothing but the second difference operator, acting on functions defined 
on the interval [O,N]. Thus one is tempted to regard 

(1) 
d2 
dx2f(x) + pf(x) = 0, 0::::; X::::; 1 

as the proper analogue of 

(QN - IN)v = - p.v or QNv = .Av, .A = 1 - p.. 

The correct boundary condition to impose in (1) is 

(2) f(O) = f(1) = 0. 

This follows from the observation that the matrix equation QNv = .Av 
is the same as the difference equation 

-!-v(x + 1) + -!-v(x - 1) = .Av(x), 0::::; X::::; N, 

with v( -1) = v(N + 1) = 0. The well-known theory of the boundary 
value problem consisting of (1) and (2) may be summarized by 

P3 Equations (1) and (2) are equivalent to the integral equation 

(a) f(x) = fL f R(x,y)f(y) dy, 0::::; X::::; 1, 

with symmetric kernel 

(b) R(x,y) = min (x,y) - xy for 0 ::::; x, y ::::; 1. 

The eigenvalues are 

(c) k = 1, 2, ... , 

and the eigenfunctions 

(d) cpk(x) = v'2 sin TTkx, 0 ::::; X ::::; 1, k = 1, 2, ... , 

form an orthonormal set, i.e., 

(cpk,c/>m) = f c/>k(x)cf>m(x) dx = S(k,m). 

The proof can be found in almost any book on eigenvalue problems. 
The theory of completely continuous symmetric operators 2 delimits 
the full extent to which matrix results carry over into a more general 
setting. One particularly important result, the continuous analogue 

2 Cf. Riesz-Nagy [87], Ch. IV, or Courant-Hilbert [16], Vol. I, Ch. III. In 
particular the Green function R(x, y) = min (x, y) - xy arises in the simplest 
mathematical description of the vibrating string, with fixed end points. It is 
often called the vibrating string kernel. 
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of part (b) of P2, is Mercer's theorem: the series 

R(x,y) = _i q,k(x)q,k(Y), 
k=l 1-'k 

converges uniformly in the square 0 ::S; x, y :5 1, and so do the series 
expansions for the iterates of R(x,y) which will be defined and used in 
the proof of T23.2. 

At this point it should not be too surprising that one gets the 
following formulas for simple random walk 

P4 (a) 1 (x+1 y+1) 
2(N + 2) gN(x,y) = R N + z' N + 2 ' 

x+1 N-x+1 
(b) RN(x) = N + 2' LN(x) = RN(N - x) = N + 2 · 

Here R(x,y) is the kernel defined in equation (b) of P3. 

Proof: The shortest proof of (a) is to verify, by matrix multiplica
tion, that the matrix on the right in (a) is indeed the inverse of 
2(N + 2)(/N - QN)· This is left to the reader, and once that is done 
(b) follows from the definition of RN(x) in Dl. 

Now we shall show that there are problems where eigenfunction 
expansions, such as those in P2, are quite useful-in fact almost 
indispensable. Such problems concern the asymptotic behavior of 
hitting probabilities, Green functions, etc. We shall confine our 
attention to the random variable T ~the hitting time of the exterior 
of the interval [O,N]. 

D2 TN= min {k I k <:: 1, xk e R- [O,N]}. 

To simplify the problem a little, without losing the essential flavor, 
let us assume that the random walk has as its starting point x0 = N, 
the mid-point of the interval [0,2N]. 

Quite evidently 

lim PN[T2N > n] = 1 
N-+«> 

for each fixed integer n. Thus it is reasonable to look for a normalizing 
sequence a(N) such that, if possible, 

lim PN[T2N ::S; xa(N)] = F(x), X> 0, 
N-+«> 

exists and is a nondegenerate probability distribution defined for 
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x > 0, with F(O) = 0, F(oo) = 1. It is very natural to try a sequence 
a(N) such that 

N~oo. 

But P4 gives 
2N 

EN[T2N] = L C2N(N,x) 
z=O 

2N (N+1 x+1) = 2(2N + 2) z~o R 2N + z' 2N + 2 = (N + 1 )2, 

so that we shall take a(N) = N 2• 

Now the problem is to evaluate (and prove the existence of) 

lim PN[T2N > N 2x], X> 0. 
N-+oo 

The calculation of the distribution of T 2N is facilitated by the 
observation that 

2N 
PN[T2N > n] = L Q2Nn(N,y). 

y=O 

Using part (a) of P2 one gets 

In view of P1, 

PN[T2N > n] 

2N 2N 
PN[T2N > n] = L L Aknvk(N)vk(y). 

y=O k=O 

J-1 2N [ ( k + 1 )] n . (k + 1 ) 2N 
= N + 1 k~o cos 2N + 2 7T sm -2- 7T y~o vk(y) 

1 N [ 2j + 1 ] n 2N • [ 2j + 1 ] 
= N + 1 1~o cos 2N + 2 7T ( -1)1!/~o sm 2N + 2 7T(y + 1) 

1 ~ 1 [ (2j+1 )]n [(2j+1)7T] = N + 1 /~o (- 1) cos 2N + 2 77 cot 2N + 2 2 · 

Here the last step consisted of evaluating the sum on y, by converting 
it into a geometric progression. 

It is easy to see that for every e > 0 

. 1 "" 1( 2j + 1 )n ( 2j + 1 17) ,!~~ N + 1 N£{-;s;N ( - 1) cos 2N + 2 1T cot 2N + 2 2 = O, 
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uniformly in n. That serves as justification for using the approxi
mations 

( 2j + 1 )N2x ( 7T2 (2j + 1)2)N2x _n2(2J:ll2z 

cos 2N + 2 7T "' 1 - 8 ( N + 1 )2 "' e ' 

2j + 1 7T 4 N + 1 
cot 2N + 2 2 "' ;. 2j + 1' 

which apply when j is small compared to N. This way one obtains 

PS lim PN[T2N > N 2x] = 1 - F(x) 
N-+ oo 

_ 4 ~ { -1)1 -~(21+1)2z 
-- L.. ---e ' 

7T J=O 2j + 1 
X> 0. 

In section 23 we shall develop methods which enable us to prove PS 
for arbitrary one-dimensional random walk with mean zero and finite 
vanance. 

22. THE ABSORPTION PROBLEM WITH MEAN ZERO, FINITE VARIANCE 

There are good reasons for suspecting strong similarity between 
simple random walk and any other random walk with mean zero and 
finite variance. Thus the Central Limit Theorem asserts that the 
asymptotic behavior of Pn(x,y) is in a sense the same for every random 
walk with JL = 0, a 2 < oo. But it is not clear how relevant the 
Central Limit Theorem is to the absorption problem where we are 
concerned with QN(x,y) and its iterates rather than with the unre
stricted transition function P(x,y). For this reason we shall begin by 
investigating to what extent the operator QN - IN has a behavior 
resembling that of the second-order differential operator. 

Pl Let P(x,y) be the transition function of a random walk with 
JL = 0, 0 < a2 < oo, and let QN(x,y) denote its restriction to the interval 
[O,N]. Let f(x) be a function with a continuous second derivative on 
0 ::;; x ::;; 1. Then for every t in 0 < t < 1 

;~~ 2~2 k~O [IN - QN]([Nt],k)f(~) = - f"(t)· 

Proof: The assumptions onf(x) imply that for each pair x,y in [0,1] 

f(y) = f(x) + (y - x)f'(x) + t(y - x)2f"(x) + p(x,y), 
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where (x - y)- 2 · p(x,y)--+ 0 uniformly in any interval 0 < a ~ x, 
y ~ b < 1. Furthermore one can find a positive constant M such 
that 

max [f(x),j'(x),f"(x),p(x,y)] ~ M. 
o::ox. y::01 

If we take 0 < t < 1 and denote [Nt]N- 1 = z(N,t) = z, then 

2N2 N ( k) 7 k~o [S([Nt],k) - QN ([Nt],k)]f N 

2N2 N [ { (k ) = 7 k~o (N + 1)- 1/(z) - P(zN,k) f(z) + N- z f'(z) 

+ ~ (~- z)2f"(z) + p(z, ~)}] 
= 11 + 12 + Ia + /4. 

Here the terms have been decomposed in such a way that 

2N2 [ N ] 
11 = j(z) 7 1 - k~o P(zN,k) ' 

2N N 
12 = f'(z) - 2 L P(zN,k)(zN - k), 

a k~o 

13 = - f"(z) \ i P(zN,k)(zN - k)2, 
a k~O 

2N2 N ( k) 
/ 4 = - - 2 L P(zN,k)p z, N · 

a k~o 

Since f(t) and f'(t) are bounded and 0 < z < 1 one can conclude 
that 11 --+ 0 and / 2 --+ 0 as N--+ oo. It should be clear how to do that, 
using in an essential way the assumption that 11- = 0, a2 < oo. The 
third term, / 3 , obviously converges to -.f"(t) as N--+ oo. To com
plete the proof of P1 it is necessary to break / 4 into two parts. Given 
E > 0 we choose A so that 

when lz - (kfN)I ~ A, for all sufficiently large N. Then one has 

I I 2E ~ 2 2N2 L 
/ 4 ~ a2 k~~oo P(zN,k)(zN- k) + 7MH·-~J>A]P(zN,k). 
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The first term is exactly 2€ and the second term tends to zero as 
N--+ oo for the same (undisclosed, but obvious) reason that I 1 went to 
zero. Since € is arbitrary, that completes the proof of Pl. 

According to P21.3, one has reason to suspect that the inverse 
gN(x,y) of IN - QN will approach, as N--+ oo, the kernel 

R(s,t) = min (s,t) - st, 

in much the same way as IN - QN approaches the second derivative 
operator. One might guess the formally correct analogue of P1 to be 

P2 For random walk with mean f-t = 0 and variance 0 < a2 < oo, 
and for f(x) bounded and Riemann integrable on 0 :::;; x :::;; 1, 

)~n;, 2~2 k~o gN([ Nt],k)f(~) = 11 
f(s)R(s,t) ds, 

uniformly for 0 :::;; t :::;; 1. 

Proposition P2, just as P1, is of interest, and of course makes perfect 
sense, without any reference whatsoever to probabilistic terms or ideas. 
But whereas the proof of P1 depended only on elementary calculus, P2 
seems to be mathematically deeper. In the next section we shall 
prove it, and in fact considerably more-but only by making strong 
use of probabilistic results from Chapter IV. 

Much too little is known about the asymptotic properties of eigen
function expansions in general to attempt a proof of P2 along the lines 
of section 21. Even if we are willing to restrict attention to symmetric 
random walk so that gN(x,y) has a representatio~ of the form 

( ) _ f vk(x)vk(y) 
gN x,y - L.- 1 \ ' 

k=O - 1\k 

the difficulties are formidable. Observe that in the above formula we 
should have written vk(x) = vk(N ;x), ,\k = ,\k(N), since both the 
eigenvalues and the eigenfunctions depend on N. Consequently the 
asymptotic behavior of gN(x,y) as N--+ oo depends on that of both 
,\k(N) and vk(N ;x). Although a great deal is known about the dis
tribution of the eigenvalues ,\0(N), ,\1(N), ... , ,\N(N) for large N (see 
problems 8 and 9 for a small sample), one knows very little about the 
eigenfunctions. The blunt truth of the matter is that there are much 
better ways to approach our problem. Although spectral decom
position of an operator, which is what we have been contemplating, is 
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a very general and very powerful mathematical tool, it is not always the 
best one. For one thing it is too general. Our present problem has a 
special feature which deserves to be taken advantage of: the operators 
P(x,y) and QN(x,y) are both difference kernels (P(x,y) = P(O,y - x), 
and QN is the truncation of P). 

In 1920 G. Szego [97] succeeded in associating with symmetric 
difference operators a system of orthogonal polynomials. Although 
these polynomials are not eigenfunctions of the operator, they perform 
a very similar function. Referring the reader to the literature [36] 
(see also problems 5, 8, and 9) we shall be content to describe a small 
part of his theory which is directly relevant to symmetric random 
walk. This is a very special context from the point of view of Szego's 
theory-his matrices need not have non-negative elements, as they do 
in the context of random walk. 

P3 Suppose that P(x,y) = P(y,x) is the transition function of sym
metric one-dimensional random walk with characteristic function 

<Xl 

rp( 6) = L P(O,x)etxB = rp( 6) = rp(- 6). 
x= -oo 

Then there exists a sequence of polynomials 

n 

(a) Pn(z) = L Pn.kzk, n;::: 0 
k=O 

with the property that 

(b) Pn.n > 0 for n ;::: 0, 

k,m = 0, 1, 2, ... 

-n 

These polynomials are uniquely determined by requirements (b) and (c). 
All the coefficients Pn.k are non-negative. The Green function gN(i,j) of 
D21.1 has the representation 

"N 

(d) gN(i,j) = L Pk.tPk.J 
k=max(f,j) 

mln(t,j) 

L PN-k,N-tPN-k,N-; for N;::: 0, i;::: 0, j ;::: 0. 
k=O 
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The limiting behavior of the orthogonal polynomials is described by 

(e) lim Pn,n-k = u(k), k ~ 0, 
n-+oo 

where u(k) is the sequence defined by 
00 

(f) L: u(k)zk = U(z) = V(z), 
k=O 

with U(z) and V(z) as defined in D18.2. 

Proof: The existence of a unique system of polynomials Pn(z) 
satisfying (b) and (c) follows from the well known Gram Schmidt 
orthogonalization process. The sequence fn(e18) = e1n8, n = 0, ± 1, 
± 2, ... , forms a complete orthonormal set for the Hilbert space 
L 2( -1r,1T) of functions square integrable on the interval [ -1r,1T]. 
Here orthogonality is defined in the sense that 

m,n = 0, ± 1, .... 
-n 

We are interested, however, in constructing a system of polynomials 
Pn(z) which are orthogonal with respect to the inner product 

n 

(/,g) = 2~ f j(e18)g(e18)[1 - </>(8)] d8. 

-n 

It is easy to verify that the explicit formulas 

Po(z) = [1- P(0,0)]-112, 
(/o./o} (/u/o) (/m/o} 

(1} (/o./1} (/1./1} (/n>/1} 

Pn(z) = (DnDn-1}- 112 
(/o./n-1} (/1./n-1} 

'n ~ 1, 
(/n./n-1} 

fo(z} /1(z} fn(z} 

(/o./o} U1./o) (/n./o} 

where Dn = Uo./1} (/1./1} (/n./1} ,n ~ 0, 

Un./n} 

yield a system of polynomials such that 

(Pn•Pm) = S(n,m}, n,m = 0, 1, 2, ... , 
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and such that (b) and (c) are satisfied. Nor is it difficult to prove 
uniqueness. 3 The above representation of Pn(z) as a ratio of deter
minants is of course quite general-it holds when 1 - cp( 8) is replaced 
by any non-negative weight function w( 8) whose integral over [- 'IT,'IT] 
is positive. In our case one has 

n 

(2) (fn./m) = L f efnBe-tmB[l - cp(8)] d8 = 8(m,n) - P(n,m), 
-n 

in other words, the matrix (fn.fm), 0 ~ m,n ~ N, is exactly the 
(N + 1) x (N + 1)matrixwhichwecallediN- QNindefinitionD21.1. 

The proof of (d) is based on the observation that gN(j,k) is the 
(j,k)th element of the inverse of the matrix IN - QN. This was 
already pointed out in connection with P21.2. It is equally true here, 
for although we do not know the eigenvalues of QN it is easy to see that 
they are between 0 and 1. Hence 

00 

gN(j,k) = 2 QNn(j,k) = (IN - QN)- 1(j,k). 
n=O 

Because of the symmetry of the random walk it is clear that 

Therefore it suffices to prove the first identity in (d) which, in terms 
of generating functions, becomes 

(3) 

for arbitrary complex z and w. To verify (3) one first derives, using 
(1) and (2), that 

1- c0 -cl -eN 1 

N 1 -cl 1- c0 -CN-1 w 
(4) 2 Pn(z)Pn(w) = - DN n=O 1- c0 iiJN -eN -CN-1 

1 z zN 0 

where ck = P(O,k) fork E R. Equation (4) is known as the formula 

3 See [36], p. 14, for a proof that works in any Hilbert space. 
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for the reproducing kernel. 4 Inspection of the determinant m ( 4) 
shows that the coefficient of iiJkzi is simply 

-(lfDN)Mk.f( -l)k+i, 0 ~ k, j ~ N, 

where Mk.1 is the minor of the (k,j)th element ofthematrix(/N- QN)- 1• 

Consequently we have 
N N N 

(5) 2 2 gN(k,j)z1wk = 2 pn(z)Pn(w)· 
k=O i=O n=O 

From (5) we should be able to conclude (3), and hence (d), if we knew 
that all coefficients Pnk of Pn(z) are real. That comes from (5) which 
gives 

gN(N,k) = gN(k,N) = PN.NPN,k = PN,NPN.k• 

because gN = IN - QN is a symmetric matrix. Furthermore PN,N = 

PN,N according to (b), so that PN,k is real for all 0 ~ k ~ N. 

For the proof of part (e) we shall rely on results from Chapter IV. 
If 

gB(x,y) = g(x,y), B = [xI - oo < x ~ -1] 

is the Green function of the half-line in D19.3, we have 

lim gN(k,j) = g(k,j) for k ~ 0, j ~ 0, 
N-+rr> 

since the sequence gN(k,j) is the expected number of visits from k to j 
before leaving [O,N] and therefore increases monotonically to g(k,j) 
which is a similar expectation for the half-line [O,oo). Since we are 
here in the symmetric case, P19.3 gives 

(6) 
min (k,f) 

lim gN(k,j) = 2 u(k - n)uU - n). 
N-+rr> n=O 

Now we specialize (6) by setting j = 0, to obtain 

(7) lim gN(k,O) = lim gN(N -k,N) 
N-+ex> N-+oo 

= lim PN.NPN.N-k = u(k)u(O). 
N-+rr> 

4 Call the left-hand side in (4) KN(z,w). This "kernel" owes its name to 
the property that 

" 
2~ J KN(z,e19)g(e19)[1 - </>(8)] d8 = g(z) 

-n 

whenever g(z) is a polynomial of degree at most N. 
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Setting k = 0 in (7), while observing that PN,N > 0, yields 

(8) lim PN,N = u(O), lim PN,N-k = u(k). 
N-+oo N-+oo 

That completes the proof of P3. 

In the sequel we shall actually never use P3 explicitly, but only the 
added conviction it gives us that one should pay attention to the 
algebraic aspects of the problem-i.e., to the fact that P(x,y) = 
P(O,y - x), and its various manifestations. From Chapter IV we_ 
shall now copy certain results, to obviate the need for tedious references. 
They concern the Green function 

g(x,y) = gB(x,y), B = [x I - oo < x =:;;; -1]. 

It is given by the amazingly simple formula (6) in the proof of P3, 
which is valid precisely because P(x,y) is a difference kernel. We 
shall restrict ourselves to random walk with p. = 0, a2 < oo so that 
all the asymptotic results concerning g(x,y) from section 19 become 
available. 

P4 For aperiodic one-dimensional random walk with mean p. = 0 
and variance a 2 < oo, 

(a) 

and 

(b) 

where 

mln(z,y) 

g(x,y) = L u(x - k)v(y - k), X~ 0, J ~ 0, 
k=O 

lim u(x) = u > 0, lim v(x) = v > 0, 
z_.+ co Z-+ + 00 

2 
uv = 2' 

0' 

Proof: We just look up P19.3, or equation (6) above, to get (a)
this part does not require the assumptions of P4--and then we use 
P18.8 to verify (b). This latter part depends crucially on aperiodicity, 
p. = 0, and a2 < oo. The exact values of the limits u and v will be 
of no interest. All that matters is their product. Using P4 it will 
now be possible to begin to extend the theory in section 21 to arbitrary 
aperiodic one-dimensional random walk with p. = 0, a2 < oo. (Certain 
auxiliary results, such as PS and P6 below will in fact be valid under 
more general assumptions.) 
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PS There is a constant M > 0 such that 

gN(x,y) S M[1 + min (x,y, N - x, N - y)] < oo, 

whenever 0 s x, y S N. 

Proof: In view of P4 we can choose M such that 0 s u(x) s M, 
0 S v(x) S M, for all x ~ 0. But it is probabilistically obvious that 

gN(x,y) s g(x,y) s M min (1 + x, 1 + y) = M[1 + min (x,y)]. 

On the other hand, we have 

gN(x,y) = gN(N - y, N - x). 

This is not a mistake! To verify it one need not even introduce the 
reversed random walk, as this simple identity follows directly from 
the definition of gN(x,y) in D21.1. Therefore we also have 

gN(x,y) S g(N - y, N - x) S M min [1 + N - y, 1 + N - x] 

which completes the proof of PS. 

Now we take up the study of the hitting probabilities RN(x,k) and 
LN(x,k) of the two components of the complement of the interval [O,N]. 

co co 

P6 (a) L RN(x,k) + L LN(x,k) = 1, 0 s X s N, 
k=l k=l 

co co 

(b) L (N + k)RN(x,k) + L ( -k)LN(x,k) = x, 
k=l k=l 

Proof: The argument is based on the identities 
N 

RN(x,k) = L gN(x,y)P(y,N + k), 
y=O 

N 

LN(x,k) = L gN(x,y)P(y,- k), 
y=O 

valid for 0 S x S N, k ~ 0. They are obvious from 

co 

gN(x,y)P(y,N + k) = L Q/(x,y)P(y,N + k) 
i=O 

co 

0 s X s N. 

= L P.r[TN = j + 1; "'rrl = y, XrN = N + k] 
j=O 
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where TN is the first exit time from the interval [O,N] defined in 
D21.2. The identity for LN is proved in the same way. 

The left-hand side in (a) can then be written 

y~o gN(x,y)[ 1 - Jo P(y,s)} 

Keeping in mind that 
N 

L gN(x,y)P(y,s) = gN(x,s) - S(x,s) 
y=O 

when x and s are both in [O,N], one gets 
N N N N 
L [RN(x,k) + LN(x,k)] = L gN(x,y) - L gN(x,s) + L S(x,s) = 1. 

k=l y=O •=O s=O 

The proof of (b) is similar, but it depends in an essential way on the 
hypothesis that m < oo, fL = 0. The left-hand side in (b) is trans
formed into 

v~o gN(x,y) L~1 (N + k)P(y,N + k) - k~l kP(y,- k) J 

= y~o gN(x,y)L~"' jP(y,j)- jto jP(y,j)] 

= yto gN(x,y)[y - i~ jP(y,j)] 

N N N 
= L ygN(x,y) - L jgN(x,j) + L j S(x,j) = x. 

y=O j=O J=O 

That completes the proof of this intuitively obvious proposition. 
Part (a) asserts that the random walk leaves [O,N) either on the right 
or on the left. Part (b) is a statement characterizing the random walk 
with mean fL = 0 as a "fair game": if x0 = x, and TN the stopping 
time we are concerned with, part (b) states that 

Ex[:xTJ = x0 = x. 

This is of course true for every "reasonable" stopping time. 

P7 
1 (X) 1 (X) 

RN(x) = ~ + N k~l kLN(x,k) - N k~l kRN(x,k). 

Proof: First we transform 
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The proof is completed by applying P6 (b) to the next to last term to get 

1 00 1 00 

RN(x) = ~ + N k~l kLN(x,k) - N k~ kRN(x,k). 

The main theorem of this section (T1 below) concerns the asymptotic 
behavior of RN(x) and LN(x) as N--* oo. The proof will depend on 
PS which was proved under the assumption that a2 < oo. But that 
is deceptive-PS can in fact be shown to be true under much more 
general conditions. However, essential use of the finiteness of the 
variance will be made in an estimate very much like the ones required 
to prove Pl. In the proof of T1 we shall have occasion to define 

00 

(1) a(s) = 2 kP(O,s + k), s;::: 0, 
k=l 

and we shall need the conclusion that 

(2) 
1 n 

lim - 2 (1 + s)a(s) = 0. 
n--+oo n s=O 

This is easily done, for ( 1) yields 

00 00 00 00 

2 a(s) = 2 2 kP(O,s + k) = 2 (1 + 2 + · · · + j)P(O,j) 
s=O k=O s=O i=l 

00 

::::;; L j2P(O,j) ::::;; a 2 < oo, 
i= 1 

and by Kronecker's lemma the convergence of the series _La(s) implies 
that 

1 n 
lim - 2 sa(s) = 0, 
n--+oo ns=l 

which shows that (2) holds. 

Tl For one-dimensional random walk with 1-' = 0, 0 < a 2 < oo, 
RN(x) - xJN--* 0 uniformly for all 0 :=;:; x :=;:; N, as N--* oo. A 
similar statement holds for LN(x) - (1 - xJN). 

Proof: We give the proof for aperiodic random walk, but observe 
that T1 is then automatically true in the periodic case, assuming of 
course that P(O,O) =f 1, a possibility which was excluded by assuming 
that a2 > 0. (To make the obvious extension to periodic random 
walk it suffices to observe that in the periodic case there is some integer 
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d > 1 such that the random walk is aperiodic on the state space 
consisting of the multiples of d.) 

In view of P7 it suffices to show that 

. 1 00 

;~ N ~1 kRN(x,k) = 0. 

uniformly in 0 ~ x ~ N, and to obtain a similar result for LN(x,k). 
Since both problems yield to the same method it suffices to treat only 
one of them. Now 

1 00 1 00 N 

N k~l kRN(x,k) = N k~l k y~o gN(x,y)P(y,N + k), 

and using P5 one gets 

1 00 M 00 N 

N k~l kRN(x,k) ~ N k~l k Y~ (1 + N - y)P(y,N + k) 

Moo N MN 
= N k~l k s~ (1 + s)P(O,k + s) = N &.o (1 + s)a(s), 

in the terminology of equation (1) preceding the statement of Tl. 
This upper bound is independent of x, and it was shown to go to zero 
as N-+ oo in (2) preceding Tl. As one can obtain analogous estimates 
for the probabilities LN of leaving on the left, the proof of T1 is 
complete. 

With T1 we have solved "one-half" of the problem of extending 
the basic theory of the absorption problem from simple random walk 
to the case f-L = 0, a 2 < oo. Note that Tl corresponds to part (b) of 
P21.4, where the result is "exact" in the sense that 

0 ~X~ N. 

Our next task will be to get a result for gN(x,y), which will correspond 
to part (a) of P21.4. That will be accomplished in T23.1, in the next 
section. 

·This section is concluded with some remarks concerning possible 
extensions of T1 to random walk with a2 = oo, investigated by Kesten 
(1961) [58, 59]. The essential flavor of the problem is preserved if 
one writes T1 in the form 

lim RN([Nx]) = x, O~x~l. 
N-+ oo 
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In other words, the limit, when JL = 0, a2 < oo, is the uniform dis
tribution. Just as in our brief discussion of the arc-sine law, and of 
occupation time problems in general, at the end of section 20, one can 
ask the following question. For what random walks does 

(1) lim RN([Nx]) = F(x), 0 ~ X~ 1, 
N-+oo 

exist, with F(x) a probability distribution, and what distributions F(x) 
can arise as limits of this type? Just as in occupation time problems, 
the limit may fail to exist altogether. For symmetric random walk 
Kesten exhibits classes of random walks where the limiting distribution 
is the incomplete beta-function 

(2) 0 < 0: ~ 2. 

Quite likely these are all the possibilities. Just as in the occupation 
time problems the parameter a: is related to the asymptotic behavior of 
P(x,y) as lx- Yl ~ oo; in particular a: = 2 when JL = 0 and a2 < oo, 
giving the result Fa(x) = x of Tl. 

As an amusing special case consider the random walk of E8.3 in 
Chapter II. It was shown there that 

(3) 4>(8) = z=~oo P(O,x)e1z9 = 1 -lsin ;1 
is the characteristic function of 

(4) 
2 

P(O,O) = 1 - -· 
1T 

2 1 
P(O,x) = - for x =F 0. 

1T 4x2 - 1 

Since Kesten showed that (2) holds with parameter a:, 0 < a: < 2 when 

P(O,x),.., constant·lxl-(l+a>, 

it follows that the random walk in (3) and (4) satisfies 

lim RN([Nx]) = F1(x) = ~ sin- 1 Vx, 
N-+oo 1T 

(5) O~x~l. 

We proceed to sketch a proof of (5) along lines entirely different from 
the methods of this chapter. 
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El Consider simple random walk Xn in the plane R. Given any 
positive integer N we decompose R into the three sets 

AN = [z I z e R, z = k(1 + i) for some k ~ N + 1], 
BN = [z I z e R, z = k(1 + i) for some k < 0], 
eN= R- (ANU BN)· 

Finally, let us call D the entire diagonal [z I z = n(1 + i), - oo < n < oo ]. 
It was shown in E8.3 that P(x,y), defined in equation (4) above, is the 
transition function of the random walk executed by xn when it visits D 
(the imbedded random walk associated with D). But then it follows that 
for any real t, 0 < t < 1, RN([Nt]) of equation (5) has an interesting 
probability interpretation in terms of simple two-dimensional random 
walk Xn. All we have to do is to take 

x 0 = [Nt](1 + i), TN = min [k I k ~ 1, xk e AN U BN], 

to be able to conclude that 

(6) 

To calculate RN([Nt]) consider the function 

fN(z) = P2[XTN E AN], zeR, 

and observe that it solves the exterior Dirichlet problem (see P13.2) 

(7) ·l[fN(z + 1) + fN(z - 1) + fN(z + i) + fN(z - i)] = fN(z) 

for z e C N• with boundary conditions 

(8) 

This boundary value problem is too complicated for us to attempt an 
explicit solution, but on the other hand the limiting case (as N--+ oo) of 
this problem is very simple. To obtain the correct limiting partial dif
ferential equation from (7) one must of course -take a finer and finer grid as 
N--+ oo. If one takes a grid of mesh length N- 1 at the Nth stage, then 
(7) should go over into Laplace's equation, and the boundary conditions in 
(8) of course remain unchanged. This argument, if correct, implies 

lim fN(z) = f(z) = u(x,y), 
N-+oo 

where ~u = 0 everywhere in the (x,y) plane except on A = [(x,y) I x = 
y ~ 1], where u(x,y) = 1, and on B = [(x,y) I x = y ~ 0], where 
u(x,y) = 0. If we can find such a function u(x,y) we are finished, for then 

(9) lim RN([Nt]) = f[t(1 + i)] = u(t,t). 
N-+oo 

The methods required to justify the passage to the limit are quite well 
known. They were devised in 1928 in an important study of the approxi
mation of boundary value problems by difference equations (Courant, 
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Friedrichs, and Lewy [15]). Even the probabilistic aspects of the problem 
were already then fairly well understood. 

Finally we have to find the harmonic function u(x,y), which can easily 
be done by use of a suitable conformal mapping (a mapping w(z) of R -
(AU B) on a domain D such that Re w(z) = 1 when z E A and 0 when 
z E B). In this way one obtains 

where 

1 2 Im (w) u(x,y) = -tan- 1 _ 1• 
7r ww-

~- 1 = 1 + w2, 
1+i 1-w2 

Im (w) > 0. 

After verifying that u(x,y) is the appropriate harmonic function, set 
x = y = t to obtain 

(10) 

w = iF{l. 
1 [2 lm (w)] u(t,t) = -tan-1 _ 1 7r ww-

2 . -= -sm- 1 Vt· 
7r 

0 < t < 1, 

=! tan-1 [2Vt v~] 
7r 1 - 2t 

In view of equation (9), this completes our proof (apart from the justifica
tion of the passage to the limit in (9)) that the random walk in (4) has 
absorption probabilities given by (5). Qualitatively, since 

-sm vt 
2 . _ 1 . r. { > t for t < ! 
'" < t for t > ! 

we conclude that symmetric random walk with infinite variance differs 
from random walk with fL = 0, a2 < oo as follows. It is less likely to 
leave an interval on the same side as the starting point, and more likely to 
leave it on the opposite side. 

23. THE GREEN FUNCTION FOR THE ABSORPTION PROBLEM 

The Green functiongN(x,y) was defined in D21.1 for N ~ 0, x and 
y in the interval [O,N]. It represents the expected number of visits 
to y, starting at x0 = x, before the random walk leaves the interval 
[O,N]. Our immediate goal is the extension of P21.4(a) to arbitrary 
random walk with mean 11- = 0 and variance 0 < a2 < oo. This will 
be done in Tl, and in the remainder of this chapter we shall consider 
a number of applications of Tl. 
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To get information about the asymptotic behavior of gN(x,y) as 
N--+ oo we shall use T22.1 and the identity 

00 

Pl gN(x,y) = g(x,y) - L RN(x,k)g(N + k,y), x,y E [O,N]. 
k=1 

Proof: Let Xn be the random walk with x0 = x, TN the first time 
(the smallest k) such that xk E R - [O,N], and T the first time that 
xk < 0. Clearly TN ~ T, so that 

TN-1 T-1 T-1 

gN(x,y) = Ex L o(y,xk) = Ex L o(y,xk) - Ex L o(y,xk) 
k=O k= 0 k=TN 

00 

= g(x,y) - L RN(x,k)g(N + k,y). 
k=1 

Combined with T22.1 and P22.4, P1 will yield 

Tl For aperiodic one-dimensional random walk, with p. = 0, 
0 < a2 < oo, 

as N--+ oo, uniformly in 0 ~ x, y ~ N. Here 

R(s,t) = min (s,t) - st, 0 ~ s, t ~ 1. 

Proof: Without loss of generality one may assume that y ~ x. 
The other case then can be obtained from the reversed random walk. 
Since u(x)--+ u > 0, v(x)--+ v > 0, we write 

u(x) = u + p.(x), v(x) = v + v(x), 
where 

lim p.(x) = lim v(x) = 0. 
X...,. + 00 X-+ + 00 

Then, keeping in mind that y ~ x and that uv = 2fa2 , 

g(x,y) = u(x)v(y) + u(x - 1)v(y - 1) + · · · + u(x - y)v(O) 
2 y 

= (y + 1) 2 + L [uv(k) + vp.(x - y + k) + p.(x - y + k)v(k)]. 
a k=O 

It is more convenient to write 

2 2 
g(x,y) = (y + 1) 2 + 2 p(x,y) 

a a 
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where the error term p(x,y), defined for 0 ~ y ~ x, has the property 
that 

y 

ip(x,y)i ~ L £(k), 0 ~ y ~ x, 
k=O 

£(n) being a fixed non-negative null sequence (limn .... oo £(n) = 0). 

Using P1 one obtains 

u2 (X y) 
2NgN(x,y) - R N' N 

0'2 y ( X) = 2NgN(x,y) - N 1 - N 

0'2 0'2 00 y ( X) 
= ZNg(x,y) - ZN k~ RN(x,k)g(N + k,y) - N 1 - N 

y+1 1 y+1 
= ----w- + N p(x,y) - ----w- RN(x) 

- _!_ ~ RN(x,k)p(N + k,y) - y (1 - ~)· 
N k=l N N 

Now it remains only to estimate the error terms. First we observe 
that 

~~p(x,y)l ~ ~ k~ £(k) ~ ~ k~ £(k), 

1
1 00 I y 1 N 
N k~l RN(x,k)p(N + k,y) ~ £(y) N ~ N k~ £(k), 

so that these two terms tend to zero uniformly, as required. Let us 
call the sum of these two terms £N'· Furthermore we have, in view of 
T22.1, 

0 ~X~ N, 

where £N" is another null sequence, independent of x. Collecting 
terms, and using the triangle inequality, 

I 0'2 ( ) R( X y ) I , "y + 1 2NgN x,y - N' N ~ £N + £N --w--

ly + 1 (1 X) y (1 X) I , , 1 + --w-- - N - N - N ~ £N + £N + N 

which tends to zero, uniformly in 0 ~ y ~ x ~ N and proves Tl. 
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Now we are in a position to harvest several interesting consequences 
of Tl. We shall be quite selective and choose only three ( cf. problems 
6 and 7 for one more application). First of all, we can now prove 
P22.2 in the beginning of the last section, which to some extent 
motivated the development of T22.1 and Tl, but which was never 
proved. We have to show that 

;~n;, 2~2 kto gN([Nt],k)f(~) = L1 
R(t,s)f(s) ds. 

Since f(x) is bounded and since the convergence in Tl is uniform, we 
have 

;~ 2~2 ktOgN([Nt],k)f(~) = ;~ ~ kto R([~], ~)f(~)• 
and the last limit is of course the approximating sum of the desired 
Riemann integral. 

For an application which is no more profound, but probabilistically 
a lot more interesting, we shall study an occupation time problem. 
This problem will appear a little more natural if we change the 
absorbing interval from [O,N] to [- N,N], so that the process can 
start at a fixed point, say at the middle of the interval. Thus we shall 
make the following definitions. 

Dl The random walk Xn starts at x 0 = 0. TN is the first time 
outside [- N,N], y is a fixed point in R, and 

TN -1 

NN(Y) = L S(y,xk) 
k=O 

is the number of visits toy before leaving [ -N,N]. 

We shall prove 

P2 For aperiodic random walk, with /A< = 0, a 2 < oo, 

lim P0 [NN(Y) ~ Nx] = e-a2 x, x ~ 0. 
N-+oo 

.Proof: We shall consider only the case when y =f. 0 and leave to the 
reader the trivial modification required when y = 0. We let 

PN(Y) = Po[NN(Y) > 0], 
rN(Y) = Py[xk = y for some 0 < k < TN]· 

Then 
j ~ 1. 
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To make use of T1 in an efficient manner we translate the interval 
[- N,N] to [0,2N] so that the condition x 0 = 0 becomes x 0 = N 
while the point y turns into y + N. In this setting a simple com
putation shows that 

( ) K2N(N,N + y) 
PN y = K2N(N + y,N + y)' 

1 
rN(Y) = 1 - K2N(N + y,N + y)' 

Hence 

Po[NN(Y) > Nx] = PN(Y)[rN(y)][NxJ. 

By T1 it is clear that 

lim PN(Y) = 1. 
N-+oo 

To estimate rN(y), observe that 

a2 1 y2 
4Ng2N(N + y,N + y) = 4 - 4N2 + EN(Y) 

where EN(Y)---+ 0 uniformly in y. Consequently 

rN(Y) = 1 - ~ + o (~ )• 

where No(l/N)---+ 0 as N---+ ao. But that suffices to conclude 
• 

and proves P2. 

Our next application of T1 concerns the asymptotic behavior of the 
first time TN outside the interval [ -N,N]. We shall show that P21.5 
holds in a very general context, by proving 

T2 For arbitrary one-dimensional random walk with p. = 0 and 
0 < a2 < ao, TN (defined in D1) has the limiting distribution 

;~ P0 [TN > x~2] = 1- F(x), x ~ 0, 

where 
4 oo ( 1)k n2 2 

F(x) = 1 - - 2: - e -s<2k+l> :r. 

1Tk=o2k+1 
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Proof: To facilitate the use of Tl we shall assume the random walk 
to be aperiodic, keeping in mind that this assumption may be removed 
by an argument similar to that in the proof of T22.1. The proof will 
require several preliminary lemmas, the first of which concerns the 
moments of the distribution F(x) in T2. 

P3 mp = L"' xPf(x) dx = p! ~ (:2r+l k~O ( -l)k (2k ~ lrp+l, 
p ~ 0, 

where f(x) is the density F'(x). Moreover, if G(x) is any distribution 
function such that 

J_"'"' xP dG(x) = mP for all p = 0, 1, 2, ... , 

then G(x) = F(x). 

Proof: The first part of P3 involves only straightforward calculation 
of the moments mp of the distribution F(x) defined in T2. The 
second part, which amounts to saying that the moment problem for the 
particular moment sequence mP has a unique solution may be deduced 
from a well known criterion. If 

Cp = J_"'"' xP dH(x), p ~ 0, 

is a sequence of moments of a probability distribution H(x), and if 
aJ c 
k~ kl rk < oo for some r > 0 

then H(x) is the only distribution with these moments (the moment 
problem for the sequence ck has a unique solution). The moments 
mp are easily seen to satisfy the above condition for all r < 1r2 j8. 

We need one more result from the general theory of distribution 
functions. 5 If Hn(x) is a sequence of distribution functions, such that 

J_"'"' xP dHn(x) = cp(n), p ~ 0, n ~ 0, 

lim cP(n) = cP, p ~ 0, 
n-+"' 

5 S~e Loeve [73], §§11 and 14, for both this limit theorem and the uniqueness 
criterion for moments described above. The technique of using this theorem 
to find ·a limiting distribution by calculating the limits of moments is often 
referred to as the method of moments. 
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and if there is one unique distribution Junction H(x) such that 

Cp = J_ooco xP dH(x), p;;:: 0, 

then 

lim Hn(x) = H(x) 
n-+oo 

at every point of continuity of H(x). 

This theorem permits us to conduct the proof of T2 by showing 
that the moments of TN have the proper limiting behavior. In view 
of P3 we may record this state of affairs as 

P4 If for each integer p ;;:: 0, 

;~~ Eo[ e~NrJ = mP 

with mP given in P3, then T2 is true. 

The analysis of the moments of TN begins with a little trick. Keep
ing in mind that the random walk starts at x0 = 0, we define the 
random variables 

~N.O = 1, N ;;:: 1, 
~N.k = 1 if lx1l :S N for i = 1, 2, ... , k 

= 0 otherwise, N ;;:: 1. 

Then 

where j = j(k1,k2) = max (k1,k2). The number of distinct pairs 
(k1,k2) of non-negative integers whose maximum is j turns out to be 
(j + 1)2 - p, so that 

<X) 

TN2 = L ~N.i[(j + 1)2 - j2]. 
i=O 

The trick consists in observing that this procedure generalizes very 
nicely. The number of distinct p-tuples (k1, k2 , ••• , kr>) of non-
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negative integers, all of which are less than or equal to j, turns out to 
be (j + 1 )P - j P (the difference between the volumes of two cubes!) 
and one can write 

00 

P5 TNP = 2 ~N.;[(j + 1)P - jP], p ;:::: 1, N ;:::: 1. 
j= 0 

This gives us a very natural setup for the calculation of moments. 
In the terminology of D21.1 

2N 

Eo[~N.;] = 2 Q2N1(N,i). 
l= 0 

If we define g2NP(x,y) as the pth power of the matrix g2N(x,y), 
0 ~ x,y ~ 2Nthen 

g2NP(x,y) = (J2N - Q2N)-P(x,y) = k~ ( -/)< -1)kQ2Nk(x,y). 

Therefore 

2N 

(1) 2 g2NP(N,y) 
y=O 

oo (-P) 
= k~O k ( -1)kEo(~N.k] 

1 00 

= ( _ 1)! 2 (k + 1)(k + 2)· · ·(k + p- 1)E0[~N.k]· 
p · k=O 

On the other hand, 

00 

(2) E0[TNP] = 2 [(k + 1)P - kP]E0(~,v k]• 
k=O 

Now we are in a position to show that 

P6 If 

lim p ;:::: 1, 
N-+oo 

then 
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Proof: If the hypothesis of P6 holds, one can combine equations 
(1) and (2) above to conclude that 

( 
2)p 1 00 

mpf. lim Na 2 ( _ 1)1 L [(k + 1)· · ·(k + P- 1)]E0[1.jJN,k] 
N-+oo P • k=O 

lim (Na22)P ( 2 1)l ~ kP-lEo[..jJN.k] 
N-+oo p • k=O 

lim (Na22)P ~ ~ pkP-lEo[..jJN,k] 
N-+oo p. k=O 

( 
2 )p 1 00 

lim Na 2 I L [(k + 1)P - kP]Eo[..jJN,k] 
N-+oo p. k=O 

lim _!_ E0 [( a 22 TN)P] · 
N-+00 pi N 

(At several steps we used the hypothesis of P6 to discard a finite 
number of terms of order kP- 2 or lower.) 

Thus the proof of P4, and hence of T2, will be complete if we can 
show that the first limit in P6 exists and has the desired value. To 
investigate this limit it is natural to define the iterates of the Green 
function 

R(s,t) = R 1(s,t) = min (s,t) - st 

by 

RP + 1(s,t) = L1 R(s,x)RP(x,t) dx, p;:::l. 

Now we shall obtain a result that is actually a bit stronger than is 
needed. 

P7 For p = 1, 2, 3, ... 

(~r N 1- 2PgNP(x,y) -- RP(~· ~) --+ 0 as N--+ 00 
uniformly t"n 0 ~ x, y ~ N and also t"n p ;::: 1. 

Proof: Let 

where the summation here, and in the rest of the proof, extends over 
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all (p- I)-tuples (i1, i2, .. . , ip_ 1) with 0:::::; iv:::::; N, v = 1, 2, ... , 
p - 1. We shall use Tl in the form 

0'2 (X y) 2NgN(x,y) = R N' N + EN(x,y), 

IEN(x,y)l :::::; EN--* 0 as N--* 00. 
Then 

1 (~r N1-2PgNP(x,y) _ KP(~· ~) 1 

= N 1-P 12 [R(~· ~) + EN(x,i1)] .. · [R(iPNl, ~) + EN(ip_ 1,y)] 

- 2 R(~· ~) .. ·R(i1V1· ~)I· 
Using the fact that 

0 :::::; R(x,y) :::::; -!, 0:::::; x,y:::::; 1, 
one obtains 

1 (~2r N1-2PgNP(x,y) _ KP(~· ~) 1 

:::::; N1-p[2 (-! + EN)p-1 _ 2 (-!)P-1] 
= (-l- + eN)P-1 - (-!)p-1--* 0, 

as N--* oo, uniformly for p ;;::: 1. The last line used three simple 
observations in quick succession. First, given two sets of real 
p-tuples, namely a1 , a2 , ••• , aP and b1 , b2 , ••• , bP such that 0 :::::; ak :::::; a, 
lbkl :::::; b, then 

I I] (ak + bk) -I] ak I :::::; (a + b)P - aP. 

Secondly, the sum _L, defined in the beginning of the proof, has the 
property that 2: 1 = N P-l. Finally if En is a null-sequence, and 
0 < a < 1, then (a + En)P - aP--* 0 uniformly in p 2: 0 as n--* oo. 

The proof of P7 may now be completed by showing that 

RP(~· ~) - KP(~· ~)--* 0 as N--* oo 

uniformly in the integers x, y, p = 0, 1, 2,.... Given any E > 0 we 
choose Po such that 4- Po < e/2. Then 
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when p ~ Po for all x, y, N. Thus it suffices to exhibit an integer 
K > 0 such that N > K implies 

for all 0 ~ x, y ~ Nand all p = 1, 2, ... , Po - 1. Since there are 
only a finite number of values of p to worry about, it suffices to do so 
for one value of p at a time (choosing afterward the largest value of K). 
So we are through if for each positive integer p 

RP(~· ~) - KP(~· ~) -0 

uniformly in 0 ~ x, y ~ N. When p = 1 this difference is already 
zero. When p = 2, 

KP(..:_, L) = ..!_ i R(..:_, !!..)R(!!_, L) 
N N Nk=o N N N N 

is the Riemann approximating sum to the integral defining the second 
iterate R2(xfN,yfN). Such sums do converge uniformly provided 
only that the function involved, namely R(x,y), is continuous on the 
square 0 ~ x, y ~ 1. It is easy to verify this, and then also the case 
p > 2 presents no new difficulties. 

Let us now show how P7 completes the proof of T2. In view of P7 

. ( 0'2 )P 2N . 1 2N (1 y ) 
hm N2 L g2NP(N,y) = hm 8P 2N L RP -2' 2N 

N-+oo y=O N-+oo y=O 

= 8P 11 RPG, x) dx. 

To evaluate the last integral we use Mercer's theorem, referred to in 
the discussion following P21.3, to write 

RP(x,y) = 'f rPk(x),Pk(Y), 
k= 1 (ftk)P 

where rPk(x) = V2 sin 1rkx, ILk = 1r2k2 • Now one can easily perform 
the integration to obtain 

il (1 ) 00 k7T il 8P RP z' x dx = 2· 8P L (1rk}- 2P sin -2 sin k1rx dx 
0 k=l 0 

7T (8)P+l ~ ( 1 )2P+l mp = - - L., ( -1)1 -- - -· 
2 7T2 J=O 2j + 1 - p! 
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That concludes the evaluation of the limit in P6 and hence T2 is 
proved. 

It is worth pointing out a slightly different formulation of T2, 
which is not without interest. 

T3 For one-dimensional random walk with p. = 0, 0 < a 2 < oo 

lim P[ max !Ski ~ axv'n] = 1 - F(x\)· 
n-+ co l:Sk:Sn 

X> 0, 

with F(x) as defined in T2. 

Proof: Let us call Gn(x) the distribution of (a2n)- 112 max1 ,.k:s;n !Ski· 
Then T3 amounts to saying that the sequence 

2[<7x"'1iJ 

Gn(x) = L Q2[x11"'1it([axVn],y), X> 0, 
y=O 

converges to the limit 

G(x) = 1 - F(x- 2), X> 0, 

as n---+ oo. It seems impossible to obtain sufficiently powerful 
estimates for the iterates of Q to verify this result directly. However, 
we shall see that most of the work was already done in the course of 
proving T2. The crucial observation concerns the two events 

(i) max !Ski ~ axVn, 
lSkSn 

They are obviously the same event I In other words 

Gn(x) = P[T[11:r:"'iJ > n]. 

If we fix x > 0, and let m = m(n) = [axv'n], then 

m2 (m + 1)2 

-n~n< 22' ax ax 

[ (m + 1)2] [ m2] p Tm > a2x2 ~ Gn(x) ~ p Tm > a2x2 • 

As n---+ oo, also m = m(n)---+ oo. Thus 
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by T2, and also 

!~~ Gn(x) ~ ~~~ P[Tm > :: ~ (1 + ~f] 
~ lim P[T > m2 !....) = 1 - F(!....) 
m~~ m a2x2 x2 

for every real c > 1. But F(x) as well as F(x- 2) are continuous 
functions of x, and therefore the fact that c may be taken arbitrarily 
close to one yields 

lim Gn(x) = 1 - F(x- 2). 
n~~ 

Remark: The first rigorous proof of T2 and T3 is due to Erdos 
and Kac [29], 1946. Their proof is not only shorter, but in a way 
more interesting than ours, as it reduces the problem to the proof of 
T3 for the Brownian motion process, which is the limiting case of a 
sequence of random walks, if the time and space scales are changed 
appropriately. In the context of Brownian motion T3 had indeed 
been known already to Bachelier, in the beginning of the century, so 
that the crux of the proof in [29] was the justification of the limiting 
process, by means of a so-called invariance principle [22]. 

Problems 

1. Derive the analogue of P21.1 for simple random walk in the plane, 
i.e., find the eigenfunctions and eigenvalues of the transition function 
restricted to the rectangle 

[z I 0 ~ Re (z) ~ M; 0 ~ Im (z) ~ N] = RM,N· 

2. Continuation. When M and N are even integers and 

T =min [k I k;;::: 1, XnER- RM,N], 

calculate E,.[T] for z e RM,N• and in particular when z = t(M + iN). 

3. Calculate the orthogonal polynomials Pn(z) in P22.3 for simple 
random walk, and verify directly the truth of parts (d), (e), (f) of P22.3. 

4. Calculate the orthogonal polynomials Pn(z) in P22.3 for the two
sided geometric random walk in problem 3 of Chapter IV. 
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5. Show that the proper analogue of P22.3 for unsymmetrical random 
walk concerns a (uniquely determined) biorthogonal system of polynomials 
qn(z) and rn(z) such that 

(217)-l f,. qn(e16)rm(e16)[1 - cfo(8)] d8 = sm.n• 

Hint: Verify that these orthogonality relations hold if 

00 

qnk = ~ Pk[x. = n; x1 < n for j = 1, 2, ... , v- 1] for n > k, 
v=O 

qnn = 1, 

and 
00 

r nk = ~ P n[ Xv = k; x1 ::s; n for j = 1, 2, ... , v] for n ;;:: k, 
v=O 

are defined as the coefficients of the polynomials 

n n 
qn(z) = ~ qnkzk, 

k=O 
r n(z) = ~ r nkzk. 

k=O 

Using these polynomials one has 6 

N 

KN(i,j) = ~ q.1r.1. 
v=max(l,f) 

6. Let DN denote the number of distinct points visited before leaving 
the interval [ -N,N], by a one-dimensional random walk with mean 0 and 
variance 0 < u2 < oo. Calculate 

J~"!o Eo[~;]• 
the "fraction of points visited." (How should one expect that the answer 
will depend on u2?) 

6 This hiorthogonal system has been investigated by Baxter (see [2] and [3]) 
in a much more general context. Indeed all results concerning the orthogonal 
polynomials in P22.3 may be extended to the present biorthogonal system. 
Not only that, but it is even possible to estimate the coefficients Pnk when both 
n and k get large simultaneously. Thus it was shown [95] for symmetric 
aperiodic random walk that the coefficients Pnk in P22.3 satisfy 

v2k 
Pk-----o 

n a n ' 

uniformly in k and n, as n - k -- oo. Of course that is enough to obtain 
T23.1 as a simple corollary. Finally Watanabe [102] simplified the methods 
in [95] and extended the results to the coefficients of the biorthogonal system 
in problem 5. 
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7. As in problem 10 of Chapter I, the integers in R are assumed to be 
"red" with probability a and "green" with probability (1 - a). Let 
EN,a denote the expected number of red points in the interval [ -N,N] and 
PN,a the probability that the random walk of problem 6 above will visit a 
red point before leaving the interval [-N,N]. Prove that 

lim lim PN,a = lim lim PN,a = In 2. 
N-oo a-o EN,a a-o N-+oo EN,a 

Does the double limit exist? 

8. For symmetric one-dimensional random walk Xn, Qn is the (n + 1) 
by (n + 1) matrix defined in D21.1, and .\0(n) ~ .\1(n) ~ · · · ~ An(n) are 
its (real) eigenvalues. Then the trace of the kth power of Qn is 

n 
Tr (Qnk) = L A/(n). 

J=O 

Let 

Mk = max x1 - min xi> 
05J5k 05J5k 

and prove that 

(n + 1)Pk(O,O) - Tr (Qnk) 
= (n + 1)P0[xk = 0; Mk > n] + E0[Mk; xk = 0, Mk ~ n]. 

Without any assumptions on the moments of the random walk, prove that 

lim - 1-1 i A/(n) = Pk(O,O), 
n-+oo n + J=O 

n ~ 0. 

9. Continuation. Using the theorem of Weierstrass to approximate 
continuous functions by polynomials, show that 

!~ n ~ 1 ,~/[.\1(n)] = L S:,/[c/>(9)] d9, 

for every continuous function/ on [ -?T, .,.,.]. Here c/>(9) is the characteristic 
function of the random walk. M. Kac [49], who devised the proof in 
problem 8, showed that the same method applies to arbitrary matrices of 
the form 

['' 
cl c2 '• l c_l Co cl 

.Cn.-l ' Qn = 

C_n C-n+l Co 

provided that 
00 

ck = c_k and L: ickl < 00. 
k=- 00 
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Thus the results of problems 8 and 9 are valid for real functions 
co 

4>( 8) = 2 ckelkB 
k=- co 

whose· Fourier series converge absolutely. By approximating step func
tions by polynomials one may rephrase our results as follows: For any 
interval J, let Nn(J) denote the number of eigenvalues of Qn which fall in 
the interval J, and L<P(J) the Lebesgue measure of that subset of [ -7T,7T] 
where 4>( 8) E J. Then 

lim _1_ N (I) = LtP(I). 
n ... co n + 1 n 27T 

10. Show that the limit distribution 

F(x) = 1 _ ± ~ ( -1)n e -~(2n+l)2z 
7Tn=O 2n + 1 

in P21.5, T23.2, and T23.3 has the Laplace transform 

Leo 7T "" 2n + 1 . ;;:;-
e-•z dF(x) = Z _2: ( -1)n 2 = (cosh v 2s)- 1 

o n=O s + ~ (2n + 1)2 
8 

co 

= 2e-"'2s .2 ( -1)ke-2k-'2s. 
k=O 

Inverting the last series (term by term) show that the density ofF is 

dF {2 "" 2n + 1 _<2n+IJ2 

f(x) = dx = ,J;;. n~o (-1)n X3J2 e 2• ' 

which converges fast for small (positive) x, while 

f(x) = ~ i; ( -l)n(2n + l)e-~<2n+l>2• 
2 n=O 

converges fast for large x. These two representations of the density f con
stitute a special case of the transformation law of the Theta function. 



Chapter VI 

TRANSIENT RANDOM WALK 

24. THE GREEN FUNCTION G(x,y) 

One might try to develop a theory for transient random walk along 
the same lines as in Chapter III for recurrent random walk in the 
plane. The first order of business would then be the calculation of 
hitting probabilities H 8 (x,y) for finite subsets B of the state space R. 
That turns out to be extremely easy in the transient case, and will be 
accomplished in a few lines in the beginning of section 25 (P25 .1 ). 
The following discussion will clarify our reasons for deferring this 
calculation. 

In the recurrent case the explicit formula for H 8 (x,y) was very 
interesting. It contained all the essential information concerning the 
asymptotic behavior of H 8 (x,y) for large lxl- The reader may recall 
that this was so because H 8 (x,y) was expressed in terms of the re
current potential kernel A(x,y) = a(x - y), and we had to learn a 
great deal about a(x) before we succeeded in expressing H 8 (x,y) in 
terms of a(x). 

In the transient case, however, it is so easy to express H 8 (x,y) in 
terms of the potential kernel G(x,y) that nothing at all is learned in 
the process about the asymptotic behavior of G(O,x) for large lxl. 
Therefore we shall at once proceed to the central problem of transient 
potential theory-that of investigating the behavior of G(O,x) for large 
lxl. The basic result (T2) of this section will then have immediate 
interesting applications in section 25. One of these applications is 
P25.3, the core of which is as follows. For aperiodic transient random 
walk, and for any finite subset B of R, there are the following 
possibilities. If d > 1, or if d = 1 and m = L lxlP(O,x) = oo, then 

lim Ha(x,y) = 0 for each y E B. 
lzl-+ ao 

274 
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If d = 1 and m < ro, p. = L xP(O,x) > 0, then 

lim H 8 (x,y) = H 8 (- ro,y), y E B 
%-+- 00 

exists, and is positive for some yin B, whereas 

lim H 8 (x,y) = 0, yeB. 
%-+ + 00 

When m < ro, p. < 0, a similar statement holds, of course, with + ro 
and - ro reversed. 

This then is a sample of typical results for transient random walk, 
and up to this point the theory (as it stands in 1963) is pleasingly 
complete. But new problems deserve attention in the transient case, 
which did not exist for recurrent random walk. The most striking 
one of these concerns the "total" hitting probability 

Hs(x) = L H 8 (x,y). 
yeB 

In the recurrent case H8 (x) = 1 for all x E R for every nonempty set 
B C R, finite or infinite. In the transient case, however, there exist 
two kinds of sets: the sets B such that H 8 (x) = 1, and those for which 
H 8 (x) < 1 at least for some x. There are sets of each type; that is 
clear. If B = R, the whole space, then it is clearly of the first type (a 
so-called recurrent set), and it seems reasonable to assume that many 
infinite sets B have the property that H 8 (x) = 1, i.e., that they are 
visited with probability one by the random walk with arbitrary starting 
point. On the other hand, the other type of set (the so-called transient 
set) must also be common enough. Every finite set is clearly a 
transient set-and it can be shown that every random walk also has 
infinite transient sets. This problem, of determining which sets are 
transient and which are recurrent for a given random walk, will also 
be dealt with in section 25, but only quite superficially. A really 
satisfactory answer will be seen to depend on more detailed aspects of 
the asymptotic behavior of G(O,x) than we shall study in section 25. 
Section 26 will deal exclusively with three-dimensional random walk 
with mean zero and finite second moments. Due to these restrictive 
assumptions, a great deal of information is available about G(x,y), and 
for these random walks we shall indeed obtain the desired charac
terization of transient and recurrent sets (in T26.1 and T26.2). Section 
27, finally, will be devoted to an extension of potential theory. There 
we shall enlarge the scope of our investigation to include transition 
functions which are not difference kernels. The general potential 
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theory so developed will be indispensable for a deeper understanding 
even of some very concrete random walk problems, and will be used 
again in Chapter VII which is devoted to recurrent random walk. 

According to Dl3.1 a function f(x) is regular with respect to the 
transition function P(x,y) of a random walk, if 

Pf(x) = 2 P(x,y)f(y) = f(x), XER, 
yeR 

and/~ 0 on R. It was shown in Chapter III, P13.1, that the only 
regular functions are the constants, when P is aperiodic and recurrent. 
As shown in E13.2 the situation is more complicated in the transient 
case: aperiodic transient random walk may have other regular functions 
than the constants. Thus one might be tempted to proceed in one of 
two directions. First one might see if there is a restricted class of 
aperiodic transient transition functions P(x,y) with the property that 
all the regular functions are constant. There are in fact such random 
walks (simple random walk in dimension d ~ 3 is an example). But 
the proof (see E27.2 or problem 8) even for this very special case is quite 
delicate, and therefore it is more expedient to restrict the class of 
regular functions, rather than the transition functions under con
sideration. The following important and elegant result has been 
known for ten years or more-but the first simple proof was given only 
in 1960, by Choquet and Deny [8]. Their theorem is valid m a 
slightly more general setting, but in the present context it reads 

Tl If P(x,y) is aperiodic, and iff is regular relative to P and 
bounded on R, then f is constant on R. 

Proof: Given a transition function P(x,y) and a function f(x) 
satisfying the hypotheses of Tl, we set 

g(x) = f(x) - f(x - a) 

where a is (for the moment at least) an arbitrary element of R+. 
Clearly g(x) is a bounded function, and one easily verifies that 

Pg(x) = g(x), XER. 

(This is so because the translate of any regular function is regular, and 
g is the difference of two translates.) Now let 

sup g(x) = M < oo, 
xeR 
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choose a sequence Xn of points in R such that 

lim g( Xn) = M, 
n-+ oo 

and let 

gn(x) = g(x + Xn)· 

Since g(x) is bounded, one can select a subsequence xn' from the 
sequence Xn such that, for a certain x = x0 

lim g(x0 + Xn') exists. 
n-+ oo 

But one can do much better! One can take a subsequence Xn" of this 
subsequence such that g( x + Xn ") has a limit at x = x0 and also at x1• 

This process can be continued. It is famous as Cantor's diagonal 
process, the name being due to a convenient constructive procedure 
for getting a sequence which, from some point on, is a subsequence of 
each of a countable infinity of sequences Xn <l>, Xn <2 >, Xn <a>, ••• such 
that xn<k+l> is a subsequence of xn<k>. Since R is countable, this is 
all that is needed for the following conclusion: there exists a sub
sequence n' of the positive integers such that 

lim gn•(x) = g*(x) 
n'-+ oo 

exists for every x in R. It is clear that 

g*(O) = M, g*(x) ;S; M, x E R. 

It is also true (by dominated convergence) that 

Pg*(x) = g*(x), xeR. 

What has been accomplished is this: we have exhibited a function 
g*(x) which is "essentially regular," i.e., it becomes regular if one adds 
to it a suitable constant, and it has the property that it assumes its 
maximum at the origin. It is the latter property, which together with 
the aperiodicity of P(x,y}, will lead to the conclusion that f(x) is 
constant. 

Iterating the operation by Pong* one gets 

L Pn(O,x)g*(x) = g*(O) = M, 
zeB 

According to the definition of R+ this implies 

g*(x) = M on R+. 

n ~ 0. 
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Given any positive integer r and any E > 0, one can therefore find an 
integer n large enough so that 

Kn(a) > M- E1 Kn(2a) > M- e, ... Kn(ra) > M- E. 

Going back to the definition of Kn(x) and adding these r inequalities 
one has 

f(ra + Xn) - f(xn) > r(M - e) 

for all large enough n. If M were positive, then r could have been 
chosen so large that r(M - e) exceeds the least upper bound of f(x). 
This is impossible and hence M ~ 0. Hence g(x) ~ 0 or f(x) ~ 
f(x - a) for all x E R, a E R+. But exactly the same process of 
reasoning could have been applied to the function - f(x) giving f(x) 
~ f(x - a) so that 

f(x) = f(x - a) for x E R, a E R+. 

That is all one can prove (no more is true) in the general case. But 
if the random walk is aperiodic, we can conclude that f is constant; 
for arbitrary y E R, it is then possible to write y = a - b with a and 
bin R+ so thatf(y) = f(y - a) =/(-b) = /(0). 

Now we shall embark on a long sequence of propositions (Pl 
through PS) each describing some different aspect of the asymptotic 
behavior of the Green function G(x,y). Theorem Tl will be an 
indispensable tool at several points in our work. In fact after P3 or, 
at the latest after P6, it will be clear that Tl makes possible a simple 
and natural proof of the renewal theorem for positive random variables 
which was proved by Fourier analytical methods in Chapter II. 
Although Tl is sufficiently powerful so that, by taking full advantage 
of it, one could dispense entirely with the results of P9.2 and P9.3 of 
Chapter II, it will be much more convenient to use them. As those 
results really belong in this chapter, and to facilitate frequent reference 
to diem, we list them first as Pl and P2. 

Pl For every aperiodic transient random walk 

lim [G(O,x) + G(x,O)] exists, 
l:rl-+ 00 

and 

P2 For aperiodic random walk in one dimension, with P(O,x) = 0 
for x ~ 0 and 11- = L:'= 1 xP(O,x) ~ oo, 

lim G(O,x) = ! ( =0 if 11- = + oo). 
X-++ 00 IL 
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Next we shall derive 

P3 For every aperiodic transient random walk 

lim [G(x,y) - G(x,O)] = 0, yER. 
lxl-+"' 

Proof: For convenience, call G(x,O) = u(x). If P3 were false, then 
there would be some e > 0 and a sequence xn in R with 

lim lxnl = oo 
n-+oo 

such that 

iu(xn + t) - u(xn)l > e 

for all n at some point t in R. Suppose this is the case. Then, using 
the diagonal process, as in the proof of Tl, one can extract a 
subsequence Yn from the sequence Xn such that 

lim u(yn + y) = v(y) 
n-+"' 

exists for every yin R, and such that iv(t) - v(O)I ~ e. The proof of 
P3 will be completed by showing that this is impossible, because v(x) 
must be constant on R. 

Since 

G(x,O) = L P(x,y)G(y,O) + 8(x,O), XER, 
YER 

u(yn + x) = L P(yn + x,y)u(y) + 8(yn + x,O) 
YER 

= L P(O,s)u(yn + s + x) + 8(ym- x), 
SER 

for all x E R and all n. Letting n-+ oo one obtains 

v(x) = L P(O,s)v(s + x) = L P(x,y)v(y), 
SER YER 

xeR. 

Thus v(x) is a regular function, by Tl it is constant, and this contradicts 
the earlier statement that v(t) =1= v(O). 

At this point we abandon, but only momentarily, this apparently 
fruitful approach. It will be resumed in P6 below when we try to 
extend P2 to a much larger class of one-dimensional random walk. 
First there is one more quite general property of G(x,y) which can 
be obtained by elementary probabilistic arguments. Observe that 
periodicity is irrelevant to the truth of 
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P4 For any transient random walk 

lim G(O,x)G(x,O) = 0. 
l.tl-+ 00 

Proof: We shall take x =F 0, Tx = min [k I k ~ 1; xk = x] ::;;; oo, 
and evaluate the sum 

S(x) = E0 L~. ~(xk,o)] 
in two different ways. First 

S(x) = E0 L~o ~(Xr,+t•O); Tz < oo] 
and by the property of stopping times in P3.2 this becomes 

S(x) = E0 [E., Jo ~(x1 ,0); T,. < oo] 
= p (T ]G( O) = G(O,x)G(x,O) 

o ., < oo x, G(O,O) 

Since G(O,O) > 0 it will clearly suffice to prove that S(x) ~ 0 as 
!xi~ oo. This is verified by writing 

S(x) = EoL~o ~(xk,O); Tz ::;;; k] = k~ P0(xk = 0; Tx::;;; k] 

n oo 

::;;; 2: P0 [T,. ::;;; k] + 2: P0 [xk = 0], 
k=O k=n+l 

for each n ~ 0. As the random walk is transient we may choose an 
arbitrary E > 0 and find an integer N such that 

N 

S(x) ::;;; 2: P0(Tz ::;;; k] + E. 
k=O 

Hence S(x) ~ 0, provided that 

lim P0 (Tx ::;;; k] = 0 
l.tl-+ 00 

for each fixed k. But 
k 

P0 (Tz ::;;; k] ::;;; 2 P1(0,x) 
f=O 

and obviously each term PJ(O,x) -+ 0 as lxl -+ oo. Hence P4 is proved. 1 

1 The results P1 through P4 can be obtained in a different order, without 
use of Tt. To this end prove first P1, then a slightly strengthened form of P4 
to the effect that G(O,x)G(x,y)~O as lxl ~ oo for each y. Together these 
two propositions immediately imply P4. 
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In the next proposition we complete our present study of G(x,y) for 
transient random walk in dimension d ~ 2. We shall do so by using 
a very "weak" property of R with d ~ 2, but nevertheless one which 
very effectively distinguishes these additive Abelian groups from the 
one-dimensional group of integers. (This fact deserves emphasis 
since we shall get a result which according to P2 is false when d = 1.) 
The property of R(d ~ 2) in question may be described as follows. 
Suppose that R is decomposed into three sets A, B, and C (disjoint 
sets whose union is R) such that A is finite or even empty, while B 
and C are both infinite sets. Then there exists a pair of neighbors x 
and y in R, i.e., a pair of points such that lx - Yl = 1, with the 
property that x is in B, andy in C. It should be obvious that this is 
indeed a property of R with d ~ 2, but not of R with d = 1. Actually 
all that is essential for our purpose is that x and y are in a suitable 
sense not "too far apart"-the requirement that lx - Yl = 1 merely 
serves to simplify the exposition. 

PS For aperiodic transient random walk in dimension d ~ 2, 

lim G(O,x) = 0. 
lxl-+ oo 

Proof: Suppose PS is false, and call G(x,O) = u(x). Then, in view 
of Pl, we must have 

lim [u(x) + u( -x)] = L > 0. 
lxl-+ oo 

Now we choose an£, 0 < £ < L/3, and decomposeR into three sets 
A, B, Cas follows. A is to be a sphere, i.e., A = [x I lxl ::::;; r] with 
the radius r chosen so that 

lu(x + t) - u(x)l < £ when ltl = 1, xER- A 

and 

min [lu(x)l, lu(x) - Ll] < £ when xER- A. 

That this can be done follows from P3 and from P4 combined with 
our hypothesis that u( x) + u(- x) tends to L. 

Now we shall decomposeR - A into Band C. B is the subset of 
R - A where lu(x)l < £ and C the subset where lu(x) - Ll < £. B 
and C are disjoint because L > 3£. Since L > 0, C must be an 
infinite set and P4 tells us that also B is infinite ( - x is in B when x is 
in C). But using the characteristic property of R with d ~ 2 which 
we discussed prior to PS, there is a pair x,y such that 

lu(x)l < £, lu(y) - Ll < £, lx - Yl = 1, x E B, y E C. 
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Since L > 3e the above inequalities give 

iu(x) - u(y)i > L - 2e > e. 

Now y = x + t with ltl = 1, and according to the definition of the 
set A, x must be in A, which it is not. This contradiction proves PS. 
Observe that aperiodicity is not strictly necessary for PS. All we need 
is that R be a group with more than one generator, i.e., that the 
random walk does not take place on a one-dimensional subspace of R. 

Now we are free to concentrate on one-dimensional random walk, 
which unfortunately presents much greater difficulties. First we deal 
with the comparatively straightforward case when the absolute first 
moment is finite. The results constitute a rather intuitive extension 
of the renewal theorem, which was obtained by Blackwell [4] and 
several other authors around 1952, but which had been conjectured 
and proved in special cases before 1940.2 

P6 Aperiodic transient random walk, d = 1, m = LzeR lxiP(O,x) < oo, 
1-' = LzeR xP(O,x). If 11- > 0, then 

lim G(O,x) = ~. lim G(O,x) = 0. 
z-+ + oo 1-' z-+ - oo 

If 11- < 0, the limits are reversed, and ( -11-)- 1 replaces 1-' - 1 • 

Proof: The proof uses in principle the same summation by parts 
as that of P2, which was given as P9.3 in Chapter II. Only far greater 
care is required in the present case. First we remark that the two 
limits 

lim G(O,x) = G(O, + oo ), lim G(O,x) = G(O,- oo) 
%-+ + 00 %-+- 00 

certainly exist. This is a consequence of P1, P3, and P4, for P1 states 
that G(O,x) + G(O,- x) has a limit as x ~ + oo, P4 tells us that one of 
these two limits is zero, and finally P3 prevents any possibility of 
oscillation whereby both limits might fail to exist. Thus we are con
cerned only with evaluating the limits. A close look at the statement 
of P6 shows that the identity 

[G(O,+oo)- G(O,-oo)]l-' = 1 

is equivalent to P6. If P6 is true, then the identity holds, whether 
1-' > 0 or 1-' < 0 (1-' = 0 is impossible since the random walk would 

2 See [4}, [52}, and in particular [90] for a lucid account of this subject up to 
1958. 
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then be recurrent). Conversely, if this identity holds, then P6 is 
true. For suppose p. > 0 and it holds. Since we know from P4 that 
either G(O, + oo) or G(O,- oo) is zero, it follows that G(O, + oo) = p. - 1 

and G(O,-oo) = 0. If p. < 0 one gets G(O,-oo) = (-p.)- 1 and 
G(O, + oo) = 0. 

Finally, let us introduce some simplifying notation. Let 

b 

f(a,b) = L P(O,x) 
x=a 

where a may be - oo and b may be + oo; 

00 00 

p. + = L xP(O,x) = L f( a,+ oo ), 
x= 1 a= 1 

-1 -1 

p.- = - L xP(O,x) = L f(- oo,b), 
x=-oo b=-oo 

p. = p.+- p.-. 

Now we define u(x) = G(O,x), so that 

00 

u(x) = L u(t)P(O,x - t) + S(O,x), xER. 
t=- 00 

Taking M and N to be two positive integers, one obtains 

N oo 

L u(x) = L u(t)f(- M - t,N - t) + 1. 
X= -M t= -oo 

It is possible, by grouping terms properly, and changing variables of 
summation, to write this identity in the form 

N 

1 = L u(N- s)[f( -oo,s- N- M- 1) + f(s + 1,oo)] 
s=o 

0 

+ L u(-M- s)[f(-oo,s- 1) +f(M + N + s + 1,oo)] 
s= -M+1 

00 

- L u(N + s)f( -M- N- s,-s) 
s= 1 

-1 

- L u(- M + s)f(- s,M + N - s). 
s=- oo 

The idea is now to let N and M get large, one at a time. Let us 
take N- + oo first. The finiteness of the absolute moment is of 
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course used in an essential way and gives dominated convergence that 

justifies limit processes such as 

N 

lim 2 u(N - s)f(s + 1,oo) 
N-+oo s=O 

00 

lim u(N) 2f(s + 1,oo) = G(O,+oo)fL+. 
N-+oo s=O 

In this way the above "decomposition of 1" becomes, as N---+ oo 

00 

1 = 2 u(s)f(-oo,-M- s- 1) + G(O,+oo)fL+ 
s=O 

0 

+ 2 u(-M- s)f(-oo,s- 1) + 0 
s= -M+l 

-1 

- G(O,+oo)/-L-- 2 u(-M + s)f(-s,oo). 
s=- co 

(The terms have been kept in the original order to facilitate the 

verification.) Now let M---+ + oo. Then one gets 

1 = 0 + G(O,+oo)fL+ + G(O,-oo)fL- + 0 
- G(O, + oo)fL- - G(O,- oo)fL + 

= [G(O, + oo) - G(O,- oo)][!-L + - fL -] 

= [G(O, + oo) - G(O,- oo )]fL. 

This is the desired result which implies P6. 

It now remains only to investigate transient one-dimensional 

random walk with m = oo, and of course the desired result is 

lim G(O,x) = 0. 
lxl-+ oo 

Unfortunately this seems to be impossible to obtain from the methods 

developed so far in this chapter. Instead we make use of the rather 

more delicate apparatus of the "ladder" random variable Z introduced 

in Chapter IV, D18.1. It was, by the way, in connection with the 

renewal theorem that Z and the ladder random walk, consisting of 

partial sums of random variables with the same distribution as Z, were 

first studied by Blackwell [4]. But, whereas he required them in the 

case when the absolute moment m is finite, we need them only at this 

stage, when m = oo, which seems to be the most difficult stage of the 

problem. It will be convenient to introduce appropriate notation, in 
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Dl The set A is the half-line [x I x > 0], T = min [n I n ~ 1, Xn E A] 
as in D17.1, HA(x,y) = Px[T < oo, Xr = y] as in Dl0.1, and 

Hix) = L HA(x,y). 
yeA 

When T < oo with probability one we call Xr = Z as in D18.1. In this 

case P(x,y) = P0[Z = y - x], and finally, Bix,y) is the hitting prob
ability measure of the set A for the random walk whose transition function 

is P(x,y). 

Obviously the hitting probabilities HA(x,y) are intimately connected 
with the Green function G(x,y) of a transient random walk. For 
example, if x ::::; 0 andy > 0, one has the identity P10.1( d) 

co 

G(x,y) = L HA(x,t)G(t,y), 
t=1 

so that the asymptotic behavior of HA(x,t) as X-+ - oo is related to 
that of G(x,y). This connection seems sufficiently attractive to 
justify developing the basic facts about Hix,y) in somewhat more 
detail than is absolutely necessary. These facts take the form of a 
simple classification. Obvious possibilities concerning the asymptotic 
behavior of HA(x,y) are given by 

(i) lim Hix) = 0 

(ii) 

(iii) 

X-+- 00 

Hix) = 1 for all x in Rand 

lim HA(x,y) = 0 for yEA. 
Z-+- 00 

HA(x) = 1 for all x in R, 
lim HA(x,y) = YA(Y) for yEA, and 

Z-+- 00 

co 

L YA(Y) = 1. 
y=l 

We do not yet know, but we shall in fact show, that this is a complete 
classification, in the sense that (i), (ii), and (iii) exhaust all possibilities. 
Moreover this will be the case for recurrent as well as transient random 
walk. Once this fact is even suspected, it is not farfetched to ask if 
there is any connection with the following classification, which is quite 
familiar from Chapter IV. 

(1) P0 [T = oo] > 0, i.e., Z is undefined, 

(2) P0 [T < oo] = 1 and E0[Z] = oo, 
(3) P0[T < oo] = 1 and E0[Z] < oo. 
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This set of alternatives turns out to be exactly the same classification 
as (i) through (iii), as we shall now prove in 

P7 For arbitrary one-dimensional random walk (recurrent or tran
sient), the two classifications are equivalent, that is (i) holds whenever 
(1) does, and so on. These are the only possibilities. Furthermore, in 
cases (ii) = (2) and (iii) = (3), one has 

lim HA(x,y) = YiY) = E 1[Z] P0 [Z :2:: y] 
.%-+- CXl 0 

for yEA. The limit is interpreted as zero in case (ii) = (2). 

Proof: Clearly (1), (2), and (3) are mutually exclusive and exhaust 
all possibilities. Now (1) implies (i) by a very simple probability 
argument which was given in Chapter IV. For x ~ 0, HA(x) = 
P[M > x], where M = maxk;;,o Sk. But in P19.2, M was shown to 
be a random variable when (1) holds, and that proves (i). 

Now suppose that either (2) or (3) holds. Then it is evident that 
HA(x) = 1 on R and also that 

Hix,y) = HA(x,y) for x ~ 0, y > 0. 

This relation makes it convenient to work with the random walk in 
defined by P(x,y) in D1 above. It is a transient random walk, whether 
P(x,y) defines a transient random walk or not. Therefore it has a 
finite Green function which we may call 

00 

C(x,y) = L Pn(x,y). 
n=O 

When x ~ 0 andy > 0, C(x,y) is the probability that the random 
walk :in defined by P visits y in a finite time, if it starts at i:0 = x. 
Now one can write 

y-1 

C(x,y) = HA(x,y) + L C(x,t)P0 [Z = y - t], 
t= 1 

by making the obvious decomposition of C(x,y) according to the last 
value of :in in A before it visits the pointy. A formal proof proceeds 
VIa 

and 

C(x,t)P0 [Z = y - t] 
= Px[:ik = y and xk_ 1 = t for some k < oo]. 
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Now we shall apply the renewal theorem for positive random 
variables (P2) to the Green function G(x,y). It gives 

lim G(x,t) = E 1[Z] ;;::: 0, t E R. 
r-+- oo 0 

Therefore 

lim HA(x,y) = lim flA(x,y) 
%-+ - 00 %-+ - 00 

{ 
!1-1 } 

= r~~oo G(x,y) - ~~ G(x,t)P0 [Z = y - t] 

1 { ll- 1 } P0[Z :<:: y] 
= Eo[Z] 1 - ~~ Po[Z = y - t] = Eo[Z] ;;::: 0 

for y ;;::: 1. 
But if (2) holds, then E0 [Z] = + oo so that the above limit is to be 

interpreted as zero according to the renewal theorem P2. Hence (2) 
implies (ii), and for the same reason (3) implies (iii). The formula for 
y A(y) in P7, is of course the one obtained above, as a by-product of the 
method of proof. 

Only a small step remains to be taken to obtain 

P8 For transient random walk with m = oo, 

lim G(O,x) = 0. 
(r(-+oo 

Proof: It will clearly suffice to show that 

lim G(O,x) = 0, 
z- + oo 

as there is nothing in the hypotheses of P8 to distinguish + oo from 
- oo. The proof is based on the identity that motivated the develop
ment of P7, in the rather special form 

00 

(a) G(x,1) = 2 HA(x,y)G(y,1). 
!1=1 

Now we run through the three cases in the classification ot P7. 
First suppose that (i) holds. Then (a) yields 

lim G(x,1) ~ G(1,1) lim HA(x) = 0. 
X-+- 00 x-+- oo 

Next, let us take case (ii). Then the conclusion is the same, but the 
reasoning required to obtain it is a little more complicated. Since 
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HA(x,y) tends to zero for each y > 0 as x--+ - oo, but the total 
probability "mass" HA(x) is constant (one), it can be concluded from 
(a) that 

lim G(x,1) ~ lim G(y,1), 
x-+-oo y-++oo 

and since both limits are known to exist (this was pointed out at the 
start of the proof of P6) 

lim G(x,1) = G(O, + oo) ~ lim G(y,1) = G(O,- oo). 
x-+-00 y-++oo 

But if we had G(O, + oo) > 0, then this inequality would entail 
G(O,- oo) > 0 which contradicts P4. Hence P8 holds if we are in 
cases (i) or (ii). 

Finally consider case (iii). There seems to be nothing here to 
prevent G(- oo,O) = G(O, + oo) from being positive. So, there must 
be another way out of the dilemma, and that is the realization that 
transient random walk cannot possibly come under the classification 
(iii) when its absolute moment m is infinite! For when m = oo, then 
either fl.+ or fl.- or both are infinite (they were defined in the proof of 
P6). If fl.+ < oo and fl.- = oo, then we are in case (i) since T = oo 
with positive probability (by the law of large numbers). Finally, if 
fl.+ = oo, we may still be in case (i) and then there is nothing left to 
prove. We may also be in case (ii) and that case has also been settled. 
But case (iii) is out of the question since, when T < oo with probability 
one, then 

00 

E0 [Z] ~ E0 [Z; T = 1] = 2: xP(O,x) = fl.+. 
x=l 

That completes the proof of P8, and now it remains only to collect 
the results from PS, P6, and P8, and to combine them into a statement 
that is rather pleasing in its generality.3 

T2 The Green function of transient aperiodic random walk satisfies 

lim G(O,x) = 0 
lxl-+ oo 

in all cases except when the dimension d = 1 and m < oo. In this case 

lim G(O,x) = G(O,- oo) and lim G(O,x) = G(O, + oo) 
x-+- oo X-i'+ oo 

3 For d = 1 this theorem is due to Feller and Orey [32]. Chung [10] was 
the first to discuss the renewal theorem in higher dimensions. 
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are distinct, with 

1 
G(O, + oo) = - and G(O,- oo) = 0 when 11- > 0, 

11-

1 
G(O,- oo) = ~ and G(O, + oo) = 0 when 11- < 0. 

The most important applications of T2 are associated with the study 
of hitting probabilities in the next section. But as a good illustration 
of its uses we can make a remark which improves and completes the 
fundamental result T2.1 of Chapter I. For transient random walk 
the probability F(O,O) of a return to the starting point is less than one. 
However F(O,x) presented a problem which could not be solved by 
earlier methods. Now we have 

P9 Aperiodic transient random walk has the property that F(O,x) < 1 
for all x E R, with one and only one exception. If the dimension d = 1, 
m < oo, 11- < 0, and the random walk is left continuous (i.e., P(O,x) = 0 
for x ::::; - 2), then F(O,x) = 1 for x < 0 while F(O,x) < 1 for x > 0. 
An analogous rule applies of course to the reversed, right continuous 
random walk with m < oo, 11- > 0. 

Proof: Suppose that F(O,a) = 1 for a certain aperiodic transient 
random walk, where a =f 0. Then F(O,na) = 1 for every integer 
n ~ 1. For if Tx is the first time of Xn at x, and if x0 = 0, then 

F(O,a) = P0 [Ta < oo], 

F(O, na) = P0 [Tna < oo] ~ P0 [Ta < T 2a < · · · < Tna < oo] 

But by Pl.S 

G(O,na) 
1 = F(O,na) = G(O,O) · 

= [F(O,aW = 1. 

Letting n-+ oo, we see from T2 that the right-hand side tends to zero, 
unless the random walk under consideration is one-dimensional with 
absolute moment m < oo. Now it suffices to assume that a < 0, and 
then we have to show that 11- < 0 and that, in addition, the random 
walk must be left continuous. The case a > 0 can then receive 
analogous treatment. Observe that 11- is negative, for if 11- > 0, then 
F(O,x) < 1 for x < 0 since Xn ~ + oo with probability one, and 
cannot be zero since the random walk is transient. 
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It is quite clear that left-continuous random walk with 1-' < 0 has 
the desired property. Since xn---+ - oo with probability one, and no 
point can be "skipped," F(0,-1) = F(O,-n) = 1 for n ~ 1. 

Finally, if 1-' < 0 and the random walk is not left continuous, one 
can show that for every a < 0 there is some "path" 0 = x0, x1 , ... , Xn 

such that Xn < a, 

P(O,x1)P(x1,x2 ) • •• P(xn_ 1,xn) > 0, 

and xk ¥- a for k = 1, 2, ... , n - 1. That may be done by a simple 
combinatorial argument (as for example in the proof of P18.8) which 
of course has to take account of the aperiodicity of the random walk. 
Because 1-' < 0, the existence of such a path implies that F(xma) < 1 
and therefore also that 

1 - F(O,a) ~ P(O,x1) •.• P(xn _1,xn)[1 - F(xn,a)] > 0. 

This inequality shows that left continuity is a necessary property of an 
aperiodic random walk with 1-' < 0 and F(O,a) = 1 for some a < 0. 
The proof of P9 is therefore complete. 

25. HITTING PROBABILITIES 

Let P(x,y) be the transition function of a transient random walk. 
We shall also assume aperiodicity throughout this section, although it 
will of course usually be possible to rephrase the results in such a way 
as to remove this condition. The matter of calculating hitting prob
abilities is quite a bit easier than it was for recurrent random walk in 
Chapter III. Therefore we shall now attack the general situation 
where A C R is any nonempty, possibly infinite, proper subset of R. 
The relevant definitions can be found in D 10.1, but since we shall add 
to them two new ones (HA and EA) we summarize them as 

Dl For A C R, 1 ~ !AI ~ oo, R - A nonempty, HA(x,y) is 
defined as in D10.1, for x E R, yEA, and so is IIA(x,y) for x E A and 
yEA. In addition, let 

HA(x) = L HA(x,y), x E R, 
yeA 

EA(x) = 1 - L IIA(x,y), x EA. 
yeA 

H A is called the entrance and E A the escape probability function of the set A. 
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In general, one cannot say much about the probabilities HA(x) and 
EA(x). Obviously HA(x) is one on A and less than or equal to one on 
R - A. But to get more information is not easy. To appreciate the 
difficulties, it suffices to take for A the set consisting of the origin, and 
to look up P24.9 in the last section. According to P24.9, H{o}(x) is 
less than one for all x -=1- 0 for "most" transient random walks-but 
there is the exception of the left- and right-continuous random walks 
with m < oo. 

Now consider the escape function. If 

T = min [n I n ~ 1, Xn E A], 

then the definition of EA(x) gives 

xEA. 

That is why we called it the escape function of A. The only general 
information one has from P10.4, or from the probability interpretation 
in terms of the hitting time T, is that EA(x) :::;; 1 on A. Of course, if 
one wants an example of a set A such that EA(x) > 0 on A, one should 
look for a "small" set-say a finite one. But here again P24. 9 teaches 
one respect for the difficulty of the problem. If the random walk is 
left continuous, with m < oo and 1-' < 0, and if A is the set A = {0,- 1 }, 
then E<o. -1}(0) = 0. But for every other one-dimensional transient 
random walk E<o. -1}(0) > 0. Still more difficult is the question of 
how "large" the set A should be so that EA(x) = 0 on A. We shall 
return to all these questions after getting some information concerning 
HA(x,y) and llA(x,y). 

Pl HA(x,y) = LteA G(x,t)[<>(t,y) - llA(t,y)], for x E R, yEA. 

Proof: The proof goes back to part (a) of P10.1: 

L P(x,t)HA(t,y) - HA(x,y) = llA(x,y) - <>(x,y) if x E A, yEA, 
teR 

= 0 if X E R - A, yEA. 

Operating by the transition function P(x,y) on the left k times, 

L Pk+ 1(x,t)HA(t,y) - L Pk(x,t)HA(t,y) 
teR teR 

= L Pk(x,t)[llA(t,y) - <>(t,y)] for x E R, yEA. 
teA 

This procedure was used in the proof of P 11.1 and, as was done there, 
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we add the n + 1 equations one gets by setting k = 0, 1, 2, ... , n. 
The result is 

HA(x,y) = 2 Gn(x,t)[8(t,y) - IIA(t,y)] 
teA 

+ 2 Pn+l(x,t)HA(t,y), x E R, y E A, n ~ 1. 
teB 

But from this point on the situation is drastically simpler for transient 
than it was for recurrent random walk. One simply obtains 

HA(x,y) = lim 2 Gn(x,t)[8(t,y) - IIA(t,y)], xER, yEA, 
n-+oo teA 

from the observation that 

0 ~ 2 Pn+l(x,t)HA{t,y) ~ 2 Pn(x,t)F(t,y) 
teB teR 

00 

~ 2 Pk(x,y) = G(x,y) - Gn(x,y), 
k=n+l 

which tends to zero as n ~ + oo. To finish the proof of P1 it remains 
only to show that 

lim L Gn(x,t)[8(t,y) - IIA(t,y)] = 2 G(x,t)[8(t,y) - IIA(t,y)]. 
n-+oo teA teA 

This follows (even when A is an infinite set) from the inequalities 

Gn(x,t) ~ G(x,t) ~ G(O,O) 

together with 

2 IIA(t,y) ~ 1, yER, 
teA 

proved in P10.4. 

Several corollaries of P1, or rather of the method of proof of P1, are 
occasionally useful: 

P2 (a) 2 P(x,y)HA(y) - HA(x) = - EA(x) for x E A, 
yeR 

0 for xER- A. 

(b) 8(x,y) = 2 G(x,t)[8(t,y) - IIA(t,y)] 
teA 

= 2 [8(x,t) - IIA(x,t)]G(t,y) for x E A, yEA. 
teA 
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Proof: Part (a) follows from the first identity in the proof of P1 by 
simply summing y over the set A. Part (b), on the other hand, is 
just the result of P1 when x E A, for then 

HA(x,y) = S(x,y) = 2: G(x,t)[S(t,y) - IIA(t,y)]. 
teA 

To finish up, one looks at the reversed random walk with G*(x,y) = 
G(y,x), II*(x,y) = II(y,x), so that when x E A, yEA, 

S(x,y) = 2: G*(x,t)[S(t,y) - IIA*(t,y)] 
teA 

= 2: [S(y,t) - IIA(y,t)]G(t,x). 
teA 

Since S(x,y) = S(y,x) the proof of P2 is complete. 

Another corollary of P1, but a far deeper and more important one 
than P2, concerns the hitting probabilities HA(x,y) when A is afinite 
subset of R. Then one can assert 

P3 Consider aperiodic transient random walk, and a finite subset A 
of R. Then there are three possibilities. 

(a) The dimension d ~ 2, or d = 1 but m = oo, in which case 

lim HA(x,y) = 0 for yEA. 
l:rl-+ 00 

(b) d = 1 and m < oo, p. > 0, in which case 

lim HA(x,y) = ~ [1 - 2: IIA(t,y)] • 
:r-+- oo 1-' teA 

lim HA(x,y) = 0, yeA. 
z-+ + oo 

yeA, 

(c) d = 1, m < oo, and p. < 0, which is just like case (b) with the 
limits interchanged and p. replaced by IP-1· 

Proof: P3 is obtained immediately by applying T24.2 to Pl. 

We shall have much more to say about the subject of the asymptotic 
behavior of hitting probabilities in Chapter VII. This is not 
surprising because we already found in Chapter III, T14.1, that 

lim HA(x,y), yEA 
l:rl-+ 00 

exists for two-dimensional aperiodic recurrent random walk. The 
full story, extending the result of P3 to arbitrary recurrent random 
walk is to be told in T30.1 in Chapter VII. 
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Now we turn to a study of the escape probabilities EA(x) and their 
relation to the entrance probability function HA(x). The reader who 
has recognized part (a) of P2 above as the Poisson equation, discussed 
in Chapter III, D13.2, will not be surprised to see that we now proceed 
to solve this equation for HA(x) in terms of EA(x). The result is 
(remember that A is once again an arbitrary nonempty proper subset of 
R, finite or infinite) 

P4 HA(x) = hA(x) + 2 G(x,t)EA(t), x E R, 
teA 

where the sum on the right converges, and where hA(x) is the limit 

hA(x) = lim 2 Pn(x,t)HA(t), X E R. 
n-+ co teR 

Moreover, hA(x) is independent of x; it is a constant hA which depends on 
the transition function P(x,y) and on the set A. 

Proof: We know from part (a) of P2 thatf(x) = HA(x) satisfies the 
Poisson equation 

f( x) _ -.;;;: P(x )f( ) = {EA(x) for x E A 
L ,y Y 0 for x E R - A 
yeR • 

To prove P4 we therefore study the general Poisson equation 

(a) f(x) - 2 P(x,y)f(y) = 1/J(x), XER, 
YER 

where V'(x) is assumed to be a given non-negative function on R. We 
require the following three basic properties of equation (a) (which will 
be encountered in an even more general setting in section 27). 

(i) If f(x) is a non-negative solution of (a), then it may be written 

f(x) = h(x) + 2 G(x,t)if(t) < oo, XER, 
teR 

where 

(ii) 0 ::;; h(x) = lim 2 Pn(x,t)f(t) < oo, 
n-+ co teR 

and where 

(iii) Ph(x) = h(x), so that h(x) is a regular function. 

In order to prove (i), (ii), and (iii) we operate on equation (a) by the 
iterates Pk(x,y) of P(x,y). Using the convenient operator notation 
one gets 

f- Pf =if, 
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At no step is there any question about convergence. The sum 
representing Pif;(x) exists since Pj(x) exists and Pif;(x) ~ Pj(x). 
Continuing this way, once Pnf(x) exists, the non-negativity off and if; 
together with the inequality Pnif;(x) ~ Pnf(x) implies that also Pnif; 
exists. Similarly Pn+d(x) exists as Pn+d(x) ~ Pnf(x). Now we 
add the equations PJ- Pk+d = Pkif; over k = 0, 1, ... , n to obtain 

Since 

Gnif;(x) = L Gn(x,y)if;(y) ~ j(x) < 00, 
yeR 

and since 

one has 

lim Gnif;(x) = L G(x,y)if;(y). 
n-+ 00 yeR 

Hence also 

lim L Pn+l(x,y)j(y) < oo, 
n-+ co YER 

and if we call the last limit h(x) we have established (i) and (ii). 
Finally, one has 

h(x) = lim L Pn+ 1(x,y)j(y) 
n-+ co YER 

= L P(x,t)[ lim L Pn(t,y)j(y)] = L P(x,t)h(t), 
teR n-+ 00 yeR teR 

so that h(x) is regular and (iii) holds. 
To complete the proof of P4, we set 

~(x) = EA(x) for x in A, if;(x) = 0 for x E R - A. 

All the conclusions of P4 are now contained in equations (i), (ii), and 
(iii) with the exception of the last statement of P4, to the effect that 
hA(x) is constant. But since, by (ii), 

hA(x) = lim L Pn(x,t)HA(t), 
n-+ 00 tER 

it is non-negative and bounded. From (iii) it follows that hA(x) is a 
bounded regular function. Therefore we can apply T24.1 to conclude 
that hA(x) = hA is constant. 
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To illuminate the result and the proof of P4 from a nonprobabilistic 
point of view, let us look at a simple special case. The equation 

(b) f(x) - L P(x,y)f(y) = S(x,O), XER, 
YER 

has the solutionf(x) = G(x,O). We have used this observation many 
times, most recently in several proofs in section 24. It would be 
interesting to be able to characterize the function G(x,O) by the 
property that it satisfies (b) together with as few other natural require
ments as possible. Now (i) through (iii) in the proof of P4 imply that 
the only non-negative solutions of (b) are the functions 

f(x) = h(x) + G(x,O), 

where h(x) is any regular function. Although we have no information 
as yet concerning the possible unbounded regular functions (the 
bounded ones are constant) we are in a position to assert 

PS The Green function G(x,O) is the minimal non-negative solution of 
(b). Alternatively, it is the only bounded non-negative solution of (b) 
such that 

lim f(x) = 0. 
lx"F"OO 

Proof: Since f(x) = h(x) + G(x,O), h(x) ;::: 0, G(x,O) is minimal, 
i.e., every non-negative solution of (b) is greater than, or equal to, 
G(x,O) everywhere. By T24.1 the only bounded non-negative 
solutions of (b) are G(x,O)+ constant, and in view of T24.2, such a 
solution will have lower limit zero as lxl--+ oo if, and only if, the 
constant is zero. 

Our next topic is the classification of subsets A of R (only infinite 
subsets will turn out to be of real interest) according to whether they 
are transient or recurrent. To avoid any possible misunderstanding 
we re-emphasize that the random walk is assumed to be transient and 
aperiodic. It seems tempting to call a set A recurrent if the random 
walk is certain to visit the set A, no matter where it starts. That 
would be the case if HA(x) = 1 for every x in R. Alternatively, if 
HA(x) < 1 for some x E R one might call the set A transient. On the 
basis of this idea we introduce the formal classification 

D2 A proper subset A C R, 1 :::;; lA I :::;; oo, is called recurrent if 
HA(x) = 1 for all x in R, and transient if it is not recurrent. 

But let us temporarily complicate matters, if only to question the 
wisdom of definition D2. An equally reasonable classification of sets 
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might have been based on the escape probabilities EA(x). If EA(x) = 0 
for all x in A, then we conclude that the set A is in some sense "large 
enough" so that it is impossible for the random walk to leave it forever. 
Such a set might be called recurrent. Conversely, a set A such that 
EA(x) > 0 for some x in A would then be transient. Fortunately this 
classification turns out to be the same as that in D2. From P4 one has 

HA(x) = hA + L: G(x,t)EA(t), xeR. 
teA 

If EA(t) = 0 for all t in A, than HA(x) = hA. But the constant hA 
must have the value one, as HA(x) = 1 when xis in A. Therefore a 
set A on which EA vanishes identically is necessarily a recurrent set. 
Conversely, let us· suppose that A is a recurrent set, so that HA(x) = 1. 
Then P4 shows that 

hA = lim L: Pn(x,t)HA(t) = 1. 
n-+oo teR 

Hence 
1 = 1 + L: G(x,t)EA(t), xeR. 

teA 

But this equation justifies the conclusion that EA(t) = 0 orr A, for if 
we had EA(to) > 0 for some t0 in A the result would be 0 = G(x,t0 ) 

for all x in R, which is impossible. Therefore we have proved 

P6 If A is recurrent EA(x) = 0 on A, but if A is transient, then 
EA(x) > 0 for some x in A. 

That is not quite the end of the story, however. In the proof of P6 
we saw that the constant h A = 1 for a recurrent set, but no information 
was obtained concerning its possible values for a transient set A. In 
fact it is only now, in studying hA, that we shall fully use all the infor
mation available. The result of P6 remains correct for the far larger 
class of transition functions to be studied in section 27. By using the 
information that we are dealing with random walk (that P(x,y) = 
P(O,y - x)) in a much more essential way than before, we can show 
that hA can assume only the value zero or one. 

First we clarify the probability interpretation of hA. 

P7 For our random walk (transient and aperiodic) let An denote the 
event that Xn E A. Then 

HA(x) = P:rL90An} xeR, 

hA = hA(x) = P:r[DlkQn Ak} XER. 
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Proof: Nothing more is involved than a simple rephrasing of 
definitions. When x E A, Pz[A0] = 1, so that HA(x) = 1, and when 
x E R - A the statement of P7 concerning HA(x) is the definition of 
HA(x). Since the events Bn = Uk'=n Ak form a monotone sequence, 

Pz[i~\ Qn Ak] = !~~ Pz[BnJ. 

Here Bn is the event of a visit to the set A at or after time n, but in a 
finite time. It follows from the probability interpretation of Bn that 

Pz[Bn] = L Pn(x,y)HA(y), 
yeR 

and the definition of hA(x) in P4 completes the proof of P7. 

The stage is now set for the last step-the somewhat delicate 
argument required to show that any set A is either visited infinitely often 
with probability one or with probability zero.4 As one might hope, this 
dichotomy corresponds in a natural way to the classification in D2. 

P8 If A is recurrent, hA(x) = hA = 1, :ut if A is transient, then 
hA(x) = hA = 0. 

Proof: The first statement has already been verified, in the course 
of the proof of P6. We also know, from P4, that hA(x) is a constant, 
called hA. Therefore we may assume that A is transient and con
centrate on proving that hA = 0. But we shall actually forget about 
whether or not A is transient and prove an apparently stronger result, 
namely 

(1) hA[1 - Hix)] = 0 for all x in R. 

Equation (1) will finish the proof of P8, for if A is transient, then 
1- HA(x) > 0 for some xER- A, so that hA = 0. 

Because hA(x) is independent of x, one can write (1) in the form 

(2) hix) = L: Hix,y)hiy). 
yeA 

4 A much more general theorem was proved by Hewitt and Savage [42]. 
Let (0, $', P) be the probability space in definition 03.1 and suppose that 
S e $' is an event invariant under all point transformations T: 0 +-+ 0 such 
that T(w) simply permutes a finite number of the coordinates of w = (w1o w2, ••• ). 

Then, according to [42], P[S] is either zero or one. The eventS that a given 
set A e R is visited infinitely often clearly possesses the property of being 
invariant under all finite permutations of coordinates. Two far more direct 
proofs of this so-called zero-one law are given in [42], one by Doob, the other 
by Halmos. 
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This statement is probabilistically very plausible: hA(x) gives the 
probability of infinitely many visits to A, starting at x. This event is 
decomposed according to the pointy of the first visit to A. After this 
first visit, the random walk, now starting at y, is still required to pay an 
infinite number of visits to A. The resulting sum of probabilities is 
precisely the right-hand side in (2). 

In apparently similar cases in the past we have often "declared" a 
theorem proved after such a heuristic outline of what must obviously 
be done. Nevertheless, the present argument being by far the most 
complicated example of its kind we have encountered, we insist on 
presenting a complete proof. The events An will be the same as in 
the proof of P7, as will Bn = U k" = n Ak, and Cn will be the event that 
T = n, where Tis the stopping timeT = min [n In ~ 1, Xn E A]. 

The right-hand side in (2) is 

L HA(x,y)hA(y) = lim L HA(x,y) L Pn(y,t)HA(t) 
yeA n-+ 00 yeA tell 

= lim Pz[ U (ck r. U A,)] = Pz[ U (ck r. rl Bk+n)]· n-+oo k=l J=k+n k=l n=l 

Observing that the sets Bk are decreasing, 

00 00 

n Bk+n = n Bn 
n=l n=l 

so that the last probability is 

However, for obvious reasons, 

Hence 

and that is hA(x) according to P7. Thus we have proved equation (2), 
which implies (1), which in turn proves P8. 

The results of P4, P6, and P8 may be combined into 
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Tl Let A be a nonempty proper subset of the state space R of an 
aperiodic transient random walk. Then the set A is either recurrent, in 
which case 

HA(x) = 1, 

or it is transient, and in that case 

HA(x) < 1 for some x E R, EA(x) > 0 for some x E A, hA = 0, and 

HA(x) = L G(x,y)EA(y), xER. 
yeA 

Remark: Every finite set A is transient, for every transient random 
walk. The proof of this remark may be reduced to the case when 
IAI = 1 by the following simple argument. A single point is a 
transient set; according to the definition of transient random walk in 
Dl.S, if and only if the random walk is transient. Suppose now that 
a finite set A were recurrent. Then at least one of its points would be 
visited infinitely often with positive probability. This particular 
point would then be a recurrent set in the sense of D2, but that would 
make the random walk recurrent, which it is not. 

Now we turn briefly to several other aspects of the potential theory 
associated with transient random walk. The idea is not to develop 
fully the analogy with classical Newtonian potential theory, nor even 
to prove theorems in analysis, just because they are "provable." 
Rather we want to prepare some of the machinery which is required 
to carry the probability theory of random walk a little further. Thus 
we would like to find effective methods for deciding whether a specific 
subset of the state space is recurrent or transient, and this objective 
will be attained in the next section for a regrettably small class of 
random walks. 

Despite our limited objective, we need a few of the notions which 
belong to the standard repertoire of Newtonian potential theory. 

D3 If A is a transient subset of R, EA(x) is called the equilibrium 
charge of A; 

HA(x) = L G(x,y)EA(y) 
yeA 

is called the equilibrium potential (or capacitory potential) of A, and 

C(A) = L EA(y) ~ oo, 
yeA 

which may be finite or infinite, is the total equilibrium charge, or capacity 
of A. 
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El The capacity of a set consisting of a single point is of course 
1 - F(O,O) = [G(0,0)]- 1 • The capacity of any finite set can be calculated 
as follows: Let A = {x1 , x2, ••• , xn}, the x1 being distinct points of R. 
According to D1, EA(x) is defined in terms of ITA(x,y). By P2, part (b), 
8(x,y) - ITA(x,y), for x and y in A, is the matrix inverse of the n by n 
matrix 

i, j = 1, 2, ... , n. 

It follows from D3 that C(A) is the sum of the elements in the n by n 
matrix G- 1 • 

When n = IAI = 2, A = {O,x} one finds that 

C(A) = 2G(O,O) - G(x,O) - G(O,x) 'f ...L O 
G2(0,0) - G(O,x)G(x,O) ' 1 x r · 

One remarkable conclusion is that C({O,x}) = C({O, -x}), i.e., the 
capacity of a two-point set is invariant under reflection about zero. That 
generalizes nicely to arbitrary finite sets A, and in addition, of course, the 
capacity of any set is invariant under translation of the set. 

Another interesting property of capacity concerns the limit of C({O,x}) as 
lxl-+ oo. Let us exclude the case of one-dimensional random walk with 
finite mean, which will be treated in T2 and E2 following it at the end of 
this section. In all other cases, T24.2 gives 

lim C({O,x}) = G(02 0). 
izi-+CO > 

This generalizes to 

lim C({x1, x2 , ••• , Xn}) = G(~,O) 

as lxkl-+ oo fork = 1, 2, ... , n, in such a way that lx1 - x11-+ oo for each 
pair i =I= j, i,j = 1, 2, ... , n. (Under this limiting process the off diagonal 
elements in the matrix G = G(xhx1), i,j = 1, 2, ... , n, tend to zero, so 
that the inverse matrix G- 1 tends to [G(0,0)]- 11.) Furthermore, as we 
shall see presently (as a corollary of P11 ), every set of n points has a capacity 
smaller than n[G(0,0)]- 1• This phenomenon may be called the principle 
of the lightning rod. A "long, thin" set, such as a lightning conductor has 
a far larger capacity to absorb charge than "rounder" bodies of the same 
volume (cardinality). Nor is this situation startling, viewed in terms of its 
probability interpretation. The capacity is the sum of the escape prob
abilities, and a thin or sparse set provides a better opportunity for the 
random walk to "escape" than other sets of the same cardinality. 

Now we shall derive some general properties of potentials, i.e., of 
functions of the form 

f(x) = 2: G(x,y)if;(y), x E R 
yeR 
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with non-negative charge t/J(y) ~ 0 on R. They will be useful in 
getting a new definition of capacity different from that in D3, and also 
in studying the properties of capacity as a set function. Our results 
take the form of a maximum principle. 

P9 (a) If f(x) = Gt/J(x) is a potential, whose charge t/J has support A, 
i.e. t/J = 0 on R-A, then 

f(x) ~ sup f(t). 
teA 

(b) If f 1 = Gt/J1, and f 2 = Gt/12 are two potentials such that 
t/11(x) = t/12(x) = 0 for x E R - A, and if f 1(x) ~ f 2(x) for all x in A, 
then 

f1(x) ~ f2(x) for all x in R. 

(c) Under the same hypotheses as in (b) one can conclude that 

2 tPI(x) ~ 2 t/12(x). 
xeA xeA 

Here the right sum, or even both, may be infinite. 

Proof: Whenever x E R andy E A 

2 HA(x,t)G(t,y) = G(x,y), 
teA 

which was a useful identity in the proof of P24.8. Here too it is of 
fundamental importance. Applying HA(x,t) as an operator to the 
identity f = Gt/J one gets 

(1) 2 HA(x,t)f(t) = f(x), XER. 
teA 

Hence 

f(x) ~ [sup f(t)] HA(x) ~ sup f(t). 
teA teA 

That was the proof of part (a), and part (b) also follows from (1) 
which gives 

XER. 

In connection with part (c) we may assume that 

2 t/12(x) = M < oo 
xeA 
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for otherwise there is nothing to prove. Since the set A in P9 may 
not be transient we select a sequence of finite (and hence transient) 
sets A,. which increase to A as n ~ oo. Applying T1 to the reversed 
random walk we have for each of these sets 

L E!,.(t)G(t,y) = H!,.(y), yeR. 
teA11 

Therefore 

0 :s; L E!n(t)[/2(t) - /1(t)] = L [Ys2(y) - Ysl(y)] 
teA11 yeA11 

yeA-An 

:s; 2: [l/12(y) - Ysl(y)] + 2: Ys2(y), 
yeAn yeA-An 

so that for each of the sets A,. c A 

Letting n-+ oo one obtains the desired conclusion of part (c) of P9. 

PlO The capacity of a transient set may also be defined as 

C(A) = sup 2: !fr(x), 
1/1 xeA 

the supremum being taken over all ¢s such that 

!fs(x);;:: 0 on A, .2 G(x,y)!fs(y) ~ 1 on A. 
yeA 

Proof: If C(A) < oo, in the sense of D3, then the total equilibrium 
charge is finite, and its potential 

HA(x) = 2 G(x,y)EA(y) = 1 for x EA. 
yeA 

By part (c) of P9 

.L; !fs(x) :s; .L; EA(x) 
xeA xeA 

for every charge ¢s ;;:: 0 on A such that 

L G(x,y)!fs(y) :s; L G(x,y)EA(y) = 1. 
yeA yeA 
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Thus not only is C(A) the supremum in P9, but the supremum is 
actually attained by the charge 1/J(x) = EA(x). 

If, on the other hand, C(A) = + oo in the sense of D3, then EA is a 
charge .p, satisfying the conditions in PlO, such that 2:xeA 1/J(x) = + oo. 
That completes the proof. 

Pll If A 1 and A 2 are any two transient subsets of R, then 

Here the capacity of the set A 1 ('I A 2 is defined as zero if A 1 and A 2 

happen to be disjoint. 

Proof: For any transient subset A C R let 

TA = min [k I 0 :S k :S oo, xk E A], if 1 ::::;; IAI :S oo 

and TA = + oo if A is the empty set. Then one argues probabilisti
cally that, for each x in R, 

Px[TAluA2 < oo] - Px[TA2 < oo] 

= Px[TAtUA2 < oo, TA2 = oo] ::::;; Px[TAl < oo, TAlnA2 + oo] 

= Px[TAl < oo] - Px[TAlnA2 < oo]. 

Now observe that 

unless A is empty, but in that case it is correct if we define HA(x) to be 
identically zero. Thus we have shown 

HA1 uA2 (x) + HA1 nA2 (x) :S HA1 (x) + HA2 (X). 

This is an inequality between two potentials. Their charges are, 
respectively, 

EA1 uA2 (X) + EA1 nA2 (X) and EA1 (x) + EA2 (x) 

(EA(x) being defined as zero if A is empty, and also if x E R - A). 
By part (c) of P9 the total charges satisfy the same inequality as the 
potentials, if we consider all charges as charges on the same set 
A1 u A2• This proves part (a), if we consult the definition of 
capacity in D3. 
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The proof of part (b) is even simpler, since TA2 :::;; TA1 with 
probability one, so that 

Pz[TA2 < oo] - Px[TA1 < oo] = HA2 (x) - HA1 (x) ~ 0 

which again gives the desired result by proper use of P9, part (c). 

One of the simplest corollaries of P9, mentioned in E1 above, is that 

n 
C(A) :::;; G(O,O) when IAI = n. 

When IAI = 1, the capacity is exactly the reciprocal of G(O,O), and 
part (a) of Pll gives the inequality for all n by induction on n. 

Finally we present a theorem which shows that one is "almost 
never" interested in the capacity of an infinite transient set. The 
reason is that, if one excludes one important class of random walks, 
every infinite transient set has infinite capacity. Perhaps the main 
interest of T2 below lies in its simplicity, and in the elegant way it 
uses the renewal theorem, in its strongest form given by T24.2. 

T2 Let A be an infinite subset of the state space R of an aperiodic tran
sient random walk, and suppose that it is transient in the sense of D2. Then 
there are two possibilities. If the dimension d = 1 and the random walk 
has its first absolute moment m finite, then C(A) = IILI· In all other 
cases C(A) = + oo. 

Proof: Suppose first that d = 1, m < oo. Since the problem is 
invariant under reflection about 0 (reversal of the random walk), we 
may assume that IL < 0. This being the case, we shall show that the 
set A can contain at most a finite number of points to the left of 0; for 
suppose that we had an infinite sequence of points Yn in A, with 
n = 1, 2, ... , 

lim Yn = -00. 
n-+oo 

Let An be the event that the point Yn is visited at some finite time. 
Clearly hA(x) = hA, the probability of an infinite number of visits to 
A, satisfies 

hA ~ Px[l~\ Qn Ak} 
and by results from elementary measure theory 

Px[l~\ Qn Ak] = !~"! PxLYnAk] ~ !~~ Px[An]• 
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By a simple calculation 

P [A ] G(x,yn) 
:r n = G(O,O) 1 

and by the renewal theorem, P24.6 or T24.2, 

lim P:r[An] = [G(0,0)]- 1 lim G(x,y) = [G(O,O)IP-Il- 1 > 0. 
n~~ y~-oo 

Combining the inequalities, one finds that hA > 0, which is impossible 
as A is a transient set. 

At this point we know that A contains infinitely many points to the 
right of the origin (since IAI = oo, and A contains only finitely many 
points to the left of the origin). Thus we may select a sequence Zn 

in A, with 

lim zn = +oo, 
n-+co 

and write, using Tl, 

HA(zn) = 1 = L G(zmt)EA(t). 
teA 

For every integer N > 0, 

1 2! lim L G(zmt)EA(t) = -
1
1

1 
n-+ co [tlteA. t:SNJ 1-' 

L EA(t). 
[titeA. t:SNJ 

(The interchange of limits was justified since A has only finitely many 
points to the left of N.) Thus we have 

C(A) = L EA(t) ~ IP-1. 
teA 

and now one can repeat the limiting process using the facts that 
C(A) < oo and G(zn,t) ~ G(O,O) to conclude, by the argument of 
dominated convergence, that C(A) = IP-1· 

There remains only the case when d = 1 and m = oo, or d 2! 2. 
Again one can base the proof on 

where now Zn is any sequence of points in A such that 

lim lznl = oo. 
n-+co 
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It follows from T24.2 that C(A) = + oo, for if that were not so, then 
a dominated convergence argument would give 

1 = lim L G(zmt)EA(t) = L lim G(zmt)EA(t) = 0. 
n--+ 00 teA teA n-+ 00 

The last step used the full strength of T24.2 and completes the proof 
ofT2. 

E2 What are the transient sets for a one-dimensional aperiodic random 
walk with m < oo and f.L < 0? This problem was actually completely 
solved in the course of the above proof of T2. Obviously every finite set 
A is transient, and if A is infinite and transient we saw that it must contain 
only a finite number of points to the left of 0. Further it is easy to see (use 
the strong law of large numbers!) that every set A of this type is transient. 
Thus the transient sets are exactly those which are bounded on the left. 

A natural extension of this question concerns the transient sets when 
m = oo, f.L + < oo, f.L- = oo (with f.L + and f.L- as defined in the proof of 
P24.6). Then it turns out that there are transient sets which are un
bounded on the left. (See problem 3.) 

26. RANDOM WALK IN THREE-SPACE WITH MEAN ZERO AND FINITE 

SECOND MOMENTS 

Here we are concerned with somewhat deeper problems than in the 
last section, in the following sense. By now nearly everything has 
been said about transient random walk which depends only on the 
generalized renewal theorem T24.2. When d 2': 2, T24.2 tells us 
only that G(O,x)---+ 0 as lxl---+ oo, and although the number zero is a 
"rather disarming constant" 4 we have come to appreciate that this 
result is far from trivial. Nevertheless, it is hardly surprising to find 
that certain interesting aspects of the behavior of a transient random 
walk depend on the asymptotic behavior of the Green function G(x,y) 
in a much rpore elaborate way. Therefore we shall now confine our 
attention to a class of random walk for which one can easily characterize 
the rate at which G(O,x) tends to zero as lxl---+ oo. This class is chosen 
so that it contains simple random walk in three-space. The ordinary 
Newtonian potential kernel is the reciprocal of the distance between 
two points, and we shall show that the Green function for simple 
random walk has the same behavior: G(x,y) behaves like a constant 
times I x - y 1- 1 as I x - y I ---+ oo. Indeed we shall show that a large 
class of three-dimensional random walks share this property. 

4 Cf. Chung [10], p. 188. 
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Pl If a random walk satisfies conditions 

(a) 

(b) 

(c) 

P(x,y) is three dimensional and aperiodic, 

,_, = 2: xP(O,x) = 0, 
XER 

m2 = 2: lxi 2P(O,x) < oo, 
XER 

then its Green function has the asymptotic behavior 

G(O,x) "' L IQI-112(x·Q-lx)-112, 

as !xi~ oo. Here Q is the covariance matrix of the second moment 
quadratic form 

Q(B) = 2: (x· B)2P(O,x), 
XER 

Q- 1 is its inverse, and IQI is the determinant of Q. In the particular 
(isotropic) case when Q is a multiple of the identity, i.e., when 

(d) Q(B) = IBI2a2 

one has 

lim lx!G(O,x) = 2 
1 

2 • 
lxl-+ oo 7TG 

(That applies to simple random walk in three-space, which has 
Q(8) = 1812/3.) 

Proof: The proof depends on rather delicate Fourier analysis as we 
shall have to utilize the full strength of the Local Central Limit 
Theorems P7.9 and P7.10. They apply only to strongly aperiodic 
random walk, a restriction which will be removed at the last step of the 
proof. Under this restriction 

(1) !x!Pn(O,x) = !xi(2TTn)-~IQi-~e-in<x·Q- 1 x> + !xln-~E1(n,x), 

(2) !x!Pn(O,x) = !xi(2TTn)-~IQI-~e-in<x·Q- 1 x> + lxl- 1n1 -~E2(n,x). 

Equation (1) is P7.9, (2) is P7.10, and both of the error terms E1(n,x) 
and E2(n,x) have the property of tending to zero as n ~ oo, uniformly 
in x. Of course we must assume that x =!= 0 for (2) to be valid. 

Let us begin by showing that the principal terms in (1) and (2) give 
the correct answer for the symptotic behavior of 

00 

lx!G(O,x) = 2: !x!Pn(O,x). 
n=O 
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When x '# 0 and d = 3 they yield the series 
00 

S(x) = (2rr)-312jQj-112Jxl 2 n-312e-f..<x·Q-lx>. 
n=1 

As Jxl ___.,... oo it will now be easy to replace this sum by an asymptotically 
equal Riemann integral. Let us call (x·Q- 1x)- 1 = !:!.., observing that 
!:!.. ___.,... 0 as Jxl ___.,... oo (the quadratic form Q- 1 is positive definite!). 
Then 

(2 )-3/21QI-1'21 I 00 S(x) = 7T x ""' (n!:l.)- 312e- (2n~>- 1 !:!.. 
(x·Q 1x)112 n~1 ' 

and as !:!.. ___.,... 0 the sum on the right tends to the convergent improper 
Riemann integral 

Therefore 

(3) S(x)"' (2rr)- 1JQJ- 1'2(x·Q- 1x)- 112 Jxl as Jxl ___.,... oo. 

This is the desired result, so that we now only have to explain why the 
error terms do not contribute. It is here that the need for the two 
,different types of error terms in (1) and (2) becomes manifest. We 
shall use (1) for the range [Jxj 2] < n < oo, and (2) for the range 
1 :S; n ::::; [Jxj 2]. Here [y] denotes the greatest integer in y. Since 
the contribution of the principal terms in (3) is positive, we have to 
show that 

[Jxl2 l 
(4) lim JxJ- 1 2 n- 112 jE2(n,x)! 

lxl-+oo n= 1 
00 

+ lim Jxl 2 n- 312 JE1(n,x)l = 0. 
l:rl-+ 00 n= [Jxl2 l + 1 

The limit of any finite number of terms in the first sum is automatically 
zero, si'nce the finiteness of the second moments assures us that 

lim JxlPn(O,x) = 0 
ixi-+ oo 

for each fixed n. Therefore we choose M so large that JE2(n,x)l < e 
whenever n ~ M. Then 

llxl 2 l [Jxl 2 l 
Jxj-1 2 n-112JE2(n,x)l ::::; ejxj-1 2 n-112 

n=M n=M 
[Jxl2 l 

::::; ejxj-1 2 n-1/2 ::::; ek1 
'1=1 
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for some positive k1 which is independent of € and x. Since € is 
arbitrary, the first limit in ( 4) is zero. The second limit is also zero 
since 

00 00 

jxj L n- 312 jE1(n,x)j :::; jxj sup jE1(n,x)j L n- 312 

n= [lxi2J + 1 n> [lxl 2l n= [lxi2J 

:::; k2 sup jE1(n,x)j, 
n> [lxl 2 l 

which tends to zero as jxj---+ oo (k2 is a positive constant, independent 
of x). 

The proof of P1 is now complete for strongly aperiodic random 
walk, but this requirement is superfluous and may be removed by a 
trick of remarkable simplicity (a version of which was used in the proof 
of P5.4). If P(x,y) is aperiodic, but not strongly aperiodic, define the 
transition function 

P'(x,y) = (1 - a)S(x,y) + aP(x,y), 

with 0 < a < 1. P' will now be strongly aperiodic, and of course if 
P satisfies conditions (a), (b), (c) in P1, then so does P'. The Green 
function G' of P', as a trivial calculation shows, is given by 

G'(x,y) = ! G(x,y). 
a 

In particular, 

(5) jxjG(O,x) = ajxjG'(O,x), xER. 

As we have proved P1 for strongly aperiodic random walk, the 
asymptotic behavior of jxjG'(O,x) is known, and that of jxjG(O,x) may 
be inferred from it. It remains only to check that we obtain the right 
constant. The asymptotic behavior of jxj G'(O,x) is governed by the 
second moments of the P' random walk. These are continuous 
functions of a. Since equation (5) is valid for all a between 0 and 1 we 
may let a---+ 1, and a continuity argument concludes the proof of Pl. 

Remark: Since the matrices Q and Q - 1 are positive definite (see 
P7.4 and P7.5) we may conclude from Pl that 

0 < lim jxjG(O,x) :::; lim jxjG(O,x) < oo, 
lxl--+ oo lxl--+ oo 

whenever conditions (a), (b), (c) are satisfied. Hence every sufficiently 
distant point has positive probability of being visited at some time. 
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It follows that the semigroup R+ must be all of R. By the assumption 
of aperiodicity R+ = R = R; hence every point has positive prob
ability of being visited at some time. This implies the almost obvious 
but exceedingly useful corollary to Pl that for every aperiodic three
dimensional random walk with mean 0 and finite second moments the 
Green function G(x,y) is everywhere positive. 

As the first application of Pl we consider the hitting probabilities of 
a finite set A. For any three-dimensional random walk 

lim HA(x,y) = 0. 
lxl-+ oo 

This was P25.3. But one can refine the question and expect a more 
interesting conclusion by imposing the condition that A is visited in 
a finite time. Let 

TA = min [n I 0 :::; n :::; oo, Xn E A]. 

Then the conditional probability of hitting A aty, given that TA < oo, 
IS 

Px[:xT = y; TA < oo] HA(x,y) 
A = • 
Px[TA < oo] HA(x) 

To calculate the limit as lxl--+ oo, for a random walk which satisfies 
the conditions for P1, observe that by P25.1 

HA(x,y) = L G(x,t)[S(t,y) - TIA(t,y)], 
teA 

so that 

lim lxiHA(x,y) = lim lxiG(x,O) L [S(t,y) - TIA(t,y)]. 
lxl-+ oo lxl-+ oo teA 

Let EA* be the equilibrium charge of the reversed random walk. 
Then, using P1 and D25.1 

lim lxiHA(x,y) = 2
1 

2 EA*(y). 
lxl-+ oo 7TU 

Since IAI < oo, 

lim lxiHA(x) = lim lxl L HA(x,y) 
~-+oo ~-+oo pA 

__ 1_ "' E *( ) _ C*(A) _ C(A), 
- 27Ta2 L.. A Y - 27Ta2 - 27Ta2 

yeA 
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because C*(A), the capacity of the set A with respect to the reversed 
random walk, is easily shown to be the same as C(A). Therefore we 
have proved 

P2 If a random walk satisfies conditions (a) through (d) of P1, then 
for any finite subset A of R 

(1) 
. C(A) 

hm lxiHA(x) = -2 2 , 
lxl-+ oo 1TG 

and 

(2) lim HA(x,y) = EA*(y). 
lxl-+oo HA(x) C(A) 

Observe that part (2) is a far weaker statement than (1). It does 
not depend at all on the full strength of P1, but will hold whenever 
the Green function has the property 

lim G(x,y) - 1 R 
lxl-+oo G(x,O) - ' Y E • 

El It was observed by Ciesielski and Taylor ([14], 1962) that two 
interesting random variables associated with the Brownian motion process 
have the same probability distribution: the time until d-dimensional 
Brownian motion first leaves the unit sphere has the same distribution as 
the total time spent by ( d + 2)-dimensional Brownian motion in the unit 
sphere. (This makes sense, Brownian motion in dimension d + 2 ;;::: 3 
being transient. Incidentally both Brownian motions must start at the 
origin, for the theorem to hold.) 

We shall take the cased = 1, and use P1 to prove an analogous theorem 
for random walk. For one-dimensional random walk, let Tn denote the 
first time outside the interval [ -n,n]. When the random walk has mean 0 
and finite variance a 2 , and starts at the origin, it was shown in T23.2 that 

(1) lim P 0 [Tn > n2:] = 1 - F(x) = ± ~ ( - 1)k e-~<2k+1>2 •. 
n-+ oo a 1T k=O 2k + 1 

Now consider three-dimensional random walk, satisfying hypotheses (a) 
through (d) of P1, and define 

1 if lxl ::;; r 
x,(x) = 0 if lxl > r, 

00 

N, = L x,(xk), 
k=O 
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so that Nr is the total time spent in the sphere [x I lxl ~ r]. (Nr is finite, 
since the random walk is transient.) We shall show that 

(2) [ 72x] lim P0 Nr > 2" = 1 - F(x), 
r-+ oo a 

with a2 as defined in P1, and F(x) the same distribution function as in 
equation (1) above. 

The proof of (1) in section 23 was carried out by the method of moments. 
Referring to the justification given there, it will therefore suffice to prove 
that for p ~ 1 

(3) . [(a2 )P] 77 ( 8 )p+l co ( -1)k 
!~Eo r2 Nr = p!Z 772 k~O (2k + 1)2P+l' 

these limits being the moments of F(x), given in P23.3. The main idea of 
the proof of (3) will be clear if we consider the cases p = 1 and p = 2. 

Letting p = 1, 

co 

2 2 Pk(O,x) = 2 G(O,x). 
!xllxi:S:rl k=O [zllzi:S:r] 

Using P1 we obtain, asymptotically as r-+ oo, 

1 
Eo[Nr] "' -2 2 lxl- 1 

27Ta !zllzi:S:r, z;&OJ 
(5) 

r2 f da 2r2 rl r2 
"'27Ta2 ~="7Jotdt=a2· 

lai:S:l 

Here the first integral was taken over the unit sphere, Ia! :s; 1, in E, da as 
usual denoting the volume element. 

Whenp = 2, 

co co 

(6) E0[Nr2] = E0 2 ,2 ,2 ,2 S(x,x1) S(y,xk) 
!zllzi:S:r] [YIIYI:S:r] J=O k=O 

- E0 _2 i S(x,xk) + 2Eo r _2 _2 
[zllzi:S:rl k=O [zllzi:S:r] !YIIYI:S:r] 

1~ S(x,x1) ~1 S(y,xk)] 

= - Eo[Nr] + 2 2 2 G(O,x)G(x,y) 
!zllzi:S:r] [YIIIII:S:r] 

r 2 fda 2 r4 I I dad{J 
"' 277a2 fa1 + (277a2}2 lallf1- al· 

lai:S:l laJ:s;l 1/li:S:l 
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The dominant term in (6) is of course the one of order r\ and the method 
by which it was derived generalizes, to give for arbitrary p ~ 1, 

(7) Eo[(Nr)11] "'p! L 
[zlilzliSr] 

Let us denote the Newtonian potential kernel by K(a,{3), for a,f3 in the 
unit sphere of three-dimensional Euclidean space E. Then 

Ia - /31- 1 = K(a,f3) = K 1(a,{3), K 11 +l(a,f3) = J K 11(a,y)K(y,{3) dy, 
IYIS1 

are the iterates of the kernel K, restricted to the unit sphere, and equation 
(7) may be written in the form 

(8) Eo[N/J ,.., pt(2;:2r J K 11(0,a) da. 
laiS1 

Comparing equation (8) with equation (3), which we are striving to prove, 
it is seen that (3) is equivalent to 

(9) 

Equation (9) looks as though it should follow from an eigenfunction 
expansion of the kernel K 11 • Indeed that is so, but first we shall simplify 
the problem considerably by observing that K 11(0,a) is spherically symmetric, 
i.e., depends only on Ia!. Let us therefore study the action of K(a,{3) = 
Ia .:.... f31- 1 on the class of spherically symmetric functions. The integral 

Kf(a) = J K(a,{3)f(f3) df3 = J Ia 2 f31 f(f3) df3 
IJIIS1 IJIIS1 

is simply the Newtonian potential due to the charge f on the unit ball 
lal ~ 1. We shall compute it by using two familiar corollaries of Gauss' 
mean value theorem ([54], p. 83). The potential on or outside a sphere 
with a spherically symmetric charge is the same as if the total charge were 
concentrated at the origin. The potential inside a spherical shell on which 
there is a symmetric charge is constant. Therefore one can decompose 
the potential Kf(a) into its two contributions from the region lf31 ~ lal = r 
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and from I,BI > la:l = r. The second part is conveniently evaluated at 
la:l = 0 (since it is constant!) and in this way one gets 

(10) KJ(a) = I 1 /~~~ d,B 
IPIS1 

4n-l' 1'1 
= - j{p)p2 dp + 4n- J j(p)p dp, r o , 

if la:l = r andf{,B) =i(p) when I,BI = p. 
Suppose now that f is a spherically symmetric eigenfunction of K, i.e., 

that f = AKj on the unit ball, for some A -# 0. It is convenient to write 
rj(r) = cp(r), for then it follows from equation (10) that f = AKj assumes 
the simple form 

(11) cp(r) = 4n-A f cp(p) min (p,r) dp, O~r~l. 

In other words we are looking for the eigenfunctions of the integral operator 
4n- min (p,r) which has every desirable property (it is symmetric, positive, 
and completely continuous; hence its eigenfunctions form a complete 
orthonormal set, and Mercer's theorem applies). Differentiating ·(11) one 
gets 

(12) cp"(r) + 4n-Acp(r) = 0, 0 ~ r ~ 1, 

and the boundary conditions are easily seen to be 

(13) cp(O) = cp'(l) = 0. 

The solutions of (12) and (13) are 

(14) An= ; 6 (2n + 1)2 , tfon(r) = v'2 sin[; (2n + 1)r]. 

f cf>n(r)cf>m(r) dr = 8(m,n), n ~ 0, m ~ 0. 

The proof of (9) is now easily completed. When p = 1, (9) is obvious. 
Whenp ~ 2, 

Kp(O,a) = I K(a,,B)Kp_ 1(0,,8) d,B 
IPIS1 

so that KP{O,a:) is the result of applying K to a spherically symmetric 
function. Let la:l = r, la:IKP(O,a:) = tMr). Then 

p ~ 2. 
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Hence «foP is the result of applying the (p - l)st iterate of 4n- min (p,r) to 
the function «fo1(r) = 1. By Mercer's theorem (see P21.3) 

.1. (r) = ~ 11 cf>n(r)cf>n(P) d 
'f'p L., (,\ )P 1 P· 

n=O 0 n 

Finally, 

J Kp(O,a) da = 4n- f 1/JP(r)r dr 
laiS1 

Jo (,\n~- 1 f cf>n(r)r dr f cf>n(P) dp, 

and straightforward computation using (14) shows that (9) is true. That 
proves the limit theorem in equation (2) for the time Nr spent in a sphere 
of radius r by the three-dimensional random walk. 

A still deeper application of P1 yields a characterization of the 
infinite transient sets (all finite sets are of course transient). The 
following criterion (for simple random walk) was recently discovered 
(1959) by Ito and McKean [46]. 

Tl Suppose a three-dimensional random walk satisfies conditions 
(a) through (c) in Pl. Given an infinite set A, let An denote the inter
section of A with the spherical shell of points X such that zn !5: lxl < zn + 1, 

and let C(An) be the capacity of An, defined in D25.3. Then A is 
recurrent if and only if 

~ C(An) _ 
L.. zn - 00. 

n=l 

Proof: To emphasize the essential features of the proof-which 
are the results of section 25, the estimate which comes from P1, and 
the way they are applied to the problem-we shall be a little casual 
about the measure theoretical aspects. Suffice it to say that the 
following statements are equivalent. 

(1) A is a recurrent set, i.e., it is visited infinitely often; 
(2) the random walk xm with x 0 = 0 visits infinitely many of the 

sets An with probability one. 
Clearly (2) implies (1), but (1) also implies (2) since hA(x) is in

dependent of x and each An is finite and therefore only visited finitely 
often. 

Let En be the event that An is visited in a finite time. Recurrence 
means that 
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It seems reasonable to estimate the probabilities P 0 [ En] from T25.1 
which gives 

Po[En] = HA.(O) = L G(O,x)EAn(x). 
XEAn 

Letting c1 , c2 , ••• denote positive constants, one has 

c1 ixl- 1 ::;;; G(O,x) ::;;; c2 ixl- 1 for all x # 0 

according to Pl, and so 

Ca L z-nEA.(x) ::;;; Po[En] ::;;; c4 L z-nEA.(x), 
XEAn XEAn 

or 
c3z-nC(An) ::;;; P0 [En] ::;;; c4z-nc(An)· 

This inequality makes it plain what T1 is about, and what is left to 
prove. We have to show that 

Po[/11 kQn Ek] = 1 

if and only if 2 P0 [En] = oo. This conclusion can be obtained from 
a well-known form of the Borel-Cantelli Lemma.6 

P3 Let En be any sequence of events (sets) in a probability space (a 
Borel field of subsets of a space on which there is a countably additive 
measure IL defined, of total mass one). 

(a) If 

(b) If 

then 

L (L(En) < 00 then !L[lL9n Ek] = 0. 

L p.( En) = oo and if for some c > 0 
n n 

L L !J.(Ek 11 Em) 
lim k=1 m:1 2 ::;;; c, 

~ L~1 !L( Ek)] 

1 
> -· - c 

6 The familiar form of this lemma consists of part (a) of P3, and of its con
verse when the events En are mutually independent. The more sophisticated 
converse in P3(b) seems to be rather recent; it has been discovered independ
ently by a number of authors. Cf. [65], [84], and in particular [70], where 
Lamperti showed how a form of P3 may be used to prove T1 for a large class of 
transient Markov processes. 
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We shall prove P3 after completing the proof of Tl. Part (a) of P3 
states that the series in T1 diverges if the set A is recurrent. From 
part (b) we want to conclude the converse. So we shall suppose that 
the series L P0 [En] diverges. If we can then verify that the limit 
inferior in P3 is finite we shall know that the set A is visited infinitely 
often with positive probability. But by T25.1 this probability is 
hA(O) = hA which is either zero or one. If we prove that it is positive, 
then it is one! 

Now let Tk be the first time the random walk is in the set Ak. 
Thus P0 [Ek] = P0[Tk < oo] and 

~~n~=~~<~<~+~~<~<~ 
:::;; P0 [Tk < oo] max Px[Tm < oo] + P0 [Tm < oo] max Px[Tk < oo) 

XEAk XEAm 

Then one uses P1 in the form G(x,y) :::;; c2 ix - yi- 1 to obtain the 
estimate 

P0 [Ek n Em] :::;; c2P0 [Ek] max L lx - Yi- 1EAJY) 
XEAk YEAm 

+ c2P0 [Em] max L lx - YI- 1EA"(y). 
XEAm yeAk 

If k < m - 1 it follows from the geometry of the sets An that 

P0 [Ek n Em] 
:::;; c2P0 [Ek]i2k+l - 2mi- 1 C(Am) + c2Po[EmJI2k+l - 2mi- 1 C(Ak). 

The next step again depends on P1, in the form C(An):::;; c3 -l2nP0 [EnJ· 
Therefore, 

C2 ( 2m + 2k ) 
Po[Ek n Em] :::;; Ca Po[Ek]Po[Em] 2m - 2k+l 

:::;; cP0 [Ek]P0 [Em] for k < m - 1, 

where c = 4c2/c3 is a constant, independent of k and m. Thus one 
obtains 
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because the estimate we derived holds also when m < k - 1, and the 
terms with lk - ml ~ 1 clearly are "too few" to affect the value of 
the limit superior. 

Now it remains only to prove the Borel-Cantelli Lemma. Part (a) 
comes from 

IL[ll k9n Ek] = !~~ ILLQ Ek] ~ !~ k~n fL(Ek) = 0. 

To prove part (b), let cpk = 1 if Ek occurs, and zero otherwise. Let 

n 

E(Nn) = 2 !L(Ek)· 
k=l 

For any positive e, let Bn.E denote the measurable set defined by the 
statement that 

Nk ~ eE(Nk) for some k ~ n. 

The Schwarz inequality reads 

[E(fg)]2 ~ E(f2)E(g2), 

and choosing the measurable functions 

f = characteristic function of the set Bn.E 

g = fNn> 

u.[B ] = E(£ 2) > [E(fg)] 2 > [E(fg)]2 > {E(Nn) - E[Nn(1 - £)]}2. 
r n.£ - E(g2) - E(Nn2) - E(Nn2) 

But 
E[Nn(l - f)] ~ eE(Nn) 

so that 

[B ] (1 )2 [E(Nn>J2 
fL n.£ ~ - E E(Nn2) 

for every n ~ 1. Because E(N n) ~ oo as n ~ oo 

!L[i~\ kQn Ek] ~ !~"! !L[Bn.£]. 

This is true for every positive E and therefore 
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Thus P3 is proved, and hence Tl. 

Wiener's test (that is the name of Tl because it imitates a test due 
to N. Wiener for singular points of Newtonian potential)7 can occasion
ally be used to determine whether or not a particular set is recurrent. 
In general the computations are prohibitively difficult. 

E2 Let A be a set of the form A = U .. ., 1 (O,O,a(n)) where a(n) is a 
monotone sequence of positive integers. If a(n) = nit is quite obvious on 
other grounds that A is recurrent. To apply Wiener's test, when A is any 
monotone sequence of points along the positive x-axis, observe that 

by P25.11, since single points have capacity [G(0,0)]- 1 • 

To get an inequality going the other way, observe that, in view of P1, 

L G(x,y):::; k2 L Jx- yJ- 1 

yeAn yeAn 

for some k2 > 0. Suppose now that we are dealing with a sequence a(n) 
for which 

(1) max L Jx- yJ- 1 :::; k3 < oo, 
ZEAn yeAn 

where k3 is independent of n. Then we have 

f(x) = L G(x,y) :::;; k3 , xeA11 , 

yeAn 

which has the following potential theoretical interpretation: the charge 
which is identically one on A 11 gives rise to a potentialf(x) whose boundary 
values are at most k3• In view of P25.10 the total equilibrium charge of 
A .. (i.e., the capacity of A 11 ) is at least as great as k3 - 1 times the number of 
points in A 11 , so that 

It follows that under condition (1) 

Therefore we have shown that a set which satisfies (1) is recurrent if and only 
if the series L z-nJA .. l diverges. 

7 See [16], Vol. 2, p. 306, or [54], p. 331, for Wiener's characterization of 
singular points; see [47], Ch. VII, for a discussion in terms of Brownian 
motion, which explains the connection of Wiener's test with Pl. 
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It remains to exhibit examples to show that (1) is ever satisfied. In 
fact, equation (1) turns out to be a relatively mild regularity condition 
concerning the sequence a(n). It may be shown to hold when 

a(n + 1) - a(n) ;:,: Inn 

for large enough values of n. This is not enough (as pointed out by Ito 
and McKean [46]) to decide whether or not the set of primes on the positive 
x-axis is visited infinitely often (in fact it is, cf. [28] and [77]). However 
our result permits the conclusion that the set 

A = U (O,O,a(n)), a(n) = [n.lnn.ln2 n .... (!nkn)a], 
n;::::l 

where Ink+l n = In (Ink n), k;:,: 1, ln1 n =Inn, is visited infinitely often 
if and only if a :::;; 1. 

Wiener's test (T1) was phrased in such a way that the criterion for 
whether a particular set is transient or not seemed to depend on the 
random walk in question. We shall now use the maximum principle 
of potential theory, in the form given by P25.10, to show that this is 
not the case. 

T2 An infinite subset A of three-space R is either recurrent (visited 
infinitely often with probability one) for each aperiodic three-dimensional 
random walk with mean 0 and finite second moments, or it is transient for 
each of these random walks. 

Proof: If P and P' are the transition functions of two aperiodic 
three-dimensional random walks with mean 0 and finite second 
moments, then their Green functions G and G' are everywhere 
positive (by the remark following P1). Hence P1 implies that there 
exists a pair of positive constants c1 and c2 such that 

c1 G(x,y) :::;; G'(x,y) :::;; c2G(x,y), x,y E R. 

Given a finite subset B C R, let C(B) and C'(B) denote the capacities 
induced by the two random walks. The characterization of capacity 
in P25.10 implies that 

C'( B) = sup L !f!(x) :::;; sup L ljl(x) 
[1/!IG'l/!:SlonB] xeB [l/!lcl Gl/!:SlonB] xeB 

1 
sup L c- 1cp(x) = - C(B). 

[rt>IGrt>:SlonB] xeB C1 

There is a similar lower estimate so that 

_!_ C(B) :::;; C'(B) :::;; _!_ C(B). 
c2 c1 
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The two constants are independent of the set B. Therefore 

.!_ ~ C(An) < ~ C'(An) < .!_ ~ C(An), 
c2n=l zn - n=l zn - cl n=l . zn 

where the sets An are the spherical shells in Wiener's test Tl. It 
follows that either both infinite series converge, or, both diverge. 
Hence the set A is either transient for both random walks or recurrent 
for both, and the proof of T2 is complete. 

27. APPLICATIONS TO ANALYSIS 

Let S denote an arbitrary countably infinite or finite set. In all our 
applications S will actually be R or a subset of R, but for the moment 
it would only obscure matters to be specific about the nature of S. 
We shall be concerned with a function Q(x,y) from the product of S 
with itself to the reals with the following properties 

Dl Q(x,y) ;;::: 0 for x,y E S 

L Q(x,y) ::;:; 1 for xES 
yeS 

Q0(x,y) = cS(x,y), Q1(x,y) = Q(x,y), 

Qn+ 1(x,y) = L Qn(x,t)Q(t,y), x,y E S, n ;;::: 0. 
teS 

00 

L Qn(x,y) = g(x,y) < oo, x,yeS. 
n=O 

Such a function Q is called a transient kernel. 

We avoid the term transition function for Q(x,y) since it need not 
be a difference kernel; indeed, no operation of addition or subtraction 
is defined on S. Nevertheless Q(x,y) and its iterates Qn(x,y) behave 
much like transition functions. It is not hard to see that one can 
associate a stochastic process with Q(x,y). Such a construction lies at 
the heart of the theory of Markov chains, 8 and random walk may be 
thought of as a special Markov chain. If one does construct a Markov 
chain with state space S such that Q(x,y) determines its transition 
probabilities, then this chain will be transient according to the usual 
terminology of the theory of Markov chains. 

8 Cf. Chung [9], §1.2. 
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However it is not our purpose to carry out such an elaborate con
struction. Rather, it will meet our needs to derive some simple 
analytic properties of transient kernels defined by D 1. Just as was 
done for transient random walk, we shall define a class of functions 
which are non-negative and satisfy the equation 

QJ(x) = 2: Q(x,y)f(y) = f(x), xES. 
yeS 

They will be called Q-regular. Two more classes of functions are 
defined, the Q-potentials and also a convenient class of functions which 
contains all Q-potentials. The latter are called Q-excessive and form 
an analogue of the superharmonic functions in classical analysis. 

D2 If Q is a transient kernel on S x S, then a non-negative function 
f(x) on Sis called (a) Q-regular, (b) Q-excessive, (c) a Q-potential, if 
(a) 

(b) 

(c) 

Qf(x) = f(x), x E S, 
Qf(x) ~ f(x), x E S, 

f(x) = 2: g(x,y)if;(y) < oo, x E S 
yeS 

where if;(x) ~ 0 for xES. In case (c) f is called the potential of the 
charge if;. 

In what follows we call Q-regular functions simply regular, and so 
forth, whenever there is no risk of confusion. A few elementary 
observations concerning these function classes are so frequently useful 
that we assemble them under 

Pl (1) Potentials are excessive. 
(2) The minimum of two excessive Junctions is excessive. 
(3) If f(x) is a potential, then 

lim QJ(x) = 0, x E S. 
n-+oo 

Proof: Part ( 1) follows from 

L Q(x,t)g(t,y) - g(x,y) = - S(x,y), x,yeS, 
tes 

which shows thatg(x,y) is excessive as a function of x, for each fixedy. 
But iff is a potential, then according to (c) in D2, it is a convex com
bination of excessive functions. Hence it is excessive, the inequality 
(b) of D2 being preserved under the process of taking (convergent) 
linear combinations with non-negative coefficients. 
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To get (2) note that, if Pf ::::; f, Pg ::::; g, then 

min [f(x),g(x)] ~ min [ L P(x,y)f(y), L P(x,y)g(y)] 
YES YES 

~ L P(x,y) min [f(y),g(y)]. 
YES 

Finally, suppose that f(x) is a potential. If 

f(x) = L g(x,y)if;(y) = gif;(x), 
YES 

then 

which tends to zero for each x as n ~ oo. 

A fundamental relation between the three classes of functions 
defined in D2 was discovered by F. Riesz ([86], p. 337). He showed 
that every excessive function may be written as the sum of a regular 
function and of a potential. This decomposition is unique, i.e., there 
is only one such decomposition for each excessive function. It is 
given explicitly by 

Tl If Q is a transient kernel and f is a Q-excessive function, then 

f(x) = h(x) + u(x), 
where 

h(x) = lim L Qn(x,y)f(y) < oo, 
n~ oo yeS 

xeS, 

is Q-regular, and where 

u(x) = L g(x,t)[f(t) - Qf(t)], XES, 
tES 

is a Q-potential. Moreover, this decomposition is unique. 

Proof: Let f(x) - Qf(x) = if;(x). Since f is excessive, if; 1s 
non-negative on S. Furthermore 

Qd(x) - Qk+d(x) = Qkif;(x) ~ 0, 

Adding the first n + 1 of these equations 

where 

XES, k ~ 0. 

n 

gnf(x) = L gn(x,y)if;(y), gn(x,y) = L Qk(x,y). 
yES k=O 
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Now gn(x,y) increases to g(x,y) as n---+ oo, and in view of the inequality 

gn!f(x) ~ f(x) < oo, X e S, 
lim gnif;(x) = g!f(x) < oo, x e S. 

n-+ oo 

The functiong!f(x) is the potential u(x) in Tl, and the argument which 
gave the existence of the limit of gn!f(x) also implies that 

lim Qn+lf(x) < 00, XeS, 
n-+oo 

exists. This is clearly a regular function (as Qnf and Qn(Qf) have the 
same limit) and so we identify it with h(x) in Tl. Thus the Riesz 
decomposition was obtained by letting n---+ oo in/= Qn+lf + gnif· 

To prove uniqueness, suppose that f = h' + u', h' regular, u' a 
potential, in addition to f = u + h with u and h as defined in Tl. 
Then 

v(x) = u'(x) - u(x) = h(x) - h'(x), xeS, 

and since 

Qh(x) - Qh'(x) = h(x) - h'(x), xeS, 

we have 

Qv(x) = Qnv(x) = v(x), XeS, n ~ 0. 

Because v(x) is the difference of two potentials, part (c) of Pl gives 

lim Qnv(x) = 0 = v(x), xeS. 
n-+oo 

This implies that u(x) = u'(x) and therefore also that h(x) = h'(x), 
establishing the uniqueness of the decomposition. 

This is all we shall need in the sequel, but it is tempting to pursue 
the subject a little further. Remarkably enough, the potential theory 
of an arbitrary transient kernel exhibits many features of the potential 
theory we have developed for random walk in section 25. 

El The maximum principle (the analogue of P25.9). Let u(x) = 
111es g(x,y)ifs(y) be a Q-potential, with the property that ifs(x) = 0 for all x in 
S - A, where A is an arbitrary subset of S. Then 

u(x) ~ sup u(t), xES. 
teA 

Proof: We define Q'(x,y) = Q(x,y) when x andy are in the set S - A. 
And as usual, let Qn'(x,y) be the iterates of Q' over S - A, and 

co 

g'(x,y) = 2: Qn'(x,y), x,yeS- A. 
n=O 
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Since Q,.'(x,y) :::;; Q,.(x,y) for x,y in S - A, we have g'(x,y) :::;; g(x,y) for x,y 
in S - A, so that g'(x,y) < oo, which means that Q' is a transient kernel 
over the setS- A. Next we define 

(1) HA(x,y) = ~ g'(x,t)Q(t,y), xeS- A, yeA. 
teS-A 

Observe that if we think of Q(x,y) as defining a random process on the 
set S, then HA(x,y) would have the same probability interpretation as in 
010.1. It would be the probability that the first visit to A occurs at the 
point y, if the process starts at the point x in S - A. It suggests 
the identity 

(2) g(x,y) = ~ HA(x,t)g(t,y), xeS - A, yeA, 
teA 

and the inequality 

(3) xeS- A. 

For random walk (2) and (3) were obtained in P10.1. Assuming, for 
the moment, that they are valid in this more general context, equation (2) 
implies 

u(x) = ~ g(x,y)rp(y) = ~ HA(x,t)u(t), xeS- A, 
1/EA teA 

so that 

u(x) :::;; [ ~ HA(x,t)] sup u(t), 
teA teA 

xeS- A. 

Finally, one uses (3) to complete the proof of the maximum principle. 
For the proof of (2) and (3) the use of measure theory would indeed be a 

convenience, as it makes the intuitive use of stopping times legitimate. 
But an elementary proof of (2) and (3) based on the definition of HA(x,y) in 
(1) is not at all difficult. It requires induction or counting arguments such 
as those in the similar nonprobabilistic proof of P1.2 in Chapter I, which 
are cheerfully left as an exercise for the reader. 

The simplest special case of the maximum principle deserves special 
mention. When rfo(x) = 1 at the point x = y and 0 elsewhere on S, the 
maximum principle asserts 

(4) g(x,y) :::;; g(y,y) for all x e S. 

This statement again is obvious-if one admits as obvious the probability 
interpretation of g(x,y) as the expected number of visits of a process, 
starting at x, to the pointy. For then g(x,y) becomes g(y,y) times the 
probability (which is at most one) of at least one visit toy in finite time, 
starting at x. 

Now we shall turn to a few applications of probability theory to 
analysis. Using the powerful Riesz decomposition theorem (T1), one 
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can study the regular functions of a transient kernel. More specif
ically, it will be seen that there is an intimate connection between 
the asymptotic behavior of the ratio 

for large jyj 

and the various Q-regular functions (if there are any). This connection 
was first systematically used by R. S. Martin [75], 1941, in his work 
with harmonic functions in arbitrary domains in the plane. All we 
shall attempt to do is to present useful special cases of a method for 
finding and representing Q-regular functions. In recent work in prob
ability theory of Doob, Hunt, and others, 9 this fruitful and, in its 
full generality, rather deep method is called the construction of the 
Martin boundary. 

Our excuse for attempting this foray into abstract potential theory 
is that probabilistic results from earlier chapters will find, rather 
unexpectedly, elegant applications in a new setting. For example, in 
E3 at the end of this section, we shall return to random walk on a 
half-line. Thus R will be the set of integers, and it will be natural 
to take for S the set [O,oo) of non-negative integers. If P(x,y) is 
the transition function of an aperiodic random walk, and if Q(x,y) is the 
restriction of P(x,y) to S, then Q becomes a transient kernel on S, in 
the sense of definition Dl. If g(x,y) is the Green function of Q in 
the sense of D1, it is clear that it is simultaneously the Green func
tion g8(x,y) = g(x,y) in the sense of definition D19.3. About this 
particular Green function we know a good deal. Thus, according to 
P19.3 

min(r,y) 

g(x,y) = L u(x - n)v(y - n), X 2: 0, y 2: 0, 
n=O 

and in section 18 of Chapter IV we studied the functions u(x) and v(x) 
quite thoroughly. In particular the asymptotic properties of g(x,y) 
should present no formidable difficulties, at least under reasonable 
auxiliary hypotheses. Using this information about g(x,y) we shall 
be able to prove that, under certain restrictions, there is one and only 
one Q-regular function. This is of probabilistic interest, the equation 
Qf(x) = f(x) for xES being exactly the Wiener-Hopf equation 

00 

2 P(x,y)f(y) = f(x), X 2: 0, 
y=O 

9 Cf. Doob [24], Hunt [45], and Watanabe [100]. 
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of D19.4. In P19.5 this equation was shown to have the solution 

f(x) = u(O) + u(l) + · · · + u(x), X~ 0. 

Thus E3 will show that for recurrent aperiodic random walk the 
Wiener-Hopf equation has a unique non-negative solution, or, if one 
prefers a different viewpoint, that the function u(x), which plays such 
a crucial role in fluctuation theory, has a simple potential theoretical 
characterization. 

Similarly, a strong case can be made for another look at aperiodic 
recurrent random walk in the plane. If P(x,y) is the transition func
tion on R, let S = R - {0}, Q(x,y) = P(x,y) for x,y in R - {0}. 
Then Q is a transient kernel. According to P13.3 

L P(x,y)a(y) - a(x) = S(x,O), xER, 
yeR 

where a(x) is the potential kernel in P12.1. Since a(O) = 0, the above 
equation implies 

L Q(x,y)a(y) = a(x), xES, 
yeS 

so that a(x) is a Q-regular function on S. Is it (apart from a multi
plicative constant) the only Q-regular function? It will follow, from 
P3 below, that this is so, and the reason we can prove it is that, 
according to P11.6 and P12.2, we know that 

g(x,y) = a(x) + a(- y) - a(x - y), 

and 

lim [a(x + y) - a(y)] = 0. 
IYI-+ oo 

The details will be given in E4. The last application, in ES to 
analysis proper, will concern the Hausdorff moment problem. 

Two innovations of terminology are needed. Given any countable 
set S, and a real valued function f(x) on S 

D3 lim1x1-. oof(x) = a, if, given any € > 0, if(x) - ai < € for all 
but a finite number of points x in S. 

Clearly this is of interest only when S is infinite (otherwise f(x) has 
every possible real number as a limit), butS will be infinite in all cases 
of concern to us. 

Much more essential is 
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D4 If Q is a transient kernel on the set S, and if h(x) is a positive 
Q~regular function, then 

and 

Qh( ) _ Q(x,y)h(y) 
x,y - h(x) ' 

gh(x y) = g(x,y)h(y) 
' h(x) ' 

x,yE S, 

x,y E S. 

D4 was motivated by 

P2 Qh(x,y) is a transient kernel on S, and if we call its iterates 
Qn h(x,y) and its Green function 

00 

gh(x,y) = L Qnh(x,y), x,y E S, 
n~o 

then this is the same gh(x,y) as that in D4. The kernel Qh has the 
property that the constant function e(x) = 1 is Qh~regular. 

The proof is omitted, being completely obvious. Now we are ready 
to derive a set of sufficient conditions for a transient kernel Q to have 
a unique regular function (up to a multiplicative constant; this will 
always be understood). 

P3 Let Q(x,y) be a transient kernel on S such that g(x,y) > 0 for 
x,y in S, and suppose that for some point gin S 

lim g(x,y) = f(x) < oo 
IYI->oo g(g,y) 

exists for all x in S. Suppose further that f ( x) is Q~regular. 10 Then the 
positive multiples of.f(x) are the only Q~regular function. 

Proof: Suppose that h(x) is Q~regular, and not identically zero. 
We have to show that for some c > 0, h(x) = c.f(x) on S. First 
observe that h(x) > 0 on S, in view of 

L Qn(x,y)h(y) = h(x), XES, n;::::: 0. 
YES 

If we had h(x0 ) = 0 for some x0 E S, we could choose Yo such that 
h(y0 ) > 0, and conclude that Qn(x0 ,y0 ) = 0 for all n ;::::: 0. This 

10 It is easy to show that this hypothesis may be weakened: it suffices to 
require that there exists at least one nontrivial Q-regular function. Show that 
one cannot do better, however, by constructing a transient kernel Q which has 
no regular functions, but such that the limit in P3 nevertheless exists. 
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contradicts our assumption thatg(x,y) > 0 for all x,y inS. Therefore 
every Q-regular function h(x) is strictly positive on all of S. 

Using the positive Q-regular function h(x) we now define Qh and 
gh(x,y) according to D3 and P2. The function e(x) = 1 on S is Qh 
regular, and will now be approximated from below by the sequence 

vn(x) = min [e(x), ngh(X>l'J)]. 

Here the point TJ is an arbitrary fixed point of S. It is easy to see that 
vn(x) ~ e(x) and vn(x) __,.. e(x) as n __,.. 00. 

Now we use T1 to show that each vn(x) is a Qh-potential. Being 
the minimum of two excessive functions, vn(x) is excessive by P1, 
part (2). Hence, according to T1 

Vn(x) = k(x) + u(x), 

where k(x) is Qh-regular and u(x) is a Qh-potential. But 

k(x) ~ ngh(x,TJ), x E S, 

which shows, by P1(3), that k(x) = 0. Hence we have succeeded in 
exhibiting a sequence of Qh-potentials vn(x) which converge to e(x). 
All other properties of this sequence will be quite irrelevant from 
now on. 

According to the definition of potentials, there is a sequence of 
charges 1-'n(x), such that 

(1) Vn(x) = L gh(x,y)p.n(y). 
yeS 

With ~ denoting the point in the hypothesis of P3, 

(2) 
""gh(x,y) 

Vn(x) = ~ gh(~,y) Yn(y), 

where Yn(Y) = gh(~,y)p,n(y). It follows from (1) and (2) that 

(3) 0 ~ :2; Yn(Y) = Vn(~) ~ 1. 
yeS 

It is also known that 

(4) ( ) 1 l. "" gh(x,y) ( ) 
ex= = 1m L.. ~(i: )YnY· 

n-> oo yeS g s,y 

Now we choose a subsequence n' of the integers (by the diagonal 
process) such that 

(5) lim Yn•(Y) = y(y) 
n'-+ oo 
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exists for each yin S, and observe, using the hypothesis of P3, that 

(6) lim gh(x,y) = lim g(x,y) h(g) = f(x) h(g). 
IYI-+oo gh(g,y) IYI-+oo g(g,y) h(x) I h(x) 

Choosing M so large that 

l
gh(x,y) - f(x) h(g)l < e when IYI > M, 
gh(g,y) h(x) 

it follows from (4), (5), and (6) that 

"' gh(x,y) . f(x)h(g) "' 
1 = L. --,.------( t. ) y(y) + ~1m h( ) L. Yn'(y) + R(M), 

IYI:5Mg S•Y n -+oo X IYI>M 

where R(M) is an error term whose magnitude does not exceed e. 
Now R(M) tends to zero as M--+ oo, and if we call 

lim lim 2: Yn'(y) = Yoo• 
M-+oo n'-+oo IYI>M 

then it follows that 

(7) 
"' gh(x,y) h( g) 

1 = L. --,.--(t. ) y(y) + Yoof(x) h( )' 
yesg s,y X 

xES. 

In (7), the constant y oo has a value between zero and one, and the 
measure y(y) has total mass at most one. That is all one can conclude 
from (3). But now we shall show that y(y) is identically zero, by 
appealing to the Riesz decomposition theorem. In equation (7), the 
constant on the left is Qh-regular. On the right the function 

(8) 
"' gh(x,y) 
~ gh(g,y) y(y), yES, 

is clearly a Qh-potential. Finally f(x)fh(x) is Qh-regular since 

2: Qh(x,y)f(y) = 2: Q(x,y) f( ) = f(x). 
yeS h(y) yeS /z(x) y h(x) 

Using the uniqueness part of Tl one sees that the potential in equation 
(8) is zero, while 

(9) XES. 

Hence h(x) is a constant times f(x), which proves P3. 
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Our first application of P3 concerns the transient random walk 
treated in the last section. 

E2 Consider aperiodic random walk in three dimensions, satisfying the 
hypotheses (a) through (c) of P26.1. Then P26.1 gives 

lim G{x,y) - 1 R 
1111-oo G{O,y) - ' X E ' 

In order to apply P3 to the problem of finding the P-regular functions, we 
make the obvious identifications, 

R = S, P(x,y) = Q(x,y), x,y E S, 

g(x,y) = G(x,y), ~ = 0. 

One must also note that 

f(x) = lim g(x,y) = 1, 
1111-oo g{O,y) 

XES, 

is P-regular (the constant function is P-regular for every random walk) 
and hence Q-regular. Now P3 applies, so that aperiodic three-dimensional 
random walk with mean zero, and finite second moments has only the constant 
regular function. The hypotheses are of course much too stringent-see 
problem 6. Nevertheless there is no "easy" proof, even in the special 
case of simple random walk. (A short but sophisticated proof for simple 
random walk is outlined in problem 8.) 

E3 Theorem: If P(x,y) is recurrent aperiodic random walk in one dimen
sion, then the Wiener-Hopf equation 

00 

L P(x,y)f(y) = f(x), X= 0, 1, 2, ... , 
11=0 

has a unique non-negative solution. It is 

f(x) = u(O) + u(l) + · · · + u(x), 

u(x) being the function defined in D18.2. 

X~ 0, 

Proof: The problem is merely one of verifying the hypotheses in P3. 
According to the discussion of this problem preceding P3, we have 

u(O)v(y - x) if y > x 
(1) g(x,y) = u(x)v(y) + u(x - 1)v(y - 1) + · · · + . - ' 

u(x - y)v(O) tf x ~ y. 

The positivity of g(x,y) on the setS (which consists of the half-line of the 
non-negative integers) follows from the aperiodicity of the random walk. 
So we shall try to prove that 

(2) lim g(x,y) = c[u(O) + · · · + u(x)], 
1111- oo g(O,y) 

X~ 0. 
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Here c may be any positive constant, g has been taken to be the origin, and 
IYI ~ oo in this problem clearly means y ~ + oo. In view of (1), equation 
(2) is equivalent to 

1 
(3) 11 ~i~ u(O)v(y) [u(x)v(y) + u(x - 1)v(y - 1) + · · · + u(O)v(y - x)] 

= c[u(O) + u(1) + · · · + u(x)], x ~ 0, 

and (3) will be valid if we prove 

(4) lim v(y + 1) = 1. 
11---+ oo v(y) 

In fact, if (4) holds, thenf(x) in P3 will be a constant multiple of u(O) + · · · 
+ u(x), and this function was shown to be regular in P19.5. H~nce it 
remains only to prove ( 4 ). 

In P18.8 a much stronger result than (4) was proved under the additional 
restriction that the random walk has finite variance. It was shown that 
v(y) tends to a positive constant as y ~ + oo. Equation (4), being far 
weaker, can be proved by a simple probabilistic argument (suggested by H. 
Kesten) for any recurrent random walk. (Note, however, that the proof of 
( 4) we are about to give runs into difficulties if the random walk is transient. 
See problem 11.) 

For x ~ 0 and y ~ 0, we denote by J(x,y) the probability that the 
random walk, starting at x0 = x, will visit y before entering the set R - S = 
[x I x < 0]. Also let J(x,x) = 1. Then 

g(O,x) = u(O)v(x) = J(O,x)g(x,x), 

(5) v(x + 1) = J(O,x + 1) [ 1 + u(x + 1)v(x + 1)]. 
v(x) J(O,x) i u(n)v(n) 

n=O 

Now we need a few simple remarks. 

(6) 

(7) 

0 S u(x)v(x) S M, independent of x, 
00 

L u(n)v(n) = oo, 
n=O 

(8) J(O,x + 1) ~ J(O,x)J(x,x + 1), J(O,x) ~ J(O,x + 1)J(x + 1,x), 
X~ 0, 

(9) lim J(x,x + 1) = lim J(x + 1,x) = 1. 
Z-t> + 00 Z-+ +CO 

Equation (6) comes, most directly, from the observation that g(x,O) = 
u(x)v(O) = J(x,O)g(O,O), so that u(x) is a bounded function. Similarly v(x) 
is bounded since it plays the role of u(x) in the reversed random walk. 
Equation (7) is a consequence of recurrence: as x ~ + oo, g(x,x) ~ oo 
since the stopping time (the first time in R - S) tends to infinity, loosely 
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speaking. The inequalities in (8) should also be intuitively obvious: the 
first one says that in going from 0 to x + 1, and then from x + 1 to x, 
without meeting R - S, the random walk goes from 0 to x without meeting 
R - S. Finally (9) is true for exactly the same reason as (7). 

Combining (6), (7), (8), and (9) in the obvious manner, one observes 
that the right-hand side in (5) tends to one as x- + oo. But that is the 
statement in (4) which has been shown to guarantee the truth of E3. 

In problem 12 it will be shown that the unique solution of E3 is no 
longer unique if one admits solutions which may oscillate in sign. 

E4 Let A(x,y) = A(O,y - x), a(x) = A(x,O) be the potential kernel of 
recurrent aperiodic random walk in the plane. Then a(x) is the only non
negative solution of 

~ P(x,y)a(y) - a(x) = 0, X oF 0. 
11,.0 

To prove this we take Q(x,y) = P(x,y) (Pis the transition function of the 
random walk) for x and y in S = R - {0}. According to the results of 
Chapter III, 

g10J(x,y) = g(x,y) > 0, x,yeS, 

a(x) is a Q-regular function, and for arbitrary e in s, 
g(x,y) a(x) + a( -y) - a(x - y) 
g(e,y) = aW + a( -y) - a(e - yf 

The limiting process IYI- oo of D3 is equivalent to letting IYI- oo in 
the metric (Euclidean distance) of R. And, finally, 

lim g(x,y) = a(x) 
1111 .... oo g(e,y) aW 

follows from P12.2. Thus E4 has been obtained from P3. The analogous 
result for one-dimensional random walk is discussed in the next chapter. 
There the situation is more complicated-but in a very interesting way 
(see T31.1). 

ES This example11 serves a purpose different from those in the re
mainder of the book. Instead of illuminating what has been done, it gives 
a glimpse of what lies beyond. It is intended to arouse the reader's 
curiosity rather than to satisfy it, and so, although we prove a few things, 
no attempt is made to explain what is proved. This should be so because 
the general potential theory of stochastic processes is a rather recent field, 
and much more difficult than what we do. 

11 This application of boundary theory is due to Hunt (Princeton lectures) 
and Watanabe [101]. For a generalization, see problems 9 and 10. 
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Let P(x,y) be the transition function of the following simple unsym
metric two-dimensional random walk. If x = (m,n), m and n being the 
coordinates of the lattice points of R, then 

P(O,x) = t if x = (0,1) and if x = (1,0). 

Let 

(1) x = (m,n), O<t<l. 

Thus ft(x) is a one parameter family of functions on R. For each value of 
the parameter t between 0 and 1, ft(x) happens to be a regular function. 
This is simple to verify; it suffices to check 

L P(O,x)ft(x) = t·2t + !·2(1 - t) = 1 = /(0). 
zeB 

Note that the functions in ( 1) are also regular if t = 0 or 1, provided we 
restrict them to the first quadrant 

R+ = [x I x = (m,n), m ;;:: 0, n ;;:: 0]. 

This is very natural as R+ is the semigroup associated with the support L 
of P(O,x). From now on we shall confine our attention to those regular 
functions which are non-negative solutions of 

(2) f(x) = L P(x,y)f(y), 
1/ER+ 

Then we can assert, by linearity, that 

(3) f(x) = f j,(x) dp.(t) = zm+n f tm(l - t)" dp.(t), xeR+, 

is a regular function, in the sense of equation (2), for every finite measure p. 
on the unit interval. (The integral in (3) is the Lebesgue-Stieltjes integral 
with respect to an arbitrary monotone nondecreasing function p.(x) on 
0 ~ x ~ 1. It may have mass (discontinuities) at the endpoints.) 

Thus the conclusion of P3 cannot apply here, but the method of proof of 
P3 will apply, and we shall show that every regular function is given by (3), 
for some measure p.. We identify R+ with S, P(x,y) with Q(x,y), and 
G(x,y) with g(x,y). Fortunately the random walk is so simple that one can 
write down explicitly 

(4) g(O,x) = z-m-n(m: n) for x = (m,n)eR+. 

The next step is the asymptotic formula 

(5) lim r~(x,y)- zm+n(_T )m(-S )"] = 0 
1111-+oo li(O,y) T + s T + s • 
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Here x = (m,n) andy = (r,s) are confined to R+ (the first quadrant) and 
the proof of (5) depends on Stirling's formula 

The tedious but straightforward details are omitted. 
Just as in the proof of P3 we pick an arbitrary regular function (non

negative solution of (2)) with the intention of showing that it has an integral 
representation of the type in (3). We must now distinguish between two 
possibilities. 

I: h(x) = 0 for all x = (m,n) such that m > 0, n > 0. 

In this case h(x) = 2na when m = 0, n ~ 1, h(x) = 2mb when m ~ 1, 
n = 0, and h(O) = a + b; here a and b are non-negative constants. It 
follows that h(x) is represented by (3) with a measure fL which assigns masses 
of a and b to the points t = 0 and t = 1. In this case, then, there is 
nothing to prove. 

II: h(x) > 0 for some x = (m,n) such that m > 0, n > 0. 

In this case it follows from a careful scrutiny of equation (2) that h(x) > 0 
for every x E R+. (To see this, assume the contrary. The set of zeros of 
h must then be of the form [xI x = (m,n); m ~ m0 , n ~ n0 ] where either 
m0 > 1 or n0 > 1 or both, since we are not in case I. Suppose therefore 
that m0 > 1. On the vertical half-line defined by x = (m0 - 1,n), 
n ~ n0 , h(x) must then be of the form h(x) = 2na, for some constant a. 
But now, as a simple calculation shows, it is impossible to extend h(x) to the 
half-line x = (m0 - 2,n) n ~ n0 , in such way that h satisfies (2) and is 
non-negative.) 

In case II then, since h > 0 on R +, we can define 

and 

Q"( ) _ P(x,y)h(y) 
x,y - h(x) ' 

g"(x y) = g(x,y)h(y) 
' h(x) ' 

x,yER+, 

x,y E R+, 

just as in P3. Nor is there any difficulty in selecting 7] E R+ (7] may depend 
on x) such that 

(6) vn(x) = min [e(x), ng11(x,7])], 

is a sequence of Q11-potentials converging to e(x) = 1. Finally 

(7) ( ) "( ) "' g"(x,y) ( ) 
Vn X = U X + L., nh(O ) Yn Y ' 

yeR+ 5 ,y 
xER+, 
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where 

(8) Yn(Y) ;?:; 0, 

Of course we choose a subsequence k' such that 

(9) lim Yk·(Y) = y(y), 
k' ... 00 

and a number M such that the error in (5) is less than e when IYI > M. 
Then (7) implies 

(10) 1. ( ) 1 "" gh(x,y) ( ) 
1m vk' x = = L.. ~(O ) y y 

k'-+oo IYI:SM g ,y 

+ lim hh((O)) 2n+m 2 (-+' )m(_+s )n Yk·(Y) + R(M), 
k'-+oo X IYI>M T S T S 

where x = (m,n), y = (r,s), and R(M) does not exceed (h(O)fh(x))e. If we 
let M-oo, then R(M)- 0, and (10) becomes 

(11) 1 = vh(x) + lim lim hh((O)) 2n+m 2 (-'-)m(_s_)n Yk·(y), 
M-+oo k'-+oo X IYI>M T + S T + S 

where vh is the Qh-potential 

vh(x) = 2 g:(x,y) y(y). 
yen+ g (O,y) 

Observe now that the sums in (11) can be interpreted as integrals over 
the unit interval, with respect to measures whose masses are concentrated 
on the rational numbers. Equation (11) can be written 

1 = vh(x) + hh((O)) 2m+n lim lim {1 tm(l - t)ndvM,k'(t), 
X M-+oo k'-.oo Jo x = (m,n), 

where vM.k' is the sequence of measures in question. Taking again a 
subsequence of these measures, to assure that they converge weakly (see 
P6.8 and P9.2) to a limiting measure v one has 

(12) 1 = vh(x) + 2m+n h(O) {1 tm(l - t)n dv(t). 
h(x) ) 0 

The last term in (12) is Qh-regular, according to (3). Therefore the unique
ness part of the Riesz decomposition theorem shows that the potential 
vh(x) vanishes everywhere. Clearly then 

(13) 

so that all regular functions are of this form. 
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This result yields (in fact is equivalent to) the solution of a problem in 
classical analysis-the Hausdorff moment problem. A sequence c(n), 
n ~ 0, is called a (Hausdorff) moment sequence if 

c(n) = f f" dp.(t), n ~ 0, 

for some measure p. on [0,1]. 
To present Hausdorff's [ 41], 1921, characterization of moment sequences, 

we define the difference operator !!.. acting on functions defined on the non
negative integers by 

l!..f(n) = f(n) - f(n + 1), n ~ 0. 

Its iterates are defined by !:..0/ = f, !!..1/ = !!..f, !:..2/ = !!..(!!..f), t:..n+lj = 
!!..(!!.."/). 

Theorem: The sequence c(n) is a moment sequence if and only if f!..kc(n) ~ 0 
whenever k ~ 0 and n ~ 0. 

Proof: Given any sequence c(n), n ~ 0, we define a function h(m,O) by 

Next define 

Let 

h(m,O) = 2mc(m), 

h(m,1) = 2m+lf!..c(m), 
h(m,n) = 2m+nt:.."c(m), 

m~ 0. 

m ~ 0, 
m ~ 0, n ~ 0. 

f(x) = h(m,n), x=(m,n)eR+. 

Now one verifies, using the definition of !!.. and of its iterates, that f(x) 
satisfies the equation 

L P(x,y)f(y) = f(x), 
yeR+ 

Note that/ is not necessarily regular, since it is not necessarily non-negative. 
But, according to (13), f(x) is regular if and only if 

x = (m,n) e R+, 

for some measure p., and since f(x) is determined by its values on the real 
axis, this is equivalent to 

h(m 0) f 1 
----2};- = c(m) = Jo tm dp.(t). 

That proves the theorem, and moreover shows that the moment problem 
is equivalent to the problem of characterizing the regular functions for a 
particular random walk. 
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Problems 

1. Prove P13.1 by using T24.1. (Hint: Show that recurrent random 
walk has no excessive functions, i.e., functions/~ 0 such that/~ Pf on R, 
other than the regular functions. Then show that, given any constant 
c ~ 0, the function u(x) = min [f(x),c] is excessive, provided that f(x) is 
regular.) 

2. Prove, using D25.2, that every transient random walk has infinite 
recurrent sets as well as infinite transient sets. 

3. For aperiodic transient random walk in one dimension which has 
p. + < oo, p.- = oo, exhibit a transient set which is unbounded on the left 
(or prove that there is one!). 

4. Given an aperiodic transient random walk with state space R, let 
B £ R be any additive subgroup of R. Prove that the set B is recurrent 
(i.e., visited infinitely often with probability one) if and only if 

,L G(O,x) = oo 
:reB 

Hint: The above sum is the total expected time the random walk spends 
in the set B. 

5. Following R. Bucy [S3], prove the following strengthened form of 
T25.1: A set B is transient if and only if there exists a function u ~ 0 on B 
such that 

L G(x,y)u(y) = 1, xeB. 
ues 

Hint: Suppose there is such a function u and that B is recurrent. Let 
T,. be the time of the first visit to B after time n. Then, for x e B, 

1 = E, f u(x,.) = E. f. u(x,.) + E, f u(xk)· 
k=O lc=O k=Tn 

Now let n-+ oo to arrive at the contradiction that 1 = 2. 

6. Extend P26.1, P26.2, T26.1, T26.2, and E27.2 to dimension d ~ 3. 
See Doney [S6], and also [S21]. 

7. Simple random walk in three dimensions. Show that the capacity 
C(r) of the sphere [x llxl ::;; r] varies approximately as a linear function of 
r for latge r, and determine 

lim C(r)Jr. , .... "' 
8. For simple random walk of arbitrary dimension, let C denote the 

class of regular functions f(x) with /(0) = 1. Following Ito and McKean 
[46], order the state spaceR in an arbitrary manner: 0 = x 0 , xl> x2, .... 
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Let C0 = C, 

cl = [rp I rp E C; rp(xl) = maxf(xl)]' 
tee 

Cn+l = [rp I rp E Cn; rp(xn+l) = maxf(xn+l)]' 
/ECn 

and show that n:=o Cn consists of a single regular function l(x). Show 
that this is a minimal regular function, i.e., that f E C and f ~ I on R implies 
that f = f. But 

l(x) = 2, P(x,y)/(y) = 2, P(O,z)l(z/(z_ + x) 
YER ZER j(z) 

exhibits I as a convex combination of the functions 

l(z + x) 
rpz(x) = l(z) 

which are in C. Since I is minimal one can conclude that rp,. = I whenever 
P(O,z) > 0. Consequently l(z + x) = l(z)l(x) for all x,z E R, which 
shows that j is an exponential. Prove that I is constant and conclude that 
simple random walk has only constant regular functions. 

9. Problem 8 strongly suggests that every regular function for a transient 
random walk should be a convex combination of minimal regular functions. 
As in problem 8 one can show that the minimal regular functions are 
exponentials of the form 

J(x) = ea·z 

where a is a vector whose dimension is that of R (see [25]). In view of 
problem 6, random walk with zero mean is not of interest. Therefore we 
shall consider strongly aperiodic random walk with mean vector 1-' =F 0, 
assuming also that Pn(O,x) > 0 for some n which may depend on x, and that 

2, P(O,x)ea·z < 00 

for every vector a (these conditions can be relaxed, of course). Now define 

A = [a I a E E, 2, P(O,x)ea·z = 1]. 

Prove that A is the boundary of a convex body in E. (When the dimension 
d of E and R is one, then A of course consists of two points, one of which is 
the origin.) Show further that, given any non-zero vector p, there is a 
unique point a = a(p) E A where the outward normal is a positive multiple 
of p. 
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10. Continuation. If x- oo in the direction of the mean vector p., use 
the Local Central Limit Theorems P7.9 and P7.10 to show that 

lim G(x,y) = 1, 
,. ... oo G(x,O) 

yER. 

If x- oo in the direction p, choose a = a(p) E A as in problem 9, and 
observe that the random walk with transition function 

Q(x,y) = P(x,y)ea·<Y-:r> 

has its mean vector along p. Using this idea, P. Ney and the author (S21] 
proved 

lim I G(y,x) - ea<z>·lll = 0 
l:rl ... oo G(O,x) 

for every y E R. Now one can imitate the method of E27.5 to conclude 
that the regular functions of a random walk subject to the conditions in 
problem 9 have the representation 

/(x) = L ea·x dp.(a), XER, 

where p. is a Lebesgue-Stieltjes measure on A. 

11. It is not known whether the Wiener-Hopf equation 

"" 2: P(x,y)f(y) = /(x), X~ 0, 
!1=0 

has a solution for every transient random walk (excluding of course the 
trivial case with P(O,x) = 0 for x ~ 0 and P(O,O) < 1, when there is 
obviously no solution). Demonstrate, however, that example E27.3 does 
not extend to transient random walk, for the following reason. Take a 
random walk with negative mean, satisfying in addition the hypotheses in 
P19.6. Show that the unique non-negative solution of the above Wiener
Hop£ equation is then of the form 

"" f(x) = L rku(x - k), X~ 0, 
k•O 

where r > 1 is the constant in P19.6. Consequently the function u(O) + 
u(1) + · · · + u(x) cannot satisfy the Wiener-Hopf equation for the random 
walks in question. 

12. Show that E27.3 solves a natural potential theoretical problem, in 
the sense that the Wiener-Hopf equation will in general have many solutions 
(all but one of which must then· oscillate in sign). Hint: Consider sym
metric random walk with P(O,x) > 0 for lxl ~ Jl.1 and 0 for lxl > M. 
What is then the number of linearly independent solutions of the Wiener
Hop£ equation? 
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13. Show that the Green function G(x,y) determines the random walk 
(i.e., two transient random walks with the same Green function must have 
the same transition function). (Hint: Show that G(x,y) determines 
IIA(x,y), and then let the set A "grow very large" so that IIA(x,y) ~ 
P(x,y).) 

14. One more definition of capacity. Given an arbitrary aperiodic 
transient random walk, and a finite subset A C R, consider the (random) 
set An which is "swept out" by the random walk in time n: formally 

An = [xI x E xk + A for some k, 0::::; k::::; n]. 

Finally let Cn(A) = IAnl denote the cardinality of An. Prove that the 
capacity C(A) of the set A is given by 

lim Cn(A) = C(A) 
n-oo n 

with probability one. 

Hint: Observe that if A = {0}, then Cn(A) = Rn> the range of the 
random walk, as defined in D4.1. According to E4.1 the above limit then 
exists and is 1 - F = c-1, the capacity of a single point. Observe 
further that the proof in E4.1 applies, with obvious modifications, in the 
present case. 

15. For simple random walk in three-space or, more generally, for any 
random walk satisfying the hypotheses (a) through (d) in P26.1, let A be a 
finite subset of R and prove that 

(1) P.r[TA < oo] - Pz[TA::::; n] = Px[n < TA < oo] 

P [T ] 2C(A) -112 
"' z A = oo (27Ta2) 312 n , as n ~ oo, 

for all x E R. (This is the transient analogue of the results in section 16 
concerning the rate of approach of P.r[TA ::::; n] to the stationary state 
solution P,[TA < oo].) As a corollary of (1) derive 

(2) L Px[TA = n] - C(A) = L Py[n < TA < oo] 
zeR-A !lEA 

,..., 2(27Ta2)- 3' 2 [C(A)]2n- 112, as n~ oo. 

Finally, let LA be the time of the last visit to the set A, and prove that 

(3) P [ L ] 2C(A) -1/2 
, n < A< oo "' (27Ta2) 312 n , as n-+ oo. 

For help or details see S. Port [24]. 



Chapter VII 

RECURRENT RANDOM WALK 

28. THE EXISTENCE OF THE ONE-DIMENSIONAL POTENTIAL KERNEL 

The first few sections of this chapter are devoted to the study of 
aperiodic one-dimensional recurrent random walk. 1 The results 
obtained in Chapter III for two-dimensional aperiodic recurrent 
random walk will serve admirably as a model. Indeed, every result 
in this section, which deals with the existence of the potential kernel 
a(x) = A(x,O), will be identically the same as the corresponding facts 
in Chapter III. We shall show that the existence of 

n 

a(x) = lim _L [Pk(O,O) - Pk(x,O)] 
n-->co k=O 

is a general theorem, valid for every recurrent random walk, under the 
very natural restriction that it be aperiodic. Only in section 29 shall 
we encounter differences between one and two dimensions. These 
differences become apparent when one investigates those aspects of 
the theory which depend on the asymptotic behavior of the potential 
kernel a(x) for large lxl- The result of Pl2.2, that 

lim [a(x + y) - a(x)] = 0, y E R, 
lxl--> co 

will be shown to be false in section 29 for aperiodic one-dimensional 
recurrent random walk with finite variance. 

It will be convenient, once and for all, to classify as 

1 For a condensed but fairly complete version of sections 28 through 31, see 
[94]. Related studies by Hoeffding [43], and Kemeny and Snell [55] contain 
partial results. A potential theory for recurrent Markov chains in general 
has been developed by Kemeny and Snell [56], and by Orey [80]. It contains 
as yet no satisfactory criteria for the existence of a potential kernel corresponding 
to A(x,y) for random walk. 

343 
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Dl Type I: Aperiodic recurrent random walk in one dimension, with 
a2 = L x2P(O,x) = + oo; 

Type II: Aperiodic recurrent random walk in one dimension, with 
a2 = L x2P(O,x) < oo. 

It will become apparent that, although to a certain extent type I and 
type II exhibit the same behavior, the difference between these two 
cases is sufficiently sharp to require different methods of proof, even 
when the final results are the same! Thus it will be expedient to 
treat the two types separately after a certain point. Since frequent 
references back to Chapter III will serve to shorten the presentation 
considerably, the reader is asked to forgive the burden they impose on 
him: that of verifying the truth of remarks of the type "the proof 
which gave A in Chapter III is available, without any modification 
whatever, to give B in the present context." 

In particular Pll.l, Pll.2, and Pll.3 of Chapter III are available, 
and without further comment we record P11.3 as 

Pl 2 Pn+l(x,t)HB(t,y) = HB(x,y) - 2 An(x,t)[IIB(t,y)- S(t,y)], 
teR teB 

forB C R with 1 :s; IBI < oo, x E R, y E B. Here 

n 

0 :S; an(x - t) = An(x,t) = 2 [Pk(O,O) - Pk(x,t)]. 
k=O 

It will be convenient to specialize Pl to the set C = {O,c}, c "# 0. 
A simple calculation, using the fact (see P11.2) that 

Ilc(O,c) + Ilc(O,O) = 1, 

P2 2 Pn+ 1(x,t)Hc(t,O) 
teR 

= Hc(x,O) + [an(x) - an(x - c)]IIc(O,c), xER. 

Upon setting x = c in P2, and noting that in view of the recurrence 
and aperiodicity of the random walk Ilc(O,c) > 0, one gets 

P3 cER. 

This bound could of course have been obtained in Chapter III, but 
there it was not needed, whereas we shall find it indispensable here. 

Finally we shall need a lemma from Fourier analysis, which will be 
used both in the case of type I and type II random walk, albeit in a 
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somewhat different fashion. It concerns the symmetrized approxi
mations an(x) + an(- x) to the potential kernel, the convergence of 
which is much easier to establish than that of an(x) alone. 

P4 For every one-dimensional aperiodic recurrent random walk, 

(a) lim[an(x) + an(-x)] < ooexistsforeachxinR. Furthermore 
n-+ co 

(b) 

where 

co 

a 2 = L x2P(O,x). 
:1:=- co 

Proof: As usual (see D6.2), letting 

cp(O) = Eo[eiBxl] = L P(O,x)efzB, 
zeB 

one finds 

(1) an(x) + an( -x) = k~O ~ J:n [1 - cos xB)]cfok(O) dB 

= I In 1 - cos xB [1 - cfon+l(O)] dB. 
7T -n 1 - cp(O} 

Before letting n---+ oo we must show that for each x in R 

[1 - cos x8][1 - cfo(8)]-l 

is integrable on the interval [ -7T,7T]. We have, for some A < oo 

11 - cos x81 j1 - cos xBl < A 11 - cos xB I 
1 - cfo(B) ::::; Re [1 - cfo(O)] - 92 ' 

the last inequality being the result of P7.5. Hence 

[1 - cos x0][1 - cfo(0)]- 1 

is integrable on [ -7T,7T]. Thus it is possible to let n---+ oo in equation 
(1) to obtain 

. 1 f" 1 - cos xB 
(2) nl_:~[an(x) + an(-x)] =:;;: -n 1 _ cp(B) dO< oo, xER. 
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Equation (2) proved part (a) of P4. To prove part (b) decompose 

1 J" 1 - cos x8 
(3) X1T -n 1 _ r/>( ()) d() = /6(x,8) + g6(x,8), 

with 8 > 0, x =F 0, 

Clearly 

(4) 

1 J6 1 - cos x8 
f6(x,8) = XTT -6 1 - r/>(8) d(), 

1 - cos x8 d() 
1 - r/>(8) . 

lim g6(x,8) = 0 for every 8 > 0. 
:r-o ao 

Specializing to the case when a2 = oo, we choose 8 > 0 so small that 

This can be done for arbitrary e > 0, since 

11 - r/>( 8) I ~ Re [1 - rf>( 8)] = 2 2 P(O,x) sin2 (x:) 
reB 

2 
[rJJ:r9JsnJ 

It follows that 

(5) lim lfo(x,8)1 ~ ~ lim ! J6 1 - ()~os x() d() 
:r-o+ao 7T :r-o+ao X -6 

E J"' 1 -COSt d 
=- 2 t =E. 

7T -ao t 

Thus part (b) of P4 holds when a2 = oo, as one may see by substituting 
(4) and (5) into (3). 

When a2 < oo one chooses S > 0 in equation (3) in such a manner 
that 

(6) I ()2 2 I 
1 - r/>(8) - a2 < E for 181 ~ 8. 
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P6.7 allows us to so choose 8, given any E > 0, since the random walk 
has mean zero (being recurrent). Using (6) to estimate f 6(x,O), 

lim f 6(x,O) :S lim -i-- f6 1 - c~s xO dO 
:~:-+ + oo z-+ + oo a 7TX _ 6 0 

-. 1 f6 I 2 1 I + hm - [1 - cos xO] 202 - 1 cp(O) dO 
:~:-+ + oo 7TX _ 6 a -

2 1 Joo 1 - cost d _E -1. f6 1 - cos x0 dO 
< -·- 2 t + tm 02 - a2 7T _ 00 t 7T :~:-+ + oo _ 6 x 

2 
= 2 +E. a 

The same argument gives the underestimate 

lim f 6(x,O) ;;::: ~ - E 
:r-+ +co 

and since E is arbitrary, the proof of P4 is complete. 

Now we are ready to begin to prove that an(x) converges for random 
walk of type I. In P2 we shall specialize to the set C = {0,1}, and 
introduce the notation 

(1) Ilc(0,1) = II, Hc(x,O) = H(x), 

L Pn+l(x,t)Hc(t,O) = L Pn+l(x,t)H(t) = fn(x), xeR. 
teR teR 

Then P2, with this particular set C becomes 

(2) fn(x) = H(x) + [an(x) - an(x - 1)]11. 

We shall investigate what can be done with the aid of a subsequence n' 
of the positive integers such that 

lim an,(x) = a'(x) 
n'-+oo 

exists for all x in R. Such a subsequence can clearly be constructed, 
by the diagonal process, since we have shown in P3 above that the 
sequence an(x) is bounded. 

If we work with such a sequence n', then (2) becomes 

(3) lim fn'(x) = H(x) + [a'(x) - a'(x - 1)]11, x E R. 
n'-+ oo 

It is clear from the definition of fn(x) in (1) that 

(4) fn'+l(x) = L P(x,y)fn'(y), lfn(x)l :S 1, xeR. 
yeR 
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If we call 

lim fn·(x) = f'(x), 
n'-+ ao 

it is seen from ( 4) that 

(5) lim /n•+ 1(x) = 2: P(x,y)f'(y), xeR. 
n'-+ co yeB 

On the other hand, (2) gives 

fn+l(x) - fn(x) = [an+l(x) - an(x)]II - [an+l(x- 1) - an(x- 1)]II 
= [Pn+ 1(x - 1,0) - Pn+l(x,O)]II, 

and the last term tends to zero as n.- oo (by P7.6). 
Therefore 

lim fn•+l(x) = lim fn·(x) = f'(x), 
n'-+oo n'-+co 

so that (5) becomes 

(6) f'(x) = 2: P(x,y)f'(y), xeR. 
yeR 

Thusf'(x) is a bounded regular function. By either P13.1 or T24.1 it 
is then a constant, which we shall denote f'. 

The next step is to sum equation (3) over x = 1, 2, ... , r, where r 
is an arbitrary positive integer. The result is 

r 

(7) rf' = 2: H(x) + Ila'(r), r > 0. 
x=l 

Similarly, summing (3) over x = 0, -1, -2, ... , - r + 1, 
0 

(8) rf' = 2: H(x) - Ilcx'( -r), r > 0. 
x=-r+l 

At this point let us assume that limn-+oo an(x) does not exist for some 
type I random walk, at some point x0 in its state space R. If this is 
the case, then the random walk must have the following property: 
there exist two subsequences n' and n" of the positive integers such 
that the limits 

lim an.(x) = a'(x), lim an•(x) = a"(x) 
n'-+ co n"-+ oo 

both exist for every x in R, but such that 

(9) a'(x0) =I= a"(x0 ) 
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at least at one point x0 # 0 in R. (The origin is excluded since 
an(O) = 0 for each n.) In order to arrive at a contradiction, we shall 
apply the same argument which led to equations (7) and (8) to the 
sequence n", and call 

lim /n"(x) = f". 
n"-+ oo 

Now we subtract the n" -version of equation (7) from equation (7). 
This gives 

(10) r(f' - /") = II[a'(r) - a"(r)], r > 0. 

Similarly, equation (8) gives 

(11) r(f' - /") = - II[a'( -r) - a"( -r)], r > 0. 

Since II # 0, equations (9), (10), and (11) imply that/' # f"; this 
may be seen by setting r = x0 in ( 1 0) if x0 > 0; otherwise by setting 
r = - x0 in (11 ). Suppose now, as one may without loss of generality, 
that/' > f". Then equation (10) gives 

a'(r) ;::: ~ (/' - /"), r > 0, 

and therefore also 

(12) a'(r) +r a'(- r) ;::: A (/' _ /") > O, r > 0. 

But 
a'(r) + a'( -r) = lim [an(r) + an( -r)] 

n--+ oo 

which was shown to exist in P4, part (a). Therefore equation (12) 
implies 

(13) lim ! lim [an(r) + an( -r)] > 0, 
r .::;""T co r n-+ 00 

which contradicts P4. Thus we have proved 

PS For type I random walk 

lim an(x) = a(x) < oo exists for each x E R. 
n--+ oo 

The above proof of PS does not work for random walk of type II. 
Although everything runs smoothly until equation (13) above is 
obtained, this equation does not serve any useful purpose; it simply 
does not contradict P4, when the variance a2 is finite. Therefore we 
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must travel by a different route. Although it will lead to the desired 
result, it should be noted that it uses arguments which fail for type I 
random walk. Specifically, we shall need to use T18.1 which asserts 
that the ladder random variable Z of a random walk of type II has 
finite expected value. 

Our first goal is 

P6 If H 8 (x,y) is the hitting probability measure of a .finite, nonempty 
subset B C R for a random walk of type II, then both limits 

(a) 

(b) 

lim H 8 (x,y) = H 8 (- oo,y) 
x-+- co 

lim H 8 (x,y) = H 8 ( + oo,y) 
X-++ 00 

exist for every y in B. 

Proof: The foundations for this theorem were carefully laid in 
P24.7 in the last chapter. As in D24.1, let A denote the half-line 
A = [x I x > OJ. Without loss of generality we may assume that the 
set B of P6 is a subset of A. As a simple probability argument shows, 
the hitting probabilities of A and of B are then related, for x ::;; 0, by 

00 

(1) H 8 (x,y) = L HA(x,t)H8 (t,y), X::;; 0, y EB. 
t=l 

The formal proof may safely be omitted; it is based on the stopping 
timeT = min [n I n ;::: 1, Xn E A] in the obvious way. 

Now we recall from T 18.1 that type I I random walk has the property 
that 

E0 [Z] < oo, where Z = Xr· 

Thus we are in the classification (3) or equivalently (iii) in P24.7, 
which permits the conclusion 

00 

(2) yEA; L yA(y) = 1. 
X-+- co y=l 

Applying (2) to (1) one immediately has the existence of 
00 

lim H 8 (x,y) = L yA(t)H8 (t,y), yeB. 
x->-oo t=l 

This proves part (a) of P6, and to obtain part (b) it suffices to observe 
that if a random walk of type II is reversed, it remains a random walk 
oftype II. 
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As a simple consequence of P6 we record 

P7 For type II random walk, with B C R, 1 :S; !BI < oo, 

lim 2 Pn(x,t)HB(t,y) = t[HB(- oo,y) + HB( + oo,y)], y E R. 
n-+ 00 teR 

Proof: We need 

(1) lim Pn(x,y) = 0, x,yER, 
n-+oo 

which is P7.6, and 
00 

(2) lim 2 Pn(x,t) = 1/2 
n-+oo t=a 

for every x E R and every a in R. This is a very weak form of the 
rarely used one-dimensional Central Limit Theorem (P6.8). Com
bined with P6, equations (1) and (2) evidently yield P7 by a simple 
truncation argument: Choosing N > 0 large enough so that 

!HB(t,y) - HB(- oo,y)! < € for t :S; -N, 

!HB(t,y) - HB( + oo,y)l < € for t ~ N, 
N-1 

lim 2 Pn(x,t)HB(t,y) :S; lim 2 Pn(x,t) 
n-+oo teR n-+oo t= -N+l 

-N 

+ [HB(- oo,y) + €] lim 2 Pn(x,t) 
n-+oo t=- oo 

00 

+ [HB( + oo,y) + €] lim 2 Pn(x,t) 
n-+oo t=N 

= t[HB(- oo,y} + HB( + oo,y)] + €. 

An entirely similar under-estimate completes the proof of P7. 

Finally we apply P7 to P2, where we make the choice x = c. Thus 

2 Pn+l(c,t)Hc(t,O) = H0 (c,O) + an(c)Ilc(O,c). 
teR 

Letting n--+ oo, the limit on the left exists by P7, so that also an( c) must 
have a limit. But C = {O,c} is an arbitrary set insofar as c i= 0 is 
arbitrary. Since an(O) = 0 for each n, we have proved 

P8 For type II random walk, 

lim an(x) exists for every x in R. 
n-+oo 
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One may summarize PS and P8 and even P12.1 of Chapter III in 
the single statement that the potential kernel exists for every aperiodic 
recurrent random walk, regardless of dimension (remember, however, 
that d = 1 or 2 in view of T8.1 !). We might as well also include in 
this summary the equation 

2 P(x,y)a(y) - a(x) = S(x,O), xER, 
yeR 

which will later, in section 31, be used to characterize the potential 
kernel. Observe that the proof of this equation, given in P13.3, is 
available, without any modification whatever, for the one-dimensional 
case, now that we have PS and P8. 

Therefore we claim to have proved the following theorem. 

Tl If P(x,y) is the transition function of any aperiodic recurrent 
random walk (either of dimension one or two), then the limit 

n 

(a) A(x,y) = a(x - y) = lim 2 [Pk(O,O) - Pk(x,y)] < oo 
n~oo k=O 

exists for all pairs x andy in R. Moreover A(x,y) satisfies the equation 

(b) 2 P(x,t)A(t,y) - A(x,y) = S(x,y), x,yER. 
teR 

29. THE ASYMPTOTIC BEHAVIOR OF THE POTENTIAL KERNEL 

The results of this section are illustrated by the following examples 
which give an explicit formula for a(x) = A(x,O) in two special cases. 

El For simple random walk with P(0,1) = P(O, -1) = 1/2 one has, as 
shown in the proof of P6.6, 

a(x) = _!_ J" 1 - cos x8 d() = lxl, 
27T _,. 1 - cos () 

xER. 

This result will be typical of type II random walk (recurrent, aperiodic, 
d = 1, mean 0 and finite variance) in the sense that for every such random 
walk 

a(x) "' cixi as lxl ~ oo, 

where c is a positive constant. The value of c will be shown to be the 
reciprocal of a2 , as in fact it must be according to P28.4. We shall prove 
an even stronger result, in P1, concerning the asymptotic behavior of the 
differences a(x + 1) - a(x). 
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(As a harmless sort of amusement, note that the above integral represent
ing a(x) may be evaluated by a simple probabilistic argument. Applying 
T28.1 to P28.2 one obtains 

lim L Pn+ 1(x,t)Hc(t,O) = Hc(x,O) + [a(x) - a(x - 1)] Ilc(O,l), 
n- 00 tER 

where C is the set consisting of 0 and 1. But clearly Hc(x,O) = 1 for 
x ~ 0 and 0 otherwise, while Ilc (0,1) = 1/2, so that in view of P28.7 

{ 1ifx>0 
a(x) - a(x - 1) = 1 - 2Hc(x,O) = -1 if x:::;; 0. 

Since a(O) = 0, it follows that a(x) = lxl.) 

E2 The second example is a random walk we have encountered before, 
in E8.3 and E22.1, namely 

2 
P(O,O) = 1 - -• 

7T 

2 1 
P(O,x) = - 4 2 1 for x =f. 0. 

7T X -

Its characteristic function is 

</>(8) = 1 -lsin ;,. 

Thus it has infinite variance. Its potential kernel is 

• 2 (x8) 
a(x) = _!_ J" 1 - cos x8 d8 = ~ J" sm 2 d8 

27T -" I· 81 7T -" I . 81 sm 2 sm 2 

= ±[1 + _31 + _51 +,,, + 21 11 t]' X =f. 0, 
7T X -

The logarithmic behavior of a(x) is intimately connected with the fact that 
</>( 8) varies linearly with 181 near 8 = 0 and this of course is not typical of 
type I random walk ( a2 = oo) in general. What is typical, as we shall 
show, is the far weaker property that 

lim [a(x) - a(x + y)] = 0 for y E R. 
x-oo 

We start with type II random walk. That is by far the simplest 
case, most of the work having been done in the last section. But first 
we observe that T28.1, applied to P28.2, yields 

Pl lim L Pn+l(x,t)Hc(t,O) = Hc(x,O) + [a(x) - a(x - c)]Ilc(O,c) 
n-+ 00 teR 
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which is valid for every aperiodic recurrent random walk, regardless of 
dimension. Here C = {O,c}, c :f. 0. 

P2 For type II random walk 

lim [a(x + y) - a(x)] = Y2 , 
z-+ + oo a 

lim [a(x + y) - a(x)] = yER. 
%-+- 00 

Proof: P28.7 applied to P1 gives 

tHe(- oo,O) + tHe(+ oo,O) = He(x,O) + [a(x) - a(x - c)]lle(O,c). 

Letting first x--+ + oo, and then x--+ - oo, one obtains the two 
equations 

tHe(+ oo,O) - tHe(- oo,O) = lle(O,c) lim [a(x - c) - a(x)], 
X-++ 00 

tHe(- oo,O) - tHe(+ oo,O) = lle(O,c) lim [a(x - c) - a(x)]. 
X-+- 00 

They show that the limits in P2 exist, and that one is the negative of 
the other. (The point c being arbitrary, we set c = y :f. 0.) To 
evaluate these limits we call 

lim [a(x + 1) - a(x)] = a. 
X-++ co 

Then PZ is proved as soon as we show that a = (a2)- 1 • However, 
taking the Cesaro mean, i.e., writing for x > 0 

X 

a(x) = 2 [a(k) - a(k - 1)], 
k=1 

and proceeding in a similar way for x < 0, we find 

lim a(x) = lim a(x) = a. 
x-++OO X X-+-00 lxl 

Thus 

lim a(x) + a(- x) = 2a. 
lxl-+oo JxJ 

The last limit, however, was evaluated in P28.4, where it was shown 
to be 2a = 2( a2) - 1 • Thus a = ( a2 ) - 1 and P2 is proved. 

The case of type I random walk requires somewhat more delicate 
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tools. The properties of the potential kernel, described in the next 
three lemmas, will be crucial for the proof, in P8, that a(x) increases 
more slowly than a linear function of I xj. 

P3 For type I random walk 

lim a(x) = 0. 
lxl-> oo X 

Proof: P3 is an immediate consequence of T28.1 and P28.4. 

P4 For arbitrary recurrent aperiodic random walk and all x,y in R 

g<o>(x,y) = A(x,O) + A(O,y) - A(x,y), 
and 

a(x + y) ::::; a(x) + a(y). 

Proof: The formula for g<o>(x,y), defined in Dl0.1, was derived for 
two-dimensional random walk in P11.6. The same proof applies in 
general, as it required only information which is now in our possession 
even for one-dimensional random walk (all we need is contained in 
T28.1 and P1 ). The inequality in P4 follows from 

0 ::::; g<o>(x,- y) = a(x) + a(y) - a(x + y), y e R. 

PS lim [a(x + 1) + a(x - 1) - 2a(x)] = 0. 
lxl-> oo 

Proof: This lemma again is true in general, for every aperiodic 
recurrent random walk. But we shall only need it, and therefore only 
prove it, in the one-dimensional case. Using the definition of an(x), 
straightforward calculation gives 

an(x + 1) + an(x - 1) - 2an(x) 

=! fn 1 - cos 0 etxe[1 - cfon+l(O)] dO. 
7T -n 1 - cfo(O) 

But it was observed in the proof of P28.4 that [1 - cos 0][1 - cfo( 0)] -l 
is integrable on [ -7T,7T]. Therefore 

a(x + 1) + a(x - 1) - 2a(x) = ~ J~,. 11 -=._ c;to: etxe dO. 

The proof of P5 may now be completed by applying the Riemann 
Lebesgue Lemma P9.1. 

It is our aim to show that for type I random walk 

lim [a(x + 1) - a(x)] = 0. 
lxl-> oo 
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Now P3 is the weak (Cesaro) form of this result, and the next lemma 
will be recognized as a step in the direction required to strengthen P3. 

P6 For type I random walk 

(a) 

(b) 

lim [a(x) - a(x - 1)] :$; 0, 
%-++a:> 

lim [a(x) - a(x - 1)] ~ 0. 
%~- 00 

Proof: It will suffice to prove (a). For suppose every type I 
random walk obeys (a). If we reverse such a random walk it will still 
be of type I and its potential kernel will be a*(x) = a(- x). But if 
a*(x) satisfies (a), then a(x) is easily seen to satisfy (b). (Actually 
our method of proof is capable of giving both (a) and (b).) 

We define 

A(x) = a(x) - a(x - 1), 

The inequality of P4 can then be written 

X~ 1. 

(1) A(x + 1) + A(x + 2) + · · · + A(x + y) 
:$; A(1) + A{2) + · · · + A{y) 

whenever x ~ 1 andy ~ 1. According toPS, 

(2) lim [A(x + 1) - A(x)] = 0. 
J:rJ-><Xl 

In view of (2), letting x ~ + oo in ( 1) gives 

(3) y lim A(x) :$; A(1) + A(2) + · · · + A(y) 
%-+ + CX) 

for every y ~ 1. 
The last step consists of dividing both sides in (3) by y, and then 

letting y ~ + oo. Using P3 that leads to 

lim A(x) :$; lim ! [A(1) + A(2) + · · · + A(y)] = lim a(y) = 0, 
X->+<Xl 'JI->+<Xl y !J->+<Xl y 

which proves P6. 

The result of P6 looks suspiciously unsymmetric, unless of course 
both the upper and lower limits in P6 have the value zero. To show 
that this is indeed the case, we study the probability interpretation of 
P6. In P1 we shall take c = 1, so that C = {0,1}. Weal~ observe 
that 

lim L Pn+l(x,t)Hc(t,O) = JL(X) 
n->oo teR 
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is a non-negative constant, which we shall call p.. (If it depended on 
x it would be a nonconstant bounded regular function, which is im
possible. This argument should be familiar from P11.4). Now P1 
can be written in the form 

Hc(x,O) = p. - [a(x) - a(x - 1)]llc(O,c), 

and since llc(O,c) > 0 we get from P6 

P7 For type I random walk 

lim Hc(x,O) ~ p., 
%~00 z-..- oo 

Note that the limit of Hc(x,O) exists if and only if a(x) - a(x - 1) 
tends to zero as !xi- oo. We shall now establish the existence of 
this limit. 

P8 For type I random walk 

lim [a(x + y) - a(x)] = 0, 
lzl-+ oo 

yeR. 

Proof: It clearly suffices to prove P8 for the particular value of 
y = 1. But in view of the identity preceding P7 it is enough to show 
that both limits in P7 exist and are equal to p.. That will be done with 
the aid of T18.1, which is not really essential, and of the renewal 
theorem in the form of P24.7, which is essential. By T18.1, since 
a2 = oo, we know that at least one of the ladder random variables Z 
and - Z (defined in D18.1) has infinite expectation. We shall assume 
that E[Z] = + oo, and complete the proof only in this case. Con
sideration of the reversed random walk would then automatically take 
care of those random walks with E[Z] < oo but E[- Z] = oo. 

We use the notation of D24.1, just as in the proof of P28.6, with the 
trivial modification that A = [x I x ~ 0] instead of [x I x > 0]. 
Then we have 

00 

H(x) = .2; Hix,t)H(t), X< 0, 
t=O 

where 
H(x) = Hc(x,O), c = {0,1}. 

By P24.7 
00 

L Hix,t) = 1 for all x E R 
t=O 

and 
lim HA(x,t) = 0 for t ;;:: 0. 

z-+- ao 
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Hence 

lim H(x) ;;::; lim H(x). 
% .... -00 %-++co 

When this information is combined with P7 we get 

lim H(x) = p. = lim H(x); lim H(x) ;;::; p.. 
:r-+- co ,z.:;-:;:-co %-+ + 00 

Now there are two possibilities. Possibly E[- Z] = oo, in which 
case the present argument may be repeated for the right half-line to 
show that 

lim H(x) = lim H(x) = p.. 
% ... -00 % ... + 00 

The other possibility is that E[- Z] < oo. But in this case one can 
also employ the renewal theorem, in fact just as we did in the proof of 
P28.6, to conclude that 

lim H(x) exists. 
:r-+ + QO 

Finally, this limit cannot exist unless it is equal to the limit inferior 
which we just showed to be p.. That completes the proof of P8. 

P8 should be compared to P12.2 in Chapter III where, by much 
simpler methods, we obtained exactly the same result as P8 for 
arbitrary aperiodic random walk in the plane. Combining Pl2.2 with 
P8 and P2 we therefore have 

Tl For aperiodic recurrent random walk there are two possibilities. 
(1) The dimension d = 2, or d = 1 but a 2 = oo. In this case 

lim [a(x + y) - a(x)] = 0, yeR. 
lzl-+ oo 

(2) The dimension d = 1 and a 2 < oo, in which case 

lim [a(x + y) - a(x)] = ± ~· 
z-+ :1: oo a 

yeR. 

Thus, at least from our present vantage point, there is no difference 
at all between the two-dimensional random walk and the one-dimen
sional random walk with a2 = oo. In both cases it looks, intuitively, 
as though the state space R is "large" enough so that the conclusion 
of part (1) of T1 holds. Thus the "size" of R depends on the 
transition probabilities-if a2 < oo, the set of integers R is not so 
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"large" as if a2 = oo. This phenomenon is already familiar from the 
renewal theorem. 

In the next section we shall encounter one single anomaly which 
does set one-dimensional random walk, with a2 = oo, apart from two
dimensional random walk; for we shall look into the matter of finding 
explicit formulas for the hitting probabilities HA(x,y) and for the 
Green function gA(x,y) of a finite set A. For two-dimensional 
random walk that was done in Chapter III, using in an essential way 
one more property of the potential kernel, namely (P11. 7) the property 
that 

a(x) > 0 for x =1= 0. 

That, as we shall see, is simply not true for every one-dimensional 
aperiodic recurrent random walk. 

30. HITTING PROBABILITIES AND THE GREEN FUNCTION 

As we remarked at the end of the last section, serious difficulties are 
in store concerning those properties of recurrent random walk that 
depend on the positivity of the potential kernel a(x). Therefore we 
shall first concentrate on some aspects of the theory that are more 
general. Very little beyond T29.1 of the last section is required to 
prove 

Tl Consider recurrent aperiodic random walk, and a subset A C R, 
with 1 s; IAI < oo. Then either 

(1) d = 2, or d = 1 and a 2 == oo, in which case 

lim HA(x,y) and lim gix,y) 
lxl-+ oo lxl-+ oo 

both exist, the former limit for each y in A and the latter for each y E R. 
Or 

(2) d = 1 and a 2 < oo, in which case the four limits 

lim HA(x,y), lim HA(x,y), 
X-++ co X-+- oo 

lim gix,y), lim gix,y) 
X-++ co X-+- oo 

all exist, but the limits as x ~ + oo and as x ~ - oo are in general not 
the same. 
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Proof: The proof of T1 is based on 

Pl For every nonempty finite set A, 

HA(x,y) = p,A(y) + L A(x,t)[IIA(t,y) - S(t,y)], 
teA 

xeR, yeA. 

Pl follows from P28.1 together with T28.1. Here p,A(y) is of course 

f'A(Y) = lim L Pn+l(x,t)HA(t,y), 
n-+ co teR 

which is independent of x, being a bounded regular function of x for 
eachy in R. As far as the hitting probabilities HA(x,y) are concerned, 
the proof of T1 is almost complete. In case (1) the proof in T14.1 
carries over verbatim, using of course part (1) of T29.1. In case (2) 
we get 

lim HA(x,y) = #LA(Y) + lim L a(x ,- t)[IIA(t,y) - S(t,y)] 
z-+ +co z-+ +co teA 

= p,A(y) + lim L [a(x - t) - a(x)][IIA(t,y) - S(t,y)], 
Z-+ +co teA 

using P11.2, to the effect that 

L [IIA(t,y) - S(t,y)] = 0, yeA. 
teA 

Now T29.1 implies 

lim HA(x,y) = p,A(y) - 1
2 L t[IIA(t,y) - S(t,y)], 

z-+ +co a teA 

and of course a similar argument proves the existence of the limit as 
X~ -00. 

Finally, the simplest proof of the part of T1 which concerns the 
Green function comes from 

X e R - A, y e R - A, 

where A u y is the set A with the point y adjoined. (When y e A 
there is nothing to prove as gA(x,y) = 0.) In this way that part of T1 
which has already been proved serves to complete the proof of Tl. 

T1 gains in interest by comparison with P25.3, where the hitting 
probabilities HA(x,y) of a finite set A were seen to possess limits even 
in the transient case. There the limit was zero, except in the case 
d = 1 with finite mean. But combined with our present result in Tl 
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we have actually gained insight of rather impressive proportions. 
Together these theorems describe intuitively plausible, but far from 
obvious, regularity properties shared by every random walk (the 
aperiodicity condition being hardly a restriction, but rather an essential 
part of the proper formulation of such theorems). Only in the last 
section of this chapter, in T32.1, will we encounter another general 
regularity theorem of equal or even greater depth. 

Now we pass at once to a curious phenomenon hinted at a little 
earlier, namely the classification of aperiodic recurrent random walk 
according to whether 

a(x) > 0 for all x =F 0 

or not. The somewhat surprising result is 

P2 All aperiodic recurrent random walks have the property that 
a(x) > 0 for every x =F 0 with one single exception. This exception is 
left- or right-continuous random walk whose variance a 2 is infinite. 

In the left-continuous case with a 2 = oo 

a(x) = 0 for x ~ 0 and a(x) > 0 for x < 0, 

and in the right-continuous case the situation is of course reversed. 

Proof: First we suppose the random walk to be recurrent and left 
continuous, with a2 = oo. If A = {0,1}, then by P29.1 or P1 

HA(x,O) = fLiO) + [a(x - 1) - a(x)]Ili0,1). 

Clearly HA(x,O) = 0 for x > 0 (the random walk can move only one 
step to the left at one time). If we now sum over x = 1, 2, ... , r, we 
obtain 

r ~ 0. 

Dividing by r, and letting r---* + oo, we get 

0 S fLiO) = Ili0,1) lim a(r) = 0 
r-+ +co r 

by T29.1. Hence a(r) = 0 for every r > 0. On the other hand, 
clearly Hix,O) > 0 for every x s 0, so that 

0 < a(x - 1) - a(x), X S 0, 

which implies that a(x) > 0 when x < 0. The right continuous random 
walk receives the same treatment. 
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To complete the proof of P2 it will now suffice to consider a recurrent 
aperiodic one-dimensional-random walk with the property that a( c) = 0 
for some c > 0, and to prove that this random walk must be left 
continuous with a2 = oo. (Two-dimensional random walk need not 
be considered here since it has a(x) > 0 for all x in R according to 
P11.7.) This is done by choosing A = {O,c}. In 

HA(x,O) = 1-'iO) + [a(x - c) - a(x)]TIA(O,c) 

we set x = c, so that 1-'A(O) = 0 because 

a(c) = 0 and HA(c,O) = 0. 

But in that case 

HA(2c,O) = -a(2c)TIA(O,c) :::;; 0, 

which is only possible if a(2c) = 0. Continuing this argument in the 
obvious manner one concludes that 

a(nc) = 0, n = 1, 2, .... 

Hence 

lim a(x) = 0 
x.:;-:t"oo X 

which shows (by T29.1) that a2 = oo. 
Now it remains only to show that the present random walk must be 

left continuous, in addition to having a2 = oo. To do so observe 
that, using the identity for g<o>(x,y) in P29.4, 

g<o>(c,- c) = a( c) + a( c) - a(2c) = 0. 

That can happen only if there is no finite" path" of positive probability 
from c to - c, which does not pass through the origin. More precisely, 
it implies that every product of the form 

P(c,x1 )P(xl>x2 ) • • • P(xm- c) = 0 

when x1 =F 0 fori = 1, 2, ... , n. This is a property ofleft-continuous 
random walk, and indeed it characterizes left-continuous random 
walk. For suppose P(O,a) > 0 for some a < -1. Then there is a 
path from c to + 1, not going through zero, another (consisting of one 
step) from 1 to 1 + a, and a third from 1 + a to -c. The existence 
of the first and third of these paths was verified in the proof of P18.8. 

Since left- and right-continuous random walk with mean zero and 
finite variance is perfectly well behaved as far as the positivity of a(x) 
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is concerned, one might ask if it has other interesting properties. 
Indeed there is a peculiar property of the potential kernel which 
characterizes left- and right-continuous random walk with mean 0 
and a 2 < oo. It will be useful in the proof of T31.1. 

P3 One-dimensional aperiodic recurrent random walk has the 
property that 

a(x) = ax for all x ;::: 0, where a is a positive constant, 

if and only if the random walk is left continuous with a2 = a- 1• 

Proof: Suppose first that a(x) = ax for x ;::: 0, where a > 0. 
Then a2 = a- 1 by T29.1. Now let A be the set A = { -1,0}. One 
calculates easily that 

Hix, -1) = JLA( -1) + [a(x) - a(x + 1)]ITA(O, -1), 

Setting x = 0 gives 

JLA(-1) = a(1)ITi0,-1) = afli0,-1). 
Hence 

HA(x, -1) = [a + ax - a(x + 1)]ITA(O, -1) = 0 

xER. 

for every x ;::: 1. Thus, starting at a point x 0 = x ;::: 1, the random 
walk can hit the set A only at the point 0. There is no need to formalize 
the obvious argument by which one can now conclude that the random 
walk must be left continuous. 

Conversely, suppose that we are given a left-continuous random 
walk with finite variance a2 • By the same argument as before, one gets 

Hix,-1) = [a(1) + a(x)- a(x + 1)]ITA(0,-1), X ;::: 1. 

But now we know that Hix, -1) = 0 when x ;::: 0, so that 

a(x + 1) - a(x) = a(1) 

when x ;::: 0, or a(x) = xa(1) = xa. Thus a(x) = ax for x ;::: 0, and 
since the variance is finite a = (a2}- 1 according to T29.1. 

Remark: P2 and P3 are actually manifestations of a much more 
general phenomenon: it can be shown (see problem 8) that the potential 
kernel determines the random walk. In other words, two aperiodic 
recurrent random walks with the same potential kernel A(x,y) must 
have the same transition function P(x,y). (In problem 13 of Chapter 
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VI, the same observation was made for transient random walk, which 
is determined by its Green function G(x,y).) 

The remainder of this section will be devoted to some interesting 
but completely straightforward consequences of P1 and P2. First we 
shall show how one can calculate H 8 (x,y) for left-continuous random 
walk with a2 = oo. Given a set B with IBI = n, we order its elements 

bl < b2 < ... < bn. 
Then 

n 

HB(xA) = f:LB(bk) + 2 a(x - bj)[ITB(bj,bk) - o(j,k)] 
j= 1 

for x E R, k = 1, 2, ... , n. When IBI = 1, there is no problem. 
When IBI = n > 1, set x = bi. Then 

n 

o(i,k) = HB(bi,bk) = f:LB(bk) + 2 a(bi - bj)[ITB(bj,bk) - o(j,k)], 
j=i+l 

for 1 :::;; i, k :::;; n. Setting i = k = n gives 

f:LB(bn) = 1. 

But from the definition of f:L8 (y) as 

f:L8 (y) = lim 2 Pn+l(x,t)H8 (t,y) 
n-.oo tt:R 

it is clear that 

2 f:LB(y) = 1, 
YEB 

Now it is very easy to use 

n 

o(i,k) = o(n,k) + 2 a(bi - bj)[IT 8 (bjA) - o(j,k)], 1 ::s; i,k ::s; n, 
1=1+1 

to determine the matrix IT 8 in terms of the values of a(x) when xis a 
difference of points in B. And, of course, once IT 8 and f:LB are known, 
we have an explicit formula for H 8 (x,y) from Pl. 

Having thus dismissed left- and right-continuous random walk with 
a2 = oo, we are again ready to copy results from Chapter III insofar 
as possible. In all remaining cases-this is the crucial observation
the matrix operator A(x,y), with x and y restricted to a set B with 
2 ::::;; IBI < oo, has an inverse. This was proved in P11.8 and the 
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proof applies here too, as it depended only on the fact that a(x) > 0 
for x =f. 0. As in Dll.3 we call this inverse K 8 (x,y) and denote 

K 8 (x·) = L K 8 (x,y), KB( ·y) = L K 8 (x,y) 
yeB xeB 

K 8 (- ·) = L K 8 (x· ), x,yEB. 
xeB 

With this notation we can imitate Tll.l and T14.2 to obtain 

T2 For aperiodic recurrent one-dimensional random walk with 
a2 < oo, or with a2 = oo, but in the latter case neither left nor right 
continuous, and 2 ::::;; IBI < oo 

K 8 (x· )K8 ( ·y) 
(a) ll 8 (x,y) = S(x,y) + K 8 (x,y) - Kn( . . ) ' x,y E B, 

_ K 8 ( ·y) * _ K 8 (x·) 
(b) JLn(Y) - Kn( . . )' JLn (x) - Kn( . . )' x,y E B, 

(c) H 8 (x,y) = JLn(Y) + L A(x,t)[ll8 (t,y) - S(t,y)], 
teB 

xER, yEB, 

(d) 
1 

gn(x,y) = -A(x,y) - Kn( .. ) 

+ L JLn(s)A(s,y) + L A(x,t)JL8 *(t) 
seB teB 

+ L L A(x,t)[ll8 (t,s) - S(t,s)]A(s,y), 
seB teB 

x,yER. 

The proofs of these statements in Chapter III require no modifica
tion whatsoever. The most difficult proof was that of (d) in T14.2. 
There we were extremely careful 2 to refrain from using any asymptotic 
properties of a(x) beyond the boundedness of the function A(x,t) -
A(O,t) for each fixed x, which in the present context follows from 
T29.1. The proof further made use of the equation 

L P(x,y)a(y) - a(x) = S(x,O) 
yeR 

which is also available to us in the one-dimensional case, according to 
T28.1. 

Significant differences between the cases a2 = oo and a2 < oo 
manifest themselves in the asymptotic behavior of the functions in T2. 

2 Cf. footnote (7) of Ch. III. 
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For example, when a2 = oo (left- and right-continuous random walk 
being excluded) 

(1) lim H8 (x,y) = P.n(y), yEB, 
lxl-+ oo 

(2) lim gn(x,y) = L 11-n(s)A(s,y) - K (1 .. )' 
lxl-+ oo seB B 

yER. 

When a 2 < oo, on the other hand, the limits of Hn andgB as x~ + oo 
and as x ~ - oo turn out to be a little more complicated. Although 
they are easy to calculate on the basis of T2 and the known asymptotic 
behavior of a(x), the remarkable thing is that (1) and (2) continue to 
hold in a slightly modified form. Let us call 

(3) Limf(x) = t lim f(x) + t lim f(x), 
:t X-++ oo :t-+- co 

for a function f(x) on the integers with the property that the two 
ordinary limits exist. Then it may easily be verified that (1) and (2) 
continue to hold when a 2 < oo, provided one replaces the limits by 
Lim as defined in (3). 

Now a few words concerning the notion of capacity, of the logarith
mic type, which was sketched at the end of section 14 in Chapter III. 
One can dismiss the left- and right-continuous random walk with 
a 2 = oo with the statement that it does not give rise to a nontrivial 
potential theory. (According to any natural definition of capacity at 
all, three of which were discussed in Chapter III, the capacity of any 
finite set would be zero for left- or right-continuous random walk.) 

It should be clear that for every other one-dimensional random walk 
with a 2 = oo the associated potential theory is exactly of the same 
type as that sketched in Chapter III. 

Finally, consider the case when a 2 < oo. If the capacity of a 
finite set B is defined by 

c (B) = 0 if I B I = 1' C(B) = K) .. ) if IBI > 1, 

a significant difference appears in the relation between capacity and 
the asymptotic behavior of the Green function. While 

C(B) = lim [a(x) - gn(x,oo)] 
lxl-+ oo 

when d = 2, and when d = 1 and a2 = oo, one gets in the cased = 1, 
a 2 < 00 

C(B) = Lim [a(x) - Lim gn(x,y)]. 
X ll 
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This exposition of the potential theory was kept quite brief for 
several reasons. First of all it is not clear why one should set any 
store by formal generalizations from classical potential theory under 
the pretext of studying probability theory. (Logarithmic capacity 
does not have as simple a probability interpretation as capacity for 
transient random walk. See problems 9 and 10 at the end of the 
chapter.) Secondly, according to the general plan formulated at the 
beginning of Chapter III, we were going to study stopping times, and 
in particular the hitting time T 8 for a finite subset of the state space. 
With T2, and its counterpart in Chapter III, this problem is in a sense 
solved. But much more important than the actual explicit solution 
are the methods which were developed on the way. In particular the 
proof of part (d) of T2 was quite difficult. The reader who con
scientiously traced it back to its origins in Chapter III should be 
somewhat reluctant to leave things as they are. The explicit formula 
for g8 was obtained by solving the equation 

L P(x,t)g8 (t,y) = H8 (x,y), xER- B, yEB. 
teR 

By the substitution 

u(t) = g8 (x,t) + A(x,t), 

this equation was reduced to 

L u(t)P(t,y) - u(y) = HA(x,y), yER, 
teR 

which is a special case of Poisson's equation 

Pf(x) - f(x) = rp(x), xER, rp ;:: 0 on R. 

The theory of Poisson's equation, however, as developed in P13.3 and 
T28.1 is quite crude, and was developed before we could anticipate 
what demands would be made on it in the future. 

This theory-concerned with the existence and uniqueness of non
negative solutions to Poisson's equation, will be vastly improved in the 
next section. In the course of this improvement we shall use only the 
basic results of this chapter-namely those concerning the existence 
and asymptotic behavior of the potential kernel. In short we shall 
use only T28.1, T29.1, P2, and P3. Thus the reader may, without 
fear of circular reasoning, use the results of the next section to obtain 
a simplified proof of T2. 
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31. THE UNIQUENESS OF THE POTENTIAL KERNEL 

In the last chapter, example E27.4, we studied the equation 

2: P(x,y)f(y) = f(x), X# 0, 
y¢0 

with P(x,y) the transition function of an aperiodic recurrent random 
walk in the plane. It was shown that all the non-negative solutions 
are multiples of the potential kernel a(x) = A(x,O). At that time 
little information was available concerning the one-dimensional re
current random walk. Now, however, it will be relatively easy to 
extend this result to arbitrary aperiodic recurrent random walk. In 
so doing we shall again discover a sharp distinction between the case 
of dimension one with finite variance on one hand, and all other cases 
on the other. 

We need a preliminary lemma, which simply exhibits certain 
solutions, without making any claims as to uniqueness. 

Pl Recurrent aperiodic random walk. If d = 2 or if d = 1 and 
a 2 = oo, then a(x) is a non-negative solution of 

(1) 2 P(x,y)f(y) - f(x) = 0, X oft 0. 
y¢0 

If d = 1 and a 2 < oo, then the function f(x) = a(x) + ax is a non
negative solution of ( 1) if and only if the real parameter a lies in the 
interval - ( a 2)- 1 :::;; a :::;; ( a 2)- 1 • 

Proof: The first part of P1 is simply a restatement of part (b) of 
T28.1. The second part requires proof. In view of T28.1, a(x) 
satisfies equation (1). But also f(x) = x satisfies (1)-this is clear 
since recurrent random walk with a2 < oo has mean zero. Thus 
f(x) = a(x) + ax satisfies (1), but it is not necessarily non-negative on 
R - {0}, as required. Now the condition that lal :::;; (a2)- 1 is 
necessary, in view of T29.1, for if we wantf(x) ~ 0 we must have 

1. a(x) + ax 1 0 1m = 2 +a~ , 
x-+ + oo x a 

lim a(x) + ax = 12 - a ~ 0, 
x-+- oo -x a 
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which implies that lal :;; (a2)- 1 . To prove sufficiency, suppose that 
lal :;; (a2)- 1 • We know that 

0 :;; g{o)(x,y) = a(x) + a(-y) - a(x - y). 

Using T29.1 to let y--+ + oo andy--+ - oo, we obtain 

X 
0 :;; a(x) + 2 , 

a 

X 
0 :;; a(x) - 2 , 

a 
XER. 

Since these functions are non-negative, so is a(x) + ax whenever 
lal :;; (a2)-1. 

We are now ready to prove uniqueness, which constitutes a 
considerably more delicate task. 

P2 The non-negative solutions of (1) exhibited in P1 are the only ones. 

Proof: The two-dimensional case is left out, having been settled in 
E27.4, but the proof for the one-dimensional case will nevertheless 
parallel closely that in E27.4. Consequently it will be convenient to 
adopt the notation in D27.4 and P27.3. At first one is tempted to let 
Q(x,y) = P(x,y), restricted to x andy in R - {0}. Then the count
able set S in P27.3 would be S = R - {0}. But this is not a good 
idea, since g{o)(x,y) may fail to be positive for some x or some y in 
R - {0}. Instead we shall choose S in a slightly more elaborate 
fashion, which will greatly simplify the remainder of the proof. 

Given a solution h(x) ~ 0 (but not identically zero) on R - {0} of 

(1) L P(x,y)h(y) = h(x), X i= 0, 
y;tO 

we define 
S = [x I x E R - {0}, h(x) > OJ. 

The fact that the choice of S depends on h(x) will cause no incon
venience. Fu'rthermore there are really only three possibilities. 
Either S = R - {0}, or if this is false, then S must be either the half
line [x I x > OJ or the half-line [x I x < OJ. That is easily verified, 
for suppose that h(x0 ) > 0, for some x0 E R - {0}. Iteration of (1) 
giVes 

(2) L Qn(x,y)h(y) = h(x), X i= 0, 
y;tO 

if Q(x,y) is P(x,y) restricted to R - {0}. Thus h(x0 ) > 0 implies 
that h(y) > 0 whenever g{ 0 )(y,x0 ) > 0, but this is certainly true of ally 
which have the same sign as x0 (by a simple combinatorial argument, 
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familiar from the proof of Pl8.8). This observation verifies our 
claim that Sis either a half-line, or all of R - {0}. Let us now suppose 
that S is a half-line, say the positive one. Then, as we just saw, it 
follows that 

g<0 l(x,y) = 0 when x < 0, y > 0, 

and in particular 

(3) P(x,y) = 0 when x < 0, y > 0, 

as could have been observed directly from (1). This state of affairs 
simplifies matters considerably. We can now define, in all cases (S 
being either a half-line or all of R -{0}), 

Q(x,y) = Q1(x,y) = P(x,y), Q0(x,y) = 8(x,y), x,y E S, 

Qn+l(x,y) = '2: Qn(x,t)Q(t,y), x,y E S, n ;::: 0, 
tes 

and finally 
00 

g(x,y) = '2: Qn(x,y), x,yES, 
n=O 

being sure that 

(4) 

(5) 

g(x,y) > 0 for x,y E S, 

g(x,y) = g<0 l(x,y) for x,y E S. 

Next we define the transient kernel 

Qh(x y) = Q(x,y)h(y) 
' h(x) ' 

x,yES, 

its iterates Qnh(x,y), and its Green function 

(6) 

and proceed along the lines of P27.3. But it is convenient at this 
point to separate the argument into two cases, according as a2 = oo 
or a 2 < 00. 

When a 2 = oo we conclude from (5) and from T29.1 that 

(7) 1. g(x,y) 1. g<0 l(x,y) 
lm -- = lm 

IYI-+oo g(~,y) IYI-+oo g{O}(~,y) 

= lim a(x) + a( -y) - a(x- y) = a(x), 
IYI-+oo a(~)+ a(-y)- a(~- y) a(~) 
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where g is an arbitrary point in S. Forgetting for the moment the 
unpleasant possibility that a(g) = 0, we see that, in view of (5), (7), 
and P1, all the hypotheses in P27.3 are satisfied. Thus we are able 
to conclude that h(x) is a multiple of a(x), which proves P2 when 
a2 = oo, provided we were able to choose g so that a( g) > 0. Suppose 
now that g > 0 and a(g) = 0 (the case g < 0 receives the same 
treatment). This implies, in view of P30.2, that the random walk is 
left continuous. Now either S = R - {0}, in which case we can 
modify (7) by choosing g < 0 so that a( g) > 0. Otherwise S = 

[xi'x >0], but that is impossible, since (3) gives P( -1,n) = 0 for 
n > 0, whereas left continuity together with a2 = oo implies P( -1,n) > 0 
for arbitrarily large n. Thus the proof of P2 is complete when a2 = oo 

When a2 < oo we cannot hope to quote P27.3 verbatim, as it deals 
only with cases where there is a unique solution. But it is easy enough 
to retrace the steps in the proof of P27 .3 until we come to the crucial 
argument which begins with equation ( 4 ), namely 

(8) ( 1 1. "" gh(x,y) ( ) 
ex)= = 1m L ~(i:. )YnY· 

n-+oo yeS g 5>Y 

By the same compactness argument used there and m E27.4 and 
E27.5, equation (8) yields the conclusion that 

(9) 1 = uh(x) + lim g:(x,y) y(- oo) 
1J-+- 00 g (g,y) 

1. gh(x,y) ( ) 
+ liD ~(i:. ) y + 00 , 

Y'"' + oo g l,,y 
xES. 

Here uh(x) is a Qh potential, and of course only one of the two limits 
will be present if S is a half-line instead of all of R - {0}. (This 
situation can occur in the case of symmetric simple random walk.) 
The limits in (9) are, by a calculation based on T29.1 applied to 
equation (6), 

(10) xES. 

Again we first ignore the possibility that 

As may be seen by applying P1 to (10), equation (9) represents the Qh
regular function e(x) = 1 as a Qh-potential plus two Qh-regular 
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functions. By the Riesz decomposition theorem (T27 .1) the potential 
must be zero. Substituting (10) into (9), and multiplying (9) through 
by h(x) we find 

h(x) = y(- oo) a2a~~i) _ g [a2a(x) - x] 

h(g) 2 
+ y( + oo) a2a(g) + g [a a(x) + x], xeS. 

This shows that every regular function h(x) is a linear combination of 
a(x) and x, which is just what we wanted to prove! 

The proof of P2 will now be completed by eliminating the alarming 
possibility that equation (9) does not make sense because one of the 
denominators a2a(g) ± g in (10) vanishes. According to P30.3 of 
the last section, it is only left- or right-continuous random walk that 
could cause trouble. For every other random walk one can choose 
g so that a2a(g) - lgl =1= 0. Therefore we shall consider all the 
different possibilities separately. 

(a) Suppose the random walk is both left and right continuous. 
Then 0 < P(0,1) = P(O, -1) = [1 - P(0,0)]/2 ::; 1/2. But in this 
very simple case P2 can be verified directly. 

(b) Suppose the random walk is left but not right continuous. 
Then there are several possibilities concerning the set S. If 
S = R - {0} or S = [xI x < 0] we may choose a negative value of g, 
such that, according to P30.3, both a2a(g) + g and a 2a(g) - g are 
non-zero. Finally there is the case S = [x I x > 0]. But then an 
examination of equation ( 1) shows that this case cannot arise; 
equation (1) implies that if h(x) > 0 for x > 0, then h(x) > 0 for all x. 
Thus case (b) is disposed of. 

(c) The case of right- but not left-continuous random walk receives 
the same treatment as (b) and thus the proof of P2 is complete. We 
summarize P1 and P2 as 

Tl If P(x,y) is the transition function of aperiodic recurrent random 
walk, then the non-negative solutions of 

h(x) = 2 P(x,y)h(y), X =/= 0, 
Y¢0 

are multiples of 

(1) a(x) if d = 2 or d = 1 and a2 = oo, 

(2) a(x) + ax, where la2al ::; 1, if d = 1 and a2 < oo. 
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For many applications it is important to modify Tl to give informa
tion about potentials, i.e., about non-negative solutions of 

2: P(x,y)f(y) - f(x) = 8(x,O), xER, 
yeR 

or, more generally, about functions f(x) ~ 0 on R such that 

Pf(x) - f(x) = ifi(x), xER, 
with 

ifi(x) = 0 when x E R - A. 

This reformulation is accomplished by means of a minimum principle 
which is the recurrent analogue of the maximum principle for transient 
random walk in part (a) of P25.9 in Chapter VI. 

T2 Suppose that P(x,y) is the transition function of aperiodic 
recurrent random walk, that f(x) ~ 0 on R, and that 

2: P(x,y)f(y) - f(x) ~ 0 on R - A, 
yeR 

where A is a given subset of R. Then 

f(x) ~ inff(t), 
teA 

XER. 

Proof: Let Q(x,y) = P(x,y) when x,y are in R - A, and let 
Qn(x,y) be the iterates of the transient kernel Q defined on the set 
S = R - A. (Q is a transient kernel if, as we may assume, the set A 
is nonempty, since the original random walk is recurrent.) Observe 
that f(x) is excessive, relative to Q on S, because 

(1) f(x) - L Q(x,y)f(y) ~ L P(x,t)f(t) = w(x) ~ 0, XE 8. 
yeS teA 

Proceeding as in the proof of the Riesz decomposition theorem, as one 
may since Pf - f ~ 0 on S, one iterates the application of Q to ( 1) 
n times to obtain 

(2) f(x) - '2: Qn+l(x,y)f(y) ~ '2: [Qo(x,y) + · · · + Qn(x,y)]w(y). 
yeS yeS 

If we call 
<X) 

g(x,y) = 2: Qn(x,y), x,y E S, 
n=O 

the right-hand side in (2) has the limit, as n-+ oo, 

(3) 2 g(x,y)w(y) = 2: 2 g(x,y)P(y,t)f(t) = 2 HA(x,t)f(t). 
yeS yeS teA teA 
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Here HA(x,t) is of course the hitting probability measure of the set A, 
for the random walk given by P(x,y) on R. Now it follows from (2) 
that 

f(x) ;;:: L HA(x,t)f(t) 
teA 

;;:: [inff(t)] L HA(x,t) = inff(t), 
teA teA teA 

XES. 

That proves T2. We shall actually use only the very special case 
when the set A is a single point. Nevertheless the full strength of T2 
is indispensable in developing further the logarithmic type potential 
theory which was sketched at the end of the last section. 

Letting A = {0} in T2 the following extension of T1 is immediate 

PJ The non-negative solutions of 

(1) L P(x,y)f(y) - f(x) = S(x,O), xER 
yeB 

are exactly the following functions: if d = 2 or if d = 1 and a 2 = oo, 
then 

f(x) = a(x) + c, where c ;;:: 0; 

if d = 1 and a 2 < oo, then 

f(x) = a(x) + ax + c 

where -(a2)- 1 :s; a :s; (a2)- 1 and c ;;:: 0. 

Proof: In view of T2 every non-negative solution f(x) of (1) 
assumes its minimum at the origin. Letting h(x) = f(x) - f(O), it is 
clear that h(x) ;;:: 0 and 

L P(x,y)h(y) - h(x) = 0, X'# 0. 
l!¢0 

Hence h(x) must be a constant multiple of the solutions given in Tl. 
Finally, this multiplicative constant is determined by use of part (b) 
of T28.1. 

The result of P3 gives an analytic characterization of the potential 
kernel a(x)-with the exception of the case of finite variance. There 
an additional requirement is needed; for instance, a symmetry con
dition such as f(- x) ,.., f(x) as x--').- + oo will serve to pick out a(x) 
from the one-parameter family of solutions in P3. It is easy to 
extend P3 to a larger class of potentials. 
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T3 When P(x,y) is aperiodic and recurrent, let A C R, 1 ~ lA I < oo, 
1/J = 0 on R - A, f <::: 0 on R, and suppose that 

(1) 

Then 

Pf(x) - f(x) = 1/J(x) ~ 0, xeR. 

f(x) = ,2: A(x,y)I/J(y) + c1 when d = 2 or d = 1 with a 2 = oo, 
yeA 

and 

f(x) = ,2: A(x,y)I/J(y) + c2x + c3 when d = 1 with a2 < oo. 
yeA 

Here c1 , c2 , c3 are constants satisfying 

c1 + min ,2: A(x,y)I/J(y) 2: 0, 
xeA yeA 

a2 lc21 ~ ,2: 1/J(x), c3 + min [.2 A(x,y)I/J(y) + c2x] 2: 0. 
xeA xeA yeA 

Conversely every f(x) of this form is non-negative and satisfies (1). 

Proof: If 

g(x) = ,2: A(x,t)I/J(t), ,2: 1/J(x) = c, 
teR xeA 

then, according to T29.1, 

lim [g(x) - ca(x)] = 0 when d = 2 or d = 1 with a2 = oo, 
jzj-+CO 

lim [g(x) - ca(x)] = + 1
2 2 ti/J(t) when d = 1 with a2 < oo. 

x-+ ±"' a teA 

In either case g(x) - ca(x) is bounded. By T28.1, 

h(x) = f(x) + ca(x) - g(x) + y 

is then a non-negative solution of 

Ph(x) - h(x) = d3(x,O), 

provided Pf(x) - f(x) = 1/J(x) and y is a sufficiently large constant. 
Consequently the problem is reduced to that of finding h(x), which 
may be done using P3. When d = 2 or d = 1 with a2 = oo, 
h(x) = ca(x) + constant, so that 

f(x) = h(x) - ca(x) + g(x) - y = ,2: A(x,t)I/J(t) + constant. 
teA 
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When d = 1 with a 2 < oo, one obtains 

f(x) = L A(x,t)if;(t) + ax + constant, 
teA 

It is easily verified that the only possible values of the constants c1 , c2 , c3 

are those given in T3. 

One can extend T3 without difficulty to hold for charges if;(x) whose 
support is an infinite subset A of R or even all of R, but only if if; is 
a-integrable, i.e., if .LteB a(x - t)lif;(t)l < oo for x E R. To show 
that one cannot hope for much more, consider the example 

El Two-dimensional simple random walk, where we write 

P(O z) _ {! for z = 1, -1, i, -i, 
' - 0 for all other z E R. 

Let 
f(z) = IRe (z)l, A = [z I Re (z) = 0]. 

Then 

2 P(z,,>Jm - f(z) = 1/J(z), 
teR 

where 

{-!for ze A 
1/J(z) = 0 for z E R - A. 

These facts are easily checked. Now P3 or T3, if valid in this case, would 
give 

f(z) = t 2 A(z,,) 
teA 

which is false, the sum on the right being divergent since 

2 
A(O,z) ,.., - In lzl as lzl- oo. 

71' 

T3 shows that, when d = 2 or d = 1 with a2 = oo, the potential 
theory sketched in sections 30 and 14 is the "correct" and only 
analogue of classical logarithmic potential theory. However, when 
d = 1 with a2 < oo, P3 and T3 show that there is a whole one 
parameter family of different potential theories; for each a, every 
finite subset B of R will have a different equilibrium charge, capacity, 
and so forth. Their properties will be much like those in logarithmic 
potential theory, the minimum principle (T2) making possible the 
entire development once the equilibrium charge JL8 *(x) of a set B is 
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found. It is easy to verify that every finite set B has the one-parameter 
family of equilibrium charges 

*( ) _ 1 + a H *( ) 1 - a H *( ) 1-'a t - -2- B + oo,t + -2- s - oo,t , tEB, iai S 1, 

in other words that 

L [A(x,t) + a2 (x - t)] 1-'a *(t) = constant 
teB a 

for x E B. Here H 8 * denotes the hitting probability measure for the 
reversed random walk. When we set a = 0 we get the simplest 
(symmetric) equilibrium charge 

p,0*(t) = p,8 *(t) = tH8 *( + oo,t) + fH8 *(- oo,t) = ~:t.>)' 
satisfying 

1 L A(x,t)p,8 *(t) = constant= K (· ·) for x E B. 
teB B 

32. THE HITTING TIME OF A SINGLE POINT 

In T16.1 of Chapter III it was shown that 

1. Px[T > n] ( ) 
tm p [T ] =ax, 

n-+oo 0 > n 
X =f. 0, 

for aperiodic two-dimensional random walk. Here a(x) is the usual 
potential kernel, and 

T = min [n 11 S n S oo; Xn = 0] 

is the time of the first visit, after time 0, of the random walk to the 
origin. 

The theory of transient random walk in Chapter VI and of one
dimensional recurrent random walk in this chapter now offers us the 
opportunity to assess precisely under which conditions this theorem 
is valid. It will turn out, fortunately, that we are dealing here with a 
completely general property of random walk, recurrent or transient, 
subject only to the entirely natural restriction of aperiodicity. 
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The remainder of this section will be devoted to the proof of this 
assertion, which we state formally as 

Tl For arbitrary aperiodic random walk, recurrent or transient, of 
dimension d ;;::; 1 

1. P x[T > n] 1. ~ [ (O ] tm p [T ] = tm L. Pk ,0) - Pk(x,O) 
n-+oo 0 > n n-+oo k=O 

for every x :1= 0. Both limits are finite and non-negati•IJe. 

First (in P1) the proof will be given for transient random walk. 
The next item on the agenda will be the proof of T1 for one-dimen
sional recurrent random walk with finite variance a2 • In this case we 
shall in fact obtain a result which is stronger than Tl, as P4 will show 
that 

Px[T > n] ,..., a(x)P0 [T > n] ,..., a(x)J 2 a, as n----+ oo, for x :1= 0. TTn 

Since Tl was proved in Chapter III for two-dimensional recurrent 
random walk, the only case then remaining after P4 will be the one
dimensional recurrent case with a2 = oo. Here we shall encounter 
the greatest difficulty. It will be resolved with the aid of the recent 
([60], 1963) theorem of Kesten, concerning Fn = P0 [T = n]: 

T2 For strongly aperiodic recurrent random walk in one dimension 

1. Fn+l 1 lm -- = . 
n-+oo Fn 

T2 is also correct in two dimensions (problem 4) but we will not 
need it in this case. The proof of T2 will be given in propositions PS 
through P8. We defer it for a while in order to discuss the very easy, 
and not particularly interesting transient case-never to return to it 
again. 

Pl For every aperiodic transient random walk 

1. P x[T > n] ( ) 
tmP[T ]=ax, 

n-+oo 0 > n 

if we define (as is natural) 

00 

X :/: 0, 

a(x) = G(O,O) - G(x,O) = L [Pn(O,O) - Pn(x,O)]. 
n=O 
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Proof: This simple proof could easily have been given in Chapter I, 
as we shall use only the methods and notation of section 1. Keeping 
in mind that 

we have 
00 

1 L Fn(x,O) 
lim Px[T > n] = Px[T = oo] 

n-+oo P0 [T > n] P0 [T = oo] 
n=1 

1 - F(O,O) ' 
X"/= 0. 

From Pl.2 one obtains 
00 

00 L tnPn(x,O) 
L tnFn(x,O) = ;..:_n:,..,..o.;;__ __ _ 

n=1 L tnPn(O,O) 
X "/= 0, O::s;t<l. 

n=O 

Letting t--'; 1, and using Pl.S, we find that 

oo G(x,O) 
F(x,O) = n~1 Fn(x,O) = G(O,O)' X"/= 0. 

Hence 
00 

1 - L Fn(x,O) 
___,.1_::n_-'= 1~F=(o,...,,o=)- = G(O,O) - G(x,O) = a(x), X"/= 0. 

That proves T1 in the transient case, and in the remainder of this 
section we shall always work with aperiodic recurrent random walk in 
one dimension. We shall adhere to the notation of D16.1, so that 

T x = min [ n I n ;:::: 1, Xn = x], T 0 = T, 

Fn = P0 [T = n], Rn = P0 [T > n], un = Po[Xn = OJ, 
n;:::: 0. 

Our next lemma shows that T1 holds for every recurrent random 
walk in a "weak" sense, namely in the sense of Abel summability. 

P2 For recurrent random walk 

00 

L tnPx[T > n] 
lim n:o = a(x) for x 1= 0. 
t;<l L tnP0 [T > n] 

n=O 
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Proof: Observe first that 
00 

(1 - t) 2: tnP0 [T > n] = 1 - E0 [!Yo], 
n=O 

00 

(1- t)2: tnPx[T > n] = 1- ExWoJ = 1- E0[tT-•], 
n=O 

for x E R, 0 ::;; t ::;; 1. Therefore P2 will be proved if 

(1) 
. 1 - Eo[!Y•] 

hm 1 E [ T ] = a(- x) for all x =1= 0. 
t_;rl - 0 t 0 

Now we define 

00 

Rt(x,y) = 2: tnPn(x,y), 
n=O 

and 

cp0(x) = 1 if x = 0, 0 otherwise. 

Then, fort < 1, 

Eo[~o\ncp0(xn)] = EoL~o tncp0(xn)] - EoL~.tncp0(xn)] 

= Rt(O,O) - EoL~o tT,+kcfoo(~.+k)l 
Using the fact that T x is a stopping time, the last expectation may be 
decomposed and one has 

(2) E0[~1 tncp0(xn)] = Rt(O,O) - EoW•]Rt(x,O), 

for 0 ::;; t < 1, x =/= 0. Similarly (we omit the proof) one finds 

(3) Ex[~01 tncp0(xn)] = R1(x,O) - E0 [tTo ]Rt(x,O). 

With the aid of (2) and (3) the ratio in (1) is 

(4) 1 - E0[tT•] 
1 - E0 [!Yo] 

= {Rt(x,O)- R1(0,0) + Eo[~01 tncp0(xn)]}{ Ex[~01 tncp0(xn)]} -l, 
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for 0 ~ t < 1, x # 0. Now, by Abel's theorem 
00 

(5) lim [Rt(x,O) - Rt(O,O)] = L [Pn(x,O) - Pn(O,O)] = - a(x), 
t;rl n= 0 

where the last step used part (a) of T28.1. Next we observe that 

(6) lf~ Eo[~01 tncf>o(Xn)] = Ex[~01 cp0(xn)] = g{r}(O,O), 

according to the definition of the Green function in D10.1. But by 
P29.4 

(7) g{r}(O,O) = a(x) + a( -x). 

Substitution of (5), (6), and (7) into (4) shows that P2 is true, provided 

[
Tz -1 ] 

lim Ex L tncp0(xn) = 1. 
t;rl n=O 

(8) 

This fact, however, is known from P10.3. (The frequent reference to 
rather difficult results in this proof is misleading. The proof could 
in fact be made quite elementary, at the cost of adding a little to its 
length.) 

P3 For one-dimensional aperiodic recurrent random walk with finite 
variance a 2 < oo, 

lim Vn P0[T > n] = j3 a. 
n-+ co 1T' 

Proof: We write, for 0 ~ t < 1 

oo oo 1 Jn d() 
(1) U(t) = n~O Untn = n~O tnPn(O,O) = 2TT -n 1 - tcp(8)' 

where .cp(O) is the characteristic function of the random walk. Our 
immediate goal is to show that 

(2) 
.;- 1 

lim v 1 - t U ( t) = --· 
t;rl VZ a 

Given any e > 0 we can choose 0 < S < TT so that 

[
82a2 ] 2 + 1 - t (1 - e) ~ 1 - tcp(8) = 1 - cp(8) + (1 - t)cp(8) 

~ [ 8; 2 + 1 - t](l + e) 
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when jOj :S 8. By T7.1 the integral in (1), taken from 8 to TT and 
from - TT to - 8, remains bounded as t _.,.. 1 since the random walk is 
aperiodic. Hence those parts of the integral in (1) are error terms 
which go to zero when multiplied by Vl=t, and (2) will be true if 

(3) lim V 1 - t- - ---- 1 f6 dO 1 
t;tl 2TT _ 6 0~2 + (1 _ t) - VZ a 

for every 8 > 0, and that is easily verified by making the change of 
variable from 0 to x = Oa[2( 1 - t)] -112. 

The next step uses the identity 
ao L R11t11 = [(1 - t)U(t)]-l 

n=O 

which follows from P1.2. Combined with (2) it gives 
ao 

(4) lim V1=t L R11t11 = aVZ. 
t;tl n=O 

Observe that the sequence R11 = P0[T > n] is monotone nonincreas
ing, so that the stage is set for the application of Karamata's theorem. 
The strong form of this theorem, given in P20.2 implies that 

lim Vn R11 = aVZj";, 
n-+ ao 

which proves P3. 

If we combine equation ( 4) in the proof of P3 with P2, we have 

ao 

(5) lim V1=t L t 11Pz[T > n] = aVZ a(x) 
t;tl n=O 

for every x 'f 0. Karamata's theorem may again be applied to (5), 
and the conclusion is 

P4 lim Vn P:r[T > n] = aV'IFr a(x) for x -1' 0. 
fl-+00 

Of course P2 and P4 together yield 

1. P z[T > n] ( ) tm =ax 
n-+ao Po[T > n] 

for x -1' 0, so that we have proved T1 for aperiodic recurrent random walk 
in the case d = 1, a 2 < oo. 
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Now it remains only to prove T1 in one dimension, when a2 = oo. 
It is natural to look back at the proof of T16.1, inquiring whether the 
present case can be handled by the same methods. In the proof of 
T16.1 we arrived at the equation 

(1) P,:[T > n] = Rn+l ~ g(x,t)vn(t), X =I= 0. 
P0 [T > n] Rn t,oo 

Here vn(t) was a sequence of probability measures on R - {0}, and 
we were able to show that 

(2) lim vn(t) = 0, t E R- {0} 
n-+oo 

using the result of P16.1, namely 

(3) I. Rn 1 lm--=. 
n-+oo Rn+l 

The proof of T16.1 was then completed by combining (2) and (3) with 
the asymptotic result that 

(4) lim g(x,t) = a(x), x E R - {0}. 
Jtl-+ 00 

In view of P29.4 and T29.1 equation (4) is also valid for aperiodic 
recurrent one-dimensional random walk with a2 = oo. (It is false 
when a2 < oo and that is why this case required a different proof, 
given in P2, P3, and P4.) Consequently the proof of T1 would be 
complete if we had a proof of (3). That difficulty will be resolved by 
proving the far stronger statement in T2, which implies (3). (If a 
random walk is strongly aperiodic, then obviously FnfFn+l- 1 entails 

~ = 1 + Fn+l-1. 
Rn+l Rn+l 

And if it is not strongly aperiodic, then by P5.1, Fk = 0 unless k = ns 
for some integer s > 1. But in that case the random walk with 
transition function P8(x,y) is strongly aperiodic, with some subgroup 
of R as its state space, and one gets FnsfF<n+l>s- 1, which suffices to 
conclude that (3) holds). 

The proof of T2 begins with 

PS For every £, 0 < £ < 1, there is some N = N(£) such that 

Fn ;;::: (1 - £)n, n ;;::: N. 

Proof: We start with an arbitrary £. Given any integer a we have 

Po[Xn = a] = P[Sn = a] ;;::: (1 - £)n 
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for all large enough n, according to P5.2. The random walk being 
recurrent, we can choose a1 > · 0 and a2 > 0 so that 

P(O,a1 ) > 0 and P(O,- a2 ) > 0. 
Then 

(1) P[S1 = a1 , Sn- 1 - S1 = a2 - a1 , Sn = 0] ;;::: (1 - e)n 

for sufficiently large n. This is obvious since the above probability is 
nothing but P(O,a1)P[Sn _ 2 = a2 - adP(O,- a2 ). The notation of 
partial sums Sk = X1 + · · · + Xk of Chapter IV was chosen because 
it facilitates the following combinatorial argument. Consider the 
sequence X2 , X3 , ••• , Xn _1 , and subject it to all possible cyclic 
permutations (of which there are n - 2, including the identity). If p 
is one of these cyclic permutations (acting on the integers 2, 3, ... , 
n- 1) we get XP<2 >, ... , XP<n- 1>. For each cyclic permutationp con
sider the polygonal line L(p) in the plane formed by connecting the 
points 

(1,a1), (2,a1 + XP<2>), (3,a1 + XP<2> + Xp<J>), ... , (n - 1,a2). 

For at least one of the n - 2 permutations the polygonal line will lie 
entirely above or on the chord connecting (1,a1 ) to (n - 1,a2). This 
may easily be inferred from the illustration below, where n = 6 and pis 
the cyclic permutation (3, 4, 5, 2). Which one of the permutations 

0 3 4 

I 
I 
I 
I 
I 
I 
I 
1°2 
I 
I 
I 
I 
I 
I 
I 

5 

has this property depends of course on the values of the random 
variables X2 , ••• , Xn _1 • But that is irrelevant. What does matter 
is that the probability in (1) is invariant under these permutations, as 
the random variables xk are independent and identically distributed, 
i.e., their joint probability measure is invariant under permutation of 
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coordinates. Thus each cyclic permutation of the integers 2, ... , n- 1 
is equally likely to yield such a polygon. 

Now we are nearly finished. Call En(P) the event that X1 = a 1, 

Xn = - a2 and that L(p) lies above its chord. Then, for each p, the 
probability of En(P) is at least as large as the probability in (1) divided 
by n - 2. If e denotes the identity permutation, then 

for large enough n. On the other hand, the event En(e) implies that 
the first return of the random walk xn with x0 = 0 to the origin 
occurs at time n. Hence 

for sufficiently large n, and that proves PS. 

Remark: At this point, using PS, it is possible to complete the 
proof of T2 in a few lines, under the additional hypothesis that 
P(O,O) > 0. This may be done just as in the proof of the ratio 
ergodic theorem in P5.4. (Wherever we used P5.2, giving the 
exponential lower bound Pn(O,O) ~ (1 - e)n in proving P5.4, one may 
now use PS in exactly the same way.) However, it does not seem 
possible to eliminate the hypothesis that P(O,O) > 0 when working 
with the sequence Fn instead of Un = Pn(O,O). Therefore a different 
approach is necessary, which begins with 

P6 For every integer m and every e > 0 there is some M = M(m,e) 
such that for each A > 0 

_ 1n-M 
lim - 2: P[ISkl ~ A or sk+i =I= sk when m ~ j ~ MIT = n] ~ E. 

n-+co n k.=l 

Proof: In the statement of P6, T is the first return time to zero. 
In addition to conditional probabilities of the form 

P[ A I B] = P[ A 11 B] 
P[B] 

when P[B] > 0 (as will always be the case), we shall use conditional 
expectations, defined by 

1 
E[f I B] = P[B] E[f;B]. 
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We define the random variables (characteristic functions of events) 
Jk(A,n) = 1 if ISkl :::;; A and T = n, 0 otherwise; Lk(m,M,n) = 1 if 
Sk+t i= Sk for m :::;; j :::;; M, 0 otherwise. For any pair of events 
AI> A 2 , P[A1 U A 2 I B] :::;; P[A1 I B] + P[A2 I B], so that the sum in 
P6 is bounded above by 

Given 7J > 0 (to be given the value E/2later) we pick M so large that 

P[Sk+t i= Sk for m :::;; j :::;; M] = P[S1 i= 0 for m :::;; j :::;; M] :::;; TJ· 

This may be done, since m is fixed and the random walk is recurrent. 
Then 

To continue the estimation observe that Lk = Lk(m,M,n) depends 
On Xk + 1> Xk + 2> ... , Xk + M> but not On any of the other increments 
Xn = Sn - Sn_ 1 of the random walk. Thus we can write 

n-M 

L Lk = (L0 + LM + L2M + · · ·) + (L1 + LM + 1 + · · ·) + · · · 
k=O 

Now each sum I,., r = 1, ... , M, contains at most [n/M] terms. 
Further, each Ir is a sum of independent random variables, each 
of which assumes the value 1 with probability at most TJ· If 
L,~;;;f Lk > 2n7J, then one of theIr must exceed 2n7JfM, so that 

(3) P[~~ Lk(m,M,n) ~ 2n7J] 

:::;; r~1 P[Ir ~ 27J ~] :::;; MP[I1 ~ 27J ~]-
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According to P5.3, if I is a Bernoulli sum of j independent random 
variables, each of them being one with probability 1J and zero other
wise, then the probability that I exceeds 2i'YJ is less than a multiple of 
e-ci. Hence 

(4) 

where c1,c2 are positive constants, depending only on 'YJ· Now one 
can combine (2), (3), and (4) to get 

(5) [
n-M ] Mn 

E k~I Lk(m,M,n) I T = n :S 2n7J + Fn c1e-c2<ntM>, 

Turning to the estimation of the sum involving Jk(A,n), let r/Jk be 
the random variable which is 1 if !Ski :S A and 0 otherwise. 
Truncating just as was done in (2), one gets 

(6) Ec~: Jk(A,n) I T = n] :S n'T} + ;n PL~l r/Jk 2! n'T} and T = n] 

:S n'YJ + ; P[T 2! n I i r/Jk 2! n7J] · 
n k=l 

Now we choose some real x > 0 and an integer r > 0 such that 

(7) 

Then 

mm P[Sk = a for some k < r] 2! x > 0. 
Ia! :sA 

P[T 2! j + r IIS11 :S A] :S 1 - x. 
and since the event that r/J1 + · · · + r/Jn 2! n'YJ implies that one of the 
subsequences r/J1 + rfJJ+r + · · · of r/J1 + · · · + r/Jn must exceed n7Jfr, 
we conclude that 

(8) p[ T 2! nIt r/Jk 2! n'T}] :S (1 - x)<nn)lr. 

Combining (5), (6), and (8), 

(9) ! niM P[ISkl :S A or sk+i =I= sk for all n :S j :S MIT = n] 
n k=I 
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Now we set 27] = e and then, taking the limit superior as n---+ oo, 
P6 will be proved if the two exponential terms in (9) go to zero faster 
than F 11 • But that follows from PS, no matter what are the positive 
constants c2 and X• and therefore P6 is true. 

P7 Let e1 > 0, m and A be given. Then there exist positive integers 
k and M such that 

I~: -1 I ~ e1 for all sufficiently large n, 

where 

Proof: Take e in P6 to be e = e1 2 and choose M so that P6 holds. 
P6 implies that for every S > 0, and sufficiently large n, 

n-M 

L P[{!Skl ~ A or sk+i =I sk form ~ j ~ M} () {T = n}] 
k=l 

which shows that there are at least e1n values of k for which 

P[{!Skl ~ A or sk+i =I sk form ~ j ~ M} () {T = n}] ~ ElFn. 

If we pick such a value of k in the definition of q11 (which depends 
on k), then 

which proves P7. 

P8 For sufficiently large m and A there exist positive integers k and M 
such that 

!qn - qn+l! ~ elqn for sufficiently large n, 

with e 1 and qn defined in P7 and 

qn+l = P[T = n + 1, !Ski > A, Sk+t = Sk for some m + 1 ~ j ~ 
M + 1]. 

Proof: Remember that Un = P[Sn = 0], and 

1. Un+l 1 tm-- = 
n-+ao Un ' 
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according to T5.1, which is crucial for the proof. We choose m so 
that 

(1) 

and A so large that 

(2) P[jS1j ~ A for somej s; M + 1] s: £41 min Uk. 
mSk:SM+1 

To simplify the notation let 

P[Sk+i = a,Sk+r =I= Oforr = 1, ... ,j- 1j Sk =a]= ck.1(a) = ck.i 

P[T = n - k - j ; sp =I= a for p = 1' 2, ... ' M - j I So = a] 
= dn-k,i(a,M) = dn-k,i3 

Then, decomposing qn according to the possible values of Sk and 
according to the last time k + j when sk +; =· sk, 

M 

qn = L P[Sk = a; T > k] L ck,idn-k.J• 
lai>A i=m 

A similar decomposition for ijn + 1 yields 

M 

ijn+ 1 = L P[Sk = a; T > k] L ck.i+1dn-k.i> 
lai>A J=m 

so that 

M 

(3) qn - ijn+ 1 = L P[Sk = a; T > k] L (ck.i - ck.i+1) dn-k,;· 
lai>A i=m 

To estimate this difference observe that 

ck.i = P[S; = 0; Sr =I= -a for r = 1, 2, .. . ,j- 1] 

= U1 - P[S1 = O,Sr = -aforsomer = 1,2, ... ,j- 1]. 

Since jaj > A, 

!ck.; - U1l S: P[ISrl ~ A for some r s; M + 1], 

and from (2) one gets 

(4) m s; j s; M. 

3 According to D3.1, S0 = 0 by definition. Hence P[ ... I S0 = a] is 
meaningless-it should be interpreted as Pa[ ... ]. 
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In the same way one proves 

(5) m =::;; j =::;; M. 

Combining (4) and (5), we have 

and now one concludes from (1) that 

I I 3e1 
ck.i+1 - ck.f =::;; 4 U,. 

Using (4) again, we obtain 

(6) lck.i+ 1 - ck,;l =::;; 3: 1 ( 1 - ~) - 1 
ck,; =::;; e1ck,f• 

at least if, as we may assume, e1 is sufficiently small. 
Applying (6) to equation (3) we have 

M 

lqn - tln+11 =::;; E1 L: P[Sk = a; T > k] L: Ck,;dn-k,f E1qn, 
lai>A J=m 

which proves P8. 

We are now ready to complete the proof of T2. By definition 
tln+ 1 =::;; Fn+ 1, and so by P8 and P7, 

Fn+1 ~ tln+1 ~ (1 - E1)qn ~ (1 - E1) 2Fn 

for large enough n, which amounts to saying that 

lim Fn+1 ~ 1. 
n::;-t;; Fn 

But an obvious modification of P7 gives 

so that 
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That implies 
-F 1 lim __!!..±__ ~ 1, 

n-+co Fn 
which completes the proof of T2. In view of the remarks preceding 
PS, we have also completed the proof of Tl. 

Remark: One of the possible extensions of T1 was mentioned in 
Chapter III. It concerns the limit of the ratios 

P.x[T8 > n] 
Po[T > n]' as n-. oo. 

The step from T1 to the theorem (proved in [60]) that these ratios 
have a limit, as n-. oo, for every finite set B, requires considerable 
effort. As the discussion at the end of section 16 might lead one to 
expect, the difficulty consists in showing that the ratios Rnf R2n are 
bounded for every recurrent random walk. This is done in [60] by 
using very delicate estimates concerning the dispersion function of 
P. Levy ([71], section 16). 

Other aspects of the asymptotic behavior of the sequence_s Rn, Un, 
and Fn are still shrouded in mystery, giving rise to challenging con
jectures. Kesten has shown ([61]) that every strongly aperiodic re
current one-dimensional random walk in the domain of attraction of a 
symmetric stable law (i.e., satisfying 

0 < lim IBI-«[1 - c/>(8)] = Q < oo 
8-+0 

for some a:, 1 ~ a: ~ 2) has the property that 
. 1 n 

(1) hm F L FkFn-k = 2. 
n-+co nk=O 

He conjectures that (1) holds for every strongly aperiodic recurrent 
random walk. 4 This conjecture is related, in an obvious way, to the 
random variables 

T k = time of the kth return to 0. 

Equation (1) simply states that P0 [T2 = n]/P0 [T1 = n] tends to 2 as 
n-. oo, but it also follows from (1) that 

(2) lim P0[T, = n] = ~. 
n-+co Po[T, = n] s 

for every pair r,s of positive integers. 

4 This is now proved under the additional assumption that the random walk 
is symmetric [818]. 
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Problems 

1. For one-dimensional aperiodic recurrent random walk with absolute 
moment of order 3 + S for some S > 0, show that 

lim [a(x) - lxJ] 
lzl- co a 

exists and is finite. Is this true if only a2 is finite? (To obtain a sharp 
result, use problem 2 in Chapter II.) 

2. Here and in problem 3 the random walk is one dimensional and 
aperiodic, with a characteristic function cfo( 8) such that 

. 1-c/>(8) . 
o < !':...~ IW = Q < oo 

for some a, 1 :::; a :::; 2. Show that all such random walks are recurrent. 
Prove that 

lim P0[T -x < Tx] = 1/2, 
lzl- co 

where Tx is the time of the first visit to x. 

3. Continuation. Show that 

lim P0 [T:r < T2:r] = 2«- 2• 
lzl-oo 

4. Extend T32.2 by showing that 

1. Fn+l 1 lm--= 
n-co Fn 

for every strongly aperiodic recurrent random walk in the plane. 

5. Here and in the next problem the random walk is one dimensional 
and aperiodic, with mean 0 and a 2 < oo. Use P32.3 to conclude that the 
ratios Rnf R2n are bounded in n. Then use the discussion at the end of 
Chapter III to prove that 

lim ;[~ > j] = Lim gB(x,y) = t( lim gB(x,y) + lim gB(x,y)] 
n-+OO Q > n ]I JI-++OO lJ-+-00 

for all x e R - B, for every finite set B. 

6. Use the result of problem 5 together with P32.3 to evaluate the limit 

lim Vn Po[T1,. -z) > n] = f(x), 
n-oo 
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where x =F 0 is an arbitrary point in R (but not the origin). Show that 
either f(x) = 0 for x =F 0 or f(x) > 0 for all x =F 0, and characterize those 
random walks which give f(x) = 0. 

7. The mean square distance of a random walk x,. from the origin, 
subject to the condition of no return to the origin in time n, is 

Suppose that the random walk is genuinely d-dimensional, with mean 
vector zero and second moment m2 = E0[jx1 j2] < oo. When the dimen
sion d = 1, prove that 

D,. "' 2nm2 = 2E0[jx,.j 2] as n- oo, 

whereas for dimension d ~ 2 

D,.- nm2 = E0[jx,.j 2] as n- oo. 

Hint: To obtain these asymptotic relations, first derive the identity 

n ~ 1. 

8. Prove that the potential kernel A(x,y) of a recurrent random walk 
determines the transition function uniquely. 

Hint: In the spirit of problem 13, Chapter VI, show that for every 
subset B C R, IT 8(x,y) is determined by A(x,y). This follows from 
T11.1 and T30.2 in all cases except for left-, or right-continuous random 
walk. (But even then A(x,y) does determine Ila(x,y), according to the 
discussion preceding T30.2.) Finally, let B, = [x jjxj :::;; r] and show 
that 

P(x,y) = lim I1 8 ,(x,y). 
T-+ co 

9. The logarithmic capacity C(A) of a finite set A C R was defined for 
arbitrary recurrent aperiodic random walk in the discussion following 
T30.2. Using part (d) of T30.2 one can interpret C(A) as the difference in 
size between the set A and the single point {0}, as seen from infinity. Define 
the difference in size as seen from the point x, as 

C(A;x) = g<o>(x,x) - gA(x,x). 

Thus we measure the size of a set A, seen from x, as the expected time 
spent at x between visits to A. Prove that 

C(A) = lim C(A ;x), 
lzl-+ oo 

when d = 2 or when d = 1 and a2 = oo, while the situation is much more 
complicated when d = 1 and a2 < oo. 
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10. For still another characterization of capacity define the energy 
dissipated by a finite set A (or the expected area swept out by the set A) as 

En(A) = L Px[TA :s; n]. 
xell 

Investigate whether En(A) - En(B) may be normalized appropriately so 
as to approximate C(A) - C(B) for arbitrary recurrent random walk. 

Hint: Consider first the asymptotic Abel sums, showing that 

Here, as usual, Rn = P0 [T0 > n]. Conclude that 

lim En(:1) - En(B) = C(A) _ C(B) 
n-oo 'R R 

L k n-k 
k=O 

whenever this limit exists. (S. Port has shown [S23] that it exists for 
arbitrary recurrent random walk.) 

11. Prove, using the properties of a(x), that for an arbitrary recurrent 
random walk the expected number of distinct points visited between suc
cessive visits to zero is always infinite. 

12. Prove that the potential kernel of arbitrary two-dimensional recurrent 
random walk satisfies 

(i) lim a(x) = oo. 
lxl- oo 

13. Continuation. Prove that (i) also holds in one dimension when 
a 2 < oo. However, when a 2 = oo, show that either (i) holds, or 

(ii) lim a(x) = M < oo, lim a(x) = + oo, 
x-+ + oo x-- oo 

or 

(iii) lim a(x) = + oo, lim a(x) = M < oo. 
x-+ + oo x-+-oo 

Note: The exact criteria for this classification are still unknown. 
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