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Preface

In 1963, the first author introduced a course in set theory at the University
of Illinois whose main objectives were to cover G6del’s work on the con-
sistency of the Axiom of Choice (AC) and the Generalized Continuum
Hypothesis (GCH), and Cohen’s work on the independence of the AC and
the GCH. Notes taken in 1963 by the second author were taught by him in
1966, revised extensively, and are presented here as an introduction to
axiomatic set theory.

Texts in set theory frequently develop the subject rapidly moving from
key result to key result and suppressing many details. Advocates of the fast
development claim at least two advantages. First, key results are high-
lighted, and second, the student who wishes to master the subject is com-
pelled to develop the detail on his own. However, an instructor using a
“fast development ” text must devote much class time to assisting his students
in their efforts to bridge gaps in the text.

We have chosen instead a development that is quite detailed and com-
plete. For our slow development we claim the following advantages. The
text is one from which a student can learn with little supervision and in-
struction. This enables the instructor to use class time for the presentation
of alternative developments and supplementary material. Indeed, by present-
ing the student with a suitably detailed development, we enable him to move
more rapidly to the research frontier and concentrate his efforts on original
problems rather than expending that effort redoing results that are well
known.

Our main objective in this text is to acquaint the reader with Zermelo-
Fraenkel set theory and bring him to a study of interesting results in one
semester. Among the results that we consider interesting are the following:
Sierpinski’s proof that the GCH implies the AC, Rubin’s proof that the
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vi Preface

Aleph Hypothesis (AH) implies the AC, Godel’s consistency results and
Cohen’s forcing techniques. We end the text with a section on Cohen’s
proof of the independence of the Axiom of Constructibility.

In a sequel to this text entitled Axiomatic Set Theory, we will discuss, in a
very general framework, relative constructibility, general forcing, and their
relationship.

We are indebted to so many people for assistance in the preparation of
this text that we would not attempt to list them all. We do, however, wish
to express our appreciation to Professors Kenneth Appel, W. W. Boone,
Carl Jockusch, Thomas McLaughlin, and Nobuo Zama for their valuable
suggestions and advice. We also wish to thank Professor H. L. Africk,
Professor Kenneth Bowen, Paul E. Cohen, Eric Frankl, Charles Kahane,
Donald Pelletier, George Sacerdote, Eric Schindler, and Kenneth Slonneger,
all students or former students of the authors, for their assistance at various
stages in the preparation of the manuscript.

A special note of appreciation goes to Professor Hisao Tanaka, who made
numerous suggestions for improving the text and to Dr. Klaus Gloede, who,
through the cooperation of Springer-Verlag, provided us with valuable
editorial advice and assistance.

We are also grateful to Mrs. Carolyn Bloemker for her care and patience
in typing the final manuscript.

Urbana Gaisi Takeuti
January 1971 Wilson M. Zaring



Preface to the Second Edition

Since our first edition appeared in 1971 much progress has been made in
set theory. The problem that we faced with this revision was that of selecting
new material to include that would make our text current, while at the same
time retaining its status as an introductory text. We have chosen to make
two major changes. We have modified the material on forcing to present a
more contemporary approach. The approach used in the first edition was
dated when that edition went to press. We knew that but thought it of
interest to include a section on forcing that was close to Cohen’s original
approach. Those who wished to learn the Boolean valued approach could
find that presentation in our second volume GTM 8. But now we feel that
we can no longer justify devoting time and space to an approach that is only
of historical interest.

As a second major modification, and one intended to update our text, we
have added two chapters on Silver machines. The material presented here is
based on Silver’s lectures given in 1977 at the Logic Colloquium in Wraclaw,
Poland.

In order to produce a text of convenient size and reasonable cost we have
had to delete some of the material presented in the first edition. Two chapters
have been deleted in toto, the chapter on the Arithmetization of Model
Theory, and the chapter on Languages, Structures, and Models. The material
in Chapters 10 and 11 has been streamlined by introducing the Axiom of
Choice earlier and deleting Sierpinski’s proof that GCH implies AC, and
Rubin’s proof that AH, the aleph hypothesis, implies AC. Without these
results we no longer need to distinguish between GCH and AH and so we
adopt the custom in common use of calling the aleph hypothesis the gener-
alized continuum hypothesis.

vil



Viii Preface to the Second Edition

There are two other changes that deserve mention. We have altered the
language of our theory by introducing different symbols for bound and free
variables. This simplifies certain statements by avoiding the need to add
conditions for instances of universal statements. The second change was
intended to bring some perspective to our study by helping the reader
understand the relative importance of the results presented here. We have
used “Theorem” only for major results. Results of lesser importance have
been labeled “Proposition.”

We are indebted to so many people for suggestions for this revision that
we dare not attempt to recognize them all lest some be omitted. But two
names must be mentioned, Josef Tichy and Juichi Shinoda. Juichi Shinoda
provided valuable assistance with the final version of the material on Silver
machines. He also read the page proofs for the chapters on Silver machines
and forcing, and suggested changes that were incorporated. Josef Tichy did
an incredibly thorough proof reading of the first edition and compiled a list
of misprints and errors. We have used this list extensively in the hope of
producing an error free revision even though we know that that hope cannot
be realized.

Finally we wish to convey our appreciation to Ms. Carolyn Bloemker
for her usual professional job in typing the manuscript for new portions
of this revision.

Urbana Gaisi Takeuti
June 1981 Wilson M. Zaring
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CHAPTER 1
Introduction

In 1895 and 1897 Georg Cantor (1845-1918) published, in a two-part paper,
his master works on ordinal and cardinal numbers.! Cantor’s theory of
ordinal and cardinal numbers was the culmination of three decades of re-
search on number “aggregates.” Beginning with his paper on the denumer-
ability of infinite sets,” published in 1874, Cantor had built a new theory of
the infinite. In this theory a collection of objects, even an infinite collection,
is conceived of as a single entity.

The notion of an infinite set as a complete entity was not universally
accepted. Critics argued that logic is an extrapolation from experience that is
necessarily finitistic. To extend the logic of the finite to the infinite entailed
risks too grave to countenance. This prediction of logical disaster seemed
vindicated when at the turn of the century paradoxes were discovered in the
very foundations of the new discipline. Dedekind stopped publication of his
W as sind und was sollen die Zahlen? Frege conceded that the foundation of his
Grundgesetze der Arithmetik was destroyed.

Nevertheless set theory gained sufficient support to survive the crisis of
the paradoxes. In 1908, speaking at the International Congress at Rome,
the great Henri Poincaré (1854-1912) urged that a remedy be sought. As a
reward he promised “the joy of the physician called to treat a beautiful

! Beitridge zur Begriindung der transfiniten Mengenlehre (Erster Artikel). Math. Ann. 46,
481-512 (1895); (Zweiter Artikel) Math. Ann. 49, 207-246 (1897). For an English translation see
Cantor, Georg. Contributions to the Founding of the Theory of Transfinite Numbers. New York:
Dover Publications, Inc.

2 Uber eine Eigenschaft des Inbegriffes aller reellen algebraischen Zahlen. J. Reine Angew.
Math. 77, 258-262 (1874). In this paper Cantor proves that the set of all algebraic numbers is
denumerable and that the set of all real numbers is not denumerable.

3 Atti del IV Congresso Internazionale dei Matematici Roma 1909, Vol. 1, p. 182.



2 Introduction to Axiomatic Set Theory

pathologic case.” By that time Zermelo and Russell were already at work
seeking fundamental principles on which a consistent theory could be built.
The first axiomatization of set theory was given by Zermelo in 1908.*

From this one might assume that the sole purpose for axiomatizing is to
avoid the paradoxes. There are however reasons to believe that axiomatic set
theory would have evolved even in the absence of paradoxes. Certainly the
work of Dedekind and of Frege in the foundations of arithmetic was not
motivated by fear of paradoxes but rather by a desire to see what foundational
principles were required. In his Begriffsschrift Frege states:

“...,wedivide all truths that require justification into two kinds, those for
which the proof can be carried out purely by means of logic and those for
which it must be supported by facts of experience. ... Now, when I came to
consider the question to which of these two kinds the judgements of arith-
metic belong, I first had to ascertain how far one could proceed in arithmetic
by means of inferences alone, . ...""

Very early in the history of set theory it was discovered that the Axiom of
Choice, the Continuum Hypothesis, and the Generalized Continuum
Hypothesis are of special interest and importance. The Continuum Hy-
pothesis is Cantor’s conjectured solution to the problem of how many points
there are on a line in Euclidean space.® A formal statement of the Continuum
Hypothesis and its generalization will be given later.

The Axiom of Choice, in one formulation, asserts that given any collection
of pairwise disjoint nonempty sets, there exists a set that has exactly one
element in common with each set of the given collection. The discovery that
the Axiom of Choice has important implications for all major areas of
mathematics provided compelling reasons for its acceptance. Its status as an
axiom, and also that of the Generalized Continuum Hypothesis, was however
not clarified until Kurt Gédel in 1938, proved both to be consistent with the
axioms of general set theory and Paul Cohen, in 1963, proved that they are
each independent of the axioms of general set theory. Our major objective in
this text will be a study of the contributions of Gdel and Cohen. In order to
do this we must first develop a satisfactory theory of sets.

For Cantor a set was “any collection into a whole M of definite and
separate objects m of our intuition or our thought.”” This naive acceptance
of any collection as a set leads us into the classical paradoxes, as for example

4 Untersuchungen iiber die Grundlagen der Mengenlehre 1. Math. Ann. 65, 261-281 (1908).
For an English translation see van Heijenoort, Jean. From Frege to Godel. Cambridge: Harvard
University Press, 1967.

5 van Heijenoort, Jean. From Frege to Gidel. Cambridge : Harvard University Press, 1967. p. 5.

6 See, What is Cantor’s Continuum Problem? by Kurt Gédel in Amer. Math. Monthly, 54,
515-525 (1947). A revised and expanded version of this paper is also found in Benacerraf, Paul
and Putnam, Hilary. Philosophy of Mathematics, Selected Readings. Englewood Cliffs: Prentice-
Hall, Inc., 1964.

7 Cantor, Georg. Contributions to the Founding of the Theory of Transfinite Numbers. New
York: Dover Publications, inc.
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Russell’s paradox: If the collection of all sets that are not elements of them-
selves is a set then this set has the property that it is an element of itself if
and only if it is not an element of itself.

In view of Russell’s paradox, and other difficulties to be discussed later,
we have two alternatives in developing a theory of sets. Either we must
abandon the idea that our theory is to encompass arbitrary collections in
the sense of Cantor, or we must distinguish between at least two types of
collections, arbitrary collections that we call classes and certain special
collections that we call sets. Classes, or arbitrary collections, are however so
useful and our intuitive feelings about classes are so strong that we dare not
abandon them. A satisfactory theory of sets must provide a means of speaking
safely about classes. There are several ways of developing such a theory.

Bertrand Russell (1872-1970) and Alfred North Whitehead (1861-1947)
in their Principia Mathematica (1910) resolved the known difficulties with
a theory of types. They established a hierarchy of types of collections. A
collection x can be a member of a collection y only if y is one level higher in
the hierarchy than x. In this system there are variables for each type level in
the hierarchy and hence there are infinitely many primitive notions.

Two other systems, Goédel-Bernays (GB) set theory and Zerrnelo-
Fraenkel (ZF) set theory, evolved from the work of Bernays (1937-1954),
Fraenkel (1922), Godel (1940), von Neumann (1925-1929), Skolem (1922),
and Zermelo (1908). Our listing is alphabetical. We will not attempt to
identify the specific contribution of each man. Following each name we have
indicated the year or period of years of major contribution.

In Godel-Bernays set theory the classical paradoxes are avoided by
recognizing two types of classes, sets and proper classes. Sets are classes
that are permitted to be members of other classes. Proper classes have sets
as elements but are not themselves permitted to be elements of other classes.
In this system we have three primitive notions; set, class and membership.
In the formal language we have set variables, class variables, and a binary
predicate symbol “e”.

In Zermelo-Fraenkel set theory we have only two primitive notions; set
and membership. Class is introduced as a defined term. In the formal language
we have only set variables and a binary predicate symbol “€”. Thus in ZF
quantification is permitted only on set variables while in GB quantification
is permitted on both set and class variables. As a result there are theorems in
GB that are not theorems in ZF. It can however be proved that GB is a
conservative extension of ZF in the sense that every well-formed formula
(wff) of ZF is provable in ZF if and only if it is provable in GB.

Godel’s® work was done in Godel-Bernays set theory. We, however,
prefer Zermelo-Fraenkel theory in which Cohen® worked.

8 Gédel, Kurt. The Consistency of the Continuum Hypothesis. Princeton : Princeton University
Press, 1940.

® Cohen, Paul J. The Independence of the Continuum Hypothesis. Proc. Nat. Acad. Sci. U.S.
50, 1143-1148 (1963).



CHAPTER 2
Language and Logic

The language of our theory consists of:

Free variables: aq, a4, . . .,

Bound variables: x,, x4, ...,

A predicate symbol: €,

Logical symbols: 71, v, A, =, <, V, 3,

And auxiliary symbols: (, ),[, ]

The logical symbols, in the order listed, are for negation, disjunction,
conjunction, implication, equivalence, universal quantification, and exist-
ential quantification.

We will not restrict ourselves to a minimal list of logical symbols, nor will
we in general distinguish between primitive and defined logical symbols.
When, in a given context, it is convenient to have a list of primitive symbols,
we will assume whatever list best suits our immediate need.

We will use
a b, c,
as metavariables whose domain is the collection of free variables
ag, Ay, - - -5
and we will use
X, Y, 2,
as metavariables whose domain is the collection of bound variables

xO,xl,....
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When we need many metavariables we will use subscripts and rely upon
the context to make clear whether, for example, x, is a particular bound
variable of the formal language or a metavariable ranging over all bound
variables of the formal language.

We will use

o, ¥, 1

as metavariables that range over all well-formed formulas (wffs).
Our rules for wifs are the following:

(1) Ifaand b are free variables, then [a € b] is a wff. Such formulas are called
atomic.

(2) If p and Y are wils, then —1¢, [@ v ¥],[@ A Y], [0 — ¥],and [¢ < V],
are wffs.

(3) If ¢ is a wif and x is a bound variable, then (V x)¢(x) and (3 x)p(x) are
wifs, where ¢(x) is the formula obtained from the wff ¢ by replacing each
occurrence of some free variable a by the bound variable x. We call
(V x)p(x) and (3 x)e(x) respectively, the formula obtained from ¢ by
universally, or existentially, quantifying on the variable a.

To simplify the appearance of wffs we will occasionally suppress certain
grouping symbols. Our only requirement is that enough symbols be retained
to assure the meaning:

ExamMpLE. We will write ay € a, for [a,€a,] and instead of [[as€as] —
[ao € a,]] we will write simply a, € ay — ag € a,.

ExaMpLE. From the wff a, € a, we obtain the wff (3 x)[x € a,] by existentially
quantifying on a,. We obtain the wff (V y)[a, € y] by universally quantifying
on a,. And we obtain (V z)[a, € a,] by universally quantifying on a,, or any
other variable that does not occur in a, € a;.

A formula is well formed if and only if its being so is deducible from rules
(1)-(3) above. It is easily proved that there is an effective procedure for deter-
mining whether a given expression. i.e., sequence of symbols, is a wif.

From the language just described we obtain Zermelo-Frankel set theory
by adjoining logical axioms, rules of inference, and nonlogical axioms. The
nonlogical axioms for ZF will be introduced in context and collected on
pages 132-3. The logical axioms and the rules of inference for our theory are
the following.

Logical Axioms.

1) ¢ - [¥ - ol
@ [e— ¥ ->n1]l- e —y]-[e-n]l]
G) [he—- Wl ->[Y - el
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@) (v 0)[e - Y(x)] - [ = (¥ x)¥(x)] where the free variable a on which
we are quantifying does not occur in ¢.

(5) (¥ x)e(x) — @(a) where ¢(a) is the formula obtained by replacing each
occurrence of the bound variable x in ¢(x) by the free variable a.

Rules of Inference.

(1) From ¢ and ¢ — ¥ to infer .
(2) From ¢ to infer (V x)@(x) where ¢(x) is obtained from ¢ by replacing
each occurrence of some free variable by x.

We will assume, without proof, those results from logic that we need,
except one theorem. That theorem is proved on pages 114-6 and its proof
presupposes the logical axioms and rules of inference set forth here.

We will use the turnstile, , to indicate that a wif is a theorem. That is,
k@ is the metastatement that the wff ¢ is deducible, by the rules of inference,
from the logical axioms above and the nonlogical axioms yet to be stated.
To indicate that ¢ is deducible using only the logical axioms, we will write
Fra @. We say that two wifs ¢ and y are logically equivalent if and only if
Fap & .



CHAPTER 3
Equality

Definition 3.1.a = b & (V x)[xea — xeb].

Proposition 3.2.

1) a=a
2 a=b-b=a
(3 a=bAab=c—-a=c.

PRrROOF.

(1) (vVx)[xea<xea]
2) (Vx)[xeaoxeb] > (Vx)[xebe xeal.
(3B (Vx)[xeaoxeb] A(Vx)xeboxec]—»>(Vx)[xea—xec].

O

Remark. Our intuitive idea of equality is of course identity. A basic property
that we expect of equality is that paraphrased as “equals may be substituted
for equals,” that is, if a = b then anything that can be asserted of a can also
be asserted of b. In particular if a certain wff holds for a it must also hold for b
and vice versa:

a=b— [¢(a) — ob)].

Here ¢(b) is the formula obtained from ¢ by replacing each occurrence of
some free variable by b, and ¢(a) is the formula obtained from ¢ by replacing
each occurrence of the same free variable by a.
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We need not postulate such a substitution principle for, as we will now
show, it can be deduced from Definition 3.1 and the following weaker
principle.

Axiom 1 (Axiom of Extensionality).

a=bAanaec—obec.

Proposition 3.3.a = b — [aec— bec].
PrOOF. Axiom 1 and Proposition 3.2(2). O
Theorem 34. a = b — [p(a) « @(b)].

ProoF (By induction on n the number of logical symbols in ¢). If n = 0, then
¢(a) is of the form ced, cea, aec, or ae a. Clearly

a=b-[cedeced].

From the definition of equality
a=b-[cea—ceb]

From Proposition 3.3
a=b-laeceobec]

Again from the definition of equality and Proposition 3.3 respectively
a=b-lacea—aeh],
a=b-[laeb—beb].

Therefore
a=b-[aca—beb]

As our induction hypothesis we assume the result true for each wif having
fewer than n logical symbols. If n > 0 and ¢(a) has exactly n logical symbols,
then ¢(a) must be of the form

1 W@, @ ¥ An@, or (3) (VYx)(a, x)

In Cases (1) and (2) y«(a) and n(a) have fewer than n logical symbols and
hence from the induction hypothesis

a=b- [y~ y¥®d)]
a = b - [n(a) < n(b)].
From properties of negation and conjunction it then follows that
a=b-["1(a) « yY(b)]
a =b—[¥(a) A nla) = Y(®d) A nb)].
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Thus if p(a) is "Y(a) or Y(a) A nla),
a=b - [p(a) « o(b)].

If o(a) is (VY x)y¥/(a, x) we first choose a free variable ¢ that is distinct from
a and b and which does not occur in Y(a, x). Since ¥(a, ¢) has fewer than n
logical symbols it follows from the induction hypothesis that

a = b - [Y(a, c) = Y(b, c)].

Generalizing on c in this formula, using Logical Axiom 4, and the following
result from logic

(Y x)[¥(a, x) < Y(b, x)] = [(Y x)¥(a, x) < (¥ x)Y(b, x)]
we arrive at the conclusion that

a="b— [(VX)¥(a,x) = (Vx)y(b,x)]. O

Remark. Extensionality assures us that a set is completely determined by its
elements. From a casual acquaintance with this axiom one might assume that
extensionality is a substitution principle having more to do with logic than
set theory. This suggests that if equality were taken as a primitive notion
then perhaps this axiom could be dispensed with. Dana Scott! however, has
proved that this cannot be done without weakening the system. Thus, even
if we were to take equality as a primitive logical notion it would still be
necessary to add an extensionality axiom.?

! Essays on the Foundations of Mathematics. Amsterdam: North-Holland Publishing Company
1962, pp. 115-131.

2 See Quine, Willard Van Orman. Set Theory and its Logic. Cambridge: Harvard University
Press, 1969, 30f.



CHAPTER 4
Classes

We pointed out in the Introduction that one objective of axiomatic set
theory is to avoid the classical paradoxes. One such paradox, the Russell
paradox, arose from the naive acceptance of the idea that given any property
there exists a set whose elements are those objects having the given property,
i.e., given a wif ¢ containing one free variable, there exists a set that contains
all objects for which ¢ holds and contains no object for which ¢ does not
hold. More formally there exists a set a such that

(VY x)[x € a & ¢(x)].

This principle, called the Axiom of Abstraction, was accepted by Frege in
his Grundgesetze der Arithmetik (1893). In a letter! to Frege (1902) Bertrand
Russell pointed out that the principle leads to the following paradox.

Consider the wif b ¢ b. If there exists a set a such that

(Vx)[xea—x¢x]
then in particular
aca—aé¢a.

The idea of the collection of all objects having a specified property is so
basic that we could hardly abandon it. But if it is to be retained how shall the
paradox be resolved ? The Zermelo-Fraenkel approach is the following.

For each wff ¢(a, a,, .. ., a,) we will introduce a class symbol

{x|¢(xs Ay e evy an)}

! van Heijenoort, Jean. From Frege to Giodel. Cambridge: Harvard University Press, 1967,
pp. 124-125.

10
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which is read “the class of all x such that ¢(x, a4, ..., a,).” Our principal
interpretation is that the class symbol {x | ¢(x)} denotes the class of individuals
that have the property ¢. We will show that class is an extension of the notion
of set in that every set is a class but not every class is a set.

We will extend the e-relation to class symbols in such a way that an object
is an element of a class {x|@(x)} if and only if that object is a set and it has the
defining property for the class. The Russell paradox is then resolved by show-
ing that {x|x ¢ x} is a proper class, i.e., a class that is not a set. It is then dis-
qualified for membership in any class, including itself, on the grounds that
it is not a set.

Were we to adjoin the symbols

{x|p(x)}

to our object language it would be necessary to extend our rules for wffs and
add axioms governing the new symbols. We choose instead to introduce
classes as defined terms. It is, of course, essential that we provide an effective
procedure for reducing to primitive symbols any formula that contains a
defined term. We begin by defining the contexts in which class symbols are
permitted to appear. Our only concern will be their appearance in wffs in the
wider sense as defined by the following rules.

Definition 4.1. (1) If a and b are free variables, then a € b is a wff in the wider
sense.

(2) If @ and y are wffs in the wider sense and a and b are free variables
then ae {x|y¥(x)}, {x|@(x)} €b, and {x|p(x)} € {x|¥(x)} are wifs in the
wider sense.

(3) Ifpand y are wfls in the wider sense then -1, 0 A Y, 0 v ¥, 0 - ¥,
and ¢ <y are wffs in the wider sense.

(4) If pisawflinthe wider sense and x is a bound variable then (3 x)¢(x)
and (V x)p(x) are wifs in the wider sense.

A formula is a wffin the wider sense iff its being so is deducible from (1)-(4).

It is our intention that every wff in the wider sense be an abbreviation
for a wff in the original sense. It is also our intention that a set belong to a
class iff it has the defining property of that class, i.e.,

ac{x|p(x)}  iff ¢(a).

Definition 4.2. If ¢ and s are wffs in the wider sense then
(1) ae{x|o(x)} S ¢(a).
2 {xlp)}eaS@ylyean (Vo)zey o o@)]].
(3) {xlp()} e {x|¥(x)} S @Yy e xIYx)} A (V2)zey < o).
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Remark. From Definition 4.2 it is easily proved that each wff in the wider
sense ¢ is reducible to a wif ¢* that is determined uniquely by the following
rules.

Definition 4.3. If ¢ and i are wffs in the wider sense then
(1) [aeb]*Sach.
@) [ae{x]|o(x)}]* S o*@) & [o(a)]*.
3) [xlex)}eal*SApyean (V2)zeyo o*@)]].
@ [{xle(x)} e {x[y(x)}1* S A YY*0) A (V2)[zey < o*(2)]].
) [De]*S e~
6) [o A YI*So* Ay~
() [V )p(x)]* S (¥ x)p*(x).

Proposition 4.4. Each wif in the wider sense @, is reducible to one and only
one wif @* determined from ¢ by the rules (1)—(7) of Definition 4.3.

Proor (By induction on n the number of logical symbols plus class symbols,
in ). If n = 0, i.e., if ¢ has no logical symbols or class symbols, then ¢ must
be of the form a € b. By (1) of Definition 4.3, ¢* is a€b.

As our induction hypothesis we assume that each wff in the wider sense
having fewer than n logical and class symbols is reducible to one and only
one wil that is determined by the rules (1)-(7) of Definition 4.3. If ¢ is a wif
in the wider sense having exactly n logical and class symbols and if n > 0 then
¢ must be of one of the following forms:

(1) ae{x|y(x)},

@ {xlYx)}eaq,

3 {xl¥()} e {xIn(x)},

@ v,

5 ¥ an,

© (V.

In each case Y and 5 have fewer than n logical and class symbols and hence
there are unique wffs Y* and n* determined by ¥ and # respectively and the

rules (1)-(7) of Definition 4.3. Then by rules (2)-(7) ¢ determines a unique
wif p*. O

Remark. From Proposition 4.4 every wif in the wider sense ¢ is an ab-
breviation for a wff ¢*. The proof tacitly assumes the existence of an effective
procedure for determining whether or not a given formula is a wif in the wider
sense. That such a procedure exists we leave as an exercise for the reader.
From such a procedure it is immediate that there is an effective procedure for
determining ¢* from ¢.
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Proposition 4.4 also assures us that in Definitions 4.1 and 4.2 we have not
extended the notion of class but have only extended the notation for classes
for if @(x) is a wff in the wider sense then

{xlo(x)}.

and
{x|p*(x)}

are the same class. This is immediate from Proposition 4.4 and equality for
classes which we now define. We wish this definition to encompass not only
equality between class and class but also between set and class. For this, and
other purposes, we introduce the notion of a term.

By a term we mean a free variable or a class symbol. We shall use capital
Roman letters

A, BC,...

as metavariables on terms.

Definition 4.5. If 4 and B are terms then
A=B&(Wx)xeA- xeB]

Proposition 4.6. A€ B« (3 x)[x = A A xe B].
Proor. Definitions 4.2 and 4.5. O

Proposition 4.7. If A, B, and C are terms then
(1) A=4,
(2Q) A=B->B=A4,
3) A=BAB=C-A=C.

The proof is similar to that of Proposition 3.2 and is left to the reader.

Proposition 4.8. If A and B are terms and ¢ is a wif in the wider sense, then
A = B - [¢(4) < ¢(B)].
The proof is by induction. It is similar to the proof of Theorem 3.4 and is
left to the reader.
Proposition 4.9. a = {x|x€a}.
PROOF. (V x)[x €a+> x € al. O
Remark. Proposition 4.9 establishes that every set is a class. We now wish

to establish that not all classes are sets. We introduce the predicates .#(A4)
and 24(A) for “ A is a set” and “ A is a proper class” respectively.
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Definition 4.10. .#(A) S A x)[x = A].
PuA) S 1 M(A).

Proposition 4.11. .#(a).

PrROOF.a = a

Proposition 4.12. A € {x|@p(x)} < #(A) A p(A4).

PROOF. Definitions 4.2 and 4.10 and Propositions 4.6 and 4.8.

Definition 4.13. Ru £ {x|x ¢ x}.

Proposition 4.14. 2»(Ru).
PrROOF. From Proposition 4.12
A(Ru) > [RueRu < Ru¢Ru].

Therefore Ru is a proper class.

O

Remark. Since the Russell class, Ru, is a proper class the Russell paradox

is resolved. It should be noted that the Russell class is the first
encountered. Others will appear in the sequel.

nonset we have

We now have examples to show that the class of individuals for which a
given wif ¢ holds may be a set or a proper class. Those sets, {x|@(x)}, for

which ¢(x) contains no free variable, we call definable sets.

As a notational convenience for the work ahead we add the following

definitions.

Definition 4.15.

) (I Xp ooy X)X g5 -y X)) S (Y X) -+ (VX )04, - - -
(D AXgsees %O, -, X%) S A xp) - @ x)O(X1s - . -

B) (VXyy..., X € AO(xy, ..., x,) S

Vxy,...,x)x; €A A Ax, €A o(xy,...

@ Axpy..., X, € APy, ..., %) S
@xye.sx)x1€A A Ax, €A N O(xy,...
B) ap,...,a,€ASa, €A N+ A a,€A.

Definition 4.16. If 7 is a term and ¢ is a wff, then

{r(xls cevy x,,)|(P(x1, ceey xn)} é

I X, x )y = (X, .00y X)) A O(Xg, ..

> Xn)-
> X4)-

s Xn)]-
» Xn)].

s X1}



CHAPTER 5
The Elementary Properties of Classes

[n this chapter we will introduce certain properties of classes with which
the reader is probably familiar. The immediate consequences of the definitions
are for the most part elementary and easily proved; consequently they will
be left to the reader as exercises.

We begin with the notion of unordered pair, {a, b}, and ordered pair
{a, b).
Definition 5.1. {q, b} £ {x|x = a v x = b}.

{a} £ {a,a}.

Remark. The symbol {a, b} we read as “the pair a, b,” and the symbol {a}

we read as “singleton a.” We postulate that pairs are sets.

Axiom 2 (Axiom of Pairing). .#({a, b}).
Definition 5.2. {a, b £ {x|x = {a} v x = {a, b}}.
Remark. We read (a, b) as “the ordered pair a, b.”

EXERCISES

Prove the following.

(1) cefa,b}e>c=avc=h

2) cef{a}ec=a

B) cela,bp)eoc={a} vc={a b}
4) {a} ={b}a=hb

15
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(5 {a}={bclea=b=c

6) <a,b)=Lcdy—a=cab=d
(1) AM(a, b))

@B) (Vx)laex—o>bex]—a=hb

(9) AeB - M(A).

Remark. The notions of unordered pair and ordered pair have natural

generalizations to unordered n-tuple, {a;, a,, ..., a,} and ordered n-tuple,
<als Ay ..., an>'
Definition 5.3. {0, a5,...,a,} 2 {X|x=a;, vX=a, vV -+ Vv X = a,}.

Definition 5.4. (a,,a,,...,a,» & Kay, ..., 0,_ 1), 8y, n = 3.

Remark. Since ordered pairs are sets it follows by induction that ordered
n-tuples are also sets. From the fact that unordered pairs are sets we might
also hope to prove by induction that unordered n-tuples are sets. For such a
proof however we need certain properties of set union.

Definition 5.5. U(4) £ {x|3y)[xey A ye A]}.
Axiom 3 (Axiom of Unions). .Z( U (a)).

Definition 5.6. AU B £ {x|xe A v x€ B}.
ANB2 {x|xeAd A xeB}.
Remark. The symbol U(A4) denotes the union of the members of A; we

will read this symbol simply as “union 4.” We read A U B as “A union B”
and we read A N B as “ A4 intersect B.”

Proposition 5.7. a U b = U{a, b}.

PrROOF.au b = {x|xe€a v x = b}
{xI@nlxey A ye{a b}1}
= u({a, b}). O

Corollary 5.8. #(a L b).

PROOF. Proposition 5.7, the Axiom of Unions, and the Axiom of Pairing.

O
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EXERCISES

Prove the following.

)
@
3
Q)
&)
6
@)
©)
®
(10)
(1D

bef{ay,a,,...,a,3 b =a,
{a1,az,..., 8,41} = {ay, a,,
‘/”({al’ a29 “wan})'

M(ay, a,,...,a,))

aebu {b} saebva=h.

AuB=BuU A.
AnB=BnA.
(AuB)uC=Au(BuUC().

(ANnB)NnC=An(BnC(C).

vb=a,v---vb=a,.

...,a,,}u{a,,+1},n 2 L

AnBul)=AnBuAn(C).
AuBnC)=([AUBn(4uUO).

Remark. We next introduce the notions of subclass A € B, and power
set, Z(a).

Definition 5.9. 4 = BS (Vx)[xe A - xe B].
AcB&BA<SBAA#B.

Definition 5.10. 2(a) £ {x|x < a}.

Remark. We read A < B as “A is a subclass of B”; A < B we read as
“A is a proper subclass of B”; and we read #(a) as “the power set of a.”

Axiom 4 (Axiom of Powers). .#(%(a)).

EXERCISES

Reduce the following wffs in the wider sense to wffs.

M
@
(€)
@

&)
©)

{a, b} € U(0),

M({a, b}),

M(Aa)),

M(P(a)).

Prove the following.
AcsBABcsC-oA4AcC.
ASB-CnAcCnB.
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(7) AcB->CuAdAcCuUB.
®8) A= B—B=(4uUB).
¥ AgBoA=(AnB).
(10) A< A
(11) AcAuUB.
(12) AnB=AAANnBgB
(13) A=cBeo(3x)[xed A'x¢B].
(14) A< B-[u(4) € u(B)]
(15) A = B - [u(4) = U(B)]
(16) aeP(a).
a7n, v(?@) = a.
(18) a < b P(a) c 2(D).
(19) a = b P(a) = PO).

Remark. The Axiom of Abstraction asserts that the class of all individuals
that have a given property ¢, is a set. Using class variables we can state this
simply as

M(A).

But, since the Axiom of Abstraction leads to Russell’s paradox, we must
reject it.

Zermelo proposed to replace the Axiom of Abstraction by an axiom that
asserts that the class of all individuals in a given set a that have a specified
property ¢, is a set.

The Axiom Schema of Separation.

Man A).

It is easily shown that this axiom does not lead to the Russell paradox.

Zermelo’s set theory, as presented in 1908, consisted essentially of our
Axioms 1-4, the Axiom Schema of Separation, an axiom of infinity, (See
Axiom 7, page 43), and an axiom of choice. The theory we are developing
differs from Zermelo’s theory of 1908 in two respects. First, for the con-
sistency proofs of Chapter 15, we must exclude the axiom of choice from the
list of axioms of our basic theory. Second, Zermelo’s Axiom of Separation is
replaced by a much stronger axiom due to Fraenkel.

In 1922, Fraenkel proposed a modification of Zermelo’s theory in which
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the Axiom Schema of Separation is replaced by an axiom that asserts that
functions map sets onto sets.’
The condition that a wff ¢(a, b) should define a function, i.e., that

{<x, y>lo(x, )}

should be a single valued relation is simply that

(Vx, y, 2)[o(x, y) A o(x,2) > y = z].
If this is the case and if

A= {x|@y)ox, )} and B={y[@x)e(x, y)}

then the function in question maps 4 onto B and by Fraenkel’s axiom maps
a n A onto a subset of B. That is

M ({y|3 x € a)p(x, y)}).

A B

o(x, y)

Figure 1

Axiom 5 (Axiom Schema of Replacement).
[V )Y PV 2)Lo(x, y) A @(x,2) = y = z] » A({y|3x € a)p(x, )})].

Remark. From Fraenkel’s axiom we can easily deduce Zermelo’s. The two
are however not equivalent. Indeed Richard Montague has proved that ZF
is not a finite extension of Zermelo set theory.?

Proposition 5.11 (Zermelo’s Schema of Separation).
Man A)

PRrROOF. Applying Axiom 5 to the wif be A A b = ¢ where b and ¢ do not
occur in A, we have that

Vx,y,2)[xeAArx=y]A[xeEAAXx=2z]>y=r1z

! This same idea was formulated, independently, by Thoralf Skolem, also in 1922.
2 Essays on the Foundations of Mathematics. Amsterdam: North-Holland Publishing Company.



20 Introduction to Axiomatic Set Theory

Therefore
HA({y|Gxea)xed A x=y]})
ie.,

M(an A). O
Definition 5.12. A — B 2 {x|xe A A x¢ B}.

Remark. The class A — B is called the complement of B relative to A
but we will read the symbol A — B simply as “ 4 minus B.”

Hereafter we will write {x € a|@(x)} for {x|x€a A @(x)}.

Proposition 5.13. .#(a — A).
PROOF.a — A = {xea|x ¢ A}. U

Definition 5.14. 0 £ {x|x # x}.

Proposition 5.15.a — a = 0.

PROOF.a —a = {xea|x¢a}
= {x|x # x}
=0. O

Corollary 5.16. .#(0).
PrOOF. Propositions 5.15 and 5.13. (]

Remark. We read 0 as “the empty set.”

Proposition 5.17.
(1) (Vx)[x¢0]
2) a#0eo3x)[xeal
PROOF.
(1) (Vx)[x = x]. Therefore (V x)[x ¢ 0].
2 a#0o@x)[xe0Ax¢al v(@x)xean x¢O0].
Since (V x)[x ¢ 0] we conclude that a # 0 < (3 x)[x € a]. O

Remark. To exclude the possibility that a set can be an element of itself
and also to exclude the possibility of having “e-loops,” ie., a;€a,€- -
€a,€a,, Zermelo introduced his Axiom of Regularity, also known as the
Axiom of Foundation, which asserts that every nonempty set a contains an
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element x with the property that no element of x is also an element of a. A
stronger form of this axiom asserts the same property of nonempty classes.
Later we will prove that the weak and strong forms are in fact equivalent.

Axiom 6 (Axiom of Regularity, weak form).

a#0->Axeal[xna=0]

Axiom 6’ (Axiom of Regularity, strong form).
A#0-> @Axed)[xnA=0].

Proposition 5.18. "[a, €a,€---€a,€a,].

PROOF. Let a = {a;, a,, ..., a,}. Suppose that a, €a, €---€a,€a,. Then
(Vx)[x € a — x na # 0]. This contradicts Regularity.

Corollary 5.19. a ¢ a.
Proor. Proposition 5.18 with n = 1. O

Definition 5.20. V £ {x|x = x}.

Proposition 5.21. 24(V).

PrOOF. Since V = V it follows that if V is a set, then Ve V. O
Remark. From the strong form of Regularity we can deduce the following

induction principle.

Proposition5.22. Vx)[x c A > xe€A]->A=V.

PrROOF. Assume that (Vx)[x € A > x€A].If B=V — A and if B # 0 then
by (strong) Regularity there exists a set a such that

aeBarnanB=0
that is
(Vylyea— y¢ Bl
Butsince B=V — A4,
(Vy)y¢B - yeAd]
Thus a £ A4 and hence, by our hypothesis, a € A. But this contradicts the
fact that a € B. Therefore B = 0 and 4 = V. (See Exercise (1) below.) O

Remark. Proposition 5.22 assures us that if every set a has a certain prop-
erty, ¢(a), whenever each element of g has that property then every set does
indeed have the property. Consider the following example. If each element of
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a set a has no infinite descending e-chain then clearly a has no infinite des-
cending e-chain. Therefore there are no infinite descending e-chains.

EXERCISES

Prove the following.

(1) 0gA4ndcV.

2) (Vx)[x¢A]->A=0.

3B) Aga-—.#(A).

4 HA(A)—> #(A N B).

(5) Ru=vV.

6) A¢A.

(7l A-B=0oA4<B

8) A—-B=A4n{x|x¢B}

9 A—BUC) =U-B)n( - C)

(10) A-(BNnC)=(A—-B)yu(4-20C).

(11) A—-(B - A) = A.

(12) An(B—=C)=(AnB)—(AnC)=(AnB)-C.
(13) AuB-C)=AUB)—(C—A)=(AuUB)—(BNnC)—A4).
(14 A-Bgc A

(15) AgB->[C-BcC—- A4l



CHAPTER 6
Functions and Relations

Definition 6.1. 4 x B 2 {x|(Aye A)IzeB)[x = {y, 2>]}.
Remark. We read the symbol 4 x B as “A cross B.”

Proposition 6.2. .#(a x b).
ProOF.
ceaxb-o@3x,y)[xeanyeb anc=<{xy]
->@x,{x} cavbai{x,y} cavubac=<{xy]
- [@x, plix}, {x, y}ePlavb) A c =<{x, p)].
- @x, x> eP(P@ub)) A c=<xpl
- ceP(P(aub)).

Therefore a x b = #(P(a U b)); hence #(a x b). O

Definition 6.3. 4' £ 4.
(1) A1 2 4" x A
(2) A7 E {(x p)I<y, x) e A}

Remark. We read A~ ! as “ 4 converse.” If 4 contains elements that are not
ordered pairs, for example, if A = {0, 1), 0} then (4™ )" ! # A; indeed for
the example at hand 47! = {{1,0>} and (4™ 1)"! = {0, 1>}.

Definition 6.4.
(1) Ret(A)S A< V2
() UA)S (Y%, p, 2)[<x, p), {x, 2) € A > y = z].

23
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() Uny(A) S Un(A) A Un(A™H).
@) Fno(A) S Ret(A) A Un(A).
(5) Fncy(A)S Ret(A) A Uny(A).

Remark. We read

Rel(A) as “ A is a relation,”

Un(A) as “ A is single valued,”

Un,(A) as “ A is one-to-one,”

F ne(A) as “ A is a function,”
and

F ne,(A) as “ A is a one-to-one function.”

Definition 6.5.

(1) 2(4) £ {x|@ Y[{x, yy e AT
Q) #(A4) £ {yIAKx, y> e AL

Remark. We read 2(A) and #°(A) as “domain of A” and “range of A”
respectively.

It should be noted that a class does not have to be a relation in order
to have a domain and a range. Indeed every class has both. The domain of 4
is simply the class of first entries of those ordered pairs that are in 4 and the
range of A is the class of second entries of those ordered pairs that are in 4.

Definition 6.6.
(1) AIB2ANB x V).
(2 A“BL£ %A B).
() A°B = {(x,y>|A2)[{x,2)€B A<z, y>e AL}

Remark. We read

A [ Bas “the restriction of 4 to B,”
A“B as “the image of B under A4,”

and

A o B as “the composite of 4 with B.”

Note that 4 [ B is the class of ordered pairs in 4 having first entry in B
and A“B is the class of second entries of those ordered pairs in A4 that have
first entry in B.
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EXERCISES

Prove the following.

)

@

©)

@

&)

(6)

M

®

®
(10)
1n
(12)
(13)
(14)
15)
(16)
)
(18)
(19)
(20)
@1
(22)
(23)
24
(25)
(26)
@7
(28)
(29)
(30)
3D

A hHltea

(A7 = Ao Rel(A).

Ax Bg V2

Vic V.

Ret(A) A Ret(B) — Rel(A L B).

(v 0)[x € A > Rel(x)] - Ret (U(A)).

Uny(A) = (Y w, x, y, 2)[{w, xD,{z, DA = [Ww = z > x = y]].
FncA) > Fnc(A) N Fre(A™1).

(AxB)Nn(C xD)y=(AnC)x (BnD).

A € B 9(A) < UB).

A S B— W (A) < #(B).

Rel (AT B).

(a,b>e A} B><(a,b>e A A aeB.

DA B) = B D(A).

Al B < A

[A = A D(A)] < Ret(A).

BSC—[(A}C)[B=A" Bl

Un(A) - Un(A | B).

be A“B— (3 x)[{x,b)e A A xeB].

[A€ B A CgD]—- A“C < B“D.

IfA = {x, y>,{y, x))|x€V A yeV}, then Un(A) A A“B =B .
IfA = {<{x, >, xD|x €V A ye V), then Un(A) A A“B = D(B).
IfA = {{{x, ), y>|xeV A yeV}, then Un(A) A A“B = W (B).
Rel(A o B).

Un(A) A Un(B) - Un(A * B).

Un(A) A Un(B) > Fne(A o B).

Uny(A) N Uny(B) > Uny(A - B).

Uny(A) A Uns(B) > F nes(A o B).

F nc(A) N Fne(B) > Fnc(A o B).

Fne(A) A Frey(B) = Fney(A o B).

A l=AnNnVH L
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Proposition 6.7. %»(A) - #(A“a).
PrOOF. From Definition 6.4(2)
Un(A) = (VXYV YV )X, yp €A AKX, 2)eA -y = z].

Then from the Axiom Schema of Replacement it follows that

{y1@xea)<{x, y)>eAl}

is a set, that is, A“a is a set. O

Remark. Proposition 6.7 assures us that single valued relations, i.e., func-
tions, map sets onto sets.
Corollary 6.8.

(1) A@?).

2 M(D(a)).

(3) AW (a)).

ProoF. (1) If A = {{x, >, {y, xD) |x, y€ V}, then A is single valued and
hence by Proposition 6.7, A“a is a set. But A“a = a™!; therefore a ™! is a set.

2) Ifd = {{x,y),x)|x,y €V}, then Aissingle valued and A“a = D(a).
(3) IfA={x,y),y>|x,yeV}, then A4 is single valued and A*a = #(a).

d
Corollary 6.9.
(1) A(A x By #(B x A).
2) PHA) A B#0-> PHA x B) A P4B x A).

PROOF. (1) Suppose C = {{{x, y>, {y,x>>|x,ye V}. Then C is single valued,
C“(A x B)=(B x A)and C“(B x A) = (A x B).

(2) If B#0, then (3p)[yeB]. Let C = {{x, y), x>|xe A}. Then
C is single valued and 2(C) < A x B. Assumingthat A x Bisa set it follows
that 2(C) is a set. But A = C“2(C) and hence, by Proposition 6.7, 4 is a set.
From this contradiction we conclude that A x B is a proper class and hence
by (1) sois B x A. g

Definition 6.10. (3! x)p(x) S (3 x)o(x) A (¥ x, Y[@(x) A 9(¥) = x = y].
Remark. We read (3! x)p(x) as “there exists a unique x such that ¢(x).”
Definition 6.11. Ab 2 {x|(AV)[x ey A b, y>e A] A A Y)[{b, y> e A]}.

Remark. We read A‘b as “the value of 4 at b.”
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Propeosition 6.12.
(1) <b,e>ed n @ly)[Kb,y>eA]l - A'b = c.
2 @'Y[h,yyed] - Ab=0.
Proor. (1) From Definition 6.11, <b, c) € A A (3! Y)[{b, y) € A] implies

aeAbe—acec

ie, Ab = c.
(2) From Definition 6.11, (3! y)[{b, y) € A] implies
(V x)[x ¢ Ab]
ie, A =0. O

Remark. From Proposition 6.12 we see that Definition 6.11 is an extension
of the notion of function value. If A is a function and if b is in 2(A) then AD
is the value of A at b in the usual sense. If b is not in 2(A4) then A'b = 0. If 4
is not a function 4°b is still defined. Indeed if b is not in D(A4) then A6 = 0. If
b is in 2(A) but there are two different ordered pairs in A with first entry b
then again A'h = 0. If b is in 2(A4) and (b, c) is the only ordered pair in A
with first entry b then Ab = c.

Corollary 6.13. .#(A‘D).
PRrROOF. Proposition 6.12 assures us that (3 y)[4D = y]. O

Definition 6.14.
(1) {Ax|xeB} £ {y|@xeB)y = Ax]}.
(2 Uses A'x £ () {4'x|x e B}.

Remark. We read {A‘x|x € B} as “the class of all A°x such that xe B,”
and we read

() 4x

xeB

as “the union of all 4°x for x e B.”

Definition 6.15.
(1) AFnBSE Fu(d) A D(A) = B.
Q) AFny BE Fucy(A) A D(A) = B.
(3) F:A—BAFFnxAAW(F)cB.
4 F:A5zBSFFnA A #W(F)=B.
(5) F:AXLBAFFn, A W(F)<B.
6) F:ALLBAFZn, A A W(F)=B.

onto
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Remark. We read

A F»B as “A is a function on B,”

A Fn, B as “ A is a one-to-one function on B,”
F: A — Bas “F maps A into B,”

F: A——>Bas “F maps 4 onto B,”

onto

F:A-=L B as “F maps A one-to-one into B,”
and

F:A X5 Bas “F maps A one-to-one onto B.”

Theorem 6.16.

(1) AFna— H(A).

Q) AFn,a— M(A).
ProoF. (1) If A is a function on g, then A = a x A“a and A is single valued.
But if A is single valued, then by Proposition 6.7, A“a is a set, and so by

Proposition 6.2, a x A“a is a set. Since 4 S a x A“a, it then follows that
A s a set.

(2) If A is a one-to-one function on a, then A4 is a function on g and
hence 4 is a set by (1). O

Proposition 6.17. %»#(A) - M#(A| a).

Proor. If 4 is single valued, then certainly A4 [ a is single valued. Since, by
Definition 6.6(1), A a is a relation, it follows that A [ a is a function on
D(AT a). Furthermore, since 2(A4 [ a) < a it follows that 2(AT a) is a
set. Then by Proposition 6.16(1), A [ a is a set.

EXERCISES

Prove the following.
(1) PA) - PyA>).
2 24«V3).
(3) Un(B) A @X)[A — W (B x) = 0] > .#(A).

4) AFnCABFnD—>[A=Bo[C=D A
(v x)[xe C —» A'x = B'x]]].

(5) Un(A) A Un(B) A ae D(AoB)— (4 Bya= A'Ba.
(6) A, FnB, A Ay FnBy, A W(A;) S By = Ay oAy FnB,.

(7) Ay Fn; B, A Ay FnyBy A W(A,) =By — Ay oAy Fry By, A
W(Ay°Ay) = #(Ay).
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8 AFn;BAWA)=C—o>A'Fn,CArW(A')=B
©9) UAA) A M(B)—> M(A“B).
(10) %x(A) - A“B = {A'x|x e Bn 2(A)}.
(11) AF»Bv AF»,B—-> A=A B.
(12) @x)EN[x#y Ab,xdeAALby>ed] - Ab=0.
(13) @ X)[<b,xpeA] - A'b =0.

Remark. In later chapters we will study structures consisting of a class
A on which is defined a relation R, i.e., R = A2. Since for any class B, B N
A% = A? we see that every class B determines a relation on 4 in a very
natural way. We therefore choose to begin our discussion with a very general
theory of ordered pairs of classes [4, R] that we will call relational systems.

Definition 6.18. aRb & (a, bY e R.
Remark. We read a R b simply as “a R b.”

In the material ahead we will be interested in several types of relational
systems, [4, R]. We will be interested in systems in which R orders 4 and
systems in which R partially orders A, in the following sense.

Definition 6.19.
(1) ROrA&(Wx,yed)[xRy—-[x=yv yRx]] A
(Vx,y,zeA)[x Ry AnyRz—>xRz].
(2) RPoASB(WxeA[xRx]A(NWx,yed)[xRyAyRx—x=y] A
(Vx,y,ze A)[Ix Ry AyRz—->xRz]

Remark. There are several properties of relational systems whose proofs
depend upon the classes of R-predecessors:

{x|xRa}

Proposition 6.20. (R~ ")“{a} = {x|x R a}.
ProoF. (R™1)*“{a} = {x|<a,x)e R}

= {x|<{x, a)R}
= {x|xRaj}. O

Remark. From Proposition 6.20 we see that 4 n (R™')*“{a} = 0 means
that no element of A4 precedes a in the sense of R. If, in addition, a€ 4 then a
is an R-minimal element of A. We wish to consider relations with respect
to which each subclass of a given class has an R-minimal element. Such a
relation we call a founded relation. Since we cannot quantify on class symbols
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we must formulate our definition in terms of subsets and impose additional
conditions that will enable us to deduce the property for subclasses. Later
we will show that these additional conditions are not essential.

Definition 6.21.
RFTAAWx)[x<SAArx#0->@Ayex)xn® Y} =0]]

Remark. We read F Fr 4 as “F is a founded relation on A4.”
Definition 6.22. E £ {(x, y>|x € y}.

Remark. From the Axiom of Regularity we see that the e-relation E is a
founded relation on V. As in the case of the e-relation, founded relations have
no relational loops and, as we will prove later, no infinite descending rela-
tiohal chains.

Proposition 6.23.

RFrA Aa,€eAA---Aa,ed—[a,Ra; Aa,Raz A+ Aa,Ra,].
The proof is left to the reader.

Remark. There are two types of founded relations that are of special
interest, the well-founded relations and the well-ordering relations.

Definition 6.24.
(1) RWird&SRFrA A (Y xeA[MA N R (D]
(2) RWeASRFrda (VxeA)(VyeA)xRyvx=yv yRx]
(3) RWfwe AS RWIir4 A RWe A.

Remark. Note that R is a founded relation on 4 iff each nonempty subset
of 4 has an R-minimal element. Furthermore, R is a well-founded relation on
A iff each nonempty subset of 4 has an R-minimal element and each R-
initial segment of A is a set. By an R-initial segment of A we mean the class
of all elements in A4 that R-precede a given element of 4, i.e., 4 N (R™1)*{a}
for a € A. For example, each E-initial segment of V is a set, indeed

(E"Y“{a} = {x|xe€a} = a.
Then (Vx)[a n x = a n (E~1)*“{x}] and hence from the Axiom of Regularity
a#0->@@xeafan(E"H*{x} =0]

that is, E is well founded on V.
There do exist founded relations that are not well founded. Let 4 be the
class of all finite sets and for a, b € 4 define a R b to mean that g has fewer
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elements than b. Given any nonempty collection of finite sets there is a set
in the collection that has the least number of elements. Thus R is founded
on A. However the R-initial segment of A that contains all finite sets that
R-precede a given doubleton set contains all singleton sets hence is a proper
class. Thus R is not well founded on A.

R is a well ordering of A iff R determines an R-minimal element for each
nonempty subset of 4 and the elements in 4 are pairwise R-comparable. If
there were elements a, b € A that were not R-comparable, i.e., neither a R b
nor b R a, then both a and b would be R-minimal elements of {a, b}. Con-
versely if a and b are R-comparable then a and b cannot both be R-minimal
elements of the same set. Thus if R well orders 4 then R determines a unique
R-minimal element for each nonempty subset of A. That R is a transitive
relation satisfying trichotomy we leave to the reader:

Proposition 6.25. R We A - R Or A.

EXERCISES
() RFTAAB< A—RFrB.
(2) RFra— RWrfra.
(3) RWfr4A AB< A— RWIfrB.
(4 RWeAABc A—- RWeB.
(5) RWedA-(Vx,yed)[xRy— [x=yv yRx]].
6) RWeA—->(Vx,y,zeA)[ x Ry AnyRz—-xRz].
Remark. If a relation R well orders a class 4, does it follow that R deter-

mines an R-minimal element for every nonempty subclass of 4? If R is a
well-founded well ordering of A4, i.e., R Wfwe A then the answer is, Yes:

Proposition 6.26.
RWfweAABZS AAB#0-@xeB)[Bn (R ){x} =0].

Proor. If B is not empty, then B contains an element b. If B n (R~ 1)“{b} = 0,
then b is the set we seek. But suppose that B n (R™1)“{b} # 0. If in addition
B < A and R is a well-founded well ordering of A4, then R is also a well-
founded well ordering of B. Since b € B it follows that B ~ (R™!)*“{b} is a set.
In fact, it is a subset of B and hence it has an R-minimal element. that is,
there exists an a such that

aeBN (R Y} A BAR H“D}n (R H*{a} =0.
From this it follows that a € B and a R b. Then, since R is a transitive relation

Bn(R™H*a} £ Bn(R™)“{b} n(R™1)*{a}
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and since BN (R™Y)“{b} n(R™)“{a} = 0, it follows that B n (R~ ")“{a}
= 0. Consequently
aeBABNR Ya} =0
that is
@xeB)[Bn (R~ ){x} = 0]. O

Proposition 6.27.
RWiweAABZS AA(NxedA)[An(R H“{x} = B—->xeB] > A=B.
PROOF. If A — B # 0 then by Proposition 6.26
3xeA — B)[(A — B)n (R™H)“{x} = 0]
then
An (R YH“{x} < B.

Since x € A4 it follows from hypothesis that x € B. But this contradicts the
fact that xe 4 — B.

Therefore A — B = 0 that is A < B. Since by hypothesis B = 4 we con-
clude that 4 = B. a

Remark. Proposition 6.27 is an induction principle. To prove that
(V x € A)p(x), we consider

B = {xe A|p(x)}.
If for any R that is a well-founded well ordering on A we can prove
(VxeA[An (R HY{x} = B- xeB]

it then follows that A = B, i.e. (V x € A)p(x).

Later it will be shown that Propositions 6.26 and 6.27 are over hypoth-
esized. We will prove that the hypothesis R Wfwe A can be replaced by
R Fr A. See Propositions 9.21 and 9.22 pages 80-1.

Clearly two relational systems [4, R,] and [4, R,] are essentially the
same if R, and R, have the same relational part in common with 42, i.e., if
A’N R, = A’ R,. Even if R, and R, do not have the same relational
part there is a sense in which the two relational systems are equivalent. They
may be equivalent in the sense that there exists an isomorphism between the
two relational systems.

Definition 6.28.
H Isomg, g, (A4, A3) SH: A =54, A

onto

(Vx,ye A))[xR,y— H'xR,H'y].

Remark. We read H Isomg, (4, A;) as “H is an R,, R,” isomorphism
of A, onto 4,.
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Definition 6.29. I £ {(x, x>|xe V}.

Proposition 6.30.
(1) (I TA)lsomg g(A4, A).
(2) HIsomg g(A;, A;) > H™ ! Isomg, g,(42, A1)

(3) H,Isomg, g,(A;, 45) A HyIsomg, g,(A;, A3) —
H; o H, Isomg, g,(A44, A3)-

The proof is left to the reader.

Proposition 6.31. If H Isomg, g,(A;, A;) A BS Ay A a€ Ay, then
(1) Bn(Ry")*{a} =0 H“Bn (R;){H'a} =0,
(2 H“A; n(RyY)*{a}) = 4, 0 (Ry )*{H'a}.
PRrROOF
(1) beBNn(R{Y{a} >beBADbR;a
— HbeH“B A HbR, H'a
- Hbe H“B n (R; V)“{Ha}.
be H“Bn (R;Y)“{H‘a} > (3 yeB)[b= H'y A bR, H'a]
— @ yeB)[H'yR, Ha]
- @yeB)lyR,d]
- @3yyeBn Ry){a}]
(2 H*A;n(RyY){a}) = {zI@yeA)lyRya A z = HYl}
= {z|(QyeA,)[z=H'y A HyR, Hdal}
= A, n(R; Y){H‘a}. O

Remark. Proposition 6.30 assures us that isomorphism between relational
systems is an equivalence relation. From Proposition 6.31 we see that such
isomorphisms preserve minimal elements and preserve initial segments.
From this it is easy to prove the following. Details are left to the reader.

Proposition 6.32. If H Isomg, (41, 4,), then
(1) R{FrA, < R,Fr4,,
(2) R, Wifrd, <R, WirA4,,
(3) R;WeAd, &R, WeAd,.

Remark. From Proposition 6.32 we see that if in a given equivalence
class of isomorphic relational systems, there is a relational system that is
founded then every relational system in that equivalence class is founded.
Similarly if there is a relational system that is well founded then all systems
in that class are well founded; if one system is a well ordering all are well
orderings.
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Each equivalence class represents a particular type of ordering. Suppose
that we are given a particular type of ordering, [4,, R,] with R; < 42 and
a class 4,, can we define an ordering on A, of the same type, that is, can we
define arelation R, < A3 such that the ordering [4,, R, ] is order isomorphic
to the ordering [4,, R,]?

From the definition of order isomorphism we see that it is necessary that
there exist a one-to-one correspondence between A; and A,. This is also
sufficient.

Proposition 6.33. If
H: A, =54, A Ry, = {KHx, HyY|x€ A, A ye A, A {x,y>€R,}

onto

then
HIsomg, g,(A;, 45).

The proof is left to the reader.

Remark. The relation R, in Proposition 6.33 is said to be induced on 4,
by the one-to-one function H and the relation R, on A4,. The proposition
assures us that if a one-to-one correspondence exists between two classes
then any type of ordering that can be defined on one class can also be defined
on the other class. While this is a very useful result it leaves unanswered the
question of what types of relations are definable on a given class 4. Are there
founded relations definable on A? Are there well-founded relations on 4?
Can A be well ordered? The first two questions are easily answered because
the e-relation is well founded on A.

The last question is the most interesting. From the work of Paul Cohen
we know that the question of whether or not every set can be well ordered, is
undecidable in ZF. We will have more to say on this subject later.

EXERCISE
If R, We A, then
H Isompg, g(Ay, Ay) > H: A, =54, A
(VxeA)[H'xe A, — H*(RT)“{x} A (4, — H*(R{ HY“{x}) n (R; H“{H'x} = 0].



CHAPTER 7
Ordinal Numbers

The theory of ordinal numbers is essentially a theory of well-ordered sets.
For Cantor an ordinal number was “the general concept which results from
(a well-ordered aggregate) M if we abstract from the nature of its elements
while retaining their order of precedence ....” It was Gottlob Frege (1848-
1925) and Bertrand Russell (1872-1970), working independently, who re-
moved Cantor’s numbers from the realm of psychology. In 1903 Russell
defined an ordinal number to be an equivalence class of well-ordered sets
under order isomorphism. Russell’s definition has a certain intuitive appeal.
By his definition the ordinal number one is the class of all well-ordered
singleton sets, the ordinal number two is the class of all well-ordered double-
ton sets, etc. But this definition has a serious defect from the point of view of
ZF set theory because the class of all singleton sets is a proper class, as is the
class of all doubleton sets, etc. For our purposes we would like ordinal num-
bers to be sets and to acheive this we take a different approach from that of
Russell.

Our approach is that of von Neumann. We choose to define ordinal
numbers to be particular members of equivalence classes rather than the
equivalence classes themselves. The particular sets that we choose to be our
ordinal numbers are sets that are well ordered by the e-relation and which are
transitive in the following sense.

Definition 7.1. Tr(A) & (V x € A)[x < A].
Remark. We read Tr(A4) as “ A is transitive.”

Proposition 7.2. Tr(4) A Be A - B < A.

35
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PRrOOE. If B € A, then Bis a set. If in addition A is transitive, then by Definition
7.1, B < A. But B= A implies that 4 e 4 which contradicts Corollary
5.19. Consequently B = A. O

Remark. In spite of our claim that we are going to define ordinal numbers
to be sets we begin by defining ordinal classes.

Definition 7.3. Ord(4) S Tr(4) A (Vx, ye A)[xey v x =y v yex].
Remark. We read Ord(A) as “ A is an ordinal.”

Since, by the Axtom of Regularity, the e-relation E is founded, indeed
well founded, on every class, it follows that E well orders every ordinal.

Proposition 7.4. Ord(4) —» E We A.

PrOOF. Obvious from Definitions 7.3, 6.24(2), 6.21, and Axiom 6'. |

Remark. Proposition 7.4 assures us that every subset of an ordinal class 4
has an E-ininimal element. We can in fact prove a stronger result, namely that
every subclass of an ordinal 4 has an E-minimal element:

Proposition 7.5. Ord(4) A B A AB#0->3xeB)[Bnx=0]

ProoF. From Proposition 7.4, E well orders A. Since E is also well founded
on A, i.e., E is founded and E-initial segments of A4 are sets, it follows from
Proposition 6.26 that B has an E-minimal element, i.e.,

@ xeB)[B n (E-Y)“{x} = 0].
But (E")“{x} = x. O

Proposition 7.6. Ord(4) A ae A - Ord(a).

PROOF. Since 4 is transitive a € A implies a = A. Consequently if b, ¢ € g, then
b, c € A and hence, since A is an ordinal,

becvb=cvceb
that is,
(Vx,yea)xeyvx=yvyex].

It then remains to prove that a is transitive, i.e., that b € a implies b < a.
Toward this end we note that if ¢ € b, then since A is transitive, ¢, a € A and
hence

cCeEaAV CcC=ayvaec.
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Butc=aAncebabeaandaec A ceb A bea each contradict Proposi-
tion 5.18, and so we conclude that ¢ € a. Thus, having shown that

ceb—-cea
we have proved that
bea—-bca.

Consequently we have shown that q is transitive and hence a is an ordinal.

O

Remark. We now wish to prove that the e-relation also well orders the
class of ordinal sets. From this and Proposition 7.6 it will then follow that the
class of ordinal sets is an ordinal class.

Proposition 7.7. Ord(4) A Tr(B) - [B =« A — Be A].
PROOE. Since A is an ordinal, 4 is transitive and so by Proposition 7.2

BeAd > Bc A

Conversely if B < A4, then A — B # 0. From Proposition 7.5, A — B has
an E-minimal element b, that is,

(beA—B)A(4—B)nb=0.

Clearly b € A. To prove that B € A we will prove that B = b. Toward this end
we note that since be A and A is transitive b < 4. But (4 — B)nb =0,
andso b < B.

To prove that B < b we observe that if ¢ € B then, since B 4, ce A. But
A is an ordinal class and b € A. Therefore

cebve=bvbec

From the transitivity of B we see that [bec v b = ¢] A ce B implies that
b e B. But this contradicts the fact that be A — B. We conclude that ceb,
thatis, B < b.

Then b = B A be A; hence Be A. |

Corollary 7.8. Ord(A4) A Ord(B) —» [B =« A+~ Be A].
Proor. Ord(B) — Tr(B). O

Remark. Among other things Propositions 7.6 and 7.7 assure us that a
transitive subclass of an ordinal is an ordinal.

Proposition 7.9. Ord(4) A Ord(B) — Ord(4 N B).
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ProOF. We first note that A N B = A. Furthermore, since A and B are transi-
tive
aeANnB—-oaeAAa€eB
—sacAAnacB
—»ac ANnB.

Therefore A N Bis a transitive subclass of the ordinal A and hence by Proposi-
tions 7.6 and 7.7, A N B is an ordinal class. O
Proposition 7.10. Ord(4) A Ord(B) - [AeB v A= B v Be A].

ProoOF. We first observe that ANBS AAANB<SB IfAnB<cAA
AN Bc B,then AnBeA A An Be B (Propositions 7.9 and 7.7) hence
A n Be A n B. But this contradicts Proposition 5.18. Therefore AnB = 4
or An B = B,ie., A < Bor B < A. Hence, by Corollary 7.8

AeBv A=B v BeA. O
Definition 7.11. On £ {x|Ord(x)}.

Proposition 7.12. Ord(On).

ProOF. From Proposition 7.6,
aeOn - a < On

i.e,, On is transitive. From Propositions 7.6 and 7.10
(Vx,yeOn)[xeyvx=yv yex].
Therefore, by Definition 7.3, On is an ordinal. O

Proposition 7.13. 24(On).

ProOOF. Were On a set it would follow that On € On. But this contradicts
Proposition 5.18. O

Corollary 7.14. Ord(4) - A€On v A = On.

ProOF. From Propositions 7.10 and 7.12, AeOn v A = On v OneA.

But since On is a proper class we cannot have On € A. ]

Corollary 7.15. Ord(4) -» A < On.

Proor. Corollary 7.14, Proposition 7.12 and Corollary 7.8. O
Remark. The elements of On are the ordinal numbers in our system.

We have proved that every ordinal class is an ordinal number except one,

On. The ordinal numbers play such an important role in the theory ahead
that we find it convenient to use the symbols

a’ﬂ”y!"'
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as variables on ordinal numbers. We will not distinguish between free and
bound variables except that we will not use the same symbol for both a free
and a bound variable in the same formula. We will rely upon the reader to
make a proper interpretation of formulas involving ordinal variables, subject
to the following definition.

Definition 7.16.
(1) (@) S [Ord(x) > ¢(x)]
@ (V@@ S (¥ x)[O0rd(x) - o(x)]
3) Aue(@ S @Ax)0rd(x) A ¢(x)]-

Remark. Definition 7.16 is deliberately ambiguous and intended to shift
attention away from certain formal details that should no longer require
attention. We, thereby, hope to be able to focus more intently on the informa-
tion that our formulas convey. But if called upon to explain in what sense
Definition 7.16 is a definition, that is, to explain for example, what formula
(V 2)¢(a) is an abbreviation for, we would do so by standardizing our list of
ordinal variables,

free variables: o, a5, ...,
bound variables: f,, 8, ...,
and specifying that

®(B,) is [Ord(a,) — ¢(a,)]
(¥ ,)(aty) 18 (¥ x,)[Ord(x,) —~ o(x,)]
(B owe(@,) is 3 x,)[Ord(x,) A @(x,)].

Having now made it clear that matters can be set straight, we will not
bother to do so here or in similar definitions to follow.

Theorem 7.17 (The Principle of Transfinite Induction). If (1) A £ On and
QVa)[a = 4> aec A], then A = On.

ProoF. To prove that 4 = On, given that 4 < On, it is sufficient to prove
that On £ A. Suppose that On is not a subclass of A. Then On — 4 # O and
hence by Propositions 7.12 and 7.5. (3x€On — 4A)[(On — 4A) na = 0].
Since @ = On it follows that « = A. Then by (2), « € A. But this contradicts
the fact that a € On — A. Therefore On — 4 = 0, i.e,, On € 4. Then from
(1), A = On. O

Definition 7.18.
1) a<pSacp.
Q agpSa<fvoa=4
(3) max(x, f) £ a U B
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EXERCISES
Prove the following.
() (Voo = On].
2 VoVPla<fva=fvp<al
B) asfAf<y-ax<y.
@) a<BpArfpsy-a<y.
() aspeoach
6 (Vo@EALB=au {a}].
(7 Tr(A)— (W x)Vy)xeyAnyed->xeA]
B Ord(4) AaeAd—-a=anA.
® A=OnAAdA#0->3acAdA)VY peA)[a < .
(10) Tr(4) > [U(4) € A1
(11) u(On) = On.
(12) Ord(max(e, §)).
(13) o < max(a, f) A B < max(a, f).

(14) o = max(a, f) v f = max(e, f).

Proposition 7.19. 4 < On — Ord(u(4)).

PROOF. If A < On, then since by Proposition 7.6, elements of ordinals are
ordinals, it follows that

u(A4) € On.

Furthermore if a € U(A) then, from the definition of union, there exists a
set b such that

aeb A be A.
But since b is an ordinal, and hence is transitive, we have

achbAaAbeA.

Consequently
a < U(A).

Thus U(A) is a transitive subclass of the ordinal On and hence U(4) is an
ordinal. ]

Proposition 7.20. A = On A ae 4 - a £ U(A).
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PrOOF. By Proposition 7.19 U(A) is an ordinal. Furthermore
aeA - ac U(A)
- o £ U(A). d

Proposition 7.21. A £ On A (VBeA)[f =S a] » u(4) S a.

Proor. If feu(A), then 3y)[f <7y A ye A]. Therefore B <y Ay S a.
Hence B < a, that is, U(A4) S o. O

Remark. Proposition 7.20 assures us that U(A) is an upper bound for the
class of ordinals A. Proposition 7.21 assures us that U(A4) is also the smallest
upper bound for A. Furthermore if 4 has a maximal ordinal, that is if
BaeA)(Y e A)[P £ «] then o = U(A4) and hence U(A) € 4. If 4 has no
maximal element then w(A4) ¢ A. In particular if 4 is an ordinal number, i.e.
@a)foa = A] and if U(x)¢a then U(x) = . Such an ordinal is called a
limit ordinal.

Definition 7.22. 0 + 1 £ o U {a}.

ExampLE.O + 1 = 00U {0} = {0} £ 1.
t+1=1u{l}={0}u{1}={0,1} £2.

Proposition 7.23. Vo)[aea + 1 A a S o + 1].

PrROOF. We need only observe that a e (x U {a}) A a & (x U {a}). O

Proposition 7.24. (V «)[« + 1€ On].

ProOF. Since (Va)[a e On A a = On] it follows that & + 1 £ On. Further-
moreifaea + 1,thenaeaora = a and hencea = «. Buta S o + 1, hence
a S o+ 1. Thus o + 1 is a transitive subset of an ordinal class hence o + 1
is an ordinal, that is, o + 1 € On. O

Proposition 7.28. "[a < f < a + 1].

ProoF. f a < S A B<a+ 1then aef A [fea v § = a] But this con-
tradicts Proposition 5.18. O
Proposition 7.26. a = On —» (Vaea)[a < u(a) + 1].

Proor. From Propositions 7.19 and 7.20, U(a) is an ordinal and o < U(a).

From Proposition 7.23 we then conclude that « < U(a) + 1. O

Remark. Proposition 7.26 assures us that given any ordinal number there
is an ordinal number that is larger, indeed given any set of ordinal numbers
there is an ordinal number that is larger than each element of the given set.
The naive acceptance of On as a set would then lead to the paradox of the



42 Introduction to Axiomatic Set Theory

largest ordinal, that is, the existence of an ordinal number that is larger than
every ordinal including itself. This paradox was discovered by Cantor in 1895.
It first appeared in print in 1897 having been rediscovered by Burali-Forti,
whose names it now bears.
Definition 7.27. K; £ {ala = 0 v (Af)[ax = B + 1]}.

Ky 2 On — K.

Definition 7.28. » £ {a]|a U {0} < K}}.

EXERCISES

Prove the following.

(1) aeKyea#0 A a= u().
2 w#0.

3 (Vola+ 1eK(].

“4) ocKk,.

(5) peoo(ply=p-reKl
©6) B<anaeKy->@@[f<y<a]
(7) acK,»ac o

®) a<f-oa+1=8.

® a<f-oa+l<f+1.

Remark. From Exercise 1 we see that Kj; is the class of all limit ordinals.
We will refer to the elements of Kj; as limit ordinals and to the elements of K;
as nonlimit ordinals. The elements in w are the natural numbers or non-
negative integers as we will now show by proving that they satisfy the Peano
postulates. As a notational convenience we will use

ij,k,...,mn
as variables on .

Definition 7.29.
(1) ()5 [acw - o).
Q) (¥)e@) & (Vx)[x € ® - p(x)].
B) @de)SEx[xen A p(x)].

Proposition 7.30 (Peano’s Postulates).
1) Oeow.
@) vili +1lew]
3) vLi+1%0].
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4 VHVHLi+l=j+1ei=j].
(5) OeAA(VilicdA—i+1eA]l->wc A

PrOOE. (1) From Definition 7.27 we have that 0 € K;. Therefore 0 U {0} = K|
hence O € w.

(2) Sincei+ l1eK;andsinceiew — i+ 1 £ K; it follows that (i + 1)
vi{i+ 1} K ie,i+ lew.

(3) Clearlyiei+ 1. Thereforei + 1 # 0.

(4) Ifi =j,then(i + 1) = (j + 1). Converselyifi + 1 = j + 1thensince
ici+ 1 we have iejvi=jand jeiv j=1i Since iej A jei and i€j
A j = i each contradict Proposition 5.18 we conclude that i = j.

(5) If o — A # 0 then there is a smallest element i in w — A. This
smallest element is not 0 because, by hypothesis 0 € 4 and hence 0 ¢ @ — A.
Furthermore ie w and w £ K|, therefore i € K. It then follows, from the
definition of K; and the fact that i # 0, that (3 f)[i = § + 1]. Furthermore
ici+1andi+ 1<K, Therefore § + 1 < K;, and hence few. Since
B < i and i is the smallest element in w — 4 we must have ¢ w — A.
Consequently, fe A. But by hypothesis few A f€ A implies f + 1€ A,
that is, i € A. This is a contradiction that forces us to conclude that w < A.

O

Corollary 7.31 (The Principle of Finite Induction). If A w A 0ed A
VilicA—>i+ 1eA]then A = w.

Proor. Obvious from Proposition 7.30. O

Proposition 7.32. Ord(w).

ProOF. Since w € K; and K; & On it follows that @ £ On. Furthermore if
acband bew,thenbisanordinalandb + 1 < K;. Thenac b,b b + 1
and b + 1 < K. Therefore a € K; and a = K|, consequently a U {a} € K.
Thus a € w and hence w is transitive. Since w is a transitive subclass of an
ordinal, w is an ordinal. a

Remark. From Proposition 7.32 we see that either w € On or @ = On.
But which of these alternatives is true? The question is whether or not w
is a set. This cannot be resolved by the axioms stated thus far. We choose to
resolve the issue by postulating that  is a set.

Axiom 7 (Axiom of Infinity). .#(w).

Proposition 7.33. w € K;;.

ProoOF. From Axiom 7 and Proposition 7.32 we have that we On. Since
o < K;it follows that if w € K; then w + 1 £ K| and hence w € w. Therefore
we K. O
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Proposition 7.34. F #» w —» (3n)[F'(n + 1) ¢ F'n].

PROOF. From the Axiom of Infinity, F is a function whose domain is a set.
Therefore the range of F, #'(F), is a set. Then from the Axiom of Regularity
there exists a set a in % (F) such that

W(F)na=0.
But since a € #(F) there exists an integer n, such that a = F‘n. Since

W(F) na = 0and since F'(n + 1) € #(F) we have Fi(n + 1) ¢ F'n. O

Remark. Proposition 7.34 assures us that there are no infinite descending
e-chains. Given a nonempty set ay, 3a; €ay. If a; # 0, 3a, €a,, etc. How-
ever, by Theorem 7.34, we see that after a finite number of steps we must
arrive at a set a,€a,_, with a, = 0.

While every descending e-chain must be of finite length it does not follow
that for a given set a there is a bound on the length of the e-chains descending
from a. Consider, for example, w:

(Vn)[0ele2e---encw].

EXERCISES

Prove the following.

(1) aeKy-w=sa

2) AcorA#0->3keANVieA)lk £i]

3) Fro—»AARFrA-@n[Fn+ )R HY{Fn}]

Definition 7.35. N(4) £ {x|(V ye A)[x e y]}.

Remark. Note that n(A) is the class of all those objects that are elements
of every set in A. We call this class the intersection of the elements of 4, or

simply the intersection of 4. Consequently, we read n(4) as “intersection
A.”

EXERCISES

Prove the following.

1) n({a,b})=anb.

2 nO)="V.

B) Tr(A)=>n(4)c 4

@4) aeAd-n(Ad)ea.

(5) A#0- .4(n(A)).

(6) A< On A A#0- Ord(n(4)).

(M) AcOnAA#0->NBeAlN(4) = B].
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Definition 7.36.
(1) sup(4) £ U(4 N On).
() sup_,(4) 2 U4 nP).

Remark. We read these symbols as “the supremum of 4” and “the supre-
mum of A below B respectively.

EXERCISES

Prove the following,

(1) sup(w) = w.

(2) sup(ax + 1) =a.

(3) aeKy — sup(a) = a.

4) aeK;—a=sup(a)+ 1.

(5) sup<piy(@) = fifa> f.

(6) sup(A)eOn v sup(4) = On.
(7) sup.4(A4)eOn.

Definition 7.37.

1) inf(4) £ N(A N On) if 4~ On # 0,

20 if AnOn=0.

(2) inf.,(A) £ inf(4 — B).

Remark. We read these symbols as “the infimum of 4” and “the infimum
of A above B” respectively.
EXERCISES
Prove the following.
(1) inf(a) = 0.

(2) inf,g(x)=0 fo<p
=f+1 fa>p.

(3) inf(4)€On A inf, y(4)e On.
4) A +#0-inf(4)eA.
(5) OrdA) AA—oa+#0->a=inf(4 — a).

Definition 7.38. 1,(¢(2)) £ inf({a| @()}).

Remark. From Exercise (4) above we see that if 4 is a nonempty class of
ordinals, then inf(A4) is the minimal element in A. In view of this, we choose
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to ignore the exceptional case when {&| ()} is empty and read u,(¢(a)) as
“the smallest a such that ¢(a).”

EXERCISES

Prove the following.
(1) Qa)e(@) = ou,(e(@).
(2 sup(4) = p,((V e A < o).

Remark. In the material ahead we will be interested in relational systems
[a, r] in which r well orders the set a. In such a case we call the relational
system [a, r] a well-ordered set. When the relation r is understood, or un-
important, we will speak simply of the well-ordered set a.

Since isomorphism between relational systems is an equivalence relation,
it follows that every well-ordered set [a, ] determines an equivalence class
of well-ordered sets. In particular, since every ordinal a is well ordered by the
e-relation, each ordinal o determines an equivalence class of well-ordered
sets. What we propose to prove is that the ordinal numbers can be taken as
canonical well-ordered sets because (1) each ordinal «, as a well-ordered set,
belongs to exactly one equivalence class of well-ordered sets, and (2) every
equivalence class of well-ordered sets contains exactly one ordinal.

To prove that there is exactly one ordinal in every equivalence class we
must prove that if » well orders g, there is one and only one ordinal & for which

(LS Tsomg, (o, a)].

We first prove that there is at most one such ordinal.

Proposition 7.39. Ord(4) A Ord(B) A F Isomg g(4, B) > A = B.

Prook. It is sufficient to prove that F is the identity function I restricted to A.
This we prove by transfinite induction. If fe 4 A (Vo < B)[F‘a = o] then
F“B = B. Furthermore since f is the E-minimal element in 4 — B and order
isomorphisms map minimal elements onto minimal elements it follows that

F‘B is the E-minimal element in B — F“f = B — B, i.e., F'f = §. O
Proposition 7.40.

Ord(A4) A Ord(B) A Fy Isomg g(A4, C) A F, Isomg z(B,C) - A = B.
PRrOOF. Proposition 7.39 and the fact that F, o F{ ! Isomg g(A4, B). U

Remark. Proposition 7.40 assures us that every well-ordered class is
order isomorphic to at most one ordinal well ordered by the e-relation.
We will prove that while not all well-ordered classes are order isomorphic to
an ordinal every well-ordered set is.
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Since order isomorphisms must map minimal elements into minimal
elements and initial segments into intial segments we must show that if R We a
then there exists an ordinal number « and a function F mapping « onto a in
such a way that V § < a, F*8 is the R-minimal element in @ — F“S. But this
means that F must be so defined that its value at  depends on S, the values F
assumes at all ordinals smaller than f, and the additional requirement that
F*B be the R-minimal element in a — F“f. Does there exist a function ful-
filling all of these requirements? We will prove that such a function does
exist. Indeed we will prove that there exists exactly one function F defined on
On in such a way that its value at  depends upon S, and upon the values F
assumes at all ordinals smaller than f, hence upon F [ f, and also depends
upon any previously given condition G. Such a function F is said to be defined
by transfinite recursion.

We need the following lemma.

Lemmal. fZxfB A (Voa<B[fa=G(flo)] AgFny
AVae<y)lga=G@GlolaBsy-
(Vo< B)[fia=gal

Proor (By induction). If (Vy < «)[ f*y = g‘y] then f [« = g [ '« and hence
fla=G(fTo)=G(g o) =g o

Theorem 7.41 (Principle of Transfinite Recursion). If

K={fIGPLf FrB A (Va<B)fa=GCG(Tl]}

and if F = U(K) then

(1) F %#On,

2 (Vo)[Fa= G(F [a)],

(3) F %#On A (¥Vo)[F,'a = G(F,a)] > F, =F.
PRrOOF. (1) Since each element of K is a relation it follows that F is a relation.
Furthermore

{a,beF A {a,c)eF - (AfeK)dgeK)[Ka,b)ef A La,c)eg]l.

From Lemma 1 we have that f‘a = g‘a, i.., b = ¢. Thus F is single valued,
hence is a function.

If bea A ae 9D(F) then from the definition of F and K it follows that
A H@EPLS %~ B A ae fB]. But ordinals are transitive and since be a,a€ f,
and f £ 9(F)itfollows that b € (F). Thus Q(F)is a transitive subclass of On
and hence is an ordinal. Therefore 2(#) = On or (3y)[y = @(F)]. If
y = 9D(F) and if

g=Fu{{y,GF Ty}

then g Zu(y + ) A(Va <y + D[g'a = G'(g [ ®)]. Thus ge K and ye
2(F).Buty = 9(F). This is a contradiction; hence 2(F) = On and F % On.
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(2) From (1) and the definition of F, it follows that Va)(3 f)[f &€ F
AFa= fan fa=G(f [a)] Then F[la= fla and hence Fa =
fla=G(f To) = G(F )

(3) Since @(F,) = 2(F) it is sufficient to prove that (Y a)[Fia = F'a].
This we do by transfinite induction. If (Va)[o <y —» Fija = F'a] then
F, [y = F ['y. Therefore F';y = G‘(F, ['y) = G'(F ['y) = F*. g

Corollary 7.42. (3! f)[f Fra A (V B < O)[f*B = G(f | B)I].

The proof is left to the reader.

Remark. Theorem 7.41 is a theorem schema and hence a metatheorem.
With quantification in the metalanguage it could be stated as

Y G)E'F)[F %» On A (Vo) [Fa = G(F [@)]].

While this statement more readily conveys the content of the theorem as it
will be used it is nevertheless of interest to note that Theorem 7.41 as stated
is stronger. It not only asserts the existence of the function F but prescribes
a method for exhibiting F when G is given.

For certain types of problems it is sufficient to know that functions can be
defined recursively on the natural numbers in the following sense. Given any
function h and any set a there is a function f defined on w in such a way that

f0=a
fn+ 1) = Kfn.

This type of recursion can be extended to functions on On by requiring
that at a limit ordinal «, the value of f is the supremum of its values at the
ordinals preceding a, i.e.,

foa=U{f7ly <a}

To simplify our notation somewhat, we introduce the following.

Definition 7.43.
(1) Uses A'x £ | ) {4'x|x€B}.
@ (Nses Ax 2 () {Ax|x€B}.

Remark. We read these symbols as “the union of A°x for x € B” and “the
intersection of A‘x for x € B” respectively.

We now wish to prove that given any class H and any set a, there exists a
function F defined on On in such a way that

FO0=a
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and for each ordinal
F(B+1)=HFP
F‘ﬂ': UF“}) ifﬂGK".

y<B

Proposition 7.44. If G = {{x, yD>|[x =0 A y =a] v [x # 0 A sup(2(x))
#D(x) A y=Hx" sup(2(x))] v [x # 0 A sup(2(x)) = 2(x) A y= U #(x)]}
and F #»0n A (V o)[F'a = G*(F | @)] then

(1) F0=aq,

(2 F(B+1)=HFB,

3 Fp= Uy<ﬂ FYy, Be Ky,

(4) F is unique.

PROOF. (1) F0 = G'(F [ 0) = G0 = a.

2 FB+1D)=GEF[(B+1). Since 2FT(f+1)=p+1 and
sup(f + 1) = B # f + 1 we have that

G(FI(B+ 1) =H(F (B + 1) sup(f + 1) = HFB,
ie, F(B + 1) = H'FB.

(3) FB=G'(F|p) Since 2(F[)=p and feK; we have that
sup(f) = . Hence G(F [P =W (F|P)=1),<sFy ie, Fp=
U7<ﬂ Fy.

(4) ltis easily prove by induction that F is unique. O

Remark. Again we point out that Proposition 7.44 is a stronger result than
the one we proposed to prove because it not only assures the existence of the
function F but shows how to produce F given H and a.

In the statement of Proposition 7.44 we have chosen to say simply that
“F is unique.” The reader should have no trouble determining the wff that
should appear here.

Corollary 7.45 (Principle of Finite Recursion).
ANfFro AfO=an(VK[f(k+1)=HfEk]]

Proor. If in Proposition 7.44 we restrict F to w then F [ w is a function on @
and hence is a set. Therefore 3 f)[f = F | @]. Then f %= w, {0 = a, and
~VRLf'(k+ 1) = Hfk].

It is easily proved, by induction, that f'is unique. O

Remark. In the study of order isomorphisms we are especially interested
in those order-preserving functions that map ordinals onto ordinals. Any
function whose domain is an ordinal and whose range is a class of ordinal
numbers we will call an ordinal function. If in addition an ordinal function is
order preserving we say that it is strictly monotone.
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Definition 7.46.
Orf(G) & G F» 2(G) A Ord(2(G)) A #(G) < On.
Smo(G) & Orf(G) A (Y ae D(G))(Y fe 2(G))[x < B — Ga < GB].

EXERCISES

Prove the following.

(1) Smo(G) - (V¥ a € Z(G))fo £ G'ul.

(2) Ifin Proposition 7.44, a € On and H is a strictly monotone ordinal function on On
then F is a strictly monotone ordinal function on On.

(3) F Isomg g(A, B) A Ord(4) A B € On — Smo(F).

(4) State and prove a generalization of Theorem 7.41 in which On is replaced by a
well-ordered class A.

Remark. The principle of transfinite recursion assures us that we can
define a function F on On in such a way that its value at « is dependent on its
values at all ordinals less than o and on any given condition G. If R well
orders A and if F is to be an order-preserving isomorphism from some
ordinal onto A4 then F‘a must be the R-minimal element in 4 — F*“a. Suppose
that we could define G in such a way that G'(F [ «) is the R-minimal element
in A — F“a. Then clearly F would be an order-preserving map from ordinals
into A. It would then only remain to be proved that 4 is exhausted, i.e.,
W (F) = A. In fact we will discover that there are two cases of interest. If R
is a well-founded relation then #°(F) = A4; if R is not well founded then
W (F) will be an R-initial segment of A.

Note that #°(F) is R transitive, thatis,a Rb A be W (F) —> a€ W (F).

Proposition 7.47. If
RWeAARWIrAAB<S AA(NxeA)(YyeB)[xRy— xeB]
then
A=Bv (3xed)[B=A4nR H{x}]

Proor. If A # B then, A — B # 0 since B < A. Thus A — B has an R-
minimal element, a (Proposition 6.26). Then ae A and a¢ B. Since by
hypothesis

beAAbRcAceB—>beB
it follows that
(VxeB)[x Ra]

for otherwise a € B. Therefore B = [4 n (R~ 1)*“{a}].
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Furthermore suppose that be[A4 N (R™!)“{a}]. Then be 4 and bRa.
But a is the R-minimal element in 4 — B. Therefore b¢ A — B, i.e. be B.
Thus [4 N (R™!)*“{a}] = B and hence B = [4 n (R 1)*“{a}]. O

Remark. In Proposition 7.47 the requirement that R be well founded is
only used to establish that 4 — B has an R-minimal element. Later we will
show that it is sufficient for R to be founded. Consequently this result follows
if R is a well-ordering relation that is not well founded.

Proposition 7.48. If F # On A (Y a)[F'ae[A — F*“«]], then

(1) #1F)c A4,

(2) Uny(F),

() 2«(A).
ProoF. (1) Since (V a)[F'ae (A — F“a)] it follows that (V a)[F‘a € A] and
hence #'(F) < A.

(2) If a < B, then Fae F“B. Since by hypothesis F'Se(4 — F“p), it
follows that F‘B ¢ F“f. Therefore F‘a # F'S. We have just proven that if

o # B, then F'a # F‘B. Consequently, if F‘a = F'f, then a = B. Therefore
F is one-to-one.

(3) Since #'(F) c A, it follows that if A is a set, then #'(F) is also a set.
But since F is one-to-one #(F) is a set iff On is a set. Therefore A is a proper
class. (|

Proposition 749. If F %»On A (Vo)A — Fa #0—> Fae A — F“a] A
M(A) then

A)[(VB<a)[A4 —FB£0]A Fa=A A Uny(F | 2)].

PROOF.If(V a)[4 — F“a # 0]then(V o) [F'a € A — F*“a] and by Proposition
748 A is a proper class. Since by hypothesis 4 is a set we conclude that
@ a)[A — F“a = 0]. There is then a smallest such «, i.e.,

Aw)[A - Fa=0n (B <a)fd— FB#0]].

Ifxe Féathen (3 8 < a)[x = F'f]. Butif f < o, then [4 — F“f] # Oand
hence F‘fe[A — F“B],i.e., x€ A. Thus F“a < A. But since [A — F*“x] = 0,
A € F“a. Therefore A = F*“a.

Since F is a function F [« is single valued. Furthermore if y < « and
B < aandify < B, then

FyeF“B A FBeA — F*B

ie, Fye F“f A F'f¢ F“B. Then F'8 # F'y. We have proved that if y <
and f < aandify # f,then F'f # F‘y. Consequently, ify < e and 8 < e and
if F'y = F‘B, then y = B, that is F [ « is one-to-one. O
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Remark. In the proof of Proposition 7.48 we see that the requirement that
(VY a)[F'ae A — F“a] assures us that the function F defined by transfinite
induction will be one-to-one. Conversely if F is one-to-one then % (F) will
be a proper class and (V «)[F'a € A — F“a]. Furthermore if #°(F) is a set then
F cannot be one-to-one. In this case Proposition 7.49 assures us that if F
fulfills the requirements for one-to-oneness “as long as it can,” i.e., until
W (F) is exhausted then the restriction of F to some ordinal « will map « one-
to-one onto #(F). From this we can prove that every well-ordered set is
order isomorphic to an ordinal number.

Proposition 7.50. If R is well founded on A and well orders A, if
D) G={xylyeld - #(x)] A (4 - #(x)n R {y} = 0]},
(2) F %» On, and
(3) (Yo)[Fa= G'(F o), then
A—F‘a#0-> FaeA — Fe.

PROOF. As the first step in our proof we will show that G is single valued. For
this purpose suppose that (x, y,>, <{x, y,> € G. Then

yield =#X)] A yeld — #(x)]

and [(4 — #(x) ARy} =0 A [(4 — W) A (R™)(,}] = 0.
Therefore y, ¢ (R™)“{y,} A y,¢(R™H*{y,}. Since R well orders 4 we
must have y; = y,.

Furthermore, if [4 — #7(x)] # 0 then since R is well founded on 4 and
well orders A, A — #°(x) has an R-minimal element, y. But G'x = y, i.e.,
Gxel[d — #(x)].

We have now shown that if 4 — #7(x) # 0, then G'xe 4 — #(x). In
particular, if x is F [ a, it follows, since W(F [ o) = F*, that if 4 — F“a
# 0, then G'(F [a)e A — F“«. But G(F [ o) = F‘u. d

Proposition 7.51. If A is a proper class that is well ordered by R, and R is well
founded on A, if

(1) G={{xylyeld - # ()] A [(4 - #(x)) n(R™H)*{y}] = 0},

(2) F %2 On, and

3 (Vo[Fa= G(Fw],
then

F Isomg g(On, A).

PROOF. If ()[4 — F“a = 0] then A = F*“o. Since F“o is a set it would then
follow that A is a set. Since A is a proper class it follows that (V )[4 — F“«

# 0]. From Proposition 7.50 and the defining properties of F and G it follows
that F‘x is the R-minimal element in 4 — F*g, ie.,

Fae[A — F“¢] and [(4 — Féa) n(R™)“{F‘a}] = 0.
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From Proposition 7.48 it then follows that #°(F) < A4 and F is one-to-one.
To prove that F is onto we note that if y € #'(F) then (3 «)[y = F‘a]. Further-
more since F'x is the R-minimal element in A — F“a

xRy—>x¢[A— F“a]
then
xeEAAXRy—- xeF“a
— xe W (F).
Then R, A, and #'(F) satisfy the hypotheses of Proposition 7.47:
RWeAARWIrAAW(F)SAA
VxeA)(Vye #W(F))[xRy—>xeW(F)].

Consequently, from Proposition 7.47 we conclude that #(F) = A v
@A xe A[#(F) = A n (R™1)*{x}]. But #'(F)cannot be an R-initial segment
of A because R-initial segments of A are sets, and # (F) being the one-to-one
image of the proper class On cannot be a set. Therefore #'(F) = A and

F:Ontby.

onto

Finally if « < § then F“a < F“f and hence [A — F“f] < [4 — F“a].
Since F‘Be[A — F“B] it follows that F'fe[4 — F“a]. But F‘x is the R-
minimal element of A — F“a. Hence

FaRFB v Fa=FB.
Since F is one-to-one, F'a # F‘B and so
a<f—->FaRFP

ie., F Isomg x(On, A). O

Corollary 7.52. If A is a proper class of ordinals, if
(1) G={x,ylyeld - # ()] A LA~ #)n(E ) {y}]=0}
(2) F % On, and
3) (Vo[Fa=G(F )]
then
F Isomg ((On, A).

Proor. E We A A E WIir A. O

Proposition 7.53. R We 4 A M#(A) - 3! 0)@! /) fIsomg g(a, A)].

PROOF.If G = {<x, yd|ye[A — W ()] A [(4 — (X)) n (R™)*{y}] = 0},
F %» On, and if (V «)[F'a = G(F [ a)], then by Propositions 7.49 and 7.50,
A a)[Fa=A A Uny(F [ )], ie. (F [ ): 0 =5 4.

onto
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That F [« is order preserving is proved as in the proof of Proposition
7.51 and is left to the reader. Then (F [ a)Isomg z(%, A). But F [« is a set,
ie. @NLSf = Fla] Then 3 f)[f Isomg g(a, A)]. 4

The uniqueness argument is left to the reader.

Corollary 7.54. A £ On A .#(A) - 3! 3! f)[ fIsomg g(a, A)].
Proor. A = On —» E We A. O

Remark. Since E is a well-founded relation and well foundedness is
preserved under order isomorphism it follows that the requirement in
Proposition 7.51 that R be well founded on 4 cannot be removed. In its
absence we can only prove that On is order isomorphic to some R-initial
segment of A. That this can occur we show by an example, the so-called
lexicographical ordering on On x On.

Definition 7.55. Le £ {{{a, ), (3, 0D |a <y v [a =y A B < 6]}

Proposition 7.56.
(1) Le WeOn? A
[B=On* A B#0-3xeB)[Bn(Le”)“{x} =0]]
(2) —1Le Wfr On2.

PrOOF. (1) The proof is left to the reader.
Q) If Fa=<0,a) then F:On == (Le !)*{<1,0>}, consequently

onto

(Le™1)*{<1, 0)} is a proper class. O

Remark. From the lexicographical ordering we in turn define a relation
R, that will be of value to us in later chapters. We will show that this relation
R, not only well orders On? it is well founded on On?.

Definition 7.57. R, £ {(a, B, (3, 6>> |max(x, f) < max(y, )
v [max(e, ) = max(y, 6) A <o, fOLely, 6>]}.

Proposition 7.58.
(1) RyWeOn? A[B=On? A B#0-3xeB)[Bn (R ){x}=0]]
(2) R, Wfr On2.

PRrOOF. (1) The proof is left to the reader.

2) If y=max(a, f) + 1 and {4, 1) Ry <2, B>, then max(d, 1) <
max(e, f) < y. Therefore {5, 1) €y x y and hence On? N (Rg )“{<a, B>} =
y x 9. Since y x 7y is a set, On? N (Ry D)“{<a, BD} is a set. Thus R, is well
founded on On2. a
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Remark. We have shown that R, well orders On? and is well founded on
On?. Consequently the relational system [R,, On?] is order isomorphic to
[E, On]. By Proposition 7.51 there exists an order isomorphism, indeed a
unique order isomorphism between the two systems.

Definition 7.59. J, Isomg, (On?, On).



CHAPTER 8
Ordinal Arithmetic

In Chapter 7 we defined o + 1 to be a U {a}. We proved that o« + 1 is an
ordinal, that is, « + 1 is a transitive set that is well ordered by the e-relation.
As a well-ordered set « + 1 has an initial segment a and its “terminal”
segment beginning with a consists of just a single element, namely a.

If we add 1 to & + 1 we obtain an ordinal with an initial segment & and a
terminal segment, beginning with «, consisting of two elements « and « + 1.
Since this terminal segment {a, a + 1} is order isomorphic to 2 £ 1 + 1 we
call the sumofoa + 1and 1, a + 2.

In general, by « + f we mean an ordinal obtained from « by adding 1,
p times. That is, « + B is an ordinal with an initial segment o and a terminal
segment, beginning with «, that is order isomorphic to . That such an ordinal
number exists is clear from the fact that ({0} x a) U ({1} x B)is well ordered
by the lexicographical ordering Le. With respect to Le, {0} x « is an initial
segment order isomorphic to « and {1} x f is a terminal segment order
isomorphic to f.

It would then seem reasonable to define « + f as the ordinal that is order
isomorphic to ({0} x a) U ({1} x B}. However for certain purposes it is
preferable to define o + B recursively in the following way.

Definition 8.1.

>

a+ 0=aq
a+B+DE@+ P +1,
a+ B2 (@+7y),BekKy.

y<B
Remark. Definition 8.1 is an example of a very convenient form of definition
by transfinite recursion. To define the addition of f to a,i.e., o0 + f we specify

56
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the result of adding 0 to «, we define the sum of « and (B + 1) as an operation
ona + fnamely the operation of adding one, and we define « + ffor fe Ky
as the supremum of the set of sums o + y for y < .
That thisis sufficient to define« + Sforalla and Bisclear from Proposition

7.44. If in Proposition 7.44, H = {{a, & + 1>|e € On} and a = a then

FO=a,

FB+1)=HFB=Fp+1,
FB= U F‘%ﬂeKIl’

y<B

ie,a+ g =Fp

The reader should have little difficulty convincing himself, or herself, that
Definition 8.1 captures our intuitive notion that « + f is an ordinal with
initial segment o and terminal segment that is order isomorphic to . In
addition, Definition 8.1 is designed for proofs by induction. Recall that in
order to prove (V a)¢(«) by induction we need only prove

(1) (¥ Bea)o(B) — ().

Since for each « either a = 0 or (3 y)[a = y + 1] or a € Ky, we can prove (1)
by proving

¢(0),
o(0) = p(a + 1),
and
ae Ky A (Y Bea)p(B) — o).

Definition 8.1 lends itself well to such proofs as we will now demonstrate.

Proposition 8.2. « + feOn.

ProoF (By transitive induction on f). For § = 0 we have « + 0 = a € On.
If «a+pfeOn then a+(Bf+1)=(@+ P +1e0n If BeKy and
(V))[y < B—>a+yeOn]thena + B = {J,<4(x + 7) € On. O

Proposition 8.3.0 + x = o + 0 = a.

PRrOOF. By definition &« + 0 = o If 0 + o = &, then 0 + (x + 1) = (0 + &)
+1=a+1 If aeK, and (V[ <a—>0+ B =p] then 0+ a=
Uﬂ<a(0 + B) = Uﬂ<aﬂ = 0. D

Remark. We frequently wish to prove a property of ordinals that holds
for all ordinals greater than or equal to some ordinal y > 0 and which may
fail to hold for ordinals smaller than y:

1) (Voo 2y - @)l
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Such an assertion can be proved by induction using the following approach.
Let () be the wif

o<y v o)

Then to prove (1) it is sufficient to prove (V a){(«). To prove this by induction
it is sufficient to prove three things:

(@ W),
(b) Y(0) = ¥(a + 1),
(©) aeKy A (¥ Bea)y(f) > ().

Since y > 0 the proof of (a) is already established so we have nothing to do.
To prove (b) we have nothing to do if « + 1 < y. For & + 1 = y we must
prove ¢(y) and for « + 1 > y we must prove @(o) - ¢(x + 1). To prove
(c) we must prove ¢(y) if y € K;; and we must prove that

xeKy A (VAL = B <o r (Bl - @)
In summary we must prove
@(7),

aZy A o) —>ex + 1),
and

acKy A (VB = B <an oB)] - o)
Let us illustrate:

Proposition 84. 0 < >y +a <y + f.
Proor (By transfinite induction on f). For f =a + 1 we have y + a <
G+ray+l=y+@+DIfa<fo>y+a<y+ fandifa < f + 1then
o < B v o=}f In either case we have that y + a <y + < (v + )+ 1
=y+(B+1). If BeKy and (VO)[a<d<f—->y+a<y+ ] then
V+OC<U5<,;(V+5)='))+[3. D
Corollary 8.5.y + a =y + fea = f.
Proor. If o = B, then by Theorem 3.4
xXey+ae>xey+ f.

Consequently y + o = y + . That is

1) a=p->y+a=y+ 4.
From Proposition 8.4

2 a<f-oy+a<y+p
and

B) B<a—-y+p<y+oa.
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From (1), (2), and (3) it follows that
y+a=y+ Beoa=4 a

Remark. For the proofs of several results on ordinal arithmetic we need
the following property of suprema.

Proposition 8.6. (V a € A)(3 f € B)[a < f] — sup(4) < sup(B).

Proor. If yesup(4) then (Fa)[yea A aeA). But ae 4> (3 P[feB A
aZ B] ie, @PLyeB A Be B]. Therefore yesup(B) and hence sup(4)
< sup(B). O

Remark. That Proposition 8.6 can not be an iff result is established by the
counter-example

sup(w) = sup(w + 1).

Proposition 8.7. 0 < foa+y < B+ 7.

PROOF (By transfinite induction on y). If ¢ < f,thena + 0 < f + 0. Ifax + y
SPhf+ythena+@+1)S=p+@+1). If yeKy and (V6 < p)fa + 6
SB+8]thena+y=Js<,(@+8) S Us<, B+ ) =B+ 7. O

Proposition 8.8. « < f — (3! p)[o + y = B].

PrOOF. Since o = 0 it follows from Propositions 8.7 and 8.3 that a + §
2 0 + p = B. Thus there exists a smallest ordinal y such that « + y 2 B.
If yeK, then y=0v (38)[y=6+1]. If y=0 then a =2 f A a S p.
Therefore c = fand a + y=f If y=06+ 1thend <y and a + 6 < f.
Then a + 6+ 1 < B,ie, a +y < B. But a + y = B; therefore a + y = f.
If ye Ky then (V6 < y)[a + 6 < B]. Therefore

a+y=J@+d =B

5<p

Again since @ + y = f, we have thata + y = .
From Corollary 8.5 we see that ifa + y = fand o + 6 = ftheny = 6.
O

Proposition 8.9. m + ne w.

Proor (By finite induction on n). For n = 0 we have m + 0 = mew. If
m+new,thenm+n+1)=m+n + leo. a
Proposition 8.10.n <o A w Sa—>n+a=a.

PrOOF (By transfinite induction on «). If « = w we have

n+ow=)@xn+)

Y<w
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By Proposition 8.9,y < w = n + y < w. Hence

Umn+y = o

<o

On the other hand, by Proposition 8.8, (¥ 8 < w)(3ye w)[f < n + y]. Then
wo=BsJ@®m+y

Bew <o

by Proposition 8.6. Thus n + @ = w. By Definition 8.1 and the induction
hypothesis

n+(e+)=(n+a)+1=a+ 1.
Finally, if « € K}; then from the induction hypothesis

n+a=Jn+pH=UB=u O

B<a f<a

Remark. From Proposition 8.10 we see that ordinal addition is not com-
mutative:

l+o=0#w+ 1.

Furthermore 1 + w = 2 + w but 1 # 2. Thus we do not have a right-hand
cancellation law. From Corollary 8.5 we see that we do however have a
left-hand cancellation law.

Proposition 8.4 assures us of the additivity property for inequalities for
addition from the left. Proposition 8.6 however suggests that addition from
the right may not preserve strict inequality. This is the case as we see from the
following example.

1<2 but 1+w=2+ o

Proposition 8.8 shows that subtraction, when permitted, is unique.
Finally ordinal addition is associative. The proof requires the following
result.

Proposition 8.11. fe K; — a + fe K.
Proor. If fe Ky, then B # 0. Therefore « + f # 0. Thus « + fe Ky or
A d)[a + f =6 + 1]. Butif e K;; then

a+B= )@+

y<B

Since 6 €6 + 1 it follows thatif« + f = & + 1 then
deJ@+ 1)

y<B

thatis(Ay)[y < B A dea+ y]. Butifdea + ythen (6 + 1)e(x + y + 1).
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Since f e Ky and y < fit follows that y + 1 < B. Therefore
S+1leJ@+
y<p
ie.d+1ed + L
Since this is a contradiction we conclude that & + f e Kj;. O

Proposition 8.12. (o + ) + y = o« + (B + ).

ProOF (By transfinite induction on 7). For y = O we note that (a« + ) + 0 =
a+f=a+B+0.Hl@+pH+y=a+ @B+ then(@a+p +(y+1)
=(@+Pp+y)+l=@+@B+)+1=a+(B+N+)=a+(f+
G+ D)HyeKyand (¢ + B) + 6 =a + (f + J) for 6 < y then
@+Pp+y=U@@+pB+08)=)(+ B +9)
o<y a<y
Furthermore since y e K; we have by Proposition 8.11 that f + ye K.
Therefore
a+@B+n= U @+mn).
n<p+y

If6<yandn=f+d,thenn<f+yanda+ (f + 6) <o+ n Con-
versely if n < B + 7, then n < B or @ 8)[n = B + 5]. Suppose that n < B.
Then o + 1 < o + (B + 0) and 0 < y. On the otherhand if y = § + 6 then
o+n<a+ (f+ 06) and since n < B+ y we have that 6 < y. Thus, by
Proposition 8.6

Ul+@B+)= U @+n

6<y n<p+y
ie.,
@+B+y=a+ B+ O

Proposition 8.13. 0 = v —» 3! H)A!' n)[fe Ky A a = B + n].

PrOOF. If A = {ye Ky|y < «} and if f = U(4), then fe Ky and B < a.
Therefore, by Proposition 8.8, @p)[f +y=0a]. If y = o, then (3 H)[y =
w+d] and a=f+(w+0)=(B+w)+6. But f+weKy and B +
o £ o. Thus B + we 4; but B < B + w. This contradicts the definition of §;
hence y < .

Ifa = By + ny = B, + ny with B; < B, then (A )[B; + v = B.]. ie,
Bi+n =B +y+ny,
hy =79+ n,.
Since y < y + n, we must have that y < w. Furthermore since f, + y = f8,

and f, € Kj; it follows that y = 0, i.e,, B; = B, and n; = n,. ]

Definition 8.14. &« — £ N{y|f + y = a}.
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EXERCISES

Prove the following.

¢y
@
©))
@
®
®
Q)
®
©)

(10)

o+ few—oaew A few.
tEpoa+(f-0)=4

w-n=o
m+n=n+mlanm+n=k+n-m=k]
aZa+BA[f>0—a<a+ f]

«Sf+o

o+ peKyeopeKyv[B=0naeKy]
BeKyna<f->On)fa+n<f]

o + B is order isomorphic to ({0} x &) U ({1} x B) where the order on the latter
setis Le,ie., (3 f) [ f Isomg 1 (a + B, ({0} x a) U ({1} x B)].

Prove Proposition 8.8 by transfinite induction on S.

Remark. From the foregoing we see that ordinal addition on w has all of
the arithmetic properties that we expect. Addition on On is however not
commutative and the right-hand cancellation law fails.

In very much the same way as we define integer multiplication as repeated
addition we can also define ordinal multiplication as repeated addition. For
the justification of our definition we again appeal to Proposition 7.44.

If in Proposition 7.44, H, = {(B, B + a)|f € On} and if a = O then

F,0=0,
FB+1)=H,F,f=F,B +a,
F.B = UF;V,ﬂEKn-

y<B

We define the product of « and S, i.e., aB, to be F, .

Definition 8.15.

a-0£0,
aB+1) 2 af + a,
afp & (Jay, feKy.

y<B

Proposition 8.16. «f € On.

Proor (By transfinite induction on ). For f = 0 we have -0 = 0€ On. If
ofeOnthena(f + 1) = aff + aeOn. If fe K and ay e On for y < B, then

af = JadeOn. O

é<p
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Proposition 8.17. mn € w.

PROOF (By finite induction on n). Forn = Owe havem-0 = 0ew. If mnew
thenmn + 1) =mn + ne w. d

Proposition 8.18.

1) 0ca=a-0=0.
2) la=a-1=oa.

Proor (By transfinite induction). (1) By definition « -0 = 0 for all « in-
cluding «a =0. If 0-a2 =0 then O(x + 1) =0-2a + 0=0. If ae K and
0-y=0fory < a, then

0-0a=(JO-y=0.

y<a
(2) From (1) above -1 =a(0 + 1) =00+ o = 0 + o = a. By defi-

nition 1:0=0. If 1-a =a then l(a+1)=1-a+1=0a+ 1 If aeKy
and 1-y = yfory < o, then

lra={Jly=a O

y<a

Proposition 8.19. o < f A y > 0 ya < yf.

ProoF. First we will prove, by transfinite induction on §,thata < fandy > 0
imply yo < yB.
Ifp=a+landy>0,thenya<ya+y=pa+1).Ifa<BAry>0
—yax < yfand if « < f + 1, then a« < B or « = B. In either case ya < 8
<yB+y=yB+ D.IfeKyandif (VH)[a <d < f A 7y>0-ya < 5],
then
ye < {Jy6 = 8.

6<p

Conversely if ya < yB then y > 0. Since « = f implies ya = yf and
B <o and y > 0 implies yf < ya we conclude that if yx < yf then
a<fAy>0. g
Proposition 8.20. yo =y Ay > 0> a = .
PRrOOF. By Proposition 8.19, « # fand y > 0 imply oy # af. |

Proposition 8.21. « < f — ay < By.

PRrOOF (By transfinite induction on 7). Fory = Owe see thata-0 =0 < 0.
If ay <Py, then a(y + ) =ay+a <Py + B =H>+1). If yeKy and
(VO)6 <7y—ad < B6] then

ay = (Jad < ()6 = Py. O

8<y o<y
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Proposition 8.22. 0f = 0—a=0v = 0.

PRrROOF. If @ = 0 or § = 0, then from Proposition 8.18,0-8 =0 A -0 =0.
Ifa # 0and f # O,thena = land f = land hence 1 £ a < af,ie.,aff # 0.
g

Proposition 8.23. e Ky Ay <af > (36 < f Ay < ad]
ProoF. Definition 8.15. O

Proposition 8.24. « # 0 A fe Ky —» af € Ky;.

PROOF. If a # 0 A fe Ky .then aff # 0. Therefore affe Ky or (3 y)[y + 1
= off]. Since y ey + 1 and since B € Ky, it follows that if y + 1 = «f then

ye (Jad,

3<p

ie., 36 < B Ay <ad] (see Theorem 8.23). Then y + I <ad + 1 <
ad +a=0ob+ 1). But feK; and d < ff implies 6 + 1 < B, ie, y+ 1€
o6 + 1)and 6 + 1 < B. Thus

y+leJad =y + 1
o<p

From this contradiction we conclude that of € Kj;. O

Proposition 8.25. a(f + y) = aff + oy.

PRrOOF (By transfinite induction on y). For y = 0 we see that a(ff + 0) =
af=af+a-0. If a(f+7y) =af +ay, then a(f + (y + 1)) = «((B + y)
+)=af+yP+a=@f+ayp)+a=af+(y+a)=af +ay +1). If
ye Ky and a(f + 6) = aff + ad for 6 < y then we consider two cases a = 0
and a # 0. If o = O then

af +7)=0=0af + ay.
If « # 0 then since y € Kj; it follows that f + y € Ky and ay € K.

«aB+y= {J o0,
5<B+y
afp+ay={J @B+ n).

Ifé6<p+ythend < f v (@)[t<yAd=p+ ] Therefore ad < aff
or

wW=af+1)=af +toat=0f +1
where n = at. Since T < y we have that at < ay, i.e.,, n < ay. Thus

alf +7y) £ af + ay.
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Ifn < aythen(38)[6 <y A n < ad]. Therefore f + 6 < § + yand hence
af +n <af + ad = a(f + 0).
Thus aff + ay < o(f + y) and hence a(f + y) = aff + ay. d
Remark. Note that (w + 12 =(w+ D+ (w+D=0+(1+w)+1
=w+w+1=w2+1+# w2+ 2 Wedo not have a right-hand distribu-
tive law.
Theorem 8.26. (af)y = a(By).

PrOOF (By induction on y). For y = O we have (¢f)-0 =0 = oa-0 = o(f - 0).
If (2B)y = a(By) then (af)(y + 1) = (@B)y + of = a(By) + aB = oy + B)
= a(f(y + 1)). If ye K;; and o = 0 then a =0 or B =0 and (¢f)y =0
= a(By). If «f # 0 then By € K;; and hence

@By = | @B)s,

é<y
«(By) = U,, .
But < y < 6 < By. Therefore (af)y = a(By). O

Proposition 8.27. f # 0 - 3! y)@A! d)[a = Py + 6 A & < B].

PROOF. If o < B, then a = -0+ a A a < B. If B < o and y = sup{d|pd
< a} theny = 1. Suppose that « < fv. Then 6 < aimplies § < vand hence
y < v. Consequently if 6 <y then 6 <a. If @7)[y=1t+ 1] then t <y
hence t€{6|B6 < o} therefore (A v)[ve {6|Bd < a} A T <v]. Thus v =y,
ie., fy < a. If y e K;; then

Br=UB s Ja=ua

o<y o<y

Thus By < o and hence (3 6)[« = By + 6]. If 6 = B, then (A w6 = f + u]
then a =By + B+ pu=PB(r+ 1)+ p hence f(y + ) <aand y + 1 < y.
From this we conclude that § < f, i.e.,

a=pfy+dAd<p

If « =8y, +38;, =Py, +, with §; <f Ad, <B Ay <7y, it then
follows that (3 v)[y, = y; + v] and

Bri + 6y = B(y1 + V) + 62 =Py, + Bv + 5,
51 = ﬁv + 52.
But Bv + 6, < B. Therefore v = 0 and hence 6; = , A y; = ¥,. |

Corollary 8.28.n 2 0> A1 ¢)@' r)[m=ng + r A r <n].
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Proor. By Proposition 8.27 (3! y)3!8)[m =ny + 6 A 6 < n]. But ny +
0 € w implies ny €  and é € w. Furthermore if 1 < n, then y < ny. Therefore
yE. a

Proposition 8.29. ye Ky Am # 0 - m(y + n) =y + mn.
PRrOOF (By induction on y + n). Ify + n = w we have mw = U,,<a, mn. Since
mn < @ we have

Jmn 2o

n<w
Furthermore p<w—->3q@r)p=mg+rArr<m]. But p=mq+r
<mq + m=m(q + 1). Therefore pe U"<w mn; hence

U mn = .

n<ow

If my+n=y+mn then my +n+ 1)=m(y +n)+ m=(y + mn)
+m=y+mn+ 1).Ify + ne Ky, then n = 0 and

my = () mé.

o<y

Ifo<ythend<wvw=dIféd<wthenmd <@ <.

If o < 6 then (3 B)In)[feKy A § = B + n]. Then from the induction
hypothesismé = f + mn. But § < 6 < y and y € K;;. Therefore § + mn < y.
Since (V 6 < y)[md < y] we conclude that

my < 9.

But 1 < m and hence y < my. Therefore my = y. O

EXERCISES

Prove the following.

1) @+Dw+)=w-0o+w+l
@ wy=py-y=0vaszh

(3) mn=nmna (m+ nk=mk+ nk.

(4) In Proposition 8.29 can m be replaced by a with the restriction that a < y? Give a
proof or a counter example.

(5) apeKyeraf#0A[feKy v ae K]

(6) ap is order isomorphic to B x a well ordered lexicographically, ie., (3 f)

[f Isomg, 1 («B, B x o)].

Remark. When restricted to w ordinal multiplication has the properties
expected. On the class of all ordinals however multiplication is not commuta-
tive.

2-0o=w and w-2=w+ o.
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We do not have a right-hand cancellation law:
lwo=2-w but 1#2

Having defined multiplication as repeated addition we next define
exponentiation as repeated multiplication.

Definition 8.30.
a® &1,
Wl L gfq
of & (Jot, Be Ky A a # 0.
y<B
dﬁéo,BEK“/\ a=0.

Proposition 8.31.

(1) 0°=1.
Q 0F=0,p21
3) 1f=1

ProoOF. (1) From Definition 8.30, 0° = 1.

(2) Ifp = 1,then fe Kyor (3 d)[ = 6 + 1].1f f € K then by Definition
830,06 =0.Iff =6+ 1then 0¥ = 0°*1 = 0°.0 = 0.

(3) (By transfinite induction). For f = 0 we have 1° = 1. If 1 = 1 then
Pt =18.1=1=11fpeKyand 1" =1for y < B, then 1 = J, <, 1"
=1 a
Proposition 8.32. 1 S a > 1 < of.

ProOF (By transfinite induction on B). First we note that a°® = 1. If 1 < o
then since 1 S awehave 1l £ of < of-a,ie, 1 < o«?*1 If B € K then since
a#0

of =)o

y<B

Since 0 < B A a® =1wehavel < {J,<p0" = o O

Proposition 8.33. a < f A 1 <y — y*< 9P,

Proor (By transfinite induction on f). If f = o + 1, then 1 < y implies
y* < y**1, Suppose that

a<BAl<y—sy <y
Ifo < B+ 1,then « < Bora = B. In either case

PSP <yt
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If f € K;; then since y # 0

Y=
5<p

Furthermore, if « < f then « + 1 < f and hence

< Uy =7~ O
6<B
Corollary 834. 1 <y A y* <y s a < B
PROOF. By Proposition 8.33, f S a A 1 <y—yf <9y~ O

Proposition 8.35. ¢ < f —» o’ < f".

PrOOF (By transfinite induction on y). For y = 0 we have a® = 1 = °
Suppose thata < fando? < f~. Thena’*! = o’ - a S ' a< f7-f =+
Ifye Ky, o < B, and if o® < B2 for § < y then

w=ad < B =P O

o<y i<y

Corollary 8.36. « < f A yeK Ay # 0> o’ < B
Proor. If yeK; A y # 0, then (36)[y = 6 + 1]. By Proposition 8.35, if
a< B thena® < . Buta’ =’ -a < fo-a< p?-B=p. O
Remark. That a < f and y € K;; does not imply o’ < f” follows from the
observation that 2 < 3 but
29 = 3% = .

The proof is left to the reader.

Proposition 8.37. 0 > 1 - 8 < o,

PrOOF (By transfinite induction on fB). For f = 0 we have 0 < «® = 1. If
B < afthen B+ 1 < o«f + 1. Butsince f < B + 1 we have from Proposition
8.33 that o < of*! and hence & + 1 < of*! ie, B+ 1 S P L If e Ky
and y < fimplies y < o?, then

B Yoo =d (]

y<p

Proposition 8.38. 0> 1 A >0 3! 8’ < B < a®t1].

PRrOOF. Since by Proposition 8.37, < «” and since o < a#*! there exists a
smallest ordinal y such that § < a’. From Definition 8.30 it follows that
ye K;.Sincea® = 1 A B = litfollowsthaty # O;therefore(3 8)[y = & + 1].
Buté < d + 1hence o’ £ B < oa®*1.
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e’ <p<o®landa’ < B <a’*!andifé <y, thend + 1 < y. Hence
<ot S S8

Similarly if y < §, then § < B. Therefore 6 = y. O

Propeosition 8.39.
(1) Cx>1/\ﬂ€Ku—)aB€Ku.
(2) O(EKH/\ﬁ>0—>0(BGKH.

PrROOF. (1) If @ > 1, then of = 1 and hence «f # 0. Therefore of € Ky; or
386 + 1 = of]. Since pe Kyand o # 0

of =)o
v<B

But 6€d + 1 = of. Consequently (37 < B)[6 < «”]. Since 1 < a, and
6 <a’it follows that 6 + 1 S’ <a?*L. Buty+1<Bandso 6 + 1€
of = & + 1. From this contradiction we conclude that

o e Ky.

(2) If BeKy then afe Ky by (1) above. If Be K, then since B # 0,
(30)[B =6 + 1]. Then of = a’*! = o®- 0. Since ae Ky, o’ # 0, therefore
o’ae Ky. O

Proposition 8.40. Be Ky Ay < of - (36 < B[y < &°].
ProOF. If e Ky and y < of then o # 0 and hence

of = | ot
6<p

Then (36 < B[y < 7] O

Proposition 8.41. o«f - o = «#*?,

ProoF (By transfinite induction on y). First we note that o# . ¢ = ¢?. 1 =
of =aft0 If af -a” = «*7 then of - a’*! = of - ?a = &PV = AHOTD T
yeKy then B+ yeKy. If a =0 then o =0 A af*? = 0. Thus o/ -’ =
0=o*"Ifa=1thena? -0’ =1-1=1=0of*"Ifa > 1 then «’ € K and

of o7 = () of5,
d<a¥

= () o
n<p+y

If 6 < o” then by Proposition 8.40, (3 © < 9)[d < «7]. Since by the induc-
tion hypothesis t < y implies oa* = o’ *",and B+ 1 < B + 7

0?6 < Pt < of"
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Thusof - ¥ £ «f*7. Furthermoreify < B + ytheny < Bor(A 7)[n = B + 1]
Suppose that < B. Then

A" <Pl Al <a
On the other hand if n = B + 1, then = < y. Hence o’ ** = o - a* and
"=t =l at A at <

Thus & - a? = £#*7, O

Proposition 8.42. (¢f)! = «#".

PrOOF (By transfinite induction on y). For y = 0 we have (¢/)° = 1 = of*°,
If (?) = a®” then (&f)’*! = (&f)'0f = 0P’ = oP?*8 = PO+ If ye Ky
then B = 0 or Bye K. If B = 0 then (¢f)Y = 17 = 1 = «f”. If By e K;; then
a=0ora#0.Ifa = 0then of = 0and hence (a¥)’ = 0 = af”. If a # 0 then
of # 0and

@y = | @,

6<y

o’ = ) an
n<py

If § < y then by the induction hypothesis () = «?°. Since 6 < y implies
B& < By we have that (af)? < o If n < By then (3 6 < y)[y < B4]. Hence

" <af? and 6 <.

Therefore o®” = (af). a

Proposition 8.43.
a>1AY<AA- - AYP<aAOZLPy<---<B, <P
= abry, + -+ aPoy, < b

Proor (By induction on n). If n = 0 then since y, < « we have that afoy, <
afotl < of If n > 0 then since B,_, < B, < B we have as our induction
hypothesis

afrry, g+ e+ adfoyy < o
Therefore
abry, + -+ Py, < ofry, + oafr = afr(y, + 1)
Since y, < a we have y, + 1 < « and hence
abr(y, + 1) S afrtl < of, a
Proposition 8.44. >0 A a>1->@!n)3! Bo)---3! B)A! v0)--- 3! y,)

B=ofry,+ -+ PP AOSBo<By < <P, AO<Pg<aA---
A0 <y, <a]
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PrOOF (By transfinite induction on f8). By Proposition 8.38, there exists a &
such that

1D < p<adtt
By Proposition 8.27 there exists a t and v such that
@ p=ot+v

and v < o’. From (1) it follows that 0 < t < a. So if v = 0 we are through.
If v > 0, then by the induction hypothesis, it follows that there exist ordinals
Bos---s B> Yo, - - - » ¥ s prescribed, such that

v = oy, 4o+ ooy
Substituting this in (2) we have
B =o't +aly, +-- 4 ooy
and the ordinals 8, B,, ..., Bo; T, Y, - - - » Yo @re as required. O
The proof of uniqueness we leave to the reader.
Proposition 8.45. o> 1 A By <fi < <P A0<ypo<an---A0<
<o ASZw- (afry, + - + afoyp)a’ = afrtl,
Proor. From Proposition 8.43.
afr < afry, + oo+ adfoyy < afrt
Therefore
bt = gbngd < (abry, + - 4 aPop)al S ofrtlad = gfnt 1t = et O
Proposition 8.46. ae Ky A By < By << B, AO<m, AS>0-(oPrm,
+ o+ odfomga’® = afntl,
Proor. From Proposition 8.43.
dﬂn—lmn_l + PPN + aﬂomo < a/]n'
Therefore
afr < ofrmy, + -+ afomy < ofrmy, + o = ofr(m, + 1).

Then

afra? < (afrm, + -+ + dPomg)a® < afr(m, + 1)o® = afral® = o0 O
Proposition 8.47. Ifa€ Ky A >0 A m > O then

1) (Pm) = oP'm,ye Ky Ay #0.
) (@my =do", yeKy.
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ProOF (By transfinite induction on y). If y = 1, then (¢#m)! = o 'm. If
(@Pm)’ = o«f'm then (@Pm)’*! = (Pm)?'aPm = af'moPm = aP'afm = oP+ U,
If («Pm)’ = a” then (Pm)’*! = (Pm)'oePm = of?'aPm = o0+ V. If ye Ky
then

@y < @m) = | @m)’ < |J oP’m £ () O D = o, a
o<y o<y o<y

Proposition 8.48.

aeKy A By < By << B, (@Prm, + -+ + dfomy) < ofr'(m, + 1).
Proor. Note that afm,, + - -- + afomy < af(m, + 1). Therefore by Proposi-
tion 8.47 (af*m, + - -+ + afomy)’ < [aPr(m, + 1)} < of"¥(m, + 1). O
Proposition 8.49.

a€Ky A Bo< By <--- <P, AyeKy— (@Prm, + - + afomg) = of.

Proor. Note that af» < afrm, + --- + a®°my < oP"(m, + 1). Therefore by
Proposition 8.47

(Prmy, + - -+ + dPomg)’ = o, O

Corollary 8.50.
aeKyAPo<Bi<--<Byny>0-(@frm, + - + afomy)” = af,

PrOOF. By Proposition 8.39, y > 0 A a€ K;; = o’ € Ky;. The result then
follows from Proposition 8.49. O



CHAPTER 9

Relational Closure and the Rank
Function

In this chapter we introduce two ideas important for the work to follow.
The first of these is relational closure. In later chapters we will be especially
interested in sets that are transitive. While there exist sets that are not
transitive every set has a transitive extension. Indeed, every set has a smallest
transitive extension which we call its transitive closure.

Proposition 9.1. (Vx)3 y)[x sy A Tr(y) A (V2)[x S z A Tr(z) » y < z]].

PrOOF. If G'x = x U (U(x)), then there exists a function fdefined by recursion
on o such that

fO=x
f(n+1)=Gfn.
Furthermore, if

y=U/fn

then x = f‘0 < y. From the definition of G
frsfn+1Dau(fm)sfnt )
Ifaeb A beythen (3n)[be fn] and hence
aeu(f'nc f(n+1)

1.e.,a€ f{(n + 1). Then a € y and hence y is transitive.
If x £ z A Tr(z) then we prove by induction that

fngcz

73
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f0=xc<zIf f'n < z then since z is transitive U(f‘n) < z, i.e.,
aeu(fn)yA ffncz—oaez

Thusf(n + 1) = f'nu(u(fn)) < z.
Consequently y =  J,<, fn S z. O

Definition 9.2. Tr Cl(a) £ n{yla< y A Tr(y)}.

Remark. Proposition 9.1 has a natural and useful generalization to well-
founded relations.

Proposition 9.3. If R Wir A and a < A then there exists a set b such that
[achc A]and
(1) (VxeAVyxRyAyeb—-xebl
(20 (Vxeb[xeav (@3n@glg:n+1->bArgleangn=xn
Vi<mlgG+ 1) R4
B) VwlacwsAA(xeANVY[xRyAryew—-xew]]—
b < w]].
PrOOF. (1) Since R is well founded on A, it follows, for each x in A4, that A N
(R™YH*{x} is a set. Therefore if
B = {{x,An(R™){x}>|xe A}
then B is a function. If y < A4 then B“y is a set hence so is U(B*y). But
U(B“y) = U{B'x|x ey}
= v{An R ) {x}|xey}
= AN (R H“y.
Thus 4 N (R™1)*y is a set.

If G'x = x U (4 N (R™)“x) then there exists a function f defined on w by
recursion such that f0 = a and f‘(n + 1) = Gf‘n. Furthermore f0 =
a < A.If f'n is a subset of A4 then since

[+ 1) =fno@n@®)fn)
f‘(n + 1)is a subset of 4. Thus U(f“w) is a subset of 4. If b = U(f“w) then
a = ‘0 £ b. From the definition of G

facsfm+)AAnR YSfncf(n+1).
If xeA, xRy and yeb then 3n)[xRy A yef‘n], ie, xe(R™ D) *n
cf‘(n+1). Thus xeb.

2) (Vxeb)@n)xefn]. If n =0 then f'n = a and x € a. If the result
holds for each element in fn and x € f“(n + 1) then since

i+ 1) =fnu(dn R YSn)
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it follows that either x € f*‘n, hence the conclusion follows from the induction
hypothesis, or (3 y ef‘n)[x R y] in which case the conclusion again follows
from the induction hypothesis.

(3) The proofis left to the reader. O

Proposition 9.4.
RWirAABS AAB#0-3xeB)[Bn (R H“{x}=0]
PROOF. Let a € B. By Proposition 9.3 there exists a set b such that
{acbcAANVxeANVYIxXRyAyeb—x €b].
Then b N B is a nonempty subset of A. Therefore
Axebn B)[(bnB)n(R™)“{x} =0].
Ifye BN (R™')“{x},then ye Band y R x. But x € b and hence y € b. Thus
yel[bn B (R H“x}].

Therefore BN (R™1)*{x} = 0. O

Remark. Note in Proposition 9.4 that the set b has the property that

(R™1)“bisasubset of b. We say that b is closed with respect to (w.r.t) the binary
relation R™1,

Definition 9.5.
(1) CIR,A)SR“A4 c A.
(2) Cl(R, A) & R“A% < A.

Remark. We read CI(R, A) as “R is closed on 4” and we read Cl,(R, A) as
“R is closed on 42

Proposition 9.6. If CI(R{,A) A -+ A CI(R, A) A Cl(S1,4) A - A Cly(S,, A)
if (VxS A)LARX) A -+ A MREX) A MESTX) A - A M(Syx?)], and
if a S A then there exists a set b such that

aSbs AACIR,D)A--- A
CI(R,, b) A Cly(S1,b) A -+ A Cly(S,, b).

PROOF.If G'x = x URY{x U -+ U Ryx U 8¥x* U -+ - U Syx?, x < A then there
exists a function fdefined on w by recursion such that

fO=anfn+1)=Gfn
Let

b= ) fn

n<w
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then from the definition of G
fm+D=fnuR{fnu--URsfnuSH(fnPu-uS(fn’
Furthermore ‘0 = a £ 4. And if f‘n = A, then since each R; and each S; is
closed on A it follows that f‘(n + 1) < A. Therefore b = A. Furthermore

fO=ach
If y e R{'b then (3 x e b)[{x, y)> € R,]. But
xeb - @n)xefn].
Thus
yeRf'ng fi(n+ 1)

Therefore y € b. Consequently Ri'b < b.
Ifze S¢b?then(3 x, y € b) [{x, y, z) € S;.]Furthermore(I m, n)[x € f'm A
yef‘n]. If r = max(m, n) then x, y € f'r. Thus
zeS{(f'r)? g f(r+ 1)

Therefore z € b, and hence, Si'b* < b. O

Proposition 9.7. If R Wir A, if K = {f|3y < A[CAR™ L, ) A fFny
AV xey)fx=G(f 1R {xH]} and if F = U(K), then

(1) F%x A,

() (VxeA)[Fx = G(F (R ) {x}D],

(3) F is unique.

The proof is left to the reader.

Remark. Proposition 9.1 assures us that every set a has a smallest transitive
extension. This extension of a we call the transitive closure of a. In order to
define “rank™ we are interested in sets that are not only transitive but
supertransitive in the sense of

Definition 9.8. St(A4) S Tr(A4) A (V x)[x€ A —» P(x) < A].
Remark. We read St(A) as “A is supertransitive.”
Definition 9.9.
R0 £ 0,
Ri(e + 1) 2 2(R}),
jo £ U RiB, a € Ky.

B<a
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Proposition 9.10.
(1) A (Rix) A St(Ria).
(2) a< - RiaeRif A Rja = R}p.

ProoOF. (1) (By transfinite induction on a). If « = 0 then Rja = 0 and hence
o is a supertransitive set. If R{a is a supertransitive set then, since Ri(ax + 1)

= 2(Ria), Ri(a + 1) is a set and
aecAnbgccAanceRi(a+1)>aecnAbs cAcZ Rja
—aeRja A bg Ria
—a € Rja A b S Rja
- ae P(Ria) A be P(Ra).
Thus if ¢ € Rj(«x + 1), then ¢ & Ri(a + 1) and 2(c) < Ri(a + 1).
If a € Ky, then
ceRja—- (3 B < a)[ceRi{f]
- @3B <o)fcs Rif A P(c) S Rif]
— ¢ < Ria A ZP(c) € Rjo.

Since Rja is the union of a set it is a set.

(2) Since R}p is transitive it is sufficient to prove that Rja € R}p. This
we do by induction on B. Since Rif = Rif we have Rife Z(R\f) =
1(B + 1). In particular Rje € Ri(o + 1).
Suppose, as our induction hypothesis, that & < f implies Rja e R . If
a<f+ l,thena < fora = B.If « = B we have

1@ = RifeRy(B + 1).

If a < B, then from the induction hypothesis, Definition 9.9, and the fact
that R{(B + 1) is transitive, we have

j2eRip = Ri(B + 1)
and hence Rjae R{(f + 1).

If B e Ky then
1B =Ry
y<B
Since Rja € R{(x + 1) it follows that
o < B> RiaeR{p. O

Definition 9.11. Wf(a) & (3 «)[a € R\«].

Remark. Wf(a) is read “a is well founded.” With the aid of the following
theorem and the Axiom of Regularity we can prove that every set is well
founded.



78 Introduction to Axiomatic Set Theory

Proposition 9.12. (V x € a)[Wf(x)] — Wi(a).
PRrOOF. If each element of a is well founded and x € g, then (3 &)[x € Rj«]. If
F'x = p(xeRja)

then since F is a function F“a is a set and indeed a subset of On. Therefore
U(F“a) is an ordinal. If = U(F“a) + 1 then F“a < B,ie,x€a— F'x < f.
By Proposition 9.10

R{F‘x < R}p.

Also xe R{F'x and so xeRjf. Thus a £ R‘f and hence ae Z(Rf) =
B+ 1. O

Proposition 9.13. W{(a).

PRrROOF. From the Axiom of Regularity E is a well-founded relation on V.
From Proposition 9.12 if

A = {x|WI(x)}
thena £ A implies a € A. Then by e-induction (Proposition 522) 4 = V. [

Remark. From Proposition 9.13 we see that in the presence of the Axiom
of Regularity the function R, determines a class of sets {Rja|a € On} whose
union is the entire universe. Furthermore, from Proposition 9.10, these sets
are nested, i.e., « < § - Rja = R}p.

We offer the following pictorial representation of this nesting of sets. The
universe is represented as the points in a V-shaped wedge.

\ /
.

.a /

N

Riw

Ri(a + 1)J ‘

1%

R;l{ }Rlz

R0
Figure 2
If o € Ky then Rjoe = | )<, R}B- Thus any set in R« is also in some R} f

with B < a. Then for each a the smallest ordinal § for which ae Rif is a
nonlimit ordinal, i.e.,

(Fa)a¢ R A ae Ri(a + 1)].
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This particular ordinal « we call the rank of a.
Definition 9.14. rank(a) £ u,(a € Ri(x + 1)).
Remark. We read rank(a) as “rank a.”

Proposition 9.15.

(1) rank(a) e On.

(2) a =rank(a) > a¢ Ria A aeRj(x + 1).

(3) B < rank(@ o agRip.

ProoF. (1) Definition 9.14.

(2) From Definition 9.14 if o = rank(a) then aeRj(ax + 1). If « =0
then since Rj0 = 0 it follows that a ¢ Rja. If 3 y)[a = y + 1] and a € Ra,
then y = a, by Definition 9.14. Consequently a¢ Rja. If a € Ky, and ae
Rijathen (3 B < a)[ae R} f]. But R\ < Ri(B + 1),hencea € Ri{(f + 1).But
then f = « and so again we conclude that a ¢ Rja.

Conversely if a € R{(o + 1) then o = rank(a). If in addition a ¢ R« and if
B < athen R{B < Rjaand hencea ¢ R} f.Buta € R}(rank(a) + 1). Therefore
a < rank(a) + 1, i.e., o < rank(a). Thus a = rank(a).

(3) If a = rank(a) then by (2) a¢ Rja. Furthermore if f <:o, then
R{B = Ria, and so a¢ R B. If a < B, then Ri(x + 1) £ Rif and since
a€ Ri(a + 1), it follows that a e R‘B. 4

Proposition 9.16. a € b — rank(a) < rank(b).

ProOF. By Proposition 9.15, if « = rank(a), then a ¢ R‘«. If a € b then since
a ¢ Rjo it follows that b ¢ Rja and hence b ¢ R(« + 1). Thus a < rank(b).

O
Proposition 9.17. rank(a) = ps((¥ x € a)[rank(x) < £]).
PROOF. If x € g, then, by Proposition 9.15,
rank(x) < rank(a).
If x € a and in addition, rank(x) < B, then
x € Rj(rank(x) + 1) € R}§.

Consequently a £ R} f and hence a € Ry(f + 1). Therefore

rank(a) < f. O

Proposition 9.18. rank(a) = .
PrOOF (By transfinite induction on «). If as our induction hypothesis we have

y < a — rank(y) = 7.
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Then from Proposition 9.17

rank(a) = pp((Vy < )y < Bl) = p(f 2 ) = . O
Proposition 9.19. (3 a)(V x € A)[rank(x) < a] —» #(A).
PROOF. If rank(x) < «, then x € Ri(x + 1). Hence 4 < Ri(a + 1). O

Remark. Proposition 9.19 says that any class whose elements have bounded
rank is a set.

EXERCISES
(1) a < b - rank (a) < rank (b).
2) 24A)-> (Vo) x€ A)[rank (x) > a].

Remark. Earlier we promised to prove the equivalence of the weak and
strong forms of the Axiom of Regularity. We redeemed that promise with
Proposition 9.4. Indeed Proposition 9.4 is a more general result than the one
promised. We now state and prove the specific form of strong regularity that
we called Axiom 6°. The purpose of this proof is to illustrate the power and
utility of the notion of rank. We point out that this proof is not independent
of the first because we will use properties of rank that require Proposition 9.4.

Theorem 9.20 (Axiom 6). A # 0 > (Ixe A)[x n 4 = 0].

PROOF. If B = {rank(x)|xe A} and A # 0, then B # 0. Thus B is a nonempty
class of ordinals, hence, by Proposition 6.26, which was proved using only
the weak form of the Axiom of Regularity, B has an E-minimal element a.
Since « € B it follows that

(3 x € A)[« = rank(x)].

Furthermore since « is an E-minimal element of B it follows from Proposition
9.16 that

xNnA=0. O

Remark. The simplicity of the proof of Theorem 9.20 illustrates the power
of the rank function. Indeed with the aid of the rank function we can prove the
following generalization of Proposition 9.4.

Proposition 9.21. RFr A AB< A A B#0— (3 xeB)[Bn (R )“{x} =0].

PRrROOF (By contradiction). Suppose that

By, = {x € B|(Y y € B)[rank(x) < rank(y)]},
and

B,:y ={xeB|(3yeB)[x Ry A (VY zeB)[z R y - rank(x) < rank(z)]]},
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Then all elements of B, have bounded rank, hence By, is a set. If B, is a set then
since

B,+1 = |J {x€B|xRy A (VzeB)[z R y - rank(x) < rank(z)]}

y€Bn

B, ., is aset. Thus (V n = O)[.#(B,)]. If
b= {JB,

n<w

thenbcs B Aand b # 0.
If (v xe B)[B ~ (R~ 1)*“{x} # 0] then in particular

xeb— Bn (R H“{x} #0.

Furthermore (V x € b)(3 n)[x € B,]. Since BN (R™")“{x} is not empty it
contains an element of minimal rank, i.e.,

3yeB)yRx A (VzeB)[z R x — rank(y) < rank(z)]].
Since x € B,,, y € B, ., and hence y € b. But y R x, that is
(V xeb)[b n (R™H)*“{x} # 0].
This contradicts the fact that R Fr 4. O

Proposition 9.22. If RFrAAB<S A A (VxeA[An(R HY{x} = B-
x € B] then A = B.

The proof is left to the reader.



CHAPTER 10

The Axiom of Choice and Cardinal
Numbers

Cantor defined the cardinal number of a set M to be “the general concept
which, by means of our active faculty of thought, arises from the set M when
we make abstraction of the nature of its various elements m and of the order
in which they are given.” He denoted this cardinal number by M. The two
bars indicate the two levels of abstraction needed to produce the cardinal
number from M. With only one level of abstractfon, that is, by only abstract-
ing of the nature of its various elements, we obtain the ordinal number M.
Cantor’s definition of cardinal number is clearly not an operational one.
Indeed Cantor’s words suggest that cardinal numbers are psychological
entities rather than mathematical objects.

Frege, in 1884, and Russell, independently in 1903, removed cardinal
numbers from the psychic realm by defining the cardinal number of a set a
to be the class, a, of all sets that can be mapped one-to-one onto a. While this
definition has a certain intuitive appeal it has the disadvantage that, at least
relative to ZF theory, the objects produced are not sets but proper classes.
This is the same problem that we faced with ordinal numbers and, as we did
there, we will resolve the problem by defining the cardinal number a to be a
particular set that can be mapped one-to-one onto a and which will then
serve as a representative of the class of all such sets. Let us review the situation
for ordinal numbers.

The study of ordinal numbers is essentially the study of well-ordered sets.
The appropriate mappings for such a study are the one-to-one-onto-order-
preserving maps. Under such mappings well-ordered sets divide into equiva-
lence classes, each of which contains exactly one ordinal number. More
precisely, each equivalence class contains exactly one set that is transitive
and well ordered by the e-relation. From each equivalent class we took this
special set as a representative, and we called these representatives ordinal
numbers.

&2
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We propose to do a similar thing for cardinal numbers. For the study of
cardinal numbers the basic mappings are simply the one-to-one-onto maps.
Sets a and b are said to be equivalent (or equipollent) if there exists a function
fthat maps a one-to-one onto b.

Definition 10.1. a ~ b & A1) f: a5 b].
Remark. We read a ~ b as “a is equivalent to b.”

Set equivalence, as formulated in Definition 10.1, is an equivalence
relation:

Proposition 10.2.
1) a~a
2 a~b->b~a
B) a~bAab~c—-a~c.

The proof is left to the reader.

Remark. From Proposition 10.2 we know that set equivalence partitions
the universe of sets into equivalence classes. Let us call them cardinal equi-
valence classes. The cardinal equivalence classes are larger than ordinal
equivalence classes in the sense that all of the elements of several difference
ordinal equivalence classes can belong to the same cardinal equivalence
class. This is because there exist well-ordered sets that are not order iso-
morphic but which are equivalent. For example @ + 1 and w are not order
isomorphic but w + 1 can be mapped one-to-one onto w by mapping w to 0,
0to 1, 1to 2, etc. Thus w + 1 and w belong to the same cardinal equivalence
class. Then why not pick the smallest ordinal in each cardinal equivalence
class as a representative of that class? That is exactly what we will do but
there is one problem. How do we know that every cardinal equivalence class
contains an ordinal? Any cardinal equivalence class that contains an ordinal
is a collection of sets that can be well ordered. Indeed any function that maps
an ordinal one-to-one onto a set induces a well ordering on that set. Perhaps
there exist sets that cannot be well ordered and hence are not equivalent to
any ordinal. We are going to assume that this is not the case. More precisely
we will assume the Axiom of Choice from which we will prove that every set
is equivalent to an ordinal and hence can be well ordered.

Axiom of Choice (weak form).

@ANHV xea)x #0-fxex].

Remark. The Axiom of Choice asserts that for each set g, there exists a
function f, that picks an element of each nonempty set in a. This function f'is
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called a choice function for the set a. There is a strong form of the Axiom of
Choice that asserts the existence of a universal choice function, that is, a
function that picks an element from every nonempty set in the universe of
sets. In a language that permits quantification on class symbols this axiom
could be stated thus:

Axiom of Choice (strong form).
AF)YVx)[x#0-> Fxex].

Since in ZF we cannot quantify on class symbols, the strong form can only
be expressed in ZF by adding a constant f, to the language together with the
axiom

Vx)[x #0->foxex].

Why have we chosen not to do this? Because it has been proved that ZF plus
strong choice is a conservative extension of ZF plus weak choice.’

Throughout this text when we refer to the Axiom of Choice (AC) we will
mean the weak form. We will use the symbol ZFC to denote the theory
obtained by adjoining the Axiom of Choice (weak form) to ZF. When at a
later time we prove the relative consistency of ZF and ZFC it will be essential
that the Axiom of Choice not be used in the proof. Consequently, in this
chapter we will mark, with an asterisk, each theorem whose proof requires AC.
The asterisk then warns us of results that cannot be used in the relative
consistency proof toward which we are working.

Let us now explore some of the consequences of the Axiom of Choice.

*Theorem 10.3. (3 a)[a ~ «a].

Proor. By AC the power set of a, #(a), has a choice function f. Using this
choice function f we define a class G such that

1) Gx=fa—#X).
But clearly a — #7(x) is a subset of a and hence an element of #(a) and so
2) fla—-H#(x)ea—w(x) fa— #(x)+#0.

By the Principle of Transfinite Recursion, Theorem 7.41, there exists a
function F defined on On so that

(3) (Va)Fa = G'(F [ o)]
From (1), (2), and (3) it follows that
Foea—W(F o) ifa—W(F [a)#0.

! Felgner, Ulrich. Comparison of the Axioms of Local and Universal Choice. Fundamenta
Mathematicae, 71, 43-62 (1971).



10 The Axiom of Choice and Cardinal Numbers 85

Since a is not a proper class it follows from Proposition 7.48 that
@ o)la — #(F [a) =0].
Let oy be the smallest such ordinal and let g = F |' og. Then Proposition

1-1
7.49 assures us that g: oy -—>a. (]

Remark. *Theorem 10.3 assures us that every set can be well ordered and
that every cardinal equivalence class contains an ordinal. We can now pick
the smallest ordinal in each cardinal equivalence class as the representative
of that class.

Definition 10.4. 2 £ y (a ~ «).
Remark. We read a as “the cardinal number of a.”

*Proposition 10.5. a ~ a.

Proor. *Theorem 10.3 and Definition 10.4. O

Proposition 10.6.
(1) aeOn.

2 (Vo)< a—(aza)l
3) aZa

Proor. Definition 10.4. a
Definition 10.7. N £ {x|xe V}.

Proposition 10.8. N < On.
PRrOOF. Proposition 10.6(1) and Definition 10.7. O

Proposition 10.9. ae N <> o = .

PROOF. If a = o, then a€ N by Definition 10.7. Conversely if a € N, then
(3 x)[o = x]. Suppose that « < «, then since @ >~ @ and a ~ x we would have

a =~ x. But this contradicts the fact that a is the smallest ordinal equivalent to
x. Consequently a £ a. From Proposition 10.6(8) it then follows that « = a.

a
*Proposition 10.10. a ~ b« a = b.
ProOF. If a ~ b, then since a ~ a it follows that @ ~ b and hence E <a
Similarly, since b ~ b it follows that if @ ~ b, then b ~ a and hence a < b.

Therefore a = b. - - -
Conversely if a = b, then since a ~ a it follows that a ~ b. But b
andsoa ~ b.

O o



86 Introduction to Axiomatic Set Theory

*Proposition 10.11. % =a.
PrOOF. By *Proposition 10.5, 2 ~ a. Then by *Proposition 10.10, (2) = a.

Proposition 10.12.a S o« - 3 B = o)[a ~ B].

PrOOF. If a € «, then by Corollary 7.54, (3 f)@3 f)[ fIsomg g(B, a)]. This
function f is then a strictly monotone ordinal function and so it follows that
VyeB)ly = f9 £ a] Therefore f < axand f ~ a. O

*Proposition 10.13.a = b —»a < b.

PROOF. If ¢ £ b, then since b ~ b it follows that (3 x)[x £ b A a ~ x]. By
Proposition 10.12 there exists an ordinal § < b such that § ~ x. We then have

a=x=B=<B=LD a

Theorem 10.14 (Cantor-Schréder—Bernstein).

axccbab~dca—»ax~h

*PROOF. Ifa~ccbhthena=c<b Ifb~dca then b=d < a. Since
a = b it follows, from *Proposition 10.10 that a ~ b. U

Remark. The Cantor-Schroder-Bernstein theorem was first proved by
Cantor. Like the proof above, Cantor’s proof used results that presuppose AC.
In 1896 and 1898 respectively, Ernst Schroder and Felix Bernstein, inde-
pendently, gave proofs that do not require AC. Below we give such a proof,
but note how hard we have to work when denied the use of AC.

Proor (Cantor-Schroder— Bernstem) Ifa ~ ¢, then Af)[f: a =5 c]. Simi-
larly if b ~ d, then (3 g)[g: b s> omo —5>d]. Let H'x = (g o f)“x. Then there exists a
function h defined on w such that

h0=a—-d
h(n + 1) = H'h'n = (g o f)*h'n.
Since h'0 < a and since g o f maps a into g, it follows, by induction, that
(VY n)[h‘n < a]. Consequently (VY n)[ f“h‘n < b].
We next define a function F on a in the following way
F'x =f'x ifxea A @n)[xehn]
=@ YHYx ifxean (V n)[x ¢ h'n].
Then F: a —» b. We wish to prove that F: a — b. To prove that F is onto we
note that if y € b, then (3 n){y € f“h'n] or (¥ n)ly ¢ f“h'n].
Suppose that (An)[yef“h‘n]. Then (A xeh'n)ly =fx]. But xeh'n

implies that x € a. Furthermore, from the definition of F, we see that if xea
and x € h'n, then F'x = f'x = y.
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On the other hand, suppose that (V n)[y ¢ f“h‘n]. As we will now show, it
then follows that (V n)[g‘y ¢ h‘n]. Assume that this is not the case. Then
(3 n)[g'yeh'n]. Since h'0 = a — d and since g‘'y ed it follows that n # 0.
Therefore (3 m)[n = m + 1]. But h'(m + 1) = ¢g“f“h'm and g‘y e h'(m + 1).
Since g is one-to-one it then follows that y € f*“h‘m; but thisis a contradiction.
And from this contradiction we conclude that (V n)[g‘y ¢ h'n]. On the other
hand since y e b, it follows that g‘y € a. Therefore F'g'y = (g~ ')'g‘y = y.
From this we conclude that F is onto, that is, #'(F) = b.

To prove that F is one-to-one assume that x e a, y e g,and F'x = F‘y. From
this we will first prove that (3 m)[x € h'm] iff 3 m)[y € h'm]. The proof is by
contradiction: Suppose that xeh‘'m and (V n)[y¢h'n]. Then F'x = Fy
impliesthatf“x = (g~ !)'’yand hencey = (g o f)'x. Since x € h‘m it then follows
that ye(gof)“h'm = h'(m 4+ 1). This is a contradiction. Similarly we can
prove that y € h'm and (V n)[x ¢ h‘n] implies that x € h‘(m + 1). This too is a
contradiction. From these contradictions we conclude that (3 m)[x € h'm] iff
(3 m)[y € h'm]. From this and the fact that F'x = F*y it follows that f‘x = f*y
or (g~ 1'x = (g~ 1)‘y. Since both fand g are one-to-one it follows that x = y.
Thus F is one-to-one. Furthermore since F is a function with domain g, it
follows that F is a set. O

Proposition 10.15. a ~ b — P(a) ~ Z(b).

PrOOF. If a ~ b, then 3 /)[f: a = b]. Let F = {{x, f“x)|x € Z(a)}. Then
F: P(a) » #(b). Furthermore, since f“x = {f‘z|ze x}, it follows that if
“x = f“yand zex, then fzef“x = f“y. Thatis @we y)[ [z = f‘'w]. But
f is one-to-one; therefore z = w and hence z € y. Similarly z€y implies
z € x. Therefore x = y and hence F is one-to-one.
Finally, if y € 2(b) and if x = (f~')*y, then x € #(a) and

Fx=f“(f"1)y =y
Thus F is onto, that is, #'(F) = 2(b). d

*Theorem 10.16 (Cantor). a < Z(a).

PRrROOF. Since a ~ b implies P(a) ~ P(b), it is sufficient to prove that & <
Wﬁ. Since ordinals are transitive, it follows that o« £ 2(«) and hence, by
*Proposition 10.14, & < P(a). If @ =P@), then o~ P(«) and hence
@Ah)[h:a b P)]. Lete = {fea|f¢h'B}. Thenc < aand hence c € ().
Consequently (3 y € a)[¢ = h‘a]. But then

yeECOy¢hY
—oyéc

This contradiction forces the conclusion that a < 2(a). |
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Remark. In the foregoing argument the proof that « is not equivalent to
P(a) can be easily modified to prove, of any set g, that a and #(a) are not
equivalent. Furthermore this proof does not require AC.

From Cantor’s theorem it is easy to prove that for any set of cardinal
numbers there exists a cardinal larger than each cardinal in the given set.

*Proposition 10.17. a = N - (3 fe N)(V aea)[a < B].
PROOF. If o€ a, then a < U(a) and hence « = o £ U(a). But by Cantor’s
theorem
u(a) < 2(u(a)). O
Remark. Cantor’s theorem led him to the paradox of the largest cardinal.
We formulate that paradox in the following form: Consider N the “set” of all
cardinal numbers. By *Proposition 10.17, there exists a cardinal larger than

any cardinal in N. But this contradicts the fact that N contains all cardinals.
In ZF we can use this contradiction to conclude that N is not a set.

Theorem 10.18. 24(N).

*PROOF. If N were a set, then *Proposition 10.17 leads us to the contradiction
that there exists an element of N that is not in N. O

Remark. Tt has been claimed that Cantor discovered the paradox of the
largest cardinal in 1895 and communicated it to Hilbert in 1896. But the
oldest documented evidence we have dates back only to 1899. That year
Cantor wrote to his friend Dedekind of his concern for collections that could
not be considered as sets because to do so would lead to a contradiction. He
called such collections “inconsistent multipicities.” It is also interesting that
Cantor did not include the troublesome theorem in his two part memoir
published in 1895 and 1897.

EXERCISES
Prove the following.
(1) a~0eoa=0.
2 [avui{b}=a]lvav{b}~auv{a}l
(3) {b} xa~ax {b}~a
4 a,~a, Aby~b,—>a; xby~a, xb,.
(5) a~beavu{a} ~bu{b}.
6) axb~bxa.

M aozwo-o>a~a+ 1.
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@B az2w—-oa~a+n.
©® anb=0Aa~anb~foaub~a+p.
(10) o x B ~apf.

Remark. Given a set a Cantor’s theorem tells us that there exists a set of
larger cardinality, namely 2(a). There is another way to produce a set of
larger cardinality. Indeed the basic idea was understood by Cantor and used
by him to generate cardinal numbers. We consider all possible ways to well
order a and its subsets. As we will now prove, the set of all well orderings of a
and its subsets, has cardinality larger than a.

Theorem 10.19. For each set a
@ BeN)B = {«l@NLf: a 5al} A 1ANLS: B> d]l.

Proor. We consider all ordered pairs {r, x) where x S aandr < a x a. If
r well orders x, then

@! BA! S, LS, 5 Isom, g(x, B)].

Using f, , we define a function on Z(a x a) x #(a) in the following way

Firoxy=f5x If rWex
=0 otherwise.

Since F is a function whose domain is a set its range is also a set. Let
b = #'(F). Then

yebeo(@rcax a@x caly = F<{r,x)]
oy=0v(@rcaxa@xca[rWex ny=f,,x]
—yeOn A ANLS: yLal

Thus b = {«| B[ f: « =>a]}.

If y <aand aeb, then 3 f)[f: « L=4 a]. Furthermore f [y:y 1= a,
and so yeb. Thus b is a transitive set of ordinals. Therefore b is an ordinal,
that is

@ BB = IENLf: e —al}].

Furthermoreify ~ fandy < §,then (3 g)[g: f=Sy]and G /) f: y =S a].

Consequently fo g: f 2= g. But this implies that f§ € B. From this contradic-

tion we conclude that if y ~ B, then f < y and so B = B, that is, f& N.
Finally we conclude that 73 f)[ f: B == a] since otherwise we would

have f e B. O

Remark. From Theorem 10.19 we can provide a second proof that N is a
proper class, but we leave that proof as an exercise for the reader.
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Proposition 10.20.m ~ n - m = n.

ProoF (By induction on n). If m ~ 0, then m = 0. As our induction hypothesis
assume that (Y m)[m ~ n - m = n] and assume that m ~ (n + 1). It then
follows that m # 0 and hence, for some integer p, we have m = p + 1. But
p + 1 ~ n + 1 implies that p ~ n. (Exercise 5 above.) Then, from the induc-
tion hypothesis it follows that p = n;hencem=p+ 1 =n+ 1. O

Corollary 10.21.
(1) (n~n+1).
@ "@EHLS:(n+ +=5nl.

The proof is left to the reader.

Proposition 10.22. « ~ n —> o = n.

Proor. If « = w then n < a and hence n + 1 £ a. If o ~ n then, since
n < n+ 1, it follows from the Cantor-Schroder-Bernstein theorem that
o~ n+ 1. But then n ~ n + 1. This contradicts Corollary 10.21(1) and
compels us to conclude that if & ~ n then a < w. From Proposition 10.20 it
then follows that a = n. O

Corollary 10.23. 1 = n.
PrOOF. Proposition 10.24 and Definition 10.4. O

Corollary 10.24. o = N.
ProoF. Corollary 10.23 and Definition 10.7. O

Remark. The elements of w are the finite cardinals. We next introduce
special notation for the class of infinite cardinals and its members.

Definition 10.25. N’ £ N — .

Proposition 10.26. Pr(N’).

PRrOOF. Since N = N’ U o it follows that if N’ is a set, so also is N. O

Remark. Since N’ is a proper class of ordinals it is order isomorphic to
On. We now give this order isomorphism a special symbol.

Definition 10.27. X Isomg ;(On, N').

Definition 10.28. N, £ NX.
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EXERCISES

Prove the following.
(1) weN:

2) a=N,.

B) Ny =ow.

4 N Ky

Definition 10.29.
(1) Fin(a) & @A n)[a ~ n].
(2) Inf(a) & 1 Fin(a).

Remark. We read Fin(a) as “ a is finite ” and we read Inf(a) as “ais infinite.”

Proposition 10.30. Fin(a) A b < a — Fin(b).

PRrOOF. If a is finite then by Definition 10.29, (3 n)[a ~ n]. If b < a it then
follows from Proposition 10.12 that (3 § < n)[b ~ B]. Since such a f must
be in w it follows that b is finite. O

EXERCISES

Prove the following.

(1) Fin(n).

(2) Fin(a) — Fin(a u {b}).

(3) Fin(a) - Fin(a — {b}).

(4) Fin(a) - Fin({b} x a).

(5) Inf(a)>d=au (b).

(6) Inf(a) A a ~ b — Inf(b).

(7)) Inf(a) > 3 x)[x = a A x ~ a](Hint: Use AC).
8) Inf(a) > @ x)[x € a A x ~ w] (Hint: Use AC).
© a=n+1Abea-a—-{b}=n

Proposition 10.31. Fin(a) A Fin(b) — Fin(a u b) A Fin(a x b).

Proor (By induction on a). If a = 0, then a = 0 and hence a u b = b and
a x b = 0. But b is finite by hypothesis and 0 is finite by Exercise 1 above.
Assume, as our induction hypothesis that (V a)[a = n A Fin(b) — Fin(a u b)
A Fin(a x b)]. Suppose that a = n + 1. Then a # 0 and so (3 x)[xea].

Thena — {x} = n,by Exercise 9above and hence, by the induction hypothesis
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(a — {x}) U b is finite and (a — {x}) x b is finite. But au b = [(a — {x})
v b] v {x} which is finite by Exercise 2 above,and a x b = [(a — {x}) x b]
U [{x} x b], which is finite because it is the union of two finite sets. d

Proposition 10.32. Fin(a) < a € w.

PROOF. If « is finite, then (3 n)[n ~ «]. But by Proposition 10.22, this implies
that o« = nand so a € w.
Conversely if « € w, then since a ~ o it follows that « is finite. O

*Proposition 10.33.
(1) b#0-a<axbh
2 bsc—»axb=<axc

ProoF. (1) If b # 0, then (3 y)[y € b]. Then the function f defined by

fx=<x,y), xe€a

maps a one-to-one into a x b. Consequently a ~ f“a € a x b. Then by
*Proposition 10.13,

a<axb.
(@) Ifb < ¢, then Bf)[f: b2=5¢]. Let g be defined by
g<x, y> =<x, fy), <x,y>eaxb.

Then g:a x b2=5%a x c. Consequently a x b ~ g“(a x b) S a x ¢ and
hencea x b <a x c. O

*Proposition 10.34. %+(A) — Aa <a
PROOF. Since a ~ a it follows that (3 h)[h: a ~=>a]. Let F be defined by
Foao = A'Wa, aEa.
Then F: a s> A“a. Furthermore if
B = {Bea|(Va< B[Aha# AKB]},

then B < a. Therefore B is a set and B < a. Since B < a it follows that
F | B: B— A*“a. We wish to prove that this mapping is one-to-one and onto.
For this purpose we note that if e B, ye B, and F‘f = F‘y, then Ah‘'f =
A‘h‘y and hence, from the definition of B, § = y. Thus F | B is one-to-one.
Furthermore if x € A“q, then (3 B € a)[x = A°h‘B]. There is then a smallest
such f and this smallest § is in B. That is, (3 § € B)[x = F‘f]. Therefore
F I B is onto.
We then have

A“a —

o]
1A
Y]

O

*Proposition 10.35.a # 0 A Af) f:as>b] =0 < b L a
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PROOF. If f: a wz5> b, then from *Proposition 10.34
b=Fas<a

Furthermore, if a # 0, then b # 0 and hence b > 0.

Conversely if 0 <b < a, then a0 and b # 0. Moreover we have
b~b<ax~a,and so (3g)[g: b= a]. Since b # 0, 3 y)[yeb]. Let f be
defined by

fx=(@ D% xegb
=y, xea — g“b.
Then f: a 2 b. a

*Proposition 10.36.2> 1 Ab>1—>aub<a x b.
PrOOF. If @ > 1 and b > 1, then (3 x,, x, €a)[x, # x,] and in addition
(3 y1, y2€b)[y; # y,]. We then define a function Fona x b:
Fx3, 920 = X,
F{x,y,>=x, x#x,
F{x,y> =y, otherwise.
Then F: a x b—53>a v b and by *Proposition 10.34

onto

aub=F%axb)<axh. [

Proposition 10.37. & < f—a < p.

*PROOF. Since a < « it follows that if o < B, then a < . Furthermore if
B < a, then by *Proposition 10.13 and *Proposition 10.11,

B=p <a 0

Remark. To obtain a proof that does not require AC we need only observe
that thus far we have only used AC to prove that all sets are well ordered. Not
since the proof of *Theorem 10.3 have we made a direct application of AC.
This means that all of our starred theorems can be proved without AC if
we restrict the statement of the theorem to sets that are well ordered such as
the ordinal numbers. This observation applies to the theorems that follow.

Proposition 10.38. « > 1 »a + 1 < a X a.

*PROOF. Let g be a function defined on o + 1 by

gp=<0,p) Pp<ua
ga = {1, 0).
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Then g: (@ + 1) 2= a x o and hence (« + 1) ~ g“(a + 1) € a x a. Then
by *Proposition 10.13

o+

,d
IIA
K
X
K

O

Proposition 10.39. 0 > w > & X & = a.
*PROOF (By transfinite induction on a). As our induction hypothesis we have

p<a-[p<ovixpg=u.

By *Proposition 10.13 if 4 < o, then u < . If @ 1 < a)[t = ] then pu ~ «
and

AXOA=RXA=/=0

However if (V u < a)[z < ], thensince u < w v p + 1 = uit follows from
Proposition 10.37 that p + 1 < & < o. Therefore by our induction hy-
pothesis

ao>pzo->WwW+)x@@+)=pu+ 1

Recall the relation R, of Definition 7.57. By Theorem 7.58, R, well orders
On?. Consequently there is an order isomorphism J,, such that

Jo Isomg, ((On?, On).

We wish to show that J(o x a) < a. First we recall that an order iso-
morphism maps initial segments onto initial segments:

o(Re (<R, >} = (E"1){Jo<B, v>} = Jo<B, -
then since J, is one-to-one
olB > = Jo(Ro )“{<B, v} = (Rg (KB, v}
But if (B, y) ea x a and if p = max(p, y), then y < o and
<n, 0 € (Rg ) {<B, v} = <n, 0> Ro <B, v>

— max(y, ) < u

>nSuAfsp
=<0 e+ 1) x (u+ 1)

Thus (Rg )*{<B, 7>} € (u + 1) x (1 + 1).
Since p < « it follows from the induction hypothesis that if 4 =  then

Ro MBI S+ D xu+D=p+1<a

Therefore Jy{B, 7> < a and hence J(,<B, y> < a.

If u < w, then (u + 1) x (u + 1) is finite. Hence (Rg )“{<B, y>} is finite
and J,<B, y) is finite. Since a = w, J5<{B, > < a.

Therefore

s x o) < a.
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Since J, is one-to-one

axa=Jgaxa) <o

But from Proposition 10.38

KI
I
R
_|._
—
A
R
X
R

Therefore @ X o = a. O

*Proposition 10.40.a > w > a X a = a.

PROOF. Since a ~ a we have a x a ~ a x a. Then from Proposition 10.39

X 4 = a. O

Qll

axa=

*Proposition 10.41.a > w A b >0—a x b = a Ub = max(a, D).

PROOF. If « = max(a, b), then since a ~a and b ~ b

axb~axb

S o x o
Then
axbsZaxoa=a
I_f3=l,tile_nsincezgwwehaveaxb:aubandsoa—T)=aub
= a = max(a, b).

Ifb > 1, then by *Proposition 10.36,a U b < a x b < max(a, b). Further-
moresincea S avubandb < aubwehavea < aubandb < a U bandso

max(a,b) £ aub =a x b < max(aq, b). O

Remark. The natural notion of cardinal addition is that the sum a + b

should be a U b, provided a and b are disjoint. Similarly, the product a-b

should be a x b. *Proposition 10.41 tells us that for infinite cardinals,
addition and multiplication are quite uninteresting. In the infinite case the
problem of finding the sum or the product of @ and b is simply the problem of
finding the larger of @ and D.

Something interesting does come up with cardinal exponentation. For its
definition we turn to an idea introduced by Cantor.

Definition 10.42. a® £ {f|f:b — a}.

Remark. We will read a® as “the set of mapping from b into a.” That
reading however presupposes the following result.

Proposition 10.43. .#(a’).
PROOF. a® € (b x q). O
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Remark. Earlier we used a” to mean the n-fold cross product of a and in our
discussion of ordinal arithmetic we used ” to mean the Bth power of . Now
we propose a third use, namely that a” shall denote the set of mapping from
binto a. We will rely upon the context to make clear what we intend when we
use this notation. That will be much simplier than creating new notation.

It is a temptation to add a fourth usage and define cardinal powers by

& =a
But we will suppress that urge and not add an addition ambiguity to an
already overworked notation. We will however talk about cardinal powers
even though we will not introduce a notation for them. Thus when we write
N3 we will always mean the set of functions from Ny into X,. For the as-

sociated cardinal number we will write

N
N,

Proposition 10.44. 2° ~ 2(a).

ProOF. We define a function h on 2? in the following way

Wf= {xealf'x =1}, fe2e

Then h: 2¢ - P(a). We wish to prove that h is one-to-one and onto.
If b € P(a) and if fis defined on a by

fx=1, xeb
=0, x€ea — b.
Then fe 2° and hf = b. Thus h is onto.
Suppose that fe2° g2 and h'f = h'g, then
{xea|f'x =1} = {xealg'x =1}.

Since fand g each take the value 1 at the same points in a they must also take
the value O at the same pointsin a and so f = g. Therefore his one-to-one and
hence 2* ~ P(a). O

Proposition 10.45. (a®)¢ ~ a®*-.

PrOOF. We define a function F on (ab)° in the following way. If f € (a®)° and
y€c, then f'y e b, that if, f*y: b — a. Thus if x € b, then (f*y)'x € a. We then
specify that F'fis a function defined on b x ¢ by

FF)<x > = (f9'x.

Then Ff: b x ¢ — aand hence F'f € a®*“. Thus F: (a®)° — a**°. We will prove
that F is one-to-one and onto.
Ifgea®*“andifVyec

fyx =g<{x, ¥, xeb
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then f;, € a®. Therefore if
fy=1, vee
then f e (ab) and g'(x, y> = (f‘y)'x. Consequently Ff = g and F is onto.
If f, e (@), f, € (@°, and F‘f, = Ff,, then
Vyeo(Vxeb)[(f1))'x = (f2y)x]
Vyeolfiy=r3y]
f 1=/
Therefore F is one-to-one.

Since F maps (ab)° one-to-one onto a?*¢ it follows that (a?)° ~ a**¢. O

Remark. Proposition 10.45 tells us that powers of cardinals obey a law of
finite cardinals that we have known since we first studied powers of integers:

R = R

From our studies of integers we know that, at least in principle, we can
compute any finite power of any finite cardinal. But alas we cannot compute
even such a simple infinite power as

(1) 2%,

Indeed Cohen has shown that the question of what (1) is, is undecidable
in ZF.

In the next section we will introduce the Generalized Continuum Hy-
pothesis from which we will show how to compute powers of cardinals. But
before we do that we wish to prove two more results on the cardinality of
unions. For their proof we need the following result.

*Theorem 10.46. (V x € a)(3 y)o(x, y) = @ )V x € a)p(x, fx)).
PROOF. Let G be defined on a by

G'x = (3 y)lo = rank(y) A o(x, y)1).

Then G“a is a set of ordinals. Let a« = U(G“a) + 1. It follows from this
that if

(V xea)3 y)o(x, y)
then
@ y)lo(x, y) A rank(y) = G'x].

Furthermore if rank(y) = G‘x then rank(y) < « and so y € Rja.
To complete the proof we use AC to well order R« and we define f*x to be
the first element in Rjo for which ¢(x, f°x). Here are the details.
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By *Theorem 10.3
(3 H@E Wh: o Riot).
Since (VY x e a)(3 y € Ria)o(x, y) and since h is onto,
(V xea)3 y € Po(x, hy).
There is then a smallest such y. Let f be a function defined on a by

fx = hp(p(x, h'y)), x€a
then

Y x e a)p(x, f*x). O
Remark. Theorem 10.46 is a generalization of AC to classes. It asserts that
given any collection of nonempty classes
A,, xea,

there exists a choice function f'such that f‘x € A, for each x in a.

*Theorem 10.47. (V x e a)[x < b] > U(a) < a x b.
PRroOF. If (V x e a)[x < b], then
vV xea)A S fi: x =5 b1.

By *Theorem 10.46

1) @GN xea)fx: x=5b].
Furthermore, if x € U(a) then

@yixey A yeal.

Again by *Theorem 12.46

2) @Y xeu(@)xeh'x A h'xeal.

We then define a function F on U(a) in the following way

F'x = {h'x, (f*h'x)'x), x € U(a).
From (1) and (2) it then follows that if x € L(a) then
xeh'x A h'xea
and so
(f‘h'x)xeb.

Thus F: u(a) - a x b. We wish to prove that F is one-to-one.
If x € U(a), y € U(a), and F'x = F‘y then

hx = Ky A (fh%)'x = (fRy)y.
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But if h'x = h‘y, then f*h‘x = f*h‘y. Furthermore, since f‘h‘x is one-to-one
(f'Hxyx = (fKy)y > x = y.

Thus F: u(@)~=>a x b and so

o
O

u(a) X

IA
Q

*Proposition 10.48. %»(F) A (VY yeb)[F*y < a] — U(F“b) < a x b.
ProoF. By *Proposition 10.34
Un(F) - F°b <B.

Furthermore if xe F“b then (3 yeb)[x = F'y]. Consequently if 77——‘31 <a
for each y in b, then by *Proposition 10.47

OFb <ax F'b<Laxbh. O



CHAPTER 11

Cofinality, the Generalized Continuum
Hypothesis, and Cardinal Arithmetic

As we promised in the last section we now take up the problem of computing
cardinal powers. For this purpose we introduce the idea of cofinality: An
ordinal « is cofinal with an ordinal B provided that § < « and there exists a
strictly monotone ordinal function f that maps f into « in such a way that
every element of « is less than or equal to some element in the range of f:

Definition 11.1.

cof(a, B) & B < a A Gf)Smo(f) A f: B —a A
(Vy<o)@d<pLfozv]l

Remark. We read cof(a, ff) as “a is cofinal with §.”

EXERCISES

Prove the following.

(1) cof(e, 0) > = 0.

2) aeK, A BeK; AD<f < a—cof(a, f).
(3) 1ZanAaeK; —cof(a, 1).

Remark. The fact that every nonzero K, ordinal is cofinal with every
smaller nonzero K, ordinal and 0 is only cofinal with itself, tells us that the
cofinality properties of K, ordinals are not very interesting. Indeed some
authors formulate the definition in such a way as to exclude the K ordinals
from consideration.

100
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Proposition 11.2. cof(a, f) — [a€ Ky — B € Kyl
The proof is left to the reader.

Proposition 11.3. a € K;; A cof(a, f) > @ N F = A a = u(f“P).]
The proof is left to the reader.

Remark. If a is cofinal with # and f < «, then « can be “reached” by a
mapping from “below” in a sense made clear by the definition. Proposition
11.3 gives us another perspective on cofinality for limit ordinals. It tells us
that if a limit ordinal a is cofinal with f, then « is the union of f sets of ordin-
als each of which is bounded by an element of «. This tells us, for example,
that w is not cofinal with any integer n for if it were then w would be the union
of n bounded sets of integers.

Proposition 11.4. cof(a, «).
The proof is left to the reader.

Proposition 11.5. cof(a, ) A cof(B, y) — cof(a, 7).
The proof is left to the reader.

Proposition 11.6. o € K;; — cof(,, a).

The proof is left to the reader.

EXERCISES

Prove the following.
(1) cof(X,, w).

(2) cof(Ry,,, w).

Proposition 11.7.
Ban AN Boan(Vy<a)35<PLfo2y]-
@7 = B)lcof (a, m1].
PROOF. If a = {6 < B|(Vy < O)[fy < f*6]1}, then a £ B. Therefore
(31 = B3 Wlh Isomg, g(n, a)].

If g = fo h, then g: n — a. To prove that g is strictly monotone we note that
if 6 <y <, then h'6 < h'y, h'6 € a, and h‘y € a. From the definition of a it
follows that f‘h‘6 < f“h‘y. Thatis, g6 < gy, and hence g is strictly monotone.
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Since by hypothesis (V y < a)(3 6 < B)[ [0 = 7] it follows that there is a
smallest such ¢. This smallest § is an element of a and so (3 v < n)[h'v = 6]
Consequently

gv =y =f8=0.

Thus « is cofinal with 7. 0
Corollary 118. B S a A B~ a— (37 £ B)lcof(a, n)].

PROOF. If § ~ a, then Q) f: fora] and so (Vy < )3 S < LSS = y].

onto

Therefore, by Proposition 11.7, (3 1 £ B)[cof(a, )] O

Proposition 11.9. cof(a, §) A cof(e, y) A y £ B— T 1 < y)[cof (B, n)].
PROOF. If « is confinal with § and with y, then
ANLfiBoan (VT <a)Is < PLfS21] A Smo(f)]
@glgr—a A (V<)@ <g <] A Smo(g)].

In particularif 6 < y,theng‘é6 < aandso (3 t < B)[f‘T = g°6]. There is then
a smallest such .
If

Fo=pu(frzgd), o<

Then F:y — . We wish to prove that (Vv < f)(3d < y)[F‘0 = v]. For this
purpose we note that if v < f, then v £ f‘v < a. Therefore (36 < y)[g‘d
= f*v]. Since f'is strictly monotone, if T < v, then f*t < f‘v < ¢‘6. Thus the
smallest ordinal t for which f“t = ¢‘d is greater than or equal to v. That is

Fé=u(f'r=gd)=v.
It then follows from Proposition 11.7 that (3 n < y)[cof(B, n)]. (]

Definition 11.10. cf(«) £ uy(cof(a, B)).

Remark. We read cf(a) as “the character of cofinality of a.”

EXERCISES

Prove the following.

(1) cf(a) £ a.

(2) cf(0)=0.
(3) cfla+1)=1.
@) cflw) = w.

(5) cof(a, cf(x)).
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Remark. From the results we have now proven, it is easy to show that the
character of cofinality of any ordinal «, is a cardinal. That is, the smallest
ordinal with which « is cofinal is a cardinal.

Proposition 11.11. cf(x) e N.

PROOF. Suppose that f = cf(x). To prove that § is a cardinal we need only
prove that if y >~ f then y = B. We argue by contradiction. Suppose that
y < B. Then by Corollary 11.8 (3 < y)[cof(8, )]. But from this it follows
that § = cf(a) £ n < y. This is a contradiction. O

Proposition 11.12. xe N’ — cf(a«) e N'.

PRrOOF. If € N', then a € Kj;. Since « is cofinal with cf(x) it follows, from
Proposition 11.2 that cf(«) € K;. But then cf(¢) = w and so from Proposition

1111, cf(x) e N". d
Proposition 11.13. a € K;; — cf(a) = cf(,).

Proor. If a € Ky, then ¥, is cofinal with o by Proposition 11.6. Since a is
cofinal with cf(a) it follows from Proposition 11.5 that &, is cofinal with
cf(a). Thus

(1) cf(®,) = cf(a).
But N, is also cofinal with c¢f(%,) and so by Proposition 11.9
(371 < (X)) [cof (cf(e), 7).
But since « is cofinal with cf(x) it then follows that « is cofinal with # and so
(2) cf(@) =71 = cf(R,).
Then from (1) and (2), cf(a) = cf(R,). O

Definition 11.14.
(1) Reg(@)&aeN' A cf(x) = a
(2) Sing(a@) S aeN’' A cf(x) < a

Remark. We read Reg(a) as “« is a regular cardinal” and we read Sing(a)
as “a is a singular cardinal.”

From Proposition 11.6 we see that ¥, is cofinal with w and so cf(X,) =
o < ¥,. Thus R, is a singular cardinal. So also are N,,, N, etc. Further-
more, since cf(N,) = N, it follows that ¥, is a regular cardinal. Are there
other regular cardinals? Yes, in fact it is easy to prove that N, is regular if
aeK;:

*Theorem 11.15. X, . , is regular.
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PRrOOF (By contradiction). Suppose that N, . ; is singular. That is, suppose that
g = cf(X,;,) <N, ;. Then (Hﬂ[h: Np — N, 1 = U(h*Rp)]. Furthermore
(V6 < Np)[h'6 < N,;,]and so I'd < N,. Then from Proposition 10.48

Ros1 = VIR, SN, X N, = N,

From this contradiction we conclude that cf(N,, ;) = N,+1. O

Remark. Let us now summarize what we know about regular and singular
cardinals. We know that N, is regular if « € K. If « € K;; we know that ¥, is
cofinal with « and so cf(N,) £ a. We also know that o < ¥,. If & < N,,
then &, is singular. But if x = X, we do not know whether N, is regular or
singular. Do there exist ordinals a for which « = RX,? Yes. To prove this we
first prove the following result.

Proposition 11.16. [ f: a > N] - u(f“a)e N.

PRrOOF. Since 2(f) is a set, f“a is a set, indeed it is a set of ordinals. If § =
u(f“a), then B < B. We wish to prove that B = B. Suppose not. Suppose that
B < B. Then (3 x € a)[B < f*x ef“a]. Therefore f*x < f and since f'x e N

fx=Tx<B.
This is a contradiction. Therefore f = g and U(f“a)€ N. d
Corollary 11.17.

[ffa-> N]A@xeaffxeN]-> u(f“a)eN".
ProOOF. By Proposition 11.16, u(f“a)e N. If (3 x e a)[ f*x € N'], then since
fx < u(f“a) it follows that U(f“a)e N'. |
Proposition 11.18. (3 a)[a = N, ].
Proor. If we define h recursively by
h0 =N,
K + 1) = Ry,

then h: w < N'. By Corollary 11.17, u(h“w) € N'. Thus (3 a)[N, = u(h“w) A
o <N, ] If « <&, then (3 n)[a < h'n]. Therefore 8, < N, = h'(n + 1)
< N,. From this contradiction we conclude that « = N,. O

Definition 11.19.
(1) Inacc,(X,) & ae Ky A Reg(iy).
(2) Inacc(X,) & Inacc,(N,) A (V X)[X < N, - 2(x) < 8,1

Remark. We read Inacc,(R,) as “¥, is weakly inaccessible” and we read
Inacc(N,) as “N, is inaccessible.”
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Does there exist a weakly inaccessible cardinal? We do not know. We do
know that we cannot prove the existence of a weakly inaccessible cardinal
in ZF. How this is proved we will discuss later. For the moment let us be
content to discuss what it means. For one thing it means that if we chose to
do so we could add to ZF an axiom asserting that there does not exist a
weakly inaccessible cardinal and be assured that the resulting system is
consistent if ZF is consistent. But we do not like axioms that say that things.
do not exist. We prefer axioms that enrich rather than impoverish. Perhaps
we would like to add an axiom that says that weakly inaccessible cardinals do
exist. May we do so without fear that we will produce an inconsistent theory?
Probably so but we do not know.

Let usnow turn to the problem of computing cardinal powers. It may come
as a surprise that in ZF we cannot compute such a simple power as

(1) ™o

Let us review the problem. By definition, (1) is the cardinality of the set of all
functions that map w into 2. We can think of any such function as a sequence
of zeros and ones. But any such sequence can also be thought of as the binary
representation of a real number that lies between 0 and 1. Thus (1) is the
cardinality of the set of real numbers that lie between 0 and 1. But that is also
the cardinality of the set of all real numbers.

About the set 2%° we know that 2% ~ 2(w) and from Cantor’s Theorem

we know that Z(w) > N,. Thus
o > No-

The question then is whether there exist cardinalities intermediate between

2%

and N, . Is every infinite set of reals either equivalent to w or to the set of all
reals? If the answer to that questions is yes, then

If the answer is no, then
ﬁ > N;.
For the purposes at hand we assume the answer is yes. Thus we assume the
Continuum Hypothesis.
CH. 2% =R,

But this assumption alone is not enough to settle all questions about
cardinal powers. So we also assume the Generalized Continuum Hypothesis.

GCH. 2N“ = @+ 1°
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Theorem 11.20. GCH - [Inacc,(¥X,) < Inacc(X,)].

ProOF. By definition N, inaccessible implies &, weakly inaccessible. Con-
versely

Inf(x) A X <N, > @ P[Xx =Nz A B <al
Since a € Ky, B + 1 < a hence ¥4, ; < N,. But by GCH
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and so

e, d® < P(b). _
On the other hand if 2 < 3, then 2° < a®. Therefore

@ = P(b). O
*Corollary 11.22.
(1) N, S N;—> N =2%,
@ N==2%

() N, SN, >N < 2%,

Proor. (1) Since N, is infinite and 2 < N, < N; < Z(X;) we have from
Theorem 11.21

NY = P(N,) = 2.
(2) Obvious from (1) witha = S.
() N <N = 2%, O

A

*Theorem 11.23. a € Ky A (Vy < ) [2% < R,] A [N, < cf(R,)] » R¥ =
N,.

ProoF. If a = {N}#|y < «} and if f € U (a) then
Ay <o) [f:R; = N,]
Since R, = N, it follows that f € X} and so
U (a) & N,
If f e R} then f: Ry > N, . Since 8, < cf(N,) it follows that
Fo<R)[#(f) g 6]
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Furthermore since o € K
Gy<a)o =N, <N,]

Therefore f € R}, i.e., f € U (a).
Thus X% = U(a) and hence

"% = U(a).
Further if x € g, then (3 y < o) [x = K}'#]. If in addition y < 8

N < K5 = 2% < N,.
On the other hand if § < y then by *Corollary 11.22
&_—f; < ﬁ < N,.
Finally since @ £ & £ N, we have from *Theorem 10.47

U@ <N, x N, = N,.

Therefore

%
&4

=N,. O
Definition 11.24. [],.,c'x £ {g|g Fna A (Y x €a)[g'x € ¢'x]}.

Remark. We read [ |,.,c'x as “the cross product of ¢‘x for x € a.” To see
that this is a reasonable generalization of the cross product of two sets note
that if a =2 and if g €[] c2¢'x then g F22 A g0ec0 A g'lecfl, ie,
{g'0, g‘'1> € c'0 x ¢‘l. Conversely if {x, y> € c'0 x ¢l and if we define g on
2by g0 = x A g'1 = ythen g € [ [,.,cx. Clearly there is a natural one-to-
one correspondence between [ [, ., c¢x and ¢0 x ¢‘1.

Proposition 11.25. .#(] [,c.c"x).
PROOF. [ [1cqc'x S [L(c“a)]" O

*Theorem 11.26 (Zermelo). (¥ x € a) [b'x < c'x] > U(b*a) < | [rcaC'x.
PrOOF. (By contradiction). Otherwise

A f)[f: ub“a) a1 c‘x].

Xea

If we define d on a by
d'x = {(f2)x|zeb'x},x€a

then d'x < b'x and d'x ¢ c¢'x. Since by hypothesis bx < ¢ it follows that

d'x < ¢'x and hence ¢'x — d‘x # 0. Therefore by AC
(Fe)(Vxea)lexec'x — dx].
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Since e'x € ¢'x and since e F a, e€ [ [, .,cx. Then

X€ea

(Fzeu®“a)lfz = el
But z € U(b“a) implies (3 x € a) [z € b'x]. Consequently
(f2)xed'x A (f2)xec'x — dx. O
Definition 11.27. a* £ 4 (3 > 3).

Remark. Note that a* is a cardinal number.

*Theorem 11.28. N, < RF®),
Proor. If a € K| then cf(X,) = N,. Therefore

R, < 2% = N = N0,
If « € Ky and if = cf(X,) then

@) Smo(f) A [f: B = R,] AR, = u(f“P)].
If

cy=0"M,  y<8B
then (V y < B) [y < c7]. Therefore by *Theorem 11.26

N, = u(f“p) < [l

y<8

Since
l_IﬂC‘v € (U(c“p)’,
<

it follows that

[1c'y = (LB

v<8

Furthermore y < f implies ¢y < ¥, and g < N,. Therefore

CCP) <N, xR, =X,

and hence

(L(c“B))? < sz = R,
Thus
Na < sz(Nu)‘ D

*Theorem 11.29. X; < cf(@).
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ProoF. (By contradiction). If cf(@ = N, £ X; then by Theorem 11.28,
Proposition 10.45, and *Proposition 10.41

REP < (NF2)% = NREo % = N, O

*Corollary 11.30 (Konig). X, < cf(2%).
PROOF. X, < cf(N5%) = cf(2%). O

Theorem 11.31. GCH —» R¥ = X, i N; < cf(N,)
= Na+1 ifo(Na) é Nﬂ é Na
= z’4,9+1 ifNa =< Np-

PrOOF. If Xy < cf(X,) then a # 0. If (3y) [« = y + 1] then X, is regular and
hence

Ry < cf(®,) = N, = 8, ;.

Therefore X; < X,. Since by GCH, R, ,, = 2%

N =R, =@ =" =2 =R, =X,

If « € Kj; then since y < o implies ™ = N,+1 < N, we have from *Theorem
11.23

NF = N,
If cf(X,) = Ny < N, then from *Theorem 11.28 and *Corollary 11.22

R, < RIT®D < N¥ < 2% = K, .
That is &, < @ < ¥, .. Therefore
?:‘g = t~¢z1+1'

If 8, < N, then since Ny < Ny, = 2%

@ =< (ﬁ)xﬁ = 2%>®s = 2?’ = Nﬁ+1-
By *Theorem 11.29
R, < of(RT?) < R,

Therefore

N?ﬁ = Nﬂ+1' D

Remark. With the aid of AC we can also improve on Proposition 9.6.
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*Proposition 11.32. Inf(a) A CI(R;,A) A --- A CI(R,,,A) A C1(S;,4) A ---
A Cly(S,, A) A UnRi) A -+ A Un(Ry) N Un(Sy) A ANUnS,) Nac A
then there exists a set b such that a £ b < 4,a = b, and

CI(R;,b) A - A CI(R,,, b) A Cly(Sy, b) A -+ A Cly(S,, b).

PROOF. The proof proceeds as for Proposition 9.6. We then note that since
R, and §; are single valued

Rrk<Tk i=1,....m
SSURE<(fkP=f%k i=1..,n

Therefore f“(k + 1) is the union of a finite number of sets each of cardinality
not greater than f k. Then by *Proposition 10.41

fktD=fk=--=f0=a

Then from *Proposition 10.48, and the fact that a is infinite

Furthermore since a < b, @ < b. Therefore @ = b. ad



CHAPTER 12
Models

We turn now to the very interesting subject of models of set theory.
Intuitively by a model of set theory we mean a system in which the axioms
and theorems of ZF are true. Such a system must consist of a domain of
objects that we interpret as the universe V of our theory and a binary relation
that we interpret as the e-relation of our theory.

Assuming consistency there is a model of ZF consisting of a universe
of “sets” ¥ on which there is defined an “e-relation.” Given such a universe
V it is possible that some subclass A of V together with some relation R on
A is also a model of ZF. With 4 € V and R € A x A the language of ZF
is adequate for the development of a theory of such internal models. Our
next objective is to make the foregoing ideas precise and thereby compel ZF
to tell us about some of its models.

In order to define “model” we first introduce the idea of a structure or
relational system. For each nonempty class A and each relation R € 4 x A
we introduce the term

[4, R]
which we call a structure (or relational system); A is the universe of this
structure and the elements of 4 we call individuals.

We next define “the structure [A4, R] satisfies the wif ¢.” Our definition
is by induction on the number of logical symbols in ¢. For this purpose we
assume —1, A, and V as primitive.

Definition 12.1.
(1) [A4,RlEaecbSacAAbednaRb.
(2 [4R1E Y& 4, R1E Y.
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3) [ARIEY AnS[[4,RIEY] A AR E7]
@) [A, R1E (Y)Y S (Y xe D[4, Rl E y(x)].

Remark. We read [A, R] = ¢ as “the structure [ A4, R] satisfies ¢.” With
the understanding that each term [4, R] and the satisfaction symbol =
occur only in contexts covered by Definition 12.1 it is clear that these symbols
can be eliminated from our language, that is,

[4,R]E o

is an abbreviation for a wff of our language.

If [A, R] = ¢ we say that [4, R] is a model of ¢. Moreover [4, R] is a
model of a collection of wffs provided [ A4, R] | ¢ for each ¢ in the collection.
In order to prove that a certain structure [ 4, R] is a model of a given wff we
must prove a certain wif in ZF namely the well-formed formula [4, R] = ¢.
We will be particularly interested in structures for which R is the usual
e-relation. Such a structure we call a standard structure.

Definition 12.2. [ A4, R] is a standard structure iff R = E n A>.
Definition12.3. A = ¢ &[4, E N A%] = o.

Definition 12.4.
(1) [aeb]*Sach.
@ [y1* Syt
B) [ A&yt Agt
@ LV xWx)]* S (¥ x e Ay

Remark. From Definition 12.4 we see that ¢* is simply the wff obtained
from ¢ by replacing each occurrence of a quantified variable (V x) by (V x € A).

Proposition 12.5. (1) If ¢ is closed then
[AF o]« o™
(2) If all free variables occurring in ¢ are among a, ..., a, then
aeAN--ANa,ed— [[AE o] o]

Proor. We consider (1) to be the special case of (2) with n = 0, and so we
need only prove (2). This we do by induction on the number of logical
symbols in ¢. We assume that a,, ..., a, € 4.

If ¢ is of the form a € b and if ¢ and b are among a4, ..., a, then

aebraecAAbeA—ach
and so

(4 o] & o



12 Models 113

If ¢ is of the form —y, then all of the free variables of Y are among
a,,...,a,. From the induction hypothesis

[AEyloyt

Therefore

[AEyle Yt

and hence
[AE ¢l o™
If ¢ is of the form ¥ A #, then all of the free variables of ¥ and of # are
among d, ..., d,. As our induction hypothesis we have
[ yleys
and
[4Enlent
Therefore
[AEY] A TAEnl oy Ant
Hence
[AE ¢l oo’
If ¢ is of the form (V x)y(x), then there is an x that is not among a,, ..., a,
and all of the free variables of y(x) are among ay, ..., a,, x. From the induc-

tion hypothesis
xe A [[AE ()] < y*(x)]

and hence
[xed - AE Y(x)][xed - y4x)]

Since x is not among ay, ..., a, we may generalize on x and from properties
of logic we conclude that

(Vx € LA | Y(x)] (¥ x € AWA(x).

Hence
[AE @]l ¢ 0

Remark. Proposition 12.5 is a basic result. It assures us that if ¢ is closed
A is a model of ¢ if and only if ¢ is a theorem in ZF.

Suppose that 4 |= ¢ and ¢ is equivalent to ¥, i.e., @ «> . Does it follow
that A = ? To answer this question we need a result from logic for which
we review the axioms for our logic and the rules of inference.
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Logical Axioms
1) o-[Y-ol
2 [e-W-onl]l-[Me-y]-Le—nll
3) [De—-Wl->[Y - el

@ (Vx)[p - y¥] - [e = (Y x)¥] where the free variable on which we
quantify does not occur in ¢.

(3 (Vx)o(x) — o(a).

Rules of Inference
(1) From ¢ — ¥ and ¢ to infer .
(2) From ¢ to infer (VY x)e.

Theorem 12.6. If |- ¢ and if A is a nonempty class that satisfies each nonlogical
axiom that occurs in some proof of ¢ then

(1) o
if @ is closed.
2 tay,...,a,eA— "
if all of the free variable of ¢ are among ay, ..., a,.

PrOOF. We regard (1) as the special case of (2) with n = 0. Sipce ¢ is a theorem
it has a proof and indeed by hypothesis a proof in which each nonlogical
axiom is satisfied by A. Suppose that the sequence of wff

Hiseoos Nm

is such a proof. Then #,, is ¢ and each #, is either an axiom or is inferred from
previous formulas in the sequence by one of the rules of inference. Our
procedure is to show that the sequence

His oo o5 Mm

can be modified to produce a proof of (2). More precisely we will prove by
induction that for each 5, k = 1, ..., m, if all of the free variables in #, are
among by, ..., b, then

by,...,b,e A > ni.
Case 1. Suppose that 7, is an axiom. If #, is of the form  — [ — ] then
na is
¥t = [ - y*]
i.e., ni is an axiom. Hence

by,...,b,e A - ni.
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Ify, isof the form [y — [0 — (1] - [ — 6] - [¥ > {JJ or[71¢ — 6]
— [6 — ] an argument similar to the foregoing leads to

by,....,b,e A - ni.

If n, is of the form (V x)[¢ — 6] - [ — (V x)8] where x is not free in Y
then from the tautology [p — [¢ »r]] - [q — [p — r]} we have

[xeAd - [Yy* - 04]] - [¥* > [xe 4> 61]].
By generalization and Axiom 4
(Vx)[xed- [y 6] > [Y* > (Y x)[xe 4 - 6]],

and hence
bl,..,,prA —)nf.

If 7, is of the form (V x)(x) — ¥(a) then as an instance of this same axiom
we have

(VY x)[xe 4 - yi(x)] - [ae 4 > y*a)l.
Therefore
ae A - [(VxeAY(x) - y*(a)
and hence

by,...,b,e A - yi.

If n, is an axiom of ZF then by hypothesis 4 = 7,, and from Proposition
12.5

by,...,b,e A —>nf.

Case 2. If , is inferred by modus ponens from #; and #; — #, and if all of
the free variables of #; are among b, ..., b,, ¢y, ..., ¢, with ¢y, ..., ¢, all
distinct and none of them occur among b, ..., b, then from our induction
hypothesis

by,....,b,e A Arcy,...,ce Ao,
by,....,b,e A Ancy,...,c,e Ad—[nf - nil
From the self-distributive law of implication and modus ponens
by,....b,eAAcy,...,cp1€A—>[c e A il

Since ¢, does not occur among b,,...,b,, ¢, ..., c,_, We have by gener-
alization and Axiom 4

by,....,b,eA rcy,...,c,o €A (Vx)[xeA - ni]

- [Ax)[xe 4] -]
3x)[xe Al > [by,....,b,e A Acy...,ciu €A 1]
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Since 4 # 0
by,....b,eA ncy,...,ci_ €A >
With g — 1 repetitions we obtain
by,....,b,e A -y

Case 3. If 5, is inferred from #5; by generalization then there is an a not
among b, ..., b,. From the induction hypothesis

by,....b,e A A ae A - nia).
Since a is not among b, ..., b, we have by generalization and Axiom 4

by,....b,e A — (Y x e Ani(x). O

Remark. From Theorem 12.6 we see that if a proof of a wif ¢ requires
only the logical axioms then every nonempty class 4 will be a model of ¢.
In particular every nonempty class 4 is a model of the logical axioms and
if two wffs are logically equivalent, i.e.,

Fragey

then a nonempty class A is a model of ¢ iff it is a model of .

We are interested in classes A that are models of ZF. Since there are
infinitely many axioms for ZF the assertion that A4 is a model of ZF is the
assertion that each wff in a certain infinite collection of wffs is a theorem
in ZF. This assertion we abbreviate as the metastatement, 4 = ZF.

From Theorem 12.6 we see that if 4 &= ZF then every theorem of ZF
holds in A, that is, A satisfies each theorem of ZF. In the next section we will
give conditions on A that assure that A = ZF. One requirement for most
results of that section is that 4 be transitive.

Definition 12.7. STM(4, ¢) & Tr(A) A 4 = o.

Remark. By a standard transitive model of ZF we mean a nonempty
transitive class A4 that satisfies each axiom of ZF, i.e., for each axiom ¢

STM(4, ).

Although we restrict our discussion to standard transitive models of ZF this
theory nevertheless encompasses a large class of models of ZF as we see from
the following theorem.

Theorem 12.8 (Mostowski). If R< A2 AR Wir A A (Vxe A)Vye A)
[(V 2)[zRx < zRy] - x = y], then there exists a B and F such that

(1) Tr(B).
(2) F lIsomg 44, B).
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3) [A,RlIE @ BE oifis closed.
(4) Ifall of the free variables of ¢ are among a,, ..., a, and iy
ag,...,a,€A
then
[A,R]E= olay,...,a,) BE= o(Fay,..., Fa,).
Proor. (1) IfR Wir A A x € A it then follows that (R ~!)“{x} is a set. Therefore
if £ F#(R™1)*{x} then #°(f)is a set. Let
K={fIGzc ALf Fnz A (xez)[[x={fVIyRx} A
R™)*{x} < 2]}

Then any two functions in K have the same values at any point common to
their domains: Otherwise there would exist an fand g in K and an x in

2(f) N Dg) such that f(x) # g(x). If ¢ = {x € D(f)  D(g)| f*x # g'x}
then ¢ # 0 A ¢ € A. Therefore (3 x € ¢)[c N (R™1)*{x} = 0]. Since x e ¢

R™H{x} € 2(f) A (R™1)*{x} < 2(g).
Then y R x implies f‘y = g‘y and hence
S'x={fylyRx} ={gylyRx} = g'x.

This is a contradiction.
Furthermore each fin K is one-to-one, for otherwise

GfeK)@xe2(f) Bye2NNx#y A fx=fy]

fe={xedNBye2(fNx#y A f'x=fy]} then c#0 A cgc A
Therefore ¢ has an R-minimal element, i.e., (3 x € ¢)[c n (R™1)“{x} = 0].
Since x € ¢,

Aye2(N)Ix#y A fx=[fYy]
But
fx={fz|zRx} and f‘y={f‘w|wRy}
Therefore if z R x, then
fize fx=[fYy
and hence
@wW)wWRy A f'w= fz].

Since x is an R-minimal element of cand z R x, f‘w = f‘z implies that w = z,
that is,

zZzRx > zRy.

By a similar argument we obtain z Ry — z R x and hence from the hy-
potheses of our theorem we conclude that x = y. This is a contradiction.
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If
F = U(K)

and if <a,x>€e F A <a,yye Fthen(3 f e K}(Fge K)[x = f‘any=gada]l
But since a e 2(f) n 2(g), f‘a = g'a, i.e., x = y. Therefore F is a function.
Furthermore (V f € K)(Vx € Z(f)) [F'x = f‘x]; consequently

Fx = f'x = {f'y|lyRx} = {FylyRx}.

From this it follows that F is one-to-one, for if not there is an x and a y in
9(F) for which F'x = F‘y but x # y. From Proposition 9.4 it then follows
that there is an R-minimal x in 2(F) for which (3ye 2(F))[x # y A F'x =
Fy]. Then

F'x = {F'z|zRx} = {F'w|lwR y} = F'y.

From this and the defining property of x it then follows that z R y if and only
if z R x and hence x = y. This is a contradiction.
Since

2F) =2

fekK

and f € K implies 2(f) < Aitfollowsthat 2(F) < A.If 4 — Y(F) # Othen
by Proposition 9.4, 4 — %(F) has an R-minimal element, that is

Axed — 2F)[A — 2(F) n(R™H“{x} =0].
By Proposition 9.3 there is a subset a of A that is the R ™! closure of {x}, i.e.,
[(x}cac AA)V2)[yRzAzea—>yed]].
Furthermore each element of a is “connected” to x by a finite R-chain, i.e.,

Vyea)@m@EN[fin+1l-oanfO=xAfrn=yna
Vi<n[fG+ I)Rf‘i]].

Since x is an R-minimal element of A — 2(F)
A (R™Hx} < 9(F).

By definition of K if z € Z(F) then (R™1)*“{z} < 2(F). Since each element of
a is connected to x by a finite R-chain it follows by induction on the length
of such chains that a — {x} < 2(F). We then define g by

g=(FI (a—{x}) v {{x FFR™ )P}

Thus 2(g) s A A (VzeD(@)[z=x v z # x].
If z = x then

g'x = FYR™)*{x} = {F'y|ly Rx}.
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Furthermore y R x implies y € a — {x} and hence gy = F‘y. Therefore
g'x = {g'yly Rx}.
If z # x then since z € 9(qg), g'z = F‘z. But
F'z = {F'y|yR z}.

If yRz and z € a, then y € a. Furthermore since z is connected to x by a
finite R-chain and since R is well founded, y # x. Then g‘y = F‘y and

gz ={g'ylyRz}.

Since a is the domain of g and a is closed under R ! it follows that g € K.
Hence x € a € 2(F). This is a contradiction from which we conclude that
9(F) = A.

Thus if B = F“A then

F: ALLB.
Furthermore a e b A b € Bimplies that (3x € A)[ae b A b = F'x]. But
F'x = {F'y|y R x}.
Thus (Ay)[Ly R x A a = F'y], i.e.,, a € B and hence B is transitive.
Alsoae A AbeA AaRb— Fae{Fy|yRb} = F'b. Therefore
F Isomg g(A, B).

We have now proved (1) and (2). Since (3) is the special case of (4) with
n = 0 it is sufficient to prove (4). This we do by induction on the number, n, of
logical symbols in ¢. If n = 0, then ¢ is of the form a € b and

[A,R]=aebe—aeAAbeAAaRb.
Since F Isomg £(A4, B)
a,be A—>[aRbe Fae F'b].
But since F‘a € B and F'b € B we have
a,be A—>[Fae Fb— Bk F'aeFb].
Therefore
a,beA—[[A,R]=aeb- B FaeF'b].

If p is of the form 1 and all of the free variables of ¢ are amonga,, .. ., a,
then so are the free variables of . From the induction hypothesis if
a,€A A -+ A a,e Athen

(4, R1E ¥(ay, ..., a,) o B y(Fay, ..., Fa,),
—1[4, Rl E ¥(ay, ..., a,) B = y(Fa,,..., Fa,),
[4,R] & y(a,, ..., a,) < BE YW(Fay,..., Fa,).
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If ¢ is of the form ¥ A n and all of the free variables of ¢ are among
a,, ..., a, then so are the free variables of ¥ and of #. From the induction
hypothesisifa, € A A --- A a, € A then

[4,R] = ¥(a,,...,a,) BE= yY(Fa,,...,Fa,)
[AsR] }= r’(al""’an)HBlz U(F‘al,"-’F‘an)'

Therefore

[4,R] &= ¥(ay,...,a,) A [A,R] E=n(ay,...,a,)—>BE y(Fa,,...,Fa,)
A BE y(Fay, ..., Fa,).
Hence
[A’ R] F= [l//(ala cee an) A '1(01, st an)] HB '= [W(F‘ala ] F‘an)
A n(Fay, ..., Fa,)].

If ¢ is aof the form (V x){(x) and if all of the free variables of ¢ are among
a,, ..., a,then there is an x not among a,, . . ., a, and all of the free variables
of yY(x) are among a,,...,a,, x. From the induction hypothesis if
a, €A A -+ Aa,e Athen

xed - [[A,R]lE ¥(x,a,,...,a,) < BE= y(Fx, Fa,,..., Fa,)].
From the self-distributive law for implication
[xeA—-[A4, Rl1E= y¥(x,a4,...,a,)] < [x€eA > BE y(Fx, Fa,,...,Fa,)]
Since x is not among a, ..., a, we have on generalizing and distributing
[(Vx)[xeAd >[4, Rl E¥(x,ay,...,a,)]

o (Wx)[xeAd - BE y(Fx, Fa,,..., Fa,)].

Since F maps A one-to-one onto B
(Vx)[xe A - BE y(F'x, Fay, ..., Fa,)]

o Vx)[xeB- BE y(x, Fay,..., Fa,)]

Therefore

[4, R] = (Y x)Y¥(x, a4, ...,a,) < BE= (Y x)W(x, Fay,...,Fa,). 0O



CHAPTER 13
Absoluteness

A basic part of the interpretation of our theory is that each wif ¢(x) expresses
a property that a given individual a has or does not have according as ¢(a)
holds or does not hold. Then ¢#(x) expresses the “same” or “corresponding”
property for the universe A.

Consider, for example, the existence of an empty set. Earlier we proved
that there exists an individual a, called the empty set, having the property

(V x)[x ¢ al.

From the Axiom of Regularity it follows that every nonempty class 4, as a
universe, has this property. In particular, the class of infinite cardinal numbers
N’ contains an individual a with the property

(Vx e N)[x ¢ al.

The set in N’ that plays the role of the empty set is ¥, a set that is far from
empty. Thus when viewed from within the universe N, N, is empty but when
viewed from “without,” i.e., in V] ¥, is not empty.

There are however properties @(x) and universes 4 such that an individual
of A has the property when viewed from within A iff it has the property when
viewed from without. Such a property is said to be absolute with respect to A.

Definition 13.1.
(1) @Abs A& [o" o ¢]
if ¢ is closed.
2 @AbsASa,ecAn---Aaed—[pheo ]
where a,, ..., a, is a complete list of all of the free variables in ¢.

121
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Remark. We read @ Abs A as “¢ is absolute with respect to 4.”

Proposition 13.2. If ¢ Abs A A  Abs A4 then
(1) ¢ A Y Abs A,
(2) —p Abs A.

The proofs are left to the reader.

Remark. From Proposition 13.2 we see that if ¢ and y are each absolute
with respect to 4 then ¢ v ¥, ¢ -, and ¢ < are also absolute with
respect to A. The interesting questions about absoluteness center around
quantifiers.

Propeosition 13.3. If ¢ Abs A, if Y Abs A, if ay,...,a,, by, ..., b, is a list of
distinct variables containing all of the free variables of ¢ and of s, and if

bi,....b,e A A o(ay,...,0,,b....,b)—>ay,...,a,€A
then generalizing on aq, . . ., a,,,

Vx5 s X))@ — ] Abs A.
ProoF. Clearly if b,, ..., b, € A then
[(Vxy, ..o, x )@ =2 Y] > (Vxq, ..., X € Ao = Y]]
The formal details consist of observing that on the hypothesis

(Vxlr . 7xm)[(p - I//]

we can deduce ¢ — i and hence

an€A - [o Y]
Then by generalization

(V xp) [xn € A = [ > ¥]].
By iteration

xi,.oooxp€ Ao - Y]
On the other hand we can deduce from the hypotheses

by,....b,eA,(¥Vxy,....xne Ao > VY], @

the following wffs

Vx4 ., xm€ Alo - ¥,

a,€Ad->NVxy,...,xu€ Ao - Yl



13 Absoluteness 123

But a basic hypothesis of our theorem is that under the hypotheses listed
above

a, €A
Hence by modus ponens we can deduce
Vxy,.osxme ADlo - ¥l
Repeating this we arrive finally at

7

from which one application of the deduction theorem gives that on the
hypotheses

by,....b,ed,(Vxy,...,x, € Ao - Y]
we can deduce
@Y.
Then by generalization we deduce
(Vxy) ... (Vxn)lo > ¥]
and finally, by the deduction theorem,
bi,....b,eA>[(Vxy,...,xpne Ao > Y] >

(Vxla --'axm)[(p - ‘ﬁ]]
We then have
b,....b,e A> [(Vxq,....,x )¢ > V]

VxiyooonXxme Alo - ¥1].

Since ¢ and ¢ are each absolute w.r.t. 4
by,....,b,eA Aay,...,a,€ A - [p.0*],
by,....b,eA Anay,...,a,e A— [y yt].

Hence by generalization, properties of equivalence, and the self-distributive
law, if by, ..., b, € A then

[(Vxy s xme€ A > Y]l o (Vxy, ..., x, € Alo? - Y411
We then conclude that if b,, ..., b, € A4,

[V os Xx)@ =¥l o (VXps ..., xm € ALo? = Y]] O
Corollary 13.4. If ¢ Abs A, if Y Abs A, if ay, ..., an, by, ..., b, is a list of
distinct variables containing all of the free variables in ¢ and in W, and if

b,....b,eA N oay,...,a,,by,....,0b)—>ay,...,a,€A,
by,....,b,eA A VYay,...,a,,by,...,b)—>ay,...,a,€A4
then generalizingon ay, ..., @y, (¥ Xq, ..., Xw)[@ < Y] Abs A.
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The proof is left to the reader.

Proposition 13.5. If ¢ Abs 4, if a,, ..., a,, by,..., b, is a list of distinct

’ m>

variables containing all of the free variables in ¢ and if
by,....,b,e A A o@,...,a,, by, ....,b)—a,,...,a,€4
then quantifyingon a, ... a,,
(3xy ..., %)@ Abs A.
PRrROOF. Since
b,....,b,e A A ¢(ay,...,0,,by,....,b)—>ay,...,a,€A
we have that
by,....,b,ed— [Axy,....,x )0 —>3xy,...,x, € A)e].
Since ¢ is absolute w.r.t. 4
by,....,b,eAAay,...,a,€ A [¢p— o?]
Therefore if by, ..., b, € A then
[Bxyy..orXme A3 xy,y..., X, € A)e?]
and hence
[Axy, ..y xmee@xy, ..., X, € A)o™]. O
Proposition 13.6. If |- [¢ < Y] and if A is a nonempty class that satisfies each
nonlogical axiom in some proof of @ < s then
@ Abs A >y Abs A.

ProoF. If all of the free variables of ¢ and of y are among b, ..., b, then by
Theorem 12.6

by,...,bye A - [p* = y*].
Therefore if by, ..., b,e A
[p < o'l [y <yl u
Theorem 13.7. If |- (3 x)p(x), if A is a nonempty class that satisfies each
nonlogical axiom in some proof of (3 x)p(x), and if p(x) Abs A then
(3 x)p(x) Abs A.

PrOOF. If all of the free variables of (3 x)¢(x) are among qy, ..., a, then by
Theorem 12.6

ag,...,a,€ A - (3 x e A)p(x).
Then
a,...,a,€ A - [ x)p(x) » (3 x € A)p?(x)].
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Furthermore there exists an x distinct from a,, ..., a,. Then since @(x) is
absolute with respect to A.

Ay .., 8, €A A X € A - [p(x) & @A(x)].
Therefore
ag, ... a,€ A - [(Axe Ap(x) = (A x e A)p*(x)]
~ [Ax e Ap*(x) > @x)p(x)]. u
Theorem 13.8. If [ < (V x)¥(x)] and |- [¢ « (A x)n(x)], if A is a non-

empty class that satisfies each nonlogical axiom in some proof of ¢ « (¥ X){s(x)
and some proof of @ < (I x)n(x), if Y(x) Abs A and if y(x) Abs A then

¢ Abs A.

Proor. If'all of the free variables of ¢, (Y x){/(x), and (3 x)n(x) are among
a, ..., a,then by Theorem 12.6

a,...,a,€ A — [¢p* & (Vx e Ai(x)].
ag, ..., 8,€ A - [p? (A x e Ani(x)].
Also since (x) and #(x) are absolute
Ay, 8, € A A x € A = [P(x) & YA(x)],
A, ..., 8, €A A x € A - [(x) & n4(x)].
From this, choosing x distinct from a;, ..., a,
Ay ..nr G, € A = [(V x € AW(x) > (V x € AYA(x)],
ap, .. a,€ A - [(Axe Anx) 3 xe Ayix)].
Then since ¢ < (V x)¥/(x) is a theorem
Agy...,0,€A A @ - (VX)P(X)
- (Vx € AY(x)
— (Vx € AWA(x)
- (pA,
Also
ag, ..., 8, €A A " > (A xe Ant(x)
- (3xe An(x)
- (3 x)n(x)
- Q. O
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Remark. Satisfaction and absoluteness have been defined for wifs. Most
of our theorems in ZF are however wffs in the wider sense (Definition 4.1).
It is therefore convenient to extend our definitions to wifs in the wider sense.

Definition 13.9. If ¢ is a wff in the wider sense then
(1) [4R1E ¢ 5[4, R]E ¢%,
Q) o* 2 (o*),
(3) @ Abs A S o* Abs A.

It would however be helpful to be able to determine the absoluteness of
wifs in the wider sense without first reducing them to primitive terms. For
this purpose the following substitution theorem is useful.

Proposition 13.10. If A #0, if o(b,,...,b,) Abs A and if M(By) A ---
AMB)ANb, =B AbsA A --- A b, =B, Abs A then ¢(B,, ..., B,) Abs
A.

PrOOF (By induction on n). If n = 1 then

o(By) < (Vx1)[x, = By = ¢(by)]
< @ x)[x; = By A o(by)].
If o(b;)Abs A and b, = B, Abs A then [b, = B, - ¢(b;)] Abs A and

[b; = B, A @(b,)] Abs A. Then by Theorem 13.8, ¢(B,) Abs A.
The induction step is obvious and hence omitted. J

Definition 13.11.
1) x*2xnA
Q) {xlpx)}* £ {x e A|p*(x)}.

Proposition 13.12, If A is transitive and x € A then
1 x*=x,
Q) [xeyltexteyt
() [[xe{yle(]* < [x* € {ylo(»}*1],
@ [[{yle} e x1* & ylon}* e x*T1,
(5) [{xle(x)} € (yI¥(1]* o [{x]p()}* € {(y1¥(n}].
PROOF. (1) If A is transitive and x € 4, then x = A. Thereforex? = x N 4 = x.
(2) Obvious from (1).
3) [xe {yloN}I* < o(x).

Hence

[x € {yle(M}]* < o (x).
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Then x € 4 implies

[xe{yle(}]* o> xe A r p'(x)
—xe{yeAlo*(y)}
< x%e {ylon}*.

@ [l ex]*=@2)[zex A (Vy)yeze o(y)]].

Hence
[le}ex]* = @zeA)zex A (Vye Alyez o o*(y)]].

Then A transitive and x € 4 implies
[le}texlto@zedzex A (Vyedlyezo o'(N]]
<@zeAlzex rz={yeAle*(y}]
o {yedlo*(y}ex
o {ylo(n}* ex”.

(3 [xlex)} € {yl¥(»}IT*

<@L x)[x €z o(x)] A ze {yly(»}]
Therefore from (1) and (3)

[{xle(x)} € {y1¥(»}]*
o@@zeAVxeAlxezo o'(x) A ze {yY(»)}*]
o @ze Az = {xe Al (x)} A ze {y|lY(y)}*]
o {xe A|l¢"(x)} € {ylYp(»}*
o {x|p()}* € {y WO =

Definition 13.13.
(1) BAbs A& [BA = B]
if B is a term containing no free variables.
Q) BAbsASay, ..., a,€ A — [B* = B]
where a, ..., a, is a complete list of all the free variables in B.

Proposition 13.14. If ¢(x) Abs A and if all of the free variables of ¢(x) are
among ay, ..., a,, x then

ay, .- a4, € A - [{x] ()} = {x]@(x)} N A].
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Proor. If a,, . .., a, € A then since ¢(x) is absolute with respect to A
x € {x|p()}* o xed A ¢(x)
—oxeA A o(x)
e xe {x|o(x)} N A. d
Remark. The class {x|p(x)}* is the class {x|@(x)} relativized to A. By
definition {x|@(x)}“ is the class of individuals in A for which ¢“(x) holds.

From Proposition 13.14 we see that if ¢(x) is absolute with respect to 4 then
{x] p(x)}* is simply the class of individuals in 4 for which ¢(x) holds.

Proposition 13.15. If A is nonempty and transitive and if {y| p(y)} is a set, then

La={ylo(»}]Abs 4  iff {yle(y)} Abs A.
PrOOF. If all of the free variables of ¢(y) are among ay,...,a,, y then

[a = {yle(y)}] Abs A
—ay,...,q,,a€A - [(Vy)lyea oyl

= yeAlyeae o*(y]]
ay,....a,a€A > [(Vylyeae o(y)]

oWylyeacyed A o*(y]]
ay,....anaeAd->[a={ylo(y)} - a= {yeA|e?(»}]
oag, ..., a,€ A= [{ylo(} = {yle(}]
< {ylo(y)} Abs A. U

Remark. We turn now to the problem of establishing the absoluteness
properties of certain wffs and terms. Our ultimate goal is to find conditions
on A that will assure us that A is a standard transitive model of ZF.

Proposition 13.16. If ¢ is quantifier free then ¢ Abs A.
PrOOF. If ¢ is quantifier free then ¢ < ¢. O

Proposition 13.17. a € b Abs A.

ProoF. The formula a € b is quantifier free. O

Proposition 13.18. If A is nonempty and transitive then

(1) ag< bAbs A,
(2) a=0bAbs A
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PrOOF.
(1) acbeo(¥Wx)xea—xeb].

Since A is transitive a € 4 implies a S A,ie,x€a A a€ A implies x € 4.
From Propositions 13.17, 13.3, and 13.6 it then follows that

a < bAbs A.
2) a=beoachbabgca O

Remark. The requirement in Proposition 13.18 that A4 be transitive cannot
be dropped. For example if 4 = {0,1,{0, 1,2}, {0, 1,3}} then from an
internal vantage point the sets {0, 1,2} and {0, 1, 3} are indistinguishable, i.e.,

(VxeA)[xe{0, 1,2} > xe{0,1,3}]
Since the membership property is absolute with respect to any class
(Proposition 13.17) if b € A then those individuals in A that play the role of

elements of b are individuals in V that are elements in b. But not conversely.
In the foregoing example we have, relative to A

0e{0,1,2), 1e{0, 1,2}, 2¢{0,1,2}.
A A A

Similarly with subsets, if A is a nonempty transitive class then contain-
ment is absolute with respect to 4. This means that if b € A then every
element of A4 that is a subset of b relative to A is a subset of b in the “real”
universe V. But not conversely. There may be a subset of b that is not an
element of 4. Indeed if A is transitive but not supertransitive there must be at
least one element of 4 having a subset that is not in A.

Proposition 13.19. If A is nonempty and transitive then
(1) 0 Abs A4,
(2) [au b] Abs A,
(3) {a,b} Abs A4,
4) u(a) Abs 4,
(5) [a — b] Abs A.
ProOF. (1) Since a # a Abs 4 we have
04 ={xeAd|[x # x]*} = {xed|x # x} =0.
(2) Ifa,beAthen
[aub]®={xeA|[xea Vv xeb]}
={xeAlxea v xeb}
= {x|xea v xeb}

=aub.
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(3) Ifa,be Athen
{a,b}* = {x e A|[x = a v x = b]"}
= {x|x=a v x = b}
= {a, b}.
(4) Ifae Athen
[V@]* = {xeA|@yeAlxey A yeal'}
={xeA|Qyed)xey A yeal}
xI@nlxey A yeal}

v(a).

(5) Ifa,be A then
[a—b]*={xeA|[xea A x ¢b]*}
={xeA|xea A x¢b}
=a-—b O

Remark. The proofs of several of the theorems to follow are similar to the
proof of Proposition 13.18 involving repeated applications of foregoing
theorems on absoluteness. To avoid rather dull repetitions we omit most of
the details.

Proposition 13.20. If A is nonempty and transitive then
(1) Tr(a) Abs A,
(2) Ord (a) Abs A.
PRrROOF.
(1) Tr@ e (Vx)[xea—xcal
(2) Ord(a) & Tr(a) A

(Vx,y)[xeanyea—->xeyvx=yvyex]. 0

Remark. Proposition 13.20 assures us that restricting the definition of
ordinal number to a nonempty transitive class does not enable any new
objects to qualify as ordinals. Consequently if A is a standard transitive
model of ZF then the class of ordinals “in” A is a subclass of On, i.e.,

On” = {x € A|[Ord(x)]*} = {x € A|Ord(x)} = On N 4.

Proposition 13.21. If A is nonempty and transitive then
(1) [aew] Abs A4,
2 [a=w]AbsA if wgc A
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PROOF.
(1) aew—au {a} €K,
—>Wx)xeav x=a—->xekK|]
oWx)[xeavx=a->x=0v
@YI0rd(y) A x =y v {y}]

2 a=weo(Wx)[xeae xew)] O

Proposition 13.22, If A is nonempty and transitive then
(1) [x < B]ADbs A,
(2) [0 = p]Abs A4,
(3) [y = max(a, B)] Abs A.
PROOF.
(1) [a < B]« Ord(x) A Ord(B) A a € B.
2) [a=pf]<Ord(a) A Ord(f) A aa = f.
3) [y = max(a, B)] « Ord(y) A Ord(a) A Ord(f) Ay =a U B. O

Proposition 13.23, If A is nonempty and transitive then
() [, B> Le<y, 651 Abs 4,
(2 [Ka, B> Ro<y,0)] Abs 4.
PRroOOF.
(1) Ko B)Ley,d]ola<yva=yAB<dll
(2 [Ka, B> Rp<y, 6] <> [max(a, f) < max(y,d) v
[max(a, f) = max(y, 6) A <a, B> Le<y, 6>1]. u

EXERCISES

In Exercises 1-29 determine whether or not the given predicate is absolute with
respect to A, A being nonempty and transitive.

1) A(a) ®) aFnb.
2) 24a). ) aFnyb.
(3) Rel(a) (10) rFra
@ U a). (11) rWira.
(5) Uny(a) (12) rWea.
(6) Frela). (13) f:a—b.

(7 Frcy(a). (14) f:at=bb.
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(15) f:a<zmb. (23) cof(a, B).
(16) f:az;b. (24) Reg(x).
(17)  f Isom,, ,(ay, a2). (25) Inacc, ().
(18)  Orf(f). (26) Inacc(N,).
(19)  Smo(f). @27 Clr, a).
(20) a~b. (28) Cl,(r, a).
(21) Fin(a). (29) St(a).

(22) Inf(a).

In Exercise 30-55 determine whether or not the given term is absolute with respect
to A, A nonempty and transitive.

(30) x=anh. 43) y=a+p.
Gl) x = 2(a). @4) 7 =a-0.
(32) x = n(a) 45 y=oa-1
(33) x=axb. 46) y=ua-B.
(34) x=al @47 y=ada"
35 x = %a). 48) y =«
36) x=¥1(a) 49) y=dl.
37 x=alb 50) a=a.
(38) x = a“b. Gl f =X
(39) x=aob. (52) c=at
(40) x = ah. (53) B = cf(a).
(“41) y=a+0. (54) x = Ry
“42) y=a+ L (55) a = rank(x).

Remark. We turn now to an investigation of conditions on a class A4 that
are necessary for A to be a model of ZF, that is, for 4 to be a model of the
following wffs.

Axiom 1 (Extensionality). (V x, y, z2)[x =y A x€z > y e z].
Axiom 2 (Pairing). (V x, y).#({x, y})-
Axiom 3 (Unions). (¥ x).# (U(x)).

Axiom 4 (Powers). (V x).4(P(x)) .
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Axiom 5 (Schema of Replacement).

V)LV y, z, W)y, 2) A o(y, w) >z =w] > A ({z|(3y € x)o(y, 2)})] -
Axiom 6 (Regularity). (¥ x)[x # 0 > @y)[yex A y n x = 0]].
Axiom 7 (Infinity). .#(w).

Proposition 13.24. A # 0 A Tr(4) - STM(4, Ax.1).
Proor. Since Axiom 1 assures us that
(1) x=yAxezoyez

holds for all x, y, and z, it also assures us that (1) holds for all x, y, z € A4, that
is

Vx,y,ze A)[x =y A xez—oyez]
But since (1) is absolute with respect to A, it follows that
Vx,y,zeAd)[x=yAxez-oyez]l

But this is Axiom 1 relativized to 4, i.e., [Ax. 1]4.
Since Axiom 1 is closed we have from Proposition 12.5

AE Ax. 1 & [Ax. 174
Hence A satisfies Axiom 1, i.e,,
AE Ax 1.
Since A is nonempty and transitive we conclude that 4 is a standard

transitive model of Axiom 1. a

Proposition 13.25. If A is nonempty and transitive then A is a standard transitive
model of the Axiom of Pairing iff

(Vx,ye A)[{x, y} € A].

PROOF. Ax. 2 & (V x, y)(3 2)[z = {x, y}]. Since 4 is nonempty and transitive
A is a standard transitive model of Axiom 2 if and only if

(1) (Vx,yeA)Fze Az = {x,y}]4
However since ¢ = {a, b} is absolute w.r.t. 4, (1) holds if and only if
(Vx,ye A)@ze A)[z = {x, y}]
that is, (1) holds if and only if
(Vx,ye A[{x, y} € A]. (]

Remark. Earlier we proved that the empty set, the union of two sets, un-
ordered pairs, and the union of a set are absolute terms with respect to a
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nonempty transitive class A. Curiously ordered pairs are not absolute with
respect to such classes.
Suppose that A is the nonempty transitive class {0, 1} then

[€0, 1)]4 = {xed|[x = {0} v x = {0, }]}
= {xed|x={0} v x={0,1}} = {0}} =<0,0).

This pathology disappears if 4 is a nonempty transitive model of the
Axiom of Pairing.

Proposition 13.26. STM(A4, Ax. 2) — {a, b) Abs A.

Proor. If 4 is a standard transitive model of Axiom 2 and if a, b € A4, then
{a} € A and {a, b} € A. Then

[<a, bY]* = {xe A|[x = {a} v x = {a, b}]"}
= {xed|x = {a} v x = {a, b}
= {x|x = {a} v x = {a, b}
= <a, b). D

Remark. From Proposition 13.26 and the substitution property, Proposi-
tion 13.10 it follows that ordered triples, ordered quadruples, etc. are absolute
with respect to standard transitive models of the Axiom of Pairing.

Proposition 13.27. If A is a nonempty, transitive model of the Axiom of Pairing
then

(1) Rel(a) Abs A,

(2) Uw(a) Abs A,

(3) Un,(a) Abs A,

(4) Fnec(a) Abs A,

(5) fncz(a) Abs A.

PROOF.

(1) Ret(@)e(Vx)[xea— 3y, 2)[x =y, z)]].
(2) Una) o (Vx,y, DX, p),{x,zy€a -y =z]
() Uny(a) = Unla) A
(Vx, p, D{x, 2), {p,z) ea—x = y].
(@) Fnela) o Ret(a) A Un{a).
(5) Frey(a) < Ret(a) A Uny(a). O
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Theorem 13.28. If A is a nonempty transitive model of the Axiom of Pairing
then

(1) a x b Abs A4,
(2) a ! Abs A4,
(3) %(a) Abs A,
(4) #(a)Abs A,
(5) a'b Abs A,
(6) a“b Abs A,
(7) albAbs A

ProoF. If a, b € A then
(1) [axbl*={xeA|@y,zeA)[yeanzebnx=<yz2>]"
={xeA|Qy,zeA[yeanzebnx=_yz2)]}
={x|@y, 2)lyeanzebnx=y 2]}
=axb
@) [a7'V ={xeAl@yzeAlx =<y, 2> A {(z,y)eal’}
={xed|@y,ze Dlx =<y, 2> Az y)€al}
={xeA|@y 2)[x =y, z) n <z, y)€al}
= x1@y, dx =y 2> Az, y) €al}
=q L
B) [2@] = {xe A|@ye Dx, y> e al’}
= {xeA|@ye Dlx, y)€al}
= {x|@Kx, y) eal}
= Y(a).
@) 7@ = {xeAl@ye DKy, x) €al'} = #W(a).
(5) [ab]*={xeA|@yeAd))xey A <b,y) €a]?
A @Aty e AKb, y) eal?
= {x|@nlxey A <b,y>eal A A y)Lb, y) eall.
= a'b.
(6) [a"b]' ={xeA|@yeAlyeb r{y,x)eal’}
= {x|@ylyeb Ay, x)eal} =a"b.
(7) The proofis left to the reader. O
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Proposition 13.29. If A is a nonempty transitive model of the Axiom of Pairing
then

(1) fFraAbs A,
) [f%#n,aAbs A.
PROOF
(1) fFrae Fuc(f) A D(f) = a.
Q) f Fryae Frey(f) A D(f) = a O

Proposition 13.30. If A is a nonempty transitive model of the Axiom of Pairing
and if a R, b and a R, b are each absolute with respect to A then
S Isomg, g,(a, b) Abs A.

PROOF
SfIsompg, g (a,b) < fFran W(f)=D>b
A(Wx,yxeanyeanixy>eR »{fxfy>eR,] U
Theorem 13.31. If A is nonempty and transitive then A is a standard transitive
model of the Axiom of Unions iff
Vxe A[u(x) e 4].
PROOF. Ax. 3 & (Vx)@ y)Ly = u(x)].
Since A4 is nonempty and transitive we have
STM(4, Ax. 3)
if and only if
(Vx e A)3ye ALy = v(x)]*
Since b = u(a) is absolute w.r.t. A, this holds if and only if
(VxeA)@yeAly = vx)].
But this is true if and only if
(Vx e A)[u(x) e 4]. O
Remark. Axiom 1 is absolute w.r.t. any transitive class. As a consequence
every transitive class is a model of this axiom. Furthermore we note that if
b € A then the extent of b as an individual in the universe A is b N A, that is,
the collection of objects in A that play the role of elements of b is precisely
the collection of objects in A4 that are elements of b. If A is transitive then
be A implies b £ 4 and so b n A = b, that is, b as an individual in the
universe A has the same extent it has as an individual in V. Consequently if

Ais transitive and aand b arein 4 then {a,b} " 4 = {a,b}and U(@) N 4 =
U(a). Therefore in order for 4 to be a model of the Axiom of Pairing and the
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Axiom of Unions we must have
{a,b} e A fora,be A,
u(@)e A forae A.

The Power Set Axiom however presents a different situation. If A4 is
transitive but not super transitive then a € A does not imply that all subsets
of a are in A4 thus

Pa) N A S Pa)

and equality need not hold. That is, even if 4 is to be a transitive model of
the Power Set Axiom, the object in A4 that plays the role of the power set of a
need not be #(a).

Proposition 13.32. If A is nonempty and transitive then A is a standard transitive
model of the Axiom of Powers iff
(Vx e A)[P(x) n A e Al

PROOF. Ax. 4 > (Vx)@y)Vz)[zey«ez & x]. Since A is nonempty and
transitive we have

STM(4, Ax. 4)
if and only if

VxeAd@yed)(Vzed|zeyz x4
But since b € ¢ <> b < a is absolute w.r.t. 4, this holds if and only if
(VxeA)YIye A)(Vzed)zeyez < x].
Since A is transitive it follows that if y € 4 then
Vzed)zeye—z < x]
holds if and only if
(V2)zeyoze x A ze A]
i.e., if and only if
(V2)zeyeoze P(x) n A4].
Thus A is a transitive model of Axiom 4 if and only if
(VxeA)Bye ANz zey—zeP(x) n A]
that is, if and only if
(Vx e A)[2(x) n A e A]. O
Remark. Axiom 5 is of course not an axiom but an axiom schema. For

each wif ¢(u, v) we have an instance of Axiom 5 that we will denote by
Axiom 5.
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Proposition 13.33. If A is nonempty and transitive then A is a standard transitive
model of Axiom 5, iff for ae A

(Vx, y, z€ A)[9*(x, y) A 9*(x,2) = y = z]
implies that
{y e A|(A x € a)p*(x, y)} € A.

PrOOF. Since A4 is nonempty and transitive A is a standard transitive model
of Axiom 5, iff forae A

(Vx,y, z€ DHle*(x,y) A ¢*(x,2) >y = Z]
implies that
BzeAVyed)|yezo@xeAlex, y) A xea]l.
But since A is transitive this is the case iff
Aze AV ylyezeo B x)[e(x,y) A xea]l A ye A]
ie.
@ze Az = {ye 4|3 x e a)lo’(x, N]}].
Hence
{ye 413 x e a)[o*(x, )]} € A. O
Proposition 13.34. STM(4, Ax. 5,) = (V x € A)[{y € x| p*(y)} € A] where
Y(a,b)is p(a) A a=b.

Proor. If 4 is a transitive model of Axiom 5, then A4 is a nonempty transitive
class that satisfies all of the nonlogical axioms required to prove the instance
of Zermelo’s Schema of Separation:

(Vx)E )y = {z e x|p(2)}]
(See Proposition 5.11.) O

Proposition 13.35. A # 0 A Tr(4) - STM(A, Ax. 6).

PROOF. Ax. 6 (Vx)[x #0—>3y)[yex A ynx=0]]. In particular,
from Axiom 6.

Vxed)[x#0->3nlyex Aynx=0]]
But since A is transitive y € x A x € 4 —» y € A. Therefore
VxeAd)[x#0->Fyed)fyex A ynx=0]]

Furthermore y e x A y N x = 0 is absolute with respect to A. Therefore if
a € A then

AyeAdAlycarnyna=0]e@yed)lyecanyna=0J".
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Since a # 0 is absolute with respect to A it follows that
Vxed)[x#0->3ylyexaynx=0]]"

i.e., A is a model of Axiom 6. O

Proposition 13.36. A # 0 A Tr(4) - 0 € A.
Proor. By the Axiom of Regularity
A#0ATr(A)->@x)[xed AxnA=0]
- @Ax)[xed A x=0]
- 0¢e 4. O

Proposition 13.37. STM(4, Ax. 2) A STM(A4, Ax.3) » o € A.

Proor (By induction). From Proposition 13.36, 0 € A. If k € A4, then since A
is a model of Ax. 2, {k} € A and hence {k, {k}} € A. Since A4 is also a model of
Ax.3 U {k, {k}} e A, thatisk + 1 € A. ]

Proposition 13.38. If A is a standard transitive model of the Axiom of Pairing
and the Axiom of Unions then A is a standard transitive model of the Axiom of
Infinity iff w € A.

ProoF. Since A4 is nonempty and transitive 4 is a standard transitive model
of the Axiom of Infinity iff

Axed)[x = o]
But Propositions 13.37 and 13.21 establish that x = w is absolute w.r.t. 4.
Therefore A is a standard transitive model of the Axiom of Infinity iff

(AxeA[x = w]
ie., iff

w € A. O

Remark. We next prove the relative consistency of the Axiom of Regularity
and the other axioms of ZF. In addition to being of interest in itself the
proof gives an excellent illustration of Godel’s method of proving the relative
consistency of ZF with AC and GCH. Our procedure is to prove without
using the Axiom of Regularity that the class of well-founded sets is a model
of ZF (see Definition 9.11). The proof requires a modification of our theory
of ordinals in which we reverse the role of Definition 7.3 and Proposition 7.4.

We redefine ordinal classes thus:

Ord(4) & Tr(4) A E We A.
From this definition it is obvious that

Ord(4) > Tr(A) A Vx,ye A)[xey vx =y Vv yex]
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The properties of the ordinals as redefined, can now be deduced without
the Axiom of Regularity. We leave it to the reader to verify that the back-
ground results, used in the proof to follow, do not depend upon the Axiom of
Regularity.

Proposition 13.39. If M = {x|W{(x)} then M is a standard transitive model
of ZF.

Proor. Since 0 € Rj1 wehave 0 e M,i.e, M # 0.If x € M then (3 o) [x € Rja].
Since Rju is transitive x € Rjx — x < Rja and hence x £ M. Thus M is
transitive. Since M is nonempty and transitive M is a model of Axiom 1.
Recall that a set is well founded if each of its elements is well founded.
Consequently if ae M A be M then {a, b} € M. Thus M is a model of
Axiom 2.
If ae M then be u(a) > (A x)[bex A xea]. Since M is transitive it
follows that u(a) € M, hence u(a) € M. Thus M is a model of Axiom 3.
If ae M A b < a then since M is transitive b < M and hence b e M.
Thus #(a) = M and hence #(a) € M. Thus M is a model of Axiom 4.
IF(Vxe MYV ye M)V ze M)[oM(x, y) A ¢™(x, z) > y = z]and ifae M
then

{yeM|@xeapMx M

and hence {y € M|(3 x € a)p™(x, y)} € M. Thus M is a model of Axiom 5.
If a € M, then since M is transitive a < M. Thus each element of a has
arank. If a # 0 then a contains an element of smallest rank, i.e.,

a#0-(3xea)Vyea)rank x < rank y]
- (@xea)x na=0).
Again since M is transitivebea — be M, i.e.,
VxeM)[x#0->@yeMyex rynx=0]]

Thus, since [bea A bna=0] Abs M, M is a standard transitive model of
Axiom 6.

Since M is a standard transitive model of Axioms 2 and 3 it follows that
o S M (Proposition 13.37). From Proposition 9.12 it then follows that
w € M. Thus M is a model of Axiom 7.

*Theorem 13.40. If N, is inaccessible then RN, is a standard transitive
model of ZF.

Proor. Since RN, is nonempty and transitive it is a model of Axioms 1 and
6.If a € RiNR, A be RN, then

rank({a, b}) = max (rank(a), rank(b)) + 1 < ¥,.
Hence {a, b} € R{¥, and RN, is a model of Axiom 2.
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13 Absoluteness

If a € R{N, then
rank (U(a)) = p,((V x € U(a)) [rank(x) < y]) < rank(a).

Therefore U(a) € Ri¥, and R’ ¥, is a model of Axiom 3.
If a e R{N, then #(a) = RN, and hence 2(a) N R|N, = P(a). Further-
more since b £ a implies rank(b) < rank(a) and since a € 2(a)

rank (#(a)) = rank(a) + 1 < &,.

Thus 2(a) € RiN, and hence R}R, is a model of Axiom 4.

From the AC it follows by induction that
(¥ B < RIIRIB <X.]

Indeed ET_O =0<a If Iﬁ <N, for B <, then since N, is inaccessible

Ri(B + 1) = Z(Rif) < K,

If fe Kyand if y < B - Rjy < N,, then by Theorem 10.47

If R\f = N, and if f*y £ Ryy then f: B — X,, f is monotone increasing
and U(f“B) = N,. Hence N, is cofinal with 8. This is a contradiction from

which we conclude that
RiB <N,

If for some a € R{¥, and some wif ¢ we have
(Vx € RIR,)(Y y € RiN)(Y z € RiR) [0"™(x, y) A ¢Fi¥e(x, 2) > y = 7]

and
{y € RiR, |3 x € a)p™i™=(x, y)} ¢ R{R,
thensince (I f < R)[a & R‘lﬁ],z =< R‘1=B< Ny.ie,(3y < N[y = a]. Since
rank ({y € RiX, |3 x € a)p"i™(x, y)}) = R,

it then follows that ¥, is cofinal with some ordinal smaller than or equal
to y. This is a contradiction and hence RN, is a model of Axiom 5.
O

Since w € RiR,, R¥, is a model of Axiom 7.

EXERCISES
Prove the following.
(1) STM(Rja, Ax. 1) a > 0.

(2) STM(Rija, Ax.2)—ae K.
(3) STM(Rja, Ax. 3) o > 0.
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4) STM(Rja, Ax. 4) > a e K.

(5) STM(Rjw, Ax. 5) A 1 STM (Ri(w2), Ax. 5).

(6) STM(Ria, Ax. 6) o > 0.

(7) STM(Rja, Ax. T) o a > w.

In Exercises 8-15 assume &, an inaccessible cardinal.
(8) Z(a) Abs RN,
(9) a =~ bAbs R\¥,.

(10) cf(p) Abs R}¥,.

(11) pe N Abs R}¥X,.

(12) BeN’Abs Ri¥,.

(13) Reg(p) Abs RiN,.

(14) Inacc,(B) Abs R\N,.

(15) Inacc(f) Abs R¥,.

Remark. There are several interesting conclusions to be drawn from the
foregoing exercises and Proposition 13.40. First we have that if ¥, is in-
accessible then R, is a standard transitive model of ZF. The proof requires
AC. From this and Exercise 15 it follows that it is consistent with ZF to
assume that there are no inaccessible cardinals. We argue in the following
way. Suppose the statement “there exists an inaccessible cardinal” were
provable in ZF. Let X, be the smallest such cardinal. Then R, is a standard
transitive model of ZF. But from Exercise 15 above, if there were an in-
accessible cardinal in R{N, that cardinal would be inaccessible in ¥ and
smaller than the smallest inaccessible cardinal. This is a contradiction.
Therefore it is not possible to prove in ZF that inaccessible cardinals exist.
It may, however, be possible to prove in ZF that there does not exist an
inaccessible cardinal. No proof was known at the time of this writing.

From Exercises 1-7, Rjw is a standard transitive model of Axioms 1-6
but not of Axiom 7. Thus Axiom 7 is independent of Axioms 1-6. Also

1(w?2) is a standard transitive model of all axioms except Axiom 5.



CHAPTER 14
The Fundamental Operations

Godel proved the relative consistency of AC and GCH by showing that a
certain class L is a model of ZF + AC + GCH. This class L he defined
initially as the union of a sequence of sets 4,, « € On which were so defined
that a € A, iff there exists a wif ¢(ay, @4, ..., a,) having no free variables
other than aq, ay,..., a, and there exist a,,...,a,€ 4, such that a =
{ylAa |= (P(y, A5y an)}'

The foregoing condition describes a sense in which A4, ; is the collection
of sets that are definable from A,. However, to properly define “definable”
we must avoid quantification on wifs.!

Later Godel discovered that his class, L, of constructible sets, could be
defined as the range of a certain function F defined on On by transfinite
recursion from eight basic operations. In Chapter 15, we will follow Goédel’s
second development. In anticipation of that development, we now establish
certain conditions involving Gdédel’s eight fundamental operations to be
defined below that are sufficient for a class M to be a standard transitive
model of ZF.

Definition 14.1.
(1) Can(A) 2 {<x’ Vs Z>|<Z: X, y> € A}
(2) Cnv3(A) é {<x’ Vs Z> | <x’ z, ,V> € A}

Remark. Cnv,(A) and Cnv,;(A) are read “the second converse of 4™ and
“the third converse of A” respectively.

! For a more detailed discussion of definability see Takeuti and Zaring: Axiomatic Set Theory.
New York: Springer-Verlag 1973.
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Definition 14.2 (The Fundamental Operations).
Z (a, b) & {a, b}.
Fiab)2anE
Fi(a,b)yLa—b
Fua,b)£alb.
s(a, b) £ a n 9(b).
Feoab)Lanb L
F1(a,b) £ a A Cnvy(b).

Fs(a, b) £ a n Cnv,(b).

N

Proposition 14.3. If M is a standard transitive model of ZF then M is closed
under the eight fundamental operations.

ProoF. From Proposition 13.25
aeM AbeM A STM(M, Ax. 2) - Z ((a,b) e M.

Since M is a model of Axiom 2, ¢ = {a, b)> and d = {a, b, ¢) are each
absolute with respect to M. Since M is also a model of Axiom $ it follows
from Proposition 13.34 and properties of absoluteness that for a, b e M

Fia,b)={xeal@y, 2)[x = (2> A yez]}
={xeal@y,zeM)[x =<y, z>) A yez]M}e M.
Fia,b)={xecalx¢b} = {xcal[x¢b]M} e M.
F4a,b) = {xeal@y 2)[x =<y,z) A yebl}
={xeal@y,zeM)[x =<y, 2> A yeb]M}eM.
ZFs(a,b) = {xeal@yIx, y> ebl} = {xeal@ye M)[(x, yyeb]"}eM.
Fela,b) = {xeal@y,2)[x =y, z) A<z, y)ebl}
={xeal@y,ze M)[x =<y,z) A<z, y>eb]} e M.
F(a,b)y={xeal@y,z,w)x =y z,w) A {w,y,2z>eb]}
={xeal@y,z,weM)[x =<y, z,wd A w, y, 2> eb]M}e M.
Fg(a,b) = {xeal3y,z,w)lx =<y, z,w) Ay, w,z)ebl}
={xea|l@yzzweM)[x =<y, z,w) A {y,w,z>eb]MeM. O
Remark. An examination of the foregoing proof reveals that the full
strength of the hypothesis that M is a standard transitive model of ZF was

not used. All that is required is that M be a standard transitive model of
Axiom 2 and of seven instances of Axiom 5. In view of this it is not reasonable
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to expect the condition that M be closed under the eight fundamental
operations to be also sufficient for a nonempty transitive class M to be a
standard transitive model of ZF. Surprisingly in addition to closure under
the eight fundamental operations we need only the added condition that every
subset of M have an extension in M.

Definition 14.4. M is almost universal iff
Vx)xsM->Q3yeM)[xcyl]

Remark. Note that if M is almost universal then M is not empty.

To prove that if M is transitive, almost universal, and closed under the
eight fundamental operations then M is a standard transitive model of ZF
we need a few preliminary results.

Proposition 14.5. If M is transitive, almost universal, and closed under the
eight fundamental operations and a, b € M, then

(1) {a,b}eM, (B) axbeM, (5) anbeM,
) <a,b)eM, @) a—beM, 6) aubeM.
ProOF.
(1) {a,b}=FabeM.
(2) <a,b) = {a},{a, b} € M.
(3) Since M is transitive a € M and b < M. Therefore a x b <€ M and
b x a € M. But M is also almost universal. Therefore
Ax,yeM)[axb<s xAbxagcyl]
Then
axb=[xn@xV)]nlnbdx V]!
= Fo(Fux,a), Fy, b)) e M.
@4) a—b=Fsab)eM.
5) anb=a—-(a—b)eM.

(6) Since M is transitive a ub S M. Also M is almost universal.
Therefore

(AxeM)[avubcx]
Thenaub=x—[(x —a) — b]leM. O

Proposition 14.6. If M is transitive, almost universal, and closed under the eight
Jfundamental operations then

Vx4, x, e M)[x; X x5 X -+ X x,€ M].

Proor. Obvious from Proposition 14.5 (3) by induction. O
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Proposition 14.7. If M is transitive, almost universal, and closed under the eight
fundamental operations and a € M, then

(1) a"eM,nz=1, (3) 9@eM, (5) Cnvy,(a)e M,
2 aleM, 4 #(@eM, (6) Cnvy@)eM.
PRrooF. (1) Obvious from Proposition 14.6.

(2) Since M is transitive (b, ¢) € a and a € M imply b, c € M. This in
turn implies that <{c, b) € M. Therefore, a~! = M. But since M is almost
universal (3 x e M)[a~! € x] and hence

al=xnal=F¢x,a)e M.

(3) If be D(a) then (3 y)[<b, y) € a]. Again from transitivity it follows
that 2(a) < M and hence (3 x € M)[2(a) < x]. Therefore

D) =xn D)= Fs(x,a)e M.

@ #(a)=9a H)eM.

(5) Since M is transitive Cnv,(a) & M. Therefore

(3 xe M)[Cnv,(a) < x].
Then
Cnv,(a) = x N Cnv,(a) = F (x, a) e M.

(6) The proofis left to the reader. O
Proposition 14.8. If M is transitive, almost universal, and closed under the eight
Jundamental operations, if (i,, i,, i3) is a permutation of 1, 2, 3 and if a € M then

{<x15 X2, X3 [<Xy Xy, X;,) € a} € M.
Proor.

{Kxy, X2, %30 {Xy, X3, X,) € a} = Cnv,(a) € M.

{{x1, X2, X3)1{X3, X1, X, ) € a} = Cnv,(a) e M.

{Kx15 X2, X3 [{X3, X;, X, ) €a} = Cnv,(Cnvs(a)) € M.

{{x15 X2, X3 1{X4, X5, X3) € a} = Cnv;(Cnvs(a)) € M.

{<x1, X2, X3)[{x3, Xy, X3) € a} = Cnv;(Cnv,(a)) € M.

{{x1, X2, X3)[{X;, X3, X, Y €a} = Cnv,(Cnv,(a) € M. O

Proposition 14.9. If M is transitive, almost universal, and closed under the eight
Jundamental operations and a, b € M, then

1) {&xy,2o|{x,yd>eanzebleM,
2 {{x,z,y)I{x,y>€ea nzeb}eM,
3) Kz, x, y)I{x,y>eanzebleM.
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Proor. Obvious from Proposition 14.8 and the fact that a x b e M. O

Proposition 14.10. If M is transitive, almost universal, and closed under the
eight fundamental operations and if ¢(ay, ..., a,) is a Wit all of whose free
variables are among by, ...,b,, ay,....ay if ¢i,...,cn€M and if
by, ..., b,eM,then

AL {{Xgyo s Xp|X1€ECL Ao AXpECH A OM(X1,. .., X))} € M.

Proor. (By induction on k the number of logical symbols in ¢(ay, ..., a,)).
Ifk = Othen ¢(a,, ..., a,,)cither (1) contains none of the variablesay, ..., a,,
or it is of the form (2) a; € a; or (3) a; € b; or (4) b; € a;.

Case 1. If ¢(a,, ..., a,) contains none of the variables ay, ..., a, then
a=c; X ¢y X -+ X ¢ ora=0according as ¢p(a, ..., a,,) holds or does
not hold. In either case a € M.

Case 2. If p(ay, ..., a,)isa;€ a;theni <jori=jorj<ilIfi <jthen
since (¢; x ¢) " Ee M,and ¢; x --- x ¢;—; € M we have from Proposition
14.9 (3) that

{{xqy - X, X%, x> [(e; x ¢)) N E]
A XpyeerrXim1PECy X -+ X €1} EM.
From this we obtain after j — (i + 1) applications of Proposition 14.9 (2)
{{x1p e X)X €00 A --- AXjEC A X;EXFEM.
With m — (j + 1) applications of Proposition 14.9.1 we have
Xps oo os XX €ECH Ao A XpEC, A X;EXj}EM.

Ifi=jthena=0eM. If j<ithen [(c; x c)nE] 'eMAcy x -
x ¢;—1 € M. Then

{{Xqy ooy Xjy XD [<x5, x> € [(¢; x ¢)) " E]™!
ALXyy ooy, Xjog)ECE X oo- X Cj_1} EM.
We then proceed as before.
Case 3. If ¢(ay, ..., a,) is a; € b; then
{xseo s Xl X1 €L A -o- A XpE€C, A X; €D}
= X Xegy)n(eg X oo Xy XbjxXcCjpg X XCy)EM.
Case 4. If p(ay, ..., a,)is b; € a; then

{x;ecilbjex;} = #(({b;} x ¢;) NE) e M.
Then
{{Xps oo s X)X €CL A -os A X €EC, AbjEx)
=Cp X - X ¢y X {X;€¢|bjex;} X ¢4y X --- X ¢ €M.
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If k> 0 then ¢(a,,...,a,) is of the form (1) —1y(ay,...,a,) or (2)
w(ag,...,a,) Anlay,...,a,)or B @xW(a,,...,an, X).

Case 1. If ¢(ay,...,a,) is 7 Y(a,,...,a,) then as our induction hy-
pothesis we have

Xty s XpD| X1 ECL A o AXppECH A YM(xy,..., X)) EM.
Then
(X1 eees Xmp|X1EC; A ves AXp€CH A TM(Xy, ..., X))
=Cp X o X Gy — Xy X)X ECL A - A X EC,
AYM(xy, ..., x,)) € M.

Case 2. If ¢(a;,...,a,) 18 Y(a,,..., a,) A n(ay,...,a,) then from the
induction hypothesis

(s ey X | X1 E€ECL A oo A X €Crp A UM py ooy X)) A (X, .y X))
={{Xgy s XD X1 ECL A o+ A Xp€Cp A YM(xy, ..., X))}
ALLX gy ooy X | X1 ECL A o A X €Cy A HM(Xq, ..., X))} € M.
Case 3. If p(ay, ..., a,)is A x)(ay, ..., a,, x) and
Flay,...,any = {xeMyMa,,..., a, x) A Vye M)[YM(ay,..., a,, )
— rank(x) < rank(y)} ifa;ec; forl <i<m,
= 0 otherwise

then F“(c; x -+ x ¢,) is a set and UF“(c; X --- X ¢,,) € M. Since M is
almost universal

(AxeM)[u F@Ccy x -+ X ¢,) S x]

then 3 x e MyWM(ay,..., am, x) =@ xecWM(a,,..., a,, x). But by our
induction hypothesis

{Xgy ooy Xy XP|X1€ECL A~ AXpECK AXECAYM(Xy, ..., Xp, X)} € M.
Then
{{Xpyee s X |X1€CL A oo A Xp€Cy A BxE MWM(xy,...,x,,X)}
= D{{Xys ey Xy X)|X{ECL A -+ A Xpy€EC A XEC
AYM(xy, ..., X, X)) € M. O
Theorem 14.11. If M is transitive, almost universal, and closed under the

eight fundamental operations then M is a standard transitive model of ZF and
On = M.

Proor. Since M is almost universal M # 0. Therefore, M is a standard
transitive model of the Axiom of Extentionality (Axiom 1) and the Axiom
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of Regularity (Axiom 6). By Proposition 14.5 (Vx, ye M)[{x, y} e M].
Therefore M is a model of the Axiom of Pairing (Axiom 2).
Since M is transitive a € M implies that U(a) £ M. Hence

QyeM)[u(a) cy]

Since by Proposition 14.5, b x a € M and since M is closed under the eight
fundamental operations

(bxa)nE=%,0bxaa)eM.
Then from Proposition 14.7
v(@@)=2(b x a)n E) e M.

Thus M is a model of the Axiom of Unions (Axiom 3).
Since a € M implies 2(a) " M < M],3 y e M)[P(a) n M < y]. Then by
Proposition 14.10

Pa) M= {x|xeyar[xcaMeM.

Therefore M is a model of the Axiom of Powers (Axiom 4).
If(Vx,y,ze M)[eM(x, y) A @M(x,z) >y =z] and ifae M, then

F 2 {{x,y>e M?*|xea A oM(x, y)}

is a function. Since 2(F) < a both 2(F) A #(F) are sets. Therefore since
Fa € M,(3ze M)[F“a < z). Then

{yeM|@xea)p™(x, )} = ¥ ({{x,y>eM?*|xea A oM(x, y)})
=W ({{x,y)|lxca nyeznr oMx,y)}) e M.

Thus M is a model of the Axiom Schema of Replacement (Axiom 5).

Since M is a standard transitive model of the Axiom of Pairing and the
Axiom of Unions it follows from Proposition 13.37 that w < M. Since M is
almost universal there exists an a € M such that

o< a

Since [x € w] Abs M and M is a model of the Axiom Schema of Replacement
it follows from Proposition 13.34 that

w={xealxew} = {xea|[x e w]M}eM.

Therefore M is a model of the Axiom of Infinity (Axiom 7).
Thus M is a standard transitive model of ZF. That On & M we prove by
induction.
If « = M then since M is almost universal there is an a € M such that
o< a
Then

{x € a|Ord(x)} = {x € a|[Ord(x)]*} € M.
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Therefore
U {x € a|Ord(x)} € M.

But the union of a collection of ordinals is an ordinal, i.e.,

@BeM)Vyealy = B8]

Then (Vyea)lyep + 1]. Since a < a it follows that a < f + 1. Since
peMitfollowsthat § + 1 = fu {f} € M. Hence x € M. d

Remark. With the proof of Proposition 14.11 we have achieved our major
objective for this section. There is however an interesting theory of classes
in which certain results of this section are generalized. We state the main
results of this theory leaving the proofs as exercises.

Definition 14.12. A is M-constructible & 4 = M A (V xe M)[x n Ae M].

Proposition 14.13. If M is almost universal, and if a is M-constructible then
aeM.

Remark. Proposition 14.13 tells us that if M is almost universal then
every M-constructible set is an element in M. As an application of this
proposition it can be proved that if in addition M is closed under the eight
fundamental operations then a € M implies that U(a) is M-constructible. It
then follows that U(a) € M and hence M satisfies the Axiom of Unions.

Proposition 14.14, If M is transitive then M is M-constructible.

Proposition 14.15. If M is transitive, almost universal, and closed under the
eight fundamental operations and if A and B are M-constructible then

(1) E n M is M-constructible.
(2) A - Bis M-constructible.
(3) A n Bis M-constructible.
(4) A u Bis M-constructible.

Definition 14.16.
Q4 £ (KX, <X,y |xeV A ye V),
Qs £ {Kx, ), x)|xeV A yeV},
Qs £ {0 mx)|xeV A yeV},
0, 2 {K&x,y, 20, {pz,x)) |xeV AyeV AzeV},
Qs £ {{x%, 3,20, (X, 2, y)) |xeV A yeV A zeV}
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Proposition 14.17.
(1) Q;A=AxVand F,(a,b)=an Q,b.
Q) Q54 = D(A), Un(Qs) and F s(a, b) = a n Q5b.
B) QcA =AY, UnQg) and F ¢(a, b) = a N Qh.
@ Q94 = Cnv,(A), Q) and F 1(a, b) = a n Q5b.
(5) QzA = Cnv;3(A), U»(Qg) and F ¢(a, b) = a N Qzb.

Proposition 14.18. If M is transitive and closed under the eight fundamental
operation and if a € M then

QiaeM, n=567,8.

Lemma. If M is transitive, almost universal, and closed under the eight funda-
mental operations, if A is M-constructible, if a € M and if G,, is a function on a
defined by
G,b = {yeA|<y, b€ Q, A (Vxe A[(x, b) € Q, - rank(y) < rank(x)]}
then
(1) @yeM)[u(G,a) < ],
2) BzeM)an Q)z=an g,;A]

Proposition 14.19. If M is transitive, almost universal and closed under the
eight fundamental operations and if A is M-constructible then

(1) M n Q4 A is M-constructible.
(2) QA is M-constructible,n = 5,6, 7, 8.

Corollary 14.20. If M is transitive, almost universal, and closed under the eight
fundamental operations and if A is M-constructible then

(1) M n (4 x V)is M-constructible,
(2) 92(A) is M-constructible,

(3) A~1!is M-constructible,

(4) Cnv,(A) is M-constructible,

(5) Cnv;(A) is M-constructible.

Proposition 14.21. If M is transitive, almost universal, and closed under the
eight fundamental operations and if A and B are each M-constructible then

(1) A x Bis M-constructible,
(2) A"is M-constructible,

(3) #(A) is M-constructible,
(4) A | Bis M-constructible.

(5) A“Bis M-constructible.
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Proposition 14.22. If M is transitive, almost universal, and closed under the
eight fundamental operations and if A and B are M-constructible, then

(1) {xe M|a e x} is M-constructible,

2) {x,y,2>|Xx,y> € A A z € B} is M-constructible,
(3) {Kx,z,yD>|{x, y> € A A z € B} is M-constructible,
@ {Kz,x,y>|{x,y> € A A z € B} is M-constructible.

Proposition 14.23. If M is transitive, almost universal, and closed under the

eight fundamental operations and if ¢(a,, ..., a,) is a wif all of whose free
variables are among by, ..., b,, ay, ..., a,, then

beMA---Ab,eM
implies
AL Xy, X €M™ @M(X1, ..oy X))

is M-constructible.

Proposition 14.24. If M is transitive, almost universal, and closed under the
eight fundamental operations and a € M, then

(1) wu(a) is M-constructible,
(2 Z(a) n M is M-constructible,
(3) If all of the free variables of ¢(c, d) are among ¢, d, by, ..., b,, if
bjeM A---Ab,eMand
(Vx, y,z€ M)[pM(x, y) A 9M(x,2) = y = 2]
then {y e M|(3 x € a)p™(x, y)} is M-constructible.

Remark. From Propositions 14.24 and 14.13 we have another proof of
Theorem 14.11.



CHAPTER 15
The Godel Model

In Chapter 7 we defined a relation R, on On2. We proved that R, well
orders On? and, with respect to R,, initial segments of On? are sets. Conse-
quently there is an order isomorphism J, such that

Jo Isomg, ((On?, On).

This isomorphism we illustrate with the following diagram:

B 0 1 2 w
o
0 0 1 4 w
1 2 3 5 et w41
2 6 7 8 w + 2
® w2 @2+1 w2+2 - o3

Here the element in the ath row and fth column is Jy<a, B>. From the
diagram it is apparent that the entry in the ath row and fth column, ie.,
JoCa, B) is at least as large as the maximum of « and f. It is also easily proved
that the cardinality of Ji<a, B> does not exceed the maximum of & and j
for o or B infinite.

153
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Proposition 15.1.

(1) max(a, p) = Jo<a, ).
2 a<®, AB<N, = I, B <N,.

PRrooF. (1) If (Y 0)[F'x £ J5<0, «>] then F is a strictly monotonic ordinal
function and hence a < F'a. In particular if y = max(a, ) then

max(a, f) = y £ F'y = Jp<0, y).

But
€0, Y>Roa, B v <0, 7> = <o, B).
Therefore
Jo<0, 7> = Jo<a, B
ie,

max(a, f) < Jo<a, ).

(2) If Joca, B> < Wy then Jo<a, B> < W,. If Jp<a, B> = N, then since
order isomorphisms map initial segments onto initial segments

Joka, B> ~ (Rg 1)“{<as, B3}.
But
(7, 6> € (R )" {Ko, B} = <, SPRo<at, B>

— max(y, 0) £ max(«, f)

— [y < max(a, f) + 1] A [6 < max(a, B) + 1]

— (y, 0 € [max(a, f) + 1] x [max(a, f) + 1].
Thus

(Rg )*{Ka, B>} < [max(a, f) + 1] x [max(a, ) + 1].
Consequently Jy{a, B is equivalent to a subset of
[max(a, f) + 1] x [max(e, B) + 1].

From this we see that if max(«, ) were finite then Jy<a, > would also be
finite. Since Jy<a, > = N, it then follows that max(x, 8) = w. Therefore by
Proposition 10.41

Jo<o, B> < [max(o, f) + 1] x [max(a, f) + 1] = max(x, f) + 1 < N,.

Hence

oo, B> < N,. O

Remark. From the relation R, we can define a relation S on On? x 9 that
will be used to define the Godel model. This relation S well orders On? x 9
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and is well founded on On? x 9. Consequently the ordering is order iso-
morphic to On. Indeed for our purposes this order isomorphism is of greater
interest than S. We therefore choose to define it directly from J,.

Definition 15.2. J*(a, B, m> £ 9-Jo<ot, B> + m, m < 9.

Proposition 15.3. J: On? x 91-1 On.

onto

Proor. Clearly a, f and m uniquely determine 9 - J,<{a, B> + m. Therefore J
is a function on On? x 9. If

J<a, B, m> = J(y, 3, n>
then
9-Joo, B> + m=9-Jo(y, 6> + n.

From the uniqueness property in the division theorem for ordinals
(Proposition 8.27) it then follows that

o€, p> = Jo<y, 8> A m=n.
But J, is one-to-one. Hence o = y A f§ = 0. Therefore

e, B, my =<y, 6, n)

and hence J is one-to-one.
Again from Proposition 8.27

(Vy@E)Em <Ly =9-0+ m].
Since € On and J, is onto
A@E P = Jo<a, B].
Hence J<a, B, m) = 9-Jo<a, ) + m =y, i.e., J is onto. O
Definition 15.4.
S 2 (Ko Bymd, {y, 8,m)yIm<9An<9
A [Ko BORoCy, 07 v [, B) = <y, 6) A m < n]]}.

Proposition 15.5. J Isomg z(On? x 9, On).

Proposition 15.6.
(1) S We (On? x 9).
(2) S Wir (On? x 9).

The proofs are left to the reader.



156 Introduction to Axiomatic Set Theory

Definition 15.7.
K, £ (<, a>|@n < APy = J <o, B, )]}
K, £ {<y, B>1@n < 9A )y = J<a, B, n)]}.
K3 2 {(,npln <9 A @)@ By = J<x B D]}

-

Remark. J maps On? x 9 one-to-one onto On. Therefore for each y in
On there is one and only one ordered triple {a, B, m> in On* x 9 such that
y = J{a, §, m) that is y determines an a, §, and m such that y = J*{a, B, m).
The functions K,, K,, and K; are so defined that Ky, K%y, and K%y are
respectively the first, second, and third components of the ordered triple in
On? x 9 corresponding to y under J.

Proposition 15.8. y = J<{K7y, K57y, K§y).
Corollary 15.9. If m < 9 then

(1) KjJ<a, B, m) = a,

(2 K3JXao, p,my = B,

(3) K3J<o, B,m) =m.

Details are left to the reader.

Proposition 15.10.
(1) Kyy=yAKiysy
(2 K3y #0->Kjy <y A Kiy <y
Proor. Since y = J'(Ky, K57, K5y> = 9-Jo(K y, K5y> + K5y, it follows
from properties of ordinal arithmetic (Corollary 8.5 and Proposition 8.21)
Jo<Kyy, K3y) = v.
But by Proposition 15.1
max(Kyy, K5y) = Jo<Kiy, K39).
Thus
Kiy=y and K3y =7y
If in addition K%y # 0 then
JoCKiy, K5y) <y
and hence

Kiy<y and Ki%y <. J

Proposition 15.11.m <9 A a <N, A B <N, = J¥a, f,m) < N,.
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Proor. By Proposition 15.1 we have
Jolo, B < N,.
If Jo(a, B> < Ny then
JC, Bomy =9-Jolo, B> + m < Ny £ R,
If Jo<a, BY = N, then since
9-Joka, B> =9 x Jola, B

we have that

9-Joca, By = Joa, B < N,
and hence

J<a, Bymy =9-Jolo, B + m < N,. |

Proposition 15.12. J{0, X,, 0> = N,.

Proor. If it were the case that KiX, < X, and K58, < X, then by Proposi-
tion 15.8 it would follow that

N, = JCKIR,, K53R,, K5R,> <R,
From this contradiction and Proposition 15.1 we conclude that
N, < max(KiN,, K5R,)) £ Jo<KiN,, K5N)D.
Furthermore it follows that
O, N DRo(K N, K5N,> or <0,R.> = (KR, K5R,>
and hence
N, £ Jo0, R,> < Jo<KiN,, K58 ).
Therefore
N, £9-Jp<0,R,)> + 0= 9-JKKiN,, K5R,)> + Ky,
ie.,
N, £ JCO,N,,0) < JCKIN,, K5N,, K3N)D = N,
Thus
J}O,N,,0) = N,. O
Remark. We are now ready to define the Gédel model L. This is a standard

transitive model that we define as the range of a special function F that is in
turn defined by transfinite recursion in the following way.
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Definition 15.13.
G'x & #(x) if K$9(x) =0
£ Z,(xK{9(x), xK5D(x)) if KsD(x) =n # 0.
F%»0n A (Yo)[Fa 2 G(F! a)].

Proposition 15.14.
Fa = F“a if Kya =0,
Fa = #(F'Kja, F'’K50) if Kya=n#0.
PROOF. Since Z(F ' o) = o we have
Fa=GFla)y=#(F!T a)=Fa if Ko =0,
Fa=G{Fla)=F((F! o)Kio, (FI a)K50) if Ksa=n#0.
But by Proposition 15.10

K5a0#0- Kia<a A Ko <a

Thus
(FI a)Kjae = F'’K{a and (F [ a)KSa = F'K5a.
Consequently
Fo = #F(FKia, FFK5a) if Ko =n #0. O
EXAMPLES

J€0,0,05=0 K50=0 F0=F*0=0.
J0,0,1>=1 Kyl=1 Fl=%/(F0,F0)={0}=1

J0,0,2> =2 Ki2=2 F2=%,(F0,F0) =F0nE=0.
J€0,0,3> =3 K3=3 F3=%,(F0,F0)=F0— F0=0.
J0,0,4> =4 Ki4 =4 F4=F,(F0,F0) =F0|FO0=0.
J0,0,55 =5 Ki5=5 FS5S=%F0,F0)=F0n2(F0) =0,
J<0,0,6> =6 Ki6=6 F6=F(F0,F0)=F0n(F0) !=0.
J0,0,7> =7 K47=7 F7=F,(F0,F0)=F0n Cnvy(F0) =0.
J0,0,8> =8 K48 =8 F8=F4F0,F0)=F0n Cnvy(FO0) = 0.
J0,1,00 =9 Ki9=0 F9=F9=1{01}=2

Definition 15.15. L £ F“On.

A set a is constructible iff a € L.
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Remark. We will prove that L is a model of ZF by proving that L is
transitive, almost universal and closed under the eight fundamental opera-
tions. Those classes that are L-constructible in the sense of Definition 14.12
we will refer to simply as constructible classes. The elements of L we will call
constructible sets. Indeed if a = F‘a we refer to « as the set constructed at
the ath stage. From the foregoing example we see that 0 is the set constructed
at the Oth, 2nd, 3rd, 4th, 5th, 6th, 7th, and 8th stages. Also 1 is constructed
at the first stage and 2 is constructed at the 9th stage. Thus the constructible
sets are those sets that can be “built” up from the empty set by a finite or
transfinite number of applications of the eight fundamental operations.

Closely related to the notion of constructibility is the notion of relative
constructibility. There are many ways to generalize the notion of con-
structibility. One approach is to introduce an arbitrary set a of natural
numbers at the (w + 1)th stage. Since we wish to construct models of ZF
and every such model must contain w and all of its elements we modify the
first (w + 1) stages to introduce w and its elements in a most direct and
obvious way. A set is then constructible relative to a iff it can be built up
from w and its elements and from a by a finite or transfinite number of
applications of the eight fundamental operations.

Although relative constructibility will not be needed until later we
introduce it here because the definition and theorems of interest so closely
parallel those for constructibility.

Definition 15.16. If a < o, then
Gx=#(x) fZ2x)<w+1v K592x)=0
£a if 2(x) = w + 1
F(xKiD(x), xK5D(x)) ifD(x)>w + 1A K59(x)=n#0.
F,7»0n A (Y a)[Foa £ G(F, | a)]
L, 2 FsOn.

li>

li>

Proposition 15.17.
Foao=a0=w
=a,0=w+ 1
=Fna>0+1AKi0=0
=% (F.Kio, F;KS0),a > w4+ 1 A Kya=n #0.
The proof is left to the reader.
Definition 15.18.
(1) Od‘x & u(x = Fa).
(2) Odix 2 u(x = Fya),a < w.
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Remark. The symbol Od‘x is read “the order of x.” If x is constructible
then Od‘x is the smallest ordinal « for which x = F'a, i.e., Od‘x is the first
stage at which x is constructed.

Proposition 15.19.
(1) xeLex = FQOd'x.
(2) xeL,x=F,0d;x.

ProoF. Definition 15.18. ad

Remark. We wish to prove that L is transitive. For this we prove that the
set constructed at the ath stage is constructed only from sets that were
constructed at earlier stages.

Proposition 15.20.
(1) (Vo)[Fa € Fa].
2 (Vo[F,o g Faa].

ProoF. (1) (By transfinite induction). If f = Kja, y = K5a and n = K5a
then

a=J<B,y, n).

Ifn = Othen F'a = F“aand hence F'a = F*“a.Ifn # 0then by Proposition
15.10, B < o, y < a and hence

F‘Be F'a A F'y e Fa.
If n = 1 then
Fa = Z (F'B, F'y) = {F'B, F'y} < F“a.
If n > 1 then
Fao = F (F'B, F'y) € F'B.
From the induction hypothesis and the fact that § < a we have
F'B < F“B = F“o.
Therefore
Fa € Fa.
(2) The proofis left to the reader. ad
Proposition 15.21.

(1) Tr(F“a).
(2) Tr(Fja).
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Prookr. (1) If x € F“a, then (3 8 < a)[x = F*B]. But from Proposition 15.20
and the fact that f < o we have

x = F'f < F“B < Fa.
(2) The proofis left to the reader. (]

Proposition 15.22.
(1) Tr(L).
(2 Tr(Ly).
Proor. (1) If x € L, then (3 a)[x = F‘a]. Therefore
x = F'ae F(a + 1).
Since F*“(¢ + 1) is transitive
x < Fa+ 1)< L.
(2) The proofis left to the reader. O

Proposition 15.23.
(1) xeLAayeL Axey-0Odx < Ody.
2) xeL,AnyeL, Anxey—0d,x < Od,y.
PROOF.
(1) xeyAnyeL—->xeFOdy
- xe F“Od‘y
- @3B < Od'y)[x = Fp]
- Od‘x < Od‘y.
(2) The proof is left to the reader. O

Proposition 15.24.
(Vxe L)3a> w)[x = F,a].

The proof is left to the reader. O

Proposition 15.25.
(1) (Vx,yeD[F(x,y)elln=1,...,8
2 (x,yelL)Z. (x,y)eL]n=1,...,8.
ProoF. (1) If « = Od'x and f = Od‘y then x = F'a and y = F*f. Let y =
J<a, B, n). Then
FAx,y) = F(Fo, FB) = F (FKiy, FKyy) = Fye L.
(2) The proof is left to the reader. O
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Proposition 15.26.
(1) b= L->3xel)bcx]
2 besL,»>@3xel)bcx]

Proor. (1) Since Od is a function from V into On, Od“b is a set of ordinals.
Therefore

F[Od“b < a].
Let
B =JC,a,0).
Then K58 = 0 and hence
F'B = F“B.
Furthermore o £ . Therefore if x = F*f

yeb-oyelL A Ody <a £ 8,

and hence
3y < Bly = Fyl
Then
y=FyeF“B=Ff=x
that is
bsxAxel.
(2) The proofis left to the reader. a

Theorem 15.27. (1) L is a standard transitive model of ZF and On £ L.
(2) L, is a standard transitive model of ZF and On < L,.

Proor. Propositions 15.22, 15.25, 15.26, and Theorem 14.11. O

Remark. We have now shown that L is a model of ZF and for eacha £ w,
L, is a model of ZF; but are these models different ? It is not difficult to show
that if a is constructible then L, = L. Do there exist nonconstructible sets?
From Cohen’s work we know that this question is undecidable in ZF.

The assumption that every set is constructible is called the Axiom of
Constructibility.

Axiom of Constructibility

V=L

Godel’s program for proving the consistency of GCH and AC consists
of proving that the Axiom of Constructibility implies GCH and AC. It is then
sufficient to establish the consistency of the Axiom of Constructibility with
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ZF. This is done by proving that L is a model of V' = L. To prove this we
must prove in ZF that

[v=1L]*
that is, since L = {x|(3 a)[x = F‘a]} we must prove that
L={xeL|3aeL)x = F«]!}.

Since On < L it is sufficient to prove that x = F‘a is absolute with respect
to L. This we will do by proving that x = F‘x is absolute with respect to
every standard transitive model of ZF. We need the following lemmas in
which M is a standard transitive model of ZF and G is as given in Definition
15.13.

Lemma 1. {a, 8, m)S{y, o, n) Abs M.
PROOF.

o, B, mpS<y, 6, n) <o, BYRCy, &) v [Ka, By = <y, ) Am<n]. O

Lemma 2. f Isomg (8> x 9, «) Abs M.
PRrROOF. Proposition 13.30. O
Lemma 3.

(1) B =J<y, o, m)> Abs M.
() B =Ji(y, o> Abs M.

Proor. (1) From properties of order isomorphisms (Proposition 7.53)
(3! N)ET)LS Isomg g(u x p x 9, a)].
Therefore, from the definition of J
B=J,0my—@3 AN [mMm <9 A f Isomg g(max(y, J)
x max(y, ) x 9, ) A f<y, 6, m) = ]
= (V H)Va)m <9 A f Isomg, (max(y, )
x max(y, 8) x 9, a) - f<y, 6, m) = B].
From Theorem 13.8 it then follows that
B = J(y, 6,m) Abs M.
(2) The proof is left to the reader. O
Lemma 4.
(1) Kja = f Abs M.
(2) KSa = f Abs M.
(3) K50 = Abs M.
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Proor.
Kia=Be@m@yIm <9 A J<B,y, m) = al.

K= p=@m@EnNm <9 A Jy, B, m) = a].
Kya=fop<9A@@NANILY, 6 m)y =al

Since J{f, y, m)» = a is absolute with respect to M and max(f, y) <
JB, y, m) = o it follows that « € M implies B, y € M. The results then

follow from Proposition 13.5.

Lemma 5. b = % (c,d) Abs M, n=1,...,8
Proor.

b=%F(c,d)—b=/{cd}
b=%,(c,d)yob=cnE

oWx)[xeboxec A @y)E2)[x=<{y,z) Ayez]]

b=Fc,dy>b=c—d
oWx)[xeboxecAx¢d]
b=ZF c,d)ob=cld

oWx)xebeoxec A @y)AE2)[x =y, 2> A yed]].

b=Fsc,dy>b=cn D)
o Wx)[xeboxec A @Yy =2d) A xey]].
b=F4c,d)ysb=cnd?
oWx)xeboxecan@yy=d ! Axeyl]
b=%,c,d)yob=cn Cnv,(d)
o (Wx)[xeboxec
A @w@v)AWx = u, v, wp A {w,u, vy ed]].
b=%g4(c,dy—b =cn Cnvi(d)
o VWx)[xeboxec
A AwEv)AW[x = (u, v, wd A {u, w,v) ed]].
Lemma 6. b = G'(f | ) Abs M.
Proor.
b=G(fTPH[Kip=0Ab= f“Blv
[KsB=1Ab=ZF(fKip f[K3B)] Vv -V
(K38 =8 A b= F3(f'KiB, [ K3P)).

d

d

a
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Proposition 15.28.

(1) b= FoaAbs M.
(2) b= F,aAbs M.

PRrOOF. (1) From the definition of F and Corollary 7.42
GO Frla+ DA VBB =G 1 HI]
Therefore
b=FaoocQ@NLf Frl@+ DAVBS)lfB=GC(fTP]ALab)ef]
SV Frl@a+ DAVBS)LfB=GC(fTB]-><abde[f]

From the preceding lemmas and Theorem 13.8 it then follows that b =
F‘a Abs M.

(2) The proof is left to the reader. a

Proposition 15.29.

(1) OncM->LcM.
2 OncsMAaeM->L, M.

ProoF. (1) Since (V a)(3 x)[x = F‘a], it follows that
Vae M)3xeM)[x = Fal™
But since On = M and x = F‘a Abs M
Va)d x e M)[x = Fa].

Therefore
L M.

(2) The proof is left to the reader. O
Remark. From Proposition 15.29 we see that L is the smallest of all the
standard transitive models that contain On. In particular if a £ w then
L < L,. Furthermore if a is constructible, i.e., if ae L then L, S L, i.e,,
L=1L,.
Theorem 15.30.

(1) Lisamodel of V = L.
(2) L,isamodel of V = L,.

PrOOF. (1) V = L & (Vx)(J a)[x = Fa].
From the definition of L
(Vxe L) @a)[x = F'al.
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Since On < L and x = F'a Abs L it follows that
VxeL)3aeL)[x = Fa]*
ie.,
[v =L]"
(2) The proofis left to the reader. d

Definition 15.31.
(1) As £ {(x,y>el?|yex A (Vzex)[Od'y £ Odz]}.
(2 As,2{(x,ydeLllyex A (Vzex)[Odyy £ Od;z]}.

Proposition 15.32.
(1) (vxel)[x #0-— As'x e x].
2) (VxeL)[x #0— As,x e x].
Proor. (1) Since L is transitive L — {0} € 2(As). Furthermore As is single
valued. Therefore
xel Anx#0-> As'xex.

(2) The proofis left to the reader. Od

Theorem 15.33.
() V=L->AC
2) V=L,-AC.

Proor. Obvious from Proposition 15.32. O

Theorem 15.34.
(1) L is amodel of AC.
(2) L,is amodel of AC.

ProOF. Propositions 15.30 and 15.33. O

Remark. In Proposition 15.32 we have a result that is in fact stronger
than the strong form of AC. The strong form of AC asserts the existence
of a universal choice function. In the proof of Proposition 15.32 we have
exhibited such a function.

We turn now to a proof that the Axiom of Constructibility implies GCH:!

V)2 = N, ]

The key to the proof lies in proving two results. First, we prove that the
cardinality of F“N, is &,. From this we deduce GCH by proving that if
V = L then every subset of F*X, is constructed before the ¥, , ;th stage.

' A simpler proof is presented in Chapter 17. The remainder of this chapter can be omitted
without loss of continuity.
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Definition 15.35.
(1) C'oa 2 Od‘As‘Fa.
Q) Cia £ OdyAs,Fo.
Proposition 15.36.
(1) Ca=oa
(2) Cia <o

Proor. (1) If F'a = 0 then As‘F‘a = 0 and Od‘As'F‘a = 0, i.e., C'a = 0 £ «.
If F'a # O then As‘F‘o € F‘a. Therefore

C'a = Od‘As‘F‘a < Od‘F‘a. < 0.
(2) The proof is left to the reader. O

Proposition 15.37.

() FR, =X,
2 FR, =X,
Proor. (1) Since F is a function it follows that
F'R, SN,
Furthermore

FJ<0, B,0> = F“JC0, B, 0).

Therefore since y < § implies JC0, y, 0> < JC0, B, 0> it follows that if
y < B then

F'J0,y,0) € FJ<0, B, 0>
that is
y # B — FJ¥0,v,0> # FJ<0, B, 0.
Thus if
H'B £ FJ0,8,0), peOn

then H: On1=LL. Since

<N, - JOB0 <R,
it follows that

H“Y, € F*N,.

Since H is one-to-one

N, = IR, < FR,.
Therefore F*R, = N,.
(2) The proofis left to the reader. O
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Proposition 15.38. .
(D) (VOIPFR,) € FRypy > 2% =R,04].
Q) (VOIPFNR) S FaR,y — 2% =R,

Proor. (1) If 2(F*“YX,) € F*“¥, ., then from Proposition 15.37
= PR, = P(FR,) < FR,,, = Neore

Since by Cantor’s Theorem > N, we have
23\“, = Na+ 1
(2) The proof is left to the reader. O

Remark. It now remains to be proved that if ¥V = L then each subset of
F*“¥X, is constructed before the N, ;th stage. This we do in the following
sequence of propositions.

Proposition 15.39. (1) If V =L and (Vx)V )V )[9 € x = On A Cx <
xAKix< xAKsx € xAJ%* S x A fIsomg g(x,7) > (Vaex)(Vpex)
[Frae F'B— F'f'ae F'f'f]1] then (VY a)[P(F“R,) & F*N,; ]

Q2 IfV=L,and(Vx) VPV Hlo+2=cx=O0OnACixsxaKixgc
xAKsxcSxAJX S x A fIsomg gx,y) > (Yaex)(Vpex)FooeF,p
o F, flae F, [*B]] then (V )[P(FR,) = FiN,4 1]

Proor. (1) If x € F“Y, then from the Axiom of Constructibility
39)[x = F4].

Since C, K|, K, and J are each single valued and ¥, U {4} is infinite it follows
from Proposition 11.32 that there exists a set b such that

[Cb=hbAKibSbAKShbSbAJDSbA
N,U{0lcbhcOnnAb=RN]
Since V' = L implies AC, (3 y)(3 f) Isomg, g(b, y). By hypothesis
S Isomg g(b,y) > (Vaeb)Vfeb)[FaecFfe FfacFff]
In particular, since &, < b and fis order preserving
B<R,—> fB=5
Thus, since 0 € b, if f < N,
[F'Be FO F'BeFf9o]
Consequently
F'0 n FN, = F'f'0 n F*N,.
But since N, = J*(0, X, 0,
F“8, = F'N,.
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Furthermore, since F'0 = x & F*N,,
Fon FR, = Fo = x.
Then
x = Ff'0 n F'R,
= Ff% — [Ffo— FR,]
= FJSO, SO, R, 3D, 3.

Butsince d e b A b = N, and since fis an order isomorphism, ‘0 < N, ;.
Therefore by Proposition 15.1

S0, 8,30 <Ryiy
and hence by a second application of Proposition 15.1
6, 0,8, 3),3) < Nyuy
Consequently
x € F*N, 4

(2) The proofis left to the reader. O

Remark. In somewhat over simplified terms Proposition 15.39 states that
if every set is constructible and if certain ordinal isomorphisms preserve the
order of constructibility then each subset of F*“N, is constructed before the
N, +1th stage.

Since for any set of ordinals b

@A LS Isomg, g(b, y)]

it remains to be proved that for appropriately chosen sets b, namely those
closedunder C, K, K,, K5, and J,fdoes preserve the order of constructibility.

Proposition 15.40. If 9= b < On A Kib= bA Ksbs b A Jb> = b A
f Isomg g(b, ) then
(1) m<9araebnafeb->J{fa fB,my= [T, m
and
@ JnPen
Proor. (1) Since J is order preserving

JLS B my < TS [0, ) o [t f*B, myS{f*y, [, n).

But fis also order preserving. Therefore

S B, myS [y, [0, n) > (a, B, m)S<y, 0, n).

If there exists an ordered triple {a, 8, m) such that

S fBomy # [T, B, m)
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then there is an S-minimal such element. We will show that the assumption
that (a, B, m) is such an ordered triple leads to a contradiction.

IfJ(fa, fB, m) < fJ<a, B, m) then since b is closed w.r.t. J and since
a, B, and m are in b it follows that

J<a, B,m>€b

and hence

ST, B,m)en.

Since

S afB,m)y < fUXa, B, m)

it follows that

@AvebLfy =J{f'0 fB, m)].
If

y=KivAd=K5v An=K5v
then since v € b and b is closed w.r.t. K, K,, K5

yebAadebAneb.

Therefore
v=J<y,0,n>€eb
and
STy, 0,m) = frv =T f'o% [, m).
Since by hypothesis

SIS fBmy < fTa, B, m)

we have that
JIy, 6,n) < [T, B, m).
From this it follows that
<y, 6, )8, B, m).
But from the defining property of <{a, §, m)
S0 0,n) = fUKy, 6,n) = T fa, f*B, m).
Since both J and f are one-to-one this implies that

<ya 53 n> = <a, ﬂ’ m>

which is a contradiction.
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IffJCa, B, m) < J(fa, B, m) and if
y = KifJXa, Bym) A &= K; fT<a, B,m) A n=K; I B, m)
then
FIK Bymy = J<y, 6, n) < J< [0, f*B, m)
hence
9, 0, n) S f'o, f*B, m).
Therefore
y < max(fa, f*B) A 0 < max(f e, f*B).
Since o, € b,
Jlaenn fBen
that is
max(f o, f*B) <.
Then y, J € , and consequently
(370, 6o € D)y = 90 A 6 = [*O].
Since
<y, 0, S f, B, m),
S0, S 00, S S0, fB, m)
and hence
{Yo> 6o, n)S<at, B, m).
Again from the defining property of <a, 8, m)
I <0: 00, 1) = T [0, [*00, ny = Jy, 0, np = f*J<a, B, m).
Since fand J are one-to-one we conclude that
(Yo, 00, 1) = <&, B, m)
which is a contradiction.
(2) Ify, d €nthen
(3v0€b)X3 o €b)ly = 0 A 6= [0l
Therefore from (1)
Iy, 6,my = T f*y0, f 00, m) = [T <y0, 0o, m).
Since b is closed w.r.t. J and f maps b into 7,
Iy, 0,myen
ie., n is closed w.r.t. J. |
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Proposition 1541. /9 c b= OnAn9<cccOnAKbcsbAKSbSh A
JPPcbAaKicccnKsccSenJe ccn fIsomg b, c)then

(1) aebArfebrm<9->I{fafBm=fJ,pm

and

2) aeb->Kifa= fKian K5 fa= f'Kia n Kya= K5 fu
PrOOF. (1) Since f Isomg g(b, c) it follows that for some #, f;, and f, we have

JiIsomg g(b, n) A foIsomg g(e,n) A fr° f = fi.
Since b is closed w.r.t. J
aebAfebrm<9->J<a B, myeb
and hence
f e, B, m) ec.

If

y=KifJI<a, ym) A 0 = K5 [T, B,m> A n=KjfT<a, B,m)
then since c is closed w.r.t. K, and K,

yecAdecAn<9
and
J I, B, md = J<y, 0, n).
From Proposition 15.40 we then have that
1o, Bymy = (foo [0, B,my = f50Kp, 6, n) = J(f3y, 20, ).
On the other hand we also have from Proposition 15.40 that
f1I<e B, my = T fro, f15, m).
Therefore since J is one-to-one
Sio=fy A fiB=f30Am=n
that is
y=fornd=fBArm=n
Therefore
fIK Bymy = Ty, 6,n) = J'(f'o f*B, m).
(2) Since bis closed w.r.t. K, and K, we have that
aeb—> Kiaeb A K5a€b.

Since

o = J¢K o, Kyo, Ksad
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we have from (1)

fa= fJK i, Ksa, Kyo) = J(f'Kia, f‘K5a, K30).
Therefore

Kif'a= f‘Kia A K5 fla= f'Kya A K f'a = K50 O

Remark. For our next theorem we need several results that we prove as
lemmas.

Lemma 1. If9 € b < On and b is closed w.r.t. J, then F*b is closed w.r.t. the
Jundamental operations.

Proor. If x, y € F“b then
Ga,feb)x =Fany=Ff]
and hence
F(x,y) = F(F'a, F'f) = F'J{a, B, n).
Since b is closed w.r.t. J it follows that
J<a, B,n>eb
and hence

F (x,y) e F*b. O

Lemma 2. If9 < b < On, if b is closed w.r.t. C and J, and if x € F“b, then
Od‘x eb.

ProOOF. From Lemma 1
xeF“b > {x} e F“b
- Qaeb)[{x} = Fal.
But
Od'x = Od‘As*{x} = Od‘As'F'a = Ca.
Since b is closed w.r.t. C and « € b we have that

Caeb

Od‘x € b. O

Lemma 3. If9 < b < On and b is closed w.r.t. C then

xeFbAx#£0-xnFb#0.
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Proofr. If x € F*b, then (3 a € b)[x = F‘a]. Since b is closed w.r.t. C

aeb—->Caebh

— F‘C'o € F*b.
But
F'C'q = FOd‘'As‘F‘a = As'x.
If x # 0 then
As'x e x
ie.,
FC'aex n F“b. O

Lemma 4. If9 = b < On and b is closed w.r.t. C and J then

1) (vVx, »{x, y} € Fb - x, y € F*b],
2 (Vx,pI[{x, y> e Fb— x,ye Fb],
3) (Y%, ¥, 2)[Kx, y, 2> € F*b > x, y, z € F*b].

PRroOF. (1) Since {x, y> # 0 we have from Lemma 3 that
{x,y} n F*b # 0.
Therefore
xe F“b v ye F“b.
If x e F“band x # y then from Lemma 1, {x} € F*b and
{y} = {x, v} — {x} e F.

Since {y} € F*b and {y} # 0 it follows from Lemma 3 that y € F*“b.
Similarly if y € F“b, then x € F“b.

(2)-(3) The proofs are left to the reader. ad

Lemma 5. If9 € b < On and b is closed w.r.t. C and J, then
v x, N[{x, y>€Q, A ye F*b — x € Fb], n=4,6,78.
Proor. If {x, y> € Q,, then (3 z)[y = {(x, z)>]. But by Lemma 4
y € F“b - x € Fb.

If{x, y)> € Q¢, then 3z, w)[x = {z, w) A y =W, 2)].
By Lemmas 1 and 4

y€F*b— x € F“b.

If {x, y> € @, then (A2)AW)Au)[x = u,w, z> A y = {w, z, u)].
If (x, y> € Qg,then A2)E W) u)[x = u, w,z> A y =<y, z, wyl.
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In each case we see from Lemmas 1 and 4 that

ye F“b - x e F*b.

Lemma 6. If9 = b < On and if b is closed w.r.t. C and J then
Vx,p[xeFbnn AyexnFb—yeFbnn)l.
PRrOOF. If x € F“(b N 1), then x € F*b and x € F*y. Therefore
Od’x e n
and, by Lemma 2,
Od‘x € b.
Also
yexnFboyex nyeF
- Od'y < Od'x A Od'yeb
- 0Od'yebnny
- yeFbnn).

Lemma 7. If9 < b < On and if b is closed w.r.t. C and J, then
(Vx)[x € F'n n F'b - xe F*(b n n)].
Proor. If x € Fy, then Od‘x < Od‘F‘n < 5. By Lemma 2

x € F“b - Od‘x €b.
Then
x € F“(b n 7).

Lemma 8. If9 < b < On and b is closed w.r.t. C and J, then

1) (Vx,)Ux, yeFbnn)—>xeFbnn AyeFbnn]
2 (Vx, Nx,y>eFbnn)—>xeF‘bnn) AyeFbnn)l

3 (Vx,3,2[x,y,22eFbnn) > x,y,ze F(bnn)]
Proor. (1) Since F“(b n ) £ F“b, we have by Lemma 4.
{x,y} e F{b n ) - {x, y} € F*b

—>Xx€EFbAyeF“b
then

{x,y}eFbnn) Axel{x,y} nFb A ye{x,y} n F“b.

From Lemma 6
xeF“bnn) AyeF'bnny).
(2)-(3) The proofs are left to the reader.

175
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Lemma9. If9<cb<=OnA9<Sc<On,ifband c are each closed with
respect to C and J, if f Isomg, g(b, c) and if H Isomg (F“(b N n), F“f“(b n 1))
for n eb then

(1) (Vx, [{x, y} e F“(b n ) > H'{x, y} = {H'x, H'y}],

(@) (Vx. )[Kx, y> e Fbnn) - H<x, y> = (Hx, H'y}],

(3) (Vx,p,2)[{x, y, 2> e F*(bn ) » HXx, y, z) = {H'x, H'y, H'z}],
@ (Vx,yeFbn MI<x, y> e Q<{Hx, H'y>eQ,], n =4,5,6,7, 8.

Proor. (1) From Lemma 8
{x,y}e F“bnn)—-x,yeFbnn).
Therefore since H Isomg g(F“(b N 1), F*f*“(b n n)) and since x, y € {x, y}
H'x, H'y € H*{x, y}
ie.,
{H'x, H'y} ¢ H'{x, y}.

Either H'{x, y} = {H'x, H'y} or 3ze [H'{x, y} — {H'x, H'y}]. In the
latter case we note that n € b and hence

ffbnan=cn fn
Since H'{x, y}, H'x, H'y € F*“c it follows from Lemma 1 that
H{x, y} — {H'x, H'y} € F¥c.
From Lemma 3
3z e (H'{x,y} — {H'x, H'y}) n F-c.
Therefore
H'{x,y}e F(c n f'n) A ze H'{x, y} n F*
and hence by Lemma 6
zeF(cn f9) = Ff“(bnn).

Consequently (3we F“(b nn))[z = Hw]. But since ze H'{x, y} and
H Isomg, g(F“(b n 1), F*f“(b n 1)),

we {x, y}.
Thus z = H'x v z = H'y. This is a contradiction. Hence
H{x, y} = {H’x, H'y}.
(2) From Lemma 8

%, > € Fb ) > x, y, {x}, {x, y} € F“(b n 1).
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Therefore from (1) above

Hx,yy = H'{{x}, {x, y}} = {H'{x}, H{x, y}}
= {{H'x}, {H'x, H'y}} = <{H'x, H'y).
(3) The proof is left to the reader.
@) Ifdx,y>eQ,,then 3 2)[y = <{x,z)]
But from Lemma 8§
yeF“bnn) - x,zeF(bnn),
Then from (2) above
y=<x,z) » Hy = (Hx, H'z)
- (H'x, H'y) € Q4.
Conversely
(H'x, H'y) € Q4 » @wW)[H’y = (H'x, w)].

Since y € F*“(b n ), H'y € F*“(c n f*n). Hence by Lemma 8, we F*(c n f*n)
= F“f“(b n n). Consequently (3ze F“(b n n))[w = H'z].

Since f ! Isomg g(c, b) A H™ ! Isomg s(F“(c n fn), F“f " '(c n fn))
the foregoing argument gives

Hy = (Hx, Hz) > y = {x,z)
= <x, y) € Qs

The arguments for Qs, Q¢, Q,, and Qg are similar and are left to the
reader. O

Proposition 1542. (1) If 9cb<cOn A9 < c < On, if b and ¢ are each
closed with respect to K, K,, C, and J, and if f Isomg_g(b, c), then
Vo, eb)[[FaeFp FfacFfB] n[Fa=FpBe Ffa=Ffp]]

2 Ifo+2cbscOnArw+2cccOn,ifband c are each closed
with respect to K, K,, C, and J, and if f Isomg, g(b, c), then

(Vo, Beb)[[Foae F,p— F, fueF, f*p]
A [Fou = F,B< F, f« = F, f*B]].
ProoF. (1) By induction on max(e, 8). Ifn = max(e, f)andify = a = fthen
the result is true because
Fa=FpAFfa=FfBAFa¢FpAFfa¢Ffp
Ifa < f=nv B <a=mnthenitis sufficient to prove thatif ye b n #.
@) FyeFnoFfYyeFfy,
(@) FneFy—FfneFfY,
(i) Fy=Fne FfYy=Ff%y.
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If H = {{F'y, F'f*y>|y € b n n} then by the induction hypothesis
Vy,debnp)[[FyeFde FfyeFf9]
A [Fy = Fdo Fif'y = F'f*0]]

consequently H Isomg . (F“(b n 1), F“f“(b n n)). With the aid of Lemma 9
we will prove (i), i.e.,

(VyebnnlFyeFne FfyeFfql

We argue by cases. ,
IfK4n = Othen K f* = 0(Proposition 15.41). Therefore F'n = F“yand
F'f‘n = F*f*“n. Consequently

(Vyeb nn)[Fye Fyl
But since fis E-order preserving
yebnn— fyefu.
Hence
(VyebnnlFfyeFfq]

If K3n # 0 then Kin <n A K9 < 7. Since € b and b is closed with
respect to K; and K,

MmebnnAnKinebnn.
From Proposition 15.41
ifn=rKm  Kyfn=fKin  K5fn=Kjin
IfKsn =1
Fip = {FKin, F'Ksn} A Fif'n = {Ff*Kin, Ff*K5n}.
Then from the induction hypothesis if ye b n 5
FyeFne Fy=FKinv Fy = FKiy
o FfYy =FfKinv Ff'y=FfKsn
— F'f'ye Ffy.
IfKyn =2
Fn=EnFKin A Ffn=En FfKin.
Again from the induction hypothesisif y e b N 5
FyeFne—FyeE A F'ye FKip
o @x, PIFy =<, y> A xey]l A Fif'ye Ff*Kin.
From Lemma 8

x,yp=FyeFbnn)->xeFbnn AyeFbDann).
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Then from Lemma 9

Ff%y = HFy = H<x, y> = (H’x, H'y).

Furthermore
xey— H'x e H.
Thus
FfyeEn Ff'Kin
ie.,
(Vyebny)[FyeFy— FfyeFf4q]
IfK5n =3

Fn = FKin — FKyn A Ff'n = Ff'Kin — Ff'Kyn.
From the induction hypothesisif ye b n 5
FyeFneFyeFKin A Fy¢FK,ny
< FfYye Ff'Kin n Fif'y ¢ Ff'K5n
o F'f'ye F'fn.
IfKsn=nn=4,67,28
Fn = FKin 0 QiFKyn A Ff'n = FfKin 0 QiFf*Kyn.
Thenifyebnp
FyeFne Fye FKin A Flye Q F'K5n
o Ff'ye Ff'Kin A @x e FK3n)[<x, Fy) € Q,].
But from Lemma 5
Fye Fb A {x, F'y> € Q, - x € F“b.
Then
FKine FYb nn) A xe FFKyn n F“b.
Therefore by Lemma 6, x € F“(b n 1). Thus
xeFbnn) A FyeF‘bnn) Alx,Fy)>€eQ,.
From Lemma 9
(H'x, H'F'y) € Q,,.
But
H'F'y = F'f*.
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Therefore since x € F'K%n
H'x e HF'Kn = F'f*'K5n
ie.
Ffye Q Ff K.
Thus
(VyebnnlFyeFn— FfyeFfnl
IfKsn =5
Fn=FKinn QsFKyn A Fif'n = Ff'Kinn Q5F K.
Thus if y € b ~ y then since Q5 = Q,; !
FyeFne Fye F'Kin A Fiye Q5sF'Kyn
—FfyeFfKin A Ax e FK;n)[KFYy, x) e Q4]
Then
FK5n 0 Qg{Fy} # 0.
Furthermore since F*y € F“b A F'K%n € F*“b we have from Lemma 1
F'K5n n Q4{F'y} € F“b.
Therefore by Lemma 3
Ay e F*b)[y € F'K5n n Q4 {Fy}].
Thus
YEFD A (F,y)€Q,.
Then
FKineFbnn) Aye FFKSn n Fb
and hence by Lemma 6
yeF“(b nn).
Then since {F‘y, y) € Q, we have from Lemma 9
CH'Fy, Hy) € Qu,
{H'y, HFy) € Q5.
But H'F'y = F*f*y. Therefore since y € F'K5#
Hye HFKyn = Ff*Ksn
ie.,

Ff'ye QsFf'Ksn.
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Thus

(VyebnnlFyeFn— Ff'yeFfn]

Having exhausted all cases we have proved

(VyebnmiFyeFn—FfyeFfn]

The implication in the reverse direction follows from symmetry, i.c.,
S~ Isomg g(c, b) A H™! Isomg (F“(c n f*n), F“f~Y(c n f'n)).
Therefore, since
yebnn- fyecn f,
F'f'ye Ff'n - F'y e F*y.

This completes the proof of (i).

From (i) we next prove (iii). If F'n # F‘y then F'n — Fy # Oor F'y — F'y
# 0. Since F'y € F“b A F‘n € F*b we have from Lemma 1

F'n — F'ye F*b A F'y — F'n € F*b.
If F'n — F'y # 0 then by Lemma 3
(3 x e F*b)[x € F'n — F*y].
Thus
xeFnn Fb
and hence by Lemma 7
xeF'(bnn
ie.,
(Avebnnlx = Fv].
But x € F'n — F*y. Therefore
Fve F'n A F'v ¢ Fy.
From (i)
FfveFfnanFfvye¢Ff9.
Thus F'f‘ve F'f‘n — F‘f‘y and hence F'f‘y # F‘'f‘n.

If F'y — F'n # 0 the argument is similar to the foregoing one and is left
to the reader. We have then proved

YyebnnlFfn=Ff'y—>Fn=FYy]

Again the implication in the reverse direction follows from symmetry.
We next prove (ii) from (i) and (iii). If F'n € F'y and if v = Od‘F‘y then

v=0d'Fn <OdFy<y<n
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i.e., v < 5. Since F'n € F*b we have from Lemma 2
v=0dFneb.
Then v € b N n and hence by the induction hypothesis
Fve F'y > F'f've Ff'y.
But since F'v = F‘n we have from (iii)
F'f'v = F'f‘n.
Hence
FneF'y > F'f'ne F'f'y
Again the reverse implication follows from symmetry.
(2) The proof is left to the reader. O

Proposition 15.43. (1) If9 < b < On, if b is closed with respect to C, K, K,,
and J, and if f Isomg g(b, n) then
(Mo, Beb)[Fac F'f F'f'ae F'fB].

(2) If9 < b < On, if b is closed with respect to C,, Ky, K,, and J, and if
S Isomg g(b, n), then

(Yo, Beb)[FaeF,pF, faeF,ff]
Proor. (1) From Proposition 15.40, # is closed with respect to J. Since
KiasanKiafanCa=Za
nis also closed with respect to C, K ;, and K, . Therefore by Proposition 15.42
Vo, Beb)[Fae Ff— Ffaec FfB]
(2) The proof is left to the reader. O

Theorem 15.44.
() V=L-GCH
(2) V=L,—» GCH
PROOF. Propositions 15.43, 15.39, and 15.38. O

Theorem 15.45.
(1) L is a model of GCH.
(2) L,is amodel of GCH.

Proor. Theorems 15.44 and 15.30. O

Remark. We have now shown how to select from V a subclass L that is a
model of ZF + AC + GCH + V = L. This process can be relativized to any
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standard transitive model M to produce a subclass of M that is also a model
of ZF + AC + GCH + V = L. Recall that

LM = {(xe M|3ae M)[x = Fa]}.

Proposition 15.46. If M is a standard transitive model of ZF then
(1) (Vae M)[Fae M],
2 acwnrnaeM->NMae M)[F,ae M].

Proor. (1) (By induction). Since M is a model of the Axiom Schema of
Replacement it follows from the induction hypothesis that if Ko = 0, then

Fao = Fla = {x|@Bea)[x = Ff]} = {xeM|3Bea)x = FIM} e M.
If Kya =i # 0 then Ko < o, K5 < a and from the induction hypothesis
and the fact that M is closed under the eight fundamental operations

Fo = F(F'Kia, FK0) e M.
(2) The proofis left to the reader. O

Proposition 15.47. If M is a standard transitive model of ZF then
() LM = {x|Qae M)[x = Fal},
2 acwraeM->I¥={x|FaeM)x = F.a]}.
Proor. Obvious from Proposition 15.46. O

Remark. That L™ is a standard transitive model of ZF + AC + GCH +
V = L is immediate from the following theorem.

Theorem 15.48. If M is a standard transitive model of ZF and if ¢ is a wff
of ZF then

1) @M e ot”

@ (P"M o™ ifaeM.
Proor. (1) (By induction on the number of logical symbols in ¢.) The formula
@ must be of the form (1)a € b,(2) 7,3 Y A 5, 0r(4) (V¥ x)y. The arguments

for cases (1)-(3) we leave to the reader. If ¢ is of the form (V x)y then as our
induction hypothesis

(R
Then
LY 1“1 o [(V x)[x € L —» ¢+
< [(VOIAW[x = Fa] —» ¢ 1™
«(VxeM)[@aeM)[x = Fo] - (Y]
< (Vx)[x e LM - y™]
o [V Y1
(2) The proofis left to the reader. W
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Theorem 15.49. If M is a standard transitive model of ZF then

(1) LM is a standard transitive model of ZF + AC + GCH + V = L and
On'™ = On™.

(2) IMisastandard transitive model of ZF + AC + GCH + V = L,and
Ont¥ = OnM, ifae M.

PROOF. (1) Since 0 € M and F‘0 = 0 it follows that 0 € LM and hence LM is
not empty. Furthermore if y € x € L™ then

(Jae M)[yex = Fac Fa].

Therefore (3§ < a)[y = F'f]. But « € M and M is transitive. Thus e M
and y € L™, and hence L™ is transitive.

Since L is a model of ZF + AC + GCH + V = L it follows that if ¢ is
any axiom of ZF + AC + GCH + V = L then ¢" is a theorem of ZF.
Since M is a model of ZF every theorem of ZF relativized to M is a theorem
of ZF. Therefore (¢™)™ is a theorem of ZF. Then by Theorem 15.48 ¢ is a
theorem of ZF. Hence L™ is a model of ¢.

Consequently LM is a standard transitive model of ZF + AC + GCH +
V=L

By Theorem 15.27, On’ = On. Relativizing to M we have On*" = On™.
Details are left to the reader.

(2) The proofis left to the reader. O



CHAPTER 16
Silver Machines

Gaodel’s use of the Axiom of Constructibility to prove the relative consistency
of ZFC, and ZFC + GCH, might suggest that he introduced constructi-
bility simply as a means to an end. That, however, is not at all the case. Godel
held his discovery of constructible sets, and his proof that the class of con-
structible sets, L, is a model of ZFC, to be by itself, one of his major achieve-
ments. His confidence in the importance of the notion of constructibility was
further vindicated when in 1967 Ronald Bjorn Jensen used V = L to solve a
problem in real analysis, the Souslin problem. In addition Jensen derived,
from V' = L, three principles that can be understood and used by people who
are not specialists in set theory. Following Jensen, Saharon Shelah in 1974,
used V = L to settle a problem in group theory, the Whitehead problem.!

In view of these results it is natural to ask about the status of the Axiom
of Constructibility, V = L. If one is of the opinion that the purpose of set
theory is to axiomatize the largest possible part of Cantor’s world of sets, then
V = L must be rejected because it is severely restrictive. But rejecting V = L
as an axiom does not diminish the importance of constructibility and the
achievements of Jensen. Rather it directs our attention to L, which is the
smallest natural universe of sets. To understand L is an important part of
understanding set theory. With Jensen the first step was taken toward a better
understanding of L.

In the late 1970s, at a date unknown to the authors because he did not
publish his results, Jack Silver introduced a special technique for deriving
consequences of V' = L and hence for deriving information about L. This
technique involves the use of structures that Silver called machines and

' For a discussion of Jensen’s solution of the Souslin problem and Shelah’s solution of the
Whitehead problem see Devlin, Keith J. The Axiom of Constructibility: A Guide for the Mathe-
matician. Lecture Notes in Mathematics, Vol. 617, New York: Springer-Verlag, 1977.
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which are now known as Silver machines. In this chapter we will study an
elementary part of the theory of Silver machines.

A Silver machine is a special kind of structure that we call an algebra. But
to define an algebra we need some preliminary notions and notation:

Definition 16.1. A°2 {f|@ne w)[f:n— A]}.

Remark. If fis an element of A¢ with domain n, and iffi = a; we willdenote
fby<ay, a,,...,a,». We will also use a as a variable on 4¢.

Definition 16.2. A function f is a partial map from 4 to B iff 3C < A)
[f:C-B]

Definition 16.3. A structure {4, F.>,., is an algebra iff 4 and I are classes
and for each x in I, F, is a partial map from A% to 4. The class 4 is the universe
of the algebra.

Definition 16.4. An algebra (A, F,)>,.,; is a subalgebra of the algebra
<B’ Gx>xe] lﬂ
AS BAxeD[D(F,) = A2 nDG,) A (YyeD(F,)[Fry = Gyy]l].

Proposition 16.5. Let {{A4,, F,.>..1|b € B} be a collection of subalgebras of
an algebra M. Then

(1) < () A4 ) Fbx>
beB beB xel

is a subalgebra of .

The proof is obvious.

Definition 16.6. The algebra (1) of Proposition 16.5 is the intersection algebra
of the given collection of algebras.

Definition 16.7. (1) A class X is contained in an algebra {4, F >, ;iff X € A.

(2) If X is contained in an algebra 2, then the subalgebra of 2 generated
by X, is the intersection of all of the subalgebras of U that contain X. The
universe of this algebra we denote by A(X).

Remark. Following a custom established in group theory, and other places,
we will speak of A(X) as the subalgebra generated by X.

A mapping = from A to B induces a natural mapping from 4¢ to B¢:

Definition 16.8. If 7: A — B, then 7 is the mapping from A€ to B¢ induced by
7 and defined by

7ay, ..., a,y 2 (n'ay, ..., n'a,).
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Remark. In dealing with partial functions on a class 4 it is convenient to
introduce an extended equality relation that enables us to use quantification
over all of 4 and without reference to the domains of the function involved.

Definition 16.9. If F and G are partial functions on A, then Vx € 4
Fx~Gx ffxe2(F)nD(G) A Fx =Gx or x¢ DF) A x¢ DG).

Definition 16.10. By a monomorphism from an algebra {4, F,),.; to an
algebra (B, G,),.; we mean a mapping = such that
(1) =: A1=3B,
and
(2 (VxeD[rnoF, = G,orl,
thatis, Vae A9)(Y x e )[n'Fia ~ G, 7a].
Definition 16.11. An algebra <A, F;);., is a Silver machine, or simply a
machine, iff
(1) A=0On or A€On,
and
(2) Folag, 0.0 =0 iffa,a,ed A ay <ay,
otherwise F, is undefined.

Remark. As a notational convenience we will, throughout the remainder
of this section, think of a fixed machine  that we denote by <4, F,>;.,,. We
will also use the notation F(x) and F'x interchangeably.

Definition 16.12. For each ordinal { in 4
U £ (L Fidico
is the machine defined by
Fi(@) 2 Fo) ifael® A F(a) <,
otherwise F?} is undefined.
Definition 16.13. A function n: { — 5 is a strong W-map iff = is a mono-

morphism from ¢ to A”. Such a function is a medium A-map iff there exists
a ¢ < g such that n is a strong A-map from { into §.

Remark. (1) Obviously, a strong A-map is medium, but the converse is not
true. Find a counter-example.

(2) If n: ¢ - nis a medium WA-map, then = is order preserving, that is,

Vo, p <Ol < B - mle) < n(B)].
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(3) Letn: & — 7 beamedium A-map and let & = sup{n(a) + 1|a < &}
Then ©: ¢ — 0 is a strong A-map.

Proposition 16.14. If n: & —n is a strong N-map and d < n is an ordinal such
that W (n) < 0, then m: £ — 0 is a strong U-map.
PRrOOF. For any a € £¢,
Fi(@) ~ f - Fl(n(@)) ~ n(B) A n(B) < o
—~ Fi(n(@) =~ n(B)
F¥o) undefined - F?(n(e)) undefined

— F?(n(a)) undefined. O
Proposition 16.15. If n: £ - n is a medium W-map and y S &, thenn | y:y—n
is a medium U-map.

ProoF. We may assume that = is strong. Let d = sup{n(a) + 1]|a < y}. We
will show that [ y:y — 4 is a strong A-map. For any a € <,

Flo)y~B—-Fi@) =B rp<y
- Fi(n(@) ~ n(p) A n(p) <o
- Fi(n(@)) =~ ().
F)(@) undefined — Fé(&) undefined or F¥a) =y
— F}(n(®)) undefined or F!(n(®)) = o
— F(n(2)) undefined. O

Proposition 16.16. If n;: &, — &, and n,: &, — &5 are strong W-maps, then
oMy & — &5 is a strong W-map.

The proof is left to the reader.

Proposition 16.17. If n,: &, - &, and ©,: &, — &5 are medium W-maps, then
7y 0yt &y > &5 is a medium W-map.

PrROOF. Let 6, = sup{n,(a) + 1| < &;} and let &3 = sup{n,(f) + 1|
p < 6,}. Then n,: ¢, - 0, and =, [ d,:0, — d; are strong A-maps. Thus
T, 0o Ty = (m, T 8,) o my is a strong A-map from &, to J;. O

Proposition 16.18. If 7,: &, — nand n,: &, — n are medium U-maps such that
W(n,) € W(n,), then n; ' om : & — &, is a medium W-map

PrOOF. Let &, = sup{n(a) + 1ja < &} and let o, = sup{n; '(m,(x)) +
1la < &, }. Then ny:¢; —» 6, and =, | J,:6, — J, are strong A-maps. Thus
n;tomy = (n, [ 6,)" ! om, is a strong A-map from &, into J,. O
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Theorem 16.19. If n: & — 7 is a strong U-map and X < &, then n*“AY(X) =
W"(n“X).

PROOF. It is easy to see that n“A%(X) is a subalgebra of A" that contains X,
and thus A(n“X) < n“AX(X). We shall show that Y = (z~)“A"(z“X) is a
subalgebra of U¢ that contains X. From this we see that n“U%(X) < A(n“X).
Since n“X < W(n“X), it is clear that X = Y. Let o € Y¢ and assume that
Fé(a) is defined. Then n(ar) € A"(n“X) and F?(n(e)) is defined. A(z“X) is a
subalgebra of A", and hence F}(n(er)) € A (n“X). Since (™) ‘Fl(n(a)) =
F¥(ar), we have Fi(a) € Y. Thus Y is a subalgebra of A°. O

Remark. Note that if X is a set of ordinals then by Corollary 7.52 there is a
unique ordinal £ and a unique order isomorphism from £ onto X. We call this
order isomorphism the collapsing map of X, and we call £ the order type of X.

Definition 16.20. A machine U = {4, F,),;., has the collapsing property iff
for every n € A and every subalgebra X of A" of order type &, the collapsing
map of X is a strong 2A-map from ¢ into #.

Remark. If U has the collapsing property and X is a subalgebra of A" with
order type ¢, then the collapsing map of X gives the isomorphism with ¢
and X as algebras.

Definition 16.21. 9 has the finiteness property iff for every # € A, there exists
a finite set H, < # such that

AN (X v s UAX VH)LU {n} forallX cn.

Lemma 16.22. Let k be an arbitrary limit ordinal and let n be the least ordinal
greater than or equal to k such that for some o < k and some finite P < 1, the
order type of W'(a U P) is not less than k. If W has the finiteness property, then
# is a limit ordinal.

Proor. Take o« < k and let P < # be a finite set so chosen that the order type
of Ao L P) is greater than or equal to k. Assume n =v + 1 for some v.
Since U has the finiteness property, there exists a finite set H, £ v which
satisfies

WA v P)c W(au (Pnv)yu H) U {v}
Since « is a limit ordinal, we see that the order type of A*(a U (P n v) U H,)

is greater than or equal to x.This contradicts the minimality of #. Thus is a
limit ordinal. O

Definition 16.23. A partially ordered set {I, <) is called a directed set if
VijeD@keD[i =k nj=Zk].
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Definition 16.24. Let (I, <) beadirected set. Then I1 = {#;, m;;>; < ;isadirect
system of order preserving maps iff

(1) m;:m; — n;is an order preserving map for i < j,

(2) mj; is the identity map, and

&) T © Mij = My ifi<jsk

If each m;;:n; —» n; is a strong U-map (medium A-map), then IT is a
direct system of strong A-maps (medium A-maps).

Remark. Let IT = {n;, m;;); < ; be a direct system of order preserving maps
with an index set {I, £)>. We next define the limit of IT.

Definition 16.25. Let IT = (#;, m;;>;<; be a direct system of order preserving
maps with an index set (I, <). Then lim IT £ ((M/=, <), T;,»;c; Where
M/=, <, and =, are defined as follows.

MéU{i}X”Ii-

iel

On M we define an equivalence relation =:
Goay £ G By iT@ke DSk AjSk A my(@) = (B
We define equivalence classes for each {i,a) e M
[i, o] £ {<, B> € MGG o) = < B}
Then we define the class of equivalence classes
M/= 2 {[i,a]|, o) € M}.
On M/= we define a linear ordering:
[Loal <[, Bl @keDli <k Aj<k A (@) < mu(B)]

Finally we define 7;,, the canonical order preserving map from #; to M/=:

nico(a) é [la (X], o € ;.

Remark. The characteristics of lim IT are given by the following theorem.

Theorem 16.26. (1) (M /=, <) is a linearly ordered set.

(2) 7 4; = M/= is an order preserving map.

B) M = Wi om;ifi <.

@ M/= =i ().
If {N, <> and p;:n; > N (i € I) satisfy (1)-(3), then there exists an order
preserving map f :M/= — N such that f o m;,, = p;for allie Il

Definition 16.27. IT is well founded & (M/=, <) is well ordered.
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Remark. If I1 is well founded, then we identify M/ = with its order type and
denote it by 7.

Lemma 16.28. I1 is well founded iff there are no sequences {i,|n < w) and
(ouln < w)suchthatic £ i) £ L i, S ---and m,; . (0,) > Gpuy.

PRroOF. If such sequences exist, then {m; ,(0,)|n < w) is an infinite descend-
ing sequence in M/=. Thus I is not well founded. Suppose II is not well
founded and {[j,, 7,]|n < w) is an infinite descending sequence in lim TI.
Then we can find a sequence <i,|n < w) such thatiy, <i; <--- i, <---

and j, £ i, foralln < w. Let g, = 7;; (1,). Then for all n < w,
”i,,in+,(0'n) = ni,.i,.+,(775j"i"(fn)) = 7’51,,.',.),1('%)
> 7[];.+1i..+|(rn+l) = Op+1- D
Definition 16.29. U has the direct limit property iff for every well-founded
direct system I1 = <{#;, m;;>;<; of strong A-maps (medium A-maps), each
T i = Mo 1S @ strong A-map (medium A-map).
Definition 16.30. If o = {(«,, ..., a,, then

max(o) £ max{o,, ..., 0y}

Definition 16.31. For finite sequences of ordinals & = <u«y,...,a,> and
B=<B1-.-s B, < Piff

(1) max(a) < max(p), or

(2) B is not a permutation of @ and o; = max(a) = max(f) = B; A
Oy ey O gy Ogse ey Oy < By, Bim 15 B 15wy By OF

(3) B is a permutation of &, and a is less than B in the lexicographic
ordering, that is, a;, < B; where i, = min{i|a; # f;}.

Remark. It is easy to verify that < is a well ordering on On®.
Definition 16.32. The pairing machine #_. = {On, F,, J, C,> is the machine
defined by:

J: {On¥, <) —{O0n, <) is the order isomorphism C/({a)) = B;, if
JKBo,s---,PBn-1>) = aand i < n, C{a) is undefined, otherwise.

EXERCISES

(1) Compute J(C ), J(<0D), J(K1D), J({2D), ... . Find the least ordinal closed under
J, that is, the first ordinal « such that J*a2 = o.

(2) Prove that #. and £ are absolute with respect to L, the class of constructible
sets.
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Proposition 16.33.
(1) max(@) < J(@).
(2) CKa)) = aif CaD) is defined.

Proor. (1) Since the function f(a) = J“a® is increasing, it follows that
o < J“«? for all a. Thus if a; = max(ar), then o; < J“af < J(a0).

(2) Leta=J(ag,--.,0%,_1) Then by (1), max(ag, ..., ®,-;) < aand
s0 C({a)) = a; £ aforeach i < n. |
Theorem 16.34. The pairing machine P . has the collapsing property.

PROOF. Let 5 be an ordinal, let X < # be a subalgebra of ™. andletn: & —» X
be the collapsing map of X. We want to show that n: £ — 5 is a strong
P .-map.

Let Z = {& € On?|J(&) € X}. Then, for any & = {otg, ..., ty—1),

acZ->J@eXcn
o, =CN{J@>)eX foralli<n
—>ae X

Hernce Z < X¢.
Z is an initial segment of X¥:

aeZABeXeaABb<a-JP)<J@W)eX =1
->JP)=JPeX
- peZ

It is obvious, from the definition of Z, that J" maps Z onto X. Since n induces
an order isomorphism between ¢¢ and X<, (r~!)“Z is an initial segment of &2
of order type &. Therefore,

n(J%a)) ~ J'(7(er)) for all a € &2
From this, we also see that

n(CHar)) ~ CI(R(er)) for all a € &2 O

Theorem 16.35. & _ has the finiteness property.

PrOOF. Let # be an arbitrary ordinal and f,,..., f,—; be such that

J(Bos- -+ Bu—1>)=n, then B;<n for all i<n. Let H, = {B;|f; #n Ai<n}.
We shall prove that for all X = 7

PENX v {n}) £ PUX U H) U {n}

Let Y = 2%.(X v H,) u {}. We want to show that Y is a subalgebra of
21 fae (X U H,), then C7"'({a)) = C}({ap) and hence C!*'({a)) e
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P (X UH,) < Y. Clearly, C}"'({nd)e H, v {n} € Y. Thus Y is closed
under C7* !, It is easy to verify that Y is closed under F, and J, so we leave it
to the reader. O

EXERCISE

Complete the discussion about C; in the above proof.

Theorem 16.36. & . has the direct limit property.

Proor. Let IT = (n;, m;;>;<; be a well-founded direct system of strong & .

maps with an index set <I, <. First we shall show by induction on J(7; . (a))
that if J"(a) ~ B, then J(7; () = 7;(B). Let & € n& besuch that 8 < 7, ().
Then there exist j = i and &' € ¢ such that ;,(8") = 8. If we puta’ = 7; (o),
then we have 7;,(8") < 7;,(®) = 7;(@'), and s0 J(7;,(8")) < J(7;n()). By
the induction hypothesis, we see that J(8) = n;,,(J(8")). Since =, is order
preserving and 7;,(8") < 7;,(&), we have & <o’ Noting that J(@) =
IU(Ef@) = m(J"(@) = m(), we have:

J(©®) = 7;5,(J(8)) < 7jou(J@)) = Tjoo(m:(B)) = Tis(P)

Then J(7; (@) < 7;o(B). Assume J(7; (@) < T;(pB). Let j 2 i and 6 < 1;
be such that 7;,,(¢) = J(7;,(@)). Ifa’ = ;) and B’ = 7;(B), then 7;,(0) <
T(B) = Ta(J@)) because J(&) = JU(7f) = 7,(J/"(@)) = 7,(B) = -
Hence there exists a y € #¥ such that y < o' and J(y) = 0. Since y < o, we
see that J(7T;,(Y)) < J(7j(@)) = J(7;n(@)). By the induction hypothesis,
J(T0(¥) = T(J(¥)) = 70 (0). Therefore J(7,,(y)) = J(7in(@)). This is a
contradiction, and we conclude that J(7; (@) = 7;(f).

Next we shall show that if J"=(71; (&) is defined, then J"(et) is also defined.
From this we have

T (JT(0)) = J'=(T; (@) for all & € 72

Let f = J"=(f;,(a)), then there exist j 2 iand ' < 5; such that 7;,(f) = .
Ifo’ = 7;{a), then

J" (R (@) = 7o B)-

If we show that J(@') < B, then J"(a') = J"(#;{()) is defined, and hence
J"(a) is also defined because m;;: ; — #; is a strong £ -map. Suppose
J(@) > B, then there exists a y € #¥ such that J(y) = f', and hence

J (7o) = mjeo(B) = J(7je(@))-

This is a contradiction since y < o’. [
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Remark. We next introduce a ramified language %, to provide a notation
for each member of L, the class of constructible sets. The symbols of & are
the following:

Variables: xq, X1, .-.» Xpr ... (HE ).
Relation symbols: €, =.
Propositional connectives: 71, v.
Quantifiers: 3* (¢ € On).
Abstraction operators: "= (¢ € On).
Parenthesis: ( , ).

Definition 16.37.
(1) g3 220+ 1,
(2 g & 20 +2

and for any finite sequence s of symbols of &
(3) g(s)is the maximum of g(3*) and g(*=) for all 3* and *= which occur in s.

Definition 16.38. Formulas and constant terms of .# are defined as follows.

(1) Ifeachoft, and t, is a constant term or a variable, then (¢, € t,) and
(t; = t,) are formulas of #.

(2) If ¢ and ¢ are formulas, then (—1¢) and (¢ v y) are formulas.
(3) If ¢ is a formula, then (3*x; ¢) is a formula.

(4) If ¢(x;) is a formula without free variables other than x; such that
g(p(x)) < g(*=), then (£F¢p(x;)) is a constant term.

(5) Formulas and terms are only those obtained by a finite number of
applications of (1)-(4).

Definition 16.39. T, £ {t|t is a constant term of the form (£f¢) with § < o}
and Té UannT;’

Definition 16.40. For each atomic sentence ¢ of .Z, a sentence E(¢) of & is
defined as follows.

(1) E(%fo(x;) = 2p(x))
SVx[F%(x; = X A @(x) & Fx;(x; = X A Y(x))]

where y = max(a, ) and X, is the first variable occurring in neither Xf¢(x;)
nor £8y(x;).

(2) Ifa < B, then

E(27p(x) € £1Y(x)) S Y(%5 o(x,).
(3) Ifa = p,then
E(%50(x) € $hp(x)) & I [V xi(x; € X 0(x)
A EIﬂ"j (xj = X A Y(x))],

where x, is the first variable occurring in neither £f¢(x;) nor 5y (x;)).



16 Silver Machines 195

Remark. Let 2 _ be the pairing machine of Definition 16.32. Using J, we
code the symbols of # by ordinals.
Definition 16.41.
(1) Tel =J(0,03),
(2 =" =J(O, 1)),
(3 M =J(KO, 2)),
@ v =J(0,3)),
(5 (' =J(KO,43),
6 M1 =JKO, 5)),
M T™x =J(KO,6 + i),
8) ™3™ = J(0, o + o)),
and
9 ™ =JK0, 0+ o o+ a))
For any finite sequence sy, ..., s, of symbols of &,
10) Fsq,...,8,V = J(KL, s, ..., Ts, ).
Remark. From now on, we identify formulas and terms of % with their
codes. We need the following properties of codes.
(1) The codes of different formulas (terms) are different.

(2) Ifn:¢ — nisamedium £ .-map, then for each formula (term) o, n(¢)
is the formula (term) obtained from ¢ by replacing each occurrence of 3* and
" by 3" and "~ respectively.

(3) If (I"x;0(x;)) is a sentence and t € T, then ¢(t) < (3*x; ¢(x;)) and
< (3x; 0(xy)).

(4) If (fe(x;)) is a constant term and ¢ € T,, then ¢(t) < (£¢(x;)) and
t < (%Fo(x;).

(5) If @ is an atomic sentence, then E(¢p) < ¢.

©) ¢o<(oe<(pvy)andy <(o Vv ¥)

(1), and (3)-(6) are easily verified. We shall only prove (2). Let n: & - ¢
be a medium Z _-map, and let § = sup{n(a) + 1ja < ¢}. Thenn: ¢ >disa
strong 2 .-map. Note that 7(0) = n(J%(( D)) = J2(n({ D)) = JK D) =0
and (1) = n(J°(<0))) = J¥(n(<0D)) = J*({n(0)>) = J%((0D) = 1. Further-
more each ordinal less than w? can be expressed in the form J({iy, . . ., i,_ ;)
with each of iy, ..., i,_ less than or equal to 1. Therefore, if « < min(&, w?),
then n(a) = a. Thus we have n(Ts7) = s for all symbols of £ except 3* and
e Ifw+ a < & then

o + o) = w+ o ifo < w?
o+ ifo = o

From this, we have 7(3%) = 3"® and n(**) = "=,
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EXERCISE

Find the first ordinal 1 > 0 such that for every medium #_-map, n: E—> g,z [ (E N A)
is the identity map.
Definition 16.42.
(1) D(t, et;) & D(E(t; € 1,)).
(2) D(t; = t;) & D(E(, = 1,)).
(3) D(19) & 1D(9).
4 D(¢ v )& D(@) v D().
() DEx;9(xy)) & @ € T)D((0)).
(6) D(%¢(x) £ {D(®)|t € T, A D(p(1))}-
L, £ {D®|teT}and L £ (JsconLe-
For each sentence ¢ of &, L= ¢ & D(p).

EXERCISE

Prove that the class L defined here is the class of constructible sets defined in Chapter 15.
Prove also that all of the notions involving L are absolute with respect to L.

Remark. (1) Recall that each of the sentences and terms of .# is an ordinal.
Consequently the operator D of Definition 16.42 is well defined.

(2) For all constant terms ¢, and ¢,, it is easily seen that
D(t; = t;) & D(t;) = D(1).
D(t, € ty) > D(t,) € D(t,).

3) Ly=0
L,., = {x € L,|xisfirst-order definable over {L,, €> with parameters
from L,}
L,= U L,, 2eKy
a<i

Definition 16.43. The L-machine M = {On, F,, J, C;, T, K);.,, is defined as
follows:

(1) 2. ={0n,F,y,J,C;»;,is the pairing machine of Definition 16.32.
(2) If ¢ is a sentence of %, then
1 ifL ,
T(9)) = { -

0 otherwise.

(3) If 3*x;0(x;) is a sentence of & such that L= 3*x;¢(x;), then
K({3*x; p(x;))) is the least term ¢ € T, such that L = ¢(t).

(4) T(a)and K(a) are undefined except for the cases specified in (2) and
3).
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Theorem 16.44. The L-machine M has the collapsing property.

PRrOOF. Let 7 be an ordinal, let X be a subalgebra of M"; and let n: j - X
be the collapsing map of X. We shall prove that z: #f — 7 is a strong M-map.
Since 2 . has the collapsing property, n: ff — 7 is a strong £ .-map.

First we show, by induction on ¢, that for any sentence ¢ < #j of &,
L &= ¢iff L = n(p). We consider only the case where ¢ is 3%x;0(x;). Other
cases can be treated similarly. Let o = (&) and 0 = (). Then n(p) =
3*x;6(x;) and

LEp—>Q@ieT)LE 6]
- @te TH[L & 0(t)] (by the induction hypothesis)
- L = 3%%;0(x;)

- LE o

Conversely, suppose L ¢ and let t = K({¢))€ T,. Since t < ¢, t =
K"({@)) and hence t € X. Let { < 77 be such that n(f) = ¢. Then € T, and
by the induction hypothesis, L = 8(f). Therefore L |= ¢.

It is easily seen that n(T%(a)) ~ T"(#(ax)) for all a € #2.

Next we shall prove that n(K%(a)) ~ K"(7i(e)) for all aef® Let
3*x,;0(x;) < 7] be a sentence of % such that L = Fx;0(x,). Let o = n(%) and
0 = n(#), then we have seen that L = 3%x;0(x;). Let {,,f, € T,and t,, t, € T,
be such that =n(f,) = t,, n(f,) = t,, {; = K((Fx;0(x;)y) and ¢, =
K({3*x;6(x;)»). Then we have L = 8(¢,), L = 8(f,), L &= 6(t,) and L = 6(t,).
Therefore t, < t,, t, < t,, and hence {, = ,. Thus we have proved that if
K7({Fx;0(x;)) = iy, then K"({Fx;6(x;)) = t. If K"({3*x,0(x,))) is defined,
then L k= 3%x;60(x;), and so L = Fx,;0(x;). Hence K"((3%x;0(x;))) is defined.

O

Theorem 16.45. M has the finiteness property.

PRrOOF. Let # be an arbitrary ordinal, and let H, be the finite subset of 7
defined in the proof of Theorem 16.35. If H, = H, U {K({n))}, then, as in
the proof of Theorem 16.35, M(X U H,) u {n} is a subalgebra of M"*'.
Thus for all X < 5,

M7 X O (1)) € MU(X U H)) U (). O

Theorem 16.46.The L-machine M has the direct limit property.

Proor. Let II = <n;, n;;>;<; be a well-founded direct system of strong
M-maps with an index set <I, £)>. We have already seen that each =;:
1; = N 1S a strong & _-map.

Let ¢ be a sentence of .. We shall prove by induction on ¢ thatif ¢ < 7;,
then

() LE e iffLE m(e)
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If ¢ is 3*x0(x), then m;,(¢) = I"=Wxx; (0)(x). Suppose L = ¢. Then there
exists a t € T, such that L = 6(t), and hence, by the induction hypothesis,
L | 7(0)(7:5,(t)) with m; (1) € T,, - Thus we have L | m;(p). Now
suppose L = m;,(¢). Then there exists a t’ € T, ,, such that L = m;(6)(t).
Letj = iand t € T, be such that 7;,,(t) = ¢". By the induction hypothesis,
L = m;{0)(t), and hence L = m;{@). Since 7;;: n; — 1, is a strong M-map, we
see that L = ¢.
From (1) it is easy to see that

2) 7 (TM(e) ~ T"™(T;(@)) forallaeyd.
It remains to verify that
B) mo(K™@)) ~ K™ (#;o(@)) foralle e nf.

Let ¢ = 3*x6(x) be a sentence that is less than #;. Then by (1), K"({¢)) is
defined iff K"=({m;,(¢))) is defined. Suppose L = ¢ and t = K"({¢)). We
want to show that ;. (t) = K" ({m;,,(¢))). Let s’ = K"=({m;,,(¢))), then by
(1),itisobviousthats’ < m;(r). Letj = iand s € T, , besuch that m;(s) = '
and L |= m;(0)(s). Since m;;: 1; — n; is a strong M-map, we see that n;(t) =
K" ({m;{9)>). Hence m;(t) < s, and 7;0(t) = i (m(1)) < 7ju(s) = . Con-
sequently, ;. (t) = . O

EXERCISES

(1) Prove thatif IT = {n;, ;;>;<; is a well-founded direct system of medium M-maps,
then each 7;,: ; — 7, is also a medium M-map.

(2) M and M" are absolute with respect to L.



CHAPTER 17
Applications of Silver Machines

In this chapter, we give two applications of the L-machine M.

Definition 17.1. For each ordinal «,

& = %5 Ord(x,).

Remark. By induction on « it is easy to see that

D(&) = a.

Theorem 17.2. V = L - GCH.
PrOOF. We shall show that
PN, € Ly, .

Suppose that a £ R, and let ¢ be a term such that D(¢) = a. Let = max(X, , ,
t")andlet X = M'(X, U {t}), where 7 is the cardinality of t and T is the next
cardinal after . Obviously X = N,. Since M has the collapsing property,
it follows that if n:#" — X is the collapsing map of X, then n:#' > nis a
strong M-map. Let ¢ be a term such that ¢’ <5’ and =n(¢t") = t. Noting that
n(f) = P for all B < N,, we have that for any < ¥,,

Bea—LE fen(t)
—LE ﬁe t’
« Be D).
Hencea = D(£"* (x e R, A x et')), where y = max(X,, t') < ¥, ;. Thus
aeLy,, . O

199
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Definition 17.3. Let x be a limit ordinal.
(1) Cisclosedink&Cck A (VX € O[uX <k-uXeCl
(2) Cisunboundedink e C < k A UC = k.
(3) Sisstationaryinxiff S = x and S n C # 0 for all closed unbounded

subsets C in k.
Definition 17.4. The sequence {S,:a < k) is a G(k)-sequence iff

(1) (Vaer)[S, € al, and
2) (VX ck)f{e <k|X na=S,}isstationary in k].

Remark. We read O(k) simply as “diamond kappa.”
Definition 17.5. O(x) & there exists a (k)-sequence.

Lemma 17.6. Let k be a regular uncountable cardinal and let A be an ordinal
suchthat k < A Foreachset X with X = Aand X < k, there exists a subalgebra
Y of M* such that X is a subset of Y, Y < kand Y nk e k.

PRrOOF. By induction on n, we define «, and Y, as follows:
Y, =X
o, = supf{a + llae Y, Nk}
Y1 =M(Y,ua,)
Finally if Y = { ),c, Y,. then it is easy to verify that Y has the desired pro-
perties. O

Theorem 17.7., Assume that V = L. Then
(V &)k is a regular cardinal A k > w - O (k)]

PROOF. Let k be an arbitrary regular uncountable cardinal. We define a
sequence <S,, C,>:a < k) as follows:

(a) SO = CO =0,

(b) Se+1 = Co41 =0,

(c) if o is a limit ordinal and there exists a pair (S, C) of subsets of «
such that C is closed and unbounded in « and

(VyeOSny#S,],

then (S,, C,) is the <,-least such pair ¢S, C), where <, is the canonical
well ordering on L,

(d) otherwise, S, =C,=0.
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Weclaim {S,: a < k) is a {(k)-sequence. If not, there exists a pair (S, C)
of subsets of k such that C is closed and unbounded in xk and (V ye C)[S n y
# S,]. We take the < -least such pair (S, C).
_Let X = {k,x*} and let Y be a subalgebra of M*"" such that X < Y,
Y <kand Ynkex Ifa, = Yk, then oy is closed under J, and so ag is a
limit ordinal.

Let m: 5" — Y be the collapsing map of Y, thenn’ < kxand n:' - k* ¥ is
a strong M-map.

By a similar proof to that of Theorem 17.2, it can be seen that {{S,, C,):
a < ky € L,+. There exists a formula ¢(x,) of & with only the quantifier =L
such that ¢(x,) defines (XS,, C,>:a <k » and the only constant term occur-
ring in @(x,) is k. Let t = K({3*" x4 @(x,)>), then D(t) = {{S,, C,>: & < K.
Since Y is a subalgebra of M*™ " that contains k and k*, it follows that t € Y.
Let ¢’ be a term such that t' < " and #n(t') = &.

We let

se = 21 [3 x, 3K+3¢3(<xa (X2, X3)) €L A X1 € X,)],

I

53 x, 3K+x3(<x» (X2, X3P) €L A X; €X3)]

Cx

Then for each f < a,, we have that s;, cze Y, D(s;) = S5 and D(c;) = Cy.
Similarly, we define s/, and ¢/, by replacing each occurrence of x* and ¢ by
7~ (i) and t’, respectively. We then see that

(VB < ap)[n(sp) = s3 A n(ch) = cjl.

We shall show by induction on f that
(i) D(sj) = S and D(cj) = Cg.

The only case we have to consider is that {(S;, C;) is defined by (c). Let
Y(x,, x,) be the following sentence of #: {x,, x,> is the <;-least pair of
subsets of f§ such that x, is closed and unbounded in f and V’x(xe f —
X1 N x # s). Since L= n(y)(sj, cp), it follows that L = y(sjs, cj). By the
induction hypothesis, D(s;) = S, and D(cj) = C, for all y < . Hence
{D(sp), D(cp)y satisfies (c), and thus {D(sj), D(cj)) = {S;, Cp>.

Let s and ¢ be terms of % such that s,ce Y, D(s) = S and D(c) = C.
Their existence can be proved in the same way as above. Let s" and ¢’ be
such that §', ¢’ < #/, n(s") = s and n(c’) = c. Since © | a, is the identity map
and n(ay) = k, we can easily show that

(i) D(s)=Sna, and D(c) = C na,.
By the same proof as (i), we can show that

(iii)) D(s") = S,,, D(c') = C,, and (S, C,, > satisfies (¢).

ag? ag ag?

From (ii) and (iii), S nag = S,, and C n oy = C,,. But since C,, is un-
bounded in a,, we have o, = sup(C N o) € C. This contradicts the assump-
tion that (Vye C)[Sny # §,]. O
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Definition 17.8. The ordered triple <J, «, P) is an acceptable triple iff
(1) d,ceOnanda =<9,
(2) Pis a finite subset of §, and
3) 6= M’y P).

Definition 17.9. The mapping n: {4, a, P> — {d’, &, P’) is an acceptable
map iff

(1) <6, a, P)and <d, o, P’y are acceptable,

2) =:d6 - 0 is a medium M-map.

(3) a=d,and

(4) =n [ aisthe identity map on a.

Definition 17.10. A transitive set a is elementarily equivalent to a transitive
set b iff for every sentence ¢ of the language

(a, &) F oo b ey o

Lemmal7.11. Let M be a transitive set which is elementarily equivalent to
L, for some uncountable cardinal in L. If n:<{d,a, P —» (&', o/, P’> is an
acceptable map such that {é, o, P>, {¥, o/, P'> € M, then n e M.

Proor. Note that each of Fy, J, C;, T and K is absolute with respect to M.
Let Fy =J,F, =T, F;=Kand F;,, = C; (i < w). We define a sequence
(X,:n < w)eM as follows:

XO =0(UP,
Xpri = U (FI):ve Xg),

Then 6 = M¥a U P) = (J,<, X,. Let P = {oy,...,0,} and ¢, = n(0)).
Then = is inductively defined in M as follows:

av)=v ifv<a
(o;) = o} (i=1,..,k)
T(Fi(v)) = F(R(v)) if ve X¢ FX(v) is defined, and F{(v)¢ | ) X,,.

m=<n

Thus we have ne M. O

Definition17.12. Let « be a limit ordinal. Then IT = {{J;, a;, P;>, 7;;); jerisa
k-direct limit system iff

(1) <, £> is a partially ordered set such that (Vi, jel) (3 kel) [i <
knj<Kk],
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(@) <9y, m;;»i<;is a direct system of medium M-maps,

(3) ifi < j,thenm;;: {d;, o, P;) — {4;, a;, P;> is an acceptable map such
that sup{m;;(v) + 1|v < 6;} < 6,

4) J; <k, and

(5) {o;liel}iscofinal in k.

Remark. 1If 11 is well founded, then it is easily seen that d,, = x and
sup{m;,(v) + 1ljv < §;} <, foralliel

For every set X of ordinals, we use o(X) to denote the order type of X.

Lemma 17.13. Let y and x be limit ordinals such that u < x. If VY n < p)
Va <x)VYQ < n)[Q is finite >o(M"(o U Q)) < k], then there exists a well-
founded k-direct limit system whose limit is u.

PrOOF. Let I = {{n, o, QD |n<purna<k na<nAQis a finite subset of n}.
Foreachi={n,a, Q>el, wesety,=#,a;,=a and Q;=Q. For any i, j€ I,
we define i < j by

. . A
i<jobmsEnng2anQisQ;AneQ;,

Furthermore i £ j&i<jvi=j. Itis easy to see that (Vi,jel)(3kel)
[i <k Aj<k] Let X; = M"(a; U Q,), then o(X;) < k by our assumption.
For each iel, let p;: 6, — X; be the collapsing map of X;. Then §;, < «
and p;: 6, —>n; is a strong M-map. If i, je I and i <, then by Proposition
16.18, p;'op; is a medium M-map since #(p;) = X; S X;=W(p),
and also we have that sup{p; ' o p,(v) + 1|v < §;} < §; since n,€Q; € X;.
Let m; = p;'op;, and P; = (p; })“Q;. We want to show that [T = {4,
a;, P>, ;)i jer is a well-founded «-direct limit system with p as its limit. By
Theorem 16.19, p;“M%(a; U P;) = X; and hence 8; = M%(a; U P;). Conse-
quently, each <{d;, a;, P;> is an acceptable triple and =;;: {é;, a;, P;> —
{d;, a;, P;> is an acceptable map if i < j. It is clear that {o;|ie I} is cofinal
with .

We need to prove that u is the limit of I1. By the definition of =;;, we have

jo
PjeTy; = pP; (=)

In view of Theorem 16.26, it suffices to show that u = Uie W (p). Lety < pu
and i = (n + 1,0, {#}), then n € X; = #°(p,). This complete the proof. [

Lemma 17.14. Let k be a limit ordinal, and let {I,, <) and {I,, £, be
directed sets such that I, N1, =0. If I1; = &, a;, P.), pij)i jer, and
I, = N5 Bi Q)5 0:): je1, are well-founded k-direct limit systems with
limits p, and p,, and if p, < u,, then there exists a k-direct limit system
IT = <, 7, RD, nij>i,je[ such that

1) I=1I,0l,,
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Q) LjelniZjo(,jel, niZ v jel, niZ,j)
v(@iel, njel,),
<£iaai’Pi> l:fiEII’
ni Bis Q> ifiels,
ifiiel
@ nijz{gu lflje 1
i fhjel.
PROOF. We need to define i < jand n;; when ie I, and jel,: Ifiel; and
jel,, then

3) v R = {

i<j&ESH A0S B A pig Pi S W(00) A

sup{pio(v) + 1|v < &} € W(gjw)'
It is easily seen that
W (piw) = Pieli = PioM*(0; U P) S W(Pjw)

Hence 0;.) ° p;, is a medium M-map, by Proposition 16.18, and so we set
;= 9;,01 ° Piw- It 18 necessary to show that <{I, <> is a directed set. To see
this, it suffices to show that”

(Viel))@jel,)( <))

Let iel,. Since P; is finite and sup{p;(v) + 1|v < &} < yu; < u,, there
exists a j € I, such that &; < B}, pi, P; © #(64,) and sup{p;,,(v) + 1|v<{;}
€ #(0,,) Theni < j. O

Definition 17.15. Let A and B be sets. 4 mapping h: A — B is an elementary
embedding, iff for every formula ¢(x,,..., x,) where x,, ..., X, are the only
free variables

<A’ 8> # (p(ala L] an) - <B7 8> '= (p(h(al)’ LA} h(an))

Lemma 17.16. Let k be an infinite cardinal in L and h: L, — L, be an elemen-
tary embedding. Let T1 = ((6;, &, P.;), ;) je; be a well-founded K-direct
limit system with limit . Also suppose that I1 = h(IT) = {((h(5;), h(a;),
h(P)>, W(7;))): jer is a well-founded k-direct limit system with limit p. Then
there exists a medium M-map h*: i — p such that h* | € = h | K. (By Lemma
17.11, 7;; € L; and hence h(w;;) is defined.)

PROOF. Let §; = h(d,), o; = h(&;), P; = h(P;) and m;; = h(7;;). For each
G < §;, we let h*(T;o(6)) = m;,(h(6)). First, we must show that h* is well
defined. Let ¢ and 7 be such that 6 < §, T < 8 and 7;,(8) = 7;(7), then
there is a keI with k = i, j such that 7,(6) = 7;(7), and hence m(h(5))
= 73(h(?)). Thus we have ;,(h(G)) = ;o (H(T)) if 7;,,(6) = 7jo(T).

Since each 7;,(7;,,) is the identity on a/e;) and {&;|ie I} is cofinal with
K, we have that h*(6) = h(a) for all ¢ < k. Consequently, h* is an extension
of h I k.
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Let 4 = sup{h*(6) + 1|6 < j1}. We want to show that h*: 1 — y' is a
strong M-map. Let F be one of F, J, C;, Tand K, and &, T < j1 be such that
F(6) = 1. Then

FieD@Bd,7T < 6)[7M;n() =T A T;0(T) = T].
Since 7, : 6; — ji is a medium M-map,
F(@@)=17.
But since h is elementary,
F(h(6")) = h(T).
Hence
Tio(F(A(6"))) = Tieo (A(T)).
Since 7;,,: d; — p is a medium M-map,
F(n(h(5")) = mie(h(2"))-
And hence,
F(h*(6)) = h*().
Thus we have
FX6) ~ T — F*(h*(6)) ~ h*(%).
Let 6 and 7 be such that ¢ < fi, 7 < y’ and F(h*(6)) = . Then
BieDAG, T < 0)[M:(0) = 6 A T £ h*(7;,(T))]-

Then 1 < sup{m;,(v) + 1|v < §;} = &/, and hence F%{(n;,(h(5))) is defined.
Since 7;,,:8; — 9} s a strong M-map, F°(h(d")) is defined. It is easy to see that
h|8;:5; - 6; is a strong M-map because & is elementary. Hence, F%(&") is
defined, and therefore F#(G) is defined. Thus

h*(FA(G)) ~ F*(h*(3)) for all & < [i. O
Definition 17.17. S & (Vx S On)[R > o » @ yeL)(x S y A X = J)].
Definition 17.18. 22 £ sup,, ., 2%

Theorem 17.19. Assume S.

(1) IfAisaregular cardinal in L and A = N, then cf(2) = .

(2) If Ais a singular cardinal, then A is also a singular cardinal in L.

(3) For every singular cardinal A, A* = (A~

(4) If Aisasingular cardinal and if T is a cardinal such that cf(1) < t < 4,
then 2¢ = max(%', A*).
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(5) For each singular cardinal 2,

=_ 2 f@c< N =23,
24H*  otherwise.
PrROOF. (1) Let x = A be such that X = cf(4) and ux = A. Then by S there
existsa y € Lsuchthat x £ y € Aand j = max(X, ¥,). Since Uy = 1and dis
regular in L, we see that y* = 1. Hence we have y =1 = N,. Thus, cf(4)
=X=j=A
(2) Note that A = &, > N,. By (1), Ais singular in L.

(3) Obviously (A*)* < A1*. Suppose (1)L < A*. From (1) cf((A")")
= (A*)* = A Hence A is a regular cardinal.
(4) By the Konig lemma,

[\

(VO[efH) St < 1> A < A1 <27
Therefore,
(VoO)[ef(d) € t < 2> & = max(Z, A1)].
Let 7 be an arbitrary cardinal such that c¢f(1) < 7 < A. Since
M=vu{dlacinana=1}

we have

F=max({ac Ala=r1c) =max({ac Ala = 1}, 2).

Casel.t > w: By S,
acind=t1-@xel)flacxcianx=r1]

Let X = {xeL|x € A A X = 1}. Then

X < 250) < @) = (A*)F = 1* by (3).

Therefore,

{a c x|a =1}, ?) < max(2, A*).

xeX

Case 2. 1 = w: By §, we see that
acina=8,»@3xel)flacxc iAXx=¥]

Let Y= {xeL|x € A A X =N,}. Then,

jz

1A

max( U {a € xla = Ry}, .:Z:‘)

xeY

< max (A", N, 2%0) = max(2¥, 1%).
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(5) Let k = cf(2) and let A, for v < k be such that 4, < A and A =
(Uv<x 4,- Then

2= 20k = T[ 2~ < [] 22 = @O

v<k v<k

If 2 = 24 for some t < A, such that k < 7, then

<@ =27 <2

and hence 2% = 22, Suppose (V © < A)(2° < 2). Then by (4) we have
2" = max(Z5, 24*) = (29)*.

2% < (23)*. On the other hand, (24)" < (2‘)" <24 O

57

Therefore,

Definition 17.20. I & (V )V #) [If i is a regular cardinal A n: ji— Onisa
medium M-map, then r is the identity map on j].

Remark. Our next objective is to prove the following theorem.

Theorem 17.21. I - S.

Remark. To prove Theorem 17.21 we will prove a sequence of lemmas
that will enable us to prove the contrapositive =1 S — 1 1. So from this
point until we complete the proof of the contrapositive of Theorem 17.21 we
assume —1 S. That is, we assume

AX<cOnN[X>wA(VYel)(X=Y-X 2 Y)].
Letk = min{leOn|AX cA[X >0 A (VYel)(X=Y>X 2 )]},
and let X be a subset of x such that
* X>oa(WVYel) X=Y>XgY)

Lemma 17.22.

(1) VYeLXX <Y Ytk

(2) L= [k is a cardinal].

3) uX =«

@ X<r
PROOF. (1) Assume _

AYeL)X YA YL<p),
and let 1 = Y~ Then
A feL)(f: Az Y)

Let X' = (f~1)“X, then it is easily seen that X’ = A and X’ satisfies (*).
This contradicts the minimality of .

(2) Asin (1) there is no one-to-one-onto mapping in L from some 4 <
to k.
(3) and (4) are trivial. O
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Lemma 17.23. There exists an elementary embedding h: L, — L, such that
(1) X<cW#h)and X =W (h);

(2) if IT = 6, &, P>, )i jes is a well-founded k-direct limit system,
then h(I1) = {Kh(8)), W(&), h(Py)), W(T;)); jey is a well-founded r-direct limit
system.

Remark. We shall prove this lemma later.

PROOF OF THEOREM 17.21. Let h: L; — L, be as in Lemma 17.23. In view of (3)
and (4) of Lemma 17.22, h [ % is not the identity. Let & be an arbitrary limit
ordinal with 7 = %.

Claim: Vi< p(MVa<r)(VQO < [Q is finite » o(M(a L Q)) < K].
From this claim and Lemma 17.13, there exists a well-founded &-direct limit
system I1 with  as its limit. By Lemma 17.23 h(IT) is also well founded and
hence by Lemma 17.16, there exists a medium M-map, h*: i — On, such
that A* ' € = h [ kK. Then h* is not the identity.

If our claim were false, then there would be an 77 < fi such that

Fa < ®@Q0 < [0 is finite A oMY (&L Q) = k]
Take the least such 77 and let & < &, Q < 7 be such that
Q is finite A o(M(& LU Q)) = k.

Then by Lemma 16.22, 7 is a limit ordinal that is greater than or equal to .

Let n:/j - M%(& U Q) be the collapsing map of M*(&u Q). Then ik <
i <#and n:7j — 7 is a strong M-map. If P = (Z‘E—l)“Q, then by Theorem
16.19, n“M*(& u P) = M(& L Q). Hence 7j = M"(& u P). But by the mini-
mality of 7, we have j = 7. Thus we have shown that

3P < i)[Pis finite A 1 = M (g u P)].

Since 7 satisfies the hypothesis of Lemma 17.13, there exists a medium M-

map, h*:7 — On such that h* [ k£ = h | . Let n = sup{h*(6) + 1]|a < 7}

Then h*:ij — 7 is a strong M-map. If Y = M(h(z) U h*“P), then Ye L and
from Lemma 17.22.2

Yh = h@" < K,
because h(x) < k. We shall show that X < Y. Since h*:7 — 5 is a strong
M-map, we have by Theorem 16.19 that
W (h*) = h*“M"(a v P) = M"((h*“a) U (h*“P)) c Y.
But X < #'(h*), since X < #'(h). Thus X < Y. This contradicts Lemma
17.22.1, and the proof is completed. O

Remark. To prove Lemma 17.23 we need a result that requires the following
definition.
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Definition 17.24. Let IT = {{J;, &;, P;, m;;); e be a k-direct limit system,
andZ < L,.

() TgZ&Fieh[s,u, PieZl A (VijeD[i £j—-n;eZ].

(2) II is Z-well-founded iff there are no sequences {i,:n < w) and
{o,:n <w) such that i,el, 6,eZnd; and (Vn<w)[i, £ i+1 A
L (0,) > 0,41]

Remark. Let h: Ly — L, be an elementary embedding and II be a k-
direct limit system. Also let Z = #°(h) and I1 = h(IT). Then IT is well
founded iff IT is Z-well-founded.

Definition 17.25. Let 4 be a subset of a set B. Then A is an elementary
submodel of Biff the embedding map of 4 into B is an elementary embedding.
We write A < B which is read “A is an elementary submodel of B.”

EXERCISE

Let Z be an elementary submodel of L,. Then there exists a k and an elementary
embedding h: L; — L, such that w'(h) = Z.

Lemma 17.26. Let Z be such that Z < L., X € Z and X = Z. Then there
exists a Z' an elementary submodel of L, such that
() z<2,Z =X, and

(2) ifIl € Z is a k-direct limit system which is not well founded, then T1
is not Z'-well-founded.

PrOOF. Let h: L; — L, be an elementary embedding such that #'(h) = Z.
Suppose there is a well-founded x-direct limit system IT such that A(IT) is not
well founded. Let fi be the least ordinal that is the limit of a well-founded
K-direct limit system I1, = (<&, &, P;), P;;»; jcs, such that h(I1;) = <K&,
o, P>, pii jer, is not well founded. Then there are sequences i,:n€ w)
and {o,: n€ w) such that

Vnewli,el, A o,<9;]
and
(Vrew)in £ ipsy A i, (00) > 0ps ]
Take Z' < L, such that Z U {o,:n € w} < Z’ and Z' = X. Let
I, = ni, Bir @0, 01 jer, E Z

be an arbitrary k-direct limit system which is not well founded. We want to
show that II, is not Z'-well-founded. We may assume that I1, is Z-well-
founded. Then there exists a well-founded #-direct limit system II, =
iy Bis 0id 0i)i. je1, such that h(I1,) = I1,. By the minimality of ji the
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limit of I, is greater than or equal to fi. Let IT = <&, 7;, R;), ;)i jer be @
ik-direct limit system which satisfies (1)-(3) of Lemma 17.14 (clearly we may
assume I; N I, = Q). Then there exists a sequence {j,: n € w) of elements of
I, such that i, £ j, for all ne w. Let 0, = m; j (0,), where m;; = h(7;;). Since
m;, ;. €Z and g,€ Z', we have {g,: new} < Z'. Also
gjml'n«r 1(0.;') = njnjn+ 1(ninj,.(o-n))

= ninj"+,(0'n)

= Tfi" +1in+ 1(ninin+ 1(0.”))

> nin+1jn+1(an+1) = O';H. 1+
Thus I, is not Z’'-well-founded. U

PrOOF OF LEMMA 17.23 (cf(x) = w case). We want to show that there exists
Z, an elementary submodel of L, , such that

(1) XgZ Z=2X;and

(2) IfII ¢ Z is a Z-well-founded k-direct limit system, then IT is well
founded.

First we shall prove that (2) can be replaced by the following (2'):

(2) IfI1 ¢ Z is a countable Z-well-founded x-direct limit system, then
IT is well founded, where IT is countable iff its index set is countable.

Let Z be an elementary submodel of L, that satisfies (1) and (2'). Let
I = {6, o, P, mi); jer S Z be a Z-well-founded k-direct limit system.
Suppose that IT is not well founded. Then there are sequences {i,: n € w) and
(o,:new)ysuchthat (Vnew)[i,el A g, < §; ] and

(Vnew)liy S iy A iy, (04) > 0ni i)
Since {a;|i € I} is cofinal with k and cf(x) = w, there is a sequence {j,:ne w)
such that {«; |n € w} is cofinal with k. Let J be a subset of I such that
() {imnew}u{j,newlcJ;

() J=ow;
and

(i) <J, £ nJ?) is directed.
Then IT 1 J = {{6;, a;, P>, ;) jey is a countable k-direct limit system
that is a subset of Z and which is not well founded. Clearly I1 [ J is Z-well-
founded. This contradicts (2). Thus IT is well founded.

Using Lemma 17.26, we can construct a sequence {(Z,: o < ¥;) such
that

@) Z,<L,X<cZ,andZ,=X;
(b) a<Bp—>Z,< Zsand

(c) ifIl € Z,is a k-direct limit system which is not well founded, then
Il is not Z,, -well-founded.
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Let Z = (Jy<n, Z,- Then Z < L,, X < Z and Z = X. We want to show
that (2') holds for this Z. Let I1 £ Z be a countable Z-well-founded -
direct limit system. ThenI1 £ Z,forsomea < N,.If ITwere not well founded,
then IT would not be Z, , ;-well-founded, and hence not Z-well-founded. This
is a contradiction. Thus the lemma has been proved in the case where cf(x)
= . 0]

From now on, we assume that cf(x) > w. From (3) of Lemma 17.22,
we see that X is unbounded in k. We may assume that X is closed in «, (if
necessary, consider the closure of X in place of X).

EXERCISE

We denote the closure of X by C(X). Prove X = (X

N

Let S = {Ae X|cf(}) = w}.

Lemma 17.27. Let Z be an elementary submodel of L, such that X € Z
and Z = X. Then there exists a Z', an elementary submodel of L, such that
() Z2cZ,Z=2X;and
(2) for any A€ S, if 1 < Z is a A-direct limit system which is not well
Jfounded, then I is not Z'-well-founded.

ProOF. Let h: L; —» L; be an elementary embedding such that #'(h) = Z.
For any A€ S, by the same proof as that of Lemma 17.26, we can find a
countable set 4; suchthat 4, € AandifZ U 4; < Z' < L, then Z’ satisfies
(2) for A. Let Z’ be an elementary submodel of L, such that Z u U 1es Aa
< Z'and Z' = X. Then Z’ satisfies (1) and (2). O

Corollary 17.28. There exists a Z, an elementary submodel of L, such that
() X<Z Z=2X;and

(2) forany A€ S, if I1 < Z is a countable A-direct limit system which is
not well founded, then Il is not Z-well-founded.

ProoF. We can construct a sequence {Z,: « < &, such that
(@ Z,<L,XcZ,andZ,=X;
®) a<p-Z,sZ;

(c) forany AeS, if IT1 € Z, is a A-direct limit system which is not well
founded, then I is not Z,, ,-well-founded.

Then Z = Ua<x. Z, has the desired property. ]

PrOOF OF LEMMA 17.23. (cf(x) > w case).

Let Z be as in Corollary 17.28. It is sufficient to prove that if [l £ Zis a
k-direct limit system which is not well founded, then IT is not Z-well-founded.
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Let IT = {0;, a;, P>, m;); jer S Z be a k-direct limit system which is
not well founded. Then there exist sequences {i,: ne w) and {g,:new)
such that (Yrne w) [i,el A 0, <6, ] and

(Vnew)[in é in+1 A ni"i"+1(o.n) > O-n+l]'

Claim: There exists a sequence {j,: n € w) such that

(1) (VHEUJ)[]'"EI A in g.]n éjn+1];

(i) A& sup,.,d; €S;

(ii)) ITI' =TI {j,:n € w} is a countable A-direct limit system.

We let 0, = 7; ; (5,). Then

Wi+ 1000 = T (T35, 00))
= niner— l(o-n)
= T,, 1in+ 1(niniu+ 1(611))
> nin+1jn+1(an+ l) = 0-;1+ 1
Hence IT' is not well founded, and hence not Z-well-founded. Thus IT is not
Z-well-founded.

We shall now prove the claim. By recursion on n, we define y, € X and
Jn€ 1. We choose y, € X arbitrarily. Since {a;:je€ I} is cofinal with x, there
exists a j, € I such that i5 < j, and y, < a;,. Suppose that y, and j, are
already defined. Since X is unbounded in «, there exists a y,, ; € X such that

0j, < Yn+1- Letjyig €l besuchthat i,y < juyi,jn S e and y,yy <o
Then (i) is clear.

(i) Let A = sup,.,, ;. By definition, we have

A =supy, = supq;,.

new new
Since cf(x) > w and X is closed in k, we see that A€ S.

(iii) It suffices to show that {«; |n € w} is cofinal with A. But this is clear
from the above. O

Definition 17.29. The mapping n: On — On is a strong M-map iff 7 is a
monomorphism from M to itself.

Definition 17.30. (1) A formula ¢ is bounded iff all the quantifiers occurring
in ¢ are of the form Ix e y.

(2) A formula ¢ is Z, iff it is of the form 3 x, where  is a bounded
formula.

(3) A mapping h: L — L is a 2, elementary embedding iff for any X,
formula ¢(xy, ..., x,) and any a,, ..., a,€ L,

Lk o,,...,a) ifLE o(ha,),...,ha,).
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Lemma 17.31. If n: On — On is a strong M-map, then there exists a X,
elementary embedding h: L — L such that = = h | On.

PrOOF. For any term ¢t of ¥, we let h(D(t)) = D(n(t)). Then h is well defined
and for all « € On, h(a) = h(D(&)) = D(n(%)) = D(n(2)) = n(c).

Let ¥(xq,...,x,) be a bounded formula and let ty,...,1,eT,. Let
Y*(xg, ..., X,) be the formula of .# obtained from ¥ by replacing each
quantifier Ixey(...)in Yy by I* x(xey A ...). Then

L *= ll’(D(tO)’ R D(tn)) A T(<l//a(t0, cre tn))) = 1
o T Y™ Anlto), - .., n(t,))>) = 1
o L y(D((to), ..., D(n(t,))

Let @(xq, ..., x,) be 3 xo)¥(xq, X1, ..., X,) and let ¢, ..., ¢, be terms of &
Then,

LE o(D(t), -, D)

= @3 to)tostys---5st,€ T, A L= Y(D(to), ..., D(t,)))

- L @03 to)to, trs-- - tn € T, A Y(D(nlto)), - .., D(n(t,))

- LE o(D(n(ty)), .. ., D(n(t,))).
We have to show the converse. Suppose that

L= o(D(n(ty)), ..., D(n(,))).
Then
3 B3P aeLy(n(t,),...,nt,) e Ty A L= y(a, D(n(ty)), ..., D(n(t,)))].
Take a € On such that n(a) = . Then
L 3" xo ™ (xy, n(ty), . .., n(t,)).
Since 7: On - On is a strong M-map, we have
LE Fx Y*(xg, b1y ey by)

Thus

L |= (p(D(tl)a"'aD(tn))‘ D

Theorem 17.32. Assume —S. Then there exists a X, elementary embedding
from L into itself which is not the identity.

PROOF. Let h: L, — L, be as in Lemma 17.23. We shall show that there exists
a strong M-map h*:On — On such that h* ! K = h I k. Then, by Lemma
17.31, there is a £, elementary embedding from L into L which extends h*
and hence is not the identity.

Let I = {<#,& 0)|7eOn A & <k A & <7 A Q is a finite subset of 7}.
In the proof of Theorem 17.21, we showed that if <7, & Q) €I, then
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oM (& U Q)) < k. If i = <{#j, & Q), then we set 7j; = 7], &; = @ and Q; = Q.
For any, i,je I, wedefinei < jand i < j by
i<j‘é”7i§ﬁj NG E2E;AQ S0 AnEQ,
iSjbdi<jvi=j
Then {I, £) is directed, but note that I is a proper class in the present
situation. For each ie I, let X; = M"(&; u Q,) and p;: 6; — X be the collaps-
ing map of X,. Also let P, = (p; ')"0Q;. When i < j, we set ;; = p; ' < p,.
Then @ = {{&;, &, P>, Tij )i je; is @ k-direct limit system whose limit is On.
If we put IT = h(IT), then IT is a k-direct limit system such that lim, IT is

linearly ordered and has no infinite descending sequence. We define #*: On —
lim IT by
—_

h*(7;5(6)) = Tie(A(5))

for each ¢ < §;. In Lemma 17.16, we saw that h* is well defined and is an
extension of h [ K. Obviously, h* is order preserving. We claim that

(1) ifxelimII, then {y e im IT|y < x} is a set.

By (1) im I1 is well ordered and hence is order isomorphic to On. Thus
we may assume that lim IT = On. As is known from Lemma 17.16, h* is a
strong M-map from On into itself.

Now we shall prove (1). Let 1 be an arbitrary regular cardinal such that
22 kand 4 = {xelimIT|x < h*(1)}. We must show that 4 is a set. To
see this, it suffices to show that for any i eI there is a j € I such that 77; < 4
and #(m;,,) N A € #'(n;,), because this implies that

A=) W (o)A u{#(rj)ljel ;< i}
iel

Let i € I. We may assume that 7; = 1. Since 1 is regular and K < 1, there
exists an 7 < 1 such that #(7; )N A< 7. Let X = M7(jju & v Q;) and
let p: € — X be the collapsing map of X. If j = <&, &, (o~ ")“Q,>, then ob-
viously,je I and ij; = & < A. We want to show that # (m;,,) N A € #'(x;,).
Since # (i) N A = W (Fio) N 11 = W (mj5) O i, it follows that # (%) N 1
€ # (%) Wechoose kel and i < 9, so that m,,(ff) = A For any l e I with
i,j, k <1, it is easy to see that #(xw;) N 7w, () & # («;). Therefore, in L,

(Vx)[xe # (@) A x < Tlp) > xe W (7))
Andsoin L,,
(Vx)[xe W (my) A x < mu(h({)) — x € W (m;)].
Thus
(V0)[x € # (M) A X < Ty o(B(i1)) = x € W (7))

This means that #'(n;,) N A & #(n;,), and we have completed the
proof of the theorem. Ul



CHAPTER 18
Introduction to Forcing

In proving that AC and GCH are consistent with ZF, Goédel used the so
called method of internal models. From the assumption that the universe
V is a model of ZF Godel preseribed a method for producing a submodel L
that is also a model of V = L, AC and GCH. This submodel is defined as the
class of all sets having a certain property, i.e.,

L = {x|Qo)[x = F'al}.
Indeed since x = F‘a is absolute w.r.t. every standard transitive model M
it follows that if
LM = {x|(3 a e M)[x = F'a]}

then L™ is a submodel of M that is also a model of V = L.

If V = L is valid in every model then V' = L must be provable in ZF
and conversely if /' = L is not provable in ZF then V = L is not valid in some
model. Can we hope to find such a model by the method of internal models?
That is, can we hope to produce a property ¢(q) such that

{x]o(x)}

is a model of ZF + V # L? There are compelling reasons for believing
that this method cannot succeed. The arguments turn upon the assumption
that there is a set that is a standard madel of ZF,

Theorem 18.1. If there exists a set that is a standard model of ZF then there
exists one and only one set M, such that

(1) M, is a countable standard transitive model of ZF + V = L and

(2) M, is a submodel of every standard transitive model of ZF.

215
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ProOF. From Mostowski’s theorem (Theorem 12.8) every standard model is
e-isomorphic to a standard transitive model. Therefore the existence of a
set that is a standard model of ZF implies the existence of a set that is a
standard transitive model. For transitive models the property of being an
ordinal is absolute. That is, those sets in a transitive model that play the role
of ordinals are ordinals. Furthermore, from transitivity, if « is in the model,
then all smaller ordinals are in the model. But a standard transitive model
that is a set cannot contain all ordinals.

If « is the smallest ordinal not contained in such a model then o is the
class of ordinals for that model. But the existence of such an ordinal implies
the existence of a smallest such ordinal, ag, that is the set of all ordinals in
some standard transitive model N,,.

Since N, is a model of ZF it follows that if

My2 LY = {xj(FaeNy)[x= Fa]} = {Fala < oy}

then M, is a model of ZF + V = L.

If N is any standard transitive model of ZF then N is closed w.r.t. the
fundamental operations. Therefore since oy & N it follows that M, £ N.
From this we see that M, is unique, for if M, and M’'are each standard
transitive models with the prescribed properties then

Mo M and M < M,.

Finally, from the Lowenheim-Skolem theorem, M, contains a countable
standard submodel. But this submodel must be e-isomorphic to a countable
standard transitive model that must contain M, as a submodel. Hence M,
is countable. O

Remark. The unique model M, described in Theorem 18.1 is called the
minimal model. Its existence follows from the existence of a set that is a
standard model. It should be observed that the minimal model contains no
proper transitive submodel. Thus the existence of a model of ZF does not
imply the existence of a standard model. (See Appendix.) We clearly cannot
prove the existence of a standard model, for that would prove the consistency
of ZF. We therefore postulate the existence of such a model

Standard Model Hypothesis: (3 m) SM (m, ZF).

From this assumption and Theorem 18.1 we are assured of the existence
of the minimal model M, that is (1) countable, hence contains a countable
collection of ordinals a,, (2) a model of ZF + V = L, and (3) a submodel of
every standard transitive model. Indeed from Mostowski’s theorem every
standard model contains a submodel e-isomorphic to M.

From the existence of the minimal model it follows that an attempt to
prove V =L and ZF independent by the method of internal models is
doomed to failure. Suppose that we could produce a wif ¢(a) for which it is
provable in ZF that

{x| p(x)}
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is a model of ZF + V # L. It then follows that this theorem relativized to
M, is also a theorem. That is

{xe Mo|oM(x)}

is a submodel of M, that is also a model of ZF + V # L. Since M is a model
of V = L this submodel is a proper submodel of M,. But such a submodel of
M, must be isomorphic to a standard transitive proper submodel of M, that
must in turn contain M, as a submodel. This is impossible.

The independence of ¥V = L must then be established by some method
other than that of internal models. Cohen’s approach is to extend the
minimal model M, in the following way. Since M|, is countable and Z(w)
is not countable, there exists a set a such that a £ w and a ¢ M. We adjoin
such a set a to M, to obtain M, U {a} and we define My[a] to be the result
of closing M, U {a} under-the eight fundamental operations. Can we select
a set a so that M,[a] is a model of ZF ? We will show that we can. Moreover
we will show that a can be selected so that the ordinals in M[a] are
precisely the ordinals in M. It then follows that

LMol = {x|(Fa € My)[x = Fa]} = M,.

This tells us that in the universe M[a] the class of constructible sets is M.
Since a € My[a] but a ¢ M, it follows that a is not constructible relative to the
universe My[a]. That is, My[a] is a model of V # L.

To prove the existence of a set a that is not in M, and for which M[a]
is a model of ZF we will develop a general theory for adjoining a set G to
any countable standard transitive model of ZF. If M is such a model of ZF
then the result of adjoining G to M we denote by M[G]. However in order
for M[G] to be a model of ZF with new properties, the set G must be especi-
ally selected. Let us first describe the special properties of G that we require.

Definition 18.2. A structure # = (P, <) is said to be a partially-ordered
structure if for every a, b, c € P, the following conditions are satisfied.

(1) a=bAabZ£ae—a=h
2) asbAabZc—>aZec

Remark. For the remainder of the section let M be a countable transitive
model of ZF, and let # = (P, <) be a partially ordered structure in M, i.e.,
PeM.

Definition 18.3. A subset D of P (in M) is dense in P iff
(VpeP)3qeD)(q = p)

Remark. Let [p] = {qe P|q < p}. Let {[p]ip € P} be a base of open sets
for a topology on P. Then D is dense in P iff D is dense in the sense of the
topology, that is, D = P, where D is the closure of D.
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Definition 18.4. A subset G of P (outside M) is said to be #-generic if
(1) (Vp,geG)E@reCG)(r=pAr=qg)
(2) (VpeG)(VqeP)[p =q9—4q€G],
(3) YVDeMwithDdensein P, DN G #0.

Lemma 1. For every p, € P, there exists a P-generic set G such that p, € G.

PRrOOF. Since M is countable, we can enumerate all dense subsets of P in M,
say D,, D,, ... . We then define p,,, by introduction on n such that

p(n+1€Dn+1 A Pn+1 é Dn-

Let G = {g € P|(3An)[p, £ q1}. It is then obvious that G is P-generic. [

Remark. We now introduce a ramified language, (M, G), to give a
notation for each member of the universe M[G] which we are going to
construct, that is, we first give the names of sets and later we will construct
them. The symbols of £ (M, G) are the following.

Variables: xg, Xy, ..., X,, ... (HE W).

Symbols for special objects: k for every k € M.
A symbol for a special set P: P.

A symbol for a set G which will be defined: G.
A relation symbol: €.

Propositional connectives: 71, A, V.
Quantifiers: 3* (x € M).

Abstraction operators: ** (o € M).
Parentheses: ( , ).

Definition 18.5.
(1) g@) 220 +1,
@) g() 22 +2,
(3) g(k) & 2rank(k) + 3
(4 g(G) £ g(P) £ 2rank(P) + 3,
and for any finite sequence s of symbols of Z(M, G)

(5) g(s) is the maximum of g(3%), g(**), g(k), g(G), and g(P), for all
3%, " Kk, G, and P which occur in s.

Definition 18.6. Limited formulas and constant terms of #(M, G) are
defined as follows.

(1) k, G and P are constant terms.

(2) Ifeachoft, and ¢, is a constant term or a variable, then (¢, €¢,)is a
limited formula of (M, G).
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(3) If ¢ and ¢ are limited formulas, then (T1¢), (¢ v ¥), and (¢ A )
are limited formulas.

(4) 1If ¢ is a limited formula, then (3%x; @) is a limited formula.

(5) If o(x;) is a limited formula without free variables other than x;
such that g(p(x;)) < g(*®), then (%2¢p(x;)) is a constant term. This constant
term is called an abstraction term.

(6) Limited formulas and terms are only those obtained by a finite
number of applications of (1)-(5).

Definition 18.7. p(%2¢(x,)) £ o, p(k) £ rank(k) and p(G) £ rank(P) £ p(P).

Definition 18.8. T, £ {r|r is a constant term, and p(f) <a} and T2
U T,.
aeM ‘a

Remark. We code the symbols of £(M, G) by members of M.

Definition 18.9.

(1) e £ <0,0),

(2 T1£<0, 1),

() TA1£K0,2),

(@) Tv12<0,3),

(5) T £<0,4),

6) N1 £0,5),

(7) TG 20,6,

®) TP1£0,7),

9 "™x1£0,9+ i),

(10) 31 2 €0, w + o,

A1) ™20, 0+ 0,0+ ad,
and

(12) Tk = <1, k.
For any finite sequence s, ..., s, of symbols of (M, G),

(13) Ts,,...,s,12¢2,Ts,0,..., s,
1 n

Remark. The codes of limited formulas or constant terms are members of
M and the codes of different formulas and terms are different. From now on,
we identify formulas and terms of (M, G) with their codes. Then T, € M for
every a€ M and T is a definable class of M, that is, there exists a formula
¢(x) such that T = {xe M|M E ¢(x)}.

By transfinite induction on the ranks of their code, we assign the ordinals
in M to limited formulas of #(M, G).
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Definition 18.10. Let ¢ be a limited formula.

(1) Ord!(¢) is the number of occurrences of the form ¢; ez, in ¢,
where ¢, and t, are constant terms and g(¢) = g(¢,).

(2) Ord?(¢) is the number of logical symbols in ¢ which are not con-
tained in any constant term in ¢.

(3) Ord(e) £ w?g(p) + w-Ord!(p) + Ord*(¢) + 1.

Remark. Ord(g) is called the ordinal of ¢. It should be remarked that the
ordinals of different formulas may be the same. Since Ord(¢) is defined by
transfinite induction, Ord(¢) is definable in M, that is, there exists a formula
Y(x, y) such that a = Ord(p) iff M &= y(T¢, a).

For a constant term ¢,

Ord(t) = w? - g(2).

Proposition 18.11.
(1) teT, - Ord(p(d) < Ord@x;0(x)).
(2) Ord(¢) < Ord(—1¢).
(3) Ord(¢) < Ord(¢ A ¥)and Ord(y) < Ord(e A ).
@) te T, Ord((®) < Ord(%e(x)).

The proof is left to the reader.

Definition 18.12. Let G be a subset of P which is possibly outside of M.
We define D€ as follows.

(1) DS(£fep(x) £ {D(t)|te T, A D(q(t))}.

(2) D%(m1¢9) & —1D%g).

(3) D%¢ A ¥) & Do) A DOY).

) D%e¢ v )& D%p) v D).

(5) DYFx;0(x)S (At e THD(o(1)).

(6) DC(t, et,) & DS(t,) e DS(1,).

(7) DE(k) & k.

(8) DSG) £ G.

(9) DSP) 4 P.

(10) M[G] £ {DS(t)[teT}.

Remark. Tt should be noted that DY is well defined for all limited sen-

tences and constant terms in £(M, G). The proof is by transfinite induction
on their ordinals.
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Proposition 18.13. M[G] is transitive and the ordinals in M[G] are the
ordinals in M.

The proof is left to the reader.

Definition 18.14. For every limited sentence ¢ in £(M, G),
M[G] & ¢ & D%g).

Definition 18.15. For a certain type of atomic limited sentence ¢ of £(M, G),
a limited sentence E(¢) of (M, G) is defined as follows.

(1) If @ is of the form t € £¢p(x;) and g(t) < g(%%¢p(x,)), then

E(9) & o().
(2) If pisoftheformt, et, and g(t,) < g(t,), then
E(@) & Fx;(x;et, A Vi x[(x; €t <> X;€X))),

where o = p(t;) and x; and x; are the first and the second variables not
occurring in t, or t, respectively.

EXERCISES
(1) If E(gp) is defined, then

DY(E(¢)) < D%o).
() DS(k, eky) >k, ek,.

Proposition 18.16. Let ¢ be an atomic sentence for which E(¢) is defined.
Then

Ord(E(¢)) < Ord(g).

Definition 18.17. Now we extend the language £ (M, G) by introducing
a relation symbol: M, and
quantifiers: 3, V.

Definition 18.18. A formula in #(M, G) is defined as follows.
(1) Any limited formula of (M, G) is a formula of (M, G).
(2) [Iftisaconstant term or a variable, then M(z) is a formula.

(3) If ¢ and y are formulas, then —1¢, [ v Y], and [@ A Y] are
formulas.

@) If ¢(x;) is a formula, then (3 x;)o(x;) and (V x)y(x;) are formulas.

A formula which is not a limited formula is called an unlimited formula.

We defined a = b to be an abbreviation of V x(x € a < x € b). Therefore
a = b is an unlimited formula.
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We code unlimited formulas in the following way: TM1 = (0, 8), 31
= {3,0), and TV = (3, 1). The quantifiers 3 and V are called unlimited
quantifiers.

Remark. The intended interpretation of M(¢) is “DS(¢) is a member of
M.,’

Lemma 18.19. Let ¢(x,, ..., x,) be a first-order formula without any occur-
rence of 3% or $*and let t,, ..., t,€ T. Then

Doy, ..., o)) iff MIG] @(D%(ty),..., D).

The proof is left to the reader.



CHAPTER 19
Forcing

Remark. We define p + ¢, read p forces ¢, by transfinite induction on
Ord (o).
Definition 19.1. Let pe P and let ¢ be a limited sentence in Z(M,G). Then
() pH9eS&HVe<p) @ H @)
2 pH Loy A (Pz]‘é’[PH' o] AP H 0]
pi [0y v 01& Dk @] v [P H @)
G) P Ixo(x) & Ete v I o))
(4) If @ is not of the formk, ek, and E(¢) is defined for ¢, then
pH @& pH E).
(5) If E(t € G) is not definied, then
pit [teG1HEq 2 p)lp H Vi€t o x; € q)]
where a = p(G).
©) pH [kick] &k ek,
(7) Iftis not of the form k’ and E(t € k) is not defined, then
pH [tek] & @k eb)p i Vixix;et o x;eky)],
where o = p(k) and x; is the first variable not occurring in .

Remark. Since p H ¢ is defined by transfinite induction on Ord(e),
p H ¢ is definable in M, that is, there exists a formula ¢(x, y) such that

PH @iff M = o(p, "o?).

Now we extend forcing to unlimited formulas by adding the following.

223
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Definition 19.2.
(1) For teT,, pH M) S pH [teRMw + 1)] where RM(a + 1) =
M N R(@ + 1)
@ pH Ixpx)S@teT)pH o@)].
B) PHVxipx)S(ViteT)pH o).

Remark. Let F, be the set of sentences in which the number of unlimited
quantifiers is less than or equal to n. Then from the M-definability of p i ¢
for the limited sentence ¢, it follows by induction on # that for the sentences
¢ in F,, p H ¢ is definable in M, that is, there exists a formula  ,(x, y)
such that (pH @) A TeleF, iff M E y,(p, Tel). However, if ¢ ranges
over all the (limited and unlimited) sentences, then p H ¢ is not definable
in M. The reason is that the number of quantifiers in ¥, increases if n in-
creases. From now on, let G be a 2-generic set.

Lemma 193.g <pApH o —>qH o
PROOF. By transfinite induction on Ord(¢p). O

The details are left to the reader.

EXERCISES

(1) Wedefinep -y tobe 7o v . ThenpH o vpHle—-vl-pH Y.
(2 pH [ki¢kJek ¢k,.
3) rH Ik =k] =k, =k,.

Lemma 194. 3peG)YpH ¢ v H —10¢).

Proor. Since pH ¢ is M-definable, D = {pePlpH o vpH o} is a
member of M. We claim that D is dense in P. Let pe P. If p H —1¢, then

peD. If = (p H —1 @), then (3q < p)[g H ¢]. Therefore (3 ge D)(q < p).
This shows that D is dense. Therefore there existsa pe Gsuchthatpe D. [

Lemma 195. 5(pH @ A pH 0)

PROOF. Immediate from the definition of p H+ —1¢. O

Lemma 19.6
VpeG)Eq=p@H o — @peG@H 9)

PROOF. The “if” part is immediate from Lemma 19.3. For the “only if” part
suppose that (VpeG)F q < p)(qH ¢). If @peG)(p H ¢) does not hold,
then we have (3 p € G)[p F —1 ¢] by Lemma 19.4. This contradicts (Vp € G)
Bqa=plt o) O
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Theorem 19.7. For a sentence ¢, (A pe G)(p o) iff M[G] = o.

ProoF. First we prove this for a limited sentence ¢ by transfinite induction on
Ord(¢) then we prove it for an unlimited sentence ¢ by induction on the
number of logical symbols in ¢. Though there are many cases, almost all of
the cases can be proved by a straightforward check of the definition and the
induction hypothesis. Therefore we treat only the case where ¢ is =1} or
teG.

AreG)pH @)= @peG)(Vg=p@H ¥
- (VpeG)Eq = p)lg H ¥l
< 3q9eG)[qH ¥l
(Corollary of Lemma 19.6)
« M[G} = .
- M[G] = .
ApeG)pHteGl>@peG) gz plp i Vxdx; et o x; €q)]
- (3qeG)M[G]lE=t=4q
->M[GlE=teG
M[GlEteG > (3qeG)[M[G]lEt=q]
-39 Q) M[G] = ¥V*xi(x; €t o x; € q)]
- @qe6)@peG)p H Vxix;et > x,eq)]
—-(@ApeG)3FqzplpH Vxix;et o x;€q)]
- @peG)[pH teG]. O

Corollary 19.8. For a finite order sentence ¢(t,, . . . , t,) without any occurrence
of %% or 3%, we have
ApeG)(p i oty,...,t,)) = M[G] E o(DC(t,),..., D))

ProoOF. This is immediate from Theorem 19.7 and Lemma 18.19. O

Theorem 19.9. M[G] satisfies the axioms of ZF. If M satisfies AC, then M[G]
satisfies AC too.

PrOOF. (1) Axiom of Pairing. This is obvious since {D®(t,), D%(t,)} =
DY(%%(x; = t; v x; = 1,)) where a = max(p(t,), p(t,)) + 1.

(2) Axioms of Unions. This is immediate since (DS(t)) = D(RI*! I*x,
(x; € x; A x, €t)) for some appropriate a, x; and x,.

(3) Axiom Schema of Separation. Let te T,and t,,...,t, € T. We would
like to show that {x € D%(¢)|M[G] = o(x, D€(t,), ..., D%(t,))} is a member



226 Introduction to Axiomatic Set Theory

of M[G]. Let k = {p,s)|se T, ApH set A ¢s,t,,...,t,)}. Then ke M.
Let

t' = 213Fpe G)[{p, x;) ekl.
Then
DO(t") = {DS(s)|ApeG)seT, ApH set Ap(s, ty,...,t)}
= {D€(s)|se T, A DS(s)e D¢(t) A
MIGIE o(D%(s), D°(ty), - - ., DS(t))}
= {D%s) e D°(t)IM[G] = @(D°(s), D°(t1), ..., DE(t,))}-
(4) Axiom of Infinity. This is obvious since w is in T.

(5) Axiomof Foundation. Thisis obvious since M[G]is a transitive model.

(6) Axiom of Extensionality. This is obvious since M[G] is a transitive
model.

(7) Axiom Schema of Replacement. Let a € M[G]. We would like to show
from the assumption M[G] = (V x)(3 y)o(x, y), that

@ be M[GD(MIG] = (Y x e a)@3 y € b)(x, y))-

Let a = D%(t) and t € T,. Since the Axiom Schema of Replacement holds for
M, there exists a f € M such that

(VieT)VpeP) @A H o, )] > Es' e THlpH o, s)]).

Let s = £%(xo€xo vV T1Xg€X,) and b = DYGs). It is easily seen that b
satisfies the condition.

(8) Axiom of Powers. We would like to show that M[G] = (V y)(3 2)
(Y x € y)(x € 2). Let t € T,. We will show that there exists an s € T such that
M[G]lE (Yx S t)(x€es). Foreacht, € Tlet

B(t,) = {Kp,sop|peP A soe T, ApH [ty S t] A pH [soet ]}
Obviously B(t,) e M for every t, € T. For every t,, t, € T, we claim that
(1) IMIGlEtict At st Aty #5]—[B(E) # Bl

For this purpose, suppose M[G]=t; St At, St Aty #t,. Then there
exists an syge T, such that M[G] = soet; A soét, or M[G] = soét,
A Sg € t,. Therefore there exist p € G and s, € T, such that

PHt StAPH LS EADPH So€t; A TIpH So€L,
or

pHtiStApHt, St ATIpltsoet; ApHso€ts.
Therefore (i) is proved. From this, we have

[M[G]Et, st At St AB(ty) = Bt,)] - [M[G] E t; =t,]
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Since {B(t)|t; € T} € #(P x T), there exists a f € M such that
(Vi€ T)3t, € T)[B(t,) = B(t,)]

It is now obvious that we can take s to be £5(x, € xy Vv Xo € Xo).

(9) Axiom of Choice. Here we assume that M satisfies the Axiom of
Choice.

Since M[G] satisfies the axioms of ZF with the language containing the
predicate M, we can carry out every construction of T, DY(t), p H ¢ for M
and G in M[G].

Since M satisfies the Axiom of Choice, we can well order T, for every
a € M. Therefore we can well order {D(t)|t € T,} in M[G]. It is then obvious
that the Axiom of Choice holds in M[G]. g

Remark. There are numerous applications of forcing to independence
problems in set theory. Here we treat only the first application of Cohen’s
original paper, the independence of V' = L from ZFC + GCH.

Let M be a countable transitive model of ZF + V = L. In M, we define
P = (P, £ as follows (Every notion should be relativized to M):

PE{p,DlpcworgSoAp<oAG<wApng=D0l.
P1, 41> £XP2, 420 S Py S Py A 4 S 4y

Let G be 2-generic over M. Let {p,, q,> and {p,, q,> be members of G.
Then there exists {ps, g3 € G such that {ps3, q3> < {p;, 9> and {ps, g3
£ <p;, q2). Therefore p; n g, =0 and p, n g, =0. Let a = u{p|3 9
[<p. 9> €G]} and b= U{q|3 p)[<p,q> €G]}. Then a S w, b < w and
anb = 0. We claim that b = w — a. Suppose otherwise, that is, suppose
there existsanne wsuch thatn¢a U b. Then D = {{p,q> e P|lnep v neq}
is obviously dense. Since G is 2-generic, G N D # 0and nea U b.

G is obviously obtained from a by the following formula:

G={pplpSargqcsow—-—anrp<onri<o}

Lemma. G ¢ M.

PROOF. Let ¢ € M be P-generic over M. Let ¢’ = u{p|(3 q)[<p, g) € c]} and
b =u{q|@p)[{p,q>ec]}. Thenad cwand b =w —d.Let D =P —c.
It suffices to show that D is dense. Let {p, g)> € P. Since p and q are finite,
there exists an new such that n¢pugq. Let p =p and ¢ = qu {n} if
nedandp’ = p v {n}andq = gotherwise. Obviously {p’, ¢'> < {p, g>and
{p.q>eD. O

Theorem 19.10. M[G] is a model of ZFC + GCH + V # L.

ProOOF. We have already proved that M[G] is a model of ZFC. Since in
M[G] the class of constructible sets is M, it follows that G ¢ M implies that
M[G] does not satisfy ¥V = L. So it suffices to show that M[G] satisfies



228 Introduction to Axiomatic Set Theory

GCH. If we use Theorem 15.44(2), a € w A V = L, - GCH, then we get
the result immediately as follows: Obviously M[Glka<c w A V =L,.
Therefore M[G] = GCH. But we would like to prove this without using the
Theorem 15.44(2).

First we will show that the notion of cardinality is the same in M and
MI[G]: Since M € M[G], an ordinal « is a cardinal in M if « is a cardinal in
MI[G]. To show that « is a cardinal in M[G] if « is so in M, let § < & and
M[G] = f: Bsza, where f € T. Then there exists a p, € G such that

Po H (Vx0)(Vx1)(V x5)(x; = f(X0) A X3 = f(X0) = X1 = X3),
where x; = f(x,) is an abbreviation of some formula. From this we have,

PoH Y1 =S(Yo) A PoH Y2=f(Y0) = 71 = 72-

Suppose a; < a. Then there exists a f; < f such that M[G] = a; = f(B;).
Therefore we have

@peG)p=poApHa=f(Br)
Therefore

82 Kp, BOIP = po A Qo) H oy = f(BD]}
< Px § = max(w, p),
where the calculation of the cardinalities can be carried out in M because
H can be defined in M.
Next we show that 2(X,) = ¥,,, holds in M[G]. First we note that
N, €Ty, and y <N, - ye T, . Let B(t,) be as in the proof of the Axiom

of Powers in Theorem 19.9 but with « replaced by &,. Then the argument
there shows that

——————MIG] M M
PR, S PMP x Ty) =2Y"®) =Nyiy
holds in M[G]. This completes our proof. O

Now we can show the independence of V = L from ZFC + GCH.
Suppose V = L is provable from ZFC + GCH. Then V = L is provable
from a finite subsystem T of ZFC + GCH. Let the maximum number of
quantifiers in the axioms in T be m. Let (ZFC + GCH)" denote the axioms
of ZFC + GCH in which the number of quantifiers is less than or equal to m.
For any integer m we can define the truth definition T, such that for every
sentence ¢, in which the number of quantifiers is less than m,

Lol < o
By the usual proof of the Skolem-Léwenheim theorem, we can construct
a countable transitive model of (ZFC + GCH)™ Let M’ be such a model.
If m is sufficiently large relative to k, then we can develop forcing theory for

those formulas whose number of logical symbol is less than or equal to k.
Therefore we can show that M'[G] is a model of (ZFC + GCH)" + V # L.
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Problem List

(1) Let A be an infinite set. Prove that the cardinality of the set of all
automorphisms of 4, i.e., one-to-one mappings of 4 onto 4, is 24, (Hint:
Divide A into A, A,, A5 so that 2, = ,22 = /73 = A. ForeachB < A, find
an automorphism = for which (4, U B) = 4; U (4, — B).

(2) Let A be a countable infinite set and <, be an order relation on 4
(Definition 6.19). Let R, be the set of rationals in the interval (0, 1). Find
a one-to-one order-preserving map t from A4 into R,. (Hint: Let A =
{aq,ay,...}. Define t(a;) assuming that t(ay), . . . , 7(a;_ ;) have been defined.

(3) Let /il and A, be infinite countable sets. Let <, Or 4,, <, Or 4,,
and both structures satisfy

(@ (V)@ <x]
(b) (v)@W[x <]
© (V)VyEx<y-x<z<yl

Prove: (3f)f Isom.  .,(A;, A;). (Hint: Let A, = {ay,a;,...} and
A, = {by, by, ...}. Define 7, Isom., .,(A4;, 4,) and 1, Isom_, . (4,,4,)
inductively in the order ,(ay), 12(bo), 7:(a;), t2(by), ..., such that 7, o1,
and 1, o 7, are identity functions on 4, and A, respectively.

4 LetW,= {{og,...,0>n<w A (Vi Zn)[o; < a]}. Let <, be the
lexicographical ordering on W,. Prove that if « is finite, {<W,, <,> is iso-
morphic to R; x w, where R, is the set of all rationals in the interval
[0, 1), and R, x w is ordered lexicographically relative to the natural
order on R, and on w. What is the order type of (W,, <> ifa = w?

231
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(5) Let Z be the set of all real numbers and let f be a mapping from
N, into £ that is monotone increasing. Prove: Ja < X,)(VB > 0)[f(B)
= f(a)]. (Hint: Z is separable and hence cf(f“N;) = ¥,).

(6) Let # be the set of all real numbers and let f be a continuous
mapping from N, into Z. Prove: Qa < X,V S > a)[f(B) = f(0)].

(7) Let 2 be the set of all real numbers and let f: N, "5 2. Vo, B <N,
define a € fiffa < f A f(a) < f(B). Prove the following:
(a) The relation < is a well-founded partial ordering on N;.
(b) fAcNR,and(Vx,yed)[x<yvx=yvy<x]thenAdis
countable.
() fAc R, and(Vx,yed)[x=yv 1[x <y v y <x]]then
A is countable.
(8) LetA < [0,1]. ThenV x [0, 1], x is a k-accumulation point of 4 iff
VNX)[N(x)n A4 = k]
(Here N(x) is a neighborhood of x in the usual topology on [0, 1].)
(a) Prove that {x€[0, 1]|x is an ¥&,-accumulation point of A} is a
closed set that is dense in itself.

(b) Prove that {x € [0, 1]|x is an N,-accumulation point of A} is a
closed set that is dense in itself.

) If cf(N,) <_Na ar}d_gv A<a)@v< a2t < ?] and if A = sup,.y,
_t’z?‘_“g prove that 2%= = 17,

(10) IfcfiR,) < X,,if A < and if (Vv < )[4 < v - 2% = 2¥] prove
that 2% = 2%,

(11) Prove that if X, > N, = cf(N,) and 3y < a)[¥, < N**] then

B
o

R =N

4

where yo = p(y <a A R, < ?’f").

(12) Let ¥, > ¥, = cf(R,) and (V7 < «)[R* < &,]. Prove that

(13) Prove: If 2709 < K, if 3 f < a)[R, < Ry A cf(¥y) < cf(X,)]
and if 1 = p(cf(¥,) < cf(R,) A N, < X)), then NIT®) = R, (Hint:
Ifv = p, (X, < NT®) then N = R and 1 = v).

(14) Let F“a, be a model of ZF. Prove that {To1|F“a, = @} € L.

(15) A set ais L-finite iff (Y xe L)[x £ a — x is finite]. Assuming that
P(w)" = w, prove that (3x S w), x and w — x are each L-finite.
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(16) Find a model M[G] of ZF + AC + V # L such that M is a model
of ZF + V = L and G is L-finite.

(17) If-'Te1 &@E P[P H Te']and |2 To1 S (VP[P H TpY)what
logical rules do |! and |2 satisfy.

(18) A sentence is called arithmetical if every quantifier in it is restricted
to w. Let ¢ be an arithmetic sentence and let F*“x, be a model of ZF. Prove

@ Fao = @.

(19) A sentence is called a 2(w)-sentence if every quantifier in it is
restricted to 2(w). Assuming the existence of the minimal model M, find
a #(w)-sentence ¢ such that

LE¢eoMiEo
is false.
(20) In a forcing model M of V # L, find a € w such that
(@ L,#M,
(b) aand w — aare L-finite.



Appendix

Let M, SM, and Consis(ZF) be statements that assert respectively:
(1) There exists a set that is a model of ZF.
(2) There exists a set that is a standard model of ZF.
(3) ZF is consistent.

Furthermore, let Consis(ZF) be so chosen that it is absolute w.r.t. every
standard transitive model of ZF.

Theorem. 7 |-, M — SM.
PROOF. Suppose
(1) Fzr M- SM.
It is known that
(2) }z¢M < Consis(ZF).
Consequently, from (1) and (2)
(3) Consis(ZF) |2 SM.
There exists a minimal standard transitive model of ZF, M,,. Clearly
@ M, E Consis(ZF)

Then relativizing.(3) to M,, using the fact that Consis(ZF) is absolute
w.r.t. M, we have

M, = SM.

This is a contradiction. O
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Godel-Bernays set theory (GB), 3
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van Heijenoort, Jean, 2, 10
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inaccessible cardinal, 104
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induced mapping, 186
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Infinity, Axiom of, 43, 133

internal models, method of, 215
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largest cardinal paradox, 88
largest ordinal paradox, 4142
lexicographic ordering, 54
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limit ordinals, 42

limit ordinals, class of, 42
limit system, k-direct, 202
limited formula, 218
L-machine, 196
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logical axioms, 5-6, 114
logical equivalence, 6

logical symbols, 4
Lowenheim-Skolem theorem, 216

M

machine, pairing, 191

machine, Silver, 187
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map, partial, 186
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Mostowski’s theorem, 116, 216
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multiplication, ordinal, 62
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number, ordinal, 35-72
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one-to-one class, 24

one-to-one into mapping, 28

one-to-one mapping, 28

one-to-one onto mapping, 28

onto mapping, 28

order of constructible set, 160

order, partial, 29

order preserving maps, direct system of, 190

order preserving maps, well founded direct
system of, 190

order relation, 29

order type, 189

ordered n-tuple, 16

ordered pair, 15

ordering, lexicographic, 54

ordinal addition, 56

ordinal arithmetic, 56-72

ordinal class, 36

ordinal exponentiation, 67

ordinal function, 49-50

ordinal function, strictly monotone, 49-50

ordinal, limit, 42

ordinal multiplication, 62

ordinal numbers, 35-72

ordinal numbers, Cantor’s notion, 35

ordinal numbers, class of, 38

ordinal numbers, cofinality of, 100-110

ordinal of a formula, 220

ordinal, set closed in, 200
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Pairing, Axiom of, 15, 132

paradox, Burali-Forti, 42
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ramified language, 194
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rank of a set, 79

recursion, finite, 49

recursion, transfinite, 47

regular cardinal, 103

Regularity, Axiom of, 21, 133
relation, 24

relation, founded, 30

relation, order, 29

relation, partial order, 29

relation, well-founded, 30

relation, well-ordering, 30

relational systems, 29

relational systems, isomorphism of, 32
relative complement, 20
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rules for well-formed formulas, 5
rules of inference, 6, 114

Russell, Bertrand (1872-1970), 2, 3, 10, 35
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Russell’s paradox, 3, 10, 11, 14, 18
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Separation, Axiom Schema of, 18
sequence, O(k)-, 200

set, Cantor’s notion of, 2

set, closed in ordinal, 200

set, constructible, 158

set, definable, 14

set, dense, 217

set, directed, 189

set, empty, 20

set, equality, 7

set, finite, 91

set, infinite, 91

set, order of constructibility, 160
set, #-generic, 218

set, power, 17

set, rank of, 79

set, singleton, 15

set, stationary, 200

set, supertransitive, 76

set theory, Godel-Bernays, 3

set theory, Zermelo-Fraenkel, v, 3
set, transitive, 35

set, unbounded, 200

set union, 16, 48

set, well-founded, 77

sets, class of, 21

sets, equivalence of, 83

sets, elementarily equivalent, 202
Shelah, Saharon, 185

Sierpinski, Waclaw (1882-1969), v
Z,-elementary embedding, 212
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Silver, Jack, vii, 185

Silver machine, 187
single-valued class, 24
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singular cardinal, 103

Skolem, Thoralf (1887-1963), 19
Souslin problem, 185

Standard Model Hypothesis, 216
standard structure, 112

standard transitive model, 116
stationary set, 200

strictly monotone ordinal function, 49-50

strong M-map. 212

strong A-map, 187

structure, 112

structure, partially ordered, 217
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structure, standard, 112
subalgebra, 186
subalgebra, generated, 186
subclass, 17

submodel, elementary, 209
supertransitive set, 76
supremum of a class, 45
supremum of a class below an ordinal, 45
symbol, auxiliary, 4
symbol, class, 10

symbol, logical, 4

symbol, predicate, 3, 4

term, 13

term, constant, 194, 218
theory of types, 3

third converse of a class, 143
transfinite induction, 39
transfinite recursion, 47
transitive closure, 74
transitive class, 35
turnstile, 6

triple, acceptable, 202
types, theory of, 3

unbounded set, 200

union of classes, 16, 48
Unions, Axiom of, 16, 132
universal quantification, 4
universe of an algebra, 186
unordered n-tuple, 16
unordered pair, 15

variables, bound, 4
variables, free, 4

w

weakly inaccessible cardinal, 104
well-formed formula (wff), 5
well-formed formula in wider sense, 11
well-formed formula, rules for, 5
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well-ordering relation, 30 Zermelo-Fraenkel set theory (ZF), v, 3, 5
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