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Preface 

As the title suggests, this book is concerned with the elementary portion 
of the subject of homotopy theory. It is assumed that the reader is familiar 
with the fundamental group and with singular homology theory, including 
the Universal Coefficient and Kiinneth Theorems. Some acquaintance with 
manifolds and Poincare duality is desirable, but not essential. 

Anyone who has taught a course in algebraic topology is familiar with 
the fact that a formidable amount of technical machinery must be 
introduced and mastered before the simplest applications can be made. This 
phenomenon is also observable in the more advanced parts of the subject. 
I have attempted to short-circuit it by making maximal use of elementary 
methods. This approach entails a leisurely exposition in which brevity and 
perhaps elegance are sacrificed in favor of concreteness and ease of 
application. It is my hope that this approach will make homotopy theory 
accessible to workers in a wide range of other subjects-subjects in which 
its impact is beginning to be felt. 

It is a consequence of this approach that the order of development 
is to a certain extent historical. Indeed, if the order in which the results 
presented here does not strictly correspond to that in which they were 
discovered, it nevertheless does correspond to an order in which they 
might have been discovered had those of us who were working in the area 
been a little more perspicacious. 

Except for the fundamental group, the subject of homotopy theory had 
its inception in the work of L. E. J. Brouwer, who was the first to define the 
degree of a map and prove its homotopy invariance. This work is by now 
standard in any beginning treatment of homology theory. More subtle is the 
fact that, for self-maps of the n-sphere, the homotopy class of a map is 
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V 111 Preface 

characterized by its degree. An easy argument shows that it is sufficient to 
prove that any map of degree zero is homotopic to a constant map. The 
book begins, after a few pages of generalities, with Whitney's beautiful 
elementary proof of this fact. It may seem out of place to include a detailed 
proof so early in an introductory chapter. I have done so for two reasons: 
firstly, in order to have the result ready for use at the appropriate time, 
without breaking the line of thought; secondly, to emphasize the point (if 
emphasis be needed) that algebraic topology does not consist solely of the 
juggling of categories, functors and the like, but has some genuine 
geometric content. 

Most of the results of elementary homotopy theory are valid in an 
arbitrary category of topological spaces. If one wishes to penetrate further 
into the subject, one encounters difficulties due to the failure of such 
properties as the exponential law, relating cartesian products and function 
spaces, to be universally valid. It was Steenrod who observed that, if one 
remains within the category of compactly generated spaces (this entails 
alteration of the standard topologies on products and function spaces), 
these difficulties evaporate. For this reason we have elected to work within 
this category from the beginning. 

A critical role in homotopy theory is played by the homotopy extension 
property. Equally critical is the "dual ", the homotopy lifting property. 
This notion is intimately connected with that of fibration. In the literature 
various notions of fibrations have been considered, but the work of 
Hurewicz has led to the" correct" notion: a fibre map is simply a continuous 
map which has the homotopy lifting property for arbitrary spaces. 

The first chapter of the present work expounds the notions of the last 
three paragraphs. In Chapter II, relative CW-complexes are introduced. 
These were introduced, in their absolute form, by J. H. C. Whitehead, and 
it is clear that they supply the proper framework within which to study 
homotopy theory, particularly obstruction theory. 

Chapter III is a "fun" chapter. After presenting evidence of the desirability 
of studying homotopy theory in a category of spaces with base points, the 
"dual" notions of H-spaces and H'-spaces are introduced. A space X is an 
H -space if and only if the set [Y, X] of homotopy classes of maps of Y 
into X admits a law of composition which is natural with respect to maps 
of the domain; the definition of H'-space is strictly dual. H-spaces are 
characterized by the property that the folding map X v X ---> X can be 
extended over X x X, while H'-spaces are characterized by the com
,pressibility of the diagonal map X ---> (X x X, X v X). The most important 
H'-spaces are the spheres, and the set [sn, Y] = 1'l:n(Y) has a natural group 
structure, which is abelian if n ~ 2. 

Chapter IV takes up the systematic study of the homotopy groups 1'l:n(Y)' 
Relative groups are introduced, and an exact sequence for the homotopy 
groups of a pair is established. Homotopy groups are seen to behave in 
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many respects like homology groups; this resemblance is pointed up by 
the Hurewicz map, a homomorphism p: 7rn(X) ~ Hn(X), The Hurewicz 
Theorem, which asserts that p is an isomorphism if X is (n - 1 )-connected, 
is proved. Homotopy groups behave particularly well for fibrations, and this 
fact facilitates the calculation of the first few homotopy groups of the 
classical groups. 

The fifth chapter is devoted to the homotopy properties of CW
complexes. The first half of the chapter is inspired by the work of J. H. C. 
Whitehead. The effect on the homotopy groups of the adjunction of a cell, 
or, more generally, the adjunction of a collection of cells of the same 
dimension, is considered. This allows one to construct a CW-complex with 
given homotopy groups. Moreover, if X is an arbitrary space, there is a 
CW-complex K and a map f : K ~ X which induces isomorphisms of the 
homotopy groups in all dimensions; i.e.,! is a weak homotopy equivalence. 
Such a map is called a CW-approximation, and it induces isomorphisms of 
the homology groups as well. The device of CW-approximations allows 
one to replace the study of arbitrary spaces by that of CW-complexes. 

The second part of Chapter V is concerned with obstruction theory. 
This powerful machinery, due to Eilenberg, is concerned with the extension 
problem: given a relative CW-complex (X, A) and a map f : A ~ Y, does 
there exist an extension g: X ~ Y of f? This problem is attacked by a 
stepwise extension process: supposing that f has an extension gn over the 
n-skeleton Xn of (X, A), one attempts to extend gn over Xn+ l' The attempt 
leads to an (n + 1)-cochain cn + 1 of (X, A) with coefficients in the group 
7rn(Y)' The fundamental property of the obstruction cochain en + 1 is that 
it is a cocycle whose cohomology class vanishes if and only if it is possible 
to alter gn on the n-cells, without changing it on the (n - 1 )-skeleton, in 
such a way that the new map can be extended over X n + l' 

One can obtain further results by making simplifying assumptions on 
the spaces involved. One of the most important is the Hopf-Whitney 
Extension Theorem: if Yis (n - 1)-connected and dim (X, A) ~ n + 1, then 
the extension problem 

A f. Y 
if 

i~ /,/ 
X/ 

has a solution if and only if the algebraic problem 
f* 

W(A; IT) .... ---=---- W(Y; IT) 

i*l 
W(X; IT) --

has a solution (IT = 7rn(Y))' 
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Another important application occurs when Y is an Eilenberg-Mac Lane 
space K(II, n), i.e., 1ti(Y) = 0 for all i =F n. In this case, if X is an arbitrary 
CW-complex, then [X, Y] is in one-to-one correspondence with the group 
Hn(x; II). In other words, the functor Hn( ; II) is representable. 

The problem of finding a cross-section of a fibration p : X --+ B whose 
base space is a connected CW-complex can be attacked by similar methods. 
Iff: Bn --+ X is a cross-section over Bn, the problem of extendingf over an 
(n + I)-cell Ea gives rise to an element cn+ 1(ea) E 1tn(Fa), where Fa is the 
fibre p-1(xa) over some point ba E Ea. Now if bo and b1 are points of B, 
the fibres Fi = p-l(b;} have isomorphic homotopy groups; but the iso
morphism is not unique, but depends on the choice of a homotopy class 
of paths in B from bo to b1. Thus ~ + 1 is not a cochain in the usual 
sense. The machinery necessary to handle this more general situation is 
provided by Steenrod's theory of homology with local coe'/ficients. A system 
G of local coefficients in a space B assigns to each b E B an abelian group 
G(b) and to each homotopy class ~ of paths joining bo and b1 an isomorphism 
G(O: G(bd --+ G(bo)· These are required to satisfy certain conditions which 
can be most concisely expressed by the statement that G is a functor 
from the fundamental groupoid of B to the category of abelian groups. 
To each space B and each system G of local coefficients in B there are 
then associated homology groups Hn(B; G) and cohomology groups 
W(B; G). These have properties very like those of ordinary homology and 
cohomology groups, to which they reduce when the coefficient system G 
is simple. These new homology groups are studied in Chapter VI. An 
important theorem of Eilenberg asserts that if B has a universal covering 
space B, the groups Hn(B; G) are isomorphic with the equivariant homology 
and cohomology groups of B with ordinary coefficients in Go = G(bo). 

Having set up the machinery of cohomology with local coefficients the 
appropriate obstruction theory can be set up without difficulty; the 
obstructions ~ + 1 are cochains with coefficients in the system nn(~) of 
homotopy groups of the fibres. Results parallel to those of obstruction 
theory can then be proved. As an application, one may consider the 
universal bundle for the orthogonal group On, whose base space is the 
Grassmannian of n-planes in ROO. There are associated bundles whose 
fibres are the Stiefel manifolds V n. k' and the primary obstructions to the 
existence of cross-sections in these bundles are the Whitney characteristic 
classes. 

If F --+ X --+ B is a fibration, the relationships among the homotopy 
groups of the three spaces are expressed by an exact sequence. The behavior 
of the homology groups is much more complicated. In Chapter VII we 
study the behavior of the homology groups in certain cases which, while 
they are very special, nevertheless include a number of very important 
examples. In the first instance we assume that B is the suspension of a space 
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Wand establish an exact sequence, the generalized Wang sequence, which 
expresses certain important relations among the homology groups of F, X 
and W When X is contractible this allows us to calculate the homology 
groups of F by an induction on the dimension. When the coefficient group 
is a field, the result can be expressed by the statement that H*(F) is the 
tensor algebra over the graded vector space H*(W). The way the tensor 
algebra over a module M is built up out of M has its geometric analogue 
in the reduced product of James. Indeed, if X is a space with base point 
e, one forms the reduced product J(X) by starting with the space of finite 
sequences of points of X and identifying two sequences if one can be 
obtained from the other by a finite number of insertions and deletions of 
the base point. The natural imbedding of X in nsx then extends to a map 
of J(X) into nsx which is a weak homotopy equivalence. In particular, if 
X is a CW-complex, then J(X) is a CW-approximation to nsx. 

The case when B is a sphere is of special interest because the classical 
groups admit fibrations over spheres. The Wang sequence then permits us 
to calculate the cohomology rings (in fact, the cohomology Hopf algebras) 
for the most important coefficient domains. 

Another case of special interest is that for which the fibre F is a sphere. 
When the fibration is orient able there is a Thorn isomorphism Hq(B) ~ 
Hq+n+l(x, X), where X is the mapping cylinder of p. This leads to the 
Gysin sequence relating the cohomology groups of B and of X. 

While the homology groups of F, X and B do not fit together to form 
an exact sequence, they do so in a certain range of dimensions. Specifically, 
if F is (m - 1)-connected and B is (n - I)-connected, then p*: Hq(X, F)-+ 
Hq(B) is an isomorphism for q < m + n and an epimorphism for q = m + n. 
From this fact the desired exact sequence is constructed just as in the case 
of homotopy groups. This result is due to Serre; an important application 
is the Homotopy Excision Theorem of Blakers and Massey. To appreciate 
this result, let us observe that the homotopy groups do not have the 
Excision Property; i.e., if (X; A, B) is a (nice) triad and X = A u B, the 
homomorphism 

i* : 7rq(B, A (\ B) -+ 7rq(X, A) 

induced by the inclusion map i is not, in general, an isomorphism. However, 
if (A, A (\ B) is m-connected and (B, A (\ B) in n-connected, then i* is an 
isomorphism for q < m + n and an epimorphism for q = m + n. The fact 
that this result can be deduced from the Serre sequence is due to Namioka. 
As a special case we have the Freudenthal Suspension Theorem: the 
homomorphism E: 7rq(sn) -+ 7rq + 1 (sn + 1) induced by the suspension 
operation is an isomorphism for q < 2n - 1 and an epimorphism for 
q = 2n - 1. 

In Chapter V it was shown that the cohomology functor Hn( n) 
has a natural representation as [ ,K(n, n)]. In a similar way, the natural 
transformations Hn( ; n) -+ Hq( ; G) correspond to homotopy classes of 
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maps between their representing spaces, i.e., to [K(II, n), K(G, q)] ~ 
Hq(K(II, n); G). These cohomology operations are the object of study in 
Chapter VIII. Because the suspension H'+l(SX; A)~H'(X; A) is an 
isomorphism, each operation e: Hn( ; II) ~ Hq( ; G) determines a new 
operation Hn- 1 ( ; II) ...... Hq-l( ; G), called the suspension of e. By the 
remarks above the suspension can be thought of as a homomorphism 
0'* : Hq(II, n; G) ...... Hq- 1 (II, n - 1; G). Interpreting this homomorphism in 
the context of the path fibration 

K(II, n - 1) = QK(II, n) ~ PK(II, n) ...... K(II, n), 

we deduce from the Serre exact sequence that 0'* is an isomorphism for 
q < 2n and a monomorphism for q = 2n. Indeed, the homomorphisms 0'* 

can be imbedded in an exact sequence, valid in dimensions through 3n. 
The remaining groups in the sequence are cohomology groups of 
K(II, n) /\ K(II, n), and interpretation of the remaining homomorphisms 
in the sequence yields concrete results on the kernel and cokernel of 0'*. 

Examples of cohomology operations are the mod 2 Steenrod squares. 
They are a sequence of stable cohomology operations Sqi (i = 0, 1, ... ). 
These are characterized by a few very simple properties. More sophisticated 
properties are due to Cartan and to Adem. The former are proved in 
detail; as for the latter, only a few instances are proved. With the aid of 
these results it follows that the Hopf fibrations s2n-l ...... S" and their iterated 
suspensions are essential; moreover, certain composites (for example 
S" + 2 ~ S" + 1 ...... sn) of iterated Hopf maps are also. 

Chapter VIII concludes with the calculation of the Steenrod operations 
in the cohomology of the classical groups (and the first exceptional group 
G 2 )· 

If X is an arbitrary (O-connected) space and N a positive integer, one 
can imbed X in a space X N in such a way that (XN, X) is an (N + 1)
connected relative CW-complex and nq(XN) = 0 for all q> N. The pair 
(XN, X) is unique up to homotopy type (rei. X); and the inclusion map 
X <::+ X N + 1 can be extended to a map of X N + 1 into XN, which is 
homotopically equivalent to a fibration having an Eilenberg-Mac Lane 
space K( nN + 1 (X), N + 1) as fibre. The space X N + 1 can be constructed from 
X N with the aid of a certain cohomology class kN + 2 E HN + 2(XN; nN + 1 (X)). 
The system {XN, kN+2} is called a Postnikov system for X, and the space 
X is determined up to weak homotopy type by its Postnikov system. The 
Postnikov system of X can be used to give an alternative treatment of 
obstruction theory for maps into X. These questions are treated in 
Chapter IX. 

In Chapter X we return to the study of H-spaces. However, further 
conditions are imposed, in that the group axioms are assumed to hold up 
to homotopy. For such a space X the set [Y, X] is a group for every Y 
This group need not be abelian. However, under reasonable conditions it 
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is nilpotent, and its nilpotency class is intimately related to the Lusternik
Schnirelmann category of Y. Of importance in studying these groups is the 
Samelson product. If f: Y -> X and g: Z -> X are maps, then the 
commutator map 

(y, z)-> (J(y)g(Z))(J(ytlg(ztl) 
of Y x Z into X is nullhomotopic on Y v Z and therefore determines a 
well-defined homotopy class of maps of Y ;\ Z into X. When Yand Z are 
spheres, so is Y ;\ Z, and we obtain a bilinear pairing np(X) ® nq(X)-> 
np+q(X). This pairing is commutative (up to sign) but is not associative. 
Instead one has a kind of Jacobi identity with signs. 

Suppose, in particular, that X is the loop space of a space W Then the 
isomorphisms nr - I (X) ~ nr(W) convert the Samelson product in X to a 
pairing np(W) ® nq(W) -> np+q_1 (W). This pairing is called the Whitehead 
product after its inventor, J. H. C. Whitehead, and the algebraic properties 
already deduced for the Samelson product correspond to like properties for 
that of Whitehead. Chapter X then concludes with a discussion of the 
relation between the Whitehead product and other operations in homotopy 
groups. 

Chapter XI is devoted to homotopy operations. These are quite analogous 
to the cohomology operations discussed earlier. Universal examples for 
operations in several variables are provided by clusters of spheres 

~ = snl v··· V snk. 

Indeed, each element !X E nn(~) determines an operation floc: nnl x ... x nnk -> 

nn as follows. If !Xi E nn,(X) is represented by a map /;: sn, -> X 
(i = 1, ... , k), then the mapsj; together determine a map f : ~ -> X. We then 
define Oa(!Xb ... , !Xk) = f*(!X). And the map !X -> Oa is easily seen to be a 
one-to-one correspondence between nn(~) and the set of all operations 
having the same domain and range as Oa. 

Thus it is of importance to study the homotopy groups of a cluster 
of spheres. This was done by Hilton, who proved the relation 

00 

r= 1 

where {nr} is a sequence of integers tending to 00. The inclusion 
nn(sn,) -> nn(~) is given by /3 ->!Xr 0/3, where !Xr E nn,(~) is an iterated 
Whitehead product of the homotopy classes I j of the inclusion maps snJ c+ ~ 
(j = 1, ... , k). Hilton's theorem was generalized by Milnor in that the 
spheres sn, were replaced by arbitrary suspensions SX i . Then ~ has to be 
replaced by SX, where X = XIV··· V X k . The Hilton-Milnor Theorem 
then asserts that if the spaces Xi are connectp.d CW-complexes, then J(X) 
has the same homotopy type as the (weak) cartesian product 

00 n J(Xr ), 
r=1 
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where X r is an itered reduced join of copies of XI' ... , X k' The isomorphism 
in question is induced by a certain collection of iterated Samelson products. 

One consequence of the Hilton Theorem is an analysis of the algebraic 
properties of the composition operation. The map (IX, P) -+ P 0 IX (IX E 1tn{sr), 
P E 1tr{X)) is clearly additive in IX, but it is not, in general, additive in p. 
The universal example here is P = 11 + 12, where 11 and 12 are the 
homotopy classes of the inclusions sr -+ sr V sr. Application of the Hilton 
Theorem and naturality show that, if PI' P2 E 1tr{X), then 

00 

(PI + (2) 0 IX = PI 0 IX + P2 0 IX + L W j {Pl' (2)" hj{IX), 
j=O 

where Wj{Pb (2) is a certain iterated Whitehead product and hj : 1tn{sr)-+ 
1tn{sni ) is a homomorphism, the /h Hopf-Hilton homomorphism. 

The suspension operation induces a map of [X, Y] into [SX, SY] for any 
spaces X, Y. We can iterate the procedure to obtain an infinite sequence 

[X, Y] -+ [SX, SY] -+ [S2X, S2Y] -+ ... -+ [snx, sny] -+ ... 

in which almost all of the sets involved are abelian groups and the maps 
homomorphisms. Thus we may form the direct limit 

{X, Y} = lim [snx, sny]; 
7 

it is an abelian group whose elements are called S-maps of X into Y. In 
particular, if X = sn, we obtain the d h stable homotopy group O'n{Y) = {sn, Y}. 

We have seen that the homotopy and homology groups have many 
properties in common. The resemblance between stable homotopy groups 
and homology groups is even closer. Indeed, upon defining relative groups 
in the appropriate way, we see that they satisfy all the Eilenberg-Steenrod 
axioms for homology theory, except for the Dimension Axiom. 

Examination of the Eilenberg-Steenrod axioms reveals that the first six 
axioms have a very general character, while the seventh, the Dimension 
Axiom, is very specific. In fact, it plays a normative role, singling out 
standard homology theory from the plethora of theories which satisfy the 
first six. That it is given equal status with the others is no doubt due to the 
fact that very few interesting examples of non-standard theories were 
known. But the developments of the last fifteen or so years has revealed the 
existence of many such theories: besides stable homotopy, one has the 
various K-theories and bordism theories. 

Motivated by these considerations, we devote the remainder of Chapter 
XII to a discussion of homology theories without the dimension axiom. 
The necessity of introducing relative groups being something of a nuisance, 
we avoid it by reformulating the axioms in terms of a category of spaces 
with base point, rather than a category of pairs. The two approaches to 
homology theory are compared and shown to be completely equivalent. 
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The book might well end at this point. However, having eschewed the 
use of the heavy machinery of modern homotopy, lowe the reader a sample 
of things to come. Therefore a final chapter is devoted to the Leray-Serre 
spectral sequence and its generalization to non-standard homology theories. 
If F ---> X ---> B is a fibration whose base is a CW -complex, the filtration of 
B by its skeleta induces one of X by their counterimages. Consideration 
of the homology sequences of these subspaces of X and their interrelations 
gives rise, following Massey, to an exact couple; the latter, in turn gives 
rise to a spectral sequence leading from the homology of the base with 
coefficients in the homology of the fibre to the homology of the total space. 
Some applications are given and the book ends by demonstrating the 
power of the machinery with some qualitative results on the homology of 
fibre spaces and on homotopy groups. 

As I have stated, this book has been a mere introduction to the subject 
of homotopy theory. The rapid development of the subject in recent years 
has been made possible by more powerful and sophisticated algebraic 
techniques. I plan to devote a second volume to these developments. 

The results presented here are the work of many hands. Much of this 
work is due to others. But mathematics is not done in a vacuum, and 
each of us must recognize in his own work the influence of his predecessors. 
In my own case, two names stand out above all the rest: Norman Steenrod 
and J. H. C. Whitehead. And I wish to acknowledge my indebtedness to 
these two giants of our subject by dedicating this book to their memory. 

I also wish to express my indebtedness to my friends and colleagues 
Edgar H. Brown, Jr., Nathan Jacobson, John C. Moore, James R. Munkres, 
Franklin P. Peterson, Dieter Puppe, and John G. Ratcliffe, for reading 
portions of the manuscript and/or cogent suggestions which have helped 
me over many sticky points. Thanks are also due to my students in several 
courses based on portions of the text, particularly to Wensor Ling and 
Peter Welcher, who detected a formidable number of typographical errors 
and infelicities of style. 

Thanks are also due to Miss Ursula Ostneberg for her cooperation in 
dealing with the typing of one version after another of the manuscript, and 
for the fine job of typing she has done. 

This book was begun during my sabbatical leave from M.I.T. in the 
spring term of 1973. I am grateful to Birkbeck College of London 
University for providing office space and a congenial environment. 

There remains but one more acknowledgment to be made: to my wife, 
Kathleen B. Whitehead, not merely for typing the original version of the 
manuscript, but for her steady encouragement and support, but for which 
this book might never have been completed. 

Massachusetts Institute of Technology 
June, 1978. 

GEORGE W. WHITEHEAD 
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CHAPTER I 

Introductory Notions 

In this Chapter we set the stage for the developments to come. The introduc
tory section is devoted to a general discussion of the most primitive notions 
of homotopy theory: extension and lifting problems. The notion of hom
otopy is introduced, and its connection with the above problems discussed. 
This leads to a formulation offibrations and cofibrations, which have played 
such a fundamental role in the development of the subject. 

Section 2 is devoted to a list of the standard notations which are used 
throughout the book. An important source of examples for us will be the 
classical groups: orthogonal, unitary and symplectic, and their coset spaces: 
Grassmann and Stiefel manifolds. As special cases of the latter appear the 
spheres and projective spaces. 

Apart from the fundamental group, the oldest notion in homotopy theory 
is that of the degree of a mapping. This is due to Brouwer, who introduced 
the notion in [1] in 1912 and proved its homotopy invariance. This was 
sufficient for many important applications (invariance of domain, the exist
ence of fixed points for maps of the disc, etc.) and it was not until 1926 that 
the converse was proved by Hopf [1]: two maps of sn into itself having the 
same degree are homotopic. It is sufficient to prove that a map of degree zero 
is nullhomotopic, and a beautiful elementary proof of the latter statement 
was given by Whitney [2] in 1937. As this proof uses no machinery with 
which the reader is unfamiliar, and as it serves well as an introduction to the 
subject, we have devoted §3 to it. 

In the elementary phase of the subject, there is no need to place any 
particular hypotheses on the spaces with which we are working, and we may 
as well operate in the category of all topological spaces. However, as more 
complex notions appear, more demands on the spaces become inevitable, 
and some attention has been paid in the literature to the discussion of a 
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suitable category in which to study homotopy theory. In 1959 Milnor [1] 
proposed the category ifI of spaces having the homotopy type of CW
complexes. This category is completely satisfactory in many respects. One 
especially pleasant feature is that weak homotopy equivalences in ifI are, in 
fact, homotopy equivalences. On the other hand, it suffers from the disad
vantage that in many cases the function space F(X, Y) fails, in many cases, 
to belong to ifI. In 1967 Steenrod [5] proposed the category % of compactly 
generated spaces, and we have found his arguments sufficiently cogent to 
impel us to adopt his suggestion. One feature of % is that certain spaces, 
such as products and function spaces, do not carry the usual topology (al
though they do in many important cases-in particular, I x X has the usual 
topology, so that the notion of homotopy is unaffected). In §4 we enumerate 
the most important properties of the compactly generated category %. 

Much or homotopy theory has to do with pairs (X, A). In order for many 
standard constructions to work efficiently, it is necessary to make use of the 
homotopy extension property. It was Borsuk who first realized the impor
tance of this notion, and many of his early papers were devoted to its study. 
Particularly significant was [1], written in 1937; one of the major results of 
this paper is a homotopy lifting theorem, the earliest one known to me. In 
the intervening years, several authors gave sufficient conditions, in the form 
of local smoothness conditions on (X, A), that an inclusion map A ~ X be a 
cofibration. Finally Steenrod proved in [5] the equivalence between the 
NOR condition and the absolute homotopy extension property. In §5 we 
summarize Steenrod's results. 

The mapping cylinder of a continuous map f: X --> Y has been a most 
fruitful notion. Introduced by 1. H. C. Whitehead in 1939 in a combinatorial 
setting [1], it was studied in 1943 in a general context by Fox [2], who 
analysed the notions of retraction and deformation in terms of the behavior 
of the spaces involved vis-a-vis the mapping cylinder. These results are also 
given in §5. 

Many spaces met with in homotopy theory (for example, CW-complexes 
and countable products) are built up as the unions of ascending sequences of 
topological spaces. Indeed, it is often the case that the union does not have 
an a priori given topology, and it is necessary to construct one from the 
topologies of the subspaces. In order that the space X should have desirable 
properties, it is sometimes necessary to impose restrictions on the topologies 
of the X n' These restrictions are discussed, again following Steenrod [5], 
in §6. 

The first definition of fibre space was given by Hurewicz and Steenrod [1] 
in 1941 (although the notion of fibre bundle appears in the work of Whitney 
as early as 1935 [1)). Realizing the importance of the homotopy lifting 
property (HLP), they gave conditions on a family of local cross-sections 
which enabled them to prove the HLP. In subsequent years a number of 
minor variants were proposed by various authors. But it was Serre [1] who 
took the bull by the horns in 1950 and defined a fibre space to be one which 
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satisfied the HLP for maps of finite complexes. In 1955 the final step was 
taken by Hurewicz [2], who required the property in question to hold for 
maps of arbitrary spaces. As almost any map one would want to call a 
fibration has the Hurewicz property, we have chosen his notion as the basic 
one. And two theorems of Strom [1, 2] reveal a beautiful and satisfying 
connection between fibrations and cofibrations. 

Our final section is devoted to fibrations. The most common examples 
are given and the interplay between fibrations and cofibrations is exploited. 
Induced fibrations and fibre homotopy equivalence are studied. Finally, by 
analogy with the mapping cylinder construction, it is shown that every map 
is homotopically equivalent to a fibre map. 

1 The Fundamental Problems: Extension, 
Homotopy, and Classification 

A basic problem of topology is that of" factoring one continuous function 
through another". Specifically, given a diagram 

x y 

in some category C(5 of topological spaces and continuous maps, can it be 
completed to a commutative diagram 

x -----+. y 
g 

in the same category? This is the right factorisation problem, and is conve
niently symbolised by the diagram 

(1.1) 

x·············· .. y g 

where the dashed arrow stands for a map whose existence is in question. 
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Dually, one has the left factorisation problem 

g 
Y --------------. X 

(1.2) 

I Introductory Notions 

When the map i of (1.1) is one-to-one, the corresponding factorization 
problem is called an extension problem, and g an extension off When the 
map p of (1.2) maps X upon B, the corresponding factorization problem is 
called a lifting problem, and g a lifting off 

A necessary condition for a positive solution of (1.1) is 

(1.3) For all at> a2 E A, if i(ad = i(a2)' thenf(ad = f(a 2). 

If (1.3) holds, and if, in addition, i maps A upon X, then there is a unique 
function g such that g 0 i = f; and g is continuous provided that i is a 
proclusion, i.e., that X has the identification topology determined by i, so 
that a subset U of X is open in X if and only if i-l(U) is open in A. 

Similarly, a necessary condition for a positive solution of (1.2) is 

(1.4) For each y E Y, there exists an x E X such that f(y) = p(x); in other 
words, the image off is contained in the image of p. 

If (1.4) holds, and if, in addition, p is one-to-one, then there is a unique 
function g such that po g =f; and g is continuous provided that p is an 
inclusion, so that we may regard X as a subspace of B. 

Numerous examples of extension problems with positive solutions occur 
as basic theorems of general topology. For example, 

(1.5) If A is a dense subspace of the metric space X, Y is a complete metric 
space, and f: A ~ Y is uniformly continuous, then f has a uniformly continuous 
extension g : X ~ Y. 

(1.6) (Tietze'S Extension Theorem) If X is normal, A is a closed subspace of X, 
and J is an interval of real numbers, then every map f: A -> J has an extension 
g: X~J. 

Negative solutions also occur. For example, the Brouwer fixed point 
theorem is equivalent to 

(1.7) The unit sphere sn is not a retract of the unit disc En + 1; i.e., the identity 
map of sn cannot be extended to a continuous map r: En + 1 ~ sn. 
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This is proved with the aid of homology theory. In fact, if there is a 
commutative diagram 

then application of the functor Hn yields a commutative diagram 

Hn(1) = 1 
Hn(sn) • Hn(sn) 

H"(~ ~"(') 
Hn(En+1) 

But Hn(En + 1) = 0, while Hn(sn) =1= 0, a contradiction. 
Many negative results in extension theory are proved by an elaboration 

of this argument. In fact, let F be any functor defined on the category ((f. 

A pplication of F to the diagram (1.1) yields a diagram 

F(A) 

(1.8) F(i)j ~ 
F(X) ------------~ F(Y) 

which is a right factorization problem in the range category of F. Thus a 
necessary condition that (1.1) have a positive solution is that (1.8) have one. 
However, a positive solution for (1.8) need not imply one for (1.1); for if 
</> : F(X) -+ F( Y) is a solution of (1.8), so that </> 0 F(i) = F(f), there need not 
exist g : X -+ Y such that </> = F(g). Moreover, even if such a map g does 
exist, the equality F(g 0 i) = F(g) 0 F(i) = F(f) need not imply the equality 
go i =1 

An important special case of the extension problem is the homotopy prob
lem. Let 10 ,11 : X -+ Y be maps, and let I be the closed interval [0, 1). Then/o 
and 11 are homotopic (fo ~ 11) if and only if the map of i x X into Y which 
sends (t, x) into !t(x) (t = 0, 1) has an extensionl : I x X -+ Y. Such an exten
sion is called a homotopy of 10 to 11, and determines, for each tEl, a map 
!t: X -+ Y, given by 

j;(x) = I(t, x) (t E I, x EX). 

If A is a subspace of X and/o I A = 111 A, we say that/o andl1 are homotopic 
relative to A (fo ~ 11 (reI. A» if and only if there is a homotopy 
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I: I X X --> Y of 10 to 11 satisfying the additional condition It I A = 10 I A for 
all tEl. The homotopy I is stationary at x E X if and only if/(t, x) = 1(0, x) 
for all tEl ;fis stationary on A c X if and only if/is stationary at each point 
of A. Finally, a stationary homotopy is one which is stationary on X. 

The relation of homotopy is reflexive, symmetric, and transitive, and the 
study of the sets [X, Y] of equivalence classes, called homotopy classes, is the 
object of homotopy theory. 

Let us consider how the notion of homotopy fits in with the factorization 
problems discussed above. For example, if 

I 
A -------., Y 

" 

X 

is an extension problem, and if!, : A --> Y is homotopic to f, one may ask 
whether the existence of a solution for I implies that of one for!,. (It need 
not; let Ln be the line segment in R2 joining the points (0, lin) and (1, 0), 
(n = 1,2, ... ), Lo the line segment joining (0,0) and (1,0), A = U:=o Ln = Y, 
X the unit square [0, 1] x [0, 1],fthe identity map (Figure 1.1). It is an easy 
exercise to see that A is not a retract of X, so that I has no extension 
g: X --> Y. But A is contractible to the point Yo = (1, 0), and the constant 
map of A into the point Yo has an extension). 

(0, 1) 

(0, !) 

(0, t) 

(0,0) '-------------=- (1,0) 

Figure 1.1 

If two homotopic mapsf,!, admit extensions g, g', we may ask whether 
the extensions need be homotopic. This suggests the homotopy extension 
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problem: letf: X ~ Y, and let g : I x A ~ Y be a homotopy off I A to a map 
l' : A ~ Y. Then f and g define a map h : 0 x X u I x A --+ Y and we may 
ask whether the extension problem 

OxXuIxA 
h 

------>. Y 

(1.9) n 
I x X---

has a solution. When this is so, the extension is a homotopy of f to an 
extension of 1'. 

When the problem (1.9) has a solution for every space Y and map h, we 
say that the inclusion map i : A 4 X is a co fibration. Cofibrations are likely 
to be pathological unless i is a homeomorphism of A with a closed subset of 
X. In this case we say that i is a closed co fibration. This is equivalent to 
saying that (X, A) is an NOR-pair and is a notion of crucial importance in 
homotopy theory. We shall study this notion in §§5, 6 below. 

Dually, let 

x 

Y -----+. B 
J 

be a lifting problem. Again, iff::::: 1', we may ask whether the existence of a 
solution for f implies that of one for f'. (Again, this need not be true: let X be 
the closure in R 2 of the graph of the function sin( l/x) (0 < x ::;; 1), B = Y = 

[0, 1], p the vertical projection (Figure 1.2). Then the identity mapf: Y ~ B 
cannot be lifted, but f is homotopic to a constant map, which can). 

Figure 1.2 
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Again we may formulate the homotopy lifting problem 

OxY f • X 

n /" jP 
I x Y ------+. B 

g 

When this problem has a solution for every space Y and pair of maps f, g we 
say that p : X -+ B is a fibration. This notion is again of the utmost impor
tance in homotopy theory; we shall study it in §7. 

If (X, A) and (Y, B) are pairs, two mapsfo ,II: (X, A)-+ (Y, B) are hom
otopic as maps of pairs if and only if there is a homotopy oUo to fl which 
maps I x A into B, and we may wish to study the set of homotopy classes 
[X, A; Y, B] of such maps of pairs. Occasionally other more complicated 
configurations may arise (e.g. maps of triples, triads, etc.). These can be 
included under one heading, by formalizing the notion of configuration. 

Let A be a finite partially ordered set. A A-configuration in a space X is a 
function A assigning to each element A E A a subspace A;. of X, such that 
AA c All whenever A:<=; Jl. The pair (X, A) is called a A-space. (As usual, it is 
often convenient to think of the function A as an indexed family of subspaces 
of X). 

For example, if A = 0, a A-space is just a space X. If A has just one 
element 0, a A-space is a pair (X, Ao). If A consists of two incomparable 
elements 1,2, a A-space is a triad (X; AI, Az). Finally, if A = {I, 2} and 
2 < 1, a A-space is a triple (X, AI' Az ). Thus the most important 
configurations in homotopy theory appear as very simple special cases. 

Again, if (X, A) is a A-space, then the sets {I x AA} form a A
configuration in I x X; the resulting A-space may well be denoted by 
1 x (X, A) or by (I x X, 1 x A). 

If (X, A) and (Y, B) are A-spaces, a A-map f: (X, A) -+ (Y, B) is a contin
uous mapf: X -+ Y such thatf(AA)c BA for all A E A. A A-homotopy be
tween two A-mapsf~,II: (X, A)-+ (Y, B) is a A-mapf: (I x X, I x A)-+ 
(Y, B) which is also a homotopy betweenfo and!1 as maps of X into Y. Two 
A-maps are A-homotopic if and only if there is a A-homotopy between them. 
The relation of being A-homotopic is an equivalence relation; denote the 
set of equivalence classes by [X, A; Y, B] be the set of equivalence classes. 

The core of a A-space is the set n;. E A A A' and a A-space (X, A) is said to 
be jejune if and only if its core is empty. 

Let A + be the partially ordered set obtained from A by adjoining an 
element ° such that ° < A for all A E A. An augmentation of a A-space (X, A) 
is an extension of A to a A + structure A + ; this amounts to adjoining to the 
family of subsets {AJ of X, a new set Ao contained in the core of (X, A). A 
strict augmentation of (X, A) is an augmentation for which A; is a single 
point Xo. Evidently (X, A) has a strict augmentation if and only if it is not 
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jejune. It is convenient to use the notation (X, A, xo) for a strictly aug
mented A-space. 

2 Standard Notations and Conventions 

Z 
Zm = Z/mZ 
Zo 
R 
C 
Q 
K 
I 

is the ring of integers. 
is the ring of integers modulo m (m = 2, 3, ... ). 
is the field of rational numbers. 
is the real number system, with its usual topology. 
is the field of complex numbers. 
is the algebra of quaternions. 
is the algebra of Cayley numbers. 
is the closed interval [0, 1] of real numbers, with the rela
tive topology, and i is the subspace of I consisting of the two 
points 0, 1. 

If V is a finite-dimensional vector space over R, V is given the least 
topology making all linear functionals continuous; i.e., the sets f- 1(U), 
where f ranges over all linear maps of V into R, and U over all open subsets 
of R, form a sub-basis for the topology of V. 

If W is an arbitrary vector space over R, W is given the weak topology 
determined by the family of all finite-dimensional subspaces, so that a subset 
C of W is closed if and only if C n V is closed in V for every finite
dimensional subspace V of W. 

ROO is the vector space of all sequences x = {Xi I i = 0, 1, ... ,} of real num
bers which vanish from some point on, i.e., there exists a non-negative 
integer N (depending on x) such that Xi = ° for all i ;:::: N. ROO is an inner
product space with inner product 

00 

X· Y = LXiYi 
i=O 

and norm 

Ilxll=~. 
If ei is the ith unit vector, whose ith coordinate is 1 and all other coordinates 
are 0, then eo, el> ... is an orthonormal basis for ROO. 

SOO = {x E ROO Illxll = 1} 

E OO = {x E ROO Illxll ::;; 1} 

R" = {x E ROO IXi = ° for all i;:::: n} 
S"-l = Soo n R" 

E" = Eoo n R". 

(n ;:::: 0) 
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(Warning: the inner product in ROO determines a metric but the topology 
we are using on ROO is not that determined by the metric; in fact, it is not 
even metrisable. However, the subspaces Rn, sn-l, En have their .:ustomary 
topology, which is indeed induced by the metric.) 

An is the convex hull of the set {eo, ... , en}. A point x belongs to An if and 
only if 

Xi ::=:: ° for all i, 

Xi = ° for all i > n, 

LXi = 1. 

The numbers xo, ... , xn are barycentric coordinates of x. 
An = {X E AnlXi = ° for some i, O:s; i:s; n}. 
bn is the barycenter (1/(n + 1)) 2:;'=0 ei of An. 
d;' : An-l -4 An is the affine map sending ej into ej for j < i and into ej+ 1 

for j ::=:: i (i = 0, 1, ... , n). 
s;' : An+ 1 -4 An is the affine map sending ej into ej for j :s; i and into ej-l 

for j > i (i = 0, 1, ... , n). 
(When no confusIOn can arise, d;' and si are often abbreviated to di and Si' 

respectively). 
A singular n-simplex in a space X is a map u : An -4 X. For such a map u, 

its ith face 8i u and the ith degeneracy L u are defined by 

(i = 0, 1, ... , n), 

Lu=uos'i (i = 0, 1, ... , n). 

The totality of singular simplices in X, with the operations 8i , L, is a semi
simplicial complex, the total singular complex 6(X) of X. 

The orthogonal group O(n) is the set of all linear transformations 
T: Rn -4 Rn which preserve the inner product: (Tx) . (Ty) = X . Y for all 
x, y ERn. The subgroup of O(n + 1) leaving the last coordinate vector en 
fixed can be identified with O(n). Thus we have inclusions O(n) c O(n + 1) 
for all n; the full orthogonal group 0 is the union U.~)=l O(n). The rotation 
group 0 + (n) is the subgroup of O(n) consisting of transformations with 
determinant + 1; and the full rotation group 0 + is the union U;:,= 1 0 + (n). It 
is usually convenient to think of O(n) as a group of transformations of the 
unit sphere sn - 1. The groups O(n), 0 + (n) are topologized as subs paces of 
the function space F(sn - 1, sn - 1); equivalently, they may be regarded as 
subspaces of the Euclidean space ofn x n matrices. Then {O(n)}, {O+ (n)} are 
expanding sequences of spaces, and their unions 0 and 0 + are given the 
direct limit topology as in §6. 

The orthogonal complement ofRm in Rm+n is the subspace Rn spanned by 
the last n basic vectors em' ... , em +n-l. The orthogonal group of Rn can be 
identified with the subgroup 6(n) which fixes the first m basic vectors 
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eo, ... , em-I' The subgroup O(n, m) ofO(m + n) consisting of those trans
formations which send Rm into itself is the direct product O(n) x O(m), and 
we may form the Grassmann manifold 

Gn.m = O(m + n)/O(n, m) 

as well as the Stiefel manifold 

V m + n• m = O(m + n)/O(n). 

The correspondences 

a ---+ a(Rm) 

a ---+ (a(eo), ... , a(em- l )) 

identify Gn• m with the set of all m-planes through the origin in Rm +n and 
V m + n• m with the set of all m-frames in Rm + n , respectively. 

We shall need to consider complex and quaternionic Euclidean spaces. It 
is convenient to do this in the following way. Let V be a real vector space, 
and let 1 : V ---+ V be a linear transformation such that I Z = - E, where E is 
the identity transformation of V. Then V is a complex vector space under the 
scalar product given by 

(a + ib)x = ax + bJ(x) (a, b E R, x EX). 

Similarly, suppose that I, J, K are linear transformations such that 

IZ=Jz=Kz=-E, 

IJ = -JI = K, JK=-KJ=I, KI=-IK=J. 

Then V is a (left) vector space over the quaternion algebra Q under 

(a + bi + cj + dk)x = a + bl(x) + cJ(x) + dK(x). 

Let Coo be the vector space Roo, with the complex structure defined by 

I(ezj } = eZj + 1> 

I(ezj + d = -eZj ' 

for all j ~ O. Then the vectors eo, ez , ... form a basis for Coo, and the vectors 
eo, ez , ... , eZn - Z form a basis for a subspace en, which is evidently R Zn with 
the complex structure defined by the restriction of 1 to RZn. 

Similarly, we define Qoo to be the vector space Roo, with the quaternionic 
structure defined by 

J e4i + 1 = - e4i + 3 , 
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and where I is defined as for COO. Then the vectors eo , e4, ... f01 m a basis for 
Qoo, and the vectors eo, e4 , ... , e4n _ 4 form a basis for a subspace Qn, which is 
evidently R4 n with the quaternionic structure defined by the restrictions of I, 
J, K to R4n. 

The unitary group U(n) is defined to be the set of all linear transforma
tions of C" which belong to the orthogonal group 0(2n); and the unimodular 
unitary group U+(n) is the subgroup of U(n) consisting of all elements of 
determinant + 1 (as complex-linear transformations; every member of U(n) 
has determinant + 1 when considered as a real-linear transformation). Sim
ilarly, the symplectic group Sp(n) is the set of all linear transformations of 
Qn which belong to 0(4n); there is no quaternionic analogue of U+(n). 
There are then inclusions 

as well as inclusions 

Sp(n) c U(2n), 

U(n) c 0(2n), 

U(n) c U(n + 1), 

Sp(n) c Sp(n + 1), 

and we have the full unitary and symplectic groups, defined by 

U = U U(n), 

Sp = U Sp(n). 
n 

There are also complex and quaternionic analogues 

Vn.k(C) = U(n)/O(n - k), 

Vn. k(Q) = Sp(n)/8P(n - k), 

G k • /(C) = U(k + l)/U(k, I), 

Gk • /(Q) = Sp(k + I)/Sp(k, I), 

of the Stiefel and Grassman manifolds. 
As special cases of the Grassman manifolds, we have the projective spaces 

pn = pn(R) = Gn. I, 

pn(C) = Gn• I(C), 

pn(Q) = Gn. I(Q), 

and, as special cases of the Stiefel manifolds, the spheres 

Vn + I • 1 =sn, 

Vn+1,1(C)=S2n+l, 

V n + 1, 1 (Q) = s4n + 3. 
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Remark. For typographical convenience, we shall often write On' Un' SPn 
instead of O(n), U(n), Sp(n), respectively. 

3 Maps of the n-sphere into Itself 

The notion of the degree of a map of the n-sphere sn into itself (n > 0) is due 
to L. E. J. Brouwer. In modern terms, the degree of a mapf: sn -> sn is the 
unique integer d(f) such that f*(u) = d(f) . u for all u belonging to the 
infinite cyclic group Hn(sn). Then the degree is a homotopy invariant off 
Clearly all nullhomotopic maps have degree zero. In this section we shall 
prove the converse: every map ofsn into itself of degree zero is nullhomotopic. 

We shall need certain triangulations of sn. Let K be the simplicial com
plex consisting of all proper faces of the standard (n + 1 )-simplex ~n+ 1 = ~. 
All triangulations of sn that we shall need are subdivisions of K (in fact, they 
may be taken to be iterated barycentric subdivisions). 

Let us recall that, if L is any triangulation of sn, then L is a closed 
n-dimensional pseudomanifold, i.e., 

(3.1) Every simplex of L is a face of an n-simplex of L. 

(3.2) Every (n - 1 )-simplex of L is a face of exactly two n-simplices of L. 

(3.3) L is strongly connected, in the sense that any two n-simplices of L can be 
joined by a finite sequence of n-simplices of L, each member of which has an 
(n - 1 )-dimensional face in common with the next. 

Moreover, L is orientable, i.e., 

(3.4) The n-simplices of L can be so oriented that their sum is an n-cycle (called 
a fundamental cycle) whose homology class generates the infinite cyclic group 
Hn(L). 

For the rest of this section, we shall make the following conventions 
about orientation. Choose a generator for Hn(K). If L is any subdivision of 
K, there is a canonical isomorphism of Hn(L) with Hn(K). Use this isomor
phism to determine a generator for Hn(L). Finally, orient the simplices of L 
so that the sum of the positively oriented n-simplices is a cycle representing 
the chosen generator. 

For each x E ~n+ 1, let AO(X)' ... ' An+ I(X) be the barycentric coordinates of 
x. Let ~o be the face of ~n+ 1 opposite to the vertex eo, so that x E ~o if and 
only if Ao(X) = O. For x E ~o, let 

A(X) = (n + l)min{Al(x), ... , An+l(X)}, 
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and let ~* be the set of all points x E ~o with ).(x) ;:::: 1/2. Then ~* is an 
n-simplex interior to ~o with vertices 4, ... , e;+ 1, where 

and 

1 n+1 

b*=--1 Iei 
n + i=1 

is the barycen ter of ~o, as well as of ~ *. 
Let r be the radial projection of ~o - {b*} into its boundary Ao . We now 

define a map cjJ of An+ 1 into itself, as follows. Firstly, cjJ I ~ * is the simplicial 
map carrying et into ei (i = 1, ... , n + 1). Secondly, cjJ maps the closure of 
An+ 1 - ~o into eo. Finally for each x E A*, cjJ maps the line segment [x, r(x)] 
linearly upon the line segment [r(x), eo]. 

The map cjJ is homotopic to the identity under a deformation in which 
each point moves along a broken line segment. An explicit homotopy is 
given by 

where 

(1 - t)x + teo 

<l>(x, t) = (1 + t)x - tb* 

a(x - ).(x )b*) + [Jeo 

(x E An+1 - ~o), 

{x E ~o, t:c:; (1 + t)).(x)), 

(x E ~o, t;:::: (1 + t)).(x)), 

(1 - t) + ).(x)(l + t) 
a= I-).(x) , 

[J = t - (1 + t)).(x). 

Let L be a subdivision of K. A map f of An+ 1 into itself is said to be 
standard (with respect to L) if and only if, for each n-simplex Ci of L, either 
f(Ci) = eo or f I Ci = cjJ 0 h", where h" : Ci ...... ~o is a nondegenerate simplicial 
map. For example, if g is a simplicial map of L into K, then cjJ 0 g is standard. 
However, not every standard map has this form. In fact, iff is a standard 
map, then f maps the (n - I)-skeleton r;-1 of L into the point eo; and it 
follows that, if Ci is any n-simplex of K, one can alter f inside Ci without 
changing it elsewhere in such a way that the resulting map is still standard. 
Thus standard maps are more flexible than simplicial maps; and this flexi
bility will be most useful in proving the main theorem of this section. 

Letfbe a standard map. Then, for each n-simplex Ci of Lon whichfis not 
constant, the map ha is uniquely determined, and we shall say that f is 
positive or negative on Ci according as ha preserves or reverses orientation. 
Let p(f), n(f) be the number of n-simplices on whichfis positive or negative 
respectively. Then an easy argument shows that d(f) = p(f) - n(f). 

By the simplicial approximation theorem, any map of An+ 1 into itself is 
homotopic to a simplicial map of L into K, for some subdivision L of K. 
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Since cp is homotopic to the identity, any simplicial map is homotopic to a 
standard map. To prove the main result of this section, then, it suffices to 
prove 

Theorem Let L be a subdivision of K and let f: Lln+ 1 ---+ Lln+ 1 be a standard 
map with respect to L such that d(f) = 0. Then f is nullhomotopic. 

The theorem is proved by induction on p(f) = n(f). If p(f) = 0, thenfis 
constant. Hence it suffices to show that, if p(f) > 0, thenfis homotopic to a 
map f' such that p(f') < p(f). This is accomplished with the aid of three 
Lemmas. 

Lemma 1 Let .'1 be an n-simplex, and let k : (.'1, Ll) ---+ (.'1, Ll) be a simplicial map 
which permutes the vertices of.'1 evenly. Then k is homotopic to the identity. 

Let M n be the simplicial complex which is the union of two n-simplices 
.'1R, .'1L, whose intersection .'1 is an (n - 1 )-dimensional face of each. Let .'10 
be an (n - 2)-dimensional face of .'1. Let eR, eL be the vertices of .'1R, .'1L 
respectively, opposite to .'1, and let eo be the vertex of.'1 opposite to.'1o . Then 
Mn is the join of .'10 with the subcomplex M 1 which is the union of the two 
I-simplices [eR, eo] and [eo, eL). Let p : .'1L ---+ .'1R be the simplicial map which 
is the identity on .'10 and sends eL into eo, eo into eR . Let p' : M n ---+ M n be the 
simplicial map which interchanges eR and eL and is the identity on .'1. Let M n 

be the union of all the (n - 1 )-simplices of M n except .'1. Finally, let Y be a 
topological space, and let Yo E Y. 

Figure 1.3 

Lemma 2 Let h: (Mn' Mn) ---+ (Y, Yo) be a map such that h(.'1L) = Yo' Let 
h' : (M n' M n) ---+ (Y, Yo) be the map such that 

h'(.'1R) = Yo, 

h' I.'1L = hop. 

Then h is homotopic (rei. M n) to h'. 

Lemma 3 Let h: (Mn' Mn) ---+ (Y, Yo) be a map such that hop' = h. Then h is 
homotopic (rei. M n) to the constant map of M n into Yo' 
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Before proving the Lemmas, we show how they imply the truth of the 
Theorem. Let/be a standard map with p(f) > O. Let (J, T be n-simplices such 
that / is positive on (J, negative on T. Join (J and r by a chain of n-simplices 
(Jo = (J, (J I, ... , (J q_ I, (J q = r as in (3.3). Discarding certain simplices from the 
head and tail of this chain, if necessary, we may assume that/((JJ = eo (i = 1, 
... , q - 1). It follow5 from Lemma 2 that, if q > O,Jis homotopic, relative to 
the closure of the complement of (Jo U (JI, to a map/I such thatfl((Jo) = eo; 
since the map P has degree 1, /1 is positive on (J I' Applying Lemma 2 
repeatedly, we find that / is homotopic to a standard map /' such that 
/'((Jo U ... U (Jq-z) = eo,/, maps (Jq_1 positively and (Jq negatively, and/, 
agrees with / on the closure of the complement of (Jo U ... U (Jq, so that 
p(f') = p(f). Hence we may assume that q = 1. 

Let h~: (J ~ ~o be the simplicial map such that h~ I (J n r = ht I (J n T, 

h~(e) = hr(e'), where e, e' are the vertices of (J, r respectively, opposite to 
(J n r. Then h~ preserves orien tation (because ht reverses it) and therefore 
the simplicial map k = h;; I 0 h~ : ((J, a-) ~ ((J, a-) preserves orientation. 
Hence k permutes the vertices of (J evenly; it follows from Lemma 1, that k is 
homotopic to the identity and therefore that ha 0 k = h~ is homotopic to ha. 
It follows in turn that/is homotopic, relative to the closure C of the comple
ment of (J U T, to a standard map /' for which 

/'1 T = hr· 

Finally, we can apply Lemma 3, to deform/" relative once more to C, to a 
standard map!" such that!"((J U r) = eo. Then p(fn) = p(f) - 1 < p(f). 
This completes the proof of the theorem. 

We now give the proofs of the Lemmas. 

PROOF OF LEMMA 1. Since the alternating group is generated by 3-cycles, we 
may assume that k permutes cyclically three of the vertices of ~ and leaves 
the remaining vertices fixed. Hence we may assume n = 2. Let Pt be the 
rotation of the unit disc EZ through an angle (2n/3)t. Then there is a homeo
morphism h : ~ ~ EZ such that k = h- I 0 PI 0 h; and k is homotopic to the 
identity under the homotopy kt = h - I 0 Pt 0 h (0 :::; t :::; 1). D 

PROOF OF LEMMA 2. For -1 :::; t :::; 1, let o:(t) be the point of M I given by 

o:(t) = 1(1 + t)eo - teR 
\(1 - t)eo + teL 

(-I:::;t:::;O), 

( O:::;t:::;I); 

as t increases from - 1 to + 1, o:(t) moves along a broken line segment from 
eR through eo to eL • 

Each point x E Mn can be represented in the form 

x = (1 - s)z + so:(t) 

with z E ~o, -1 :::; t:::; 1,5 E I; note that x E ~R ifand only ift:::; 0, x E ~L if 
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and only if t ::::: O. An explicit homotopy of h to h' is then given by 

Yo 

H(u, x) = h((l - s)z + SIX(t - u)) 

Yo 

(t + 1 :c:; u :c:; 1), 

(t :c:; u :c:; t + 1), 

(0 :c:; u :c:; t). 

17 

Continuity of H is easily established with the aid of the fact that, since the 
compact space M n is an identification space of MIx ~o x I, the product 
I x M n is an identification space of I x (M 1 x ~o x I). D 

PROOF OF LEMMA 3. With the same notation as above, an explicit homotopy 
of h to a constant map is given by 

( ) jh((l - u)x + ueL ) 
H u x = 

, \h((l - u)x + ueR ) 

Continuity of H is again easily established with the aid of the fact that, 
since the compact space Mn is an identification space of the disjoint union 
~L u ~R' the product I X M n is an identification space of the disjoint union 
I x (~R U ~L)' D 

This completes the proofs of the three Lemmas and, accordingly, that of 
the Theorem. It should be observed that the same argument can be used to 
show that any map of degree d > 0 is homotopic to a standard map which 
maps each of d mutually disjoint simplices positively and carries the comple
ment of their union into the base point eo. It is fairly evident that any two 
such standard maps are homotopic, and hence that any two maps of the 
same degree are homotopic. However, this will follow from what we have 
already proved by an easy argument to be given later (§4, Chapter IV). 

4 Compactly Generated Spaces 

Most of elementary homotopy theory can be carried out in a quite arbitrary 
category of (pointed) topological spaces. However, when one plunges more 
deeply into the subject, it becomes necessary to make certain constructions: 
product spaces X x Y, function spaces F(X, Y), identification spaces, 
among others. If, as is fashionable nowadays, one wishes to work in a fixed 
category of spaces, it is desirable to verify that the category in question is 
closed under these operations. Moreover, it is desirable that certain natural 
relationships among these operations (for example, the" exponential law" 
F(X, F(Y, Z)) = F(X x Y, Z)) should hold in complete generality. For 
example, the category of all topological spaces is unsatisfactory because of 
the failure of the exponential law; on the other hand, the category of CW-



18 I Introductory Notions 

complexes does not admit function spaces (nor does Milnor's category 1fI of 
spaces having the homotopy type of a CW-complex). 

A number of solutions to these difficulties have been proposed. Of these, 
perhaps the most satisfactory is Steenrod's proposal to use the category of 
compactly generated spaces. 

In this book we shall consistently adopt Steenrod's solution. Accordingly, 
we shall assume throughout, unless explicitly stated to the contrary, that all 
spaces are compactly generated. Naturally, if in the course of an argument, a 
new space is constructed out of old ones, it will be necessary to prove that it 
too, is compactly generated. In this and subsequent sections, we shall list 
without proof a number of properties which will facilitate this process; for 
the proofs, the reader is referred to Steenrod's paper [5]. 

We recall that a space X is compactly generated if and only if X is a 
Hausdorff space and each subset A of X with the property that A n C is 
closed for every compact subset C of X is itself closed. Let X' be the category 
whose objects are all compactly generated spaces and whose morphisms are 
all continuous maps between such spaces. Thus % is a full subcategory of 
the category :Y of all topological spaces, as well as of the category :Y 2 of all 
Hausdorff spaces. 

(4.1) Every locally compact Hausdorff space belongs to %. 

(4.2) Every Hausdorff space satisfying the first axiom of countability belongs 
to X. 

In particular, 

(4.3) Every metrizable space belongs to %. 

If X is a Hausdorff space, the associated compactly generated space is the 
space k(X) defined as follows: k(X) and X have the same underlying set, and 
a subset A of X is closed in k(X) if and only if A n C is closed in X for every 
compact subset C of X. For any function f: X -> Y, let kU) be the same 
function, regarded as a map of k(X) into k(Y). 

(4.4) The identity map k(X) -> X is continuous. 

(4.5) k(X) is compactly generated. 

(4.6) If X is compactly generated, then k(X) = X. 

(4.7) k(X) and X have the same compact sets. 

(4.8) If f: X -> Y is a function, then kU) is continuous if and only if 
fie: C -> Y is continuous for every compact set C c X. 
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(4.9) If X is compactly generated, then the operation of composition with the 
identity map k(Y) -4 Y is a one-to-one correspondence between all continuous 
maps of X into k( Y) and all continuous maps of X into Y. 

(4.10) k(X) and X have the same total singular complexes, and therefore the 
same singular homology and cohomology groups. 

(4.11) k is afunctor: Y 2 -4 X, and k is the right adjoint of the inclusion functor 
X-4Y 2 • 

(This means that the sets Y 2(X, Y) and x(X, k(Y» are in natural one-to
one correspondence, for any X EO X, YEO Y 2)' 

If X and Yare compactly generated, their Cartesian product Z in the 
customary topology need not be so. However, let p : Z -4 X, q : Z -4 Y be the 
projections. Then k(p): k(Z) -4 k(X) = X and k(q): k(Z) -4 k(Y) = Y. 

(4.12) k(Z), with the morphisms k(p), k(q) is a product for X and Y in the 
category X. 

(This means that the operation of composition with k(p) and k(q) estab
lishes a one-to-one correspondence between the sets x(W, k(Z» and 
x(W, X) x x(W, Y) for any compactly generated space W). 

Thus it is reasonable to define X x Y to be the retopologized Cartesian 
product k(Z). We shall call this the categorical product (or simply product), 
reserving the term Cartesian product in its usual sense. 

(4.13) The categorical product is commutative and associative, up to natural 
homeomorphisms. 

It is often useful to know that in some circumstances the new product 
agrees with the old one, i.e., that the Cartesian product topology is com
pactly generated. This is assured by 

(4.14) If X is locally compact and Y compactly generated, their Cartesian 
product is compactly generated. 

Let I be the closed interval [0, 1] of real numbers, in its usual topology. 
Then (4.14) implies that, if X is compactly generated, then I x X has the 
usual topology. Thus the notion of homotopy is unchanged. 

Let f: X -4 X', g: Y -4 Y' be maps in X. If p: X x Y -4 X, q: X x 
Y -4 Y, p' : X' x Y' -4 X' and q' : X' x Y' -4 Y' are the projections, there is a 
unique map f x g : X x Y -4 X' x Y' such that p' 0 (f x g) = fop, 
q' 0 (f x g) = g 0 q. Thus the categorical product, like the Cartesian, is a 
functor. 
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Just as the notion of product requires some modification in order to 
remain within the category X, so does the notion of subspace. For if X is 
compactly generated and A is a subset of X, then A need not be compactly 
generated in its relative topology. The solution to this difficulty is again to 
use the functor k. Thus we shall define a subspace of X to be a space of the 
form k(A) for any subset A of X taken with the relative topology. The 
following statement shows that in many familiar situations the new notion of 
subspace coincides with the old. 

(4.15) If X is compactly generated, all closed subsets and all regular open 
subsets are compactly generated. 

(An open subset U is regular if and only if each point of U has a closed 
neighborhood which is contained in U). 

In what follows, we shall assume that all subsets of a compactly generated 
space X have been retopologized in this way. A map i : X ~ Y in X will be 
called an inclusion if and only if i is a homeomorphism of X with the 
subspace i(X) of Y. 

(4.16) If i: X ~ X' and j: Y ~ Y' are inclusions in X so is 
i x j : X x Y ~ X' X Y'. 

A map f: X ~ Y is called a proclusion if and only iff maps X upon Yand 
Y has the identification topology imposed by 1, so that a subset U of Y is 
open if and only if f-l(U) is open in X. 

(4.17) If X is compactly generated, Y is a Hausdorff space, p : X ~ Y is a 
proclusion, then Y is compactly generated. 

(4.18) If f: X ~ X' and g: Y ~ Y' are proclusions in X, so is 
f x g: X x Y ~ X' X Y'. 

We now turn our attention to function spaces. Unfortunately even if X 
and Yare compactly generated, the function space C(X, Y) of all continuous 
maps of X into Y, with the compact-open topology, need not be so. Thus it is 
natural to use the functor k to retopologize C(X, Y), and we define 
F(X, Y) = k(C(X, Y)). Important in this context is the evaluation map 
e: F(X, Y) x X ~ Y, defined by e(f, x) = f(x). 

(4.19) If X and Yare compactly generated, then the evaluation map 
e: F(X, Y) x X ~ Y is continuous. 

(4.20) If X, Y, and Z are compactly generated, then the spaces F(X, Y x Z) 
and F(X, Y) x F(X, Z) are naturally homeomorphic. 
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The homeomorphism in question is given by f -+ (PI 0 f, P2 0 f), where 
PI' P2 are the projections of the product Y x Z into its first and second 
factors, respectively. 

(4.21) If X, Y, and Z are compactly generated, then the spaces F(X x Y, Z) 
and F(Y, F(X, Z» are naturally homeomorphic. 

The homeomorphism in question sends a map 9 : X x Y -+ Z into the 
map g : Y -+ F(X, Z) rlefined by 

g(y)(x) = g(x, y). 

The maps 9 and g are said to be adjoint to each other. 

(4.22) If X, Y, and Z are compactly generated, then the operation of composi
tion is a continuous mapping of F(Y, Z) x F(X, Y) into F(X, Z). 

Again, it is easy to see that F defines a functor, contravariant in the first 
argument and covariant in the second. In particular, if 9 : X' -+ X and 
h: Y -+ Y' are maps, then the composition with 9 and h define continuous 
functions 

g = F(g, 1): F(X, Y) -+ F(X', Y), 

I.! = F(1, h): F(X, Y) -+ F(X, Y'). 

It follows that these functions induce operations on the sets of homotopy 
classes 

g: [X, Y] -+ [X', Y], 

I.!: [X, Y] -+ [X, Y']. 

Moreover, because of (4.21) 

(4.23) The functors X x and F(X, ) form an adjoint pair. 

5 NDR-pairs 

We shall frequently have occasion to deal with the category x 2 of all pairs 
(X, A), where X is compactly generated and A is a subspace of X, together 
with all maps between such pairs. Often it will be desirable that A be nicely 
imbedded in X, so that, for example, the homotopy extension property 
holds. Again we refer the reader to Steenrod's paper for the proofs. 
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Let X be compactly generated and let A be a subspace of X. Then (X, A) 
is said to be an NDR-pair if and only if there are continuous mappings 
u : X -+ I, h : 1 x X -+ X, such that 

(1) A = u- 1 (O); 
(2) h(O, x) = x for all x E X; 
(3) h(t, x) = x for all tEl, x E A; 
(4) h(l, x) E A for all x E X such that u(x) < 1. 

If, instead of (4), we assume 

(4') h(l x X) c A, 

we say that (X, A) is a DR-pair. The pair (u, h) is said to represent (X, A) as 
an NDR-pair (DR-pair). 

Let x; be the full subcategory of x 2 consisting of all NDR-pairs and all 
continuous maps between such pairs. 

Note that, if (X, A) is an NDR-pair, then A is a closed Gb-subset of X. 
Moreover, A is a retract of its neighborhood U = {x E X I u(x) < I}, and so a 
neighborhood retract of X. We shall refer to U as a retractile neighborhood 
of A. 

(5.1) If X is compactly generated and A is closed in X, the following four 
conditions are equivalent: 

(1) (X, A) is an NDR-pair: 
(2) (I x X, 0 x X u 1 x A) is a DR-pair; 
(3) 0 x X u 1 x A is a retract of 1 x X; 
(4) (X, A) has the homotopy extension property with respect to arbitrary 

spaces (i.e., the inclusion map of A in X is a co fibration). 

(5.2) If(X, A) and (Y, B) are NDR-pairs, then so are all the pairs which can be 
formed from the array 

/X x B"" 
XxY-XxBuAxZ /AxB 

"'AxY 

In particular, the pair (X, A) x (Y, B) = (X x Y, X x B u A x Y) is an 
NDR-pair. Moreover, if(X, A) or (Y, B) is a DR-pair, so is (X, A) x (Y, B). 

(5.3) If Be A c X and (A, B) and (X, A) are NDR-pairs (DR-pairs), then 
(X, B) is an NDR-pair (DR-pair). 

A mapping f: (X, A) -+ (Y, B) is said to be a relative homeomorphism if 
and only iff is a proclusion of X on Y and f I X - A is a homeomorphism of 
X - A with Y - B. For example, let (X, A) E .'ff2 and let h: A -+ B be a map 
in x; then the adjunction space X u h B, obtained from the disjoint union 
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x + B by identifying each x E A with h(x), contains a homeomorphic copy 
of B, and the identification mapf: (X + B, A + B) ~ (X u h B, B) is a rela
tive homeomorphism. In particular, if B is a point then X U h B = X/A is 
the identification space obtained from X by collapsing A to a point * and the 
identification map is a relative homeomorphism (X, A) ~ (X/A, *). 

(5.4) Let (X, A) be an NDR-pair (DR-pair), and let f: (X, A) ~ (Y, B) be a 
relative homeomorphism. Then (Y, B) is an NDR-pair (DR-pair). In particu
lar, let (X, A) be an NDR-pair, and let h: A ~ B be a map in X. Then 
(X U h B, B) is an NDR-pair. 

An important special case of the above construction is the mapping cylin
der II of a map f: X ~ Y in x. This is the space I x X u h Y, where 
h: 1 x X ~ Y is defined by h(1, x) = f(x). Let (t, x) be the image in II of 
the point (t, x) E I x X under the identification map. We may identify x EX 
with (0, x) and y E Y with its image under the identification, thereby 
obtaining inclusions i : X ~ I I ,j: Y C+ II· The projection J : I I ~ Y, defined 
by 

J(t, x») = f(x), 

J(y) = y 

is a deformation retraction, and J 0 i = f Thus the map f : X ~ Y is homo
topically equivalent to the inclusion map i : X ~ I I. This useful device will 
often be exploited. 

Similarly, the mapping cone off is the space TJ = IJ/X. 
U f: X ~ Y and 9 : Y ~ X are maps such that 9 0 f ~ 1, the identity map 

of X, we say that 9 is a left homotopy inverse of f, and f a right homotopy 
inverse of g. The map 9 is a homotopy inverse off if and only if it is both a 
right and a left homotopy inverse of f, and f is said to be a homotopy 
equivalence if and only if it has a homotopy inverse. A necessary and 
sufficient condition for a map f to be a homotopy equivalence is that it have 
a left homotopy inverse gL and a right homotopy inverse gR. For then 

gL ~ gL 0 (f 0 gR) = (gL 0 f) 0 gR ~ gR, 

f 0 gL ~f 0 gR ~ 1, 

so that gR (and likewise gL) is a homotopy inverse off We also say that X 
dominates Y if and only if there is a map f: X ~ Y having a right homotopy 
inverse. 

Of special importance is the case of an inclusion map. If i : A C+ X has a 
right homotopy inverse, we say that X is deformable into A. 

(5.5) Theorem (Fox). A map f: X ~ Y has a right homotopy inverse if and 
only ifIJ is deformable into X. 
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For if g: Y -+ X,J 0 9 ~ l y , let q = go 1: If -+ X. Sincej 0 J ~ 1: If -+ If 
and j 0 f~ i, 

i 0 q ~ j 0 fog 0 1 ~ j 0 1 ~ II!" 
Conversely, let q: If -+ X, i 0 q ~ II! and let 9 = q 0 j: Y -+ X. Then 

fog=foqoj=Joioqoj~Joj=ly. 0 

We may also consider the condition that i: A <:> X have a left homotopy 
inverse. If, however, (X, A) is an NDR-pair, andf: X -+ A is a left homotopy 
inverse of i, so thatf 0 i ~ 1, then, by the homotopy extension property,Jis 
homotopic to a map r : X -+ A such that r 0 i = 1. Such a map is called a 
retraction, and A a retract of X. Thus 

(5.6) Theorem If (X, A) is an NDR-pair, then the inclusion map i: A <4 X has 
a left homotopy inverse if and only if A is a retract ofX. 0 

(5.7) Theorem A map f: X -+ Y has a left homotopy inverse if and only if the 
inclusion map i: Y <4 If has a left homotopy inverse. 

For if g:Y-+X, gof~lx' and q=goj, 
gof~lx. Conversely, if q:If-+X, qoi~lx' 
gof=qojof~qoi~lx· 

then q 0 i = 9 0 J 0 i = 

9 = q 0 j : Y -+ X, then 
o 

(5.8) Corollary (Fox). A map f: X -+ Y has a left homotopy inverse if and only 
if X is a retract of If· 

For (If' X) is an NDR-pair, by (5.4). o 
Finally, we may consider when an inclusion i: A <4 X is a homotopy 

equivalence. As in the case of left homotopy equivalence, there is a useful 
notion, stronger for general pairs, but equivalent for NDR-pairs. 
Specifically, we shall say that A is a deformation retract! of X if and only if 
there is a homotopy F : I x X -+ X, called a retracting deformation, such that 

F(O, x) = x 

F(t, a) = a 

F(1 x X) c A. 

(x EX), 

(a E A, tEl), 

The end-value of such a homotopy is a retraction r = F! : X -+ A, called a 
deformation retraction. Note that, if A is a deformation retract of X, then 
(X, A) is a DR-pair if and only if there is a map h: X -+ I such that 
A = u- 1(O). 

1 Some authors append the word strong for this notion; we omit it in accordance with the 
general principle of using the simplest language for the most important notions. 
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(5.9) Theorem If(X, A) is an NOR-pair, then the inclusion map i : A c+ X is a 
homotopy equivalence if and only if A is a deformation retract of x. 

Let f : X ~ A be a homotopy inverse of i, so that there are homotopies 
F: 1 x A ~ A, G: 1 x X ~ X of lA to f 0 i, Ix to i 0 f, respectively. Since 
(X, A) is an NOR-pair,f is homotopic to a retraction r : X ~ A, and there
fore i 0 r ~ i 0 f ~ Ix. Therefore we may assume that f is already a retrac
tion, and G is a homotopy of 1 x to i 0 f 

Let P = 1 x X, Q = i x X U 1 x A; since (I, i) and (X, A) are NOR-
pairs, so is their product (P, Q). Define H * : ° x P U 1 x Q ~ X by 

H*(s, 0, x) = x, 

H*(s, 1, x) = G(1 - s,f(x)), 

H *(s, t, a) = G((1 - s)t, a), 

H*(O, t, x) = G(t, x). 

The verification that H * is well-defined is trivial, except for the observation 
that the second and fourth lines agree at (0, 1, x), i.e., that G( 1,f (x)) = 

G( 1, x). The end value of the homotopy G is G i = i 0 f; and f (x) E A implies 
that G(I,f(x)) = f(f(x)) = f(x) = G(1, x). 

Since (P, Q) is an NOR-pair, H * has an extension H : 1 x P ~ X. Then 
the end value of H is the desired retracting deformation. 0 

(5.10) Corollary (Fox). A map f: X ~ Y is a homotopy equivalence if and only 
if X is a deformation retract of 1 J . 0 

Let (X, A) be a pair, h: A ~ B, Y = X u h B, and let f : X ~ Y be the 
identification map, Z = 1 J' C = Ih . Then C is a subspace of Z, C n X = A. 

(5.11) Theorem If (X, A) is an NOR-pair, then (Z, X U C) is a DR-pair. 

Let P = 1 x X, Q = ° x X U 1 x A; then (P, Q) is a DR-pair, and so, 
therefore, is (P + B, Q + B). There is a commutative diagram 

(I x X) + X + B ----+ (I x X) + B 

(I x X) + Y ------+1 Z 
P 

in which II (I x X) + B is the identity, l(x) = (1, X ),f1 II x X is the identity, 
f1 I X + B: X + B ~ Y is the identification map, p: (I x X) + Y ~ Z is the 
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identification map, and q I I + X = p I I + X, q I B is the composite of the 
inclusions B C+ Y C+ Z. The maps p andfl are proclusions, and it follows that 
q is a proclusion. Moreover, q-I(X u C) = Q + B, and q maps (P + B) -
(Q + B) = P - Q homeomorphically upon Z = (X u C). Our conclusion 
then follows from (5.4). D 

(5.12) Corollary Suppose that h: A --> B is a homotopy equivalence. Then 
f: :x --> X U h B is also a homotopy equivalence. 

By Corollary (5.10), A is a deformation retract of C, and therefore (C, A) 
is a DR-pair. Hence (X u C, X) is a DR-pair. But we have seen that 
(Z, X u C) is a DR-pair. By (5.3), (Z, X) is a DR-pair. Again by Corollary 
(5.10), the mapf: X --> Y is a homotopy equivalence. D 

An important special case is 

(5.13) Corollary If (X, A) is an NDR-pair and A is contractible, the 
identification map p: X --> X/A is a homotopy equivalence. D 

We conclude this section with a 'variant of the definition ofNDR-pair due 
to A. Str9m (who, however, does not demand that A be closed). This variant 
will be useful later. 

(5.14) If A is closed in X, then (X, A) is an NDR-pair if and only if there are 
maps u : X --> I, h : I x X --> X such that 

(1) A c u-I(O), 
(2) h(O, x) = x for all x E X, 
(3) h(t, a) = a for all (t, a) E I x A, 
(4) h(t, x) E A whenever t> u(x). 

If (X, A) is an NDR-pair, then by (3) of (5.1), there is a retraction 
r : I x X --> ° x X u I x A. Define u and h by 

u(x) = suplt - PIr(t, x)l, 
tEl 

h(t, x) = pzr(t, x), 

where PI : I x X --> I, pz : I x X --> X are the projections. 
Conversely, suppose u and h satisfy (1)-(4) above. Then a retraction 

r : I x X --> ° x X u I x A is defined by 

r(t, x) = 1(0, h(t, x)) if t:::; u(x), 

(t - u(x), h(t, x)) if t ~ u(x). D 
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6 Filtered Spaces 

Let X be a space (not necessarily compactly generated), {Aa IIX E J} a family 
of closed subsets whose union is X. We say that X has the weak topology 
with respect to the Aa if and only if it satisfies the following condition: a 
subset C of X, whose intersection with each of the sets Aa is closed, is itself 
closed. 

For example, let X be a Hausdorff space. Then X is compactly generated 
if and only if it has the weak topology with respect to the collection of all 
compact subsets of X. 

Let X be a set, and let {A a} be a collection of topological spaces, each a 
subset of X. We shall say that {Aa} is a coherent family (of topological spaces) 
on X if and only if 

(1) X = Ua Aa; 
(2) Aa II AD is a closed subset of Aa for every IX, [3; 
(3) for every IX, [3, the topologies induced on Aa II Ap by Aa and Ap 

coincide. 

Let {Aa} be a coherent family on X. Define a subset C of X to be closed if 
and only if C II Aa is closed in Aa for every IX. Then 

(1) X is a topological space (i.e., the complements of the closed sets form a 
topology on X); 

(2) Aa is a subspace of X; 
(3) Aa is closed in X; 
(4) X has the weak topology with respect to the Aa. 

For example, let X be the space of an infinite simplicial complex K. Then 
each simplex of K has a natural topology and K is a coherent family of 
topological spaces on X. And the weak topology with respect to K is one of 
the standard topologies on X. 

If X has the weak topology with respect to a coherent family {Aa}, then X 
need not be a Hausdorff space even if each Aa is. Therefore X may fail to be 
compactly generated, even if each Aa is, just for this reason. However, 

(6.1) If {A a} is a coherent family of compactly generated spaces on X, and if X 
is a Hausdorff space (in the weak topology), then X is compactly generated. 

F or suppose that C is a subset of X such that C II K is closed for 
every compact set K. Then, for every compact subset K of Aa , 

(C II Aa) II K = C II K is closed in Aa; since Aa is compactly generated, 
C II Aa is closed in Aa. Since X has the weak topology with respect to {Aa}, 
C is closed in X. 0 

Of special interest is the case of an expanding sequence of spaces. This is a 
sequence {Xn 1 n ~ O} of spaces such that Xn is a closed subspace of X n+ 1 for 
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every n. If this is the case, {Xn} is a coherent family on X = U:=o X n. The 
space X, with the weak topology defined by the family of subspaces X n' is 
said to be a filtered space, filtered by the X n' if and only if X is Hausdorff 
(and therefore compactly generated). 

(6.2) Let X have the weak topology with respect to the expanding sequence 
{X n}. Then every compact subset C of X is contained in X n for some n. 

(6.3) Let X have the weak topology with respect to the expanding sequence 
{Xn}. Suppose that (Xn+ 1, Xn) is an NOR-pair for every n. Then X is com
pactly generated and (X, Xn) is an NOR-pair for every n. 

(6.4) Let X have the weak topology with respect to the expanding sequence of 
subspaces {Xn}. Letf: X ---. Y be a proclusion, and suppose that Xn is saturated 
with respect to f Then y" = f(X n) is an expanding sequence and Y has the 
weak topology with respect to the Y". 

(6.5) Let X, Y be compactly generated spaces, filtered by {Xn}, {Yn}' respec
tively. Then X x Y is filtered by {Zn}' where 

n 

(6.6) Zn = U Xi X y"-i· 
i=O 

An NOR-filtration of X is a filtration {Xn} of X such that (Xn+ l' Xn) (and 
therefore (X, Xn)) is an NOR-pair for every n. 

(6.7) If {Xn} and {Y,,} are NOR-filtrations of X, Y respectively, and Zn is 
defined by (6.6), then {Zn} is an NOR-filtration of X x Y. 

A special case of interest is the product of countably many spaces Xi 
(i = 1,2, ... ), each having a nondegenerate base point *, i.e., (Xi' *) is an 
NOR-pair. Let X = f1~ 1 Xi be the subset of the Cartesian product of the 
Xi consisting of all x such that Xi = * for almost all i. Let Y" = {x E X I Xi = * 
for all i> n}. Then Yn c Yn + 10 and Y,,+ 1 is in one-to-one correspondence 
with Y" x X n + 1. Let us topologize the Yn inductively by requiring that this 
correspondence be a homeomorphism. Then (Y,,+ 1, Y,,) is homeomorphic 
with (X,. x Y", H x Yn) = (Xn, H) x Yn, and therefore is an NOR-pair. 
Then {Yn} is an expanding sequence of spaces, and therefore X = U:= 1 Yn is 
a compactly generated space, and each of the pairs (X, X n) is an NOR-pair. 
We shall refer to X as the weak product of the spaces X n • 

Fortunately, we shall never have to deal with the full Cartesian product of 
infinitely many factors, nor with uncountable weak products. 
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7 Fibrations 

Let p: X --+ B be a map and Ya space in the category %. A homotopy lifting 
problem for (p, Y) is symbolized by a commutative diagram 

Y 
f -x 

~ 

(7.1) io I \p 

IxY~ B 
G 

where io(y) = (0, y) for all y E Y; and the mapsJ: Y --+ X, G: I x Y --+ Bare 
said to constitute the data for the problem in question. The map G is a 
homotopy of p 0 J; and a solution to the problem is a homotopy 
F: I x Y --+ X ofJsuch that po F = G; thus F lifts the homotopy G of po J 
to a homotopy off 

Remark. Often it is convenient to prescribe the terminal, rather than the 
initial value, of the lifting of a homotopy. Thus, if i l : Y --+ I x Y is the map 
such that il(y) = (1, y), two maps J: Y --+ X, G: I x Y --+ B such that 
G 0 i l = P 0 f, are often referred to, loosely, as the data for a homotopy 
lifting problem. 

The map p has the homotopy lifting property with respect to Y if and only if 
every problem (7.1) has a solution; and p is said to be a fibration (or fibre 
map) if and only if it has the homotopy lifting property (HLP) with respect 
to every space Y. If p : X --+ B is a fibration, the fibre over b E B is the set 
Fb = p-I(b). In Chapter IV we shall see that, if B is pathwise connected, then 
all the fibres Fb have the same homotopy type. The space B is called the base 
space, the space X the total space, of the fibration p; and we often say that X 
is a fibre space over B with respect to p. 

We shall often use the locution 

"F ---., X 
p 

---» B is a fibration" 

to mean that p : X --+ B is a fibration, that F is the fibre over some designated 
point of B, and that i: F <:+ X. 

For any space Y, let F(Y) = F(I, Y) be the space of all paths in Y. For any 
map p : X --+ B, let 

(7.2) IP = {(x, u) E X x F(B)lp(x) = u(o)}; 

thus the points of W = IP are the data for all homotopy lifting problems for 
(p, P), where P is a single point. A connection Jor p is a map A. : W --+ F(X) 
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with the following two properties: 

(7.3) 

(7.4) 

A(X, y)(O) = x, 

p 0 A{X, u) = U, 

I Introductory Notions 

for all (x, U) E W. Thus A(X, u) is a solution for the homotopy lifting problem 
having (x, u) as data; and a connection for p is a simultaneous solution of all 
homotopy lifting problems for (p, P). Moreover A is a connection if and only 
if its adjoint A: : I x W ~ X is a solution for the homotopy lifting problem 

W 
Po .X 

" 
(7.5) io \ ,/1 \p 

I x W ----> B 
J1. 

where Po (x, u) = x, J1.(t, x, u) = u(t). Thus it is not surprising that 

(7.6) A map p : X ~ B is a fibration if and only if there exists a connection 
for p. 

Let A be a connection, A: its adjoint, and letf: Y ~ X, G: I x Y ~ B be the 
data for a homotopy lifting problem. The map f: Y ~ X and the adjoint 
(; : Y ~ F(B) of G define a map () : Y ~ W, and Po 0 () = J, J1. 0 (1 x () = G. 
Hence A: 0 (1 x () is the desired solution. 

Conversely, if p is a fibration, then the homotopy lifting problem (7.5) has 
a solution, whose adjoint A is a connection for p. 0 

Remark. The space fP, with the data (Po, J1.) of (7.5), is a universal example 
for the homotopy lifting problem, in that it is a special case whose solution 
entails the solution of the problem in general. The method of the universal 
example is a powerful one, and, although we do not attempt to formalize it, 
the notion will recur again and again. 

The next few theorems given some important examples of fibrations. 
Perhaps the simplest is given by 

(7.7) Theorem For any spaces B, F, the projection P2: F x B ~ B is a 
fibration. 

In fact, if 

f 
Y ----> FxB 

i, \//'lp, 
I x Y ----> B 

G 
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is a homotopy lifting problem, the map H : I x Y ~ F x B defined by 

H(t, y) = (Pl f(y), G(t, y)) 

is a solution. 

The projection P2 : F x B ~ B is said to be a trivial fibration. 

31 

o 

(7.8) Theorem If (X, A) is an NDR-pair and if i : A 4 X, then the restriction 
map 

1: F(X, Z) ~ F(A, Z) 

is a fibration, for any space Z. 

For the problem 

Y I F(X, Z) 

!//'! 
I x Y ---+ F(A, Z) 

translates, with the aid of (4.23) and (4.13) to a problem 

XxY ---_I Z 

! 
IxXxY-IxAxY 

but the latter problem is a homotopy extension problem for the pair 
(X x Y, A x Y) = (X, A) x (Y, 0). Since (X, A) and (Y, 0) are NDR
pairs, so is their product, by (5.2), and therefore the homotopy extension 
problem has a solution. Hence the original one does as well. 0 

(7.9) Corollary The maps p : F(X) ~ X x X, Pi : F(X) ~ X defined by 

p(u) = (u(O), u(1)), 

Pi(U) = u(i) (i = 1, 2) 

are fibrations. o 

(7.10) Theorem If p: X ~ B is a fibration, then, for any space Z, 
p : F(Z, X) ~ F(Z, B) is a fibration. 
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For any homotopy lifting problem 

Y --+ F(Z, X) 

]///. ] 
I x Y --+ F(Z, B) 

translates, with the aid of (4.23) and (4.13), into a homotopy lifting problem 

Y x Z I X 

IxYxZ---B 

and the existence of a solution of the latter assures us of a solution of the 
former. D 

The easy proof of 

(7.11) Theorem If p : X ---+ Y and q: Y ---+ Bare fibrations, so is q 0 p: X ---+ B. 

is left to the reader. 

(7.12) Theorem Everv covering map is a fibration. 

For suppose that p: X ---+ X is a covering map and let 

IxY---X 
G 

be a homotopy lifting problem. By the general theory of covering spaces, for 
each Y E Y there is a unique path uy: 1---+ X such that uy(O) = f(y) and 
pUy(t) = G(t, y). What has to be shown is that the map (t, y) ---+ uy(t) is a 
continuous map F: 1 x Y ---+ X. 

Let y E Y. For each tEl, there exist neighborhoods U = U(t, y) of t, 
V = V(t, y) of y such that G(U x V) is contained in some open set in X 
which is evenly covered by p. Let '1 > 0 be a Lebesgue number for the open 
covering {U(t, y) I tEl} of I, and let 0 = to < tl < ... < tn = 1 be a partition 
with ti - ti- I < '1 for i = 1, ... , n. Then, for each i, [ti-I, tJ c U(t;, y) for 
some t; and therefore [t i - I , tJ x V(t;, y) c U(t;, y) x V(t;, y) so that 
G([t i - I, tJ x V(t;, y)) is contained in an open set Jt; evenly covered by p. Let 
V(y)=n7=1 V(t;,y). 
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We next define a continuous function Fy:I x V(y)~X such that (1) 
Fy(O, z) = J(z) and (2) pFy(t, z) = G(t, z) for z E V(y), tEl. Firstly, define Fy 
on {to} x V(y) by (1). Suppose that Fy has been defined on [0, tJ x V(y). 
Let p - 1 (W;) be represented as the union of disjoint open sets ft:, each 
of which is mapped homeomorphically upon W; by p, and let 
qa = (p I w,t 1 : W; ~ ~. Then V(y) is the union of the disjoint open sets 

v: = {z E V(y) I Fy(ti' z) E Wa} 

and therefore [ti' ti+ I] x V(y) is the union of the disjoint open sets 
[ti' t i + l ] x V:. We can then extend Fy over [0, t i + l ] x V(y) by setting 

Fy(t, z) = qa(G(t, z)) 

for t E [ti' ti + d, z E V:. This completes the inductive construction of F y' 
Let z E V(y); then 

uAO) = J(z) = Fy(O, z), 

puAt) = G(t, z) = pFy(t, z); 

by the uniqueness theorem for lifting of paths, u.(t) = Fy(t, z) for all tEl, 
z E V(y). Hence F and Fy agree on the open set I x V(y). Since the Fy are 
continuous and the V(y) cover Y, F is continuous. 0 

The next result is due to Hurewicz. The proof is long and complicated, 
involving intricate properties of paracompact spaces not needed elsewhere 
in this book. Therefore we shall omit the proof, referring the reader to [0, 
Chapter XX, §§3-4]' 

Theorem (Hurewicz). Let p: X ~ B be a continuous map. Suppose that B is 
paracompact, and that there is an open covering m oj B such that, jor each 
V Em, plp-I(V): p-I(V) ~ V is a fibration. Then pis a fibration. 

The importance of Hurewicz's Theorem for us lies in its corollary: 

(7.13) Let p: X ~ B be the projection oj a fibre bundle, and suppose that B is 
paracompact. Then p is a fibration. 

In fact, the coset decompositions of compact Lie groups modulo their 
closed subgroups give rise to fibre bundles, and these will serve as a valuable 
source of examples. The results on compact Lie groups which we shall need 
are described in Appendix A. 

Another useful result is 

(7.14) Theorem Let p : X ~ B be afibration, and let Bo be a closed subspace oj 
B, Xo = p-I(Bo). IJ(B, Bo) is an NOR-pair, so is (X, Xo). 

We shall use the criterion of (5.14). Let u: B ~ I and h: I x B ~ B be 
maps satisfying the conditions of (5.14). Then the identity map 1 : X ~ X 
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and the map h 0 (1 x p) : I x X --+ B form the data for a homotopy lifting 
problem, and so there is a commutative diagram 

1 

I x X ----.... t B 
h 0 (1 x p) 

Define H' : I x X --+ X by 

H'(t, x) = J H(t, x) if t ~ u(p(x)), 
\ H(u(p(x)), x) if t ~ u(p(x)). 

Then it suffices to verify that u 0 p : X --+ I and H' : I x X --+ X satisfy the 
conditions of (5.14). The others being trivial, we verify only the last one. 
Suppose that t > u(p(x». Then 

pH'(t, x) = pH(u(p(x», x) 

= h(u(p(x», p(x)). 

Foralls> u(p(x», h(s,p(x)) E Bo by (4) for the pair (u, h). Since Bo is closed, 
h(u(p(x)), p(x)) E Bo , and therefore H'(t, x) E Xo. 0 

In studying the homotopy lifting problem, it is natural to ask whether a 
partial lifting can be extended; i.e., whether a diagram (homotopy lifting 
extension problem) 

OxYuIxA---X 

n 
I x Y -----+t B 

can always be completed. That some sort of hypothesis is necessary is clear, 
for if B is a point, the constant map of X into B is a fibration; but in this case 
the problem reduces to the homotopy extension problem for the pair (Y, A) 
with respect to X. Therefore it is natural to require that (Y, A) should be an 
NDR-pair. We shall show that this condition is sufficient for the problem to 
have a solution for an arbitrary fibration. We first prove 

(7.15) Lemma Let p: X --+ B be afibration, and let (Y, A) be a DR-pair. Then 
every lifting extension problem 
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A-Lx 
" in ,,""~' lp 

Y~B 
! 

has a solution. 

F or let u: Y -* I, ¢: I x Y -* Y, and r: Y -* A be maps such that 
A = u- 1(O), ¢1 is the identity map, ¢o = i 0 r, and ¢ is stationary on A. 
Define a map <1> : I x Y -* Y by 

1 
¢(t/u(y), y) 

<1>(t, y) = ¢(1, y) 
(t < u(y)), 

(t ~ u(y)). 

Evidently the restriction of <1> to the open set I x (Y - A) is continuous. Let 
(t, y) E I x A, and let U be a neighborhood of y. Then I x {y} C ¢-l(U) and 
therefore there is a neighborhood V of y such that I x V C ¢-l(U). The set 
I x V is a neighborhood of (t, y) in I x Y and <1>(1 x V) c ¢(I x V) c U. 
This proves that <1> is continuous at each point of I x A, and therefore <1> is 
continuous. 

The maps! 0 <1>: I x Y -* Band go r: Y -* X form the data for a homo
topy lifting problem, and therefore there is a map H : I x Y -* X such that 
Ho = g 0 rand p 0 H =! 0 <1>. Then the map h: Y -* X defined by 

h(y) = H(u(y), y) 

is the desired solution. o 
(7.16) Theorem Let p: X -* B be afibration, (Y, A) an NDR-pair. Then every 
homotopy lifting extension problem 

IxAuOx Y 
9 

X -----+ .. 
(7.17) irl lp 

I x Y I B 
! 

has a solution h : 1 x Y -* X. 

For (I x Y,I x Au 0 x Y) is a DR-pair, by (2) of (5.1), and the result 
follows from Lemma (7.15). 0 

We now show to what extent the solution of a homotopy lifting extension 
problem is unique. 
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(7.18) Theorem Let p: X -+ B be a fibration, (Y, A) an NOR-pair. Let ho, 
hi : 1 x Y -+ X be solutions of the homotopy lifting extension problem (7.17). 
Then there is a homotopy h: 1 x 1 x Y of ho to hi (rei. 1 x A u 0 x Y) such 
that p 0 h is stationary. 

OefinemapsG:lx(lxAuOx Y)uixlx Y-+X,F:lxlx Y-+B 
by 

G(s, t, y) = g(t, y) 

G(O, t, y) = ho(t, y), 

G(1, t, y) = h 1(t, y), 

F(s, t, y) = f(t, y). 

(t, y) E 1 x A u 0 x Y, 

Then (F, G) are the data for a lifting extension problem 

. G 
IxlxAulxOxYulxlxY -------. X 

n 
1 x 1 x Y ---------+. B 

F 

But (I, i) and (Y, A) are NOR-pairs and (1,0) a DR-pair. Hence (I x 1 x Y, 
1 x 1 x A u 1 x 0 x Y u i x 1 x Y) = (I, i) x (1,0) x (Y, A) is a DR-pair. 
By Lemma (7.15) this problem has a solution h: 1 x 1 x Y -+ X. 0 

Suppose that p: X -+ B, f: B' -+ B are maps (not necessarily fibrations). 
Le1 X' = {(b', x) E B' x X I f(b') = p(x)}. Then the restrictions to X' of the 
projections of B' x X into its factors are maps p' : X' -+ B,f' : X' -+ X, and 
the diagram 

f' 
X' ----+ X 

(7.19) p'l lp 

B' -------. B 
f 

is commutative. 
The diagram (7.19) has the following universal property: 

(7.20) Let g: Y -+ X, q : Y -+ B' be maps such that p 0 g = f " q. Then there is 
a unique map h: Y -+ X' such thatf' Q h = g and p' 0 h = q. 



7 Fibrations 

(In other words, the problem 

Y~g 
\--h-----_~ 

-" 
X' ------ X 

f' q 

B' ------ B 
f 

has a unique solution; thus the diagram (7.19) is a "pullback ")_ 
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The maps q, g define a map of Y into B' x X whose image, because of the 
conditions we have imposed on q and g, lies in X', and therefore defines a 
map h: Y -> X'. Uniqueness follows from the fact that the map of X' into 
B' x X defined by p', f' is an inclusion. 0 

(7.21) Theorem If p : X -> B is a fibration, so is p' : X' -> B'. 

9 f' 
Y • X' ------ X 

io I lp' \p 
I x Y ------+ B' ------+ B 

H f 

For if q : Y -> X' and H : I x Y -> B' form the data for a homotopy lifting 
problem for the map p', then f' 0 g: Y -> X and f 0 H : I x Y -> B form the 
data for a homotopy lifting problem for p, and the latter problem has a 
solution G': I x Y -> X. By (7.20), the maps G': I x Y -> X and 
H : I x Y -> B' induce a map G : I x Y -> X', which is evidently a solution of 
the original problem. 0 

The fibration p' : X' -> B' is said to be induced ji-om p : X -> B by f The 
construction of induced fibrations is a fruitful source of new examples. Let us 
observe that the map f' : X' -> X maps the fibre over b' E B' homeomor
phically upon the fibre over f(b') E B. Moreover, iff: B' -> B is an inclusion 
map, then f' is an inclusion, mapping X homeomorphically upon p-l(B'). 
Thus 

(7.22) Corollary If p : X -> B is a fibration and B' c B, X' = p - 1 (B'), then 
p I X' : X' -> B' is a fibration. 0 
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The notation of induced fibration also has a sort of transitivity property, 
expressed in 

(7.23) Let p: X ---> B be a fibration, and let f: B' ---> B, g: B" ---> B'. Let 
p' : X' ---> B' be the fibration induced from p by 1, and let p" : X" ---> B" be the 
fibration induced from p' by g. Then the fibration induced from p by the map 
fog: B" ---> B is p" (up to natural homeomorphism). 0 

We now introduce an equivalence relation among fibrations. Let 
p: X ---> Band p' : X' ---> B be fibrations with the same base space B. We say 
that p and p' have the same fibre homotopy type if and only ifthere are maps 
A: X ---> X', fl: X' ---> X such that p' 0 A = p, p 0 fl = p', and homotopies 
A : I x X ---> X, A' : I x X' ---> X' between fl 0 A and the identity map of X on 
the one hand, and between A 0 fl and the identity map of X' on the other, 
such that the homotopies p 0 A and p' 0 A' are stationary. Thus not only are 
A and fl homotopy inverses, so that the total spaces of the fibrations in 
question have the same homotopy type, but their composites A 0 fl and fl 0 A 
are connected to the respective identity maps by "vertical" homotopies, in 
which the image of each point remains within the fibre containing it. 

The pair of maps (A, fl) is said to constitute a fibre homotopy equivalence 
whose components are A, fl. Often we shall say, loosely, that A is a fibre 
homotopy equivalence when we mean that A is one component of such an 
equivalence. 

We regard the projection F x B ---> B of a product space into one factor as 
a trivial fibration; and a fibration p : X ---> B is said to be fibre-homotopically 
trivial if and only if it has the same fibre homotopy type as such a product. 

Let A: X ---> X', fl : X' ---> X be the components of a fibre homotopy equiv
alence between p : X ---> Band p' : X' ---> B. Let Ba be a subspace of B, and let 
X a = p- l(Ba), X~ = p- l(B~). Then A(X a) C X~, fl(X~) eX a, and it is clear 
that 

(7.24) The maps Aa = A 1 X a : X a ---> X~ and fla = fll X~ : X~ ---> X a are the 
components of a fibre homotopy equivalence between the fibrations 
piX a : X a ---> Ba and p' 1 X~ : X~ ---> Ba. In particular, the pairs (X, X a) and 
(X', X~) have the same homotopy type. 0 

A useful example of fibre-homotopically equivalent fibrations occurs in 
the following situation. Let p : X ---> B be a fibration, and letfa Jl : B' ---> B be 
homotopic maps. Let p; : X; ---> B' be the fibration induced by fr (t = 0, 1). 
Then 

(7.25) Theorem The fibrations p~ : X~ ---> B' and P'l : X'l ---> B' have the same 
fibre homotopy type. 

Let f: I x B' ---> B be a homotopy of fa to f1> so that f 0 it = fr (t = 0, 1). 
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Then the maps i~, i'1 : B' -> I X B' are homotopic, and, from the transitivity 
property (7.23), it suffices to prove the following statement (in which we have 
dropped the primes for typographical reasons): 

(7.26) Let p: X -> I x B be a fibration, and let Pt : X t -> B be the fibration 
induced by it: B -> I x B (t = 0, 1). Then Po and P1 have the samefibre homo
topy type. 

Since the prism I x B retracts by deformation into either end, X retracts 
by deformation into X 0 and into Xl' Restricting these deformations to Xl, 
X 0 yields maps Xl -> X 0, X 0 -> X 1 respectively, and these maps are the 
components of a fibre homotopy equivalence. The details follow. 

We have commutative diagrams 

XI 
fr 

---+ x 

Pt j jP (t = 0, 1). 

B ---+ I x B 
it 

The homotopy lifting problem 

fo 
Xo ----->. X 

............ ~ jP 
....... Ho 

I x Xo -----4. I x B 
1 x Po 

has a solution Ho: I x Xo -> X, such that 

Ho(O, xo) = fo(xo} 

pHo(s, xo) = (s, Po(xo», 
(sEI,xoEXo)· 

Similarly, there is a map H 1 : I x Xl -> X such that 

H1(1, Xl) =f1(xd, 

pH1(s, Xl) = (s, P1(xd), 

Define A: Xo -> Xl, J.l: Xl -> Xo by 

(s E I, Xl E X d. 

f1A(Xo) = Ho(1, xo), 

fOJ.l(X1) = H 1(0, xd· 
Then ilP1A(XO) = pflA(Xo) = pHo(l, xo) = (1, Po(xo» = i1po(xo), and there
fore Pl 0 A = Po . Similarly, Po 0 J.l = Pl' 
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Define maps g: 1 x I x Xo u I x i x Xo ~ X, K: I x I x Xo ~ I x B 
by 

J 
Ho(s, xo) 

g(s, t, xo) = , fl A(Xo) 

I H 1(s, A(XO)) 

K(s, t, xo) = (s, Po(xo)). 

(t = 0), 

(s = 1), 

(t = 1); 

The reader may verify that g is well defined and that K is an extension of 
po g. By (7.15), g has an extension G: I x I x Xo ~ X such that po G = K. 
Then pG(O, t, xo) = K(O, t, xo) = (0, Po(xo)) = io Po(xo), and therefore 
G 10 x I x Xo defines a map Go: I x Xo ~ Xo and Po Go(t, xo) = Po(xo)· 
Moreover 

Go(O, xo) = Xo, 

Go(1, xo) = ItA(Xo), 

so that Go is a vertical homotopy between the identity map and It 0 A. 
Similarly, A 0 It is vertically homotopic to the identity of X l' D 

Remark. The fibre homotopy equivalence A : X 0 ~ XI has a large degree 
of arbitrariness. In fact, examination of the proof of (7.26) reveals that any 
map A, having the property that there is a homotopy Ho: I x Xo ~ X offo 
to fl " A such that p 0 H 0 = 1 x Po : I x X 0 ~ I x B, is a fibre homotopy 
equivalence. 

(7.27) Corollary Let p : X ~ B be a jibration, and suppose that B is contract
ible. Then p isjibre homotopically trivial. Therefore,Jor any subspace Bo of B, 
the pairs (X, p-l(Bo)) and (F x B, F x Bo) have the same homotopy type. 

For the identity map of B is homotopic to a constant map and therefore p 
is fibre homotopically equivalent to the fibration induced by the constant 
map. But the latter fibration is trivial. D 

A fibre homotopy equivalence A : F x B ~ X is called a trivialization of 
the fibration p: X ~ B. If moreover, bo is a designated point of B, 
F = p-l(bo), and A(y, bo) = y for all y E F, we shall call A a strong 
trivialization. 

It will be useful later to give a more or less explicit construction of a 
trivialization A : F x B ~ X. Let h : I x B ~ B be a homotopy of the con
stant map to the identity map of B and let H : I x F x B ~ B be the compo
site of h with 1 x Pz, where pz : F x B ~ B is the projection, so that H is a 
homotopy of the constant map to the map pz. Let i: F ~ X, and let 
PI : F x B ~ F be the projection. Then the homotopy H can be lifted to a 
homotopy G: I x F x B ~ X of i 0 PI to a map A : F x B ~ X such that 
po A = pz. 
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(7.28) Theorem The map A is a trivialization of p. 

Consider the diagram 

B ---,---+~ I x B ----.~ B 
it h 

where p: X -> I x B is the fibration induced by hand Pt : X t -> B the fibra
tion induced from p by the inclusion it. We may identify X 0 with F x B 
and X 1 with X, so that the maps in the diagram are given by 

Po(y, b) = b, P1 = p, 

fo(y, b) = (0, b, y), fl(X) = (1, p(x), x). 

Define H 0 : I x X 0 -> X by 

Then 

H o(t, y, b) = (t, b, G(t, y, b)). 

Ho(O, y, b) = (0, b, i(y)) = fo(y, b), 

Ho(1, y, b) = (1, b, A(y, b)) = f1A(y, b). 

By the Remark before Corollary (7.27), A is a fibre homotopy equivalence. 
D 

Remark. If we make the stronger assumption that (B, {bo}) is a DR-pair, 
then A is a strong trivialization. For then h can be chosen to be stationary at 
bo, so that H is stationary on F x {bo}. The homotopy G can then be chosen 
to be stationary on F x {bo}. Moreover, 

(7.29) Theorem Let p: X -> B be a fibration, bo E B, and suppose that 
(B, {bo}) is a DR-pair. Then any two strong trivializations Ao, A1 : F x B -> X 
are vertically homotopic (reI. F x {bo}). 

For (I x F x B, i x F x B u 1 x F x {bo}) = (I, i) x (F, 0) x (B, {bo}) 
is a DR-pair, by (5.2); by Lemma (7.15), the lifting extension problem 

. A 
I x F x B u 1 x F x {bo} ------+ X' 

n;./' jr 
1 x F x B--------.. B 
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where 

has a solution A. 

A(O, y, b) = Ao(y, b), 

A(1, y, b) = Ai(y, b), 

A(y, bo) = y, 

/1(t, y, b) = b, 

I Introductory Notions 

o 

We next show that every map is homotopically equivalent to a fibre map. 
Letj: X -> Y, and consider the space If of (7.2). Note that If is the total 

space of the fibration Po: If -> X induced by j from the fibration 
Po: F(Y) -> Y of Corollary (7.9). Thus there is a commutative diagram 

If f' F(Y) ------+ 

pol I Po 

X • Y 
f 

Define a map P : If -> Y by P = Pi 0 f'. (Recall that Po, Pi : F(Y) -> Yare the 
maps defined by Pt(u) = u(t) (t = 0, 1); they are fibre maps, according to 
Corollary (7.9)). 

The identity map of X and the map x -> ef(x) = the constant path atj(x) 
define, by the universal property of (7.20), a map A: X -> If such that 
Po 0 A = 1 andf'(A(x» = ef(x)' 

(7.30) Theorem The map P : If -> Y is a fibration, and Po, A are homotopy 
equivalences. Moreover, 

Po 0 A = 1, A 0 Po ~ 1, 

j 0 Po ~ p. 

In fact, let 9 : P -> If, H: I x P -> Y be maps such that pg(z) = H(O, z) for 
all z E P. Let g' = f' 0 g, g" = Po 0 9 and define maps G": I x P -> X, 
Go : (i x I u I x 0) x P -> Y by 

G"(t, z) = g"(z) 

jg"(z) (s = 0), 

Go(s, t, z) = H(t, z) 

g'(z)(s) 

(s = 1), 

(t = 0) 

and extend Go to a map G' : I x I x P -> Y (this is possible since (I x P, 
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i x P) is an NDR-pair). Let G' : I x P --+ F(Y) be the adjoint of G', so that 
G'(t, z)(s) = G'(s, t, z). Then Po G'(t, z) = G'(O, t, z) = fg"(z) = fG"(t, z), so 
that G', G" determine a map G: I x P --+ If. Then G(O, z) = g(z) and 
p 0 G = H, so that G is the required map. 0 

(7.31) Theorem Iff: X --+ Y is already a fibration, then the maps p: If --+ Y 
and f: X --+ Y have the same fibre homotopy type. 

We have already defined a map A: X --+ If such that p 0 A = f By the 
relation f 0 p~ ~ p and the homotopy lifting property, there is a map 
L: I x If --+ X such that L(O, x, u) = x (= p~(x, u)) andfL(t, x, u) = u(t) for 
tEl, (x, u) E If. Define fl: If --+ X by fl(X, u) = L(l, x, u). 

Define A(t, x) = L(t, A{X)); then A is a vertical homotopy between the 
identity map and fl 0 A. The definition of N : I x If --+ If is slightly more 
difficult. For each tEl, u : I --+ Y, let w( t, u) be the path such that 

w(t, u)(s) = u(s + t - st) 

for all s E I, so that w(t, u) is a path from u(t) to u(l), w(O, u) = u, and 
w(l, u) = eu(l). Then N is defined by 

N(t, x, u) = (L(t, x, u), w(t, u)), 

and N is the desired vertical hO'TIotopy between the identity and A 0 fl. 
D 

The process of replacing the map f: X --+ Y by the homotopically equiv
alent fibration p : If --+ Y is, in some sense, analogous to that of replacingfby 
the inclusion map of X into the mapping cylinder of f; the latter is a 
cofibration, rather than a fibration. Pursuing this analogy further, we may 
consider the fibre Tf of p over a designated point of Y. We shall call Tf the 
mapping fibre of f (resisting firmly the temptation to call If and Tf the 
mapping cocylinder and co cone off!). 

For future reference, let us consider the diagram 

x ------+, Y 
f 

We shall call p the fibration of If over Y, p~ the fibration of If over X. The 
map q is defined by q = p~ I Tf; it, too, is a fibration, called the fibration ofTf 
over X. Note that the fibre of q is the space Q(Y) of all loops (paths starting 
and ending at xo) in Y. 
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The above diagram is analogous to one involving the mapping cone and 
cylinder of a map 9 : Y --> X: 

Tg 

~ 
j Ig 

A ~ 
x~ Y 

9 

Here i, i~ and j are inclusions and p: Ig --> Tg is the collapsing map. 

EXERCISES 

1. Let S" v S" be the subspace S" x eo u eo x S" of S" x S". Let E"+ (E"- ) be the set of 
all x = (xo, ... , x") E S" such that x" ::? 0 (x" ::; 0). Let t/t : (S"; E"+> E"-) -+ (S" V S"; 
S" x eo, eo x S") be a map such that the maps t/t + , t/t _ : S" -+ S" defined by 

t/t+IE".- = t/tI E".

t/t - IE"- = t/t I E"-

1/1 + (E"-) = t/t - (E".- ) = (eo, eo) 

have degree 1. Let h: S" v S" -+ S" be a map such that the maps f, 9 defined by 

f(x) = h(x, eo), 

g(x) = h(eo, x), 

have degree r, s respectively. Prove that the map h " t/t : S" -+ S" has degree r + s. 

2. Prove that two maps of S" into itself, having the same degree, are homotopic. 

3. Let C be a compact subset of a vector space V. Prove that C is contained in some 
finite-dimensional subspace W. 

4. Prove that every vector space is compactly generated. 

5. Prove that no infinite-dimensional vector space is metrizable. 

6. Let f:::o 9 : X -+ Y. Prove that the fibrations p: If -+ Y, q: J9 -+ Y have the same 
fibre homotopy type. 

7. Let G be a compact Lie group, H a closed subgroup of G. Prove that, if the natural 
fibration p: G -+ G/H has a cross-section, then p is trivial (i.e., there is a homeo
morphism h: H x G/H -+ G such that the diagram 

HxG/H ~ G 

~/r 
G/H 
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is commutative). 

8. If (X, A) is an NOR pair and Y is contractible, then 

(i) every mapI: A --> Y has an extension g: X --> Y; 

(ii) iffo, II : X --> Yare maps such that Io I A = II I A, then Io ~ II (reI. A). 
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9. If p : X -~ B is a fibration, Y is contractible, and B is path wise connected, then 

(i) every mapI: Y --> B can be lifted to a map g: Y --> X; 
(ii) if (Y, {*}) is a DR-pair and Io,.fl : Y --> X are maps such that polo = poll 

and Io( *) = II H, there is a homotopy F : I x Y --> X oflo to II (reI. {*}) such 
that p 0 F is stationary. 



CHAPTER II 

CW-complexes 

The category of simplicial complexes probably provides the most suitable 
setting in which to study elementary algebraic topology. This is due to the 
fact that the simplicity of its structure allows explicit and elegant descrip
tions of the basic operations of the theory in combinatorial terms, including 
an algorithm for calculating homology groups. On the other hand, this very 
simplicity implies a concomitant rigidity, which has certain disadvantages, 
both theoretical (the Cartesian product of two simplicial complexes, in its 
natural decomposition, is not simplicial) and practical (the number of sim
plices needed to triangulate even a very simple space may be enormous). 

One may think of a simplicial complex as being built up by (possible 
transfinite) iteration of a single process, viz. that of adjoining a cell. In this 
case, the process is particularly simple; the boundary of each new simplex ~ 
is already present as a subcomplex, constituting a kind of "hole ", and 
adjunction of the simplex just fills in the hole. Thus the new complex is the 
mapping cone of the inclusion map i of A into the smaller complex. Now the 
homotopy type of a mapping cone depends only on the homotopy class of 
the map in question. Thus we may replace the map i by any homotopic map 
i' without changing the homotopy type; and, while i is an inclusion, if need 
not be. This suggests the idea of building up a space by a succession of 
cell-adjunctions, but by arbitrary continuous maps rather than the special 
ones which occur in the simplicial case. 

The idea of attaching cells with singular boundaries is an old one; as early 
as 1921 Veblen [V] remarked that any group G can be realized as the 
fundamental group of a 2-dimensional complex, which he built up out of a 
given presentation of G by starting with a cluster of circles, one for each 

46 
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generator, and adjoining a 2-cell for each relation. The attaching maps in 
this case, however, have rather simple singularities, and the idea of using 
arbitrary continuous maps did not appear until J. H. C. Whitehead in
troduced CW-complexes in his 1949 lecture on Combinatorial 
Homotopy [5], thereby creating one of the most important building blocks 
of the subject of homotopy theory. 

Whitehead first presented a CW-complex as a collection of cells, but it 
seems more appropriate to construct it skeleton by skeleton, each new 
skeleton being obtained from the preceding by the simultaneous adjunction 
of a family of cells. This is the procedure we adopt in §1, where the most 
elementary properties of CW -complexes are presented. For a more thorough 
treatment of the subject the reader is referred to the recent book by Lundell 
and Weingram [L-W]. 

In §2 we show how to associate to each (relative) CW-complex (X, A) a 
chain complex qx, A) whose homology groups are the singular homology 
groups of (X, A); the nth chain group rn(X, A) is a free abelian group having 
one basis element for each n-cell. The idea of the construction is due to 
Eilenberg and Steenrod [E-S] in their proof that their axioms characterize 
homology theory on compact triangulable spaces. In this Section we also 
discuss cohomology and show how the cross products in singular homology 
and cohomology fit into this setting. 

Cellular maps playa role in the theory of CW -complexes analogous to 
that played by simplicial maps between simplicial complexes. The main 
result of §4 is the Cellular Approximation Theorem, which asserts that every 
map between CW -complexes is homotopic to a cellular map. The construc
tion of the approximation is made by induction over the skeleta; the main 
tool in the proof is the theorem that a map of an n-dimensional relative 
CW -complex into an n-connected pair is compressible. The necessary 
geometrical groundwork is laid in §3. 

As the chain groups of a relative CW-complex (X, A) are free abelian 
groups, the boundary operator is described by a sequence of matrices of 
integers, the incidence matrices of (X, A). Moreover, a cellular map of (X, A) 
into (Y, B) is described by a sequence of integral matrices. In §5 we discuss 
the calculation of these matrices. Although these calculations are not effec
tive, the incidence matrices of a regular cell complex can be effectively cal
culated (when the complex is finite) and these calculations are discussed in 
§6. Regular cell complexes constitute a compromise between simplicial and 
CW -complexes. On the one hand, they are very close to simplicial complexes 
(in fact, only one barycentric subdivision away), so that they share many of 
the advantages of the latter. On the other hand, they lack the rigidity of the 
simplicial ones; for example, the Cartesian product of regular cell complexes 
has a natural structure as a regular cell complex. A detailed treatment of 
regular cell complexes is found in the book of Cooke and Finney [C-F]. 

Finally, in §7, we discuss cup products and the cohomology ring and 
calculate the latter for some standard examples. 
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1 Construction of CW -complexes 

A CW -complex is a filtered space in which each stage is obtained from the 
preceding by a uniform procedure, that of n-cellular extension. We first 
describe the basic properties of this operation; the standard properties of 
CW-complexes in general then follow easily. 

Let 111 be the topological sum of a collection {11~ 1 a E J} of copies of the 
standard n-simplex I1n; we may think of 111 as the Cartesian product of I1 n 

with the indexing set J, considered as a discrete topological space. Let b./ be 
the subspace of 111 which is the union of the boundaries of the simplices 
11~, so that Al is the topological sum of the (n - 1 )-spheres A~. 

Let (X, A) be a pair with A compactly generated. We shall say that X is 
an n-cellular extension of A if and only if there is a relative homeomorphism 
h: (111 + A, Al + A) ~ (X, A). For such a map h, let f = h IAI : Al ~ A, so 
that X is homeomorphic with the adjunction space 111 U J A. The sets 
E~ = h(I1~) are called the n-cells of (X, A), and may be described, without 
reference to h, as the closures of the components of X-A. The sets 
Int E~ = E~ - A are called open n-cells; let E~ = E~ - Int E~ = E~ n A; E~ 
is called the boundary of E~. The map ha = h 111~ : (11~, A:) ~ (E~, E~) is 
called a characteristic map, and fa = f 1 A~ an attaching map, for the cell E~ . 
The map f is called a simultaneous attaching map. 

The map ha is a relative homeomorphism; we shall also use the term 
characteristic map somewhat loosely to mean any relative homeomorphism 
h~ : (E, E) ~ (Ea, Ea ), where E is a closed n-cell. 

It follows from §§4-6 of Chapter I that 

(1.1) If X is an n-cellular extension of A, then X is compactly generated, A is 
closed in X, and (X, A) is an NDR-pair. Moreover, a subset C of X is closed if 
and only if C n A is closed and C n Ea is closed for every a; and any compact 
subset of X is contained in the union of A with finitely many cells of (X, A). 

o 
(1.2) Lemma Let X be an n-cellular extension of A, Ao a closed subset of A, 
and Xo the union of Ao with a sub-collection of the cells of (X, A), the boun
dary of each (If which is contained in Ao. Then X 0 is an n-cellular extension of 
Ao , and is closed in X. 

We have Xo = Ao U UPEI0 Ep, where J o c J. Let 110 = UPEI0 I1p, and 
let ho = h 1110 + Ao : 110 + Ao ~ X o. It suffices to verify that, if C is any 
subset of X 0 such that ho 1(C) is closed, then C is closed in X. Since h is a 
proclusion, it suffices to verify that h - 1 (C) is closed. But 

h- 1(C) n A = C n A = C n Xo n A = C n Ao = ho l(C) n Ao; 

if f3 E J 0, 
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h- 1(C) II Ef3 = h- 1(C) II Ep = F; l(C) = fi l(C II Ao); 

and each of these sets is closed. 
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D 

The following Lemma will be useful later in constructing homotopies of 
maps of (X, A). 

(1.3) Lemma Let X be an n-cellular extension of A, with characteristic maps 
ha: (L'1a, Aa) --> (X, A). Let f: (X, A) --> (Y, B) be a map and, for each rx, let 
ga : (I x L'1a, I x Aa) --> (Y, B) be a homotopy off 0 ha (rei. Aa). Then there is a 
homotopy g: (I x X, I x A) --> (Y, B) off(rel. A) such that g 0 (1 x ha) = ga. 

Let G: I x (t1J + A) --> Y be the map such that 

Gil x L'1a = ga, 

G(t, a) = f(a) (t E I, a E A). 

The map 1 x h: I x (L'1J + A) --> I x X is a proclusion, and it is trivial to 
verify that, if(1 x h)(t, x) = (1 x h)(t', x'), thenG(t, x) = G(t', x'). Hence the 
map g = G 0 (1 x ht 1 is continuous, and evidently has the desired proper
t~s. D 

(1.4) Lemma Let Y be the union of two closed subspaces X, B, and suppose 
that X is an n-cellular extension of A = X II B. Then Y is an n-cellular 
extension of B with the same n-cells. 

For if h : (L'1J + A, AJ + A) --> (X, A) is a relative homeomorphism, there 
is a commutative diagram 

L'1J + A + B 
hi 

L'1J + B -----4 

I kl I h2 

X+B 
k2 

~XuB 

in which hi I L'1J + B is the identity map, hi I A: A c> B, h21 L'1J = 

h IL'1J: L'1J --> X, h21B: B Ci Xu B, kllL'1J + A = h, kilB is the identity map 
of B, and k21 X, k21 B are inclusions. But kl and k2 are proclusions and 
therefore h2 is a proclusion. As h2 maps L'1J - AJ homeomorphically upon 
Y - B = X - A, it is a relative homeomorphism. D 

(1.5) Lemma Let Y be the union of two closed subspaces X, B, and suppose 
that both X and Bare n-cellular extensions of A = X II B. Then Y is an 
n-cellular extension of A. 
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The easy proof is left to the reader. o 

We are now ready to define the notion of relative CW-complex. Let 
(X, A) be a pair with A compactly generated. A CW -decomposition of (X, A) 
is a filtration {X n} of X such that 

(l)AcXo, 
(2) for each n ? 0, Xn is an n-cellular extension of X n - 1 (it is convenient 

to agree that Xn = A for n < 0). 

If {Xn} is a CW-decomposition of (X, A), we say that (X, A) is a relative 
CW-complex (with respect to the filtration {Xn}); if A = 0, we say that X is 
a CW-complex. The n-cells of (Xn , X n - 1 ) are called n-cells of (X, A). The set 
Xn is called the n-skeleton of (X, A). We shall say that (X, A) is finite (coun
table) if and only if it has only finitely (countably) many cells. 

The following properties are easily deduced from the results of Chapter I. 

(1.6) Let {X n} be a CW -decomposition of (X, A). Then 

(1) X is compactly generated; 
(2) Xn is closed in X for all n; 
(3) (X, X n- d and (Xn' X n- dare NDR-pairs; in particular, (X, A) is an 

NDR-pair; 
(4) X has the weak topology with respect to the collection of skeleta {X n}; 
(5) A subset C of X is closed if and only if C n A is closed and C n E~ is 

closed for every n-cell E~ of (X, A); 
(6) Every compact subset of X is contained in the union of A withfinitely many 

cells of (X, A); 
(7) If (Y, B) is a relative CW-complex with skeleta Y,., then (X, A) x 

(Y, B) = (X x Y, A x Y u X x B) is a relative CW-complex with 
skeleta 

n 

Zn = U Xi X y"-i· D 
i=O 

If (X, A) is a relative CW-complex, then the interiors of the cells of (X, A) 
and the set A are mutually disjoint and cover X. If x E X - A, the unique 
n-cell E~ such that x E Int E~ is called the carrier cell of x. Moreover, the 
dimension n of an n-cell E~ is characterized by the property that E~ has a 
dense open set consisting of points having a neighborhood homeomorphic 
with Euclidean n-space Rn. 

The sets Int E~ are called open cells of (X, A). The terminology is a bit 
misleading, because Int E~ need not be an open set in X (although it is open 
in Xn). 

The following examples are readily verified to be (relative) 
CW -complexes. 
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EXAMPLE 1. If K is a simplicial complex and L a subcomplex of K, then 
( 1 K I,lL I) is a relative CW -complex with n-skeleton 1 Kn u L I· 

EXAMPLE 2. The n-sphere is a CW -complex with one O-cell EO and one n-cell 
sn with sn = EO. 

EXAMPLE 3. The unit interval is a CW-complex with two O-cells {O}, {I} and 
one I-cell I, with t = {O, I}. 

EXAMPLE 4. If (X, A) is a relative CW-complex, then (I x X, 1 x A) is a 
relative CW -complex with n-cells 

o x E~, 1 x E~ (E~ an n-cell of (X, A)), 

(Ep- 1 an (n - 1 )-cell of (X, A)). 

EXAMPLE 5. If (X, A) is a relative CW-complex, then Y = X/A is a CW
complex with y" = X n / A for n ~ o. 

EXAMPLE 6. If (X, A) is a relative CW-complex and n a non-negative integer, 
then (X, X n) and (X n' A) are also relative CW -complexes. 

If X is an n-cellular extension of A, and A is a CW -complex, it is tempting 
to conclude that X is a CW-complex. However, it is necessary to resist this 
temptation; for suppose that A is an n-sphere (n ~ 2) andfis a map of An 
upon the whole of A, then X = ~ n U J A cannot be a CW -complex. There
fore some condition must be imposed on the attaching maps. 

(1.7) Lemma If X is an n-cellular extension of the CW -complex A, and if the 
image of the simultaneous attaching map f: AJ ~ A is contained in the 
(n - 1 )-skeleton An- 1 of A, then X is a CW -complex with skeleta 

(q < n), 

(q ~ n). 

It follows from Lemmas (1.4) and (1.5) that Xq is a q-cellular extension of 
X q-l for each q. We leave it to the reader to verify that X has the weak 
topology with respect to the X q . 0 

Let (Y, B) be a relative CW-complex. A subcomplex of (Y, B) is a pair 
(X, A) such that 

(1) X is a subspace of Y; 
(2) A is a closed subspace of B; 
(3) X is the union of A with a sub-collection of the open cells of Y, the 

boundary of each of which is contained in X. 



52 II CW-complexes 

Let (X, A) be a subcomplex of (Y, B), and let Xn = X n y". It follows 
from Lemma (1.2), by induction on n, that X n is an n-cellular extension of 
X n- b and that X n is closed in y", and therefore in Y. If C is a subset of X 
whose intersection with X n is closed for every n, then 

C n y" = C n X n y" = C n Xn 

is closed, and therefore C is closed. Hence {Xn} is a CW-decomposition of 
(X, A). We have proved 

(1.8) If(X, A) is a subcomplex of(Y, B), then (X, A) is a relative CW-complex 
with n-skeleton X n = X n Y". Moreover, X is a closed subspace of Y. D 

EXAMPLE 1. If (X, A) is a relative CW-complex, then (Xn' A) is a subcom
plex of (X, A). 

EXAMPLE 2. If {(X" Aa)} is a family of subcomplexes of (X, A), then 
(n Xa, n Aa) is also a subcomplex of (X, A). 

EXAMPLE 3. If {(X a' Aa)} is a family of subcomplexes of (X, A) and if u A, is 
closed, then (u X a' U Aa) is a subcomplex of (X, A). 

EXAMPLE 4. If (X, A) is a relative CW-complex, (X', A') is a subcomplex of 
(Xn - 1, A), and if {Ep} is any collection of n-cells of (X, A), each of whose 
boundaries is contained in X', then (X' u U /l Ep, A') is a subcomplex of 
(X, A). 

EXAMPLE 5. In Lemma (1.7) A is a subcomplex of X. 

We next prove a strengthened form of (6) of (1.6). 

(1.9) If (X, A) is a relative CW-complex and C is a compact subset of X, then 
there is a finite subcomplex (X', A') such that C c X'. 

It follows from (6) of (1.6) that C c Xn for some n. Therefore it suffices to 
prove, by induction on n, that, if C is any compact subset of (X n' A), then 
C c X' for some finite suhcomplex (X', A'). This is trivial for n = -1. By 
Part (6) of(1.6), C is contained in the union of A with a finite collection:F of 
cells of (X n' A). Let C' be the union of C n X n- 1 with all the cells of:F of 
dimension < n; then C' is compact. If (X', A') is a finite subcomplex of 
(Xn - 1, A) f;uch that C' eX', if E~, ... , E~ are the n-cells of :F, and if 
X" = X' U Ui=l Ei, then by Example 4, (X", A') is a finite subcomplex of 
(Xn' A) and C c X". This completes the inductive proof. D 

The reader should not be misled, by analogy with the case of simplicial 
complexes, into the belief that the (closed) cells of a CW-complex X, or their 
boundaries, are subcomplexes of X. However, we have 
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(1.10) If E is an n-cell of the relative CW-complex (X, A), there is a finite 
subcomplex (X', A') whose only cell of dimension not less than n is E. 

In fact, E is compact, so that by (1.9) there is a finite subcomplex (X~, A') 
of (Xn - 1, A) such that E c X~ . According to Example 4, (E u X~, A') is a 
subcomplex having the desired property. D 

If K is a simplicial complex and K any covering space of K, then K is a 
simplicial complex whose simplices lie nicely over those of K. For CW
complexes, much the same is true. As a first step, we prove 

(1.11) Lemma Let A be a locally pathwise connected Hausdorff space, X an 
n-cellular extension of A. Let p: g ...... X be a covering map, and let 
A = p-l(A). Then g is an n-cellular extension of A, and the restriction ofp to 
each cell of (g, A) is a relative homeomorphism upon a cell of (X, A). 

(The example of the exponential map of the real line upon the circle, 
considered as a 1-cellular extension of a point, shows that the restriction of 
p to each cell need not be a homeomorphism). 

Clearly g is locally pathwise connected. Let ha : iln ...... X be the character
istic maps for the cells of (X, A) and let Xa = ha(eo). Let p-l(Xa) = {xaP}' and 
let hap: iln ...... g be the map such that 

p 0 hap = ha, 

hap(eo) = xap. 

Let 0 be a subset of g such that 0 n A and each of the sets h;;/ (0) are 
open. We shall prove that 0 is open. The space g has a basis PJ consisting of 
open sets B, each of which is mapped homeomorphically by p upon an open 
subset of X, and we may assume that 0 c B for some B E PJ.1t suffices, then, 
to prove that U = p(O) is open. But the readily verified equalities 

h; l(U) = U h;;i/(O), 
p 

UnA = p(O n .4), 

and the fact that p I A : A ...... A is a covering map and therefore open, show 
that U is indeed open. 

Let E~, E~p be the images of the maps ha, hap, respectively. As the restric
tion of p to the compact Hausdorff space E~p maps it continuously upon the 
Hausdorff space E~, it is a proclusion; and since p is a one-to-one map of the 
open set Int E~fJ upon the open set Int E~, P I E~p is a relative homeomor
phism. Finally, the equality p 0 hap = ha shows that hap maps Int iln homeo
morphically upon Int E~p, and this completes the proof that g is an 
n-cellular extension of A and therewith that of the Lemma. D 

(1.12) Theorem Let X be a CW -complex with skeleta X n' and let p : g ...... X 
be a covering map. Then g is a CW -complex with skeleta g n = P - 1 (X n), and 
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the restriction of p to each cell of X is a relative homeomorphism upon a cell of 
X. 

By Lemma (1.11), each of the sets X n is an n-cellular extension of X n- 1. It 
remains, therefore, to verify that X has the weak topology. Accordingly, let 
o be a subset of X whose intersection with each of the sets X n is relatively 
open. As in the proof of Lemma (1.11), we may assume that U is contained 
in an open set which is mapped homeomorphically by p, and it suffices, 
as before, to prove that U = p(U) is open. But p(U n Xn) = 

p(O n p-1(Xn)) = p(O) n Xn = U n X n, and thefact that 0 n Xn is rela
tively open implies that U n X n is relatively open. Since this is true for every 
n, U is indeed open. 0 

Now suppose that X is a CW-complex with skeleta Xn and A is a 
subcomplex, with skeleta An = Xn n A. Then we have seen in Lemma (1.2) 
that (X, A) is a relative CW-complex with skeleta X: = Xn u A. We also 
have Xn = (X: - A) u An; and the boundary of every n-cell of (X, A) is 
contained in X n- 1. Conversely, we have 

(1.13) Lemma Let (X, A) be a relative CW-complex with skeleta X:, and 
suppose that A is a CW-complex with skeleta An. Let Xn = (X: - A) u An' 
and suppose that the boundary C!f each n-cell of (X, A) is contained in X n - 1 . 

Then X is a CW -complex with skeleta X n' and A is a subcomplex of x. 

Note that Xn=(X:-X:-duXn-1uAn. By Lemma (1.2), 
(X: - X~-1) U X n- 1 is an n-cellular extension of X n- 1. By Lemma (1.4), 
X n- 1 U An is an n-cellular extension of X n- 1. By Lemma (1.5), Xn is an 
n-cellular ex tension of X n - 1. 

Suppose that C n Xn is closed for every n. Now An is closed in A, and A is 
closed in X; thus C n An = (C n Xn) n An is closed. Since A has the weak 
topology with respect to the An, C n A is closed. Also C n X: = 

C n (Xn U A) = (C n Xn) U (C n A) is closed for every n. Hence C is 
closed. Therefore X has the weak topology with respect to the X n' and so 
is a CW -complex. That A is a subcomplex of X is clear. 0 

2 Homology Theory of CW -complexes 

We shall be concerned exclusively with singular homology and cohomology 
groups of a pair (X, A) with coefficients in an abelian group G; these are 
denoted, as usual, by 

Hn(X, A; G) and H~(X, A; G) 
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respectively; often these will be abbreviated to 

Hn(X, A) and Hn(x, A) 
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when the coefficient group is the additive group of integers, or when it is 
obvious from the context. 

We are going to show how the homology (and cohomology) of a relative 
CW-complex is determined from its structure as a complex. Our treatment is 
comparable to that in Eilenberg-Steenrod [E-S] for simplicial complexes. 
We shall be dealing extensively with excisions, and it will be convenient to 
have available certain results which are slightly stronger forms of analogous 
results which play an important role in Chapter III of [E-S). 

In much of our work we have to deal with inclusion maps and the 
homomorphisms of algebraic structures (homotopy groups, homology 
groups, etc.) which they induce. We shall consistently refer to such homo
morphisms as injections. The reader is warned that some authors use this 
word differently, referring to any one-to-one function as an injection. 
However, our usage is traditional in algebraic topology, and takes historical 
precedence over the other. We state, then for emphasis; an injection need be 
neither a monomorphism, nor an epimorphism! 

As many arguments in homology theory make use of intricate diagrams 
involving boundary homomorphisms on the one hand and injection homo
morphisms on the other, it will be useful to make the 

Fundamental notational convention In any diagram involving homology 
groups, the symbol 

denotes the boundary operator of the homology sequence of the triple 
(X, A, B), and the symbol 

Hn(X, A) ---> Hn(X', A') 

(where A eX n A', X u A' c X) denotes the injection. This convention re
mains in force unless a stipulation to the contrary is expressly made. 

The analogous convention for other theories (cohomology, homotopy, 
etc.) will likewise be made. 

Furthermore, (although we do not make a formal stipulation to this 
effect), the letters i, j, k, I, with or without subscripts, will usually denote 
injections. 

A triad (X; A, B) is said to be proper if and only if the injections 
Hn(A, A n B) ---> Hn{A u B, B) (equivalently, if and only if the injections 
Hn{B, A n B) ---> Hn(A u B, A)) are isomorphisms for all n. The triad 
(X; A, B) is an NDR-triad if and only if X = A u B, A and B are closed, 
and one of the pairs (A, A n B), (B, A n B) is an NDR-pair. 
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(2.1) Lemma Let (X, A) be an NOR-pair, and let p: X -> X/Abe the natural 
prociusion. Then 

is an isomorphism. 

For let TX be the cone over X; then X u TA is a subspace ofTX, and 
(X uTA, TA) is an NOR-pair. By Corollary (5.13) of Chapter I, the proclu
sion q : X uTA -> X u T A/T A is a homotopy equivalence. Let h : X/A -> 

X u TA/T A be the natural homeomorphism. Consider the commutative 
diagram 

Hn(X, A) 
p. 

Hn(X/A, .) -> 

Ii, lh. 

Hn(X uTA, TA) 
ql 

Hn(X u TA/TA, .) --+ 

I i2 /< 
Hn{X uTA, *) 

in which ql and q2 are the homomorphisms induced by q. Then A is a 
deformation retract of a neighborhood of itself in T A, and therefore i 1 is an 
isomorphism. That i2 is an isomorphism follows from exactness of the hom
ology sequence of the triple (X uTA, TA, *) and the contractibility of TA. 
Since q is a homotopy equivalence, q2 is an isomorphism, and therefore ql is 
an isomorphism. But h* is an isomorphism, and it follows that p* is an 
isomorphism. 0 

(2.2) Theorem Let (X; A, B) be an NOR-triad. Then (X; A, B) is proper. 

We may assume (A, A (1 B) is an NOR-pair, and therefore (X, B) is also. 
Let p: (A, A (1 B) -> (A/A (1 B, *) and q: (X, B) -> (X/B, *) be the 
identification maps and let i: (A, A (1 B) ~ (X, B). The induced map 
h: (A/A (1 B, *) -> (X/B, *) is a homeomorphism, and the diagram 

Hn(A, A (1 B) 
P. 

ijn(A/A (1 B, .) --+ 

j i. 1 h. 

Hn(X, B) 
q. 

I Hn(X/B,.) 
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is commutative. Because (A, A n B) and (X, B) are NDR-pairs, p* and q* 
are isomorphisms. Since h* is an isomorphism, it follows that i* is an isomor
~~. 0 

(2.3) Theorem (Map Excision Theorem). Letf: (X, A)~ (Y, B) bea relative 
homeomorphism ofNDR-pairs. Thenf* : Hn(X, A) ~ Hn(Y, B)for all n. 

Again, let p: (X, A) ~ (X/A, *) and q: (X, B) ~ (Y/B, *) be the natural 
proclusions. Thenfinduces a map g: (X/A, *) ~ (Y/B, *) such that gop = 

q 0 f Since q and fare proclusions, g is a proclusion; since g is a one-to-one 
continuous map of X/A upon Y/B, it is a homeomorphism. Commutativity 
of the diagram 

Hn{ Y, B) 

and the fact that p*, q*, and g* are isomorphisms imply that f* is an 
isomorphism. 0 

Another useful property of NDR-triads is 

(2.4) Lemma Let (X; A 1, A z) be an NDR triad, (K; L1, Lz) a compact trian
gulable triad,f: (K; L10 Lz) ~ (X; A 10 A z)· Then there are subspaces M b M z 
of K such that 

(1) the triad (K; M 1, M z) is triangulable; 
(2) K=M 1 u M z; 
(3) Mi ::::J Li (i = 1,2); 
(4) there is a homotopy 

F: (I x K; 1 X L 1, I x L z) ~ (X; A 1, A 2 ) 

off (reI. L1 n L 2 ) to a map f' : (K; M l' M z) ~ (X; Alo A2)' 

Let ho : 1 x A1 ~ A 1, Uo : A1 ~ 1 represent (A1' A1 n A z) as an NDR
pair, and let Uo = Uo 1([0, 1)). Define h: I x X ~ X, u: X ~ 1 by 

h I I X A1 = ho, 

h(t, x) = x 

Uo I A1 = U, 

uo(x) = 0 
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then h, u represent (X, A2) as an NDR-pair and U = u- 1([0, 1)) = A2 U U 0 

is a neighborhood of A2 in X. The sets A1 - A2, U form an open covering of 
X; let b > 0 be a Lebesque number for the open covering {J-1(A1 - A 2 ), 

f - 1 (U)} of K. Choose a triangulation of (K; Lb L 2 ) of mesh < b and let 
M 1 (M 2) be the union of all simplices a of the triangulation such thatf(a) c 

A1 (f(a) c U). Then the first three conditions are satisfied. 
Let F = h 0 (1 x f) : I x K ~ X. Then F(I XLi) c Ai (i = 1, 2) and 

f'(MJ c Ai· 0 

Remark. Let {Kn} be a sequence of subdivisions of K such that 
limn--+oo mesh Kn = O. Then the triangulation of (1) can be chosen to be Kq 
for some q. 

(2.5) Theorem (van Kampen Theorem). Let (X; A, B) be an NDR-triad, and 
suppose that A and B are I-connected and A n B is O-connected. Then X is 
I-connected. 

We shall suppose that the base point * for the fundamental groups of all 
the subspaces X, A, B, A n B is in A n B. Let w : (I, i) ~ (X, *) be a loop in 
X. By Lemma (2.4) there is a partition 0 = to < t1 < ... < tm = 1 ofl and a 
path w' ~ w such that, for each i, either w'([ti - 1, t;]) c A or w'([ti - 1, ti]) C B, 
i.e., w is homotopic to a product W'l ... w~ such that, for each i, w; is either a 
path in A or a path in B. (We may ignore the parenthesization because 
multiplication of paths is associative up to homotopy.) We may assume that, 
if the image ofw; lies in A (B) then the image of w;+ 1 lies in B (A). Hence the 
end points of each of the paths w; lie in A n B. Let Vi be a path in A (', B 
from * to the initial point of w; (i = 1, ... , m - 1). Then w is homotopic to 
the product 

and each of the parenthesized paths is a loop in either A or B. Since A and B 
are I-connected, these loops are all nullhomotopic and therefore w is also. 

o 
Remark. What we have called the "van Kampen theorem" is only a 

special case of the general van Kampen theorem, which expresses 7t1(X) in 
terms of 7tl(A), 7tl(B) and the injections 7tl(A n B) ~ 7t1(A), 7t1(A n B) ~ 
7t1 (B). The latter theorem is also true for NDR-triads. As we shall not need 
the stronger theorem, we have relegated it to the Exercises. 

As a corollary to Theorem (2.2), we have the Direct Sum Theorem: 

(2.6) Let Xl, ... , X,, A, be closed subsets of a space X such that 

(1) X = Xl U ... U X, U A; 

(2) X, n Xp c A for all rI. =1= f3; 
(3) (X" X, n A) is an NDR-pair for each rI.. 
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Then l 

(1) the injections 

represent Hn(X, A) as a direct sum; 
(2) let X: = X - Xa; then the injections 

ja: Hn(X, A) ----> Hn(X, X:) 

represent Hn(X, A) as a direct product; 
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(3) the injection ka = ja 0 ia: Hn(Xa' Xa (\ A) ----> Hn(X, X:) is an isomor-
phism, and the representations {ia}, Ua} are weakly dual. 0 

We shall need to extend (2.6) to the case of certain infinite collections of 
sets. The desired extension is 

(2.7) (General Direct Sum Theorem). Let {Xa IIX E 1} be a collection of closed 
subsets of a space X, and let A be a closed subset of X. Suppose that 

(1) X = A u U Xa; 
aEJ 

(2) Xa (\ XfJ c A for IX =1= /3; 
(3) (Xa, Xa (\ A) is an NDR-pair for each IX; 
(4) X has the weak topology with respect to the collection of sets {A, Xa}' 

Then l 

(1) the injections 

ia : Hn(Xa, Xa (\ A)---->Hn(X, A) 

represent Hn(X, A) as a direct sum; 
(2) let X: = X - Xa; then the injections 

ja: Hn(X, A) ----> Hn(X, X:) 

represent Hn(X, A) as a weak direct product; 
(3) the mjectionja 0 ia: Hn(Xa, Xa (\ A) ----> Hn(X, X:) is an isomorphism, and 

the representations {ia}, Ua} are weakly dual. 

The sets Xa - A are open and mutually disjoint; hence any compact set C 
is contained in the union of A with finitely many of the X a' The theorem 
now follows from the fact that singular homology has compact supports. 

D 

(A different argument, based on the additivity of singular homology, is 
given in Theorem (6.9) of Chapter XII.) 

1 cf. Appendix B, §l. 



60 II CW -complexes 

Let (X, A) be a relative CW-complex with skeleta Xn • Let {E: la E J} be 
the n-cells of (X, A), with characteristic maps 

ha : (Lln, An) --+ (E:, E:). 

Let Xa = E: u X n- 1• The group Hn(Lln, An) is an infinite cyclic group gen
erated by the homology class bn of the identity map Lln --+ Lln. Let 
e: E Hn(E:, E:) be the image of bn under the homomorphism induced by ha; 
we shall also denote bye: the images of e: under the injections 

Hn(E:, E:) --+ Hn(Xa, X n - d, 
Hn(E:, E:) --+ Hn(Xn' X n- 1). 

It follows from (2.7) that 

(2.8) The injections H q(E:, E:) --+ H q(X n' X n- d represent the group 
Hq(Xn' X n- 1 ) as a direct sum of the groups Hq(E:, E:). D 

On the other hand, it follows from Theorem (2.2) that 

(2.9) The injections H q(E:, E:) --+ H q{X a' X n- d are isomorphisms, D 

and from Theorem (2.3) that 

(2.10) The homomorphisms ha* : Hp).n, An) --+ Hq(E:, E:) are isomorphisms. 
D 

We summarize the results of (2.8) to (2.10) in 

(2.11) Theorem If q =1= n, Hq(Xn, Xn-d = O. The group Hn(Xn' X n- 1 ) is a 
free abelian group, for which the elements e: constitute a basis. D 

(2.12) Corollary If p > q:::: r, then HAXq, X r) = O. In particular, if p > q, 
then Hp(Xq, A) = O. D 

(2.13) Corollary Ifp =.:; r =.:; q, then Hp(Xq, X r) = O. D 

Since singular homology has compact supports and X has the weak 
topology with respect to the skeleta X q, the group Hp(X, X r) is the direct 
limit of the groups Hp(Xq, X r) under the injections Hp(Xq, Xr)--+ 
Hp(Xq+ 1, Xr). Thus 

(2.14) Corollary If p =.:; r, then H p(X, X r) = O. D 

(2.15) Corollary If q > p, the injection 

Hp(Xq, A) --+ Hp(X, A) 
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is an isomorphism. Moreover, the injection 

Hp(Xp, A) -4 Hp(X, A) 

is an epimorphism whose kernel is the image of the boundary operator 

H p+1(X p+1, Xp)-4Hp(Xp, A) 

of the homology sequence of the triple (XP+l> X P' A). 

Let rn(X, A) = Hn(Xn, X n- 1), and let 

on:rn(X, A)-4rn_1(X, A) 
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o 

be the boundary operator of the homology sequence of the triple 
(Xn' Xn-l> X n- 2 )· The composite an 0 0n+1 can be factored as follows: 

Hn+1(Xn+1, Xn)-4 Hn(Xn, A)-4Hn(Xn' X n- 1) 

-4Hn- 1(Xn- 1, A)-4Hn- 1(Xn- h X n- 2 )· 

The middle part of this array is a portion of the homology sequence of the 
triple (Xn' X n- 1, A). Hence an 0 0n+1 = 0, so that 

(2.16) The graded group {rn(X, A)} is a free chain complex r(X, A) with 
respect to the endomorphisms {an}. 0 

If G is an abelian group, let 

rn(X, A; G) = Hn(Xn, X n- 1; G); 

these are the components of a chain complex r(X, A; G) with respect to the 
boundary operator an of the homology sequence (with coefficients in G) of 
the triple (X n' X n- 1, X n- 2). By the universal coefficient theorem, there are 
isomorphisms G ® rn(X, A) -4 rn(X, A; G) making a commutative diagram 

j 

Thus 

j 
--01---+· Hn - 1(Xn - 1, X n - 2 ; G) 

Un 

(2.17) The complexes G ® r(X, A) and r(X, A; G) are isomorphic. 0 

Similarly, let 
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and let bn : P(X, A; G) --+ P+ l(X, A; G) be the coboundary operator ofthe 
cohomology sequence of the triple (X n + l' X n' X n- 1); then the P(X, A; G) 
are the components of a graded cochain complex r*(X, A; G). Applying the 
universal coefficient theorem for cohomology, we again obtain a commuta
tive diagram 

1 1 

in which the vertical arrows represent isomorphisms. Thus 

(2.18) The cochain complexes P(X, A; G) and Hom(nX, A), G) are isomor
phic. 0 

Remark. If C is a graded chain complex, C* = Hom(C, G), it is traditional 
to define the coboundary operator b: C* --+ C* by the formula 

bf(c) = f(oc) 

for fE cq = Hom(Cq , G), c E Cq +1' With this definition, however, certain 
peculiar signs crop up. For example, the formula for the co boundary of a 
cross product becomes 

b(U xv) = ( - 1)q bu x v + U x bv 

(u E CP(K), v E Cq(L). For this reason and other reasons, we shall not use 
the traditional definition, but introduce a sign, so that 

bf(c) = (-l)1(oc) 

for f, c as above. (This is in keeping with the philosophy that, in a graded 
universe, one should always introduce a sign ( - 1 )pq when interchanging two 
symbols of degrees p, q). 

We come at last to the main result of this section. 

(2.19) Theorem Let (X, A) be a relative CW-complex. Then 

Hn(X, A; G) ~ Hn(nX, A; G)) 

and 

for any coefficient group G. 

Because of (2.17), (2.18) and the universal coefficient theorems, it suffices 
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to prove this for the case of integral homology. Consider the diagram 

(2.20) 

H.(X,A) 

in which i, i', j are injections and d, d' boundary operators. By Corollary 
(2.12), Hn(Xn- 1 , A) = 0; by exactness ofthe homology sequence of the triple 
(Xn' X n- b A), i is a monomorphism; similarly, i' is a monomorphism. Now 
the cycles and boundaries of the chain-complex r(X, A) are 

Zn(r(X, A)) = Ker(i' 0 d') = Ker d' = 1m i, 

Bn(r(X, A)) = Im(i 0 d), 

and these are isomorphic under i- 1 with 

respectively. Hence 

Hn(r(X, A)) ~ Hn(Xn, A)/Im d 

= Hn(Xn, A)/Ker j ~ Hn(X, A) 

by Corollary (2.15). o 
Now suppose that (X, A) and (Y, B) are relative CW-complexes with 

skeleta X n , Y" respectively. We have seen in (7) of (1.~) that their product 

(Z, C) = (X, A) x (Y, B) = (X x Y, X x B u A x Y) 

is a relative CW -complex with skeleta 

n 

Zn = U (Xi x Y,,-J 
i=O 

The n-cells of (Z, C) are thus of the form E~ x EZ, where E~ is a p-cell of 
(X, A), EZ a q-cell of (Y, B) and p + q = n; and (E~ x Eq)" = 
E~ x EZ u E~ x EZ. Moreover, iff: (~P, l1P)---+ (E~, E~) and g: (~q, Aq)---+ 
(EZ, EZ) are characteristic maps, then 

is a characteristic map for the product cell. 
We now recall some properties of the cross product in singular homology. 
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If (X, A) and (Y, B) are NDR-pairs, u E Hp(X, A) v E Hq(Y, B), their cross 
product 

u x V E H p+q«X, A) x (Y, B)) 

is defined using the Eilenberg-Zilber map of the tensor product of the singu
lar complexes 6(X), 6(Y) of X, Y, respectively, into 6(X x Y). 

In particular, if (X, A) and (Y, B) are relative CW-complexes, the cross 
product is a pairing 

rp(X, A)®rq(y, B) = Hp(Xp, Xp-d®Hq(Yq, Yq-d 

~ Hp+q(Xp x Yq, Xp X Yq-l U X p - 1 x Yq); 

the latter group injects into Hp+q(Zp+q, Zp+q_ d = rp+q((X, A) x (Y, B)); 
we shall denote the image of u ® v by u x V E r p+i(X, A) x (Y, B)). If <5 p, 
<5 q are generators of H p(LV, Ap), H q(,'\ q, A q), respectively, then <5 p x <5 q gener
ates H p+q((,'\P, Ap) x (M, Aq)), and therefore 

(f x g)*(<5 p x <5 q) = f*(<5 p ) x g*(<5 q) = e~ x e~ 

generates the group Hp+q((E~, En x (E~, Em. Thus 

(2.21) The cross product induces an isomorphism of the graded groups 
nX, A) ® ny, B) and n(X, A) x (Y, B)). D 

In fact, we have 

(2.22) Theorem The chain complexes nX, A) (8) ny, B) and n(X, A) x 
(Y, B)) are isomorphic under the operation of cross product. 

To prove this, we must calculate the effect of the boundary operator on a 
cross product. This follows from a more general result on cross products 
which we now explain. 

Let (X, A, A') and (Y, B, B') be NDR-triples, and let u E HAX, A), 
VEHq(Y, B). One then has elements oUEHp_1(A,A'), oVEHq_t(B,B'), 
where the symbol "0" denotes indiscriminately the boundary operator of 
the appropriate homology sequence. One can then form the cross products 

OU x v E Hp+q_1(A x Y, A x B u A' x Y), 

u x OV E Hp+q-1(X x B, X x B' u A x B). 

These elements lie in different groups; to compare them, it is convenient to 
inject into the group 

(2.23) H p+ q_ 1 (X x B u A x Y, X x B' u A x B u A' x Y); 

let us continue to denote their images under these injections by the same 
symbols. The boundary operator of the homology sequence of the triple 

(X x Y, X x B u A x Y, X x B' u A x B u A' x Y) 

also sends u x v into an element o(u x v) of the group (2.23). 
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(2.24) Lemma In the group (2.23), the relation 

(2.25) a(u x v) = au x v + (-l)Pu x av 

holds. 

This is proved by selecting singular relative cycles representing u and v, 
using the boundary formula in 6(X) 0 6(Y), and applying the Eilenberg
Zilber map. 0 

Now apply this result to the triples (X P' X p_ 1, X p_ 2) and 
(}~, Yq-1, Yq-2) to obtain 

the relation (2.25) holds. o 

Injecting the latter group into the group 

rp+q_1«X, A) x (Y, B)) = Hp+q- 1(Zp+q-1' Zp+q-2)' 

we have 

(2.27) Corollary Ifu E rp(X, A), v E rq(y, B), then the relation (2.25) holds 
in rp + q - 1«X, A) x (Y, B)). 0 

But this is precisely what is needed to prove Theorem (2.22). 

Remark 1. Because of Corollary (2.27), the cross product of chains induces 
a cross product pairing in homology: 

Hp(r(X, A)) 0 Hq(r(Y, B))-+Hp+q(r«X, A) x (Y, B))). 

We also have the cross product pairing in singular homology: 

H p(X, A) 0 Hq(Y, B) -+ H p+q«X, A) x (Y, B)). 

Because the cross product of chains was defined in terms of singular homo
logy, it is not unreasonable to expect that the two homology cross products 
agree. Specifically, we have, for each relative CW-complex (X, A), a uniquely 
defined isomorphism 

fJ = fJ(x, A) : H * (r(X, A)) ~ H *(X, A); 

and we claim that, for u E Hp(r(X, A)), v E Hq(r(Y, B)), 

fJ(u x v) = fJ(u) x fJ(v). 

The easy proof of this fact is relegated to the Exercises. 
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Remark 2. Our discussion of cross product goes through without essential 
change for cross products with arbitrary coefficients. Specifically, if a pairing 
G ® H --+ K of abelian groups is given, there are cross products of chains 

rp(X, A; G)®rq(Y, B; H)--+rp+q((X, A) x (Y, B); K), 

giving rise to cross products in homology, and these agree with those of 
singular theory. 

Let us apply the above considerations to the product of the unit interval 
with a relative !=W-complex (X, A). Now 1 has two O-cells, {O}, {I}, and one 
I-cell i; and 

oi = {I} - {O}. 

The cross products with these cells give a representation of r n(1 x X, 1 x A) 
as a direct sum of two copies ofrn(X, A) and one ofrn- 1(X, A); and one 
has, for c E rn(X, A), 

0(1 x c) = 1 x oc, 
(2.28) 0(0 x c) = 0 x oc, 

o(i xc) = 1 x c - 0 x c - i x oc. 
Let us also consider the product 

(I, i) x (X, A) = (I x X, 1 x A u i x X) = (X*, A*); 

this time r n+ 1 ((I, i) x (X, A)) ~ rn(X, A). In fact, the map c--+i x c is an 
isomorphic chain map, of degree -1, of r(X, A) with r(X*, A*). Hence 

(2.29) Theorem The cross product with the generator i of H 1 (I, i; Z) induces 
an isomorphism 

ix : Hq(X, A; G)~Hq+l(X*, A*; G) 

for any coefficient group G. D 

The discussion of cross products in cohomology is considerably more 
intricate than the corresponding onein homology. Indeed, the cross product 
of chains is the composite 

CA6(X)j6(A)) ® Cq(6(Y)j6(B)) 

G Cp+i6(X) ® 6(Y)j6(X) ® 6(B) + 6(A) ® 6(Y)) 

--+ Cp+i6(X x Y)j6(X x B) + 6(A x Y)) 

--+ Cp+q{6(X x Y)j6(X x B u A x Y)); 

the second map is induced by the Eilenberg-Zilber map of 6(X) ® 6(Y) 
into 6(X x Y) and the third by the inclusion 6(X x B) + 
6(A x Y) G 6(X x B u A x Y). On the other hand, if we attempt to copy 
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this procedure for cochains, we obtain the composite 

CP(6(X)j6(A)) ® Cq(6(Y)/6(B)) 

c:;Cp+q(6(X) ® 6(Y)/6(X) ® 6(B) + 6(A) ® 6(Y)) 

---> Cp+q(6(X x Y)j6(X x B) + 6(A x Y)) 

~ CP+Q(6(X x Y)/6(X x B + A x Y)); 
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the second map is induced by the Eilenberg-Zilber map of 6(X x Y) into 
6(X) ® 6(Y); the third map, induced by the inclusion 6(X x B) + 
6(A x Y) c:; 6(X x B u A x Y) goes in the wrong direction. If (X, A) and 
(Y, B) are NDR-pairs, the latter inclusion is a chain equivalence. Therefore 
there is no difficulty in defining a pairing 

HP(X, A) ® HQ(Y, B) ---> Hp+q(X x Y, X x B u A x Y) 

with good properties; but calculations with the cohomology cross product 
at the cochain level are more complicated for this reason. A more detailed 
account of the cohomology cross product has been given by Steenrod and 
Rothenburg. Unfortunately, their paper was never published although its 
principal results were announced in [1]. 

Let G ® H ---> K be a pairing of abelian groups; we shall be concerned 
with cross-product pairings, 

; K). 

To simplify writing, however, we shall suppress the coefficient group from 
the notation. 

A basic property of the cross product in cohomology is a coboundary 
formula dual to (2.25). Let (X, A, A') and (Y, B, B') be NDR-triples. Then 
there is a commutative diagram (Figure 2.1), in which the homomorphisms 
k j are isomorphisms, by the Excision Theorem. It is a standard result (see, 
for example, [Sp, Theorem 5.6.6]) that, if U E HP(A, A'), v E Hq(B, B'), then 

c5 1kl1(U x v) = c5u x V E HP+q+l((X, A) x (B, B')), 

c5 2 kz1(u x v) = (-1)Pu x c5v E HP+q+l((A, A') x (Y, B)). 

We shall prove 

(2.30) LRt U E HP(A, A'), v E Hq(B, B'). Then 

By the Direct Sum Theorem, the homomorphisms jl, j2 represent the 
group H n + l(X X B u A x Y, X x B' u A x B u A' x Y) as a direct sum, 
while the homomorphisms lb 12 form a weakly dual representation as a 
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direct product. Commutativity of Figure 2.1 implies that 

116oko 1(u x v) = 61ksko 1(u X v) = 61kl1(U X v) = 6u x v, 

126oko l(U x v) = 62k6kO l(U x v) = 62k21(U X v) = (-l)Pu x 6v, 

and (2.30) follows immediately. 
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o 
Let (X, A), (Y, B) be relative CW-complexes, so that (Z, C) = (X, A) x 

(Y, B) is also a relative CW -complex. Let Kp, q = X p x Yq, Lp, q = X p x 
Yq- 1 U X p_ 1 X Yq. Then 

Zn= U Kp,q 
p+q=n 

and it follows from the Direct Sum Theorem (2.6) that 

(2.31) The injections Hn(Kp,q, Lp, q)-+ Hn(Zn, Zn-d (p + q = n) form a 
representation of the latter group as a direct sum. 

The dual result in cohomology asserts 

(2.32) The injections Hn(Zn' Zn_1)-+Hn(Kp,q, Lp,q) (p+q=n)form a 
representation of the former group as a direct product. 0 

Therefore, there are monomorphisms 

ip, q : Hn(Kp, q' Lp, q) -+ Hn(Zn' Zn- d 
forming the representation, dual to that of (2.31), of the latter group as a 
direct sum. In fact, ip, q is the composite of the injection 

Hn(Zn' K~, q) -+ Hn(Zn' Zn-1) 

with the inverse of the injection 

Hn(Zn' K~, q) -+ Hn(Kp, q' Lp, q), 

which is an isomorphism by the Excision Theorem (K~, q is the union of the 
set Kr,s for all (r, s) =1= (p, q) with r + s = n). 

Let u E P(X, A) = HP(X P' X p_ 1), v E P( Y, B). Their cross product in 
singular cohomology lies in the group 

Hp+q(Kp,q, Lp,q) = Hp+q((X p, X p- 1) x (Yp, Yp-d) 

The image of this cross-product in p+q(Z, C) under the map ip, q will also 
be denoted by u x v. 

(2.33) Theorem Let u E P(X, A), v E P(Y, B). Then, in the group 
p+q+ l(Z, C), the relation 

6( u xv) = 6u x v + ( - 1 )Pu x 6v 
holds. 
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The proof is a matter of (sufficiently patient) diagram chasing. D 

Thus, as in the case of homology, the cross product of cochains induces a 
pairing of cohomology groups, and the cross products so defined corre
spond, under the isomorphisms of Theorem (2.19), to the cross products in 
singular cohomology. 

We conclude this section with a companion result to Theorem (2.29). Let 
i* E Hl(l, i; Z) be the generator such that (i*, i) = + 1. Then 

(2.34) Theorem The cross product with i* induces an isomorphism 

i* x : Hq(X, A; G) ~ Hq+ l(X*, A*; G) 

for any coefficient group G. 

3 Compression Theorems 

D 

In order to pave the way for the proof of the Cellular Approximation 
Theorem in §4, we introduce the concept of n-connected pair, and prove a 
series of results which are needed, not only for the aforementioned proof, but 
in many other contexts. 

A pair (Y, B) (not necessarily a relative CW-complex) is said to be n
connected if and only if, for every relative CW-complex (X, A) with 
dim(X, A) :::;; n, any map f: (X, A) ~ (Y, B) is homotopic (reI. A) to a map 
of X into B. (Such a map is said to be compressible, and the homotopy a 
compression ). 

(3.1) Lemma A necessary and sufficient condition that (Y, B) be n-connected 
is that every map f: (Llq, Aq) ~ (Y, B) be compressible (q = 0, 1, ... , n). 

Since (Llq, Aq) admits a CW-decomposition, the necessity is clear. The 
sufficiency is proved inductively. Accordingly, suppose that q < nand 
f(Xq- deB. It suffices to show thatf I Xq: (Xq, X q- 1 ) ~ (Y, B) is compres
sible. For the homotopy extension property for the pair (X, Xq) ensures that 
any compression of f IXq can be extended to a homotopy (reI. X q _ d off to a 
map g such that g(X q) c B. 

Now X q is a q-cellular extension of X q_ 1; let ha : Llq ~ X q be the charac
teristic maps. Since q < n, f 0 ha: (Llq, Aq) ~ (Y, B) is compressible. If 
ga: (I x Llq, 1 x Aq) ~ (Y, B) is a compression, it follows from Lemma (1.3) 
that there is a homotopy g: (I x X q, 1 x X q_ d ~ (Y, B) off I Xq such that 
g 0 (1 x ha) = ga; and g is the desired compression. D 

(3.2) Lemma Let (X, A) be an NDR-pair, and letf: (I x X, 1 x A) ~ (Y, B) 
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be a homotopy offo: (X, A) --t (Y, B) to a mapf1 such thatf1(X) c B. Thenfo 
is compressible. 

Define g : I x A u ° x X --t B by 

g(s, a) = f(1 - s, a), 

g(O, x) = f(1, x). 

Since (X, A) is an NDR-pair, g has an extension G: I x X --t B. 
Define 

h: (0 x 1 x X u I x 1 x A u 1 x i x X, I x I x A u I x 1 x X) --t (Y, B) 

by 

h(s, 0, x) = fo(x), 

h(s, 1, x) = G(s, x), 

h(O, t, x) = f(t, x), 

h(s, t, a) = f((1 - s)t, a). 

Since (I, i) and (X, A) are NDR-pairs, their product (I x X, i x X u 1 x A) 
is an NDR-pair. Hence h has an extension H: I x I x X --t Y. Let!'(t, x) = 

h(1, t, x). Then!' : 1 x X --t Y,J'(l x X) = h(l x 1 x X) = G(1 x X) c B, 
!'(t, a) = h(1, t, a) = f(O, a), and !'(O, x) = h(1, 0, x) = fo(x). Hence!' is a 
compression of fo . 0 

(3.3) Lemma Let (Y, B) be n-connected, and let (X, A) be a relative CW
complex with dim(X, A) :c;; n. Then every map 

f: (0 x X u 1 x A, 1 x A) --t (Y, B) 

has an extension 

F: (I x X, 1 x X) --t (Y, B). 

Since (X, A) is an NDR-pair, f has an extension f1 : (I x X, 1 x A)--t 
(Y, B). Since dim(X, A) :c;; n, the mapf111 x X: (1 x X, 1 x A) --t (Y, B) is 
compressible. Hence there is a map 

f2: (0 x 1 x X u 1 x 1 x X, 1 x 1 x X u I x 1 x A) --t (Y, B) 

such that 

f2(0, t, x) = f1(t, x) 

f2(S, 1, a) = f(l, a) 

Extend f2 to a map 

((t,x)ElxX), 

(sEI,aEA). 

13: (0 x I x Xu 1 x I x X u I x 1 x X u I x I x A, 1 x I x X u I x I x A) .... (Y, H) 
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by setting 

_ {f(S, + t, a) 
f3(S, t, a) - f(l, a) 

f3(1, t, x) =f2(1, 1, x) 

(0 ::; s ::; 1 - t, a E A), 
(1 - t ::; s ::; 1, a E A), 

«(t, x) E 1 x X). 

Since (I, i) is an NDR-pair and (I, 1) a DR-pair, their product (I x I, 
i xl u 1 x 1) is a DR-pair; as (X, A) is also an NDR-pair, the product 

(I x 1 x X, t x 1 x X u 1 x 1 x X u 1 x 1 x A), 

of the latter two pairs is a DR-pair, and therefore f3 has an extension 

f4: (I x 1 x X, 1 x 1 x A u 1 x 1 x X) ~ (Y, B). 

Define F by 

F(s, x) = f4(S, 0, x) ((s, x) E 1 x X); 

F is the desired extension. o 

(3.4) Lemma Suppose that (Y, B, B') is a triple such that both (Y, B) and 
(B, B') are n-connected. Then (Y, B') is n-connected. 

In fact, if (X, A) is a relative CW-complex with dim(X, A) ::; nand 
f: (X, A) ~ (Y, B') is a map, then the n-connectedness of (Y, B) implies that 
f is homotopic (reI. A) to a map g such that g(X) c B. Again, the fact that 
(B, B') is n-connected implies that g : (X, A) ~ (B, B') is homotopic (reI. A) 
to a map h such that h(X) c B'. 0 

(3.5) Corollary Let {Yq} be a filtration of a space Y such that each of the pairs 
(Yq+ 1, Yq) is n-connected (q ~ 0). Then (Y, Yo) is n-connected. 

For let k ::; n, and letf: (~\ Ak) ~ (Y, Yo) be a map. Since ~k is compact, 
there exists q such that f(~k) c Yq. It follows by induction from Lemma 
(3.4) that the pair (Yq, Yo) is n-connected. Hence f: (~\ Ak) ~ (Yq, Yo) is 
compressible and therefore f: (~\ Ak) ~ (Y, Yo) is also. 0 

(3.6) Lemma The pair (~n, An) is (n - I)-connected. 

Let f: (~q, Aq) ~ (~n, An), q < n. By the Simplicial Approximation 
Theorem, there is a subdivision (K, L) of (M, Aq) and a simplicial map 
g: (K, L) ~ (~n, An) such that g is homotopic to! Since q < n, the image of g 
is contained in the (n - I)-skeleton An of ~n. By Lemma (3.2),fis compres
sible. 0 

(3.7) Corollary Let b E Int ~n. Then the pair (~n, N - {b}) is 
(n - 1 )-connected. 
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For An is a deformation retract of Lln - {b}. o 
(3.8) Corollary The pair (Int Lln, Int Lln - {b}) is (n - I)-connected. 

For iff: (Llq, Aq) ---+ (Int Lln, Int N - {b}) and q < n, then there is a closed 
n-simplex Ll~ such that b E Int Ll~, and f(Llq) c Ll~ c Int Lln. Then 
f: (M, A q) ---+ (Ll~, Ll~ - {b}) is compressible in Ll~ and therefore in Int ~ n. 

o 
(3.9) Theorem Let X be an n-cellular extension of A. Then (X, A) is 
(n - I)-connected. 

Let q < n,f: (Llq, Aq) ---+ (X, A). By (1.1), there are finitely many cells E'1, 
... , E~ of (X, A) such that f(Llq) c A u Ui= 1 E? = X'. If (X', A) is 
(n - I)-connected, thenfis compressible in X' and therefore in X. Hence we 
may assume X' = X. Let X k = A u U~= 1 E?, so that A = Xo C Xl c··· C 

Xr = X, and, for each k, X k is an n-cellular extension of X k - l with just one 
n-cell Ek. If(Xk' X k- dis (n - I)-connected, so is (X, A), by Corollary (3.5). 
Therefore we may assume that (X, A) has exactly one cell En, with character
istic map h: (Lln, An) ---+ (X, A). 

Let bn be the barycenter of Lln, and let U = Int En, V = A u h(~n - {bn}). 

Then {U, V} is an open covering of X, and A is a deformation retract of V. 
Let q < n,f: (Llq, Aq) ---+ (X, A). Let '1 > 0 be a Lebesgue number for the open 
covering {f-l(U),f-l(V)} of Llq, and choose a simplicial subdivision K of M 
of mesh < '1. Let L be the union of those simplices of K which are contained 
inf-l(U), M the union of those which are contained inf-l(V). Then Land 
Mare subcomplexes of K, and Aq c M. Now f 1 L: (L, L n M)---+ 
(U, U - {h(bn )}) and so h- l 0 (f IL): (L, L n M) ---+ (lnt Lln, lnt Lln - {bn}). 

By Corollary (3.8), the latter pair is (n - I)-connected, and therefore 
h- 1 0 (f IL) is compressible. Hencef IL is compressible. Becausef(M) c V, 
the map f : (K, M) ---+ (X, V) is compressible; since Aq c M, f : (Llq, Aq)---+ 
(X, V) is compressible. Since A is a deformation retract of V,f : (Llq, Aq)---+ 
(X, A) is compressible. 0 

(3.10) Corollary If (X, A) is a relative CW -complex, then (X q' X n) and 
(X, X n) are n-connected for all q 2': n. 

By Theorem (3.9), the pair (X q' X q_ l) is (q - 1 )-connected, and therefore 
n-connected, if q > n. The result now follows from Corollary (3.5). 0 

A pair (Y, B) is said to be oo-connected if and only ifit is n-connected for 
every positive integer n. For such a pair, every mapf: (X, A) ---+ (Y, B) of a 
finite-dimensional relative CW-complex is compressible. But more is true, 
VIZ: 
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(3.11) Theorem If (Y, B) is oo-connected and (X, A) is an arbitrary relative 
CW-complex, then every map f: (X, A) ----> (Y, B) is compressible. 

We construct a sequence of maps fn: (0 x Xn u I X X n- 1, I x Xn-d 
----> (Y, B) with the following properties: 

(1) fn(O, x) = f(x) 
(2) fn+l is an extension offn; 
(3) f,,(t, a) =f(a) (t E I, a E A). 

First, define f-l : I x A ----> B by (3). Assume that fn has been defined and 
satisfies (1)-(3) for all n ~ N. By Lemma (3.3), the mapfN has an extension 

f~+t: (I x X N, 1 X XN)---->(Y' B). 

Extendf~+t tofN+l:0 x X N+1 u I X XN----> Yby 

fN+l(O, x) = f(x). 

Then fn satisfy (1 )-(3) for all n ~ N + 1. 
Let 9 : I x X ----> Y be the map such that 

gil x Xn=fn+tII x Xn; 

because of (1)-(3), 9 is well-defined, g(O, x) =f(x), and g(t, a) =f(a) for 
a E A. Since g( 1 x X n) = fn + 1 (1 X X n) c B, g( 1 x X) c B, and therefore 9 is 
a compression off 0 

(3.12) Corollary If the relative CW-complex (X, A) is oo-connected, then A is 
a deformation retract of X. 

For the identity map 1: (X, A) ----> (X, A) is compressible. o 

We shall need a " relative" version of Theorem (3.11). A map 
f: (X; At> A2 ) ----> (Y; Bt> B2) is said to be right compressible if and only if the 
map ft : (X, Ad ----> (Y, Bd defined by f is homotopic (reI. A2) to a map 
g: (X, A 1 )----> (B2, Bl n B2)' 

(3.13) Theorem Suppose that (Y; Bt> Bz) is a triad such that the pairs 
(Y, Bl u Bz), (Blo Bl n Bz), and (Bl u B2, Bz) are oo-connected. If 
(X; At> Az) is a triad such that the pairs (AI' At n Az) and (X, Al u A z) 
are relative CW-complexes, then every map f: (X; AI, Az) ----> (Y; B 1, B2 ) is 
right compressible. 

The desired compression is carried out in three steps. 
Step I. Since (Y, Bl u B2) is oo-connected, the map f : (X, At u A2)----> 

(Y, Bl u B2 ) is compressible. Thus there is a homotopy F 1 : I x X ----> Y 
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such that 

F1(O, x) = f(x) 

F1(t, a) =f(a) 

F1(1, x) E B1 U B2 • 

The map f1 defined by 

(x EX), 

(a E A1 U A 2 ), 

f1(X) = F1(1, x) 

sends (X; A1, A 2 ) into (B1 U B2 ; B1, B2)' 
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Step II. The mapf1 I A1 : (A1' A1 n A 2 ) ~ (B1' B1 n B2) is compressible, 
since (B1' B1 n B2) is oo-connected. Thus there is a map F~ : I x A1 ~ B1 
such that 

F~(O, ad = f1(ad = f(ad 

F~(t, ao) = f1(aO) = f(ao) 

F~(l, ad E Bl n B2 

(a 1 E A1 ), 

(ao E A1 n A 2 ), 

(a 1 E A1)' 

Extend F~ to a map F~ : ° x X U I X (A1 U A2) ~ B1 U B2 by 

F~(O, x) = f1{X) 

F~(t, a2) = f1(a 2) = f(a2) 

Since (X, A1 U A 2 ) is an NDR-pair, F~ can be extended to a map 
F2 : I x X ~ B1 U B2. 

Definef2: (X; A1, A2)~ (B1 U B2; B1 n B2, B2) by 

f2(X) = F2(1, x). 

Step III. Since (B1 U B2, B2) is oo-connected, the map 
f2 : (X, A1 U A2) ~ (B1 U B2, B2 ) is compressible. Hence there is a map 
F3 : I x X ~ B1 U B2 such that 

F3(O, x) = f2(X) 

F 3(t, a) = f2(a) 

F3(1,x)EB2 

(x EX), 

(a E A1 U A2 ), 

(x EX). 

Definef3: I x X ~ B2 by f3(X) = F3(1, x). 
The three homotopies F 1, F 2, F 3 can be put end to end to define a 

homotopy F off to f3 . Examination of the properties of the Fi reveals that 

F(I x Ad c B1, 

F is stationary on A 2 , 

f3(X) c B2 ; 

hence f3(Ad c B1 n B2, and therefore F is a right compression off D 
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(3.14) Corollary LRt (X; Ai> A2) be a triad such that (AI' Al (\ A2) and 
(X, A1 U A2) are relative CW-complexes and each of the pairs 
(AI' Al (\ A2), (AI u A 2 , A2) and (X, Al U A2) is oo-connected. Then the 
pair (A2' Al (\ A2) is a deformation retract of the pair (X, Ad. 

For the identity map of (X; AI, A 2 ) is compressible. o 

4 Cellular Maps 

Iff: (X, A) ~ (Y, B) is a continuous map, it is desirable to be able to calcu
late the induced homomorphism f* : HiX, A) ~ Hq(Y, B). If (X, A) and 
(Y, B) are simplicial pairs, and f is a simplicial map, then f induces a chain 
map between the chain complexes of (X, A) and (Y, B), and the homomor
phism of homology groups induced by the latter is just f* (up to the 
identifications of the homology groups of the pairs in question with those of 
their chain complexes). If, however,fis not simplicial, the Simplicial Approx
imation Theorem assures us of the existence of a simplicial map homotopic 
to f, to which the above machinery can be applied. The use of the Simplicial 
Approximation Theorem, however, has the disadvantage, technical as well 
as aesthetic, that it necessitates the use of a subdivision of the original 
triangulation. And, while the process of (say) barycentric subdivision is 
nicely adapted to the simplicial theory, it becomes awkward and messy in 
the general case. 

Suppose, then, that (X, A) and (Y, B) are relative CW-complexes. A map 
f: (X, A) ~ (Y, B) is said to be cellular if and only iff(Xn) C Y" for every n. 
Such a map induces homomorphisms 

as well as 

f# : Hn(Xn' X n- d ~ Hn(Y", Y,,- d, 
f~: Hn(Xn' A) ~ Hn(Y", B), 

f*: Hn(X, A)~Hn(Y' B). 

These map the diagram of (2.20) for (X, A) into that for (Y, B). We therefore 
have 

(4.1) Theorem Iff: (X, A) ~ (Y, B) is a cellular map, then the homomor
phisms f # : H n(X n' X n - d ~ H n( Y", Y" - d are the components of a chain map 
r(f) = f# : r(X, A) ~ r(Y, B) and the homomorphism of homology groups 
induced by f# coincides, up to the natural isomorphism of Theorem (2.19), with 
f*:H*(X,A)~H*(Y,B). 0 

In categorical terms, this can be expressed as follows. Let 111 be the 
category whose objects are CW -complexes and whose morphisms are cellu-
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lar maps, C(} * the category of graded chain complexes and chain maps of 
degree 0, A* the category of graded abelian groups (and homomorphisms of 
degree 0). One has homology functors H: "IY -4 A*, H: C(} * -4 A* . 
Moreover, the construction r determines a functor r : "IY -4 C(} *' and the 
functors H, H 0 r : "IY -4 A* are naturally equivalent. 

We also have a notion of cellular homotopy. Let f: (I x X, I x A)-4 
(Y, B) be a map, so thatfis a homotopy between the mapsfo,f1 : (X, A)-4 
(Y, B) defined by 

.ft(x) = f(t, x) (t=O,I;xEX) . 

If f is cellular, then fo and f1 are cellular, and we refer to f as a cellular 
homotopy between fo and fl' 

(4.2) Theorem Let f be a cellular homotopy between the cellular maps fo, 
f1 : (X, A) -4 (Y, B). Then the chain maps 

qi) : qx, A) -4 qy, B) (i=O,I) 

are chain homotopic. o 
The use of cellular maps often allows us to construct new CW -complexes 

out of old ones. The following result is often useful. 

(4.3) Theorem Let X, Y be CW-complexes, A a subcomplex of X,f: A -4 Ya 
cellular map. Then the adjunction space X U f Y is a CW-complex having Y 
as a subcomplex. (Cf. Lemma (1.7) and the remarks preceding it). 

The proclusion h: (X + Y, A + Y) -4 (X U f Y, Y) being a relative 
homeomorphism, it follows that the latter pair is a relative CW -complex 
with skeleta W~ = Xn U f. Y, where fn = f IAn: An -4 Y. It follows from 
Lemma (1.13) that W = X U r Y is a CW-complex with skeleta 
(W~ - Y) U Y" = h(Xn - An) U Y" = Xn Ufo Y", and that Y is a sub com
plex of W. 0 

(4.4) Corollary The mapping cylinder If' and the mapping cone T f' of a 
cellular map f: X -4 Y, are CW -complexes; X and Yare disjoint sub complexes 
of If' and Y is a subcomplex ofTf · 0 

The main goal of this section is to prove 

(4.5) Theorem (Cellular Approximation Theorem). Let (X, A), (Y, B) be 
relative CW-complexes, and letf: (X, A) -4 (Y, B) be a continuous map. Then 
f is homotopic (reI. A) to a cellular map h. 

We shall construct, inductively, a sequence of maps 

gp:IxXp-4Y 
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with the following properties: 

(1) gp(O, x) = f(x) 
(2) gp(t, a) = f(a) 
(3) gpll x X p- 1 = gp-1, 
(4) gAl x Xp) c Yp. 

(x E Xp), 
((t, a) E I x A), 

Once this has been done, the function 9 : 1 x X --+ Y defined by 

gllxXp=gp 

is well-defined, because of (3), and continuous because 1 x X has the weak 
topology with respect to the subsets I x X p; and 9 is a homotopy (reI. A) 
between f and the map h defined by 

h(x) = g(l, x). 

The map h is cellular, by (4). 
It remains to define the 9 p' We begin by setting 9 _ 1 (t, x) = f (x) for 

x E X _ 1 = A, as required by (2). Suppose that gp has been defined for p < n 
and satisfies (1)--(4). By Lemma (3.3), the map g~: (0 X Xn U 1 x X n- 1, 
1 x X n - d --+ (Y, Y,,- de (Y, Y,,) defined by 

g~(O, x) = f(x), 

g~(t, x) = gn-1(t, x) ((t, x) E I x X n - 1 ), 

has an extension 

and it is evident that (1)--(4) hold with p = n. o 

(4.6) Corollary Let (X, A), (Y, B) be relative CW-complexes and let (X', A') 
be a subcomplex of (X, A). Let f: (X, A) --+ (Y, B) be a map such that 
f I X' : (X', A') --+ (Y, B) is cellular. Then f is homotopic (reI. X') to a cellular 
map h: (X, A) --+ (Y, B). 

Just apply the Cellular Approximation Theorem to the relative CW-
complex (X, X' u A). 0 

(4.7) Corollary Let fO,f1 : (X, A) --+ (Y, B) be homotopic cellular maps. Then 
there is a cellular homotopy h: (I x X, I x A)--+ (Y, B) offo tof1' 

Letf: (I x X, I x A) --+ (Y, B) be any homotopy offo tof1' Apply Corol
lary (4.6) to the relative CW -complex (I x X, I x A) and its subcomplex 
(1 x X u 1 x A, I x A). 0 
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5 Local Calculations 

We have shown that, if (X, A) is a relative CW-complex, then its homology 
(and cohomology) is that of the free chain complex r(X, A) for which 

rp(X, A) = Hp(Xp, Xp-d. 

If ha : (M, liP) -4 (Ea' Ea) are characteristic maps for the p-cells of (X, A) 
(IX E J p), then the homology classes ea E H p(X P' X p_ 1) of the singular rela
tive cycles ha form a basis for r p(X, A). Thus, for each IX E J P' 

oea = L [ea : ep]ep, 
p E J p -1 

where [ea : ep] are integers, almost all zero; they are called the incidence 
numbers for the pairs (Ea, Ep). In this section we shall show how to calculate 
them. 

Similarly, suppose thatf: (X, A) -4 (Y, B) is a cellular map between rela
tive CW -complexes. Then f maps the pair (X P' X p_ d into the pair 
(Yp, Yp- i ), and the homomorphisms of Hp(Xp, Xp-i) into Hp(Yp, Yp- dare 
the components of a chain map f# : r(X, A) -4 r(Y, B). If {Ep I P E Kp} are 
the p-cells of (Y, B), then, for each IX E J P' there are integers faP, almost all 
zero, such that 

We shall also show in this section how to calculate the fap. 
Let us consider the second problem first. If Ea is a p-cell of (X, A), then 

Ea/Ea is a p-sphere, oriented by the image Sa of ea under the homomorphism 
induced by the collapsing map. Similarly, if Ep is a p-cell of (Y, B) and 
E; = Yp - Ep , then Yp/E; is homeomorphic with the p-sphere Ep/Ep; the 
latter is oriented by the image sp of ep . The composite map 

(Ea' Ea) ct: (Xp' Xp-i) f , (Yp' Yp-i) C+ (Yp' En 

induces a map 

We have 

where cap is an integer. Note that cap = 0 if the image of!is a proper subset of 
the sphere Ep /Ep, i.e.,f(Ea) p Ep. As the compact setf(Ea) is contained in 
the union of Yp - i with finitely many cells Ep , almost all the integers cap are 
zero. 
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(5.1) Theorem The integers !~p and c~p coincide. 

For there is a commutative diagram 

~ ~ .~ j~ 
Hp(Ea,La) ---+ Hp(Xp,Xp--d --+ Hp(Yp,Yp-d--+ 

-----------------, Hp(Ep/Ep) 

J* 
where q~ and qp are induced by the collapsing maps. By the General Direct 
Sum Theorem (2.7), 

jp!# i~(e~) = !~pkp(ep), 

where kp: Hp(Ep, Ep)~Hp(Yp, Yp-d is the injection. But 

c~psp = J*(sa) = J* q~(e~) 

= qp jp!# iAe~) = !apqpkp(ep) = !~psp; 

since sp has infinite order, c~p = !~p. o 
Let us return to the first problem. This time there is a commutative 

diagram 

---+ 
h' a 

and the bottom line is induced by a map of the oriented (p - I)-sphere ,1P 
into the oriented sphere Ep/Ep; let a~p be the degree of this map. Again, 
a~p = 0 unless E~ => Ep, and this can be true for only a finite number of {3. 

Again we appeal to the General Direct Sum Theorem to prove 

(5.3) Theorem The integers a~p and [e~ : ep] coincide. 

In fact, by the said Theorem, 

and our result is obtained by chasing the diagram (5.2). o 
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6 Regular Cell Complexes 

While CW -complexes are adapted very well to homotopy theory, there are 
occasional problems caused by the fact that the cells may not be homeomor
phic with iln. Consider, for example, the problem of finding a chain map 
K --. K x K approximating the diagonal map. Of course, the existence of 
such a map is guaranteed by the Cellular Approximation Theorem. But if 
one wants a map with good local properties (e.g., the image of a cell E of K 
should be contained in E x E), one is forced into a cell-by-cell 
construction-the image of oE is a cycle z lying in E x E, and if the latter 
space is acyclic, z bounds a chain which we may define to be the image of E 
(cf. the construction of Steenrod reduced powers in [St2])' 

For this reason it seems desirable to introduce a class of complexes lying 
between the simplicial and the CW-complexes. A CW-complex K is called a 
regular cell complex if and only if 

(1) each n-cell of K is homeomorphic with iln; 
(2) if E is an n-cell of K, then E is the union of finitely many (n - I)-cells 

of K. 

Remark. Condition (2) is actually superfluous, and is merely included for 
convenience. To see that this is the case, as well as to verify the remaining 
statements made without proof in this section, see [C-F] (especially 
p. 229 ff.). 

Let K be a regular cell complex. An (n - I)-cell contained in the boun
dary of an n-cell E is said to be an (n - I)-face of E. More generally, if E and 
E' are cells of K, E' is said to be a k-face of E if and only if there is a sequence 
E' = Ek C Ek + 1 C ... C En = E of cells of K such that Ep is a p-face of Ep+ 1 

for each p. 

(6.1) Let E be a cell of the regular cell complex K. Then the sets E n Kn form a 
CW -decomposition of E as a subcomplex of K. Similarly, the sets E n Kn form 
a CW-decomposition of E as a subcomplex of K. Each of these subcomplexes is 
a regular cell complex. D 

(6.2) Let K be a regular cell decomposition ofsn. Then 

(1) every cell of K is aface of an n-cell of K; 
(2) every (n - I)-cell of K is aface of exactly two n-cells of K; 
(3) if E and E' are n-cells of K, there is a sequence E = Eo, E b ... , Ek = E' of 

n-cells of K such that, for each i, E; and E;+ 1 have an (n - 1 )-face in 
common. 

To prove (1), let E be a principal cell (i.e., one which is not a face of any 
other cell). If x E Int E then the local homology group Hk(Elx) = 
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Hk(E, E - {x}) is non-trivial (k = dim E). But Int E is an open subset of sn 
and therefore the injection H k(E I x) ....... H k(sn I x) is an isomurphism. Since sn 
is an n-manifold, the latter group is non-zero only if k = n. 

To prove (2), let E be an (n - 1)-cell which is a face of exactly k n-cells, 
and let x E Int E. Then H n(sn I x) is a free abelian group of rank k - 1. Again, 
since sn is an n-manifold, we must have k = 2. 

Property (3) follows from the fact that sn cannot be separated by any 
closed set of dimension less than n - 1. 0 

Thus, the above three properties express the fact that sn is an n
dimensional (pseudo-) manifold. 

Let E be an n-cell of K, F an (n - 1 )-face of E. Let F' be the closure of 
E - F, so that E = F u F', F n F' = P. Then (F, F) is an NDR-pair, and, if 
x E Int F, then (F - {x}, P) is a DR-pair. Hence (E, F') is an NDR-pair and 
(E - {x}, F') a DR-pair. But E - {x} is contractible, and therefore F' is 
contractible. It follows that (E, F') is a DR-pair. Thus the boundary 
operator 

is an isomorphism. Moreover, the injection 

is an isomorphism, by the Excision Theorem. Thus 

a(E, F) = k- 1 00: Hn(E, E) ....... Hn-1(F, P) 

is an isomorphism, called the incidence isomorphism of the pair (E, F). 
An orientation of the n-cell E is a generator e of the infinite cyclic group 

Hn{E, E); the pair (E, e) is called an oriented n-cell. An orientation of the 
CW -complex K is a function assigning to each cell E of K an orientation of 
E; and K is said to be oriented when a specific orientation has been chosen. 
The orientation assigned to a cell will be called the preferred orientation. We 
agree that the preferred orientation of a vertex E is the homology class of the 
point E. 

Let E, F be cells of the regular cell-complex K, of dimensions n, n - 1, 
respectively, and let e,fbe orientations of these cells. IfF ¢ E, let [e:J] = O. 
If FeE, the incidence isomorphism carries e into [e: f]f, where 
[e:J] = ± 1. The number [e :f] is called the incidence number of the oriented 
cells, e,j 

(6.3) Theorem Let K be an oriented regular cell-complex. Let E be an n-cell of 
K with preferred orientation e, and let Fa (a E J p_ d be the (n - I)-cells of K 
with preferred orientations fa. Then, in the chain complex nK), the relation 

oe = L [e :falfa 
holds. 
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Let F: = Kn- 2 U U Bta F [3. Consider the commutative diagram 

and note that the injection ka = L 0 ia is an isomorphism. By (2.7), the ia 
represent rn- 1(K) = Hn- 1 (Kn- b Kn- 2) as a direct sum; the dual represen
tation as a weak direct product is given by Pa = k;; 1 0 ja. Thus we must 
prove that Pa 01 i(e) = 0 if Fa ¢. E, while Pa 01 i(e) = [e :falfa, i.e., Pa 0 01 0 i 
is the incidence isomorphism, if Fa C E. 

Suppose Fa ¢. E; then E c F:, and the diagram 

i 
--+ 

is commutative, and therefore 0 = O2 0 i = ja 0 01 0 i, which implies that 
Pa 0 a 0 i = o. 

On the other hand, if Fa C E, then F~ = E (\ F: and there is a commuta
tive diagram 

Hn(E, E) 

(6.5) al 

while k2 and ka = k2 0 k are isomorphisms, by the Excision Theorem. By 
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commutativity of the diagrams (6.4) and (6.5), 

p, 00 1 0 i = k; 1 0 j, 001 0 i = k; 1 0 Oz 0 i 

= k; 1 0 kz 0 0 = k- 1 0 0 

is the incidence isomorphism a{E, F,). o 
Applying the Universal Coefficient Theorem, we obtain the analogous 

result for cohomology. 

(6.3*) Theorem The cohomology operator (j: P- 1 (K; G) -+ P{K; G) is 
given by 

(jc{e) = (_1)p-1 L [e :f,]c(j,) 

" 
for any oriented p-cell e of K. o 

An incidence system on the regular cell complex K is a function which 
assigns to each ordered pair (E, F), (E a p-cell of K, F a (p - 1 )-cell of K) a 
number [E : F] = 0 or ± 1, in such a way that 

(1) [E: F] = 0 if F ¢ E; 
(2) [E: F] = ± 1 if FeE; 
(3) let G be a (q - 2 )-dimensional face of the q-cell E (q ~ 2), and let F l' F z 

be the (q - I)-dimensional faces of E which contain G. Then 

[E: F1][F1 : G] + [E: Fz][Fz : G] = 0; 

(4) let E be a I-cell of K, F 1 and F zits O-dimensional faces. Then 

[E: F 1 ] + [E: F z] = O. 

Let K be oriented, and if E, F are faces of dimensions p, p - 1, respec
tively, let [E: F] = [e :j], where e and fare the preferred orientations. 

(6.6) Theorem The function [ :] so defined is an incidence system on K. 

We have seen that the first two conditions are fulfilled. The other two 
follow immediately from 

(6.7) Theorem Let E be an n-cell, and let F 1 and F z be (n - 1 )-faces of E 
which have a common (n - 2)jace G. Then 

(1) if n ~ 2, 

a(Fb G) 0 a(E, Fd + a(Fz, G) 0 a(E, F2 ) = 0; 

(2) if n = 1, P is a space with just one point, and Pi: Fi -+ P is the unique map, 
then 
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Figure 2.2 

Let F 0 = F 1 U F 2, F; = E - Fi , Fo = E - {Int F 1 U Int F 2 U Int G}, 
G; = Pi - G, G' = P1 U P2 - G (i = 1, 2) (cf. Figure 2.2). Then there is a 
commutative diagram (Figure 2.3), in which the homomorphisms labelled "k" 
are isomorphisms, by the Excision Theorem. Figure 2.3 can be consolidated 
to a simpler diagram (Figure 2.4), which is readily verified to satisfy the hy
potheses ofthe Hexagonal Lemma (note, for example, that 11 is the composite 
of the mjection Hq_ttF1 u P2 , P1 U P2 )--.Hq- 1(Fo , P1 u P2 ) with the 
isomorphic injection Hq- 1(F1' P1)--.Hq- 1(F 1 U P2 , P1 U P2 )). But 
k:;l 0 (kZ1 0 a2 ) = (J(E, F2 ) and k3 1 0 (kIlo a1 ) = (J(E, Fd, and the con
clusion of the Hexagonal Lemma is Property (1). 

The proof of Property (2) is a simpler version of that of Property (1), and 
is left to the reader. D 

We have seen that each orientation of K determines an incidence system. 
The converse is also true, viz.: 

(6.8) Theorem Let L : ] be an incidence system on the regular cell complex K. 
Then K can be oriented so that, if E and F are cells of dimensions q, q - 1, 
respectively, and if e, f are their preferred orientations, then [E : F] = [e, f]. 

Because of Theorem (6.6) it suffices to prove the following statement: 

(6.9) Let [ : ], [ : ]' be incidence systems on K. Then there arejimctions f.p' 
assigning the value ± 1 to each p-cell of K, such that, for every E, F, 

(6.10) 

Let f.o(E) = 1 for every O-cell E. Suppose that f.p has been defined and 
satisfies (6.9) for all p ::; n. Let E be an (n + 1)-cell of K. By (1) of (6.2), E has 
a face F of dimension n. Let 

'1n+1(E, F) = f.n(F)[E: F]'[E: F]. 

Let F' be another n-face of E; we shall show that '1n+ 1 (E, F') = '1n + 1 (E, F). 
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Figure 2.4 

Because of(3) of (6.2), we may assume that F and F' have an (n - I)-face G 
in common. Then 

I1n+ l(E, F') = cn(F')[E : F']'[E: F']. 

By Property (3) for the incidence system [ : ], we have 

[E: F'] = -[F': G][E: F][F: G] 

and similarly, 

[E: F']' = -[F': G]'[E: F]'[F: G]'. 

By induction hypothesis, 

so that 

Thus 

[F': G]' = cn(F')cn-1(G)[F': G] 

[F: G]' = cn(F)Cn-1(G)[F: G], 

[E: F']' = - [E : F]'cn(F)cn(F')[F' : G][F : G] 

= cn(F)cn{F')[E: F]'[E: F'][E: F]. 

I1n+1(E, F') = cn{F)[E: F]'[E: F] = I1n+1(E, F). 

Define cn+ 1 (E) to be the common value of I1n+ 1 (E, F) for all n-faces F of E. 
Then (6.10) holds whenever F is a face of E. If F is not a face of E, then 
[E: F] = [E : F]' = 0 by Property (1). Therefore (6.10) holds in all cases. 

The above argument needs to be modified slightly, using Property (4) 
instead of Property (3), in the case n = 1. The details are left to the reader. 

D 

One advantage of regular cell complexes over simplicial complexes is that 
they behave well under products. Indeed, if K and L are regular cell com-



88 II CW-complexes 

plexes, E a cell of K and F a cell of L, then E x F is a cell with boundary 

(E x F)" = E x F u E x F. 

Moreover, if K and L are oriented, an incidence system on K x L is defined 
by 

[E x F : E' x F] = [E, E], 

[E x F : E x F'] = (- 1 )dim E[ F : F'], 

while all other incidence numbers vanish, and we obtain the usual boundary 
formula 

o(x x y) = ox x y + (-l)Px x oy 

for x E rp(K), y E rq(L). 

7 Products and the Cohomology Ring 

In §2 we studied cross-products in the homology and cohomology of a 
relative CW-complex, and showed how they could be expressed in terms of 
the structure of these complexes. Now these are external products, and one 
has corresponding internal products, defined with the aid of the diagonal 
map. Specifically, if X is a space, U E HP(X; G), v E Hq(X; H), and if a 
pairing G ® H -> K is given, the cup product U ~ v E HP+ q(X; K) is defined 
by 

U~v=L\*(U x v), 

where L\*: Hp+q(X x X; K)->Hp+q(X; K) is the homomorphism induced 
by the diagonal map. More generally, if (X; A, B) is a proper triad, 
U E HP(X, A; G), v E Hq(X, B; H), then U x v E Hp+q((X, A) x (X, B); K) 
and 

L\ : (X, A u B) -> (X x X, A x X u X x B) 

so that we may define 

U ~ v = L\*(u x v) E Hp+q(X, A u B; K). 

Suppose, for example, that X is a CW -complex. Then we can calculate 
U x v in terms of the structure of X as a complex. In principle, then, we can 
calculate U ~ v, provided that we can calculate L\*. If the diagonal map 
L\ : X -> X x X were cellular, this could be done. But L\ is almost never 
cellular; therefore one must first use the Cellular Approximation Theorem 
to find a cellular map D : X -> X x X homotopic to L\, and then use the 
cochain map induced by D. When X is a simplicial complex, there is an 
explicit approximation D available, and this gives the Alexander-Cech
Whitney formula for calculating cup products. Unfortunately, no such 
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simple procedure works for a general CW -complex, and this renders the 
calculation of cup products difficult. In this section we shall use certain 
devices (mostly Poincare duality) to calculate the cohomology rings of some 
useful spaces. 

EXAMPLE 1 (Real Projective Space). We give a CW-decomposition of the 
infinite-dimensional sphere SOO which induces a CW-decomposition ofSn for 
every n. Let r: SOO -+ SOO be the antipodal map, so that r(x) = -x for all 
x EO sn. 

LetE~ = {x EO snlxn ~ O},E~ = rE~ = {x EO snlxn sO}. Then E~ n E~ = 
sn- I = E~- I U E~-l, the cells {E~ , E~} give a CW -decomposition of SOO, 
and the map r is cellular. We may regard the chain groups as modules over 
the group ring of the cyclic group of order two generated by r. Since r maps 
(E~, E+) homeomorphically upon (E~, E~), it follows that if en is an 
orientation of E~ , then ren is an orientation of E~ . 

We claim: Orientations en of the cells E~ can befound so that 

(7.1) oen = /(1 - r)en - l 

\(1 + r)en - l 

(n odd), 
(n even). 

In fact, let eO be the homology class of the point E~; then 0 : H I(E~, SO) :::::; 
Ho(SO), and the homology class of the cycle eO - reo = (1 - r)eO generates 
the latter group. Hence there exists el EO HI(E~ , SO) such that 
oe l = (1 - r)eo. 

Suppose that en have been defined and satisfy (7.l) for all n < r, (r ~ 2). 
Suppose that r is even. Then 

oer - l = (1- r)er - Z, 

orer- l = roe'-l = r(1- r)er - Z = (r - 1)er - Z, 

so that (1 + r)er- l is a cycle whose homology class manifestly generates 
Hr_l(sr-l). Since 0: Hr(Er+, sr-I):::::;Hr_l(sr-I), there exists er such that 
oer = (1 + r )er- I, and er generates Hr(Er+ , sr- I). The case r odd is proved 
similarly. 

Let p: SOO -+ poo be the covering map, so that r generates the group of 
covering translations. Then the cells En = p(E~) give a CW -decomposition 
of poo, and the elements en = p(en ) are orientations of these cells. As 
po r = p, the relations (7.1) imply 

(7.2) 
(n odd), 
(n even). 

This determines the homology groups of poo, and, as the cells Er with r S n 
form a CW -decomposition of pn, those of pn as well. We shall be interested 
primarily in the mod 2 homology and cohomology; in fact, it follows from 
(7.2) that 
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(7.3) The mod 2 homology and cohomology of real projective space pn (n ::;; 00) 

is given by 

Moreover, for m < n ::;; 00, the injections 

(0::;; q < n + 1), 
(q> n). 

Hq(pm; Zz) ~ Hq(pn; Zz) 

Hq(pn; Zz) ~ Hq(pm; Z2) 

are isomorphisms for all q ::;; m. o 
To determine the cohomology ring of pn, we shall use the fact that pn is a 

manifold for n < 00 and therefore satisfies Poincare duality. Let u = Un be 
the non-zero element of H1(pn; Z2)' We shall prove 

(7.4) Theorem The cohomology algebra H*(Poo; Z2) is the polynomial 
algebra Z2[ u J. If n < 00, H*(pn; Zz) is the truncated polynomial algebra 
Zz[u]/(un + 1 ). 

Because of the last sentence in (7.3), it suffices to prove that, if r ::;; n, then 
in w(pn; Zz) we have u~ =F O. This is clearly true for n = 1. Suppose that 
u~= ~ =F O. As the injection i* maps Un into un- b we have i*u~- 1 = u~= ~ =F 0 
and therefore u~- 1 =F O. By Poincare duality there is an element 
v E H1(pn; Z2) such that v ~ U~-l "# O. Then v = un and therefore u~ "# O. 

o 
EXAMPLE 2 (Complex Projective Space). Recall from §2, Chapter I that we 
may regard SOO as the unit sphere in complex Euclidean space Coo, and s2n+ 1 
as the unit sphere in e+ 1. The operation of scalar multiplication by com
plex numbers of absolute value 1 defines a free action of Sl on sZn+ 1; the 
quotient space is complex projective space pn(C), and the natural map 
p: sZn+ 1 ~ pn(C), is a fibration, called the Hopffibration. Thus the points of 
pn(c) may be described by homogeneous coordinates Zo, ... , Zn with 
2:7=0 IZi 12 = 1, and two (n + I)-tuples represent the same point if and only 
if they are proportional (the proportionality factor is necessarily a complex 
number of absolute value 1). Let [zo, ... , zn] be the point ofpn(C) having Zo, 
... , Zn as its coordinates; i.e., p(zo, ... , zn) = [zo, ... , znJ. 

Let E;n be the set of all points (zo, ... , zn) E sZn+ 1 such that Zn is real and 
non-negative. Then E;n is a cell with boundary sZn- 1, and p : (E;n, sZn- 1) ~ 
(pn(C), pn-1(C)) is a relative homeomorphism, while pi sZn- 1 is just the 
Hopf fibration s2n-1 ~ pn- 1 (C). Hence pn(C) is a 2n-cellular extension of 
pn-1(C) and it follows by induction that pn(C) is a CW-complex with cells 
EO, EZ, ... , EZn, where EZn = p(E;n). As there are no cells of odd dimension, 
the boundary operator is zero, and we have 
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(7.5) The integral homology and cohomology of complex projective space P"(C) 
(n :s; (0) are given by 

H Zq(P"(C)) ~ HZq(P"(C)) ~ {~ 

H Zq +1(P"(C)) ~ H Zq+l(p"(C)) = 0 

Moreover, for m < n :s; 00, the injections 

(O:s;q<n+l) 

(q> n); 

Hq(pm(C)) ---+ Hq(P"(C)) 

Hq(P"(C)) ---+ Hq(pm(C)) 

are isomorphisms for all q :s; 2m. D 

Again, since P"(C) is a manifold (orientable, of course!) we can use 
Poincare duality to calculate its integral cohomology ring. We shall need the 
following version of Poincare duality: 

Let M be a compact orientable m-manifold and let Z E Hm(M) be an orienta
tion of M. Let Xl' ... , Xr be a basisfor the free part of Hq(M) (i.e., their residue 
classes modulo the torsion subgroup form a basis for the free abelian quotient), 
and let y 1, ... , y s be a basis for the free part of H m - q(M). Then r = s, and the 
integral matrix (Xi ~ yj' z) has determinant ± 1. 

The calculation of the cohomology ring now parallels that for the real 
case, and we content ourselves with stating the result. 

(7.6) Theorem Let u be a generator of the infinite cyclic group HZ(P"(C)) 
(1 :s; n :s; (0). Then H*(P OO (C)) is the polynomial ring Z[ u], while H*(P"( C)) is 
the truncated polynomial ring Z[ u ]/( u" + 1 ). D 

EXAMPLE 3 (The infinite-dimensional lens spaces LOO(m)). Let m be a positive 
integer; then the cyclic group of order m is a subgroup of the circle group Sl, 
and therefore acts on complex Euclidean space Coo as well as on the unit 
sphere SOO. Specifically, let w be a primitive mth root of unity, and define 
1: : SOO ---+ SOO by 1:(zo, Z10 ... ) = (wzo, WZ 1, ... ). Then the group r generated 
by 1: is strongly discontinuous, and the quotient space soo/r = LOO(m) is 
covered by Soo; moreover, r acts on SZk+ 1 for every k, and SZk+ l/r = 

LZk+ l(m) is a lens space. (Warning: these do not exhaust the lens spaces 
which have appeared in the literature; for example, if we define 
1:(zo, Z10 ... ) = (wzo, Wi1Z1o ... , Wi"z", ... ), wherei lo iz , ... is a more or less 
arbitrary sequence of integers relatively prime to m, we obtain other 
examples (cf. Exercise 3, below).) 

We now describe a CW-decomposition of SOO, invariant under 1:, and 
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inducing a CW-decomposition of the L 2k+1(m). Let 

E2k = {z E S2k+1Izk::2: O}, 

E2k+1 = {Z E S2k+110 s arg Zk S ~}. 

II CW-complexes 

Then it is not hard to see that the cells En and their images riEn under powers 
of r give a CW-decomposition of Soo, those of dimension s 2k + 1 giving 
one of S2k + 1. Moreover r is a cellular map, and the induced chain map 
makes the chain groups into modules over the group ring ofr. Moreover, by 
an argument not unlike that for the real projective space, we can find orien
tations en for the cells in such a way that 

oe2k = Le2k- 1, 

oe2k+ 1 = Lle2k' 

where L = 1 + r + ... + rm-l, Ll = 1 - r are elements of the group ring. 
The images of the cells En under the covering map p: SOO -+ LOO(m) give a 
CW-decomposition of LOO(m), and the map p is cellular. Thus, if e: = p(en ), 

we have 

(7.7) The integral homology groups of the lens space L 2k + l(m) (k sOC) are 
given by 

Ho(L2k+l(m» = Z, 

H2q(L2k+l(m» = 0 

H2q+ 1 (L2k+ l(m» = Zm 

H2k+l(Vk+l(m» = Z, 

H2q+ 1 (L2k+ 1(m» = 0 

Moreover, for k < I s 00, the injection 

(q > 0), 

(Osq<k), 

(q> k). 

Hq(L2k + 1(m» -+ Hq(L21+ l(m» 

is an isomorphism for q < 2k + 1 and an epimorphism for q = 2k + 1. 0 

Suppose that m is a prime p. Then we can apply the universal coefficient 
theorem to obtain the homology and cohomology groups with Z p 

coefficients, with the following result: 

(7.8) If p is a prime, the mod p homology and cohomology groups of the lens 
space L2k+ 1(p) (k sOC) are given by 

Hq(L2k+ l(p); Zp) ~ Hq(L2k+ l(p); Zp) ~ Zp (0 s q < 2k + 2). 
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For k < I ::; 00 the injections 

Hq(L2k+ l(p); Zp) ....... Hq(L21+ l(p); Zp) 

Hq(L21 + l(p); Zp) ....... Hq(L2k+ l(p); Zp) 

are isomorphisms for 0 :s;; q ::; 2k + 1. Finally, the Bocksteins 

f3p: H 2q(Vk+ l(p); Zp) ....... H 2q_l(L2k + l(p); Zp) 

13; : H2q-l(L2k + l(p); Zp) ....... H 2q(L2k+ l(p); Zp) 

are isomorphisms for 0 < q < k. o 
If p = 2, the lens spaces in question are real projective spaces, and we 

have determined their cohomology rings in Theorem (7.4). Therefore we 
shall assume p odd. Let u be a generator of Hl(L2k+l(p); Zp), and let 
v = f3;u, so that v generates H2(L2k+l(p); Zp). By the commutation rule for 
the cup product, we have 

u~u= -u~u; 

since p is odd, this implies that u ~ u = O. Thus u generates an exterior 
algebra A(u). By Poincare duality in the orientable manifold L2k+l(p), we 
deduce, as in the case of p oo , that 

u ~: H2k(L2k+ l(p); Zp) ....... H2k+ 1 (L2k+ l(p); Zp) 

and 

v ~: H 2k - 1(L2k+ l(p); Zp) ....... H2k+ 1 (L2k+ l(p); Zp) 

are non-trivial, and the determination of the cohomology rings of the lens 
spaces is now easily completed, with the following result: 

(7.9) Theorem If p is an odd prime, the mod p cohomology ring ofL OO(p) is the 
tensor product 

H*(LOO(p); Zp) = A(u)@ Zp[v] 

of the exterior algebra generated by an element u E Hl(LOO(p); Zp) and the 
polynomial algebra generated by v = f3;u E H2(LOO(p); Zp). If k < 00, the 
mod p cohomology ring is the tensor product 

H*(L2k + l(p); Zp) = A(u)@{Zp[v]j(V)k+l} 

of the exterior algebra A(u) and the truncated polynomial ring generated by v. 

o 

EXERCISES 

1. Let X be a Hausdorff space, A a closed subspace of X_ K n = {E~ I ex E J n} a collec
tion of closed subspaces of X (n;::: 0), Xn = A u Up:;;. U.EJ E~, 

p 
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E~ = E: n X n- b Int E~ = E~ - X n-,. Suppose that 

(i) The sets Int E~ are mutually disjoint, and 

X - A = U U Int E~; 
n et: E In 

(ii) For each IX, n, there is a relative homeomorphism 

f~ : (,1n, An) -> (E~, E~); 

II CW-complexes 

(iii) For each IX, n, E~ meets only finitely many of the sets Int E~; 
(iv) A subset C of X is closed if and only if C n A and C n E: are closed for each 

CI., n. 

Prove that the {X n} form a CW-decomposition of (X, A), and, conversely, if (X, A) 
is a relative CW -complex, its cells satisfy the above conditions. 

2. Let (X; A, B) be a triad. Prove that, if the injection k, : Hq(A, A n B) -> HiX, B) 
is a monomorphism for q = n and an epimorphism for q = n + 1, then the injec
tion k2 : HiB, A n B) -> HiX, A) has the same properties. Deduce that k, is an 
isomorphism for all q if and only if kl is. 

3. Let Zp act on Slk+' by 

where I = (i b ... , ik ) is a sequence of integers, each relatively prime to p, and OJ is 
a primitive pth root of unity. Let Lik+ '(p) be the orbit space. Calculate the 
integral homology groups and the mod p cohomology ring of L;k+ '(p). 

4. Prove the statement made in Remark 1, §2. 

5. (Milnor [1]). Let X be a space. Let Sq be the set of all singular q-simplices in X, 
considered as a discrete space, and let Yq = ,1q x Sq. Let Y be the topological sum 
of the Yq for all q 2': O. An equivalence relation ~ in Y is generated by the elemen
tary equivalences 

(dr(x), u) ~ (x, DiU) 

(sr(x), u) ~ (x, Ii u) 

(u E Sq, X E ,1q-', 0 <::: i <::: q), 

(u E Sq, X E M+', 0 <::: i <::: q). 

Let W be the quotient space. Prove that 

(i) Yand W can be given the structure ofeW-complexes in such a way that the 
quotient map p: Y -> Wis cellular; 

(ii) The map off: Y -> X defined by 

f(x, u) = u(x) 

induces a map g : W -> X with gop = f; 
(iii) the map g is a homology equivalence, i.e., g* : Hq(W) :::; Hq(W) for all q. 

What can be said about the homology groups of Y? 
The space W is called the geometric realization of the total singular complex 

6(X). 

6. Prove the van Kampen Theorem, in the following form. Let (X; A" Al ) be an 
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NDR-triad, and suppose that X = Al U A2 and that Ao = Al n A2 is 0-
connected. Let 

and let 

ITk=nl(Ad 

IT = nl(X), 

i: ITo -> IT 

(k = 0, 1,2), 

(k = 1,2), 

(k = 1,2), 

be the injections. Let IT* be the free product of IT I and IT2 , and let it : ITk -> IT* be 
the inclusion. Let j : IT* -> IT be the homomorphism such that j 0 it = jk' Define a 
map A : ITo --> IT* by 

Then j is an epimorphism and Ker j is the smallest normal subgroup of IT* 
containing 1m A. 

7. A pair (X, A) is O-connected if and only if each path component of X contains a 
point of A. 

8. A pair (X, A) is I-connected if and only if the following two conditions are 
satisfied: 

(1) each path component of X contains exactly one path component of A; 
(2) for each a E A, the injection nl(A, a) -> ndX, a) is an epimorphism. 

9. Prove that, if (X, A) is m-connected and (Y, B) is n-connected, then (X, A) x 
(Y, B) is (m + n + 1 )-connected. (Hint: first prove that if K is a finite simplicial 
complex of dimension rand - 1 S; p s; r, then there is a subdivision K I of K and 
subcomplexes P, Q, Po and Qo of K I such that K = P u Q, I Pol is a deformation 
retract of I PI, I Qo I is a deformation retract of I Q I, dim Po s; p, and 
dim Qo S; r - p - 1). 



CHAPTER III 

Generalities on Homotopy Classes 
of Mappings 

The set [X, Y] of homotopy classes of maps between two compactly gen
erated spaces X, Y has no particular algebraic structure. This Chapter is 
devoted to the study of conditions on one or both spaces in order that [X, Y] 
support additional structure of interest. Guided by the fact that 'TL 1 (X, Xo) = 

[SI, Yo; X, xo] is a group, while [SI, X] is in one-to-one correspondence 
with the set of all conjugacy classes in 'TLI(X, xo), and the latter set has no 
algebraic structure of interest, we discuss in §1 the way in which [X, Xo; 
Y, Yo] depends on the base points. It turns out that under reasonable condi
tions the sets [X, xo; Yo, Yo] and [X, Xo; Y, yd are isomorphic. However, 
there is an isomorphism between them for every homotopy class of paths in 
Y from YI to Yo . In particular, the group 'TLI (Y, Yo) operates on [X, Xo; Y, Yo], 
and [X, Y] can be identified with the quotient of the latter set under the 
action of the group. This action for the case X = sn was first studied by 
Eilenberg [1] in 1939; it, and an analogous action of 'TLI(B, Yo) on the set 
[X, A, Xo; B, Yo], are discussed in §l. 

The discussion of §1 suggests as the primary objects of study the sets 
[X, Xo; Y, Yo], where the base point of X is non-degenerate (i.e., (X, {xo}) is an 
NOR-pair), while no condition need be imposed on the base point in Y. 
Spaces with non-degenerate base point form a full subcategory % * of the 
category %0 of spaces with base point, and many constructions in % * will 
have interest for us and are discussed in §2: reduced joins, cones, suspen
sions. On the other hand, others (path and loop spaces) are valid in the 
larger category %0 . 

We next address ourselves to the problem of defining a natural binary 
operation in [X, Y] for X, Yin % * . The question divides naturally into two 
parts: 

(1) Given Y, does there exist a natural product in [X, Y] for all X? 
(2) Given X, does there exist a natural product in [X, Y] for all Y? 

96 
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When the answer to the first is affirmative, we call Yan H-space; when 
the answer to the second is affirmative, we call X an H' -space. In each case, 
there is a universal example. For the first question, it is Y x Y, and Y is an 
H-space if and only if Y admits a continuous multiplication with unit, i.e., a 
map /-1 : Y x Y -> Y such that /-11 Yv Y is the folding map which identifies 
each copy of Y in Yv Y with the space Y. For the second question, the 
universal example is X v X, and X is an H'-space if and only if there is a map 
(J : X -> X v X which is homotopic in X x X to the diagonal map. Examples 
of H-spaces are topological groups and loop spaces; examples of H'-spaces 
are suspensions. The two types of spaces and their mutual relationships are 
explored in §§3-5. 

If f: X -> Y is a map, we may form the mapping cone T f' and there is a 
natural inclusion j: Y <:+ T f' We may then form the mapping cone of j and 
obtain an inclusion k : T f <:+ T j . And this process can be iterated indefinitely. 
However, the space Tj has the same homotopy type as the suspension SX of 
X, and the space Tk has the homotopy type of S Y in such a way that the 
inclusion map of T j in Tk corresponds to the suspension Sf of the original 
map f In this way we obtain an infinite sequence 

X f ,Y j ,T f q ,sx Sf , S Y 

Sj Sq 
---'--..... , STf ' S2X -> .... 

Given another space W, we may apply the contravariant functor [ ,W] to 
the above sequence, to obtain a sequence 

···->[sn+lx, w]->[snTf' w]->[sny, w]->[snx, W]->'" 

-> [Tf' W] -> [Y, W] -> [X, W]. 

Except for the last few terms, this is an exact sequence of abelian groups and 
homomorphisms, and is due to Barratt [1] who introduced it in 1955 under 
the name track group sequence (for any positive integer n, the set [snz, W] is 
a group, called a track group). A few years later, a careful study of the track 
group sequence was made by Puppe [1]. 

The above construction can be dualized; given a mapf: Y -> X, we may 
iterate the process of forming the mapping fibre to obtain a sequence homo
topically equivalent to the sequence 

... -> on + 1 X -> onT f -> on Y -> on X -> ... -> T f -> Y -> X, 

applying the covariant functor [Z, ], we obtain an infinite exact sequence 

... -> [Z, on+lx] --> [Z, onTf] --> [Z, ony] --> [Z, onx] --> ... 

-> [Z, Tf] -> [Z, Y] --> [Z, X], 

again consisting, except for the last few terms, of abelian groups and homo
morphisms. These sequences are discussed in §6. 
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The condition that a space be an H- or an H'-space has important con
sequences for the cohomology. For example, the homology groups of an 
H-space X form a graded ring, the Pontryagin ring of X. This fact was 
exploited by Pontryagin [1] in 1939, when he calculated the homology 
groups of the classical groups. Section 7 is devoted to a discussion of these 
questions. 

If X is any space, its homology groups with coefficients in a field form a 
co algebra. In addition, when X is an H-space, the Pontryagin product 
makes H *(X) into a Hopf algebra. This fact was exploited by Hopf [6] in 
1941 when he proved that a compact Lie group has the same rational 
cohomology ring as a product of spheres of odd dimension. This had been 
conjectured by Elie Cart an [1] in 1929 and verified for the classical groups 
by Pontryagin [1] and Brauer [1]. Further implications of the Hopfalgebra 
structure were found by Samelson [1], Leray [1] and Borel [1]. §8 we 
discuss these questions, citing without proof the algebraic properties of Hopf 
algebras which are involved. 

1 Homotopy and the Fundamental Group 

In studying the homotopy classes of maps of a space X into a space Y, one 
may first fix base points Xo E X, Yo E Y, and attempt to classify the maps of 
the pair (X, xo) into the pair (Y, Yo) under homotopies which leave Xo at Yo 
throughout. Having accomplished this, one may then study the effect of 
changing the base point. Thus one is led to the notion offree homotopy. 

Specifically, let (X, xo) be a space with nondegenerate base point (i.e., (X, 
{xo}) is an NDR-pair). Letfo,J1 : X -> Y be maps and let u : 1-> Y be a path 
in Y. We shall say thatfo isfreely homotopic tof1 along u (fo ~ f1) if and 

u 

only if there is a homotopy f: I x X -> Y offo tof1 such thatf(t, xo) = u(t) 
for all t; thusfo(xo) is the initial point u(O), andf1(xo) is the terminal point 
u(1), of u. 

The following properties of free homotopy are immediate: 

(1.1) Iff: X -> Y is a map, and e: 1-> Y is the constant map ofl into f(xo), 
thenf~f 0 

e 

(1.2) Iffo,J1 : X -> Y and u: 1-> Yare maps such thatfo ~f1' and ifv: 1-> Y 
u 

is the path inverse to u, then fl ~ fo . o v 

(1.3) If fo ,Jl,J2 : X -> Y and uv : 1-> Yare maps such that fo ~ fl,11 ~ f2' 
and if w : 1-> Y is the product of u and v, then fo ~ f2' u 0 

w 

The homotopy extension property easily yields 
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(1.4) If fo : X -> Y and u: 1 -> Yare maps such that f(xo) = u(O), then there 
exists fl : X -> Y such that fo ~ fl' 0 

u 

Since (I, i) and (X, xo) are NDR-pairs so IS their product (I x X, 
i x X u 1 x xo). This is used to prove 

(1.5) If fo, fl : X -> Y and u, v: 1 -> Yare maps such that fo ~ fl and u ~ v 
u 

(reI. i) then fo ~ fl' 
v 

In fact, let f: 1 x X -> Y be a free homotopy of fo to fl along u, and let 
g: 1 x 1 -> Y be a homotopy of u to v (reI. i). Then the map of the 
subspace 0 x 1 x X u 1 x i x X u 1 x 1 x Xo into Y defined by 

1 
f(s, x) 

h(t, s, x) = g(t, s) 

Js(x) 

(t = 0), 

(x = X o), 

(s = 0, 1), 

has an extension H: 1 x 1 x X -> Y. Let I'(t, x) = H(1, t, 
I' : 1 x X -> Y is a free homotopy of fo to fl along v. 

x); then 
o 

(1.6) If fo, fl : (X, xo) -> (Y, Yo), go, gl : (X, xo) -> (Y, Yo), u: (I; 0, 1) 
-> (Y; Yo, yd, and if fo ~fl (reI. xo), go ~ gl (reI. xo), fo ~ go, then 

u 

This follows from (1.5) with the aid of (1.2) and (1.3). o 
Let f: (X, xo) -> (Y, Yo), u: (I; 0, 1) -> (Y; Yt> Yo). By (1.4), there exists 

g: (X, xo) -> (Y, yd such that g ~f It follows from (1.5) and (1.6) that the 
u 

homotopy class of g depends only on the homotopy classes rt., ~ of f, u 
respectively. Let r~(rt.) be the homotopy class of g. 

(1.7) If rt. E [(X, xo), (Y, Yo)], ~ E 11: 1(Y; Yl' Yo), 11 E 11:1(Y; Y2' yd, then 
r~~(rt.) = r~(r~(rt.». If ~ E 11:1(Y; Yo, Yo) is the homotopy class of the constant 
path, then r~(rt.) = rt.. 0 

(1. 7) has a categorical interpretation. The fundamental groupoid n 1 (Y) is a 
category whose objects are the points of Y and whose morphisms are homo
topy classes of paths with fixed end points. For each y E Y, let M(y) = 

[(X, xo), (Y, y)]. M(y) is a set with distinguished base point, viz. the 
homotopy class of the constant map of X into y. For each ~ : Yo -> Yl (i.e., ~ 
is a homotopy class of paths from Yl to Yo), define M(~) : M(yo) -> M(Yd by 
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(1.8) M is a (covariant)functor from the category III (Y) to the category At 0 of 
pointed sets. 0 

In particular, 

(1.9) If Yo and Yl belong to the same path component of Y, then M(yo) and 
M(yd are in one-to-one correspondence. 0 

(1.10) The fundamental group 1!l(Y' Yo) operates on the set M(yo)· 0 

Finally, we have 

(1.11) If Y is O-connected, then [X, Y] is the quotient ofM(yo) under the action 
of1!l(Y' Yo)· 0 

We now give a different interpretation to the operations of 1!l(Y, Yo) on 
the set M(yo). Suppose that Y is semilocally 1-connected, and so has a 
universal covering space Y; let p: Y ~ Y be the covering map, and choose 
Yo E p-l(yO)' Suppose further that X is 1-connected. Then it is proved in the 
theory of covering spaces that 

(1.12) The operation p : [X, xo; Y, Yo] ~ [X, xo; Y, Yo] defined by composition 
with p is a one-to-one correspondence. 0 

Moreover, it follows from (1.11) that 

(1.13) The injection [X, xo; Y, Yo] ~ [X, Y] is a one-to-one correspondence. 
o 

Let II be the group of covering translations of Yover Y; the elements of 
II are self-homeomorphisms h : Y ~ Y such that p 0 h = p. Again by cover
ing space theory, we have 

(1.14) The group II is isomorphic with 1!l(Y, Yo)' o 

An isomorphism 1> is defined as follows. Let h E II, and let u : 1 ~ Y be a 
path from Yo to h(Yo). Then 1>(h) is the homotopy class of the loop 
p 0 h: (I, i) ~ (Y, Yo). 

Finally, the group II operates on [X, Y] by composition. Identifying II 
with 1!l(Y' Yo) by 1> and [X, Y] with [X, xo; Y, Yo] by the one-to-one corre
spondences of (1.12), (1.13), we obtain two a priori different operations of II 
on [X, Y]. In fact 

(1.15) The two operations described above are identical. In other words, for 
each covering translation h E II, the diagram 
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[X, Y] 

a\ 
[X, Y] -- [X, XO; Y, Yo] 

is commutative. 

[X, Xo; Y, Yo] 

\ LcP(h) 

[X, XO; Y, Yo] 
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In fact, let f: (X, xo) ---> (Y, Yo), and let u be a path in Y from Yo to h(.Vo)· 
Then there is a map!': (X, xo) ---> (Y, Yo) such that!' '=ii h 0 f Then p 0 f~?& 
p 0 h 0 f = p 0 f, and the commutativity of the diagram follows. 0 

If we consider maps of pairs (X, A) ---> (Y, B) with A 1- 0, the above 
discussion goes through with minor changes provided that both (A, {xo}) 
and (X, A) are NDR-pairs; the paths along which the base point ao E A are 
deformed are required to lie in B. Thus to each homotopy class a of maps: 
(X, A, xo) ---> (Y, B, Yo) and to each element ~ E nl(B; Yl, Yo), there is asso
ciated an element L~(a) E [(X, A, xo), (Y, B, yd]; iff, u are representatives of 
a, ~, respectively, then a map g : (X, A, xo) ---> (Y, B, Yo) represents L~(a) if and 
only if there is a homotopy h : (I x X, 1 x A) ---> (Y, B) of g to f such that 
h(t, xo) = u(t). 

(1.16) Ifa E [(X, A, xo), (Y, B, Yo)], ~ E nl(B; Yl' Yo), 1J E nl(B; Yz, yd, then 
L~~(a) = L~(L~(a)). If ~ E nl(B, Yo) is the homotopy class of the constant path, 
then L~(a) = a. 0 

As before, these constructions determine a (covariant) functor 
M: IIdB) ---> Ao with M(y) = [(X, A, xo), (Y, B, y)], and we have 

(1.17) If Yo and Yl belong to the same path component of B, then the sets M(yo) 
and M(yd are in one-to-one correspondence. 0 

(1.18) The fundamental group nl(B, Yo) operates on M(yo). o 
(1.19) If B is O-connected, then [(X, A), (Y, B)] is the quotient of M(yo) by the 
action ofnl(B, Yo). 0 

Again, suppose that Band Yare semi locally 1-connected spaces, and that 
the injection nl(B, YO)--->nl(Y, Yo) is an isomorphism. If p: Y---> Y is a 
universal covering map, and B = p-l(B), then pi B : B ---> B is a universal 
covering map. Moreover, every covering translation h maps B into B. The 
group II of covering translations is isomorphic with nl(Y' Yo) and therefore 
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with 1tl(B, Yo). Suppose X is I-connected. Then p: [X, A, Xo; Y, B, Yo] 
-+ [X, A, Xo; Y, B, Yo] is a one-to-one correspondence. Because of (1.19) 
the injection 

[X, A, xo; Y, B, Yo] -+ [X, A; Y, B) 

is a one-to-one correspondence. Thus, as in the absolute case, there are two 
ways of operating with the group II on the set [X, A; Y, B), and these two 
ways coincide. 

(1.20) The diagram 

[X,A; Y,B) 

aj 

is commutative. 

[X, A, xo; Y, B, Yo] 

j r'<I>(h) 

---+ [X, A, xo; Y, B, Yo] 
f!. 

D 

The extension of these ideas to maps of more complicated configurations 
is left to the reader (cf. the remarks at the end of §1 of Chapter I). 

2 Spaces with Base Points 

The reader may have been led by the considerations of §1 to the beliefthat it 
will be convenient to work in some category of spaces with prescribed base 
points. He should, however, have observed that, in the study of the action of 
1tl(Y, Yo) on the set [X, Xo; Y, Yo], it was appropriate, indeed essential, to 
impose the condition of nondegeneracy on the base point of X, while no 
such condition on the base point of Y was needed. Thus it would not be 
possible to work in the category %0 of all compactly generated spaces with 
base points; and to work in the full subcategory % * consisting of all spaces 
with nondegenerate base points would amount to the imposition of in essen
tial and totally irrelevant hypotheses with the sole intent of forcing the 
theory to fit into a given formal system. On the other hand, it would be 
perverse to refuse to recognize the convenience that category theory has to 
offer in its clarity and economy of statement of results in many diverse 
branches of mathematics. Thus the attitude taken in this book is that, while 
the notions of category theory form a convenient language in which to state 
many theorems, they do not constitute a universal framework into which all 
of mathematics must, willy-nilly, be set. And we intend to steer a course 
between the Scylla of blind adherence to category theory despite its disad-



2 Spaces with Base Points 103 

vantages, and the Charybdis of an equally blind refusal to accept its many 
convemences. 

Occasionally it will be necessary to deal with (compactly generated) 
spaces without a prescribed base point (calledfree spaces) and maps and 
homotopies of maps between such spaces (called free maps and free homoto
pies, respectively). To handle these we shall adopt the device of adjoining an 
external base point. Specifically, if X is a free space, let X+ = X + P be the 
topological sum of X and a space P consisting of a single point *, the base 
point of X+; and iff: X --> Y is a free map,f+ : X+ --> y+ is the extension of 
fwhich preserves the base point. Free homotopies are handled in a similar 
way. The assignment X --> X +,f --> f + is a faithful functor from the category 
ff to the category ff *; thus we may regard ,x as a subcategory of ,X"*. 
Usually we shall drop the plus except when necessary for emphasis, 

If (X, xo) and (Y, Yo) are spaces in ff 0, it is natural to choose (xo, Yo) as 
the base point of X x Y, for the projections PI: X x Y --> X, 
P2 : X x Y --> Yare maps in ff 0, and it is easy to see that (X x Y, (xo, Yo)), 
with the maps PI, P2' is the categorical product of (X, xo) and (Y, Yo), The 
same reh1arks apply to the category x'*' because of (5.2) of Chapter I. 

This is not the case for the sum, for the disjoint union X + Y does not 
have a natural base point. However, the space X v Y obtained from X + Y 
by identifying Xo with Yo, together with the natural inclusions j I : X --> 

X v Y, j 2 : Y --> X v Y, is the sum of X and Y in the category ff 0 • Again, the 
same results apply to ff * . 

As is always the case in a pointed category, there is a natural map k of the 
sum X v Y into the product X x Y; this map is characterized by the 
properties 

(1) PI 0 k 0 ji is the identity map of X, 
(2) P2 0 k oj2 is the identity map of Y, 
(3) PI 0 k 0 jz and P2 0 k 0 ji are constant maps. 

The map k is, in fact, an inclusion, mapping X v Y upon the subspace 
X x {Yo} u {xo} x Y of X x Y, and we shall normally identify X v Y with 
this subspace. 

An important construction in the category ,x * is the reduced join (or 
smash product) of two spaces X, Y. This is the quotient space X 1\ Y = 

X x Y IX v Y. For x E X, Y E Y, let x 1\ y be the image of (x, y) under the 
proclusion X x Y --> X 1\ Y. Thus x 1\ Yo = Xo 1\ Y = Xo 1\ Yo, the base-point 
of X 1\ Y. 

(N.B.: This construction can be made in x o , but does not have many 
useful properties there). 

The following properties are readily verified with the aid of the considera
tions of §4 of Chapter I. 

(2.1) The reduced join is commutative and associative, up to natural homeomor
phism. 0 
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(2.2) The operation of reduced join is distributive over that of addition; i.e., the 
spaces X /\ (Y V Z) and (X /\ Y) V (X /\ Z) are naturally homeomorphic. 0 

(2.3) If (X, A) is an NDR-pair and YE ff*, the spaces (X/A)/\ Y and 
X /\ Y/ A /\ Yare naturally homeomorphic. 0 

It may be of interest to examine the reduced join when one or both factors 
are free spaces. In fact, one has 

(2.4) If X E ff *, Y E ff, then X /\ y+ = X x Y/{xo} x Y. 

(2.5) If X, Y E ff, then X+ /\ y+ = (X x yr· 
o 

o 

Letf: X ---> X', g: Y ---> Y' be maps in ff *. Then the map f x g: X x Y 
---> X' X Y' sends X v Y into X'v Y', thereby inducing 

fv 9 : X v Y ---> X' v Y', 

as well as 

f /\ 9 : X /\ Y ---> X' /\ Y', 

and it is clear that 

(2.6) The reduced join and the sum are functors on ff * x ff * to ff * . 0 

We next turn our attention to function spaces, returning momentarily to 
the category ff. If (X, A), (Y, B) are pairs, with X and Y compactly gen
erated and A and B closed, then the set F(X, A; Y, B) of all maps of (X, A) 
into (Y, B) is a subset of F(X, Y) which we topologize as in §4 of Chapter I. 
In particular, if B is a point, the operation of composition with the proclu
sion p: X ---> X/A induces a map p: F(X/ A, *; Y, *) ---> F(X, A; Y, *). 

(2.7) The map p is a homeomorphism. 

For the proof see Steenrod [5, 5.11]' o 

We now return to the category ff 0 .-If X, Y E ff 0, the function space 
F(X, Y) is constructed as above, and we choose the constant map of X into 
Yo as the base point. Thus the construction of a function space determines a 
functor F : ff 0 x ff 0 ---> ff 0, contravariant in the first argument and covar
iant in the second. We then have the analogues, in the category ff 0, of 
(4.19), (4.21), (4.22), and (4.23) of Chapter I. 

(2.8) The evaluation map e : F(X, Y) /\ X ---> Y is continuous. o 
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(2.9) The function spaces F(X /\ Y, Z) and F(X, F(Y, Z)) are naturally homeo
morphic. 0 

(2.10) The operation of composltlOn induces a continuous map of 
F( Y, Z) /\ F(X, Y) into F(X, Z). 0 

(2.11) The functors /\ Y and F( Y, ) form an adjoint pair. o 

The notion of reduced join is useful in handling homotopies of maps 
between spaces with base point. In fact, if fo Jl : X -> Yare maps in :ito, and 
the base point Xo of X is nondegenerate, any base point preserving homo
topy of fo to fl is a map f: I x X -> Y which sends I x Xo into Yo. If we 
regard I as a free space in the category :it *' we see that, by (2.4), I /\ X is the 
quotient I x X/I x {xo}; thusfinduces a map ofI /\ X into Y. Conversely, a 
map f: 1/\ X -> Y induces a homotopy between the maps fo, fl : X -> Y 
defined by 

h(x) = f(t /\ x) (t = 0, 1, x EX). 

The space 1/\ X is the (reduced) prism over X, and the maps x -> t /\ X 

(t = 0, 1) are inclusions, mapping X homeomorphically upon the subspaces 
0/\ X, 1/\ X of 1/\ X. The prism defined in this way differs from the usual 
prism I x X in that the subspace I x {xo} of the latter has been shrunk to a 
point. Since I x {xo} is contractible and (I x X, I x {xo}) is an NDR-pair, 
this process does not affect the homotopy type. (This last observation is not 
really necessary, since both I x X and I /\ X have copies of X as deformation 
retracts! ). 

It is also convenient to consider the unit interval as a space with 0 as base 
point; to distinguish this pointed space from the free space I, we define T to 
be the pair (I, 0). Let also t = (i, 0). The (reduced) cone over a space X is 
then defined to be the space TX = T /\ X. In this case the map x -> 1/\ X is an 
inclusion, mapping X homeomorphically upon the subspace t /\ X = 1 /\ X 
of TX, which we shall normally identify with X, while 0/\ X is the base 
point. The space TX is contractible; it differs from the usual cone in that the 
contractible subspace of the latter which is the cone over the base point 
has been shrunk to a point. Moreover, it follows from (2.3) that 
TX = 1/\ X/O /\ X. Therefore, by the above remarks, 

(2.12) A map f : X -> Y is nullhomotopic if and only iff has an extension 
g: TX -> Y. 0 

Let S = I/t; then the (reduced) suspension of X is the space SX = S /\ X. 
Because of (2.3), SX = 1/\ x;t /\ X = TX/X. Again, it differs from the usual 
suspension in that an appropriate contractible subset has been shrunk to a 
point. 
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Define subsets 

T + X = {tAX 10 <;; t <;; 1/2}, 

T _ X = {tAX 11/2 <;; t <;; I}, 

of SX (here t is the image of tEl under the identification map 
ITJ: (I, i) -> (S, *)). Then T + X and T _ X are homeomorphic copies of the 
cone TX, and T + X n T _ X is homeomorphic with X. 

The operations of forming the reduced cone and reduced suspension 
determine functors, also denoted by T and S, respectively; iff: X -> Y, then 
Tf: TX -> TY and Sf: SX -> SY are defined by 

Tf = 1 Ai, Sf = 1 Af, 

where the symbol" 1 " denotes the appropriate identity map. 
There are parallel constructions involving function spaces. Afree path in 

X is just a map of I into X; a (based) path in X a map of T into X (i.e., one 
that starts at xo); and a loop in X is a map of S into X. Thus we have the 
three function spaces 

F X = F(I, X), the space of free paths in X, 

P X = F(T, X), the space of paths in X, 

OX = F(S, X), the space of loops in X. 

The maps u -> u(O), u -> u(l) are, by Corollary (7.9) of Chapter I, fibrations, 
mapping FX into X, with fibre PX. Similarly, the map u -> u(l) is a fibra
tion, mapping PX into X, with fibre OX. 

These constructions, like the suspension and cone functors, do not go 
outside the category x·*. That is 

(2.13) If X E .:;f.*, the spaces FX, PX and OX belong to ff *. 

We prove this for FX; the proofs for the other two are entirely similar. 
Let (u, h) be a representation of (X, {*}) as an NDR-pair. Define a: FX -> I, 
fl: I x FX -> FX by 

a(J) = sup u(J(s)). 
S E I 

fl{t,.f)(s) = h(t,.f(s)). 

Then (u, ll)is a representation of (FX, {e}) as an NDR-pair. D 

Finally, the (reduced) mapping cylinder If and mapping cone T f of a map 
f: X -> Yare the spaces obtained from (I A X) V Y, (T A X) V Y, respectively, 
by identifying the point 1 A x withf(x) for each x E X. There are homeomor
phic imbeddings X v Y -> If' Y -> T f' and Y is a deformation retract of If' 
while If/X = Tf . 
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Since the construction of reduced join and function space are functors, it 
follows that the above constructions, too are functorial. In particular, 

(2.14) Thefunctors Sand Oform an adjoint pair; infact, the spaces F(SX, Y) 
and F(X, 0 Y) are naturally homeomorphic. 0 

One can iterate the suspension functor n times; it is natural to denote this 
functor by sn. In particular, one can suspend the space S n - 1 times, and it 
is natural to denote this space by sn. On the other hand, in §2 of Chapter I, 
we have used the same symbol sn to denote the unit sphere in Rn+ 1. This 
involves no real contradiction, for the spaces involved are homeomorphic. 
But it is desirable to identify these spaces by a particular homeomorphism, 
which we now construct. 

To avoid confusion between the two spaces, let us temporarily denote the 
unit sphere in Rn+ 1 by So. We shall take the unit vector eo as the base point 
for each of the spheres So . 

The map t ---+ (cos 2nt, sin 2nt) is a relative homeomorphism of (I, i) with 
(S6, eo), and therefore induces a map hi : S ---+ S6. Suppose we have defined a 
homeomorphism hn : sn ---+ So . Then the map 

(x, t) ---+ (cos 2 nt)eo + (sin 2 nt)hn(x) + f -hn;X) . eo (sin 2nt)en+ 1 

is readily verified to be a relative homeomorphism of (sn x I, 
sn x i u H x I) = (sn, {*}) x (I, i) with (So+ 1, eo), and therefore to induce 
a homeomorphism hn + 1 of sn /\ (I/i) = sn /\ S = sn + 1 with So + 1. 

In a similar way we shall want to identify TS" with En+ 1. This time the 
map 

(t, x) ---+ (sin 2 ~ t )hn(X) + (cos 2 ~ t )eo 
is a relative homeomorphism of 

(I x sn, 0 X S" u 1 x H) = (I, 0) x (sn, {*}) 

with (En + 1, eo), and therefore induces a homeomorphism h~+ 1 of T /\ sn with 
En+ 1. 

It is somewhat inconvenient that the operation of multiplication of paths 
is not strictly associative, nor is the constant path a true unit. We can 
surmount this difficulty by using the notion of measured path, i.e., a mapping 
of a closed interval of variable length into the space. More precisely, a 
measured path in X is an ordered pair (r, j), with r a non-negative real 
number and f: [0, r] ---+ X; we say that (r,f) starts atf(O) and ends atf(r). 
Such a function has a canonical extension (still denoted by f) over the 
non-negative real axis R +, such that 

f(t) = f(r) 
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for all t ::2: r. Thus we may (and shall) regard the space F*(X) as a subspace 
of the product R + x F(R +, X). (Recall that, as is appropriate when dealing 
with the compactly generated category, products, function spaces and sub
spaces are topologized as in Chapter I). A map p: F*(X) ~ X x X is defined 
by 

p(r,f) = (/(O),f(r)). 

(2.15) Theorem The map p is a fibration. 

Continuity of p follows from that of the evaluation map ((4.19) of Chapter 
I). Let 

4> 
Y I F*(X) 

j///" jP 
IxY ------. XxX 

'" 
be a homotopy lifting problem. The first component of 4> is a map 
A: Y ~ R +, the adjoint of the second a map $ : R + x Y ~ X. The compo
nents of", are maps "'i : Y ~ X (i = 1, 2). These satisfy the conditions 

"'1(0, y) = $(0, y), 

"'2(0, y) = $(A(Y), y) 

= $(s, y) (s ::2: A(y)). 

We are required to find maps 

such that 

A:I x Y~R+, 

<I>:R+ x I x Y~X 

A(O, y) = A(Y), 

<I>(s, 0, y) = $(s, y), 

<1>(0, t, y) = "'1(t, y), 

"'2(t, y) = <I>(A(t, y), t, y) 

= <I>(s, t, y) (s ::2: A(t, y)). 

The desired lifting <I> : I x Y ~ F*(X) is then defined by 

<I>(t, y) = (A(t, y), <1>(., t, y)). 
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Let 

A( ) = {A(Y) + (1 - A(Y))t if A(Y) ~ 1, 
t, Y A(Y) if A(Y) 2 1. 

For Y E Y, let 

P(y) = {(s, t) E R+ x 110 ~ s ~ A(t, y)}, 

Q(y) = {(s, t) E p(y)ls = 0 or t = 0 or s = A(t, y) 

(see Figure 3.1), and let Py: P(y) -+ Q(y) be the radial projection from the 
point H, 2) E R+ X R+. Let 

P = R+ X I x Y, 

Q = {(s, t, y) E Pis = 0 or t = 0 or s 2 A(t, y)}, 

and let p : P -+ Q be the function such that 

( ) _ j(py(s, t), y) if s ~ A(t, y), 
P s, t, Y - \( ) . () s, t, y If s 2 A t, Y . 

In order to prove the continuity of p, we need explicit formulae for the 
functions Py. 

Case I (A = A(Y) ~ 1). Here 

(1) if 0 ~ s ~ it, 

Py(s, t)= (0, ~=~:); 
(2) if it ~ s ~ A + i(1 - 2A)t, 

Py(s, t) = (2~~ = :),0 ); 
(3) if A + i(1 - 2A)t ~ s ~ A + t(1 - A), 

Py(s, t) = (0', ,), 

where 

(4s - t)(1 - A) - A(1 - 2s) 0' = -'=--;-::--'-;'-;-----'-;---;_'__--;-'-
2(2 - t)(1 - A) - (1 - 2s) , 

(4s - t) - 2A(2 - t) , = -::-;-::----:-;-c~_:_:_;_'__----'-__:_ 
2(2 - t)(1 - A) - (1 - 2s)' 

Case II (A 2 1). If (1) 0 ~ s ~ it or (2) it ~ s ~ A + i(1 - 2A)t, then 
Py(s, t) is defined by the same formula as above. However 
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(3) if .,1.+ t(l - 2.,1.)t S; s S; A, then 

_ ( 4s-t-2(2-t).,1.) 
py(s, t) - A, 2s _ 1 . 

We leave it to the reader to verify that the functions Py are consistently 
defined. Continuity of p then follows from the continuity of the expressions 
occurring in the formulae (1 )-(3), above. The only possible snag is the van
ishing of the denominators of the appropriate fractions. In (1), s S; it S; t, so 
that 1 - 2s ;:0. t; in (2) t S; 1 so that 2 - t ;:0. 1. In (3) of Case II, 
s ;:0. (1 - t12) + tl4 ;:0. 1 - tl2 ;:0. t. Finally, in (3) of Case I, 

2(2 - t)(1 - A) - (1 - 2s) = 2s - 2t(1 - A) + (3 - 4.,1.) 

;:0. 2[.,1. + t(1 - 2A)t] - 2t(1 - A) + (3 - 4.,1.) 

= (3 - ~t) + .,1.(t - 2) = (2 - t)(~ - A) 

;:0. t(2 - t) ;:0. t. 
The map p : P ---> Q is a retraction. The function \f : Q ---> X defined by 

\f(s, 0, y) = $(s, y), 

\f(0, t, y) = l/I 1 (t, y), 

\f(s, t, y) = l/I2(t, y) (s 2: A(t, y» 
is then continuous and thus has the continuous extension 
<f> = \f 0 p : P ---> X. It is clear that the functions A, <f> have the desired 
properties. D 

Let 
P*(X) = {(r,f) E F*(X) I /(0) = *}, 

P'*(X) = {(r,f) E F*(X)IJ(r) = *}, 

Q*(X) = P*(X) n P'*(X). 

The space Q*(X) is called the space of measured loops in X. 
Define maps q* : P*(X) ---> X, q'* : P'*(X) ---> X by 

q(r,f) = /(r), 

q'(r,f) = /(0). 

It follows easily from Theorem (2.15) that 

(2.16) Theorem The maps q and q' are fib rations with the same fibre Q*(X). 

D 
An important property of the new path spaces is 

(2.17) The spaces P*(X) and P'*(X) are contractible. 
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The spaces in question being homeomorphic, we shall prove that P'*(X) 
is contractible. An explicit contraction is given by 

cp(t; r,f) = (tr,f I [0, tr]). 

To prove cP continuous, it suffices to prove that the first component of cP is a 
continuous map CPI : I x P'* X --> R +, and that the adjoint of the second 
component is a continuous map (P2 : R + x I X P'* X --> X. The map ljJ I is 
the composite 

F PI R+ X ---+ , 

where J1 is the operation of multiplication of real numbers and PI the projec
tion on the first factor. The maps in question being continuous, so is their 
composite CPl. 

Let 

Xl = {(s, t; r,f) E R+ x I X P'* Is::;; tr}, 

X 2 = {(s, t; r,f) E R+ x I X P'* Is ~ tr}. 

Then X I and X 2 are closed subsets of R + x I X P'* whose union is 
R + x I X P'*, and it suffices to show that (P21 X I and (P21 X 2 are contin
uous. But (P21 X I is the composite 

PI x 1 e 
X c+ R + x I X P'* C+ R + x I x F ) R + x F ---+ X, 

where PI is the projection of R + x I into its first factor R + and e is the 
evaluation map. Therefore (P21 X I is continuous. Similarly (P21 X 2 is contin
uous. D 

We can now compare the new path spaces with the old. Let us recall that 
the map q : P(X) --> X defined by q(J) = f(l) is a fibration with fibre Q(X), 
as is the map q' : P'(X) --> X defined by q'(J) = f(O). 

(2.18) The fibrations q: P(X) --> X and q* : P*(X) --> X, as well as the fibra
tions q' : P'(X) --> X and q'* : P'*(X) --> X, have the same fibre homotopy type. 

For any map v: [0, r] --> X and positive real number s, define 
vs: [0, r/s] --> X by 

V,(t) = v(st). 

Define h : P(X) --> P*(X), h' : P*(X) --> P(X) by 

h(u) = (1, u); 

if r > 0, 
if r = 0, 

where e* is the constant path. The map h is obviously continuous. The 
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adjoint Ii: I x P*(X) -> X is given by 

Ii'(t, r, v) = v(rt); 

it is the composite 

1 x P*(X) 41 X R+ X F(R+, X) ~ R+ X F(R+, X) ~ X, 

where fl is the operation of multiplication of real numbers and e the evalua
tion map. It follows that h' is continuous. 

The composite h' 0 h is the identity map of P(X). The composite h 0 h' is 
homotopic to the identity under the map 

H(t, i', v) = (8, ve) if t < 1 or r > 0, 

H(l, 0, v) = (0, v), 

where 8 = 1 - t + tr. We leave it to the reader to verify the continuity of H. 
It is then clear that h, h' and H define a fibre homotopy equivalence. D 

Remark: (2.18) also follows from Exercise 2. 

(2.19) Corollary The space Q(X) and Q*(X) have the same homotopy type. 
D 

We can now define the product of measured paths. Let M be the subspace 
of F*(X) x F*(X) consisting of all pairs (r,f; s, g) such that f(r) = g(O); 
then a function fl: M -> F*(X) is defined by fl(r,f; s, g) = (r + s, h), where 

h(t) = Jf(t) 
\g(t - r) 

(0 ::;; t ::;; r), 
(t ~ r). 

(2.20) Theorem The function fl : M -> F*(X) is continuous. 

We must prove that the first component of fl is a continuous map of M 
into R +, and that the adjoint of its second component is a continuous map 
of R + x M -> X. These maps are given by 

fll(r,f; s, x) = r + s; 

fl2(t; r,f; s, g) = {:(~~ r) 
The map fll is the composite 

(O::;;t::;;r), 
(t ~ r). 

M 4 F* x F* G R + x F x R + x F PI X PI) R + x R + 

where F* = F*(X), F = F(R +, X), PI : R + x F -> R + is the projection on 
the first factor, and flo : R + x R + -> R + is the operation of multiplication of 
real numbers. As each of the component maps is continuous, fll is 
continuous. 
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To prove continuity of ji2, let 

Xl = {(t; r,f; s, g) E R+ x Mlt:S r}, 

X 2 = {(t; r,f; s, g) E R+ x Mit;::: r}; 

then X I and X 2 are closed subspaces of R + x M whose union is M, and it 
suffices to prove the continuity of jizl X I and ji21 X 2 . For example, jizl X z is 
the composite 

X 2 G R+ X M GR+ X R+ X F X R+ X F ~ R+ X R+ X F 

~R+xF~X , 
where p is the projection (t; r,f; s, g) --> (t, r, g), CJ(t, r) = I r - t I, and i is the 
evaluation map. 0 

(2.21) Corollary The product f1 determines continuous functions 

P'*(X) x P*(X) --> F*(X), 

P'*(X) x Q*(X) --> P'*(X), 

Q*(X) x P*(X) --> P*(X), 

Q*(X) x Q*(X) --> Q*(X). o 
Unlike the usual path-multiplication, the new product is strictly associa

tive. Moreover, for any point x E X, the pair Gx = (0, ex) is a strict unit. More 
precisely: 

(2.22) Theorem Let rx, f3, Y E F*(X). rr rxf3 is defined and (rxf3)y is defined, then 
f3y and rx(f3y) are defined, and (rxf3)y = rx(f3y). If rx E F* (X) starts at x and ends 
at y then Gx rx = rx = rxG y. 0 

In replacing the loop space QX by the space Q* X of measured loops, we 
have gained, in the sense that the new space has nicer algebraic properties. 
On the other hand, we have lost the adjointness property 

F(SX, Y) = F(W, QY) 1= F(X, Q*Y); 

though it is still true up to homotopy: 

In fact, the maps 

[SX, Y] ~ [X, QY] ~ [X, Q*Y]. 

F(l, h): F(X, QY) --> F(X, Q*Y), 

F(l, h'): F(X, Q*Y) --> F(X, QY) 
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are homotopy equivalences, inducing isomorphisms 

~: [X, QY] ~ [X, Q*Y], 

~': [X, Q*Y] ~ [X, QY]. 
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Iff: X ---+ Q* Y, and if!: SX ---+ Y is the map corresponding to hi 0 f under the 
adjointness relation 

F(X, QY) ~ F(SX, Y), 

we shall refer to f and J as adjoints of each other. 

3 Groups of Homotopy Classes 

In Part A of Chapter I it was suggested (rightly, as it turns out) that the set of 
homotopy classes of maps of sn into itself form a group, isomorphic with the 
additive group of integers. It is natural to ask how special this phenomenon 
is; in other words, under what circumstances can the set [X, Y] be given a 
group structure? As stated, the question is meaningless, for any set can be 
given some group structure. Evidently, some naturality properties must be 
imposed. 

Let us first investigate the possibility of defining a binary operation in 
[X, Y]. In view of the conventions we have just made, the set [X, Y] has a 
distinguished element, the homotopy class * of the constant map. We shall 
consider only operations for which * is a two-sided identity. We shall also 
assume that our operations are natural; in other words, if f: X' ---+ X and 
g : Y ---+ Y' are maps, then the operations 

f: [X, Y] ---+ [X', Y] 

and 

g: [X, Y] ---+ [X, yl] 

induced by composition withf, g, respectively, are homomorphisms. 
It will be seen from the discussion that follows that there is no natural 

product defined in [X, Y] for every X, Y. This being so, the following two 
questions suggest themselves: 

(1) Given Y, does there exist a natural product defined in [X, Y] for all X? 
(2) Given X, does there exist a natural product defined in [X, Y] for all Y? 

Examples of both kinds come immediately to mind. For example, if Y is a 
topological group and f, g : X ---+ Y we can define a productf· g: X ---+ Y by 
the formula 

(f. g)(x) = f(x) . g(x); 



116 III Generalities on Homotopy Classes of Mappings 

this product is compatible with homotopy and induces a natural group 
operation in [X, Y). On the other hand, if X = 8 1, then the usual group 
structure in [X, Y] = 1!1(Y) is a natural group operation. 

We shall say that Y is an H -space if and only if (1) holds, and that X is an 
H'-space if and only if (2) holds. In the next two sections we shall study 
H-spaces and H'-spaces, respectively. When Y is an H-space, we shall write 
the composition multiplicatively; when X is an H'-space we shall write it 
additively (except in the case X = 8, i.e., [X, Y] = 1!1 (Y)). In the next two 
sections, we shall be working in the category % * ' so that all spaces under 
discussion will be assumed to have non-degenerate base-points. The results 
of these sections are mainly due to Copeland [2]; see also [Hi). 

4 H-spaces 

For any space Y, let Pb P2 be the projections of Y x Y on the first and 
second factors, respectively. Let i b i2 : Y ---+ Y x Y be the inclusions, defined 
by 

(4.1) il(y) = (y, Yo), i2(y) = (Yo, y) (y E Y). 

Then PI 0 i l = P2 0 i2 = 1, the identity map of Y, while PI 0 i2 = P2 0 i l = *. 
Suppose that Y is an H-space. Then we can multiply the homotopy 

classes of PI and P2 to obtain an element [,u] = [pd' [P2] for some ,u : Y x 
Y ---+ Y. By the naturality of the product we have 

(4.2) [,u] 0 [ill = ([PI] • [P2]) 0 [ill = [PI 0 il] • [P2 0 il] = [1] • [*] = [1], 

and similarly 

(4.3) 

If X is any space, let ~ : X ---+ X x X be the diagonal map, given by 

(4.4) ~(x) = (x, x); 

then, ifflJ2 : X ---+ Y, we have 

(4.5) (i = 1, 2). 

Again by naturality, we have 

[,u] 0 [II x f2] 0 [~] = ([PI] • [P2]) 0 [II x f2] 0 [~] 

= ([PI] 0 [II xf2] 0 [~]. ([P2] 0 [II xf2] 0 [~]) 

= [II] • [I2). 
The conditions (4.2), (4.3) tell us that ,u 0 i l ::::::: 1 ::::::: ,u 0 i2 , and therefore 

,u 0 k ::::::: V, where k : Y v Y ---+ Y x Y is the inclusion and V : Y v Y ---+ Y is the 
folding map, defined by 

(4.6) V(y, Yo) = V(Yo, y) = y. 
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Now (Y x Y, Yv Y) is an NOR-pair, by (5.2) of Chapter I, and therefore 
there exists /i ~ J1 such that J1' 0 k = V. 

Conversely, suppose that Y is a space and J1 : Y x Y -> Y a map such that 
J1 0 il ~ 1 ~ J1 0 i2 . (Such a map J1 is called a product in Y). Then, givenft. 
f2 : X -> Y, we may define fl • f2 = J1 0 (Ii x f2) 0 Ll. The composition so 
defined is compatible with homotopy, and induces a natural product in 
[X, Y]. Thus Y is an H-space; moreover, Pi • P2 = J1 0 (Pi X P2) 0 Ll = 

J1 0 1 = J1. 
Summarizing, we have 

(4.7) Theorem A space Y is an H-space if and only if there is a map 
J1 : Y x Y -> Y such that J1 0 il = J1 0 i2 = 1. The map J1 then satisfies the 
condition [J1] = [pd· [P2]. Moreover, if ft. f2 : X -> Yare maps, then 
[fl] • [f2] is the homotopy class of the composite 

X Ll ,X x X fl X f2 , Y X Y _....:...J1_4 ,Y. o 
The multiplication we have defined in [X, Y] when Y is an H-space need 

not be associative. In fact, if ft. f2' f3 : X -> Y then (Ii • f2) • f3 and 
fl • (I2 • f3) are the homotopy classes of the composites 

(4.8) X ~ X x X x X fl X f2 X f3 

J1x1 J1 
Y x Y x Y ----4 Y X Y ----4 Y, 

(4.9) 
Ll3 fl X f2 X f3 

X ----4 X X X x X ------4 

1xJ1 J1 
Y x Y x Y ----4 Y X Y. ----4 Y, 

where Ll3 = (Ll x 1) 0 Ll = (1 x Ll) 0 Ll: X -> X x X x X is the diagonal 
map. Hence the condition 

(4.10) J1 0 (J1 xl) ~ J1 0 (1 x J1) 

is sufficient for associativity. It is also necessary; for if X = Y x Y x Yand 
flJ2'/3 are the projections of Y x Y x Y into Y, then (Ii x f2 x f3) 0 Ll3 is 
the identity map. 

We shall say that the H-space Y is homotopy associative if and only if 
(4.10) holds in [Y x Y x Y, Y]. When the maps in (4.10) are actually equal, 
we say that Y is strictly associative. Then 

(4.11) Theorem The sets [X, Y] have a monoid structure natural with respect 
to X if and only if Y is a homotopy associative H-space. 0 

If Y is a homotopy associative H-space, it is natural to ask when the 
monoids [X, Y] are groups. If this is so, then the homotopy class of the 
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identity map 1 E [Y, Y] has an inverse (j], so that the composites 

L\ jxl {l 
(4.12) Y ----+ Y x Y ----+ Y x Y ----+ Y, 

(4.13) Y~YxY~YxY~Y 
are nullhomotopic. Conversely, suppose that the composites (4.12) and 
(4.13) are nullhomotopic. Then the commutativity of the diagram 

X 
L\ 

XxX 
(jof)xf 

I Y X Y ~Y ~ 

Il lfX~ 
L\ 

Y ~ Y x Y 

shows that (j 0 f) ·f'== *. Similarly,f. (j 0 f) '== *. 
A group-like space is a homotopy associative H-space Y for which there 

exists a map j as above. In other words, Y satisfies the group axioms up to 
homotopy. 

Remark. In order that Y be group-like, it suffices that either one of the 
composites (4.12), (4.13) be nullhomotopic. For then every element of the 
monoid [X, Y] has a one-sided inverse, and this is well-known, m 
the presence of a unit element, to imply that [X, Y] is a group. 

(4.14) Theorem The sets [X, Y] have group structures natural with respect to 
X if and only if Y is a group-like space. D 

Let us investigate more closely the question of the existence of inverses. 
Let <jJ : Y x Y --+ Y x Y be the shear map, given by 

(4.15) <jJ(x, y) = (x, xy). 

If Y is a topological group, then <jJ is a homeomorphism with 

and therefore 

Suppose now that <jJ is a homotopy equivalence with homotopy inverse tf;, and 
define j E [Y, Y] by 

(4.16) j=P2"tf; o i 1 . 

Then 

P2 0 <jJ = {l 
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and therefore 

P1 ::::,: P1 0 cp 0 ljJ = P1 0 ljJ, 

In particular, 

P2 ::::,: P2 0 cp 0 ljJ = f.l 0 ljJ. 

Hence 

f.l 0 (1 x j) 0 L1 = f.l 0 (P1 0 ljJ 0 i1 X P2 0 ljJ 0 id 0 L1 

= f.l 0 (P1 x pz) 0 (ljJ 0 i1 X ljJ 0 id 0 L1 

= f.l 0 (P1 x pz) 0 L1 0 ljJ 0 i 1 
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thus j is a right inverse of the identity map. It follows from the argument 
above that every element of [X, Y] has a left inverse, and hence that [X, Y] is 
a group. Conversely, if Y is group-like, the map (u, v) -> (u, j(u)v) is clearly a 
homotopy inverse of the shear map cp. Thus 

(4.17) If Y is a homotopy-associative H-space, then Y is group-like if and only 
if the shear map (4.l5) is a homotopy equivalence. 0 

We now give some examples of H-spaces. Further examples will occur in 
§5 below. 

EXAMPLE 1. Every topological group is an H-space. 

EXAMPLE 2. The unit spheres in the division algebras C, Q, K are H-spaces. 
In fact S1 and S3 are topological groups, but the product S7 is not associa
tive. Later we shall see that it is not even homotopy associative. 

An important property of H-spaces is given by 

(4.18) Theorem If Y is an H-space, then 1!1 (Y) operates trivially on [X, Y]for 
any space X. 

For let u: (I, i)-> (Y, e) andf: (X, *)-> (Y, e) be maps. Then the map 
g : I x X -> Y defined by 

g(t, x) = u(t) .f(x) 

is a free homotopy off to itself along u (we are assuming, as we may, that the 
base point of Y is a unit element, and not just one up to homotopy), and 
therefore r~(ct) = ct, where ~,ct are the elements of 1!1(Y), [X, Y] represented 
by u, f, respectively. 0 
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Theorem (4.18) has a relative form too. An NDR-pair (Y, B) is said to be 
an H-pair if and only if Y and Bare H-spaces and the restriction of the 
product in Y to B x B is homotopic (and therefore may be assumed equal) 
to the product in B. 

(4.19) Theorem If (Y, B) is an H-pair, then 1i1(B) operates trivially on 
[X, A; Y, B]for any NDR-pair (X, A). 

The proof is an easy modification of that of Theorem (4.18). 0 

Let Y, Y' be H-spaces with products f.1, f.1', respectively. A mapf: Y --> Y'is 
said to be an H -map if and only if the diagram 

fxf 
Y x Y ----+ Y' X Y' 

f.1[ 

Y ---~. Y 
f 

is homotopy commutative. Clearly 

(4.20) If Y, Y' are H-spaces andf: Y --> Y' an H-map, thenf: [X, Y] --> [X, Y'] 
is a homomorphism for any space x. - 0 

(4.21) If (Y, B) is an NDR-pair of H-spaces, then (Y, B) is an H-pair if and 
only if the inclusion map of B into Y is an H-map. 0 

An important example of an H-map is given by 

(4.22) The map hi n(X) : n(X) --> n*(x) of the proof of (2.18) is an H-map. 
o 

If Y is an H-space, the map [X, Y] x [X, Y] --> [X, Y] may be thought of 
as an internal product. There is a corresponding external product [X b Y] X 

[X 2, Y] --> [X 1 X X 2, Y], defined by (f1, f2) --> f1 09f2, where f1 09f2 is the 
composite 

(These are comparable with the cup and cross products in cohomology 
theory). The two kinds of products determine each other as follows: if 
f1J2 : X --> Y, then 

f1 ·f2 = (f1 09f2) o~, 
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while, if f1 : Xl -+ Y, f2 : X 2 -+ Y, and if Pi: Xl X X 2 -+ Xi is the projection 
on the ith factor, then 

f1 ®f2 = (f1 0 pd . (f2 0 P2)' 

5 H'-spaces 

Let j1, j2 : X -+ X v X be the inclusions, representing X v X as the sum of 
two copies of X, so that k 0 ja = ia (IX = 1, 2), and let 
qa = Pa 0 k : X v X -+ X. Then qa 0 ja = 1 (IX = 1, 2), while q1 0 j2 = 
q2 oj1=*' 

Suppose that X is an H'-space. Then we can add the homotopy classes of 
jl andj2 to obtain an element [0] = [j1] + [j2] for some map 0: X -+ X v X. 
By the naturality of the sum, we have 

(5.1) [q1] 0 [0] = [q1] 0 ([j1] + [jz]) = [q1 0 j1] + [q1 0 j2] 

=[1]+[*]=[1] 

and similarly 

(5.2) [q2] 0 [0] = [1]. 

The conditions (5.1) and (5.2) are equivalent to 

(5.3) 

and a map 0 satisfying (5.3) is called a coproduct in X. Unlike the case of 
H-spaces, we cannot replace the homotopy in (5.3) by an equality (for that 
would imply that the image of ~ is contained in the image X v X of k, which 
is never the case if X is nondegenerate). 

With 0 as above, let fI> f2 : X -+ Y. Then 

(5.4) (IX = 1,2) 

and therefore 

[V] 0 [f1 v f2] 0 [0] = [V] 0 [f1 v f2] 0 ((jd + (j2]) 

= ([V] 0 [f1 v f2] 0 (j d) + ([V] 0 [f1 v f2] 0 (j2]) 

= [f1] + [f2]. 

Conversely, let X be a space and let 0 : X -+ X v X be a map such that 
q1 00::::; 1::::; q2 0 O. Then, given f1' f2 : X -+ Y, we may define f1 + f2 = 

V 0 (f1 v f2) 0 O. The sum so defined is compatible with homotopy and 
induces a natural operation in [X, Y]. Thus X is an H'-space, and 

j1 +)2 = V 0 (j1 v j2) 00 = O. 

Summarizing, we have 
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(5.5) Theorem A space X is an H'-space if and only if there is a map 
8 : X -+ X v X such that q 1 0 8 ~ 1 ~ q2 0 8. The map 8 then satisfies the 
condition [8] = [j1] + [hl Moreover, iff1,f2 : X -+ Y, then [I1] + [I2] is the 
homotopy class of the composite 

X~XvX f1Vf2,yvY~y' D 

Letf1,[2,[3 : X -+ Y. Then ([1 + f2) + f3 andf1 + ([2 + f3) are the homo
topy classes of the composites 

8 X X 8vl X ------4 v ------4 

f1V.f~vf3 V3 
X V X v X , Y v Y v Y ------4 Y, 

X~XvX~ 
f1 V f2 V f3 V3 

X V X v X , Y v Y v Y ------4 Y, 

where V 3 = V 0 (V v 1) = V 0 (1 v V) is the 3-fold folding map. As in the case 
of H-spaces, we see that the sum in [X, Y] is associative if and only if 
(8 v 1) 0 8 ~ (1 v 0) 0 8, in which case we say that the H'-space X is homo
topy associative. Thus 

(5.6) Theorem The sets [X, Y] have a monoid structure natural with respect to 
Y if and only if X is a homotopy associative H'-space. D 

Finally, we say that a homotopy associativ~ H'-space X is cogroup-like if 
and only if the homotopy class of the identity map 1 E [X, X] has an inverse 
[j], so that the composites 

(5.7) X ~XvX ~XvX ~X 

(5.8) X ~XvX ~XvX ~X 
are null homotopic. 

(5.9) Theorem The sets [X, Y] have group structures natural with respect to 
Y if and only if X is cogroup-like. D 

To clarify the question of the existence of inverses in a homotopy
associative H' -space X, consider the coshear map X : X v X -+ X v X, defined 
by 

(5.10) X o j1=j1, x o j2=8. 

(5.11) Theorem If X is a homotopy associative H'-space, then X is cog roup
like if and only if the cosh ear map X: X v X -+ X v X is a homotopy 
equivalence. 
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For if w : X v X ---> X v X is a homotopy inverse of X, then 

(5.12) j2 ~ W 0 X 0 j2 = woe, 

and therefore, if we define 

then 

j=ql°Wo jz, 

v 0 (1 v j) 0 8 = V 0 (ql 0 W 0 jl V ql 0 W 0 jz) 0 e 
= V 0 (ql 0 wVQl 0 w) 0 Cil vjz) 08 

= ql 0 W 0 V 0 Cil V jz) 0 8 

As before the converse is easy. 

(5.13) 8(t) = {(2t,_*_) _ 
(*, 2t - 1) 
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o 

where tis the image of the number tEl under the identification map I ---> S, 
is a coproduct in S. Moreover, S is cogroup-like, since nl(Y) is a group. 

(5.14) Theorem If X is an H'-space, then X /\ Y is an H'-spacefor any space 
Y. Moreover, X /\ Y is homotopy associative if X is homotopy associative, and 
cogroup-like if X is cog roup-like. 

In fact, we may use the one-to-one correspondence 

[X /\ Y, Z] ~ [X, F(Y, Z)] 

induced by the homeomorphism 

F(X /\ Y, Z) ~ F(X, F(Y, Z» 

of (2.9), to transfer the given operation in [X, F(Y, Z)] to one in [X /\ Y, Z]; 
and the new operation is associative or a group operation if the old one is. 

o 

(5.15) Corollary For any space Y, the suspension SY of Y is a cogroup-like 
space. In particular, sn is a cog roup-like space (n ::c: 1). D 

(5.16) Theorem It X is an H'-space, then .F(X, Y) is an H-space for every 
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space Y. Moreover, F(X, Y) is homotopy associative if X is homotopy associa
tive, and group-like if X is cogroup-like. 

Again, we use the one-to-one correspondence 

[W, F(X, Y)] ~ [W /\ X, Y], 

together with the commutative law W /\ X = X /\ W for the reduced join, to 
transfer the operation In [X /\ W, Y] given by Theorem (5.14) to one in 
[W, F(X, Y)]. 0 

(5.17) Corollary For any space Y, the loop space QY is group-like. 0 

(5.18) Theorem If Y is an H-space, then F(X, Y) is an H-space for any space 
X. Moreover, F(X, Y) is homotopy associative if Y is homotopy associative, 
and group-like if Y is group-like. 

This time we use the one-to-one correspondence 

[W, F(X, Y)] ~ [W /\ X, Y]. o 
(5.19) Theorem Let X be an H'-space. Then for any spaces Y, Z, the projec
tions Pi> P2 induce an isomorphism of [X, Y x Z] with the direct product 
[X, Yfx [X, Z]. 

Let h: X --> Y x Z; the map r in question carries [h] into the pair 
([P1 0 h], (P2 0 h]); that r is a homomorphism follows from the fact that PI 
and P2 are homomorphisms. To prove r an isomorphism, define 
(J: [X~Y] x [X, Z] --> [X, Y x Z] by (J([J], [g]) = [(J x g) 0 L\], and verify 
that (J = r - 1. 0 

(5.20) Theorem Let Y be an H-space. Then,for any spaces W, X, the injec
tions }1' }2 induce an isomorphism of [W v X, Y] with the direct product 
[W, Y] x [X, Y]. 

The proof of this is parallel to that of Theorem (5.19), and is left to the 
reader. D 

Now suppose that X is an H'-space, Yan H-space. Then the set [X, Y] 
has, a priori, two structures, one derived from the coproduct in X, the other 
from the product in Y. In fact 

(5.21) Theorem If X is an H'-space and Yan H-space, the two structures in 
[X, Y] coincide, and the operation in [X, Y] is commutative and associative. 

Letf1,f2 : X --> Y. Then the diagram 



5 H'-spaces 125 

is homotopy-commutative. But V 0 (fl v f2) 0 () represents [fl] + [f2]' while 
11 0 (fl x f2) 0 L\ represents [fl] . [f2). Hence [fl] + [f2] = [fl] • [f2). 

Because of naturality, composition with the homotopy class of 11 is a 
homomorphism 11* : [X, Y x Y] --+ [X, Y). Composition of 11* with the iso
morphism (J: [X, Y] x [X, Y] --+ [X, Y x Y] of Theorem (5.19) is then a 
homomorphism of [X, Y] x [X, Y] into [X, Y). Now 11* 0 (J{[f], [g)) = 
[11] 0 [f x g] 0 L\ = [f) . [g). But it is well known (and trivial) that a multi
plicative system G with unit, for which the operation is a homomorphism of 
G x G into G, is commutative and associative. D 

(5.22) Corollary For any spaces X, Y, the three sets [S2 X, Y], [SX, OY], and 
[X, 0 2 Y] are isomorphic abelian groups. D 

We have seen that sn is a cogroup-like space (n ~ 1), and accordingly 
1!n{Y) = [sn, Y] is a group, the nth homotopy group of Y. By Corollary 
(5.22), with X = sn-2, we have D 

(5.23) Corollary If n ~ 2, the homotopy group 1!n(Y) is abelian. D 

(5.24) Corollary If Y is an H -space, then 1! 1 (Y) is abelian. D 

A direct argument that 1!n(Y) is abelian is suggested by Figure 3.2, in 

g 

f 

Figure 3.2 
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which we represent 7r2(Y) as the set of homotopy classes of maps of (12, F) 
into (Y, Yo). 

We conclude this section with a few remarks about the composition 
product. As we have seen, if X is an H'-space, then a map h : Y ~ Z induces, 
by composition, a homomorphism of [X, Y] into [X, Z], i.e., if g1> 
g2 : X ~ Y, then h 0 (gl + g2) ~ h 0 gl + h 0 g2' On the other hand, if W is 
also an H'-space and I: W ~ X, it is not necessarily true that the map of 
[X, Y] into [W, Y], induced by composition with f, be a homomorphism. 
However, this will be the case if I is an H'-map, in the sense that if 
() : W ~ W v Wand ¢ : X ~ X v X are the coproducts in Wand X, respec
tively, then the diagram 

() 
W -----+ WvW 

jIv I 
XvX 

is homotopy commutative. For then, if g1> g2 : X ~ Y, the diagram 

W e WvW -----+ 

Ij j ~Vg,of IvI 

X -----+ XvX • YvY -----+ Y 
¢ gl V g2 V 

is also homotopy commutative. 
Suppose that Wand X are the suspensions of spaces Wo and X 0, respec

tively, and that the H'-structures on Wand X are induced from that on S, as 
above. Then it is clear that, for any mapIo : Wo ~ X 0, the suspensionI = SIo 
is an H'-map. 

Summarizing the above discussion, we have 

(5.25) Theorem Suppose that Y and Z are spaces in $'*, and that Wand X 
are H'-spaces. LetI: W ~ X, g1> g2: X ~ Y, h: Y ~ Z be maps. Then 

and if I is an H' -map, then 

D 

(5.26) Corollary rf wo , X 0, Y, Z are spaces in % * and Io : Wo ~ X 0, 
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gl' gz : SXO ~ Y, h: Y ~ Z, then 

h 0 (g 1 + g z) ~ hog 1 + hog z , 

(g 1 -+ g z) 0 Sio ~ g 1 0 f$fo + g z 0 Sio . o 

Finally, we observe that if X is an H'-space, there is an external product 

[X, Yd x [X, Yz] ~ [X, Y1 v Yz], 

defined by (/l,fZ) ~ i1 (Biz, where i1 (Biz is the composite 

e i1 viz X >XvX ,Y1 vYZ • 

As in the case of H-spaces, the external and internal products determine each 
other: ifj1,fZ : X ~ Y, then i1 + iz is the composite 

X i1 (B iz > Y v Y V ,Y; 

and if!; : X ~ 1'; (i = 1, 2), then 

i1 (Biz = (j1 0 i1) + (jz 0 iz), 

where ji : 1'; ~ Y1 V Yz is the inclusion. 

6 Exact Sequences of Mapping Functors 

A diagram 

(6.1) X~Y~Z 
in X 0 is said to be leit exact if and only if, for every space W in X *, the 
diagram 

[W, X] -L [W, Y] ~ [W, Z] 

is exact in the category At 0, of sets with base point, i.e., 
1m i = Ker g = {IX EO [W, Y] I g(lX) = *}. Similarly, the diagram (6.1) is right 
exact if and-only if, for every-space W in X 0, the diagram 

[Z, W] ~ [Y, W] ~ [X, W] 

is exact in At 0 . 

For example, 

(6.2) Every fibration 
i P 

F--X--B 

in X 0 is leit exact. 
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For suppose that g : (Y, *) -? (X, *) is a map such that p 0 g ~ * (reI. *). 
By the homotopy lifting extension property (Theorem (7.16) of Chapter I), g 
is homotopic (reI. *) to a map of Y into F. Hence Ker p c 1m i; the oppo
site inclusion is trivial. - D 

Dually, we have 

(6.3) If (X, A) is an NOR-pair, i: A G X, and if p: X -? X/A is the 
identification map, then the sequence 

A~X~X/A 
is right exact. D 

A sequence of spaces and maps 

(6.4) .. ·-?X ~X ~X -?'" n+l n n-l 

(which may terminate in either direction) is left (right) exact if and only if 
each of its sections 

X n + 1 -------> X n -------> X n - 1 

is left (right) exact. 
Let f: X -? Y be an arbitrary map. Then there is a homotopy commuta

tive diagram 

in which I J (TJ ) is the mapping cylinder (cone) off, i,j and k are inclusions 
and p is the identification map. Moreover, (IJ' X) is an NOR-pair andjis a 
homotopy equivalence. We have seen that the sequence 

X -------> I J ---+ T J 

is right exact; it follows that the sequence 

f k 
X -------> Y -------> T J 

is right exact. 
Iterating the above procedure, we find: 

(6.5) Let f: X -? Y be a map in X *. Then there is an infinite right exact 
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sequence 

(6.6) 

such that fO = f and xn is the mapping cone of r- 2 (n ::::: 2). D 

On the other hand, we may use Theorem (7.30) of Chapter I to replace an 
arbitrary map fby a homotopically equivalent fibre map, obtaining a homo
topy commutative diagram 

y~ X 
f 

in which p, q, and ql are fibrations, i the inclusion map, and ql is a homotopy 
equivalence. Since the sequence 

i P T J -------> IJ -------> X 

is left exact, so is the sequence 

TJ~y~X. 
Again, we may iterate the above procedure to obtain 

(6.7) Let f: Y ~ X be a map in X *. Then there is an infinite left exact 
sequence 

(6.8) "'~Xn+l ~ Xn~"'~Xl ~ X o 

such thatfo =fand Xn = TJ,-z (n::::: 2). D 

The constructions of the sequences (6.6) and (6.8) are canonical. Our 
objective in this section is to study them in detail. 

Let us begin by examining the first few terms of the sequence (6.6). They 
are 

f k I 
X -------> Y -------> T J -------> T k , 

where I is the inclusion map. 
Suppose that (Y, X) is an NDR-pair andfis the inclusion map. Then TJ 

is the subspace Y u TX of the cone TY, and (TJ' TX) is an NDR-pair. By 
Corollary (5.13) of Chapter I, the identification map ofTJ into TJ/TX is a 
homotopy equivalence. But T J IT X is naturally homeomorphic with 
YIY n TX = YIX. Hence 
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(6.9) Let (Y, X) be an NDR-pair,f : X G Y, k : Y G T J' and let p: Y -> Y IX, 
Pl : T J -> YI X be the identification maps. Then there is a commutative diagram 

YjX 

and Pl is a homotopy equivalence. The sequence 

X ------+ Y ------+ Y I X 
f p 

is right exact. o 

Even if f does not satisfy the hypotheses of (6.9), the map k does. 
Moreover, the quotient space T JIY = Y U J TXIY is naturally homeomor
phic with SX. Thus 

(6.10) There is a commutative diagram 

Y _~ I ~ TJ ------+ Tk 

~ jq, 
SX 

such that ql is a homotopy equivalence and the sequence 

k q 
Y ------+ T J ------+ SX 

is right exact. 

The next theorem clarifies the structure of the sequence {6.6}. 

(6.11) Theorem Let f: X -> Y be a map in ,;t.*. Then the sequence 

(6.12) 
f k q 

X ------+ Y ------+ T J ------+ SX -> ... 

o 

S"-lq S"'f S"k S"q 
-> S" - 1 T J ------+ S" X ------+ S" Y ------+ S"T J ---> S" + 1 X -> ... 

is right exact. 

We first explain the relationship between the sequences (6.6) and (6.12). 
In order to formulate this, we shall need the antisuspension operator - S. 
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This operator assIgns to each map f: X -+ Y the map - Sf: SX -+ S Y 
defined by 

(-SJ)(t AX) = 1 - t Af(x) 

for tEl, X E X. Let us observe that the iterate ( - S) 0 (- S) is S2. Moreover, 
the homotopy class of - Sf in the group [SX, S Y] is minus that of Sf 

Let us modify the sequence (6.12) by replacing the maps S"f, snk, snq by 
their negatives for all odd n. The resulting sequence 

(6.13) X ~ Y~Tf -Lsx ~ 
-Sk -Sq S2f 

SY --;. STf --;. S2X --;. S2y -+ ... 

is right exact if and only if (6.12) is. And we shall show that (6.13) is right 
exact by proving 

(6.14) Theorem The sequences (6.6) and (6.13) are homotopically equivalent. 

This means that there are homotopy equivalences hn : xn -+ yn, yn being 
the nth term of (6.13), such that the diagrams 

X" 
i" X"+l ---+ 

h"j j h" + 1 

Y· ----+ y"+l 
9. 

are homotopy commutative. 
Let us now scrutinize more carefully the construction of (6.10). The map 

ql is the composite rl 1 0 q, where 

is the identification map and 

is the homeomorphism induced by the composite 

Let us apply the same construction with f replaced by k : Y -+ T f . We 
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obtain a commutative diagram 

analogous to that of (6.10). The map q2 is the composite r2 1 0 q, where 

is the identification map and 

is the homeomorphism induced by the composite 

The map q' is the composite r~-1 0 q~, where 

q~ : Tk -> Tk/Tf 

is the identification map and the homeomorphism 

is induced by the inclusion 

The next Lemma is the crucial step in the proof of Theorem (6.14). 

(6.15) Lemma The diagram 

SX ----+. Sf 
-Sf 

is homotopy commutative. 
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Let us adjoin to the diagram whose commutativity is to be proved the 
map q' : Tk --> SY; we obtain a new diagram 

SX ---" SY 
-Sf 

in which the right-hand triangle is already commutative. Therefore it suffices 
to prove that the left-hand triangle is also commutative. Note that q1 maps 
TY into the base point and q1lTr: Y uf TX = T f --> SX is defined by the 
maps 

t/\x-->t/\x; 

while q' maps T f into the base point and 

q'(t /\ y) = t /\ Y 

for t E T, Y E Y. 
Let us consider the map tf; : Tk --> SY defined as follows. The restriction of 

tf; to TY is the natural homeomorphism with T + Y : tf;(t /\ y) = tt /\ y for 
t F. T, Y E Y. On the other hand, the restriction of tf; to T f = Y U f TX is 
defined by the maps 

i y --> tt /\ y, 

t/\x-->(1-tt)/\f(x); 

note that they are consistent with the identifications 1/\ y = f(x). Contract
ing the cone T + Y to a point, we obtain a homotopy of tf; to a map tf; 1 such 
that tf; 1 (TY) = *, while tf; 1 IT f is defined by the maps 

1 t/\~::'- t/\f(x); 

this map is clearly ( - Sf) 0 q l' On the other hand, contraction of T _ Y to a 
point yields a homotopy of tf; to the map tf; 2 such that tf; 2 (T f) = *, while 

tf;2(t /\ y) = t /\ y; 

this map is, equally clearly, q'. o 
Iterating the construction of q1 gives us a sequence of maps 

qk: Xk+2 --> SXk - 1 (k = 1, 2, 3, ... ) (cf. Figure 3.3), and it follows from 
Lemma (6.13) that 
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(6.16) The diagrams 

X"+2 

8X"-' I 8X" 
-81"-1 

are homotopy commutative. 

Let us examine the diagram of Figure 3.3. The top row is the sequence 
(6.6). Each successive row is formed from the preceding one by applying the 
anti-suspension operator and shifting the resulting sequence three units to 
the right. The third entry SiX 2 in the (i + 1 )st row is mapped into the leading 
entry Si + 1 X 0 by Siq or - Siq according as i is even or odd. Finally, the maps 
Siq" : SiX" + 2 --> Si + 1 X" - 1 complete the diagram. 

According to (6.10), the diagram 

x 2 L X 3 

~lq, 

is homotopy commutative. According to (6.16), each of the top row of 
squares in Figure 3.3 is homotopy commutative. It follows by induction that 

(6.17) The diagram of Figure 3.3 is homotopy commutative. o 
The sequence which runs along the bottom edge of Figure 3.3 is precisely 

(6.13). Therefore the truth of Theorem (6.14) follows from the commutativity 
of Figure 2, which we have just established. 0 

From the right exactness of the sequence (6.12) we conclude 

(6.18) For any map f: X --> Yin % * and any space WE % *, there is an exact 
sequence 

(6.19) 

... --> [S" + 1 X, W] ------+ [S"T f' W] ------+ [S" Y, W] ------+ [8n X, W] 

q k J 
--> ... --> [8X, W] ------+ [Tf' W] ------+ [Y, W] ------+ [X, W]. 
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The terms of the sequence (6.19), except possibly for the last three, are groups 
and the maps of the sequence, except for the last three, are homomorphisms. 

o 
The last sentence of (6.18) can be improved somewhat. Collapsing the 

mid-section t;\ X of TX to a point induces a map e : T r~ T j ;\ SX; more 
precisely, e is given by 

e(y) = (y, *) (y E Y), 

e«t, x» = {(2t...=- 1, x), *) 
(*, 2t ;\ x) 

The map e induces a map 

(x EX, t ~ t), 
(x E X, t :s; t). 

lJ : [T j ;\ SX, W) ~ [T j' W). 

But the domain of lJ can be identified with 

[Tj, W) x [SX, W), 

and therefore lJ can be considered as a binary operation [T j' W) x 
[SX, W) ~ [T j' W). It is convenient to write this operation as a sum. 

(6.20) Let a E [T j' W), ¢, I] E [SX, W). Then 

(1) a + (¢ + 1]) = (a + ¢) + 1], 
(2) a + 0 = a, 
(3) 0 + ¢ = q(¢), 
(4) q(¢) + I] = q(¢ + 1]). 

The proof of (6.20) is similar to the proof that [SX, W) is a group, and is 
left to the reader. 0 

(6.21) Let a, [3 E [Tj, W). Then /Z(a) = /Z([3) if and only if there exists 
¢ E [SX, W) such that [3 = a + ¢. 

If j 1 : T j ~ T j ;\ SX is the inclusion, then e 0 k = j 10k. It follows that 

/Z(a + ¢) = I{B(a, ¢) = kjl(a, ¢) = /Z(a). 

Conversely, suppose /Z(a) = /Z{[3). Let Ql = e- 1(T j), Q2 = e- 1(SX); then 
Ql is a copy of I j and Q2 of TX. Thus (Ql' Y) and (Q2, *) are DR-pairs. 
Hence, if f, g : T j ~ Ware representatives of a, [3, respectively, we may 
assume on the one hand thatf(Q2) = *, and on the other that! I Ql = g I Ql· 
Then g(Ql n Q2) = *, and it follows that there is a map h : T j v SX ~ W 
such that hoe = g. The map hiT j clearly represents a, and h I SX represents 
an element ¢ E [SX, W]. Thus [3 = [g) = [h 0 e] = lJ[h] = a + ¢. 0 
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Suppose, in particular, that (Y, X) is an NDR-pair,f: X c+ Y. Then the 
homotopy commutative diagram 

YIX 

of (6.9) can be completed; we may take h = q 0 p~, where P'l : YIX -+ T f is a 
homotopy inverse of Pl. The map h : YIX -+ sx is called a connecting map 
for the pair (Y, X). For this important special case Theorem (6.11 ) takes the 
form 

(6.22) Theorem Let (Y, X) be an NDR-pair, f: X 4 Y, p: Y -+ YIX the 
identification map, h : YIX -+ SX a connecting map. Then the sequence 

f p h 
X ------+ Y ------+ Y IX ------+ sx -+ ... 

sn-lh sn'f 
-+ sn-l(YIX) ------+ snx ------+ 

sn snh 
sny ~ sn(YIX) ------+ sn+lx -+ ... 

is homotopy-equivalent to (6.6) and therefore is right exact. o 

Let us now turn our attention to the" dual" sequence (6.8). We shall first 
suppose that f: Y -+ X is a fibration, with fibre F. By Theorem (7.31) of 
Chapter I, the maps p : If -+ X andf : Y -+ X have the same fibre homotopy 
type, and, in particular, their fibres Tf and F have the same homotopy type. 
In fact, the map z -+ (z, *) of F into Tf is a homotopy equivalence j 1> and if 
q: Tf -+ Y is the fibration of Tf over Y, then q 0 jl is the inclusion map 
j : F c. Y. Thus 

(6.9*) Let f: Y -+ X be a fibration, with fibre F and inclusion j: F C+ Y. Let 
i l : F -+ Tf, q : Tf -+ Y be as above. Then the diagram 

T f ------+ Y ------+ X 
q f 
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is commutative, and j1 is a homotopy equivalence. The sequence 

F~Y~X 
is exact. D 

Even though f may not satisfy the hypotheses of (6.9*), the map q does. 
Moreover, the fibre of q is the space of pairs (y, u) such that y = * and 
u(O) = u(l) = *, and this is homeomorphic with ox. Thus 

(6.10*) There is a commutative diagram 

ox 

'f'l -----+ T f -----+ Y 
r q 

such that kJ is a homotopy equivalence and the sequence 

ox -----+ T f --------> Y 
k q 

is left exact. D 

Iterating the above construction, we obtain a commutative diagram 

r -----+ 'f'l --+ Tf 
s r 

We shall need the anti loop operator -0; if f: X -4 Y, then 
- Of: ox -4 0 Y is defined by 

(-Of)(u)(t) = f(u(l - t)). 

and the homotopy class of -Of in [OX, OY] is minus that off 

(6.15*) Lemma The diagram 

OY 
-nf 

nx ---4 

k2\ \ kl 

r -----+ s 'f'l 
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is homotopy commutative. 

AS in the proof of Lemma (6.15), it suffices to show that the diagram 

-OJ 
OY ---+ OX 

is homotopy commutative. Let us observe that, if v E Q Y, then 

k'(v) = h ex, v) E Y x F(X) x F(Y), 

where ex is the constant map of I into the base point * of X. On the other 
hand, 

k 1(-Qf(v)) = k1(Jo V-I) 

= (*,f 0 v-I, ey). 

A homotopy between these maps is given by 

H(t, v) = (v(t), ut , Wt), 

where ut : I ~ X is given by 

I * if t :s:; s, 
ut(s) = \J(v(t - s)) if t ~ s, 

and W t : I ~ Y is given by 

if s + t ~ 1, 
if s + t :s:; 1. 

We can now prove, in much the same way as (6.11) 

(6.11 *) Theorem Let f: X ~ Y be a map in X *. Then the sequence 

(6.12*) 

is left exact. 

o 

o 

(6.18*) For any mapf: X ~ Yin.X * and any space Z E X *, there is an exact 
sequence 
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(6.19*) ... -> [Z, n"+ I X] -> [Z, n"Tf] -> [Z, n"Y] -> [Z, n"X] 

k q J 
-> ... -> [Z, nX] ------=---+ [Z, Tf] ------=---+ [Z, Y] ~ [Z, X]. D 

By analogy with the map () : T f -> T f 1\ SX constructed above, we can 
construct a map ljJ : Tf x nx -> Tf. The map ljJ is defined as follows: let 
(y,u)ETf, so that YEY, u:I->X,J(y)=u(O), and u(l)=*; then if 
v E nx, 

ljJ(y, u; v) = (y, uv). 

For any space Z, we can identify [Z, Tf x nX] with [Z, Tf] x [Z, nx]. 
Hence ljJ defines an operation 

t/J: [Z, Tf] x [Z, nX] -> [Z, Tf]; 

we shall write this operation as a product. 

(6.20*) Let a E [Z, Tf], ~, I] E [Z, nx]. Then 

(1) a(~I]) = (aOI]; 
(2) a1 = a; 
(3) 1~ = ~(~); 
(4) MOl] = M~I])· 

Again, the proof is left to the reader. 

D 

(6.21*) Let a, [3 E [Z, T f]' Then q(a) = q([3) if and only if there exists 
~ E [Z, nX] such that [3 = a~. - -

The map q sends (y, u) E Tf into y; hence q 0 ljJ = q 0 PI where PI : Tf x 
nx -> Tf is the projection on the first factor. Thus 

q(aO = qljJ(a, ~) = qpI(a, 0 = q(a). 
- -

Conversely, suppose that q(a) = q([3). Iff, 9 : Z -> Tf are maps represent
ing a, [3, respectively, then q ;;; J ~ q -;; g. By the homotopy lifting property, 9 
is homotopic to a map g' such that q 0 g' = q 0 f If z E Z, we have 

J(z) = (h(z), u(z», 

g'(z) = (h(z), v(z», 

where u(z), v(z) are paths in X beginning at the same pointJh(z) and ending 
at the base point *. Let w(z) = u(zt IV(Z), so that w: Z -> nx. Then 

ljJ(J(z), w(z» = (h(z), u(z)w(z» 

= (h(z), u(z)(u(zt IV(Z»), 
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and this map is clearly homotopic to g'. Thus, if ~ E [Z, OX] is the element 
represented by w, we have (X~ = [3. 0 

Suppose that f: Y ~ X is a fibration, with fibre F. Then the diagram 

ax -----t Tf -----t Y -----+ X 
k q f 

can be completed to a homotopy commutative diagram. For example, if 
Jc: If ~ F(Y) is a connection forf, then, we may take h(u) = Jc(*, u)(l) for all 
u E O(X). The map h is called a connecting map for the fibration f, and we 
have 

(6.22*) Theorem Let f: Y ~ X be a fibration with fibre F and inclusion map 
j : F c; Y. Let h : OX ~ F be a onnecting map for f Then the sequence 

onh onj onf ... ~ on + 1 X -----+ on F -----+ on Y -----+ on X ~ ... 

h j f 
~ OX -----+ F -----+ Y -----+ X 

is left exact. o 
Remark. We have referred parenthetically to a sort of duality, some 

aspects of which are exemplified by the following table: 

Fibration 
Loop space Q(X) 
Path space P(X) 
If 
Tf 

Cofibration 
Suspension S(X) 
Cone T(X) 
Mapping cylinder If 
Mapping cone T f 

Moreover many diagrams (like those of (6.9) and (6.10» appear to have dual 
diagrams (like those of (6.9*) and (6.10*». It does not, however, appear that 
there is a formal (categorical) duality underlying these phenomena, compar
able, for example, with the character theory for locally compact abelian 
groups. Nevertheless, the examples we have are so striking, and so basic, as 
to motivate a systematic treatment of duality phenomena in homotopy 
theory. Such an exposition has been given by Hilton [Hi]. In the present 
work we shall, therefore, abstain from attempting a systematic treatment of 
duality, but shall content ourselves with pointing out such examples as may 
naturally crop up. 
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7 Homology Properties of H-spaces 
and H'-spaces 

Throughout this section we shall consider homology and cohomology 
groups with coefficients in a principal ideal domain A. An H-structure or an 
H'-structure on a space X implies relationships among the homology groups 
of the spaces X, X x X, and X v X, and we shall investigate some con
sequences of these relationships. We begin with some elementary remarks on 
the homology properties of the pair (X x X, X v X). 

We shall assume that X E ."f *' so that the pair (X, *) is an NOR-pair. It 
follows from (5.2) of Chapter I that (X, *) x (X, *) = (X x X, X v X) is an 
NOR-pair, and from Theorem (2.2) of Chapter II that {X v X; X x {*}, 
{*} x X) is a proper triad. From the Mayer-Vietoris Theorem we deduce 

(7.1) The injectionsjl* ,j2* : Hq{X) ---> Hq{X v X) represent the latter group as 
a direct sum. The dual representation as a direct product is given by q 1*, 
q2* : Hq{X v X) ---> Hq{X). 0 

Let us consider the homology sequence 

k* 1* 
•.• ---> Hq{X v X) -----+ Hq{X x X) -----+ 

0* Hq{X x X, X v X) -----+ ... 

of the pair (X x X, X v X). If PI' P2 : X x X ---> X are the projections, and 
A. = jl* 0 Pl* + j2* 0 P2* : Hq{X x X) ---> Hq{X v X), then 

A. 0 k* 0 jl* = A. 0 i l* = jl* 0 Pl* 0 ih + j2* 0 P2* 0 i l * = jl* 

(because PI 0 i l is the identity and P2 0 i l the constant map into the base
point) and similarly 

A. 0 k* 0 j2* = h* . 
It follows from {7.1} that A. 0 k* is the identity. Moreover, Ker A. = 

Ker Pl* n Ker Ph' Therefore 

(7.2) Theorem The injection k* : Hq{X v X) ---> Hq{X x X) is a split mono
morphism, so that 

for all q. Moreover, the injection 1* maps the subgroup Ker Pl* n Ker P2* 
isomorphically upon Hq{X x X, X v X). 0 

Thus, if f3 : Hq{X x X, X v X) ---> Hq{X x X) is the inverse of the restric
tion of 1* to Ker Pl* n Ker P2*, we have 
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(7.3) Corollary The homomorphisms 

i 1*, i 2* : Hq{X) --+ Hq{X x X) 

/3 : Hq{X x X, X v X) --+ Hq{X x X) 

represent the group Hq{X x X) as a direct sum 

Hq{X x X) ~ Hq{X) E8 Hq{X) 8:) Hq{X x X, X v X). 

The dual representation as a product is given by 

P1*, P2* : Hq{X x X) --+ Hq{X), 

1* : Hq{X x X) --+ Hq{X x X, X v X). 

For each u EO Hq{X x X), we have 

u = i1*Phu + i2*P2*U + /31*u. 

143 

o 

An element x EO Hq{X) is said to be primitive if and only if 1* d* x = 0 
(equivalently, d*x = i 1*x + i2*x). Let Mq{X) be the set of all primitive 
homology classes; it is a submodule of Hq{X). 

Remark. Suppose that H*{X) is torsion-free, so that H*{X x X) ~ 
H *(X) ® H *(X) under the isomorphism defined by the cross product. 
Moreover, i h{x) = X x 1 and i2*{x) = 1 x x for all x EO Hq{X). When this is 
the case, H*{X) is a coalgebra, (cf. §8, below), and an element of Hq{X) is 
primitive if and only if it is a primitive element of the coalgebra H *(X). 

Let x be a primitive element of Hq{X), and letf: X --+ Y be a map. The 
calculation 

proves 

d*f*x = (JxJ)*d*x = (JxJ)*{i 1*x + ihx) 

= ihf*x + i2*f*x 

o 

Suppose that Hq{X) = 0 for all q < n. By the relative Kiinneth Theorem, 
Hq{X x X, X v X) = 0 for all q < 2n. Therefore 

(7.5) rr Hq{X) = o for all q < n, then Mq{X) = Hq{X) for all q < 2n. 0 

In particular, 

(7.6) Each element of Hn{sn) is primitive (n > 0). o 
A homology class x E Hq{X) is said to be spherical if and only if there is a 

map f: sq --+ X such that x EO f* H q{sq). Let I:q{X) be the set of all spherical 
homology classes in Hq{X). It follows from (7.4) and (7.6) that 
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(7.7) Every spherical homology class is primitive (i.e., Lq(X) c Mq(X». 0 

Suppose that X is an H'-space with coproduct 0. If x E Hq{X), then 
L'l* x = k* 0* x, and therefore 1* L'l* x = 0. Thus 

(7.8) If X is an H'-space, then every element of Hq(X) is primitive. 0 

(7.9) If X is an H'-space with coproduct 0, and x E Hq(X), then 
O*x =j1*X + j2*X. 

For q1 0 () = q2 0 ° = 1 and therefore x = q1* 0* X = q2* e* x, and our 
result follows from (7.1). 0 

This is used to prove 

(7.10) Theorem If X is an H'-space, I, g: X ---+ Y, and if x E Hq(X), then 

(f + g)*x = f*x + g*x. 

For 

(f + g)*x = V*(fvg)*e*x = V*(fVg)*(j1*X + j2*X) 

= V *(j1* f*x + j2*g*X) = f*x + g*x. 

Thus the correspondence (I, x) ---+ f* x induces a pairing 

[X, Y]@HAX)---+H*(Y). 

o 

Unfortunately, (cf. (7.16) below), no analogous result holds for the case 
where Y is an H-space. 

(7.11) Corollary For any space X, the set Lq(X) is a submodule of Hq{X). 
o 

We next suppose that X is an H-space. It will sometimes be convenient 
here to treat X as a free space, ignoring the role of the base point. To avoid 
confusion, let X * be the resulting free space. The reduced homology group 
flq(X *) is defined by Eilenberg-Steenrod [E-S, p. 18] to be the kernel of the 
homomorphism Hq(X*) ---+ Hq(*) induced by the unique map of X * into the 
base point *. The composite 

being a~ isomorphism, we may consider Hq(X) as a subgroup of Hq(X *). 
(Since Hq(X *) = HiX *)except when q = 0, this may seem a bit pedantic; 
but we have in mind applications in later chapters involving homology 
theories not satisfying the dimension axiom). 
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Let J1 : X * x X * ---* X * be the product; then J1 induces 

J1* : Hn(X * x X *) ---* Hn(X *). 

The homology cross-product is a pairing 

Hp(X*)®Hq(X*)---*Hp+q{X* x X*). 

Combining these, we obtain a pairing 

Hp(X *) ® Hq(X *) ---* H p+q(X *). 
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Thus H*(X*) is a graded algebra over A, the Pontryagin algebra of X. The 
map X * ---* * is evidently an H-map, and it follows that the induced homo
morphism H*(X*) ---* H*(*) is a homomorphism of algebras. Thus H*(X*) is 
an ideal in H*(X*), and so we may consider H*(X) as an algebra in its own 
right, the reduced Pontryagin algebra of X. Clearly H *(X *) is the direct sum 
of f1*(X*) and the free cyclic module generated by the homology class e of 
the base point. As e is the unit element of H * (X *), the essential structure of 
the latter is already contained in H * (X). Thus 

(7.12) Theorem If X is an H-space, then H *(X *) is a graded algebra with unit 
element e, and H*(X) is an ideal in H*(X*), complementary to thefree cyclic 
module Ae. D 

It may be useful to make explicit the product in the ideal H*(X). We have 
defined above a split monomorphism 

f3: Hq(X x X, X v X) ---* Hq(X x X); 

composing f3 with J1* : Hq(X x X) ---* Hq(X), we obtain a homomorphism 

'* : Hq(X x X, X v X) ---* Hq(X). 

An easy calculation, using Corollary (7.3), yields the formula 

(7.13) . 

since 1* is an epimorphism, this characterizes '*' The elements of the image 
of '* are called reductive. 

The cross-product is a pairing Hp(X) ® Hr(X) ---* Hq(X x X, X v X) 
(p + r = q). We leave it to the reader to verify that, if u E H p(X), V E Hr(X), 
then ,*(u x v) = u • v, the Pontryagin product in the ideal H*(X). Thus 

(7.14) Every decomposable element of H *(X) is reductive. Conversely, if 
H*(X) is torsion-free, then every reductive element is decomposable. D 

Suppose further that H*(X*) is torsion-free. Then the cross product pair
ing is an isomorphism 

H*(X*)®H*(X*)---*H*(X* x X*); 
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thus the homomorphism L\* may be regarded as a map 

H*(X *) ~ H*(X *) ® H*(X*), 

and this map, together with the algebra structure described above, makes 
H*(X*) into a Hop! algebra over A (cf. §8, below). The product in H*(X*) 
need be neither commutative nor associative; however, commutativity and 
associativity properties of the diagonal map carryover to the coproduct. 
Thus 

(7.15) Theorem If X is an H-space and H *(X *) is a torsionlree A-module (in 
particular, if A is a field), then H AX *) is a cocommutative and coassociative 
H opf algebra over A. 0 

As we remarked above, the analogue of Theorem (7.10) for H-spaces is 
false. The best we can do in this direction is 

(7.16) Theorem Let Y be an H-space, f, g: X ~ Y, and let x E Hq(X) be 
primitive. Then 

In fact,!. g is the composite 

and so 

X~XxX~YxY ~Y 

(f. g)*x = J1*(f x g)*L\*x = J1*(f x g)*(i 1*x + i2*x) 

= J1*(i 1*!*x + i2*g*x) = !*x + g*x. o 

Remark. Let W be an H-space, Y = W x W, so that Y is also an H-space. 
Then J1 0 (i1 x i2) 0 L\ = L\, and therefore [L\] = [i 1] • [i2]. But L\*(x) = 
i 1 *(x) + i2*(x) if and only if x is primitive. Thus the hypothesis of primitivity 
in Theorem (7.16) is essential. 

The above results dualize to cohomology. 

(7.1 *) The projections qi, qi : W(X) ~ W(X v X) represent the latter group as 
a direct sum. The dual representation as a direct product is given by ji, 
j! : Hr(x v X) ~ Hr(x). 0 

Consider the cohomology sequence 

6* /* 
~ W(X xX,XvX) ~ 

k* 
W(X x X) ~ W(XvX)~··· 
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of the pair (X x X, X v X), and let 

A* = p! o.n + p! 0 j! : Hr(x v X) ---> Hr(x x X). 

Now 

j! 0 k* 0 A * = i! 0 A * = j!, 

j! 0 k* 0 .Ie * = ii 0 .Ie * = ji , 

and it follows from (7.1)* that k* 0 .Ie * is the identity. Moreover, 1m A * = 

1m p! + 1m pi. Thus 

(7.2*) Theorem The injection k* : Hr(x x X) ---> H'(X v X) is a split epimor
phism, so that 

Hr(x x X) ~ H'(X v X) 8:) H'(X x X, X v X) 

for all r. Moreover, the injection 1* induces an isomorphism of 
H'(X x X, X v X) with the quotient group Hr(x x X)/Im p! + 1m p!. 0 

Composition of the inverse of the latter isomorphism with the natural 
projection of Hr(x x X) into its quotient group Hr(x x X)/Im p! + 1m p! 
is a homomorphism 13* : Hr(x x X) ---> H'(X x X, X v X), and we have 

(7.3*) Corollary The homomorphisms 

p!, p! : H'(X) ---> H'(X x X) 

1* : Hr(x x X, X v X) ---> Hr(x x X) 

represent the group Hr(x x X) as a direct sum 

Hr(x x X) ~ Hr(x) 8:) Hr(x) 8:) Hr(x x X, X v X). 

The dual representation as a product is given by 

it, i! : Hr(x x X) ---> Hr(x) 

13* : Hr(x x X) ---> H'(X x X, X v X). 

For each u E Hr(x x X), we have 

u = p!i!u + p!i!u + 1* f3*u. o 
An element x E Hr(x) is reductive if and only if x = A*l*y for some 

y E Hr(x x X, X v X). Let Ar(x) be the set of all reductive elements of 
Hr(x); it is a submodule of H'(X). Now H*(X *) is an algebra over A, the 
cohomology algebra of X *, under the cup product, and H*(X) is an ideal; 
H*(X *) is the direct sum of H*(X) with the free cyclic module generated by 
the unit element. If u E HP(X), v E Hq(X), then 

u x V E Hp+q(X x X, X v X), 
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and .1.*l*(u x v) = uv, their product in H*(X). Thus, if D*(X) is the submod
ule of H*(X) spanned by all such products (i.e., D*(X) is the square of the 
ideal H*(X)), then Dr(x) c N(X) for every r. The elements of Dr(x) are said 
to be decomposable. 

We leave it to the reader to verify 

(7.4*) Iff: X ~ Y, then f* .1.r(y) c .1.r(x) and f* Dr(y) c Dr(x). D 

(7.5*) If Hq(X) = 0 for all q < n, then .1.r(x) = Dr(x) = 0 for all q < 2n. 
D 

Suppose that H*(X) is free of finite type (i.e., Hr(X) is a free module of 
finite rank for each r). Then the cup product map is an isomorphism 

H*(X*)@H*(X*)~H*(X* x X*) 

which maps H*(X) @ H*(X) upon H*(X x X, X v X). Thus D*(X) = 
.1.*(X) in this case. 

Suppose that X is an H'-space with coproduct e, yEO Hq(X x X, X v X). 
Then .1.*l*y = e*k*l*y = 0, and therefore 

(7.8*) If X is a H'-space, then .1.r(x) = Of or all r. In particular, all cup products 
in H*(X) vanish. D 

(7.10*) Theorem If X is an H'-space,f, g : X ~ Y, and if yEO H'(Y), then 

(f + g)*y = f*y + g*y. 

For 

(f + g)*y = e*(fvg)*V*y = e*(fvg)*(q!y + q!y) 

= e*(q!f*y + q!g*y) = f*y + g*y. D 

Now suppose that X is an H-space with product p. Then p* : Hr(x) ~ 
H'(X x X). We shall say that x EO Hr(x) is primitive if and only if f3*p*x = 0. 
By Corollary (7.3*), this is so if and only if p*x = p! x + p! x. 

The injection l* : Hr(x x X, X v X) ~ H'(X x X) is a monomorphism, 
and the image of the homomorphism 

v* = p* - p! - pi : Hr(x) ~ H'(X x X) 

belongs to the submodule Ker i! n Ker i! = 1m l*. Thus there is a unique 
homomorphism r* : H'(X) ~ H'(X x X, X v X) such that /* : r* = v*. Evi
dently an element x EO Hr(x) is primitive if and only if r*x = 0. 

Suppose further that H*(X) is free and of finite type (i.e., Hr(X) is a free 
module of finite rank for each r). Then we may regard p* as a homomor
phism of H*(X *) into H*(X *) @ H*(X *). As such, it is readily verified that 
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(7.15*) Theorem If X is an H-space and H *(X) is free of finite type, then 
H*(X*) is a commutative and associative Hopf algebra over A. D 

When this is the case, an element is primitive if and only if it is a primitive 
element of the co algebra H*(X *). 

Again the analogue of Theorem (7.10*) for H-spaces fails, and we can 
only prove 

(7.16*) Theorem If Y is an H-space,f, g : X ~ Y, and if y E Hr(y) is primitive, 
then 

(f. g)*y = f*y + g*y. D 

We conclude this section by using the Kronecker index to relate the 
notions we have considered above in homology and cohomology. 

(7.17) Theorem Ifx E Hr(X) is primitive, then x is orthogonal to ~r(x). Con
versely, if H *(X) is free of finite type, and x is orthogonal to ~r(x), then x is 
primitive. 

Suppose x is primitive. Then, for all y E H'(X x X, X v X), we have 

<~*l*y, x) = <y, l*~*x) = 0 

and x is orthogonal to ~r(x) = Im(~* 0 1*). Conversely, suppose that x is 
orthogonal to ~r(x). Then <y, 1* ~* x) = 0 for all y E H'(X x X, X v X), 
and the hypothesis that H *(X) is free of finite type allows us to deduce that 
1* ~* x = 0, so that x is primitive. D 

(7.18) Theorem If X is an H-space and H *(X) is free of finite type, then 
H *(X *) and H*(X *) are dual Hopf algebras. 

Beweis klar! D 

8 Hopf Algebras 

Let X be a O-connected H-space, A a principal ideal domain, and let us 
assume throughout this section that 

(8.1) For each q, the homology module Hq(X; A) is afree module of finite rank. 

When this is so, we shall say that X has finite type. It follows from the 
Universal Coefficient Theorem that 

(8.2) The modules Hq(X; A), Hq(X; A) are dual A-modules. D 
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It follows from the Kiinneth Theorem that 

(8.3) The homology and cohomology cross products induce isomorphisms 

H*(X; A) ® HAX; A) ~ H*(X x X; A), 

H*(X; A) ® H*(X; A) ~ H*(X x X; A). o 

In this section we shall use these isomorphisms to identify H*(X x X; A) 
and H*(X x X; A) as the appropriate tensor products. Thus the diagonal 
map ~: X --+ X x X and the product J1: X x X --+ X may be considered to 
induce homomorphisms 

~* : H *(X) --+ H *(X) ® H *(X), 

J1*: H*(X) ®H*(X)--+ H*(X), 

as well as homomorphisms 

J1* : H*(X) --+ H*(X) ® H*(X), 

~* : H*(X) ® H*(X) --+ H*(X). 

(Here, and for the remainder of this section, we shall suppress the name of 
the coefficient domain A, writing H *(X), H*(X), instead of H *(X; A), 
H*(X; A». 
(8.4) Theorem Under the homomorphisms J1*, ~*' the module H *(X) is a 
Hop! algebra over A. Under the homomorphisms ~*, J1*, the module H*(X) is a 
Hop{ algebra over A. Moreover, H*(X) and H*(X) are dual Hop! algebras. 

o 

Remark. The standard reference for the theory of Hopf algebras is 
Milnor-Moore [1]. It should be remarked, however, that our terminology 
differs somewhat from theirs, in that we do not assume any commutative or 
associative laws in the definition of a Hopf algebra. Thus a Hopf algebra 
over A is a graded A-module H, together with maps 

</> : H ® H --+ H, 

IjJ : H --+ H ® H, 

such that the following diagrams are commutative: 



8 Hopf Algebras 

A@H 

H@A 

H@H 

\~ 
H 

/~ 
-- H@H 
1@'1 

6@1 - A@H 

~/ 
H 

- H@A 1 @6 
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where the unlabelled arrows decide the obvious isomorphisms and where 
t : H ® H -> H ® H is the twisting map defined by 

for x EO H p' Y EO H q • 

Thus H is an algebra with unit with respect to the maps 4>, '1 and H is a 
coalgebra with augmentation (counit) with respect to ljJ, 6, and the map 
4> : H ® H -> H is a homomorphism of coalgebras, while ljJ : H -> H ® H is a 
homomorphism of algebras (H @ H inheriting the obvious structure as 
algebra (co algebra) from the corresponding structure on H). 

We shall say that the Hopf algebra is associative (commutative) if and only 
if its underlying algebra has the property in question. (The term" commuta
tive" is used in the graded sense: H is commutative if and only if the diagram 

H 

H@H 

is commutative). Similarly, H is said to be coassociative (cocommutative) if 
and only if its underlying coalgebra has the requisite property. H is said to 
be biassociative (bicommutative) if and only if it is both associative and 
coassociative (commutative and cocommutative). Finally, H is said to be 
connected if and only if '1 maps A upon Ho (equivalently, 6\ Ho : Ho ~ A). Let 
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us observe that, if X satisfies the conditions of the first paragraph of this 
section, then H*(X) is connected, associative and commutative (and H *(X) 
is connected, coassociative and cocommutative). 

If H is a free Hopf algebra of finite type (i.e., H P is a finitely generated free 
A-module for every p), then the graded module H* such that 
HP = Hom(H P' A) is again a Hopf algebra, called the dual Hopf algebra of 
H. In fact, the natural map H* ® H* --+ (H ® H)* is an isomorphism; 
making use of this isomorphism, the product and coproduct in H* are the 
duals 

1jJ* : H* ® H* --+ H* 

tjJ* : H* --+ H* ® H* 

of the coproduct and product, respectively, in H, while the unit and augmen
tation maps 

E* : A --+ H*, 

Yf* : H* --+ A, 

are the duals of the augmentation and unit, respectively, in H. 
Let us observe that, since /; 0 Yf = 1 : A --+ H, the composite 

Ker 8 C H ---->- Cok n, i p ., 

where p is the natural projection, is an isomorphism. Thus it is convenient to 
identify them, so that H = Ker 8 = Cok Yf may be regarded (at our conve
nience) as either a submodule or a quotient module of H. If H is connected, 
then Ho = 0, Hn = Hn for all n > 0. 

An element x E H is said to be primitive if and only if x belongs to the 
kernel of the composite map 

- i IjJ P®P - -
H ---->- H ---->- H ® H ---->- H ® H. 

Note that, if H is connected, then x E Hn is primitive if and only if 

ljJ(x) = x ® 1 + 1 ®x. 

The primitive elements of degree n form a submodule Pn of Hn; the Pn 
determine a graded submodule P(H) of H. 

An element x E H is said to be decomposable if and only if x belongs to the 
image of the composite map 

H®H-~H®H~H-LH 
If H is connected, then an element x E Hn = Hn is decomposable if and only 
if x has the form 

where Y i E H Pi' Z i E H n- Pi' ° < Pi < n. The decomposable elements of degree 
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n form a submodule Dn of Hn, and the Dn determine a graded module D(H) 
of H. The elements of the quotient module Q(H) = H/D(H) are termed, by 
abuse of language, indecomposable elements of H. 

A useful observation is the following: 

(8.5) Let H be connected, and let K be a graded submodule of fl such that 
K + D(H) = fl. Let B be a basisfor K. Then B generates H as an algebra with 
unit. 0 

Let H be free of finite type. Then Cok £* is the dual space of Ker £ (and 
Ker 1]* of Cok 1]), so that we may regard the module H* as the dual space 
fl* of fl. Moreover i* : H* -> Cok £* and p* : Ker 1]* -> H*, play the same 
roles for H* that p and i play for H. It follows that 

(8.6) The module D(H*) is the annihilator of P(H), so that P(H) and Q(H*) (as 
well as Q(H) and P(H*)) are dual graded modules. 0 

Let H be associative. An element x E fl is said to have height h if and only 
if Xh = ° but xh - 1 +- 0; if no such h exists, we say that x has infinite height. 

(8.7) Theorem Let H be a connected, associative and commutative Hopf 
algebra over a field A, and let x E Hn be a primitive element. Let p (= ° or a 
prime) be the characteristic of A. Then 

(i) ifn is odd and p +- 2, x has height 2; 
(ii) if n is even and p = 0, then x has infinite height; 

(iii) if n is even and p is odd, then the height of x is 00 or a power of p; 
(iv) if p = 2, then the height of x is 00 or a power of 2. 

Since H is commutative, x 2 = (_1)nx2. Thus, if n is odd, 2x2 = ° and 
therefore x 2 = ° unless p = 2. Suppose, then that n is even or that p = 2. 
Since x is primitive, ljJ(x) = x ® 1 + 1 ® x, and therefore 

we can expand the latter by the binomial theorem to obtain 

Suppose that x has finite height h, so that X h - 1 +- 0, Xh = 0. If p = 0, the 
left-hand side of (8.8) is zero, while the right-hand side is non-zero, a contra
diction. If, on the other hand, p +- 0, then each of the mod p binomial 
coefficients m must vanish (i = 1, ... , p - 1), and this is well-known to 
imply that h is a power of p. 0 
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An important consequence is 

(8.9) Corollary If p = 0 and H has finite dimension, then H contains no primi
tive elements of even degree. 0 

Let us call the Hopf algebra H monogenic if and only if 

(1) H is connected; 
(2) H is commutative and associative; 
(3) as an algebra, H is generated by a single element x E H n • 

The element x is necessarily primitive, so that the coproduct ljJ is determined 
by (8.8), while the structure of H as an algebra is determined by Theorem 
(8.7). In fact, we have 

(8.]0) Theorem Let H be a monogenic Hopf algebra, generated by an element 
x E H n' over a field A of characteristic p. Then 

(i) if n is odd and p +- 2, H is the exterior algebra A(x); 
(ii) ifn is even and p = 0, H is the polynomial algebra A[x]; 

(iii) if n is even and p is an odd prime, either H ~ A[x] or H is a truncated 
polynomial algebra A[ x ]/(x pe ); 

(iv) if p = 2, then H ~ A[x] or H ~ A[x]/(xze ). 

In all cases, the coproduct in H is given by (8.8). o 
The importance of the notion of monogenicity is shown by 

(8.11) Theorem (Borel). Let H be a connected, associative and commutative 
H opf algebra of finite type over a perfect field A. Then H is isomorphic, as an 
algebra, with a tensor product of monogenic H opf algebras. 0 

(8.12) Corollary Let X be a O-connected H-space having finite type and let A 
be a field of characteristic p. Then the cohomology ring H*(X; A) is a tensor 
product ®r; 1 Bi , where each Bi is generated by one element Xi of degree ni · If 
ni is odd and p +- 2, Bi = A(x;}; ifni is even and p = 0, Bi = A[Xi]; ifni is even 
and p is an odd prime, then Bi = A[xJ or A[xJ/(xrt and if p = 2, then 
Bi = A[ xJ or A[ xJ/(x;ei ). 0 

(Note that the hypothesis that the field A be perfect is not needed here. 
For H*(X; A) ~ H*(X; Zp) ® A and we can first apply Theorem (7.11) for 
the perfect field Zp, and obtain the general result by forming the tensor 
product with A). 

(8.13) Corollary (Hopf). If X is a O-connected H-space, A is afield of charac
teristic zero, and if H*(X; A) is finite-dimensional, then H*(X; A) is an exte
rior algebra A(Xl' ... , x,) generated by elements Xi of odd degree. 0 
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This result of Hopf was the first general result on the homology of H
spaces. It was conjectured by Elie Cartan [1] and verified for the classical 
groups, by different methods, by Pontryagin [1] and Brauer [1]. 

As the theorem of Borel is a purely algebraic result we shall refrain from 
proving it here, referring the reader to Milnor-Moore [1]. The same state
ment applies to 

(8.14) Theorem (Samelson-Leray). Let H be a connected, biassociative, 
strictly commutative Hopf algebra over afield A. Suppose that H is generated, 
as an algebra, by elements of odd degree. Let {xa} be a basisfor the space P(H) 
of primitive elements of H. Then H is the exterior algebra A({xa})' D 

Remark 1. Because of the hypotheses on H, there is a unique homomor
phism of A{xa} into H which sends each element Xa into Xa' Theorem (8.14) 
states that this homomorphism is, in fact, an isomorphism. 

Remark 2. An algebra is said to be strictly commutative if and only if it is 
commutative and, in addition, X2 = ° for every element x of odd degree. 
Because the commutative law implies that 2X2 = 0, this additional condition 
has force only when the coefficient field has characteristic two. 

(8.15) Corollary If X is a O-connected homotopy associative H-space, A is a 
field of characteristic zero, and H*(X; A) is finite-dimensional, then H*(X; A) 
is an exterior algebra A(Xl' ... , Xl), where the Xi are primitive elements of odd 
degree. [] 

(8.16) Corollary If X is a connected compact Lie group, and A a field of 
characteristic zero, then H*(X; A) is an exterior algebra generated by primi
tive elements of odd degree. [] 

EXERCISES 

1. Let (X, A) be an NDR-pair (in the category % *), and suppose that X is contract
ible. Prove that the pairs (X, A) and (TA, A) have the same homotopy type, and 
therefore X/A has the same homotopy type as SA. 

2. Let P : X -> B be a fibration, and suppose that X is contractible. Show that P has 
the same fibre homotopy type as PI : P(B) -> B, and therefore the fibre of P has 
the same homotopy type as Q(B). 

3. Prove that, if n is even, sn is not an H-space. 

4. Prove that p 2(C) is not an H'-space. 

5. Let X be an H' -space. Find a coproduct in X /\ Y corresponding to the natural 
operation of Theorem (5.14). 

6. Let X be an H'-space. Find a product in F(X, Y) corresponding to the natural 
operation of Theorem (5.16). 
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7. Let Y be an H-space. Find a product in F(X, Y) corresponding to the natural 
operation of Theorem (5.18). 

8. Let X be an H'-space. Prove that [TX, X; Y, B] has a natural composition. If X 
is homotopy associative (group-like), then [T X, X; Y, B] is a monoid (group). 

9. If X is an H'-space, the restriction map induces a homomorphism 

0*: [TX, X; Y, B] -+ [X, Bl 

Moreover, there is an exact sequence 

[SX, B] -+ [SX, Y] -+ [TX, X; Y, B] -+ [X, B] -+ [X, Yl 

10. Show that there is a natural group structure in [X, Y] where X ranges over all 
CW -complexes of dimension ::; 2n and Y over all n-connected spaces. 

11. Let X be an orient able n-manifold, and suppose that a fundamental class 
Z E H.(X) is spherical. Prove that X is a homology sphere (i.e., Hq(X) = 0 for 
0< q < n). 



CHAPTER IV 

Homotopy Groups 

In Chapter III we saw that, if X is any space with base point, then 1!n(X) = 

[sn, XJ is a group for any positive integer n. In fact, 1!n is a functor from the 
category :f{ 0 to the category of groups if n = 1, abelian groups if n > 1. In 
certain respects, they resemble the homology groups, and one of the objec
tives of this chapter is to pursue this analogy and see where it may lead. 

One point of similarity is the existence of relative groups. The nth relative 
homotopy group of a pair (X, A) (with base point * E A) is the set 
1!n(X, A) = [En, sn- 1; X, AJ; it is a group for n = 2 and abelian for n ~ 3. 
Moreover, 1!n is a functor. The restriction map sending [En, sn- 1; X, AJ into 
[sn-l, AJ is a homomorphism 0* : 1!n(X, A) -+ 1!n-l(A), and we may form the 
homotopy sequence of the pair. Like the homology sequence, it is exact. 
These elementary properties are developed in §§1-2. 

The fundamental group owes its existence to Poincare [1]. In 1932 
Cech [1 J suggested how to define higher homotopy groups, but he did not 
pursue the notion and it was Hurewicz who first studied them, as homotopy 
groups of the appropriate function spaces, in 1935-1936 [1]. In 1939 
Eilenberg [IJ showed how the fundamental group operates on the higher 
homotopy groups. In the case of a pair, (X, A), the group 1!1 (A) operates on 
1!n(X, A), as we saw in §1 of Chapter III; in fact, 1!1 (A) is a group of operators 
on the entire homotopy sequence, as we see in §3. 

The connection between homology and homotopy is made explicit in §4, 
with the introduction of the Hurewicz map. This is a homomorphism 
p: 1!n(X) -+ Hn(X); if IlC E 1!n(X) is represented by a map f: sn -+ X, then 
p(llC) = fAs), where s generates the infinite cyclic group Hn(sn). The Hurewicz 
map can be relativized, and gives rise to a map of the homotopy sequence of 
a pair into its homology sequence. 

157 
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Jr. the next two Sections we develop machinery needed for the proof of 
the Hurewicz Theorem: if X is (n - 1 )-connected, then p : nn(X) ---+ H n(X) is 
an isomorphism. The tools developed are firstly, the Homotopy Addition 
Theorem, a formula analogous to the boundary formula in simplicial homol
ogy, and secondly, a sequence of functors leading to groups intermediate 
between the homology and homotopy groups. These are due to 
Eilenberg [3] in the absolute case and to Blakers [1] in the relative. 

The Hurewicz Theorem and its relative counterpart are proved in §7. 
Sufficient conditions for the converse are developed, and a useful theorem of 
1. H. C. Whitehead [3] is proved: a map f: X ---+ Y which induces isomor
phisms of the homotopy groups also induces isomorphisms of the homology 
groups. 

While homology groups behave very well under cofibrations, homotopy 
groups do not. For fib rations the situation is reversed. There is an exact 
sequence relating the homotopy groups of the fibre, total space and base 
space of a fibration. Moreover, the fibres over two different points of the 
(pathwise connected) base are connected by homotopy equivalences depend
ing on the choice of a homotopy class of paths joining the two points. Thus 
the fundamental group of the base acts on the homology groups (and in 
many cases, on the homotopy groups) of the fibre. These results are 
developed in §8. The last two sections apply the theory of this Chapter to 
certain special fibrations and yield information on the homotopy groups of 
certain compact Lie groups and their coset spaces. 

1 Relative Homotopy Groups 

We have defined the higher homotopy groups nn(X) = [sn, Xl They are 
groups for n :2: 1, and even abelian groups if n :2: 2. It is often convenient to 
allow n to be zero; in this case no(X) = [SO, X] is in one-to-one correspon
dence with the set of path-components of X. It has no natural group struc
ture, but is to be regarded simply as a set with base point. 

The homotopy groups are functors, and therefore it is natural to study the 
properties of the homomorphism nn(f) = f* : nn(X) ---+ nn(Y) induced by a 
map f: X ---+ Y. Of special interest is the case when f is an inclusion. Even 
when this is so,f* need not be a monomorphism; for example, if X is a space 
with nn(X) =f= 0, we may consider the inclusion map i: X ~ TX. Since TX is 
contractible, nn(TX) = 0 and therefore i* = 0 is not a monomorphism. 

The method we shall use for studying this question is one that occurs 
again and again in algebraic topology. We describe first an example which 
will be familiar to the reader from his study of elementary topology. Suppose 
that K is a simplicial complex, L a subcomplex of K, a E Hq(L), and 
i*(a) = O. (Again i*: Hq(L) ---+ Hq(K) is the injection). If Z E Zq(L) is a cycle 
representing a, then the condition i*(a) = 0 implies that Z ~ 0 in K; i.e., there 
is a chain C E Cq + 1(K) such that 8c = z. Thus c is a relative cycle of K 
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modulo 1., and the relative homology group Hq+ 1 (K, L) is composed of 
equivalence classes of such relative cycles. And the reader will recall that the 
blanks in the diagram 

can be filled in by inserting the appropriate relative groups to obtain the 
homology sequence of (K, L) whose exactness is so crucial in homology 
theory. 

This suggests the desirability of defining relative homotopy groups 
Trn+ I(X, A). Again, let lI. E Trn(A), i*(lI.) = 0, where i*: Trn(A) ---+ Trn(X) is the 
injection; and let f: sn ---+ A be a map representing lI.. (Let us recall that, in §2 
of Chapter III, we established explicit identifications of the n-fold reduced 
join S /\ ... /\ S with the unit sphere sn in Rn + I, and of TSn with the unit disc 
En+ I). Then f, considered as a map of sn into X, is nullhomotopic, so that 
there is a map g: (En+ I, sn) ---+ (X, A) such that g I sn = f This suggests that 
we define Trn+ 1 (X, A), for all n ~ 0, to be the set of homotopy classes of maps 
of (En+ \ sn) into (X, A). 

This defines Trn+ 1 (X, A) as a set. In order to impose a group structure on 
this set, we could relativize the discussion of §5 of Chapter III as in Exercise 
8 of the same Chapter. However, the following device makes it unnecessary 
to do so. Let on+ I(X, A) be the function space of maps of (En+ I, sn) into 
(X, A), so that Trn + 1 (X, A) may be regarded as the set of path-components of 
on+ I(X, A). If n ~ 1, 11n+ I(X, A) is a subspace of the function space 
F(T /\sn, X) = F(T /\Sl /\sn-I, X) ~ F(SI /\ T /\sn-l, X) which is homeo
morphic by (2.9) of Chapter III with F(S1, F(En, X)) = OF(En, X). Under 
the homeomorphism the subspace on+l(x, A) obviously corresponds to 
o(on(x, A)). Thus 

(1.1) Ifn ~ 1, Trn+l(X, A) is in one-to-one correspondence with Trl(on(x, A)). 
D 

We shall use the above one-to-one correspondence to impose a group 
structure on Trn+ 1 (X, A) for n ~ 1. On the other hand, Trl (X, A) is to be 
considered merely as a set with base point. 

If n ~ 2, then on(x, A) is homeomorphic with the H-space 
o(on-I(X, A)). Hence 

(1.2) If n ~ 2, Trn+ I(X, A) is an abelian group. D 

It is clear that Trn + 1 is a functor from the category of pairs (of compactly 
generated spaces with base point) into the category of 

I sets with base point 

! groups 

I abelian groups 

if n = 0, 

if n = 1, 

if n ~ 2. 
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If A = {*}, the base point of X, then nn+l(X, A) is homeomorphic with 
F(T /\ sn/sn, X) = F(SI /\ sn, X) = F(sn+ 1, X) = nn+ 1(X) and this induces 
an isomorphism nn+l(X, {*}) ~ nn+l(X), 

At this point it seems appropriate to pause in order to make the group 
operations in nn(X) and nn+ 1 (X, A) more explicit. Let ro : (I, i) --+ (SI, *) be 
the identification map; then ro" = ro x ... x ro: In --+ SI X ••• X SI. Compo
sition of ro" with the natural proclusion S1 x '" X SI --+ SI /\ ... /\ SI = sn 
yields a relative homeomorphism ron : (In, in) --+ (sn, *). We may use this map 
ron to identify nn(x) with the function space rln(x) = F(In, in; X, *), and 
nil(X) = [sn, X] with [In, in; X, *].lff: sn --+ X represents IX E niX), we shall 
say that f 0 ron : (In, in) --+ (X, *) represents IX. It then follows from the 
definitions of the coproduct in SI given in (5.13) of Chapter III that 

(1.3) Iff, g : (In,in) --+ (X, *) represent IX, p E nn(X), respectively, then IX + p is 
represented by the map:f + g: (In, in) --+ (X, *) given by 

(f )( ) _{f(2t1,t2, ... ,tn) (O::s;tl::S;!)' 
+g t 1,···,tn - (2 1 ) (1 1) g t 1 - ,t2,···,tn z::s;t 1 ::s;· 

Moreover, the operation (f, g) --+ f + g makes Qn(x) into an H-space. 0 

If 1 < k ::s; n, we can compose f and g in a different way, to obtain a new 
map h, given by 

(O::s; tk ::s; !), 
H::s; tk ::s; 1). 

We shall say that h is obtained from f and g by "adding along the kth 
coordinate." It is intuitively evident that h represents the sum IX + P of the 
elements represented by f and g. However, to give a direct argument by 
writing down explicit formulae would be very complicated and ugly. Instead, 
we may use the results of §5 of Chapter III as follows. The natural homeo
morphism F(Sk-l /\ sn-k+ 1, X) with F(Sk-l, F(sn-k+ 1, X)) induces a homeo
morphism of Qn(x) with Qk-1(Qn-k+l(x)), as well as an isomorphism of 
nn(X) with nk_l(Qn-k+ I(X)). The latter sethas two compositions, the former 
coming from the coproduct in Sk-1, the latter from the above H-structure in 
Qn-k+ 1(X). By Theorem (5.21) of Chapter III, these two compositions coin
cide. But these two operations correspond to those obtained by adding 
along the first and the kth coordinates, respectively. Thus 

(1.5) If f, g: (In, in) --+ (X, *) represent IX, P E nn(X), respectively, and if 
h: (In, in) --+ (X, *) is defined by (1.4), then h represents IX + p. 0 

We can treat relative homotopy groups in a similar manner. Composition 
of the proclusion 1 x ron: I x In --+ T X SI X .•• X S1 with the proclusion 
T x S1 X ••• X S1 --+ T /\ sn is a relative homeomorphism ro~+ 1 : (1"+ 1, 
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tn+ 1) ~ (En+ 1, sn) whose restrIctIOn to tn+ 1 maps the subset P = 0 x 
r u I x tn into the base point and is a relative homeomorphism of (1 x r, 
1 x tn) upon (sn, *) (in fact, w~+ 1 (1, x) = wn(x) for x E In). Composition with 
W~+ 1 maps the function space nn+ l(X, A) homeomorphically upon the 
function space nn+ l(X A) = F(ln+ 1 tn+ 1 p. X A *) Again iff· (T /\ sn , " , , ,. ,. , 
sn) ~ (X, A) represents rL E nn+ 1 (X, A), we shall say thatf 0 W~+ 1 represents 
rL. 

We can repeat essentially the same argument as in the case of the absolute 
homotopy groups to obtain 

(1.6) Let f, g : W, tn, p-l) ~ (X, A, *) represent rL, f3 E nn(X, A), respectively. 
Let 1 < k :s; n, and define h by (1.4). Then h : W, tn, p- 1) ~ (X, A, *) repre
sents rL + f3 E nn(X, A). 0 

(Note that, if k = 1, the formula (1.4) does not define a continuous func
tion. In particular, if n = 1, our procedure does not define a composition in 
nn(X, A». 

Remark. Although no(X, A) is not defined, it is sometimes convenient to 
use the phrase" no(X, A) = 0" to mean that (X, A) is O-connected, or equiv
alently, that every path-component of X meets A. 

2 The Homotopy Sequence 

Just as in homology theory, we can define a boundary operator on relative 
homotopy groups. In fact, iff: (En+ 1, sn) ~ (X, A), the homotopy class of 
f I sn : sn ~ A depends only on that of f, so that we may define 
0n+ 1 = 0n+ 1 (X, A) : nn+ 1 (X, A) ~ nn(A) by On+ l(rL) = [J I sn]. 

(2.1) The map 0n+ l(X, A): nn+ l(X, A) ~ nn(A) is a homomorphism, ifn > O. 

To see this, we represent nn+l(X, A) and nn(A) as nl(nn(x, A)) and 
nl(nn-l(A», respectively. The restriction map r: nn(x, A) ~ nn-l(A), 
which associates to each map f : (En, sn-l) ~ (X, A) its restriction r(f) = 
f I sn-l : sn-l ~ A, is continuous, by (4.22) of Chapter I; moreover, 
0n+ l(X, A) = nl(r), the homomorphism of fundamental groups induced by 
~ 0 

(This can also be seen to follow from (1.5) and (1.6». 
Let R be the functor which assigns to each pair (X, A) the space A, and to 

each map f: (X, A) ~ (Y, B) its restriction f I A: A ~ B. It is then im
mediately clear that 

(2.2) The operation 0n+ 1 is a natural transformation of the functor nn+ 1 into 
the functor nn 0 R. 0 



162 IV Homotopy Groups 

We can now set up the homotopy sequence of a pair (X, A). Let 
i: A c+ X, j : (X, *) Co (X, A); then we have injections 

i* = nn(i) : nn(A) ---> nn(X), 

j* = nn(j) : nn(X) ---> nn(X, A), 

as well as 

0* = 0n+ 1 (X, A) : nn+ 1 (X, A) ---> nn(A). 

Thus we have a sequence 

0* i* ... ---> nn+ 1 (X, A) ) nn(A) ----» nn(X) 

(2.3) 

called the homotopy sequence of the pair (X, A). 

(2.4) Theorem The homotopy sequence (2.3) of the pair (X, A) is exact. 

(Note that the last three terms in the sequence are not groups, but merely 
sets with base point, and the last three maps are just base point preserving 
functions. Moreover, no (X, A) is not defined. Even in these cases, exactness 
has the usual meaning: the image of each map is the" kernel" of the next, 
i.e., the counterimage of the base point. In fact, a little more is true; cf. 
Exercise 2 below). 

The proof of Theorem (2.4) is divided into six parts. 
(1) i* 0°* = O. For iff: (En+l, sn)---> (X, A) represents rx E nn+1(X, A), 

thenf Isn: sn ---> A represents o*(rx), and i of Isn: sn ---> X represents i*o*(rx). 
But f: TSn ---> X is a nullhomotopy of i 0 f I sn. 

(2) j* 0 i* = O. For if f: sn = S1 /\ sn-1 ---> A represents rx E nn(A), then 
f 0 (w /\ 1) : (TSn-l, sn- 1) ---> (A, *) represents rx, and 

l' = j 0 i 0 f 0 (w /\ 1) : (Tsn- 1, sn- 1) ---> (X, A) 

represents j* i*(rx). But 1'(Tsn-1) c A, and the contractibility of the cone 
Tsn- 1 implies that l' is nullhomotopic. 

(3) 0* 0 j* = O. For if f : sn = S1 /\ sn-1 ---> X represents rx E nn(X), then 
1'=jofo(w/\1):(Tsn-1, sn-1)---> (X, A) representsj*(rx), and 1'\sn-1 
represents 0* j*(rx). But 1'(sn-1) = *. 

(1') Kernel i* c Image 0*. For if f: sn ---> A is a map representing 
rx E Kernel i*, and g: Tsn ---> X is a nullhomotopy of i 0 f, then the map 
g: (Tsn, sn) ---> (X, A) represents an element {3 E nn+ 1 (X, A) and 0*({3) = rx. 

(2') Kernel j * c Image i* . F or iff: (En, sn- 1) ---> (X, *) represents an ele
ment rx E Kerne!j*, thenj 0 fis nullhomotopic. Py Lemma (3.2) of Chapter 
II, j 0 f is compressible; i.e.,J is homotopic (reI. sn- 1) to a map of En into A. 
The latter map represents an element {3 E nn(A) such that i*({3) = rx. 
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(3') Kernel 0* c Image j*. For if f: (En, sn-l) ---+ (X, A) represents 
a E Kernel 0 *, then f I sn- 1: sn- 1 ---+ A is nullhomotopic. By the homotopy 
extension property, f is homotopic to a map 1': En ---+ X such that 
f(sn- 1) = *. Then l' represents an element f3 E nn(X) such that j*(f3) = a. 

D 

(2.5) Corollary For any space X, nn(X, X) = 0 for all n 2>: 1. o 

This follows formally from Theorem (2.4), even if n = I! (The astute 
reader will, of course, have recognized that Corollary (2.5) was used at one 
point in the proof of Theorem (2.4); in fact, the proof of Corollary (2.5) was 
essentially given there). 

Let (X, A, B) be a triple in ';['0' Then we have injections 

k* : nn(A, B) ---+ nn(X, B), 

1* : nn(X, B) ---+ nn(X, A), 

as well as a boundary operator 

0*: nn+ l(X, A) ---+ nn(A, B) 

which is defined as the composite 

nn+l(X, A)---+nn(A)---+nn(A, B) 

where the first map is the boundary operator of the homotopy sequence of 
the pair (X, A), while the second is the injection. We then have a commuta
tive diagram (Figure 4.1) consisting of four sequences arranged along si
nusoidal curves. Those numbered 1;2,3 are the homotopy sequences of the 
pairs (A, B), (X, B), (X, A) respectively; the fourth is the homotopy se
quence of the triple (X, A, B). That 1* 0 k* = 0 follows from commutativity 
of the diagram 

I I 
of injections and Corollary (2.5). Routine diagram-chasing, as in the analo
gous situation in homology theory completes the proof of 

(2.6) Theorem The homotopy sequence of a triple (X, A, B) is exact. 0 

Let us recall that in §2 of Chapter II we established our Fundamental 
Notational Convention. As we promised the reader there, the analogous 
convention will be applied to homotopy groups. 
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Figure 4.1 

3 The Operations of the Fundamental 
Group on the Homotopy Sequence 

We have seen in Chapter III how the fundamental group 7r1(A) operates on 
the homotopy groups 7rn(A). Moreover, 1t1 (A) operates on the relative homo
topy groups 7rn(X, A). Finally, the injection 7r1(A) ~ 7r1 (X), together with the 
operation of 7r1 (X) on 7rn(X), defines an operation of 7r1 (A) on 7rn(X), Thus 
7r 1(A) operates on each of the terms of the homotopy sequence of (X, A). 

(3.1) Theorem If (X, A) is a pair, thefundamental group 7r1(A) operates on the 
homotopy sequence of (X, A); i.e., the maps i*, j*, 0* of the sequence are 
operator homomorphisms. 

In diagrammatic terms, this means that, for each ~ E 7r1 (A), the diagram 

... ~1t (X A) 0. 1tn(A) 
i. 

1tn(X) 
j. 

1tn(X, A) ~ ... n+ 1 , -----+ -------+ -------+ 

I !~ I !~ I !~ l!~ 
···~1tn+1(X,A) 

0. 
1tn(A) 

i. 
1tn(X) 

j. 
1tn(X, A) ~ ... -----+ -------+ -----+ 

(where 1] = i*(~» is commutative. 
The easy proof of the theorem is left to the reader. D 
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The operations of nl (A) on nn(A) and nn(X, A) are consistent with the 
group operations in the latter sets. Specifically, 

(3.2) Theorem If ~ E nl (A), then r~: nn(A) --+ nn(A) and r~ : nn+ 1 (X, A)--+ 
nn+ 1 (X, A) are homomorphisms whenever n 2: 1. 

We shall prove this for the relative groups; the proof for the absolute 
groups is entirely similar. Let ~ E n 1 (A), and let u : (I, t) --+ (A, *) be a path 
representing ~. What has to be shown is that, if fo ~fl' go ~ gl' then 

u u 

fo + go ~ fl + g l' We shall use the representation of nn + 1 (X, A) given at the 
u 

end of§1. Thusfo'!!> go, gl are maps of (r+l, tn+1, r) into (X, A, *) and 
there are homotopies!t, gt : (r+ \ r+ 1) --+ (X, A) offo tofl and go to gl such 
that !t(r) = gt(r) = u(t) for 0 ::::; t ::::; 1. Define ht : (In+ 1, tn+ 1) --+ (X, A) by 
Formula (1.4) with k = 1, say. Then ht is well-defined and is the desired free 
homotopy of fo + go to fl + g 1 along u. D 

Let wn(X) be the subgroup of nn(X) generated by all elements ofthe form 
IX - r~(IX) with ~ E nl (X), IX E nn(X), and let n:(X) be the quotient group 
nn(X)/wn(X), Note that, if n = 1, wn(X) is just the commutator subgroup of 
nn(X). 

Similarly, let w~(X, A) be the subgroup of nn(X, A) generated by all ele
ments of the form IX - r~(IX) with ~ E nl(A), and let n~(X, A) be the quotient 
group nn(X, A)/w~(X, A). 

We prove this by the method of the universal example. Indeed, let 
h: (E2 v E2, 8 1 V 8 1) --+ (X, A) be a map such that h 0 jl : (E2, 8 1) --+ (X, A) 
represents IX and h 0 j2 : (E2, 8 1) --+ (X, A) represents /3. Then the elements 11, 
12 E n2(E2 v E2,81 v 81)representedbyjbh: (E2,81)--+(E2 v E2,81 V 8 1) 
have the property that h*(ld = IX and h*(12) = /3. Then, if A = 0*12, we 
have h*(A) = ~ E nl(A), and 

h* r~('d = ri, (A)(h*(ld) , 

= r~(IX). 

If Lemma (3.3) holds for the pair of elements 11' 12 E n2 (E 2 VE2, 8 1 v81), we 
have r~(ld = 12 + 11 - 12 and therefore 

h* r~(ld = h*(12 + 11 - 12) 

= h*'2 + h*ll - h*12 

= /3 + IX - /3. 
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Therefore it suffices to prove the special case. In this case, 

a* «(II) = rJc(a* Id by Theorem (3.1), 

= 2(a*ldr1 
= (a* 12)(a* ll)(a* 12f I by definition of .Ie, 

= a*(12 + II - 12) since a* is a homomorphism. 

But E2 v E2 is contractible, and it follows from the exactness of the homo
topy sequence of (E2 v E2, SI V SI) that 

a*: Jr 2 (E2 vE2 , SI VS1) ...... JrI(SI vS I) 

is an isomorphism. Hence 

r~(ld = 12 + II - 12· 

(3.4) Corollary The group Jr1(X, A) is abelian. 

For w'(X, A) contains all elements of the form 

a - r~(a) = a - f3 - a + f3 

o 

(~ = a * Ii as above) and these generate the commutator subgroup. 0 

(3.5) Corollary The image of the injection Jr2(X) ...... Jr 2 (X, A) is contained in 
the center of Jr 2 (X, A). 0 

A space A, or a pair (X, A), is said to be n-simple if and only if Jrl(A) 
operates trivially on Jrn(A), Jrn(X, A), respectively. A space or pair which is 
n-simple for every n is said to be simple. Theorems (4.18) and (4.19) of 
Chapter III then imply 

(3.6) Every H-space or H-pair is simple. o 

4 The Hurewicz Map 

Like the homology groups, the homotopy groups are functors from the 
category of pairs to that of abelian groups. The resemblance is enhanced by 
the fact that the homotopy sequence of a pair, like the homology sequence, is 
exact. A more precise connection between them, due to W. Hurewicz, is a 
homomorphism p: Jrn(X, A) -4 Hn(X, A), defined as follows: if f: (En, 
Sn-I) ...... (X, A) represents a E Jrn(X, A) and e E Hn(E", sn-l) is a generator, 
then p(a) =.f~(e) E Hn(X, A). That p(a) is well-defined follows from the 
Homotopy Axiom for homology theory). 
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(4.1) Theorem The Hurewicz map p: 1tn(X, A) -+ Hn(X, A) is a homomor
phism if n > 1 or n = 1 and A = {*}. 

Letf, g: (En, sn-l) -+ (X, A) represent r:t., [3 E 1tn(X, A), respectively. Then 
r:t. + [3 is represented (cf. Exercise 8 of Chapter III) by the composite 

(En, sn- 1) TO. (En V En, sn- 1 V sn- 1) f V 9 • 

(XvX, AvA) v . (X, A) 

(Let (J: sn- 1 -+ sn- 1 V sn- 1 be the coproduct which was defined in §5 of 
Chapter III. Then T8 maps TSn- 1 = En into T(sn- 1 V sn- 1) = En V En and 
its restriction to sn- 1 is the map 8). 

It suffices, by (7.1) of Chapter III, to show that (T8)*(e) = jl*(e) + h*(e), 
where j 1, jz : (En, sn-l) -+ (En V En, sn- 1 V sn-l) are the inclusions. For then 

(4.2) p(r:t. + [3) = V *(fv g)*(Jl*(e) + jz*(e) 

The diagram 1 

= V *(Jl* f*(e) + jz*g*(e)) = f*(e) + g*(e) 

= p(r:t.) + p([3). 

Hn(E", S"-I) 

(4.3) 

as well as the diagrams obtained from it by replacing 8 by j 1 and by j z, is 
commutative, and the homomorphisms 8* are isomorphisms (by exactness 
of the homology sequences of the appropriate pairs and the fact that En and 
En V En are contractible). Thus it suffices to show that 

(4.4) 

Now jl* and h* represent Hn_ 1 (sn-l V sn-l) as a direct sum, while ql*, 
qz* : H n- 1 (sn- 1 V sn- 1) -+ H n- 1 (sn- 1) is the dual representation of the same 
group as a product. The relation (4.4) then follows from the relations 
ql 0 8 ~ 1 ~ qz 08 of (5.1), (5.2) of Chapter III. 

This proves the theorem in the relative case; that in the absolute case 
follows by a slight simplification of the same argument. 0 

(4.5) Corollary The Hurewicz map p: 1tn(sn) -+ Hn(sn) is an isomorphism for 
n :::" 1. 

1 In this, as in all other diagrams involving homology groups of spaces with base point, H .(X) is 
an abbreviation for Hq(X, *). 
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It was proved in §3 of Chapter I that every map ofSn into itself of degree 0 
is nullhomotopic. Now, if f: sn ~ sn represents IY. E 1tn(sn), then p(lY.) = 

f.(s) = d(f) . s for a generator s of Hn(sn). Thus p is a monomorphism. But if 
f is the identity map, then d(f) = 1 and hence p is a epimorphism as well. 

D 

(4.6) Corollary The Hurewicz map p: 1tn(En, sn-l) ~ Hn(En, sn-l) is an iso
morphism for n 2': 2. D 

The definition of the Hurewicz map depends on the choice of a generator 
en of the homology group Hn(Tsn- \ sn-l). As the group in question is 
infinite cyclic, this determines p up to a sign. It is desirable, for two reasons, 
to make this choice explicit. 

The first reason is that we may wish to compare the homotopy and 
homology sequences of a pair (X, A). In particular, there is a diagram 

1tn(X, A) 
a. 

1tn-t(A) --+ 

(4.7) pi Ip 

Hn(X, A) -----+ Hft-t(A) a. 
which is commutative up to sign for arbitrary choices of the generators en' 
en - 1. To make it strictly commutative entails relating the choices in consecu
tive dimensions. 

The second reason is that in certain situations it may be convenient to use 
other spaces than the standard n-cell En to define elements of homotopy 
groups. Indeed if E is an n-cell with boundary E,f: (E, E) ~ (X, A) a map, 
and h: (En, sn- 1) ~ (E, E) a homeomorphism, then f 0 h represents an ele
ment IY. E 1tn(X, A), and it is convenient to say that f represents IY.. The ele
ment depends on the choice of the homeomorphism h. Now the group 
1tn(E, E) is, by Corollary (4.6), an infinite cyclic group, and h represents a 
generator; thus IY. is determined up to a sign. If, however, En has been given a 
standard orientation, and if E is oriented, we may normalize the choice of h 
by requiring that it preserve orientation. 

Let us recall, then, that if E is an n-cell, the boundary E of E is uniquely 
characterized, by Brouwer's theorem of invariance of domain, as the image 
of An under any homeomorphism of An with E. An orientation of E is just a 
generator e of the infinite cyclic group H n(E, E); the pair (E, e) is called an 
oriented n-cell. If S is an n-sphere (with base point), an orientation (J of S is a 
generator of the infinite cyclic group H n(S, .); the pair (S, (J) is called an 
oriented n-sphere). If E is an n-cell with base point * E E, then E is an 
(n - 1 )-sphere, and the isomorphism a.: H n(E, E) ~ H n- 1 (E, .) carries 
an orientation e of E into an orientation a. e of E; we say that e and a. e are 
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coherent. Let E be an n-cell, E' an (n - I)-cell contained in E; we shall say 
that E' is a face of E if and only if the pairs (Lln, LlO- l ) and (E, E') are 
homeomorphic. It follows that, if E" is the closure of E - E', then E" is also a 
cell with E' n E" = E' = E", the injectionj*: Hn- 1(E', E')--,> Hn- l (E, E") is 
an isomorphism, and the composite of j; 1 with the boundary operator 

o~: Hn(E, E)--,>Hn- l (E, E") 

of the homology sequence of the triple (E, E, E") is an isomorphism, called 
the incidence isomorphism [E : E']. We then say that orientations e, e' of E, E' 
are coherent if and only if [E : E']e = e'; and when this is so we also say that 
the orientations O*e of E and e' are coherent. 

We now choose definite orientations of many of the cells and spheres to 
be encountered later. 

SO = t = {a, I} is oriented by the homology class So of the point 1. 
T is oriented by the element t such that o*t = So. 

S1 is oriented by S = ID*(t), where ID: (T, t) --'> (SI, *) is the identification 
map. 

sn = S1 1\ .. , 1\ SI is oriented by Sn = S 1\ .•. 1\ S. 
En = T 1\ sn- 1 is oriented by en = t 1\ Sn- l' 

Ll 0 is oriented by the homology class bo of the point eo . 
Llo- 1 C An is oriented so that the map do: Lln- l --'> Llo- l C Lln is 

orientation-preserving, and Lln is oriented coherently with Llo-l. 
Clearly (Tsn- 1)" = sn- 1, and TSn- 1 and sn- 1 are coherently oriented. It 

then follows that 

(4.8) The diagram (4.7) is commutative. 

Thus p is a map of the homotopy sequence of (X, A) into its homology 
sequence. 

(4.9) The homomorphism p : 1tn(X) --'> Hn(X) annihilates the subgroup wn(X), 
and so induces a homomorphism 

(4.10) The homomorphism p: 1tn(X, A) --'> Hn(X, A) annihilates the subgroup 
w~(X, A), and so induces a homomorphism 

The proofs of these two statements are similar; we prove the first one. Let 
!Y. E nn(X), ~ E 1t! (X), and let a : sn --'> X and a' : sn --'> X be representatives of 
!Y., r~(!Y.), respectively. Then a and a' are homotopic as free maps, and 
therefore 
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5 The Eilenberg and Blakers 
Homology Groups 

IV Homotopy Groups 

In this section we introduce a sequence of groups, intermediate between the 
homotopy and the homology groups. Those groups are singular groups, 
based on singular simplices which are subjected to certain auxiliary condi
tions. These groups, as the names suggest, were defined by Eilenberg [3] in 
the absolute case and by Blakers [1] in the relative. 

Let (X, A) be a pair with base point *. For simplicity, we shall assume 
that X and A are O-connected. Let G(n)(x, A) be the subcomplex of the total 
singular complex 6(X) of X consisting of all singular simplices u : M --> X 
such that u maps the vertices of ;'I,.q into * and the n-skeleton of ;'I,.q into A. It is 
clear that 6(n)(x, A) is indeed a subcomplex. Moreover, 

6(X) ::::> 6(O)(X, A) ::::> 6(1)(X, A) ::::> ••• , n 6(n)(x, A) = 6(O)(A, *), 

while 6(n)(x, A) and G(O)(A, *) have the same q-simplices for all q :s:; n. It is 
also useful to observe that, if q > n, a singular q-simplex belongs to 
G(n)(x, A) if and only if all of its faces do. 

(5.1) Theorem If (X, A) is n-connected, the inclusion map of the pair 
(G(n)(x, A), 6(O)(A, *)) into the pair (G(X), G(A)) is a chain equivalence of 
pairs. 

This is proved by constructing a chain deformation retraction. 
Specifically, we construct, inductively for each singular simplex u : ;'I,.q --> X a 
singular prism Pu: I x ;'I,.q --> X with the following properties 

(1) (Pu) 0 io = u, 
(2) (Pu) 0 i l E 6(n)(x, A), 
(3) P(u 0 dJ = (Pu) 0 (1 x di ), 

(4) Pu is stationary ifu E G(n)(x, A). 
(5) if u E G(A) then Pu(I x M) c A. 

It follows as usual that, if we define IX: G(X) --> G(n)(x, A) by IXU = (Pu) 0 iI' 

then a defines a chain retraction and P a chain homotopy between a and the 
identity. 

We define P inductively, as follows. If q = 0, then, since X is O-connected, 
we can choose a path Au : I --> X from u( eo) to *; if u( eo) = *, we take Au to be 
the constant path. Then define 

Pu(t, eo) = Au(t)· 

Suppose that Pv has been defined, and satisfies (1 }-(5), for all simplices v 
of dimension < q. Let u:;'I,.q --> X be a q-simplex. Then the maps 
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P(u 0 d;) : I X Aq-l ----> X "fit together" with u, in the sense that there is a 
map 

1jJ: ° x Aq u I x Aq ----> X 

such that 

IjJ(O, x) = u(x) (x E Aq), 

ljJ(t, dix) = P(u 0 di)(t, x) (t E I, x E Aq-l). 

If q ::; n, 1jJ(1 x Aq) c A. Since (Aq, Aq) is an NDR-pair, IjJ has an extension 
Pu: I x Aq ----> X. If q ::; n, it follows from Lemma (3.3) of Chapter II that we 
can choose the extension Pu so that Pu(l x Aq) cA. If each of the maps 
P(u 0 dJ is stationary, then IjJ I I x Aq is stationary, and we can choose Pu to 
be stationary. The map P is then readily verified to satisfy conditions (lH5) 
in dimension q, and the induction is complete. 0 

Since X is O-connected, we may take A = * and conclude: 

(5.2) Corollary The inclusion 6(O)(X, *) <4 6(X) is a chain equivalence. 
o 

If A is any subspace of X, then 6(O)(X, A) = 6(O)(X, *). Hence 

(5.3) Corollary If A is any subspace of X, then the inclusion 6(O)(X, A) c+ 
6(X) is a chain equivalence. 0 

The Eilenberg homology groups of X are the groups H~q)(X) = 

Hn(6(q)(X, *),6(*». The Blakers homology groups of (X, A) are the groups 

The groups H~q)(X, A) are zero if n ::; q. Moreover, there are injections 

(5.4) H(n-l)(x A) ----> H(n- 2)(X A) ----> ••• ----> H(O)(X A) ----> H (X A) 
n , n' n' n" 

If f : (X, A) ----> (Y, B) then the chain map of 6(X) into 6(Y) induced by f 
carries 6(q)(X, A) into 6(q)(y, B). thereby inducing homomorphisms 
f~) : H~q)(X, A) ----> H~q)(y, B). Thus mq), like H n, is a functor. Moreover, the 
injections of (5.4) are natural transformations. 

Since the groups H~q)(X, A) are the relative homology groups of the pair 
(6(q)(X, A), 6(O)(A, *», there are boundary operators mapping H~q)(X, A) 
into H~O] 1 (A). Since the latter group injects isomorphically, by Corollary 
(5.2), into Hn-1(A), we may regard these boundary operators as 
homomorphisms 
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Clearly o~) is natural transformation of functors. Moreover the diagram 

i 
H~q)(X, A) -!- H"(X, A) 

(5.5) o~\ /0. 
H"_I(A) 

where i* is the injection, is commutative. 
Let us study the relationship between the group 1tn(X, A) and the Blakers 

homology groups. We have seen that the Hurewicz map p: 1tn(X, A)--t 
Hn(X, A) annihilates the subgroup w~(X, A) and thereby induces a homo
morphism jJ: 1tZ(X, A) --t Hn(X, A). We now prove that jJ factors through 
H(n- I)(X A) . 

n " l.e., 

(5.6) Lemma Let (X, A) be a pair with A and X O-connected. If n ~ 2, there is 
a homomorphism jJ' : 1tZ(X, A) --t H~n-I)(x, A) such that i* 0 jJ' = jJ. 

The proof breaks up into three steps. 

Step I. Construction of p' : 1tn(X, A) --t H~n-I)(X, A) with i* 0 p' = p. 
Step II. Proof that p' is a homomorphism. 
Step III. Proof that p' annihilates w~(X, A). 

Step I. Because (En, sn-I) is (n - 1 )-connected, the Injection 
i* : H~n-I)(En, sn-I) --t Hn(En, sn-I) is an isomorphism. Let f.' = i; I (f.n). If 
rx E 1tn(X, A) is represented by f: (En, sn-I) --t (X, A), define p'(rx) = 
f~-I)(f.'). The fact that i* 0 p' = p then follows from the naturality of i*, i.e., 
commutativity of the diagram 

(5.7) 

------+ 

f. 
Step II. Recall the diagram (4.3), and observe that there is a comparable 

commutative diagram 

(5.8) 

H~"-I)(£", S"- I) 

j a~-1) 
H"_I(S"-I) 

(TOr-I) 
---'-'·'----~l H~n-l)(En v En, sn- I V sn-I) 

j a~-I) 
--------.. H"_I(S"-I VS"-l) 

O. 
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Moreover, because of the commutativity of the diagram (5.5) there is a map 
of the diagram (5.8) into the diagram (4.3) which is the identity on the 
bottom row, while the groups in the top row are mapped by the injections 
i*. The latter are isomorphisms, by Theorem (5.1); since the homomor
phisms 0* are isomorphisms, so are the homomorphisms O~-l). It follows 
that (Te)~-l) = jin; 1) + j~; 1), and the proof that p' is a homomorphism 
now follows from the formula (4.2) by substituting p' for p and V~-l), ... for 
V* .... 

Step Ill. It suffices to show that, iff, l' : (En, sn-1) ~ (X, A) are maps 
representing rt, rt' E nAX, A) and iff and l' are freely homotopic via a loop 
in A, then p'(rt} = p'(rt'), i.e., f~-l)(e') = f~n-l)(e'). Since n ;::: 2, this follows 
from 

(5.9) Lemma Let f, l' : (Y, B) ~ (X, A) and suppose that f and l' are freely 
homotopic via a loop in A. Then, for all q;::: 1, f~) = f~q): H~q)(y, B) ~ 
H~q)(X, A). 

In fact, if F : (I x Y, I x B) ~ (X, A) is such a free homotopy, and if, for 
each singular n-simplex u: An ~ Y, Pu: I x An ~ X is the map given by 
Pu = F 0 (1 x u), then the operation P induces a chain homotopy between 
the chainmapsf#, 1'# : 6(Y) ~ 6(X) defined by f, 1'. What is to be shown is 
that P sends chains of 6(q)(y, B) into chains of 6(q)(X, A}; in other words, if 
u E 6(Q)(Y, B), so that all faces of An of dimension sq are mapped into B by 
u, then all faces of I x An, in the standard subdivision, of dimension s q, are 
mapped into A by Pu. It is left to the reader to verify that, since q ;::: 1, this is 
the case. 0 

Weare going to prove that the map p' is an isomorphism. In fact, let C q be 
the group of q-chains of 6(n-1)(x, A}, Aq the intersection of Cq with the 
chain group of A. Then 

H~n-1)(X, A} = Cn/(An + oCn+ d. 
The group Cn is freely generated by all singular n-simplices u: An ~ X such 
that u(An} c A andj(eJ = * for i = 0, ... , n. Since n~(X, A} is abelian (even if 
n = 2, according to Corollary (3.4}), there is a unique homomorphism 
(J: Cn ~ n!(X, A) such that, for each such u, (J(u) is the image in n!(X, A} of 
the element of nn(X, A} represented by u. Evidently (J(An) = 0. If 
(J(oCn+ d = 0, then (J induces a homomorphism (J': H~n-1)(x, A) ~ 
n~(X, A}. An easy argument shows 

(5.10) Lemma If (J(oCn+ d = 0, then p' is an isomorphism whose inverse is (J'. 

The proof that (J annihilates oCn+ 1, while intuitively clear, presents for
midable difficulties in practice. The argument depends on a geometric pro-
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position known as the Homotopy Addition Theorem. A direct proof of this 
theorem has been given by Hu [1] in the case that (X, A) is n-simple. In [Wi] 
I have given a direct proof in the general case, but using singular cubes 
instead of simplices. 

The Eilenberg groups can be treated in a similar, but easier, fashion. 

(5.11) Lemma Let X be a O-connected space in %0' If n ;::0: 1, there is a 
homomorphism p' : 1t~(X) ~ H~n- l)(X) such that i* 0 p' = p. 

In fact, Lemma (5.11) follows formally from Lemma (5.6), except for the 
case n = 1. However, it is not difficult to prove Lemma (5.11) directly for all 
n ;::0: 1. The details are left to the reader. D 

We shall need, however, 

(5.12) Lemma The homomorphism p' is an isomorphism if n = 1. 

As in the relative case, let Cq be the group of q-chains of )J(O)(X, *) and 
define (J: C 1 ~ 1ti(X) in the same way. What has to be proved is that 
(J(oC z) = O. Let u : A2 ~ X be a singular simplex with vertices at the base 
point * of X. Then a(ou) is the image in 1t1'(X) of the product ~ = ~2 ~o G 1, 

where ~i is the element of 1tl(X) represented by u 0 di (i = 0, 1,2). But 
~ = u*('1), where '1 = '12'10 '11 1 and l1i is the homotopy class of the rectilinear 
path in A2 from di(eo) to d;(ed. Since A2 is contractible, 11 = 1 and therefore 
~ = 1, (J(ou) = O. D 

6 The Homotopy Addition Theorem 

Let (X, A) be a pair, and letf: (AnH, eo) ~ (X, *) be a map which carries 
each (n - 1)-dimensional face of An+l into A. (n;::o: 1). Thenfrepresents an 
element (l( E 1tn(X), and the map f 0 d; : (An, An, eo) ~ (X, A, fd;(eo)) repre
sents an element (l(i E 1tn(X, A,fd;(eo)). If i > 0, d;(eo) = eo ,jdi(eO) = *. On 
the other hand, if i = O,fd;(eo) may not be the base-point *; but if ~ is the 
homotopy class of the rectilinear path from eo to e1 , then 
<J .~«(l(o) E 1tn(X, A, *). Let j* : 1tn(X, *) ~ 1tn(X, A, *) be the injection. 

The homotopy addition theorem is a formula relating the element j*(IX) 
with the elements lXo = <J *~( 1(0), (l( l' ... , (l(n + l' It will be used in the proof of 
the Hurewicz theorem, and it appears implicitly in obstruction theory in the 
fact that the obstruction cochain is a cocycle. The form taken by this formula 
differs slightly, according as n = 1, when it relates certain homotopy classes 
of paths, n = 2, when the group 1tn(X, A, *) is not necessarily abelian, or 
n > 2, when 1tn(X, A, *) is an abelian group. These distinctions in low 
dimensions also crop up in the proof. 
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(6.1) Theorem (Homotopy Addition Theorem). The elements j* Gt, Gt~, Gt; 

described above are related by: 

if n = 1; 

if n = 2; 

n+l 
Gt~ + I (- 1 YGt; if n :2: 3. 

i= 1 

The truth of the formula for n = 1 is evident (note that, in this case, 
Gt~ = Gt z Gto Gtz I). 

Let us observe that, because ofthe functorial properties of relative homo
topy groups, the homotopy addition theorem is natural; i.e., if it holds for a 
pair (X, A) and if g : (X, A) ---+ (Y, B) is a (base point preserving) map, then it 
holds in (Y, B). This allows us to use the method of the universal example; if 
we can prove the homotopy addition theorem in the special case X = An+ 1, 

A is the union of the (n - 1}-dimensional faces of [\n+l, andfis the identity 
map, then it will follow in general. 

Let K be the simplicial complex consisting of all the faces of [\ n + 1. Then 
Kn = An+ \ and the formula to be proved holds in the group nn(Kn, Kn- I)' 
Moreover, the elements Gt; E nn{Kn, Kn- d are the images, under the homo
morphisms induced by the characteristic maps for the n-simplices of K, of 
the generator of the infinite cyclic group nn([\n, An) represented by the iden
tity map. And the element Gt is the image under 8* : 1Tn+ l(Kn+ 1, Kn} ---+ nn{Kn} 
of the generator of the group nn+ 1 (Kn+ 1, Kn) represented by the identity 
map. 

This should remind the reader of our discussion of the homology theory 
of a CW-complex. In fact, the proof that the groups rn(X, A) = 

II n(X n' X n- 1) of a CW -pair (X, A) form a chain complex does not use the 
excision theorem. Accordingly, the groups nn(X n' X n- 1)' with the operators 
8 =j* c 8*: nn+l(Xn+b Xn)---+nn(Xn, X n- 1 ), form a chain complex (with 
some reservations concerning the behavior in low dimensions). And the 
homotopy addition theorem is just a calculation of the boundary operator of 
that chain complex in a special case. 

In view of these observations, the homotopy addition theorem follows 
from 

(6.2) Theorem The image qf the generator r:x of 7r" + 1 (Kn + 1, Kn) represented by 
the map of ,0,"+ 1 under the boundary operator 0 : 1Tn+ 1 (Kn+ b Kn) .-. 
nn(Kn, Kn d is given by 

(6.3) 
I (X2 iX i 1 

orx = ~ Gta + (Xz -- ()[l -. (X3 

I n+ 1 

,0:0 +2: (-lyGt i 
,= 1 

if n = 1; 

if n = 2; 

if Ii ;::: 3. 
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As remarked above, the theorem is true if n = 1. Suppose that n ;::: 2. Then 
there is a commutative diagram 

1tn+l(Kn+1, Kn) 
(] 

1tn(Kn, Kn- d 
(] 

1tn-l (Kn- 1, Kn- 2) -----+ -----+ 

(6.4) lp lp 

H n+ 1 (Kn+ 1, Kn) 
(] 

Hn(Kn, Kn-d --4 

where p is the Hurewicz map. Now (] : Hn+ I(Kn+ 10 Kn) ~ Hn(Kn, Kn- d is a 
monomorphism (because K is acyclic) and p: 1tn+ 1 (Kn+ 10 Kn) ~ 
Hn+ 1(Kn+ 1, Kn) is an isomorphism (by Corollary (4.6» and therefore 
p 00 = 0 0 p: 1tn+ l(Kn+ 1, Kn) ~ Hn(Kn, Kn- 1 ) is a monomorphism. Let 
f3n EO 1tn(Kn, Kn- 1 ) be the right-hand side of the formula (6.3). We shall prove 

(6.5) of3n = 0 (n ;::: 2). 

We prove (6.5) by induction on n. We shall need to calculate in the group 
1tn- 1 (Kn- 1 , Kn- 2) and accordingly must introduce some further notations. 
For each pair (i, j) with 0 s i < j S n + 1, let rxij be the element of 
1tn- 1 (Kn- 1, Kn- 2) represented by the map di 0 dj : ~n- 1 ~ ~n+ 1. Let ~ij be 
the homotopy class of the rectilinear path from ei to ej , and let (Jij = r~ij be 
the corresponding operation on relative homotopy groups. 

Suppose n = 2. Then 

and therefore 

orx~ = O«(JOl rxO) = (J01(OrxO) = (J01(~12~23Gn = ~01~12~23~1}~O/; 

while 

Then 

Orx2 = ~Ol~13~ol, 

orx1 = ~02~23~ol, 

orx3 = ~01 ~12~Or 

0f32 = ~OI~12 ~23 ~ll~o/~ol~13 ~Ol~03 Gl~ol~02 ~ll~ol = 1. 

Suppose n = 3. We then have, by induction hypothesis 

orxo = (J12(rxod + rx03 - rx02 - oi04 

and therefore 

O«(JOI rxo) = (JOI orxo 

= (JOI (J12(rxod + (J01(rx03 ) - (J01( rx02) - (J01(rx04)' 
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It is tempting to put 0"01 00"12 = 0"02, because ~01~12 = ~02' but this rela
tion, while true in Kq for q ;::: 2, is not true in K I' As we are working in 
1!z(K2 , K I ), we must be more careful. In fact 

= T~~34(0"02(CXod) 

= CX 34 + 0"02(CXOI) - CX34 

by Lemma (3.3). Hence 

while 

OCX I = 0"0z(CX01 ) + CXl3 - CX12 - CX 14 , 

ocx2 = 0"01(CX02 ) + CX Z3 - CX 12 - CX 24 ' 

ocx 3 = 0"01(CX03) + CX 23 - CXl3 - CX34' 

ocx4 = 0"01(CX04 ) + CX 24 - CXl4 - CX34' 

The group 1!Z(K2' Kd is not abelian, and if we add the terms in the order 
given, there appears to be little cancellation. However, it should be 
remembered that the operator 0 factors as j * a 0*, and the image of j * is 
contained in the center of 1!2(K2 , K I ); thus each of the terms in the required 
sum is in the center. Hence we may start the calculation as follows: 

O{O"OI(CXO) - CXI} = {CX 34 + 0"02(CXOI ) -- CX 34 + 0"01(CX03 ) - 0"01(CX02) 

- 0"01(CX 04)} + {CX 14 + CX 12 - CX 13 - 0"02(cxo d} 

= CX34 + {CX14 + CX 12 - CX13 - O"oz(cxod} + 0"02(cxod 

- CX 34 + 0"01(CX03) - 0"01(CX0 2) - 0"01(CX04 ) 

= CX34 + CX 14 + CX12 - CX13 - CX34 + 0"01(CX03 ) 

- O"OI(CX OZ ) - 0"01(CX04 )' 

Proceeding similarly with each of the remaining terms, we find that every
thing eventually cancels, so that OP3 = o. 

The proof that oPn = 0 for n ;::: 4 is much simpler, because 0"01 00"12 = 0"02 

and because 1!n-l (Kn- b Kn- 2) is abelian. The argument to prove that 
oPn = 0 is then not much more difficult than the standard argument that 
o 0 0 = 0 in the chain-complex of a simplicial complex, and may safely be 
left to the reader. D 
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7 The H urewicz Theorems 

These were the first non-trivial theorems about homotopy groups. The abso
lute theorem was proved by Hurewicz in his pioneering series of papers [1]. 
The relative theorem was known to Hurewicz and had become folklore by 
the time Hu published his exposition [1] of relative homotopy theory in 
1947. 

(7.1) Theorem (Absolute Hurewicz Theorem). Let X be an (n - 1)-connected 
space (n ;::: 1). Then 

(7.2) Theorem (Relative Hurewicz Theorem). Let (X, A) be an 
(n - 1)-connected pair (n ;::: 2) such that A and X are O-connected. Then 

p: nHX, A) ~ Hn(X, A). 

We have seen that the homomorphism p factors as the composite 

n~(X, A) --.L-+ H~n-l)(X, A) i* , Hn(X, A). 

Moreover, it follows from Theorem (5.1) that, if (X, A) is (n - 1)-connected, 
then the injection i* is an isomorphism. Therefore the Relative Hurewicz 
Theorem is equivalent to the proposition 

H(o) The homomorphism p' : n~(X, A) ~ H~n-l)(X, A) is an isomorphism. 

We have also seen that the relative theorem implies the absolute one if 
n ;::: 2. If n = 1, the homomorphism p factors as the composite 

ni(X) p 'H~O)(X, *) i* , H 1 (X, *). 

By Corollary (5.2), the injection i* is an isomorphism. By Lemma (5.12), p' is 
an isomorphism. Hence p is an isomorphism and the absolute theorem is 
true if n = 1. 

We have also remarked that the fact that p' is an isomorphism is related 
to the Homotopy Addition Theorem. Let A(n) be the conclusion of Theorem 
(6.2) for the given value of n. We shall prove the Relative Hurewicz Theorem 
and the Homotopy Addition Theorem by simultaneous induction, i.e., 

(7.3) Theorem For each n ;::: 2, the implications 

H(n - 1) => A(n), 

A(n) =!>. H(n) 

hold. 
(N.B.: We agree that H(l) is true). 
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To prove the first implication, let us recall that K is the simplicial com
plex consisting of i1n+ 1, together with all of its faces, and that f3n is the 
right-hand side of (6.3). 

We first prove 

(7.4) Lemma The space Kn- 1 is (n - 2)-connected. 

By Corollary (3.10) of Chapter II, the pair (K, Kn- dis (n - I)-connected 
and therefore 1rAK, Kn- d = 0 for all j :::;; n - 1. Since K is contractible, 
1ri(K) = 0 for all i. By exactness of the homotopy sequence 

1ri+ 1 (K, Kn- 1) --+ 1ri(Kn- 1) --+ 1r;{K) 

of the pair (K, Kn- d, 1ri(Kn- d = 0 for i + 1 :::;; n - 1, i.e., i :::;; n - 2, and 
therefore K n - 1 is (n - 2)-connected. 0 

(7.5) Lemma The injection j: 1rn- 1 (Kn- d --+ 1rn- 1 (Kn- 10 Kn- 2) is a 
monomorphism. 

By exactness, it suffices to prove that the injection 1rn- 1 (Kn- 2) --+ 

1rn- 1(Kn- 1) is zero. If n = 2, 1rn-1(Kn- 2 ) = O. Suppose n > 2; then there is a 
commutative diagram 

----+ 
i2 

Since H n- 1 (Kn- 2) = 0, we have 0 = i2 0 P = P 0 i1. But P IS an isomor
phism, by H(n - 1), and therefore i1 = o. 

(7.6) Lemma The boundary homomorphism 

01 : 1rn(Kn+ 10 Kn- d --+ 1rn- 1 (Kn- d 
is an isomorphism. 

This follows by exactness from the contractibility of K = Kn+ 1. 
We now prove A(n). Consider the composite 

a 
1rn+ 1 (Kn+ 1, Kn) , 1rn(Kn, Kn- 1) , 1rn(Kn+ 10 Kn- 1) 

By (6.5), jo 1 if3n = O. But a 1 and j are monomorphisms and therefore if3n = o. 
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By exactness, f3n = art.' for some rt.' E nn+ 1 (Kn+ 1, Kn). Consider the commu
tative diagram 

n .. + I(K .. + 1, K .. ) 
a 

n .. (K .. , K .. -d ---+ 

Pj jP 

H .. + .(K .. +., Kit) ----+ H .. (K .. , K .. _ d 
0 

and observe that p(f3n) = op(rt.) (this fact is just a statement of the standard 
formula for the boundary operator in a simplicial complex). And we saw in 
§6 that the composite po 0 = 0 0 p is a monomorphism. But ap(rt.') = 
port.' = p(f3n) = op(rt.), so that rt. = rt.', f3n = ort.. This proves the first 
implication. 

To prove the second, it suffices, by Lemma (5.10), to show that the 
homomorphism a: H~n-l)(X, A) ~ nZ(X, A) annihilates acn+ 1. It suffices, 
then, to show that, if u : ,1.n+ 1 ~ X belongs to Cn+ b then a(ou) = o. Let rt., 

rt.~, rt.; be the elements specified in the statement of Theorem (6.1). Then 
j* rt. = 0 because the map f = u I An+ 1 has the extension u : ,1.n+ 1 ~ X. Let eX;, 

ao be the images of the elements rt.;, rt.o in nZ(X, A). Then 
11+1 

a(ou) = L (-lYa;. 
;=0 

By the Homotopy Addition Theorem, 
n+l 

o = eX~ + L ( - 1 yeX; . 
;= 1 

But eXo = ao, so that a(ou) = O. This completes the proof of the second 
implication and therewith that of Theorem (7.3). 

(7.7) Corollary Let X be (n - I)-connected (n 22). Then H;(X) = o for all 
i < n, and p : nn(X) ~ H n(X). 

(7.8) Corollary Let X be 1-connected, and suppose that H;(X) = 0 for all 
i < n, (n 2 2). Then X is (n - 1)-connected, and p: nn(X) ~ Hn(X). 

This partial converse to the (absolute) Hurewicz theorem is proved by 
induction on n. The hypothesis that X be 1-connected cannot be dropped, as 
the numerous known examples of acyclic spaces with non-trivial fundamen
tal groups evince. 

(7.9) Corollary Let (X, A) be an (n - I)-connected pair (n 2 2), and suppose 
that A and X are both O-connected. Then H;(X, A) = 0 for all i < n, and 
p : nZ(X, A) ~ Hn(X, A). 0 
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(7.10) Corollary Let (X, A) be an (n - I)-connected pair (n 2': 2), and suppose 
that A is I-connected. Then Hi(X, A) = 0 for all i < n, and p: 1tn(X, A) :::::: 
Hn(X, A). 0 

(7.11) Corollary Let (X, A) be a I-connected pair, and let A be I-connected. 
Suppose that Hi(X, A) = 0 for all i < n (n 2': 2). Then (X, A) is 
(n - I)-connected, and p : 1tn(X, A) :::::: Hn(X, A). 0 

The relative homology and homotopy groups were designed to study the 
homomorphisms of (absolute) homology and homotopy groups induced by 
an inclusion map. Iff: X ~ Y is an arbitrary continuous map, we can use the 
device of the mapping cylinder If to reduce the study of f* to that of a 
suitable injection. 

We shall say that a map f: X ~ Y is n-connected if and only if the pair 
(If' X) is n-connected. 

(7.12) Lemma Let X, Y be O-connected spaces with base points Xo , Yo . Then a 
map f: (X, xo) ~ (Y, Yo) is n-connected if and only if f* : 1tq{X, xo) ~ 
1tq{Y, Yo) is an isomorphism for all q < n and an epimorphism for q = n. 

This is an easy consequence ofthe exactness of the homotopy sequence of 
the pair (If' X) and Lemmas (3.1), (3.2) of Chapter II. 0 

The next theorem is due to J. H. C. Whitehead. 

(7.13) Theorem (Whitehead Theorem). Letf: X ~ Y be an n-connected map 
between O-connected spaces. Then f* : H q(X) ~ Hi Y) is an isomorphism for 
all q < n and an epimorphismfor q = n. Conversely, suppose that X and Yare 
I-connected and that f* : H n{X) ~ H n{ Y) is an isomorphism for all q < nand 
an epimorphism for q = n. Then f is n-connected. 

The above conditions on the homology groups are equivalent to the 
condition: Hq{I f , X) = 0 for all q ~ n. The Whitehead theorem now follows 
easily from Lemma (7.12) and Corollaries (7.1O), (7.11). 0 

(7.14) Corollary If f is n-connected, then, for any coefficient group G, 
f* : Hq(X, G) ~ Hq{Y, G) is an isomorphism for all q < n and an epimorphism 
for q = n. 

For we have seen that Hq{If , X) = 0 for all q ~ n. By the Universal 
Coefficient Theorem, Hq{If' X; G) = 0 for q ~ n and any abelian group G, 
and the conclusion follows. 0 

A map which is n-connected for all n is called a weak homotopy equiv
alence. A map f: X ~ Y such that f* : Hq(X) :::::: HlY) for all q is called a 
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homology equivalence. The following theorem is also sometimes called the 
Whitehead theorem. 

(7.15) Theorem Iff: X -> Y is a weak homotopy equivalence, and X and Yare 
O-connected, then f is a homology equivalence. Conversely, iff is a homology 
equivalence and both X and Yare I-connected, then f is a weak homotopy 
equivalence. 0 

(7.16) Theorem A map f: X -> Y is n-connected if and only if 

(1) for every CW -complex K with dim K < n,f: [K, X] -> [K, Y] is a one-to-
one correspondence; -

(2) for every CW-complex K, with dim K = n,[maps [K, X] upon [K, Y). 

Let If be the mapping cylinder off, i: X 4 If' Y c:+ If' and let p: If -> Y 
be the projection. Let fbe n-connected, so that (If' X) is n-connected, and let 
K be a CW -complex of dimension :::; n, h : K -> Y. Then j 0 h : K -> (If' X) 
is compressible, i.e., j 0 h ~ i 0 9 for some map g: K -> X. Then 
h = p 0 j 0 h ~ poi 0 9 = fog, and therefore f[ K, X] = [K, Y). Let K be a 
CW-complex of dimension < n, and let go, gl : K -> X be maps such that 
fogo ~ fog l' The map p : If -> Y is a homotopy equivalence, and p 0 j = f; 
it follows that i 0 go ~ i 0 gl' Letf: I x K -> If be a homotopy of i 0 go to 
i 0 gl' Since (If' X) is n-connected and dim K < n, dim(I x K) :::; nand 
therefore f is compressible to a map 9 : I x K -> X. But 9 is a homotopy of go 
to 9 l' Hence f is one-to-one. 

Conversely, suppose that conditions (1) and (2) are satisfied. Since 
p: If -> Y is a homotopy equivalence, poi = f, it follows that the conditions 
(I'), (2') obtained from (1) and (2) by replacing Yby If andfby the inclusion 
i : X 4 If are satisfied. By Lemma (3.1) of Chapter II, it suffices to prove that 
every map g: (M, Aq) -> (If' X) is compressible. The map 
go = 9 I Aq: Aq -> X is nullhomotopic in If; by (1'), go is nullhomotopic in X 
and therefore there is a map g':,1q -> X extending go. The map 
h : (I x M)" -> If defined by 

h(O, y) = g(y), h(l, y) = g'(y) (y E ,1q) 

h(t, y) = go(Y) 

is homotopic, because of (2'), to a map h' : (I x ,1q)" -> x. By Lemma (3.2) of 
Chapter II, applied to the pair «I x ,1q)", 1 x ,1q u I x Aq), the map 
h : «I x ,1 q)", 1 x ,1 quI x A q) -> (If' X) is compressible. Therefore the 
composite of h with the map io : (,1q, Aq) -> (I x M, 1 x ,1q u I x Aq), send
ing y into (0, y), is also compressible. But the latter map is our original map 
g. 0 

(7.17) Theorem A necessary and sufficient condition that a map f: X -> Y be a 
weak homotopy equivalence is that f: [K, X] -> [K, Y] be a one-to-one corre
spondence for every CW-complex K. 
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The sufficiency is an immediate consequence of Theorem (7.16). So is the 
necessity, when K is finite-dimensional. To prove the necessity in general, we 
use Theorem (3.11) of Chapter II. Suppose that f is a weak homotopy 
equivalence. Then the pair (II' X) is oo-connected. Let h: K ...... Y; then 
j 0 h : K ...... (I I' X) is compressible, i.e., j 0 h ~ i 0 9 for a map g: K ...... X. 
Thus fog = poi 0 9 ~ P 0 j 0 h = h. Hence f is an epimorphism. 

Let go, gl : K ...... X be maps such that f~ go ~f 0 gl. Then poi 0 go ~ 
poi 0 9 1; as P is a homotopy equivalence, i 0 go ~ i 0 9 I. Let G be a homo
topy of i 0 go to i 0 gl. Then G is compressible, i.e., G is homotopic 
(reI. i x K) to a map G' : I x K ...... X. But G' is a homotopy of go to gl. 
Therefore [ is a monomorphism. D 

We conclude this section with a number of examples relevant to the 
preceding discussion. 

EXAMPLE 1. There are O-connected spaces X, Y such that nn(X) ~ nn(Y) for 
all n, but X and Y do not have isomorphic homology groups. (Therefore 
there is no map f: X ...... Y inducing isomorphisms of the homotopy groups). 

For this example, we take X = pm X sn, Y = sm X pn with m> n> 1. 
Then n I (X) ~ n I (Y) ~ Z2 , and the universal covering spaces of X and Yare 
both sm x sn, so that the higher homotopy groups of X and Yare isomor
phic, by (8.10) below. On the other hand, the Kiinneth theorem assures 
us that Hm+n(X) ~ Hm(pm) ® Hn(sn) ~ Hm(pm), Hm+n(Y) ~ Hn(pn). There
fore, if m is even and n odd, say, we have Hm+n(X) = 0 oF Hm+n(Y). 

EXAMPLE 2. There are I-connected spaces X, Y such that Hn(X) ~ Hn(Y) for 
all n, but X and Y do not have isomorphic homotopy groups. (Again, there 
can be no map f: X ...... Y inducing isomorphisms of the homology groups). 

For this example, take X = S2 V S4, Y = P2(C). Then X and Y do indeed 
have isomorphic homology groups (H 0 ~ H 2 ~ H 4 ~ Z, H q = 0 otherwise). 
On the other hand, S4 is a retract of X so that n4(S4) = Z is a retract of 
n4(X), while n4(Y) ~ n4(S5) = 0, by (8.13) below. 

EXAMPLE 3. The reader may have wondered whether a map f: X ...... Y is a 
weak homotopy equivalence if f* : nl(X) ...... nl(Y) as well as f* : Hq(X) ...... 
Hq(Y) are isomorphisms for all q. The following example shows that this is 
not the case. 

Let X = SI vS2, and let ~ E nl(X), rx E n2(X) be the images of generators 
of nl(SI), n2(S2) under the injections. Let 13 = 2rx - r~(rx) E n2(X), and let 
h : S2 ...... X be a map representing 13. Let Y = X U h E3 be the mapping cone 
of h, so that Y is a CW -complex and X a subcomplex. The boundary of the 
3-cell in Y is the image of 13 under the Hurewicz map p : nz(X) ...... H z(X). As 
p(r~(rx)) = p(rx), p(f3) = p(rx) is a generator of H 2(X). An easy calculation now 
shows that Y is a homology I-sphere, and the injection i* : Hq(SI) ...... Hq(Y) 
is an isomorphism for all q. 
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Now, (Y, X) is 2-connected, so that the injection 1t1(X) ~ 1t1(Y) is an 
isomorphism. As the injection 1t1 (S1) ~ 1t1(X) is also an isomorphism, 
i*: 1t1(S1) ~ 1t1(Y). 

On the other hand, the universal covering space X of X is the real line R, 
with a copy of S2 attached at each integral point (X is an infinite string of 
balloons !), and a generator of the group of covering translations translates 
each sphere into the next. Thus 1t2(X) ~ 1t2(X) ~ H 2(X) is the free abelian 
group with basis rxi = rHrx) for all i E Z. The sequence 

0* i* 1t3(Y' X) , 1t2(X) , 1t2(Y) ~ 0 

is exact, and it follows from a result to be proved later (Chapter V, Corollary 
(1.4)) that the image of 0* is the operator subgroup Ofn2(X) generated by p. 
Thus 1t2(Y) is generated by {a;}, subject to the relations 2ai - ai+ 1 = 0; this 
is just the group of dyadic rationals, and is not zero. As 1t2(S1) = 0, the 
injection i* : 1t2(S1) ~ 1t2( Y) is not an isomorphism. 

Remark. The same example shows that, unlike the homology groups, the 
homotopy groups of a finite complex need not be finitely generated. 

EXAMPLE 4. There is no relative form of the Whitehead theorem. That is, a 
map f: (X, A) ~ (Y, B) with f* : 1tq(X, A) ~ 1tq(Y, B) for all q, need not 
induce isomorphisms of the relative homology groups. In fact, let 
X = Y x A, B = {*}. Then f is a fibration, with fibre A, so that, by Theorem 
(8.5) below, f* maps 1tq(X, A) isomorphically upon 1tlY, B) for all q. But 
it follows from the Kiinneth theorem that the kernel of f* : Hn(X, A) ~ 
Hn(Y,B)isisomorphicwithHn(Y x A, Yv A) = Hn((Y,*) x (A,*)).Asthis 
group is, in general, non-zero, f* is not an isomorphism in homology. 

EXAMPLE 5. Neither is there a relative form of the converse of the Whitehead 
theorem. That is, a mapf: (X, A) ~ (Y, B) withf* : Hq(X, A) ~ Hq(Y, B) for 
all q, need not map the relative homotopy groups isomorphically. For an 
example, let Y = S2, and let X, B be hemispheres intersecting in an equator 
S1. That f* is an isomorphism in homology follows from the Excision 
Theorem. Now 

since X is contractible, and 

since B is contractible. 

While the relative form of the Whitehead theorem fails in general, we can 
ensure its conclusion by strengthening the hypotheses. Specifically, 
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(7.18) Theorem Let (X, A) and (Y, B) be O-connected pairs such that A and B 
are also O-connected. Let f: (X, A) -+ (Y, B) be a map such that f* maps the 
homotopy groups of two of the three pairs (X, *), (X, A), (A, *) isomorphically. 
Then f* maps the homotopy sequence, as well as the homology sequence with 
arbitrary coefficients, of (X, A) isomorphically upon those of (Y, B). 

That f* maps the homotopy groups of the third pair isomorphically 
follows from the Five-Lemma. By Corollary (7.l4),f* : Hq(A) -+ Hq(B) and 
f* : Hq(X) -+ Hq(Y) are isomorphisms for all q. Again by the Five-Lemma, 
f* : Hq(X, A) ~ Hq(Y, B) for all q. 

8 Homotopy Relations in Fibre Spaces 

For most of this section we shall be working in the category of free spaces 
and maps. We first examine the influence of the fundamental groupoid of the 
base space of a fibration on the fibres. 

Let p : X -+ B be a fibration, and let u : I -+ B be a path in B from bo to b l' 
Let Ft = p-1(bt), and let it: Ft Co X (t = 0, 1). We shall describe a map 
h : F 1 -+ F 0 as u-admissible if and only if there is a homotopy H : I x F 1 -+ X 
of h to i1 such that pH(t, y) = u(t) for all (t, y) E I x F l' (Such a homotopy is 
said to lie over the path u.) 

Clearly, 

(8.1) If u : I -+ B is the constant map of I into bo , then the identity map of F 0 is 
u-admissible. 0 

(8.2) Let u: 1-+ B, v: 1-+ B be paths such that u(O) = v(l) = b 1, and let 
w : I -+ B be their product. If h : F 1 ---> F 0 is u-admissible and k : F z -+ F 1 is 
v-admissible, then h ok: F z -+ F 0 is w-admissible. 

For let H: I x F1 -+ X, K: I x F z -+ X be homotopies of h to i1 and ofk 
to iz , which lie over u and v respectively. Then the map L: I x F z -+ X 
defined by 

( ) _ {H(2t, k(x)) 
LX,t - K(2t-l,x) 

lies over wand deforms h 0 k into iz . 

More difficult to prove is 

(t ::;; 1), 
(t ~ 1), 

o 

(8.3) Let uo , U 1 : 1-+ B be maps which are homotopic (rei. t), and let ho, 
h1 : F 1 -+ F 0 be maps such that ht is ut-admissible (t = 0, 1). Then ho ~ h1. 
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For let F: 1 x 1 ~ B be a homotopy of Uo to U 1 (reI. i), and let 
Hs : 1 x F 1 ~ X be a homotopy of hs to i 1 lying over Us (s = 0, 1). Define 
maps H : (1 x 1 u 1 x 1) x F I ~ X, G : 1 x 1 x F I ~ B by 

Ho(t, y) (s = 0), 

H(s,t,y)= y 

HI(t, y} 

G(s, t, y) = F(s, t}. 

Then G is an extension of p 0 H. The pair 

(t = 1), 

(s = 1); 

(I x 1 x FJ, (1 x 1 u 1 x 1) x Fd = (1,1) x (I, 1) X (FJ, 0) 

is a product ofNDR-pairs, one of which is a DR-pair, and therefore is itself a 
DR-pair. By Lemma (7.15) of Chapter I, H has an extension H': 1 x 
1 X FI ~ X such that po H' = G. Then pH'(s, 0, y) = G(s, 0, y) = bo and 
therefore there is a map h : 1 x F I ~ F 0 such that io 0 h(s, 0, y) = H'(s, 0, y). 
The map h is the desired homotopy of ho to hi' 0 

It follows from (8.1 )-(8.3) that for each homotopy class ~ of paths in B, 
there is a unique homotopy class of maps of the fibre over the terminal point 
of ~ into the fibre over the initial point of ~; and that under this correspon
dence multiplication of paths corresponds to composition of maps. In 
categorical terms, this means that the fibration determines a functor F from 
the fundamental groupoid of B to the category of spaces and homotopy 
classes of maps. 

(8.4) Corollary If p : X ~ B is a fibration and B is O-connected, then any two 
fibres have the same homotopy type. 0 

In particular, the fundamental group n l (B, bo) operates on the homology 
groups of the fibre F 0 = p- I(bo). If ~ E nl (B, bo), and if h: F 0 ~ F 0 is u
admissible for a representative path u of~, let ()~ = h* : Hq(F 0) ~ Hq(F 0)' It 
follows from (8.1 )-(8.3) that the correspondence ~ ~ ()~ defines an action of 
nl(B, bo) on Hq(Fo); i.e., 

(1) if ~ is the identity, then ()~ is the identity; 
(2) if~, Yf E nl(B, bo), then ()~ 0 ()~ = (}~~. 

As for the homotopy groups, there is the difficulty that we cannot control 
the behavior of the base point under u-admissible maps. Therefore we can 
only say that nl (B, bo) operates on the groups n:(F 0)' Of course, if F 0 is 
q-simple, then nl(B, bo) does indeed operate on nq(Fo). 

We now return to the category %0 of spaces with base point. By a 
fibration in % we shall mean a map in %0 which becomes a fibration in % 
if we ignore the base point. If p : X ~ B is such a fibration, then the base 
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point Xo of X lies in the fibre F = p-l(bo), and we shall agree to consider F 
as a space with base point Xo' 

(8.5) Theorem Let p: X ~ B be afibration with fibre F. Then p* : nn(X, F) ~ 
nn(B, {bo}) = nn(B) is an isomorphism for all n ~ 1. 

We first show that p* is an epimorphism. Let f: (En, sn- 1) ~ (B, *) be a 
map. Since En is contractible, the constant map of En into the base point * of 
B is homotopic (reI. *) to J, considered as a map (En, *) ~ (B, *). By the 
homotopy lifting extension property (Theorem (7.16) of Chapter I), the 
constant map of En into the base point of X is homotopic (reI. *) to a ma.p 
g : En --> X such that p 0 g = f Then pg(sn- l) = * and therefore 
g : (En, sn- 1, *) --> (X, F, *) represents an element (X E nn(X, F) whose image 
under p* is the element of nn(B) represented by f 

To show that p* is a monomorphism, it suffices, if n > 1, to show that 
Kernel p* = {O}. Let f: (En, sn- 1, *) ~ (X, F, *) and suppose that 
p of: (En, sn-l)~(B, *) is nullhomotopic. Again by Theorem (7.16) of 
Chapter I,f is compressible. By Corollary (2.5),f is nullhomotopic. 

If n = 1, the proof that p* is a monomorphism fails, since n 1 (X, F) is not, 
a priori, a group. In this case, let fo, fl : (I, 1, 0) ~ (X, F, *) and suppose 
p 0 fl ~ P 0 fo (reI. t). Let g : 1 ~ X be the product of the inverse of the path 
fo with fl' Then p a g is nullhomotopic (reI. t), and therefore g is homotopic 
(reI. t) to a path h in F. Hence fl is homotopic (reI. t) to the productfo • h. 
Since h(l) c F,fo • h : (I, 1, 0) ~ (X, F, *) is homotopic (reI. t) to fo. Hence 
fo and fl represent the same element of nl (X, F). 0 

The composite of 0* : nn(X, F) ~ nn- 1 (F) with the inverse of the isomor
phism p* : nn(X, F) ~ nn(B) is a homomorphism ~* : nn(B) ~ nn-l(F), and 
we have 

(8.6) Corollary Let p: X ~ B be a fibration with fibre F. Then there is an 
exact sequence 

i* , nn(X) (8.7) ... ~ nn(F) -----+ 
p* 

nn(B) ~* , nn-l(F) 
i* , nn-l(X) ~ ... 

~* , no(F) i* , no(X) p* , no (B). 0 

(8.8) Corollary Let Bo be a subspace of B, X 0 = p- l(Bo). Then 
Po = P I X 0: X 0 ~ Bo is a fibration, and p* : nn(X, X 0) ~ nn(B, Bo) is an iso
morphism for all n ~ 1. 

That Po is a fibration was pointed out in Corollary (7.22) of Chapter I. 
The homomorphisms induced by p map the homotopy sequence of the triple 
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(X, X 0, F) into that of (B, Bo , .) and the homomorphisms of 1tq{X 0, F) 
into 1tq{Bo) and of 1tq{X, F) into 1tq{B) are isomorphisms. By the Five
Lemma, so are the homomorphisms p. : 1tn{X, X 0) -. 1tn{B, Bo). 

(N.B.-The argument needs a mild modification if n = 1 or 2, like that 
needed in the proof of Theorem (8.5) itself-this is left to the reader). 

o 
The sequence (8.7) is called the homotopy sequence of the fibration. 

(8.9) Corollary Let f : X -. Y be an arbitrary map, F = T f the mapping fibre of 
J, q: F -. X the fibration over X. Then there is an exact sequence 

... -.1tq+1{Y) A • • 1ti F) q •• 1tq{X) f. 

1tq{Y) • 1tq- 1{F) -. ... 

called the fibre homotopy sequence off o 
(8.10) Corollary If p : B -. B is a covering map, then P. : 1tq{B) ~ 1tq{B) is an 
isomorphism for all q ~ 2. 0 

Since R covers 8 1 and R is contractible, we have in particular 

(8.11) Corollary The homotopy groups 1tq(8 1 ) vanish for all q ~ 2. 0 

(8.12) Theorem Let p : X -. B be a fibration whose fibre F is contractible in X. 
Then the homotopy sequence (8.7) breaks up into a family of splittable short 
exact sequences 

O-.1tn{X) P.. 1tn{B) A.. 1tn- 1 (F) -. O. 

In particular, 1tn{B) ~ 1tn{X) EB 1tn- 1 (F) for all n ~ 2. 

Since F is contractible in X, the injection 1tn{F) -. 1tn{X) is zero for every 
n. Let h: (T /\ F, F) -. (X, F) be a nullhomotopy of the inclusion map 
i: F ~ X. Then T /\ F is contractible, so that a. : 1tn{T /\ F, F) ~ 1tn-1{F) for 
all n. The composite 

a- 1 h. p 
1tn- 1 (F) •• 1tn(T /\ F, F) • 1tn{X, F) •• 1tn{B) 

is the desired left inverse of A •. o 
We can apply Theorem (8.12) to the Hopf fibrations 

8 2n + 1 -. pn{C) (fibre 8 1 ), 

84n + 3 -. pn{Q) (fibre 83 ), 
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in each case the fibre is a proper subspace of a sphere, and so contractible in 
the total space. Hence 

(8.13) Corollary The homotopy groups of complex and quaternionic projective 
space are given by 

trq(pn(C)) :::::: 1!q(S2n+ 1) EB 1!q-1 (Sl) 

1!q(pn(Q)):::::: 1!q(S4n+3) EB 1!q_1(S3). 

In particular, 

(q :2: 3), 

1!q(S4):::::: 1!iS7) EB 1!q_1(S3), 

1!q(S8):::::: 1!q(SlS) EB 1!q_1(S7). o 
Note that 1!3(Sl) :::::: 1!3(S3) :::::: Z. Thus the homotopy groups, unlike the 

homology groups, need not vanish in dimensions greater than that of the 
space. 

(Warning: the singular homology groups of a (bad) space X may also fail 
to vanish in dimensions greater than that of X. An example of this phe
nomenon has been given by Barratt and Milnor [1]. The construction uses the 
Hopf map S3 -> S2 in an essential way). 

Let p : X -> B be a fibration. A cross-section of p is a map A : B -> X such 
that p 0 A is the identity map of B. Because ofthe homotopy lifting property, 
p has a cross-section if and only if there is a map A' : B -> X such that p 0 A' is 
homotopic to the identity. 

(8.14) Theorem If the fibration p : X -> B has a cross-section then the homo
topy sequence breaks up into a family of short exact sequences 

Each of these sequences splits, and therefore 

1!q(X) :::::: 1!q(F) EB 1!iB) 

for all q :2: 2, while 1! 1 (X) is a semi-direct product of 1! 1 (F) by 1! 1 (B). 

In fact, if A : B -> X is a cross-section, then p* 0 A* is the identity and 
therefore p* : 1!iX) -> 1!q(B) is a split epimorphism. By exactness of the se
quence (8.7), ~* = 0 and i* is a monomorphism, and the result follows. 

o 
Next, let p : X -> B be a fibration with fibre F, and let Bo be a subspace of 

B, Xo = p-1(Bo). Let X be the mapping cylinder of p, p: X -> B the projec
tion, and let Xo = p-1(Bo), so that Xo is the mapping cylinder of 
p IX 0 : X 0 -> Bo . We are going to relate the homotopy sequences of the pairs 



190 



8 Homotopy Relations in Fibre Spaces 191 

(X, X), (X, Xo), (Xo, X o), (X, Xo) and (X, Xo). In fact, we have a diagram 
(Figure 2) containing all of the above homotopy sequences. The remaining 
maps in the diagram are injections. 

(8.15) Lemma If k2 is a monomorphism indimension q and an epimorphism in 
dimension q + 1, then so is k 1 • 

The proof is an exercise in diagram-chasing, a discipline with which the 
reader is presumably familiar! D 

(8.16) Corollary If k2 is an isomorphism for all q, so is k l' D 

In fact, 

(8.17) Lemma The homomorphisms k1 and k2 are isomorphisms for all q. 

To see this, consider the commutative diagram 

1rq(X, Xo) 
~ 

k21 
1rq(B, Bo) 

4. 1rq(X, Xo) 

and observe that p* is an isomorphism by Corollary (8.8) and p* is an 
isomorphism because p is a homotopy equivalence. Therefore k2 is an iso
morphism. D 

(8.18) Lemma The subdiagram 

i! ~2 hI ~4 
1riX) 

j 
1riX, Xo) 

0 
I 1rq-1(XO) 

j\ /1 h\ /03 

of Figure 4.2 satisfies the hypotheses of the Hexagonal Lemma ([E-S], Chapter 
I, Lemma 15.1), and therefore 

03 0 k"Il oil = -04 0 kZ1 oi2: 1rq(X)--1rq- 1(X O)' 
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Commutativity of each triangle in the diagram is clear. Moreover, (0, j), 
(/2 , hI)' and (11' h2 ) are pairs of successive homomorphisms in the appro
priate homotopy sequences, so that the kernel of the first member of each 
pair is the image of the second. By Lemma (8.17), k1 and k2 are isomor
phisms. 0 

Let us now apply the above discussion to the special case Bo = {*}, 
Xo = F; XO = ft is the cone over F. Let d' = 03 0 ki 1 : niX, X) ~ nq_1(F). 
Then we have a diagram 

... ~ nq(X) ; 1 
nq(.f) 

jl 
1tlf.X) 

01 
~ ~ ~ 1tq- 1(X) ~ ... 

(8.19) 1] ] P. ] &' ]1 
... ~ 1tq(X) ~ 1tq(B) ~ 1tq_ 1 (F) • 1tq- 1(X) ~ ... 

P. &. ;4 

(8.20) The diagram (8.19) is commutative, except for the middle square, which 
is anti-commutative. Moreover, A' : nq(X, X) ~ nq_1(F) is an isomorphism. 

The relations P* 0 il = P* and 

i4 0 d' = i4 003 0 ki 1 = 01 0 k1 0 kit = 01 

are clear. Now d' 0 jt = 03 0 kit 0 jl = -04 0 k21 0 h, and it remains to 
show that 04 0 k21 0 j2 = d* 0 P*. But the diagram 

1tq(X) 
j4 04 

---+ 1tt (X, F) ~ 1tt -l(F) 

il ] ]k'~ 1&· 
1tlf) ~ 1tt (g, P) • 1tq(B) 

h PI 

is commutative and P* = PI 0 j2, 

A A A A • A k-l· ~ k-1 . 
L1* 0 P* = L1* 0 PI 012 = L1* 0 PI 0 2 012 = u4 0 2 012. 

Finally, d' is an isomorphism because kit and 03 : nq(ft, F) ~ nq_t(F) are 
isomorphisms. 0 

As we have seen above, the fundamental group nt(B) operates on the 
groups n:(F). The fundamental group nl(X) operates on the group 
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nq+1(X, X), and, through the homomorphism p*: nl(X)~nl(B), on the 
groups n;(F) as well. 

(8.21) Theorem If F is O-connected, the composite 

is an operator homomorphism. 

It will simplify the proof slightly if we assume that F has a non-degenerate 
base point *. We leave to the reader the task of making the necessary 
modifications to handle the general case. 

Let rx E nq+ 1 (X, X), ~ E n 1 (X), and let L1 * : nq+ 1 (X, X) ~ n;(F) be the 
above composite. Let f: (Eq+ \ sq, *) ~ (ft, F, *) be a map representing 
kl1(rx), and let u: (I, i) ~ (X, *) be a representative of ~, so that 
v = po u: (I, t) ~ (B, *) represents p*(O. Let h: 1 x F ~ X be a map such 
that 

h(1, y) = y, 

h(t, *) = u(t), 

ph(t, y) = v(t) 

for all tEl, Y E F; then the initial value of h is a v-admissible map 
ho: F ~ F. The map h has an extension h: (I x ft, I x F) ~ (X, X), defined 
by 

l1(t, (s, y») = (s, h(t, y) 

(this is well defined when x = 1 because (1, h(t, y) = ph(t, y) = v(t) is 
independent of y). The continuity of h follows from (4.18) of Chapter I. 

The map ho 0 f : (Eq+ 1, sq, *) ~ (ft, F, *) represents an element 
13 E nq+ l(P, F). The map 11 0 (1 x f): (I x Eq+ 1, I x sq) ~ (X, X) is a free 
homotopy along u of ho 0 f to h1 0 f = f Hence kl (13) = r~(rx). The restric
tion ho 0 (f I sq) : sq ~ F of ho 0 f thus represents 03 13= 03 kl1r~(rx) = 

L1'r~(rx) E nq(F) and also L1*r~(rx) E n;(F). 
On the other hand, f Isq represents L1'(rx), and also L1*(rx). Hence 

ho 0 (f Isq) represents e~(L1*(rx)). D 

(8.22) Corollary If F is O-connected, the composite 

is an operator homomorphism. D 
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9 Fibrations in Which the Base or 
Fibre is a Sphere 

IV Homotopy Groups 

These arise quite often in homotopy theory. For example, the classical 
groups admit fibre maps 

0n+1 ~sn, 

Un ~ s2n-1, 

SPn ~ s4n-1. 

On the other hand, the bundle X of unit tangent vectors of a Riemannian 
n-manifold M admits a fibration p : X ~ M with sn- 1 as fibre. 

We shall give here the most elementary facts about such fibrations. They 
will be used in Chapter V and elsewhere. 

Suppose first that p : X ~ sn is a fibration with fibre F. Then exactness of 
the homotopy sequence 

... ~ 7tq+ 1 (sn) ~ * ,7tq(F} i* , 7tq(X} p* , 7tq(sn} ~ ... 
implies 

(9.1) The injection i* : 7tq(F} ~ 7tq(X} is an isomorphism for q < n - 1 and an 
epimorphism for q = n - 1. 0 

Let In E 7tn(sn} be the homotopy class of the identity map, so that 7tn(sn} is 
the infinite cyclic group generated by In . The element 
W n - 1 = ~*(In) E/7tn- 1 (F) is called the characteristic element of the fibration, 
and we have 

(9.2) The kernel of the injection i* : 7tn- 1 (F) ~ 7tn- 1 (X) is the cyclic subgroup 
generated by wn - 1. 0 

Let us try to describe the characteristic element. Since p* : 7tn(X, F} ~ 
7tn(sn} is an isomorphism, there is a map f: (En, sn- 1) ~ (X, F) such that p 0 f 
represents In. The map f is called a sectional element for p, and we have 

(9.3) Iff: (En, sn- 1 ) ~ (X, F) is a sectional element, then f I sn- 1 : sn- 1 ~ F 
represents the characteristic element w n- 1. 0 

The sectional element f: (En, sn- 1) ~ (X, F) will be called regular if and 
only if p 0 f: (En, sn- 1 ) ~ (sn, *) is the identification map. 

It is sometimes important to know whether the fibration p : X ~ sn has a 
cross-section. If this is so, then the homomorphism ~* : 7tq+ 1 (sn) ~ 7tq(F} is 
trivial, and, in particular, W n- 1 = ~*(In) = O. Conversely, suppose that 
wn- 1 = O. Then exactness of the homotopy sequence implies that 
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p* : 1In(X) ---> 1In(sn) is an epimorphism. Let IY. E 1In(X) be an element such that 
P*(IY.) = In' If A' : sn ---> X is a representative of IY., then p 0 A' is homotopic to 
the identity map of sn, and therefore A' is homotopic to a map II. : sn ---> X 
such that poll. = 1, i.e., II. is a cross-section. Thus 

(9.4) A necessary and sufficient condition that a fibration p : X ---> sn have a 
cross-section is that its characteristic element vanish. 0 

We can apply the Hurewicz theorem to study the behavior of the homol
ogy groups. In fact, the Hurewicz theorem implies that Hq(X, F) = 0 for all 
q < n, and that Hn(X, F) is an infinite cyclic group. (The fundamental group 
of F operates trivially on 1In(X, F). Why?). Thus 

(9.5) The injection i* : Hq(F) ---> Hq(X) is an isomorphismfor q < n - 1 and an 
epimorphism for q = n - 1. The kernel of the injection i*: H n- 1 (F) ---> 

H n- 1 (X) is generated by the image p(Wn- 1) of the characteristic element under 
the Hurewicz map. 0 

Now suppose that p : X ---> B is a fibration whose fibre F has the homo
topy type of sn. We shall assume n ~ 1; this ensures that F is O-connected 
and rules out the case of a two-sheeted covering. Such a fibration is said to 
be n-spherical. 

Exactness of the homotopy sequence of p implies 

(9.6) The projection p* : 1Iq(X) ---> 1Iq(B) is an isomorphism for q < n and an 
epimorphism for q = n. 0 

As in §8, let X be the mapping cylinder of p, p : X ---> B the projection, 
P = p- 1H the cone over the fibre F. By (8.20) the homomorphism 
,:1' : 1Iq+ 1 (X, X) ---> 1Iq(F) is an isomorphism, and therefore 

(9.7) The pair (X, X) is n-connected, and 1In+ 1 (X, X) is an infinite cyclic 
group. 0 

To study the homology groups, consider the commutative diagram 

kl 03 
1t.+I(.f,X) -- 1tn +I(P,F) ------+ 1tn(F) 

(PI (P2 lp 

and note that 03 and 03 are isomorphisms (since P is contractible), P and pz 
are isomorphisms and PI an epimorphism (by the Hurewicz theorem), and 
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klan isomorphism (by Lemma (S.17)). Hence ii1 is an epimorphism, and P 1 

and ii1 have isomorphic kernels. It follows from Theorem (S.21) that 

(9.8) The injection ii1 is an epimorphism, and the kernel of ii1 is the subgroup 
generated by all elements of the form 0:; 1 (ex - e~(ex)) with ex E Hn(F), ~ E 1r1(B). 
Thus ii1 is an isomorphism if and only if 1r 1 (B) operates trivially on H n(F). 

10 Elementary Homotopy Theory of 
Lie Groups and Their Coset Spaces 

o 

In this section we shall apply the theory developed so far to obtain some 
elementary results on the homotopy groups of the spaces mentioned in the 
title. Our principal tool will be the homotopy sequence of a fibration. 

I. The Orthogonal Groups 

The map Pn: 0:+ 1 ~ sn, defined by Pn(r) = r(en) is a fibration with fibre 0: . 
The sequence 

being exact, we deduce 

(10.1) The injection 1rq(O:) ~ 1rq{0:+ 1) is an isomorphism for q < n - 1 and 
an epimorphism for q = n - 1 (i.e., the pair (0:+ b 0:) is (n - 1 )-connected). 

o 
Repeated application of this result yields 

(10.2) The pair (O:+k' 0:) is (n - 1 )-connected. o 

(10.3) The pair (0+, 0:) is (n - I)-connected. o 

The kernel of the injection 1rn-1 (On ~ 1rn-1 (0:+ 1) is the cyclic group 
generated by the element (On-1 = ~*(In)' where In E 1rn(sn) is the homotopy 
class of the identity map. We next give an explicit description of the element 
(On-1' 

For each x E sn, letf(x) be the reflection of Rn+ 1 about the hyperplane 
orthogonal to x; thus 

f(x){y) = y - 2(x • y)x. 
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Thenf: sn -> 0n+ 1 is continuous; considered as a map of sn into the func
tion space F(sn, sn),j has an adjoint 1: sn x sn -> sn. 

(10.4) Lemma The map 1: sn x sn -> sn has type (1 - (_I)n, -1); i.e., 
II S" x y has degree 1 - (-1)" and II x x sn has degree -1, for each x, 
y E sn. 

The second part is clear, for f(x) is a reflection in a subspace of co
dimension 1. Since sn is path wise connected, it suffices to prove the first 
statement for a particular y, say y = -en. Let g: sn -> S" be the map in 
question, so that 

g(x) = f(x)( -en) = 2(x • en)x - en· 

Note that g( -x) = g(x), i.e., goa = g, where a is the antipodal map. Since a 
has degree (-1)"+ 1, we have (- 1)"+ 1 • d = d, where d is the degree of g. 
Therefore d = 0 if n is even. 

Suppose that n is odd. The map g carries the equator 
sn-l = {x E sn I x • en = O} into -en; let g+, g_ be maps such that 

g + I E'?c = g I E'?c , g + (E"-) = - en; 

g _ I E"- = g I E"- , g - (E'?c) = - en . 

The element of lrn(sn, - en) represented by g is the sum of the elements 
represented by g+ and g_, and so d = deg g+ + deg g_ . But g_ = g+ 0 a, 
so that d = (1 + ( - 1)"+ 1 )deg g + = 2 deg g + . It is easy to see that for no 
x E sn is g + (x) = - x, and it follows that g + is homotopic to the identity, so 
that deg g + = + 1. 0 

It will be useful to give the matrix representation for the map f For this, 
note that, if x E sn, then 

f(x)(ei) = ei - 2(x • eJx = ei - 2XiX 

thus the matrix off(x) is 

- 2XOXl 

n 

= ei - 2Xi Lxjej 
j=O 

n 

= L (bij - 2XiXj)ej; 
j=O 

-2Xl Xn . (

1 - 2x5 

- 2xOxn 

-2XOXn) 

1 - 2x; 

Define In: sn -> On\ 1 by fn(x) = f(x)f(eo). Since the matrix of f(eo) is 
diag{ -1, 1, ... , I}, the matrix offn(x) is obtained from that off (x) by chang-
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ing the sign of the first column. The map fn 1 E~ sends (E~, sn- 1) into 
(0;+ b 0;), and 

Pnfn(x) =fn(x)(en) =f(x)(f(eO)(en)) 

= f(x)(en) = -g+(x) for x E E~. 

Extending Pn 0 fn over all of sn by sending E~ into en, we see that the 
resulting map is a 0 g + and therefore has degree (- l)n + 1. Hence Pn 0 fn 
represents (-1)"+ lin. Moreover,fn Isn-1 = fn-1. Thus 

(10.5) Theorem The map In-I: sn- 1 -+ 0; represents the element 
(_1)n+1wn_1Enn_1(0;). 0 

It follows from Lemma (lOA) that the map Pn-1 0 fn-1 : sn-1 -+ Sn-1has 
degree 2 if n is even. Hence 

(10.6) Corollary If n is even then wn- 1 generates an infinite cyclic subgroup of 
nn-1(0;). 0 

Let us use this result to calculate some homotopy groups of the rotation 
groups. The group 0; is a circle, and the map PI : 0; -+ SI is a homeomor
phism. We have the exact sequence 

P* (S2) • n2 
n 1(0i) --->. n 1(On -+ 0 

and n2(0i) = n2(Sl) = 0, while ~* maps the infinite cyclic group n2(S2) 
isomorphically on the subgroup of nl (Oi) generated by 2w1 . Hence P* = 0, 
and therefore n2(Ot) = 0, n 1 (ot) = Z2 . Applying (9.2) and (10.1), we have 

n1(0;) = Z, 

nl(O;)::::: nl(O+) = Z2 

n2(0;) = 0 

(n ~ 3), 

(n ~ 2). 

(The fact that the sycond homotopy group of a compact Lie group always 
vanishes was proved by Elie Cartan [Ca]. Cartan's proof depends heavily on 
the structure theory of compact Lie groups. A different argument, using only 
homological properties, has been given by W. Browder [1]). 

A little more difficult is the calculation of the third homotopy group. We 
have seen that 0; is a circle. We next show that ot is homeomorphic with 
the real projective 3-space p3. For each unit quaternion x E S3, let Ax, Px be 
the operations of left, right translation by x, respectively. Then Ax and Px are 
orthogonal transformations and the maps sending x into Ax, Px respectively 
are continuous maps A, p: S3 -+ 0;. Because of the associative law, we have 
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the relations 

PxOPy=Pyx' 

Ax 0 Py = Py 0 Ax, 

Evidently Tx = Ax 0 p; 1 is the inner automorphism by x; it belongs to the 
subgroup of ot leaving the identity e fixed, and this subgroup is isomorphic 
with 0;' Thus we obtain a map T: S3 ---> 0;' Now Tx = Ty if and only if 
Tx-ly = E, and this is true if and only if x- l y belongs to the center of Q. As 
Ilxll = IIYII = 1, this is true if and only if x = ±y. Thus T induces a one-to
one map T : p3 ---> ot. The linage of T is closed (because p3 is compact) and 
open (by Brouwer's theorem of invariance of domain) and therefore T is a 
homeomorphism of p3 with ot. 

The space ot is homeomorphic with ot x S3; in fact, the projection 
ex ---> ex(e) of ot into S3 is a fibration with fibre 0;' This fibration has the 
cross-section p: S3 ---> ot, and the map (x, ex) ---> Px 0 ex is a homeomorphism 
ofS3 x ot with ot. 

Thus 

n3(Oi) = n3(Sl) = 0, 

n3(Ot) = n3(p3) ~ n3(S3) = Z, 

n3(Ot) ~ n3(S3 x ot) = n3(S3) EB n3(Oj) = Z EB Z 

and the injection n3(Ot) ---> n3(0;) is an epimorphism whose kernel is gen
erated by W3 . 

We next verify by direct calculation that 

Ax 0 Px = f3(X), 

In fact, the matrices of Ax and Px are 

C 
-Xl -X2 

-X') 
C 

-Xl -X2 

-X') Xl Xo -X3 X2 Xl Xo X3 -X2 

X2 X3 Xo -Xl ' X2 -X3 Xo Xl 

X3 -X2 Xl Xo X3 X2 -Xl Xo, 

and their product is the matrix 

C~_l - 2XOXI - 2XOX2 
- 2xox, ) 

2XOXI 1 - 2xi -2XIX2 -2Xl X3 

2XOX2 -2Xl X2 1 - 2xi -2X2 X 3 

2XOX3 -2Xl X3 -2X2 X 3 1 - 2x~ 

which we have seen to be the matrix off3(X), 
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This being so, we have 

It follows from Theorem (5.21) of Chapter III that if ~ E 1t3(0t) is the 
element represented by r: S3 -> OJ and if '1 E 1t3(Ot) is the element repre
sented by p: S3 -> ot, then 

W3 = i*(~) + 2'1. 

Since 1t3(Oj) is generated by ~,it follows from the representation ofOt as a 
product given above that 1t3(Ot) is the free abelian group generated by i*(~) 
and '1. Hence 

(10.7) Theorem The first three homotopy groups of the rotation groups are 
given by the following table 

OJ 

z 
o 
o 

OJ 

Z2 
o 
Z 

0: 
Z2 
o 
Z+Z 

0;; (n 2: 5) 

Z2 
o 
Z D 

If n is odd, then 2wn- 1 = Ll*(21n) = Ll* Pn*(Wn) = 0. Thus wn- 1 generates 
a cyclic group of order at most two. If Wn- 1 = 0, then Pn* : 1tn(O:+ 1) -> 1tn(sn) 
is an epimorphism, and it follows that the fibration Pn has a cross-section. In 
fact, the fibration is trivial; for if A: sn -> 0:+ 1 is a cross-section, the map 
(x, r) -> A(X) • r is a homeomorphism of sn x 0: with 0:+ 1 and 
Pn(x, r) = Pn(A(X) • r) = Pn(A(X)) = x. 

The fibration Pn has a cross-section if n = 1,3, 7 (and only in these cases, 
as we shall prove later). In fact, let us regard sn as the unit sphere in the 
algebra C, Q, or K, according as n = 1,3, 7, and let A(X) be the operation of 
left multiplication by - xen. Then Pn A(X) = ( - xen)en = x( - e;) = x (recall 
that the Cayley algebra is alternative so that the use of the associative law is 
justified even if n = 7)! 

Summarizing, we have 

(10.8) Theorem If n is odd, then W n - 1 has order at most two, and W n - 1 = ° if 
and only if the fibration Pn: 0:+ 1· -> sn has a cross-section. In particular, 
wn - 1 = ° if n = 1, 3, or 7. D 

Suppose that n is odd. Then Pn- 1 0 fn- 1 has degree 0, and so is nullhomo
topic. Since Pn-1 is a fibration,fn-1 is compressible into 0:- 1. Supposefn-1 
is compressible into O:-k; by the homotopy extension property, 
fn I E~ : (E~ , sn- 1) -> (0:+ 1, 0:) is homotopic to a map g : (E~ , sn- 1) -> 

(0:+ 1, O:-k). 
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Consider the commutative diagram 

7rn(O:+ 1, O:-k) i* 
~ 7rn(0:+1,0:) 

lp~ lp, 
7rn(Vn+1,k+d 

q* 
' 7risn) 

where i* is the injection and the remaining homomorphisms are induced by 
the appropriate fibre maps; p~ and p* are isomorphisms, by Theorem (8,5), 
Thus q* is an epimorphism if and only if i* is. But q* is an epimorphism if 
and only if the fibration q: Vn+ 1, k+ 1 ~ sn has a cross-section. Such a cross
section attaches continuously to each point x E sn a (k + 1 )-frame 
(xo, .. " x k - b x); the vectors xo, ... , x k - 1 are orthogonal to each other and 
to x, so that their translates with origin x are tangent to sn there. Thus q has 
a cross-section if and only if sn admits a family of k mutually orthogonal 
fields of unit tangent vectors. 

We have seen 

(10.9) Theorem The following conditions are equivalent: 

(1) fn- 1 is compressible into 0:_ k; 
(2) the injection 7rn(O:+ 1, O:-k) ~ 7rn(O:+ 1, On is an epimorphism; 
(3) the fibration q : V n+ 1. k + 1 ~ sn has a cross-section; 
(4) the n-sphere sn admits k mutually orthogonal fields of unit tangent vectors, 

D 

The problem of determining, as a function of n, the maximum k for which 
these conditions hold is known as the vector field problem. 

Suppose that n is even. Then we have seen that Pn-1 0 fn-1 has degree ±2, 
and it follows that fn- 1 is not compressible into 0:_ 2' Thus sn does not 
admit a field of unit tangent vectors, This also follows from the general result 
of Hopf: a closed manifold M admits a continuous vector field without zeroes if 
and only if the Euler characteristic X(M) = O. 

On the other hand, if n is odd, sn admits a I-field. For we may think of 
S2k-1 as the unit sphere in complex n-space en. If x E S2k-1, then the vectors 
x and ix are linearly independent (and even orthonormal) over the real field. 
Similarly, we can see that S4n- 1 admits a 3-field and s8n- 1 a 7-field. 

Another result along these lines is 

(10.10) If sn- 1 admits a k-field, then srn-1 admits a k-field for every positive 
integer r. 
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Suppose that v is a vector field on sn- 1. Then v has an extension v over En, 
defined by 

v(tx) = tv(x) (t E I, x E sn- 1). 

If x E srn- \ we can write x = (Xl> ... , xr) with Xi E En and D=o Ilxi 112 = 1. 
If v1, ... , Vk is a k-field on sn- 1, define Wi by 

Wi(Xl> ..• , Xn) = (vi(xd,···, vJxr )); 

then (W 1, ... , Wk) is the required k-field on srn- 1. D 

Let us examine the map fn more carefully. The map f: sn -> On + 1 has the 
property that f( -x) = f(x); accordingly f induces a map g: pn -> 0n+ 1. 
Suppose thatf(x) =f(y); it follows from the definition off that the linear 
subspaces spanned by x and y have the same orthogonal complement, the 
fixed set of the reflection f(x) = f(y). Hence y is a scalar multiple of x; as 
both are unit vectors, y = ±x. Therefore g is a homeomorphic imbedding of 
pn in 0n+1. It follows thatfn induces an imbedding gn ofpn in 0:+ 1 . From 
the properties off which we have obtained above, we can deduce 

(10.11) Theorem The map fn: sn -> 0:+ 1 identifies antipodal points ofsn and 
so induces a map gn : pn -> 0:+ 1. The maps gn are related by 

and therefore they define a map goo : poo -> 0+. The map gn is an imbedding of 
pn in 0:+ 1. The map Pn 0 gn: (pn, pn-1)-> (sn, en) is a relative homeomor
phism. D 

II. The Real Stiefel Manifolds 

Consider the fibration 0: -> V n. k with fibre 0:_ k, and its homotopy 
sequence 

nq - 1(0:-k) i' ,nq - 1(0:) -> ... 

By (10.2), the injection i is an epimorphism and i' a monomorphism if 
q ~ n - k - 1. Hence 

(10.12) The Stiefel manifold V n. k is (n - k - 1 )-connected. D 

We next determine the first non-trivial group nn-k(Vn. d. Let r = n - k; 
then we have the fibrations Vk+r.k ->Vk+r.1 =sk+r-1, the fibre being 
Vk+r-1. k-1, and therefore the exact sequences 

nr+ 1 (Sk+r- 1) -> nr(Vk+r- 1. k- 1) -> nr(Vk+r. d -> nr(Sk+r- 1). 
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If k > 2, the extreme groups are both zero, and therefore the intermediate 
groups are isomorphic. For k = 2, the sequence becomes 

1tr+1(S,+1) .'1*) 1t,(V,+1,d ) 1t,(V,+2,2)-+0. 

To calculate .'1*, note that the fibrations 0,++ 2 -+ s'+ 1 and V,+ 2,2 -+ S'+ 1 
are related by a commutative diagram 

0'\1 • 0'++2 

I I 
V,+ 1,1 ----> V,+2,2 

and so there is a commutative diagram 

1t (S'+ 1) ,+ 1 

y 
~ 

1t,(O,++ 1) 

1t,(V,+ 1, d 

~ 
S'+ 1 

/ 

I 
relating their homotopy sequences. But we have seen in Lemma (lOA) that 
p* .'1*(1,+ d = 0 or 2!, according as r is even or odd. We have proved 

(10.13) Theorem If r is even, then 1t,(V, +k, k) is infinite cyclic for all k ~ 1. If r 
IS odd, then 1t,(V, + 1, d is infinite cyclic and 1t,(V, +k, k) is cyclic of order two for 
all k ~ 2. 0 

A case of special interest is V, + 2 2, which we may identify with the 
tangent bundle of Sr+ 1; V,+2,2 is a~ orientable manifold of dimension 
2r + 1, and we have just seen that it is (r - 1 )-connected. By the Hurewicz 
theorem, H,(V'+2, 2) = Z or Z2 according as r is even or odd. By Poincare 
duality, we have 

(10.14) Corollary If r is even, 

If r is odd, 

( )!Z if q = 0, r, r + 1, or 2r + 1; 
Hq V,+2, 2 =\0 otherwise. 

if q = 0 or 2r + 1; 

if q = r; 
otherwise. o 
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III. The Grassmann Manifolds 

The manifold Gk. 1 is the quotient Ok+zlO(k, I), where O(k, I) is the sub
group of 0k+1 consisting of all transformations which carry RI into itself. 
Evidently Gk,l is homeomorphic with G I , k; therefore we shall assume 1 ::::; k. 

The Grassmann and Stiefel manifolds are related by a fibration 

Ok+zlOk = Vk+I.1 ~ Gk,l = Ok+zlO(k, I) 

with fibre O(k, I)/Ok 0:::: 0 1 • 

(10.15) Lemma If k ~ I, the inclusion map of 0 1 into Vk+I,1 is nullhomotopic. 

The space V k+ I, I can be represented as the space of all (k + 1) x 1 matrices 
with orthonormal columns. Under this representation, 0 1 is represented by 
those matrices of the form 

where 0 is a k x 1 matrix of zeroes. Let F(t, X) be the matrix 

(~) 
where c = cos int, s = sin ht, E is the 1 x 1 identity matrix, and 0 IS a 
(k - I) x 1 matrix of zeroes, Then F is the desired nullhomotopy. 0 

It follows from Lemma (10.15) that the homotopy sequence of the fibra
tion in question breaks up into a family of split short exact sequences. Hence 

(10.16) Theorem If k ~ 1, then 

nq( Gk , I) 0:::: nq(V k + I, I) EB nq_ 1 (01) 

for all q. o 

IV. The complex case 

This time we have the fibration 

with fibre Un-l' We then have, in analogy with (1O.1HlO.3); 

(10.17) The injection nq(Un- d ~ nq(Un) is an isomorphismfor q < 2n - 2 and 
an epimorphism for q = 2n - 2, i.e., the pair (Un' Un-l) is (2n - 2)-connected. 

o 
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(10.18) The pair (Un+k' Un-d is (2n - 2)-connectedJor each k;:::: O. D 

(10.19) The pair (U, Un - d is (2n - 2)-connected. D 

We now define a map of spn(C) into Un+ 1 which plays a role analogous to 
that played by the mapping gn: pn ~ 0:+ 1 in the case of the orthogonal 
group. It is convenient to think of points ofcn+ 1 as column vectors (~) where 
x E C and ( is an (n xl) complex matrix, and the elements of Un+ 1 as 
matrices of the form 

where x E C, ( and '1 are n x 1 complex matrices, A is an n x n complex 
matrix, and the asterisk denotes conjugate transposition. Let U E s1, 
X = m E s2n+ 1, and let Fn+ 1 (u, X) be the matrix 

(u + (1 - u)xx 
-x(1 - u)( 

x(1 - u)(* ) 
E-(I-u)((* . 

One verifies immediately that the matrix Fn+ 1 (u, X) is unitary and 
Fn+ 1 : S1 X s2n+ 1 ~ Un+ 1 is continuous. Moreover, Fn+ 1 (S1 V s2n+ 1) is the 
identity matrix, and Fn+ 1(u, vX) = Fn+ 1(u, X) for any v E S1. Therefore 
Fn+ 1 induces a map Fn+ 1 : s2,,+ 2 ~ Un+ b as well as a map 
Gn + 1 : spn(c) ~ Un+ l' If X E s2n-1, so that the last coordinate of ( is zero, 
then the matrix Fn+ 1(U, X) belongs to Un, the subgroup ofUn+ 1 leaving the 
last basis vector e2n fixed; in fact Fn+1(u, X) = Fn(u, X). Therefore, if 
Pn+ 1 : Un+ 1 ~ s2n+ 1 is the usual fibre map, then Pn+ 1 0 Gn+ 1 maps 
spn-1(C) into the point e2n . 

(10.20) Lemma The map Pn+ 1 0 Gn+ 1: (spn(C), spn-1(C)) ~ (S2n+ 1, e2n) is 
a relative homeomorphism. 

It is sufficient, because all the spaces involved are compact Hausdorff 
spaces, to prove that Pn+ 1 0 Gn+ 1 is one-to-one on the complement of 
spn( C). Suppose, then, that Pn + 1 F n + 1 (u, X) = Pn + 1 F n + 1 (V, Y) and that 
u +- 1 +- v, X = m, Y = (~), (n +- 0 +- '1n' We may further assume that x and 
yare real and non-negative. Then 

x(1 - u)~n = y(1 - v)11n' 

e2n - (1- a)~n( = e2n - (1 - v)11n'1· 

Then '1 = C(, where 

(1 - a)~n c= . 
(1 - v)11n ' 
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in particular, '1n = c~n' and therefore 

1- iL 
'1nfln = -1~-- ~n~n -v 

IV Homotopy Groups 

so that the complex number (1 - a)/(1 - D) is real. Thus a and D are two 
points of the unit circle lying on the same line through the point 1; as 
a =1= 1 =1= D, this implies a = D, and therefore x~n = Yf/n' Y = (~n IfIn)x = ex. 
Therefore Y = eX. We have proved that u = v, Y = eX, so that u /\ X and 
v /\ Y correspond to the same point of SI /\ pn(C). 0 

Now consider the homotopy sequence 

(10.21) The map Fn : s2n ----> Un represents the element Wn. 

Recall that (pn(C), pn-l(C)) is a relative CW-complex with one 2n-cell, 
whose attaching map is the Hopf fibre map h: S2n- 1 ----> pn- 1 (C), and there
fore (spn(C), spn-l(C)) is a relative CW-complex with one (2n + I)-cell 
whose attaching map is the suspension of h. We have a commutative 
diagram 

7t (E2" + 1 S2") 2"+ 1 , 

\ 
7t2"+ 1 (SP"(C), SP"- 1(C) 

G"+ 1.\ 

\ Sh* 

a. ~ 7t2n(spn-l(C)) 

Since p 0 G n + 1 and the attaching map for the (2n + 1 )-cell are relative 
homeomorphisms, their composite is a relative homeomorphism 
(E2n+1, S2n)----> (S2n+l, e2n) representing the generator 12n+I' By commuta
tivity, the element ~*(12n+l) is represented by the map Gn 0 h = Fn· 0 
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Remark. Later we shall need to know that the image of the map Gn is 
contained in U:+ 1, i.e., 

(10.22) For any u E S1, X E s2n+1, 

det Fn+ 1 (u, X) = 1. 

Let 

A little calculation reveals that 

H(u, X) = (~ 

so that det H(u, x) = xn+1. But 

det( _lu~ 

det(~ 
and therefore, if x -+ 0, 

X(l-U)~*) 
xE 

o ) = xn 
xE ' 

0) = x 
E ' 

det Fn + 1(u, X) = 1. 

As the set of points (u, X) with x -+ 0 is dense and Fn+ 1 is continuous, 
det Fn+ 1 (u, X) = 1 everywhere. 0 

EXERCISES 

1. Prove Theorem (2.6) (paying strict attention to low-dimensional cases). 

2. Let (X, A) be a pair, and let 

be a portion of the homotopy sequence of (X, A). 
(i) If ex, fJ EO 7rj(X) and J*(ex) = JA(1), then there exists yEO 7rj(A) such that 

(1 = ex • i*(y); 
(ii) Show how multiplication of paths can be used to define an operatiol} of 7r 1 (X) 

on 7rdX, A); 
(iii) Use the operation defined in (ii) to show that if ex, f3 EO 7rj(X, A) and 3*(ex) = 

3*(fJ), then fJ can be obtained from ex by operating with ~ for some ~ EO 7rj(X). 
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3. (Wall [1]). Suppose given a commutative sinusoidal diagram like that of Figure 
4.3. Suppose, moreover, that the last three of the sequences 

i3 i j 
• •• ---> C n + 1 ------> D n ------> X n ------> C n ---> ••• 

01 i l jl 
• •• ---> D n + 1 ------> An ------> Y" ------> D n ---> ••• 

O2 i2 j2 
• •• ---> X n + 1 ------> An ------> Bn ------> X n ---> ••• 

03 i3 h 
• •• ---> C n + 1 ------> Y" ------> Bn ------> C n ---> ••• 

are exact. Then Ker 0 = 1m j, Ker i = 1m 0, and 

Ker jjKer j n 1m i ~ 1m i/Ker j n 1m i. 

Thus the top sequence is exact if either 1m i c Ker j or Ker j c 1m i. 

B.+I C'+ I D. A._I B.-I 
~~~~ 

h 0 01 i 1 

Figure 4.3 

4. Let X be a semi-locally I-connected space, X its universal covering space. Prove 
that H~I)(X) ~ Hn(X) for all n. 

5. Let p: X ---> B be a fibration with fibre F, and let IX, {3 E 7r1(B) be elements such that 
d*(IX) = d*({3) E 7ro(F). Then there exists ~ E 7rdX) such that {3 = IX • p*(O-

6. Let {X n I n = 1, 2, ... } be a sequence of spaces with base points, X = n:~ 1 X n' 

Prove that 7rq(X) ~ EB:~ 1 7rq(X n) for all q > 1. What happens if q = 1? 

7. (Milnor [1]). Let W be the geometric realization of the total singular complex 
6(X) of a space X (Exercise 5, Chapter II). Prove that the map 9 : W ---> X is a 
weak homotopy equivalence. 



CHAPTER V 

Homotopy Theory of CW -complexes 

In Chapter II we proved that if X is an n-cellular extension of the path wise 
connected space A, then the pair (X, A) is (n - I)-connected, so that 
1'l:;(X, A) = 0 for all i < n. The next step is the determination of 1'l:n(X, A). By 
the results of §2 of Chapter II, Hn(X, A) is a free abelian group with one basis 
element for each n-cell of (X, A). We have seen that the Hurewicz map 
p: 1'l:n(X, A) ~ Hn(X, A) is an epimorphism whose kernel is generated by all 
elements of the form IX - T~(IX) with IX E 1'l:n(X, A), ~ E 1'l:l(A). If IT = 1'l:l(A) 
operates trivially on 1'l:n(X, A), then p is an isomorphism. But this condition is 
not easy to verify a priori. 

J. H. C. Whitehead addressed himselfto this problem in a series of papers 
[1,2,4] written between 1939 and 1949, culminating in [6] with a complete 
solution of the problem. If n ;;::: 3, the answer is very simple-1'l:n(X, A) is a 
free Z(IT)-module with one basis element for each n-cell. For n = 2, the 
situation is considerably more complicated; the group 1'l:z(X, A) being non
abelian, it is not a module at all over Z(IT); however, it is a crossed module, 
and Whitehead proved in [6] that it is a free crossed module with one basis 
element for each 2-cell. 

In §1 we prove Whitehead's theorem for n ;;::: 3. We shall not need the full 
result for n = 2, and, as the algebra involved is of considerable complexity, 
we shall content ourselves with proving that 1'l:z(X, A) is generated, as an 
additive group, by the elements T~(c,,), where the c" are in one-to-one corre
spondence with the 2-cells of (X, A) and ~ ranges over 1'l:l(A). 

A consequence of these results is that the injection 1'l:;(A) ~ 1'l:;(X) is an 
isomorphism for i < n - 1 and an epimorphism if i = n - 1; in the latter 
case the kernel is the operator subgroup of 1'l:n-l (A) generated by the attach
ing maps for the n-cells of (X, A). This result allows us to construct a 
CW -complex with given homotopy groups. This, and a few related results, 
are proved in §2; the ideas again are due to J. H. C. Whitehead [5]. 

209 
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One consequence of the results of §2 is that, if X is an arbitrary space, 
there is a CW-complex K and a weak homotopy equivalencef: K ----> X. The 
complex K is then uniquely determined up to homotopy type. By the 
Whitehead Theorem, the map f induces isomorphisms f* : H q(K) ~ H q(X) 
for all q. Thus, from the point of view of algebraic topology, we may as well 
replace X by K. This is the method of CW -approximation; generalized to 
the relative case, it is expounded in §3. 

A O-connected space is said to be aspherical if and only if its homotopy 
groups vanish in all dimensions greater than 1. Examples of such spaces are 
very common in mathematics; for example if G is a strongly discontinuous 
group acting on a convex open set D in Rn, then the orbit space DIG is 
aspherical. In particular, every closed surface, except for the sphere and the 
projective plane, is aspherical. In §4 these spaces are discussed, and it is 
shown, that an aspherical CW -complex X is determined up to homotopy 
type by its fundamental group TI; and if K is an arbitrary CW -complex, then 
[K, X] is in one-to-one correspondence with the conjugacy classes of homo
morphisms of n1(K) into TI. 

Some of the results of §4 were proved by a stepwise extension process. A 
map of the n-skeleton Kn of K into a space X was given, and it was required 
to extend the map over the (n + 1 )-skeleton. And the vanishing of the homo
topy group nn{K) allowed the extension to be carried out over each cell 
separately, and therefore (because Kn+ 1 has the weak topology) over all of 
Kn + 1· This method of obstruction theory has considerably wider range of 
application; it was developed in 1940 by Eilenberg [2]. 

The principle of the method is this: suppose that (X, A) is a relative 
CW -complex, Y an n-simple space, and f: X n ----> Y is a map. If 
ha: An+ 1 ----> Xn is the attaching map for an (n + 1)-cell Ea, then 
f 0 ha : An+ 1 ----> Y represents an element c(ea) E nn(Y). The function c deter
mines a homomorphism of the (n + 1 )st chain group r n+ 1 (X, A) into nn( Y), 
i.e., a cochain cn+1(f) E m+1(X, A; nn(Y)). 

The cochain cn + 1(f) is called the obstruction to extendingf; it is a cocycle, 
whose vanishing is necessary and sufficient for the map f to be extendible 
over X n + 1 . Moreover,fis a coboundary if and only ifflxn-1 can be 
extended over X n + 1. In practice, we are usually given a map fa : A ----> Yand 
are seeking necessary and sufficient conditions for fa to be extendible over X. 
In order to solve this, we need to know how the obstructions cn + 1(f), 
cn + 1(f') of two different extensions off~ over X n are related. We are a long 
way from doing this. 

The above obstruction theory is presented in §5. In §6 we make the 
simplifying assumption that the space Y is (n - I)-connected. Iff: A ----> Y is 
an arbitrary map, then, by the above theory,f can be extended over X nand 
any two extensions over X n are homotopic on X n- 1. If 9 : X n ----> Y is any 
extension off, the cohomology class ofthe obstruction cn + l(g) depends only 
onf; it is an element yn+ 1(f) E Hn+ l(X, A; nn(Y)), whose vanishing is neces
sary and sufficient that f be extendible over X n+ 1. 

The class t+ 1(f) can be given a description in terms of a certain" univer-
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sal class" 1"(Y) E H"(Y; n"(Y)) and standard operations in cohomology 
theory. By the Hurewicz Theorem p: n"(Y) ~ H"(Y), and the class 1"(Y) is 
determined by the condition 

<I"(Y), z) = p-l(Z) 

for all Z E H"(Y). The class y"+ l(f) is then, up to sign, the image of I"(Y) 
under the composite 

Thus y" + 1 (f) = 0 if and only if there is a class U E H"(X; n"( Y)) which is 
mapped into f*(I"(Y)) by the injection. 

Suppose that dim (X, A) ::; n + 1. Then f can be extended over X if and 
only iff*I"(Y) belongs to the image of the injection. This is a modern form of 
Hopf's extension theorem, proved in [4] in 1933 for the case Y = S". The 
formulation in terms of cohomology was given by Whitney [3] in 1937. 

In [2] Eilenberg gave a set of conditions sufficient to ensure that the 
vanishing of y"+ l(f) implies the extendibility off over all of X. These condi
tions are satisfied, in particular, when n"(Y) is the only non-vanishing homo
topy group of Y. The corresponding homotopy classification theorem 
asserts that, for such a space Y, the map f -+ f*I"(Y) induces a one-to-one 
correspondence between [X, Y] and H"(X; nn(Y)) for any CW-complex X. 

Spaces with only one non-zero homotopy group were first investigated by 
Eilenberg and Mac Lane [1] in 1945. They are of enormous importance in 
homotopy theory, not only because of the above-mentioned classification 
theorem, but also because, as we shall see in Chapter IX, every CW -complex 
can be built up, up to homotopy type, out of these" Eilenberg-Mac Lane" 
spaces. In §7 we investigate some of their elementary properties. 

The classification theorem has another important consequence. A coho
mology operation is a natural transformation of functors 

e : H"( ; I1) -+ Hq( ; G). 

They and their higher-order generalizations have turned out to be powerful 
tools in studying obstruction theory. Because of the classification theorem, 
such an operation is completely determined by its effect on the fundamental 
class b" = In(K(I1, n)). This observation was made in 1953 by Serre [2]. 
Cohomology operations are introduced in §8 and a few examples given. A 
deeper study is made in Chapter VIII. 

1 The Effect on the Homotopy Groups 
of a Cellular Extension 

Let A be a space, which we shall assume to be O-connected, and let X be an 
n-cellular extension of A, with cells {E, I rx E 1} (n ~ 2) and characteristic 
maps h,: (1\", An) -+ (X, A). We have seen that the pair (X, A) is 
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(n - I)-connected, and therefore the Hurewicz map sends 1t~(X, A) isomor
phically upon Hn(X, A). In §2 of Chapter II we have determined the group 
Hn(X, A); it is a free abelian group with one basis element ea for each cell Ea; 
the element ea is the image under the homomorphism induced by ha of a 
generator bn of the infinite cyclic group Hn(N, An). If we know a priori that 
1t 1 (A) operates trivially on 1tn(X, A), (for example, if A is I-connected), we 
can deduce the structure of the latter group; it is a free abelian group with 
one basis element Ca for each 11. E J; the element Ca is the image under 1tn(ha) 
of a generator Cn of the infinite cyclic group 1tn(d n, An). 

If A is not I-connected, the problem becomes more difficult. Suppose 
n > 2; then the pair (X, A) is 2-connected, so that the injection 1t 1(A) ~ 
1t1(X) is an isomorphism. Let p: g ~ X be a universal covering map; then, if 
A = p-1(A), the map piA: A ~ A is also a universal covering map. Let n be 
the group of covering translations of g, so that n ~ 1t1(X) ~ 1t1(A). Then 
we have isomorphisms 

p: 1tn(g, A) ~ Hn(g, A) 

(because A is I-connected and (g, A) (n - I)-connected); and 

p* : 1tn(g, A) ~ 1tn(X, A) 

(because of Corollary (8.10) of Chapter IV, or by covering space theory). The 
group n operates on Hn(g, A), and it follows from (1.20) of Chapter III that 
the composite p* 0 P -1 : Hn(g, A) ~ 1tn(X, A) is an operator isomorphism. 

Since Hn(g, A) is an abelian group on which n operates, it is naturally a 
Z(n)-module, where Z(n) is the integral group ring of n. The structure of 
this module is easily determined; for each cell Ea of(X, A), choose a cell Ea 
of (g, A) such that p 0 fia = ha, where ha, fia are characteristic maps for these 
cells. Then the map h ~ h(Ea) establishes a one-to-one correspondence be
tween n and the set of cells of (g, A) which lie over Ea . An additive basis for 
Hn(g, A) is thus formed by the elements h*(ea) as 11. ranges over the indexing 
set J and h over the group n. Therefore, as a module, Hn(g, A) is free with 
the ea , 11. E J, as a basis. 

Interpreting our result in the base space X, we have 

(1.1) Theorem If X is an n-cellular extension of the O-connected space A, and 
n ;::0: 3, then 1tn(X, A) is afree module over the integral group ring Z(1t1(A)). If 
{Ea 111. E J} are the n-cells of (X, A), with characteristic maps ha: (N, An) ~ 
(X, A), and if, for each 11. E J, ua is a homotopy class of paths in Afrom the base 
point eo to ha(eo), and if Ca = ha*(cn) E 1tn(X, A, ha(eo)), then the elements 
c~ = r~Jca)form a module basis for 1tn(X, A). 0 

It will simplify the discussion below and elsewhere if we make the follow
ing definition. Let 11. E 1tn(X, A, xo), fJ E 1tn(X, A, xd; then 11. is a translate of 
fJ if and only if there exists a homotopy class ~ of paths in A from Xo to x 1 

such that rAfJ) = 11.. 
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(1.2) Corollary If n> 2, the elements e~ and their translates generate the 
group Jrn(X, A). 0 

The case n = 2 is much more difficult. In the first place, the injection 
Jr1(A) -> Jr 1 (X) is only an epimorphism, and not an isomorphism, and the 
covering space argument breaks down (cf., however, the Remark at the end 
of this section). Secondly, the group Jrz(X, A) is, in general, non-abelian, so 
that it cannot be regarded as a module over the group ring Z(II). However, 
it is a crossed module over Z(II) and it is proved by J. H. C. Whitehead in 
[6] that it is afree crossed module having the e~ as basis. It follows that 
Corollary (1.2) holds even if n = 2. 

As the proof of the analogue of Theorem (1.1) for the case n = 2 is quite 
complicated, as it involves notions like that of crossed module which are not 
needed elsewhere in this book, and as we shall not need the complete result, 
we shall not give a proof here. We shall, however, need the fact that Corol
lary (1.2) remains valid, and accordingly, we proceed to prove 

(1.3) Theorem The elements e~ generate Jrn(X, A), as a group with operators. 

We show successively that the theorem is true 

(1) when (X, A) = (Kn, Kn-d for some simplicial subdivision K of Lln; 
(2) when (X, A) has just one n-cell; 
(3) when (X, A) has only a finite number of n-cells; 
(4) in general. 

In Case (1), suppose first that n = 2; then a*: Jrz(X, A) -> Jr 1 (A) is an 
isomorphism, and we must show that Jr 1(A) is generated, as a normal 
subgroup, by the elements a* e~. 

The elements a * e~ depend on certain choices-on the choice of the char
acteristic map ha and of the homotopy class of paths ua . But it is clear that 
different choices for these elements has the effect of replacing a* e~ by a 
conjugate, and this does not affect the normal subgroup generated by these 
elements. 

Recall that, if K is any connected simplicial complex with base vertex *, 
then Jr 1(K) ~ Jr1(Kz) can be calculated as follows. Order the vertices of K 
and choose a maximal tree T in K. For each vertex e of K, let ~e be the 
unique homotopy class of paths in T from * to e. For each I-simplex a of 
K - T with vertices a < b, let 'la. b be the unique homotopy class of paths in 
a from a to b. The elements (a. b = ~a 'la, b ~b 1, considered as homotopy 
classes of paths in K 1, form a set of free generators for Jr 1 (K d. To find the 
kernel R of the epimorphic injection Jr1(Kd -> Jr1(Kz), for each 2-simplex IX 

of K with vertices a < b < c, let Wa = (a, b (b, c G: ~ (we agree that (x. y = 1 if 
x < yare the vertices of a I-simplex in T). Then R is generated, as a normal 
subgroup, by the elements Wa' In our case K is I-connected, so that Jr1 (K1) is 
generated, as a normal subgroup, by the elements Wa' If we choose ha to be 



214 V Homotopy Theory of CW-complexes 

the simplicial map of,-12 into lJ. which sends eo, e l , e2 into a, b, c respectively, 
and if we choose Ua = (a' we see that Wa = a* 8~. This proves our contention 
when n = 2. 

If n > 2, the argument is much simpler. For then Kn- I is I-connected, so 
that the Hurewicz map p: nn( Kn, Kn- d -+ H n(Kn, Kn- d is an isomor
phism. As p(8~) = ea and the elements ea generate H n(Kn, Kn- I)' the 8~ gen
erate nn(Kn, Kn- d· 

In order to handle Case (2), we shal1 need 

(1.4) Lemma Let X be an n-cellular extension of A, having just one n-cell E 
with characteristic map h: (,-1n, An) -+ (X, A). Let f: (,-1n, An, eo) -+ (X, A, *) 
be a map. Then there is a subdivision K of ,-1n and a map f2 ~ f such that,for 
each n-simplex a of K, either f2(O') c A or f21 0'= h 0 f" for some map 
f,,: (a, &) -+ (,-1n, An). 

As in the proof of Theorem (3.9) of Chapter II, let U = Int En, 
V = A u h(,-1n - {bn}), where bn is the barycenter of ,-1n. Let K be a simplicial 
subdivision of ,-1n so fine that each simplex of K is mapped by finto either U 
or V; let L be the union of those mapped into U, M the union of those 
mapped into V, so that Land Mare subcomplexes of K and An c M, 
L n Me Int ,-1n. Then f(L) c h(Int ,-1n) and h maps Int,-1n homeomor
phical1y; thus h- I 0 f I L is continuous, and we may regard it as a map 
g: (L, L n M) -+ (,-1n, ,-1n - {bn}). 

By Corol1ary (3.7) of Chapter II, the pair (,-1n,,-1n - {bn}) is 
(n - 1 )-connected. Hence, if L is the union of L n M with the 
(n-l)-skeleton of L, the map gIL:(L, LnM)-+(,-1n, ,-1n-{bn}) is 
compressible. By the homotopy extension property for the pair (L, L), g is 
homotopic (reI. L n M) to a map g' : (L, L) -+ (,-1", ,-1" - {bn}). Now An is a 
deformation retract of N - {bn}; thus g', and therefore g, is homotopic to a 
map g" : (L, L) -+ (,-1", An). Composing a homotopy of g to g" with h, we 
obtain a homotopy kt off IL: (L, L n M) -+ (X, V) to the map hog". Com
bining kt with the stationary homotopy off IAn, and using the homotopy 
extension property for the pair (K, L u An), we obtain a homotopy off to a 
map fl : (K, An) -+ (X, A) such that fl(M, (L n M) u A") c (V, A) and 
filL = hog". Since A is a deformation retract of V, the map 
filM: (M, (L n M) u An) -+ (V, A) is compressible. Hence fl is homotopic 
(reI. L u An) to a map f2 : (,-1", An) -+ (X, A) with the desired property. 

Let 1 be the element of nn(Kn, Kn- 1, eo) represented by the identity map 
of N. For each n-simplex a of K, let (" be a homotopy class of paths in Kn 
from eo to a vertex e" of a, and let I" E n"(Kn, K n - I , eo) be the element 
represented by a characteristic map for o'. By Part (1) above, I is a sum of 
terms, each of which is, up to sign, a translate of I" . 

Now f3 = f*(/) = f2*(/) is a sum of translates of ±f2*(/,,). Iff2(O') c A, then 
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j2*(I,,) = O. Otherwisej210" = h 0 j" withj,,: (IT, o-)~ (Lln, An). Thenj,,*(I,,) is 
a translate of n" Gn for some integer n,,; thus j2*( I,,) is a translate of n" h*(Gn) 
and therefore of n" G. Hence f3 is a sum of integral multiples of translates of f,'. 
This proves our contention in Case (2). 

Now suppose (3) holds, so that there are only finitely many cells E I' ... , 
Er • The case r = 1 having been treated in Case (2), we may assume that r > 1 
and that the desired result holds for the pair (X', A), where 
X' = E2 U ... u Er u A. There is an exact sequence 

(1.4) 

(recall that (X', A) is (n - 1 )-connected!) where i, j are the injections. The 
first two groups in (1.4) have operators in nl(A), while the third has opera
tors in nl(X')' Since the injection nl(A) ~ nl(X') is an epimorphism and i, j 
are operator homomorphisms, we may regard (1.4) as an exact sequence of 
groups with operators in n1 (A). As nn(X', A) has a set of generators which 
are mapped by i into f,~, ... , f,~, and as nn(X, X') has one generator j(f,'d, it is 
a matter of elementary algebra to verify that nn(X, A) is generated by f,'1> ... , 
B~ • 

The general case (4) now follows by a direct limit argument of a type we 
have used several times before. 0 

(1.5) Corollary The injection nn-l(A) ~ nn-l(X) is an epimorphism. Its 
kernel is the operator subgroup generated by the elements a*(f,~). 0 

Note that the elements a *(f,~) are just (translates of) the homotopy classes 
of the attaching maps for the cells of (X, A). 

Remark. It should be observed that the covering space argument used in 
the proof of Theorem (1.1) is valid, even when n = 2, provided that the 
injection nl(A) ~ nl(X) is an isomorphism; note that then the injection 
n2(X) ~ n2(X, A) is an epimorphism, so that n2(X, A) is abelian. By Corol
lary (1.4), this is so if and only if the attaching maps for the 2-ceIls are all 
trivial. This means that (X, A) has the same homotopy type as (A v L, A), 
where L is a cluster of 2-spheres. 

Suppose, more generally, that X = A v L', where L' is a cluster of 
r-spheres. Then A is a retract of X, and therefore the homotopy exact 
sequence of (X, A) breaks up into a family of short exact sequences 

o ~ nr(A) ~ nr(X) ~ nr(X, A) ~ 0 

of n1(A)-modules. In fact, these sequences split; for ifj: X ~ A is a retrac
tion, then j* : nr(X) ~ nr{A) is a left inverse of the injection nr(A) ~ nr(X), 
Since (X, A) is (n - I)-connected, we have: 

(1.6) Theorem If A is O-connected and X = A v Ln, where Ln = Va E J S~ is a 
cluster oj n-spheres (n ;:::: 2), then the injection nr(A) ~ nr(X) is an isomorphism 



216 V Homotopy Theory of CW-complexes 

for r < n. Moreover, there is an isomorphism 

TCn(X) ~ TCn(A) EB TCn(X, A) 

ofTC1(A)-modules, and the module TCn(X, A) isfree. The images of the genera
tors of the groups TCn(S~) under the injections 

TCn(S~) -> TCn(Ln) -> TCn(X) 

form a basis for a submodule of TCn(X) which is mapped isomorphically upon 
TCn(X, A) by the injection. 0 

2 Spaces with Prescribed Homotopy Groups 

It is natural to ask to what extent the homotopy groups of a space can be 
prescribed. Specifically, if that TC 1, TC 2 , •.. is a sequence of groups, what 
conditions must be imposed in order that there exist a space X and isomor
phisms TCi(X) -> TCi for all i? Of course, the groups TCi must be abelian ifi ~ 2. 
Since TC 1(X) operates on TCi(X), it is natural to require that TC1 operate on TCi 
for each i and that the above isomorphisms be operator isomorphisms. 
(N.B.-The group TC1 operates on itself by inner automorphisms, so that any 
isomorphism is an operator isomorphism if i = 1). 

It turns out that no further conditions are necessary. In fact, we have 

(2.1) Theorem Let TC1 be a group, and, for each q ~ 2, let TCq be an abelian 
group on which TC 1 operates. Then there is a connected CW -complex X and a 
family of isomorphisms ¢q: TCq(X) -> TCq such that,Jor all ~ E TC1(X), rJ. E TCiX), 
we have 

¢lr~(rJ.)) = ¢1(~)· ¢irJ.)· 

We shall construct the space X skeleton by skeleton. Two kinds of 
processes are involved; the first is that of attaching spheres so as to create 
new generators; the second, of attaching cells to create new relations. 

To begin with, let Al be a set of generators for the group TC1' and let 
Xl = Va EA 1 S; be a cluster of circles, indexed by A 1. Then TC 1 (X 1) is a free 
group; the images (J a E TC 1 (X d of generators of the groups TC 1 (S~) form a 
basis, and a homomorphism 1/1 1 : TC 1 (X 1) -> TC 1 is defined by 1/1 1 ((J a) = rJ. for 
each rJ. E AI. Since Al generates TC1' 1/11 is an epimorphism. 

Suppose that Xn is an n-dimensional CW-complex (n ~ 1) and that 
¢; : TCi(X n) -> TC i, (1:s i :S n - 1) are operator isomorphisms, and 
1/1 n : TCn(X n) -> TCn is an operator epimorphism. Let Bn be a set of generators for 
Ker 1/1 n as a TC 1 (X n)-module (if n = 1, assume instead that Bn generates 
Ker I/In as a normal subgroup of the free group TC1(X 1))· Let Ln = V P E Bn Sp 
be a cluster of n-spheres indexed by Bn, and let hn : Ln -> X n be a map such 
that hn I Sp represents f3 E TCn(X n)· Let X~+ 1 be the mapping cone of hn. By 
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Corollary (1.4), the injection 7tn(X n) -+ 7tn(X~+ d is a epimorphism whose 
kernel is the operator subgroup generated by En; thus this injection induces 
an isomorphism </1~: 7tn(X~+ d -+ 7tn. Moreover, if i < n, the injection 
7ti(X n) -+ 7ti(X~ + 1) is an isomorphism, and the </1: determine isomorphisms, 
which we continue to denote by </1: : 7ti(X~+ 1) ~ 7ti· 

Let An+ 1 be a set of generators for the module 7tn+ 1. Let 
L~+1 = VaEAn+l S~+1 be a cluster of(n + I)-spheres, indexed by An+l' and 
let X n+ 1 = X~+ 1 V L~+ 1. It follows from Theorem (1.6) that 

(1) the injection 7ti(X~+d-+7ti(Xn+l) is an isomorphismfor all i s n; 
(2) the injection i: 7tn+ I(X~+ 1) -+ 7tn+ I(Xn+ d is a monomorphism. 
(3) 7tn+l(Xn+1) is the direct sum of the image ofi with the submodule F freely 

generated by the elements O"a represented by the inclusion maps 
S~+1 c>Xn +1. 

Hence the operator isomorphisms </1: : 7ti(X~+ d ~ 7ti induce operator iso
morphisms </1i : 7ti(X n+ d ~ 7ti for each i S n. Let () : 7tn+ 1 (X~+ d -+ 7tn+ 1 be 
an arbitrary operator homomorphism (for example, we may take () = 0). 
Then there is an operator homomorphism t/ln+ 1: 7tn+ I(Xn+ d -+ 7tn+ 1 
defined by 

t/ln+l 0 i = (), 

t/ln+ 1 (O"a) = ex; 

t/ln+l is an epimorphism because An+l generates the module 7tn+1. 
This completes the inductive construction of an expanding sequence of 

spaces {Xn}. Their union X is a CW-complex having Xn as its n-skeleton. 
Since the injections 7tn(Xn+ 1) -+ 7tn(X) are isomorphisms, the isomorphisms 
</1n : 7tn(X n + 1) -+ 7tn induce isomorphisms 7tn(X) ~ 7tn which evidently have 
the required properties. 0 

We can modify the details of the above proof to obtain other useful 
results. For example, suppose that Y is a O-connected space and 7ti = 7ti(Y). 
Then there is a map fl : XI -+ Y such that fl I S; represents the element 
ex E 7tl = 7tl (Y). Suppose that fn : X n -+ Y is a map such that 

</1: = 7t;(fn) : 7ti(X n) -+ 7ti 

t/I n = 7tn(Jn) : 7tn(X n) -+ 7tn • 

(i < n), 

Then, for each P E En,fn 0 hn lSi: representsfn*(P) = t/ln(P) = O. Hencefn 0 hn 
is nullhomotopic, and therefore fn: X n -+ Y has an extension 
f~+I: X~+1 -+ Y, and 

(i s n). 

Now extend f~+ 1 to a map fn+ 1 : X n+ 1 -+ Y by requiring that fn+ 1 I S~+ 1 
represent ex E 7tn+,1 = 7tn+l(Y). Then 

(i S n); 
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and, if we choose the homomorphism (]: lrn+ l(X~+ d ~ lrn+ 1 to be 
lrn+l(f~+l)' then 

!J;n+l = lrn+1(fn+d: lrn+l(Xn+d~lrn+l' 

Each map fn + 1 being an extension of the preceding, there is a map f: X ~ Y 
such that f IX n = fn for every n. Therefore we have 

(2.2) Theorem Let Y be a O-connected space. Then there is a connected CW
complex X and a map f: X ~ Y such that f* : lrn(X) ;:::: lrn( Y) for every n. 

o 
Remark. Suppose that Y is m-connected (m ::;, 1). Then the groups lr i are 

zero for all i ::::; m, and we can choose X so that its m-skeleton is a single 
point. 

This line of reasoning can be carried a little further, to obtain 

(2.3) Theorem Let A, Y be O-connected spaces, fo : A ~ Y, and let n be a 
non-negative integer. Then there is a relative CW-complex (X, A), having no 
cells of dimension::::; n, and an extensionf: X ~ Y offo, such that 

(1) the injection lrq{A) ~ lrq(X) is an isomorphism for q < n and an epimor
phismfor q = n; 

(2) the homomorphism lrq(f) : lrq(X) ~ lrq(Y) is a monomorphismfor q = nand 
an isomorphism for q > n. 

Let us first define the groups lrq by 

I lrq(A) 

lrq = 11m lrn(fo): lrn(A) ~ lrn(Y) 

I lrq(Y) 

Let Xn = A,fn = fo: Xn ~ Y, and let 

CP~: lriXn) ~ lrq 

be the identity map (q < n), while 

!J;n: lrn(Xn) ~ lrn 

ifq<n, 

if q = n, 

if q > n. 

is the homomorphism induced by lrn(fo). Then cp~ is an isomorphism for all 
q < nand !J;n is an epimorphism. The argument used to prove Theorem (2.2) 
can now be repeated almost verbatim and yields the desired conclusion. 

o 
Taking Y to be a point, we obtain 

(2.4) Corollary Let A be a O-connected space, n a non-negative integer. Then 
there is a relative CW-complex (X, A) such that 

(1) the injections lri(A) ~ lri(X) are isomorphisms for all i < n; 
(2) lrJX} = 0 for all i ::;, n. 
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The space X can be obtained from A by adjoining cells of dimensions 2. n + 1. 
D 

A final application is a relative CW -approximation theorem. Let us say 
that a map f: (X, X 0) --> (Y, Yo) is a weak homotopy equivalence if and only if 
the maps fl : X --> Y and fo : X 0 --> Yo defined by f are weak homotopy 
equivalences. It follows from the Five-Lemma (with the usual modification 
in low dimensions), that 

(2.5) If f: (X, Xo) --> (Y, Yo) is a weak homotopy equivalence, then 
f* : nq(X, X 0) --> nq{ Y, Yo) is an isomorphism for all q 2. 1. D 

Our application is 

(2.6) Theorem Let (X, A) be an arbitrary pair, g: L --> A a CW
approximation. Then there is a CW-pair (K, L) and a weak homotopy equiv
alence f: (K, L) --> (X, A) extending g. If (X, A) is m-connected, the complex 
K can be so chosen that its m-skeleton is contained in L. 

By Theorem (3.2) below we can find a CW-complex M and a weak homo
topy equivalence h : M --> X. Let i : A --> X be the inclusion. Since h : M --> X 
is a weak homotopy equivalence, there is a map 9 1 : L --> M such that hog 1 ~ 

i u g. By the cellular approximation theorem, we may assume gl to be cellu
lar. Let K be the mapping cylinder of gl' Then (K, L) is a CW-pair, and, if 
p: K --> M is the projection, fl = hop, then fl I L ~ i 0 g. Since (K, L) has 
the homotopy extension property, fl is homotopic to a map f such that 
f I L = i 0 g. Then f(L) c A and f is the desired map. 

Suppose that (X, A) is m-connected. Let us recall from the proof of 
Theorems (2.1) and (2.2) that the construction of a weak homotopy equiv
alence h : M --> X is an inductive one; if M q is a q-dimensional CW -complex 
and hq: Mq --> X a q-connected map, then there is a (q + I)-dimensional 
CW-complex Mq + l , which is a (q + I)-cellular extension of M q , and a 
(q + 1 )-connected map hq+ 1 : M q+ 1 --> X extending hq. In our case, the map 
i 0 9 : L --> X is m-connected and we may start the induction with this map. 
Thus L is obtained from M by adjoining cells of dimensions 2. m + 1, and so 
Land M have the same m-skeleton. D 

3 Weak Homotopy Equivalence and 
CW -approximation 

Let us recall from §7 of Chapter IV that a map f : X --> Y is a weak homotopy 
equivalence if and only if, for every CW-complex K, the induced map 

f: [K, X] --> [K, Y] 
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is a one-to-one correspondence. Taking K to be a single point, it follows that 
f induces a one-to-one correspondence between the path-components of X 
and those of Y. Hence, if A is a path-component of X and B is the path
component of Y containingf(A), the restriction off to A induces a one-to
one correspondence between [K, A] and [K, B) for any connected 
CW-complex K. It follows easily that f I A: A -+ B is a weak homotopy 
equivalence. 

Conversely, suppose that a map f: X -+ Y induces a one-to-one corre
spondence between the path-components of X and those of Y, and that the 
restriction off to each path-component A of X is a weak homotopy equiv
alence of A with the corresponding path-component of Y. Then it is easy to 
see that f is a weak homotopy equivalence. 

It follows from these remarks and Lemma (7.12) of Chapter IV that 

(3.1) Theorem A map f: X -+ Y is a weak homotopy equivalence if and only if, 
for each x E X,f* : 7rq(X, x) -+ 7rq(Y,f(x)) is an isomorphism for all q. D 

It follows from Theorems (3.1) and (2.2) that 

(3.2) Theorem For any space Y, there exists a CW-complex X and a weak 
homotopy equivalence f: X -+ Y. If Y is m-connected, we may assume that the 
m-skeleton of X is a single point. 0 

The following is easily verified. 

(3.3) Let f: X -+ Y, g: Y -+ Z. If any two of the three maps f, g, and 
g 0 f: X -+ Z are weak homotopy equivalences, so is the third. 0 

A space X is weakly contractible if and only if 7rq(X) = 0 for all q. If P is a 
space consisting of a single point, then X is weakly contractible if and only if 
the unique map of X into P is a weak homotopy equivalence. Thus 

(3.4) If X is weakly contractible, then every map of a CW -complex K into X is 
nullhomotopic. 0 

A homotopy equivalence is a weak homotopy equivalence. The converse 
is false, as the example of a circle, into which a one-sided" sin l/x" singular
ity has been introduced, shows (Figure 5.1). (The inclusion map of a point 
into this space X is a weak homotopy equivalence, which is not a homotopy 
equivalence because the first Cech cohomology group of X does not vanish). 
However, 

(3.5) Theorem Let X, Y be CW-complexes,f : X -+ Y a weak homotopy equiv
alence. Then f is a homotopy equivalence. 
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Figure 5.1 

For [ : [Y, X] -> [Y, 1] is a one-to-one correspondence, and therefore 
there exists a map I' : Y -> X such that f 0 I' is homotopic to the identity 
map of Y. Moreover,f : [X, X] -> [X, Y] is a one-to-one correspondence and 
f 0 I' 0 f ~ 1y 0 f = f-= f 0 1x; therefore I' a f ~ 1x. HenceI' is a homotopy 
inverse off D 

(3.6) Corollary If X is an m-connected CW -complex, then there is a CW
complex K, of the same homotopy type as X, whose m-skeleton is a single point. 

D 

It is tempting to define X and Y to have the same weak homotopy type if 
and only if there is a weak homotopy equivalence f : X -> Y. However, this 
relation is not symmetric. Hence we must modify this definition a little if we 
wish to obtain an equivalence relation. Accordingly, we say that X and Y 
have the same weak homotopy type if and only if there is a space P and weak 
homotopy equivalences f: P -> X, 9 : P -> Y. 

Remark. We may assume P is a CW-complex. For, by Theorem (3.2), 
there is a CW-complex K and a weak homotopy equivalence h: K -> P. By 
(3.3),J a h: K -> X and 9 0 h: K -> Yare weak homotopy equivalences. 

(3.7) Theorem Having the same weak homotopy type is an equivalence 
relation. 

Only transitivity presents any problem. Accordingly, suppose f: P -> X, 
9 : P -> Y, I' : Q -> Y, g' : Q -> Z are weak homotopy equivalences, P and Q 
being CW-complexes. Then f : [P, Q] -> [P, Y] is a one-to-one correspon
dence, and therefore there exists k : P -> Q such thatl' 0 k ~ g. Since 9 andl' 
are weak homotopy equivalences, so is k: P -> Q, by (3.3). Again by (3.3), 
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g' 0 k : P ---> Z is a weak homotopy equivalence, and the existence of the 
maps f: P ---> X, g' 0 k: P ---> Z assures us that X and Z have the same weak 
homotopy type. D 

A weak homotopy equivalencef: K ---> X, with K a CW-complex, is called 
a CW-approximation to X. The existence of CW-approximations is a most 
useful tool, as it allows us to extend many results in homotopy theory from 
CW -complexes to general spaces. 

It will be useful to extend the above notions to pairs. In the first place 

(3.8) Theorem Let (X, A), (Y, B) be relative CW -complexes and let 
f: (X, A) ---> (Y, B) be a weak homotopy equivalence. Suppose further that 
f I A: A ---> B is a homotopy equivalence. Then f: (X, A) ---> (Y, B) is a homo
topy equivalence of pairs. 

We may assume thatfis cellular. Let (Z, C) be the mapping cylinder off 
Since f I A : A ---> B is a homotopy equivalence, the inclusion map i A : A ---> C 
is a homotopy equivalence; since, moreover, (C, A) is an NDR-pair, A is a 
deformation retract of C. Therefore the pair (X, A) is a deformation retract 
of the pair (X u c, C). The projection p: (Z, C) ---> (Y, B) induces 
isomorphisms 

p* : nq(Z, C) ~ nq(Y, B), 

and the inclusion i: (X, A) ---> (Z, C) induces homomorphisms 

i* : nq(X, A) ---> niZ, C), 

such that p* 0 i* is the isomorphismf* . Hence the injection i* is an isomor
phism for all q. Now i* is the composite of the injections 

i 1* : nq(X, A) ---> nq(X u C, C), 

i 2* : nq(X u C, C) ---> nq(Z, C). 

But we have seen that (X, A) is a deformation retract of (X u c, C), so that 
i1* is an isomorphism for all q. Hence i2 * is an isomorphism, and therefore 
nq{Z, X u C) = 0, for all q. Since (Z, X u C) is a relative CW-complex, it 
follows from Corollary (3.12) of Chapter II that Xu C is a deformation 
retract of Z. Hence the pair (X u c, C) is a deformation retract of (Z, C), 
and therefore (X, A) is also a deformation retract of (Z, C). But this implies 
that the inclusion map (X, A) ~ (Z, C) is a homotopy equivalence. Finally, 
because the projection p: (Z, C) ---> (Y, B) is a homotopy equivalence, so is 
f=pl(X,A). D 

(3.9) Corollary If (X, A) and (Y, B) are CW-pairs and f: (X, A) ---> (Y, B) a 
weak homotopy equivalence, then f is a homotopy equivalence. D 



3 Weak Homotopy Equivalence and CW-approximation 223 

(3.10) Theorem A map f: (X, A) ~ (Y, B) is a weak homotopy equivalence if 
and only if,for every CW-pair (K, L), the mapf: [K, L; X, A] ~ [K, L; Y, B] 
is a one-to-one correspondence. -

Suppose first thatfis a weak homotopy equivalence, and let (Z, C) be its 
mapping cylinder. Then the projection p: (Z, C) ~ (Y, B) is a homotopy 
equivalence, and therefore the inclusion map i: (X, A) c:; (Z, C) is a weak 
homotopy equivalence. In particular, the pair (C, A) is oo-connected. 

(3.11) Lemma Let (W; P, Q) be an NDR-triad, and suppose that the pair 
(P, P (l Q) is oo-connected. Then the pair (W, Q) is oo-connected. 

It suffices, by Lemma (3.1) of Chapter II, to prove that every map 
g: (L1q, Aq) ~ (W, Q) is compressible. By Lemma (2.4) of Chapter II, there is 
a triangulation (K; L 1, L 2 ) of L1q such that K = Ll U L 2 , Aq c L 2 , and g is 
homotopic to a map g': (K; Lb L 2 ) ~ (W; P, Q). Since (P, P (l Q) is 00-

connected, g' ILl: (Lb Ll (l L 2 ) ~ (P, P (l Q) is compressible, and there
fore g': (K, L2 ) ~ (W, Q) is compressible. In particular, g': (L1q, Aq) ~ 
(W, Q) is compressible. 0 

It follows from Lemma (3.11) that the pair (X u c, X) is oo-connected. 
Since (Z, X) is oo-connected, it follows with the aid of Lemma (3.2) of 
Chapter II that (Z, X u C) is oo-connected. Therefore the triad (Z; C, X) 
satisfies the conditions of Theorem (3.13) of Chapter II, and hence 

(3.12) If (K; L 1, L2 ) is any CW-triad, then every map f: (K; L 1, L2 ) ~ 
(Z; C, X) is right compressible. 0 

We can now prove Theorem (3.10). Let (K, L) be a CW-pair, g: (K, L) ~ 
(Y, B). Then jog: (K; L, 0) ~ (Z; C, X) is right compressible, and there
fore there is a map g': (K, L) ~ (X, A) such that i 0 g' ~ jog. Hence 
fog' = poi 0 g' ~ p 0 jog = g, so that f is an epimorphism. 

Let go, gl: (K, L) ~ (X, A) and suppose that fogo ~f 0 gl' Then 
poi 0 go ~ poi 0 gl; as P is a homotopy equivalence, i 0 go ~ i 0 gl' Let 
G: (I x K; I xL, j x K) ~ (Z; C, X) be a homotopy of i 0 go to i 0 gl' 
Again G is right compressible, to a map G' : (I x K, I x L) ~ (X, A), and G' 
is a homotopy of go to g l' 

Conversely, suppose thatf : [K, L; X, A] ~ [K, L; Y, B] is a one-to-one 
correspondence for every CW-pair (K, L). In particular, we may take 
L = 0, so that [K, L; X, A] = [K, X], [K, L; Y, B] = [K, Y]; thus 
f: [K, X] ~ [K, Y] is an isomorphism for every CW-complex K. By 
-Theorem (7.17) of Chapter IV,f : X ~ Y is a weak homotopy equivalence. 
Again, we may take K = I x L, observing that 

[I x L, 0 x L; X, A] ~ [L, A] 
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under the map 9 ~ glO xL: L ~ A. Hencef IA: [L, A] ~ [L, B] for every 
CW -complex L, and, again by Theorem (7.17) of Chapter IV,f 1 A is a weak 
homotopy equivalence. Hence f: (X, A) ~ (Y, B) is a weak homotopy 
equivalence. D 

A weak homotopy equivalence f: (K, L) ~ (X, A), with (K, L) a 
CW -pair, is called a CW -approximation. 

(3.13) Theorem Let f: (K, L) ~ (X, A), f': (K', L) ~ (X, A) be CW
approximations. Then there is a map g: (K, L) ~ (K', L) such thatf' 0 9 ~f 
The map 9 is a homotopy equivalence, and 9 is unique up to homotopy. 

By Theorem (3.10), f': [K, L; K', L] ~ [K, L; X, A] is a one-to-one 
correspondence, and therefore there is a map g: (K, L) ~ (K', L), unique up 
to homotopy, such that f' 0 9 ~f Similarly, there is a map g': (K', L) ~ 
(K, L) such thatf 0 g' ~ f'. Thenf' 0 gog' ~ fog' ~ f'; since f' is one-to
one, gog' ~ 1. Similarly, g' 0 9 ~ 1, so that 9 is a homotopy -equivalence 
with homotopy inverse g'. D 

Since the condition for a weak homotopy equivalence can be expressed in 
terms of the behavior of the homotopy groups, it is natural to ask: suppose 
thatf: X ~ Y is a map such thatf: [K, X] ~ [K, Y] is a one-to-one corre·· 
spondence for every finite comple-x K. Is f a weak homotopy equivalence? 
The reader is invited to ponder on this question, awaiting the answer which 
we shall give in §4. 

4 Aspherical Spaces 

A space X is asp he rica I if and only if it is O-connected and 1tq(X) = 0 for all 
q ~ 2. If X has a universal covering space X, then asphericity of X is equiv
alent to the weak contractibility of X. Thus 

(4.1) If G is a strongly discontinuous group acting on Rn, then the orbit space 
RnjG is aspherical. 

In particular, 

(4.2) Every closed surface, except for the sphere and the projective plane, is 
~~~ D 

Thus aspherical spaces are quite common in mathematics. 
Let K be a connected CW-complex, X an aspherical space. We now show 

how to classify the maps of K into X. As in §1 of Chapter III, we first fix base 
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points ko E K, Xo E X, and classify the maps of (K, ko) into (X, xo). Such a 
map I induces a homomorphism 1* : 1C 1(K) ~ 1C1(X), and homotopic maps 
induce the same homomorphism. 

(4.3) Theorem II K is a connected CW -complex, X an aspherical space, then 
the correspondence I ~ 1* induces a one-to-one correspondence between 
[K, ko; X, xo] and Hom(1C1(K), 1C1(X)), 

By Corollary (3.6), we may assume that the O-skeleton of K is a single 
point. We may also assume that the attaching maps for the r-cells of K carry 
the vertices of I1.r into the base point ko . Let '1: 1C1(K) ~ 1C1(X). For each 
I-cell E; of X, with characteristic map h~ : (11.1, A 1 ) ~ (K, ko), the map h~ 
represents an element ~~ E 1C1 (K). Let fa: (11.1, A 1) ~ (X, xo) be a map rep
resenting the element 1/(~~) E 1C1(X), Then there is a map 11: (Kb ko) ~ 
(X, xo) such that 11 0 h~ = I~. It follows that, if i: 1C1(Kd ~ 1C1(K) is the 
injection, then 11 * = 1/ 0 i. 

Suppose that 11 has been extended to a map /,. : Kr ~ X. If E{/1 is an 
(r + 1)-cell of K, with characteristic map hp: (I1.r+ 1, Ar+ 1) ~ (Kr+ b Kr), 
then /,. 0 hpl Ar+ 1 represents an element cp E 1Cr(X, xo). Suppose that cp = 0. 
Then the map /,. 0 hoi Ar + 1 has an extension g p : I1.r + 1 ~ X, and /,.1 E'p + 1 has 
the extension gp 0 hi 1 : E'p+ 1 ~ X. Therefore, if all the elements cp are 0, 
there is a map /,. + 1 : Kr + 1 ~ X extending /,. . 

If r > 1, then cp = ° because 1Cr (X) = 0. Suppose that r = 1. Then 
hplA2: A2 ~ Kl represents an element ~ E 1Cl(K1), and i(O = 0, because 
hplA2 has the extension hp : 11.2 ~ K. Then Cp = 11*(~) = 1/(i(~)) = 0. Hence 
cp = ° in all cases. 

The maps /,.: Kr ~ X fit together to define a map I: (K, ko) ~ (X, xo), 
and/* 0 i = 11* = 1/ 0 i. Since the injection i: 1Cl(Kd ~ 1C1(K) is an epimor
phism, we have 1* = 1/. 

Now suppose that 10, 11: (K, ko) ~ (X, xo) are maps such that 
10* = 11* : 1Cl(K) ~ 1C1(X), Let Lr be the subcomplex ° x K u 1 x K 
nix Kr- 1 of 1 x K. Define F 1 : L1 ~ X by 

F1(0, x) =Io(x) 

F1(1, x) =/1(X) 

F1(t,ko)=xo 

(x E K); 

(x E K); 

(t, ko) E 1 x Kr- 1)' 

For each I-cell of E; of K, its characteristic map h~ represents an element 
~~ E 1C1(K), and/o*(~~) = 11*(~~)' Hence there is a homotopy F~ of/o 0 h~ to 

11 0 h~ (reI. Ad. By Lemma (1.3) of Chapter II, there is a homotopy 
F2 : (I x Kb 1 x Ko)~ (X, xo) of/olK I to/llKl such that F2 0 (1 x h~) = 
F~. Extend F2 over L2 by F2(t, x) = .ft(x) for x E K, t = 0,1. Then F2 is an 
extension of F l' 
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Suppose that r 22, and F r : 4 -> X is an extension of F 1. For each r-cell 
E; of K, the map 

represents an element of 7rr(X) = O. Hence this map has an extension 
Fy : I x jl.,r -> X. Again by Lemma (1.3) of Chapter II, there is a map 
Fr+1 : I x Kr->X such that Fr+l 0 (1 x hy) = Fy. The map Fr+1 extends to 
a map Fr+ 1 : 4+ 1 -> X which clearly extends Fr· 

As before, the maps Fr fit together to define a map F : I x K -> X which is 
an extension of F 1 and therefore a homotopy of fo to fl (reI. ko). This 
completes the proof. 0 

As in §1 of Chapter III, we obtain 

(4.4) Corollary The free homotopy classes of free maps of K into X are in 
one-to-one correspondence with the conjugacy classes of homomorphisms of 
7rl(K) into 7rl(X). 

For iffo'/l : (K, ko) -> (X, xo), and iffo 'if f1 where u is a loop in (X, xo), 
then, for all ~ E 7r1(K),f1*(O = [ur1fo*(mu]. 0 

(4.5) Corollary Two aspherical spaces having isomorphic fundamental groups 
have the same weak homotopy type. 

We may assume the two spaces are CW-complexes K, L. Let IJ : 7r1(K)-> 
7rl(L) be an isomorphism. Then there is a mapf: (K, ko) -> (L, 10 ) such that 
f* = IJ· Moreover, there is a map g: (L, 10 ) -> (K, ko) such that g* = IJ- 1. 
Then (f 0 g)* = f* 0 g* is the identity and therefore fog is homotopic 
(reI. 10 ) to the identity map of L. Similarly, g 0 f is homotopic (reI. ko) to the 
identity map of K. 0 

(4.6) Corollary If X and Yare aspherical spaces with isomorphic fundamental 
groups, then Hq(X; G) ~ Hq(Y; G) and Hq(X; G) ~ Hq(y; G)for any group 
G. 

This follows from the Whitehead Theorem (7.14) of Chapter IV. It states 
that the homology and cohomology of an aspherical space depend only on 
its fundamental group (and on the coefficient group). We now make this 
dependence explicit. 

Let X be an aspherical CW -complex, X its universal covering space, IT 
the group of covering translations, so that IT ~ 7r1 (X). Now X is a CW
complex, and each covering translation is a cellular map; thus IT operates on 
the chain groups rq(X), and, as we have seen in §1, rq(X) is a free Z(fI)
module. Since g is acyclic, the r q(X) form a free resolution of the additive 
group of integers considered as a Z(IT)-module with trivial action. Hence if 
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G is any right Z(II)-module, we may form the complex G @Z(ll) r(X); its 
homology groups are known in homological algebra as Tor:(ll)(G, Z). 
Similarly, if G is a left Z(II)-module, the homology groups of the cochain 
complex Homz(ll)(r(X), G) are Ext~(ll)(Z, G). These groups are also known 
under the names Hq(II; G), Hq(II; G), respectively. 

Suppose that II operates trivially on G. Then G @ Z(ll) r(X) is isomorphic 
with G @ r(X) and HomZ(ll) (r(X), G) with Hom(r(X), G), and we have 

(4.7) Corollary If X is an aspherical space withfundamental group II, then,Jor 
any abelian group G, 

H (X· G) ~ TorZ(ll)(G Z) 
q , "'" q " 

Hq(X; G) ~ Ext'kll)(Z, G). o 

If II acts non-trivially on G, the above results continue to be valid if the 
ordinary homology and cohomology groups are replaced by those with local 
coefficients, as we shall see in Chapter VI. 

From a historical point of view, the statement of Corollary (4.7) puts the 
cart before the horse. In fact, Hurewicz [1, IV] proved Corollary (4.6) in 
1935, long before the invention of homological algebra; and it was in the 
effort to make this dependence explicit which led Eilenberg and Mac Lane 
in the late forties to the homology of groups. Finally, the homology of 
groups was one of the main ideas which led to the creation of the subject of 
homological algebra. 

We now show that the question propounded at the end of §3 must be 
answered in the negative. Let G be the group of all permutations of the 
integers which leave almost all integers fixed, and let H be the subgroup of G 
consisting of all permutations leaving every negative integer fixed. We shall 
need two Lemmas. 

Lemma 1 Every finitely generated subgroup of G is conjugate to a subgroup of 
H. 

For if F is a finite subset of G, there exist integers m, n such that each 
(J E F fixes all integers not belonging to the closed interval [ - m, n J. If m :c;; 0, 
F c H. Suppose m > 0. Then there is a permutation r such that 

IX 
r(x)='x+m 

Ix-m-n-l 

if X < - m or x > m + n, 

if-m:c;;x:C;;n, 

if n + 1 :c;; x :c;; m + n. 

Then rEG, and, if x < 0, (J E F, then either x = r-1(x) < -m or 
r-1(x) > n. Hence (Jr-1(x) = r-1(x), r(Jr-1(x) = x. Thus rFr- 1 c H. 0 
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Lemma 2 Let K be a finitely generated subgroup of H, and let p be an element 
of G such that pKp - I c H. Then there exists rt E H such that rt- I P commutes 
with every element of K. 

For let <1 1, ... , <1, be a set of generators for K, L; = p<1;p-l. Then there 
exist non-negative integers m :s:; n such that <1;(x) = L;(X) = x for all i unless 
m :s:; x :s:; n, and, in addition, p(x) = x unless x < n. Let 
S = [m, n] n p-I[m, n]. Then there is a permutation rt such that 

if x ¢ [m, n], 
a(x) = {;(x) if XES. 

We next observe that, ifx ¢ S, then <1;(x) = xfor all i. In fact, if <1;(x) + x, 
then x E [m, n] and p(x) + P<1;(x) = L; p(x), and therefore p(x) E [m, n], so 
that XES. Similarly, ifx ¢ p(S), then L;(X) = x for all i. 

Note also that XES implies <1;(x) E S. For x E [m, n], and therefore 
<1;(x) E [m, n]; while p(x) E [m, n], and P<1;(x) = L;P(X) E [m, n], so that 
<1;(x) E S. 

The element rt E H has the desired property. For if x ¢ [m, n], then 
rt<1;(x)=a(x) and L;a(x)= rt(x). If XES, then <1;(X)ES and therefore 
rt<1;(x) = P<1;(x) = L;P(X) = L;rt(X). Finally, if x E [m, n] - S, then <1;(x) = x 
and therefore rt<1;(x) = rt(x). Now a(x) ¢ p(S); for if p-Irt(X) E S, then 
rtp - lrt{X) = pp - la(x) = rt(x), x = p -lrt(X) E S, a contradiction. Thus 
L;rt(X) = rt(x). Therefore rt<1;(x) = L;rt(X) for every x, 

a<1; = L;a = p<1;p-Ia 

so that a-1p commutes with every <1;. o 
The Lemmas having been proved, we take X and Y to be aspherical 

CW-complexes with fundamental groups H, G respectively, andf: X ~ Ya 
map inducing the inclusion map of H into G. We may assume thatfitselfis 
an inclusion. Then f is not a homotopy equivalence. 

However, let K be a finite complex with fundamental group P, so that P is 
finitely generated. By Corollary (4.4), [K, X] is in one-to-one correspon
dence with the conjugacy classes of homomorphisms of Pinto H, and sim
ilarly for [K, Y]; and f: [K, X] ~ [K, Y] is induced by the inclusion map 
H 4G. By Lemma 1, every homomorphism of Pinto G is conjugate to a 
homomorphism of Pinto H. By Lemma 2, two homomorphisms of Pinto H 
which are conjugate in G, are already conjugate in H. Hence 
[: [K, X] ~ [K, Y] is a one-to-one correspondence. 

5 Obstruction Theory 

In the proof of Theorem (4.3), we were confronted with the problem of 
extending a map from a sub complex of a CW-complex K to the whole 
complex. This was carried out one skeleton at a time. In extending from one 
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skeleton to the next, we considered each cell separately; the map was already 
defined on the boundary of the cell, and composition of this map with the 
attaching map for the cell gave a map of a sphere into the range space, 
representing a certain element of one of the homotopy groups of the latter 
space. And the vanishing of this element was necessary and sufficient for the 
existence of an extension over the cell in question. 

In this section we shall formalize this procedure, and use it as a tool for 
studying the extension problem in general. Let (X, A) be a relative CW
complex,!: A ...... Y. Then f can be extended over X 0, by definingf(x) arbi
trarily for any vertex x of X o. If E is a I-cell with characteristic map 
h: (Ll 1, A1) ...... (Xb X o), then Yo = fh(eo) and Y1 = fh(ed are points of Y, 
and f can be extended over E if and only if they belong to the same path
component of Y. Hence, if Y is O-connected any map of A into Y can be 
extended to a map of X 1 into Y. Assuming thatfhas been extended to a map 
of Xn into Y, we wish to study the problem of extending from Xn to X n + l' 

Accordingly, throughout the rest of this section, we shall assume that 
(X, A) is a relative CW-complex, n a positive integer,J: X n ...... Ya map. We 
shall further assume, in order to avoid any considerations involving base 
points, that the space Y is n-simple, so that any map of an oriented n-sphere 
into Y represents a well defined element of 1rn( Y). Because of this hypothesis, 
the group 1rn(Y) is abelian, even if n = 1. 

Let {E~+ 1 I Q( E J} be the (n + I )-cells of (X, A), with characteristic maps 
h(J, : (Lln+ 1, An+ 1) ...... (Xn+ b Xn). Then f 0 h(J, IAn+ 1 : An+ 1 ...... Xn represents an 
element C(J, E 1riY). The assignment e(J, ...... C(J, is a function from a basis of the 
chain group rn+ 1 (X, A) to the abelian group 1rn(Y); this function extends to 
a homomorphism of r n + 1(X, A) into 1rn(Y), or, what is the same thing, a 
cochain 

cn+ 1 = cn+ 1(f) E p+ 1(X, A; 1rn(Y)). 

This can be thought of as a "local" description of en + 1. We can also give 
a "global" description, due to 1. H. C. Whitehead [8], as follows. Consider 
the diagram 

1rn(Xn) f*. 1rn(Y), 

where p is the Hurewicz map and 0* the boundary operator of the homo
topy sequence of the pair (X n+ 1, X n). By the Relative Hurewicz Theorem, p 
is an epimorphism with kernel W~+l(Xn+b Xn). By Theorem (3.1) of Chap
ter IV, 0* maps W~+1(Xn+1' Xn) into wn(Xn). Sincef*(wn(Xn)) C wn(Y) = 0, 
we see that f* 0 0 * annihilates the kernel of p, and therefore f* 0 0 * 0 p - 1 is a 
well defined homomorphism, which is readily verified to be the homomor
phism cn+ 1 constructed above. The cochain en+ 1(f) is called the obstruction 
to extending f 

The following properties of the obstruction cochain are immediate: 
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(5.1) For each (n + 1)-cell E~+ 1 of (X, A),f I E~+ I can be extended over E~+ I 
if and only if cn+ l(e:+ I) = O. D 

(5.2) The mapf: Xn --+ Y can be extended over X n +1 ifand only ifcn+l(f) = O. 
D 

(5.3) If (X', A') is a relative CW-complex and g: (X', A') --+ (X, A) a cellular 
map, then cn+1(fo (glX'n» = g#cn+l(f). D 

(5.4) If Y' is an n-simple space and h: Y --+ Y', then cn+ l(h a f) = 

h* 0 cn+ 1(f). D 

(5.5) Iffo ~fl: Xn--+ Y, then cn+l(fo) = cn+1(fd· D 

Less obvious is 

(5.6) Theorem The obstruction cochain cn+ 1(f) is a cocycle. 

Consider the commutative diagram 

Pi ---

in which the homomorphisms denoted by P are the Hurewicz maps, those 
denoted by 0 are boundary operators ofthe appropriate homology or homo
topy sequences, and those denoted by i are injections. Then 

(_1)"+I(&n+l) 0 PI = (cn+1 0 i l 0 od 0 PI 

= f* 0 03 0 P z I 0 i I 0 01 0 PI 

= f* 0 03 0 PZ I a PZ 0 iz 0 O2 

=f* 00 3 0 i2 0 O2; 

but iz and 03 are consecutive homomorphisms in the homotopy sequence of 
the pair (Xn+ 1, X n), and therefore 03 0 i2 = O. Hence (6cn+ I) 0 PI = 0; since 
PI is an epimorphism, &n+ 1 = O. D 

We shall also need to study the obstructions to extending homotopies. 
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Let (X, A) = 1 x (X, A); then (X, A) is a relative CW-complex with 
X n = 1 x X n _ 1 U 1 x X n' A map F : X n ~ Y consists of a pair of maps fo , 
fl : X n ~ Y, together with a homotopy G : 1 x X n- 1 ~ Y between fo IX n- 1 

and fl IX n- l' As usual, we regard 1 as a CW -complex with two O-cells, {O} 
and {I}, and a I-cell i with 8i = {I} - {O}. The difference cacha in ofUo,Jd 
with respect to G is then defined to be the cochain dn = dnUo, G,Jl) = 

dn(F) E P(X, A; nn(Y)) such that 

dn(c) = (-l)"cn+ I(F)(i x c) 

for all c E rn(X, A). An important special case is that in whichfo andf! agree 
on X n - 1 and the homotopy G is stationary; in this case we shall abbreviate 
dnUo, G, fl) to dnUo, fl)' 

Remark. Like the obstruction, the difference cochain has" local" descrip
tion. If E~ is an n-cell of (X, A) with characteristic map h~, then 1 x L1 n is an 
oriented {n + 1 )-cell whose boundary (I x L1n)" is an oriented n-sphere, and 
the composite of the map F with the restriction of the map 1 x h~ to this 
sphere represents ( - 1)" times the value of the cochain dn(F) on the oriented 
cell e~. 

The properties of the difference cochain analogous to (5.1)-(5.5) are 
equally evident: 

(5.1') For each n-cell E~ of (X, A), F I (I x E~)" can be extended over 1 x E~ if 
and only if dn(e~) = O. 0 

(5.2') There is a homotopy of fo to fl extending G if and only if dn = O. 0 

(5.3') If (X', A') is a relative CW-complex, g: (X', A') ~ (X, A) a cellular 
map, and if g' : X'n ~ X n is the restriction of 1 x g, then dn(F 0 g') = g # dn(F). 

o 
(5,4') If Y is an n-simple space and h: Y ~ Y, then h* 0 dn(F) = dn(h 0 F). 

o 
(5.5') If F :::::: F' : X n ~ Y, then dn(F) = dn(F'). o 

The difference cochain is not a cocycle. However, we have a useful co
boundary formula: 

(5.6') Theorem The coboundary of the difference cochain is given by 

bdnUo, G,Jl) = cn+ 1Ud - cn+ 1Uo)' 

In fact, if c E r n + 1(X, A) 

(5.7) 
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But cn + 1(F) is a cocycle, by Theorem (5.6). Thus 

(5.8) 0 = (-1 t+ l&n+ 1 (F)(i X c) = cn+ 1 (F)(o(i x c)) 

But clearly 

(5.9) 

= Cn + l(F)(I x C - 0 x c - i x oc) 

(t = 0, 1) 

and the coboundary formula follows from (5.7}--(5.9). o 
Before stating further properties of the difference cochain, we state two 

Lemmas which will be needed here and elsewhere. 
For the first one, let K be a CW-complex whose cells are: one O-cell *, the 

base point of K; one (n - I)-cell S, so that S = * and S is an (n - I)-sphere; 
and two n-cells Eo, E1 with Eo = E1 = S. Choose orientations eo, e1' s for 
the n- and (n - I)-cells so that oeo = oe1 = s. Then K is an n-sphere and 
eo - e1 is an orientation of K. (If n = 1, this description must be modified 
slightly; there are two O-cells, * and EO, and S is the O-sphere {*} u EO). 

(5.10) Lemma Let f: (E 1, *) -+ (X, *) and let (X E 1tn(X). Then f has an exten
sion g : (K, *) -+ (X, *) representing (x. 

For let go: (K, *) -+ (X, *) be any representative of (x. Since E1 is contract
ible,f and go lEI are homotopic to the constant map of E1 into X; hence 
go lEI ~ f By the homotopy extension property, go is homotopic to a map g 
such that g lEI = f 0 

For the second Lemma, let us enlarge K to a complex L by adjoining still 
another n-cell E2 with E2 = S, and let ez be an orientation of E2 with 
oe2=s. Then K o =E1 uE2, K 1 =Eo uEz , and K 2 =Eo uE I are 
spheres; and So = e1 - ez, Sl = eo - ez, Sz = eo - e1 are orientations of 
these spheres. 

(5.11) Lemma Let f: (L, *) -+ (X, *), and let (Xi E 1tn(X) be the element repre
sented by f I Ki with respect to the orientation Si' Then (Xl = (Xz + (Xo . 

We shall use the" method of the universal example," observing that if the 
theorem is true in the special case L = X,f = the identity map, then its truth 
in general follows from the functorial property of the homotopy groups. 
Hence we may assume that we are dealing with the special case. 

If n = 1, the characteristic maps for the one-cells can be regarded as paths 
in X from the base point * to the other point EO of S; let (i be the homotopy 
class of the path corresponding to the I-cell E i . Then (Xo = (1 (2" 1, 
(Xl = (0(21, (X2 = (0(1 1, so that (X2(XO = (0(1 1(1(21 = (0(21 = (Xl' (As 
always, when dealing with 1tIo we have switched from additive to multi
plicative notation !). 
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Now suppose n 2: 2. Since L is (n - I)-connected, the Hurewicz map 
p: 1tn(L) -+ Hn(L) is an isomorphism. Since Hn(Ln- d = 0, the injection 
i: Hn(L) -+ Hn(Ln, Ln- d is a monomorphism. Therefore i 0 p: 1tn(L)-+ 
Hn(Ln, Ln- 1 ) is a monomorphism. But 

ip(lit ) = St (t = 0, 1,2) 

and SI = Sz + So· Hence lil = liz + lio · D 

(5.12) Let F 0: ° X Xn U 1 x X n- 1 -+ Y be a map and let dE m(X, A; 1tn(Y)). 
Then F 0 has an extension F : X n -+ Y such that dn(F) = d. 

We use the local description of the difference cochain; and we shall use 
Lemma (5.10) with K = (I x N)", Eo = ° x An U 1 x An-I, El = 1 x An. 
For each n-cell of E~ of (X, A) with characteristic map h, the composite of F 0 

with the restriction of 1 x ha to Eo has, by Lemma (5.10), an extension 
Fa: K -+ X representing (-1 )"d(ea). The maps Fa 0 (1 x h; 1) I (I x E:)" are 
then well-defined and fit together to give the required extension F. D 

(5.13) Let F', F": Xn -+ Y be maps such that F'(I, x) = F"(O, x)for all x E X n, 
and let F: Xn -+ Y be the map such that,Jor (t, x) E Xn 

F( ) = {F'(2t, x) 
t, x F"(2t _ 1, x) 

Then dn(F) = dn(F') + dn(F"). 

(0 :::;; t :::;; !), 
H:::;; t :::;; 1). 

Again we use the local description of the difference cochain, and we shall 
use Lemma (5.11) with L = (I x An)" U H x An), Eo = ([O,!] x N)", 
Ez = ([!, 1] X An)", El =! X An. Let Xn = Xn U (! X Xn); then the map 
F : X n -+ Y has an extension H: X n -+ Y defined by putting H(!, x) = 

F'(I, x) = F"(O, x). Again, let E: be an n-cell of (X, A) with characteristic 
map ha, and let na : L -+ X n be the restriction of (1 x ha) to L. Then it is clear 
that the elements lii are given by 

lio = ( -1 )"dn(F")(en), 

liz = ( -1 )ndn(F')(en), 

lil = ( -1 )"dn(F)(en), 

and application of Lemma (5.11) completes the proof. D 

(5.14) Theorem Let f: Xn -+ Y. Then f I X n- 1 can be extended over X n+ 1 if 
and only if Cn + 1(f) '" 0. 
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For suppose that f I X n - 1 has an extension I' : X n + 1 ~ Y. Define 
F: gn~ Y by 

F(O, x) = I'(x), F(l, x) = f(x) (x E Xn) 

F(t, x) = f(x) = I'(x) (x E X n- 1, tEl). 

Then, by Theorem (5.6'), 

Mn(F) = cn+1(f) - cn+1(f'IXn) 

But cn + 1(f'lxn) = 0, by (5.2). Hence cn + 1(f) is a coboundary. 
Conversely, suppose that cn+1(f) = (jd with dE P(X, A; nn(Y))' By 

(5.12), there is a map F: Xn ~ Y such that 

F(O, x) = f(x) 

F(t, x) = f(x) 

and dn(F) = - d. Define I' : X n ~ Y by 

(x E X n), 

(x E Xn-d, 

I'(x) = F(1, x). 

By Theorem (5.6'), 

cn+ 1(f) = (jd = - (jdn(F) = cn+ 1(f) - cn+ l(f'). 

Hence cn+ 1(f') = 0; by (5.2),f' can be extended over X n+ 1 · ButI' IXn - 1 = 

f IXn- 1, and sof IXn- 1 can be extended over X n +1· 0 

Suppose we are given a map f: A ~ Y. We wish to determine whether f 
can be extended over X. If fn : X n ~ Y is an extension over X n' then (5.2) 
gives a necessary and sufficient condition thatfn be extended over X n+ l' But 
there are many different extensions fn' and we may consider the set (9~ + 1 (f) 
of obstructions of all extensions off over X n • It follows from Theorem (5.6') 
(cf. the proof of Theorem (5.14)) that, if two extensions agree on X n- 1> their 
obstructions are cohomologous; and from Theorem (5.14) that any co cycle 
cohomologous to an obstruction is itself an obstruction. Thus the set 
(9~+1(f) is a union of cohomology classes; thus it may be regarded as a 
subset (9n+l(f) of the cohomology group Hn+1(x, A; nn(Y)); (9n+1(f) is 
called the (n + 1 )-dimensional obstruction set off And we have the formal 
statement: a map f: A ~ Y can be extended over X n + 1 if and only if ° E (9n+ 1 (f). Of course, this formal statement is worthless unless we can give 
some kind of concrete description of (9 n + 1 (f). 

Theorem (5.14) may be regarded as the first of a sequence oftheorems, of 
the form: "f IX n-r can be extended over X n + 1 if and only if ... ". But such an 
infinite set of theorems is out of sight at this time. We shall return to this 
subject later. 

In the next section we shall make simplifying assumptions on (X, A) and 
Y which allow us to give a solution to the problem in certain very important 
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special cases. Before doing so, however, we shall formulate a homotopy 
theorem analogous to the extension theorem (5.14). 

Letfo,Jl : X --+ Y be maps and let G: 1 x A --+ Y be a homotopy offo I A 
to fl I A. In our discussion of the difference cochain, we were concerned with 
maps of Xn into Y, and we considered the product complex 1 x (X, A). Here, 
on the other hand, we are dealing with maps of X into Y, and it is appro
priate to consider instead the product complex 

(X*, A*) = (I, i) x (X, A) 

= (I x X, 1 x A u i x X) 

whose cells are exactly those of the form 1 x E~ for E~ an n-cell of (X, A). 
Then X: = 1 x X n - 1 nix X. In this case, the map c --+ i x c is a chain 
map, of degree 1, which is an isomorphism between the chain complexes of 
(X, A) and (X*, A*). And, ifi* is the integrall-cochain of (I, i) whose value 
on the 1-cell i is + 1, then the correspondence c --+ i* x c is an isomorphism, 
of degree + 1, between their cochain complexes. Thus, in the present case, 
the difference cochain is a cocycle which corresponds to the obstruction 
cocycle under this isomorphism. We can then apply the extension theory to 
this special case. 

(5.15) Theorem LRt fa,Jl : X --+ Y, be maps such that fo IX n- 1 = fl IX n- 1· 

Then 

(1) dn(fo ,II) is an n-cocycle of (X, A) with coefficients in 1tn(Y); 
(2) dn(fO,Jl) = 0 if and only iffo IXn c::::.fllXn (reI. Xn-d; 
(3) dn(fo,Jl) '" 0 if and only if fo IX n c::::. fl IX n (reI. X n- 2)· 

The proof involves no new ideas and will be left to the reader. 0 

6 Homotopy Extension and Classification 
Theorems 

Let (X, A) be a relative CW-complex, Yan (n - I)-connected space (n 2: 1; 
if n = 1, we assume 1t 1 (Y) to be abelian, so that Y is I-simple; if n > 1, Y is 
automatically n-simple). Finally, letf: A --+ Y be a map. 

(6.1) Theorem The map f: A --+ Y can be extended to a map g: Xn --+ Y. If 
go, gl : Xn --+ Yare extensions off, then go I X n- 1 c::::. g1 I X n- 1 (reI. A), and 
cn + 1(gO) '" cn + l(gl). 

We have seen that f can be extended over X 1. Suppose that h : X r --+ Y is 
an extension of f (1 s r S n - 1). Then cr+ 1(h) E p+l(X, A; 1tr(Y» and 
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1tr(Y) = 0 because Y is (n - I)-connected. Hence h can be extended over 
X r + 1. This gives an inductive proof of the first statement. 

Let go, g 1 : X n -> Y be extensions of f Then we may apply the result 
already proved, to the relative CW-complex (I, t) x (Xn' A), and the map of 
1 x Aut x Xn defined by go, gl and the stationary homotopy of go I A = f, 
to deduce the existence of an extension of this map to a map F of the 
n-skeleton 1 x X n~ 1 U i x X n = X n into Y. But this extension just defines a 
homotopy (reI. A) between go IXn~ 1 and glIXn~l. Applying Theorem (5.6') 
to the map F, we find that cn+ 1(go) '" Cn+ 1(gl)· 0 

It follows from Theorem (6.1) that there is a uniquely defined cohomol
ogy class yn+ 1(f) E Hn+ I(X, A; 1tn(Y»; it is the cohomology class of cn+ l(g) 
for any extension g : X n -> Y of f, and is called the primary obstruction to 
extendingf 

We next give a description of y"+ l(f) in terms of standard operations of 
homology theory and a suitable universal class. This class, the characteristic 
class In(y) E Hn(y; 1tn(Y» of the (n - I)-connected space Y, is defined as 
follows. By the Universal Coefficient Theorem and the fact that Hn~ l(Y) is 
free (it is zero if n > 1 and infinite cyclic if n = 1), there is a natural 
isomorphism 

The class In( Y) is then defined to be that class which corresponds under the 
above isomorphism, to the inverse of the Hurewicz isomorphism 
p: 1tn(Y) :::::; Hn(Y). 

Suppose, for example, that Y is a CW-complex. Since Y is 
(n - 1 )-connected, we may assume that Y,.~ 1 is a single point *. If E~ is an 
n-cell of Y with characteristic map ha' then ha: (iln, An) -> (Y, *) represents 
an element Ua E 1tn(Y). The co chain u E m(Y; 1tn(Y» such that u(ea) = Ua for 
all u is then a cocycle whose cohomology class is In(y). 

Now consider the diagram 

where IT = 1tn(Y) and £5* is the coboundary operator. We now prove 

(6.2) Theorem The primary obstruction yn+ l(f) to extending f is given by 

Let g : X n -> Y be an extension off Then there is a commutative diagram 
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H"(Y; ll) 

Now jl is a monomorphism and its image is the group zn+ l(X, A; ll) of 
cocycles. Moreover, i2 0 Ill: zn+ 1 (X, A; IT) -4 Hn+ l(X, A; IT) is the natural 
projection from the group of cocycles to the cohomology group. 

We claim that 

(6.3) 

If this is the case, we have 

(_l)nyn+ 1(f) = (-1)ni2jl 1cn+ l(g) 

= i2j1 162g*ln(y) 

= i2jl1j161g*ln(y) = i261g*ln(y) 

= 6*il g*ln(y) = 6*J*Zn(y). 

To prove (6.3), consider the commutative diagram (Figure 5.2). 

H"(Y; ll) 
g* 

I H"(X,,; ll) 
62 • H,,+l(X,,+I,X,,;ll) 

1 PI 
gT 

lp2 lp3 

Hom(H,,(Y), ll) Hom(H,,(X,,), n) ~ Hom(H,,+l(X,,+l' X,,), n) ~ 

lPT 
g! 

lp! 
64 

lp! 

Hom(1t,,(Y), n) -------. Hom(1t,,(X,,), ll) -------. Hom(1t,,+l(X,,+l, X,,), ll) 
Figure 5.2 

The bottom half of Figure 5.2 is obtained by applying the contravariant 
functor Hom( , IT) to the commutative diagram 
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Hn(Y) 
gl 

Hn(Xn) • 
(-1)n0 3 

Hn+I(Xn+t , Xn) +---

j PI jp, jP3 

1I:n( Y) +--- 1I:n(X n) • 1I:n+I(Xn+1, Xn) 
g2 ( -1)"04 

in which the Pi are the Hurewicz maps, and gl and g2 are induced by g. The 
homomorphisms fJi are those given by the Universal Coefficient Theorem. 
Now 1"(Y) is defined by the relation 

fJlln(y) = p- 1 

and therefore 

P!fJlln(y) = 1, 

the identity homomorphism of 1I:n(Y) = II. Hence 

64g!p!fJl1n(y) = 64g!(1) = (_1)n+ 192 0 04 , 

The obstruction C"+l(g) is defined by the condition 

I.e., 

Hence 

fJ 3 en + I (g) = g 2 0 04 0 P -; 1, 

( -1 )"P~fJ3 cn+ 1 (g) = 64 g!p! fJ 1 In(y) 

= p~fJ362g*ln(y), 

and the fact that fJ3 is an isomorphism and p~ a monomorphism (since P3 is 
an epimorphism) allows us to deduce (6.3). 0 

(6.4) Corollary A map f: A -> Y can be extended over X" + I if and only if 
yn+ l(f) = 6*f*I"(Y) = O. 0 

The following consequence is due to H. Hopf, although its formulation in 
cohomological terms is due to H. Whitney: 

(6.5) Corollary (Hopf-Whitney Extension Theorem). Ifdim(X, A) :s n + 1, 
a map f: A -> Y can be extended over X if and only if b*f*z"(Y) = O. 0 

We now replace the condition "dim(X, A) :S n + 1" by a sequence of 
conditions on (X, A) and on Y which guarantee that there are no further 
obstructions to extending over all of X. This generalization is due to S. 
Eilenberg. 
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(6.6) Theorem (Eilenberg Extension Theorem). Suppose that Y is q-simple 
and that Hq+l(X, A; 7rq(Y» = 0 whenever n + 1 ::;; q < dim(X, A). Then 
f: A -+ Y can be extended over X if and only if y" + 1 (f) = O. 

For we have seen thatfhas an extensionfn+l: X n+ 1 -+ Y. Then we can 
define inductively a sequence of maps fq: X q -+ Y such that 
f q+ 1 I Xq- 1 = fq IXq - 1 for all q ~ n + 1. For suppose thatfq: Xq -+ Y is an 
extension off Then cq+ l(fq) E Hq+ l(X, A; 7rq(Y» = 0 and thereforefq I X q- 1 

has an extension fq+l : X q+1 -+ Y. A map f: X -+ Y is then defined by 
fIXq=fq+lIXqforallq~n+ 1. 0 

Remark. By exactness of the cohomology sequence of the pair (X, A), the 
condition b*f*zn(y) = 0 is equivalent to the condition: "there exists 
u E Hn(x; II) such that i*u =f*zn(y)" where i*: Hn(x; II)-+Hn(A; II) is 
the injection. Consider the diagram 

(6.7) 

X 

and apply the functor Hn( ; II) to obtain the diagram 

Hn(A; II) 

~ 
(6.8) i* I Hn(y; II) 

•• 
Hn(x; II) 

(recall the remarks in §1, Chapter I). The Eilenberg Extension Theorem tells 
us that, in the case at hand, the diagram (6.7) can be filled in if and only if the 
diagram (6.8) can. For if g 0 i = f, then i* 0 g* = f*. But if </J : Hn(y; II)-+ 
Hn(x; II) is a homomorphism such that i* 0 </J = f*, then f*zn(y) = 
i*</Jzn(y), and so the extension exists. 

(6.9) Corollary If Y is an n-simple space and 7ri(Y) = Ofor all i =1= n, then a 
map f: A -+ Y can be extended over X if and only if b*f*zn(y) = O. 0 

A space Y satisfying the hypothesis of the Corollary is called an 
Eilenberg-Mac Lane space of type (II, n). We shall return to the study of 
these spaces in §7; they are of crucial importance for the further develop
ments in homotopy theory. (An Eilenberg-Mac Lane space of type (II, 1) is 
just an aspherical space with abelian fundamental group). 



240 V Homotopy Theory of CW-complexes 

We now apply the above considerations to the homotopy problem. Let 
fo, f1 : X ~ Y be two maps such that fo I A = f1 I A. With the aid of the 
stationary homotopy between fo I A and f1 I A, they define a map F : A * = 
t x X u 1 x A ~ Y, and we have the cohomology class 
yn + 1 (F) E Hn + 1 (X*, A *; II). In §5 we saw that the cross product with 
i* E Zl(l, t; Z) induced an isomorphism, of degree + 1, of the chain com
plex of (X, A) with that of (X*, A*), and therefore an isomorphism 

i* x : Hn(x, A; II) ~ Hn+1(X*, A*; II). 

Let In(fo J1) E Hn(x, A; II) be the class defined by 

(6.10) (-l)"i* x In(fo Jd = yn+ l(F); 

In(fo J1) is the cohomology class of dn(F n) for any extension F n : X~ ~ Yof 
F. It is called the primary obstruction to deforming fo into fl. 

A description of In(fo , f1) parallel to our description of yn + 1 (f) can now 
be given. Instead of the homomorphism f* : Hq(y) ~ Hq(A) induced by a 
map f: A ~ Y, we shall need a homomorphism 

(fo J1)* : Hq(y) ~ Hq(X, A) 

induced by two mapsfo J1 : X ~ Y such thatfo I A = f1 I A. We shall assume 
that (X, A) is a CW-pair, but the construction can be made for an arbitrary 
pair (X, A) (cf. Exercises 2, 3 below). 

To construct the homomorphism (fo , f1)*' let F : t x X u 1 x A ~ Y be 
the map such that 

F(t, x) = fr(x) (x E X, t = 0, 1), 

F(t, a) = fo(a) = f1 (a) (t E I, a E A). 

Then (fo Jd* is the composite 

F* J* Hq(y) ) Hq(t x X u 1 x A) -----> 

Hq+ 1(1 X X, t x X u I x A) (i* x t 1 ) Hq(X, A) 

where J* is the coboundary operator and i* x the isomorphism of Chapter 
II, Theorem (2.34). 

(6.11) Theorem The operation (fo J1)* has the following properties: 

(1) (foJo)* = 0; 
(2) (fo Jd* + (f1J2)* = (fo J2)*; 
(3) (f1JO)* = -(fOJ1)*; 
(4) If j* : Hq(X, A) ~ Hq(X) is the injection, then 

j* 0 (fOJ1)* = fT - /6; 
(5) If g: Y ~ Y', then 
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(6) If h : (X', A') - (X, A) is cellular, then 

(fo 0 h,jl 0 h)* = h* 0 (fo ,jd*. 

To prove (1), observe that, iffo = f1> the map F: t x X u 1 x A - Yhas 
a (stationary) extension F' : 1 x X - Y, and therefore F* = j* 0 F'*, where 
h* : Hq(1 x X) - Hq(t x X u 1 x A) is the injectio~,. Hence, if u E Hq(y), 

i* x (fo,jo)*u = b*F*u = b*j*F'*u = 0, 

since b* 0 j* = 0. Since i* x is an isomorphism, (fo ,jo)*u = 0. 
To prove (2), let 10 = [0, !], II == £1, 1], and observe that by the Direct 

Sum Theorem, the appropriate injections induce an isomorphism 

(6.12) Hq+ 1(1 x X, t x X u m x X u 1 x A) ~ 

Hq+l(Io x X, jo x Xu 10 x A) X Hq+l(I I X X, jl X X U II X A). 

The three maps /; : X - Y induce a map 

G:txXu{!}xXulxA-Y 

by 

G(t, x) = f2t(X) 

G(t, a) = fo(a) = fl(a) = f2(a) 

(t=O,!,l;xEX), 

(t E I, a E A). 

Clearly, if u E Hq(y~ then b*G*(u) corresponds, under the isomorphism 
(6.12) to the pair of elements (i~ x (fo ,j1)*U, it x (f1,j2)*ll). Moreover, if 

j*: Hq+l(1 X X, 1 x Xu {!} x Xu 1 x A)-

Hq+ 1(1 x X, t x X u 1 x A) 

is the injection,j*b*G*(u) = b*(GJI x X)*u = i* x (fO,j2)*U. 
Let us make the isomorphism (6.12) more explicit. Consider the diagram 

. k~ 1 • Hq+l(1 X X, II X X u I x X u 1 x A) ~ H9+ (10 x X, 10 x Xu 10 x A) 

(6.13) H9+ 1(1 X X, i x Xu {!} x Xu 1 x A) 

i~/ )/ 
H9+ 1(1 X X, 10 x Xu i x X u 1 x A) ---+ H9+ 1(11 X X, il X X U II X A) 

kT 
in which k~ and kt are isomorphisms by the Excision Theorem. The isomor
phism (6.12) is induced by I~ and If, whi1ej~,jf represent the middle group 
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as a direct sum. In fact, the representations (l~ , In and (j~ ,j d are weakly 
dual to each other. 

Let us consider first the special case (X, A) = (P, 0), where P is a single 
point. The group Hl(It, it) is an infinite cyclic group with generator it 
(t = 0, 1), and therefore HI (I, i u H}) is a free abelian group of rank 2, with 
basis 

~* = j~kr lun 
Moreover, the injection Hl(l, t u H}) ~ Hl(l, t) maps each of the two ele
ments i6 , it upon the generator i* E Hl(l, t). 

Since each ofthe injections of (6.13) is induced by a map of the formj x 1, 
where j is an inclusion and 1 the identity map of (X, A), it follows that 

(j*G*u = i~ x (fo ,fd*u + it x (fl,f2)*U, 

j*r5*G*i = i* x (fo ,fd*u + i* x (fl,f2)*U 

= i* x {(fo ,fd*u + (fl,f2)*U}. 

But we have seen that 

j*r5*G*u = i* x (fo, f2)*U, 

and (2) follows from the fact that i* x is an isomorphism. Clearly (3) follows 
from (1) and (2). 

To prove (4), note that the injection maps F*u E Hq(t x X u 1 x A) into 
0* x f~ u + 1 * x ft u E Hq(i x X), where 0* and 1 * are the cohomology 
classes dual to the homology classes of the points 0, 1 E Ho{i). But (j*(1 *) = 

- r5*(0*) = i* E Hl(l, t), and therefore r5* maps the above class into 
i* x (ftu - f~u). Commutativity of the diagram 

Hq(i x X u 1 x A) 
i* X 

Hq+ 1(1 x X, i x X u 1 x A) ..... ,--

Hq(i x X) -----41 Hq+ 1(1 X X, i x X) 
r5* 

completes the proof. 

------41 Hq(x) 
i* x 

The proofs of (5) and (6) are easy and are left to the reader. 0 

It follows from the definition of (fo ,fd*, (6.10), and Theorem (6.2) that 

(6.14) (jn(fo,fd = (-1)n(fo ,fd*ln(y). 
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We now have 

(6.15) Theorem (Eilenberg Homotopy Theorem). Suppose that Y is q-simple 
and that Hq(X, A; 7rq(Y)) = Ofor all q such that n + 1 S q < 1 + dim (X, A). 
Thenfo ~fl (reI. A) ifand only if(fo,fd*ln(y) = O. D 

(6.16) Corollary The above conclusion holds if either 

(a) dim (X, A) s n, 

or 

(b) Y is an Eilenberg-M ac Lane space of type (II, n). 

Combining the above results, we obtain 

(6.17) Theorem (Eilenberg Classification Theorem). Suppose that 

(1) Y is q-simple for n + 1 s q < 1 + dim(X, A), 
(2) Hq(X, A; 7rq(Y)) = 0 for n + 1 S q < 1 + dim(X, A), 
(3) Hq+ l(X, A; 7rq(Y)) = 0 for n + 1 s q < dim (X, A). 

D 

Let fo : X -> Y be a map. Then the correspondence f -> (fo ,1)* In( Y) induces a 
one-to-one correspondence between the homotopy classes (reI. A) of extensions 
of fo I A and the group Hn(x, A; II). 

Suppose that (fo ,f)*ln(y) = (fo, g)*ln(y). Then by Theorem (6.11), part 
(2), (f, g)*ln(y) = O. By Theorem (6.15),1 ~ g (reI. A). 

Let Z E Hn(x, A; II), and let d E zn(x, A; II) be a representative cocycle. 
Let Fo: 0 x Xn u I x Xn - 1 -> Y be the map such that 

Fo(O, x) =fo(x) 

Fo(t, x) = fo(x) 

(x E X n ), 

(x E Xn-d. 

By (5.12), Fo has an extension F: Xn -> Y such that dn(F) = d. Letf(x) = 

F(1, x) for x E X n' Then, by Theorem (5.6'), 

0= (jd = (jdn(Fo) = cn+1(f) - cn+1(foIXn ) 

= cn + l(f) 

becausefo IXn has the extensionfo. Thereforefhas an extension over Xn + 1 . 

Because of (3),1" can be extended to a mapfl : X -> Y. Since dn(Fo) = d, we 
have z = (jn(fo,fd = (-l)"(fo ,fl)*ln(y). Hence every class can be realized. 

D 

In particular, we may take A = 0, fo a constant map of X into Y, to 
obtain 

(6.18) Corollary If A = 0 and the hypotheses (1)--(3) of Theorem (6.17) are 
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satisfied, then the correspondence f -4 f*ln( Y) induces a one-to-one correspon
dence between [X, Y] and Hn(x; II). 0 

(6.19) Corollary (Hopf-Whitney Classification Theorem). The homotopy 
classes of maps of an n-dimensional CW-complex. X into an (n - I)-connected 
n-simple space Yare in one-to-one correspondence with the group 
Hn(x; 1tn( Y)). 0 

(6.20) Corollary Let II be an abelian group, n a positive integer, and let Y be 
an Eilenberg-Mac Lane space of type (II, n). Then,for any CW-complex X, 
[X, Y] is in one-to-one correspondence with Hn(x; II). 0 

7 Eilenberg-Mac Lane Spaces 

If II is a group and n a positive integer, an Eilenberg-M ac Lane space of type 
(II, n) is a space X whose homotopy groups vanish in all dimensions except 
n, while 1tn(X) ~ II. (Of course, II has to be abelian if n > 1). We shall often 
use the notation K(II, n) for a CW-complex which is an Eilenberg
Mac Lane space of type (II, n) (more precisely, K(II, n) is a pair (X, f/) 
where X is a space such that 1ti(X) = 0 for i =f nand f/ is an isomorphism of 
II with 1tn(X)). 

(7.1) Theorem Let n be a positive integer, II a group (abelian ifn > 1). Then 
there exists an Eilenberg-MacLane space (even a CW-complex of type 
(II, n) and any two such spaces have the same weak homotopy type. 

Existence follows from the general existence theorem (2.1). Uniqueness 
follows from the more general 

(7.2) Theorem Let II, II' be abelian groups, n a positive integer, and let 
f/ : II -4 II' be a homomorphism. Then there is a unique homotopy class of maps 
f: K(II, n) -4 K(II', n) such that 1tn(f) = f/ : II -4 II'. 

Remark. If II' is not required to be abelian, existence still holds, but 
uniqueness holds only up to conjugacy; cf. Corollary (4.4). This is enough to 
prove the uniqueness part of Theorem (7.1) when n = 1 and II is 
non-abelian. 

Let X = K(II, n), X' = K(II', n). By Corollary (6.20), the map 
f -4 f*ln(X') induces a one-to-one correspondence between [X, X'] and 
Hn(x; II'). Now Hn(x; II') ~ Hom(Hn(X), II'); let f: X -4 X' be the map 
such that f*ln(X') is the cohomology class corresponding to the homomor
phism f/ 0 p-l : Hn(X) -4 II'. Composition with Hn(f): Hn(X) -4 Hn(X') 
defines a homomorphism of Hom(Hn(X')' II') into Hom(Hn(X), II') which 
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is part of a commutative diagram 

Hn(x'; fl') 
f* 

---_I Hn(x; ll') 

(7.3) j 1 

Since zn(X') corresponds to p- \ f*zn(x') corresponds to p-l 0 Hn(f), so 
that fI 0 p-1 = p-1 0 Hn(f). But commutativity of the diagram 

1tn(X) = II 
1tn(f) 

n' = 1tn(X') ------+ 

(7.4) Pj jP 
Hn(X) 

Hn(f) 
, Hn(X') 

ensures that 1tn(f) 0 P - 1 = P -1 0 Hn(f) = fI 0 P - 1 and therefore 1tn(f) = fl. 
Iff,!' are maps with 1tn(f) = 1tn(f'), then Hn(f) = Hn(f') by commutativity 
of (7.4) and f * =!'* : Hn(X'; ll') --+ Hn(x; ll') by commutativity of (7.3). 
Hence f*zn(X') = !'*z"(X') and therefore f c:=:!, by the uniqueness part of 
Corollary (6.20). 0 

(7.5) Corollary The homology and cohomology groups of an Eilenberg
Mac Lane space of type (n, n) depend only on nand n, and on the coefficient 
woo~ 0 

They are usually denoted by 

Hq(n, n; G), Hq(ll, n; G) 

respectively. 
Some examples of Eilenberg-Mac Lane spaces are at hand. For example 

K(Z, 1) = S1, 

K(Zm' 1) = LOO(m), 

K(Z, 2) = POO(C). 

In particular 

Hence we have 
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(7.6) Theorem The groups Hq(TI, n) are given in thefol/owing cases: 

(l)n=I,TI=Z 

_IZ (q = 0, 1), 
Hq(Z, 1) - )0 (q ~ 2). 

(2) n = 1, TI = Zm 

Z (q = 0), 

Hq(Zm' 1) = 0 (q even> 0), 

Zm (q odd). 

(3) n=2,TI=Z 

Hq(Z, 2) = {~ (q even), 

(q odd). D 

We can determine more of the groups Hq(TI, n) with the aid of a "Kiin
neth Theorem"; 

(7.7) Theorem If TI, TI' are abelian groups, n a positive integer, then 

Hq(TI EB TI', n) ~ EB Hr(TI, (z) ® Hs(TI', n) 
r+s=q 

EB EB Tor{Hr(TI, n), H.(TI', n)}. 
r+s=q-I 

This follows from the Kiinneth theorem for the homology of a product 
space and the fact that K(TI EB TI', n) = K(TI, n) x K(TI', n). D 

In particular, we can compute H q(TI, 1) for any finitely generated abelian 
group. 

We also have 

(7.8) Theorem Ifn ~ 1, Hn(TI, n) ~ TI/[TI, TIl Ifn ~ 2, then Hn+ I(TI, n) = O. 

Since K(TI, n) is (n - I)-connected, the first result follows from the Hure
wicz theorem. To prove the second, let 

0-4R-4F-4TI-40 

be a short exact sequence with F a free abelian group. Then R is also free 
abelian; let B, A be bases for R, F respectively. We construct X* = K(TI, n) 
as follows. Let X n- 1 be a single point *, and let X n = Va E A S~ be a cluster of 
n-spheres. Then F ~ Hn(Xn) ~ nn(Xn) by the Hurewicz theorem (here we use 
the fact that n > 1). Let Y = VbEB S~, so that Hn(Y) ~ R, and letf: Y -4 Xn 
be a map such that f* : Hn(Y) -4 Hn(Xn) is the imbedding of R into F. Let 
X = X n + 1 be the mapping cone off Now use Corollary (2.4) to imbed X in 
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a space X* so as to kill all the homotopy groups in dimensions > n, by 
adjoining cells of dimensions 2. n + 2. Then X* = K(TI, n), and (X*, X) is 
(n + I)-connected. By the Hurewicz theorem, H n + 1(X*, X) = 0 and there
fore the injection Hn+ l(X) -+ Hn+ l(X*) is an epimorphism. So it suffices to 
show that Hn+l(X) = O. 

The chain complex of X reduces to 

Now Hn+ l(X, Xn) is a free abelian group with one basis element for each 
cell; and a maps each basis element of Hn+ 1 (X, X n) into the corresponding 
basis element of R. Thus a is a monomorphism, and therefore Hn+ 1 (X) = O. 

D 

It is not true that H2(TI, 1) = 0, even when TI is abelian. (A non-abelian 
example is given by any closed orientable surface of positive genus). In fact, 
the" Kiinneth Theorem" (7.7) gives 

H2(Z2+Z2' 1)~Hl(Z2' 1)®H1 (Z2' 1)~Z2®Z2~Z2· 

The knowledge of the homology groups of K(TI, n) can be useful when 
there are" gaps" il' the homotopy of a space. Specifically, 

(7.9) Theorem Let X be an (n - I)-connected space, and suppose that 
1!i(X) = 0 for n < i < q. Then 

Hi(X) ~ Hi(TI, n) 

Hq(X)/Lq(X) ~ Hq(TI, n), 

(i < q), 

where Lq(X) is the image of the Hurewicz map p : 1!q(X) -+ H q(X). 

(The elements of Lq(X) are called spherical homology classes, or 
sometimes, loosely, spherical cycles). 

Again we use Corollary (2.4) to imbed X in an Eilenberg-Mac Lane 
space X* by attaching cells of dimensions 2. q + 1. Then (X*, X) is q
connected; by the Hurewicz theorem, Hi(X*, X) = 0 for all i ::; q. Hence the 
injection Hi(X) -+ Hi(X*) is an isomorphism for all i < q, and there is a 
commutative diagram 

a. 
1!'l+ l(X·, X) --------. 1!'l(X) ----> 1!'l(X·) = 0 

Pj pi pi 

H'l+l(X·, X) --------. Hq(X) ----> Hq{X·) -+ 0 
a. i. 
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Now p: 1t:q+l(X*, X)--+Hq+l(X*, X) is an epimorphism, by the Hurewicz 
theorem, and O*:1t:q+l(X*,X)--+1t:q(X) is an epimorphism, since 
1t:q(X*) = 0; therefore 

Ker i* = 1m 0* = Im(o* 0 p) = Im(p 0°*) = 1m p = Lq{X), 

Hq(X*) ~ Hq(X)/Ker i* = Hq(X)/Lq(X). 0 

(7.10) Corollary If X is an (n - I)-connected space (n 2': 2), then the Hurewicz 
map p : 1t:n+ 1 (X) --+ Hn+ 1 (X) is an epimorphism. 

Just take q = n + 1 and apply Theorems (7.8) and (7.9). 0 
This result is due to Fox [3], and independently to Hopf [8]. 

The fact that the homotopy classes of maps of a CW -complex X into 
K(n, n) have a group structure (which is evidently natural) may lead the 
reader, in view of the argument of Chapter III, §4, to suspect that K(n, n) 
might be an H-space. That this is indeed the case can be shown by observing 
that we could have replaced the category of spaces used there by a quite 
general category; and, if we had used the category of CW -complexes and 
continuous maps, the desired conclusion would have followed. However, 
there are at least two other ways of proving 

(7.11) Theorem If n is an abelian group and n is a positive integer, then 
K(n, n) is an H-space. 

The first proof is prompted by the observation that, if X is any space, then 
nx is an H-space, and 1t:i(nX) ~ 1t:i+l(X). Thus, if X = K(n, n + 1), then 
nx has the correct homotopy groups. Of course, nx is not a CW -complex 
(although it has the homotopy type of one, according to a theorem of 
Milnor). However, we have 

(7.12) Lemma Iff: X --+ Y is a weak homotopy equivalence, X is a CW
complex, and Y is an H-space, then X admits an H-structurefor whichfis an 
H-map. 

For f x f: X x X --+ Y x Y is then also a weak homotopy equivalence, 
and if J1. : Y x Y --+ Y is a product in Y, then composition with f: X --+ Y 
induces a one-to-one correspondence between [X x X, X] and [X x X, Y]. 
Therefore there is a map A. : X x X --+ X such that the diagram 

A. 
XxX X 

Y x Y -----> Y 
J1. 
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is homotopy commutative. If ex = 1, 2, we have 

and therefore A. 0 ia. ::'!:: 1. Hence A. is a product in X. D 

By Theorem (2.2), there is a weak homotopy equivalence g: K(II, n)-+ 
OK(II, n + 1), and it follows from the Lemma that K(II, n) is an H-space. 

D 

We now give a second proof, and, in fact, we prove a little more. 

(7.13) Theorem If II is an abelian group and n a positive integer, then K(II, n) 
has an H-structure which is unique up to homotopy. 

Let X = K(II, n), and consider the folding map V: X v X -+ X. The 
primary obstruction to extending V lies in the group 
G=Hn+1(Xxx,XvX;II). If n>1, then Hn(XxX,XvX) and 
Hn+ l(X x X, X v X) vanish, by the Kiillneth Theorem for pairs; therefore 
G = O. Suppose that n = 1; since X is O-connected, we may assume that X 0 

is a single point. Then the 2-cells of the relative CW-complex (X x X, 
X v X) are products E~ x E~ of I-cells of X. Let us take the liberty of 
denoting by the same symbols ex, /3, the elements of 1t1(X) represented by 
characteristic maps for these cells. Then the attaching map for E~ x E~ is the 
commutator [i1*(ex), i2 A/3)], whence the element c2(e~ x e~) is 
V *[i1*(ex), i 2*(/3)] = [ex, /3] = 1 because II is abelian. Hence the primary 
obstruction vanishes in all cases. 

(X 

Figure 5.3 

If q > n, then 1tq(X) = 0 and therefore Hq+ l(X x X, X v X; 1tiX)) = O. 
By Theorem (6.6), V can be extended to a map 11: X x X -+ X, which is a 
product in X. 

If 110,111: X x X -+ X are products in X, then 

(110' 111)*Zn(x) E Hn(x x X, X v X; II) = 0 

by the Kiinneth Theorem. As Hq(X x X, X v X; 1tq(X)) = 0 for all q > n, it 
follows from Theorem (6.15) that 110 ::'!:: 111 (rei. X v X). D 



250 V Homotopy Theory of CW-complexes 

Since K(n, n) is an H-space, the set [X, K(n, n)] has a natural composi
tion. In fact, [X, K(n, n)] is an abelian group. Moreover 

(7.14) Theorem The one-to-one correspondence of Corollary (6.17) is an iso
morphism [X, K(n, n)] ;:::: Hn(x; n). 

Let f, g: X --> K(n, n), and let J1: K x K --> K be the product m 
K = K(n, n). Let h be the composite 

L\ fxg J1 
X --.... , X x X , K x K --->, K. 

What we must prove is the h*(bn} = f*(bn) + g*(bn), where bn = zn(K) is the 
characteristic class. 

Since Hi(K) = 0 for 0 ::;; i < n, the groups Hq(K x K, K v K) vanish in 
dimensions < 2n. By Corollary (7.3*) of Chapter III, the element bn is 
primitive: 

J1*bn = p!bn + p!bn 

where PI' P2: K x K --> K are the projections. Now PI 0 (f X g) = f 0 PI' 
P2 0 (f X g) = g 0 P2' and therefore 

(f x g)*J1*bn = (f x g)*p!bn + (f x g)*p!bn 

= p! f*bn + p!g*bn · 

But PI 0 L\ = P2 0 L\ = 1, and therefore 

h*bn = L\*(f x g)*J1*bn = L\*p! f*bn + L\*p!g*bn 
= f*b n + g*bn · 

8 Cohomology Operations 

o 

Another reason for the importance of the spaces K(n, n) is their connection 
(discovered by Serre) with cohomology operations. By a (primary) cohomol
ogy operation we shall mean a natural transformation (): Hn( ; n)--> 
Hq( ; G) of functors; e is said to be of type (n, q; n, G). We shall assume 
that nand q are positive. For the case when one ofthem is zero, the reader is 
referred to the Exercises. 

Examples of cohomology operations are numerous; we shall list only a 
few. 

EXAMPLE 1 (Coefficient group homomorphism). Let f: n --> G be a homo
morphism of abelian groups. If X is a CW-complex, composition withfis a 
chain map of the cochain complex Hom(r(X), n) into Hom(r(X), G), and 
therefore induces a homomorphism 
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and it is clear that f* is a cohomology operation of type (n, n; II, G), the 
coefficient group homomorphism induced by f 

EXAMPLE 2 (The Bockstein operator). Let 

(8.1) 

be a short exact sequence of abelian groups. If X is a CW -complex, its 
cochain complexes with respect to the above groups form a short exact 
sequence 

o ~ Hom(r(X), G) ~ Hom(r(X), E) ~ Hom(r(X), II) ~ 0 

and the connecting homomorphism f3 of the resulting homology exact 
sequence 

is a cohomology operation of type (n, n + 1; II, G), called the Bockstein 
operator associated with the short exact sequence (8.1). 

EXAMPLE 3 (The cup square). Let II, G be abelian groups and suppose there 
is given a pairing II ® II ~ G. If u E Hn(x; II), this pairing allows us to 
construct the cup square Sqn(u) = U ~ U E H2n(x; G). Then Sq" is a coho
mology operation of type (n, 2n; II, G). Let us observe that this operation 
may not be additive; i.e., it is not true that Sq" : H"(X; II) ~ H2"(X; G) is a 
homomorphism for every X. (Just let II = G = Z with the pairing given by 
multiplication, and take X = p2(C), n = 2). 

EXAMPLE 4. Let II, G be abelian groups and let u E Hq(II, n; G). Then if X is 
a CW -complex and x E H"(X; II), there is, by Corollary (6.20), a unique 
homotopy class of maps f: X ~ K(II, n) such that f*b" = x, where 
bn = zn(K(II, n)) is the characteristic class. Let flu(x) = f*(u) E Hq(X; G). 
Then flu: H"(X, II) ~ Hq(X; G) is a cohomology operation of type 
(n, q; II, G). 

Before embarking on a detailed study of cohomology operations, it be
hooves us to make precise the categories in which we are working. It is 
customary to consider the cohomology groups as functors with values in the 
category .:It of Abelian groups. However, Example 3 makes it clear that we 
shall have to consider mappings between abelian groups which are not 
homomorphisms. In fact, there is no a priori reason to make any restriction 
whatever on the maps involved. Therefore, in the present context, we shall 
take the range category A to be the one whose objects are abelian groups 
and whose morphisms are arbitrary functions. 

As for the domain, it is clearly desirable that it should contain the 
category C€ of CW -complexes and cellular maps. However, it is easy to show 
that any natural transformation defined over C€ has a unique extension over 
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the whole category % of (compactly generated) spaces. In fact, if (J is such a 
transformation, X an arbitrary space, and x E Hn(x; n), we can choose a 
weak homotopy equivalencef: K ~ X with K a CW-complex. Then (J(f*x) 
is defined, and therefore we may define 

(J'(x) =f*-l(J(f*x) E Hq(X; G) 

and a simple argument using the techniques of §3 shows that (J'(x) is 
uniquely defined, that (J' is a natural transformation over the larger category 
extending (J, and that (J' is unique. 

These observations allow us to eat our cake and have it too. On the one 
hand, in a general discussion of cohomology operations, we may assume 
them everywhere defined; on the other, if we wish to construct a specific 
operation, we need only construct it on CW -complexes. 

We shall now show that all cohomology operations are given by the 
construction of Example 4. More precisely, 

(8.2) Theorem (Serre). The correspondence u ~ (Ju of Example 4 is a one-to
one correspondence between Hq(n, n; G) and the set of all cohomology opera
tions of type (n, q; n, G). If (J is a cohomology operation, the element of 
Hq(n, n; G) to which it corresponds is (J(bn ). 

In fact, let Uo = (J(bn ). We must show that 

(1) (JUG = (J, 
(2) uou = u. 

If(J is a cohomology operation, x E Hn(x; n) and iff: X ~ K(n, n) is the 
map such that f*bn = x, then 

(Ju(x) = f*(uo) = f*(J(bn ) = (Jf*(bn ) = (J(x), 

so that (JUG = (J. 
On the other hand, if u E Hq(n, n; G), then 

uOu = (Ju(bn ); 

now the identity map 1 of K(n, n) has the property that 1 *bn = bn , and 
therefore 

so that uOu = u. o 

It is natural to ask what conditions on an element u E Hq(n, n; G) are 
equivalent to the additivity of the corresponding operation. The answer is 
given by 

(8.3) Theorem Let u E Hq(n, n; G), and let (J = (Ju be the corresponding oper
ation. Then (J is additive if and only if u is primitive. 
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(To understand this statement, recall that K = K(II, n) is an H-space 
with multiplication J1 : K x K -+ K, and that, if PI' pz : K x K -+ K are the 
projections on the first and second factors, respectively, then u is primitive if 
and only if 

J1*u = ptu + p!u). 

We have seen in the proof of Theorem (7.14) that the element bn is 
primitive, and that, iff: X -+ K, g : X -+ K, and if h = J1 0 (f x g) 0 A, then 
h*bn = f*bn + g*bn • 

Suppose that () is additive, and let u = Ue = ()(bn ). Then 

J1*u = J1*()(bn ) = ()J1*(bn) = e(ptbn + p!bn ) 

= pt()(bn) + p!()(bn ) = ptu + p!u, 

so that u is primitive. 
Conversely, suppose that u is primitive and let () = ()u. Let x, 

y E Hn(x; II) and let J, g: X -+ K(II, n) be the corresponding maps. Let 
h = J1 0 (f x g) 0 A. Then h*bn = f*bn + g*bn = x + y, while 

()(x + y) = ()h*bn = h*()(bn) = h*(u) 

so that e is additive. 

EXERCISES 

= A*(f x g)*J1*u = A*(f x g)*(ptu + p!u) 

= A*(p!f*u + p!g*u) = f*u + g*u 

= e(x) + ()(y), 

1. (Barratt and Whitehead [1]). Let 

IX. + 2 (In+ 1 IX. IX._ 1 
···-+A.+2 ~ A.+ 1 -- A. ----. A._I ----. 

j ~.+2 j ~.+ 1 j ~. j ~.-I 
... -+ B.+2 ----. B.+ 1 -- B • ----. B'_I -----P. + 2 P. + 1 P. P.- 1 

o 

A.- 2 -+··· 

j ~.-2 
B.-2 -+ ... 

be a commutative diagram with exact rows. Suppose that ~n is an isomorphism 
whenever n == 0 (mod 3). 

(i) Deduce the existence of an exact sequence 

(ii) Use (i) to derive the Mayer-Vietoris sequence of a proper triad. 
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(iii) Let p : X ---+ B be a fibration,! : B' ---+ B a map, p' : X' ---+ B' the induced fibra
tion. Show that there is an exact sequence 

nn(X') ---+ niB') EB nn(X) ---+ ••• 

2. Let (X, A) be an arbitrary pair, and let H* be cohomology with coefficients in an 
arbitrary group G. Show that there are isomorphisms 

W(X, A) ---+ W(O x X, 0 x A) ---+ W(I x A u i x X, 1 x A u 1 x X)---+ 

Hn + 1(1 X X, 1 x A u i x X) 

such that the composite reduces, when (X, A) is a relative CW-complex, to the 
isomorphism i* x : W(X, A) ---+ W+ I(X*, A*) of (2.34) of Chapter II. 

3. (Steenrod [2]). Using the result of # 2, define (fo ,fd* : Hn{ Y) ---+ Hn(x, A) for any 
two maps fo , fl : X ---+ Y such that fo I A = fl I A ((X, A) being an arbitrary pair) 
and prove its principal properties. 

4. (Hopf [7]). Let IT be a group, F a free group, p: F ---+ IT an epimorphism with 
kernel R. Prove that 

Hz(IT, 1)::::: R n [F, F]/[F, R). 

5. (Miller [1]). Let IT be an abelian group. Then 

Hz(IT,l):::::IT@IT/D, 

where D is the" diagonal subgroup," generated by all elements of the form x @ x, 
X E IT. 

6. Note that W(IT, n; G) ::::: Hom(Hn(IT, n), G) ::::: Hom(IT, G). Show that if 
U E Hn(IT, n; G) corresponds to the homomorphismf: IT ---+ G, then the operation 
Bu is just the coefficient group homomorphism f*. Thus the cohomology opera
tions of type (n, n; IT, G) are just the coefficient group homomorphisms induced 
by homomorphisms of IT into G. 

7. Note that Hn + I (IT, n; G) ::::: Ext(Hn(IT, n), G) ::::: Ext(IT, G). Show that, if 
U E H n + I(IT, n; G) corresponds to the element £ E Ext(IT, G) which is the equiv
alence class of a short exact sequence 

o ---+ G ---+ E ---+ IT ---+ 0, 

then the operation Bu is just the associated Bockstein operator. Thus the cohomol
ogy operations of type (n, n + 1; IT, G) are just the Bockstein operators asso
ciated with arbitrary short exact sequences as above. 

8. Classify all operations of type (n, q; IT, G) when n or q is zero. 



CHAPTER VI 

Homology with Local Coefficients 

Let p : X ---+ B be a fibration whose base space is a CW -complex. One may 
attempt to find a cross-section to p by a stepwise extension process like the 
one of the last chapter. Iff: Bn ---+ X is a cross-section over the n-skeleton, the 
problem of extending f reduces to a family of local problems: for each 
(n + 1 }-cell Ea of B, the induced fibration over Lln + 1 is fibre homotopically 
trivial. Its total space may thus be represented as a product Lln + 1 X Fa, 
where Fa is the fibre over some point ba of Ea. The cross-section thus defines 
a map of An+ 1 into Fa, representing an element c(Ea) E 7rn(Fa} whose vanish
ing is necessary and sufficient for the cross-section to be extendible over Ea. 
The groups 7rn(Fa), for different cells Ea, are all isomorphic; thus it is tempt
ing to regard the function c as a cochain of B with coefficients in the abstract 
group 7rn(F}. The difficulty is that the isomorphisms 7rn(Fa} ~ 7rn{F Ii) are not 
uniquely defined; they depend on the choice of a homotopy class of paths 
joining ba and b{J' 

This difficulty was surmounted in 1943 by Steenrod [1], who showed how 
the whole apparatus of classical homology theory could be extended to 
handle the above problem. A bundle of abelian groups G in a path wise 
connected space X assigns to each point x E X a group Gx and to each 
element ~ E 7rl(X; x, y} an isomorphism G(O: Gy ---+ Gx , satisfying certain 
conditions which are best expressed by the statement that G is a functor 
from the fundamental groupoid of X to the category :it; of abelian groups. 
Steenrod showed how to associate to a pair (X, A) and a bundle G of abelian 
groups in X a family of abelian groups Hq(X, A; G), called the homology 
groups of (X, A) with local coefficients in G. These have many properties in 
common with ordinary homology groups (to which they reduce when the 
coefficient bundle G is simple), and they and the corresponding cohomology 
groups form the proper setting for the study of the cross-section problem. 

255 
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In §1 bundles of groups are introduced and various examples studied. In 
§2 homology and cohomology groups with local coefficients are introduced 
and properties analogous to the Eilenberg-Steenrod axioms are formulated. 
In §3 low-dimensional cases are discussed, and it is shown, following Eilen
berg [4] that the local homology and cohomology groups of a space X are 
isomorphic with the equivariant groups of its universal covering space g 
under the action of the group of covering translations. In §4 a discussion of 
the homology groups of a relative CW-complex, paralleling that given in §2 
of Chapter II for ordinary homology groups, is given. In §§5, 6 the cross
section problem for fibrations is treated, and results parallel to those of 
§§5, 6 of Chapter V are obtained. 

Applications to the theory of characteristic classes are given in §7. Let 
p: X -4 B be the projection of a fibre bundle having Rn as fibre and O(n) as 
structural group. The group O(n) operates on the Stiefel manifold 
V n. k(O ~ k ~ n), and there is an associated bundle ~k over B with fibre V n, k; 
the total space of the latter bundle is the set of all (k + 1 )-tuples 
(b; Xl' ... , xd such that b E B and (Xl' ... , xk ) is an orthonormalk-frame in 
the Euclidean space p-l(b). The fibre Vn, k is (n - k - I)-connected, and the 
primary obstruction to a cross-section of ~k is a cohomology class 
w..-k+I(O E Hn-k+I(B; 1tn-k(ffk)); the group 1tn- k (Vn,k) is either Z or Z2, 
and the local coefficient system is, of course, simple in the latter case, but 
may be twisted in the former. 

There is a classifying space for orthogonal Rn-bundles; it is the Grass
mannian space G(n) of n-planes in ROO, and there is a bundle '1n over G(n) 
such that the correspondence f -4 f*'1n induces a one-to-one correspondence 
between [B, G(n)] and the set of equivalence classes of bundles over B. Then 
the classes J.v,:(n) = J.v,:('1n) are defined and if ~ = f*'1n' we have the relation 

f * J.v,:( n) = J.v,:( ~). 

The classes J.v,:(n) are called the universal Whitney classes, while the J.v,:(~) are 
the Whitney classes of~. Reducing the coefficient groups mod 2, we obtain 
classes 

wr(n) E Hr(G(n); Z2), 

wrg) E H'(B; Z2); 

these are called the universal Stiefel-Whitney classes and the Stiefel-Whitney 
classes of ~, respectively. 

In 1936 Stiefel [1] inaugurated the study of characteristic classes. He 
considered the tangent bundle of a manifold and defined characteristic ho
mology classes; these were carried by the loci of singularities of fields of 
k-frames defined on the manifold, and corresponded by Poincare duality to 
the Whitney cohomology classes. About the same time Whitney [1] defined 
characteristic invariants for sphere bundles over a complex K; with the 
discovery of cohomology he was able [4] to reformulate these invariants as 
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cohomology classes (in the orientable case; in the non-orientable case he 
reduced the coefficients mod 2). Later [5] he treated the twisted case by the 
device of passing to a "locally isomorphic complex". It remained for 
Steenrod [1] to give. the formulation in terms of local coefficients. 

F or a thorough treatment of characteristic classes the reader is referred to 
the book by Milnor and Stasheff [M-S]. 

There are many other applications of homology with local coefficients 
which we have chosen to omit. Two examples are: 

(1) obstruction theory for maps into non-simple spaces (Olum [1]); 
(2) Poincare duality for non-orientable manifolds (Steenrod [1]). 

1 Bundles of Groups 

Let us recall that the fundamental groupoid of a space B is the category 0 1 (B) 
whose objects are the points of B and whose morphisms: b1 -+ b2 constitute 
the set 1l:1(B; b2 , b1) of homotopy classes of paths in B from b2 to b1. By a 
bundle of groups in B we shall mean simply a functor G from the category 
0 1 (B) to the category '!J of groups. Similarly, a bundle of abelian groups (or 
local coefficient system) is a functor from 0 1 (B) to the category A of abelian 
groups. Such a functor assigns to each b E B a group (an abelian group) G(b) 
and to each homotopy class (E 1l:1(B; b1, b2 ) a homomorphism 
G(~) : G(b 2 ) -+ G(b 1 ); these are required to satisfy 

(1) if ~ E 1l:1(B, b) = 1l:1(B; b, b) is the identity, then G(O: G(b) -+ G(b) is the 
identity; 

(2) if ~ E 1l:1(B; bi> b2 ), 11 E 1l:1(B; b2 , b3 ), then 

G(~11) =G(~) 0 G(11): G(b 3 ) -+ G(bd. 

It then follows that 

(3) if ~ E 1l:1(B; b1, b2 ), then 

G(C 1) = G(~t 1: G(bd -+ G(b2 ), 

so that the homomorphisms G(~) are isomorphisms. 

We have already encountered a number of examples of bundles of groups. 

EXAMPLE 1. The homotopy groups 1l:n(B, b), together with the operations r~ 
(Chapter III, §1, and Chapter IV, §3) form a bundle On(B) in B. 

EXAMPLE 2. If B c A, the relative homotopy groups 1l:n(A, B), with the opera
tions r~ (Chapter III, §1, and Chapter IV, §3) form a bundle On(A, B) in B. 

EXAMPLE 3. If p: X -+ B is a fibration, the homology groups Hn(Fb), 
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ff = {Fb} = {p-l(b)}, with the operations of Chapter IV, §8, form a bundle 
Hn(ff) in B. 

EXAMPLE 4. If p: X -4 B is a fibration, the groups n:(Fb ), with the operations 
of Chapter IV, §8, form a bundle n:(ff) in B. If the fibres are n-simple, then 
the homotopy groups nn(Fb) form a bundle nn(ff) in B. 

In connection with the subject of Poincare duality, the following example 
is of crucial importance. 

EXAMPLE 5. Let X be a connected n-manifold, and for each x E X, let G(x) be 
the local homology group 

Hn(X Ix) = Hn(X, X - {x}). 

Let us observe that, the injection Hn(U, U - {x}) -4 Hn(X, X - {x}) is an 
isomorphism, for any neighborhood U of x, by the Excision Theorem. In 
particular, we may take U to be an open n-cell, so that there is a homeomor
phism u: U -4 Rn. The group G{x) :::::; Hn{Rn, Rn - {x}) is then infinite cyclic; 
a generator of G{x) is called a local orientation of X about x. 

In order to make {G{x)} into a local coefficient system, we first need a few 
geometric lemmas. 

(1.1) Lemma If V is a (closed) n-cell, x and y interior points of V, then there is 
a homeomorphism h: V -4 V such that h I V is the identity map and h(x) = y. 

We may assume that V is the unit disc Ilxll ::::: 1 in Rn. The homeomor
phism h is then defined by the property: h maps each line segment [x, z] 
linearly upon [y, z) for every z E V (see Figure 6.1). D 

(1.2) Lemma Let X be an n-manifold, U a connected open subset of X, 
x, Y E U. Then there is a homeomorphism h : X -4 X such that h I X - U is the 
identity map and h(y) = x. 

Define a relation ~ in U by x ~ y if and only if there is a homeomor
phism h as above. Then ~ is an equivalence relation, and it follows from 
Lemma (1.1) that each equivalence class is open. Since U is connected, there 
is only one equivalence class. D 

(1.3) Lemma Let X be a connected n-mani{old, x, y E X. Then there is an 
n-cell E c X such that both x and yare interior to E. 

We may assume x =1= y. Since X is locally connected, the components of 
X - {x} are open; let W be that which contains y, W' the union of the 
remaining ones. Let E be an n-cell, such that x E U = Int E. Then 



1 Bundles of Groups 259 

x 

y 

Figure 6.1 

Un W i= 0; for if not, then X = (W' u U) u W is a separation of X. Let 
Z E Un W; by Lemma (1.2), there is a homeomorphism h: X -> X such 
that h I X - W is the identity and h(z) = y. Then h(E) is an n-cell whose 
interior h(U) contains h(x) = x and h(z) = y. D 

(1.4) Lemma Let X be an n-manifold, E an n-cell contained in X, x E lnt E. 
Let ho, h1 : X -> X be homeomorphisms such that ho I X - E = h1 I X - E is 
the identity and ho(x) = h1 (x). Then there is a homotopy h : I x X -> X of ho 
to h1' (rei. {x} u (X - E)) such that,for each tEl, hI : X -> X is a homeomor
phism i.e., h is an isotopy of ho to h1. 

By Alexander's Lemma [1], there is an isotopy h': I x E -> E of 
hi 1 0 ho IE to the identity (reI. {x} u E). The isotopy h is then defined by 

hI I X - E is the identity, 

hI I E = h1 0 h;. D 

We can now construct the local coefficient system {G{x)} in the connected 
n-manifold X. If E is an n-cell contained in X, we may define an 
isomorphism 

,E(X, y): Hn(X, X - {y}) -> Hn{X, X - {x}), 

for each pair of points x, y E lnt E, by ,E(X, y) = h* for any homeomor-
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phism h: X -+ X satisfying Lemma (1.2) with U = lnt E; being assured, 
because of Lemma (1.4), that rE(x, y) is well-defined. 

(1.5) Theorem The isomorphisms rE(x, y) have the following properties: 

(1.6) If x, y, Z E lnt E, then 

rE(x, y) 0 rE(y, z) = rE(x, z); 

(1.7) If x E lnt E, then 

rE(x, x) is the identity; 

(1.8) If E c F, x, Y E lnt E, then 

rE(x, y) = rF(x, y); 

(1.9) If x and y belong to the same component C of lnt E n lnt F, then 

rE(x, y) = rF(x, y). 

Only (1.9) presents any difficulty. To prove it, apply Lemma (1.3) to the 
connected manifold C to find an n-cell Gee and containing x and y in its 
interior. Then, by (1.8), we have 

rE(x, y) = rG(x, y) = rF(x, y). 0 

Let (f be the set consisting of the interiors of all n-cells contained in X, so 
that (f is an open covering of X. Let u : I -+ X be a path in X from x to y; 
then the sets u- 1(U), U E (f, form an open covering u*(f of the compactum I. 
Let 1] > 0 be a Lebesgue number for this covering, and let il : 0 = to < tl < 
.. , < tn = 1 be a partition of I with ti - t i - 1 < 1] for i = 1, ... , m. Then there 
are n-cells E b ... , Em in X such that u([ti- 1, ta) c lnt Ei for i = 1, ... , m. (A 
partition il with the latter property is said to be adapted to u). Let 

Ti = rEi(U(ti _ d, u(tJ), 

¢(il) = riO'" 0 rm: G(y) -+ G(x). 

It follows from (1.9) that the isomorphism ri is independent of the n-cell 
E i , and therefore ¢(il) does not depend on the choice of the n-cells E 1, ... , 

Em. We next prove that ¢(il) is independent of the partition ll. In fact, if il' 
is another partition adapted to u, then il and il' have a common refinement 
il" which is also adapted to u, and it suffices to prove that ¢(il) = ¢(il/) 
whenever il' is a refinement of ll. It suffices, in turn, to consider the case in 
which il' is obtained from il by inserting one subdivision point t* E (t i - 1, 

tJ We then have 

¢(il) = pori 0 (J 

¢(il/) = por' 0 r" 0 (J 
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where 

P=TlO"' oTi-l, 

T' = TE'(U(ti_ 1), U(t*)), 

T" = TE"(U(t*), u(t;)), 
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where E' and E" are n-cells containing u([ti- 1, t*]), u([t*, ti])' respectively, in 
their interiors. Because of (1.8) and (1.9), we may assume E' = E" = Ei . But 
then (1.6) assures us that T' 0 T" = Ti and therefore ¢(II) = ¢(II'). 

We have just seen that the isomorphism ¢u = ¢(II) depends only on the 
path u, and not on the partition II used in its definition. Let Ut> U2 be paths 
which can be multiplied, so that u1(1) = u2 (0), and let u = U1 U2 be their 
product. If 

III : 0 = So < Sl < ... < sp = 1, 

II2 : 0 = to < t 1 < .,. < tq = 1 

are partitions adapted to u1, U2 respectively, then the partition 

II: 0 = ~so < ~Sl < ... < ~sp < ~(1 + t1 ) < ... < ~(1 + tq) = 1 

is adapted to u. Clearly ¢(II) = ¢(II1 ) ° ¢(II2 ), and therefore 
¢u = ¢UI ° ¢U2' Moreover, if u is a constant path, ¢u is the identity. 

We next show that ¢u depends only on the homotopy class ~ ofu, so that 
we may define G(~) = ¢u for any u E ~ E 7rl(X; x,y). In fact, let w: 12 ~ X 
be a homotopy (reI. i) between paths u, v from x to y, so that 

w(O, t) = u(t), w(1, t) = v(t), 

w(s, 0) = x, w(s, 1) = y. 

Let '1 > 0 be a Lebesgue number for the open covering w*G: ofI2, and choose 
partitions 

0= So < Sl < ... < sp = 1, 

o = to < t 1 < ... < tq = 1, 

so that each of the rectangles Rij = [Si-l' sa x [t j- 1 , tj] has diameter < '1, 
(see Figure 6.2), and therefore u(Rij) is contained in the interior of some 
n-cell Eij. Let Ui be the path defined by Ui(t) = u(s;, t); then Uo = U, U1 = v, 
and it suffices to show that ¢Ui-I = ¢u (i = 1, ... , p). Therefore we may as 
well assume p = 1, u = Uo, v = u1• 

Let 

Xi = u(t;), Yi = v(t;), 

Ti = TE'(Yi_ 1, y;), 

Pi = TEi(Xi' y;); 
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• ~~% 

Sj_ 1 Sj 

Figure 6.2 

note that, because of (1.9), 

(1.10) P - ~Ei+l(X ) i - , i, Yi . 

Two applications of (1.6) yield 

Hence 

_ ~Ei(X Y ) ",Ei( ) Ei( ) -, i-I' i-I 0, Yi-I, Yi 0 I Yi, Xi 

= Pi-I 0 Ii 0 Pi-I by (1.6) and (1.10). 

= Po 0 (II 0 ". 0 I q) 0 P; I 
- I 

= Po 0 Iv 0 Pq = Iv, 

since Po and Pq are identity maps, by (1.7). 



I Bundles of Groups 263 

Since CPuv = CPu ) CPv, it follows that G( ~ry) = G( 0 0 G(ry) whenever the 
relevant products are defined. Since, moreover, G(c;) is the identity whenever 
c; is the homotopy class of a constant path, the conditions for a bundle of 
abelian groups are satisfied. The bundle G so defined is called the orientation 
bundle of the manifold X. 

If G is a group, G determines a constant bundle G with 

G(b) = G, 

G{O = the identity map. 

A bundle isomorphic (v. infra) with a constant bundle is said to be simple. 
This is the case if and only if the morphism G(~) is independent of ~. 

Let G, H be bundles of groups in B. By a homomorphism <l> : G -+ H we 
shall mean simply a natural transformation of functors. Thus <l> determines, 
for each b E B, a homomorphism <l>(b) : G(b) -+ H{b) such that the diagram 
is commutative for any ~ E nl(B; b l , b1 ) 

We say that <l> is an isomorphism (monomorphism, epimorphism) if and 
only if each ofthe homomorphisms <l>(b) is an isomorphism (monomorphism, 
epimorphism ). 

If G is a bundle of groups in B, and bo E B, then nl (B, bo) operates on 
G{bo). Conversely, if n I (B, bo) operates on a group Go, and if B is 0-
connected, then there is a bundle of groups G, unique up to isomorphism, 
such that Gbo = Go and G induces the given operation. More precisely, 

(1.11) Theorem Let B be O-connected, and let G, G' be bundles of groups in B, 
and let cP: Gbo -+ Gbo be an operator isomorphism. Then there is a unique 
isomorphism <l> : G -+ G' such that <l>(bo) = cpo 

(1.12) Theorem Let B be O-connected, and let Go be a group on which 
n 1 (B, bo) operates. Then there exists a bundle of groups G in B such that 
Gbo = Go and which induces the given operation of n 1 (B, bo) on Go. 

For each bE B, choose an element ~(b) E nl(B; bo , b); we may assume 
that ~(bo) = 1, the identity of nl(B, bo). To prove Theorem (1.11), define 
<l>(b): G(b) -+ G'(b) by 

<l>(b) = G'(~(b)t I, cp ) G(~(b»). 
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Let 1'/ E 1t1(B; bl , b2). Then 

<I>(bd 0 G(I'/) = G'(~(bl))-I 0 ¢ 0 G(~(bd) 0 G(I'/) 

= G'(~(bdt I 0 ¢ C G(~(bl)I'/), 

G'(I'/) 0 <I>(b2) = G'(I'/) 0 G'(~(b2))-1 0 ¢ 0 G(~(b2)) 

= G'(I'/ • ~(b2t I) 0 ¢ 0 G(~(b2)). 

Let a = ~(bdl'/~(b2t I, so that a E 1t1(B, bo). Because ¢ is an operator homo
morphism, we have ¢ 0 G(a) = G'(a) 0 ¢. Thus 

<I>(bd 0 G(I'/) = G'(~(bdt I 0 ¢ 0 G(a~(b2)) 

= G'(~(bln-I 0 ¢ 0 G(a) 0 G(~(b2)) 

= G'(~(bl))-I 0 G'(a) 0 ¢ 0 G(~(b2)) 

= G'(~(bd-Ia) 0 ¢ 0 G(~(b2)) 

= G'(I'/~(b2t I) 0 ¢ 0 G(~(b2)) = G'(I'/) 0 <I>(b2), 

so that <I> is a natural transformation. And 

<I>(bo) = G'(~(bo)t I 0 ¢ 0 G(~(bo)) 

= G'(1)-1 0 ¢ 0 G(l) = ¢. 

Uniqueness follows from the fact that, if b E B and ~ is any homotopy 
class of paths from bo to b, then the diagram 

is commutative, so that 

G(b) 

CI>(b) I l~ 
G'(b) ~ G'(bo) 

<I>(b) = G'(~t I 0 ¢ 0 G(O-

To prove Theorem (1.12), let G(b) = G for each bE B. If 1'/ E 1t1(B; bl> b2), 
then ~(bdl'/~(b2t I E 1t1 (B, bo), and the effect of operating with this element 
on Go is an automorphism G(I'/): G(b2) = Go -+ Go = G(bd. If b l = b2 and 
1'/ = 1 E 1t1(B, bd, then ~(bdl'/~(bd-I = 1 and therefore G(I'/) = 1. If, on the 
other hand, ( E 1t1(B; b2, b3), then 

(~(bdl'/~(b2t I) • (~(b2)(~(b3t I) = ~(bdl'/(~(b3t I 

and therefore G(I'/O = G(I'/) 0 G(O. Thus G is a bundle of groups in B, and if 
b I = b2 = bo, 1'/ E 1t I (B, bo), then ~(b dl'/~(b2t I = 1'/, and therefore the oper-
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ation G('1) of 1tl (B, bo) on Go = G(bo) induced by G coincides with the given 
operation. D 

Let f: A --+ B be a map. Then composition with f induces a functor I 
F : III (A) --+ III (B). If G is a bundle of groups in B, so that G : III ~B) --+ '§, 

then Go F: Ill(A) --+ '§ is a bundle of groups in A. Letf*(G) = G 0 F; we 
call it the bundle over A induced by the map f: A --+ B. Evidently 

(1.13) Iff: A --+ Band g : B --+ C, and if H is a bundle of groups in C, then 
(g 0 f)*(H) = f*(g*(H)). D 

If A is a subspace of B, i: A ~ B, it is often convenient to write G I A 
instead of i*G. 

Now suppose that B is O-connected and semi locally 1-connected, and let 
bo E B. Let G be a bundle of groups in B, and let K be the set of all 
~ E 1t1(B, bo) such that G(O is the identity map of G(bo). Then K is a 
subgroup of 1tl (B, bo); by the general theory of covering spaces, there is a 
covering map p : 8 --+ B and a point 60 E P - I (bo) such that p* 1t 1(8, 60 ) = K. 
Clearly 

(1.14) The bundle p*( G) is simple. D 

Finally, let p : X --+ B be a fibration with n-simple fibres, and let f : B' --+ B. 
Let p' : X' --+ B' be the induced fibration. Then 

(1.15) The systems 1tn(ff), 1tn(ff') of local coefficients are related by 

1tn(ff') = f*1tn(ff). D 

2 Homology with Local Coefficients 

Let X be a space, G a bundle of abelian groups in X. Let Cq(X; G) be the set 
of all functions c with the following properties: 

(1) for every singular q-simplex u: M --+ X, c(u) is defined and belongs to the 
group G(u(eo)); 

(2) the set of singular simplices u such that c(u) =1= 0 is finite. 

The elements of Cq(X; G) are called singular q-chains with coefficients in G. 
Such a singular chain is called elementary if and only if c(u) =1= 0 for at most 
one singular simplex u, and it is then convenient to write c = c(u) . u. Each 

, The category-minded reader may already have observed that n, is a functor from the 
category .1{ to the category of groupoids. A morphism in this latter category is just a functor. In 
particular, F = n,(f). 
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C E Cq(X; G) is a finite sum of elementary chains, so that c can be expressed 
as a finite sum 

m 

c= ~g u L,. i i' 
i= 1 

where Ui are singular simplices and gi E G(ui(eO))' 

We are going to make the graded group C*(X; G) into a chain-complex. 
In order to do so, it suffices to define the boundary of an elementary q-chain 
c, and to prove that 88c = 0. Let us first observe that, if u : L\q -> X, and if 
Ui = 8i u, then 

u.(eo) = /u(eo) if i > 0, 
, \u(ed if i = 0. 

If 9 E G(u(eo)), we should like to define 8(gu) = I?=o (-1)ig8iu, but are 
prevented from doing so by the fact that, because 9 ¢ G(uo(eo)), the right
hand side of the above relation is not a singular (q - I)-chain with 
coefficients in G. We can correct for this anomaly, however, by observing 
that the path t -> u( (1 - t)e 1 + teo) joins u( e d to u( eo), and therefore its hom
otopy class au induces an isomorphism G(a.) : G(u(eo)) -> G(u(ed). Thus we 
may define 

q 

8(gu) = G(aJ(g) . 80 u + I (-lyg ·8iu. 
i= 1 

To prove that 88c = 0, we should first observe that 

ao;u=au ifi>l, 

while 

the latter equality is due to the fact that each side is the homotopy class of 
the composite of u with a path in L\q from ez to eo, and the fact that L\q is 
simply connected. With these facts in mind, the details of the calculation of 
88(gu) are readily carried out. 

The graded group CAX; G) is, then a chain complex, and its homology 
groups 

Hq{X; G) = Hq(C *(X; G)) 

are called the homology groups of X with coefficients in the bundle G. They are 
also referred to as homology groups with local coefficients in G. 

(2.1) rr the space X is O-connected and G is simple, then Hq(X; G) ~ 
HiX; Go), where Go = G(xo) for some Xo E X. 0 

Thus the homology groups with local coefficients are a true generaliza
tion of the ordinary homology groups. 
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Let A be a subspace of X, i: A c:; X. Let c = I gjUj E Cq{A; i*G) = 

Cq{A; G I A), so that uj : L1L-* A and 

gj E (i*G)(uj{eo)} = G((i 0 uJ(eo}} = G{uj(eo)), 

where uj = i 0 uj • Then 
i#(c) = I gjuj E CiX; G), 

and i# : Cq(A; G I A) -+ Cq(X; G) is a monomorphism, so that we may regard 
C*(A; G I A) as a subgroup of C*(X; G), which is even a subcomplex. Ac
cordingly, we may define 

Cq(X, A; G) = Cok i# : Cq(A; G I A) -+ CiX; G), 

and we have a short exact sequence 

O-+C*(A; GIA)-+C*(X; G)-+C*(X, A; G)-+O, 

of chain complexes. Accordingly, we may define 

Hq(X, A; G) = Hq(C*{X, A; G)), 

and obtain a long exact sequence 

Let G and H be systems of local coefficients on X, and let <1> : G -+ H be a 
homomorphism. Then <1> induces a homomorphism <1>#: C*(X; G)-+ 
C*(X; H); 

Clearly <1># is a chain map. Moreover, if A c X, <1># maps C*(A; G I A) into 
C*(A; H I A). Thus <1> induces 

<1>* : Hq(X, A; G) -+ Hq(X, A; H). 

Letf: (X, A) -+ (Y, B), and let G be a system of local coefficients in Y. A 
slight modification of the above argument shows that f induces a chain map 
f# : C*(X ;j*G) -+ C *( Y; G) which sends C *(A,f*G I A) into C *(B, G I B). If, 
moreover, F is a system of local coefficients in X and <1> : F -+ f*G a homo
morphism, we may compose the chain maps!;" , <1>#, to obtain a chain map 
of C*(X; F) into C*(Y; G). The latter map, in turn, carries C*(A; F I A) into 
C*(B; GIB)andsoinducesachainmapofC*(X, A; F)intoC*(Y, B; G).In 
turn, the last-mentioned chain map induces a homomorphism of 
Hq(X, A; G) into Hq(Y, B; H). 

The above discussion suggests that the proper setting for homology with 
local coefficients is the category !l' whose objects are triples (X, A; G) with 
(X, A) a pair in ,X' and G a system of local coefficients in X. A morphism 



268 VI Homology with Local Coefficients 

4> : (X, A; G) ~ (Y, B; H) in 2 is a pair (4)1> 4>2) such that 

4>1 : (X, A) ~ (Y, B) 

is a continuous map and 

4>2: G ~ 4>fH 

is a homomorphism. If ljJ : (Y, B; H) ~ (Z, C; K), then ljJ 0 4> = w, where 
WI = ljJl 04>1 and W2 = (4)fljJ2) 0 4>2 and 4>fljJ2: 4>f H ~ 4>fljJf K is the 
homomorphism such that 

4>fljJ2(X) = ljJ2(4)1 (x)) : (4)fH)(x) = H(4)1 (x)) ~ (4)fljJfK)(x) = K(Wl(X)). 

In order to deal with homotopies, we need the notion of the prism over an 
object in 2. If X E $', there are maps 

p 
------+ X 

defined by it(x) = (t, x), p(t, x) = x. The prism 1 x (X, A; G) over an object 
(X, A; G) of 2 is the object 

(I x X, 1 x A; p*G). 

If 1 is the identity map of G into iip*G = G, then (it, 1) is a map 

it: (X, A; G) ~ 1 x (X, A; G) (t = 0, 1). 

If 4>, ljJ : (X, A; G) ~ (Y, B; H) are maps in 2, a homotopy of 4> to ljJ is a map 
2: 1 x (X, A; G) ~ (Y, B; H) such that 2 0 io = 4>, 2 0 il = ljJ. Thus 
21: (I x X,I x A) ~ (Y, B) is a homotopy of 4>1 to ljJl, and 22: p*G ~ Af H 
is a homomorphism such that i~ A2 = 4>2 : G ~ 4>* Hand 
if 22 = ljJ 2 : G ~ ljJ* H. We say that 4> is homotopic to ljJ (4) ~ ljJ) if and only if 
there is a homotopy A of 4> to ljJ. 

The reader is invited to verify: 

(2.2) Homotopy between morphisms in 2 is an equivalence relation. D 

(2.3) If 4> ~ ljJ: (X, A; F) ~ (Y, B; G) and 4>' ~ ljJ' : (Y, B; G) ~ (Z, C; H), 
then 4>' 0 4> ~ ljJ' 0 ljJ: (X, A; F) ~ (Z, C; H). D 

The shift operator is the functor R : 2 ~ 2, defined for objects in 2 by 

R(X, A; G) = (A, 0; G!A), 

and for morphisms 4>: (X, A; G) ~ (Y, B; K) by R(4)) = ljJ, where 
ljJ1 : A ~ B is the restriction of 4>1: (X, A) ~ (Y, B), i: A c+ X, j: B C+ Y, so 
that j 0 ljJ1 = 4>1 0 i, and 

ljJ 2 = i*4>2 : G ! A = i*G ~ i*4>f H = ljJf j* H = ljJf(H I B). 
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We can now state a list of properties of the homology groups with local 
coefficients, analogous to those formulated by Eilenberg and Steenrod for 
ordinary homology groups. In the first place, we are given a sequence of 
functors H q : 2' ~ A. Secondly, we are given a natural transformation 
Oq: Hq ~ Hq- 1 0 R. If (X b A 1 ; Gd and (X 2, A2 ; G2 ) are objects in 2' such 
that X 1 is a subspace of X 2 and Al a subspace of A2 , and if Gzi X 1 = G1, 

then the inclusion map (X 1, A 1 ) C+ (X 2, A 2 ), together with the identity map 
G1 ~Gzi Xb define a morphism k: (Xl' A1 ; Gd~(Xz, Az; Gz), which 
will also be called an inclusion; moreover, the homomorphism 
Hq(k): Hq(X 1, A 1 ; Gd ~ HiXz, Az ; Gz) will be called the injection. 

We can now formulate the analogues of the Eilenberg-Steenrod axioms 
for homology with local coefficients. 

(2.4) Theorem The functors Hq and natural transformations Oq have the 
following properties: 

(2.5) (Exactness). If (X, A; G) is an object in 2', i and j are appropriate 
inclusions, then the sequence 

is exact. 

(2.6) (Homotopy). If 4Jo, 4Jl : (X, A; G) ~ (Y, B; H) are homotopic mor
phisms in 2', then 

for all q. 

(2.7) (Excision). Let (X; Xl, X 2) be a triad in ff such that 
X = lnt Xl u Int X 2, and let G be a system of local coefficients in X. Then 
the injection Hq(X l' Xl n X 2; G I X d ~ Hq(X, X 2; G) is an isomorphism for 
all q. 

(2.8) (Dimension). If X is a space consisting of a single point *, then 
Hq(X; G) = 0 for all q =1= 0 and Ho(X; G) ~ G(*). 

(2.9) (Additivity). Let X be the union of a family of mutually disjoint open sets 
X a, and let A be a subspace of X, Aa = An Xa' Let G be a system of local 
coefficients in X, Ga = GIXa. Then the injections 

represent the latter group as a direct sum. 
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The proofs of these analogues of the Eilenberg-Steenrod axioms, and of 
the additivity property, are not difficult, and are left to the reader. 0 

In a similar way we can define singular cohomology groups Hn(x, A; G). 
Let C(X; G) be the set of all functions c which assign, to each singular 
simplex u: ~q --+ X, an element c(u) E G(u(eo)). The set C(X; G) is an 
abelian group under addition of functional values. The coboundary operator 
() : C(X; G) --+ C+ I(X; G) is defined by 

n+ I 

i= I 

for each singular simplex u: ~n+ I --+ X. Then () is a homomorphism and 
() 0 () = 0, so that C*(X; G) is a cochain complex. If A is a subspace of X, the 
restriction map i# is a cochain map of C*(X; G) upon C*(A; G I A); thus the 
kernel of i# is a subcomplex C*(X, A; G) and we define its cohomology 
groups to be the singular cohomology groups Hn(x, A; G) of the pair (X, A) 
with coefficients in the local system G. 

Let fI;'* be the category whose objects are triples (X, A; G) with (X, A) a 
pair in ff and G a system of local coefficients in X, and such that a mor
phism ¢: (X, A; G) --+ (Y, B; H) in fI;'* is a pair (¢t> ¢2), where 
¢I : (X, A) --+ (Y, B) is a continuous map and ¢2 : ¢t H --+ G is a homomor
phism of local coefficient systems in X. The product of two morphisms 
¢: (X, A; G) --+ (Y, B; H) and ljJ: (Y, B; H) --+ (Z, C; K) is the morphism 
W = ljJ 0 ¢ such that 

WI = ljJl 0 ¢I : (X, A) --+ (Z, C), 

while 

W2(X) = ¢2(X) c ljJ2(¢1(X)): ¢!ljJ!K --+ G. 

(Note that, while the categories 2' and fI;'* have the same objects, their 
morphisms are different). 

It is then routine that a morphism ¢ : (X, A; G) --+ (Y, B; H) induces a 
cochain map 

A.# . C*(Y B· H) --+ C*(X A- G)· 0/. " , , , 

for a singular simplex u : ~n --+ X, C E C(Y, B; H), we have 

¢#c(u) = ¢2(u(eO))(c(¢I(U))). 

The cochain map ¢# in turn induces a homomorphism 

Thus the Hn become contravariant functors: fI;'* --+ A:. In a similar way, we 
have coboundary operators; these are natural transformations 
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If (X 1, A 1) and (X 2, A 2) are pairs in X such that A1 is a subspace of A2 
and X 1 of X 2, and if G is a system of local coefficients in X 2, then the 
inclusion map (X bAd c::.(X b A 2 ), together with the identity map of G IX b 

form a morphism k : (X b A 1; G IX 1) ---> (X 2, A1 ; G) in 5£'*, called an inclu
sion. The induced homomorphism 

k*: H"(X2' A2; G)--->H"(X1' At; GIX t ) 

is called an injection. 
The prism over an object (X, A; G) in 5£'* is the object (I x X, 1 x A; 

p*G), and the maps io , i1 : (X, A) ---> (I x X, 1 x A), together with the iden
tity maps of iip*G = G into G, define morphisms io , i1 : (X, A; G) ---> (I x X, 
1 x A; p*G) in :?Z*. As in the case of homology, it is obvious how to define 
the notion of homotopy between morphisms in 5£'*, and to prove 

(2.2*) Homotopy between morphisms in 5£'* is an equivalence relation. 0 

(2.3*) If cP ~ If;: (X, A; F) ---> (Y, B; G) and cp' ~ If; , : (Y, B, G) ---> (Z, C; H), 
then cp' 0 cP ~ If; , 0 If;: (X, A; F) ---> (Z, C; H). 0 

We can now formulate the Eilenberg-Steenrod axioms for cohomology 
with local coefficients. 

(2.4*) Theorem The functors Hq and natural transformations (5q have the fol
lowing properties: 

(2.5*) (Exactness). If (X, A; G) is an object in 5£'*, i andj are the appropriate 
inclusions, then the sequence 

(5q-1(X, A; G) Hq(j) 
.•. ---> Hq-1(A; G I A) -------.. Hq(X, A; G) • 

Hq(·) 
Hq(X; G) -~ Hq(A; G I A) ---> ..• 

is exact. 

(2.6*) (Homotopy). If CPo, CP1 : (X, A; G) ---> (Y, B; H) are homotopic mor
phisms in 5£'*, then 

for all q. 

(2.7*) (Excision). Let (X; Xl, Xl) be a triad in X such that 
X = Int Xl u lnt Xl' and let G be a system of local coefficients in X. Then 
the injection Hq(X, Xl; G) ---> Hq(x b Xl n Xl; G I X d is an isomorphism for 
all q. 
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(2.8*) (Dimension). If X is a space consisting of a single point *, then 
Hq(X; G) = ° for all q =1= ° and HO(X; G):::::; G(*). 

(2.9*) (Additivity). Let X be the union of a family of mutually disjoint sub
spaces X a, A a subspace of X, Aa = A (\ Xa' Let G be a system of local 
coefficients in X, Ga = G I Xa' Then the injections 

Hn(x, A; G) ~ Hn(Xa' Aa; Ga) 

represent the former group as a direct product. o 

Remark. When we are dealing with various subsets A of a fixed space X, it 
is often convenient to abbreviate Hn(AI' A2 ; G I AI) and Hn(AI' A2 ; G I Ad 
to Hn(AI' A2 ; G) and Hn(AI' A2 ; G) for any system G oflocal coefficients in 
X. Thus, for example, the additivity properties (2.9) and (2.9)* can be written 

Hn(X, A; G):::::; EB Hn(Xa, Aa; G), 

Hn(x, A; G):::::; TIHn(Xa' Aa; G). 

Let (X, A) be a relative CW-complex, and let {(Xn' A) I n = 0, 1, ... } be an 
expanding sequence of subcomplexes with union X. Examples can be given 
to show that, even in the case of ordinary cohomology theory, it need not be 
true that Hq(X, A) is the inverse limit of the system Hq(Xn, A). 

For example, let {An} be a sequence of circles, fn : An ~ An+ I a map of 
degree 2, Bn the mapping cylinder of in; we may assume that Bn (\ Bm = 0 if 
1m - nl > 1, while Bn (\ Bn+1 = An+1• Let.X = Uk"=1 Bk , Xn = U;:=I Bk · 

Then An+1 is a deformation retract of X n, so that H 1(Xn):::::; Z, H 2(Xn) = 0, 
while the injection HI (X n) ~ HI (X n+ d maps a generator of the former 
group into twice a generator of the latter. Now H q(X) is the direct limit of 
the sequence of groups H q(X n) under the injections. Thus H I (X) is the group 
J 2 of dyadic rationals (i.e., rational numbers whose denominators are 
powers of 2), while H 2(X) = 0. 

By the Universal Coefficient Theorem, 

H2(X; Z) :::::; Hom(H 2(X), Z) EB Ext(H I (X), Z) 

:::::; Ext(J 2, Z), 

while H2(Xn; Z) = ° for every n. Thus it remains to show that the group 
Ext(J 2; Z) is non-zero; in fact, it is uncountable. 

To see this, let Zo be the additive group of rationals, so that there is a 
short exact sequence 

° ~ Z ~ Zo ~ Zo /Z ~ 0, 

and therefore an exact sequence 

° ~ Hom(J 2, Z) ~ Hom(J 2, Zo) ~ Hom(J 2, Zo/Z) 

~Ext(J2' Z)~Ext(J2; Zo)~Ext(J2' Zo/Z)~o. 
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Now Hom(J 2, Z) = 0 since Z has no 2-divisible subgroups, and 
Ext(J 2, Zo) = Ext(J 2, Zo /Z) = 0 because Zo and Zo /Z are divisible 
abelian groups and therefore injective Z-modules. Thus we are concerned 
with the short exact sequence 

0- Hom(J 2, Zo) - Hom(J 2, Zo/Z) - Ext(J 2, Z) - O. 

The group Hom(J 2, Zo) is isomorphic with Zo, and therefore countable; for 
if a is any rational number there is a unique homomorphismJ: J 2 - Zo such 
that f2 (1) = a. On the other hand, the homomorphisms of J 2 into Zo /Z are 
in one-to-one correspondence with the sequences (ao, a I, a2' ... ) of elements 
of the latter group satisfying the conditions 2ai+ I = ai (i = 0, 1, 2, ... ). For 
each choice of elements ao, ... , ak satisfying the above conditions, there are 
exactly two ways of choosing ak + I so that the conditions are still satisfied. It 
follows that the set of all such sequences is uncountable, so that 
Hom(J 2 , Zo/Z) is uncountable. Hence Ext(J 2 , Z) is uncountable, too. 

Milnor [3] has shown how the relationship between Hq(X, A; G) and 
lim Hq(X n' A; G) can be made explicit. To accomplish this, one needs the 
notion of the first derived functor lim I of the inverse limit functor. 
Specifically, let 

be an inverse system of abelian groups and homomorphisms. Let 
G = [1:'= I G n' and define an endomorphism d : G - G by 

d(xI' x 2, ... ) = (XI - f!(x2)' X2 - f2(x3)' ... ). 

Then Ker d = lim Gn , and we define 

lim! Gn = Cok d. 

Milnor's theorem, generalized to the case of local coefficients, asserts: 

(2.10*) Theorem Let (X, A) be a relative CW-complex, and let {(Xn' A) I n = 

0, 1, 2, ... } be an expanding sequence of subcomplexes such that 
U:'=o Xn = X. Let G be a system of local coefficients in X. Then there is an 
exact sequence 

in which f3 is induced by the injections Hq(X, A; G) - Hq(X n' A; G). 

Milnor's proof applies without essential change; we shall merely sketch it. 
Let R + be the set of non-negative real numbers, given the structure of a 
CW -complex whose vertices are the non-negative integers and whose I-cells 
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are the closed intervals [n, n + 1]. Let 
00 

L= UXn x [n, n+ 1], 
n=O 

so that (L, A x R+) is a subcomplex of the CW-complex (X x R+, A X R+). 
The restriction to (L, A x R +) of the projection of (X x R +, A x R +) on 
the first factor is a homotopy equivalence p: (L, A x R +) -> (X, A). 
Let 

Ll = U X 2i x [2i, 2i + 1], 

Lz = U X 2i + 1 x [2i + 1, 2i + 2J, 
i::e: 0 

(i = 1, 2). 

Then there is an exact Mayer-Vietoris sequence 

(2.11) 

with local coefficients in G = p*G. But the Additivity Property implies that 

00 

Hq(Li , Ai; G):::::; n Hq(XZk+i, A; G) 
k=O 

so that 

00 

Hq(L1 , AI; G) EB Hq(Lz , A z; G):::::; nHq(Xn , A; G), 
n=O 

while 

00 

Hq(LI n L 2 , A1 n A 2 ; G):::::; n Hq(Xn , A; G). 
n=O 

Under these isomorphisms the homomorphism Aq induced by the appro
priate injections corresponds to the endomorphism d constructed above, in 
the definition of lim 1. But the exact sequence (2.11) induces a short exact 
sequence 

Since the middle group can be identified with Hq(X, A; G) and the two end 
groups with the appropriate lim 1, lim, the desired result follows. D 
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3 Computations and Examples 

(3.1) Theorem Let X be a space, G a system of local coefficients in X, 
{X, I a E J} the path-components of' X, G, = G I X,. Then the injections 

Hn(X,; G,) -+ Hn(X; G) 

represent the latter group as a direct sum. 

In fact, since the image u(,1Q) of a singular simplex u : ,1q -+ X is pathwise 
connected, u(,1Q) c X, for some a, and the chain complex C*(X; G) decom
poses as the direct sum of the sub complexes C *(X,; G, I X,). D 

Because of Theorem (3.1) we may often assume that the spaces with 
which we are dealing are path wise connected. 

Let X be a O-connected space with base point xo, and let G be a system of 
local coefficients in X, Go = G(xo). Then Go is a Irl(X)-module; let Ho be the 
subgroup of Go generated by all elements of the form x - ~x with x E Go, 
~ E Ir 1 (X), and let HS be the subgroup of Go consisting of all elements x such 
that ~x = x for all x E Irl(X). 

(3.2) Theorem The O-dimensional homology and cohomology groups of a 
pathwise-connected space X with coefficients in the local system G are given by 

Ho(X; G) ;:::: Go/Ho, 

HO(X; G) ;:::: HS. 

Define a homomorphism ¢: Go -+ Co(X; G) = Zo(X; G) by 

¢(g) = g . Xo· 

If ~ E Irl (X, xo), u: (,1 \ AI) -+ (X, xo) is a representative path, then 

8(gu) = G(~)(g)u(l) - gu(O) 

= (G(~)g - g)xo, 

so that ¢(Ho) c Bo(X; G) and ¢ induces 

cp: Go/Ho -+ Ho(X; G) 

The easy proof that q; is an isomorphism is left to the reader, as IS the 
calculation of HO(X; G). D 

Before stating our next results, we need some notions from algebra. Let IT 
be a group, and let G be an abelian group on which IT operates. A crossed 
homomorphism of IT into G is a functionf: IT -+ G such thatf(afJ) =f(a) + 
af(fJ) for all a, fJ E fI. The set of all functions from IT to G is an abelian 
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group under the operation of pointwise addition. And it is trivial to verify 
that the set of all crossed homomorphisms of n into G is a subgroup 
Q(n, G). 

A principal homomorphism of n into G is a function f such that 

f(rx) = rxg - 9 

for some 9 E G and all rx E n. Every principal homomorphism is a crossed 
homomorphism, and the principal homomorphisms form a subgroup 
p(n, G) of Q(n, G). 

(3.3) Theorem Let X be a O-connected space, Xo E X, and let G be a system of 
local coefficients in X, Go = G(xo). Then the local coefficient system G deter
mines an action of n 1 (X) on Go, and, with respect to this action, 

HI(X; G):::::; Q(nl(X), Go)/P(nl(X), Go). 

It will simplify the proof to consider only singular simplices u : t1q ---> X 
with the property that u maps each vertex of t1q into the base point * (cf. 
Exercise 8, below). 

Let n = n l (X), and let cP E Q(n, Go). Let (b be the I-cochain such that, 
for every singular I-simplex u : (t1I, AI) ---> (X, *) 

The function (b is a cocycle. For let w: t1 z ---> X be a singular 2-simplex, 
and let ~i = (Ja~~ (i = 0,1,2). Then ~1 = ~2 ~o (cf. Figure 6.3), and therefore 

But ~2 = (J': I, and so 

CP(~d = CP(~z) + ~2CP(~O)' 
(b(a1w) = (b(azw) + ~2(b(aOW). 

-b(b(w) = ~z(b(aow) - (b(a 1 w) + (b(azw) = o. 

~1 ~o 

Figure 6.3 
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The correspondence 4> ~ $ is evidently a homomorphism (in fact, a 
monomorphism) 

e: Q(II, Go) ~ Zl(X; G). 

If 4> is a principal homomorphism, so that 4>(0 = ~g - g with g E Go, then g 
may be regarded as a O-cochain, and 

$(u) = 4>((J;: 1) = (J;; 19 - g = t5g(u), 

so that $ = t5g is a coboundary. Conversely, if $ = t5g, then 

4>((J;; 1) = $(u) = t5g(u) = (J;; 19 - g 
and therefore 

for any ~ E II. Hence 4> is a principal homomorphism. 
It follows that e induces a monomorphism 

iJ: Q(II, Go)/P(II, Go) ~ H1(X; G), 

and the proof ofthe theorem will be complete when we have shown that iJ is 
an epimorphism. 

Let f E Zl (X; G). Let u: (,11, A 1 ) ~ (X, *) represent an element ~ E II 
(i.e., (J;; 1 = ~); then f(u) E Go. Let v be another representative of ~, and 
h : I x ,11 ~ X a homotopy of u to v (reI. A 1). Let p : I x ,11 ~,12 be the 
map given by 

p(s, (1 - t)eo + ted = (1 - t)eo + t(1 - s)e1 + ste2' 

Then the reader may verify that w = h 0 p-1 : ,12 ~ X is well-defined and 
that 00 w = *, 01 W = v, O2 W = u. Since f is a cocycle, 

0= -t5f(w) = If(*) - f(v) + f(u) 

= f(u) - f(v). 

Therefore f (u) depends only on the homotopy class of u and hence there is a 
function 4>: II ~ Go such that 4>(~) = f(u) for any I-simplex u such that 
(J;; 1 = ~. Again the reader may verify that 4> is a crossed homomorphism 
and that 4> = f 0 

Let X be a space on which a group II acts (on the left, say). Then II acts 
on the singular chain complex C*(X); if ~ E II and u: M ~ X is a singular 
simplex, we may define ~u: ,1q ~ X by 

~u(t) = ~ . u(t) 

The action of II on the singular simplices is extended by linearity to an 
action on C*(X), so that the latter group becomes a II-module. Moreover, it 
is clear that the boundary operator of C*(X) commutes with the action, so 
that C*(X) is a complex of II-modules. Thus II operates on H *(X). 



278 VI Homology with Local Coefficients 

If G is an abelian group on which II operates on the right, we may form 
the complex G ®n C*(X); it is the quotient ofthe tensor product G ® C*(X) 
by the subgroup Q( G, X) generated by all elements of the form ge ® c -
g ® ec (g E G, e E II, c E C*(X)). As the boundary operator of G ® C*(X) 
maps Q(G, X) into itself, it induces an endomorphism a ofG ®n C*(X). The 
latter group is a chain complex under a, and its homology groups 

Eq(X; G) = Hq(G ®n C*(X)) 

are called the equivariant homology groups of X with coefficients in the 
II-module G. The projection 

p: G ® C*(X)~ G ®nC*(X) 

is a chain map, inducing a homomorphism 

p*: Hq(X; G) ~ Eq(X; G). 

If, on the other hand, G is a left II-module, the group of operator 
homomorphisms 

Homn(C*(X), G) 

is a subcomplex of the cochain complex 

C*(X; G) = Hom{C*(X), G}. 

Accordingly we may define its homology groups to be the equivariant coho
mology groups Eq(X; G), and there is an injection homomorphism 

i* : Eq(X; G) ~ Hq(X; G). 

Now let X be a O-connected and semilocally I-connected space with base 
point xo, and let G be a system of local coefficients in X. Let p : j{ ~ X be 
the universal covering of X, Xo E p-l(XO) the base point of j{, II the group of 
covering translations. There is an isomorphism h: 1t1(X, xo) ~ II such that, 
if e E 1tl(X, xo) and u: 1 ~ j{ is a path from Xo to h~(xo), then p 0 u: (I, i) ~ 
(X, xo) is a representative of e. 

The group 1tl(X, xo) acts on Go (on the left). We convert this to a right 
action of n on Go by 

(3.4) Theorem (Eilenberg). The homology groups Hq(X; G) with respect to 
the system G of local coefficients are isomorphic with the equivariant homology 
groups Elf(; Go). 

We shall exhibit an isomorphism 

ji: Go ®n C*(j{) ~ C.(X; G). 

We first observe that, since j{ is I-connected, there is, for each y E j{, a 
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unique homotopy class ~(Y) of paths from y to xo. Let go E Go, w: !1q ---> X, 
U = pow, y = w(co), x = u(co) = p(Yo), and define Po: Go Q9 C*(X)---> 
C*(X; G) by 

Po(goQ9W)=g'U, 

where 

g = G(p(~(y)))(go) E G(x). 

(See Figure 6.4). Let 1] E nl(X, xo)· Then l1~(~(y)) E nl(X; hn(y), hlxo)), and 
~(hn(xo)) E nl(X; hlxo), xo). Therefore their product is defined and equal to 
~(hn(Y))' and hence 

Po(go Q9 hn 0 w) = g' . U, 

W(Co) = y 
W(C1) = y' 

~(y) 

l1n~(Y ) 

x 

~u 

u(c1) = x' = p(y') 

Figure 6.4 
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where 

But 

g' = G(p~(h~(y)))(go) 

= G(p~~(y))G(p~(hlx))(go) 

= G(p~(y))(G(1]-l))(gO) 

= G(p~(y))(go1])· 

Po(go1] 0 w) = g'u, 

and therefore Po Q(G, X) = O. Thus Po induces a homomorphism 

p: Go 0 0 C*(X) -+ C*(X; G). 

It is not difficult to see that p is a group isomorphism, and it remains to 
verify that it is a chain map. 

If 1::; i ::; q, then Diw(eO) = w(d[(eo)) = w(eo), and therefore 

Po(go 0 DiW) = 9 . (p 0 DiW) = 9 . DiU. 

Let ~w be the homotopy class of the path t -+ w((l - t)el + teo); then, if 
y' = w(e1 ), x' = p(y'), we have 

~(y') = ~w • ~(y), 

and therefore 

where 

g' = G(p(~(y')))(go) 

= G(p~w)G(p~(y ))(go) 
- -

= G(~u)(g)· 

Hence 

so that CPo, and therefore CPt> is a chain map. o 

We now give an important application of Theorem (3.4). Let 
X = K(II, 1) be an Eilenberg-Mac Lane complex; then niX) = 0 for all q, 
and it follows from the Hurewicz Theorem that X is acyclic. For each 
singular simplex u : I1q -+ X, choose a singular simplex u : I1q -+ X such that 
po u = u. Then the elements h~ 0 u form an additive basis for C*(X); since 
~ =1= 1] implies h~ 0 u =1= h~ 0 U, the elements u form a basis for C *(X) as a 
II-module. In particular, C*(X) is afree, and therefore projective, II-module, 
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so that C*(X) is a projective resolution of the group Z, considered as a 
II-module with trivial action. Hence 

and therefore 

(3.5) Theorem lfII is a group and G a system of local coefficients in K(II, 1), 
then 

o 

This is the generalization to local coefficients of Corollary (4.7) of Chap
ter V. 

The corresponding results for cohomology also hold; their proofs involve 
little that is new, and may safely be left to the reader. 

(3.4*) Theorem The cohomology groups Hq(X; G) of a space X with respect 
to the system G of local coefficients are isomorphic with the equivariant coho
mology groups Eq(X; Go) of its covering space. 0 

(3.5*) Theorem lfII is a group, and G a system of local coefficients in K(II, 1), 
then 

o 

4 Local Coefficients in CW -complexes 

In this section we shall show how the results of §2 of Chapter II can be 
modified to take local coefficients into account. 

Let (X, A) be a relative CW-complex, G a system oflocal coefficients in 
X. As we shall be dealing with various pairs (X 1, Ad c (X, A), it will be 
convenient, in accordance with the Remark after (2.9*), to abbreviate 
H q(X 1, A 1 ; G I X d to H q(X 1> A 1; G). As our discussion will be based, for the 
most part, on Theorem (2.4), the arguments follow very closely those of §2, 
Chapter II. Therefore our treatment will be rather sketchy, attention being 
paid to the points of difference. 

Let Xn be the n-skeleton of (X, A), and let {E~} be the n-cells of (X, A), 
with characteristic maps h~: (dn, An) -> (Xn' X n- d. Let G~ = h:G; since d n 
is I-connected, the system G~ is simple. This means that the groups at 
different points of d n are connected by uniquely defined isomorphisms; i.e., 
they form a transitive system of groups in the sense of Eilenberg-Steenrod 
[E-S, p. 17]. Let G~ be the group defined by this transitive system (i.e., its 
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direct limit). Then there are uniquely defined isomorphisms 

Hl""n, An; Ga ) :::::; Hq(t,.n, An; Ga ). 

In particular, Hq(t,.n, An; Ga ) = 0 for all q =F n, while 

Hn(t,.n, An; Ga) :::::; Ga. 

If g EGa' let g(jn be the element of Hq(t,.n, An; Ga) which corresponds to it 
under the above isomorphisms. Let z, = ha(eo); then the map ha induces a 
well-defined isomorphism G, ~ G(za). If g E G(z,) and g' is the correspond
ing element of Gal let ge~ be the image in Hn(E~, E~; G) (or III 

H n(X n' X n- l; G)) of g' (jn under the homomorphism induced by ha· 

(4.1) Theorem The homomorphisms Hq(t,.n, An; Ga) ~ HlXn, X n- l ; G) 
induced by the characteristic maps h,: (t,.n, An)~ (Xn' Xn-d represent the 
latter group as a direct sum. If q =F n, then H q(X n' X n- l; G) = o. The group 
Hn(Xn' X n- l ; G) is isomorphic with the group of allformalsums La gae~with 
ga E G(za) and ga = 0 for almost all rx. 

Let U be the subset of X n obtained by removing the point Xa = ha(bn) for 
each rx. Then X n- 1 is a deformation retract of U, and therefore the injection 

i l : Hq(Xn' X n- l ; G)~Hq(Xn' U; G) 

is an isomorphism. Let V = Xn - Xn- 1, W = V n U; then Xn is the union 
of the relatively open sets U, V, and therefore the injection 

is an isomorphism. Finally, let v: = lnt E~, ~ = v: n U. By the Additivity 
Theorem, the injections 

represent the latter group as a direct sum. The homomorphisms 

Hq(t,.n, An; Ga)~Hq(Xn' X n- l ; G), 

Hq(t,.n, t,.n - {bn}; G,)~Hq(Xn' U; G), 

Hq(lnt t,.n, lnt t,.n - {bn}; Ga) ~ Hq(V, W; G) 

induced by ha define homomorphisms 

h3: EB Hq(lnt t,.n, lnt t,.n - {bn}; Ga) ~ Hq{V, W; G). 
a 
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The map ho I Int ~n : (Int ~n, Int ~n - {bn}) --> (Vx, It;,) is a homeomorphism, 
inducing an isomorphism 

Hq(lnt ~n, Int ~n - {bn}; Go) ~ Hn(Vx, It;,; G); 

the direct sum of the latter isomorphisms is an isomorphism 

There is a commutative diagram (Figure 6.5), in which jl and jz are the 
direct sums of the appropriate injections and i is the homomorphism 
ind uced by the ia . Since j 1, j 2 , i 1, i 2 , i, and h4 are isomorphisms, so is h 1. This 
proves the first statement of Theorem (4.1), and the remaining ones follow 
immediately. 

EB Hq(Int ~n, Int ~n - {bn}; Ga) A EB Hq(~n, ~n - {bn}; Ga) A EB Hq(~n, An; Go) 

· ;I ~ · j h, • jh' 
EB Hq(Vx, It;,; G) ~ Hq(V, W; G) 
a I 

Figure 6.5 

(4.2) Corollary If q S n < m, then Hq(Xm' Xn; G) = o. If q > m> n, then 
Hq(Xm' Xn; G) = O. 

This follows as in §2 of Chapter II. o 

(4.3) Corollary If q S n, then Hq(X, Xn; G) = o. 

This follows from the fact that singular homology with local coefficients, 
like ordinary singular theory, has compact carriers. Alternatively, it can be 
deduced from the axioms, including additivity, as in Milnor [3]. 0 

Continuing with the argument suggested by §2 of Chapter II, let us define 

rn(X, A; G) = Hn{Xn, X n- 1 ; G) 

and observe that the composite 

~+1 ~ 
Hn+ 1(X n+ b Xn; G) ~ Hn(Xn, X n- 1 ; G) ~ Hn- 1(Xn- b X n- 2 ; G) 

is zero. Thus {rn(X, A; G); an: rn(X, A; G) --> r n - 1(X, A; G)} is a graded 
chain complex r *(X, A; G), and 

(4.4) Theorem The homology groups Hn(r *(X, A; G)) are isomorphic with 
the singular homology groups Hn(X, A; G). 
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The calculation of the boundary operator is subject to the same 
difficulties as in the case of ordinary homology theory, with the additional 
complication due to the fact that the cells E: may not be simply connected. 
Let us illustrate this with an example. 

Let (X, A) = (P2, 0), where p 2 = P2(R) is the real projective plane. As in 
§7 of Chapter II, pZ has a CW-decomposition with one 2-cell £2, one I-cell 
£1, and one O-cell £0 = *, the base point for 7r1 (pZ) = Zz. A characteristic 
map h1 : (~1, /1 1) -+ (£1, £0) is a relative homeomorphism. There is a char
acteristic map hz : (~Z, /12) -+ (£2, £1) such that O2 h2 = 00 h2 = h1, while 
01 h2 : ~1 -+ £0 is the constant map. (See Figure 6.6). The map h1 represents 
the non-zero element ~ of 7r1 (P2). And we see that 

Thus 

0(gh1) = (~ . g)ho - g. ho, 

0(gh2) = (~ . g)hl - 9 . * + g. h1· 

Figure 6.6 
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The chain groups r i (p2; G} are generated by the homology classes 1 . ei 
of the singular chains hi, while the homology class of the constant simplex * 
is zero. Thus, in r *(P2; G), we have 

a(ge2} = ((~ . g) + g}et, 

a(get} = ((~ . g) - g}eo· 

Suppose, for example that G is the simple system Z of integers. Then 
~ . 9 = g, and we have 

and deduce 

a(ge2) = 2geb 

a(ged = 0, 

Suppose, on the other hand, that G is the system :?Z of twisted integers, the 
fundamental group operating non-trivially, so that ~ . 9 = - g. Then 

a(ge2} = 0, 

a(get} = - 2geo, 

and accordingly 

H O(P2; :?Z} = Z2, 

We conclude our discussion of homology by describing the chain com
plex r(X; G} when X = I K I is the space of an ordered simplicial complex. 
Let xo < x t < ... < xp be the vertices of a simplex (J of K. Then we may 
define the characteristic map ha : /),p -+ I K I by ha = I fa I, where fa is the 
simplicial map which preserves the order of the vertices. We also take the 
point Za to be the leading vertex Xo of (J. Then 

but 

We shall calculate the boundary operator by the method of the universal 
example. That is, we shall first derive the desired formula for the case 
X = /),q, ha is the identity map. When this is so, and G is an abelian group, we 
have 

p 

(4.5) a(g'ha )= L(-lYg·aiha • 
i=O 

If, instead, we assume that G is a system of local coefficients then G is simple, 
so that 

(4.6) 
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for any point x E X. Thus we must modify (4.5) by assuming that 
g E G(xo) = G(za}. Then g E G(Zaia) if i > 0, but g ¢ G(zaoa). The isomorphism 
(4.6) requires that we replace the coefficient 9 E G(xo) of 00 ha by 
G(~)(g) E G(xd for any path in N from Xl to Xo (they are all homotopic, 
since N is I-connected). We may as well take ~ to be the homotopy class 
~a of the rectilinear path. Then (4.5) has to be rewritten 

p 

(4.7) o(g'h,,)=G(~a)(g)'ooha+ I(-lYg'oiha' 
i =- 1 

Applying the argument of the universal example now gives the desired result 
in general. 

Let us summarize what we have found. For an ordered simplicial com
plex K and system G of local coefficients in I K I, let us define an ordered 
q-cell of G to be a sequence x = <xo, ... , xq ) of vertices of K, all of which 
belong to a simplex of K, and such that Xo < x I < ... < x q . The ithface 0; x 
of x is the sequence <xo, ... , Xi' ... , x q ). The leading vertex eo(x) of x is Xo; 
its leading edge is <xo , X I)' and ~x is the homotopy class of the path 
t -> (1 - t)x 1 + txo. The group r q(K; G) is the additive group of all finite 
formal sums I7'~ I gi Xi' where the Xi are ordered q-cells of K and 
gi E G(eO(xi». And the boundary operator 0: rq(K; G) -> r q_1(K; G) IS 

defined by 
q 

o(gx) = G(~J(g) . oox + I (_I)ig . 0iX. 
i~ 1 

Under the above definition the graded group r *(K; G) becomes a chain 
complex, and 

(4.8) Theorem If K is an ordered simplicial complex and G a system of local 
coefficients in I K I, then the homology groups H q( I K I ; G) are isomorphic with 
the homology groups Hq(r *(K; G»). D 

In Chapter II we derived our results on cohomology from those on 
homology with the aid of the Universal Coefficient Theorem. This recourse 
not being available to us now, we must use more direct methods. The key to 
the argument is the use, paralleling Milnor's in [3], of the Additivity 
Theorem. 

(4.1*) Theorem The homomorphisms Hq(Xn, X n- 1 ; G) -> HQ(l1n, An; Ga} 
induced by the characteristic maps h,: (I1n, An)-> (Xn' Xn-d represent the 
former group as a direct product. If q f- n, then Hq(X n' X n- I; G) = O. The 
group Hn(Xn' X n- 1 ; G) is isomorphic with the group of all functions c which 
assign to each n-cell E~ of (X, A) an element c(e~) E G(za). 

The proof is entirely parallel to that of Theorem (4.1). o 



4 Local Coefficients in CW-complexes 287 

(4.2*) Corollary If q::;; n < m, then Hq(Xm, Xn; G) = O. If q > m> n, then 
Hq(Xm, Xn; G) = O. 0 

More difficult is the proof of 

(4.3*) Theorem If q ::;; n, then Hq(X, Xn; G) = O. 

To prove Theorem (4.3*), we need Theorem (2.10*). We have seen that 
Hq(Xn+l , Xn; G) = 0 if q::;; n; by exactness, the injection 

Hq(Xn+ I, A; G) --> Hq(Xn, A; G) 

is an isomorphism if n > q, and a monomorphism if n = q. Similarly, the 
injection 

Hq-I(Xn+1 , A; G)-->Hq-I(Xn, A; G) 

is an isomorphism if n :2: q. From the second statement it follows that 

liml Hq-l(X A' G) = 0 
~ n" , 

from the first that the natural homomorphism 

lim Hq(Xm, A; G) --> Hq(Xn, A; G) 

is an isomorphism if n > q and a monomorphism if n = q. Because the lim 1 

term vanishes, Theorem (2.10*) implies that the injection 

Hq(X, A; G)-->Hq(Xn' A; G) 

has the same properties; by exactness, Hq(X, Xn; G) = 0 for n:2: q. 0 

Let P(X, A; G) = Hn(Xn' X n- I ; G), and let 

6: P(X, A; G) --> p+ I(X, A; G) 

be the coboundary operator of the cohomology sequence of the triple 
(Xn+ I, X n, X n- d· Then 6 06 = 0, so that r*(X, A; G) is a cochain 
complex, and it now follows, exactly as in §2 of Chapter II, that 

(4.4*) Theorem The homology groups of the cochain complex r*(X, A; G) 
are isomorphic with the singular cohomology groups Hq(X, A; G). 0 

Let us conclude this section by relating the complexes r *(X, A; G) and 
r*(X, A; G) to the universal covering space X of X. Let X be connected and 
semilocally I-connected, so that X has a universal covering p: X --> X. Let 
A = p-l(A); then p I A: A --> A is also a covering map. By Theorem (1.12) of 
Chapter II, (X, A) is a relative CW -complex and p : (X, A) --> (X, A) is a 
cellular map. Moreover, each covering translation h: (X, A) --> (X, A) is 
cellular. Hence the group II operates on the chain-complex r *(X, A); thus, 
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if Go is a right (left) n-module, we can form the chain complexes 

G ®o r *(X, A), 

Hom°(r *(X, A), G), 

and the corresponding equivariant homology and cohomology groups 

Eq(r *(X, A); Go), 

Eq(r *(X, A); Go). 

(4.9) Theorem LRt G be a system of local coefficients in X. Then there are 
isomorphisms 

and therefore 

Go ®o r *(X, A)) ~ r *(X, A; G), 

Hom°(r *(X, A), Go) ~ r*(X, A; G), 

Hq(X, A; G) ~ Eq(r*(X, A); Go), 

Hq(X, A; G) ~ p(r *(X, A); Go). 

(4.10) Corollary The groups 

Eq(r *(X, A); Go) and Eq(X, A; Go), 

as well as the groups 

Eq(r *(X, A); Go} and Eq(X, A; Go} 

are isomorphic. 

The restriction p IX n : (X n' X n- 1) ~ (X n' X n- 1) induces a homomor
phism p* : Hn(Xn, X n- 1 ; p*(G I Xn)) ~ Hn(Xn, X n- 1 ; G I Xn). Now 

p*(G I Xn) = p*G !Xn; 

since X is I-connected, p*G is simple; thus 

HnCXn, X n- 1 ; p*(G !Xn)) ~ Hn{Xn, X n- 1 ; Go) 

~ Go ®HnCXn, Xn-d 

= Go ® rn(X, A). 

Hence p* becomes a homomorphism 

p* : Go ® rn(X, A) ~ rn(X, A; G}, 

which is evidently a chain map., 
The latter homomorphism can be made explicit, much as in §3. Let E'J be 

a n-cell of (X, A), with characteristic map hp : (~n, An) ~ (X n' X n-l)' Then 
p 0 hp = ha, the characteristic map for the cell E~ = p(E'J). Let ~ be the 
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(unique) homotopy class of paths in X joining the point zp = hp(eo) to the 
base point xo. Then G(pO: Go = G(xo) ---+ G(z~}; let 9 = G(p~)(go). Then 
p*(go ® ef!) = ge~. By the argument of §2, we now see that p* annihilates 
the kernel of the natural epimorphism Go ® rn(X, .4) ---+ Go ®o rn(X, .4) 
and induces an isomorphism 

p* : Go ®o rnex, A) ---+ rn(X, A; G). 

Similarly, 

p*: Hn(xn, X n - l ; G!Xn)!---+Hn(xn, Xn - l ; p*(G!Xn)} 

= Hn(xn, Xn - l ; p*G! Xn) 

:::::: Hn(xn, Xn - l ; Go) 

:::::: Hom(Hn(Xn, Xn - l ), Go}; 

p* is a cochain map, and we may verify without difficulty that it is a mono
morphism whose image is the subgroup 

HomO(Hn(Xn, Xn - d, Go) 

of 

o 
Suppose that n;:::: 3; then the injection 1tl(Xn-d---+1tl(X) is an isomor

phism, and therefore Xn- l is 1-connected. By the relative Hurewicz 
Theorem, 

p: 1tiXn, Xn - l ):::::: Hn(Xn, Xn - l )· 

On the other hand, the fibre map p : X ---+ X induces isomorphisms 

p*: 1tn(Xn' X n- d:::::: 1tn(Xn, X n- d· 
Moreover, the diagram 

Hn+ l(1'n+ b 1'n) 
p 

1tn+l(1'n+b 1'n) 
p. 

1tn+l(Xn+l, Xn) +--- --+ 

all 021 03 \ 

Hn(1'n,1'n-d ..--- 1tl1'n, 1'n- d ---+ 1tn(Xn, x n- d 
p p. 

is commutative. 
From this we have immediately 

(4.11) Theorem If n ;:::: 3, there are isomorphisms 
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such that the diagram 

HomD (7tn(Xn, X n - d, Go} 

HomD (03' )1 
HomD (7tn +I(Xn + l , Xn); Go) 

is commutative. 

P(X, A; G) 

\(-l)nb 

P+ I(X, A; G) 

o 
The case n = 2 is a bit more delicate. In this case, 7t l (Xn - l ) is not, in 

general, zero; rather, it is isomorphic with the kernel of the injection 

i* : 7tl (X d --+ 7t1 (X). 

The Hurewicz map p : 7t2(X 2, X d --+ H 2(X 2, X d is no longer an isomor
phism; however, it is an epimorphism whose kernel is the subgroup 
W~(X2' Xd generated by all elements of the form rx - r~(rx) with 
rx E 7t2(X2, Xl) and ~ E 7t1(Xd. But 7t1(X2) = 0 and therefore ~ = o*f3 for 
some f3 E 7t2(X 2, X I). By Lemma (3.3) of Chapter IV, rx - r~(rx) is just the 
commutator rx - f3 - rx + f3 of rx and f3, so that w~(X 2, X d is the commuta
tor subgroup of7t2(X2, Xd. The projection p*: 7t2(X2, Xd--+7t2(X2, XI) 
is, however, still an isomorphism, inducing an isomorphism 

p~ : 7tHX' 2, X'l) ~ 7tHx 2, X d 
between their commutator quotients. 

The group 7t~(X 2, X d is a TI-module, and the composite 

o~ : 7t3(X 3, X 2) --+ 7t2(X 2, X I) --+ 7tHX 2, X d 

is an operator homomorphism. Hence 

(4.12) Theorem There is an isomorphism 

82 : HomD (7tHX 2' X d, Go) --+ 12(X, A; G) 

such that the diagram 

is commutative. o 
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5 Obstruction Theory in Fibre Spaces 

Let p : X ---> B be a fibration. In this and the following section we shall be 
concerned with the problem of finding a cross-section to B, and of classifying 
the cross-sections up to vertical homotopy (a homotopy I: I x Y ---> X be
tween two maps 10, 11 : Y ---> X is said to be vertical if and only if 
pol: I x Y ---> B is stationary). 

The problem of finding a cross-section is a special case of the lifting 
problem: given I: Y ---> B, is there a map h : Y ---> X such that p 0 h = I? 
However, the general problem can be reduced to the special case; for let 
q : W ---> Y be the fibration induced by f, so that there is a commutative 
diagram 

g 
W -------. X 

(5.1) 

Y ----+ B 
I 

If h: Y ---> X is a lifting of f, then the maps 1 : Y ---> Y, h: Y ---> X have the 
property that I 0 1 = p 0 h; by the universal property of the diagram (5.1), 
there is a unique map k : Y ---> W such that q 0 k = 1, g 0 k = h, and thus k is 
a cross-section for g. Conversely, if k : Y ---> W is a cross-section for q, then 
g 0 k : Y ---> X is a lifting off Thus the liftings of I are in one-to-one corre
spondence with the cross-sections of the fibration induced by f Similarly, 
two liftings of I are vertically homotopic if and only if the corresponding 
cross-sections are. 

Finally, the problem of finding a vertical homotopy between two liftings 
can be viewed as a relative cross-section problem, viz., that of extending a 
cross-section already defined on a subspace. Therefore we shall address 
ourselves to the latter problem. 

Despite the fact that liftings are no more general than cross-sections, it 
will allow for greater flexibility and neater statements of the results to study 
the problem from the point of view of liftings. 

Accordingly, let p : X ---> B be a fibration with O-connected base space B 
and fibre F. Let (K, L) be a connected relative CW -complex, and let 
cp: K ---> B, I: L ---> X be maps such that p a 1= cp I L. Under these circum
stances we shall say that I is a partial lifting of cp. The lifting extension 
problem is that of finding a map g : K ---> X such that pol = cp and giL = f 
Following the methods of §§5, 6 of Chapter V as closely as we may, we shall 
attack the problem by a stepwise extension process. The main point of 
difference is that, while in ordinary obstruction theory the coefficients for the 
obstructions lie in fixed groups (the homotopy groups of the range space), in 
the present case the coefficients form a local system. 



292 VI Homology with Local Coefficients 

Since B is O-connected, p maps X upon B. Therefore, if e is any vertex of 
(K, L), there is a point x E p-1¢(e). Thus f: L ~ X can be extended to a 
partial lifting go : Ko ~ X. Let E: be a I-cell of (K, L) with characteristic 
map ha: (~1, A 1 ) ~ (E: , E:). Since ~ 1 is contractible, the fibration 
qa : X a ~ ~ 1 induced by the map ¢ 0 ha is fibre homotopically trivial, and 
the space X a' having the same homotopy type as ~ 1 X F, and therefore as F, 
is O-connected. Therefore the partial cross-section of qa , defined by the map 
go 0 ha I A 1 : A 1 ~ X a' has an extension ka : ~ 1 ~ X a. The map ka need not 
be a cross-section; however, the map qa . ka coincides with the identity map 
on A 1. Since ~ 1 is I-connected, qa 0 ka ~ 1 (reI. A 1). By the homotopy lifting 
extension property (Theorem 7.16 of Chapter I), ka is homotopic (reI. A 1) to 
a cross-section k~ : ~ 1 ~ X a. The map k~ defines, in turn, a lifting la : ~ 1 ~ X 
of ¢ 0 ha extending the partial lifting go 0 ha I A 1. Thenfa = I, 0 h;; 1 : E: ~ X 
is a partial lifting defined over E: and extending the map go IE:. The partial 
liftings fa, for all the 1-cells of (K, L), fit together to define a partial lifting 
g1 : L ~ X extending go. 

We have proved 

(5.2) Theorem If p : X ~ B is a fibration with O-connected base space and 
fibre, (K, L) is a relative CW-complex, ¢ : K ~ B, then any partial lifting 
f: L~ X of ¢ can be extended to a partial lifting g1 : K1 ~ X. 0 

Suppose that g: Kn ~ X is a partial lifting of ¢(n :;:0: 1), and assume that 
the fibre F is n-simple, so that the homotopy groups {nn(Fb)} form a system 
nn($') of local coefficients in B, and therefore ¢*nn($') is a system of local 
coefficients in K. It will simplify the notation and should not cause undue 
confusion to write nn($') instead of ¢*nn($'). 

Let E:+ 1 be a cell of (K, L) with characteristic map ha: (~n+ 1, An+ 1) 
~ (E:+ 1, E~+ 1); since K is connected, we may assume ha(eo) = *. The 
map g 0 ha I An+ 1 defines a partial cross-section ka: An+ 1 ~ Tv, of the fibra
tion qa: Tv, ~ ~n+ 1 induced by ¢ 0 ha. Since ~n+ 1 is contractible, q, is fibre 
homotopically trivial, :md therefore Tv, has the same homotopy type as the 
fibre q;; 1(eo) = Fa. Hence k, represents a uniquely defined element 
cn+ 1(e,) E nn(F,). The function cn+ 1 so defined is a cochain 

cn+1 = cn+1(g) E P+l(K, L; nn($')), 

called the obstruction to extending the partial lifting g. 
As in §5 of Chapter V, we shall give a global description of the obstruction 

equivalent to the preceding local definition. In order to do so, we shall make 
use of Theorems (4.11) and (4.12). 

Let (X, F) be the mapping cylinder of p : (X, F) -~ (B, *). In §8 of Chapter 
IV, we introduced an isomorphism 

~/: nn+ l(X, X) ~ nn(F); 
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it is the composite of the boundary operator of the homotopy sequence of 
the pair (ft, F) with the inverse of the (isomorphic) injection nn+ 1 (ft, F) -> 

nn+l(1', X). In Theorem (8.21) of Chapter IV, it was proved that 11' is an 
operator isomorphism, nl (X) operating on nn(F) via the homomorphism 
p*: nl(X) -> nl(B). The sequence 

is exact, since F is O-connected. The kernel of p* operates trivially on nn(F), 
and therefore on nn+ 1 (X, X). Therefore nM+ 1 (X, X) is a II-module and 11' an 
isomorphism of II-modules (II = n1 (B)). 

(5.3) Lemma Every partial lifting g : Kn -> X off can be extended to a map 
g: (Kn+ b Kn) -> (X, X) such that p 0 g: Kn+ 1 -> B is homotopic (reI. Kn) to 
4> IKn+1. Ifn ~ 2, the homomorphism 

L1' 0 g*: nn+l(Kn+b Kn)->nn(F) 

corresponds, under the isomorphism ()n+ 1 of Theorem (4.11) to the cochain 
cn+ l(g). If n = 1, then L1' 0 g* annihilates the commutator subgroup of 
n2(K2 , K 1) and corresponds, under the isomorphism ()2 of Theorem (4.12), to 
c2 (g). 

Let E~+1 be a cell of (K, L), with characteristic map ha: (L1n+1, An+l) 
-> (Kn+ b Kn). Define 9a : (L1n+ 1, An+ 1) -> (X, X) by 

A «1 _ )b ) _ I 4>ha«l - 2t)bn+ 1 + 2tz) 
ga t n+l + tz - \<2(1 _ t), gha(z) 

(t < 1. z E An+ 1) - 2, , 

(t>1. zEAn+l). -z, , 

then p 0 Ya = 4> 0 ha 0 d for a map d : (L1n+ 1, An+ 1) -> (L1n+ 1, An+ 1) such that 
d 1 An+ 1 = 1. Since L1"+ 1 is convex, d is homotopic (reI. An+ 1) to the identity 
map of L1n+ 1. The maps ga 0 h; 1 fit together to yield a map g : Kn+ 1 -> X 
such that goha=ga; and pogoha=poga=4>0haod~4>0ha 
(reI. An+ 1). These homotopies therefore fit together to yield a homotopy of 
p 0 g to 4> 1 Kn+ 1 (reI. Kn)· 

Let us now recall (Theorem (1.3) of Chapter V) that the group 
nn+ 1 (Kn+ l' Kn) is generated, as anI (Bn)-module, by the homotopy classes Ca 

of the characteristic maps ha . Therefore, in order to calculate the homomor
phism L1' 0 g*, it suffices to calculate the elements L1'9*(ca) = L1'(~a), where ~a 
is the homotopy class of 9a. If 9a : Wa-> L1"+ 1 is the map induced from 
p: 1'-> B by the map 4> 0 ha' then ~ is a subspace of Wa, q al Wa = 
qa : ~ -> L1n+ 1, and Wa can be identified with the mapping cylinder of q a. 
The maps aa : L1n+ 1 -> X, d : L1"+ 1 -> L1n+ 1 define a map fa : L1n+ 1 -> Wasuch 
that fa I An+ 1 = ka : An+ 1 -> ~. 
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There is a commutative diagram 

k.* 
It (An+ 1 An+ I) 

n + 1 , 

(5.4) 

------+1 Itn(W,) ~4 -----

k.* i4 

in which the right-hand square is a subdiagram of Figure 4.2 for the fibration 
qa: W, -> An+ I, and the left-hand square is a subdiagram of the map of the 
homotopy sequence of (An+l, An+l) into that of (Wa, WJ induced by the 
map fa. In §8 of Chapter IV we saw that kl and 03 are isomorphisms; since 
An + 1 is contractible, so is Wa, so that i 4 and 0 1 are isomorphisms. 

Now A'('1a) = 03 ki l ('1a), and therefore 

i4 A'('1a) = i4 03 ki l ('1a) = 0 1 kl ki l ('1a) = cJI('1a) 

is represented by the map ka : An+ 1 -> w.. But the element i4 en+ I(ea ) is also 
represented by ka . Hence 

as desired. 
If n = 1, the group nn(F) is abelian because of our hypothesis that F is 

i-simple. Therefore A' 0 g* must annihilate the commutator subgroup. D 

(5.5) Theorem The obstruction cochain en + I(g) has the following properties: 

(1) The map g can be extended to a partial lifting over Kn U E~ + 1 if and only 
if en + I(ea ) = 0; 

(2) The map g can be extended to a partial lifting over K n+1 if and only if 
en+ I(g) = 0; 

(3) Iftj;: (K', L) -> (K, L) is a cellular map and g' = g 0 tj; I K~: K~ -> X, then 

en + 1 (g') = tj; # en + 1 (g) ; 

(4) If go, glare partialliftings over Kn which are vertically homotopic (reI. A), 
then en+ l(gO) = en+ l(gd; 

(5) The cochain cn + I(g) is a cocycle of (K, L) with coefficients in the local 
system <fJ*nl?i'} 

To prove Property 1, we use the local definition. If g I E:+ 1 has an exten
sion to a partial lifting g' : E: + 1 -> X, then ga = g 0 ha I An+ 1 has the exten
sion g' a ha: An+ 1 -> X, and therefore ka has an extension k~ : An+ 1 -> w., so 
that en + l(ea) = O. Conversely, suppose that ka has an extension 
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k~ : fln+ 1 ---7 vv,. This means that there is a commutative diagram 

g~ 
fln~ 1 ---> X 

dj jP 
fln+ 1 ---> B 

4> 0 ha 

such that g~ I An+ 1 = g, and d I An+ 1 = the identity map. The map d being 
homotopic (reI. An+ 1) to the identity, the map P 0 g~ = 4> 0 ha 0 d is homoto
pic (reI. An+ 1) to 4> 0 ha • By the homotopy lifting extension property 
(Theorem (7.16) of Chapter J), g~ is homotopic (reI. An+ 1) to a map g~ such 
that P 0 ga = 4> 0 ha. Then g~ : fln+ 1 ---7 X is an extension of ga = 9 0 ha , and 
therefore g~ 0 h;; 1 is an extension off I EZ + 1 to a partial lifting over Ea. 

Property 2 follows from Property 1 by patching together the extensions 
over each cell. 

To prove (3), we use the global definition. The map lj; induces an operator 
homomorphism lj; * : 1rn+ 1 (K~+ 1, K~) ---7 1rn+ 1 (Kn+ 1, Kn). Let 

be the homomorphism corresponding, under the isomorphism en + 1 to the 
cochain en + 1 (/); then I'J 0 lj; * corresponds to lj; # en + 1 (/). But the homomor
phism corresponding to en + 1(/') is clearly '1 0 lj;*. 

If go and gl are vertically homotopic, then, for each cell EZ+ 1, the cross
section of qa: vv,---7fln+1 induced by go 0 halAn+1 and gl 0 halAn+1 are 
vertically homotopic. In particular, they are homotopic and therefore the 
elements assigned to ea by the cochains en + 1(/0) and en + l(/d are equal. 
Since this is true for every cell, en + 1(/0) = en + 1(/\). 

To prove Property 5, we use the global definition. Let J: B 4 X; then J is 
a homotopy equivalence and p 0 J = 1, J 0 P :-,: 1. The map 9 : Kn+ 1 ---7 X of 
Lemma (5.3) has the property that p 09:-': 4> I Kn+ 1 (reI. Kn), and therefore 

g :-,: J 0 p 0 g :-,: J 0 4> I Kn + 1 (reI. Kn)· 

Since (Kn+2, K n+1 ) is an NDR-pair, fo 4>IKn+2 is homotopic to a map 
91 : Kn+2 ---7 X such that 91 I Kn+ 1 = g. The diagram 

1rn+2(Kn+2 , Kn+ d 
gl. 

1rn+2(X, X) = 0 --------+ 

a.j j a~ 
1rn+2(Kn+l> Kn) --.... 1rn+l(X, X) ---> 1rn{F) 

g. S 
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is commutative, and therefore.-1' 0 9* 0 0* = O. But.-1' 0 9* 0 0* is the homo
morphism corresponding, by Theorems (4.11) and (4.12), to ben + 1 (g). 

We can apply the above results to study the existence ofa vertical homo
topy between two partial liftings. In fact, let go, g1 : Kn --+ X be partial 
liftings of 1>, and let g' : I x K n - 1 --+ X be a vertical homotopy (reI. A) be
tween go I K n- 1 and g1 I K n- 1· These maps fit together to define a partial 
lifting 9 : t x Kn u I x Kn _ 1 --+ X of 1> 0 P2' where P2 : I x K --+ K is the 
projection on the second factor. The difference cochain of go, 9 1 with respect 
to g' is the cochain 

such that cTn( ea) is ( - 1)n times the value of the cochain en + 1 (G) on i x ea' If 
the homotopy g' is stationary, so that go I Kn- 1 = g1 I K n-1> we write 
cTn(go, gd instead of cT"(go, g1> g'). 

(5.6) Theorem The difference cochain has the following properties: 

(1) The map g': I x K n- 1 --+ X can be extended to a vertical homotopy 
{fa: I x (Kn- 1 U E~) between the restrictions of go and g1 to K n- 1 u E~ if 
and only if cTn(ea) = 0; 

(2) The map g' can be extended to a vertical homotopy g: I x Kn --+ X be
tween go and g1 if and only if cTn(g) = 0; 

(3) The coboundary of cTn(g) is given by 

(jcTn(h) = en+ 1(gd - e"+ 1(gO); 

(4) If go : Kn --+ X is a partial lifting of 1>, g' : I x Kn- 1 --+ X is a vertical 
homotopy of go I Kn- 1 to a map f'1 : Kn- 1 --+ X, and d E C(K, L; nl~)), 
then f'1 can be extended to a partial lifting 9 1 : Kn --+ X of 1> such that 
([n(go, g1' g') = d; 

(5) Let gi: Kn --+ X be a partial lifting of 1> (i = 0, 1,2), and let g01 : I x 
Kn - 1 --+ X, g~ 2 : I x Kn _ 1 --+ X be vertical homotopies between the re
strictions of go and g1 and of g1 and g2, respectively, to K n- 1. Let 
g02 : I x K n- 1 --+ X be the homotopy of go to g2 defined by g01 and g02' 
Then 

([n(go, g2' g02) = ([n(go, g1' god + ([n(g1' g2' g'12); 

(6) Let l/J : (K', L) --+ (K, L) be a cellular map, and let 9 : i x Kn u I x K n- 1 
--+ X be a partial lifting of 1> 0 P2' Then 

The reader who has mastered the proof of Theorem (5.5), as well as the 
results of §§5, 6 of Chapter V, should have no difficulty with the proof of 
Theorem (5.6). 0 



6 The Primary Obstruction to a Lifting 297 

(5.7) Corollary The cochain cn+ l(g) is a coboundary if and only if the map 
g I Kn- 1 can be extended to a partial lifting gl : Kn+ 1 --> X of cp. 0 

We conclude this section by making explicit the cochains cn+ l(g), an(g) in 
the special case of a trivial fibration. Suppose, then, that X = B x F, 
p(b, y) = b; then the local coefficient system nn(ff) is simple and can be 
identified with the group nn(F). If cp : K -+ B, a partial lifting g : K' -+ B 
defined on a subspace K' of K, is given by g(x) = (cp(x), ljJ(x» for a map 
ljJ : K' -+ F. In particular, if g : Kn -+ B and E~+ 1 is an (n + 1 )-cell, then the 
projection of ~n+ 1 X F its second factor is a homotopy inverse of the inclu
sion F c+ ~n+ 1 X F. Hence cn+ l(ea ) is the element of nn(F) represented by the 
map ljJ 0 ha IAn + 1 : An + 1 -+ F; but this is just the value at ea of the obstruc
tion cn+ 1 (ljJ). Thus 

(5.8) Theorem If p : B x F -+ B is a trivial fibration, and a partial lifting 
g : Kn -+ B x F of cp : K -+ B is determined by a map ljJ : Kn -+ F, then 

o 

Similarly, we can prove 

(5.9) Theorem If p: B x F -+ B is a trivial fibration and a partial lifting 
g : i x Kn u I x Kn- 1 -+ B x F of cp 0 P2 : I x K -+ B is determined by a 
map ljJ: i x Kn u I x Kn- 1 -+ F, then 

an(g) = dn(ljJ) E C(K, L; nn(F». o 

6 The Primary Obstruction to a Lifting 

Let p : X -+ B be a fibration with O-connected base and (n - 1 )-connected 
fibre F (n?: 1; if n = 1, we assume that F is I-simple). Let (K, L) be a 
connected relative CW-complex, cp : K -+ B, f : L -+ X, po f = cp IL. The fol
lowing statement is an immediate consequence of Theorems (5.5) and (5.6). 

(6.1) Theorem The map f can be extended to a partial lifting g : Kn -+ X of cp. 
If go and gl are two such partial lijtings, then go I Kn- 1 and gIl Kn- 1 are 
vertically homotopic (reI. L). 

Let go, gl : Kn -+ X be partialliftings of cp, and let g' : I x Kn- 1 -+ X be a 
vertical homotopy between their restrictions to K n - 1 • Then the cochain 

an = an (go , gb g') E C(K, L; nn(ff» 
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is defined, and 

Mn = en+ I(gd - en+ l(gO) 

by Theorem (5.6). Therefore the obstruction cocycles e" + I(g), for all possible 
partial liftings 9 extending f, lie in a single cohomology class 

yn+ I = y"+ l(f) E H"+ I(K, L; <p*nnC~;)). 

The class yn+ I is called the primary obstruction to extendingf; if A = 0, then 
yn+ I E Hn+ I(K; nnC~)) is called the primary obstruction to lifting <p. 

(It is often convenient to assume A -+ 0. This is not a serious restriction; 
for we may choose a vertex * of K and define the lifting 9 by picking a point 
of the fibre F over the base point * E B). 

In the special case of a trivial fibration, it follows from Theorem (5.8) that 

(6.2) Theorem If p: B x F -+ B is a trivial fibration and a partial lifting 
f: L-+ B x F of a map <p: (K, L) -+ (B, A) is determined by a map lj;: L -+ F, 
then 

o 
The following properties of y"+ l(f) are immediate consequences of 

Theorem (5.5). 

(6.3) Theorem The primary obstruction y"+I(f) has the following properties: 

(1) The map f can be extended to a partial lifting 9 : Kn + 1 -+ X of <p if and only 
if yn+ l(f) = 0; 

(2) Iflj;: (K', L) -+ (K, L) is a cellular map andf: L -+ X is a partial lifting of 
<p : K -+ L, then f 0 lj; I L : L -+ X is a partial lifting of <p 0 lj;, and 

yn+l(fo lj;' IL) = lj;*yn+l(f) E H"+I(K', L; lj;*<p*nnC~)); 

(3) If fo, fl : L -+ X are partial /(ftings of <p which are vertically homotopic, 
then 

o 
Let go, 9 I : K -+ X be liftings of <p which agree on L. Then there is a 

vertical homotopy g': I x Kn- I -+ X (reI. L) between go I K,,_I and 
gil Kn- I' Because g~ = go I K" and g~ = gil Kn have extensions over K, their 
obstructions vanish, and therefore, by Theorem (5.6), their difference co
chain is a cocycle an. In fact, an corresponds, under the isomorphism 

m(K, L; G)-+ m+I(I x K, i x K u I x L; piG) 

to the obstruction to extending the partial lifting 9 of <p 0 P2 defined by the 
maps go, gl' and g'. It therefore follows that the cohomology class 5"(go, g1) 
of dn(g) depends only on go and 9 I, and not on the homotopy g'; 

5"(go, gd E Hn(K, L; nl?)). 
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The class 5n(go, 9 d is called the primary difference of the liftings go, 9 l' 
Again, we deduce from Theorem (5.9): 

(6.4) Theorem If p: B x F -+ B is a trivial fibration, and if liftings go, 
gl : K -+ B x F of a map cjJ : K -+ B are determined by maps t/Jo, t/J 1 : K -+ F 
such that t/Jo I L = t/J 1 I L, then 

<5n(go, gd = bn(t/Jo, t/J I} E Hn(K, L; rrn(F}}. 0 

And from Theorem (5.6): 

(6.5) Theorem The primary difference <5n(go, 9 d has the following properties: 

(I) The maps golKn, gllKn are vertically homotopic (reI. L) if and only if 
5n(go, gl) = 0; 

(2) If go, gb g2 : K -+ X are liftings of cjJ agreeing on L, then 

5n(go, g2} = 5n(go, gd + <5n(gl' g2}; 

(3) Ift/J: (K', L) -+ (K, L) is a cellular map, then 

5n(go 0 t/J, gl 0 t/J} = t/J*5n(go, gd E Hn(K', L; t/J*cjJ*rrn(ff)). 0 

We can now show how these classes can be defined for an arbitrary lifting 
extension problem 

Q~ X 

n jP 
p ~ B 

«P, Q) not necessarily a CW-pair}. Let (K, L) be a CW-pair, t/J: (K, L)-+ 
(P, Q) a weak homotopy equivalence. Then f 0 t/J I L : L -+ X is a partial 
lifting of cjJ 0 t/J : K -+ B, so that 

yn+ 1(f 0 t/J I L} E Hn+ I(K, L; t/J*cjJ*rrn(ff}} 

is defined. If t/J' : (K', L) -+ (P, Q) is another weak homotopy equivalence, 
then, by Theorem (3.13) of Chapter V, there is a map w : (K, L) -+ (K', L), 
which we may assume to be cellular, such that t/J' 0 w ~ t/J. Then 

yn+ 1(f 0 t/J' I L} E Hn+ I(K', L; t/J'*cjJ*rrn(ff}}, 
and it follows from Theorem (5.5) that 

(6.6) w*y"+ 1(f 0 t/J' I L} = yn+ 1(f 0 t/J' 0 wi L} 

= yn+ 1(f" t/J I L) 

E Hn+ I(K, L; w*t/J'*cjJ*rrn(.~}) = w+ I(K, L; t/J*cjJ*rrn(.'F)}. 
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Therefore we may define 

and an easy calculation using (6.6) shows that yn+l(f) is well-defined. 
Similarly, let go, gl : P -+ X be liftings of ¢ which agree on Q. Then, for 

any CW-pair (K, L) and weak homotopy equivalence ljJ: (K, L) -+ (P, Q), 
go 0 ljJ and gl 0 ljJ are liftings of ¢ 0 ljJ which agree on L, and we may define 

verifying as before that the element so defined is independent of the CW
approximation ljJ. 

We next introduce a new cohomology class, associated to a fibration 
p: X -+ B with a cross-sectionf: B -+ X. The identity map 1 : X -+ X and the 
maps fop: X -+ X are liftings of p : X -+ B, and therefore we may define 

lln(f) = ;)n(1,f 0 p) EO Hn(x; p*nnC~)). 

It will be useful to explore the connection of en(f) with other cohomology 
classes related to the fibration p. 

Let i : F c+ X; since poi is the constant map, the local coefficient system 
i*p*G in F is simple for any local coefficient system G in B. 

(6.7) Theorem The injection 

i*: Hn(x; p*nnC~)) -+ Hn(F; nn(F)) 

maps en(f) into (- 1 t times the characteristic class In(F). 

It follows from (3) of Theorem (6.5) that 

i*lln(f) = i*;)"(l,f 0 p) 

= ;)"(i,f 0 poi) = ;)"(i, *), 

where * is the constant map. (Here i and * are to be regarded as liftings of the 
constant map of F into B). The fibration induced by the latter map is, of 
course, trivial, and therefore 

sn(i, *) = bn( 1, *) by Theorem (6.4) 

= (-1)"ln(F) by (6.11) and (6.14) of Chapter V. 0 

(6.8) Theorem Let fo, fl : B -+ X be cross-sections of the fibration p : X -+ B. 
Then 
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In fact, 

sn(fd - sn(fo) = 5n(1,f1 0 p) - 5n(1,fo 0 p) 

= 5n(fo 0 P,f1 0 p) by (2) of Theorem (6.5), 0 

= p*5n(fo, fd by (3) of Theorem (6.5). 

Let us next consider the problem of extending a cross-section. Let A be a 
subspace of B, W = p-1(A), Po = pi W: W --> A, and letf: A --> W be a par
tial cross-section. Then 

yn+1(f) E Hn+1(B, A; 1tn(g::)), 

sn(f) E Hn(w; pt1tn(g::)). 

(6.9) Theorem The cohomology classes yn+ 1 (f), sn(f) are connected by the 
relation 

We may assume that (B, A) is a CW-pair; let t/J: (K, L) --> (X, W) be a 
weak homotopy equivalence. The map po t/J is homotopic to a cellular map; 
by the homotopy lifting property, t/J is homotopic to a map t/J' such that 
p 0 t/J' is cellular. Therefore we may assume that p 0 t/J is already cellular. 

The map f: A --> W has an extension g : Bn --> X, and we may consider the 
obstruction cn+ 1(g) E zn+ 1(B, A; 1tn(g::)). Then t/J*p*yn+ 1(f) is represented 
by the cochain (p 0 t/J)# cn+ 1(g). Let A: I x Kn- 1 c i x Kn --> X be a map 
such that 

,1,(0, x) = t/J(x), 

A{1, x) = (f 0 p 0 t/J)(x). 

Thus A I I x Kn - 1 is a vertical homotopy between the restrictions of the 
above two maps to Kn- 1. Then 

an(A) E c"(K; (p 0 t/J)*1tn(g::» 

is a cochain whose restriction to L represents t/Jt sn(f). Hence its coboundary 
ban(A) E zn+ 1(K, L; (p 0 t/J )*1tn(g::» represents b*t/Jt sn(f) = t/J*b*Sn(f). But 

ban(A) = cn+ 1(g 0 P 0 t/J I Kn) - cn+ 1(t/J I Kn ), 

by (3) of Theorem (5.6). The second term on the right is zero because t/J I Kn 
has the extension t/J; the first is equal, by (3) of Theorem (5.5), to 
(p 0 t/J)#cn+1(g). Thus 

t/J*b*Sn(f) = (p 0 t/J)*yn+1(f) = t/J*p*yn+1(f). 

But t/J* is an isomorphism, so that 

b*Sn(f) = p*yn+ 1(f). o 
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Suppose, in particular, that A = {*}, the base point of B. Then W = F, 
and Bn(f) = (-l)"zn(F) E Hn(F; 1!n(F». Thus 

(6.10) Corollary The primary obstruction t+ 1 E Hn+ I(B, {*}; 1!l'?F» and the 
characteristic class zn(F) E Hn(F; 1!n(F» are connected by the relation 

p*yn+ 1 = (-l)nb*zn(F) E Hn + I{X, F; P*1!n(ff». 0 

It can be shown that p* : Hn+ I(B, {*}; G) ----> Hn+ I(X, F; p*G) is a mono
morphism. Therefore Corollary (6.10) contains a characterization of yn + 1. 

We now have 

(6.11) Theorem (Extension Theorem). Suppose that F is q-simple and that 
Hq+ I(K, L; 1!q(ff» = 0 whenever n + 1 ::;; q < dim(K, L). Then a partial lift
ing f: L ----> X of a map ¢ : K ----> B can be extended to a lifting g : K ----> X of ¢ if 
and only if yn+ 1(f) = O. 0 

(6.12) Theorem (Homotopy Theorem). Suppose that F is q-simple and that 
Hq(K, L; 1!q(ff» = 0 for all q such that n + 1 ::;; q < 1 + dim(K, L). Then 
two liftings fo ,fl : K ----> X of ¢ : K ----> B which agree on L are vertically homo
topic (reI. L) if and only if 6n(fo,fd = O. 0 

(6.13) Theorem (Classification Theorem). Suppose that 

(1) F is q-simplefor n + 1::;; q < 1 + dim(K, L); 
(2) Hq(K, L; 1!q(ff» = 0 for n + 1 ::;; q < 1 + dim(K, L); 
(3) Hq+l(K, L; 1!q(ff» = Ofor n + 1::;; q < dim(K, L). 

Letfo: K ----> X be a lifting of ¢ : K ----> B. Then the correspondencef ----> bn(fo,f) 
is a one-to-one correspondence between the set of vertical homotopy classes 
(reI. L) of liftings of ¢ which agree withfo on L and the group Hn(K, L; 1!n(ff». 

o 

(6.14) Corollary If F = K(n, n) or ifdim(K, L) ::;; n + 1, then a partial lifting 
f: L ----> X of a map ¢ : K ----> B can be extended to a lifting of ¢ if and only if 
yn+ 1(f) = O. 0 

(6.15) Corollary If F = K(n, n) or if dim(K, L) ::;; n, then two liftings of 
¢ : K ----> B which agree on L are vertically homotopic (reI. L) if and only if 
bn(fo ,fd = O. 0 

(6.16) Corollary If F = K(n, n) or if dim(K, L) ::;; n, and if ¢ : K ----> B can be 
lifted to a map of K into X, then the vertical homotopy classes (reI. L) of liftings 
of ¢ are in 1 : 1 correspondence with Hn(K, L; 1!n{ff». 0 
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We conclude this section by discussing the behavior of the obstructions in 
certain composite fibrations. Let 

F" , X' q ,X, 

F ,X P ,B 

be fibrations; then pi = P 0 q: X' -> B is a fibration, by Theorem (7.11) of 
Chapter I. If F' is the fibre of pi, then the restriction of q to F' is a fibration 

(6.17) F" --.... , F' --.... , F. 

Let us assume that F is (m - 1 )-connected and F" is (n - 1 )-connected 
(n :S; m). Exactness of the homotopy sequence of the fibration (6.17) implies 
that F' is (n - I)-connected. There are local coefficient systems nl~l) over 
B and nn(.~") over X, associated with the fibrations pi: X' -> Band 
q: X' -> X, respectively. For each x E X, we have an inclusion F~ c F~(x), 

and it is easy to see that 

(6.18) The injections nn(F~) -> nn(F~(x» define a homomorphism p : nn(.~")-> 
p*nl~I). 0 

Now consider the obstructions 

Yl E H n+ l(B; nl~I», 

Y2 E Hnt-l(x; nn(.~"», 

to cross-sections of the fibrations pi : X' -> B, q : X' -> X, respectively. Con
sider the diagram 

~ 

W"(X;".(p'» /. 

where p* is induced by the map p : X -> B (more precisely, by the pair (p, 1), 
where 1 is the identity map of p*nn(ff'» and p* by the homomorphism p 
(more precisely, by the pair (1, p), where 1 is the identity map of X). 

(6.19) Theorem Under the above circumstances, the obstructions Yb Y2 are 
related by 

In fact, let 
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be the obstruction to lifting P typified by the diagram 

X' 

X ----+ B 
P 

We shall show that p*'h = P* Yz = y. 
That P*YI = Y follows from (2) of Theorem (6.3). To prove the second 

relation, let h : K --+ X be a CW -approximation. By Theorem (6.1), there is a 
map f: Kn --+ X' such that q 0 f = hi Kn. Let q: Iq --+ X be the projection of 
the mapping cylinder on its base. By Lemma (5.3), f has an extension 
J: (Kn+I' Kn)--+ (Iq, X') such that q oJ~ hIKn+l : K n+1 --+X (reI. Kn). Let 
jl : Ip ' --+ B be the projection. Then there is a map I: Iq --+ Ip ' such that 

l«t, x'») = <t, x') (t E I, x' E X') 

and the diagram 

X ~ B 
P 

is commutative. Then I 0]: (Kn+ I' Kn) --+ (Ip' , X') and 

j/ 0 I 0 J = P 0 q 0 J ~ P 0 hi Kn+ 1 (reI. Kn). 

Moreover the diagram 

is commutative, i being the injection. Hence 

i 0 ~f 0J* =~' 0 1* 0J*: nn+l(Kn+b Kn)--+nn(F'). 

But 

and 
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are the homomorphisms corresponding to the obstruction co cycles cn+ l(h), 
cn + l(p 0 h) for the fibrations q: X' ~ X, p' : X' ~ B, respectively. It follows 
that P*'!z = y, as desired. D 

7 Characteristic Classes of Vector Bundles 

Let p : X ~ B be the projection of a fibre bundle ~ having Rn as fibre and the 
orthogonal group O(n) as structural group (such a bundle will be called an 
orthogonal vector bundle). Then O(n) acts on the Stiefel manifold 
V n. k(O ~ k ~ n), and there is an associated bundle Pk : X k ~ B having V n, k as 
fibre; the points of X k are the (k + 1)-tuples (b; Xl' ... , xd, whereb E Band 
(Xb""Xk) is an orthonormal k-frame in the Euclidean space p-l(b). 
Moreover, Pk(b; Xl' ... , X k) = b. In particular, we may identify Vn,n with 
O(n); then Pn: Xn ~ B is the (projection of) the principal associated bundle 
of ~. Moreover, X I is the space of unit vectors in X. 

The map (b;XI,,,,,Xk)~(b;XI,,,,,Xk-l) is a fibre bundle 
qk: X k ~ X k - b and the fibre of qk is sn-k. Thus there is a tower offibrations 

--..... , ... 
ql --..... ,... ,Xo=B, 

and Pk = q I 0 ••• 0 qk' 
As a special case, we may take Xn = V(n), the space of n-frames in Roo, 

B = G( n) the Grassmannian space of n-dimensional subspaces of ROO (cf. §2 
of Appendix A), and we have the tower of fibrations 

V(n) = Vn(n) qn{n) , Vn-l(n) qn-l(n), ... __ --; 

The space G(n) is a classifying space for O(n) (Theorem (2.1) of Appendix A), 
and therefore there is a unique homotopy class of maps f: B ~ G( n) such 
that f*(11n} = ~, where 11n is the Rn-bundle associated with the principal 
bundle V(n) ~ G(n). It follows easily that 

(7.1) Theorem There is a commutative diagram 

X qn X n- I ~ .. ~ X qk 
X k- I XI 

ql 
n~ k~ --+ ... ----+ ~ B 

j fn j fn- I jh j fk-I j.rl k 
V(n) --+ 

qn{n) 
V n - 1(n) ~ ... ~ Vk(n) ---+ V k - 1(n) ~ ... ~ V I(n) ---+ G(n) 

qk(n) ql(n) 
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The fibration qk: X k -> X k- 1 is induced from the fibration qk(n): Vk(n)-> 
Vk-t(n) by the maph-t, and the fibration Pk: X k -> B is inducedfrompk(n) = 

qt(n) 0 ••• 0 qk(n) by the map f 0 

Consider the fibration Pk: X k -> B. The fibre V n. k of Pk is 
(n - k - I)-connected, by (10.12) of Chapter IV. By Theorem (10.13) of the 
same chapter, the first non-vanishing homotopy group nn-k(Vn. d is cyclic of 
order two if n - k is odd and k :2: 2, and is infinite cyclic otherwise. In the 
former case, the local coefficient system nn-l~k) is simple. In the latter case, 
the system nn-k(~k) is simple, when nt(B) operates trivially, or twisted, when 
the action is non-trivial. Because of (1.15), it suffices to determine the action 
of nl(B) in the special case B = G(n). By Theorem (10.16) of Chapter IV, 
with 1= nand k -> 00, nt(G(n»;:::; no(O(n» = Z2' If rx is the non-zero 
element of nt(G(n)), we have 

(7.2) Theorem The action ofnt(G(n» on nn-k(Vn.k) is determined by 

8a(x) = -x 

Thus the local coefficient system nn-k(~k) over G(n) is twisted if and only if 
n - k is even or k = 1. 

As G(n) is the direct limit of its subspaces G q• n' it suffices to consider the 
case B = Gq. n = O(q + n)/O(q) x O(n), Xn = Vn+q. n = O(q + n)/O(q), so 
that X k = O(q + n)/O(q) x O(n - k), for large values of q. Let 
u: 1-> O(q + n) be a path such that u(1) is the identity matrix, while 
U(O) = diag{J(q), J(n)}, where J(n) is an improper orthogonal matrix. Then 
the projection of u into B is a loop u : 1-> B which represents the element rx. 
Let Fk = Vn• k be the fibre of Pk' i: Fk 4 X k. Then the map 

h:I x Fk->Xk 

defined by 

h(t, y) = u(t) . i(y) 

lies over u and ends at the inclusion map i. Hence its initial value 
ho : Fk -> X k has the form ho = i 0 I for a u-admissible map I: Fk -> Fk ; and 
1* = 8a : nq(F} -> nq(F) for any q. 

Now F = V n• k ;:::; O(n)/O(n - k);:::; O(q) x O(n)/O(q) x O(n - k) can be 
represented as the space of n x k matrices with orthonormal columns. The 
orthogonal group O(n) can be represented as the group of n x n orthogonal 
matrices, and the operation of O(n) on F by left multiplication. In terms of 
this representation, a generator f3 of nn- k(F) is represented by the map 
g: sn-k -> F, where 
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X E sn-k is a unit column vector with n - k + 1 components, Ek - 1 is the 
identity matrix of order k - 1, and the O's are matrices of zeroes of the 
appropriate size. We may assume that l(n) = diag{ -1, En- d; then 

l(n)g(x) = g( -x) 

and therefore 8,(P) = - p. o 

(7.3) Corollary Let f: B ---> G(n). Then the local coefficient system nn-l~k) 
over B determined by the induced fibration is simple if and only if either 

( 1) n - k is odd and k 2: 2 

or 

o 

We have now determined the coefficient groups for the primary obstruc
tions to the cross-sections Pn- k+ 1 : X n- k+ 1 ---> B. The obstructions them
selves are cohomology classes 

(k=2,3, ... ,n). 

The class W1 (0 is not defined by the above procedure, since the fibre 
Vn• n = O(n) is not pathwise connected. It is convenient to define W1(O 
instead by means of Theorem (3.3). The local coefficient system:!£ for Wl(~) 
is defined by the following action of nl(B) on the additive group Z of 
integers: letf: B---> G(n) be the classifying map; then an element Je E nl(B) 
operates trivially or not according as f*(Je) = 1 or f*(Je) is the non-zero 
element a E nl(G(n». The reader may then verify that the function 
¢ : nl(B) ---> Z defined by 

is a crossed homomorphism. The class Wl(~) is then defined to be the 
element of Hl(B; :!£) associated to ¢ by the isomorphism of Theorem (3.3). 

Finally, it is convenient to define Wo(~) E HO(B; Z) to be the unit element 
of the integral cohomology ring of B. 

The classes ltk(~) (k = 0, 1, 2, ... , n) are called the Whitney characteristic 
classes of the vector bundle ~. They have the following naturality property: 

(7.4) Theorem Let g: B' ---> B be a continuous map. Then ltk(g*~) = g*ltk(~) 
(k = 0, 1, ... , n). 

This follows from (2) of Theorem (6.3) if 2 ~ k ~ n. The remaining cases 
k = 0, 1 are easily settled. 0 
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In particular, we may consider the universal example B = G(n) and the 
bundle 11n. The resulting classes ~(n) are called the universal Whitney 
classes. 

(7.5) Corollary Let f: B --> G( n) be a classifying map for the vector bundle ~. 
Then 

~(~) = f*~(n). o 
Since cohomology with twisted integer coefficients is relatively unfamil

iar, it is often useful to reduce the coefficient groups mod 2. The resulting 
local coefficient systems are all simple, and the resulting characteristic 
classes 

Wk(~) E Hk(B; Zz) 

are called the Stiefel-Whitney classes of ~, and the classes 

wk(n) E Hk(G(n); Zz) 

the universal Stiefel- Whitney classes. Of course, 

(7.6) Theorem Let g: B' --> B be a continuous map. Then Wk(g*~) = g*Wk(O 
(k = 0, 1, ... , n). 0 

(7.7) Corollary Let f: B --> G(n) be a classifying map for the vector bundle ~. 
Then 

D 

Let us now compare the above characteristic classes for different values of 
n. We may begin with the observation that, the projection Pn(n) : V(n)--> 
G(n) being a principal fibration with group O(n), the space G(n) is naturally 
homeomorphic with the quotient space V(n)/O(n). Through the monomor
phism O(n - k) --> O(n - k) c O(n), the group O(n - k) acts on V(n), and 
the quotient space V(n)/O(n - k) is easily seen to be the space Vk(n). 

Let i: Roo --> Roo be the map which sends ej into ej + 1 (j = 0, 1,2, ... ). The 
map i is an isometric imbedding and induces an imbedding of V(n - 1) in 
V(n): if (Xl' ... , X n - d is an orthonormal (n - 1 )-frame in ROO, then (eo, i(xd, 
... , i(xn - 1 )) is an orthonormal n-frame in ROO. This imbedding is equivariant 
with respect to the action of O(n - 1) (where O(n - 1) is considered as the 
subgroup of O(n) fixing the first unit vector), and therefore there is a com
mutative diagram (Figure 6.7). The spaces Vk- 1 (n - 1) and Vk(n) are clas
sifying spaces for the group O(n - k) and it follows as in Theorem (2.3) of 
Appendix A that 

(7.8) Theorem The map ik : Vk- 1(n - 1)--> Vk(n) is a homotopy equivalence. 
D 

(7.9) Corollary The space Vk(n) has the same homotopy type as G(n - k). 
o 

The map j = ql (n) 0 il is easily seen to be the canonical imbedding, asso
ciating with each (n - 1}-plane n in ROO the n-plane Reo EB i(n). 
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in 
V(n - 1) = Vn - 1(n - 1) ------. Vn(n) = V(n) 

1 1 

1 1 
ik+ 1 

V(n - 1)/O(n - k - 1) = Vk(n - 1) ------. Vk+ 1(n) = V(n)jO(n - k - 1) 

qk(n-1)] jqk+1(n) 

V(n - 1)jO(n - k) = Vk - 1(n - 1) 

1 

1 
G(n - 1) = V(n - 1)jO(n - 1) = Vo(n - 1) 

Figure 6.7 

It is likewise easy to see that 

Vk(n) = V(n)jO(n - k) 

1 

1 
V 1(n) = V(n)/O(n - 1) 

j q1 (n) 

Vo(n) = V(n)jO(n) = G(n) 

(7.10) The fibration qk(n - 1) is induced by the map ik from the fibration 
qk+ 1 (n). 0 

Let us now consider the commutative diagram 

in - k 
Vn-k(n) Vn- k- 1(n - 1) ---4 

ql = Pk-1(n - 1)] j pi,(n) = q 

G(n - 1) 
i 1 

V 1(n) • 

~ jq,(n)~p 
G(n) 
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where p~(n) = q2(n) 0 ••• 0 qk(n). It follows from (7.10) that 

(7.11) The fibration ql is induced by i l from the fibration q. D 

The local coefficient systems defined by the fibrations in the above dia
gram are 

nk(~") for q, 

nk(~') for p' = p 0 q, 

ifnk(~") for ql' 

In (6.18) we saw that the injections define a homomorphism p : nk(~") ---> 

p*nk(~')' Similarly, the injections define a homomorphism 
(J = if P : if nk(~") ---> j*nk(~')' The map i l : G(n - 1) ---> V I (n), together with 
the identity map of if nl~"), define a morphism 

II: (G(n-l), ifnk(,~"))--->(VI(n), nk(~")) 

in the category!£'*. The identity map of G( n - 1), together with the homo
morphism (J, defines a morphism 

0-: (G(n-l),j*nk(~'))--->(G(n-l), ifnk(~"))' 

The map ii' together with the identity map ofj*nk(~')' defines a morphism 

[I: (G(n - 1), j*nk(~')) ---> (VI (n), p*nJ~')). 

The identity map of V I (n), together with the homomorphism p, defines a 
morphism 

An easy calculation assures us that 

(7.12) p 0 [I = II 0 0- : (G(n - 1), j*nkC~')) ---> (V I (n), nk(~"))' 

On the other hand, the map p: VI(n) ---> G(n), together with the identity 
map of nk(~')' defines a morphism p: (V I (n), p*nk(~')) ---> (G(n), nk(~'))' 
And the map j: G(n - 1) ---> G(n), with the identity map of nk(~')' defines a 
morphism}: (G(n - 1),j*nk(~'))---> (G(n), nk(~'))' and we have 

(7.13) Poll =}: (G(n - 1), j*nk(~')) ---> (G(n), nk(~'»)' 

Let W:+ I E Hk+I(VI(n), nk(~")) be the primary obstruction to a cross
section of q. Because of (7.11), 

qW:+ 1 = ~+I(n - 1) E Hk+I(G(n - 1), ifnk(~"))' 

By Theorem (6.19), 

(7.14) p*~+I(n) = P*W:+I E Hk+I(VI(n), p*nkC~')), 
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Applying the homomorphism ii to both sides of (7.14) and using (7.12), we 
find that 

(7.15) ]*~+l(n) = iip*~+l(n) 

= iip*W:+ 1 

= iT*TiW:+ 1 

= iT* ~ + 1 (n - 1). 

The relation (7.15) appears somewhat indigestible as it stands. However, 
if n - k > 2 or n - k = 2 and n is even, then the injection 

TCk(Vn- l . n-k-J) -* TCk(Vn. n-k) 

is an isomorphism, by Theorem (10.13) of Chapter IV. It follows that (J is an 
isomorphism of local coefficient systems (integers mod 2 or twisted integers, 
as the case may be). Identifying these isomorphic systems, we then have 

(7.16) Theorem If k < n - 2 or k = n - 2 is even, the injection j* maps 
~+l(n) into ~+l(n - 1). 0 

We should observe that we have used the definition of the Whitney 
classes as obstructions. Therefore the proof of Theorem (7.16) will not be 
complete until we have studied the cases k = - 1 and k = O. But these pre
sent no difficulty and are left to the reader. 

Suppose that k = n - 2 is odd. Then the injection 

Z = TCn-2(Vn- J. d -* TCn-2(Vn. 2) = Z2 

is an epimorphism. In this case the homomorphism (J maps the system 
ii TCn- 2(ff") of twisted integers into the simple system j*TCn- 2(ff') of integers 
modulo two. Reducing the coefficient groups for w,,-l(n - 1) mod 2, we 
obtain the Stiefel-Whitney class wn -l(n - 1), and 

(7.17) Theorem Ifn is odd, the injectionj* maps w,,-l(n) into wn-l(n - 1). 
o 

Finally, if k = n - 1, the class w,,(n - 1) = 0, so that 

(7.18) Theorem The injection j* maps w,,(n) into zero. o 

Theorems (7.16)-(7.18) cover the behavior of the Whitney classes. If we 
reduce mod 2, we obtain the Stiefel-Whitney classes, and the corresponding 
result is 

(7.19) Theorem The injection j* maps wk(n) into wk(n - 1) (k = 0, 1, ... , 
n - 1), while j*wk{n) = O. 0 
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It is customary to abbreviate H{(n), wk(n) to H{, Wk, respectively. Because 
of Theorems (7.16}-(7.19) this should cause little confusion. 

EXERCISES 

1. Let!1 : X ..... Y be a homotopy equivalence in ff, and let Q be a system of local 
coefficients in Y. Then!1 extends to a homotopy equivalence!: (X;ft Q) ..... (Y; Q) 
in 2. 

2. Let K, L be ordered simplicial complexes, ¢ : K ..... L an order-preserving simpli
cial map. Let G, H be local coefficient systems on I K I, I L I, respectively, and let 
1/1 : G ..... I ¢ I *H be a homomorphism. Show that ¢, 1/1 induce a chain map of 
r *(K; G) into r *(L; H) whose induced homomorphism coincides, up to the iso
morphism of Theorem (4.8), with the homomorphism 

(¢, 1/1)*: H*(IKI; G) ..... H*(ILI; H) 

induced by the morphism (¢, 1/1) of the category 2. 

3. Let K be an ordered simplicial complex, K' its first barycentric subdivision. Let 
¢ : K' ..... K be the simplicial map such that, for each simplex (J of K, ¢(bu) is the 
last vertex of (J. Prove that ¢*: Hq(K'; G) ..... Hq(K; G) is an isomorphism for 
every local coefficient system G in 1 K 1 = 1 K' I· 

4. Prove the analogues of the results of Exercises 2 and 3 for cohomology with local 
coefficients. 

5. Let p: X ..... B be a fibration with fibre F, and suppose that Band Fare 1-
connected. Show that the local coefficient system nq(OS") for the fibration 
Op : OX ..... OB is simple. 

6. Let p: X ..... B be a fibration with fibre F, and suppose that B is I-connected and 
F(n - I)-connected (n:2: 2). Let (K, L) be a relative CW-complex and let 
!: L ..... OX be a partial lifting of ¢ : K ..... OB. Let]: SL ..... X and IP : SK ..... B be the 
adjoints of J, ¢, respectively. Let a* : Hn+ l(SK, SL; nn(F)) ..... H"(K, L; nn- dOF)) 
be the composite of the suspension operator 

Hn+ I(SK, SL; nn(F)) ~ H"(K, L; nn(F)) 

with the isomorphism 

H"(K, L; nn(F)) ~ Hn(K, L; nn-l (OF)) 

induced by the isomorphism 

~* : nn(F) ..... nn-l(OF) 

of the homotopy sequence of the fibration p: P'(F) ..... F. Show that 
a*y"+ 1(J) = y"(f). 

7. Let p : X ..... B be a fibration with fibre F, and suppose that B is I-connected and 
F(n - 1 )-connected (n ;?: 2). Let j7' + 1 E H"+ I(B; nn(F)), j7' E H"(OB; nn-l (OF)) be 
the primary obstruction to cross-sections of p, Op, respectively. Let P* be the 
composite of the cohomology suspension 

(J* : H"+ I(B; nn(F)) ..... H"(OB; nn(F)) 



Exercises 313 

of Chapter VIII with the homomorphism 

Hn(QB; nn(F)) ---> H"(QB; nn- dQF)) 

induced by the coefficient group isomorphism ~*. Prove that fJ*y"+ 1 = yn. 

S. Prove that, if X is a O-connected space, Xo E X, if G is a bundle of abelian groups 
in X, and C~O)(X; G) is the set of all singular q-chains I gi Ui, where Ui : ~ q ---> X are 
singular simplices, all of whose vertices are at xo, then the graded group 
C~)(X; G) is a subcomplex of C*(X; G), and the injection Hq{C~)(X; G))---> 
Hq(C*(X; G)) is an isomorphism. 



CHAPTER VII 

Homology of Fibre Spaces: 
Elementary Theory 

The relations among the homotopy groups of the fibre F, total space X and 
base space B of a fibration are rather simple, as we saw in §8 of Chapter IV. 
The behavior of the homology groups is much more complicated. In the 
simplest case, that of a trivial fibration, the relationship is given by the 
Kiinneth Theorem. The general case will be treated in Chapter XIII with 
the aid of the complicated machinery of spectral sequences. In this Chapter 
we shall treat by more elementary methods certain important special cases. 
There are two reasons for this. The first is the hope that the geometrical 
considerations of this Chapter will help motivate the spectral sequence. 
The second is that the present route leads quickly to certain applications we 
have in mind, e.g., the homology of the classical groups. 

In §1, we assume that the base space B is the suspension of a space W. The 
decomposition of the base into two copies of the contractible space TW 
induces a decomposition of the total space into two subspaces, each of which 
has the homotopy type of TW x F, and therefore of F. Their intersection 
then has the homotopy type of W x F, and a consideration of the relation
ship between these subspaces leads to an exact sequence which makes the 
relationships among the homology groups of the three spaces F, X and B 
reasonably perspicuous. The case B = sn is of especial interest, and the 
resulting exact sequence was found by Wang [1] in 1949. 

Another special case of importance is that of the path space fibration over 
S W. The adjoint of the identity map of S W is an imbedding of W in the fibre 
QSW. Here the process of iterated multiplication in the H-space QSW leads 
to a sequence of maps of wn = W x ... x W into QS W. The spaces wn can 
be pasted together, by identifying (Wi> ... , W n + d with (Wl' ... , Wi' ... , W n + d 
whenever Wi is the base point, to produce a space J(W), called the reduced 
product, together with a map of J(W) into QS W. This construction was 

314 
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discovered in 1955 by James [1], who proved that the map in question is a 
weak homotopy equivalence. A comparable construction was found about 
the same time by Toda [1]. Both were anticipated by many years by Morse 
[Mo], who used it as his calculation of the homology of the space of 
rectifiable paths on a sphere. The reduced product is discussed in §2, while §3 
is devoted to some further properties of the Wang sequence. In §4 the 
fibrations 

0: ---+ sn- 1 

Un ---+ S2n-l 

SPn ---+ S4n- 1 

are used to calculate the cohomology rings of the classical groups (with Z2 
coefficients for 0: and general coefficients for the others). 

Another special case of interest is that in which the fibre is a sphere. If we 
further assume the fibration to be orientable, we obtain the Thom Isomor
phism Theorem [1] HP(B) ~ HP+n+ l(X, X), where X is the mapping cylin
der of p. This leads to an exact sequence due to Gysin [1] in 1941, relating the 
homology groups of the total space with those of the base, which in many 
cases allow us to make explicit calculations. These results are discussed in §5. 

As remarked before, there is a simple relationship among the homotopy 
groups of the three spaces F, X, B; it is an exact sequence 

.•. ---+ nr{F) ---+ nr(X) ---+ nr{B) ---+ nr-l(F) ---+ .••. 

For homology groups there is nothing so simple; however, if B is 
{m - 1 )-connected and F is (n - 1 )-connected, there is a parallel result in the 
form of an exact sequence relating the homology groups in dimensions 
:::: m + n. This was discovered by Serre [1] in 1950; an important con
sequence is that, if B is (m - I)-connected, then Hq(OB) ~ Hq+ I(B) for 
q :::: 2m - 2. Section 6 is devoted to this result. 

The homology and homotopy groups have many points of resemblance. 
One important difference is that, while the Excision Property is satisfied by 
the homology groups, it fails for the homotopy groups. In 1951 Blakers and 
Massey [1] introduced the homotopy groups of a triad, which were designed 
to measure the extent to which the Excision Property fails. Their main result 
was that, under reasonable assumptions about the spaces involved, if 
X = A u B and (A, A n B) is (m -- 1 )-connected, (B, A n B) IS 

(n - l}-connected, then the injections 

ni(B, A n B) --> ni(X, A), 

ni(A, A n B) --> ni(X, B), 

are isomorphisms for i < m + n - 2 and epimorphisms for i = m + n - 2. A 
consequence is the Suspension Theorem: if X is (n - 1 )-connected then 
TCi(X) ~ ni+ 1 (SX) for i < 2n - 1. This theorem was proved by Freudenthal 
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in 1937 [1] in the case X = S" and is one of the landmarks of homotopy 
theory. The Blakers-Massey Theorem is proved in §7, following Namioka 
[1], as a consequence of the results of §6. 

1 Fibrations over a Suspension 

Let W be a space with non-degenerate base point *, B = SW, and let 
P: X --+ B be a fibration with fibre F. As usual, if tEl, t = w(t) is the point of 
S = Sl to which it corresponds under the identification map w. Then B is the 
union T + W u T _ W of two copies of the cone over W; 

T + W = {t /\ wit ~ !}, 
T _ W = {t /\ wit ~ !}, 

and T + W n T _ W is a copy of W. 
Let X+ =p- 1(T+ W), X_ =p-1(T_ W), Xo=X+ nX_ =p-1(W). 

Since (T ± W, W) and (SW, T ± W) are NDR-pairs, so are the pairs (X ± , X 0) 
and (X, X ±), by Theorem (7.14) of Chapter I. Since T _ W is contractible, 
the fibre F is a deformation retract of X _ , and therefore the injection 

i1 : Hq(X, F)--+Hq(X, X_) 

is an isomorphism. By Theorem (2.2) of Chapter II, the triad (X; X + , X _ ) 
is proper, so that the injection 

is an isomorphism. 
As T + W is homeomorphic with TW under the map t /\ W --+ 2t /\ w, we 

may regard X + as a fibre space over TW. Since the latter is contractible, the 
projection P1 : TW x F --+ TW is homotopic to the constant map. Hence 
the projection P2: TW x F --+ F is homotopic in X + to a map 
h : TW x F --+ X + such that P 0 h = Pl. By the remarks preceding Corollary 
(7.27) of Chapter I, H: (TW x F, W x F) --+ (X +, Xo) is a fibre homotopy 
equivalence, and by that same Corollary, 

The above homeomorphism of TW with T + W is homotopic in B = S W 
to the proclusion w' = w /\ 1 : (TW, W) --+ (S W, *); under this homotopy, we 
may assume the points of W remain in T _ W. Hence h: (TW x F, W x F) 
--+ (X +, X 0) is homotopic in (X, X _) to a map ¢: (TW x F, W x F) 
--+ (X, F). Then i1 0 ¢* = i2 a h*, and the fact that ib i2 and h* are 
isomorphisms implies that ¢*: Hq{TW x F, W x F) --+ Hq(X, F) is an 
isomorphism. 
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The above discussion holds for homology with arbitrary coefficients, and 
the dual results hold for cohomology. We summarize this discussion in 

(1.1) Theorem Let p : X ~ S W be a fibration with fibre F. Then there is a map 
<P : (TW x F, W x F) ~ (X, F) such that the diagram 

(TW x F, W x F) (X, F) 

(TW, W) -----+> (SW, *) 
w' 

is commutative and such that, for any coefficient group G, 

<p* : Hq(TW x F, W x F; G) ~ Hq(X, F; G) 

and 

are isomorphisms. Moreover, <p I {*} x F: F ~ F is homotopic to the identity. 

o 
The map <p is called a structural map, and tjJ = <p I W x F : W x F ~ F a 

characteristic map, for the fibration p. 

(1.2) Corollary There are exact sequences 

(1.3) ... ~ Hq(F; G) ~ Hq(X; G) ~ Hq(TW x F, W x F; G) ~ 

H q- 1(F; G)~Hq_l(X; G)~··· 

(1.4) ···~Hq-l(X; G)~Hq-l(F; G)~Hq(TW x F, W x F; G)~ 

Hq(X; G) ~ Hq(F; G) ~ ... 

o 

Since TW is contractible, the subspace F = {*} x F is a deformation 
retract of TW x F, and, by exactness of the homology sequence of the triple 
(TW x F, W x F, F), we have isomorphisms 

Let us consider W as a space with base point and F as a free space; then the 
quotient W x FjF is just the reduced join W /\ F; then H q- 1(W x F, F) ~ 
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H q - 1 (W /\ F), by Lemma (2.1) of Chapter II. Hence the sequences (1.3), (1.4) 
become 

Ijf 
(1.5) ". -+Hq+l(F; G)-+Hq+l(X; G)-+Hq(W /\F; G) ---+ 

Hq(F; G)-+Hq(X; G)-+'" 

Ijf* 
(1.6) " . -+ Hq(X; G) -+ Hq(F; G) ---+1 Hq(W /\ F; G) -+ 

Hq+l(X; G)-+Hq+l(F; G)-+'" 

Let us make the maps Ijf, Ijf* explicit. The homology sequence 

." -+ Hq(F) -+ Hq(W x F) -+ Hq(W x F, F) -+". 

of the pair (W x F, F) with coefficients in G breaks up (because F is a 
retract of W x F) into a family of (split) short exact sequences 

i p 
0-+ Hq(F) * 'Hq(W x F) * ,Hq(W /\ F) -+ O. 

Let pz : W x F -+ F be the projection on the second factor; then pz 0 i = 

1 ~ !/J 0 i, and therefore !/J* 0 i* = Pz* 0 i* : Hq(F) -+ Hq(F). Thus !/J* - Pz* 
annihilates the image of i* and so induces a homomorphism 

Ijf : H,q(W /\ F; G) -+ Hq(F; G) 
such that 

(1,7) 

Similarly, there is a homomorphism 

Ijf* : Hq(F; G) -+ Hq(W /\ F; G) 

such that P* 0 Ijf* = !/J* - p! : Hq(F; G) -+ Hq(W x F; G). 
Consider the diagram 

H q +1(TW x F, W x F) 

(1.8) 

Since !/J is the restriction of ¢ to a map of W x F into F, we have 

!/J* 0°* = 0* 0 ¢*. 
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Now P2* 08* = 0 because the diagram 

H q + 1{TW x F, W x F) 
P2. 

------+ 

-----~) Hq{F) 
P2. 

319 

is commutative, and therefore the top square in the diagram (1.8) is commu
tative. By (1.7), the whole diagram (1.8) is commutative. 

The sequences (1.3), (1.4) {or (1.5), (1.6» are called the Wang sequences for 
the fibration P; they were discovered by H. C. Wang in the case that W is a 
sphere. As this case is extremely important, we single it out for special 
mention: 

(1.9) Corollary lfp: X ~ sn is afibration with fibre F (n > 1), there are exact 
sequences 

8* 
(1.11) ... ~ Hq-l(X; G) ~ Hq-l(F; G) ---.. Hq-n(F; G) ~ 

Hq(X; G) ~ Hq(F; G) ~ ... D 

These are obtained from (1.3) and (1.4) after observing that by the Kiin
neth theorem, the cross product operations induce isomorphisms 

H (Tsn-l sn-l) t)(> H (F· G) ~ H (Tsn-l x F sn--l X F· G) 
n , \C:J q-n' "" q , " 

Suppose, in particular, that G is (the additive group of) a commutative 
ring with unit. Then we have 

(1.12) Theorem The map 8* : H*(F; G) ~ H*(F; G) of(1.11) is a derivation, 
of degree n - 1, of the graded ring H*(F; G). 

Let e be the canonical generator of the infinite cyclic group Hn(En, sn- 1), 
and let s = (5*-le E Hn-l(sn-l), so that the Kronecker index <e, Gn> = 1. 
(See the discussion of orientation in §4 of Chapter IV). Then (5*s = e, and 
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there is a commutative diagram 

j ~* 
---+ 

¢* 

and e* is defined by the condition 

(1.13) ¢*~*x = e x e*(x). 

The unit element 1 of H*(sn- 1) generates the infinite cyclic group HO(sn- 1), 
and the maps u ~ 1 x u, v ~ s x v represent Hq-I(sn-I x F) as the direct 
sum Hq-I(F) EB Hq-n(F), and 

(1.14) ~*(1 x u) = 0, 

~*(s xv) = ~*s x v = e x v. 

If x E Hq-I(F), we have ljJ*x = 1 x u + s x v, for some u E Hq-I(F), 
v E Hq-n(F). Now the last sentence of Theorem (1.1) implies that u = x, and 
(1.13), (1.14) imply that v = e*(x). Thus 

1jJ*(x) = 1 x x + s x e*(x). 

Now 1jJ* is a ring homomorphism. But x E Hq-l(F), y E Hr-I(F) imply 

1jJ*(xy) = 1 x xy + s x e*(xy) 

1jJ*(x)IjJ*(y) = {I x x + s x e*(x)}{1 x y + s x e*(y)} 

= 1 x xy + s x e*(x)y + (_lyn-l)(q-l)s x xe*(y), 

so that 

e*(xy) = e*(x)y + ( -1 )(n- I)dim xxe*(y). o 

Another special case of importance arises when the fibre F acts on the 
fibration; i.e., when there is a map J1 : X x F ~ X such that 

J1 0 i l ~ 1, the identity map of X, 

J1 0 iz ~ i: F Ct X, 

P 0 J1 = P 0 PI> where PI: X x F ~ X is the projection. 
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In particular, the restriction of J1 to F x F is a multiplication J10 : F x F ~ F, 
making F into an H-space. It is convenient to think of J1 as a kind of 
multiplication, and to write x . y instead of J1(x, y). 

N.B.: We have defined what might appropriately be called a right 
action. Sometimes it is more convenient to deal with left actions instead; 
these are maps of F x X ~ X with the appropriate properties. 

We shall say that the action J1 is associative if and only if x . (Yl . yz) = 

(x' Yl) . Yz for all Yb Yz E F, x EX; and J1 is homotopy associative if and 
only if there is a homotopy h of J1 0 (1 x J10) to J1 0 (J1 xI) : X x F x F ~ X 
such that p 0 h is stationary. 

There are two important examples of actions. 

EXAMPLE 1. Let q: P*(B) ~ B be the fibration of Theorem (2.16), Chapter 
III; the fibre of q is the space Q*(B) of measured loops, and the operation of 
multiplication of measured paths defines an associative left action of Q*(B) 
on the fibration q. 

EXAMPLE 2. Let G be a compact Lie group, H a closed subgroup of G, and let 
G/H be the space of left co sets, p: G ~ G/H the natural map, defined by 
p(x) = xH. Then the restriction of the group operation in G to G x H 
defines a right action of G on p; and this action is, of course, associative. 

Suppose that F acts on the fibration p: X ~ SW. Let ho : TW ~ X + be a 
map such that p 0 ho is the identity map of TW. The map J1 : X x F ~ X 
sends X + x F into X +, and composition of the latter map with 
ho xI: TW x F ~ X + x F defines a map h: TW x F ~ X +. Similarly, 
there is a map CPo: TW ~ X such that p 0 CPo = UJ /\ 1. Again, let 
cP = J1 0 (CPo xI): TW x F ~ X; then these maps h, cP will serve in the proof 
of Theorem (1.1). Hence 

(1.15) Theorem If p: X ~ SW is afibration with fibre F, and ifF acts on the 
fibration p, then there is a map CPo : (TW, W) ~ (X, F) such that the map 
cP = J1 0 (CPo x 1): (TW x F, W x F) ~ (X, F) is a structural map; and if 
1/10: W ~ F is the restriction of CPo, then 1/1 = J10 0 (1/10 x 1): W x F ~ F is a 
characteristic map. D 

Let us return to Example 1, the fibration P*SW ~ Sw, with fibre 
F = Q*SW. In this case, the total space is contractible, and the Wang se
quence (1.5) reduces to a family of isomorphisms 

(1.16) 

the cases q = 0, 1 being possible exceptions. Now X is a-connected, and 
therefore the injection Ho(F) ~ Ho(X) is an epimorphism. If W is 0-
connected, then SW is I-connected, by the van Kampen Theorem, and there
fore F = Q*SW is a-connected, so that the injection Ho(F) ~ Ho(X) is an 
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isomorphism. Hence (1.16) holds for all q ~ 0. This allows a recursive calcu
lation of the homology groups of F. For, by the Ktinneth Theorem 

Hq(F) ~ Hq(W /\ F) 

~ EB Hr(W,*)®Hs(F)EB EB Tor{Hr(W,*),Hs(F)}. 
r+s=q r+s=q-l 

Since W is O-connected, Hr(W, *) = ° for r :::; 0, and therefore the right-hand 
side of the above formula involves only the homology groups of F in dimen
sions less than q. To give an explicit formula would be rather complicated in 
general. However, let us suppose that the coefficient group is a field (or else 
that the coefficient ring G is a principal ideal domain and H *(W; G) has no 
torsion). Let Pk(Y) be the kth Betti number of the space Y and assume 
Pk(Y) < 00 for all k; then the Poincare series of Y is the formal power series 
Y(t) = Lf=o Pk(Y)tk. Now the Ktinneth Theorem implies that the Poincare 
series of a product space is the product of the Poincare series of its factors. 
The Poincare series of (W, *) is W( t) = W( t) - 1. Thus 

F(t)W(t) = F(t), 

F(t) = 1_ = 1 + W(t) + W(t)2 + ... 
1 - W(t) 

If W is a sphere sn, then W(t) = tn. Thus 

(1.17) Corollary The homology groups of the loop space Qn+ 1 = Q(sn+ 1) are 
given by 

Hqn(Qn+ 1) ~ Z 

Hq(Qn+l) = ° 
(q=0,1,2, ... ) 

otherwise. o 

This result for Q(sn+ 1) (or rather, for the space of rectifiable loops in 
sn+ 1) was first proved by Marston Morse. 

We have determined the homology groups of the space F = Q*SW. But 
there is additional structure, deriving from the fact that F is an H-space. In 
fact H *(F) is a graded algebra, the Pontryagin algebra, over the coefficient 
ring G; the product in H*(F) is defined by u· v = 110*(U x v), where 
110: F x F --> F is the product in F. Let M be the G-module H *(W, *). 

Remark. By Corollary (2.19) of Chapter III, Q(SW) and Q*(SW) have 
isomorphic homology and cohomology groups, and even isomorphic coho
mology rings. That they have isomorphic Pontryagin rings follows from the 
observation in (4.22) of Chapter III that the homotopy equivalence h is an 
H-map. 

(1.18) Theorem If W is a O-connected space with non-degenerate base point *, 
and if G is a field, or else G is a principal ideal domain and M = H *(W, *; G) 
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is torsion-free, then the Pontryagin algebra H *(OS W) is isomorphic with the 
tensor algebra T(M). 

Let us recall [B] that the additive group of T(M) is the direct sum 

00 

where M 0 = G and M n + 1 = M ® M n; T(M) is an associative algebra with 
unit, and the multiplication in T(M) is uniquely determined by those proper
ties and the formula 

(1.19) 

for x E M = M 1 and u E M n • 

By the Kiinneth theorem, 

x'u=x®u 

H*(W AF) ~ H*(W, *) ® H*(F) = M ® H*(F), 

and so I{! may be regarded as a map of M ® H *(F) into H *(F). Let 
M~ = H o(F), and define M~ c H *(F) inductively by 

I{!(M ® M~) = M~+ l' 

We have seen that F is O-connected, so that the augmentation 
8: Ho(F; G) ~ G is an isomorphism. Letfo: Mo = G ~ M~ = Ho(F; G) be 
the inverse of 8. If fn : M n ~ M~ is an isomorphism, the composite 

1 ®fn ,I{! 
Mn+l=M®Mn ,M®Mn ,H*(F) 

is a monomorphism with image M~+ l' and therefore an isomorphism 
fn+l:Mn+l~M~+I' Thefn:Mn~M~ induce a homomorphismf:M~ 
H*(F). We shall show 

(1) fis an epimorphism; 
(2) fis a monomorphism; 
(3) f is a homomorphism of algebras. 

Let Pn = L~=o M q, P~ = L~=o M~. Then P~ = M~ = Ho(F). We shall 
prove that Hn(F) c P~ for all n; it follows thatfis an epimorphism. In fact, 
suppose that Hq(F} c P~ for all q :::.; n, and let x E Hn+ 1 (F). The fact that I{! is 
an epimorphism implies that x = I{!(u) for some u E M ® H *(F). Now M has 
no elements of dimension :::.; 0, and therefore the components of u all have 
dimension :::.; n; by the induction hypothesis, U E M ® P~, and therefore 

x = I{!(u) E L I{!(M ® M~) = L M~+ 1 = P~+ l' 

Now f IPo =fo: Po = Mo ~ Ho(F) c H*(F) is a monomorphism. Sup
pose that f IPn : Pn ~ H *(F) is a monomorphism. Then (1 ®f) 1M ® Pn : 

M®Pn ~M®P~, and, as I{!IM®P~: M®P~~H*(F) is a mono
morphism, their composite is a monomorphism g: M ® Pn ~ H*(F). 
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The restriction of this monomorphism to M 0 M q beingfq + 1> it follows that 
g=fIM0Pn' But Pn+! is the direct sum MotB(M0Pn) andf(Mo)c 
Ho(F), while f(M 0 Pn) c H +(F), the ideal of elements of positive dimen
sion, and therefore f I P n+! is also a monomorphism. Since this is true for all 
n, f is a monomorphism. 

To prove that f is a homomorphism of algebras, we shall use Theorem 
(1.15). There is a map 1/10: W -+ F such that 1/1 = 110 0 (1/10 x 1), where 
110 : F x F -+ F is the operation of multiplication of measured paths. 

(1.20) Lemma The map tfj : M (8) H *(F) -+ H *(F) is given by 

tfj(u 0 v) = tfjo(u) . v 

for all u E M, v E H*(F). 

(The homomorphism tfjo : H *(W, *) -+ H *(F) is defined in a similar way 
to tfj; the diagram 

is required to be commutative, where c is the constant map). 
The proof of the Lemma is an exercise in diagram-chasing, which is left to 

the reader with the hint that P2 ~ 110 0 (c xl). 
It is now easy to complete the proof of Theorem (1.18).1t suffices, in view 

of the remarks we have made above on the structure of the tensor algebra, 
and, in particular, of (1.19) to prove that, if u EM, V E M n' then f( u 0 v) = 

f(u) . f(v), i.e., 

But 

while 

j~+! (u 0 v) = tfj(1 0fn)(u 0 v) 

= tfj(u 0fn(v)) 

= tfjo(u) . fn(v); 

(1.21) Corollary The Pontryagin ring H*(Qn+!) is the polynomial ring Z[u], 
where u generates the infinite cyclic group H n(Qn + ! ). 0 
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Note that H *(OS W) need not be commutative as a graded ring (i.e., it is 
not true that uv = (-l)Pqvu for U E H p, v E Hq). 

We shall not calculate the cohomology ring of OS W in general. However, 
the special case W = sn will be very important for us, and will illustrate the 
complications that may be expected to arise in general. 

In calculating H*(on+ 1), let us first assume that n is even. We shall use 
Corollary (1.9) and Theorem (1.12). Now Hq(on+l) = 0 unless 
q = O(mod n), while 8* : Hqn(on+ 1) ~ H(q-1)n(on+ 1) for all q ~ 1. Moreover, 
on+ 1 is O-connected, and so HO(on+ 1) is the infinite cyclic group generated 
by the unit element 1. Define a sequence {Zq} inductively by 

Zo = 1 

(k ~ 1). 

We now claim that 

(1.22) 

for every positive integer k. In fact, 8* is a derivation of even degree n, and 
therefore 8*(z1) = kz1-18*(Z1) = kz1- 1 for all k. If (1.22) holds for a certain 
integer k, then 

8*(z1+ 1 ) = (k + 1)z1 = (k + l)k!zk = (k + l)!zk 

= 8*((k + l)!Zk+l); 

since 8* is an isomorphism, Z~+l = (k + 1)!zk+1' As (1.22) is patently true 
for k = 1, its truth for all k follows. 

This determines the structure of H*(on+ 1) in the case that n is even. We 
shall call it the divided polynomial ring P*(z) generated by the sequence 
Z = (Z1' Z2, ... ). 

Suppose now that n is odd, and choose the elements Zk as before. By the 
commutative law for the cup-product, zi = - zi, and therefore zi = 0 since 
H2n(on+ 1) has no torsion. Therefore (1.22) cannot hold for all k. Instead, we 
have the somewhat more complicated relations 

(1.23) Z1 ZZk+ 1 = 0, 

Z~ = k! ZZk' 

In fact, the relations (1.23) hold for k = O. If they hold for all j < k, then 

8*(Z1 ZZk) = 8*(Z1)Z2k - Z1 8*(zzd 

and therefore z 1 z 2k = Z 2k + l' Also 
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Finally, note that (8*)2 = 8* 0 8* is a derivation of even degree, which maps 
z 2k into z 2k _ 2 , and the third formula of (1.23) now follows by a calculation 
similar to that by which (1.21) was proved. 

We can now explicate the structure of H*(nn+ l) for n odd. The elements 
z 2, Z4' ... generate a divided polynomial algebra isomorphic with 
H*(n 2n + l), and the element Zl generates an exterior algebra isomorphic 
with H*(S"). Finally, the whole algebra is the tensor product of these two 
subalgebras. 

We have proved 

(1.24) Theorem If n is even, H*(nn+ l) is the divided polynomial algebra gen
erated by a sequence of elements {zd such that 

z1 = k!Zk 

for all k ~ O. If n is odd, H*(nn+ l) ~ H*(sn) ® H*(n 2n + l). o 

2 The James Reduced Products 

The considerations of the preceding section suggest the possibility of con
structing a model for the loop space of a suspension through approximation 
by iterated products. Such a procedure was first carried out by Marston 
Morse for the sphere, and, in full generality by I. M. James. 

Let W be a space with nondegenerate base point e. Let J(W) be the free 
monoid with unit element generated by W. Intuitively the points of J(W) are 
formal products of elements of W, two such products being equal if they 
become equal after deleting all occurrences of the base point e. More 
precisely, the points of J(W) are equivalence classes of finite sequences of 
points of W under the equivalence relation defined as follows. An elementary 
equivalence is the operation of replacing the sequence (w b ... , W q) by the 
sequence (Wl' ... , Wi-l, e, Wi' ... , wq ) for some i(1::; i::; q + 1); or the 
inverse of such an operation. Two sequences (Wb ... , wq ) and (W'l' ... , w~) 
are equivalent if and only if one can be obtained from the other by a finite 
sequence of elementary equivalences. The product of two sequences 
(Wl' ... , wp ) and (w~, ... , w~) is the sequence (Wl' ... , wp ' W'l' ... , w~) ob
tained by juxtaposition. It is evident that an elementary equivalence on 
either factor induces one on the product, and therefore the operation of 
multiplying two sequences induces an operation in J(W), making it into a 
monoid. Each element of W, considered as a sequence of length 1, deter
mines an element of J(W), and this correspondence is a one-to-one map of 
W into J(W) which sends the base point e of W into the unit element of 
J(W). Then W generates J(W) as a monoid (in fact, if (Wl' ... , wq ) is a finite 
sequence of elements of W, the element of J(W) it determines is just the 
product W l ... wq ). Moreover, J(W) is free in the customary sense; any 
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functionf: W --> M of W into a monoid M with unit has a unique extension 
to a homomorphism J : J(W) --> M. 

We proceed to impose a topology on J(W). Let W'" be the product of m 
copies of W, and let ik : W"'-' --> W'" be the map defined by 

(k= 1, ... , m). 

Let w,;;- 1 be the union of the images of the ik ; it is the set of all points of W'" 
with at least one coordinate equal to e. 

(The reader is reminded here of the fact that the topology we are impos
ing on the product of two or more spaces is not the customary one, and that 
some properties which are obvious for the customary topology need 
verification here. As most of these verifications are extremely easy, we shall 
leave them to him). 

Let r(W) be the set of all elements of J(W) which are products of at most 
m factors. Let 7rm : W'" --> r(W) be the natural map, defined by 

and topologize r(W) be requiring that 7rm be a proclusion. 

(2.1) Lemma The space r(W) is a Hausdorff space. 

For let w = w, ... wm , w' = w', ... w;" be distinct points of r(W). Then 
we may write w = x, ... xP' w' = x~ ... x~ where Xi' Xi E W - {e}, and the 
sequences (x" ... , xp), (x'" ... , x~) are distinct. Choose neighborhoods U of 
e, V; of Xi' Vi of xi such that 

Let 

U n V; = U n Vi = 0, 

V; n Vi = 0 if Xi # xi· 

P = V, x ... x Vp x U x ... x U, 
~ 

m - p factors 

P' = V', x ... x V~ x U x ... x U, 

m - q factors 

and let Q be the union of all the sets which can be obtained from P by 
permuting the factors but leaving the order of the factors V" ... , Vp un
changed, and define Q' in a similar way from P'. Then Q is open in the 
cartesian product topology, and a fortiori Q is open in W"'. Similarly, Q' is 
open in W"'; since both are saturated, under 7rm , their images in r( W) are 
open and contain w, w' respectively. It remains only to prove that 
Q n Q' = 0, a task which we cheerfully leave to the reader! 0 
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It follows from Lemma (2.1) and from (4.17) of Chapter I that the space 
Jm(W) is compactly generated; thus our construction does not take us out
side the category x. 

(2.2) Lemma The map r-l(W)c. r(W) is a homeomorphism of r-l(w) 
with a closed subspace of Jm(W), and the proclusion nm: (wm, W;-I) ~ 
(r(W), r-l(W» is a relative homeomorphism. The latter pair is an 
NOR-pair. 

Let J;-1 be the image of W;-1 under the proclusion nm; then 
wn,'-1 = n- 1(Jm-l) is closed in wm and n I wn,'-I. wn,'-1 ~Jm-l is a * m * 'm *.* * 
proclusion; hence J;-1 is closed and nm : (wm, W;-I) ~ (r(X), J;-1) is a 
relative homeomorphism. By (5.4) of Chapter I, the latter pair is an NOR
pair. As r-l(X) and J;- 1 coincide as sets, it remains only to verify that 
they have the same topology. 

Let n* = nm I W;-1; then the diagram 

wm - 1 ik W m - 1 • • 

nm -l 1 1 n. 

r-l(X) J m - 1 • 

is commutative. If a set A is closed in r-1(X) then n;;;21(A) is closed in 
wm- 1 and therefore ik n;;;2 1(A) is closed in W;-1. But then n~1(A)= 
Ur = 1 ik n;;; 2 1 (A) is closed. This proves that A is closed in J; - 1. Conversely, 
if A is closed in J;-t, then n;I(A) is closed and therefore n;;;21(A) = 

i; In; I(A) is closed because ik is continuous. Hence A is closed in Jm-1(X). 

o 

It follows from Lemma (2.2) that the spaces r(W) form an expanding 
sequence of spaces in the sense of §6 of Chapter I. Giving J(W) the topology 
of the union, we see from (6.3) of Chapter I that J(W) is a filtered space 
under the NOR-filtration {r(W)}. 

The following remark follows easily from the above observation. 

(2.3) Letfm: wm ~ X be a sequence of maps such thatfm 0 ik = fm- dor k = 1, 
... , m. Then there is a map f: J(W) ~ X such that (f I r(W» 0 nm = fmfor 
m = 1,2,3, .... 0 
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Commutativity of the diagram 

wm X wn ---_I wm + n 

j nm+n 

r(w) x r(w) --+ r+m(w) 

and the fact that nm x nn is a proclusion, by (4.18) of Chapter I, allows us to 
conclude that the map of r(W) x r(W) into r+n(w) defined by the pro
duct in J(W) is continuous. By (6.7) of Chapter I, J(W) x J(W) is filtered by 
the spaces U~=O r(W) x r-m(W), and it follows that 

(2.4) Theorem The space J(W) is a strictly associative H-space. 0 

(2.5) Theorem The H-space J(W) is freely generated by W in the sense that, 
for any strictly associative H-space X with unit e and any continuous map 
f: (W, e) -+ (X, e), there is a continuous homomorphism]: J(W) -+ X extend
ingf 

For letfm: wm -+ X be the map such that 

fm(wf, ... , wm) = f(wd ... f(wm)· 

Clearly fm 0 ik =fm-l; by (2.3), these induce]: J(W)-+X, such that 

J(w 1 •.. wm) = fm(Wl' ... , wm) 

for all Wi E W. Clearly] is a homomorphism, which is unique since W 
generates J(W) as a monoid. 0 

The map J is called the canonical extension off 
In particular, suppose that f: W -+ W' is a map. Then the composite 

W f, W 2=. J(W) 

has the canonical extension 

~ 
J(f) = i 0 f: J(W) -+ J(W). 

Clearly J determines a functor from % * to the category of strictly associa
tive H-spaces and continuous homomorphisms. 

The identity map of SW is adjoint to the map ..1.0: W -+ nsw defined by 

Ao(W)(t) = t /\ W 
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for tEl, WE W. Unfortunately, the H-space nsw is not strictly associative. 
Instead, we shall consider the space n*s Wand the imbedding 
A: W ~ n*sw defined as follows. Let u: W ~ I, k: I x W ~ W, represent 
(W, *) as an NDR-pair. Then 

A(W) = (u(w), v), 

where v: [0, u(w)] ~ (SW, *) is given by 

v(t) = {~t/u(W)) 1\ W !~: ~ :: 
The reader may verify that A is continuous, and that, if h' : n*s W ~ ns W is 
the homotopy equivalence of (2.18), Chapter III, then h' 0 A = Ao. Thus A 
and AO correspond under the isomorphism 

~': [W, n*SW]:::::: [W, nsw]. 

By theorem (2.5), the map A extends to a map 

A: J(W) ~ n*sw. 

An important result of I. M. James is 

(2.6) Theorem The map A: J(W) ~ n*sw is a weak homotopy equivalence. 

(In fact, D. Puppe [2] has shown that under rather weak hypotheses it is a 
homotopy equivalence). 

We first show that A is a homology equivalence. Let us abbreviate J(W), 
Jm(w) to J, Jm, respectively. Define a map ¢ : W x J ~ J as the composite 

f1 .J , 

f1 being the product in J. As in the case of ns W (cf. the construction of i/f in 
§1), the homomorphism ¢* - P2*: H*(W x J) ~ H*(J) annihilates the 
image of the injection H *(e x 1) ~ H *(W x J) and so induces a 
homomorphism 

(Here, as in § 1, J is being considered as a free space). 

(2.7) Lemma The homomorphism if>* is an isomorphism. 

The map ¢ carries W x Jm into Jm+ 1 for every m, and there are commuta-
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tive diagrams 

j j 
(W. e) x (r. r- 1 ) -------+ 

in which the vertical arrows represent relative homeomorphisms, the upper 
horizontal arrow the identity map, and the lower horizontal the map of pairs 
induced by the restriction of ¢. It follows that ¢ induces isomorphisms 

¢m: H*«W, e) x (r, r- 1 )):::::: H*(r+ 1, r) 

for all m. 
In the homology sequence of the triple 

(W x jm, W X jm- 1 U e x jm, e x jm) 

the group 

H *(W x jm-l U e x jm, e x jm) 

is isomorphic with the group 

H (W x ],"-1 ex jm-1) * ' , 
by the Excision Theorem. Replacing the former group by the latter, we 
obtain the left-hand column of the diagram (Figure 7.1) the right-hand 
column of which is the homology sequence of the pair (r + 1, r). The 
homomorphisms (Pm are defined in a similar way to the homomorphism (P*; 
the composite of the injection H *(r) ...... H *(Jm+ 1) with 

Pz*: H*(W x r) ...... H*(r) 

agrees, on the image of the injection H *(e x r) ...... H *(W x r), with the 
homomorphism of H *(W x r) into H *(Jm+ 1) induced by the restriction of 
¢ to W x jm; their difference thereby induces a homomorphism 
(Pm: H*(W x r, e x r) ...... H*(r+ 1). 

(2.8) Lemma The diagram in Figure 1 is commutative. 

That the first and fourth squares are commutative is evident. The commu
tativity of the other two is easily proved by diagram-chasing, with the aid of 
theobservationthatpz*: H*(W x jm, W x jm-1 U e x jm) ...... H*(jm+1,jm) 
is zero, because it factors through the group H *(Jm, jm) = o. 

We have seen that ¢m is an isomorphism for all m. By induction on m and 
the Five-Lemma we deduce that (Pm is an isomorphism for every m. Finally, 
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H.(W X Jm- 1, ex r- 1 ) 
iPm-l 

H.(r) 

j CD j 
H.(W X Jm,e X Jm) 

iPm 
H.(r+ 1 ) , 

j W j 
H.(W X Jm, W X Jm- 1 ue X Jm) 

4Jm 
---+ H.(Jm+l, r) 

j G) j 
H. (W X Jm - 1, e X Jm - 1 ) 

iPm-l , H.(Jm) 

j @ 
1 

H.(W X Jm, e X r) 
iPm 

H.(r+ 1 ) , 
Figure 7.1 

¢. is an isomorphism because H .(W X J, J) and H .(J) are the direct limits 
of the groups H .(W X r, r) and H .(Jm+ 1), respectively, and because of the 
commutativity of the top and bottom squares in Figure 1. D 

The fact that A is a homology equivalence can now be proved by an 
induction on the dimension. In fact, suppose that A*: Hq(J(W)) ::::::: 
Hq{Q·SW) for all q < n. Then the diagram 

H,,(W X J(W), e X J(W)) 
(1 X X). 

H,,(W X O·SW, ex O·SW) 

j iP. j 0/. 

H,,(J(W)) 
X. 

, Hm(O·SW) 

is commutative. The Kiinneth relation for the homology groups ofthe pairs 
in the top line involves (because W is O-connected) only the homology 
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groups of J(W) and of Q*SW in dimensions less than n. Hence (1 x A)* is an 
isomorphism. As <1>* and i[J* are isomorphisms, so is A*. 

That A is a weak homotopy equivalence follows immediately from 

(2.9) Lemma Let X and Y be O-connected H-spaces, and let f: X --> Y be a 
homology equivalence which is also an H-map. Then f is a weak homotopy 
equivalence. 

By Theorem (3.2) of Chapter V, there are CW-approximations 
cp: K --> X, t/I: L --> Y. By Lemma (7.12) of Chapter V, K and L admit H
structures such that cp and t/I are H-maps. Since t/I is a weak homotopy 
equivalence, there is a map g : K --> L, unique up to homotopy, such that 
t/I 0 g ~ f 0 cpo Then g is a homology equivalence and a suitable diagram 
chase shows that g is an H-map. Moreover, g is a weak homotopy equiv
alence if and only if h is. Hence it suffices to prove Lemma (2.9) under the 
additional assumption that X and Yare themselves CW -complexes. We may 
further assume that f is cellular. 

Now (If' X) is a CW-pair; we shall show that it is an H-pair. Then 
Theorems (4.18) and (4.19) of Chapter III assure us that X and If are 
q-simple for all q and that 1! 1 (X) operates trivially on the relative homotopy 
groups of (If, X). In particular, X and Yare I-simple, so that 1!l(X) and 
1!1 (Y) are isomorphic with H 1 (X) and H 1 (Y), respectively, and therefore 
f* : 1!l(X)::;:o 1!l(Y)' It follows that (If' X) is I-connected. Then induction 
and the Hurewicz theorem allow us to conclude that 1!q{I f' X) = 0 for all q. 

To prove (If' X) an H-pair, we must show that the map of 
X x X u If v If into If which restricts to the folding map on If v If and to 
the product in X on X x X, extends to a map of If x If into If' Consider 
the homology sequence of the triple (If x If' X x X u IfvIf , X x X). 
Since f is a homology equivalence, so is f x j; by the Kiinneth Theorem, and 
therefore H q(I f x If' X x X) = 0 for all q. By the Excision Theorem, the 
injection 

Hq{I f vIf' XvX)-->Hq{X x X u IfvIf , X x X) 

is an isomorphism. Since f is a homology equivalence, so is f v f, by the 
Direct Sum Theorem, and therefore Hq{I f v If' X v X) = 0 for all q. By 
the exactness of the homology sequence of the above triple, 
Hq{I f x If, X x Xu IfvIf ) = 0 for all q. By the Universal Coefficient 
Theorem the cohomology groups of the latter pair vanish with arbitrary 
coefficients. As If is q-simple for all q, we conclude from the Eilenberg 
extension theorem that the desired extension exists. 

Let W, X be spaces with nondegenerate base points and let 

f: (r{W), r-l{W)) --> (X, *) 

We shall construct an extension g: J(W) --> J(X), called the combinatorial 
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extension 01 f By (2.3), it suffices to construct a sequence of maps 
In: wn ---+ J(X)(n = 1,2, ... ) such that 

(k=l, ... ,n), 

(and therefore In is the constant map for all n < m). 
Let n :2: m, and let P n be the set of all strictly increasing m-termed sub

sequences of (1, ... , n), ordered lexicographically from the right, so that 
Ct. < f3 if and only if there exists j( 1 S j S m) such that ex; = f3i for i > j and 
Ct. j < f3j. Let ex l , ... , Ct.N be the N = (;:.) elements of Pn , arranged in increasing 
order. For each r(1 S r S N), define gr : TV" ---+ r(W) by 

where Ct. = Ct.r. Then a map In: TV" ---+ IN(X) C J(X) is defined by 

In(x) = 7rN(fgl(X), .. ·,jgN(X)). 

If m = n, then N = 1, 9 1 = 7rm , and therefore 1m = 7r 1 0 1 0 7rm = 1 0 7rm . Sup
pose n> m, and let k be an integer, 1 s k s n. The map (1, ... , n - 1) 
---+ (1, ... , k - 1, k + 1, ... , n) induces an one-to-one map of Pn - I into 
Pn which is readily seen to be order-preserving; the image of this map is the 
set of all sequences Ct. which omit the value k. The remaining sequences Ct.r 

have the property that gr ik(x) = e for all x E wn- I. Therefore, if N' = (n;;, I), 
the sequence 

differs from the sequence 

(fgl (x), ... ,jgw(x)) 

by the interpolation of N - N' e's; thus 

fnik{x) = fn-I{X). 

The combinatorial extension g: J(W) ---+ J(X) of I is defined by the 
condition 

(g I J»(W)) 0 7rn = In (n=1,2,3 ... ). 

In particular, let MAn) be the n-fold reduced join W 1\ ... 1\ W; then the 
natural projection 

maps W~- 1 into the base point, and so induces a map In of the pair (r(W), 
r-I(W)) into (w(n), *). Let 

gn: J(W) ---+ J(MAn») 

be the combinatorial extension of In. Let X = V,:= 1 MAn), and let 
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in: W<n) ~ X be the inclusion, i~ = J(in) : J(w<n)) -> J(X). If x E r(W), let 
m 

Gm(x) = n i~(gn(x)). 
n= 1 

If x E r-1(W), then gm(x) = e; hence 

Gmlr-1(W) = Gm - 1 · 

Therefore the maps Gm together define a map 

G: J(W) ~ J(X). 

Let 0: SJ(W) ~ SX be the adjoint of the composite map 

J(W) G ,J(X) X ,Q*Sx. 

(2.10) Theorem If W is O-connected, the map 0 is a weak homotopy 
equivalence. 

Since W is O-connected, so are J(W) and X = V':'= 1 W<n), and therefore 
SJ(W) and SX are I-connected. Therefore it suffices to prove that 0 is a 
homology equivalence. Let X m = V': = 1 W<n); then it is clear that 

O(sr(w)) c SXm 

for every m. Therefore 0 induces 

Om: Sr(W)/sr- 1(W) ~ SXm/SXm- 1 · 

But Sr(W)/Sr-l(W) = S(r(W)/r-l(W)) is homeomorphic with sW<m), 
as is SXm/SXm - 1. Moreover, gm Ir(W) is the relative homeomorphism 
fm: (r(W), r-l(W)) ~ (w<m), *), and it follows that Om is the natural 
homeomorphism. By induction and the Five-Lemma, it follows that 

01 Sr(W) : Sr(W) ~ SXm 

is a homology equivalence. But the homology groups of the filtered spaces 
SJ(W) and SX are the direct limits of those of the subspaces Sr(W) and 
SX m' respectively, and therefore 0 is a homology equivalence. 0 

Of particular interest is the 

(2.11) Corollary If n> 0, 0: SJ(sn) ~ V1:'= 1 snk+ 1 is a ho 1Otopy equiv
alence, so that SQsn+ 1 has the same weak homotopy type as V1:'= 1 snk+ 1. 

o 

Finally, let Pn : X ~ W<n) be the projection on its nth summand. In view of 
the natural isomorphism 7rq(J(Y))::::; 7rq(QSY)::::; 7rq+l(SY), the map 
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J(Pn) a G: J(W) -+ J(w<n») induces homomorphisms 

jn : 1!q+ 1 (SW) -+ 1!q+ 1 (S w<n») 

for every positive integer n. If IX E 1!q+ 1 (S W), the element jn(lX) is called the 
nth H opj-J ames invariant of IX. In particular, if W = sm, we have 

jn: 1!q+ 1 (sm+ 1) -+ 1!q+ 1 (smn+ 1). 

3 Further Properties of the Wang Sequence 

Let p: X -+ sn be a fibration with fibre F. In §1 we established the Wang 
cohomology sequence 

with coefficients in a commutative ring A, where the injection i* is a ring 
homomorphism and e* is a derivation. The following property of IX* will be 
useful for us: 

(3.1) Theorem For x E Hq-n(F), y E Hr(x), we have 

IX*(X ~ i*(y)) = IX*(X) ~ y. 

To see this, recall that IX* is defined by commutativity of the diagram 

j* 

ex 
+----

where cp is a structural map and e is an orientation of En. Thus IX*(X) = j*(z), 
where z E Hq(X, F) is the element such that cp*(z) = e x x. 

There is a pairing: Hq(X, F) ® H'(X) -+ Hq+r(x, F), defined by the cup
product; and this pairing has the property 

j*(z ~ y) = j*(z) ~ y = IX*(X) ~ y. 

Let us calculate cp*(z ~ y). The naturality of the cup-product gives 

cp*(z ~ y) = cp*(z) ~ cpS(y), 

where cpS: Hr(x) -+ H'(En x F) is the homomorphism of the absolute 
groups induced by the structural map cp. It follows from the last sentence of 
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Theorem (1.1) that 

and therefore 

<fJ6(y) = 1 x i*(y), 

<fJ*(z ~ y) = <fJ*(z) ~ <fJ6(y) 

= (e x x) ~ (1 x i*(y)) 

= e x (x ~ i*(y)) 

By definition of a*, a*(x ~ i*(y)) = a*(x) ~ y. 

(3.2) Corollary If x E HP(X), Y E Hq- n(F), then 

a*(i*(x) ~ y) = (-l)"Px ~ a*(y). 

337 

o 

o 
(3.3) Corollary The image of a* is an ideal in H*(X), the product of any two of 
whose elements is zero. 0 

If x is the unit element 1 E HO(F) of the cohomology ring, the element 
u = a*(l) belongs to Hn(x), and we have 

(3.4) Corollary The endomorphism d* = a* 0 i* of H*(X) is determined by 

d*(y) = u ~ y 

for all y E H*(X). o 

We can identify the element u. For recall that we have a commutative 
diagram 

(En X F, sn- 1 X F) 
<fJ 

(X, F) ----+ 

Plj jP 

(En, S"-1) • S" 
q 

where PI is the projection on the first factor. Let sn be the generator of Hn(sn) 
such that q*sn = e. Then <fJ*p*sn = pt q*sn = pte = e x 1. By definition of a*, 
a*(1) = j*p*sn; this element is the image of sn under the homomorphism of 
Hn(sn) into Hn(x) induced by p. If we continue to denote this homomor
phism by p*, we have 

(3.5) The relation a*(l) = p*(sn) holds in Hn(X). o 



338 VII Homology of Fibre Spaces: Elementary Theory 

Let us now suppose that F acts on the fibration p by J1: X x F ~ X. 
Then the map p 0 PI : X x F ~ S" is a fibration with fibre F x F; and the 
diagram 

J1 
X x F --------+ X 

S" 

is commutative. Hence 

J1*(U) = J1*P*s" = (p 0 pd*s" = p!p*s" = p!u = U x 1. 

Thus 

(3.6) The homomorphism J1* : H*(X) ~ H*(X x F) sends u into u x 1. 0 

An important special case will be needed in §4. Suppose that the map 
J1: X x F ~ X has an extension J1I : X x X ~ X making (X, F) into an 
H-pair. In this case we shall say that p is an H-fibration (with respect to the 
given structure of (X, F) as an H-pair). For example, if X is a compact Lie 
group and F a closed subgroup, then p: X ~ XjF is an H-fibration. 

(3.7) Theorem If p : X ~ S" is an H-fibration and the coefficient ring is an 
integral domain, then (he element U E H"(X) is primitive. 

The exactness of the Wang sequence implies that the injection 
i* : Hq(X) ~ Hq(F) is an isomorphism for q < n - 1, and the sequence 

is exact. Since HO(F) is free and A is a principal ideal domain, the image of 8* 
is free, and therefore i* : H"- I (X) ~ H"- I (F) is a split monomorphism. It 
follows from the Kunneth Theorem that (1/\ i)* : H"(X /\ X) ~ H"(X /\ F) is 
a monomorphism. There is a commutative diagram 

kt 
H"(X x X) -----> H"(X /\ X) 

Y j (l x i)* j (l/\i)* H"(X) 

~ 
H"(X x F) -----> 

k1 
H"(X /\ F) 

in which the homomorphisms kt are injections. By (3.6), QJ1*(u) = 0; since 
(\/\i)* is a monomorphism, k!!l!(U) = 0, and so U is primitive. 0 
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We shall also need to study the Wang sequence in homology. In doing so, 
we shall assume that the coefficients lie in a commutative ring A, that Facts 
on the fibration, and that the action is homotopy associative. 

The action f1: (X x F, F x F) -+ (X, F) gives rise to a commutative 
diagram 

"'~Hq(F x F)~H.(X x F)~Hq(X x F,F x F)~H._l(F x F)~ H.- 1(X x F)~'" 

1 ~o 1 ~1 1 ~o 1 ~1 
"·~H.(F) -----+ H.(X) ----> Hq(X,F) ----> Hq_1(F) ~ Hq-l(X)~'" 

Moreover, if u E Hr(F) is a fixed element, then the cross-product with u gives 
rise to a commutative diagram 

... ~ Hq-r(F) ----> Hq_r(X) -------> Hq-r(X, F) ----> Hq- r- 1(F) ------> H,-r-l(X) ~ ... 

"'~Hq(F x F)~Hq(X x F)~Hq(X x F,F x F)~H4-1(F x F)~H4-1(X x F) ~ ... 

Combining these gives a commutative diagram 

... -+ H p(F) ----. H p(X) -+ H p(X, F) ----+ H p-l (F) ---+ H p- 1 (X) -+ ... 

l·u l·u l·u l·u l·u 
... -+ H p+r(F) -+ H p+r(X) -+ H p+r(X, F) -+ H p+r- l(F) -+ H p+r-l(X) -+ ... 

Now the Wang sequence is obtained from the homology sequence of the 
pair (X, F) by replacing the group Hr(X, F) by the isomorphic group 
Hr-n(F). The homology class u operates on each term of the resulting 
sequence, and we obtain a diagram 

(3.8) 

l·u l·u l·u l·u l·u 

(3.9) Theorem If p : X -+ sn is a fibration, with fibre F, on which F acts, and if 
w = p(w) E Hn- 1 (F) is the image of the characteristic element under the Hure
wicz map, then 
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for all x E H p-n(F). If the action is homotopy associative, then the diagram 
(3.8) is commutative. 

Let ¢: (En X F, sn- 1 X F) ~ (X, F) be a structural map. Then the 
diagram 

H p(En x F, sn-I X F) 

Hp-n(F) 

is commutative, by the definitions of iJ(*, 0*. In our case, the map ¢ has the 
form 11 0 (I/; xl) for a map I/; : (En, sn- I) ~ (X, F). Then 

O*(x) = 6*¢*(e x x) = 6*11*(1/; x l)*(e x x) 

= 6*11*(1/;* e X x) = 11*6*(1/;* e x x) = 11*(w x x) = w . x 

where w= 6*1/;*(e)E Hn_I(F). Since pol/; represents the element 
In E nn(sn), w = p(w). This proves the first statement. 

Suppose that the action is homotopy associative. Then 

o*(x· u) = w . (x· u) = (w . x) . u = o*(x) . u. 

On the other hand, 

while 

j*(x· u) = ¢*(e x iJ(*(x . u)) = 11*(1/; x l)*(e x iJ(*(x . u)) 

= 11*(I/;*(e) x iJ(*(X . u)) 

= I/;*(e) . iJ(*(X . u), 

Since j*(x . u) = j*(x) . u, the elements iJ(*(x . u) and iJ(*(x) . u are mapped 
into the same element by the isomorphism I/;*(e) ., and hence they are equal. 

o 

We conclude this section by remarking that the Wang sequence is, in a 
certain sense, natural. 
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(3.10) Theorem Suppose that 

f 
X~X' 

S" 

is a commutative diagram, and that p and p' are fibrations with fibres F and F', 
respectively. Thenf: (X, F) ----> (X', F') induces a map 

(3.11) 

"'---->Hp(F') ~ Hp(X') ~ Hp- II (F') ~ Hp-1(F')---->· .. 
I. a. ()~ 

of the Wang sequence of p into that of p' (i.e., the diagram (3.11) is commuta
tive). Moreover, there is a dual commutative diagram 

()'. '. j' • 
... ----> Hq- 1(F') ~ Hq-"(F') ~ Hq(X') ~ Hq(F') ----> ... 

(3.11 *) [ft If! kr k~ 
... ----> Hq- l(F) ~ Hq- "(F) -----4 Hq(X) ---+ Hq(F) ----> ... 

(). a· j* 

The proofs are routine diagram-chasing, and are left to the reader. 0 

4 Homology of the Classical Groups 

We shall study the homology properties of the classical groups by making 
use of the inclusions 

SPI C SP2 C ... C SPn- 1 C SPn c ... 

and the observation that the coset spaces 0:+ 1/0:, Un/Un- I, SPnISPn- 1 

are spheres of dimension n, 2n - 1, 411 - 1, respectively. Thus we can make 
use of the Wang sequences (1.10) and (1.11). We have written 0:, etc., 
instead of 0 + (n) for typographical convenience. 
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As the unitary and symplectic groups are easier to handle, we shall study 
them first. The following results are not unexpected, in view of §8 of Chapter 
III. 

(4.1) Theorem The Hopf algebra H*(Un; A) with coefficients in an integral 
domain A is the exterior algebra 

where Xi is a primitive element of H 2i - l (Un ; A). 

(4.2) Theorem The Hopf algebra H*(SPn; A) with coefficients in an integral 
domain A is the exterior algebra 

A(Xb ... , xn ), 

where Xi is a primitive element of H4i - l (SPn; A). 

We shall prove Theorem (4.1); the proof of Theorem (4.2) differs only in 
notation. 

The group U 1 is just the multiplicative group Sl of complex numbers of 
absolute value 1, and Theorem (4.1) is true in this case. Suppose that 
H*(Un- l ) is as described. Consider the Wang sequence 

8* i* ... ---+ Hq-l(Un _ d ' Hq- 2n+1(Un_ d ---+ Hq(Un ) ---> 

Now 8* has degree - 2n + 2, and therefore 8* annihilates the generators 
Xl' ... , X n - l of H*(Un- d. As 8* is a derivation, 8* vanishes identically, and 
the Wang sequence breaks up into a family of short exact sequences 

IJ(* i* (4.3) 0---+ Hq-2n+l(Un _ l ) , Hq(Un ) , Hq(Un - l ) ---+0. 

Since Hq(Un- l ) is a free A-module for all q, it follows that Hq(Un ) is also free. 
Moreover, the injection i*: Hq(Un) ---+ Hq(Un - d is an isomorphism for 
q < 2n - 1, by (10.17) of Chapter IV. Let us denote the counterimages of the 
generators Xb ... , Xn-l of H*(Un- l ) by the same symbols Xb ... , xn- l . Let 
X = 1J(*(1) E H2n-l(U) The monomials X = x· ... x· (i < ... < i < n) n n . I 11 Ik k 1 

form a module basis for H*(Un- d, and, by the exactness of the sequence 
(4.3), the monomials X I, IJ(* (X J) form a module basis for H* (Un). But 

IJ(*(XJ ) = 1J(*(XiI ... XA) = lJ(*i*(XiI ... XjJ 

and it follows that H*(Un) is the exterior algebra generated by Xlo ..• , X n • By 
hypothesis, the elements i*xj(j < n) are primitive in Un-I; since i* is an 
isomorphism in dimensions :s:; j, so is i* ® i*, and therefore the X j are primi
tive. By Theorem (3.7), Xn is primitive. 0 
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Note. If A has characteristic +- 2, the elements Xi E H 2i - I (Un ; A) have 
square zero because of commutativity. In particular, this is true for A = Z; 
moreover, H*(Un; Z) is free of finite rank. Hence, for any A, H*(Un; A) is 
isomorphic as an algebra with H*( Un; Z) (8) A, we may take the generators 
to be of the form Xi (8) 1, where the Xi are the generators of H*(Un; Z); as 
x? = 0, (Xi (8) 1 f = 0. 

Since the Xi are primitive, the structure of H*(Un; A) and H*(SPn; A) as 
Hopf algebras are determined. By duality, we can obtain the structure of the 
homology Hopf algebra, and this tells us the structure of the Pontryagin 
algebras. The results are: 

(4.1.) Theorem The Hopf algebra H *(Un ; A) with coefficients in an integral 
domain is the exterior algebra 

A(X'I, ... , x~), 

where x; is a primitive element of H 2i- I (Un; A). In particular, the Pontryagin 
algebra of Un is commutative. 

(4.2*) Theorem The Hopf algebra H ASPn; A) with coefficients in an integral 
domain A is the exterior algebra 

A(X'b ... , x~), 

where x; is a primitive element of H 4i - I (SPn; A). In particular, the Pontryagin 
algebra ofSPn is commutative. 

Again, we prove this in the unitary case. The elements XI = Xi, ... Xik ' as I 
ranges over all sequences of positive integers (ii, ... , ik ) such that i l < ... < 
ik :::; n, form a module basis for H*(Un; A). Let {x~} be the dual basis. 

If I, J are two such sequences having no term in common, let I + J be the 
sequence obtained by arranging ii, ... , ir , j I, ... , j s in increasing order. We 
then have 

I+J=K 

where '1(/, J) is the sign of the permutation 

( ~ I' ... , ~r'. kr + b .:., kn) 
1[, ... , I,,) [, ... ,) s 

Let P, Q be fixed sequences. We shall calculate x~ . xQ by finding its Kron
ecker index with each basis element x K . Now 

<xK , x~ . xQ) = <xK , fl*(X~ x xQ) 

= <fl*XK , x~ x xQ) 

L '1(/, J)<x I x x J ' x~ x xQ). 
I+J=K 
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There is at most one non-zero term in this sum, that for which I = P and 
J = Q. If P and Q have an element in common, or if they have no element in 
common, but P + Q =1= K, this cannot happen, and so <xK, x~ . xQ> = O. If 
P + Q = K, then 

<XK' x~ . xQ> = 1](P, Q)<xp x xQ' x~ x xQ> 

= ( -1)pq1](P, Q) 

where p, q are the lengths of the sequences P, Q respectively. Therefore 

(4.4) , , I (-1)pQ1](P, Q)x~+Q if P and Q have no common element, 
Xp· xQ = 

o otherwise. 

Interchanging P and Q in (4.4) yields 

xQ . x~ = (-1)pQ1](Q, P)x~+Q 

= 1](Q, P)1](P, Q)x~ . xQ by (4.4) 

= ( - l)PQx~ . xQ 

and therefore the algebra is commutative. Moreover, x;Z = 0 for each i. To 
prove that H *(Un ; A) is an exterior algebra, it remains to show that the 
monomials X;l ... x;. with i 1 > ... > ik form a basis. For this it suffices to 
show that, if I = (i 1, ... , ik ) then 

(4.5) 

This being manifestly true for k = 1, let J = (i2' ... , id and assume that 
x~ = X;k ... X;2. Then by (4.4), 

X~ . x;! = (-I)k-l1](J, {id)x~ 

= ( _ l)k - 1 ( _ 1 )k - 1 X~ = X~, 

and this completes the inductive proof of (4.5). 
It remains to prove x; primitive. Now 

<Xl x XJ' t\*X;> = <t\*(Xl x XJ, x;) 

= <Xl· XJ' X;). 

If I, J have a common element, Xl· XJ = 0; otherwise, Xl· XJ = x l +J . There
fore, if either I or J has length > 1 or both of them have length 1, then 
<XI x xJ' t\* X;> = O. The only non-zero Kronecker indices are 

<Xi X 1, t\*x;> = <Xi' X;) = 1 

< 1 X Xi' t\*x;) = <Xi' X;) = 1 
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and therefore 

1'1* x; = x; x 1 + 1 x x;, 
i.e., x; is primitive. This completes the proof of Theorem (4.1)*. 0 

We shall also need the corresponding results for the unitary unimodular 
group U:. Perhaps the simplest procedure is to repeat the inductive calcula
tions we have made for Un, but starting with U; = S3. We then find: 

(4.1 +) Theorem The cohomology ring H*(U:; A) is an exterior algebra gen
erated by primitive elements U i E H 2i - 1(U: ; A) (i = 2, 3, ... , n). 0 

(4.1 + *) Theorem The Pontryagin ring H *(U:; A) is an exterior algebra 
generated by primitive elements u; E H 2i-l(U:; A) (i = 2, 3, ... , n). D 

In §1O of Chapter IV we constructed an imbedding Gn+ 1 : spn(C) ~ U:+ 1 

for every positive integer n; this map has the following properties: 

(i) If p: Un\ 1 ~ s2n+ 1 is the restriction of Pn+ 1: Un+ 1 ~ s2n+ I, then 
po Gn+ 1 : (spn(C), spn-l(C))~(S2n+l, *) is a relative homeomor
phism; 

(ii) Gn + 1 I spn- 1(C) = Gn : spn- I(C) ~ U:. 

We now observe: 

(4.6) The injection G:+ 1 : H*(U:+ I) ~ H*(spn(C)) is an epimorphism; infact, 
G:+ 1 maps the space P* of primitive elements of H*(U:+ 1) isomorphically 
upon H*(spn(C). 

We have seen that the elements u2 , ... , un + 1 are primitive, and it follows 
by an argument similar to that used in the case of the orthogonal group that 
they form a basis for p* as an A-module. Therefore it remains only to verify 
that G:+1(uJ is a generator of H2j-l(spn(C) (j = 2,3, ... , n + 1). 

This is proved by induction on n. Let us recall that the generators Ui of 
H*(U:+ 1) are mapped by the injection into the generators with the same 
names for H*(U:) (i = 2, ... , n). Moreover, the remaining generator xn + 1 is 
defined to be a*(l) (= p*(S2n+ 1), by (3.5)). It follows from (ii), above, that 
the diagram 

H2i-I(U:+ I) __ H 2i - I(U:) 

G:+ 11 jG: 
H 2i - I(SP"(C) ------+ H 2i - l (spn-I(C), 

whose horizontal arrows denote injections, is commutative. Moreover the 
injections in question are isomorphisms for i ::;; n. Therefore it suffices, be-
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cause of the inductive hypothesis, to prove that the last statement of (4.6) is 
true for i = n + 1. But the diagram 

(p 0 Gn+d* 
___ ---., H2n+ I (spn(C), spn-I(C)) 

Hln+I(U+ ) n+ I 

in which the injectionj* is an isomorphism, is commutative. As (p 0 Gn + 1 )* 
is also an isomorphism, by (i), it follows that G~+ 1 is an epimorphism. 0 

The situation for the orthogonal group is more complicated because of 
the presence of 2-torsion in the integral homology. Accordingly, we shall 
discuss only the mod 2 homology, reserving the case of other coefficients for 
Volume II. 

The discussion of the mod 2 cohomology of 0: resembles that of Un. 
There are two important points of difference. Firstly, the generators may 
have even degree. Secondly, the commutative law does not guarantee that 
X2 = 0 if x has odd degree. 

What was actually proved about H*(Un} was that the monomials 
Xi, ••. Xik with i l > i2 > ... > ik form an additive basis. That the Xi generate 
an exterior algebra then follows from the commutative law (in fact, a 
special argument was needed in the mod 2 case). 

Let A be a (graded) algebra over Zz, and let (Xl> X 2 , ••• ) be a sequence 
(finite or infinite) of homogeneous elements of A. We shall say that the Xi 

form a simple system of generators for A if and only if the monomials 
Xi, ... Xik with il > ... > ik form an additive basis for A. It follows that X; is a 
linear combination of such monomials; and a knowledge of these elements 
determines the structure of A as an algebra. 

In studying the homology and cohomology of 0:+ 1, we shall need to 
make use of the imbedding gn: pn ---> 0:+ I of Theorem (10.11) of Chapter IV. 
We shall formulate and prove the results on homology and cohomology by 
simultaneous induction. 

(4.7) Theorem The cohomology algebra H*(O:+ I; Zz) has a simple system of 
primitive generators X I, ... , X n, such that 

(4.8) z jXZi if2i::::; n, 
Xi = \0 if 2i > n. 

The elements XI' ... , xnform a basisfor the space M n of primitive elements of 
H*(O:+ I; Zz). The homomorphism g~ maps Mn isomorphically upon 
H*(pn; Zz). 
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(4.7 *) Theorem The Pontryagin algebra H *(0:+ 1; Zz) is an exterior algebra 
A(x~, ... , x~), where x; is a homogeneous element of degree i. The elements x; 
with i odd are primitive andform a basisfor the space Mn of primitive elements. 

If n = 1, 0:+ 1 = S1 and Theorems (4.7) and (4.7*) are true in this case. 
Assume that both theorems are true for 0:. Consider first the Wang se
quence for cohomology: 

B* ~* ---->, Hq-n(o:) ----> 

i* B* Hq(o:+ 1) ---->, Hq(O:) ---->, ... 

For i < n - 1, B*xi E Hi-n+l(O:) = O. We next show that B*xn- 1 = O. If 
not, then B*xn- 1 = 1, and, by (3.5), p:sn = ~*(1) = ~*B*Xn-1 = O. The map 
Pn 0 gn : (pn, pn- 1) ~ (sn, en) is a relative homeomorphism and the injection 
Hn(pn, pn-1) ~ Hn(pn) is an isomorphism. It follows that g: 0 P: : Hn(sn) ~ 
Hn(pn) is an isomorphism and g:p:sn = 0, a contradiction. 

The derivation B* annihilates a set of generators for H*(O:), and there
fore B* = o. Thus the Wang sequence breaks up into a family of short exact 
sequences 

Now i* is an isomorphism for q < n; let us denote the counter-images under 
i* of the generators Xq of H*(O:) by the same symbols Xq (q = 1, ... , n - 1). 
Let Xn = ~*(1). Then it follows, just as in the unitary case, that Xl> ... , Xn 

form a simple system of generators for H*(O:+ d. We have seen above that 
g:(xn) is the non-zero element un of Hn(pn), and it follows by induction 
hypothesis and the fact that gn I pn-1 = gn- 1 that g:Xq = uq for 
q = 1, ... , n - 1. Moreover, the elements x 1, ... , Xn- 1 are clearly primitive, 
and Xn is primitive by Theorem (3.7). 

As the Xi form a simple system of generators for H*(O:+ d, the elements 
XI = Xi! ... Xik , as I ranges over all sequences i l > ... > ik , form an additive 
basis. Let {x~} be the dual basis for H *(0:+ d. Then the proof of Theorem 
(4.1*) can be repeated almost verbatim, up to the calculation of the coprod
uct, to show that the latter algebra is the exterior algebra generated by the 
elements x; (i = 1, ... , n), and x~ = x;! ... X;k. We can now exploit the dual
ity between the Hopfalgebras H" = H*(On\l)' Hn = H*(On\l). By (8.6) of 
Chapter III, M n is the dual space of Qn = Hn/Dn and Mn the dual space of 
Qn = Hn/Dn, where Dn and Dn are the spaces of decomposable elements. 
Since Hn is an exterior algebra, Dn is spanned by the unit and the XI where I 
has length ?:: 2; hence Qn has one basis element of dimension q correspond
ing to the indecomposable element x~ (q = 1, ... , n), so that M" has one 
basis element in each dimension q (q = 1, ... , n). Hence the primitive ele
ments Xq form a basis for Mn, which is mapped isomorphically by g: on 
H*(pn). 
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The element x: is primitive and g:(x:) = u2Q• Hence x: = 0 if2q > nand x: = x 2Q if 2q ::;; n. This completes the proof of Theorem (4.7). Moreover, it 
follows easily that Xl = Xi! ... Xi, is decomposable if either k > 1 or k = 1 
and i l is even; and if i is odd then Xi is indecomposable. It follows that the x; 
with i odd form a basis for M n . 0 

In a similar way, we can calculate the mod 2 cohomology ring of the 
Stiefel manifolds Vn• m' The result is given by 

(4.9) Theorem Let p: On+ -+ Vn. m = 0: jO:-m be the natural fibration. Then 
p*: H*(Vn, m; Z2) -+ H*(O:; Z2) is a monomorphism, and the image ofp* is 
the subalgebra ofH*(O:; Z2) generated by X n - m ' ... , Xn-I' 

(4.1O) Corollary The algebra H*(V n, m; Z2) has a simple system of generators 
(xn - m , ••• , Xn-I)' 

Theorem (4.9) is proved by induction on n, Ifn = m + 1, Vn,m = sn-I is a 
sphere, and we have seen in the proof of Theorem (4.7) that the theorem is 
true in this case, 

Assume that the cohomology of V n, m- I is as stated, Then there is a 
commutative diagram 

p' 
---------+ 

\ / 
sn 

of fibrations, and the restriction of p' to the subgroup 0: is the fibration 
p:O: -+Vn,m-I' By Theorem (3.10), there is a commutative diagram 
(Figure 7.2) and, by the induction hypothesis, the homomorphisms p* are all 
monomorphisms. We have seen that ()* = 0; therefore 0 = ()* 0 p* = 

p* 0 ()'*, and the fact that p* is a monomorphism implies that ()'* = O. Thus 
the Wang sequence of the fibration V n + I, m -+ sn, like that for the fibration 
On\ 1 -+ sn, breaks up into a family of short exact sequences, and we can now 
apply the Five-Lemma to deduce that p'* is a monomorphism, By induction 
hypothesis, the image of p*: H*{Vn , m- d -+ H*(O:) is generated by 
Xn- m' ,.., X n- I' But xn = cx*{ 1) = cx*p*( 1) = p'*cx'*( 1) and it follows that the 
image of p'* contains the sub algebra generated by Xn- m' ..• , X n , and it is a 
simple matter to deduce that equality does, in fact, hold. 0 

The cohomology rings of the complex and quaternionic Stiefel manifolds 
can be calculated in the same way. 
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Figure 7.2 

5 Fibrations Having a Sphere as Fibre 

Let p: X -4 B be an n-spherical fibration, and let A be a principal ideal 
domain. We shall be concerned with the homology and cohomology of the 
spaces involved with coefficients in an A-module M. 

Let X be the mapping cylinder of p, p: X -4 B the projection. A Thorn 
class for p is an element U E Hn+ '(X, X; A) whose image under the injection 
generates the free module H n + '(F, F; A). The fibration p is said to be A
orientable if and only if a Thorn class exists. 

In §9 of Chapter IV we saw that Hq(X, X; Z) = 0 if q ~ n, while the 
injection k*: Hn+,(F, F; Z)-4Hn+,(X, X; Z) is an epimorphism; it is an 
isomorphism if and only if 7[, (B) operates trivially on H n(F; Z). 

There is a commutative diagram 

I I 
Hom(Hn+,(X, X; Z), A) Hom(Hn(F; Z), A) 

Horn(k,. ~ ~orn(a,. 1) 

Hom(Hn+ ,(ft, F; Z), A) 

in which the vertical arrows denote the isomorphisms given by the universal 
coefficient theorem. Therefore 

(5.1) The injection k* is a monomorphism; it is an isomorphism if and only if 
7[,(B) operates trivially on Hom(Hn(F; Z), A). 

(5.2) Theorem If p is Z-orientable, it is A-orientable for any principal ideal 
domain A. If p is not Z-orientable, it is A-orientable if and only if A has 
characteristic two. 
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In fact the group Hn(F; Z) is infinite cyclic, and thus has only two auto
morphisms, viz. the identity and the reversal of sign; an element of 11: 1 (B) is 
accordingly said to preserve or to reverse orientation. The group 
Hom(Hn(F; Z), A) is isomorphic with A under the correspondencef -+ f(1), 
and the operations of an element ~ E 11:1 (B) on A are given by 

a -+ a if ~ preserves orientation, 

a -+ - a if ~ reverses orientation. 

Our result now follows easily. 
Let Bo be a closed subspace of B, Xo = p-1(Bo), 1'0 = p-1(Bo). The cup 

and cap products give rise to pairings 

Hn+ 1(1', X; A) ® HP(1', Xo; M) -+ HP+n+1(x, Xo u X; M), 

Hp(1', 1'0 u X; M)®Hn+1(x, X; A)--+Hp- n- 1(X, Xo; M). 

In particular, each element u E Hn+ 1(1', X; A) determines homomorphisms 

u ~: HP(X, Xo; M)-+HP+n+1(X, Xo u X; M), 

~ u: Hp(X, Xo u X; M) -+ H p- n- 1(X, Xo; M). 

The principal object of this section is to prove 

(5.3) Theorem (Thorn Isomorphism Theorem). If p: X -+ B is an A
orientable spherical fibration with Thom class u E Hn+l(1', X; A), then,for 
any subspace Bo of B and any coefficient module M, the homomorphisms u ~ 
and ~ u are isomorphisms. 

We shall reduce the proof of Theorem (5.3), step by step, to one special 
case, for which the proof is transparent. 

We first observe that if u is a Thorn class for the fibration p : X -+ B and if 
Bo is a closed subspace of B, then the image Uo of u under the injection 
Hn+1(1', X; A)-+Hn+1(1'o, Xo; A) is a Thorn class for the fibration 
Po = p I X 0 : X 0 -+ Bo· Moreover, 

(5.4) Lemma If any two of the three homomorphisms 

~ Uo: HAXo, Xo; M)-+H p- n- 1(Xo; M), 

~ u: Hp(X, X; M) -+ Hp- n- 1(1'; M), 

~ u: Hp(1', Xo u X; M) -+ H p- n- 1(X, Xo; M) 

are isomorphisms for all p, so is the third. Dually, if any two of the three 
homomorphisms 

Uo ~: HP(Xo; M) -+ HP+n+ 1(XO' Xo; M), 

u ~: HP("¥; M) -+ HP+n+ 1(X, X; M), 

u ~: HP(X, Xo; M) --+ HP+n+1(x, Xo U X; M) 

are isomorphisms for all p, so is the third. 
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(In particular, it suffices to prove Theorem (5.3) in the absolute case 
Xo = 0)· 

Consider the commutative diagram (Figure 7.3) embodying the homol
ogy sequences of the pair (X, Xo) and the triple (X; Xo u X, X), and in 
which k and I are injections. As (X, X) is clearly an NDR-pair, it follows 
from Theorem (2.2) of Chapter II that the triad (X; X 0, X) is proper, and so 
k is an isomorphism. The homomorphism </> is defined by </> 0 k = ~ Uo; it is 
an isomorphism since k and ~ Uo are. Our result will thus follow from the 
Five-Lemma, once we have verified the commutativity of the diagram. The 
only problem is the square involving the boundary operators. 

As the triad (X; X O , X) is proper, the inclusion C*(Xo) + C*(X) in 
C*(X 0 u X) is a chain equivalence, and therefore any element 
Z E Hp(X, Xo u X; M) is represented by a singular chain c whose boundary 
has the form a+b, where aECp _ 1(XO ; M), bECp _ 1(X; M). If 
V E C+ 1(1', X; A) is a singular cocycle representing u, then Z ~ u is repre
sented by c ~ V and o'(z ~ u) by o(c ~ V) = oc ~ V = a ~ V + 
b ~ V = a ~ V (note that b ~ V = 0 because V vanishes on chains of X). 
On the other hand oz is represented by oc = a + band k- 1 oc by a. Since Uo 
is represented by the restriction of V to C*(Xo), </> oz is also represented by 
a~ U. 

The proof for the homomorphism u ~ is entirely similar. o 

(5.5) Lemma If ~ u: Hp(X, X; A) --> Hp- n- 1(X; A) is an isomorphism for 
all p, then 

and 

are isomorphisms for all p and every A-module M. 

For let V E zn+ l(X, X; A) be a singular cocycle representing u; then the 
map c --> c ~ V of CAX) into C*(X; A) annihilates C*(X) and so induces a 
map of C*(X, X) = C*(X)/C*(X) into C*(X; A). The latter determines in 
turn a map 

which is a chain map. Moreover, the homomorphism 
H *(</> A) : H *(x, X; A) --> H *(X; A) is just ~ u. Thus H *(</> A) is an isomor
phism. It follows from the universal coefficient theorem for A-modules that 
the homomorphisms induced by 

</>A <8> 1: C*(X, X; M) = C*(X, X; A) <8> AM--> 

CAX; A) <8> AM = C*(X; M) 
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and 

Hom(<pA' 1): C*(X; M)= HomA(C*(X; A), M) 

~ HomA(C*(X, X; A), M) = C*(X, X; M) 

induce homology isomorphisms. But the latter are ~ u and u ~, respec
tively. 0 

Letf: B' ~ B be a map, and let p' : W ~ B' be the induced fibration, Wits 
mapping cylinder. Then there is a commutative diagram 

f' 
W -----. X 

(5.6) 

B' I B 
f 

inducing, in turn, a commutative diagram 

(W,W) 
J' 

(X, X) -----. 

(5.7) P'j jP 
(B', B') ----+ (B, B) 

f 

Let v = l'*u E Hn + l(W, W; A). 

(5.8) Lemma The class v is a Thorn class for the fibration p': W ~ B'. 
Moreover, the diagram 

(5.9) 

is commutative. 

Since the fibre of p' can be identified with the fibre F of p, there is a 
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commutative diagram 

W ---+ X 
!' 

and therefore a commutative diagram 

(p, F) 

V ~ 
(W, W) ---+ (i, X) 

J' 
and the fact that v is a Thom class follows immediately. The commutativity 
of the diagram (5.9) is a consequence of the functional properties of the cap 
product. 

(5.10) Corollary If f is a weak homotopy equivalence, and ~ v is an isomor
phism, then ~ u is an isomorphism. 

The homotopy sequences of the fib rations p', p are related by a commuta
tive diagram 

.00->1t.+1(B') a 1t.(F) ---+ 
.i 

---+ 

[f. II 
···->1t.+1(B) --------+ 1t.(F) a --------+ 1tn(X) ---+ 1t.(B) -> ... 

i .i 
and it follows from the Five-Lemma that!,: W -> X is a weak homotopy 
equivalence. Since the diagram (5.7) is commutative and p' : W -> B' and 
p : X -> B are homotopy equivalences, J' : W -> X is a weak homotopy 
equivalence. By the Whitehead theorem, 

and 

J~ : H *(W) -> H *(X) 

are isomorphisms. Since]' I W: W -> X is just the map!', it follows from the 
Five-Lemma that 
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is an isomorphism, and from the Universal Coefficient Theorem that 

J~: H*(W, W; A)->H*(X, X; A) 

and 

355 

are isomorphisms. The Corollary follows from these facts and the commuta
tivity of the diagram (5.9). D 

Since B has a CW-approximationf: K -> B, it follows from the Corollary 
that it suffices to prove Theorem (5.3) for the case that B is itself a CW
complex, and even a simplicial complex. That we may even assume B to be a 
finite complex follows from 

(5.11) Lemma Let B be a CW-complex, and let {B,IIXEJ} be the family of 
its finite subcomplexes. Let (Xa, X,) = (p-1(B,), p-1(B,)), and let 
u, E Hn+ 1(X" Xa; A) be the image ofu under the injection. If, for every IX, 

~ u,: Hp(X" X,; A) -> Hp- n- 1(Xa; A) 

is an isomorphism for all p, then so is 

~ u: Hp(X, X; A) -> Hp-n-1(X; A). 

This follows from naturality properties of the cap product and the fact 
that ~ u is the direct limit of the isomorphisms ~ ua • 

The above considerations have allowed us to reduce the proof of 
Theorem (5.3) to the case where B is a finite simplicial complex. We shall 
treat this case by induction on the number of simplices in B. Accordingly, we 
may assume that B = Bo U B1, where B1 is a principal r-simplex of B, Bo is 
the union of the remaining simplicies of B, so that Bo n B1 = B01 is the 
boundary of Bl and that our theorem is true for Bo. Because of Lemma (5.4) 
it now suffices to prove that 

~ u: Hp(X, Xo u X; A) -> Hp- n- 1(X, Xo; A) 

is an isomorphism. There is a commutative diagram 

H p( X h X 01 U Xl; A) 
~ Ul 

Hp-"-1(X h X 01 ;A) ----
j j 

Hp(X, Xo u X; A) ---- Hp-"-l(X, XO; A) 
~U 

where the vertical arrows denote injections; these are isomorphisms, because 
the triads (X; X 0 u X, Xl) and (X; X 0 , Xl) are proper. Therefore it suffices 
to prove that ~ U 1 is an isomorphism. But this last argument has reduced 
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the problem to that of proving Theorem (5.3) for the special case in which B 
is an r-simplex with boundary Bo. 

When this is the case, the base-space B is contractible and so the fibration 
is fibre homotopically trivial. By Corollary (7.27) of Chapter I, there is a 
fibre homotopy equivalence h : (B x F, Bo x F) --> (X, X 0)' and this induces 
a homotopy equivalence 

The groups 

fi: (B x t; Bo x t, B x F) --> (X; X 0, X) 

Hp(B x t, Bo x tuB x F; A), 

Hn+ I(B X t B x F· A) , " 

Hp- n- 1(B x t, Bo x t; A), 

are isomorphic with the groups 

Hp- n- 1(B, Bo; A)®AHn+l(t, F; A), 

HO(B; A) ® AHn+ l(t, F; A), 

Hp- n- 1(B, Bo; A)®AHO(t; A), 

respectively, these isomorphisms being given by the appropriate cross prod
ucts. The class u corresponds under the second of these isomorphisms to 
1 (8) w*, where w* generates the free cyclic module H n+ l(t, F; A). Let 
WE Hn+ l(t, F; A) be the homology class such that <w*, w) = 1. The first 
and third of our groups are isomorphic with H p_ n- 1 (B, Bo; A) under the 
correspondences x --> x x w, x --> x x 1, respectively. As 

(x x w) ~ (1 x w*) = ± (x ~ 1) x (w n w*) = ±x x 1 

it follows that ~ u is indeed an isomorphism, and our proof is complete. 

We can now use the information given by the Thorn isomorphism to 
relate the homology groups of (X, X 0) with those of (B, Bo). In fact, let us 
consider the homology sequence of the triad (X; X 0, X), i.e., the sequence 
obtained from the homology sequence of the triple (X, X 0 u X, X 0) by 
replacing the groups Hp(X 0 u X, X 0) by the isomorphic groups Hp(X, X 0). 
Since p: (X, X 0) --> (B, Bo) is a homotopy equivalence, we may replace the 
groups H p(X, X 0) by H p{B, Bo). Finally, we can use the Thorn isomorphism 
to replace Hp(X, Xo u X) by Hp- n- 1(B, Bo). We can make the dual con
structions in cohomology. Thus we obtain 

(5.12) Theorem (Gysin Theorem). Let A be a principal ideal domain, and let 
p : X --> B be an A-orientable n-spherical fibration. Then,for any closed sub-
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space Bo of B, there are exact sequences 

(5.13) 

(5.14) 
y* 

.•• ---> HP-n-l(B, Bo; M) --->. HP(B, Bo; M) 
p* 

P* HP(X, Xo; M) ----'-------.. HP-n(B, Bo; M)--->'" 

Moreover, 

(x E H p(B, Bo; M)), 

y*(x) = w ~ x (x E Hn-p-l(B, Bo; M)), 

where w E Hn+ l(B; A) is (_1)n+ 1 times the image of the primary obstruction 
)1"+ 1 E Hn + l(B; Z) under the (coefficient group) homomorphism induced by the 
map n ---> n . 1 of Z into A. 

Let j*: Hn+ l(X, X; A) ---> Hn+ l(X; A) be the injection, and let 
w = fJ*-'j*(u) E Hn+ l(B; A). The statement y(x) = x ~ w is a consequence 
of the commutativity of the diagram 

where i* is the injection (we have omitted mention of the coefficient module, 
for simplicity's sake). Commutativity of each part of the diagram is a con
sequence of the naturality properties of the cap product. The proof that 
y*(x) = w ~ x is similar. 

I t remains to prove the last assertion. It will suffice to do so in the special 
case A = Z; the general case then follows by a simple diagram chase. 
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Consider the diagram 

by ~ ~1. ~1 
(5.15) H9(F) ~ H9+ I(X, F) ~ H9+ I(X) 

H9+ I(X, F) ~ H9+ I(X, P) 

whose maps are injections or the appropriate coboundary operators; the 
coefficient ring Z is understood. The homomorphism kl is an isomorphism 
for q < n (because both groups involved are zero) and for q = n (because the 
fibration is orientable). It follows as in Exercise 2 of Chapter II that k2 is a 
monomorphism for q = n (and an isomorphism for q < n). Thus the hypoth
eses of the Hexagonal Lemma fail to be satisfied by the diagram only in that 
k2 may not be an epimorphism. 

The Thom class U E H n + I(X, X) is determined only up to sign. Choice of 
such a class determines a generator 611kl(U) of Hn(F); this class in turn 
determines an isomorphism of nn(F) with Z, and we shall use this isomor
phism to identify the coefficient groups in (5.15) with nn(F). It follows that 

k1 161zn(F) = U E Hn+ I(X, X), 

and therefore 

jl k1161zn(F) = p*w. 

On the other hand, the composite 

k2 oj"Z1 0 p*: Hn+l(B, H)~Hn+l(x, F) 

is the homomorphism induced by the map p. By Corollary (6.10) of Chapter 
VI, 

(-1 N2Zn(F) = k2 j"Zlp*yn+ 1, 

so that iz k"Z 162 In(F) is defined and equal to (- 1 tp*yn+ 1. The argument 
used to prove the Hexagonal Lemma [E-S], Lemma (15.1) of Chapter I) then 
applies and we have 

(-ltp*yn+ 1 = - p*w. 

Since p* is an isomorphism, yn+ 1 = ( -1 t+ lW. o 

The homomorphism {3* is often referred to as " integration over the fibre." 
In fact, suppose that X and B are differential manifolds and p a differentiable 
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fibration whose fibre is the n-dimensional sphere sn. Then the real cohomo
logy of each of these manifolds can be calculated, by the de Rham theorem, 
from its algebra of differential forms. If w is a p-form on X, then a process of 
"partial integration" along each fibre yields a (p - n)-form, which is easily 
seen to have the form p*(), where () is a form on B. And the correspondence 
w -4 () induces a homomorphism of HP(X; R) into HP-n(B; R), which can be 
shown to be our homomorphism f3*. 

The sequences (5.13), (5.14) are called the Gysin sequences of the fibration 
p. 

The homomorphism f3* has certain multiplicative properties analogous 
to those of the homomorphism a* of §3. These, and more sophisticated 
properties of f3*, have been used by W. S. Massey in his study of the coho
mology ring of a sphere-bundle [3]. 

(5.16) Theorem Ifx E HP(X, Xo; A) y E Hq(B, Bo; A), then 

f3*(x ~ p*y) = f3*x ~ Y E HP+q-n(B, Bo; A). 

For there is a commutative diagram 

j* b* 
HP(g, go) ----+ HP(go u X, go) ----+ Hp+l(g, go U X) 

We make use of the following fact; if Xl E HP(Xo U X, Xo), YI E Hq(X, Xo), 
then b*(xi ~ j*Yd = b*XI ~ YI· Let XI = i*-I X, YI = p*y. Then 

X ~ p*y = i*xI ~ i*j*p*y = i*(xi ~ j*yd, 

and therefore 

u ~ p*f3*(x ~ p*y) = u ~ p*P*i*(x l ~ j*Yl) 

while 
= b*(XI ~ j*yd = b*x I ~ YI' 

u ~ p*(f3*x ~ y) = u ~ p*P*i*xI ~ P*Y 

= b*x I ~ YI· 

Since p* and u ~ are isomorphisms, 

P*(X ~ p*y) = f3*x ~ y. o 
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We conclude this section with two applications of the Gysin sequence. 
The first one is to the exceptional Lie group G z (see Appendix A, §5). There 
is a fibration p : G z -+ V 7. z' the fibre being S3. Since V 7. Z is I-connected 
((10.12) of Chapter IV), it follows from (5.1) that the fibration is orientable, 
so that there is a Gysin sequence 

for any coefficient domain A. Let us first take A = Z, and recall from (10.14) 
of Chapter IV that HO(V7.Z)~H!!(V7,Z)~Z, H5(V7.Z)~ZZ' and 
therefore 

HO(V 7. z) = Z, generated by the unit element 1; 

H!! (V 7. z) = Z, generated by a class z, 

H 6 (V 7. z) = Zz, generated by a class h, 

while all other homology and cohomology groups vanish. From the Gysin 
sequence we deduce 

(5.17) Theorem The integral cohomology groups Hq(G z; Z) are given by 

HO(G z) = Z, generated by 1; 

H 3(G Z ) = Z, generated by x, P*(x) = 1; 

H 6 (G Z ) = Zz, generated by p*(h); 

H 9 (G Z ) = Zz, generated by x ~ p*(h); 

H!!(G z) = Z, generated by p*(z); 

H!4(G Z ) = Z, generated by x ~ p*z; 

while Hq(G z) = Ofor all other values of q. 

Only the calculation of H!4 needs further argument. In fact, the Wang 
sequence gives us a generator z E H!4(G Z ) such that p*w = x; and the ele
ment w = x ~ p*z satisfies this condition, by Theorem (5.16). 0 

We have not determined the ring structure, having left open the question 
of whether x ~ x = p*h. We shall resolve this question in Chapter VIII, with 
the aid of the Steenrod squares. 

From our knowledge of the integral homology, or from Theorem (4.9), 
we have (for Zz coefficients): 

HO(V 7. z) ~ Zz, generated by 1; 

H 5 (V 7. z) ~ Zz, generated by )'5; 

H 6(V 7. 2) ~ Zz, generated by .\'6; 

H!!(V 7. z) ~ Zz, generated by )'5 ~ .\'6' 
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Let x be the image of a class x under reduction mod 2. Then 

h = Y6 = 6*ys, 

where 6* is the Bockstein operator: HS(X; Zz) ..... H6(X; Zz), and 
~ 

p*z = Ys ~ Y6· 

We can now determine the mod 2 groups of G z . 

(5.18) Theorem The mod 2 cohomology groups of G z are given by 

HO(G z) = Zz, generated by r = 1; 

H 3(G Z ) = Zz, generated by x; 
HS(G z) = Zz, generated by p*(ys); 

H 6(G Z ) = Zz, generated by P*(Y6); 

H 8 (G Z ) = Zz, generated by x ~ p*CVs); 

H 9 (G Z ) = Zz, generated by x ~ P*(Y6); 

HI1(G Z ) = Zz, generated by p*Cvs ~ Y6); 

H 14(GZ) = Zz, generated by x ~ P*(Ys ~ Y6)' 

while Hq(G z) = 0 for all other values of q. 
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This follows by examination of the mod 2 Gysin sequence and from 
Theorem (5.16), as before. 0 

Again, we have left open the question of determining xz. Note, however, 
that 

(5.19) Corollary The cohomology ring H*(G z; Zz) has a simple system of 
generators x, p*ys, P*Y6. The elements x, p*(ys) are primitive. 0 

Finally, we have 

(5.20) Theorem If A is a field of characteristic p, where p = 0 or an odd prime, 
then H*(G z ; A) is an exterior algebra on primitil'e generators x 3 , XII. 

For our second application of the Gysin sequence, we shall calculate the 
mod 2 cohomology ring of the Grassmannian G(n). Let us recall from §7 of 
Chapter VI that there is a commutative diagram 

(5.21) ij /, 
G(n) 
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such that p is a fibration, i, j and k are inclusions, i is a homotopy equiv
alence, and k is the inclusion of the fibre in the total space V I (n + 1) = 

V(n + l)jO(n). We shall prove 

(5.22) Theorem The mod 2 cohomology ring H*(G(n); Z2) is the polynomial 
ring Z2[ WI' W 2, ... , wn] in the universal Stiefel- Whitney classes Wk = wk(n). 

This is proved by induction on n. The space G(1) is the space of all 
I-dimensional subspaces of Roo, i.e., 

G(I) = POO(R), 

so that H*(G(l); Z2) = Z2[W] for a certain class w. If we can show that 
WI -=!= 0, it will follow that W = WI and Theorem (5.22) is true for n = 1. 

Let us recall that WI belongs to the group 

Q(Z2, Z)jP(Z2' Z) 

of crossed homomorphisms modulo principal homomorphisms, the non
zero element a E Z2 operating on Z by change of sign. For each integer m, 
there is a unique crossed homomorphism fm : Z2 ---. Z, defined by 

and the crossed homomorphism fm is principal if and only if m is even 
(f2k(a) = 2k = k - a . k). Thus 

HI(G(I),~) ~ Z2, 

and WI is the non-zero element of this group. 
Now reduce mod 2. Then every crossed homomorphism is mapped into 

an ordinary homomorphism and every principal homomorphism into zero. 
Thus reduction mod 2 induces an isomorphism 

which carries the non-zero element WI into WI' Hence WI -=!= 0. 

Remark. Cf. our calculation of Hq(P2(R); ~) in §4 of Chapter VI. 
The proof of Theorem (5.22) can now be completed by induction. Assume 

H*(G(n)) is as stated, and consider the sequence 

y* j* 
... ---. Hq-n-I(G(n + 1)) , Hq(G(n + 1)) ------=------> 

Hq(G(n)) {3* , Hq-n(G(n + 1)) y* , Hq+ I(G(n + 1)) ---. ... 

obtained from the mod 2 Gysin sequence for the fibration p with the aid of 
(5.21). By Theorem (7.19) of Chapter VI,j*wi(n + 1) = wi(n) (i = 1, ... , n). It 
follows that j* is an epimorphism in all dimensions, and therefore y* is a 
monomorphism in all dimensions. Moreover, by Theorem (5.12) y*(x) = 
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w ~ x, where w = wn+l(n + 1) is the reduction mod 2 of the primary 
obstruction y" + 1 to a cross-section of p. An easy argument by induction on q 
now proves the inductive step. 0 

6 The Homology Sequence of a Fibration 

We have seen that there is an exact sequence connecting the homotopy 
groups of the fibre, the total space, and the base space, of a fibration. This is 
a consequence of the fact (Theorem (8.5) of Chapter IV) that the projection 
induces an isomorphism p* : 1tq(X, F) ~ 1tq(B) in all dimensions. 

It is easy to see that the corresponding theorem in homology is false. 
Consider, for example, the Hopf fibration p : s2n + 1 ~ pn( C), with fibre S 1. 
Then Hq(S2n+ 1, S1) = 0 for 2 < q < 2n + 1, while Hq(pn(C) ~ Z for all even 
values of q in that range. Again, consider the trivial fibration p : B x F ~ B, 
for which 

Hr(B x F, F) = Hr((B, bo) x F) 

~ EB Hp(B, bo)(8)Hq(F)tB EB Tor(Hp(B, bo), Hq(F». 
p+q=r p+q=r- 1 

This group has a direct summand isomorphic with Hr(B, bo), but is, in 
general, considerably larger. Suppose, however, that Band F are homo
logically (m - 1 )-connected and (n - 1 )-connected, respectively, i.e., 
11 p(B) = 0 for all p < m and 11q(F) = 0 for all q < n. Then, if r < m + n, the 
only non-vanishing term in the above direct sum decomposition is 
Hr(B, bo) ® Ho(F) ~ Hr(B, bo), and it is not hard to verify that 
p* : Hr(B x F, F) ~ Hr(B, bo) is indeed an isomorphism for all r < m + n. 

The purpose of this section is to show that the latter phenomenon, in a 
relative form, generalizes to more or less arbitrary fibrations. We shall prove 
a result which is just strong enough for the applications to be made in 
Chapter VIII; for stronger results, the reader is referred to Chapter XIII, 
Theorem (7.10). 

(6.1) Theorem (Serre). Let p : X ~ B be a fibration with fibre F, and suppose 
that 11 q(F) = 0 for all q < n (n ~ 1). Let Bo be a subspace of B, X 0 = p-1(Bo), 
and suppose that the pair (B, Bo) is (m - I)-connected (m ~ 1). Then 
p*: Hr(X, Xo)~Hr(B, Bo) is an isomorphism for r < m + n and an epimor
phismfor r = m + n. 

Because of Theorem (2.6) of Chapter V, we may assume that (B, Bo) is a 
relative CW -complex having no cells of dimension :::; m - 1. 

(6.2) Lemma If p is fibre homotopically trivial, the conclusion oj Theorem 
(6.1) holds. 
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We may assume that P is trivial; X = B x F, p is the projection on the 
first factor. The Kiinneth theorem gives 

Hr(B x F, Bo x F) 

~ EB H AB, Bo) ® Hq(F) EEl EB Tor(H AB, Bo), Hq(F)). 
p+q=r p+q=r-l 

If p < m, HAB, Bo) = 0; if r < m + nand p 2 m, p + q = r, then q < nand 
so Hq(F) = 0 unless q = O. In the same way, all the terms involving the 
torsion product vanish (even if q = 0). Thus 

Hr(B x F, Bo x F) ~ Hr(B, Bo) ® Ho(F) ~ Hr(B, Bo) 

for all r < m + n. The isomorphism Hr(B, Bo) ~ Hr(B x F, Bo x F) is given 
by u ~ u x 1, where 1 E H o(F) is the homology class of a point. As 
p*(u xl) = u, p* is the inverse of the Kiinneth isomorphism. 

If r = m + n, there is an extra term Hm(B, Bo) ® Hn(F). However, the fact 
that p*(u x 1) = u shows that p* is an epimorphism. Thus our result is best 
possible. D 

Now suppose that B = Bo U J Er, r 2 m, for some map f: Er ~ Bo. Let 
U = B - Bo, V = B - {xo} for some Xo E B - Bo, so that U and V form an 
open covering of B. Let U* = p-l(U), V* = p-I(V), so that u* and V* are 
open sets covering X. Then there is a commutative diagram 

Hr(X, Xo) 
i I 

H,(X. V·) i2 
H,(U·, U· II V·) ---+ ~ 

j PI jP2 jP3 

H,(B, Bo) ---+ H,(B, V) ~ H,(U, U II V) 
jl h 

in which the horizontal arrows represent injections and the vertical ones the 
homomorphisms induced by p. The homomorphisms i2 and jz are isomor
phisms, by the Excision Theorem. Now Bo is a deformation retract of Vand 
therefore X 0 is a deformation retract of V*; hence i I and j I are isomor
phisms. Therefore, to show PI an isomorphism, it suffices to prove that P3 is. 
But U is contractible and so the fibration p I U* is fibre homotopically 
trivial, and our result follows from Lemma (6.2). 

Next, suppose that B is a q-cellular extension of Bo , with cells {En, q 2 m. 
By the General Direct Sum Theorem (Theorem (2.7), (Chapter II), the 
injections 

Hr(Bo U EL Bo) ~ H,(B, Bo) 

Hr(Xo U p-I(E&), Xo)~ Hr(X, Xo) 

represent the groups H,{B, Bo), Hr(X, Xo) as direct sums, and our result 
now follows immediately from the case of only one cell. 
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The general result now follows by induction and the Five-Lemma. For 
X m- I = X 0 and therefore 

P*: Hr(Xm, Xo) ~ Hr(Bm, Bo) 

has the required properties, by the previous step. Suppose q > m. Then there 
is a commutative diagram 

Hr+ l(Xq, X q_ d -> Hr{Xq_ b Xo) -> H,{Xq , Xo) -> H,{Xq, X q_ d -> H,_ dXq- b Xo) 

Hr+l{Bq, Bq-d -> H,{Bq- 1, Bo) -> H,{Bq, Bo) -> H,{Bq, Bq-tl-> H,-dBq-b Bo) 

The pair (Xq, Xq-d is (q - l)-connected, and therefore P4 is an isomor
phism for r < q + n and, in particular, for r :S: m + n, while PI is an isomor
phism for r < m + n and an epimorphism for r = m + n. If P2 is an 
isomorphism for r < m + n and an epimorphism for r = m + n, then Ps is an 
isomorphism for r:S: m + n. By the Five-Lemma, P3 has the requisite 
properties. 

Theorem (6.1) now follows from the fact that P*: Hr(X, Xo) ~ Hr(B, Bo) 
is the direct limit of the homomorphisms P* : Hr1Xq, Xo) ~Hr(Bq, Bo). 

o 

As a Corollary, we have the Serre exact sequence: 

(6.3) Corollary Ifp: X ~ B is afibration withfibre F, B is (m - I)-connected, 
and flq(F) = 0 for all q < n, then there is an exact sequence 

In particular, we may suppose that X = P(B) and P is the path fibration: 
p(u) = u(l) for u E X. Thus F = Q(B) is (m - 2)-connected. By the Hurewicz 
Theorem, flq(F) = 0 for q :S: m - 2. Therefore 

(6.4) Corollary If B is (m - I)-connected, then Hq_ 1(QB) ~ Hq(B) for 
q :S: 2m - 2. 0 

We can improve Corollary (6.4) a little. For an arbitrary fibration 
P : X ~ B, the composite 

, 
is an additive relation (cf. Appendix B), called the homology suspension. If 
X = P(B), then 0* is an isomorphism, and therefore p* 00; 1 is a homomor-
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phism 0"*: Hq_ 1 (F)----> Hq(B). We then have 

(6.5) Corollary If B is (m - I)-connected, the suspension 0"*: Hq - 1 (QB)----> 
Hq(B) is an isomorphism for q :s;; 2m - 2 and an epimorphism for q = 2m - l. 

o 

For more detailed results on the homology suspension, the reader is 
referred to Chapter VIII. 

7 The Blakers-Massey Homotopy 
Excision Theorem 

We have seen in §2 of Chapter II that, if (X; A, B) is a triad with X = A u B, 
then, under reasonable conditions, the injection Hq(B, A (\ B) ----> Hq(X, A) is 
an isomorphism for all q. On the other hand the corresponding statement for 
homotopy groups is false, as we have seen in Example 5, §7 of Chapter IV. 
However, Blakers and Massey [1] have shown that the homotopy excision 
theorem does hold in a range of dimensions. In this section, we shall show, 
following Namioka [1], how a slightly weakened, but nevertheless extremely 
useful, form of the Blakers-Massey theorem follows easily from the results 
of §6. 

Let (X; A, B) be a triad and let m, n be integers;:::: 2. We shall suppose 

(7.1) The spaces X, A, B, and C = A (\ B are I-connected; 

(7.2) The pair (X, A) is (m - 1 )-connected and the pair (X, B) is 
(n - 1 )-connected. 

(7.3) The injection 
Hq(B, C) ----> Hq(X, A) 

is an isomorphism for q < m + n - 2 and an epimorphism for q = m + n - 2. 

We shall prove 

(7.4) Theorem (Blakers-Massey). Under the hypotheses (7.1)-(7.3), the 
injection 

Jrq(B, C) ----> Jrq(X, A) 

is an isomorphism for q < m + n - 2 and an epimorphism for q = m + n - 2. 

Let P be the space of all paths in X which end in B. The map A : B ----> P 
which sends each point b E B into the constant map of I into b is a homo
topy equivalence. The map u ----> u(O) is a fibration p: P ----> X, and if F is the 
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fibre of p we have 7rq{F) ~ 7rq+ 1 (X, B) for all q. In particular, F is 
(n - 2)-connected; by the Hurewicz theorem, ilq(F) = ° for q ::; n - 2. Let 
Po = p-l(A). Then it follows from Theorem (6.1) that 

(7.5) The homomorphism p* : Hq(P, Po) -> Hq(X, A) is an isomorphism for 
q < m + n - 1 (and an epimorphism for q = m + n - 1). 0 

The composite map p ° A is the inclusion map j : (B, C) -> (X, A). By 
(7.3), P.oA.=j.:Hq(B, C)->Hq(X, A) is an isomorphism for g< 
m + n - 2, and an epimorphism for q = m + n - 2. Hence 

(7.6) The homomorphism A* : Hq(B, C) -> Hq(P, Po) is an isomorphism for 
q < m + n - 2 and an epimorphism for q = m + n - 2. 0 

Since A: B -> P is a homotopy equivalence, the homomorphism 
A* : Hq(B) -> Hq(P) is an isomorphism for all q. From the Five-Lemma we 
deduce 

(7.7) The homomorphism (AI C)* : Hq(C) -> Hq(Po) is an isomorphism for 
q < m + n - 3 and an epimorphism for q = m + n - 3. 0 

At this point we should like to apply the Whitehead Theorem. Since C is 
I-connected, by hypothesis, it suffices to show that Po is I-connected. Since 
1::; m + n - 3 and H 1(C) = 0, it follows that H 1(po) = 0. There is a com
mutative diagram 

0. --
I 

7r2(X) ---+ 7r2(X, A) ----+ 7rl(A) 

Since A is I-connected, 7r2(X, A) is a quotient of the abelian group 7r2(X) 
and therefore itself abelian. But p*: 7r2(P, Po) ~ 7r2(X, A), so that 7r2(P, Po) 
is abelian. As A: B -> P is a homotopy equivalence, 7rl(P) ~ 7rl(B) = 0. 
Hence 0* is an epimorphism and therefore 7rl(PO) is abelian. Since 
H 1(po) = 0, it follows from the Poincare Theorem that 7r 1(PO) = 0. 
Therefore 

(7.8) The homomorphism (AI C)* : 7rq(C) -> 7rq(Po) is an isomorphism for 
q < m + n - 3 and an epimorphism for q = m + n - 3. 0 

Using the Five-Lemma and the fact that A* : 7rq(B) ~ 7rq(P), we deduce 

(7.9) The homomorphism A*: 7rq(B, C) -> 7rq(P, Po) is an isomorphism for 
q < m + n - 2 and an epimorphism for q = m + n - 2. 0 
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But p* : TCq(P, Po) ~ TCq(X, A) is an isomorphism for all q. Since p* 0 A* is 
the injection TCq(B, C) ~ TCq(X, A), our result follows from (7.9). 0 

We now make some remarks on the hypotheses. In the first place, it 
follows from (7.1) that each of the pairs (A, C), (B, C), (X, A), and (X, B) is 
1-connected; moreover, the first non-vanishing homotopy group of each of 
the above pairs is, by the Relative Hurewicz Theorem, isomorphic with its 
first non-vanishing homology group. Thus the condition 

(7.2') The pair (B, C) is (m - 1)-connected and the pair (A, C) is 
(n - 1)-connected 

is equivalent, in the presence of (7.1) and (7.3), to (7.2). 
We shall say that the triad (X; A, B) is r-connected (r ~ 1) if and only if 

the injection 

TCq(B, C) ~ TCq(X, A) 

is an isomorphism for q < r and an epimorphism for q = r. (This is equiv
alent to the analogous condition with A and B interchanged; cf. Exercise 2, 
Chapter II). Thus the Blakers-Massey Theorem can be formulated as 
follows: 

(7.10) Theorem If (X; A, B) is a triad satisfying (7.1) and (7.3), as well as 
either (7.2) or (7.2'), then (X; A, B) is (m + n - 2)-connected. 0 

Instead of (7.3) we may consider 

(7.3') The triad (X; A, B) is an NDR-triad. 

By Theorem (2.2) of Chapter II, this condition implies that the triad 
(X; A, B) is proper, and therefore (7.3) holds in all dimensions. Hence 

(7.11) Theorem If (X; A, B) satisfies (7.1), (7.2) or (7.2'), and (7.3'), then 
(X; A, B) is (m + n - 2)-connected. 0 

An important special case of the Blakers-Massey Theorem IS the 
following: 

(7.12) Theorem Let (X, A) be an (m - 1 )-connected NDR-pair, and suppose 
that A is (n - 1)-connected (m ~ 2, n ~ 2). Let p: (X, A) ~(X/A, *) be the 
collapsing map. Then 

is an isomorphism for q < m + n - 1 and an epimorphismfor q = m + n - 1. 



7 The Blakers-Massey Homotopy Excision Theorem 369 

For the triad (X uTA; X, TA) satisfies (7.3') (here TA is the unreduced 
cone, i.e., A is treated as a free space). Since n ;:::: 2, A is I-connected; since 
m ;:::: 2, X is I-connected, while T A is contractible. By the van Kampen 
Theorem, Xu TA is I-connected. Finally (TA, A) is n-connected. By 
Theorem (7.11), the triad (X uTA; X, TA) is (m + n - I)-connected, and 
therefore the injection 

nq(X, A) -> nq(X uTA, TA) 

is an isomorphism for q < m + n - 1 and an epimorphism for q = m + 
n - 1. But, by Corollary (5.13) of Chapter I, the homomorphism 

Pl: nq(X uTA, TA)->nq(XIA, *) 

induced by p is an isomorphism for all q, and p* is the composite of Pl with 
the injection; therefore p * has the desired properties. 

Consider the special case X = TA; then (TA, A) is n-connected, so that 
we may take m = n + 1. Then TAl A is the suspension of A, and the bound
ary operator i\:nq+1(TA, A)->nq(A) is an isomorphism for all q. 
Moreover, the composite E = p* 0 a; I : nq(A) -> nq+ 1 (SA) is easily seen to 
be the homomorphism 

nq(A) = [sq, A] -> [sq+ 1, SA] = nq+ l(SA) 

induced by the suspension functor. From Theorem (7.12) we deduce 

(7.13) Theorem (Freudenthal Suspension Theorem). If A is 
(n - I)-connected (n;:::: 2), then E: nq(A) -> nq+ 1 (SA) is an isomorphism for 
q < 2n - 1 and an epimorphism for q = 2n - 1. D 

Another important consequence of the Blakers-Massey theorem is 

(7.14) Theorem (Homotopy Map Excision Theorem). Let (X, A), (Y, B) be 
NDR-pairs,f: (X, A) -> (Y, B) a map such thatf* : Hq(X, A) ::::; Hq(Y, B)for 
all q. Suppose that X, A, and B are I-connected, (X, A) is m-connected, and 
f I A: A -> B is n-connected. Thenf* : nq(X, A) -> nq(Y, B) is an isomorphism 
for q < m + n and an epimorphism for q = m + n. 

For let Z be the mapping cylinder of f, C the mapping cylinder of 
f I A : A -> B. There are commutative diagrams 

nq(X, A) 
nq(i) 

nq(X u C, C) Hq(X, A) 
Hq(i) 

Hq(X u C, C) ----> --+ 

nq(f») 1 nq(j) Hq(f) 1 1 Hq(j) 

nq(Y, B) -------. nq(Z, C) Hq(Y, B) • Hq(Z, C) 
nq(k) Hq{k) 
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where i,j, and k are inclusion maps. Since Hi!), Hq{i) and Hq{k) are isomor
phisms for all q, so is Hq(j); by exactness of the homology sequence of the 
triple (Z, X u C, C), the groups Hq(Z, X u C) are zero for all q. But X and 
C are I-connected and their intersection A is I-connected; from the van 
Kampen and Hurewicz Theorems we deduce that 1tq{Z, X u C) = 0, and 
therefore 1tq(j) is an isomorphism, for all q. On the other hand, we can apply 
the Blakers-Massey Theorem to deduce that the triad (X u C; X, C) is 
(m + n)-connected, and therefore 1tii) is an isomorphism for q < m + nand 
an epimorphism for q = m + n. Since 1tq{k) is an isomorphism, 1tq(f) has the 
desired properties. 0 

EXERCISES 

1. Let W' be the space oflree loops in So. Calculate the homology groups of W' for n 
odd. What can you say when n is even? 

2. Let p: S7 -> S4 be the Hopf fibration, 1=82 X S2 -> 8 4 a map of degree 1, 
q: X -> 8 2 X 8 2 the induced fibration, q' = P2 0 q: X -> 8 2. 

(a) Calculate the homology groups of X; 
(b) Show that q' has a cross-section, but is not fibre-homotopically trivial. 

3. Let M(Zd, n)=8"u f E"+t, where 1:8"->8" has degree d; M=M(Zd' n) is 
called a Moore space of type (Zd, n). Calculate the homology groups H *(QM; Zd)' 
(Hint: show that Hm(QM; Zd) is a direct sum of 1m copies of Zd, and find a 
recursion formula for j;"). 

4. Show that the maps g", J(p") 0 g: J(W) -> J(W")) coincide. 

S. Show that, if W is a CW-complex, then J(W) is a CW-complex and each of the 
spaces Jm(W) is a subcomplex of Jm+ 1(W) as well as of J(W). 

6. Show that H .(0:-+ 1; Z2) has a system of generators Yb ... , Y" such that 

~*Yr = L YP x Yq 

(where Yo = 1). The elements 

p+q=r 

s 

Y2s+1+ LYjY2s-j+l 
j~ 1 

form a basis for the space M" of primitive elements. 



CHAPTER VIII 

The Homology Suspension 

The homology groups of the space Q(B) of loops in a space B are related to 
those of B by homomorphism a*:Hq(QB)~Hq+1(B), called the homo
logy suspension. Let P'(B) be the space of paths in B which end at the base 
point; then the map p: P'(B) ~ B defined by p(u) = u(O) is a fibration with 
QB as fibre. The total space P'(B) being acyclic, the boundary operator 

0*: H q+1(P'(B), QB)~ Hq(QB) 

is an isomorphism, and the map p induces 

p* : Hq+ 1 (P'(B), QB) ~ Hq+ 1 (B); 

the homomorphism a* is the composite p* 0 a; 1. 

Suppose that B is n-connected (n ~ 1); then QB is (n - 1 )-connected, and 
we saw in Corollary (6.5) of Chapter VII that a * is an isomorphism for 
q :::;; 2n - 1 and an epimorphism for q = 2n. 

In §§1, 2 we study the behavior of the homology suspension in the range 
q :::;; 3n. This is accomplished by the following device. Let E = F(B) be the 
space of all free paths in B, and let X = Eo u E 1 be the set of all paths which 
either start or end at the base point. Then Eo and E1 are contractible, 
Eo n E1 = QB, and therefore the boundary operator 

d*: H q+1(X) ~ Hq{QB) 

of the Mayer-Vietoris sequence of the triad (X; Eo, Ed is an isomorphism. 
Moreover, E has the same homotopy type as B, and the composite 

d- 1 

Hq(QB) ~ H q+1(X) -----+ H q+1(E) 

of d; 1 with the injection is equivalent to the homology suspension a * . Thus 
we can obtain results on a * by studying the relative homology groups 
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Hq+ 1 (E, X). We prove that, if q ::; 3n, there are isomorphisms 

Hq_1(D.B x D.B, D.B v D.B) ~ Hq+1(E, X) ~ Hq+1(B x B, Bv B). 

Moreover the injection Hq+l(E)-+Hq+l(E, X) corresponds, under the 
second isomorphism, to the homomorphism 

d*: Hq+1(B)-+Hq+1(B x B, Bv B), 

induced by the diagonal map of B, while the boundary operator 
Hq+ 1 (E, X) -+ Hq(X) corresponds, under the first isomorphism, to the 
homomorphism 

'* : Hq_ 1 (D.B x D.B, D.B v D.B) -+ Hq_ 1 (D.B) 

induced by the product in the H-space D.B. Dual results are obtained for 
cohomology. 

This calculation of the relative groups was made by the present author [7] 
in 1955. Some of its consequences are exploited in §§3, 4. Perhaps the most 
important is related to cohomology operations. If 

is a cohomology operation, the composite 

W-1(X; IT) ~ W(SX; IT) ~ 
Hq(SX; G) ~ Hq-l(X; G) 

(d * is the coboundary operator of the Mayer-Vietoris sequence of the triad 
(SX; T + X, T _ X)) is again a cohomology operation (J*e, called the suspen
sion of e. If e corresponds to the element U E Hq(IT, n; G), then (J*e corre
sponds to the image of u under the cohomology suspension (J*, dual to the 
homology suspension described above. Now the operation (J*e is always 
additive, but not every additive operation has the form (J*e. However, it 
follows from the dual of the homology suspension theorem that if the above 
operation e is additive and q ::; 3n - 1, then e does have the form (J*CP for 
some operation cp. 

Let IT, G be abelian groups, k a non-negative integer. Then there is a 
sequence 

(J* 
... <- Hk+n(IT, n; G) +-- Hk+n+l(IT, n + 1; G) <- ... 

and each element of the inverse limit 

n 

determines a sequence of operations en. Such a sequence is called a stable 
operation of type (k; IT, G); thus the stable operations of the said type are in 
one-to-one correspondence with Ak(IT; G). In fact, the homomorphism (J* is 
an isomorphism for all sufficiently large n, so that Ak(IT, G) ~ Hk+n(IT, n; G) 
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whenever n ;:::: k + 1. Stable operations are discussed in §5, and a particular 
sequence of stable operations, the Steenrod squares, are introduced in §6. 
These were constructed in 1947 by Steenrod [2] as generalizations of the cup 
square and provided the essential tool for his proof of the classification 
theorem for maps of an (n + 1 )-dimensional complex into sn. 

One application of the Steenrod squares is to the Hopffibre maps 
rx E 1C 2n ~~ 1 (sn) (n = 2, 4, 8). The mapping cone of rx is the projective plane 
over C, Q, or K, as the case may be, and the fact that the cup square is 
non-zero in Ta implies that rx i= O. But more is true; the operation Sqn is 
non-zero in the mapping cone of the k-fold suspension Ekrx, and therefore the 
latter element, too, is non-zero (in other words, the element Ekrx is detectable 
by Sqn). Thus we obtain non-zero stable elements /], v, (J in the stable homo
topy groups of spheres. 

The Steenrod squares have additional properties, which makes them even 
more powerful tools. In §7 we prove the product formula, due to Henri 
Cartan [1], for the effect of the Sqi on a cup product. With its aid one can 
calculate the Sqi in the cohomology of the Stiefel manifolds. As a con
sequence Steenrod and J. H. C. Whitehead [1] proved that the n-sphere sn is 
not parallelizable unless n + 1 is a power of 2. 

As the Steenrod operations Sqi are stable, they can be composed to yield 
iterated squares. Relations among these were obtained by Adem [1]. At this 
point we have not developed enough machinery to prove these results. 
However, in §8 we derive a few of them in order to illustrate their use. On the 
one hand, one can prove non-existence theorems, e.g., no element of 
1Cd+n_l(sn) can be detected by Sqd unless d is a power of 2. On the other 
hand, one can prove existence theorems, e.g., the stable elements /] 0 /], v 0 v, 
(J 0 (J, /] 0 (J are all non-zero. 

1 The Homology Suspension 

In this Chapter, homology and cohomology groups will have coefficients in 
a module M over a principal ideal domain A. Usually the coefficient module 
will be understood. Let us recall that, if B is a space with non-degenerate 
base point *, then the map p: P'(B) ---> B defined by p(u) = u(O) is a fibration, 
with fibre OB. Since P'(B) is contractible, the homomorphism 
8* : Hq+ l(P'(B), O(B)) ---> Hq(O(B)) is an isomorphism. On the other hand, 
the map p induces a homomorphism p* : Hq+ 1 (P'(B), O(B)) ---> Hq+ 1 (B). The 
composite 

is a homomorphism, the homology suspension. 
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If we replace homology by homotopy, the map p* is also an isomorphism, 
and therefore the homomorphism analogous to (J * is an isomorphism. But 
we have seen that p* is not, in general, an isomorphism in homology, and so 
neither is (J * . In this chapter, we shall assume that B is n-connected, and see 
what can be said about (J * for a certain range of dimensions. 

It will be convenient to look at (J * in a slightly different context. Let 
E = F(B), the space of all free paths in B, and let 

Eo = P(B) = {u E Elu(O) = *}, 

El = PI(B) = {u E Elu(1) = *}, 

note that F = Q(B) = Eo n E1• The map Pi: E ~ B given by Pi(U) = u(i) 
(i = 0, 1) is a fibration by Corollary (7.9) of Chapter I; the fibre of Pi is Ei , 
and Pi is a homotopy equivalence. The two maps Po and P 1 are homotopic; 
a homotopy between them is defined by 

for all tEl. The restrictions P~ = Pol E 1 : E 1 ~ Band p l1 = P 1 I Eo : Eo ~ B 
are also fibrations with the same fibre F. Furthermore, there are fib rations 
p : E x E ~ B x B, pi : E ~ B x B, defined by 

p(u, v) = (u(O), v(1)), 

p'(U) = (u(O), u(1»; 

their fibres are Eo x El and F, respectively. Note that pi = pod, where 
d: E ~ E x E is the diagonal map, and that X = p'-l(B v B). 

The pair (B, *) being an NOR-pair, it follows from (2.13) of Chapter III 
and from Theorem (7.14) of Chapter I that 

(1.1) The pairs (F, e), (Eo, F), and (E1o F) are NOR-pairs. 

Therefore, by (5.2) of Chapter I, 

(1.2) The pairs 

(F x F, F v F) = (F, e) x (F, e), 

(El x F, F x FuEl x e) = (El' F) x (F, e), 

(El x F, F x F) = (E1o F) x (F, 0) 

are NOR-pairs. 

o 

o 
Let us now introduce the Main Diagram (Figure 1), which will exhibit the 

relationships among the homology groups of many of the pairs of subspaces 
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of E and E x E. The homomorphisms in, jn, kn' and In are injections; in 
additions, the kn are excisions. The homomorphisms On are the boundary 
operators of the appropriate homology sequences; dn is induced by the 
appropriate diagonal map. The homomorphisms Pb P2, P3, P4 are induced 
by the fibre map Po and Ps by the fibre map p. 

The homomorphisms Vn are, in a sense, induced by the operation of 
multiplication of paths. This operation is a map fl : E1 x Eo --+ E; if Gn is the 
domain, and Hn the range, of Vn , then fl induces a homomorphism 
fln: Gn --+ Hn· Moreover, the projections re' and re" of the appropriate product 
into the first and second factors, respectively, induce homomorphisms re~, 
re~ : Gn --+ Hn. The homomorphism Vn is then defined by 

Finally, the injection h : Hq - 1(F x F) --+ Hq - 1(F x F, F v F) is an epi
morphism and V4 (Ker h) = 0; hence there is a unique homomorphism 
'*: Hq - 1(F x F, Fv F)--+ Hq _ 1(F) making the triangle labelled Q) in the 
Main Diagram commutative (cf. the discussion of §7 of Chapter III). 

(1.3) Theorem The Main Diagram is commutative. 

All commutativity relations are obvious, except those in the labelled 
regions, and we have just defined '* in such a way that Q) is commutative. 

To prove commutativity of CD, note that d2 0 P4 is induced by the map 
u --+ (u(l), u(l)), while Ps 0 d1 0 j1 is induced by the map u --+ (u(l), u(O)). 
These maps are homotopic under the map (t, u)--+ (u(l), u(t)). 

To prove commutativity of ~,note that both projections carry E1 x Eo 
into the subspace X of E, and therefore re'l = re'{ = O. Thus VI = fl1 is induced 
by the product fl. Therefore d1 0 VI is induced by the map (u, v) --+ (u . v, 
U' v). Since 11 is the injection, it suffices to show that this map is homotopic 
to the inclusion. The spaces E1, Eo are contractible, under homotopies 

respectively. The homotopy 

(t, u, v)--+ (u· VI' UI ' v), 

followed by homotopies of u . VI = U . e, U 1 • v = e . v to u, v, respectively, 
leaves the subspace F x Eo in Eo x E and the subspace E1 x Fin E x E1 
and deforms the above map into the inclusion. 0 

It follows from (1.1), (1.2) and from Theorem (2.2) of Chapter II that the 
triads 



1 The Homology Suspension 

(X; Eo, Ed, 

(F X Eo U El X F; El X F, F X Eo U El X e), 

(F X FuEl X e; F X F, e X FuEl x e), 

(F x Eo u El X F; El X F, F x Eo) 

are proper, so that the excisions kn are isomorphisms (n = 1, 2, 3, 4). 
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Since Eo and El are contractible,j2 and O2 are isomorphisms. Hence the 
homomorphism Ll*_ = O2 0 kilo j2 is an isomorphism; it is, of course, the 
boundary operator of the Mayer-Vietoris sequence of the triad (X; Eb Eo). 
The fibre map Po: E ~ B is a homotopy equivalence, and hence its induced 
homomorphism P4: Hq+ 1 (E) ~ Hq+ 1 (B) is an isomorphism. Therefore 
the commutativity of the Main Diagram implies 

(1.4) The diagram 

HiF) 
0'* 

Hq+1(B) -
Ll* 1 1 P4 

Hq+1(X) ----+ Hq+1(E) 
i 1 

is commutative, so that 0'* is equivalent to the injection i l' 

Thus it behooves us to study the groups Hq + 1(E, X). On the one hand, 
the homomorphism P6 = Ps 0 d1 is induced by the fibre map pt. The pairs 
(Eo, e) and (El' e) are DR-pairs; by (5.2) of Chapter I, the pairs 

(El x Eo, F x Eo U El x e) = (£1' F) x (Eo, e) 

and (El x F, ex FuEl x e) = (Eb e) x (F, e) are DR-pairs and therefore 
have trivial homology. It follows from the exactness of the homology 
sequences of the appropriate triples that 03 and 04 are isomorphisms. Thus 
there is a homomorphism 13 = VI 0 0310 k2 0 0410 k3: H q - 1(F x F, Fv F) 
~Hq+l(E, X). 

We can now formulate 

(1.5) Theorem (Homology Suspension Theorem). The diagram of Figure 8.2 is 
commutative, and the homomorphisms Ll* and P4 are isomorphisms. If B is 
n-connected (n :2: 1), then P6 and 13 are isomorphisms for q ::; 3n. 

There is a dual result for cohomology. 

(1.5*) Theorem The diagram of Figure 8.3 is commutative, and the homomor
phisms p! and Ll* are isomorphisms. If B is n-connected (n :2: 1), then p~ and 13* 
are isomorphisms for q ::; 3n. 
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Hq+ I(X) 
L1", 

Hq(F) ~ 

i 1( (a", 
Hq+ I(E) 

P4 
Hq+ I(B) ~ 

j1 
(d 2 

Y 
Hq+1(B x B, B v B) 

Hq+1(E, X) 

'Z 
",1 

Hq_ 1(F x F, F v F) 

L1", 
l '''' 

Hq(X) --+ Hq_ 1(F) 

i 1( la", 
Hq(E) ~ Hq(B) 

P4 
Figure 8.2 

These results can be restated as follows: 

(1.6) Corollary If B is n-connected there are exact sequences 

where 

a H (F) -"'-4 H (B) -> ... 3" 3" + 1 

Gq ~ Hq- 1(F /\ F) ~ Hq+ 1(B /\ B), 

Gq ~ Hq-l(F /\ F) ~ Hq+ I(B /\ B). 

(See Exercise 2 for a slightly improved result). 
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I .* 
11 

Figure 8.3 

2 Proof of the Suspension Theorem 

We shall prove Theorem (1.5); the proof is easily dualized to obtain 
Theorem (1.5*). 

The commutativity of the diagram in Figure 8.2 is a consequence of that 
of the Main Diagram and of the relevant definitions. And we have already 
observed that ~* and P4 are isomorphisms. It remains to prove that P6 and f3 
have the stated properties. 

We first prove a result which allows us to reduce the question to the case 
when the coefficient group is A. 

(2.1) Theorem Let f: (X, A) --> (Y, B), and suppose that f* : Hq(X, A; A)--> 
Hq(Y, B; A) is an isomorphismfor all q ::s; r and an epimorphismjor q = r + 1. 
Then f*: Hq(X, A; M) --> Hq(Y, B; M) has the same properties for any 
coefficient module M. 
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Let (W, C) be the mapping cylinder off (i.e., W = If and C is the mapping 
cylinder off I A : A ~> B). Then f* factors as the composite 

f1 fz 
Hq(X, A; M) -----> HiX u C, C; M) -----> 

Hq(W, C; M) ~ Hq(Y, B; M) 

where.f~ andfz are injections andf3 is induced by the natural projection of 
(W, C) into (Y, B). Since the latter map is a homotopy equivalence'/3 is an 
isomorphism. By the Excision Theorem, f1 is an isomorphism. The desired 
conclusion is equivalent to the statement Hq(W, X u C; M) = 0 for all 
q s r + 1. Our hypothesis, therefore, asserts that 

Hq(W,XuC;A)=O 

for q s r + 1. An application of the Universal Coefficient Theorem then 
yields the desired conclusion. 0 

(2.2) The homomorphism Ps is an isomorphismJor all q. 

We may assume M = A. The fibre map p = Pox P 1 : E x E -> B x B is a 
homotopy equivalence, because Po and P 1 are. Therefore the homomor
phism J[q+ 1 (E x E) -> J[q+ 1 (B x B) induced by p is an isomorphism for all q. 
Now Eo x E u E X E1 = p-1(B v B), and it follows from Corollary (8.8) of 
Chapter IV that p induces isomorphisms J[q+1(E x E, Eo x E u E x Ed 
~ J[q+ 1 (B x B, B v B). It follows from Theorem (7.18) of Chapter IV thrtt 

p* maps the homology sequence of the first pair isomorphically upon that of 
the second; in particular, Ps is an isomorphism. 0 

(2.3) The homomorphism P6 is an isomorphism for q s 3n and an epimorphism 
for q = 3n + 1. 

Again, we may assume M = A. The homomorphism P6 is induced by the 
fibre map pi, and the fibre of pi is F. Since B is n-connected, F = OB is 
(n - I)-connected. Moreover, the groups Hq+ dB x B, B v B) vanish for 
q s 2n, by the Kiinneth Theorem. Since B is I-connected, so is B v B, by the 
van Kampen Theorem, and therefore (B x B, B v B) is (2n + 1 )-connected. 
By the Hurewicz Theorem, Hq(F) = 0 for q < n. Therefore we can apply 
Theorem (6.1) of Chapter VII to deduce that P6 is an isomorphism if 
q + 1 < 2n + 2 + n, i.e., q s 3n, and an epimorphism if q = 3n + 1. 0 

(2.4) Corollary The homomorphism d 1 is an isomorphism Jor q s 3n. 0 

(2.5) The homomorphism 11 is an isomorphism for q s 3n and an epimorphism 
Jor q = 3n + 1. 
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Once more, we may assume M = A. Consider the NOR-pairs (Eb F) x 
(Eo, F) and (E, Eo) x (E, Ed. By the naturality of the Kiinneth Theorem for 
such pairs, there is a commutative diagram (Figure 8.4) whose columns are 
exact; the homomorphisms 15 and 16 are induced by the appropriate 
injections. 

o o 

1 1 

Hq+ l(E x E, Eo x E u E x Ed 

1 1 
i+j=q 

1 

EEl Tor{Hi(E, Eo), HAE, Ed} 
i+ j=q 

1 
o o 

Figure 8.4 

We have seen that P6 is an isomorphism for q S; 3n. Since Hq+ 1 (B x B, 
B v B) = 0 for q S; 2n, we have Hq+ 1 (E, X) = 0 for q S; 2n. The injection 
HiEo, F) -+ HiE, E1 ) factors as the composite 

but we have seen that k1 is an isomorphism for allj. Hence 17 (and therefore 
17 0 kd is an isomorphism for j S; 2n and an epimorphism for j = 2n + 1. 
Similarly, the injection Hi(Eb F) -+ Hi(E, Eo) is an isomorphism for is; 2n 
and an epimorphism for i = 2n + 1. Moreover, the groups Hi(Eb F), 
Hi(E, Eo), Hi(Eo, F), and H;{E, E1 ) are zero for i S; n. Thus 15 is an isomor
phism for q S; 3n, and an epimorphism for q = 3n + 1, while 16 is an isomor
phism for q S; 3n + 1. The desired property of 11 now follows from the 
Five-Lemma. 0 

(2.6) Corollary The homomorphism v 1 is an isomorphism for q S; 3n. 
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We can now complete the proof ofthe theorem. We have seen that 03 and 
04, as well as kz and k 3 , are isomorphisms. Hence the homomorphism 
[3' = 03 1 0 kz 0 04 1 0 k3 is an isomorphism. Since [3 = VI 0 [3', it follows 
from Corollary (2.6) that [3 is an isomorphism for q :s; 3n. 0 

3 Applications 

Our first application is trivial: 

(3.1) If B is n-connected, then 

0"*: Hq(F; M) --> Hq+1(B; M) 

is an isomorphism if q :s; 2n - 1 and an epimorphism if q = 2n and 

0"* : Hq+ l(B; M) --> Hq(F; M) 

is an isomorphism if q :s; 2n - 1 and a monomorphism if q = 2n. 

For the groups Hq+ 1 (B x B, B v B; M) and Hq+ l(B x B, B v B; M) are 
zero if q :s; 2n. 0 

We next note that 

(3.2) The composites dz 00"* and 0"* 0 '* are zero for all q. If q :s; 3n, then 

Kernel dz=lmage 0"*:Hq(F)-->Hq+1(B) 
and 

Firstly, 

dz 0 0"* 0 L1* = P6 0 jl 0 il = 0 

by commutativity of Figure 8.2; since L1* is an isomorphism, dz 0 0"* = o. 
Also 

If q :s; 3n, 

Ker(dz 0 P4) = Ker(P6 0 jd = Ker jl (since P6 is an isomorphism) 

= 1m i1 ; 

since P4 is an isomorphism). 

Ker d2 = Im(p4 0 id = Im(O"* 0 L1*) 

= 1m 0"* (since L1* is an isomorphism). 



3 Applications 

Again, if q :s:: 3n, 

1m '* = Im(.'1* 0 a1 0 (3) 

= Im(.'1* 0 ad (since f3 is an isomorphism) 

= .'1*(Ker i 1 ) 

= .'1* Ker(p4 0 id (since P4 is an isomorphism) 

= .'1* Ker(a* 0 .'1*) 

= Ker a * (since.'1* is an isomorphism). 

The elements of 1m a * are said to be transgressive. 
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(3.3) Corollary Every transgressive element of Hq+1(B) is primitive. Con
versely, if q :s:: 3n, every primitive element of H q + 1 (B) is transgressive. D 

Let us recall from §7 of Chapter III that the elements of the image of '* 
are called reductive; moreover, if M = A, u EO Hr(F), v EO Hs(F), r + s = 

q - 1, then u x v belongs to H q - 1 (F x F, F v F) and that ,*(u xv) is their 
Pontryagin product in the ideal H *(F) c H *(F *). Thus every decomposable 
element of H*(F) is reductive; the converse holds if H *(F) is torsion-free. (In 
fact, in order that each reductive element of Hq - 1 (F) be decomposable, it 
suffices that Hr(F) be torsion-free for all r :s:: q - n - 2). 

(3.4) Corollary The suspension a * maps every reductive element of Hq- 1 (F) 
into zero. Conversely, if q :s:: 3n, every element of Ker (J * is reductive. [f 
M = A, Hr(F) is torsionlree for all r :s:: q - n - 2, and q :s:: 3n, then every 
element of Ker a * is decomposable. D 

There are dual results for cohomology. 

(3.2*) The composites a* 0 di and ,* 0 a* are zero for all q. If q :s:: 3n, then 
1m di = Ker a* : Hq+ 1(B) -"> Hq(F) and Ker ,* = 1m a* : Hq(B) ---'> Hq-l(F). 

D 

The elements of a* Hq(B) are said to be transgressive. 

(3.3*) Every transgressive element of Hq - 1 (F) is primitive. Conversely, if 
q:s:: 3n, every primitive element of Hq-1(F) is transgressive. D 

(3.4*) The suspension a* maps every reductive element of Hq+l(B) into zero. 
Conversely, if q :s:: 3n, every element of Ker a* is reductive. If M = A and 
Hr(B) is a finitely-generated free module for all r :s:: q - n + 1, and q :s:: 3n, 
then every element of Ker (J* is decomposable. 
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Let us give an alternative description of the suspension homomorphism. 
Consider the triad (SF; T + F, T _ F). Since Eo and E1 are contractible, the 
inclusion maps of F into Eo and E1 have extensions g+ : (T + F; F)--> 
(Eo, F), g_:(T_F,F)-->(E1,F); the maps g+, g_ agree on 
T + F n T _ F = F and define a map 

g: (SF; T + F, T _ F) --> (X; Eo, E1)' 

The map 9 induces a map of the Mayer-Vietoris sequence of the first triad 
into that of the second; and it follows from the contractibility of the triads 
T + F, T _ F, Eo, E1 and the Five-Lemma that 

(3.5) The homomorphism g* : Hq+ l(SF) --> Hq+ l(X) is an isomorphismfor all 
q. 

The map 9 also induces homomorphisms gl = P3 0 g*: Hq+1(SF)--> 
Hq + 1(B), and we have 

(3.6) The composite 

,11 1 gl 
Hq(F) -----> Hq+1(SF) -----> Hq+1(B) 

of gl with the inverse of the boundary operator ,11 of the Mayer-Vietoris 
sequence of the triad (SF; T + F, T _ F) is the homology suspension 0"*. The 
homomorphism gl is an isomorphism if q :s 2n - 1 and an epimorphism if 
q = 2n. 0 

The homomorphism gl can be described in still another way. The adjoint 
of the identity map 1: QB --> QB is a map h: SF = SQB --> B. It is not 
difficult (and left to the reader) to verify that the maps 9 and h are essentially 
the same; more precisely, for any tEl, the map (P t I X) " 9 : SF --> B is hom
otopic to h. The map h, or any map homotopic to it, will be called a transfer 
of F into B. 

There is another operation which has a right to be called the homology 
suspension; it is the inverse of the boundary operator 

of the Mayer-Vietoris sequence of the triad (SY; T + Y, T _ Y). Unlike 0"*, 
the homomorphism s* is an isomorphism for all q. If W is another space, the 
maps 

t 1\ (y 1\ w) --> (t 1\ y) 1\ W, 

t 1\ (y 1\ w) --> Y 1\ (t 1\ w), 

are homeomorphisms of S(Y 1\ W) with SY 1\ Wand Y 1\ SW, respectively. 



4 Cohomology Operations 

Therefore there are isomorphisms 

SL: Hq(Y /\ W) ---> Hq+ l(SY /\ W), 

SR: Hq(Y /\ W) ---> Hq+ 1 (Y /\ SW), 

obtained by composing 

s* : Hq(Y /\ W) ---> Hq+ l(S(Y /\ W)) 

with the isomorphisms induced by these homeomorphisms. 
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Let Y = F, h : SF ---> B a transfer and let (JL: Hq(F /\ W) ---> Hq+ l(B /\ W) 
be the composite of SL with the homomorphism induced by h /\ 1 : SF /\ W 
---> B /\ W. Similarly, we may take W = F, and let (JR: Hq(Y /\ F)---> 
Hq + 1(Y /\B) be the composite of SR with the homomorphism induced by 
1 /\ h : Y /\ SF ---> Y /\ B. 

(3.7) Theorem If B is n-connected and W is m-connected, then 
(JL: Hq(F /\ W) ---> Hq+ l(B /\ W) is an isomorphism if q :s: m + 2n and an epi
morphism if q = m + 2n + 1. If Y is m-connected, then (J R : Hq(Y /\ F)---> 
H q + 1 (Y /\ B) is an isomorphism if q:s: m + 2n and an epimorphism if 
q=m+2n+1. 

Since SR and SL are isomorphisms for all q, these results follow from (3.1) 
by applying the Kiinneth Theorem to the spaces Ih /\ W, Y /\ Ih , respectively. 

Dually, one has the suspension homomorphism 

s* = ~ * - 1 : Hq + 1 (S Y) ---> Hq (Y), 

and the homomorphisms 

and 

(Jt: Hq+l(B/\ W)--->Hq(F /\ W), 

(Jk: Hq+ l(y /\ B) ---> Hq(y /\ F); 

(3.7*) Theorem If B is n-connected and W is m-connected, then 
(Jt : Hq+ l(B /\ W) ---> Hq(F /\ W) is an isomorphism if q :S: m + 2n and a mono
morphism if q = m + 2n + 1. If Y is m-connected, then (Jk : Hq+ l(y /\ B)---> 
Hq(y /\ F) is an isomorphism if q:s: m + 2n and a monomorphism if 
q = m + 2n + 1. D 

4 Cohomology Operations 

Let us now suppose that B = K(rr, n + 1) (and therefore F = K(rr, n)). Let 
us recall our discussion of cohomology operations in §8 of Chapter V. The 
groups Hq(F; G) and Hq+ l(B; G) are in one-to-one correspondence with the 
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sets of cohomology operations of types (n, q; TI, G) and (n + 1, q + 1; TI, G), 
respectively. Then the cohomology suspension corresponds to a trans
formation which associates to each cohomology operation of the 
second type, another one of the first. Let us attempt to determine how this 
transformation can be described in the context of cohomology operations. 

Let, then, 8: Hn + l( ; TI) -+ Hq+ l( ; G) be an operation, and let X be a 
CW-complex. Then the suspension operator s* : Hr+ l(SX; M) -+ Hr(x; M) 
is an isomorphism, for all r and every coefficient group M. Thus we can form 
the composite 

s* - 1 8(SX) .* 
W(X; TI) ----+ W+l(SX; TI) ----+ Hq+l(SX; G) ~ Hq(X; G). 

Call this composite CT*8(X). Then it is clear that CT*8 is a cohomology opera
tion of type (n, q; TI, G); we shall call CT*8 the suspension of 8. 

(4.1) Theorem For each u E Hq+ l(TI, n + 1; G), and let 8u be the correspond
ing operation. Then 8,,*(u) = CT*8u' 

In other words, the two notions of suspension correspond. 
Let us first remark that we have identified nn(F) and nn + 1 (B) with TI, and 

therefore with each other; i.e., there is implicitly defined an isomorphism of 
nn(F) with nn + 1 (B); let us choose this isomorphism to be the one which 
corresponds to the homology suspension under the Hurewicz map. It then 
follows that, if IF and I B are the fundamental classes of F and B, respectively, 
then CT*IB = IF' 

(4.2) Lemma Let K E%'*, and let f: K -+ F. Then there is a map 
9 : (SK; T + K, T _ K) -+ (X; Eo, Ed such that f = 9 I K : K -+ F. 

Since Eo is contractible and T + K is a copy of the cone over K, the map 
f: K -+ F has an extension 9 + : (T + K, K) -+ (Eo, F). Similarly, f has an 
extension 9 _ : (T _ K, K) -+ (E 1, F). The two maps agree on 
T + K n T _ K = K and so define a map g: SK -+ Eo U E1 = X. D 

(4.3) Lemma Let g: (SK; T + K, T _ K) -+ (X; Eo. E 1) be all extension of 
f: K -+ F, and let i: Xc::. E, go = P 1 9 : SK -7 B. Then, for any 
U E Hq+ 1(B; IT), we haue 

s*g~u = f*CT*lI. 

F or there is a commutative diagram 
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(4.4) 

and 

Hq(K; II) 
f* 

I 

S*-l=~*j 
w+ I(SK; II) 

g* --
96 ) 

Hq+ I(B; II) ------4 pt 

96U = g*iiptu 

= g*~*~*-liiptu 

= g*~*(J*u 

Hq(F; II) 

j ~* 
Hq+I(X; II) 

) .* 11 

Hq+ I(E; II) 

= ~ *f*(J*u = s* - If*(J*u. 
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o 
We can now prove Theorem (4.1). Letf: X ---> F be a map representing 

x E W(X; II) (i.e.,f*IF = x). Applying Lemma (4.3) to the class IB' we have 

S*961B = f*(J* IB = f* IF = x, 

so that go represents s* -IX. Now apply Lemma (4.3) again, this time to the 
class u, to obtain 

- *-10 () - S a*u x, 

o 

We have seen in §8 of Chapter V that a general cohomology operation 
need not be additive; a necessary and sufficient condition that an operation be 
additive is that the corresponding element of Hq(II, n; G) be primitive. It is 
easy to see that the suspension of any operation is additive. In fact, it follows 
from Theorem (8.3) of Chapter V and Corollary (3.3) above that 

(4.5) Theorem lfe is a cohomology operation of type (n, q; II, G), and if the 
corresponding element U E Hq(II, n; G) is transgressive, then e is additive. 
Conversely, if q :<;: 3n - 1 and e is additive, then U is transgressive. 0 

From (3.1) we deduce 
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(4.6) Corollary If q:::;; 2n - 1, every 
(n, q; n, G) is additive. 

cohomology operation of type 
o 

We have formulated the notion of cohomology operation in the context 
of CW-complexes with base point. It is sometimes convenient to consider 
them in the context of free CW-complexes and pairs. 

Suppose, then, that (X, A) is a free CW-pair (more generally, an NDR
pair). Then X/A is a space with nondegenerate base point. The subspace 
X uTA of T X has projections 

p: X u TA --> X u TA/TA = X/A, 

q: Xu TA-->X u TA/X=SA; 

the map p is a homotopy equivalence because TA is contractible. Let 
p' : X/A --> X u TA be a homotopy inverse of p. Then the composite 
r = q 0 p' : X/A --> SA, or any map homotopic to it, is called a connecting 
map for the pair (X, A) (cf. §6 of Chapter III). 

Let us make the construction for r a little more explicit. Since T + A and 
T _ A are contractible, the inclusion maps of A into T + A and T _ A extend to 
maps of (X, A) into (T +, A) and of (TA, A) into (T _ A, A). These maps, in 
turn, fit together to define a map 

g: (X uTA; X, TA)--> (SA; T+A, T_A). 

Again using the contractibility of the cones, we find that there are homoto
pies of g: X u TA --> SA to maps g', g": X u TA --> SA such that g'(TA) = 
g"(X) = *. Therefore there is a commutative diagram 

SA 

SA 
g" 

Xu TA 

~lp 
X/A 

----. SA 
g' 

Clearly h' is homotopic to the identity map, so that g' ~ q. Therefore 

(4.7) 
h" 0 p ~ g" ~ g' ~ q, 

h" ~ q 0 p' = r. 

Let Po = piX: (X, A)--> (X/A, *), and let 

<5* : W- 1(A) --> W(X, A), 

~* : W- 1(A) --> Hn(SA), 
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be the coboundary operators of the cohomology sequence of (X, A) and the 
Mayer-Vietoris sequence of the triad (SA; T + A, T _ A), respectively. (The 
coefficient group G is understood). 

(4.8) Lemma Let (X, A) be an NOR-pair. Then the diagram 

H"-I(A) .5* H"(X, A) ~ 

~*l f p~ 
H"(SA) ~ H"(X/A) 

r* 

is anti-commutative. 

For there is a commutative diagram 

H"(X/A) 

Y jpr~ 
k* i* 

(4.9) H"(X, A) -- H"(X uTA, TA) -4 H"(X uTA) 

7 fgr jg! rgl 

H"-I(A) ~ H"(T + A, A) kT H"(SA, T _ A) 

in which .5* and .5! are coboundary operators, i*, if, k*, and k! are injec
tions, gt, g! , g! are induced by the map g constructed above; P6 is induced 
by Po: (X, A)-+ (X/A, *), and p*, p! by p: Xu TA -+ X/A. But we have 
seen that g ~ q, whence p*-l 0 g! = r*. Now i! 0 k!-l 0 .5! is the cobound
ary operator of the Mayer Vietoris sequence of the triad (SA; T _ A, T + A), 
which is -~*. Commutativity of (4.9) now yields the desired conclusion. 

D 

We can now describe the action of the suspension of an operation in 
terms of relative groups. First note that, if (X, A) is a free CW-pair, then the 
projection Po : (X, A) -+ (X/A, *) induces isomorphisms P6 : H'(X/A; H) ~ 
Hr(x, A; H) for every integer r and coefficient group H. Therefore we can 
make any cohomology operation act on the relative groups by demanding 
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that the diagram 

H"(X/A; II) 

H"(X, A; II) 

be commutative. We then have: 

O(X/A) 
---+. Hq(X/A; G) 

----+. Hq(X, A; G) 
O(X, A) 

(4.10) Theorem Let (X, A) be a CW-pair, and let e be a cohomology operation 
of type (n, q; II, G). Then the diagram 

H"(X, A; [1) 

lb. 

is commutative. 

This follows readily from Lemma (4.8). Details are left to the reader. 
D 

5 Stable Operations 

For each integer r and pair of abelian groups II, G, the groups Hn +r(II, n; G) 
are connected by homomorphisms 

0"*: Hn+r(II, n; G)--> Hn+r+1 (II, n + 1; G), 

and so we may form the direct limit 

Ar(II; G) = lim Hn+r(II, n; G). 
n 

As usual, we often abbreviate Ar(II; Z) to Ar(I1). 
Similarly, we may form the inverse limit 

Ar(II; G) = lim w+r(II, n; G) 

of the groups Hn+r(II, n; G) with respect to the homomorphisms 

0"* : Hn + r + 1 (II, n + 1; G) --> w+r(II, n; G). 
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The above direct and inverse systems are trivial in the sense that, accord
ing to (3.1), the homomorphisms 0"* and 0"* are isomorphisms for all 
sufficiently large n. Thus the groups Hn+r(II, n; G) and Hn+r(II, n; G) are 
eventually constant, and we have 

(5.1) The natural homomorphism 

Hn+r(II, n; G) ----+ Ar(II; G) 

is an isomorphism if n ::::: r + 1 and an epimorphism if n = r. Dually, the natural 
homomorphism 

Ar(II; G) ----+ w+r(II, n; G) 

is an isomorphism if n ::::: r + 1 and a monomorphism if n = r. o 
The Universal Coefficient Theorem can then be applied to yield 

(5.2) There are splittable short exact sequences 

0----+ Ar(II)® G----+ Ar(II; G)----+Tor(Ar_l(II), G)----+O, 

0----+ Ext(Ar_ 1 (II), G) ----+ Ar(II; G) ----+ Hom(Ar(II), G) ----+ 0; 

and if G is a field, then Ar(II; G) is the dual vector space of Ar(II; G). 0 

Just as elements of Hn+r(II, n; G) correspond to cohomology operations, 
so do elements of Ar(II; G) correspond to stable operations. Specifically, a 
stable cohomology operation of degree r and type (II, G) is just a sequence of 
cohomology operations 

8n: W( ; II) ----+ w+r( ; G) 

with the property that 0"*8n+ 1 = 8n for every n. If 8 = {8n} is such a stable 
operation and 

U E Hn+r(II n- G) n , , 

is the element corresponding to 8n , then 

according to Theorem (4.1), and so the sequence {un} is an element of the 
inverse limit group Ar(II; G). It is clear that 

(5.3) The set of all stable cohomology operations of degree r and type (II, G) is 
in 1: 1 correspondence with the group Ar(II; G). 0 

It follows from Theorem (4.5) that 

(5.4) If 8 = {8n} is a stable cohomology operation, then each of the operations 
8n is additive. 0 
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Cohomology operations can sometimes be composed; the result IS 

another cohomology operation. Specifically, let 

O:W( ;II)-+w+r( ; G), <jJ:w+r( ;G)-+w+r+s( ;H) 

be cohomology operations; then it is clear that, for every K, the map 

W(K; II) ~ w+r(K; G) ~ w+r+s(K; H) 

defines a cohomology operation, which we may christen <jJ 0 O. Clearly 

(5.5) If 0 corresponds to U E Hn+r(II, n; G), then <jJ 0 0 corresponds to <jJ(u) E 

Hn+r+s(II, n; H). 0 

The effect of suspension on the composition of operations is given by 

(5.6) Let 0 and <jJ be cohomology operations of types (n + r, n; II, G), and 
(n + r + s, n + r; G, H), respectively. Then 

For 

and therefore 

a*(<jJ 0 0) = (a*<jJ) 0 (a*O). 

(a*<jJ)(X) = ~*-1 0 <jJ(SX) 0 ~*, 

(a*O)(X) = ~*-1 0 O(SX) 0 ~*, 

(a*<jJ(X)) 0 (a*O(X)) = ~*-1 0 <jJ(SX) 0 ~* 0 ~*-1 0 O(SX) 0 ~* 

= ~*-1 0 <jJ(SX) 0 O(SX) 0 ~* 

= a*(<jJ 0 O)(X). 

Suppose now that 0 and <jJ are stable operations: 

On: W( ; II) -+ w+r( ; G), 

<jJn : Hm( ; G) -+ Hm+s( ; G). 

Then a*(<jJn+r+l 0 en+d = a*(<jJn+r+d 0 a*(On+d = <jJn+r 0 On. Therefore 

o 

(5.7) The operations ljIn = <jJn+r 0 en are the components of a stable operation 
ljI=<jJo~ 0 

Evidently 

(5.8) Composition of stable operations is associative. o 
For any group II, the fundamental class bn of K(II, n) defines an opera

tion, which is evidently the identity map of Hn( ; II). Moreover, we have 
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seen that O"*bn + 1 = bn ; therefore the bn are the components of a stable 
operation 1. Clearly 

(5.9) For any stable operation e for which e 0 1 (1 0 e) is defined, we have 
e, 1 = e (1 e = 8). D 

In particular, if 0 is any abelian group, stable operations of type (0, 0) 
can always be composed, and the stable operations of degree r and type 
(0, 0) are the components Dr(O) of a graded ring D(O); D(O) is associative 
and 1 E Do(O) is the unit element of this ring. 

If 0 is a field, then D(O) is a graded algebra over 0, the algebra of stable 
operations of type O. In particular, when 0 = Zp, D(O) is called the Steen
rod algebra mod p. 

We now give some examples of stable operations. Less trivial examples 
will be given in §6. 

EXAMPLE 1 (Coefficient group homomorphisms). Let 0, G be abelian 
groups, f: 0 -+ G a homomorphism. Then the coefficient group 
homomorphism 

as we saw in Example 1 of §8, Chapter V is a cohomology operation of type 
(fl, n; 0, G). Clearly f* commutes with the coboundary operator of the 
Mayer-Vietoris sequence of a proper triad, and hence the!* ' for each value 
of fl, are the components of a stable operation f* . 

EXAMPLE 2 (Bockstein operators). This time the Bockstein operators 

If'( ; 0) -+ If'+ 1( ; G), 

associated with a short exact sequence 

o -+ G -+ E -+ 0 -+ 0, 

commute with coboundary operators except for sign; the diagram 

H"(A; 0) P* 
H"+ l(A; G) I 

b*j jb* 
H"+ l(X, A; TI) ----+ H"+2(X, A; G) 

P* 
is anti-commutative. Therefore the operators 

(-l)"P::lf'( ;O)-+W+l( ;G) 

are the components of a stable operation P*. 
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6 The mod 2 Steenrod Algebra 

We have seen that the cup square is an example of a cohomology operation. 
Its utility is apparent in the proof of 

(6.1) Theorem Let d = 2,4, or 8, and let rx E' n2d_1(Sd) be the homotopy class 
of the Hop/fibration. Then rx +- o. 

Let us recall that the mapping cone of rx is the projective plane P2(D), 
where D = C, Q, or K is the underlying division algebra. The space P2(D) is 
a manifold whose mod 2 cohomology groups vanish, except that 

H°(P2(D)) ~ Hd(P 2(D)) ~ H2d(P2(D)) ~ Z2; 

and it follows from Poincare duality that, if u is the non-zero element of 
Hd(P 2 (D)), then u u u +- O. On the other hand, if rx = 0, then P2(D) has the 
same homotopy type as Sd v S2d, and all cup-products in H*(Sd v S2d) vanish. 

D 

We may attempt to generalize this argument. If rx E' nn(sr), the mapping 
cone of rx is a CW -complex with one cell in each of the dimensions 0, r, n + l. 
If n > r, the boundary operator of its chain complex must be trivial, so that 

W(Ta; G) ~ H" + 1 (T,; G) ~ G 

for any coefficient group G. The proof of Theorem (6.1) generalizes to give 

(6.2) Theorem Let rx E' nn(sr), and suppose that there is a cohomology opera
tion 0 of type (n, r; G, n + 1) such that e: W(Ta; n) ---> H"+ l(T,; G) is not 
zero. Then rx +- O. 

For if rx = 0, then Ta has the homotopy type of sr v sn + 1, and therefore sr 
is a retract of T,. Iff: T, ---> sr is a retraction, then 

f* : w(sr; n) ~ W(T,; n). 

But H"+ l(sr; G) = 0, and commutativity of the diagram 

W(Ta; n) e 

w(sr; n) 

shows that e = o. D 

Let us recall that the suspension functor induces a homomorphism 
E : nn(sr) ---> nn + 1 (sr + 1); iteration yields e : nn(sr) ---> nn + k(sr + k). 
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(6.3) Theorem Let a E 1rn(sr), and suppose that there is a cohomology opera
tion 8 of type (II, r + 1; G, n + 2) such that (J*8 : H'(Ta; II) --* Hn+ !(Ta; G) is 
non-zero. Then Ea +- 0. 

For we may identify TEa with STa; thus there is a commutative diagram 

H'(Ta; II) 
(J*8 

Hn+ l(Ta; G) • 

) s* ) s* 

H'+ l(T . II) --+ Hn+2(T . G)' Ea' 8 
Ell, , 

since s* is an isomorphism 8 +- 0, and the fact that Ea +- ° follows from 
Theorem (6.2). 0 

(6.4) Corollary Let a E 1rn(sr), and suppose that there is a stable operation 8 
such that 

8' Hr(T . II) --* Hn+ !(T . G) . co co 

is non-zero. Then Eka +- ° for every k. 

This suggests the question of determining whether the cup square opera
tion is a component of a stable operation. But if u, v E Hn(x), 

(u + v) ~ (u + v) = u ~ u + u ~ v + v ~ u + v ~ v 

= u ~ u + [1 + (-1)"]u ~ v + v ~ v; 

thus the cup square is additive if n is odd, but may fail to be additive if n is 
even. In the latter case, it cannot, because of Theorem (4.5), be the suspen
sion of an operation. However, reduction mod 2 yields an additive operation 
even if n is even. 

We can now prove! 

(6.5) Theorem There are unique stable cohomology operations Sqi (i = 0, 1,2, 
... ) such that 

(1) Sqi has degree i; 
(2) SqO is the identity; 
(3) Sqix = x ~ x if x E Hi(K); 
(4) Sqix = ° if x E W(K), i > 11. 

We begin by defining SqO to be the identity. Suppose n > 0; then the 
element x = bn ~ bn E H2n(Z2' 11) is decomposable, and it follows from 

1 In this section the coefficient group for all homology and cohomology groups is Z2, and will 
be understood. 
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(3.4*) that (J*x = O. On the other hand bn is primitive, and therefore 

11*(bn ~ bn ) = (l1*bn) ~ (l1*bn) 

= (bn x 1 + 1 x bn ) ~ (bn x 1 + 1 x bn ) 

= (bn ~ bn ) x 1 + bn x bn + bn x bn + 1 x (bn ~ bn ) 

= (bn ~ bn ) x 1 + 1 x (bn ~ bn ) 

since the coefficient field is Z2' Thus bn U bn is primitive; by (3.3*), bn ~ bn 

is transgressive. But 

(J* : H 2n + I(Z2' n + 1) ---> H2n(Z2' n) 

is a monomorphism, and 

(J*: H2n +'(Z2' n + r)---> H 2n +'-1(Z2, n + r - 1) 

is an isomorphism if r > 1, by Theorem (3.1). Therefore there are unique 
elements 

such that Xo = bn ~ bn and (J*x, = X,_I (in particular, x, = 0 for all r < 0), 
and the x, define a stable operation Sqn of degree n. It is clear that the Sqn 
have the requisite properties, and uniqueness follows from the above mono
morphic property of (J*. 0 

(6.6) The operation Sql is the Bockstein operator associated with the exact 
sequence 

For we have seen (Theorem (7.8) of Chapter V) that Hn(Z2' n; Z) = Z2 
and Hn+1(Z2, n; Z) = 0 for large n. Hence Hn+l(Z2' n; Z2);:::: Ext(Z2' Z2) 
;:::: Z2, and we have seen in Exercise 7 of Chapter V that the non-zero 

element of Hn+I(Z2n; Z2) is the Bockstein operator corresponding to the 
non-zero element of Ext(Z2' Z2), i.e., to the above short exact sequence. 
Thus the statement in question is true, provided that Sql is not identically 
zero. But if X = p2 and x EO Hl(X) is the non-zero element, then 
Sql x = X ~ x is the non-zero element of H2(X). D 

A similar useful relation is 

(6.7) The operation Sql is the composite 

Hq(X; Z2) ~ Hq+I(X; Z) ~ Hq+I(X; Z2), 

where [3* is the Bockstein operator associated with the short exact sequence 

x 2 o -------> Z -------> Z -------> Z 2 -------> 0 
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and P2 is the homomorphism induced by the operation of reduction of the 
coefficients mod 2. 

The easy proof is left to the reader. D 

7 The Cartan Product Formula 

In order to calculate effectively with the Steenrod squares, additional infor
mation about their properties is needed. Such information is provided by the 
relation 

(7.1) Sqk(X ~ y) = I Sqix ~ Sqjy, 
i+j=k 

due to H. Cartan. 
This relation is entirely equivalent to the relation 

(7.2) 
i+j=k 

for the /\ -product pairing H*(X) with H*(Y) to H*(X /\ Y). 
Let Kn = K(Z2' n), and let bn E Hn(Kn) be its fundamental class. The 

Cartan relation (7.2) follows by naturality from 

(7.3) Sqk(bm /\ bn ) = I Sqibm /\ Sqjbn . 
i+j=k 

We shall prove 

(7.4) Theorem The relation (7.3) holds for all k, m, and n, and therefore the 
Cartan relations (7.2) holdfor all u E Hm(X), v E Hn(y), and the relations (7.1) 
for all x E Hm(x), y E W(X). 

We shall prove Theorem (7.4) by induction on m + n, observing that, if 
m + n < k, then both sides of (7.3) are zero. Suppose m + n = k. Then 

Sqk(bm /\ bn) = (bm /\ bn ) ~ (bm /\ bn ) 

= (bm ~ bm ) /\ (bn ~ bn ), 

while all terms on the right hand side are zero except for 

Therefore we shall assume that p and q are integers with p + q > k and that 
(7.3) holds whenever m+n=p+q-l. Let hi:SKp-i---->Kp, 
h2 : SKq _ i ----> Kq be transfers. Then the maps hi /\ 1 : SKp - i /\ Kq----> 
Kp /\ Kq, 1/\ h2 : Kp /\ SKq - i ----> Kp /\ Kq, induce a map 

h: (SKp - i /\ Kq) v (Kp /\ SKq_i ) ----> Kp /\ Kq. 
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(7.5) Lemma The homomorphism 

h* : Hr«SK p_ 1 1\ Kq } v (K p 1\ SKq_ d) -> Hr(Kp 1\ Kq} 

is an epimorphism in mod 2 homology if r < 2(p + q}. 
By the Kiinneth Theorem, it suffices to prove that, for each i, j with 

i + j < 2p + 2q, one of the homomorphisms 

h 1* ® 1 : Hi(SKp _ d ® HiKq} -> Hi(Kp} ® HiKq}, 

1 ® hh : Hi(Kp} ® Hj(SKq - 1} -> Hi(Kp} ® HiKq}, 

is an epimorphism. If hi * is not an epimorphism, it follows from (3.1) that 
i ;:::: 2p; but then j < 2q, and therefore h2* is an epimorphism. D 

(7.6) Corollary If r < 2(p + q}, the homomorphism 

h* : W(Kp 1\ Kq} -> W«SK p - 1 1\ Kq} v (Kp 1\ SKq- 1 )) 

is a monomorphism in mod 2 cohomology. 

(7.7) Corollary If r < 2(p + q}, the homomorphisms 

O't: W(Kp 1\ Kq} -> W-1(K p_1 1\ Kq}, 

0'1;. : W(Kp 1\ Kq} -> W- 1 (Kp 1\ Kq- 1) 

induce a monomorphism 

in mod 2 cohomology. 

D 

o 

Moreover, the fact that the Sqi are stable operations implies that they 
commute with s*, s1;. and sL and therefore with 0'*, O'k, O't: 

O'*Sqiu = SqiO'*u E Hr+i-1(K .1\ K } L L p- I q , 

O'kSqiu = SqiO'kU E W+i-1(KpI\Kq_d; 

and if U E W(Kp}, then 

D 

The inductive step in the proof of Theorem (7.4) now follows. For let 

Z = Sqk(bp 1\ bq } - I. Sqibp 1\ Sqjbq. 
i+j=k 
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Then 

6!Z = 6!Sqk(bp /\ bq } - I 6!(Sqibp /\ Sqjbq} 
i+j=k 

i+j=k 

= Sl(6*bp /\ bq } - I Sqi6*bp /\ Sqjbq 
i+j=k 

= Sqk(bp _ 1 /\ bq } - I Sqibp _ 1 /\ Sqjbq 
i+j=k 

=0 
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by the induction hypothesis. Similarly, 6~ Z = O. By Corollary (7.7), Z = O. 
o 

An important consequence of the Cartan formulas is 

(7.9) Theorem ffX is an H-space, and x E Hq(X; Z2) is primitive, then Sqiu E 
Hq+i(X; Z2) is also primitive. 

For if f1 is the product in X, application of Sqi to both sides of the formula 

yields 
f1*x = x x 1 + 1 x x 

Sqif1*X = Sqix X 1 + 1 X Sqix, 

the remaining terms vanishing because Sqil = 0 for j > O. But 

Sqif1*X = f1*Sqix 
by the naturality of S{ o 

We now give some more consequences of the Cartan formulas by calcu
lating the Sqi in certain spaces of interest. We begin with poo. 

(7.10) Theorem Let u be the non-zero element of Hl(poo; Z2); then 

Sqi(Uj) = e)ui+j. 

This is proved by induction on j. The cases j = 0, 1 are direct con
sequences of the properties of Sqi iisted in Theorem (6.5). Assume Sqiu j is as 
stated for some j ::::: 1 and all i. Then 

Sqi(U j + 1) = Sqi(U j ~ u) 

= I Sqru j ~ SqSu 
r+s=i 

(by the case j = 1) 

= c: 1 )U j + i + 1 (by Pascal's triangle). o 
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(7.11) Corollary Let u be the non-zero element of H1(pn; Z2)' Then 

(j) i+j 'f' . 
S i j _ . U I! + ] :::;; n, qu - ! 

o if i + j > n. o 
Another application is to the cohomology of the Stiefel manifolds. Let us 

recall (Theorem (10) of Chapter VII) that H*(Vn+1• m+1 ; Z2) has a simple 
system of generators Xn _ m' ... , Xn satisfying the condition 

We can now prove 

if 2i :::;; n, 

if 2i > n. 

(7.12) Theorem The action of the Steenrod algebra in H*(Vn+ 1. m+ 1; Z2) is 
given by 

(7.13) if i + j :::;; n, 

o if i + j > n. 

Because of Theorem (4.9) of Chapter VII, it suffices to prove this for 
V n + 1 ,n = 0:+ 1, By Theorem (4.7) of the same Chapter, the generators Xi 

have the additional properties: 

(1) Xb "., Xn form a basis for the space Mn of primitive elements; 
(2) the homomorphism g: : H*(O:+ d ---> H*(pn) maps Mn isomorphically 

upon H*(pn). 

By Theorem (7.9) the space M n is mapped into itself by the S{ By (2) the 
action of Sqi in Mn is determined by its action in H*(pn). This is given by 
Corollary (7.11). 0 

The Steenrod squares can now be applied to give a partial solution to the 
vector field problem, 

(7.14) Theorem Let n + 1 = 2kr, where r is odd. Then the fibration 

V n + 1 ,2k+l --->sn 
does not admit a cross-section, Thus sn does not admit a continuous field of 
2k-frames, 

This follows from two Lemmas, one topological and one purely 
arithmetic, 

(7.15) Lemma If the fibration 

p : V n + 1. m + 1 ---> sn 
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has a cross section, then 

(n ~ i) == 0 (mod 2) for i = 1, ... , m. 

(7.16) Lemma If n + 1 = 2kr, with r > 1, then 

(mod 2). 

PROOF OF LEMMA (7.15). Let A: sn -+ Vn + 1,m+l be a cross-section. Then 
p 0 A = 1, so that A * 0 p* = 1. If 1 sis m, then 

. (n-i) (n-i) Sq'xn-i = i Xn = i p*sn, 

and therefore 

( n-i) (n-i) i sn = i A*p*Sn = A*(Sqixn_J 

= SqiA*(Xn_J = 0 

. (n - i) because A*Xn-i E Hn-,(sn) = O. Hence i = O. o 

To prove Lemma (7.16), we shall need to develop some properties of 
binomial coefficients. 

(1) Let m = 2r + a, n = 2s + b, where a and b are either 0 or 1. Then 

(mod 2) 

In the polynomial ring Z2[X], we have 

by the Binomial Theorem 

i (m)xk = {.i (~)X2i}. {.± (~)xj}; 
k=O k ,=0 I J=O ] 

when the expressions in braces are multiplied, each power of x appears in 
only one term. Therefore equating coefficients of like powers of x yields 

as desired. 
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(2) Let 
m= I2 imi , 

i;:::O 

n = I2 in i , 

i~O 

be the 2-adic expansions of m, n. Then 

( m) == n (mi) 
n i?O ni 

This follows from (1) by induction. 

(mod 2). 

(3) The binomial coefficient (: ) is odd if and only if mi ~ ni for each i (i.e., 

the 2-adic expansion of m "dominates" that of n). 

We can now prove Lemma (7.16). In fact, r = 2s + 1 with s > 0, and 

n - 2k = 2k(2s + 1) - 2k - 1 

= 2k+l(S - 1) + 2k+1 - 1 

= 1 + 2 + ... + 2k + 2k+l(S - 1); 

therefore nk = 1, and our result follows from (3). o 
Remark. This result is due to Steenrod and 1. H. C. Whitehead. They also 

prove, using (3) that, if 1 :S; t < 2k, then (n ~ t) == 0 (mod 2). Therefore their 

argument cannot be improved. On the other hand, this result is not the best 
possible. In fact, a reformulation of an algebraic result of Hurewicz and 
Radon asserts that if 

(r odd), 

k=4a+b (0 :S; b :S; 3, a ~ 0), 

then sn admits a q-field, where 

q + 1 = 2b + 8a; 

and Adams has proved that this result is best possible [2]. 
Another application of the Steenrod process is 

(7.17) Theorem Let d = 2, 4, or 8, and let rx E 1t2d- 1 (Sd) be the homotopy class 
of the Hopfmap f: S2d-l ~ Sd. Then Ekrx =f. 0 for all k. 

In view of the remarks made earlier in this Chapter, this follows from 
Theorem (6.1), Corollary (6.4), and the existence of Sqd. 0 

Thus we have established 
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(7.18) Corollary There are non-zero elements 

'1n E nn + 1 (sn) 

Vn E nn+3(sn) 

(In E nn+7(sn) 

(n 2:: 2), 

(n 2:: 4), 

(n 2:: 8). 
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o 

As the Sqi are stable operations, they can be composed to obtain iterated 
squares: if I = (i 1, ... , ik ) is any sequence of positive integers, there is a 
corresponding stable operation 

SqI = SqitSqi2 ... Sqi\ 

where composition of stable operations is denoted by juxtaposition. 
We have seen in §5 that the stable operations in cohomology mod 2 form 

a graded algebra, the Steenrod algebra a = az . The following questions 
naturally present themselves: 

(1) Do the Sqi generate a as an algebra; in other words, do the iterated 
squares SqI span a as a Z2 vector space? 

(2) Are the SqI linearly independent? If not, find a complete set of relations 
among the SqI. 

The first question was settled in the affirmative by H. Cart an [1]. In fact, let 
us define a sequence 1= (i 1, ... , ik ) to be admissible if and only if ir 2:: 2ir+ 1 

for r = 1, ... , k - 1. Then Cartan proved that the admissible iterated 
squares form a basis for a as a vector space over Z2 . 

It follows that the answer to the first question posed in (2) is negative; for 
example, a non-admissible iterated square, such as Sq2 Sq2, must be expres
sible as a linear combination with Z2 coefficients, of admissible ones (in this 
case, Sq2 Sq2 = Sq3 Sq1). 

Relations among the iterated squares were found by 1. Adem [1]. These 
form a complete set in the following sense. Let a be the free associative algebra 
generated by the Sqi (so that the SqI for all sequences I form an additive 
basis for a). The kernel of the natural epimorphism n: a --> a is a two
sided ideal 5, and the Adem relations determine a subset of 5 which spans 5 
as an ideal. In other words, any linear relation among the iterated squares is 
a consequence of the Adem relations. 

We shall defer the proofs of the theorems of Cartan and Adem to a later 
chapter, since they depend on more sophisticated relations among the homo
logy groups of the fibre, total space, and base space of a fibration. However, 
we shall derive a few of the simpler of the Adem relations to illustrate the 
type of result which can be inferred from them. 
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(8.1) Theorem The relation 

Sq 1Sqn = 1° 
\Sqn + 1 

(11 odd) 
(11 even) 

holds for every positive integer n. 

Let Kn = K(Zz , n); then, by Theorem (7.8) of Chapter V, 

and therefore 

Hn(Kn; Z) = Zz, Hn+ I(Kn; Z) = ° 
W(Kn; Zz) ~ Hom(Hn(Kn; Z), Zz) ~ Zz, 

W+ I(Kn; Zz) ~ Ext(Hn(Kn; Z), Zz) ~ Zz. 

Let bn generate the former group; then we have seen in the proof of (6.6) that 
Sq 1bn generates the latter. 

We first observe that 

Sq 1Sqn(bn) = Sql(b~) = (Sq 1bn)bn + bn(Sq 1bn) = ° 
by the Cartan formula and the commutative law for the cup product. Con
sider the following segment 

d* * HZn+Z(K I\K ) ~ HZn+Z(K ) ~ H2n+l(K ) "+1 n+l n+l n 

of the suspension exact sequence of §1; we have taken B = Kn + b F = Kn, 
and are using (3.2*). Since the Sqi are stable operations, they commute with 
0"*; hence 

0"* (Sq 1Sqnbn+ d = SqlSqnO"~bn+ 1 = Sq 1Sqnbn = 0, 

and therefore Sql Sq"bn + 1 E 1m d! . By the Kiinneth Theorem, 
H Zn + 2(Kn+ 1 1\ Kn+ d is generated by bn+ 11\ bn+ band d!(bn+ 11\ bn + d = 
b~+I· Thus Sq1Sqnbn+1 = Ab~+1 for some A E Z2. 

Next observe that 0"*: H2n+3(Kn+2) -> H2n+2(Kn+ d is a monomor-
h · d *(S n+lb ) S n+lb b2 S· H2n+3(K ).. h p Ism, an 0" q n + 2 = q n + 1 = n + 1· Illce n + 2 IS III t e 

stable range, and 

O"*(Sql Sqnbn + 2 + ASqn + Ibn + 2) 

= Sq1Sqnbn+1 + ASqn+lbn+1 

= Sq1Sqnbn+ 1 + Ab~+1 = 0, 

it follows that the stable operations Sql Sqn and Sqn+ 1 satisfy 

(8.2) 

It remains to determine A. To do so we shall apply both sides of (8.2) to a 
suitable cohomology class in a suitable space X. In fact, let X = K 1 = 
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POO(R); then Hq(X) is generated by bi for every q, and 

Sqi(bi) = (~)br1, 
according to (7.10). Hence 

while 

Sq1Sqn(b1+1) = (n: 1 )Sq1(bin+1) = (n + 1)Sq1(bin+1) 

= (n + 1)bin+2; 

Sqn+ 1(b1+ 1) = (b1+ 1)2 = bin+2, 

and it follows that A = n + 1. 

Similar, but more complicated, is the proof of 

(8.3) Theorem If n 2 2, then 

Let 8 = Sq2Sqn + Sqn+1Sq1. Then 

8(bn ) = Sq2Sqn(bn) + Sqn+ 1(Sq1bn) 

= Sq2(b~) + (Sq 1bn)2 by Theorem (6.5) 

= (Sq 1bn)2 + (Sq 1bn)2 by the Cartan relation (7.1) 

=0. 
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o 

Hence !T*8(bn + d = 8(!T*bn + 1) = 8(bn ) = 0; by exactness of the sequence 

H2n+3(K /\K ) -.!!L H2n+3(K ) _~ H2n+2(K ) 
n+1 n+1 n+1 n' 

there is an element x E H 2n + 3 (Kn + 1 /\ Kn + 1) such that di x = 8(bn + 1)' By the 
Kiinneth Theorem, the group H2n + 3 (Kn + 1 /\ Kn + 1) is generated by the ele
ments Sq 1bn+ 1/\ bn + 1 and bn+ 1/\ Sq 1bn+ b and each of these elements is 
mapped by di into bn+1 (Sq 1bn+d. Thus 

8(bn+d = Abn+1(Sq 1bn+d 

for some A E Z2 . 

Now consider the sequence 

H2n+4(Kn+2 /\ Kn+2) --.!!L H2n+4(Kn+2) ~ 
* H2n+3(Kn+d ~ H2n+3(Kn+1 /\Kn+1)' 
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and observe that 

r*(bn+ 1 (Sq 1bn+ 1)) = bn+ 11\ Sq 1bn+ 1 + Sq 1bn+ 11\ bn+ 1 =f 0, 

while 

r*8(bn+ 1) = r*8(0"*bn+2 ) = r*0"*8(bn+2 ) = 0. 

It follows that /I. = 0, 8(bn + 1) = 0. Since 

0"*8(bn + 2 ) = 8(bn + 1 ) = 0, 

H2n+4(Kn+2 1\ Kn+2) is generated by bn + 2 1\ bn + 2 , and d!(bn+ 21\ bn +2) = 

b~ + 2, it follows that 

8(bn + 2 ) = J1b~+2· 

As in the proof of Theorem (8.1), we deduce that 

(8.4) 

with J1 E Z2, and it remains to determine J1. 
This time we apply both sides of (8.4) to the class b'1+ 2 E Hn+2(Kd; of 

course, 

On the other hand 

Sq2Sqn(b'1+2) = (n: 2)Sq2(bin +2) = (n; 2)(2n; 2)bin + 4 

= (n; 2)(n + 1)bin+4; 

Sq2n+1Sq1(b'1+2) = (n + 2)Sq2n+1(b'1+3) = (n + 2)(n + 3)bin + 4 

n+1 

= n(n ; 3 )bin + 4 . 

Since the mod 2 binomial coefficient (;) has period 4 in n, we need merely 

check that the relation 

(n + 1)( n ; 2) + n( n ; 3) = (n ; 1 ) 
holds for four consecutive values of n. We leave this to the reader. 0 

A consequence of Theorems (8.1) and (8.3) is 

(8.5) Corollary If n > 1 is odd or n > 2, n == 2 (mod 4), then Sqn is a decom
posable element of cc. 
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In fact, 

Sq2k+l = Sq 1Sq2k, 

Sq4k+2 = Sq2Sq4k + Sq4k+1Sql. o 
Let us return to the considerations of §6. Let ex E nn(sr), and let e be a 

cohomology operation of type (r, n + 1; II, G). We shall say that ex is detect
able by e if and only if 

e· H'(T . II) -> H n + l(T . G) . a' GO 

is non-zero. For example, the elements l1n, Vn , (In of Corollary (7.18) are 
detectable by Sq2, Sq4, Sq8, respectively. 

The cohomology operation e is said to be decomposable if and only if 
there are operations <Pi' t/Ji of types (r, mi; II, Gi), (mi' n + 1; Gj, G) 
(i = 1, ... , k) with r < mi < n + 1, such that 

k 

e = L t/Ji 0 <Pi' 
i= 1 

Clearly 

(8.6) If ex E nn(sr) and e is a decomposable operation of type (r, n + 1; II, G), 
then ex is not detectable bye. 

For if x E Hr(Ta; II), then 

<Pi(X) E Hmi(Ta; GJ = 0 

and therefore 
k k 

e(x) = L t/Ji(<Pi(X)) = L t/Ji(O) = O. o 
i= 1 i= 1 

(8.7) Corollary If e is a decomposable element of degree d of the Steenrod 
algebra a, then no element of nk + n _ 1 (sn) is detectable bye. 0 

(8.8) Corollary If ex E nd+n-l (sn) is detectable by Sqd, then d = 2 or d == 0 
(mod 4). 0 

In fact, Adem's relations can be used to show that Sqi is decomposable 
unless i is a power of two. Combining Adem's results with those of Cartan, 
we can conclude that, if ex E nd+n_l(sn) is detectable by any primary opera
tion, then d must be a power of two. We shall return to these questions in 
Volume Two. 

The Adem relations can also be used in a positive way, to show that 
certain maps are essential. For example, 
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(8.9) Theorem For each integer n 22, the element 

is non-zero. 

Let 1: S" + 1 ....... S", g : S" + 2 ....... S" + 1 be maps representing IJ" , IJ" + b respec
tively. The mapping cone of g is a CW -complex K = S" + 1 U 9 E" + 3; since 
IJ" + 1 is detected by Sq2, we have 

Sq2: W+ 1(K) ~ W+ 3(K). 

If h: (E"+3, S"+2) ....... (K, S"+1) is a characteristic map for the (n + 3)-cell, 
then 1 0 (h IS" + Z) = log ~ 0, and therefore log admits an extension 
k 1 :E"+3 ....... S". It follows that I:S"+1 ....... S" has the extension 
k = k1 0 h- 1 : K ....... S". Let L be the mapping cone of k. Then 
L = S" u E"+z U E"+4 is a CW-complex, and the subcomplex S" u E"+z is 
the mapping cone off, while LIS" is the suspension SK. From the first fact, it 
follows that 

from the second that 

so that SqZSqZ is non-zero in H*(L). But SqZSq2 = Sq3Sq1, by Theorem (8.3) 
and Sq3 Sq1 = 0 since H" + 1 (L) = O. This contradiction completes the proof. 

o 
Similarly, using the more complicated Adem relations 

Sq4Sq4 = Sq7 Sq1 + Sq6 SqZ 

Sq 8Sq8 = Sq 1SSq1 + Sq 14SqZ + Sq 1ZSq4, 

one can prove that v" 0 V"+3 and (J" 0 (In+7 are non-zero whenever n 24, 
n 2 8, respectively. Again, we refer the reader to Volume II. 

9 The Action of the Steenrod Algebra on the 
Cohomology of Some Compact Lie Groups 

In §7 we calculated the action of the mod 2 Steenrod algebra on H*(On+; Z2) 
in order to deduce it on H* (V n. m; Z2)' Let us recall the result. 

(9.1) Theorem The action 01 the Steenrod algebra on H*(O:; Zz) is 
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determined by 

if i + j 2': n. 

We next turn to the unitary groups. Let us first calculate the action of a 
on H*(P"(C}). As the injection H*(POO(C}) ~ H*(pn(C}) is an epimorphism, 
we may assume n = 00. We have seen that H*(POO(C)) is the polynomial 
algebra Z2[U], where u generates H2 (POO (C}). 

(9.2) Theorem The action of a on H*(POO(C}) is given by 

Sqi(U i ) = 0 if i is odd, 

Sq2i(Ui ) = C )ui + i. 

This is proved by induction on j, after the observation that, since 
Hq(P"?(C}) = 0 for all odd q, Sqi must vanish for any odd i. Assume that 
Sq2i(Ui ) is as stated. By the Cart an formula 

Sq2i(Ui + 1) = Sq2i(Ui ~ u) 

= Sq2i(U i ) ~ u + Sq2i-2(Ui ) ~ Sq2u 

= C)U i + i + 1 + C ~ 1 )Ui + i - 1 ~ u2 

by Pascal's triangle. o 
Since the Sqi are stable operations, we may use (9.2) to calculate the 

action of a in H*(SpOO(C}). Let Vi be the generator of H 2i + 1 (SpOO (C}) which 
is mapped into ui by the suspension operator 0'*. 

(9.3) Corollary The action of a in H*(SpOO(C}) is given by 

Sqivi = 0 if i is odd, 

2' (j) Sq'v i = i vi + i · o 

We can now determine the action of a on the cohomology of the unitary 
groups. 
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(9.4) Theorem The action of a on H*(U:) is determined by 

Sqiu j = 0 ifi is odd; 

. I (j ~ 1 )Ui + j if i + j ::;; n, 
Sq2'u j = , I 

10 ifi + j > n. 

By (4.6) of Chapter VII, the restriction of G: + 1 to the space P* of primi
tive elements is an isomorphism of p* with H*(spn(C)). By Theorem (7.9), 
Sqip* c P*, and therefore the theorem follows from our calculation of the 
Sqi in H*(spn(C)), which is given by Corollary (9.3). 

Similarly, 

(9.5) Theorem The action of a in H*(U n) is given by 

SqiXj=O ifiisodd; 

. ~ (j ~ 1 )Xi + j if i + j ::;; n, 
Sq2'Xj = ) I 

10 if i + j > n. 

The injection k* : H*(Un } ---> H*(U:} is an epimorphism whose kernel is 
the ideal generated by Xl; as Un+ is a subgroup of Un, k* P*(Un } C P*(Un+} 
and it follows that k*(x j} = Uj. It follows that the asserted formulae hold 
except possibly for j = 1. But U 1 is one-dimensional, so that 

SqOUl = Ul, SqlUl = ui = 0, 

SqiUl = 0 (i 22), 

and these agree with the stated results for j = 1. o 
We can now complete the determination of the integral and mod 2 coho

mology rings of G2 , as well as the action of a on the latter. 

(9.6) Theorem The cohomology ring H*(G2; Z2} has a simple system ofprimi
tive generators V3, Vs , V6. The action of a on H*(G2; Z2} is determined by 
the table 

V3 Vs V6 

Sql 0 V6 0 
Sq2 Vs 0 0 
Sq3 V6 0 0 
Sq4 0 0 0 
SqS 0 0 0 
Sq6 0 0 0 



9 The Action of the Steenrod Algebra 411 

(9.7) Corollary As an algebra, H*{G2; Z2) is isomorphic with the tensor 
product 

Remark. The above isomorphism is not an isomorphism of algebras over 
a, because of the relation Sq 1Sq2V3 = Sq3 V3 = v~. 

Let us recall (Theorem (5.18) of Chapter VII) that there are elements 
V3 = X E H 3(G2 }, Vs = P*Ys E H S(G 2 ), V6 = P*(Y6} E H 6(G2 } which form a 
simple system of generators for H*(G 2 }. Consider, moreover, the Wang 
sequence 

Hq-6(Ut} ~ Hq(G 2 } ~ HQ(Ut} ~ HQ-5(Ut} 

associated with the fibration 

ut ----+ G 2 --- S6, 

and recall that H*(Ut} is the exterior algebra on two primitive generators 
U 2 E H3(Ut}, U 3 E HS(Ut}, related by 

Sq 2 U2 = U3' 

Evidently i*V3 = u2, and from exactness of the sequence 

.* 8* * 
0-> H S(G2 } ~ HS(Ut} --- HO(Ut} ~ H 6(G2 } -> 0 

we deduce that i*(vs} = U3, 8*(U3} = 0, er:*(l} = V6' Then 

and therefore 

Sq2V3 = Vs· 

In H*(V 7, 2} we have the relation 

SqlYS=Y6' 

and therefore 

V6 = P*Y6 = p*Sqlys = Sqlp*ys = Sq1vs· 

By Theorem (8.1), 

thus v~ = Sq3V3 = V6, which settles the question left open in Theorem (5.18) 
of Chapter VII. 

The element V3 being primitive, it follows from Theorem (7.9) that Vs and 
V6 are primitive. We can now easily complete the table giving the Sqiv/ 

Sq2v6 = Sq2(V~} = (Sq1V3}2 by the Cartan formula 

=0; 
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Sq3 vs = Sq3SqZV3 = Sq 1SqZSq ZV3 = Sq 1Sq3SqlV3 

= 0 by the Adem relations in §8; 

(Adem); 

(Adem). 

The remaining Sqiv j lie in groups which are zero, except for Sq4VS . But Sq4vs 
is primitive, by Theorem (7.9), while the non-zero element V3 V6 = v~ satisfies 

.u*(Vn = .u*(V3)3 = (V3 x 1 + 1 X V3)3 

= v~ x 1 + v~ X V3 + V3 X v~ + 1 x v~ 

and accordingly is not primitive. o 

Finally, we can complete the determination of the integral cohomology 
ring H*(Gz ; Z) (cf. Theorem (5.17) of Chapter VII). 

(9.8) Theorem The elements x E H3(GZ; Z), p*(h) E H6 (G Z; Z) are related 
by 

X Z = p*(h). 

Thus Hq(Gz; Z) is an infinite cyclic group generated by 1, x, p*(z), x ~ p*(z) 
for q = 0, 3, 11, 14, respectively, while H 6 ( G 2 ; Z) is a cyclic group of order 2 
generated by x 2 , H 9 (G2 ; Z) is a cyclic group of order two generated by x 3, and 
Hq( G z; Z) = 0 for all other values of q. 

We need only observe that the coefficient homomorphism H* (Gz ; Z) ~ 
H*(Gz; Zz) induced by reduction mod 2 is a ring homomorphism and that 
x2 is mapped into v~ = V6 9= o. Thus x 2 9= 0 must be the non-zero element of 
H 6 (G 2 ; Z). 0 

EXERCISES 

1. In the notation of §1, let q : X -> B be the map defined by q(u) = uH). Prove that 

(a) q is a fibre map; 
(b) the fibre F * of q is homeomorphic with the subspace E 1 X F u F x Eo of 

E1 x Eo; 
(c) the boundary operator of the Mayer-Vietoris sequence of the triad 

(F*; E1 x F, F x Eo) induces an isomorphism 

(d) the diagram 
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Hq(F x F, F v F) -----+ Hq(F) -----+ Hq+ dB) 
T. a. 

(where i. and J. are the injections) is commutative. 

2. (Barcus and Meyer [1]). Suppose that B is n-connected. Prove that 

(a) F* is 2n-connected; 
(b) q* : H,(X, F *) -> H,(B) is an isomorphism for r s; 3n + 1; 
(c) there is a commutative diagram 

413 

H,.(F x F,F v F)-->H,.(F)-->···--> Hq(F x F,F v F)--> Hq(F)--> Hq+,(B)--> H._,(F x F, F v F)-->'" 

where the top sequence is the homology sequence of the fibration q and the 
bottom one is that of Corollary (1.6), but extended one unit to the left. 

3. Assuming that the above results can be dualized (as indeed they can !), show that 
the last sentence of Theorem (4.5) also holds for q = 3n. 

4. (Steenrod [4]). Formulate the notion of homology operation, and prove that 
every homology operation is additive. 

5. Prove that, if p : X -> S" is a fibration with fibre F and A is any stable cohomology 
operation then the diagram 

0* 

-----+ 
0* 

a· 
-----+ 

---+ 
a* 

i* 
-----+ 

---+ 
i* 

whose top and bottom rows are the appropriate Wang sequences, is 
commutative. 

6. Prove that there is a homomorphism 

az : Hq~ I(F x F, F v F) -> Hq+ I(B x B, B v B) 

such that the diagram 

$ H,~ I(F) ® H,~ dF) -> Hq~ dF x F, F v F) --+ $ Tor(H,~ ,(F), H,~ dF)) 
'+5=q+l '+S=4 

a.@a·1 ", I TO,i" •. a.1 I 
$ H,(B) ® H,(B) --+ Hq+ dB x B, B v B) -> $ Tor(H,(B), H,(B)) 

r+s=q+l r+s=q 

is commutative and P6 0 f3 = az. 
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7. (Adem [2]). Prove that Vn 0 'In + 3 + 0 if n = 4 or 5, and that an 0 'In + 7 + 0 if n = 8 
or 9. 

8. Assuming the Adem relation 

deduce that an 0 'In+7 + 0 for every n, and that an 0 Vn +7 + 0 for 8 ~ n ~ 11. 

9. (Borel [3]). Prove that the cohomology rmgs H*(Spin(7); Z) and 
H*(G 2 x S7; Z) are isomorphic. 

10. Prove that H*(Spin(7); Zz) ~ H*(G z x S7; Zz) as an a-module. 

11. Prove the corresponding statements for Spin(9): 

(a) the cohomology rings H*(Spin(9); Z) and H*(Spin(7) x S15; Z) are 
isomorphic; 

(b) the a-modules H*(Spin(9); Zz) and H*(Spin(7) x S15; Zz) are isomorphic. 



CHAPTER IX 

Postnikov Systems 

In Chapter V we showed how to use the process of attaching cells to con
struct CW-complexes with desired properties. In this Chapter we shall ex
ploit this process further, one of our aims being to show how any space can 
be built up, up to homotopy type, out of Eilenberg-MacLane spaces. 

Obviously, given any O-connected space X, we can kill its homotopy 
groups above a certain dimension N by attaching cells. We start with a 
family of maps of SN + I into X representing a set of generators of nN + I (X). 
Attaching (N + 2)-cells to X, we obtain a new space X' with the same 
homotopy groups as X through dimension N, but with nN + I (X') =0. In a 
similar way we kill nN+2(X') by attaching (N + 3)-cells to obtain a space XI/. 
Iterating this process indefinitely, we obtain a space X* :::J X with ni(X) ~ 
n;(X*) for i :<::: N, ni(X*) = 0 for i > N. 

Let us turn the inclusion map of X into X* into a fibration by the method 
of §7, Chapter I. The fibre X then admits a fibre map P : X ..... X and we have 
n;{X) = 0 for i :<::: N, while P* : ni(X) ..... n;{X) for i > N. 

The map P is called an N-connective fibre map. If q: X ..... X is an 
(N - 1)-connective fibre map, we can construct an N-connective fibration 
q': X ..... X. The composite is then an N-connective fibration p: X ..... X. 
Thus, starting with N = 1, we can construct a tower of fibrations 

Pn PI ........ Xn ---+ Xn - l ............. Xl ---+ Xo = X 

such that Pn : X n ..... Xn - l is an n-connective fibration and therefore so is 
qn = PI 0 ••• 0 Pn. The map PI has many of the properties of the universal 
covering map, and the construction of the tower can be thought of as a 
process of generalizing the universal covering space. 

The map Pn was constructed from X n _ I with the aid of an auxiliary space 
X~-l; the latter space is an Eilenberg-MacLane space Kn = K(nn(X), n). 

415 
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The above process is essentially one of resolving X into Eilenberg
MacLane components. It was discovered independently by H. Cartan and 
Serre [1] and by the present author [5] in 1952, and was developed with a 
view to calculating the homotopy groups by studying the behavior of the 
liomology groups of the tower and using the isomorphism 1l:n(X) ~ 
1l:n(Xn- 1) ~ Hn(Xn- d· This construction is expounded in §l. 

For each n, let xn be a space constructed from X by the process described 
in the second paragraph of thIS Chapter. Then there are essentially unique 
maps In + 1 : xn + 1 ~ xn such that In + 1 I X is the inclusion of X in xn. The 
problem of constructing a left inverse to In + 1 leads to an obstruction 
/(n+Z EO Hn+Z(T x n+ 1. 1l: (X)) whose image !,,+1' ,n+l 

kn+Z EO Hn+Z(xn; 1l:n+ 1 (X)) 

under the injection is called the (n + 2)nd Postnikov invariant of X. These 
classes are introduced in §2 and their naturality properties formulated. In §3, 
it is shown that the pair (xn + 1, X) is determined up to homotopy equi
valence by the pair (xn, X) and the class kn+Z. In fact, the class kn+Z deter
mines a map h : xn ~ K(1l:n+ 1 (X), n + 2) = K n, and we construct xn+ 1 as a 
CW -approximation to the total space W' + 1 of the fibration induced by h 
from the path space fibration P'(Kn) ~ Kn. 

The above discussion has the effect of analyzing the space X. Let us 
consider the problem of synthesizing a space X from Postnikov data. 
Indeed, suppose that we are given 

(1) a sequence 111> I1z, ... of abelian groups; 
(2) a sequence XO, xl, XZ, ... of CW-complexes; 
(3) a sequence of elements kn+1 EO Hn+1(xn-1; I1n) such that each of the 

complexes xn + 1 is obtained from xn and kn + Z by the process of the 
preceding paragraph. 

We wish to determine whether there is a space X whose Postnikov system is 
given by the above data. Such a space X can be constructed as follows. 
Replace the maps in : xn + 1 ~ xn in turn by fibrations, obtaining a tower 

... ~Y"+1 ~ Y"~ ... ~y1~YO 
of fibrations. Form the inverse limit Y of this sequence of spaces (N.B.: as 
usual, care must be taken to stay within the category x). Finally, choose a 
CW-approximation X ~ Y. This construction is dealt with in §4, where it is 
also proved that if the given system is the Postnikov system of a space X', 
then X and X' have the same homotopy type. 

In §5 we discuss a few examples; in §6 it is indicated how to relativize the 
notions of this Chapter. And we conclude the Chapter with an alternative 
approach to obstruction theory, making use of Postnikov systems. 

The ideas of this Chapter, as the name suggests, are due to Postnikov 
[1, 2] in the absolute case. The relativization was found in 1957 by Moore 
[1 ]. 
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1 Connective Fibrations 

Let p : X ~ X be the universal covering of a O-connected space X. The map 
p then has the following properties: 

(1.1) p is a fibration; 

(1.2) X is I-connected; 

Of course, the universal covering has other beautiful and useful properties 
(for example, the isomorphism of nl(X) with the group of covering transla
tions). These are, to some extent, counterbalanced by the fact that not every 
space has a universal covering space (in fact, a necessary and sufficient 
condition for its existence is that X be semilocally I-connected). Moreover, 
it is not at all obvious how to generalize its construction to construct 
"higher covering spaces." However, if we relax our requirements, by de
manding only that conditions (1.1)-( 1.3) above should hold, it is very easy to 
make the appropriate construction, and also to find the generalization to 
higher dimensions. 

Let X, then, be a O-connected space. According to Corollary (2.4) of 
Chapter V, we can imbed X in a space X* in such a way that 

(1 *) (X*, X) is a relative CW-complex; 
(2*) (X*, X) is I-connected; 
(3*) nq(X*) = 0 for all q ;:::: 2. 

(In fact, we may assume that (X*, X) has no cells of dimension:::; 2). Thus 
the injection nl(X)~nl(X*) is an isomorphism, and X* is an Eilenberg
MacLane space K(nl(X), 1). 

Let X be the mapping of the inclusion map i: X c.X*, and let 
p: X ~ X be the fibration of X over X. By Corollary (8.9) of Chapter IV, 
there is an exact sequence 

( Ll* _ p* i* ... ~ nq+ 1 X*) -----+ nq(X) -----+ niX) ------+ nq(X*) ~ ... 

If q;:::: 2, nq(X*) = nq+ l(X*) = 0, so that p*: n!l.,(X) ~ nq(X). Since 
n2(X*) = 0 and i* : nl (X) ~ nl (X*), we must have n 1 (X) = o. Since (X*, X) 
is I-connected and X is O-connected, X is O-connected. Thus conditions 
(1 *)-(3*) are satisfied. 

It is now obvious how to generalize the above construction. Let us call a 
map p : X ~ X N -connective if and only if 

(1) X is N-connected; 
(2) p* : nq(X) ~ niX) for all q ;:::: N + 1. 
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Furthermore, let us say that a space X is N-anticonnected if and only if 
nq(X) = ° for all q 2: N. A space X* containing X is called an N
anticonnected extension of X if and only if X* is N-anticonnected and 
(X*, X) is N-connected; thus the injections 

nq(X) ---> nq(X*) 

are isomorphisms for all q < N. If, moreover, (X*, X) is a relative CW
complex having no cells of dimension::;; N, we shall say that X* is a regular 
N-anticonnected extension of X. 

We can now repeat the preceding argument, assuming instead that X* is 
a regular (N + 1 )-anticonnected extension of X and that X is the mapping 
fibre of the inclusion i : X c::.X*, to obtain 

(1.4) Theorem Let X be a O-connected space, N a positive integer. Then there 
exists an N -connective fibration p : X ---> X. D 

The process by which we constructed the N-connective fibration 
p : X ---> X is more or less unique. We first prove 

(1.5) Theorem Let X* be a regular n-anticonnected extension of X, y* an 
m-anticonnected extension of Y, and let f: X ---> Y. Then 

(1) if m ::;; n, f can be extended to a map f* : X* ---> Y*; 
(2) if m ::;; n + 1, any two extensionsf~ ,It : X* ---> y* are homotopic (reI. X). 

Since (X*, X) has no cells of dimension::;; n,fis already defined on the 
n-skeleton X~ of (X*, X). Therefore the obstructions to extendingflie in the 
groups Hq+l(X*, X; nq(Y*» (q 2: n) and these groups vanish, since 
nq(Y*) = 0, if q 2: m. If m ::;; n, all the obstructions vanish and the extension 
exists. 

Iff~,ft are extensions off; they already agree on the n-skeleton X:. The 
obstructions to deforming f 0* to f t* lie in the groups Hq(X*, X; nq( y*» 
for q 2: n + 1, and these groups vanish, since nq(Y*) = 0, if q 2: m. If 
m ::;; n + 1, all the obstructions vanish, and the two maps are homotopic 
(reI. X). D 

(1.6) Corollary Let xt and X! be regular (n + 1 )-anticonnected extensions of 
X. Then the pairs (xt, X) and (X! , X) have the same homotopy type. 

By (1) of Theorem (1.5) with m = n = N, the identity map of X has 
extensions f: (xt, X) ---> (X!, X) and g: (X!, X) ---> (xt, X). By (2) of the 
same theorem, the maps g 0 f: (xt, X) ---> (xt, X) and fog: (X!, X) 
---> (X! , X) are homotopic to the appropriate identity maps (reI. X). 

D 
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(1.7) Corollary Let X! and X! be regular (N + 1 )-anticonnected extensions 
of X, and let Pi: Xi ~ X be the N-connective fibrations constructed in the 
proof of Theorem (7.4). Then PI and P2 have the same fibre homotopy type. 

Let f: (X!, X) ~ (X!, X), g: (X!, X) ~ (Xt, X) be extensions of the 
identity map of X. Then composition with f induces a map j~ : X 1 ~ X 2, 

and pz 0 fl = PI : X 1 ~ X; similarly composition with g defines a map 
gl: X 2 ~ Xb and PI 0 gl = P2: X 2 ~ X. Let F: I x X! ~ X! be a homo
topy of 1 to g 0 f (reI. X); then the map F 1 : I x X 1 ~ Xl defined by 

F l(t, u)(s) = F(t, u(s)) 

is a vertical homotopy of the identity map of X 1 to g 1 0 fl' Similarly, a 
homotopy G of 1 to fog (reI. X) induces a vertical homotopy G1 of the 
identity map of X 2 to fl 0 gl' D 

The process of constructing an N-connective fibration p: X ~ X can be 
broken up into several steps. In fact, let X 0 be a O-connected space, and 
suppose we have constructed spaces X rand r-connective fibrations 
Pr : X r ~ X r-l (r = 1, ... , N). Then the composition qN = PI 0 ••• 0 PN is an 
N-connective fibration. Applying the process of Theorem (1.4) to the space 
X N, we construct a regular (N + 2 )-anticonnected extension X~ of X in 
order to construct the (N + 1 )-connective fibration PN + 1 : X N + 1 ~ X N . 
Note that X~ is an Eilenberg-MacLane space K(1tN+ l(X), N + 1), and 
therefore the fibre of PN + 1 is the space QX~ = K(1tN + 1 (X), N). 

Summarizing, we have 

(1.8) Theorem If X = X 0 is a O-connected space, there is a tower 

The maps Pn and qn = PI 0 P2 0 ••• 0 Pn are n-connectivefibrations. Thefibre of 
Pn is an Eilenberg-MacLane space K(1tn(X), n - 1). D 

The spaces X: used in the above construction are Eilenberg-MacLane 
spaces: X: = K(1tn(X), n). Thus an arbitrary space X can be decomposed, in 
a sense, into a family of Eilenberg-MacLane spaces. It is natural to ask 
whether X has the same homotopy type as the weak product n:= 1 K(1tn(X), n). However, this is easily seen not to be the case. Suppose, 
for example, that X is a finite-dimensional real projective space pn (n ;:::: 2), 
so that 1t1(X) = Zz. Then Hq{X; Zz) = 0 for all q > n. If X were a product, 
as above, then poo = K(Z2' 1) would be a retract of X and the fact that 
Hn + 1(POO; Z2) =1= 0 implies that Hn + 1 (X; Z2) =1= O. 

In this connection, the following theorem is frequently useful. 
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(1.9) Theorem (J. C. Moore). A necessary and sufficient condition that a 
connected CW -complex K have the same homotopy type as a weak product of 
Eilenberg-MacLane spaces is that the Hurewicz map p: 1t"(X) -> H"(X) have 
a left inverse A : H"(X) -> n,,(X) for every positive integer n. 

Suppose first that X = TIk'= 1 K(Gk , nd. For a given positive integer n, let 
J = {kink = n}; and let X' = TIktJ K(Gk , md. Then 

X = TIK(Gb n) x X' 
kEJ 

= K(G, n) x X' 

where G = EBkE.l Gk and n"(X') = EBk¢J n"(K(Gk , nk )) = O. Thus 
n"(X) ~ G. Let p: X -> K(G, n) be the projection on the first factor, and let 

u = p*I"(K(G, n» E H"(X; G). 

A homomorphism A : H"(X) -> G = n"(X) is then defined by 

A(Z) = <u, z) 

If x E G, b" = 1"(K( G, n», then 

A(p(X» = <u, p(x» = <p*bn, p(x» 

= <bn , p*p(x» = <b", pp*(x» 

= p*(x). 

As p* : n"(X) -> n"(K(G, n)) = G is an isomorphism, this implies that p has a 
left in verse. 

Conversely, suppose that An : Hn(X) -> nn(X) is a left inverse of the Hur
ewicz map (n ~ 1). F Ol each n, choose a cohomology class 
Un E H"(X; n"(X» such that the homomorphism of H"(X) into nn(X) defined 
by the Kronecker index with Un is A" . Letf" : X -> K(n"(X), n) = Kn be a map 
such that f~ bn = u"; we may assume that f~ maps the (n - 1 )-skeleton X n - 1 

of X into the base point. It follows that the fn define a map f: X -> TI:= 1 Kn 
such that p" 0 f = j", where Pn is the projection on the nth factor. If rx E n"(X), 
then 

rx = AnP(rx) = <un, p(rx» = <f~b", p(rx» 

= <bn,f~*P(rx» = <b", p!n*(rx» 

= j,,*(rx), 

so that[,,* : nn(X) --> nn(K"} is an isomorphism. As fm* : n"(X) -> nn(Km) is 
zero for m =F n, and as 
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it follows that f* : TCn(X) -* TCn(O: = 1 Km) is an isomorphism for all n, and 
therefore f is a weak homotopy equivalence. Since both spaces are CW
complexes, f is a homotopy equivalence, by Theorem (3.5) of Chapter V. 

D 

2 The Postnikov Invariants of a Space 

We saw in §1 how a space X can be resolved into simpler" constituents"
these are Eilenberg-MacLane spaces K(TCn(X), n). We also saw that the 
constituents themselves do not suffice to determine the homotopy type of X. 
The further information necessary turns out to be provided by a sequence of 
cohomology classes, the Postnikov invariants of X, which we now describe. 

Let X be a connected CW -complex. In addition, we shall assume that X is 
simple (i.e., n-simple for every n); thus TC l (X) is abelian and operates trivially 
on the higher homotopy groups TCn(X). Appealing once more to Theorem 
(2.3) of Chapter V, we construct a sequence of CW-complexes Xo, xI, X 2 , 

... , each containing X as a subcomplex, such that xn -1 is a regular n
anticonnected extension of X (n = 1,2, ... ); in particular, XO is contractible. 
Let us call such a sequence {xn} a resolving sequence for X. A sequence of 
maps fn : xn -* xn - 1 is called a bonding sequence, and the f" bonding maps, if 
and only iff 0 in = in- 1, where in : Xc, X n . Finally, a homotopy resolution of 
X consists of a resolving sequence {xn}, together with a bonding sequence 
U~}· 

From Theorem (1.5) we conclude 

(2.1) Theorem If {xn} is a resolving sequence for X, then there exists a bond
ing sequence Un}. If {f,,} and U~} are bonding sequences, then, for each n, 
fn ~f~ (reI. X). D 

Let us suppose given a homotopy resolution for X. We may assume that 
the maps fn are cellular. Iff = f" + 1 : xn + 1 -* xn is one of the bonding maps, 
its mapping cylinder is a CW-complex containing 0 X X n+ 1 U I x X 
u 1 x xn as a subcomplex. It is convenient to "flatten out" the prism 
I x X; more precisely, let p: I x X -* X be the projection on the second 
factor, and let gn be the adjunction space 

As the adjunction map p is a homotopy equivalence, the homotopy type of 
If is not altered by this process (Corollary 5.12, Chapter I); we shall call gn 
the relative mapping cylinder of.f The space gn is a CW -complex with 
subcomplexes isomorphic with X" and X n + 1; these have been pasted 
together along their common subcomplex X. 
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Let <t, x) be the image of the point (t, x) in gn under the compound 
identification I x xn + 1 ~ I J ~ gn. Then we have the relations 

<0, y) = y 

<t,x)=x 

(1, y) = fn+ 1 (y) 

(y E x n + 1), 

(x E X) 

(y E X n + 1). 

We can also form the relative mapping cone gn = gn/xn+1. The inclu
sion xnc. gn gives rise to a mapping of xn into gn. The latter map, however, 
is not an inclusion, because the subspace X c xn has been collapsed. 
Instead, there is an inclusion Xn/X e.gn. 

From the commutativity of the diagram 

we deduce 

1t (xn+ 1) 
1tq(in+j/ q 

1tq(X) j 1tq(fn+ d 

1tq(~ 1tq(xn) 

(2.2) Theorem The homomorphism 1tq(Jn+ 1): 1tq(xn+ 1) ~ 1!q(xn) is an isomor
phism for all q =1= n + 2. Hence 

1tq(gn, xn+1) = ° (q =1= n + 2), 

while the composite 

~ 0* 1!n+1(in+1t 1 
1!n+2(Xn, xn+1) ---->- 1!n+1(xn+1) -----'-----+, 1!n+1(X) 

is an isomorphism. o 
Because of our hypothesis that X is (n + 1 )-simple, the space xn + 1 is 

(n + I)-simple and the pair (gn, xn+1) is (n + 2)-simple. Hence we can 
apply the Relative Hurewicz Theorem to obtain 

(2.3) Corollary The composite 
-1 a 

Hn+2(gn, xn+1) ~ 1!n+2(gn, xn+1) ~ 

~,(xn+1) 1tn+1(in+d- 1 (X) "nr 1 ' 1!n+ 1 

is an isomorphism Kn+2 : Hn+2(gn, x n+ 1) -+ 1tn+ 1(X). o 
Since Hn+ 1 (gn, xn+ 1) = 0, the Universal Coefficient Theorem reduces to 

an isomorphism 

Hn+2(xn, xn+1; G):::::: Hom{Hn+2(Xn, X n+1), G}. 
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Therefore the isomorphism /(n+2 corresponds to a cohomology class 

k1+2 E Hn+2(xn, xn+l; 1'Cn+l(X)), 

whose image 

kn+2(x) = kn+2 E W+Z(X\ 1'Cn+l(X) 
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under the injection is called the (n + 2)nd Postnikov invariant of X. The system 
{Xn,f", kn+Z} is called a Postnikov system for X. 

By exactness of the cohomology sequence of (xn, xn + 1), we have 

(2.4) The relation 

f * kn+2=0 . n+ 1 

o 
Since the inclusion maps in : Xc. X n, in + 1 : Xc. xn + 1 are related by 

we have in turn 

(2.5) The injection 

i* . Hn+Z(xn. 1'C (X» -* Hn+Z(x· 1'C (X» n • , n+1 , n+1 

sends the Postnikov invariant kn + 2 into zero. o 

The term "invariant" is used somewhat loosely here. In fact, kn + 2 is a 
cohomology class of a space xn, which has not been constructed in an 
invariant way. This difficulty, however, is not serious, for, as we shall show 
below, the construction ofthe space xn can be made completely natural. The 
real difficulty arises from the fact that the space X may admit non-trivial self 
homotopy equivalences. (This sort of difficulty is a familiar one to the 
category theorist who has tried to construct a new category by identifying 
equivalent objects in an old one.) 

Let us make explicit the sense in which the classes k" + Z may be regarded 
as invariants. Let {Xn,f,,}, {Y", gn} be homotopy resolutions for X, Y, respec
tively, and let h : X -* Y. By Theorem (1.5), the map h can be extended to a 
map hn : xn -* Y" for every n. Moreover, the maps gn + 1 0 hn + b 
hn 0 f" + 1 : xn + 1 -* Y" are homotopic (reI. X). The map hn induces a homo
morphism h~ : H" + 2(Y"; G) -* Hn + 2(xn; G) for any coefficient group G. And 
the homomorphism of 1'Cn + 1 (X) into 1'Cn + 1 (Y) induced by h determines a 
(coefficient group) homomorphism 

h . Hn + 2 (Z· 1'C (X» -* Hn + 2 (Z· 1'C (Y» *. , n+1 , n+1 

for any space Z. We then have 
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(2.6) Theorem The Postnikov invariants 

are related by 

kn+2(x) E W+2(X"; nn+I(X)), 

kn+Z(y) E HI!+2(yn; nn+ I(Y)) 

IX Postnikov Systems 

A homotopy of gIl + I 0 h" + I to hn "in + 1 can be used to construct a map 
G: (xn, x n+ 1) ---> (}'1l, yn+ I) whose restrictions to X n, X n+ I are the maps hI!' 
hn + I respectively. It suffices to prove that G*k1 + 2(X) = h* k1 + 2(y). But the 
diagram 

p 8 nn+l(in+d 
H (x~n xn+I). +--- n (xn xn+l) -.!.. n (xn+l). n (X) n+2 , .+2 , n+l n+1 

Hn+2(yn, yn+l) <---p nn+Z(yn, yn+l) --;-+ nn+l(yn+l) , U ) nn+l(y) 
U", nn+ 1 n+ I 

is commutative, and k1 + 2(X) is the cohomology class corresponding to the 
homomorphism 

n"+I(in+I)-1 c 8*" p-I E Hom(Hn+2(Xn, Xn+1), nn+l(X)), 

and similarly for k1 + 2 (Y). Their images under G*, 11* correspond to the 
composites of these homomorphisms with Hn+2 {G), nn+l(h), respectively, 
and the theorem follows from commutativity of the above diagram. 0 

We next show how the construction of the spaces xn+1 can be made 
natural. The idea is to use a" big enough" model. This is in accordance with 
the observation that large constructions are often best to give conceptual 
explanations and elegant proofs, while small constructions are better 
adapted to making specific computations. 

Let X be a space and n a non-negative integer. Let Fn = Fn(X) be the set 
of all continuous functions rx: An+l ---> X; we shaH consider Fn as a discrete 
topological space. The evaluation map e = ex sends FI! X An + 1 into X; let 

Qn-l(X) = X u. (Fn x L\n+l).. 

Letf: X ---> Y; then composition withfis a map 

f: F,,(X) ---> FnP'), 

and C y C U x 1) = J 0 ex. Hence the mapsf : X ---> y, f xl: Fn(X) x Anti 

---> FnP') X An+ I are compatible with the identification maps 

X + (F"(X) x An+l)---> Qr.-l(X). 

Y + (FII(y) x Ard 1) ---> Qn- 1 (Y). 



2 The Postnikov Invariants of a Space 425 

and therefore induce a map 

Evidently we have defined a functor Qn-I : ,x' ---+ ,x. Moreover, the inclu
sion mapsjn_1 (X) : Xc, Qn-I (X) define a natural transformationjn_1 of the 
identity functor into Qn - I' 

(2.7) Theorem The functor Qn -1 and the natural transformation jn - 1 have the 
following properties: 

(1) The pair (Qn-I(X), X) is a relative CW-complex (in fact, an 
(n + 1 )-cellular extension of X); 

(2) The injection ni(X) ---+ n;(Qn-I(X)) is an isomorphism for all i < n; 
(3) nn(Qn-I(X)) = O. 
(4) Iff: X ---+ Y is an inclusion, so is 

Qn - I (f) : Qn - I (X) ---+ Qn - I (Y). 

The easy verification of these properties is left to the reader. 
To construct a candidate for the space xn- 1, we simply iterate the above 

construction. Specifically, let 

p~-l(X) = X (k -s; n), 

P~~ ~(X) = Qn-I (X), 

PZ- l(X) = Qk- 2(PZ= t(X)) (k ~ n + 2). 

This recursive definition gives rise to a relative CW-complex (pn-l(x), X) 
whose k-skeleton is p~-l(X). Moreover, iff: X ---+ Y, we can define PZ-I(f) 
recursively by 

P'k-I(f) = f (k -s; n), 

P~ ~ Hf) = Qr. - 1 (f), 

P'k - I en = Qk - 2 (PI, = Hf)) (k ~ n + 2). 

Clearly each of the maps P'C len is an extension of the preceding, so that 
they define a map 

As before, we have defined a functor p n - 1 : .x' ---+ ,x', and the inclusions 
in- 1 (X) : Xc, P" - 1 (X) determine a natural transformation in _ 1 of the iden
tity functor into pn- \ and we have 

(2.S} Theorem Thefunctor pn- 1 and the Ilatural trallsformation in 1 have the 
following properties: 

(1) The pair (pn-l(x), X) is a relative CW-complex and 
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pn-l(f):(pn-l(x),x)-+(pn-l(y),y) a cellular map for every 
f:X-+ Y; 

(2) The space pn-l(x) is a regular n-anticonnected extension of X. 
(3) Iff: X -+ Y is an inclusion, so is pn-l(f): pn-l(x) -+ pn-l(y). 0 

To study the relationship between pn-l(X) and pn(x), let us observe that, 
if k ::;; n, then 

while 
PZ(X) = X = PZ-l(X), 

P~+l(X) = X c Qn-l(X) = p~~t(X), 

P~+z(X) = Qn(X) c Qn(P~~ t(X)) = p~~HX). 

Assume that P~-l(X) is a subspace of p~=HX), k:::o: n + 3. Then 

P~(X) = Qk-Z(PZ-l(X» c Qk-2(P~=HX)) = PZ-l(X). 

Hence, by induction, PZ(X) c PZ- 1(X) for all k, and therefore 

(2.9) The relative CW-complex (pn(x), X) is a subcomplex of (pn-l(X), X). 
Moreover, the inclusions pn(x) C. P" - 1 (X) define a natural transformation 
.fn:pn-+p"-l. 0 

(2.10) Corollary The sequence {P"(X),j;'(X)} is a homotopy resolution of x. 
o 

We shall refer to the above resolution as the canonical homotopy resolu
tion of X. 

3 Amplifying a Space by a Cohomology Class 

Let X be a (connected) CW-complex, u E H"(X; il) (n :::0: 1). The pair (X, u) 
determines a new space W(u), together with a map q : W(u) -+ X, as follows. 
Let K = K(n, n); then, according to Corollary (6.20) of Chapter V, there is a 
unique homotopy class of maps 

h:X-+K 

such that h*I"(K) = u. Let W(u) be the mapping fibre of h, q: W(u) -+ X its 
fibration over X. Then there is a commutative diagram 

W(u) 

(3.1) 

X 

g 
P'(K) 

----+1 K 
h 
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The map q : W(u) ----> X (and, for the sake of brevity, the space W(u)) is called 
an amplification of X by k. 

Remark 1. The map h is determined only up to homotopy. Thus (Exercise 
6, Chapter I) the fibration q is determined only up to fibre homotopy type. In 
particular, the space W(u) is determined only up to homotopy type. 

Remark 2. The map q is a fibration whose fibre n(K) is an Eilenberg
MacLane space K(II, n - 1). 

By Corollary (8.9) of Chapter IV, there is an exact sequence 

(3.2) h L1 q 
oo·---->1tr+1(X) ~ 1tr+l(K) ~ 1tr(W(u)) ~ 1tr(X)----> 00. 

Since 1tAK) = ° for all r =1= n, we see that 

q* : 1tr(W(u)) ~ 1tr(X) 

1tn(W(u)) = Ker £I, 

while there is a short exact sequence 

(n - 1 =1= r =1= n), 

0----> Cok £I ----> 1tn - 1(W(u)) ----> 1tn - 1(X) ----> 0, 

where 

The explicit calculation of the homomorphism i1 is given by 

(3.3) Theorem For all a E 1tn(X), 

u(a) = <u, p(a). 

In fact, there is a commutative diagram 

and 

<u, p(a) = <h*ln(K), p(a) = <zn(K), h*p(a) 

= <In(K), pu(a) 

= u(a) 

by the defining property of the class In(K). o 
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(3.4) Corollary If X is (n - 1 )-anticonnected, then W(u) is n-anticonnected, 
and 

q* : nr(W{u)) ~ nr(X) 

nn-l(W(U) ~ IT. 

(r =1= n - 1), 

o 
Thus, in the passage from X to W(u), the sequence of homotopy groups 

(n 1 (X), ... , nn _ 2 (X), 0, 0, ... ) is altered by replacing the first written zero by 
IT). 

We next show that each stage of a Postnikov system for a space X can be 
obtained, up to weak homotopy equivalence, by the above amplification 
process, from the preceding stage. Specifically, 

(3.5) Theorem Let {xn,fn' kn+ 2} be a Postnikov system for the connected 
simple CW-complex X. For each positive integer n, let qn+ 1: w+ 1 --> xn be 
the amplification of xn by the cohomology class kn+2 E Hn+2{xn;nn+l(X)). 
Then there is a weak homotopy equivalence gn + 1 : X" + 1 --> W + 1 such that 
qn+l 0 9n+l =j~+I' 

Let gn be the relative mapping cone offn+ b Pn : (xn, x n+ 1) --> (gn, *) the 
identification map,jn : xn --> gn the restriction of Pn to the subspace X" of gn. 
Since Pn is a relative homeomorphism, 

p:;: Hn+2(gn; G) ~ w+2(xn, xn+l; G) 

for any coefficient group G. Let 

hi: xn-->Kn = K(nn+l(X), n + 2) 

be a map such that 

P-*h*zn+2(K ) = kn+2 
n 1 n l' 

Let h = hi 0 jn : xn --> Kn. Then 

h*zn+2(Kn) = j:h!ln+2(Kn ) 

is the image kn + 2 of k1 + 2 under the injection. Thus there is a commutative 
diagram 

wn+' g ( -------.. P' Kn) 

xn ----+ g" ___ Kn 
jn h, 

The map jn 0 fn + 1 is nullhomotopic; a nullhomotopy is given by 

(t, y)--> Pn«1- t, y». 
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Therefore the map h 0 In+ 1 is nullhomotopic via the homotopy 

(t, y)-+ hdJn«l- t, y»). 
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The adjoint of the latter homotopy is a map g: x n+ 1 -+ P'(Kn) such that 

pg(y) = g(y)(O) = h1P,,«1, y») = h1p"In+l(Y) 

= hljn.f~+l(Y) = hIn+dy)· 

The pair of maps (in + 1, g) defines, in turn, a map g" + 1 : X" + 1 -+ W' + 1 such 
that q" + 1 0 g" + 1 = In + 1 and g 0 gn + 1 = g. 

To show that gn + 1 is a weak homotopy equivalence, we first observe that, 
if r =F n + 1, then, by Corollary (3.4), 

'Trr(qn + 1) : 'Trr(W' + 1) ~ 'Trr(xr). 

Since 

is also an isomorphism in these dimensions, so is 'Trr(g" + 1)' It remains to 
prove that 'Tr" + 1 (g" + 1) is an isomorphism. 

Define gt(Y) : I -+ K", for each y E X" + 1, tEl, by 

then 

(1) go(Y) = g(y); 
(2) gb)(l) = h1P,,«t, y»); 
(3) gl(y) = e hfn + 1(y); 

(4) gb)(O) = hIn+ l{y), 

Because of these relations, the function defined by 

(x EX), 

is a map hn + 1 : gn -+ g" making the diagram 

xn+ 1 c: xn~ xn 

gn+lj j hn+ 1 j 
W n+ 1 c: )[" ---------+ K" 

Ii 

commutative (Ii: g" -+ K" is the fibration of g" = Ih over Kn). Therefore the 
diagram 
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1l:n+2(xn) <--I ---

1l:n+2(Pn) 
1l: (xn xn+l) n+ 2 , 

Hn+2(xn) <_--- Hn+ 2(Xn, xn+ 1) 
Hn+2(Pn) 
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1l: (wn+ 1) n+ 1 

I 1l:n+ I(Yn+ d 

1l:n+l(xn+l) 

is commutative. Because Ii is a fibration, 1l:n + 2 (Ii) is an isomorphism. Because 
Pn is a relative homomorphism, Hn+2(Pn) is an isomorphism. By the Hure
wicz Theorems, the two homomorphisms p are isomorphisms, and therefore 
1l:n+2 (Pn) is an isomorphism. Because gn and Xn, having the same homotopy 
type as X n , are (n + l)-anticonnected, 0* and o~ are isomorphisms. We have 
seen that the homomorphism Kn+2 such that (k,;+2, z) = Kn+2(Z) is an iso
morphism: Hn+ 2(Xn, xn+ 1) -> 1l:n+ 1 (X). But the map hi was so chosen that 
k~+2 = J?:h! zn+2(Kn). Hence 

Kn+2(Z) = (k~+2, z) = (J?:h!zn+2(Kn), z) 

= (In+2(Kn), Hn+2 (hdHn+2(Pn Z) 

= p -1 Hn+2(hdHn+2 (Pn)Z 

= 1l:n+ 2(hl)P -1 Hn+ 2(Pn)Z, 

It follows that 1l:n+2 (hd is an isomorphism, and so, therefore, are 1l:n+z(hn+ d 
and 1l:n + 1 (gn+ d· 0 

Remark. The maps gn+ 1 I x: X -> wn·q is an inclusion, and it follows 
that 

(3.6) The map gn + 1 : (xn + \ X) -> (WI + 1, X) is a weak homotopy equivalence 
of pairs. D 

4 Reconstruction of a Space from Its 
Postnikov System 

Let X be a connected simple CW-complex. We have seen how to associate to 
X a sequence 
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where 

(1) TIn(= 7!n(X» is an abelian group; 
(2) X n - 1 is a CW-complex, and XO is contractible; 
(3) kn + 1 E Hn + 1 (X . TI ). n-1, n' 

(4) there is a commutative diagram 

xn 

such that gn is a weak homotopy equivalence. 

Let us study the question posed in the title to this section. More 
specifically, let us define a Postnikov system to be a system 21 satisfying 
(1)-(4) above. 

From Corollary (3.4) and induction on n, we find 

(4.1) Theorem Let g> = {TIn' X n- 1 , kn+ 1,fn} be a Postnikov system. Then 

(1) xn - 1 is connected and simple; 
(2) 7!;(xn) ~ TIJor i = 1, ... , n; 7!;(xn) = Of or i> n; 
(3) 7!;(fn): 7!;(xn) ---+ 7!;(Xn - 1) is an isomorphism for all i =1= n. 

It will be convenient to modify a Postnikov system by replacing each of 
the maps f~ in turn by an equivalent fibration. More precisely, let g> = {TIn' 
xn - 1, kn + 1, f~} be a Postnikov system. Let PI: Y 1 = If 1 ---+ XO = yO be the 
fibration constructed in §7 of Chapter I, and let)o : XO ---+ yo be the identity 
map, ) I : Xl ---+ yl the inclusion. Let pz : yZ = Ii! 0 f2 ---+ yl be the appro
priate fibration,)z : XZ c. yZ. Proceeding in this way, we obtain a commuta
tive diagram 

... ---+ xn+ I 
fn+ I xn ---+ ... ---+ X I 

fl 
XO ------> ---+ 

(4.2) j jn+ I j jn j) 1 j )0 

... -+ yn+ I ---+ yn -+ ... -+ yl ------> yO 
Pn+ 1 PI 

in which 

(4.3) Pn+l: yn+l---+ yn is a fibration (11:2: 0), 

(4.4»)n : xn -+ yn is an inclusion and a homotopy equivalence. 
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This construction suggests the notion of afibred Postnikov system, This is 
a sequence 11) = {TIn' yn - 1, Pn I n ~ I} wit the properties 

(1) TIn is an abelian group; 
(2) yo is contractible; 
(3) Pn: yn ....... yn-l is a fibration whose fibre Fn is an Eilenberg-MacLane 

space K(TI., n); 
(4) the injection 1tn(Fn) ....... 1tn(Y") is an isomorphism, 

We then have 

(4.5) Theorem Let ,uj> = {TIn' Xn-t, kn+ 1,fn} be a Postnikov system, Then 
there is a fibred Postnikov system ~) = {TIn' yn- 1, Pn} and a commutative 
diagram (4,2) satisfying the conditions (4,3), (4,4), In particular, 

(1) Y" - 1 is connected and simple; 
(2) 1tq(Y"):::::; TIqfor q = 1, "" n; 1tq(yn) = 0 for q> n; 
(3) 1tq(Pn): 1tq(Y") ....... 1tq(Y" - 1) is an isomorphism for all q + n, D 

Remark. The reader may have observed the absence of the cohomology 
classes corresponding to the classes kn + 1, Of course, they are present im
plicitly, as the obstructions to cross-sections of the fibrations Pn (cf. Exercise 
5), 

Thus for many purposes we may replace a Postnikov system by a fib red 
one, This has certain disadvantages~the spaces Y" are no longer CW
complexes~but these are compensated for by the many advantages pos
sessed by fibre maps, 

One of the advantages of dealing with a tower of fibrations is that it has a 
relatively well-behaved inverse limit (but see the remark below), Let 
Pn : Y" ....... Y" - 1 be a sequence of maps, and let y* be their inverse limit in the 
usual topology, Then y* is a Hausdorff space; let Y = k(Y*) be the asso
ciated compactly generated space, The projection of Y* into 1';. defines a map 
gn: Y ....... 1';. such that Pn 0 gn = gn-l' The following statements are easily 
verified, and are left to the reader. 

(4.6) The space Y is an inverse limit of the Y" in the category X; i,e,,jor any X 
in X and maps in : X ....... Y", such that Pn o,t;. = fn-l, there is a unique map 
f: X ....... Y such that gn 0 f = fn ' D 

(4.7) If each of the maps Pn is afibration, then each of the maps gn is afibration, 
D 

Let us consider the behavior of the homotopy groups, The commutative 
diagrams 
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1tq(gy 

1tq( Y) 

1tq(gn~ 
define a homomorphism 

1tq( Y") 

!1tq(Pn) 

1tq( yn- 1) 

IJ: 1tq(Y) --+ lim TCq(yn). 
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The homomorphism I] is not, in general, an isomorphism. Instead, we have 

(4.8) Theorem There is a short exact sequence 

° --+ liml TCq+l(yn) --+ TCq{Y) ~ lim 1tq(yn) --+ 0. 
n n 

To show that IJ is an epimorphism, let (Xn E 1tq(yn) be elements such that 

(n=0,1,2, ... ). 

We shall show that there are mapsf,. : sq --+ yn such thatfn represents (Xn and 
Pn + 1 0 fn + 1 = fn(n = 0, 1, 2, ... ). Let fo : sq --+ yO be an arbitrary representa
tive of (Xo, and suppose thatj~ has been found and has the above properties 
(whenever they make sense) for all n ~ N.lff~+ 1 : sq --+ yN+ 1 is an arbitrary 
representative of (XN + b then PN + 1 0 f~ + 1 is a representative of 
TCq(PN + d(XN + 1 = (XN, and therefore PN + 1 0 f;V+ 1 "" fN(rel. *). The homotopy 
lifting property then assures us thatl~ + 1 is homotopic (rel. *) to a map fN + 1 

such that PN + 1 0 fN + 1 = fN' This proves the existence of maps fn with the 
required properties. They in turn define a map F : sq --+ Y representing an 
element (X E TCq( Y) such that TCq(gn)(X = (Xn for all n. 

Let us next define a homomorphism A: Ker I] --+ lim 1 TC q + 1 (yn). Let 
f: sq --+ Y be a map representing an element (X of Ker 1], so that gn 0 f"" * for 
every n. For each n, choose an extension 

hn : Eq+l--+ yn 

of gn 0 I The maps hn, Pn + 1 0 hn + 1 : Eq + 1 --+ yn agree on sq. Therefore, re
garding Eq+l as a CW-complex with one O-cell *, one q-cell sq, and one 
(q + 1 )-cell, we may form the difference cochain 

dq+ l = dq+1(Pn+l 0 hn+l' hn); 

since there is only one (q + 1 )-cell, we may confuse dq + 1 with its value on the 
positively oriented cell Eq+ l; thus 

f3n = dq+1 (Pn+l 0 hn+b hn) E TCq+1(yn). 

Let us consider the sequence 
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it depends, of course, on the choices of the extensions hn • For a different set 
of extensions h~ , let 

then 

f3~ = dq + 1 (Pn + 1 0 h~ + 1, h~) 

= dQ+1 (Pn+l 0 h~+l' Pn+l 0 hn+d + dq+1(Pn+l 0 hn+b hn) 

+ dq+ l(hn' h~) by (5.13) of Chapter V 

= nq+l(Pn+l)dq+l(h~+b hn+1 ) + f3n + 'Yn by (5.4') of Chapter V 

= -nq+1 (Pn+d'Yn+l + 'Yn + f3n 

and therefore f3 and f3' determine the same element A(a) of lim 1 nq+ 1 (Y"). It is 
n 

not hard to see that A is a well-defined homomorphism. We shall show that A 
is an isomorphism. 

To prove A a monomorphism, suppose that A(a) = 0. Then the elements 
f3n satisfy the condition 

for some 'Yn E nq+l(xn). By (5.12) of Chapter V, there exist extensions h~ of 
gn 0 fsuch that dq+ l(hn' h~) = 'Yn' The above computation shows that f3~ = 0, 
and therefore 

for all n. Because the maps Pn are fibrations, it is easy to construct recursively 
new extensions h~ + 1 of gn 0 f such that Pn + 1 0 h~ + 1 = h~ . The maps h~ then 
define a map h : Eq+ 1 ~ Y such that gn 0 h = h~ , and hi sq = f Hence f ~ *, 
a = 0. 

To prove A an epimorphism, let f3 = (f3o, ... , f3n, ... ) be a sequence of 
elements f3n E nq+ 1 (Y"). We shall define recursively a sequence of maps 
hn : Eq+l ~ Y" with the property that dq+1(Pn+l 0 hn+l' hn) is defined and 
equal to f3n for every n. Let ho : Eq+ 1 ~ Y" be arbitrary, and suppose that ho, 
... , hN have been defined and have the requisite properties. Then by (5.12) of 
Chapter V, there exists a map h~ : Eq+ 1 ~ yN such that dq+ 1 (h~, hN) = f3N' 
Since Eq + 1 is contractible, there exists a map hN + 1 : Eq + 1 ~ yN + 1 such that 
PN+l 0 hN+1 = h~. 

Define f" : sq ~ Y" by f" = hn I sq. Then 

Pn+l of,,+l = Pn+l 0 hn+1 l sq 
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and therefore the mapsfn determine a mapf: sq ---+ Y such that gn 0 f = fn for 
every n. The element IX E TCq(Y) represented byfthen belongs to the kernel of 
1], and it is clear that A(IX) = {3. Hence A is an epimorphism. D 

(4.9) Corollary If~) = {IIn' yn, Pn} is a fibred Postnikov system, then 

TCq(Y) .~ lim TCq(yn) ~ IIq. 
n 

F or in this case the lim 1 term vanishes because TCq + 1 (Pn) is an isomor-
phism for all large n. D 

Theorem (4.8) and its Corollary (4.9) show that the inverse limit of a 
tower of fibrations is reasonably well-behaved. This observation, however, 
must not be taken too literally. For example, suppose that yn is the cartesian 
product S1 x ... X sn, while p" : yn+ 1 ---+ yn is the projection on the product 
of the first n factors. Then Y is the cartesian product 

00 

TIS" 
n=1 

(let us ignore for the moment the fact that we do not know how to topolo
gize infinite products!), so that Y need not have the homotopy type of a 
CW-complex. Indeed, let Y* be the (weak) product of the S". It follows from 
Exercise 6 of Chapter IV and from Theorem (4.8) that the injection TCq{Y*)---+ 
TCq{ Y) is an isomorphism for all q, so that the inclusion map is a weak 
homotopy equivalence. Were Y to have the homotopy type of a CW
complex, the inclusion would be a genuine homotopy equivalence. Suppose 
thatf: Y ---+ Y* is a homotopy inverse. Then Y is compact, so that f (Y) is 
contained in TI~ = 1 Si for some k. But then 

k 

1m TCk + 1 (f) C EB TCk+ 1 (Si) 
i= 1 

and so TCk+ 1 (f) cannot be an epimorphism. 
We can now prove the main results of this section. 

(4.10) Theorem Let ~) = {IIn' yo, Pn} be afibred Postnikov system, and let Y 
be the inverse limit lim yn. Let h : X ---+ Y be a CW-approximation, and let 

n 

{X", f~} be a homotopy resolution for X. Then there are weak homotopy 
equivalences 

hn : X" ---+ yn 

such that the diagrams 

(n = 0, 1, 2, ... ) 
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h 
X • Y 

in+ 1 I I gn+ 1 

Xn+ 1 ~ yn+ 1 

fn+ 11 
hn+ 1 I Pn+ 1 

X" • y" 
hn 

are commutative. 

Suppose that hn has been defined and has the requisite properties for 
n = 0, 1, ... , N (N 2 0). By Theorem (1.5), there IS a map 
h~+l: X N+1 ---+ yN+l such that hN+1 0 iN+1 = gN+l 0 h. The maps 
PN+ 1 0 h~+ 1 and hN 0 fN+ 1 are extensions of gN 0 h; again by Theorem (1.5), 

(ret X} 

Because PN + 1 is a fibration, there is a map hN + 1 : X N + 1 ---+ yN + 1 such that 
PN+l 0 hN+1 = hN ofN+1 and hN+1 ~ h~+l(rel. X). In particular, 

hN+1 0 iN+1 = hN+1IX = h~+lIX = h~+l 0 iN+1 = gN+l 0 h. 0 

(4.11) Theorem Let X be a connected simple CW-complex, {X",f,,} a homo
topy resolution o/X, and fJ}J the associated Postnikov system. Let I{) be afibred 
Postnikov system satisfying the conclusion of Theorem (4.5). Then the maps 

determine a map h : X ---+ Y = lim Y", and h is a weak homotopy equivalence. 
n 

We have 

hence there is a uniquely determined map h : X ---+ Y such that gn 0 h = 
jn 0 in. We have seen that 

Moreover, 

Since j" is a homotopy equivalence, 
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It follows that 

is an isomorphism. D 

Theorem (4.10) tells us how to associate a space X to each (fibred) Postni
kov system ~). And Theorem (4.11) tells us that if~) is the Postnikov system 
of a space X', then X and X' have the same homotopy type. 

5 Some Examples 

In this section, we shall work out a few examples to illustrate the theory. 

EXAMPLE 1 (The 2-sphere). Let us recall that 7r2(S2) and 7r3(S2) are infinite 
cyclic groups, generated by the homotopy classes 1,2 and '12 of the identity 
and the Hopf map, respectively. Thus the first non-trivial stage in the Postni
kov system is the Eilenberg-MacLane space K(Z, 2) = POO(C). The Postni
kov invariant e belongs to H4(Z, 2; Z), and so is a multiple of the cup 
square b~ of the fundamental class b2 = z2(K(Z, 2)). We shaH show that 
k4 = ±b~. 

In fact, let u = mb~ E H4(Z, 2; Z) and consider the fibration p: W = 
W(u) --> K(Z, 2), which is induced by a mapf: K(Z, 2) --> K(Z, 4) such that 
f*b4 = mb~ from the path space fibration p : P K(Z, 4) --> K(Z, 4). There is a 
commutative diagram 

The diagram 

PK(Z,4) 
P 

---4 

/ IF K(Z, 3) = F ~ 
~ w --~ 

p' 

K(Z,4) 

If 
K(Z,2) 

is commutative, By Theorem (61) of Chapter VB, p~ and p* are isomor
phisms for q :S:' 4. Hence H3(W, F) = 0 and H4(W, F) is an infinite cyclic 
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group. Since PK(Z, 4) is contractible, 0* is an isomorphism. Butf~ is a 
monomorphism with cokernel Zm , and it follows that the same is true of o~ . 
By exactness of the homology sequence of (W, F), H3(W):::;::: Zm. 

On the other hand, W has the same weak homotopy type as the space X 3 

obtained from X = S2 by killing all the homotopy groups in dimensions 
2 4. This can be accomplished by attaching only cells of dimensions 2 5. 
Thus 0 = H3(SZ):::;::: H3(W):::;::: Zm, which implies that m = ± 1. 

EXAMPLE 2 (The rotation group 0: (n 2 5)). This time we have 1t1 = Zz, so 
that Xl = K(Zz, 1) has the same homotopy type as poo, and 1t2 = 0, 1t3 = Z. 
Thus the first non-trivial Postnikov invariant is k4 E H4(pOO; Z). This group 
is cyclic of order two, generated by (f3*u)Z, where 13* is the Bockstein opera
tor associated with the short exact sequence 

x2 o -----> Z --.... Z -----> Zz -----> 0, 

and u is the non-zero element of Hl(POO; Zz). The image ofthis element after 
reduction mod 2 is 

PZ((f3*u)Z) = (P2(f3*U))2 = (Sq 1u)Z by (6.7) of Chapter VIII 

= u4 since Sq1u = uz. 

In Theorem (4.7) of Chapter VII we calculate the mod 2 cohomology ring 
of X = 0:. It has a simple system of generators {Xi 11 ::;; i ::;; n - 1} such that 
xf = XZi if 2i ::;; n - 1. In particular, xi = X2 and xi = x~ = X4 =1= o. It fol
lows from Exercise 4 below that the injection i* : H*(P OO ; Zz) -+ H*(X; Zz) 
maps u into Xl. Thus i*{u4 ) -=I- O. But i*(k4 ) = 0, by (2.5), and it follows that 
k4 = O. 

EXAMPLE 3 (Loop spaces). Let X be an (m - I)-connected space (m 2 2), and 
let {nn' xn- \ Pn} be a fibred Postnikov system for X, (which may as well 
begin with n = m - 1). Then {nn+ 1, QX"-l, QPn} is a fib red Postnikov 
system for QX; we have identified 1tn(QX) with 1tn + I (X) = nn + 1 by the 
isomorphism 

~* : 1tn + I (X) -+ 1tn(QX) 

of the homotopy sequence of the fibration p: P'(X) -+ X. It follows from 
Exercise 5 and from Exercise 7 of Chapter VI that the Postnikov invariants 
of X and of QX correspond under the cohomology suspension 

Hn+2(xn; nn+ d -+ Hn+ l(QX"; nn+ d. 
In this way the Postnikov invariants of QX are determined by those of X. 

EXAMPLE 4 (Suspensions). Let X be an (m - 1 )-connected space (m ;:::: 2), and 
let {xn,f,,} be a homotopy resolution of X. Then (xq, X) is 
(q + 1 )-connected; it follows from the Relative Hurewicz Theorem that 



5 Some Examples 439 

Hr(Xq, X) = 0 for r ::; q + 1. Since suspension is an isomorphism in homol
ogy, Hr(SXq, SX) = 0 for r ::; q + 2. Since SX is I-connected, we can apply 
the converse of the Relative Hurewicz Theorem to deduce that (Sxq, SX) is 
(q + 2)-connected. Therefore we can kill the homotopy groups of sxq in 
dimensions 2': q + 2 by attaching cells of dimension 2': q + 3, obtaining in 
this way a resolving sequence {yq+ I} for SX. It follows from Theorem (1.5) 
that the composite of~fq : sxq --> SXq-l with the inclusion map SXq-l 4 yq 
has an extension gq+ 1 : yq+ 1 --> P, and the maps gq+ 1 are bonding maps. 

The suspension SXq of the relative mapping cylinder of fq+ 1 is naturally 
homeomorphic with the relative mapping cylinder sgq; moreover, SXq is a 
subspace of yq + 1. Routine diagram chasing shows that the diagram 

H (yq+ 1 yq+2) 
q + 3 , 

K q +2(X) 
------+1 1tq +l(X) 

K q+3(SX) 

is commutative; s* is the composite of the suspension homomorphism 

H (Xq xq+ 1) --> H (Sxq sxq+ 1) q+2, q+3, 

with the injection 

H (SX q sXq+l)-->H (yq+l yq+2) q+3, q+3,· 

The relationship 

s*kn +3(SX) = S**kn+2(X) 

between the Postnikov invariants of X and SX is then elucidated by the 
diagram 

in which s* is the composite of the injection and suspension homomor
phisms and S** is induced by the homomorphism S* : 1tq+ 1 (X) --> 1tq+ 2 (SX) 
of coefficient groups. 

Note that, if q ::; 2m - 3, then S* is an isomorphism; in this range, then, 
the Postnikov invariants of X are determined by those of SX. 
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EXAMPLE 5 (H-spaces). Let X be a connected CW-complex which is an 
H-space under a product /1 : X x X ~ X; we may assume that J1 is cellular 
and /11 X v X is the folding map V. By (3.6) of Chapter IV, the space X is 
simple. Let X* be an m-anticonnected extension of X; we may assume that 
X* is a CW-complex having X as a subcomplex. 

(5.1) Theorem The space X* is an H-space under a product 
/1* : X* x X* ~ X* extending that of X (so that (X*, X) is an H-pair). The 
map /1* is unique up to homotopy (reI. X x X u X* v X*). 

The map /1 has an extension /11: X x X u X* v X* ~ X* such that 
/11 I X* v X* is the folding map for X*. Consider the diagram 

XxX ---------------41 X 

xx:~X"vx. ~ ~ 
X* x X* ---------------------------+ X* 

/1* 

and the homology sequence 

(5.2) ... ~ Hq(X* x X*, X x X) ~ Hq(X* x X*, X x X u X* v X*) 

~Hq-l(X X X U X*vX*, X x X)~'" 

of the triple (X* x X*, X x X u X* v X*, X x X). Since the injection 
lrq(X) ~ lrq(X*) is an isomorphism for all q < m, and an epimorphism for 
q = m, the same is true for the injection lrq(X x X) ~ lrq(X* X X*). Hence 
the pair (X* x X*, X x X) is m-connected; by the Hurewicz Theorem, 
Hq(X* x X*, X x X) = 0 for all q ~ m. On the other hand, the injection 

Hq_1(X* v X*, X v X)~ Hq- 1(X x X u X* v X*, X x X) 

is an isomorphism by the Excision Theorem. Again, since the injection 
Hq- 1 (X) ~ Hq- 1 (X*) is an isomorphism for all q ~ m, the same is true for 
the injection Hq- 1(X v X) ~ Hq- 1{X* v X*). Hence Hq- 1(X* v X*, X v X), 
and therefore Hq- 1(X x X u X* v X*, X x X), vanishes for all q ~ m. By 
exactness of (5.2), Hq(X* x X*, X x X u X* v X*) = 0 for all q ~ m. 

The obstructions to extending /11 lie in the groups 

Hq+l(X* x X*, X x X u X* v X*; 1l:q(X*». 

By the Kunneth Theorem, these groups vanish for all q ~ m - 1. But 
1l:q{X*) = 0 for all q ~ m. Hence all obstructions vanish and the extension /1* 
exists. 
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If ,-tT and I1! are extensions of 111> the obstructions to a homotopy between 
them lie in the groups 

Hq(X* x X*, X x X u X* v X*; nq{X*)), 

and these vanish for all q by a similar argument. o 
Let X be a connected simple CW-complex and let {xn,fn} be a homotopy 

resolution of X. By Theorem (501) each ofthe spaces xn is an H-space under 
a product I1n : xn x xn ---> xn. 

(5.3) Theorem The map f" : xn ---> X n- l is an H-map for each n ;:c: 1. 

For xn x xn is a regular (n + 1 }-anticonnected extension of X xX. By 
Theorem (1.5), the maps 

I1n-l 0 (fn xfo), fn 0 I1n: xn x xn ---> xn-l 

are homotopic (reI. X x X). o 

In order to study the Postnikov invariants of an H-space, let us begin by 
examining the effect of the amplification process of §3 on the cohomology of 
an H-space X. Let U E Hn(x; II); and let qu : W(u) ---> X be an amplification 
of X by the class u. Let g: W ---> W(u) be a CW-approximation, and let 
q = qu 0 g: W ---> X. Let Ii : X x X ---> X be the product in X, and recall that 
the class u is primitive if and only if I1*U = pi u + p! u, where PI' 
pz : X x X ---> X are the projectionso Let K = K(II, n), and let h : X ---> K be 
a map such that h*bn = u. 

(5.4) Theorem The following conditions are equivalent: 

(1) the class u is primitive; 
(2) the map h: X ---> K is an H-map; 
(3) W is an H-space under a product 111 : W x W ---> W such that q : W ---> X is 

an H-map. 

Let 110 : K x K ---> K be the product in K (cf. §7 of Chapter V)o Then h is 
an H-map if and only if 110 0 (h x h) ::e h 0 11, and this is true, by Corollary 
(6.20) of that Chapter, if and only if I1*h*bn = (h x h)*11~ bn . But 

(h x h)*I1~bn = (h x h)*(bn x 1 + 1 x bn ) 

= h*bn x 1 + 1 x h*bn 

(bn is primitive!) 

and this equals I1*h*bn if and only if u = h*bn is primitive. Hence (1) and (2) 
are equivalent. 

To see that (2) implies (3), we observe that W is homotopically equivalent 
to the mapping fibre of h and that, by (6018*) of Chapter III there is, for every 
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space Y, an exact sequence 

[Y, K'] ----> [Y, W] ----> [Y, X] ----> [Y, K], 

natural with respect to maps Y' ----> Y (K' = ilK = K(IT, n - 1)). Thus there 
is a commutative diagram 

(5.5) 

j !J. IJ 
[W x W, K'] ------+ [W x W, W] ------+ [W x W, X] ------+ [W x W, K] 

iT iT iT iT 

[W v w, K'J ------+ [W v W, W] ------+ [W v W, X] ------+ [W v W, K] 
j q IJ 

where i : W v W ----> W x Wand j : K' ----> Ware inclusions. Let 
rt. = [)1 0 (q x q)] E [W X W, Xl Then 

~(rt.) = [h C )1 C (q X q)] = [)10 c (h x h) • (q x q)] 

= [)10 c ((h q) x (he q»)] = 0 

since h q ~ O. By exactness of the top sequence of (5.5), there exists 
)1' : W x W ----> W such that q[)1'] = [)1 c' (q x q)], i.e., q c )1' ~)1 (q x q). If 
V : W v W ----> W is the folding map, then 

qf[)1'] = [q • )1' • i] = [)1 ·,C (q x q) • i] = [)1 • i • (q v q )] 

= [V c· (qvq)] = [q. V] = ~[V]. 

By the extended exactness property (6.21*) of Chapter III, there exists 
rt. E [W V W, K'] such that [V] = rt. • 1[)1']. The homomorphism I : [W x w, K'] 
----> [W v w, K'] corresponds, under the isomorphisms of Corollary (6.20) 
of Chapter V, to the homomorphism 

i*: W- 1(W x W; IT)----> W-l(WV W; IT), 

and the latter is an epimorphism. Hence there exists f3 E [W X w, K'] such 
that l(f3) = rt., and therefore 

[V] = tJ. • 1[)1'] = 1(f3) . 1[)1'] = 1(f3 . [)1']). 

We may take )11 to be any representative of f3 . [)1']. 
Finally, assume that (3) holds. Then there is a commutative diagram 
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q! 
Hn(x X X, X V X; II) ----+ Hn(w X W, W V W; II) 

I P* 1M 
qT 

Hn(x x X; II) • Hn(w x W; II) 

I ~* I fiT 

Hn(x; II) I Hn(w; II) 
q* 

in which the homomorphisms qi and q! are induced by the map q X q, while 
P* and Pi are the projections of Chapter III, §7. In §3 we saw that 

llAq) : 1!r(W) --> 1!r(X) 

is an isomorphism for r ::;; n - 2 and an epimorphism for r = n - 1. By the 
Whitehead Theorem (7.13) of Chapter IV, 

Hr(q) : H,(W) --> Hr(X) 

has the same properties. It follows easily (since n ::;0. 2) that 

Hr(q x q} : Hr(W x W, W V W) --> H,(X x X, X v X) 

is an isomorphism if r = n - 1 and an epimorphism if r = n. Hence 
q! : H"(X x X, X v X; II) --> Hn(w x W, W v W; II) is a monomorphism. 
But q*u = 0 and therefore q! P* ~*u = 0; hence P* p*u = 0, i.e., u is primitive. 

o 
(5.6) Corollary Let ,OJ = {IIn' xn-\ kn+ 1,fn} be a Postnikov system for the 
H-space X. Then 

(1) X n - 1 is an H-space; 
(2) in: Xc, X n- 1 is an H-map; 
(3) ;;. : xn --> X n- 1 is an H-map; 
(4) kn + 1 EO H"+1(Xn - 1; IIn) is primitive. 0 

6 Relative Postnikov Systems 

The preceding discussions can be relativized, using Theorem (2.3) of Chapter 
V. The resulting theory is due to J. C. Moore [1]. We shaH sketch the theory, 
leaving to the reader the task of filling in the sometimes irksome details. 
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Let X and B be O-connected spaces. A map f: X --> B is said to be n
anticonnected if and only if its mapping fibre Tf is n-anticonnected. This is 
the case if and only if the homomorphism f* : 1Tq(X) --> 1Tq(B} is an isomor
phism for all q > n and a monomorphism for q = n. 

An n-anticonnected extension of a map f: X --> B is a map J: X --> B such 
that 

(1) X is a subspace of X and! I X = f; 
(2) the pair (X, X) is n-connected; 
(3) the map.f is n-anticonnected. 

If, instead of (2) we assume (2') (X, X) is a relative CW-complex having no 
cells of dimension ::; n, we shall say that f is a regular n-anticonnected ex
tension off 

From Theorem (2.3) of Chapter V we deduce 

(6.1) Theorem If X and Bare O-connected spaces and n is a non-negative 
integer, then every map f: X --> B has a regular n-anticonnected extension 
J:X-->R 0 

Let .f: X --> B be an n-anticonnected extension of f: X --> B and let 
f = T J, F = Tf be their mapping fibres. Then F is a subspace of f. Let 
i:Xc.X. 

(6.2) Theorem The injection 1Tq(X) --> 1Tq(X) is an isomorphism for all q < n. 
The homomorphism 1TiT) : 1Tq(X) --> 1Tq{B) is all isomorphismfor all q > n. The 
diagram 

1Tn(X) , 1Tn(B) 

1Tn(~ /nnel) 
1Tn(X) 

is commutative, the injection 1Tn{X) -> 1Tn(X) is an epimorphism, and 
1TnCT) : 1Tn(X) --> 1Tn(B) is a monomorphism. The injection 1Tq(F) --> 1Tq(f) is an 
isomorphism for all q < n, and 1Tq(f) = 0 for all q ;:::: 11. 

Only the last sentence requires some argument. There is a commut::tive 
diagram 

1 1 
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whose rows are the sequences (8.9) of Chapter IV for the maps I and J; the 
vertical arrows denote injections. If q < n, then 7rq + 1 (i) is an epimorphism 
and 7rq{i) an isomorphism; by the Five-Lemma, the injection 7rq{F} -+ 7rq(P) is 
an isomorphism. 0 

(6.3) Theorem LetIq: xq -+ B be a regular (q + 1)-anticonnected extension of 
I:X-+B (q=n, n+l), and let iq:Xc.Xq. Then there is a map 
g: X n +1 -+ xn such that go in+1 = in andj~ 0 g ~In+1 (reI. X). 

In the diagram 

X 

B 

the maps p, q are the fibrations OfIf" over B, X n , respectively, while the maps 
j and 1= join are inclusions, q 0 j = 1, j 0 q ~ 1 (reI. X), p 0 j = In, and 
In 0 q ~ p (reI. X). Let Fn be the fibre of p. Then 

pOI = p 0 join = In 0 in = I = In + loin + 1. 

Thus I: X -+ If. is a partial lifting of In + 1. The obstructions to extending Ito 
a lifting of In + 1 lie in the groups 

Gq = Hq+l(Xn +1, X; 7rq(Fn)) 

(local coefficients!). Since (xn + 1, X) has no cells of dimension s n + 2, the 
group Gq vanishes for all q s n + 1. But F n is (n + 1 )-anticonnected, so that 
7rq{Fn), and therefore Gq , vanishes if q :?: n + 1. Thus all obstructions vanish, 
and the lifting extension problem in question has a solution g' : xn + 1 -+ If". 
Then g = q 0 g' has the required properties. D 

Now let X and B be O-connected spaces,f: X -+ B. Let X-l = B, and, for 
every n :?: 0, let In : xn -+ B be a regular (n + 1 )-anticonnected extension off 
Let go = Io : XO -+ B, and, for each n :?: 0, let gn+ 1: x n + 1 -+ X" be a map 
satisfying the conclusion of Theorem (6.3). We then find, by induction, that 
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the mapf~ = go 0 g 1 0 ••• 0 gn is homotopic (reI. X) to In . Replacingf~ by In , 
we have 

(6.4) Theorem Let X and B be O-connected spaces,.f: X ----> B. Then there are 
regular (n + 1)-anticonnected extensionsIn : xn ----> B and maps gn : xn ----> X n- 1 

(n 2': 0) such that the diagrams 

X 

y,,< 
XO go , B 

~/t 
X"+ 1 'X" 

gn+ 1 /. 

fn~ / f" 
B B 

are strictly commutative. o 
By analogy with the terminology of §2, the sequence of maps f" : xn ----> B 

will be called a resolving sequence for f, and the maps gn bonding maps. The 
pair of sequences {J~, gn} then constitute a homotopy resolution off 

As in the absolute case, we can convert the maps gn into fibrations, so that 

(6.5) Theorem Let {f", gn} be a homotopy resolution off: X ----> B. Then there 
exist (n + 1 )-anticonnected extensions Pn: Y" ----> B of 1, fibrations 
qn : yn ----> yn - 1, and inclusions in : xn y. yn (n 2': yn (n 2': 0) such that 

(1) in is a homotopy equivalence (reI. X); 
(2) the octahedral diagram 

X 

jin 
i" Y" X" --\----------+> 

~ \1. // xn + 1 , yn+l 

in +1 \ / 
Pn/J 

f,,+1 ~ 

Pn 

B 

is commutative. o 

Let Un, gn} be a resolution off: X ----> B. Let us now show, by analogy with 
the absolute case, how to construct X n +1 from X" (or, rather,.fn+1 [romIn). 
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As in the absolute case, we shall need some additional hypotheses. 
Specifically, we shall assume 

(1) X and Bare CW -complexes; 
(2) f is i-connected; 
(3) the group nl (B) operates trivially on the mapping fibre TJ off 

(A map satisfying conditions (2) and (3) is said to be simple). 
Let P be the mapping fibre of fn' and let h : F ---+ X, hn : P ---+ xn the 

appropriate fibrations. There is an inclusion i~: F c.P, and the map 
gn+ 1 : x n+ 1 ---+ xn induces a map g~+ 1: p+ 1 ---+ Fn such that g~+ 1 0 i~+ 1 = g~ 
and the diagram 

h 
F · f.,~ i~+ 1 j 

hn+ 1 
(6.6) Fn+ 1 + 1 fn+ 1 

~ xn ~ B 

g~+ 1 j j9';/. 
Fn , xn 

hn 

is commutative. Let t/l : K ---+ F be a CW-approximation. 

(6.7) There exist a homotopy resolution {Kn, en} of K and weak homotopy 
equivalences t/ln : Kn ---+ Fn such that the diagram 

t/l 
K ' F 

1n+1 n 
t/ln+l 

1 i~+ 1 

(6.8) Kn+ 1 ~ Fn+ 1 

en+ 1 j j g~+ 1 

Kn , Fn 
t/ln 

is homotopy commutative (reI. K). D 

Let us adjoin the diagram in (6.8) to that in (6.6) and then discard the 
column containing the F's. We obtain a new diagram 
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K 

n 
(6.9) Kn+ I 

8n+ 1 j 
K" 

h' n 

in which the two left-hand squares are homotopy commutative (reI. K). Let 
Kn, xn be the relative mapping cylinders of 8n + b gn + b respectively. 

(6.10) Theorem There is a map 

,I.. • (kn. Kn Kn+l) --> (Xn. xn xn+l) 'Pn· , , , , 

such that ¢nlKn = h~, ¢nIKn+1 = h~+b and 

TCk(¢n): 1Ck(Kn, Kn+ 1) --> 1Ck(Xn, xn+ I) 

is an isomorphism for every k. D 

The groups 1Ck (Kn, K" + 1) vanishing for k +- n + 2, the same is true for the 
groups 1Ck(Xn, xn + I). In particular, the latter pair is (n + 1 )-connected. It 
follows from the simplicity of the map f that 1C I (xn + 1) operates trivially on 
1Cn + 2 (xn, xn + I), so that the Hurewicz map 

p : 1Cn+ 2(Xn, X n+ I) --> Hn+2(Xn, xn+ 1) 

is an isomorphism. Corresponding to the homomorphism 
-1 ,1..-1 a 

Hn+2CXn, xn+l) ~ 1tn+2(Xn, xn+l) ~ 1tn+2(.kn, Kn+l) ~ 

(Kn+l) 1Cn+1Vn+d-l (K) 
1Cn + 1 • 1Cn + 1 

is a cohomology class Kn+2(f) E Hn+2(xn, x n+ 1; 1Cn+ l(K)). Its image under 
the injection is a class 

kn+2(f) E Hn+2(xn; 1Cn+l(K)), 

called the (n + 2)nd Moore-Postnikov invariant of! Evidently the image of 
kn+2(f) under the injection 

l/J~: Hn+2(xn; 1Cn+1(K))--> Hn+2(Kn; 1Cn+1(K)) 

is the (n + 2)nd Postnikov invariant of K. 
Let PK: W(kn+2(K)) --> Kn, PI: W(kn+2(f)) --> xn be the amplifications of 

Kn, xn by the appropriate cohomology classes. Then there is a commutative 
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diagram 

W(kn+2(K)) 
Ij;~ 

W(kn+2(f) --------+ 

(6.11) I 
PKl j PI 

Kn ------> xn 
Ij;n 

Moreover, the space xn + 1 can be recovered from X" with the aid of the class 
kn+Z(f): 

(6.12) Theorem The diagram (6.11) can be enlarged to a commutative diagram 

Kn+ 1 
Ij;n+ 1 , xn+ 1 

~ ~ 
g~+ 1 W(kn+2(K) • W(kn+2(f) gn+ 1 

Ij;~ 

j PK PI j 
K" , xn 

Ij;n 

such that s~ + 1 and Sn + 1 are weak homotopy equivalences. D 

7 Postnikov Systems and Obstruction Theory 

The notion of Postnikov system gives rise to an alternative approach to 
obstruction theory. Let (X, A) be a CW-pair, Ya simple space,!: A ~ Ya 
map, and let ~ = {lIn' P, Pn} be a fibred Postnikov system for Y. Then 
there are maps qn : Y ~ y" such that the diagrams 

yn+ 1 

yn 
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are commutative. Since yO is contractible, the map qo 0 f: A ...,.... yo has an 
extension fo: X...,.... YO. Suppose that In: X...,.... yn is an extension of 
qn 0 f: A ...,.... yn. The map Pn + 1 : yn + 1 ...,.... yn is a fibration with fibre 
K = K(IIn+ b n + 2), and the map qn+ 1 0 fis a partial lifting offn; the local 
coefficient system is simple. By the results of §6 of Chapter VI, the primary 
obstruction V' + 2(qn + 1 0 f) to extending qn+ 1 0 f to a lifting of fn lies in the 
group Hn + 2(X, A; IIn + d, and the vanishing of this obstruction is necessary 
and sufficient for the existence of such a lifting. 

The set of these obstructions, as fn ranges over all extensions of qn 0 f, is a 
subset (!)n+2(1) of Hn+2(x, A; IIn+ 1)' On the other hand, in §5 of Chapter V 
we introduced the set (l)n+2(1) consisting of the cohomology classes c"+2(g), 
as g ranges over all extensions g : X n + 1 ...,.... Yoff (N.B.: we are identifying the 
coefficient groups nn + 1 (K) and nn+ 1 (Y) of these obstructions with IIn + 1; 

they are isomorphic under the composite 

(7.1) 

(7.2) Theorem The sets (l)n+2(1) and (!)n+2(1) coincide. 

The connection between the two obstruction sets is provided by 

(7.3) Lemma Let g : X n + 1 ...,.... Y, h : X ...,.... yn be maps such that the diagram 

f , Y A 

n / X n + 1 q. 

n 
X , Y· 

h 

is commutative. Then 

Let CPa: (Lln+ 2, An+ 2)...,.... (Xn +2, Xn+ d be a characteristic map for an 
(n + 2)-cell Ea. Then the composite map (h I X n+ 2 ) 0 CPa induces a fibration 
p' : Z...,.... Lln + 2 , which is fibre homotopically trivial. There is a commutative 
diagram 



7 Postnikov Systems and Obstruction Theory 451 

Lin + 2 -------+1 Xn+ 1 

g 
1 Y 

j qn+ 1 

(7.4) Z 
h' 

1 yn+ 1 

j Pn+ 1 

1 yn 
hlXn+2 

in which i is the inclusion map, (Pa = <Pa I An+ 2, and ljJ is defined by the 
conditions p' 0 ljJ = i, h' 0 ljJ = qn + 1 0 g 0 (Pa (this makes sense because 
(hIXn+2)°<paoi=qnog°(pa=Pn+1oqn+1og0(pa)' We may take 
K = P;;+\ h<Pa(eo); let K' = p,-1(eo), so that h' maps K' homeomorphically 
upon K. Then there is a commutative diagram 

1tn+1(K') 
i' 

1tn+1(Z) ----+ 

h2 j j h'1 

1tn+ 1(K) ---+ 1t (yn+1) , 1tn+ 1(y) n+ 1 
1tn+ 1 (qn+ d 

in which i and i' are injections and h'b h~ are induced by the map h'. The 
value of en + 2( qn + 1 0 g) on Ea is the element h~ i' - 1 (rx), where rx is the element 
of 1tn + 1 (Z) represented by ljJ. But 

h~.i'-1(rx) = i- 1h1(rx); 

the image of this element under the isomorphism (7.1) is 

1tn + 1 (qn + d - 1 ii - 1 hi (rx) = 1tn + 1 (qn + 1 t 1 h'1 (rx). 

It follows from the commutativity ofthe diagram (7.4) that the latter element 
is represented by g 0 (Pa. But this element is also the value of en + 2(g) on the 
cell Ea. 0 

We can now prove Theorem (7.2). Suppose that g : xn + 1 -+ Y is an exten
sion off The groups 

HQ+1(X, x n+1; 1tq(yn» 

vanish for all q; therefore the map qn 0 g: Xn+ 1 -+ yn has an extension 
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h : X -+ Y". By Lemma (7.3), cn+2 (g) = (!'+2(qn+ 1 0 g); as their cohomology 
classes belong to (9n + 2(1), @n+2(f), respectively, it follows that 
(9n+2(1) c @n+2(1). 

To prove the opposite inclusion, let h : X -+ Y" be an extension of qn 0 f 
We next show that there exists maps gk : X n + 1 -+ y\ for all k 2 n, such that 
Pk 0 gk = gk- b gk I A = qk of, and gn = hi X n+ 1· In fact, suppose that gk is 
defined and has the requisite properties for k ::; r. Then the obstruction to 
extending qr+ 1 0 f to a lifting of gr lies in the groups 

Hr+2(Xn+1' A; 1tr+1(y)) = O. 

and therefore gr+ 1 exists. The maps gk' as explained in §4, determine a map 
goo of X n + 1 into the inverse limit yoo of the yr. By Theorem (4.11), the map 
qoo: Y -+ yoo determined by the qr is a weak homotopy equivalence. Hence 
there is a map g': X n + 1 -+ y such that qoo 0 g' ~ goo. Now the map goo is an 
extension of qoo 0 f; hence 

qoo 0 g' I A ~ goo I A = qoo 0 f 
Again, since q 00 is a weak homotopy equivalence, g' I A ~ 1, and therefore g' 
is homotopic to a map g: X n+ 1 -+ Y such that go IA = f Then qn 0 g ~ gn = 

h IXn + 1 ; hence h is homotopic to a map h': X -+ Y" such that h' IXn + 1 = 
qn 0 g. By Lemma (7.3), cn+2(g) = (!,+2(qn 0 g), and it follows as before that 
@n+2(1) c (9n+2(1)· 

Let us apply these ideas to a special case of importance. Let us assume 
that the space Y is (n - I)-connected and also that 1ti(Y) = 0 for n < i < q. 
Let I1J be a fibred Postnikov system for Y; we may assume that 
yi = yo = {*} for all i < n, Y" = ... = yq-1 = K(IT, n), where IT = 1tn(Y). 
The first non-trivial Postnikov invariant is kq+1 E Hq+1(IT, n; G), where 
G = 1tq(Y). According to §8 of Chapter V, kq + 1 rletermines a cohomology 
operation 

e: H"( ; IT)-+Hq+1( ; G). 

Let (X, A) be a CW-pair,f: A -+ Y. The primary obstruction to extending 
fis 

yn+ 1(1) = (-1 )"<5*f*ln(y) E Hn+ 1(X, A; IT), 

and this vanishes if and only if there is a class U E Hn(x; IT) whose image 
under the injection Hn(x; IT) -+ Hn(A; IT) isf*zn(y). When this is so,fhas 
an extension fu : X n + 1 -+ Y such that f~ zn( Y) is the image of u under the 
(isomorphic) injection Hn(x; IT)-+ H"(Xn+1; IT). The mapfu, in turn, can 
be extended over X q (because the relevant obstructions vanish), and, if go , g 1 

are two such extensions, then go Ix q - 1 ~ g 1 IX q - 1 (reI. A). If 
G : I x X q-1 -+ Y is a homotopy between the latter two maps, we can form 
the difference cochain 

dq = dq(go, G, g1) E P(X, A; IT), 

as well as the obstructions cq + 1(go), cq + 1(gd to extending go, gb respec-
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tively, over X q + l' By Theorem (5.6') of Chapter V, these cochains are related 
by the formula 

cQ+ 1(gd - cq + 1(go) = (jd". 

Hence the obstructions cq + 1 (g) to extending over X q + 1 an extension 
g : X q -+ Y of fu lie in a single cohomology class 

zq+1(fu) E HQ+1(X, A; G), 

whose vanishing is necessary and sufficient forfu to be extendible over Xq+ l' 
The class zq + 1 (fu) is called the secondary obstruction to extending fu . 

In discussing the secondary obstruction, we shall first suppose that 
A=0· 

(7.5) Theorem Suppose A = 0 and let u E H"(X; IT). Then 

zq+ 1(fJ = 8(u). 

We shall apply Theorem (7.2), not for A = 0, but rather for A = X"+ 1> 

f = fu· Then @q+1(fu)= (Dq+1(fu) = {zq+1(fJ}. On the other hand, since the 
injection H"(X; IT)-+H"(X"+1; IT) is an isomorphism, so is the injection 
[X, K(II, n)] -+ [Xn+b K(IT, n)], so that there is a map h: X -+ K(IT, n), 
unique up to homotopy, such that h IX n + 1 ~ q" 0 fu. But 

fl+1(qn+1 o fu)=h*fl+1(1} by Theorem (6.3) of Chapter VI 

= h* kq + 1 by Exercise 5 

= 8(u) by definition of 8, 

and therefore @q+1(fu) = {8(u)}. D 

For the case of a general subcomplex A, we observe that, if fu andfv are 
extensions off, then w = (fu, f.,)*I"(Y) is defined and belongs to the group 
Hn(x, A; IT). The reader may therefore expect that 

(7.6) zq+1(fv) - zq+1(fJ = 8(w). 

This would, however, be too optimistic. In fact, Formula (7.6) holds when
ever the operation 8 is additive. When 8 is not additive, the two sides of (7.6) 
differ by a term which is related to the deviation 

82 (x, y) = 82 (x + y) - 82 (x) - 82 (y) 

of 8 from additivity. We shall defer a discussion of these questions to Volume 
II, referring the reader, in the meantime to Steenrod [2] and Eilenberg and 
MacLane [2]. 

In order to discuss higher obstructions in an analogous way, we shall 
need the notion of higher-order cohomology operations. For example, let Y 
be a space with just two non-zero homotopy groups, nn(Y) = II and 
nq(Y) = G (n < q); thus the homotopy type of Y is determined by IT, G and 
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the Postnikov invariant kq+ 1 E Hq+ 1 (II, n; G). Let e: Hn( ; II)-> 
Hq+ 1( ; G) be the corresponding cohomology operation. Furthermore, let 
x E Hr+ l(y; Q). If X is a CW-complex and u E Hn(x; II), there is a map 
j: X -> K(II, n) such thatf*bn = u. 

Now there is a fibration p: Y -> K(II, n) (induced from the path-space 
fibration by a map g: K(II, n) -> K(G, q + 1) such thatj*bq + 1 = kq + 1 ); the 
fibre of p is F = K(G, q). Consider the problem 

Y 

(7.7) 

X ---4 K(II, n) 

of liftingj; this has a solution if and only if 

o =j*kq + 1 = e(u). 

If 1': X -> Y is a lifting of f, we may form the cohomology class 
I'*x E Hr+ l(X; Q). But the map I' is not uniquely determined by the given 
data; the elements I'*x, for all liftings I' of f, range over a subset of 
H r + l(X; Q). To handle this kind of problem, let us consider the subset 
:3 = :3(X) of H"(X; II) x Hr+l(x; Q) consisting of all pairs (u, y) such that 
y = I'*x for someI': X -> Y such thatl'*ln(y) = u. The set :3(X) is a binary 
relation (not necessarily additive); it has the naturality property that, if 
h : X' -> X is a map, then h* x h* maps :3(X) into :3 (X'). Note that the 
domain of:3 is Ker e = {u E Hn(x; II) I e(u) = O} and its image is the union 
of the above-mentioned subsets of Hr+l(X; Q) for all u E Ker e. The rela
tion :3 is called a secondary cohomology operation. If:3 happens to be addi
tive, then it determines, as in Appendix B, a homomorphism of a subgroup 
of Hn(x; II) into a quotient group of Hr+l(x; Q), and it is this homomor
phism which is usually called a secondary cohomology operation. 

The class x E Hr+l(y; Q) may be used as the Postnikov invariant to 
construct a new space Y' with three non-trivial homotopy groups 'Tin = II, 
'Tiq = G, 'Tir = Q; and a cohomology class of ihe new space Y' gives rise to a 
tertiary operation. This process can be continued to obtain more and more 
complicated operations; and the study of higher obstructions to extending a 
continuous map is intimately related to these notions. 

EXERCISES 

1. Let p : X -> X be an n-connective fibration (n 2: 1). Then H q(X) is isomorphic 
with the Eilenberg homology group H~n)(x) (Chapter IV, §5). 

2. Let p : X -> S3 be a 3-connective fibration. Calculate the homology groups of X. 

3. Prove that, if X is a CW-complex of dimension n with base vertex, then 
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F(X, K(TI, n)) has the same weak homotopy type as TI~=l K(W-q(X; TI), q). 
What can you say if dim X :=:: n? 

4. Let X be an (n - 1)-connected CW-complex; then the first non-trivial stage in its 
Postnikov system is xn = K(nn, n). The imbedding X c+xn corresponds, by 
obstruction theory, to a cohomology class Z E Hn(x; nn). Prove that Z = In(x) is 
the characteristic class of X. 

5. Prove that the primary obstruction to a cross-section of the fibration 
qn+l: W'+1-. xn of 3 is kn+2, under a suitable identification of TI with 
nn+l(QKn). 

6. Prove (7.6) under the hypothesis that the operation e is additive. 



CHAPTER X 

On Mappings into Group-like Spaces 

This Chapter continues the discussion of H-spaces which was begun in 
Chapter III. If G is a group-like space, then [X, G] is a group for any space 
X. This group need not be abelian (although it is if X is the suspension of a 
space Y). It is natural to ask whether it may be nilpotent. It turns out that 
the degree of nilpotence is closely related to the Lusternik-Schnirelmann 
category of the space X. Indeed, a mild change in the definition of the latter in 
order to relate it more closely to homotopy notions, results in the theorem 
that, if cat X < c and G is a O-connected group-like space, then [X, G] is 
nilpotent of class < c. 

The notion of category was proposed by Lusternik and Schnirelmann 
[L-S] in 1934, and was used by them to study the stationary points of 
real-valued functions on a manifold. In his thesis [1], written in 1941, Fox 
made a thorough study of the notion. The homotopy-theoretic modification 
was suggested by the present author [8] in 1956. Section 1 is devoted to some 
elementary properties of the new notion. Section 2 is devoted to some 
general properties of group-like spaces. In §3, the nilpotency question is 
raised and the above theorem proved. 

In §4 the special case X = X 1 X ... x X k is considered. This space is 
filtered by subspaces Pi = {x E X I Xj = * for at least k - i values of j}, and 
the corresponding subgroups r i = {(f] I f I r i ~ *} are studied. If, in particu
lar, each of the Xi is a sphere, this leads to an explicit central chain of length 
k, in accordance with the fact that cat (snl X ... X snk) = k. 

As the notion of nilpotence is based on the behavior of commutators, it is 
natural to consider the commutator product; iff; : Xi -> G (i = 1, 2) is the 
homotopy class of (Xi E [Xi, G], and iff: X 1 X X 2 -> G is defined by 

f(x 1, x 2 ) = (fl(xd'/2(X2)] 

= (fl(xdf2(X2))(fl(xd-1f2(X2t 1), 

456 
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then f I X 1 V X 2 is nullhomotopic, therefore f defines a map J: Xl /\ X 2 

--+ G, whose homotopy class is called the Samelson product <(Xl' (X2) of 
(Xl and (X2. This product is studied in §5, and it is shown that, for maps of 
spheres of positive dimension, the Samelson product is biadditive and 
satisfies an anticommutative law and a kind of Jacobi identity. When G is 
the space of loops of a space X, the groups Trq(G) and Trq+l(X) are isomor
phic. The Samelson product 

translates to a pairing 

Trp+ 1 (X) ® Trq+ l(X) --+ Trp+q+ 1 (X), 

the Whitehead product. And the Jacobi identity for the Samelson product 
gives rise to one for the Whitehead product, which is proved in §7. 

The Whitehead product was introduced by J. H. C. Whitehead [2] in 
1941, and it was conjectured at that time by Wei I that it satisfied a Jacobi 
identity. Fox and I made some effort to prove it, but without success, and it 
was not until thirteen years later that independent proofs were found by 
Uehara and Massey [1], Nakaoka and Toda [1], Hilton [1] and myself [6). 

We conclude this Chapter with a summary of elementary results relating 
the various operations which can be defined in homotopy groups: composi
tion product, reduced join, Whitehead product, and suspension. 

1 The Category of a Space 

In 1934 Lusternik and Schnirelmann [L-S] introduced the notion of 
category of a manifold, and proved the important theorem that the category 
of a manifold M is a lower bound for the number of stationary points of a 
well-behaved real-valued function on M. This result was then used in order 
to prove the existence of closed geodesics under appropriate hypotheses. 

According to Lusternik and Schnirelmann the category Cat M of M is 
the least number of elements in a covering of M by closed sets, each of which 
is contractible in M. The same definition applies without change to an 
arbitrary topological space X, and the category of X is not only a topologi
cal, but even a homotopy, invariant of X. In 1941 Fox proposed to alter the 
definition by replacing closed by open coverings; and he made a systematic 
study of the properties of this invariant, as well as the relations among the 
different notions of category. 

In this section we shall present still another notion of category, which 
seems better adapted for the homotopy theory of spaces with nondegenerate 
base points. Accordingly, let X be such a space, n a positive integer. Let X~ 
be the subspace of the n-fold Cartesian power xn of X consisting of all 



458 X On Mappings into Group-like Spaces 

points, at least n - k of whose coordinates are equal to the base point *. 
Thus Xo is the base point of x n, Xl = X v ... v X, and X~ = xn. 

We shall say that X has category less than n if and only if the n-fold 
diagonal map 

is compressible. 

(1.1) Lemma If X has category less than n, then X has category less than 
n+1. 

For X~-1 x X C X~+1 and ~n+1(X) = (~n(x), x) for x E X. Thus, if 
h' : I x X --> xn IS a compression of ~n' then the map h: I x X --> xn + 1 

defined by 

h(t, x) = (h'(t, x), x) 

is a compression of ~n + l' D 

It follows from Lemma (1.1) that we can define the category cat X of the 
space X to be the least integer n such that X has category less than n + 1; 
cat X = 00 if no such n exists. Thus cat X ::;; n if and only if X has category 
less than n + L In particular, 

(1.2) cat X = 0 if and only if X is contractible; D 

(1.3) cat X ::;; 1 if and only if X is an H' -space. D 

Suppose that cat X < n, and let H : I x X --> xn be a homotopy of ~n 
(reI. *) to a map h : X --> X~ _ l' Then, if Pi : X" --> X is the projection on the 
ith factor, Pi 0 H is a homotopy of the identity map to the map 
hi = Pi 0 h : X --> X. Let Ai = hi- 1 (*). Then Ai is closed, and the equality 
X~-1=U7=IPi-l(*) and the inclusion h(X)cX~_l imply that 
X = Ui = 1 Ai' Moreover, Pi 0 H is a deformation of X which contracts Ai to 
the base-point in X. 

Conversely, suppose that X = U7= 1 Ai, where Ai is a closed set which is 
contractible in X under a deformation Hi: I x X --> X of the whole space 
(ret *). Then the Hi are the components of a homotopy H : I x X --> xn of 
L'ln to a map h : X --> X". Because the Ai cover X, h(X) c X~-l' and it follows 
that cat X < n. 

Thus our definition of cat X differs from that o[Lusternik-Schnirelmann 
only by one and by the fact that the sets Ai are required to be contractible 
under a deformation of the whole space. 

We now give a few properties of cat which will be useful later. 

(lA} Theorem I} X dominates Y, then cat X ~ cat Y. 
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For let f: X ----> Y, g: Y ----> X be maps such that fog ~ 1, and let 
H: I x X ----> xn be a compression of the n-fold diagonal map of X into X~-I. 
Thenr 0 H 0 (1 x g) is a compression ofr 0 Lln 0 g = Lln 0 fog into ~-1. 
Combining this homotopy with the composite of Lln with a homotopy of the 
identity map of Y to fog, we obtain a compression of the n-fold diagonal 
map of Y into ~-1. D 

(1.5) Corollary If X and Y have the same homotopy type, then cat X = cat Y. 
o 

(1.6) Theorem For any map f: X ----> Y, 

cat T J ~ 1 + cat Y. 

We may assume cat Y = n - 1 < 00. Because of Corollary (1.5), we may 
assume that f is an inclusion and replace T J by the subspace Z = Y u T X 
of TY. Then the pairs (Z, TX) and (Z, Y) have the homotopy extension 
property. Since TX is contractible, there is a homotopy f: I x Z ----> Z of the 
identity to a map j~ with fl (T X) = *. Let g' : I x Y ----> yn be a homotopy of 
the diagonal map Ll~ of Y to a map g'l : Y ----> ~ _ 1 ; then g' can be extended to 
a homotopy g : I x Z ----> zn of the diagonal map Lln of Z to a map g 1 : Z ----> zn 
such that gl(Y) c ~-1. Then!, g define a map h : I x Z ----> zn+ 1, and h is a 
homotopy of Lln+ 1 to the map hI: Z ----> zn+ 1 defined by fl and gl. Moreover, 

h1(TX) cfl(TX) x gl(TX) c * X zn C Z~+l 

hI (Y) C fl (Y) X g 1 (Y) c Z x Z~ _ 1 C Z~ + 1, 

and therefore cat Z < n + 1. o 

Let X be a CW -complex. A stratification of X of height k is a sequence of 
subcomplexes 

with the property that the boundary of each cell of Pi is contained in P i - 1 

(i = 1, ... , k). Thus Pi is obtained from Pi- 1 by attaching a collection of cells 
(possibly of different dimensions); in fact, Pi is the mapping cone of a map 
f: L --+ P i - b where L is a cluster of spheres. For example, the skeleta of a 
O-connected CW -complex (whose O-skeleton is a point) form a stratification 
of X. Again, if 

{*}=PO CP 1 C···CPk =X 

{ *} = Qo c Q 1 C ... C Ql = Y 
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are stratifications of X and Y, respectively, then the subcomplexes 
j 

R j = U Pi X Qj-i 
i=O 

form a stratification of X x Y. 

(1.7) Corollary If X has a stratification of height k, then cat X s k. D 

(1.8) Corollary If X is a CW-complex, then cat X s dim X. D 

The above results give useful upper bounds for the category of a space X. 
We can obtain lower bounds with the aid of cohomology theory. 

(1.9) Theorem Let X be a space of category < n, ana let A be a ring. Then, if 
Ui E HPi(X; A) (i = 1, ... ,n) (Pi> 0), we have 

For U 1 ~ ... ~ U" = ~~(u), where U is the cross product of the Ui in 
H*(X"; A). Since Ui E H*(X, {*}; A), we may also form their cross product u' 
in H*«X, * r; A) = H*(X", X~-l; A), andj*u' = u, wherej* is the injection. 
On the other hand, since cat X < n, there is a map f: X --+ X~ _ 1 such that 
i 0f~ ~"' where i: X~-l 4 X". Then 

U1 ~ ... ~ U" = ~~U = ~~j*u' = f*i*j*u' = f*(O) = 0. D 

(1.10) Corollary The category ofa product X = SPI X ... x SPn of n spheres of 
positive dimensions is n. 

For SPi has a CW -decomposition consisting of one O-cell {*} and one 
Pi-Cell. Therefore, if Pk is the set of all points of X, at least n - k of whose 
coordinates are equal to *, then the Pk satisfy the hypotheses of Corollary 
(1.7), so that cat X S n. On the other hand, SPi is an orientable manifold 
with fundamental class Si , and X is an orientable manifold with fundamental 
class 

Since s =1= 0, cat X z n. D 

(1.11) Corollary The real projective space P" has category n. 

For cat P" S dim P" = n, by Corollary (1.8). On the other hand, if u is the 
non-zero element of H1(P"; Z2), then u" =1= 0, and so cat P" z n. D 



2 Ho-spaces 461 

2 Ho-spaces 

We have seen in Chapter III that, if G is an H-space, then the set [X, G] of 
homotopy classes of maps of X into G admits a natural multiplication with 
unit element. Moreover, if G is homotopy associative, then the product in 
[X, G] is associative, so that [X, G] is a monoid. Of course, this monoid need 
not be a group. For example, suppose that G is a discrete monoid and that X 
is connected. Then [X, G] is naturally isomorphic with G. 

In §4 of Chapter III we have shown that G is group-like (and therefore 
[X, G] is a group for every X) if and only if the shear map ¢ : G x G-4 
G x G, defined by 

¢(x, y) = (x, xy) 

is a homotopy equivalence. We now show that this is rather easy to ensure. 

(2.1) Lemma If G is O-connected, the shear map ¢ : G x G -4 G x G is a weak 
homotopy equivalence. 

To see this, recall first that, if PI, pz : G x G -4 G are the projections, then 
by Theorem (5.19) of Chapter III, the homomorphisms 

Ph' Pz* : nn(G x G) -4 nn(G) 

represent the group nn(G x G) as the direct product nn(G) x nn(G). Then the 
injections i 1*, iz* : nn( G) -4 nn( G x G) induce the dual representation as a 
direct sum. (N.B.: This is true even if n = 1, since n 1 (G) is abelian). Thus, if 
11 : G x G -4 G is the product in G, we have 

and therefore 

11* = Pl* + Ph: nn(G x G) -4 nn(G). 

Now PI 0 ¢ = PI and pz 0 ¢ = 11; thus 

and therefore ¢ corresponds, under the isomorphism of nn(G x G) with 
nn(G) x nn(G), to the shear map of nn(G). But the latter map is an isomor
~~ 0 

In this section we shall be concerned with O-connected homotopy
associative H-spaces. Let us call such a space an Ho-space. 

(2.2) Theorem If G is a CW -complex which is an Ho-space, then G is 
group-like. 
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For the shear map 4> : G x G ---> G x G is then a homotopy equivalence, 
and our result follows from (4.17) of Chapter III. D 

In Chapter V we proved (Lemma (7.12)) that if f: G' ---> G is a CW
approximation and G is an H-space then G' admits an H-structure making f 
an H-map. We further have 

(2.3) Iff: G' ---> G is a CW -approximation and G is an Ho-space, so is G'. 

Since G is O-connected, so is G'. And the homotopy associativity of G and 
the fact that f is an H -map imply the homotopy associativity of G'. D 

(2.4) Theorem IfG is an Ho-space, then [X, G] is a group, under the natural 
multiplication, for every CW -complex X. 

F or let f: G' ---> G be a CW -approximation, and apply (2.3) to find an 
H-structure on G' for which f is an H-map, and G' is an Ho-space. Then 
f: [X, G/] ---> [X, G] is an isomorphism. But the shear map 4>: G' x G' 
~ G' X G' is a weak homotopy equivalence, by Lemma (2.1). Since 
G' x G' is a CW -complex, 4> is a homotopy equivalence. By (4.17) of Chapter 
III, G' is group-like and therefore [X, G'] is a group. Hence [X, G] is also. 

D 

3 Nilpotency of [X, G] 

While the groups [sn, G] = 7rn(G) are abelian, even ifn = 1, the group [X, G] 
need not be. However, it turns out that [X, G] is nilpotent under reasonable 
hypotheses. Let us begin by recalling some properties related to the concept 
of nilpotence. [Ha, Chapter 10], [Z, Chapter II, §6]. 

If r is a group, x, y E r, their commutator is the element [x, y] = 
xyx- 1 y-l. If A, B are subsets ofr, [A, B] is the subgroup generated by [a, b] 
for all a E A, b E B. 

The lower central series of r is the chain of subgroups defined inductively 
by 

and r is nilpotent if and only if there is a non-negative integer c such that 
Zc+ 1 = {1}; the least such c is called the class of r. A central chain of length 
i = 1, ... , k is a sequence 

r = ro ;:) r 1 ;:) ... ;:) r k = {I} 

of subgroups such that [r, rJ c C+ 1 for i = 0, 1, ... , k - 1. For example, 
the lower central series (of a nilpotent group) is a central chain; and r is 
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nilpotent of class ::::: c if and only if r has a central chain of length c, Note 
that, if {r;} is an arbitrary central chain, then Zi(r) c r i- 1 for all i. 

We can also form iterated commutators. In fact, let us define the notion of 
an (iterated) commutator of weight q inductively as follows. Any element of r 
will be called a commutator of weight 1; and if x and yare commutators of 
weights r, s, respectively, we say that [x, y] is a commutator of weight r + s. 
Of particular importance are the special commutators [Xlo ... , x q], defined 
inductively by 

(3.1) Thefollowing properties are equivalent: 

(i) r is nilpotent of class < c; 
(ii) A II commutators of weight c vanish in r; 

(iii) All special commutators [Xlo ... , xJ vanish in r. 

The following formulas will be useful later [Z, pp. 82, 84]: 

(3.2) If a, b, c E r, then 

[a, bc] == [a, b] . [a, c] (mod Z3(r». 

(3.3) If a, b, c E r, then 

[a, [b, c]] . [b, [c, a]] . [c, [a, b]] == 1 (mod Z4(r». 

Let G be a group-like space; it is convenient to assume that the base point 
e is a strict unit. The commutator map <1> : G x G ---> G is defined by 

Evidently 

(3.4) The map <1> I G v G is null-homotopic. 

by 

We can also form iterated commutator maps 

<1>1 is the identity map, 

<1>n+1 = <1> c (1 x <1>n). 

(in particular, <1>2 = <1». Then (3.4) generalizes to 

(3.5) Theorem The map <1>n I G~-l is nul/homotopic. 
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This is trivial for n = 1, and is given by (3.4) for n = 2. Suppose n :2': 2 and 
<l>n 1 G~-1 nullhomotopic. Now (Gn, G~_ r) is an NDR-pair, and so there is a 
homotopy 'P': I x Gn -> G of <l>n such that 'P'(1 x G~_ r) = e. Then the map 
'P : I x Gn + 1 -> G x G defined by 

'P(t, x, y) = (x, 'P'(t, y)) 

is a homotopy of 1 x <l>n to a map F: Gn + 1 -> G x G such that 
F(G x G~_ r) c G x e. Since F(e x Gn) c e x G, we have 

F(G~+I)= F(G x G~-1 u e x Gn)c GvG. 

But <l>n + 1 = <1>2 0 (1 x <l>n) is homotopic to <1>2 0 F, and therefore <l>n + 1 1 G~ + 1 

is homotopic to (<1>21 G v G) 0 (F 1 G~ + 1), which is nullhomotopic by (3.4). 
o 

The next two theorems gIve sufficient conditions for [X, G] to be 
nilpotent. 

(3.6) Theorem Let X have finite category < c, and let G be a O-connected 
group-like space. Then [X, G] is nilpotent of class < c. 

It suffices, by (3.1), to prove that all special commutators [1Xt. ... , IXc1 
vanish in r = [X, G]. Lett;: X -> G represent IXi. Then [1Xt. ... , IXn] is repre
sented by the map 

X ~ Xc fl X ... x fc 

The map fl x ... x fc maps X~-1 into G~-I' and ~c is compressible into 
X~-I. Thus there is a homotopy commutative diagram 

~c fl x ... x fc <I> 
X ------> XC • GC ~ G 

X~-1 ---~. G~-1 
f 

where i and i' are inclusions. Therefore 

<l>c 0 (Jl X ... x fc) 0 ~c ::::: <l>c 0 i' 0 fog. 

But <l>c 0 i' is nullhomotopic, by Theorem (3.5). o 
(3.7) Corollary Let X be a CW -complex of finite category c, and let G be an 
Ho-space. Then the group [X, G] is nilpotent of class :s; c. 0 

(3.8) Corollary If X is an n-dimensional CW-complex (n < 00) and G an 
Ho-space, then [X, G] is nilpotent of class :s; n. 0 
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(3.9) Corollary If X is a product of k spheres, and G is an Ho-space, then 
[X, G] is nilpotent of class ~ k. . D 

The nilpotency of [X, G] in the next theorem also follows from Theorem 
(3.6), but Theorem (3.10) is stronger, since it gives an explicit central chain. 

(3.10) Theorem Let 

{*} = Po C PI c··· C Pc = X 

be a stratification of the CW -complex X, and let G be an Ho-space. Let r i be 
the set of all homotopy classes of maps f: X --> G such that f I Pi is nullhomo
topic. Then r 0, ... , rc is a central chain for r = [X, G]. 

We may assume that G is group-like. Letf: X --> G, g: g: X --> G be rep
resentatives of a E r, 13 E r i , respectively. For each cell E A of the relative 
CW-complex (P i + b P;), let X A be an interior point of EA' Then we can find 
closed cells FA C Int E A such that x A E Int FA and E A is a deformation retract 
of E A - FA; it follows that Pi is a deformation retract of 

Q = Pi U U EA - FA, 
A 

and the set Ro = {x A} a deformation retract of R = U A FA' Since G is 0-
connected,! I R o , and therefore fiR, is nullhomotopic. Since 9 I Pi is nullho
motopic, so is 9 I Q. By the homotopy extension property, f and 9 are 
homotopic to maps 1', g' such thatl'(R) = g'(Q) = e. But [a,f3] is repre
sented by the map 

Ll. I' x g' <l> 
X-----+XxX • GxG-----+G 

and (f' x g') 0 Ll maps Pi + 1 into G v G, and it again follows from (3.4) that 
[a, 13] E r i + l' D 

4 The Case X = X 1 X ... x X k 

We now examine this case in greater detail. Let Pi be the set of all points of 
X with at least k - i coordinates equal to the base point. Then 

We are going to examine the groups r i of homotopy classes of maps 
f: X --> G such that f I Pi is nullhomotopic. 

For each subset a c {t, ... , k}, let X~ = {x E X IXi = ei for i ¢ a}, lal the 
cardinal of a, X~ = X~/X~ n PI~I-l' Thus X~ and X~ are homeomorphic 
with ni E~ X;, Ai E~ Xi' respectively. Let p~ : X~ --> X~ be the identification 
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map, and let q, : X -> X, be the natural retraction; q,(x) is the point y such 
that Yi = Xi if i E a, Yi = ei if i ¢ a. Clearly a =1= f3 implies qIJ(X,) eX,. 

(4.1) Lemma Let (X; AI, ... , An) be a CW (n + I)-ad, and let 
A = A I U ... U An. Suppose that there are retractions Pi: X -> Ai such that 
Pi(A J c A j lor all i, j. Let G be an Ho-space. Then the injection 
j: [X, A; G] -> [X, G] is a monomorphism. 

As usual, we may assume that G is group-like and has a strict unit. We 
must show that if{o ,f~ : X -> G are homotopic maps with{o(A) = II (A) = e, 
then{o ~ f~ (reI. A). Let Br = A I U ... u Ar; it suffices to show thatf~ ~ II 

(reI. Br) implies{o ~ f~ (reI. Br+ d. Let F : I x X -> G be a homotopy oflo to 
f~ (reI. Br ), and define F I : I x X -> G by 

FI(t, x) = F(t, x)· F(t, Pr+l(x)tl. 

Then x E Br implies Pr+ I (x) E Br and therefore F I (t, x) = e . e - I = 

e' e = e; and x E Ar+1 implies Pr+I(X) = x. Thus for all x E Br+l , we have 
F I (t, x) = F(t, x) . F(t, x t I. Moreover, if t = 0 or 1, F I (t, x) = f;(x). 

Since the map x -> x . x - I is nullhomotopic (reI. e), the map F I I I x Br+ I 
is nullhomotopic (reI. i x Br+ d. Let C = i x X u I x Br+ I; then F I I C is 
homotopic to the map F 2 : C -> G such that 

F2(t, x) = .ft(x) (t E i, x EX), 

(t E I, x E Br+I)' 

But (I x X, C) is an NDR-pair, and therefore F 2 has an extension F' : I x 
X -> G, and F' is a homotopy of[o to f~ (reI. Br+ d· D 

Applying Lemma (4.1) to the space X and the subsets X a with I a I = i, we 
have 

(4.2) Corollary The injectionT: [X, Pi-I; G] -> [X, G] maps thelormer group 
isomorphically upon r i - I' 0 

(4.3) Theorem The group r i - I jri is isomorphic with the direct product 
Dlal=i [X', G]. 

For Ie!]" : [X, Ai-I; G] -> [X" X a n Pi-I; G] be the injection. Then the 
relative homeomorphism p, induces an isomorphism p,: [X', G] ~ 
[X" X, n Pi-I; G]. Let 

The homomorphisms YJ, define a homomorphism YJ : r i -I -> 

L\ = DI'I=i [X', G]. Clearly r; c Ker YJ. Conversely, if IE'}' E Ker YJ, then, 
for each a,f IX, is nullhomotopic (reI. X a n Pi - d, and therefore I I Pi is 
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nullhomotopic. Hence '1 induces a monomorphism of r i- 1 Ie into L1. It 
remains only to show that '1 is an epimorphism. 

Define f,: X -+ X' by i, = p, " q,. Since q, can be factored through 
(X, P i - 1 ), it follows that ~[X', G] c r i- 1 . Now 

'1a " la = 15; 1 u T, co T- 1 
0 ZJa 0 Pa; 

since qa is a retraction, Ta 0 J- 1 0 qa is the identity, and therefore '1a u z;,. is 
the identity. If a#- [3, then qa(Xp) c Xa n Xp C Pi-1, and therefore 
j~" T- 1 "q, = 0; hence 

'1 f! n I, = p/i 1 "j~ " r- 1 c qa 0 Pa = 0. 

It follows that '1 is an epimorphism; moreover, we have seen that the ~ are 
monomorphisms. 0 

Suppose further that Xi is the n-sphere sn,; then xa can be identified with 
sn(,), where n(a) = Li Ea ni. We consider Xi = sn, as a CW-complex with one 
O-cell ei and one ni-cell; then X is a CW-complex and the filtration 

{*} = Po C ... C Pk = X 

a stratification of X. We then have, as a special case of Theorem (4.3), 

(4.4) Theorem The group r = [snl X ... X snk; G] has a central chain 
r = ro ~ r 1 ~ ... ~ rk = {I} with 

ri-dri ~ n 7rn(a)(G). 0 
lal=i 

5 The Samelson Product 

Let us consider the group [X 1 X X 2, G] and the monomorphisms 

11:[X1,G]-+[X1 xX2,G], 

G : [X 2, G] -+ [X 1 X X 2, G], 

112 : [X 1 /\ X 2, G] -+ [X 1 X X 2, G], 

of §4. If a E [X 1, G], [3 E [X 2, G], then 

'11[11(a), 12([3)] = [a, 0] = 0, 

'12[11(a), 12([3)] = [0, [3] = 0, 

and therefore the element [11 (a), G([3)] belongs to the kernel r 1 of the homo
morphism '1. As z;. 2 maps the group [X 1 /\ X 2, G] isomorphically upon r b 

we may define the Samelson product < a, [3) E [X 1 /\ X 2, G] by 

<a, [3) = !ll[!l(a), G([3)]. 
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The reduced join satisfies a commutative law up to natural homeomor
phism. Therefore, if a E [X b G], /3 E [X 2, G], we can identify <a, /3) E 

[X 1 /\ X 2, G] with </3, a) - 1 E [X 2 /\ X b G] under the natural isomorphism 
between the groups in which these elements lie. Thus the Samelson product 
satisfies a kind of "anti-commutative law". Moreover, the spaces 
Xl /\ X 2 /\ X 3, X 2 /\ X 3/\ X b and X 3/\ Xl /\ X 2 are homeomorphic. Since 
the Samelson product is defined in terms of commutators, we may expect 
some kind of "Jacobi identity" relating the products <a, </3, y», 
</3, <y, a» and <y, <0:, /3». 

Suppose now that X 1 and X 2 are spheres SP, sq, respectively. Then 
Xl /\ X 2 can be identified with Sp+q, and the Samelson product becomes a 
map of 1rp(G) x 1rq(G) into 1rp+q(G). In this case, X 2 /\X 1 can also be 
identified with Sp+q. However, the map SP x sq -4 sq X SP which inter
changes the coordinates induces a map of Sp+q into itself which has degree 
( - 1 )Pq. Thus we may expect the commutative law for the Samelson product 
to involve a non-trivial sign. In the same way, the map of sp+q+r into itself, 
which corresponds to the map of SP x sq X sr into sq x sr X SP which cy
clically permutes the coordinates, has degree (_1)p(q+rl, and therefore we 
may expect a Jacobi identity with signs. 

In the remainder of this section, we shall deal exclusively with the case 
that the Xi are all spheres. We shall assume that G is an Ho-space, and 
abbreviate [sn 1 X '" x sn\ G] to 1rn 1 •...• nk' Let us first suppose that k = 2. 

(5.1) Theorem The map (0:, /3) -4 <0:, /3) is bilinear, and so defines a pairing 
1rp @ 1rq -4 1rp+q. Moreover, 

To prove right linearity, let 0: E 1rp' /3, y E 1rq. Then 

[11 (0:), 12 (/3 + y)] = [11 (0:), 12 (/3)12 (y)] 

= [11(0:), 12(/3)] . [ll(a), 12(Y)] (mod r 2 ), 

by (3.2). But r 2 = {1}, by Theorem (3.10); applying III to both sides of the 
resulting equality, we obtain 

<0:, /3 + y) = <0:, /3) + <0:, y). 

Left linearity can be proved in a similar way. However, it follows from right 
linearity and the commutative law, which we now prove. 

Let t : SP x sq -4 sq X SP be the map which interchanges the factors. In 
virtue of our orientation conventions, t has degree (-1)pq. Furthermore, 
t(SP v sq) c sq v SP, so that t induces a map t': Sp+q -4 Sp+q of the same 
degree. Clearly 

i 12 0 t = t' 0 i 12 . 
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Moreover, P(u) = (-1)pqu for u E 7rp+q' Hence 

<{3, a) = 11}[ld{3), 12(a)] = t'-I~it[~({3), I;(a)] 

= (-1)PqI1l[tll({3), tl2(a)] 

= (-1)PqI121[12({3), 11(a)] 

469 

= (-1)pq + l11Hli (a), 12({3)] = (-1)pq + I<a, {3). D 

We can obtain information about iterated Samelson products like 
<a, <{3, y» by taking k = 3. Consider the group 7rp,q,r and the monomor
phisms II : 7rp ~ 7rp, q, r' T; : 7rq ~ 7rp, q, r.' G : 7rr ~ 7rp, q, rand 

The latter map is an isomorphism of 7r p + q + r with r 3' Moreover, if a E 7rp' 
{3 E 7rq , Y E 7r" then [11 (a), T; ({3), 13 (y)] E r 2 , and we have 

(5.2) Lemma For all a E 7rp' {3 E 7rq, Y E 7r" 

<a, <{3, y» = 11213[ll(a), 12({3), 13(y)]. 

By definition, 

<a, <{3, y» = 11i[ll(a), 1211l[11({3), 12(Y)]]' 

Let f = 1 X P12 : sp x sq X sr ~ SP X sq+r. Then P12 0 f and PI23 are maps 
of (SP x sq X sr, P2) into (sp+q+r, *) which preserve orientation, and there
fore PI2 0 f ~ P123' Hence 

Jo ~2 =Jo 1512 = 15123 = 1123 , 

On the other hand, i2 0 f = iZ3 and il 0 f = il' Let h he the projection of 
SP x sq X sr on sq X sr. Then i12 0 h = i23 , i l 0 h = iz , i2 0 h = i3. Thus 

112 3<a, <{3, y» = JI12<a, <{3, y» 

=J[ll(a), 12 11l[II ({3), 12(Y)]] 

= [fll (a ),fIZ I1l [11 ({3), Iz(y)]] 

= [II (a), 123 1121 [II ({3), 12 (y )]] 

= [II (a), 11[11 ({3), 12 (y )]] 

= [II (a), [ml ({3), m2 (y)]] 

= [II (a), [12 ({3), 13 (y)]]. 

(5.3) Lemma If a E 7rp' {3 E 7rq, Y E 7r" then 

11i3[T;({3), G(y), ~(a)] = (-l)p(q+r)<{3, <y, a», 

11l 3[13(y), II(a), 12({3)] = (_1)r(p+q\y, <a, {3». 
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To prove the first relation, let g : SP x sq X sr -> sq X sr X SP be the map 
given by 

g(x, y, z) = (y, z, x) 

Then g induces g': sp+q+r -> sp+q+r; g and g' have the same degree 
(_I)p(q+r), and i 123 0 g = g' 0 i123 , il 0 g = i2 , i2 0 g = i3 , 13 0 g = i1. 
Hence, using Lemma (5.2), we find that 

1123(( -1)P(Q+ r)<p, < y, IX») = ?Jl123 <p, < y, IX» 

= g[11 (P), 12 (y), 13 (IX)] 

= [gll(P), gI2(y), gI3(1X)] 

= [12 (P), 13( y), 11 (IX)]. 

The second relation follows in a similar way. 

The next theorem expresses a kind of "Jacobi identity." 

(5.4) Theorem If IX E np' P E nq, y E nr, then 

(-IY'<IX, <p, y» + (-1)pq<p, <y, IX» + (_1)qr<y, <IX, P» = O. 

For let IX' = 11 (1X), P' = 1;(11), y' = I;(y). By (3.3), 

(5.5) [IX', P', y'] . [P', y', IX'] . [y', IX', P'] == 1 (mod r3)' 

o 

But r3 = {I}, by Theorem (3.10), and therefore the congruence (5.5) becomes 
an equality. Applying lli3 and using Lemmas (5.2) and (5.3), we obtain the 
desired result. 0 

If X is an arbitrary I-connected space, then nx is an Ho-space, and 
nq(nX) :::::; nq+ 1 (X). Thus the above pairing (IX, P) -> <IX, P> gives rise to a 
pairing np+ 1 (X) ® nq+ 1 (X)-> np+q+ 1 (X). This pairing, due to J. H. C. 
Whitehead, will be studied in subsequent sections, without the hypothesis 
that X is I-connected. 

6 Commutators and Homology 

Let G be a group-like space, <1> : G x G -> G the commutator mapping of §3. 
The effect of <1> on the homology groups is by no means obvious. If G is 
homotopy commutative, then <1> is nullhomotopic and therefore 
0= <1>* : H*(G x G) -> H*(G). 

Let J.1 : G x G -> G and j : G -> G be the product and the inversion, respec
tively, and let us consider homology with coefficients in a commutative 
ring R. 
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(6.1) Lemma Ifx E Hq(G) is primitive, thenj*(x) = -x. 

For the map 

G ~ G x G _1_X-,1,-' --+> G x G ~ G 

is nullhomotopic, and therefore 

0= 11*(1 x j)*Ll*(x) = 11*(1 x j)*(x x 1 + 1 x x) 
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It should be remarked that the above formula need not hold for non
primitive elements. Of course, j * (1) = 1; and if x and yare primitive ele
ments, then j*(xy) = j*(y)j*(x) = (- y)( -x) = yx, which need not be equal 
to -xy. 

(6.2) Lemma If x E HAG), y E Hq(G) are primitive elements, then 
<D*(x x y) = xy - (-1)pqyx. 

For <D is the composite 

G2 Ll x Ll > G4 1 x t xl> G4 _1_x_l_x_l,,-' _x...::.j---)o> 

G4 11 x 11 > G2 __ 11_--+> G, 

where t: G2 ---+ G2 is the map which interchanges the factors; thus if 
U E HAG), v E Hq(G), then t*(u x v) = (-1)pqv x u. Hence 

x x y > (x x 1 + 1 x x) x (y x 1 + 1 x y) 
(il x Ll)* 

(since x, yare primitive) 

=xxlxyxl+xxlxlxy+lxxxyxl+1xxxlxy 

--------+> X X Y x 1 x 1 +x x 1 x 1 x Y 
(1 x t x 1)* 

+ ( -1 )pq l x y x x x 1 + 1 x 1 x x x y 

-------,-----)0> X X Y x 1 x I-x x 1 x 1 x y 
(lxlxjxj)* 

- (-1)pql x Y x x x 1 + 1 x 1 x x x y by Lemma (6.1) 

-----,------)0> xy x 1 - x x y - (-I)pqy x x + 1 x xy 
(11 x 11)* 

-------» xy - xy - (-1)pqyx + xy = xy - (- 1 )pqyx. D 
11* 

We can use Lemma (6.2) to determine the behavior ofthe product (0:, 13) 
of §5 in homology. 
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(6.3) Theorem If G is an Ho-space, IX E nk(G), f3 E nl(G), then 

p«IX, f3» = p(IX)' p(f3) - (-l)klp(f3). p(IX). 

Let f: Sk -+ G, g: SI-+ G be representatives oflX E nk(G), f3 E nq(G), respec
tively and let h : Sk+1 -+ G represent <IX, f3). Let p: Sk x SI -+ Sk+1 be a map 
of degree 1 which collapses Sk v SI to the base point. Then it follows from the 
definition of <IX, f3) in §5 that there is a homotopy commutative diagram 

Sk X SI 
f x g 

• G x G 

pi I~ 
Sk+1 

h 
-+ G 

Now P*(Sk x SI) = Sk+I' and therefore 

h*(Sk+l) = h*P*(Sk x SI) 

= ~*U x g)*(Sk x SI) 

= ~*U* Sk X g* SI)' 

But f* Sk and g* SI are spherical and therefore primitive, homology classes, by 
(7.7) of Chapter III. Hence, by Lemma (6.2), 

h*(Sk+l) = U*Sk)' (g*sl) - (-l)kl(g*SI)' U*Sk)' 

But the elements f* Sb g * Sf, and h* (Sk + I) are the images of IX, f3, and <IX, f3), 
respectively, under the appropriate Hurewicz maps p. 0 

7 The Whitehead Product 

Let IXEnp+I(X), f3Enq+I(X) be elements, represented by maps 
f: (EI' Ed-+(X,*), g:(E2,E2)-+(X,*), where EI and E2 are oriented 
cells of dimensions P + 1, q + 1, respectively. Then E 1 x E2 is a cell, 
oriented by the product of the given orientations of Eland of E2 ; the base 
point of EI x E2 is the point h *). The boundary S = (EI x E2f = 

EI x E2 U EI X E2 is then an oriented (p + q + i)-sphere, and the map 
h: (S, *)-+ (X, *) defined by 

(7.1) h( ) - Jf(x) 
x, Y - \g(y) 

(x EEl' Y E E2 ), 

(x E EI> Y E E2 ), 

represents an element [IX, f3] E np+q+I(X) which, as the notation suggests, 
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depends only on the homotopy classes a, 13 off, 9 respectively. Moreover, the 
operation (a, 13) ---> [a, 13] is clearly natural; i.e., 

(7.2) If <p: X ---> Y, a EO 7rP +l(X), 13 EO 7rq+ I(X), then 

<P*[ a, 13] = [<p* a, <p* 13] EO 7r p + q + 1 (Y). o 
Suppose p = q = 0 (cf. Figure 10.1). Then (I x I)" is the boundary of the 

unit square I x I in the plane R2, with the clockwise orientation, and with 
the origin as base point. The maps f, 9 are loops representing a, 13 and it is 
then clear that 

(7.3) Ifp = q = 0, then [a, 13] = af3a- 1f3-1 EO 7rl(X), o 

Thus the notation [a, 13] for the Whitehead product is consistent with 
(and suggested by) our earlier notation for the commutator of two elements 
III a group. 

OxR 

f 

9 9 

L-______ ------'-----------___ R x 0 

f 
Figure 10.1 
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f f 

-----------

Figure 10.2 

Next suppose p = ° < q (cf. Figure 10.2). Then (I x E)" is the boundary 
of the cylinder 1 x E, oriented coherently with 1 x E (and therefore dis
coherently with ° x E); the base point is (0, *) E ° x E. The point h(t, y) is 
independent of y E E, and the map t ~ h(t, y) is the loop f representing 
rx E 1!l(X). Then map h 11 x E represents f3, and the set E' = 1 x E u 1 x E 
is also a q-cell, which we orient coherently with 1 x E. Because of the behav
ior of h on 1 x E described above, it is clear that hiE' is freely homotopic, 
via the path f, to a representative of f3. As h I ° x E represents f3, it follows 
that 

(7.4) If P = ° < q, then [rx, f3] = Ta(f3) - f3. o 

The map t: E2 x E1 ~ E1 X E2 which interchanges the factors has 
degree (- 1 )(p+ l)(q+ 1), and, if h : (E 1 x E2)" ~ X is the representative of 
[rx, f3] constructed above, then hot: (E2 x Ed" ~ X is the corresponding 
representative of [f3, rx]. Thus 

(7.5) rrrx E 1!p+1(X), f3 E 1!q+1(X), then [f3, rx] = (-1)<P+1)(q+1l[rx, f3]. 0 

From (7.4) and (7.5) we deduce 

(7.6) Ifp > q = 0, then [rx, f3] = (-I)p+1(rp(rx) - rx). o 

Thus if either p = ° or q = 0, the product [rx, f3] can be described in terms 
of known operations. On the other hand, if both p and q are positive, we are 
confronted with a new operation. 

A map h : SP x sq ~ X is said to have type (rx, f3) if and only if hi SP x {*} 



7 The Whitehead Product 475 

represents rx E 1!p(X) and hi {*} x sq represents fJ E 1!q(X). An important 
property of the Whitehead product is 

(7.7) Theorem Let rx E 1!p(X), fJ E 1!q(X). Then there exists a map ofSP x sq 
into X of type (rx, fJ) if and only if [rx, fJ] = O. 

In fact, let us observe that (SP x sq, SP v sq) is a relative CW-complex with 
just one cell; a characteristic map for this cell is 

W = W x W . (EP x Eq (EP x Eq)O) --> (SP x sq SP v sq)· p, q p q.' " 

the attaching map for this cell is a representative of the Whitehead product 
[11, 12] of the homotopy classes of the inclusion maps SP --> SP v sq, 
sq --> SP v sq. If 1, g are representatives of rx, fJ respectively and 
k = (1, g) : SP v sq --> X is the map determined by them, then there is a map 
of SP x sq into X of type (rx, fJ) if and only if k can be extended over SP x sq. 
Since wp • q is a relative homeomorphism, this is so if and only if the map 
k 0 w p, q I (EP x Eq)" can be extended over EP x Eq, i.e., is nullhomotopic. But 
the homotopy class of the latter map is k*[I1, 12] = [k* 11, k* 12] = [rx, fJ]. 

D 

(7.8) Corollary If X is an H-space, then [rx, fJ] = 0 for every rx E 1!p(X), 
fJ E 1!q(X). 

For the map J1 0 (f x g): SP x sq --> X has type (rx, fJ) for any representa-
tives 1, g of rx, fJ, respectively. D 

In order to compare the Whitehead product in X with the Samelson 
product in QX, we shall make use of isomorphisms r = rp: 1!p+1(X) ~ 
1!p(QX). These can be defined in various ways, and the sign in the relation 
r[rx, fJ] = ±<rrx, rfJ) will depend on the choices made for rp' rq, and rp+q' 
Let us, then, make the definition of rp very explicit. We shall make use ofthe 
adjointness relation 

F(SX, Y) ~ F(X, QY) 

of §2, Chapter III, and the consequent relation 

1!p+ 1 (Y) = [SP+ 1, Y] = [SSP, Y] ~ [SP, F(S, Y)] = 1!p(Q Y). 

Using the relative homeomorphism wp: (IP, jP) --> (SP, *) this yields 

(7.9) Let f: (IP+ 1, jP+ 1) --> (X, *) represent rx E 1!p+ 1 (X). Then the map 
rf: (IP, jP) --> (QX, *) defined by 

rf(x b ... , xp)(t) = f(t, Xb ... , xp) 

represents r(rx) E 1!AQX). D 
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We shall now prove 

(7.10) Theorem If tx E 1tp+ 1 (X), 13 E 1tp+ 1 (X), then 

r[tx,f3] = (-I)P(rtx, rf3> E 1tp+q{QX). 

We shall represent tx and 13 by maps 

f: (IP+l, jp+l)-+ (X, *), 

g : (Iq + 1, jq + 1) -+ (X, *); 

then [tx, 13] is represented by the map 

h : (S, *) -+ (X, *), 

defined by (7.1); recall that 

S = jp+q+2 = (IP+l X Iq+l)" = jP+l X Iq+l U IP+l X jq+l. 

Let us agree to identify Ik+ 1 with I x Ik for every k. Let 

K = 0 x IP x 0 x Iq u I x ip x I x Iq u I x IP x I x iq c S; 

the union of the second and third sets retracts by deformation into a subset 
of the contractible set 0 x JP x 0 x Iq (by contracting the first and third 
factors of each to the point 0); thus K is itself contractible. Let E be the 
product I x IP x Iq, and let ¢ : E -+ S be the map defined as follows: subdivide 
I by inserting the partition points 1/4, 3/8, 1/2, 5/8, 3/4; then each of the sets 
I x x x y (x E IP, Y E Iq) is mapped in the obvious piecewise linear fashion 
into the closed polygon in S with vertices 

(0, x, 0, y), 

(0, x, 1, y), 

(1, x, 0, y), 

(0, x, 0, y), 

(1, x, 1, y), 

* 
(cf. Figure 10.3, for the case p = 0, q = 1; the sphere S is the boundary of the 
depicted cube and the X-, y-, and z-axes are those of the first, third and 
fourth coordinates respectively. The shaded area represents the image of ¢, 
and K is the union ofthe two unshaded faces with the part ofthe z-axis lying 
between them). Then ¢(£) c K, and ¢ : (E, £) -+ (S, K) is a relative homeo
morphism. The cell [1/4, 3/8] x JP x Iq is mapped by ¢ upon the cell 
I x IP x 0 x Iq, preserving the order of the coordinates, and the latter cell is 
coherent with ( - I)P times the natural orientation of S. Thus, if e E 1tn(E, £) 
and S E 1tn(S, K) are the generators of these infinite cyclic groups determined 
by the natural orientations of E, S, respectively, we have ¢*(e) = (-1 )Ps. 

Consider now the map h 0 ¢ : E -+ X. Let F = IP x Iq, so that E = I x F, 
and let tjJ = r(h 0 ¢): F -+ QX; thus 

tjJ(x, y)(t) = h¢(t, x, y). 

Inspection of the definitions of hand ¢ reveals that 
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y 
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I 
I 
I 
I 
I 
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I 
I 
I 
I 
I 

lJ-

,.-

z 
Figure 10.3 

(7.11) ljJ(x, y) = {* . (f'(x)' g'(y))}. {(!,(xt 1 . g'(yt 1 ). *}, 

where!, = rf: (IP, jP)--+ (aX, *) and g' = rg: (Iq, jq)--+ (aX, *). 
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x 

The map h 0 cjJ does not represent a well-defined element. of 1t{'+q+ 1 (X), 
since h(cjJ(E» = h(K) is not the base point. The map IjJ sends IP x F into the 
base point, and so IjJ = 1jJ' 0 (IDp X IDq) for a map 1jJ' : SP x sq --+ ax. But 
1jJ'(SP v sq) is not the base point, so that 1jJ' does not factor through Sp+q. 
However, 1jJ' is easily seen to represent the element [I;" (ret), Z;(rfJ)] of 1tp, q(QX). 

We have seen that K is contractible. The contraction of K constructed 
above can be extended to a homotopy W t : (S, K) --+ (S, K) of the identity to 
a map WI for which WI (K) = *. Then howl 0 cjJ: (E, E) --+ (X, *), and the 
map WI 0 cjJ : (E, E) --+ (S, K) factors through (S, *). But the injection 
1tp+q+1 (S, *)--+1tp+q+l(S, K) is an isomorphism, and commutativity of the 
diagram 
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shows that (Wi 0 4Y)* maps e into (-l)P times the natural generator of 
1l:p+q+l(S). Hence hOWl 0 4Y represents (-l)p[a, fJ]. 

On the other hand, 

4Y(1 x jP x i q ) c I x i p x I x i q u ° x IP x ° x F, 

and the latter set is mapped into itself by W t and into the base point by h. It 
follows that t/Jt = L(h 0 W t 0 4Y) sends i p x i q into the base point of ox. But 
hOWl 0 4Y carries E into the base point, and therefore t/J~ = (h 0 Wi o4Y) 
carries P into the base point. Hence t/J'1 represents the element 

~l[~(La), I;(LfJ)] = <La, LfJ) E 1l:p+q(OX). 

(7.12) Corollary Ifab az E 1l:p+1(X), fJ E 1l:q+l(X) and p > 0, then 

[al + az, fJ] = [ai' fJ] + [a2' fJ], 

[fJ, a1 + a2] = [fJ, ad + [fJ, a2]. 

Of course, these could have been proved directly (cf. Exercise 9). 

o 

o 

The Jacobi identity for the Samelson product gives rise to a similar 
identity for the Whitehead product: 

(7.13) Corollary If a E 1l:p+ 1 (X), fJ E 1l:q+ 1 (X), y E 1l:r+ 1 (X), and p, q, r are all 
positive, then 

(_1)'(p+ll[a, [fJ, y]] + (-l)P(q+ll[fJ, [y, a]] 

+ (-1 )q(r+ l)[y, [a, fJ]] = O. 0 

Combining Corollary (7.13) with the commutative law (7.5), we have 

(7.14) Corollary If a E 1l:p+ 1 (X), fJ E 1l:q+ 1 (X), y E 1l:r+ 1 (X), and p, q, r are all 
positive, then 

(_l)(p+l)(r+l)[[a, fJ], y] + (-l)(q+l)(p+l)[[fJ, y], a] 

+ (-1 )(q+ l)(r+ 1)[[y, a], fJ] = O. 0 

8 Operations in Homotopy Groups 

In this section we shall discuss the Whitehead product and other operations 
in homotopy groups and explore some of their connections. 

1. The composition product 

This product, defined by composition of representative maps, associates to 
a E 1l:r(X), fJ E 1l:n (sr), an element a 0 fJ E 1l:n(X). Iff: S' --> X is a representa-
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tive of 0(, then f* (P) = 0( 0 p. Since f* is a homomorphism, we have 

(8.1) Theorem The composition operation is right additive, i.e., if 0( EO Jrr(X), 
PI' P2 EO Jrn(sr), then 0( 0 (PI + P2) = 0( 0 PI + 0( 0 P2' D 

On the other hand, composition is not, in general, left additive; an 
example will be given in Chapter XI. There are, however, two important 
special cases in which left additivity holds. 

(8.2) Theorem If G EO Jrn_1(sr-1), 0(1) 0(2 EO Jrr(X), then (0(1 + 0(2) 0 (EG) = 

0(1 0 EG + 0(2 0 EG. 

Let f: sn - 1 ---> sr- 1 be a representative of G, so that 1 Af: sn ---> sr is a 
representative of EG. The standard coproduct in sr is given by 

(0 :s; t :s; !), 

(! :s; t :s; 1). 

If gi : sr ---> X is a representative of O(i (i = 1, 2), then 0(1 + 0(2 is represented by 
g 0 () : sr ---> X, where g : sr V sr ---> X is defined by 

g(y, *) = gl(Y), 

g(*, y) = g2(Y), 

and (0(1 + 0(2) 0 EG is represented by h = g 0 () 0 (1 Af). But (cf. Figure 10.4) 

- 19l(2tAf(X» (O:s;t:s;!), 
h(tAX)= __ 

g2(2t - 1 Af(x» (!:s; t:s; 1). 

This map is clearly a representative of 0(1 0 EG + 0(2 0 EG. D 

(8.3) Theorem If X is an H-space, then composition is biadditive, i.e., if Pi> 
P2 EO Jrr(X), 0( EO Jrn(sr), then 

(P 1 + P 2) 0 0( = P 1 0 0( + P 2 0 0(. 

F or if f: sn ---> sr represents 0(, then P 0 0( = J(P) for all P EO Jrr(X). But 
1: [sr, X] ---> [sn, X] is a homomorphism. (This is just the naturality of the 

9 1Af g () 

fffi 
g 0 / -, 

---t --+ --+ 

sn sr sr V sr X 

Figure lOA 
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operation in [Y, X] induced by the H-structure in X; by Theorem (5.21) of 
Chapter III, this agrees with the structure corresponding to the H'-structure 
on the H'-space Y, notably when Y is a sphere). D 

(8.4) Corollary If d = 1, 3, or 7, f31, f32 E nr(Sd), rx E nn(sr), then 
(f31 + f32) 0 rx = f31 0 rx + f32 0 rx. 

For then Sd is an H-space. o 

Let 'r E nr(sr) be the homotopy class of the identity map. Then 
rx 0 (- In) = - (rx 0 In) = - rx. On the other hand, (- Ir) 0 rx is not, in general, 
equal to - rx, and the map rx -+ (- Ir) 0 rx is an automorphism v = vn , r of 
period two, of nn(sr). However, 

(8.5) If a E nn _ 1 (sr- 1), then v(Ea) = - Ea, o 

(8.6) If n = 1, 3, or 7, rx E nn(sr), then v(rx) = - rx. o 

II. The reduced join 

The reduced join functor is compatible with homotopy and therefore 
induces an operation associating to each rx E [X, X'], f3 E [Y, yl] an element 
rx /\ f3 E [X /\ Y, X' /\ Y']. 

Suppose that Y is an H'-space. Then we have seen in Chapter III that 
X /\ Y is also an H'-space, and therefore there are natural operations defined 
in [Y, Y'], [X /\ Y, X' /\ yl], respectively. It then makes sense to ask whether 
the operation of reduced join is right additive. A positive answer is furnished 
by 

(8.7) Theorem Let Y be an H'-space, rx E [X, X'], f31> f32 E [Y, Y']. Then 

rx /\ (f31 + f32) = rx /\ f31 + rx /\ f32 E [X /\ Y. X' /\ Y']. 

The easy proof is left to the reader. o 
(8.8) Corollary If X is an H'-space, rx 1, rx2 E [X, X'], f3 E [Y, Y'], then 
(rxl + rx2) /\ f3 = (rxl /\ f3) + (rx2 /\ f3). 0 

If X = SP, Y = sq, then X /\ Y = Sp+q; if p and q are both positive X and 
Yare H'-spaces, so that the reduced join operation is biadditive and so may 
be regarded as a pairing 

np(X) ® nq(Y) -+ np+q(X /\ Y). 

Suppose further that X = SP, rx = Ip is the element represented by the iden-
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tity map. If p = 1, rL /\ {J is the suspension E{J of {J, and it follows by induction 
(and the commutative and associative laws for the reduced join) that 

(8.9) If rL E nq(Y), then Ip /\ rL = P(rL). In particular, 
(p factors). 

(8.10) Lemma If rL E nn(S'), then rL /\ 11 = (_1)n -, ErL. 

For there is a commutative diagram 

sn /\ SI 
0( /\ II 

S' /\ Sl --
t n) ) tr 

SI /\ S· -- SI /\ sr 
11/\0( 

where tk : Sk /\ SI --+ SI /\ Sk is the map which interchanges the coordinates. 
Therefore tk has degree ( - 1)k, and thus 

rL /\ II = (( -1)'1,) 0 (11/\ rL) 0 (( -l)"ln)) 

= (-1)"((( -l)'lr ) 0 ErL) 

=(-l)"-'ErL by (S.S). 

(8.11) Corollary IfrL E np+,(SP), then rL/\ Ip = (-l)prprL. 

D 

D 

An interesting relation between the reduced join and composition opera
tions has been given by Barratt and Hilton [1]: 

(8.12) Theorem If rL E np+k(SP), {J E nq+I(Sq), then 

rL/\{J= (_1)qkprL c p+k{J= (-l)<q+/)kP{J c Eq+lrL . 

For there is a commutative diagram 

and the formula follows from (S.9) and (S.ll). D 
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(8.13) Corollary If rx E JrP+k(SP), 13 E Jrq+l(sq), then 

13 /\ rx = (-1)Pl+ qk + q1rx /\ 13. 

III. The Whitehead product 

o 

We have already defined this product and proved some of its properties in 
§7. One of them is a naturality property with respect to maps of its range. 
The effect of maps of the domain is much more subtle; while there is an 
explicit formula for [rx 0 )I, 13], it is quite complicated and involves notions 
(Hopf-Hilton invariants) which do not occur until Chapter XI. There are, 
however, some cases of special interest which can be stated quite simply. 

The most elementary result in this direction is due to Hilton and 1. H. C. 
Whitehead [1]. 

(8.14) Theorem If rx E Jrp(X), 13 E Jrq(X), )I E Jrm(SP), fJ E Jrn(sq), and if 
[rx, 13] = 0, then [rx 0 )I, 13 0 fJ] = 0. 

We use the criterion of Theorem (7.7). Since [rx, 13] = 0, there is a map 
f : SP x sq --+ X oftype (rx, 13). Let g : sm --+ SP, h : sn --+ sq be representatives of 
)I, fJ, respectively. Then f 0 (g x h) : sm X sn --+ X has type (rx 0 )I, 13 0 fJ), and 
therefore [rx 0 )I, 13 0 fJ] = 0. 0 

To formulate the next result, we need the notion of join. If X and Yare 
spaces in X'.*, their join is the subspace 

X * Y = TX x Y u X x TY 

of TXxTY: the base point of X*Y is (*,*)EXxY= 
(TX x Y) n (X x T¥). If f : X --+ X' and g: Y --+ Y' are maps, the map 
Tfx Tg:TX x TY--+TX' x TY'sendsX * YintoX' * Y',inducingamap 
f * g : X * Y --+ X' * V'. Thus the join is a functor: % * x % * --+ % *. 

It is more customary to define the rectilinear join of free spaces X 
and Y as the quotient space obtained from the disjoint union 
X + (I x X x Y) + Y by identifying each x E X with ° x x x Y and each 
y E Y with 1 x X x y; let (1 - t)x + ty be the image of (t, x, y) under these 
identifications. The rectilinear join is then the union of the line segments 
[x, y] = {(1 - t)x + ty I tEl}, no two of which have a point in common 
except for possible end-points. The maps 

x --+ (x, *) 

J(x, 2t /\ y) 
(t, x, y) --+ \(2(1 _ t) /\ x, y) 

y--+(*,y) 

(t :::: t), 
(t 2 t), 
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define a homeomorphism of the rectilinear join with X * Y. The inverse of 
this homeomorphism is the map defined by 

(x, S 1\ y) -4 ( 1 - ~)x + ~ y, 

(s 1\ x, y) -4 ~ X + ( 1 - ~ k 
If X and Yare spaces in X *, let X *, Y*, as usual, be the free spaces 

obtained from them by ignoring the base points. The space T X is obtained 
from TX * by collapsing the contractible set T{ *} to a point; the quotient 
map is therefore a homotopy equivalence (TX*, X)-4 (TX, X) (reI. X). 
Similarly, the quotient map (TY*, Y) -4 (TY, Y) is a homotopy equivalence 
(reI. Y). It follows that the product of these maps is a homotopy equivalence 
between the pairs 

(TX* x TY*, X* * Y*), 

(T X x T Y, X * Y). 

Thus the join X * Y has the same homotopy type as the rectilinear join of 
X* and Y*. 

The operation of join is compatible with homotopy, and so defines an 
operation, associating with r:t. E [X, X'], f3 E [Y, yl], an element r:t. * f3 E 

[X * Y, X' * yl]. That this operation is not essentially new follows from 

(8.15) Lemma There is a contractible subset K(X, Y} of X * Y such that 
(X * Y, K(X, Y)) is an NDR-pair and X * Y/K(X, Y) is naturally homeo
morphic with S(X 1\ Y}. 

The subset in question is defined by 

K(X, Y} = TX vTY. 

The map p : X * Y -4 S(X 1\ Y) defined by 

t 
p(t 1\ x, y) = 2 I\X I\Y, 

p(x, t 1\ y} = ( 1 - n 1\ x 1\ y, 

sends TX v TY into the base point. Its restriction to TX x Y is the 
identification map (T X x Y, T X v Y) -4 (T X 1\ Y, *), composed with the 
natural homeomorphism of the latter space with T + (X 1\ Y); similarly, 
p I X x TY is the composite of the identification map (X x TY, X v TY}-4 
(X 1\ T Y, *) with the natural homeomorphism of X 1\ T Y with L (X 1\ Y). 
These maps fit together to define a relative homeomorphism of (X * Y, 
TX v TY) with (S(X 1\ Y), *). 0 
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Trivial to prove is 

(8.16) Lemma If f: X --* X', g: Y --* Y', then f * 9 maps TX v TY into 
TX' v TY' and the diagram 

X*Y 
f*g 

X' * Y' I 

Pj lp, 

S(X /\ Y) I S(X' /\ Y') 
S(f /\ g) 

is commutative. 0 

(8.17) Corollary The operations (ee, f3) --* ee * f3, (ee, f3) --* E(ee /\ f3), are nat
urally equivalent. 0 

We can now prove: 

[ee 0 Ey, f3 0 E6] = [ee, f3] 0 E(y /\ 6). 

For let a: (EP+1, SP)--* (X, *), b: (Eq+1, sq)--* (X, *) represent ee, f3, re
spectively. Let c : sm --* SP, d : sn --* sq be representatives of y, 6, respectively. 
Then Tc x Td: Em+1 x En+1--*Ep+1 x Eq+1 sends sm * sn into SP * sq, 
and its restriction c * d to sm * sn represents, according to (8.16), the ele
ment E(y /\ 6). If h : SP * sq --* X is the representative of [ee, f3] given by (7.1), 
we have 

h(c * d)(x, y» = h(Tc(x), Td(y» 

= ja(Tc(x» if x E Em + 1, y E sn, 
\b(Td(y» if x E sm, y E En+ 1. 

and therefore h represents [ee', f3'], where ee', f3' are the elements of 
7rm+1(X), 7rn+l(X) represented by a 0 Tc: (Em + 1, sm)--* (X, *), b 0 Td: 
(En + 1, sn) --* (X, *). It remains only to verify 

(8.19) Lemma Let f: (E'+t, S')--* (X, *) represent 8 E 7rk+1(X), and let 
g: Sl --* S' represent y E 7r1(S'). Then the map f 0 Tg : (EI + 1, Sl) --* (X, *) rep
resents 80 Ey. 
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For there is a commutative diagram 

(E,+I,S') 
Tg 

(E'+I,S') -------+ 

"Z I I X 

~ S'+ 1 
Sg 

I S'+ 1 

in which the vertical arrows denote the identification maps. The map!' 
represents () and therefore!, 0 Sg represents () 0 Ey. Hencef 0 Tg represents 
eo Ey. 0 

Another useful property of the Whitehead product is 

(8.20) Theorem If IY. E 7rp(X), f3 E 7rq(X), then E[ IY., f3] = O. 

It suffices to prove this for the universal example, so that we may assume 
IY. = Ip, f3 = lq. Let us recall that [Ip, Iq] is the homotopy class of the attach
ing map of the (p + q)-cell in the product complex SP x sq, so that there is a 
commutative diagram 

SP+q-l f SPvSq -------+ 

j j 
Ep+q ~ SP X sq 

h 

in whichfrepresents [Ip, lq]' Suspending this diagram, we obtain a commu
tative diagram 

Sp+q Sf SP+IVSq+ 1 ~ 

j j 
SEp+q ------+ S(SP X sq). 

Sh 

We maintain that Sp+ 1 V sq+ 1 is a retract of S(SP x sq). Given that this is 
so, let r: S(SP x sq) ----> Sp+ I V sq+ I be a retraction. Then r 0 Sh is an exten
sion ofSj over the (p + q + I)-cell SEp+q, and therefore Sfis nullhomotopic. 

Let jl : sp+ 1 ----> sp+ I V sq+ 1, jz : sq+ 1 ----> sp+ I V sq+ 1 be the usual inclu-
sions. Then the maps 

jl 0 SPI: S(SP X sq)---->SP+I VSq+t,j2 0 SP2: S(SP X sq)---->Sp+l vSq+ 1 
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can be added to yield a map r : S(SP x sq) ---> SP + 1 V sq + I. Then 

r" Sil = (jl 0 SPI + j2 0 SP2) 0 Sil '::!::jl ,SPI 0 Sil +j2 0 SP2 0 Sit 

= j 1 0 S(p 1 " i d + j 2 0 S(P2 0 i I) = j 1 0 1 + j 2 " 0 = j 10 

and similarly 

and it follows that r I Sp+ 1 V sq+ 1 is homotopic to the identity. Because, 
(SP x sq, SP v sq) is an NDR-pair, so is its suspension, and therefore r is 
homotopic to a retraction. 0 

EXERCISES 

1. Prove that if G is an Ho space, there is a short exact sequence 

0--> 7rz(G)/27rz(G) --> [PZ(R), G] --> 2 7r1(G) --> 0 

(for a group H, 2H = {x E H 12x = O}). What can you say about the group 
extension? 

2. (Spanier & Whitehead [2]). Prove that if p : X --> B is a fibration with fibre F, and 
if F is a categorical subset of X, then F is an H-space. 

3. (Hilton [2]). Prove that, if a E 7r1(X), fJ E 7rq + 1(X), I' E 7rd 1(X), and q, r are posi
tive, then 

(-l)'[a, [fJ, 1']] + [T,(fJ), [I', a]] + (_1)Q(r+1)[y, [a, fJ]] = O. 

4. Prove that, if a E 7rdX), fJ E 7r1(X), I' E 7rr + 1(X), and r > 0, then 

(-l)'[a, [fJ, 1']] + [fJ, [I', a]] + [TII(Y), [a, fJ]] = O. 

5. Prove that, if X and Yare O-connected, then S(X x Y) has the same weak homo
topy type as SX v S Y v S(X ;\ Y). 

6. (Copeland [1]). Let X be an (n - I)-connected CW-complex (n ;:0. 1). Let In(x) E 

H"(X, *; 7rn(X)) be the characteristic class. The Whitehead product is a pairing 
7rn(X) ® 7rn(X) --> 7r2n-1 (X). Let y2n E H2n(x X X, X v X; 7r2n- dX)) be the cross 
product In(x) X C"(X) defined by this pairing. Prove that the folding map 
V : X v X --> X can be extended over the (2n - 1 )-skeleton of the relative CW
complex (X x X, X v X), and that V can be extended over the 2n-skeleton if and 
only if yZn = O. 

7. Strengthen Theorem (2.1) of Chapter V as follows. Let 7r 1 be a group, and, for each 
q ;:0. 2, let 7rq be an abelian group on which 7r1 operates. Then there is a connected 
CW-complex X and a family of isomorphisms rPq: 7rq(X) ~ 7rq such that, 

(1) for all ~ E 7r1 (X), a E 7rq(X) 

rPq(T~(a)) = rP1(O' rPq(a), 

(2) for all a E 7rP(X), fJ E 7riX), p > 1, q > 1, the Whitehead product [a, fJ] is zero. 
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8. (G. W. Whitehead [2]). Letj:(ip +q+1, i p +1 xiq+1)->(X,*). Definemapsf+, 
f- : i p + q + 1 --> X by 

f+[JP+ 1 X iq+1 =f[{P+l X iq+1, 

f+(i p+1 x Iq+l)=f_(IP+l X iq+1 )= *, 

f_[ip+l X Iq+l =f[iP+l X Iq+l. 

Define maps h+: (JP+ 1, i p +1 )-> (X, *), L: (Iq+l, iq +1 )--> (X, *) by 

h+(x) =f(x, *), 

h_(y) =f(*, y). 

Let rx, rx + , rx _ , f3 + , f3 - be the elements of the appropriate homotopy groups of X 
represented by f, f+ ,f - , h + , h - , respectively. Prove that 

rx = rx+ + rx_ + [f3h f3-]. 

9. Prove the biadditivity of the Whitehead product directly from the definition. 



CHAPTER XI 

Homotopy Operations 

We have seen that the Eilenberg-MacLane spaces provide universal 
examples for cohomology operations. We shall also want to consider homo
topy operations. The universal example for operations in one variable is a 
sphere; for operations in several variables it is a cluster 

L = snl V ... V snk 

of spheres. More precisely, let IY. E TCn(L), and let Pi E TCni(X) (i = 1, ... , k). 
Then there is a map g: L ~ X such that g I sni represents Pi, and the 
correspondence 

is a homotopy operation 

TCn1 (X) X ... X TCnk(X) ~ TCn(X) 

in k variables. Moreover, an easy naturality argument shows that every 
operation can be obtained in this way. 

The homotopy groups of a cluster of spaces behave in a very complicated 
way, even if the spaces are spheres. A first result states that the group 
TCn(X V Y) decomposes naturally into a direct sum TCn(X) EB TCn(Y) EB 
TCn + 1 (X X Y, X v Y). If X is (p - 1 )-connected and Y is (q - 1 )-connected 
then the summand TCn+ I(X x Y, X v Y) vanishes if n < p + q - 1, and 
TCp+q(X X Y, X v Y) ;:::: TCp(X) ® TCq(Y) is imbedded in TC p+q- 1 (X v Y) by the 
Whitehead product map. 

Like cohomology operations, homotopy operations need not be additive. 
If IY. E TCn(sr), and if 11, 12 E TCr(sr V sr) are the homotopy classes of the inclu
sions of sr in the two summands of sr v sr, then 

(11 + 12) 0 IY. = 11 0 IY. + 12 0 IY. + 8*P 

488 
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for some f3 E 1tn + 1 (sr X sr, sr v sr), and the vanishing of the element f3 is 
necessary and sufficient for the operation defined by rx to be additive. If 
n = 2r - 1, the group 1tn + 1 (sr X sr, sr V sr) is an infinite cyclic group, gen
erated by an element whose image under 8* is the Whitehead product 
[/1, 12]. Thus 

where Ho(rx) is an integer, called the Hopfinvariant of rx. This notion was 
defined in a different way by Hopf, for r = 2 in [3] in 1931 and for general r 
in [5] in 1935. In the second paper he proved that the fibre maps which bear 
his name have Hopf invariant ± 1. Moreover there exist elements with Hopf 
invariant 2 for all even r. On the other hand, ifr is odd, Ho(rx) is always zero. 

These notions are discussed in §§1, 2. 
The Hopf invariant cannot be described in terms of the usual concepts of 

homology theory, for iff: s2n-l -+ sr, then the induced homomorphismsf*, 
f* of homology and cohomology groups are zero. In 1949 Steenrod [3] 
introduced new operations, the functional cup products, which suffice to 
describe Ho. Let f: X -+ Y and let U E HP(Y), v E Hq(y) be elements such 
that f*u = 0 and u ~ v = O. Then u and v determine an element u ~ f v 
of the quotient group HP+q-l(X)/f*Hp+q-l(Y)+HP-l(X)~f*v. If 
X = s2r-l, Y = sr, u = V = sr, then f* = 0 and u ~f v is a well-defined 
element of H2r - 1(S2r-l), which coincides up to sign with Ho(rx)s2r-l. 

The Steenrod functional operations are introduced in §3 and the above 
application made in §4. Steenrod's construction of the functional operations 
did not come out ofthin air, but was motivated by Hopfs original definition. 
Hopf considers a simplicial map of s2r-l into sr. Then the counterimage of 
each well-chosen point x of sr is a polyhedron of dimension r - 1, whose 
simplices can be oriented to obtain an (r - 1 )-cycle z(x). If x =1= y then z(x) 
and z(y) are disjoint and their linking number A(Z(X), z(y)) is defined. Hopf 
proved that this number is independent of the choices made and depends 
only on the homotopy class of the map in question. Hopf's construction is 
presented in §5 and the connection with Steenrod's approach is established 
by making use of Poincare duality in the manifolds s2r- \ sr. 

In §6 we turn to the study of the homotopy groups of a cluster of spheres. 
These were determined in 1955 by Hilton [1] in terms of homotopy groups of 
spheres. Specifically, let L = sml+1 V'" vSmk +1, and let Ij E 1tmj+l(L) be the 
homotopy class of the inclusion of the jth summand. Then 

00 

1tm+l(L) ~ ED 1tm+ 1(sm j +l) 
j= 1 

the group 1tm + 1 (sm j + 1) being imbedded in 1tm + 1 (L) by composition with a 
certain iterated Whitehead product WAIl> ... , Ik) E 1tmj+ l(L). A consequence 
is that all homotopy operations in several variables are generated by the 
composition and Whitehead product operations. 
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Hilton's proof was generalized by Milnor in 1956 by replacing the spheres 
smj+ 1 by suspensions SX j (j = 1, ... , k), and the remaining spheres smj+ 1 

(j> k) by iterated reduced joins S(X i, /\ ... /\ X J. Milnor's proof was never 
published, but has recently been reproduced by Adams in [4). It is carried 
out in the semi-simplicial setting. A proof, inspired by Milnor's, in the topo
logical category, has been given by Porter [1). 

The algebraic notions needed to formulate the Hilton-Milnor Theorem 
are introduced in §6. The proof of the theorem itself is given in §7; its length 
is in great part due to the necessity of identifying the imbeddings which 
correspond to the Whitehead products in the case of spheres. 

The Hilton decomposition of nm + 1 (L) has the following consequence J ,et 
a E nn+1(sr+1); then the element (11 + 12) 0 a E nn+1(sr+1 vSr + 1 ) has the 
decomposition 

00 

(11 + 12) 0 a = 11 0 a + 12 0 a + L wi 11' 12) 0 h j _ 3 (a ). 
j=3 

The elements hj _ 3(a) E nn+ 1 (smj + 1) are called Hopf-Hilton invariants of a. A 
few properties of the homomorphism hj are worked out in §8. In particular, if 
n = 2r, then hia) = 0 for j > 0 and ho(a) E n2r+1(szr+1) is determined by 

ho(a) = Ho(a)z. 

Thus ho is a generalization of the Hopf invariant. 

1 Homotopy Operations 

Imitating the notion of cohomology operation, we may define a (primary) 
homotopy operation oftype (n, r) to be a natural transformation e : nn --> nr. 
As these are not required to have any special algebraic properties (like 
additivity) it is convenient to take the range category d to be that of abelian 
groups and arbitrary functions. The domain category may just as well be 
taken to be %0, the category of (compactly generated) spaces with base 
points. (There seems to be no particular advantage to start, as we did for 
cohomology, with the category ~o of CW-complexes with base points and 
then extend over all %0; however, the reader may verify that this program 
can be carried out if desired). 

One example of such an operation comes immediately to mind. If 
f: sr --> sn, g : sn --> X are maps, the homotopy class of their composition 
product g 0 f depends only on the homotopy classes a, f3 off, g respectively, 
and we may therefore define f3 0 a to be that homotopy class. Then f3 0 a = 

g*(a), and therefore 

(1.1) If a1, az E nr(sn), f3 E nn(X), then 

f3 0 (a1 + (Xz) = f3 0 (Xl + f3 0 (Xz E nr(X). o 
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On the other hand, it is not in general true that 13 0 rx depends linearly on 
13. (For an example, see §2). 

If rx EO n.(sn) is a fixed element, then it is clear that the correspondence 
13 -> 13 0 rx is a homotopy operation 8a of type (n, r). Moreover, 

(1.2) Theorem If e : nn -> n. is a homotopy operation, there is a unique element 
rx EO n.(sn) such that e = 8a . Thus the set of all homotopy operations of type 
(n, r) is in one-to-one correspondence with n.(sn). 

For let In EO nn(sn) be the homotopy class of the identity map. If e is an 
operation, then rx = 8(ln) EO n.(sn), and iff: sn -> X represents 13 EO nn(X), we 
have 

ea(f3) = 13 0 r:x = f*(rx) = f* 8(ln) = ef*(ln) = e(f3), 

so that 8 = ea. On the other hand, if ea = ea, then 

rx = 8a(ln) = ea,(ln) = rx'. D 

We shall need to consider operations in several variables. An operation of 
type (n 1, ... , nk ; r) is a natural transformation e : nnl x '" x nnk -> n • . Just as 
the n-sphere sn is the" universal example" for operations in one variable, the 
cluster of spheres L = sn 1 V ... V snk is the universal example for operations 
in k variables, and we have the following generalization of Theorem (1.2). 

(1.3) Theorem The set of all operations of type (nb ... , nk ; r) is in one-to-one 
correspondence with the group n.(sn 1 v ... V snk). 

For let jl: sn, -> L be the inclusions, and let II = jt*(ln,) EO nn,(L). If 
f3t EO nn,(X) is represented by j;: sn, -> X, the mapsft define a map 

f = (flo ... '/k) : L -> X 

such that f 0 jt = ft. Let rx EO n.(L), and define 
8a(f3b ... , 13k) = j~(rx). 

Then 8a is an operation, and the proof of Theorem (1.2) extends easily to the 
present case. In particular, the element rx is characterized by the formula 

rx = ea(zl, ... , Zk). D 

Thus it is of some importance to determine the homotopy groups n.(L), 
where L is a cluster of spheres, and the rest of this chapter will be devoted to 
the consideration of this problem. 

We conclude this section by discussing the additivity problem for opera
tions in one variable. In doing so, we shall need some information about the 
homotopy groups of a cluster of two spaces. 

Consider the homotopy sequence 

(1.4) 
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and let us recall that the injections 

i 1* : TCr{X) ---> TCr{X X Y), 

i 2 * : TCr{ Y) ---> TCr{ X x Y), 

XI Homotopy Operations 

represent the group TCr{X X Y) as a direct sum; the dual representation as a 
direct product is given by 

Pl* : TCr{X X Y) ---> TCr(X), 

P2* : TCr{X X Y) ---> TCr( Y). 

Furthermore there are maps j 1 : X ---> X v Y, j 2 : Y ---> X v Y, q 1 : X v Y ---> X, 
q2 : X v Y ---> Y such that 

(t = 1, 2). 

The homomorphism A : TCr(X X Y) ---> TCr(X V Y) defined by 

A = jl* 0 Pl* + jH 0 P2* 

has the property that Pt* 0 i* 0 A = Pt* (t = 1, 2) and therefore i* 0 A is the 
identity map. Hence 

(1.5) Theorem The injection 

j* : TCr{X X Y) ---> nr(X x Y, X v Y) 

is trivial, and the short exact sequence 

(1.6) 0 ---> TCr+ 1 (X X Y, X v Y) --+ nr(X v Y) --+ TCr(X X Y) ---> 0 

splits. The injections 

j h : nr(X) ---> nr(X v Y), 

h* : nr{Y) ---> TCr(X V Y), 

together with the boundary operator 

0* : nr+ 1 (X x Y, X v Y) ---> nr(X v Y) 

represent the group TCr{X V Y) as a direct sum: 

TCr(X V Y) ::::::: TCr(X) EB TCr{Y) EB nr+ 1 (X x Y, X v Y). 0 

Remark. If r = 1, the above discussion must be modified slightly because 
TC 1 (X) and TC 1 (Y) are not necessarily abelian. In this case TC 1 (X v Y) is thefree, 
TCI (X x Y) the direct product of the groups n1 (X), TC 1 (Y). The sequence (1.6) 
remains exact, but does not, in general, split. 

We next calculate the first non-vanishing relative homotopy group 
TC r +l(X X Y, Xv Y). 
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(1.7) Theorem Suppose that X is (m - 1 )-connected and Y is (n - 1)
connected (m, n ~ 2). Then (X x y, X v Y) is (m + n - 1)-connected and 
the map fI. ® [3 -+ [11 0 fl., 12 0 [3] is an isomorphism of 1tm(X) ® 1tn(Y) with 
the kernel of the injection i*: 1tm + n - 1(Xv Y)-+1tm+n-1(X X Y). Thus the 
injection i* : 1t,(X v Y) -+ 1t,(X X Y) is an isomorphism for r < m + n - 1 and 
a split epimorphism with kernel1tm(X) ® 1tn(Y) for r = m + n - 1. 

Since m, n ~ 2, X and Yare 1-connected, and so is X v Y, by the van
Kampen Theorem. By the Kunneth Theorem, H,(X x Y, X v Y) = 0 for 
r < m + n, and 

(1.8) Hm+n(X x Y,XvY)~Hm(X, *)®Hn(Y, *). 

By the converses of the absolute and relative Hurewicz theorems, these 
groups are isomorphic with 1tm+n(X X Y, X v Y) and 1tm(X) ® 1tn(Y), respec
tively. It remains to make this isomorphism explicit. There is a commutative 
diagram 

(1.9) 

e 
1tmh(X X Y, X v Y) 

a. 
7t",h-1 (X v Y) 1t",(X) ® 7tn( Y) ----+ ----+ 

p®pj Pj 
a. 

jP 
Hm(X)®Hn(Y) ----+ Hm+n(X x Y, X v Y) ----+ H",+n-1(X V Y). 

Let f: (E1' £1)-+ (X, *), g: (E2' £2)-+ (Y, *) be maps of oriented cells 
representing fI. E 1tm(X), [3 E 1tn(Y), respectively. Then 

f x g: (E1 x E2, (E1 x E2)") -+ (X x Y, X v Y) 

represents an element fI. x [3 E 1tm+n(X X Y, X v Y) whose image under P is 
(I x g)*(e1 x e2) = f* e1 x g* e2 = p(fI.) X p([3). Thus the correspondence 
fI. ® [3 -+ fI. X [3 is the homomorphism e of the diagram (1.9). Since 
(I x g)I(E 1 x E2)" is the representative h of [fI., [3] defined in §7, Chapter X, 
the truth of the rest of the theorem follows immediately. 0 

In the above discussion we assumed that X and Y were both I-connected. 
If m = n = 1, then 1t2(X x Y, X v Y) is the kernel N of the natural homo
morphism of the free product 1t1(X) * 1t1(Y) into the direct product 
1t1 (X) x 1t1(Y). By the theorem of Kurosh on subgroups of a free product, N 
is a free group, freely generated by the commutators [j1*(fI.),h*([3)] where fl., 

[3 range over all non-trivial elements of 1t 1 (X), 1t 1 (Y), respectively. The case 
m = 1 < n we shall leave to the reader as an Exercise. 

Let fI. E 1t,(sn). In order to study the additivity ofthe operation e = ea , let 
us consider the element (11 + 12) 0 fI. E 1t,(sn V sn). By Theorem (1.5), this 
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element can be represented in the form 

(/1 + 12) 0 a = 11 0 a1 + 12 0 a2 + o*f3; 

projecting into the first and second factors, we find that a1 = a2 = a. Thus 

(1.10) (11 + 12) 0 a = Zl 0 a + Z2 0 a + o*f3. 

If () a is additive, then 11 0 a + 12 0 a = (11 + 12) 0 a and therefore f3 = o. Con
versely, suppose that f3 = o. If f1, f2 : sn ---> X are maps representing f3b 
f32 E 1rn(X), and iff = (f1J2) : sn v sn ---> X is the map defined by them, then 
f* It = f3t for t = 1, 2, and therefore 

(f31 + f32) 0 a = f*(1 1 + 12) 0 a = f* 11 0 a + f* 12 0 a = f31 0 a + f32 0 a, 

so that Oa is additive. 
Let us say that a is primitive if and only if it satisfies (1.10) with f3 = o. 

Thus we have proved 

(1.11) Theorem Let a E 1rr(sn). Then the operation Oa : 1rn ---> 1rr defined by a is 
additive if and only if a is primitive. D 

(1.12) Corollary Ifr < 2n - 1, then every homotopy operation of type (n, r) is 
additive. D 

Other sufficient conditions for additivity are given by Theorems (8.2) and 
(8.3) and Corollary (8.4) of Chapter X. 

Suppose that r = 2n - 1. Then the image of 0* : 1r2n(sn X sn, sn V sn)---> 

1r2n_1(snVsn) is the infinite cyclic group generated by [11, 12]. Thus (1.10) 
becomes 

(11 + 12) 0 a = 11 0 a + 12 0 a + Ho(a)[I1, 12], 

where H 0 is a homomorphism of 1r2n _ dSn ) into the additive group Z of 
integers. The integer Ho(a) is called the Hopfinvariant of a. 

It follows from the definition of H 0 that 

(1.16) If f3b f32 E 1rn(X), a E 1r2n -1 (sn), then 

(f31 + f32) 0 a = f31 0 a + f32 0 a + HO(a)[f3b f32]. D 

2 The Hopf Invariant 

In this section we shall establish some elementary properties of the Hopf 
invariant. A more detailed discussion will appear in Volume II. 

It is clear from the definition and the right-linearity of the composition 
operation that 
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(2.1) The map H 0 : 1r2n - 1 (sn) --+ Z is a homomorphism, and H o(rx 0 (kz2n- d) = 

kH o(rx) Jor any integer k. D 

On the other hand, 

For It 0 (kin) 0 rx = (kit) 0 rx, and therefore 

Ho«kln) 0 rx)[ll, /2] = (11 + 12) 0 (kzn) 0 rx - 11 0 (kin) 0 rx - 12 0 (kin) 0 rx 

= (kl 1 + k1 2) 0 rx - (kl 1 ) 0 rx - (kI2) 0 rx 

= Ho(rx)[kl\ k1 2] 

= k2Ho(rx)[I\ 12]; 

since [1\ 12] has infinite order, the desired result follows. 

It follows from Theorem (1.13) that 

(2.4) Theorem If n is odd then H o(rx) = 0 Jor all rx E 1r2n _ 1 (sn). 

For 

(11 + 12) 0 rx - 11 0 rx - 12 0 rx = HO(rx)[I\ 12] 

(12 + 11) 0 rx - 12 0 rx - 11 0 rx = HO(rx)[/2, 11] 

= (-l)"Ho(rx)[I\ 12]. 

D 

D 

But the left sides of these two relations are equal. Since [11, 12] has infinite 
order, we have (1 + (_l)"H )Ho(rx) = 0, and therefore Ho(rx) = ° if n is odd. 

D 

On the other hand, if n is even, there always exist elements with Hopf 
invariant 2. In fact 

(2.5) Theorem IJ 11 is even, HO([ln, In]} = 2. 

For 

HO([ln, Inml\ 12] = (11 + 12) 0 [In' Zn] - 11 0 [In' In] - 12 0 [Zn' In] 

= [11 + 12, 11 + 12] - [11,11] _ [12, /2] 

= [/\ Z2] + [12, ZI] = 2[/1, 12] 

Sll1ce n IS even. D 
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We can now show that the composition operation fails to be additive in 
the first factor. We have seen that n3(S2) is an infinite cyclic group, generated 
by the homotopy class 1'/ ofthe Hopffibration p : S3 -> S2. By Theorem (2.5), 
Ho : n3(S2) -> Z is non-zero, and it follows that Ho is a monomorphism. By 
(2.2), 

HO((12 + 12) 0 1'/) = Ho((212) 0 1'/) = 4Ho(I'/). 

Thus (12 + 12) 0 1'/ = 41'/, while 12 0 1'/ + 12 0 1'/ = 21'/. 

Remark We shall see in Theorem (4.4) below that Ho(l'/) = ± 1. 

3 The Functional Cup Product 

If rt. E np(X), /3 E nq(X), (p, q > 1) and iff: SP+q-1 -> X is a representative of 
[rt., /3], then f* : H p+q_ I (Sp+q-l) -> H p+q_ I (X) is trivial (because it can be 
factored through H p+q_ I (SP v sq) = 0). Thus the usual homological invar
iants associated with f must vanish. But this very triviality off* (and off*) 
can be used to construct new invariants, the Steenrod functional cup 
products, which we now describe. 

We begin with some algebraic preliminaries (cf. Appendix B). Let 

Al 
OCI OC2 

A3 
oc3 OC4 

----+ Az ------t ----+ A4 ---As 

L\: AI] A2] l,] A4j AS] 

BI ----+ B2 ------t B3 ------t B4 ----+ Bs 
/31 /32 /33 /34 

be a commutative diagram with exact rows in the category of abelian 
groups. Then /321 0 A3 0 rt.i l : A4 ~B2 is an additive relation L, and 

Dom L = Ker rt.4 n Ker A4, 

Ker L = rt.3(Ker A3), 

1m L = /321(lm A3), 

Ind L = 1m A2 + 1m /31' 

Thus Land L - I induce homomorphisms 

(J: Ker rt.4 n Ker A4 -> B2!(lm /31 + 1m A2), 

T: /321(Im A3}-> A4 !rt.3(Ker A3)' 

The relation L (as well as the associated homomorphism (J) is called the 
suspension, the relation L- I (as well as the homomorphism T) is the trans
gression, associated with the diagram L\. 
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EXAMPLE 1. Let p: X ---+ B be a fibration with fibre F. Then p* maps the 
cohomology sequence of (B, *) into that of (X, F), yielding a commutative 
diagram 

Hq-1(B) ----+ Hq-1(*) ----+ Hq(B, *) 
j* 

Hq(B) 
i* 

Hq(*) ----+ ---+ 

j j jP6 k* j 
Hq-1(X) ~ Hq-1(F) ---y.-+ Hq(X, F) ----+ Hq(X) ---+ Hq(F) 

and the suspension and transgression are homomorphisms 

0"*: Ker p* ---+ Hq-l(F)/lm i*, 

r* : <5* - 1 (1m P6) ---+ Hq(B)/Ker p*, 

respectively. Dually, the commutative diagram 

i* j* a* i* Hq(F) ----+ Hq(X) ----+ Hq(X, F) ----+ Hq_1(F) ---+ Hq_1(X) 

yields suspension and transgression homomorphisms 

0": Ker i* ---+ Hq{B)/p*Hq(X) 

r : j; l(lm Po*) ---+ Hq- 1 (F)/a*(Ker Po*). 

EXAMPLE 2. Let (X; A, B) be a proper triad. Then there is a commutative 
diagram 

Hq- l(X) ---+ Hq- I(B) ---+ Hq(X, B) ---+ Hq(X) ---+ Hq(B) 

j j A*j j j 
In this case A * is an isomorphism, and therefore the transgression 

L- 1 = r*: Hq-l(A n B)---+Hq(X) 

is a homomorphism, the coboundary operator or seam homomorphism of the 
Mayer-Vietoris cohomology sequence of the triad (X; A, B). For the dual 
diagram, the suspension is a homomorphism 

L = 0"*: Hq(X)---+ Hq-1(A n B), 
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which is again the seam homomorphism of the Mayer-Vietoris homology 
sequence of (X; A, B). 

EXAMPLE 3. Let R be a commutative ring with unit; all cohomology groups 
will have coefficients in R. Let f: X ---> Y and let v E Hq( Y). 

Consider the diagram 

f* <5* 
HP-l(y) ____ HP-'(X) ----+ 

k* 
----+ 

f* 
----+ 

/!.(j, v): ).1] ).21 

HP+q-,(y) r HP+q-,(X) ~ Hp+q(IJ , X) p Hp+q(y) -+ HP+Q(X) 

where k* is the injection and the Ai are determined by the cup product with v 
as follows: AI(U) = u ~ v, A2(U) = U ~ f*v, and A3(U) = U ~ p*v where 
p: IJ ---> Y is the projection and the last-mentioned cup product pairs 
HP(IJ , X) with Hq(IJ ) to Hp+q(IJ , X). The diagram is then commutative, 
and the suspension homomorphism 

0'* : Ker f* n Ker Al ---> HP+q-'(X)lf* HP+q-,(y) + A2 HP-l(X) 

is defined. If U E Dom 0'*, so that f*u = ° and u ~ v = 0, let 

u ~J v = O'*(u) E HP+q-'(X)!f*Hp+q-'(Y) + Hp-,(X) ~ f*v; 

the element u ~ J v is called the functional cup product of u and v. Since the 
homotopy type of the pair (I J' X) depends only on the homotopy class off; 
we have 

(3.1) Iff, g : X ---> Yare homotopic maps, then u ~ J v = u ~ 9 V. D 

Therefore we may, and frequently shall, denote by u ~a V the element 
u ~ J v for any representative f of ri E [X, Y]. 

The functional cup product has certain naturality properties, which we 
now explain. Let f: X ---> Y, g: Y ---> Z, and let u E HP(Z), v E Hq(Z), 
u ~ v = 0. If f*g*u = 0, then u ~ a of V is defined and belongs to 
HP+q-l(X)lf*g* HP+q-l(Z) + HP-l(X) ~ f*g*v. On the other hand, 
g*u ~ g*v = 0, and therefore g*u ~ J g*v is defined and belongs to 
Hp+q-'(X)!f*Hp+q-'(Y) + HP-I(X) ~f*g*v. Thus the element u ~goJ v 
is a coset of the subgroup 

G = f*g* Hp+q-,(Z) + HP-'(X) ~ f*g*v, 

and g*u ~ J g*v is a coset of the subgroup 

G' =f*Hp+q-'(Y) + HP-l(X) ~ f*g*v. 

Since G c G', the following statement is meaningful (and true): 
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(3.2) Under the above conditions 

u ~goJ v c g*u ~J g*v. 

In fact, the identity map of 1/\ X, together with the map g : Y -+ Z induce 
a map of (1/\ X) v Y into (1/\ X) v Z which is compatible with the 
identification maps 

(1/\ X) v Y -+ IJ 

(1/\ X) v Z -+ Ig oj 

and so induce a map g: (IJ ; X, Y) -+ (Ig oj; X, Z). The map g induces, in 
turn, a map of the diagram ~(g 0 f, v) into the diagram ~(f, g*v), which 
reduces to the identity on the cohomology groups of X, and our result 
follows from (2.3) of Appendix B, with /3n+ 1 the identity map. 0 

Let X, Y, Z, u, v be as before, but let us make the stronger assumption 
that g*u = O. Then u ~ 9 v is defined and belongs to the group 
HP+q-l(Y)/g* HP+q-l(Z) + HP-l(y) ~ g*v. On the other hand, the element 
u ~ 9 oj v is also defined and belongs to the group HP+q-l(X)/f*g* HP+q-l(Z) 
+ HP-l(X) ~ f*g*v. The element u ~g v is a coset of the subgroup 

G = g*HP+q-l(Z) + HP-l(y) ~ g*v 

of HP+q-l(y), which is mapped by f* into the subgroup 

G' =f*g*Hp+q-l(Z) + HP-l(X) ~ f*g*v, 

of HP+q-l(X). As u ~g oj v is a coset of the latter subgroup, the following 
statement is meaningful (and true): 

(3.3) Under the above conditions 

f*(u ~g v) c u ~goJ v. 

This time the map 1 /\f: 1/\ X -+ 1 /\ Y and the identity map of Z are 
compatible with the identification maps 

(1/\ X) v Z -+ Ig oj 

(1 /\ Y) v Z -+ Ig 

and so induce a map J: (lg oj; X, Z) -+ (Ig; Y, Z). This map, in turn, induces 
a map of the diagram ~(g, v) into the diagram ~(g 0 f, v) which reduces to 
the identity on the cohomology groups of Z. Our result now follows from 
(2.3) of Appendix B, with IXn-l the identity map. 0 

Now let X be an H'-space with coproduct (): X -+ X v X. Let IX, 

/3 E [X, Y], and let f, g, h: X -+ Y be representatives of IX, /3, and IX + /3, 
respectively. Let u E HP(Y), v E Hq(y), and suppose thatf*u = g*u = O. By 
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Theorem (7.10*) of Chapter III, h*u = O. Then the elements u ~ J v, u ~g v, 
and u ~h v are defined and belong to the quotients of Hp+q- l(X) by the 
subgroups 

G1 = f* HP+q-l(y) + Hrl(X) ~ f*v, 

G2 = g* HP+q-l(y) + Hrl(X) ~ g*v, 

G = (f* + g*)HP+q-l(y) + HP-l(X) ~ (f*v + g*v). 

Evidently G c G1 + G2 . Therefore the following statement is meaningful 
(and true): 

(3.4) Under the above conditions 

u ~a+f! v c u ~a V + U ~f! v. 

For h = k 0 (J, where k = V 0 (fvg). Now k ojl =j, k oj2 = g, and 
therefore 

jTk*u* = f*u = 0, j!k*u* = g*u = 0; 

hence k*u = O. Therefore u ~k v is defined and belongs to 
HP+q-l(X v X}/k* HP+q-l(y) + Hrl(X v X) ~ k*v; and hence (J*(u ~k v) 
belongs to HP+q-l(X)I(J*k*Hp+q-l(y) + (J*(Hrl(x v X) ~ k*v); by (7.8*) 
of Chapter III, (J*(HP-l(X v X) ~ k*v) = (J*Hr1(x v X) ~ (J*k*v = O. 
Since (J* 0 k* = h*, we see that (J*(u ~k v) is a coset of the subgroup 
h* HP+q-l(y). On the other hand, u ~h v is a coset of the same subgroup. 
Hence the inclusion guaranteed by (3.3) is an equality: 

(J*(u ~k v) = u ~h v. 

But (J* = jT + j! and therefore 

(J*(u ~k v) = UT + j!)(u ~k v) 

c j!(u ~k v) + j!{u ~k v) 

cU~Jv+u~gV 

by another application of (3.3). o 
We next show how u ~ J v can be computed in terms of singular cochains. 

Let U, V be cochains of Y representing u, v, respectively. Then U ~ V = bA 
with A E CP+q-1(y) and f# U = bB with BE e-1(X). Then 

b(B ~ f#V) = bB ~ f#V =f#U ~ f#V =f#(U ~ V) 

=f# bA = bf#A 

and therefore Z = f# A - B ~ f#V is a co cycle of X. 

(3.5) Lemma The cohomology class of Z is a representative of u ~ J v. 
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Let i : X 4 If' so that poi = f, and let k : Y 4 If' so that p 0 k = 1. Now 

i#p#U = f#U = bB; 

choose C E CV- 1(If) with i#C = B. Then 

i#(p#U - bC) = bB - bi#C = 0, 

so that p#U - bC is a cocycle of If mod X; moreover, k#(p#U - bC) = 
U - bk#C '" U in Y. Hence the cohomology class z of p# U - bC is mapped 
by k* into u. Then (p# U - bC) ~ p# V is a cocycle ofIf mod X representing 
A3(Z). But 

and 

(p#U - bC) ~ p#V = p#(U ~ V) - b(C ~ p#V) 

= p#(bA) - b(C ~ p#V) 

= b{p # A - C ~ P # V} 

i# (p# A - C ~ p# V) = f # A - B ~ f # V = z, 

so that b* maps the homology class of Z into A3(Z), and our result follows. 
o 

With a little care, a similar result can be proved if X and Yare simplicial 
complexes and f: X --> Y a simplicial map. In order to calculate cup pro
ducts we need to order the vertices of X and of Y; and for the cochain map 
f# to preserve cup products we needfto preserve the order of the vertices. 
But this is easily achieved; just order the vertices of Y arbitrarily by ordering 
f - 1 (y) arbitrarily for each vertex y of Y and then demanding that f (x 1) < 
f(X2) implies Xl < X 2 for vertices Xl> X 2 of X. We then extend the ordering of 
X and Y to one of If by specifying that x < y for each pair of vertices x EX, 
Y E Y. Then the statement and proof of Lemma (3.5) go through just as in 
the singular case, and we have 

(3.6) The conclusion of Lemma (3.5) holds in the simplicial case. 0 

Here is an interesting example of a functional cup product. Let 
h : Sp+q-l --> SP V sq be a representative of [1\ 12], and let u = qtsP, v = q!sq. 
In this case h*u = ° and u ~ v = 0, so that u ~h v is defined. Moreover, 
h*v = ° and h* HP+q-l(SP V sq) = 0. Therefore u ~h v is a uniquely defined 
element of HP+q-l(SP+q-l), and we have 

(3.7) Theorem In the group HP+q-l(SP+Q-l), u ~h V = -Sp+q-l. 

Let g: (Ep+q, SP+q-l) --> (SP x sq, SP v sq) be a simplicial map (with re
spect to appropriate subdivisions of the spaces involved) of degree + 1; then 
gISP+q-l: Sp+q-l-->Sp v Sq is a representative of [11,12). Let U, V be co-
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chains representing u, v, respectively. Then h# V = 15B, and V ~ V = 0, so 
that we may take A = O. Thus - B ~ h# V represents u ~h v. Thus we must 
prove that B ~ h# V represents Sp+q-l. Now 15*sp+q-l = ep+q = g*(sP x sq). 
Since 15*: HP+q-l(SP+q-l) -+ Hp+q(Ep+q, SP+q-l) is an isomorphism it 
suffices to show that g*(sP x sq) = 15*(u ~h v). 

Let i: SP v sq '4 SP X sq, j: Sp+q-l C+ Ep+q. Since i*: Hr(sp x sq)-+ 
Hr(sp v sq) is an isomorphism for r = p, q, there are cocycles V', V' such that 
i# V' = V, i# V' = V. Choose a cochain B' such that r B' = B. Then V' ~ V' 
represents sP x sq, so that g#(V' ~ V') represents g*(sP x sq). But 
sents g*(sP x sq). But 

rg#(V' ~ V') = r(g#V' ~ g#V') = rg# V' ~ rg#V' 

= h#i#V' ~ h#i#V' = h#V ~ h#V 

= 15B ~ h#V = 15(B ~ h#V) 

and therefore g*(sP x sq) = 15*(u ~h v). D 

Remark. In the proof of Theorem (3.7) we used simplicial cochains rather 
than singular ones, because the cup product V ~ V is actually zero, there 
being no simplicial chains of dimension p + q in SP v sq. 

4 The Hopf Construction 

The join of two spaces X, Y is the subspace 

X * Y = TX x Y u X x TY 

of TX x TY. The Hopf construction assigns to each mapf: X x Y -+ Z the 
map 9 = rj: X * Y -+ SZ such that 

g(X, t AY) = w(t/2) A f(x, y), 

g(t AX, y) = w((l + t)/2) A f(x, y). 

Thus 9 maps the triad (X * Y; X x TY, TX x Y) into the triad (SZ; T + Z, 
T _ Z), where T + Z, T _ Z are copies of the cone TZ defined by 

T +Z = {w{t)AzIO::;; t::;; 1/2}, 

T _ Z = {w{t) A z 11/2 ::;; t ::;; I}, 

and therefore induces a homomorphism of the cohomology Mayer-Vietoris 
sequence of the second triad into that of the first. In particular, there is a 
commutative diagram 
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f* 
-----+. H'(X X Y) 

l~* 

where the ~* are the seam homomorphisms of the appropriate Mayer
Vietoris sequences. 

The correspondence r is evidently compatible with homotopy and so 
induces a map r: [X x Y, Z] -+ [X * Y, SZ]. 

Remark 1. There are two reasonable ways to define ~*; they differ only in 
sign. We shall choose the sign as in Example 2 of §3; this agrees with 
Eilenberg-Steenrod [E-S] and Spanier [Sp], but disagrees with Greenberg 
[Gr]. The reason for this is that the seam homomorphism of the Mayer
Vietoris sequence of the triad (sn + 1 ; E"t-+ 1, En+ 1) preserves orientatation. 

Remark 2. Let X and Y be CW-complexes and let f : X x Y -+ Z. 
If g' is any map of (X * Y; X x TY, TX x Y) into (SZ; T + Z, T _ Z) 
such that g' I X x Y = f, then g' is homotopic to g. For T + Z is contractible 
and therefore glX x TY and g' IX x TY are homotopic (reI. X x Y); 
similarly glTX x Y ~ g'ITX x Y (reI. X x Y). These homotopies then fit 
together to yield a homotopy of g to g'. 

Remark 3. Let X and Y be oriented spheres of dimension p, q, respec
tively. Then X * Y is a sphere of dimension p + q + 1, which we may orient 
by requiring that ~* : H p+q+ 1 (X * Y) -+ H p+q(X x Y} shall preserve orien
tation (X x Y being oriented by the cross-product of the orientations of X 
and Y). 

EXAMPLE 1. Let D be one of the standard division algebras, viz. R, C, Q, K, 
and let d be the dimension of Dover R. Let f: Sd - 1 X Sd - 1 -+ Sd - 1 be the 
map given by 

then g : S2d-l -+ Sd is the Hopf fibre map, up to homotopy. For we may 
represent S2d-l as the set of all pairs (x, y) E D x D such that IIxl12 + 
II y 112 = 1; in this representation the sets Sd - 1 X Ed and Ed x Sd - 1 corre
spond to the subsets defined by the inequalities Ilxll ::;: IIYII and Ilxll ~ Ilyll, 
respectively; and the point (x, y) E Sd-l X Sd-l corresponds to the point 
(l/J2x, l/J2y) ofS2d - 1 . Similarly, we may represent Sd as the one-point 
compactification of D = Rd; in this representation the sets T +Sd-l and 
T _Sd-l correspond respectively to the closure of the exterior and interior of 
the unit sphere. Finally, we may identify pl(D) with Sd under the 
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correspondence 

[ ] -> {x - I Y if x =1= 0, 
x, y 'f 

00 1 X = 0. 

The Hopf map sends (x, y) E S2d - 1 into the point x - I Y or 1 of Sd. With the 
identifications we have made, the triad (S2d-l; Sd-l X Ed, Ed X Sd-I) is sent 
into the triad (Sd; T+Sd- l , T_Sd-I); and the map agrees with f on 
Sd-I x Sd- I. By Remark 1, above, this map is homotopic to g. 

EXAMPLE 2. Let I/. E 7rr(On) be represented by h: s· -> On. We may consider 
On as a subspace of the function space F(sn - I, sn - I). Therefore the adjoint 
of h is a map f: sr x sn - I -> sn - I. Then g = rf: S· + n -> sn and the corre
spondence h -> g is compatible with homotopy and induces a function 
J : 7rr(On) -> 7rr+n(S"). 

(4.1) Theorem The map J : 7rr (On) -> 7rr+n(sn) is a homomorphism. 

For suppose that hi : sr -> On represent I/.i E 7rr(On) (i = 1,2); we take the 
identity map as base point. The corresponding maps 1; : sr X sn - I -> S" - I 
have the property that1;( *, y) = y for all y E sn - I. Let us assume, as we may, 
that hl(T _sr-I) = h2(T +S·-I) = 1. Then the map ho : sr -> On defined by 
ho ! T +sr-I = hi ! T +sr- \ ho ! T _sr-I = h21 T _S·- \ represents 1/.1 + 1/.2 ' 
The corresponding maps go, gl' g2 : sn+r -> sn are related by 

go!T+S'-1 xSn-l=gl!T+sr-1 xSn- l , 

go!T_Sr- 1 x sn-I = g2!T_Sr- 1 x sn-1, 

gl(7rX, y) = g2(X, y)= Y for x E T+Sr- 1 X sn-1, 

where 7r is the obvious homeomorphism of T +sn -I with T _sr-I. It follows 
from Lemma (5.11) of Chapter V that the elements Yi represented by gi 
(i = 0, 1,2), are related by 

Yo = YI + Y2' 

But Yi = J(I/.;). D 

Let f: X x Y -> Z; an element W E Hr(z) is said to be f-primitive if and 
only if f*w = u x 1 + 1 x v for some U E Hr(x), v E Hr(y). Then there is a 
commutative diagram 

W(Z) 
f* 

~ W(X x Y) 

~*j j ~* 
W+ I(SZ) ------+ W+ I(X * Y) 

g* 
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and it is clear that w isf-primitive if and only if Ll*f*w = O. Then g*Ll*w = 0, 
and Ll*w ~ Ll*w = 0 because SZ is an H'-space, by (7.8*) of Chapter III. 
Therefore Ll *w ~ 9 Ll *w is defined and belongs to 

H2r + l(X * Y)/g* H2r + 1 (SZ). 

(4.2) Theorem Let f: X x Y ~ Z, and let WE W(Z) be f-primitive: 
f*w = u x 1 + 1 x V E W(X X Y). Let g = rj: X * Y ~ Sz. Then 

(-lYLl*(u x v) E Ll*w ~g Ll*w E H2r+l(X * Y)/g*H2r+l(SZ). 

Using the technique of CW-approximation, we may assume that the 
triads (X * Y; X x TY; TX x Y) and (SZ; T + Z, T _ Z) have been trian
gulated and that 

g: (X * Y; X x TY, TX x Y)~ (SZ; T+Z, T_Z) 

is a simplicial map and therefore thatf 1 X x Y: X x Y ~ Z is simplicial. It 
will be convenient to make the following convention: If Q is a subcomplex of 
P, i: Q <=+ P, and if X E C(P), then XI Q is an abbreviation for 
Xl Cr(Q) = i# X E C(Q). 

Let W E zr(z) and choose C E C(SZ) such that C 1 Z = W. Define X + , 
X _ E C+ 1(SZ) by 

X + 1 T + Z = bC IT + Z, 

X_IT+Z = 0, 

X+ IT_Z = 0, 

X _I T _ Z = bC 1 T _ Z, 

so that bX + = bX _ = 0, X + + X _ = be. Then X + represents Ll*w, while 
X _ represents -Ll*w. 

Let V E zr(x X TY), V E zr(TX x Y) be cocycles such that V 1 X x {*} 
represents u and VI {*} x Y represents v. Then V 0 = V 1 X x Y and 
Vo = V 1 X x Y represent u x 1 and 1 x v, respectively. We may suppose V, 
V chosen so that 

f#W= Vo + Yo· 

Define E E C(X * Y) by 

EITXxY=V, 

EIX x TY = (g#CIX x TY) - V; 
then 

bE 1 X x TY = bg#C 1 X x TY = g# bC 1 X x TY = g# X + 1 X x TY, 

bEITX x Y=O=g#X+ITX x Y, 

so that bE = g# X + . 
Now X + 1 T _ Z = 0 and X-I T + Z = 0, so that X _ ~ X + = O. Hence 

X + ~ X + = (bC - X _) ~ X + = bC ~ X + = b(C ~ X +). 
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Therefore by Lemma 3.5, Ll*w ~ 9 Ll*w is represented by the cocycle 

T = g#(C ~ X +) - E ~ g# X + = (g#C - E) ~ g# X + . 

But T vanishes on T X x Y, since g# X + does. Also 

TI X x TY = U ~ (g# X + I X x TY) = U ~ <5(g#C I X x TY) 

= (-1)' c5(U ~ (g#C I X x TY». 

The restriction of the cochain U ~ (g#C I X x TY) to X x Y is 

Ua ~f#W = Ua ~ (Ua + Va) 

which represents (u x 1) ~ (u x 1 + 1 x v) = (u ~ u) x 1 + u x v. There
fore T represents 

(-1yLl*«u ~ u) x 1 + u x v) = (-1YLl*(U x v). D 

We can now characterize the Hopf invariant in cohomological terms. 

(4.3) Theorem Let f: S2"-1 --> So. Then 

s" ~f s" = -Ha(.f)s2"-I. 

Let {]: S" --> S" V S" be the coproduct, so that {] is a representative of 
11 + i2 ; moreover j b.iz : S" --> S" V S" represent 11, 12 , respectively. Then 

s" ~f s" = {]*u ~f {]*v = u ~80f v, by (3.2) 

= u ~h of v + u ~j2 of V + Ha(.f)u ~h v, by (3.4) 

= u ~h of v + U ~j2 of V - H o(.f)S2"-1, by Theorem (3.7). 

(The reader should check that the inclusions guaranteed by (3.2) and (3.4) 
are equalities in this special case). It remains to prove that u ~ j, 0 f v = 0 for 
t = 1, 2. But, by (3.2), 

and similarly u ~ jz 0 f v = o. D 

Finally, we have 

(4.4) Theorem rr g: S2d-l --> Sd is a Hopffibre map then Ha(g) = ± 1. 

(The ambiguity of sign is a reflection of the fact that we were not careful 
about orientations when we defined the Hopf maps, and also of the fact that 
if 9 : S2d-l --> Sd is a fibration, its composite with a homeomorphism of 
degree -1 of either domain or range is still a fibration). 

F or we have seen that there is a map f: Sd - 1 X Sd - 1 --> Sd - 1 such that 
9 = rf The map f has type (- ld- b Id- 1), and 'therefore f*(sd- 1) = 
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_Sd-l X 1 + 1 X Sd-l. By Theorem (4.2), 

Sd ~ 9 Sd = ~ *Sd - 1 ~ 9 ~ *Sd - 1 = _ ~ * ( _ Sd - 1 X Sd - 1 ) 

= S2d-\ 

and our result follows from Theorem (4.3). 
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o 
Thus, while for every even d, there is a map of S2d-l into Sd with Hopf 

invariant 2, we have only been able to prove existence of maps with Hopf 
invariant 1 when d = 2, 4, or 8. Adams [1] has proved that these are, in fact, 
the only values of d for which such a map exists. 

5 Geometrical Interpretation of the 
Hopf Invariant 

In this section we shall utilize Poincare duality to give a homological 
description of the functional cup product in the case of a map between two 
manifolds. Applying Theorem (4.3), we then obtain a geometrical descrip
tion of the Hopf invariant as a linking number; in fact, this description is the 
definition of his invariant given by Hopf at a time when cohomology was yet 
to be discovered. 

Let us begin by recalling some notions connected with Poincare duality. 
Suppose first that X is an oriented closed triangulated manifold with fun
damental class Z E Hn(X; Z). The Poincare duality theorem then asserts that 
the homomorphism Z ~: Hq(X; G) --+ Hn-q(X; G) given by the cap product 
with z is an isomorphism for any coefficient group G. 

Let K be a fixed triangulation of X, and let K' be its first barycentric 
subdivision. It is customary to agree that the vertices of K' are the bary
centres b" of the simplices of K; however, it is convenient to modify this 
requirement by allowing the vertex of K' corresponding to a simplex eJ of K 
to be any interior point ao- of eJ. The utility of this greater flexibility will be 
apparent in the following discussion. 

If eJ is a p-simplex of K, its dual cell D(eJ) is the sub-complex of K' 
consisting of all those simplices, each of whose vertices has the form aT for 
some simplex r of K having eJ as a face. The boundary D(eJ) is defined 
similarly, by requiring that eJ be a proper face of r. The fact that X is a 
manifold implies that the pair (D(eJ), D(eJ)) is a homology cell of dimension 
n - p; as D(eJ) is contractible, D(eJ) is a homology sphere of dimension 
n - p - 1. The dual cells D(eJ), for all simplices eJ of K, form a block dissec
tion K* of K' [H-W, p. 128]; accordingly, the homology groups ofthe three 
complexes K, K', and K* are all isomorphic. 

Let us recall that the subdivision operator is a chain map Sd: C*(K)--+ 
C*(K') and that there is a simplicial displacement e: K' --+ K such that, if 
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()# : C*(K') --+ C*(K) is the chain map induced by (), then ()# 0 Sd is the 
identity map of C*(K), while Sd 0 ()# is chain homotopic to the identity map 
of C*(K'). Dually, we have cochain maps Sd*: C*(K') --+ C*(K) and 
()# : C*(K) --+ C*(K'). 

Let K be oriented, and let Z E Zn(K) be a cycle representing the given 
orientation; let z' = Sdz. For each oriented p-simplex (J of K, let UI1 be the 
elementary cochain such that 

uA(J) = + 1, 

UAT)=O (Tf ±(J). 

Let u~ = ()*u" E CP(K'). Then it can be verified that the (n - p)-chain 
z' ~ u~ is a relative cycle of (D«(J), .6«(J)) whose homology class represents a 
generator of the infinite cyclic group Hn_p(D«(J), .6«(J)); thus z' ~ u~ is an 
orientation of the dual cell of (J. Therefore the map (J --+ Z' ~ u~ extends to an 
isomorphism ¢: CP(K) ~ Cn-p(K*). As J¢(c) = ±¢(6c), the sign depending 
only on ¢ and on the particular convention used in the definition of the cap 
product, the map ¢ is an isomorphism of the cochain complex of K with the 
chain complex of K. From this fact the Poincare duality theorem im
mediately follows. 

Remark. For the cap product used by Greenberg [Gr] the relation in 
question is J¢(c) = (-1)P+ 1¢(6c). 

Let!!J = ¢-l: Cp(K*)--+ cn-P(K). 
The Poincare duality theorem can then be exploited to give the intersec

tion theory in X. At the homology level, this is the pairing 

Hp(X) ® Hq(X) --+ Hp(X) ® Hn-q(x) --+ Hp+q-n(X), 

where the first map is induced by the inverse of Poincare duality and the 
second by the cap product. The calculation of this pairing can be effected by 
an appropriate operation at the chain level. This operation is a pairing 

Cp(K) ® Cq(K*) --+ Cp+q-n(K'), 

and it defined explicitly as the composite 

CAK) ® Cq(K*) 1 ®!!J ) Cp(K) ® Cn-q(K) Sd ® 1 ) Cp(K') ® cn-q(K) 

1 ® ()#) CAK') ® cn-q(K') ) Cp+q-n(K'). 

Let a 0 b be the value of this pairing at a ® b for a E Cp(K), bE Cq(K*). 
Then 

(5.1) J(a 0 b) = ±(Ja) 0 b ± a 0 (Jb), 

the signs depending only on p and q (and on the definition of the cap 
product; for the one used by Greenberg [Gr], we have 

J(a 0 b) = (_1)n-q(Ja) 0 b + (_1)n+ la 0 (Jb)). 
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Let (J, r be oriented simplices of K, of dimensions p, n - q respectively. 
Then ¢(ur ) is the oriented" cell" of K* dual to r, and 

(J 0 ¢(ur ) = Sd(J ~ 8"(uJ 

Moreover, (J 0 ¢(ur ) is a chain of K' lying on the intersection of (J' with D(r). 
It then follows that, if 1 x 1 is the carrier of the chain x (in K, K*, or K' as the 
case may be), then 1 a 0 b 1 cia 1 nib I. This justifies, in part, the term 
" intersection" for the pairing we have just defined. 

Let us now consider the special case p + q = n. Then a 0 b is a O-chain of 
K', whose Kronecker index z(a 0 b) is an integer, the intersection number 
I(a, b) of a and b. Suppose instead that p + q = n + 1; then the boundary 
formula (5.1) yields 

(5.2) 0 = zo(a 0 b) = ±I(oa, b) ± I(a, ob). 

Finally, we can define linking numbers. Suppose that a and b are bound
ing cycles of dimensions p, q with p + q = n. Choose a chain c such that 
oc = a, and verify by means of (5.2) that the number I(c, b) is independent of 
c; it is called the linking number A( a, b) of a and b. 

Now let us suppose that M, N are oriented manifolds of dimensions 
n + k, n, respectively. Thenf* corresponds via Poincare duality in the mani
folds M, N to a homomorphism f.. : H p(N) --+ H p+k(M), called the Hopf 
retromorphism. Thus, if Jl E Hn+k(M), v E Hn(N) are the fundamental classes, 
we have 

(5.3) f..(v ~ x) = Jl ~ f*(x) 

for all x E H*(N). 
The retromorphism f.. has the following useful properties [2]: 

(5.4) If u E H p(N), v E Hq(N), then 

f!(u 0 v) = f..u 0 f..v. 

(5.5) If u E HAM), v E Hq(N), then 

f*(u of..v)=f*u 0 v. 

To calculate f!, suppose that f is an order-preserving simplicial map of a 
triangulation K of M into a triangulation L of N. The vertices of L are 
chosen to be the barycentres of the simplices of L. However, if (J is any 
simplex of K, we agree to take as the corresponding vertex of K' any point aa 
off -l(br ), where r is the simplex of L which is the image of (J under! (Note 
that b" need not lie in! -l(br )). It follows thatf" 0 Sd = Sd 0 f" and therefore 
that 8'" 0 f" = f" 0 8" for the simplicial displacements 8 : K --+ K', 8' : L --+ L. 
The mapft = f!Z;-1 0 f" 0 f!Z;: Cp(L*) --+ Cp+k(K*) is then (up to sign) a chain 
map whose induced homomorphism is f!. If r is a simplex of K, (J a simplex 
of L, such that f(r) c (J, then f(D(r)) c D((J). It follows that, if (J is an 
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oriented simplex of L, r 1, ... , rr the oriented simplices of K for which 
f#(r;} = ±CTi , and z, w the fundamental classes of L, K, respectively, so that 

ft(z' ~. u~) = L ±w' ~ U~i' 

then f t maps the dual cell of CT into a chain of K* lying onf-l(D(CT)). Thus 
I ft(C) I cf- 1 1 c I for every chain c of L*. 

If z is a p-cycle of L*, thenf-1( I z I) is a (p + k)-dimensional subcomplex 
of K*, and the map f t gives us a way of orienting the (p + k )-cells of[ - 1 ( I z I ) 
so as to form the cyclef~(z). In other words,f~ is, roughly speaking, a chain 
map carried by the relation! - 1. 

Let us now suppose that M and N are oriented spheres of dimensions 
2n - 1, n respectively (n > I). Let CT, r be distinct n-simplices of L, oriented 
coherently with N; then b" and br are O-cycles of L* and ft(b,,), ft(br ) are 
(n - I)-cycles of K*, which bound because Hn - 1(M) = o. It is the linking 
number of these two cycles which was taken by Hopf as the definition of 
HoU). In order to calculate this linking number using the machinery 
developed above, we encounter the difficulty thatft(b,,) is a cycle of K*, and 
not of K. However, this difficulty is merely technical; we merely have to 
perturb ft(b,,) slightly to obtain a cycle of K, whose linking number with 
ft(b r ) is defined. The details follow in the proof of 

(5.6) Theorem The linking number offt(b,,),ft(br ) is ±HoU). 

In fact, §(b,,) = u" and §(br ) = Ur , and U,,' Ur are representatives of the 
cohomology class s". Moreover, 

ft(b a ) =1}j;-1f#§(b,,) = §-1f#u". 

Now f#u" = be for some e E C- 1(K), and therefore 

ft(b,,) = §-1 be = ± 8§-1(e). 

The group C*(K*) is a subgroup of C*(K') and is mapped into C*(K) by 8#; 
the perturbation mentioned above is just 8# I C*(K*). Thus the desired link
ing number is 

But 

and 

8# !?fl-1(e) " ft(b r ) = 8# §-l(e) ~ §ft(br ) 

= 8# §-l(e) ~ f# §(br ) 

= (z ~ e) ~ f#u r 

= Z ~ (c ~ f#u r ). 
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Thus 

Jc(8# ft(ba),ft(b r )) = ±c{z ~ (c ~ f#ur )) 

= ±(c ~ f#u" z) 

= ± (sn ~ f Sn, S2n-1) = ±Ho(J), 

since c ~ f#ur is a representative of s" ~ f so. 

6 The Hilton-Milnor Theorem 
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D 

Let X, Y be spaces with non-degenerate base points. Then the direct sum 
theorem insures that Hn{X v Y) ~ Hn(X) EB Hn(Y) for all n. On the other 
hand, we have seen that this is no longer true for the homotopy groups. It is 
natural, then to seek to determine the homotopy groups of X v Y, if not in 
terms of the homotopy groups of X and Y, at least in terms of groups which 
we may consider known. This was first accomplished by Hilton, for the case 
that X and Yare spheres; his result states that 

OC! 

1I"(SP+ 1 V sq+ 1) ~ 1In(SP+ 1) EB 1In(sq+ 1) EB EB 1In(sri+ 1), 
i= 1 

where {ri} is a sequence of positive integers, depending on p and q, and 
tending to 00 with i. The inclusion 1In(S"+ 1) ....... 1In(SP+ 1 V sq+ 1) is induced by 
composition with a suitable iterated Whitehead product. Later Hilton's 
result was generalized by Milnor to the case when X and Yare arbitrary 
suspensions. Milnor's proof was carried out in the category of semi
simplicial complexes; the proof we give here is carried out in the category 
X, but is inspired by Milnor's. The idea in all of these proofs is to show that 
the loop space nS(X v Y) has the same (weak) homotopy type as an infinite 
Cartesian product Or; 1 nSW;, where W; is the reduced join of a number of 
copies of X and of Y. 

The result for a cluster of two spaces extends, by induction, to a corre
sponding result for a cluster of any number of spaces. However, the result for 
nS(X 1 v ... v X d is just as easy (i.e., no more difficult!) to state and gives 
more information. In order to formulate the result, we shall require some 
algebraic preliminaries [Ha, Chapter 11]. 

Let A be the free nonassociative ring with k generators Xb ... , X k . Thus A 
has an additive basis consisting of all parenthesized monomials in the Xi. We 
shall single out certain of these, referring to them as basic products. 

Let us define the weight of a monomial to be the number of its factors. 
Thus Xl' ... , X k are the only monomials of weight 1; and any monomial of 
weight r > 1 has the unique form m = m'm" with the weight ofm equal to the 
sum of the weights of m' and mIt. 
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We now define the basic products of weight r, by induction on r; and, for 
each such product m, a non-negative integer r(m), called its rank. These are 
to be linearly ordered, in such a way that m1 < m2 if the weight of m1 is less 
than the weight of m2. The serial number s(m) is the number of basic pro
ducts ::;; m in terms of this ordering. The basic products of weight 1 are the 
generators x l' ... , X k ; we agree that Xi < X j for i < j, and that r(xJ = 0; of 
course, s(xJ = i. Suppose that the basic products of weight less than n have 
been defined and linearly ordered, in such a way that m1 < m2 if the weight 
of m1 is less than that of m2; and suppose that the rank r(m) of such a 
product has been defined. Then the basic products of weight n are all mono
mials of the form m1 m2, of weight n, for which ml and m2 are basic products, 
m2 < mb and r(md ::;; s(m2). Give these an arbitrary linear order, and define 
r(m1 m2) = s(m2)· 

For example, suppose that k = 3 and write x, y, z instead of Xb X 2 , X 3 . 

Then the basic products of weight n are: 

n= 1: x,y,z; 

n = 2: yx, ZX, zy; 

n = 3: (yx)x, (yx)y, (yx)z, (zx)x, (zx)y, (zx)z, (zy)y, (zy)z. 

We should observe here that the basic products are not uniquely defined, 
in the sense that the basic products of a given weight depend on the ordering 
of the basic products of lower weight. 

Let us agree to enumerate the basic products by their serial numbers; i.e., 
for each positive integer m, Wm is the (unique) basic product whose serial 
number is m. Let Tm be the operation of right multiplication by Wm. If W is 
any basic product, then r(w) = m if and only if w = Tm(w') for a uniquely 
determined basic product Wi, and r(w' ) ::;; m. If r(w' ) = m, we can split off 
another factor Wm , and so on. It follows that, if w is any basic product of rank 
::;; m, then w can be represented uniquely in the form w = Tm(w*) where i is a 
non-negative integer and w* is a basic product of rank < m; moreover, 
w* > Wm unless i = 0, in which case w* can be less than wm , and, in fact, if 
j < m, then r(w j ) < m. Conversely, if w* is a basic product such that 
r(w*) < m and w* > wm, then the elements Tm w* are basic products of rank 
::;; m. Thus 

(6.1) The basic products of rank ::;; m are given without repetition by 
w = Tm(wj) where 

(a) i > O,j > m, and r(wj) < m; 
(b) i = O,j > m, and r(wj) < m; 
(c) i=O,j<m. D 

Let Y be any multiplicative system. Given y b ... , Yk E Y, there is a unique 
homomorphism of A into Y which carries Xi into Yi . If w is any monomial in 
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A, it is convenient to let W(Yl' ... , yd be the image of W under this homomor
phism. Thus W(Yb ... , Yk) is just the (parenthesized) monomial obtained 
from W by replacing Xi by Yi (i = 1, ... , k). We shall use this device in several 
different ways. 

Firstly we may take Y to be the class of all spaces with base point, the 
operation in Y being the reduced join. Then w, (X b ... , X k) is the reduced 
join of copies of the spaces X b ... , X k , for each basic product w; moreover, 

(6.2) W(X X ) = x(al) /\ ... /\ x(ak) 
b ... , k 1 k , 

where, for any space X, x(a) is the reduced join of a copies of X; the integer ai 

is just the number of occurrences of Xi in the word w. 

Remark. The equality in (6.2) is really only a natural homeomorphism; 
in order to identify the two sides of the formula we need to make repeated 
use of the commutative and associative laws for the reduced join. 

Secondly, we may take the product in question to be the Samelson pro
duct [X b G] x [X 2, G] --> [X 1/\ X 2, G], for any Ho-space G. If w is a basic 
product and !Xi E [Xi, G] (i = 1, ... , k), then 

W(!Xb ... , !Xk) E [w(X b ... , Xd, G]' 

Finally, let L be the free Lie algebra L generated by Yl' ... , Yk' Then a 
theorem of Marshall Hall [1] tells us that 

(6.3) The basic products W(Yb ... , Yk)form an additive basisfor L. 0 

We can now count the basic products in two different ways. The formulae 
are due to Witt. Let us begin by recalling some notions from number theory. 

Let N be the set of positive integers, A a commutative ring, and let F be 
the set of all functions f: N --> A. Then F is itself a commutative ring under 
term wise addition and a product defined by 

(J * g)(n) = L f(S)9(d). 
din 

Moreover, an element f E F is invertible if and only if f(1) is an invertible 
element u E A. When this is so, the inverse of f is the function 9 defined 
inductively by 

g(1)=u- 1 

g(n) = _u- 1 ~' f(S)9(d), 

where the sum ranges over all proper divisors of n. 
If s is the function such that s(n) = 1 for all n, the inverse of s is the Mobius 
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function 11, defined by 

11(1)= 1, 
l1(n) = 0 unless n > 1 is square-free, 

I1(Pl ... Pk) = (_1)k if Pb ... , Pk are distinct primes. 

The Mobius inversion formula is simply the statement that, if f E F and 
g = f * s, then f = g * 11; i.e., if 

g(n) = 'if(d), 
din 

then 

f(n) = 'i l1(d)g(~) 
din 

We can now state the formulae of Witt [Ha, p. 169]: 

(6.4) The number of basic products involving Xi exactly ni times is 

1 ~>(d) (:j) I 
n d I no (nd1 )! ... (~ )! 

where no is the greatest common divisor of n 1, ... , nk , and n = n 1 + ... + nk • 

(6.5) The number of basic products of weight n is 

l 'i l1(d)kn/d. 
n din 

With these preparations we can now state 

D 

o 

(6.6) Theorem Let X b ... , X k be connected CW-complexes with base vertices. 
Then the space J(X 1 V'" v X k ) has the same homotopy type as the weak 
product 

w 

where w ranges over all admissible words in x 1, ... , x k . 

An explicit homotopy equivalence can be constructed in the following 
way. Let jt : X t --> X = X 1 V ... v X k be the usual inclusion (t = 1, ... , k), and 
let it : X t --> J(X) be the composite ofjt with the inclusion map ix: X 4 J(X). 
For each basic product w, we can form the element 

(Here, as elsewhere, it is convenient to ignore the distinction between a 
map and its homotopy class). By the universal property of the functor J 
(Theorem (2.5) of Chapter VII), w can be extended uniquely to a 
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homomorphism 
W(ib ... , id: Jw(X b ... , X k ) ~ J(X). 

Let us recall that the space Y = n~1 JwJX l' ... , Xd is filtered by the 
subspaces 

r 

Y,. = n Jwi(X b ... , Xk)· 
i= 1 

The external product of the maps Wi = wi(i b ···, ik ): Jwi(X b ... , Xd ~ J(X) 
is a map hr : Y,. ~ J(X). Moreover, hr+ 1 I Yr = hr' and therefore there is a 
map h: Y ~ J(X) such that hi Y,. = hr for all r. Theorem (6.6) can now be 
strengthened to read 

(6.7) Theorem (Hilton-Milnor Theorem). The map h: Y ~ J(X) is a homo
topy equivalence. 

7 Proof of the Hilton-Milnor Theorem 

The proof is long and complicated. Had we been satisfied to prove Theorem 
(6.6), the proof would have been considerably shorter. But because of the 
applications we have in mind in §8, it is necessary to track down the isomor
phism and prove that it can be expressed in terms of iterated Samelson 
products, i.e., prove Theorem (6.7). 

The proof breaks up into five steps. 
Throughout this Section, except when otherwise stated, we shall assume 

that the spaces mentioned are connected CW-complexes with base vertices. 
(However, certain spaces constructed in the course of the argument, e.g., 
asx, need not be CW-complexes). 

Step I The spaces J(X v Y) and J(X) x J(Y v (Y /\ J(X))) have the same 
homotopy type. 
Step II The spaces J(Y /\ J(X» and J((Y /\ X) V (Y /\ X /\ J(X» have the same 
homotopy type. 
Step III The spaces J(Y /\ J(X» and J(V~ 1 Y /\ X(i) have the same homo
topy type. 
Step IV The spaces J(X v Y) and J(X) x J(V~o Y /\ X(i) have the same 
homotopy type. 
Step V The spaces J(X 1 v··· v Xd and n~1 JwJX b ... , X k ) have the same 
homotopy type. 

In each case we shall show that a certain explicit map is a homotopy 
equivalence. 

One feature of the proof is the interplay between the functors J and as. 
Let us begin by recalling the connection between the functors. 

The basic property of J is given by Theorem (2.5) of Chapter VII: if Q is a 
strictly associative H-space, then every map f: Y ~ Q can be uniquely ex
tended to a homomorphism]: J(Y)~ Q;]is called the canonical extension 
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off Moreover, iffo '::::.f1> thenJo '::::.J1' In particular, we may take Q = O*w. 
As we saw in §2 of Chapter III, there are maps h: OW ----> O*W and 
h' : O*W -+ OW such that h' 0 h is the identity map, while h 0 h' is homo
topic to the identity. Moreover, hand h' are H-maps. 

The adjoint of the identity map of S Y is a map Ao : Y -+ OS Y, and 
A = h 0 Ao : Y -+ O*SY has the canonical extension ~: J(Y) ----> O*SY. 
According to Theorem (2.6) of Chapter VII, ~ is a weak homotopy equiv
alence. Let~' = h' 0 ~ : J(Y) ----> OSY. Then~' I Y = Ao and~' is an H-map, as 
well as a weak homotopy equivalence. 

The subspace Y of J(Y) need not be a retract. However, it becomes one 
after suspension. In fact, the adjoint r: SJ(Y) -+ SY of the map 
l' : J( Y) -+ OS Y is a retraction. For r I S Y is the adjoint of Ao = 1'1 Y, and 
Ao is the adjoint of identity map of SY. The map r is the composite e 0 ~', 
where e : SOS Y ----> S Y is the evaluation map. Therefore we shall also call the 
map r the evaluation map. 

The adjointness relation is an isomorphism [S Y, SZ] ~ [Y, OSZ]. The 
weak homotopy equivalence ~': J(Z) ----> OSZ induces an isomorphism 
[Y, J(Z)] ~ [Y, OSZ]. Therefore there is a canonical isomorphism 
[SY, SZ] ~ [Y, J(Z)]. Hf: SY -+ SZ, we shall also refer to any mapf': Y----> 
J(Z) which corresponds to f under this isomorphism as a J -adjoint off 

Letf: SY ----> SZ, and letf': Y -+ J(Z) be a J-adjoint off Let]': J(Y)-+ 
J(Z) be the canonical extension off'. We shall call]' a J-extension off 

(7.1) The diagram 

nsy o.f 
---+ nsz 

J(Y) J(Z) 

is homotopy commutative. Iff is a homotopy equivalence, so is J'. 

The diagram in question can be enlarged to a diagram 

o.SY o.f 
---+ nsz 

h'l I h' 

o.*SY 
o.*f 

o.*sz ---+ 

Xl IX 

J(Y) ---+ J(Z) 
J' 
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and h' 0 ~ = ~' (for both Y and Z). The upper square is (strictly) commuta
tive. Hence it suffices to prove the lower square homotopy commutative. The 
four maps involved in the lower square are homomorphisms and 
~ 0 1'1 Y = X 0 f', n*f 0 ~ I Y = n*f 0 A = h 0 J But 

h' 0 A 0 f' = A' 0 f' ~ 1 = h' 0 h 01; 

since h' is a homotopy equivalence, X 0 f' ~ h 0 J Thus X 0 J' and n*f 0 X are 
the canonical extensions of the homotopic maps X 0 f', h 0 J and hence are 
themselves homotopic. 

If f is a homotopy equivalence, so is nf Since both maps ~' are weak 
homotopy equivalences, so isJ'. Since J(Y) and J(Z) are CW-complexes,f' 
is a homotopy equivalence. 

With these preparations, we proceed to prove the Theorem. 

Step I. Consider the projection q = Sq1 : S(X v Y) ~ SX, and let F be the 
mapping fibre of q. There is a fibration p : F ~ S(X v Y) and the sequence 

F ~ S(XvY) ~ SX 

is left exact. Moreover, q has the cross-section Sj 1 : SX ~ S(X v Y). Apply
ing the functor 0. to this sequence yields a new left exact sequence 

(7.2) 
np nq 

nF ~ nS(Xv Y) ~ nsx, 

and nq has the cross-section nSj l' 

(7.3) For any space Q in .% *, the homomorphism 

np: [Q, nF] ~ [Q, nS(X v Y)] 

is a monomorphism. 

In §6 of Chapter III, we showed that the left exact sequence (7.2) can be 
extended to the left to obtain a left exact sequence 

n 2S(X v Y) ~ n 2sx ~ nF ~ nS(X v Y) ~ nsx, 

where h : nsx ~ F is a connecting map. The sequence 

[Q, n2S(X v Y)] n2q , [Q, n 2SX] ~ 
np 

[Q, nF] -=--> [Q, ns(X v Y)]. 

is exact. But n2 q has the left inverse n 2Sjb so that n2 q is an epimorphism. 
Hence nh = 0 and np is a monomorphism. - 0 

We can use the external product of §4, Chapter III, to construct a map 

x = OJ 1 ® np : nsx x nF ~ ns(x v Y). 
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It is then easy to prove 

(7.4) The map X is a weak homotopy equivalence. o 
It remains to determine the weak homotopy type of F. We shall construct 

a weak homotopy equivalence 

If; : SZ ---> F, 

where Z = Y v (Y /\ W), W = QSX. It suffices to construct the adjoint 

if: Z ---> QF 

of If;. By exactness of (7.2), it suffices to construct a map 

OJ : Z ---> QS(X v Y) 

such that Qq 0 (0 is nullhomotopic; for then if is determined (uniquely, 
because of (7.3» by Qp 0 if ::::::: cO. The map cO is determined by 

cO I Y = i2 = AD 0 j2 , 

cO I Y /\ W = < i2 , QSj 1)' 

The composite (Qq) " i2 is the constant map, and it follows that 
Qq " < i2 , QSj 1) = < *, QSj 1) ::::::: *. 

(7.5) Theorem The map If;: S(Yv (Y /\ W» ---> F is a weak homotopy 
equivalence. 

This is not easy to see directly. To prove it, we shall exhibit another weak 
homotopy equivalence <p : F ---> SZ, and show that <p 0 If; : SZ ---> SZ is a weak 
homotopy equivalence. 

To construct <p, we begin with the observation 

(7.6) The space F is homeomorphic with the subspace S Y x QSX u 
{*} X P'SX ojSY X P'SX. 

Let us recall that F is the set of all pairs (z, u) such that z E SX V S Y and u 
is a path in SX with u(O) = *, u(l) = q(z). If z E SY, then q(z) = * and 
u E QSX; if z E SX, then z is determined by u E P'SX. Thus a homeomor
phism F ---> S Y x QSX u {*} X P'SX is given by 

(jl(X), u) ---> h u) 

(j2(y), u) ---> (y, u) 

(x E SX, U E P'SX), 

(y E SY, u E QSX). o 

The pair (PISX, QSX) is an NDR-pair, by Theorem (7.14) of Chapter I. 
Since P'SX is contractible, we can apply Corollary (5.13) of the same Chap
ter to deduce 
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(7.7) The space F has the same homotopy type as SY x nsx/{*} x nsx. 
D 

Our determination of the weak homotopy type of F will be completed 
once we have proved 

(7.8) If Wand Yare O-connected spaces in ,X"'* , then S Y x W/{ *} x W has the 
same weak homotopy type as SYvS(Y /\ W). 

We first observe that S Y x W/{ *} x W is the suspension of the space 
Y x W/{ *} x W. In fact, let us temporarily regard W as a free space and let 
W+ be the corresponding space with base point. Then 

SY x W/{*} x W= SY /\ W+ = (S/\ Y)/\ W+ = S/\(Y /\ W+) 

= S(Y x W/{*} x W) 

(up to natural homeomorphism). 
Let II = PI : S Y x W --> S Y be the projection on the first factor, and let 

I2 : S Y x W --> S Y /\ W be the identification map. Then II and I2 annihilate 
the subspace {*} x W, thereby inducing mapsI~ :SY x W/{*} X W-->SY, 
I~ : S Y x W/{ *} x W --> S Y /\ W. Composing these with the respective inclu
sions SY 4 SYv (SY /\ W), SY /\ W 4 SYv (SY /\ W), we obtain maps g1> 
g2 : S Y x W/{ *} x W --> S Y v (S Y /\ W). By the remark of the preceding 
paragraph, the latter can be added to obtain a map g: SY x W/{*} x W--> 
S Y v (S Y /\ W). It is easy to see, with the aid of Theorem (7.10) of Chapter 
III, that 9 is a homology equivalence. As the domain and range of 9 are the 
suspensions of O-connected spaces, they are 1-connected, so that 9 is a weak 
homotopy equivalence by the converse of the Whitehead Theorem. D 

Let us now consider the map cp 0 !/J; as in the case of cp, it suffices to prove 
it a homology equivalence. We shall need to calculate !/J explicitly. For this, 
we observe that a map !/J : Z --> F is determined by a map W : Z --> S(x v Y), 
together with a homotopy 1] of the constant map to q 0 WI' The map !/J is 
then given by 

!/J(z) = (w(z), ry(z», 

where ij : Z --> P'SX is the adjoint of 1]. 

The map !/J I = !/J IS Y is determined by the inclusion 

WI = Sj2: SY --> SX vSY, 

together with the stationary homotopy of the constant map q 0 WI' 
The calculation of!/J 2 = !/J I S( Y /\ W) is more difficult. There is a commu

tative diagram 
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a ~ q 
[S(Y 1\ W), F] -----. [Y 1\ W, nF] ------+ [Y 1\ W, nS(X v Y)] --=---+ [Y 1\ W, nsX] 

Sn 1 I ft 1 ft 1ft 
[S(Y X W), F] 

a np q 
-----+ [Y x w, nF] I [Y X W, ns(X v Y)] --=---+ [Y x W, nSx] 

Si I If If Ii 
[S(Yv W), F] 7 [Yv W, nF] n; [Yv W, ns(X v Y)] q [Yv W, nSX] 

where the a's are adjointness isomorphisms, n: Y x W ~ Y 1\ W is the 
identification map, and i is the inclusion. The homomorphisms n (and there
fore Sn) are monomorphisms, by Lemma (4.1) of Chapter X, and the col
umns of the diagram are exact. By (7.3), the homomorphisms np are 
monomorphisms. -

The map ifJ2 = ifJ I S(Y 1\ W) is determined by the property that npa(ifJ2) is 
the Samelson product ( = <A1 0 iz, nSj1). Let ifJ3 E [S(Y x W), F] be any 
element such that Qpa(ifJ3) = n((). Then an easy diagram chase reveals that 
ifJ3 = Sn(ifJ2)· -

Recalling from §4 of Chapter X the definition of the Samelson product, we 
see that we are required to construct a map W3 : S( Y x W) ~ S(X v Y), 
together with a homotopy ''13 of the constant map to q 0 W3 . The map W3 

corresponds under adjointness to the composite 

i~ x nSj1 <J) 
Y x W ) nS(X v Y) x nS(X v Y) --+ nS(X v Y), 

where <J) is the commutator map. Thus 

j2(4s 1\ y) 
j1w(4s - 1) 
j2((3 - 4s)l\y) 
j1w(4 - 4s) 

(0 s s s i), 
(! s s s !), 
(! s s s i), 
(i s s s 1). 

The homotopy 113 is easy to construct, if we realize that qW3( 1\ (y, w)) is 
essentially the path w . w - 1. In fact, 

* (0 s s s i), 

w(2t(4S - 1)) 
3 - t 

-<s<--C 5 - t) 4- - S ' 

113(t, s 1\ (y, w)) = 
(5-t 5+t) w(t) --<s<--S - - S ' 

w(St(1 - s)) 
3-t 

(5 + t ) -S- sS s 1 . 
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This completes the definition of ljJ. 
The map <P is the composite 

<Po g 
F ----4 SY x WI{*} x W ----4 SYv (SY /\ W), 

where g is the map constructed in the proof of (7.8); the map <Po sends (z, u) 
into the base point if z E SX, while 

<PO(j2(S /\y), w) = [s /\Y, w], 

where [z, w] is the point of SY x WI{*} x W corresponding to (z, w) E 

SY X W. Thus 

But g2[S/\Y,*]=s/\y/\*=*, so that gISYxH~glISYx{*}. Hence 
<P 0 ljJ IS Y is homotopic to the identity map of S Y. 

On the other hand, <Po 0 ljJ IS Y /\ W is determined by the map 
e: S(Y x W) -+ SY x WI{*} x W such that 

~ [4s /\Y, *] 
e(s /\ (y, w)) = ~ * 

1[(3 - 4s) /\ y, w'] 

where 

J w(2t(4S - 1») 
w'(t) = I 3-t 

I w(t) 

if s :::;; 5/8 and 

j (8t(1 - s») 
w'(t)=<w 3-t 

I w(t) 

if s ;:::: 5/8. Now 

* 

(0 :::;; s :::;; t), 
(t :::;; s :::;; t or i :::;; s :::;; 1), 

(0 :::;; t :::;; 5 - 8s), 

(5 - 8s :::;; t :::;; 1) 

(0 S t :::;; 8s - 5), 

(8s - 5 :::;; t :::;; 1) 

(0 :::;; s :::;; i-), 

(7.9) ge(s/\(y, w))= j2((5 _ 8s)/\y/\w') 

j 1 ( (6 - 8s) /\ y) 

(i- :::;; s :::;; t od- :::;; s :::;; 1), 
(t :::;; s :::;; i), 
(i :::;; s :::;; i). 

To prove that ljJ 0 <P is a homology equivalence, we make use of the 
inclusions 

j 1 : S Y -+ S Y v (S Y /\ W), 

j2: SY /\ W -+ SYv (SY /\ W), 
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and the projections 
q I : S Y v (S Y /\ W) ---> S Y, 

q2 : S Y v (S Y /\ W) ---> S Y /\ W. 

Evidently, qi 0 (</1 0 1/1) 0 ji ~ 1, q2 0 (</1 0 1/1) 0 ji ~ *. If 

1C I = Sre : S(Y x W) ---> S(Y /\ W) 

is the identification map, it follows easily from (7.9) that 
q2 0 (</1 0 1/1) 0 ji 0 reI is homotopic to the map 

s /\ (y, w) ---> (1 - s) /\ Y /\ W = reI ((1 - s) /\ (y, w)); 

since lEI is a monomorphism, the map q2 0 (</1 0 1/1) 0 ji is homotopic to the 
map s /\ y /\ W ---> (1 - s) /\ Y /\ w. From these facts, we see that </1 0 1/1 is indeed 
a homology equivalence. 0 

(7.10) Corollary The map 0.1/1 : o.S(Yv (Y /\ o.SX» ---> o.F is a weak homotopy 
equivalence. 0 

(7.11) Corollary The map 

o.Sjl @o.(p 0 1/1): o.SX x o.S(Yv (Y /\ o.SX» ---> o.S(X v Y) 

is a weak homotopy equivalence. 

For o.Sjl @o.(p 0 1/1) = (o.Sjl @o.p) 0 (1 x 0.1/1) = X 0 (1 x 0.1/1). 0 

We can now make use of the relationship between the functors J and o.S. 
In fact, let (J: Y v (Y /\ J(X)) ---> J(X v Y) be the map such that 

(J I Y = i2 , 

(J I Y /\ J(X) = <i2 , JUd> 

(i2 : Y ---> J(X v Y) is the composite Y ~ X v Y ~ J(X v Y)). Let 

y = JUd @ & : J(X) x J(Yv (Y /\ J(X))) ---> J(X v Y). 

Step I will have been completed when we have proved 

(7.12) Theorem The map y is a homotopy equivalence. 

We begin by observing that the diagram 

Y v (Y /\ J(X» 
A.. = 1 v (1 /\ ):,) 

Yv(Y /\QSX) I 

(7.13) (Ij jw 

J(Xv Y) I QS(Xv Y) ):, 
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is homotopy commutative. In fact, 

.x' 0 (J 1 Y = .x' 0 iz = AO 0 jz = OJ 1 Y = OJ 0 A* 1 Y, 

).' 0 (JI Y I\J(X) =).' 0 (i2' JUd) 

~ ().I 0 i2, ).' 0 J(j1) since).' is an H-map 

= (i'z, nSj j ,,).1) 

= (i'z, nSj j ) 0 (11\ ).1) 

= (wi Yl\nSX) 0 (11\).1) 

= W 0 )'* 1 y 1\ J(X). 

523 

The map OJ is the adjoint of a map ()) : S(Yv (Y 1\ nSX)) --+ S(X v Y), and 
OJ 0 A* is the adjoint of ()) c SA*. Thus (J is a J -adjoint of the latter map. It 
follows from (7.1) that the diagram 

(7.14) 

J(Y v (Y 1\ J(X))) J(X v Y) 

xl 
O8( Y v (Y 1\ J(X))) A' 

ns),. I ~(()) 0 SA.) 

+ 
O8(Yv (Y I\08X)) --+ O8(X v Y) 

Ow 

is homotopy commutative. 
The map .x' : J (X) --+ nsx being a weak homotopy equivalence, it follows 

without difficulty that nSA* is a weak homotopy equivalence, and therefore 
that 

Ali = nsJc* 0 AI: J(Yv (1' I\J(X))) --+ ns(Yv (1' I\nSX)) 

is, too. The diagram 

J(X) 
JUI} 

I J(X v Y) 

I' j I XI 

nsx ~ ns(xv Y) 
O8UI) 

being commutative, and A': J(X v Y) --+ ns(x v Y) being an H-map, the 
diagram 
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(7.15) 

J(X) X J(Y V (Y 1\ J(X))) 

X, X XlIl 

XI Homotopy Operations 

J(jd®u=y 
---_I J(X V Y) 

!lSX X !lS(Yv(Y I\!lSX» , !lS(Xv Y) 
!lSjl ®nw 

is homotopy commutative. Since the remaining three maps in the diagram 
are weak homotopy equivalences, so is y. 0 

Step II. Consider the three maps P'l, ¢', P2 : X x J(X) -+ J(X) defined by 

p~(x, w) = X, 

¢'(X, w) = wx, 

P2(X, w) = w. 

The map Sp~ - S¢' + SP2 : S(X x J(X» -+ SJ(X) is nullhomotopic on 
S(X v J(X» and therefore determines an element Vi E [S(X 1\ J(X», SJ(X)), 
which is seen to be unique by taking adjoints and applying Lemma (4.1) of 
Chapter x. 

In §2 of Chapter VII we saw that, if ¢ : X x J(X) -+ J(X) is the restriction 
to X x J(X) of the product in J(X), then ¢* - P2* : H*(X x J(X»-7 
H*(J(X» annihilates the image of the injection H*({*} x J(X»-+ 
H*(X X J(X» and induces an isomorphism 

$* : H*(X X J(X)/H x J(X» -+ H*(J(X». 

Using this fact and Lemma (2.7) of Chapter VII, it is not difficult to see that 
the inclusion SX ~ SJ(X) and the map Vi induce a map 

VI :SXvS(X I\J(X»-+SJ(X) 

which is a homotopy equivalence. Applying the functor Y 1\ and using the 
natural homeomorphism Y 1\ SQ = S(Y 1\ Q), we obtain a homotopy 
equivalence 

v: S«Y 1\ X) v (Y 1\ X 1\ J(X») -+ S(Y 1\ J(X». 

Then 

1 v v : S( Y v (Y 1\ X) V (Y 1\ X 1\ J(X») -+ S( Y v (Y 1\ J(X))) 

is also a homotopy equivalence. The J-adjoint of 1 v \' is a map 

f3: Yv (Y 1\ X) V (Y 1\ X 1\ J(X» -+ J(Yv (Y 1\ J(X») 

and its canonical extension 

1J : J( Y v (Y 1\ X) V (Y 1\ X 1\ J(X») -+ J( Y v (Y 1\ J(X») 

is a homotopy equivalence, by (7.1). 
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(7.16) Corollary The spaces J(X v Y) and 

J(X) x J(YV(YAX)V(YAX AJ(X))) 

have the same homotopy type. 

525 

D 

Let us calculate explicitly the isomorphism y 0 (1 x l3) obtained by com
bining Steps I and II. Evidently y 0 (1 x /3) = J(jd @ (j 0 /3 and it behooves 
us to calculate (j 0 /3. It suffices to calculate (j 0 /31 Q = (j 0 f3, where 
Q = Yv (Y AX)V (Y AX AJ(X)). 

The map f31 Y is the composite 

Y ~ Y v (Y A J(X)) ~ J(Y v (Y A J(X))); 

and (j 0 f31 Y = 0' I Y = i2 : Y ---'> J(X v Y). 
The map f31 Y A X is the composite 

Y A X c:; Y A J(X) ~ Y v (Y A J(X)) ~ J(Y v (Y A J(X))); 

and (j 0 f31 Y AX = 0'1 Y AX = <i2 , J(j1)IX) = <i2 , i1)' 
The map f31 Y A X A J(X) is induced by the map of Y A (X x J(X)) into 

J(Y A J(X)) which sends y A (x, w) into the product (in J(Y A J(X))) 

(y A x)(y A wxt 1(y A w). 

The map (j is a homomorphism; it must be remembered, however, that the 
relation ZZ-1 = 1 in J(Q) holds only up to homotopy. Thus it is not neces
sarily true that 0'(Z-1) = O'(zt 1; however, the maps z ---'> 0'(Z-1), z ---'> O'(zt 1 

are homotopic. Thus we may write 

where the symbol ::::::: means that the maps suggested by the two sides of the 
formula in question are homotopic. Now 0' I Y A J(X) is the Samelson pro
duct <i2 , J(jd); this means that 0' I Y A J(X) is induced by the map of 
Y x J(X) into J(X v Y) which sends yAW into the commutator 
[i 2 (y), J(j1)W], which we shall write, for short, simply as [y, w]. Thus 
(j 0 f31 Y A X A J(X) is determined by the map of Y x X x J(X) which sends 
yAX A W into 

[y, x][y, WX]-1[y, w]::::::: yxy-1x-1wxyx-1w-1y-1ywy-1w-1 

::::::: yxy-1x-1wxyx-1y-1W-1. 

On the other hand, 

[[y, x], w] = [y, x]w[y, X]-1 W-1 

::::::: [y, x]w[x, y]w- 1 

= yxy-1x-1wxyx-1y-1W-1. 
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It follows that 

fJ 0 131 Y I\X I\J(X) = «i2 , i 1 ), JUd). 

Thus we have proved 

(7.17) Theorem A homotopy equivalence 

J(X) x J(Yv (Y 1\ X) V (Y 1\ X 1\ J(X))) ---+ J(X v Y) 

is given by JUd ® fJ c fJ. The map fJ, fJ is the canonical extension oIthe map 
,: Yv(Y I\X)v(Y I\X I\J(X))---+J(Xv Y)Ior which 

,I Y = i2 , 

,I Y I\X = <i2 , i 1 ), 

,I Y 1\ X 1\ J(X) = «i2 , i1 ), JUd)· D 

Step III. We first prove, by induction on n, that S(Y 1\ J(X)) has the same 
homotopy type as 

SZn = S(Z~ V (Y 1\ x(n) 1\ J(X)), 

where Z~ = V7 = 1 Y 1\ xli). That this is true for n = 1 was proved in Step II. 
Suppose that In: SZ" -> S(Y 1\ J(X)) is a homotopy equivalence. In Step II 
we constructed, for each space W, a homotopy equivalence 

Vw : S((W 1\ X) V (W 1\ X 1\ J(X))) ---+ S(W 1\ J(X)). 

The identity map of SZ~, together with the map vW(n) for W(n) = Y 1\ x(n) 
define a map 1 v vW(n) : SZn+ 1 ---+ SZn which is a homotopy equivalence. Then 
In + 1 = In " (1 v VW(n») is also a homotopy equivalence. D 

Letr~ =f~ I SZ~; then Z~+ 1 = Z~ v (Y 1\ x(n+l»)::J Z~ andr~+IISZn =f~· 
Therefore the maps I~ define a map 

00 00 

f' : SZ' = S V Y 1\ Xli) = U SZ~ ---+ S(Y 1\ J(X)} 
i=l n=1 

such that f' I SZ~ = I~ for all n. 
Since X and Yare O-connected, so is J(X) and therefore the spaces 

Y 1\ x(n) and Y 1\ X(r.-l) 1\ J(X) are n-connected. Hence S(1' 1\ x(n») and 
S(1'l\x(n-l)I\J(X)) are (n+l)-connected. It follows that the spaces 
S VF=n+ 1 y 1\ Xli) is (n + 2)-connected; by the Hurewicz Theorem, its 
reduced homology groups vanish in dimensions:::;; n + 2. Then the injection 
jjq(Z~) ---+ Hq(Z') is an isomorphism for q :::;; n + 2, and it follows from the 
converse of the Whitehead Theorem that the injection nq(SZ~} ---+ nq(SZ') is 
an isomorphism for q :::;; n + 2. Similarly, the injection niSZ~) ---+ nq{SZn} is 
an isomorphism for q :::;; n + 3. The diagram 
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SZ~ S(Y /d(X)) 

/f. 
is commutative; since In is a homotopy equivalence, nq(J') is an isomor
phism for all q ::;; n + 2. Since n is arbitrary, nln is a weak homotopy 
equivalence and therefore a homotopy equivalence. 

The J-extension go: l(Z')-+ J(Y AJ(X» is, by (7.1), a homotopy equi
valence. This completes Step III. 

Step IV. The map 1 v I' : S(Yv Z) -+ S(Yv (Y A J(X))) is a homotopy 
equivalence. Therefore, if g: Yv Z' -+ J(Y v (Y A J(X))) is a J-adjoint of 
1 vI', then the map 

(JUd®a-) 0 (1 x gd= JUd®a- 0 g 

is the desired homotopy equivalence. In order to make this map explicit, let 
us define a sequence of elements Vn EO [Y A x(n), J(X v Y)] by 

(7.18) Theorem For each non-negative integer n, 

a- 0 g I Y A x(n) = vn. 

The map g I Y is the inclusion 

Y c; J(Y) <4 J(Y v (Y A J(X»), 

and a- 0 g I Y = (J I Y = i2 = Vo . 

~ 

In order to prove the Theorem for n > 0, we shall need to study the be
havior of the mapsln. We shall need 

(7.19) Lemma Let gn: Zn-+ J(Y AJ(X» be a l-adjoint olIn. Then 

a- 0 gn I Y A Xli) = Vi (i = 1, ... , n), 

a- 0 gnl Y Ax(n) AJ(X) = <Vn, JUd). 

The Lemma is proved by induction on n. If n = 0, Zn = Y A J(X),fo is the 
identity map, so that go is the inclusion map Y A J(X) 4 J(Y A J(X». Then 
a- 0 go = (J I Y AJ(X) = <i2 , lUI» = <Vo, JUI»' 
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Assume that fJ 0 gn is as stated. Then gn + 1 is the composite 

Zn+ 1 = Z~ v (W(n) A X) v (W(n) A X A J(X)) --'!--
A 

J(Z~ v (W(n) A J(X))) = J(Zn) ~ J(Y A J(X)), 

where 13' I Z~ is the compound inclusion 

Z~ c. J(Z~) 4 J(Zn) 

and f3'I(W(n)AX)v(W(n)AX AJ(X)) is a J-adjoint of vW(n). Thus, if 
1 sis n, 

fJ 0 gn + 1 I Y A Xli) = fJ 0 gn I Y A Xli) 

= fJ 0 gn I Y A Xli) = Vi . 

The map 13' I W(n) A X is the compound inclusion 

hence 

W(n) A X 4 W(n) A J(X) c+ J(W(n) A J(X)) 4 J(Zn); 

fJ 0 gn+ll Y Ax(n+l) = a 0 gn+ll W(n)AX 

= fJ 0 gn I W(n) A X 

= <Vn, J(jd> I W(n) A X 

= <Vn, J(jl)IX> = <Vn, i 1> = Vn+1· 

To prove the last relation, consider the diagram 

p' 
W(n)AX AJ(X) ~ J(W(n) A J(X)) o-W(n) 

~ J(XV W(n)) 

9n j j¢ 
J(Y AJ(X)) ~ J(XV Y) 

A 

(Ty 

where ¢ is the canonical extension of the map <p : X v W(n) --> J(X v Y) such 
that 

Then 

¢ 0 (T I W(n) A J(X) = ¢ 0 <iz , J(jd> 

= <¢ 0 iz , ¢ 0 J(jd> 

(since ¢ is a homomorphism) 

= <Vn, J(jd> 
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while 

by induction hypothesis. It follows that the diagram is commutative. But we 
have seen that 

and therefore 

& 0 gn 0 fJ'IW(n)AX Al(X) = ¢ 0 & 0 fJ'IW(n)AX Al(X) 

= ¢< <i2 , il ), lUl» 
= «Vn , i l ), lUd) 
= <Vn + b lUl»· o 

Theorem (7.18) now follows easily. In fact, g I Y A x(n) is a l-adjoint ofthe 
map f' I S(Y A x(n» = I~ I S(Y A x(n» = In I S(Y A x(n»; thus we may assume 
g I Y A x(n) = gn I Y A x(n) and therefore 

& 0 g I Y A x(n) = & 0 gn I Y A x(n) = Vn . o 

Step V. We now commence the final assault. The idea of the proof is to 
make repeated use of Step IV. At the nth stage we obtain a decomposition of 
l(X 1 v··· v X k ) as a product of n factors corresponding to the first n basic 
products and a remainder term of the form l(X n + 1 V ... ), where X n + 1 is the 
space corresponding to the (n + 1 )SI basic product and the remaining terms 
correspond to certain higher basic products. What is needed to carry out the 
proof is a system of bookkeeping allowing us to keep track of which basic 
products occur, as well as a convergence argument allowing us to get a 
decomposition as an infinite product. 

Let X = X 1 v··· v X k , and if m > k, let 

(7.20) 

where Wm is the mth basic product. (If m :s; k, then Wm = X m , and therefore 
(7.20) holds for all m 2 1.) Let 

Rm= V Xi' 
i~m 

r(i)<m 

R;"= V Xi, 
i>m 

rU) <m 

so that Rm = Xm v R;" (we have abbreviated r(w;) to r(i». Moreover, 
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Rl = XIV'" V X k' By Step IV, J(Rm) has the same homotopy type as 

J(Xm) x J(V R~AX~)) 
l~O 

= J(Xm) x J(V V XjAX~)). 
l;?:O »m 

r(j) <m 

By (6.1), the second factor is equal (up to natural homeomorphism!) to 

J( V Xq) = J(Rm+ 1)' q>m 
r(q):Sm 

Letj~: J(Xm) x J(Rm+1)-d(Rm} be a homotopy equivalence. Then 

gm = 1 xfm: {J(X 1 ) x .. · x J(Xm- 1)} x J(Xm) x J(Rm+d 

-* {J(X d x ... x J(Xm- d} x J(Rm) 

is also a homotopy equivalence. Let 

hm = g1 0 g2 0 ••• 0 gmlJ(Xd x .. · x J(Xm). 

Then hm I J (X 1) X ... x J(X m - d = hm - b and therefore the maps hm define a 
map h: 0;::=1 J(Xm)-d(Rd = J(V~=l X;). 

Each of the spaces X b ... , X k being O-connected, it follows that, if w is 
any monomial of weight r, then w(X b ... , X k) is (r - 1 )-connected. As the 
number of admissible monomials of any given weight is finite, we conclude 

(7.21) The connectivity of X m tends to 00 with m. o 
Since the connectivity of Rm does not exceed the minimum of the connec

tivities of the Xi for all i ~ m, we further conclude 

(7.22) The connectivity of Rm tends to 00 with m. o 
We can now prove 

(7.23) The map h : 0;::= 1 J(Xm) -* J(V~= 1 X;} is a homotopy equivalence. 

It suffices, because both spaces are CW-complexes, to prove that h is a 
weak homotopy equivalence. Let r be a positive integer, and choose an 
integer N such that X m and Rm + 1 are r-connected for all m ~ N. The 
injections 

1l:r(YN) -* 1l:r(Y) 

1l:r(YN) -* 1l:r(YN X J(RN+ 1» 
are then both isomorphisms. Commutativity of the diagram 
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ltr(Y) ltr(X) 

and the fact that gN is a homotopy equivalence allows us to deduce that h* is 
an isomorphism. 0 

It remains to make explicit the homotopy equivalence h. The main prob
lem is to devise a suitable nomenclature. 

We first introduce certain products Un in two variables x, y (in fact, these 
elements occur in any system of basic products in x, y). They are defined 
inductively by 

Uo = y, 

The elements Vn introduced in Step IV can then be expressed in the form 

Let jm: Xm -+ Rm, km: Xm -+ J(Rm), k;": R;" -+ J(Rm), be the inclusions; 
then J(jm) = km : J(Xm) -+ J(Rm). If j > m and r(j) < m, so that Xj is a factor 
of R;", let Ii: Xj -+ R;" be the inclusion, and let Ij = k;" 0 Ii: Xj c.J(Rm). It 
follows from Step IV that the homotopy equivalence 

1m: J(Xm) X J(Rm+ 1) -+ J(Rm) 
has the form 

(7.24) 
where 

(7.25) 

and therefore 

(7.26) e I X· /\ X(i) = u·(k k') 0 (f'. /\ 1 (i) m ) m l m' m J 

= ui(km, k;" 0 Ii) 

We prove, by induction on m: 

gl = It. 
m-1 

(7.27) glo··· o gm= ® 81o ... o{ji-1oki®81o ... o8m_101m 
i= 1 

(m;:c: 2). 
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It suffices to prove 

(7.28) 8 0··· 0 8 0 f, 0 (1 x f, ) = 8 0··· 0 8 0 k 1 m-1 m m+1 1 m-1 m 

Composing (7.24) with (1 x fm + 1), we find that 

fm 0 (1 xfm+d= (km®em) 0 (1 Xfm+1) 

= km ® em 0 fm+ 1· 

Composing the latter relation with the homomorphism 81 0 ••• 0 8m - b we 
obtain (7.28). 

Since fm I J(Xm) = km' we find that 

(7.29) hm = gl 0···0 gmlJ(Xd x ... x J(Xm) 
m 

i= 1 

Thus hm = W1 ® ... ® Wm, where wt = 81 0 ••• 0 8t- 1 0 kt . It suffices to 
prove 

(7.30) (t = 1, 2, 3, ... ). 

Now both sides of (7.30) are homomorphisms J(Xt) -4 J(X), and therefore it 
suffices to prove that they agree on X t , i.e., 

(7.31) W t = wt I X t = wt(i 1, ... , ik)· 

Suppose first that 1 ::s; t ::s; k, so that r(t) = 0. If m ::s; t, then X t is one of the 
factors of Rm. Then kt is the inclusion, and, if m < t, the formula (7.26), with 
j = t, i = 0, shows that 8m I X t = uo(km' it) = it is the inclusion. Hence W t is 
the inclusion it: X t ~J(Rd = J(X); but 

Now let n> k, and assume that (7.31) holds for all t < n. Let r = r(n); 
then Wn = r,.(wt) = ui(w" Wt), where i > 0, r(t) < r, and r < t < n. Then Xn is 
a factor of Rq if r < q ::s; n. Moreover, kn is the inclusion, and it again follows 
from (7.26) with j = n, i = ° that 8m IX m is the inclusion map if r < m < n. 
Hence 8r+ 1 0 ••• 0 8n- 1 0 kn is the inclusion map of Xn into J(Rr+ d. 
Moreover, again by (7.26), 

~ I - ~ I (i) - ( ) 8r Xn - 8r X t /\ Xr - Ui k" it· 

Thus Wn = 81 0 ••• 0 8r - 1 0 ui(kr , it); since the composite ( = 8t 0 ••• 0 8r - t 

is a homomorphism, we have 

( 0 ui(k" it) = ui(( 0 k" ( 0 it) 

By the induction hypothesis, eo kr = wr(i 1 , ••• , ik ). Again by (7.26), 
we find that em IXt is the inclusion provided that r(t) < m < t. 
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Hence f)r ° ... ° f)t- 1 I X t is the inclusion, and it follows that e ° It = 

e1 0 ••• 0 et- 1 0 kt = wt(il> ... , id, again by the induction hypothesis. Thus 

Wn = ui(wr(il> ... , ik ), Wt(ib ... , ik )) 

o 

8 The Hopf-Hilton Invariants 

Let us now suppose that each of the spaces Xi is a sphere sm, (i = 1, ... , k). 
Then each of the spaces Xi (i > k) is also a sphere sm,. The element IXj belongs 
to 1rmP(X)) ~ 1rm/QSX) ~ 1rmj + 1 (SX); let Ij E 1rmj+ 1 (SX) be the correspond
ing element. If j > m, the element W/IX 1, ... , IXk ) is an iterated Samelson 
product of some of the elements IXl> ... , IXk . Because of Theorem (7.10) of 
Chapter X, the corresponding element Wj(lb ... , Id E 1rmj+ 1 (SX) is, up to 
sign, an iterated Whitehead product. Therefore the Hilton-Milnor theorem 
can be recast to yield 

(8.1) Theorem There is an isomorphism 

00 

1rm+1(sml+1 v··· VSmk +1) ~ EB 1rm+1(sm j +1); 
j= 1 

if {3j E 1rm+ 1 (smj + 1) is an arbitrary sequence of elements, the corresponding 
element of 1rm+ 1 (sml + 1 V··· V smk+ 1) is 

(8.2) 
00 

L Wj(lb ... , Ik) 0 {3j. 
j= 1 

o 

(Note that, because mj tends to 00 with j, all but a finite number of the 
elements {3j are zero, so that the sum (8.2) is finite.). 

Theorem (8.1) can be used to study the deviation of the composition 
operation from additivity in the second factor. In fact, suppose that 
k=2, m1 =m2=r. If IXE1rn +1(sr+1), then (11+12)oIX belongs to 
1rn + 1 (sr + 1 V sr + 1), and therefore can be expressed in the form 

00 

(11 + 12) 0 IX = 11 0 IX' + 12 0 IX" + L Wj(lb 12) 0 hj _ 3(IX). 
j=3 

The projection q 1 : sr + 1 V sr + 1 --> sr + 1 has the property that q 1 * (11) = I, the 
element of 1rr+1(sr+1) corresponding to the identity map, while q1*(12) = o. 
Moreover, q1* Wj(lb 12) = W/q1* 11' qh 12) = W/I, 0), and this element is 
zero because of the biadditivity of the Whitehead product and the fact that 
Wj (11, 12) involves both 11 and 12 for allj ~ 3. It follows that IX' = IX, and, by a 
similar argument, IX" = IX. Moreover, hj : 1rn+ 1 (sr+ 1) --> 1rn+ 1 (sqr+ 1) is a 
homomorphism, where q is the weight of the basic product wj + 3. Thus 
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(8.3) Theorem There are unique homomorphisms hj : nr+ 1 (sr+ 1)--> 
nn + 1 (sqr + 1) (j = 0, 1, 2, ... ) such that,for any a E nn + 1 (sr + 1 ), 

00 

(8.4) (11 + 12) 0 a = 11 0 a + 12 0 a + L Wj+3{lb 12) 0 hj(a}. 
j=O 

The method of the universal example allows us to conclude 

(8.5) Theorem If X is any space and a E nm + 1 (sr+ 1), [3 b [32 E nr + 1 (X), then 
00 

([31 + [32) 0 a = [31 0 a + [32 0 a + L Wj+3([31, [32) 0 hj(a). 0 
j=O 

The homomorphisms h j : nn + 1 (sr + 1) --> nn + 1 (sqr + 1) are called the H opf
Hilton homomorphisms, and the element h;(a) is thejth Hopf-Hilton invariant 
ofa. 

The commutative and associative laws for addition in the first factor 
allow us to deduce certain properties of the homomorphisms hj . Unfor
tunately, these are difficult to work with, as the relevant calculations neces
sarily involve non-basic products, and the calculations needed to get rid of 
these become increasingly difficult as the dimension increases. We shall give 
a few of these calculations to illustrate the difficulties. 

(8.6) Theorem If n < 3r and r is even, thea 2ho(a) = 0. 

In this case all basic products except WI> W2 and W3 have weight at least 3 
and therefore 

hia) E nn+l(sqr+l) = ° 
if j 2 1. Thus (8.4) becomes 

(11 + 12) 0 a = 11 0 a + 12 0 a + [12' Id 0 ho(a). 

Interchanging 11 and 12' we obtain 

(12 + Id 0 a = 12 0 a + 11 0 a + [Ii> 12] 0 ho(a); 

but the product [II> 12] is not basic, and we must use the relation 

[11> 12] = (_1)'+1[12,/1] 

= [/2' 1 d 0 (( -1)' + 11). 

Thus 

Hence 
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Since ho(rx) E nn+ 1(S2r+ 1) and n < 4r, ho(rx) is a suspension element, we can 
use Theorem (8.5) of Chapter X to deduce that (-1) 0 ho(rx) = -ho(rx), and 
our conclusion follows. D 

A little more difficult is 

(8.7) Theorem lfn < 4r, then 

hl(rx) = h2(rx) = 0 ifrisodd; 

2ho(rx) = 0, 3h t (rx) = 0, h2(rx) = -hdrx) ifr is even. 

First calculate (12 + 11) 0 rx as we did before. This time triple products will 
occur, and equating coefficients of [[12' It], 11] and [[12' Id, 12] yields, in 
addition to the same relation ho(rx) = (-1)'+ Iho(rx) as before, the new 
relations 

Next we calculate in nn + I (SH 1 V SI"+ I V sr+ I). Expanding 
(11 + (12 + 13)) 0 rx, we obtain a sum of terms, each of which has the form 
Wi 0 hj(rx), where Wi is a basic product. If, on the other hand, we expand 
((II + 12) + 13) 0 rx, one of the terms we obtain is [[13' 12]' Ij] 0 hl(IX). The 
product [lI3, 12], zd is not basic; however, if we use the Jacobi identity 
(Coronary 7.14 of Chapter X), we find that 

[[13,121 11] = -[[12' II], 13] + (-1)'[[13' ld, 12], 

and both products on the right-hand side are basic. We then find, by com
paring coefficients of basic products as before, that 

hj(lX) + (-1),h J(a)=h 2 {rx), 

hz(lX) = -hl(lX) 

Using these and the relations obtained earlier, we obtain the desired rela
tions. D 

Clearly we can continue this program, obtaining, for each k, a set Rk of 
relations which are valid whenever n < kr. It is tempting to conclude that 
Rk+ 1 contains the old relations Rk , together with new relations among the hi 
associated with basic products of weight k. However, this is a bit optimistic. 
For example, we have used the relation (- I) 0 ho(CX:) = - ho(CX:), valid for 
n < 41' because ho(a) is a suspension element However, if n ~ 4r, this is no 
longer true; for example, 

by (8.12) below. 
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But there is another kind of difficulty, which arises when we consider 
four-fold products. The product [[[12' Id, 12]' 11] is not basic. Expanding it 
by the Jacobi identity, we get 0 = ±[[[ZZ, 11],12],11] ± [[[12' 11], [12' Id] ± 
[[[1 1, [12' 11]], 12] so that 

[[[12' Id, 12]' Id = ± [[12' 11]' [12,11]] ± [[[12, 11], Id, 12l 

The second term on the right is a basic product, but the first is not. However, 
by naturality of the Whitehead product, 

[[12,11]' [12' 11]] = [[12' 11] 0 I, [12,11]" I] 

= [12' 11] 0 [I,ll 

Thus in our calculations involving products of a given weight, new terms 
involving products of lower weight may appear. Therefore we shall not 
continue this program further, leaving it to the interested reader to do so if 
he desires. 

It is useful, however, to have formulas for (kf3) 0 IX for each integer k. 
These can be calculated inductively, using the" distributive law" (8.5). Thus 
we need information about the Whitehead products which involve only a 
single element f3 E 7l:r + 1 (X). 

(8.8) Theorem Let f3 E 7l:r + 1 (X). If r is even, 2[f3, f3] = 0 and all Whitehead 
products in f3 of weight ?:>: 3 are zero. If r is odd, 3[[f3, f3], f3] = 0 and all 
Whitehead products in f3 of weight ?:>: 4 vanish. 

As usual, we may assume f3 = I E 7l:r + 1 (sr+ 1). Let Pk be the standard 
iterated product, defined by 

P2 = [I, I], 

Suppose first that r is even. Then, by (7.5) of Chapter X, P2 = 
(-1 y+ 1 P2 = - pz, 2P2 = O. Hence 2P3 = O. But the Jacobi identity (7.14) 
of the same Chapter gives 3P3 = 0, and therefore P3 = o. It follows by 
induction that Pk = 0 for all k ?:>: 3. 

Let q4 = [P2, P2], so that 2q4 = O. Applying the Jacobi identity to the 
three elements P2, I, I, we find that 

0= [[[I, I], I], I] + [[I, I], [I, I]] + [[I, [I, I]], /] 

= P4 + q4 + (_1)'+lP4 = q4· 

It follows that all 3 and 4-fold products vanish. 
Let P be a k-fold product (k ?:>: 5), and assume that all i-fold produCiS 

vanish for 3 ::;; i < k. Then P = [pi, pZ] where pj is an irfold product and 
o < ij < k, i 1 + iz = k. Since k ?:>: 5, either il ?:>: 3 or iz ?:>: 3 and our inductive 
hypothesis implies that p = O. 

The case r odd is a little more difficult. From the Jacobi identity we 
deduce that 3P3 = 0, and therefore 3Pk = 0 for all k ?:>: 3. Applying the Jacobi 
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identity to the elements pz, 1, 1, we deduce that q4 + 2P4 = 0 and therefore 
3q4 = O. Let 1* be the element of 1tZr+ 1 (sZr+ 1) represented by the identity 
map. By naturality of the Whitehead product, we have 

q4 = [[1, I], [1, I]] = [pz 0 1*, pz 0 1*] = pz 0 [1*, 1*]. 

By what we have already proved, 2[1*, 1*] = 0 and therefore 2q4 = o. We 
have seen that 3q4 = 0, and therefore q4 = O. But then 2p4 = 0, and, since 
3P4 = 0, we have P4 = o. Hence all 4-fold products vanish, and Pk = 0 for 
k ;:0- 4. Applying the Jacobi identity to the triple P3, I, I, we find that 

0= ±Ps ± Ps ± [P3, pz], 

so that [P3, pz] = o. Applying the Jacobi identity to Pz, I, Pz, we obtain 

0= ±[P3,PZ]±[P3,PZ]±[q4, I], 

so that qs = [q4, I] = o. It follows that all 5-fold products vanish. As for 
six-fold products, the only one to cause difficulty is [P3, P3]. This time we 
apply the Jacobi identity to the triple P3, pz, I to obtain 

0= [[P3 , pz], I] + [[pz, I], P3] + [[z, P3], pz] 

= [[P3, Pz], I] + [P3, P3] ± [P4, pz] 

But we have seen that P4 = 0 and [P3, pz] = 0, and therefore [P3, P3] = O. 
Thus we have proved that all k-fold products vanish (4.::;; k .::;; 6). Let 

k ;:0- 7 and assume all i-fold products vanish for 4 .::;; i < k. If P is a k-fold 
product, P = [pi, p2], where pj is an irfold product, 0 < ij < k, i1 + iz = k. 
Since k ;:0- 7, either i 1 or iz is at least 4 and the corresponding product 
vanishes by the induction hypothesis. Hence P = 0 and the proof is 
complete. D 

We can now give a formula for (kf3) 0 a. 

(8.9) Theorem For any integer k and any a E 1tn+l(sr+l), f3 E 1tr+l(X), 

(8.10) (kf3) 0 a = k(f3 0 a) + (~)[f3, f3] 0 ho(a) - (k; 1 )[[f3, f3], f3] 0 h1(a). 

In particular, if r is even and k == 0 or 1 (mod 4), then (kf3) 0 a = k(f3 0 a); and 
ifr is odd and k == 0 or ± 1 (mod 9) then 

(8.11) (kf3) 0 a = k(f3 0 a) + (~)[f3, f3] 0 ho(a). 

Finally, 

(8.12) (-f3) 0 a = -(f3 0 a) + [f3, f3] 0 ho(a). 
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Again, it suffices to prove the theorem in the special case X = sr+ 1, f3 = l. 

The theorem is proved by induction on r, it being trivial (and reducing to the 
equality (kl) 0 a = ka) when n = r. Assume that (8.10) holds for all 
a E nn + 1 (sq + 1) with m - q < n - r. It follows that, for any integer I, 

(1[1, z)) " ho(a) = 1{[I, I] 0 ho(a)} 

+ G )[[1, I], [I, I)] 0 ho(ho(a)) 

-(I; 1 )[[[1, I], [I, I]], [I, I]] 0 hi (ho(a)) 

= 1([z, I] 0 ho(a») 

the last two terms vanishing by Theorem (8.8). Similarly, 

(1[[1, I], /]) 0 hj(a) = I{[[z, I], z] 0 hi (a)}. 

The formula (8.10) is patently true if k = 0 or 1. By Theorem (8.5), 

00 

(8.13) (2z) 0 a = 2a + I Wj+3(1, I) 0 hkJ.) 
j=O 

= 2a + [I, I] 0 ho(a) + [[I, I], I] 0 h1(a) + [[I, I], I] 0 h2(a), 

all higher terms vanishing by Theorem (8.8). Furthermore, 

(8.14) (31) 0 a = «(21) + I) 0 a 

= (21) 0 a + a + [I, 21] 0 ho(a) + [[I, 21], 21] 0 hl(a) 

+ [[I, 21], I) 0 h2{a) 

= (21) 0 a + a + 2[1, I] 0 ho(a} + 4[[/, I], z] 0 hl(a) 

+ 2[[1, I], I] 0 h2(a) 

= 30: + 3[1, /] 0 ho(a) -j- 5[[1, I], z] 0 h1(0:) 

+ 3[[1, I], z] 0 h2(0:) 

= 3et + 3[1, I] 0 ho(O:) - [[I, I], ,] 0 h:(o:), 

since 3[[1, I], zJ = O. 
On the other hand, 

(3!) 0 0: = (I -+ 2!) 0 ex 

= rx + (21) 0 (j + [21, /] 0 ho{rx) + [[21, z], z] 0 "1(0:) 

+ [[21, 1],211 0 h2(rx) 

= 3rx + 3[1, I] 0 ho(rx) -+ 3[[1, ,], I] 0 hi (rx) 

+ 5[[1, Z],l] 0 h2(a) 

= 3a + 3(1, z] 0 ho(rx} - [[I, z], lJ 0 h2(rx). 
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Therefore, comparing the two formulae for (31) 0 rx, we see that 

(8.15) [[I, I], I] 0 hl(rx) = [[I, I], I] 0 h2(rx). 

Thus (8.13) simplifies to 

(8.16) (21) 0 rx = 2rx + [I, I] 0 ho(rx) - [[I, I], I] 0 hl(rx) 

(again we have made use of the fact that 3[[1, I], I] = 0). 
It follows from (8.14) and (8.16) that (8.10) holds for k = 0, 1,2,3. Assum

ing (8.10), we expand «k + 1)1) 0 rx to obtain 

«k + 1)1) 0 rx = (kl + I) 0 rx 

= (kl) 0 rx + rx + [I, kl] 0 ho(rx) + [[I, kl], kl] 0 hl(rx) 

+ [[I, kl], I] 0 h2(rx) 

= (kl) 0 rx + rx + k[l, I] 0 ho(rx) 

+ (k2 + k)[[I, I], I] 0 hl(rx) 

= krx + e)[I, I] 0 ho(rx) - (k; 1 )[[1, I], I] 0 hl(rx) 

+ rx + k[l, I] 0 ho(rx) + (k2 + k)[[I, I], I] 0 h1 (rx) 

= (k + l)rx + (k; 1 )[1, I] 0 ho(rx) 

k(k + 1) + 6 {6 - (k - 1)}[[/, I], I] 0 h1(a). 

The coefficient of the last term is 

k(k + 1) (6 _ k + 1) = k(k + 1) (-k - 2 + 9) 
6 6 

= _ (k ; 2) + 3 (k ; 1 ). 
Since 3[[1, I], I] = 0, we finally obtain 

( k + 1) «k + 1)/) 0 a = (k + l)rx + 2 [I, I] 0 ho(rx) 

( k + 2) - 3 [[I, I], I] 0 hl(rx). 

This gives an inductive proofthat (8.10) holds for all non-negative integers k. 
If k is a positive integer, recall that 
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in particular, 

Thus (S.lO) can be rewritten 

(k + 1) (k + 1) (-kl) " a = -ka + 2 [I, I] 0 ho(a) + 3 0 hl(a), 

which is easily proved by expanding the equation 

0= ((kl) + (-kz)) 0 a 

and using (S.lO). 
This completes the proof of (S.10). The remainder of the theorem consists 

of easy consequences of(S.lO) and thefact that 2[/, I] = 0 and [[I, I], I] = 0 if 
r is even and 3[[1, I], I] = 0 if r is odd. D 

Now suppose that n = 2r. Then 

ho : 1!:2r+ l(sr+l) -> 1!:2n+ I(S2r+ 1)::::: Z, 

while, if i > 0, the range of hi is 1!:2r+ 1 (Skr+ 1) = 0 for some integer k ~ 3. In §1 
we defined Ho : 1!:2r+ l(sr+ 1) -> Z, and it is natural to ask whether these two 
homomorphisms are the same. In fact, let 1* E 1!:2r+ 1 (S2r+ 1) be the homo
topy class of the identity map. Then 

(8.17) Theorem lfa E 1!:2r+l(sr+l), then ho(a) = Ho(a)I*. 

This follows immediately by comparing (S.4) with the formula obtained 
from (1.16) by setting /31 = 12' /32 = 11' D 

Thus ho is a true generalization of Ho , and the hi can be thought of as 
higher generalized Hopf invariants. 

EXERCISES 

1. Determine nn+ 1 (X V Y) when X is O-connected and Y is (n - 1 )-connected. 

2. Let (Jq: Hq( ; II) --> Hq +k( ; G) be the components of a stable operation (J. If 
f: X --> Y, let 

Kq = {u E Hq(y; II) I f*u = 0 and (Jq(u) = O} 

IJ = Hq(X; G)/{f*Hq(y; G) + (Jq-kHq-k(X; II)}. 

By analogy with the construction of §3, show how to define functional operations 
(Jj : Kq --> IJ +k -1, and prove their principal properties. 

3. Letf: Sq+k-l --> sq represent rx E nq+k-l(Sq) (k > 1). Prove that rx is detectable by 
a stable operation (J if and only if (J f : Hq(Sq; II) --> Hq H- 1 (sq+k - 1; G) is non-zero. 
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4. Let J: SP x SP -> SP be a map of type (m, n) (i.e., J I SP x {*} has degree m and 
J I{*} x SP has degree n). Let g: S2p+l->Sp+l be the map obtained fromJby the 
Hopf construction. Prove that Ho(g) = ±mn. 

5. Prove that, if I>: E nn + 1 (S'+ 1), fJ E nm(sn), then 

hAl>: 0 EfJ) = hAl>:) 0 EfJ. 

6. Prove that, if I>: E nn(S'), fJ E nm + 1 (sn + 1), then 

hA(EI>:) 0 fJ) = E(I>: I\"'!\IX) 0 hAfJ), 

k factors 

where k is the weight of the basic product Wj+ 3 . 



CHAPTER XII 

Stable Homotopy and Homology 

The adjoint of the identity map of SW is a map AD: W ~ QSW. For any 
CW-complex K, [K, QSW] ~ [SK, SW]; moreover, the injection [K, W] ~ 
[K, QSW] corresponds under this isomorphism to the suspension operator 

S*: [K, W] ~ [SK, SW]. 

If W is (n - 1 )-connected, then (QS W, W) is (2n - 1 )-connected. Thus S* is 
an isomorphism if dim K :::; 2n - 2 and an epimorphism if dim K = 2n - 1. 

In particular, we may take K to be a sphere sr, so that 

E = S* : 1tr(W) ~ 1tr+ 1 (SW) 

is an isomorphism for r :::; 2n - 2 and an epimorphism if r = 2n - 1. To 
study the behavior of E in higher dimensions we must investigate the relative 
groups 1tr(QS W, W). By the considerations of Chapter VII, we may replace 
QSW by the reduced product J(W). Now the groups 1tr(J(W), W) can be 
calculated in a range of dimensions, and this leads to an exact sequence 

1t3n-2(W) ~ 1t3n-1 (SW) ~ ... 
E H P 

~1tq(W) ---4 1tq+1(SW) ---4 1tq+1(W* W) ---41tq_1(W)~'" 

which is analogous, in a certain sense, to the sequence involving the homol
ogy suspension, which was studied in Chapter VIII. In particular, when 
W = sn, we obtain the sequence 

(sn) (sn+1) ... 1t3n-2 ~1t3n-1 ~ 

E H P 
~ 1t (sn) ---4 1t (sn+ 1) ---4 1t (S2n+ 1) ---4 1t (sn) ~ ... q q+1 q+1 q-1 

The homomorphism H is the Hopf-James invariant j2 of Chapter VII, and 

542 
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the homomorphism P is determined by the observation that 
P 0 E2 : 1I:q- 1 (S2n-1) ~ 1I:q-1 (sn) is composition with the Whitehead product 
[In' In] E 1I: Zn -1 (sn). These results are developed in §§1, 2. As a consequence 
we calculate the homotopy groups 1I:n+ 1(sn) and 1I:n+Z(sn) for every n. 

In §3 we consider the suspension category Y. This was introduced by 
Spanier and J. H. C. Whitehead [1] in 1953 as a first approximation to 
homotopy theory. The objects of Yare spaces in :f *, but {X, Y} = 
Y(X, Y) is the direct limit 

[X, Y] ~ [SX, SY] ~ [SZX, SZY] ~ ... 

under iterated suspension. Thus, while [X, Y] has no particular structure, 
{X, Y} is an abelian group, and the operation {Y, Z} x {X, Y} ~ {X, Z} 
of composition is biadditive. 

Of particular importance are the stable homotopy groups a q(X) = 
{sq, X}. These form a graded group a*(X); moreover, a* = a*(SO) is a 
graded ring and a*(X) is a graded a*-module. We prove a stable Hurewicz 
Theorem: if X is (m - 1 )-connected then am(X) ~ Hm(X). An exact sequence 

b 
1I:m+z(X)~Hm+z(X) -----.. 1I:m(X)0Z2~1I:m+1(X)~Hm+1(X)~O 

leads to a determination of am + 1 (X) up to a group extension. This sequence 
was studied by J. H. C. Whitehead [7] for m = 2 and by the present author 
[3] for m > 2. 

Motivated by a desire to describe the group extension for am + 1 (X), we 
discuss group extensions in §5. If C is a free chain complex, then by the 
Universal Coefficient Theorem there is a short exact sequence 

O~Ext(Hn-1(C), G)~H"(C; G)~Hom(Hn(C), G)~O; 

the sequence splits, but not naturally. Thus a class U E H"(C; G) determines 
a homomorphism 

U* : Hn(C) ~ G, 

determined by the Kronecker index; but U does not determine in a natural 
wayan element of Ext(Hn_1(C), G). Nevertheless, there is associated with u 
in a natural wayan element ut E Ext(Hn- 1(C), Cok u*). And we further 
show that if X is an (m - 1 )-connected space, there is a canonically defined 
cohomology class u = SqZlm(x) such that the associated group extension u t 
describes the extension for am + 1(X). 

Stable homotopy groups turn out to behave very much like homology 
groups. In fact, if the Eilenberg-Steenrod axioms are modified to take 
account of the fact that we are working in a category of spaces with base 
points, the stable homotopy functors satisfy the new axioms except for the 
Dimension Axiom. This leads in §6 to a consideration of homology theories 
in general; the two kinds of theories (those for pointed spaces and those for 
pairs) are compared and shown to be completely equivalent. In §7, the 
corresponding relationships for cohomology groups are established. 
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1 Homotopy Properties of the James Imbedding 

Let W be a space in the category % * . In §2 of Chapter VII we constructed 
the James reduced product J(W) and a weak homotopy equivalence 
~: J(W) -+ Q*Sw. Composing ~ with the homotopy equivalence 
h': Q*SW -+ QSW, we obtain a weak homotopy equivalence ~' : J(W)-+ 
QS W. The restriction of ~' to the subspace W is the canonical imbedding 
Ao : W -+ QS W, adjoint to the identity map of S W. 

It follows from the Five-Lemma that 

(1.1) The homomorphism 

1rq(~') : 1rq(J(W), W) -+ 1riQSW, W) 

is an isomorphism for every q. o 
To see the significance of the groups 1rq(J(W), W), let us examine the 

injection 
1rq(W) -+ 1rq(QSW). 

More generally, if X is any space in x'*' we have an injection 

(1.2) [X, W) -+ [X, QSW); 

the latter set has a natural group structure, and is isomorphic, under the 
adjointness relation 

(1.3) [X, QSW) ~ [SX, SW), 

with the group [SX, SW). Thus the injection (1.2) is equivalent, under the 
isomorphism (1.3), to a map 

E: [X, W) -+ [SX, SW). 

On the other hand, the suspension functor S is compatible with the 
homotopy relation, and accordingly the map f -+ Sf induces a 
correspondence 

S* : [X, W) -+ [SX, SW), 

which is again called the suspension. 

(1.4) Lemma The map E : [X, W] -+ [SX, SW] is the suspension. 

For letf: X -+ W; then Ao 0 f: X -+ Q(SW) is given by 

(Ao 0 f)(x)(t) = t I\f(x) 

for t E S, X E X, and the corresponding map ofSX into SW sends the point 
t 1\ X into t I\f (x). But the latter map is just the suspension Sf of the map f 

o 
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In particular, we are interested in the suspension 

E : 1Tq(W) ---> 1Tq + 1 (S W); 

and the groups 1Tq(JW, W) measure, because of the exactness of the homo
topy sequence of the pair (J W, W), the extent to which E fails to be an 
isomorphism. 

That E is not always an isomorphism is shown by the example W = Sl, 
q = 2. For we have seen in §8 of Chapter IV that 1Tz(Sl) = 0, while 
1T3(SZ):::::: Z. This is contrary to the situation in homology theory, where 
Hq(W) :::::: Hq+ 1 (S W) for all q. The reason for this is that the excision axiom 
holds for the homology groups, but fails to hold for the homotopy groups 
(cf. Example 5, of Chapter IV, §7). In fact, consider the diagram 

a* k* 1Tq(W) <---- 1Tq+1(T+ W, W) , 1Tq+1(SW, T_ W) 
j* 

<-- 1Tq+1(SW), 

in which the homomorphisms j* and k* are injections. Note that a* and j* 
are isomorphisms because of the exactness of the appropriate homotopy 
sequences. The easy proof of 

(1.5) The composite j;.l 0 k* 0 a;. 1 is the suspension homomorphism E 

is left to the reader. 
Thus E is equivalent to the homotopy excision k* . 
Let us recall the Freudenthal Suspension Theorem (Theorem (7.13) of 

Chapter VII): 
IfW is (n - 1 )-connected then E : 1Tq(W) ---> 1Tq+ 1 (S W) is an isomorphismfor 

q < 2n - 1 and an epimorphism for q = 2n - 1. D 

(1.6) Corollary The suspension E : 1Tq{sn) ---> 1Tq+ 1 (sn + 1) is an isomorphism fur 
q < 2n - 1 and an epimorphism for q = 2n - 1. 

In fact, a more general result is true. 

(1.7) Theorem Let K be a CW-complex and let W be (n - I)-connected. Then 
E : [K, W] ---> [SK, S W] is an isomorphism if dim K < 2n - 1 and an epimor
phism if dim K = 2n - 1. 

(We shall assume that n > 1, so that W is I-connected. The case n = 1 is 
uninteresting and is relegated to the Exercises). 

It suffices, by the definition of E, to verify that the injection [K, W]---> 
[K, nSW] has the desired properties. Since X, : (JW, W) ---> (nSW, W) is a 
weak homotopy equivalence, it suffices to prove the same statement for the 
injection [K, W] ---> [K, JW]. The latter follows in tum from the following 
two Lemmas. 
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(1.8) Lemma If (P, Q) is an m-connected pair and X is a CW-complex of 
dimension r, then the injection i* : [X, Q] -+ [X, P] is an isomorphism ifr < m 
and an epimorphism if r = m. 

(1.9) Lemma If W is (n - 1 )-connected, the pair (JW, W) is 
(2n - 1 )-connected. 

PROOF OF LEMMA (1.8). Suppose first thatf: (X, *)-+ (P, *). We may then 
regard f as a map of (X, *) into (P, Q); if r :S; m, the latter map is compres
sible. This means that f is homotopic (reI. *) to a map of X into Q, and 
therefore i* is an epimorphism. 

Let fo, fl:(X,*)-+(Q,*) and suppose thatfo'::!:.fl (reI.*) inP. If 
F: (I x X, i x X u 1 x {*}) -+ (P, Q) is a homotopy offo tOfl, and ifr < m, 
then F is compressible to a map G: I x X -+ Q. Then G is a homotopy offo 
to fl in Q. Hence i* is a monomorphism. 0 

PROOF OF LEMMA (1.9). In §2 of Chapter VII we saw that J = J(W) is filtered 
by the subspaces r = r(W), and that the identification maps W'" -+ r give 
rise to isomorphisms 

<Pm: H*«W, e) x (r, r- 1 ))::::; H*(r+1, r). 

As (J1, JO) = (W, e), it follows from the Kiinneth Theorem, by induction on 
m, that H q(r + 1, r) = 0 for all q < (m + 1 In. In order to use the converse of 
the relative Hurewicz Theorem, we need to know that Jm is I-connected. 
Accordingly, we need to prove the following statement: 

r is I-connected and (r + \ r) is «m + I)n - 1 )-connected. 

As (m + I)n - 1 ?: 1 for all m ?: 1, this is easily proved by induction on m. 
It follows from Corollary (3.5) of Chapter II that 

(J, r) is «m + l)n - I)-connected. 

In particular, (J2,J1 ) is (2n-l)-connected and (J,J 2 ) is 
(3n - 1 )-connected and therefore (2n - 1 )-connected. By Lemma (3.4) of 
Chapter II, (J, W) = (J, Jl) is (2n - I)-connected. 0 

2 Suspension and Whitehead Products 

Let us see what can be said about the kernel and the cokernel ofthe suspen
sion homomorphism E. Let W be an (n - I)-connected space (n ?: 2). Then 
the injection nq(W) -+ nq(JW) can be composed with the standard isomor
phism nq(JW)::::; nq(QSW) ::::; nq+ 1 (SW); the composite is the suspension 
E : nq(W) -+ nq + 1 (S W). Therefore our task is to calculate the groups 
nq(JW, W). 
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We have seen that (J W, J2 W) is (3n - 1 )-connected, and therefore the 
injection 1tiP W, W) ~ 1tq(JW, W) is an isomorphism for q < 3n - 1 and an 
epimorphism for q = 3n - 1. On the other hand, there is a relative homeo
morphism f: (W x W, Wv W)~ (J2W, W). The spaces W x Wand 
W v Ware 1-connected, and the pair (W x W, W v W) is 
(2n - 1 )-connected; moreover, the map f I W v W: W v W ~ W IS n
connected. It follows from Theorem 7.14 of Chapter VII that 

f* : 1tq(W x W, W v W) ~ 1tq(J2 W, W) 

is an isomorphism for q ~ 3n - 2 and an epimorphism for q = 3n - 1. 
On the other hand, the identification map is a relative homeomorphism 

g: (W x W, W v W) ~ (W /\ W, *). The map 9 I W v W: W v W ~ {*} is still 
n-connected, and we deduce as before that g*: 1tq(W x W, Wv W)~ 
1tq(W /\ W) is an isomorphism for q ~ 3n - 2 and an epimorphism if 
q = 3n - 1. 

The maps f and 9 are related by the property: if u, v E W X Ware points 
such that f(u) = f(v), then g(u) = g(v). Because f and 9 are identification 
maps, there is a unique map h: (P W, W) ~ (W /\ W, *) such that 
h 0 f = g, and h is also a relative homeomorphism. As before, we conclude 
that h* : 1tq(P W, W) ~ 1tq(W /\ W) is an isomorphism for q ~ 3n - 2 and an 
epimorphism for q = 3n - 1. Let Ii: (JW, W) ~ (J(W /\ W), *) be the com
binatorial extension (cf. §2 of Chapter VII) of h. 

(2.1) Lemma The diagram 

1tq(J2W, W) +--- 1tq(JW, W) 

I h. In. 
1tq(W /\ W) ---+ 1tq(J(W /\ W)) 

in which the horizontal arrows denote injections, is commutative. The homo
morphism Ii* : 1tq(JW, W) ~ 1tq(J(W /\ W)) is an isomorphism for q ~ 3n - 2 
and an epimorphism for q = 3n - 1. 

The commutativity of the diagram follows from the fact that Ii is an 
extension of h. Since W /\ W is (2n - 1)-connected, (J(W /\ W), W /\ W) 
is (4n - 1)-connected, so that the injection 1tq(W /\ W) ~ 1tq(J(W /\ W)) is 
an isomorphism for q ~ 4n - 2, and the last statement follows from the 
properties we have already established. 0 

The following theorem is parallel, in an obvious sense, to the Homology 
Suspension Theorem (Theorem (1.5) of Chapter VIII). 
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(2.2) Theorem If W is an (n - 1 )-connected space, there is an exact sequence 

(2.3) 1t3n _ 2(W) -4 1t3n-l (S W) -4 1t3n- 1 (W * W) -4 ... 

E H P 
···-41tq(W) ~ 1tq+1(SW) ~ 1tq+l(W * W) ~ 1tq- 1(W) 

-4 ... 

The sequence (2.3) is obtained from the appropriate segment of the hom
otopy sequence of the pair (JW, W) by replacing the groups 1tq(JW), 
1tq(JW, W) by the isomorphic groups 1tq+ 1 (Sw), 1tq+ 1 (W * W)::::: 
1tq+ dS(W /\ W)) ::::: 1tq(J(W /\ W)). It is referred to, for lack of a better name, 
as the EHP-sequence. 

The homomorphism E is the suspension; the homomorphism H is the 
second Hopf-James invariantj2. The homomorphism P is more obscure; we 
shall identify it only in the special case W = sn. When this is the case, the 
EHP-sequence becomes 

E H P ... -41t (sn) ~ 1t (sn+l) ~ 1t (S2n+l) ~ 1t (sn) -4 ... q q+l q+l q-l 

When q ::;: 3n - 2, the double suspension 

E2: 1tq_l(S2n-l)-4 1tq+1(S2n+l) 

is an isomorphism, and we have 

(2.4) Theorem The composite po E2: 1tq_l(S2n-l)-41tq_l(sn) is described 
by 

There is a commutative diagram 

1tq(E2n, s2n-l) 
01 

------------., 1tq _ 1 (S2n - 1 ) 

klj 

1t (S2n+ 1) q+ 1 

in which the homomorphisms kl and k2 are induced by the characteristic 
map k : (E2n, S2n-l) -4 (J2sn, sn) for the 2n-cell in the CW-complex J(sn), hI 
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by the identification map h: (J2S", SO) ---> (S2", *), fil by the combinatorial 
extension fi: (JS", SO) ---> (JS 2", *) of h, ¢ is the standard isomorphism, il and 
i2 are injections, and Ob O2 , 03 are the boundary operators of the appro
priate homotopy sequences. The map h 0 k has degree 1, and 01 is an iso
morphism; hence hI 0 kl 0 all = E. We have seen that ¢ 0 i2 = E, and it 
follows that po E2 = k2. Now k2(ct} = [3 0 ct, where [3 E 1t2"~ l(sn) is the 
homotopy class of the map k I S2" ~ 1 : S2n ~ 1 ---> sn. The map k can be 
factored: k = f 0 k', where k' : (E2n, s2n~ 1) ---> (sn X sn, sn V sn) is the charac
teristic map for the 2n-cell in the CW -complex sn x sn. Thus k' I s2n ~ 1 repre
sents the Whitehead product [I~, I;]. Butf I sn v Sn is the folding map V, and 
therefore f 0 k' I s2n ~ 1 represents [In, In]. 0 

(2.5) Corollary If y E 1tq ~ n ~ 1 (Sn ~ 1), then 

p(En+2y) = [In, Ey]. 

By Theorem (8.18) of Chapter X, 

[In' Ey] = [In 0 In, In 0 Ey] = [In 0 Eln~b In 0 Ey] 

= [In' In] 0 E(ln~l.t\y) = [In, In] 0 Eny 

= PEn + 2 y. 

Since q ::;; 3n - 2, q - n - 1 ::;; 2n - 3, and therefore 

En+2: 1tq~n~l(sn~l)_"""* 1tq+l(s2n+l) 

o 

is an epimorphism. Hence every element in Ker E = 1m P has the form 
[In' ~] for some ~. But we have seen (Theorem (8.20) of Chapter X) that the 
suspension of any Whitehead product is zero. Hence 

(2.6) Corollary If q ::;; 3n - 3, the kernel of E : 1tq(sn) ---> 1tq + 1 (sn + 1) is gen
erated by all Whitehead products [ct, [3] with ct E 1tr (sn), fJ E 1ts (S"), r + s = 
q + 1. 0 

(2.7) Corollary If n::::: 3, the group 1tn+l(sn) is a cyclic group of order 2, 
generated by the (n - 2)-fold suspension 17n of the homotopy class of the Hopi 
map. 

Let us recall that 1t3(S2) is the infinite cyclic group generated by 172. The 
sequence 

is exact, and E: 1tn + 1 (sn) ---> 1tn + 2 (sn + 1) is an isomorphism for n::::: 3. 
Moreover, by Corollary (2.5), P(ls) = [12' 12]. Now Ho : 1t3(S2) ---> Z is an 
isomorphism and Ho(ls) = 2 by Theorem (2.5) of Chapter XI. Hence 
1m P = 21t3 (S2), 1t4 (S3) ~ Cok P ~ Z2· 0 
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We can also calculate 1tn+2(sn), with the following result. 

(2.8) Theorem The group 1tn+ 2(sn) is a cyclic group of order two, generated by 
the composite '1n 0 '1n+ 1 (n ~ 2). 

First recall that, by Corollary (8.13) of Chapter IV, the Hopf fibration 
p: S3 .... S2 induces isomorphisms p* : 1tq(S3) .... 1tq(S2) for all q ~ 3. In parti
cular, p* : 1t4(S3) ~ 1t4(S2). But '12 is the homotopy class of p, and 1t4(S3) is 
the cyclic group of order two generated by '13' Hence 1t4(S2) ~ Z2 is gen
erated by P*('13) = '12 0 '13' 

Next we apply Theorem (2.2) with W = sn, n = 2, to obtain the exact 
sequence 

E H P 
1t4(S2) -----+ 1tS(S3) -----+ 1ts(SS) -----+ 

E 
1t3(S2) --+ 1t4(S3) -----+ 0 

We have already calculated E: 1t3(S2) .... 1t4(S3); its kernel is generated by 
P(ls) = ±2'12' Since 1ts(SS) and 1t3(S2) are infinite cyclic groups, P is a 
monomorphism and therefore H = 0 and E: 1t4(S2) .... 1ts(S3) is an epimor
phism. But we have seen (Theorem (8.9) of Chapter VIII) that '1n 0 '1n+ 1 -10 
for all n ~ 2. Since E('12 0 '13) = E'12 0 E'13 = '13 0 '14, we deduce that E is an 
isomorphism, so that 1tS(S3) ~ Z2 is generated by '13 0 '14' 

Again by Theorem (2.2), with W = S3, we have the exact sequence 

P E H 
1t7(S7) -----+ 1tS(S3) -----+ 1t6(S4) --+ 1t6(S7) = O. 

Thus E is an epimorphism whose kernel is generated by P(17)' By Theorem 
(2.4), P(h) = [13' 13]; but S3 is an H-space, and therefore the Whitehead 
product [/3' 13] vanishes, by Corollary (7.8) of Chapter X. Thus E : 1ts(S3) ~ 
1t6(S4). But E:1tn+2(sn)~1tn+3(sn+l) for n~4, by the Freudenthal 
theorem. Hence Theorem (2.8) is true in all cases. 0 

The group 1tn + 1 (sn) was calculated by Freudenthal [1]. The results on 
1tn+2(sn) were found independently by Pontryagin [2] and myself [4]. 

3 The Suspension Category 

Let X, Y be spaces in the category .X·*. Then we can iterate the process of 
suspension to obtain a sequence 

(3.1) 
[X, Y] ~ [SX, SY] ........... 

[snx, sny] ~ [sn+ 1 X, sn+ 1 Y] .... · .. 
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While [X, Y] is just a set with distinguished element (the homotopy class of 
the constant map of X into the base point of Y), it follows from the discus
sion of Chapter III that [sn X, sn Y] has a natural group structure for every 
n :::c: 1, and this group is even abelian if n:::c: 2. Moreover, the map 
E: [snx, sny] -> [sn+ lX, sn+ 1 Y] is a homomorphism if n:::C: 1. Thus the 
sequence (3.1) is essentially a sequence of abelian groups and homomor
phisms, and so has a direct limit group 

{X, Y} = lim [snx, sny]. 
n 

The elements of {X, Y} are called S-maps of X into Y. 
Generalizing the above procedure slightly, we obtain a graded group 

{X, Y}*; its component of degree m is defined by 

{X Y} = lim [sm+nx snY]. , m ~ , , 
n 

thus, if m :::c: 0, 

while 

{X, Y}-m = {X, smy}. 

The elements of {X, Y}m are called S-maps of degree m. 
The above construction is well-behaved with respect to the composition 

product. In fact, it follows from Corollary (5.26) of Chapter III that the 
composition operator induces an operation 

[Y, Z]x [SX, Y] -> [SX, Z] 

which is additive in the second factor, as well as an operation 

[SY, Z] x [X, Y] 1 x E. [SY, Z] x [SX, SY] -> [SX, Z] 

which is additive in the first. Moreover, the suspension operator commutes 
with composition, and therefore induces, for any spaces X, Y, Z an 
operation 

(3.2) {Y, Z} x {X, Y} -> {X, Z}. 

It follows by an easy argument from the above remarks that 

(3.3) Theorem The composition operation (3.2) is biadditive. D 

Thus the category yo whose objects are spaces in .ff * and for which 
YO(X, Y) = {X, Y} is preadditive [MacL, p. 250]' The category yo is called 
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the (ungraded) suspension category. The full subcategory of Y whose objects 
are the finite CW -complexes will be of particular importance later; it is the 
Spanier-Whitehead category yo. 

Even more is true: 

(3.4) Theorem The categories Y and Yo are additive. 

It suffices to show that these categories admit sums. For then a simple 
argument shows that the sums satisfy the axioms for a biproduct, and these 
are all that are needed in order that the category in question be additive 
[MacL, ibid.]. But [X v Y, Z] = [X, Z] x [Y, Z] and S(X v Y) = SX v SY; 
it follows that {X v Y, Z} ~ {X, Y} x {Y, Z} and therefore the operation 
X v Y defines a sum in the category Y, as well as in the category % * . And if 
X and Yare finite CW-complexes, so is X v Y, so that the sum exists in Yo 
as well as in Y. 0 

A consequence of the above remarks is 

(3.5) Theorem For any space X, {X, X}* is a graded ring fll" * and,for any space 
Y, {X, Y}* is a graded right fll"*-module fll"*(Y) and {Y, X} a graded left 
fll" *-module fll"*(Y). 0 

Of special importance is the case X = So. The ring 0"* = {SO, SO}* is the 
stable homotopy ring, while O"*(X) = {SO, X}* and O"*(X) = {X, SO}* are the 
stable homotopy and cohomotopy modules, respectively, of the space X. Let us 
observe that the group (J p is the direct limit of the sequence 

7rp+ 1 (S1) --+ ... --+ 7rp+k(Sk) --+ ... , 

while the q-th stable homotopy group (Jq(X) is the direct limit of 

7rq(X) --+ 7rq+1(SX) --+ ... --+ 7rq+k(SkX) --+ .... 

If ~ EO (J p and a EO (J q(X), then, for sufficiently large k, a has a representative 
f: sq+k --+ SkX and ~ a representative g: Sp+q+k --+ sq+k. The element!Y. . ~ EO 

(J p+q(X) is then represented by the map fog: sp+q+k --+ SkX. Similarly, the 
q-th stable cohomotopy group (Jq(X) of X is the direct limit of the sequence 

[X, sq] --+ [SX, sq + 1] --+ ... --+ [Sk X, sq +k] --+ ... ; 

if ~ EO (J P' {3 EO (Jq(X), there are representatives 

h: SkX --+ sq+k, 

g: sq+k --+ sq- p+k 

of {3, ~, respectively, and ~ . {3 EO (Jq- P(X) represented by the composite map 
go h: SkX --+ sq-p+k. (Remark: we have written the component of degree 
- p of (J*(X) as (JP(X), in accordance with a general" sign-changing" con-
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vention which consists in changing signs when we convert subscripts to 
superscripts. This allows us to economize on notation; otherwise we would 
need a different symbol like Lp(X) for the homotopy group {X, SO}p to avoid 
confusion with the homotopy group aAX) = {SO, X}p. A similar remark 
applies to the modules fll' *(Y), fll'*(Y». 

The graded ring fl£ * is always associative (because the product is defined 
in terms of the operation of composition), but need not be commutative (in 
the graded sense; i.e., af3 = (-1 YQf3a for elements a, f3 of degrees p, q, respec
tively). However, 

(3.6) Theorem The graded ring 0'* is commutative. 

For if'; E akl 1] E 0'1 are represented by a E 1!p+k(SP), f3 E 1!q+I(Sq), respec
tively, then 1] 0 ,; is represented by £P f3 0 Eq + la and'; 0 1] by Eqa 0 £P +k f3. But 
the elements differ, according to Theorem 8.12 of Chapter X, by the sign 
(-1t~ D 

At this moment, we do not have much explicit information about 0'* . In 
fact, with the machinery developed so far, we can only prove 

(3.7) Theorem The group 0'0 is an infinite cyclic group generated by the 
S-class I of the identity map. The group a 1 is a cyclic group of order 2 gen
erated by the S-class 1] of the H opf map S3 ---> S2. The group 0'2 is a cyclic group 
of order two generated by 1]2. 

The first statement follows from the fact that the group 1!n(S") is the 
infinite cyclic group generated by the homotopy class In of the identity map 
for all n :2: 1, the second from Corollary (2.7), and the last from Theorem 
(2.8). D 

Remark. If a E {X, Y} and f3 E {Y, Z}, we may regard f3 0 a as a function of 
a or of f3; thus we may define 

obtaining maps 

a* (f3) = f3* (a) = f3 0 a, 

a* : {Y, Z} ---> {X, Z}, 

f3* : {X, Y} ---> {X, Z}. 

Associativity of ordinary composition implies that of composition of S
classes. Thus, for fixed Z, the correspondence X ---> {X, Z} defines a (contra
variant) functor TZ::f ---> ,sci: similarly, for fixed X, the correspondence 
Y ---> {X, Y} defines a (covariant) functor Tx::f ---> d. In particular, the 
stable homotopy (cohomotopy) groups may be regarded as functors 
a p : :f ---> d(aP : :f ---> ,d). 
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Having calculated the groups O"iSO) = O"q for q = 0, 1,2, let us attempt to 
calculate these groups for an arbitrary space X. 

(3.8) Lemma If q < 0, then 0" q{X) = ° for every space X. 

If k ~ 0, SkX is (k - i)-connected, and therefore nq+k{SkX) = 0. Hence 
O"iX) = limk nq+k{SkX) = 0. 0 

For any space X, there is a commutative diagram 

E 
------+ 

------+ 
s 

in which E and s are the suspension operators in homology and homotopy, 
respectively, while p is the Hurewicz map. Hence there is a commutative 
diagram 

nn(X) 
Eo 

nn+ 1 (SX) 
E1 n (S2 X) -> ... ~ ------+ n+2 

(3.9) \po \P1 \P2 
Hn{X) ----4 Hn+1(SX) 

So S1 
, H (S2X)->··· n+2 

The direct limit of the top line is the stable homotopy group O"n{X); as the 
homomorphisms Sk are all isomorphisms, we may identify the direct limit of 
the bottom line with Hn{X). Thus the commutative diagram (3.9) induces a 
homomorphism p : O"n{X) -> Hn(X), which we may still term the Hurewicz 
map; and there is a commutative diagram 

There is a stable analogue of the Hurewicz Theorem: 

(3.10) Theorem If X is an (m - 1 )-connected space, then O"n{X) = ° for n < m 
and p : O"n{X) -> Hn{X) is an isomorphism for n = m and an epimorphism for 
n=m+1. 
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For if X is (m - I)-connected, then SkX is (m + k - I)-connected, so that 
7rn+k(SkX) = ° for n < m. Hence the group O"n(X) = limk 7rn+k(SkX) is also 
zero. If n = m, the map Pk is an isomorphism for k sufficiently large, and 
therefore p is an isomorphism; and if n = m + 1, Pk is an epimorphism for k 
large, so that p is an epimorphism. 0 

(3.11) Corollary For any space X in :Y{' 0, O"o(X) ~ Ho(X). o 
The determination of 0" 1 (X) is more difficult. We first observe that, if 11 is 

the non-zero element of 0" b then the map rt. -+ rt. • 11 determined by the 
module structure of O"*(X) over 0"* is a homomorphism f[:O"m(X)-+ 
O"m+1(X). Since 211 = 0, f[(20"m(X» = ° and therefore f[ in turn induces a 
homomorphism 

(3.12) Theorem Let X be an (m - 1 )-connected space (m ;::: 3). Then there is 
an exact sequence 

(3.13) 
P2 , Hm+2(X) _~ 7rm(X)j27rm(X) _11_--+ 

7rm+1(X) P1 , Hm+1(X)-+O, 

where P1 and P2 are the Hurewicz maps. 

The sequence (3.13) is due to the present author [3]' A comparable se
quencefor n = 2, with the group 7rm(X) ® Z2 replaced by the group r(7rm(X) 
is due to J. H. C. Whitehead [7]. The homomorphism b is called the second
ary boundary operator. 

To prove Theorem (3.12), let us attach (m + I)-cells to the space X in 
order to kill the group II = 7rm(X); specifically, let J be a system of genera
tors for II, let f: VaE J S; -+ X be a map such that f I S; represents rt., and let 
X* = T f be the mapping cone off Let F be a free abelian group having a 
basis {xa I rt. E J} and let p: F -+ II be the homomorphism such that 
p(xa) = rt.. Let R be the kernel of p, i: R c+ F, so that there is an exact 
sequence 

° --.... , R --.... , F p ,II --.... , 0. 

There is a commutative diagram (Figure 12.1) in which the top line is 
obtained from a portion of the homotopy sequence of the pair (X*, X) by 
tensoring with Z2 , the middle line is a portion of the homotopy sequence of 
(X*, X), and the bottom line a portion of the homology sequence of 
(X*, X). (Warning: the top line is not necessarily exact). Groups labelled 
with an asterisk are those of X*, groups labelled with an obelisk are those 
of the pair (X*, X), while the groups not otherwise labelled are those of X. 
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The homomorphisms Pk' pt, 0"1 are Hurewicz maps (absolute or relative); 
while the homomorphisms 11t, 11t, are induced by composition with the 
generator 11m +k E 11:m +k + 1 (S" +k), and 11 t by composition with the generator 

I (Em + k sm + k - 1) ~ (sm + k - 1 ) 11m+k E 11:m+k+ 1, ~ 11:m+k . 
The space X being (m - 1 )-connected, the space X* is m-connected and 

the pair (X*, X) m-connected. Since the relative CW-complex (X*, X) has 
no cells in dimensions + m + 1, the groups H; are zero for q + m + 1; 
hence i~ is an isomorphism and i'l a monomorphism. Since X and X* are 
I-connected, the Hurewicz maps Po, pt, and pI are isomorphisms. Easy 
diagram-chasing shows that PI is an epimorphism. 

We can use the Homotopy Map Excision Theorem (Theorem 7.14 of 
Chapter VII). In fact, the simultaneous attaching map is a relative homeo
morphism h: (E, S)--+ (X*, X), where E = VaEl E;+l, S = VaEl S;. The 
pair (E, S) is m-connected, and the map I = hiS: S --+ X is m-connected. 
Therefore I* : 11:q(E, S) --+ 11:q(X*, X) is an isomorphism for q < 2m. On the 
other hand, 

~ EB 11:q(E~+ \ S~) ~ 11:q(Em, sm-1) ® F, 
'EJ 

provided again that q < 2m, so that there are no Whitehead product terms. 
In particular, 11:~+2 ~ 11:m+2(Em+1, S")®F ~ 11:~+1 ®Z2; clearly the iso
morphism is given by composition with '1:n + l' Hence '1 i is an isomorphism. 
Another diagram chase now allows us to conclude that Ker PI = 1m '10' 

We next observe that there is an exact sequence 

(3.14) 

r:t. * f3 110 i 1 * n!+ 1 ® Z2 EB 11:m+2 ---+ 11:m+2 ---+ 11:m ® Z2 ---+ 11:m+ 1 ---+ 11:m+ 1 

where 

:x(y, z) = -'1b + i 2 z, 

(ef. Exercise 1, Chapter V). The sequence (3.14) can be imbedded in a com
mutative diagram 

(3.15) 

11::+ 1 ® Z2 EB 11:,"+2 ~ 11::+2 
'10 

-----+ 

pi 

where V(y, :) = P2(Z). Applying what we have already proved to the m-
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connected space X*, we see that p! is an epimorphism and Ker p! = 1m '1!
We then verify that Ker p! c Ker p. Hence there is a homomorphism 
P' : H!+ z -+ 1!m @ Zz such that P' 0 p! = p. Let 

Then 1m b = 1m P' = 1m p = Ker '10' Moreover, the kernel of b is mapped 
by the isomorphism i'z on 

Hence 

Ker P' = p!(Ker P) = p!(lm IX) = Im(p! 0 IX) = Im(i'z 0 y) 

= i'z(lm y). 

Ker b = 1m y = 1m pz . 

Finally, we observe that 

1m '10 = Ker PI (by what we have already proved) 

= Ker ii (since p! and i~ are monomorphisms) 

and that PI is an epimorphism. Thus we may replace the homomorphism 
ii : 1!m+I -+ 1!!+1 of (3.14) by 

PI 
1!m+I ---+ Hm+I ---+ O. 

This completes the construction of the sequence (3.13) and the proof of its 
exactness. D 

(3.16) Theorem Let X, Y be (m - I)-connected spaces (m?: 3), and let 
f: X -+ Y. Then the diagram 

P2 ( ) b r; Pi 
1tm + 2(X) ---+ Hm+2 X ---+ 1tm(X)®Z2 -------+ 1tm+i(X) ------> H .. +i(X) ---+ 0 

is commutative. 

Only the second square from the left presents a problem. The obstruc

tions to extending the composite X ~ Y C+ y* over X* all vanish, so 
that f has an extension f* : (X*, X) -+ (Y*, Y). But f* maps the diagrams 
(3.14), (3.15) for X into the corresponding ones for Y, and the desired rela
tion follows. 

We can make the homomorphism b more explicit. Let M be the 
(m - 2)-fold suspension of the complex projective plane PZ(C); M can be 
regarded as a CW-complex with an n-cell sm and an (m + 2)-cell whose 
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boundary is attached to the n-cell by the generator "1m E 1tm+ 1 (sm). If m ~ 3, 
M is a suspension and therefore [M, X] is a group. Consider the sequence 

sm+l ~sm ~ M ~ sm+2 

where i is the inclusion and p collapses sm to a point. Thus there is an exact 
sequence 

(3.17) 

Let z be the generator of the infinite cyclic group Hm+2(M) which is mapped 
by p* into the positive orientation of sm+2. Then a kind of Hurewicz map p 
is defined by 

for any g : M ---> X; the easy verification of 

(3.18) Lemma The map p: [M, X] ---> H m + 2 (X) is a homomorphism 

is left to the reader. D 

(3.19) Lemma The diagram 

[M, X] 

is commutative, and p is an epimorphism (the homomorphism q is just reduction 
mod 2). 

Only the middle square needs to be checked. The diagram is natural, and 
therefore we may use the method of the universal example. Thus we may 
assume M = X and have only to prove that ql{l) = bp(I), where I is the 
homotopy class of the identity map. Then P(I) = z. The space X* has the 
homotopy type of sm + 2. The homomorphism b is defined with the aid of 
the commutative diagram 

1t (sm + 2) m+2 
p 

---+ 

H (sm+2) m+2 
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Consider the diagram of Figure 12.1, and note that 1Im+ 1 = 1I~+ 1 = O. In this 
case j2 is an epimorphism and therefore fJ maps the generator Im+2 of 1I~+2 
into the non-zero element 10 of 1Im ® Z2 ~ Z2 . It follows that b(z) = 10. But 
clearly ql( I) = 10· D 

The fact that p is an epimorphism now follows from the Five-Lemma. 
Note that not every element of Hm+2(X) need be spherical, but each element 
has the reasonably simple formf*(z) for some mapf: M --> X. 

Another consequence of Theorem (3.12) is 

(3.20) Theorem Ifm ~ 3, Hm+2(II, m) ~ II ® Z2. 

For if X = K(II, m), then 1Im+ l(X) = 1Im+2(X) = 0; by exactness of(3.13), 
b : Hm+2(X) ~ II/2II. D 

(3.21) Corollary If m ~ 3, Hm+2(II, m; G) ~ Hom(II ® Z2, G). Ii; in addi
tion, II or G has exponent two, then Hm+2(II, m; G) ~ Hom(II, G). 

For Hm+ 1 (II, m) = 0 (Theorem 7.S of Chapter V), and therefore the ex-
pected "Ext" term vanishes. D 

The sequence (3.13) determines the group 1Im+l(X) up to a group exten
sion; in fact, from (3.13) we obtain the short exact sequence 

0--> Cok b --> 1Im+ 1 (X) --> Hm+ 1 (X) --> 0 

so that 1Im + 1 (X) is an extension of Hm + 1 (X) by the group Cok b, which, of 
course is determined by the homomorphism b. In §4 we shall show that the 
knowledge of a certain cohomology class of X determines both the homo
morphism b and the above extension. 

Consider now the group Hm+2(II, m; II ® Z2). The homomorphism 
b:Hm+2(II, m)-->II®Z2 define an element vEHm+2(II, m; II®Z2); 
because b is an isomorphism, v ":f O. The element v in turn determines a 
cohomology operation (}: Hm( ; II) --> Hm+2( ; II ® Z2). If II = Z2, the 
group Hm+2(II, m; II ® Z2) ~ Hom(Z2' Z2) is cyclic of order two. But we 
have seen in §6 of Chapter VIII that the element Sq2 bm ":f 0, and it follows 
that when II = Z2, (} = Sq2. Therefore it is natural to christen the above 
operation Sq;, for any group II. 

(3.22) Theorem The operations Sq;, are the components of a stable operation 
Sq2. 

We first observe that the suspension operators in homology and homo
topy induce a map of the sequence (3.13) for X into that for Sx. Indeed, 
E : 1Im(X) ~ 1Im+ 1 (SX), and therefore we may take the attaching maps for the 
cells of (SX)* to be the suspensions of those for X*; thus we may assume 
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(SX)* = SX*. Therefore the suspension operators map the homology and 
homotopy sequences for the pair (X*, X) into the corresponding sequences 
for the pair (SX*, SX); because the Hurewicz map commutes with suspen
sion and the homotopy operation defined by the '1n is stable, the whole 
diagram of Figure 12.1 for the pair (X*, X) is mapped into that for the pair 
(SX*, SX). It follows that the diagram 

(3.23) 

n.,+2(X) -----+ H.,+2(X) 
b 

nm(X)@Z2 nm+l(X) Hm+l(X) ----> 0 ----> ~~ -----
1E Is. 1E@1 IE 1 s. 

is commutative. 
If X = K(ll, m), then Hm+ l(X) = Hm+2(SX) = 0, so that the homomor

phisms b of the diagram (3.23) determine unique elements 

Vm E Hm+2(x; 1l/211) 

V:.. + 1 E Hm+3(sx; 1l/2II), 

and commutativity of (3.23) implies that S*V:"+l = Vm . If k: SK(II, m)---+ 
K(ll, m + 1) is a transfer, then h*vm + 1 = v;" + b and it follows that 
O'*Vm + 1 = Vm , as desired. 0 

4 Group Extensions and Homology 

In the preceding section we determined the second non-vanishing stable 
homotopy group of a space X up to a group extension. This phenomenon 
occurs quite often in algebraic topology; the group C to be determined is 
placed in an exact sequence 

a p 
A ------> B ----4 C ----+ D ------> E, 

and this determines C up to a group extension ( E Ext(Ker p, Cok a). To 
ascertain the algebraic structure of C it remains to determine the extension (. 
Experience shows that in many cases the information necessary to determine 
( is carried by a certain cohomology class u. In this section we shall make 
this connection explicit; as an application we show how this machinery 
applies to the calculation of the group O'm+ 1 (X) for an (m - 1 )-connected 
space X. 

Let us recall some facts from elementary homological algebra. There are 
two customary ways of defining the functor Ext, one via short exact se-
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quences, the other via resolutions. Let A, B be abelian groups; then two short 
exact sequences 

(4.1) 

(4.1') 

i P o ~ B -----+ E -----+ A ~ 0, 

O~B ~ E' -L A~O, 
are said to be equivalent if and only if there is a homomorphism h : E ~ E' 
(necessarily an isomorphism) such that the diagram 

E 

Y""Z 
B h A 

~A 
E' 

is commutative. Then Ext(A, B) is the set of equivalence classes of all short 
exact sequences (4.1). This defines Ext(A, B) as a set; it becomes an abelian 
group under the Baer multiplication (cf. Ex. 2, below). 

The second definition makes use of the notion of free resolution of A; this 
is a short exact sequence 

j q o ~ R -----+ F -----+ A ~ 0 

with F (and therefore R) free abelian. Then j induces a homomorphism 

j* = Hom(j, 1): Hom(F, B) ~ Hom(R, B), 

and we may define Ext(A, B) to be the cokernel of j*. 
The first definition has the advantages of being simple and conceptual, 

and the disadvantage that the group structure is not at all perspicuous. And, 
while the group structure is built into the second definition, it suffers from 
the apparent lack of naturality in the choice of a free resolution of A. 

The two definitions, of course, are equivalent; a short exact sequence (4.1) 
and a homomorphism g : R ~ B determine the same element of Ext(A, B) if 
and only if there is a commutative diagram 

j 
R -----+ 

B ---
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Each element e E Ext(A, B) and each positive integer m determines a 
homomorphism 

em : rnA --t B/mB 

as follows. Consider the diagram 

p m' A <-< --'-- E -------> E <-< -- B, 

where m' IS the operation of multiplication by m. Then 
i-I 0 (m·) 0 p-I: A~B is an additive relation F, and one verifies that 
Dom F = m A and Ind F = mB. Thus F determines a homomorphism em as 
above. 

The correspondence e --t em is easily verified to be a homomorphism 
r m : Ext(A, B) --t Hom(m A, B/mB); the homomorphisms r m determine a 
homomorphism 

00 

r: Ext(A, B) --t n Hom(mA, B/mB). 
m=2 

Evidently the kernel of r consists of all elements e for which B is a pure 
subgroup of E. Therefore r is a monomorphism (and hence e is determined by 
the homomorphisms em) if one of the following two conditions is satisfied 
[K, Vol. I, pp. 178-180]: 

(1) A is a direct sum of cyclic groups; 
(2) B is a torsion group of finite exponent. 

In particular, r is a monomorphism whenever A is finitely generated. 

Let C be a free graded chain complex. Then the Universal Coefficient 
Theorem asserts the existence of an isomorphism 

H"(C; G) ~ Hom(Hn(C), G) EEl Ext(Hn_I(C), G). 

However, this isomorphism is not natural, depending as it does on the 
choice of a subgroup Pn of Cn complementary to the group of cycles Zn(C), 
What one actually has is a splittable short exact sequence 

(4.2) 
A Jl O--tExt(Hn_I(C), G) -------> H"(C; G) -------> Hom(Hn(C), G)--tO, 

which is natural with respect both to chain maps <p: C --t C' and to 
coefficient group homomorphisms f: G --t G'. 

Let u E Hn( C, G). If <p: Cn --t G is a cocycle representing u, then 
<p I Zn(C) : Zn(C) --t G maps the group Bn(C) of bounding cycles into zero and 
thereby induces a homomorphism u* = Jl(u) : Hn(C) --t G. 



564 XII Stable Homotopy and Homology 

Let e E Ext(Hn~ l(C), G). The group Hn~ l(C) has the convenient 
resolution 

o --> Bn~ l(C) --> Zn~ l(C) --> Hn~ l(C) --> 0; 

let ¢ : Bn~ 1 (C) --> G be a homomorphism corresponding to e. Let a' : Cn--> 

Bn ~ 1 (C) be the epimorphism defined by the boundary operator of C. Then 
¢ 0 a' : Cn --> G is a cocycle, representing the element A(e) E Hn(c; G). 

Let U E Hn( C; G), and let f: G --> G' = Cok u. be the projection. In view 
of the naturality of the sequence (4.2), there is a commutative diagram 

Ext(Hn~I(C), G) 
A 

W(C; G) P Hom(Hn(C), G) -----+ -----+ 

jf2 j fo j fl 
Ext(Hn~ I (C), G') -----+ H"(C; G') -----+ Hom(Hn(C), G'). 

X p' 

where the J; are induced by f and the upper (lower) line is (4.2) for the group 
G (G'). Then 

fl'fo(U) = flfl(U) =f 0 u. = 0, 

and therefore there exists ut E Ext(Hn~ I(C), G') such that X(ud = j~(u); the 
element ut is unique because A' is a monomorphism. 

Thus each element U E Hn(c; G) determines canonically a pair of ele
ments (u., ut ): 

U. : Hn(C) --> G, 

ut E Ext(Hn~I(C), Cok u.). 

The operations U --> u. ' U --> ut have certain naturality properties, which we 
now explain. First, let ¢ : C --> C be a chain map. Then there is a commuta
tive diagram 

H"(C; G) 
fl' 

Hom(Hn(C), G) -----+ 

¢*j j¢t 
Hn(c; G) -----+ Hom(Hn(C), G). fl 

Clearly, 

(4.3) Theorem Ifu E Hn(c; G), then the element (¢*u)* = fl(¢*U) is given by 

fl(¢*U) = ¢!fl'(U) = u* 0 ¢* 
where ¢* : Hn(C) --> Hn(C) is the homomorphism induced by ¢. 
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On the other hand, Im(u* ' 4>*) elm u*; let 1\: Cok(u* f~) ---> Cok u* 
be the projection. By the naturality of the functor Ext, there is a commuta
tive diagram 

Ext(Hn _ 1(C), Cok(u. " I.)) 

Ext(Hn_ 1(e), Cok(u., I.)) 

and we have 

(4.4) Theorem The elements 

ut E Ext(Hn_t(C), Cok u*), 

Vt = (4)*u)t E Ext(Hn_ de), Cok(u* u .f~)) 

are related by 

D 

Let e be a free chain complex, m a positive integer. Then the short exact 
sequence 

m· Pm 
0-> Z ----+ Z ----+ Zm -> 0 

of coefficient groups gives rise to a long exact sequence 

Pm m· P~ 
••• ---> H (C Z ) ----+ H (e) ----+ H (e) ----+ H (C Z ) ---> •••. n+ 1 , m n n n ., m , 

the image of the Bockstein operator Pm is m Hn( e). 
For any group G, the group G/mG is a Zm-module, and there is a natural 

homomorphism 

11m: W(e; G/mG) -> Hom(Hn(e; Zm), G/mG). 

Let Pm: G ---> G/mG be the projection, P~: W(e; G) ---> Hn(e; G/mG) the 
induced coefficient group homomorphism. If u E Hn(e; G), let 
u;=l1mp~(u):Hn(e;Zm)--->G/mG. Let ut':mHn-t(e)->G'/mG' be the 
homomorphism em determined by the extension u t E Ext(Hn_ t (e), G'), and 
letfm: G/mG ---> G'/mG' be the homomorphism determined by.f: G -> G'. 
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(4.5) Theorem For each u E Hn(c; G), the diagram 

Hn(C) 
P~ 

Hn(C; Zm) 
Pm 

mHn-l (C) ~ ---
ju. j u: j u't 
G • G/mG 

Pm 
• G'/mG' 

fm 

is commutative. 

Commutativity of the left-hand square is easy, and is left to the reader. To 
prove commutativity of the right-hand square, let x E Cn be a chain such 
that x = Pm(x) represents a given homology class ~ E Hn(C; Zm); thus 
ax = mc with c E Zm-l(C); the cycle c represents Pm(O E mHn-l(C)' Let 
4> : Cn -> G be a representative of u; then f 0 4> : Cn -> G' annihilates the 
group of cycles, and therefore there is a unique homomorphism 
tj; : Bm - 1 (C) -> G' such that tj; 0 a' = f 0 4>. The homomorphism tj; corre
sponds to the extension u t ' so that there is a commutative diagram 

o -------. G' -----. E 

I 
o --- Bn - 1(C) --+ Zn-l(C) --- Hn - 1(C) --- 0 

whose top line is the extension corresponding to u t . The element 
ax E Bn- 1(C)/mBn- 1(C) is the image of Pm(~) under the homomorphism em 
corresponding to the bottom line of the diagram, and therefore tj;(ax) = 
f(4)(x)) = fm Pm(4)(x ». Thus 

u'tPm(~) = fmPm(4)(x)). 

On the other hand, p~(u) is represented by the cochain Pm 0 4>: Cn -> G/mG, 
and therefore u:(O = Pm(4)(x)); hence 

fmu:(O = fmPm(4)(x)). 0 

(4.6) Corollary If G has no divisible subgroups, then u. is determined by the 
homomorphisms u: (m = 2,3,4, ... ). If Hn - 1 (C) is a direct sum of cyclic groups 
(in particular, if Hn- 1 (C) is finitely generated), then ut is determined by the u't. 

o 
Let C, D be free chain complexes, 4> : C -> D a chain map; for simplicity 

we shall assume 4> has degree O. The mapping cone of 4> is the (free) chain 
complex E such that 

a(c, d) = (ac,f(c) - cd). 
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If I : D -+ E, n : E -+ C are defined by 

l(d) = (0, d), 

n(c, d) = c, 
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then I is a chain map of degree 0 and n a chain map of degree - 1. The short 
exact sequence 

I n o -------+ D -------+ E -------+ C -------+ 0 

gives rise to the exact homology sequence 

(4.7) 
In+ 1 nn cP 

·"-+Hn+l(D) -------+ Hn+l(E) -------+ Hn(C} ~ Hn(D)-+··· 

The sequence (4.7) in turn gives rise, for each n, to a short exact sequence 

(4.8) 0 -+ Cok cPn -+ Hn(E) -+ Ker cPn-l -+ 0, 

representing an element of Ext(Ker cPn-l, Cok cPn). We proceed to show 
how the above considerations lead to a description of this extension. 

A cohomology class in E Hn(D; Hn(D)) is said to be unitary if and only if 
the homomorphism i~ is the identity. (Then Cok i~ = 0, so that it = 0 is 
uninteresting ). 

Let in E Hn(D; Hn(D)) be a unitary class, and let un = cP*in E 

W(C; Hn(D)). Then u~ = cPn, by (4.3), so that ut E Ext(Hn-1(C}, Cok cPn). 
The inclusion j: Ker cPn-l Ci Hn-1(C} induces a homomorphism j*: 
Ext(Hn_1(C), G) -+ Ext(Ker cPn-l, G). 

(4.9) Theorem The element of Ext(Ker ¢n- b Cok cPn) defined by the short 
exact sequence (4.8) is - j*(ut). 

Let OJ: Dn -+ Hn(D) be a cocycle representing the unitary class in; thus 
OJ I Zn(D) is the projection: Zn(D) -+ Hn(D). The composite 

cP OJ f 
Cn -------+ Dn -------+ Hn(D) -------+ Cok cPn 

annihilates the subgroup Zn(C}, thereby inducing a homomorphism 
lj; : Bn _ 1 (C) -+ Cok cPn such that lj; 0 8' =: f 0 OJ 0 cP; since OJ 0 cP represents 
un = cP*in, the homomorphism lj; represents ut. 

The free resolution 

0-+ Bn-1(C) -+ Zn-l(C) -+ Hn-1(C) -+ 0 

determines a free resolution 

(4.10) 

here Qn-l = {z E Cn- 1 18z = 0 and cP(z) E Bn-1(D)}. The free resolution 
(4.10), together with the homomorphism -lj;: Bn-1(C) -+ Cok cPn, repre-
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sents the element - j*(ut ). To prove Theorem (4.9), then, it behooves us to 
exhibit a commutative diagram 

(4.11) 

° ----. Bn- 1(C) --+ Qn-l --+ Ker ¢n-1 --+ ° 

° --+ Cok ¢n --+ Hn(E) --+ Ker ¢n-1 -----+ ° 
whose upper line is (4.10) and whose lower line is (4.8). 

Let K be the kernel of w; then 

Dn = K + Zn(D), 

K n Zn(D) = Bn(D). 

Since a' : Dn --> Bn- 1 (D) is an epimorphism and a'Zn(D) = 0, the homomor
phism a' maps K upon the free group Bn - 1(D), and therefore there is a 
homomorphism p : Bn _ 1 (D) --> Dn such that 1m p c K and a' 0 p = 1. 

If Z E Qn-1, then az = ° and ¢(z) E Bn-1(D). Then (z, p¢(z)) is a cycle of 
E; let 

e(z) = [z, p¢(z)] 

be its homology class. The homomorphism 1*: Hn -1 (E) --> Ker ¢n -1 C 

Hn - 1 (C) maps e(z) into the homology class of z; hence the right-hand square 
of (4.11) is commutative. On the other hand, if z = ab E Bn - 1 (C), then 
ljJ(z) = jw¢(b), and this element is mapped by the homomorphism induced 
by 1* into 1* w¢(b). But 

e(z) = [z, p¢(z)] 

= [ab, ¢(b)] - [0, ¢(b) - p¢ ab] 

= -I*w(¢(b) - p¢(ab) 

= - 1* w¢(b), 

so that the left-hand square of (4.11) is commutative, too. 
The reason that we have christened E the mapping cone of ¢ is that, if X 

and Yare spaces, j : X --> Y a continuous map, and ¢ : 6(X) --> 6(Y) the 
chain map defined by f, then the mapping cone of cp is chain-equivalent to 
the singular complex of the mapping cone T J of J[E-S, Chapter VII, Exer
cise CJ. Hence our Theorem (4.9) translates into a topological theorem. The 
homology sequence 

... --> Hn(X) Hn(J), Hn(Y) --+ Hn(TJ ) 

--+ Hn- 1(X) Hn-1(J), Hn- 1(Y)-->"· 
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determines, as usual, a short exact sequence 

(4.12) 0 ----> Cok HnU) ----> Hn(T f) ----> Ker Hn -1 U) ----> 0 

representing an element en EO Ext(Ker Hn- 1U), Cok HnU». 
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(4.13) Corollary Let X, Y be spaces, f : X ----> Y a map, in EO Hn(y; Hn(Y» 
a unitary class, un = f*ln EO Hn(x; Hn(Y». Then the element 

en EO Ext(Ker Hn -1 U), Cok HnU» 

defined by the short exact sequence (4.12) is - j*(u't), where 

j*: Ext(Hn_ 1(X), Cok HnU»----> Ext(Ker Hn- 1U), Cok HnU» 

is the injection. o 
We can now complete the program, promised in §3, of determining 

7rm + 1 (X) as a group extension, when X is an (m - 1 )-connected space. In 
fact, let us kill the homotopy groups 7ri(X) for all i > m by adjoining cells; 
thus we obtain a relative CW-complex (K, X), having no cells of dimension 
less than n + 2, such that the injection 7rm(X) ----> 7rm (K) is an isomorphism 
and 7ri(K) = 0 for all i > m. The space K is an Eilenberg-MacLane space 
K(IT, m), where IT = 7rm(X), and the injection 

Hm(K; IT) ----> Hm(x; IT) 

maps zm(K) into Im(x). Consider the diagram 

(4.14) 

b 
------+ 

p 
------+ 

Hm+2(X) -----:----+ Hm+2 (K) ------:---+ Hm+2 (K, X) ------+ Hm+1(X) 
I } Vo 

in which i and j are injections, v and Vo boundary operators, P and Po 
Hurewicz maps, band bo secondary boundary operators; Po is an isomor
phism, since (K, X) is (m + 1 )-connected. 

(4.15) Lemma The diagram (4.14) is commutative. 

Commutativity of the left-hand square follows from the naturality of the 
sequence (3.13) (Theorem (3.16», that of the right-hand square from (4.8) of 
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Chapter IV. To prove commutativity of the central square, we use Lemma 
(3.19). Let WE Hm+2(K); then there is a mapf: M ---> K such thatf* maps 
the generator z of Hm+2(M) into w; we may assume thatf is cellular, so that 
f(sm) c X. Then bo(w) is the image under reduction mod 2 ofthe element of 
IT = 1l:m(K) = 1l:m(X) represented by f I sm, and fibo(w) is the element of 
1l:m + 1 (X) represented by the composite 

sm+l ~ sm flsm) X. 

Let h: (Em+2, sm+ 1) ---> (M, sm) be the characteristic map for the (m + 2)-cell 
of M. Then f 0 h represents an element IY. E 1l:m + l(K, X) such that Po(lY.) = 
j(w). Now elY. is represented by (f 0 h) I sm+ 1; but hi sm+ 1 : sm+ 1 ---> sm repre
sents tim and therefore ijbo(w) = elY. = epo Ij(W). 0 

The diagram (4.14) represents an isomorphism between a part of the 
homology sequence of (K, X) and the sequence (3.13). If 
im + 2 E Hm+2(K; Hm+2(K)), its image under the coefficient group homomor
phism induced by bo is the class v described in §3 which determines the 
cohomology operation Sq~. Hence the injection W+2(K; IT @Z2)---> 
Hm+2(x; IT @Z2) maps v = Sq~ zm(K) into Sq~ lm(x). Therefore we 
conclude 

(4.16) Theorem If X is an (m - I)-connected space (m 2: 3), then the 
extension 

0---> Cok b ---> 1l:m+ 1 (X) ---> Hm+ 1 (X) ---> 0 

determined by the sequence (3.13) corresponds to the element ut ' where 
U = Sq~ lm(x). 0 

(N.B.: we have suppressed as unnecessary the minus sign with which u t 
should be affected, since the coefficient group IT @ Z2 has exponent 2). 

Since the operation Sq2 is stable, we have 

(4.17) Corollary Let X be an (m - I)-connected space, IT = O"m(X), and let 
U = Sq2Im(x) E Hm+2(x; IT @Z2). Then there is an exact sequence 

and the short exact sequence 

corresponds to the element u t E Ext(Hm+ 1 (X), Cok u*). o 
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5 Stable Homotopy as a Homology Theory 

We have seen that homotopy and homology groups have many features in 
common. They differ in the fact that the former fail to have the excision 
property, and this is reflected in the fact that the suspension E : 1tn(X) ~ 
1tn + 1 (SX) is not an isomorphism. On the other hand, it is trivial that the 
suspension induces isomorphisms E: {X, Y} ::::; {SX, SY}, for both groups 
are direct limits of the same direct system. In particular, E: (J p(X) ::::; 
(J p+ 1 (SX) for every p and every space X. Thus it is reasonable to expect that 
the stable homotopy groups (J p(X) may behave more like homology groups 
than do the ordinary homotopy groups 1tp(X). 

The stable homotopy groups are (covariant) functors (Jp: % * ~ d. 
Moreover, for each p, the suspension operators 

are the components of a natural transformation E p of the functor (J p into the 
composite functor (J p+ 1 0 S. Their fundamental properties are given by 

(5.1) Theorem The system consisting of the functors (J p and the natural trans
formations E p has the following properties: 

(1) (Homotopy). If fo, fl : X ~ Yare homotopic maps, then (J n(fo) = 
(In(fd: (In(X)~ (In(Y) for all n. 

(2) (Exactness). Iff: X ~ Y is a map,j: Y <=+ T f , then the sequence 

(5.2) 

is exact for every n. 
(3) (Suspension). For every space X and integer n, the homomorphism 

is an isomorphism. 

The homotopy property is immediate, and we have already observed that 
the suspension property holds. To prove exactness, observe that the se
quence (4.2) is the direct limit of the sequences 

(5.3) 

and it suffices to prove that the sequence (5.3) is exact for all sufficiently large 
r. Let X' = srx, Y' = sry, f' = S~f; we may assume thatf' is an inclusion 
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and (Y', X') an NDR-pair. Then Tf' is the subspace Y' u TX' ofTY'. There 
is a commutative diagram 

7rn+ r (X') i 
7rn+ r (Y') 7rn + r (Y' U TX') ----+ ----+ 

jj jq 

7rn+ r (Y', X') ----+ 7rn+r (Y' U TX', TX') 
k 

where i, j, k, q and I are injections. Since TX is contractible, q is an isomor
phism. The spaces X' and Y' are (r - 1 )-connected, and hence the pairs 
(Y', X') and (TX', X') are (r - l)-connected. By the Blakers-Massey 
Theorem, k is an isomorphism provided that r :::0: 2 and n + r ::;; 2(r - 1). 
Thus if r :::0: max{2, n + 2}, Ker 1= Ker j = 1m i, and therefore the sequence 
(5.3) is exact. D 

The properties (1)-(3) of Theorem (5.1) are reminiscent of the Eilenberg
Steenrod axioms. They differ in that our functors are defined on a category 
of spaces with base points, while the axioms are concerned with functors 
defined on a suitable category offree pairs. In order to compare our functors 
with homology functors, we need to formulate a notion of homology on a 
suitable pointed category and show how the two kinds of homology theory 
are related. 

Let us recall that ff * is the category of spaces with non-degenerate base 
points. A reduced homology theory f) on ff * consists of 

(1) a family of functors hn : ff * -+ sf (n E Z), together with 
(2) a family of natural transformations 

(n E Z), 

satisfying the following conditions, analogous to those of Theorem (5.1): 

(1) (Homotopy). If fo'/1 : X -+ Yare homotopic, then 

hn(fo) = hn(f1): hn(X) -+ hn(Y) 

for all n E Z. 
(2) (Exactness). Iff: X -+ Y and if j: Y <:+ T f' then the sequence 

hn(X) hn(f)) hn(Y) hnU)) hn(Tf) 

is exact for all n E Z. 
(3) (Suspension). The homomorphism 

en(X) : hn(X) -+ hn + 1 (SX) 

is an isomorphism for all X and all n E Z. 

Examples of homology theories come readily to mind. 
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EXAMPLE 1. Singular homology with coefficients in an arbitrary abelian 
group G is a homology theory l)(G). 

EXAMPLE 2. Stable homotopy is a homology theory 5, by Theorem (5.1). 

EXAMPLE 3. If P is a space in X * and l) is a homology theory, there is a 
homology theory I)p for which 

h:(X) = hn(P A X), 

h:(J) = hn(1 Af) for f: X -> Y, 1: P ct P, 

while e:(X): hn(P A X) -> hn+ l(P A SX) coincides with 

en(P A X) : hn(P A X) -> hn + 1 (S(P A X)) 

under the natural homeomorphism of P A SX with S(P A X). 

EXAMPLE 4. If m is a non-negative integer, we may take P = sm in Example 3. 
It follows by iterated use of the Suspension Property that h:(X);::::; hn-m(X). 
Similarly, h:(J) may be identified with hn-m(J) for any f: X -> Y. Finally, 
e:(X) may be identified with en-m{X). Thus l)P is obtained from l) by subtract
ing m from all indices. Similarly, we may reindex l) by adding m to all indices 
(though the resulting theory no longer has the form Il). In either case, we 
shall say that the new theory is obtained from the old by reindexing. 

EXAMPLE 5. If {l)a I rx EO J} is a family of homology theories, their direct sum 
l) = EBa l)a is a homology theory, for which 

hn(J) = EB h~(J) for f: X -> Y, 

en(X) = EB e~(X). 

Many more interesting examples will be studied in Volume II. 
A homology theory l) is said to be proper if and only if it has the additional 

property 

(4) (Dimension). If X is a O-sphere, then hn(X) = 0 for all n =1= o. 

Stable homotopy is not proper, for we have seen that 0" 1 = 0" 1 (SO) ;::::; 
Z2 =1= O. Nor can it be made proper by reindexing since 0"0 = O"o(SO);::::; Z is 
also non-zero. Indeed, it can be proved (Exercise 4, below) that 5 is not a 
direct sum of reindexed proper theories. 

The coefficient groups of a homology theory are the groups hq(SO). 
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Two further properties are: 

(5) (Additivity). If{XalQ:EJ} is a family of spaces, X=VaXa, then the 
injections hn(X a) --> hn(X) represent the latter group as a direct sum. 

(6) (Isotropy). If f: X --> Y is a weak homotopy equivalence, then 
hn(f): hn(X) ~ hn(Y) for every n. 

A homology theory 1) is said to be complete if and only if it is additive and 
isotropic. For example, 1)(G) and £; are complete. 

Remark 1. The reader will have observed that we have not included the 
Dimension Property in the definition of a homology theory. Indeed, homo
logy theories in our sense have been dubbed" generalized" or " extraordin
ary" in the literature. The reason for this is historical. When Eilenberg and 
Steenrod formulated their axioms for homology theory, very few examples 
of improper theories were known. In the intervening years, however, there 
has arisen a plethora of interesting new theories: stable homotopy, bordism, 
and the various K-theories. We shall study these new theories systematically 
in the second volume of this work. 

Remark 2. Let f!J> * be the full subcategory of X * whose objects are spaces 
having the homotopy type of CW-complexes. Let h2: f!J> * --> st, 
e2 : h~ --> h2 + lOS have the Homotopy, Exactness and Suspension Proper
ties. We then say that 1)0 = {h2, e2} is a reduced homology theory on f!J> *. The 
reader is invited (Exercise 3, below) to use standard techniques of CW
approximation to show that 1)0 has an essentially unique extension to an 
isotropic theory 1) on X *. Thus there is a one-to-one correspondence (up to 
natural isomorphism) between reduced homology theories on f!J> * and iso
tropic reduced theories on X * . Moreover, 1) is additive (proper) if and only if 
1)0 is. 

Let us derive some properties of a homology theory 1) on X * . 

(5.4) If (X, A) is an NOR-pair in X *, i: A ~ X, and p: X --> X/A is the 
collapsing map, then the sequence 

(5.5) hn(A) ~(}L h.(X) ~ hn(X/A) 

is exact. 

For there is a commutative diagram 

A ~ X ~ Tj=XuTA 

~ lq 
X/A 

where q collapses TA to a point. The map q is a homotopy equivalence, by 
Corollary (5.13) of Chapter I. Apply the functor hn to the diagram. Since 
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hn{q) is an isomorphism, exactness of (5.5) follows from the Exactness 
Property. D 

(5.6) If P is a space consisting of just one point, then hn{P) = 0 for all n. 

Identifying PIP with P, we obtain from (5.4) an exact sequence 

hn{P) ~ hn{P) .~ hn{P). 

But hn{ 1) is the identity map, so that 

hn{l) 0 hn{l) = hn{l) = 1. 
But 

hn{l) 0 hn{l) = 0 

by exactness. This can only be true if hn{P) = o. 

(5.7) Iff: X -> Y is a constant map, then hn(J) = 0 for all n. 

For hn{f) factors 

through hn{P) = O. 

D 

D 

(5.8) If X, Yare spaces in off *, and j1 : X -> X v Y, j2 : Y -> X v Yare the 
inclusions, then the injections 

j1* = hn(j1): hn{X) -> hn{X v Y), 

j2* = hn(j2) : hn{Y) -> hn{X v Y), 

represent hn{X v Y) as a direct sum. The homomorphisms 

q1* : hn{X v Y) -> hn{X), 

q2* : hn{X v Y) -> hn{Y), 

induced by the projections q 1, q2 ,form the dual representation of hn{X v Y) as 
a direct product. 

There is a commutative diagram 

hn{X) 1 = hn{l) , hn{X) 

hn(j1~ ~n{qd 
hn{X v Y) 

hn(j2Y ~n{q2) 
h (Y) , h (Y) 

n 1 =hn{l) n 



576 XII Stable Homotopy and Homology 

and the diagonal sequences are exact by (5.4). The result now follows from 
Lemma 13.1 of Chapter I of [E-S]. 0 

As in §7 of Chapter III (note that the arguments used there do not depend 
on the Dimension Property) we deduce 

(5.9) Let X be an H'-space with coproduct e. Then 

e*(x) = jh(x) + j2*(X) 

for all x E hn(X), 

(5.10) Let X be an H'-space,.fl,.f2 : X --+ Y. Then 

for all x E hn(X), 

(5.11) Letf: X --+ Y. Then 

( - Sf)* = - (Sf)* : hn(SX) --+ hn(S Y). 

o 

o 

o 

The graded homology group h*(X) admits a module structure over the 
stable homotopy ring (J *. To see this, let u E Hm(X), IX E (In, and let 
f: sn +k --+ Sk be a representative of IX. Thenf /\ 1 : sn +k X --+ Sk X. Consider the 
composite 

-k 

hm+n+k(SkX) ---=---. hm+n(X), 

where er is the rth iterate of the suspension operator e if r ~ 0, and the 
(- r)th iterate of e- 1 if r < 0. The map Sf: sn+k+ 1 --+ sk+ 1 also represents IX, 

and the diagram 

\z-k-I 
e e 

)-k 
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is commutative. It follows that the element 

e-khm+n+kU /\ l)en+k(u) 

depends only on u and the element a; let au be this element. 
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(5.12) Theorem The graded group h*(X) is a graded module over (J * under the 
map a ® u --> au. If f: X --> Y, then h*(f): h*(X) --> h*(Y) is a map of 
(J * -modules. 

The verifications of the requisite properties 

(1) a(u+v)=au+av, 
(2) a(flu) = (afl)u, 
(3) 1u=u, 
(4) f*(au) = af*(u), 
for a, fl E (J *, u, V E h* (X), f : X --> Yare verified by routine diagram 
chasing. It remains only to prove 
(5) (a + fl)u = au + flu. 

Let f: sn +k --> S\ g : sn +k --> Sk be representatives of a, fl fo (J n' respectively. 
Then 

(a + fl)u = e-k(f + g)*en+ku 

= e-k(j~ + g*)en+ku by (5.10) 

= e-kf*en+ku + e-kg*e"+ku 

= au + flu. 

(5.13) Corollary Let f: sn --> sn have degree d, g : X --> Y. Then 

for all u E hq(X). 

D 

D 

We can now strengthen the Exactness Property. Letf: X --> Y. In §6 of 
Chapter III we exhibited a homotopy commutative diagram 

f kim 
X ----+ Y -------;. T f -------+ T k -------+ T I 

in which k, I, and m are inclusions, while ql and q2 are homotopy equi
valences. Applying the functor hn to this diagram, we obtain a commutative 
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diagram 

Now hn{ -Sf) = -hn{Sf), by (5.11), so that the diagram 

hn ( -~f) 
I 

hn-1(X) t hn-1(Y) 
hn-1(f) 

is commutative. We deduce 

(5.14) Let f: X ---+ Y, q : T J ---+ SX the collapsing map, and let 

dn = -en_1(Xt l 0 hn(q): hn(TJ)---+ hn-l(X). 

Then the sequence 

hn(X) ~ hn(Y) hn(k») hn(TJ) ~ hn-1{X) hn-1(f») hn-1(Y) 

is exact. o 
A useful variant of (5.14) is 

(5.15) Let (X, A) be an NDR-pair in .ff *, i: A <=+ X, p: X ---+ X/A the 
identification map, and t : X/A ---+ SA a connecting map. Let 

d~ = -en_1(At l 0 hn(t): hn(X/A)---+ hn-1(A). 

Then the sequence 

hn(A) hn(i») hn(X) hn(p») hn(X/A) ~ hn-1(A) hn-1(i») hn-1(X) 

is exact. o 

6 Comparison with the Eilenberg-Steenrod Axioms 

Let I) be a reduced homology theory on .ff * , and let .ff; be the category of 
free NDR-pairs. We shall show how I) determines an Eilenberg-Steenrod 
theory on .ff; (i.e., one satisfying their axioms except for the Dimension 
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Axiom). Conversely, an Eilenberg-Steenrod theory on ff; determines a 
homology theory on .~'*' and there is a one-to-one correspondence (up to 
natural isomorphism) between the two kinds of theories. 

A homology theory on ff; is one which satisfies the Eilenberg-Steenrod 
axioms, except for the Dimension Axiom. Such a theory consists of 

(1) a family of functors Hn: ff; --> sf (n E Z), together with 
(2) a family of natural transformations On: H n --> H n _ loR, where 

R: ff; --> .ff; is the shift functor, defined for pairs (X, A) by 

R(X, A) = (A, 0) 

and for mapsf: (X, A)--> (Y, B) by 

R(f) = f I A : (A, 0) --> (B, 0)· 

having the following properties: 

(1) (Homotopy).lffo'!l: (X, A)--> (Y, B) are homotopic, then 

Hn(fo) = Hn(fl): Hn(X, A) --> Hn(Y, B) 

for all n E Z. 
(2) (Exactness). 'f (X, A) is a pair in ff; and i : A ~ X, j : X ~ (X, A), then 

the sequence 

... --> Hn +1(X, A) °n+ l(X, A) • Hn(A) Hn(i) Hn(X) ~ 

Hn(X, A) °n(X, A) ) Hn-1(A) --> ... 

is exact. 
(3) (Excision). Let X be the union qf two closed sets A, B and suppose that 

(A, A n B) is an NDR-pair. Then the injection 

is an isomorphism for every n. 

Remark. Our axioms differ slightly from those of Eilenberg-Steenrod in 
that the groups Hn(X, A) are defined only for NDR-pairs and not for all 
pairs. For this reason the Excision Axiom takes a slightly different form. 

The theory 5 is said to be proper if and only if it satisfies 

(4) (Dimension). If P is a space consisting of just one point, then Hn(P) = 0 
for all n =1= O. 

The theory 5 is said to be additive if and only if it satisfies 

(5) (Additivity). Let X be the topological sum L X a , and let A be a subspace 
of X, Aa= An Xa' Then the injections Hq(Xa, Aa)--> Hq(X, A) repre
sent the group Hq(X, A) as a direct sum. 
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The theory 5 is isotropic if and only if it satisfies 

(6) (Isotropy). Let f: X ---t Y be a weak homotopy equivalence. Then 
HnCf): Hn{X) ~ Hn{Y)for every n. 

A homology theory which is additive and isotropic is said to be complete. 
Certain standard results of singular homology theory remain true for an 

arbitrary homology theory on %;, because their proofs do not make use of 
the Dimension Axiom. We enumerate some of these. 

(6.1) For any free space X, Hn{X, X) = 0 for all n. D 

(6.2) If A is a deformation retract of X, then Hn{X, A) = 0 for all n. D 

(6.3) If (X, A) and (A, B) are NDR-pairs, then the homology sequence 

••. ---t Hn + 1 (X, A) ---t Hn{A, B) ---t Hn{X, B) ---t Hn{X, A) ---t .•. 

of the triple (X, A, B) is exact. D 

Let P be a space consisting of a single point. For any space X, let Hn{X) 
be the kernel of Hn(J): Hn{X) ---t Hn{P), wheref: X ---t P is the unique map. 
Then fin is a functor: % ---t d. 

(6.4) If x E X, then the injection Hn{X) ---t Hn{X, {x}) maps Hn{X) isomor
phically upon Hn{X, {x}). D 

(6.5) If X =1= 0, the sequence 

o ---t HnCf) ---t Hn{X) ---t Hn{P) ---t 0 

is exact and splittable, so that 

Hn{X) ~ HnCf) EB Hn{P). D 

(6.6) For any pair (X, A), the image of 

on(X, A) : Hn{X, A) ---t Hn- 1 (A) 

is contained in Hn-1{A). Moreover, there is an exact sequence 

•.• ---t Hn+ 1 (X, A) ---t Hn{A) ---t Hn{X) ---t Hn{X, A) ---t Hn -1 (A) ---t ••.. D 

(6.7) (Map Excision Theorem). Iff: (X, A) ---t (Y, B) is a relative homeomor
phism ofNDR-pairs then 

Hn(J): Hn{X, A) ~ Hn{Y, B) 

for all n. D 

By induction from the Excision Property, we have 
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(6.8) (Finite Direct Sum Theorem). Let X = Xl U ... U Xn U A, where 
X, and A are closed subsets of X (a = 1, ... , n). Suppose that X, n X peA 
for a -+ {3 and that (X" X, n A) is an NDR-pair. Let X: = A u Un, Xu, 
A, = X, n A. Then 

(1) the injections i, : Hq(X" Aa) ~ Hq(X, A) represent the group Hq(X, A) as 
a direct sum; 

(2) the injections j,: Hq(X, A)~HiX, X:) represent Hq(X, A) as a direct 
product; 

(3) the injection k, = j, 0 i, : Hq(X" A,) ~ Hq(X, X:) is an isomorphism, and 
the representations {ia}, {ja} are weakly dual. D 

We shall also need to consider the infinite case. It is then necessary to 
assume that the homology theory is additive. 

(6.9) Theorem (General Direct Sum Theorem). Let X = A u UaEJXa, 
where A and X a are closed in X, X a n X pc Afor a -+ {3, and (X" Xa n A) is 
an NDR-pair. Suppose, moreover, that X has the weak topology with respect to 
the sets A, Xa' Let b be an additive homology theory. For each a E J, let 
X! = A u Una Xp, Aa = Xa n A. Then 

(1) the injections ia : Hq(X" Aa) ~ Hq(X, A) represent the group Hq(X, A) as 
a direct sum; 

(2) the injections ja: Hq{X, A)~ Hq(X, X:) represent Hq(X, A) as a weak 
direct product; 

(3) the injections ka = ja 0 ia: Hq(X" Aa) ~ Hq(X, X:) are isomorphisms, 
and the representations {ia}, {ja} are weakly dual. 

Let J + = J u {oo}, where 00 ¢ J; we shall consider J _ as a discrete 
space. Let X 00 = A, and let X be the subspace 

of J + x X. If a E J, let 

U {a} x Xa 
rJ.EJ+ 

Xa = {a} x X" 

Aa = {a} x A" 

A = {oo} x A. 

Let p : X ~ X be the restriction to X of the projection J + x X ~ X on the 
second factor. Our hypothesis on the topology of X insures that p is a 
proc1usion. Let 

B = p-l(A) = A u U Aa. 
aEJ 
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Then (X, B) is an NDR-pair and p : (X, B) --> (X, A) a relative homeomor
phism. Therefore 

Hn(P): Hn(X, B) --> Hn(X, A) 

is an isomorphism, by (6.7). 
Let r,: X, --> X be the natural homeomorphism of X, with {IX} X X, c X; 

then I:(X, n A) c E. Since Hn(A, A) = 0 for all nand f:, is additive the 
homomorphisms Hn([,): Hn(X" X, n A) --> Hn(X, B) (IX E J) represent 
Hn(.X, E) as a direct sum. But poI:: (X" X, n A) c+ (X, A) and (1) follows. 

That k, is an isomorphism follows from the Excision Property. If IX =f {3, 
then X a C X~ and therefore the injection j fJ 0 i, is trivial. Conclusions (2) 
and (3) follow from this fact. 0 

If Y is a fixed space and f:, a homology theory on x;, then the functors 
H~ and natural transformations o~ defined by 

H~(X, A) = Hq(X x Y, A x Y), 

H~{f) = Hq{f x 1): H~(X, A) --> H~(X', A') 

for f: (X, A) --> (X', A'), 

o~(X,A)=o(X x Y,A x Y):H~(X,A)-->H~_l(A), 

constitute a homology theory Sj on x·;. 
With the aid of this remark we can use the results of §6 of Chapter II, 

insofar as they do not depend on the Dimension Property, to obtain some 
properties of a regular cell complex K, which will be useful later. 

Let E be an n-cell of K, F an (n - 1 )-face of E, F' = E - F. Then 

o:Hq(Ex Y,Ex Y)-->Hq_1(Ex Y,F'x Y) 

and 

are isomorphisms. Hence 

is an isomorphism, called the general incidence isomorphism. Evidently 
u(E, F) is natural with respect to maps Y --> Y'. 

Let r(K, Y) be the doubly graded group such that r p. q(K, Y) = 

Hp+q(Kp x Y, K p- 1 X Y). Then r(K, Y) is a chain complex with boundary 
operator 

Moreover, the injections 
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for all p-ce1ls Ea of K, represent the latter group as a direct sum. And we can 
use this remark to calculate the boundary operator in r(K, Y). Specifically, 

(6.10) Theorem The boundary operator in r(K, Y) is determined by the 
relation 

a 0 ia = L ip 0 O"(Ea, Ep), 
p 

where E f3 ranges over all (p - 1 )-:faces of Ea· o 
(6.11) Theorem Let F 1 and F 2 be (n - 1 )-faces of E which have a common 
(n - 2)jace G. Then 

(1) ifn ~ 2, 

O"(F 1, G) 0 O"(E, F d + O"(F 2, G) 0 O"(E, F 2) = 0; 

(2) if n = 1, let Pi : Fi x Y --> Y be the projection on the second factor. Then 

Hq - 1(P1) 0 O"(E, Fd + Hq - 1(P2) 0 O"(E, F2) = 0. 0 

By induction on n we can deduce from the above remarks that 
Hq(E x Y, E x Y) ~ Hq-n(y) for every Y. However, we shall need to prove 
a somewhat more delicate relation. 

It will be convenient in what follows to assume that K is oriented. We 
shall also make the convention that, if a cell of K is denoted by a capital 
letter, its preferred orientation will be denoted by the corresponding lower 
case letter. 

(6.12) Theorem For each n-cel/ E of K there is an isomorphism ex: Hk ( Y)--> 
Hn+k(E x Y, E x Y) such that,for every (n - I)-face F of E, 

(6.13) O"(E, F)(e x u) = [e :f]f x u 

for every u E H k( Y). 

If n = 0, e x is the isomorphism induced by the natural homeomorphism 
of Y with E x Y. Suppose that f x has been defined for every cell F of 
dimension q < n and satisfies the condition 

O"(F, G)(f x u) = [J: g]g x u 

for every (q - 1 )-face G of F. 
Let E be an n-cell of K. For each (n - I)-face F of E and each u E Hk(Y), 

let cfJ(F) be the element 

[e ;f]O"(E, Ft 1(f xu). 

We shall show that, if F 1 and F 2 are faces of E, then cfJ{F 1) = cfJ(F 2). Because 
of Property (3) of (6.2), Chapter II, we may assume that F 1 and F 2 have a 
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common (n - 2)-face G. When this is the case, 

¢(F2) = [e :f2]a(E, F2t1(f2 xu) 

= [e :f2][l2: g]a(E, F2t 1a(F2' Gt1(g x u) 
by induction hypothesis 

= -[e :f2][l2: g]a(E, F1t 1a(F1' Gt1(g xu) 
by Theorem (6.11) 

= [e :f1][l1: g]a(E, F1t 1a(F1' Gt1(g xu) 
by Theorem (6.6), Chapter II 

= [e :f1]a(E, F1t1(f1 x u) by induction hypothesis 

= ¢(Fd· 

We may therefore define e x u to be the common value of ¢(F) for all 
(n - I)-faces F of E, and (6.13) then holds for the pair (E, F). 

If n = 1, the proof has to be modified to make use of the second conclu-
sion of Theorem (6.11) instead of the first. This is left to the reader. D 

The map e x is natural in Y; i.e., 

(6.14) Let f: Y ~ Z, U E Hk(Y). Then 

(1 xf)*(e x u) = e xf*u. D 

Let I) be a reduced homology theory on ff *. We now show how to 
associate to l) a homology theory on the category ff; . Let us recall that in §2 
of Chapter III we imbedded the category of free pairs into ff * by the device 
of adjoining an external base point P; if X is a free space, X+ = X + P is a 
space with non-degenerate base point P, and if!: X ~ Y is a free map, thenf 
extends to a map f + : (X + , P) ~ (Y+, P). Thus, if (X, A) is an object of ff; , 
we shall define 

Hn(X, A) = hn(X+ fA +), 

and iff: (X, A) ~ (Y, B) is a free map, there is a uniquely determined map 
f# making the diagram 

x f Y --------.. 

Il Il f+ 
X + -----+. Y + 
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commutative (Px and py being the appropriate collapsing maps). We then 
define 

Hn(J) = hn(J#): Hn(X, A) -> Hn(Y, B). 

Clearly, Hn is a functor: %; -> d. 
Next, if (X, A) is a pair in %;, let on(X, A) be minus the composite 

Hn(X,A)=hn(X+/A+) ~ hn(SA+) en-1(A+)) 

hn- 1 (A +) = Hn(A, 0), 

where t: x+ /A + -> SA + is a connecting map. Evidently an : Hn -> Hn- 1 0 R 
is a natural transformation. 

Our first result is 

(6.15) Theorem Iff) is a boundary theory on % * and 5 is the theory defined 
above, then 5 is a homology theory on %; . 

The Homotopy Property is immediate; for iffo,fl: (X, A)-> (Y, B) are 
homotopic then so arefg andff. 

The Exactness Property follows immediately from the extended 
Exactness Property (5.15). 

The Excision Property, too, is immediate. For if 

k : (A, A n B) <4 (X, B), 

then k# : (A + /A + n B+) -> (X+ /B+) is a homeomorphism. D 

Now let us instead suppose that we have a homology theory 5 on %;. If 
X is a space in % *, let X- be the free space obtained from X by ignoring the 
base point, and if f: X -> Y, let f- : X- -> Y- be the same function as f 
(Thus we have defined a kind of" forgetful functor": % * -> x). We now 
define 

hn(X) = Hn(X-, {*t), 

hn(J) = Hn(J -). 

Remark. It will often be convenient to drop the minus signs and write 

hn(X) = Hn(X, {*}), 

hn(J) = Hn(J). 

This will simplify the notation and should not cause undue confusion. 
In order to define the suspension operator en, let X be a space in % * and 

let p: (TX, X) -> (SX, {*}) be the collapsing map and 

0*: Hn+1(TX, X)-> Hn(X, {*}) 

the boundary operator of the homology sequence of the triple (TX, X, {*}). 
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Then TX is contractible and therefore 0* is an isomorphism by (6.2) and 
(6.3). Thus we may define en(X) to be the composite 

0;1 Hn+l(P) } 
Hn(X, {*}) ----> Hn+1(TX, X) , Hn+1(SX, {*). 

Clearly, en : hn -+ hn + lOS is a natural transformation of functors. 

(6.16) Theorem The theory 1) = {hn' en} is a homology theory on % *. 

The Homotopy Property is immediate. To prove exactness, letf: X -+ y 
be a map in % *. Consider the triad (T f ; TX, If); by the Excision Property, 
the injection 

is an isomorphism. Since TX is contractible, the injection 

k2 : Hn(Tf' {*}) -+ Hn(Tf' TX) 

is an isomorphism. Since Y is a deformation retract of If' the injection 

is an isomorphism. The composite k3 0 f* is the injection 

Hence there is a commutative diagram 

~ jk' jk" ok, 

Hn(I f' H) -----. Hn(1 f, X) 

and the Exactness Property now follows from the exactness of the homology 
sequence of the triple (If' X, {* D. 

The Suspension Property follows immediately by applying the Map Exci-
sion Theorem (6.7) to the map p: (TX, X) -+ (SX, {*}). 0 

We have shown how each homology theory on % * determines one on 
%;, and, conversely, to each homology theory on %; there corresponds 
one on % * . We next show that these correspondences are essentially inverse 
to each other. Thus there is, up to natural isomorphism, a one-to-one corre
spondence between the two kinds of theories. 

Let 1) be a homology theory on % *' f) the corresponding theory on %; , 
and 1)' the theory on % * corresponding to f). 

(6.17) Theorem The theories 1) and 1)' coincide (up to natural isomorphism). 
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Let X be a space in .%' * . Then 

and the space X - + /{ * r + is naturally homeomorphic with X. Similarly, if 
f: X --> Y, then 

and f - * coincides, in view of the above natural homeomorphisms, with f 
It remains to calculate the suspension homomorphism e~(X). It will be 

convenient to abbreviate X - + to X' for any space X and to identify p - * 
with p: (TX)'/X --> (SX)'/H'. Then the inverse of e~(X) is the composite 

h (r 1 
hn+1(SX) = hn+ l((SX)'/{*}') n+ 1 P ) hn+ l((TX)'/X") 

h () - en(X,)-l 
n +1 t ) hn + 1 (S (X 0)) _---'---'------> 

hn(X') hn(i#) hn(X'/{*}') = hn(X) 

where i: (X-, 0) c; (X-, H -), so that i* : X' --> X is the identity on X and 
sends the external base point P into the original base point * of X. It will be 
helpful to examine Figure 12.2, which represents the union W of the space 
(TX)' (the upper half of the figure, including the point P) with a copy of the 
cone T(X') (the lower half of the figure), whose intersection with (T X)' is X'. 
Thus (TX)' is the disjoint union of P with the (reduced) cone over X, having 
the original base point * as vertex, while T(X') is the (unreduced) cone over 
X, having P as vertex. If S E I, x E X, let 

_ J(2s) 1\ x E (TX)' 
[s, x] - \2{1- s)I\X E T(X') 

(S :s: -n 
(s > 1.). -2' 

(TX)' 

~ 
P 

T(X') 

Figure 12.2 
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we may identify the point [!, x] with x. Note that 

[0, x] = *, 

(6.18) [1,x]=P, 

(s ::; !), 
(s > ~). -2' 

as s increases from ° to 1 the point [s, *] remains stationary on the interval 
[0, t], then moves along the line segment in T(X') from * to P. 

Let 

qt : W ...... W/(TX)' = S(X'), 

q2: W ...... W/T(X') = (TX)'/X' 

be the collapsing maps. The connecting map t: (TX)'/X ...... S(X') is a com
posite qt 0 k, where k : (TX)'/X' ...... W is a homotopy inverse of q2. Hence 

Consider the diagram 

(6.19) S(X') +-4 -- (TX)"/X' 

-Si~ ;: 
SX 

(6.20) Lemma The diagram (6.19) is homotopy commutative. 

We have just seen that the upper triangle is homotopy commutative. 
Since q2 is a homotopy equivalence, it suffices to prove that 

po q2 ~ (-Si*) 0 qt. 

The map p 0 q2 is given by 

while 

so that 

{2S A x 
po q2([S, x]) = * 

(s ::; !), 
(s :2: t), 

(s :2: t), 
(s :2: i), 

(-Si*) 0 qt([s, x]) = {-2* 1 s - AX 

(s ::;!), 
(s :2: t) 
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(the reader should check that these formulas are consistent with the relations 
(6.18)). 

The map hI: I x W --> SX defined by 

1 
(2 - u)s A x 

h1(U, [s, x]) = * 
(S~2~J, 

(s2_1 ) 
2-u 

deforms P 0 qz into the map k : W --> SX such that 

k([s, x]) = SAX (s E I, x EX). 

Similarly, the map hz : I x W --> SX defined by 

* 
hz(u, [s, x]) = 

S - U + su AX (S2_U 
) 

l+u 

deforms k into (-Si#) 0 q1. 
The diagram obtained from the lower half of (6.19) by applying the 

functor hn + 1 can be enlarged to the commutative diagram 

We have seen that e~(Xt 1 is the composite 

-hn(i#) 0 en(X't 1 0 hn+1(t) 0 hn+1(pt 1 

= -en(Xt 1 0 hn + 1 (Si#) 0 hn+1(t) 0 hn+1(pt 1 

= en(Xt 1 
0 hn+1(P) 0 hn+1(pt 1 

= en(Xt 1. 

Hence the homology theories I) and I)' coincide. D 
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Finally, let 5 be a homology theory on x; , let 1) be the corresponding 
reduced theory on X * , and let 5' be the theory on x; which corresponds 
to I). 

(6.21) Theorem The theories 5 and 5' are naturally isomorphic. 

First observe that 

Similarly, iff: (X, A)-+ (Y, B), there is a commutative diagram 

Hn(X, A) 
Hn(f) 

Hn(Y, B) 

Hn(i x) I 
Hn(f+) 

IHn(i y) 

Hn(X+,A+) I Hn(Y+,B+) 

Hn(Px) I I Hn(Py) 

Hn(X+ /A +, P) • Hn(Y+/B+,P) 
Hn(f#) 

and Hn(f#) = H~(f). Therefore we have defined a natural isomorphism 
Pn: Hn ~ H~. 

If (X, A) is a pair in x;, the homomorphism O~(X, A) is minus the 
composite 

H~(X, A) = Hn(X+/A+, P) !!..&L Hn(SA+, P) 

H ( )-1 0 
nP1 ) Hn(TA+,A+) ~ Hn-1(A+,P)=H~-1(A) 

where P1 : (TA +, A +) -+ (SA +, *) is the collapsing map and 01 is the bound
ary operator of the homology sequence of the triple (TA +, A +, P). 

The diagram 
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(6.22) 

satisfies the hypotheses of the Hexagonal Lemma. Hence 

(6.23) 01 0 Hn(k1t1 0 HnUd= -02 0 Hn(k2t 1 
0 Hn(2). 

From the diagram (6.22) let us remove the central group and the homo
murphisms relating to it. From the resulting diagram we obtain a new 
diagram (Figure 12.3), in which the maps qi are the appropriate collapsing 
maps. Observe that each region of the diagram is commutative except 
possibly for the large region labelled with an asterisk. Now Hn(q2) is an 
isomorphism, and 

-O~(X, A) 0 Hn(q2) = 01 0 Hn(pd- 1 0 Hn(t) 0 Hn(q2) 

= 01 0 Hn(k1t 1 0 Hn(ql1) 0 Hn(q4) 

= 01 0 Hn(kd- 1 
0 HnUd 

= - O2 0 Hn(k2t 1 0 Hn(2). 

But Hn - 1(iA) = Pn - 1(A), so that 

Pn-l(A) 0 On(X, A) 0 Pn(X, At1 0 Hn(q2) 

= 02 0 Hn(ix) 0 Pn(X, At1 0 Hn(q2) 

= O2 0 Hn(Pxt 1 0 Hn(q2) 

= O2 0 Hn(k2t 1 0 Hn(q3t 1 0 Hn(q2) 

= O2 0 Hn(k2t 1 0 Hn(2) 

= O~(X, A) 0 Hn (q2). 

Since H n(q2) is an isomorphism, we deduce that 

o~(X, A) = Pn- 1(A) 0 0n(X, A) 0 Pn(X, Att. 
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so that a~ and an correspond under our natural isomorphism. Therefore the 
theories b and b' are isomorphic. 0 

We have now proved 

(6.24) Theorem There is a one-to-one correspondence (up to natural isomor
phism) between homology theories on %; and reduced homology theories on 
%*. 0 

In proving the results of this section, we have been (perhaps unneces
sarily) a little pedantic in our notation. Now that we have established 
Theorem (6.24), we can be more relaxed. Accordingly, and in view of (6.4), 
we shall use the following notation. If b = {Hn' an} is a given homology 
theory on %;, the corresponding reduced theory will be denoted by 
~ = {ifn , En}. And if ~ = {ifn, En} is a given reduced homology theory, the 
corresponding theory on %; will be christened b = {Hn' an}. 

We conclude this section with 

(6.25) Theorem Let b be a homology theory on %;. Then 

(1) b is proper if and only if ~ is proper; 
(2) b is additive if and only if ~ is additive; 
(3) b is isotropic if and only if ~ is isotropic. 

The first statement follows from the fact that 

ifn(SO) ~ Hn(P). 

Suppose that ~ is additive. If the free space X is the topological sum 
L: X ~, A eX, A~ = X ~ n A, then X + = V ~ X:, A + = V ~ A:, so that 

X+jA+ = V X:/V A: = V (X:jA:); 
~ ~ ~ 

thus 

under the injection homomorphisms. 
Conversely, suppose that b is additive. Let {X a I IX E J} be a family of 

spaces with non-degenerate base points X~, X = V ~ X ~ , and let X = L:~ X;
be the topological sum of the corresponding free spaces If = La {X a} -. Then 
the natural map of X into X is a relative homeomorphism 

p:{X,,.1)->{X,*) 

and therefore Hn{p): Hn(X, A) ~ Hn(X, *). If ~: (X" {x~})-> (X, A) is the 
natural imbedding, then pc z: = ia : X~ c+ X, and (2) now follows. 

Suppose that b is isotropic. If X and Yare spaces in %*, f : X -> Y a 
weak homotopy equivalence, then f: (X, *) -> (Y, *) is a weak homotopy 
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equivalence of pairs, and therefore 

Hn(f) = Hn(f): Hn(X, *) -> Hn(Y, *) 

is an isomorphism. Hence ~ is isotropic. 
Conversely, suppose that ~ is isotropic andf: (X, A)-> (Y, B) a weak 

homotopy equivalence of pairs. 
Suppose first that A = 0; it follows that B = 0 and the extension 

f+ : X+ -> y+ is a weak homotopy equivalence. Hence Hn(f+): Hn(X+) ~ 
Hn(Y+) for all n. But Hn(X) = Hn(X+) and Hn(Y) = Hn(Y+), so that 
Hn(f): Hn(X) ~ Hn(Y)' 

Suppose, on the contrary, that A =F 0, and choose a base point Xo E A. 
By Theorem (3.1) of Chapter V,finduces isomorphisms 

fl : nq(X, xo) ~ nq(Y, Yo), 

f2 : nq(A, xo) ~ nq(B, Yo)· 

Since ~ is isotropic, f induces isomorphisms 

PI : Hq(X, xo) ~ Hq(Y, Yo), 

f~ : Hq(A, xo) ~ Hq{B, Yo)· 

By exactness and the Five-Lemma,finduces isomorphisms 

Hence f', is isotropic. 

7 Cohomology Theories 

D 

In this section we discuss cohomology theories. Our discussion parallels that 
in §§5, 6 for homology theories. As the modifications are to a great extent 
merely formal, we shall for the most part eschew details. 

A reduced cohomology theory ~* on ff * consists of 

(1) a family of contravariant functors Hn : ff * -> sf (n E Z), together with 
(2) a family of natural transformations 

(n E Z), 

satisfying the following conditions: 

(1) (Homotopy). If fO,fl : X -> Yare homotopic maps, then 

for all n E Z. 
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(2) (Exactness). Iff: X --+ Y and j : Y c; T f' then the sequence 

iln(T f) iln(j) iln( Y) Rn(f) iln(x) 

is exact for all n EO Z. 
(3) (Suspension). The homomorphism 

En(x) : fIn + 1 (SX) --+ fIn(x) 

is an isomorphism for all X and all n EO Z. 

The theory 5* is proper if and only if it satisfies 

(4) (Dimension). If X is a O-sphere, then iln(x) = 0 for all n =1= O. 

The theory 5* is additive if and only if it satisfies 
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(5) (Additivity} If {XaLo: EO l} is a family of space.!, X = Va X a , then the 
injections Hn(x) --+ Hn(x a) represent the group Hn(x) as a direct product. 

The theory 5* is isotropic if and only if it satisfies 

(6) (Isotropy). Let f: X --+ Y be a weak homotopy equivalence. Then 
iln(f) : iln( Y) ~ iln(x) for all n. 

A cohomology theory 5* is complete if and only if it is additive and 
isotropic. 

Let 5* be a cohomology theory on X·*. Then 

(7.1) If (X, A) is an NDR-pair in X'*, i: A c+ X, and ifp: X --+ X/A is the 
collapsing map, then the sequence 

(7.2) iln(X/A) jjn(p) iln(x) ~ iln(A) 

is exact. o 
(7.3) If P is a space consisting of just one point, then iln(p) = 0 for all n. 

o 
(7.4) Iff: X --+ Y is a constant map, then iln(f) = 0 for all n. o 

(7.5) If X, Yare spaces in off * ,j 1 : X --+ X v Y, jz : Y --+ X v Y the inclusions, 
then the injections 

Ii = fIn(j 1) : fIn(x v Y) --+ fIn(x), 

j! = iln(jz): jjn(x V Y) --+ iln(Y) 

represent fIn(x v Y) as a direct product. The homomorphisms 

qi : iln(x) --+ jjn(x V Y), 

q! : iln(y) --+ jjn(x V Y), 
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induced by the projections, form the dual representation of fjn(x V Y) as a 
direct sum. 0 

(7.6) Let X be an H' -space with coproduct f). Then 

f)* = jt + j! : fjn(x V X) ---> fjn(x). 

(7.7) Let X be an H'-space'/1'/2 : X ---> Y. Then 

(Jl + f2)* = ft + f! : fjn(y) ---> fjn(x). 

(7.8) Let f: X ---> Y. Then 

(-Sf)* = -(SJ)*: fin(sy)---> fin(sx). 

(7.9) Let f: X ---> Y, and let q : T J ---> SX be the collapsing map. Let 

dn = - fin(q) c En- 1(xt 1 : fin-1(X) ---> fin(TJ ). 

Then the sequence 

fin-1(f) dn fin(k) 
.•• ---> fjn-1(y) ~ fjn-1(X) ----+ fjn(TJ ) _---'--'----> 

fjn(y) fin(J). fjn(x) ---> ••• 

is exact. 

o 

o 

o 

o 
(7.10) Let (X, A) be an NDR-pair in % *, i: A G X, and let p: X ---> X/A be 
the collapsing map and t : X/A ---> SA a connecting map. Let 

an = _ fjn(t) 0 'En- 1(At 1: fjn-1(A) ---> fjn(X/A). 

Then the sequence 

... --->fjn-1(X) fin-1(i). fjn-1(A) ~ fjn(X/A) 

fin( ) fin(l} 
_~p --->. fjn(x) • fjn(A) ---> •.• 

~~~ 0 

As in the case of homology, we have to relate the above notion of coho
mology theory to that of Eilenberg-Steenrod. Accordingly, a cohomology 
theory.£)* on %; consists of 

(1) a family of functors H" : %; ---> d (n E Z) together with 
(2) a family of natural transformations I5n : H n - 1 0 R ---> H n (n E Z), having 

the fol1owing properties: 

(1) (Homotopy). If fO'/1 : (X, A) ---> (Y, B) are homotopic maps, then 

Hn(Jo) = H n(J1) : Hn(y, B) ---> Hn(x, A) 

for all n E Z. 
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(2) (Exactness). If(X, A) is a pair in %; and i: A G X,j: X G (X, A), then 
the sequence 

... -->W-l(A) bn(X,A) , Hn(X,A)!!:JfL Hn(x) Hn(i) , 

bn + 1(X A) 
Hn(A) '.Hn+ 1(X,A)-->··· 

is exact. 
(3) (Excision). Let X be the union of the closed sets A, B, and suppose that 

(A, A n B) is an NDR-pair. Then the injection 

Hn(x, B) --> Hn(A, A n B) 

is an isomorphism for every n. 

The theory 5* is proper if and only if it satisfies 

(4) (Dimension). If P is a space consisting ofjust one point, then Hn(p) = 0 
for all n -# 0, 

additive if and only if it satisfies 

(5) (Additivity). Let X be the topological sum La Xa and let A be a subspace 
of X, Aa = A n X a. Then the injections Hn(x, A) --> Hn(x a' Aa) repre
sent the group Hn(x, A) as a direct product, 

and isotropic if and only if 

(6) (Isotropy). Letf: (X, A) --> (Y, B) be a weak homotopy equivalence. Then 
Hn(f): Hn(y, B) ~ Hn(x, A)for all n. 

An additive and isotropic theory is said to be complete. 
Let 5* be a cohomology theory on %;. Then 

(7.11) For any free space X, Hn(X, X) = 0 for all n. 0 

(7.12) If A is a deformation retract of X, then Hn(X, A) = 0 for all n. 0 

(7.13) If (X, A) and (A, B) are NDR-pairs, then the homology sequence 

... --> Hn- 1(A, B) --> Hn(x, A) --> Hn(x, B) --> Hn(A, B) --> Hn+ l(X, A) --> ..• 

of the triple (X, A, B) is exact. 0 

Let P be a space consisting of just one point. For any space X, let 
f: X --> P be the unique map, and let jJn(x) = Cok Hn(f): Hn(p) --> Hn(x). 
Then fl" is a contravariant functor: % --> d. 

(7.14) If x E X, the composite of the injection Hn(x, {x}) --> Hn(x) with the 
projection Hn(x) --> jJn(x) is an isomorphism. 0 
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(7.15) If X -=1= 0, the sequence 

0-> Hn(p) -> W(X) -> fjn(x) -> 0 

is exact and splittable, so that 

W(X) ~ fjn(x) EEl Hn(p). o 

(7.16) For any pair (X, A), the coboundary bn(X, A): W- 1(A) -> W(X, A) 
annihilates the image of Hn - 1 Cf) : Hn - 1 (P) -> Hn - 1 (A), inducing a homomor
phism ;)n(x, A): fjn-l(A) -> Hn(x, A). Moreover, the sequence 

... -> fjn-l(A) -> Hn(x, A) -> fjn(x) -> fjn(A) -> Hn+ l(X, A) -> ... 

is exact. o 

(7.17) (Map Excision Theorem). Iff: (X, A) -> (Y, B) is a relative homeomor
phism ofNDR-pairs, then 

HnCf): W(Y, B)-> W(X, A) 

is an isomorphism for all n. o 

(7.18) (Finite Direct Product Theorem). Let X = A u Xl U ... U X n , 

where A and X a are closed (IX = 1, ... , n). Suppose that X a n X peA for 
IX =1= [3 and that (Xa, Xa n A) is an NDR-pair. Let X~ = A u Una X p, 
Aa = X anA. Then 

(1) the injections i~ : Hq(X, A) -> Hq(X a' Aa) represent the group Hq(X, A) as 
a direct product; 

(2) the injections j: : Hq(X, X:) -> Hq(X, A) represent Hq(X, A) as a direct 
sum; 

(3) the injection k: = i: 0 j: : Hq(X, X:) -> Hq(Xa, Aa) is an isomorphism, 
and the representations {in {j~} are weakly dual. 0 

(7.19) (General Direct Product Theorem). Let X = A U UaEJ X a , where A 
and Xa are closed, Xa n Xp c A for IX =1= [3, and (Xa, Xa n A) is an NDR
pair. Suppose that 5* is additive, and that X has the weak topology with 
respect to the subsets A, Xa' Let X: = A u Una X p, Aa = Xa n A. Then 

(1) the injections i: : Hq(X, A) -> Hq(Xa, Aa) represent Hq(X, A) as a direct 
product; 

(2) the injections j: : Hq(X, Xn -> Hq(X, A) represent Hq(X, A) as a strong 
direct sum; 

(3) the injection k: = i: 0 j: is an isomorphism, and the representations {in 
U:} are weakly dual. 0 
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(7.20) (General Incidence Isomorphism). Let K be a regular cell-complex, E 
an n-cell of K, F an (n - 1 )-face of E. Then there is an isomorphism 

(J*(E, F) : Hq-1(F x Y, F x Y) ~ Hq(E x Y, E x Y), 

natural with respect to Y. 

The isomorphism (J*(E, F) is the composite 
k*-l 6* Hq-1(F x Y, F x Y) ----> Hq-1(E x Y, F' x Y) ----> 

Hq(E x Y, Ex Y) 

where k* is the injection. D 

Let r*(K, Y) be the doubly graded group such that p. q(K, Y) = 
Hp+q(K p x Y, K p- 1 X Y). Then r*(K, Y) is a cochain complex with 
coboundary 

<5 : p. q(K, Y) -t p+ 1. q(K, Y). 

The injections 

ia . rp· q(K Y) -t Hp+q(E x Y E x Y) 
., !x' a 

for all p-ce1ls Ea of K, represent the former group as a direct product. And we 
can calculate <5 in terms of this representation, as follows: 

(7.21) The co boundary operator in r*(K, Y) is determined by the relation 

ia 0 <5 = "(J*(E E) 0 i fJ 
~ a' {J , 
fJ 

where E fJ ranges over all (p - 1 )-faces of Ea' 

(7.22) Let F 1 and F 2 be (n - 1 )laces of E which have a common (n - 2 )lace 
G. Then 

(1) ifn ;::0- 2, 

(J*(E, Fd 0 (J*(F1' G) + (J*(E, F2 ) 0 (J*(F2' G) = 0; 

(2) if n = 1, Pi : Fi x Y -t Y the projection on the second factor, 

(J*(E, F 1) 0 Hq-1(pd + (J*(E, F 2) 0 Hq-1(P2) = o. 

(7.23) Theorem For each n-cell E of K there is an isomorphism 

Ie: Hn+k(E x Y, E x Y) -t Hk(y) 

such that,for any (n - 1 )1ace F of E, 

(7.24) (J*(E, F)ule = [e :f]ulf 

for all U E H n +k-1(F x Y, F x Y). 
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The" slant product" isomorphism Ie is natural, in the sense 

(7.25) Letf: Y ~ Z, U E W+k(E x Z, Ex Z). Then 

f*(ule) = (1 x.f)*ule. 

We can now compare the two kinds of cohomology theories. If ~* is a 
cohomology theory on % * a theory f>* on %; is defined by 

W(X, A) = fjn(x+ IA +), 

Hn(f) = fjn(f*), 

where f*: X+IA+ ~ Y+IB+ is induced by f: (X, A)~ (Y, B); while 
c5 n(X, A) is minus the composite 

En-l(A +) fjn(t) 
fjn-l(A +) • fjn(SA +) ---4' fjn(x+ IA +) 

for a connecting map t : X + I A + ~ SA +. Conversely, if f>* is a cohomology 
theory on %;, a theory ~* on % * is defined by 

jjn(x) = Hn(x, H), 

jjn(f) = Hn(f) 

for f: X ~ Y in % * ' while En(x) is the composite 
W+l( ) c5- 1 

Hn+1(SX, {*}) p • Hn+1(TX, X) ------+ W(X, {*}) 

where p: (TX, X) ~ (SX, {*}) is the collapsing map. 
We then have: 

(7.26) Theorem There is a one-to-one correspondence (up to natural isomor
phism) ~* ~ f>* between cohomology theories on % * and on %;. This corre
spondence preserves propriety, additivity, and isotropy. In particular, ~* is 
complete if and only if f)* is. 

EXERCISES 

1. Discuss Theorem (1.7) for the case n = 1. 

2. Let 
i l PI o ----> B ----> E I ---> A ---> 0, 

i2 P2 o ----> B ----> E 2 ----> A ----> 0 

be short exact sequences, corresponding to elements eb e2 E Ext(A, B). Let 
E = P/Q, where 

P = {(el, e2)lpI(ed = P2(e2)} c EI x E2 

Q = Wdb), -i2 (b)lb E B}, 
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and define i : B ---+ E, p : E ---+ A by 

Prove that 

i(b) = il(b) + Q 

p((el' e2) + Q) = pl(ed· 

601 

i P 
(1) the sequence 0 ---+ B ---+ E ---+ A ---+ 0 IS exact, thus determining an element 

8 E Ext(A, B); 
(2) 8 = £1 + 82 . 

(The extension B so defined is called the Baer product of 81 and £2)' 

3. Prove that every homology theory l) on g> * has a unique canonical extension 6 to 
an isotropic theory on % *. Show that l) is additive (proper) if and only if 6 is. 

4. Prove that stable homotopy is not a direct sum of reindexed proper theories. 

5. Determine the structure of (a) H*(X; G), (b) O'*(X) as a O'*-module. 

6. Prove that. if Y is a free space, tip x : Hq(Y) ---+ H p+q(I!P x Y, /),P x Y) is the iso
morphism of Theorem (6.12), n: (/!P x Y, /),P x Y)---+ (SPY+, *) is the 
identification map, and eP is the iterated suspension, then the diagram 

is commutative. 



CHAPTER XIII 

Homology of Fibre Spaces 

We conclude this volume with an introduction to the method of spectral 
sequences for studying the homology of a fibration. In §1 we consider a 
filtered pair (X, A). The homology groups of the triples (Xp, X p- 1 , A) are 
linked together in an intricate way. They can, however, be assembled into 
two graded groups which are connected by an exact triangle 

E 

D -- D i 

Such a diagram is called an exact couple; the notion is due to Massey [1; 2). 
The basic operation on exact couples, that of derivation, gives rise to a new 
exact couple 

E' 

D' -- D' 
i' 

Hence the process can be iterated to obtain an infinite sequence of diagrams. 
The composite d = j 0 fJ has the property that dod = O. Hence E is a 

chain complex with respect to d. The group E' is just the homology group of 
the chain complex (E, d). Hence the above iteration process leads to a se
quence {E'} of chain complexes, each of which is the homology group of the 
preceding, in other words, to a spectral sequence. 

602 
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The algebra of exact couples is developed in §2. In §3 the resulting theory 
is applied to the exact couples associated with the homology and cohomol
ogy of a filtered pair. In the case of homology the spectral sequence con
verges to the associated graded group qjH *(X, A) associated with the 
filtration of H *(X, A) induced by the given filtration of the space. For coho
mology, on the other hand, convergence does not always hold; its failure can 
be expressed with the aid of Milnor's functor lim 1. Maps between filtered 
spaces are also considered, and a filtration preserving map induces a map 
between their couples. Homotopies are also considered, and it is shown that 
if two maps are connected by a filtration preserving homotopy, the induced 
maps of the associated couples are homotopic in the algebraic sense, from 
which it follows that the induced maps between the derived couples coincide. 

If f: (X, W) -+ (B, A) is a fibration (i.e., f: X -+ B is a fibration and 
W = f - I(A)) and (B, A) is a relative CW -complex, the filtration of (B, A) by 
skeleta induces a filtration of (X, W) by their counterimages. This situation 
is discussed in §4. Let GJ be a homology theory (in the sense of Chapter XII; 
i.e., the Dimension Axiom is not assumed). The initial term G p+q(X p' X P-I) 
= E~. q is identified via an isomorphism A of E~. q with the chain complex of 
(B, A) with coefficients in the bundle of groups G l~) formed by the homol
ogy groups of the fibres over the points of B. A fibre preserving map be
tween two fibrations induces a filtration preserving map between the total 
spaces, as well as a chain map between the chain complexes of the base pairs. 
In §5 it is shown that A is consistent with these maps; moreover, A is an 
isomorphism of chain complexes. Thus the E2 term is canonically isomorphic 
with H *(B, A; G *(ff)). Corresponding results are obtained for cohomology, 
and mild conditions on the fibration (and/or the homology theory GJ) which 
ensure convergence of the spectral sequence. 

The next two Sections are devoted to applications. In §6 it is assumed that 
the fibre is a point; the spectral sequence then leads from the (ordinary) 
homology groups of (B, A) with coefficients in Gq (point) to the (extraordi
nary) homology groups of (B, A). Some applications are the stable forms of 
the exact sequence (3.13) of Chapter XII on the one hand and of the Steen
rod classification theorem for maps of an n-complex into an (n - 1 )-sphere 
on the other. In §7 we consider an arbitrary fibration, but assume that we 
are dealing with ordinary homology theory. Applications include the Serre 
exact sequence which was proved under restrictive hypotheses in §6 of 
Chapter VII, as well as some qualitative results on homotopy groups; for 
example, if X is simple and Hi(X) finitely generated (finite) for all i > 0, 
then 1ri(X) has the same properties. 

In order to obtain deeper results, one needs to make use of the multi
plicative structure of cohomology. This is done by introducing cross pro
ducts into the spectral sequence, and then using the device of a diagonal map 
to convert these into cup products. This program is carried out in §8, and a 
few further applications bring our introductory treatment of spectral se
quences, and with it, the first volume of the book, to a conclusion. 
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Leray [2, 3] inaugurated the use of spectral sequences in topology. His 
spectral sequence used cohomology theory ofthe Cech type and was defined 
for a more or less arbitrary continuous map (not necessarily a fibration). In 
1951 Serre [1], using cubical singular theory, set up the spectral sequence for 
a map which satisfies conditions somewhat weaker than those for a fibration 
(the homotopy lifting property is assumed only for maps of finite com
plexes). Serre's paper was a landmark in homotopy theory; the applications 
in §§7, 9 and many more are due to him. In 1952 Massey [1, 2] introduced 
exact couples as a convenient formalism for handling the complicated 
algebra implicit in the use of spectral sequences. 

Axioms for homology theory were announced by Eilenberg and Steenrod 
[1] in 1945, and by the time their book [E-S] appeared in 1952 their methods 
had already permeated algebraic topology. In their work the first six axioms 
have a general character, while the Dimension Axiom is specific; never
theless it is given equal status with the others, no doubt because no very 
interesting examples of extraordinary theories were known. In spite of this, 
by 1955 the existence of the spectral sequence of §6 had become folklore. By 
the early '60's there had arisen a number of (extraordinary) homology 
theories of interest: stable homotopy, bordism, K-theory, etc. And it was 
Atiyah and Hirzebruch [1] who in 1961 made the first serious use ofthe said 
spectral sequence in their work on K-theory. 

1 The Homology of a Filtered Space 

Let {X n I n ~ O} be an ND R -filtration of a space X, and let A be a subspace of 
Xo such that (Xo, A) is an NDR-pair. Letting Xn = A for all n < 0, we shall 
refer to {Xn In E Z} as an NDR-filtration of the pair (X, A). 

Let 5 be a homology theory (in the sense of Chapter XII). We shall be 
interested in the relationship among the homology groups of the various 
pairs which can be formed from X and the X n . In particular, for each n, the 
groups Hn(Xp, A) form a direct system under the injections Hn(Xp, A)-+ 
Hn(X p+ 1, A), and we may consider their direct limit !imp Hn(X P' A). On the 
other hand, the injections Hn(X p' A) -+ Hn(X, A) induce a canonical homo
morphism tjJ: lim p H n(X p' A) -+ H n(X, A). It will be essential for us to 
assume that the homology theory in question is additive. For then 

(1.1) Theorem (Milnor). If 5 is additive, the canonical homomorphism 
tjJ:!imp Hn(Xp, A)-+Hn(X, A) is an isomorphism. 0 

(1.2) Corollary The group Hn(X, A) is the union of the images of the injections 
Hn(X p, A)-+Hn(X, A). 0 
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We shall also need to consider additive cohomology theories b*. For 
these the situation is not quite so simple. Indeed, one has, as before, an 
inverse system of groups Hn(x p' A) and a canonical homomorphism 
1/1* : Hn(x, A) ~ limp Hn(x p' A). Unfortunately, 1/1* is not always an iso
morphism. Instead, one has 

(1.3) Theorem (Milnor). If b* is an additive cohomology theory, there is a 
short exact sequence 

o~ lin/ Hn- 1(X p, A)~Hn(x, A) 1/1* l lim Hn(x p' A) ~ O. o 
p p 

(1.4) Corollary The intersection of the kernels of the injections Hn(x, A) ~ 
Hn(xp, A) is the subgroup lim 1 Hn-1(x p, A). 0 

p 

Throughout this chapter we shall assume that the homology and coho
mology theories with which we are dealing are additive. 

The homology sequences of the triples (X p' X p-1' A) are linked together 
in an intricate way (Figure 13.1). Let us see how we can make use of the 
information contained in this diagram to obtain results about the homology 
of the pair (X, A). 

In Figure 13.1 the homology sequence of one particular triple 
(X p' X p-1' A) has been outlined. Moreover, the groups Hn(X, A) have been 
adjoined to the bottom of the diagram. Let J p. n- p be the image of the 
injection Hn(Xp, A)~Hn(X, A); then there are inclusions 

(1.5) 0 = J- 1,n+1 C JO,n c··· c Jp,n-p c J p+1,n-p-1 c··· c Hn(X, A), 

and, by (1.2) 

Hn(X, A) = U Jp,n-p' 
p 

Thus Hn(X, A) is filtered by the subgroups J p, q (p + q = n), and we may 
form the doubly graded group '1IH *(X, A) whose (p, q)th component is the 
quotient J p, q/J p-1, q+ l' Thus we may hope to get information about 
Hn(X, A) through a knowledge of the groups Hn(X p' A). And we may hope, 
in turn, to calculate the latter groups inductively, through a knowledge of the 
groups Hn(Xp, X p- 1)' 

As an example, suppose that (X, A) is a relative CW-complex with skeleta 
X n, and that b is singular homology theory with integral coefficients. By 
Theorem (2.11) of Chapter II and its Corollaries, the diagram simplifies 
enormously in this case (Figure 13.2). In fact, the groups above the row 
p = n are all zero, the groups H n(X p' X p_ d are zero for n i= p, and the 
groups Hn(X p, A) are isomorphic with each other and with Hn(X, A) for 
p > n. In this way we recapture the calculation of the homology groups of 
(X, A) from its chain complex r(X, A) which was made in §2 of Chapter II. 
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Let Ep, q = H p+q(X p' X p- d, and let dp, q : Ep, q ~ Ep- 1, q be the boundary 
operator of the homology sequence of the triple (X p' X p_ l' X p- 2)' Then 
dp , q 0 dp + 1, q is the composite 

(1.6) Hp+q+1(Xp+1, Xp)~Hp+q(Xp, A)~Hp+q(Xp, X p- 1) 

~Hp+q-1(Xp-1' A)~Hp+q_1(Xp_1' X p- 2 ), 

and this is zero because the central segment is a portion of the homology 
sequence of the triple (Xp, X p- 1, A). Thus the groups Ep,q are the compo
nents of a doubly graded chain complex E, whose boundary operator has 
degree (-1,0). The homology group of E is then a doubly graded group E', 
with 

The groups Dp.q = Hp+q(X p, A) are the components ofa doubly graded 
group D; and the injections ip, q: Dp, q ~ Dp+ 1. q-1 the components of an 
endomorphism i: D ~ D of degree (1, - 1). The image of i is a doubly 
graded subgroup D' of D; it is convenient to take the (p, q)th component 
D~,q of D' to be a subgroup of Dp,q, so that D~,q = 1m ip- 1,q+1 (and not 
1m ip, q). The injectionsjp, q: Dp, q ~ Ep, q are the components ofa homomor
phism j : D ~ E of degree (0, 0). And the boundary operators 

Op,q: Ep,q~Dp-1,q 

are the components of 0: E ~ D, of degree (-1,0). Thus the diagram of 
Figure 13.1 can be simplified to a diagram 

(1.7) 

E 

V~ 
D -- D i 

in the category of doubly graded groups. 
The exactness of the homology sequences in Figure 13.1 is reflected in 

(1.8) The diagram (1.7) is exact, in the sense that 

Ker 0 = Imj, 

Ker i = 1m 0, 

Ker j = 1m i. o 

Such a diagram is called an exact couple, and we shall study the algebra of 
exact couples in §2. 
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In the same way, the cohomology sequences of the triples (X, X P' X p- d 
give rise to an exact couple 

D • D 

with 

EP' q = Hp+q(X X ) P' p-l, 
DP' q = Hp+q(X X )' , p-l, 

the injections i, j have degrees (-1, 1), (0, 0), respectively, while the co
boundary operator (j has degree (1,0), 

Let ]p' n- P be the kernel of the injection Hn(x, A) -4 Hn(x p-l, A), Then 

Hn(x, A) = jO,n =:l '" =:l jP,n- p =:l jP+l,n-p-l =:l ", 

However, the intersection of these subgroups is not, in general, zero, Instead, 
because of (1.4), we have 

(1.9) The intersection np jP,n- p is the subgroup liml Hn-1(X p, A) of 
Hn(x, A), D 

Thus we have a descending filtration of the quotient 

Hn(x, A)/lim 1 Hn-l(xp, A). 

2 Exact Couples 

In the algebraic discussion of this section we shall assume that we are 
working in a category of (possibly multiply) graded abelian groups. Each 
homomorphism thus has a well-defined degree (which may be a k-tuple of 
integers). The kernel of a homomorphism is then a graded group which 
inherits its graduation from its domain. Similarly, the image of a homomor
phism is a graded group, whose graduation is inherited from the range. 

Let 

D <---- D 
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be an exact couple, and let d = j 0 0 : E -> E. Then dod = j 0 0 0 j 0 0 = 0, 
since 0 0 j = 0, so that E is a chain complex. Let E' = H(E), and let 
D' = 1m i. Then i I D maps D (and, a fortiori, D') into D', determining a 
homomorphism i': D' -> D'. Moreover, 0 maps Z(E) = Ker d into 
Ker j = D' and B(E) = 1m d into zero, thereby inducing a homomorphism 
0' : E' -> D'. Finally, j maps D into Z(E) and Ker i = 1m 0 into B(E), thereby 
inducing a homomorphism j' of D' ~ D/Ker i into E'. 

(2.1) Theorem The diagram 

C{!' : 

D' +--- D' 
i' 

is an exact couple. 

For 

Ker 0' = Ker o/B(E) = lmj/B(E) = lmj', 

Ker i' = Ker i n 1m i = 1m 0 n Ker j, 

1m 0' = o(Ker d) = 0(0-1(Ker j)) = Ker j n 1m 0 = Ker t, 

Ker j' = r 1 (1m d)/Ker i = r 1 j(lm 0 )/Ker i 

= 1m 0 + Ker j/Ker i = Ker i + Ker j/Ker i 

= i(Ker j) = i(D') = 1m t. o 

The exact couple C{!' is called the derived couple of the original exact 
couple C{!. The process of derivation can be iterated indefinitely, yielding an 
infinite sequence of exact couples 

E(r) 

j1 ~(r) 
D(r) +----- D(r) 

i(r) 

(r= 1,2, ... ). 

such that C{!(1) = C{! and C{!(r+ 1) is the derived couple of C{!(r). The endomor
phism d(r) = j<') 0 o(r) has the property that d(r) 0 d(r) = 0, so that E(r) is a 
chain complex under d(r), whose homology group is E(r+ 1). In this way we 
obtain a spectral sequence. 

Rather than deal with the infinite sequence of chain complexes {E(r)}, it is 
often convenient to work within the original group E. The machinery for 
doing so is provided by the notion of additive relation; (cf. Appendix B, 
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which the reader is encouraged to peruse if he is not already familiar with 
this notion). 

Specifically, let ik be the kth iterate of i, and let L1 (r) be the additive relation 
j 0 i-(r-1) 0 a : E~E. 

(2.2) The relation L1 (r) has the following properties: 

(1) Dom L1(r) = a- 1 1m t-1, 
(2) Ker L1(r) = a- 1 1m t, 
(3) 1m L1(r) = j Ker t, 
(4) Ind L1(r) =j Ker t- 1 . 

It follows by induction on r that 

(2.3) The group E(r) is the subquotient 

Dom L1(r)/lnd L1(r) 

of E. 

In order to make the inductive proof, we shall need to carry along a 
description of the whole couple <t?(r). Thus we shall need to prove (2.3) and 

(2.4) The homomorphisms a(r), i(r), /r) are given by 

a(r)(x + j Ker t- 1 ) = ax, (x E a- 1 1m t- 1 ), 

i(r)(a) = i(a) (a E 1m {-1), 

(a ED), 

by simultaneous induction. Both (2.3) and (2.4) are trivial for r = 1. Assume 
that the couple <t?(r) is correctly described. Then, if ax = {-la, we have 

(2.5) d(r)(x + j Ker t- 1) = p) ax = j<'lt- 1 a 

=j(a) + j Ker t- 1 • 

If this is zero, we have j(a) = j(a'), a' E Ker t- \ whence 

a = a' + i(a"), 

ax = t- 1a = ta", so that x E a- 1 1m t. Conversely, if x E a- 1 1m {, 
ax = t a, then 

d(r)(x + j Ker ir- 1 ) = ji(a) + j(Ker t- 1 ) = 0. 

Thus Ker d(r) = a- 1 1m i'/lm d(r-l). Again, if (2.5) holds, then 
0= i ax = i' a, so that 1m d(r) c j Ker tl) Ker {-1. Conversely, if y = j(a), 
ta = 0, then {-la E Ker i = 1m a, t- 1a = ax for some x; then 
d(r)(x + j Ker {- 1) = Y + Ker {- 1, 1m d(r) = ) Ker t I) Ker t- 1, so that 
E(r+ 1) = Ker d(r)jIm d(r) is as described. The formulae in (2.4) follow without 
further difficulty. 0 
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Let z(r) = Dom ~(r), B(r) = Ind ~(r); then 

(2.6) E = Z(1) ::l ... ::l z(r) ::l z(r+ 1) ::l ... ::l B(s+ 1) ::l B(s) ::l .,. ::l B(l) = O. 

Letting Z(oo) = n z(r), B(oo) = U jJ<s), we then have Z(oo) ::l B(oo), and so we 
may define E(oo) = Z(oo)/B(oo). In fact, 

(2.7) The group E(oo) is isomorphic with each of the following double limits: 

lim lim z(r)/B(sl, 

D 

There are connections between the subquotients E(oo) of E and certain 
subquotients of D. However, without additional hypotheses, these connec
tions are rather tenuous. Therefore we shall formulate them only for certain 
special cases (for example, the homology and cohomology exact couple of a 
filtered pair). 

A map (f, g) between two exact couples Vi'1, Vi' 2, is nullhomotopic if and 
g : D1 --+ D2 such that the diagram 

i 1 
Dl ------+ Dl 

~A 
El 

g 1f g 

E2 

y~ 
D2 ~ D2 

'2 

is commutative (except for the two triangles). 
When this is so, d 1 0 f = f 0 d2 , so that f is a chain map and induces a 

homomorphism!, : E'l --+ E2. Moreover, g maps 1m i1 into 1m i 2 , inducing 
a map g' : D'l --+ D2. And it is trivial to verify that!" g' define a map between 
the derived couples. 

A map (f, g) between two exact couples Vi'1o Vi' 2, is nullhomotopic if and 
only if there is a map h: Dl --+ D2 such that 

(1) f = d2 0 h + h 0 d1, 

(2) g = a 2 0 h o.i l' 
Two maps (fa, go) and (f1' g l) are homotopic if and only if their difference 
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(fl - fo, gl - go) is nullhomotopic. When this is so, we see thatfo andfl are 
chain homotopic, while go and gl agree on D' = 1m i. Hence fa = 1'1, 
g'o = gl, and the derived maps coincide. 

Maps between couples can be composed: if ¢ = (f, g) : C(j 1 --+ C(j 2 and 
¢' = (f', g') : C(j 2 --+ C(j 3, then ¢' 0 ¢ = (f' 0 f, g' 0 g) : C(j 1 --+ C(j 3 is a map of 
couples. And if ¢ or ¢' is nullhomotopic, so is ¢' 0 ¢. Hence 

(2.8) Let ¢ : C(j 0 --+ C(j 1, "'0 , '" 1 : C(j 1 --+ C(j 2 , X : C(j 2 --+ C(j 3 be maps of exact couples 
such that "'0 is homotopic to '" l' Then X 0 "'0 0 ¢ and X 0 '" 1 0 ¢ are homo
topic. D 

Remark. Since E(k) is a subquotient of E = E(1), there is a canonical addi
tive relation Ik : EN-> E(k). If r ::::0: k, let .-:\~) = Ik 0 .-:\(r) 0 Ii: 1 : E(k) N-> E(k). Then it 
is not hard to see (Exercise 5, below) that 

.-:\~) = P) 0 (i(k)r(r-k) oO(k). 

In particular, the relation .-:\~r) is the boundary operator 

d(r) = j<r) 0 orr) 
of the couple E(r). 

Thus the relation .-:\(r) does double duty. On the one hand, it serves to 
construct the complex E(r); on the other, it is the relation in E(l) correspond
ing to the operator d(r) in E(r). 

3 The Exact Couples of a Filtered Space 

Let us return to the special case ofa filtration {X p} of a pair (X, A). We have 
seen that the group Hn(X, A) is filtered by the subgroups J P. q with 
p + q = n. Moreover, if r is sufficiently large, then Hp+q(X p_" A) = 0, 
and therefore Z~! q = Ker op, q is independent of r. It follows that 
E~~d = Ker op, q/U B~! q is the direct limit of the groups E~! q under the ho
momorphisms induced by the inclusions. 

We can now make explicit the relations between the groups E~! q and the 
filtration (1.5) of H*(X, A). In fact, the composite of the injection 

f = jP. q: Hp+q(X P' A) --+ Hp+q(X P' X p_ d 
with the inverse of the injection 

g: H p+q(X P' A) --+ H p+q(X, A) 

is an additive relation <I>p,q: Hp+q(X, A~Ep.q, and 

(3.1) Theorem The relation <I>p, q induces an isomorphism 

¢p, q : J p, q/1 p-l, q+ 1 ~ E~~~. 
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We must prove 

(1) Dom <l> p, q = J p, q; 

(2) Ker <l>p,q = Jp-l,q+1; 
(3) 1m <l>p,q = Z~~J; 
(4) Ind <l>p,q = B~~J. 

XJII Homology of Fibre Spaces 

The first statement is trivial, the second and third immediate consequences 
of the exactness of the homology sequence of the triple (X p' X p_ 1, A). The 
indeterminacy of <l>p, q is f(Ker g), by Example 1, §2 of Appendix B. But 
Ker g is the union of the kernels of the injections 

gr : H p+q(X p' A) ~ H p+q(X p+r-1' A). 

By exactness, the kernel of gr+1 is g;l(lm op+r.q-r+d, and therefore 
Bt.> q = f(Ker gr+ d· Thus 

Ind <l>p, q = f(Ker g) = f(U Ker gr+ 1) 
r 

Let us summarize our results on the homology exact couple of the filtered 
pair (X, A). 

(3.2) Theorem Let (X, A) be a filtered pair. Then there is an ascending 
filtration 

(3.3) 0= J -l,n+1 C J O• n Coo. C J p. n- p Coo. C Hn(X, A) 

of Hn(X, A) and a sequence of doubly graded chain complexes {Et.> q I r ;::0: 1} 
such that 

(1) the boundary operator of E(r) has degree (- r, r - 1); 
(2) the homology group of E(r) is E(r+ 1); 
(3) for each p, q and all sufficiently large r, there is an epimorphism 

E(r) .. E(r+ 1). 
P. q P. q , 

(4) the graded group E(OO) for which 

E(oo) = lim E(r) p,q ~ P.q 
r 

is the graded group '1JH*(X, A) associated with the filtration (3.3) of 
H*(X, A). D 

Let us turn our attention to the cohomology exact couple. In this case the 
operators {b(r) , i(r) , j(r)} of the (r - 1 )st derived couple have degrees {(r, 1 - r), 
(-1, 1), (0, O)}, respectively, and it follows that d(r) = j(r) 0 b(r) has degree 
(r, 1 - r). If r is sufficiently large, X p-r = A and the injection 

Hp+q(X, X p-r) ~ Hp+q(X, A) 

is the identity. For such r the kernel of the injection 
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Hp+q(X, X P- d ---+ Hp+q(X, X p-r) 

is independent of r, and so is its image Bf;) q under the injection jP' q. Thus 

Ef~j = Zf~j/Bf~j = n Zf;8Bf~j· 
Again, we may define an additive relation <l>P' q. This time it is the compo

site of the injection f = jP' q : Hp+q(X, X P_ I) ---+ Hp+q(X P' X P_ d with the 
inverse of the injection g: Hp+q(X, X p_ d ---+ Hp+q(X, A). 

(3.4) Theorem The relation <l>P' q induces a monomorphism 
,J.P, q. jP' q/jP+ I, q-I ,....... EP' q 
'I' . (00)' 

We must prove: 

(1) Dom <l>p,q = jp,q, 
(2) Ker <l>p,q = JP+1,q-l, 
(3) 1m <l>p,q c Zf~j, 
(4) Ind <l>p,q = Bf~j, 

The first two statements are immediate consequences of the exactness of the 
appropriate cohomology sequences; the last follows from the identification 
of Bf~j above. The image of <l>P' q, by exactness, is the kernel of 
(jp,q:Hp+q(X p, Xp_I)---+Hp+q+I(X, Xp); it is a subgroup of Zf~j= 
((jP' qt 1 (If' q), where If' q is the intersection of the images of the lllJec
tions Hp+q+ I(X X ) ---+ Hp+q+ I(X X ) D , p+r , p' 

Let us see what can be said about the cokernel of <jJP, q. It follows from 
Milnor's result (1.3) that there is a commutative diagram 

!Y.p f3p 1 o ----> ~I Hp+q(X p+" X p) --> Hp+q+ I(X, X p) ~ ~ Hp+q+ (X p+" X p) --> 0 

1 
o ---+ ~I Hp+q(X p+"x p_ d ~ Hp+q+ I(X, X p_I) --->f3 !!.!!!. Hp+q+ I(X p+r' X p- d ---+ 0 

r p-l p-l r 

induced by the relevant injections. Moreover, 

1m rlp = Ker j3p = If, q, 

Thus 

Thus 

1m N - Ker j3 - Tp-l,q+1 
""p- 1 - p- 1 - .w . 

Cok <jJP, q :::::; Zf~VKer (jP' q = ((jP, qt 1 (If' q)/Ker (jP' q 

:::::; If' q n 1m (jP' q = If' q n Ker iP+ I, q 

:::::; Ker ,p, q. 
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(3.5) Theorem The cokernel of </JP' q is isomorphic with the kernel of the 
homomorphism 

zP' q : lim 1 Hp+q(x p+n X p) ---> lim 1 Hp+q(x p+n X p- d 
r r 

induced by the appropriate injections, o 
Summarizing, we have 

(3.6) Theorem Let (X, A) be a filtered pair, Then there is a descending 
filtration 

H"(X, A) = JO," => ". => JP,q => JP+1,q-1 => ... , n JP,q = 0, 
p+q=" 

of the quotient 

H"(X, A) = H"(X, A)/lim1 H"-1(X p, A) ~ lim H"(Xp, A) 
r 

and a sequence of doubly graded cochain complexes {E[;) ql r ;;::: 1} such that 

(1) the coboundary operator of E(r) has degree (r, 1 - r); 
(2) the cohomology group of E(r) is E(r+ 1); 
(3) for each p, q and all sufficiently large r, there is a monomorphism 

E[;!1)-Ef;)q; 

(4) the graded group '1JH*(X, A) associated with the above filtration is a 
subgroup of the graded group E(oodor which 

o 

Let us now consider the effect of maps. Let (X, A) and (Y, B) be filtered 
by {X p}, {Yp}, respectively. Let rc(X, A), rc(y, B) be the associated exact 
couples. Let f: (X, A) ---> (Y, B) be a map which respects the filtrations: 
f(Xp) C Yp for all p. Then f induces 

f#: Hp+q{Xp, Xp-d---> Hp+q(Yp, Yp-d, 

fq: Hp+q(Xp, A) ---> Hp+q(Yp, B), 

and it is clear that 

(3.7) The mapsf#,fq constitute a map f*: rc(X, A) ---> rc(y, B). o 

More delicate is the effect of homotopies. If {X p} is a filtration of (X, A), 
then the spaces 
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constitute a filtration of 1 x (X, A) = (I x X, 1 x A). Let fO,f1 : (X, A) ~ 
(Y, B) be maps, and let 

f: (I x X, 1 x A) ~ (Y, B) 

be a homotopy of fo to fl which respects filtration. 

(3.8) Theorem The mapsfO*,fh : <,€(X, A) ~ <,€(Y, B) induced bYfo andfl are 
homotopic. 

The maps p: X ~ 1 x X, q: X ~ 1 x X defined by 

p(x) = (0, x), q(x) = (1, x) 

respect filtration and therefore define maps p*, q*: <,€(X, A) ~ 
<,€(I x (X, A»; moreover,f* 0 p* = fo*,f* 0 q* = f h . By (2.8), it suffices to 
prove 

(3.9) The maps p*, q* : <,€(X, A) ~ <,€(I x X, 1 x A) are homotopic. 

It behooves us to define homomorphisms 

Ar.s: Hr+.(Xr' Xr-1)~Hr+s+l(1 X Xr u i x X r+1, 1 x X r- 1 U i x X r) 

such that 

(3.10) 

(3.11) 

q. - P. = d 0 A + A 0 d, 

qq - Pq = a 0 A 0 j. 

The statements of (3.10) and (3.11), as well as their proofs, for a given 
degree (r, s) involve only a few subsets of X and their products with certain 
subsets of I. It will simplify the notation if we agree that 

P = 1 x P, PI = {t} X P, (t = 0, 1), 

for any space P. The Fundamental Notational Convention of Chapter II 
continues in effect. In addition, the symbols Pi' qi will denote homomor
phisms induced by the maps p, q, respectively. 

Let (R, Q, P) be an NDR-triple. We may then define a homomorphism 

Am(R, Q, P) : Hn(Q, P) ~ Hn+ 1 (Q U R, P u Q) 

to be the composite of 

(1) the homomorphism 

Hn(Q, P) ~ Hn(P u Q, P u Qo) 

induced by q (which is easily seen, with the aid of the Excision Property, 
to be an isomorphism); 

(2) the inverse of the boundary operator 

Hn+1(Q, P u Q)~Hn(P u Q, P u Qo) 
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(which is an isomorphism because (Q, P U Qo) = (I, 0) x (Q, P) is a 
DR-pair); 

(3) the injection 

Hn+1(Q, P U Q)~Hn+l(Q u R, P u Q). 

The homomorphism A is then defined by 

We shall prove 

(3.12) Let (S, R, Q, P) be an NDR-quadruple. Then the relation 

An-l(R, Q, P) 0 01 + 02 0 An(S, R, Q) = ql - PI 

suggested by the diagram 

Hn - 1(Q, P) 

(3.13) 

01 ~n-I(R, Q, P) 
qi - PI 

Hn(R, Q) I Hn(Q U R, P u Q) 

An(S, R, ~ /02 
Hn+tCR uS, Q u R) 

holds. 

The relation (3.10) follows immediately from (3.12) by taking 
(S, R, Q, P) = (Xr+ 1, X" Xr-l> X r- 2 ) and n = r + s. 

The relation (3.11) also follows from (3.12). Let us first consider the 
quadruple (Xr+ 1, X" A, A) and observe that, since H r+s- 1 (A, A) = 0, (3.12) 
asserts that 

Let us further consider the quadruple (Xr+ l' X" X r- 1 , A) and the inclusion 
of the first quadruple in the second. This gives rise to a commutative 
diagram 
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ph ism j' 0 O2 0 .Ie' = j2 0 (qi - PI) is the homomorphism q~ - P~ of (3.11), 
while 0, A., and j have the same meaning as in (3.11) (for degree (r, s». Thus 
(3.11) follows from commutativity of the above diagram. 

To prove (3.12), we first establish a direct sum decomposition of the 
group G = Hn(Q u R, P u Q): 

(3.14) The homomorphisms 

A. = A.n-I(R, Q, P): Hn-I(Q, P)-+ G, 

PI : Hn{R, Q) -+ G, 

qi : Hn(R, Q) -+ G 

represent the group G as a direct sum. 

Let us apply the Direct Sum Theorem to the pair (Q u R, P u Q) and the 
subspaces Q, Ro , R I . We find that the injections 

i: Hn(Q, P u Q) -+ G, 

io : Hn(Ro, Qo) -+ G, 

i l : Hn(RI' Qd -+ G 

represent G as a direct sum. Since A., PI and qi are the composites ofi, io and 
i I with the isomorphisms 

P2 Hn(R, Q) -~) Hn(Ro, Qo), 

q2 
Hn(R, Q) -~) Hn(RI' Qd, 

respectively, they also represent G as a direct sum. 

It also follows from the Direct Sum Theorem that 

(3.15) The injections 

j: G -+ Hn(Q u R, PuR), 

jo: G -+ Hn(Q u R, Q u Rd, 

jl: G-+Hn(Q u R, Q u Ro) 

o 
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represent G as a direct product. The representations (A, Pl' q 1) and (j, jo , j 1) 
are weakly dual. 0 

We shall use the above representations to prove (3.12). Let 
A = An-l{R, Q, P), A = An(S, R, Q). We must prove three relations: 

(3.16) 

(3.17) 

(3.18) 

As the reader may infer from the presence of the minus signs in (3.16) and 
(3.17), their proofs will involve the use of the Hexagonal Lemma. That of 
(3.18), on the other hand, is straight forward. 

To prove (3.16), we first establish 

(3.19) Lemma The diagram 

HlP u ft., P u Q u Ro) --+ Hn(Q u ft., P u Q u Ro) - Hn(Q u ft., P u ft.) 

~ / \ f. 
satisfies the hypotheses of the Hexagonal Lemma, and therefore 

The requisite exactness and commutativity properties are evident. Since 
(R, Q u Ro) = (1,0) x (R, Q) is a DR-pair, it follows from the exactness of 
the homology sequences ofthe appropriate triples that i3 and 83 are isomor
phisms. 0 

(3.20) Lemma The diagram 
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Hn - 1(Q, P) ~ Hn- 1(P u Q, P u Qo) ~HlQ, P u Q) 

1 a, I k, 

HiQu R,Pu R) 

Hn(R, P u Q u Ro) ~ Hn(Q u Ro, P u Q u Ro) 
13 

is commutative and all its homomorphisms except possibly 01, Os and i2 are 
isomorphisms. Hence 

k3 007 1 0 q4 0 01 =k2 0 i3 1 0 i2 0 q3. 

The commutativity is evident. That q3' Q4' k3' k4 and ks are isomor
phisms follows from the Excision Property. That 06' 07 and i3 are isomor
phisms follows from the fact that (R, P u Ro), (Q, P u Qo) and 
(R, Q u Ro), respectively, are DR-pairs. 0 

We can now prove (3.16). The homomorphismj 0 A. 0 01 is the composite 

0- 1 i4 •• 
7 • Hn(Q, P u Q) --'---+' Hn(Q U R, P u Q) 

j • H n(Q U R, PuR). 

But the composite of the last two injections is k3 • Hence 

j 0 A. 0 01 = k3 0 07 1 0 Q4 0 01 

On the other hand, j 0 02 0 A: is the composite 
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But qs = kl 0 q3 and j 0 02 0 is = 04 , Hence 

j 0 020 A = 0400310 kl 0 q3 

= -k2 0 i3 1 0 i2 0 q3 by Lemma (3.19) 

= -k3 00710 q4 0 05 by Lemma (3.20) 

=-j OAoO I' D 

To prove (3.17), we establish 

(3.21) Lemma The diagram 

H.(Q u R, Q u Ro) ~ H.+ 1(R, Q u R) 

satisfies the hypotheses of the Hexagonal Lemma, and therefore 

k6 0 i;;1 0 q6 = -Os 00 3 1 0 qs' 

Again, the requisite exactness and commutativity properties are clear, 
and we have seen that 03 is an isomorphism. That i6 is an isomorphism 
follows from the fact that (R, Q u Ro) is a DR-pair. 0 

(3.22) Lemma The diagram 

H.(Q u R, P u Q) 

H.(R, Q) +-4 -.-

16 
H.(Q u R, Q u Rd 

is commutative, and therefore 

jo 0 PI = k6 0 i;;1 0 q6' 

The right-hand side of the diagram is trivially commutative. To show that 
the left-hand triangle is commutative, observe that the maps p, q: (R, Q) ~ 
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(R, Q) are homotopic, and therefore their induced homomorphisms 
P4' q6 : Hn(R, Q) -+ Hn(R, Q) coincide. Then i6 0 P3 = P4 = q6· 0 

We can now prove (3.17). The homomorphism Os is the composite 
jo 0 O2 0 i5; hence 

jo 0 O2 0 A = Os 0 031 0 q5 

= -k6 0 iii 1 0 q6 by Lemma (3.21) 

= - jo 0 PI by Lemma (3.22). 

Finally, we may observe thatjl 0 02 0 i5 = 03 , and therefore 

jl 0 O2 0 A = 03 0031 
0 q5 = q5 = jl 0 ql. 

This completes the proof of (3.12). 

Similarly, a filtration preserving map f induces homomorphisms 

f#: Hp+q(yp, Yp- 1 )-+Hp+q(Xp, X p- 1 ), 

f#: Hp+q(y, Yp-d -+Hp+q(X, Xp-d 

o 

o 

(3.7*) The maps f~,f~ constitute a map f* : <€*(Y, B) -+ <€*(X, A). 0 

And iff: (I x X, 1 x A) -+ (Y, B) is a homotopy between two maps fo ,II 
which respects filtration, 

(3.8*) Theorem The maps f~ ,fT induced by fo and fl are homotopic. 0 

The proofs are dual to those of (3.7) and (3.8), respectively. 

4 The Spectral Sequence of a Fibration 

Letf : X -+ B be a fibration with fibre F, and let (I) = {Gn, on} be an additive 
homology theory (we use the letter G, rather than H, because although we 
are interested in only one homology theory at a time, others may, and indeed 
do, crop up; in particular, ordinary homology groups with local coefficients 
appear in the case in hand). In this section we shall show how to associate 
with the fibre map f an exact couple whose spectral sequence leads from the 
ordinary homology ofthe base with (local) coefficients in the (extraordinary) 
homology of the fibre to the (extraordinary) homology of the total space. 

Let (B, A) be a relative CW-complex,f: X -+ B a fibration, W = f-l(A), 
and let Bp be the p-skeleton of (B, A), X p = f - 1 (Bp). We shall describe 
f: (X, W) -+ (B, A) as a fibration of pairs. 
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Throughout this section we shall assume that the fibrationsf: (X, W)--? 
(B, A) with which we are dealing have the property that the base space B is 
O-connected. Then the fibres all have the same homotopy type, and we 
assume, in addition, that they, too are O-connected. 

(4.1) Theorem The spaces Xpform an NDR-filtration of (X, W). 

By Theorem (7.14) of Chapter I, the pair (Xp, X p- 1 ) is an NDR-pair for 
every p. Therefore, by the results of§6 of Chapter I, it suffices to prove that X 
has the weak topology with respect to the family of subspaces X p • 

Let C be a subset of X whose intersection with X p is closed for every p. If 
K is any compact subset of X, thenf(K) is compact and therefore contained 
in Bp for some p. Then K c XP' and therefore 

C n K = C n (Xp n K) = (C n Xp) n K 

is closed. Since X is compactly generated, C is closed. o 

The fibration {X p} gives rise to an exact couple <C(f) as in §3, and our first 
objective is to calculate the group 

E!.q = Gp+iXp, X p- 1 ). 

Let {Ea} be the p-cells of (B, A), and let E: = Bp - Int Ea. Let 

Qa = f-l(Ea), 

Qa = f-l(Ea), 

Q: =f-l(E:)' 

(4.2) Theorem The injections 

ia: Gp+q(Qa, Qa)--? Gp+q(Xp, X p- 1 ) 

represent the group G p+ q(X P' X p_ d as a direct sum. The injections 

ja: Gp+iXp, X p- 1 ) --? Gp+q(Xp, Q:) 

represent Gp+q(X P' X p_ d as a weak direct product. The representations ria}' 
Ua} are weakly dual. 

This follows from the General Direct Sum Theorem (6.9) of Chapter XII, 
as soon as we have verified that X p has the weak topology with respect to the 
subspaces X p_ 1, Q:. Let C be a subspace of X p whose intersections with each 
Q: and with X p- 1 are closed. If K is a compact subset of XP' thenf(K) is 
compact; by (1.1) of Chapter II, there is a finite set J c J p such thatf(K) c 
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Bp - 1 U UaEJ E~. Then K c X p - 1 U UaEJ Qa' so that 

C n K = C n (x p- 1 U U Qa) n K 
aEJ 

= {(C n X p_ d u U (C n Qa)} n K 
aEJ 

is closed. Since X is compactly generated, C is closed. 

625 

o 
Let ¢a: (,-1P, Ap) -? (Ea, Ea) be a characteristic map. Let Za = ¢a(eo), 

Fa = f-l(za)· The map ¢a induces a fibration.fa : (~, fJ -? (,-1P, Ap), so that 
there is a commutative diagram 

Ta 
1/1 a 

Qa ---+ 

j. j I flQa 

,-1p ---+ Ea 
¢a 

Since L1P is contractible,.fa is fibre homotopically trivial, so that there is a 
strong trivialization ha: (L1P x Fa, Ap X Fa) -? (~, fJ. 

(4.3) The map 1/1 a : (~, tJ -? (Qa, Qa) is a relative homeomorphism. 

The map ¢a: (,-1P, Ap) -? (Ea' Ea) is a relative homeomorphism; let 
Wa : Ea - Ea -? ,-1P - Ap be the inverse of ¢a l,-1p - Ap. Then the map 
Ta : Qa - Qa -? ~ - fa defined by 

TAx) = (x, waf(x» 

is the inverse of 1/1 a I ~ - t. It remains only to verify that 1/1 a is a proclusion. 
If Ko is a compact subset of Qa' 1/1; l(Ko) is a closed subset of the compact 

space Ko x ,-1P, so that 1/1; l(Ko) is compact. 
Let C be a subset of Qa such that 1/1; 1 (C) is closed. Then 1/1; 1 (C) n 

1/1; l(Ko) = 1/1; l(C n Ko) is closed, and therefore compact, for every com
pact subset Ko of Qa' Hence C n Ko = I/Ia 1/1; l(C n Ko) is compact and 
therefore closed. Since Qa is compactly generated, C is closed. 0 

From Theorem (4.2) and the Map Excision Theorem ((6.7) of Chapter 
XII) we deduce 

(4.4) Corollary The homomorphisms 

Va = ia a Gp+il/la): Gp+i~, fa)-? Gp+iXp, Xp-d 

represent the latter group as a direct sum, and the representations {va}, Ua} are 
weakly dual. 0 
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Let ha = I/Ja 0 Ii,: (~p x Fa' f,.P X Fa) ---> (Qa' Qa). 

(4.5) The homomorphism 

Gp+q(h,): Gp+q(~P x Fa' f,.P X Fa) ---> Gp+q(Qa' Qa) 

is an isomorphism, independent of the strong trivialization lia. 

Since lia is a homotopy equivalence, G p+ q(lia) is an isomorphism. By the 
Map Excision Theorem Gp+q(l/Ja) is an isomorphism. The independence 
follows from Theorem (7.29) of Chapter I. 0 

Let bp be the canonical orientation of ~p. In Theorem (6.12) of Chapter 
XII we established an isomorphism 

bp x : Gq(Y) ---> Gp+q(M x Y, f,.P x Y) 

for every space Y. Taking Y = Fa and composing the isomorphisms b p x, 
Gp+q(h,), we obtain an isomorphism Gq(Fa) ~ Gp+q(Q" Q,). According to 
Theorem (4.2), we have 

(4.6) Theorem The homomorphisms 

i, 0 Gp+q(ha) 0 (b p x): Gq(F,}---> Gp+q(X p, Xp-d 

represent the latter group as a direct sum. o 

In §8 of Chapter IV we saw that if u : I ---> B is a path from bo to b b there is 
a uniquely defined homotopy class of maps, called admissible, of 
F 1 = f-1(bd into F 0 = f-1(b o); a map h is admissible if and only if there is 
a homotopy H : I x F 1 ---> X of h to the inclusion map F 1 C .. X such that 
fH(t, y) = u(t) for all (t, y) E I x Fl. As in Chapter VI, the homomorphisms 
Gq(h) : Gq(F 1) ---> Gq(F 0) give rise to a local coefficient system Gl9F) in the 
space B. The homology groups of B with coefficients in Gq{..9F) are those of a 
chain complex r *(B, A; G*(ff». The elements of rp(B, A; Gq(ff» are finite 
formal sums 

L gaea 
,7. E Jp 

with go E Gq(Fa). Thus rp(B, A; Gq(ff» ~ EBaeJ p Gq(Fa), so that the doubly 
graded groups r *(B, A; G*(ff» and E1 are isomorphic. In fact, let ea be the 
orientation of Ea determined by the characteristic map CPa; then the map 

A: rp(B, A; Gq(ff» ---> Gp+q(Xp, X p_ d 
given by 

is an isomorphism. 
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The isomorphism A is natural in a sense which we now explain. Let 
f : X -> B, l' : X' -> B' be fibrations. A fibre preserving map of l' into f is a 
pair of maps g : B' -> B, h : X' -> X making the diagram 

X' 
h 

---+ X 

1'] 
B' ---+ 

g 
B 

strictly commutative. If Band B' are O-connected, as we are assuming, the 
map g is uniquely determined; in fact g = f 0 h 0 (f') - 1. Therefore we shall 
often say that h is a fibre preserving map. 

EXAMPLE 1. Let f: X -> B be a fibration and let g : B' -> B be an arbitrary 
map. Let l' : X' -> B' be the induced fibration. Then there is a uniquely 
defined map h: X' -> X such that the pair (g, h) is fibre preserving. 

EXAMPLE 2. Let l' : X' -> B,f : X -> B be fibrations, and let A : X' -> X be a 
fibre homotopy equivalence. Then A (or rather the pair (A, 1 : B -> B)) is a 
fibre preserving map. 

We shall be concerned, in particular, with the case that (B', A') and (B, A) 
are relative CW-complexes and g : (B', A') -> (B, A) is cellular. When this is 
so, we shall say that (g, h) (and even h!) is cellular. Then h(X~) c X p' so that 
h induces a map of the couple ~(f') into the couple ~(f). In particular, h 
induces h#: Gp+q{X~, X~-d-> Gp+q(Xp, X p- 1 )' 

On the other hand, the local coefficient systems Gq(g;') and Gig;) are 
related by a homomorphism 

Therefore g induces a chain map 

Remark. Just as the isomorphisms Gq(Fbo) ~ Gq{FbJ are induced by 
admissible maps h: Fbo -> F bJ' so the homomorphisms Gq(Fb') -> Gq{Fb) 
determined by the homomorphism Yq are induced by certain maps, also 
called admissible, of F' = F~, into Fb = F. Specifically, a map h' : F' -> F is 
said to be admissible if and only if there is a path u : I -> B from g(b') to band 
a homotopy G, : F' -> X such that Go = hi F', G1 = h', and G,(F') lies in the 
fibre over u(t) for each tEl. 
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(4.7) Theorem The diagram 

is commutative. 

The proof of Theorem (4.7) being somewhat lengthy, we defer it to §5. 
The map A being an isomorphism of doubly graded groups, it is natural to 

ask whether it is an isomorphism of chain complexes. That this is so is the 
burden of 

(4.8) Theorem The diagram 

is commutative. 

As this follows from Theorem (4.7), we shall defer its proof, too, to §5. 
The upshot of our discussion can be summarized in 

(4.9) Theorem Letf: (X, W) -+ (B, A) be afibration Q{pairs such that (B, A) 
is a relative CW-complex and the base B and fibre Fare O-connected. Let (fj 

be an additive homology theory on ff;. Then there is a filtration 

0= J -1,n+1 C JO,n c··· c Jp,n-p c J p+1,n-p-1 c··· c Gn(X, W), 

a sequence of doubly graded chain complexes {E' I r ~ 2}, and an isomorphism 
A*: HAB, A; Gq(ff» ~ E;.q, such that 

(1) the boundary operator dr : E' -+ E' has degree (-r, r - 1); 
(2) E'+ 1 = H(E'); 
(3) for each p, q, there is an epimorphism 

Er I Er + 1 
p, q I p, q 

for all sufficiently large r; 
(4) Gn(X, W) = U;,=o Jp,n-p; 
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(5) there is an isomorphism 

Jp.q!Jp-l.q+l :=::;E';,q= lim E~.q; 
r 

(6) the isomorphism A* is natural with respect to cellular fibre preserving maps. 
o 

(We have written E r instead of E(r) for typographical convenience). 
There are analogous results for cohomology. There are minor differences 

because of the fact that we have to deal with direct product, rather than 
direct sum, decompositions. In this section we shall state without comment 
the results for cohomology that we shall need. The proofs of Theorem (4.7*) 
and Theorem (4.8*) will require minor modifications, which we shall discuss 
in ~5. 

Let G>* be an additive cohomology theory on ff;. Then 

(4.2*) Theorem The injections 

ia : Gp+q(X P' X p- d ~ Gp+q(Qa' Qa) 

represent the former group as a direct product. The injections 

f: Gp+q(Xp, Q:)~ Gp+q(Xp, Xp-d 

represent the latter group as a strong direct sum. The representations W}, {f} 
are weakly dual. 0 

(4.4*) Corollary The homomorphisms 

va = Gp+q(!{!a) 0 ia: Gp+q(Xp, Xp-l)~ Gp+q(T,., fa) 

represent the former group as a direct product and the representations {va}, {f} 
are weakly dual. 0 

(4.5*) The homomorphism 

Gp+q(ha): Gp+q(Qa' Qa)~ Gp+q(~P x Fa' t..P X Fa) 

is an isomorphism, independent of the strong trivialization ha . 

In Theorem (7.23) of Chapter XII we established an isomorphism 

/b p: Gp+q(~P x Y, t..P x Y) ~ Gq(y) 

for every space Y. 

(4.6*) Theorem The homomorphisms 

(/b p) 0 Gp+q(ha) 0 ia: Gp+q(X P' X p- d ~ Gq(Fa) 

represent the former group as a direct product. 

o 

o 
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An isomorphism A * : GP + q( X P' X P_ 1) --> P( B, A; Gq( ff)) is then defined 
by 

(4.7*) Theorem Let 

(X', W) 
h 

(X, W) --
rj jr 

(B', A') -- (B, A) 
9 

be a cellular fibre preserving map. Then the diagram 

is commutative. 

Gp+q(X' X' ) 
P' p-l 

P(B, A; Gq(,~)) ~ P(B', A'; Gq(.~,)) 
9 

(4.8*) Theorem The diagram 

rp- I(B, A; Gq(ff)) • rp(B, A; Gq(.~)) 
(-1)P-1J* 

is commutative. 

o 

o 
In order to get good convergence properties, i.e., to avoid the complica

tions due to the appearance of the unpleasant lim 1, we shall legislate it out of 
existence. Specifically, we shall impose additional conditions which will 
guarantee that the appropriate lim 1 terms vanish. These are subsumed in the 
hypothesis of 

(4.9*) Theorem Letf: (X, W) --> (B, A) be afibration of pairs such that (B, A) 
is a relative CW -complex and the base B and fibre Fare O-connected. Let (f)* 

be an additive cohomology theory. Assume that either 

(a) the pair (B, A) is finite-dimensional, or 
(b) there is an integer N such that Gq(F) = 0 for all q < N. 
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Then there is a filtration 

Gn(X, W) = jO,n ~ '" ~ jP,n- p ~ jP+l,n-p-l ~ ". 

of Gn(x, W), a sequence of doubly graded cochain complexes {Er I r ~ 2}, and 
an isomorphism A*: E~,q ~ HP(B, A; Gq(~)), such that 

(1) the coboundary operator dr : Er -4 Er has degree (r, 1 - r); 
(2) Er+ 1 = H(Er); 
(3) for each p, q there is a monomorphism 

for all sufficiently large r; 
(4) n;=ojP,n-p=o; 
(5) there is an isomorphism 

(6) the isomorphism A * is natural with respect to cellular fibre preserving maps. 

To verify (4), we must show that, for each n, lim! Gn-1(X P' W) = O. It is 
sufficient to show that the injection 

is an epimorphism for p large enough, and this is so provided that 
Gn(Xp+l' Xp) ~ rp+1(B, A; Gn-p-l(~)) = O. Our hypotheses guarantee 
this. 

To verify (5) it suffices, by Theorem (3.5), to show that, for each p, q, the 
injection 

Gp+q(Xp+n X p)-4Gp+q(Xp+r- 1, Xp) 

is an epimorphism for r large, and this is so provided that 
GP+q+l(Xp+n Xp+r-d = rp+r(B, A; Gq-r+l(~)) = 0 for large r. Again 
this is guaranteed by our hypotheses. D 

We conclude this Section by remarking that our results can be extended 
to the case of a fibration over an arbitrary pair (B, A). In order to do this we 
need to assume that our homology (cohomology) theory satisfies the Iso
tropy Condition, and is therefore complete. For let g : (K, L) -4 (B, A) be a 
weak homotopy equivalence, and let f' : (Q, P) -4 (X, W) be the induced 
fibration. Then it follows by the Five Lemma that f' is a weak homotopy 
equivalence and by the isotropy condition that f induces isomorphisms of 
the homology (cohomology) groups. One then shows that the derived 
couples of the exact couples C€(f') for all CW-approximations g form a 
transitive system over (X, W), and therefore determine an exact couple 
uniquely associated to the given fibration. The details are straightforward 
but tedious, and are left to the enterprising reader. 
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In the ensuing sections we shall study the spectral sequence in further 
detail. Two special cases are of importance: 

I. The fibre is a point P. Then the coefficient systems are simple, and the 
spectral sequence relates the homology groups of (B, A) with coefficients in 
the groups Gq = Gq(P) to the (extraordinary) homology groups Gq(B, A). 

II. The homology theory (£) is ordinary homology theory with coefficients 
in a group G. The spectral sequence relates the homology groups of the base 
with local coefficients in the homology of the fibre to the homology of the 
total space. 

5 Proofs of Theorems (4.7) and (4.8) 

We begin with the proof of Theorem (4.7). In Corollary (4.4) we established 
the direct sum representation 

and its weakly dual representation 

as a weak direct product. Similarly we have representations 

Vp: Gp+q(Tp, Tp) ~ Gp+q(X~, X~-d, 

jp: Gp+q(X~, X~-d ~ Gp+q(X~, QP*). 

These correspond to direct sum and weak direct product representations 

La: Hp(Bp, Bp- 1 ; Gl?)) ~ Hp(Bp, E:; Gq(%')), 

/lp: Hp(L1.P, Ap; Gq(Fp)) ~Hp(B~, B~-l; Gq(%")), 

Lp : H p(B~, B~_ 1; Gq(,?')) ~ H p(B~, Ep*; Gq(%")). 

The homomorphism g # is determined by the composites gap = La 0 g # 0 /lp, 
just as the homomorphism h# is determined by the composites 
hap = ja 0 h# 0 vp. It is clear from the definitions that the homomorphisms A 
respect the decompositions. Therefore, in order to prove Theorem (4.7), it 
suffices to prove 

(5.1) For each IX, [3, the diagram 
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(5.2) 

is commutative. 

To avoid verbiage, we shall say that the pair (E~, E'p) is regular when this 
is the case. 

We first prove 

(5.3) If Ea ¢ g(E'p), then (Ea' Ep) is regular. 

For let x be an interior point of Ea which does not belong to g(E'p). Then 
E: is a deformation retract of Bp - {x} and therefure g 0 CPp : (M, Ap) ~ 
(Bp, E:) is compressible, so that gap = O. On the other hand, by the homo
topy lifting extension property, the map h 0 l/J'p: (T'p, t'p)~ (Xp, Q:) is 
compressible, so that hap = o. 0 

From now on we shall assume that Ea c g(Ep). We next prove 

(5.4) Suppose there is a map k: (~p, Ap) ~ (~p, Ap) such that CPa 0 k ~ 
g 0 cP'p : (~P, Ap) ~ (Bp, En Then the pair (Ea' Ep) is regular. 

We may assume that k(eo) = eo. Consider the three-dimensional diagram 

r B' ---+ B 
. ~ 

Aa A'p g 

~p • ~p 

k 

in which the bottom square is homotopy commutative and the back and two 
sides are strictly commutative. We shall find a map I: Tp ~ T, making the 
top square homotopy commutative and the front square strictly 
commutative. 

Let F: I x ~p ~ B be a homotopy of g 0 cP'p to cP~ 0 k. Then 
F 1 = F 0 (1 x f'p) : I x Tp ~ B is a homotopy of g 0 cP'p 0 f'p = f 0 h 0 l/J'p to 
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¢a 0 k 0 i'p. By the homotopy lifting property, the map h 0 l/I'p is homotopic 
to a map X such that i 0 X = ¢a 0 k 0 i'p. The maps X: T'p ...... X and 
k 0 i'p : Tp ...... I'1P define a map I: Tp ...... '4 such that ia 0 1 = k 0 i{i and 
l/I, c 1 = X ~ h 0 l/I'p. Since F{I x I'1p) c BD and F{I x tip) c E: , the maps X 
and h 0 l/I'p are homotopic maps of (Tp, Tp) into (X p' Q:). 

Consider the diagram 

Hp(Ll!, ~p; Gq(F;I)) ~ H p(!'lv, ~v; Gq(F,)) ~ Hp(Bp, Bp_ 1; Gl7)) J:... Hp(Bp, E:; Gq(.7)) 

Al Al Ai Al 

The composites of the homomorphisms in the top and bottom lines are gap, 
haP' respectively, by the given properties of the maps k, I. And we have seen 
that the center and right-hand squares are commutative. Therefore it re
mains to prove that the left-hand square is commutative. (The notation k* in 
the top line is not quite accurate; the (simple) local coefficient systems 
¢:Gq{F) and ¢~*Gq{F') have been identified with the coefficient groups 
Gq{F,), Gq{Fp}, respectively. The homomorphism k* in question is then the 
composite 

where the second homomorphism is induced by the homomorphism 
Gq{h'): Gq(F'p} ...... Gq(Fa) for an admissible map h'). 

Let us identify the group H p(I'1P, tiP; G) with G; furthermore, let ko be the 
degree of the map k. Then it suffices to prove the commutativity of the 
diagram 

Gq{Fp) 
ko Gq(h') 

Gq(Fa) • 

bp x 1 I 1 bp x 

Gp+il'1P x F'p, tiP X F'p} 
Gp+q{k x h') 

Gp+q(!1P x Fa' tiP X Fa) • 

G p+q{li'p) 1 II 1 Gp+q(li,) 

Gp+q(T'p, T'p) I Gp+q{'4, t) 
Gp+q{l) 
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To prove the commutativity of I, let us collapse the subspaces A,P x Fp, 
A,P x Fa to points. We obtain the diagram 

Gq(Fp) 
ko Gq(h') 

Gq(Fa) • 

bp x 1 
Gp+q(k x h') 

1 bp x 

Gp+q(LlP x F'p,A,p x Fp) • Gp+q(LlP x Fa,A,p x Fa) 

Gp+q(n'} I 1 Gp+q(n) 

Gp+q(SPFp+) 
Gp+q(kl\h') 

• Gp+q(SPF:) 

where n' and n are the identification maps and K: SP --+ SP is induced by k. 
The bottom square being patently commutative, the commutativity of the 
top square is equivalent to that of the composite one. But Gp+q(n'} 0 I5 p x 
and G p + in) 0 15 p x are the p-fold iterated suspensions, and the commutativ
ity of the composite square follows from Corollary (5.13) of Chapter XII. 

We now prove the commutativity of II. In order to do so, we must 
construct an admissible map h': F'n --+ Fa. Let us observe that o/a maps 
f;l(eo} homeomorphically upon Fa = f-l(za} = f-1</Ja(eo), that o/p maps 
fp-l(eo} homeomorphically upon Fp = r-1(zp} = r-1</Jp(eo}, and that g' 
maps Fp into f-1g(Zp). We shall therefore take the liberty of identifying 
f; l(eo} with Fa and fp- l(eo), with Fp. With these liberties of notation, we 
have 

(5.5) Lemma The map II Fp : Fp --+ Fa is admissible. 

We proved above that there is a homotopy Gt : Tp --+ X of h 0 o/p to o/a 0 I; 
this homotopy has the property thatf 0 Gt = Ft 0 f p, where Ft : LlP --+ B is a 
homotopy of 9 0 </Jp to </Ja 0 k. The map t --+ Fleo} is a path u in B from g(zp} 
to Za' and the homotopy Gt I Fp : Fp --+ X maps Fp into f - lU(t} for every t. 
Moreover, Go I Fp = h 0 o/p I Fp, G1 I Fp = o/a 0 II Fp. Thus G1 is admissible 
and therefore II F' is admissible. 

Now consider the lifting extension problem 

t x LlP x F'p u I x {eo} x F'p 

n 
I x LlP x F'p 



636 

where 

XIII Homology of Fibre Spaces 

(J(O, u, y') = hAk(u), I(y')), 

(J(1, u, y') = Ihp(U, y'), 

(J(t, eo, y') = I(y'); 

T(t, u, y') = k(u). 

Now (dP, {eo}) is a DR-pair, and therefore 

(I x d P x Fp, i x M x Fp U 1 x {eo} x Fp) = (I, i) x (dP, {eo}) x (Fp, 0) 

is a DR-pair; by Lemma (7.15) of Chapter I, the problem has a solution, 
which is a homotopy between the maps ha 0 (k x h') and I 0 hp. D 

(5.6) Corollary Theorem (4.7) is true in the special case that (B', A') = 
( 1 K' I, 1 £ I), (B, A) = ( 1 K I,lL I), where (K', £) and (K, L) are simplicial 
pairs, and g = 1 qy 1 for a simplicial map qy : (K', £) ~ (K, L). D 

We now complete the proof of Theorem (4.7) by showing that (5.1) holds 
in general. By Lemma (1.4) of Chapter V, there is a subdivision (K, K) of 
(dP, Ap) and a map gl : (dP, Ap) ~ (Bp, E:) homotopic to g 0 qyp such that, 
for every simplex (J of K, either gl((J) c E: or gll(J = qya 0 kG for some map 
kG: ((J, &) ~ (dP, Ap). Consider the diagram 

where To = fp-1(1 K p - 1 I), i andj are injections. Since g 0 qyp ~ gl' there is a 
map h1 such that (gl' hd is a map offp intofand h1 ~ h 0 l/!p: (Tp, tp)~ 
(Xp, Q:). Evidently gl* 0 i = gap and h1* oj = hap. 

The characteristic maps 'G : (dP, Ap)-+ ((J, &) for the p-cells of K evidently 
satisfy the hypothesis of either (5.3) or (5.4). Therefore each of the pairs 
((J, Ea) is regular. It follows that the right-hand square of the diagram is 
commutative. On the other hand, there is a simplicial map (): (Kp, Kp) ~ 
(dP, Ap) which is homotopic to the identity and it follows that 1 () 1* 0 i is the 
identity. .There is a. map ()': Tp ~ Tp such that fp 0 ()' = 1 () 1 0 fp and 
()' : (Tp, Tp) ~ (Tp, Tp) is homotopic to the identity. Then ()~ 0 j is the iden
tity. It follows from Corollary (5.6) that A 0 ()~ = 1 () 1* 0 A, and from this fact 
the commutativity of the left-hand square follows. D 
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Let us now prove Theorem (4.8). It suffices to show that the homomor
phisms a 0 A and A 0 a agree on every element of the form xea, where Ea is a 
p-cell of (B, A) and x E G(Fa). Let <Pa : (~P, Ap) -+ (Ea' Ea) be a characteristic 
map for the cell Ea. We shall regard (~P, Ap) as a CW-pair under the obvious 
triangulation; and we may assume that Cpa = <Pa lAp: Ap -+ B is cellular. 

With the notation as in the proof of Theorem (4.7), consider the three
dimensional diagram 

rp(B, A; Gl'¥")) rp_1(B, A; Gl'¥")) 

<Pay A A.. 

A A.. 

By Theorem (4.7), the two sides are commutative. The top and bottom are 
commutative because the boundary operators in question are natural (cf. §2 
of Chapter VI and §6 of Chapter XII). We next show that the front face is 
commutative. Let h: (~P x Fa' Ap x Fa) -+ (~, T J be a strong trivializa
tion of !a. Then Ii = hi Ap x Fa : Ap x Fa -+ Ta is a strong trivialization of 
fa =!a ITa· 

Now abp = If=o (- 1 )iei' where ei is the orientation of the ith face of bp , 

determined by the map di : ~n-l -+ ~n; thus the incidence number [b p : eJ = 

(-It Also A(Xbp ) = h*(bp x x), while 

p p 

A a(Xbp ) = A I (-IYxei = I (-IYIi*(ei x x) 
i=O i=O 

= Ii*Ct[bp : eJei x x) 
= 1i*(Joa(~p, M )(bp x x)) by Theorem (6.12), Chapter XII, 

= Ii* a(bp x x) by Theorem (6.10), Chapter XII, 

= Oh*(bp x x) 

= aA(Xbp ). 
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It now follows that 

as desired. 

A 0 a 0 CPa* = A 0 (Pa* 0 a = ~a* 0 A 0 a 
= ljJ a* 0 a 0 A = a 0 l/J a* 0 A 

= a 0 A 0 CPa * , 
o 

The proof of Theorem (4.7*) would be (anti-) isomorphic with that of 
Theorem (4.7), were it not for the fact that the groups involved are direct 
products, rather than direct sums. We have representations 

va: Gp+q(X p, Xp-1)-+Gp+q(Ya, Ta), 

f: Gp+q(X P' Q:) -+ Gp+q(X P' X p-l), 

v'[3 . Gp+q(X' X' ) -+ Gp+q(T' T') 
• P' p-l [3' [3' 

j"p . Gp+q(X' Q'*) -+ Gp+q(X' X' ) 
· p' [3 P' p- 1 , 

fa . HP(B E*' Gq( Ob)) -+ HP(B B . Gq( Ob)) • P' a' J" p' p- 1, J", 

,/[3 . HP(B' B' . Gq(:JF')) -+ HP(I1P Ap· Gq(F' )) 
r' P' p-I, "fJ ' 

1'[3 : HP(B~, E,/; Gq(:JF')) -+ HP(B~, B~_ 1; Gq(:JF')). 

However, the homomorphism g*' is not determined by the homomorphisms 

nor is h *' determined by the 

Let. us fix a cell E'p of (B', A'). Let 1[3 = {oc lEa C g(E'p)}, and observe that 
the s",t J [3 is finite. Let 

B; = Bp - 1 U U Ea , Bt = Bp- 1 U U Ea; 
a E J# a ¢ J# 

then 

(5.7) The injections 

/l* : HP(Bp, Bp_ 1; Gq(:JF)) -+ HP(B; , Bp_ 1; Gq(:JF*)), 

/It : HP(Bp, Bp- 1; Gq(:JF)) -+ HP(Bt, Bp- 1; Gq(:JFt )) 
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represent the group HP(Bp, Bp- 1 ; Gqc~)) as a direct product. The injections 

/* . HP(B Bt· Gq( 0;;)) ~ HP(B B . Gq( 0;;)) . P' P' 07- p' P _ 1 , ,;7", 

It . HP(B B*' Gq( 0;;)) ~ HP(B B . Gq(ff)) . P' p,.7" P' p-1, 

represent the same group as a direct sum. The two representations are weakly 
~L D 

(5.8) The injections 

v* : Gp+q(X P' X P- d ~ Gp+q(X; , X p-l)' 

vt : Gp+q(X P' X P- d ~ Gp+q(X~, X p-l) 

represent the group Gp+q(Xp, Xp-d as a direct product. The injections 

j* : Gp+q(X p' X~) ~ Gp+q(X p' X p- d, 
jt: Gp+q(X p' X;) ~ Gp+q(X p' X p- d 

represent the same group as a direct sum. The two representations are weakly 
~ D 

(5.3*) The homomorphisms 

are zero. 

piP 0 g# 0 It: HP(Bp, B;; Gq(ff))~HP(f1P, Ap; Gq(F')), 

ViP 0 h# 0 J·t . Gp+q(X X*) ~ Gp+q(T' T') • p' p p, P 

For each rx ¢ Jp , choose an interior point Xa of Ea which does not belong 
to g(Ep). Let C be the totality of such points; then B; is a deformation retract 
of Bp - C and therefore the map g 0 <p'p : (f1P, Ap) ~ (Bp - C, B;) is 
compressible, and the first statement follows. A similar argument proves the 
second. 

For each rx E J, let D 

be the injection, so that /* 0 1" = lao Similarly, let 

J" . Gp+q(X Q*) ~ Gp+q(X xt) 
. P' a P' P 

be the injection, so thatj* 0 J = f. The 1",1' represent the relevant groups as 
finite direct sums. The homomorphism g# is determined by the homomor
phisms piP 0 g# for every {3. For each such {3, the homomorphism piP 0 g# is 
determined by the gaP with rx E J /3' Similarly, the homomorphism h# is 
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determined by the h~P for each f3 and each r:x E J p' Therefore it suffices to 
prove the commutativity of the diagram 

Gp+q(X P' Q:) 
hap 

I Gp+q(T'p, t'p) 

(5.2*) A* I I A* 

HP(Bp, E:; Gq(S7')) ---------+ HP(!F, t:..P; Gq(Fp)) 
gaP 

for all such pairs. And this we cheerfully leave to the reader. D 

We conclude with one remark about the sign in Theorem (4.8*). The 
presence of this sign is due to our convention about the definition of the 
coboundary operator, and the fact that the proof of Theorem (4.8*) is 
carried out by calculating incidence numbers. Verbum sap! 

6 The Atiyah-Hirzebruch Spectral Sequence 

Let <D be a complete homology theory, and let Gq = Gq(P), where P is a space 
consisting of just one point. The spectral sequence measures the extent to 
which the groups Gn(B, A) are determined by the integral homology groups 
H p(B, A) and by the coefficient groups G q • 

(6.1) Theorem Suppose that Gq = 0 for all q < O. Then,for any pair (B, A), 
Gq(B, A) = 0 for all q < O. 

In this and other arguments involving spectral sequences, the argument is 
best understood by a diagram in which each lattice point (p, q) is associated 
with the group E~, q (see Figure 13.3). The boundary operator d2 is visualized 
by an arrow pointing from the point (p, q) to the point (p - 2, q + 1). The 
group E' for r> 2 may be visualized on a separate diagram; however, it is 
usually more enlightening to visualize E~. q as a subquotient of E~. q and d' as 
an additive relation, visualized by an arrow from the point (p, q) to the point 
(p - r, q + r - 1). Notice that each arrow runs from a point on the line 
p + q = n + 1, say, to a point on the parallel line p + q = n. 

The groups E~. q with p + q = n may be thought of as the building blocks 
out of which the groups Gn(B, A) are to be constructed. For example, if it 
should happen that E~. q = 0 for all p, q with p + q = n, then Gn(B, A) = O. 

In all cases with which we are concerned here, the diagram is confined to 
the right half-plane (because H p(B, A; G) = 0 for any G if p < 0). The 
hypothesis of Theorem (6.1) ensures that the diagram is confined to the first 
quadrant, and this also happens in other situations of interest to us. 
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q 

---------------+----------~~~--------------~p 

Figure 13.3 

To prove Theorem (6.1), just observp that the line p + q = n does not 
intersect the first quadrant when n < O. Thus the remark at the end of the 
last paragraph but one applies. 0 

We can improve this somewhat. The blanket hypotheses we have made 
ensure that Ho(B, A) = 0 (except for the case A = 0), and therefore the 
groups lying on the vertical axis vanish. If we assume that the integral 
homology groups H p(B, A) vanish for all p < m, then the same is true for the 
groups E;. q • In particular, this will be the case if (B, A) is (m - 1 )-connected. 

(6.2) Theorem Suppose that H p(B, A) = 0 for all p < m and that G q = 0 for all 
q < N. Then Gn(B, A) = 0 for all n < m + N, and Gm+N(B, A) ~ 
Hm(B, A) ® GN • 
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For the groups E;, q are concentrated in the region p 2': m, q 2': N, and the 
line p + q = n does not meet this region if n < m + N, Moreover, the line 
p + q = m + N meets it only in the lower left hand corner, and the group 
E;', N is affected by none of the dr, Hence 

Hn(B, A) ® GN = E;', N = ". = E::, N = Gm+N(B, A), 0 

Suppose we assume instead that the non-zero coefficient groups are 
bounded above, i.e., Gq = 0 for all q> N. In the absence of any hypothesis 
on (B, A) we can prove nothing. However, if we assume (B, A) is finite
dimensional, we have a "dual" result: 

(6.3) Theorem Suppose that (B, A) is a relative CW-complex offinite dimen
sion d, and that Gq = 0 for all q > N. Then Gn(B, A) = 0 for all n> d + N, 
and Gd+N(B, A) ~ HiB, A; GN), D 

For any homology theory <D, we have Gq{B) ~ Gq EB Gq{B, {*}), while 
Gq{B, A) ~ Gq{B/A, {*}). Thus, in applying the spectral sequence, we may as 
well confine our attention to the case (B, {*}). A more detailed analysis 
allows us to improve Theorem (6,2) somewhat. 

(6.4) Theorem Suppose that fi p(B) = 0 for all p < m and G q = 0 for all q < N. 
Then there is an exact sequence 

Gm+N+z(B) ---> Hm+z(B; GN) ---> Hm(B; GN+ 1) 

---> Gm+N+ 1(B) ---> Hm+ 1(B; GN) ---> O. 

This is proved by examining Figure 13.4 (we may as well assume N = 0, 
as this can always be achieved by reindexing the theory <D), The lines 
p + q = m, m + 1, m + 2 contain 1, 2, 3 lattice points, respectively, and the 
only relevant boundary operator is dZ : E;'+2, 0 ---> E;" l' We have 

Gm+1(B) = Jm+1,o::::> Jm, 1, 

and 

while 

so that we have the exact sequence 

0---> Cok dZ ---> Gm+ 1 (B) ---> Hm+ 1 (B; Go) ---> O. 

On the other hand, from 

Gm+z(B) = Jm+Z,O::::> Jm+1, 1::::> ••• 
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q 

Figure 13.4 

we have the short exact sequence 

0---+ J m+ 1,1 ---+ Gm+ 2(B} ---+ E;:;+2, 0 = Ker d2 ---+ 0, 

Combining these two sequences with 

0---+ Ker d2 ---+ Hm+ 2(B; Go} ---+ H m(B; G1 } ---+ Cok d2 ---+ 0, 

we obtain the one desired, 

643 

o 

As stable homotopy satisfies the above condition and 0'0 = Z, 0'1 = Z2, 
we have 

(6.5) Corollary Let B be (n - 1}-connected, Then O'n(B) ~ Hn(B} and there is a 
short exact sequence 

O'n+2(B} ---+ Hn+2(B} ---+ Hn(B} ® Z2 ---+ O'n+ 1(B} ---+ Hn+ 1(B} ---+ O. 0 

Of course, this is the conclusion of Theorem (3.12) of Chapter XII, except 
for the identification of the homomorphisms. 

In general, if G q = 0 for q < 0, the line q = 0 is the lower edge of the 
diagram. The group E;:;, 0 is the quotient Gm(B}!J m-1, 1; on the other hand, it 
is the intersection of the chain of subgroups 

E~, 0 ::::J E!, 0 ::::J ... 
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of E;', 0 = Hm(B; Go). Thus there is a homomorphism 

Pm: Gm(B) ~ Hm(B; Go) 

called an edge homomorphism. The edge homomorphism will be important in 
other situations. 

In a similar way we can improve Theorem (6.3). 

(6.6) Theorem Suppose that B is a CW-complex of dimension d and that 
Gq = 0 for all q > N. Then there is an exact sequence 

O~Hd-l(B; GN)~ GN+d-l(B)~HAB; GN- 1 ) 

~Hd-2(B; GN)~ GN+d- 2(B). 0 

Let us consider briefly the Atiyah-Hirzebruch spectral sequence for coho
mology. Again, diagrams will be useful; the groups E~' q are again con
centrated in the right half-plane, but the coboundary operator d' is 
symbolized by an arrow pointing downward to the right. 

(6.7) Theorem Suppose that Gq = 0 for all q < N and that H AB, A) = 0 for 
all p < m. Then 

(1) Gn(B, A) = o for all n < m + N; 
(2) Gm+N(B, A) ~ Hm(B, A; GN); 
(3) there is an exact sequence 

o ~ Hm+ l(B, A; GN) ~ Gm+N+ l(B, A) ~ Hm(B, A; GN+ 1) ~ 

Hm+2(B, A; GN) ~ Gm+N+2(B, A). D 

(6.8) Theorem Suppose that Gq = 0 for all q > N and that B is a CW -complex 
of dimension d. Then 

(1) Gn(B) = o for all n > d + N; 
(2) Gd+N(B) ~ Hd(B; GN); 
(3) there is an exact sequence 

Gd+N-2(B)~Hd-2(B; GN)~Hd(B; GN-l)~ 

Gd+N-l(B) ~ Hd- 1 (B; GN) ~ O. D 

In theorem (6.8) we may take (!)* to be stable cohomotopy; note that 
Gq = (J'q = (J' _ q = 0 for all q > O. Thus 

(6.9) Corollary If B is a CW-complex of dimension d, then 

(1) (J'n(B) = 0 for all n> d; 
(2) (J'd(B) ~ Hd(B; Z); 
(3) there is an exact sequence 

(J'd-2(B)~Hd-2(B; Z)~Hd(B; Z2)~(J'd-l(B)~Hd-l(B; Z)~O. D 
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Part (2) of the conclusion is just the Hopf Classification Theorem (Corol
lary (6.19) of Chapter V) for the special case Y = Sd. For (Jd(B) = {B, Sd} :::::: 
[B, Sd] provided that d ~ 1. Conclusion (3) gives, in a sense, the homotopy 
classification of maps of the d-dimensional complex B into Sd- 1; this time 
(Jd-1(B):::::: [B, Sd-1] provided that d > 3 (cf. Theorem (1.7) of Chapter XII). 

7 The Leray-Serre Spectral Sequence 

We return now to the case of a general fibration, but assume that the 
homology theory G) is ordinary homology theory b(G) with coefficients in 
an abelian group G. In this case we have a first quadrant spectral sequence, 
since E;.q = Hp(B, A; Hl?')) = 0 unless p ~ 0 and q ~ O. There are edge 
homomorphisms associated with both the lower and the left-hand edge. 

We first discuss the former. In the first place, the local coefficient system 
HoC?'; G) is always simple. Thus E;, 0 = Hp(B, A; Ho(F; G»:::::: Hp(B, A; G). 
Moreover, 

E;,o = Ker d2 : E;, 0 ~ E;_ 2, 1, E!,o = Ker d3 : E;, 0 ~ E;_ 3,2' .... 

Thus 

H (B A- G) = E2 :::J' •• :::J Er :::J Er + 1 :::J .•• :::J E OO p " p, 0 p, 0 p, 0 p, 0 

(in fact, the sequence eventually becomes stationary, since drE~, 0 = 0 if 
r > p). 

On the other hand, 

Hp(X, W; G) = Jp,o:::J J p- 1, 1:::J'" 

and J p, 0/1 p- 1, 1 = Ee;, o· The composite 

(7.1) 

is the edge homomorphism. 

(7.2) Theorem The edge homomorphism /(p 0 cxp is the homomorphism 
H AI) : H p(X, W; G) ~ H p(B, A; G) induced by the fibre map f 

Let us consider the identity map of B as a fibration with a point P as fibre. 
Then the pair of maps (1,/) is a fibre preserving map 

X~B 

B ------+ B 
1 



646 XIII Homology of Fibre Spaces 

and therefore induces a map of exact couples. Thus we have a commutative 
diagram 

Hp(B,A;G)=E~,oU) • c E';, oen - Hp(X, W; G) 

1) ) j jf* 
Hp(B, A; G) = E~,o(1) • • E';,o(1) - Hp(B, A; G) 

But Hq(F; G) = 0 for all G and therefore the second spectral sequence col
lapses and the edge homomorphism reduces to the identity map. 0 

(7.3) CorolJary The subgroup Jp-l, 1 of HAX, W; G) is the kernel of 
f*; HAX, W; G) --+ HAB, A; G), and the subgroup E';, 0 of Hp(B, A; G) is the 
image of f* . 0 

In particular, we may have A = {bo}, W = F. The fibrationf: X --+ B can 
also be regarded as a fibrationfl : (X, F) --+ (B, {bo}); the identity map of X 
and the inclusion B Ci (B, {bo}} define a map of the first fibration into the 
second. Moreover, E~, if) = E~, qUl) except that E6, qUd = O. It follows 
that E~, oU) = E~, O(1) for all r :s:: p, while E';, oUd = E~, oUd = E~, oU). 
Thus we have 

(7.4) The subgroup E~, 0 of H p(B; G) is the image of 

f* : Hp(X, F; G) --+ Hp(B; G) = Hp(B, bo; G). o 
The other edge homomorphism is defined only in the absolute case 

A = 0. In this case d'E'O, q = 0 and therefore there are epimorphisms 

E2 --+> E3 --+> ••• ~) EOO O,q O,q O,q 

(these, too, are eventually stationary since d'E~, q_'+ 1 = 0 if r > q + 1), as 
well as an inclusion 

(7.5) E'O,q = Jo,q c:; HiX; G). 

We have assumed that B is O-connected, so that 

E6,q = Ho(B; Hq{,'1'; G» 
is a quotient of Hq(F; G), by Theorem (3.2) of Chapter VI. Thus we have an 
epimorphism 

whose composite with the monomorphism (7.5) is again called an edge 
homomorphism. 
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(7.6) Theorem The edge homomorphism 

Hq(F; G)~Hq(X; G) 

is the injection. 

Let us consider the restriction off to F = p~ 1 ({bo}) as a fibrationfo; then 
the inclusion map F y X, {bo} y B form a fibre preserving map of/o into f: 

FC X 

{bo} c==: B 

and therefore induce a map of <C(fo) into <C(f). Therefore there is a commu
tative diagram 

Hq(F; G) = E5,q(fo) ~ Eo.q(fo) ~ Hq(F; G) 

1] ] 1 ] i. 

Hq(F; G)-E5,q(f) ~ EO. q(f) ~ Hq(X; G) 

But the spectral sequence for fo collapses, and the homomorphisms in the 
top line are identity maps. 0 

(7.7) Corollary The subgroup EO. q = J 0, q of Hq(X; G) is Im{i. : Hq(F; G) ~ 
Hq(X; G)} = Ker{j. : Hq(X; G) ~ Hq(X, F; G)}. 0 

We have seen that there are epimorphisms an: H n(X, F; G) ~ E~. 0, 

A.n~l: Hn- 1(F; G)~EO,n-I' The image groups are re1ate'~ by the oper
ator dn• 

(7.8) Theorem The diagram 

E~,o 

is commutative. 

-----+. E~, n-l 
dn 

We may assume that B has only one vertex bo , so that X 0 = F and 
Hn- 1(F; G) = Hn- 1(XO ; G) = Hn- 1(XO , X-I; G) = E~,n-l' Consider the 
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commutative diagram 

Hn(Xn, F; G) -:-+ Hn(Xn, X n- 1 ; G) ---- Hn- 1(Xn- 1 ; G) ----;---+ Hn- 1(Xn- 1, F; G) 
11 01 12 

The homomorphism i2 is an epimorphism; let Z E Hn(X, F; G) and choose z' 
such that i2 z' = z. Then 

i1 0*z = i1 0*i2 z' = Od1Z'. 

But z' represents an element 'E E~. 0 and 0* z represents an element 
~ E EZ. n-1 such that dn, = ~. But (Xn(z) = , and ~ = A.n-1 0* z. 0 

In §3 of Chapter XI we defined an additive relation, the transgression; it is 
the composite 

The corresponding homomorphism 

L" : 1m f* --+ H n - 1 (F; G)/o* Ker f* 

is also called the transgression. 

(7.9) Theorem The homomorphism 

dr : E~. 0 -> E~. r- 1 

is the transgression. 

To prove this, chase the commutative diagram 

dr 

----->. E~. r- 1 

I 1 

and use (7.2), (7.4), (7.6), and (7.8). 
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The initial term of the Leray-Serre spectral sequence involves homology 
groups of the base with local coefficients in the homology groups of the fibre. 
As homology groups with local coefficients are relatively unfamiliar and ac
cordingly difficult to work with, it is frequently necessary to assume that the 
local coefficient systems are simple. When this is so, we shall describe the 
fibration as orientable. More precisely, if G) is a homology theory, a fibration 
f : X --> B is said to be G) orientable if and only if, for each q, the local 
coefficient system Gi~) is simple. If G) = ~ (G) is ordinary homology with 
coefficients in the abelian group G, we say thatfis G-orientable if and only if 
it is ~(G)-orientable. 

As an application, let us derive the Serre exact sequence (6.3), Chapter 
VII, under less stringent hypotheses. 

(7.10) Theorem Let f: X --> B be a G-orientable fibration, and assume that 
Hi(B; Z) = 0 for 0 < i < m, HiF; G) = 0 for 0 < i < n. Then there is an 
exact sequence 

Hm+n- 1(F; G)-->Hm+n-l(X; G)-->Hm+n- 1(B; G)--> ... 

Let us examine Figure 13.5. By the Universal Coefficient Theorem, E~, q = 

Hp(B; Hq(F; G» ~ Hp(B; Z) ® Hq(F; G) EEl Tor(Hp_1(B; Z), HiF; G» = 0 
if 0 < p < m or 0 < q < n. Thus each line p + q = r < m + n contains at 
most two non-zero groups E;,o and E6, r' Hence the only possible non-zero 
boundary operator is dr : E~, 0 --> Eo, r- l' Thus we have exact sequences 

o --.... , E';: 0 --.... , E~, 0 
dr 

--"---...... , Eo, r-1 --.... , Eo. r- 1 

and 

0--.... , Eo.r --...... , Hr(X; F) --.... , E';:o· 

Combining these, we obtain the Serre sequence. The homomorphisms of 
the sequence are identified as T*, i*,f* with the aid of Theorems (7.9), (7.6), 
and (7.2), respectively. D 

In a similar way we can derive the homology versions of the Gysin and 
Wang sequences. These are relegated to the Exercises. 

We shall merely state the dual versions of the above results for 
cohomology. 

(7.2*) Theorem Iff: (X, W) --> (B, A) is a fibration, there is an epimorphism 

/(p : HP(B, A; G) --> Efx; 0 



650 XIII Homology of Fibre Spaces 

q 

£ 2 - £P 
O,p-l - O,p-l 

q = n 0------.. ----

~-------------+-+-~-~-~-. p 
P = m £2 - £P p,O - p,O 

Figure 13.5 

and a monomorphism 

whose composite is the projection 

f* : HP(B, A; G) ---+ HP(X, W; G). D 

(7.6*) Theorem Iff: X ---+ B is a fibration, there is an epimorphism 

and a monomorphism 

whose composite is the injection 

D 
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(7.9*) Theorem The homomorphism 

is the transgression ,*. o 
(7.10*) Theorem Letf : X -+ B be a G-coorientable fibration, and suppose that 
H p(B) = 0 for 0 < p < m and Hq(F; G) = 0 for 0 < q < n. Then there is an 
exact sequence 

... -+ H'(8; G) 
f* 

---->. H'(X; G) i* • H'(F; G) __ '_*-.. H'+ 1(8; G) 

(A fibration is G-coorientable if and only if the local coefficient system 
Hq(ff; G) is simple for every q). 

We now give some qualitative results which can be deduced from the 
spectral sequence. 

(7.11) Theorem Let f: X -+ B be a Z-orientable fibration, with fibre F. Then 
any two of the conditions 

(1) for each p, H p(B) is finitely generated; 
(2) for each q, Hq(F) is finitely generated; 
(3) for each n, H n(X) is finitely generated; 

imply the third. 

Suppose first that (1) and (2) are satisfied. It then follows from the 
Universal Coefficient Theorem that E~. q is finitely generated for each p, q. 
Since E~, q is a sub quotient of E~, q, it, too, is finitely generated. Hence E';. q is 
finitely generated for all p, q. 

The group Hn(X) has a finite chain of subgroups 

0= J- 1,n+1 C JO,n c··· c J p - 1 ,n-p+1 C Jp,n-p c··· C In,o = Hn(X) 

such that the quotient groups 

are finitely generated. It then follows by induction that each of the groups 
J p, n- p is finitely generated; in particular, H n(X) is. 

Next, assume (2) and (3). Since B is O-connected, the group H o(B) ::::::: Z is 
finitely generated. Assume that Hi(B) is finitely generated for all i < p. It 
follows from the Universal Coefficient Theorem that Ef. q is finitely gen
erated whenever i < p. 

Now H AB) = E~, 0 has a finite chain of subgroups 

E2 ~ E3 ~ ... ~ EP ~ EP+ 1 - E OO • p, 0 ~ p, 0 ~ ~ p, 0 ~ p, 0 - P. 0, 
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the group E';, 0 is a quotient of H p(X) and therefore finitely generated. For 
each r (2 s r s p), E;7 J is the kernel of d' : E;,o --> E;_" ,_ 1; thus d' induces 
a monomorphism E;. 0 /E;7 J >-+ E;_" ,-1' The latter group being finitely 
generated, so is the quotient E;, 0/ E;7 J. By downward induction on r we 
deduce that E;.o is finitely generated for each r; in particular, H p(B) = E~. 0 

is finitely generated. 
The proof that (1) and (3) imply (2) involves no new ideas, and is left to 

the reader. 0 

(7.12) Theorem Let TI be afinitely generated abelian group. Then HiTI, n) is 
finitely generated for all q, n. 

This is proved by induction on n. The groups H q(TI, 1) were computed in 
principle in §7 of Chapter V; they turn out to be finitely generated. Assume 
that Hq(TI, n) is finitely generated for all q (n ~ 1). Then QK(TI, n + 1) has 
the (weak) homotopy type of K(TI, n), and there is a fibration 

QK(TI, n + 1) --> PK(TI, n + 1) --> K(TI, n + 1). 

Since n ~ 1, K(TI, n + 1) is I-connected, so that the fibration is orientable. 
But P K(TI, n + 1) is acyclic, and a fortiori, its homology groups are finitely 
generated. By Theorem (7.11), so are those of K(TI, n + 1). 0 

(7.13) Theorem Let X be a simple space and assume that Hq(X) is finitely 
generated for each q. Let X n be the terms of a Postnikov systemfor X. Then the 
groups Hq(Xn) are finitely generated for all q, n. 

The space Xl is an Eilenberg-Mac Lane space K(1t1(X), 1). As 1t1(X) is 
abelian, it is isomorphic with the finitely generated group H 1 (X). By 
Theorem (7.12), HiXd is finitely generated for all q. 

Assume that Hq(Xn) is finitely generated for all q (n ~ 1). It follows that 
the relative homology groups H q(X n' X) are finitely generated; in particular, 
Hn+2(Xn, X) is. Now 1tn+1(Xn) = 1tn+2(Xn) = 0, so that a: 1tn+2(Xn, X)--> 
1tn + 1 (X) is an isomorphism. Since X is simple, 1t 1 (X) operates trivially on 
1tn+ l(X) and therefore on 1tn+2(Xn, X). By the Relative Hurewicz Theorem, 
P:1tn+2(Xn, X)-->Hn+2(Xn' X) is an isomorphism. Thus 1tn+1(X)~ 
H n+2(Xn , X) is finitely generated. 

As we have seen in (3.5) of Chapter IX, the space X n + 1 has the weak 
homotopy type of the fibre w,,+1 of a fibration Xn-->K(1tn+1(X), n+2) 
= K. By Theorem (7.12), the homology groups of K are finitely gen
erated; by induction hypothesis, so are those of X n • By Theorem (7.11), the 
homology groups of w,,+ 1, and therefore those of X n + 1, are finitely gen
erated. 0 

(7.14) Corollary If X is a simple space and Hq(X) isfinitely generatedfor all q, 
then 1tq(X) is finitely generated for all q. 0 
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(7.15) Theorem Let A be a principal ideal domain,f: X --+ B a A-orientable 
fibration with fibre F. Then 

(1) F is acyclic over A if and only if f*: H*(X; A) --+ HAB; A) is an 
isomorphism; 

(2) B is acyclic over A if and only if the injection H *(F; A) --+ H *(X; A) is an 
isomorphism; 

(3) if two of the three spaces F, X, B are acyclic over A, so is the third. 

Suppose that F is acyclic. By the Universal Coefficient Theorem, E~. q = 0 
for all q > O. Then E';, q = 0 for all q > 0 and E~, 0 = E';, 0 = HAX; A). That 
f* is an isomorphism follows from Theorem (7.2). 

Suppose that F is not acyclic, so that there is an integer q such that 
Hq(F; A) =1= 0, Hj(F; A) = 0 for 0 <j < q. Then drE~.q_r+l = 0 and 
drE~+l,o = 0 for all r:::;; q. Hence E~!Lo = Hq+1(B; A), E3~ql = Hq(F; A) 
and there is an exact sequence 

f dq + 1 
Hq+ 1(X; A) -::...::*,,--->. Hq + 1(B; A) • 

Hq(F; A) ----+. Hq(X; A) f*. Hq(B; A). 

Since Hq(F; A) =1= 0, either f* is not ,~ monomorphism in dimension q orf* is 
not an epimorphism in dimension q + 1. 

Suppose that B is acyclic. By the Universal Coefficient Theorem, E~, q = 0 
for all p > O. Thus E';, q = 0 for all p > 0 and E6, q = E~ q = H q(X; A). By 
Theorem (7.6), the injection is an isomorphism. 

Suppose that B is not acyclic, so that there is an integer p such that 
HAB; A) =1= 0, but Hi(B; A) = 0 for 0 < i < p. Then drE~, 0 = 0 and 
drE~,p_r_l = 0 for all r < p. Hence E~,o = Hp(B; A), Eg,P-l = H p_ 1(F; A) 
and there is an exact sequence 

Since H p(B; A) =1= 0, either i* is not a monomorphism in dimension p - 1 or 
i* is not an epimorphism in dimension p. 

The third statement follows from the other two. D 

There is no conclusion of comparable strength to be deduced from the 
hypothesis that X is acyclic. For example, the path space fibration 
QB --+ P B --+ B has PB acyclic, but we can only conclude that H q(QB) ~ 
Hq + 1(B) in a range of dimensions (cf. Corollary (6.5), Chapter VII). 
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(7.16) Corollary Let f : X --> B be a Z-orientable fibration with fibre F. Then 
any two of the conditions 

(1) for each p > 0, HAB) isfinite; 
(2) for each q> 0, Hq(F) is finite; 
(3) for each n > 0, H n(X) is finite; 

imply the third. 

Our hypotheses guarantee, by virtue of Theorem (7.11) that all three 
spaces have finitely generated homology groups. In the presence of this 
condition, the finiteness of the homology groups in positive dimensions is 
equivalent to rational acyclicity. Thus our result follows from Theorem 
(7.15). 

(7.17) Corollary Let n be a finite abelian group. Then H q(n, n) is finite for all 
q > ° and all n. 

The groups H q(n, 1) are finite, by the calculations of §7, Chapter V. The 
finiteness of Hq(n, n) follows, by induction on n, from Corollary (7.16). 

o 
(7.18) Theorem Let X be a simple space whose integral homology groups 
HiX) are finite for all q > 0. Let Xn be the terms of a Postnikov systemfor X. 
Then H q(X n) is finite for all q > ° and all n. 

This follows by essentially the same arguments as Theorem (7.13). D 

(7.19) Corollary If X is a simple space and H q(X) is finite for all q > 0, then 
7rq(X) is finite for all q. D 

Examination of the above proofs reveals that relatively few properties of 
finitely generated and of finite groups (and these of a very general character) 
are involved in the above proofs. In his paper [3], Serre has formulated the 
notion of a "class" of groups and has found far-reaching generalizations of 
the above results. We shall not discuss these notions for lack of space, but 
hope to return to them in the second volume. 

8 Multiplicative Properties of the 
Leray-Serre Spectral Sequence 

Continuing our discussion of the Leray-Serre spectral sequence, we now 
assume that we are dealing with cohomology with coefficients in a commu
tative ring A. We shall first discuss the behavior of cross products; then we 
can study cup products with the aid of diagonal maps. 
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For simplicity, we shall consider the absolute case. The changes needed to 
handle the general case are minor, and are left to the reader. 

Letf' : X' ---+ B',f" : X" ---+ B" be fibrations with fibres F', F", respectively. 
Then J = f' x f" : X ---+ B is a fibration with fibre F, where 

X = X' X X", B = B' X B", F = F' X F". 

Let us first consider the behavior of the E1 term of the spectral sequence. 
The cross product in cohomology is a pairing 

f.1 : Hp+q(X~, X~_ d ® HS+I(X~ X~-l) ---+ HP+q+S+I(X P. s' X P. s-l U X p-1. J 
where X P. S = X~ x X~; we also define 

Xoo,S = X' x X~, 

X p, 00 = X~ X X", 

X;.s = U Xa,b 
a+b=p+s 

a'fp 

As we did with the cross product in the cohomology of a CW -complex in §2 
of Chapter II, we can compose f.1 with the composite 

H P+q+S+I(X X U X ) ~ HP+q+S+I(X X*) p,S' p,s-l p-1,s ~ P+S' p,s 
H P+q+S+I(X X ) 

---+ p+s' p+s-1' 

where the second homomorphism is an injection and the first the inverse of 
an isomorphic injection. In this way we obtain a pairing 

f.11 : E{' q(J') ® E1' 1(J") ---+ E{+S' q+I(J). 

On the other hand, for each b = (b', b") E B, the cross product maps 
Hq(F~,) ® HI(F~,,) into Hq+I(Fb). Let u' be a path in B' from b'l to b~ and u" a 
path in B" from b'{ to b'O, and let u : I ---+ B be the path such that 

u(t) = (u'(t), u"(t)). 

Let F; be the fibre off' over b;, F;' the fibre off" over b;'; then Fi = F; x F7 is 
the fibre off over bi = (b;, b;'). If h' : F~ ---+ F'1 is u' -admissible, h" : F'O ---+ F'{ is 
u"-admissible, then h = h' X h" : F 0 ---+ F 1 is u-admissible, and the diagram 

Hq(F~) ® Ht(F~) ---+ Hq+t(Fd 

h'* ® h"· 1 1 h* 

Hq(F~) ® Ht(F'O) ---+ Hq+t(Fo) 

in which the horizontal arrows represent the cross product pairings, IS 

commutative. 
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These pairings can be used to define cross products in the cohomology of 
the base spaces. Specifically, if e' E P(B'; Hq(y;,)), e" E P(B"; Ht(y;")), their 
cross product e = e' x en E P+S(B; Hq+t(y;)) is given by 

e(e~ x ep) = ( - 1 )PSe'(e~) x e"(ep). 

The coboundary formula 

b(e' x en) = be' x e" + (-l)Pe' x be" 

is readily verified. Thus the cross product of cochains induces a cross pro
duct mapping 

P(B'; Hq(y;,)) ® rs(B"; Ht(y;")) -+ P+S(B; Hq+t(y;)). 

The isomorphisms A of §4 can now be used to compare the two cross 
product pairings under discussion. 

(8.1) Theorem The diagram 

£II' q(f') ® E~' t(f") 111 
-------+, Ef+ S ' q +\f) 

A*(f') ® A*(f") 1 1 A*(f) 

P(B'; Hq(y;,)) ® P(B"; Ht(y;")) 

is commutative except for the sign ( - 1 )<P+ q)s. 

Let E~, Ep be cells of B', B" of dimensions p, s, respectively; then 
Ea , p = E~ x Ep is a (p + s )-cell of B. It will be convenient to modify the 
discussion of §4 by using L1P' S = L1P x L1s, rather than L1P+s, as the domain of 
a characteristic map for Ea , p' Consider the diagram (see Figure 13.6) where 
the Ci are cross product maps and n = p + q + s + t; in particular, 
j 0 k- 1 0 C1 = 111' We shall prove that the bottom square commutes except 
for the sign (- 1 )qs. The remainder of the diagram is patently commutative. 
This being said, we have, for u' E Ef' q(f'), u" E E~' t(I"), 

Let 

v = h* ia , Pf.1 (u' xu") a,p 1 , 

A' = A*(f'), A" = A*(f"), A = A*(f). 
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A'(u')(e~) = v'/(Yp, 

A"(y")(ep) = V"/(Ys, 

A(U' x u")(e~ x ep) = V/(yp x (ys 

and therefore 

A'(U') x A"(U")(e~ x ep) = (-l)PsA'(u')e~ x A"(U")ep 

= (-l)psv'/(yp x v"/(ys 

= (-1)(p+q)Sv/(Yq X (ys 

= (-1)(P+q)sA(U' X u")(e~ x ep). 

We now prove that the bottom square satisfies the above-mentioned 
commutativity relation. Let us first observe that C3 is the composite of the 
cross product pairing 

Hp+q(t,.p x F~, Ap x F~) ® W+t(N x Fp, As x Fp) 

-4 Hn(t,.p x F' x t,.s x F" t,.p x F' x A x F" u Ap x F' x t,.s x F") 
a f3' a s f3 a f3 

with the homomorphism T* induced by the twisting function which inter
changes the second and third factors. With some changes of notation made 
for the sake of simplifying the typography, the statement to be proved is 

(8.2) Lemma Let E', E" be oriented cells of dimensions p, s, respectively, 
E = E' x E", and let X, Y, be spaces, Z = X x Y. Let 

u' E Hp+q(E' x X, E' x X), u" E Hs+t(E" x Y, E" x Y). 

Then 

The proof is by induction on p + s, the statement in question being true 
when p = s = O. Assume it to be true in dimensions less than p + s. Let F be 
a (p + s - 1)-face of E; then F has one of the forms F' x E", E' x F", where 
F' is a (p - 1)-face of E' and F" an (s - 1)-face of E". We shall assume the 
second alternative holds; the proof in the first case is similar. 

Consider the diagram (Figure 13.7), in which the homomorphisms c; are 
cross product maps. The commutativity of the upper left-hand corner is a 
consequence of (2.30) of Chapter II; that of the bottom square is by induc
tion hypothesis; that of the remaining portions of the diagram is clear. The 
homomorphisms k, kl' ... , ks are isomorphisms, by the Excision Theorem. 
And the coboundary operators (y, (Yl, (Y2 are isomorphisms as well. The map 
T* 0 C'l is the homomorphism analogous to C3 for the cell E' x E", the map 
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t* 0 c~ that analogous to C3 for the cell E' x F". The map k4 0 021 is the 
inverse of the homomorphism a*(E, F) of §7, Chapter XII for the space Z, 
while the map k 0 0- 1 is the inverse of the homomorphism a*(E", F") for the 
space Y. Thus, if u' E Hp+q(E' x X, E' x X), u" E Hs+t(E" x Y, E" x Y), 
v" = a*(E", F")- 1U", 

Hence 

u' x u"/e = (-1)p+qa*(E, F)(u' x v")/e 

= (-1)p+q[e :J](u' x v")1f 

by (7.24) of Chapter XII 

= (-l)q[e" :J"](u' x v")/ f 

= (_l)q+q(s-l)[e" :J"]C4(u'/e' ® v"/J") 

by induction hypothesis 

= (-1)qSc4(u'/e' ® a*(e",J")v"/e") 

by (7.24), Chapter XII 

= (-1)qSc4(u'/e' ® u"/e"). o 

Having explicated the product in E 1 , let us suppose (as is easy to verify) 
that III is a chain map (with respect to dd. Then the product in E1 induces a 
product 112 in E2 • If, in turn, 112 is a chain map (for d2 ), then the latter 
product induces one in E 3 . And so on. 

We now show that this is indeed the case. 

(8.3) Theorem For each r ~ 1, there is a chain map 

I1r: Er(f') ® Er(f") ~ Er(f) 

of degree (0, 0) such that I1r+ 1 is induced by I1r' Moreover,for each p, q, s, t, the 
map I1r: E~' q(f') ® E:' t(f") ~ E~+q· s+t(f) is independent of r sufficiently 
large and therefore the I1r induce a pairing 

The proof depends on an intricate analysis of the behavior of the cross 
product in E 1. Recall that E~' q is the subquotient Z~' q/B~' q of Ef' q. Consider 
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the commutative diagram 
b' ., 

H p+q(X' X') 1 Hp+q+ l(X' X' ) 12 Hp+q+ l(X' X' ) p+r-l' p-l ----+ , p+r-l ----+ p+r' p+r-l 

b'2 Hp+q(X' X' ) -------4 Hp+q+ l(X' X') P' p- 1 , p 

~ ji; 
H p+q+ l(X' X') p+r-l, p' 

An element u' E Ef' q(f') belongs to Z~' q if and only if b~ u E 1m /1 = Ker i3, 
i.e., u E Ker(i3 0 b~) = Ker b3 = 1m i'l' If v' E Hp+q(X~+r-l' X~-l)' 
i'l(V') = u', and if [u'] is the element of Er represented by u', then dr[u'] = 

[i~ b'l v']. A comparable diagram reveals that, if u" E Ei t(f") belongs to Z~' t, 
then there is an element v" E Hs+t(X~+r_l' X~-l) such that i'{(v") = u", and 
dr [ u"] = [i~ b'{ v"]. 

The reader will recall that the product 111 was defined by starting with the 
cross product u' x u" of two classes u' E Ef' q(f') = Hp+q(X~, X~_ d, 
u" E Eit(f") = W+t(X~, X;-l)' This product does not lie in the correct 
group; to place it there, we apply a number of injection homomorphisms 
and their inverses. And this is the idea underlying all the complications we 
encounter in proving Theorem (8.3). 

Our first task is to show that, if u' E Z~' q and u" E Z~' t, then u = u' . u" = 

111(U'®U") E Z~+q,s+t. We must therefore exhibit an element 
v E Hp+q+s+t(Xp+s+r_ 1' Xp+s-d such that il(V) = u'· u". We may start 
with the element v' x v", which belongs to the group in the upper left hand 
corner of the commutative diagram 

H"(X p+r- 1,s+r-l' X p+r-l,S-l U X p- 1,.+r-d 

H"(X oo ,S-l U X p+r- 1,s+r-l U X P - 1 ,OO, X oo ,s-l U X P-l,oo) ----+ Hn(xp+., X;,.) 

Hn(x p+s+r-l, X p+s- d 

in which the injections kl and k2 are isomorphisms, n = p + q + s + t. The 
injection il, 1 is induced by the cross product of the inclusion maps 
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(X~, X~_ d '4 (X~+r-1' x~_ d, (X~, X~_ d C+ (X~+r-1' X~_ d; by naturality 
of cross products, i 1, 1(V' X v") = u' X u". Let v = 11kl1(v' X v"); then it 
follows from the commutativity of the diagram that 

(8.4) • () , II 11 V = U . U = u. 

We must next calculate dr([ u]). As we are trying to show that J.lr is a chain 
map, we must prove that 

(8.5) dr([ u J) = dr([ u'J) . [u"] + ( -1)P+ q[ u'] . dr([ u"]). 

By the remarks made at the beginning of the proof, the element dr([ u]) is 
represented by the image of v under the coboundary operator 

63 : Hn(x p+s+r-1' X p+s- d -+ Hn+ 1(X p+s+r, X p+s+r- d· 
There is a commutative diagram 

H"(X p+.+,-l' X p+'- d 

and 63(v) = 63 /1 kl1(v' X v") = 1364 kl1(v' X V"). 
Next consider the commutative diagram (Figure 13.8); the k j are isomor

phisms, and, according to our discussion in §2 of Chapter II, 14 and 15 
represent the group 

Hn+1(X OO ,(] U X", 00 , X oo ,s-1 U X",,, U X p- 1,00) 

(where n = p + r - 1 and (J = S + r - 1) as a direct product, while j2' j3 
form a weakly dual representation of the same group as a direct sum. 
Moreover, 

s: k - 1 (' ") ~" II Us 3 V X V = Ul V X V , 
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Thus 
(8.6) b3(v) = 16 k? 1 (b'l v' X v") + (-1)p+QI7ksl(v' X b'{ v"). 

Now consider the commutative diagram 

The homomorphism i2 , 1 is induced by the product of the inclusions 

(X~+r' X~+r-l) <:+ (X', X~+r- 1) 

and (X;,X;-d <:+ (X;+r-l,X;-d; by thenaturality of the cross product, we 
have 

Hence 

iz. 1 (b'l v' X v") = i~ b'l v' X i'{ v" 
=6~v' X U" 

16k? lWl v' X v") = Is kg liz. 1 (b'l v' X v") 
= ISkgl(b~v' X U"); 

this element represents the product in Er of [b~ v'] = dr([ u']) with [u"]. 
Proceeding similarly with the other term in (8.6), we arrive at (8.5). 0 

We have not yet shown that I1r is well defined; it is necessary to show that 
if u' E Bf' q (or U" E B:' t), then u' . U" E Bf+s. q+t. Chasing the commutative 
diagram 

HP+q-l(X' X') p-l' p-r 

j 
Hp+q(X' X' ) , p-l Hp+q(X' X' ) 

p' p-l 

j 
Hp+q(X' X' ) p' p-r 
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we see that B~' qis the kernel of the injectionj~. Let u' E B~' q, U" E Z;' t. Then 
u' E Ker j~ and u" = i'{(v"), v" E Hs+t(X;+r_l' X;-d. We shall prove that 
u'· u" belongs to the kernel ofj4: H"(Xp+s> Xp+s-1)->H"(Xp+s> Xp+s- r)' 

Once more we need a large commutative diagram (Figure 13.9). Again, 
the ki are isomorphisms, the homomorphism i2 is induced by the product of 
the inclusions 

and the homomorphism js by the product of the inclusions 

The element u' x u" lies in the group in the upper right-hand corner; by 
naturality of the cross product, u' x u" = i2(u' x v"), js(u' x v") = O. 
Moreover, u' . u" = 12 ki.1(u' X u"). Hence 

j4(U' . u") = j412 ki. l(U' xu") 

= j412 ki. li2(u' x v") 

= j411okl}(u' x v") 

= 19k1o1 js(u' x v") = O. 

Similarly we show that, if u' E Z~' q, U" E B;' t, then u' . U" E B~+s, q+t. 
Hence Jlr is well-defined. The remaining statements in Theorem (8.3) are 
obvious. 0 

The products we have defined have commutativity and associativity 
properties which we now formulate. Let I' : X' -> B',!,,: X" -> B" be fibra
tions, and let f = I' x f" : X' x X" -> B' x B", J = f" x I' : X" x X' -> 

B" x B'. Let tx: X' x X" -> X" x X', tB: B' x B" -> B" x B' be the twisting 
maps which simply interchange the factors. Then tx respects filtration and 
induces a map of the exact couple for f into that for J In particular, t~ maps 
Er(/) into Er(f) for every r. 

(8.7) Theorem The products of Theorem (8.3) are commutative in the sense 
that, if u' E E~' q(f'), U" E E;' t(f"), then 

t~(u" . u') = (-l)<p+q)(s+t)u' . u". o 
Similarly, let Ii : Xi -> Bi (i = 1,2,3), and let 
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Thenf coincides withf!, 2 x f3 and withfl x f2, 3, up to natural homeomor
phism, For each r, the products of Theorem (8,3) are pairings 

a, : ErUd @ Er(2) --* ErUu), 

f3r: Er(2) ® Er(3) --* Er(j~3)' 

Ar : ErUl2) ® Er(3) --* ErU), 

Jir : ErUd ® Er(23) --* ErU), 

(8.8) Theorem The products of Theorem (8.3) are associative in the sense that 
the diagrams 

ErUl) ® Er(2) ® E,(3) 
ar ® 1 
-----+ 

1 ® f3r 1 
E,Ud ® E,(23) 

are commutative, 

____ I E,U) 
Il, 

o 
Theorems (8,7) and (8,8) are easy consequences of the known commutati

vity and associativity properties of the cohomology cross product 
The products of Theorem (8,3) have certain naturality properties, which 

we leave to the reader to formulate, 
Finally, we discuss the relationship between the products in Eoo and in the 

total spaces, The cohomology group Hn(x) is filtered by the images 
jP, n- PU) of the injection homomorphisms 

Hn(x, X p-l) --* Hn(x), 

and 

p+q=n 
Similarly, there are filtrations {JP' qu')}, {is, t(f")} of H*(X'), H*(X"), re
spectively, The cross product maps Hp+q(X', X~-l) ® Hs+t(X", X~_ d into 
Hn(x, Xoo,s-l u Xp-l,oo); as X p+s- l cXoo,s-l u Xp-1,00, there is a 
commutative diagram 

Hp+q(X',X~_l)®Hs+t(X",X;_d -----+ H"(X,Xp+s _ 1) 

1 1 
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Hence the cross product maps Jp,q(f') ® p. t(f") into JP+s. q+ t(f). 
Moreover, the groups JP+ 1. q-l(f') ® p. t(f") and JP' q(f') ® p+ 1. t-l(f") 
are mapped into JP+s+ 1. q+t-l(f). Thus there is induced a pairing of the 
quotient groups 

(8.9) Theorem The pairings 11 and /loo coincide. 

Let u' E z~q(f') c Hp+q(X~, X~-I)' u" E zsc:,c(f") c Hs+t(X;, X;-I)' 
Then there are classes v' E Hp+q(X', X~_ d, v" E Hs+t(X", X;_ d which map 
into u', u", respectively, under the appropriate injections. Let w' E Hp+q(X'), 
w" E Hs+t(X") be the images of v', v", respectively, under the relevant injec
tions. Recalling the definition of the additive relation <l>P' q of §3, we see that 
(u', w') E <l>P' q(f'), (u", w") E <1>" t(J"). Then the element v' x v" E 

Hn(x, X 00, s-1 U X p-l, 00) is mapped by the injection into an element u of 
Hn(x p+s' X p+s- d; by an easy modification of the proof of (8.4), we see that 
u = u' . u". On the other hand, the naturality of the cross product map 
ensures that the injection Hn(x, X 00, s-1 U X p-l, 00) -+ Hn(x) maps v' x v" 
into w' x w". Thus (u' . u", w' x w") E <l>P+s, q+t(f). Hence 

jI([u'] ® [u"]) = [u' . u"] = /loo ([ u'] ® [u"]). 

We now turn to the consideration of cup products. Let f: X -+ B be a 
filtration with fibre F; then f x f: X x X -+ B x B is a fibration with fibre 
F x F. The diagonal maps of X and B define a fibre preserving map of the 
first fibration into the second; the induced map on the fibre F is again the 
diagonal map. In this way we obtain a map of '?l*(f x J) into '?l*(f), and, in 
particular, for each r ~ 2, a chain map of Er(f x J) into Er(f). Combining 
these chain maps with the operations /lr' we obtain pairings Er(f) ® 
Er(f) -+ Er(f). From our discussion of cross products we then deduce 

(8.10) Theorem Let f: X -+ B be a fibration with O-connected base Band fibre 
F, and let A be a commutative ring, f,* the cohomology theory with coefficients 
in A. Then, for each r, the group Er is a commutative and associative algebra 
over A and dr : Er -+ Er a derivation. Moreover, Er+ 1 is the cohomology 
algebra of Er. The product in E2 corresponds up to sign, under the isomorphism 
A * of§4, to the multiplication in H*(B; H*(:F» determined bv the cup products 
in H*(B) and H*(F). Finally, the products in Er determine one in Eoo , and Eoo 
is isomorphic with the associated graded algebra qjH*(X). 

9 Further Applications of the Leray-Serre 
Spectral Sequence 

In this section we take advantage of the extra information furnished by the 
multiplicative structure in the spectral sequence, in order to obtain further 
applications. 
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In our first applications, the coefficient group for the cohomology theory 
will be the field Zo of rational numbers. 

(9.1) Theorem l£t p: X ~ B be afibration and assume B is I-connected and X 
is acyclic over Zo . l£t n be an odd integer. Then the following conditions are 
equivalent: 

(1) the fibre F is a rational homology n-sphere; 
(2) there is an element u E Hn+ 1(B) such that H*(B) is the polynomial algebra 

Zo[u]. 

(As usual, the name of the coefficient domain is omitted). 
Assume first that (1) holds. Then 

E~' q = HP(B; Hq(F» 

so that E~' q = 0 unless q = 0 or q = n. Thus there is only one possible 
non-trivial coboundary operator dn+ 1, and E2 = En+ 1; since X is acyclic, 
EI,;, q = 0 unless p = q = O. It follows that 

is an isomorphism for all p > O. Now m' n = HO(B; Hn(F) ~ Hn(F) is one
dimensional, generated by Z E Hn(F). Let u = dn+ 1 Z E Hn+ 1(B; H°(F» ~ 
Hn+ l(B). If x E Hp-n-1(B), then xz E Hp-n-1(B; Hn(F», and 

dn+1(xz) = xdn+1(z) = xu. 

An easy inductive argument now shows that HP(B) = 0 unless p == 0 
(mod n + 1), and that Hk(n+ 1)(B) is a one-dimensional space generated by Uk. 
Hence H*(B) is as stated. 

Now assume that (2) holds. The first non-trivial operator is dn + 1, and it 
follows that Hq(F) = 0 for 0 < q < n. Since EI,;, q = 0 unless p = q = 0, there 
must exist Z E Hn(F) ~ HO(B; Hn(F» such that dn+ 1 Z = u. It follows that 
dn+ l(UkZ) = ukdn+ l(Z) = uk+ 1. Moreover, dim Hn(F) = 1; for otherwise there 
exists U1 E Hn(F) with dn+ 1 U1 = 0 and U1 survives to a non-zero term in Eoo . 
Thus EI,;, q = 0 for all (p, q) =1= (0, 0), q s n. If F is not a homology sphere, 
there is a non-zero element v E Hq(F), q > n. We may assume that Hk(F) = 0 
for n < k < q. But then dr v = 0 for all r, so that v survives to a non-zero 
element of E oo ' a contradiction. 

(9.2) Theorem l£t p : X ~ B be a fibration, and assume that B is I-connected 
and X is acyclic over Zo. l£t n > 1 be an odd integer. Then the following 
conditions are equivalent: 

(1) B is a rational homology n-sphere; 
(2) there is an element u E Hn- 1(F) such that H*(F) is the polynomial algebra 

Zo[u]. 
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Suppose first that (1) holds. Then dr = 0 unless r = n, E2 = En, and 

is an isomorphism for all q > O. Let z generate the one-dimensional space 
Hn(B) ~ Hn(B; HO(F)), and let u = d;; l(Z) E Hn-1(F) ~ HO(B; Hn-1(F)). 
Then dn(uk) = kuk- 1 z. Again an easy induction shows that Gq(F) = 0 unless 
q == 0 (mod n - 1), while Hk(n-1)(F) is a one-dimensional space generated by 
Uk. Hence H*(F) is as stated. 

Suppose that (2) holds. Then the first non-trivial coboundary operator is 
dn. Hence Hq(B) = 0 if 0 < q < nand dn(u) is a non-zero element of Hn(B). If 
U1 is an element of Hn(B) not in the image of dn, then U1 survives to Eoo ' a 
contradiction. Again dn(uk) = kuk- 1 Z, so that dn maps E~' k(n-1) isomor
phically on E~' (k-1)(n-l), and it follows that E':;, q = 0 for all (p, q) =1= (0, 0) 
with p :S; n. As before, a non-zero element of HP(B) of lowest degree > n 
would survive to E oo ' and this contradiction ensures that B is a homology 
n-sphere over Zo . 

Remark. The argument of Theorem (9.1) is still valid if Zo is replaced by 
an arbitrary field (or even an arbitrary principal ideal domain), but that of 
Theorem (9.2) does not. 

(9.3) Corollary If n is even, H*(Z, n; Zo) is a polynomial algebra Zo[u], 
u E Hn(z, n; Zo). If n is odd, K(Z, n) is a rational homology n-sphere. 

We have seen that K(Z, 1) = Sl. The rest follows by induction, using 
Theorems (9.1) and (9.2) alternatively. 

(9.4) Corollary If n is odd, H q(Z, n) is a finite group for all q > n. If n is even, 
Hq(Z, n) is finite unless q == 0 (mod n), and Hkn(Z, n) is the direct sum of a 
finite group and an ilifinite cyclic group. 

By Theorem (7.12), HiZ, n) is finitely generated for all q, n. Hence 
H q(Z, n) is a direct sum F q + 1'q, where F q is free and 1'q finite. The rank of F q 
is the dimension ofthe rational vector space Hq(Z, n; Zo); hence Fq = 0 or Z 
as the case may be. 

(9.5) Theorem Ifn is odd, the homotopy groups nq{Sn) arefinitefor all q > n. 

Letf: sn --. K(Z, n) be a map such thatf*bn generates Hn(sn), and let X 
be the mapping fibre off By Theorem (7.11), the homology groups of X are 
finitely generated. It follows from Corollary (9.4) that f*: H*(sn; Zo)--. 
H*(K(Z, n); Zo) is an isomorphism. By Theorem (7.15), X is rationally 
acyclic and therefore Hq(X) is finite for all q > O. By Corollary (7.19) the 
homotopy groups of X are all finite. But niX) ~ nq{Sn) for all q > n. 
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(9.6) Theorem If n is even, then 1Cq(sn) is finite for all q> n, except that 
1C 2n - 1 (sn) is the direcc sum of an infinite cyclic and a finite group. 

Let us consider the Stiefel manifold V 2n+ 1.2' By Corollary (10.14) of 
Chapter IV, the homology groups of V 2n+ 1,2 are finite, except that 
Ho(V 2n+ 1. 2) ~ H 4n - 1 (V 2n+ 1, 2) ~ Z. By the Hopf Theorem, there is a map 
f: V 2n+ 1, 2 ~ s4n-1 such thatf* : H 4n - 1 (S4n-1) ~ H 4n - 1(V 2n+ 1,2)' Let F be 
the mapping fibre off Sincef*:H*(V2n+1,2;Zo)~H*(S4n-l;Zo) is an 
isomorphism, it follows from Theorem (7.15) that F is rationally acyclic; by 
Corollary (7.19), the homotopy groups of F are finite. Hence 1Cq{V 2n+ 1, 2) is a 
finite group except that 1C4n - 1 (V 2n+ 1,2) = Z (f; F, where F is finite. 

Now consider the homotopy sequence 

... ~ 1Cq(S2n-1) ~ 1Cq(V 2n+ 1. 2) ~ 1Cq(S2n) ~ 

1Cq -1 (S2n-1) ~ 1Cq _ 1 (V 2n+ 1.2) 

of the fibration s2n-1 ~ V 2n+ 1, 2 ~ s2n. If q 1- 2n, 4n - 1, then 1Cq(V 2n+ 1,2) 
and 1Cq _ 1 (S2n- 1) are finite, and therefore 1Cq(S2n) is finite. If q = 2n, 
1Cq(S2n) = Z. Finally, we have the exact sequence 

(S2n-1) (V ) p* (S2n) (S2n-1) 1C4n- 1 ~ 1C4n-1 2n+ 1,2 --""-->. 1C4n - 1 ~ 1C4n - 2 

The homomorphism p* has finite kernel and cokernel, and it follows that 
1C4n - 1 (s2n) ~ Z (f; F' with F' finite. 

EXERCISES 

1. Let (X, A) be a pair, filtered by {Xn}' Let 

and form an exact couple 

15p.q = Hp+q(X, Xp-d, 

Ep,q = Hp+q(Xp. Xp-d. 

E 

15 -15 
J 

Show that qJ leads to the same spectral sequence as the exact couple of §3. 

2. Derive the Wang sequence from the Leray-Serre spectral sequence of a fibration 
F --> X --> sn (including the multiplicative properties we proved in Chapter VII). 

3. Do the same for the Gysin sequence of an orientable fibration sn --> X --> B. 

4. Complete Exercise 1 of Chapter VII calculating the homology groups of the space 
W" of free loops in sn for n even. 

5. Prove the statement made in the Remark at the end of §2. 



Appendix A Compact Lie Groups 

The first two Sections outline the most important results on compact Lie 
groups and their classifying spaces. 

In §3 we introduce the spinor groups Spin (n); these are the universal 
covering groups of the rotation groups. Section 4 introduces the Cayley 
algebra. The group G2 of automorphisms of K is examined in §5. The group 
G 2 is seen to act transitively on the unit sphere S6 in Ko , the subspace of 
pure imaginary Cayley numbers, and the isotropy group is seen to be the 
unimodular unitary group Uj. In fact, G 2 acts transitively on the space V 7,2 

of orthogonal pairs of unit vectors in Ko , and this time the isotropy group is 
isomorphic with the multiplicative group S3 of unit quaternions. 

In §6 we introduce the exceptional Jordan algebra 3. The algebra 3 is the 
set of all 3 x 3 Hermitian matrices with entries in the Cayley algebra K, 
under the Jordan product 

x 0 y = !(Xy + YX). 

A study of its idempotents is made and the space P of primitive idempotents 
is identified as the Cayley projective plane. In §7 we study the automorphism 
group of 3; it is the second exceptional Lie group F 4' The group F 4 acts 
transitively on P, and the isotropy group is Spin (9). Other subgroups of F 4 

are identified; of special interest is a transitive action of Spin (9) on S15 with 
isotropy group Spin (7). This action is not unrelated to the Hopf fibration 
S15 --+ S8. 

673 
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1 Subgroups, Coset Spaces, Maximal Tori 

We begin by sketching some of the most important properties of compact 
Lie groups. For details the reader is referred to Chevalley [C 1], Hochschild 
[Ho], or Helgason [He]. We also recommend the survey articles by Samel
son [3] and Borel [4J. 

We first observe that the hypothesis of compactness is not restrictive from 
the point of view of homotopy theory. This follows from Theorem (1.1), 
below, which was proved by Elie Cart an [Ca] for I-connected groups, and in 
full generality by Malcev and Iwasawa. 

(1.1) Theorem Let G be a connected Lie group. Then G has a maximal com
pact subgroup K, unique up to conjugacy, and G is homeomorphic with a 
Cartesian product K x Rm. In particular, G and K have the same homotopy 
type. 0 

For example, let G = L + (n), the group of linear operators on Rn with 
positive determinant. Then we may take K = 0+ (n), and if H(n) is the space 
of symmetric operators, H + (n) that of the positive definite ones, then H( n) is 

a Euclidean space of dimension (n ; I ) and the exponential map sends H(n) 

homeomorphically upon H+ (n). Moreover the map (X, U) ---> X . U 
(X EO H+ (n), U EO 0+ (n)) is a homeomorphism of H+ (n) x 0+ (n) with L + (n). 
The representation A = X . U of a matrix A EO L +(n) is the polar decomposi
tion of A. 

The Structure Theorem 

(1.2) Theorem If G is a compact connected Lie group, then G has a finitely 
many sheeted covering group 

G = Tl X G1 X ... x G" 

where Tl is a toral group and each of the groups Gi is a simply connected 
compact simple group. 0 

is due to Elie Cartan. 

Remark. The word" simple" is used in the sense customary in dealing 
with topological groups; such a group G is said to be simple if and only if it 
is non-abelian and its only proper normal subgroups are discrete or open. 
For a Lie group G, this is equivalent to the assertion that the Lie algebra of G 
is simple.) 

Cartan has also classified the compact simple groups, completing earlier 
work of Killing. Up to local isomorphism, these are given in 

(1.3) Theorem The compact simple groups are gicen without repetition (up to 
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local isomorphism) by four infinite sequences: 

U+(n) 

0+(2n + 1) 

Sp(n) 

0+(2n) 

as well as five exceptional groups 

of dimensions 

(n ~ 2), 

(n ~ 2), 

(n ~ 3), 

(n ~ 4), 

14, 52, 78, 133, 248, 
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respectively. The following sets consist of mutually locally isomorphic groups: 

(cf. Exercises 3, 4). 

{U+(2), 0+(3), Sp(1)}, 

{Sp(2),0+(5)}, 

{U+ (4), 0+ (6)}. D 

Let H be a closed subgroup of the compact Lie group G. Then H itself is a 
Lie group, and the natural map p : G ~ G / H of G in to the space of left cosets 
of H in G is the projection of a fibre bundle [St 1, p. 30]' By (7.13) of 
Chapter I, 

(1.4) The map p : G ~ G/H is a fibration. D 

More generally, 

(1.5) Let p : X ~ B be the projection of a principal bundle with strudural group 
G, and let H be a closed subgroup of G, C = X / H the orbit space. Then the 
natural map p : C ~ B is a fibration with fibre G/H. D 

(1.6) Corollary If H ::::J K are closed subgroups of G, then the natural map 
p: G/K ~ G/H is a fibration with fibre H/K. D 

As particular applications of Corollary (1.6), we have the fibrations given 
in Table A.l and their complex and quaternionic analogues. Of particular 
importance are the H opf fibrations. 

sn-l ~ pn-l, s2n-l ~ pn-l(C), s4n-l ~ pn-l(Q) 

with fibres So, s1, S3, respectively. These are obtained from the last line in 
Table A.l and its analogues over C, Q by taking k = 1. In particular, we may 
take n = 2; in this case the projective space is itself a sphere and we have the 
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Table A.l 

Fibration 

O(n) -> Vn• k 

O(k + /) -> Gk • I 

V n• k -> Gn-k,k 

original Hopf fibrations 

Appendix A-Compact Lie Groups 

Fibre 

O(n - k) ~ O(n - k) 
O(k, /) ~ O(k) x 0(/) 
O(k, /)/0(/) ~ O(k) 

Sl --+ Sl, S3 --+ S2, S7 --+ S4. 

Let us describe the Hopf fibrations more explicitly. To give a uniform 
description, let D be a normed associative real division algebra of dimension 
d. As is well known, there are, up to isomorphism, only three examples, viz. 
R, C, and Q. Now pm-I(D) is the space of one-dimensional subspaces of Dm; 
and the unit sphere in Dm is a sphere of dimension dm - 1. Each point of 
Sdm - I lies on a unique one-dimensional subspace; and the Hopf fibration 
attaches to each point of the sphere that subspace which contains it. Analy
tically, points of Sdm-l are described by coordinates (Xl' ... , xm) with Xi E D 
and 2:i'= I IIXi 112 = 1. On the other hand, a one-dimensional subspace is 
determined by any non-zero vector in it; thus points of pm-l can be con-
sidered as equivalences classes [Xl' ... , xm] of m-tuples (Xl' ... , xm), with 
Xi E D and not all Xi = 0, two m-tuples (Xl' ... , xm) and (X'l' ... , x;") being 
equivalent if and only if there is an element xED (perforce non-zero) such 
that x; = XXi for i = 1, ... , m. The elements (Xl> ... , xm) are called homogen
eous coordinates of the point [x l> ... , xm]. The Hopf map sends the point 
(Xl> ... , xm) E Sdm-l into the point [Xl> ... , xm] E pm-l(D). 

There is one other example of a normed division algebra; it is the non
associative algebra K of Cayley numbers. As a vector space K = R 8, and it 
has a two-sided unit element eo . To describe the multiplication table, we first 
single out certain ordered triples of {I, ... , 7} as admissible. These are all 
triples which can be obtained from the triple (1,2,4) by applying the follow
ing operations: 

(1) applying a cyclic permutation to the members of the triple; 
(2) applying a cyclic permutation to the integers 1, ... , 7. 

(These can be visualized with the aid of Figure A.l, in which each ofthe sides 
and medians of the triangle, oriented as in the figure, give rise to an admis
sible triple, and the dotted circle gives one more admissible triple). The 
multiplication table is now completely determined by the condition 

(1.7) For each admissible triple (p, q, r) the subspace spanned by eo, ep ' eq and 
er is a subalgebra, and the linear transformation of Q into this subspace which 
sends 1, i, j, k into eo, ep ' eq , er , respectively is an isomorphism. 0 
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Figure A.i 

For example, 

e2 e4 = e1 = - e4 e2 , 

ei = e~ = e~ = - eo . 
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As K is not associative, the notion of vector space over K is meaningless. 
And if we attempt to describe a "Cayley projective space" by homogeneous 
coordinates, we find that the proportionality relation between m-tuples of 
Cayley numbers is not an equivalence relation. There is, however, a Hopf 
map S15 -+ S8 = P1(K). For let S15 be represented as the set of pairs (x, y) of 
Cayley numbers with IIxl12 + IIYl12 = 1, and let S8 be the one-point 
compactification of K. Then the map p: S15 -+ S8 defined by 

( ) _ {x- 1 y if x =1= 0, 
p x, y - 'f ° 00 1 X= , 

is continuous, and can be verified to be a fibration. Moreover, the mapping 
cone of p is a 16-manifold, which is appropriately called the Cayley projec
tive plane. (See also §7, below.) 

Among the subgroups of a connected compact Lie group G, the toral 
subgroups play an important role. Especially important are the maximal 
tori. They have, inter alia, the following properties: 

(1.8) A maximal torus is a maximal abelian subgroup of G. D 

The converse is, however, false. For example, let A be the group of diag
onal matrices in OJ; then A is a finite group of order 4, but is easily seen to 
be maximal abelian. 
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(1.9) Any two maximal tori are conjugate. o 

In particular, all maximal tori have the same dimension I. The integer I is 
called the rank of G. 

Let us exhibit a maximal torus T for each of the classical simple groups. 

(1) If G = U+ (n), then T is the group of diagonal matrices 

In this case, the rank of G is n - 1. 
(2) If G = 0 + (2n), then T is the group of matrices of the form 

diag{D 1, ... , D n}, 

where Di is the 2 x 2 matrix 

(
COS ei 
sin 0i 

-sinOi ). 
cos ()i 

In this case, the rank of G is n. 
(3) If G = 0 + (2n + 1), then T is the group of matrices of the form 

diag{D 1, ... , Dn, 1} 

with Di as above. In this case, G has rank n. 
(4) If G = Sp( n), T is the group of matrices of the form 

diag{zl' ... , zn}, 

where each Zi is a complex number of absolute value 1 (we regard C as a 
subalgebra of Q). Again, G has rank n. 

2 Classifying Spaces 

Let us recall some facts from the theory of fibre bundles. For further details 
and proofs the reader is referred to the treatises of Steenrod [St d and Milnor 
and Stasheff [M-S]. 

Let p : X -> B be the projection of a fibre bundle with fibre F and struc
tural group G; recall that p is a principal fibration if and only if G = F, 
acting on itself by left translation. For a general bundle, the bundle maps of 
F into X form a space X, the total space of the principal associated bundle. 
Moreover, the original bundle can be recovered from the principal asso
ciated bundle: the total space X can be identified as the quotient space of 
X x F under the equivalence relation 

(x, gy) '" (xg, y). 
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And two bundles over a space B are isomorphic if and only if their principal 
associated bundles are. 

For example, let M be a compact differentiable n-manifold imbedded in 
Rn+k. The tangent vectors to M form the total space ofthe tangent bundle of 
M; the principal associated bundle is the frame bundle of M, the points of 
whose total space are the orthonormal n-tuples (Vi' ... , Vn) tangent to M at 
some point x. The map y: M --> G n, k, which assigns to each x E M the 
n-plane through the origin parallel to the tangent plane to M at x, is called 
the Gauss map, and is of the highest importance in differential geometry. 

The space E k , n of pairs (n, x), where n is an n-plane through the origin in 
Rn+k and x E n, is the total space of a bundle !?J(k, n) over G n, k' The total 
space of the principal associated bundle is the Stiefel manifold Vn+k, n' The 
map y : M --> Gn, k induces a bundle y*!?J(k, n) over M, and this bundle turns 
out to be just the tangent bundle of the manifold M. 

Motivated by these considerations, Whitney proved that every bundle 
with structural group O(n) over a complex K of dimension s; k is induced by 
a map of K into G k , n' Steenrod completed Whitney's analysis by observing 
that G k , n is a classifying space for O(n )-bundles over such a base, i.e., the 
isomorphism classes of bundles over K are in one-to-one correspondence 
with the homotopy classes of maps of K into G k , n' The crucial fact used in 
the proof is that the Stiefel manifold V n+k, n is (k - 1 )-connected (Chapter 
IV, (10.12»). 

The restriction on the dimension k can be removed. In fact, 
Vn+k+i,n = O{n + k + 1)/O(k + 1), and 

O(n + k) n O(k + 1) = O(k), 

so that the inclusion map induces an imbedding 

I t is not difficult to see that the V n + k, n form an expanding sequence of spaces 
forming an NDR-filtration of their direct limit V(n). Similarly we have 
imbeddings 

G k , n --> Gk + 1, n 

and their direct limit G(n). We may identify V(n) with the space of n-frames 
in ROO and G{n) with the space of n-dimensional vector subspaces of ROO. The 
projection p: V(n) --> G{n) which assigns to each n-frame in ROO the vector 
subspace spanned by it is easily seen to be the projection of a principal 
fibration with group O(n). Moreover, the space V(n) is oo-connected. In fact, 
([M-S], Theorems 5.6, 5.7): 

(2.1) Theorem The space G(n) is a classifying space for bundles having O(n) as 
structural group, i.e., the equivalence classes of such bundles over a paracom
pact base space B are in one-to-one correspondence with the homotopy classes 
of maps of B into G(n). D 
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Let G be a compact Lie group. Then the Peter-Weyl Theorem asserts that 
G has a faithful orthogonal representation p: G -> O(n) for some positive 
integer n. Thus we may regard G as a subgroup ofO(n), so that G acts on the 
space V(n). Let B(G) be the orbit space V(n)/G; then 

(2.2) Theorem The projection p: V(n) -> B(G) is a principaijibration with 
structural group G, and the space B(G) is a classifying space for bundles over a 
paracompact base space with structural group G. 0 

The notation B(G) is somewhat misleading, for B(G) depends on the 
faithful representation p. However, if p' : B(G) -> O(m) is another faithful 
representation, and B'(G) = V(m)/Im p', we have 

(2.3) Theorem The spaces B(G) and B'(G) have the same homotopy type. 

Let flJ, flJ' be the appropriate universal bundles. Since B'(G) is classifying, 
there is a map f: B(G) -> B'(G) such thatf*&B' ::;:;; flJ. Similarly, there is a map 
g: B'( G) -> B( G) such that g*flJ ::;:;; flJ'. Then (g 0 f)*flJ ::;:;; f*g*flJ ::;:;; f*flJ' ::;:;; ,'11, 
and it follows that go fis homotopic to the identity map of B(G). Similarly, 
fog is homotopic to the identity map of B'(G). 0 

Let H be a closed subgroup of G and let p: G -> O(n) be a faithful 
representation. Then p I H is also faithful, so that we may consider that we 
have inclusions 

He G c O(n). 

Then B(G) = V(n)/G, B(H) = V(n)/H, and, by (1.5), we have 

(2.4) Theorem If H is a closed subgroup ofG, there is ajibration B(H) -> B(G) 
withjibre G/H. 0 

3 The Spinor Groups 

The rotation group 0+ (n) is not simply connected; it is shown in Chapter IV 
that n 1 (0 + (n)) is an infinite cyclic group if n = 2 and a cyclic group of order 
two if n ~ 3. The spinor group Spin(n) is a connected two-sheeted covering 
group of O+(n); thus Spin(n) is the universal covering group of O+(n) if 
n ~ 3. 

An explicit construction of the group Spin(n) can be made with the aid of 
Clifford algebras. In this section we outline this theory. For complete details 
the reader is referred to Chevalley [CzJ, Husemoller [HuJ, or Jacobson [J]. 

Let V be a real vector space, with inner product < , ) and norm II II. 
Let us consider an associative algebra A with unit element 1, and a linear 
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mapping A: V -> A such that A(X)2 = IIxl12 . 1 for all x EO V. The Clifford 
algebra C(V) is the universal example for such mappings; like all universal 
examples, it is uniquely determined up to isomorphism. 

Let VI' ... , Vn be an orthonormal basis of V. We then construct C(V) as a 
vector space (of dimension 2n) having one basis element VA for each subset A 
of N = {1, ... , n}. It is convenient to identify Vi with V{i), so that V is 
a subspace of C. Let e(A, B) = (_l)m, where m is the number of pairs (a, b) 
with a EO A, b EO B, a > b. The product in C is then defined by bilinearity and 
the condition 

(3.1) 

where A + B is the symmetric difference of the sets A, B. Then 

(1) v'" is the unit element 1; 
(2) vr = 1, (i = 1, ... , n); 
(3) ViVj = -vjvi , (i =l=j); 
(4) if A = {aI' ... , ak}' al < ... < ak, then 

The desired universal property is easily proved; if A: V -> A is a linear map, 
A(X)2 = IIxl12 . 1, its extension A: C -> A is defined by 

A(vA ) = A(Val ) ••• A(Va.) 

for A as in (4), above. In particular, 

(3.2) (x EO V c C). 

Let us apply the process of polarization to the equation (3.2); i.e., substi
tute y + z for x and subtract from the resulting equation those obtained 
from (3.2) by substituting y and z for x. We obtain 

(3.3) yz + zy = 2(y, z) . 1 (y, Z EO V). 

The structure of C is made explicit by 

(3.4) Theorem If n is even, C is a central simple algebra. If n == 3 (mod 4), 
then C is a simple algebra, whose center, spanned by the elements 1, 
VN = V I ... Vn, is isomorphic with the field of complex numbers. If n == 1 
(mod 4), C is the direct sum of the ideals generated by the central idempotents 
u = !(1 + VN)' V = !(1 - VN); the algebras Cu and Cv are central simple. 

D 

Let Ce be the subspace of C spanned by the v A for which A has an even 
number of elements, and let Co be the subspace spanned by the remaining 
basis elements. Then ce is a subalgebra of C and C = ce EB C. 
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(3.5) Theorem If n is odd, ce is a central simple algebra. If n == 0 (mod 4), ce 
is a simple algebra whose center, spanned by the elements 1, vN is isomorphic 
with the field of complex numbers. If n == 2 (mod 4), ce is the direct sum of the 
ideals generated by the central idempotents u, v, and the algebras Ceu, cev are 
central simple. 0 

We now define a linear map c -4 c of C into itself which sends each basis 
element v A into ( - 1 Y(k- 1)/2v A' where k is the number of elements of A. It is 
not hard to verify 

(3.6) The map c -4 C is an antiautomorphism of period 2 of the algebra C. 

o 

The above map will be called the principal involution of C. 
The Clifford group r = r(V) is the set of invertible elements c E C such 

that cVc- l c V. For c E r, the map X(c): V -4 V defined by X(c)x = cxc- l is 
orthogonal, and X : r -4 O(V) is an orthogonal representation of the group 
r, called the vector representation. 

(3.7) Lemma If 0 =1= x E V, then x E r, and X(x) = -Px, where Px is the 
reflection in the hyperplane orthogonal to x. 

For x2 = Ilx112. 1, so that x- l = (1/IIxI12)x. If y E V, then, by (3.3), 

xy = - yx + 2(x, y) . 1, 

and therefore 

Moreover, 

so that X(x) = -PX. 

xyx- l = -y + 2(x, y)x- l 

<x, y) 
=-y+2---xEV. 

(x,x) 

x(x)x = xxx- l = x, 

X(x)y = - y if y ..L x, 

o 

Let re = r II ceo If Xl' ... , X2r E V, then x = Xl··· X lr E r e and X(x) = 

PXl ... Pxz,· Now every rotation (J E O+(V) is a product PXl ... PXk' and k is 
even since det (J = + 1, det PXi = -1. Hence X(re) contains O+(V). 

(3.8) Lemma The vector representation X maps re upon O+(V) and 
Ker X II re is the set R * . 1 of all non-zero scalar multiples of the unit element. 
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The kernel of X consists of all C E r such that C commutes with every 
element of V; since V generates C, Ker X is the intersection of r with the 
center Z of C. 

Suppose that n is even. Then Z = R . 1 and therefore Ker X = R* . 1. If 
x E V, x =f 0, then no scalar multiple of x belongs to re and therefore X(x) ¢ 
X(re). Thus 

O(V):::> X(r):::> X(re):::> O+(V); 
of 

since 0+ (V) has index two in O(V), we have 

O(V) = X(r), 

Suppose, on the other hand that n is odd. If a E O(V), then a(x)2 = 
Ila(x)112. 1 = Ilx112. 1 for all x E V; by the universal property ofC, there is 
an automorphism (j : C ~ C such that (j(x) = a(x) for all x E V. Moreover, if 
a, ' E O(V), then a 0 , = (j 0 't. The automorphism (j must map the center Z 
of C into itself. Thus the map a ~ (j I Z is a representation () of O(V) in the 
two-dimensional vector space Z. If n > 1, 0+ (V) is simple, and therefore 
() 10+ (V) is trivial. Let a 0 be the reflection in the subspace spanned by 
V2' ... , Vn' so that ao(vd = -Vi' ao(v;) = Vi for i = 2, ... , n. Then 

(jo(vN) = (jO(Vi ... Vn) = ao(vd'" ao(Vn) = -VN' 

and therefore (j(vN ) = - VN for all a E O(V) - 0+ (V). Thus 

(3.9) (a E O(V». 

If n = 1, then (3.9) holds trivially. 
If C E r, the restriction to V of the inner automorphism 'c is X(c), and 

therefore X(c) = 'c; since eN belongs to the center of C, ,AvN) = VN' and it 
follows from (3.9) that det X(c) = 1. Thus X(r) = X(re) = 0+ (V). Moreover, 
Ker X n re = re n Z = R* . 1, since VN ¢ reo 0 

(3.10) Corollary An element C E C belongs to re if and only if there exist 
non-zero elements Xl' ... , X2r E V such that c = Xl ... X2r' 0 

Let us apply the principal involution to the relation 

cxc- l = X(c)x (c E r, x E V), 

to obtain 

Hence cc commutes with every element of V, and therefore cc E Z. If c E Ce, 

then C E ce, so that cc E Z n Ce ; by Lemma (3.8), 

CC=A(c)'l 
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with 0 =F A(C) E R. If Cll Cl E re, then 

(ClCl)(ClCl) = ClC1C1Cl = ClA(cl)Cl 

= A(Cl)Cl cl = A(cl)A(Cl ) . 1; 
hence 

(3.11) 

so that A: re -+ R* is a homomorphism. The kernel of A is a subgroup ofre, 

the spinor group Spin(V). 

(3.12) Theorem An element C E C belongs to Spin(V) if and only if there exist 
unit vectors Xl' ... , Xlr E V such that C = Xl··· Xl r· 

If X E V, then x = x, and therefore xx = Xl = IIXlll . 1, so that A(X) = 

Ilx111. If CEre, then C = YI ... Yzr with 0 =1= Yi E V, and A(C) = Of,:; 1 A(yJ = 

Of,:; 1 II Yi 111. Thus C E Spin( V) if and only if Ilil Yi III = 1. When this is so, we 
also have C = Xl ... Xl" where Xi = ydllYi II· 0 

(3.13) Theorem The homomorphism X maps Spin(V) upon O+(V), and 
Ker X (\ Spin(V) = {I, -I}. 

For we have seen that X(re) = O+(V), Ker X (\ re = R* . 1. If 
(J E 0+ (V), then there exist non-zero vectors Xl' ... , Xlr E V such that 
(J = X(X1 ... x lr ) = x(xd··· X(Xlr)· But (1/llxill)· 1 E Ker X (\ re, and 
therefore 

x(X;) = x( II;: II)' 

(J = x( II;: II ... II;~: II) E x(Spin(V». 

Moreover, C E Ker X (\ re if and only if C = a . 1, a E R*. Then 

cc = al . 1, 

so that A(C) = a l ; thus C E SpinV (\ Ker X if and only if al = 1, a = ± 1. 
o 

The invertible elements of C form an open set U (if Ax: C -+ C is the 
operation of left multiplication by x, then Ax is invertible if and only if 
det Ax =F 0, and when this is so, X-I = A; 1(1». The coordinates of xy (with 
respect to some basis for C) are polynomials in the coordinates of X and y, 
and the coordinates of xyx - 1 have the form 

P(Xl' ... , X" Yl' ... , Yr)/Q(x l, ... , xr) 

where P is a polynomial and Q(Xl' ... , x r ) = det Ax =1= O. Hence U is a Lie 
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group and X : U ~ O(V) a continuous homomorphism. Finally, Spin(V) is a 
closed subgroup of U and therefore a Lie group. 

(3.14) Theorem If n ;:::: 2, the group Spin(V) is a compact connected Lie group 
and X I Spin( V) : Spin V ~ 0 + (V) a two-sheeted covering. If n ;::: 3, X I Spin( V) 
is the universal covering ofO+(V). 

Since X I Spin(V) is an epimorphism and Ker(x I Spin(V» has two elements, 
and since 0 + (V) is compact, it follows that Spin( V) is compact and 
X I Spin(V) a covering map. To prove that Spin(V) is connected, it suffices, 
from general properties of covering spaces, to exhibit a path in Spin(V) from 
1 to -1. Such a path u : I ~ Spin(V) is given by 

where 

u(t) = (C(t)Vl - S(t)V2)(C(t)Vl + S(t)V2) 

= C(t)2V2 + c(t)s(t)v1 V2 - s(t)C{t)V2 Vl - S(t)2V~ 

= {C(t)2 - S(t)2} . 1 + 2c(t)S(t)Vl V2 

= c(2t)· 1 + s(2t)V1 V2, 

1t 
c(t) = cos 2. t, s(t) = sin ~ t. 

That X I Spin( V) is the universal covering of 0 + (V) follows from the fact, 
proved in Theorem (10.7) of Chapter IV, that 1tl (0+ (V)) = Z2 if dim V;:::: 3. 

D 

Suppose that V is a subspace of W (as an inner product space). If 
i: V ~ W is the inclusion map, then, in C(W), we have the relation 

i(x)2 = Ili(x)112. 1 = IIxl12 . 1; 

by the universal property of Clifford algebras, i has an extension to a homo
morphism f: C(V) ~ C(W) of algebras. It is easy to see that r is, in fact, a 
monomorphism, and that l{Spin(V)) c Spin(W). Thus we may regard C(V) 
as a subalgebra of C(W) and Spin(V) as a subgroup of Spin(W). We may 
identify 0 + (V) with the subgroup of 0 + (W) which leaves fixed each vector 
in the orthogonal complement of V. It is then easy to verify 

(3.15) The diagram 

Spin (V) 

X I Spin (V) j 
O+(V) 

is commutative. 

IISpin (V) 
--'------+. Spin (W) 

j X I Spin (W) 

~ __ ---.. O+(W) 

D 
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In particular, we may consider the sequence of subspaces {Rn} of ROO. Let 
Spin(n) = Spin(R"); then we have an expanding sequence of spaces 

Spin(l) c Spin(2) c ... c Spin(n) c Spin(n + 1) c ... 

and we may put 

Spin = U Spin(n); 

" 
the space Spin is filtered by its subspaces Spin(n). 

4 The Cayley Algebra K 

In this section we develop some further properties ofthe Cayley algebra. Let 
Ax, Px be the operations of left and right translations, respectively, defined by 

AAY) = py(x) = xy 

for x, Y E K. The matrix of AAx = ~7=o xiei E K) is 

Xo -Xl -Xl -X3 -X4 -Xs -X6 -X7 
Xl Xo -X4 -X7 Xl -X6 Xs X3 

Xl X4 Xo -Xs -Xl X3 -X7 X6 
L = x X3 X7 Xs Xo -X6 -Xl X4 -Xl 

X4 -Xl Xl X6 Xo -X7 -X3 Xs 

Xs X6 -X3 Xl X7 Xo -Xl -X4 
X6 -Xs X7 -X4 X3 Xl Xo -Xl 

X7 -X3 -X6 Xl -Xs X4 Xl Xo 

while the matrix of Py is 

Yo -Yl -Yl -Y3 -Y4 -Ys -Y6 -Y7 
YI Yo Y4 Y7 -Yz Y6 -Ys -Y3 
Yz -Y4 Yo Ys YI -Y3 Y7 -Y6 

R = y Y3 -Y7 -Ys Yo Y6 Yz -Y4 YI 
Y4 Yl -YI -Y6 Yo Y7 Y3 -Ys 
Ys -Y6 Y3 -Yl -Y7 Yo YI Y4 
Y6 Ys -Y7 Y4 -Y3 -YI Yo Yl 

Y7 Y3 Y6 -YI Ys -Y4 -Yz Yo 

Let x = Xo - If= I xiei; then one verifies directly that 

(4.1) xx = xx = Ilxllleo , 

that Lx and R yare the transposes L: , R; of Lx, R y, respectively, and that 

(4.2) LxL: = Ilxll l ] = RxR:. 

Thus if Ilxll = 1, Lx and Rx are orthogonal matrices, and therefore Ax and Px 
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are orthogonal linear transformations. In particular, they preserve the inner 
product, so that 

(4.3) (xa, xb) = (a, b) = (ax, bx) for Ilxll = 1. 

(We have written (a, b), rather than a . b, to avoid confusion with the 
product in K). Then 

11:11 2 (ea, eb) = (II~II a, li~11 b) = (a, b) 

so that 

(4.4) (ea, eb) = (e, e)(a, b) = (ae, be), 

which holds even if e = O. Polarization of (4.4) (substitute x + y for e and 
subtract the equations resulting from (4.4) by substituting each of x, y for c) 
yields 

(4.5) (xa, yb) + (ya, xb) = 2(x, y)(a, b). 

Because Lx and Rx are the transposed matrices of Lx and Rx , respectively, 
we have 

(4.6) 

(4.7) 

(xa, b) = (a, xb), 

(ax, b) = (a, bx). 

Put a = eo in (4.6) to obtain 

(x, b) = (eo, xb). 

Put a = eo and replace b, x by x, 6 in (4.7) to obtain 

( eo, xb) = (fi, x). 

By symmetry of the inner product, we have 

(4.8) (x, b) = (x, 6). 

From (4.4) and (4.6) we deduce 

(a, (ce)b) = IleI12(a, b) = (ea, eb) = (a, c(eb»; 

since this is true for every a, we have 

(4.9) (ce)b = c(eb), 

and similarly 

(4.10) b(ec) = (be)c. 

From (4.9) and (4.10) we easily deduce 

(4.11) be2 = (be)c; 
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polarization yields 

(4.12) 
(xy)b + (yx)b = x(yb) + y(xb), 
b(xy) + b(yx) = (bx)y + (by)x. 

The associator of a triple (x, y, z) is 

[x, y, z] = (xy)z - x(yz). 

Equations (4.12) then assert that 

(4.13) 
[x, y, b] + [y, x, b] = 0, 

[b, y, x] + [b, x, y] = 0. 

It follows from (4.13) that, if (J is any permutation of {1, 2, 3}, then 

(4.14) 

In particular, 

(4.15) [x, y, z] = ° whenever two of x, y, z are equal. 

Therefore 

(4.16) Theorem The algebra K is alternative; i.e., the subalgebra (with unit) 
generated by any two elements of K is associative. 0 

However, K is not associative; for 

while 

e1 (e2 e3) = e1 es = e6· 

In fact, K is the best-known example of an alternative algebra which is not 
associative. 

The relation [a, x, y] = [x, y, a] implied by (4.14), when written out, 
yields 

(4.17) (ax)y + x(ya) = a(xy) + (xy)a. 

Replacing, firstly x by ax, and secondly, y by ya, and using (4.11), we obtain 
two relations 

(4.18) 
(a2x)y + (ax)(ya) = a((ax)y) + ((ax)y)a, 
(ax)(ya) + x(ya2 ) = a(x(ya}} + (x(ya»a; 

adding these, we obtain 

(4.19) (a2x)y + 2(ax)(ya) + x(ya2 ) = a{(ax)y + x(ya)} + {(ax)y + x{ya}}a 

= a{a{xy) + (xy)a} + {a(xy) + (xy)a}a by (4.17) 

= a2{xy) + 2a{xy)a + {xy)a 2 by (4.11) 
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(note that a((xy)a) = (a(xy))a by the alternative law, and we may write both 
expressions as a(xy)a). Substitute a2 for a in (4.17) to obtain 

(4.20) 

subtracting (4.20) from (4.19), and dividing the result by 2, we obtain 

(4.21) (ax)(ya) = a(xy)a. 

Finally, let the real and imaginary parts of x E K be defined by 

thus, if x = L7=o Xi ei then 

~(x )eo = !(x + x), 

.J"(x) = !(x - x); 

Xo = ~(x), 

7 

.J"(x) = Lxiei. 
i= 1 

The elements x E K with ~x = 0 form a subspace Ko; the elements ofKo 
are said to be pure imaginary. 

(4.22) Theorem Every element x E K satisfies the quadratic equation 

(4.23) x2 - 2~(x)x + IIxl12eo = O. 

If x is not a scalar multiple of eo, (4.23) is the only monic quadratic equation 
satisfied by x. 

For 

x2 = x(2~(x)eo - x) 

= 2~(x)x - xx 
= 2~(x)x -llxI12eo. 

Suppose that x satisfies two distinct monic quadratic equations 

Then 

x2 + ()(X + f3eo = 0, 

x 2 + yx + Jeo = O. 

(a - y)x + (13 - J)eo = 0 

which implies that x and eo are linearly dependent. o 
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5 Automorphisms of K 

The object of this section is to determine the automorphism group G 2 of K. 
Let us begin with some observations about pure imaginary elements, i.e., 
elements of Ko. 

First, let a E Ko , so that a = - a. Hence 

a2 = -aa= -llaI12eo. 

In particular, 

(5.1) Ifa E Ko, Iiall = 1, then a2 = -eo. 

Next let a, b be an orthonormal pair in Ko. Then 

(ab, eo) = (a, eo 6) by (4.6) 

= (a, 6) = -(a, b) = 0, 

so that ab also belongs to Ko. Moreover, 

(5.2) ba = (-6)( -a) = 6a = ab = -abo 

Furthermore, 

(a, ab) = (aeo, ab) = (eo, b) = 0 by (4.4), 

and similarly 

(b, ab) = O. 

Finally, 

Ilabll = Iiall . Ilbll = 1. 

Let L be the subspace of K spanned by eo, a, b, and abo 

(5.3) Theorem If (a, b) is an orthonormal pair in Ko , and L is the subspace of 
K spanned by eo, a, band ab, then L is a subalgebra ofK, isomorphic with the 
quaternion algebra Q. Moreover, the linear map ofQ into L which sends 1, i,j, k 
into eo, a, b, ab, respectively, is an isomorphism of algebras. 

It suffices to determine the multiplication table of the basis {eo, a, b, ab} 
for L. Of course, eo is the unit element; since a, b, ab belong to Ko and all 
have norm 1, we have 

by (5.1). 
We have seen that ba = -abo Moreover 

a(ab) = a2b = -b by (4.11) 

= - (ab)a by (5.2), 
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and similarly, 

(ab)b = -a = -b(ab). 

This completes the determination of the multiplication table. 0 

We next consider an orthonormal triple (a, b, c) of elements of Ko. Let us 
call such a triple special if and only if c is orthogonal to abo 

If (a, b, c) is special, then 

<a, bc) = <5a, c) by (4.6) 

= < -ba, c) = <ab, c) = 0 by (5.2) 

and similarly < b, ca) = O. Since ab = - ba, c is orthogonal to ab if and only 
if it is orthogonal to ba. Thus 

(5.4) Any permutation of the members of a special triple yields a special triple. 

We next prove 

(5.5) If (a, b, c) is a special triple, then 

(5.6) (ab)c = -a(bc), 

so that [a, b, c] = 2(ab)c. 

For 

so that 

Hence 

(5.7) 

a(oc) = -[a, b, c] + (ab)c 

= -[b, c, a] + (ab)c by (4.14) 

= -(bc)a + b(ca) + (ab)c 

= a(bc) + b(ca) + (ab)c by (5.2) 

(ab)c = -b(ca). 

(ab)c = (ca)b. 

Permuting a, b, c cyclically, we find 

(5.8) (ca)b = (bc)a 

= -a(bc) by (5.2). 

Combining (5.7) and (5.8), we obtain (5.6). o 
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The main step in determining G z is 

(5.9) Theorem If (a, b, c) is a special triple, there is an automorphism r ofK 
such that 

We first observe that the elements 

eo, a, b, ca, ab, c{ab), cb, c 

form an orthonormal octuple. As these elements all have norm one, we have 
only to verify that they are mutually orthogonal. We have seen that eo, a, b, 
ab are mutually orthogonal. As Ac is orthogonal, it follows that c, ca, cb, c(ab) 
are also mutually orthogonal. It remains to prove that x and cy are ortho
gonal for all x, y E L. We may assume IIYII = 1, so that yZ = -eo. Then 

(cy, x) = (cy, _xyZ) = (cy, -(xy)y) = -(c, xy) = 0 

by (4.11) and (4.3) and the fact that xy E L. 
Let r be the linear transformation which carries eo, e l , ... , e7 into eo, a, b, 

ca, ab, c{ab), cb, c, respectively. The elements a, b, ... , c are mutually ortho
gonal unit vectors in Ko , and it follows from (5.1) and (5.2) that they anti
commute and each has square - eo. As r{eo) = eo is the unit element ofK, it 
remains to prove that r(e i ej) = r{eJr{ej) for 1 :s; i < j :s; 7. These are easily 
proved, using (4.11), (4.21), (5.1), (5.2), and (5.5). As a sample, consider the 
case i = 3,j = 5. We have 

while 

r{e3 )r{es) = (ca)(c{ab)) 

= -(ca){{ca)b) by (5.5) 

= -(ca)Zb by (4.11) 

=b by (5.1) 

The remaining cases are similar and (mostly) easier, and the patient reader 
should have no trouble with them. D 

(5.10) Theorem Let r be an automorphism ofK. Then r is orthogonal, and the 
vectors r(e l ), r{ez), r(e 7 )form a special triple. 

Let x E K, and apply r to both sides of (4.23). Since r is an automorphism, 
r(xZ) = r(x)Z, r(eo) = eo, so that 

(5.11) 
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If x is not a scalar multiple of Co, neither is r(x), and we deduce from 
Theorem (4.22) that 

(5.12) ~(r(x)} = ~(x), Ilr(x)112 = Ilx112. 

If x = ACo, then r(x) = Ar(co) = ACo, and we see that (5.12) is still satisfied. 
The second relation of (5.12) assures us that r is orthogonal. In particular, 

r carries Ko into itself and it is clear that r carries special triples into special 
triples. D 

Let G 2 be the group of automorphisms of K. Each element of G 2 is an 
orthogonal transformation leaving fixed the unit vector Co; thus G 2 may be 
regarded as a subgroup of 0 7 , Evidently G 2 is closed, so that 

(5.13) The group G 2 is a compact Lie group. D 

The group G2, as a subgroup of 0 7, acts on the manifold V 7.2' By 
Theorems (5.9), (5.10) the action is transitive, and the map r --+ r(c7) is a 
one-to-one and continuous map of the isotropy group upon the set So of all 
unit vectors which are orthogonal to each of C1, C2 and C4 . The set So is the 
unit sphere in the four-dimensional subspace of Ko orthogonal to C1, C2 and 
C4 · Hence the map 11: : G2 --+ V 7,2 defined by 

1I:(r) = (r(cd, r(c2)} 

is a fibration with fibre S3. Since S3 and V 7,2 are connected, G 2 is connected, 
and therefore G 2 c 0:;-. 

The group G 2 also acts on S6; the action is again transitive, and the 
isotropy group H is a subgroup of ot, which we may regard as the rotation 
group of the six-dimensional subspace Kl of K orthogonal to Co and C1. The 
restriction of AeJ to Kl is an orthogonal transformation 0, and because of 
(4.11), 

so that _02 is the identity. Hence Kl may be considered as a complex 
unitary space with 

and inner product 

«x, y» = (x, y) + i(e1x, y); 

note that 

«x, x» = (x, x) + i(c1x, x) 

= (x, x) + i(c1x, cox) 

= (x, x) + i(x, x)(c1, co) = Ilx112. 
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If r E H, then r(ed = el implies that r 0 Ael = Ael 0 r, and therefore r is a 
linear transformation of the complex vector space Kl. Moreover, 

«rx, ry» = (ex, ry) + i(el rx, ry) 

= (x, y) + i(r(elx), ry) 

= (x, y) + i(elx, y) = «x,y», 

so that r is unitary. Hence H is contained in the unitary group ofKl :::::; U 3 . 

We claim that H = Ur ' 
It suffices to show that H c ut; for it follows from the fibration 

that dim H - dim G z = 6. But from the fibration 

we deduce that dim G z = 3 + dim V7, z = 3 + 11 = 14. Hence dim H = 8; 
since dim ut = 8, it follows from invariance of domain that H is open, as 
well as closed in U t, and therefore H = U t . 

Let r E H, and let fz, f3 E Kl be an orthonormal pair of characteristic 
vectors for r. Then 

and therefore (fz,f3) = (el fZ,f3) = 0; thus (e l ,fz,f3) is a special triple. 
Therefore, by Theorem (5.9) there exists a E G z such that a(e l ) = el, 
a(ez) = fz, a(e3 ) = f3 . Let r' = a-lra, so that 

i.e., 

and therefore 

so that 

r'(ez) = ez cos ex + e4 sin ex, 

r'(e3 ) = e3 cos fJ + e7 sin fJ, 

r'(es) = r'(ez e3 ) = r'(eZ)r'(e3 ) 

= es(cos ex cos fJ - sin ex sin fJ) 
+ e6 ( - sin ex cos fJ - cos ex sin fJ), 

Then det r = det r' = ei'eiPe-i(dP) = 1, r E ut. o 
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6 The Exceptional Jordan Algebra .3 
Let :5 be the set of all 3 x 3" Hermitian" matrices with entries in the Cayley 
algebra K. An element X E :5 has the form 

(6.1) ( ~l X3 X2) 
X = X3 ~2 Xl 

X 2 Xl ~3 

with Xi E K, ~i E R. Thus :5 is a vector space of dimension 27 over R. The 
space :5 is not closed under matrix multiplication; however, it is closed 
under the Jordan product, defined by 

X 0 y = !(Xy + YX). 

Thus :5 is a commutative algebra over R, but :5 is not associative. For more 
information on :5 the reader is referred to Jacobson [1]. 

Let Eij be the 3 x 3 integral matrix whose sole non-zero entry is a one in 
the ith row and Jth column (i, J = 1, 2, 3); thus 

where J jk is the Kronecker delta. Let E; = E;;, F; = I - E u , where I is the 
identity matrix; and, for each X E K, let 

IXI(X) = XE23 + XE32 , 

IX2(X) = XE31 + XE I3 , 

IX3(X) = XE l2 + XE21 · 

Thus IX; is a linear isomorphism of K with a subspace U; of 3, and :5 is the 
direct sum 

(6.2) 

The matrix X of (6.1) is then given by 

3 3 

X = I~;E; + IIX;(xJ 
;= I ;= I 

The multiplication table of:5 is then given by the commutative law and 

(6.3) {o (i = J), 
Ei 0 IXAx) = !IXAx) (i =1= J), 

IX;(X) 0 IX;(Y) = (x, y)F;, 

IX;(X) 0 IX;+I(Y) = !IX;+2(YX) (indices mod 3). 
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Note that equations (6.3) are unchanged by cyclic permutation of the 
indices (1, 2, 3). Therefore the map y: 3 ~ 3 defined by 

( 
(1 XI X3) 

y(X) = XI ~3 Xl 

X3 X z (I 

is an automorphism, called the circulator. 
Let t(X) = I (i be the trace of the matrix X. If X E 3, then X 0 X = 

!(X l + Xl) = Xl; moreover, X 0 Xl = X 0 (X 0 X) = (X 0 X) 0 X, so 
that we can write X 0 X 0 X without ambiguity. It is convenient to 
abbreviate the latter expression to X 3 (warning: this may not coincide with 
either of the matrix products X . Xl or Xl . X). In fact, the algebra 3 is 
power-associative, so that we may write xn = X 0 ••• 0 X (n factors) for any 
parenthesization of the product. 

Besides the trace function t, the quadratic and cubic forms defined by 

q(X) = t(X l ) 

c(X) = t(X3 ) 

are of importance for the structure of the algebra 3. We can calculate these 
forms explicitly, with the results 

q(X) = L (f + 2 I Ilxi Ill, 

c(X) = I a + 3{((1 + (3)llxl ll l + ((3 + (d11X111 1 + (~l + ~l)llX3111} 
+ 6(xI' Xl' x 3 ), 

where 

(XI' Xl' X 3) = (Xl' X 3, XI) = (x 3, Xl' Xl) = (XIX1' X3)· 

In particular, 

(6.4) The quadratic form q is positive definite. 

The space 3 is then an inner-product space with norm J q(X). However, 
it will somewhat simplify subsequent calculations if we define instead 

IIXll l = !q(X) =! I (f + I Ilx; Ill, 

so that the associated inner product is 

We then observe 

(X, Y) =1{IIX + Yll l -IIXlll -IIYI12} 

= !t(X 0 Y). 

(6.5) The direct sum decomposition (6.2) is orthogonal. Moreover, the map 
rt.;: K ~ Ui is an isometry. 
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Let us introduce formal! characteristic roots Pi(i = 1, 2, 3), so that 

t(X) = LPi, 
q(X) = LPf, 
c(X) = Lpr 

697 

Then the elementary symmetric functions o";(X) of the Pi can be calculated 
by Newton's identities, and we have 

O"l(X) = t(X) = LC 

O"z(X) = -!{t(X)Z - q(X)} 

= L~i~j - L Ilxi liz 
i<j 

0"3(X) = ~l ~Z~3 - {(~z + ~3)llxlllz + (~l + ~3)llx2112 
+ (~l + ~2)llx3112} + 2(x), Xz, X3)' 

The characteristic polynomial of X is the polynomial 

¢()..) =)..3 - O"!(X))..Z + 0"2(X)A. - 0"3(X), 

and we have a kind of Cayley~Hamilton Theorem 

(6.6) The matrix X E 3 satisfies the relation 

X 3 - 0"1(X)X2 + 0"2(X)X - 0"3(X)I = 0, 

which is established by tedious but direct calculation. 

(6.7) Theorem 1fT is an automorphism of3, then O"i(T(X)) = O";(X) (i = 1,2,3). 
The forms t, q, c are invariant under T. In particular, T is an orthogonal 
transformation. 

The set K of elements X which satisfy some non-trivial quadratic equa
tion X 2 + qX + rl = 0 is easily seen to be a proper algebraic subset of 3; 
thus K is closed and nowhere dense, and its complement U is dense and 
invariant under T. For X E U, X' = T(X), we have T(X2) = (X')2, T(X3) = 
(X')3. Hence 

But 

1 It can be proved that, for each X E :I there is an automorphism (5 of :I such that (5(X) is a 
diagonal matrix; the Pi are then the diagonal elements of (5(X). In this sense, the Pi are charac
teristic roots of X. 
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Subtracting these two equations, we obtain a quadratic relation, whose 
triviality implies that O";(X') = O";(X) for i = 1, 2, 3. Since these relations hold 
for X E U, they hold by continuity for every X E 3· 0 

In order to study the automorphisms of 3, we first examine the idem
potents. If X is the matrix (6.1), then X2 = X if and only if the following 
conditions are satisfied: 

(6.8) 
~i + IIx2112 + II x3112 = ~l; 

~~ + IIxll12 + II x3112 = ~2; 

~~ + IIxll12 + IIx2112 = ~3; 

(~2 + ~3)Xl + X3 X2 = Xl; 

(~l + ~3)X2 + X 1 X 3 = X2; 

(~l + ~2)X3 + X 2 X l = X3· 

Note that these conditions are unchanged under cyclic permutation of the 
integers 1, 2, 3. 

(6.9) Lemma If X is an idempotent, 0 =1= X =1= I, then t(X) = 1 or t(X) = 2. 

For X2 = X, X 3 = X 0 X2 = X 0 X = X2 = X, so that the Cayley
Hamilton equation (6.6) becomes 

{I - O"l(X) + 0"2(X)}X - 0"3(X)I = o. 
If X = AI is a scalar multiple of the identity matrix I, then A 2 = A and 
therefore X = 0 or X = I, and we have excluded this case. Hence X is not a 
scalar multiple of I, and we conclude 

1 - O"l(X) + 0"2(X) = 0, 

0"3(X) = O. 

By our calculation of the O";(X), the first relation reduces to 

0= 1 - t(X) + !{t(X)2 - t(X2)} 

= 1 - t(X) + !{t(X)2 - t(X)} 

= !{t(X)2 - 3t(X) + 2}, 

which implies t(X) = 1 or t(X) = 2. o 
An idempotent E is primitive if and only if E =1= 0 and there do not exist 

non-zero idempotents E', E" such that 

E = E' + E", E' 0 E" = O. 
Equivalently, 

(6.10) A non-zero idempotent E is primitive if and only if the only idempotents 
X such that E 0 X = X are 0 and E. 

(6.11) Lemma An idempotent E is primitive if and only if t(E) = 1. 
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It follows from Lemma (6.9) that E is primitive if t(E) = 1. We have also 
seen, in Lemma (6.9), that t(E) = 0, 3 if and only if E = 0, I, respectively. 
Suppose that t(E) = 2. Let 

From the relations (6.8) and 

(6.12) 

we deduce that 

(6.13) 
IIe1112 = (82 - 1)(83 - 1), 
e2 e3 = (81 - 1)e1, 

together with the relations obtained from (6.13) by permuting the indices 
cyclically. 

If 81 =f- 0, let 

° ) e 1 , 

1 - 82 

and verify that X is an idempotent =f- 0, E, and that E 0 X = X. Hence E is 
not primitive. If 81 = 0, deduce from (6.12) and (6.13) that 82 = 83 = 1, 
e1 = e2 = e3 = 0, so that 

is not primitive. o 
Let P be the set of all primitive idempotents. If X E P, we have seen that 

t(X) = ~1 + ~2 + ~3 = l.1t follows from this fact and the relations (6.8) that 

(6.14) A matrix X belongs to P if and only if the following conditions are 
satisfied: 

X 2 X3 = ~lXl' 

X 3 X 1 = ~2X2' 

IIXll12 = ~2~3' 

IIx2112 = ~3~1' 

IIx31i2 = ~1~2' 

~1 + ~2 + ~3 = 1. o 

Let Po be the subspace of P consisting of all matrices X such that ~ 1 = 0. 

(6.15) Lemma The space Po is homeomorphic with S8. 

We take S8 to be the set of all pairs ((, z)with z E K, (E R, II z l12 + (2 = 1. 
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The map <jJ: S8 --+ Po defined by 

<jJ((,Z)=!(~o 1~( ~) 
z 1 - ( 

is readily verified to be a homeomorphism ofS8 with Po. Theinverse map is 
given by 

<jJ-I(X) = (2~2 - 1, 2xd. o 
(6.16) Theorem The space P is homeomorphic with the Cayley projective 
plane. 

The set of all pairs Y = (YI' h) with Yi E K, IIYI12 = IIYI 112 + IIY211 2 :s:; 1 is 
a 16-cell E, and a relative homeomorphism IjJ : (E, E) --+ (P, Po) is defined by 

the inverse map is given by 

)1 - IIYI12 YI 

IIYIl1 2 

Y2YI 

(X E P - Po). 

Therefore P is homeomorphic with the mapping cone of the map 

and 

Let (J : S8 --+ K u {oo} be stereographic projection from the south pole upon 
the equatorial plane, so that 

z 

(J((, z) = 1 + ( 
00 

Then 

so that (J 0 w is the Hopf map of §l. 

((+-1), 

(( = -1). 

o 
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7 The Exceptional Lie Group F 4 

The group in question is the group of automorphisms of the algebra 3. It is a 
closed subgroup of the full linear group L(3); by Theorem (6.7), it is con
tained in the orthogonal group 0(3). Thus 

(7.1) The group F 4 is a compact Lie group. o 
The group F 4 acts on the space P of primitive idempotents. We shall see 

(Theorem 7.21, below) that the action is transitive. Thus there is a fibration 

H~F4~P, 

where H is the subgroup of F 4 consisting of all automorphisms leaving fixed 
a primitive idempotent E. Our first objective is to ascertain the structure of 
H. 

Let 8i : 3 ~ 3 be the operation of multiplication by the primitive idempo
tent Ei (i = 1, 2, 3). Then 

8i(X) = ~iEi + -! I>XixJ, 
iti 

and it follows that 8i is semi-simple and its characteristic values are 0, -!, and 
1. Moreover, 3 is the orthogonal direct sum 

(7.2) 

where 3i(A) is the space of characteristic vectors for A. Evidently 

3i(0) = Ui + L REi' 
iti 

3i(1) = REi· 

Let Hi be the set of all automorphisms of 3 which map Ei into itself. Then 
each of the subspaces 3i(A) is invariant under Hi. Moreover, Fi is fixed by 
each element of Hi' so that the orthogonal complement 5Bi of RFi in 3i(0) is 
invariant under Hi. Let ill.\ = 3i(-!). Then 

(7.3) Theorem There is an orthogonal direct sum decomposition 

(7.4)i 

invariant under the action of Hi. o 

We shall take the isotropy group H to be the group H 1. To simplify the 
notation, let us drop the subscript i = 1 in (7.4)i. The subspaces RE, RF, 5B, 
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I.ID then consist of all matrices of the form 

<E~ 0 0 
g), 0 

0 
(7.5) 

0 
(7.6) IJ ~F~ (~ ~), 

o O~ 0) 
V(~, x) ~ (~ ~ x, 

X -~ 

(7.7) 

(7.8) W(y, ,) ~ (; z 

~), 0 
0 

respectively. Moreover, m and \I13 are the orthogonal direct sums 

m = RVoEBU b 

I.ID= U2 EBU 3 , 

where Vo is the matrix - E2 + E3 . 
Let us study the behavior of the product in 3 under the decomposition 

(7.4). Our first observation is 

(7.9) If V = V(~, x), W = W(y, z), then 

VoW = -!W(-~y + xz, ~z + yx). 

Moreover, 

II V 0 WII = -!II VII' II WII· 

The first statement is immediate. To prove the second, observe that 

But 

II-~y + ul1 2 = ~211Y112 _ 2~(y, xz) + Ilx11211z112, 
II~z + yxl12 = ~211z112 + 2~(z, yx) + Ilx11211Y112. 

(z, yx) = <zx, y) = (y, xz) 

by (4.7) and (4.8), and therefore 

IIV 0 WI1 2 = i{II-~y + xzl12 + II~z + yx11 2} 
= i(~2 + IlxI12)(IIYI12 + Ilz112) 
= ilIVI12 . II W112. o 
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We next calculate the product of two elements of 'ill. Let W; = W(Yi' zJ 
(i = 1, 2). Then 

( 
<Yl' yz) + <ZI' zz) 

W1 oWZ= ° 
° 

developing this product with respect to the decomposition (7.4), we find that 

(7.10) WI 0 Wz = <WI> Wz)(E + !F) + Wt * Wz , 

where 

(7.11) WI * Wz = !V«ZI' zz) - <Yl' Yz), 2d'z + 2z )lI)· 

The products (V, W) ---+ VoW and (WI' Wz) ---+ WI * Wz determine each 
other. In fact, if V, WI' Wz are as above, then 

Thus 

<V 0 WI, Wz) = M< -~Yt + X2 1 , Yz) + <~ZI + )11 X, Zz)} 

= !g«ZI' Zz) - <Yl' yz») + <x, YZ ZI + YI ZZ)} 

= !g<ZI' Zz) - <Yl' yz) + <x, 21)1Z + 2z)lI)} 

= <V, WI * Wz). 

(7.12) If WI, Wz E 'ill, then 

WI 0 Wz = <WI' Wz)(E + !F) + WI * Wz , 

where WI * Wz E In is uniquely determined by the condition 

<V 0 WI' Wz) = <V, WI * Wz) 

for all V E In, WI' Wz E 'ill. o 
The remaining calculations needed to make explicit the product in -3 are 

easily carried out, and we have 

(7.13) Theorem The product in -3 is determined by the commutative law, (7.9), 
(7.12), and the relations 

Eo F = 0, 

F Z = F, 

whenever V, VI, Vz E In, WE 'ill. 

An easy calculation gives 

(7.14) If V E In, WE 'ill, then 

E 0 V = 0, E 0 W = ! W, 

F 0 V = V, F 0 W = ! W, 

VI 0 Vz = <VI' Vz)F, 

o 
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(7.15) 

and therefore 

(7.16) VI c (V2 a W) + V2 a (VI 0 W) = ~(VI' V2)W 

for all VI, V2 E m, WE \ill. o 

It is clear that the structure of 3 depends in a crucial way on the product 
(V, W) --+ Vow. This is made more explicit by 

(7.17) Lemma Let h: 3 --+ 3 be an orthogonal linear transformation which 
respects the direct sum decomposition (7.4). Then h is an automorphism if and 
only if h(I) = I and h(V 0 W) = h(V) 0 h(W)for all V E m, WE \ill. 

These conditions are clearly necessary for h to be an automorphism. We 
prove their sufficiency. 

Since h respects (7.4) we have h(E) = AE, h(F) = J1F, and therefore 
I = h(I) = h(E + F) = AE + J1F, which implies that A = J1 = 1. In order to 
show that h preserves the multiplication table as given in Theorem (7.13), the 
only nontrivial verifications are: 

(1) h(VI 0 V2) = h(Vd a h(V2), 
(2) h(WI a W2) = h(W1 ) 0 h(W2). 

For (1), we have 

h(Vd 0 h(V2) = (h(Vd, h(V2)F (since h(V;) E m) 

= (VI' V2)F (since h is orthogonal) 

= (VI' V2)h(F) 

= h(VI a V2). 

For (2), observe that h(Wd, h(W2) E \ill, and therefore 

while 

h(W1 ) a h(W2) = (h(Wd, h(W2)(E + ~F) + h(W1 ) * h(W2) 

= (WI' W2)(E + ~F) + h(W1) * h(W2) 

(since h is orthogonal), 

h(WI 0 W2) = (WI' W2)(h(E) + ~h(F)) + h(WI * W2) 

= (WI' W2)(E + ~F) + h(WI * W2)· 

Thus it suffices to prove that h(W1 ) * h(W2) = H(WI * W2). 
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Let VI E m; then 

(h(Vd, h(Wd * h(W2) = (h(vd 0 h(Wd, h(W2) (by (7.12)) 

= (h(VI 0 Wd, h(W2) (by hypothesis) 

= (VI 0 WI' W2) (since h is orthogonal) 

= (VI' WI * W2) (by (7.12)) 

= (h(VI ), h(WI * W2) 

(since h is orthogonal). 

Since h maps m upon m, this implies that 

h(WI * W2) = h(Wd * h(W2)· 

We can now determine the structure of H. In fact, we shall prove 

(7.18) Theorem There is an isomorphism '1 : Spin(m) ;::::; H. 
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o 

We shall define a homomorphism '1 : Spin( m) ~ 0 + (3) and prove that '1 
is an isomorphism of Spin( m) upon H. As H leaves invariant the decomposi
tion (7.4), it behooves us to construct representations ofSpin(m) in each of 
the subspaces occurring there. Since RE and RF are one-dimensional, the 
corresponding representations must be trivial. Moreover, there is at hand 
the vector representation x: Spin(m) ~ o+(m) of §3. We proceed to con
struct a representation, : Spin(m) ~ 0+ (lID), called the spin representation. 

Let (f be the algebra of endomorphisms of the vector space lID, and define 
() : m ~ (f by 

(}(X) = A2X I lID, 

where A2X is the operation of left-( = right- )multiplication by 2X in the 
Jordan algebra 3. Then 

(}(X)2(W) = 4X 0 (X 0 W) 

= IIXI1 2 W by (7.15). 

Thus (}(X)2 = II X 112 I; by the universal property of the Clifford algebra 
C = C(m), () extends to a homomorphism l1 : c ~ (f. Let l1e : ce ~ (f be the 
restriction of l1. The dimension of m being 9, that of lID being 16, we have 
dim Ce = 28 , dim (f = 162 = 28 ; moreover, by Theorem (3.5), the algebra 
ce is simple. Since l1e is manifestly non-trivial, we have 

{7.19) The homomorphism l1e : Ce ~ (f is an isomorphism. 

Let, : Spin(m) ~ (f be the restriction of l1e. If X E m, IIXII = 1, then 

II((X)(W)II = II A2x(W)11 = 211 X 0 WII = IIXII· IIWII = IIWII by (7.9) 

o 
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and therefore ((X) is orthogonal. Since Spin(l11) is connected, the map 
X ~ det ((X) is constant. If u EO Spin(l11) then, by Theorem (3.12), u is the 
product of an even number of unit vectors Xi EO 111, and we conclude 

(7.20) The representation ( is a monomorphism 

(: Spin(l11) ~ 0+ (W). o 
We can now prove Theorem (7.18). The representation '1: Spin(l11) ~ 

0+(3) is defined to be the direct sum of the trivial representation in 
RE E8 RF, the vector representation X in 111 and the spin representation ( 
in W. Since ( is a monomorphism, so is '1. 

To prove that 1m '1 c H, it suffices, in view of Lemma (7.17), to prove 
that, if u EO Spin( 111), then h = '1( u) satisfies the relation h( VoW) = 

h(V) 0 h(W) for all V EO 111, W EO W. We may assume, because of Theorem 
(3.12), that u is the product (in C(I11» of two unit vectors X, Y. In this case, it 
follows from Lemma (3.7) that h = Px Py, so that 

h(V) = V - 2{(X, V) - 2(X, Y)(V, Y)}X - 2(V, Y) Y. 

Moreover, 

h(W) = 4X 0 (Y 0 W), 

and, by the same token, 

h(V 0 W) = 4X 0 (Y 0 (V 0 W». 

On the other hand, 

h(V) 0 h(W) = 4V 0 (X 0 (Y 0 W» - 2(V, Y) Yo (X 0 (Y 0 W» 

- 2{<X, V) - 2<X, Y)<V, Y)}X 0 (X 0 (Y 0 W». 

A little calculation, using (7.16) as necessary, reveals that the latter expres
sion is equal to 4X 0 (Y 0 (V 0 W» = h(V 0 W). 

Let h EO H, so that h(E) = E. Since h is an automorphism, h(I) = I, and 
therefore h(F) = F. We have seen (Theorem (6.7» that h is orthogonal. By 
Theorem (7.3), h respects the direct sum decomposition (7.4). 

The vector representation X maps Spin('l3) upon 0+(111), and therefore 
there exists u EO Spin( 111) such that X( u) = h 1111. Let h' = '1(u), ho = h'o = h 1111, 
hi = hi W, h'l = h' I W. Then, for all V EO 111, W EO W, 

(1) ho(V) 0 hl(W) = hl(V 0 W), 
(2) ho(V) 0 h'l(W) = h'\(V 0 W). 

Moreover, by (1), 
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i.e., 

(3) he; l(V) 0 hll(W) = hll(V 0 W). 

Apply hll to both sides of (2) to obtain 

h1lh'1(V 0 W) = h11(ho(V) 0 h'l(W)) 

= he;lho(V) 0 h11h'l(W) by (3) 

= V 0 hllh'1(W). 
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Hence the operator Fi = hll 0 h'l commutes with 8(! V) = Av I 'ill for all 
V E SB. It follows that Fi commutes with tJ(u) for all U E C. But tJ maps C upon 
(\;, so that Ii commutes with every element of (\;. Hence Ii is a scalar multiple 
of the identity; as Ii is orthogonal, Ii = f.l, c = ± 1. Let u' = W E Spin(SB). 
Then hand '1(u' ) agree on each of the subs paces in (7.4), and therefore 
h = '1(u' ) E 1m '1. D 

Let us now consider the full automorphism group F 4. If (J E F 4, then 
n((J) = (J(E) is again a primitive idempotent, so that we have a map 
n: F4-> P, and n((J1) = n((J2) if and only if (Jll(J2 E H. We shall prove 

(7.21) Theorem The group F 4 acts transitively on P, so that F 4/ H is homeo
morphic with the Cayley projective plane. 

Let X E P, so that X satisfies the conditions of (6.14). Decomposing X 
with respect to (7.4), we have 

where 

(~ 
0 

o ) V= !(~2 - ~3) Xl E SB, 
Xl -!(~2 - ~3) 

U' 
X3 

X') W= 0 ~ E'ill. 
X 2 0 

Note that II VII 2 = t(~2 - ~3)2 + IIXll12 = t(~2 - ~3)2 + ~2 ~3 = t(~2 + ~3f 
Since 0+ (SB) is transitive on the unit sphere in SB, so is H, and therefore there 
exists h E H such that 
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Thus h(X) = ~1 E + 1-(~2 + ~3)F + h(V) + W', where 

~ ~), 
o 0 

so that 

( 
~1 Y3 

h(X) = )13 ~2 + ~3 
Yz 0 

)12) o . 
o 

The matrix h(X) is again in P, and so must satisfy the conditions (6.14). In 
particular, 

so that Yz = O. 
Now consider the idempotent E3 and the decomposition (7.4h: 

3 = RE3 EB RF3 EB m3 EB W 3· 

Developing h(X) with respect to the new direct sum decomposition, we have 

h(X) = !(~I + ~2 + ~3)F3 + V3 

= !F3 + V3, 

where 

and 11V3112 = (~1 - t)2 + IIY311 2 = ~i - ~1 + * + ~1(~2 + ~3) = t. As before, 
there is an element h' belonging to the subgroup H 3 of F 4 fixing E3 
such that 

h'(V,) ~ (~ 
Then 

h'h(X) = !F 3 + h'(V3 ) = E. 0 

(7.22) Corollary The map 11: : F 4 --+ P is a fibration with fibre Spin(9). 0 

There is an interesting connection between the representations X, ( of 
Spin(m) and the Hopf map h : SiS --+ S8. In fact, define hi : W --+ m by 
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It is immediate that 

(7.23) If W = W(y, z), then hl(W) = V(~, x), where 

~ = IIzl12 _ IIYI12, 

x = 2:zy, 
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o 
Let S15, S8 be the unit spheres in the inner-product spaces ~m, IB, respec

tively. Then h = hI IS15 : S15 -+ S8, and it follows from the arguments of 
Theorem (6.16) that 

(7.24) The map h: S15 -+ S8 is a Hopffibration. o 
Let /1: 0 + (IB) x IB -+ IB, /1': 0 + ('ill) x 'ill -+ 'ill be the actions of the 

appropriate groups. 

(7.24) Theorem The diagram 

Spin (IB) x 'ill ' x 1 0+ ('ill) x 'ill 
11' ,'ill ---

X x h1l l h1 

O+(IB) x IB ~ IB 
/1 

is commutative. 

Commutativity says that 

(7.25) 

for all u E Spin( IB), W E 'ill. As X and , are the restrictions to Spin( IB) of 
representations of the Clifford algebra C = C(V), it makes sense to state that 
(7.25) holds for an element U E C; and it is clear that, if (7.25) holds for 
U = U1 and for U = U2' where U 1, Uz E C, then it also holds for U = U 1 U z . 

Therefore, because of (3.12), it suffices to prove that (7.25) holds whenever 
U = V E IB, IIVII = 1. 

In this case, ((V)W = 2V 0 W, so that 

while 

h1(nX)W) = 8(V 0 W) * (V 0 W), 

X(V)h1(W) = -Pv(h1(W» (by Lemma (3.7» 

= -2W * W + 4(V, W * W)V 
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Let V = V(~, x), W = W(y, z). Then hI (((V)W) = V(C x'), where 

(7.26) ~' = (~Z _ IlxlIZ)(llzllZ - IlyliZ + 4~<xy, z) 

= (11y11Z - IlzlIZ) + 2~[~(llzIIZ - IIYIIZ) + 2<x, zy)] 

= - (11z11Z - IlylIZ) + 4~<V, W * W), 

(7.27) x' = 2[ _~Zzy + ~(llzIIZ - IlyllZ)x + (xy)(zx)]. 

But 

(xy)(zx) = x(yz)x by (4.21) 

= [x(yz) + (zy)x]x - zYllxll z by Theorem (4.16) 

= 2<x, zy)x - IlxllZzy. 
Substituting this relation in (7.27) and simplifying the result, we find that 

x' = 2{ -zy + [~(llzIIZ - IlylIZ) + 2<x, zy)]x} 

so that 

= -2zy + 4<V, W * W)x, 

hl(((V)W) = -2W * W + 4< V, W * W)V 

= X(V)h J (W). o 

Let us take as base point of S15 the point Wo = (12(1), and as the base 
point of S8 the point h(Wo) = Vo. The maps (J -. (J(Wo), r -. r(Vo) are fibra
tions PI: O+(W)-.SI5, Pz: O+O!3)-.S~. 

(7.28) Corollary The diagram 

Spin (1!1) 
, 

O+(W) PI S15 ~ ~ 

xl 
o+(~) • Pz 

is commutative. 

For if u E Spin( ~), then 

hpJ ((u) = h(((u)Wo) 

= X(u)h(Wo) by (7.24) 

= X(y)Vo = P2X(U). 

lh 
S8 

o 
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The group H acts on S15 (through the representation n and on S8 
(through the representation X). The isotropy groups 

Ho = {a EO HIO'(Vo) = Vo}, 

H* = {a EO HIO'(Wo) = Wo} 

are related, because of Corollary (7.28), by the inclusion H * c H o. Thus 
there is a fibration 

(7.29) 

It follows from the transitivity of the action (, proved in Theorem (7.31) 
below, that 

(7.30) The fibration (7.29) is the Hopf fibration 

h 8 
--->. S. o 

Let us recall, from the beginning of §6, that there are isometries 
ai: K ~ Ui (i = 1,2,3). Moreover, let Uo = adKo) cUI' 

(7.31) Theorem The group H acts transitively on S15, and there are isomor
phisms Ho ~ Spin(Ud, H* ~ Spin(U o). 

Remark 1. The transitivity follows from the rest by a dimension count. 
For dim H* = dim Spin(Uo) = dim Spin(7) = 21, and therefore 

dim H/H* = dim Spin(9) - dim Spin(7) = 36 - 21 = 15. 

Thus H/H* is a submanifold ofS 15 which is closed (because H is compact) 
and open (by invariance of domain), and hence H / H * = S 15. 

Remark 2. There are imbeddings Uo c+ U 1 C+ '13, which induce imbeddings 
Spin(Uo) c+ Spin(Ud c; Spin('13). The second of these is, indeed, the inclusion 
Hoc; H. However, it is impossible that the inclusion H * c; H should be 
induced by any inclusion Uo c;; '13; for if this were the case, then the coset 
space would be V 9.2' and not S15. 

The map X c 1]- 1 : H ~ 0 + ('13) is just the restriction map sending each 
automorphism 0' into 0' 1'13. Hence XI]-l(Ho) is the subgroup of 0+('13) fixing 
the vector Vo. But the latter subgroup can be identified with 0 + (U d, and 
therefore I]-l(Ho) = X- 10+(Ud = Spin(Ud, by (3.14). 

In order to study the group H *' let us observe that the circulator /' maps 
Wo into the point VI = a 1 (1). The inner automorphism ,'* defined by /' maps 
H 0 into itself and maps H * upon the subgroup of H 0 consisting of all 
automorphisms which have VI fixed. The space Uo being the orthogonal 
complement in U 1 of R VI, it follows by the argument above that I] maps 
Spin(U d upon ,'H * " - 1. D 
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Let us scrutinize more carefully the action of Ho. Since Ho maps each of 
the subspaces Ui into itself, it follows that, for each 0" E Ho , there are 
uniquely determined linear maps O"i : K ~ K such that 

(7.32) O"(O:i(X)) = O:i(O"i(X)) (i = 1, 2, 3; X E K). 

Moreover, the map 0" ~ O"i is a linear representation Wi of Ho. 

(7.33) The maps O"i have the following properties: 

(1) (O"i(X), O"i(Y» = (x, y), 
(2) O"l('ZY) = 0"3(Z) 0"2(Y)' 
(3) 0"2(XZ) = O"dx) 0"3(Z), 
(4) 0"3(YX) = 0"2(Y) O"l(X), 

In particular, the representations Wi are orthogonal. 

These properties are easily derived with the aid of (6.3), and are left to the 
reader. 0 

Conversely, it is easy to see that 

(7.34) If O"i : K ~ K are linear maps satisfying the conditions of(7.33), there is a 
unique element 0" E H 0 such that (7.32) holds for all x E K. 0 

The representations Wi: Ho ~ O+(K) define a representation 
w: Ho ~ O+(K) x O+(K) x O+(K). 

(7.35) The representation W is faithful. 

For if O"i is the identity map for i = 1, 2, 3, then 0" leaves each of the 
subspaces Ui pointwise fixed. Since already O"(Ei) = Ei , it follows that 0" is the 
~~m~ 0 

With the aid of the above remarks, we can prove 

(7.36) Theorem (Principle of Triality). For each p E O+(K) there exist p', 
pI! E 0 + (K) such that,for all u, v E K, 

(7.37) p(uv) = p'(u)pl!(v). 

The elements pi, pI! are unique up to a common scalar factor e = ± 1. 

We first observe that the isometry 0:1 : K ~ U 1, induces an isomorphism 
fi1 : O+(K) ~ O+(U 1) such that the diagram 

Spin (Ud 
171 Spin (U d 

Ho • 

(7.38) xl I W1 

O+(U 1) • O+(K) 
0: 1 
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is commutative. Hence WI is an epimorphism, and the kernel of WI consists 
of the two elements '1( ± 1), where 1 is the unit element of the Clifford algebra 
c(Ud. Since ((± 1) = ± I, the kernel of WI consists of the identity map and 
the automorphism 0"0 such that O"olU I = I, O"olU 2 = -I, O"olU 3 = -I. 

Let p E 0+ (K); since WI is an epimorphism, there exists (J E Ho such that 
O"I = p. Define 

p'(U) = 0"3(U), 

p"(v) = 0"2(V). 

Then (7.37) follows from (2) of (7.33). Note that changing the sign of 0" 

entails changing the signs of both p' and p". 
To prove the uniqueness part, suppose that p, Po, and p~ E O+(K), and 

that p(uv) = Po(u)p~(v) for all u, v E K. Define O"i : K -+ K by 

O"I = p, 

0"2(Y) = p~(y), 

0"3(Z) = Po(z). 

Then the maps O"i are orthogonal, and (2) of (7.33) is satisfied. We shall prove 
that (3) and (4) are also satisfied. It then follows from (7.34) that there is an 
element 0" E Ho such that Wi(O") = O"i (i = 1,2,3). As wI(O") = p, it follows 
from what we have already proved that Po = ap', p~ = ap", a = ± 1. 

The proofs of (3) and (4) are similar; we prove only (3). We may assume 
that Z =1= 0; for both sides of (3) vanish when z = O. Then 

But 

so that 

But 

p(X) = Ilz~12 p(llzI12X) = Ilz~r p(z(zx)) by (4.9) 

1 
= IIzl12 Po(z)p~(zx) by hypothesis, 

---- 1 ----
O"I(X) 0"3(Z) = W [p~(zx) Po(z)]Po(z) 

= 11:11 2 p~(zx)IIPo(z)112 by (4.10) 

= p~(zx) since Po is orthogonal. 

0"2(XZ) = p~(zx). o 
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There is one more subgroup of F 4 that is of interest to us. Let, be an 
automorphism of K, and recall that ,(x) = ,(x) for all x E K. It follows that, 
if X E 3 and 

( 
~l ,(x3 ) ,(Xl)) 

,*(X) = ,(X3 ) ~l ,(Xl) 
,(Xl) ,(Xl) ~3 

is the matrix obtained from X by operating with, on each of its entries, then 
,*(X) E 3 and the map '* is an automorphism of 3. Moreover, the map 
, ---+ '* is a monomorphism of G z into F 4, and its image consists of all 
(J E H 0 such that (J 1 = (J Z = (J 3' Evidently, * commutes with the circulator 
y. 

The group Ho leaves each of the subspaces Ui invariant; thus Ho operates 
on the unit sphere Si cUi' Accordingly, the subgroup H* acts on si. By 
definition, H * leaves fixed the vector Wo E Si. On the other hand, 

(7.39) Theorem The group H * acts transitively on S{, and the subgroup of H * 
leaving Vl fixed is G l . Thus there is a fibration 

G z ---+ Spin(7) ---+ S{. 

Again transitivity follows by a dimension count once we have identified 
the isotropy group. An element (J E H 0 belongs to H * if and only if 
(J z(1) = 1; and the isotropy group consists of all (J satisfying the further 
condition (Jl(l) = 1. ByJiLof (7.33), (J3(1) = 1. Since the (Ji are orthogonal, 
we deduce that (Ji(U) = (Ji(U) (i = 1,2,3). Putting y = 1 in (2), we obtain 

(Jl(Z) = (J3(Z) = (J3(Z), 

so that (Jl = (J3' Similarly (Jz = (J3' Finally, from (4) we deduce 

(Jl(YX) = (Jl(Y) (Jl(X) 

= (Jl(Y)(Jl(X), 

from which it follows that (J 1 is an automorphism of K, so that (J E G z . 
Conversely, if (J E G l , then (Jl = (Jl = (J3 and (Jl(l) = (Jl(1) = 1, so that (J 
belongs to the isotropy group. D 

To summarize our discussion of F 4: there is a chain of subgroups with 
coset spaces and dimensions as indicated below 

52 36 28 21 14 8 3 

F4 ::) Spin (9)::) Spin (8)::) Spin (7)::) G z ::) U+(3)::) S3::) {1} 

'------_----'I 1 1 I ~ L-J L-----.J L-J 
PZ(K) S8 S7 S7 S6 S5 S3 

V 7, Z 



Exercises 

EXERCISES 

1. For a E K, Iiall = 1, the inner transformation 7:a : K ---> K is well-defined by 

Ta(X) = axa- 1. 

715 

Prove that 7:a is an automorphism of K if and only if a6 = 1 (i.e., a = ± 1 or 
a = ±-! + (j312)u, with u E Ko, u2 = -1). 

2. Describe maximal tori in G 2 and F 4. 

3. Let Q be the set of all elements (J E H * such that (J2(ed = el. Show that 
Q ~ Spin(6) and that the representation WI maps Q isomorphically upon a sub
group of O+(K) isomorphic with U+(4). 

4. Let Q be as in # 3, and let Qo be the set of all (J E K such that (J 2(e2) = e2. Show 
that Qo ~ Spin(5) and that WI maps Qo upon a subgroup of O+(K) isomorphic 
with Sp(2). 



Appendix B Additive Relations 

An essential part of the algebraic machinery used in the study of algebraic 
topology is the theory of abelian groups and homomorphisms. On the other 
hand, many constructions needed there do not fit naturally into this framew
ork. One of the simplest is concerned with the factorization problem 

c 
where g is an epimorphism, and g maps the kernel off into zero. There is 
then known to be a unique solution h: C --+ B of the problem; h is usually 
defined by the requirement: h(c) = f(a) for any a such that g(a) = c. One 
then has to verify that this defines h uniquely. It is tempting to write 
h = f 0 g- 1. The trouble with doing so is that, unless g is an isomorphism, g- 1 

is not a homomorphism. Thus, while the problem can be formulated within 
the category d of abelian groups and homomorphisms, and while its solu
tion lies in d the above calculation takes us outside the category. In this 
Appendix, we shall, following MacLane [MacL], introduce a calculus 
which makes such constructions as the above legitimate. 

In §1 we review some properties of direct sums and products, and additive 
relations themselves are treated in §2. 

716 
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1 Direct Sums and Products 

Let us begin by recalling some facts about finite direct sums and products of 
abelian groups (the category-minded reader may wish to replace d by an 
arbitrary abelian category). As all groups involved are abelian, we shall often 
omit the qualifying adjective. 

Let G1, ••• , Gr be a finite sequence of groups. A direct product of the Gk 

consists of a group P, together with homomorphisms Pk : P ~ Gk (k = 1, ... , r) 
with the following universal property: for any group H and homomor
phisms h : H ~ Gk , there is a unique homomorphism!: H ~ P such that 
Pk o! =!k (k = 1, ... , r). In other words, the problem typified by the 
diagrams 

H ---------~ P 

(1.1) ~jP. (k = 1, ... , r) 

Gk 

has a unique solution, so that (P; PI' ... , Pr) is a universal example for the 
problem in question. 

(1.2) Theorem Any finite sequence G 1, ... , Gr has a direct product, which is 
unique up to isomorphism. 

Uniqueness is proved by" general nonsense," but existence, as is often the 
case, is proved by a specific construction. In fact, let P = IT,; = 1 Gk = 
Gl X '" x Gr be the cartesian product of the Gk under componentwise 
addition: if x = (Xl,· .. , xr), Y = (Yb' -., Yr), then X + Y = (Zb"" zr), where 

(i = 1, ... , r). 

With Pk = projection on the kth factor, we see easily that (P; Pb ... , Pr) is a 
direct product of the Gk • 

The direct product is a functor: d x ... x d ~ d. In fact, if (P; Pl'"'' Pr) 
is a direct product of Gb ... , Gr and (P'; P'l, ... , p~) is a direct product of G'b 
... , G~, and if!k : Gk ~ G~ are homomorphisms, there is a unique homomor
phism 1: P ~ P' such that p~ 0 J = h 0 Pk for k = 1, ... , r. If P = IT,; = 1 Gk 
and P' = IT;; = 1 G~ are the specific products constructed above, then 

for all X k E Gk , k = 1, ... , r. Defining!l x ... x fr = f, we see that the condi
tions for a functor are fulfilled. 
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The r-fold diagonal map 

Llr : G --> G x ... x G 

r factors 

is defined by Pk 0 Llr = 1, the identity map of G (k = 1, ... , r). Iffk : H --> Gk 
are homomorphisms, the map 

defined by 

f = (Il X ... x f,.) 0 Llr 

is the solution of the problem (1.1); for 

Pk 0 f = Pk 0 (Il X ... x f,.) 0 Llr 

= iT. 0 Pk 0 Llr = fk 0 1 = fk . 

Dual to the notion of direct product is that of direct sum. A direct sum of 
groups G1, ... , Gr consists of a group S, together with homomorphisms jl' 
... ,jr having the following universal property: given a group Hand homo
morphismsfk: Gk --> H, there is a unique homomorphismf: S --> H such that 
f 0 jk = fk (k = 1, ... , r). In other words, (S;jl' ... ,jr) is a universal example 
for the problem typified by the diagrams 

S -------~ H 

(k = 1, ... , r). 

(1.3) Theorem Any finite sequence of groups G1, ... , Gr has a direct sum, 
which is unique up to isomorphism. 

As before, uniqueness is proved by "general nonsense," existence byex
plicit construction. 

Let S be a direct sum of G 1, ... , Gr. Then there are unique homomor
phisms qk : S --> Gk such that 

. {O if I =1= k, 
qk 011 = 1k if I = k, 

where 1k is the identity map of Gk • Similarly, if P is a direct product of G1, ... , 

Gr there are unique homomorphisms ik : Gk --> P such that 

. {O if I =1= k, 
PI 0 lk = 1k if I = k. 
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(1.4) Theorem The group S, together with the homomorphisms qk : S -+ Gk , is 
a direct product of G l , ... , Gr. The group P, together with the homomorphisms 
ik : Gk -+ P, is a direct sum of the Gk • There is a unique isomorphism h : S -+ P 
such that 

. {O if k =1= I, 
PkohoJl= lk ifk=l. 

In particular, P = n~= 1 Gk , with the homomorphism ik : Gk -+ P defined 
by 

i1(Xl) = (Xl' 0, ... ,0) 

iz(xz) = (0, xz, ... , 0) 

is a direct sum, and, when we wish to consider it as a direct sum, we shall 
denote it by 

Gl EB'" EEl Gr = EEl Gk • 
k=! 

As in the case of the direct product, the direct sum is a functor. Indeed, let 
fk: Gk -+ G~ be homomorphisms (k = 1, ... , r). If (S;jl' ... , jr) and (S' ;/1, ... , 
j~) are direct sums of the Gk , G~, respectively, there is a unique homomor
phismj:S-+S' such that fojk=j~oh (k=l, ... , r). If S=EBGk , 

S' = EBG", then 

for all X k E Gk (k = 1, ... , r). Definingfl EB ... EBf,. = f, we see that the condi-
tions for a functor are fulfilled. -

Let 

k factors 

be the homomorphism such that Vr 0 jk is the identity map of G 
(k = 1, ... , r). Iffk : Gk -+ H are homomorphisms, then the map 

f ~ ( l) G, Eil Eil G, ~ H 

defined by 
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is the solution of the problem (1.3); for 

fojk = Vr 0 (fl EB···EBf,.) ojk = Vr ojk oj;, =j;,. 

When (S; jl' ... , jr) is a direct sum, we shall say that the homomorphisms 
jk: Gk ~ S represent S as a direct sum. Similarly, if (P; Pl' ... , Pr) is a direct 
product, we say that the homomorphisms Pk : P ~ Gk represent P as a direct 
product. 

Remark. Our terminology differs from that of Eilenberg-Steenrod [E-S, 
p. 8]. These authors deal with only one notion, that of direct sum, and refer 
to Uk} as an injective, and to {Pk} as a projective, representation as a direct 
sum. 

Representations {ik: Ak ~ G}, {Pk: G ~ Bk} (k = 1, ... , r) of the group G 
as a direct sum, product, respectively, are said to be weakly dual if and only if 

Pk 0 i I = 0 if k =1= I, 

while 

is an isomorphism. They are said to be strongly dual (or simply dual) if and 
only if they are weakly dual and, in addition, Ak = B k , Pk 0 ik is the identity 
map. For example, the representations 

Uk: Gk ~ S}, 

as well as the representations 

{ik: Gk ~ P}, 

discussed above, are dual. 
A group B, with dual representations 

is called a biproduct of the Gk • 

fk: Gk~B 

gk: B~ Gk 

In view of these remarks, there is a unique homomorphism Vr: G x 
... x G ~ G such that Vr 0 ik = 1 (i = 1, ... , r). The astute reader will already 
have verified that 

Vr(Xb ... , xr) = Xl + ... + Xr· 

In particular, V = V 2 is just the group operation in G. 
It is trivial that 

(1.5) The operations of direct addition and multiplication are commutative and 
associative, up to natural isomorphism. 
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We can now define addition in the set Hom(G, H) of all homomorphisms 
of G into H. In fact, iff, 9 : G -> H, then f + 9 : G -> H is the composite 

G -~--» G x G ) H x H ---» H. 
Ll f x 9 

(1.6) Theorem The set Hom(G, H) is an abelian group under the above opera
tion. The zero element ofHom(G, H) is the trivial homomorphisms which sends 
each element ofG into 0. Iff: G -> H, then -f: G -> H is defined by 

(-f)(x) = -f(x) 

for all x E G. 

We have forborn to define fl + ... + fr directly, as we could have done, as 
the composite 

G ----» G x ... x G ) H x ... x H ----» H, 
Llr fl X ... x f.. Vr 

for this clearly coincides with the iterated sum of fl' ... , fr for any 
parenthesization. 

A useful criterion for a biproduct is given by 

(1.7) Theorem Let B, Gl , ... , Gr be groups and letik : Gk -> B, gk: B -> Gk be 
homomorphisms (k = 1, ... , r). Then (fl' ... ,fr) and (g 1, ... , gr) are dual 
representations of B as a direct sum, product, respectively, if and only if 

(1) gk 0.h=O,(k1= I), 
(2) gk ofk = 1k, 
(3) fl 0 gl + ... + f.. 0 gr = 1, the identity map of B. 

(of course, the addition in (3) takes place in the group Hom(B, B)). 
We conclude this section with some remarks on infinite products. Let J 

be an arbitrary set; then there is no difficulty in defining the direct sum Sand 
direct product P of a family of groups {G~ IIX E J}, just as we did in the finite 
case. If i~ : G~ -> S represent S as a direct sum and p~ : P -> G~ represent P as 
a direct product, then there is a homomorphism k : S -> P such that 

{o if f3 1= IX, 
P okoi = 

p ~ 1, the identity map of G~ if f3 = IX. 

Moreover k is a monomorphism. The image of k in P is called the weak direct 
product of the G~, and the homomorphisms q~ = p~ 0 k are said to define a 
representation of S as a weak direct product, dual to its representation by the 
iQ as a direct sum. Similarly, it seems appropriate to say that the homomor
phisms j~ = k 0 i~ define a representation of P as a strong direct sum, dual to 
its representation by the p~ as a direct product. 
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2 Additive Relations· 

Motivated by the fact that, if J: A ~ B is a homomorphism of abelian 
groups, then the graph ofJis a subgroup of A x B with special properties, we 
may define an additive relation F : A N'-+ B to be an arbitrary subgroup of 
A x B. For such a relation, we may further define the domain of 
F = Dom(F) = Pl(F); the kernel of F = Ker(F) = il1(F); the image of 
F = Im(F) = p2(F); the indeterminacy of F = Ind(F) = iz1(F). Thus F is 
(the graph of) a function from A to B (necessarily a homomorphism) if and 
only if Dom F = A and Ind F = 0. Note that Ker F c Dom Fe A and 
Ind F c 1m FeB. 

We may also define certain quotient groups of A and B. These are the 
coindeterminacy of F = Coin F = AIDom F; the co image of F = Coim F = 
AIKer F; the cokernel of F = Cok F = BlIm F; the codomain of 
F = Cod F = BlInd F. These are, however, of lesser importance (except for 
the cokernel). 

The composite of two additive relations is defined as is customary in the 
calculus of relations: if F : A N'-+ Band G : B N'-+ C, then 

Go F = {(a, c) E A x C I (a, b) E F and (b, c) E G for some b E B}. 

Clearly G 0 F : A N'-+ C is again an additive relation. 
The converse of an additive relation F : A N'-+ B is defined by 

F- 1 = {(b, a) I (a, b) E F}; 

clearly F- 1 : BN'-+ A, (F-lt 1 = F,and (G 0 Ft 1 = F- 1 0 G- 1 for G: BN'-+C. 
Moreover, 

Dom F- 1 = 1m F, 

Ker F- 1 = Ind F, 

1m F- 1 = Dom F, 

Ind F- 1 = Ker F. 

However, it is not in general true that F- 1 0 F is the identity map of A (nor 
is F 0 F- 1 the identity map of B). 

Let x E Dom F, and let 

(2.1) J(x) = {y E BI(x, y) E F}. 

If (x, y) E F and (x, y') E F, then (0, y - y') E F, so that y - y' E Ind F. 
Conversely, if y' E Ind F, (x, y) E F, then (x, y + y') E F. Hence J(x) is a 
coset of Ind F, and J: Dom F ~ Cod F = BlInd F is easily seen to be a 
homomorphism. Conversely, let D be a subgroup of A, 1 a subgroup of B, 
J: D ~ Bll a homomorphism. Let F = {(x, y) Iy EJ(X)}; then F is an addi
tive relation. Moreover, it is easy to see that there is hereby established a 
one-to-one correspondence between the set of all additive relations F : A N'-+ B 
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on the one hand and the set of all homomorphisms of a subgroup of A into a 
quotient group of B on the other. 

One can carry this a step farther. If F is an additive relation and f is 
defined by (2.1), then Ker f = Ker F and 1m f = 1m F lInd F, so that f 
induces an isomorphism 

cf>: Dom FIKer F ~ 1m Fllnd F 

between sub quotients of A and of B. Conversely, if P = A1 lAo and 
Q = B1 IBo are subquotients of A and B, respectively, and if cf> : P --+ Q is an 
isomorphism then the composite 

is a homomorphism of a subgroup of A into a quotient of B, which in turn 
gives rise to an additive relation F. Again, it is easy to see that there is a 
one-to-one correspondence between additive relations F : A toM B and isomor
phisms cf> : P ~ Q between subquotients of A, B, respectively. 

Let F, G: A toMB be relations, and suppose that F c G. Then 

Dom F c Dom G, Ker F c Ker G, 

1m F c 1m G, Ind F c Ind G, 

and there is a natural map n: BlInd F --+ BlInd G. Let f: Dom F--+ 
BlInd F, 9 : Dom G --+ BlInd G. Then we have the relation 

glDom F = n of 

Therefore, if x E Dom F, thenf(x) c g(x), as subsets of B. 

EXAMPLE 1. Let f: B --+ A, 9 : B --+ C be homomorphisms. Then 
go f- 1 : A toM C, and 

Dom(g of-1) = Imf, 

Ker(g 0 f-1) = f(Ker g), 

Im(g 0 f-1) = 1m g, 

Ind(g 0 f-1) = g{Ker f). 

Then 9 0 f - 1 is a homomorphism h : A --+ C if and only if 1m f = A and 
G{Ker f) = 0, i.e., f is an epimorphism and Ker f c Ker g. When this is so, 

Ker h = f(Ker g), 

1m h = 1m g. 
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EXAMPLE 2. Let f: A -> B, g : C -> B be homomorphisms. Then 
g-1 of: AN-+C, and 

Dom(g-1 0 f) = f-l(lm g) 

Ker(g- 1 0 f) = Ker f 
Im(g- 1 0 f) = g-I(lm f), 

Ind(g- 1 0 f) = Ker g 

Thus g- 1 0 f is a homomorphism h : A -> C if and only if 1m f c 1m g and 
Ker g = 0, g is a monomorphism. When this is so, 

Ker h = Ker f, 

1m h = g-I(lmf). 

EXAMPLE 3. A ladder is a commutative diagram 

···->An+2 
fn+2 A fn+ 1 

An 
In fn-l 

-- n+l----+ ----+ An- 1 --+ A -> ... 
n- 2 

(~) j hn+2 I hn+ 1 j hn j hn- 1 I hn- 2 

... -> Bn+2 -------. Bn+1 --+ Bn -------. Bn- 1 ~ Bn- 2 -> ... 
gn+2 gn+ 1 gn n-l 

with exact rows. Associated with such a ladder is the additive relation 
Ln = g;;+\ 0 hn of;;l: An- 1 N-+Bn+1. Evidently 

(1) Dom Ln = Ker fn-l (\ Ker hn- 1, 

(2) Ker Ln = fn(Ker hn), 
(3) 1m Ln = g;;+\(lm hn) 
(4) Ind Ln = 1m gn+2 + 1m hn+1, 

so that Ln induces a homomorphism 

(In: Ker fn-l (\ Ker hn- 1 -> Bn+ dim gn+2 + 1m hn+ b 

called the suspension, and L;; 1 induces a homomorphism 

called the transgression, of the diagram (~). (The relations L n , L;; 1 are also 
referred to as the suspension and the transgression, respectively). 

Let (~') be another ladder whose entries are denoted by the correspond
ing primed letters, and let there be given a map of (~) into (~'), i.e., maps 
rxn : An -> A~, f3n: Bn -> B~ making the appropriate 3-dimensional diagram 
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commutative, i.e., 

g~ 0 f3n = f3n- 1 0 gn' 

If l:n and l:~ are the additive relations associated with the diagrams (A), (~I), 
then we have an inclusion 

(2.2) 

It follows that, if (J n' (J~ are the suspension homomorphisms defined by l:n' 
l:~, respectively, and if x E Dom l:n = Dom (In' then IXn-1(X) E Dom l:~ = 
Dom (J~, and 

(2.3) 

EXAMPLE 4. Let (C, a) be a chain-complex, with homology group 
H = H(C) = Ker a/1m a. Then H is a subquotient of C, and may also be 
regarded as its own sub quotient H/{O}. The identity map of H thus corre
sponds to an additive relation V = C N-> H. (In fact, V = P 0 i- 1, where 
i : Ker a <:+ C and p : Ker a ~ H is the projection.) Evidently 

Dom V = Ker a, 
Ker V = 1m a, 
1m V=H, 

Ind V = {O}. 

Suppose that C1, C2 are chain-complexes, and let Vi: Ci N-> Hi the rela
tions defined above. LetJ: C1 ~ C2 be a chain-map. Then 

in fact V 2 0 J 0 Vi 1 is the homomorphism 

induced by f 

EXAMPLE 5. Let 

o ~ A --->. C --p--->. B ~ 0 

be an exact sequence of chain-complexes. Then the boundary operator 
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of the homology sequence of (*) is the relation 

VA 0 i-loa 0 p-1 0 V;l :H(B)~H(A), 

where a is the boundary operator of the chain complex C. 

EXAMPLE 6. Let A 1, B1 be subgroups of A, B, respectively. We may then form 
the relation 

B1/F/A 1 =F n (A1 x Bd:A1N->B1' 

If A1 = A or B1 = B, we may abbreviate this to 

B1/F=B1/F/A, 

F/A 1 = B/F/A1· 

EXERCISES 

1. Prove that F 0 F- 1 0 F = F, for any additive relation F. 

2. Prove that every additive relation F can be factored in the form F = 9 0 J - I, 

where J and 9 are homomorphisms. 

3. Prove that every additive relation can be factored in the form F = g-I 0 JwhereJ 
and 9 are homomorphisms. 

4. Let F: AN->B. Prove that, whenever Al and A2 are subgroups of A, BI and B2 are 
subgroups of B, then 

(1) F(AI n A 2) c F(Atl n F(A 2), 
(2) F(AI + A 2) => F(Ad + F(A2)' 
(3) p-1(B1 n B2) c P-1(Btl n p-1(B2), 
(4) p-1(BI + B2) => P-1(Bd + p- I(B2), 
(5) F(AI n F-1(Bd) => F(Atl n B 1, 
(6) P-1(F(Ad + Bd c Al + p-1(Btl. 

Equality holds in the following cases: 

(1) Ker F = {O}, 
(2) Dom F = A, 
(3) Ind F = {O}, 
(4) 1m F = B, 
(5) BI => Ind F, 
(6) Al c Dom F. 

5. Let 

O~ A 

(~) IJ 
0 ---+ A' 

i 
~ 

---+ 
i' 

B 

]g 

B' 

P 
~ C- O 

jh 
~ C' ---------> 0 

p' 
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be a short ladder. Prove that there is an exact sequence 

(J 

o ---> Ker f ---> Ker g ---> Ker h ----> Cok f ---> Cok g ---> Cok h ---> 0, 

where (J is the suspension. 

6. If F : AtHB, show that F 0 F- 1 and F- 1 c F are the relations associated with the 
identity maps of the subquotients 1m FlInd F, Dom FIKer F of B, A 
respectively. 

7. If F : A tH B, G : B N-> C, show that 

Dom(G 0 F) = p-l(Dom G), 

Ker(G 0 F) = p-l(Ker G), 

Im(G 0 F) = G(Im F), 

Ind(G 0 F) = G(Ind F). 

Then Dom(G 0 F) = A if and only ifDom F = A and 1m F c Dom G + Ind F, 
and Ind(G 0 F) = {O} if and only if Ind G = 0 and Dom G n Ind Fe Ker G. 

8. An additive relation F : AN->B is null if and only if the associated homomorphism 
f: Dom F ---> Cod F is zero. Prove that the following conditions are equivalent: 

(1) F is null; 
(2) Ker F = Dom F; 
(3) IndF=ImF; 
(4) F = Ao x Bo for some subgroups Ao c A, Bo c B. 

9. Let F : AN-> B, G : B N-> C. Prove that G 0 F is null if and only if 1m F n Dom G c 

Ind F + Ker G. Deduce that G 0 F is null if either F or G is null. 

10. A relational chain complex is an abelian group C with an additive relation 
F: CtHC such that F 0 F is null. Develop the homology theory of relational 
chain complexes. 

11. Let F: B, G: B N-> C be additive relations. Prove that there are exact 
sequences 

0---> Ker F ---> Ker{G 0 F) ---> Ker G/Ker G n Ind F 

---> Dom G/Dom G n 1m F ---> Cok(G 0 F) ---> Cok G ---> 0, 

o ---> Ind G ---> Ind( G 0 F) ---> Ind F lind F n Ker G 

--->Im Film F n Dom G--->Coin(G 0 F)--->Coin F-.O. 

12. Let A => B => C, so that BIC is a subquotient of A. The canonical relation 
J : AN-> BIC is the composite 

i-I n 
A ------> B ----> BIC 

where i is the inclusion and n the natural projection. Prove that J 0 J- 1 is the 
identity map of BIC. 
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