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Preface

This text is an elementary introduction to differential geometry. Although
it was written for a graduate-level audience, the only requisite is a solid back-
ground in calculus, linear algebra, and basic point-set topology.

The first chapter covers the fundamentals of differentiable manifolds that
are the bread and butter of differential geometry. All the usual topics are cov-
ered, culminating in Stokes’ theorem together with some applications. The stu-
dents’ first contact with the subject can be overwhelming because of the wealth
of abstract definitions involved, so examples have been stressed throughout.
One concept, for instance, that students often find confusing is the definition of
tangent vectors. They are first told that these are derivations on certain equiv-
alence classes of functions, but later that the tangent space of R™ is “the same”
as R™. We have tried to keep these spaces separate and to carefully explain how
a vector space I is canonically isomorphic to its tangent space at a point. This
subtle distinction becomes essential when later discussing the vertical bundle
of a given vector bundle.

The following two chapters are devoted to fiber bundles and homotopy
theory of fibrations. Vector bundles have been emphasized, although principal
bundles are also discussed in detail. Special attention has been given to bundles
over spheres because the sphere is the simplest base space for nontrivial bundles,
and the latter can be explicitly classified. The tangent bundle of the sphere, in
particular, provides a clear and concrete illustration of the relation between the
principal frame bundle and the associated vector bundle, and a short section
has been specifically devoted to it.

Chapter 4 studies bundles from the point of view of differential geometry, by
introducing connections, holonomy, and curvature. Here again, the emphasis is
on vector bundles. The last section discusses connections on principal bundles,
and examines the relation between a connection on the frame bundle and that
on the associated vector bundle.

Chapter 5 introduces Euclidean bundles and Riemannian connections, and
then embarks on a brief excursion into the realm of Riemannian geometry. The
basic tools, such as Levi-Civita connections, isometric immersions, Riemannian
submersions, the Hopf-Rinow theorem, etc., are introduced, and should prepare
the reader for more advanced texts on the subject. The relation between curva-
ture and topology is illustrated by the classical theorems of Hadamard-Cartan
and Bonnet-Myers.

Chapter 6 concludes with Chern-Weil theory, introducing the Pontrjagin,
Euler, and Chern characteristic classes of a vector bundle. In order to illustrate



vi

these concepts, vector bundles over spheres of dimension < 4 are reinterpreted
in terms of their characteristic classes. The generalized Gauss-Bonnet theorem
is also discussed here.

This book grew out of a series of graduate courses taught over the years
at the University of Oklahoma. Although there were many outstanding texts
available that collectively contained the sequence of topics I wished to present,
none did this on its own, with the possible exception of Spivak’s monumental
treatise. In the end, I often found myself during a course following one au-
thor on a particular topic, another on a second one, and so on. As a result,
the approach here at times closely parallels that of other texts, most notably
Gromoll-Klingenberg-Meyer [15], Poor [32], Steenrod [35], Spivak [34], and
Warner [36].

There are several options for using the material as the textbook for a course,
depending on the instructor’s inclination and the pace she/he wants to set. A
leisurely paced one-semester course on manifolds could cover the first chapter.
Similarly, a one-semester course on bundles could be based on Chapters 2 and
3, assuming the students are already familiar with the concept of manifolds. I
have also used Chapter 1, parts of Chapter 4, and Chapter 5 for a two-semester
course in differential geometry.

I would like to thank Yelin Ou for reading parts of the manuscript and
making valuable suggestions, and Gary Gray for offering his considerable I¥TEX-
pertise.

Gerard Walschap
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CHAPTER 1

Differentiable Manifolds

In differential geometry, n-dimensional Euclidean space is replaced by a dif-
ferentiable manifold. In essence, this is a set M constructed by gluing together
pieces that are homeomorphic to R™, so that M looks locally, if not globally,
like Euclidean space. The idea is that all local concepts, such as the derivative
of a function f : R® — R at a point, can be carried over to M by means of
these identifications. A simple, yet useful example to keep in mind is that of the
two-dimensional unit sphere S?, where for any point p € S?, the neighborhood
52\ {—p} of p is homeomorphic to R2.

1. Basic Definitions

Recall that the vector space R™ is the set {(p1,....pn) | pi € R}, together
with coordinate-wise addition and scalar multiplication. The i-th projection is
the map v’ : R® — R given by u*(p1,...,pn) = ps, and the j-th standard basis
vector e; is defined by ui(e;) = d;;.

Let U be a subset of R®. Given a function f : U — R, p € U, the i-th
partial derivative of f at pis

flp+te) — f(p)

Dif(p) = lim - = (foc)(0),

where c is the line ¢(t) = p+te; through p in direction e;. f is said to be smooth
or differentiable on U if it has continuous partial derivatives of any order on U.

A map f : U — R* is said to be smooth if all the component functions
ffi=u'of:U — R of f are smooth. In this case, the Jacobian matriz of f
at p is the k x n matrix Df(p) whose (4, 7)-th entry is D; f(p). The Jacobian
will often be identified with the linear transformation R® — RF it determines.

DEFINITION 1.1. A second countable Hausdorff topological space M is said
to be a topological n-dimensional manifold if it is locally homeomorphic to R™;
i.e., if for any p € M there exists a homeomorphism z of some neighborhood
U of p with some open set in R™. (U, ) is called a chart, or coordinate system,
and z a coordinate map.

DEFINITION 1.2. A differentiable atlas on a topological n-dimensional man-
ifold M is a collection A of charts of M such that

(1) the domains of the charts cover M, and
(2) if (U,x) and (V,y) € A, then yoz™! : 2(UNV) — R" is smooth.

1

The map y o ™! is often referred to as the transition map from the chart

(U,z) to (V,y).
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If Ais an atlas on M, a chart (U,z) is said to be compatible with A if
{(U.z2)} U A is again an atlas on M. A differentiable structure on M is a
maximal differentiable atlas A: Any chart compatible with A belongs to the
atlas. Alternatively—for those uncomfortable with the term “maximal”—given
two atlases A and A’, define A ~ A’ if for any charts (U,z) € Aand (V,y) € A,
yoxz ! and x oy~ ! are differentiable. A differentiable structure is then an
equivalence class of the relation ~ defined above.

DEFINITION 1.3. A differentiable n-dimensional manifold is a topological
n-dimensional manifold together with a differentiable structure.

From now on, the term manifold will always denote a differentiable mani-
fold.

ExAMPLES AND REMARKS 1.1. (i) In order to specify a differentiable struc-
ture, it suffices to provide some atlas A: This atlas then determines a differ-
entiable structure A’ which consists of all charts (U, ) such that r oy~! and
yox~! are smooth for any coordinate map y of A.

(ii) The standard differentiable structure on R™ is the one determined (as
in (1)) by the atlas consisting of the single chart (R™, 1g»), where 1gn denotes
the identity map.

(iii) Let V' denote an n-dimensional real vector space. The standard dif-
ferentiable structure on V is the one induced by the atlas {(V,L)}, where
L :V — R"™ is some isomorphism. Why is this structure independent, of the
choice of L7

(iv) Any open subset U of a manifold M inherits a natural differentiable
structure (of the same dimension) from that of M: An atlas {(Us,%a)}aca
of M induces an atlas {(U N Uy, Zalunva)}aca of U. For example, the set
GL(n) C M, , = R™ of all invertible n x n real matrices is an n2-dimensional
manifold.

(v) Let r > 0. The n-sphere S of radius r is the compact topological
subspace of R"™! consisting of all points at distance r from the origin. Let
py = (0,...,0,7) and ps = (0,...,0,—r) denote the north and south poles,
respectively, and set Uy = S\ {pn},Us = S\ {ps}. Then the collection
{(Un,2n),(Us,z5)} is a differentiable atlas on the sphere, where z and zg
are the “stereographic projections”

T

TN (PL;- - Prt1) = m(mw--,pn),
n
T
zs(P1y- - Prt1) = m(ph»--mn)-
n
In fact, the transition map is given by
2
_ _ r
enors' =wsory = pilan R\ {0} = R\ {0)

and is clearly differentiable.

The sphere is thus described by two charts, and can therefore be considered
to be the simplest nontrivial example of a manifold.

(vi) Let (M. A;) be manifolds of dimension n;, ¢ = 1,2. The collection

Ay x Ay = {(UxV,zxy) | (Ux) e A, (V,y) € A}
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z(p)

FIGURE 1. Stereographic projection from the north pole.

is an atlas on M; x My. Here, (z x y)(p,q) = (z(p),y(q)). The induced differ-
entiable structure is called the product manifold M, x Ms.

DEFINITION 1.4. A function f: M — R is said to be smooth if foxz™?! :
z(U) — R is smooth for any chart (U, z) of M.

DEFINITION 1.5. A partition of unity on M is a collection {Ps}aca of
smooth nonnegative functions ¢, on M such that
(1) {supp &a }taca is a locally finite cover of M. Recall that the support
of a function is the closure of the set on which the function is nonzero.
A collection of sets is locally finite if any point has a neighborhood
that intersects at most finitely many of the sets.
(2) >, ¢a =1. (Why does this possibly infinite sum make sense?)

THEOREM 1.1. Any open cover {Uy}aca of a manifold M admits a count-
able subordinate partition of unity {¢k}ren; i.e., for any integer k, there exists
an o € A such that supp ¢, C U,.

There are several steps involved in the proof of Theorem 1.1. Given € > 0,
g € R, B(q) will denote the set of points at distance less than than € from q.

THEOREM 1.2. If {U,} is an open cover of M, then there is a countable
differentiable atlas {(Vi,zx)} of M such that

(1) {Vi} is a locally finite refinement of {Uy};
(2) zx(Vi) = B3(0);
(3) the collection {W}}, where Wy = z; ' (B1(0)), is a cover of M.

PROOF OF THEOREM 1.2. Since M is locally compact (i.e., every point has
a neighborhood with compact closure), Hausdorff, and second countable, there
exists a countable basis {Z;} for M with Zy, compact. Let A; = Z;. Given
A; compact, let j denote the smallest integer such that A; C Z; U -+ U Z;;
define A;;; = Z; U--- U Zj U Z;41. Then {A} is a sequence of compact sets
with Ax C int Ag11, and Ug Ay = M. Define Ay to be the empty set. Since
M = U;>0(Ai41 \ int A;), we may assume that for each p € M, there exists a
chart (V,,zp) sending p to 0, such that

zp(Vp) = B3(0), V, C U, for some a, and V, C (int A;42)\A4;_; for some ¢.

Then {z,'(B1(0)}peai;i\int 4, is an open cover of the compact A;41 \ int A,
and contains a finite subcover which we denote P;. If P = PpUP, U---,
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then P consists of a countable cover {V;} of M subordinate to {U,}. Each
Vi is the domain of a chart {(Vi, xx)} with zx(Vy) = B3(0), and the collection
{2, ' (B1(0))} covers M.

It remains to show that {Vj} is locally finite. Now, any p € M belongs to
some A;+1 \ int A;. Then W = (int A;42) \ A;—1 is an open neighborhood of p
that intersects at most finitely many Vi: Indeed, each Vj is contained in some
set (int A;19)\ A;_1, soif V} is to intersect W, then j cannot exceed i+2. Since
there are only finitely many Vi in each crown (int A;42) \ A;_1, the statement
follows. g

Given € > 0, denote by C.(0) the open cube (—¢, €)™ in R™.

LEMMA 1.1. There exists a differentiable function ¢ : R™ — R satisfying
(1) ¢ =1 on C1(0), B
(2) 0<d <1 onCy(0)\C1(0), and
(3) =0 on R™\ C5(0).

Proor orF LEMMA 1.1. Let h: R — R be given by

e i g >0,
h(z) = e , ifz )

0, otherwise,
and define
o) = h(2+x)h(2 —x)

 h@+z)h(2—2) +h(z— 1)+ h(—z — 1)

This expression makes sense because h(x — 1) + h(—x — 1) is nonnegative, and
equals 0 only when |z| < 1, in which case h(2 + z)h(2 — x) > 0. Furthermore,
fl)=1if 2] <1,0< f(z) <1if 1< |z| <2 and f(z) =0if |z] > 2. Now
let ¢(ar,...,a,) =TI, f(as). U

ProOOF OF THEOREM 1.1. Let {(Vi,zx)} be a differentiable atlas as in
Theorem 1.2, and ¢ the function from Lemma 1.1, where n equals the dimension
of M. For each k define a function 6, : M — R by

poxk(p), ifpeVy,
6 =
k(p) { 0, otherwise.

0y is differentiable on M, since it is differentiable on Vj, and is identically zero
on the open neighborhood M \ z;'(C2(0)) of M \ Vi. Any p € M belongs
to x;l(Bl (0)) for some j, so that 8;(p) > 0. Since {V}} is locally finite and
supp 0 C Vj, the collection {supp 6y} is a locally finite cover of M. This means
that >, 0x(p) is finite for every p € M; now set ¢p :=0;/(>_, ;). O

EXERCISE 1. Show that the transition maps for the atlas in Examples and
Remarks 1.1(iv) are given by

2
— — r n n
.’L’NO[L'SIZISoxNI:manZR \{O}_’R \{0},

and deduce that {(Uy,zn),(Us,z5)} is indeed a differentiable atlas on the
sphere.
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(Notation: Given a manifold M, 15 : M — M denotes the identity map
of M.)

EXERCISE 2. Let U be an open subset of M, V a set whose closure is
contained in U. Show that there exists a smooth nonnegative ¢ : M — R that
is identically 1 on the closure of V', and the support of which is contained in U.

2. Differentiable Maps

The superscript in the symbol M™ will refer to the dimension of the mani-
fold M.

DEFINITION 2.1. Let M™, N* denote manifolds, and suppose U is open in
M. A map f:U — N is said to be differentiable or smooth if yo foxz™!is
smooth as a map from R™ to R¥ for any coordinate maps  of M and y of N.

If A is an arbitrary subset of M, f: A — N is said to be smooth if it can
be extended to a smooth map f: U — N for some open set U containing A.

Observe that the composition of differentiable maps is differentiable. f :
M — N is said to be a diffeomorphism if it is bijective and both f and its
inverse f~1 are smooth. The collection Diff(M) of all diffeomorphisms of M
with itself is clearly a group under composition.

EXAMPLES AND REMARKS 2.1. (i) For a function f : M — R, the Defini-
tion 2.1 coincides with 1.4.

(ii) If (U, z) is a chart, then 2 : U — x(U) C R™ is a diffeomorphism.

(iii) It is known that any two differentiable manifolds of dimension no larger
than 3 which are homeomorphic are actually diffeomorphic. On the other hand,
there exist “exotic” R*’s; i.e., manifolds that are homeomorphic but not diffeo-
morphic to R* with the standard differentiable structure.

Given a subset A of M, let F(A) denote the set of all smooth functions
f:A—R. F(A) is a real algebra (and in particular, both a ring and a vector
space) under the operations

(f+9)p)=fp)+9), (f-9)p)=rfP9P), (af)(p)=af(p), aeR.
For example, if (U, x) is a chart, then z* € F(U), where 2* := vt oz, 1 <i <
dim M.

DEFINITION 2.2. Let U be an open subset of M, p € U, and set fS(U) =
{f € F(U) | f =0 in a neighborhood of p}. FJ(U) is an ideal in F(U), and the
quotient algebra F, = F(U)/F)(U) is called the algebra of germs of functions
at p.

Thus, a germ is an equivalence class of functions, with two functions being
equivalent iff they agree on a neighborhood of the point. The reason we omitted
U in the terminology for F, = F,(U) is due to the fact that the map F(M) —
F(U) given by f +— f o1, where + : U — M denotes inclusion, induces an
isomorphism F,(M) = F,(U): This map is clearly injective; to see that it’s
surjective, let f € F(U), and consider an open set V whose closure is contained
in U. Let ¢ be the function from Exercise 2, and define a smooth function g on
M by setting it equal to ¢f on U and 0 outside U. Since f and g coincide on
V, the germ of g at p is mapped to the germ of f at p.
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EXERCISE 3. Consider R with the two atlases {1g} and {¢}, where ¢(t) =
t3.

(a) Show that these atlases are not compatible; i.e., they determine different
differentiable structures on R.

(b) Show that the two differentiable manifolds from (a) are diffeomorphic.

EXERCISE 4. (a) Show that f: S — R, where f(p1,..., Pnt1) = 2, Dis 18
smooth.
(b) Show that f: S} — S, where f(p) = —rp, is a diffeomorphism.

3. Tangent Vectors

A vector v in R™ acts on differentiable functions in a natural way, by as-
signing to f : R® — R the derivative D, f(p) := Df(p) - v of f in direc-
tion v. This assignment depends of course on the point p at which the de-
rivative is evaluated; furthermore, it is linear, and satisfies the product rule
D,(fg)(p) = f(p)Dy(g9)(p) + g(p)Du(f)(p). This is essentially the motivation
behind the following:

DEFINITION 3.1. Let p € M. A tangent vector v at pis amap v : Fp(M) —
R satisfying
(1) v(af + Bg) = av(f) + Br(g); and
(2) v(fg) = f(p)v(g) + g(p)v(f)
for a, € R, f,g € Fp(M).

In the above definition, we have used the same letter to denote both a germ
and a function belonging to that germ: If U is a neighborhood of p, then a
tangent vector v at p induces a map F(U) — R given by v(f) := v([f]). The
point p is called the footpoint of v, and the set M, of all tangent vectors at p is
called the tangent space of M at p. It is a real vector space under the operations
(v +w)(f) =v(f) +w(f), (av)(f) = av(f).

In the familiar context of Euclidean space, one can think of a tangent vector
at p as simply being a vector v whose origin has been translated to p, denoted
(p,v). Then (p,v)(f) = D, f(p). Notice that one recovers v from the way (p,v)
acts on functions: v = ((p,v)(ul), ..., (p,v)(u™)).

The first condition in Definition 3.1 says that a tangent vector is a linear
operator on (germs of) functions, and the second that it is a derivation.

Let x be a coordinate map around p (that is, p belongs to the domain of z),
and as usual, let * = v’ o . The coordinate vector fields at p are the tangent
vectors 0/0x"(p) € M,, given by

D)= Dilfor alp),  fEFMM, 1<i<n

One often denotes the left side of (3.1) by df/0x*(p). For example, in R™, the
standard coordinate vector fields at p are 9/0u’(p), where df/0u’(p) = D, f(p).
We will often denote them simply by D;. When n = 1, we write D instead of
0/0u, so that Df(a) = f'(a).

The coordinate vector fields actually form a basis for the tangent space at
a point. In order to show this, we need the following:

(3.1)
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LEMMA 3.1. Let U denote a star-shaped neighborhood of 0 € R™— that is,
the line segment connecting the origin to any point of U is also contained inside
U. Given f € FU, there exist n functions v; € FU, with ¢;(0) = D, f(0), such

that
= f(0) + Z u'eh;.

PROOF. For any fixed p € U, consider the line segment c(t) = tp, and set
¢ = foc. ¢ is a differentiable function on [0,1], and ¢'(t) = >, piD; f(tp).
Thus,

F(p) — £(0) = 6(1) - 6(0) = /0 o= / D f(tp) dt

The claim then follows by setting ¥;(p) := fol D; f(tp) dt. ]

PROPOSITION 3.1. Let (U, x) be a chart around p. Then any tangent vector
v € M, can be uniquely written as a linear combination v =%, &;0/0z"(p). In
fact, a; = v(x?).

Thus, M} is an n-dimensional vector space with basis {3/0x*(p)}1<i<n.-

PROOF. We may assume without loss of generality that z(p) = 0, and
that z(U) is star-shaped. By Lemma 3.1, any f € FM satisfies f oz~ ! =

Fp) + 32 uti, with 4;(0) = 0/9z*(p)(f). Thus, flu = f(p) + X2; z* (i 0 @)|u,

and

o) = o (0)) + Yolola’) s 0) + 2(p) vl 0 2)] = Yo vla) 5 ()

2

where we have used the result of Exercise 5 below. It remains to show that the
9/0z"(p) are linearly independent; observe that

82:1’ (p)(x?) = Di(a? o 27")(0) = D;(u?)(0) = 6.
Thus, if 3 ;0/0z%(p) = 0, then 0 = 3" ;0/0z' (p)(27) = ;. 0O

Notice that if x and y are two coordinate systems at p, then taking v =
d/0y*(p) in Proposition 3.1 yields

&EJ

(32 ZD (w 0w 0y ™) y(p) 55 P)

8z3

for 1 <4 < n. This means that the transition matrix from the basis {9/9z(p)}
to the basis {0/0y*(p)} is the Jacobian matrix of z o y~! at y(p).

EXERCISE 5. Let ¢ € R. Show that if ¢ € FM denotes the constant function
c(p) := c for all p € M, then v(c) = 0 for any tangent vector v at any point of
M.

EXERCISE 6. Write down (3.2) explicitly for the n-sphere of radius r, if x
and y denote stereographic projections.
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4. The Derivative

In calculus, one usually thinks of the Jacobian Df(p) of f : R® — R as
the derivative of f at p. It is therefore natural, when seeking a meaningful
generalization of this concept for a map f: M — N between manifolds M and
N, to look for a linear transformation. In view of the previous section, where
we defined vector spaces at each point of a manifold, this suggests a linear
transformation f., : M, — Ny, between the respective tangent spaces. We
would of course like f,, to correspond to Df(p) when M = R" and N = RF,
if Ry is identified with the set of pairs (p,v), v € R"; i.e, we require that
fep(pyv) = (f(p), Df(p)v) for all v € R™. Now, if ¢ : R* — R is differentiable,
then by the Chain rule,

Fep(p,0)(0) = (f(p), Df(p)v)(¢) = Dpysipyu®(f(p)) = Do(f(p)) Df(p)v
= Dv(d)o f)(p) = (p,U)(¢O f)
This motivates the following:
DEFINITION 4.1. Let M and N denote differentiable manifolds of dimen-

sions n and k respectively, f : U — N a differentiable map, where U is open in
M, and p € U. The derivative of f at p is the map f.p : M, — Ny, given by

(fepv)(®) :==v(go f), $ € F(N), veEM,.
It is clear from the definition that f,, is a linear transformation.

PROPOSITION 4.1. With notation as in Definition 4.1, let x be a coordinate
map around p € U, y a coordinate map around f(p) € N. Then the matriz
of fp with respect to the bases {3/0x%(p)} and {8/0y? ((f(p))} is the Jacobian
matriz of yo foz™! at z(p).

PROOF.
gy 0 = 3 Loy W00 = 3 55006 o 9 (S 19)
= 3Dyt o (yo £ ox ) (al) 5+ ()

ExAMPLES AND REMARKS 4.1. (i) It follows from Definition 4.1 that the
identity map 1 of M has as derivative at p € M the identity map 1,7, of M,.

(ii) If g : N — Q is differentiable, then go f is differentiable, and (go f)., =
9xf(p) © f+p- In particular, if f: M — N is a diffeomorphism, then by (i), f.p is
an isomorphism with inverse (f~!), #(p)- Furthermore, given coordinate maps
z and y of M and N respectively, the diagram

: fep
My, ’ Nf(p)

m*pl lytf(P)

2T P, RE

(yof)(p)
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commutes. Observe that z.,0/0z'(p) = 8/0u’(x(p)), since z,0/0x*(u!) =
9/0x (u? o) = 8/0z" (a7) = &;.

(iii) A (smooth) curve in M is a (smooth) map ¢ : I — M, where [ is an
interval of real numbers. The tangent vector to ¢ at t is ¢(t) := ¢, D(t). Thus,
given ¢ € F(M),

&(t)(9) = cu D(t)(¢) = D(t) (¢ o) = (doc)(t).

(iv) Let E be an n-dimensional real vector space with its canonical differ-
entiable structure, cf. Examples and Remarks 1.1(iii). For any v € E, F may
be naturally identified with its tangent space E, at v by “parallel translation”
Jy + E — E,, defined as follows: Given w € E, let y(t) = v + tw, and set
Jow :=%(0). If z : E — R" is any isomorphism, then

Jvw =7(0) = Zﬂ(oxw ZD (2" 07) Z (v)
= in(w)a%(v)

so that J,, being linear and one-to-one, is an isomorphism.

Notice that for £ = R"™ and z = 1gn, we obtain J,e; = 8/0u*(v). This
formalizes our heuristic description of the tangent space of R™ at v from the
previous section, since the map

{v} x R" — R?,
(v, ) = Jyw

is an isomorphism that preserves the action on F(R").

Consider, for example, a linear transformation L : R* — R*. By Proposi-
tion 4.1, the matrix of L., with respect to the standard coordinate vector fields
bases is that of the Jacobian of L. But since L is linear,

(w? o L)(v + te;) — (v o L(v))

t = (uj ° L)(ei)>

Di(w o L)(v) = tlirr(l)

so that the Jacobian matrix of L is just the matrix of L in the standard basis.
Thus, the following diagram

R L, Rk

2| [

L
n *v k
Rv RL’U

commutes.

(v) Let U be an open set in M, f € FU, p € U. The differential of f at p is
the element df (p) of the dual space M, (i.e., df(p) : Mp — R is linear) defined
by

df(p)(v) :==v(f), veE M,
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Thus, for example, {dz’(p)} is the basis dual to {9/0z(p)}. Notice also that
the diagram
M M

p p

df(P)JV J/f*p

Tsp)
R —— Ry

commutes:
Trmdf (p)(v) = Trpyv(f) = v(f)Dyp) = fupv-
DEFINITION 4.2. The tangent bundle (resp. cotangent bundle) of M is the
set TM = Upen M, (resp. T*M = UpenrMy). The bundle projections are the

maps m : TM — M and 7 : T*M — M which map a tangent or cotangent
vector to its footpoint.

PROPOSITION 4.2. The differentiable structure D on M™ induces in a nat-

ural way 2n-dimensional differentiable structures on the tangent and cotangent
bundles of M.

PROOF. For each chart (U,z) of M, define a chart (w=*(U),z) of TM,

where 7 : 771 (U) — R?" is given by
() = (zom(v),dz (n(v))v, ..., dz" (7 (v))v).
Similarly, define Z : 7=} (U) — R?" by
#(a) = (x o 7(a),a(d/0z(7())), . ..,a(d/0z™(7(a)))).

One checks that the collection {z=*(V) | (U,z) € D,V open in R?"} forms a
basis for a second countable Hausdorff topology on TM. A similar argument,
using T instead of Z, works for T*M.

Let A= {(z=Y(U),z) | (U,x) € D}. We claim that A is an atlas for TM:

clearly, each Z : 7= 1(U) — z(U) x R™ is a homeomorphism. Furthermore, if
(V,y) is another chart of M, and (a,b) € z(UNV) x R™, then

goz '(a,b) = (yoz~'(a),D(yoz"")(a)d)).
To see this, write b =3 b;e;; then

_—1 o _a_ -1 _ _8yj —1 i -1
Pl = b @) = Db @) gt @)

so that
o7 )a,h) = (ror (@), X bigl (™ (a))ey)
— (yoo~(a), D(yo =~ )(@)(b)),
O

For example, the bundle projection 7w : TM — M is differentiable, since for
any pair (U,z), (n~(U),Z) of related charts, zor oz~ : z(U) x R* — z(U)
is the projection onto the first factor.
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Any f: M — N induces a differentiable map f, : TM — TN, called the
derivative of f: For v € Mp, set f.v := f.,v. Differentiability follows from the
easily checked identity:

(Fofuoz™)(a,b) = (yo fox'(a),D(yo foz™")(a)b).

EXERCISE 7. Show that if M is connected, then any two points of M can
be joined by a smooth curve.

EXERCISE 8. (a) Prove that J, : R* — (R"), from Examples and Re-
marks 4.1(iv) satisfies J,w(f) = Dy f(v) = (f o ¢)’(0), where c is any curve
with ¢(0) = v, ¢/(0) = w.

(b) Show that any v € TM equals ¢(0) for some curve ¢ in M.

EXERCISE 9. For positive p, o, consider the helix ¢ : R — R3, given by
c(t) = (pcost, psint,ot). Express ¢(t) in terms of the standard basis of Rg<t>.

EXERCISE 10. Let M be connected, f : M — N a differentiable map. Show
that if f,, = 0 for all p in M, then f is a constant map.

EXERCISE 11. Fill in the details of the argument for the cotangent bundle
in the proof of Proposition 4.2.

5. The Inverse and Implicit Function Theorems

Let U be an open set in M, f : U — N a differentiable map. The rank of f
at p € U is the rank of the linear map f., : M), — Ny(;), that is, the dimension
of the space f,(Mp). Recall the following theorem from calculus:

THEOREM 5.1 (Inverse Function Theorem). Let U be an open set in R™,
f:U — R" a differentiable map. If f has maximal rank (=n) at p € U, then
there exists a neighborhood V' of p such that the restriction f:V — f(V) is a
diffeomorphism.

The inverse function theorem immediately generalizes to manifolds:

THEOREM 5.2 (Inverse Function Theorem for Manifolds). Let M and N be
manifolds of dimension n, and f : U — N a smooth map, where U is open in
M. If f has mazimal rank at p € U, then there exists a neighborhood V' of p
such that the restriction f:V — f(V) is a diffeomorphism.

PRrROOF. Consider coordinate maps x at p, y at f(p), and apply Theorem
5.1to yo foxr~!. Conclude by observing that 2 and y are diffeomorphisms. [

We now use the inverse function theorem to derive the Euclidean version
of one of the essential tools in differential geometry:

THEOREM 5.3 (Implicit Function Theorem). Let U be a neighborhood of 0
in R", f:U — R* a smooth map with f(0) = 0. Forn <k, let1: R* — R¥
denote the inclusion i(ay,...,a,) = (a1,...,0,,0,...,0), and for n > k, let
7 : R™ — RF denote the projection m(ai,...,ax,...,a,) = (a1,...,ax).

(1) If n < k and f has mazimal rank (= n) at 0, then there exists a
coordinate map g of R* around 0 such that go f =1 in a neighborhood
of 0 € R™.
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(2) If n > k and f has mazimal rank (= k) at 0, then there exists a
coordinate map h of R™ around 0 such that foh = 7 in a neighborhood
of 0 € R™.

PROOF. In order to prove (1), observe that the k x n matrix (D; f*(0)) has
rank n. By rearranging the component functions fi of f if necessary (which
amounts to composing f with an invertible transformation, hence a diffeomor-
phism of R*), we may assume that the n x n submatrix (D;f%(0))1<i j<n is
invertible. Define F': U x R¥=" — RF by

Flai,...,an,0n41,- .- 0k) = flar,...;an) + (0,...,0,Gp41, .., ax).
Then F o1 = f, and the Jacobian matrix of F' at 0 is

(D; f(0))1<i<n 0 )

(Djfz(()))n+1§i§k le—n ’
which has nonzero determinant. Consequently, F' has a local inverse g, and
go f =goFo1=1. This establishes (1). Similarly, in (2), we may assume that
the k x k submatrix (D, f*(0))1<s <k is invertible. Define F': U — R™ by
Fla,...,an) == (f(a1,...,a0),Gkg1,- -, Gn).
Then f = mo F, and the Jacobian of F at 0 is
(D f (0 i<i<k  (Dif*(0))k+1<i<n
0 Ign—* '

which is invertible. Thus, F’ has a local inverse h, and foh =noFoh=x. O

6. Submanifolds

The implicit function theorem enables us to construct new examples of
manifolds. Before doing so, however, there are certain “nice” maps, such as the
inclusion S™ < R"*!, that deserve special recognition:

A

(1,0)

Y

FIGURE 2. The lemniscate c|( 2x)-

DEFINITION 6.1. A map f: M™ — N is said to be an immersion if for
every p € M the linear map f., : M, — Ny, is one-to-one (so that n < k). If
in addition f maps M homeomorphically onto f(M) (where f(M) is endowed
with the subspace topology), then f is called an imbedding.



6. SUBMANIFOLDS 13

Notice that if M is compact, then an injective immersion is an imbed-
ding. This is not true in general: For example, the curve ¢ : R — R? which
parametrizes a lemniscate, c¢(t) = (sint,sin 2¢), is an immersion; its restriction
to (0,27) is a one-to-one immersion, but not an imbedding, although C)(0,7) 18
In fact, an immersion is always locally an imbedding:

PROPOSITION 6.1. If f : M™ — N* is an immersion, then for anyp € M,
there exists a neighborhood U of p, and a coordinate map y defined on some
neighborhood V' of f(p) such that

(1) A point q belongs to f(U) NV iff y"(q) = --- = y*(q) = 0, i.e.,

y(fU)NV) = R" x{0}) ny(V);
(2) flu is an imbedding.

PRrROOF. Consider the inclusion ¢ : R® — RF, and let z be a coordinate map
around p with z(p) = 0, § a coordinate map around f(p) with (go f)(p) = 0.
Since § o f o 2! has maximal rank at 0, there exists by the implicit function
theorem a chart g of R¥ around 0, and a neighborhood W of 0 € R™ such that
gogofox~lw =1|w. Set U =2"1(W), y = goy; by restricting the domain of
g if necessary, (1) clearly holds. (2) follows from the fact that f|y = y~owoz|y
is a composition of imbeddings.

w

)
c 7

> --- — -

—~

FIGURE 3

REMARK 6.1. When f in Proposition 6.1 is an imbedding, then f(U) equals
f(M)NW for some open set W in N. Thus, in this case, (1) reads
FM)NV ={geV ]y = =y"(q) =0}

DEFINITION 6.2. Let M, N be manifolds with M C N. M is said to be a
submanifold of N (respectively an immersed submanifold of N) if the inclusion
map ¢: M < N is an imbedding (respectively an immersion).
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By Remark 6.1, if M is an n-dimensional submanifold of N*, then for any
p in M, there exists a neighborhood V of p in N, and a chart (V,z) of N such
that

MMV ={qeV|z""(q) = =2"(g) =0}

When f : M — N is a one-to-one immersion (resp. imbedding), then M is
diffeomorphic to an immersed submanifold (resp. submanifold) of N: namely
f(M), where f(M) is endowed with the differentiable structure for which f :
M — f(M) is a diffeomorphism. Clearly, ¢ : f(M) — N is a one-to-one
immersion (resp. imbedding). More generally, two immersions f; : M} — N and
f2 : My — N are said to be equivalent if there is a diffeomorphism g : M; — M
such that foog = f1. This defines an equivalence relation where each equivalence
class contains a unique immersed submanifold of N.

DEFINITION 6.3. Let f : M™ — N be differentiable. A point p € M is
said to be a regular point of f if f. has rank k at p; otherwise, p is called a
critical point. ¢ € N is said to be a regular value of f if its preimage f~ 1(q)
contains no critical points (for example, if ¢ ¢ f(M)).

THEOREM 6.1. Let f : M™ — N¥ be a smooth map, withn > k. Ifq € N
is a reqular value of f and if A:= f~Y(q) # 0, then A is a topological manifold
of dimension n — k. Moreover, there ezists a unique differentiable structure for
which A becomes a differentiable submanifold of M.

PRrROOF. Let y : V — RF be a coordinate map around ¢ with y(q) = 0;
given p € A, let  : U — R"™ be a coordinate map sending p to 0. Decompose
R™ = R* x R*7* and denote by 7;, i = 1,2, the projections of R™ onto the
two factors; finally, let 15 : R*™* — R™ be the map given by 22(a1,...,a, %) =
0,...,0,a1,...,Gnp_k)-

Since yo fox~! has maximal rank at 0 € R™, there exists, by Theorem 5.3(2), a
chart (W, h) around 0 in R™ such that yo foz™'oh = m |w. Set W = ma(W).
W is open in R % and yo foaz loho )y = m o)y = 0. Thus, if
then z(W) C A. We claim that z(W) = AN (z~1oh)(W), so
that z maps W homeomorphically onto a neighborhood of p in A in the subspace
topology. Clearly, z(W) C AN (z~ Lo h)(W), since 2(W) = (z" L ohow)(W) =
(7' o B)(W N (0 x R*™F)). Conversely, if p € AN (z7! o h)(W), then p =
(x7Yoh)(u) for a unique u € W, and 0 = yo f(p) = (yofox—toh)(u) = mi(u),
so that u = (0,a) € 0 x W. Then p = z(a) € z(W). It follows that the inclusion
: A — M is a topological imbedding.

Endow A with the differentiable structure induced by the charts (z(W), z1)

as p ranges over A. Then ¢ : A < M is smooth, since zo10(z71)™1 = hos. O

2=z 1

EXAMPLES AND REMARKS 6.1. (i) Let » > 0, and consider the map f :
R"*! — R given by f(a) = |a]? —r2. Since Df(a) = 2(a1,...,an+1), f has
maximal rank 1 everywhere except at the origin. Thus, S? = f~1(0) is a
differentiable submanifold of R**!. This differentiable structure coincides with
the one introduced in Examples and Remarks 1.1: it is straightforward to check
that the inclusion of the sphere into Euclidean space is smooth for the atlas
introduced there; i.e., that 20z~ : R® — R™"! is differentiable, if x denotes
stereographic projection.
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— w

FIGURE 4

(ii) Let f: M™ — N be a differentiable map as in Definition 6.3. A point
of N that is not a regular value is called a critical value of f. Sard proved that if
U is an open set in R”, and f : U — R* is differentiable, then the set of critical
values of f has measure zero; i.e., given any € > 0, there exists a sequence of
k-dimensional cubes containing the set of critical values, whose total volume is
less than e. A proof of Sard’s theorem can be found in [25]. As a consequence,
the set of regular values of a map f : M — N between manifolds is dense in N,
since its complement cannot contain an open nonempty set.

(iii) A surjective differentiable map f : M™ — N* is said to be a submersion
if every point of M is a regular point of f. In this case, f has no critical values,
and each p € M belongs to the (n — k)-dimensional submanifold f~*(f(p)).

Let 2: A — M be an imbedding. For p € A, 1,, identifies the tangent space
A, with a subspace of M.

PROPOSITION 6.2. Let q be a regular value of f : M™ — N*, where n > k,
and suppose that A := f~1(q) # 0. Then for p € A, 1A, = ker fup.

PROOF. Since both subspaces have common dimension n — k, it suffices to
check that 1,,A, C ker f,,. Let v € A,. For ¢ € FN, we have

(feptaep)(¢) = (f 0 1)upv(9) = v(@ 0 fo1) =0,

where the last identity follows from the fact that f o2 = ¢, so that ¢o forisa
constant function. This establishes the result. O

EXAMPLE 6.1. Given manifolds M, N with p € M, ¢ € N, define imbed-
dings 1 : M — M x N and g, : N — M x N by 14(p) = 5,(q) = (p,q). If 71,
my denote the projections of M x N onto M and N, then

M0l =1y, moJp=1N, mMOJ=p, WOl =g,

where p is identified with the constant map M — M sending every point to p,
and similarly for q. Thus,

T1x O lgup = 1ng,, T2x © ] *qlea T1x © Jpx =0, myo01 *p:O-
q*p P p q p*xq q
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This implies that the map
L: ]\[p X Nq — (Af X N)(pﬁq),
(U, V) = 1gaplh + Jpeq?

is an isomorphism with inverse (7. (p,q): T2x(p,q)): Both maps are linear, and by
the above, (m*(p_q), T2x(p.q)) © L = 1ar,xn,. The claim follows since both spaces
have the same dimension.

EXERCISE 12. Let U be an open set in R*, f € FU. Show that F :
U — R where F(a) = (a, f(a)), is a differentiable imbedding. It follows
that F(U) is a differentiable n-submanifold of R™*!, called the graph of f.
For example, if U = R™ and f(a) = |a|?, the corresponding graph is called a
paraboloid.

EXERCISE 13. Suppose f : M — N is differentiable, and let ) denote a
submanifold of N. f is said to be transverse regular at p € f~1(Q) if f., M, +
Qs(p) = Ny(p)- Show that if f is transverse regular at every point of f~1(Q) # 0,
then f~1(Q) is a submanifold of M of codimension equal to the codimension
of @ in N. Theorem 6.1 is the special case when ) consists of a single point.

EXERCISE 14. For p € R™™! let J, : R*™! — (R"*1),, denote the canonical
isomorphism. Use Proposition 6.2 to show that if p € S, then

1(S7 )p = jp(pj_)y
where pt = {a € R**! | (a,p) = 0} is the orthogonal complement of p.

EXERCISE 15. Prove that if M is compact, then f : M™ — R" cannot have
maximal rank everywhere. Show by means of an example that such an f can
nevertheless have maximal rank on a dense subset of M.

7. Vector Fields

In calculus, one defines a vector field on an open set U C R" as a differ-
entiable map F' = (f1,...,fn) : U — R™. When graphing a vector field on,
say, R?, one draws the vector F(p) with its origin at p, in order to distinguish
it from the values of F' at other points; in terms of tangent spaces, this means
that F'(p) is considered to be a vector in the tangent space of R” at p. It is now
natural to generalize this concept to manifolds as follows:

DEFINITION 7.1. Let U be an open set of the differentiable manifold M™.
A (differentiable) vector field on U is a (differentiable) map X : U — TM such
that mo X = 1y;. Here w: TM — M denotes the tangent bundle projection.

Thus, the value of X at p, which we often denote by X,,, is a vector in M,
Any f € FU determines a new function X f on U by setting X f(p) := X,(f).
If (U, z) is a chart, the coordinate vector fields are the vector fields §/0x* whose
value at p € U is 8/0z%(p), cf. (3.1). Any vector field X on U can then be
written as X = Y, X(2%)8/0z" =}, da*(X)0/0x".

PropoOsITION 7.1. Let X : U — TM be a map such that mo X = 1. The
following statements are equivalent:
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(1) X is a vector field on U (i.e., X, as a map, is differentiable).
(2) If (V,z) is a chart with V C U, then Xx' € FV.
(3) If f € FV, then X f € FV.

PROOF. (1)=>(2): Recall that (V, ) induces a coordinate map Z on 7= (V),
where Z(v) = (z o w(v),v(z'),...,v(z™)). Since X is smooth, 7 o X|y =
(xolly,X|v(zl),..., X|y(z™)) also has that property. Thus, each component
function Xz* is differentiable on V.

(2)=(3): If each X|y (') € FV, then X|v(f) = > ;(X|vz")0f/0z' € FV.

(3)=(1): ZoX|y = (z, X|v(z!),..., X|v(z")) is smooth, and therefore so is
X |y . Since this is true for any chart (V,x) with V' C U, X is differentiable. O

EXAMPLE 7.1. A vector field X on R"™ induces a differentiable map F =
(fY,...,f™ : R® — R™ where f' = du’(X); conversely, any smooth map
F : U — R" on an open subset U of R™ determines a vector field X on U, with
X(p) = TpF(p).

Let XU denote the set of vector fields on U. XU is a real vector space and
a module over FU with the operations (X +Y), = X, + Y}, (¢X), = ¢(p)X,.
If f,g € FU and «, 8 € R, then X(af + 8g) = (X f) + 5(Xg), and X(fg) =
(Xflg+ (Xg)f.

We recall two theorems from the theory of ordinary differential equations:

THEOREM 7.1 (Existence of Solutions). Let F': U — R"™ be a differentiable
map, where U is open in R™. For any a € U, there exists a neighborhood W of
a, an interval I around 0, and a differentiable map v : I x W — U such that

(1) ¥(0,u) =u, and
(2) D¢(t» u)el =Fo w(tv u)
fortel andue W.

Theorem 7.1 may be interpreted as follows: A curve ¢: I — U is called an
integral curve of (the system of ordinary differential equations defined by) F if
¢ = F'oc, 1 < i < m; in this case, Dc = Foc, and the restriction of F to c is the
“velocity field” of ¢. Thus, 7.1 asserts that integral curves t — c(t) := ¥(¢,u)
exist for arbitrary initial conditions ¢(0) = u, that they depend smoothly on
the initial conditions, and that at least locally, they can be defined on a fixed
common interval. Also notice that in manifold notation, ¢ is an integral curve
of F:R" — R" iff ¢ = X o¢, where X = JF, cf. the example above.

THEOREM 7.2 (Uniqueness of Solutions). If ¢, ¢ : I — U are two integral
curves of F: U — R™ with c(to) = é(to) for some tg € I, then ¢ = ¢.

DEFINITION 7.2. Let M be a manifold, X € XM, and I an interval. A
curve ¢ : I — M is called an integral curve of X if ¢ = X oc.

THEOREM 7.3. Let M be a manifold, X € XM. For any q € M, there
ezists a neighborhood V' of q, an interval I around 0, and a differentiable map
®: 1 xV — M such that

(1) ©(0,p) =p, and
(2) .5 (t,p) = X o ®(t,p)
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forallt € I, pe V. Here, 0/0t(t.p) := 1. D(t) for the injection 1, : I — I xV
which maps t to (t,p).

Notice that

o —_ ,
@*a(t,p) =P oy(t) = Dp(t),

where ®,(t) = ®(¢,p). Theorem 7.3 asserts that for any p e V, &, : 1 — M is
an integral curve of X passing through p at t = 0. @ is called a local flow of X.

PROOF. Let (U,z) be a chart around ¢, and set G := z(U), a := z(q), and
F = (dz'(X),...,dz"(X))oz™' : G - R"

By Theorem 7.1, there exists a neighborhood W of a, an interval I around 0,
and a map 1 : I x W — G such that (1) and (2) of 7.1 hold. Let V := z~1(W),
and ® : I x V — M be given by ®(t,p) = 7! o ¥(t, z(p)). d

An argument similar to the one above generalizes the uniqueness theo-
rem 7.2 to manifolds:

THEOREM 7.4. Ifc,é: I — M are two integral curves of X € XM with
c(tg) = é(tg) for some tg € I, then ¢ =¢.

For each p € M, let I, denote the maximal open interval around 0 on which
the (unique by 7.4) integral curve ®,, : I, — M of X with ®,(0) = p is defined.

THEOREM 7.5. Given any X € XM, there exists a unique open set W C
R x M and a unique differentiable map ® : W — M such that

(1) I, x {p} =Wn (R x {p}) forallpe M, and
(2) B(t,p) = @,(0) if (t.) € W.

® is called the mazimal flow of X. By (2), {0} x M C W, and (1), (2) of
Theorem 7.3 are satisfied.

PROOF. (1) determines W uniquely, while (2) does the same for ®. It thus
remains to show that W is open, and that @ is differentiable.

Fix p € M, and let I denote the set of all ¢ € I, for which there exists
a neighborhood of (¢,p) contained in W on which ® is differentiable. We will
establish that I is nonempty, open and closed in I, so that I = I,: I is
nonempty because 0 € I by Theorem 7.3, and is open by definition. To see that
it is closed, consider ty € I; by 7.3, there exists a local flow ® : I' x V! — M
with 0 € I’ and ®,(tg) € V'. Let t; € I be small enough that tq —t; € I’
(recall that ¢y belongs to the closure of I) and ®,(t1) € V' (by continuity of
®,). Choose an interval Iy around to such that t —t; € I’ for t € Iy. Finally,
by continuity of ® at (¢1,p), there exists a neighborhood V of p such that
Dty xV)cC V.

We claim that ® is defined and differentiable on Iy x V', so that tq € I:
Indeed, if t € Iy and ¢ € V, then by definition of Iy and V, t —t; € I’
and ®(t1,q) € V', so that ®'(t — t1, ®(t1,q)) is defined. The curve s — &'(s —
t1,®(t1,q)) is an integral curve of X which equals ®(¢,, ¢) at t;. By uniqueness,
D(t,q) = ®'(t —t1,P(t1,q)) is defined, and P is therefore differentiable at (¢, q).

O
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DEFINITION 7.3. Let ® : R x M — M be differentiable, and define ®; :
M — M by ®:(p) := ®(t,p). {Pt}icr is called a one-parameter group of
diffeomorphisms of M if
(1) (I)O = 1]\[, and
(2) Byyey = By, 0Dy, 1,12 € R.

Observe that each &, is indeed a diffeomorphism of M with inverse ®_;. If
® is a one-parameter group of diffeomorphisms, then the vector field X defined
by X, = ‘b*%ho,p) has ® as maximal flow (since integral curves are defined
for all time). Conversely, if X € XM, then the maximal flow of X induces a
one-parameter group of diffeomorphisms provided X is complete; i.e., provided
integral curves are defined for all time. The exercises at the end of the section
establish that vector fields on compact manifolds are always complete.

EXAMPLE 7.2. Consider the vector field X € XR2? whose value at a =
(a1,a2) is given by —as D1 |, +a1Dz,. Fix p = (p1,p2) € R?, and let ¢ : R — R?
denote the curve

c(t) = ((cost)pr — (sint)pe, (sint)p; + (cost)pa).
Then
é(t) = (—(sint)py — (cost)pz)Di|e) + ((cost)py — (sint)pa) Da|cry = X o ¢(t).

Thus, c is the integral curve of X with ¢(0) = p, and X is complete. The
one-parameter group of X is the rotation group

_ f[cost —sint)\ (p;
i1, p2) = (sint cost ) <p2)’
EXERCISE 16. Show explicitly that ® in Theorem 7.3 satisfies (1) and (2).

EXERCISE 17. With notation as in Theorem 7.5,

(a) Show by means of an example that there need not exist an open interval
I around 0 such that I x M c W. Hint: Let M =R, X, = —t2D;.

(b) Show that if such an interval exists, then it equals all of R; i.e., W =
R x M, and integral curves are defined for all time.

(c) Prove that if M is compact, then any vector field on M is complete.

EXERCISE 18. Let ¢ : [a,8) — M be an integral curve of X € XM, and
suppose that for some sequence t,, — 3, ¢(t,,) — p for some p € M.

(a) Show that ¢ : [a, 3] — M, where (5|[aﬂ) = ¢ and ¢(3) = p, is continu-
ous.

(b) Prove that if ¢ : I — M is the maximal integral curve of X with
c(B) = p, then [a, 8] C I, and ¢|(q 5] = ¢

(c) Use parts (a) and (b) to recover the result from Exercise 17 (c¢): Namely,
if M is compact, then every integral curve of X € XM is defined on all of R.

8. The Lie Bracket

Consider two vector fields X and Y on an open subset U of M, with flows
®, and Uy, respectively. It may well happen that these flows commute; i.e.,
that ®; 0 ¥y, = U, o &, for small s and ¢. This is the case for example when
X and Y are coordinate vector fields, since the standard fields D; and D; in
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Euclidean space have commuting flows. In general, the Lie bracket [X,Y] of
X and Y is a new vector field that detects noncommuting flows. This concept
actually makes sense in the more general setting of an arbitrary vector space
E:
DEFINITION 8.1. A Lie bracket on a real vector space E is a map [,] :

E x E — F satisfying:

(1) [aX + BY, Z] = o[ X, Z] + 2]Y, Z],

(2) [X,Y] = -[Y, X], and

@) X[V Zll+ [V, [2, X]] + [2,[X, Y]] = 0
for all X,Y,Z € E, o, € R. By (1) and (2), the Lie bracket is linear in
the second component also. (3) is called the Jacobi identity. A vector space
together with a Lie bracket is called a Lie algebra.

A trivial example of a Lie algebra is R”™ with [,] = 0. This is the so-called
abelian n-dimensional Lie algebra. R? is also a Lie algebra, if one takes the Lie
bracket to be the classical cross-product of two vectors.

Let M be a differentiable manifold, p a point in an open set U of M, and
X,Y € XU. Define XY : F,U — R by setting (X,Y)f := X,(Yf). X,Y is
not a tangent vector at p, because although it is linear on functions, it is not a
derivation. However, X,Y — Y, X is one:

(XpY =Y, X)(fg) = Xp(Y(fg)) — Yp(X(f9))
=X (f(Yg) +9(Y[)) = Yp(f(Xg) + 9(X[))
= (Xp/)(Yp9) + F(0) Xp(Y9g) + (Xp9)(Yaf) + 9(p) Xp (Y f)
— (Y £)(Xpg) — f(0)Yp(Xg) — (Ypg9) (X, f)
—9(P)Yp(X[)
= f(p)(XpY — Y, X)(9) + 9(p)(X,Y = Y, X)(f).
Thus, p— X, Y — Y, X is a vector field on U.

DEFINITION 8.2. Let X,Y € XU, where U is open in M. The Lie bracket
of X with Y is the vector field [X,Y] on U defined by [X,Y], :== X,Y — ¥, X.

It is straightforward to check that XU with the above bracket is a Lie
algebra. One often denotes X (Y f) by XY f, so that one may write

[X,Y] = XY - YX.
Observe also that for f € FU, [fX,Y] = f[X,Y] - (Y f)X.

PROPOSITION 8.1. Let (U, z) denote a chart of M™. Then [0/0x",0/027] =
0 forl <i,5 <n.
PRrOOF. For ¢ € FU,
g 0 o 0 o 0
Bt 371 = 821807~ Ba7 B0 ?

0 _ 0 _

= Di(Dj(¢oz)) oz — Dy(Di(¢poa")) oz =0.
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If f: M — N is differentiable and X € XM, then the formula Y;,) := fi X
does not, in general, define a vector field on N. Wesay X € XM and Y € XN
are f-related if Yy 1= fuX, for allp € M;ie., if fL.X =Y o f. When f is a
diffeomorphism, any X € XM is f-related to the vector field f, o X o f~! on
N.

PROPOSITION 8.2. Let f: M — N be differentiable, X; € XM, Y; € XN,
1=1,2. If X; andY; are f-related, then [X1, Xo] and [Y1,Y32] are f-related.

PRrROOF. If ¢ € FN, then for p € M,
(Y1, Y2lr ()@ = Y115(p) (Yoo) — Yo i) (Y1) = fuX1p(Y20) — fuX2p(Y10)
= X1p((Y20) o f) — Xop((Y19) o f).
Next, observe that (Y;¢) o f = X;(¢ o f), since

((Yig) o f)(q) = (Yio)(f(9) = Yi|(q)® = (fuXijg)d = Xijg(@ 0 f).
Thus,
[Y1,Y2]5(5)® = X1pp(Xa(d o f)) — X2)p (X1 (@0 f)) = [X1, Xo]p(¢o f)
= (fu[X1, X2]p) o
O

DEFINITION 8.3. An n-dimensional manifold and group G is called a Lie
group if the group multiplication G x G — G and the operation of taking the
inverse G — G are differentiable.

It follows that for A € G, left-translation Ly : G — G by h, Lpg := hg,
is differentiable. A vector field X € X is said to be left-invariant if it is Lg-
related to itself for any g € G. Such a vector field will be abbreviated 1.i.v.f.
The collection g of all 1.i.v.f. is a real vector space, and by Proposition 8.2, is
also a Lie algebra. It is called the Lie algebra of G.

Any X € g is uniquely determined by its value at the identity e: indeed,
Xg=XoLy(e) = LgsX.. Thus, the linear map g — G, which sends a Li.v.f.
to its value at the identity is one-to-one. It is actually an isomorphism: given
v € G, the vector field X defined by X, := Lg.v is left-invariant, since

LnXg = (LpoLg)sv = Lipgv =X 0 Ly(g).

We may therefore consider G. to be a Lie algebra by setting [X., Y] := [X, Y],
for Liv.f’s X and Y.

ExaMPLE 8.1. (i) R" is a Lie group with the usual vector addition. Left
translation by v € R" is just L,w = v + w. Since the Jacobian matrix of L,
is the identity, we have that L,.D;, = Dj,(a); equivalently, the standard
coordinate vector fields form a basis for the Lie algebra of R”; this Lie algebra
is abelian by Proposition 8.1.

(ii) Let G = GL(n) denote the collection of invertible n by n real matrices.
It becomes a Lie group under matrix multiplication. As an open subset of the
n?-dimensional vector space M, of all n by n matrices, its Lie algebra gl(n)
may be identified with M,, via

M, I G, =5 gi(n),



22 1. DIFFERENTIABLE MANIFOLDS

where e is the n by n identity matrix. We claim that under this identification,
the Lie bracket is given by

(8.1) [(J.M,J.N] = J.(MN — NM),  M,N € M,.

To see this, let X, Y be the left-invariant vector fields with X(e) = J.M,
Y(e) = J.N. Since left translation by A is a linear transformation, X (A) =
Ja(AM). If u¥ : G — R denotes the function that assigns to a matrix A its
(4,7)-th entry A;;, then

(Yu'?)(A) = Y (A)(u7) = Ta(AN)(u”) = (AN)y;,

so that Yu" = u¥ o Ry, where Ry is right translation by N, Ry(A4) = AN.
Consider the curve t — c(t) = e +tM. Then

X(e)(Yu") = ¢(0)(u¥ o Ry) = Do(t — u" (N +tMN)) = (MN),;,
and similarly, Y (e)(Xu") = (NM);;. Thus,
[(JeM, J.N)(u”) = [X,Y](e)(u”) = (MN — NM);; = J(MN — NM)(u").
Since J.Q = Zi,j(jeQ)(uij)(a/(?uij)‘e for any Q € M,,, this establishes the

claim.

(iii) Given a Lie group G, and g € G, conjugation by g is the map 7, :=
LyoRg-1 : G — G. Under the identification g = Ge, the derivative 74.. belongs
to GL(g), and is denoted Ad,. The map Ad : G — GL(g) which sends g to Ad,
is then a Lie group homomorphism, and is called the adjoint representation of
G. Notice that if G is abelian, then this representation is trivial; in general, the
kernel of Ad is the center Z(G) = {g € G | gh = hg,h € G} of G.

As an example, consider the Lie group G = GL(n). We claim that Ad, is
just 74; more precisely, viewing G as an open subset of the space M, of all n
by n matrices, we have the identification 7, : M, — gl(n) as in (ii). Linearity
of 74 then implies that the diagram

gl(n) —2 gi(n)

A o

M, —— M,
Tg
commutes.

(iv) The set H of quaternions is just R? = {Z?:laiei | a; € R}; in
addition to the vector space structure, there is an associative and distributive
multiplication which generalizes that of complex numbers: write Zle o,e; as
a1 +agitasjtask, and define i? = j2 = k? = —1,4j = —ji = k, jk = —kj =i,
ki = —ik = j, and lu = w for any quaternion u. The set H* of nonzero
quaternions is then a Lie group with the above multiplication. Furthermore, it
is straightforward to check that multiplication is norm-preserving in the sense
that |uv| = |u||v| for quaternions u, v (with the usual Euclidean norm), so that
H* contains S? as a subgroup.

Recall the canonical isomorphism 7, : H — H, with J.e; = Dy, u €
H. Since left translation by u is a linear transformation of R*, we have that
LywTJe,a = Ju(ua). Thus, the livf X with Xo, = Je,a is given by X, =
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Ju(ua). Applying this to a = e;, we obtain a basis X; of Li.v.f. with X, =
Djje,, where

X1 = ulDl + U2D2 + U3D3 + U4D4.

Xo = —u?Dy + u'Dy + u*Dg — u3 Dy,

X3 = —U3D1 - U4D2 + U1D3 + u2D4,

Xy = —u'D; + 4Dy —u?D3 +u'Dy.
Observe that X is the “position” vector field, X}, = J,p, and that for i > 1,
the X;’s form a basis of the orthogonal complement Jp(pi) at p. Thus, there
are vector fields I, J, and K on S which are i-related to X5, X3, and X, for
the inclusion 2 : §3 — H*. They are left-invariant and form a basis of the Lie
algebra of S3. This Lie algebra is actually isomorphic to the Lie algebra of
R3 = {ai + 3j + vk | o, 3,7 € R} with the cross product, via I — 2i, J +— 27,
K + 2k. It is well known that S' and S3 are the only spheres that admit a Lie
group structure.

DEFINITION 8.4. Let X € XM have flow ®;. The Lie derivative of a vector
field Y with respect to X at p is the tangent vector at p given by

Yo, ) — Y
: .

Notice that (LxY"), = ¢/(0), where ¢ is the curve in M, given by c(t) =
P 1Yo, (p)-

Recall that as a special case of Lemma 3.1, any smooth function f: I — R
with f(0) = 0 may be written as f(t) = ti(t), where ¥(0) = f/(0). In fact,
W(to) = [ f'(sto) ds.

LEMMA 8.1. Let I denote an interval around 0, U an open set of M, and

f: I xU — R a differentiable function such that f(0,p) = 0 for all p € U.
Then there exists a differentiable function g : I x U — R satisfying

fp)=toltp), £ (0P =g(0.p). eI pED,
where 0/0t is the vector field on I x U that is 1,-related to D; i.e., 1p,D =
0/0t o1y, for the imbedding v, : I — I x U, 1,(t) = (¢, p).
PROOF. Set g(to,p) := [, (3/0t(sto,p)(f)) ds. O
THEOREM 8.1. For vector fields X andY on M, LxY = [X,Y].

PROOF. Let pe M, f: M — R, and ®: I x U — M be a local flow of X
with p € U. Apply Lemma 8.1 to the function I x U — R which maps (¢, q) to
(fo®)(t,q) — f(q), and deduce that there exists a one-parameter family g; of
functions on U such that f o ®; = f + tg;, and go = X f. Now,

DY, () (f) = Yo, (f © P—t) = Yo, (f — tg—1)
= (Yf) o ®u(p) — t(Yg-1) © De(p).
Observe that for a function ¢ on U,

(8.2) X,(¢) = (poc)(0) = th_r% ¢_°¢t_(pt)__¢;@

(Ex¥), = fin

)
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where ¢(t) = ®,(p). Therefore,

(Lx¥)yf = lim PDELDZEDE) (g o a,09)

=X (Yf) = (Ygo)(p) = [X, Yo f,

as claimed. O

The Lie bracket of two vector fields measures the extent to which their flows
fail to commute:

PROPOSITION 8.3. Let ®; and ¥y denote local flows of X and Y € XM.
Then [X,Y]=0iff oV, = ¥s0, forall s, t.

PROOF. Suppose that &, o Uy = U, 0o ;. By Exercise 21 below, Y is &;-
related to itself; i.e., ®Y = Y o &4, so that ®_;,Y o ®;, = Y. LxY then
vanishes by definition.

Conversely, suppose that the Lie bracket of X and Y vanishes. For any
fixed p in M, the curve ¢ in M, given by c(t) = ®_+.Y o &,(p) then satisfies
c(0) = 0. We will show that c¢ is the constant curve c(t) = Y, for all ¢, or
equivalently, that ¢/ = 0. Fix any ¢, and set ¢ = ®;(p). Then

e(t + h) —c(t)

/ I
A
.1
= %ILI}) E[(I)—(t+h)* oY 0 ®ip(p) — Pts0Y 0 Py(p)]
1
= }Lli% Eq)—t*{(q’—h* oY 0 ®)(Ptp) — Y(Pep)]

1
=0-u }11135 E[¢—h* oY o®,(q) —Y(q)] =0,
as claimed. =

THEOREM 8.2. LetV be open in M™, and consider k vector fields X1, ..., Xg
on V that are linearly independent at some p € V. If [X;, X;] =0 for all i and
j, then there exists a coordinate chart (U, ) around p such that 8/0x* = Xau,
fori =1,...,k. As a special case, if X is a vector field that is nonzero at
some point, then there is a coordinate chart (U,x) around that point such that
8/3%1 = X|U

PROOF. Recall that if (U,z) is a chart, then 8/9z° is the unique vector
field on U that is z-related to D;. The theorem states that under the given
hypotheses, there exists a chart (U, z) such that z, o X; cz™ = D; on z(U).

It actually suffices to consider the case when M = R", p = 0, and X;)o =
D;o: For the first two assertions, notice that if z is a coordinate map taking p to
0 € R™, then the vector fields Y; := z, o X; 0 2! have vanishing bracket, being
z-related to X;. Furthermore, if y is a local diffeomorphism of R™ such that
y,0Y;oy~l = Dy, then x := yoz is a chart satisfying the claim of the theorem.
The last assertion follows from the fact that if z : R® — R™ is an isomorphism
that maps the basis {Jo_le';o} to the standard one, then X;o = D;jg, where
X, :=z,0X; 027 L.
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Let ®! denote the flow of X;, and define in a small enough neighborhood
W of 0amap f: W — R" by
flay,...,a,) = (<I>(111 o-~-o@Zk)(O,..,,O,ak+1,...,an).

Then for a smooth function ¢ on R,
feDija(0) = Dlia(¢ o f)= lim - [(d) Nlar+h,az,....an) = (¢ 0 f)(a)]
= lim - [(¢o®al+ho@iz o 0@ )(0,...,0,ak41,-- ., an)
- (cb f)(a)]
= lim - [(d)o@ )(f(a)) — &(f(a))] = X15(a) ()
by (8.2), so that f. D1 = Xjof. Since ®} o0} o 0@k =@l o---0®k |
D; and X; are f-related for all i < k. Moreover,

feDiyijo(#) = Dipijo(po f) = Jim %[(050 f)(0,...,0,h,0,...,0) — ¢(0)]

1
- }111—1,»1}) ']—_L[(ZS(O, o ,O, h, 0 ey 0) - ¢(O)} = Dk+i|0(¢)~

Thus, the derivative of f at 0 is the identity, and by the inverse function
theorem, there exists a chart (U,z) around 0 with z = f~!. The equation
f+D; = X; o f is equivalent to z,X; = D; o z. O

The last theorem of this section provides a useful characterization of the
Lie bracket that generalizes Proposition 8.3:

THEOREM 8.3. Let ®; and Uy denote local flows of the vector fields X and
Y respectively. Given p € M, consider the curve ¢ : [0,e¢) — M given by

E(t) = (‘I/_\/ZO@_\/ZO\I/\/{O@\/Z)(p),
which is defined for small enough € > 0. If f € FU, where U is a neighborhood

of p, then
X, Yp(f) = tim L2000 =000

t—0t t

The curve ¢ is, in general, not (even right-) differentiable at 0. The theorem
states that if we formally define a tangent vector &, Dy by setting ¢, Do(f) equal
to the right derivative of f o ¢ at 0, then this vector equals [X,Y],.

PROOF. It is more convenient to work with the (smooth) curve c(t) = &(t?).
We will show that

(1) (foe)(0)=0, and
(2) 3(f0)"(0) = [X, Y]p(f).
Once this is established, it follows from Taylor’s theorem that
. o — o 0
X, Y]p(f) = (£ 00)'(0) = lim L2 (7290

o Yo = (00 _ L (Fod)(t) = (f02)(0)

t—0+ t t—0t t
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In order to prove (1), we introduce “variational rectangles” V;, Vo, and V3
defined on a small enough rectangle R around 0 € R?, given by

Vi(s,t) = (¥, 0 B)(p),
Va(s,t) = (@_s 0 Wy 0 @)(p),
Va(s,t) = (P_s0P_;0W;0d)(p).
Observe that c(t) = V5(¢,t), V3(0,
chain rule,
(f0¢)'(0) = D1(f o V3)(0.0) + Da(f o V3)(0,0)
= Dl( o V3)( 0) + Dl( o VQ)(O 0) + DQ( o VQ)(O.O)
= D1(f 0 V3)(0,0) + D1(f 0 V2)(0,0) + D1(f o V1)(0,0)
+ D2(f 2 V1)(0,0)
=Y f - Xpf+ Yo f + X, f =0,
which establishes (1). For (2), we have

(f2¢)"(0) = Di1(f o V3)(0,0) + 2D21(f o V3)(0,0) + Daa(f © V3)(0,0).
Using the identity D1(foV3) = —(Y f) o V3, the first term on the right becomes
D11(f o V3)(0,0) = Di(=Y foV3)(0,0) =Y, Y f.

t) = Va(t,t), and Va(0,t) = Vi(t,t). By the

A lengthy but straightforward calculation using in addition the fact that D1 (fo
Vi) = (Y f)oVi, Di(foV2) = —(X f)oVz, and Da(foV1)(0,h) = (X f)oVi(0,h)
yields

2D51(f 0 V3)(0,0) = =2Y,Y f,  Daa(f o V3)(0,0) =YY f +2[X, Y], f.

Substituting into the expression for (f o ¢)”(0) now yields (2). d
EXERCISE 19. Let (U, z) denote a chart of M, X,Y € XU, so that

1%} 0 i i
X = E ¢i_azi7 Y = E wi_@xi’ ¢ = Xz', Y =Ya"
Show that

0y ¢\ 9
X, Y] = ; <¢J ~Yi 8m3> i’
EXERCISE 20. Recall that the orthogonal group O(n) consists of all matrices
A in GL(n) such that AA* = I,,. Apply Theorem 6.1 to the map F : GL(n) —
GL(n) given by F(A) = AA" to deduce that O(n) is a Lie subgroup of GL(n)
of dimension (}). Show that its Lie algebra o(n) is isomorphic to the algebra
of skew-symmetric matrices (4 = —A") with the usual bracket.

EXERCISE 21. Let f : M — M be a diffeomorphism. Show that if X € XM
has local flow ®;, then the vector field f,oXof~! on M has local flow fo®,of1.
Conclude that X is f-related to itself iff &, o f = f o ®, for all ¢.

EXERCISE 22. Fill in the details of the proof of (2) in Theorem 8.3.
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9. Distributions and Frobenius Theorem

Consider a nowhere-zero vector field X on a manifold M. The map p —
span{X (p)} assigns to each point p in M a one-dimensional subspace of M,,.
The theory of ordinary differential equations guarantees that any point of M
belongs to an immersed submanifold—the flow line of X through that point—
that is everywhere tangent to these subspaces.

If we now replace the one-dimensional subspace by a k-dimensional one at
each point (where k£ > 1), a little experimenting with the case M = R3 and
k = 2 will convince the reader that is not always possible to find k-dimensional
submanifolds that are everywhere tangent to these subspaces. In this section, we
will describe conditions guaranteeing the existence of such manifolds. Although
they are formulated in terms of Lie brackets, they actually reflect a classical
theorem from the theory of partial differential equations.

DEFINITION 9.1. Given an n-dimensional manifold M™ and k < n, a k-
dimensional distribution A on M is a map p — A, which assigns to each
point p € M a k-dimensional subspace A, of M,. This map is smooth in the
sense that for any ¢ € M, there exists a neighborhood U of ¢, and vector fields
Xi,..., X, on U, such that Xy.,..., Xy, span A, for any r € U.

We say a vector field X on M belongs to A (X € A) if X, € A, for all
p € M. A is said to be integrable if [X,Y] € A for all X,V € A.

DEFINITION 9.2. A k-dimensional immersed submanifold N of M is said
to be an integral manifold of A if +,N, = Ap, for all p € N, where 1 : N — M
denotes inclusion.

PROPOSITION 9.1. If for every p € M there exists an integral manifold
N(p) of A with p € N(p), then A is integrable.

Proor. Let X,Y € A, p € M. We must show that [X,Y], € A,. Since
tq : N(p)g — Aq is an isomorphism for every ¢ € N(p), there exist vector
fields X and Y on N(p) that are s-related to X and Y. By Proposition 8.2,
(X, Y], = wu[X,Y], € A,. O

An important special case is that of a one-dimensional distribution; any
nowhere-zero vector field on M defines one such, and conversely a one-dimensional
distribution yields at least locally a vector field on M. Such a distribution A is
always integrable (why?). Moreover, the converse of Proposition 9.1 holds: In
fact, given p € M, there exists a chart (U, z) around p, an interval I around 0,
such that z(p) = 0, x(U) = I", and for any as,...,a, € I, the slice

{geU|2%(q) = as...,2"(q) = a,}

is an integral manifold of A. Any connected integral manifold of A in U is of this
form. To see this, let X be a vector field that spans A on some neighborhood
V of p. Since X, # 0, there exists by Theorem 8.2 a chart (U, z) around p such
that X, = 9/0z".

What we have just described holds for any integrable distribution, and is
the essence of the following theorem:
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THEOREM 9.1. Let A denote a k-dimensional integrable distribution on M.
For every p € M, there ezists a chart (U,z) with z(p) = 0, z(U) = (—1,1)",
and such that for any agi1,...,a, € I = (=1,1), the slice {g € U | 2"T'(q) =
i1, -, 27(q) = an} is an integral manifold of A. Furthermore, any connected
integral manifold of A contained in U is of this form.

ProoOF. The statement being a local one, we may assume that M = R",
p = 0, and Ag is spanned by D;jg, 1 <4 < k. Let 7 : R* — RF denote the
canonical projection. Then s, : Ao — RE is an isomorphism, and therefore
80 is Tua, t Ag — R]:r(q) for all ¢ in some neighborhood U of 0. It follows that

there are unique vector fields X; on U that belong to A, and are m-related to
D;, 1 <14 < k. Thus, m[X;, X;] = 0. But [X;, X;] € A and m, is one-to-one
on A, so that [X;, X;] = 0. By Theorem 8.2, there exists a chart (U, z) around
the origin, with z(U) = I" and Xy = 0/9x".

Let f =mpoa:U — I"*, where 7, : R® — R"* denotes projection. f
has maximal rank everywhere, and the above slices are the manifolds f~!(a),
a € I"*_If N is the slice containing ¢ € U, then by Proposition 6.2,

1wN,={veM,| fov=0}={veM,|va**)=0,j=1,...,n—k}

spal{ 0 | }
- T - s
Ozt 1<i<k

so that N is an integral manifold of A.

Conversely, suppose N is an integral manifold of A contained in U. Given
v € Ny, 2,0 belongs to A, = span{d/0z|,}1<i<k, so that 2,0(zF*+7) = 0. Thus,
(xF+7 01),, = 0 for every ¢ € N. Since N is connected, zF*+J 04 is constant by
Exercise 10. |

DEFINITION 9.3. A k-dimensional foliation F of M is a partition of M into
k-dimensional connected immersed submanifolds, called leaves of F, such that

(1) the collection of tangent spaces to the leaves defines a distribution A,
and
(2) any connected integral manifold of A is contained in some leaf of F.

A leaf of F is then also referred to as a mazimal integral manifold of A, and A
is said to be induced by F.

THEOREM 9.2 (Frobenius Theorem). Every integrable distribution of M is
induced by a foliation of M.

ProoOF. By Theorem 9.1 and the fact that M is second-countable, there
exists a countable collection C of charts whose domains cover M, such that for
any (U,x) € C, the slices

{q ceU ‘ $k+1(q) - a/k+17"'»xn(Q) = an}

are integral manifolds of the distribution A. Let S denote the collection of all
such slices, and define an equivalence relation on S by S ~ S’ if there exists
a finite sequence Sy = S,...,5;, = S’ of slices such that S; N S;11 # 0 for
1 = 0,...,1 — 1. Each equivalence class contains only countably many slices
because a slice S of U can intersect the domain V of another chart in C in only
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countably many components of V', since S is a manifold. The union of all slices
in a given equivalence class is then an immersed connected integral manifold
of A, and two such are either equal or disjoint. By definition, any connected
integral manifold of A is contained in such a union. ]

ExXAMPLES AND REMARKS 9.1. (i) Leaves need not share the same topol-
ogy: Let S? = {(21,22) € C? | |21]® + |22/*> = 1}, and for a € R, consider the
one-dimensional foliation F of S? defined as follows: the leaf through (21, 2o) is
the image of the curve ¢ : R — 83, ¢(t) = (z1€%, 20¢!®*). When « is irrational,
some leaves will be immersed copies of R, while others (the ones through (1,0)
and (0, 1)) are imbedded circles. The foliation corresponding to o = 1 is known
as the Hopf fibration.

(ii) Let M be the torus Sll/\/5 X Sll/\/5 ={(21,22) € C? | |21]? = |z|? =

1/2}. M is a submanifold of S*, and the foliation from (i) above induces one
on M. If a is irrational, it is easy to see that each leaf is dense in M.

EXERCISE 23. Define an inner product on the tangent space of R™ at
any point p so that J, : R® — R} becomes a linear isometry; i.e., (u,v) :=
(T u, Iy 1) for w,v € Ry, with the right side being the standard Euclidean
inner product. Let A denote the two-dimensional distribution of S$* which is
orthogonal to the one-dimensional distribution induced by the Hopf fibration

in Example 9.1(i). Show that A is not integrable.

EXERCISE 24. Let 7 : M™ — N™F be a surjective map of maximal rank
everywhere. Show that the collection of pre-images 7~ 1(gq), as g ranges over N,
is a k-dimensional foliation of M.

10. Multilinear Algebra and Tensors

The material in this section is fairly algebraic in nature. The modern
interpretation of many of the important results in differential geometry requires
some knowledge of multilinear algebra; Stokes’ theorem, Chern-Weil theory
among others are formulated in terms of differential forms, which are tensor-
valued functions on a manifold. Here, we have chosen Warner’s approach [36],
which is in a sense more thorough than Spivak’s [34].

The free vector space generated by a set A is the set F(A) of all functions
f A — R which are 0 except at finitely many points of A, together with
the usual addition and scalar multiplication of functions. The characteristic
function f, of a € A is the function which assigns 1 to a and 0 to every
other element. If we identify elements of A with their characteristic functions,
then any v € F(A) can be uniquely written as a finite sum v = Y a;a;, with
o; = v(a;) € R. In other words, A is a basis of F(A).

Let V and W be finite-dimensional real vector spaces, and consider the
subspace F(V x W) of F(V x W) generated by all elements of the form

(v1 + v, w) — (v1,w) — (vo,w), (v,w1 +ws) — (v,wr) — (v, wa),
(av,w) — a(v,w), (v,ow)— a(v,w), a€Rv,v € V,w,w; € W.

DEFINITION 10.1. The tensor product V ® W is the quotient vector space
FVxW)/FV xW).
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The equivalence class (v, w)+F(V x W) is denoted v@w. The first relation
above implies that (v +v2) @ w = v; ® W+ v2 ® w, and similar identities follow
from the others.

When W = R, V @ R is isomorphic to V, by mapping v ® a to av for
a € R, v € V, and extending linearly. Yet another simple example is the
complexification of a vector space: Recall that the set C of complex numbers is
a real 2-dimensional vector space. The complexification of a real vector space
VisVRC. GivenveV,z=a+bi € C, theelement vz =v®a+v®bi is
usually written as av + ibv.

Given vector spaces Vi,...,V,,and Z, amap m: V] x.-- xV,, — Z is said
to be multilinear if

mvy, ..., av; + W, .., U) = am(Vi, .o Uiy ) F (U1, W Uy

for all v;,w € V;, a € R. When n = 2, a multilinear map is also called bilinear.
The next lemma characterizes such maps as linear maps from the tensor product
Viw---®V,to Z:

LEMMA 10.1. Let w: V x W — V @ W denote the bilinear map 7(v,w) =
v ®@w. For any vector space Z and bilinear map b : V x W — Z, there ezists
a unique linear map L :V @ W — Z such that L or® = b. Conversely, if X is
a vector space that satisfies the above property (namely, there exists a bilinear
map p:V xW — X such that if b: V x W — Z is any bilinear map into some
space Z, then there exists a unique linear map T : X — Z with Top = b), then
X is isomorphic to V@ W.

PROOF. Since V x W is a basis of V @ W, b induces a unique linear map
f: F(VxW) — Z such that for =0, wherer: VW — F(V xW) is inclusion.
Since b is bilinear, the kernel of f contains F(V ® W), and f induces a unique
linear map L: V®W — Z such that Lo® = f, where 7 : F(Vx W) - VW
denotes the projection. Thus, Lom = Lofo1= fo1=Db.

Conversely, if X is a space as in the statement, then there exist linear maps
T:X—->V@WandL:V®W — X such that the diagrams

VW —— VxW
1
X T vew
and
VW —— VxW
Pl lﬁ
X L vew
commute. Thus, 7' and L are mutual inverses. 0

For vector spaces V and W, Hom(V, W) denotes the space of all linear
transformations from V to W with the usual addition and scalar multiplication.
Choosing bases for V and W (which amounts to choosing isomorphisms V' —
R", W — R™) yields isomorphisms

Hom(V, W) = Hom(R",R™) & M,, ,,
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with the space My, , of m x n real matrices. In particular, dim Hom(V, W) =
dimV - dimW. The dual V* of V is the space Hom(V,R) = M; , X R" > V.
This noncanonical (because it depends on the choice of basis) isomorphism
between V* and V is equivalent to saying that if {e;} is a basis of V, then {a'}
is a basis of V* (called the dual basis to {e;}), where o' is the unique element
of V* such that a'(e;) = §;;.

Notice, however, that there is a canonical isomorphism L : V — V** given
by

(Lo)(@) = a(v), veV, aeV"

ProposITION 10.1. V* ® W is canonically isomorphic to Hom(V,W). In
particular, dim(V @ W) = dimV - dimW. In fact if {e;} and {f;} are bases of
V and W respectively, then {e; ® f;} is a basis of V@ W.

PRrROOF. The map
V* x W — Hom(V, W),
(@, w) = (v (av) - w)

is bilinear, and by Lemma 10.1 induces a unique linear map L : V* @ W —
Hom(V,W). L is easily seen to be an isomorphism with inverse 7 +— 3 of ®
T(e;), where {e;} and {a'} are any dual bases of V and V* respectively. As
to the second statement, if v = > ae; € V and w = Y b;f; € W, then
vOw =3, sabje; ® f;, so that {e; ® f;} is a spanning set for V@ W. It must
then be a basis by dimension considerations. g

Thus, for example, V @ R = V** @ R 2 Hom(V*,R) X V** 2 V.

DEFINITION 10.2. A tensor of type (r,s) is an element of the space

S

—TN—
T,s(V)=V® - VeV - - V*.

Our next aim is to show that T, ;(V') may be naturally identified with the
space M, (V') of multilinear maps V x---xV xV*x---xV* — R (s copies of
V, r copies of V*). For example, a bilinear form on V (e.g., an inner product)
is a tensor of type (0, 2).

Recall that a nonsingular pairing of V with W is a bilinear map b : VxW —
R such that if the restriction of b to {v} x W, respectively V x {w}, is identically
0, then v, respectively w, is 0 for any v € V and w € W. When V and W are
finite-dimensional, such a pairing induces isomorphisms V. — W* and W — V*:
Define L : V. — W* by (Lv)w = b(v,w). L is one-to-one, and since b induces
a similar map from W to V*, V and W must have the same dimension, and L
is an isomorphism. The isomorphism V & V** above comes from the pairing
b:V xV* =R, bla,v) = a(v).

ProposiTION 10.2. T; (V) is canonically isomorphic to M, (V).

PROOF. Define a nonsingular pairing b of T ;(V) with T;. s(V*) as follows:
foru=u® - Qu®v,,® v, € T,s(V)and v* = v} ® - ®
Uy @ Urpl ® o ® Upgs € Ty 5(V*) (such elements are called decomposable),
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set b(u,v*) := []vf(w;), and extend bilinearly to all elements. Together with
Lemma 10 1, this yields the sequence of isomorphisms

TT,S(V) = (TT,S(V*))* = AIT,S(V*) = ]\/[ST‘(V)

It follows that under the above identification, an element u; ® -+ - ® u, ® U] ®
- @uk €T, 4(V) is a multilinear map V*° x V*" — R satisfying

* *
U R QU QU Q- @us(vy,...,0s,0],...,08) = H (u;) Hu vj).

=1

O

As an elementary example, consider a manifold M™, p € M, and a chart
(U,x) around p. Set V = M,,. Then {dxf ® dxj }1<i,an is a basis of Vp 2. By
Proposition 10.2, dz! ® dz? (v, w) = dz*(v)dz? (w )

It is convenient to group all the tensor spaces into one: The tensor algebra
of V is the graded algebra T(V) = &, s>0Tr,s(V) with the multiplication ® :
Ty s, (V)X Ty 5,(V) = Ty 4y rats, (V). The subalgebra To(V) = @, T 0(V) is
called the algebra of contravariant tensors. Let I(V) denote the ideal of Tp(V)
generated by the set of elements of the form v ® v, v € V. We may write
(V) =&,I.(V), where I.(V) = I(V) N T, o(V).

DEFINITION 10.3. The exzterior algebra of V is the graded algebra A(V) =
To(V)/1(V).

Observe that A(V) = ®k>0Ax(V), where Ag(V) = R, Ay(V) =V, and
A (V) = Ty o(V)/I,(V) for k > 1. The multiplication in To(V') induces one in
A(V), called the wedge product, and denoted A: If 7 : Tp(V) — A(V) denotes
the projection, then

(1 @ Quk) =v1 A+ AUg.

PRrROPOSITION 10.3. If {e1,...,en} is a basis of V, then {e;, N--- Ne;, |
1< < -+ <ig <n}isabasis of Ag(V). Thus, dimAx(V) = (Z) for k <n,
An(V) 2R, and Apii(V) = 0.

PROOF. Since (e; +¢€;) A(e;+¢€;) =0, e; Aej = —ej Aey, so the set in the
statement spans Ax(V). To see that it is linearly independent, suppose that

Zj aje; i Ao ANej; = 0. Fix j, and let e;,,...,e;,_, be those basis vectors
that do not appear in the expression e; ; A --- Ae;, ;. Observe that for [ # j,
the set {e;,1,...,e;} intersects {e;,,...,e;, . }. Thus,

0= (Z agei N A elkl) (ej, N---Nej, ) =Fojer A Nep,

and it only remains to show that e; A---Ae, # 0, or equivalently, that e; ®---®
en ¢ I,(V). But any w € I,(V) can be uniquely written as a linear combination
of terms ej, ®- - -®e;, , each of which either satisfies j; = j; 41 for some ¢, or else
comes paired with another term of the form e;, ®- - -®e;,, , ®e;, @ - -®e;,, bearing
the same scalar coefficient. This is clearly not the case for e; @ - - ® e,,. |
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Given a space W, a multilinear map m : V¥ — W is said to be alternating
if m(...,v,...,u,...) = 0. When W = R, the space of such maps will be
denoted Ak (V). Just as multilinear maps can be viewed as linear maps from a
tensor algebra, Exercise 26 establishes that alternating multilinear maps from
V* can be considered as linear maps from A (V).

PROPOSITION 10.4. There are canonical isomorphisms A (V*) = Ap(V)* =
Ap(V).

PROOF. The second isomorphism is the one induced from Exercise 26. For
the first one, there is a unique bilinear map b : A (V*) x Ax(V) — R which is
given on decomposable elements by

b(vi A--- Avg,v1 A Avg) = det(v]v;).

It determines a nonsingular pairing, and therefore an isomorphism Ag(V*)

Ar(V)*

Observe that under the identification Agx(V*) = Ax(V),

O

(VI A= Avg) (v, ..o vg) = det(v]vy).

Moreover, A(V) := @ Ar(V) = @A (V*) = A(V*), so that A(V) is a graded
algebra. Now, if u € Ag(V), v € Ay(V), then u Av = (—1)*v A u, as follows
by writing u and v in terms of decomposable elements and considering the case
k=101=1. It follows that

aAfB=(D"BAa, acA(V), BecANV).
PROPOSITION 10.5. For a € Ax(V) and g € Ai(V),

aNpB(ur,... k) = Z (sgno)a(vorys - - Vo(k))B(Vo(kt1)s - - - » Vo (k1))
UEPk-H

1

= Z W(sgn U)a(va(l), PO ,va(k))ﬁ(va(kﬂ), PN ,vg(k+l)).
c€Pey

(Here, Py, is the group of all permutations of {1,...,k + 1}, and Py, is the

subset of all (k,1)-shuffles; i.e., those permutations o with o(1) < --- < o(k)

ando(k+1)<---<olk+1))

PRrROOF. It suffices to establish the result for decomposable elements o« =
uy A---Aujp and 8 = w] A--- Aw]. Notice that

a(vy,...,vg) = det(ujv;) = Z (sgnT)Uiv (1) - - - UpVr(k)
TEP
by definition of the determinant. Given o € Py, let w; = v,(;), so that

(Vo (1)s -+ > Vo(k)) = (W1, ..., W) = Z (sgnT)ujwe(ry - - - URWr (k)
TEPy

= Z (sgNT)UTVgr(1) - - - ULVorr(k)-
TEP
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Now, for any o € Py, there exist unique 7 € Py, 7 € P, and (k,[)-shuffle &
such that o(i) = 67%(4) for i < k and o(k + 1) = 6(k + 7(7)) for i <{. Thus,

Z (sgn 0)(Vg(1)s - -+ > Vo(k)) BVa(kt1)s - - - 5 Vo (ktt))

o0€Pyy

= Z (sgno) Z (sgn T)UTVor(1) - - - UpVor (k)

o€ P4y TEPy

> (SENTIW Vg (kr (1)) - - W] Ve (hr (1))
TER

= Z (sgn o) ulVo(1) - - - UpVo (k)W Vg (k+1) - - - W] Vo (k1)

o€ Pk
=Wy A Au) AW A Aw ) (v, k) = (@A B) (01, - Vketl)-

The second identity is left as an exercise. O

ExAaMPLE 10.1. Let M™ be a manifold, and (U,z) a chart around some
p € M. Then {d:z:lip A dm‘jp}lgiggn is a basis of Ag(M}) = Ay(M,), and

dz' A da? (u,v) = dz'(u) dz? (v) — dz*(v) do? (u), u,v € Mp.
Any 2-form w € Ap(M,) can bg Writt_en as W =Y 1cici<n w,-jda:‘ip A d:r{p, with
w(0/0z* |, 8/0x" ) = - wizdat A dxd (0/0zF,, 0/0x!,) = wiy for k < L.
EXERCISE 25. Show that V' ® W is canonically isomorphic to W @ V.
EXERCISE 26. (a) Prove that a multilinear map m : V¥ — W is alternating
iff
M(Vg(1)s -+ Vo(k)) = (sgn0)M(01,. .., V), v, €V, o€P.
(b) Let 7 : V¥ — A(V) denote the alternating multilinear map sending

(v1,...,Vk) to vy A+ - -Avg. Show that if m : VF — W is alternating multilinear,
then there exists a unique linear L : Ax(V) — W such that Lonr = m.

EXERCISE 27. Prove the second identity in Proposition 10.5.

EXERCISE 28. Show that vectors vy,...,vx € V are linearly independent
iff vy A Ao # 0.

EXERCISE 29. Let (V,(,)) denote an n-dimensional inner product space,
and o(V) the Lie algebra of all skew-symmetric linear endomorphisms of V
from Exercise 20. Consider the linear map L : A3(V) — o(V) defined on
decomposable elements by

(L{u Av))(w) = (v,w)u — (u, w)v, u,v,w € V.
Prove that L is an isomorphism.

EXERCISE 30. (a) Show that if dim V=3, then any element of Ay(V) is
decomposable.

(b) Show that (a) is false if dim V' > 3. (Hint: consider ui A ug + ug A ug,
where the u;’s are linearly independent.)

(c) Prove that nevertheless, any element in Ag(V) can be written as u; A
Us + -+ + ug—1 A ug, where the u;’s are linearly independent.
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11. Tensor Fields and Differential Forms

We can now do with tensors what we did with vectors when defining vector
fields; i.e., assign to each point p of a manifold M a tensor of a given type in
the tangent space M, of M at p in a differentiable way. This is conveniently
done by introducing the following concepts:

DEFINITION 11.1. Let M™ denote a manifold. The three sets T} s(M) :=
UpemTr s (Mp), Af(M) := UpemAx (M), and A* (M) := Upenmr A(M,;) are called
the bundle of tensors of type (r,s) over M, the exterior k-bundle over M, and
the exterior algebra bundle over M, respectively.

The term “bundle” will be explored further in the next chapter. For now,
observe that each of these sets admits a natural map 7 onto M, called the
projection, which sends a tensor on M), to the point p itself. The following
proposition should be compared to our construction of the tangent bundle of
M.

PROPOSITION 11.1. The differentiable structure on M induces differentiable
structures on Ty s(M), A (M), and A*(M) for which the projection onto M are
submersions.

PROOF. Given a chart (U,z) of M, consider bases {8/8;10@)} and {d;r,lip}
of M, and My respectively. These in turn induce bases for the vector spaces
T, s(Mp), Ax(My), and A*(Mp); ie., isomorphisms L, between these spaces
and the Euclidean space R! for appropriate choices of I. This yields bijective
maps (zom, L) : 71 (U) — x(U) x R!, where L(u) := Ly(,)(uv). Endow each
space with the topology for which these maps become local homeomorphisms.
It follows that the collections of such maps are differentiable atlases, and the
projections onto M are differentiable submersions. O

We will denote by the same letter m the projections of all three bundles
onto M.

DEFINITION 11.2. A tensor field of type (r,s) on M is a (smooth) map
T: M — T, (M) such that 71 o T = 157. A differential k-form on M is a map
a: M — A} (M) such that moa = 1.

Notice that a vector field on M is just a tensor field of type (1,0). The
following proposition is proved in the same way as we did for vector fields:

PROPOSITION 11.2. T is a tensor field of type (r,s) on M iff for any chart
(U,z) of M,
0 0 , ,
T|U :ZTh ..... i,,.;j],...,jsgw—il®"'®‘&87®d$J1 ® - Q@dr’s
for smooth functions T;, . ;,.j.....5. on U. Similarly, a is a differential k-form
on M iff
Oé'U = Z ail...ikdljl JANRERIAN d.Z‘ik
1<iy < <ix<n

for smooth functions oy, .., on U.



36 1. DIFFERENTIABLE MANIFOLDS

Observe that the functions in Proposition 11.2 satisfy

i .. 0 0
Ti],~--~i1v;j1 ,,,, Js —T(dlldl' 81’J1W>.

EXAMPLES AND REMARKS 11.1. (i) Let (U, ) and (V,y) be charts of M™.
Thenon U NV,

dy' A---ANdy" =det D(yoz™Nda' A Adz"

because dy* A- - -Ady™(0/0x!,...,0/0z™) = det(dy*(9/0z7)) = det D;(y*ox™1).
(ii) A Riemannian metric on a manifold M is a tensor field g of type (0,2)
on M such that for every p € M, g(p) is an inner product on M,.

We denote by Ax(M) the set of all differential k-forms on M, and by A(M)
the collection of all forms. Given o, € A(M), a € R, define aa,a+ 3, a N €
A(M) by setting

(aa)(p) = aa(p), (a+B)(p) = a(p) + B(p), (aAB)(p) = a(p) AB(p), pe M.

A(M) then becomes a graded algebra with these operations.

Since A§(M) = UpemAo(M,) = UpenyR = M x R, Ag(M) is naturally
isomorphic to F(M) if we identify o« € Ag(M) with f = m o a, where 7y :
M xR — R is projection. For f € Ag(M), we write fo instead of f A . Thus,
A(M) is a module over F(M).

Any a € Ap(M) is an alternating multilinear map

a:X(M)x---xX(M) - F(M), a(Xy, .., X)) = al@)(Xqp, - - s Xipp)-
Moreover, « is linear over F(M); i.e.,

o( Xy, o [ X X)) = fa(Xq, .o, Xy o, Xi).
The converse is also true:

PROPOSITION 11.3. A multilinear map T : (M) x --- x X(M) - R is a
tensor field iff it is linear over F(M).

PrOOF. The condition is necessary by the above remark. Conversely, sup-
pose T is multilinear and linear over F(M). We claim that T" “lives pointwise”:
If X;p =Y, for all 4, then T'(X1,..., Xg)(p) = T(Y1,...,Yx)(p). To see this,
assume for simplicity that k = 1, the general case being analogous. It suf-
fices to establish that if X, = 0, then T'(X)(p) = 0. Consider a chart (U, z)
around p, and write Xy = > f; 0/0x" with f;(p) = 0. Let V be a neigh-
borhood of p whose closure is contained in U, and ¢ a nonnegative function
with support in U which equals 1 on the closure of V. Define vector fields
X; on M by setting them equal to ¢3/0x* on U and to 0 outside U. Sim-
ilarly, let g; be the functions that equal ¢f; on U and 0 outside U. Then

=¢?X + (1 - ¢?)X = ZgiX'—}— (1—¢2)X, and

(TX)(p) =>_gi(p) + (1= ¢*(P))(TX)(p) =0,

establishing the claim.
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We may therefore define for each p € M an element T, € Ty x(M,) by
Tp(uh s ,Uk) = T(le s Xk)(p)

for any vector fields X; with X;, = u;. The map p +— T}, is clearly smooth. [

EXAMPLES AND REMARKS 11.2. (i) Given «,8 € A;(M) and X,Y €
X(M),
(@A B)X,Y) = a(X)B(Y) — a(Y)B(X).

(ii) Recall that for f € F(M) and p € M, df (p) is the element of M} given
by df (p)u = u(f) for u € M,. The assignment p — df(p) defines a differential
1-form df , since in a chart (U, z), dfjy = >_,(0f/0x")dz" with 8f /dz* € F(U).
df is called the differential of f. Observe that d : Ag(M) — A;(M) and that
d(fg) = fdg + gdf.

THEOREM 11.1. There is a unique linear map d : A(M) — A(M), called
the exterior derivative operator such that

() d: Ak(ﬂl) - Ak+1(A{)v ke N;

(ii) d(aAB) =da A B+ (1) a AdB, ac€ Ay(M), BeAM);
(iii) d? =0; and
(iv) for f € Ag(M), df is the differential of f.

ProoOF. We will first define d locally in terms of charts, and then show that
the definition is independent of the chosen chart. An invariant formula for d
will be given later on.

Given p € M, and a chart (U, z) around p, any form « defined on a neighbor-
hood of p may be locally written as o = Y aydz!, where I ranges over subsets
of {1,...,n}, dz! =dz" A--- Ndx™ if I = {iy,... i1} with i; < --- < (or
dr! = 1if I = 0), and the a; are smooth functions on a neighborhood of p.

Define
Z dar(p) A dx (p).

We first check that d satisfies the following properties at p: Given a € A (M),

(1) da(p) € Akt1(My);

(2) if @ = on a neighborhood of p, then da(p) = dB3(p);

(3) d(aa+ bB3)(p) = ada(p) + bdB(p), a,beR, peAM);

(4) d(a A B)(p) = da A B(p) + (—=1)*a A dB(p);

(5) d(df)(p) =0,  [fe€ A(M).
Properties (1)-(3) are immediate. To establish (4), we may, by (3), assume that
a = fdx! and 3 = gdx’. In case I and/or J are empty, the statement is clear
from the definition and the fact that (4) is true for functions. Otherwise,

d(a A B)(p) = d(fgda" A dz”)(p) = (df (p)g(p) + f(p)dg(p)) A (dz’ A dz”)(p)
= (df (p) A dz’ (p)) A (9(p)dz” (p))
+ (=1)*(f(p)dz" (p)) A (dg(p) A dz’ (p))
= da(p) A B(p) + (—1)*a(p) A dB(p).



38 1. DIFFERENTIABLE MANIFOLDS
For (5). write df locally as Y (0f/0x")dz'. Then

2 .
= 4 (Gt) W 0) = X g 1 ) A

- Z <0mxa afjaj;i (p)> d”’i(p) A da? (p) = 0.

Next, we verify that d is well defined; i.e., independently of the chosen chart.
Suppose d’ is defined in the same way relative to some other chart around p.
Then df (p) = d'f(p) for functions f. Furthermore, d’' satisfies properties (1)
through (5), so

d'a(p) = Z d' (apda?) Z d'ar(p) Adz! (p) + ar(p)d (dz!)(p)

= Z d()é] (p) N dl’ (p) + O‘I(p)d (dwl)(p)v

and it only remains to show that d’(dz!)(p) = 0. But this follows immedi-
ately from applying (4) to d'(dz™ A --- A dz®*)(p), together with the fact that
d'(dx)(p) = d'(d'z")(p) = 0. Thus, d = d’, and d is well defined. Moreover, d
clearly satisfies the statements (i)-(iv) of the theorem.

It finally remains to establish uniqueness. Let d’ be any operator satisfying
the properties of the theorem. By the previous argument, it suffices to show
that d' satisfies properties (1)-(5). All but (2) are immediate. For (2}, it
is enough to show that if « € A(M) is 0 on a neighborhood U of p, then
d'a(p) = 0. To see this, let ¢ be a nonnegative function which is 0 on a
neighborhood of p whose closure is contained in U and 1 on M \ U. Then
o = «, and d'a(p) = d'(¢a)(p) = d'¢(p) A alp) + ¢(p)d'a(p) = 0. This

establishes uniqueness. O

DEFINITION 11.3. o € A(M) is said to be closed if da = 0, and is said to
be ezact if a = df for some 5 € A(M).

It follows from Theorem 11.1 that every exact form is closed. We will later
see that the converse is true locally.

EXAMPLE 11.1. Let M = R?\ {0}. We claim there exists a closed 1-form
o on M which is not exact, even though any point of M has a neighborhood
such that the restriction of « to this neighborhood is exact: Roughly speaking,
if 8 is the classical polar coordinate angle on M, then o = df locally. To make
this more precise, let L denote the half-line [0, 00) x 0 in R?, and consider the
map F : (0,00) x (0,27) — R?\ L given by F(a1,a2) = (a1 cosas,a; sinas).
Since F' is a diffeomorphism, we may define polar coordinate functions r and 6
on R\ Lbyr=u'oF !, §=u?0cFL

In order to extend df to all of M, fix any a € (0, 27), and define F' : (0, 00) x
(a,27 +a) — R2\ L by the same formula as for F; here L denotes the half-line
from the origin passmg through (cosa,sina). F is also a diffeomorphism, and
has an inverse F~1 = (r,8).

On their common domain, 8 = § or § = 0 + 2. We may therefore define a
global 1-form o on M by setting it equal to df on R?\ L, and to df on R?\ L.
o is closed since it is locally exact, but there is no function f on M such that
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a = df: For otherwise, d(f —0) =0 on R?\ L implies that f =@ +con R?\ L
for some constant c. Simil~arly, f=60+¢on R?\ L for some constant ¢ This
would imply that 6 + ¢ =60 + ¢ on all of R? \ (L U L), which is false.

In general, the collection Zy (M) of closed k-forms on M is a vector space,
and the collection By (M) of exact k-forms is a subspace.

DEFINITION 11.4. The k-th (de Rham) cohomology vector space of M is
the space H*(M) = Z(M)/Byp(M).

Thus, H*(M) = 0 iff every closed k-form on M is exact. When k = 0, we
define H(M) := Zo(M). If M is connected, it follows from Exercise 10 that
HO(M) =R.

DEFINITION 11.5. Let f : M — N be differentiable. For o € A (N), define
the pullback of @ via f to be the k-form f*a on M given by

(ffa)@)(v1, .. ve) = a(f(p))(frve, ... fivk),  PEM, v €M,
In the special case that £ = 0, i.e., when « is a function ¢ on M, define
[fo=¢of.
Clearly, f*: A(N) — A(M) is linear.
THEOREM 11.2. If f: M — N is differentiable, then
(1) f*: A(N) — A(M) is an algebra homomorphism,

(2) df* = f*d, and
(3) f* induces a linear transformation f*: H*(N) — H¥(M).

PROOF. In order to establish (1), notice that because f* is linear, it suffices
to check that f*(ay A---Aag) = f*a1 A+ A f*ay for 1-forms a; on N. But
if X1,..., Xk € X(M), then

frlar A Nag) (X, Xi) = (ar Ao Aag) o f(feXa, ooy fuXk)
= det((a; o f)(f:X;)) = det(f"a;(X;))
= f*Oél /\"'/\f*Ckk(Xl,...,Xk).

(2) We first prove the statement for functions. If ¢ € F(N) and X € X(M),
then

frd¢(X) = (d) o (£ X) = (£ X)d = X(o f) =d(¢o f)(X) = d(f"¢)(X),

so (2) holds on Ag(N). In the general case, o € A(N) may locally be written
as a = Yy ardz™ A--- Adz'*. By the above and (1),

ffa= Z(al o f)frdx A--- A frdztt = Z(O” o N)Af* T A --- Adf*zi*,
so that
dfa =S d(aro ) A frdt A--e A frdait
- Zf*daz A Frdztt A A frdat
_ P day Ada® A A da™) = fd

The last statement in the theorem is a direct consequence of the first two. O
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We end this section with a coordinate-free characterization of the exterior
derivative operator d. The proof uses concepts and results from Exercises 33
and 34 below.

THEOREM 11.3. If w € Ax(M) and Xo, X1,...,Xx € X(M), then

k

dw(Xo,..., Xi) = > (1) Xi(w(Xo, -, Xi, .., Xi)
1=0
+ 3 (=D)w((Xi, X5] Ko, Kay o, Xy X,
1<J

(The “hat” over a vector field means the latter is deleted.)

PROOF. We shall consider the case k = 1, the general case being a straight-
forward induction. It follows from Exercise 33 that, in general,

k
(Lxow)(X1,.., Xp) = Lxo(@(X1,..., Xk)) = Y _w(X1, o, Dxo Xi, -, Xg)-
Together with Exercise 34, this implies that )
dw(Xo, X1) = (i(Xo)dw)(X1) = (Lx,w)(X1) — d(i(Xo)w)(X1)
= Lx, (w(X1)) — w[Xo, X1] — d(w(X0))(X1)
= Xo(le) — Xl(WXo) - (,4.1[)(07 Xl}

EXERCISE 31. Show that the form « in Example 11.1 is equal to

2 1
—u 1 u

(ul)Q + (u2)2du + (ul)Z + (U2)2

EXERCISE 32. Let a be a 1-form on R?, so that we may write a = fidu' +
fodu? for smooth functions f; on R2.

(a) Show that da = 0 iff Dy f; = D fo.

(b) Show that if « is closed, then it is exact. Thus, H*(R?) = 0.

Hint: Fix any (a,b) € R?, and show that a = df, where f is defined by
flz,y) = f; fi (t»b)dt + fby fa(z, t)dt.

EXERCISE 33. If w is a k-form on M, and X a vector field with flow @,

one defines the Lie derivative of w with respect to X to be the k-form given by
N TV

(Lxw)(p) = lim - [(®;w)(p) ~w(p)l, pE€M.

(a) Show that Lx f = X f for f € Ag(M).

(b) Show that Lx (w1 A+ Awg) =Y ;w1 A---ALxw; A--- Awy for 1-forms
Wy .

(¢c) Show that Lx od =do Lx on Ag(M).

(d) Use (a) through (c) to show that Ly od =do Lx on A(M).

du?.

EXERCISE 34. Given a vector field X on M, interior multiplication i(X) :
Ap(M) — Ag_1(M) by X is defined by

(Z(X)UJ)(Xl, s Xk 1) —W(X Xla-~-7Xk—1)7 wGAk(M), X; EX(M)
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Prove that Lx = i(X)od+ doi(X) (see Exercise 33).

12. Integration on Chains

We are now ready to generalize integration on Euclidean space to manifolds.
Thanks to the work done in the preceding sections, we will be able to integrate
differential forms rather than functions; one advantage lies in that the change
of variables formula for integrals is particularly simple for differential forms.

DEFINITION 12.1. A singular k-cube in a manifold M™ is a differentiable
map c: [0,1]¥ — M. (For k = 0, define [0,1]° = {0}, so that a singular 0-cube
is determined by one point ¢(0) € M). The standard k-cube is the inclusion
map I* : [0, 1]% — R*.

DEFINITION 12.2. Let w be a k-form on [0, 1]*, and write w = fdu! A--- A
du*, where f = w(Dy, ..., Dy). The integral of w over [0,1]* is defined to be

(12.1) / w:/ 1.
[0,1)* [0,1]%

If w is a k-form on a manifold M, k > 0, and c is a singular k-cube in M,
the integral of w over c is

(12.2) /w :/ c*w,
c [0,1]*

where the right side is defined in (12.1). For k£ =0, [ w := w(c(0)).

EXAMPLES AND REMARKS 12.1. (i) In classical calculus, a vector field on
the plane is a differentiable map F = (f,g) : R? —» R?. If c: [0,1] —» R? is a
curve (or a singular 1-cube) in the plane, the integral of the vector field along
¢ is defined to be f()l(F oc,c’). In the current context, it equals [ w, where w
is the 1-form dual to F: w = fdu! + gdu?. This is because

cw(D) = (woc)(¢) = (Foc,d).

(i) (Change of Variables) Consider a singular n-cube ¢ in R” with det D(c) #
0, and an n-form w = fdu! A --- A du™. The change of variables formula for
multiple integrals translates into

[
c c[0,1]"

with the sign depending on whether the Jacobian matrix D(c) of ¢ has nonneg-
ative determinant. Indeed,

c*w(D1,...,Dp) =woc(cDy,...,ciDy)
=(foc)du' A--- ANdu™(ciDy,...,cuDy)
= (foc)det(du’(c.D;)) = (f o c)det(D;(u" o c))
= (f oc)det D(c).
Thus,

/Cw _ /[Oy”n(foc) det D(c) = j:/[ovl]n(f oc)|det D(c)| = :t/c[o,l]” [
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(iii) (Independence of Parametrization) Let ¢ be a singular k-cube in M.
If F is a diffeomorphism of [0, 1}¥ with positive determinant, then the singular
k-cube ¢ := co F is called an orientation preserving reparametrization of c. In
this case, [ w = [ w for any k-form w on M:

[0,1)%
:/ c*w(Dl,...,Dk):/w,
[0,1]* c

where we used (ii) in the fourth equality.

DEFINITION 12.3. A k-chain in M is an element of the free vector space
generated by the collection of all singular k-cubes in M. Thus, a k-chain has
the form ¢ = Z?Zl a;c;, where a; € R and each ¢; is a singular k-cube. The
integral of a k-form w over the k-chain ¢ = 3 a;¢; is defined to be

[+ -

We will need the concept of boundary of a chain. For 1 < ¢ <n, the (3,0)
and (4,1) faces of the standard n-cube I™ are the singular (n — 1)-cubes I7,
and ['; defined by

ILTLO(G,) = (al, ey aivl,O, gy .o ,(Ln_l),

[-Z’Ll(a):(al y Qj— 1717az~---7an‘1)
for a = (a1,...,an-1) € [0, 1]”‘1. Similarly, the (i,j) face of the singular
n-cube c is defined tobe ¢; j =co I, 1 <i<n, j=0,1.

i,5°
The boundary of a singular n-cube c¢ is the singular (n — 1)-chain

Oc = zn: Z (—1)i+jci7j.

i=1j=0,1
For example, the boundary of a 1-cube ¢ is the chain dc¢ = ¢(1) — ¢(0) if we
identify O-cubes with their values. The boundary of a O-cube ¢ : {0} — M is
defined to be dc = 1 € R. Notice that for 1-cubes, 30c = 0. We extend 0
linearly to the space of n-chains.

ExaMpPLE 12.1 (The Fundamental Theorem of Calculus, or Stokes’ Theo-
rem). If f: R — R is differentiable, and ¢ is a singular 1-chain in R, then

Indeed, by linearity of the integral, we may, without loss of generality, assume
that c is a singular 1-cube. By the fundamental theorem of calculus,

/Cdf:/olc*df(D):/Ol(foc)’—(foc)(l)* foe)o / /(O>f

dc
PROPOSITION 12.1. 8% = 0.
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PROOF. Since 9 is linear, it suffices to show that d0c = 0 for a singular
n-cube c. Now,

(vl)i+k+j+l(ci.k)j.l-

n
k.

2P )rew | =
i=1 k=0,1 i

The terms in this sum cancel pairwise because of the identity in Exercise 35

below. 0

EXERCISE 35. Show that if i <j <n—1,and k,l = 0,1, then I7} oI;fl_l =

I? 0 Ilnk_l Deduce that (c;x);: = (¢;j41,1)i,k for a singular n-cube c.
13. The Local Version of Stokes’ Theorem

We saw in the previous section that the fundamental theorem of calculus,
translated in the notation of chains and forms, says that fc df = facf for a
smooth function f and a singular 1-cube in R. This generalizes to the following:

THEOREM 13.1 (Stokes’ Theorem, Local Version). If ¢ is a k-chain in M,
and w s a (k — 1)-form on M, then

/dw:/w
c dc

PROOF. We first consider the case M = R* and ¢ == I*¥. Then

+a kx*
/acw_z )i /]k_llj@w(Dl,...,Dk*l).

7,

By linearity, we may assume that w = fdu! A--- Adu A --- A du® for some 1,
so that

IFw(Dy, ..., Dy_1)
— (foIf)dul A---ANdui A Adu* (15, Di,... .15, Di1)
= (f o Ij,) det(Dy(u? o If ),

1<Ii<k-1,p=1,...,i—1,i+1,... k. This determinant is 1 if : = 7, and
0 otherwise, because

o Tk =
so that «’ o I}, = a. Thus,

+ (~1)i/ flut,. w0t dF T det L duF
[0,1
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On the other hand,
/dw:/ df Ndu' A~ Adut AL .du*TH(Dy, Dy)
c Ik

:/ § (Djf)duj/\dul/\~»/\J1\ﬂ/\...du’“_l(Dl,...,Dk)
Tk =
J
=(-1)""[ Dif
k

I
1 1
_ o qyi—l 1 k
=(-1) /o /O[f(u,...,l,...,u)
— flut, .. ,0,. . uP))dut . dut . duf

+ (=1 f(ut, .. 0,. . uF) ] dut L dut,

which establishes the result when M = R* and ¢ = I*. In the general case, if
w € Ag_1(M) and c is a singular k-cube in M, we have

/C“ = zk: > (ﬂl)uj/c w="S(~1)* /k,l(colfj_l)*”

i=1j=0,1 oIf 7! i 1
i+ 7 k—1% % i+ * *
= Z(—UHJ /’c 1 IV cw = Z(—l)lﬂ /k_1 c*w :/ Cw.

i,j Ir= i,j I35 orx

Thus,
/ w :/ cfw = dc*w :/ crdw = /dw.
Oc oIk I* Ik c

By linearity, the formula then also holds for singular k-chains. O

ExAMPLES AND REMARKS 13.1. (i) Consider the closed 1-form

2 . 1
CT W) 1 ()2 du’ + (@)? + (u2)?

on M = R%\ {0} from Exercise 31. If ¢ is the 1-cube on M given by c(t) =
(cos(27t),sin(2nt)), then [ o = 27. Indeed,

/Ca = /01 c*a(D) = /01 aoc(t)(c.D(t)) dt

- / oo c(t) (i 0 ¢ ()Dy(e(t)) + (u? o o) () Da(c(t))) dt

0

du?

= /0 —u?oc(t)(ul o) (t) +ul oc(t)(u?oc) (t)dt

1
= / 2 (sin?(27t) + cos?(2nt)) dt = 2.
0
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This shows once again that «a is not exact: For if a = df, then

/f’ - /Cdf - /Bcf — F(e(1)) = f(e(0)) = 0.

>
»

\U

t :

FIGURE 5
(ii) Let M, « be as in (i), and consider positive functions f, ' : R — R of

period 27, with f < F. Define singular 1-cubes c; and cr by

cr(t) = (f(2mt) cos(2nt), f(2nt) sin(27t)),

cr(t) = (F(2nt) cos(2nt), F(2nt) sin(27t));
see Figure 5. We claim fcf o= fCF a = 2. To see this, consider the singular
2-cube ¢ in M defined by

clar,az) = (1 —az)cs(ar) + ascp(ar).

Since « is closed, Stokes’ theorem implies
o — / o+ / .
coI22 1 00122,0

0~/da—/a—/ a—/
dc (,0[2 10

Now, colf (t) = colf(t) = t)(f(()) O)+t(F(O) 0), whereas coI3 | = cF,
and co I3, = ¢;. Thus 0 = f@c - J., @ By (i), fcf a = 27 when
f = 1. This establishes the claim.

Cf

14. Orientation and the Global Version of Stokes’ Theorem

As the title of this section suggests, the global version of Stokes’ theorem
uses the concept of orientation. Recall that if V is an n-dimensional vector
space, then A (V) = R. An orientation of V is a choice of one of the two
components of A%(V) \ {0}. An ordered basis vi,...,v, of V is said to be
positively oriented (resp., negatively oriented) if w(v1,...,v,) > 0 (resp., < 0)
for some w in the chosen component. An orientation is therefore also specified
by an ordered basis v1,...,V,, since the dual basis a1,...,qa, determines a
nonzero n-form w = a; A - -+ A ay, satisfying w(vs, ..., v,) > 0.

If M is an n-dimensional manifold, then each A% (M,) = R, but the bundle
Az (M) itself is not always identifiable with M x R. As usual, 7 : AX(M) — M
will denote the bundle projection.
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DEFINITION 14.1. M™ is said to be orientable if there isamap L : A} (M) —
R, which is an isomorphism on A} (Af,) for each p € M, such that (7, L) :
AX (M) — M x R is a diffeomorphism.

In this case, the set ¥y = {0 € A} (M) | p € M} corresponds to M x 0
under (7, L), so that A} (M) \ o has two components. An orientation of M is
then a choice of one of these components.

THEOREM 14.1. The following statements are equivalent for a connected
n-dimensional manifold:
(1) M 1is orientable.
(2) There is a nowhere-zero n-form on M.
(3) There exists an atlas A of charts on M such that for any (U,z) and
(V,y) in A, det(D(yox™1)) > 0.

PROOF. We first show that (1) and (2) are equivalent: If (7, L) is a diffeo-
morphism as in Definition 14.1, then w, defined by w(p) = (7, L) (p, 1), is a
nowhere-zero n-form on M. Conversely, if w is a nowhere-zero n-form on M,
let F: M xR — AX(M) be given by F(p,t) = tw(p). Then F~! is the desired
map A (M) - M x R.

To complete the proof, we now show that (2) and (3) are equivalent: If w is
a nowhere-zero n-form on M, consider the collection A of all charts (U, z) on M
such that w(9/0x',...,0/0z™) > 0. A is an atlas, since the components of any
coordinate map may be reordered. Furthermore, if (U, z) and (V,y) belong to
A, then wy = fda' A---Adz™ and wyy = gdy' A--- Ady™ for positive functions
gand h. Thuson UNV, dy'A...dy"™ = hdz* A...dx™, where h = f/g > 0. But
h = det(D(yoz~1)). Conversely, if A is an atlas as in (3), choose a partition ¢;
of unity subordinate to the domains U; of the charts (U;,z;) in A, and define
n-forms w; on M by setting w;(p) = ¢i(p)dz} A -+ Adx?(p) if p € U;, and
w;(p) = 0 otherwise. Then w =Y, w; is a nowhere-zero n-form on M. O

If M™ is an oriented manifold, a nowhere-zero n-form on M is said to be a
volume form if it belongs to the component of A% (M) \ £y determined by the
orientation. An imbedding 1 : M — N between two oriented manifolds of the
same dimension is said to be orientation-preserving if 1*w is a volume form on
M for any volume form w on N.

As an application of the above theorem, we show that the n-sphere S™ is
orientable: Let 1 : S — R"*! denote inclusion, and consider the “position”
vector field P on R™*! given by P(p) = J,p. By Exercise 14, if w = dul A
<+ Adu™*!, then ¢*(i(P)w) is a nowhere-zero n-form on the sphere (here i(P)
is interior multiplication by P as defined in Exercise 34).

In order to exhibit a nonorientable example, we must disgress and briefly
consider group actions on manifolds. If G is a Lie group, a (smooth, left) action
of G on a manifold M is a differentiable map p : G x M — M such that
1(91. p(g92,p)) = p(g192.p) and p(e,p) = p for all g; € G, p € M. We denote
w(g,p) simply by g(p). Observe that g : M — M is then a diffeomorphism of
M with inverse g~!. The orbit G(p) of p € M is the set {g(p) | g € G}, and
the collection of orbits is denoted M/G.

Two orbits G(p) and G(q) are said to have the same type if there exists an
equivariant bijection between them; i.e., a bijection f such that f(gm) = gf(m)
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for all g € G and m in an orbit. When all orbits have the same type, we say the
action is by principal orbits. This is the case for example when the action is free;
i.e., when the condition g(p) = p for some p € M and g € G implies that g = e.
For in this case, the map h : G — G(p) given by h(g) = g(p) is an equivariant
bijection for any p € M. Finally, G is said to act properly discontinuously on
M if for any two points p and ¢ in M, there exist neighborhoods U of p and V
of ¢ such that g(U)NV =0 for all g € G.

THEOREM 14.2. (1) If G acts freely and properly discontinuously on M,
then there erists a unique differentiable structure on the space M/G of orbits
for which the projection 7 : M — M /G becomes a local diffeomorphism.

(2) If a compact Lie group G acts on M with principal orbits, then there
exists a unique differentiable structure on M/G for which @ : M — M/G
becomes a submersion; i.e., w is onto M/G, and its derivative has mazimal
rank everywhere.

PRrROOF. Part (2) will be proved in Chapter 5, once we have discussed Rie-
mannian metrics on manifolds. For (1), notice that since the action is free
and properly discontinuous, the orbit of any point, and hence G itself, is dis-
crete. For the same reason, M/G is a Hausdorff space in the quotient topology.
Consider an orbit ¢ in M/G and a point p € M in this orbit. There exists a
neighborhood V' of p on which 7 is a homeomorphism. If (U, x) is a chart of
M around p, then (7(U NV),z o (mynyv)~") can be taken as a chart of M/G
around q. It is straightforward to check that this induces a differentiable struc-
ture on the quotient M/G. Uniqueness follows from the fact that 7 is a local
diffeomorphism. O

Under the hypotheses of Theorem 14.2 (1), # : M — M/G is called a
covering map. As an example, let M = S™, G = {£1,7}. The quotient M/G is
called real projective n-space RP™. Observe that if n is even, then the antipodal
map —1p : p — —p, when extended to R™*!, is orientation-reversing: Since
—1p is linear, (—1pr)eJpt = T_1,,(p)(—1m(u)) = =T _pu for p € R** u €
R But if Jpus, ..., Jpnsr is a positively oriented basis of Rp*!, then
~J-pU1, ..., —J-pUny1 is a negatively oriented basis at the antipodal point.
This implies that the antipodal map is orientation-reversing on the sphere, since
the position vector field is —1,;-related to itself. Thus, (—1p)*w # w for any
n-form on M. Now, if RP™ were orientable, it would admit a nonvanishing
n-form 7, and 7*n would be a nonvanishing n-form on M. This is impossible,
because mo (—1p7) = m, so that (—1x)*7*n = 7*n.

We now define integration on M in terms of integration on orientation-
preserving cubes. The following lemma ensures that it will be independent of
the particular cube chosen:

LEMMA 14.1. Let M™ be an oriented manifold, ¢i,c2 : [0,1]" — M two
orientation-preserving imbeddings. If w € Ap(M) has support in c1[0,1]" N
c2[0,1]", then [, w= [ w.

Cc2

PROOF. This follows from Examples and Remarks 12.1(iii), since c; ' o¢; is

orientation-preserving, so that [, w= [, 1, w= [, w. Notice that c;'oc;
2
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is not necessarily defined on all of [0, 1], but the support of w is contained in
C1 [O. 1]” N co [0 1]”. O

DEFINITION 14.2. Let w € A,,(M) have support in the image of an orientation-
preserving imbedding ¢ : [0,1]"* — M. Define [, w = [ w.

In general, there exists an open cover of M such that for any open set U in
the cover, there exists an orientation-preserving imbedding c : [0,1]" — M the
image of which contains U. Let ® be a partition of unity subordinate to this
cover.

DEFINITION 14.3. If w € A, (M) has compact support, define the integral

of w over M to be
w = dw.
L=z,

ped

Notice that the above sum is finite, because w has compact support. Fur-
thermore, the definition is independent of the chosen partition of unity: If ¥ is
a partition of unity subordinate to some other open cover, then

S o= [ Suwo=3 [ Sovw=3 [ ww
peo /M pcd’M yew vev ' M pecp vew /M
One can also define integration on manifolds with boundary, which are
locally modeled on the closed half-space H" = {p € R™ | u"(p) > 0} instead of
R™. A map from H" to R" is defined to be differentiable if it can be extended
to a differentiable map on a neighborhood of H™.

DEFINITION 14.4. A topological n-manifold with boundary is a second-
countable Hausdorff space M, with the property that for any p € M, there
exists a neighborhood U of p and a homeomorphism z : U — z(U), where
z(U) is an open set of either R™ or H™, and z(p) = 0. The boundary 0M
of M consists of those points that get mapped to the boundary 0H™ of H"
under some (and hence any) coordinate map, and is an (n — 1)-manifold. One
defines a differentiable structure as usual by requiring the transition maps to
be differentiable.

For example, H™ itself is an n-manifold with boundary R™~!; the same is
true of the closed n-disk D™ = {p € R™ | |p| < 1}, which has boundary S"~*.

It follows from the above definition that if p € M, and (U, z) is a chart of
M with z(p) =0, then UNIM = {g € M | 2"*(¢q) = 0}, and (UNOM,wox)
is a chart of M, where 7 : R® — R™"! denotes the projection. Furthermore,
a function f defined on a neighborhood of p is smooth iff foz~! : H® — R
is smooth; i.e., extendable to a smooth function on R™. Thus, one has a well-
defined n-dimensional tangent space

M, = (z7")w0(Rg)
at p, and if 1 : OM — M, j : R*™! x 0 — R™ denote inclusions, then
(M), = 27 (L (R™ X 0)y).

If M is oriented, it induces an orientation of the boundary OM: Forp € OM,
v € M, is said to be outward-pointing (resp., inward-pointing) if v(z™) < 0
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(resp., > 0). A basis v1,...,vp—1 of M, is said to be positively oriented if
V,V1,...,VUn_1 is a positively oriented basis of M,, for any outward-pointing v €
M,. It is easily checked that this does indeed define an orientation on OM: If
(U, z) and (V, y) are charts of M sending p to 0, and such that det D(yoz™1) > 0,
then for the induced coordinate maps £ = mox and § = w o y on IM, one has
~ a1
det D(y o 2~ 1)(0) = det (D(y °Z7)0) Doy oox_l)(0)> ,

where Dy, (y" o x71)(0) > 0 by Exercise 41.

Now, let w be an n-form on an oriented manifold M™. There is an open
cover U of M such that each U € U is contained inside some [0, 1], where ¢
is an orientation-preserving imbedding with either ¢[0,1]* C M \ OM or else
IM N ¢ef0,1]™ = ¢,,0[0,1]" L. If & is a partition of unity subordinate to & and
w has compact support, we define as before

/Mw: Z/M(bw'

PED

THEOREM 14.3 (Stokes’ Theorem, Global Version). If w is an (n—1)-form
with compact support on an oriented n-manifold M with boundary OM , then

/ w:/ dw.
oM M

PROOF. Suppose first that the support of w is contained in some U € U,
where U itself lies inside the image of ¢, for one of the above cubes c. If the
image of ¢ does not intersect the boundary of M, then by the local version of

Stokes’ theorem,
/dw:/dw:/w:/ w.
M c dc oM

Indeed, w has support in U, and the latter does not intersect the image of dc,
so that the integral of w on the boundary of ¢ is zero. Similarly, the integral of
w on the boundary of M vanishes. If on the other hand c is of the second type,
then U, and hence the support of w, may intersect the boundary of M. Now,
c.Dy, ..., ce Dy is positively oriented, so —c. Dy, ce D1, ..., ceDy—1 is positively
oriented iff n is even. Observe that if (a,0) € [0,1]*~! x 0, then Ci(a,0)Di =
(en0)saDi for 1 < i < m—1. Thus, ¢ : [0,1]*"! — IM is orientation-
preserving iff n is even. In any case, by Exercise 38,

/dwz/dw:/w:/ wz(—l)”/ w
M c dc (=1)"cn,0 Cn,0

:(_1)”(—1)"/ w:/ w.
oM aM
In general,

/aMw:Z 5M¢‘”ZZ/Md(¢w)=Z/Md¢Aw+¢dw

ped p€d PP

:/de+Z/Md¢/\w.

PP
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The last term is actually a finite sum fM ZLI dp; Nw, with Y. ¢; = 1 on a
neighborhood of the support of w. Thus, > d¢; = d(>_ ¢;) = 0, which concludes
the argument. O

We end this section by discussing some additional properties of integration
when M is a compact, connected Lie group G. By Exercise 36 below, G is
orientable. Choosing an orientation on G, there exists a unique w € A (M)
which is left-invariant in the sense that Ljw = w for g € G, and satisfies
fG w = 1. We then define the integral of a function f : G — R by

=l

PROPOSITION 14.1. For f:G =R, g€ G, [ f=[,foLly= [,foR,.

PrROOF. For the first identity, notice that fG Ly(fw) = fG fw by Exercise
39 below, since L, is an orientation-preserving diffeomorphism of G. But w is
left-invariant, so that

[ 1= [ go= [ niar= [Gorre= [Gorgo= [ sor,

The second identity follows by a similar argument, once we establish that (i)
R, is orientation-preserving, and (ii) w is right-invariant. Since (i) follows from
(ii), we only need to prove the latter. Now, for any g € G, the form Rjw is left-
invariant, since Ly Rjw = RjLjw = Rjw. In particular, this form is nowhere
zero, and there ex1sts a functlon h: G — R\{0} such that Rjw = h(g)w, g € G.
Furthermore, h: G — (R\ {0}, ) is a Lie group homomorphlsm because

h(ab)w = R:,w = Ry Riw = R} (h(a)w) = h(a)Riw = h(a)h(b)w.
Since G is both compact and connected, h = h(e) = 1. O
EXERCISE 36. Show that any connected Lie group is orientable.

EXERCISE 37. Prove the statement preceding Definition 14.3; namely, that
there exists an open cover U of M, such that any U € U is contained inside the
image of some orientation-preserving imbedding ¢ : [0,1]" — M™.

EXERCISE 38. Let M be an oriented n-manifold, and denote by —M the
manifold with the opposite orientation. Show that [, w = — [ , w for any
n-form w with compact support on M.

EXERCISE 39. Let f: M™ — N" be a diffeomorphism of oriented manifolds,
and w an n-form on N with compact support. Prove that fM ffw=4=% fM w,
with the plus sign occuring iff f is orientation-preserving.

EXERCISE 40. Show explicitly that the closed n-disk D™ = {p € R" | |p| <
1} is a n-manifold with boundary.

EXERCISE 41. Let p € OM, and (U, .1’), (V,y) be two charts around p with
z(p) = y(p) = 0. Prove that D,,(y"™ o z71)(0) > 0. Deduce that the definition
we gave of an outward-pointing vector v € M, is independent of the chosen
chart.
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15. Some Applications of Stokes’ Theorem

In this section, we derive the Poincaré Lemma, which implies that any
closed form is locally exact, and also yields important topological applications.
But we can already establish, as an immediate consequence of Stokes’ theorem,
that the top cohomology class of a (compact, oriented) manifold is nontrivial:

PROPOSITION 15.1. Let M™ be an oriented, compact manifold without bound-
ary, n > 0. Then H"(M) # 0.

PROOF. Let w be a wvolume form on M; i.e., w is a nowhere-zero n-form
with w(vy,...,v,) > 0 for any positively oriented basis v1, ..., v, of My, p € M.
If ¢:[0,1]® — M is an orientation-preserving imbedding, then c*w = fdu' A
-+ Adu™ for some positive function f. Thus, [ w, and therefore also [, w is
positive. This means that the closed n-form w is not exact, for if w = dn, then
Jyw= [y dn= [ n=0,since M is empty. O

Proposition 15.1 will later be refined to show that H™(M) is isomorphic
to R if M is connected. In order to derive further consequences from Stokes’
theorem, we will need the Poincaré Lemma, which deals with homotopic maps.

Recall that a manifold M is said to be (smoothly) contractible if there exists
some point py in M and a differentiable map H : M x [0,1] — M such that
How =poand Howy = 1y, where o, : M — M x [0, 1] is given by #(p) = (p, 1)
for t € [0,1] and p € M. More generally, two maps fo, f1 : M — N are said to
be (smoothly) homotopic if there exists a differentiable map H : M x[0,1] - N
such that H o1y = fo and H o1y, = fi. H is then called a homotopy between
fo and fi. Thus, M is contractible if the identity map 1,; is homotopic to
a constant map. QOur next aim is to show that homotopic maps induce the
same cohomology homomorphism. Let m; and t denote the projections of
the product M x [0, 1] onto the factors, so that (mas,tc) : (M x [0,1])(p.0) —
M, %[0, 1], is an isomorphism. We will denote by D the vector field on M x [0, 1]
given by D(p,a) = (WA,[*,t*)(:a)Da.

LEMMA 15.1. Any w € Ap(M x [0,1]) can be uniquely written as w =
w1 +dt An, where wy and n are k and (k — 1)-forms on M x [0, 1] respectively
such that i(D)w; = i(D)n = 0.

PROOF. Because of the isomorphism (7., t4), it suffices to check that if
a vector space V decomposes as W x R, then any w € Ax(V*) can be uniquely
written as wy + a A1, where i(t)wy,i(t)n =0 for t € R and o € R*\ {0}. But
this is clear, since if g, ..., ay, is a basis of W*, then a1, ..., a,, a is a basis of

V. a

riting w = wy +dt An € Ax(M x [0,1]) as in Lemma 15.1, define a linear
operator [ : Ap(M x [0,1]) —» Ax_1(M) by

(15.1) Iw(p)(vl,,..,vk,l):/() n(ps ) (V15 - - - s UxVi—1)dt.

PROPOSITION 15.2 (Poincaré Lemma). If w is a k-form on M x [0,1], then
Nw — hw = d(Jw) + I(dw).
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PROOF. Let x be a coordinate map on M so that (Z,¢) is a coordinate map
on M x [0,1], where Z = x o mps. By Lemma 15.1, the restriction of w can be
written as a sum of terms of two types: fdz! = fdz A --- A dz™* (type (1)),
and fdt Adz! = fdt Adzh A--- AdZ*-1 (type (2)). Since I is linear, it suffices
to consider the case when w is one of the above types.

If w= fdz!, then dw = df Adz! = (terms not involving dt) +(8f/0t)dt A
dz!. Now, for any t € [0,1], mar 02 = 1, so that 17d7t = d(zt o) = dx', and

P B Lof ) 8
I(dW)(p) (%7,8(2]&) = 0 ot (p t)dﬂ?‘ (p:t) (lt*a ]1.%*81137) dt

L of 0 0
; at(pt)d <6xj1,....awjk>dt

1@ = | [ G w.0dt] dal @) = £0.1) = £0.0) e’ o)

=1jw(p) — 1yw(p),

Thus,

which proves the result in this case, since Jw = 0. Similarly, if w = fdt A dz?,
then 1Jw = 15w = 0, since ¢; dt = 0 for any #o. On the other hand,

I(dw)(p):[( Zaaf dt A dz a/\dm)( )

a=1

_ _; UO %(p,t)dt} dz® A da!,

while
d(Iw)(p) = d (U; f(p,t) dt] dmI) => a% (/01 f(p,t) dt) dz® A da?,
so that I(dw) + d(Iw) = 0. ) O

The Poincaré Lemma is particularly useful when dealing with homotopic
maps:

THEOREM 15.1. If fo, f1 : M — N are homotopic, then the induced maps
f&, fr« HY(N) — H*(M) are equal for all k.

PROOF. Let w € Ag(N) be closed, and denote by [w] its equivalence class
in H®(N). If H is a homotopy between fy and f;, then

fiw—fjw=1H'w—1)H'w=dlH'w+ I[dH"w=dlH*'w+ [H"dw = dI|H*w
is exact, so that [ffw] — [fiw] = [ffw — fiw] =0. O

If M is contractible, then the identity map 1,; is homotopic to a constant
map (sending all of M to some point p € M). Since the latter induces the
trivial map at the cohomology level, we have as an immediate consequence of
Theorem 15.1:

COROLLARY 15.1. If M™ is contractible, then H¥(M) =0 for 1 <k <n.
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In particular, any closed k-form o on a manifold is locally exact, as we
stated earlier: Given p € M, H*(U) = 0 for any contractible neighborhood
U of p, so that the restriction of a to U is exact. Several texts refer to this
property as the Poincaré Lemma.

Corollary 15.1 and Proposition 15.1 now yield:

COROLLARY 15.2. A compact oriented n-manifold with boundary is not
contractible if n > 0.

Corollary 15.1 says that cohomology cannot help us distinguish between
contractible spaces of different dimensions. For this, we need the following
concept:

DEFINITION 15.1. Let M™ be a manifold. For k < n, the de Rham cohomol-
ogy vector spaces with compact support H¥(M) are the spaces Z*(M)/B* (M),
where Z* (M) denotes the space of all closed k-forms with compact support, and
BE(M) the space of all k-forms da, where o € Ag_1(M) has compact support.

H®(M) and H¥(M) coincide of course when M is compact. In general,
though, not every exact k-form with compact support belongs to BX(M): If
f is a nonnegative function on R™ which is positive at some point and has
compact support, then the n-form w = fdu! A --- A du™ is exact (because it is
closed and H™(R™) = 0). Since [g,w > 0, the following proposition shows it
does not equal da for any a with compact support:

PROPOSITION 15.3. Let M™ be connected and orientable (without bound-
ary). Given w € Z}(M), w belongs to B2 (M) iff [,,w = 0.

Proor. If w belongs to BY(M), then w = do, where a has compact sup-
port. By Stokes’ theorem,

/wz/da:/ a=0.
M M oM

We merely illustrate the proof of the converse in the case M = R: Suppose w
is a 1-form on R with compact support such that fR w = 0. Since H}(R) = 0,
w = df for some function f (which need not, a priori, have compact support).
However, df must vanish outside some interval [N, N], so that f(¢) = ¢; when
t < —N and f(t) = co when ¢t > N for some constants ¢; and cz. Then

O—/w—/ df = / f=c2—cu,
N—1,N+1] N—1,N+1]

so that ¢; = ¢ = ¢. Then f — ¢ has compact support, and w = d(f — ¢). O
THEOREM 15.2. If M™ is connected and orientable, then H} (M) = R.

PRrROOF. Consider the linear transformation from Z2(M) to R which maps
a closed n-form w with compact support to fM w € R. This map is nontrivial
(and hence onto) since for example if (U, z) is a positively oriented chart around
some p € M, and f a nonnegative function which is positive at p and has support
in U, then [,,w > 0, where w = fdz' A --- Adz™. By Proposition 15.3, its
kernel is BZ (M), and the statement follows. O
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Thus, for example, if M™ is compact, connected, and orientable, then
H™(M) = R. Tt can be shown that for n > 1, H}(M) = 0 if M is not
orientable, and in general, H"(M) = HI(M) if M is compact and equals 0
otherwise.

Let M, M3} be connected orientable, f : M; — M; differentiable. We
then have a linear transformation R — R such that the diagram

HM (M) —— Hr (M)

= | |=

R R
commutes. For [w] € H"(M3), the above diagram reads

W —— vl

l l

fMQ w ’ fMl frw
The bottom map must then be multiplication by some number deg f, called
the degree of f; i.e.,
fro=tees) [ w
Mg
This number can in many cases be computed as follows:

J M,y

THEOREM 15.3. Let M be connected and orientable, i = 1,2, and consider
a proper map f : My — Ms. Suppose q € My is a reqular value of f. For each
p € f~1(q), define the sign of f at p to be the number sgn, f = +1 if fip is
orientation-preserving, and —1 if it is ortentation-reversing. Then

deg f = Z sgn,, f.

pEf~1(q)

ExAMPLES AND REMARKS 15.1. (i) Recall that f is proper if the preimage
of a compact set is compact. In particular, f is proper whenever M; is compact.

(ii) Regular values always exist by Sard’s theorem; in fact, their complement
has measure 0. Notice that deg f = 0 if f is not onto.

PROOF OF THEOREM 15.3. By the inverse function theorem, f~!(g) con-
sists of isolated points; being compact, it is a finite collection {p1,...,pr}.
Choose charts (U;, x;) around p; such that each restriction f : U; — V; := f(U;)
is a diffeomorphism, and U;NU; = (. Then V := n,;V; is the domain of a chart
(V,y) around ¢, and redefining U; to be U; N f~1(V), we still have diffeomor-
phisms f : U; — V. Let g be a nonnegative function with compact support in
V, and set w = gdy' A--- Ady™. f*w then has support in Uy U - --U Uy, so that
by Exercise 39,

/M1 fro= g/m flo= g(Sgnm f)/vw = g(sgnm f) /M2 w.
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We end this chapter with a couple of topological applications of Theo-
rem 15.3:

COROLLARY 15.3. If n is even, then any vector field on S™ vanishes some-
where.

PROOF. We have seen in Section 14 that the antipodal map f : S™ — S§" is
orientation-reversing when n is even, so that f has degree —1. By Theorems 15.1
and 15.3, f is not homotopic to the identity /. But if X were a nowhere-zero
vector field on the sphere, it would induce a homotopy between f and I: Recall
that there is a canonical inner product on each tangent space (the one for
which 7, : R* — R} becomes a linear isometry for each p), so that we may
assume |X| = 1. Given p € S™, let ¢, denote the great circle ¢, (t) = (cos 7t)p+
(sin7t) 7, ' X (p). The desired homotopy H is then given by H(p,t) = ¢,(t). O

COROLLARY 15.4. H*(R™\ {0}) = H*(S™™') for all k.

PROOF. Let r: R™"\ {0} — S™~! denote the retraction 7(p) = p/|p|, and 2 :
S7=1 — R™\ {0} the inclusion. Then roq is the identity map on the sphere, and
1or is homotopic to the identity map on R™\{0} via H(p,t) = tp+(1—t)(z0r)(p).
By Theorem 15.1, (ro2)* = * or* and (20 r)* = r* o1* are the identity on
the respective cohomology spaces, so that +* : H*(R™\ {0}) — H*¥(S""1) is an
isomorphism. O

EXERCISE 42. Let w be a 1-form on M such that fcw = 0 for any closed
curve ¢ in M. Show that w is exact.

EXERCISE 43. M is said to be simply connected if any closed curve c :
S! — M is homotopic to a constant map. Use Exercise 42 to prove that if M
is simply connected, then H*(M) = 0.

EXERCISE 44. Let U = R3\ {(0,0,2) | 2 > 0}, V =R3\ {(0,0,2) | 2 < 0}.

(a) Show that U and V are contractible.

(b) Suppose w is a closed 1-form on R3\ {0}. Show that there are functions
f:U —=Rand g:V — R, such that wjy = df, wjy = dg. Conclude that
w = dh for some function h, so that H'(R3\ {0}) = 0.

(c) Prove that H1(S?) = 0.

EXERCISE 45. This exercise generalizes Example 11.1, exhibiting a closed
(n — 1)-form on R™ \ {0} which is not exact. Let P be the position vector
field on R™, P(p) = Jpp, and w the (n — 1)-form on R™\ {0} given by w =
i(P)dul A--- A du.

(a) Show that if 2 : S"~1 — R™\ {0} is inclusion, then @ := +*w is the form
which gives the standard orientation on the sphere.

(b) Let » : R™\ {0} — S™~! denote the retraction r(p) = p/|p|, and
N :R™\ {0} — R the norm function N(p) = |p|. Prove that r*& = (1/N™)w.

(c) Show that r*@ is a closed form on R™ \ {0} which is not exact.

EXERCISE 46. Show that the wedge product of forms induces a ring struc-
ture on H*(M) := &2 H*(M). The corresponding product is called the cup
product. Prove that if f : M — N is differentiable, then f* : H*(N) — H*(M)
is a ring homomorphism.



CHAPTER 2

Fiber Bundles

1. Basic Definitions and Examples

We have already encountered examples of manifolds that possess some ad-
ditional structure, such as the tangent bundle T M of an n-dimensional manifold
M. In this case, each point of T M has a neighborhood diffeomorphic to a prod-
uct U x R™, where U is an open set in M. Of course, TM itself need not be
diffeomorphic to M x R™. In most of the sequel, we will be concerned with
manifolds that, roughly speaking, look locally like products.

As usual, all maps are assumed to be differentiable.

DErFINITION 1.1. Let F, M, B denote manifolds, G a Lie group acting
effectively on F' (i.e., if g(p) = p for all p € F, then g = €). A coordinate bundle
over the base space B with total space M, fiber F', and structure group G is a
surjective map 7 : M — B, called the bundle projection, together with a bundle
atlas A = {(m71(Uy), (7, pa) }aca on M; i.e.,

(1) {Ua}aea is an open cover of B.

(2) (7,04) : 7 H(Uy) — Uy x F is a diffeomorphism, called a bundle chart.
Notice that for p € Uy, @ajr-1(p) : 7~ Y(p) — F is a diffeomorphism.
If p also belongs to Ug, then ¢gjr-1(p) : 7~Y(p) — F need not coincide
with ¢,; however, they must differ by the operation of some element
in G. To be specific:

(3) For «, 3 € A, there is a smooth map f, 5 : Uy N Uz — G, called the
transition function from ¢q to ¢z givenby fo 5(p) = ¢ﬁo(¢a|ﬂ71(p))_1
F — F; equivalently, ¢gir-1(v,nvs) = (fa,5 0 T) * ajn—1 (UanUs)-

Statement (3) says that the diagram

1 Y Uy NUg) =——— 7 ({Us NUp)
(""”")l yn,m)
(UaNUg) x F —— (UaNUp) x F

(p,m) — (p, fas(P)m)

commutes. Roughly speaking, the total space M consists of a collection U U, X
F, where the U,’s cover B, and copies of F' belonging to intersecting U,’s are
identified by means of elements of G. The projection 7 is a submersion by (2).
The set 771(p) is called the fiber over p. Notice that (3) implies that f o =€,

(fa3(@) ™ = fa.a(p), and fa () = f54(P) - fa8(P).

57
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fi2(p)

Ui x F Uy x F

U Ua
}'J

FIGURE 1

DEFINITION 1.2. A (real) coordinate vector bundle of rank n is a coordinate
bundle with fiber R™ and structure group GL(n) (or a subgroup of GL(n)).

We will often use Greek letters such as £ to denote a bundle 7 : M — B. If¢
is a rank n vector bundle, then each fiber 7~1(b), b € B, is a vector space: Given
a bundle chart (7=*(U), (7, ¢)) with b € U, define the vector space operations
on the fiber over b so that ¢|-1() : 771(b) — R™ becomes an isomorphism. The
vector space structure is independent of the chosen chart because any transition
function fy . (p) at p is an isomorphism of R™.

ExXAMPLES AND REMARKS 1.1. (i) The trivial bundle with base space B
and fiber F'is the projection 7 : B x F' — B onto the first factor. The structure
group is {1r}. In general, the size of the structure group measures how twisted
the bundle is.

(ii) The tangent bundle TM of an n-dimensional manifold M is the total
space of a rank n vector bundle over M with the bundle projection 7 : TM — M
from Chapter 1: If {(U,, o)} is an atlas on M, then {(U,, (7, ¢4)} is a bundle
atlas on TM, where

bo = (dzl, ... da"): 7Y (U,) — R™.

The transition function from ¢, to ¢g is fas = D(zgozi')oxy : Uy NUs —
GL(n). A similar argument applies to the tensor bundles T, ;(M) and the
exterior bundles Af(Af). The tangent bundle of M will be denoted TM to
distinguish it from its total space TM (which, to confuse things further, is
traditionally also referred to by the same name).

(iii) The Hopf fibration (see also Chapter 1, Examples and Remarks 9.1(i)):

View §2ntl € R?7+2 = C*H1 as the set of all (z1,...,2,41) € C**! such that
> |zi]? = 1, and consider the free action of S* = {z € C | |z| = 1} on §?"*!
given by 2(21,...,2n41) = (212,...,2n412). Since S! is compact, this action

is proper, and by Chapter 1, Theorem 14.2, there exists a unique differentiable
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structure on the quotient S?**1/S! for which the projection becomes a sub-
mersion. The quotient is called complex projective n-space CP™ of dimension
2n.

We claim that 7 : $2"*! — CP" is the projection of a bundle with fiber
and group S', called the Hopf fibration. In order to establish this, we exhibit
an atlas of bundle charts satisfying Definition 1.1: for i = 1,...,n + 1, define
Ui = {(21,. -, 2n41) € S| 2z; # 0}, and U; = 7(U;) € CP™. 1t is easily
checked that U; = 7~ 1(U;), so that {U;} is an open cover of CP". Define
#; : Uy — S' by ¢i(21,...,2n41) = zi/]z|. Then (7,¢;) : Uy — U; x St is a
diffeomorphism with inverse (m(wy, ..., wnt1),2) — (zlw;|/w;) (w1, ..., Wnt1),
and the transition function f; ; : U;NU; — St is given by f; ;(m(21,. .., 2n41)) =
212 el .

DEFINITION 1.3. Let 7; : M; — B; be two coordinate bundles with fiber F'
and group G. A differentiable map h : M; — My is said to be a bundle map if
(1) h maps each fiber 7y '(p;) diffeomorphically onto a fiber 75 ' (p2),
thereby inducing a differentiable map h : B; — Bj such that o0 h =
hom; and
(2) for any bundle charts (7, }(Uy), (71, ¢a)) and (75 1 (Vp), (72,%5)) of m
and 7, respectively, p € U, Nh™}(Vj), the map ygoho (¢a1ﬂ;1(p))_1
from F to F coincides with the operation of an element of GG, and the
resulting map
fap:UaNh™HV3) — G,
ptgoho (¢a’7r171(p))ﬁ1
is differentiable.
The two coordinate bundles are said to be equivalent if By = By and the
induced map is the identity on the base. A fiber bundle is then defined to be

an equivalence class of coordinate bundles. Alternatively, one could define it to
be a coordinate bundle with a maximal atlas.

Notice that if & is a bundle map, then by the second condition above, the
coordinate bundle over By with bundle charts of the form (77 (h=*(U)), (1, ¢o
h)), where (75 1(U), (72, ¢)) is a bundle chart of w2, is equivalent to . Its
transition functions fgon yon are equal to f;w o h, where f;w are the transition
functions of 5.

EXERCISE 47. (a) Show that the functions f, g from Definition 1.3 satisfy
fory = fB.4 -foltﬂ and fo~y = fﬁw - fa,3, where f(iﬁ and fgﬁ are transition
functions for 7; and ma, respectively.

(b) Conversely, suppose m; : M; — B are two coordinate bundles over B
with fiber F and group G. Show that if there is a collection of maps f, g as in
Definition 1.3 satisfying the identities in (a), then the bundles are equivalent.

EXERCISE 48. Identify S4"3 ¢ R4 = H"™! with the set of all (n +
1)-tuples of quaternions (qi,...,qn+1) such that 3 |g;|? = 1 (see Chapter 1,
Example 8.1(iii)). Replace complex numbers by quaternions in Examples and
remarks 1.1 (iil) to construct quaternionic projective space HP™ and a fiber
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bundle 7 : §4*+3 — HP™ over HP™ with fiber and group S*. This bundle is
often called a generalized Hopf fibration.

EXERCISE 49. (a) Show that CP! is diffeomorphic to the 2-sphere via
cpP! — 52,
1
21[? + |22

(b) Show that HP! from Exercise 48 may similarly be identified with S*.
Thus, for n = 1, the Hopf fibrations become S® — S§? with fiber S', and
ST — §* with fiber S3.

[21,22} — (22122, |Z1’2 — ‘22|2).

2. Principal and Associated Bundles

The Hopf fibration discussed in the previous section is a prime example of
the following key concept:

DEFINITION 2.1. A fiber bundle 7 : P — B with fiber and group G is called
a principal G-bundle if there exists a free right action of G on P and an atlas
such that for each bundle chart (7=}(U), (7, ¢)), the map ¢ : 7~ 1(U) — G is
G-equivariant; i.e.,

(7, ¢)(pg) = (x(p).o(p)g), pen'(U), geG.

It follows that B is the quotient space P/G: Since w(pg) = m(p), the orbit
G(p) = {pg | g € G} of p is contained in 7 }(n(p)); conversely, if (7, ¢) is a
bundle chart around p, then for ¢ € 7= (r(p)),

q=(m,¢) " (n(q),¢(q)) = (m,0) " (n(p), s(p)d(p) " d(q))
= (m,¢) " (x(p), ¢(p)g) = py,

where g = ¢(p) '¢(q) € G. Furthermore, the structure group is G acting on
itself by left translations: for p € P,

fow(m(p)) = Y(p)o(p) ",

where the choice of the element p € 7~1(7(p)) is irrelevant because

V(pg)d(pg) ™" = v (p)g(d(p)g) ™" = ¢(p)gg ' d(p) " = v(p)p(p) "

EXAMPLES AND REMARKS 2.1. (i) The Hopf fibrations S?**1 — CP" and
S4n+3 _, HP™ are principal S! and 52 bundles.

(ii) The trivial principal G-bundle over B is the projection B x G — B onto
the first factor. The action of G is by right multiplication (b, g1)g = (b, g19) on
the second factor.

(iii) Let G be a Lie group, H a closed subgroup of GG, and denote by B
the homogeneous space G/H. We first show that the quotient space G™/HF
admits a (unique) differentiable structure of dimension n — k for which the
projection 7 : G — G/H becomes a submersion. This actually follows from
Theorem 14.2 in Chapter 1, but we provide an independent argument, since
that theorem won’t be proved until Chapter 5. Observe that 7 is an open
map for the quotient topology on G/H: If U is open in G, then so is w(U)
(in G/H), because 7~ (m(U)) = Upeg Rp(U) is open in G. Furthermore, the
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quotient space is Hausdorff: If 7(a) # 7(b), so that a~'b ¢ H, there exists a
neighborhood of a~1b that does not intersect H. Such a neighborhood always
contains an open set of the form U - a~'b - U, where U is a neighborhood
of the identity with U = U™, Then Ua™'bU N H = @, which implies that
bBUHNaUH = §. Thus, moLy(U) and moL,(U) are disjoint open sets containing
7(b) and 7(a), respectively.

In order to exhibit a manifold structure on G/H, recall that Frobenius’
theorem applied to the distribution Ly, H., g € G, guarantees the existence of
a chart (U, z) around e, with z(U) = (0,1)", such that each slice

{geU|z"(9) =ar,...,2"(9) = an—k}

is contained in a left coset of H. If S denotes the slice containing e, there exists
a neighborhood V' of e such that VNS = V N H (since H is a submanifold
of G),and V = V-1, V.V C U. For the sake of simplicity, denote V by U
again. Let N = (m, ox)~!(a), where 7; : R® — R* x 0 denotes projection, and
a:=m oxz(e). We claim that 7 is one-to-one when restricted to N: Indeed, if
n(a) = 7(b), then a"'b e UNH = U N S, so that b belongs to L,(U N S). The
latter set, being connected, is contained in a single slice. Since it also contains
a, a and b lie in the same slice, so that z(a) = z(b); i.e, a = b.

It follows that my : N — W := w(N) is an open, bijective map, hence a
homeomorphism. So is Z := T oz o (mn)" ' : W — (W) C 0 x R, where
7o : R — 0 x R** denotes the projection onto the other factor. We may
then take (W, Z) as a chart around w(e). In order to produce a chart around
7(a), consider the homeomorphism L, of G/H induced by left-multiplication
by a in G, Ly(7(g)) := 7(ag). The desired chart is then given by (L,(W),Z o
L,-1). Given b € G, the corresponding transition function is my 0o 2y 0 Ly-15 0
(mg o xn) 7", so that the collection {(Ly(W),Z 0 L,-1) | @ € G} induces a
differentiable structure on G/H.

It remains to check that 7 is differentiable at ¢ € G. Using the charts
(Lg(U),z 0 Ly-1) around g and (Lg(W), & o ILy-1) around n(g), we have

1 1

~ “1_"" - _ o~ —_ _
Tollgromo(xoLy1) =Zolgi1omoLjox™ =Zomox =y,

which establishes the claim.

Finally, we show that 7 : G — G/H is a principal H-bundle: Notice that
for any [g] := 7(g), there exists a neighborhood U = Lg(W) of [g] on which
m has a right inverse sy. In fact, taking sy = Lg o (7r|N)_1 oLg-1y, we have
7o sy = 1y. Then the map

Ux H— 7 Y (U),
(lg,h) = (sulgl) - h

is a diffeomorphism. Its inverse is of the form (7, ¢r;), where ¢y : 7= 1(U) — H
is H-equivariant, since ¢y (g) = sy(n(g))~ g, so that

¢u(gh) = su(n(gh)) ™ gh = (su(n(9))™" - g)h = du(g)h.

Thus, the collection of such maps (7, ¢y/) forms a principal bundle atlas on G
over B.
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We have seen that given a fiber bundle # : M — B with fiber F' and
group G, a bundle atlas {(7~}(U,), (7, o))} determines a family of transition
functions fo 3 : Uo NUg — G which satisty foy = fa, - fa,s. It turns out
that the bundle may be reconstructed from these transition functions. More
generally, one has the following:

PROPOSITION 2.1. Let {Uqa}aca be an open cover of a manifold B, and G
a Lie group acting effectively on a manifold F. Suppose there is a collection of
maps fo.p:Us NUg — G such that

(2'1) foc,'Y(p):f,@W(p)'fa,ﬁ(p)v pEUamUﬁmUw a$81’YGA'

Then there exists a fiber bundle m : M — B with fiber F, structure group G,
and a bundle atlas whose transition functions are the given collection {fa g}
Furthermore, if ' = G and G acts on itself by left translations, then the atlas
s a principal bundle atlas.

Notice that taking & = § =~ in (2.1) implies that f, , = e. Taking a =~
then yields f;é = f8.a-
Proor. Consider the disjoint union Uyea (U, X F), and the quotient space
M under the equivalence relation:
(p:q1) ~ (p,q2) iff 2 = fo,6(p)q for some a, 3 € A.

If p : Us(Uy x F) — M denotes the projection, then each restriction p :
Uy X F — p(U, X F) is a homeomorphism, and its inverse (m, ¢, ) may be taken
as a bundle chart. By construction, the transition functions of this atlas are

the fo 3. (]
As a simple application, consider the group G = {£1} acting on R by
multiplication. The circle B = S' of unit complex numbers admits U; =

ST\ {—i} and Uy = S* \ {i} as open cover. Then the map
fiz:UrnUz; — G,

1, if Rez >0,
Z —
—1, otherwise,

determines a rank 1 vector bundle over the circle, called a Moebius band.

DEFINITION 2.2. Let m: M — B be a fiber bundle with fiber F' and group
G. The principal G-bundle obtained as in Proposition 2.1 from the transition
functions of 7 is called the principal bundle associated to 7.

Thus, a fiber bundle with group G induces an associated principal G-bundle.
One can recover the original bundle from the principal one: More generally, let
wp : P — B be a principal G-bundle, F' a manifold on which G acts effectively
on the left. Define an equivalence relation ~ on the space P x F' by setting
(p,m) ~ (pg,g~'m), and denote the quotient space (P x F)/ ~ by P x¢ F.
There is a well-defined map 7 : P xg F — B given by 7w[p,m] = 7p(p).

THEOREM 2.1. Let wp : P — B be a principal G-bundle, F' a manifold on
which G acts on the left. Then the map m : P xg F' — B constructed above
is a fiber bundle over B with fiber F' and structure group G, called the fiber
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FIGURE 2. A Moebius band.

bundle with fiber F' associated to the principal bundle 7p : P — B and the
given action of G. Furthermore, the principal G-bundle associated to © is wp.

PROOF. If (7p,¢) : mp'(U) — U x G is a principal bundle chart, define
¢: 7 Y (U) — U x F by ¢[p,m] = ¢(p)m. We claim that (7, ¢) is a candidate
for a bundle chart; i.e., it is invertible. Indeed, define s : U — 7' (U) by
s(b) = (mp,¢)"1(b,e); then f: U x F — 7= 1(U), where f(b,m) = [s(b),m], is
the inverse of (7, ¢) : On the one hand,

(1, @) 0 f(b,m) = (m,9)[s(b), m] = (7p(s()), (s(b))m) = (b,m);
on the other, given p € 75" (U), we have s(7p(p)) = pp(p) ™', so that

fo(md)p,m] = f(rp(p),d(p)m) = [s(rp(p)), d(p)m]
= [po(p)~", d(p)m] = [p,m].

This establishes the claim. Since both (7,¢) and f are continuous, they are
homeomorphisms. Now, let (7p, ¢) and (mp, ) be two principal bundle charts
with overlapping domains. Given b in the projection of their intersection and
m € F, the transition function of the (candidates for) associated bundle charts
at b is given by

f5.0()m =1po (m,6)7 (bm) = ¢[(mp,¢) " (be), m]
= (Yo (mp,¢) " (be))m = (fo.u(b)e)m
= fou(b)m.

The collection of charts therefore induces a differentiable structure on P xg F
and satisfies the requirements for a bundle atlas. Since the transition functions
of the bundle coincide with those of wp, 7p is the principal G-bundle associated
to . ]

EXAMPLE 2.1 (The Frame Bundle of a Vector Bundle). Let 7 : £ — B
denote a rank n vector bundle over B. We shall construct a principal GL(n)-
bundle 7p : Fr(E) — B, called the frame bundle of E, with the same transition
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functions. It will then follow from Proposition 2.1 and Theorem 2.1 that the
frame bundle of E is the principal GL(n)-bundle associated to 7, and that
E — B is equivalent to Fr(E) xXgrn) R" — B. Denote by Ej, the fiber 7 (b)
over b € B, and let Fr(Fy) be the collection of all frames of the vector space
Ey; i.e., the collection of ordered bases p = (vy,...,v,) of Ep. Each such frame
can be viewed as an isomorphism R" — F}, mapping e; to v; for 1 < ¢ < n.
Given two frames p; : R™ — Ej, there exists a unique g € GL(n) such that
p1 = p2g. Identifying any single frame p with e € GL(n) yields a bijective map
Fr(Ep) <> GL(n).

Let Fr(E) := UpepFr(Ey), mp : Fr(E) — B the map that assigns the
point b to a frame of Ey,. If (7,¢) : 7~1(U) — U x R" is a vector bundle chart
for F, define

¢:7p (U) = G = GL(n),
P PlE, ) O P-

¢ is G-equivariant by construction, and (7p, @) : ZT}ZI(U) — U x G is therefore
bijective. Given another vector bundle chart (m,%) over U, we have

(vaw) © (WPv ¢)_1(b7 g) = (ﬂp,w)(&l‘;bg) = (b& © (Qg\_Elb)g)'

The collection of maps (7p, @) therefore induces a differentiable structure on
Fr(E) and forms a principal bundle atlas with transition functions fy , = f3 5-
This establishes the claim.

Notice that there is an explicit equivalence between F'r(E) Xgr () R" — B
and m: if p = (v1,...,vy,) is a frame of E}, the equivalence maps [p, (a1, ..., a,)] €
Fr(E) xgR™ to > a;v; € Ep.

EXERCISE 50. Consider a principal G-bundle 7p : P — B and an associated
bundle 7 : P x¢ F — B.

(a) Show that p: P x F — P xg F, where p(p,q) = [p,q], is a principal
G-bundle, and that the projection m; : P X F — P onto the first factor is a
G-equivariant map inducing 7 on the base spaces.

P x F L»P

| |~

PxgF —— B

(b) Show that for any p € P, the map F — 7~ (7 (p)) given by q — p(p, q)
is a diffeomorphism.

(¢c) If F is a vector space and G acts linearly on F', show that 7 is a vector
bundle.

EXERCISE 51. Let H be a Lie subgroup of G, 7 : P — B, 7y : Py — B
two principal G and H-bundles over B respectively with Py C Pg. Pg — B
is said to be a principal subbundle of P — B if for any b € B, there exists
a neighborhood U of b and principal bundle charts (7g, @), (7g,¥) of 7y, 7a
over U such that

(chw)o(ﬁH,@'l:UxH—»UxG
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is the inclusion map. Show that in this case, given an action of G on a manifold
F'| the total spaces Py xy F and Pg Xg F of the associated F-bundles are
diffeomorphic via a fiber preserving map. We say the structure group G of
Pg xg F — B is reducible to H.

EXERCISE 52. Prove that the structure group G of a bundle is reducible
to H (see Exercise 51) iff the bundle admits an atlas with H-valued transition
functions.

3. The Tangent Bundle of S™

In this section, we apply some of the concepts introduced above to discuss
a basic example, that of the tangent bundle of the n-sphere.

The standard action of SO(n + 1) on S™ yields a map SO(n +1) — S"
that sends g € SO(n+ 1) to g(e1). The subgroup of SO(n + 1) acting trivially
on e; may be identified with SO(n), and one has an induced map

SO(n+1)/SO(n) — S™,
[9] — gex,

which is one-to-one by construction. It is also onto since SO(n + 1) acts tran-
sitively on the unit sphere. This map is a homeomorphism (SO(n + 1)/S0(n)
being compact) which is easily checked to be a diffeomorphism. By Examples
and Remarks 2.1(iil), SO(n + 1) — S™ is a principal SO(n)-bundle.

On the other hand, the tangent bundle of S™ is a vector bundle with group
GL(n). For p € S™, the derivative of the inclusion map S™ — R™*! induces
an inner product on the tangent space of S™ at p. By requiring the second
component ¢ of each bundle chart (7, ¢) to be a linear isometry ¢, sp Sy —
R"™, we obtain a reduction of the structure group to O(n); cf. Exercise 52.
Since the sphere is orientable, the group may further be reduced to SO(n).
(More generally, we will see in the next section that any vector bundle admits
a reduction of its structure group GL(n) to O(n). The bundle is said to be
orientable if its structure group is further reducible to SO(n). The Moebius
band from the preceding section is an example of a nonorientable bundle.)

In terms of principal bundles, we are reducing the frame bundle Fr(T'S™) of
Example 2.1 to the SO(n)-subbundle SO(T'S™) — S™ of oriented orthonormal
frames whose fiber over p € S™ consists of all positively oriented orthonormal
frames of S.

We claim that SO(T'S™) — S™ is equivalent to SO(n + 1) — S™: In fact,
the map f: SO(n+ 1) — SO(T'S™) which sends g € SO(n + 1) to the ordered
orthonormal frame (Jge,g€2,- - -;Jge,9€n+1) of Spo, induces the identity on
S™. Its inverse maps an orthonormal frame vy,...,v, of Sy, to the element
g € SO(n + 1) defined by ge; = p, ge;jr1 = J; 'vi, 1 < i < n. Since f is
SO(n)-equivariant, the claim now follows from the following theorem:

THEOREM 3.1. Let w; : P; — B, i = 1,2, be two principal G-bundles over
B. If h: PL — P; is a G-equivariant map inducing the identity on B, then the
two bundles are equivalent.
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PrOOF. If (77 H(Us,), (71, ¢a)) and (75 1(V3), (m2,15)) are bundle charts of
71 and 7y, there are smooth maps 77 ' (U,) — G and 77 ' (V3) — G given by
p— ¢o(p) and g — (Y5 o h)(q) respectively. Thus, the assignment
fa,ﬂ : Ua N Vﬁ - G,

b (¥g 0 h)(p)galp) ™"
where p is any element of the fiber over b, is a well-defined smooth map. The
bundles are then equivalent by Definition 1.3, since fo 5(b) = w30h0(¢ah;1(b)):
Indeed, let g € G, a := ¢o(p); then g = aa™g = ¢o(p)a~lg = do(pa~'g), so
that

V5 0 ho (Paniwy) ' (9) = s o h(pa™ g) = vs(h(p)) - a'g

= (g oh)(p) dalp)”" - g.
0

COROLLARY 3.1. Let w; : E; — B, i = 1,2, be two rank n vector bundles
over B. If h : E1 — FEs is a diffeomorphism mapping each fiber 71'1‘1(1)) linearly
onto w5 1 (b), then the bundles are equivalent.

ProoOF. Define f : Fr(Ey) — Fr(Es) by f(p) = hop, where p: R —
77 1(b) is a frame of E;. By Theorem 3.1, the two frame bundles are equivalent,
and therefore so are the associated vector bundles F; — B. J

Corollary 3.1 provides another approach to the tangent bundle of the sphere,
or more generally, to the tangent bundle TM of any homogeneous space M =
G/H: Let p = eH € M, so that H is the isotropy group at p of the action;
ie.,, H ={g € G| gp = p}. The linear isotropy representation at p is the
homomorphism p : H — GL(M,) given by p(h) = h.p. It is not difficult to
show that if M is connected and G acts effectively on M, then p is one-to-one;
in this case, p induces an effective linear action of H on M,,.

PrOPOSITION 3.1. If G acts effectively on the homogeneous space M =
G/H, then the tangent bundle of M is equivalent to the bundle G x y M, — M,
where H acts on M, via the linear isotropy representation at p.

PRrROOF. Consider the map f: G xyg M, — T M defined by f[g,u] = g.u,
which is clearly smooth, and linear on each fiber. Its inverse is given as follows:
if v € My, then by transitivity of the action of G, there exists some g € G such
that gp = ¢. Then f~'(v) = [g, g, v]. This is well-defined, for if ¢ = gp = gp,
then g~'g € H, so that g = gh for some h € H, and

[9, 9ep v] = lgh, p(h) g2, 0] = [gh, by, g2, v] = [gh, (gh) 5, v] = (3, Gap v].
0

The hypothesis that G act effectively on M in Proposition 3.1 is not re-
strictive: Exercise 54 shows that M can always be realized as G/H, where G
acts effectively on M.

EXERCISE 53. Let S2 denote the group of quaternions of norm 1. Identify
SO(3) with the special orthogonal group of span{i, j, k} = R?, and define p :
S3 — SO(3) by p(p)g = pgp~! (quaternion multiplication).
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(a) Show that p is a homomorphism with kernel {£1}. It is not hard to
see that p is onto, so that SO(3) is diffeomorphic to RP3 and p is the standard
double covering.

(b) Consider the principal SO(2)-bundle 7 : SO(3) — S?. Prove that
mop:S? — S?is equivalent to the Hopf fibration.

EXERCISE 54. Let M = G/H be a homogeneous space.

(a) Show that the subgroup of G' which acts trivially on M is the largest
normal subgroup N(H) of G which lies in H.

(b) Show that G = G/N(H) acts effectively on M, and that M = G/H,
where H = H/N(H).

4. Cross-Sections of Bundles

A trivial bundle B x F' — B has the property that through any point
(b,m) € B x F, there is a copy B x {m} of B; alternatively, the map s: B —
B x F given by s(b) = (b,m) is a lift of the identity 15 (in the sense that
mos = 1g) through (b,m). It is by no means clear that such lifts exist in
general, and they have a special name:

DEFINITION 4.1. Let £ =7 : M — B be a fiber bundle. A maps: B— M
is said to be a cross-section of £ if mos =1p5.

For example, a vector field on a manifold M is a cross-section of the tan-
gent bundle of M; a differential k-form on M is a cross-section of the bundle
A (M) — M. It is common practice to abbreviate cross-section by section.
Before looking at further examples, we point out that one can construct from a
given vector bundle £ many other vector bundles whose structure is induced by
that of £&. We illustrate the procedure in detail for the dual £* of a vector bundle
€. Tt is convenient to denote the fiber 7 =1(b) of a vector bundle 7 : E — B over
b by Ep, and we will often do so.

PROPOSITION 4.1. Let £ = n : E — B be a rank n vector bundle, and
define E* = UpepEy. For o € Ef, let () = b. There exists a natural rank
n vector bundle structure on £ = 7* : E* — B induced by . £ s called the
dual bundle of &.

PROOF. Let (7, ¢) be a bundle chart of { over U C B. Since ¢, : Ep — R"
is an isomorphism for each b € U, so is Q_leg : B —» R™ =2 R”, where <Z)|E; =
(#1g,) """ (recall that the transpose of a linear transformation L : V' — W is
the linear map L* : W* — V* given by (L*a)v = a(Lv) for a € W*, v € V).
Then (7*,¢) : 7~ Y(U) — U x R™ is one-to-one, onto, and its restriction to
each E} is linear; if (7,%) is another bundle chart, then

(7-{-*’1;) o (’/T*7Q;)71(b7 CY) = (blz) o (&IE’;)—IQ) = (p (¢O z/)[_Elb)*a)'

Thus, there exist unique topological and differentiable structures on E* for

which the maps (7*,¢) become local diffeomorphisms. These maps form a
bundle atlas, since the transition functions are given by fz 5(b) = fy.4(p)". O
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Given two vector bundles &; = 7; : E; — B, one defines in a similar fashion
the tensor product bundle £, ® €; with fiber E1, @ Eop, over b, the homomorphism
bundle Hom(&;,&2) whose fiber over b consists of all linear transformations
E\y, — Eg, etc. The isomorphism Hom(FEhy, Eg) = EY, ® Eo induces an
equivalence Hom(&;, &) = & ® &o.

DEFINITION 4.2. A Fuclidean metric on a vector bundle { =7 : E — B
is a section s of the bundle (£ ® £)* such that s(b) is an inner product on E,
for each b € B. A Euclidean metric on the tangent bundle of a manifold M is
called a Riemannian metric on M.

Loosely translated, a Euclidean metric on £ is just an inner product on the
fibers that varies smoothly with the base point.

THEOREM 4.1. FEvery vector bundle £ = w : E — B admits a Euclidean
metric.

PRrROOF. Consider a locally finite cover of B by sets {U,} whose preimages
are the domains of bundle charts {(7, ¢,)}. Define a Euclidean metric s, on
each 7~ 1(U,) so that ¢, becomes a linear isometry: s,(u,v) = {(Pau, Ppav),
where (,) denotes the standard inner product on R™. Let {¢,} be a partition
of unity subordinate to {U,}, and extend s, to all of B by setting 5,(b) =
Vo (b)sq(b) if b € U, and 54(b) = 0 otherwise. Then s =" _ 3, is a Euclidean
metric on &. ]

Theorem 4.1 implies that every rank n vector bundle admits a reduction of
its structure group to O(n), by requiring that charts be linear isometries when
restricted to each fiber.

Notice that a vector bundle always admits a section, namely the zero section
given by s(b) = 0 € E}. Principal bundles, on the other hand, do not, in general,
admit sections:

THEOREM 4.2. A principal G-bundle m : P — B admits a section iff it is
trivial.

ProOOF. If 7 : B x G — B is trivial, then for any fixed ¢ € G, the map
s(b) := (b,g) defines a section of m. Conversely, suppose s : B — P is a
section. Since p € P and s(mw(p)) belong to the same fiber, there is a well-defined
equivariant map ¢ : P — G such that p = s(7(p))o(p). (7, ¢): P — B x G is
then an equivalence by Theorem 3.1. O

ExAMPLE 4.1. Recall from Section 3 that the principal SO(n)-bundle over
S™ associated to the tangent bundle of S™ is # : SO(n +1) — SO(n +
1)/SO(n) = S™. When n = 3, S is identified with the group of quaternions of
norm 1, and e; =1 € H.

Consider the map s : S — SO(4) given by s(q)u = qu, for ¢ € S C H,
u € H=R% Then (m0s)(q) = s(q)1 = ¢; i.e., s is a section of 7 : SO(4) — S3,
and SO(4) is diffeomorphic to S3 x SO(3) (although not isomorphic, as a group,
to the direct product S x SO(3)). Since 7 is trivial, so is the associated tangent
bundle T'S® — S%. We saw in Chapter 1 that even-dimensional spheres do not
admit a nowhere-zero vector field; i.e., their tangent bundle does not admit a
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nowhere-zero section, and is therefore nontrivial. Thus, none of the bundles
SO(n+ 1) — S™ admit sections when n is even.

EXERCISE 55. Consider the map
¢:53X53'_)SO(4)3 ¢(QI»(I2)U:QIUQEI, qi€S37 UGH:R4

Show that ¢ is a Lie group homomorphism, and determine its kernel. It is not
hard to see that ¢ is onto, so that S® x S® is the two-fold covering group of
SO(4), denoted Spin(4). Notice that if 1, A : S — S x S3 are the imbedding-
homomorphisms given by «(¢) = (¢, e) and A(q) = (g, q), then ¢ou is the section
from Example 4.1, and ¢ o A is the two-fold covering from Exercise 53.

EXERCISE 56. Let & = 7, : E; — B be vector bundles over B, i = 1,2, and
denote by I'¢; the collection of sections of &;.

(a) Show that I'¢; is a module over the ring of smooth functions B — R.

(b) Show that I'Hom(&;, &) and Hom(T'¢1,T'E;) are naturally isomorphic
as modules.

EXERCISE 57. A complex vector bundle is a bundle with fiber C* whose
transition functions are complex linear. Show that a real rank 2n vector bundle
£ admits a complex vector bundle structure iff there exists a section J of the
bundle Hom(¢, £) such that J? equals minus the identity on the total space. J
is called a complex structure on &.

5. Pullback and Normal Bundles

Let £ =7 : M — B denote a fiber bundle with fiber F" and group G. Given
a manifold B and a map f : B — B, one can construct in a natural way a
bundle over B with the same fiber and group: Consider the subset

F*M = {(b,m) € B x M | n(m) = f(b)}

together with the subspace topology from B x M, and denote by 71 : f*M — B,
g f*M — M the projections.

PROPOSITION 5.1. f*¢é =my : f*M — B is a fiber bundle with fiber F and
group G, called the pullback bundle of £ via f, and w3 : f*M — M is a bundle
map covering f. Furthermore, f*€ is uniquely characterized by the property
that mome = fomy;

f*M —2— M

ml lﬂ
B —— B
f

ie., if € =m: M -»_B s a fiber bundle with fiber F' and group G, and there
exists a bundle map f: € — & covering f: B — B, then £ & f*¢.

PROOF. A bundle chart (7, ¢) of £ over U C B induces a chart (1, ¢) of
f*€ over f~1(U), where ¢ = ¢ o m. It is easily checked that the transition
functions satisty fz ; = fey o f, so that f*¢ is a bundle as claimed, and 7
is a bundle map by definition. For the uniqueness part, let £ be a bundle
as in the statement. By the remark following Definition 1.3, the coordinate
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bundle over B with bundle charts of the form (7~ (f~!(U)), (7, ¢ 0 f)), where
(7= (U). (7, )) is a bundle chart of 7, is equivalent to £. Since it has the same
transition functions as f*&, f*¢ is equivalent to &. O

Observe that the structure group of f*£ may very well be smaller than G,
since its transition functions are those of £ composed with f.

If ¢, = m; : E; — B are two vector bundles of rank n; over B, then £; x & =
m X 7o 1 By X EF5 — B x B is a vector bundle of rank n; + ny. Consider the
diagonal imbedding A : B — B x B, A(b) = (b,b).

DEFINITION 5.1. The Whitney sum & & & is the rank (n; + ns2) vector
bundle A*(&; x &2).

The fiber of &1 & & over b € B is F1p @ Fop.

DEFINITION 5.2. Let & = m; : E; — B be two vector bundles over B. A
map h : E; — Fs is said to be a homomorphism if it maps each fiber Fy,
linearly into Egy.

Thus, a homomorphism h : Fy — F» is just another word for a section s of
the bundle Hom(&;,&2): We can go from one to the other via s(b) = hg,,. By
Corollary 3.1, if h is an isomorphism on each fiber, then & is an equivalence.
Conversely, an equivalence is a homomorphism (and a bundle map). More
generally:

PROPOSITION 5.2. Let & = 7, : E; — B; be vector bundles over B;, i = 1, 2.
If h - By — Ey maps each fiber wy ' (b1) linearly into a fiber w5 (b), then
h = f og, where g is a homomorphism and f a bundle map.

PROOF. Consider the pullback bundle h*&y, where h : By — By is the map
induced by h. If pray : h*Ea — Ej is the bundle map given by projection onto
the second factor, then h = proog, where g : F; — h*FEs is the homomorphism

g(u) = (m1(u), h(w)).

g

THEOREM 5.1. Let & = m; : E; — B denote vector bundles over B, h :
Ey — E5 a homomorphism.

(1) If h is one-to-one (on each fiber), then coker h = € /h(€;) is a vector

bundle over B.
(2) If h is onto, then ker h is a vector bundle over B.

PROOF. (1) Suppose that for each b € B, the restriction h : Eyp — Eop is
injective. If &; has rank n and &3 rank n + k, then the vector space Eap/h(E1)
has dimension k. We construct a bundle atlas for coker h = Upep Eap/h(F1p):
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Let b € B, (m1,¢) and (m2,%) be bundle charts on TI'i_l(U), where U is a
neighborhood of b. Consider the map g : U — Hom(R", R"**) given by

9(p) =voho(4p,)”"

g(p) has rank n for all p € U, and we may assume, by reordering coordinates
if necessary, that the first n rows of the matrix M (b) of g(b) with respect to
the standard bases are linearly independent; i.e., that pry o g(b) : R® — R"™ is
an isomorphism, where pry : R*** — R™ is the projection. By continuity, this
holds for all p in a neighborhood (which we also call U) of b. It follows that for
each p € U, the map

Rn+k¢ — R" x Rk N H{n—Hc7
(u,v) = g(p)u + (0,v)

is an isomorphism, and f : U x R® x R*¥ — U x R*** where f(p,u,v) =
(p,g(p)u + (0,v)), is an equivalence of trivial bundles. Thus, (me, ¥) := f~!o
(7T2,¢) is a bundle chart for {,. By construction, v € Fy, belongs to h(E,)

ff (12, ¥)(v) € px R" x 0 C U x R™ x R¥. Therefore, if 7 : cokerh — B is
the natural projection and pry : R® x R¥ — RF the projection onto the second
factor, then the bundle chart (72, ) of &3 induces a diffeomorphism

7~ HU) - U x R¥,
w + h(Elp) = (pa (p’f’g © \I/)’LU),

which is linear on each fiber. This yields a bundle atlas on cokerh — B:
smoothness of the transition functions follows from smoothness of hA and of the
transition functions of &;.

(2) Suppose h : Ey, — FEg, is onto for each b € B, with n+k and n denoting
the ranks of £; and & respectively. Let U, g : U — Hom(R"** R") be as in
(1). We may assume that g(p)ei, ..., g(p)e, are independent for each p in U.
Define a bundle equivalence

f:U xR 5 U xR x R¥,
(pza’) = (p7g(p)aaa'n+1a e 7an+k‘)7

so that (71, ®) := f o (w1, ¢) is a bundle chart for & over U. By construction,
h(v) = 0 for v € 7 H(U) iff (71, ®)(v) € U x 0 x R*. (71, pry o ®) is therefore a
bundle chart for ker h. O

If h: & — & is a one-to-one homomorphism, then h(&;) is a subbundle of
&5 equivalent to &;. An ezact sequence of bundle homomorphisms is a sequence
of homomorphisms

0—& 8-t —0

such that the kernel of each map equals the image of the preceding one; thus,
h is one-to-one, f is onto, and h(&;) = ker f.

PROPOSITION 5.3. If 0 — &; A, & 4, & — 0 is an exact sequence
of homomorphisms, then there exists an equivalence g : & — & @ &3 with
goh : & — & ®E; being the inclusion, and fog™' : & @ &3 — &3 the projection.
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PRrOOF. Consider a Euclidean metric {,) on & (cf. Theorem 4.1). Since
the metric is smooth as a section, the orthogonal projection 7 : &, — h(&1) is a
bundle homomorphism. Being onto, its kernel h(¢;)* is a bundle, and the map

L:h(&)a® h(&1)F — &,
(v,w) — v+ w

is an equivalence. The restriction h : & — h(£;) of h is also an equivalence.
Furthermore, the restriction f : h(£;)* — &3 of f is a one-to-one homomorphism
because ker f = h(£1), so that by rank considerations, it is an equivalence. Thus,
g:=(h™ @ f)o L' : & — & @ &3 has the required properties. O

EXAMPLE 5.1. Let £ = 7 : E — B be a vector bundle over B, and denote
by 7, T the tangent bundles of E and B. Since 7, : TE — T B maps the fiber
over u € E linearly onto the fiber over 7(u) € B, m. induces an epimorphism
h : 7g — w*7g by Proposition 5.2. Its kernel ker h = kerw, is therefore the
total space of a bundle V¢ = 7y : VE — E over E, called the vertical bundle of
¢. By Proposition 5.3,

TE =X VED T TR.
The fiber VE,, of V€ over u € E can be described as follows: If b = m(u), and
1: By = 77 1(b) — E denotes inclusion, then VE, = 1,(E}), as an immediate
consequence of Proposition 6.2 in Chapter 1 (here, (E}p), is the tangent space
of Ey at u).

Let f : M — N be an immersion. Since f, : TM — TN is linear and
one-to-one, it induces a monomorphism h : 7py — f*7N.

DEFINITION 5.3. Let f: M — N be an immersion. The normal bundle of
f is the bundle v(f) = f*rn/h(7rr) over M.

Since 0 — 73y — f*rnv — v(f) — 0 is an exact sequence of homomor-
phisms, Proposition 5.3 implies that f*7y = 7p ® v(f). In fact, given a Eu-
clidean metric on f*7y (for instance one induced by a Riemannian metric on
N), v(f) is equivalent to the orthogonal complement of A(7as).

ExXAMPLE 5.2. Consider the inclusion 2 : S* — R"*l. By the remark
following Proposition 5.1, the pullback of the trivial tangent bundle of R?*!
via 1 is the trivial rank (n + 1) bundle €"*! over S™. The normal bundle of  is
also the trivial rank 1 bundle €' over S™: Indeed, the restriction of the position
vector field p — Jpp to the sphere is a section of the frame bundle of TSLW . Thus,

Tgn oy 61 o En—ﬁ-l’

even though 7g» is not, in general, trivial.

EXERCISE 58. Show that if £ is a vector bundle, then £ B¢ admits a complex
structure, see Exercise 57. Hint: Let J(u,v) = (—v,u).

EXERCISE 59. If £ = 7 : E — B is a vector bundle, show that the vertical
bundle of £ is equivalent to the pullback 7*€. Hint: Recall the canonical iso-
morphism 7, of the vector space E, with its tangent space (Ep), at u. Show
that f: 7#*E — VFE is an equivalence, where f(u,v) = J,v.
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EXERCISE 60. If £ = 7 : F — B is a vector bundle, then by Example 5.1
and Exercise 59, 7 = 7% @ n* 1. Prove that if s is the zero section of £, then

S*TEgﬁ@TB.

Thus, the normal bundle of the zero section in £ is £ itself.

6. Fibrations and the Homotopy Lifting/Covering Properties

Although we have so far only considered bundles over manifolds, the defi-
nition used also makes sense for manifolds with boundary (and even for topo-
logical spaces—the traditional type of base in bundle theory— if we replace
diffeomorphisms by homeomorphisms). Let B be a manifold, I = [0, 1], and for
t € I, denote by 1; : B — B x I the imbedding ¢ (b) = (b,t). Recall that two
maps f,g: B — B are said to be homotopic if there exists H : B x I — B with
Howw=fand How =g. H is called a homotopy of f into g.

Homotopies play an essential role in the classification of bundles: In this
section, we will see that if £ is a bundle over B, then for any two homotopic
maps f,g: B — B, the induced bundles f*¢ and g*¢ are equivalent.

We begin by introducing the notion of fibration, which is weaker than that
of fiber bundle:

DEFINITION 6.1. A surjective map 7 : M — B is said to be a fibration if
it has the homotopy lifting property: namely, given f : B — M, any homotopy
H: BxI—»Bof7rofcanbehftedtoahomotopyH Bx I — M of f;ie.,
roH=H,Ho=f.

In order to show that a fiber bundle £ = 7w : M — B is a fibration, we first
rephrase the problem: Notice that a homotopy H : B x I — B can be lifted
to H : B x I — M iff the pullback bundle H*M — B x I admits a section.
Indeed, if H is a lift of H, then (b,t) — (b, t, H(b,t)) is a section. Conversely, if
s is a section of H*M — B x I, then my 05 is a lift of H, where 7o : H*M — M
is the second factor projection. In other words, the homotopy lifting property
may be paraphrased as saying that if £ is a fiber bundle over B x I, then any
section of gy can be extended to a section of &.

We begin with the following:

LEMMA 6.1. Let & be a principal bundle over B x I. Then any b € B has
a neighborhood U such that the restriction §uxr s trivial.

PROOF. By compactness of b x I, there exist neighborhoods V1, ...,V of b,
and intervals I1, ..., I such that {V; x I;} is a cover of bx I, and each restriction
§|v,x1, is trivial. We claim that U may be taken to be V1 N---N V. The proof
will be by induction on k.

The case k = 1 being trivial, assume the statement holds for £ — 1. Order
the intervals I; by their left endpoints, so that if I; = (¢7,¢}), then tJ < tJ,,
(if tg = t?H, then either I; or I;41 can be discarded). We may also assume
that t} < t since otherwise I, may be discarded. If ¢y € (¢9,¢!), then by the
induction hypothesis, £ is trivial over Uy x [0,¢0), and over U x (t, 1], where
Up=Viand U = Von ... NV, Let s; and sy be sections over these two sets.
For each (g¢,t) € (U ﬂUz) x (t9,t1), there exists a unique g(g,t)) € G such that
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s1(q,t) = s2(q,t)g(g,t), and g : (U1 NUs) x (t3,t1) — G is smooth because the
sections are. Extend g to a differentiable map g : (U; NUsy) x (19,1] — G. We
then obtain a section s of € restricted to (U; NUsz) x I by defining

{sﬂ%tL for t < to,

1) =
s(g:1) s2(q,t)g(q,t), fort > to.

O

THEOREM 6.1. Let £ = m : P — B x I be a principal G-bundle, and
consider the mapsp: B x 1 — B x 1, p(b,t) = (b,1), and j: Bx1— B x I,
j(b,1) = (b,1). Then

§=(jop)"é=p"EBx1-

PROOF. Denote by g : P — B and u : P — [ the maps obtained by
composing 7 with the projections of B x I onto its two factors. We will construct
a G-equivariant bundle map f : P — 7~ 1(B x 1) covering p; the theorem will
then follow from Theorem 3.1 and Proposition 5.1.

By Lemma 6.1, there exists a countable cover {U,} of B such that £ is
trivial over each U, x I. Let s, denote a section of §, « 1, and {¢n} a partition
of unity subordinate to {U,}. Since any element in 7= !(b,t) with b € U,, can
be written as s, (b, t)g for a unique g € G, the assignment

foim N Un x I) — 77 (U x 1),
87L(b7 t)g — Sn(bv min{t + ¢7z(b)a 1})9

is a G-equivariant bundle map. Furthermore, f,, is the identity on an open set
containing 7~ !(dU,, x I), and may therefore be continuously extended to all of
P by defining f,,(¢) = q for ¢ ¢ 7= *(U,, x I). Finally, set f = fy o fyo---. The
composition makes sense because all but finitely many f,, are the identity on
a neighborhood of any point. f is G-equivariant since each f, is, and uo f =
min{u + (3" ¢,) o 7p, 1}, so that wo f = 1. Thus, f maps into 7~ (B x 1),
and furthermore, f is differentiable, because although u o f,, is in general only
continuous, v o f is differentiable. This completes the proof. ]

COROLLARY 6.1 (Homotopy Lifting Property). A fiber bundle is a fibration.

PROOF. As noted at the beginning of this section, what needs to be shown
is that if £ is a fiber bundle over B x [ with group G and fiber F, then any
section s of {px; can be extended to the whole bundle. With the notation of
Theorem 6.1, if 7 : P — B x I denotes the principal G-bundle associated to &,
then there exists a bundle map f : P — 7~ !(Bx 1) covering p. f then induces a
bundle map f : § — £ px1 between the associated bundles with fiber . Thus,
f~tosopis asection of £. Furthermore, the restriction of f to 7~ (B x 1) is
the identity, so f~! o s o p is an extension of s. O

Recall that 7, : B — B x I denotes the imbedding . (b) = (b, 1).

COROLLARY 6.2. Let § be a fiber bundle over B x I. Then 15€ = 15¢€.
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PrROOF. We may assume that £ is a principal bundle. Let p; : Bx I — B
denote the projection onto the first factor. With notation as in Theorem 6.1,

jOp =11 °p1, and 5 = (.7 Op)*g = pﬁf& Thus,
108 = 15p711€ = (p1 o) 116 = 11€,
since p; o019 = 1p. d

COROLLARY 6.3 (The Homotopy Covering Property). Let £ denote a fiber
bundle over B. If f,g: B — B are homotopic, then f*§ = g*¢.

PROOF. Let H : B x I — B be a homotopy with H o1y = f and Ho1, = g.
By Corollary 6.2,
fTE=1p(H"E) =1 (H™¢) = g*¢.
O

EXERCISE 61. Show that a bundle over a contractible space (one for which
the identity map is homotopic to a constant map) is trivial.

EXERCISE 62. Suppose M — B is a fiber bundle, and let H : Bx I — M be
a lift (the existence of which is guaranteed by Corollary 6.1) of some homotopy
H : B x I — B. Show that H may be chosen to be stationary with respect to
H;i.e., if H(b,t) is constant in ¢ for some b € B, then so is I-if(b,t).

EXERCISE 63. Let m: M — B be a fibration, b € B, p € 7~ 1(B).

(a) Show that any curve ¢ : I — B with ¢(0) = b may be lifted to a curve
¢ in M with ¢(0) = p.

(b) Let ¢;, i = 1,2, denote two curves in B from b to b, and H a homotopy
of ¢; into ¢y with H(0,s) = b, H(1,s) = b for all s € I. Prove that, if & is a
lift of ¢; to M with ¢;(0) = p, then ¢, is homotopic to ¢z, and the two curves
have the same endpoint.

(c) Prove that the lift of ¢ in (a) is unique.

7. Grassmannians and Universal Bundles

The collection G, of all n-dimensional subspaces (or n-planes) of R***
is called the Grassmannian manifold of n-planes of R"**. Consider the map
7 : 0+ k) = G given by n(L) = L(R™), where R denotes the subspace
R™ x 0 C R*"*. 7 is onto, and w(L) = 7(T) iff L~' o T(R") = R™; i.e., iff L7 1o
T € O(n) x O(k) C O(n + k). w therefore induces a bijective correspondence

O(n+k)/O(n) x O(k) «— Gni,

and we endow G, ; with the differentiable structure for which this correspon-
dence becomes a diffeomorphism. G, i is then a compact homogeneous space
of dimension (";’k) - (g) - (’;) = nk. Gk, for example, is just RP*.

One can explicitly describe a differentiable atlas for G, x: Given an n-plane
P in G, k, decompose R*** = P @ P+ and denote by m;, 7 the projections
of R"™* onto P and P+ respectively. Let U be the open neighborhood of P
consisting of all n-planes V' such that 7y : V' — P is an isomorphism, and

define z : U — Hom(P, P*) by (V) =m0 Wl_l%/ z is a homeomorphism with
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inverse 27 1(L) = {u + Lu | u € P}. Since Hom(P, P+) = P* @ P+ is a vector
space of dimension nk, x may be considered as a coordinate map z : U — R"*.
It is straightforward to check that the transition maps for the collection of all
such charts are differentiable.

There is a canonical rank n vector bundle v, x over G, : its total space is
the subset E(vn k) of Gy i X R™** consisting of all pairs (P, u) such that u € P,
and 7 : E(vn k) — Gnk is given by 7(P,u) = P. Thus, the fiber over P € G, &
is P itself. The differentiable atlas of G, described above induces a bundle
atlas on v, k: given P € G, the orthogonal projection p : R*t* — P, and
U ={V € Gnx | pjv is an isomorphism}, let ¢ : 77 1(U) — P = R" be given
by ¢(v) = p(v). Then (7, ¢) : =1 (U) — U x R" is a diffeomorphism which
maps each fiber isomorphically onto R™.

Yn.k is called the universal rank n bundle over G, \, the reason being that
any rank n vector bundle over a manifold B is equivalent to f*v, x for suffi-
ciently large k and some map f : B — G, ;. Recall that the pullback of a
bundle is less twisted than the original, since the transition functions of the
former equal those of the latter composed with the pullback map. Roughly
speaking, the universal bundle is so twisted that any other bundle is a diluted
version of it. Some more work is needed before we are in a position to prove
this, but it can already be established in the case of a tangent bundle:

EXAMPLE 7.1. A classical theorem in topology states that any n-manifold
M can be immersed in Euclidean space R***, provided k is large enough. If
f is such an immersion, then f.M, is an n-dimensional subspace of R}LZ;’; for

each p in M, and jﬁ;)f*Mp is an element of G, x. The map
R TM — E(n).
v = (Ty feMp Ty F0),

for v € M, is a bundle map covering h : M — G, ;, where h(p) = jf_(;)f*Mp.
Thus, the tangent bundle of M is equivalent to A*~, by Proposition 5.1.

FIGURE 3. A classifying map h : S? — Gy for 752

In order to deal with the general case, we will need the following:



7. GRASSMANNIANS AND UNIVERSAL BUNDLES s

LEMMA 7.1. Let £ denote a vector bundle over an n-dimensional manifold
B. Then B can be covered by n+ 1 sets Uy, ...,U,, where each restriction iU,
is trivial.

PRrROOF. Choose an open cover of B such that £ is trivial over each element.
It is a well-known theorem in topology that this (and in fact any) cover of an
n-dimensional manifold B admits a refinement {V,, }4ca with the property that
any point in B belongs to at most n+ 1 V,,’s. Let {¢,} be a partition of unity
subordinate to this cover, and denote by A; the collection of all subsets of A with
i+1 elements. Given a = {ay,...,®;} € A;, denote by W, the set consisting of
those b € B such that ¢4 (b) < oy (D), ..., ¢, (b) for all @ # ag,...,a;. Then

(1) each W, is open,
(2) WonNWe =0if a #da, and
(3) &§w, is trivial.

Statements (1) and (2) follow immediately from the definition of these sets;
(3) holds because W, C ﬁ;zo SUpp Pa; C ﬂ;:OVaj, and £ is trivial over each
V. Define U; = Ugea,We. By (1), U; is open, and by (2) and (3), £ is trivial
over U;.

It remains to show that Uy, ...,U, cover B. For any fixed b € B, consider
the set a = {a € A | ¢n(b) > 0}. a is nonempty because ¢, (b) > 0 for some «,
and a € A; for some j < n because at most n + 1 of the sets V, contain b, so
that at most n+ 1 of the functions ¢, are positive at b. Then b € W, C U;. O

THEOREM 7.1. Let £ be a rank n vector bundle over B. For large enough
[, there is a map f: B — Gy such that £ = f*vy, ;.

G, is then called a classifying space and f a classifying map for &.

PRrROOF OF THEOREM 7.1. By Lemma, 7.1, there is an open cover Uy, ..., Uy
of B with the restriction of £ over each U; being trivial, so that there exist bun-
dle charts (m, ¢;) : 71 (U;) — U; x R™. Let 41,...,¢ be a partition of unity
subordinate to Uy,..., U, and define ®; : E(§) — R™ for each i = 1,...,k by

By(u) = (Yiom)(u)pi(w), ue W_i(Ui)’
0, u ¢ 7 (U;).
®,; is linear on each fiber of £, but not one-to-one in general. However, & =

(@1,...,Px) : E(&) — R is one-to-one: suppose ®(u) = 0; if b = 7(u), then

Y;(b) > 0 for some J,and b € U;. Since ®(u) = 0, ®,(u) must also vanish. But
®; is an isomorphism on Ej, so that u = 0, and & is one-to-one. Then
f+E(€) = E(np-1)),
w s (@(n7H (7 (w))), @(w))
is a bundle map covering
f:B— Gunk-1)
b &(n (b)),

and & = f*vp nk—1) as claimed. 0
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It follows from Lemma 7.1 and the proof of Theorem 7.1 that the integer
l in that theorem may always be chosen to equal nk, where k is the dimension
of B, and n the rank of the bundle. In some cases, it may be taken to be much
smaller: When B is a k-sphere, one can choose | = n, since S¥ may be covered
by two contractible open sets, and the restriction of the bundle to each of these
is trivial by Exercise 61.

A classifying map is not unique, since any homotopic map will induce the
same bundle by Corollary 6.3. Furthermore, if k < k', then the inclusion
R"T* © R"* induces an inclusion ¢ : Gy, r — Gy and a bundle map vy, x —
Yn,k covering 1. Thus, v,k = "y, and if f: B — G,k is a classifying map
for &, then so is 10 f. We claim, however, that for large enough k', the homotopy
class of 10 f is uniquely determined by £. To be more precise, let B denote a
k-dimensional manifold. Then G, ,k is a classifying space for rank n bundles
over B, and by the above remark, so is G, n(2k+1)- Let [B, Gy n(2k41)] denote
the collection of homotopy classes of maps B — G, ,,(2k+1), and Vect,(B) the
collection of equivalence classes of rank n vector bundles over B.

THEOREM 7.2. If B is a k-dimensional manifold, then there ezists a bi-
jective correspondence between Vect,(B) and [B, Gy n2k+1)], which maps the
equivalence class of the vector bundle £ over B to the homotopy class of 10 f,
where f : B — Gp i is a classifying map for &, and v : Gy x — Gp piak+1) 18
the inclusion.

PROOF. We only need to check that the correspondence is well-defined,
since it will then be onto by Proposition 5.1, and one-to-one by the homotopy
covering property.

So suppose £ = f*v, nk = ¢ Vn,nk; We must show that 10 f,eog: B —
Gr.n(2k+1) are homotopic. This will be done in two steps:

Step 1: Let L : Rkt — Relb+l) o grb+1) _, R2n(k+1) he the iso-
morphism given by L(u,v) = (w1),u), and denote by L the induced map from
G on(2k+1) into itself. Then Loio g=io0g.

Step 2: zof%f,ozog.

For the first step, observe that L actually lies in SO(2n(k + 1)), and the
latter is connected. Any smooth curve ¢ in SO(2n(k + 1)) joining the identity
to L induces a homotopy between the identity map of G, ,,(2k+1) and I:, so that
Loiog=10g. (One example of such a ¢ : I — SO(2n(k + 1)) can actually
be explicitly described: Let ¢(¢) be the direct sum of rotations by angle 7t/2 in
each 2-plane P; spanned by e;, €4 ,(k+1)-)

For the second step, the equivalence f*v, nk = ¢*Vn.nk induces an equiv-
alence (Z o f)*Vn,n(2k+1) = (Z © g)*vn,n(ZkJrl)- By step 1, (l © f)*’Yn,n(2k+l) =
(1~L 0120 g)*Ynn(2k+1)- The latter equivalence is just a smooth section h of the
homomorphism bundle Hom((z o f)*~. (L 010 g)*y) (where we have dropped
the subscripts for brevity) such that h(b) : (1o f)(b) — (L o120 g)(b) is an
isomorphism for each b € B. Let H(b,t) be the subspace of RZ**+1) given by

H(b,t) = ((1 — t)lgancess + th(B)) (10 £)(b)).
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Then H(b,0) = (10 f)(b), and H(b,1) = (L 020 g)(b). It remains to show that
H(b,t) is n-dimensional for each ¢, so that H maps into Gy 5(2k+1) (this is the
reason why we had to go to a higher-dimensional Grassmannian). Notice that
(20 f)(b) is a subspace of R**+1) x o ¢ R*(k+1) x R*K+1) | whereas h(b)((z o
£)(b)) = (Lozog)(b) is a subspace of 0 x R™*+1) ¢ Rn(k+1) » Rn(k+1) hecause
of the way L was defined. Thus, for u € (z0 f)(b),

(1 = ) 1geniers + th(b))u = (1 — t)u, tv) € RMF+D 5 R+

where (0,v) = h(b)u. This expression can only vanish when u = 0, thereby
completing the proof. O

There is a way of avoiding having to consider different classifying spaces
in the previous discussion: define BGL(n) to be the union of the increasing
sequence G, 1 C G2 C --- with the weak topology; i.e., a subset of BGL(n)
is open iff its intersection with each G,  is open. Let R* denote the union of
the increasing sequence R C R? C --- with the corresponding topology, and set

E(y,) = {(P,u) € BGL(n) x R® | u € P}.

Endow E(v,) with the subspace topology, and define 7 : E(y,) — BGL(n)
by w(P,u) = P. If we relax the conditions in the definition of fiber bun-
dle by allowing bundle charts to be homeomorphisms instead of diffeomor-
phisms, and transition functions to be continuous rather than differentiable,
then v, = 7 : E(v,) — BGL(n) is a rank n vector bundle. Furthermore, if
v: Gpx — BGL(n) denotes inclusion, then 1*v, is (continuously) equivalent to
Yn k- The arguments in the previous theorem can be adapted to yield a bijective
correspondence

Vect,(B) «— [B, BGL(n)]

between equivalence classes of rank n vector bundles over a manifold B and
homotopy classes of maps B — BGL(n). BGL(n) is called the classifying
space for rank n bundles, and ~y, the universal rank n bundle.

The work in this section carries over to principal GL(n)-bundles: Indeed,
let P¢, P, denote the principal frame bundles of £, n respectively. If n =
f*¢, then P, = f*P.. Thus, if G, is a classifying space for rank n vector
bundles over B, then any principal GL(n) bundle over B is the pullback of
the principal frame bundle of v, x. The total space of the latter is called the
Stiefel manifold V, . By definition of the frame bundle, it is the open subset

of R*™+%) consisting of all n-tuples (vy,...,v,) € R*™F x ... x R*"tF with
V1,...,0n linearly independent. It admits a principal O(n) subbundle with
total space V,?)k consisting of those (v1,...,v,) € Vi for which (v;,v;) = d;;.

By Exercise 51, v, admits a reduction of its structure group to O(n). By
Theorem 7.1, every rank n bundle admits a reduction of its structure group
to O(n). This is just another way of proving that a vector bundle admits a
Euclidean metric.

Although 7, ; is not orientable and therefore does not admit a reduc-
tion of its structure group to SO(n), there is a classifying space for bundles
with group SO(n): Let G, denote the collection of oriented n-planes in
R™**. SO(n + k) acts transitively on G, x, and the map 7 : SO(n + k) —
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Gn.r which assigns to L € SO(n + k) the n-plane L(R™ x 0) oriented by
the ordered basis (Ley,..., Le,) identifies G;,k with the homogeneous space
SO(n+k)/SO(n) x SO(k). Since a given n-plane has exactly two orientations,
the projection G;,k — Gk (which forgets orientation) is a 2-fold covering. As
before, one defines the universal oriented n-plane bundle ~, ; over the oriented
Grassmannian Gy, , with total space E(vnk) ={(Pu) € Grp xR |y € P}.
The total space of the associated oriented orthonormal frame bundle is VS K
The projection 7 : V0, — G;,k assigns to an n-tuple of orthonormal vectors
the plane spanned by them together with the orientation determined by the
ordering of the vectors. The group of this bundle is SO(n), so that v, , admits
SO(n) as structural group.

We say two oriented bundles are equivalent if there exists an equivalence
which is orientation-preserving on each fiber.

THEOREM 7.3. Let § be an oriented rank n bundle over B. Then for suffi-
ciently large k, there is a map f: B — Gp with f*yy, 5 =&

The proof is left as an exercise. The procedure followed in constructing
BGL(n) and v, can be applied to obtain the classifying space BSO(n) for
vector bundles with group SO(n), and the universal bundle %, over BSO(n).

EXERCISE 64. Let £ denote a rank n vector bundle over B together with a
Euclidean metric. The unit sphere bundle of € is the bundle ¢! with fiber 7!
over B and total space E(£') = {u € E(€) | (u,u) = 1}. Show that the total
space of the unit sphere bundle of 75" is diffeomorphic to the Stiefel manifold
V2O,n~1 .

EXERCISE 65. Show that G, is diffeomorphic to G ».

EXERCISE 66. Define the complex Grassmannian G, (C) to be the set of
all complex n-dimensional subspaces of C"**,

(a) Show that there exists a bijective correspondence G, x(C) < U(n +
k)/U(n)xU(k), where U(n) denotes the unitary group of nxn complex matrices
A such that AA* = I, see Chapter 6. Under this identification, G, x(C) becomes
a compact homogeneous space.

(b) Construct a universal complex rank n vector bundle 7, x(C) over G,, x(C)
as we did for G, k.

(c) Whenn =k =1, G;1(C) = CP! ~ S? by Exercise 49. Show that the
unit sphere bundle of 7 ; (C) is equivalent to the Hopf fibration S® — S? from
Examples and Remarks 1.1(iii).

EXERCISE 67. Prove Theorem 7.3.

EXERCISE 68. Let £ be a rank n vector bundle over a manifold B, so that
€= f*yn i for some k and f: B — Gy k.

(a) Show that there is a one-to-one homomorphism ¢ — "% of ¢ into the
trivial rank n + k bundle e"** over B.

(b) Conclude that there exists a rank k bundle 1 over B such that £ ® 7 is
trivial.



CHAPTER 3

Homotopy Groups and Bundles Over Spheres

1. Differentiable Approximations

We saw in Chapter 2 that the concept of homotopy plays a central role in
bundle theory. Although we have so far dealt only with differentiable maps,
it is more convenient, when working with homotopies, to consider continuous
maps, and we will do so in this chapter. One purpose of this section is to try and
convince the reader that we are not introducing new objects when, for example,
we consider the pullback f*¢ of a bundle via a continuous map f: Explicitly,
we will show that any continuous map between manifolds is homotopic to a
differentiable one, and the latter can be chosen to be arbitrarily close to the
original one.

We begin with the following:

THEOREM 1.1 (Tubular Neighborhood Theorem). Let h : M™ — R™* be
a differentiable imbedding. Then there is a neighborhood of the zero section
in the normal bundle E(vy) of h which is mapped diffeomorphically onto a
neighborhood of h(M) in R*k,

PROOF. Recall that E(vy) = {(p,u) € M x TR"™* | uw € (h.M,)*},
using the canonical Euclidean metric on TR™**. Define f : E(v,) — R"*F
by f(p,u) = h(p) + Jh_(;)u. If s : M — E(v,) denotes the zero section, we
claim that f. is an isomorphism at each s(p), p € M; equivalently, f. o ma :
s*TE(vy) — TR™* is an isomorphism on each fiber, where 73 : s*T'E(vy,) —
TE(vy,) is projection onto the second factor.

Now, by Exercise 60, s*Tg(,,) = Ta @ vp, and under this equivalence,
f« 0wy maps (u,v) € E(tar & vp) to heu + v; since v L h,u, the assertion is
clear. Thus, there is an open neighborhood of s(M) in E(vp) on which f is a
local diffeomorphism. Since the restriction of f to s(M) is a homeomorphism
onto its image h(M), the statement of the theorem is now a consequence of the
next lemma. |

LEMMA 1.1. Let M, N be second countable Hausdorff spaces, with M locally
compact, and f : M — N a local homeomorphism. If the restriction of f to
some closed subset A of M is a homeomorphism, then f is a homeomorphism
on some neighborhood V of A.

PROOF. We construct V inductively. Let W; be a sequence of nested com-
pact sets W1 € Wy C --- whose union equals M, and set A; = ANW,;. Notice
that if f is one-to-one on a compact set C, then it remains so on some com-
pact neighborhood of C: Otherwise, there would exist sequences p, — p € C,

81
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gn — q € C, such that p, # g, but f(pn) = f(gn). By continuity, f(p) = f(q),
so that p = ¢. But since any neighborhood of p contains p,, and g, for large
enough n, f would not be a local homeomorphism at p.

A similar argument shows that if C is a compact subset of A, then C has
a neighborhood U with compact closure such that f is one-to-one on U U A.
Otherwise, we could choose a sequence {p,} in U\ A converging to some p € C,
and a sequence {g,} in A with f(p,) = f(gn). Since f(g.) — f(p) and f
is a homeomorphism on A, ¢, — p, contradicting the fact that f is a local
homeomorphism at p.

By the above, there exists a neighborhood V; of A; such that V; is compact
and f is a homeomorphism on V; U A;. Inductively, if V; is a neighborhood of
A; satisfying these conditions, then V; U A;,; is a compact subset of V;U A, and
since f is a homeomorphism on the latter, there exists a neighborhood V;,; of
V; U A;;1 such that f is one-to-one on Vi1 U A. Then f is one-to-one on the
neighborhood V := UV of A. a

Let (N,d) be a metric space as defined in Chapter 5, Section 7, and let
e>0. Amap g: M — N is said to be an e-approzimation of f: M — N
if d(g(p), f(p)) < efor all p € M. A homotopy H : M x I — N is said to be
e-small if d(H (p,to), H(p,t1)) < € for all tg,t; € I, pe M.

LEMMA 1.2. Let M be a manifold, f : M — RF be a continuous map. For
any € > 0, there exists a differentiable e-approzimation g : M — RF of f which
s homotopic to f via an e-small homotopy.

PROOF. Denote by |a| the norm of a € R¥, and by B.(a) the set of all
b € RF with |a — b| < €. For each p € M, let V, = f~1(B.(f(p))), and define
hy : V, — R¥ by hy(q) = f(p). Consider a locally finite refinement {Up,}qea of
{Vp}penm, so that for each o € A, there exists some p(a) € M with Uy C V(4.
Let {¢o} be a partition of unity subordinate to {U,}, and define for each a a
differentiable map g, : M — RF by

¢aqh(x ’ fOI‘qua,
9a(q) = (@hp(en (@) ,
0, otherwise.
We claim that g := ) g, satisfies the conclusion of the lemma: g is differen-

tiable, since it is a finite sum of smooth maps in a neighborhood of any point.
Furthermore,

9@~ F@ = | 3 bal@hyw(@ - F@)] = |3 dal@) f(p(a) - f(0)

{a’quQ}

=3 a(@IF(p(0) ~ F@)] <€ dala) =

The homotopy H : M x I — R* can be taken to be given by H(q,t) =
(1=8)f(q) +tg(q)- 0

THEOREM 1.2. Let f: M — N be a continuous map between differentiable
manifolds, where N is compact. Endow N with a metric d. Given any € > 0,
there exists a differentiable e-approzimation g of f, which is homotopic to f via
an e-small homotopy.
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PROOF. Choose some imbedding h : N — R¥, c¢f. Example 7.1 in Chapter
2. Since h : N — h(N) is a homeomorphism between compact spaces, there
exists some § > 0 with the property that [h(p) — h(q)}| < € whenever d(p, q) < 6.
Again by compactness, we may assume that the tubular neighborhood of h(NV)
guaranteed by Theorem 1.1 is Bs/5(h(N)). Let r : Bs/3(h(N)) — h(N) be the
smooth retraction that corresponds to the normal bundle projection under the
diffeomorphism from 1.1. Choose some differentiable §/2- approximation f of
ho f. We claim that g := h™loro f : M — N satisfies the conclusion of the
theorem: This map is by definition differentiable, and for any p € M,

(ro )~ (ho NI < I(ro F)(@) = F)l + 1f@) — (ho N < 3 + 5 =4

2
so that d(f(p), g(p)) = d(h™"(h(f(p))), A~ ((r o f)(p))) < €. The homotopy is

(rof)p)
given by H(p,t) = (h=" or)(tf(p) + (1 —t)(ho f)(p)). O

EXERCISE 69. Modify the proofs of Lemma 1.2 and Theorem 1.2 to show
that if the restriction of the continuous map f : M — N to a closed subset A of
M is differentiable, then the differentiable e-approximation of f may be chosen
to agree with f on A.

EXERCISE 70. Let f : M — N be a continuous map between differentiable
manifolds, where NV is no longer assumed to be compact. Show that f is homo-
topic to a differentiable map g : M — N. Given € > 0, can g always be chosen
to be an e-approximation of f?

2. Homotopy Groups

The boundary 0I™ of the n-cube I™ consists of the (n — 1)-faces {a € I" |
a; =a}, 1 <i<n,a=0,1. The initial (n — 1)-face I"~! x 0 will be identified
with I™~!) and the union of the remaining faces will be denoted J”~!.

Let X be a topological space, A a subset of X, and p € A. We will be dealing
in this section with the set C™(X, A, p) (sometimes denoted C™ when there is
no risk of confusion) of all continuous maps f : (I, I"~1 J*71) — (X, A,p)
from I™ to X that map I"~! into 4 and J"~ ! into p.

Two maps f,g € C™ are said to be homotopic in C™ if there exists a
homotopy H between f and g with H o1 in C™ for all t € I. The relation
f ~gif f and g are C™-homotopic is an equivalence relation, and partitions C™
into equivalence classes. The collection of these classes is denoted 7, (X, A, p),
and 7, (X, p) in the case A = {p}.

Given f,g € C™, define their sum f+ g € C™ to be
fay,aq,...,a,), if0<a; <1/2,

(f +9)ar. . an) = | /
g(2a1 — 1,a9,...,a,), if1/2<a <1.

If Hy and H, are C"-homotopies between f, fi, and g, g1 respectively, then
f + g is C™-homotopic to f; + g1 via H, where
H:(2a1,a2,...,a,,1), if0<a; <1/2,
Hia.t) = 7(2a1, a2 ) . ax /
Hy(2a1 — 1,az,...,an,t), if1/2<a; <1.
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There is therefore a well-defined addition in 7, (X, A, p) given by [f]+[g] := [f+
g], where [f] denotes the element in 7, determined by f. It is straightforward
to check that 7, (X, A, p) together with this operation is a group, called the n-th
homotopy group of X relative to A, based at p; cf. the exercises below.

THEOREM 2.1. mo(X,p) is abelian, and 7,(X, A, p) is abelian when n > 2.

PRrROOF. Consider a homeomorphism F of I? with the unit disk D mapping
the line segment a; = 1/2 to the diameter 0 x [—1,1]in D, and let H : D x I —
D be given by H(a,t) = e™ta. Then H : I? x I — I? where H(a,t) =
F~Y(H(F(a),t)), can be viewed as a ‘rotation’ of I? by angle 7t, 0 < ¢t < 1.
Now, any f € C?(X,p) is homotopic to f := f o H o1; since a — H(a,1)
interchanges the two half-squares 0 < a; < 1/2 and 1/2 < a; < 1, we have that

frog~ftg=g+f~g+/f
When n > 2, the homeomorphism F can be extended to I" = I? x I"2 by
keeping the last n — 2 variables fixed. The rotation H o 1, defined above then
belongs to C™(I™, I"~!,J""1), so that any f € C"(X, A, p) is C"-homotopic
to f, with f as before; the rest of the argument then goes through to show that
(X, A, p) is abelian. U

Hoy

-y
O~ C

FIcURE 1. The “rotation” H o1 of I2.

!
I
I

Notice that if f and g are homotopic in C"(X, A, p), then their restrictions
to I"~' are homotopic in C" (4, p), and the assignment f — fin-1 is a
homotopy group mapping.

DEFINITION 2.1. For n > 2, the boundary operator is the map 0 : m,(X, A, p) —
Tn—1(A, p) given by 0[f] = [f|n-1].

The boundary operator is a group homomorphism, since (f + g)n-1 =
f'[n—l + gtln—l .
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Another important group homomorphism is the one induced by a contin-
uous map h : (X, A,p) — (Y, B,q). When composed with f € C"(X, A,p), h
yields an element ho f € C™(Y, B, q). Moreover, ho f and hog are C™-homotopic
whenever f and g are, so that h induces a map

h# : ﬂ-n(Xv Avp) - Trn(Yv B7 Q)v
[f] = [hof],

which is a homomorphism because ho (f +g) =ho f+hog.

DEFINITION 2.2. The homotopy sequence of (X, A,p) is the sequence of
homomorphisms

. — (A, p) 2, Tn(X, D) LN (X, A, p) 2, Tn-1(A,p) — ...
. ‘0’ 7T1(Aap) i 7T1(Xap)7
where ©: (A,p) — (X,p) and 3 : (X,p,p) — (X, A, p) are the inclusion maps.

THEOREM 2.2. (1) The homotopy sequence of (X, A,p) is exact.
(2) If h: (X, A,p) — (Y, B,q) is continuous, then the diagram

(A D) —F— m0(X,p) —2 10(X, A, p) —2— mn_1(A,p)

h#l h#l h#l h#l

T(B,q) —*— m.(Y,q) —*— m,(Y,B,q) —>— mp_1(B,q)

commutes.

PROOF. Statement (1) is fairly straightforward, and we illustrate the pro-
cedure by showing exactness of the portion

(X, p) 5 10 (X, A, p) 2 71 (A, D),

which is perhaps also the more instructive part. If [f] € 7,(X,p), then (50
F)0I™) = {p}, and (0 f);;n-1 is a constant map. Then 94 [f] = [(70 f)|1n-1]
is 0 by Exercise 71, so that imjz C kerd. Conversely, if [f] € kerd, then
firn-1 is homotopic in C" (A, p) to the constant map sending I"~! to p via
some H : (I"1 x I,0I"1 x I) — (A,p) with H o015 = f. Consider the subset
E = I" x 0UOI™ x I of the boundary dI"*! of I"*! = I™ x I, and extend
Hto H:(E, I x I,J"" ! xI) — (X, A,p) by setting H(a,0) = f(a) for
a € I, H(a,t) = H(a,t) for (a,t) € I""' x I, and H(a,t) = f(a) = p for
(a,t) € J*! x I. Now, there exists a retraction r (see Exercise 74) from I™ x I
onto E: For example, if pp = (1/2,...,1/2,2) € R™"", let r(q) be the point
where the line through py and ¢ intersects E. Then Hor: (I" < 1,171 x
I,J""' x I) — (X, A,p) is a homotopy of f into a map g: (I",0I") — (X,p),
and [f] = g#lg]. Thus, ker 0 = im 4.

Statement (2) follows from Exercise 73 and the fact that (koh)y = kg ohy
for maps h: (X, A,p) — (Y,B,q) and k: (Y,B,q) — (Z,C,r). O

EXAMPLES AND REMARKS 2.1. (i) Ifh: (X, A,p) — (Y, B, q) is a homotopy
equivalence (i.e., there exists k : (Y, B,q) — (X, A,p) such that ko h ~ 1x
and hok ~ 1y), then hy : (X, A,p) — m(Y, B, q) is an isomorphism for
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each n. Indeed, ky o hy = (koh)x = (Ix)g = lr,(x.ap), and similarly
for hy o kg. Notice that for the second equality, we used the fact that if
H:(XxI,AxI.pxI)— (Y,B,q)is a homotopy, then (H o)z = (H o).
In particular, if X is contractible, then all its homotopy groups vanish.

(ii) 71 (S™, p) = 0 for all k < n: To see this, notice first that given g € S*,
any map (I*,0I¥) — (X,p) can be considered as a map (S*,q) — (X.p), so
that 7 (X, p) consists of homotopy classes of such maps. The above assertion
then says that any f : (S¥,q) — (S™,p) is homotopic to a constant map if k < n.
By Theorem 1.2, we may assume that f is differentiable. By Sard’s theorem, f
cannot be onto (otherwise all values would be critical because k < n), so that
f maps into a sphere with a point deleted. The latter is contractible, and by
(i), f is homotopic to a constant map.

(iii) 7, (S™, p) = Z: Asobserved in (ii), 7, (S™, p) may be identified with ho-
motopy classes of maps (5™, p) — (5™, p). Recall from Chapter 1, Theorem 15.3
and Theorem 1.2 that each class contains a differentiable representative f to
which we may assign an integer deg f € Z. Furthermore, two homotopic maps
have the same degree, and it can be shown that conversely, maps with the same
degree are homotopic. Thus, there is a one-to-one function deg : 7, (S™, p) — Z.
Since the degree is computed by adding the local degrees in the preimage of a
regular value, deg(f + g) = deg f + deg g, and deg is a group homomorphism.
In particular, deg(k - 1s») = k, and deg is an isomorphism.

We next examine the dependence of m, on the base point. Suppose X is
path-connected. We claim that for any two points pg and p; of X, 7, (X, pg) =
mn(X,p1). To see this, consider a curve ¢ : I — X from py to p;. Given
f€C™(X,po), define

hes: E=I"x0UdI" x I — X,

@8 {c(t), if g € OI™.

If r: I™ x I — FE denotes the retraction used in the proof of Theorem 2.2,
then Hey := hegor : I" x I — X is a homotopy of f into a map c(f) :=
Hefou : (I",0I") — (X,p1), and c(f) represents an element of m, (X, p1).
Furthermore, given a homotopy F in C™(X,pg) of f into g, the map

G:ExI— X,

(g.t.s) — F(g,s), if (q,t,8) = (q,0,8) € I" x 0 x I,
o c(t), if (q,t,8) € dI" x I x I,

homotopes he, ¢ into he 4. Then H, s and H, 4 are homotopic, so that [c(f)] =
[c(g)], and ¢ induces a map cg : T (X,po) — 7p(X,p1). Similarly, if F is
a homotopy of ¢ into another curve ¢ from pg to py, then G : E x I — X
is a homotopy of h. s into hs ¢, where G(¢,0,s) = f(q) when ¢ € I"™, and
G(q,t,s) = F(t,s) when g € 0I™. Thus, cg only depends on the homotopy
class of c.

Finally, it is clear from the above construction that cy is a homomorphism.
It follows that cy is an isomorphism with inverse c;, where ¢71(t) = ¢(1 —t).
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If we now restrict ourselves to the case when pg = p;, we obtain the follow-
ing:

ProrosITION 2.1. The fundamental group m(X,p) acts on m,(X,p) by
means of [c]([f]) = cx([f])-

Although we used a particular homotopy H of f to construct ¢(f), the only
condition required of H is that H(9I",t) = c(t):

LEMMA 2.1. Let c be a curve in X from pg to p1. If f € C™(X,po) and H
is a homotopy of f such that H(OI™,t) = c(t) for all t, then H o1y represents
the same element as c(f) in (X, p1).

PROOF. Let
H.:(p,1-2t), t<1/2,
hp,1) = { Her 1= 20, 1=
H(p, 2t — 1), t>1/2.

The map h homotopes ¢(f) into H o 11, and h(0I™,t) = ¢ 1c(t). Consider a
homotopy F : (I2,J') — (X,p1) of Fo1y = c 'cinto F o1, = p1, and define a
map h on the subset £ =1" x I x 0UJ(I™ x I) x I of I"*2 by

h(p,t), if s =0,
o anw. =,
ML= (Hou)p), ft—1,

F(h(p,t),s), ifpedl™

Let r : I" x I x I = I"t2 — E be the retraction onto E from Theorem 2.2,
and extend B;E to all of I"*2 by E\E or. Finally, define k : [ x I — X by
k(p,t) = h(p,t,1). Then ko1 = ¢(f), ko2, = H o1, and k(0I™,t) = p1, so
that k is a homotopy in C™(X,p1) of ¢(f) into H o1,. O

A space X is said to be simply connected if m1(X,p) = {e} for all p € X
and n-simple if the action of the fundamental group on 7, from Proposition 2.1
is trivial. Of course, any simply connected X is n-trivial for all n, but another
large class of such spaces is given in the following:

EXAMPLE 2.1. Any Lie group G is n-simple for every n: Let f € C™(G,e),
and consider a curve from e to go. Then H(a,t) = c(t)f(a) is a homotopy of f
satisfying the hypotheses of Lemma 2.1, and [¢(f)] = [H ov1]. But (Ho;)(a) =
go - f(a), so that the isomorphism cy : 7,(G, e) — 7,(G, go) is induced by left
translation Lg, (it is also induced by right translation, if we take H(a,t) =
f(a)e(t)). The special case go = e then yields that the action of m on 7, is
trivial, and G is n-simple.

Another interesting fact about m, (G, e) is that addition is given by group
multiplication; i.e., if f1, fo € C*(G,e), then

[fi] + [fo] = [f1- f2].

To see this, let e denote the constant map; then f1 + fo = (f1 +¢€)- (e + f2) by
definition of addition, and (f; +¢€)-(e+ f2) is homotopic to f;- fo by multiplying
the homotopies f; + e~ f; and e+ fo ~ fo.
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When X is not n-simple, one can consider the set m,(X,p)/m(X,p) of
orbits under the action of m:

PRrROPOSITION 2.2. If X is path-connected, then there is a bijection between
the set of orbits m, (X, p)/m1 (X, p) and the set [S™, X] of (free) homotopy classes
of maps S™ — X.

PrRoOF. We have already seen that any f : (I™,0I") — (X,p) can be
viewed as f : (S™,q) — (X, p), yielding a map h : m,(X,p) — [S™, X]. Further-
more, ¢(f) is homotopic to f, so that h factors through h : 7, (X, p)/m (X, p) —
[s™, X].

To see that h is onto, let f : 8™ — X, and set pg = f(q). View f :
(I",0I™) — (X,po). If cis a curve in X from pg to p, then ¢(f) : (I",0I™) —
(X, p) is homotopic to f, so that h is onto.

Finally, suppose two orbits Oy and O; are mapped to the same homotopy
class in [S™, X]. Choose f; € C"(X,p) with [f;]] € O;, i = 0,1. Now, fo
homotopes into f; via some H : I™ x I — X with H constant on each 9I™ x t.
If ¢(t) = H(OI™ x t), then [c] € m(X,p), and by Lemma 2.1, [f1] = [H o] =
¢4 fo], so that Og = O;. Thus, h is bijective. O

EXERCISE 71. Show that if f € C™(X, A,p) maps I" into A, then [f] =
0€m, (X, A Dp).

EXERCISE 72. Show that if f € C™(X, A, p), then —[f] = [—f], where —f
is given by —f(a1,...,an) = f(1 —a1,az2,...,a,).

EXERCISE 73. Let h : (X,A,p) — (Y, B,q). Prove that if h:(Ap) —
(B, q) denotes the restriction of h to A, then do hy = hy 0 0.

EXERCISE 74. Let A C X, and suppose there is a retraction r : X — A of
X onto Ajie., 74 =14a. Let v: (A, p) — (X,p), 7:(X,p) — (X, A,p) denote
inclusions.

(a) Show that 14 : 7, (A,p) — 7, (X, p) is one-to-one, and j4 : 7,(X,p) —
(X, A, p) is onto.

(b) Show that 7,(X,p) 2 7,(A,p) ® 1, (X, A, p).

3. The Homotopy Sequence of a Fibration

Our goal in this section is to develop a powerful tool for investigating and
classifying bundles, and more generally fibrations. It is based on the homotopy
exact sequence of (M, F,m) for a fibration 7 : M — B with fiber F based at a
point m € M, and consists of replacing the triple 7, (M, F, m) in that sequence
by an isomorphic homotopy group of the base space B.

LEMMA 3.1. Let m : M — B be a fibration, X a space which admits a
subspace A as a strong deformation retract; i.e., there is a homotopy H between
1x and some retraction r : X — A, with H(a,t) = a for alla € A, t € I. Then
given a map f: X — B, any lift g: A — M of fja can be extended to a lift of
f-
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PRrROOF. Let g: X — M denote gor. Now, f o H is a homotopy of f into
for. Since for = wogor = 7o g, there exists, by the homotopy lifting
property together with Exercise 62, a homotopy h : X x I — M covering fo H
and stationary with respect to it, such that ho1; = g. Then h o1 is a lift of f
(because mo (ho1) = foHoy = folx = f) which extends g: Given a € A,
(f 0 H)(a,t) = f(a), s0 that (h o 1)(a) = (hou)(a) = gla) = g(a). O

THEOREM 3.1. Let m : M — B denote a fibration. If b € B, F = m~1(b),
and m € F, then my : 1o (M, F,m) — m,(B,b) is an isomorphism for n > 2.

ProOOF. We first show w4 is onto: Given f € C™(B,b), the constant map
g:J" 1 — M sending everything to m is a partial lift of f. An extension g of g
to a lift of f is then an element of C™(M, F, m), and wx[g] = [f]. Next, suppose
that m4[f] = 0 for f € C*(M, F, m), so that there is a C"™(B, b)-homotopy h of
mo f into the constant map ho1; = b. Define g : E = I"x0UI* x 1UJ* I xT —
M by g(a,0) = f(a) if a € I, g(a,1) = m again if a € I, and g(a,t) = m
for a € J*!. Then g is a partial lift of h, and since E is a strong deformation
retract of I™ x I, g can be extended to a lift g : I™ x I — M of h. g is then a
homotopy in C™(M, F,m) of f into the constant map m, so that [f] =0. O

Let m : M — B be a fibration, b € B, F = 7=}(b), m € F. Recall from
Theorem 2.2 that the homotopy sequence

s (Fym) <5 m (M,m) 25w (M, Fym) -2 w1 (Fym) — -+

of (M, F,m) is exact. Using Theorem 3.1, we may replace the third term by
the isomorphic group m,(B,b). Since 7 o 3 = 7, we obtain an exact sequence

- T (Fym) s (M, m) T 7, (Byb) -2 g (Fym) — -

where A := 0o 7@1 may be described as follows: Given f: (I™,0I") — (B,b),
the partial lift g : J*~! — M sending J"~! to m may be extended to a lift
g: (I I g Y — (M, F,m) of f. Then g|m-1 represents A[f].

The above sequence terminates in 71 (M, m). When we add the map 7y :
w1 (M, m) — m(B,b), the resulting sequence is called the homotopy sequence
of the fibration based at m.

THEOREM 3.2. The homotopy sequence of a fibration is ezxact.

PRrOOF. Exactness of the last portion 71 (F,m) 2, w1 (M, m) =, m1(B,b)
is what remains to be established. If [¢] € m(F,m), then m o2 0 c is the
constant curve b, so that mxu4 is the zero homomorphism, and imx C ker 7.
Conversely, given [c] € m1(M,m) with mx[c] = e, there exists a homotopy
h:(I2,1',JY) — (B, (roc)(I),b). If h is a covering homotopy of h stationary
with respect to it, and such that h o1y = ¢, then h o1, is a curve lying in F
which is C*(M,m)- homotopic to ¢; i.e., [c] = 14[h 0 1;] € 14 (71 (F,m)). O

EXAMPLES AND REMARKS 3.1. (i) Suppose that 7 : M — B is a covering
map, so that it can be considered a bundle with discrete fiber F' over M. Then
n(Fym) = 0, so that 7y : m,(M, m) — 7,(B,b) is an isomorphism for n > 2,
and a monomorphism for n = 1.
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(i) Since m(S!) = 7 (R) = 0 when k > 1, Theorem 3.2 applied to the Hopf
fibration S?"*! — CP" with fiber S! implies that m(S?"*!) = 1. (CP") for
k > 2. In particular, 73(S?) = 73(S®) = Z, and the Hopf fibration 7 : §3 — §?
is a generator of m3(S?).

(iii) Consider the principal fibration SO(n+1) — S™ = SO(n+1)/SO(n).
Since 7 (S™) = 0 when k < n, the homotopy sequence of this fibration yields
isomorphisms 7, (SO(n)) = m(SO(n+1)) for n > k+1 > 2. Thus, 7 (SO(n))
is independent of n provided n is large enough; it is called the k-th stable
homotopy group 7 (SO).

(iv) Let M = SO(n+k)/SO(k). If k > ¢+ 1 > 2, then by (ii),

74(SO(k)) — 7y(SO(n + k)) — my(M) — my_1(SO(k)) —
=, Tg—-1(SO(n + k)).

By exactness, the last isomorphism implies that 7,(M) — m,_1(SO(k)) is the
zero map. The first isomorphism implies that m,(M) — my_1(SO(k)) is one-to-
one. Thus, 7¢(M) = 0 whenever k > g+ 1 > 2.

In order to compute 71 (M), we use the following:

LEMMA 3.2. Let ¢ = m: M — B be a fiber bundle with connected fiber
F'. Then the homotopy sequence of € terminates in w1 (M, m) — m1(B,b) — 0;
equivalently, m (M, m) — w1 (B, b) is onto.

PROOF. Let [] € m(B,b), and consider the map f from the one-point
space {0} into M given by f(0) = m. Then c is a homotopy of 7 o f, so there
is a lift ¢ of ¢ with ¢(0) = m. Since ¢(1) € F and the latter is connected, there
exists a curve ¢ in F' from &(1) to m. Then [é¢] € w1 (M, m), and mx[cé] = [ce] =
[c]. O

(iv) (continued) 71 (SO(k)) = m(SO(n + k)) when k > 2 by (iii). Since
SO(k) is connected, the homotopy sequence for SO(n + k) — M terminates in

T (SO(K)) = m(SO(n + k)) — 71 (M) — 0

by Lemma 3.2, and m (M) = e by exactness.

(v) Recall that the Grassmannian of oriented n-planes in R*** is énk =
SO(n + k)/S0(n) x SO(k). Thus, M = SO(n + k)/SO(k) from (iii) is the
total space of a principal SO(n) bundle over the Grassmannian; it is in fact the
orthonormal frame bundle of the universal bundle 4, x, see Exercise 75 below.
Applying (iv) and Lemma 3.2 to the homotopy sequence of this bundle implies
that
Tg—1(S0(n)), fk>qg+1>2

Go)
7rq( )k) {O ifg=1and k > 2.

The above example actually provides us with a way of classifying vector
bundles over spheres (this problem will be approached in a geometric and more
general manner in the next section). But we must first establish the following:

LEMMA 3.3. Any vector bundle over a simply connected base is orientable.
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PROOF. Let £ = w : F — B denote a rank n coordinate vector bundle
over B with transition functions fo g : Uy N Uz — O(n). Since det : O(n) —
O(1) = {£1} is a homomorphism, there exists, by Proposition 2.1 in Chapter
2, a principal O(1)-bundle det£ over B with transition functions det fo 5 :
UaNUg — O(1). Tt is called the determinant bundle of £&. Thus, £ is orientable
if and only if its determinant bundle is trivial. But the total space of det ¢ is
either B or a two-fold cover of it, so if B is simply connected, this bundle must
be trivial. ]

THEOREM 3.3. The collection Vect,,(S*) of equivalence classes of rank n
vector bundles over S*, k > 1, is in bijective correspondence with the collection
[Sk=1.S0(n)] of homotopy classes of maps S*~1 — SO(n). When k = 1,
Vect,,(S1) consists of two elements.

PROOF. Any vector bundle over S* admits an atlas with two charts, since
S* can be covered by two contractible open sets S*\ {p}, S¥\ {q}, with p # ¢,
and a bundle over a contractible space is trivial by Exercise 61. Lemma 3.3
together with the proof of Theorem 7.1 in Chapter 2 shows that G’nn is a
classifying space for rank n bundles over S* when k > 1, and the proof of The-
orem 7.2 that Vect,,(S¥) is in bijective correspondence with homotopy classes
of maps S¥ — G, 3n. By Proposition 2.2 and Examples and remarks 3.1(v),

[Sk7 én,Sn] A Wk(én,Bn)/Trl(én.Sn) = ’frk(én.f}n) = 7Tk:—l(SO(n))-

Finally, m,_1(SO(n)) is in bijective correspondence with [S*~1 SO(n)] by Ex-
ample 2.1.

When k£ = 1, the bundle need no longer be orientable. In this case, the clas-
sifying space is Gy, 3., and the collection of rank n bundles over S* is identified
with [S', Gy, 3,]. Since the oriented Grassmannian is a simply connected 2-fold
cover of the nonoriented one, there is exactly one nontrivial rank n bundle over

St O

EXAMPLE 3.1. Any vector bundle over S is trivial: In view of Theorem 3.3,
this amounts to showing that w2 (SO(k)) = 0 for all k. This is clear for k = 1, 2.
By Exercise 53, S% — SO(3) is a 2-fold cover, so m(SO(3)) = m5(S3) = 0. The
portion

72(SO(3)) — m(SO(4)) — ma(S?)
of the homotopy sequence of SO(4) — SO(4)/S0O(3) = S? implies that m2(SO(4))
is trivial. m3(SO(k)) then vanishes for all £ by Examples and Remarks 3.1(iii).

The observant reader has no doubt noticed that we have sometimes replaced
the fiber F}, over b € B in the homotopy sequence of a bundle by the fiber F
of the bundle. Laziness notwithstanding, this may be justified as follows: Let
& =7 : M — B denote a fiber bundle with fiber F' and group G. Consider the
trivial bundle € : F — * over a point * with group G. Let b€ B, 1: F, — M
denote inclusion. A map f : F' — Fj is called admissible if 10 f 1 € — £is a
bundle map covering * — b. Given m € F, fu : mi(F, f~1(m)) — 7 (Fy,m) is
an isomorphism for all k, and we may replace 74 (F3) by 7¢(F) in the homotopy
sequence of &. If h: F — Fy is another admissible map, then k™o f : F — F
coincides with the operation of an element of G. Thus, the identifications of
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homotopy groups induced by two admissible maps differ by an isomorphism
g% induced by the action of some g € G. In the case when the bundle is
principal, ' = G, and if one considers only base-point preserving admissible
maps (G,e) — (G, m), then the element g above must equal e (because h™'of :
(G,e) — (G,e)), so that the identification is unique.

More generally, suppose f : & — & is a bundle map. By Theorem 2.2(2),
f induces a homomorphism of the homotopy sequences of & and &, which
according to the preceding paragraph may be represented by the commutative
diagram

- — Wk(]\jl) e Wk(Bl) L 7Tk,1(F) —_—

[

T Wk(]wE) E— 7Tk(B2) ~A—> 7Tk_1(F) ey e

If ¢; are principal bundles, so that FF = G, and one considers only base-point pre-
serving admissible maps, then the isomorphism gx : m,_1(G,e) — m—1(G,€)
must be the identity, and the diagram becomes

o ——— m (M) ——— m(B1) 2, 1 (F) —— -

H L r H !

D (M) ——— me(Ba) —2 m g (F) ——— -+

Now suppose ¢ is a rank n vector bundle over S*. By Theorem 3.3, the
equivalence class of £ is determined by the homotopy class of a classifying map
f:S* = Gp3n, and [f] may be considered an element of 7j_1(SO(n)). This
identification may be explicitly seen as follows: Denote by SO(&) and SO (%, 3n)
the principal SO(n)-bundles associated to £ and Ay 3, (in other words, the
bundles of oriented orthonormal frames). By Exercise 75(a) below, the total
space E(SO(%y,3,)) has vanishing homotopy groups, so that the homomorphism
of homotopy sequences induced by f becomes

D M(B(SO(€)) —— m(SY) —2— mo1(SO(n)) —— -

| I e H !

S 0 ——— Tk(Gngn) ——— me_1(SO(n)) ——— -+
We have proved the following:

THEOREM 3.4. Let € denote a rank n vector bundle over S¥. Then the

element a € mR_1(SO(n)) which classifies €& in Theorem 3.3 is o = Allgs],

where A is the boundary operator in the homotopy sequence of the principal
SO(n)-bundle SO(E) associated to &.

Exactness of the homotopy sequence yields direct sum theorems in many
cases. We illustrate one such below, and leave some others as exercises.

THEOREM 3.5. If the bundle £ = w : M — B with fiber F' admits a cross-
section s, then sy : m,(B) — m, (M) and 14 : mp(F) — m, (M) are one-to-one,



3. THE HOMOTOPY SEQUENCE OF A FIBRATION 93

and

Tn (M) = sump(B) ® 1m0, (F), n>2.
The above relation also holds for n = 1, provided sym1(B) is a normal subgroup
of m (M) (e.g., if the fundamental group of M is abelian).

PROOF. Since mos = 1p, mg : (M) — m,(B) is onto, and sx is one-
to-one. Applying this to n + 1 instead of n in the homotopy sequence, we see
that A : m,41(B) — mp(F) is zero, so that 1y : m,(F) — 7, (M) is one-to-one.
Thus, we have a short exact sequence

0 — T (F) -5 7, (M) ™5 1, (B) — 0.
It is a well-known and easy to verify fact that if a short exact sequence 0 —

A B2 0C—0of groups admits a homomorphism f : C — B such that
jo f=1¢, then B = i(A) & f(C), provided f(C) is normal in B. In our case,
f is provided by s4. O

EXAMPLES AND REMARKS 3.2. (i) m,(B x C) & m,(B) @ 7,(C). This
follows from Theorem 3.5, since a trivial bundle B x C — B admits a cross
section. When n = 1, one of the summands is normal; the other one is then
also normal by symmetry.

(ii) Let £ = w : E — B be a vector bundle. Then 7,(F) = 7, (B) for all
n. This again follows from Theorem 3.5 applied to the zero section, together
with the fact that 7, (F) = 0 (of course, it also follows from the fact that B is
a strong deformation retract of E).

EXERCISE 75. (a) Show that SO(n + k)/SO(k) = V;),, and is therefore
the total space of the principal SO(n)-bundle associated to 4, . Thus, by
Examples and Remarks 3.1, 7,(V,0,) =0 for all ¢ <k — 1if k > 2.

(b) Let ESO(n) denote the union of the increasing sequence V;), C V2, C

- with the weak topology, so that ESO(n) — BSO(n) is the principal SO(n)-
bundle associated to %,. Show that all the homotopy groups of ESO(n) are
trivial.

EXERCISE 76. The unit sphere bundle of a vector bundle { =7 : E({) — B
with Euclidean metric is the bundle ¢! over B with total space E(¢) = {u €
E(€) | |u] = 1}. The bundle projection is the restriction of .

(a) Show that &' is the bundle with fiber S"~! associated to the princi-
pal O(n)-bundle O(¢), so that its total space is E(O(£)) Xo(n) S™ 1. If € is
orientable, then O(¢) may be replaced by SO(¢).

(b) Let 4. denote the unit sphere bundle of the universal bundle. Show
that E(5)) has the same homotopy groups as BSO(n). Hint: Define for each
kamap f: E(’y}hk) — én—l,k+1 which assigns to u € P the plane u- N P with
appropriate orientation. Show that this is a fiber bundle with fiber $*=2, and
use Theorem 3.2.

EXERCISE 77. Let M — B be a fiber bundle with fiber F'. Show that if
the fiber F} over b € B is a retract of M, then the conclusion of Theorem 3.5
holds.
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4. Bundles Over Spheres

Bundles over contractible spaces are trivial. Since a sphere is the simplest
example of a connected space which is not contractible, bundles over spheres
provide the simplest examples of nontrivial bundles. In Theorem 3.3, we clas-
sified vector bundles over S™ by means of classifying spaces. In this section,
we adopt a geometric approach to the more general problem of classifying G-
bundles over S™.

LEMMA 4.1. Letw; : M; — B denote two coordinate bundles over B with the
same fiber F', group G, and trivializing cover {Uy} of B. Let féﬁ U NUz — G
denote the transition functions of ;. Then the bundles are equivalent iff there
exist maps go : Uy — G such that

(4.1) 25 =g30)7" - i 5(p) - 9alp), peUyNUs.

PROOF. Suppose the bundles are equivalent. By Exercise 47(a), there exist
maps fo,3: Uy NUg — G satisfying
fa-',v = fﬁ."r : ff]xa = fé'y ' fa,ﬁ'
In particular, fgﬂ = fs5 f5., and féﬂ = faa - fg; Setting go = f5 4, we
obtain fgﬂ = fap- f(lxﬁ. (;L = 951 .
a collection g, : U, — G satisfying (4.1). If we define f, g = ggl -féﬂ, then

fory =97 fan = 95" fh fo g = fony- [ 5 and similarly, fo o = f3 - fa s
The bundles are then equivalent by Exercise 47(b). |

(1,7 5" 9a- Conversely, suppose there exists

Notice that if 7 : M — B is a coordinate bundle with transition functions

éyg : Uy, NUg — G, then, given any collection g, : U, — G, there exists,

by Proposition 2.1 in Chapter 2, a coordinate bundle over B with transition

functions jfy 5 defined as in (4.1), and this bundle is equivalent to the original
one.

Let G be a connected Lie group. By Example 2.1 and Proposition 2.2, there
is a bijective correspondence between 7 (G) and [S*,G]. If € = 7: M — S™ is
a bundle with group G, we define a characteristic map T of £ as follows: Let
p1 = (0,...,0,1) and p2 = (0,...,0,—1) denote the north and south poles of
S™ Uy = 8™\ {p2}, and Us = S™ \ {p1}. Then {U;,Us} is an open cover of
S™, and since U; is contractible, there exists a bundle atlas {7 ~!(U;), (7, ¢;)}
consisting of two charts. The transition function fy 5 : U3 N Uy — G is defined
on a neighborhood of the equator S®~!. The map T = J1,25m-1 Sl Gis
called a characteristic map of £, and its homotopy class C(€) = [T] € m,—1(G)
the characteristic class of €.

THEOREM 4.1. Let G be a connected Lie group acting effectively on a man-
ifold F'. The operation which assigns to each bundle & with group G and fiber F
over S™ the characteristic class of € yields a bijective correspondence between
the collection of equivalence classes of such bundles and the set [S"1,G] of
homotopy classes of maps S*"~' — G.

PrOOF. We first check that equivalent bundles & and & have homo-
topic characteristic maps. By Lemma 4.1, there exist maps ¢; : U; — G,
i = 1,2, satisfying (4.1). If h; denotes the restriction of g; to the equator, then
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Ty (p) = ha(p)~! - Ti(p) - ha(p) for p € S™~ 1. Let H; : U; x I — {po} be strong
deformation retractions of U; onto some pg in the equator, so that g; o i Sn-1x1
are homotopies of h; into constant maps S®~! — a; € G. Then

S"lx TG,
(p.1) — (g2 0 Ha)(p,t) ™" - T1(p) - (g1 o H)(p, 1)

is a homotopy of T3 into a5 'Tya;. Composing it with the homotopy given by
(p,t) — ca(t) " T1(p)ei(t), where ¢; : I — G are curves from a; to e, yields a
homotopy of T, into T7.

Conversely, suppose &; are bundles with characteristic maps T;, and H is
a homotopy of T} into 7. We will construct maps g; as in (4.1). If we set
91(p) = fi2(p) " f22(p) and ga2(p) = e, then the g; formally satisfy (4.1). The
problem is of course that g; is not defined at the north pole p;. We can,
however, use H to extend gy gn-1 to all of Uy: Indeed, (p,t) — Ti(p)”"H(p,t)
is a homotopy of the constant map S™! — e into T1_1T2~ If F; denotes the
closure of the northern hemisphere, then each point of E; can be represented
as cos(mt/2)p; + sin(wt/2)p with t € I and p € S !. Define T : E; — G
by T'(cos(nt/2)py + sin(nt/2)p) = T1(p) ' H(p,t). The formula makes sense at
p1 because the right side is then e. Furthermore, the restriction of 7' to the
equator equals 17 1T,, and

gl:Ul_)Gv

P T(p), p € En,
flap) 1 fia(p), pe U\ Ery,

is a continuous extension of T' to U;. Now, we may in both bundles replace the
charts over Uy by their restrictions to the open southern hemisphere Vy. If we
set ga to be the constant map e on Vs, then (4.1) holds, and the bundles are
therefore equivalent.

To complete the proof, it must be shown that any map T : S*~! — G
is the characteristic map of some bundle. Let r : U; N Uy — S™ ! be the
retraction that maps p to the closest point r(p) on the equator, and define
fij :UiNU; = Gby fis=e, fig=Tor, and fo1 = fle By Proposition 2.1
from Chapter 2, there is a bundle £ with these transition functions, and T is a
characteristic map of &. O

Since G is connected, [S"~! G| equals 7, —1(G), and the characteristic class
C(&) of a principal G-bundle € over S™ belongs to m,_1(G). On the other hand,
the boundary operator A from the homotopy sequence of £ maps into m,_1(G).
In view of Theorem 3.4, the following result should come as no surprise:

PROPOSITION 4.1. C(&) = A(1), where 1 is the class in m,(S™) containing
]_Sn .

PROOF. As before, p; will denote the south pole of S, and E;, E, the
closed northern and southern hemispheres. Recall that the boundary homo-
morphism A maps 7, (5™, ps) into m,_1(G2,g2), where G5 is the fiber over pa,
g2 € Ga. The latter homotopy group is then identified with m,_1(G) via an
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admissible map k : G2 — G, which in this case will be taken to be ¢9,. The
argument will be based on the following two steps:

(a) construction of a map f: (D", S""1) — (S™, pe) with [f] = 1, and

(b) construction of a lift f : (D", S""1) — (E(£),Gy) of f such that ko
fisn-1=T.

This will suffice: Since 7o f = f, we have that W;l[f] = [f], and

kg A(1) = kydny ' [f] = kyd[f] = [k o fign—1] = [T]

as claimed. For (a), view D" as Ey. Given p € E; \ {p1}, let h(p) denote
the point on the boundary S”~! that is closest to p. Then any p € E;—even
p1—can be expressed as p = (cost)p; + (sint)h(p) for some 0 < t < 7/2. Define
f(p) = (cos2t)py + (sin2t)h(p). Then f : (D™, 8" 1) — (8™, p2), and f has
degree +1 because p; is a regular value of f, and f,,, equals two times the
identity on the tangent space. Thus, [f] = 1. Next, define

J?(p): (7T7¢1)_1(f(p)a6)7 1ff<p) 6E17
(m,¢2) " (f(p), Th(p)), if f(p) € En.

The two definitions coincide on the overlap: When f(p) € S™~1, h(p) = f(p). If
m = (m,¢2) 1 (f(p), Tf(p)), then ¢o(m) = Tf(p). But the bundle is principal,
so that Tf(p) = ¢o(m)¢1(mm)~! for any m in the fiber over T f(p), and in
particular for m = m. Thus, ¢;(m) = e, and both parts of the definition agree.

It remains to show that ko fign-1 = 7. When p € S"~!, f(p) = ps and
h((p)) = p. Then f(p) = (m,¢2) " (p2, T(p)), so that ko f(p) = d20 f(p) =
T(p). O

EXERCISE 78. (a) Prove that 71 (SO(n)) = Zs if n > 3. Tt is not difficult to
show that the universal cover G of a Lie group G admits a Lie group structure
for which the covering map p : G — G becomes a group homomorphism. The
simply connected 2-fold cover of SO(n), n > 3, is called the spinor group
Spin(n).

(b) Show that Spin(3) = S3, and Spin(4) = S x S3.

EXERCISE 79. Let £ = 7 : E — B denote an oriented rank n vector bundle
over B, and P the total space of the oriented orthonormal frame bundle SO(£)
of £&. Then £ is said to admit a spin structure if there exists a principal Spin(n)-
bundle Spin(§) = P — B together with a principal bundle homomorphism f
over the identity: i.e., f: P — P satisfies

f(pg) = f(p)p(g), p€P, ge Spin(n).

(a) Show that if & admits a spin structure, then f : P — P is a 2-fold
covering map, and F is diffeomorphic to P X spin(n) R". Here Spin(n) acts
non-effectively on R™ via the covering homomorphism p.

(b) Prove that any vector bundle of rank > 3 over S™ admits a spin structure
if n > 3.
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5. The Vector Bundles Over Low-Dimensional Spheres

The tools developed in previous sections enable us to analyze in more de-
tail the vector bundles over spheres of dimension < 4. Bundles over S' were
discussed in Section 3. For n > 1, rank k£ bundles over S™ are orientable, and
are classified by m,_1(SO(k)). Since SO(1) = {1}, any line bundle over S™ is
trivial.

Bundles over S?: Since 7 (SO(2)) = Z, there is a plane bundle & with
C(&) = k for each integer k. Consider the portion

m2(S3) — m2(S2) -2 1(SO(2)) —> m(S?)

of the homotopy sequence of the Hopf fibration. The end groups are trivial,
so that A(1) = £1. The sign here is merely a matter of orientation: Indeed,
denote by —¢ the bundle over S? obtained from ¢ by reversing the orientation.
The identity map E(§) — E(—£) is an orientation-reversing equivalence, and if
(m, @) is a positively oriented chart of £, then (7, L o ¢) is a positively oriented
chart of —¢, where L is the automorphism of R? given by L(a;,az2) = (az,a1).
Thus, —f12 = Lfi L7, and [-T] = [LTL™']. By Lemma 4.1, £ and —¢ are
equivalent as bundles with group the full orthogonal group O(2). However,
viewing SO(2) as the unit circle, conjugation by L is a reflection in the z-axis
and the induced map on the fundamental group sends each element of m; (S?!)
into its inverse. It follows that [-T] = —[T], and £_j is & with the opposite
orientation.

The standard orientation on the Hopf bundle—the one induced on each fiber
of the total space S% x g1 R? by the standard orientation of R?2—corresponds to
£_1; this will be established below for the Hopf bundle S7 x g3 R* — S%, and
the same argument carries over to the former bundle if one replaces quaternions
by complex numbers.

Since the Hopf bundle is £_1, it is a generator of all oriented plane bun-
dles over S2: If fi : S? — S? has degree k, then £_p = fré_;, because the
transition functions of f;¢_; equal those of the Hopf bundle composed with f.
Alternatively, the total space of SO(£41) can be viewed as a lens space S3/Zy,
where Zj, denotes a cyclic subgroup of S! of order k.

The tangent bundle 752 is &4y by Exercise 53. In order to determine
the sign, we construct a characteristic map for the associated principal bundle
7:80(3) — S?, with m(A) = Ae;. Let s: 5%\ {—e;} — SO(3) be given by

Y41 *Pzz —P3
D Pp2p:
5(]7) = p2 1- 1+§71 _liz;i 3 p= (p17p27p3)'
__ P2p3 _ _n;
Ps3 1+p1 1+p1

When p = e, s(p) = I3. Otherwise, (0,—p3z,p2) is left fixed by s(p), and is
orthogonal to e; and p. s(p) is therefore a rotation in the plane spanned by e;
and p, sending e; to p. In particular, 7 o s(p) = p, and s is a section of the
bundle over S?\ {~e1}. Let Uy = S%\ {—e3} and Uy = 5%\ {e3}. If A denotes
the matrix

0 -1

0

0
0 1
1 0 O
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in SO(3), then s,(p) := Ats(Ap) and s2(p) := As(A'p) define sections over Uy
and U, respectively. Any B € SO(3) which lies in some fiber over U; N U, can
therefore be written as

(5.1) B = 51((B))61(B) = s2(n(B))o2(B),

where (7, ¢;) are bundle charts over U;. The transition function f; 2 at w(B) is
given by f12(m(B)) = ¢2(B)¢1(B) . Taking B = s1(p) for p in the equator
and substituting in (5.1) implies s;(p) = s2(p)T(p), so that T(p) = s2(p)'s1(p).
A straightforward computation with p = (cos,sin6,0) € S* x 0 then yields

T(cosb,sinb,0)

cos sin @ 0 cos —sinfcosb sin? 9
= | —sinfcosf cos? 6 —sinf sin @ cos? 6 —sinf cos 8
—sin?6 sinffcosf cosf 0 sin @ cos
1 0 0

I

0 cos20 —sin26 | €1 x SO(2).
0 sin26 cos26

Thus, 752 = &.

Bundles of rank k > 3 over S? are classified by m1(SO(k)) = Zs. Thus,
there is exactly one nontrivial rank k& bundle over S?. Consider for example the
nontrivial rank 3 bundle £. Exactness of the portion

71'1(50(2)) — 7T1(SO(3)) — 71'1(52) =0

in the homotopy sequence of SO(3) — S? shows that the inclusion SO(2) —
SO(3) induces an epimorphism 71 (SO(2)) — 71 (SO(3)) of fundamental groups.
€ is therefore equivalent in SO(3) to a bundle &’ with group SO(2), and E(§) =
Px 50(2)R3, where P is the total space of the principal SO(2)-bundle associated
to &'. Since SO(2) acts trivially on 0 x R C R? x R, the map s : S? — P X g0(2)
R3, with s(¢) = [p,es], p € P,, is a well-defined cross-section of £&. Thus, &
splits as a Whitney sum of a rank 2 bundle with the trivial line bundle €!. This
rank 2 bundle is not unique: if & denotes the plane bundle with C(&) = k,
then £ 2 £5,,41 @ €', since the homomorphism m,(SO(2)) — 71(SO(3)) maps
an even multiple of a generator to 0. This also implies that £z, ® el is the trivial
bundle, a phenomenon already observed earlier for 752 = &,.

Notice that £ does not admit a spin structure; cf. Exercise 79(b): If it did,
the latter would be the trivial bundle S? x Spin(3) — S? since m (Spin(3)) =
{e}, and by Exercise 79(a), E(&) = (S% x Spin(3)) Xspinz) R® = 5% x R3,
contradicting the fact that £ is not trivial.

Bundles over S®: Any bundle over S? is trivial by Example 3.1.

Bundles over S*: 73(S0O(2)) = 0, so any plane bundle over S* is triv-
ial. Since m3(SO(3)) = m3(S3) = Z, there are infinitely many rank 3 bundles
over S*. View S7 as the collection of all pairs (u1,us) of quaternions with
lu1|? +|uz|? = 1. The quotient S7/Z, under the equivalence relation (uy,us) ~
—(uy,uz) is RP7. Recall the homomorphism p : S* — 1 x SO(3) C SO(4)
given by p(2)u = zuz~! for u € H = R*, and identify 1 x SO(3) with SO(3).
If p(z) = A € SO(3), then p~1(A) = +2. There is therefore a well-defined free
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right action of SO(3) on RP7 given by
[ur, ug) A := [urp™ " (A), uzp™ (A)],

where [u1,uz] denotes the equivalence class of (u1,uz) in RP7. The quotient
RP7/SO(3) is diffeomorphic to S* by mapping the SO(3)-orbit of [u,us] to
the point (2u;s, |ui|? — |uz|?) € S* C H x R. We therefore have a principal
SO(3)-bundle RP7” — S*. Let £ denote the associated rank 3 vector bundle,
with total space E(¢) = RP” X 50(3) R3. The portion

m4(SY) = Z 25 73(SO(3)) = Z — m3(RP7) = 0

of the homotopy sequence of RP7 — S% implies that A(1) is a generator of
73(SO(3)). Thus, any rank 3 bundle over S* is equivalent to f*(¢) for some
f 5% — S% of appropriate degree.

Rank 4 vector bundles over S* are classified by m3(S0O(4)) = m3(S® x
SO(3)) = m3(S3) @ m3(SO(3)) = Z @ Z, with generators s : S — SO(4),
p: 8% —1xS0(3) C SO(4), where s(q)u = qu, v € H, and p is as above; cf.
Exercise 55: Indeed, the map S® x SO(3) — SO(4) which sends (g, p(A)) to
s(q)p(A) is a diffeomorphism with inverse A — (gq,s(¢"1)A), where q := Ae; €
S3. The restriction of this diffeomorphism to S3 x e is s, and the restriction
to 1 x SO(3) is the identity. The induced isomorphism on the homotopy level
therefore maps (m[lgn],nlp]) € 73(5%) & 73(SO(3)) to m[s] + n[p].

Let &, denote the vector bundle with A(1) = m[s] + n[p]. Then the
structure group of &, o is reducible to S3, and that of &, to 1 x SO(3). Since
1 x SO(3) leaves R x 0 C R x R3 fixed, &y ,, admits a nowhere-zero cross-section
and is equivalent to the Whitney sum €' @ &, of the trivial line bundle €' and
the rank 3 bundle &, with C'(&,) = n discussed earlier. Similarly, &0 = f5&1.0,
where f,, : S* — S has degree m, and we only need to identify &; o. But the
latter is, up to sign, the bundle associated to the Hopf fibration S7 — $*, since
exactness of

m4(SO(4)) X Z 25 m3(S®) = Z — m3(S7) =0

implies that A is an isomorphism.

These bundles can also be described by their characteristic maps T : S% —
SO(4) from the discussion in Section 4. For instance, characteristic maps for
&0 and &y 1 are s and p respectively. This actually enables us to determine the
sign of the Hopf bundle: Recall that the Hopf fibration is the free right action
of 5% on ST = {(uy,uz) € H? | |us|? + |uz|? = 1} given by right multiplication
(u1,u2)q = (u1q,u2q). The quotient space HP! = S7/S3 is diffeomorphic to
S4, and under this identification, the bundle projection 7 : S7 — S* is given by

7r(u1,U2) = (2u1ﬁ2. |7_L1|2 - I’LLQ|2) S 84 C H x [—1, 1]

In order to compute a characteristic map for this bundle, consider U; = S\
{—95} and Uy = 54 \ {85}, so that W_l(Ui) = {(ul,uz) e 57 ) Us; # 0}
Then (m,¢;) : 7Y (U;) — U; x S3, with ¢;(u1,u2) = wu;/|u;|, are principal
bundle charts. Notice that ¢ = m(uj,uz) belongs to the equator of S* iff
|u1] = |uz| = 1/v/2, and in this case, ¢ = 2ujis € S3. By definition of a
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characteristic map,

_ uz U _ _ -
T(q) = f12(q) = (1, uz) - d1(ur,uz) ™' = —= — = 2uptty = g = plq) .
|ua] Jus]
By the remark following Example 2.1, [T] = —[p] € 73(SO(4)), and the Hopf

bundle S7 xgs R* — §% is £_1 .

It is also clear from the above discussion that &, ¢ is the bundle correspond-
ing to the spin structure of & ,,, cf. Exercise 85. In particular, if P, denotes the
total space of the principal Spin(3)-bundle of &, o, then E (& ) is diffeomorphic
t0 P X gpin(3) R*, where Spin(3) acts on R* via p.

An argument similar to the one for 752% shows that a characteristic map for
the bundle SO(5) — S* is given by T(q)p = qpq. Thus, T(q) = p(q)~'s(q)?,
and [T] = 2[s] — [p]; i.e.,, 7S* =& 1.

If we denote by Sy = E(&m,n) Xso(a) S® the total space of the sphere
bundle of &,,,, then S, is known to always be homeomorphic to S7. In
general, however, S;, is not diffeomorphic to S7; namely, if n(n + 1) 2 0
mod 56. Such manifolds are called ezxotic 7-spheres, and were first discovered
by Milnor.

We have only discussed bundles over S™ (n < 4) of rank < n. Higher rank
bundles are accounted for via the following:

PROPOSITION 5.1. If £"* s a rank n+k bundle over S™, then there exists
a rank n bundle N over S™ such that £"TF = n" @ ¢, where ¢ denotes the
trivial bundle of rank k.

ProoFr. The exact homotopy sequence of the bundle SO(n + 1) — S”
implies that 7,_1(SO(n)) — m,—1(SO(n + 1)) is surjective. By Examples and
Remarks 3.1(iii), the inclusion homomorphism m,_1(SO(n)) — m,-1(SO(n +
k)) is then also onto, so that the structure group of £"+* reduces to SO(n). O

The problems that follow provide an alternative approach to some rank
4 bundles over S*: View R*" = H" as a right vector space over H, so that

(Ug,...,un)q == (U1q,...,unq). Given p = (p1,...,0n), ¢ = (q1,-..,qn) € H",
the symplectic inner product of p with g is

(p.q) ==Y p €H,
=1

where the conjugate q of ¢ = a1 + ias + jas + kay is the quaternion a; — ias —
Jas — kaq obtained after reflection in the real axis. The symplectic group Sp(n)
is the group of m X n quaternion matrices A with AA" = A*A = I,,.

EXERCISE 80. (a) Show that (g, p) = (p, ¢) for p,q € H". Thus, the relation
p L qiff (p,q) = 0 is symmetric.

(b) Show that Sp(n) is the group of linear transformations of H" that
preserve the symplectic inner product.

(c) Prove that Sp(1) = S3.

EXERCISE 81. (a) Show that Sp(n)/1 x Sp(n — 1) = S**~1. In particular,
S7 = Sp(2)/1 x Sp(1).
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(b) Prove that f: 83 — Sp(2), f(p) = <(1) 2) is a generator of 7m3S5p(2).

(c) Use the homotopy sequence of the bundle Sp(2) — Sp(2)/Sp(1) x 1 =
S7 to show that h : S — Sp(2), h(p) = <g ?) is also a generator of w3(Sp(2)).

EXERCISE 82. The free action by right multiplication of Sp(1) x 1 on Sp(2)
descends to S7 = Sp(2)/1 x Sp(1). Show that the resulting principal Sp(1)-
bundle S7 — Sp(2)/Sp(1) x Sp(1) is the Hopf fibration.

EXERCISE 83. Let Zo = {£1} C S3, so that the map S x (5%/Zy) — SO(4)
which sends (p,+q) to s(p)p(q) is a diffecomorphism. Prove that the group
operation on S3 x (83/Zy) for which this map becomes an isomorphism is the
semi-direct product

(p1,£q1) - (P2, £q2) = (1916201, £q1G2).

EXERCISE 84. In this exercise, we construct an exotic sphere, following an
example due to Rigas [33]. Identify SO(4) with S3 x (S3/Zs) as in Exercise 83.
Let Zs denote the subgroup {(é (1)> , <(1) _01>} of Sp(2), and consider the
right action of SO(4) on Sp(2)/Zs given by

g o= [0 5) o) (57 )]

where the bracket denotes the Zs-class.
(a) Show that this is a well-defined free action, and that the quotient is

diffeomorphic to S* via the map that sends the SO(4)-orbit of ((CI Z) to

(2bd, |b|? — |d|?) € S3 x [-1,1].

(b) Identify the fiber of this principal bundle whith the SO(4)-orbit of the
identity. Use Exercise 81 to show that the homomorphism 14 : m350(4) —
m3(Sp(2)/Z2) in the homotopy sequence of the bundle sends the elements [s]
and [p] to generators of m5(Sp(2)/Z2) = Z.

(c) Conclude that the associated vector bundle &, ,, satisfies |m| = |n| = 1.
The total space Sy n = E(&mn) Xs0(4) S3 of the corresponding sphere bundle
is then an exotic 7-sphere, according to the remarks at the end of the section.

EXERCISE 85. Prove that the principal Spin(3)-bundle associated to &, o
is a spin structure for &g ,,.



CHAPTER 4

Connections and Curvature

There are many more classical applications of homotopy theory to geometry,
but the central theme here being differential geometry, we wish to return to the
differentiable category. Our next endeavor is to try and understand how bundles
fail to be products by parallel translating vectors around closed loops. This
depends of course on what is meant by “parallel translation” (which is explained
in the section below), but roughly speaking, if parallel translation always results
in the original vector, then the bundle is said to be flat. Otherwise, it is curved,
and the amount of curvature is measured by the holonomy group, which tallies
the difference between the end product in parallel translation and the original
one. In this chapter, all maps and bundles are once again assumed to be
differentiable.

1. Connections on Vector Bundles

In Euclidean space R™, there is a natural way of identifying tangent spaces
at different points: Given p, ¢ € R", the isomorphisms J, : R" — R} and
Jy : R — R combine to yield an identification Jgo7, ! : Ry — RP. It is called
parallel translation from p to ¢, and for u € R}, J; 0 jp_lu is called the parallel
translate of u. Notice that if u =), a; D;(p), then Jg 0 T, 'u = 3, a;Dy(q).

More generally, a manifold M™ is said to be parallelizable if there exist
vector fields Xi,...,X, on M with the property that {X;(p)} is a basis of
M, for all p € M. {X,} is then called a parallelization of M. For example,
Euclidean space is parallelizable via {D;}. So is any Lie group G, by taking a
basis {u;} of G¢, and considering the left-invariant vector fields X; on G with
Xi(e) = U;-

If {X,} is a parallelization of M. then one can define parallel translation
(with respect to {X;}) from p to ¢ to be the isomorphism M, — M, which sends
Xi(p) to Xi(q) for i = 1,...,n. Most manifolds are not parallelizable, however.
We have seen for example that S? does not even admit a single nowhere-zero
vector field.

All this can be interpreted in the broader context of vector bundles over
M, if the tangent space at p is replaced by the fiber of the bundle over p. Thus,
a vector bundle is parallelizable iff it is a trivial bundle.

If ¢ =n:FE — M is a vector bundle over M, there are ways of parallel
translating vectors in E, to Ey, provided p and g can be joined by a curve. In
general, though, the isomorphism E, — E, will depend on the chosen curve, so
that parallel translation along a closed curve need not equal the identity map.

103
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We will approach the problem from an infinitesimal point of view: Suppose
some system of parallel translation has been defined on &, so that given p € M,
and a curve ¢ : I — M emanating from p, there exists, for each u € K, a
unique map X, : I — E with 7 o X = ¢, where X, (¢) is the parallel translate
of u along ¢ from ¢(0) to c(t). Then X,(0) is a vector in the tangent space
of E at u, and 7, X,(0) = ¢(0). It is reasonable to expect that iterating this
procedure for all curves emanating from p produces a subspace H,, of T, E such
that m, : H, — M, is an isomorphism (here, as elsewhere, T, denotes the
tangent space of E at u, since we have reserved the notation E, for the fiber of
the bundle over p € M). In order for parallel translation to be an isomorphism,
the field a X, must also be parallel for a € R. This motivates the following:

DEFINITION 1.1. Let £ = : E — M be a vector bundle. A connection 'H
on £ is a distribution on the total space TE of the tangent bundle of E such
that

(1) myu : Hy — My (y,) is an isomorphism for all u € E, and
(2) pasHy = Haw, where pg(u) = au is multiplication by a € R.

If we denote by V the total space of the vertical bundle of £ (see Chapter 2,
Example 5.1), then (1) implies that the assignment v — v+, is an isomorphism
between H,, and T, E/V,. Thus, H admits a vector bundle structure for which
it becomes the normal bundle of V in TE, and H = n*7 M.

Notice that by (2), Ho, = s.pMp, where s denotes the zero section of £: In
fact, if ¢ is a curve in E with ¢(0) = v € H,, and 7(u) = p, then the image of
po o ¢ lies in s(M), so that po«v € s.pM,. Thus, Ho, = po«Hu C s4pMp. The
two spaces then coincide by dimension considerations.

THEOREM 1.1. FEwvery vector bundle admits a connection.

PRrROOF. The statement is clear for a trivial bundle M x R* — M: Given
u € R¥, let 4, : M — M x R* be given by u,(p) = (p,u), and define H, . =
M. Then T Hp 0y = Mp. Furthermore, given a € R, we have u,1, = tqu,
so that pexH(pw) = HaxtuxMp = tausMp = Hp qu)-

In general, let {U,} be a locally finite open cover of M such that the bundle
is trivial over each U,, and {¢,} a subordinate partition of unity. Choose a
connection H* on n~1(U,). Given p € M, u € E,, define L, : M, — T, E by

Lav)= Y ¢a(p)Wa,

{Oz|p€UQ}

where w,, is the vector in H% such that m,w, = v. L, is then a linear transfor-
mation satisfying m., o L, = 1p,. The distribution H, where H,, := L, (M),
therefore satisfies the conditions of Definition 1.1. O

Given a connection on &, the splitting 7E = H &V induces a decomposition
w=wh+w’ e HBV for w € TE. w is said to be horizontal if w? = 0, vertical
if wh = 0. If u € E, and v € M, the horizontal lift of v to u is the unique
vector ¥ € H,, such that 7,0 = v. A vector field X on M then determines a
vector field X on E, where X (u) is the horizontal lift of X (7 (u)), u € E.
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Recall that a map f : N — M induces a pullback bundle f*E — N such
that the diagram

f*E = E
l lw
N — M

commutes by Proposition 5.1 in Chapter 2. The following is a key property of
connections:

THEOREM 1.2. Let ‘H be a connection on E — M. Then for any f :
N — M, the distribution f*H := (m2.)"'H defines a connection on the bundle
f*E — N, called the pullback of H via f.

It will be convenient to have a description of the tangent space of f*E at
a point (p,u) in order to prove Theorem 1.2.

LEMMA 1.1. Given (p,u) € f*F, the map
(M1, 72x) : Tpo) [ E = T Tp ) [T E X T2 Tp ) f*E C Np x TLE
is an isomorphism. Under this identification,
Tpu) f'E={(v,w) € Ny X TuE | fupv = Tuw}.

PrROOF OF LEMMA 1.1. In order to show that (714, 7o, ) is an isomorphism
onto its image, it suffices to check that it is one-to-one. So assume (71, T2, )v =
0. Since m.v = 0, v € V(f*E) = 1.T(p,u)(p X Ef(p)), where 2: px Eg,y — f*E
is inclusion. Thus, v = 2w for some w € T(p ) (P X Efp)). But myon :
p X Ef(py — Ej(p) is the isomorphism (p,v) +— v, so that 0 = mp,v = (72 02),w
implies w = 0, and therefore also v = 0.

For the second statement, recall that f.omi. = m.omax, so that T, ) f*E C
{(v,w) € Ny x TuE | fupv = Tyuw}. It remains to show that both spaces have
the same dimension. Now, the space on the right is the kernel of the linear map

Np X TuE - Mf(p),
(v, W) = fipt — Ty W.

This map is onto, since it is already so when restricted to 0 x T, E. Thus,
its kernel has dimension equal to dim N, + dim T, E — dim M;,y = dim N +
rank ' = dim T{,, .,y f* E, which establishes the claim. O

PROOF OF THEOREM 1.2. Lemma 1.1 implies that V(f*E) = 0x VE, and
that f*H = {(v,w) € TN x H | fiv = maw}. Since w € TE decomposes
uniquely as w = w’ + w¥ € H & VE, any (v,w) € Tf*E decomposes as
(v,w) = (v,w") + (0,w’) € f*H & V(f*E). Thus, the first condition of Defi-
nition 1.1 is satisfied. The second condition holds because H is a connection,
and fig« (v, w) = (v, peaw) for (v,w) € f*H. O

DEFINITION 1.2. Let £ = m : E — M be a vector bundle. A section of £
along f: N - Misamap X : N — F such that 1o X = f. Given a connection
H on &, the section X is said to be parallel along f if X.N, C Hx ) for all
p € N. When £ = 7M, X is also referred to as a vector field along f.
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Notice that X is a section of { along f iff p — X(p) := (p. X (p)) is a section
of the pullback bundle f*£. Since m3 0 X = X, X is parallel along f iff X is
parallel with respect to the induced connection f*H on f*¢.

PROPOSITION 1.1. Let ‘H be a connection on a vector bundle £ =7 : E —
M, ¢: [a,b] = M a curve in M. For any u € E (q), there exists a unique
parallel section X, of & along ¢ such that X, (a) = uw. Furthermore, the map
P.: Ecqy — Eu) that assigns to u the vector X, (b) is an isomorphism, called
parallel translation in £ along c.

PROOF. Let D denote the standard coordinate vector field on [a, b], D its
c*H-horizontal lift to c¢*E. If ¢, denotes the integral curve of D with c,(a) =
(a,u), then

mzﬂ'l*oéu :WI*ODOCu :Doﬂ-locu’
and 7 o ¢, is an integral curve of D; i.e., ¢,(t) = (¢, 73 0 ¢, (t)). Thus, X, :=
Mg O ¢y 18 & section of & along ¢, which is parallel because ¢, is horizontal. To
show uniqueness, suppose X, is any parallel section along c w1th X, (a) = u.
Then ¢ — ¢u(t) = (¢, X, (t)) is a parallel section of ¢*¢, and &, is horizontal.
Furthermore, 7, 0 &, = D o o ¢&,, so that ¢, is also an integral curve of D.
Since it coincides with ¢, at a, &, = ¢, and thus, X, = X,.

It remains to show that P. : E.,) — E.4) is an isomorphism. But P,
is invertible with inverse P.-1, where ¢™}(t) = c(a + b — t), so we only need
to establish linearity. Now, given a € R, the field aX, is parallel because

ZL-/)E = ,ua*Xu is horizontal. Thus, P.(au) = aP.(u). For brevity of notation,
let us denote by the same letter Jy the canonical isomorphisms of E.,) and
E.@) with their tangent spaces at 0. We claim that P, is the composition
jo_l(Pc)*ojo of linear transformations, and is therefore linear. To see this,
consider w in the tangent space of E.(,) at 0, so that w = #(0), where ¢(t) = tv

_1 —N—
v =J; w. Then (P.).ow = P, 0 ¢(0); but (P. o ¢)(t) = P.(tv) = tP.(v), so
P)wow = JoPov = JoP.Jy 'w, as claimed. O

If ¢ : [a,b] = M, ¢2 : [b,¢] = M are curves in M with ¢;(b) = c2(b), define
parallel translation along the piecewise-smooth curve ¢y xcp by Projucy, = PeyoF,.
Then the set G(p) of isomorphisms E,, — E,, consisting of parallel translation
along piecewise-smooth closed curves based at p is a subgroup of GL(E,), called
the holonomy group of H at p. If ¢ is a curve from p to g, then G(p) is isomorphic
to G(q) via P, — Ps—1,cz.

A connection on £ is said to be a trivial connection if for any u € E(§),
there exists a parallel section X of £ with X(n(u)) = u. Clearly, £ admits a
trivial connection iff it is a trivial bundle.

PROPOSITION 1.2. If H is a connection on a bundle over a connected man-
ifold, then H is trivial iff its holonomy group is trivial.

ProOOF. The only if part of the statement is clear. Conversely, if the holo-
nomy group is trivial, then the parallel translate of any vector u € E, to a point
q is independent of the chosen curve, and therefore defines a parallel section of
the bundle. 0
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DEFINITION 1.3. A connection on a vector bundle is said to be flat if it is
integrable as a distribution, cf. Chapter 1, Definition 9.1.

If 'H is trivial, then it is flat: Given u € F, the parallel section X of £ with
X(m(u)) = u is an integral manifold of H. Conversely:

PROPOSITION 1.3. Let H be a connection on a vector bundle § =7 : E —
M. The following statements are equivalent:
(1) H is flat.
(2) For any open, simply connected subset U of M, the restriction of H
to 7= 1(U) is a trivial connection on §u-

PROOF. We have already remarked that a locally trivial connection is flat.
Conversely, if H is flat, then given u € 7~ }(U), there exists by Frobenius’
theorem (Theorem 9.2 of Chapter 1), a maximal connected integral manifold U
of H -1y through . By Proposition 1.1, any curve ¢ in U can be uniquely
lifted horizontally to U. This implies that 7 : U — U is a covering map
(see, e.g., Spanier's “Algebraic Topology” 2.7.8 and 2.4.10), and therefore a
diffeomorphism. Its inverse is then a parallel section of §u through wu. (]

EXAMPLES AND REMARKS 1.1. (i) It follows from Proposition 1.3 that
a flat connection on a bundle over a simply connected manifold is a trivial
connection. In particular, both the bundle and the holonomy group of the
connection are trivial.

(ii) More generally, one defines the restricted holonomy group at p € M of
a connection to be the subgroup Gy(p) of G(p) obtained by considering only
those closed curves that are homotopic to the identity. A homotopy H between
the closed curve c and the constant curve p induces a curve t — P, joining
P. to 1g,. Thus, the restricted holonomy group is a path-connected subgroup
of the Lie group GL(E)), and is then itself a Lie group. Notice that Go(p) is a
normal subgroup of G(p), and that the map

m1(M,p) — G(p)/Go(p),
[C] — P GO(p)

is a surjective homomorphism. Thus, G(p)/Go(p) is countable, and G(p) is also
a Lie group. If the connection is flat, then by Proposition 1.3, Go(p) is trivial,
and there is an epimorphism 71 (M, p) — G(p).

(iii) The canonical connection on the tangent bundle of S™: If 7 : ™ —
R™*1 denotes inclusion, then by Exercise 14 in Chapter 1, 1.5 = {u e R |
(p, T, 'u) = 0} for p € S™. The equivalence R"*! x R"*! = TR"*! mapping
(u,v) € R™ x R"H! to J,v € TR™! allows us to identify 7'S™ with the set
of all (p,u) € S™ x R*™! with u orthogonal to p. Under this identification, the
tangent field ¢ to a curve ¢ in S™ is ¢ = (¢, ), since Joc'(t) = &(2).

In order to specify a connection on 75™, we need a similar description of
T(TS™). If X = (c,z) is a section of 7S™ along ¢, then X = (¢, &) = (¢, z, ¢, 2').
Since (c,z) =0, (¢/,z) + (¢,2') = (c,z) = 0. Furthermore, (c,c’) = 0 because
(c,c) = 1. Thus, if X(0) = (p,u), then TS, ) is contained in the space of all
(p,u,v,w), where (v, w) € R?"*2 satisfies (p,v) = 0 and (u,v) + (p,w) = 0. By
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dimension considerations,
(1.1)
(TS™)(py = {((p,u), (v, w)) € TS™ x R | (u, v) + (p.w) = (p,v) = 0}.

Now, X, as a section of TR™*! along c, is parallel (with respect to the canonical
trivial connection on 7R™™1) if 2 = 0. But if x is constant, then in general
{c,z) will not be zero, and X does not remain tangent to the sphere. The
most one can hope for is that the orthogonal projection of 2’ onto S™ be zero;
i.e., 2’ should be a multiple of ¢. In terms of Equation (1.1), this means that
((p,u), (v,w)) should be horizontal if w is a multiple of p. But then the condition
(u,v) +{p, w) = 0 forces w to equal —(u, v)p. We therefore define the horizontal
space at (p,u) to be

(1'2) H(p,u) = {((pvu)v (Uv —<U,U>p)) l v E Rn+17 <p,U> = 0}

The verification that (1.2) does indeed define a connection on 75™ is left as an
exercise.

When n = 2, it is easy to describe the parallel fields along great circles
c in 52, since they are determined by their length and the angle they make
with ¢. Let c(t) = (cost)p + (sint)q, where p,q € S?, (p,q) = 0, and consider
a parallel field X = (c,x) along ¢. Since (¢,z) = 0 and 2’ = —(z,)c, it
follows that (z,z’) = 0, and |z| is constant. In particular, the holonomy group
is a subgroup of O(2). Since S? is simply connected, the holonomy group is
path connected, and is actually a subgroup of SO(2). Furthermore, (z,c) =
(', ) + {z,d"y = 0— (x,c) =0, so that (x,c') is constant; i.e., the parallel
fields along ¢ have constant length and make a constant angle with c.

By parallel translating any vector in (S?), along ¢ from p to —p = ¢(7),
and then parallel translating it back to p along a different great circle, one
easily sees that the holonomy group G(p) acts transitively on the unit circle in
the tangent space at p; i.e., the orbit of any point is the whole circle. Thus,

G(p) = 50(2).

__ EXERCISE 86. Let 'H be a connection on £ = 7 : E — M, and denote by
X the horizontal lift of a vector field X on M.
(a) Show that for X,Y € XM, o, 3 € R,

aX + BY =aX + 5Y, X,Y] = [X,Y]"
(b) Prove that if [X,Y]" =0 for all X, Y € XM, then H is flat.

EXERCISE 87. (a) Consider the bundle projection 7 : T'S™ — S™. With
notation as in Examples and Remarks 1.1 (iii), show that =, : TTS™ — T'S™ is
given by

W*((p? U), (1}, w)) = (p7 U)'
Deduce that the vertical space at (p,u) is
{((p,u), (0,w)) € TS" x 0 x R"* | (p,w) = 0}.

(b) Prove that (1.2) defines a connection on 7.5™.
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Y

FIGURE 1. A parallel field along a circle of latitude.

EXERCISE 88. Describe the parallel fields along a circle of latitude
c(t) = (costsin ¢, sintsin ¢, cos @)

in S%, ¢ € (—m, 7).

2. Covariant Derivatives

Let H be a connection on £ = 7w : £ — M, so that 7TE = V & H, where
by abuse of notation H also denotes the bundle H — E. A vector w € TE
decomposes as w = w? +w". The vertical component measures the amount by
which a vector fails to be horizontal. It is more convenient to replace it by a
vector in E rather than in TE. This can be done as follows: by Exercise 59,
V is equivalent to 7*€£. Under this identification, the second factor projection
7o : E(V) = #*E — E is a bundle map (E(V) denotes the total space of the
bundle V).

DEFINITION 2.1. The connection map k : TE — E of H is given by
k(w) = mg(w?), weTE.

Alternatively, for w € T, F, let p := w(u), and ¢ : E, — E be the inclusion.
Then by Example 5.1 in Chapter 2,

EW)u = 1(Ep)u = {t.Juv | v € Ep}.
Thus,
21) A(w) = (1 J) .
Notice that H = ker . This implies the following:

PROPOSITION 2.1. (m4,k) : TE — TM @ £ is a bundle map covering = :
E—- M.

TE ", BrM o ¢)

s | |

rF —— M

™
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PRrROOF. Both 7F and 7M & £ have the same fiber dimension, and since
(7., k) is linear on each fiber, it suffices to show that it has trivial kernel. But
ker(ms, k) = kerm. Nker k = E(V) N'H = {0} fiberwise. O

DEFINITION 2.2. Let H denote a connection on £ = 7 : E — M with
connection map k. Given f: N — M, a section X of € along f, and u € TN,
the covariant derivative of X with respect to u is the vector

VuX =rX,u€E.
When N = M and f = 15, V is called the covariant derivative operator of 'H.

Notice that if uw € Ny, then V, X € Efq,). Thus, for U € XN, VyX is
a section of £ along f, where Vy X (p) := Vy(,)X. Furthermore, X is parallel
along f iff Vy X =0 for all U € XN, since kerx = 'H.

We have already observed that the space I'y of sections of £ along f is
canonically isomorphic to the space I'f-¢ of sections of f*¢ via

Ly — Dyee,
X +— (lN,X).

By the remark following Definition 1.2, the covariant derivative f*V of the
induced connection on f*¢ is given by

(f*V)u(ln,X) = (In, Vo X).

THEOREM 2.1. Suppose H is a connection on § with covariant derivative
operator V. Given f: N — M, u, v € Np, and sections X, Y of £ along f,
(1) Vo (X +Y) =V, X +V,Y.
(2) VausoX =aV, X +V, X, a€R
(3) VuhX =u(h)X(p) + h(p)VuX, heFN.
(4) Ifg: L — N, and w € TL, then V(X 0g) = Vg, X.

The proof of the above theorem requires a couple of lemmas:
LEMMA 2.1. Ko pge = g ok, ae€R.

Proor oF LEMMA 2.1. It suffices to consider vertical vectors, since both
sides vanish when applied to horizontal ones. So let w € (E})y, v :i= J; 'w €
E,. If 1: E, — E denotes inclusion, then p, o k(1.w) = piq © £(2.Juv) = av by
(2.1). On the other hand, Ko e« (14w) = KOs (1. TuV) = KO, Opigx Ty v, because
10 i = fbq © 2. Thus, K0 figs O 2,W = K 0 %4 O g Ty U = K 0 14 Jqu, QU = QY. O

LeEMMA 2.2, Let (m,¢) : 771 (U) — U x R* be a bundle chart of &, where
(U,x) is a chart of M. Set T =z o, so that (T,¢) : 71 (U) — x(U) x R* is a
(manifold) coordinate map of E.

Ifu,v € E,, x(p) =0, then

i (aazi (s “)) - (a;i (”)> o (a(—?xi m) L isEn
Proor oF LEMMA 2.2. Consider the map L : £, — E, given by L(u) =
x(0/0T%(u)). Notice that 3/0T" (tu) = 11.0/07 (u) for t € R: Indeed, 3/9Z" (tu)
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may be written as ¢; +,(0), where ¢; 1,(8) = (T, ¢) "1 (se;, tu) = t(T, ) ! (ses, u).
Thus,

0 . ) 0
o7 - (tu) = ¢ u(0) = pxi u(0) = prea 8’1( u).

It follows that the derivative DL of L at 0 satisfies DL(u) = ¢/(0), where
c(t) = k(00T (tu)) = k(u0/0T (u)) = tk(0/0F(u)) by Lemma 2.1; i.e
DL(u) = L(u), so that L is linear, and the lemma is proved. O

Proor or THEOREM 2.1. We will again use the coordinate map (T, ¢) :
7 1(U) — z(U) x R* from Lemma 2.2, where f(p) € U. Define sections U; of
§u by #(Ui(q)) = es, g € U, 1 <i <k, and write X| -1y = > X'Uso f. Then

XU—X:XU””)(?_Z +ZXU X(p))
(2.2) = Yl o X)L (X () + Zuwﬂ' ox>@<x<p>>
) + Zu<Xﬂ'>£;;<X<p>>

=2 u
i
The vector Y,u can be expressed in a similar way. On the other hand,

0
d¢7

(X+Y)*u:Zu(xiof)6‘;(X( V+Y(p)) +Z (X7 4V —

i

(X(p)+Y(p).

Next, observe that Uj om = k3/9¢’: Indeed, recall that U;(p) = (¢\g,) 'e;. If
u € E, and +: E, — E denotes inclusion, then

0

5&7( u) = 1(ig, )7 ' Di(¢(u) = 1u(d5,):  Tsw e = uTu(@s,) e,

= uJuU; (p),

where the third equality uses the fact that ¢ is linear. Applying (2.1) now yields
the claim. Thus,

Xt b= S ate' o) [ (o x0)) +5 (20 )|

%

+ 3 ou(0) +u(r U 9))

= Zu(m’ o f)k

= k(X +Y).uy,

LX)+ Y () + Y ulXT + YU (1(9))

where the second equality makes use of Lemma 2.2. This proves (1). Statement
(2) is an immediate consequence of the definition of k. For (3), observe that
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TohX =Z'0 X =2 o f, so that (2.2) yields

(hX>*fu:Z (z' 0 f)

a_l( ()X (p))

+Z p) + h(pJu(X7) 2

55 (M) X (P))

= |3 ute o P ai( X(p)) + hip) 3 u0X) 5 (h(p) X (p)

ZXJ (%J (P)X(p)).

Applying k to the expression inside brackets and using Lemma 2.1 then yields
h(p)xX.«u, while the last line becomes u(h)X (p) under &, thus establishing (3).
Finally, (4) is an immediate consequence of the chain rule. O

It is often useful to express an arbitrary cross-section along a curve in
terms of parallel ones: Consider a map f : N — M, and let £ be a rank k
vector bundle with connection over M. Given a basis x1,...,x of the fiber
of £ over some point f(p), p € N, and a curve ¢ : [a,b] — N with c¢(a) = p,
there exist by Proposition 1.1 parallel sections X1, ..., Xy of £ along f o c with
X;(a) = x;. Thus, any section X along f oc can be written as X = Y h'X
for some functions h® : [a,b] — R. Let us use this fact to show that V, X only
depends on the values of X along any curve tangent to u:

PROPOSITION 2.2. Let & be a vector bundle with connection over M, f :
N — M, ue Ny, and X a section of € along f. Given a curve c: I — N with
¢(0) = u, denote by X; the parallel section along f o ¢ with X (t) = X oc(t).
Then
X:(0) — X o ¢(0)

VX = lim
t—0 t
PROOF. Choose linearly independent parallel sections X1, ..., Xy of £ along

foc,sothat X oc= Y h'X;, and X;(s) = > h*(t)X;(s). Then

t—0 t t—0
On the other hand,
VuX = Vo)X = Vpe)(X oc) = Vpy »_ h'Xi =Y D(0)(h*)X;(0)

= h"(0)X,(0

O

EXAMPLES AND REMARKS 2.1. (i) We have seen how a connection H on
£ determines a covariant derivative operator V. The two concepts are in fact
equivalent; i.e., if V is a covariant derivative operator on £ (in the sense that it
satisfies (1)—(3) of Theorem 2.1 for the case N = M and f = 1)), then there
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exists a connection H on £ whose covariant derivative coincides with V: given
w € E(§), define

Hw = {jwvuX - X*u ] X € ng X(?T(w)) =w,u€ Mﬂ(w)}'

It is straightforward to verify that 7 is a connection. In order to establish that
its covariant derivative is V, it suffices to check that V,X = 0 iff X, u € H since
the vertical distribution is the same for all connections. But this is immediate
from the definition of H.

In view of this, we shall use the word connection to denote either H or V.

(ii) If € is a vector bundle over M, a differential k-form on M with values in
€ is a section of the bundle Hom(Ax (M), ), where by abuse of notation Ay (M)
refers both to the bundle and to its total space. The space of these sections is
denoted Ag(M,€). Notice that in the notation of Section 11 in Chapter 1, the
space of k-forms Ay(M) = Ag(M,e€'), where €! is the trivial line bundle over
M.

If V and V are two connections on ¢, then w := V — V € A;(M,End¢),
where End ¢ = Hom(¢, €): Given u € M, = € E(€),, w(u)z = V,X -V, X €
E(&),p for any section X of € with X (p) = z; w is well-defined by Proposition 11.3
of Chapter 1, together with the fact that V, (fX) —V,(fX) = f(Vy,X =V, X)
for f € F(M) by Theorem 2.1(3). w(u) : E, — E,, is clearly linear. Conversely,
if V is a connection and w € A;(M,End¢), then V := V + w is again a
connection. In other words, the set of connections on £ is an affine space
modeled on the vector space A;(M,End¢).

(iii) At the beginning of Section 1, we defined parallel translation in R™
by letting the standard coordinate vector fields D; be parallel. Thus, if X €
XR", so that X = Y X'D;, where X* = X(u'), then Vy X = Y U(X")D;.
Alternatively, identify TR™ with R™ x R™ by mapping (u,w) € R® x R" to
Juw € R, Then a vector field X along a curve ¢ : I — R™ becomes identified
with (¢, z), where  : I — R™, and VpX = (¢, 2').

(iv) In Examples and remarks 1.1(iii), we defined the canonical connection
on 785™ first in terms of parallel sections: A section X of 7S™ along c can be
viewed as a section of TR™! along c¢ via the derivative of the inclusion map
1: 8" — R"! and may thus be written as X = (c,z). X was then said to be
parallel along c if the component of 2’ tangent to S™ is zero. The connection
V on 7S5™ can therefore be expressed in terms of the Euclidean connection V
as follows: Given p € S™, v € RZ“, let v+ denote the orthogonal projection
(with respect to the usual Euclidean metric on 7R™*1) of v onto 1.5, . Then
foruerS™ X € XS,

(2.3) 1.V X = (V. X))t

More generally, (2.3) makes sense in the context of any submanifold M of R",
and defines the so-called canonical connection on 7M.

(v) A connection V on ¢ determines a connection (which will be also denoted
V) on the dual bundle ¢* by

(Vo)X = u(w(X)) —w(VuX), weTM, wel¢, X el¢

If cis a curve in M, then woc is parallel iff woc(X) is constant for any parallel
section X of £ along c.
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Similarly, if V* are connections on the bundles &; over M, i = 1,2, define a
corresponding connection V on the tensor product &£ ® &3 by

Vu(X1 ® X2) = (V, X1) ® Xa(p) + X1(p) @ (ViXa),  uw€ M, XieT¢,
and one on the Whitney sum & & & by
Vu(X1,X2) = (VL X1, V2Xs).

(vi) Let g denote a Euclidean metric on £. Since g is a section of (£ ® £)*,

(v) implies that
(Vug)(X ®@Y) =u(g(X ®Y)) - g(VuX @Y (p)) — g(X(p) ® V.Y),
foru € M,, X,Y € I'é. V issaid to be a Riemannian connection if g is parallel.
Writing (X,Y") instead of g(X ® Y'), the connection is Riemannian iff
WX, Y) = (VuX,Y(p)) + (X(p), Vu.Y).

In this case, (X,Y’) is constant for parallel sections X, Y of £ along a curve c,
so that the holonomy group is a subgroup of the orthogonal group.

EXERCISE 89. Prove that H as defined in (i) is indeed a connection.

EXERCISE 90. Show that if V is a connection on £ and w € A;(M,End¢),
then V =V 4 w is again a connection.

EXERCISE 91. Let p,q € S™, p L q, and consider the great circle ¢ :
[0,27] — S™ given by c(t) = (cost)p + (sint)q. Prove that Vpé = 0 for the
canonical connection V on 75™.

EXERCISE 92. Let & be vector bundles over M with connections V*. Show
that the induced connection V on Hom(&1,&5) is given by
(V L)X =VE(LX)-L(V.X), weTM, LeT(Hom(&,&)), X eTl&.

Deduce that Loc is parallel (c: I — M) iff LX is a parallel section of £; along
¢ whenever X is a parallel section of &; along c.

EXERCISE 93. Let &1, & be vector bundles over M with connections V;,
V3. Define a “natural” connection on the product & x &2 so that the Whitney
sum connection from Examples and Remarks 2.1 becomes its pullback via the
diagonal imbedding of M into M x M.

3. The Curvature Tensor of a Connection

In the previous section, we saw that flat connections are those for which
parallel translation is, at least locally, independent of the chosen curve. Devia-
tion from flatness is measured by a tensor field called the curvature.

DEFINITION 3.1. The curvature tensor R : XM x XM x T'¢ — T of a
connection V on £ =7 : E — M is given by
R(U, V)X =VyVyX - VyVuX — Vv X, UVeXM, XEeTl¢
PROPOSITION 3.1. The operator R is a 2-form on M with values in End &;

i.e., R € Ay(M,End¢), c¢f. Examples and Remarks 2.1(i1). In particular, R is
tensorial in all three arguments.
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PROOF. It is clear that R(U; +Us, V)X = R(U;, V)X + R(U2,V)X. Since
R is skew-symmetric in the first two arguments, a similar identity holds for the
second argument. We apply Proposition 11.3 of Chapter 1 to show tensoriality:
Given f € FM,
R(fU V)X =V;uVy X = VyViu X = Vs X
= fVuVvX = Vy(fVuX) = fViuuX + VynoX
= fVuVv X = (VA IVuX - fVyVuX = fViuyn X +V(f)Vu X
= fR(U,V)X.
Similarly,
R(U,V)hX = VyVyhX = VyVyhX — ViyyhX
=Vy(hVy X +V(h)X) = Vy(hVy X +U(h)X) — hV iy X
— (VWX
=hVyVy X +Uh)VyX +V(R)VyX + UV (k)X
—hVyVuX = V(h)VyX —Uh)VyX - VU)X
~ Vv X - ([U,V]h)X
=hR(U, V)X + (UV(h) —VU(h) - [U,V](h)X
= hR(U,V)X.
(]

A useful interpretation of R can be given in terms of the so-called exterior
covariant derivative operator of a connection:

DEFINITION 3.2. Given a connection V on &, its exterior covariant deriv-
ative operator is the collection of maps d¥ : Ax(M,&) — Agi1(M,€) given
by

dV(X)WU =VyX, X eA(ME =), UecixXM,

and by
k . ~
(de)(Uo, ey Uk) = 2:(—1)ZVUz (w(Uo, ey Ui, ey Uk))
=0
+ > (-1 w(UL U Vo, -, Ui, U5, Uy
1<j

for w € Ag(M,&), k > 1, and U; € XM.

The operator dV is the generalization to vector bundles of the exterior
derivative operator d on A(M). In fact, if &€ = €! is the trivial line bundle over
M with the canonical connection, then a section X of ¢ can be written as X =
(1a7, f) for some f € FM, and d¥(X)U = VyX = (1p,U(f)) corresponds to
df(U). Similarly, when k > 1, the expression for d¥w is identical to that for dw
in Theorem 11.3 from Chapter 1. Thus, d¥ = d in this case.

The connection on €' is flat, and we will soon see that flat connections have
vanishing curvature. This turns out to be the reason why d? = 0:
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THEOREM 3.1. Let R denote the curvature of a connection V on €. Given
X e T¢, define Rx € Ay(M.€) by Rx(U,V) = R(U,V)X. Then Rx = d¥ o
dVX.
ProoF.
dVHX)(U, V) = Vo ((dVX)V) = Vy ((d¥ X)U) = d¥ X([U, V])
=VuVyX - VyVpX = VX
=R(U, V)X
O

In order to provide a geometric interpretation of curvature, we need the
following:

LeEMMA 3.1 (Cartan’s Structure Equation). Given f : N — M, U,V € XN,
and a section X of € along f,

R(f.U, fiV)X =VyVy X - VyVyX — Vg X
where V denotes the covariant derivative along f.

PROOF. Let p € N, z a coordinate map of M around f(p). Then locally,

fU = (£U)@) 5 10f ZU:cof)—

Similarly, if F1, ..., Ey are local sections of £ that are linearly independent, then
(the restriction of ) X =35 h'E;of. Thus, by tensoriality of R, we may assume
that there exist U,V € XM, X e ¢ such that f,U=Uo f, f,V=Vo f, and
X=Xo f. Now,

VuVvX = VyVy(X o f)=Vy(VivX) =Vy(Vy, X)=Vu(VyX)o f
= V5u(VvX) = (VgVyX)of.
Similarly,
Vioy1 X = Vipv|(X o f) = Vi wwnX = Vig o,X = (VigppX) o f.

Thus,

R(f.U, £ V)X = (R(U,V)X)o f = (VgVyX =V VX =V 1 X) o f

=VuVvX - VyVuX = Vg X
0

The above lemma may be interpreted in terms of the induced connection
on f*¢: Given w € A(M,End¢), define f*w € A(N,End f*¢) by

(fro)(Ur,...,U)(An, X) = (In,w(fiUs, .., fUR)X), U e XN, Xely.
If Ry denotes the curvature tensor of f*¢, Cartan’s equation states that Ry =
f*R.

The next proposition clarifies the remark at the beginning of the section

to the effect that the curvature tensor of a connection measures deviation from
flatness:
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PROPOSITION 3.2. Let u,v € My, z € E,. Consider a map f from a
neighborhood of the origin in R? into M with f(0) = p, f«D1(0) = u, f.D2(0) =
v. Fort, s small enough, let x; s denote the vector in E, which is obtained after
parallel translating x along

(1) 7+ f(r,0) from p to f(t,0), then along

(2) o— f(t,o) from f(t,0) to f(t,s), then along

(3) 7 f(t—m,8) from f(t,s) to f(0,s), and finally along
( s

(4) o f(0,s — o) from f(0,s) to p.
Then
R(u,v)z = — lim iy
t,s—0 ts
x
-Tt,s
f0,9) £(t.5)
v
Y £(£,0)

FiGURE 2. Curvature via parallel translation.

PROOF. Define a section X along f by letting X (¢, s) be the parallel trans-
late of x along the curves in (1) and (2) from p to f(t,s). By Lemma 3.1,

R(u,v)x = R(f.D1(0), f.D2(0))x
= VDl(O)VDzX — VDZ(O)VDlX (since [Dl, Dz] = O)
= =Vp,0)VDp, X (since X is parallel along the curves (2)).
If P, is parallel translation along o — f(0,0) from p to f(0, s), then by Propo-
sition 2.2,

Ps_lle(O,s)X — le(O)X — lim Ps_lle(O,s)X
s 5—0 s ’

VDo)V, X = lim

Now, if P; ; denotes parallel translation along 7 — f(7,0) from (0, s) to f(t,s),
then
P;le(t, s)— X(0,s)

; .

Vb, (05X = lim

Thus,
Ps_lpt—slx(t’ 8) —PS_IX(()?S) . Tts — T
’ lim ——.

R(u,v)x = — lim =—
t,s—0 ts t,s—0 ts
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The curvature tensor of a connection H measures the amount by which the
distribution M fails to be integrable: Recall that H is integrable iff [U, V] is
horizontal for all U, V € XM, where U, V are the horizontal lifts of U, V to
TE. Notice that AgV := %[lj, V]Y is tensorial: If f € F(TE), then

AoV = S0 V)" = S(fI0 V] ~ V()" = L0, V)" = fAGV
A is then tensorial in the second argument by skew-symmetry. We may therefore
define
(3.1) ALv = %[U V]¥(z), u,v € H,, z€E,
where U, V are horizontal vector fields on FE with U, = u, V, = v.

THEOREM 3.2. Let ‘H be a connection on £ =7 : E — M. The curvature
tensor R of H is given by

R(u,v)z = =2k A0, u,v €M, z€kE,,
where u, v are the horizontal lifts of u, v at x.

PROOF. Let U, V be vector fields in a neighborhood of p with U(p) = u,
V(p) = v, and [U,V](p) = 0. Denote by {¢:}, {15} local flows of U, V, and
by {¢:}, {5} flows of the horizontal lifts U, V of U, V. Since mo ¢; = ¢ o,
é¢(x) is the parallel translate of z along the curve 7 — ¢, (7(z)), 0 < 7 < t, for
any x € E,, and similarly for ¢;. By Proposition 3.2,

Tts — T . TaVET T . c(t) —¢(0)

R(u,v)x = — lim =— lim ———— = — lim
t,s—0 s t—0+ t t—0+ t

where c(t) = z/_;f\/g o (137\5 o 15\/; o (Z)\/Z(:r) Thus, given f € F(TE),
TR, v)a(f) =~ lim LEO IO 7 gy )

t—0 t
by Theorem 8.3 in Chapter 1. Finally, [U,V](p) = 0, so [U,V](x) is vertical,
and equals 2A;v. The somewhat annoying factor 1/2 in the definition of A
comes from the traditional terminology used for Riemannian submersions in
the next chapter. d

The following is an immediate consequence:

COROLLARY 3.1. A connection is flat iff its curvature tensor vanishes.

PROPOSITION 3.3. Let V and V denote two connections on L,w=V-Ve
A1 (M,End¢&). Then

R=R+dw+ [w,uw],
where [w,w] € Ay(M,End &) is given by [w,w](U,V) = w(U)w(V) — w(V)w(U),
U,VeXM.
PrROOF. Given U, V € XM,
VuVvX = Vu(VvX +w(V)X) +w(U) (Vv X +w(V)X)
= VuVyX + Vy(w(V)X) +wU)(Vy X) + w(U)w(V)X.
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Thus,
R(U, V)X = RU, V)X + Vy(w(V)X) —w(V)(VyX) - Vy(w(U)X)
w(U)(VyX) —wlU, VX + [wU),w(V)]X
= R(U, V)X + (Vyw(V) = Vyw(U) —w[U,V]) X + [w(U),w(V)] X
=RU V)X +dvw(U, V)X + [wU),w(V)]X.
O

EXAMPLES AND REMARKS 3.1. (i) Since the standard connection on 7R™
is flat, its curvature tensor is zero.

(ii) (Curvature tensor of 75%) Consider the circle of latitude given by ¢ —
c(t) = (acost asint,b) on S?, where 0 < a <1, -1 <b< 1, a®>+b* =1
Let X = 1¢ and ¢t — Y (t) := —bcostDy(c(t)) — bsintDa(c(t)) + aDs(c(t)) the
northward -pointing unit vector field along c orthogonal to X. Then the parallel
vector field F along ¢ with E(0) = cos ¢ X (0) + sin oY (0) is given by

(3.2) E(t) = cos(co — bt) X (t) + sin(co — b)Y (2),

cf. Exercise 88. To see this, recall from Examples and Remarks 2.1 that the
connection V on 752 satisfies

Z*VDE == (@D’L*E)L,

where V is the connection on the tangent bundle of Euclidean space, and 1 :
S? — R3 is inclusion. A straightforward computation yields

@D(t)z*E = —acos(cog — bt)P oc,

where P is the position vector field u — P(u) := J,u on R3. Since P+ =0, F
is parallel, as claimed.

Let p = (1,0,0), u = D2(p), and v = D3(p). We will use Proposition 3.2 to
compute R(u,v)u: Define a map f from a neighborhood of 0 € R? into S? by
f(t,8) = (cos scost,cos ssint,sin s), so that f(0,0) = p. Then

Uty — U
Rl vpu =~ iy =57

2

where u; ;¢ is the parallel translate of u along

(1) 7 f(7,0) from p to f(t,0),

(2) o f(t,o) from f(¢,0) to f(t,1),

(3) 7 f(t—7,t) from f(¢,t) to f(0,t), and

(4) o~ f(0,t — o) from f(0,t) to p.
Notice that the curves (1), (2), and (4) are great circles, so that by Examples
and Remarks 1.1(iii), parallel fields have constant length and make a constant
angle with the tangent field to the curve. The curve (3) is the circle of latitude
described above with b = sint, traveled in the opposite direction. The parallel
translate of u along the first two curves is then X (¢). Parallel translating X (t)
along curve (3) yields E(0), where E is the parallel field along the circle of
latitude with E(t) = X (t). By (3.2), E(0) = cosbtX(0) + sinbtY (0). Finally,
since curve (4) is a great circle, we obtain

utt = (cosbt)u + (sinbt)v = cos(tsint)u + sin(tsint)v,
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and
. |cos(tsint) — 1ju + sin(tsint)v
R(u,v)u = — lim [oos( )~ 1] ( ) = —v.
t—0 t2
Since R is skew-symmetric in the first two arguments, R(u,v)v = —R(v,u)v =

u, and thus,
(3.3) R(u,v)w = (v,w)u — (u,w)v, w € Sg,

where (,) is the inner product on SIZ, induced by the one on Rg and 17.; i.e.,
(u,v) = (1.u,2,v). Using the fact that u, v in (3.3) form a basis of the tangent
space of S? at p, it is easy to check that (3.3) holds for arbitrary u, v € Sf).

If ¢ is another point on S2, choose some A € SO(3) with A(p) = ¢, and
replace f by Ao f in the above discussion. Since A maps great circles to great
circles and circles of latitude to circles of latitude (possibly around a different
axis), we conclude that R is given by (3.3) at any point of S2.

(iii) Let V be a connection on a bundle £ over M, U C M such that
v is trivial. A section X of £y can then be written as X = (1y,z), where
x : U — RF. The standard flat connection D on §ju is given by

Du(1y,z) = ((u), (z © ¢)'(0)),

where c is a curve in U with ¢(0) = u. It follows that V = D+ A, for some A €
A1 (U,End ). Since the flat connection has zero curvature, Proposition 3.3
implies that the curvature tensor R of V can be locally written as

Ry = DA+ (A, A].

EXERCISE 94. Prove the Bianchi identity: If R is the curvature tensor of a
connection V, then d¥R = 0.

EXERCISE 95. Let M denote an n-dimensional affine subspace of R™T!.

Compute the curvature tensor of the canonical connection on 7M given by
(2.3).

4. Connections on Manifolds

If M is a manifold, a connection on M is a connection V on the tangent
bundle of M. Those curves ¢ in M whose tangent field ¢ is parallel along ¢ play
a key role in the study of V.

DEFINITION 4.1. A curve ¢ in M is said to be a geodesic if Vpé = 0.

We will see below that the tangent fields of geodesics are integral curves of a
certain vector field on 7'M, and therefore enjoy the usual existence, uniqueness,
and smooth dependence on initial conditions properties. These properties can
also be shown to hold locally with the help of a chart (U, z): Let X; = 8/0x",
and define the Christoffel symbols to be the functions Ffj € FU given by

It =de*(Vx, X;), 1<i,j,k<n.
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Since ¢ =c,D =Y, c.D(x")X;0c=) . D(z'oc)X;0c=) ,(zoc)X;0c,
Vpé= ZD(wZ oc)X;oc+ (z'oc)'Vp(X;o0c)

= Z(r’ oc)'X;oc+ (z'oc)VeX;
—Zaj oc)'X;joc+ (ztoc) Zx’oc (Vx,Xi)o
va oc)'X;oc+ (ztoc) Z(xjoc)(Ffioc)Xkoc.

j?k‘
Thus, c is a geodesic iff

(zF o) + Z(m’ oc)(z? o C)Tfj oc=0, 1<k<n.
2]
Existence and uniqueness of geodesics for initial conditions in ¢ and ¢ are then
guaranteed by classical theorems on differential equations. A connection is said
to be complete if its geodesics are defined on all of R.

EXAMPLES AND REMARKS 4.1. (i) If M = R™ with the standard flat con-
nection, then Ffj = 0, and the geodesics are the straight lines t — at + b, a,
b € M. The connection is complete.

(ii) More generally, let M be a parallelizable manifold, X;,..., X, € ¥M a
parallelization of M. Any X € XM can be written X = Y. X*X;, X' € FM.
The formula

VuX = Zu(Xi)Xi(ﬂ(u)), uweTM,

defines a connection on M such that X € XM is a parallel section of 7M iff X
is a constant linear combination > a;X;, a; € R. This can be seen by check-
ing axioms (1)-(4) of Theorem 2.1. Alternatively, one can define a horizontal
distribution H whose value at v =Y a; X;(7(u)) is Hy = Xar(uw)Mnr(u), where
X =3 a;X; € XM. Since 7m0 X = 1ps, THoy = T XuMp) = M (). Fur-
thermore, Hoy = (aX)sMr(u) = (o © X )« My (u)y = praxHy for a € R, so that H
is a connection.

Given p € M, u = ) a;X;(p) € Mp, the geodesic ¢ of M with ¢(0) = u
is the integral curve of the vector field X := > a;X; passing through p when
t = 0: Notice that Vx X = 0, so that if v is an integral curve of X, then

Vpy=Vp(Xovy)=ViyX =(VxX)oy=0.

(iii) In case M is a Lie group G, the connection from (ii) obtained by
choosing as parallelization a basis of the Lie algebra g is called the left-invariant
connection of G. It is independent of the chosen basis, because for u € TG,
Hu = Xix(u)Gr(u), where X is the element of g with X () = u.

The geodesics ¢ with ¢(0) = e coincide with the Lie group homomorphisms
¢: R — G (and in particular the connection is complete): If ¢ : I — G is an
integral curve of X with ¢(0) = e, let s, t be numbers such that s, ¢, s+t € I.
Then the curve « defined by ~(t) = ¢(s)c(t) is an integral curve of X, since

V() = Le(s)« X (c(t)) = X(Le(sye(t)) = X (v(2))-
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But t — ¢(s +t) is also an integral curve of X which coincides with v when
t =0, so that ¢(s+1t) = c(s)c(t). A similar argument shows that if c: I — G is
a maximal integral curve of X, then s+t € I whenever s, t € I. In particular,
I=R

Conversely, suppose ¢ : R — G is a homomorphism, and let X be the left-
invariant vector field with X (e) = ¢(0). If tg € R, and ~ is the curve given by
~v(t) = c(to + t) = c(to)c(t), then as above,

&(to) = Y(0) = Le(s0)x¢(0) = Le(ro)« X (€) = X(c(to)),

so that ¢ is an integral curve of X.

The curvature tensor of a left-invariant connection on a Lie group is zero,
since the connection is flat.

(iv) (Geodesics on S™) Let p, ¢ € S™, p L ¢q. Then the great circle t —
c(t) = (cost)p+(sint)q is a geodesic: In fact, ¢(t) = Tey)c'(t) = —(sint)Te(ryp+
(cost)Te(r)q, and t — J.)p is parallel along c for the connection V on R**1,
Thus,

ﬁD(t)é = “(COSt)jc(t)q - (Sin t)jc(t)q =—Po C(t),

where P is the position vector field, and 1,V pé = (Vpé)t = 0. Since LapSp =
Jp(pt), this describes, up to reparametrization, all geodesics passing through

p at t =0, cf. Exercise 96.

DEFINITION 4.2. A vector field S on T M is called a spray on M if

(1) Ty oS = 1T1VI: and
(2) Sopuq =ap.s, fora e R.

By Theorem 7.5 in Chapter 1, the maximal flow ® : W — TM of S is
defined on an open set W C R x TM containing 0 x TM, and if &, : [, - TM
denotes the maximal integral curve of S with ®,(0) = v, then @,(t) = ®(t,v).

Let TM denote the open subset of T'M consisting of all v such that 1 € [,,,
and define the exponential map exp : TM — M of the spray S by

(4.1) exp(v) := wo ®(1,v).
For p € M, exp, will denote the restriction of exp to ]\7[; :=TM N M,

THEOREM 4.1. Let S be a spray on M™ with exponential map exp : ™ —
M. Then for anyp € M,

(1) ]% is a star-shaped neighborhood of 0 € My,: Ifv € My, thentv € JVI;
for 0 <t <1, and exp(tv) = mo ®,(t).

(2) exp, has rank n at 0 € M,, and therefore maps a neighborhood of 0
in M, diffeomorphically onto a neighborhood of p in M.

(3) (m,exp): TM — M x M has rank 2n at 0 € M, and therefore maps
a neighborhood of 0 in TM diffeomorphically onto a neighborhood of
(p,p) in MxM. If s: M — TM denotes the zero section of TM, then
there exists a neigborhood U of s(M) in TM such that (, exp) maps U
diffeomorphically onto a neighborhood of the diagonal {(¢,q) | ¢ € M}
m M x M.
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PROOF. Notice first that if v € TM, and s € R, then the curve ¢ :=
JTECX T é]v — T'M is an integral curve of S. Indeed,

V(1) = fhx P flsx D(t) = Sp1sxPruD(5t) = 5152 S(Py(5t)) = S 0 pug 0 Dy 0 g (t)

— Soy).

But ¥(0) = s®,(0) = sv = ®,(0), and by uniqueness of integral curves.
b,,(t) = ( ) = s®,(st) for st € I,. Now if v € M,, then s-1 € I, for any

s € [0,1], and g, (1) = sP,(s). Thus,

@
o]

p(sv) =T o Py (1) =T o s 0 Dy(s) = 7o Dy(s),
which establishes (1).
For (2), let c(t) = exp,(tv). Then, by (1),
(4.2) exp,, Jov = ¢(0) = m, o ®,(0) = 7, S(v) = v,

and exp,, is an isomorphism at 0 € M.

In order to prove (3), consider a chart (U,z) of M around p, and the
associated chart (7~1(U),z) of TM from Proposition 4.2 in Chapter 1. If
y:=2a x x, then (U x U,y) is a chart of M x M around (p,p), and

0 a 0
(erXP)*ﬁ(o) 2 5;?(0)(7;/ O(W,exp))a =(p,p)-
But for i <n, y' o (m,exp) = 2 o = &', and y"** o (7, exp) = z* o exp. Thus,
for k <n,
0 —~ 0 o
(4.3) (m,exp). 5 (0) = 7% (p,p) z:: 5% (0 (a*0 CXP)WmP),
0
(44) (w,exp) 8 n+k Zaxn_i_k :L. Oexp)W(l)ap)'

The right side of (4.4) can be rewritten as follows: Notice that exp, 8/90z"*(0) =
9/0z"(p); Indeed, if o : M, — TM is inclusion, and c; is the curve ¢ —
td/0x*(p) in M,, then

(1o cx).D(0) = Z (0)(& 020 ck)aaj( 0) = 5%@)7

since 7 010 ¢x = 27 (p), and 2" 010 i (t) = tdx? (p)d/dz*(p) for j < n. But
we also have (10 ¢y ), D(0) = 1. Jp0/0z*(p), so that

9 9 0
. e (0) = 0P 1o Tog i (0) = 050y Jopy o (0) = 2 0)

by (4.2), as claimed. On the other hand,

0 0 i 0
EXPy W(O) = Z W(ﬂ © exp) oz (p),
i=1
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and comparing with the previous expression, we deduce that (9/9z"+%)(0)(z' o
exp) = d;x. Substituting in (4.4) yields

0 0
(4.5) (7. exp). 5 (0) = ayE (p.p)-

By (4.3) and (4.5), the matrix of (7, exp).o with respect to the bases {9/9z"}
and {9/0y’} is
I, 0
( 5)

where I,, denotes the n x n identity matrix. This matrix has rank 2n. The last
statement of (3) then follows from Lemma 1.1 in Chapter 3. O

THEOREM 4.2. Let V be a connection on M with connection map k. Then
there exists a unique horizontal spray S on M; i.e., koS = som, where s
denotes the zero section of TM. A curve ¢c: I — M is a geodesic iff there exists
an integral curve ¢ : I — TM of S for which ¢ = wo é. In this case, ¢ =¢. S
is called the geodesic spray of M.

PROOF. S is a horizontal spray iff

(1) m.Sw)=v, veTM,

(2) K(S(v)) =0 € My, and

(3) S(av) = apqe«S(v), a€R.
The first two conditions determine S uniquely, since by Proposition 2.1, (7., k) :
TTM — M @ 7M is a bundle map covering 7 : TM — M. So let S(v) =
(74, ) (v, s 0o w(v)), where s denotes the zero section of 7M. Then S satisfies
(1) and (2), and is a differentiable vector field on T'M, being a composition
(e, k)L o (17,8 o w) of differentiable maps. In order to establish (3), it
suffices to show that

(4.6) TS (av) = mi(apaS(v)),
and
(4.7) kS (av) = Kk(apqS(v)).

But 7o u, = 7, so that
a1 S (V) = amepiaxS(v) = am S(v) = av = m,.S(av),

which proves (4.6). For (4.7), observe that kS(av) = 0 because S is horizontal.
On the other hand, Lemma 2.1 implies that

k(apasS(v)) = alk © pax) S(v) = alpa 0 £)S(v) = 0.
g

EXAMPLES AND REMARKS 4.2. (i) It follows from Theorems 4.1 and 4.2
that for v € M, the geodesic ¢ with ¢(0) = p and ¢(0) = v is given by c(t) =
exp,, (tv).

(ii) On R™, exp,v =p+ J, 'v, v € R}.

(iii) On 8™, if v € S}y has norm 1, then exp,(mv) = —p by Examples and
Remarks 4.1(iv). Thus, exp is not, in general, one-to-one.

(iv) The terminology for the exponential map is derived from the classical
exponential map on the space M, , of n x n matrices. The Lie group G =
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GL(n) is an open subset of M, ,, so that there is a canonical identification
Js : M, , — Gp for B € G. The left-invariant vector field X with X(e) = J. A
is given by X (B) = Jp(BA); this follows from Examples and Remarks 4.1(iv) in
Chapter 1, together with the fact that Lp : M, , — M, », where Lp(C) = BC,
is a linear map. Define
oo An

et = z% —
Then the curve t — c(t) = €' has derivative ¢/(t) = c(t)A, and é(t) =
Ter)(c(t)A) = X oc(t). c is therefore an integral curve of X, and by Ex-
amples and Remarks 4.1(iii), ¢ is a geodesic of the left-invariant connection on
G. Thus, exp(tJ.A) = e'4.

More generally, the ezponential map exp : g — G of a Lie group G is given
by exp(X) := ¢(1), where c is the integral curve of X with ¢(0) = e. It follows
that c(t) = exp(tX) for all t € R, so that exp = exp,: Given a € R, the
curve ¢ : s — c(as) is a l-parameter subgroup of G with ¢(0) = aX(e), and
¢ is therefore the integral curve of aX passing through e when ¢ = 0. Thus,
c(a) = ¢(1) = exp(aX).

EXERCISE 96. Prove that if c is a geodesic, then so is any affine reparametriza-
tion ¢t — c(at + b) for a, b € R.

EXERCISE 97. Let M = R\ {0} = GL(1), with its left-invariant connection.
Determine VpD.

EXERCISE 98. Show that two connections V and V on M have the same
geodesics iff the connection difference 1-form w = V — V is skew-symmetric:
ie,w(uyu=0,uveTM.

EXERCISE 99. Prove that if M is n-dimensional with tangent bundle 7 :
TM — M, then w, : TTM — TM admits a rank 2n vector bundle structure.
Notice that the fibers of 7. do not coincide with those of 7(T'M), even though
both bundles share the same total and base spaces.

5. Connections on Principal Bundles

Although the approach followed here has been to study connections on
vector bundles, many authors prefer to do so on principal bundles. This is
essentially a matter of taste, and in this section, we show how to go from one
to the other and back.

Let £ = 7 : E — M be a vector bundle over M, Fr(§) =np : P — M
its frame bundle; i.e., the associated principal GL(n)-bundle over M. If H
is a connection on &, there is a natural way of transferring it to the frame
bundle: An element b € P is a basis uy, ...,u, of the fiber E, ) of &
equivalently b : R* — E_ ) is an isomorphism, where u; = b(e;). Given
a curve ¢ : [0,a] — M with ¢(0) = wp(b), consider the parallel sections Uj;
of £ along ¢ with U;(0) = u;. Then v : [0,a] — P, where «(t) is the basis
Ur(t),...,Un(t), is a section of Fr(§) along ¢, and it seems reasonable to say
that ~ is the parallel section along ¢ with v(0) = b. Furthermore, v enables us
to recover all parallel sections of § along c: If u = ), a;u; € E, (), then the
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parallel section U along ¢ with U(0) = w is just U = Y a;U; = p(7,a), where
p: P xR" = E =P Xg, R" is the projection, and a = (a1,...,a,) € R".
However, X can also be written as p(vg,g 'a) for any g € GL(n), so if this
definition is to make sense, we must require that vg be parallel whenever 7 is.
In other words, if 4(t) is horizontal, then so is R, 4%(t) for any g € GL(n) (here,
Ry is the principal bundle equivalence given by Ry(b) = bg).

DEFINITION 5.1. A connection on a principal G-bundle 7 : P — M is a
distribution ‘H on P such that:
(1) TP =kerm, & H.
(2) RgsH =Ho Ry forall g e G.

Asin the vector bundle case, the splitting in (1) determines a decomposition
u=u"+u" €kerm, ®H of any u € TP as a sum of a vertical and a horizontal
vector.

By the above definition, any connection H on a vector bundle £ determines
a connection H = {u € TP | p.(u,0) € H} on the prlnclpal GL(n)-bundle
Fr(¢): If mg denotes the vector bundle projection, and 7; : P x R* — P
the projection onto the first factor, then m o7 = 7g o p. Since mg,n is
onto, m,H = m,m1.(H % 0) = mgap.(H x 0) = 7p.(H) = TM, so that H is
complementary to ker w,. Furthermore, if v is a basis of parallel fields along
a curve in M and g € GL(n), then each element of g is a constant linear
combination of the fields in <y, and is therefore parallel. Thus, H is invariant
under R,.

Conversely, given a principal GL(n)-bundle P — M and a connection H on
the bundle, we obtain a connection on the vector bundle § : £ = PXgp)R" —
M by requiring that p(v,u) be parallel along ¢ whenever ~ is parallel along c
and u € R"; i.e., we claim that H := = p«(H x 0) is a connection on &: Clearly,
H+ V¢ =TE. To see that M is invariant under multiplication uq by a € R,
recall that the map po (Rg X 1gn) on P x R™ equals po (1p x g). Thus,

,F{ap(b,u) = ﬂp(b,au) =H p(baly,,u) = p*(HbaI X 0y )
= P« O (,R“L]77 X 1R")*(Hl) X Ou) = pPx O (lp X a]n,)*(Hb X Ou).

But po(1p x al,) = g © p, so that

Hap(b,u) = Hax © P« (Hp x 0y) = PaxHp(b,u)
as claimed.
For b € P, themap [, : G — P given by l;(g9) = R4(b) = bg is an imbedding
onto the fiber of P through b by Lemma 10.1 in Chapter 5. If U € g, the
fundamental vector field U € XP determined by U is defined by

Ub) =lUle), beP.

In analogy with the vector bundle case, define the horizontal lift of X € XM
to be the unique horizontal X € XP that is w-related to X. Such an X is said
to be basic.

PROPOSITION 5.1. The map ¢ : g — XP which assigns to U € g the
fundamental vector field U determined by U is a Lie algebra homomorphism.
Furthermore, [U, X| is horizontal if X is, and is zero if X is basic.
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PROOF. ¢ is by definition linear. To see that it is a homomorphism, notice
first of all that the flow of U is Rexpvy: In fact, if « is the curve t — exp(tU)
in G and ¢(t) = Rexp(ev)(b) = Iy 0 ¥(t), then

&) = Ly 0 4(t) = by Uexp(etr) = low © Liexp t0)x U (€) = lpexpery=U(€) = U o c(t).
Thus, by definition of the Lie bracket,

- . |
[Uv V](b) = %E% ;(Rexp(—tU)*lbexp(tU)*V(e) - lb*V(e)).
If 7, denotes conjugation by a in G, then

Rexp(—tU) ° lbexp(tU)(g) = bexp(tU)g exp(_tU) = lb o Texp(tU)(g)'
By Example 8.1(iii) in Chapter 1,

(0, V1(8) = e i (At V(€)= V),

and it remains to show that the latter limit is [U, V](e). But if R now denotes
right translation in G, then

1 !
th—E% Z(Adexp(tU) V(e) - V(@)) = }E;% E(Rexp(——tU)* © Lexp(tU)*V(e) - V(e))

1
= }l_f}(l) Z(Rexp(ftU)* oVo Rexp(tU) (6) - V(e))

= [U,V](e),

since U has flow Rexp;vy and V' is left-invariant. This shows that 1) is a Lie al-
gebra homomorphism. At this stage, it is worth noting that the above argument
establishes the following:

OBSERVATION. Denote by ad : g — gl(g) the derivative at the identity of
Ad:G — GL(g); i.e., forU €g, ady = Ad, U. Then ady V = [U,V].

We now proceed to the second part of the proposition: If X is horizontal,
then as above,

~ . 1
[U,X](b) = flg% 't-(Rexp(ftU)* oXo Rexp(tU)(b) - X(b))

is horizontal, since H is invariant under R,. Finally, if X is basic and m-related
to X € XM, then 7,[U, X] = [0, X] o w = 0, since vertical fields are m-related
to the zero field on M. Thus, the horizontal component of [U, X], and by the
above, [0,X] itself, must vanish. a

We next discuss an analogue for principal bundles of the connection map
k : TE — FE for vector bundles: Recall that k essentially picked out the vertical
component v’ of u € TE. Since u¥ € ker m,, it can be identified with an element
k(v) of E. A similar property holds for principal bundles: If u € T}, P is vertical,
that is, u € kerm,, then it is tangent to the orbit of b which is diffeomorphic
to G, and hence parallelizable. In other words, there exists a unique U € g
with U(b) = u, so we may define x(u) = U. It is customary to use the letter w
instead:
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DEFINITION 5.2. The connection form w of a connection on a principal
G-bundle P — M is the g-valued 1-form given by

w(u) = (lpse) ", vweT,P, be P

(Strictly speaking, w € A;(P,n), where 1 denotes the trivial bundle over P with
total space P X g.)

PROPOSITION 5.2. The connection form w of a connection H satisfies

(1) w\?‘t = 07 lb* o‘*‘)\ker'rr,k = 1kcr7r,n

(2) Ryw = Adg-1 ow, g€QqG.
Conversely, if w is a g-valued 1-form on P satisfying the first part of (1) and
part (2), then kerw is a connection on P — M.

ProoF. Part (1) is immediate from Definition 5.2. It suffices to verify (2)
for a vertical vector u € kerm,;, since both sides vanish when applied to a
horizontal one. Now, by (1),

(Ryw)(b)(u) = (wo Ry)(b)Rgsu = lb‘gl*Rg*u =1L Ry.lpewu.

bgx*
Notice that Ry oly = lyg 0 Ly-1 o Ry, where the Ry on the right side is right
translation by ¢ in G, so that lb_g]L oRgoly = Ly o Ry is conjugation by g L
The derivative of the latter at e is Ad,-1, which establishes (2).
For the converse, (1) implies that TP = ker w & ker 7., whereas (2) ensures
that Rg. kerw C kerw (and hence Ry, kerw = kerw) for all g € G. Thus, kerw
is a connection. |

Just as in Section 3, the assignment (X,Y) — [X,Y]” is tensorial for hor-
izontal vector fields X, Y on P. The following definition should be compared
with Theorem 3.2.

DEFINITION 5.3. The curvature form §2 of a connection H is the g-valued
2-form on P defined by

Qb)(z,y) = —w[X,Y](b), beP =zyel,P,
where X, Y are horizontal vector fields on P with X (b) =z, Y (b) = y.

Here again, € is actually a form on P with values in the trivial bundle
n: Pxg — P, and we identify o € A(P,n) with meoa : XPx---xXP — g, where
mo 1 P x g — gis projection. In what follows, we consider the trivial connection
on 7; for example, any a € Ag(P,n) can be written as m o = Y. f'X; with
fé € FP and X; € g. The exterior covariant derivative operator is then given

by da(z) = Y a(f*)X..

THEOREM 5.1 (Cartan’s Structure Equation). If w and Q denote the con-
nection and curvature forms respectively of a connection on a principal G-bundle
P — M, then

0 =dw+ [w,w].

PROOF. Consider X, Y € XM with basic lifts X, Y, and U, V € g with
fundamental vector fields U, V. Since both sides of the above equation are
tensorial, it suffices to check its validity for various combinations of the above
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fields, keeping in mind that (a) wU and wV are the constant functions U,
V € Ao(P,n), and (b) wX = wY = 0. Now,

dw(U, V) + [wU,wV] = U(WV) = V(wU) —w[U, V] + [wU,wV]

= WU V]+[U,V]=0=QU,V),

whereas

dw(U,X) + [wU,wX] = =X (w0) - w[U,X] =0=Q(U, X)
since [U, X] = 0 by Proposition 5.1. Finally,

dw(X,Y) + [wX,wY] = —w[X,Y] = Q(X,Y).
]

THEOREM 5.2 (Bianchi’s Identity). If Q denotes the curvature form of a
connection H on a principal bundle P — M, then d€3 = 0.

PROOF. Since the connection on 7 is the trivial one, differentiating the
structure equation yields d§? = d[w,w]. But w vanishes on H, and therefore so
does d[w, w]. O

Consider a rank n vector bundle £ : F — M with covariant derivative V
and curvature tensor R, and its frame bundle Fr(§) = 7 : P — M together with
the associated connection form w and curvature form 2. We wish to describe
the relationship between V and w, and between R and 2.

Consider a curve ¢ : I — M, 0 € I, and a section v = (Xq,...,X,) of
Fr(§) along c. If p: P xR® — E = P Xgr(n) R" denotes the projection, then
for any a = (a1,...,a,) € R", X := [y,a] = p(v,a) is a section of ¢ along c.
Conversely, given a section X along ¢, there exists a section vy of Fr(§) along
c and a € R™ such that X = [y,a]. Let e = (Ey,...,E,) denote the parallel
section of Fr(€) along ¢ with €(0) = ~(0), and g the curve g : I — GL(n)
satisfying v = €g, so that X = Z ca; X = Z” a;9:; ;. We have

(5.1 (VpX)(0) = Z%J(o = p(e(0),4'(0)a) = p(7(0), T '§(0)a).

For simplicity of notation, identify the tangent space of GL(n) at g(0) = I,, with
the space M, , of n x n matrices via J, !, and write V)X = [v(0),g(0)a].
Now, v = eg = u(e,g), where p : P x G — P denotes the action of G on P.
Thus,
Y(0) = 11+ (€(0), 9(0)) = p«(€(0),0) + 11+(0,9(0)) = Ry(0)«€(0) + Le(0)«9(0)
= €(0) + l(0)«9(0),

and applying w to both sides, we obtain w¥(0) = ¢(0). Substituting in (5.1)
then yields Vp X (0) = p(7(0),w(¥(0))a). We therefore have the following:

PROPOSITION 5.3. Let v be a section of Fr(§) along a curve c. Then for
a € R*, Vply,a] = [v, (w)a].

PROPOSITION 5.4. Givenb € P, and z, y € Ty, P, the matriz of R(w.x, m.y) €
o(Erp)) with respect to the basis b is Q(b)(z,y)-
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PROOF. It must be shown that R(m.x, m.y)[b,u] = [b, Q(b)(x,y)u] for u €
R™. Both sides of the equation vanish if x or y are vertical, so we may assume
the vectors are horizontal. Extending m,x and m.y locally to vector fields on
M, denote by X, Y (respectively X, Y) their horizontal lifts to E (respectively
P). Let z := p(b,u) = [b,u]. The map p, : P — E, py(p) = p(p,u), is a section
of € along 7 : P — M. Since horizontal lifts are unique, X, Y are p,-related to
X, Y. Now, by Theorem 3.2, R(m,z, m.y)z = —k[X,Y](z). Thus,

R(m.z, my)z = =KX, Y] 0 pu(b) = —rpus[X, Y](0) = =V y)(5) Pu:
where V is the covariant derivative operator along m. If ¢ is a curve in P with
¢(0) = [X,Y](b), then by Proposition 5.3,

Vi 710 Pu = Ve Pu = Vo) (pu o ¢) = [b, (wé(0))u] = [b, (W[X, Y](D))u]
— — [0, Q) (. y)u,
thereby completing the argument. (]

EXERCISE 100. Use Theorem 5.2 to prove the Bianchi identity d¥R = 0
for vector bundles.

EXERCISE 101.~Show/t_}\1a/t a fundamental vector field U on P associated to
U € g satisfies Ry U = Adg-1 U o Ry for g € G.

EXERCISE 102. Let H be a subgroup of G, and ) — M a principal H-
subbundle of a principal G-bundle P — M. Suppose that g admits a decompo-
sition g = b +m, where b is a subspace invariant under the adjoint action of H;
ie., Adym C mfor all h € H. Denote by p : g — b the projection induced by
this decomposition. Show that if H is a connection on P — M with connection
form w, then ker(+*pw) is a connection on @ — M (here ¢ : Q — P denotes
inclusion).



CHAPTER 5

Metric Structures

1. Euclidean Bundles and Riemannian Manifolds

A FEuclidean bundle is a vector bundle together with a Euclidean metric g.
Recall from Definition 4.2 in Chapter 2 that a Euclidean metric on the tangent
bundle of a manifold is called a Riemannian metric. A Riemannian manifold
is a differentiable manifold together with a Riemannian metric. We will often
write (u,v) instead of g(u,v), and |u| for (u,u)'/?. Maps that preserve metric
stuctures are of fundamental importance in Riemannian geometry:

DEFINITION 1.1. Let (&;,(,):), i = 1,2, be Euclidean bundles over M;. A
map h: E(&) — E(&) is said to be isometric if

(1) h maps each fiber 7, ! (p;) linearly into a fiber w5 ' (p2), for p; € M;;
and
(2) (hu, hv)y = (u,v), for u,v € 77 (p), p € M;.

Given Riemannian manifolds (M;,g;), a map f : My — My is said to be iso-
metric if f. : TMy; — T M, is isometric. An isometric diffeomorphism is called
an isometry.

EXAMPLES AND REMARKS 1.1. (i) A parallelization X,...,X,, of M"
induces a Riemannian metric on M by defining (X;, X;) = d;;. The canonical
metric on R™ is the one induced by the parallelization Dy, ..., D,.

(ii) A left-invariont metric on a Lie group G is one induced by a paral-
lelization consisting of left-invariant vector fields; alternatively, it is a metric
for which each left translation Ly : G — G is an isometry. Such metrics are
therefore in bijective correspondence with inner products on G.. When in ad-
dition, each right translation R, : G — G is an isometry, the metric is called
bi-invariant. In general, bi-invariant metrics are in bijective correspondence
with inner products on G, = g which are Ad-invariant: If (,) is a left-invariant
metric on G, then for X, Y € g,

(RgeX,Rg.Y) = (Lg-1, 0 Rgu X, Ly-1, 0 Ry, Y) = (Ady-1 X,Ad, 1 Y).

Thus, a left-invariant metric on G is right-invariant iff the induced inner product
on GG, is Ad-invariant.

It follows for example that any compact Lie group admits a bi-invariant
metric: Fix an inner product (,)o on g, and define for X,Y € g,

(X,Y) ::/Gf, £(g) = (Ady X, Ad, Y)o.

131
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(,) is clearly an inner product, and for a € G,

<AdaX7Aday>:/GfoRaz/Gf:<X,Y>.

(iii) A Riemannian metric on a homogeneous space M = G/H is said to be
G-invariant if
Lg:M— M,
aH — gaH

is an isometry for every g € G. Notice that if 7 : G — M is the projection,
then Lyomr =7mo Ly If g=h € H, then Ly om = 7w ol o Ry-1, so that

(1.1) Lpsome = my 0 Adp .

This implies that the G-invariant metrics on M are in bijective correspondence
with the inner products on g/h which are Adg-invariant (and in particular,
any bi-invariant metric on G induces a G-invariant metric on M): In fact,
Txe : 8/H — M, is an isomorphism (here p = w(e)), and for each h € H,
Adp, induces a map Ady : g/b — g/b, since Adn(h) C bh. Thus, by (1.1), a
G-invariant metric on M induces via 7., an Adg-invariant inner product on
a/b.

Conversely, any such inner product defines one on M, by requiring m, to
be a linear isometry. By (1.1), the latter is invariant under each Lj.p,. It may
then be extended to all of M by setting (Lg.u,Lg.v) = (u,v).

(iv) Although the group of diffeomorphisms of a manifold is not, in gen-
eral, a Lie group, Myers and Steenrod have shown that the isometry group of
a Riemannian manifold with the compact-open topology admits a Lie group
structure.

(v) Let ¢ : [a,b] — M be a differentiable curve on a Riemannian manifold
M. Since the function |¢| : [a,b] — R is continuous, we may define the length
of ¢ to be L(c) := f: l¢|. If f: M — N is an isometry, then L(f o c) = L(c).

(vi) Suppose & = m; ¢ (Fy, (,):) — M, are Euclidean vector bundles, i =
1,2. The product metric on & x & is defined by

((u1,v1), (uz,v2)) := (u1,v1)1 + (u2, ve)2.

When &; is the tangent bundle 7M; of M;, it is called the Riemannian prod-
uct metric on My x My (after identifying the tangent space of M; x M, at
(my,ma) with (M71)m, X (M2)m, via (D1x,p2s), where p; : My x My — M; is
the projection). Similarly, the tensor product metric on & ® &, is given by

(uy ® ug,v1 ® va) = (u1,v1)1 - (U2, v2)2,

on decomposable elements.

If M = My = M,, the Whitney sum metric on & ® & is the Euclidean
metric for which 7y : E(§; @ &) — E7 X E; becomes isometric.

(vii) Since a Euclidean metric is a nonsingular pairing of F = E(§) with
itself (cf. Section 10 in Chapter 1), there are induced equivalences

b: E — E™, f: E*— E,
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where 4’ (v) = (u,v), and of is the unique element of E satisfying (o, v) = a(v)
for all v € E. The Euclidean metric on the dual £* is that metric for which the
above musical equivalences become isometric.

If & are Euclidean vector bundles over M, the Fuclidean metric on the
bundle Hom(&;, &2) is the metric for which the equivalence £ ®&> = Hom (&1, &2)
becomes isometric.

(viii) The Euclidean metric on Ag(€) is the one given on decomposable
elements by (u; A -+ Aug,v1 AL vg) = det((u;, v5)).

EXERCISE 103. Show that f : R™ — R"™ is an isometry (with respect to
the canonical metric) iff there exist some A € O(n) and b € R™ such that
fla) = Aa +b for all a € R™.

EXERCISE 104. The length function of a curve ¢ : J = [a,b] — M in a
Riemannian manifold M is given by l.(t) = L(cjja,y),a <t <b. If ¢: I — J is
a differentiable monotone function onto J, the curve co ¢ : I — M is called a
reparametrization of c.

(a) Show that leop =lc0 @ if ¢ >0, and leop = L(c) —lc0o @ if ¢/ < 0. In
particular, the length of a curve is invariant under reparametrization.

(b) Suppose that c is a regular curve; i.e., ¢(t) # 0 for all t. Prove that ¢
may be reparametrized by arc-length, meaning there exists a reparametrization
¢ of c with l;(t) =t — a.

EXERCISE 105. Let &; be Euclidean vector bundles over M, i = 1,2, and

suppose L : E(&1), — E(&)p € Hom(&1,&). Show that |L|? = 3, |Lv|?,
where {v;} denotes an orthonormal basis of E(&;),.

2. Riemannian Connections

Recall from Examples and Remarks 2.1(vi) in Chapter 4 that a connection
on a Euclidean vector bundle (&, (,)) is called Riemannian if the metric (,) is
parallel; i.e., if
(2.1) w(X,Y) = (V, X, Y(7(w)) + (X (7(u)), V,Y),
for all u € TM, and X,Y € T'¢. In this section, we discuss further properties

of Riemannian connections, and the extent to which these are preserved under
isometric maps.

LEMMA 2.1. Let V denote a Riemannian connection on &, f : N — M,
and X, Y sections of § along f. Then for u € Np, u(X,Y) = (V, X, Y (p)) +
(X(p), VuY).

PROOF. Let U; be linearly independent sections of £ on a neighborhood of
f(p). Then locally, X = 5" X'U;o0 f and Y = YU, o f for functions X¢, Y*
defined on a neighborhood of p. Thus,

wX,Y)=u <Z X'U; of,ZYjUj o f> = uZXin(Ui,U]-> of
. J 1,3

= Z w(X'Y7) (Ui, Uj) o f(p) + Z(Xin)(p)U(<Uiy Uj) o f)-
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The second summation may be rewritten as

S XY )p)ul(UUj) 0 ) = YY) ) U Uy)

4,3

= Z(XiY"')(p)(Wf*uUi, Ujo f(p))

RRURYIOR IR
= 2 XY)@(Tulio f),U; o f(p)

+ (Uio f(p), Vu(Uj o f))).
On the other hand,

(VXY (p) + (X(p), V.Y) = (Vo (D XUiof) ,Zw‘ (D) © £(p))
(XX pUio f), Vo (S YU 0 1))

= Z(UX’)Y] (P)Us, Uj) o f(p)

+ (XY (p)(VulUio f),Uj o f(p))
+ X' (p)(wY?) (U, Uj) o f(p)
+ XY (p)(Us o f(p), VulUj o f)),
and therefore equals the expression for u(X,Y). d

THEOREM 2.1. A connection V on a Euclidean vector bundle £ : E — M
18 Riemannian iff for any curve ¢ in M and parallel sections X, Y of €& along
¢, the function (X,Y) is constant.

PROOF. If the connection is Riemannian and X, Y are parallel along c,
then by Lemma 2.1,

D(X,Y) = (VpX,Y)+ (X,VpY) =0.

Conversely, suppose u € TM, X, Y € I'¢. Consider a curve ¢ : [ — M
with ¢(0) = p, ¢(0) = u, and let Uy, ..., Uy denote parallel sections of £ along
¢ such that Ui (t ) ..... Uk( ) is an orthonormal basis of E.q4) for t € I. If
X":=(Xoc,U), Y7 := (Y oc,Uj), then

(VuX,Y(p)) = (Vo) X, Y(p)) = (Vp(o)(X 0 ¢),Y(p))

= <Z X*(0)U4(0), Z Yj<0>Uj<0>> =2_ X 0y (0)
Similarly, (X (p) = >, X*(0)Y"(0). Thus,
u(X,Y) = ((X,Y) OC) (0) =D _(X'Y*)(0) = (Vu X, Y (p)) + (X(p), VuY),
and the connection is Riemannian. O

In particular, the holonomy group of a Riemannian connection is a subgroup
of the orthogonal group.
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PROPOSITION 2.1. Any Euclidean vector bundle admits a Riemannian con-
nection.

PROOF. Any trivial Euclidean bundle £ admits a Riemannian connection:

If Xi,..., Xy is an orthonormal parallelization of £ and u € FE(£), define a
section X := ) (u, X;(m(u)))X; of £, and set H,, := XM ,y. Then a section
of ¢ will be parallel iff it is a constant linear combination of X, ..., , Xk, so that

‘H is Riemannian.

In the general case, recall that in the proof of Theorem 1.1 in Chapter
4, we constructed a connection on an arbitrary bundle £ by piecing together
connections H* on &y, , where {U,} is a locally finite cover of the base such
that &y, is trivial. We claim that when each H® is Riemannian, then the
resulting connection H on £ also has that property: In fact, if V is the covariant
derivative operator of H, then by Examples and Remarks 2.1 in Chapter 4,
V =3, 0.V where {¢,} is a partition of unity subordinate to the cover,
and V¢ is the covariant derivative of H® extended to be zero outside U,. To see
this, write u® for the H®-component of v € TE and u” for its H-component.
Then

Xou =T Vo X + (Xu)®

for any a with w(z) € U,. Thus,

Xu_zqsa x)Xu#Zqﬁa W TVEX + (X,u)®)

=T (Z Pa(T vax> + (Xou).

But X,u also equals J,V,X + (X,u)", and the claim follows. Since each V¢
is Riemannian, so is V. 0

PROPOSITION 2.2. If R denotes the curvature tensor of a Riemannian con-
nection V on &, then

(RUV)X,Y) = —(R(U,V)Y,X), UVeXM, XY eT¢.

ProoF. Given u,v € M,, R(u,v) belongs to the Lie algebra of the ho-
lonomy group at p by Proposition 3.2 in Chapter 4. Since the connection is
Riemannian, the holonomy group is a subgroup of the orthogonal group O(E,),
so that R(u,v) is a skew-adjoint transformation of E,. O

The torsion tensor field T of a connection V on a manifold M (i.e., on the
tangent bundle of M) is defined by

T(U,V)=VyV -VyU—[UV], UVeZXM.

It is straightforward to check that T is indeed a tensor field on M; when it
vanishes identically, the connection is said to be torsion-free.

THEOREM 2.2 (The Fundamental Theorem of Riemannian Geometry). A
Riemannian manifold (M, (,)) admits a unique Riemannian connection that is
torsion-free.

This connection is called the Levi-Civita connection of M.
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PROOF. We first establish uniqueness. Given X, Y, Z € XM, the Rie-
mannian and torsion-free properties of V imply that
(VxY. Z)=X(Y,Z) - (Y\VxZ)=X(Y,Z) - (Y,VzX + X, Z])
=X .Z)-Z(X,Y)+(VzY,X) + (Y, [Z,X])
=XY.Z)-Z(X,Y)+(VyZ +[Z2,Y],X) + (Y,[Z, X])
=XY,2)-Z(X,)Y)+Y{(Z,X) - {(Z,VyX)— (X,[Y.Z])
+(1Z,X],Y)
=X{Y,Z2)-Z(X,)Y)+Y(Z,X)—-(Z,VxY - [X,)Y]) - (X,[Y, Z])
+{[Z,X],Y).

Grouping the V-terms, we obtain
(VxY,Z) = %{X(Y, y+Y{Z,X)-Z(X,Y)
+ <Zv [XYD + <Y7 [ZvXD - <X7 {Yv ZD}»

(2.2)

which establishes uniqueness.

In order to show existence, define for fixed X, Y € XM a map o : XM —
F (M), where a(Z) equals the right side of (2.2). Clearly, a(Z1 + Z»2) = o(Z1) +
a(Zy). Furthermore, given f € F(M),

alf2) = H{X(Y, f2) + Y (f2,X) - f2(X,Y)
+ <fZ7 [Xv Y]> + <Y7 [fZ,XD - <X7 [Y»fZD}
= fa(Z) + XAV, 2) + (VU2 X) ~ (XY, 2) = (V)X 2))
= fa(Z).

Thus, a is a 1-form on M, and we may define VxY := af; ie.,, VxY is the
unique vector field on M such that (VxY,Z) = «(Z) for Z € XM. The
operator

V:XMxXM — XM

satisfies the axioms (1) through (3) for a covariant derivative operator (Chapter
4, Theorem 2.1): Axioms (1) and (2) are immediate. For (3),

2AVx Y. Z) = X{fY, Z) + fY(Z,X) - Z(X, fY) +(Z,[X, fY])
+ (Y12, X)) - (X, [fY, Z])
=2(fVxY,2) + (X[)(Y,Z) = (Zf)(X,Y) + (X[)(Z,Y)
+ (Z/)(X.Y)
=2(fVxY +(X[)Y,Z),
so that Vx fY = fVxY + (X f)Y. Furthermore, V is Riemannian, as can be
seen by writing out (2.2) for (VxY,Z) and adding this to the corresponding

expression for (VxZ,Y). The torsion-free property is verified in the same
way. (]
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PROPOSITION 2.3. Let M be a Riemannian manifold with Levi-Civita con-
nection V. If f : N > M and U, V, W € XN, then

(VulV, W) = %{UU*V, L W) + VAW, LU) = W(LU, V)
+ (LW LU V) + (VAW U)) = (AU, F [V, W T
Proor. By Lemma 2.1,

ULV, fW) = (Vo L.V, £ W) + (V. Vo ).
The result then follows from the proof of the uniqueness part in Theorem 2.2,
once we establish that
VUf*V - va*U = f*[U’ V]

Equivalently, T(f.U, f.V) = Vy f.V — va*U f* [U,V]. Now, in a chart = of
M, f.U may be locally written as 3_ U (2% o f)-2; ) 57 © f. Since T is tensorial, we
may assume that there exist vector fields U, V on M such that f,U =Uo f
and f,V =V o f. Then

VufiV—-VyfU=Vy([Vo f)—v (fJ f) VoV - ViU

Let (M, g) be a Riemannian manifold, : : N — M an immersion. Then 1*g
is the Riemannian metric on N for which ¢ becomes isometric. If X is a vector
field along ¢, define a 1-form ax on N by

ax(U) = (X,uU), UeXN.
In other words, ax = 1*X”. The tangential component of X with respect to 2
is the vector field X T along ¢ given by
X7 = z*ag(,

where ¥ denotes the musical isomorphism with respect to 2*g. Thus, (X T,2,U) =
(X,uU) for all U € XN. The orthogonal component of X with respect to ¢ is
X+ :=X - XT. Itis easy to see that ', are tensorial. In fact, the restriction
T2 M,(p) — 1N, is just the orthogonal projection onto 1, Np.

A key property of Riemannian connections is that they are preserved under
isometric maps:

PROPOSITION 2.4. Let + : N — M be an isometric immersion between
Riemannian manifolds. If kn, Ky denote the connection maps of TN, TM,
and V¥, VM are the respective Levi-Civita connections, then

(1) wknw = (Kptssw) ! for w € TTN. If in addition dim N = dim M,
then Kar 0 14x = 14 0 KN, i.€., the diagram

TTN —=*— TTM

ﬁNl lw

TN —— TM

commutes.
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(2) If f: P — N, then for U € XP and any vector field X along f,
LVNX = (VM X)T,
and 1.V X = VM1, X when the dimensions of M and N coincide.
Proor. Let X,Y,Z € XN. By Theorem 2.2 and Proposition 2.3,
(V¥ Y, 0,.2) = (VYY, Z)

because 1 is isometric. Furthermore, (VYY, Z) = (1.VYY,1,.Z), and therefore
(V¥ Y)T = . VYY. This proves (2) for the case P = N, f = 1y. It
also implies that (f‘sz**Y*X(p))T = kN Y:X(p) for p € N. Since the set
{Yov | Y € XN,v € My} spans (T'N)y (), (1) holds. (2) then follows from the
definition of the connection map k. g

When M and N have the same dimension, Proposition 2.4 implies that
an isometric map preserves parallel fields (and therefore geodesics) as well as
curvature:

THEOREM 2.3. Let f : N — M be an isometric map between Riemannian
manifolds of the same dimension.

(1) If X is a parallel vector field along a curve ¢ : I — N, then f.X is
parallel along foc: I — M.

(2) expprofs = foexpy.

(3) f*RN(x,y)z:RM(f*x,f*y)f*z, $7y7Z€NP! pGN.

PROOF. (1) By Proposition 2.4(2), VY f.X = f.VFX = 0.

(2) Taking X = ¢ in (1), we see that f maps geodesics of N to geodesics
of M. If v € TN and ¢(t) = expy (tv), then f oc is the geodesic of M with
initial tangent vector f,v. Thus, f(expy(tv)) = expy(tfiv). (3) follows from
Proposition 2.4(2) and Cartan’s Structure Equation 3.1 in Chapter 4. |

EXAMPLES AND REMARKS 2.1. (i) The Levi-Civita connection of the canon-
ical metric on R™ is the standard flat connection by (2.2).

(i) Let (M, g) be a Riemannian manifold. A submanifold N of M is said
to be a Riemannian submanifold of M if it is endowed with the metric 1*g,
where ¢ : N — M denotes inclusion. The Levi-Civita connection of S™, as a
Riemannian submanifold of Euclidean space, is the canonical connection from
Examples and remarks 1.1(iii) in Chapter 4.

(iii) Let G be a Lie group. The Levi-Civita connection of a left-invariant
metric on G is given by

(2.3) (VxY,Z) = %{([X,Y],Z) —([V,Z],X) + (2, X],Y)}, X, Y, Z cg.

This follows immediately from (2.2). Suppose that the metric is actually bi-
invariant. We claim that the flow ®; of any left-invariant X € g consists of
isometries of M: If ¢ is the integral curve of X with ¢(0) = e, then the integral
curve passing through a € G at t = 0 is t — ac(t) because X is left-invariant.
Thus, ®;(a) = ac(t) = R.)a, and each @, is an isometry. By Exercise 111, the
assignment Y — Vy X is then skew-adjoint for Y € g. Consequently,

(X,Y],Y) = (VxY,Y) — (Vy X,Y) = %X(Y,Y) —0,
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and ([, ],-) is skew-adjoint in all three arguments. The last two terms on the
right side of (2.3) then cancel, and
VyY = %[X.Y}, XY eg
The curvature tensor is therefore given by
(2.4) R(X,Y)Z = —%[[X,Y],Z], X,Y,Z €.

Notice also that VxX = 0 for any X € g; i.e., the integral curves of
left-invariant vector fields are the geodesics of G, just as in the case of the
left-invariant connection from Examples and Remarks 4.1(iii) in Chapter 4.

(iv) If M™ is an oriented Riemannian manifold, the volume form of M is the
n-form w such that w(vy,...,v,) = 1 for any positively oriented orthonormal
basis v1,...,vn of My, p € M, cf. Proposition 15.1 in Chapter 1. When M is
compact, it is customary to define the integral of a function f on M by

/]\1 f ~ M fw.

Suppose X is a vector field on M. The Lie derivative Lxw of w in direction X
(see Exercise 33) is then again an n-form, and may therefore be expressed as
fw for some function f on M. This function is called the divergence div X of
X. In other words, the divergence of X is determined by the equation

(2.5) (div X)w = Lxw.

Thus, the divergence is an infinitesimal measure of the amount by which the
flow of a vector field fails to preserve volume. It is locally given by

n

(2.6) (div X), =Y (Vi X,v3),

i=1
where {v;} is an orthonormal basis of M,, p € M: To see this, extend the

set {v;} to a local orthonormal basis {V;} of vector fields around p. Since
w(Vi,...,V,) is constant,

which establishes (2.6). Notice that by Exercise 34, the n-form
(2.7) Lxw=14X)odw+doi(X)w=doi(X)w

is exact, since w is closed. Suppose next that M is compact with boundary
OM, so that the volume form ' of the latter is given by w’ = i(N)w, where



140 5. METRIC STRUCTURES

N is the outward-pointing unit normal field on M. Then i(X)w = (X, N)u/,
and Stokes’ theorem together with (2.7) yields

(2.8) /M divX = W(X,N).

(2.8) is known as the divergence theorem.

EXERCISE 106. Given a Riemannian connection on &, there is an induced
connection on £* (by Examples and Remarks 2.1(v) in Chapter 4). Show that
the latter is Riemannian with respect to the Euclidean metric on £* defined in
Examples and Remarks 1.1(vii).

EXERCISE 107. Let (M;, g;) be Riemannian manifolds, ¢ = 1,2, and con-
sider M := M; x M, with the Riemannian product metric from Examples and
Remarks 1.1(vi). Show that the curvature tensor R of M is related to the
curvatures R; of M; by the formula

R(XY)Z = (Rl (7T1*X, 7r1*Y)7r1*Z, R2(7T2*X, 7T2*Y)7T2*Z),

where 7; : M — M; denotes projection. Here, we identify M(,, ,,) with M, x
Mp2 via (7'('1*,71'2*).

EXERCISE 108. Let M™ be a Riemannian manifold. The gradient V f of
f € FM is the vector field dff; i.e., (Vf, X) = X(f) for X € ¥M.

(a) Let a € R be a regular value of f, so that N := f~!(a) is an (n — 1)-
dimensional submanifold of M. Show that for any p € N, w.N, = Vf(p)*,
where 2 : N — M denotes inclusion. Thus, (Vf)|x is a nowhere-zero section
spanning the normal bundle of 2.

(b) Given p € M with V f(p) # 0, show that (Vf/|Vf)(p) and —(Vf/|V ) (p)
represent the directions of “maximal increase” and “maximal decrease” of f at
p: For any v € M, of unit length,

vf ._ Vf
—=a@f) <of < 557 0)
IRt i
EXERCISE 109. The Hessian tensor of a function f : M — R on a Rie-
mannian manifold M is the tensor field of type (1, 1) given by

H{(X)=VxV/f, X exXM.
The associated quadratic form
he(X,Y)=(VxVfY), X, Y € XM,

is called the Hessian form of f.

(a) Prove that Hy is a self-adjoint operator, so that the Hessian form is
symmetric.

(b) Show that, at a critical point p of f, hf(X,Y)(p) = X(p)Y f =Y (p) X f.

(¢) Suppose that the Hessian form is positive definite at a critical point p
of f. Prove that f has a local minimum at p.

EXERCISE 110. The Laplacian of a function f on a Riemannian manifold
M is the function
Af =divVf.
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Prove that if M is compact, oriented, without boundary, then

/MAf:O.

ExERCISE 111. If T is a tensor field of type (0,7) on M and X € XM,
the Lie derivative of T in direction X is the tensor field LxT of the same type
given by

LxT(p) = lim ~ [(‘P X)p)—-X(@)], peM,

where ®; denotes the flow of X. Just as in the case of an r-form on M, it is
not difficult to show that

LxT(Xy,..., X)) = X(T(Xy,..., X)) — ZT(Xl,...,LXXi,...,XT),

cf. Exercise 33 in Chapter 1. A vector field X on a Riemannian manifold (M, g)
is said to be a Killing field if its flow consists of isometries of M.

(a) Show that X is Killing iff Lxg = 0.

(b) Show that X is Killing iff VX is skew-symmetric; i.e., (Vg X,U) =0
for U € XM.

(c) Prove that a Killing field is divergence-free. Give an example that shows
the converse is not true.

3. Curvature Quantifiers

We have seen that the Levi-Civita connection of a Riemannian manifold
is the unique torsion-free connection for which the metric is parallel. This
translates into additional properties for its curvature tensor, properties which
allow us to introduce other types of curvature commonly used in Riemannian
geometry.

PRrROPOSITION 3.1. Let R denote the curvature temnsor of a Riemannian
manifold M. The following identities hold for any vector fields X,Y,Z,U on
M:

) R(X,Y)Z =-R(Y, X)Z.
) RIX,Y)Z+R(Y,Z)X + R(Z,X)Y =0.

(
o
(4) (R(X,Y)Z,U) = (R(Z,U)X,Y).

1
2
3
4

PROOF. Statement (1) is true for any connection and follows from the def-
inition of R, whereas (2) holds for Riemannian connections and is the content
of Proposition 2.2. Statement (3) is a consequence of the fact that the Levi-
connection is torsion-free: We may assume that the vector fields involved have
vanishing Lie brackets, since it is enough to show the property for, say, coordi-
nate vector fields. Then

R(X,Y)Z =VxVyZ - VyVxZ,
R(Y,Z)X = VyVzX —VzVyX =VyVxZ - VzVy X,
R(Z,X)Y = V;VxY —VxVzY =V;VyX - VxVy Z,
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and adding all three identities yields (3). Finally, (4) is an algebraic consequence
of (1)-(3):
2(R(X,Y)Z,U) = (R(X.Y)Z,U)+ (R(X.Y)Z.U)
=—(R(Y,X)Z,U) - (R(X,Y)U.Z) by (1) and (2)
=(R(X,Z)Y,U)+ (R(Z.Y)X,U)
+(R(Y,U)X,Z)+ (R(U,X)Y.Z) by (3)
=(R(Z,X)U,Y)+ (R(Y,Z)U, X)
+{(R(U.Y)Z, X)+ (R(X,U)Z,Y) by (1) and (2)
=(R(Z,X)U,)Y)+ (R(X,U)Z,Y)
+(R(U,Y)Z, X))+ (R(Y,Z)U, X) rearranging terms
= —(R(U,2)X,Y) — (R(Z,U)Y,X) by (3)
=(R(Z,U)X,Y)+(R(Z,U)X,Y) by (1) and (2)
=2(R(Z,U)X.,Y).
O

Notice that for z,y € M, R(x,y) is a linear transformation R(z,y) : M, —
M,. Thus, for vector fields X, Y on M, R(X,Y) is a section of the bundle
End(M) = Hom(r M, 7M). By (2), it is actually a section of the bundle o(M) =
{L € End(M) | L+ L' = 0} of skew-adjoint endomorphisms. The latter bundle
is in turn equivalent to Az (M) via L : Ao(M) — o(M), where

(3.1) L(z ANy)z == (y, 2)x — (@, 2)y;
skew-symmetry of L(x A y) follows from
(L(z Ay)z,u) = (y, 2)(z,u) — (z, 2){y,u) = (T Ay, u A 2),

cf. Examples and Remarks 1.1(viii). Since L is one-to-one on each fiber, it is
an equivalence by dimension considerations. But R is also bilinear and skew-
symmetric in its first two arguments, so that for each p € M, R may be viewed
as a linear map p : Ao(M,) — Az(M,). By (4), p is symmetric.

DEFINITION 3.1. The curvature operator p of a Riemannian manifold M is
the self-adjoint section of End(A2M) given by

(p(z Ay), 2 Nu) = (B2, y)u, 2)

on decomposable elements.
Let k denote the quadratic form

kE(x ANy) = (p(x Ny),z Ny)

associated to p. If P is a 2-plane in some tangent space, then Ay P is one-
dimensional, and contains exactly 2 unit vectors: they can be written as £x A
y/|x A y|, where o and y are linearly independent in P. Since k(o) = k(—c)
for &« € Ay P, we may associate to each 2-plane P C M, a unique number k(a),
where « is a unit bivector in AsP.
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DEFINITION 3.2. The sectional curvature of the plane spanned by z,y € M,

Key = (;Qz‘) __(R@yy2)

is

2Pyl = (g
There are two additional types of curvature commonly used in Riemannian
geometry: The Ricci tensor is the tensor field of type (0,2) given by
Ric(z,y) := tr(u — R(u,z)y).
It is symmetric, since in an orthonormal basis {u;} of M,, (1), (2), and (4)

imply

Ric(z,9) = Y (R(ui, )y, ui) = S (R(yus)ui, z) = Y (R(us,y), u:)

i i i
= Ric(y, x).

If « # 0, the Ricci curvature in direction x is

T 1

Ric(z) := Ric <—, —) ==Y K;..

o ) = T & e

The scalar curvature s(p) at p € M is the trace of the Ricci tensor:
s(p) := ZRic(ui) =2 ZKui,u]-
i i<j
Both Ricci and scalar curvatures are averages, and the curvature tensor R

cannot be reconstructed from them. R can, however, be recovered from the
sectional curvature:

1
(R(z,y)z,u) = g{kz(;r: +u,y+2)—k(y+u,z+2) —k(z+u,y) — k(z +u,z2)
+ k(yvx + Z) + k(u,x + Z) + k(xv Z) - k(y7 Z) + k(uzy)
— k(u,z)},
where we have replaced k(z Ay) by k(z,y), etc. This formula is readily verified
by expanding the right side and using (1) through (4). It implies in particular
that R = 0 whenever k& = 0.

M is said to be a space of constant curvature x € R if K = k. More
generally, suppose there exists a function K : M — R such that Kp = K(p) for
every plane P C M, p € M. Then k(X,Y) = K|XAY]? = (p(X AY), X AY);
i.e., p = K1p,p. This in turn implies
(RX,Y)Z,U)={p(X NY), UNZ)=K(XANY,UNZ)=K(L(XANY)Z,U),
so that
(3.2) R(X,Y)Z =K -LIXAY)Z =K(Y,2)X — (X, 2)Y).

R? with the standard metric has constant curvature 0, and by Examples and
Remarks 3.1(ii) in Chapter 4, S? has constant curvature 1. In order to describe
a 2-dimensional space of constant curvature —1, we will need the following
concept: Two Riemannian metrics g and § on M are said to be conformally
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equivalent if there exists a positive function f such that g = fg. If h = log f,
then by (2.2), the respective Levi-Civita connections are related by

VxY =VxY + %(X(h)Y +Y(h)X — (X,Y)Vh),

where Vh is the gradient of h in the metric g. A straightforward computation
shows that the curvature tensors are related by

RX,Y)Z=R(X,Y)Z + %{(VxVh, Z2)Y — (VyVh,Z)X + (X, Z)VyVh
(V.29 Vh} + L{(YR)(ZR) (¥, Z)IVAI?)X — (Xh)(Zh)

— (X, 2)|[VhAY + (Xh)(Y, Z) — (YR)(X, Z))Vh}.

Thus, if 2,y form an orthonormal basis (in the metric g) of a plane P, then the
sectional curvatures of P satisfy

ﬁkpzlﬁr—%«VxVhJ»+<VyVMy»-—%thP—wxMQ_(wg%,
and
(3.3) fKp=Kp— %((Vﬂh,m +(V,Vh,y)) = Kp — %Ah

when dim M = 2.

Now, let M = {p € R? | u*(p) > 0} denote the upper half-plane, g the
standard Euclidean metric, and § = (1/(u?)?)g. By (3.3), (M, §) has constant
sectional curvature —1.

EXERCISE 112. Use (3.3) to construct a 2-dimensional space of constant
curvature x, where k is an arbitrary real number.

EXERCISE 113. Let G be a Lie group with bi-invariant metric. Prove that
for X,Y € g,

(R(X, Y)Y, X) = —|[X, Y]]~

1
4
Thus, a Lie group with bi-invariant metric has nonnegative sectional curvature.

EXERCISE 114. Let M7, M5 be Riemannian manifolds, and M = M; x M,
together with the product metric. Show that if M; has nonnegative (resp. non-
positive) sectional curvature, i = 1,2, then so does M. If M, has strictly
positive or strictly negative curvature, is the same true for M?

EXERCISE 115. Let F: R® — 8™ Cc R™*! denote the inverse of the stereo-
graphic projection from the north pole,

1
F(P)ZW

(a) Compute F.D;, and show that (F.D;, F.D;) = fd;;, where f(p) =
4/(1+ |p|?)2. Thus, if we endow R™ with the conformal metric f(,) (where (,)
is the standard one), then F' : R™ — S™ is isometric.

(b) Show that S™ has constant curvature 1.

(2p, |p|* —1).
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4. Isometric Immersions

A large class of Riemannian manifolds consists of the submanifolds of Eu-
clidean space together with the metric induced from the Euclidean one. In this
section, we will investigate the sectional curvature of these spaces. Somewhat
more generally, suppose 1 : M — M is an isometric immersion between Rie-
mannian manifolds M and M. If T, denotes the space of vector fields along 2
and T';- the subspace consisting of those N € I, such that NT =0, then [} is
naturally identified with the space I'v of sections of the normal bundle v of 1.

Recall from Section 2 that for each X € I';, we have an associated 1-form
ax = 1*X". Define a vector field 2* X on M by

X = anX.
Thus, 1,(2*X) = XT, and for Y € XM,
" X,Y) = (X,u.Y).

Given X € XM, N € T}, we define the second fundamental tensor of 1 with

respect to N to be the map Sy : XM — XM given by
(4.1) SyX = —1*(VxN), X €XM,

where V denotes the Levi-Civita connection of M. Notice that, as the name
suggests, S : 't x XM — XM is tensorial: S is clearly bilinear over R, and
over FM in X; given f € FM,

SinX = —1*(Vx fN) = —*(Xf)N + fVxN) = ~fi*VxN = fSnX.

We therefore obtain a map S : F(v) x TM — TM. Furthermore, given a unit
vector n € E(v),, the linear transformation S,, : My, — M, is self-adjoint: If N
is a local extension of n, then

(SNX,Y) = (=" (VxN),Y) = =(VxN,2.Y) = (N,Vx(2.Y))
= (N, Vy (1. X) 4+ 1. [X, Y]) = (N, Vy (1. X)) = —(Vy N, 2, X)
= (SnY, X).
The eigenvalues of S,, are called the principal curvatures at p in direction n,

and the corresponding unit eigenvectors the principal curvature directions. The
Gauss curvature G,, of M in direction n is

G,, = det S,.

The second fundamental tensors of an isometric immersion ¢ : M — M measure
the difference between the curvatures of M and M:

PROPOSITION 4.1 (The Gauss Equations). Consider an isometric immer-
sion1: M — M, where dim M > 2, and set m = dim M — dim M. Given
pEM,letz,y,z € My, and ny,...,nm be an orthonormal basis of ]\Zf%p) De-
note by S; : M, — M), the second fundamental tensor of v with respect to n;, by
R and R the curvature tensors of M, M, and by k, k the associated quadratic
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forms from Section 3. Then

m

R(z,y)z — z*(f?(z*x, WY)lz) = Z<Sﬂ'y’ 2)Sjx — (S, 2) Sy,
j~1
k(z,y) — k(taz, ny) = Zdet [ (S, ) <ij,y>} ,

(Sjy,x)  (Sjy,y)

PRrROOF. We only prove the first equation, since the second one is an im-
mediate consequence of it. Extend z,y, z,n; locally to X,Y, Z, N;. Then

VyiZ = (VyuZ)" + (Vyu.2)r =1.VyZ + > (VyuZ NjN;
J
by Proposition 2.4. Taking the covariant derivative in direction X yields
VxVyeZ =Vxu.VyZ + Y (X(VyuZ,N))N;+ > (VyuZ, Nj)VxN;.
J J
Thus,
(VxVyu.2)" =1,.VxVyZ+ Y (S;Y,Z)(VxN;)T,
J
and o
VVxVynZ =VxVyZ = (S;Y,2)8;X.
J
A similar identity holds when interchanging X and Y. Finally,
Z*@[X,y]Z*Z = V[X,y]Z
and substituting these expressions in the left side of the Gauss equation yields
the right side. O

EXAMPLES AND REMARKS 4.1. (i) The Gauss equation may be expressed
in terms of the curvature operators p,p of M, M, cf. Definition 3.1: Extend
S; to a linear map S; : AoM,, — AxM,, where Sj(z Ay) := S;z A S;y for a
decomposable element x A y. If we define +*p : Ao M, — Ay M, by

((*p)x Ay, w A 2) = (Pt A 1Y), W A 1,2),
then
(42) (R y)5w) — (R, 1ey)iez, ) = ((p— 15z Ay,w A 2).
But by the Gauss equation, the left side of (4.2) equals

m

(S;y, 2)(Sjz, w) — (Sjz, 2){S;y, w) = Z(Sjw NSy, w A z)

Jj=1 J

=< ZSJ- a:/\y,w/\z>.
J
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(ii) When M is 2-dimensional and M = R3, sectional and Gauss curvature
coincide. More generally, when dim M —dim M = 1, there are two choices +n €
]fo(p) for a unit normal vector at ¢(p). Although S_, = —S,, as endomorphisms
of M,, S_, = S, as endomorphisms of Ay M, so that Si, extends to a unique

linear map S : Ao M, — Ay M, and (4.3) reads
p—1p==_.
If N is a normal field of unit length extending n, then (@X N,N) = %X(N7 N) =
0, so that @XN is tangential, and 1Sy X = —@XN measures the amount by
which N fails to be parallel in direction X.
(iii) (The sectional curvature of the round sphere of radius r). Let S} =

{p € R*1 | |p| = r}. If P is the position vector field on R™"! given by
P(p) = Jpp, then N := %P is a unit normal vector field when restricted to S;*.

Since
V.P =V, (Z uiDi) = Z:r(ul)Dz =z,

the second fundamental tensor with respect to N is given by Syx = —z/r. The
Gauss equation then yields

~( 2)z — (2, 2)),

R(z,y)z = o

and S” is a space of constant sectional curvature 1/r%.

EXERCISE 116. A Riemannian submanifold M of M is said to be totally
geodesic if the geodesics of M are also geodesics of M. Prove that M is totally
geodesic iff all the second fundamental tensors vanish.

EXERCISE 117. Show that a connected, complete submanifold of R" is
totally geodesic iff it is an affine subspace.

EXERCISE 118. Use the Gauss equations to show that the paraboloid of
revolution 2 = 22 + y? in R3 has curvature K = 4/(4z + 1)2.

EXERCISE 119. An n-dimensional submanifold of R™*! is called a hyper-
surface. A hypersurface M™ is said to be (strictly) convez if at any point of M
the second fundamental tensor with respect to a unit normal is definite; i.e.,
if all its eigenvalues have the same sign. This makes sense because there are
exactly two such tensors, one being the negative of the other. Prove that a a
strictly convex hypersurface of Euclidean space has positive definite curvature
operator, and in particular positive sectional curvature.

5. Riemannian Submersions

Recall that a map 7 : M™ — B* between manifolds M and B is a submer-
sion if m and ., are onto for all p € M. Submersions are topologically dual to
immersions in the sense that both have derivatives of maximal rank, and thus
generalize diffeomorphisms.
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Before studying the interplay between submersions and metrics, we inves-
tigate the problem of lifting curves of B to M. Let ¢ : I = [a,b] — B be a
regular curve; i.e., ¢(t) # 0 for t € [a, b]. Define

M :={(t,p) e I x M | w(p) =c(t)},
and endow ¢* M with the subspace topology.
LEMMA 5.1. ¢*M s a differentiable manifold of dimension n —k + 1.

PROOF. We construct a chart h in a neighborhood of (tg,p) € ¢*M. Denote
by p1 : ¢*M — I, py : ¢*M — M the respective projections, and similarly for
71 R® = RF x R*~% — R* and 7 : R* — R®*. Since 7 has maximal rank at
p, there exist, by Theorem 6.1 in Chapter 1, charts z : U — z(U) = W C R"
around p, and y : V — y(V) C R* around 7(p) such that yoroz™! = my .
Define h : (z 0 py) (W) — I x R" % by h := (p1, 72 02 0 py). We claim that
h is a homeomorphism onto its image: To see this, let z be the map defined on
the image im h of h by

z(t,ar,...,an k) = (t,x " ((yoc)(t), a1, .. ,an-k))-
Notice that z(imh) C ¢*M; i.e.,
(5.1) TOPa0z =COP;OZ2.
In fact,
yomopyoz(t,al,...,an_k) = (yom)oxz t((yoc)(t),ar,...,an—k)
=m({(yoc)(t),ar,...,an_k)
= (y o c)(t).
On the other hand, yocop; o z(t,a1,...,an—k) = (yoc)(t). Since y is a
homeomorphism, 7 o py 0 2 = co p; 0 z as claimed, and z(imh) C ¢*M. Now,
(hoz)(t,a1,...,ank)=ht,27 (yoc)t),a1,...,ank) = (t,a1,...,an_k),
and
(zoh)(t,q) = 2(t, (m2 0 2)(q)) = (t.27 " ((y 0 €)(2), (w2 0 2)(q)))
= (t,z™ ((y o m)(q), (m2 0 2)(q))) = (t, ™" ((m1 0 2)(q). (2 © 2)(q)))
= (t,q).
Thus, h is a homeomorphism with inverse z. We then obtain in the usual way

an atlas with differentiable transition functions, and the projections p;, ps are
smooth for the induced differentiable structure. O

Suppose next that we are given a distribution H on M that is comple-
mentary to the kernel V of 7, so that TM =V ® H, and 7. : H, — Br(p)
is an isomorphism for each p € M. Given a curve ¢ in B as before, there
exists for each (t,p) € ¢*M a unique vector Y (¢,p) € H, C M, such that
7Y (t,p) = é(t). We claim that there exists a unique vector field X on c¢*M
such that p2. X = Y. To see this, consider a chart h with inverse z as above.
By (5.1), p2s2+«D1, ..., p2sx2« Dy span the kernel of 7,, whereas m,p2.2.D = ¢.
Thus, Y — po.2.D € V = kerm,; ie., for each (t,p), Y(t,p) € pau(c*M ) p,
and there exists some X (t,p) € (¢* M) with pe. X (¢, p) = Y (t,p). To verify
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uniqueness, observe that any such vector field X is p;-related to the coordinate
vector field D on I: In fact, since 7 o p, = c o py, we have

cxDopi(t, P) = c.D(t) = ¢(t) = mupac X (t,p) = cap1. X (t,p),
and the claim follows from regularity of c¢. Since H is differentiable, so is X.

ProproOSITION 5.1. Let 7 : M — B be a submersion, H a distribution
complementary to ker m,, and ¢ : [a,b] — B a regular curve. If M is compact,
then for any p € 7 *(c(a)), there exists a unique curve é : [a,b] — M with
éla) =p, moé=c, and ¢ € H. Such a curve ¢ is called the horizontal lift of ¢
at p.

PROOF. Let X be the vector field defined above, and consider the maximal
integral curve v of X with v(a) = (a,p). Now, ¢*M is compact because M is,
and by Exercise 18 in Chapter 1, + is defined on all of [a, b]. Furthermore, X is
pr-related to D, so that

(p1o7)«D =p1y =pisoXoy=Do(po7),

and p; o7y is an integral curve of D. Recalling that (p; oy)(a) = a, we conclude
that (p1 o y)(t) = t for all t € [a,b]. Define ¢ := py 0. Then é(a) = p,
moC=mopgoy=cop; oy = ¢, and D = po.y = pou X oy € H. This
establishes existence.

If ¢ is any curve satisfying the conclusion of Proposition 5.1, then ¢ —
(t,e(t)) is an integral curve of X, and ¢ = ¢ by uniqueness of integral curves. [

Notice that when M is not compact, the result is no longer necessarily true:
Consider M = R?\ {p}, p € R%. The projection u! : M - Rx 0 =R is a
submersion, but the identity curve t — c(t) =t on [u'(p) — L,ul(p) + 1] C R
admits only a partial H-lift at the point p— (1, 0), if one takes H to be the span
of Dl .

Suppose that M is a Riemannian manifold, 7 : M — B a submersion. The
vertical distribution is V := ker 7., and the horizontal distribution is defined by
H :=V+. Thus, TM = H@V, and we write e = " + e? for the corresponding
decomposition of e € TM.

DEFINITION 5.1. A submersion 7 : M™ — B is said to be Riemannian if
|Tee| = |e"| for all e € TM.

In the same way that an isometric immersion may be viewed as general-
izing an isometry for n < k, a Riemannian submersion is the corresponding
generalization to n > k.

Horizontal vectors will be denoted x, y, z, vertical ones u, v, w. A horizontal
vector field X on M is said to be basic if it is w-related to a vector field on
B. Thus, any vector field X € XB yields a unique basic field X € XM with
X =Xom.

LEMMA 5.2. If X is basic and U € XM is vertical, then [X,U] is vertical.

PROOF. Let Y be the vector field on B that is w-related to X. Since U is
m-related to 0, m[X,U] = [Y,0] o7 = 0. O
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The curvature tensors of M and B will be denoted Rjp; and Rp; their
Levi-Civita connections by VM and V5.

LEMMA 5.3. Suppose X,Y € XM are basic. Then (V%’f’)h s basic. In
fact, if XY € XB are w-related to X.Y, then V)'%Y is w-related to VJ)‘-(IY: i.e.,

mVYY =ViYor.

PROOF. This is an immediate consequence of (2.2) together with the fact
that m,[X,Y] = [X,Y]om. O

DEFINITION 5.2. The A-tensor is the (1,1) skew-adjoint tensor field A :
H x H — V given by
AxY = (V¥Y).

A is clearly tensorial in the first argument; for the second one, observe that
if f e FM, then
(VYY) = F(VYY)" + (XYY = F(VXY)",
since Y is horizontal. To check skew-symmetry, we may, by tensoriality of A,

assume that X is basic, so that by Lemma 5.2, (VY U)" = (VM X)" for vertical
U. Then

(Ax X, U) = (V¥ X, U) = (X, V¥U) = ~(X, V¥ X) = —%U(X,X) =0,

and the claim follows.

The A-tensor represents the obstruction to the horizontal distribution being
integrable: If we think of the horizontal distribution H as generalizing the notion
of connection, then the A-tensor represents a multiple of the curvature, since

24xY = (VHY)" + (VIY) = (VYY)" — (VIX)" = [X,Y]".

Given z € TM or TB, denote by 7, the geodesic v,(t) = exp(txz). The
next proposition says that geodesics which start out horizontally remain so for
all time. Thus, even though H is not, in general, integrable, the geodesic spray
of M restricts to a vector field tangent to H.

PROPOSITION 5.2. If & € H, then %,(t) € H for allt, and T o vy = Yr,z-

PROOF. Let x € H,. It clearly suffices to prove the statement in a neigh-
borhood of p; choosing this neighborhood to be compact, Proposition 5.1 guar-
antees the existence of a horizontal lift ¢ of ~,, ., at p. Extend ~,, locally to a
vector field X: For example, choose a neighborhood U of 0 € By, on which
eXPr(p) : U — V :=exp(U) is a diffeomorphism. Given b = exp(u) € V, define
X (b) to be the parallel translate of x along the geodesic t — exp(tu), 0 <t < 1.
If X is the basic lift of X, then by Lemma 5.3,

T (VM) = m (VM (X 0¢)) = W*(V%IX oc)=VEXon ., =VB4, . =0,
so that (V¥ ¢é) = 0. Similarly,
(VB&) = (VH (X o) = (V¥X) oc=AgXoc=0.

Thus, the horizontal lift ¢ of ., . is a geodesic, which implies that ¢ = ,,
thereby concluding the argument. |
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In order to describe the relation between the curvatures of M and B, it
is convenient to introduce the pointwise adjoint A% : V — H of A, : H — V.
Notice that for basic X and vertical U,
(5.2) (V¥ = (VM X)h = —A%U.

Indeed, if {X;} denotes a local orthonormal basis of horizontal fields, then for
any horizontal X,

(VX" = (VXU X)X, = =) (U V¥X)X, = =) (AxX;, U)X,

A 7 i

= =) (AXU, X;)X; = —A%U.

When furthermore X is basic, then (VY U)" = (VM X)h by Lemma 5.2.

PROPOSITION 5.3. Let X,Y,Z € XM be basic, and denote by X,Y,Z € XB
the corresponding mw-related vector fields on B. Then

(1) mBM(X,Y)Z = Rp(X,Y)Z om + m.(—AG Ay Z — AL Az X

+243A3Y);
2) mRum X7}~/ Y/:RB XY YO7T+37T*A*-A~}~/; and
Y X
(3) if z, y € Hp, are orthonormal, then K2, = KM +3|A.y|°.

PROOF. Statements (2) and (3) are direct consequences of (1). For (1), we
have that

Ru(X,Y)Z =VYVYZ-VYVYZ -V, Z

— M gM 7\h M oM 7\h M 7\h
= VI (VY2 -V (VYD) - (Vie5:2)
+VE(VY 2y -V (VY2 -2V v 2)"

(VA2 - 2VH\y 2"

where [X,Y] denotes the basic lift of [X,Y]. Take horizontal components on
both sides. The first line in the second equality is then basic by Lemma 5.3 and
m-related to Rp(X,Y)Z, whereas the third line vanishes. Applying 7, to both
sides and using (5.2) on the second line yields the result. g

EXAMPLES AND REMARKS 5.1. (i) A Riemannian manifold M is said to
be complete if the geodesic spray of its Levi-Civita connection is complete; i.e.,
if exp,, is defined on all M), for each p € M. We will also implicitly require
that a complete manifold be connected. Let 7 : M — B be a submersion with
M complete, so that B is also complete by Exercise 118 below. Then all the
“fibers” m~1(b), b € B, are diffeomorphic: In fact, if ¢ : [0,a] — B is a geodesic,
and Fy, F, denote the fibers over the endpoints of ¢, then the map h. from
Fy to F,, which assigns to p € Fp the point ¢,(a), where &, is the horizontal
lift of ¢ with é,(0) = p, is a diffeomorphism. The claim then follows from the
Hopf-Rinow theorem in Section 7, which guarantees that any two points of B
can be joined by a geodesic.

Given a Riemannian metric on B, b € B, consider an open neighborhood
U of b which is the diffeomorphic image under exp, of some neighborhood of
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Op in Bp. If 4y, 1 [0,1] — U denotes the geodesic from b to m in U, we obtain a
diffeomorphism

h:n Y (b) x U — n7Y(U),
(p,m) = hs,, (p).

In particular, the restriction of 7 to #=1(U) is a fibration. By a standard result
in topology, the submersion 7 : M — B itself is then a fibration.

(ii) Proposition 5.3 implies that if 7 : M — B is a Riemannian submersion
and the sectional curvature Kj,; of M is nonnegative, then B has nonnega-
tive curvature as well. Apart from convex hypersurfaces in Euclidean space
(those for which the second fundamental tensor Sy with respect to a global
outward-pointing normal field N is nonnegative definite) and Lie groups with
bi-invariant metrics, virtually all known examples of nonnegatively curved man-
ifolds are constructed by means of submersions. One of the largest classes of
such examples consists of the base spaces of homogeneous submersions, which
we now describe: Let M be a Riemannian manifold with K; > 0. Suppose G
is a subgroup of the isometry group of M that acts freely and properly on M,
so that the orbit space B := M/G admits a differentiable structure for which
the projection # : M — B becomes a submersion according to Theorem 14.2
in Chapter 1. We claim that there exists a unique Riemannian metric on B
for which 7 becomes Riemannian: Given b € B, choose any p € 7~ 1(b), and
define an inner product on By by requiring that 7., : (ker 7r,6p)L =H, = By
be a linear isometry. To see that this inner product is well-defined, consider
some other point ¢ € m7~*(b). Then there exists some g € G with g(p) = ¢, and
since g is an isometry which leaves 7w ~!(b) invariant, g., maps H,, isometrically
onto H,. Now consider x € By. If y € H,, is the vector that gets mapped to x
by m,, then g,y is the vector in H, that is mapped to z, since w0 g = 7. But
lyl = |g«y|, so that the inner product is well-defined. Uniqueness, on the other
hand, is immediate.

(iii) (Normal homogeneous spaces). Let G be a Lie group, H a closed
subgroup of G, so that 7 : G — G/H is a principal H-bundle over M := G/H.
Suppose that G, = g admits an inner product that is Adp-invariant for all
h € H. By Examples and Remarks 1.1(ii), this inner product induces a left-
invariant metric on G that is right-invariant under H. Thus, G/H is the orbit
space of the free isometric action of {R, | h € H} on G, and by (ii), there
exists a unique Riemannian metric on G/H such that m becomes a Riemannian
submersion. By Examples and Remarks 1.1(iii), the metric on M is G-invariant.

We now consider the special case when the metric on G is bi-invariant. The
Riemannian manifold M is then called a normal homogeneous space. Kg > 0
by Exercise 113, so that M has nonnegative sectional curvature. Notice that
any X € b is basic: In fact, the vector field X on M, defined by

X(n(9)) = Lgum. X (¢)

is m-related to X by Examples and Remarks 1.1(iii). Furthermore, AxY =
71X, Y] is the projection £[X,Y]%f 1[X,Y] onto b for X,Y € h*.
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Consider orthonormal X,Y € ht. By (2.4),
1 1
(R(X, Y)Y, X) = ‘Z<HX’ YLYLX) = Zl[Xv Y]Izv

and the sectional curvature of the plane in T'M spanned by 7, X, 7Y is given
by

1 3
Kp. Xy = Z|[X,Y]|2 + Z|[X, Y]"P?, XY ept.

(iv) (Curvature of complex projective space). The restriction N of the
position vector field P of R**2, P(p) = J,p, to the unit sphere S?"*1 is a unit
normal field to the sphere. Identify R?"*2 with C**! via

(mlvyla' "7In+17yn+1) = ('rl +iyla"'a$n+1 +iyn+1)>

and consider the canonical complex structure I on 7R"*2 given by
I(Jpv) = Tp(iv),  p,v € CMHL

Notice that IN is a unit vector field on the sphere that spans the fibers of
the Hopf fibration 7 : §?"t! — CP™. Moreover, I is a parallel section of
End(7R"*2), so that

(5.3) V. IN = IV,N = Iz, x € TS*+1,

The covariant derivatives in (5.3) are the Levi-Civita connection of Euclidean
space, but since Iz and IN are both tangent to the sphere, the first covariant
derivative also represents the Levi-Civita connection of the sphere.

The Hopf action of S* on §2"*1 is by isometries, so that by (ii), there exists
a unique metric on complex projective space for which the Hopf fibration be-
comes a Riemannian submersion. Since I'N is a unit field spanning the vertical
distribution,

| Azy1? = (Aey, IN)* = (y, ALIN)? = (y,(VoIN)")? = (y, Iz)?

for horizontal z and y. Here, we used the fact that if x is horizontal, then so
is Iz: In fact, given any x € TS*"*! (Iz,IN) = —(z,I?N) = (z, N) = 0. By
Proposition 5.3(3),

er*;vﬂr*y =1+ 3(1}7 Il‘>2

for orthonormal z,y € H. Thus, the sectional curvature K of CP™ satisfies
1 < K < 4. For any horizontal z, the plane spanned by z and Iz projects
down to a plane of curvature 4 (such a plane is sometimes called a holomorphic
plane), whereas the plane spanned by = and any vector orthogonal to both z
and Iz projects to a plane of curvature 1.

(v) Cheeger and Gromoll [11] have shown that every complete, noncompact
Riemannian manifold M with sectional curvature K > 0 contains a compact,
totally geodesic submanifold S, called a soul of M. Since S is totally geodesic,
it too has nonnegative curvature by the Gauss equations. Furthermore, M is
diffeomorphic to the total space of the normal bundle v(S) of S in M. In
particular, M is homotopy equivalent to a compact manifold of nonnegative
curvature. Let m, : E(v(S)) — S denote the bundle projection, and exp,, :
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E(v(S)) — M the restriction of the exponential map of 7(M) to v(S). Perelman
[30] showed that there is a well-defined map 7 : M — S such that the diagram

E(w(S)) =2, M

ml lﬂ

S S

commutes, and that 7 is a Riemannian submersion. Notice that 7 maps p € M
to the unique point w(p) € S that is connected to p by a geodesic orthogonal
to S; in particular, the fibers of the submersion are totally geodesic at the soul.
In Section 7, we will see that 7(p) is the point of S that is closest to p, which
justifies calling 7 the metric projection onto the soul.

(vi) If s : M — N is an immersion of M into a Riemannian manifold N,
there exists a unique metric on M for which 2 becomes isometric. The dual
problem for submersions may be phrased as follows: Let 7 : M — B be a
submersion. If M is a Riemannian manifold, does there exist a metric on B for
which 7 becomes Riemannian? Clearly, such a metric is unique if it exists.

Notice that the vertical and horizontal distributions are still defined, as is
the A-tensor. A necessary condition for 7 to be Riemannian is that A be skew-
symmetric. We will show that this condition is in fact sufficient. Observe that
the discussion in (ii) is a special case: If B is the orbit space of an isometric
action on M, then for any vertical Killing field U,

(AxY,U) = (VxY,U) = <(VxU,Y) = (VyU,X) = —(Vy X,U)
= <‘AyX, U>
by skew-symmetry of X — VxU. A is then also skew-symmetric because the
vertical distribution is spanned by Killing fields.
To establish the above claim, consider the fiber N of 7 over some point of
B. The Bott connection on the normal bundle v of N in M is defined by
VX =[U, X", weTN, Xelv,

where U and X are vertical and horizontal fields extending v and X respectively.
It is straightforward to verify that V* is indeed a well-defined connection on v.
For Y € I'v,

(VEX,Y) = ([U,X],Y) = (V,X,Y) = (ViU Y) = (V. X,Y) + (u, AxY),
so that

(
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and V° is Riemannian. The curvature tensor R’ of the Bott connection is given
by
RN(U V)X =V VL X — Vi VX — Vi X
=[U.[v.X]"" = V.[U. X)")" ~ (U, V], X]"
=[U V. X" + V. [X.U]]" + [X. [0, V)]
=0
by the Jacobi identity and the fact that vertical fields have vertical brackets.
Thus, v is a flat bundle, and in fact a trivial one: For any x € Br(y), the
assignment
p— X(p) = (man,) 'z, pEN,
defines a global section X of v that is 7-related to x. This section is then Bott-
parallel, since any U € XN is w-related to 0, so that V%X = [U, X" =0. In

particular, X has constant norm along N. If we now define |z| := |X|, then 7
becomes a Riemannian submersion.

EXERCISE 120. Let M — B be a Riemannian submersion. Prove that B is
complete whenever M is.

EXERCISE 121. Show that the Riemannian submersions in Examples (iii)
and (iv) have totally geodesic fibers.

EXERCISE 122. View R3 as C x R, and consider the free isometric action
of R on R3 given by t(z,tg) = (efz,tg + 1), t € R, (2,t9) € C x R. Compute
the sectional curvature of the space M = R3/R of orbits, if M is endowed
with the metric for which the projection m : R® — M becomes a Riemannian
submersion. This example also shows that homogeneous submersions do not,
in general, have totally geodesic fibers, see Figure 1.

EXERCISE 123. Use Example (ii) to construct a metric of nonnegative sec-
tional curvature on the total space T'S™ = SO(n + 1) X go(n) R™ of the tangent
bundle of S™.

EXERCISE 124. Prove that the Bott connection from Examples and Re-
marks 5.1(vi) is a well-defined connection. Explain why it is not even necessary
to consider an extension X of X in the definition.

EXERCISE 125. Let M be a Riemannian manifold, f : M — R a func-
tion that has maximal rank everywhere. Show that if |V f| 2 1, then f is a
Riemannian submersion with respect to the usual metric on R.

6. The Gauss Lemma

One of the fundamental properties of geodesics is that they are, at least
locally, length-minimizing, as we shall see in the next section. Since a geodesic
c is the image via the exponential map of a ray t — tv in the tangent bundle,
it is to be expected that such extremal properties follow from the behavior of
the derivative of exp. This derivative can be conveniently expressed in terms of
certain vector fields along c. If Y is a vector field along a curve ¢, we will often
abbreviate the covariant derivative VpY by Y.
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fiber over a

/

R3
- ———y
7/
’ O\
// fiber over b
»

FIGURE 1

DEFINITION 6.1. Let ¢ be a geodesic in M. A vector field Y along c is
called a Jacobi field along c if

Y” + R(Y,é)é = 0.

Notice that the collection J. of Jacobi fields along c is a vector space that
contains ¢. The space of Jacobi fields orthogonal to ¢ is the one of interest to
us: If X and Y are Jacobi, then

(Y" Xy =—(R(Y,¢)é, X) = —(R(X,¢)e,Y) = (X")Y)
by Proposition 3.1. Thus, (X”,Y) — (Y", X) =0, and (X', Y) — (Y, X) must
be constant. In particular, (Y,¢)) = (Y’ ¢) = (Y',¢) — (Y, &) is constant, so
that for a normal geodesic, the tangential component Y7 of Y is given by
YT =(Y,¢&)¢ = (a+bt)e, a=(Y,¢)(0), b=(Y,é)(0),

and satisfies the Jacobi equation. It follows that the component Y+ =Y —Y7T
of Y orthogonal to ¢ is also a Jacobi field.

PROPOSITION 6.1. Let ¢ : I — M be a geodesic, to € I. For any v,w €
M.,y there exists a unique Jacobi field Y along c with Y (to) = v and Y'(to) =
w.

PROOF. Let X1, ..., X, be parallel fields along ¢ such that X (¢¢), ..., Xn—1(to)
form an orthonormal basis of ¢(tg)*, and X,, = ¢. Any vector field Y along c
can then be expressed as

. . (Y, Xi), fori<n-—1,
Y = iX;, -
;f ! {( ’\))((:|2>’ for i = n.




6. THE GAUSS LEMMA 157

Since X; is parallel, Y” = 3 fX,. Furthermore, R(X;,¢)¢ = Z;;ll thj,
where h! = (R(X;,é)¢, X;), so that R(Y,¢)é = Y771, fihIX;. The Jacobi
equation then reads

n—

n—1 1
Z (fj//'i”z.flh{) XJZO, fn/lzo’
j=1

i=1

or equivalently,

n—1

FUE> fRl=0, j=1,...,n,

i=1
if we set Al = (R(X;,¢)é,¢) = 0. This is a homogeneous system of n linear
sepond—order equations, which has a unique solution for given initial values
fIto) = (v, X;(to)), f7'(to) = (w, X;(to)) (5 < n), f(to) = (v, (¢/]¢*)(t0)),
and f™'(to) = (w, (¢/¢[*)(to)). 0

Proposition 6.1 implies that the space J. of Jacobi fields along ¢ is 2n-
dimensional, since the map
Je — ]\/[c(tu) X ]v[c(to)»
Y = (Y(to),Y'(t0))

is an isomorphism.

EXAMPLE 6.1. Let M™ be a space of constant curvature , and let ¢, s,
denote the solutions of the differential equation

f"+rf=0
with ¢.(0) = 1, ¢/(0) = 0, s.(0) = 0, s,(0) = 1. For example, ¢; = cos, and
s1 = sin. Consider a normal geodesic ¢ : [0,b] — M. Given v,w € M)

orthogonal to ¢(0), the Jacobi field Y along ¢ with Y (0) = v and Y'(0) = w is
given by
Y =c¢.FE + s, F,

where E and F are the parallel fields along ¢ with E(0) = v and F(0) = w:
Indeed, Y = c/E 4+ s'F = —kY = —R(Y, ¢)¢é, so that Y is a Jacobi field, and
clearly satisfies the initial conditions at 0.

Jacobi fields essentially arise out of variations of geodesics: If ¢ : [a,b] — M
is a curve, and I is an interval containing 0, a wvariation of ¢ is a smooth
homotopy V : [a,b] x I — M with V(t,0) = ¢(t) for t € [a,b]. Notice that
ViD1(t,0) = ¢(t); the variational vector field Y along c is defined by Y (t) =
ViD3(t,0).

PROPOSITION 6.2. Let c¢: [0,b] — M be a geodesic. If V is a variation of ¢
through geodesics—meaning that t — V(t, s} is a geodesic for each s, then the
variational vector field t — V,Ds(t,0) is Jacobi along c. Conversely, let Y be
a Jacobi field along c. Then there exists a variation V of ¢ through geodesics
whose variational vector field equals Y .
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PROOF. Given a variation V' of ¢ through geodesics, define vector fields X
and Y along V by X =V, D,, Y = V,Dy. By assumption, Vp, X = 0, so that

R(Y,X)X =Vp,Vp, X —Vp,Vp,X = -V, Vp, X
= -Vp,Vp,VuDy = =V, Vp, VD
= -Vp,Vp,Y.

When s = 0, the above expression becomes R(Y,¢)¢ = =Y, and Y is Jacobi.
Conversely, suppose Y is a Jacobi field along ¢, and v := Y(0), w := Y'(0).
Let v be a curve with 4(0) = v, and X, W parallel fields along v with X (0) =
¢(0), W(0) = w. Choose € > 0 small enough so that t(X(s) + sW(s)) belongs
to the domain of exp, ) for (¢,s) € [0,b] x (—¢,¢), and consider the variation

V :[0,b] X (—€,€) — M,
(1,5) > cxpy o) HX(5) + SW(5))

of ¢. Since the curves t — V(t,s) are geodesics, the variational vector field Z
is Jacobi along c. Moreover, V(0,s) = ~v(s), so that Z(0) = 4(0) = v. Finally,

Z/(O) = VDI(O,O)V*DQ == sz(O,O)V*Dl = W(O) = w,

because V,D1(0,8) = X(s) + sW(s), and X, W are parallel along 7. By
Proposition 6.1, Z =Y. Ol

In the special case when Y (0) = 0, the variation from Proposition 6.2
becomes V(t, 5) = exp,(g) t(¢(0) + sw); the Jacobi field Y with initial conditions
Y (0) =0, Y’'(0) = w is given by

(61) Y(t) = ech(O)*(t\ZC'(O)U))'

One can interpret this as follows: Let p = ¢(0), v = ¢(0), and consider the man-
ifold M, with the canonical Riemannian metric induced by the inner product
on M,. Then t — tJ:,w is the Jacobi field F' along the geodesic t — tv in M,
with F(0) =0, F'(0) = J,w, and we have Y = exp, F.

We now use the above observation to show that the exponential map at a
point is “radially” isometric:

LEMMA 6.1 (The Gauss Lemma). Consider the canonical metric on My,
p € M. Ifve M, belongs to the domain of exp,, then

<expp* \7”UU7 prp* \71)“”> = <jvva va>, w e ]\/[p

PROOF. The right side of the above identity equals (v,w) by definition
of the canonical metric on M,, whereas the left side is (¢(1),Y(1)), where
c(t) = exp(tv), and Y is the Jacobi field along ¢ with initial conditions ¥Y'(0) = 0,
Y’(0) = w. Since Y is Jacobi, (Y,¢)(t) = (V,¢)(0) + (Y, ¢)(0) = t(v,w).
Evaluating this expression at ¢t = 1 yields the claim. g

EXAMPLE 6.2. Consider a Riemannian submersion 7 : M — B. As noted
in Examples and Remarks 5.1(i), if ¢ : [0,a] — B is a geodesic, and Fp, F,
denote the fibers over the endpoints of ¢, then the map h : Fy — F, which
assigns to p € Fy the point é,(a), where ¢, is the horizontal lift of ¢ with
¢,(0) = p, is a diffeomorphism. To compute its derivative, let u be a vector
tangent to Fy at p, v : I — Fy a curve with 4(0) = u. For simplicity of
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notation, identify u with the vector in M, that is related to u via the derivative
of the inclusion Fop C M. There is a unique basic vector field X along v with
mX =z :=¢(0). f V : [0,a] x I — M denotes the variation by geodesics given
by V(t,s) = exp(tX(s)), then h(v(s)) = V(a, s) by definition. Thus,

hati = hy%(0) = V, Da(a,0) = Y (a),

where Y is the variational vector field of V.

Now suppose M above is a complete, noncompact manifold with curvature
K >0, 7: M — S the Riemannian submersion onto the soul S from Examples
and Remarks 5.1(v). Let p € S, ¢: [0,a] — S as above. Since S is horizontal, it
is an integral manifold of the horizontal distribution, and the A tensor is zero
along S. If Z is any horizontal vector field along ¢, then

(Y, 2)=(,2) —(Y,Z') = —(Y,Z"") = —(Y,A:Z) = 0,
so that Y is vertical. On the other hand,
Y,(O) = le(Oﬁo)V*DQ = sz(O,O)V*Dl = VUX = —SIU,

where S' is the second fundamental tensor field of Fy at p (here too, Spu is
identified with a vector in TM). Since the fiber is totally geodesic at p, Y’ (0) =
0. The same argument shows that Y'(t) = 0 for all ¢; i.e., Y is parallel. Thus,
R(Y,¢)¢=-Y" =0.

Summarizing, we have that at any point p in a soul, the curvature of the
plane spanned by z € S, and v L S, is zero. In particular, if M has strictly
positive curvature, then a soul must have trivial tangent space, and therefore
consists of a single point. Since the normal bundle of a point p is M, M™ is then
diffeomorphic to R™. The above argument can actually be refined to show that
the conclusion is still valid if one only assumes that all sectional curvatures are
positive at some point of M. This remarkable fact was conjectured by Cheeger
and Gromoll [11], and proved more than twenty years later by Perelman [30].

Another famous question of Cheeger and Gromoll is whether every vector
bundle over S™ admits a metric of nonnegative curvature. At the time of
writing, the answer to this question is not known, although all bundles over
spheres of dimension < 4 have been shown to admit such metrics, as does
the tangent bundle of the n-dimensional sphere, see Exercise 114. This is no
longer true if one allows flat souls instead of positively curved ones: Among the
plane bundles over the torus S! x S, only the trivial one admits a metric of
nonnegative curvature [29].

EXERCISE 126. Let ¢ : [0,b] — M be a geodesic. tp € [0,b] is said to be
a conjugate point of c if there exists a nontrivial Jacobi field Y along ¢ with
Y(0) =0, Y(¢o) = 0. Prove that ¢, is a conjugate point of c iff exp,y) does not
have maximal rank at to¢(0). Show, furthermore, that the nullity of exp,()
equals the dimension of the vector space of Jacobi fields Y that vanish at 0 and
at to.

EXERCISE 127. (a) Use Example 6.1 to show that if ¢ is a normal (i.e.,
unit-speed) geodesic in S™, then every Jacobi field Y along c, orthogonal to ¢,
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with Y'(0) = O vanishes at 7. Thus, exp, has minimal rank 1 at any v € M,
with |v| = 7 by Exercise 126.

(b) Let M be a Riemannian manifold with sectional curvature K < 0, ¢
a geodesic in M. Prove that if Y is Jacobi along ¢, then the function |Y|?
is convex. Why does this imply that in a manifold of nonpositive curvature,
geodesics have no conjugate points?

EXERCISE 128. Let X be a Killing field on M (cf. Exercise 111), ¢ a geo-
desic. Prove that X o ¢ is Jacobi along ¢. Hint: Recall that the flow ®; of X
consists of isometries. Consider the variation (¢, s) — ®s(c(t)) of c.

EXERCISE 129. Let 7 : M — B denote a Riemannian submersion with M
complete, ¢ : [0,a] — B a geodesic, and Fy, F, the fibers of m over the endpoints
of ¢. Consider the diffeomorphism h : Fy — F, given by h(p) = cp(a), where
¢p is the horizontal lift of ¢ starting at p. Prove that for u € (Fy), C M)y,
h«u =Y (a), where Y is the Jacobi field along ¢, with initial conditions

Y (0) = u, Y'(0) = —S,u — Alu.

Conclude that if the fibers of 7 are totally geodesic, then they are all isometric
to one another.

7. Length-Minimizing Properties of Geodesics

In this section, we will see that geodesics are the shortest curves between
two points, provided the latter are “close enough.” The curves we consider are
assumed to be piecewise-smooth, but thanks to the following lemma, we only
need to deal with differentiable ones:

LEMMA 7.1. Any piecewise-smooth curve ¢ : [a,b] — M admits a differen-
tiable reparametrization ¢ : [a,b] — M.

PROOF. By assumption, there exist numbers a = tg < t; < -+ <ty = b
such that each portion ¢; := cl,_, 4, is differentiable. Let ¢; : [a,b] — R be a
smooth function such that ¢;(t) = 0if t < t;_1, ¢;(t) = 1 if t > ¢;, and ¢; is
strictly increasing on [t;—1,t;], cf. Lemma 1.1 in Chapter 1. Then the function
¢ = to + Zle(ti — t;—1)¢; is differentiable, strictly increasing on [a, b], and
satisfies @(t;) = t;, 9™ (t;) =0, for all i = 0,..., k and m € N. It follows that
€ 1= co ¢ is a smooth reparametrization of c. ]

Consider a curve v : I — M, in the tangent space at p € M, where M, is
endowed with its canonical Riemannian structure. If v(t) # 0 for all ¢, we may
write ¥ = 4, + Y9, with

. 1 . . ..
Ir = WW, Ty Tyvy and Yo = — Fr-

4, and g are called the radial and polar components of ¥ respectively. Notice
that they are mutually orthogonal. When v is a ray, i.e., ¥(t) = tv for some
v € Mp, then 4 = %,, and ~ is length-minimizing. The following lemma says
that this property is preserved under the exponential map:



7. LENGTH-MINIMIZING PROPERTIES OF GEODESICS 161

exp(v) / [ | . \

{
N M

\
\ -

N

FIGURE 2

— /
/

/

/

LEMMA 7.2. Let p € M, and consider a vector v in the domain Mp of exp,,.
Denote by v, : [0,1] — M, the ray from 0 to v, 1,(t) = tv. If v :[0,1] — M, is
any piecewise-smooth curve with v(0) = v,(0) = 0 and v(1) = 7,(1) = v, then

L(expo7y) > L(exp o).
Inequality is strict if there is some to € [0, 1] for which the polar component of

¥ at to does not vanish under the exponential map; i.e., if exp,, Yo(to) # 0.

PRrROOF. We may assume, by Lemma 7.1, that v is differentiable, and that
both v and «(¢) are nonzero for ¢ € [0,1]. By the Gauss Lemma,

(7.0)  lexpy, 31 = [expy. 3l + [expy. 0l 2 foxpy. 4ol = [l
Now, |v|" = |¥»|, because
7’7/ \7777 .
= = 0 _ A |-

vkl
Thus,

1 1 1
L{exp, o7) = / |exp,. 4] > / | = / Il = (V)] = o] = L{exp, om).
0 0 0

The last assertion of the lemma is clear, since the inequality in (7.1) is strict if
expp* ;}/9 7& 0. 0

THEOREM 7.1. Let p € M, and choose € > 0 so that exp,, : Ue — expp(UE)
is a diffeomorphism, where U, = {v € M, | |v| < €} is the open ball of radius
€ centered at 0 € My,. For v € U, denote by ¢, : [0,1] — M the geodesic in
direction v, c,(t) = exp,(tv). Then for any piecewise-smooth curve c : [0,1] —
M with ¢(0) = ¢,(0) = p and ¢(1) = ¢, (1) = q, the length of ¢ is at least as great
as that of ¢,, and is strictly greater unless ¢ equals c,, up to reparametrization.
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PrOOF. For u € U, denote by ~, the ray t — tu. Suppose first that the
image of ¢ is contained inside expp(Ug), so that there exists a lift v of ¢ in U,;
ie, ¢ =exp,ov, 7(0) = 0, v(1) = v. By Lemma 7.2, L(c) > L(c,). We claim
that if ¢ is not a reparametrization of ¢, then for some t € [0, 1], ¥ is not radial
(and therefore L(c) > L(¢,) by the same lemma): Otherwise,

(7.2) /m /w—/ ' =

as in the proof of Lemma 7.2. On the other hand, there exists tg € (0,1) such
that y(to) ¢ {sv | s € [0,1]}. Then

L(v) = L(Vljo,t0]) + L(Yto.17) = [7(t0)] + [v(1) = v(to)| > [¥(1)],

which contradicts (7.2). This establishes the result if the image of ¢ lies in
exp,(Uc). Next, suppose c is not entirely contained inside exp,(Ue), and let
b = sup{t | ¢[0,t] C exp,(Uc)}. There must exist some to € (0,b) such that
vo := (exp, |v,) " '¢c(to) has norm greater than that of v. Then

L(c) = L(cljo.to]) = vol > |v| = L{cy).
O

Recall that a distance function on a set M is a function d : M x M — R

satisfying

(1) d(p,q) = d(q,p),

(2) d(p,q) >0, and = 0 iff p = ¢, and

(3) d(p,q) <d(p,r) +d(r,q), (the triangle inequality)
for all p,q,» € M. When d is a distance function on a topological space M,
(M,d) is called a metric space if the open balls B.(p) = {g € M | d(p,q) < €}
of radius € > 0 around p € M form a basis for the topology of M.

Suppose M is a connected Riemannian manifold, and define a map d :
M x M — R by

(7.3) d(p,q) = inf{L(c) [ ¢: [0,1] — M,c(0) = p,¢(1) = ¢},
where ¢ is assumed to be piecewise-smooth.

PROPOSITION 7.1. Let M be a connected Riemannian manifold. If d is the
function defined in (7.3), then (M,d) is a metric space.

PRrROOF. We first check that d is a distance function on M. The only axiom
that requires some work is: If d(p,q) = 0, then p = ¢q. So consider the ball U,
around 0 in M, where ¢ > 0 is small enough so that exp, : U. — exp,(U.)
is a diffeomorphism. Then ¢ € expp(UL), since any curve from p which is not
contained in exp,(U.) has length greater than or equal to € by the proof of
Theorem 7.1. By that same theorem,

(7.4) d(p,r) = |(exp,

Thus, ¢ =exp,0=p
We show next that the distance function is continuous on M x M: If
pn — D, then d(p,p,) — 0 by (7.4) and the continuity of |(exp, |v,)~!|. Now,

v.) el r € exp,(U).
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if (pnv q”) - (p, q) e M x ]W then

d(pv Q) - d(pvpn) - d(Qv Qn) < d(pnv(In) < d(pnap) + d(p3 Q) + d(‘]v Qn)

by the triangle inequality, and d(pn,g.) — d(p, q). Since d is continuous, each
e-ball B.(p) around p € M is open. It remains to show that any neighborhood
of p contains such a ball. This in turn will follow once we establish that

(7.5) Be(p) = exp,,(Ue),

where, as usual, ¢ is chosen so that exp,, |v, is an imbedding. Now, exp,(Ue) C
Be(p) by (7.4). Furthermore, exp,(U.) is open. In order to prove (7.5), it
therefore remains to show that exp,(Uc) is closed in Be(p), since the latter,
being path-connected, is also connected. So let g, € exp,(Ue), gn — q € Be(p),
Un = (exp, |v,) "' (¢n). {vn} is a bounded sequence in the vector space M,,
and contains a subsequence that converges to, say, v. Denoting the subsequence
by v, again, we have |v| = lim|v,| = limd(p, ¢») = d(p, ¢) by continuity of d,
so that |v] < e. But ¢ = exp, v by continuity of the exponential map, and we
conclude that g € exp,(Ue); i.e., exp,(Ue) is closed in Be(p). O

DEFINITION 7.1. The injectivity radius inj, at p € M is the supremum of
the set of all € > 0 for which U, lies in the domain of exp,, and exp, [v, Is
injective. The injectivity radius of a subset A C M is

inj4 = inf{inj, | p € A}.
LEMMA 7.3. If A C M is compact, then inj, > 0.

ProOOF. By Theorem 4.1 in Chapter 4, there exists an open neighborhood
U of the zero section {0, | p € A} in TM|4 on which (7, exp) is an imbedding.
By compactness of A, there exist p1,...,pr € Aand €1, ..., €, > 0such that the
sets Be,/3(pi) cover A and B, (p;) x B, (p;) C (m,exp)(U). If g is an arbitrary
point of A, then ¢ € B, /3(p;) for some 7. Then exp, is invertible on Us, /3, so
that inj, > 2¢;/3. Thus, inj4 > €, where € := min; <;<x{2€;/3} > 0. O

A geodesic ¢ : [0,b] — M is said to be minimal if d(c(0),c(b)) = L(c).
Recall that U, C M, denotes the open ball of radius ¢ centered at 0, € M,.

LEMMA 7.4. IfU. is contained in the domain of exp,, for € > 0, then p can be
joined to any q € Be(p) by a minimal geodesic. In particular, exp,, : U. — Be(p)
is surjective. Furthermore, each open ball Bs(p) in M has compact closure for
0<d<e.

PROOF. For each § € (0,¢), denote by Cs the subset of Bs(p) consisting
of all points ¢ that can be joined to p by a minimal geodesic. The lemma will
follow once we establish that

(1) Cs is compact, and

(2) Cs = Bs(p)-
For (1), we only need to show that Cj is closed, since it is contained in the com-
pact set expp(m). So let ¢ belong to the closure of Cj, and consider a sequence
{gn} in Cs converging to q. If v, denotes a vector in Us with |v,| = d(p, ¢n) and
exXpvUn = qn, 1 € N, then {v,} contains a subsequence that converges to some
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v in Us. By continuity of exp,, exp, v = ¢, and by continuity of d, [v| = d(p. q).
Thus, q € Cs, and Cy is closed.

For (2), consider the set I = {6 € (0,€¢) | Cs = Bs(p)}. I contains a
neighborhood of 0 in (0, €) by Theorem 7.1. We will show that I is both open
and closed in (0, ¢), so that I = (0,¢€), thereby establishing (2). To see that I
is closed, let §g € (0,¢) be such that 6 € I for all § < . Then Cs = Bs(p)
for & < &g, and thus, Bs,(p) C Cs,. Since Cs, is compact, Bs,(p) C Cs,. The
reverse inclusion is always true by definition, so that I is closed. To see that I
is open, let 8o € I. By Lemma 7.3, there exists a > 0 such that injc50 = a. Let
o' = min{a, e —dp} > 0. We claim that dgp +a’ € I (so that I being an interval,
is open). It actually suffices to show that Bs,+a(p) C Cs,4ar, since the latter
set is closed. Furthermore, we know that Bs,(p) C Cs,+q’, S0 we only need to
establish that

B60+a’(p) \ B50 (p) - O5o+a"
Consider to this end a point ¢ belonging to the left side, and a sequence of
curves ¢, : [a,b] — M from p to ¢ such that L(c,) < d(p,q) + 1/n. By the
intermediate value theorem, there exists ¢, € (a,b) with d(p, c,(t,)) = do, and
the sequence r, := ¢, (t,) subconverges to some r at distance §p from p. Then

(7.6) d(p,q) = d(p,r) + d(r,q).
Indeed, L(cy,) > d(p, ) + d(7r, q), so that by construction of ¢,

1
—t d(p,q) = d(p.7n) + d(rn, q).

Furthermore, for each n € N, there exists k > n such that d(rg, ) < 1/n. Then

St dlpa) = 2+ dpr) + direa)
> d(p, ) + d(rg,r) +d(r, i) + d(re, q)
> d(p,r) +d(r,q).
Since this holds for arbitrary n, d(p,q) > d(p,r) + d(r,q), which proves (7.6).

Now, 7 € Bs,(p), so there exists a minimal geodesic ¢y from p to r. There is
also a minimal geodesic ¢; joining r to ¢ because d(r,q) < ' by (7.6). The
composition ¢y * ¢ is then a piecewise-smooth curve from p to g realizing the
distance between them. By Theorem 7.1, cg * ¢; is locally (and hence globally),

up to reparametrization, a normal minimal geodesic from p to q. ]

We defined earlier a complete Riemannian manifold M to be one with
complete Levi-Civita connection, so that geodesics of M are defined on all of
R. On the other hand, (M,d) is a metric space, and such a space is said to
be complete if every Cauchy sequence in M converges (a sequence {p,} is said
to be a Cauchy sequence if for any € > 0, there exists some natural number N
such that d(p,,pm) < € whenever n, m > N). The next fundamental result
implies that both concepts of completeness agree:

THEOREM 7.2 (Hopf-Rinow). Let M be a connected Riemannian manifold
with distance function d. The following statements are equivalent:

(1) M is complete as a metric space.
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(2) For each p € M, exp, is defined on all of M.
(3) Any bounded set B C M is relatively compact; i.e., B has compact
closure.
Furthermore, any one of the above conditions implies:

(4) Any two points in M are joined by a minimal geodesic.

PRrROOF. (3) = (1) Since a Cauchy sequence is bounded, it lies inside a
compact set, and therefore converges.

(1) = (2) Let v € TM, and consider the maximal integral curve v : I —
TM of the geodesic spray S with v(0) = v, so that exp(tv) = (7w o ¥)(t). We
claim that [0,00) C I. Now I is open, contains a neighborhood of 0, so it suffices
to show that I is closed relative to [0, c0); i.e., if [0,s) C I, then [0,s] C I. By
Exercise 18 in Chapter 1, we only need to consider a sequence {t,} in [0, s)
that converges to s, and establish that v, := 7(t,) subconverges in TM; but
the sequence p,, := w(v,) is Cauchy, because

d(pnapm) = d(eXP(tnv)yeXP(tmv)) < |tn - tm|v-

Thus, {pn} converges to some p € M. Since |v,| = |v|, the sequence {v,}
lies inside the total space of some sphere bundle 7 : S, (TM) — M of radius
r = |v|] over M. In fact, since 7(v,) — p, {m(v,)} lies inside some compact

neighborhood C of p. Then {v,} is contained inside the compact set 7=1(C),
and must have a convergent subsequence.

(2) = (3) This follows from Lemma 7.4, since any bounded set B must
be contained in a metric ball B,.(p) for large enough r. If B,(p) has compact
closure, so does B.

(2) = (4) Immediate from Lemma 7.4. O

EXERCISE 130. Let M; be a Riemannian submanifold of M, and denote
by d; the distance function on M;.

(a) Prove that d; (p, q) > da(p, q) for p, q in M, and give an example where
strict inequality occurs.

(b) Show that M; is totally geodesic in My iff d; = d2 locally.

EXERCISE 131. Determine inj,, and inj, for p € M, if
(a) M =R", (b) M =R"™\ {0}, (¢c) M =S™

EXERCISE 132. Let M be complete.
(a) Show that a closed Riemannian submanifold of M is complete.
(b) Given p € M, A C M, define

d(p, A) := inf{d(p,q) | ¢ € A}.
If d(p, A) = 0, does it necessarily follow that p € A? Show that if A is closed,
then there exists a point ¢ € A such that d(p, q) = d(p, A).

EXERCISE 133. Let 7 : M — B be a Riemannian submersion.

(a) By Exercise 118, if M is complete, then so is B. Is the converse always
true?

(b) Given B,C C M, define

d(B,C) :=inf{d(p,q) | p € B,q € C}.
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Prove that if M is complete, then the fibers m~!(by), 7~ (b2) over any two
points by, by in B are equidistant; i.e., for p; € 7~ 1(b;),

d(r= (by), 7 (b)) = d(py, 7 (b2)) = d(p2, 7 ' (b1)).

EXERCISE 134. Show that statement (2) in Theorem 7.2 is equivalent to:
(2’) There exists some p € M for which exp, is defined an all of M,. Hint:
Show that (2’) implies completeness of M: Given a Cauchy sequence {g,} in
M, let v,, € M, so that exp, v, = ¢, and || = d(p, q). Observe that {v,} is
bounded.

8. First and Second Variation of Arc-Length

Consider a normal (i.e., unit-speed) geodesic ¢ : [0,a] — M in a Riemannian
manifold M, and a variation V : [0,a] x J — M of ¢, where J is an interval
containing 0. We assume that ¢ = V 019, where 1, : [0,a] — [0,a] x J maps ¢
to (t,s) for s € J. The length function L : JJ — R of V is defined by

L(s)=L(Vou) = /Oa |ViD1(t, )| dt;

i.e., L(s) is the length of the curve t — V(t,s). Let Y be the variational
vector field along ¢ given by Y () = V,Do(t,0), Y, =Y — (Y, ¢) its component
orthogonal to c. The derivative VpY will be denoted Y’. The following theorem
will enable us to compare the length of ¢ with that of nearby curves:

THEOREM &.1. With notation as above,

(1) L'(0) = (Y, &) (D)5, and

(2) L"(0) = (Jy [Y1[* = (R(YL,¢)é. Y1) + (V,VaDa(t, 0), (1)) [5-
PROOF. By continuity of |V, D;| and compactness of [0, a], there exists an

interval I C J around 0 such that V. D1 (¢, s) # 0 for all (t,s) € [0,a] x I. Then
L is differentiable on I, and for s € I,

Vp,ViD1,V,.Dy)

L'(s) = aD V.D.,V.D 1/2t’dt:/a< t,s)dt.
(9) /0 2< 1, 1> ( 7'5) 0 \V*Dl‘ ( ?9)
Since Vp,V.D1 = Vp, ViD,,

*(Vp,ViDs,V.Dy)
8.1 L'(s :/ Vo, t,s)dt.
(3.1) ()= | SR )

When s =0, |V.D;| = |¢| =1, and
(Vp, ViDy, ViDy) = <Y/vé> =Y, é>/ —(Y,Vpe) = (Y, é>/7

which establishes (1).
Differentiating (8.1) yields

e VDo, V.D
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and the integrand may be rewritten as

(|VeD1|D2(V p, VD2, ViD1) — (V p, Vi D2, V.D1) D3|V, D1])/|V. D1 |?
(Vp,VD,ViDs,V.D1) + (Vp,ViDa,Vp,V.D1)

|V. D1
B (Vp,ViDs,V.D1){(Vp,ViD;y,ViDy)
[VeDs?
_ (Vp, VD, ViD3, Vi.Di) + [Vp,ViDs[*  (Vp, VDo, ViD1)?
- |ViD ]| |ViD[3
When s = 0, Y(t) = V. Dy(t,0). Y] =Y — (Y’,&)¢, and

(8.2)
YII2(t) = (|Y']P = (Y',&)%)(t) = |V, VaDa|*(t,0) — (Vp, VD2, V. D1)?(t,0).

Furthermore,

(R(YL, &), Y1) () = (R Y)Y, 8)(1)
((Vp,Vp,ViD3,V.D1) — (Vp,Vp,ViDs,V.D1))(t,0)
= (D1(Vp,ViDs,ViD1) — (Vp,Vp,ViDa, ViD1))(t,0),

Il

so that
(VD,Vp,ViDg,V.D1)(t,0) = D1(t,0)(Vp,ViDo, ViD1) — (R(Y1,¢)e, Y1) (t).
Together with (8.2), and the fact that [Vi.D1|(¢,0) = 1, this implies

L"(0) =/ (D1(t,0)(Vp, VaDa2, ViD1)) — (R(Y1, 6)¢, Y1) (8) + [V [*(¢) dt,
0
which establishes (2). O

The following is an immediate consequence:

COROLLARY 8.1. Suppose V : [0,a] x J — M is a variation of ¢ with fized
endpoints; i.e., V(0,5) = ¢(0) and V(a,s) = c(a) for all s € J. Then

ro=-o o= [ VIR - (RO 96 ).

EXAMPLES AND REMARKS 8.1. (i) Theorem 8.1 generalizes to a larger
class of variations: A continuous map V : [0,a) x J — M is said to be a
piecewise-smooth variation of ¢ if there exists a partition tg =0 < t; < --- <
ty = a of [0,a] such that each V; := V|jg.ajx|t,_, ;] i @ variation of Clti_s.ta]-
Define a continuous vector field ViDo along V by ViDy(t,s) = Vi.Ds(t,s)
for t € [t;—1,t;]. Then t — Y(t) := ViDy(t,0) is a piecewise-smooth vector
field along ¢, and Y’ a (not necessarily continuous) vector field along ¢, if we
define Y/(tl) = ng(ti.O)V;-l*D? Let }fz = Yv[ti_l.ti]v Y;‘J_ = Y; - <3/1,C>C By
Theorem 8.1,

k
L) = S (L a0k, = vl

i=1
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since Y;(t;) = Yiy1(t;), and

k t;
L"(0 Z(/ Y/ 12— (R (u,C')é-,YiD)+<VD2V,-*D2(t,0) RONE

ti-1

|YJ_|2 (R(YL,¢)e, YD) (V p, Vi« D2(a,0), ¢(a))
- <V92 Vi.D2(0,0),¢(0)).

(ii) We saw in (i) that a piecewise-smooth variation V of ¢ induces a (like-
wise piecewise smooth) variational vector field ¢ — Y (¢) := Vi D2(t,0) along c.
Conversely, any piecewise-differentiable vector field Y along ¢ induces a vari-
ation V of ¢ with Y (¢) = V,D5(t,0): By continuity of ¥ and compactness of
[0, a], there exists an interval J around 0 such that sY'(¢) lies in the domain of
exp for all (t,s) € [0,a] x J. Define V : [0,a] x J — M by V(t,s) = exp(sY (t)).

(iii) Let V be a variation with fixed endpoints of a geodesic c in a space of
nonpositive curvature K < 0. By Corollary 8.1,

o)=0, L") = / Y1 - Koy, [YLI? >0,
0

so that all nearby variational curves (i.e., V o1, for sufficiently small s) are at
least as long as c.

(iv) Recall from Exercise 126 that to € [0, a] is said to be a conjugate point
of a geodesic ¢ : [0,a] — M if there exists a nontrivial Jacobi field Y along
c that vanishes at 0 and tyo. Suppose ¢ : [0,a] — M is a normal geodesic
without conjugate points. We claim that for any piecewise-smooth variation
V :[0,a] x J — M of ¢ with fixed endpoints, all nearby curves are longer than
¢; more precisely, there is an interval I C J around 0 such that L(0) < L(s)
for all s € I, and L(0) < L(s) if the curves Vs := V o1, and Vp = ¢ are not
reparametrizations of each other. To see this, let p = ¢(0). By Exercise 126,
exp, has maximal rank on the compact set C' = {t¢(0) | 0 < ¢ < a} in M,,
so that exp, is a local diffeomorphism from a neighborhood of €' in M,, onto a
neighborhood U of the image of ¢ in M. Choose an interval I C J around 0 so
that V([0,a] x I) is contained in U. Then for each s € I, there exists a curve
vs in M, from 0 to a¢(0) such that exp oys = V,. The claim now follows from
Lemma 7.2.

When, in addition, ¢ is injective, then exp, maps a neighborhood of C
diffeomorphically onto a neighborhood U of the image of ¢, so that any curve
in U from p to c¢(a) which is not a reparametrization of ¢ must be longer than
c. There may, however, be curves from p to c(a) that leave U and are shorter
than ¢; this occurs for example on a flat torus or on a cylinder.

Denote by I'. the space of piecewise-smooth vector fields Y along ¢ such
that (Y, ¢) = 0.

DEFINITION 8.1. The index form of a normal geodesic ¢ : [0,a] — M is the
symmetric bilinear form [ : I'. x I'; — R given by

I(X,)Y) = /OG<X’,Y’> — (R(X,&)é,Y).



8. FIRST AND SECOND VARIATION OF ARC-LENGTH 169

Notice that if V : [0,a] — M is the canonical variation of ¢ induced by some
Y €T, from Examples and Remarks 8.1, then L’(0) = 0, and L"”(0) = I(Y,Y),
since each curve s — V (¢, s) = exp(sY (t)) is a geodesic, so that Vp,ViDs = 0.

Let us denote by I' the subspace consisting of those Y in I, that vanish at
0 and a. The index form is, in general, degenerate on both spaces. In fact, the
next lemma characterizes the space of Jacobi fields as the degenerate subspace
of the index form on I'Y:

LEMMA 8.1. For Y € T%, Y is Jacobi if and only if I(Y,X) = 0 for all
X el

PROOF. If Y is Jacobi, then

1v.x = [ VLX) — (RY, )6, X) = / XNy 4 (v X)

- / YLXY = (LX) (0)]g = 0.

Conversely, suppose Y € T satisfies I(Y, X) = 0 for all X € T'%. Assuming first
that Y is differentiable, we have

0=I(Y,X) = /Oa<y',x’> — (R(Y, )¢, X)

- w0k - [ Y4 R(Y, 96 x)

0
_ “/a<y" + R(Y, )¢, X).
0

Let f be a smooth function on [0,a], with f positive on (0,a), and f(0) =
f(a) =0. Then X := f(Y" + R(Y,¢)¢) € T, and

0=1I(Y,X) / fIY" + R(Y, é)¢|?,

so that Y + R(Y,¢)é¢ = 0, and Y is a Jacobi field. If Y is only assumed to be
piecewise-smooth, then by a similar argument, there exists a partition 0 =ty <
t; < -+ <tp = asuchthat each Y; := Y;,_, +,) is Jacobi. Fixj € {1,...,n—1},
and consider a vector field X; € T'? such that X;(t;) = Y/, (t;) — Y/(t;), and
X;(t;) =01if i # j. Since each Y; is Jacobi,

k
0=1I(Y,X;) = (¥, X)), = = (Y11, X;)(85) + V], X;) (1)
=0
(Y =Y, X5)(t) = =Y = YIP()).
Thus, Yj’(t]) Y/, 1(t;). Since Jacobi fields are determined by their value and
that of their derivative at one point, Y is smooth on [0, a]. O

THEOREM 8.2. Let ¢: [0,a] — M be a normal geodesic. The index form of
c is positive definite on T'Q if and only if ¢ has no conjugate points.

PROOF. Suppose ¢ has no conjugate points, and let Y € I'?. By Examples
and Remarks 8.1(iv), the length function of the canonical variation induced by
Y has a minimum at 0, so that I(Y,Y) = L”(0) > 0. Suppose I(Y,Y) = 0. For
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anyc€Rand Z €T 0<I(Y —¢cZ,Y —cZ) = —2cI(Y, Z) + c*I(Y, Z). This
can only happen if I(Y, Z) = 0 for all Z € T'?, and by Lemma 8.1, Y is a Jacobi
field that vanishes at 0 and a. Since ¢ has no conjugate points, ¥ = 0.

For the converse, suppose ¢ has a conjugate point to € (0,a]. Let Y be a
nontrivial Jacobi field that vanishes at 0 and to, and define a piecewise-smooth
vector field X along ¢ by X(t) = Y(t) if t < tg, X(t) = 0if t > to. Then
I(X,X) =0, and I is not positive definite on I'V. O

COROLLARY 8.2. If ¢ : [0,a) = M is a normal geodesic with a conjugate
point tg < a, then ¢ is not minimal.

ProOF. It suffices to construct a variation V with fixed endpoints of ¢ such
that L(s) < L(0) for small s. By hypothesis, there exists a nontrivial Jacobi
field Y along ¢ with Y(0) = 0, Y (o) = 0. Observe that ¥ € I';, that is, ¥V
is orthogonal to ¢: By the remark following Definition 6.1, (Y, ¢)’ is constant.
Thus, (Y,¢) is a linear function that vanishes at 0 and at ¢y, and must be
identically zero. Now, Y'(tg) # 0, for otherwise Y would be trivial; so consider
the parallel vector field E along ¢ with E(to) = —Y'(to), and define X € T'Y by
X = fE, where f is a function satisfying f(0) = f(a) =0, f(to) = 1. Finally,
for a > 0, let Y, € T'? be given by

Yo (t) = Y(t)+aX(t), ift<to,
T ex (), 1> to.

Then

to
I(Ya,Ya) = / Y +aX' Y +aX") — (RY + aX, &Y +aX)
0

n /a<aX/,aX'> — (R(aX,&)é aX)

to

= (VYY) +20(X, Y)Y (O +0*I(X, X),

since Y is Jacobi. Thus, I(Yy,Ys) = o?I(X, X) — 2a(Y',Y')(tp) < 0 if a is
small enough. The canonical variation of ¢ induced by Y, has 0 as a strict
maximum of its length function. a

EXERCISE 135. Suppose V : [0,a] x J — M is a variation with fixed
endpoints of ¢. Show that if all curves V; = V o1, are geodesics, then they have
the same length, and a is a conjugate point of each and everyone of them.

EXERCISE 136. Let c¢: [0,a] —» M™ be a geodesic with no conjugate points.

(a) Show that for any X € I'., there exists a unique Jacobi field Y with
Y(0) = X(0) and Y(a) = X(a). Hint: Recall that the space of Jacobi fields
along c is 2n-dimensional.

(b) Prove that for X and Y as in (a), I(X,X) > I(Y,Y) if X #Y. Hint:
IX-Y,X-Y)>0.

EXERCISE 137. Let c: [0,a] — S be a normal geodesic on the n-sphere of
radius p, and consider Jacobi fields Y3, Yz along ¢ with ¥;(0) = 0, Y/(0) L ¢(0).
(a) Show that I(Y1,Y2) = (p/2)sin(2a/p)(Y{(0), Y3(0)).
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(b) Conclude that if a < mp/2, then I is positive definite on the subspace
of all X € I'. with X(0) = 0.

EXERCISE 138. Show that the converse of Corollary 8.2 does not hold; i.e.,
give examples of geodesics that have no conjugate points, but are not minimal.

9. Curvature and Topology

As an application of the index form, we shall discuss two results illustrating
how the knowledge of the sectional curvatures at every point can sometimes lead
to an understanding of the large-scale structure of the space. The first one states
that a manifold with curvature K < 0 has Euclidean space as its universal cover.
The second is that a manifold with curvature bounded from below by a positive
constant has compact universal cover. For further results in this direction, the
reader is invited to consult a book that deals more exclusively with Riemannian
geometry. Reference [31], for example, is a modern and thorough account of
the subject.

By Example 6.1, a normal geodesic in a space of constant curvature s has
7/+/k as conjugate point if x > 0, and no conjugate point if x < 0. This seems to
suggest that the more curved the space, the earlier conjugate points occur. This
is indeed the case, and it can be phrased more precisely in terms of the index
form: Let M, M be Riemannian manifolds of the same dimensionn > 2, p € M,
p € M. Given unit vectors u, @ in M, ]fII; respectively, choose a linear isometry
v : M, — M with wu = @, and denote by ¢ : [0,a] — M (resp. @ : [0,a] — M)
the geodesic given by c(t) = exp,(tu) (resp. &(t) = exp;(ta)).

Next, we construct an isomorphism L : I'. — I'; as follows: For ¢ € [0, a],
let Ly : Meyy — N[g(t) denote the isometry Po,t o10 P o, where P, o is parallel
translation along ¢ from M,y to M., and p(),t parallel translation along ¢
from ME(O) to Mg(t).

Ly ~
Mey —— Mew

Pt.OJ( Tﬁo’g

M, —— M;
For X € T'., define LX € T';: by LX(¢) = L X (t). To see that L is an isomor-
phism, consider an orthonormal basis u1, ..., un_1 of u*, and denote by E; the
parallel vector field along ¢ with E;(0) = u;, 1 < i < n — 1. Similarly, let E;
be the parallel field along ¢ with E;(0) = ;. Any X € T'. can be written as
X =3, [iE;, where f; = (X, E;), and by definition of L,

(9.1) LX =) fiE;.

It follows that L is an isomorphism.

LEMMA 9.1. With notation as above, suppose that K, < Ké(t),Ltv for
allt € [0,a], v € M.y). Then I(X,X) > I(LX, LX) for any X €T..
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PRrROOF.-By (9.1), (LX,LY) = (X,Y), and (LX) = L(X') for all X,
Y eT.. If X(¢)#0, then

(R(X,8)e, X)(8) = Kao x (0 (X X)(8) < Ksqpy o (LX. LX) ()
= (R(LX, &)e, LX)(1),
whereas both sides are zero if X (¢} = 0. Thus,

I(X,X) = /OQ<X’,X’) —(R(X,¢é)é, X) > /Oa«LX)/, (LX) = (R(LX,¢)é LX)
= I(LX,LX).
0

THEOREM 9.1. Let ¢ : [0,a] — M be a normal geodesic in a Riemannian
manifold with sectional curvature K.
(1) If K <0, then c has no conjugate points.
(2) If K < K, where & > 0, and L(c) < 7/\/k, then ¢ has no conjugate
points.
(3) If K> k>0, and L(c) > w/\/k, then ¢ has a conjugate point.

PRrOOF. Statement (1) follows from (2) by taking > 0 arbitrarily small;
see also Exercise 127. For (2), let M denote the sphere of constant curvature
% in Lemma 9.1. For X € I'Y, LX € I'?, and I(X,X) > I(LX,LX). Since ¢

has no conjugate points, the claim follows from Theorem 8.2. Statement (3) is
argued as in (2), after interchanging the roles of M and M. ]

THEOREM 9.2 (Hadamard, Cartan). Let M™ be a complete Riemannian
manifold with sectional curvature K < 0. Then the universal cover of M is
diffeomorphic to R™.

PROOF. The statement follows once we show that exp, : M, — M is
a covering map for any p € M. Since (M, g) has nonpositive curvature, its
geodesics have no conjugate points, and exp,, has maximal rank everywhere. Let
M denote the Riemannian manifold M, together with the metric exp; g. Notice
that for v € M), the ray ¢ — tv through the origin is a geodesic, since exp,, is
isometric. By Exercise 134, M is complete. Given ¢ € M and € € (0, inj, ), exp,
maps the open ball B(u) of radius € centered at any u € exp;l(q) onto B(q),
because exp,, is isometric and M is complete. Furthermore it is one-to-one on
this ball, since € < inj,. Thus, B(q) is evenly covered by exp,,, and the latter
is a covering map. (]

THEOREM 9.3 (Bonnet, Myers). Let M™ be a complete Riemannian mani-
fold with sectional curvature K > k > 0. Then d(p,q) < 7/\/k for allp, g € M.
In particular, M is compact and has finite fundamental group.

PROOF. By Theorem 9.1, any geodesic in M of length greater that w/v/x
has a conjugate point to € (0,7/+/K), and cannot be minimal by Corollary 8.2.
On the other hand, any two points of M are joined by a minimal geodesic
because M is complete. This show that the diameter diam(M) = sup{d(p,q) |
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p,q € M} of M cannot exceed 7//k. By the Hopf-Rinow theorem, M is
compact.

If p: M — M denotes the universal covering map, endow M with the
unique differentiable structure for which p becomes smooth. The above ar-
gument may now be applied to the complete Riemannian manifold (M ,0%9),
where g is the metric of M. Thus, M is compact, and the fiber 71 (M) of p is
finite. (I

EXERCISE 139. Generalize Myer’s theorem to Riemannian manifolds whose
Ricci curvature satisfies Ric(z) > (n — 1)k > 0 for all |z| = 1, as follows:
Let ¢ : [0,7/y/k] — M be a normal geodesic, and consider parallel orthonor-
mal vector fields Ei,...,E,_; along ¢, with (E;,¢) = 0. Define X; € I'? by
X;(t) = sin(y/kt)E;(t). Prove that ). I(X;, X;) = 0, and conclude that ¢ has
a conjugate point.

EXERCISE 140. Show by means of an example that the conclusion of Myers’
theorem no longer holds if one only requires that K > 0.

EXERCISE 141. A normal geodesic ¢ : R — M is said to be a line if
d(c(t),c(t’)) = |t — /| for all ¢, ¢ € R. Prove that in a complete, simply
connected manifold of nonpositive curvature, every normal geodesic is a line.

EXERCISE 142. A normal geodesic ¢ : [0,00) — M is said to be a ray if
d(c(0),c(t)) =t for all ¢ > 0. Show that if M is complete and noncompact, then
for any p € M, there exists a ray ¢ with ¢(0) = p. Is the statement necessarily
true if one replaces “ray” by “line”?

10. Actions of Compact Lie Groups

In this section, we will prove (a somewhat stronger version of ) Theorem 14.2
in Chapter 1. Let G be a compact Lie group actingon M via p: G x M — M.
When there is no risk of confusion, we write g(p) instead of u(g, p). Recall that
the orbit G(p) of p € M is the set {g(p) | g € G}, and the isotropy group G,
of p is the subgroup consisting of all g € G such that g(p) = p. Notice that an
isotropy group is necessarily closed in G.

LEMMA 10.1. Let p € M, and set H := G,. Then the map f: G/H — M
given by f(gH) = g(p) is an imbedding onto G(p).

PRrROOF. The map f is clearly well-defined and bijective onto the orbit of
p. Since G/H is compact and M is Hausdorff, f is a topological imbedding. It
remains to show that f has maximal rank everywhere. By equivariance of f, it
suffices to do so at eH; equivalently, we claim that if 7 : G — G/H is projection,
then x € G, belongs to H, whenever x € ker(f o)... To see this, consider the
vector field X € g with X (e) = , and the curve ¢ — ¢(t) := (f o )(exptz).
Equivariance of f implies that fom = g0 fomo Ly—1 for any g € G. Thus,

C(t) = f* © F*(X(BXP t.’)j)) = HMexptzx © f* Oy O Lexp -tX*X(GXp tw)
= fexptzx © fr 0 Tz = 0.

exp tz therefore belongs to H for all t, and x € He. O
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LEMMA 10.2. There exists a Riemannian metric on M for which the action
of G is by isometries.

PrOOF. Given a Riemannian metric {,) on M, define a new metric (,) by
(x,y) = fG f, where f(g) = (g.x,g.y). For h € G, (h.x, h.y) = fG f, with

—~

f(9) = (gchsx, gehuy) = f(gh). Thus, (hox hay) = [ foRu = [ f = (z.y)
by Proposition 14.1 in Chapter 1. O

In view of Lemma 10.2, we will from now on assume that G acts by isome-
tries. The following version of the tubular neighborhood theorem will also be
needed:

ProposIiTION 10.1. Let N be a compact submanifold of a Riemannian
manifold M with normal bundle v in M. There exists € > 0 such that exp :
E(v¢) — B.(N) is a diffeomorphism of the total space E(v¢) = {u € E(v) |
lu| < €} of the disk bundle v¢ onto the e-neighborhood B.(N) of N in M.

PROOF. Since exp has maximal rank on the zero section s(NN) of v and is
injective on s(NN), there exists, by Lemma 1.1 in Chapter 3, a neighborhood U
of s(N) in v such that exp : U — M is a diffeomorphism onto its image. By
compactness of N, U contains (the total space of) some e-disk bundle v¢, and
exp(v¢) C Be(N). It remains to show that exp(v¢) contains B.(N). Consider
a point ¢ € B.(N). Choosing a smaller ¢ > 0 if necessary, we may assume
that B.(N) has injectivity radius larger than e. By Exercise 132, there is a
point p € N such that d(¢, N) = d(¢,p), and thus a minimal normal geodesic
¢:[0,a] - M from g to p. It must be shown that é(a) L Np; if not, choose a
curve v : (—6,8) — N with v(0) = p and (¥(0),¢(a)) < 0. For small enough 4,
the image of =y lies inside the e-neighborhood of ¢, so that v may be lifted via
exp, to a curve ¥ in M,.

Consider the variation V : [0,a] x (=6§,8) — M of ¢ by geodesics, V(t,s) =
exp,(t7(s)), and denote by L(s) the length of the geodesic ¢ — V/(¢,s). By as-
sumption, L : (—6,8) — R* has a minimum at 0. Denoting by ¥ the variational
vector field of V| we have by Theorem 8.1

L'(0) = (Y, &)(1)|g = (4(0), ¢(a)) <O,

contradicting the fact that L has a minimum at 0. ]

The above proposition can be used to explicitly describe tubular neighbor-
hoods of orbits:

PropOSITION 10.2. Given p € M, denote by H the isotropy group G, at
p, by vp the normal bundle in M of the orbit G(p) = G/H of p, and by v;, the
corresponding disk bundle of radius €. There exists € > 0 such that the tubular
neighborhood B.(G(p)) of radius € about the orbit is equivariantly diffeomorphic
to G xy U, where U is the fiber of vy, over p, and H acts on U by h(u) = h.u.
(The diffeomorphism is equivariant with respect to the action of G on G xg U
given by gla,u] = [ga,u].)

PROOF. Choose € > 0 so that Proposition 10.1 holds for N = G(p), and
define F : G xg U — B.(G(p)) by Flg,u] = goexpu. G is assumed to act by
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isometries, so that h o exp = expoh, for h € H, and F is well-defined. It is
clearly equivariant. Furthermore, F is the composition

F:GxgU g E(V; = BE(G(p))7

where ¢[g,u] = g.u. The statement then follows from Proposition 10.1, once
we establish that ¢ is a diffeomorphism. We claim more, namely that ¢ is a
bundle map covering f : G/H — G(p), with f as in Lemma 10.1. It is clear
that ¢ covers f, and therefore induces a map G xg U — E(f*v,). The latter
is given by [g,u] — (gH, g«u), which is smooth, covers the identity, and has
smooth inverse (gH,u) — [g, gy 'u]; it is therefore an equivalence, so that ¢ is
a bundle map. O

Recall from Section 14 in Chapter 1 that two orbits are said to have the
same type if there exists an equivariant bijection between them. When all
orbits have the same type, G is said to act by principal orbits. Theorem 14.2
(2) in Chapter 1 states that in this case, the orbit space M/G is a differentiable
manifold, and the projection 7 : M — M/G is a submersion. We are now in a
position to deduce a stronger result, namely that M — M/G is a fiber bundle:

THEOREM 10.1. Let G be a compact Lie group acting on M, H a closed
subgroup of G. If all orbits have type G/H, then the projection w: M — M/G
is a fiber bundle with fiber G/H and group N(H)/H, where N(H) denotes the
normalizer {g € G| gH = Hg} of H.

PROOF. The previous proposition implies that any point p of M has a
G-invariant neighborhood equivariantly diffeomorphic to G x g U, where U is
a metric ball around the origin in the subspace of M, that is orthogonal to
the orbit through p. Consider a point u in U. By hypothesis on the orbit
type, there exists an equivariant diffeomorphism f : G/Ge) — G/H. Let
aH = f(G.)). Since f is equivariant, f(9Gc ) = gaH for any g € G. If
we now choose g to lie in G|¢ ), then gaH must equal aH; i.e., alga € H
for all g € Gi¢ ), and G, is conjugate to some subgroup of H. Arguing in
a similar fashion with f~!, we conclude that Gle,u) is conjugate to H. But if
gle,u] = [e,u], then [g,u] = [e,u], so that g € H, and G|.; = H. The latter
implies that [e,u] = [g,u] = [e, gu]; thus, H acts trivially on U, and G x g U is
equivariantly diffeomorphic to (G/H) x U. Composing this with the projection
onto the second factor yields a homeomorphism of a neighborhood of G(p) in
the orbit space (endowed with the quotient topology) with U, which is an open
set in a vector space. Thus, M/G is a topological manifold. Consider two such
homeomorphisms originating from the construction in the previous proposition
by taking p1, p2 in M and the fibers U; of v over p;. The transition function is
exp;pl2 ogoexp, for some g € G, which is differentiable. We therefore obtain
a differentiable structure on M/G for which the projection is a submersion.

Let V; = m(exp(U;). The construction above induces equivariant bundle
charts (m,¢;) : 7= 1(V;) — V; x G/H whose transition function at any point
is a G-equivariant diffeomorphism of G/H. It remains to show that the group
Diff(G/H) of such diffeomorphisms is isomorphic to N(H)/H. To see this,
observe that if f € Diff¢(G/H), then f(gH) = gaH for some a € G with
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a'Ha C H by the argument at the beginning of the proof. We claim that
a~'Ha = H; ie., a € N(H): Indeed, if A = {a"™ | n = 0,1,2,...}, then by
Lemma 10.3 below, the closure A of A contains a~'. Now, themap F : GxG —
G sending (b, ) to b~!cb is continuous, and by hypothesis, F(AxH) C H. Since
H is closed, F(AxH) C H. Thus,aHa™! C H,sothat H C a~!Ha as claimed.
Summarizing, any f € Diff¢(G/H) has the form f(gH) = ga™'H = (gH)a
for some a in the normalizer of H. It now easily follows that Diff(G/H) is
isomorphic to N(H)/H acting by right multiplication on G/H. O

LEMMA 10.3. For any a € G, the closure of the set A = {a™ | n =
0,1,2,...} is a subgroup of G.

ProOOF. Notice first of all that the closure of a subgroup is again a subgroup
by continuity of (a,b) — ab~'. Tt suffices therefore to show that a=! € A, or
equivalently, that any neighborhood of a~! intersects A. Consider the subgroup
(a) generated by a. If e is an isolated point of @, then (a) is discrete, and
being compact, must be finite, so that a™ = e for some n € N. If n = 1,
then a=! = e € A, and otherwise, a™! = a""! € A. So assume that e is
not isolated. If U is a neighborhood of e, then so is V. = U N U~!, where
U=l:={g7!| g€ U}. It must therefore contain a” for some positive n, so that
a™ ' € L,-1(V)NA. Inother words, if U is any neighborhood of e, then L,-1(U)
intersects A. But then any neighborhood W of a~! intersects A4, because L, (W)
is a neighborhood of e, so that WN A = L,-1(L(W))NA#0. O

COROLLARY 10.1. If G is a compact Lie group acting freely on M, then
m: M — M/G is a principal G-bundle.

The corollary yields an alternative immediate proof of the fact that the Hopf
fibrations, as well as the projections G — G/H for G compact and H closed, are
principal bundles. Neither the theorem nor its corollary remain true when G
is no longer compact: Consider for example the R-action on the torus S* x S!
given by t(z1,22) = (e''z1,e***2;) with « irrational. There do exist criteria
guaranteeing that certain maps M — M/G are fibrations for noncompact G.
One such (see [14]) is the condition that G act freely and properly; i.e., any two
points that do not lie in the same orbit can be separated by open sets U, V,
with the property that g(U)NV = for all g € G; equivalently, the orbit space
M /G is Hausdorff in the quotient topology.



CHAPTER 6

Characteristic Classes

Let £ = m : E — M denote a rank n bundle over M with connection V
and curvature R. The Bianchi identity d¥ R = 0 from Exercise 94 implies that
certain polynomial functions in R are closed differential forms on M, and thus
represent cohomology classes in H*(M,R). These classes are called character-
istic classes of €, and turn out to be independent of the choice of connection.

Since the algebraic machinery needed to establish this is fairly involved,
we illustrate the process by discussing a simple example: Recall that the trace
function tr : gl(n) — R is invariant under the adjoint action of GL(n): Given
A € gl(n), B € GL(n), tr(Adp A) = tr(BAB™!) = tr A (throughout the
chapter, we identify gl(n) with the space of n X n matrices). This elementary
fact implies that the trace operator induces a parallel section Tr of the bundle
End(&)*, if the latter is given the connection induced by V: Given p € M,
the fiber of End(¢) over p is gl(E,). Now choose a basis of E,, that is, an
isomorphism b : R" — E,, and define, for L € gl(E,),

Tr(p)(L) :=tr(b~' o L o b).

There is no ambiguity here, for if b is a different basis of E,, then M := b-lobe
GL(n),and b='oLob = M(b~'oLob)M " has trace equal to that of b0 L ob.
Thus, Tr is a section of End(€)*. To see that it is parallel, consider a curve ¢
in M and a basis 3 of parallel sections of £ along ¢. If X is a parallel section
of End(€) along ¢, then ¢ — 3(t)~! o X(t) o 5(t) is a constant curve in gl(n),
and Troc(X) is a constant function. Thus, Tr is parallel along any curve, as
claimed.

In general, given a vector bundle n over M with connection V, a section L of
n* assigns to each n-valued r-form w € A,.(M,n) on M an ordinary differential
form Lw € A.(M) on M of the same degree. For vector fields X; on M, we
have

d(Lw)(Xo, ..., X,) = Z(— 1) X ((Lw)(Xo, .-, Xi -, X))
+Z H—] LUJ Xi,X]Xo,... Al,...,)?j,...,Xr).
1<J
On the other hand,
Xi(Lw)(Xoy -, Xiy -, X)) = (Vx, L) (w(Xo, ..., Xi, .., X,))
+ LV x, (w(Xo, .., Xy .., X2)),

177
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so that
d(Lw)(Xo,.... Xp) = Y (-1 (Vx,L)(w(Xo,. .., Xi,.... X7))

+ LdVw(Xo, ..., X,).
In particular, if L is a parallel section of n*, then
(0.1) doL=1Lod".
Returning to our original vector bundle £, the curvature tensor R of the

connection is an End(§)-valued 2-form on M. Then TroR is an ordinary 2-form
on M, and by Equation (0.1) together with the Bianchi identity,

doTroR="Trod" o R=0.
In other words, Tr oR represents an element w € H?(M).

PROPOSITION 0.3. The element w € H?(M) represented by TroR is inde-
pendent of the choice of connection.

PrOOF. Consider connections H; on £ with curvature R;, i = 1,2. Let
I =10,1], and denote by p : M x I — M and t : M x I — I the respective
projections. The bundle p*¢ then admits connections p*Hg and p*Hi, with
corresponding covariant derivatives Vg and V;. One easily checks that
V:i=(1-t)Vy+1tV,

is a covariant derivative on p*&, cf. also Exercise 90 in Chapter 4. Furthermore,
if H and R denote the corresponding connection and curvature, then 1;H = Hp,
1iH = 'H1, and similar equations hold for the curvature tensors; here, as usual,
15 M — M x I maps p to (p,s). Now, by (0.1), the 2-form TroR on M is
closed. The Poincaré Lemma then implies that the form

TroR; —TroRy = (1] —25) TroR = d( o TroR)

is exact. (Il
1. The Weil Homomorphism

In order to generalize the example discussed in the previous section, we
need some algebraic preliminaries.

DEFINITION 1.1. A function f : R™ — R is said to be symmetric if for any
permutation o of {1,...,n}, f(As1), - Aom)) = f(M1,..., An) for all A; € R.

The elementary symmetric functions s1,...,8, : R® — R are defined by
Sk(A1y . Ap) = Z Ais Ay - Ay 1<k<n.
1< <dp

For example, s1(A1,..., ) = > . A, and sp(Ar,..., ) = [[; M A
straightforward induction argument shows that
(=) (=) =2" —51(A1y . M)z A (=) s (A, M)

The polynomials s; may be extended to C™. Notice that they are algebraically
independent over the reals; i.e., if p: R™ — R is a real polynomial such that

p(81<)\1,.. .,)\n>,. .. 75n()\17--~»)‘n)) =0
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for all A; with sj(A1,...,An) € R, then p = 0. To see this, let a1,...,a, € R,
and denote by A1,..., A, € C the roots of the equation

(1.1) " —az"t+ -+ (=1)"a, = 0.
Then a; = s;(A1, .. -, An), and by assumption, p(ay,...,a,) = 0.

DEFINITION 1.2. A polynomial of degree k on a vector space V is a function
p:V — R such that if w!,...,w" is a basis of V*, then there exist a;,..;, € R
with p(v) = 3 as,..i,w' ( U) ~ew'(v) for allv € V.

The coefficients of p may, and will, be assumed to be symmetric in the
indices. The space of these polynomials will be denoted Py (V'), and P(V) :=
B P (V) is then an algebra with the usual product of functions. For example,
sk € Py(R™). In fact, any symmetric polynomial f on R" is a function of
S1,--.,8n: Given ay,...,a, € R, let Aq,..., A\, denote the corresponding roots
of (1.1), and define F : R™ — R by F(ay,...,a,) = f(A1,...,Ay). Then

f(z1,. o yxn) = F(s1(@1,...,xn), .-y 8n(@1, .o, Zn)).

It can be shown that F' may be chosen to be a polynomial.

When V is the Lie algebra g of a group G, a polynomial p in P(g) is said
to be invariant if p(Adgv) = p(v) for all v € V, g € G. The collection Py of
invariant polynomials on g is a subalgebra of P(g).

EXAMPLE 1.1. For A € gl(n), define f;(A) = s;(A1,..., An), where A, ..., Ap
are the eigenvalues of A; equivalently, f; is determined by the equation

det(zl — A) = 2" — fi(A)z"  + -+ (=1 f.(A).
Then f; is an invariant polynomial of degree i on gl(n).

Instead of working with Px(g), it is often more convenient to deal with the
space Si(g) of symmetric tensors of type (0,k) on g: The polarization of a
polynomial p = Sai, st - wi € Pylg) i pol(p) = S ai, ' ® - ®
w'* € Sk(g). pol : Pu(g) — Sk(g) has inverse pol ' (T)(v) = T(v,..., ) for
T € Sk(g), v € g. If we define multiplication in S(g) := &2 ,Sk(g) by

Z S(UU 1)y Uo(k‘)) ' T(U(f(k+1), cey va(k+l))

o€Pr 4y

k+l

for S € Si(g), T € Si(g), then the natural extension of pol to P(g) is an algebra
isomorphism pol : P(g) — S(g).

T € Sk(g) is said to be invariant if T(Adgvi,...,Adgvg) = T(v1,...,vk)
for g € G, v; € g. The subalgebra Sg of invariant symmetric tensors is the
isomorphic image of Pg via pol.

We are now ready to carry these concepts over to bundles: Recall that
if £ =m: F — M is a vector bundle over M, then End(§) = Hom(¢,¢) is
the bundle over M with fiber gl(E,) over p. Let us denote by End(§) the k-
fold tensor product End(§) ® - -- ® End(£), and set ® End(€) := ®x>0 Endg (€).
Since the fiber of this bundle is an algebra, we may define the product o ®
B € Apti(M,®End(¢)) of ® End(€)-valued forms o € Ax(M,®End(¢)) and
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B e A(M,®End(€)) by

By Examples and Remarks 2.1(v) in Chapter 4, a connection on ¢ induces one
on @ End(€). Since multiplication in the algebra bundle is parallel, an argument
similar to the one for the trivial line bundle €' over M shows that the exterior
covariant derivative operator satisfies

(1.2) dV(a@p)=dvax f+(-Drfa®dV3

for «, B as above.

PROPOSITION 1.1. Let T denote a symmetric (0, k) tensor on gl(n), and §
a rank n bundle over M with total space E' and connection V. If T is invariant,
then it induces a parallel section T of Endy(€)*.

ProOF. Given p € M, choose an isomorphism b : R® — E,, and define
Tp)(L1 ® - @ Ly)=T(b  oLiob,....b- oLy ob), L; € gl(E,).

The argument used in the last section to show that Tr is a well-defined parallel
section of End(§)* applies equally well to T'. ]

If R is the curvature tensor of the connection on £ and T € Si(gl(n)) is
invariant, then the k-fold product R* = R® --- ® R € Ao, (M, Endy(€)), and
T(RF) is an ordinary 2k-form on M.

THEOREM 1.1 (Weil). Let £ denote a rank n bundle over M, and R the
curvature tensor of some connection on . If T € Sk(gl(n)) is invariant, then

(1) the 2k-form T(RF) is closed; and

(2) if w(T) denotes the element of H?*(M) determined by T(R¥), then
w(T) is independent of the choice of connection, and w : Sgrn) —
H*(M) = ®;>0H'(M) is an algebra homomorphism.

ProOF. By (0.1) and the Bianchi identity,
dT(RF) =TdV(RF) =T(d"R®R® - -®@R)+ - +T(R®---® R®d"R) =0,

which establishes (1). For (2), replace Tr by T in the proof of Proposition 0.3.
The fact that w is a homomorphism is straightforward to prove. O

The map w : Sgrm) — H*(M) is called the Weil homomorphism. 1t is
natural with respect to pull-backs:

PRrROPOSITION 1.2. Let & denote a vector bundle over M, f: N — M. If
w, W denote the Weil homomorphisms associated to &, f*€ respectively, then
W= f*ow.

PrOOF. Let R denote the curvature tensor of some connection on £. By
Cartan’s structure equation, the induced connection on f*£ is f*R, so that for
T € Sgr(n) of type (0,k),

W(T) = [T(f*R)*] = [f*T(R")] = frw(T),

where [a] denotes the cohomology class containing . O
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EXERCISE 143. Recall that for an n x n matrix A = (a,;), the determinant
of Aequals ) .p (S810)a1(1) " Gno(n)- Use this fact to show that if fy is
the invariant polynomial of degree k on gl(n) from Example 1.1, then

fr(A) = > det(an,n,).

1<h;<--<hp<n

EXERCISE 144. A linear transformation L : V — V on an n-dimensional
vector space V induces for each k = 1,...,n a linear map L} : Ax(V) — Ax(V)
given by

(Liw)(v1, ..., vk) = w(Lvy, ..., Lug), we A (V), v, eV

Since fi is an invariant polynomial on gl(n), we may define f(L) := fr([L]),
where [L] denotes the matrix of L in some fixed basis of V.

(a) Use Exercise 143 to show that fx(L) = trLf. In particular, L% :
An(V) — A, (V) is multiplication by det L.

(b) Show that for A, B € gl(n), fr(AB) = fx(BA), and use this to give
another proof of the invariance of fj.

EXERCISE 145. Let R denote the curvature tensor of some connection on
E — M.

(a) Given p € M, x; € M), express R*(z1,...,z4) € Endy(E,) explicitly in
terms of R(z;,x;) € End(E,).

(b) Suppose E has rank 4. If g = pol fs, find an expression for g,(R?) in
terms of an orthonormal basis of E,.

2. Pontrjagin Classes

If w: Sgrm) — H*(M) is the Weil homomorphism associated to a vec-
tor bundle § over M, the element w(f) € H*(M), for f € Sgr(n), is called a
characteristic class of £. By Proposition 1.2, equivalent bundles have the same
characteristic classes. A natural question to ask is whether generators can be
found for these classes. The problem is simplified by the fact that any rank
n bundle allows a reduction of its structure group to O(n), and thus admits a
Riemannian connection. The corrresponding curvature tensor R then belongs
to A2(M,0(&)), where o(¢) = {L € End(§) | L + L* = 0}. Since a characteristic
class is independent of the choice of connection, we may restrict the Weil ho-
momorphism to the group O(n). In other words, we wish to find generators of
So(n), or equivalently, of the algebra Poy) of invariant polynomials on o(n).

Now, the polynomials fy, ..., f, defined by

det(zl — A) = 2" — fi(A)z" '+ + (=1)"fn(4), A € gl(n),

are invariant polynomials on gl(n). They are therefore also invariant (under
Adp(ny) as polynomials on o(n). Furthermore, if A € o(n), then det(z] — A) =
det(xl — A)t = det(zI + A), so that fi(A) = f;(—A). By Example 1.1, fi(A)
must be zero for odd i.

THEOREM 2.1. Let n = 2k or 2k + 1. The algebra Pp(y,) of invariant
polynomials on o(n) is generated by fa, fa, ..., fok.
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PrROOF. Given Ai,..., A\ € R, set

0 X ... 0 0

-1 0 ... 0 0

(A1... ) = : : : :

0 0 0 A

0 0 X 0

if n = 2k, and
0 X 0 0 0
-1 0 0 0 0
(Ar...hp) = : : . : :

0 0o ... 0 X O
0 0 ... =X 0 O
0 0o ... 0 0 0

if n = 2k + 1. By elementary linear algebra, for any M € o(n), there exists
A € O(n) such that AMA™ = (... \) for some \; € R. Consider f € Ppy(y).
Since both f and f; are invariant, it suffices to establish that there exists a
polynomial p such that f(A1... g) = p(fa(A1 ... Ag), .o, fo(A1 ... Ag)) for all
A; € R. Notice first of all that

(2.1) fgl()\l)\k):.sl()\%,)\i)

In fact, since the left side is independent of whether n is even or odd, we may
assume that n = 2k. The characteristic polynomial of (A ... Ag) is

2k

k
H (= ixj) (@ +iX) = > (=17 f;(\ - Ap)a®

=0

where fo := 1. It can also be written as

k
H($2+)\2 Z /\17'»',—/\%)(452)}67]:Zsj()‘%v-~»v/\i)$2k7237
j=1

=0 =0

E
x

with sg := 1. The claim follows by comparing coefficients.
In view of (2.1), it suffices to show that f(A;. ‘.)\k) may be expressed
as a polynomial in s1(A\2,...,A2), ..., sk(A2,. .. A2); de., that f(A... ) =
g\, ..., ) for some symmetric polynomlal q. To see thm let p denote the
polynomlal given by p(A1,..., k) = f(A1... Ag). If
01
A=|1 0 € O(n),

then A()\l . /\k)AA1 = (—>\1)\2 . /\k) Thus, p(/\i, ceey )\]c) = p(—/\l, ey /\k),
and p contains only even powers of A;. An obvious modification of A shows that
this is true for any X;, so that p(A, ..., A\¢) = g(A2,..., %) for some polynomial
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g. It remains to show that p, and hence ¢, is symmetric. But if

0 I
B=|I 0 € SO(n),
In—4
then B(A1...\¢)B™1 = (A2A1 ... Ax). Similarly, any pair (A;, \;) can be trans-
posed by an appropriate B € SO(n). This concludes the argument. O

Let go; denote the polarization of fs;. By Theorem 1.1, if R is the curvature
tensor of a Riemannian connection on a rank n bundle ¢ over M, then go;(R?")
is a closed 4i-form on M, and its cohomology class is independent of the choice
of connection.

DEFINITION 2.1. The i-th Pontrjagin class of a rank n bundle £ over M is
the element p;(&) € H* (M) represented by the form
1 )
; = ——=G2i(R*), =1,...,[n/2].
P~ G F), =12
An explicit formula for p; can be given using Exercise 143: For example,
_ Qi; A4y
fo(A) =) det <a w_) :
1<i<j<n 7 73
Given p € M and an orthonormal basis ui, ..., u, of E,, define 2-forms R% on
M, by RY(z,y) = (R(z,y)uj,w;), ,y € My. Since R =0 and R = —RJ*,
1 1 ij ij
pi(p)(21,...,24) = @n)E > o191 > (s800)RY (25(1), To(2)) R (To(3), To(a));
1<j oEP,

ie,p = (2—717)—5 Zi<j R¥ A RY. More generally,

Pk = L Z (sgn U)Ri“’(“) Ao A RPROG2K),
(2 1<i1 < <igp<n
o€ P{i,..., iok}

ExAMPLE 2.1 (Pontrjagin Classes of S™). The Pontrjagin classes of a man-
ifold are defined to be those of its tangent bundle. Consider the canonical
connection on 7S8™. By Examples and Remarks 3.1 in Chapter 4, its curvature
tensor is given by

R(z,y)u = (y, wpz — (z, u)y.

Thus, if w!,...,w™ is a (local) orthonormal basis of 1-forms on S™, then R¥ =
w' Aw’. The summands in px are of the form w® A W) A A iz A o li2k)
where ¢ is a permutation of ¢1,...,1; i.e., pr = 0.

A similar argument shows that any space of constant curvature has trivial
Pontrjagin classes.

EXERCISE 146. Suppose £ is a rank n = 2k bundle over M that admits a
nowhere-zero cross-section. Show that px(£) = 0. Hint: Choose a connection
for which the cross-section is parallel.
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EXERCISE 147. Introduce a Euclidean metric on the bundle o(€) by setting
1
(A,B) = §tr(AtB), A, Beo(E,), p€M.

(More precisely, (4, B) = (1/2) tr(b~'o A* Bob) for some isomorphism b : R" —
E,.) Given a Riemannian connection on ¢ with curvature tensor R, consider
the 4-form o on M given by

1 1
a(zy, ..., x4) = W (2!)2 Z (sgn 0)<R(IU(1)7$0(2))7R(Ia(3)7$0(4))>'
o€EPy

Show that a represents p(§).

EXERCISE 148. Use Exercise 147 to determine the Pontrjagin class of the
rank 4 bundle S7 x gs R* — S% associated to the Hopf fibration S7 — S*.

3. The Euler Class

In this section, we investigate characteristic classes of oriented bundles of
rank n; i.e., bundles the structure group of which reduces to SO(n). Since any
polynomial on o(n) which is invariant under the adjoint action of O(n) is also
invariant under that of SO(n), the algebra Pgo(n) contains Pp(,). When n is
odd, we will see that both algebras coincide. When n is even, however, a new
polynomial, the Pfaffian, arises, yielding an additional class called the Euler
class.

THEOREM 3.1. If n = 2k + 1, then the algebra Pso(n) of invariant polyno-
mials on o(n) is generated by fa, fa, ..., fok-

ProOF. The argument in the proof of Theorem 2.1 goes through as before,
with one modification: The matrix

used in that proof does not lie in SO(n). However, since n is odd, the last
diagonal entry in the matrix (A;...Ag) is 0. Instead of conjugating by A,
conjugate by
0 1
10

O

DEFINITION 3.1. For n = 2k, the Pfaffian P{(A) of A = (a;;) € gl(n) is
1

Pf(A) = IRl Z (sgn 0)ag(1)e(2) ** * Go(2k—1)o(2k)-
T oEPy
Given 1 < i1,71,... ik, jx < 2k, define e1J1-%Jk to be 0 if the indices

are not all distinct, and equal to the sign of the permutation (i17;...4j%)
otherwise.
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LEMMA 3.1. For A € 0(2k),

Pf(A) = > €T IR ay Gy Qg
{(i1,31)5-, ik Jk) Y EP

where P denotes the collection of all sets {(i1,1),..., ik, Jk)} of k pairs of
integers (i, 71) with 1 <4 < ji < 2k.

For example, if A € 0(4), then Pf(A) = a12a34 — a13a24 + a14a23.

PROOF. Notice that the expression (sgn o)as(1yo(2) * - - G0 (2k—1)o(2k) Femains
unchanged when two pairs (¢(2] — 1),0(20)) and (g(2m — 1),0(2m)) are inter-
changed. It therefore remains unchanged under permutations of pairs. This
means that

Pf(A) = o Z eile.--ikjkailjl Qg
{(i1,31)5-,(ik Jr) YEP

where P denotes the collection of all sets {(i1,71)s- ., ik, jk)} of k pairs of
integers between 1 and n. Since A is skew-adjoint, each summand in the above

formula is unchanged when we interchange 7, and j;. The statement now follows.
a

Our next aim is to show that the Pfaffian is invariant under the adjoint ac-
tion of SO(n). Recall that for B € gl(n), det B =Y, cp (sg00)b1,(1) - buo(n)-
Notice that for 7 € Py, br(1) (1) = bk gor—1(k), Where k = 7(1). Thus, given a
permutation 7 = (i1,...,1,),

Z (sgn )b, 0(1) b o (n) = Z (sgno)bigor-1(1) ** *bpoor-1(n)
oc€EP, oc€P,

= E 611“'1n(sgnaOT-l)blaOT'l(l)
cor~leP,
T bnaorfl(n)

= ¢l det B.

PROPOSITION 3.1. Forn =2k and A, B € gl(n), Pf(B'AB) = (det B) Pf(A).
In particular, if B € SO(n), then Pf(B~'AB) = P{(B'AB) = Pf(A); i.e., the
Pfaffian is invariant under the adjoint action of SO(n).
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PrOOF.

2XRIPE(B'AB) = (sgn0)) [ D bio)iinbiso)

oEP, 11,22=1

n

> biyro(n=1)Binrinbino(n)

In—1,in=1

(Z (sgno)biyo) - "bz'na(n)> Aiyip """ Giy_yin

oeP,

M: ~M=*

" (det B))aiyi, - @i,y _yi,

= Qkk'(det B) Pf(A).

COROLLARY 3.1. For A € o(2k), det A = Pf*(A).

PRrROOF. Choose B € O(n) such that BAB™ = (A;...)\). It follows from
Lemma 3.1 that det(A1 ... A\g) = A1 -+ Ag. By Proposition 3.1,

Pf(A) = (det B)A1 -+ Mg = £A; - A
Thus, Pf2(A) = A\?--- A} = det A. O

THEOREM 3.2. When n = 2k, the algebra Pso(n) of invariant polynomials
on o(n) is generated by fo, fa,..., fn—o and Pf.

PRrROOF. The modification of the matrix
0 1
A=1[1 0
In—2

used in the proof of Theorem 3.1 no longer works in this case because n is even.
However, the matrix
0 1
1 0

b

Il
— O
O =

In—4

lies in SO(n), and A(A; ... A)A™! = (=A; — Ag... \). Similarly, conjugation
by an appropriate element of SO(n) changes the sign of any two elements
of (A1...Ak). Thus, each monomial in the polynomial p from the proof of
Theorem 2.1 contains either even powers of \; for all i, or odd powers of A; for
all 7; write p = pg + p1, where pg is the sum of monomials of the former type,
and p; of the latter. Since p is symmetric, so are pg and p;, and

oAty M) = B(s1(A2, A0, ske(A2 L A2))
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for some p. On the other hand, p1(A1,..., k) = A1+ Ag( N3, ..., /\i) for some
symmetric g, so that

fFM) =p(fo(M), ..., fax(M)) + PE(M)p(fo(M), ... far(M))

for some p. Moreover, for = f, may be dispensed with, since it equals Pf2. O

DEFINITION 3.2. Let & be an oriented vector bundle of rank n = 2k. If pf
denotes the polarization of Pf, and pf the parallel section of Endy(£)* induced
by pf, then the Euler class of £ is the element e(€) represented by

pf(R).

e =

(2m)*

When n is odd, e(§) is defined to be 0. The form e representing the Euler class
will be called the Fuler form of the bundle.

By Corollary 3.1,

(3.1) pr(§) = e(§) Ue(§),
where U denotes the product in H*(M).

We now derive a local expression for e which is convenient for computations.
Let U C M be an open set such that £y is trivial, and consider a positively
oriented orthonormal basis of sections Uy, ..., Us of §. Define 2-forms R%
on U by RY(X,Y) = (R(X,Y)U;,U;) as before. Then the Euler form is the
2k-form on M with restriction to U given by

1 i iy L iri
e(X1,...,Xox) = W Z €t 2’“2—k Z (sgno)R" (X 1y, Xo(2))
T1yeeey i2k o€ Py
... Ri2k—1%2k (Xo(Qk—l)-, XU(Zk))-
Thus,
o (Qw)lvakk! D TERRNE A AR
11,0002k
and by Lemma 3.1,
(3.2) e — 1 Z i dkie Rl o LA Rikjk7

2 k
@m) i SGesorer

where P is as in the lemma.
The next proposition is an immediate consequence of (3.2), and its proof
is left as an exercise.

PROPOSITION 3.2. If the bundle £ admits a nowhere-zero section, then its
Euler class vanishes.

ExXAMPLES AND REMARKS 3.1. (i) When n = 2, the Euler form is given
by
1
e(p)(@,y) = o (R(z,y)v,u),  peM, z,y€ M,
where u, v is a positively oriented basis of E,. In particular, if £ is the tangent
bundle 7M of M, then e = (1/2r)Kw, with K and w denoting the sectional
curvature and the volume form respectively of the Riemannian manifold M.
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(ii) When n = 4, the Euler form is given by
1

2r)?

according to (3.2). It can alternatively be described as follows: View R as an

element of Ay(M, A2(€)), so that for z, y, z, w € My, R(x,y) Ae R(z, w) € A4é,

with A¢ denoting the wedge product in A. Since ¢ is oriented, there exists a

unique section we of A4€ representing the orientation, with (we, we) = 1; in fact,

we(p) = e1 Aea Aes Aey for any positively oriented orthonormal basis e, ..., e4
of E,. Notice that

<R($7y) /\é R(z,w),wg(p» = Z(R”(;U, y)Rkl(zv w)ei A € Neg N 6lewi(p)>
o

=2 Z TR RY (2, 9) R* (2, w),
{G.5),(kD)}eP
with P as in Lemma 3.1. Thus, if we define R A¢ R € A4(M, A4€) by

(RIZ /\R34 _ RIS /\R24 + R41 /\RQB)

1
R Ne R(Xl, . ,X4) = ﬁ Z (sgnU)R(XU(l),XU(g)) Ne R(XU(3)7X0(4)),
T oePy
then the Euler form is given by (1/87%)(R A¢ R, we).
In general, when V is an oriented n-dimensional inner product space with

volume form w, the Hodge star operator is the endormorphism * : Ap(V) —
An_x(V) defined by

aAxf = {a, fw, a, B € A (V).

It is easily seen that x is an isomorphism satisfying

k(n—k)

*O*:(—l) 1Ak(V)7 *w = 1.

The Hodge operator extends naturally to oriented Euclidean bundles, and the
resulting operator x¢ is a parallel section of Hom(Ax§, Ap_r§), since (,) and w
are both parallel. The Euler form of a rank 4 oriented bundle is then given by

1
More generally, when the rank of £ is 2k, then
1
4 = ——— % R"
(34) “T HnF
where R denotes the k-fold wedge product in A¢ of R with itself.
(iii) Let —& denote & with the opposite orientation. It follows from (3.4)

that e(—¢€) = —e(§).

EXERCISE 149. Let V be a 2k-dimensional oriented inner product space,
with k even, so that * : A (V) — Ax(V) equals its own inverse.

(a) Show that * is a self-adjoint operator, and that Ay(V) splits into an
orthogonal direct sum Az @® A, of the +1-eigenspaces of x. a € Ag(V) is said
to be self-dual (resp. anti-self-dual) if o = a (resp. o = —av).
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(b) If ey, ..., eq is a positively oriented orthonormal basis of V4, write down
explicit orthonormal bases of AL (V).

EXERcISE 150. Use (3.2) to prove that e(¢) = 0 whenever ¢ admits a
nowhere-zero section. Hint: Choose a connection as in Exercise 146.

EXERCISE 151. (a) Show that for the canonical connection on 7.5%% each
summand in (3.2) is just the volume form of S2*.

(b) Prove that the set P in that equation has (2k — 1)(2k — 3)---3 =
(2k)!/(2FK!) elements.

(c) Use the fact that the volume of the 2k-sphere equals (7%22k+1k!) /(2k)!
to prove that the Euler form e in (3.2) of 7.5%* satisfies [q,. € = 2. It turns out
that the Euler (and Pontrjagin) classes are always integral cohomology classes,
so that [, e € Z.

EXERCISE 152. Use the fact that R : Aa7S?* — A5752%F is the identity (R
being the curvature tensor of the canonical connection) to redo Exercise 151
using (3.4) instead.

4. The Whitney Sum Formula for Pontrjagin and Euler Classes

It is worth emphasizing one important property of the characteristic classes
studied so far, which follows immediately from Proposition 1.2:

THEOREM 4.1. Let £ denote a vector bundle over M, py(§) its k-th Pontr-
jagin class, and e(&) its Euler class if the bundle is oriented. Given f : N — M,
pe(fE) = f'pe(§),  e(f7E) = fre(§).

Our next goal is to understand the relation between the classes of two
bundles & over M and those of their Whitney sum & @ &. We begin with
the Euler class; extend the Pfaffian to all skew-adjoint matrices, by setting
Pf(A) = 0 is A is odd-dimensional. This way, the relation det A = Pf?(A) for
A € o(n) holds regardless of whether n is odd or even, cf. Corollary 3.1. For
A €o(n), B € o(m), set

A 0
A®B= (O B) € o(m+n).

LemMma 4.1. Pf(A ® B) = Pf(A) P{(B).
PRrRoOOF. The statement is clear if n or m is odd, since
Pf?(A® B) = det(A ® B) = det A - det B = Pf*(A) - Pf*(B),

and both sides vanish. If n = 2k and m = 2[ are both even, then there exist
orthogonal matrices M7, Mz such that ]V[flAMl = (A1... ) and Af{lBMg =

(1 ... p1). Thus,
Pf(A® B) = PE(My ® My - (A1 .. Agpa - o) - M7 @ M)
= (det My)(det Ma)Aq - A - poa -+
= (det M1)A; - Ax(det Mo)py -+
= Pf(A) Pf(B).
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LEMMA 4.2.

f?z ® Zf% f22 ZJ )

PROOF.
det(xl,+m — A® B) = det((zl, — A) ® (z1,,, — B))
= det(zl,, — A)det(z1,, — B),
so that
-+l ' k
DM fA e B) = 3 a2 (4 Zf”’ RS
i=0 j=1
The statement then follows by comparing coefficients. (I

Given Riemannian connections on vector bundles &; of rank n; over M,
i = 1,2, the induced connection on & @ & is the pullback via the diagonal
imbedding A : M — M x M of the product connection on &; X &9, cf. Examples
and Remarks 2.1 in Chapter 4. Let p € M, and consider an orthonormal
basis b : R™ "2 — F(& & &), such that the restrictions by := bgni xo and
by := bjgxgn2 form orthonormal bases of E(&1), and E(&2), respectively. If
B : o(E(& @ &)p) — o(ng + ng) and B; : o(E(&)p) — o(n;) denote the
isomorphisms from Proposition 1.1 induced by b and b;, then the curvature
tensors R, R; of £ @ &, &; satisty

BR(p) = B1R1(p) ® B2Ra(p).
THEOREM 4.2. If &, & are oriented vector bundles over M, then

e(§1 @ &) = e(&1) Ue(&a).

PROOF. Denote by n; the rank of &. The inclusion SO(n;) ® SO(ns) C
SO(n1+ns2) induces an orientation of £&; &¢&,. Consider Riemannian connections
on &;, and the induced connection on &; ®&. With notation as above, BR(p) =
BRy(p) ® BRy(p) for all p € M. By Lemma 4.1, if one of the bundles is
odd-dimensional, then the Whitney sum has vanishing Euler class, and the
statement is true. So assume n; = 2k;. By the same lemma, together with
the fact that the product of polynomials corresponds to the wedge product of
forms,

pf(R™*%2) = pf(RY") A pf(R3?),

which establishes the claim. O

In order to state the Whitney sum formula for Pontrjagin classes, denote
by po(€) the class in H°(M) containing the constant function 1 on M.

DEFINITION 4.1. The total Pontrjagin class of a rank n bundle £ is
p(€) =po(&) +p1(&) + - +pz)(§) € H' (M) & H (M) @ --- C H*(M).

THEOREM 4.3. If &, & are vector bundles over M, then p(& @& &) =
p(&1) Up(&2)-
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PROOF. The statement means that pi(&; @ &) = S50 pi(€1) U pr—i(&2).
This follows from Lemma 4.2 by an argument similar to the one used for the
Euler class of a Whitney sum. (]

EXERCISE 153. Use the results from this section to reprove that an oriented
bundle which admits a nowhere-zero section has vanishing Euler class.

EXERCISE 154. A bundle &" is said to be stably trivial if there exists a
trivial bundle €* such that ¢® @ €¥ = ¢"**. For example, the tangent bundle
of the sphere is stably trivial. Show that a stably trivial bundle has vanishing
total Pontrjagin class.

5. Some Examples

In this section, we look at characteristic classes of vector bundles over low-
dimensional spheres. It turns out that these classes determine the bundles
up to “finite ambiguity.” Since H*(S™) = 0 except when k = 0 or n, any
characteristic class lives in H™(S™); in fact, they can only exist when n is even,
so if n < 4, we are left with bundles over S? and S*. This leaves out only one
bundle, for any bundle over S? is trivial, and there is exactly one nontrivial
bundle over S*.

By Theorem 15.2 in Chapter 1, the map

H™"(S") — R,
wr— | w
STL
is an isomorphism, so that the Euler class and appropriate Pontrjagin class
may be identified with numbers. As noted earlier, these numbers are actually
integers, and are called the FEuler and Pontrjagin numbers of the bundle.

Recall that equivalence classes of rank k vector bundles over S™ are in
bijective correspondence with m,_1(SO(k)).

LEMMA 5.1. Let a denote the Euler or Pontrjagin form corresponding to
rank k bundles over S™. Then the map

Vecty(S™) = m,-1(SO(k)) — Z,

§r— [ af)

STL
18 a homomorphism.

Proor. Let G‘k,l be a classifying space for rank k& bundles over S™. If
f 8™ — G, is a classifying map for £, then ¢ is equivalent to f*¥;;, and by
Theorem 4.1,

[e@=[ o= [ ratu = wen [ ot

But deg : 1, (Gr) = mn_1(SO(k)) — Z is a homomorphism (cf. Examples and
Remarks 2.1 in Chapter 3), and the statement follows. O
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5.1. Bundles over S2. Rank k bundles over S? are classified by m (SO(k)).
When k£ = 2, there exists, for each n € Z, precisely one bundle £, with
C(&,) = n, according to the discussion in Section 5 of Chapter 3.

Letting R denote the curvature tensor of some Riemannian connection on
&, the 2-form e,, on S? given by

en(p)(2,) = 5-(R(z,y)o, )

(for z, y € Sg and a positively oriented orthonormal basis u,v of E(&,)p)
represents the Euler class of &, by Examples and Remarks 3.1(i). In the case of
the tangent bundle &; of the 2-sphere together with the canonical connection,

ea(p)(z,y) = %(R(;C,y)y,;y) . %

if 2,y is a positively oriented orthonormal basis of S2. Thus, e; equals (1/27)
times the volume form w of S%, and the Euler number of &; is % f52 w = 2. By
Lemma 5.1, the Euler number of &, is n, and thus determines the bundle.

When k > 2, there is exactly one nontrivial rank k bundle over S?; it cannot
be distinguished from the trivial one by any characteristic class.

5.2. Bundles over S*. Rank k bundles over §* are classified by m3(SO(k)).
When k£ < 3, any such bundle is trivial. For k = 3, there is one and only one
rank 3 bundle &3 over S* with C(€2) = n for each n € Z. We will shortly see
that the rank 4 bundle ! @ &3 has first Pontrjagin number —4n. Assuming this
for the moment, we have

ple! @ &) = ple") Up(&)) = p(&n),

so that £ is determined by its first Pontrjagin number —4n.

Rank 4 bundles over S* are classified by m3(S0(4)) = 73(S?)®73(SO(3)) =
Z & Z. Denote by & . the bundle corresponding to (m[ls»],n[p]) € 73(S*) &
73(SO(3)), where p : $3 — SO(3) is the covering homomorphism from Chapter
3. &0 has structure group reducible to $?, and &5, to SO(3). In fact, &, =
el

Insofar as the Pontrjagin class is concerned, we shall work in a slightly more
general setting: Let M denote a 4-dimensional compact, oriented Riemannian
manifold with volume form w, and Hodge operator * : A3 M — A3M, cf. Section
3. For & € A5 M, the identity a = 3 (a+*a))+ 1 (a—*a) decomposes A3 M into
a direct sum AT @ A~ of the +1 and —1 eigenspaces of x. This decomposition
is orthogonal, since * is norm-preserving;:

(xa, xa)w = *a Ao = a A xa = (a, a)w.

Furthermore, w is parallel, so that * is a parallel section of the bundle End(A5M).
There is a corresponding decomposition of the space Az (M) = A3 (M)® A5 (M)
of 2-forms on M. o € Ay(M) is said be self-dual if xa = «, anti-self-dual if
*Q = —q.

For a vector bundle £ over M, we have, as above, a splitting A;(M,End§) =
A (M,End¢) @ A, (M,End¢€). The curvature tensor R of a connection on &
decomposes as R = RT+R~, and we say R is self-dual if R = R™, anti-self-dual
iftR=R".
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When the bundle £ is Euclidean, the inner product on Ax(M;) extends to
Hom(Ax(Mp), E(€)p) = Ax(M,) ® E(§), by defining

(B = > (awi,. . 3i,), B@iy, - 24,),

i< <lig

where x; is an orthonormal basis of M,. (When ¢ is the trivial line bundle over
M with the standard inner product on the R-factor, this inner product coincides
with the one on Ax(M,). In general, it induces a pointwise inner product on
A (M, §), which, when integrated over M, yields one on all of Ax(M,¢).)

In order to apply this to R € A3(M,0(£)), we introduce an inner product
on 0(¢) by defining

(5.1) (A, B) = %tr(At . B).

This inner product is in fact the one for which the equivalence
L: Ay(§) — o(¢),
UNAVF— (w— (v, w)u — (u,w)v).
becomes a linear isometry, if Ay(€) is endowed with the Euclidean metric in-

duced by the one on &: It is straightforward to check that if u; is an orthonormal
basis of E,, then {u; Au; | i < j} is one for Ay(E,).

PROPOSITION 5.1. Let ¢ be a Euclidean bundle over M* with curvature
tensor R. The first Pontrjagin form of € is given by

— 1 +12 _ —2

PROOF. Let RY denote as before the local 2-form on M given by R¥ (p)(z, y)
(R(z,y)U;(p), Us;(p)), where {U,} is a local orthonormal basis of sections of the
bundle. Given an orthonormal basis z; of Mp, we have

|R‘2(p) = Z%tFRt(JJk,J}l) . R :Ek,xl) = = Z R”2 xk,xl Z |Rij[2(p).

k<l 1<j k<l 1<j
In particular, |R¥|* = 37, . |RY%|%. Now, R A R9T = RUY A xRUT =
|RY*|?w, whereas RV A R~ = —RY+ A xRV~ = —(R¥*+ RY~)w = 0. Simi-
larly, RV~ A R~ = —R¥~ A xRV~ = —|Rif—|2w Thus,
1 o
— — S RUARY = R~
P= e 2 - IR
1<j 1<.7
1

= @ (R = 1R
O

Next, we derive an analogous formula for the Euler form of &, where £ is
now assumed to be oriented, of rank 4. The Hodge operator x¢ : Aa(€) — Az(§)
is a parallel section of End(A2(€)), and induces an orthogonal, parallel splitting
A2(8) = AF (&) ® A5 (€) of Ay into a direct sum of the +1-eigenspaces of x¢.
Given p e M, x,y € My, R(z,y) € A2(Ep), and we write R = R, + R_ for the
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corresponding decomposition of the curvature tensor. By (3.3) and arguing as
above, the Euler form e of £ is given by

1
€= 5 (R Ag Ry we) + (R- A¢ R we).

82
Now,
Ri(z.y) Ne Ri(2.w) = £(Re(z.y), Ry (2. 0))we.
so that
e(z x4) = 11 Z (s na)l(trRt (z Zo(2)) Ry (x To(4))
1y--+,24 (872) 4 = g ) 4\ Lo (1)) Lo(2) )4+ T (3)) Lo (4)

—tr R (2,(1), To(2)) R (2o (3): To(4)))

o€Py i<j
— R (25(1), Zo(2)) R (To(3), To()))
o5 D (RY ARY = RY ARY)(1,.. ).

i<j

This may be rewritten as
1 g o o iy iy o o
e = WZR$+AR£++R$ ARY™ —RYTARYT —RY” ARY
T
i<j
1 i+ 2 ij— |2 i+ 2 ij— 2
= S?ZURE * = IRYTF = [RY7]P + |RYT[F)w.
i<y
Summarizing, we have proved:

PROPOSITION 5.2. Let ¢ be an oriented rank 4 Euclidean bundle over M*.
The Euler form e of £ is given by

1 _ > _
e = o5 (RI = IRT[2 = [R* [ + R ).

It turns out that the rank 4 bundle £ is determined by the two rank 3
bundles A; (€): Let ¢ : S? x S — SO(4) denote the covering homomorphism
given by ¢(q1,¢2)u = qluqz_l, ¢ € 5%, u € H=R* Denote by S3 (resp. S?)
the subgroup ¢(S% x 1) (resp. ¢(1 x S3)) of SO(4). Since these are normal
subgroups, Exercise 155 below implies that the bundles

Py := P xs0(4) (SO(4)/S%) = P/SL — M

associated to the orthonormal frame bundle SO(¢) = P — M of £ are in
fact principal bundles over M with group SO%(3) = SO(4)/S% isomorphic to
SO(3).

LEMMA 5.2. Py — M is the principal SO(3)-bundle of Af(é‘).

PROOF. An orthonormal basis e;, ..., eq of R* induces an orthonormal ba-

sis %(61 Neg+e3 Aey), \%(61 Nes+eq Aes), %(el Aeg+es Aeg) of A;(R‘*)

and a corresponding one for A; (R*) (obtained by changing the sign of the sec-
ond term in each basis element of AT). Any g € SO(4) extends to a linear
isometry (also denoted by) g : Ax(R*) — A%(R?), by setting g(u Av) := gu A gv
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and extending linearly. This action leaves Af invariant since (gep,...,geq) is
positively oriented whenever (e1,...,e4) is. Given q € S3,
(LAi+jAk)g=qNig+igAkg=1Ni+7 Ak,

and the same is true for the other basis elements of A; Thus, S2 is the kernel
of the representation SO(4) — SO(AJR*), and similarly, S? is the kernel of
SO(4) — SO(A;R?); i.e., the special orthogonal group SO(ALXR?) is SO (3).
Since the map Py — SO(A%&) which takes be’F (where b: R* — E, is a linear
isometry) to the orthonormal basis %b(el Aeg % ez Aey), %b(el Nesteq A
e3), S=b(e1 Aeg+eg Aeg) of AT (E,) is SO (3)-equivariant, it is an equivalence

/3
by Theorem 3.1 in Chapter 2. O

Our next objective is to relate the first Pontrjagin numbers pi of AF(€)
to the Euler and first Pontrjagin numbers of . Recall that if V is a covariant
derivative operator on ¢, then the one induced on A5(€) is given by

V(Ui AUs) = (VL UD)AU2(p)+Ur(p)A(VelUa), peM, xe M, U €TE

This implies that the corresponding curvature tensor R of Ay(€) is related to
the one on £ by
R(z,y)(u1 Aug) = (R(z,y)ur) Aug +ug A (R(z,y)us).

The equivalence L : A5(€) — 0(€) induces a Lie algebra structure on each fiber
of A2(£), see also Exercise 156 below; the corresponding Lie bracket is the one
used in the following:

PROPOSITION 5.3. The subbundles AL (&) are parallel under the induced
connection; i.e., R = Ry +R_, with Ry € Ay(M,End Azi(f)) Givenx,y € My,
and o, B € A%(Ep),

(R(J?, y)a,ﬁ) = <Ri (z, y)a7ﬁ> = <Ri(.’L‘, y)v [av 6]>7
Y,Uh€7"€ R(T*y) - R+ (I’, y) + R* (a:y) € A;(EP) @ AZ_(EP)

PROOF. By Exercise 157, R(z,y)a = [R(x,y), a]. Since A2(E,) is a direct
sum of the ideals AT(E,), the first statement is clear. The inner product on
o(E,) = Ao(E,) is Ad-invariant, so that ad is skew-adjoint. Thus,

(Re(z,y), B) = ([Re(z,y), ], B) = —(ada Rx(2,9), 8) = (Ra(x,y), ada B)
= (Ry(z,y), [, B])-
|

PROPOSITION 5.4. Let p+, p1 denote the first Pontrjagin forms of A3 (),
&, and e the Euler form of €. Then

(1) p+ = o (IRY? = [RyP)w, p- = 2 (IRIP — |RZ|*)w; and
(2) 2p1 =ps +p-, de=pi—p-.

ProOF. Consider a positively oriented orthonormal basis u1, ..., us of Eg,
and denote by I*, J*, K* the induced orthonormal bases of A2jE (Eq); iee.,
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I* = (1/v/2)(uy Aug +us Auy), ete. The first Pontrjagin form of AJ (€) is given
at q by

(RY ARV 4 RIS ARIK 4 RIE A RIF),

1
(2m)?
where we have omitted the superscripts in I, J, K for simplicity of notation.
By Proposition 5.3,

RiJ(x7y) = <R+(T~y> [Jv [D = —\/§<R+(x,y),K>,

and similarly, R/¥(z.y) = —v2(R4(z.y),1), RLK(xy) = V2(Ry(z,y),J).
Thus,

1 1
P+ = (27‘(’2) Z Z (Sgn U) Z 2<R+ (‘ra(l)7 xa(Q))r C¥> <R+(wa(3)7 wd(4))a a>

ochy ac{l,J,K}
1 1
= WZ Z (sgn U)2<R+($U(1),IU(2)), R+(l‘a(3),l’a(4))>.
ocEP,

Referring to Exercise 147, we see that p. equals two times the first Pontrja-
gin form of £ with R replaced by Ry. Proposition 5.1 then implies part (1).
Comparing the expressions in (1) with Propositions 5.1 and 5.2 yields (2). O

Thus, for example, if the structure group of the bundle reduces to SO(3),
then e = 0, and p; = p_. In order to see what happens when the group reduces
to 53, we use the following:

LEMMA 5.3. A principal G-bundle P — M admits a reduction to a subgroup
H of G iff the associated bundle P xg (G/H) — M with fiber G/H admits a

cross-section.

PrOOF. Suppose 7g : Q — M is an H-reduction of mp : P — M. Then
there exists a fiber-preserving diffeomorphism F : Q x g (G/H) — P x¢ (G/H)
between the associated bundles with fiber G/H. Define s : M — P xg (G/H)
by s(m) := F|[q, H|, where q is any point in Wél(m). s is a well-defined section,
since [gh, H] = [q, H] for h € H.

Conversely, let s : M = P/G — P/H = P x¢g (G/H) be a section;
ie., for m € M, s(m) equals the H-orbit of some p € mp'(m). Define
Q := Unems(m) C P. H acts on Q by restriction, and 7g : Q@ — M is a
principal H-bundle equivalent to s*(P — P/H). It is also clearly a subbundle
of mp. O

Notice that Lemma 5.3 generalizes Theorem 4.2 in Chapter 2: When H =
{e}, the statement says that a principal bundle is trivial if and only if it admits
a cross section.

COROLLARY 5.1. An oriented rank 4 bundle & over S* admits a reduction
to 83 iff AE(€) is trivial; i.e., iff p1 = +2e.

ProoF. The first assertion is an immediate consequence of the lemma,
since in our case, H is normal in G, so that P x¢ (G/H) — M is principal
by Exercise 155 below, and thus admits a section iff it is trivial. The second
assertion follows from Proposition 5.4(2), together with the fact (which will be
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proved shortly) that a rank 3 bundle over S* is determined by its Pontrjagin
class, so that AT (€) is trivial iff p4 = 0. O

The Hopf bundle, for example, is a principal S$3-bundle. As such, it is the
reduction of a principal SO(4)-bundle to a subgroup isomorphic to S3. In order
to determine which subgroup, we use the following:

LEMMA 54. If Q — M is a principal H-bundle, where H is a subgroup of
G, then Q xg G — M is a principal G-bundle which reduces to the original
H-bundle Q — M.

PROOF. There is a well-defined action by right multiplication of G on Q x g
G, [g,9]a = [gq,ga] for a € G, and the quotient is M. In order to exhibit a
principal bundle atlas, consider a principal bundle chart ¢ : Wél(U ) — H of
mg : @ — M. By the proof of Theorem 2.1 in Chapter 2, the induced chart
¢ : 7Y (U) — G on the associated bundle 7 : Q xyg G — M is given by
¢ : Y (U) — G, where ¢[q, 9] = ¢(¢q)g. But then for a € G,

¢(la, gla) = dlg, ga] = ¢(q)ga = (¢[q, 9])a,
so that ¢ is a principal bundle chart. Clearly, Q@ = Q xy H — M is a reduction
of Q X H G — M. O

Consider the subgroup S3 of SO(4). It acts on H from the left via p :
53 x H — H, where p(q,u) = ug™! for ¢ € S2, u € H. Define a right action
@ of S2 on H by fi(u,q) = pu(q~!,u) = ug. This action extends to H x H, and
its restriction to S7 is the Hopf fibration. By the above lemma, the bundle
S7 xgs SO(4) — S4, with S% acting on S7 via fi, is a principal SO(4)-bundle
which reduces to the Hopf fibration with group S3. Corollary 5.1 then implies
that the associated rank 4 bundle £_; ¢ has first Pontrjagin form p; = —2e.

On the other hand, the tangent bundle & 1 of S* has Euler number 2
(see Exercise 151), and by Lemma 5.1, e(&,_1) = e(§2,0) + €(§o,-1) = 2. But
£0,—1 admits a nowhere-zero section, so that its Euler number vanishes, and
e(é2,0) = 2, or more generally, e(x0) = k. For k = —1, this implies that
the Hopf bundle has Pontrjagin number p;(§-10) = —2e(€_1,0) = 2. More
generally, p1(€x,0) = —2k. Finally, since p1(€2,-1) =0, p1(€2,0) = p1(&0,1), and
p1(€o0.k) = p1(&2k,0) = —4k. Summarizing, we have:

THEOREM 5.1. Oriented rank 4 bundles over S* are determined by their
Pontrjagin and Euler numbers. Specifically, p1(ém,n) = —2m—4n, e(€m.n) = m.

Bundles over S™ with rank larger than n are in general not classified by
their characteristic numbers. This can clearly be seen in the cases n = 2 and
n = 4 that we discussed: According to Proposition 5.1 in Chapter 3, such a
bundle is equivalent to a Whitney sum of a rank n bundle with a trivial bundle,
so that by Theorem 4.2, it must have zero Euler class.

As a final application, consider a vector bundle £ over a compact manifold
M, with structure group a compact subgroup G of GL(k). If C denotes the
affine space of connections V on £ with holonomy group G, the Yang-Mills
functional on C is defined by

1
yM(V) = 5 " |R|2’
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where R is the curvature tensor of V. A critical point of this functional is called
a Yang-Mills connection. Such a connection is said to be stable if it is a local
minimum of the functional.

Simons [7] showed that there are no stable Yang-Mills connections on bun-
dles over S™ if n > 4. Bourguignon and Lawson studied the four-dimensional
case, which turns out to be quite different: Let £ be an oriented rank 4 bundle
over S* with Pontrjagin number p and Euler number e. By Propositions 5.1
and 5.2, the Yang-Mills functional for SO(4)-connections satisfies

IYM(V) > 2772|p|,47r2\e\.

For example, when ¢ is the tangent bundle of the 4-sphere, the curvature R
of the canonical connection V is the identity on Ag, so that RT = R, = 0.
Thus, YM(V) = 4n?e, and since the tangent bundle has vanishing Pontrjagin
class, the Levi-Civita connection is an absolute minimum of the Yang-Mills
functional. Similarly, for a bundle with structure group S2,
=— [ |RI]? - R
p An2 » | +| ’ +|

It is know that such a bundle admits connections the curvature tensor of which
is self-dual or anti-self-dual depending on whether p is positive or negative.
Any such connection is therefore stable. The reader is referred to [6] for further
details.

EXERCISE 155. Consider a principal G-bundle P — M. Show that if H is a
normal subgroup of G, then the associated bundle with fiber G/H is principal.
(Identify P/H with P x¢ (G/H) via pH ~ [p, H]. The action of G/H on P/H
is then given by (pH)(aH) := paH, for p€ P, a € G).

EXERCISE 156. Let ¢ : S x §3 — SO(4) denote the covering homomor-
phism, ¢(q1,q2)u = qrugy ', ¢; € S%, u € H = R, Define ¢ : S3 — SO(4)
by ¢+ = ¢ o1q, where 14 : S — S3 x S3 are the inclusion homomorphisms
14(q) = (¢ 1), 1—(q) = (1,9).

(a) Prove that the Lie algebra o(4) is isomorphic to ¢4.0(3) X ¢_,0(3)
(recall that the Lie algebra of S3 is isomorphic to 0(3)).

(b) Let L™! : 0(4) — Aa(R*) = AJ @ A, denote the usual isometry. Show
that L™! o ¢4, maps the Lie algebra o(3) isomorphically onto A;h.

EXERCISE 157. Given A € o(n), define A : Ay(R™) — Ay(R™) by
Al Aw) = (Av) Aw + v A (Aw)
on decomposable elements, and extending linearly.
(a) Prove that A(v Aw) = [L71A,v A w], where L : Ay(R") — o(n) is the
canonical isomorphism.
(b) Let R be the curvature tensor of some connection on the bundle £ over
M, and R the induced curvature tensor of Ax{. Show that for a € Ax(E(&),),

R(z,y)a = [R(z,y),a],  z,y € M,
after identifying R(z,y) with an element of Ay(E(€),) via L.
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6. The Unit Sphere Bundle and the Euler Class

Consider an oriented rank n = 2k Euclidean bundle £ = 7 : E — M and its
unit sphere bundle &' = mp : E! — M, where E! = {u € F | Ju| = 1}. Our
goal in this section is to show that the pullback of the Euler form of ¢ to E! is
exact, a fact that will be needed in the proof of the generalized Gauss-Bonnet
theorem in the next section.

Recall that for u € E, J, denotes the canonical isomorphism of the fiber
Er(u) of § through u with its tangent space at u. For convenience of notation,
the latter will be identified with a subspace of T, E via the derivative of the
inclusion Er(,) < E, so that J,, : Er,) — (VE), C T,E.

LEMMA 6.1. There is a canonical isomorphism J : I';€ — T'VE of the space
I'z€ of sections of € along m with the space I'VE of sections of the vertical bundle
V¢ over E. A Riemannian connection V on € induces a Riemannian connection
V on V¢ given by

V.JU = J,V,U, Uelyé, ze€T,E, uek.
(V in the above identity denotes the covariant derivative along 7 : E — M.)

PrOOF. The equivalence
7T*£ - V§7
(u,v) — Jyv

induces an isomorphism between I'n*¢ and I'VE. On the other hand, the map
I'n*¢ — I';€ that takes U to moU is an isomorphism with inverse V — (1g,V),
where (1g,V)(u) = (u,V(u)). Combining the two, we obtain an isomorphism
J :Tx¢ — I'VE given by (JU)(v) = J,U(v). This establishes the first part of
the lemma.

A Riemannian connection V on ¢ induces a connection V on 7*¢, where

?z(lE,U):(u,@zU), Uel¢(, ze€T,E, uek.

The above equivalence 7*¢ = V¢ then yields a connection V on V¢, and
V.JU = T, V.U, as claimed; V is Riemannian because V is, and because
J.. is isometric. 0

Denoting by R, R the corresponding curvature tensors, the structure equa-
tion (Lemma 3.1 in Chapter 4) implies

(6.1)
R(z,y)Tuv = JuR(7.x, Ty)v, r,ye T E, uvekE, w(u)=mn().

(Equivalently, in the bundle 7*¢, R(z, y)(u,v) = (u, R(m.z, T2y)v).)

There is a canonical section of ¢ along m, namely the identity 1z. Under
the isomorphism of Lemma 6.1, it corresponds to the position vector field P on
the manifold TFE; i.e., P is the section of V¢ defined by P(u) = J,u for u € E.
Notice that

(6.2) dVP(z)=V,P=1", =xcTE.



200 6. CHARACTERISTIC CLASSES

To see this, observe that if k denotes the connection map of V and z € T, E,
then

V.P=V,.Jlg = I Nolp = Tuklper = Jukx = z°.
By Theorem 3.1 in Chapter 4, dV2P(z,y) = R(x,y)P, which together with
(6.1) implies
(6.3) dV2P(z,y) = JuR(m.x, moy)u, z,y € TuE, uekE.

The following observations will be used throughout the section:

REMARK 6.1. (i) The wedge product from (3.4) extends to all of A(M, AE):
For av € Ap(M,AGE), B € Ar(M,AsE), define a A¢ B € Apir (M, Mgy s€) by

1
W Z (sgn U)Oé(XU(l), cee ,Xa(p))
UEPI’-H‘

A B(Xo(p+1)7 s 7X0(p+7"))‘
(The wedge product in the right side is of course the one in A{). Then a A5 =
(—1)Pr+a58 A¢ o, and d¥ (o A¢ B) = (dVa) Ae B4 (—1)Pa A¢ ¥ 3. Notice that
R € Ay(M, As€) commutes with any other A¢-valued form.
(it) Since #¢ is parallel, (0.1) implies

d(xea) = *¢d” a, a € A(M,A8).

(@ Ae B)( X1, ooy Xpir) =

(iii) If u; is an orthonormal basis of Er(,), then J,u; is an orthonormal
basis of (VE),. Thus, by (6.1), xyR* = 7* x¢ R*.

(iv) Let Uy,...,U, denote a local orthonormal basis of sections of . If a,
B are sections of A&, A,_p€, respectively, then locally,

o = Z <a,Ui1/\"'/\U¢p>Uil/\"'/\Ui

i1 < <1p

p*

A similar expression holds for 3, so that

(aANB UL A NU,) = Z €’l'1-u’ipj1~-~jnfp<a,Ui1 A AU )

i1 <---<ip
J1<<Jin-p

<67Uj1 ARRRNA an—p>

1 1
- Hm Z (Sgno’)<0[, UU(I) AR /\Ug(p)>
ochP,

By Us(pr1y A=+ ANUg(ny)-
This identity also holds when «, 8 are Aé-valued forms on M as in (i).

From now on we will work in E!, so let V¢ denote the restriction ¢*V¢
of the vertical bundle to E', where 1+ : E! — FE is inclusion. Similarly, P
will denote the restriction P o1 of the position vector field, R the pullback
'R € Ay(EY, AoVE) of R, and 7 : E' — M the projection. For i = 1,...,k,
define w; € A,_1(E*, A, VE) by

w; = P/\V (dVP>2iv1 Ay Rk—i’
with the wedge product as defined in Remark 6.1(i).
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LEMMA 6.2.

. . 21 — 1 . .
VvV, — dVP 21 k—i _ dVP 21—2/\ ka»l'
@ = (@7 PP py RV = (TP Ay R

ProoF. By the Bianchi identity,
d¥w; = (dVP)* Ay RF 4+ (2 —=1)P Ay dV2P Ay (dYV P)? 72 A RF?
= (dVP)* Ay RF + (20 = 1)(dV P)? "2 Ay P Ay dV2P Ay RFE
In order to evaluate the second summand, consider a positively oriented or-

thonormal basis U; of local sections of V¢ with U;—1 = P. Then
(dVP)2 =2 Ay, PAydVEP Ay RS UL A - AU

1
= 2]‘:—_1‘ Z (Sgn 0')<dVP’ Uo(1)> ARRRNA <dvpa Ua(Qi—2)> A <P7 Ua(2i71)>
c€EPy,
dV?P, U, 2i)) A (R, Us2it1) A Us(aiz2)) A - ..

A
A <R’ Ua(n—l) A Ua(n))
1

=i Y. (sgno)(dVPUsa) A AdY P U(aiz))
{o]o(2i—1)=2i—1}
AR, Ug2i—1) NUg(2i)) A+ AR, Ug(n=1) A Ug(n))

by (6.3) and (6.1). Fix any o € P, with ¢(2i—1) # 2i—1, so that P = U, for
some [ # 2¢ — 1. If | < 2§ — 1, the corresponding expression in the last equality
vanishes, because (dV P,U,(;)) = (dVP,P), and (dVP(z),P) = (V,P,P) =
$z(P,P) = 0 on E' where P has constant norm 1. If [ > 2i — 1, then the
corresponding expression is the same as in the case 0(2i — 1) = 2i — 1: In
fact, (sgn o )(R, Ug(2i—1) ANUs(2i)) A - - A(R, Uy (n—1) AUq(n)) remains unchanged
when switching pairs (¢(2p — 1),0(2p)) and (0(2¢ — 1),0(2q)). Similarly, this
expression undergoes a sign change twice when interchanging o(2p — 1) and
o(2p) (once in (R, Ug(2p—1) A Uy(2p)) and again in (sgno)). Thus,

(dVP)? 2 Ay PAydY2P Ay RFE UL A - AUL)

1
=~y ey o (TP Uw) A A TP Ui )
oc€EP,

A <Ra Ua(2if1) A Ua(2i)> AREERA <Ra Ua(n—l) A Uo(n)>

2k~i+1

- _m«dvp)%_z Ay RFHLULA - AU),

so that
, , 1 . .
(dVP)Zz——2 /\V P /\V dVZP /\V Rk—z — _k : — 1(dVP)2z—2 /\V Rk~l+1'
—1
Substituting into the original expression for d¥w; then yields the result. ]

THEOREM 6.1. Consider an oriented Euclidean bundle € = E — M of
rank n = 2k, with Riemannian connection and corresponding Euler form e. If
& =7 : B! — M denotes the unit sphere bundle of &, then the pullback 7*e €
A, (EY) of the Euler form is ezact. Specifically, there exists 2 € A,_1(E") such
that
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(1) 7*e = dQ; and
(2) forpe M, f(El)p 7= —1, where 5: (E'), — E' denotes inclusion.

PROOF. Set Q; 1= xpw; € A,_1(E'). We seek constants a; € R so that
Q=" a;9; satisfies (1) and (2). We begin with (2): Given u € (E'),. p € M,
consider a local positively oriented orthonormal basis U; of sections of V¢ in
a neighborhood of u with U; = P. Since P is orthogonal to the unit sphere
Sn=1 = (E"),, the volume form of (E'), is given locally by (Uy A---AU,)’ 0
Now, 7*§2 is vertical, whereas R is horizontal by (6.1), so that

72 =arj*Q = ak(j*wk, U A- AU
=ar Y (sgn0)s" ((P.Us)) AdY PUq2)) A+ A(dY PUg(n)))

o€P,

= ag Z (Sgn 0’)]*(<va’ UU(2)> ARRRA <va7 Uo(n)>)
{olo(D=1}

= Qg Z (bgnT) (<d P U1+T(1)> A <dvpv U1+T(n~1)>)
TEP, 1

=ag(n — DGV P,U) A--- A{dY P,U,)).
Now, for z; in the tangent space at u of the fiber (El)p over p, J.x; is vertical,
and j*dY P(z;) = j.x; by (6.2). Thus,
7 Uxy, . p) = ag(n —1)! Z (sgn o) (9xs(1), Uz(u)) - - -
og€EP, 1
<]*$a(n~1)7 Un(u»
= ag(n — 1) det(y.z;, Uj(u)>
=ap(n — pz1 A A JuZn—1, Ua(u) A - AUL (1))
= ak(n - 1)'W(x1, s -,'Tn—l)v

where w denotes the volume form of (E'),. Since the latter is isometric to
Sn—l7

* n-—1 27Tk
7Q =ag(n—Dvol(S™ ) = ag(n — 1)! =1,
(EY)p

(k—1)!
if we set ar = —(k — 1)!/27%(2k — 1)!.
Next, we determine a; for ¢ < k so that € satisfies (1):
. , 2 —
v LY — . v 2i k—i _ v 21—2 k—i+1
d (Zazwz)_zal ((d P)% ny RF - 2 +1(d P)%"2 A, R >

k-1

_ 01 V 2k 2t +1 V py2i
-_—k;—R +ak(d P) +;<ai—k—_—iai+1 (d P)
Ay RF1.
With ay as above, define a;, = (2i + 1/k — i)a,;41 inductively; then
(1 —1)!

4T TR R (e — )20 — 1)1
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and

dav (Z a,wi) = @TI?RIC + ax(dV P)?,

so that
dQd=d (*V Zaiw’) = *Vdv (Z aiwi) = v(%)k *y) Rk + ag *y (va)2k.

Finally, xy(dY P)?* = 0 by (6.2), and #pRF = 7* ¢ R*. Thus, dQ = 7*e, as
claimed. ]

EXERCISE 158. Use Theorem 6.1 to show once again that the Euler class
of a vector bundle vanishes if the bundle admits a nowhere-zero section.

7. The Generalized Gauss-Bonnet Theorem

Let M be a compact, oriented, n-dimensional manifold. The Euler charac-
teristic of M is defined to be x(M) = >_p_,(—1)F dim H*(M). It turns out that
this number can be computed by looking at the behavior of any vector field X on
M with finitely many zeros. We shall only explain the procedure and concepts
involved. For a proof, the reader is referred to [25]. Let p be a zero of X, choose
€ € (0,inj,) (for some Riemannian metric on M) so that the ball B¢(p) of radius
€ centered at p contains no other zeros of X, and denote by S™~! the unit sphere
centered at 0 in M,. Consider the maps ¢, : S"7! — S™~1 x [0,¢], t € [0, €],
1(v) = (v,t), and H : "~ x [0,¢] — M, H(v,t) = exp,(tv). The index ind, X
of X at p is the degree of the map f. := ®. o (X/|X|)oH o : S"~1 — Sn—1L,
Here, . : T'Mpp, () — S™ ' maps u € T'M N Mexp ey to the parallel translate
of u along the geodesic t — exp,((e —t)v), 0 <t <e.

FIGURE 1

Thus, to obtain the value of f. at a point v € S™~!, one goes out at distance
¢ along the geodesic in direction v, evaluates the normalized vector field X /| X|
at that point, and parallel translates it back to p along the same geodesic. The
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index of X at p is well-defined, for if § € (0,inj,), then fs and f. are homotopic
via (v,t) = fisr(1-t)e(v)-

l
\1/ \;/
PN AN

index +1 index —1

tH f !
Pttt
't MRS

index 0 index +2

FIGURE 2

The proof of the following theorem can be found, for example, in [25]:

THEOREM 7.1 (Poincaré-Hopf). Let X be a vector field with finitely many
zeros on a compact, oriented manifold M (such an X always exists). Then the
Euler characteristic x(M) of M equals the index sum over all zeros of X .

The next theorem is known as the generalized Gauss-Bonnet theorem:

THEOREM 7.2 (Allendoerfel-Weil, Chern). If M?* is a compact, oriented
Riemannian manifold with Euler form e, then [,, e = x(M).

PrOOF. Consider a vector field X on M with finite zero set N = {p € M |
X(p) = 0}, and choose some 0 < € < inj,,; such that € < min{%d(p, q) | p,q €
N}. Let Z be a vector field on M \ N that equals X/|X| on M \ By./3(N),
and such that for each p € N, and unit v € M, Z o ¢, is parallel along the
geodesic ¢, : (0,¢/3) — M, ¢,(t) = exp(tv). If = denotes the projection of the
unit tangent bundle 7'M, then 10 Z = 1a\n, and the restriction of e to M\ N
may be expressed as

e=(roZ)e=2Z"r"e=Z"d0 = dZ*Q,

with € denoting the (2k — 1)-form on 7' M from Theorem 6.1. Let p € N, and
H:S™"" ! x[0,e] - M as above. Although Z does not extend continuously to
B.(p), we obtain a differentiable vector field Y along H by setting

Y(v,t) = Z o H(v,t) for t > 0, and Y (v,0) = tE%L Z o H(v,t).
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Stokes’ theorem then implies

/ e:/ dzZ*Q :/ H*dZ*Q:/ dH*Z*Q
B:(p) H(S™=1x[0,€]) S7=1x[0,¢] Sn=1x[0,¢]

:/ H*Z*Q—/ H*Z*Q
Sn—1xe Sn=1x0

= / z*Q —/ H*Z*Q.
8Bc(p) Sn=1x0
Since the degree of Y 014 equals the index of X at p, we have
/ H*Z*Q:/ (Y o01)"Q=ind, X = —ind, X.
Sn=1x0 sn-1 gn-1
Thus,
e= e+ / e
/JW /J\/I\UPENBF(Z’) pGZIV E(P)

:/ AR </ Z*Q+inde>
NI\UPENBe(p) pEN 6Be(p)

= Z*Q *Q ind, X
2 /a&(p) +2 /aBs(m 79 ) ind,

peEN pEN pEN
= x(M).
|

EXAMPLES AND REMARKS 7.1. (i) For an oriented surface M?, the Euler
form at p € M is given by e(x,y) = %(R(m,y)v,u), where u, v is a positively
oriented orthonormal basis of M,. Thus, e = %Kw, with K the sectional
curvature, and w the volume form of M. The 2-dimensional case then reduces
to the classical Gauss-Bonnet theorem:

/M Kw =2mx(M).

(ii) A Riemannian manifold is said to be FEinstein if the Ricci curvature
Ric = k(,) of M equals a constant multiple x of the metric, x € R. Any space
of constant curvature is Einstein of course, but so is for example S? x 5?2 with
the product metric.

Consider a compact, oriented 4-dimensional Einstein manifold. Given p €
M, let ey1,...,e4 denote a positively oriented orthonormal basis of M,,. If

Qg = %el/\@, ag = —%61 N es, g = %el/\&;,
then a; + *a; ¢ = 2,3,4, is an orthonormal basis of Ag:(Mp). We claim that
(Ra, B) = 0 for all @ € A (M,) and 3 € A; (M,). To see this, notice first that
0 = Ric(eq, e3) = (R(ey, e2)es, e1) + (R(eq, e2)es, e4)
= (Rej Nez,e1 Ne3) — (Reg Nez,e3 Aey)
= 2{Ray, az) — 2{R * ag, *az).
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Similarly,
0 = Ric(ey,eq4) = (R(ez, e1)eq, e2) + (R(es, e1)eq, €3)
= 2(Rag, xaz) — 2(Rag, xaa).
Thus,

1
(R(ag + *a), a3 — *xg) = §(Ric(62, e3) — Ric(ey,eq)) = 0.

A similar computation shows that (R(a; + xa;), a; — *0j) = 0 whenever 7 # j.
When ¢ = j,

(R(e; + *a;), ap — *;)) = (Ray, o) — (Rx gy %) = Koy — Kooy s

with K,, denoting the sectional curvature of the plane spanned by e; and e;.
This expression is always zero: For example,

Kocz - K*Ozz = K61,€2 - K€3;54
1
= E(Ric(el, e1) + Ric(ez, e2) — Ric(es, e3) — Ric(es, e4)) = 0.

This establishes our claim that the curvature tensor R of an oriented 4-dimen-
sional Einstein manifold leaves the subspaces A3 (M,) invariant; i.e., RT =
R, = 0 in the notation of Section 4. By Proposition 5.2, the Euler form of M
equals

1
82
According to the Gauss-Bonnet theorem, the Euler characteristic of M is then
nonnegative, and is zero iff M is flat.

(iii) One large class of Einstein manifolds is the one consisting of so-called
semi-simple Lie groups: The Killing form B : g x g — R of a Lie algebra g is
the symmetric bilinear form given by B(X,Y) = tradx cady. A Lie group G
is said to be semi-simple if the Killing form of its Lie algebra is nondegenerate.

It turns out that a compact Lie group is semi-simple iff it has discrete center
Z(G) = {g € G| gh = hg for all h € G}. To see this, assume first that G is
compact and semi-simple. By compactness, there exists an inner product on
g for which adx : g — g is skew-adjoint for each X € g, cf. Examples and
remarks 1.1(ii) in Chapter 5. If (a;;) denotes the matrix of adx with respect
to some orthonormal basis of g, then '

B(X,X) :trad2 = Zaijaﬁ = —Za?j < 0,
4,3

i,J

e (IR + |RZ).

and equals zero iff adx = 0. Thus, the kernel of ad = Ad.. is trivial (see
the observation in Section 5 of Chapter 4), so that Z(G) C ker Ad has trivial
Lie algebra, and must be discrete. Notice that in fact, Z(G) = ker Ad: If
g € ker Ad, then for any X € g, X(g) = Rg.X(e). Thus, the curve ¢, where
c(t) = Rg(exptX), is an integral curve of X which passes through g when
t = 0. By uniqueness of integral curves, it must equal ¢ — Lg(exptX). Since
the exponential map is onto (we are implicitely assuming G is connected), g
belongs to the center. This also implies that conversely, if Z(G) is discrete,
then its Lie algebra is trivial, and B is nondegenerate.



8. COMPLEX AND SYMPLECTIC VECTOR SPACES 207

Suppose then that G is compact and semi-simple, so that its Killing form
is nondegenerate. Then —B is an inner product on g for which ady is skew-
adjoint, Y € g:

—B(ady X, Z) = B(adx Y, Z) = tr(ad[x yjoadz)
=tr(adx oady cadz —ady cadx oady)
=tr(adx cady cadz —adx cadz cady)
= tr(adx oadjy z)) = B(X,ady Z).
Thus, —B induces a so-called canonical bi-invariant metric on G. (2.4) in
Chapter 5 implies that G with the canonical metric is an Einstein manifold
with k = i: Given X,Y € g, and an orthonormal basis Z; of g,

Rie(X,Y) = S (R(Z, X)Y, ) = 1 S (([2 X Y. Z)

i %

(X,Y).

| =

1
=7 tr(adx cady) =

EXERCISE 159. Prove that a compact, oriented 4-dimensional Riemann-
ian manifold M with constant curvature x has Euler characteristic x(M) =

352 vol(M).

472

EXERCISE 160. Let G be a compact, connected, semi-simple Lie group
with its canonical metric, L : Asg — g the linear map which on decompos-
able elements is given by L(X AY) = [X,Y]. Show that for any a € Asg,
(Ra,a) = %|Taf?. Thus, G has nonnegative-definite curvature operator. The
Gauss-Bonnet theorem can be used to show that any Riemannian manifold with
nonnegative curvature operator has nonnegative Euler characteristic.

8. Complex and Symplectic Vector Spaces

There is yet another characteristic class, called the Chern class, that can be
defined on certain bundles possessing additional structure. Before introducing
it, we review some basic notions from complex linear algebra. The reader
famlhar with the material may proceed to Theorem 8.1 below without loss of
continuity.

A complex vector space (V,+,-) is a set V together with two operations
-+, -, satisfying the usual vector space axioms, but taking C as the scalar field
instead of R. A (complex) linear transformation L : V' — W between complex
spaces V, W is a map that satisfies L(v + w) = Lv + Lw, L{av) = alLuv,
for v,w € V, a € C. The standard example of a complex vector space is
(C™, +,-) where for v = (ag,...,an), w = (B1,---,5,) € C*, and a € C,
v+w= (o1 +Pb1,-..,an+ Bn), @-v=(aa,...,aa,). All standard notions
from real linear algebra, such as linear independence, bases, etc., carry over.
If e; denotes the n-tuple with 1 in the j-th slot and O elsewhere, then any
n-dimensional complex vector space is isomorphic to C* by mapping a basis
v1,...,U, of V pointwise to ey, ..., e, and extending linearly.

DEFINITION 8.1. The realification Vg of a complex vector space (V,+,-) is
the real vector space (V, +, -|g) with scalar multiplication restricted to the reals.
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An endomorphism J of a real vector space V is said to be a complez struc-
ture on V if J2 = —1y, cf. Exercise 57 in Chapter 2. The realification Vg of
a complex space V admits a canonical complex structure given by Jv = v
for v € V. Conversely, any real space with a complex structure J becomes a
complex space when defining (a + ib)v = av + bJv.

DEFINITION 8.2. The complezification V¢ of a real vector space V is the
complex space determined by the (real) space V &V together with the complex
structure J given by J(v,w) = (—w, v).

Thus, the isomorphism (Ve)r = V @ V maps u + iv to (u,v). One cus-
tomarily thinks of C™ as the complexification of R™, so that the identification
between the underlying real spaces is given by

h:(C"r — (RE)r =R" x R”,
v — (Rev,Imv).

The isomorphism h induces a linear map h : M, ,(C) — Moy 2, (R) from
the space of n x n complex matrices to the space of 2n x 2n real ones determined
by h(Mv) = h(M)h(v), for M € M, ,(C) and v € C*. Writing M = A+ B
with A, B € M, »(R), we have for v =z + iy € C,

h(M)(z,y) = h(Mv) = h((A+iB)(z + iy)) = h(Az — By + i(Bzx + Cy))
= (Az — By, By + Az).
Thus,

ReM —ImM
(8.1) h(M) = (ImM Re M ) € May 2,(R).

If we denote by GL(n, C) the group of all invertible n x n complex matrices, then
h : GL(n,C) — GL(2n,R) is a group homomorphism. Identifying GL(n,C)
with its image shows that it is a Lie subgroup of GL(2n,R) of dimension 2n?.

DEFINITION 8.3. A Hermitian inner product on a complex vector space V
isamap (,): V x V — C satisfying
(1) (avy + v2,v) = afvy, v) + (v2,v),
(2) (v1,v2) = (va2,v1), and
(3) (v,v) >0ifv #0,
forall a € C, v, v; € V.

By (1) and (2), (v,aw) = @(v,w). For example, the standard Hermitian
inner product on C" is given by

<v,w>:2a]§;, v={(a,...,an), w=(L1,...,0n).
J

If J denotes a complex structure on a real space V, there is always a (real)
inner product on V for which J is skew-adjoint: Let v; be any nonzero vector,
and set v, 1 := Ju;, Wi = span{vy,v,41}. Since J? equals minus the identity,
Wy is invariant under J. Arguing inductively, V decomposes as a direct sum
®pWi of J-invariant planes Wy = span{vg,vnir = Jup}, k= 1,...,n. If {,)
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denotes that inner product for which the basis vy, ..., vs, is orthonormal, then
the matrix of J with respect to this basis is

0 —-I,
<1n 0 ) (S Mzn,Qn(R).

This shows that J is skew-adjoint, and in fact isometric: (Jv, Jw) = —(J?v,w) =
(v, w).
PROPOSITION 8.1. Let V' be a complex vector space, J the induced complex

structure on the underlying real space V. Given any inner product {,) on Vg
for which J is skew-adjoint, the formula

(8.2) (v, wye = (v, w) + i{v, Jw)

defines a Hermitian inner product (,)c on'V. Conversely, if {, )c is a Hermitian
inner product on V', then the real part of {,)c is an inner product on Vg with
respect to which J is skew-adjoint, and (, )¢ is given by (8.2).

PROOF. Given a real inner product on Vg, (8.2) defines a complex-valued
function on V x V that is clearly additive in the first variable. Given a =
a+1ibeC,

(aw, w)c = ((a + ib)v, w) + i{(a + ib)v, Jw)
= a{v,w) + b(iv,w) + ia{v, Jw) + ib{iv, Jw)
= a(v,w) — b{v, Jw) + ia{v, Jw) + ib{v, w)
= (a+b)((v,w) + (v, Jw)) = a(v,w)c.

The second axiom follows from (v, w)c = (v, w) —i{v, Jw) = (w,v) +i{w, Jv) =
(w,v)¢c by the skew-adjoint property of J. For the same reason (v, Jv) = 0, so
that (v,v)c = (v,v) > 0if v # 0. Thus, {,) is Hermitian. Conversely, if {, )¢ is
a Hermitian inner product on V| it is elementary to check that its real part (,)
is an inner product on Vg. Furthermore,

Im(v, w)c = Re(—i(v,w)¢) = Re(v, iw)c = (v, Jw),
so that (8.2) holds. Finally,
(Jv,w) = Re(iv, w)c = Re(i{v, w)c) = — Im (v, w)c = —(v, Jw),
where the last equality follows from the previous equation, so that J is skew-
adjoint. O
There is an alternative way of describing complex structures:

DEFINITION 8.4. A symplectic form on a real vector space V is a nondegen-
erate, skew-symmetric, bilinear form o on V. (V, o) is then called a symplectic
vector space.

For example, the canonical symplectic form on R isog = S 7_, ufF Auntk.
ple, ymp k=1

It is the bilinear form associated to the canonical complex structure Jy on R??,
in the sense that og(v,w) = (Jov,w); this follows for instance from the fact
that the matrix of oy with respect to the standard basis is given by

0 I,
-I, 0)’
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so that og(e;, e;) = —(Joe;, e;) = (Joe;, e;). Notice also that
oo(Jov, Jow) = (ng, Jow) = —(v, Jow) = (Jov,w) = oo(v, w).

Up to isomorphism, og is the only symplectic form: For any symplectic vector
space (V, o), there exists an isomorphism L : V — R2" such that o¢(Lv, Lw) =
o(v,w) for all v, w € V (and in particular, V is even-dimensional). This is the
essence of the following:

PROPOSITION 8.2. For any symplectic vector space (V, o), there exists a
basis oy, ..., a9, of the dual V* such that o = ZZ=1 op N\ Qpyk-

PROOF. Let v; be any nonzero vector in V. Since o is nondegenerate, there
exists some w € V with o(vy,w) = 1. Set vj,41 := w, W := span{vy, vp41}, and
Z :={veV|owmuv)=0,v,41) =0} Any v € V can then be written as
v=w+(v—w) € W+Z, where w = o(v,vp41)v1 —0(v,01)Upt1. Hue WNZ,
then v = avy + bv, 41 for some a, b € R, and since u also belongs to Z, 0 =
o(u,v1) = bo(vpy1,v1) = —b. Similarly, 0 = o(u,v+1) = ac(v1,vp41) = a.
Thus, W N Z = {0}, so that V = W @ Z, and the restriction of ¢ to Z is
symplectic. Arguing inductively, we obtain a basis vy, ..., vq, of V, with dual
basis a1, ..., aan, such that o = > ag A apik. ]

A symplectic form o and a complex structure J on V are said to be com-
patible if o(Jv, Jw) = o(v,w) for all v, w € V.

PROPOSITION 8.3. If a real vector space has a complex structure J, then it
admits a compatible symplectic form o. Conversely, any symplectic form o on
V induces a compatible complex structure J. In each case, there exists an inner
product on V such that o(v,w) = (Jv,w), and J is an isometry.

PROOF. Given a complex structure J on V, choose an inner product for
which J is skew-adjoint, and hence also isometric. Then o, where o(v,w) :=
(Jv,w) is symplectic. Furthermore,

o(Jv, Jw) = (J?v, Jw) = —(v, Jw) = (Jv,w) = o(v,w).

Conversely, if o is a symplectic form on V', choose a basis vy such that o =
>k A aptk, where ap denotes the basis dual to vy, see Proposition 8.2.
Consider the inner product on V for which vy is orthonormal, and define
Jv = (1,0)%; ie., (Jv,w) = o(v,w). The matrix of J with respect to the
basis vy has as (k,[)-th entry (Jv;,vg) = o (v, vx), and is thus given by

0 -I,
I, 0 )°

This clearly implies that J is a complex structure and an isometry. Compati-
bility of J and o follows as before. ]

PROPOSITION 8.4. If V is a complex vector space, then its realification Vg
inherits a canonical orientation.

PROOF. An arbitrary basis {v1,...,v,} of V induces an element

Vi A Avg AJur A A Jo, € (A V) \ {0}
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The component of (Az,Vw) \ {0} containing it is independent of the original
basis: If wy,...,w, is another basis of V', and (,) is an inner product on V for
which J is skew-adjoint, then

(i A Avpg AJup A Nvp,w A ANwpg Adwy A - AJwy,) = det <g _B) ,

where the components a;;, b;;, of A, B, are given by a;; = (v;, w;) = (Juv;, Jw;),
and b;; = (Jv;,w;) = —(v;, Jw;). The matrix above is the image via h of
M =A+iB e M, »(C). The claim now follows from: O

LEMMA 8.1. For M € M, ,(C), det h(M) = |det M.

PROOF. The claim is easily seen to be true for diagonalizable matrices. But
the latter are dense in M, ,(C); in fact, we may assume that M € M, ,(C)
is in Jordan canonical form. If not all the diagonal terms are distinct, then
modifying them appropriately yields a matrix arbitrarily close to M with n
distinct eigenvalues. The latter is then diagonalizable. |

REMARK 8.1. There is another orientation on Vg that is commonly used,
namely the one induced by vy A Jvy A -+ A v, A Ju,, where v is a basis of
V. It coincides with ours only when [n/2] is even. The reason behind our
choice is that it makes the isomorphism h : (Cg,w) — (R?", can) orientation-
preserving, where w denotes the orientation of Cg from Proposition 8.4, and
can the canonical orientation of R?".

We next look at isometric automorphisms of a Hermitian inner product
space; i.e., automorphisms that preserve the Hermitian inner product. Since
such a space is linearly isometric to C™ with the standard Hermitian inner
product, we only need to study linear transformations L : C* — C™ that
satisfy (Lv, Lw) = (v, w), v, w € C™. Recall that the adjoint L* : C* — C™ of
L is defined by (L*v,w) = (v, Lw) for v, w in C™. If v}, is an orthonormal basis
of C™, then the matrix [L*] of L in this basis is the conjugate transpose of the
matrix [L] of L:

[L*)i5 = (L™, v5) = (v, Lvy) = (Luy,v5) = [L];,.
Now, the transformation L preserves the Hermitian inner product iff (Lv, Lw) =
(v,w), iff (L*Lv,w) = (v,w) for all v and w in C"; equivalently, L*L = LL* =

Ign. In terms of matrices, [L][L] = [L] [L] = I,.

DEFINITION 8.5. The unitary group U(n) is the subgroup of GL(n,C) that
preserves the Hermitian inner product:

Uln) = {M € GL(n,C) | M'M = MM =1,}.
LEMMA 8.2. h(U(n)) = h(GL(n,C)) N SO(2n).

PROOF. By Lemma 8.1, it suffices to show that M € U(n) iff h(M) €
O(2n). But since h(ﬁt) = h(M)!, we have that A € U(n) iff AR = I, iff
h(A)h(A)t = I, iff h(A4) € O(2n). O



212 6. CHARACTERISTIC CLASSES

For example, U (1) is the group of all complex numbers z such that (zv, zw) =
(v,w). Since (zv, zw) = zvzZW = 2Z{v,w), U(1) is the group S' of all unit com-
plex numbers, and

WU (1)) :{(‘; ‘ab> a1 = 1)

The exponential map e : M,, ,(C) — GL(n,C) is defined as in the real case
by
el\f — Mk

=2
k=0
cf. Examples and Remarks 4.2(iv) in Chapter 4. Since h(MN) = h(M)h(N),
we have that h(e) = M) and the diagram

]an,n((c) _L M2n,2n (R)

commutes. In particular, e is one-to-one on a neighborhood V of I,, € M,, ,(C),
so that given A € U(n)NeY, A = e for a unique M. Then I = AA = eMeMt7
and eM = (M)l = e M. je, M+ M =o. Conversely, if M + M= 0,

then eM € U(n). This shows that U(n) is an n-dimensional Lie subgroup of
GL(n,C) with Lie algebra u(n) canonically isomorphic to

01 M@ |21+ 37 =0p = (3 7) 144 =05 =B,

a fact that also follows from Lemma 8.2.
PROPOSITION 8.5. For any M € u(n), there exists A € U(n) such that
iM
AMA™! = , A € R;

equivalently,

_)\1

AARBDRA) ™ = | |

An

PrOOF. Recall that an endomorphism L of C™ is normal if LL* = L*L.
The spectral theorem asserts that a normal endomorphism of C™ has n or-
thonormal eigenvectors. The endomorphism v — Lv := M - v is skew-adjoint,
hence normal, so that there exists a matrix A € GL(n,C) such that AM A~! is
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diagonal. Since the eigenvectors are orthonormal, A € U(n). Furthermore, the
conjugate transpose of
A
AMA' =
An

is —A]\/Izt, so that \; + A\; = 0, and each )\, is imaginary. O

A polynomial on u(n) is a map p : u(n) — R such that po h™! : h(u(n)) C
Moy, 2, (R) — R is a polynomial in the usual sense. p is said to be invariant
if it is invariant under the action of U(n). For example, for o h and Pfoh are
invariant polynomials, because h(U(n)) C SO(2n). Notice that fi can actually
be defined on M, ,(C) as in Example 1.1, but is not, in general, real-valued.
However, the polynomial f{, where fi(M) = fi(iM), is real-valued on u(n):

n
_z nAk
: : k

k=0

(=D)*fe(iM)az" " = det(xI, — iM)

I

et(zl, + M ) = det(xl,, — iM)

Il

- 2 £

(=D)* f(M)z" ",

b
Il
o

THEOREM 8.1. Any invariant polynomial on the Lie algebra u(n) is a poly-
nomial in fi,..., fL.
PROOF. For z1,...,2, € C, let (21 ... 2,) denote the matrix

21

Zn

Given an invariant polynomial f on u(n), it suffices to show that there exists a
polynomial p such that

FOA - iA) = p(fLGAL - i),y FL(iA - i)

for all A; € R. To see this, denote by ¢ the polynomial given by g(A1,...,\,) =
f(iA1...iA,). Since any pair (Ag, \;) can be transposed when conjugating the
matrix (iA; ...4\,) by an appropriate A € U(n), ¢ is symmetric, so that

g A1, A ) =p(s1( A1, o A0 e S, A)
for some polynomial p. Then
FEM . iAL) = q(A1, - Am) = p(s1(A1, - An), oy Sn( A, )
=p(fi(A1---An), -, fn(A1 o A0).

But (A1...An) = —i(iA1...iAp), so that fr(A1...An)
Thus,

(DR fi(irr .. in).

FEA i) = p(=FL(A - i),y (ZD)FL (AL . iA)),

as claimed. O
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According to Theorem 8.1, for, 0 h and Pf oh are polynomials in f{,..., 1.
These polynomials can be described explicitely:

PROPOSITION 8.6. foroh = (—1)k lzio( D! fifae ;. Pfoh = (—1 N IE

Proor. By Lemma 8.1,
| det(zI,—M)|* = det(h(zl,—M)) = det(zlzn—h(M)) = > _ x> * foroh(M1).

On the other hand,

n 2
|det(zI, — M)|* = |det(xI, —i(—iM))|* = Z(— Ye(=i)k fi(M)a"
k=0
= [a" + i FH(M) - 2" (M) — i f(M) + - |
=|(z" — 2" 2 f3 (M) + 2" fi(M ))
+i(z" T (M) = 2" f(M) + 2" (M) )
= (@" = 2" 2 FM) + @ (M) )P
+ (@ M) = 2" TR (M) + 2P f (M) )2,
The coefficient of £2"~2% in the last equality is
> () EDER LMY= fL (M)
k—j even
J N Z 1)(h=i+1)/2 fi (M) (— 1)(k+]+1)/2f1 (M)
k—j odd
= (=DM D2 D F (M) = Y fi (M) fiy (M)
k—j even k—j odd
= (DY DR i (M) fi (M)

k—j

= (=1)F Y (D) (M) £,y (M),

l

This establishes the first identity in the proposition. For the one involving the
Pfaffian, it suffices to check the formula in the case when M = (i\;...i\,).
Then

-\
Pf(h(M)) = Pf

An
— 61(n+1)2(n+2)~~n(2n)(_1)")\1 A
= (=D)A(=1)" AN, = (D detiM = (1) £ ().
0
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EXERCISE 161. Show that any Hermitian inner product is determined by
its norm function. Specifically,

Re{v,w) = %(h} +w|? - v —w|?), Im{v,w) = i(|v +iw|? — v — iwl|?).

EXERCISE 162. Show that a symplectic form on V induces a Hermitian
inner product on V', and that conversely, if (,) is a Hermitian inner product on
V, then o(v,w) = — Im(v, w) defines a symplectic form on V.

EXERCISE 163. Fill in the details of the proof of Lemma 8.1.

9. Chern Classes

A complex rank n vector bundle is a fiber bundle with fiber C™ and structure
group GL(n,C). Thus, the fiber over each point inherits a complex vector space
structure. The realification {g of a complex bundle & and the complexification
&c of a real bundle ¢ are defined in the same way as for vector spaces. In
particular, &g is orientable, with a canonical orientation.

A Hermitian metric on a complex vector bundle { = 7 : E — M is a section
of the bundle Hom(¢ ® &, C) which is a Hermitian inner product on each fiber.
Such a metric always exists, since one can choose a Euclidean metric on g,
and this metric induces, by Exercise 161, a Hermitian one on £. A Hermitian
connection V on £ is one for which the metric is parallel. In this case,

XU, V)= (VxUV)+(UVxV), XeXM, UV €Tt

Just as in the Riemannian case, the curvature tensor R of a Hermitian connec-
tion is skew-adjoint:
Thus, given p € M, and an orthonormal basis b : C* — E,, b= o R(z,y)ob €
u(n) for any z, y € M,. _

Let gi denote the polarization of the polynomial f; from the previous sec-
tion. By Proposition 1.1, g induces a parallel section g; of Endy(§)*, and

gi(RF) is a 2k-form on M. By Theorem 1.1, this form is closed, and its coho-
mology class is independent of the choice of connection.

DEFINITION 9.1. The k-th Chern class cx(£) € H?**(M) of ¢ is the class
determined by the 2k-form
L ink
Ck = (QT),CQJC(R ).

¢k is called the k-th Chern form (of the connection). The total Chern class of
£ is
c(§) = co(§) +c1(§) +--- +enlf),

where co(£) denotes the class containing the constant function 1.
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EXAMPLE 9.1. A complex line bundle (or, more accurately, its realification)
is equivalent to an oriented real plane bundle: To see this, it suffices to exhibit
a complex structure J on an oriented plane bundle £ = 7 : E — M. Choose a
Euclidean metric on £, and for nonzero v in E, define Ju to be the unique vector
of norm equal to that of u, such that u, Ju is a positively oriented orthogonal
basis of E(,). J is then a complex structure on §, and it makes sense to talk
about the first Chern class ¢;(€) of £&. Given a Hermitian connection on &, the
Chern form c; at p € M is given by

1 1 1
ci(z,y) = = triR(z,y) = 5= (iR(z,y)u,u) = = (R(z,y)u, —u)
27 2 2

1
= —(R(z, y)iu,u) € R,
2m
for unit » in E,. In terms of the underlying real plane bundle,

calz,y) = %(R(w,y)]u, uy,

where (,) now denotes the Euclidean metric on £g induced by the real part of
the Hermitian metric on £. By Examples and Remarks 3.1(i), the first Chern
class of a complex line bundle equals the Euler class of its realification.

More generally, consider a complex rank n bundle £ = 7 : E — M with
Hermitian connection V. The real part of the Hermitian metric is a Euclidean
metric which is parallel under V. Thus, V induces a Riemannian connection v
on £g. Since iU is parallel along a curve whenever U is, the complex structure
J is parallel.

A Hermitian orthonormal basis b : C* — E, induces an isomorphism B :
u(E,) — u(n). There is a corresponding Euclidean orthonormal basis bo h™! :
R?"* — E, that induces an isomorphism B : o(E,) — o(2n). Denote by h the
corresponding homomorphism B~ oho B : u(E,) — o(E,). If R, R denote the
curvature tensors of V and Y~7, then R = ho R. Thus,

BR=BohoR=BoB 'ohoBoR=h(BR),
and by Proposition 8.6,

2k
9ok (R**) = for(BR) = for o h(BR) = (-1)" Z(_l)lfzi(BR)fék—z(BR)
2k ' ' -
= (=1)* Y (=1)'gH(R") A ga (R ).
1=0

Similarly,
pf(R") = PE(BR) = Pfoh(BR) = (-1)"/?f(BR) = (-1)!"/?g;,(R™).
Summarizing, we have proved the following:

THEOREM 9.1. If € is a complex rank n bundle, then
2k

pr(&r) = (=1)F D (-D'a(@ Uewki(€),  k=1,...,n,

=0
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and
e(ér) = (=1)"?le, (€).

In many references, one finds instead e(g) = ¢,(£). The sign in Theo-
rem 9.1 stems from our choice of imbedding h : C§ — R?" and the resulting
orientation on &g.

Instead of looking at the Pontrjagin classes of the realification of a complex
bundle £, one can instead begin with a real bundle &, and look at the Chern
classes of its complexification ¢ = (£ B &, J), where J(u,v) = (—v, u).

THEOREM 9.2. If £ is a real vector bundle, then cor(éc) = (—1)Fpi(€).

Proor. Consider a Euclidean metric (,) on £, and denote by (,)¢ the
Hermitian metric on {c the real part of which is {,). Then

((U1,U2), V1, Va))c = (U1, V1) + (Uz, Va) + i((U2, V1) — (U1, V2)),

for U;, V; € T'¢; cf. Exercise 164. A Riemannian connection V on £ induces one
on & @€, with y

VU1, Us2) = (V Uy, V. Us).
If (Uy,Us) is parallel along a curve, then so is J(Uy, Uz) = (—Ua, U;), implying
that J is parallel. Furthermore, if (V1,V2) is also parallel, then the function
{(Uy,Us), (V1, Va))c is constant. Thus, V is a Hermitian connection, with cur-
vature tensor

R(z,y)(U1,U2)(p) = (R(z,y)U1(p), R(z,9)Ua2(p)), @,y € My, Ui €TE.
Denoting by [R] € o(n) the matrix of R(z,y) in an orthonormal basis b : R® —

E, of E,, we have that the matrix of R(xz,y) in the basis (b,b) of E, ® E, is
given by

In the corresponding Hermitian basis (b, b) o h, this matrix is just the original
[R]. In other words, if B : o(E,) — o(n) is the isomorphism induced by b, and
B :u(E, ® E,) — u(n) the one induced by (b,b) o h, then BR = BR. Thus,

G (R?*) = f3,(BR) = f3(BR) = (=1)* fox(BR) = (=1)*gax(R*),
which establishes the claim. d

To account for the odd Chern classes that are missing in the above theorem,
define the conjugate bundle € of a complex bundle £ to be the (complex) bundle
with the same underlying total space and addition, but with scalar multiplica-
tion e given by aeu = @u, where the right side is the usual scalar multiplication
in & Although the identity is a real bundle equivalence, £ and its conjugate
need not be equivalent as complex bundles; i.e., there may not be an equiva-
lence h : & — € satisfying h(au) = a e h(u) = @h(u). Such an h does, however,
exist when £ is the complexification nc of a real bundle n: It is straightforward
to verify that the formula h(u,v) = (u, —v) defines such an equivalence.

ProPOSITION 9.1. If £ is a complex bundle, then the total Chern class of
1ts conjugate is given by

¢(€) =1 - c1(€) + eal€) — es(6) + -+



218 6. CHARACTERISTIC CLASSES

PROOF. A Hermitian inner product (,) on & induces a Hermitian inner
product {,) on € given by

(U, V) := (U, V) = (V,U), UV eT¢.

A Hermitian connection V on £ then becomes also a Hermitian connection V
on the conjugate bundle, and their curvature tensors are related by

(R(z,y)u,v) = (v, R(z,y)u) = (R(z,y)u,v).
Since the eigenvalues of R and R are imaginary, R(z,y) = —R(z,y). Thus,
gk(R) = gi(~R) = (-1)*gi(R),
which establishes the claim. O
We have seen that given a real bundle &, its complexification &¢ is equiv-

alent, in the complex sense, to the conjugate bundle . Proposition 9.1 then
implies the following;:

COROLLARY 9.1. If £ is a real bundle, then the odd Chern classes of its
complexification are zero.

THEOREM 9.3. For complezx bundles £ and n, c(§ ® 1) = (&) Ue(n).

PROOF. Notice that for complex matrices M, N,

fil(A® B) = Zfz ) fema(

The statement now follows by an argument similar to that in Theorem 4.2. O

ExAaMPLE 9.2. Consider an oriented rank 4 bundle &3, and suppose its
structure group reduces to S3 C SO(4); cf. Section 5. Thus, if P denotes the
total space of the corresponding principal S3-bundle, then & = 7 : P x 3 H—

P/S3, with S3 acting on H = R* by left multiplication. Any quaternion
q = a+ bi + c¢j + dk can be written as (a + bi) + j(c — di) = z; + jz, for some
complex numbers 21, z2. The map

h:H — C?,
21 + jzo — (21, 22), z; € C

becomes a complex isomorphism if we define scalar multiplication in H by a(z;+
jz2) = (=1 +jz2)a =z + jza.

The map A in turn induces a homomorphism h : GL(1,H) — GL(2,C)
determined by

h(qu) = h(g)h(u), g€ H\{0}, ueH.
Given ¢ = z; + jzp € 8% and u = wy + jwy € H,
qu = (21 + jz2) (w1 + jwz) = (z21w1 — Zawe) + j(z2w1 + ZTws).

Recalling that 2127 + 2022 = 1, we conclude that

B(Zl +.722) = (i; ;_?2> c U(2)
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This exhibits &, as the realification of a complex bundle £ with group U(2). By
Theorem 9.1,
p1(0) = —(2¢2(&) — er(&) Uer(€)) = 2e(&o) + c1(€).
Consider the map L : Hl — H that sends ¢ € H to gj. L preserves addition, and
given « € C, g = z1 + jzo € H,
L{aq) = L(z1a + jzpa) = (10 + jzaa)j = z1ja + jzoja = (21 + j2o)ja@
=ualg.

Thus, L induces a complex equivalence & 2 &, so that ¢;(¢) = 0 by Proposi-
tion 9.1, and

P1(80) = 2e(&o),

a property already observed earlier in the special case that the base is a 4-sphere,
cf. Corollary 5.1.

EXERCISE 164. Let ¢ be a real vector bundle with complexification {¢ =
@& J), J(u,v) = (—v,u). A Euclidean metric on £ extends naturally to P&
by setting

<(U1,U2),(V1,V2)> :<U1.,V1>+<U2,V2>, U;,V; EF{.

By Exercise 161, there exists a unique Hermitian metric {, )¢ on &c the norm
function of which equals that of the Euclidean metric. Prove that

(U1, Uz), (Vi, Va))c = (U1, V1) + (Uz, Va) + i((Us, V1) — (U1, V2)).

EXERCISE 165. Determine the total Chern class of fyfl (observe that GT,
is just CP1 = §2).
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