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Preface 

This book is primarily concerned with the study of cohomology theories of 
general topological spaces with "general coefficient systems." Sheaves play 
several roles in this study. For example, they provide a suitable notion of 
"general coefficient systems." Moreover, they furnish us with a common 
method of defining various cohomology theories and of comparison between 
different cohomology theories. 

The parts of the theory of sheaves covered here are those areas impor
tant to algebraic topology. Sheaf theory is also important in other fields of 
mathematics, notably algebraic geometry, but that is outside the scope of 
the present book. Thus a more descriptive title for this book might have 
been Algebraic Topology from the Point of View of Sheaf Theory. 

Several innovations will be found in this book. Notably, the con
cept of the "tautness" of a subspace (an adaptation of an analogous no
tion of Spanier to sheaf-theoretic cohomology) is introduced and exploited 
throughout the book. The fact that sheaf-theoretic cohomology satisfies 
the homotopy property is proved for general topological spaces. 1 Also, 
relative cohomology is introduced into sheaf theory. Concerning relative 
cohomology, it should be noted that sheaf-theoretic cohomology is usually 
considered as a "single space" theory. This is not without reason, since 
cohomology relative to a closed subspace can be obtained by taking coef
ficients in a certain type of sheaf, while that relative to an open subspace 
(or, more generally, to a taut subspace) can be obtained by taking coho
mology with respect to a special family of supports. However, even in these 
cases, it is sometimes of notational advantage to have a relative cohomology 
theory. For example, in our treatment of characteristic classes in Chapter 
IV the use of relative cohomology enables us to develop the theory in full 
generality and with relatively simple notation. Our definition of relative 
cohomology in sheaf theory is the first fully satisfactory one to be given. 
It is of interest to note that, unlike absolute cohomology, the relative co
homology groups are not the derived functors of the relative cohomology 
group in degree zero (but they usually are so in most cases of interest). 

The reader should be familiar with elementary homological algebra. 
Specifically, he should be at home with the concepts of category and func
tor, with the algebraic theory of chain complexes, and with tensor products 
and direct limits. A thorough background in algebraic topology is also nec-

IThis is not even restricted to Hausdorff spaces. This result was previously known 
only for paracompact spaces. The proof uses the notion of a "relatively Hausdorff 
subspace" introduced here. Although it might be thought that such generality is of no 
use, it (or rather its mother theorem II-I1.l) is employed to advantage when dealing 
with the derived functor of the inverse limit functor. 

v 
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essary. In Chapters IV, V and VI it is assumed that the reader is familiar 
with the theory of spectral sequences and specifically with the spectral se
quence of a double complex. In Appendix A we give an outline of this 
theory for the convenience of the reader and to fix our notation. 

In Chapter I we give the basic definitions in sheaf theory, develop 
some basic properties, and discuss the various methods of constructing new 
sheaves out of old ones. Chapter II, which is the backbone of the book, 
develops the sheaf-theoretic cohomology theory and many of its properties. 

Chapter III is a short chapter in which we discuss the Alexander
Spanier, singular, de Rham, and Cech cohomology theories. The meth
ods of sheaf theory are used to prove the isomorphisms, under suitable 
restrictions, of these cohomology theories to sheaf-theoretic cohomology. 
In particular, the de Rham theorem is discussed at some length. Most of 
this chapter can be read after Section 9 of Chapter II and all of it can be 
read after Section 12 of Chapter II. 

In Chapter IV the theory of spectral sequences is applied to sheaf co
homology and the spectral sequences of Leray, Borel, Cartan, and Fary are 
derived. Several applications of these spectral sequences are also discussed. 
These results, particularly the Leray spectral sequence, are among the most 
important and useful areas of the theory of sheaves. For example, in the 
theory of transformation groups the Leray spectral sequence of the map to 
the orbit space is of great interest, as are the Leray spectral sequences of 
some related mappings; see [15]. 

Chapter V is an exposition of the homology theory of locally compact 
spaces with coefficients in a sheaf introduced by A. Borel and J. C. Moore. 
Several innovations are to be found in this chapter. Notably, we give a 
definition, in full generality, of the homomorphism induced by a map of 
spaces, and a theorem of the Vietoris type is proved. Several applications 
of the homology theory are discussed, notably the generalized Poincare 
duality theorem for which this homology theory was developed. Other 
applications are found in the last few sections of this chapter. Notably, 
three sections are devoted to a fairly complete discussion of generalized 
manifolds. Because of the depth of our treatment of Borel-Moore homology, 
the first two sections of the chapter are devoted to technical development 
of some general concepts, such as the notion and simple properties of a 
cosheaf and of the operation of dualization between sheaves and cosheaves. 
This development is not really needed for the definition of the homology 
theory in the third section, but is needed in the treatment of the deeper 
properties of the theory in later sections of the chapter. For this reason, 
our development of the theory may seem a bit wordy and overcomplicated 
to the neophyte, in comparison to treatments with minimal depth. 

In Chapter VI we investigate the theory of cosheaves (on general spaces) 
somewhat more deeply than in Chapter V. This is applied to Cech homol
ogy, enabling us to obtain some uniqueness results not contained in those 
of Chaper V. 

At the end of each chapter is a list of exercises by which the student 
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may check his understanding of the material. The results of a few of the 
easier exercises are also used in the text. Solutions to many of the exercises 
are given in Appendix B. Those exercises having solutions in Appendix B 
are marked with the symbol @. 

The author owes an obvious debt to the book of Godement [40) and to 
the article of Grothendieck [41), as well as to numerous other works. The 
book was born as a private set of lecture notes for a course in the theory of 
sheaves that the author gave at the University of California in the spring 
of 1964. Portions of the manuscript for the first edition were read by A. 
Borel, M. Herrera, and E. Spanier, who made some useful suggestions. 
Special thanks are owed to Per Holm, who read the entire manuscript of 
that edition and whose perceptive criticism led to several improvements. 

This book was originally published by McGraw-Hill in 1967. For this 
second edition, it has been substantially rewritten with the addition of 
over eighty examples and of further explanatory material, and, of course, 
the correction of the few errors known to the author. Some more recent 
discoveries have been incorporated, particularly in Sections II-16 and IV-
8 regarding cohomology dimension, in Chapter IV regarding the Oliver 
transfer and the Conner conjecture, and in Chapter V regarding generalized 
manifolds. The Appendix B of solutions to selected exercises is also a new 
feature of this edition, one that should greatly aid the student in learning 
the theory of sheaves. Exercises were chosen for solution on the basis of 
their difficulty, or because of an interesting solution, or because of the usage 
of the result in the main text. 

Among the items added for this edition are new sections on tech co
homology, the Oliver transfer, intersection theory, generalized manifolds, 
locally homogeneous spaces, homological fibrations and p-adic transforma
tion groups. Also, Chapter VI on cosheaves and tech homology is new to 
this edition. It is based on [12). 

Several of the added examples assume some items yet to be proved, 
such as the acyclicity of a contractible space or that sheaf cohomology 
and singular cohomology agree on nice spaces. Disallowing such forward 
references would have impoverished our options for the examples. 

As well as the common use of the symbol 0 to signal the end, or absence, 
of a proof, we use the symbol 0 to indicate the end of an example, although 
that is usually obvious. 

Throughout the book the word "map" means a morphism in the partic
ular category being discussed. Thus for spaces "map" means "continuous 
function" and for groups "map" means "homomorphism." 

Occasionally we use the equal sign to mean a "canonical" isomorphism, 
perhaps not, strictly speaking, an equality. The word "canonical" is often 
used for the concept for which the word "natural" was used before category 
theory gave that word a precise meaning. That is, "canonical" certainly 
means natural when the latter has meaning, but it means more: that which 
might be termed "God-given." We shall make no attempt to define that 
concept precisely. (Thanks to Dennis Sullivan for a theological discussion 
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in 1969.) 
The manuscript for this second edition was prepared using the SCIEN

TIFIC WORD technical word processing software system published by Tel 
Software research, Inc. This is a "front end" for Donald Knuth's 'lEX type
setting system and the ]}.'lEX extensions to it developed by Leslie Lamport. 
Without SCIENTIFIC WORD it is doubtful that the author would have had 
the energy to complete this project. 

NORTH FORK, CA 93643 
November 22, 1996 
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Chapter I 

Sheaves and Presheaves 

In this chapter we shall develop the basic properties of sheaves and pre
sheaves and shall give many of the fundamental definitions to be used 
throughout the book. In Sections 2 and 5 various algebraic operations on 
sheaves are introduced. If we are given a map between two topological 
spaces, then a sheaf on either space induces, in a natural way, a sheaf on 
the other space, and this is the topic of Section 3. Sheaves on a fixed 
space form a category whose morphisms are called homomorphisms. In 
Section 4, this fact is extended to the collection of sheaves on all topo
logical spaces with morphisms now being maps J of spaces together with 
so-called J-cohomomorphisms of sheaves on these spaces. In Section 6 the 
basic notion of a family of supports is defined and a fundamental theorem 
is proved concerning the relationship between a certain type of presheaf 
and the cross-sections of the associated sheaf. This theorem is applied 
in Section 7 to show how, in certain circumstances, the classical singular, 
Alexander-Spanier, and de Rham cohomology theories can be described in 
terms of sheaves. 

1 Definitions 

Of central importance in this book is the notion of a presheaf (of abelian 
groups) on a topological space X. A presheaf A on X is a function that 
assigns, to each open set U C X, an abelian group A(U) and that assigns, 
to each pair U C V of open sets, a homomorphism (called the restriction) 

ru,v : A(V) -+ A(U) 

in such a way that 
ru,u = 1 

and 

ru, vrv, w = ru, w when Uc Vc W. 

Thus, using functorial terminology, we have the following definition: 

1.1. Definition. Let X be a topological space. A "presheaJ" A (oJ abelian 
groups) on X is a contravariant functor from the category oj open subsets 
oj X and inclusions to the category oj abelian groups. 

1 



2 I. Sheaves and Presheaves 

In general, one may define a presheaf with values in an arbitrary cate
gory. Thus, if each A(U) is a ring and the ru, v are ring homomorphisms, 
then A is called a presheaf of rings. Similarly, let A be a presheaf of rings 
on X and suppose that B is a presheaf on X such that each B(U) is an 
A(U)-module and the ru,v : B(V) -> B(U) are module homomorphisms 
[that is, if a E A(V),/1 E B(V) then ru,v(a/1) = ru,v (a)ru,v (,8)]. Then B 
is said to be an A-module. 

Occasionally, for reasons to be explained later, we refer to elements of 
A(U) as "sections of A over U." If s E A(V) and U c V then we use the 
notation slU for ru,v(s) and call it the "restriction of s to U." 

Examples of presheaves are abundant in mathematics. For instance, 
if M is an abelian group, then there is the "constant presheaf" A with 
A(U) = M for all U and ru,v = 1 for all U C V. We also have the presheaf 
B assigning to U the group (under pointwise addition) B(U) of all functions 
from U to M, where ru,v is the canonical restriction. If M is the group of 
real numbers, we also have the presheaf C, with C(U) being the group of all 
continuous real-valued functions on U. Similarly, one has the presheaves 
of differentiable functions on (open subsets of) a differentiable manifold Xi 
of differential p-forms on X; of vector fields on X; and so on. In algebraic 
topology one has, for example, the presheaf of singular p-cochains of open 
subsets U C X; the presheaf assigning to U its pth singular cohomology 
group; the presheaf assigning to U the pth singular chain group of X mod 
X - U; and so on. 

It is often the case that a presheaf A on X will have a relatively simple 
structure "locally about a point x E X." To make precise what is meant 
by this, one introduces the notion of a "germ" of A at the point x E X. 
Consider the set 9J1 of all elements s E A(U) for all open sets U C X 
with x E U. We say that the elements s E A(U) and t E A(V) of 9J1 
are equivalent if there is a neighborhood W C U n V of x in X with 
rw,u(s) = rw,v(t). The equivalence classes of 9J1 under this equivalence 
relation are called the germs of A at x. The equivalence class containing 
s E A(U) is called the germ of s at x E U. Thus, for example, one has the 
notion of the germ of a continuous real-valued function f at any point of 
the domain of f. 

Of course, the set .Ji x of germs of A at x that we have constructed is 
none other than the direct limit 

.Jix = limA(U), 

where U ranges over the open neighborhoods of x in X. The set.Jix inherits 
a canonical group structure from the groups A(U). The disjoint union .Ji 
of the .Ji x for x E X provides information about the local structure of 
A, but most global structure has been lost, since we have discarded all 
relationships between the .Ji x for x varying. In order to retrieve some 
global structure, a topology is introduced into the set .Ji of germs of A, as 
follows. Fix an element s E A(U). Then for each x E U we have the germ 
Sx of s at x. For s fixed, the set of all germs Sx E .Ji x for x E U is taken 
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to be an open set in .yf. The topology of .yf is taken to be the topology 
generated by these open sets. (We shall describe this more precisely later 
in this section.) With this topology, .yf is called "the sheaf generated by 
the presheaf A" or "the sheaf of germs of A," and we denote this by 

l.yf = 9'~(A) or .yf = 9'~(U f-> A(U))·I 

In general, the topology of .yf is highly non-Hausdorff. 
There is a natural map 7r : .yf ---> X taking .yf x into the point x. It will 

be verified later in this section that 7r is a local homeomorphism. That is, 
each point t E .yf has a neighborhood N such that the restriction 7rIN is 
a homeomorphism onto a neighborhood of 7r(t). (The set {sx I x E U} for 
s E A(U) is such a set N.) Also it is the case that in a certain natural sense, 
the group operations in .yfx, for x varying, are continuous in x. These facts 
lead us to the basic definition of a sheaf on X: 

1.2. Definition. A "sheaf" (of abelian groups) on X is a pair (.yf,7r) 
where: 

(i) .yf is a topological space (not Hausdorff in general); 

(ii) 7r:.yf ---> X is a local homeomorphism onto X; 

(iii) each.yf x = 7r- 1 (x), for x EX, is an abelian group (and is called the 
"stalk" of.yf atx); 

(iv) the group operations are continuous. 

(In practice, we always regard the map 7r as being understood and 
we speak of the sheaf .yf.) The meaning of (iv) is as follows: Let.yf /.::,.yf 
be the subspace of .yf x .yf consisting of those pairs (a, (3) with 7r( a) = 
7r((3). Then the function .yf /.::,.yf ---> .yf taking (a, (3) f-> a - (3 is continuous. 
[Equivalently, a f-> -a of .yf ---> .yf is continuous and (a, (3) f-> a + (3 of 
.Yi /.::,.Yi ---> .yf is continuous.] 

Similarly one may define, for example, a sheaf of rings or a module 
(sheaf of modules) over a sheaf of rings. 

Thus, for a sheaf fll of abelian groups to be a sheaf of rings, each stalk is 
assumed to have the (given) structure of a ring, and the map (a, (3) f-> a(3 
of fll/.::,fil ---> fil is assumed to be continuous (in addition to (iv». Bya 
sheaf of rings with unit we mean a sheaf of rings in which each stalk has a 
unit and the assignment to each x E X of the unit Ix E fil x is continuous. 1 

If fll is a sheaf of rings and if.yf is a sheaf in which each stalk .yf x has 
a given filx-module structure, then.yf is called an fil-module (or a module 
over fil) if the map fil /.::,.yf ---> .yf given by (p, a) f-> pa is continuous, where, 
of course, fll/'::'.yf = {(p, a) E fll x .yf17r(p) = 7r(a)}. 

1 Example 1.13 shows that this latter condition is not superfluous. 



4 I. Sheaves and Presheaves 

For example, the sheaf no of germs of smooth real-valued functions on 
a differentiable manifold Mn is a sheaf of rings with unit, and the sheaf np 

of germs of differential p-forms on M n is an nO-module; see Section 7. 
If A is a sheaf on X with projection 1[' : A ---+ X and if Y eX, then 

the restriction AIY of A is defined to be 

which is a sheaf on Y. 
If A is a sheaf on X and if Y eX, then a section (or cross section) of 

A over Y is a map s : Y ---+ A such that 1[' 0 s is the identity. Clearly the 
pointwise sum or difference (or product in a sheaf of rings, and so on) of 
two sections over Y is a section over Y. 

Every point x E Y admits a section s over some neighborhood U of x 
by (ii). It follows that s - s is a section over U taking the value 0 in each 
stalk. This shows that the zero section 0 : X ---+ A, is indeed a section. 
It follows that for any Y c X, the set A(Y) of sections over Y forms an 
abelian group. Similarly, &l(Y) is a ring (with unit) if &l is a sheaf of rings 
(with unit), and moreover, A(Y) is an &l (Y)-module if A is an &l-module. 

Clearly, the restriction A(Y) ---+ A(Y'), for Y' c Y, is a homomor
phism. Thus, in particular, the assignment U f---> A(U), for open sets 
U eX, defines a presheaf on X. This presheaf is called the presheaf of 
sections of A. 

Another common notation for the group of all sections of A is 

, r(A) = A(X)., 

See Section 6 for an elaboration on this notation. 
We shall now list some elementary consequences of Definition 1.2. The 

reader may supply any needed argument. 

(a) 1[' is an open map. 

(b) Any section of A over an open set is an open map. 

(c) Any element of A is in the range of some section over some open set. 

(d) The set of all images of sections over open sets is a base for the 
topology of A. 

(e) For any two sections s E A(U) and t E A(V), U and V open, the 
set W of points x E Un V such that s(x) = t(x) is open. 

Note that if A were Hausdorff then the set W of (e) would also be 
closed in Un V. That is generally false for sheaves. Thus (e) indicates 
the "strangeness" of the topology of A. It is a consequence of part (ii) of 
Definition 1.2. 
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1.3. Example. A simple example of a non-Hausdorff sheaf is the sheaf 
on the real line that has zero stalk everywhere but at 0, and has stalk Z2 
at o. There is only one topology consistent with Definition 1.2, and the 
two points in the stalk at 0 cannot be separated by open sets (sections over 
open sets in JR). As a topological space, this is the standard example of a 
non-Hausdorff I-manifold. 0 

1.4. Example. Perhaps a more illuminating and more important example 
of a non-Hausdorff sheaf is the sheaf ~ of germs of continuous real-valued 
functions on JR. The function f(x) = x for x ;::: 0 and f(x) = 0 for x :5 0 has 
a germ fo at 0 E JR that does not equal the germ 00 of the zero function, but 
a section through fo takes value 0 in the stalk at x for all x < 0 sufficiently 
near o. Thus fo and 00 cannot be separated by open sets in ~. The sheaf 
of germs of differentiable functions gives a similar example, but the sheaf 
of germs of real analytic functions is Hausdorff. 0 

1.5. We now describe more precisely the construction of the sheaf gener
ated by a given presheaf. 

Let A be a presheaf on X. For each open set U C X consider the space 
U x A(U), where U has the subspace topology and A(U) has the discrete 
topology. Form the topological sum 

E = -+- (U x A(U». 
Uc.x 

Consider the following equivalence relation R on E: If (x, s) E U x A(U) 
and (y, t) E V x A(V) then (x, s)R(y, t) {::} (x = y and there exists an open 
neighborhood W of x with We Un V and slW = tIW). 

Let J1 be the quotient space E / R and let 11" : J1 ~ X be the pro
jection induced by the map p : E ~ X taking (x, s) f-+ x. We have the 
commutative diagram 

E q • J1 

~ /1f 
X. 

Recall that the topology of J1 = E / R is defined by: Y C J1 is open 
{::} q-l(y) is open in E. Note also that for any open subset E' of E, the 
saturation R(E') = q-lq(E') of E' is open. Thus q is an open map. Now 
11" is continuous, since p is open and q is continuous; 11" is locally one-to-one, 
since p is locally one-to-one and q is onto. Thus 11" is a local homeomorphism. 

Clearly J1 x = 1I"-1(X) is the direct limit of A(U) for U ranging over 
the open neighborhoods of x. Thus the stalk J1 x has a canonical group 
structure. It is easy to see that the group operations in J1 are continuous 
since they are so in E. Therefore J1 is a sheaf. 

J1 is called the sheaf generated by the presheaf A. As we have noted, 
this is denoted by J1 = 9'heo{(A) or J1 = 9'heo{(U f-+ A(U». 
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1.6. Let u1 0 be a sheaf, A the presheaf of sections of u1 0, and u1 = 
9'M4(A). Any element of u10 lying over x E X has a local section about it, 
and this determines an element of u1 over x. This gives a canonical func
tion ). : u1 0 -> u1. By the definition of the topology of u1, ). is open and 
continuous. It is also bijective on each stalk, and hence globally. Therefore 
). is a homeomorphism. It also preserves group operations. Thus u1 0 and 
u1 are essentially the same. For this reason we shall usually not distinguish 
between a sheaf and its presheaf of sections and shall denote them by the 
same symbol. 

1.7. Let A be a presheaf and u1 the sheaf that it generates. For any 
open set U C X there is a natural map 8u : A(U) -> u1(U) (recall the 
construction of u1) that is a homomorphism and commutes with restrictions 
(which is the meaning of "natural"). When is 8u an isomorphism for all 
U? Recalling that u1x = UmxEUA(U), it follows that an element s E A(U) 
is in Ker 8u {:::} s is "locally trivial" (that is, for every x E U there is a 
neighborhood V of x such that slV = 0). 

Thus 8u is a monomorphism for all U c X {:::} the following condition 
holds: 

(Sl) If U = U Ua, with Ua open in X, and s, t E A(U) are such that 
a 

sIVa = tlUa for all a, then s = t. 2 

A presheaf satisfying condition (Sl) is called a monopresheaJ 
Similarly, let t E u1(U). For each x E U there is a neighborhood Ux of 

x and an element Sx E A(Ux) with 8ux (sx)(x) = t(x). Since 7r : u1 -> X 
is a local homeomorphism, 8(sx) and t coincide in some neighborhood Vx 
of x. We may assume that Vx = Ux. Now 8(sxlUx n Uy) = 8(sylUx n Uy) 
so that if (Sl) holds, we obtain that sxlVx n Uy = sylUx n Uy. If A were 
a pre sheaf of sections (of any map), then this condition would imply that 
the Sx are restrictions to Ux of a section s E A(U). Conversely, if there is 
an element s E A(U) with slUx = Sx for all x, then 8(s) = t. 

We have shown that if (Sl) holds, then 8u is surjective for all U (and 
hence is an isomorphism) {:::} the following condition is satisfied: 

(S2) Let {Ua} be a collection of open sets in X and let U = U Ua. If 
Sa E A(Ua) are given such that SalVa n U/3 = s/3IUa n U/3 for all a, (3, 
then there exists an element s E A(U) with slUa = Sa for all a. 

A presheaf satisfying (S2) is called conjunctive. If it only satisfies (82) 
for a particular collection {Ua}, then it is said to be conjunctive for {Ua}. 

Thus, sheaves are in one-to-one correspondence with presheaves satis
fying (Sl) and (S2), that is, with conjunctive monopresheaves. For this 

2 Clearly, we could take t = 0 here, i.e., replace (8, t) with (8 - t,O). However, the 
condition is phrased so that it applies to presheaves of sets. 
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reason it is common practice not to distinguish between sheaves and con
junctive monopresheaves. 3 

Note that with the notation Uo:,{3 = Uo: n U{3, (81) and (82) are equiva
lent to the hypothesis that the sequence 

0-> A(U) -LIT A(Uo:) -..!!..... IT A(Uo:,{3) 
0: (0:,{3) 

is exact, where f(s) =IT (sIUo:) and 
0: 

where (0:, {3) denotes ordered pairs of indices. 

1.8. Definition. Let vi be a sheaf on X and let Y c X. Then ..dIY = 
7r- 1 (y) is a sheaf on Y called the "restriction" of..d to Y. 

1.9. Definition. Let G be an abelian group. The "constant" sheaf on X 
with stalk G is the sheaf X x G (giving G the discrete topology). It is also 
denoted by G when the context indicates this as a sheaf. A sheaf vi on X 
is said to be "locally constant" if every point of X has a neighborhood U 
such that ..dIU is constant. 

1.10. Definition. If vi is a sheaf on X and s E vi(X) is a section, then 
the "support" of s is defined to be the closed set lsi = {x E X I s(x) =1= O}. 

The set lsi is closed since its complement is the set of points at which 
s coincides with the zero section, and that is open by item (e) on page 4. 

1.11. Example, An important example of a sheaf is the orientation sheaf 
on an n-manifold Mn. Using singular homology, this can be defined as the 
sheaf @n = fJJhea/(U f-> H n ( Mn , M n - U; Z) ). It is easy to see that this is 
a locally constant sheaf with stalks Z. It is constant if M n is orientable. If 
Mn has a boundary then @n is no longer locally constant since its stalks 
are zero over points of the boundary. 

More generally, for any space X and index p there is the sheaf X p(X) = 
:fJhea/(U f-> Hp(X, X - U; Z)), which is called the "p-th local homology 
sheaf" of X. Generally, it has a rather complicated structure. The reader 
would benefit by studying it for some simple spaces. For example, the sheaf 
XIC1) has stalk ZEBZ at the triple point, stalks 0 at the three end points, 
and stalks Z elsewhere. How do these stalks fit together? <> 

3 Indeed, in certain generalizations of the theory, Definition 1.2 is not available and 
the other notion is used. This will not be of concern to us in this book. 
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1.12. Example. Consider the presheaf P on the real line JR that assigns to 
an open set U c JR, the group P(U) of all real-valued polynomial functions 
on U. Then P is a monopresheaf that is conjunctive for coverings of JR, 
but it is not conjunctive for arbitrary collections of open sets. For example, 
the element 1 E P((O,I)) (the constant function with value 1) and the 
element x E P((2,3)) do not come from any single polynomial on (0,1) U 
(2,3). The sheaf g> = fi?1wa/(P) has for !JJ(U) the functions that are "locally 
polynomials"; e.g., 1 and x, as before, do combine to give an element of 
!JJ((O, 1) u (2,3)). Important examples of this type of behavior are given in 
Section 7 and Exercise 12. 0 

1.13. Example. Consider the presheaf A on X = [O,lJ with A(U) = Z 
for all U -I- 0 and with rv,u : A(U) -+ A(V) equal to the identity if ° E V 
or if ° rt. U but rv,u = 0 if 0 E U - V. Let .Yi = fi?1wa/(A). Then.Yix :::::: Z 
for all x. However, any section over [0, e) takes the value 0 E .Yi x for x -I- 0, 
but can be arbitrary in .Yi 0 :::::: Z for x = O. The restriction .Yil (0,1 J is 
constant. Thus.Yi is a sheaf of rings but not a sheaf of rings with unit. (In 
the notation of 2.6 and Section 5, .Yi :::::: Z{O} EB Z(0,1J') 0 

1.14. Example. A sheaf can also be described as being generated by a 
"presheaf" defined only on a basis of open sets. For example, on the circle 
§1, consider the basis $ consisting of open arcs U of §1. For U E $ and for 
x, y E U we write x > y if Y is taken into x through U by a counterclockwise 
rotation. Fix a point Xo E §1. For U E $ let A(U) = Z and for U, V E $ 
with V c U let rv,u = 1 if Xo E V or if Xo rt. U (Le., if Xo is in both U and 
V or in neither). If Xo E U - V then let rv,u = 1 if Xo > y for all Y E V, 
and rv,u = n (multiplication by the integer n) if Xo < y for all y E V. This 
generates an interesting sheaf .Yin on §1. It can be described directly (and 
more easily) as the quotient space (-1,1) x Z modulo the identification 
(t, k) '" (t - 1, nk) for 0 < t < 1, and with the projection [(t, k)J t--> [t] to 
§1 = (-1, 1)/{t '" (t - I)}. Note, in particular, the cases n = 0, -1. The 
sheaf .Yin is Hausdorff for n -I- 0 but not for n = O. 0 

2 Homomorphisms, subsheaves, and 
quotient sheaves 

In this section we fix the base space X. A homomorphism of presheaves h : 
A -+ B is a collection of homomorphisms hu : A(U) -+ B(U) commuting 
with restrictions. That is, h is a natural transformation of functors. 

A homomorphism of sheaves h : .Yi -+ $ is a map such that h(.Yi x) c 
$x for all x E X and the restriction hx : .Yi x -+ $x of h to stalks is a 
homomorphism for all x. 

A homomorphism of sheaves ind uces a homomorphism of the presheaves 
of sections in the obvious way. Conversely, let h : A -+ B be a homomor
phism of presheaves (not necessarily satisfying (SI) and (S2)). For each 
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x E X, h induces a homomorphism hx:..dx =limA(U) .... -.timB(U) = f1JJx 
xEU xEU 

and therefore a function h : ..d ....... f1JJ. If s E A(U) then h maps the section 
B(s) E ..d(U) onto the section B(h(s)) E f1JJ(U). Thus h is continuous (since 
the projections to U are local homeomorphisms and take this function to 
the identity map). 

The group of all homomorphisms ..d ....... fiJ is denoted by Hom(..d, f1JJ). 

2.1. Definition. A "subsheaf"..d of a sheaf f1JJ is an open subspace of f1JJ 
such that ..d x = ..d n f1JJx is a subgroup of f1JJx for all x EX. (That is, ..d is 
a subspace of f1JJ that is a sheaf on X with the induced algebraic structure.) 

If h : ..d ....... f1JJ is a homomorphism of sheaves, then 

Kerh = {n: E..d I hen:) = O} 

is a subsheaf of ..d and 1m h is a subsheaf of f1JJ. We define exact sequences 

of sheaves as usual; that is, the sequence ..d ~ f1JJ .....!!...... rt of sheaves is 
exact if 1m f = Ker g. Note that such a sequence of sheaves is exact {:} 
each..dx ....... f1JJx ....... rtx is exact. 4 Since lim is an exact functor, it follows 
that the functor A f-+ .9'ka/(A), from pres heaves to sheaves, is exact. 

Let h : A ~ B .....!!...... C be homomorphisms of presheaves. The induced 

sequence ..d L f1JJ L rt of generated sheaves will be exact if and only 
if Bog 0 f = 0 and the following condition holds: For each open U c X, 
x E U, and s E B(U) such that g(s) = 0, there exists a neighborhood 
V C U of x such that slV = f(t) for some t E A(V). This is an elementary 
fact resulting from properties of direct limits and from the fact that ..d ....... 
f1JJ ....... rt is exact {:} ..d x ....... f1JJx ....... rt x is exact for all x EX. It will be 
used repeatedly. Note that the condition () 0 9 0 f = 0 is equivalent to 
the statement that for each s E A(U) and x E U, there is a neighborhood 
V C U of x such that g(f(slV)) = 0, i.e., that (g 0 f)(s) is "locally zero." 

2.2. Proposition. If 0 ....... ..d' ....... ..d ....... ..d" ....... 0 is an exact sequence of 
sheaves, then the induced sequence 

I 0 ....... ..d' (Y) ....... ..d (Y) ....... ..d" (Y) I 
is exact for all Y eX. 

Proof. Since the restriction of this sequence to Y is still exact, it suffices 
to prove the statement in the case Y = X. The fact that the sequence 
of sections over X has order two and the exactness at ..d'(X) are obvious 

4Caution: an exact sequence of sheaves is not necessarily an exact sequence of pre
sheaves. See Proposition 2.2 and Example 2.3. 

Categorical readers might check that these definitions give notions equivalent to those 
based on the fact that sheaves and presheaves form abelian categories. 
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(look at stalks). We can assume that .Yi' is a subspace of .Yi. Then a section 
s E .Yi(X) going to 0 E .Yi"(X) must take values in the subspace .Yi', as is 
seen by looking at stalks. But this just means that it comes from a section 
in.Yi'(X). 0 

2.3. Example. This example shows that .Yi(Y) -+ .Yi" (Y) need not be 
onto even if.Yi -+ .Yi" is onto. On the unit interval II let .Yi be the sheaf II x Z2 
and .Yi" the sheaf with stalks Z2 at {O} and {I} and zero otherwise. (There 
is only one possible topology in .Yi".) The canonical map .Yi -+ .Yi" is onto 
(with kernel being the subsheaf.Yi' = (0,1) X 22 U [0,1] x {O} c II x 2 2), but 
.Yi (II) :::::: 22 while .Yi" (II) :::::: 22 E9 22, so that .Yi (II) -+ .Yi" (II) is not surjective. 
Also see Example 2.5 and Exercises 13, 14, and 15. 

2.4. Definition. Let.Yi be a subsheaf of a sheaf fiJ. The "quotient sheaf" 
fiJ /.Yi is defined to be 

I flj/.Yi = 9l,,-/(U f--> fiJ(U)/.Yi(U))·1 

The exact sequence of pres heaves 

0-+ .Yi(U) -+ fiJ(U) -+ fiJ(U)/.Yi(U) -+ 0 (1) 

induces a sequence 0 -+ .Yi -+ fiJ -+ fiJ /.Yi -+ O. On the stalks at x this is the 
direct limit of the sequences (1) for U ranging over the open neighborhoods 
of x. This sequence of stalks is exact since direct limits preserve exactness. 
Therefore, 0 -+ .Yi -+ fiJ -+ fiJ /.Yi -+ 0 is exact. 5 

Suppose that 0 -+ .Yi -+ fiJ -+ 'fi -+ 0 is an exact sequence of sheaves. 
We may regard .Yi as a subsheaf of fiJ. The exact sequence 

0-+ .Yi(U) -+ fiJ(U) -+ 'fi(U) 

provides a monomorphism fiJ(U)/.Yi(U) -+ 'fi(U) of presheaves and hence 
a homomorphism of sheaves fiJ /.Yi -+ 'fi, and the diagram 

o -+ .Yi -+ fiJ -+ fiJ /.Yi -+ 0 
1 

o -+ .Yi -+ fiJ -+ 'fi -+ 0 

commutes. It follows, by looking at stalks, that fiJ/.Yi -+ 'fi is an isomor
phism. 

2.5. Example. Consider the sheaf 'fi of germs of continuous real-valued 
functions on X = ]R2 - {O}. Let Z be the subsheaf of germs of locally 
constant functions with values the integer multiples of 271'. Then Z can 
be regarded as a subsheaf of 'fi. (Note that Z is a constant sheaf.) The 
polar angle () is locally defined (ambiguously) as a section of 'fi, but it 

5Note, however, that (fiJjJ1)(U) i- fiJ(U)jJ1(U) in general. 
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is not a global section. It does define (unambiguously) a section of the 
quotient sheaf 'fi / Z. This gives another example of an exact sequence 
o ~ Z ~ 'fi ~ 'fi / Z ~ 0 of sheaves for which the sequence of sections is 
not right exact. Note that 'fi /Z can be interpreted as the sheaf of germs of 
continuous functions on X with values in the circle group §l. Note also that 
Z(X) is the group of constant functions on X with values in 27rZ and hence 
is isomorphic to Z; 'fi(X) is the group of continuous real valued functions 
X ~ IR; and ('fi / Z) (X) is the group of continuous functions X ~ §l. The 
sequence 

o ~ Z(X) ~ 'fi(X) ~ ('fi/Z)(X) ~Z ~ 0 

is exact by covering space theory, and so Coker j ~ Z. 

2.6. Let A be a locally closed subspace of X and let $ be a sheaf on A. It is 
easily seen (since A is locally closed) that there is a unique topology on the 
point set $U(X x {O}) such that $ is a subspace and the projection onto X 
is a local homeomorphism (we identify A x {O} with the zero section of $). 
With this topology and the canonical algebraic structure, $ U (X x {O}) is 
a sheaf on X denoted by 

I &r = $U (X x {O})·I 

Thus &r is the unique sheaf on X inducing $ on A and 0 on X-A. Clearly, 
$ ~ &r is an exact functor. The sheaf &r is called the extension of $ 
by zero. 

Now let vi be a sheaf on X and let A c X be locally closed. We define 

For U C X open, viu is the subsheaf 7r- 1(U) U (X x {O}) of vi, while for 
Fe X closed viF is the quotient sheaf viF = vi/vix-F. If A = Un F, 
then viA = (viu)F = (viF)u. 6 

In this notation, the sheaf vi' of 2.3 is vi (0,1), and vi" ~ vi {O,l}. 

2.7. Example. Let Ui be the open disk of radius 1- 2- i in X = ][})n, the 
unit disk in IRn. Put Al = UI and Ai = Ui - Ui - I for i > 1. Note that for 
i > 1, Ai ~ §n-I x (0,1] is locally closed in X. Using the notation of 2.6, 
put 

21 ZU l 

22 21 U 2ZU2 
23 22 U 4ZU3 

6Note that any locally closed subspace is the intersection of an open subspace with 
a closed subspace; see [19J. 
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Let !l! = U!l!i C Z. Then the stalks of!l! are 0 on 8][}n and are 2i Z on Ai. 
This is an example of a fairly complicated subsheaf of the constant sheaf 
Z on ][}n even in the case n = 1. It is a counterexample to [40, Remark 
II-2.9.3J. 0 

3 Direct and inverse images 

Let f : X --+ Y be a map and let .Y1 be a sheaf on X. The presheaf 
U 1--+ .Y1(f-l(U)) on Y clearly satisfies (81) and (82) and hence is a sheaf. 
This sheaf on Y is denoted by f.Y1 and is called the direct image of .Y1.7 

Thus we have 
(2) 

By 2.2 it is clear that .Y1 1--+ f.Y1 is a left exact covariant functor. The 
direct image is not generally right exact, and in fact, the theory of sheaves 
is largely concerned with the right derived functors of the direct image 
functor. 

For the map e : X --+ *, where * is the one point space, the direct 
image e.Y1 is just the group r(.Y1) = .Y1(X) (regarded as a sheaf on *). 
Consequently, the direct image functor .Y1 1--+ f.Y1 is a generalization of the 
global section functor r. 

Now let flJ be a sheaf on Y. The inverse image f* flJ of flJ is the sheaf 
on X defined by 

I f* flJ = {(x, b) E X x 8B I f(x) = 1I"(b)}, I 
where 11" : flJ --+ Y is the canonical projection. The projection f* 8B --+ Y 
is given by (x, b) 1--+ x. To check that f* flJ is indeed a sheaf, we note that 
if U c Y is an open neighborhood of f(x) and s : U --+ 8B is a section 
of flJ with s(f(x)) = b, then the neighborhood (f-l(U) x s(U)) n f*8B 
of (x, b) E f*8B is precisely {(x',sf(x')) lx' E f-l(U)} and hence maps 
homeomorphically onto f-l(U). The group structure on (f* flJ)x is defined 
so that the one-to-one correspondence 

(3) 

defined by f;(b) = (x, b), is an isomorphism. It is easy to check that the 
group operations are continuous. 

We have already remarked that if s : U --+ flJ is a section, then x 1-+ 

(x,s(f(x))) = f;(s(f(x))) is a section of f*flJ over f-l(U). Thus we have 
the canonical homomorphism 

fil : 8B(U) --+ (f*flJ)(f-l(U)) 

defined by fil(s)(x) = f;(s(f(x))). 

7For a generalization of the direct image see IV-3. 

(4) 
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From (3) it follows that 1* is an exact functor. 
Note that for an inclusion i : X "--+ Y and a sheaf fiJ on Y, we have 

fillX ~ i* fiI, as the reader is asked to detail in Exercise 1. 

3.1. Example. Consider the constant sheaf Z on X = [0,1] and its re
striction !J! = ZI(O,l). Let i : (0,1) "--+ X be the inclusion. Then 
i!J! ~ Z, because for U a small open interval about 0 or 1, we have that 
i!J!(U) = !J!(U n (0, 1)) ~ Z. Also,!J!x = Z(O,l)' Therefore, i!J! >j:J !J!x in 
general. 

However, for an inclusion i : F "--+ X of a closed subspace and for any 
sheaf !J! on F, it is true that i!J! ~ !J!x, as the reader can verify. (This is 
essentially Exercise 2.) <> 

3.2. Example. Consider the constant sheaf v1 with stalks Z on lR - {O} 
and let i : lR-{O} "--+ R Then iv1 has stalk ZEBZ at 0 and stalk Z elsewhere, 
because, for example, iv1(-£,£) = v1((-£,0) U (O,e)) ~ Z EB Z. A local 
section over a connected neighborhood of 0 taking value (n, m) E (iv1)o at 
o is n E (iv1)x for x < 0 and is m E (iv1)x for x> O. <> 

3.3. Example. Consider the constant sheaf v1 with stalks Z on X = §l; 

let Y = [-1,1] and let 7r : X ---+ Y be the projection. Then 7rv1 has stalks 
Z at -1 and at 1 but has stalks (7rv1)x ~ Z EB Z for -1 < x < 1. The 
reader should try to understand the topology connecting these stalks. For 
example, is it true that 7rv1 ~ Z EB Z(-l,l), as defined in Section 5? Is 
there a sheaf on Y that is "locally isomorphic" to 7rv1 but not isomorphic 
to it? <> 

3.4. Example. Let Z be the constant sheaf with stalks Z on X = §l and 
let zt denote the "twisted" sheaf with stalks Z on X (I.e., zt = [0,1] x Z 
modulo the identifications (0 x n) "" (1 x -n)). Let f : X ---+ X be the 
covering map of degree 2. Then f Z is the sheaf on X with stalks Z EB Z 
twisted by the exchange of basis elements in the stalks. Also, 1* zt ~ Z 
since it is the locally constant sheaf with stalks Z on X twisted twice, 
which is no twist at all. Note that f Z has both Z and zt as subsheaves. 
The corresponding quotient sheaves are (f Z) / z ~ zt and (f Z) / zt ~ Z. 
However, f Z >j:J Z EB zt (defined in Section 5). <> 

3.5. Example. Let X and Z be as in Example 3.4 but let f : X ---+ X be 
the covering map of degree 3. Then f Z is the locally constant sheaf with 
stalks Z EB Z EB Z twisted by the cyclic permutation of factors. Thus f Z has 
the constant sheaf Z as a subsheaf (the "diagonal") with quotient sheaf the 
locally constant sheaf with stalks Z EB Z twisted by the, essentially unique, 
nontrivial automorphism of period 3. <> 

3.6. Example. Let 7r : §n ---+ Un be the canonical double covering. Then 
7rZ is a twisted sheaf with stalks Z EB Z on projective space, analogous to 
the sheaf f Z of Example 3.4. It contains the constant sheaf Z as a subsheaf 
with quotient sheaf zt, a twisted integer sheaf. If n is even, so that lRlP'n 
is nonorientable, zt is just the orientation sheaf @n of Example 1.11. <> 
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4 Cohomomorphisms 

Throughout this section we let J : X -> Y be a given map. 

4.1. Definition. IJ A and B are presheaves on X and Y respectively, then 
an "J-cohomomorphism" k : B "'-+ A is a collection oj homomorphisms 
ku : B(U) -> A(f-l(U)), Jor U open in Y, compatible with restrictions. 

4.2. Definition. IJ J!i and fiJ are sheaves on X and Y respectively, then 
an "J-cohomomorphism" k : fiJ "'-+ J!i is a collection oj homomorphisms 
kx : fiJf(x) -> J!ix Jor each x E X such that Jor any section s E fiJ(U) the 
function x f---> kx(s(f(x))) is a section oj J!i over J- 1 (U) (i. e., this function 
is continuous).8 

An J-cohomomorphism of sheaves induces an J-cohomomorphism of 
presheaves by putting ku(s)(x) = kx(s(f(x))) where U c Y is open and 
s E $(U). Conversely, an J-cohomomorphism of pres heaves k : B "-> A 
induces, for x E X, a homomorphism 

kx : $f(x) = limB(U) -> limA(r 1U) -> J!i x 

[where U ranges over neighborhoods of J(x)]. Then for B : B(U) -> $(U) 
the canonical homomorphism and for s E B(U), we have 

B(ku(s))(x) = kx(s(f(x))), 

so that {kx } is an J -cohomomorphism of sheaves $ "'-+ J!i (generated by B 
and A). 

For any sheaf $ on Y, the collection f* = {J;} of (3) defines an J
cohomomorphism 

f* : $ "'-+ f* $. 

If k : $ "'-+ J!i is any J -cohomomorphism, let hx : (f* $) x -> J!i x be defined 
by hx = kx 0 (f;)-1. Together, the homomorphisms hx define a function 
h : f* $ -> J!i. For s E $(U), the equation 

h(f£j(s)(x)) = h(f;(s(f(x)))) = kx(s(f(x))), 

together with the fact that the J£j (s) form a basis for the topology of f* $, 
implies that h is continuous. Thus any J-cohomomorphism k admits a 
unique factorization 

r h k : $ "'-+ f* $ ----> .;{, 

h being a homomorphism. 

8Note that an J-cohomomorphism fjJ "-' .;( is not generally a function, since it is 
mUltiply valued unless J is one-to-one, and it is not defined everywhere unless J is onto. 
Of course, cohomomorphisms are the morphisms in the category of all sheaves on all 
spaces. 
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Similarly, for any sheaf d on X, the definition (2) provides an f
cohomomorphism f : fd ""'* d. Since fu : fd(U) ~ d(f-l(U)) is 
an isomorphism, it is clear that any f-cohomomorphism k admits a unique 
factorization 

. f 
k : $ --.!...., fd,,",* d 

(i.e., ku = fuju), where j is a homomorphism. 
Thus to each f-cohomomorphism k there correspond unique homomor

phisms h: f* $ ~ d and j : $ ~ f d. This correspondence is addi
tive and natural in d and $. Therefore, denoting the group of all f
cohomomorphisms from $ to d by f -cohom( $, d), we have produced the 
following natural isomorphisms of functors: 

Hom(f* $, d) ~ f - cohom( $, d) ~ Hom( $, f d). 

Leaving out the middle term, we shall let r.p denote this natural isomorphism 

I r.p : Hom(f* $, d) ....::.. Hom( $, f d) I (5) 

of functors. 9 

Taking d = f* $, we obtain the homomorphism 

1/3 = r.p(l) : $ ~ ff*$, I (6) 

and taking $ = f d, we obtain the homomorphism 

(7) 

If h ; f* $ ~ d is any homomorphism, then the naturality of r.p implies 
that the diagram 

Hom(f* $, f* $) 

Hom(f*IIJ,h) 1 
Hom(f* $, d) 

commutes. That is, 

-.:£.... Hom( $, f f* $) 

1 Hom(IIJ,j(h)) 

-.:£.... Hom( $, f d) 

r.p(h) = f(h) 0 r.p(l) = f(h) 0/3, 

which means that r.p(h) is the composition 

$ L ff*$~ fd. 

(8) 

9The existence of such a natural isomorphism means that '* and, are "adjoint 
functors." 
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Similarly, if j : fJJ -t j.;l is any homomorphism, then the diagram 

Hom(f* j.;l,.;I) ~ Hom(f.;l, j.;l) 

Homcr(j),,,,> 1 1 Hom (j,/",> 

Hom(j*fJJ,.;I) ~ Hom(fJJ, j.;l) 

commutes, \Vhence 

(9) 

is the composition 

f*fJJ~f*j.;l ~.;I. 
In particular, applying (9) to j = (3 : fJJ -t j 1* fJJ, \Ve obtain that 

a 0 1*((3) = <p-l((3) = 1. That is, the composition 

f* fJJ r ((3) , f* j f* fJJ ~ f* fJJ 

is the identity. Thus 1*((3) is a monomorphism, and since (f*fJJ)x = fJJ/(x), 
it follo\Vs that 

(3 : fJJ -t j f* fJJ 

is a monomorphism provided that j : X -t Y is surjective. 
In the next chapter \Ve shall apply this to the special case in \Vhich 

j : Xd -t X is the identity, \Vhere Xd denotes X \Vith the discrete topology. 
In this case 

(ff*fJJ)(U) = II fiJx 
xEU 

is the group of "serrations" of fJJ over U, \Vhere a serration is a possibly 
discontinuous cross section of fJJlU. Then (3 : fJJ(U) -t (f f* fJJ) (U) is just 
the inclusion of the group of (continuous) sections in that of serrations. 

4.3. We conclude this section \Vith a remark on cohomomorphisms in quo
tient sheaves. Let.;l' be a subsheaf of a sheaf .;I on X and fiJ' a subsheaf 
of fJJ on Y. Let k : fJJ "-+ .;I be an j-cohomomorphism that takes fiJ' into 
.;I'. Then k clearly induces an j-cohomomorphism 

of presheaves, \Vhich, in turn, induces an j-cohomomorphism fJJ/fiJ' "-+ 

.;I /.;1' of the generated sheaves. 

5 Algebraic constructions 

In this section \Ve shall consider covariant functors F(G1 , G2 , ••• ) of several 
variables from the category of abelian groups to itself. (More generally, one 
may consider covariant functors from the category of "diagrams of abelian 
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groups of a given shape" to the category of abelian groups.) For general 
illustrative purposes we shall take the case of a functor of two variables. 

We may also consider F as a functor from the category of presheaves 
on X to itself in the canonical way (since F is covariant). That is, we let 

F(A,B)(U) = F(A(U),B(U)), 

for presheaves A and B on X. The sheaf generated by the presheaf 
F(A,B) will be denoted by §'(A,B) = 9'1waJ'(F(A,B)). In particular, 
if A and flJ are sheaves on X then g(A, flJ) = 9'1waJ'(U 1--+ F(A, flJ)(U) = 
F(A(U), flJ(U))).10 

Now suppose that the functor F commutes with direct limits. That 
is, suppose that the canonical map UmF(G""H",) --> F(UmG""limHa) 
is an isomorphism for direct systems {Ga } and {H",} of abelian groups. 
Let A and flJ denote the sheaves generated by the presheaves A and B 
respectively. Then for U ranging over the neighborhoods of x E X, we 
have UmF(A,B)(U) = UmF(A(U),B(U)) ~ F(limA(U),li!!}B(U)) 
F(Ax, flJx) so that we have the natural isomorphism 

(10) 

when F commutes with direct limits. 
More generally, consider the natural maps A(U) --> A(U) and B(U) --> 

flJ(U). These give rise to a homomorphism F(A, B) --> F(A, flJ) of pre
sheaves and hence to a homomorphism 

g(A,B) --> g(A,flJ) (11) 

of the generated sheaves. If U ranges over the neighborhoods of x EX, 
then the diagram 

UmF(A(U), B(U)) 

1 
F(UmA(U), limB(U)) 

--+ li!!}F(A(U), flJ(U)) 

1 
--+ F(UmA(U),UmflJ(U)) 

commutes. The bottom homomorphism is an isomorphism by definition of 
A and flJ. The top homomorphism is the restriction of (11) to the stalks 
at x. The vertical maps are isomorphisms when F commutes with direct 
limits. Thus we see that (11) is an isomorphism of sheaves provided that 
F commutes with direct limits. That is, in this case, 

19'IwaJ'(U 1--+ F(A(U), flJ(U))) ~ 9'1waJ'(U 1--+ F(A(U), B(U))) I 
naturally. 

lOOur notation in some of the specific examples to follow will differ from the notation 
we are using in the general discussion. 
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We shall now discuss several explicit cases, starting with the tensor 
product. If Ji and fJJ are sheaves on X, we let 

I Ji Q9 fJJ = 9l/wo/(U f-t Ji(U) Q9 fJJ(U))·1 

Since Q9 commutes with direct limits, we have the natural isomorphism 

by (10). Since Q9 is right exact for abelian groups, it will also be right exact 
for sheaves since exactness is a stalkwise property. 

The following terminology will be useful: 

5.1. Definition. An exact sequence 0 --; Ji' --; Ji --; Ji" --; 0 of sheaves 
on X is said to be "pointwise split" if 0 --; Ji~ --; Ji x --; Ji~ --; 0 splits for 
each x E X. 

This condition clearly implies that 0 --; Ji' Q9fiJ --t Ji Q9fJJ --; Ji" Q9fiJ --; 0 
is exact for every sheaf fJJ on X. 

Our second example concerns the torsion product. We shall use G * H 
to denote Tor(G, H). For sheaves Ji and fJJ on X we let 

I Ji * fJJ = fJ?/wo/(U f-t Ji(U) * fJJ(U))·1 

We have that 
I (Ji * fJJ)x ~ Jix * fJJx I 

since the torsion product * commutes with direct limits. 
Let 0 --; Ji' --; Ji --; Ji" -+ 0 be an exact sequence of sheaves. Then 

for each open set U eX, we have the exact sequence 

o -+ Ji' (U) * fJJ( U) --; Ji (U) * fJJ( U) -+ (Ji (U) j Ji' (U)) * fiJ(U) 

-+ Ji' (U) Q9 fJJ(U) -+ Ji (U) Q9 fJJ( U) -+ (Ji (U) j Ji' (U)) Q9 fJJ(U) --; 0 

of presheaves on X, where fJJ is any sheaf. Now Ji" is canonically iso
morphic to /F1wa/(U f-t Ji(U)jJi'(U)). Thus this sequence of presheaves 
generates the exact sequence 

o --; Ji' * fjJ --+ Ji * fjJ -> Ji" * fjJ -- Ji' 121 fjJ --t Ji 121 fjJ -> Ji" 121 fjJ -> 0 (12) 

of sheaves on X. 11 

Before passing on to other examples of our general considerations, we 
shall introduce some further notation concerned with tensor and torsion 

l1It should be noted that this is a special case of a general fact. Namely, if {Fn} is 
an exact connected sequence of functors of abelian groups (as above), then the induced 
sequence of functors {{!}' n} on the category of sheaves to itself is also exact and connected. 
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products. If X and Yare spaces and 7rx : X x Y -+ X, 7ry : X x Y -+ Y 
are the projections, then for sheaves A on X and fiI on Y we define the 
total tensor product A0fi1 to be the sheaf 

on X x Y. Similarly, the total torsion product is defined to be 

I fifil = (7rx-A ) * (7r~fiI)·1 

Clearly, we have natural isomorphisms 

(A0fi1)(x,y) ~ Ax 181 fily, 

(A;'fiI)(x,y) ~ Ax * fily. 

Another special case of our general discussion is provided by the direct 
sum functor. Thus, if {Aa} is a family of sheaves on X, we let 

I EBAa = ,g;1waf'(U ~ EB(Aa(U)))·1 

Since direct sums commute with direct limits, we have that 

In the case of the direct product, we note that the presheaf U ~ IT (Aa(U)) 
satisfies (Sl) and (82) on page 6 and therefore is a sheaf. It is denoted 
by IT Aa· However, direct products do not generally commute with di
rect limits, and in fact, (ITAa)x >I- IT(Aa)x in general. [For example 
let Ai = Z[O,l/i) c Z for i 2:: 1 on X = [0,1]. Then for U = [0, lin), 
we have that A;(U) = 0 for i > n, and so IT:1(A;(U)) = zn, whence 
(ITA;){o} ~ lin}zn = Zoo, the countable direct sum of copies of Z. How
ever, IT(A;){o} ~ IT:1 z, which is uncountable. For another example, let 
filn = Z{l/n}' Then IT(filn){o} = 0; but (IT filn){o} 1= 0 since the sections 
Sn E filn(X) that are 1 at lin give a section s = IT Sn of the product that 
is not zero in any neighborhood of 0 and hence has nonzero germ at 0.] 

For a finite number of variables (or, generally, for locally finite families), 
direct sums and direct products of sheaves coincide. For two variables (for 
example) A and fiI, the direct sum is denoted by A EBfiI. (Note that A 6fi1 
is the underlying topological space of A EB fiI.) The notation ..J!I x fiI is 
reserved for the cartesian product of..J!l and fiI, which with coordinatewise 
addition is a sheaf on X x Y when ..J!I is a sheaf on X and fiI is one on Y. 
Note that ..J!I x fiI = (7rx-A) EB (7r~fiI). 

Note that for X = Y, we have that..J!l EBfiI = (..J!I x fiI)I~, where ~ is the 
diagonal of X xX, identified with X, and similarly that ..J!Il8IfiI = (A0fi1)l~ 
and ..J!I * fiI = (..J!I;'fiI)I~. 
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Our next example is given by a functor on a category of "diagrams." 
Let A be a directed set. Consider direct systems {Ga;7l"a,/3} (where 7l"Ot,/3: 
G /3 --+ GOt is defined for 0: > (3 in A and satisfies 7l" Ot,/37l" /3,""'1 = 7l" 0,""'1) of abelian 
groups based on the directed set A. Let F be the (covariant) functor that 
assigns to each such direct system {GOt; 7l" Ot,/3} its direct limit 

Now let {A a; 7l" a,/3} be a direct system of sheaves based on A. Then we 
define 

lilin A a = 9'heo/ ( U ~ ilinOtA a (U) ) ·1 

There are the compatible maps Aa(U) --+ ilinaAOt(U) that induce canoni
cal homomorphisms 7l" /3 : A /3 --+ ilinaA a such that 7l" /3 = 7l" 01 0 7l" 01,/3 whenever 
0: > {3. Since direct limits commute with one another, we have that 

Now suppose that A is another sheaf on X and that we have a family 
of homomorphisms ha : A a --+ A that are compatible in the sense that 
h/3 = ha 07l"OI.,/3 whenever 0: > (3. These induce compatible maps AOI.(U)--+ 
A(U) for all open U and hence a homomorphism ilin(AOI.(U)) --+ A(U) of 
presheaves. In turn this induces a homomorphism 

of the generated sheaves such that h 0 7l" 01. = hOI. for all 0:. That is, the direct 
limit of sheaves satisfies the "universal property" of direct limits. 

In particular, if {A cr} and {$OI.} are direct systems based on the same 
directed set, then the homomorphisms A cr --+ ilin A 01. and $01. --+ ilin $01. 
induce compatible homomorphisms A 01. ®$OI. --+ ilin A 01. ®ilin $01. and hence 
a homomorphism ilin(AOI. ® $01.) --+ ilinAOI. ® ilin$OI.' On stalks this is an 
isomorphism since tensor products and direct limits commute. Thus it 
follows that this is an isomorphism 

(13) 

The functor Hom(G, H) on abelian groups is covariant in only one of 
its variables, so that the general discussion does not apply. However, note 
that every homomorphism A --+ $ of sheaves induces a homomorphism 

AIU --+ $IU. 

Thus we see that the functor 

U ~ Hom(AIU, $IU) (14) 
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defines a presheaf on X. We define 

I Xmt(d, $) = 9'1wa/(U ...... Hom(dIU, $IU))., 

It is clear that the presheaf (14) satisfies (81) and (82), so that 

I Xmt(d, $)(U) ~ Hom(dlU, $IU)., 

It is important to note that the last equation does not apply in general to 
sections over nonopen subspaces, and in particular that 

in general. For example, let $ be the constant sheaf with stalks Z on X = 
[0,1] and let d = ${O}, which has stalk Z over {O} and stalks 0 elsewhere. 
Then Xmt(A, $)(U) ~ Hom(dIU, $IU) = 0 for the open sets of the form 
U = [O,e), and hence Xmt(d,$){o} = 0, whereas d{o} = Z = ${O}, 

whence Hom(d {O}, ${O}) ~ Hom (Z, Z) ~ Z. 
If f!I( is a sheaf of rings on X and if d and $ are f!I(-modules, then one 

can define, in a similar manner, the sheaves 

6 Supports 

A pamcompact space is a Hausdorff space with the property that every 
open covering has an open, locally finite, refinement. The following facts 
are well known (see [34], [53] and [19]): 

(1) Every paracompact space is normal. 

(2) A metric space is paracompact. 

(3) A closed subspace of a paracompact space is paracompact. 

(4) If {UoJ is a locally finite open cover of a normal space X, then there 
is an open cover {Va} of X such that Va C Ua. 

(5) A locally compact space is paracompact ¢:} it is a disjoint union of 
open, a-compact subspaces. 

A space is called hereditarily pamcompact if every open subspace is 
paracompact. It is easily seen that this implies that every subspace is 
paracompact. Of course, metric spaces are hereditarily paracompact. 

6.1. Definition. A ''family of supports" on X is a family IP of closed 
subsets of X such that: 

(1) a closed subset of a member of IP is a member of IPj 
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(2) cI> is closed under finite unions. 
cI> is said to be a "paracompactifying" family of supports if in addition: 

(3) each element of cI> is paracompactj 
( 4) each element of cI> has a (closed) neighborhood which is in cI>. 

We define the extent E(cI» of a family of supports to be the union of 
the members of cI>. Note that E(cI» is open when cI> is paracompactifying. 

The family of all compact subsets of X is denoted by c. It is para
compactifying if X is locally compact. We use 0 to denote the family of 
supports whose only member is the empty set 0. It is customary to "de
note" the family of all closed subsets of X by the absence of a symbol, and 
we shall also use cld to denote this family. 

Recall that for s E vi(X), lsi = {x E X I s(x) =1= O} denotes the support 
of the section s. Now if A is a presheaf on X and s E A(X), we put 
lsi = 18(s)l, where 8 : A(X) -> vi(X) is the canonical map, vi being the 
sheaf generated by A. 

Note that for s E A(X), x ~ lsi <=} (siU = 0 for some neighborhood U 
of x). 

If vi is a sheaf on X, we put 

I r4>(vi) = {s E vi(X) I lsi E cI>}., 

Then r4>(vi) is a subgroup of vi(X), and for an exact sequence 0 -> vi' -> 

vi -> vi" -> 0, the sequence 

is exact. 
For a presheaf A on X we put A4>(X) = {s E A(X) Iisl E cI>}.12 

6.2. Theorem. Let A be a presheaf on X that is conjunctive for coverings 
of X and let vi be the sheaf generated by A. Then for any paracompactifying 
family cI> of supports on X, the sequence 

is exact. 

Proof. The only nontrivial part is that 8 is surjective. Let s E r 4> (vi) and 
let U be an open neighborhood of lsi with V paracompact. By covering 
U and then restricting to U, we can find a covering {U a} of U that is 
locally finite in X and such that there exist Sa E A(Ua) with 8(sa) = slUa. 
Similarly, we can find a covering {Va} of U with unVa C Ua. Add X -lsi 
to the collection {Va}, giving a locally finite covering of X, and use the 
zero section for the corresponding Sa. 

12The [' notation will be used only for sheaves and not for presheaves. 
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For x E X let I(x) = {a I x E Va}, a finite set. For each x E X there 
is a neighborhood W(x) such that y E W(x) => I(y) c I(x) and such that 
W(x) C Va for each a E I(x). 

If a E I(x), then B(sa)(x) = s(x). Since I(x) is finite, we may further 
assume that W(x) is so small that saIW(x) is independent of a E I(x) 
[since J'1 x = fun A ( N), N ranging over the neighborhoods of x]. 

Let Sx E A(W(x)) be the common value of saIW(x) for a E I(x). 
Suppose that x, y E X and Z E W(x)nW(y). Let a E I(z) C I(x)nI(y). 

Then Sx = saIW(y), so that sxIW(x)nW(y) = syIW(x)nW(y). Since A is 
conjunctive for coverings of X, there is atE A(X) such that tIW(x) = Sx 
for all x E X. Clearly B(t) = s, and by definition, It I = lsi E if>. 0 

Note that Ao(U) = ° for all open U C X {:} A is a monopresheaf. 

6.3. Definition. If A C X and if> is a family of supports on X, then if>nA 
denotes the family {K n A IKE if>} of supports on A, and if> I A denotes the 
family {K IKe A and K E if>} of supports on A or on X.13 

If X, Yare spaces with support families if> and \[I respectively, then 
if> x \[I denotes the family on X x Y of all closed subsets of sets of the form 
K x L with K E if> and L E \[I. 

If f : X -+ Y and \[I is a family on Y, then f-l\[l denotes the family on 
X of all closed subsets of sets of the form f- 1 K for K E \[I. 

6.4. Example. For the purposes of this example, let us use the subscript 
Y on the family of supports cld or C to indicate the space to which these 
symbols apply. (In other places we let the context determine this.) Let 
X = IR and A = (0,1). Then cldx n A = cldA and cldxlA = CA. Also, 
Cx n A = cldA and cxlA = CA. 

If instead, X = (0,1]' then cldx n A = cldA and cxlA = CA, while 
cldx IA is the family of closed subsets of A bounded away from 1. Also, 
Cx n A is the family of closed subsets of A bounded away from O. 

If X = IR = Y, then the family Cx x Cy = CXxy, while Cx x cldy is 
the family of all closed subsets of X x Y whose projection to X is bounded 
(but the projection need not be closed). This is the same as the family 
7l'x1cX' Also, cldx x cldy = cldxxy = 7l'x1cldx. 

For any map f : X -+ Y, the family f-lcy can be thought of as the 
family of (closed) "basewise compact" sets. In IV-5 we shall define what 
can be thought of as the family of "fiberwise compact" sets. 0 

6.5. Proposition. If if> is a paracompactifying family of supports on X 
and if Y c X is locally closed, then if>1Y is a paracompactifying family of 
supports on Y. 

Proof. For Y = Un F with U open and F closed, we have that if>IY = 
(if>IU)I(U n F), so that it suffices to consider the two cases Y open and Y 
closed. These cases are obvious. 0 

13Note that <I>JF = <I> n F for F closed. 
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6.6. Proposition. Let A c X be locally closed, let <I> be a family of sup
ports on X, and let flJ be a sheaf on A. Then the restriction of sections 
f(,q]x) -+ f(flJxIA) = f(flJ) induces an isomorphism 

Similarly, for a sheaf J'i on X, the restriction of sections induces an iso
morphism 

Proof. A section s E f~(~) must have support in A since ~ vanishes 
outside of A. Thus lsi E <I>IA. Moreover, slA can be zero only if s is zero. 
Now suppose that t E f~IA(flJ), and let s : X -+ ,q]x be the extension of 
t by zero. It suffices to show that s is continuous. Since s coincides with 
the zero section on the open set X -Itl, it suffices to restrict our attention 
to the neighborhood of any point x E Itl. Let v E flJx (U) be a section 
of ~ with v(x) = t(x) = s(x). We may assume, by changing the open 
neighborhood U of x, that vlunA = tiUnA. But v must vanish on U -A, 
so that v = siU. Hence s is continuous on U, and this completes the proof 
of the first statement. The second statement is immediate from the identity 
(J'iIA)X = J'iA. 0 

6.7. In this book the f notation will be used only for the group of global 
sections. Thus the group of sections over A c X of a sheaf J'i on X is 
denoted by f(J'iIA). In the literature, but not here, it is often denoted by 
f(A, J'i). Of course, for the case of a support family <I> on X, there are at 
least two variations: f~nA(J'iIA) and f~IA(J'iIA). 

7 Classical cohomology theories 

As examples of the use of Theorem 6.2 and also for future reference we will 
briefly describe the "classical" singular, Alexander-Spanier, de Rham, and 
Cech cohomology theories. 

Alexander-Spanier cohomology 

Let G be a fixed abelian group. For U C X open let AP(U; G) be the 
group of all functions f : Up+l -+ G under pointwise addition. Then the 
functor U 1-+ AP(U; G) is a conjunctive presheaf on X. [For if fa : ugH -+ 

G are functions such that fa and f (3 agree on UgH n U$H, then define 
f : Up+l -+ G, where U = U Ua, by f(x) = fa(x) if x E UgH and f(x) 
arbitrary if x 1- UgH for any a.] Let J'iP(X; G) = YI.eaf(U 1-+ AP(U; G)). 
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The differential (or "coboundary") d : AP(U; G) -> AP+l (U; G) is de
fined by 

p+1 

df(xo, ... , Xp+1) = 2:) _1)i f(xo, ... , Xi,···, Xp+l), 
i=O 

where f : Up+l -> G. 
Now d is a homomorphism of presheaves and d2 = O. Thus d induces a 

differential 

with d2 = O. 
The classical definition of Alexander-Spanier cohomology with supports 

in the family <I> is 

'ASH:(X; G) = HP(A4,(X; G)/A;;(X; G))., 

Note that Ag(X; G) is the set of all functions Xp+l -> G that vanish in 
some neighborhood of the diagonal. Thus two functions f, 9 : Xp+1 -> G 
represent the same element of AP(X; G)/Ag(X; G) {:} they coincide in some 
neighborhood of the diagonal. 14 

Thus Theorem 6.2 implies that if <I> is a paracompactifying family of 
supports, then there is a natural isomorphism 

'ASH:(X; G) ~ HP(r<I>(~*(X; G)))., (15) 

There is a "cup product" u :AP(U; G1)®Aq(U; G2) -> Ap+q(U; G 1®G2) 
given by the Alexander-Whitney formula 

(f U g)(xo, ... ,xp+q) = f(xo, .. . ,xp) ® g(xp, ... , xp+q), 

with d(f U g) = dl U 9 + (-l)P f U dg and If U gl c III n Igl. This induces 
products 

and 

i.e., 

U : ~P(X; G1) ® ~q(X; G2) -> ~p+q(X; G1 ® G2), 

r<I>(~P(X; Gl)) ® rw(~q(X; G2)) -> r<I>nw(~p+q(X; G 1 ® G2)), 

AsH~(X; G1) ® AsHt(X; G2) -> AsH~~~(X; G1 ® G2). 

In particular, for a base ring L with unit and an L-module G, ~o(X; L) is 
a sheaf of rings with unit, and each ~n(X; G) is an ~o(X; L)-module. 

14Note that it is the taking of the quotient by the elements of empty support that 
brings the topology of X into the cohomology groups, since A*(XjG) itself is totally 
independent of the topology. 
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Singular cohomology 

Let d be a locally constant sheaf on X. (Classically d is called a "bundle 
of coefficients.") For U C X, let SP(U;d) be the group of singular p
co chains of U with values in d. That is, an element f E SP(U; d) is a 
function that assigns to each singular p-simplex cr : D.p ----> U of U, a cross 
section f(cr) E f(cr*(d)), where D.p denotes the standard p-simplex. 

Since d is locally constant and D.p is simply connected, cr* (d) is a 
constant sheaf on D.p (as cr*(d) is just the induced bundle on D.p ). It 
follows that we can define the coboundary operator 

d: SP(U;d) ----> SP+1(Ujd) 

by df(r) = f(8r) E r(r*(d)). 
Let gP(X j d) = /71wa/(U f---> SP(Uj d)) with the induced differential. 

The presheaf SP(. j d) is conjunctive since if {Ua } is a collection of open 
sets with union U and if f(cr) is defined whenever cr is a singular simplex 
in some Ua with value that is independent of the particular index 0:, then 
just define f(cr) = 0 (or anything) if cr ~ Ua for any 0:, and this extends f 
to be an element of SP(U; d). 

The classical definition of singular cohomology (with the local coeffi
cients d and supports in <I» is 

I c,.H~(X;d) = HP(S;(Xjd))·1 

However, it is a well-known consequence of the operation of subdivision 
that 

HP(So(X;d)) = 0 for all p. 

[We indicate the proof: Let it = {Ua } be a covering of X by open sets and 
let SP(itj d) be the group of singular cochains based on ll-small singular 
simplices. Then a subdivision argument shows that the surjection 

jJ.l: S*(Xjd) --» S*(lljd) 

induces a cohomology isomorphism. Therefore, if we let Kli = Ker jJ.l, then 
H*(Kli) = 0 by the long exact cohomology sequence induced by the short 
exact cochain sequence 0 ----> Kll----> S*(Xid) ---> S*(llid) ---> O. However, 
So(Xjd) = UKti = limKti, so that 

H*(So(Xjd)) = H*(limKti) ~ limH*(Kti) = 0.] 

Therefore, if <I> is paracompactifying, then the exact sequence 

0---> So ----> S; ---> f <J>(/7*) ----> 0 

of 6.2 yields the isomorphism 

I c,.H~(Xj d) ~ HP(f<J> (.9*(Xj d))). I (16) 
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As with the case of Alexander-Spanier cohomology, the singular cup 
product makes 9'°(X; L) into a sheaf ofrings and each 9'n(X;.d) into an 
9'°(X; L)-module, where.d is a locally constant sheaf of L-modules. 

Remark: If X is a differentiable manifold and we let S*(U;Jt) be the complex 
of singular cochains based on Coo singular simplices, a similar discussion 
applies. 

de Rham cohomology 

Let X be a differentiable manifold and let nv(U) be the group of differential 
p-forms on U with d: nV(U) -+ nv+1(U) being the exterior derivative. 15 

The de Rham cohomology group of X is defined to be 

However, the presheaf U t--+ nV(U) is a conjunctive monopresheaf and hence 
is a sheaf. Thus, trivially, we have 

(17) 

for any family q, of supports. 

Cech cohomology 

Let U = {Uo:; a E I} be an open covering of a space X indexed by a set 
f and let G be a presheaf on X. Then an n-cochain c of U is a function 
defined on ordered (n + I)-tuples (ao, ... , an) of members of f such that 
Uao, ... ,O:n = Uo:o n ... n UO:n =f. 0 with value 

c(ao, ... , an) E G(Uo:Q, ... ,o:J. 

These form a group denoted by en(U; G). An open set V of X is covered 
by UnV = {UanV;a E f}. Thus we have the co chain group en(UnV; G), 
and the assignment V t--+ en (U n V; G) gives a presheaf on X, and hence a 
sheaf 

~n (U; G) = 9'~(V t--+ en (U n V; G)). 

Thus it makes sense to speak of the support lei of a cochain, i.e., lei = 
IB(c)l, where B : en(U; G) -+ r(~n(U; G)). This defines the cochain group 
e~(U; G) for a family q, of supports on X. The coboundary operator 
d: e~(U; G) -+ e~+1(U; G) is defined by 

n+i 
de(ao, ... , an+1) = I) -1)ie(ao, ... , ai,"" an+dIUO:Q, ... ,O:n+l· 

i=O 

15See, for example, [19, Chapters II and V]. 
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It is easy to see that d2 = 0 and so there are the cohomology groups 

A refinement of .1.1 is another open covering !U = {V.6; {3 E J} together with 
a function (called a refinement projection) cp : J -+ I such that V.6 c U ",(.6) 
for all (3 E J. This yields a chain map cp* : 6;(.1.1; G) -+ 6;(!U;G) by 

cp* (c)({3o, ... ,(3n) = c( cp({30) , ... ,cp({3n) )!V.6o ..... .6n· 

If tf; : J -+ I is another refinement projection, then the functions D 
6~+1 (.1.1; G) -+ 6~(!U; G) given by 

n 

Dc({3o, ... , (3n) = ~) -l)ic(cp({3o), ... , CP({3i) , tf;({3i) , ... , tf;({3n))!V.6o ..... .6n 
i=O 

provide a chain homotopy between cp* and tf;*. Therefore, there is a homo
morphism 

jlU u : H~(.1.1; G) -+ H~(!u; G) . 
induced by cp* but independent of the particular refinement projection cp 
used to define it. Thus we can define the Cech cohomology group as 

1 H~(X; G) = limuHg(.1.1; G)·I 

Since it does not affect the direct limit to restrict the coverings to a 
cofinal set of coverings, it is legitimate to restrict attention to coverings 
.1.1 = {Ux; x E X} such that x E Ux for all x. In this case there is a 
canonical refinement projection, the identity map X -+ X, for a refinement 
!U = {Vx;x EX}, Vx C Ux' Thus there is a canonical chain map 

6;(.1.1; G) -+ 6;(!U; G), 

and so it is legitimate to pass to the limit and define the Cech co chain 
group 

1 6; (X; G) = limu6;(.1.1; G)·I 

Since the direct limit functor is exact, it commutes with cohomology, i.e., 
there is a canonical isomorphism 

I H;(X; G) ~ H*(6;(x; G)), I 
which we shall regard as equality. 

We shall study this further in Chapter III. For the present, let us restrict 
attention to the case in which G is an abelian group regarded as a constant 
presheaf. We wish to define a natural homomorphism from the Alexander
Spanier groups to the Cech groups. If f : xn+1 -+ G is an Alexander
Spanier cochain and.1.1 = {Ux; x E X} is a covering of X, then f induces 
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an element fu E on (11; G) by putting fu(xo,·· . ,xn) = f(xo, ... , xn) when 
Uxo, ... ,xn i- 0. Consequently, f induces foo = limfu E O*(X; G). We claim 
that Ifool = If I· Indeed, 

xi. Ifool ¢:} :311, V, x E V and fulV = 0 in 0(11 n V; G) 
¢:} :311,V,XEV3xo"",XnEV => fu(xo, ... ,Xn) =0 
¢:} :3W,xEW3xo,···,XnEW => f(xo,···,xn)=O 
¢:} :3W, x E W 3 flwn+1 = 0 
¢:} x i. If I· 

Also, Ifool = 0 ¢:} foo = O. Now, given 9 E O*(X;G), 9 comes from some 
gu E on(ll; G), and it is clear that gu extends arbitrarily to an Alexander
Spanier cochain g. It follows that f 1-+ foo induces an isomorphism 

A~(X;G)IAo(X;G) ~ O~(X;G), 

whence 
I AsHrp(X; G) ~ iIrp(X; G) I (18) 

for all spaces X and families <I> of supports on X. 
Now, the Cech cohomology groups are not altered by restriction to any 

cofinal system of coverings. Therefore, if X is compact, we can restrict the 
coverings used to finite coverings. Similarly, if X is paracompact, we can 
restrict attention to locally finite coverings. 

Finally, if the covering dimension16 covdim X = n < 00 then we can 
restrict attention to locally finite coverings 11 = {U 0:; a E I} such that 
Uo:o, ... ,O:n+l = 0 for distinct ai. Now, 0*(11; G) is the ordered simpli
cial cochain complex C*(N(ll); G) of an n-dimensional abstract simplicial 
complex, namely the nerve N(ll) of 11,17 For e E OP(ll; G) we have that 
lei = U{U o:o, ... ,O:p I e(ao, ... , ap ) i- O}, since 11 is locally finite. Thus 

0;(11; G)={ e E 0*(11; G) I :3K E <I> 3 e(ao, ... , ap ) = 0 if V o:o, ... ,O:p ¢. K} 
=limKE<I> { e E 0*(11; G) I e(ao, ... , ap ) = 0 if U o:o, ... ,O:p ¢. K} 
=limKE<I>C*(N(ll), NK(ll); G), 

where NK(ll) = {{ao, ... ,ap } E N(ll) I Uo:o, ... ,O:p ¢. K}, which is a sub
complex of N(ll). But C*(N(ll), NK(ll); G) is chain equivalent to the cor
responding oriented simplicial cochain complex that vanishes above degree 
n. Therefore iI:(ll; G) = 0 for p > n, whence iI:(X; G) = 0 for p > n. 
Consequently, 

I AsH: (X; G) = 0 for p > covdimX·1 (19) 

16The covering dimension of X is the least integer n (or 00) such that every covering of 
X has a refinement for which no point is contained in more than n + 1 distinct members 
of the covering. 

17This has the members of I as vertices and the subsets {ao, ... , ap} C I, where 
U"'o''''''''p i- 0, as the p-simplices. 
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Singular homology 

Even though the definition of singular cohomology requires a locally con
stant sheaf as coefficients,18 one can define singular homology with coef
ficients in an arbitrary sheaf..d. To do this, define the group of singular 
n-chains by 

I Sn(Xi..d) = ~r(0'*..d), I 
where the sum ranges over all singular simplices 0' : Don --+ X of X. If Fi : 
Don-l -+ Don is the ith face map, then we have the induced homomorphism 

of Section 4, and so the boundary operator 

can be defined by 
n 

8s = ~(_l)illi(S) 
i=O 

for s E r(O'* ..d). 
When ..d is locally constant, then this, and the case of cohomology, 

is equivalent to Steenrod's definition of (co)homology with "local coeffi
cients"; see [75] for the definition of the latter. 

The functor U 1-+ Sn (U;..d) is covariant, and so it is not a presheaf. 
Thus it has a different nature than do the cohomology theories. See, how
ever, Exercise 12 for a different description of singular homology that has 
a closer relationship to the cohomology theories. 

Exercises 

1. ® If A is a sheaf on X and i : B '-+ X, show that i* A ~ AlB. 

2. ® If $ is a sheaf on B and i : B '-+ X, show that (i$)IB ~ $. 

3. Let {B,.,lI'a,f3} be a direct system of presheaves [that is, for U C X, 
{Bo(U), lI'o,f3(U)} is a direct system of groups such that the lI'o,f3'S commute 
with restrictionsj. Let B = lillJB", denote the presheaf U t-+ lillJBo(U). 
Let $0< = 9'I.eo/(Ba) and $ = 9'I.eo/(B). Show that $ and lillJ $0< are 
canonically isomorphic. 

4. ® A sheaf fJJ on X is called projective if the following commutative diagram, 
with exact row, can always be completed as indicated: 

$-'(5-0 

~ ........... 1 
fJJ. 

18This will be generalized by another method in Chapter III. 
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Show that the constant sheaf Z on the unit interval is not the quotient of 
a projective sheaf. (Thus there are not "sufficiently many projectives" in 
the category of sheaves.) 

More generally, show that on a locally connected Hausdorff space with
out isolated points the only projective sheaf is o. 

5. Show that the tensor product of two sheaves satisfies the universal property 
of tensor products. That is, if ~, flJ, and ~ are sheaves on X and if 
f : ~ /:),fiJ -+ ~ is a map that commutes with the projections onto X 
and is bilinear on each stalk, then there exists a unique homomorphism 
h : ~ ® flJ -+ ~ such that f = hk, where k : ~ /:),fiJ -+ ~ ® fiJ takes 
(a, b) E ~'" x fiJ", = (~!::"fiJ)", into a ® b E ~'" ® fiJ", = (~® flJ)",. 

Treat the direct sum in a similar manner. 

6. Show that the functor Hom(.,.) of sheaves is left exact. 

7. Let f : X -+ Y and let fYl be a sheaf ofrings on Y. Show that the natural 
equivalence (5) of Section 4 restricts to a natural equivalence 

cp: Homr81U·fiJ,~) -=:... Hom81(fiJ,f~), 
where fiJ is an .o/l-module and ~ is an f* .o/l-module. [The fYl-module struc
ture of f ~ is given by the composition 

.o/l(U) ® U~)(U) -+ u·.o/l)(r1U) ®~(rlU) -+ ~U-lU).] 

8. ® Let f : X -+ Y and let ~ be a sheaf on X. Show that rif>U~) = 
r /-lif>(~)' under the defining equality U~)(Y) = ~(X), for any family 
eli of supports on Y. [Also, see IV-3.] 

9. ® Let 0 -+ ~' -+ ~ -+ ~" -+ 0 be an exact sequence of sheaves on 
a locally connected Hausdorff space X. Suppose that ~' and ~" are 
locally constant and that the stalks of ~" are finitely generated (over 
some constant base ring). Show that ~ is also locally constant. [Hint: 
For x E X find a neighborhood U such that ~(U) -+ ~II(U) is surjective 
and such that ~I(U) -+ ~~ and ~II(U) -+ ~~ are isomorphisms for every 
yE U.] 

10. ® Show by example that Exercise 9 does not hold without the condition 
that the stalks of ~" are finitely generated. 

11. ® If 0 -+ ~' -+ ~ -+ ~" -+ 0 is an exact sequence of constant sheaves on 
X, show that the sequence 

o -+ rif>(~I) -+ rif>(~) -+ rif>(~") -+ 0 

is exact for any family eli of supports on X. 

12. ® Let .6.. (X, A) [respectively, .6.; (X, A)] be the chain complex of locally 
finite (respectively, finite) singular chains of X modulo those chains in A. 
Show that the homomorphism of generated sheaves induced by the obvious 
homomorphism 

.6.~(X,X - U) '-+ .6.. (X, X - U) 
of presheaves is an isomorphism. Denote this generated sheaf by .1 •. Show 
that the presheaf U 1-+ .6.. (X, X - U) (which generates .1.) is a mono
presheaf and that it is conjunctive for coverings of X. Deduce that 

(} : .6.. (X) -+ r(.1.) 
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is an isomorphism when X is paracompact. [Note, however, that U ....... 
~.(X, X - U) is not fully conjunctive and hence is not itself a sheaf.] Also 
show that () induces an isomorphism 

(This provides another approach to the definition of singular homology 
with coefficients in a sheaf, by putting ~~(Xj..ti) = r c(..1. ® ..ti}.} 

13. Let X be the complex line (real 2-dimensional) and let C denote the con
stant sheaf of complex numbers. Let..ti be the sheaf of germs of complex 
analytic functions on X. Show that 

i d o --+ C --+ ..ti --+ ..ti --+ 0 

is exact, where i is the canonical inclusion and d is differentiation. For 
U C X open show that d : ..ti(U} --+ ..ti(U} need not be surjective. For 
which open sets U is it surjective? 

14. ® Let X be the unit circle in the plane. Let lR denote the constant sheaf 
of real numbers; 9)) the sheaf of germs of continuously differentiable real
valued functions on X; and W the sheaf of germs of continuous real-valued 

functions on X. Show that 0 --+ lR ~ 9)) ~ W --+ 0 is exact, where d is 
differentiation. Show that Coker{d: 9))(X} --+ W(X)} is isomorphic to the 
group of real numbers. 

15. ® Let X be the real line. Let fY be the sheaf of germs of all integer-valued 
functions on X and let i : Z '--+ fY be the canonical inclusion. Let 'fl be the 
quotient sheaf of fY by Z. Show that fY(X} --+ 'fl(X} is surjective, while 
Coker{rc(fY} --+ rc('fl)} ~ Z. 

16. Show that there are natural isomorphisms 

and 

Hom (..ti, Q.%'>.) ~ Q Hom(..ti, .%'>.}. 

17. Prove or disprove that there is the following natural isomorphism of func
tors of sheaves ..ti, .%', and Won X: 

18. ® If f : A --+ X is a map with f(A} dense in X and .At is a subsheaf of a 
constant sheaf on X, then show that the canonical map /3 : .At --+ f r .At 
of Section 4 is a monomorphism. Also, give an example showing that this 
is false for arbitrary sheaves .At on X. 

19. ® For a given point x in the Hausdorff space X, let x also denote the 
family {{x},0} of supports on X. Show that AsH!;(X;G} = 0 for all 
n> O. (Compare II-18.) 
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Sheaf Cohomology 

In this chapter we shall define the sheaf-theoretic cohomology theory and 
shall develop many of its basic properties. 

The cohomology groups of a space with coefficients in a sheaf are defined 
in Section 2 using the canonical resolution of a sheaf due to Godement. 
In Section 3 it is shown that the category of sheaves contains "enough 
injectives," and it follows from the results of Sections 4 and 5 that the 
sheaf cohomology groups are just the right derived functors of the left 
exact functor r that assigns to a sheaf its group of sections. 

A sheaf .;t is said to be acyclic if the higher cohomology groups with 
coefficients in .;t are zero. Such sheaves provide a means of "computing" 
cohomology in particular situations. In Sections 5 and 9 some important 
classes of acyclic sheaves are defined and investigated. 

In Section 6 we prove a theorem concerning the existence and uniqueness 
of extensions of a natural transformation of functors (of several variables) 
to natural transformations of "connected systems" of functors. This result 
is applied in Section 7 to define, and to give axioms for, the cup product 
in sheaf cohomology theory. These sections are central to our treatment of 
many of the fundamental consequences of sheaf theory. 

The cohomology homomorphism induced by a map is defined in Section 
8. The relationship between the cohomology of a subspace and that of its 
neighborhoods is investigated in Section 10, and the important notion of 
"tautness" of a subspace is introduced there. 

In Section 11 we prove the Vietoris mapping theorem and use it to 
prove that sheaf-theoretic cohomology, with constant coefficients, satisfies 
the invariance under homotopy property for general topological spaces. 

Relative cohomology theory is introduced into sheaf theory in Section 
12, and its properties, such as invariance under excision, are developed. In 
Section 13 we derive some exact sequences of the Mayer-Vietoris type. 

Sections 14, 15, and 17 are concerned, almost exclusively, with locally 
compact spaces. In Section 14 we prove the "continuity" property, both 
for spaces and for coefficient sheaves. This property is an important fea
ture of sheaf-theoretic cohomology that is not satisfied for such theories as 
singular cohomology. A general Kiinneth formula is derived in Section 15. 
Section 17 treats local connectivity in higher degrees. This section really 
has nothing to do with sheaf theory, but the results of this section are used 
repeatedly in later parts of the book. 

In Section 16 we study the concept of cohomological dimension, which 
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has important applications to other parts of the book. Section 18 contains 
definitions of "local cohomology groups" and of cohomology groups of the 
"ideal boundary." 

If G is a finite group acting on a space X and if 7r : X ---t X/G is the 
"orbit map," then 7r induces, as does any map, a homomorphism from the 
cohomology of X/G to that of X. In Section 19 the "transfer map," which 
takes the cohomology of X into that of X/G, is defined. When G is cyclic 
of prime order we also obtain the exact sequences of P. A. Smith relating 
the cohomology of the fixed point set of G to that of X (a general Hausdorff 
space on which G acts). 

In Sections 20 and 21 we define the Steenrod cohomology operations 
(the squares and pth powers) in sheaf cohomology and derive several of 
their properties. This material is not used elsewhere in the book. 

All of the sections of this chapter, except for Sections 18 through 21, 
are used repeatedly in other parts of the book. 

Most of Chapter III can be read after Section 9 of the present chapter. 

1 Differential sheaves and resolutions 

1.1. Definition. A "graded sheaf" !l!* is a sequence {!l!P} of sheaves, p 
ranging over the integers. A "differential sheaf" is a graded sheaf together 
with homomorphisms d : !l!P ---t !l!p+l such that d2 : !l!P ---t !l!P+2 is zero for 
all p. A "resolution" of a sheaf J1 is a differential sheaf!l!* with!l!P = 0 
for p < 0 together with an "augmentation" homomorphism c : J1 ---t !l!0 

€ mO d m1 d m2 . such that the sequence 0 ---t J1 -----> ~ -----> ~ -----> ~ ---t... 2S exact. 

Similarly, one can define graded and differential presheaves. 
Since exact sequences and direct limits commute, it follows that the 

functor :71teu/, assigning to a presheaf its associated sheaf, is an exact 

functor. Thus if A ~ B ~ C is a sequence of presheaves of order 

two [I.e., g(U) 0 feU) = 0 for all Uj and if.yj L flJ L «i is the 
induced sequence of generated sheaves, then 1m f' and Ker g' are gener
ated respectively by the presheaves Imf and Ker g. Similarly, the sheaf 
Ker g' / 1m f' is (naturally isomorphic to) the sheaf generated by the pre
sheaf Kerg/lmf: U f--> Kerg(U)/Imf(U). 

If p* is a differential sheaf then we define its homology sheaf (or "de
rived sheaf") to be the graded sheaf ~*(P*), where as usual, 

~P(p*) = Ker(d : !l!P ---t pP+1)/ Im(d : !l!p-l ---t PP). 

The preceding remarks show that ~P(!l!*) = ff'1teu/ (U f--> HP(P*(U))) , 
and in general, if p* is generated by the differential presheaf L*, then 
~P(p*) = :71teu/(U f--> HP(L*(U))). 

Note that in general, ~P(P*)(U) -;f, HP(P*(U)). [For example, if we 
let pO = pI be the "twisted" sheaf with stalks Z on X = §1 and let 
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2 ° 2 1 2 . !J! = Z2, the constant sheaf, then 0 -->!J! ----+!J! -->!J! --> 0 IS exact, 
so that 'y{P(!J!*)(X) = 0 for all p. However, !J!°(X) = 0 = !J!1(X) and 
!J!2(X) ~ Z2, so that H2(!J!*(X)) ~ Z2.] 

1.2. Example. In singular cohomology let G be the coefficient group 
(that is, the constant sheaf with stalk G; this is no loss of generality since 
we are interested here in local matters). 

We have the differential presheaf 

(1) 

where G --> SO(U; G) is the usual augmentation. Here we regard G as the 
constant presheaf U f-> G(U) = G. This generates the differential sheaf 

(2) 

When is this exact? That is, when is .9'* (X; G) a resolution of G? Clearly 
this sequence is exact at G since (1) is. The homology of (1) is just the 
reduced singular cohomology group L::.,H*(U; G). Thus (2) is exact {=> the 

- * -sheaf L::.,.Y{ (X; G) = .9'1tea{(U f-> flH*(U; G)) is trivial. This is the case {=> 

lim L::.,H*(U; G) = 0 (3) 

for all x E X, where U ranges over the neighborhoods of x. In the ter
minology of Spanier, (3) is the condition that the point x be "taut" with 
respect to singular cohomology with coefficients in G. Note that this con
dition is implied by the condition HLC'{'. [A space X is said to be HLC'L 
(homologically locally connected) if for each x E X and neighborhood U 
of x, there is a neighborhood V C U of x, depending on p, such that the 
homomorphism L::.,Hp(V; L) --> flHp(U; L) is trivial for p ::; n. Obviously 
any locally contractible space, and hence any manifold or CW-complex, is 
HLG.] An example of a space that does not satisfy this condition is the 
union X of circles of radius lin all tangent to the x-axis at the origin. It is 
clear that this is not HLC 1 , and at least in the case of rational coefficients, 
the sheaf fl'y{l (X; Q) :f. 0 for this space. <> 

1.3. Example. The Alexander-Spanier presheaf A * (. ; G) provides a dif
ferential presheaf 

(4) 

and hence a differential sheaf. However, in this case (4) is already exact. 
[For if f : UP+! --> G and df = 0, define g: UP --> G by g(xo, ... ,Xp-l) = 
f(x, xo, . .. ,Xp-l), where x is an arbitrary element of U. Then 

2:::( -l)ig(xo, ... , Xi, ... , xp) 
2:::( _l)i f(x, Xo,·.·, Xi, ... , xp) 
f(xo, . .. ,xp) - df(x, Xo, ... , Xi, . .. , xp) 
f(xQ, ... ,xp), 
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so that 1= dg.] 
Thus the Alexander-Spanier sheaf A*(X; G) is always a resolution of 

G. 0 

1.4. Example. The de Rham sheaf n* on any differentiable manifold is 
a differential sheaf and has an augmentation JR ---> no defined by taking a 
real number r into the constant function on X with value r. Moreover, 
o ---> JR ---> no ---> n1 ---> ••. is an exact sequence of sheaves, as follows from 
the Poincare Lemma, which states that every closed differential form on 
euclidean space is exact; see [19, V-9.2]. Therefore, n* is a resolution of 
JR. 0 

2 The canonical resolution and sheaf 
cohomology 

For any sheaf A on X and open set U C X we let CO(U; A) be the 
collection of all functions (not necessarily continuous) I : U ---t A such 
that 7r 0 I is the identity on U, 7r : A ---> X being the canonical projection. 
Such possibly discontinuous sections are called serrations, a terminology 
introduced by Bourgin [10]. That is, 

Under pointwise operations, this is a group, and the functor U f-+ CO(U; A) 
is a conjunctive mono~resheaf on X. Hence this presheaf is a sheaf, which 
will be denoted by rJ (X;A). Note that if Xd denotes the point set of X 
with the discrete topology and if I : Xd ---> X is the canonical map, then 
rJ°(X;A) ~ IrA, as already mentioned in 1-4. 

Inclusion of the collection of sections of A in the collection of all ser
rations gives an inclusion A(U) '---+ CO(U;A) = rJ°(X;A)(U) and hence 
provides a natural monomorphism 

I €: A >--+ rJ°(X;A).' 

(For I: Xd ---> X as above, this inclusion coincides with the monomorphism 
f3: A >--+ IrA of (6) on page 15.) 

If <P is a family of supports on X, we put 

Then for any exact sequence 0 ---> A' ---> A ---> A" ---> 0 of sheaves, the 
corresponding sequence of presheaves 
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is obviously exact. Moreover, for any family <I> of supports, the sequence 

0---> cg(.; d') ---> cg(.; d) ---> cg(.; d") ---> 0 

is exact. [To see that the last map is onto, we recall that f E cg (X; d") 
can be regarded as a serration j : X --+ d", Then If I is the closure of 
{x I j(x) = a}. Clearly j is the image of a serration 9 of d that vanishes 
wherever j vanishes. Thus Igl = If I E <I>.] 

Let ,?l(X;d) = Coker{c: d ---> ~o(X;d)}, so that the sequence 

0---> d ~ ~o(X;d) ~ ,?l(X;d) ---> 0 

is exact. We also define, inductively, 

so that 

~n(X;d) = ~O(X;,?n(X;d)) 

,?n+1(X; d) = ,?l(X; ,?n(X; d)) 

is exact. Let d = c 0 a be the composition 

Then the sequence 

leo d 1 d 2 d I ? ---> d --+ ~ (X;d) --+ ~ (X;d) --+ ~ (X;d) --+ ... 

is exact. That is, ~*(X; d) is a resolution of d. It is called the canonical 
resolution of d and is due to Godement [40]. 

This resolution satisfies the stronger property of being naturally "point
wise homotopically trivial." In fact, for x E U C X consider the homomor
phism CO(U; d) ---> d x that assigns to a serration U --+ d its value at x. 
Passing to the limit over neighborhoods of x, this induces a homomorphism 
1Jx : ~o(X; d)x ---> d x' Clearl~ 1Jx 0 c : d x ---> d x is the identity. Thus, 
defining Vx : ,?l(X;d)x ---> ~ (X;d)x by Vx 0 a = 1 - c 0 1Jx (which is 
unambiguous), we obtain the pointwise splitting 

Replacing d by ,?n(X; d) we obtain, generally, the splittings 
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[Note that as a consequence of these splittings, all these sheaves are torsion 
free (i.e., have torsion free stalks) when Ji is torsion free.] Let Dx = l/x0'T}x : 
~n(X;Ji)x --; ~n-l(X;Ji)x, for n > O. Then on ~n(X;Ji)x for n > 0 we 
have dDx + Dxd = C:01/x'T}x + 1/x'T}xC:o = C:'T}x + 1/xO = 1, while on ~o(X; Ji)x 
we have Dxd = 1/x'T}xC:o = 1/xO = 1 - C:'T}x' These three equations, 

{ 
dDx + Dxd = 1, in positive degrees, 
Dxd = 1 - C:'T}x, in degree zero, 
'T}xC: = 1, on Ji, 

(5) 

show that ~* (X; Ji)x is a homotopically trivial resolution of Ji x, and this 
is what we mean when we say that ~*(X; vi) is pointwise homotopically 
trivial. Moreover, the Dx and 'T}x are natural in Ji. 

2.1. Lemma. If Ji* is a pointwise homotopically trivial resolution of a 
sheaf Ji on X (e.g., Ji* = ~*(X;Ji)), then Ji* @ [JJ is a resolution of 
Ji @ [JJ for any sheaf [JJ on X. 

Proof. The hypothesis means that there are the homomorphisms Dx : 
Ji~ -> Ji;-l for n > 0 and 'T}x : Ji~ -> Ji x satisfying (5). Tensoring with 
[JJ preserves these equations and the result follows immediately. 0 

Now suppose that fYl is a sheaf of rings and that Ji is an fYl-module. 
Then ~o(X;Ji) is a ~o(X;fYl)-module and, a fortiori, it is an fYl-module. 
Also note that c: : Ji -> ~o(X; Ji) is an fYl-module homomorphism. Thus 
;11(X;Ji) is an fYl-module. By induction, each ~n(X;Ji) and ;1n(X;Ji) 
is an fYl-module, and d is an fYl-module homomorphism. 

Since 'In(X;Ji) is an fYl-module, when Ji is an fYl-module, it follows 
that ~n(X;Ji) = ~o(X;'ln(X;Ji)) is a ~o(X;fYl)-module. We remark, 
however, that d is not a ~o(X; fYl)-module homomorphism (for if it were, 
then it would turn out that the cohomology theory we are going to develop 
would all be trivial). 

Since ~o(X; Ji) is an exact functor of Ji, so is 'll(X; Ji). By induction 
it follows that ~n(X;Ji) and 'In(X;Ji) are all exact functors of Ji. 

For a family <I> of supports on X we put 

Since cg(X; e) and 'In(X; e) are exact functors, it follows that 

I cg(X; e) is an exact functor. I 
2.2. Definition. For a family <I> of supports on X and for a sheaf Ji on 
X we define 
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Since 0 -+ rcl>(..JJt) -+ rcl>(~o(X;..JJt)) -+ rcl>(~l(Xj..JJt)) is exact, we 
obtain the natural isomorphism 

offunctors of ..JJt. 
From a short exact sequence 0 -+ ..JJt' -+ ..JJt -+ ..JJt" -+ 0 of sheaves on X 

we obtain a short exact sequence 

0-+ C;(Xi..JJt') -+ C;(X;..JJt) -+ C;(Xi..JJt") -+ 0 

of chain complexes and hence an induced long exact sequence 

2.3. If..JJt is a sheaf on X and A eX, and if 111 is a family of supports on 
A, then we shall often use the abbreviation 

I Ht(Ai..JJt) = Ht(Ai..JJtIA)·1 

2.4. We shall now describe another type of canonical resolution, also due 
to Godement, which is of value in certain situations. Most of the details 
will be left to the reader since this resolution will playa minor role in this 
book. Let ~P(Xi..JJt) be defined inductively by ~o(Xi..JJt) = ~o(Xi..JJt) and 
&+,P(Xi..JJt) = ~o(Xi~P-\Xi..JJt)). Define F:(Xi..JJt) = rcl>(&+,P(Xi..JJt)) for 
any family if? of supports on X. Then both &+,P(Xi..JJt) and FP(Xi..JJt) 
are exact functors of ..JJt. We shall define a differential 6 : &+,P (X i..JJt) -+ 

&+,P+! (X;..JJt) that makes &+'* (X i..JJt) into a resolution of ..JJt. To do this we 
first give a description of FP(Xj..JJt) = r(&+,P(Xj..JJt)) that is analogous to 
the definition of Alexander-Spanier cochains. 

Denote by MP(Xj..JJt) the set of all functions defined on (p + I)-tuples 
(XO,Xl, ... ,Xp) of points in X such that I(xo, ... ,xp) E ..JJtxp ' We shall 
define an epimorphism 

by induction on p. Let 'l/Jo be the identity. If 'l/Jp-l has been defined, let 
IE MP(Xj..JJt), and for each Xo E X, let Ixa E MP-l(Xj..JJt) be defined by 

The assignment 

Xo 1-+ 'l/Jp-l(fxa)(XO) E ~p-\Xj..JJt)xa 

is a serration of &+,p-l (X j..JJt) and hence defines an element of 

CO(Xi~P-l(Xj..JJt)) = FP(Xj..JJt). 



40 II. Sheaf Cohomology 

We let 7f;p(f) be this element. Clearly, 7f;p is surjective. 
By an induction on p it is easy to check that Ker7f;p consists of all 

elements f E MP(X; A) such that for each (q + I)-tuple (xo, ... ,Xq) there 
is a neighborhood U (xo, ... , Xq) of Xq such that if 

Xl E U(xo), 
X2 E U(Xo, xt}, 

Xp E U(Xo, ... ,Xp-l), 

then f(xo, ... ,xp) = o. 
We now define the differential 8. If tEA x, let S (t) be any serration of 

A that is continuous in some neighborhood of X and with S(t)(x) = t. [Note 
that S induces the canonical inclusion c : A --+ ~o(X; A) = ~o(X; A).] 
For f E MP(X;A) let bf E MP+1(X;A) be defined by 

p 

6f(xo, ... ,Xp+l) = L( _1)i f(xo, ... , Xi, ... , XP+l) + (_ly+l S(j(xo, ... , xp))(Xp+l). 
;=0 

The reader may check that 6'(Ker7f;p) C Ker7f;p+1 and that bbf E Ker7f;p+2 
for all f E MP(X; A). Thus, we may define a differential b on FP(X; A) by 
'l/JP+16' = 87f;p. Note that on FP(X;A), 6' does not depend on the particular 
choice function S. On FP(X; A) we have that 88 = O. These definitions 
are natural with respect to inclusions of open sets U C X, and thus we 
obtain a differential 6' on ~P(X; A) = ffJlwu/(U f-+ FP(U; A)). 

Consider the homomorphism Ex: MP(X;A) --+ MP-I(X;A), for p > 
0, given by Ex(f) = fx. We claim that this induces a homomorphism 
Dx : ~P(X; A)x --+ ~P-l(X; A)x. To see this, let ()~ : MP(X; A) --+ 

~P(X; A)x be the composition of 7f;p : MP(X; A) --+ FP(X; A) with the 
restriction FP(X;A) = r(~P(X;A)) --+ ~P(X;A)x. If f E Ker(}~ then 
there exists a neighborhood U of X such that flU E MP(U; A) is in Ker 7f;p. 
Thus there is a sequence of neighborhoods U(xo, ... , Xq) in U as above such 
that if each Xq E U(xo, ... , xq-t}, then f(xo, . .. , xp) = o. Specializing to 
Xo = x we can cut U down so that U = U(x). Put V(XI, ... , Xq) = 
U(X,XI ... ,xq). Then if X2 E V(Xl), X3 E V(Xl,X2), etc., we have that 
fx(XI,X2, ... ,Xp) = f(X,Xl, ... ,Xp) = 0, whence Ex(f) = fx E Ker(}~-l, 
as claimed. 

Now, it is easy to compute that Exb + bEx = 1, whence Dxb + bDx = 1. 
We also have 'T}x : ~o(X;A) = ~o(X;A) --+ A, as before, and the reader 
may check that Dx8 = 1 - C'T}x. Thus, we have produced a pointwise split
ting of ~*(X; A). In particular, this implies that ~* (X; A) is a resolution 
ofA. 

One advantage of this resolution is that it has a semisimplicial structure. 
The description above in terms of the Alexander-Spanier type of cochains 
has an analogue for ~*(X; A). For these facts we refer the reader to [40]. 
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3 Injective sheaves 

Let f1ll be a sheaf of rings with unit on X. All sheaves on X in this section 
will be f1ll-modules; homomorphisms will be f1ll-module homomorphisms 
and so on. An f1ll-module # on X is said to be injective (with respect to 
f1ll) if, for any subsheaf A of a sheaf fjJ on X and for any homomorphism 
h : A -> # (of f1ll-modules) there exists an extension fjJ -> # of h. That is, 
# is injective if the contravariant functor 

Homgz(e, #) 

is right exact and hence exact (see I-Exercise 6). 
In this section we shall show that there are "enough" injective sheaves 

in the category of f1ll-modules. 1 

First, we need the following preliminary result: 

3.1, Theorem. Let f : W -> X be a map and let P be an f* f1ll-injective 
sheaf on W. Then f P is an fll-injective sheaf on X. 

Proof. We must show that the functor Homgz(e,fP) is exact. But by 
I-Exercise 7, it is naturally equivalent to the functor Homj*gz(j*(e),P), 
which is exact since f* is exact and P is f* f1ll-injective. 0 

We shall now apply this result to the case in which W = Xd, the discrete 
space with the same underlying point set as X. Here f1ll and f* f1ll have the 
same stalks, and it is clear that a sheaf P on Xd is injective <=> each stalk 
P x is an injective f1ll x-module. Thus 3.1 immediately yields the result that 
if I(x) is an injective fllx-module for each x E X, then the sheaf # on X 
defined by 

#(U) = IT I(x), (6) 
xEU 

with the obvious restriction maps, is an injective sheaf on X, since it is 
just the direct image of the sheaf on Xd whose stalk at x is I(x). 

3.2. Theorem. Any sheaf A on X is a subsheaf of some injective sheaf. 

Proof. With the previous notation, let I(x) be some injective f1ll x-module 
containing A x as a submodule. Then the inclusion 

IT Ax '-> IT I(x) 
xEU xEU 

provides a monomorphism «6o(X; A) >--> #. Composing this with the 
canonical monomorphism A >--> «60 (X; A) yields the desired monomor
phism A >--> #. 0 

1 We shall make use of this fact only in the case in which [1Jl is a constant sheaf. 
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3.3. Proposition. Let L be an integral domain and suppose that fl( is the 
constant sheaf with stalks L. If # is an L-injective sheaf on X, then r if> (#) 
is divisible (with respect to L) for any family <P of supports on X. 2 

Proof. Let Q be the field of quotients of L and let s E 9(X) with K = 
lsi E <P. Then s defines a homomorphism g of the constant sheaf L into 
9 by g(Ax) = AxS(X). Since this kills the subsheaf LX-K, it factors to 
give a homomorphism h : LK -> # such that s is the image of the unity 

section 1 of L via L -> LK --!!:.... 9. Since 9 is injective, h can be extended 
to hi : QK -> 9. Now if k E L, then 11k E Q gives a section of QK that is 
carried by hi to a section t E 9(X) with It I = K and kt = s. 0 

3.4. Proposition. If # is an injective sheaf, then so is #IU for any open 
set U C X. 

Proof. Let 0 -> A -> fjj be an exact sequence of sheaves on U and let 
A -> 91U be any homomorphism. The exact commutative diagram3 

can be completed as indicated since # is injective, yielding the required 
homomorphism fjj = fjjxlU -> 91U. 0 

Because of 3.2, standard methods of homological algebra can be ap
plied to the theory of sheaves. For example, every sheaf has an injective 
resolution. 4 Moreover, suppose that 9* is a differential sheaf with each 9 P 

injective and that fjj -> Ker(.¢l -> #1) is a given homomorphism. Then 
for any resolution g;* of a sheaf A, any homomorphism h : A -> fjj admits 
an extension to a chain map g;* -> 9*, that is, a commutative diagram 

d -----. 

d -----. 

Moreover, any two such chain maps g;* ----> 9* extending h are chain homo
topic, that is, if hi, h" : g;* -> 9* are chain maps extending h, then there 
is a sequence of homomorphisms 

'T/ : g:P ----> 9 P- 1 such that d'T/ + 'T/d = hi - h". 

2 Also see Exercise 6. 
3Recall that (.9'IU)X =.9'u c .9'. 
4For the benefit of readers with deficient background in homological algebra, we detail 

this and some other items we need about injective resolutions at the end of this section. 



§3. Injective sheaves 43 

Any chain map !J!* -+ d* induces a chain map of complexes rol>(!J!*) -+ 

rol>(d*). Since a chain homotopy induces a chain homotopy, we see that 
there is a canonical homomorphism 

h* : H*(fol>(!J!*)) -+ H*(fol>(d*)) 

induced by h : .A -+ fiJ, independent of all choices. 
Now let d* be an injective resolution of fiJ. If!J!* is also an injective 

resolution of .A and if .A = fiJ, h being the identity, we see that h* is an 
isomorphism, since a map in the other direction exists and both composi
tions must be the identity because of the uniqueness. Thus H*(rol>(d*)) 
depends only on fiJ and not on the particular injective resolution. 

The functor fiJ 1-+ HP(f~(d*)) is called the pth right derived functor of 
the left exact functor fiJ 1-+ f 01> (fiJ). We shall show in Section 5 that this 
functor is precisely the functor 

fiJ 1-+ H:(Xj fiJ). 

More generally, the functor fiJ 1-+ HP(fol>(.r&m.Ifl(.A,d*))) is the pth 
derived functor of the left exact functor fiJ 1-+ r 01> (.r&m.Ifl(.A, fiJ)) and is 
denoted by Ext:,Ifl(.A, fiJ). Since .r&m.1fl(fIl, fiJ) Ri fiJ (naturally) we will 
have that 

3.5. Sometimes it is convenient to have a canonical injective resolution 
of a sheaf. To obtain this we need only choose, canonically, the injective 
module lex). We now show how to do this. 

Let L be a ring with unit and let A be an L-module. Recall that an 
abelian group is injective as a Z-module <=? it is divisible. 5 We let T denote 
the group of rationals modulo the integers. Let A denote the L-module 
Homz(A, T) and note that A 1-+ A is an exact contravariant functor since 
T is inject~e as a Z-module. Since T is injective, it is easily seen that the 

map A -+ A, taking a 1-+ a* where a*(f) = I(a), is a monomorphism. 
We claim that if A is projective then A is injective (as L-modules). To 

see this, consult the following diagrams 

11 .... ~ .... 
~. 

c- B-O 
~ t 
} .... X 

\'" t 
'. 
A 

in which we are to produce the map g. The map h exists since A is projec
tive. This dualizes to give the third diagram, and we let g be the composi-

tion C >-+ '8 ~ A. The composition B >-+ ~ -+ A is easily seen to be the 

5See, for example, [19, V-6.2). 
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original map f. Thus, by commutativity of the third diagram, f = go i, 
as desired. 

Now, for an L-module B, let F(B) be the free L-module on the nonzero 
elements of B. (More accurately, F(B) should be considered as the free 
module on B as a basis modulo the cyclic submodule generated by 0 E B.) 
Then F is a covariant functor. Moreover, there is a natural surjection 
F(B) -» B and hence a natural monomorphism fj >--> F(i1j. 

~ -
The composition A >--> A >--> F(A) is then a natural monomorphism -into the injective L-module leA) = F(A). Also, A f--+ leA) is a covariant 

functor. Note, however, that l(.) is not an exact functor since F is not 
exact. 

If A is a sheaf of &Z-modules, where &Z is a sheaf of rings with unit, 
let #o(X; A) denote the sheaf # of (6) on page 41, where lex) is taken to 
be I(Ax) as constructed above (for the ring &Zx). The proof of 3.2 gives 
a monomorphism A >--> ,j'°(X;A), which we shall regard as an inclusion. 
Define, inductively, 

jl(X;A) = ~(X;A)/A, 
,j'n(X;A) = ,j'O(X;jn(X;A)), 

r(X;A) =jl(X;r-1(X;A)). 

Then we have the exact sequences 

and 

which concatenate to give the natural exact sequence 

That is, #* (X; A) is an injective resolution of A and is a covariant functor 
of A. 6 It will be called the canonical injective resolution of A. 

3.6. For the benefit of readers who have insufficient background concerning 
resolutions, we indicate here the derivations of some of the statements 
we have made about injective resolutions and others we shall need later. 
Readers already at home with this subject should skip to the next section. 
Although we discuss this subject in the language of sheaves, everything 
here can be done in general abelian categories. 

The discussion in 3.5 already indicated how one can construct an injec
tive resolution of a sheaf just given the fact that any sheaf can be embedded 
in an injective sheaf. 

If h : A ----> flJ is any homomorphism of sheaves on X, and if E: : A ----> !£* 
is a resolution and T/ : flJ ----> ,j'* is a degree zero map of flJ into an injective 

6 Unfortunately, however, it is not an exact functor. 
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differential sheaf, let us show how to construct an extension h* : p* -+ #* 
of h. Consider the diagram 

o -+ A ~ pO 

h 1 hO ~ 
$ ~ #0 

in which the top row is exact. The map hO extending TJ 0 h exists since ~ 
is injective. This makes the diagram commute. Next, the induced diagram 

0-+ pO I Imc: ..:'..-.. pI 

1 hll , 
~ jImTJ ..:i.... #1 

can similarly be completed. The inductive step for the completion of the 
argument is now clear. 

Now suppose that h*, k* : p* -+ IJ* are two such extensions of the 
same map h : A -+ $. We wish to construct a chain homotopy g* between 
them. That is, we want homomorphisms gn : pn -+ ~-l with gO = 0 and 
dn-lgn + gn+ldn = hn - kn, where d* stands for the differentials in both 
p* and #*. We have the commutative diagram 

0 A e pO dO pI d l !J!2 d2 
-+ ---+ ---+ ---+ ---+ ... 

h-k=ol hO-kO 1 h l - kl l h2- k21 
$ 

7} IJO dO IJI d l #2 d2 
---+ ---+ ---+ ---+ •.. 

which has (hO - kO) 0 c: = TJ 0 0 = O. Thus hO - kO factors through pO lA, 
and dO induces a monomorphism J-t : pO / A >-+ pl. Since 1J0 is injective, J-t 
extends to give a homomorphism gl : p -+ ~ such that gl odfJ = hO - kO• 

Since gO = 0 by definition, this is the desired equation d-lgO + gldO = 
hO - kO. Now, 

by the commutativity of the diagram. Thus (hI - kl _ dOg1 ) : pI -+ #1 
factors through pI 11m dO = pI I Ker d l . Therefore, since IJI is injective, 
there exists a map g2 : p2 -+ IJI such that dlg2 = hI - kl - dOg l , which is 
exactly the equation we are after. The inductive step is now clear. 

Finally, given an exact sequence 0 -+ A ~ $ ~ «fi -+ 0 of sheaves, 
we wish to construct injective resolutions A*, $*, and '(i* of them and an 
exact sequence 0 -+ A* -+ $* -+ '(i* -+ 0 extending the original sequence. 
First, let c: : '(i -+ '(i* be an injective resolution and let K : $ >-+Ao 
be a monomorphism into an injective sheaf. Put $0 = AO E& '(i0 and 
let jO : $0 -+ «fi0 be the projection. Then TJ =(K, c:j) : $ -+ $0 is a 
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monomorphism and jO 0 'TJ = e 0 j. Next, by looking at the quotient of $0 
by Im'TJ there is a map ",0 : ~ -+ A1 with Ker ",0 = Im'TJ, where A1 is 
some injective sheaf. Then define $1 = A1 EB ~1, with t : $1 -+ ~1 being 
the projection and with dO = (",0, ~jO) : ~ = AO EB ~ -+ A1 EB ~1 = $1. 
Then j1~ = ~jo. The inductive step should now be clear, and it gives a 
resolution $* = A* EB ~* of $* (but the differential is not the direct sum 
of that on ~* and the one to be put on A*) and a map j* : $* -+ ~* 
of resolutions extending j. Also, j* is the projection and thus has kernel 
A*, which was chosen to consist of injective sheaves (and hence $* also 
consists of injective sheaves). By a simple diagram chase, A* inherits a 
differential and is a resolution of A, as follows by looking at the long exact 
homology sequence (of derived sheaves) associated with the short exact 
sequence 0 -+ A* -+ $* -+ ~* -+ 0 of differential sheaves. 

4 Acyclic sheaves 

Let cI> be a family of supports on X and A a sheaf on X. The sheaf A is 
said to be cI>-acyclic if 

H:(XjA) = 0, for all p > O. 

We shall see in Section 5 that injective sheaves are cI>-acyclic for all cI>. 
Let !l!* be a resolution of the sheaf A. We shall describe a natural 

homomorphism 
'Y: HP(fw(!l!*)) -+ H:(XjA). 

Let '1P = Ker(!l!P -+ !l!P+1) = Im(!l!P-1 -+ !l!P), where '10 = A. The exact 
sequence 0 -+ :1P- 1 -+ !l!p-1 -+ '1P -+ 0 induces the exact sequence 

0-+ f w(:1P- 1) -+ fw(!l!P-l) -+ f w('1P) -+ Hi(Xj'1p- 1). 

(Note that the next term is 0 if !l!p-1 is cI>-acyclic.) Thus we obtain the 
monomorphism 

HP(f (!l!*)) - f w(:1P) >---+ H1 (X, o-P-1) (7) 
w - Im(rw(!l!P-1) -+ f w(:1P)) w, If 

[since 0 -+ f w('1P) -+ fw(!l!P) -+ fw(!l!P+l) is exact], which is an isomor
phism when !l!p-1 is cI>-acyclic. Moreover, the exact sequence 0 -+ 'lp-r -+ 

!l!p-r -+ :1p - r +l -+ 0 induces the connecting homomorphism 

(8) 

and we let 'Y be the composition 

HP(rw(!l!*)) -+ Hi(Xj'lP-1) -+ Hi(X;'lP-2) -+ ... -+ H~(Xj:1°). 

Now (7) and (8) are isomorphisms if each !l!i is cI>-acyclic. Thus we have: 
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4.1. Theorem. If p* is a resolution of cd by iP-acyclic sheaves, then the 
natural map 

'Y: HP(rip(p*)) -> H~(X;cd) 

is an isomorphism for all p. 

N aturality means that if the diagram 

cd -> p* 
if ih 
f!iJ -> .At* 

D 

commutes (h being a homomorphism of resolutions, i.e., a chain map) then 

also commutes. A similar statement holds regarding connecting homomor
phisms, but we shall not need it. 

4.2. Note that it follows from 4.1 that if p* -> .At* is a homomorphism 
of resolutions by iP-acyclic sheaves of the same sheaf cd, then the induced 
map 

is an isomorphism. 

4.3. Corollary. If 0 -> pO -> p! -> p2 -> ... is an exact sequence of 
iP-acyclic sheaves, then the corresponding sequence 

0-> rip(po) -> rip(p!) -> rip(p2) -> rip(p3) -> ... 

is exact. 

Proof. We must show that HP(rip(p*)) = 0 for all p. By 4.1 we have 
HP(rip(p*)) ~ H~(X; 0) since p* is a iP-acyclic resolution of the zero sheaf 
o. But ~o(X; 0) = 0, and it follows that ~n(X; 0) = 0 for all n, whence 
cg(X; 0) = 0 and Hg(X; 0) = O. D 

5 Flabby sheaves 

In this section we define and study an important class of iP-acyclic sheaves 
containing the class of injective sheaves. In particular, we will show that 
injective sheaves are iP-acyclic for all iP. 

5.1. Definition. A sheaf A on X is "flabby" if cd(X) -> A(U) is sur
jective for every open set U eX. 

5.2. Proposition. If A is flabby on X and iP is any family of supports 
on X, then rip(A) -> ripnu(cdIU) is surjective for all open U c X. 
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Proof. Let s E rcl>nu(AIU). Then lsi = K n U for some K E ~. Then 
s extends by 0 to the open set U U (X - K). Extend this arbitrarily to 
t E r(A) using that A is flabby. Then It I c K and so t E rcl>(A). 0 

For any sheaf A on X, it follows directly from the definitions that 
~o(X;A), and hence ~n(X;A) and Bfn(X;A), are flabby. 

5.3. Proposition. Every injective module 9 over a sheaf flll of rings with 
unit is flabby. 

Proof. Let s E 9(U). The map fllllU -> 91U defined by Px f-+ Px . s(x), 
where Px E flllx for x E U clearly extends to a homomorphism h : flllu -> 9. 
Since 9 is injective, h extends to a homomorphism g : flll -> 9. Thus the 
section x f-+ g(lx) of 9 extends s to X. 0 

5.4. Theorem. Let 0 -> A' -> A -> A" -> 0 be exact and suppose that 
A' is flabby. Then for any family ~ of supports on X, 

0-> rcl>(A') -> rcl>(A) -> rcl>(A") -> 0 

is exact. In particular, since A'IU is flabby for U open in X, 

0-> A'(U) -> A(U) -> A"(U) -> 0 

is exact. Moreover, A is flabby <=? A" is flabby. 

Proof. We may consider A' as a subsheaf of A. Let s E rcl>(A"). Let 
~ be the collection of all pairs (U, t), U open in X, t E A(U), such that 
t represents slU E A"(U). Order ~ by (U,t) < (U',t') if U c U' and 
t'IU = t. Then ~ is inductively ordered (Le., a chain in ~ has an upper 
bound, its union) and hence has a maximal element, say (V, t). Suppose 
that V f. X. Let x ¢. V and let W be a neighborhood of x such that 
(W, t') E ~ for some t' E A(W) (which clearly exists). 

Now, tlV n W - t'lV n W E A'(V n W) and hence extends to some 
t" E A'(W) since A' is flabby. Then t and t' + t" agree on V n W, so that 
together they define an element of A (V U W) extending t and representing 
s on V U W. This contradicts the maximality of (V, t) and shows that 
V=X. 

Now put U = X - lsi and note that tlU E A' (U). We can extend tlU 
to some t' E A' (X) since A' is flabby. Then t - t' represents s on X and 
is zero on U. Therefore It - t'l = lsi E IP. 

The last statement follows from the exact commutative diagram 

o -> A'(X) -> A(X) -> A"(X) -> 0 
1 1 1 

o -> A'(U) -> A(U) -> A"(U) -> 0 
1 
o 

and a diagram chase. 0 
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5.5. Theorem. A flabby sheaf is iP-acyclic for any iP. 

Proof. Since ~o(X;..4) is always flabby, it follows from the last part of 
5.4 that ~l(X;..4) is flabby when..4 is flabby. By induction, all ~n(X;..4) 
are flabby when ..4 is flabby. 

Thus if we apply the functor r <I> to the exact sequences 

[n = 0,1, ... and where ~o(X;..4) =..4], we obtain exact sequences. It 
follows immediately that the concatenated sequence 

is exact, as was to be shown. D 

5.6. Corollary. The functor..4 f--t H~(X;..4) is the pth right derived 
functor of the left exact functor r <I>. 

Proof. This follows immediately from 4.1, 5.3 and 5.5. D 

5.7. Proposition. If f : X -> Y and..4 is a flabby sheaf on X, then f..4 
is flabby on Y. 

Proof. This is immediate from the definition of f..4 and of "flabby." D 

5.8. Corollary. If F C X is closed and fjJ is a flabby sheaf on F, then 
fjJx is flabby on X. 

Proof. If i : F '---+ X is the inclusion, then ~ = if!l1. D 

5.9. Proposition. If {2.x I oX E A} is a family of flabby sheaves on X, 
then TI.x 2.x is flabby. 

Proof. This follows from the definition (TI.x 2.x) (U) = TI.x (2.x (U)). D 

A family {!l?.x I oX E A} of sheaves on X is said to be locally finite if each 
point x E X has a neighborhood U such that !l?.x I U = a for all but a finite 
collection of indices oX. 

5.10. Corollary. If {2.x loX E A} is a locally finite family of sheaves on 
X then 

1 HP(X; TI.x 2.x) :::::! TI.x HP(X; 2.x)·1 

If A is finite then this holds for arbitrary support families. 
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Proof. If we let .Q'~ = ~* (X; .Q'.x), then {.Q'D is also locally finite, and it 
follows that (fh .Q'~)x = Il.x (.Q'~)x since locally near x, Il.x.Q'~ = EB.x .Q'~. 
Since Il.x is exact, it follows that Il.x .Q'~ is a resolution of Il.x .Q'.x for locally 
finite collections. It is flabby by 5.9. The result then follows from 4.1, the 
fact that Il.x commutes with r, and the fact that Il.x is exact. The last 
statement follows from the fact that riI>(Il.x .Q'~) = Il.x (riI>(.Q'~)) when A is 
finite, due to the fact that the union of a finite collection of members of <P 
is a member of <P. 0 

5.11. Example. This example shows that 5.9 does not hold for (infinite) 
direct sums instead of direct products. Let .Q'n = Z{1/n} on X = lR. Then 
!l!n is flabby but !l! = EBn!l!n ~ Z{1,1/2, ... } is not. (The unique serration 
of!l! that is 1 at all the points l/n is continuous over (0,00) but not at 0 
since it does not coincide with the zero section in some neighborhood of 
0.) Note that for this example, (!l!n){O} = 0 for all n and (EBn !l!n){O} = 0, 
but (Iln !l!n){O} =f:. o. 0 

5.12. Example. This example shows that 5.10 does not hold for general 
support families. Let!l!n = Z{n} on X = JR.. Then {!l!n} is locally finite. 
Clearly H2(X;Iln !l!n) = rc(Iln!l!n) ~ EBnZ, which is countable, while 
Iln(H2(X;!l!n)) = Iln(rc(!l!n)) ~ Iln Z is uncountable. 0 

5.13. Proposition. Let L be a principal ideal domain. If A is a flabby 
sheaf of L-modules on X and J( is a locally constant sheaf of L-modules 
on X with finitely generated stalks and with A * L J( = 0, then A Q9L J( is 
flabby. 

Proof. Since flabbiness is a local property by Exercise 10, it suffices to 
treat the case in which J( is constant. Since a direct product of flabby 
sheaves is flabby by 5.9, it suffices to consider the case of a cyclic L-module 
J( = Lk = L/kL for which A has no k-torsion. Then the exact sequence 

o ---+ A ®L L ~ A ®L L ---+ A ®L Lk ---+ 0 shows that A ®L Lk is flabby 
by 5.4 since A ®L L ~ A is flabby. 0 

5.14. Corollary. Let L be a principal ideal domain. Let A be a sheaf 
of L-modules on X and let J( be a locally constant sheaf of L-modules 
on X with finitely generated stalks such that A * L J( = O. Then with 
A* = ~* (X; A), there is a natural isomorphism 

for any family <P of supports on X. If J( is constant with stalks M, then 
also 
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Proof. Since J'i* has no torsion that J'i does not have, J'i* *L .At = 0, 
and so J'i* 0L .At is a flabby resolution of J'i 0L .At by 5.13 and 2.1. Thus 
the first statement follows from 4.1. If M is a finitely generated L-module, 
then there is an exact sequence 0 -+ R -+ F -+ M -+ 0 with Rand F free 
and finitely generated. The sequence 

is exact since J'i* 0LR is flabby by 5.13. Now fcI>(J'i* 0 LF) ::::,j fcI> (J'i*) Q9LF, 
and similarly for R, since it is just a finite direct sum of copies of f cI> (J'i*). It 
follows that fcI>(J'i* 0L M) ::::,j fcI>(J'i*) 0L M, whence the second statement 
follows from the first. D 

5.15. We conclude this section with an improved version of the map, of 
Section 4. Let J'i be a sheaf on X, p* a resolution of J'i, and d* an injective 
resolution of J'i. Denote ~* (X j J'i) by J'i*. We can find homomorphisms 
of resolutions (unique up to homotopy) 

By 4.2 together with 5.3 and 5.5 the induced map 

is an isomorphism. Let 

p: H*(fcI>(P*)) -+ H;(XjJ'i) 

be the composition H* (fcI> (p*)) -+ H*(fcI>(d*)) ::::,jH*(fcI>(J'i*)) =H; (Xj J'i). 
It is easy to see that p does not depend on the choices made. Also, d* could 
be replaced by any lfl-acyclic resolution, provided the indicated maps from 
p* and J'i* exist. 

Note that p is an isomorphism when p* is lfl-acyclic. One can see 
without much difficulty that p = (_1)p(p+l)/2" where, is the isomorphism 
of Section 4, but this is immaterial and will not be proved herej see [24, 
V-7.1]. It is of more importance that p is easier to work with. For example, 
when p* = ~* (X j J'i) = J'i*, it is clear that p is the identity. 

Let 0 -+ J'i -+ YJ -+ ~ -+ 0 be an exact sequence of sheaves on X j 
let 2*, JV*, and .At* be resolutions of J'i, YJ, and ~ respectivelYj and 
let p* -+ JI;"* -+ .At* extend J'i -+ YJ -+ ~. Assume further that 0 -+ 

fcI>(P*) -+ fcI>(JV*) -+ fcI>(.At*) -+ 0 is exact, so that there is an induced 
long exact sequence in homology. Then it can be shown that p maps this 
induced sequence into the cohomology sequence of 0 -+ J'i -+ YJ -+ ~ -+ 0 
so as to form a commutative ladder. (Use the fact from 3.6 that a short 
exact sequence can always be extended to a short exact sequence of injective 
resolutions and use Exercise 47.) 
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6 Connected sequences of functors 

In this section we prove an elementary theorem on functors of sheaves that 
will be basic in following sections. It will be useful in defining and proving 
the uniqueness of various homomorphisms involving cohomology groups. A 
basic reference is [58, Chapter XII]. Also see [80, Chapter III]. All sheaves 
in this section are sheaves on a fixed base space X. All functors will be 
additive covariant functors from the category of sheaves to that of abelian 
groups. 7 

A class ft of short exact sequences 0 ---+ .;i' ---+ .;i ---+ .;i" ---+ 0 will be 
said to be admissible if the following three conditions hold: 

• ft is closed under isomorphisms of exact sequences. 

• Every pointwise splitS short exact sequence is in ft. 

• If 0 ---+ .;i' ---+ .;i --> .;i" ---+ 0 is in ft, then regarding .;i' as a subsheaf 
of .;i, the sequence 

is in ft. 

Remark: The class of pointwise split short exact sequences is admissible because 
there is a splitting "":s: --+ ""~ by definition and a splitting ~o(Xj""):s: --+ 

"":s: as shown in Section 2. Also, any "proper class" in the sense of Mac Lane 
[58, p. 367] is admissible provided it contains all pointwise split sequences. 

An ft-connected sequence of (covariant) functors (P*,8) is a sequence 
of functors pn : .;i f-+ pn(.;i), n an integer, together with natural trans
formations 8 : pn(.;i") -+ pn+l(.;i') defined for all exact sequences 0 -+ 

.;i' -+ .;i -+ .;i" -+ 0 in ft such that the induced long sequence 

is of order two, and such that a commutative diagram 

o -+ .;i' -+ .;i -+ .;i" -+ 0 

! ! ! 
o -+ f!JI -+ f!JJ -+ f!JI' -+ 0 

(the rows being in ft) induces a commutative diagram 

...!..... pn+l(.;i') 
! 

...!..... Fn+l (f!JJ'). 

7The results of this section remain true if we replace the category of all sheaves by 
that of ~-modules, where ~ is a fixed sheaf of rings with unit. 

BSee 1-5.1. 
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"Connected" will stand for ~ -connected when ~ consists of all short exact 
sequences. 

An ~ -connected system of multifunctors is a system (F*""'*, 81, ... , 8n ), 
where F*""'* is a system of functors of n variables (where n is fixed) indexed 
by n-tuples of integers, such that if all indices P1, "',Pn are fixed except for 
the ith, and all variables A 1, ... , An are fixed except the ith, then together 
with 8i , we obtain an ~ -connected sequence of functors of one variable, and 
we also require that 8i 8j = 8j 8i for all i, j when this is defined. 

6.1. We shall call a connected sequence of functors (F*, 8) fundamental if 
the following three conditions hold: 

• FP(A) = 0 if p < O. 

• FP(A) = 0 if P > 0 and A has the form ~o(X; $) for some sheaf $. 

• For any short exact sequence 0 ---- A' ---- A ---- A" ---- 0, the induced 
sequence (9) is exact. 

These conditions imply that FP is the pth right derived functor of the 
left exact functor FO.9 The standard examples are, of course, F*(A) = 
H; (X; A) for any given family <I> of supports on X. 

6.2. Theorem. Suppose that (Ft, 8d, ... , (F~, 8n) are fundamental con
nected sequences of functors and that (F*""'*, 8L ... , 8~) is an ~ -connected 
system of multifunctors of n variables, with ~ admissible. Assume that we 
are given a natural transformation of functors 

TO, ... ,O : F?(A 1 ) 18) ••• 18) F~(An) ---+ FO""'O(A1, ... ,An). 

Then: 

(a) There exists a unique extension ofTo, ... ,o to natural transformations 

TP1, ... ,Pn : Fr (A 1 ) 18) ••• 18) F!:,n(An) ---+ FP1, ... ,Pn(A1 , •.• ,An) 

that are compatible with respect to 8i and 8~ for all i; (see below for 
the meaning of "compatible"). 

(b) If for fixed indices Pj, j =f. i, and for fixed variables A j, j =f. i, the 
sequence of functors Ai I--> FP1, ... ,Pn(A1 , ... ,An) is ~'-connected, 
for some admissible ~' :J ~, by a transformation 8? extending 8L 
then 8i and 8r are compatible. 

(c) If n = 1 and (F*, 8D is also fundamental, then: 

(i) If TO : FP(A) ---- FO(A) is surjective for all A, then so are all 
the TP. 

(ii) If TO is injective for all A and is an isomorphism for A flabby, 
then TP is an isomorphism for all A and p. 

9For one can resolve any sheaf by injective sheaves of the form ~o(Xj e). 
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Proof. The "compatibility" of Oi and o~ means that if 

is in iff and if aj E F!j(Aj) for j =/:. i, and ai E Ff'(A'j), then 

TP1"",Pi+ 1, ... ,Pn (a1 0 ···0 Oiai 0··· 0 an) = 0~TP1""'Pn (a1 0··· 0 an). 

Let us use the abbreviations;1f = ;1P(XjAi) and ~f = ~P(X;Ai)' 

where ;1~ = Ai and ~i1 = O. Also, for brevity, let 

T = TO, ... ,o and F = FO, ... ,o. 

Applying F;* to the sequences 

o --> O'P --> ~P --> O'p+1 --> 0 
~ ~ ~ r7' 1, 

(10) 

we obtain the sequence of homomorphisms 

which is exact at the second term. 
Then the composition of the Oi of the sequences (10) yields canonical 

surjections 
/i : FP(;1fi) -,; Ff'(A;) 

whose kernel is the image of Ai :FP(~fi-1) --> FP(;1fi). 
Similarly for FP1, ... ,Pn, using the fact that 0~8j = ojo~, the composition 

of the o~'s of the sequences (10) in any order yields a canonical homomor
phism: 

'11 • F(O'Pl O'Pn) FP1, ... ,Pn( .d .d ) 
"JO c711""r7n --). tJ¥l,···,...n-'n· 

Moreover, the kernel of this map contains the images of all of the induced 
maps Pi = 

( . ) . F(O'Pl (,LJPi-1 O'Pn) --> F(O'Pl ryPi- 1 ryPn) T 1, ... ,/., ... ,1. d'1 , ... , {!Ii ""'d'n d'1 ""'d'i '''''d'n 

(the ~ term in only the ith variable) so that TJPi = O. Now, if bi E :1fi and 

/j(bj ) = 0 for some j, then bj = Aj(Cj) for some Cj E FjO(~;j-1), so that 

TJ(T(b1 0··· 0 Aj(Cj) 0··· 0 bn )) 

TJ(pj(T(b1 0··· 0 bj 0··· 0 bn ))) 

O. 

Therefore the map T : FP(;1i1 ) 0 ... 0 F~(;1~n) --> F(;1i1 , ... , ;1~n) in
duces a unique compatible map 
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given by TP1, ... ,Pn(al 0··· 0 an) = 7](T(-Yll(al) 0··· 0,;1(an))). 
It is clear from the definition of TP1,. .. ,Pn that the 8's are compatible 

on the class of short exact sequences of the form 0 -+ A -+ ~o(A)-+ 
Jl(A) -+ O. The sequences (10) are of this form. Thus to complete the 
proof of (a) we need only prove (b). But then it suffices to prove the case of 
one variable, for if we fixpj, A j , and aj E F?(Aj) for j =/:- i, we need only 
consider the functors Ft and $ 1--+ FP1, ... ,Pn (A 1, ... , $, ... , An) of one vari
able $ = Ai and the transformation SPi ((3) = TP1'''',Pn (aI, ... , (3, ... , an) : 
F Pi("") -+ FP1, ... ,Pn( JI "" J1) i w ~l,···,w,···,u¥n . 

For one variable, (b) is contained in (a). Therefore we need only com
plete the proof of (a) for the case of one variable. Let 0 -+ A' -+ A -+ 
A" -+ 0 be in fl and consider the commutative diagram with exact rows 

0 -+ A' A 
j 

A" -+0 -+ ---+ 

II 1 11 
0 -+ A' ~o(A) k ~o(A)/A' -+0 (11) -+ ---+ 

II r Ig 
0 -+ A' ~o(A') I :;l(A') -+0 -+ ---+ 

all of whose rows are in fl. Applying Fl (respectively F) we obtain a 
commutative diagram lO 

Ff(A) Ff(A") 01 Ff+! (A') ---+ ---+ 

1 1/* II 
Ff(~O(A)) k* Ff(~O(A)/A') 01 Ff+!(A') ---+ 0 ---+ ---+ 

r r g* II 
Ff( ~O(A')) I' Ff(:;l(A')) 01 Ff+l(A') ---+ 0 ---+ ---+ 

and a map of this into the corresponding diagram for F. Denoting 8~ by 
8, we must show that if a E Ff(A"), then 

However, 

8TP(a) = 8f*TP(a) = 8TP(f*a) and TP+l(81a) = TP+!(8d*a). 

Thus it suffices to show, for a' E Ff(~o(A)/A'), that 

(12) 

However, note that Ff(Jl(A')) maps onto Ff(~o(A)/A')/(Imk*). (Also 
note that the kernel is 1m l*.) Thus it suffices to prove (12) for a' = g* (a") 

lONote that for p > 0 the bottom two groups in the first column are zero. 
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for some a" E Ff(;1 1(A/)). We computell 

8TP(a') = 8TP(g*a") = 8g*TP(a") = 8TP(a") 

=def TP+l(81a'/) = TP+l(81g*a") = TP+l(81a') 

as was to be shown; completing the proof of (a) and (b). 
Part (c) is an elementary application of the five-lemma, which will be 

left to the reader. 0 

Remark: The conditions defining a fundamental connected sequence are more 
restrictive than is necessary, but they are sufficient for our purposes. See 
[58, Chapter XIIl in this regard. 

6.3. Example. Let f : X ---. Y and let ~ and \lI be families of supports 
on X and Y respectively such that f- 1\l1 c ~. Then Fi(fiJ) = H~(Y; fiJ) 
is a fundamental connected sequence of functors of sheaves fiJ on Y. Also, 
Fi (fiJ) = H~ (X; f* fiJ) is a connected system of functors of fiJ, since fJJ f--+ 

f* fiJ is exact. We have the natural transformation 

Therefore, Theorem 6.2 gives us a natural transformation 

of functors compatible with connecting homomorphisms. This means that 
an exact sequence 0 ---. flJ' ---. fiJ ---. flJ'1 ---. 0 of sheaves gives rise to a 
commutative ladder 

"'---' H~(Y; flJ') ---. H~(Y; fiJ) ---. H~(Y; flJ'1) ---. H~+l(y; fiJI) ---. ... 
! ! ! ! 

.. . ---.H~ (X; f* flJ')---'H~ (X; f* fiJ)---.H~(X j f* flJ")---.H~+l (Xj f* flJ')---. . .. 

in cohomology. This will be generalized and discussed at more length in 
Section 8. 0 

7 Axioms for cohomology and the cup 
product 

A cohomology theory (in the sense of Cartan) on a space X with supports 
in ~ is a fundamental connected sequence of functors H~ (X j e) (additive 
and covariant from the category of sheaves on X to that of abelian groups) 
together with a natural isomorphism of functors 

o ""-::O() T : fw(e) --+ Hw Xj e . 

11 In this computation g* stands for both FP(g) and Fi(g) and similarly for r. 
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By Theorem 6.2, any cohomology theory is naturally isomorphic to 
H:(X;e). 

The following theorem similarly defines and gives axioms for the cup 
product in sheaf cohomology. 

7.1. Theorem. Let~, W be families of supports on X. Then there exists 
a unique natural transformation of functors (on the category of sheaves on 
X to abelian groups) 

U : H:(X; A) ® H~(X; flJ) -+ H:~t(X;A ® flJ) (13) 

called the "cup product" and satisfying the following three properties: 

(a) For p = q = 0, U: r~(A) ®rw(flJ) -+ r~nw(A ® flJ) is the transfor
mation induced by the canonical map A(X) ® flJ(X) -+ (A ® flJ)(X) 
of I-Section 5. 

(b) If 0 -+ A' -+ A -+ A" -+ 0 and 0 -+ A' ® flJ -+ A ® flJ -+ 
A" ® flJ -+ 0 are exact, then for a E H: (X; A") and f3 E H~ (X; flJ) 
we have 6(a U (3) = 6a U f3. 

(c) If 0 -+ flJ' -+ flJ -+ flJ" -+ 0 andO -+ A®flJ' -+ A®flJ -+ A®flJ" -+ 0 
are exact, then for a E H:(X;A) and f3 E H~(X; flJ'/) we have 
6(a U (3) = (-l)Pa U 6f3. 

Proof. Let Ff(A) = H:(X;A) and Fi(flJ) = H~(X; flJ), and 

Fp,q(A, flJ) = H:~t(X;A ® flJ). 

Let $ be the class of pointwise split short exact sequences. 
If El : 0 -+ A' -+ A -+ A" -+ 0 is in $, then 0 -+ A' ® flJ -+ 

A ® flJ -+ A" ® flJ -+ 0 is exact for all flJ, and we take 6~ : Fp,q(A", flJ) -+ 
FP+l,q (A', flJ) to be the connecting homomorphism 6 on H:~t (X; e) of 
this sequence. 

Similarly, if E2 : 0 -+ flJ' -+ flJ -+ flJ" -+ 0 is in $, then 0 -+ A ® fJJ' -+ 
A ® flJ -+ A ® flJ" -+ 0 is exact, and 6~ : Fp,q(A, flJ'I) -+ FP,q+l(A, flJ') is 
taken to be (-1)P6. 

If El and E2 are both in $, then applying C;nw to the diagram 

0 0 0 
! ! ! 

0-+ A' ® flJ' -+ A®fJJ' -+ A" ® fJJ' -+0 
! ! ! 

0-+ A' ® flJ -+ A®flJ -+ A" ® flJ -+0 
! ! ! 

o -+ A' ® flJ" -+ A ® flJ" -+ A" ® flJ" -+0 
! ! ! 
0 0 0 
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we obtain a commutative diagram of chain complexes, and it is a well
known algebraic fact that the induced square 

Ii 
----t 

Ii 
----t 

anticommutes. Thus, by definition, 8i 8~ = 8~8i. 
The theorem now follows from 6.2. [To get the full (b), one needs to 

show that the class of sequences 0 ~ A' --+ A --+ A" --+ 0 satisfying 
the conditions of (b), for $ given, is admissiblej and similarly for (c). 
This is immediate because the only thing needing proof is that A' ® $ --+ 

~o(Xj A) ® $ is a monomorphism, and this is just the composition of 
the monomorphisms A' ® $ >--+ A ® $ and A ® $ >--+ ~o(XjA) ® $, 

the latter being a monomorphism because the canonical monomorphism 
A >--+ ~o (X j A) splits pointwise. J D 

Remark: For uniqueness, (b) and (c) can be restricted to sequences of the form 

0--+ JlI! --+ 'j&'°(Xj JlI!) --+ :;l(Xj JlI!) --+ O. 

7.2. Corollary. Let r : $ ® A --+ A ® $ be the canonical isomorphism. 
Then for a E H~(X; A) and f3 E H~(Xj $), we have that 

1 aU f3 = (-l)pqr*(f3 U a). 1 

Proof. If T: H~(XjA) ® Ht(Xj $) --+ Ht(Xj $) ® H:(XjA) is given 
by T( a ® (3) = (-1 )pq f3 ® a, then r* 0 U 0 T is immediately seen to satisfy 
the hypotheses of 7.1, and so it must coincide with the cup product. Hence 
a U f3 = (r* 0 U 0 T) (a U (3) = r* « -1 )pq f3 U a). 0 

Remark: Clearly either of the conditions (b) or (c) of 7.1 could be replaced by 
the commutativity formula of 7.2. 

Remark: If we restrict attention to the category of .o/l-modules where .o/l is a 
sheaf of rings, then in (13) JlI! ® fJJ can be replaced by the tensor product 
over .o/l and the other tensor product by the tensor product over r{.o/l). 
This is an easy consequence of the following result. 

7.3. Proposition. The cup product is associative. 

Proof. We are to show that the two ways of defining the map 

H:(XjA) ®H~(Xj$) ®He(Xj~) --+ H~~~~9(XjA ® $®~) 

agree. Thus we apply Theorem 6.2 to the ~ -connected system of trifunctors 
(with ~ being the class of pointwise split short exact sequences) 

FP,q,r(A $ ~) - HP+q+r (X· A ,0., $,0., ~) 
" - 4>n1ltn9 ' '0' '0' , 
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where if 8 is the ordinary connecting homomorphism of H~nwne, then we 
put 8~ = 8, 8~ = (-1)P8, and 8~ = (-1)P+Q8 on FP,q,r, The result follows 
immediately. 0 

If [1/(, is a sheaf of rings, then the product [1/(, 0[1/(, --> [1/(, together with the 
cup product makes H~(X; [1/(,) into a ring (with unit if [1/(, has a unit and 
<I> consists of all closed sets) called the cohomology ring of X. Moreover, 
for any [1/(,-module A, the map [1/(,0 A --> A makes H~(X;A) into an 
H,j,(X; [1/(,)-module for any lIT J <I>. 

Let X and Y be spaces; A and fJJ sheaves on X and Y respectively; and 
<I> and lIT families of supports on X and Y respectively. Let'TrX : X x Y --> X 
and 'Try : X x Y --> Y be the projections. We use the notation <I> x Y = 
'TrXl(<I» and X x lIT = 'Try 1 (lIT). Note that <I> x lIT = (<I> x Y) n (X x lIT). In 
Example 6.3 we defined a natural homomorphism 

and similarly with 'Try. 
Following 'Trx and 'Try with the cup product, we obtain the homomor

phism 

called the cross product. Thus 

We shall allow the reader to develop the properties of this product. 

7.4. Let L be a ring with unit and let A and fJJ be sheaves of L-modules 
on X. Let (3 E f(fJJ) = HO(X; fJJ). Then (3 induces a homomorphism 

h..t,{3 : A --> A 0L fJJ 

by h..t,{3(a)(x) = a 0 (3(x) for a E Ax. Therefore we have the induced 
homomorphism 

h~,{3: H~(X;A) --> H~(X;A 0L fJJ). (14) 

It follows from 6.2 that 
h~,{3(a) = aU (3. 

(The reader might investigate generalizing this to the case (3 E f w (fJJ).) 
If fJJ = Land (3 = 1 E f(L), then h..t,l is the canonical isomorphism 

A --=:.. A 0L L and so h~,l (a) = a, whence 

I aU 1 = a·1 

(This also follows directly from 6.2.) 
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Note that (14) factors as 

H:(Xj..d) ~ H:(Xj..d ~h L) (l®IW. H:(Xj..d I~SlL fiJ), 

where 1 ® fJ : ..d ®L L ---+ ..d ®L fiJ is (1 ® fJ)(ax ® Ax) = ax ® AxfJ(x). In 
particular, if the subsheaf hL,{3(L) = Im{hL,{3 : L ---+ L ®L fiJ ~ fiJ} of fiJ is 
a direct summand, then h~,{3 is a monomorphism. Particularly note this in 
the case in which L is a field and the coefficient sheaves are the constant 
sheaves A and B (vector spaces over L). Then any element 0 :f. b E B 
induces a monomorphism 

which is given by 

where fJ E HO(Xj B) is the constant section with value b. It follows that 
a U fJ :f. 0 when a :f. 0 in this case. 

In particular, if X is connected and A, B are vector spaces over the field 
L, then 

7.5. We conclude this section with remarks concerning the "computation" 
of the cup product by means of resolutions. 

Suppose that..d ~ g;. (..d) (respectively,.H* and .At.) are exact functors 
carrying a sheaf..d into a resolution of..d by <I>-acyclic (resp., \}I-acyclic and 
<I> n \}I-acyclic) sheaves. Suppose, moreover, that we are given a functorial 
homomorphism of differential sheaves g;. (..d) ® .H* (fiJ) ---+ .At. (..d ® fiJ) 
(where the source has the total degree and differential 1 ® 6 + 6 ® 1, with 
the usual sign convention (1 ® 6)( a ® b) = (-1 )deg aa ® 6bj see, for example, 
[19, Chapter VI]). 

Then we have the natural map 

which induces a product 

We claim that under the isomorphisms p of 5.15 this becomes the cup 
product. This is just a matter of easy verification of the axioms for the cup 
product, which will be left to the reader. 

For example, with the notation of Section 2, the map 

defined by 

(f U g)(xo, . .. ,xp+q) = S(f(xo, ... ,xp))(xp+q) ® g(xp, . .. ,xp+q) 
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is easily seen to induce a functorial product 

[with d(aU{3) = daU{3 + (-l)PaUd{3], which must induce the cup product 
in cohomology by the preceding remarks. 12 

Our next remarks will depend on some notions to be defined later in 
this book. Let L be a principal ideal domain considered as a ground ring. 
We also consider L to be a constant sheaf on X. Let ~ and 111 be para
compactifying families of supports on X, and let !£* be a resolution of L 
consisting of sheaves that are torsion free and both ~-fine and 1l1-fine (va
rieties of acyclic sheaves to be defined in Section 9), and for which there is 
a homomorphism h : !£* ®!£* - !£* of differential sheaves. (We shall see 
in Chapter III that this is the case for the Alexander-Spanier and the de 
Rham resolutions.) 

Since !£oo is torsion free, !£oo ®.d is a resolution of .d for any sheaf 
.d of L-modules. In the preceding discussion, put !£*(.d) = !£oo ® .d, 
%(fiJ) = !£oo ® fiJ, and vit*(.d ® fiJ) = !£oo ®.d ® fiJ. It will be shown in 
Section 9 that !£* ®.d is exact in .d and is ~- (and 111 and ~ n 1l1)-acyclic, 
and hence the preceding remarks apply to show that the cup product 

H:(Xj.d) ® H~(Xj fiJ) - H:t~(X x Yj.d ® fiJ) 

is induced by fwW* ®.d) ® f1Jt(!£* ® fiJ) - fwn1Jt(!£* ®.d ®!£* ® fiJ) ~ 
fwn1Jt(!£* ®!£* ®.d ® fiJ) h®l®l I fwn1Jt(!£* ®.d ® fiJ). 

We conclude this section with another description of the cup product 
via resolutions. Using the fact from Section 2 that ~*(Xj.d) is pointwise 
homotopically trivial, it follows that the total differential sheaf ~* (X j .d) ® 
~*(Xj fiJ) is a resolution of.d ® fiJ. Thus, by 5.15 we have the map 

which, when combined with the natural map 

(and the map HP(A*) ® Hq(B*) - Hp+q(A* ® B*) from ordinary homo
logical algebra), yields a product satisfying the axioms for the cup product. 

8 Maps of spaces 

Let f : X - Y be a map and let k : fiJ ~ .d be an f -cohomomorphism 
from the sheaf fiJ on Y to .d on X. 

12It is shown in [40) that a similar construction is possible with the canonical resolution 
'lC°(X; .). Also see 21.2. 
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For U C Y, we have the induced map k~ : CO(U; flJ) ---> C°(f-l(U);A) 
defined by taking a serration s : U --+ flJ into the serration 

given by 
k~(s)(x) = kx(s(f(x))). 

These evidently form an j-cohomomorphism '(g°(Y; flJ) "" '{go (X; A) com
muting with k and the canonical monomorphisms A >--+ '{go (X; A) and 
flJ >--+ '(g°(X; flJ). This yields an j-cohomomorphism of the quotient sheaves 
J"\e; e) by 1-4.3. By induction, we obtain an j-cohomomorphism 

k* : '(g*(Y; flJ) "" ce'*(X;A) 

of resolutions (i.e., commuting with differentials). 
It is clear that for any j-cohomomorphism k : flJ "" A, the induced 

map ky : flJ(Y) ---> A(X) satisfies Iky(s)1 c j-l(lsl). Consequently, if q, 
and Ware families of supports on X and Y respectively with j-lw c q" 

then 
ky : f'lt(flJ) ---> f~(A). 

Thus k* induces the chain map 

ky : C;(Y; flJ) ---> q,(X; A) 

and hence gives rise to a homomorphism 

1 k* : H,j,(Y; flJ) ---> H;(X; A) when j-lw c q,.1 (15) 

Noting that ce'* (e; e) is functorial with respect to cohomomorphisms, we 

see that if X ~ Y ~ Z are maps, k : flJ "" A is an j-cohomomorphism, 
and j : '{g "" flJ is a g-cohomomorphism, then in cohomology with suitable 
supports we have that 

I (k oj)* = k* OJ*·1 
Recall that any j-cohomomorphism k : flJ "" A factors in two ways: 

where j and hare homomorphisms. 13 Thus the induced square in coho
mology commutes, with composition k*. Thus k* is determined by either 
of the natural transformations of functors 

11* : H,j, (Y; flJ) ---> H; (X; 1* flJ) 1 (16) 

13Recall that homomorphisms are special cases of cohomomorphisms. 
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and 
(17) 

which are induced by the I-cohomomorphisms f* $ "-> f* $ and I : 
1.Ji "-> .Ji respectively. That is, we have 

1 k* = h* 0 f* = It 0 j* ·1 

[Of course, f* (with $, and hence f* $, constant) is the one of these most 
familiar to readers.] 

Since the functor $ f-+ f* $ is exact, we see easily from the definition 
that (16) commutes with connecting homomorphisms. Thus, by 6.2, it 
coincides with the version of f* defined in 6.3. 

In case .Ji = f* $, we have h = 1 and j = f3 : $ -+ I f* $, the canonical 
homomorphism of 1-4. Thus 

(18) 

which is the composition 

8.1. Suppose now that $* and .Ji* are resolutions of $ and .Ji respectively 
and that 

g* : $* "-> .Ji. 

is an I-cohomomorphism of resolutions14 extending k : $ "->.Ji. Let 
#* be an injective resolution of $ and !£* an injective resolution of .Ji. 
Then f* #* is a resolution of f* $, since f* is exact, and we can construct 

homomorphisms $* ...£.... #*, .Ji* ~ !£*, and f* #* ~ !£* of resolutions 
that are unique up to homotopy and where 'Y extends the canonical map 
h : f* $ -+ .Ji induced by the I -cohomomorphism k : $ "-> .Ji. We have 
the diagram 

f* $* ..!!::.... 

1r(tp) 
f*#* ~ 

in which the composition along the top is g*, the left-hand square com
mutes, and the right-hand square commutes up to chain homotopy. Taking 
sections, we obtain the square 

14I.e., commuting with differentials and augmentations. 
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which commutes up to chain homotopy. By definition, 'P and 1/J induce the 
maps denoted by p in 5.15. 

The special case in which A* = ~*(X;A), fiJ* = ~*(X;fiJ), and g* = 
k* shows that the map 17 induces the canonical homomorphism 

of (15). The general case then shows that the diagram 

commutes. If A* is iP-acyclic and /!it is \II-acyclic, then the vertical maps 
in this diagram are isomorphisms. This shows that the canonical homo
morphism k* of (15) can be "computed" (via the isomorphisms p of 5.15) 
from any J-cohomomorphism g* : fiJ* "" A* of acyclic resolutions of fiJ and 
A that extends the given f -cohomomorphism k : fiJ "" A. 

8.2. We conclude this section by indicating the proof that (16) preserves 
cup products. Let \IIi, iP i , i = 1,2, be support families on Y and X re
spectively with J-1(\II i ) C iPi and let fijI and fiJ2 be sheaves on Y. The 
cohomomorphisms fiji "" j* fiji induce a cohomomorphism of presheaves 
fiJ1 (U) @fiJ2(U) "" j*fiJ1(f-l(U)) @j*fiJ2(f-l(U)) and hence a cohomo
morphism of the induced sheaves fijI @ fiJ2 "" j* /!ih @ j* fiJ2. There is the 
factorization of this: fijI @ fiJ2 "" j* (fijI @ fiJ2) - j* fijI @ j* fiJ2. The latter 
homomorphism is fairly clearly an isomorphism on stalks, and hence it is 
an isomorphism of sheaves. Then we have the commutative diagram 

fijI (Y) @ fiJ2(Y) j* fijI (X) @ j* fiJ2(X) 
! ! (19) 

(fijI @fiJ2)(Y) - j*(fiJ1 @ fiJ2)(X) ..::. (f*fiJ1 @j*fiJ2)(X). 

We wish to show that the diagram 

(20) 

commutes. This is true in degree zero by (19) and follows in general from 
6.2 (see the proof of 7.1) where we take ,g to be the class of pointwise split 
sequences so that the functors on the lower right-hand side of (20) will be 
,g -connected. This gives the formula 
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for (3i E H~l (Y; fiji), which converts immediately into 

9 <p-soft and <P-fine sheaves 

When <I> is a paracompactifying family of supports, the class of flabby 
sheaves can be extended to an important larger class of <I>-acyclic sheaves, 
the <I>-soft sheaves. We define this notion for general support families <I> but 
stress that they are not, in general, <I>-acyclic unless <I> is paracompactifying. 
(For example if x E ]R2 and we let x denote the support family {{x}, 0}, 
then the constant sheaf Z is x-soft on ]R2 but is not x-acyclic. Indeed, 
H;(]R2; Z) ~ Z; see formula (41) on page 136.) 

We shall use the abbreviation .Jt(K) = (.JtIK)(K) = f(.JtIK) for arbi
trary sets K and not just open sets. 

9.1. Definition. A sheaf.Jt on X is called "<I>-soft" if the restriction map 
.Jt (X) -+ .Jt (K) is surjective for all K E <I>. If <I> = cld then.Jt is simply 
called "soft." 

9.2. Proposition. If.Jt is a <I>-soft sheaf on X, then .JtIA is <I>IA-soft for 
any subspace A eX. 

Proof. This is trivial, but note that in general, A must be locally closed 
in order that <I>IA be paracompactifying on A when <I> is paracompactifying 
onX. 0 

9.3. Proposition. Let <I> be paracompactifying on X. Then the following 
three statements are equivalent: 

(i) .Jt is <I>-soft. 

(ii) .JtIK is soft for every K E <I>. 

(iii) f<l>(.Jt) -+ f<l>IP(.JtIF) is surjective for all closed F c X. 

Proof. Statement (iii) implies (i) trivially, and (i) implies (ii) by 9.2. 
Assume (ii) and let s E f<l>IP(.JtIF). Let K = lsi and let K' E <I> be a 
neighborhood of K. Let B be the boundary of K'. By (ii), the element of 
.Jt((K' n F) U B) that is s on K' n F and is 0 on B can be extended to 
some s' E .Jt(K'). Then s' extends by zero to s" E .Jt(X) with Is"l c K', 
and so s" is the desired extension of s. 0 
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9.4. Example. Consider the sheaf ilJ' of germs of smooth real-valued func
tions on a differentiable manifold Mn. For a closed set K eM, an element 
of ilJ'(K) can be regarded as a real-valued function on K that extends lo
cally about each point to a smooth function. By a smooth partition of unity 
argument, such a function extends globally to a smooth function on all of 
M.15 This means that ilJ' is soft, indeed, <I>-soft for <I> paracompactifying. 

Similarly, on any paracompact topological space X, the sheaf ?l of 
germs of continuous real-valued functions is soft. <> 

The following result is basic. (Also note Exercises 6 and 37.) 

9.5. Theorem. Let A be a subspace of X having a fundamental system of 
paracompact neighborhoods. Then for any sheaf A on X, we have A(A) = 

lin}A(U), where U ranges over the neighborhoods of A. 16 

Proof. The canonical map lin} A (U) ---> A (A) is injective since two sec
tions that coincide on A must coincide on an open set containing A. Thus 
it suffices to show that any section s E A(A) extends to some neighbor
hood of A. Cover A by open sets Uo. such that there is an So. E A(Uo.) 
with So. I Uo. n A = SIUo. n A. By passing to a neighborhood of A, we may 
assume that X is paracompact and that {Uo.} is a locally finite cover
ing of X. Let {Vo.} be a covering of X with V 0. c Uo. for all a. Put 
W = {x E X I x E V 0. n V /3 => So. ( x) = s /3 ( x )} . Let J ( x) = {a I x E V o.}, 
a finite set. Then every x E X has a neighborhood N(x) such that 
y E N(x) => J(y) c J(x). 

If x E W, the sections So. for a E J(x) coincide in a neighborhood of x, 
since J(x) is finite. Thus W is open. Also, A C W. Now let t E A(W) be 
defined by t(x) = so.(x) when x E Vo. n W. Then t is well-defined by the 
definition of W, and it is continuous since it coincides with So. on Vo. n W. 
Therefore t is the desired extension of s. 0 

9.6. Corollary. If 1> is paracompactifying, then every flabby sheaf on X 
is <I>-soft. 0 

9.7. Corollary. If X is hereditarily paracompact and A is a flabby sheaf 
on X, then AlA is flabby for every subspace A C X. 

Proof. Let s E A(U n A) for some open set U C X. Then there is an 
open subset V :J UnA of X and a section t E vi(V) with s = tlU n A, by 
9.5. Then t extends to X since vi is flabby. The restriction of this to A 
gives the desired extension of s. 0 

Let us call a subspace A C X relatively Hausdorff (in X) if any two 
points of A have disjoint open neighborhoods in X. By the same proof 

15See, for example, [19, II-1O.6J. 
16The condition on A is satisfied for any closed subset of a paracompact space X, and 

also for an arbitrary subspace A of a hereditarily paracompact space X. 
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that shows that a compact Hausdorff space is normal, a compact relatively 
Hausdorff subspace A of X has the property that any two disjoint closed 
sets in A have disjoint neighborhoods in X. 

The following is a modification of 9.5 that we will find useful in dealing 
with the invariance of cohomology under homotopies. 

9.B. Theorem. Let A be a compact, relatively Hausdorff subspace of a 
space X. Then for any sheaf J'i on X, we have that J'i(A) = lin}J'i(U), 
where U ranges over the neighborhoods of A in X. 

Proof. Given s E J'i(A) we can find a finite open covering {Ui } of A in X 
and elements Si E J'i(Ui ) with silA n Ui = slA n Ui . We can find compact 
sets Ki C Ui n A such that A = U K i . By a finite induction it suffices 
to prove the following assertion: If PI and P2 are compact subsets of A 
with open neighborhoods VI and V2, respectively, in X, and if ti E J'i(V;) 
coincide on PI n P2 , then there is a section t over some neighborhood of 
PI U P2 coinciding with ti on Pi, i = 1,2. 

To prove this, notice that tl coincides with t2 on some neighborhood V 
of PI n P2 and that we may suppose that V C VI n V2. The sets PI - V and 
P2 - V are compact and disjoint, and since A is relatively Hausdorff, they 
have disjoint open neighborhoods Qi :::) Pi - V in X. Then the sections 
tIIQI, tIIV = t21V, and t21Q2 coincide on their common domains and 
thereby provide the desired section t on QI U V U Q2 ::> PI U P2. D 

9.9. Theorem. Let cI> be paracompactifying and suppose that 

is exact with J'i' being cI>-sojt. Then the sequence 

is exact. 

Proof. We may consider J'i' as a subsheaf of J'i. Let s E r<!>(J'i") and let 
K = lsi E cI>. Let K' E cI> be a neighborhood of K. Suppose that we can 
find an element t E J'i(K') representing sIK'. Then on the boundary B of 
K', tlB E J'i'(B) can be extended to J'i'(K'). Subtracting this from t, we 
see that we may assume that tlB = O. But then t can be extended by zero 
to X. Thus we may as well assume X to be paracompact and cI> to be the 
class cld of all closed subsets of X. 

Let s E J'i"(X) and let {Ua} be a locally finite covering of X with 
Sa E Ji(Ua ) representing slUa. Let {Va} be a covering of X with Va C Ua. 

Assume that the indexing set {a} is well-ordered and put Fa = U V {3. 
(3<a 

Since {Ua} is locally finite, Fa is closed for all a. We shall define inductively 
an element ta E J'i(Fa) representing slPa such that ta lP{3 = t{3 for all 
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/3 < a. Say that t" has been defined for all /3 < a. If a is a limit ordinal, 
then Fa = U F" and ta is defined as the union of the previous t!3's. This 

,,<a 
is continuous since each x E X has a neighborhood meeting only finitely 
many of the V,,'s. If a is the successor of a' then t a , and Sol both represent 
s on Fa' n Vol' The difference is a section of A' over Fa' n VOland hence can 

1-
be extended to A (Vol)' Therefore, ta, can be extended to Fa representing 
slFa, completing the induction. 0 

9.10. Proposition. If !P is paracompactifying and 0 --+ A' --+ A --+ 

A" --+ 0 is exact with A' being !P-soft, then A" is also !P-soft {:} A is 
!P-soft· 

Proof. This follows from 9.3 and 9.9 by a simple diagram chase. 0 

9.11. Theorem. A !P-soft sheaf is !P-acyclic if!P is paracompactifying. 

Proof. Let A be a !P-soft sheaf and consider the sequence 

Since ~o(XiA) is flabby, we have that H~(Xi ~o(XiA)) = 0 for p > 0, 
and it follows from the associated cohomology sequence that 

for n > 1. Also, H~(XiA) = 0 by 9.9. By 9.lD, '11(XiA) is also !P-soft, 
so that the theorem follows by induction on n. 0 

9.12. Proposition. Let !P be a paracompactifying family of supports on 
X and let A c X be locally closed. Then for a sheaf [JJ on A, 

I [JJ is !PIA-soft on A {:} &r is !P-soft on x.1 
Proof. The <= part follows from 9.2 since [JJ = &r IA. For the =} part, we 
note that r~(~) ~ r~IA($) naturally by 1-6.6, and similarly, for F C X 
closed, r~jF(ar) ~ r~IAnx($IAnF). The result now follows from 9.3iii. 

o 

9.13. Corollary. Let!P be paracompactifying and A C X locally closed. 
Then for a sheaf A on X, 

I A is !P-soft =} A A is !p-soft·1 
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Proof. ..dIA is ~IA-soft by 9.2, so that..dA = (..dIA)X is ~-soft by 9.12. 
o 

The following result shows that softness is a "local" property. Recall 
that E(~) = U{K IKE ~}. 

9.14. Lemma. Let ~ be paracompactifying and f£ a sheaf on X. If each 
point x E E(~) has a closed neighborhood N such that f£IN is soft, then f£ 
is ~-soft. 

Proof. By 9.3(ii), it suffices to consider the case in which X is paracom
pact and ~ = cld. Let {Ua } be a locally finite open covering of X such 
that f£IU a is soft. Let {Va} be an open covering of X with Va C Ua. Well 
order the indexing set and let Fa = U V {3 (a closed set). 

(3<a 
Let K C X be closed and s E f£(K). We must extend s to X. By an 

easy transfinite induction we can define ta E f£(Fa) such that talFa n K = 
slFa n K and ta lF{3 = t{3 for f3 < 0:. In the end we have the desired 
extension. 0 

9.15. Definition. A sheaf..d is said to be "~-fine" if :1&»n(..d,..d) is ~
soft· 

The following is another basic result. 

9.16. Theorem. Let ~ be paracompactifying. Then any module over a 
~-soft sheaf f1ll of rings with unit is ~-fine, and any ~-fine sheaf is ~-soft. 

Proof. Let..d be an f1ll-module. We must show that .1&mt(..d,..d) is ~
soft. But .1&mt(..d,..d) is an &l-module so that it suffices to show that every 
f1ll-module..d is ~-soft. [The last statement of the theorem will follow since 
a ~-fine sheaf $ is a module over the ~-soft sheaf of rings .1&mt($, $).) 

Thus, let s E ..d(K) for some K E ~. By 9.5 there is a neighborhood 
K' E ~ of K and an s' E ..d(K') extending s. Since f1ll is ~-soft, there is a 
section t E f1ll(K') that is zero on the boundary B of K' and 1 on K. The 
section ts' : X f--+ t(x) . s'(x) in Ji(K') is zero on B and coincides with s on 
K. Therefore ts', and hence s, can be extended to X. 0 

9.17. Example. The sheaf 6 of germs of smooth real-valued functions 
on a differentiable manifold Mn is soft, as shown in Example 9.4. This is 
a sheaf of rings with unit, and so 6 is fine. Consequently, any 6 -module 
is fine. This includes the sheaf of germs of differential p-forms on M, the 
sheaf of germs of vector fields on M, etc. 0 

Since Ji ®$ is a .1&mt(Ji, Ji)-module, we have the following consequence 
of 9.16: 
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9.18. Corollary. If vi is ~-fine, ~ pamcompactifying, then vi ® $ is ~
fine, and hence ~-soft, for any sheaf $.17 0 

9.19. Corollary. If ~ is pamcompactifying and 2* is a torsion free ~
fine 18 resolution of 71.. on X, then there is a natuml isomorphism 

Proof. Since 2* is torsion free, 2* ® vi is a resolution of 71.. ® vi ~ vi .19 

It is ~-soft, and hence ~-acyclic, by 9.18. The result follows from 4.1. 0 

9.20. Definition. Let A eX. A family ~ of supports on X will be said 
to be ''pamcompactifying for the pair (X, A)" if ~ is pamcompactifying 
and if each K n A, for K E ~, has a fundamental system of pamcompact 
neighborhoods in X. 

Note that these conditions imply that ~ n A is a paracompactifying 
family of supports on A. Also note that if A is closed, then ~ is paracom
pactifying for the pair (X, A) ~ ~ is paracompactifying. Moreover, for A 
open and ~ = cld, ~ is paracompactifying for the pair (X, A) ~ both X 
and A are paracompact. 

9.21. Proposition. If ~ is pamcompactifying for the pair (X, A), then 
for any sheaf vi on X, the map 

(U mnging over the neighborhoods of A) is bijective. Moreover, if vi is 
flabby, then vilA is (~n A)-soft. 

Proof. () is clearly injective. Let s E f~nA(.d'IA) with lsi = KnA where 
K E ~. Let K' E ~ be a neighborhood of K. By 9.5 there is a neighborhood 
V of K' n A in K' and an element s' E vi(V) extending slK' n A. Let L 
be the closure in X of Is'l. Then s'I(V - L) = 0 and so s' on V and 0 on 
X - L combine to form a section s" over the open set U = V U (X - L). 
Now V :J K' n A and K' :J L, so that A - V c X - K' C X - L. Thus 
A C V U (X - L) = U. Both s" and s vanish outside V and coincide on 
VnA, and so s"IA = s. Also, Is"l = Is'l c UnL E Un~ since L C K' E~. 
Therefore, s" induces an element of limf<l>nu(.d'IU) mapping to sunder (), 
proving the first statement. 

For the last statement, let t E .d'(A n K) for some K E ~. By 9.5, t 
can be extended to X since .d' is flabby, and a fortiori to A. 0 

Using 9.8 instead of 9.5 in the last paragraph gives: 

17 Also see 16.31. 
180r just 4'-soft by 16.31. 
19This is a stalkwise assertion, so it follows from standard homological algebra. 
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9.22. Proposition. If A is a compact relatively Hausdorff subspace of X, 
then JiIA is soft for any flabby sheaf Ji on X. 0 

For more facts concerning soft sheaves see Section 16. 

9.23. Let L be a ring with unit, let G be an L-module, and let <I> be a para
compactifying family of supports on X. Then the singular and Alexander
Spanier sheaves 9'°(XjL) and Jio(XjL) are the same as ~o(XjL) and 
so they are <I>-soft. Also, they are sheaves of rings, and 9'n(Xj G) and 
Jin(Xj G) are modules over them, and so they are also <I>-soft. As re
marked in Section 1, Ji*(Xj G) is always a resolution of G, and 9'*(Xj G) 
is a resolution of G if X is HLC. Therefore, by 4.1 or 5.15, 

for <I>-paracompactifying, and 

for <I>-paracompactifying and X HLC. Similarly, by 9.17, if X is a smooth 
manifold then the de Rham sheaf D*(X) is a <I>-fine resolution of JR, and so 

for <I> paracompactifying. 
In Chapter III we shall study these isomorphisms in more detail. We 

shall extend them to more general coefficients, show they are natural in X 
as well as in the coefficients, and show that they preserve cup products. 
We also take up the relative case there. Except for the latter, that chapter 
can be read at this point. 

10 Subspaces 

In this section we study relationships between the cohomology of a space 
and that of a subspace, with coefficients in sheaves related to the subspace. 
The main theorem 10.6 relates the cohomology of a subspace to that of its 
neighborhoods. This will be of central importance throughout the book. 

10.1. Theorem. Suppose either that cP is a paracompactifying family of 
supports on X and that A c X is locally closed, or that <I> is arbitrary and 
A c X is closed. Then there is a natural isomorphism 

of functors of sheaves on A, which preserves cup products. 20 

20 Also see Exercise 1. 
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Proof. Note that the functor flJ 1-+ ~ is exact. Thus we have the con
nected sequences of functors Ff(flJ) = Hg(X;~) and Ff = H:1A (A; flJ), 
both of which are fundamental by 9.12 and 5.8. Now, 

and 

The restriction map TO : r w ( ~) --+ r w IA (flJ) is an isomorphism of functors 
by 1-6.6, whence the first part of the result follows from Theorem 6.2. The 
fact that cup products are preserved follows immediately from the axioms 
7.1 for the cup product on the cohomology of A.21 0 

10.2. Corollary. With the same hypotheses as in 10.1 we have the natural 
isomorphism 

I Hi,(Xj..dA) ~ H~IA(Aj..dIA) I 
of functors of sheaves ..d on A, which preserves cup products. 

Proof. This follows from the fact that ..d A = (..dIA)X. o 

In particular we have the most important cases: 

H~ (X j A F) ~ H~ IF (F; A IF) for F closed and 4.> arbitrary, 

and 

Hi,(X;..du) ~ H~IU(U;..dIU) for U open and 4.> paracompactifying. 

Note that ~*(XjAu)/U = ~*(Uj..dIU), so that there is the chain map 

C~JU(UjAIU) = rwlu(~*(UjAIU» <--+ rw(~*(X;Au» = C~(XjAu), 

which clearly induces the preceding isomorphism. 

10.3. Suppose that Fe X is closed and U = X-F. If 4.> is paracompact
ifying, then 10.2 together with the exact coefficient sequence 0 --+ ..d u --+ 

..d --+ A F --+ 0 yields the fundamental exact cohomology sequence 

This sequence will be generalized in Section 12. 

10.4. Let A c X be an arbitrary subspace, 4.> any family of supports on 
X, and A a sheaf on X. By 6.2 the restriction of sections r w (A) --+ 

rWnA(AIA) extends canonically to a homomorphism 

I rA,X : Hi,(XjA) --+ Hi,nA(AjAIA) I 
21This uses the obvious natural isomorphism .Jx I8i $x ~ (.J I8i $)x. 
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called the restriction homomorphism. We also denote rA x (a) by alA. 
Since 11 n A = i-1(1I) and AlA = i*(A) where i : A ',,--, X, r* is none 

other than the homomorphism induced by i; see Section 8. In particular 
(or directly from 7.1), r* preserves cup products. 

For a closed subspace F c X, 11 n F = 1I1F, and the restriction map 

I r'F,x : H~(X;A) -+ H;IF(F;AIF) I 

is the same as the homomorphism H~(X;A) -+ H~(X;AF) induced by 
the epimorphism A -+ A F followed by the isomorphism H~ (X; A F) -=:... 
H;IF(F; A IF) of 10.2. This follows from the uniqueness portion of 6.2. 

We wish to relate the cohomology of a subspace to that of its neighbor
hoods. In order to deal with several cases at the same time, we make the 
following definition. It will also be useful in the study of relative cohomol
ogy. The term "taut" is borrowed from Spanier, who uses it in situations 
analogous to 10.6, but mainly in singular homology. 

10.5. Definition. Let 11 be a family of supports on X. Then a subspace 
A c X is said to be "lI-taut" if for every flabby sheaf F on X, the restric
tion f<I>(ST) -+ f<I>nA(STIA) is surjective and STIA is (11 n A)-acyclic. 

The following five cases are examples of lI-taut subspaces A of X: 

(a) 11 arbitrary, A open. 

(b) 11 paracompactifying for the pair (X, A). 

(c) <I> paracompactifying, X hereditarily paracompact (e.g., metric), A 
arbitrary. 

(d) <I> paracompactifying, A closed. 

(e) <I> = cld, A compact and relatively Hausdorff in X, e.g., a point. 

Item (a) follows from 5.2; (b) follows from 9.21; (c) and (d) are special 
cases of (b); (e) follows from 9.8 and 9.22. Also see 12.1, 12.13, 12.14, 
12.15, and Exercise 8. 

The following result is fundamental and will be used often in the re
mainder of the book. 

10.6. Theorem. Let <I> be a family of supports on X and let A be a sub
space of X. Let.H be a collection of <I>-taut subspaces of X containing A 
and directed downwards by inclusion. Assume that for each K E <I>IX - A 
there is an N E .H with N eX - K. Then A is <I>-taut {:} the map 

(): lim H~nN(N;AIN) -+ H~nA(A;AIA), 
NEA' 

induced by restriction, is an isomorphism for every sheaf A on X. 
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Proof. For ¢=, suppose that e is an isomorphism and let vi be flabby. 
For N E JY, vilN is (q>nN)-acyclic, since N is q>-taut. It follows that vilA 
is (q> n N)-acyclic. Moreover, fil>(vi) -> l.imfil>nN(viIN) ~ fil>nA(viIA) 
is surjective since each N is q>-taut. Thus A is q>-taut. 

For =?, suppose that A is q>-taut and consider the functors Ff(vi) = 

l.imHgnN(NjviIN) and Fnvi) = HgnA(AjviIA). The tautness of A and 
of each N E JY implies that these are both fundamental connected se
quences of functors. Moreover, in degree zero, e : l.im f il>nN (N j vi I N) -> 

fil>nA(viIA) is clearly one-to-one for vi arbitrary and is onto for vi flabby, 
since A is q>-taut. It follows from 6.2(c) that e is an isomorphism in gen
eral. 0 

Remark: An important case of 10.6 is that for which JV is a fundamental system 
of neighborhoods of A. However, as we shall see, the usefulness of this result 
is hardly limited to that case. 

Remark: Let f : X --> Y be iI>-closed (meaning f(K) is closed for K E iI» where 
iI> is a family of supports on X. Then putting A = f-l(y) for some y E Y, 
we see that the family {I-l(U) I U a neighborhood of y} of neighborhoods 
of A refines the family {X - K IKE iI>1(X - A)}. Thus 10.6 implies 
that H;nJ- 1(y)U- 1 (y);A) = limH;nJ-1(u)U-l(U);A) when rl(y) is 
iI>-taut. (This holds, in particular, when iI> is paracompactifying, or when 
iI> = cld and r 1 (y) is compact and relatively Hausdorff.) This will be 
of importance in Chapter IV. Note that in general, {I-l(U)} is not a 
fundamental system of neighborhoods of f-l(y). 

10.7. Corollary. (Weak continuity.) IJ{Fa} is a downward directed Jam
ily oj closed subspaces oj the locally compact Hausdorff space X, then 

o 

This result will be generalized considerably in Section 14. 

10.8. Corollary. (The minimality principle.) Let X be a locally compact 
Hausdorff space and c the Jamily oj compact subsets oj X. Then Jor any 
nonzero class a E HJ;(X j vi), the collection oj closed subspaces F oj X 
such that 0 f. alF E Hr;(F;vilF) has a minimal element. 0 

10.9. Example. Consider the "topologist's sine curve," which is the union 

X = { (x, y) I y = sin 7r / x j 0 < x ~ I} U {O} x [-1, 2 J U [0, 1] x {2} U {I} x [0, 2 J 

or any of its variants. This space has the singular cohomology of a point. 
However, it is a decreasing intersection of spaces homeomorphic to an an
nulus, and the inclusion maps are homotopy equivalences. Therefore, by 
10.7, H*(X;Z) ::::: H*(§l;Z). This is a typical example of the difference 
between singular theory and "tech type" theories such as sheaf-theoretic 
cohomology. 0 
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10.10. Example. Let X be the union in JR3 of spheres of radius lin all 
tangent to the xy-plane at the origin. This is a decreasing intersection of 
spaces of the homotopy type of a finite one-point union of spheres, and 
hence 

i=l 

and Hi(X; Z) = 0 for i i= 0,2. This contrasts with singular theory for 
which the cohomology of this space is nonzero in arbitrarily large degrees; 
see [3]. 0 

10.11. Example. Let M be any abelian group. An open interval U in JR 
is contractible, and it will be shown in the next section that this implies 
that HP(U; M) = 0 for all p > O. Since an open subset of JR is a topological 
sum of open intervals, this also holds for any open set U c R By 10.6 it 
follows that HP(A; M) = 0 for all p > 0 and all subspaces A c JR, since 
JR is hereditarily paracompact. In 16.28 and the solution to V-Exercise 26 
the much more difficult fact is shown that HP(U; M) = 0 for p ~ nand 
any open set U c JRn. Thus it will follow from 10.6 that HP(A; M) = 0 for 
p ~ n and any subspace A of JRn. 0 

11 The Vietoris mapping theorem and 
homotopy invariance 

Let J : X --t Y be a closed map. Let d be a sheaf on X and IlF a family 
of supports on Y. Assume further that each J- 1 (y), for y E Y, is taut 
in X. This holds, for instance, when X is paracompact or when each 
J-l(y) is compact and relatively Hausdorff in X. The J-cohomomorphism 
J : Jd"-' d induces an J-cohomomorphism ~'(Y;Jd) "-' ~*(X;d), 
which has the factorization 

~*(Y;Jd) --t J~*(X;d) "-' ~*(X;d). 

Now, assume that HP(f-l(y);d) = 0 for all p > 0 and all y E Y. Then 
the derived sheaf of the differential sheaf J~*(X; d) has stalks 

.1fP(f~* (X; d»)y = lin} HP( C* (f-l (U); d» 
= lin}HP(f-l(U);d) 
= HP(f-l(y);d) = 0 

by 10.6 for p i= 0 (where U ranges over the open neighborhoods of y), while 
the exact sequence 

(since d f--> J d is left exact) yields an isomorphism 
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It follows that f7i*(X; A) is a resolution of fA. Moreover, f7i*(X; A) 
is flabby by 5.7. Thus the chain map G,i,(Y;fA) -; fw(J7i*(X;A)) in
duces an isomorphism in cohomology by 4.2. Moreover, by Exercise 1-8, 
the map fwU7i*(X;A)) -; fj-lw(7i*(X;A)) = Cj-1w(X;A) is an iso
morphism. 

Combining these facts, we obtain the following very general version of 
the Vietoris mapping theorem: 

11.1. Theorem. Let f : X -; Y be a closed map, A a sheaf on X, and \II 
a family of supports on Y. Suppose that HP(J-1(y); A) = 0 for all p > 0 
and all y E Y, and that each f-1(y) is taut in X. Then the natural map 

ft : H:;'(Y; fA) -; Hj-1w(Xj A), 

induced by the f-cohomomorphism f: fA"-,, A, is an isomorphism. 0 

Note the case of an inclusion i : F '-+ X of a closed subspace. In this 
case iA = AX, and we retrieve 10.1. 

11.2. Let us specialize, for the moment, to the case of a closed map f : 
X -; Y that is finite-to-one (e.g., a covering map with finitely many sheets, 
or the orbit map of a finite group of transformations). Let flJ be a sheaf on 
Y and put A = 1* flJ. Then 

EB 
xEj-l (y) xEj-l(y) 

flJy = flJy EB ... EB flJy 
'-..-' 

n times 

(where n is the number of points in f-1(y)). The f-cohomomorphism 
flJ "-" A induces the homomorphism f3 : flJ -; fA, which on the stalks at 
y, is the diagonal map flJy -; flJy EB ... EB flJy. The composition 

is just 1* : H:;'(Yj flJ) -; Hj-1w(Xj A). (This is, of course, a general fact 
that we discussed in Section 8.) 

Now suppose that f is a covering map with n sheets. Then the map 
17 : fA -; flJ, defined by (JA)y = flJy EB· .. EB fJJy -; flJy where 

(J(Sl,"" sn) = l: Si, 

is continuous, since it is induced from 

on the presheaf level, where U is a connected evenly covered neighborhood 
of y and the Ui are the components of f- 1(U), and where e is the direct 
sum of the inverses of the isomorphisms 
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Thus we have the homomorphisms 

with a(3 = n, which induce, via 11.1, 

r 
H~(Y; flJ) ~ Hj-l'I!(X; f*flJ), 

J1. 

with f-Lf*(O'.) = nO'.. The map f-L is called the transfer. A similar ''transfer 
homomorphism" is considered in Section 19, and Exercise 26 generalizes 
both. 

This implies, for example, that if f : X ---> Y is a covering map with 
n < 00 sheets, then dimH~(Y;Q)::; dim Hj-l1>(X;Q) for each k. 

11.3. Example. Consider the covering map f : §n ---> IRlP'n and let vi = 
f7l,. This has stalks 7l, EB 7l, and is "twisted" via the automorphism (n, k) f-+ 

(k,n); see 1-3.6. By 11.1 we have H*(lRlP'n;vi) ~ H*(§n;7l,). We have the 
inclusion (3 : 7l, ~ vi as the diagonal, and the composition 

is f* by the remarks in 11.2. The quotient sheaf vi 17l, = 7l,t has stalks 7l, 

twisted by n f-+ -no The exact sequence 0 ---> 7l, ---> vi ---> 7l,t ---> 0 and 11.2 
give 

Note that in case n is even, IRlP'n is nonorientable and 7l,t is its orienta
tion sheaf. In this case, Poincare duality (see Chapter V or IV-2.9) yields 
Hi(lRlP'nj 7l,t) ~ Hn_i(lRlP'n j 7l,), giving another calculation of this. Also, 
Hi(JRWn;7l,t) ~ Hn-i(lRwn;7l,). For n odd, duality gives Hi(lRJPlnj7l,t) ~ 
Hn_i(lRlP'n; 7l,t), and so our calculations give these homology groups. <> 

11.4. Example. Let f : §1 ---> I = [-1,1] be the projection, and consider 
the sheaf f7l, on Ij see 1-3.3. It is not hard to check that f7l, ~ 7l, EB 7l,I -8I. 
Hence, by 11.1, we have 

HP(Ij f7l,) ~ HP(I; 7l,) EB HP(Ij 7l,I -8I) 
~ HP(Ij 7l,) EB H~(I - alj 7l,) 

~ HP(*j 7l,) EB HP(I, alj 7l,) 

by 10.2 
as will be seen later, 

which is 7l, for p = 0,1 and is 0 otherwise. This agrees with 11.1, which 
gives H*(Ij f7l,) ~ H*(§lj 7l,). <> 
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11.5. Example. Consider the 3-fold covering map f : §l ~ §l; see 1-3.5. 
The sheaf fZ has stalks Z EB Z EB Z twisted by the cyclic automorphism. 
By 11.1, H*(§l; fZ) ~ H*(§l; Z). Let (3 : .1 ~ fZ be the "diagonal" 
subsheaf, which is constant with stalk Z. Then by 11.2, the composition 

Hl(§l;Z) ~ Hl(§l;.1) £: Hl(§l;fZ) -=:.. Hl(§\Z) is just j*, which 
is multiplication by 3. Let J1 = (fZ)j.1, which has stalks Z EB Z twisted 
by the essentially unique automorphism of period 3. The exact coefficient 
sequence 0 ~ .1 ~ fZ ~ J1 ~ 0 induces the exact sequence 

and it follows that 

o 

11.6. Example. Let N be the positive integers with the non-Hausdorff 
topology in which N and the initial segments Un = {I, ... , n} are the 
open sets; see Exercise 27. Let Al ~ A2 ~ ... be an inverse sequence of 
abelian groups. According to the exercise, this is equivalent to the sheaf 
J1 on N where J1(Un) = An. Also by the exercise, HO(N; J1) = UmAi and 

Hl(N;J1) = UmlAi' the derived functor ofUm. Let 0 = io < i l < i2 < ... 
be a sequence of integers and let f : N ~ N be given by fen) = k for 
ik-l < n :::; ik' Then f is continuous and closed. Each f-l(k) is finite, 
and Exercise 58 shows that J1lf-l(k) is acyclic for all sheaves J1 on Nand 
that f-l(y) is taut in N. Now (fJ1)(Uk) = J1(f-lUk) = J1(Uik) = Aik , so 
that f J1 is just the inverse subsequence given by this sequence of indices. 
By 11.1 we have that H*(N; fJ1) ~ H*(N; J1). This means that passage 
to a subsequence does not change Um or Uml . 0 

An important special case of 11.1 is that for which each f-l(y) is con
nected, and J1 = j* $ for some sheaf $ on Y, particularly a constant sheaf. 
In this case we have: 

11.7. Theorem. (Vietoris mapping theorem.) Let f : X ~ Y be a closed 
surjection, let $ be a sheaf on Y, and let \If be a family of supports on 
Y. Also assume that each f-l(y) is connected and taut in X and that 
HP(f-l(y); $y) = 0 for p > 0 and all y E Y. Then 

r : H;t(Y; $) ~ Hj-l\l1(X; r $) 

is an isomorphism. 

Proof. Consider the monomorphism (3 : $ >-> f r $ of 1-4 which is in
duced by the f -cohomomorphism $ "-> j* $ via the composition 

$(U) ~ (f* $)(rl(U)) = (f r $)(U). 
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On the stalks at y E Y this becomes 

flJy -t (f*flJ)U-1(y)) -=:.. Uf*flJ)y 

since r 1 (y) i= 0 is taut. This is an isomorphism, since U*flJ)lf- 1(y) 
is constant with stalks flJy and since f-l(y) is connected. It follows that 
(3 : flJ -t f f* flJ is an isomorphism. Since f* = ft 0 (3* : H~ (Y; $) -t 

Hj_l-q,(X; f* $) by (18) of Section 8, the theorem follows from 11.1. 0 

Note that the inverse image of a constant sheaf is constant. 

11.8. Corollary. Let X be a space and flJ a sheaf on X. Let T be a 
compact, connected Hausdorff space that is acyclic for any constant coef
ficient sheaf [it suffices that HP(T; flJx ) = 0 for p > 0 and all x E Xl. 
If IT : X x T -t X is the projection, put flJ x T = IT* flJ. For t E T, let 
it : X -t X x T be the inclusion x f--> (x, t). Then 

i; : H;XT(X x T; flJ x T) --+ H;(X; flJ) 

is an isomorphism that is the inverse of IT* and hence is independent of 
t E T. 

Proof. This makes sense, since i; (flJ x T) = it (IT' flJ) = 1 * $ = flJ. In 
cohomology we have it 0 IT* = (IT 0 it)' = 1* = 1. Each {x} x T is 
compact and relatively Hausdorff, whence taut, in X x T. By 11.7, IT* is 
an isomorphism, and hence i; = (IT*)-l is independent of t. 0 

We now prove a strengthened version of 11.8 valid for locally compact 
spaces: 

11.9. Theorem. Let X be a locally compact Hausdorff space and let T be 
a compact connected Hausdorff space. Then with the notation of 11.8, 

i* . H*(X x T' flJ x T) -t H*(X' flJ) t· c' C , 

is independent of t E T.22 

Proof. The point is that here, T need not be acyclic. Let IT : X x T -t X 
be the projection. For any a E H~(X x T; flJ x T), let K(a) = {t E T I a E 
Kerin. By 10.6, t E K(a) * al(X x N) = 0 for some neighborhood N 
of t E T. Then N C K(a), and it follows that K(a) is open for any a. 

Now let t E T and put i;(a) = (3. Then i;(a - IT*(3) = 0, so that 
t E K(a-IT*(3). Thus, for all s near t, we have that s E K(a-IT*(3), which 
implies that 

0= i;(a -IT*(3) = i;(a) - (i;IT*)i;(a) = i;(a) - i;(a). 

Thus the value of i;(a) is locally constant in t and hence is constant, since 
T is connected. 0 

22See, however, Example 14.8. 
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11.10. Corollary. The unit intervalll is acyclic for any constant coeffi
cients. 

Proof. Consider the map J.1 : II x II -t II given by J.1(s, t) = st. By 11.9 
we have that (J.1 0 io)" = (J.1 0 h)* : H*(ll; G) -t H*(ll; G). But J.1 0 i 1 is 
the identity map while J.1 0 io is the constant map to 0 E ll, and the result 
follows. 0 

Remark: Corollary 11.10 can be proved in other ways. See, for example, Exercise 
2. It also follows from 9.23, assuming the result for singular theory as 

known. However, we find it somewhat amusing to use a type of homotopy 
invariance to prove the acyclicity of n instead of the other way around. 

11.11. Corollary. IfG is a compact connected topological group acting on 
the locally compact Hausdorff space X, then G acts trivially on H;(X; L) 
for any constant coefficient group L. 0 

We remark that there are compact connected groups (e.g., inverse limits 
of circle groups, called solenoids) that are not arcwise connected. Thus such 
actions need not be homotopic ally trivial. 

If cP and Ware given families of supports on X and Y respectively, we 
shall say that a map f : X -t Y is proper (with respect to cP and w) if 
f-1w C CPo If that is the case, then 1* : H~(Y) -t H;(X) is defined. A 
homotopy X x II -t Y is proper if it is so with respect to the families cP x II 
and w. For locally compact spaces, "proper" means proper with respect to 
compact supports unless otherwise indicated. 

11.12. Theorem. Any two properly homotopic maps (with respect to cP 
and w) of a space X into a space Y induce identical homomorphisms 

H~(Y; G) -t H;(X; G), 

where G is any constant coefficient group. o 

Note the special cases: 

(a) cP = cld = W. In this case, "properly homotopic" is the same as 
"homotopic." 

(b) X, Y locally compact Hausdorff, cP = c = W. 

(c) A c X, BeY, cP = cldlX - A, w = cldlY - B, with the homotopy 
taking A through B; see Section 12. 

The foregoing results of this section will be considerably generalized in 
Chapter IV. 

11.13. Corollary. For constant coefficients in G, H* ( • ; G) is an invari
ant of homotopy type for arbitrary topological spaces and maps. 

Also, H; (. ; G) is an invariant of proper homotopy type for locally com-
pact Hausdorff spaces and proper maps. 0 
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11.14. Example. This example shows that the condition that I be closed 
in 11.7 cannot be removed. In fact, in this example, I is an open map 
from a locally compact space to the unit interval, and each fiber I-I(y) is 
homeomorphic to the unit interval except at one point, y = 0, for which it 
is a real line. Moreover, X has the homotopy type of a circle, so that 11. 7 
will not hold for any nontrivial constant sheaf of coefficients. 

Let X be obtained from the square II x II by deleting the point (O,~) 
and identifying the points (0,0) and (0,1). Let I : X -+ II be induced by 
(x, y) ...... x. The reader may verify the properties claimed for this example. 

o 
11.15. Example. Let us do some elementary calculations involving the 
cross product, even though they will follow trivially from later results. Let 
X be an arbitrary space and <I> a family of supports on X. Let L be a fixed 
base ring with unit and let.;1 be a sheaf of L-modules. Consider the product 
II x X and the constant sheaf L on ll. The epimorphism L0.;1 ...... L{o} O.;1 
induces an isomorphism 

Hfx<l>(ll x Xi L0.;1) ~ Hfx<l>(ll x Xi L{0}0.;1) 

by 10.2 and 11.8. The exact sequence induced by the coefficient sequence 
0-+ L(0,1J0.;1 -+ L0.;1 -+ L{0}0.;1 -+ 0 then shows that 

Hfx<l>(ll x Xi L(0,1J0.;1) = 0 for all n. 

Then the coefficient sequence ° -+ L(0,1)0.;1 -+ L(0,1J0.;1 -+ L{1}0.;1 -+ 0 
shows that 

Hfx<l>(ll x Xi L{1}0.;1) ~ Hi/.l(ll x Xi L(0,1)0.;1) 

is an isomorphism for all n. In particular, 

is an isomorphism. There are the cross products 

HO(lli L{1}) 0H!;(Xi.;1) -+ Hfx<l>(ll x Xi L{1} 0.;1) , 

H1(lli L(0,1») 0 H!;(Xi.;1) -+ Hll/.l(ll x Xi L(0,1)0.;1). 

The first of these is equivalent to the cross product 

HO( {I}; L) 0 H!;(Xi.;1) -+ Hfx <I> ( {I} x Xi L0.;1) 

by 10.2, and this is equivalent to the composition 

L0H!;(Xi.;1) e~ HO(Xi L ) 0H!;(Xi.;1) ~ H';(Xi.;1), 

which is an isomorphism taking 10 a ...... 1 U a = a. Letting 1 denote the 
generator of HO(lliL{1}) >:::; HO({l}iL) >:::; L we have, for a E H!;(Xi.;1), 

8(1 x a) = t X a, 
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where 
t = 8(1) E HI (II; L(O,I»' 

Consequently, we have the isomorphism 

given by a f---> t X a. 
In particular we have the isomorphism 

II. Sheaf Cohomology 

where U = (0, l)n and where Hn(lIn; Lu) is generated by t X ..• X to This 
is isomorphic to Hg((O, l)n; L) ~ Hg(li?.n; L) by 10.2, so that 

HP(li?.n. L) ~ {L, p = n, 
C' 0, p -# n. 

Regarding §n, n > 0, as the one-point compactification of li?.n, the exact 
coefficient sequence 0 -> LRn -> L -> L{oo} -> 0 on §n gives 

HP(§n; L) ~ {L, p = O,n, 
0, p -# O,n. 

Now consider the sheaf Lv on §n where V = §n - {x} for some point 
x E §n. Let f : lIn -> §n be the identification of olIn to the point x. By 
11.7, 

!* : Hn(§n; Lv) -> Hn(lIn; Lu) 

is an isomorphism. Let an E Hn(§n; Lv) be such that !*(an) = t x··· X t. 

Let Un = j*(an) E Hn(§n;L), wherej*: Hn(§n;Lv)"::"" Hn(§n;L). 
Similarly, by 11.7, 

(f x 1)* : H:nxcI>(§n x X; Lv®..;i) -> HfnxcI>(lIn x X; Lu®..;i) 

is an isomorphism for all p that carries an x (3 f---> t X .•. X t X (3. By the 
previous remarks, (3 f---> tx· .. x tX (3 of Hg(X;..;i) -> H;!:ttcI> (lIn x X; Lu®..;i) 
is an isomorphism. Therefore we have the isomorphism 

given by (3 f---> an X (3. By naturality, the map 

H~nXcI>(§n x X; Lv®..;i) -> H:nxcI>(§n x X;L®..;i) 

takes an x (3 to Un X (3. The exact coefficient sequence 0 -> Lv®..;i -> 

L®..;i -> L{x}®..;i -> 0 induces the exact sequence 

HGnx<J>(§n x X; Lv0Jd) -> HGn x if! (§n x X;L0Jd) -> HlnXif!(§n x X;L{x}0Jd), 
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in which the last map can be identified with the map H~n x <I> (§n X X; L~A) 
----t H:(X;A) induced by the inclusion ix : X '---t §n X X. This sequence 
is split by 7T* : H: (X; A) ----t H~n x <I> (§n X X j L~A), noting that L~A ~ 
7T* A. It follows that the map 

17: H:-n(XjA) ff7H:(XjA) ----t H~nx<I>(§n x XjL~A) 

given by 
17(a, b) = Un X a + 1 x b 

is an isomorphism, since 1 x b = 7T*(b). In particular, since u; = ° for 
n > 0, 

where Vn = Un X 1 E Hn(§n X Xj L) is an algebra isomorphism for n > 0, 
where Advn ) is the exterior algebra over L on V n . An induction shows 
that for all ni > 0, 

where Wi = 7Ti( unJ, 7Ti : §nl X .•• X §nk ----t §ni being the ith projection. <> 

12 Relative cohomology 

In this section, we establish a sheaf-theoretic relative cohomology theory. 
For a closed subspace F c X and for <P paracompactifying, we will have, by 
12.3, that H;'(X,FjA) = H;'lx_p(X -FjAIX -F) and so in this case, we 
already have the long exact cohomology sequence ofthe pair (X, F) by 10.3. 
This is also enough to conclude a very strong excision property. Hence, for 
closed paracompact pairs, closed supports, and constant coefficients, this 
gives us all the Eilenberg-Steenrod axioms for cohomology. The Milnor 
additivity axiom also holds obviously. Consequently, we can conclude, in 
this case, that this cohomology theory agrees with singular theory on CW
complexes. (Chapter III, most of which can be read at this point, also 
establishes this in a different manner.) For most purposes this suffices, 
and so we recommend that first-time readers skip this somewhat technical 
section, after making note of the formulas in 12.1 and 12.3 for the purpose 
of understanding the relative notation. 

Let i : A '---t X and let <P be a family of supports on X. For any sheaf 
A on X we have the natural i-cohomomorphism (see Section 8) 

W*(XjA) "-t W*(AjAIA). 

Equivalently, we have the homomorphism 

I i* : W*(X;A) ----t iW*(AjAIA) I 
of sheaves on X. 
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In order to define relative cohomology, we shall show that i* is surjective 
and has a flabby kernel. We introduce the notation 

and 

I Keri* = ~*(X,A;vi), I 

I C;;(X, A; vi) = r<I>(~*(X, A; vi)), I 

I H;;(X, A; vi) = H*(C;;(X,A;vi))·1 

Since Keri* is flabby and since r<I>(i@) = r<I>nA(@) by I-Exercise 8, we will 
obtain the induced short exact sequence 

10 ---> C;;(X, A; vi) ---> c;; (X; vi) ---> C;;nA (A; vilA) ---> a I (21) 

and hence the long exact cohomology sequence 

Now ~*(X, A; vi) and C;;(X, A; vi) are exact functors23 of vi, so that 
a short exact sequence a ---> vi' ---> vi ---> vi" --+ a of sheaves will induce the 
long exact sequence 

compatible with (22). 
We now proceed to verify our contention. If vi and @ are sheaves on 

X and A respectively and k : vi --.... @ is an i-cohomomorphism, we shall 
say that k is surjective if each kx : vi x --+ @x is surjective for x E A; that 
is, if the induced homomorphism vilA ---> @ is surjective. 

If k : vi --.... @ is surjective and U c X is open, then we have the exact 
sequence 

xEU-A xEUnA xEU xEUnA 

Thus k~ : C°(U; vi) ---> C°(U n A; @) is surjective. [Note that this is 
the map ~o~X;vi)(U) ---> (i~o(A;@))(U).l Moreover, the kernel of the 
surjection ~ (X; vi) ---» i~o(X;@) is the flabby sheaf 

xEU-A xEUnA 

It follows immediately that the induced i-cohomomorphism 

23This follows from the exactness of the absolute versions by an easy diagram chase. 
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is surjective in our sense. Passing to quotient sheaves, we see that 

is also surjective. 
By induction, it follows that the homomorphisms 

are all surjective and have flabby kernels. Taking f1J = AlA yields our 
original contention. 

Note that 

is always exact, so that 

Thus the derived functors of Hg(X, A; A) are H;lx_A (X;A). The follow
ing result shows that <I>-tautness is a necessary and sufficient condition for 
the H:'(X, A; A) to be the derived functors of Hg(X,A;A). 

12.1. Theorem. If A is a <I>-taut subspace of X, then there is a natural 
isomorphism 

I H:'(X,A;A) ~ H;IX_A(XjA)·1 

Conversely, if H: (X, Aj A) = 0 for p > 0 and every flabby sheaf A on X, 
then A is <I>-taut. 24 

Proof. Let A* = ~*(XjA). By Definition 10.5 the following sequence, 
which is always left exact, is exact when A is <I>-taut: 

We also have the natural map A*IA ---+ ~*(A;AIA) induced by the nat
ural cohomomorphism A* "" ~*(Aj AlA). Thus we have a commutative 
diagram 

---+0 

---+ O. 

Since A is <I>-taut, whence A* IA is <I> n A-acyclic, 9 induces an isomorphism 
in cohomology. By the 5-lemma, f also induces an isomorphism. The 

24 Also see Exercise 18. 
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second statement follows directly from (22) and the definition of tautness. 
o 

Note that the proof also shows that in the situation of 12.1, the exact 
sequence ofthe pair (X, A) is equivalent to the long exact sequence induced 
by the short exact sequence 

of cochain complexes. 
We remark that by (21), C;IX_A(X,A;Ji) = C;IX_A(X;Ji) because 

(~IX -A)nA = 0, and that the isomorphism of 12.1 is induced by inclusion 
of supports: H;lx_A(X;Ji) = H;IX_A(X,A; Ji) --> H;(X,A;Ji). 

12.2. The cup product in relative cohomology will be discussed briefly at 
the end of this section. However, in some special cases it can be produced 
based on 12.1 as follows. If ~ and '11 are families of supports on X, then 
there is the cup product 

U: H:1x_A(X;Ji) 0 H~lx_B(X; $) --> H:~~IX_AUB(X;Ji 0 $). 

Therefore, if A is ~-taut, B is lIt-taut, and Au B is (~n 'I1)-taut, then by 
12.1, this gives a relative cup product 

In particular, this holds for arbitrary ~ and '11 if A and B are open, and it 
also holds for paracompactifying families when A and B are closed. [Such 
a product for A and B closed and arbitrary families can also be based on 
12.3.] Various compatibility formulas follow directly from 7.1. For example, 
if U :J V are open in X and j* : H:;"(X, V; Ji) --> H:;"(X; Ji) is the canonical 
map (induced, for example, by the inclusion of supports ~IX - V <---+ ~), 
a E H:(X,U;Ji), and (3 E H~(X, V; $), then 

aU j*((3) = aU (3 E H:~~(X, U; Ji 0 $). 

Similarly, if a E Hg(U; Ji) and (3 E H~(X; $) and 8 is the connecting 
homomorphism for the pair (X, U), then 

8(a U (3) = 8a U (3 E H:~~+1 (X, U; Ji 0 $). 

Many other such formulas are self-evident. 

For the case of closed subspaces, relative cohomology has the following 
"single space" interpretation: 

12.3. Proposition. If F C X is closed, then there is a natural isomor
phism 
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valid for any sheaf vi on X and any family q, of supports. If, in addition, 
q, is paracompactifying,25 then 

Proof. Since vi x -F IF = 0, the cohomology sequence of the pair (X, F) 
with coefficients in vi x -F shows that the map 

is an isomorphism. 
The map Hi(XiviF) --t HinF(F;viIF) is an isomorphism by 10.2. 

Thus the cohomology sequence of (X, F) with coefficients in vi F shows 
that 

Hi (X, FjviF) = o. 

It follows from the sequence (23), with vi' = viX-F and A" = viF, that 

h* : Hi(X,FjAx_F) --t Hi (X, Fi vi) 

is an isomorphism. Thus j* and h* provide the required isomorphism. The 
last statement is a special case of 10.2, included here for the benefit of 
browsers. 0 

Clearly, the last part of 12.3 is a very strong type of "excision" isomor
phism in cases where it applies. In the case of locally compact Hausdorff 
spaces and compact supports this is often stated as "invariance under rela
tive homeomorphism." A relative homeomorphism is a closed map of pairs 
(X, A) --t (Y, B) such that A = f- 1 B and the induced map X -A --t Y-B 
is a homeomorphism. 

12.4. Corollary. Let (X, A) and (Y, B) be closed pairs. Let wand q, 
be paracompactifying families of supports on X and Y respectively. Let 
f : (X, A) --t (Y, B) be a relative homeomorphism such that wlX - A = 
f- 1(q,IY - B) (e.g., ifw = f- 1q,). Then 

f* : Hi(Y, Bj A) --t H~(X, Ai f* vi) 

is an isomorphism for any sheaf vi on Y. 

Proof. This follows directly from 12.3 except for the parenthetical con
dition. To see that the condition is sufficient, let K E wlX - A. Then 
K C f- 1 L for some L E q, and so f(K) C L. Since f(K) is closed, it 
follows that f(K) E q,IY - B. The converse is immediate. 0 

This has the following two special cases as the main cases of interest: 

25 Also see 12.10. 
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12.5. Corollary. If (X, A) and (Y, B) are closed paracompact pairs and 
f : (X, A) ~ (Y, B) is a relative homeomorphism, then 

j*: H*(Y,BiA) ~ H*(X,Aij*A) 

is an isomorphism for any sheaf A on Y. o 

12.6. Corollary. If (X, A) and (Y, B) are closed locally compact Haus
dorff pairs and f : (X, A) -> (Y, B) is a proper relative homeomorphism, 
then 

j* : H;(y,B;A) ~ H;(X, A; j*A) 

is an isomorphism for any sheaf A on Y. o 

12.7. If f: (X, A) ~ (Y,B) is a map of pairs and A, flJ are sheaves on 
X and Y respectively with a given f-cohomomorphism k : flJ'V> A, then 
there is the induced commutative diagram (assuming that f-liJ! C <p) 

o ~ q,(Y,BiflJ) ~ 
1 

o ~ C~(X,AiA) ~ 

C~(Yi $) 
1 

C~(XiA) 

~ qmB(Bi $) ~ 0 
1 

~ C~nA(AiA) ~ 0 

and hence a corresponding diagram of cohomology groups. 
For the particular case of the inclusion (A, B) '--+ (X, B) where B cAe 

X, we have the commutative diagram (with coefficients in A understood) 

0 0 

1 1 
0 ~ C;(X, A) ~ C;(X, B) ~ C~nA(A,B) ~ 0 

II 1 1 
0 ~ C~(X,A) ~ C~(X) ~ C~nA(A) ~ 0 

1 1 
C~nB(B) = C~nB(B) 

1 1 
0 0 

in which the columns and second row are exact. Simple diagram chasing 
yields the fact that the first row is exact. Thus we have the induced exact 
"cohomology sequence of a triple (X, A, B)": 

Note that when A and B are closed then this is induced by the exact 
coefficient sequence 0 ~ AX-A ~ AX-B ~ AA-B ~ 0 via 12.3 and 
10.2. 

Most of the remainder of this section is devoted to generalizing the 
foregoing results. For example, we wish to see how much the "paracom
pactifying" assumption can be weakened in the last part of 12.3. We also 
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want to investigate more general types of subspaces. Consequently, the rest 
of this section is rather technical and can be skipped with little loss. 

For closed subspaces, we have the following "excision" theorem for ar
bitrary support families: 

12.8. Theorem. If F c X is closed and U C F is open in X, then the 
restriction 

i* : H;(X, Fi A) ~ H;nex-u) (X - U, F - Ui A) 

is an isomorphism for any sheaf A on X and any family <I> of supports. 

Proof. By 12.3 it suffices to show that the homomorphism 

H;(XiAX-F) ~ H;nex-u) (X - UiAX-F) 

is an isomorphism. By (22) it suffices to show that 

H;(X,X - UiAX-F) = 0, 

but by 12.3, this group is isomorphic to H;(XiAeX-F)nu), which is zero 
since (X - F) n U = 0. 0 

The following result is the basic excision theorem for non closed sub
spaces: 

12.9. Theorem. If A and B are subspaces of X with B C int(A), then 
the inclusion of pairs i : (X - B, A- B) '-+ (X, A) induces an isomorphism 

~*(X,AiA) ~ i~*(X - B,A - BiA), 

and hence the restriction map 

i* : H;(X,AiA) ~ H;neX- B ) (X - B,A - BiA) 

is an isomorphism for any family of supports <I> on X. 

Proof. Since ~'(X, Ai A) is zero on int(A), ~'(X - B, A - Bi A) is zero 
on int(A) - B. It follows that i~* (X - B, A - B; A) is zero on int(A). 

Consider the commutative diagram 

with exact rows,26 where i is used for all inclusion maps into X. Now 9 
and h are isomorphisms on the stalk at any point x E X - B, and the same 

26Exactness of the bottom row is by 5.4 and 5.7. 
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fact follows for f by the 5-lemma. Thus f is an isomorphism, as claimed, 
since both sheaves vanish on int(A) ::> B. 0 

In some situations, one can prove stronger excision theorems, such as 
the following: 

12.10. Theorem. If B cAe X and <I> is a family of supports on X 
such that A is <I>-taut and X - B is (<I>IX - A)-taut in X and such that 
A - B is (<I> IX - B)-taut in X - B (e.g., if A is open and B is closed and 
<I>-taut) then there is a natural isomorphism 

Thus, for F closed and <I>-taut in X, we have (by taking A = B = F) 

Proof. Since <I> IX - A = (<I> IX - A) n (X - B) we have the exact sequence 
(coefficients in ..d) 

..• ---> H;lx_A(X,X - B) ---> H;lx_A(X) ---> H;lx_A(X - B) ---> .•• 

Since X - B is <I>IX - A taut and since (<I>IX - A) IB = 0, the first term is 
zero by 12.1. Since A is <I>-taut, the second term is isomorphic to Hg (X, A) 
by 12.1. Since (<I>IX - A) = (<I> IX - B)I(X - B) - (A - B), the third term 
is isomorphic to H;lx_B(X - B, A - B) by 12.1. 0 

Note that in 12.10, <I> IX - B can be replaced by any family \If on X - B 
such that A - B is \If-taut and \IfIX - A = <I>IX - A. 

12.11. Corollary. Let A C X be closed, let..d be a sheaf on X/A, and let 
<I> be a family of supports on X/A such that {*} is <I>-taut in X/A where 
* = {A}; e.g., either some member of <I> is a neighborhood of * or {*} ¢ <I>. 
Let W = f- 1 <I> where f : X ---> X/A is the collapsing map. If A is \If-taut 
in X then 

1* : H:'(X/A, *;..d) ---> H;(X, A; 1*..d) 

is an isomorphism. In particular, if X is paracompact, then 

1*: H*(X/A,*;..d) ---> H*(X,A;1*..d) 

is an isomorphism. Similarly, if A is compact and X is locally compact 
Hausdorff, then 

is an isomorphism. 
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Proof. It follows from the proof of 12.4 that wlX -A = f-l(~IX/A-*). 
Since {*} is ~-taut, the result is an immediate consequence of the last part 
of 12.10.27 0 

12.12. Example. This example shows that the tautness assumption in 
the first part of 12.11 (or the paracompactness assumption in the second 
part) is necessary. Let [0,0] denote the compactified "long ray" in the 
compactified long line; see Exercise 3. Let Y = [0,0] x [0, 1] and B = 
Y - (0,0) x (0,1), the "boundary" of Y. Let X = Y - {(O, 1)} and 
A = X n B. Standard argument3 show that any neighborhood of A in X is 
the intersection with X of a neighborhood of Bin Y. It follows that X/A ~ 
Y/ B. However, it is not hard to show, with the aid of Exercise 3, that X, Y, 
and A are all acyclic while B has the cohomology of a circle. It follows that 
H2(X,A;Z) = 0 while H2(X/A;Z) ~ H2(Y/B;Z) ~ H2(Y,B;Z) ~ Z. <> 

We shall now show how to simplify the hypotheses of 12.10 in the case 
in which B is closed. 

12.13. Proposition. Let B cAe X and let ~ be a family of supports on 
X. Assume that B is closed. Then A-B is (~IX -B)-taut in X -B {;} A 
is (~IX - B)-taut in X. 

Proof. Let W = ~IX - B. Then (w n A)IB = 0 and, since A - B is open 
(hence taut) in A, the restriction (arbitrary coefficients) 

is an isomorphism by 12.1. Similarly, for an open neighborhood U of A, 
the restriction 

H;'nu(U) -+ H;'n(U_B)(U - B) 

is an isomorphism. The result now follows from 10.6. o 

12.14. Proposition. If A and Bare subspaces of X with Be A, and if 
B is ~-taut in X, then B is (~n A)-taut in A. 

Proof. Let d be a flabby sheaf on A. Then id is flabby by 5.7, where 
i : A '----> X is the inclusion. Since B is ~-taut in X, the map rof>(id) -+ 

rof>nB(idIB) is surjective. But rof>(id) = rof>nA(d) and dlB = (id)IB, 
so that rof>nA(d) -+ rof>nB(dIB) is surjective. Also, dlB = (id)IB is 
(~n B)-acyclic since B is ~-taut in X and id is flabby. But rof>nA(d) -+ 

rof>nB(dIB) being surjective and dlB being (~n B)-acyclic for all flabby 
sheaves d on A is the definition of B being (~n A)-taut in A. 0 

12.15. Proposition. If A and B are ~-taut subspaces of X with B c A, 
then A is (1l>1X - B)-taut in X. 

27The second and third parts are also immediate consequences of the corollaries to 
12.4. 
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Proof. Let ui be a flabby sheaf on X. Note that 

(<I>IX - B) n A = (<I> n A)IA - B 

since if K n A E (<I> n A) I A - B, then K nAn B = K nAn A n B = 
K nAn B = 0. Consider the commutative diagram 

o 
1 

r<I>IX-B(ui) 
1 

r <I> (ui) 

o 
1 

-L r(<I>IX-B)nA(uiIA) 
1 

-+ r<I>nA(uiIA) -+ 0 
1 1 

f<I>nB(uiIB) ~ r<I>nB(uiIB) 

with exact row and columns (since A is <I>-taut). Diagram chasing reveals 
that j is onto. Thus it suffices to show that Hr<I>nA)IA-B(Ai uilA) = 0 
for p > O. But this is isomorphic to H~nA (A, Bi ui) by 12.1, since B is 
(<I> n A)-taut by 12.14. By (24) it now suffices to show that 

H;(X,Biui) = 0 = H;(X,Aiui) 

for p > O. But H;(X,Biui) ~ H;lx_B(Xiui) = 0 by 12.1 and since ui is 
flabby. Similarly, H; (X, Ai ui) = O. D 

12.16. Corollary. If B cAe X with B closed and A and B <I>-taut in 
X, then 

H;(X, Ai ui) ~ H;lx_B(X - B, A - Bi ui). D 

Now we will show that relative cohomology does not depend on the use 
of the canonical resolution in its definition. The proof will rely on the fact 
that for any resolution g;* of a sheaf ui, the differential sheaf ~*(X; g;*) 
is also a resolution of ui. Here ~*(Xig;*) is given the total gradation 
~*(Xi g;*)n = EBp+q=n ~p(X; g;q) and total differential d = d' +d", where 
d' is the differential of ~*(Xi g;q) and d" is, on ~P(Xi g;*), (-l)P times the 
homomorphism induced by the differential of g;*. This fact follows from 
the pointwise homotopy triviality of the canonical resolution ~* (X i .) i see 
Exercise 48. 

12.17. Theorem. Let i : A'---> X and let ui be a sheaf on X. Let g;* and 
f be resolutions of ui and uilA respectively for which there is a surjective 
i-cohomomorphism k : g;* "'"' f of resolutions. Suppose, moreover, that 
g;* consists of<I>-acyclic sheaves andf oj (<I>nA)-acyclic sheaves, and that 
kx : r<I>(g;*) ---- r<I>nA(f) is onto. Let:Jt* be the kernel of the associated 
homomorphism g;* ---- if [so that r <I> (:Jt*) = Ker kx J. Then there is a 
natural isomorphism 
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Proof. Note that there are the homomorphisms of resolutions !£* --+ 
~*(X;!£*) +- ~*(X;A) and similarly for JIt*. 

We have the commutative diagram 

0--+ r~(.1{*) --+ r~(!£*) --+ r~nA(JIt*) --+0 

1 1 1 
0--+ K* --+ C~(X; !£*) --+ C~nA (A; JIt*) --+0 

i i i 
o --+ C~(X, A; A) --+ C~(X;A) --+ C~nA(A;AIA) --+0 

in which the rows are exact (hence defining K*). The vertical maps on the 
right and the middle induce isomorphisms in cohomology [since W*(X;!£*) 
is a flabby resolution of A, etc.]. By the 5-lemma, the vertical maps on 
the left also induce isomorphisms. 0 

Now we shall apply 12.17 to the case of the resolution $* (X; A) defined 
at the end of Section 2. We shall use the notation introduced in that section. 

Let MP(X, A; A) be the collection of all f E MP(X; A) such that 
f(xo, ... ,xp) = 0 when all Xi EA. Let FP(X,A;A) = tPp(MP(X,A;A)). 
We claim that 

FP(X, A; A) = Ker{ i* : FP(X; A) --+ FP(A; AlA)}. 

In fact, if 9 E MP(X;A) and tPp(g) E Keri*, define hE MP(X;A) by 

h( ) _ { g(xo, ... ,xp), if Xi E A for all i 
xo,··· ,xp - 0, otherwise. 

Then h E KertPp and f = 9 - hE MP(X,A;A), whence tPp(g) = tPp(f) E 
FP(X, A;A). 

Passing to open subsets of X, we see that the presheaf U f-t FP(U, A n 
U; A) is a flabby sheaf [denoted by $P(X, A; A)] which is the kernel of the 
restriction $P(X;A) --+ i$P(A;AIA). Let 

Then it follows that 

is exact, and by 12.17, that 

1 H~(X, A; A) ~ HP(Fi,(X, A; A))·I 

The cup product on M*(X;.) defined at the end of Section 7 induces 
a homomorphism 
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which in turn induces 

U : F:(X;A) ® F$(X,A; flJ) - F:~~(X,A;A ® flJ) 

and 
U : H:(X; A) ® H~(X, A; flJ) - H:~~(X, A; A ® flJ). 

The reader may develop properties of this product as well as show that it 
coincides with the "single space" cup product 

U: H:(X;A) ® H~lx_A(Xj flJ) - H:~~IX_A(XjA ® flJ), 

via 12.1, when A is Ill-taut and (<p n 1lI)-taut in X. We shall return to this 
subject at the end of Section 13. 

13 Mayer-Vietoris theorems 
In this section we shall first derive the two exact sequences of the Mayer
Vietoris type that one encounters most frequently. We shall then endeavor 
to generalize these sequences through the use of the relative cohomology 
groups introduced in the preceding section. 

First, let A be a sheaf on X and <P a family of supports on X. Let Xl 
and X 2 be closed subspaces of X with X = Xl UX2 and put A = Xl nx2 • 

We have the surjections 

ri:A-Ax; and 8i:AX;-AA' 

Considering stalks, we see that the sequence 

a f3 
0- A --+ AXl EBAX2 --+ AA - 0 

is exact, where a = (rb r2) and /3 = 81 - 82. Thus, by 10.2, we have the 
exact Mayer-Vietoris sequence (for Xi closed and arbitrary <p) 

since <P n Xl = <pIXl , etc. 
Second, assume instead that <P is paracompactifying and let Ul and U2 

be open sets with U = Ul n U2 and X = Ul U U2 . We have the inclusions 

ik : Au >-+ AUk and jk: AUk >-+ A. 

Again the sequence 

a {3 
0- Au --+ AUl EBAU2 --+ A - 0 

is exact, where a = (ib i2) and /3 = jl - h. Thus we obtain from 10.2 the 
exact Mayer-Vietoris sequence 
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when <I> is paracompactifying. One can generalize this to the case of ar
bitrary supports on a normal space X = Ul U U2 as follows. In fact it is 
enough to have a separation for the sets A = X - Ul and B = X - U2; say 
V::) A is open and X - V::) B, Le., V C U2. Let J'l* be a flabby resolution 
of J'l on X. Then the sequence 

is exact, and this is equivalent to the sequence 

The claimed sequence will follow from this and the fact that H;IU(U; J'l) ~ 

H*(f.pIU(J'l*IU)) etc., if we can show that (3 is surjective. For this, suppose 
that I E f.p(J'l*) and let h E f(..d*) be an extension of I on V and 0 on 
X - (III n V). Then Ihl c III n V E <I>IU2 • Also,9 = 1- h is zero on V and 
on X -III, so that 191 c III n (X - V) E <I>lUl. Thus I = 9 + h = (3(9, -h) 
is the desired decomposition. 

Conversely, if the sequence (27) always holds for <I> = cld on a space 
X, then the disjoint closed sets A = X - Ul and B = X - U2 can be 
separated. To see this, let..d = ~o(X;Z) and let I E f.p(J'l) be the 
section that is the constant serration of Z with value 1. Since J'lIU is 
flabby, we have HilU(U;J'lIU) = 0, and so the assumed exactness of the 
sequence implies the existence of a decomposition I = 9 + h with 9 E 

f.plul (J'lIUl ) and hE f.plu2(..dIU2). Then X -191 ::) A, X -Ihl ::) Band 
(X -191) n (X - Ihl) = X - (191 U Ihl) c X -III = 0.28 

13.1. Example. For an arbitrary space X, the cone ex on X is the 
quotient space X x II/Xx {a}. Since this is contractible, it is acyclic for 
any constant coefficients and closed supports. The (unreduced) suspension 
of a space X is EX = ex / X x {I}. This is the union along X x {!} of two 
cones. The Mayer-Vietoris sequence (26) applies to show that fIk(EX) ~ 
fIk-l(X) for all k. If * E X is a base point, then EX contains the arc I, 
which is the image of * x II and is a closed subspace of EX. The reduced 
suspension of X is SX = EX/I. Now the collapsing map EX -+ SX 
is closed and I is connected, acyclic, and taut (since it is compact and 
relatively Hausdorff in EX), so the Vietoris mapping theorem 11. 7 applies 
to show that fIk(SX) ~ fIk(EX) ~ fIk-l(X) for all k. Note that this does 
not hold in this generality for singular theory where one must assume the 
space to be "well pointed," that is, that the base point is nondegenerate. 

o 

13.2. Example. We shall use the Mayer-Vietoris sequence (26) to com
pute a rather interesting cohomology group. Let S = {O, 1, 1/2, 1/3, ... } 
on the x-axis of the plane. Let K = {(x, y) E ]R21 XES, -1 ::; y ::; I}, 

28Compare Exercise 6. 
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which is compact. Let X = K - {(O,O)}, which is locally compact. We 
wish to compute Hl(X; Z). Let Xl be the part of X with coordinate y ~ 0 
and X 2 that with y ~ o. Then Xl n X 2 = {I, I/2,I/3, ... } is discrete, and 
so HO(Xl n X2) ~ I1~1 Z is uncountable. However, Xl has S x {I} as 
a deformation retract and so HO(Xl) ~ HO(S) ~ ffi~l Z since it is just 
the locally constant integer-valued functions on S. (This also follows easily 
from weak continuity, 10.7.) This group is countable. Similarly for X 2• 

The Mayer-Vietoris sequence has the segment 

and it follows that Hl(X) is uncountable. 29 Note that by Exercise 40, 
Hl(X) ~ [X;Sl], the group of homotopy classes of maps X -+ §l. Thus, 
there exist an uncountable number of homotopically distinct maps X -+ §l. 
This might seem quite unintuitive, and the reader is encouraged to con
struct some such homotopically nontrivial maps. (Note that they cannot 
extend to all of K, since [K;§l] ~ Hl(K) = 0 because K ~ S.) 0 

In the remainder of this section we shall generalize these sequences to 
more general subspaces. For instance, one may want such a sequence for a 
pair of subspaces, one of which is open and the other closed. However, this 
is rare and the rest of this section is rather technical, so we recommend 
that first-time readers skip to the next section. 

The following terminology will be convenient: 

13.3. Definition. Let ql be a family of supports on the space X. A pair 
(Xl ,X2) of subspaces of X will be said to be "iP-excisive" if the inclusion 
(Xl, Xl n X 2) '---+ (Xl U X 2, X 2) induces an isomorphism 

H;n(X1UX2 )(Xl U X 2 ,X2;..d') ~ H;nxl (Xl. Xl n X2;..d') 

for every sheaf..d' on X. 

Proposition 13.4 will show that this property does not depend on the 
order in which we take Xl and X 2• 

In order to characterize excisive pairs it will be convenient to work with 
the resolutions g*(X; A) of Section 2. However, the resolutions ~*(X; A) 
could be employed in much the same way. 

Define 

MP(X, Xl. X 2; A) = MP(X, Xl; A) n MP(X, X 2 ; A), 

that is, the set of all f E MP(X; A) such that f(xQ, . .. ,xp) = 0 whenever 
all the Xi are in Xl or all are in X 2 • Let 

29In V-9.13, another method is given for doing this computation. It shows that any 
subspace of the plane looking very roughly like this one has similar properties. 
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We claim that 

In fact, if 'lj;p(g) is in the right-hand side, define 

h( ) _ { g(xo, ... , xp), if all Xi E Xl or if all Xi E X2, 
Xo,···, Xp - 0, otherwise. 

Then 'lj;p(h) = 0 and 9 - h E MP(X, Xl, X 2 ; A), so that 

as claimed. 
The presheaf gP(X,Xl ,X2 ;A): U f-+ FP(U,Xl n U,X2 nU;A) is the 

intersection of the subsheaves gP(X,Xi;A) of gP(X;A), and hence it is 
a sheaf. It is obviously flabby since FP(U, Xl n U, X 2 n U; A) is the image 
under 'lj;p of 

and such an f extends to all of X. Let 

and 
H:(X,Xl ,X2 ;A) = HP(F;(X,Xb X 2;A)). 

Consider the commutative diagram (28), which has exact rows and 
columns (coefficients in A): 

o 
1 

o -. F;(X,Xb X 2 ) 

1 

o 0 
1 1 

-. F;(X, X 2 ) ---+F;nXl (Xl, Xl n X 2 )-. 0 
1 1 

(28) 

Taking X = Xl UX2 in (28) we obtain immediately, from the cohomol
ogy sequence of the first row, the following criterion for <I>-excisiveness: 

13.4. Proposition. (Xl, X 2 ) is CI>-excisive # Ht(Xl UX2 , Xl, X 2 ; A) = 
o for all p and all sheaves A on Xl U X2, where \If = <I> n (Xl U X 2). 0 
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For general X ~ Xl U X 2 we also have the exact sequence 

F~(X, Xl UX2j.Yi) >-->F~(X, Xl, X2j .Yi)-F~n(X1UX2)(XI UX2, Xl, X 2j.Yi) 

and it follows that for (Xl, X2) tf>-excisive, there is a natural isomorphism 

H;(X,XI UX2j.Yi) ~ H;(X,XI,X2j.Yi). 

From (28) we derive the exact sequence (coefficients in .Yi) 

o ---> F~(X, Xl, X 2 ) ---> F;(X) ~ F;nx1 (Xl) EB F;nX2 (X2) 

)1-12, F;nx1nx2 (XI nX2) ---> O. 

(29) 

(30) 

For the moment let G;j,(XI,X2) = F;(XI U X 2)/F;(XI U X 2,XI,X2). 
Then H;(XI U X2;.Yi) ~ H*(G;j,(XI,X2» for (XI,X2) tf>-excisive, and 
from (30) we have the exact sequence 

G;j,(XI, X 2) >--> F;nx1 (Xl) EB F;nx2 (X2) ....,. F;nx1nX2 (Xl n X 2). (31) 

For (Xl, X 2 ) tf>-excisive, (31) induces the exact Mayer-Vietoris sequence 
(26), where X = Xl U X2 and A = Xl n X 2. 

Now let (AI, A2) be a pair of subspaces of X with Ai C Xi' Let 

G;j,(XI,X2;AI,A2 ) = Ker{G;j,(XI,X2) ---> G~n(A1UA2)(AI,A2)}' 

Then for (XI ,X2) and (A I ,A2 ) both tf>-excisive, we have 

H;(XI U X 2, Al U A2;.Yi) ~ H*(G~(XI' X2; AI, A2»' 

Consider the following commutative diagram with exact rows and columns 
(in which we have omitted the obvious supports): 

o 0 0 
1 1 1 

O-+G* (Xl, X 2; AI, A2)-+F*(XI ,AI ) EB F*(X2' A2)-+F* (Xl nX2, Al nA2)-+0 
1 1 1 

0-+ G*(XI,X2) -+ F*(XI)EBF*(X2) -+ F*(XlnX2 ) -+0 
1 1 1 

0-+ C*(AI ,A2) -+ F*(AI)EBF*(A2) -+ F*(AInA2) -+0 
1 1 1 
o 0 O. 

From this we derive that when (XI ,X2) and (A I ,A2 ) are both tf>
excisive with Ai C Xi, there is the following exact Mayer-Vietoris sequence 
(with coefficients in .Yi): 

••• ---> H: (X I U X 2, Al U A2 ) ---> H:nXl (Xl, AI) EB H:nX2 (X2, A2 ) 

---> H:nXlnX2 (Xl n X 2, Al n A2 ) ---> •.• 

This exact sequence generalizes both (26) and (27). 

(32) 

In both of the following cases, the pair (Xl, X 2 ) is tf>-excisive for all tf>: 
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(a) Xl U X 2 = int(Xl ) U int(X2), interiors relative to Xl U X 2 , by 12.9. 

(b) Xl and X2 both closed in Xl U X 2 , by 12.8.30 

In particular, (32) is always valid when the Xi and Ai are all closed. 
Consequently, (27) is valid by 12.10 whenever the closed sets X -Ul , X -U2 , 

and X - U are all iP-taut (and X = Ul U U2 ). 

The following result gives another sufficient condition for iP-excisiveness: 

13.5. Proposition. Let X = Xl U X 2 and A = Xl n X 2 • If iP is a family 
of supports on X with 

and such that X2 is iP-taut in X and A is (iPnA)-taut in Xl, then (Xl,X2) 
is iP-excisive. 

Proof. Since ~*(X,Xl;JIi') vanishes on int(Xl ) and since 

we have that 

H;IX_ X2(X,Xl ;JIi') = O. 

By 12.1 it follows that Xl is (iPIX -X2)-taut. Let JIi'* be a flabby resolution 
of JIi' on X. Since (iPIX - X 2 ) = (<I>IX - X 2 ) n Xl, the restriction 

is surjective. Its kernel is r(<I>IX- X 2)IX-X l (JIi'*) = O. Since Xl is (iPIX -
X 2)-taut and iPlX - X2 = (iP n Xl)IXl - A, f induces an isomorphism 

which by tautness and 12.1 can be canonically identified with 

as was to be shown. o 

13.6. Corollary. If X = Xl Uint(X2) = int(Xl )UX2 and if Xl> X 2 , and 
Xl n X 2 are all <I>-taut in X, then (Xl, X 2 ) is iP-excisive. 

30This contrasts with singular theory, where such a weak condition falls far short of 
sufficing. 
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Proof. This follows easily from 12.14 and 13.5. o 

We note that with the hypotheses of 13.6, the Mayer-Vietoris sequence 
(26) can be derived directly as the cohomology sequence of the short exact 
sequence 

where vt* is a flabby resolution of vt. 

13.7. Let A and B be subspaces of X and let vt and flJ be sheaves on 
X. The cup product on M*(X;e) defined in Section 7 clearly induces a 
product 

and hence also 

and 

~P(X, A; vt) 0 ~q(X, B; flJ) ---- ~p+q(X, A, B;..J10 flJ), 

F:(X, A;..J1) 0 F$(X, B; flJ) ---- F:~~(X, A, B;..J10 flJ), 

H:(X, A; vt) 0 H~(X, B; flJ) ---- H:~'!v(X, A, B;..J10 flJ). 

Thus, by (29), when (A, B) is (<p n 1J!)-excisive, we obtain the cup product 

U: H:(X, A; vt) 0 H~(X, B; flJ) ---- H:t~(X, Au B; vt 0 flJ). (33) 

Also see Exercises 19 and 20 at the end of the chapter. 
If A c X and BeY and if <P and 1J! are families of supports on X and 

Y, respectively, such that (X x B, A x Y) is (<p x 1J!)-excisive, then the cup 
product (33) induces the cross product31 

x : H:(X, A;..J1) 0 H~(X, B; flJ) ---- H:t~((X, A) x (Y, B); ..J1®flJ) , 

by a x (3 = 1l'x(a) U 1l'y((3), 1l'x and 1l'y being the projections (X x Y, A x 
B) ---- (X, A) and (X x Y, A x B) ---- (Y, B) respectively. In particular, the 
cross product is defined when either A or B is empty or when A and Bare 
both closed or both open. 

14 Continuity 

Let D = {A, j.L, • •• } be a directed set. Let {X,\;f~,I-'} be an inverse system of 
spaces based on D (that is, /.x,1-' : XI-' ---- X,\ is defined for j.L > A and satisfies 
/.x,jJ. 0 II-',v = /.x,v), and let X = limX,\. For each A E DIet vt,\ be a sheaf 

3 1Where (X, A) x (Y, B) denotes the pair (X x Y, X x B u A x Y). 
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on X)" and for J.l >>. assume that we are given an I>',JL-cohomomorphism 
k>',JL : Ji JL """ Ji >. such that for v > J.l > >., kV,JL 0 kJL ,>. = kv,>.. (That is, 
{Ji >.; kJL ,>.} is a direct system of sheaves and cohomomorphisms.) 

Let fA : X -+ X>. be the canonical projection. Note that kJL ,>. induces a 
homomorphism 

hJL ,>. : r>.Ji>. -+ I~JiJL 

(regard I>.Ji>. as 1;1>',JLJi) with hV,JL 0 hJL ,>. = hv,>.. Let Ji = li.n}/>.Ji>.. 

14.1. We have, for x E X, the natural commutative diagram 

Ji>.(X>.) 
1 

---> (f>'Ji>.)(X) ---> Ji(X) 
1 1 

(Ji >.)!>.(x) 

The horizontal map on the lower right becomes an isomorphism upon pas
sage to the limit over >. (since Ji = li.n} I>. Ji >.). Thus we obtain the com
mutative diagram 

lim.Ji >. (X>.) 
1 

li.n}(Ji >.) 1>. (x) 

0 
---> 

Ox 
---> 
~ 

Ji(X) 
1 

Ji x . 

Note that for suitable supports, H*(X>.;Ji>.) forms (via k~,>.) a di
rect system of groups and that there are compatible maps H* (X>.; Ji >.) -+ 

H* (X; I>. Ji >.) -+ H* (X; Ji), so that () generalizes to a map 

I (): li.n}H*(X>.;Ji>.) -+ H*(X;Ji)·1 

14.2. Lemma. II each X>. (and hence X) is compact Hausdorff, then the 
canonical map 

is an isomorphism. 

Proof. First, we show that () is one-to-one. Let s>. E Ji>.(X>.) and for 
J.l> >., let sJL = kJL,>.(s>.) E JiJL(XJL)' Let S E li.n}(Ji>.(X>.)) be the element 
defined by s>. and assume that ()(s) = o. 

Now, ()(s)(x) = ()x(li.n}sJL(fJL(x))) by 14.1. Thus, for each x E X there 
is an element J.l > >. of D such that sJL(fJL(x)) = O. But then sJL(fJL(Y)) = 0 
for all y sufficiently close to x, because a section of a sheaf meets the zero 
section in an open set. By the compactness of X and the directedness 
property of D, there is a J.l > >. such that SJL(fJL(x)) = 0 for all x E X. 
Thus sJL vanishes in a neighborhood N of IJL(X) c Xw Since the Xv are 
compact, there is a v > J.l such that IJL,v(Xv) c N (this follows from the 
fact that the inverse limit of nonempty compact sets is nonempty), and it 
follows that Sv = kV,JL(sJL) = 0 on all of Xv. Thus () is injective. 
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We now show that () is onto. Let S E A(X). For each x E X, there 
is a >. = >,(x) E D and an element of (A>.)I>.(x) mapping onto sex) by 
14.1. Let U>. C X>. be a neighborhood of J>.(x) and let s>. E A>.(U>.) be 
such that s>.(J>.(x)) maps to sex). Then, using k>. to also denote the map 
A>.(U>.) --+ AU;: 1 (U),.)), k),.(s),.) coincides with S in some neighborhood 
of x. We may assume that k),.(s),.) = sl/;:l(U),.), since sets of the form 
I;; 1 (UI-') , J-t varying, form a neighborhood basis in X. 

Now, since X is compact, there are a finite number of such l;:l(U>.) 
that cover X, and by the directedness property of D, we may assume that 
for some fixed >., there are a finite number of open subsets Ut. ... , Un of 
X),. and elements Si E A),.(Ui) such that 

k),.(Si) = sl/;:l(Ui ) for i = 1, ... ,n, 

and such that the l;:l(Ui) cover X. Passing to a larger .A, it may even be 
assumed that the Ui cover X>.. 

Let {Vi Ii = 1, ... , n} be an open covering of X),. such that Vi C 
Ui. Then, for each pair (i,j), k>. maps SilVi,j - sjlVi,j to zero, where 
Vi,j = Vi n Vj. Now l;:l(Vi,j) = Um/.x.!(Vi,j) (over J-t > >'), and simi
larly for the restrictions of the sheaves to these sets, so that the fA.ct that 
() is a monomorphism implies that there is a J-t = J-t( i, j) > .A such that 
kl-',)"(silVi,j) = kl-',>.(sjIVi,j). We may assume that J-t is independent of 
(i, j), and replacing>. by J-t, we see that we can assume that Si and Sj 
coincide on Vi n Vj for all i,j. Thus there is an s),. E A),.(X>.) (>. large) 
restricting on Vi to Si. Hence k>.s>. = S and the lemma follows, since () is 
induced by the k),.. 0 

14.3. Corollary. II each X),. is compact Hausdorff and each A),. is soft, 
then A is soft.32 

Proof. For any closed set Fe X, F = Um(hF), so that by 14.2, A(F) = 
lim A),. (J>.F) , and the result follows immediately. 0 

14.4. Theorem. (Continuity.) II each X),. is locally compact Hausdorff 
and each 1>.,1-' is proper, then the homomorphism 

is an isomorphism. 

Proof. Embed each X),., and hence X, in its one-point compactification 
xt and extend each A),. by zero to a sheaf on xt. This does not alter the 

x+ cohomology with compact supports because H;(XjA) ::::; H*(X+jA ) 
by 10.1. Therefore it suffices to treat the case in which each X),. is compact. 

32 Also see 16.30 and Exercise 29. 
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Now let P~ = ~* (X>.; Ji >.). The cohomomorphism kit,>' : Ji >. "'-+ Jilt 
induces a cohomomorphism 

Note that n P~ is a resolution of fA Ji >., since fA is an exact functor. Thus, 
p* =def lim fA P~ is a resolution of lim fA Ji >., = Ji. By 14.3, p* is soft. 

The cohomomorphism k~ : p~ = ~*(X>.;Ji>.,) "'-+ ~*(X;Ji) = Ji* 
admits the factorization 

inducing 

H*(X>.,;Ji>.) = H*(P~(X>.)) --> H*(fAP~(X)) --> H*(Ji*(X)) = H*(X;Ji), 

which induces B upon passage to the limit. However, 

limH*(P~(X>.)) = H*(limP~(X>.)) = H*(P*(X)) 

by 14.2, and the homomorphism p* --> Ji* of resolutions induces an iso
morphism H*(P*(X)) ~ H*(Ji*(X)) by 4.2, since p* is soft. 0 

There are two special cases of 14.4 of individual importance. First, 
when each X>., = X, we obtain: 

14.5. Corollary. Let {Ji >.} be a direct system of sheaves on a locally com
pact Hausdorff space X and let Ji = lim Ji >.. Then the canonical map 

is an isomorphism.33 o 

Second, if each Ji>., is the constant sheaf G, we obtain: 

14.6. Corollary. Let {X>.} be an inverse system of locally compact Haus
dorff spaces and proper maps, and let X = lim X>.. Then for constant 
coefficients in G, the canonical map 

is an isomorphism. o 

14.7. Example. For each integer n > 0 let Xn = §l and let 1l'n : Xn+l --> 

Xn be the covering map of degree p. Then the space Ep = lim Xn is called 
the "p-adic solenoid." By 14.6 we see that Hl(Ep;:1::) ;::::;j IQp, the group of 
rational numbers with denominators a power of p. 

33 Contrast Exercise 4. 
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If instead, we take 7rn to be of degree n, then the solenoid E = UrnXn 
has HI(Ej Z) ~ Q. 0 

14.8. Example. Let Yn be the union of the unit circle C = §I with the 
line segment I = [-1,1] x {o}. Let 7rn : Yn+1 -4 Yn be the covering map 
of degree 3 on X n+1 = C together with the identity on I. Put Y = Urn Yn , 

which is compact and contains the compact subspace X = E3 . Also let 
a, bEY be the points corresponding to the end points of the interval I. 
Then Y is just the mapping cone of the inclusion {a, b} '---+ X. In simplicial 
homology with integer coefficients take the basis of HI (Yn ) represented by 
the counterclockwise cycle in C and the cycle given by I in the direction 
from 1 to -1 followed by the counterclockwise lower semicircle in C. Take 
the Kronecker dual basis {on,.8n} in HI(Yn). Let gn : Yn - C be the 
projection collapsing Xn to a point and let 'Y E Hl(C) be the class dual to 
the counterclockwise circle. Then one can compute that 

7r~(on) = 30n+1 + .8n+I 
7r~ (.8n) = .8n+1 
g~("() = .8n· 

It follows from continuity that in terms of generators and relations, 

Hl (Y) ~ {.8, 01, 02, ... IOn = 30n +1 + .8}. 

The map 9 : Y -4 YjX ~ C induces g*('Y) =.8. Since H2(y,X) ~ 
H;(Y - X) ~ H2(I, 8I) = 0 and iIO(X) = 0, there is the exact sequence 

0-4 Hl(y,X) -4 Hl(y) -4 HI(X) -40, 

which has the form 

o -4 Z -4 HI (Y) -4 Q3 -4 O. 

We claim that this does not split. Indeed, a splitting map 1 : HI (Y) -4 Z 
would have the form 

I(on) = Sn, 
1(.8) = 1, 

for some integers Sn, and the relations imply that 

Sn = 3Sn+l + 1. 

It is easy to see that no such sequence of integers can exist. 
For a space K consider the Mayer-Vietoris sequence (26) of the pair 

(K x X, K x I) of closed subspaces of K x Y. Let j : K x X '---+ K x Y be 
the inclusion. Identifying the cohomology of K x I with that of K and that 
of K x {a, b} with the direct sum of two copies of that of K, this sequence 
has a segment of the form 
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and the homomorphism 'P is given by 

'P(s, t) = (i~(s) + t, -i;:(s) - t), 

where ix : K -+ K x X is the inclusion ix(k) = (k, x). We wish to ask, as in 
11.9, whether i~ = ii,. If this is the case, then for any s E Hl(K x X) there 
is atE Hl(K), namely t = -i~(s) = -ii,(s), such that 'P(s, t) = O. This 
implies that s Elm (1* : Hl(K x Y) -+ Hl(K x X)). Thus the condition 
i~ = ii, implies that j* is surjective. By Exercise 40 this is equivalent 
to j# : [K x Y; C] -+ [K x X; C] being onto. By the exponential law in 
homotopy theory this implies that J : [K; CY ] -+ [K; C X ] is onto. Now take 
K = C X , which is metrizable and hence paracompact. If J is onto, then 
there is a map). : C X -+ CY such that the composition C X -+ C Y -+ CX is 
homotopic to the identity. Then A# : [X; C] ---> [Y; C] splits the surjection 
Hl(y) ~ [Y; C] -+ [X; C] ~ Hl(X). We have seen that such a splitting 
does not exist in the present example, and so we conclude that for K = CX 
where X = E3 , the epimorphisms i; : Hl(K x X) --» Hl(K) are not 
independent of x EX. <) 

14.9. Example. Consider Example 1-2.7, and retain the notation used 
there. The sheaves 9? n there form a direct system, of which an increasing 
union is a special case, with direct limit 9? We wish to illustrate 14.5 
by calculating the cohomology of X with coefficients in 9? Note that 
9?n/9?n-l ~ ZAn for n > 1, and 9?1 ~ ZU1' Thus, for n > 1, 

HP(X; 9?n/9?n-l) ~ HP(X; ZAn) 
~ H:ldlAn (An; Z) by 10.2 
~ Hg(An;Z) since cldlAn = c 
~ Hg(§n-l x (0,1]; Z) homeomorphism 
~ HP(§n-l x ([0,1]' {O}); Z) by 12.3 
~ 0 by 11.12. 

By the exact cohomology sequence of the coefficient sequence 0 -+ 9? n -+ 

9?n+l -+ 9?n+d9?n -+ 0, we conclude that HP(X; 9?n) -+ HP(X; 9?n+1) is 
an isomorphism. By 14.5 we get HP(X; 9?) ~ HP(X; 9?r) ~ HP(X; ZuJ ~ 
Hg(Ul;Z) ~ HP(][}n,§n-l;z) ~ Z for p = n and is 0 otherwise. <) 

14.10. Example. The direct system Z ~ Z ~ Z ~ ... has limit Q, 
and since tensor products and direct limits commute, tensoring this with 
a group A gives that the limit of A ~ A ~ A ~ ... is A 0 Q. Thus if 
X is compact Hausdorff then 

by 14.5. This does not generally hold for a noncompact space. For example, 
if Xn is the mapping cone of the covering map §l -+ §l of degree n, and 
X = +Xn, then H 2(X;Q) = TIH2(Xn;Q) = 0 while H2(X;Z) 0Q ~ 
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(I1 Zn) ® Q =I- 0, since I1 Zn is not all torsion. Thus the displayed formula, 
which will be generalized in Section 15, represents a limitation on which 
groups can appear as cohomology groups of compact spaces. 0 

Continuity does not extend to more general support families, as is shown 
by Exercise 4. However, somewhat restricted continuity type results can 
be shown in more generality, as we shall now see. 

14.11. Definition. A sheaf flJ on X is said to be concentrated on a sub
space A C X if flJlX - A = O. 

14.12. Lemma. If flJ is a sheaf on X that is concentrated on A C X and 
if fY is a torsion free sheaf on X, then the canonical map 

(): limr~(flJ' ® fY) ....... r~(9' ® fY), 

where flJ' ranges over the subsheaves of flJ concentrated on members of q>IA, 
is an isomorphism for any paracompactifying family q> of supports on X. 

Proof. Each flJ' ® fY ....... flJ ® fY is monomorphic since fY is torsion free. 
Thus each r ~ (flJ' ®fY) ....... r ~ (flJ ®fY) is monomorphic, so that () is monomor-
phic since lim is exact. 

Let s E r~(flJ ® fY). Then lsi has a neighborhood K E q>. For x E lsi 
there is a neighborhood U C K of x such that slU = ~ so:,u®to:,u for some 
so:,u E flJ(U) and to:,u E fY(U). Since K is paracompact, we can cover lsi 
by a locally finite family {U} of such sets U. By passing to a shrinking 
of this covering, we can assume that {U} is locally finite, and that the 
so:,u extend to some so:,u E r(flJlU). Let B = U Iso:,ul c K n A. The set 
B is closed since the collection {U} is locally finite, and so B E q> since 
K E q>. The sections So: u generate a subsheaf flJ' of flJ that is concentrated , , 
on B E q>IA, and clearly s E r~(flJ ® fY). 0 

14.13. Theorem. If flJ is a sheaf on X that is concentrated on A C X 
and if q> is a paracompactifying family of supports on X, then the canonical 
map 

limH~(X;flJ') ....... H~(X;flJ) 

is an isomorphism, where flJ' ranges over the subsheaves of flJ that are 
concentrated on members of q>IA. 

Proof. Let fY* be a torsion-free q>-fine resolution of Z, such as the canon
ical resolution. Then by 9.19 and 14.12, we have that 

H:(X; 9') ~ HP(r~(flJ ® fY*)) ~ HP(~r~(flJ' ® fY*)) 

~ ~HP(r~(9" ® fY*)) ~ ~H:(X;flJ'), 

which is obviously induced by the inclusions 9" '---+ flJ, o 
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This result means, intuitively, that when /J? is concentrated on a set A, 
then H:(X;9') "depends" only on the subsets B c A that are closed in 
X, in fact only on those sets B E IPIA. Important applications of this will 
be given in IV-8. 

14.14. Example. This example shows that the condition that cI> be para
compactifying in 14.13 is essential. Let X = [O,lJ, A = (O,lJ, and IP = 
cldl{O}. Then H~(X; Z) ~ HP(X, A; Z) = 0, so that the cohomology 
sequence of 0 -> Z(O,lb -> Z -> Z{O} -> 0 shows that Hl(X;Z(O,lj) ~ 
H~ldl{O}(X;Z{O}) ~ H ({O};Z) ~ Z. However, for any sheaf P concen-
trated on K c A with K closed in X, we have H;(X; P) 0 since 
~*(X;P) is also concentrated on K, whence C;(X;P) = O. <> 

14.15. Example. It might be thought that H;(X, A; A) = 0 when A 
is concentrated on A. This is true for A closed since then H; (X; A) = 
H;(X;AA) ~ H;nA(A;AIA), and the contention follows from the coho
mology sequence of (X, A). However, this is far from true when A is not 
closed. For example, we shall compute H2 (JR2, U; Zu) for the open unit 
ball U about the origin. We have H2(JR2;ZU) ~ H;(U;Z) ~ Z, as follows 
from 11.15 or from the Kiinneth formula in the next section or by noting 
that this is the same as H2 (§2; Z) and using the fact that this is isomorphic 
to the singular cohomology by 9.23. Also, HP(U; ZulU) = HP(U; Z) = 0 
for p > 0, since U is contractible. Thus the exact sequence of (JR2, U) with 
coefficients in Zu shows that H2(JR2, U; Zu) ~ Z. 

However, it is true that HP(Xj A) ~ HP(X, X - A; A) when A is 
concentrated on A, as follows immediately from the cohomology sequence 
of the pair (X,X - A). <> 

15 The Kiinneth and universal coefficient 
theorems 

In this section a principal ideal domain L will be taken as the ground ring. 
Thus tensor and torsion products are over L throughout the section. 

Let X and Y be locally compact Hausdorff spaces. If A and /!JJ are 
sheaves of L-modules on X and Y respectively and if U c X and V c Y 
are open, we have the cross product p, : A(U) 18> /!JJ(V) -> (A®/!JJ)(U x V), 
which induces an isomorphism Ax 18> /!JJy ~ (A®/!JJ)(x,y) on stalks. 

15.1. Proposition. If A and /!JJ are c-fine sheaves on the locally compact 
Hausdorff spaces X and Y respectively, then the canonical map 

is an isomorphism. 
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Proof. If X+ is the one-point compactification of X and if d+ = d X + , 
then fc~) = f(d+). For i : X '-+ X+, we have .1&m.(d+,d+)(U) = 
Hom(d IU,d+IU)::::: Hom(dIUnX,dIUnX) = Hom(d,d)(UnX) = 
(i.1&m.(d,d))(U), whence .1&m.(d+,d+) ::::: i.1&m.(d,d), so that d is 
c-fine since i.1&m.(d,d) is c-soft by Exercise 15. (d' can also be seen to be 
c-fine by direct application of Exercise 12.) It follows that we may assume 
that X and Yare compact. 

We shall first show that J.L : d(X) ® &rJ(Y) --+ (d®&rJ)(X x Y) is 
onto. Let s E (d®&rJ)(X x Y). There are finite coverings {Ui } of X 
and {Yj} of Y such that slUi x Yj = J.L(ti,j) for some element ti,j E 
d(Ui)®&rJ(Yj). Let {gil and {hj} be partitions of unity subordinate to {Ui} 
and {Yj} respectively [in Hom(d, d) and Hom(&rJ, fiJ) respectivelyl; see Ex
ercise 13. Then the induced endomorphisms gi®hj E Hom(d®&rJ, d®&rJ) 
form a partition of unity subordinate to {Ui x Yj}. Suppose that for 
i,j ~fixed, ti,j = Ek ak ® bk, where ak E d(Ui) and bk E &rJ(Yj). Then 
(gi®hj)(s) = J.L (Ek gi(ak) ® hj(bk)). Now gi(ak) vanishes outside some 
compact subset of Ui , so that it extends by zero to an element of d(X) 
and similarly for hj(bk). Thus we obtain from ~k gi(ak) ® hj(bk) an el
ement Ci,j E d(X) ® &rJ(Y) with J.L(Ci,j) = (gi®hj)(s). It follows that 

s = Ei)gi®hj)(s) = Ei,j J.L(Ci,j) = J.L (Ei,j Ci,j) , so that J.L is onto. 

Similarly, if c = Ek(ak ® bk) is an element of d(X) ® &rJ(Y) with 
J.L(c) = 0, then there are finite coverings {Ui} of X and {Yj} of Y such 
that Ek(aklUi) ® (bkIYj) = 0 in d(Ui) ® &rJ(Yj). Again, let {gil and 
{hj } be partitions of unity subordinate to these coverings. Then, since 
application of gi followed by extension by zero defines a homomorphism 
d(Ui ) --+ d(X), it follows that Ek gi(ak) ® hj(bk) = 0 for all i,j. Thus 

c = E (E gi(ak)) ® (E hj(bk)) = L: E gi(ak) ® hj(bk) = o. 0 
k • J ',J k 

15.2. Theorem. (Kiinneth.) If X and Y are locally compact Hausdorff 
spaces and if d and &rJ are sheaves on X and Y respectively with tY1*&rJ = 0, 
then there is a natural exact sequence (over the principal ideal domain L 
as base ring) 

E9H~(X; A) ® Hl(Y; $) >-+ H"g'(X x Y;A®$) -» E9H~(X; A) * Hl(Y; $) 
p+q=n p+q=n+l 

that splits nonnaturally. 

Proof. Let d* = ~*(X;d) and &rJ* = ~*(Y;&rJ). The differential sheaf 
d*®&rJ* is c-fine by Exercise 14. It is also a resolution of d®&rJ, since d* 
and &rJ* are pointwise homotopically trivial. (This also follows from the 
algebraic Kiinneth formula for differential sheaves; see Exercise 42.) Thus 
we have 
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Since rc(Ji*) * rc(a/*) = 0 by Exercise 36, the algebraic Kiinneth formula 
(which we assume to be known; see [54J or [75]), when applied to the right
hand side of (34), yields the result. 0 

15.3. Theorem. (Universal Coefficient Theorem.) Let X be a locally 
compact Hausdorff space. Let Ji be a sheaf on X and let M be an L
module such that Ji * M = O. Then there is a natural exact sequence (over 
the principal ideal domain L as base ring) 

which splits (naturally in M but not in X). 

Proof. With the notation of the proof of 15.2, this follows from the al
gebraic universal coefficient theorem applied to the formula 

by 15.1 applied to the case in which Y is a point. [Except for the naturality 
in M of the splitting, this also follows directly from 15.2 by taking Y to be 
a point and a/ = M to be an L-module.] 0 

In general these results do not extend to more general spaces. For 
example, if X is the topological sum of the lens spaces L(p, 1), P ranging 
over all primes, then H2(X; Ql) ~ ITp H2(L(p, 1); Ql) ~ IIp(Zp 0 Ql) = 0, 

while H2(X;Z) 0Ql ~ (ITpZp) 0Ql"l- 0 since ITpZp is not all torsion. 
However, the following gives one case of the universal coefficient theorem 
that is valid for general spaces. 

15.4. Theorem. Let Ji be a sheaf of L-modules (L being a principal ideal 
domain) on the arbitrary space X and let M be a finitely generated L
module with .Yi * M = O. Then for any family <I> of supports on X, there is 
a natural exact sequence 

10 -+ HJt(X; Ji) 0 M -+ HJt(X; Ji 0 M) -+ H~+l(X; ,d) * M -+ 0 I 
which splits (naturally in M but not in X). 

Proof. By 5.14, HJt(X;Ji 0M) ~ Hn(r<I>(~*(X;Ji» Q:~M), so that the 
result follows from the algebraic universal coefficient theorem applied to 
the complex r<I>(~*(X;Ji» 0M. 0 

See IV-7.B, IV-Exercise 18, and V-Exercise 25 for further results of the 
K iinneth type on cohomology. Chapter V contains analogous results on 
homology. 

The following result is an immediate corollary of 15.2: 
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15.5. Proposition. If Ji and flJ are sheaves on the locally compact Haus
dorff spaces X and Y respectively, then over a principal ideal domain as 
base ring, the canonical map J1, : rc(Ji) 0 rc(flJ) -+ rc(Ji0flJ) is an iso
morphism in any of the following three cases: 

(a) Ji arbitrary, flJ torsion free and c-acyclic. 

(b) Ji and flJ both torsion free. 

(c) Ji*flJ = ° and Ji and flJ both c-acyclic. o 

15.6. Example. Hgc~;L) ~ Hf«O,l);L) ~ L for p = 1 and is zero 
otherwise, as follows from the cohomology sequence of ([0,1]' {a, I}). By 
15.2 we deduce that 

HP(~n. L) ~ {L, p = n, 
c' 0, p =I- n. 

From the cohomology sequence of (§n,*) we also have that 

HP(§n; L) ~ {L, p = O,n, 
0, p =I- 0, n. 

16 Dimension 

<> 

In this section we study the notion of cohomological dimension, which has 
a close relationship with the classical dimension theory of spaces. 

The case of locally compact spaces is of the most importance to us, and 
the proofs for it are often much simpler than for more general results. Thus 
we shall redundantly state and prove some results in the locally compact 
case even though more general results are given later in the section. 

Also, although we shall occasionally comment upon known items from 
classical dimension theory, our formally stated results, with minor excep
tions, are based solely upon the theory developed in this book. This makes 
the present discussion, as well as its continuation in Section 8 of Chapter 
IV, essentially self-contained. 

16.1. Proposition. For a paracompactifying family <I> and a sheaf g; on 
X, the following four statements are equivalent: 

(a) g; is <I>-soft. 

(b) g; u is <I>-acyclic for all open U eX. 

(c) H~(X; g;u) = ° for all open U c X. 

(d) H~IU(U;g;IU) = ° for all open U c X. 
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Proof. Item (a) implies (b) by 9.13. Item (b) trivially implies (c), which 
is equivalent to (d) by 10.2. If (d) holds, Fe X is closed and U = X - F; 
then the exact sequence 

of 10.3 shows that P is <I>-soft by 9.3. D 

16.2. Theorem. For a pamcompactifying family <I> of S'l.J:pports on X and 
a sheaf A on X, the following four statements are equivalent: 

(a) For every resolution 0 ---+ A ---+ fl!0 ---+ fl!1 ---+ ••• ---+ fl!n ---+ 0 of A of 
length n in which fl!P is <I>-soft for p < n, fl!n is also <I>-soft. 

(b) A has a <I>-soft resolution of length n. 

(c) Hi(X;Au) = H~IU(UjAIU) = 0 for all open U C X and all k > n. 

(d) H~+I(XjAu) = 0 for all open U C X. 

Proof. The implications (a) ~ (b) ~ (c) ~ (d) are clear. Assume (d) 
and let 0 ---+ A ---+ pO ---+ pI ---+ ••. ---+ pn ---+ 0 be as in (a). Let 'jP = 

Ker(PP ---+ pp+l). Then for U C X open, the exact sequences 

show that H~(X;'j~) ~ H$(X;'j~-I) ~ ... ~ H~+l(XjAu) = O. Thus 
pn = 'In is <I>-soft by 16.1. D 

16.3. Definition. Let <I> be a family of supports on X and let L be a fixed 
ground ring with unit. We let dim<l>,L X be the least integer n (or (0) such 
that Hi(Xj A) = 0 for all sheaves A of L-modules and all k > n. 

16.4. Theorem. The following four statements are equivalent: 

(a) dim<l>,L X ~ n. 

(b) H~+1 (X; A) = 0 for all sheaves A of L-modules. 

(c) For every sheaf A of L-modules, 'In(Xj A) is <I>-acyclic. 

(d) Every sheaf A of L-modules has a <I>-acyclic resolution of length n. 

Moreover, if <I> is pamcompactijying, then "<I>-acyclic" in (c) and (d) can 
be replaced by "<I>-soft." 



112 II. Sheaf Cohomology 

Proof. Clearly (c) => (d) => (a) => (b), so assume (b). Then as in the 
proof of 16.2, we have [for :;:P = :;P(X;Ji) and :;0 = Jij 

for all k ;::: 1, proving (c). D 

The following fact is an immediate consequence of 9.14 and shows that 
softness and dimension with respect to a paracompactifying family <P of 
supports depends only on the extent E(<p) of the family. 

16.5. Proposition. If<p and 111 are pamcompactifying and E(<p) c E(1l1), 
then any 1l1-soft sheaf is <P-soft and dim~,L X:::; dim'l1,L X. D 

We say that a space X is locally pamcompact if it is Hausdorff and each 
point has a closed paracompact neighborhood. Such a space possesses a 
paracompactifying family <P with E(<p) = X (and conversely). Indeed, the 
set of all closed K such that K has a closed paracompact neighborhood in 
X is such a family. 

16.6. Definition. If X is locally pamcompact then we define (using 16.5) 
dimL X = dim~,L X, where <P is paracompactifying and E(<p) = X. 

Note that dimL X need not coincide with dimcld,L X when X is not 
paracompact. 

Suppose that <P is paracompactifying on X and put W = E(<p), an 
open set. Then r~(&(]) = r~lw(&(]IW) for any sheaf &(] on X, since each 
member of <P has a neighborhood in <P. It follows that H~(X;Ji) ~ 
H;lw(W;JiIW), whence dimq"LX = dimq,lw,L W = dimL W, since W 
is locally paracompact, <pIW is paracompactifying, and E(<pIW) = W. 
Therefore, when <P is paracompactifying, the study of dimq"L X reduces to 
the study of dimL W for W locally pamcompact. 

The following is an immediate consequence of 9.3 and 16.2(a). 

16.7. Proposition. If<p is a pamcompactifying family of supports on X, 
then 

I dim~,L X = sUPKEq,{dimL K}·I D 

16.8. Theorem. Let X be locally pamcompact (respectively, hereditar
ily pamcompact). Then dimL X ;::: dimL A for any locally closed (resp., 
arbitmry) subspace A eX. Conversely, if each point x E X admits a 
locally closed (resp., arbitmry) neighborhood N with dimL N :::; n, then 
dimLX:::; n. 
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Proof. Let <l> be a paracompactifying family with E(<l» = X. Then the 
first part follows from 16.2 and the facts that AlA is <l>-soft for A <l>-soft 
and that <l>IA is paracompactifying for A locally closed. 

Now suppose that X is hereditarily paracompact and A C X is arbi
trary. Let i : A '--+ X be the inclusion, let A be a sheaf on A, and recall 
that A;::::: (iA)IA. By 10.6 we have that HP(A; A) ;::::: lim HP(U; iA), where 
U ranges over the open neighborhoods of A in X, since A is taut in X. 
Now dimL U ::; dimL X = n, by the portion already proved. Therefore 
HP(A; A) = 0 for p > n, whence dimL A ::; n as claimed. 

For the converse, we may assume that N is closed in the statement of 
the theorem, in either case. Let <l> be paracompactifying with E( <l» = X 
and let !l!* be a resolution of A of length n with !l!P <l>-soft for p < n. Then 
!l!PIN is <l>IN-soft for p < n. We may assume that N E <l>, so that !l!PIN 
is soft for p ::; n by 16.2. Thus!l!n is <l>-soft by 9.14 and dimL X ::; n by 
16.2. 0 

In the nonparacompact case one still has the following monotonicity 
property of cohomological dimension, which is an immediate consequence 
of 10.1 and Definition 16.3: 

16.9. Proposition. If Fe X is closed, then dim<pIF,L F ::; dim<p,L X. 
o 

Generally, little can be said about dim<p,L X when <l> is not paracom
pactifying. An exception is the next result concerning families of the form 
<l>IA and its corollary concerning arbitrary families. It will be used in Chap
ter V. 

16.10. Theorem. Let <l> be paracompactifying on the locally paracompact 
space X and let A C X with X - A locally closed, paracompact, and <l>-taut 
(e.g., A closed and X - A paracompact). Then dim<pIA,L X::; dimL X + 1. 

Proof. Let n = dimLX. Note that <l>nX -A is paracompactifying since 
X - A is paracompact. By 16.8 we have that dimL X - A ::; n, so that 
H~nx -A (X - A; A) = 0 for p > n and any sheaf A of L-modules on X. 
The exact sequence of the pair (X, X -A) shows that H~(X, X -A; A) = 0 
for p > n+1. By 12.1, H:1A(X;A);::::: Hg(X, X -A;A) =: 0 for p > n+1, 
whence dim<pIA,L X ::; n + 1 by definition. 0 

16.11. Corollary. If X is hereditarily paracompact and <l> is an arbitrary 
family of supports on X, then dim<p,L X::; dimL X + 1.34 

Proof. Note that r<p(A*) = limr<PIK(A*), where K ranges over <l> and 
A* is a flabby resolution of A, whence HJ,(X; A) = lim H;IK(X; A). 
This implies that dim<p,L X ::; sup KE<P dim<pIK,L X ::; dimL X + 1, the last 

34By Exercise 25 this also holds when X is only locally hereditarily paracompact. 
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inequality resulting from 16.10 since <I>IK = cldlK and cld is paracompact
ifying on X 0 0 

Exercise 23 shows that the +1 in 16.10 and 16.11 cannot be dropped. 

16.12. Lemma. Let 6 be a class of sheaves of L-modules (L a ring with 
unit) on a space X satisfying the following three properties: 

(a) If 0 -+ .;1' -+ .;1 -+ .;1" -+ 0 is exact with .;1' E 6, then.;1 E 6 {::} 
.;1" E 6. 

(b) If {.;1,,} is an upward-directed family of subsheaves of.;1 with each 
.;1" E 6, then U.;1" E 6. 

(c) For any ideal I of L and open set U C X we have Iu E 6. 

Then 6 consists of all sheaves of L-modules. 35 

Proof. Assume that the sheaf fiJ ~ 6. The class of subsheaves (of 
L-modules) of fiJ that are in 6 has a maximal element .;1 by (b). If 
o =1= s E (fiJ /.;1) (U) for some open U eX, then s defines a nontrivial 
homomorphism h : Lu -+ fiJ/.;1. The image of h is not in 6 by (a), so that 
the kernel of h cannot be in 6 by (a) and (c). Thus we see that it suffices 
to show that any subsheaf (of ideals) of L is in 6. 

Now let d be a subsheaf of L. Then any element of d is contained in a 
subsheaf of d of the form Iu, where I is an ideal of Land U C X is open. 
Thus d can be expressed as the sum (in d, not direct) of subsheaves of the 
form Iu, and by (b), it suffices to show that every finite sum of sheaves of 
the form Iu is in 6. 

Let U1 , ... , Un be open sets and h, ... , In ideals of L. Let $ = (Il)Ul + 
... + (In) Un . For k ~ n, let Vk be the set of points lying in at least k of 
the sets Ui . Consider the sequence 

o c$vn C$Vn_l c··· C$Vl =$. 

We note that each quotient $ Vk /$ Vk+l is the direct sum of sheaves of the 
form J A, where typically J is the ideal Ii, + ... + Iik of L and A is the 
locally closed set consisting of those points in Uil , Ui2 , ... , Uik but in no 
other Uj . 

Thus, by (a), it suffices to show that JA E 6 for J an ideal of Land 
A locally closed. But if A = U n F with U open and F closed, then 
J A = JU/J(X-F)nU E 6 by (a) and (c). 0 

16.13. Lemma. If X is a locally compact Hausdorff space and L is a ring 
with unit, then 

H';(X; L) = 0 '* H';(X; J) = 0 

for all ideals J of L. 

35 Also see Exercise 35. 
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Proof. We have H:;(X; Z) 0 L = 0 = H:;+1(X;Z) * L by the universal 
coefficient theorem 15.3. Therefore, H:;(X; Z)0J = H:;(X; Z)0L0 L J = 0 
and H:;+1 (X; Z) * J = 0 since the latter group injects into H:;+1 (X; Z) * L. 
Thus the universal coefficient theorem over Z implies that H:;(X; J) = o. 

o 

16.14. Theorem. Let X be locally compact Hausdorff and L a ring with 
unit. Then dimL X ~ n {=} H:;+l(U; L) = 0 for all open sets U C X.36 

Proof. The => part is trivial. Thus suppose that the condition is satisfied. 
Then H:;+l(X; Ju) ~ H:;+l(U; J) = 0 by 16.13, so that 16.2 implies that 
H~(X; Ju) = 0 for all open U C X, all ideals J of L, and all k > n. Now let 
6 = {!J! I H~ (X;!J!) = 0 for all k > n}. Then 6 clearly satisfies conditions 
(a) and (c) of 16.12. Condition (b) follows from 14.5. Thus 6 consists of all 
sheaves of L-modules and this implies that dimL X = dimc,L X ~ n. 0 

The following is an immediate consequence of the definition: 

16.15. Proposition. If X is locally paracompact, then dimL X ~ dimz X 
for any ring L with unit. 0 

16.16. Proposition. Let X be locally compact Hausdorff with dimL X ~ 
n. Let G C H:;(X; L) be a subgroup such that every point x E X has 
a neighborhood U with 1m {jx u : H:; (U; L) ---- H:; (X; L)} = G. Then 
G = H:;(X; L). ' 

Proof. Let 6 be the collection of all open subsets U of X with Imjx u = 
G. The Mayer-Vietoris diagram ' 

H:;(U) EEl H:;(V) ----
1 

H:;(X) EEl H:;(X) ----

H:;(U U V) ---- 0 
1 

H:;(X) ---- 0 

shows that the union of two members of 6 is in 6. Thus 6 is directed 
upwards, and X = U{W I W E 6} by assumption. But H:;(X; L) = 
Ulmjx,w for W ranging over 6 [since L = limLw, whence H:;(X;L) = 
limH:;(X;Lw) = limH:;(W;L) by 14.5] and the result follows. 0 

16.17. Corollary. Let X be Hausdorff and locally compact with dimL X ~ 
n. Suppose that for each open set U C X and x E U there is a neighborhood 
W C U of x such that j[j w : H:; (W; L) ---- H:; (U; L) is trivial. Then 
dimLX < n. ' 

36 Also see 16.25, 16.32, and 16.33. 
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Proof. Applying 16.16 to each open set U with G = 0 gives H';(u; L) = 0 
for all open sets U, whence dimL X < n by 16.14. 0 

16.18. Example. The one-point union X of a countably infinite number 
of 2-spheres with radii tending to zero has dimz X = 2 as follows from 
Example 10.10 and 16.17. Since X is metrizable, it follows from 16.8 that 
HP(A; Z) = 0 for all subspaces A c X and all p > 2. As remarked in 
10.10, however, the singular cohomology of X is nonzero in arbitrarily 
high degrees. Also, computation of the singular groups is several orders of 
magnitude more difficult for such spaces than is sheaf-theoretic cohomology. 
This illustrates a fundamental difference between the two theories. <> 

16.19. Lemma. If the space K is locally compact, Hausdorff, and totally 
disconnected, then dimL K = 0 for any ring L with unit. 

Proof. Let.A be a sheaf on K. We will suppress coefficients in .A from 
our notation. Let / E H;(K) and let the compact set B be the sup
port of some cochain representative of /. For any point x E B there 
is a neighborhood A, which can be assumed to be open and compact, 
of x such that H;(K) -+ H;(A) takes / to zero, by 10.6. Thus B is 
contained in a disjoint union of such open and compact sets AI,' .. , An. 
Let Ao = K - (AI U ... U An). Then / also restricts to 0 in H;(Ao). 
(Note that c n Ao = ciAo and c n Ai = clAi = cld for i > 0.) Since 
H;(K) ~ H;(Ao) EB ... EB H;(An), we conclude that / = 0, whence 
dimL K = O. 0 

16.20. Proposition. If X is a connected space with at least two closed 
points, then dimcld,L X > 0 for any ring L with unit. 

Proof. Let x ::j= y be distinct closed points in X and put U = X - {x, y}. 
Then the exact sequence of the pair (X, {x, y}) has the segment 

f(L) -+ f(LI{x,y}) -+ HI(X;Lu); 

see 12.3. This has the form L ~ L EB L -+ HI(X;Lu), and hence 
Hl(X;Lu)::j=O. 0 

16.21. Corollary. A locally compact Hausdorff space K has dimL K = 0 
<=> K is totally disconnected. 37 

Proof. If K+ is the one-point compactification of K, we have 

dimL K = 0 '* dimL K+ = 0 

37 Also see 16.35. 

'* K+ is totally disconnected 
'* K is totally disconnected 
'* dimLK =0 

by Exercise 11 
by 16.9 and 16.20 
obviously 
by 16.19. o 
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16.22. Example. The "Knaster explosion set" K is an infinite subset of 
the plane that is connected but has a point Xo E K such that K - {xo} is 
totally disconnected.38 Now dimL K > 0 by 16.20, so dimL K - {xo} > 0 
by Exercise 11 for any ring L with unit. This shows that the condition in 
16.19 and 16.21 that K be locally compact may not be discarded. Since 
K embeds in the plane and its closure K there has dimL K = 1, it follows 
from 16.8 that dimL K = 1. (The fact that dimL K = 1 follows from 
Exercise 11, the fact that K - {xo} ~ C x (0,1] where C is a Cantor set, 
and 16.27.) 0 

16.23. Example. According to Exercise 37 there exists a compact, totally 
disconnected Hausdorff space X containing a locally closed subspace A 
such that f(LIU) -4 f(LIA) is not surjective for any open U ~ A. Now, 
dimL X = 0 by 16.19. Also, A = Un F for some open U and closed F, 
whence A is closed in U. The exact sequence 

f(LIU) -4 f(LIA) -4 Hl(U, A; L) 

and 12.3 show that Hl(U; LU - A ) ~ Hl(U, A; L) =f. O. Thus dimcld,L U > 0, 
while dimL U = dimc,L U = 0 by 16.8. Of course, cld cannot be paracom
pactifying on U. 0 

16.24. Corollary. (H. Cohen.) Let X and K be locally compact Haus
dorff spaces. If dimL X = nand dimL K > 0, then dimL(X x K) > n. 

Proof. By passing to the one-point compactification and using Exercise 
11, we can assume that K is compact. By 16.21 and 16.9 we can also assume 
that K is connected and is not a single point. By passing to an open subset 
and using 16.14 we can assume that H~(X; L) =f. O. Let 0 =f. a E H~(X; L) 
and let kl =f. k2 E K. Consider a as lying in H~(X x {kd; L) and let 
(3 E H~(X X {kl' k2};L) correspond to aEf)O in H~(X x {kl};L)Ef)H~(X x 
{k2 };L). If dimL(X x K) ~ n then H~+l(X x (K - {kbk2});L) = 0 by 
16.14, and so the exact sequence 

H~(X x K;L) -4 H~(X x {kb k2};L) -4 H~+1(X x (K - {kl,k2});L) 

shows that (3 comes from some class 'Y E H~(X x K; L). But the compo
sition 

H~(X x K;L) -4 H~(X x {k};L) --=:... H~(X;L) 
is independent of k E K by 11.9, and this provides a contradiction. 0 

16.25. Lemma. For a locally compact Hausdorff space X, suppose that 
H~ (U; L) = 0 for all k > n and all U in some basis for the open sets of X 
that is closed under finite intersections. Then dimL X ~ n. 

38 If X is the union of line segments in the plane from Xo = (0,1) to points in the Cantor 
set in the unit interval on the x-axis, then K is the set of points in X of rational height 
on rays from Xo to end points of complementary intervals of the Cantor set together 
with the points of irrational height on the other rays; see [49, Example 11-16]. The fact 
that K is connected is an exercise on the Balre category theorem. 
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Proof. By the Mayer-Vietoris sequence 

we can throw finite unions into the basis. Then any open set U is a union 
U = U Ua of elements of the basis directed upwards. Then Lu = lim Lu"" 
and so 

by 14.5, and so dimL X :::; n by 16.14. o 

Remark: It does not suffice in 16.25 that H~(U; L) = 0 for k = n + 1 rather 
than for all k > n, since lRn +2 satisfies that hypothesis. Also, the Hilbert 
cube ][00 satisfies that hypothesis for any given n. 

16.26. Corollary. Let X and Y be locally compact Hausdorff spaces. 
Then dimdX x Y) :::; dimL X + dimL Y for any ring L with unit.39 

Proof. Let p = dimL X and q = dimL Y. The sets U x V where U c X 
and V c Yare open form a basis for the topology of X x Y which is closed 
under finite intersections since (Ul x V1) n (U2 x V2) = (Ul n U2) x (Vl n V2). 
By 15.2, H:;(U x V; L0zL) = 0 whenever n > p+q. Now the composition 

is the identity, and so H:;(U x V; L) = 0 whenever n > p + q. Thus the 
result follows from 16.25. 0 

Examples have been constructed by Pontryagin of compact spaces X, Y 
for which dimL(X x Y) < dimL X + dimL Y. 

16.27. Corollary. Let X and K be locally compact Hausdorff spaces. If 
dimL K = 1, then dimdX x K) = 1 + dimL X. 

Proof. We have dimdX x K) > dimL X by 16.24 and dimdX x K) :::; 
1 + dimL X by 16.26. 0 

16.28. Corollary. If M n is a topological n-manifold, then dimL Mn = n 
for any L. 

Proof. By the cohomology sequence of the pair (1I, all), Hg((o, 1); L) ~ L 
for p = 1 and is zero otherwise. Since an open subset of IR is a disjoint 
union of open intervals, it follows from 16.14 that dimL IR = 1. By 16.27, 
dimL IRn = n. The result now follows from 16.8. 0 

39 Also see IV-8.5. 
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16.29. Corollary. Let M be a connected topological n-manifold and K 
any constant coefficient group. Then: 

(a) If F s;;: M is a proper closed subspace, then H~(F; K) = O. 

(b) If 0 -=I- U eM is open, then j'i1,u : H~(U; K) ---- H~~(M; K) is onto. 

(c) H~(M; K) ~ K or K/2K. 

Proof. By 15.3 it suffices to prove this in the case K = Z. First we 
prove (a) for M = §n. Let U c §n - F be an open metric disk. Now 
H n (§n) ____ Hn (F) is surjective since H~+1 (§n - F) = 0 by the fact that 
dim§n = n. However, this map factors through Hn(§n - U) = 0 (since 
§n _ U is contractible), proving the contention. By adding a point at 
infinity, (a) follows for the case M = ]Rn. 

From the exact sequence of the pair (M, M - U) we see that (b) holds 
when M = ]Rn. 

Suppose now that U c M and U ~ ]Rn. Then for any open V C U, 
ju,v : H~(V) ---- H~(U) is onto by the case of (b) just proved. It follows 
that 1m j'i1 v = 1m j'i1 U· 

If U and V are open sets each homeomorphic to ]Rn and if U n V -=I-

0, then it follows that Imj'i1 v = Imj'i1 UnV = Imj'i1 U· Since M is 
connected, we deduce that G ~ Imj'i1u is'independent of U for U ~ ]Rn. 
By 16.16 we have G = H~(M), proving (b) in general. The exact sequence 
ofthe pair (M, F) proves (a) in general. 

Suppose that {U"'} is an upward-directed family of connected open sets 
such that each H~(U",) is either Z or Z2. Then continuity 14.5 (applied 
to Zua ) shows that the same is true for U = U U"" It follows that there 
is a maximal connected open set U satisfying part (c) (for U in place of 
M). If U -=I- M, then let V ~ ]Rn be an open neighborhood of a point 
in the boundary of U. Then U U V is connected, un 11 -=I- 0, and the 
Mayer-Vietoris sequence 

H~(U n V) ---- H~(U) EB H~(V) ---- H~(U U V) ---- 0 

shows that (c) is true for U U V since H~(U n V) is the direct sum of 
the cohomology of the components U(3 of un V and each H~(U(3) ---
H~(U) EB H~(V) has an image that is the diagonal {(A, A)} c Z EB Z ~ 
H~(U) EB H~(V) or the antidiagonal {(A, -A)}, and similarly for the case 
in which H~(U) ~ Z2. This contradicts the maximality of U, and so 
U=M. 0 

Now we wish to extend 16.14 to general paracompactiifying families of 
supports on general spaces. The main tool is the following extension of 
14.3: 

16.30. Theorem. (Kuz'minov, Liselkin [55J.) Let <P be a paracompacti
fying family of supports on X and let {f£ >. ; A E A} be a direct system of 
<P-soft sheaves on X. Then f£ = limf£>. is also <P-soft. 
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Proof. By 9.3 it suffices to treat the case in which X is paracompact and 
<I> = cld. Let K c X be closed and let s E 2(K). Then we can find a 
locally finite open covering {U", I a E A} of X and sections s'" E 2,x(",)(U",) 
such that k,x(",) (s",)IK n U'" = slK n Uoo where the k,x : 2,x ~ 2 are the 
canonical homomorphisms. 

Any finite number of the s'" coincide in the direct limit at a point of 
K, and hence in a neighborhood of the point. Therefore, by passing to a 
refinement, it can also be assumed that for any finite subset F c A there 
is an index). E A such that). ? ).(a) for all a E F and the k,x,,x(,,,)(s,,,) all 
coincide on K n n"'EF U"" 

Let {V", I a E A} be a shrinking of {U"'}; i.e., V'" C U'" for all a. For 
F c A finite, put 

OF = n V'" - U Vj3, 
",EF M.F 

and note that 
(35) 

For a given integer n ? ° and for all F c A with fewer than n el
ements, suppose that we have defined an index )'(F) E A and sections 
SF E 2,x(F)(OF) such that )'(F) ? )'(G) and SF = k,x(F),.>.(C)(sc) on 
OF n Oc for all proper subsets G ~ F and such that SF = k,x(F),,x(,,,)(s,,,) 
on K n OF for all a E F. 

For a given subset F C A with n elements, there is an index )'(F) 
such that )'(F) ? )'(G) for all G ~ F and such that the k,x(F),,x(,,,)(s,,,) all 
coincide on KnOF for a E F. Then the sections k,x(F),,x(C) (sc), for G ~ F, 
and the k,x(F),,x(,,,) (s",)IK n OF fit together to give a section of 2,x(F) over 
U{Oc n OF I G ~ F} U (K n OF), which is closed in OF. Since 2,x(",) is 
soft, this extends to a section SF E 2,x (F) ( OF) . 

This completes the inductive construction of the SF. Because of (35), 
the projections k,x(F)(SF) E 2(OF) fit together to give a section s' E 2(X); 
and s'IK = s by construction. 0 

16.31. Corollary. Let the base ring L be a principal ideal domain. If <I> is 
pamcompactifying on X and f1J is a torsion-free <I>-soft sheaf of L-modules 
on X, then A 0L f1J is <I>-soft for all sheaves A of L-modules on X. 

Proof. Let 6 be the collection of all sheaves A on X such that A 0 fJJ is 
<I>-soft. Since Lu 0 fJJ :::::l fJJu is <I>-soft by 9.13, Lu E 6, and so 6 satisfies 
condition (c) of 16.12. Condition (b) is satisfied by 16.30. Condition (a) is 
satisfied by 9.10, since f1J is torsion-free, whence (.) 0 f1J is exact. Therefore 
6 consists of all sheaves of L-modules by 16.12. 0 

16.32. Corollary. If <I> is pamcompactifying on X and L is a principal 
ideal domain, then the following four conditions are equivalent: 

(a) dim4>,L X ::; n. 
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(b) H~tJ(UjL) = 0 for all open U eX. 

(c) H~+1(X,Fj L) = 0 for all closed F eX. 

(d) H~(Xj L) --> H~(Fj L) is surjective for all closed Fe X. 

Proof. By definition, (a) :=} (b), since H~t}(UjL) ~ H~+1(XjLu) by 

10.2. Also, (b):=} (c) because H~+1(X,FjL) ~ H~(i_F(X -FjL) by 10.2 
and 12.3. Third, (c):=} (d) by the exact sequence of the pair (X, F). To 
prove the final implication (d) :=} (a), consider the exact sequences 

0--> ,?i-l(Xj L)F --> ~i-l(Xj L)F --> :;.i(Xj L)F --> 0 

for 0 < i :::; n and closed subsets F c X, where ,?o(X;L) = L. Since 
~*(Xj L)F is <P-soft by 9.13, the cohomology sequences of these coefficient 
sequences give the natural isomorphisms 

and the exact sequences 

Hg(Xj ~n-l(Xj L)F)-->Hg(Xj ,?n(Xj L)F)-->H~(Xj :;-n-l(Xj L)F)-->O. 

These combine to give the exact commutative diagram 

fCI>(~n-l(XjL)) --> fCI>(:;-n(XjL)) --> H~(XjL) --> 0 

11 19 1h 
fCI>(~n-l(XjL)F) --> fCI>(:;-n(XjL)F) --> H~(XjLF) --> O. 

Now, f is onto by 9.3 since fCI>(..dF) = fCI>IF(..dIF) by 10.2 and since 
~n-l(Xj L) is <P-soft. Also, h is onto by assumption and 10.2. The 5-
lemma implies that 9 is onto, showing that :;-n(XjL) is <P-soft. It is also 
torsion free, as remarked in Section 2, and so (for tensor products over L) 

0-+ L ®.;1 -+ ~o(X; L) ®.;1 -+ ... -+ ~n-\X; L) ®.;1 -+ :;n(X; L) ®.;1 -+ 0 

is a <P-soft resolution of ..d, for any sheaf..d of L-modules. Thus dimCI>,L X :::; 
n by 16.4. 0 

16.33. Corollary. If X is paracompact, then the following four conditions 
are equivalent over a principal ideal domain L :40 

(a) dimL X :::; n. 

(b) H~+1(XjL) = 0 for all paracompactifying <P on X. 

(c) Hn+1(X,FjL) = 0 for all closed Fe X. 

(d) Hn(Xj L) --> Hn(Fj L) is surjective for all closed F c X. 

40The equivalence of (c) and (d) is due to E. G. Skljarenko. The equivalence of these 
with (a) is new at least to the author. 



122 II. Sheaf Cohomology 

Proof. Items (a), (c), and (d) are just those of16.32 for <I> = cld. Also, (a) 
=? (b) by 16.5. Given (b), the cases <I> = cldlU show that H~!I~(U; L) ~ 
H~~~(X; L) = 0 for all open U C X (since r~IU(AIU) = r~IU(A) for 
all sheaves A on X). That is just case (b) of 16.32 for <I> = cld, whence 
dimL X = dimcld,L X :S n by (b) =? (a) of 16.32. 0 

16.34. Corollary. If <I> is paracompactifying on X, then 

Idim~,LX:S sUPKE~{covdimK} I 

for any ring L. 

Proof. By 16.7 it suffices to show that dimL K:S covdimK for K E <I>. 
Thus we may assume that <I> = cld on a paracompact space X. The result 
is then immediate from (19) on page 29, 9.23, and 16.33(b). 0 

It is a theorem of Alexandroff [62, p. 243] that if covdim X < 00, then 
covdimX = n {:? Hk(X;Z) -+ Hk(F;Z) is onto for all closed F C X and 
all k ::::: n. Thus, by 16.33, covdim X = dimz X as long as covdim X < 00. 

There is a recent example of Dranishnikov [33] of a compact metric space 
X of infinite covering dimension but with dimz X = 3. The long line (see 
Exercise 3) is a nonparacompact (hence of infinite covering dimension) 
space with dimz X = 1. Also see the remarks below 16.39. 

We shall now generalize 16.21 to the case of paracompactifying supports 
on general spaces. To do this we define the strong inductive dimension 
Ind~ X with respect to a paracompactifying support family <I> as follows: 
Put Ind~ X = -1 if X = 0. Then we say, inductively, that Ind~ X :S n 
if for any two sets A, C E <I> with A C int C there exists a set B E <I> with 
A C int Band B C int C and with Ind~ BB < n. If Ind~ X :S nand 
Ind~ X i n - 1, then we say that Ind~ X = n. The case in which <I> = cld 
and X is metric is the classical case of the strong inductive dimension, 
which is known to coincide with covering dimension; see [62]. 

16.35. Theorem. If <I> is a paracompactifying family of supports on X 
and L is a ring with unit, then Ind~ X = 0 {:? dim~,L X = o. 

Proof. Let A, C E <I> be as in the definition. Let F = A u (X - int C) 
and let s E r ~IF(LIF) be 1 on A and 0 on X - int C. If dim~,L X = 0 then 
Lis <I>-soft and so s must extend to some t E r~(L). Let B = Itl. Then B 
is both closed and open since L is a constant sheaf. Thus Ind~ X = o. 

Conversely, suppose that Ind~ X = O. For a sheaf A of L-modules, let 
e E C~(X;A) be a cocycle with cohomology class, and put B = lei E <I>. 
Since B has a neighborhood N in <I>, it has one that is both open and closed. 
As in the proof of 16.21 (and since N is paracompact), there is a locally 
finite covering {U,,} of N consisting of sets both open and closed such that 
,IU" = 0 E H~nu" (U,,; A) for all a. Note that <I> n U" = <I>IU" since U" is 
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closed as well as open, and so we can just call this family IP without fear of 
confusion. Just by passing to finite intersections, we can assume that the 
Ua are disjoint. Now, H~(X; Ji) >--t H~(X - N; Ji) EB n H~(Ua;Ji) and, 
restricts to 0 in all these sets. Thus, = 0, so that H~(X;Ji) = 0, whence 
dim1>,L X = O. D 

Note that it follows that the statement dim1>,L X = 0 is independent of 
the base ring L, and also that the statement Ind1> X = 0 depends only on 
the extent E( IP) and not on IP itself. At least the first of these definitely 
does not extend to higher dimensions; i.e., there are examples for which 
dimL X depends on L. 

There is an example, due to E. Pol and R. Pol [67], of a normal, but 
not paracompact, space X with Ind X = 0 but dimcld,L X > 0 for any L; 
see [72, 4.2]. 

16.36. Theorem. Let IP be a paracompactifying family of supports on 
X and let {Aa} be a locally finite closed covering of X. Suppose that 
dim1>,L Aa n Ai3 < n for all 0: -1= (3. Then the restriction maps induce a 
monomorphism 

r* : H;+l(X;Ji) >--t II H;+1(Aa;Ji) 
a 

for any sheaf Ji of L-modules on X. If, moreover, there is a KElP with 
Aa c K for all but a finite number of 0:, then r* is an isomorphism. 

Proof. Let A = Ua #i3 Aa n Ai3 and note that dim1>,L A < n as follows 
from 16.8 and the fact that dim(B U C) = max{dim(B),dim(C - B)} 
for closed sets Band C, by Exercise 11. Consider the identification map 
f : + Aa --+ X. This is closed and finite-to-one. By 11.1 we have 

a 

[If there is a KElP with Aa C K for all but a finite number of 0:, then this 
is clearly onto.] There is the canonical monomorphism (3 : Ji >--t f f* Ji. 
Let flJ = f f* Ji / (3Ji. Since flJ is concentrated on the closed set A and 
dim1>,L A < n, we have that H~(X; flJ) = H~(X; flJA ) ~ H~(A; flJ) = 0 for 
p ~ n. Then the exact cohomology sequence 

H~(X;&J) --+ Hg+l(X;Ji) --+ Hg+1(X;ff*Ji) --+ Hg+l(X;&J) 

shows that Hg+1(X; Ji) ~ H;+l(X; f f* Ji) >--t n Hg+1(Aa; Ji). D 

16.37. Theorem. (H. Cohen.) Suppose that X is locally compact Haus
dorff and that L is a ring with unit. Let X = UaEI A a , where A", is closed 
and dimL A", :::; n for each 0:. Assume that each A", has an arbitrarily small 
closed neighborhood B", with dimL aB", < n. Then dimL X :::; n.41 

41 Also see 16.40 and Exercise 60. 
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Proof. By 16.8 we can assume that X is compact. For a sheaf.Jt of 
L-modules let "t E Hn+1(x; .Jt). Let K E c be the support of some co
cycle representative of "t. Since "tIAo: = 0 we have that "tIBo: = 0 for all 
sufficiently small closed neighborhoods Bo: of Ao:, and such sets Bo: can 
be chosen so that dimL aBo: < n. Since the interiors of the Bo: cover 
K, there is a finite sub collection that does so. By passing to the inter
sections and closures of differences of these Bo:, we obtain a finite family 
C1 , ... ,Cr of closed sets whose interiors cover K and such that "tICi = 0 
and dimL Ci n C j < n (since Ci n Cj C aBo: for some a). Throwing in the 
closure Co of the complement of C1 u ... U Cr, we get a collection of sets 
satisfying the hypotheses of 16.36 and with "tICi = 0 for all i. From 16.36 
it follows that "t = O. 0 

Because of the finiteness of the collection {Bo:} in the foregoing proof, 
one could use a less sophisticated argument based on Exercise 11 rather 
than on 16.36. 

Recall that the weak inductive dimension ind X is defined by ind 0 = 
-1 and ind X :::; n if each point x E X has an arbitrarily small neighbor
hood N with ind aN :::; n - 1. It is well known that ind X = Ind X for 
separable metric spaces but not for general metric spaces. By taking the 
Ao: to be the points of X in 16.37 we deduce: 

16.38. Corollary. If X is locally compact Hausdorff and L is any ring 
with unit, then dimL X :::; ind X. 0 

According to [49, p. 65] a separable metric space X can be embedded 
in a compact separable metric space X of the same inductive dimension. 
Thus the corollary and 16.8 imply that dimL X :::; ind X for all separable 
metric X. The following result is somewhat more general. 

16.39. Theorem. For a paracompactifying family <I> of supports on X 
and any ring L with unit, we have dimq"L X:::; Indq, X. 

Proof. The proof is very similar to that of 16.37, so that we will just indi
cate the necessary modifications. Assume that Indq, X = n and that the re
sult holds for smaller inductive dimensions. Then, given "t E H;+1(Xj.Jt), 
there is a locally finite closed covering {Bo:} of X such that "tIBo: = 0 and 
Indq, aBo. < n. By the inductive hypothesis, dimq"L aBo. < n. Construct 
the Co., now just locally finite, and proceed as before. 0 

Note that if X is paracompact, then Ind X is defined, and it is clear 
that Indq, X:::; IndX. (In fact, it follows from the sum theorem for IndX 
on paracompact spaces that IndX = Indq, X if E(<I» = Xj see [62, p. 193].) 

It is known that covdimX :::; IndX for X normalj see [62, p. 197]. There 
is a compact (but not metrizable) space X with covdimX = 1 (whence 
dim" X = 1) but with Ind X = 2 = ind Xj see [62, p. 198]. Moreover, this 
space is the union X = F1 U F2 of two closed subspaces with Ind Fi = 1. 
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There is also an example due to P. Roy [70] of a metric space (not separable) 
X for which indX < IndX. 

16.40. Theorem. (The sum theorem.) Let X be locally paracompact and 
let L be any ring with unit. Suppose that X = Al U A2 U .. " where the Ai 
are closed and dimL Ai ~ n. Then dimL X ~ n. 

Proof. Let iP be a paracompactifying support family on X and put A* = 
~*(X;A). Let Uo = X and Bk = Alu·· ·uAk. By Exercise 11, dimL Bk ~ 
n. Let a E H;+1(X;A) = Hn+I(r4>(A*)) and suppose that ao E r4>(A*) 
is a cocycle representative of a. The exact sequence of the pair (X, Bd has 
the form 

H n+1(r4>IX_B l (A*)) -+ Hn+1(r4>(..d*)) -+ H n+1(r4>nBl (A*IBI)) = 0, 

since Hn+1(r4>nBl(A*IBI )) ~ H;~11(BI;AIBd. Therefore there exist 
elements al E r4>IX-Bl(A*) and bo E r4>l uo(A*) with al = ao - dbo. 
Since iP is paracompactifying, there is an open set UI with lall c UI and 
U I eX - BI = Uo - B I . Thus al E r4>lUl(A*). An inductive argument 
along these lines (replacing iP = iPlUo with iPlUl. etc.) gives a sequence of 
open sets Uk with Uk c Uk-l - Bk and elements 

ak, bk E r4>I Uk (..d*) 

with 
ak+l = ak - dbk. 

Now, n Uk = n Uk = 0, and so any given point x E X has a neighborhood 
meeting only finitely many Uk. Since Ibkl C Uk it follows that it makes 
sense to define 

b = bo + b1 + ... E r4>(A*). 

On X - Uk, b coincides with bo + ... + bk-ll and so db coincides with 

which coincides with ao outside Uk. Consequently, ao = db everywhere. 
Thus a = lao] = 0, whence H;+l(X;A) = 0, and so dimLX ~ n. 0 

16.41. Example. There are examples of countable connected Hausdorff 
spaces X. See [34, V-problem 1-10] for one such example with a countable 
basis. For such a space, dimdd,L X > ° by 16.20. Thus a result such as 
16.40 (without local paracompactness) cannot hold for X. 0 

16.42. Example. Let X be the set of points in Hilbert space with all 
coordinates rational. Then X is totally disconnected, but Ind X = 1 as 
shown in [49]. Thus dimL X = 1 by 16.35 and 16.39 for any principal ideal 
domain L. Note that XxX ~ X, so that 1 = dimL XxX < 2dimLX = 2. 
Also note that there must be an open set U C X with H~ (U; Z) =1= ° by 
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16.32, where <I> = cldlU. Now H~(U; Z) is torsion-free by Exercise 28. 
Thus the cross product H~(U;Z) 0H~(U;Z) ---> H~x~(U x U;Z) = 0 is 
not monomorphic in this example. 0 

For further results concerning dimension, see Exercises 11 and 22-25 as 
well as IV-Section 8. 

17 Local connectivity 

In this section we take cohomology with coefficients in the constant sheaf 
L, where L is a principal ideal domain. There is the canonical inclusion 
L '---> f(L) = HO(X; L), and the cokernel is called the reduced cohomology 
group HO(X; L) = HO(X; L)jL. For p =1= 0 we let ilp(X;L) = HP(X; L). 

17.1. Definition. The space X is said to be n-clcL (cohomology locally 
connected) if for each point x E X and neighborhood N of x, there is a 
neighborhood MeN of x such that the restriction homomorphism 

rn . iln(N' L) ---> iln(M' L) M,N" , 

is zero. 
X is said to be clcL if it is k-clcL for all k :s: nand clc,£, if it is k-clcL 

for all k. 
X is said to be dCL if given x and N as above, M can be chosen, 

independently of n, so that r'k,N = 0 for all n. 

Of course, the definition is not affected if we require M and N to be 
taken from a given neighborhood basis. It is clear that X is O-clCL if 
every point x E X has arbitrarily small connected neighborhoods (i.e., X 
is "locally connected"), since ilO(U; L) = f(LIU)jL = 0 ¢} U is connected. 
Conversely, if X is O-clCL, then given an open set N and a point x E N, 
there is an open neighborhood M of x such that for any separation N = 
U U V into disjoint open sets with x E U we have M C U. This means that 
the quasi-component of N containing x is open. But if all quasi-components 
of an open set are open then these quasi-components must be connected, 
and that implies that X is locally connected.42 Thus we have shown: 

I X is O-clCL ¢} X is locally connected. I 

17.2. Proposition. The space X is n-clcL ¢} given x E X and N as in 
17.1, there is a neighborhood MeN of x such that Imr'k N is finitely 
generated. ' 

42Also see [85, pp. 40ff.J. 
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Proof. This follows from the fact that lin}jjn(N) = jjn(x) = 0, since a 
point is always taut. 0 

17.3. Lemma. Consider a commutative diagram of L-modules of the form 

A2 
s 

A3 ---+ 

11 1k 
BI 

i 
B2 

j 
B3 ---+ ---+ 

1h 19 

C1 
t 

C2 ---+ 

in which the middle row is exact. Let "small" mean "zero" or "finitely 
generated." In both of these cases, if 1m th and 1m ks are small, then 1m gf 
is also small. 

Proof. Put K = Ker j f. Then 9 f( K) C 1m th and hence is small. Also, 
jf induces a monomorphism A2/K >--> B 3, and its image jf(A2) = ks(A2) 
is small, whence A2/ K is small. Thus there is a small submodule S C A2 
such that A2 = K + S. Then gf(A2) = gf(K) + gf(S), which is small. 0 

17.4. Theorem. (Wilder.) Let X be locally compact Hausdorff. Consider 
the following four conditions: 

(rn) If K and M are compact subspaces of X with K C int M, then 
Im(r}{,M : Hn(M; L) ---> Hn(K; L)) is finitely generated. 

(r~) If M is a neighborhood of x E X, then there is a neighborhood K C M 
of x with 1m r}{,M finitely generated; i.e., X is n-clcL. 

(jn) If U and V are open, relatively compact subspaces of X with V c U, 
then Im(ju,v : H:;(V; L) ---> H:;(U; L)) is finitely generated. 

(j~) If U is an open neighborhood of x E X, then there is an open neigh
borhood V C U of x with 1m ju, V finitely generated. 

Then the following implications are true: 

(rn) => (r~), 
(jn) => (j~), 

(rn) and (rn- I ) => (jn), 
(r~) and (rn- I ) => (rn), 
(jn) and (jn-I) => (rn- I ), 
(j~) and (jn+!) => (jn). 
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Proof. The first two implications are trivial. 
Suppose that (rn) and (rn- I ) hold. Given relatively compact open sets 

U, W with U c W, construct an open set V and compact sets K, L, and M 
such that U eVe W eKe L eM, with the closure of each contained 
in the interior of the next. Then 17.3 applied to the diagram 

H:;(U) ----> Hn(M) 
1 1 

Hn-I(L - V) ----> H:;(V) ----> Hn(L) 
1 1 

Hn-l(K - W) ----> H:;(W) 

implies that condition (jn) holds. 
Now assume that X satisfies (r~) and (rn - I ). Let M be fixed and 

let (5 be the collection of compact subsets K of int M such that K has 
a neighborhood K' in int M with 1m r I(, M finitely generated. Then (5 

contains a neighborhood of each point of int M by (r~). Let KI, K2 E (5 

and let K: be a compact neighborhood of Ki (i = 1,2) such that 1m rK~,M 
is finitely generated and let K;' be a compact neighborhood of Ki ~ith 
Kf' C int K:. The Mayer-Viet oris diagram 

Hn-I(K~ n K 2) 
1 

Hn-I(Kf' n Kn 

Hn(M) 
1 

----> Hn(K~ U K 2) 
1 

----> Hn(Kf' UKn 

----> Hn(M) EB Hn(M) 
1 

--4 Hn(KD EB H n(K2) 

together with 17.3 shows that KI U K2 E (5 and consequently that (5 

contains all compact subsets of int M, proving (rn). 
Now suppose that (jn) and (jn-I) hold. Given K and M, construct L 

compact and U, V, and W open and relatively compact, with K C L c 
M cUe V c W, the closure of each being in the interior of the next. 
Condition (rn - I ) then follows from the diagram 

Hn-l(M) ----> H:;(U - M) 
1 1 

H:;-I(V) --4 Hn-I(L) ----> H:;(V - L) 
1 1 

H:;-I(W) ----> Hn-I(K). 

Finally assume that X satisfies (j:) and (jn+ I). Let U be a fixed open 
and relatively compact subset of X and let (5 be the collection of open 
subsets V of U such that V has an open neighborhood V' with V' c U and 
with Imju v' finitely generated. Then (5 contains a neighborhood of each 
point in U' by (j:). Let VI, V2 E (5 and let ~' be an open neighborhood 
of Vi (i = 1,2) with Imju,v; finitely generated. Also, let ~" be an open 
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neighborhood of Vi with Vi" c Vi'. Then the Mayer-Vietoris diagram 

H~(V{'UVn 

1 
H~(V{) EB H~(vD ---+ H~(V{ U VD 

1 
H~(U) EB H~(U) ---+ 

1 
H~(U) 

---+ H~+1 (V{' n V~') 
1 

---+ H~+1 (V{ n VD 

129 

together with 17.3 shows that VI UV2 E <5 and consequently that <5 contains 
all open sets V with V c U, proving un). 0 

17.5. Corollary. If (r~k) stands for "(rn) for all n ::; k," etc., then the 
following implications are true: 

de'L = (r~k) <=> (r~k) =} (j~k) =} (j;'k) 
.IJ. 

(r~k-I) = de~-I, 

(dimLX < 00 and (j;:oo)) =} (j<oo) <=> clcL'. 

In particular (r;:oo) = dcL', (r<oo) and (j<oo) are equivalent, and they are 
equivalent to (j;:oo) provided that dimL X < 00. 

Proof. The proofs of all but the last implication are by an obvious in
duction on n ::; k. The proof of the last implication is a similar downwards 
induction from dimL X. 0 

17.6. Theorem. If X is compact Hausdorff and deL-I, then Hn(XjL) 
is finitely generated ¢:} X satisfies condition (jn). 

Proof. To see the implication ¢::, take U = V = X in (jn). For the 
implication =}, let U and V be open sets in X with U c V. In the diagram 

Imrn- I is finitely generated since de2-I =} (rn- I ). It follows that Imjn 
is finitely generated, which is condition un). 0 

17.7. Corollary. If X is compact Hausdorff and de2, then HP (X j L) is 
finitely generated for 0 ::; p ::; n. 0 

17.8. Proposition. A closed subspace F of an n-manifold M n satisfies 
property (rn). If M - F has only finitely many components, then F also 
satisfies property (,:,-1). 
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Proof. The first part is a trivial consequence of 16.29(a). For the second 
part, let B be a compact neighborhood in M of a point x E F, so small 
that it does not contain any component of U = M - F. Let A C int B be 
another compact neighborhood of x. Then H:)(U n B) = 0 = H:)(U n A) 
by 16.29(a). Since M is clcL , the restriction Hn-l(B) _ Hn-l(A) has 
finitely generated image. Then the exact commutative diagram 

_ Hn-l(B n F) _ 

1 
_ Hn-l(A n F) _ 

H:)(B n U) = 0 

1 
H:)(A n U) = 0 

shows that Hn-l(BnF) _ Hn-l(AnF) has finitely generated image. 0 

The following is an immediate consequence of the Mayer-Vietoris se
quences: 

17.9. Proposition. Let X = Au B be locally compact Hausdorff. If A 
and B are closed, then 

and similarly for (r.) in place of (r). If A and B are open, then 

(l) for A and B, (jk-l) for X =} (jk) for A n B. o 

17.10. Example. This example shows that the finite dimensionality as
sumption is essential for the implication (j;'OO) =} (j<OO) in 17.5. Let 
X = Y x lIoo for some locally compact Hausdorff space Y. Then every neigh
borhood of a point x E X contains an open neighborhood homeomorphic to 
V x (0,1] for some locally compact subspace V. But H~(V x (0,1]) = 0 for 
all p by the Kiinneth theorem since H;((O, 1]) ~ H*([O, 1], {O}) = O. There
fore X satisfies (j;'OO). On the other hand, if Y is not locally connected, 
then neither is X. 

Similarly, the infinite product X = IT:l §l satisfies (j;'OO) because 
every point has a neighborhood homeomorphic to ]Rk x X for arbitrarily 
large k. However, X = Um(§l )n, and so H1(X; Z) ~ $:1 Z, by continuity, 
which is not finitely generated. Thus X does not satisfy 17.7. <> 

17.11. Example. This example shows that the implication (j~k) =} clci 
is false in general. Let K be the union of k-spheres with radii lin, n ~ 1 
integral, and with a single point in common. Let X be the cone on K. 
Then X is compact, contractible, and clc1- l , but not clci. By 17.6, X 
satisfies condition (j~k). <> 

17.12. Example. The compactified long line43 is an example of a space 
that is clc7- but is not HLC, since it is not locally arcwise connected at the 
point D. <> 

43See Exercise 3. 
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17.13. Example. Let Y be the interval [0,0] in the compactified long 
line. Let W = Y X §ii, let Z E §ii, and let A = {O} X §il U [1,0] x {z} C W. 
Let X = W / A. Then X is dcz (indeed it is a cohomology manifold with 
boundary; see V-16). Also, X is locally arcwise connected (which is the 
reason for the inclusion of the interval [1,0] x {z} in the set to be collapsed). 
However, X is not HLC in dimension 1, for the circle {O} x §il cannot 
bound a singular 2-chain. [If it did, then X would be the image of a finite 
polyhedron. This would imply that X is metrizable, and it is not.] 0 

17.14. Example. If a space is locally connected, then each point has 
arbitrarily small neighborhoods that are connected. It is reasonable to 
ask whether this holds for higher connectivities such as dcl, k ~ 1. This 
example shows that this is false. It is a slightly modified and generalized 
version of an example due to Wilder [85, p. 198], which we shall call Wilder's 
necklace. First we describe a bead of the necklace. Let Si be a k-sphere 
with base point for i E :In, and let Ii : Si --» Si+1 be the base point 
preserving surjection of degree zero obtained by mapping Si to a k-disk 
by identifying the upper and lower hemispheres and then collapsing the 
boundary of the k-disk to a point. Let Bi be the mapping cylinder of k 
That is one bead. The k-sphere Si is its "top" and Si+1 is its "bottom." 
Let Yn = Bo U ... U Bn- l . (Note that Sn = So.) This is a "strand" of 
the necklace. The n line segments made up of the generators Ii of the 
cylinders Bi between the base points form an n-gon Tn called the "thread" 
of the strand Yn. Let Xn be the quotient space of the topological sum 
Y2 + ... + Yn obtained by identification of the threads. Let the circle T be 
the common thread. Now, there is an obvious retraction Pi : Bi ~ Ii, and 
these provide a retraction of the strand Yn onto its thread Tn. This gives 
retractions 7l'n : Xn --» X n - l (n > 2) forming an inverse system of spaces. 
We let X = limXn, which is the whole necklace. We think of X as the 
union of the Yn along T with a topology making Yn "thin" as n ~ 00. It 
can be seen that X embeds in ]Rk+2, but we do not need that. Note that 
dimL X = k + 1 by 16.40. 

Now let Ci be the mapping cylinder of the map Si ~ Si+l taking 
all of Si to the base point of Si+1' (This is the one-point union, at the 
vertex, of a cone with a k-sphere.) Let D be the necklace, analogous to 
X, made up of the beads C i rather than B i • (D might be called a dunce 
necklace.) We will still use T to stand for the thread of D. Then there 
is a homotopy equivalence 'P : X ~ D (restricting to 'Pi : Bi ~ Ci ) with 
homotopy inverse 1/J : D ~ X, both being the identity map on the Si and 
on the thread T; see [19, p. 48]. But there is an obvious strong deformation 
retraction () : D x 1I ~ D of D onto T. Then the composition 

XxlI~DxlI~D~X 

is a strong deformation retraction of X onto T. It follows that X is locally 
contractible,44 and a fortiori, it is HLC and dCL. (The argument just given 

44This means that for each point x E X and neighborhood U of x, there is a neigh-
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proves local contractibility at points of T. Local contractibility at points 
outside T is obvious.) 

Suppose now that N is some neighborhood in X of a point x E T. We 
assume that N is small enough so that it omits a neighborhood in X of 
some other point of the thread T. Then for n sufficiently large, N contains 
some bead, but not all beads, of the strand Yn . Clearly there must be some 
bead Bin of Yn such that the top Sin of Bin is completely inside N but the 
entire bead Bin is not. (This is where the surjectivity of fi is used.) Let 
Yn E Bin - N and let T~ be a variant of Tn in Yn that misses Yn' There 
is a map Yn --+ T~ U Bin U Cin +1 that is 4'in +1 on B in +1' the identity on 
Bin' and Pj on B j for j =I- in, in + 1. Consideration of several cases shows 
that T~ U Sin is a retract of T~ U Bin U Cin+1 - {Yn}, whence of Yn - {Yn}. 
Putting Nn = N n Yn , there are the restriction maps 

whose composition is surjective. Now, Hk(N n T; L) = 0.45 Thus, for 
m > n, a Mayer-Vietoris argument shows that 

is surjective, and it follows that the map Hk(N; L) --+ ffi7=n Hk(Sij; L) is 
surjective. Consequently, Hk(N; L) is not even finitely generated. 

By taking a union along the threads T of Wilder's necklaces for k = 
1, ... , n and adding a 2-disk spanning T, one obtains a compact, con
tractible, and locally contractible space of dimension n + 1 ~ 2 that has 
points x such that any sufficiently small neighborhood N of x has Hk (N; L) 
not finitely generated for any 1 ~ k ~ n. 0 

17.15. Theorem. (F. Raymond [69].) Let X be compact Hausdorff and 
let F c X be closed and totally disconnected. Suppose that X - F is clc£+ I. 

Then X is dc2 ¢:> HP(X; L) is finitely generated for each p ~ n. 

Proof. Let x E F. Then any neighborhood of x contains an open neigh
borhood U such that UnF is open and closed in F. Then there is a compact 
neighborhood BI C U containing Un F and there is a compact neighbor
hood Al C int BI also containing Un F. Similarly, using X - BI as U was 
used, there are compact sets A 2, B2 with F - U C int A 2, A2 C int B 2, and 
BI n B2 = 0. Let B = BI U B2 and A = Al U A 2. In the commutative 
diagram 

HP(X) 

1= 
HP(X) 

borhood V C U such that the inclusion V ~ U is homotopic to a constant map. 
45For k = 1 this follows from 10.11. 
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we have that Imj* is finitely generated for p ~ n since X - K satisfies 
(jP+1) by 17.5. It follows that 1m r* is finitely generated for p ~ n. Since 
B is the disjoint union of Bl and B2 , it follows that HP(Bt) -+ HP(At) has 
a finitely generated image for p ~ n, showing that X is dcL. The converse 
follows from 17.7. D 

17.16. Corollary. If X is locally compact Hausdorff and dc2+1, then the 
one-point compactification of X is dCL ¢} Hf(Xj L) is finitely generated 
for each p ~ n. 

Proof. This follows from the fact that ffP(x+j L) ~ Hf(Xj L). D 

We conclude this section by giving one application of 17.5 and 17.8. It 
is a result of Wilder [85, p. 325] in modern dress and slightly generalized.46 

First we need a lemma. 

17.17. Lemma. Let X be locally compact Hausdorff and F c X closed. 
Let U be a union of some of the components of X - F and put G = X - U. 
Suppose that X is clcr;:+1 and that F is clcT. Then G is also dcT. 

Proof. Let P, Q be compact subsets of X with Q C int P. Let k ~ m. 
By 17.5, Hi(P) -+ Hi( Q) has finitely generated image for i = k, k + 1 and 
Hk(p n F) -+ Hk(Q n F) has finitely generated image. Then the exact 
sequences of (P, P n F) and (Q, Q n F), and an argument using 17.3 (and a 
set between P and Q), show that the restriction H~+1 (P - F) -+ H~+1 (Q
F) has finitely generated image. Now, X - F = U + V = (X - G) + V for 
some open set V, and it follows that H~+1 (Q - G) -+ H~+1 (Q - F) is a 
monomorphism (onto a direct summand). From the commutative diagram 

H~+1(P - G) -+ 

! 
H~+l(Q - G) >--> 

H~+l(P - F) 
! 

H~+l(Q - F) 

it follows that H~+1(P-G) -+ H~+1(Q-G) has a finitely generated image. 
Then the exact sequences ofthese pairs show that Hk(pnG) -+ Hk(QnG) 
has finitely generated image. 0 

17.18. Theorem. (Wilder.) Let M be an n-manifold. Suppose that F C 
M is closed and clc~;2. Let U C M be the union of a finite number of the 
components of M - F. Then U and au are locally connected. 

46Wilder states his result for "generalized manifolds," but the present proof applies 
to that case. Wilder also assumes that M has the cohomology of a sphere, but that is 
not needed here. 
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Proof. Coefficients will be in Z2 throughout. As in 17.17, let G = M -
U. Then G is clc~ by 17.17 and 17.8. Let Wand W' be connected 
open neighborhoods of a given point x E U with W' c W. Then in the 
commutative diagram 

H,;(UnW') 

lr 
H';(UnW) 

Imf* is finite by property un-I) for G. It follows that Imj* is also fi
nite. By 16.29, this implies that only a finite number of components, say 
VI' ... ' Vk, of U n W meet W'. If x E Vi for i ::; ko and x rJ. Vi for i > ko, 
then VI u· .. U V ko is a connected neighborhood of x in U. Thus U is locally 
connected. Since au = G n U, it is also locally connected by 17.9. 0 

17.19. Corollary. (Torhorst. 47 ) If M is a 2-manifold and if F c M 
is a locally connected closed subset, then for any finite union U of the 
components of M - F, U and au are also locally connected. 0 

17.20. Example. Let U be the union of disjoint open disks in X = §2 

converging to a point x EX. Then F = X - U is locally connected, but 
U and au are not locally connected at x. This shows that the last result 
is false without the restriction to finite unions. Similar examples in higher 
dimensions apply to Wilder's theorem. 0 

18 Change of supports; local cohomology 
groups 

This section will not be used in other parts of this book. It is partially 
based on Raymond [68]. 

Let <I> and W be families of supports on X with <I> c w. Define the 
groups 

I I:,ifi(Xi,d) = HP(C~(Xi,d)/C~(Xi,d))·1 
The exact sequence 

o --+ C~(Xi,d) --+ C~(Xi,d) --+ C~(Xi,d)/C~(Xi,d) --+ 0 

of cochain complexes yields the exact cohomology sequence 

If P is a flabby sheaf, such as ~*(Xi ,d), then for K E <1>, we see that 
the sequence 

47Torhorst proved this in the case M = §2. 
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is exact. But f<I>(Q') = li!:n f'llIK(Q'), and hence 
KE<I> 

f'll(Q')/f<I>(Q') ~ li!:n f'lln(X-K} (Q'IX - K) 
KE<I> 

naturally. Applying this to Q' = ~*(Xjvi) we have 

1t,<I>(Xjvi) ~ H*( li!:n C;n(X_K)(X - KjvilX - K)) 
KE<I> 

~ li!:n H;n(X_K)(X-KjviIX-K). 
KE<I> 

In case \[J = cld, we put 

I 14, (X; vi) = 1;1 d, <I> (X; vi). I 

135 

(37) 

If X is locally compact, then in [68]' I; (X) is denoted by J*(X) and is 
called the cohomology of the ideal boundary. 

lB. 1. Let F c X be closed. We define 

Assume now that F is <I>-taut (e.g., <I> paracompactifying) and let U = 
X-F. For a flabby sheaf Q' on X we have the exact sequence 

(since U is always <I>-taut). Moreover, the subgroup f<I>lu(Q') of f<I>(Q') 
maps isomorphically onto f<I>lu(Q'IU) C f<I>nu(Q'IU). Thus the sequence 

is exact. Since F is <I>-taut, the middle group is naturally isomorphic to 
f <I>nF (Q'IF). Replacing Q' by ~* (X j vi), where vi is a sheaf on X, and 
passing to cohomology, we obtain the exact sequence (coefficients in vi) 

Note that when <I> = cld, then by (37) it follows that 

I I~(Xj vi) ~ li!:n HP(W - Fj vi), I (39) 

W ranging over the neighborhoods of F. 
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18.2. Perhaps the most interesting case is that of the groups I;(UjA), 
where U is a dense open subspace of a compact space X. Then (36) becomes 

I·· .-+Hg(UjA)-+ HP(UjA)-+Ig(UjA)-+Hg+1(Uj.d)-+ .. ·1 
Letting F = X - U, we have IF(XjA) = I;(UjA), so that (38) becomes 

I·· . -+ HP(X, Uj A) -+ HP(Fj A) -+ Ig(Uj.d) -+ HP+1(X, Uj.d) -+ .. ·1 
The latter sequence shows, for example, that if F is totally disconnected, 
then Ig(Uj.d) ~ HP+l(X, Uj A) for p > O. Finally, (39) becomes 

I Ig(Uj.d) ~ lim HP(W - FjA), I 
W ranging over a neighborhood basis of F in X. 

18.3. When F in (39) consists of a single point, we obtain a type of local 
cohomology group.48 We now consider a different, but closely related, 
notion of local cohomology. 

The local cohomology group at the point x E X with coefficients in 
A is defined to be H;(XjA) where the subscript x denotes the family 
of supports consisting only of {x} and the empty set. For any family ~ 
containing {x} we have, by 12.1 (provided that {x} is closed), 

1 H;(XjA) = H~(X, X - {x}j.d)·1 

If ~ = cld and if {x} is closed, then {x} is ~-taut, so that (38) and (39) 
yield the exact sequence 

o -+ H~(XjA) -+ Ax -+ limA(W - {x}) -+ H;(XjA) -+ 0 (40) 

and the isomorphisms 

I H~(XjA) ~ lim HP-l(W - {x}jA), for p > 11 (41) 

(where W ranges over the neighborhoods of x). [This can, of course, be 
obtained directly by passing to the limit of the cohomology sequences of 
the pairs (W, W - {x}).] 

Assume now that A = L is constant. Then if x is not isolated, we 
have H~ (X j L) = r x (L) = O. If, furthermore, U - {x} is connected for 
a fundamental system of neighborhoods U of x, then (40) implies that 
H;(Xj L) = 0 also. 

If X is an n-manifold with boundary B, then it can be seen that 

HP(X' L) ~ {O, for p -:f:. n or x E B, 
x' L, for p = n and x ¢. B. 

48For an n-manifold and constant coefficients it is the cohomology of the (n-l)-sphere. 
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Also, if X is a compact n-manifold with boundary B, then Ig(X - B; L) ~ 
HP(B; L), whence the term "ideal boundary." To see this, note that 
I~(X;L) = Ig(X - B;L) and apply (38). 

The local cohomology groups introduced here have some pleasant prop
erties, mainly because the limit in (41) is a direct limit. However, the 
problem of "comparing" the local groups at different points is quite dif
ficult. See Raymond [68] in this regard. The situation in homology is 
considerably simpler because of the fact that the local homology groups 
form a sheaf (see Chapter V). 

19 The transfer homomorphism and the 
Smith sequences 

In this section let X be any topological space and let C be a finite group 
of transformations of X. Let XjC be the orbit space and 7r : X --+ XjC 
the orbit map [that is, XjC is the set of orbits {C(x) I x E X} given the 
quotient topology via the canonical map 7r : x ~ C(x)]. We shall assume 
that each orbit is relatively Hausdorff in X (e.g., X Hausdorff). Note that 
the map 7r is both open and closed. 

19.1. Theorem. Let W be any family of supports on XjC and let <P = 
7r- 1 W. Let f1J be any sheaf on X j C and let A be the sheaf 7r* f1J on X. Then 
there is a canonical action of C as a group of automorphisms of 7r A. The 
induced action of C on H:(XjC; 7rA) coincides with that on H:(X; A) 
via the isomorphism 

of 11.1. Moreover, the canonical homomorphism (3 : f1J --+ 7rA = 7r7r*f1J of 
1-4 is a monomorphism onto the subsheaf (7rA)G of C-invariant elements, 
whence 

so that there is the canonical isomorphism 

with 

I (3* = i * (3* and 7r* = 7r t (3* , I 
where i : (7rA)G ~ 7rA. 

(42) 
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Proof. The equation (3* = t * i3* is by definition. The equation 7r* = 7r t (3* 
has already been noted in Section 8. 

For g E G, regarded as a map g : X -... X, we have 7rg = 7r. Thus 
g*d = g*7r*$ = (7rg)*$ = d. Therefore we have the g-cohomomorphism 

g* : d "" g* d = d 

such that the diagram 
g. 

d ----=---.... d 

~/ (43) 

$ 

of cohomomorphisms commutes. On stalks, (43) is the commutative dia
gram 

g; 
d g(x) -----'=-=---.... d x 

~;(~ /: 
$~(x) 

of isomorphisms. If U c X/G is open, then we obtain the induced com
mutative diagram 

(7rd)(U) gu. (7rd)(U) 

=! . ! = 
d(7r-1U) g,,-,U. d(7r- 1U) 

~~ /u 
$(U) 

where gu is defined by commutativity. 
Thus we have the commutative diagram 

$ 

of homomorphisms of sheaves on X / G and the commutative diagram 

7rd £ 7rd 

~ 1 . ~ 1 
d~d 

(44) 

of cohomomorphisms. The diagram (44) induces the commutative diagram 

HJ,(X/G; 7rd) 

nt 1 ~ 
H;(X;d) 
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in which the vertical maps are isomorphisms by 11.1 and the horizontal 
maps are also isomorphisms since each g : X ---> X is a homeomorphism. 

For y E X/G, we have 

n times 

where n = #(7r- 1 (y». The homomorphism (3y : flJy ---> (7rA)y is the 
diagonal map, and g; : (7rA)y ---> (7rA)y permutes the factors flJy as g-l : 
7r- 1(y) ---> 7r- 1(y) permutes the points of 7r- 1(y). Thus we see that (3 : 
flJ ---> 7rA is a monomorphism onto (7rA)G. 0 

Let (J : 7r A ---> 7r A be the endomorphism of 7r A defined by (J 

L:9EG g*. Since the image of (J is invariant under G, (J induces a homo
morphism J.L : 7rA ---> (7rA)G ~ flJ. Therefore, we have the homomorphisms 

(45) 

with (3J.L = (J = L:9EG g* and J.L(3 = ord G (Le., multiplication by the integer 
ordG). 

Since 7r t (3* = 7r* we see that together with the isomorphism 7r t, the 
homomorphisms (45) induce the homomorphisms 

(46) 

with 

J.L*7r*(b) = ord(G)b and 7r*J.L*(a) = L g*(a). (47) 
gEG 

The map J.L* is called the transfer homomorphism. 
Let H;-l\l1(X; 7r* flJ)G denote the subgroup of invariant elements. The 

image of 7r* clearly consists of invariant elements. The following result is 
immediate from (47): 

19.2. Theorem. Let flJ be a sheaf of L-modules, where L is a field of 
characteristic relatively prime to ord G. Then 

is an isomorphism. o 

19.3. Theorem. If X is Hausdorff and n-clcL, where L is a field of char
acteristic relatively prime to ordG, then X/G is also n-clcL.49 

49 Also see 19.14. 
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Proof. The case n = 0 is clear, so assume that n > O. Let x E X and 
let x E X/G be its image. Let U C X/G be a given open neighborhood 
of X. Let S C G be a set of representatives of the left cosets of Gx in 
G, so that {g(x) I g E S} is an enumeration of the orbit G(x). For any 
g E S there is an open neighborhood Wg C 7r-1(U) of g(x) so small that 
Hn(Wg; L) --+ Hn(7r- 1(U); L) is zero by the definition of n-clcL. Since X 
is Hausdorff, we can assume that Wg n W h = 0 if g =I- h. Put V = n 7r(Wg) 
and Vg = 7r-1(V) n Wg. (Recall that 7r is an open map.) Then Vg C Wg, 
and 7r-1(V) is the disjoint union of the Vg' Therefore the restriction r* : 
Hn(7r-1(U);L) --+ Hn(7r- 1(V);L) is zero. From the diagram 

Hn(U;L) 

7rv 11 /Lv 
Hn(7r-1(u); L) 

we have ord(G)s* = ftv7rvs* = ftvr*7ru = 0, whence s* = 0 since the 
characteristic of L is relatively prime to ord ( G). 0 

We wish to generalize the transfer to the case of the map X / H --+ X / G, 
where H is a subgroup of G. First we need a lemma: 

19.4. Lemma. Let a : A --+ A be an endomorphism of a sheaf A on any 
space X and put AO'. = {s E A I a(s) = s}. If 7r : X --+ Y, then a induces 
an endomorphism 7r(a) : 7rA --+ 7rA and there is a canonical isomorphism 

Proof. The composition (7rA)(U) =A(7r-1U) --'=--. A(7r-1U) = (7rA)(U) 
gives the endomorphism 7r(a). Also, Ao. = Ker(1-a), so that the sequence 

is exact. Applying the left exact functor 7r to this gives the exact sequence 

0--+ 7r(Ao.) --+ 7rA 1-7r(0'.) , 7rA, 

which shows that 7r(Aa) ~ (7rA)7r(o.). 0 

Returning to the main discussion, let 7r = 7rG factor as 

X ~X/H 7rG/H, X/G. 

Then the lemma and (42) provide the isomorphism 

(7rA)H = (7rG/H7rH7rH 7rC/H$)H 
~ 7rG/H((7rH7r'H 7rC/H$)H 
~ 7rG/H (7rC/H$) , 

(48) 
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whence 

H~(X/G; (-rrA)H) ~ H~(X/G;-rrG/H(-rrO/HflJ)) ~ H~(X/H;-rrO/HflJ) 

by 11.1. There is the homomorphism J-tG/H = Eigi : (-rrA)H ----> (-rrA)G, 
where {gil eGis a set of representatives of the right cosets of H in G. 50 

This induces a map H~(X/G; (-rrA)H) ----> H~(X/G; (-rrA)G), giving the 
transfer homomorphism 

such that 

I J-tO/H-rrO/H = ord(G/H)·1 

Since EgEG g* = Ei EhEH(hgi )* = Ei gi EhEH h*, we have that 
J-tG = J-tG/HJ-tH, giving the relationship 

I J-ta = J-to/HJ-t'H·1 

19.5. We shall now restrict our attention to the case in which G is cyclic 
of prime order p. Let L be a field of characteristic p and let flJ be a sheaf 
of L-modules on X/G. Let F C X be the fixed-point set of G on X and 
note that F is closed. We shall also consider F to be a subset of X/G. 
Let 9 E G be a generator, chosen once and for all. Let T and a denote the 
elements 

T = 1- g, 
a = 1 + 9 + g2 + ... + gP-l 

of the group ring L(G), and note that a = T P- 1 since char(L) = p. 
Since flJ, and hence A = -rr*flJ and -rrA, are sheaves of L-modules, L(G) 

operates on -rrA. 
If p denotes either a or T, let p denote the other. Let p(-rrA) denote the 

image of -rr A under 

Consider the sequence 

where i is the inclusion and j is the canonical map -rrA ----> (-rrA)F ~ flJF . 
We claim that the sequence (49) is exact. On the stalk at y E F this is 

clear since p(-rrA)y = 0 for both p = a, T. For y ¢. F, (-rrA)y ~ flJy Q9 L(G), 
where the operation of L( G) is via the regular representation on the factor 
L(G). Thus it suffices to show that 

0----> pL(G) ----> L(G) ----> pL(G) ----> 0 

5°It is immediate that J.LGIH is independent of the choice of the representatives gi, 
whence its image is G-invariant. 
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is exact. Since it has order two (because a'T = 'Ta = 1 - gP = 0) it suffices 
to show that dimL(G) = dimpL(G) + dim.oL(G) as vector spaces over L. 
Now Ker{ 'T : L( G) -+ L( G)} consists of the invariant elements and hence 
has dimension one. Consider the homomorphisms 

L(G) ~ 'TL(G) ~ 'T2L(G) ~ ... ~ 'TPL(G) = o. 

The kernel of each of these homomorphisms has dimension at most one, 
but the composition 'TP has kernel L( G) of dimension p. It follows that 
dim'TiL(G) = p - i, whence dimaL(G) + dim'TL(G) = 1 + (p -1) = p = 
dimL(G) as claimed. 

This discussion also shows that 'Ti(7r.J1)j'Ti+l(7r.J1) ~ Ker{'T : 7r.J1 -+ 

7r.J1} on (X - F)jG and is zero on F, for i = 1,2, ... ,p - 1. That is, 

We define 

called the "Smith special cohomology group." More generally, put 

Note that by (50) and 12.3, we have 

I <TH~(Xj.J1) ~ H1s,(XjG,Fj flJ)·1 (51) 

By (49),10.2, and 11.1, we have the exact Smith sequences 

(52) 

(where.J1 = 7r*flJ and <I> = 7r- 1IJil It is easy to check that j* is the usual 
restriction map. Similarly, using (50) we derive the exact sequences 

... -+Tk+1H~(Xj.J1) ~TkH~(Xj.J1)L<TH~(Xj.J1) 

~Tk+1H~+1(Xj.J1) -+ ... 

Note that there is the commutative diagram 

o ---> flJ(X-F)/G 

1~ 
o ---> a (7r.J1) 

(53) 
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which induces the diagram 

... ---->Hi(X/G, F; flI)---->Hi(X/G; flI) -- H~IF(F; flI) -- ... 

1 ~ 11<* 10El)1 (54) 
... ----> aH~(X;Jil) ----> H~(X;Jil) ---->rH~(X;Jil) ffJ H~(F;Jil)----> ... 

Similarly, using the fact that a = rrP- 2 , we have the following commu
tative diagram for p > 2, 

0 ----> a( 1rJil) ----> 1rJil ----> r( 1rJil) ffJ flIF ----> 0 

11 11 1 rP - 2 E111 
0 ----> r(1rJil) ----> 1rJil ----> a(1rJil) ffJ flIF ----> 0 (55) 

1 rP - 2 1 rP - 2 11610 

0 ----> a( 1rJil) ----> 1rJil ----> r( 1r Jil) ffJ flI F ----> 0, 

which yields a relationship between the sequences (52) for p = a, r. 
Here are some applications of our general considerations: 

19.6. Theorem. Let X be a Hausdorff space that has a connected double 
covering space X. Then H1(X;Z2) =f:. O. 

Proof. Since r = a for p = 2, the exact sequence (52) has the segment 

by (51), and the result follows. o 

19.7. Theorem. (P. A. Smith and E. E. Floyd.) Let X be a Hausdorff 
space with an action of G = Zp with fixed point set F. Let L = Zp and let 
flI be a sheaf of L-modules on X/G, and put Jil = 1r* flI. Let \lI be a para
compactifying family of supports on X/G and put if> = 1r-1\l1, which is also 
paracompactifying. Assume that dim<I>,L X = n < 00. Then dim<I>,L F ~ n 
and dimw,L X/G ~ n. Also, for each r, 

00 00 

dimLH~(X/G,F;flI) + E dimLH~IF(F;Jil) ~ E dirnLH~(X;Jil). 
~=r l=r 

Moreover, if the Euler characteristic X(X) = E( _l)i dimL H~(X; Jil) of 
X is defined, then so are those of F and of X/G, and 

I x(X) = x(F) + px(X/G, F)·I 
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Proof. The statements on dimension of F and X / G follow immediately 
from Exercise 11 and the local nature of dimension from 16.8. Let us use 
the shorthand notation Hi(X) = H~(X;J1) and Hi(rk) = rkHi(X;J1), 
etc. Then, from (52) and (53) we derive the inequalities (with p = r or 
p = u) 

dimHT(F) + dimHT(p) < dimHr(X) + dim Hr+l(,o), 
dim HT+ 1 (F) + dim Hr+ 1 (.0) < dim HT+1 (X) + dim HT+2 (p), 

These eventually become totally zero by the dimension assumption, and 
a downwards induction shows that all terms are finite if those for X are 
finite. Adding these inequalities gives 

00 00 

dimHT(p) + LdimHi(F) :::; LdimHi(X), 
i=r i=r 

which gives the inequality of the theorem upon application of (51). Also, 
the exact sequences (52) and (53) give the following equations about Euler 
characteristics (with the obvious notation): 

x(X) 
x(r) 

x(r2) 

x(rP- 2) 

X(F) + x(r) + X(u), 
x(r2) + X(u), 
x(r3) + X(u), 

x(rP- 1 ) + X(u). 

Since r P - 1 = u in the present situation, adding these and cancelling gives 
the desired result. 0 

19.8. Corollary. Under the hypotheses of 19.7, suppose that X is acyclic. 
Then so are F and X/G. In particular, F i= 0. 0 

19.9. Corollary. Under the hypotheses ofI9.7, suppose that H;(X; J1) ;:::::: 
H*(§m;zp). Then H;IF(F;AIF) ;:::::: H*(§T;Zp) for some -1 :::; r :::; m. 
Moreover, m - r is even if p is odd. 0 

19.10. Corollary. Let X be a paracompact space with dimzp X < 00 and 
with H*(X; Zp) ;:::::: H*(§n; Zp). Suppose we are given a free action of G = 
Zp on X. Ifp = 2 then 

H*(X/G; Z2) ;:::::: Z2[U]/(Un+1)' 

where deg u = 1. If P is an odd prime, then n must be odd and 

where deg u = 1 and deg v = 2. 
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Proof. Coefficients will be in Zp unless otherwise indicated. Since Zp 
has no automorphisms of period p, p* : H*(X) -+ H*(X) is zero for both 
p* = r* = 1 - g* and p* = a* = (r*)p-l. The exact sequences 

0-+ pHo(X) ~ HO(X) £ pHo(X) 

then show that pHO(X) ~ Zp and that p* : HO(X) -+ pHO(X) is zero, 

because the composition HO(X) £ pHO(X) ~ HO(X) is zero. 
By 19.7, Hk(XjG) = 0 for k > n. Similar considerations then show 

that p* : Hn(x) -+ pHn(x) is an isomorphism and that the maps 

IS" 1 c" c" pHO(X) --+ pH (X) --+ ... --+ 'f/Hn(X) 

are all isomorphisms, where TJ = p or TJ = p, depending on the parity of n. 
Let L = Zp as a sheaf on X. Consider the case p = 2, so that 

p = a = r = p. We have the exact coefficient sequence 0 -+ a(7rL) -+ 

7rL -+ a(7rL) -+ 0 of (49). If 1 E HO(XjG) = HO(XjG;a(7rL)) and a E 
Hk(XjG; L), then for the connecting homomorphism 8* : Hk(X/G; a(7rL)) 
-+ Hk+1(X/G;a(7rL)), we have 8*(1 U a) = 8*(1) U a = u U a by 7.1(b), 
where u = 8*(1) E Hl(XjG; a(7rL)) = Hl(X/G). Since 

8* : Hk(XjG) ~ aHk(X) -+ aHk+1(X) ~ Hk+1(X/G) 

is an isomorphism for 0 ~ k < n, the result follows. 
Now let p be an odd prime. Then n is odd by 19.9. The proof proceeds 

as in the case p = 2 except that a and r now alternate. Let 8i : aHk(X) -+ 

rHk+1(X) and 82 : rHk(X) -+ aHk+1(X) be the connecting homomor
phisms for the exact coefficient sequences 0 -+ r( 7r L) -+ 7r L -+ a( 7r L) -+ 0 
and 0 -+ a(7rL) -+ 7rL -+ r(7rL) -+ 0 on XjG, respectively, which we know 
to be isomorphisms for 0 ~ k < n. Then for 1 E HO(X/G) = aHk(X) we 
have the elements 

w = 8~(1) E rHl(X) and v = 8~(w) E aH2(X) = H2(X/G). 

Still, for a E Hk(X/G) = aHk(X), we have 828i(lUa) = 62(wUa) = vUa 
by 7.1(b). It follows that Vi generates H2i(XjG), 1 ~ 2i < n. We know 
that Hl(XjG) = aH1(X) ~ Zp, so let u E Hl(X/G) be any generator. 
Then the preceding remarks also show that uvi generates H2i+1(X/G), 
1 ~ 2i + 1 :::; n. Now u2 = 0 for the usual reason: u2 = 'U U u = -u U u. 
The result follows. 0 

When Zp acts on a space with the integral cohomology of §n, then the 
fixed-point set F is a cohomology r-sphere over Zp by 19.9, but it may well 
have other torsion. (The first such example, given by the author [13J, was a 
differentiable action of Z2 on §5 with F a lens space.) It is now known, due 
mainly to work of Jones and Oliver, that this torsion is virtually arbitrary. 
Thus it may be somewhat surprising that the integral cohomology of the 
orbit space is completely determined by nand r, as the following result 
shows. 
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19.11. Corollary. [17] Let X be a paracompact space with dimzp X < 00. 

Let L be either Z or Zp, p prime, and assume that H*(X; L) ~ H*(§n; L). 
Suppose that G = Zp acts on X with H*(F;Zp) ~ H*(§r;zp). Then in 
both cases, 

iIk(X/G; Zp) ~ {Zo,p, for r + 2::; k ::; n, 
otherwise. 

If L = Z, then also 

j['(X/G;Z) '" { 
for r + 3 ::; k ::; n, k - r odd, 
for k = n if n - r is even, 
otherwise. 

Moreover, n - r is even {:} g* = 1 on Hn(x; Z). 

Proof. By suspending X twice, it can be assumed that r ;:::: 1. The Smith 
sequence shows that the maps 

Hr(F- Z ) ---+ Hr+l(x Z ) ---+ _Hr+2(x· Z ) ---+ •.• ---+ Hn(x Z ) ,p p ,p P ,p 1J 'P 

are all isomorphisms, as is 

Then it follows from (54) that in the exact sequence of the pair (X/G, F), 

are isomorphisms. The cohomology with Zp coefficients then follows. 
For integer coefficients, the composition 

(56) 

is multiplication by p by (47). Therefore, iIk(X/G; Z) is all p-torsion for 
k =f n. The exact coefficient sequence 0 ---+ Z ~ Z --+ Zp ---+ 0 shows that 
there is the exact sequence 

for 0 ::; k < n -1 and for k > n, and this sequence is left exact for k = n - 1. 
An induction then shows that iIk(X/G; Z) is as stated for k ::; n - 1 and 
for k > n. 

Now suppose that n - r is even. Then Hn-1(X/G; Z) ~ Zp maps 
monomorphic ally into Hn-l(X/G; Zp) ~ Zp, and so there is the exact 
sequence 
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where the marked map is the composition a*7r* of (56). This implies that 
7r* : Hn(XjG; Z) ---> Hn(x; Z) is monomorphic, whence Hn(XjG; Z) ~ Z. 
Moreover, a* 1= 0, and so 1 + g* = 7r*a* 1= 0, whence g* = 1. 

Now suppose that n - r is odd. Then fr-l(XjG; Z) = 0, and so there 
is the exact sequence 

O-+Hn-l(XjG; Zp)-!.-.Hn(XjG; Z)...!'-...Hn(XjG; Z)--->Hn(XjG; Zp) --->0, 

in which the middle map is the composition (56). It follows that K = 
Coker 8 is a subgroup of Z, whence K = 0, or K ~ Z and Hn(XjG;Z) ~ 
Zp (f) K. If K ~ Z then the sequence implies that Hn(XjG; Zp) ~ Zp (f) Zp, 
and so K = O. Thus Hn(XjG; Z) ~ Zp. The composition 

(7'" 7r* 
Z ~ Hn(x; Z) ---. Hn(XjG; Z) ---. Hn(x; Z) ~ Z 

is 1 + g*. Since the middle group is all torsion, this must be zero and so 
g* = -1 and this can only happen when p = 2. (The reader should verify 
the somewhat exceptional case p = 2 and r = n - 1.) 0 

19.12. Corollary. Suppose that X is paracompact with dimzp X < 00 (p 
prime) and H*(X;Z) ~ H*(§n;z). Suppose that G = Zpacts on X with 
H*(F; Zp) ~ H*(W; Zp). If r = n - 2 then H*(XjG; Z) ~ H*(§n; Z). If 
r = n - 1, then H*(XjG; Z) = o. 0 

19.13. Theorem. (E. E. Floyd.) Let X be a paracompact space with 
dimz X < 00. Suppose that G is a finite group acting on X. If X is 
Z-acyclic then so is XjG. 

Proof. If H eGis cyclic of prime order p, then Hk(Xj H; Zp) = 0 for 
k > 0 by 19.8. Since a p-group has nonzero center, an induction proves the 
same thing for H being the p-Sylow subgroup of G. Now, J.lC/H7rC/H = 
ord(G) : Hk(XjG; Zp) ---> Hk(X; Zp) ---> Hk(XjG; Zp) is an isomorphism 
factoring through zero, so that Hk(XjG; Zp) = 0 for k > 0 and all primes p. 
An induction, using the cohomology sequences of the coefficient sequences 

o ---> Zi ---> Zij ---> Zj ---> 0, 

shows that Hk(XjG;Zm) = 0 for all m. Taking m = ordG, we have that 
J.lc7ra = m, whence Hk(XjG; Z) ~ Hk(XjG; Z) is zero. The cohomology 
sequence of the coefficient sequence 0 ---> Z ~ Z ---> Zm .-) 0 then shows 
that Hk(XjG; Z) = 0 for k> O. 0 

Remark: One can use Exercise 53 to replace the finite-dimensionality hypothesis 
in 19.7 and its corollaries, as well as 19.13, by an assumption that X is 
compact Hausdorff. This is done by showing, as in the proof of 19.10, that 
the connecting homomorphisms in the Smith sequences are cup products 
with fixed elements of HI (X/Gj Tk(1rZp)), 0 < k < p. 

19.14. Theorem. (E. E. Floyd.) Let X be a locally paracompact Haus
dorff space with dimz X < 00. Suppose that G is a finite group acting on 
X. Let L be Z or Zp for some prime p. If X is del:, then so is X j G. 
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Proof. Let K be a closed paracompact neighborhood of y E X/G. Since 
X is clCL, there is a closed neighborhood M c K of y such that the map 
Hk(Ke; L) ----> Hk(M·; L) is zero for k > 0, where K e denotes 11"-l(K). 
Assume for the moment that G is cyclic of prime order p. Then by a down
wards induction using 17.3 and the Smith sequences of the form (coefficients 
in Zp) 

iIk(Ke) ----> pHk(Ke) ffi iIk(F n K e) ----> pHk+1(Ke), 

M can be chosen to be so small that pHk(Ke) ----> pHk(Me) and iIk(F n 
K e) ----> iIk(F n Me) are both zero for all k and for both p = T and p = a. 
From the exact sequence of the pair (X / G, F), we see that M can be taken 
so small that iIk(K; Zp) ----> iIk(M; Zp) is zero, Le., that X/G is clcz. 

p 

By an induction, as in the proof of 19.13, this also follows for G being 
any p-group. For general G and for H being the p-Sylow subgroup of G, 
J.lC/H11"C/H = ordG/H is an isomorphism for Zp coefficients, so that X/H 
being clcz implies that X/G is cle'{', proving the case L = Zp for any 

p p 

p. For any given integer m, an induction shows that M can be taken to 
be so small that r'M K : iIk(K; Zm) ----> iIk(M; Zm) is zero for all k. For 
a closed neighborho~d N c M of y and with m = ord G, we have that 
mrN,M = J.lc 11"c rN,M = J.lc rN.,M" 11"c = 0 for N sufficiently small. Then 
17.3, applied to the diagram 

iIk(M;Z) 

lrN,M 
iIk(N; Z) 

gives the result for L = Z. 

m 
----+ 

m 
----+ 

D 

The subjects of the transfer map and of Smith theory will be taken up 
again in V-19 and V-20. 

20 Steenrod's cyclic reduced powers 

In this section and the next we shall construct the Steenrod cohomology 
operations (the reduced squares and pth powers) in the context of sheaf 
theory and shall derive several of their properties. These two sections are 
not used elsewhere in this book and may be skipped. Several details of a 
straightforward computational nature are omitted. 

Throughout these two sections p will denote a prime number, although 
much of what we do goes through for general integers p. The case p = 2 
differs in several details from the case of odd p, but it is basically much 
simpler. To avoid undue repetition, we shall concentrate on the case of odd 
p and merely note modifications that are necessary for the case p = 2. 
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20.1. If v1 is a sheaf on X, we let 

p times 
..-----"'---

Tp(v1) = v10 .. · 0v1 . 

149 

The symmetric group Sp on p elements acts on Tp(v1) as a group of auto
morphisms in the obvious way. Let v1 and [iJ be given sheaves on X and 
assume that we are given a homomorphism 

that is symmetric (Le., such that h"Y = h for any "Y ESp). The skew
symmetric case can also be treated, and most of what we shall do applies 
to both, but it is not as important as the symmetric case and will be 
omitted for the sake of brevity. 

For a differential sheaf v1*, Tp(v1*) is also a differential sheaf with the 
usual total degree and differential. In this case, we assume that the action 
of Sp includes the usual sign conventions (Le., so that a transposition of 
adjacent terms of degrees rand s is given the sign (-It"). Then the action 
of Sp commutes with the differential. 

Let iI> be a family of supports on X and let v1* be any iI>-acyclic res
olution of v1 for which Tp(v1*) is a resolution of Tp(v1). For example, 
the canonical resolution W*(X,v1), or any pointwise homotopically trivial 
resolution, may be used. Let [iJ* be any injective resolution of [iJ. 

Let 0 E Sp denote any cyclic permutation of the factors of Tp(v1*) 
and of Tp(v1). For notational convenience, and for nonambiguity of later 
definitions, we shall take 0 to be that permutation taking the ith factor to 
the (i - 1 )st place. We also introduce the notation 

T 1- 0, 

a = 1 + 0 + 0 2 + ... + op-I . 

These are endomorphisms of Tp(v1*) commuting with differentials. Note 
that 

Ta = 0 = aT. 

20.2. Let ho : Tp(v1*) ---t fIt be a homomorphism of resolutions extending 
h. Recall that ho induces the cup product 

where n = 2: ni' (We have not actually shown this, but it will follow from 
later developments in this section.) 

The composition hOT extends hT = h - ho = 0 : Tp(v1) ---t [iJ, and it 
follows that hOT is homotopically trivial, since [iJ* is injective. Thus there 
exists a homomorphism hI : Tp(v1*) ---t [iJ*, of degree -1, such that 

(57) 
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Applying a to the right of (57), we see that hla anticommutes with d. 
Preceding hla by the sign (_l)deg , one obtains a chain map Tp(A*) ~ 
~* (of degree -1), and since this must extend Tp(A) ~ 0, it must be 
homotopically trivial. In terms of hI a itself, this means that there is a 
homomorphism h2 : Tp(A*) ~ ~* of degree -2 such that 

(58) 

Similarly, applying T to the right of (58) shows that h2T is a chain map 
and must be homotopically trivial. Continuing inductively one obtains 
homomorphisms hi : Tp(A*) ~ ~* of degree -i such that 

{ h2nT = h2n+Id + dh2n+b 
h2n- Ia = h2nd - dh2n. 

(59) 

20.3. In this subsection we shall assume that p~ = 0 (Le., that ~ is a 
sheaf of Zp-modules). Then ha = ph = 0, so that taking ko = ho, we can 
modify the above constructions to find homomorphisms ki : Tp(A*) ~ ~* 
such that 

(60) 

In the present situation, of course, we can factor h : Tp(A) ~ ~ through 
Tp(A /pA). Thus it is actually of no loss of generality to assume that A 
and ~ are both sheaves of Zp-modules. With this assumption, A* and 
~* can be taken to be sheaves of Zp-modules, with ~* now Zp-injective. 
(Note that in fact ~*(X;~) would be Zp-injective because of formula (6) 
on page 41.) 

For Zp-modules we have that a = T P- 1 , and if we define 

(61) 

we see immediately that the k i will satisfy (60) when the hi satisfy (59). 

20.4. By applying r4> and using the canonical map Tp(r4>(A*)) ~ 
r4>(Tp(A*)), we obtain homomorphisms hi : Tp(r4>(A*)) ~ r4>(~*)' which 
still satisfy (59). 

In this subsection we shall suppose, generally, that we are given chain 
complexes A * and B* or differential sheaves, with differentials of degree 
+ 1, and homomorphisms 

hi : Tp(A*) ~ B* 

of degree -i such that the formulas (59) hold. For a E A* we put 

D..a = a ® ... ® a E Tp(A*). (62) 

Since the case p = 2 differs from the case of odd p, we shall first assume 
that p is odd and shall then give the modifications necessary for p = 2. If p 
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is odd then T(~a) = 0, and it follows from (59) that h2n-1(~a) is a cycle 
when a is a cycle. We wish to show that h2n-1(~a) is a boundary when 
a is a boundary and, moreover, to obtain a formula for h2n-1(~(db)). We 
claim that there is a natural formula of the following type: 

p 

h2n-1(~(db)) = L(-1)idh2n- ih'i) (p odd) (63) 
i=l 

where "Yi is a natural integral linear combination of terms of the form a1 ® 
... ® ap in which i of the aj are equal to b and the rest are equal to db. 
Moreover, we claim that "Yp, which must be an integral multiple of ~b, is 
given by 

"Yp = (-1)m(q+1)m!(~b), (64) 

where 
m = (p - 1)/2 and q = degb. 

To obtain these formulas, we shall consider the chain complex L * , where 
Lq is the free abelian group generated by the symbol b, Lq+1 is the free 
abelian group generated by the symbol db, and the remainder of the Li 
are zero. The differential is defined to take b t---> db. Let >. : Ln ____ Ln-1 
be that homomorphism taking db t---> b. Let A Tp(L*) ---- Tp(L*) be 
>. ® 1 ® 1 ® ... ® 1. Then 

Ad+dA = 1. (65) 

Note that T~(db) = O. Let 

"(1 = A(~(db)) 

and note that ~(db) = d"(l. We define, inductively, 

{ 
"(2i = AT"(2i-1, 

"Y2i+ 1 = AU"Y2i. 

Using (65), it follows by an easy inductive argument that for i ~ 1, 

{ d"Y2i = T"(2i-1, 
d"Y2i+1 = U"(2i' 

(66) 

These definitions make sense in Tp(A*), and the equations (66) remain 
valid, since we have a natural chain map L* ---- A*. [In Tp(A*), A can be 
thought of as a formal operator that tells us how to write down "Yi+1 from 
the expression for "Yi'] Using (59) and (66) inductively leads immediately 
to equation (63). (Note that "(p+1 is necessarily zero.) It remains for us to 
prove formula (64). 

For the proof of (64) let us define, in Tp(L*), the operator Ai given by 

Ai(a1 ® ... ® ap) = (_1)Qt+ oo +Qi-l a1 ® ... ® ai-1 ® >.ai ® ai+1 ® ... ® ap, 



152 II. Sheaf Cohomology 

where qj = deg aj. Thus A = AI, and it is easily computed that 

Aiaj = a j Ai+j' 

In particular, we have 

Moreover, 

(67) 

(68) 

Now let Mi = Ai+IAi' Using (67) and (68) to move the operators Ai to 
the right, we see that 'Y2 = -aMI(.6.db), 'Y3 = - Eai-IAiMI(.6.db), and, 
by an easy induction, that 

where the number of M's occurring in each equation is r and the summa
tions run over all free indices. 

Now, in the computation of'Yp note that the term AkMj'" MiMI (.6.db) , 
when it is nonzero, must be .6.b up to sign. Each Mi contributes the 
sign (-l)q, where q = degb, and Ak contributes no sign (since k is nec
essarily odd and the first k - 1 terms in the tensor product it operates 
on are of the same degree). Thus, when r = (p - 1)/2 = m, we have 
AkMj''' MiMI (.6.db) = (-l)mq(.6.b). It follows that 'Yp is (_l)m times 
(-l)mq times the number of permutations of m objects [the M's and Ak 
in (69)] times .6.b. This yields formula (64). 

Now let a, bE Aq be cycles, and consider .6. (a + b) -.6.a -.6.b E Tp(Aq). 
This is a sum of monomials in a and b. These monomials are permuted by 
a, and none of them is left fixed by a. Thus the cyclic group generated by 
a, being of prime order, acts freely on this set of monomials. Select one 
of these monomials out of each orbit of this group action and let e be the 
sum of these. Then de = 0 and ae = .6.(a + b) - .6.a - .6.b. It follows from 
(59) that 

h2n- I(.6.(a + b)) - h2n- I(.6.a) - h2n- I(.6.b) = -dh2n(e). (70) 

By (59) the mapping a 1-+ h2n- I(.6.a) takes cycles into cycles, and by 
(63) it takes boundaries into boundaries. Thus, by (70), it yields homo
morphisms 

St2n-1 : Hq(A*) -+ Hpq-(2n-I)(B*) for p odd. (71) 

For p = 2 we have that a(.6.a) = 0 when q = dega is odd, and r(.6.a) = 0 
when q is even. It follows easily from (59) that 

hn+l(daf;9da) = (-l)n+ldhn+l (af;9da)+(-l)q-ndhn(af;9a) for q-n odd. 
(72) 
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As before, it is easily seen that a f--+ hn(a 0 a) induces a homomorphism 

Stn : Hq(A*) ---+ H2q-n(B*) for p = 2 and q - n odd. (73) 

It is convenient to introduce the notation Stj = Stn on Hq(A*), where 
j = q(p - 1) - n. Thus (71) and (73) become, for any p, 

St j : Hq(A*) ---+ Hq+i(B*) for j odd. 

Finally, we claim that the image of Sti consists of elements of order 
p. In fact, for p odd, we have that p(~a) = (1(~a), and (59) shows that 
ph2n-l(~a) = h2n-l((1(~a)) is a boundary when a is a cycle, as claimed. 
This also follows when p = 2 in a similar manner. 

20.5. Now suppose that for chain complexes A* and B* we are given 
homomorphisms 

ki : Tp(A*) ---+ B* 

(of degree -i) satisfying the equations (60). Then as in 20.4, we can derive 
the formula 

p-l 

k2n(~(db)) = ~) -1)idk2n_i("(Hd for p odd, (74) 
i=O 

with "Ii as in 20.4 and, in particular, with "Ip given by formula (64). Simi
larly to (70), we also have, for da = 0 = db, 

For p = 2 we have formula (72) with ki in place of hi and valid for q - n 
even (q = dega), as well as an analogue of (74). 

Thus, a f--+ k2n(~a) [or a f--+ kn(a0a) for p = 2J induces homomorphisms 

{ St2n: Hq(A*) ---+ Hpq-2n(B*) for p odd, 
Stn : Hq(A*) ---+ H2q-n(B*) for p = 2 and q - n even. 

That is, we obtain homomorphisms 

(76) 

20.6. We may apply 20.4 to the case in which A* = f4>(J1*) and B* = 
f4>(aJ*) with the hi induced from the hi defined in 20.2. Thus we obtain 
homomorphisms 

Now suppose that pfiJ = O. Then the ki constructed in 20.3 induce 

St j : H~(X;J1) ---+ H~+j(X;fiJ) for j even. (77) 
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If, as we may as well assume, A and flJ are both sheaves of Zp-modules, 
then (for p odd) Stq(p-i)-2n = St2n of (77) is induced by a f--+ h2n(ll.a) 
because of (61). A similar remark holds for p = 2. 

If j = (p - 1)q, then Stj = Sto is induced by a f--+ ho(a ® ... ® a) and 
hence it is the p-fold cup product followed by h*. 

Also note that if j > (p - 1)q, then Stj = St(p_i)q_j = 0, since hi = 0 
for i < 0 by definition. 

20.7. We wish to show that the homomorphisms St j constructed in 20.6 
are independent of the choices involved. In particular, we wish to show 
that the definitions do not depend on the choice of the hi in 20.2. 

Suppose that {ha is another system of homomorphisms Tp(A*) --+ flJ* 
satisfying (59) and such that hh extends the given map h. Then ho is chain 
homotopic to hh, so that there is a homomorphism Di with 

ho - hb = Did + dDi . 

Applying T to the right of this equation, we obtain 

Rearranging terms, we have 

(hi-h~ -DiT)d+d(hi-h~ -DiT) =0. 

As in (57), this implies the existence of a homomorphism D2 with 

hi - h~ - Di T = D2d - dD2' 

Apply u to the right of this equation and proceed as before. An easy 
inductive argument provides the existence of homomorphisms Di with 

{ h2n-i - h~n-i - D2n- iT = D2nd - dD2n , 
h2n - h~n - D2nU = D 2n+1 d + dD2n+1' 

(78) 

[Note that the construction of the Dn (and of the hi themselves) does not 
use the assumption that flJ* is a resolution of flJ but only that it is an 
injective differential sheaf.] 

Applying reI> to these equations, we see that for p odd and a E reI>(A*) 
with da = 0, we have 

h2n- i (ll.a) - h~n-i (ll.a) = -dD2n (ll.a) 

since Tll.a = 0 and d(ll.a) = O. This proves our contention for odd p, and 
the case p = 2 is similar. 

The analogous result for the ki (when pflJ = 0) is proved in exactly the 
same manner. 

We shall also show in 20.8 that the definitions of the Stj are independent 
of the choices of the resolutions A* and flJ* (for the latter this should be 
clear). It is shown in Section 21 that the Stj are also independent, up to 
sign, of the choice of the particular cyclic permutation a. 
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20.8. Suppose that J : X -+ Y is a map and let h' : Tp(,P) -+ .At be a 
symmetric homomorphism of sheaves on Y. Let lit be a family of supports 
on Y with J-11It c <I> and suppose that we are given lit-acyclic resolutions 
,P* and .At* of,P and .At such that Tp(,P*) is a resolution of Tp(,P). Also 
assume that we are given homomorphisms h~ : Tp(,P*) --+ .At* satisfying 
(59) [or k~ satisfying (60)] and extending hi. Suppose further that we are 
given J -cohomomorphisms k : Il "-+ .Y1 and 9 : .At "-+ /iJ such that the 
diagram 

commutes (where l1k = k ® ... ® k). Also suppose that k and 9 extend 
to J-cohomomorphisms k* : Il* "-+ .Y1* and g* : .At* "-+ /iJ* of resolutions. 
Consider the (not necessarily commutative) diagram 

Tp(Il*) 

.Ilk· 1 
J(Tp(.Y1*)) 

(79) 

The maps J(hn )l1(k*) and g* h~ of Tp(Il*) -+ J( /iJ*) both satisfy (59) and 
extend J(h)l1k = gh'. Since J(/iJ*) is injective, it follows that homomor
phisms Dn : Tp(Il*) --+ J(/iJ*) can be constructed, as in (78), such that 

J(hn)l1k* - g*h~ - Dn'Tln = DnHd+ (-I)ndDnH' 

where 'Tln = 7' for n odd and 'Tln = (7 for n even. This formula remains 
valid upon passing to sections with supports in lit [of (79)], and it follows 
immediately that the diagram 

H$(YjIl) 

1 k· (80) 

H:(Xj.Y1) 

commutes, where j is odd. This may also be shown for even j when p/iJ = 
0= pv« and St j is defined as in (76). 

When J is the identity, these results show that the St j are independent 
of the choice of the resolution .Y1* (the independence of the choice of fJJ* is 
clear). In fact, any.Y1* such that Tp(.Y1*) is a resolution of Tp(.Y1) can be 
compared with ~*(Xj.Y1) by means of the maps 

.Y1* -+ ~*(Xj.Y1*) +- ~*(Xj.Y1), 

and the middle term satisfies our hypothesis that the tensor product of 
the resolutions be a resolution of the tensor product. (This follows from 
Exercise 48, which asserts that the first map is a pointwise homotopy equiv
alence.) 
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20.9. Suppose that we are given exact sequences 0 --+ ",'* --+ ",* --+ 

","* --+ 0 and 0 --+ f11J'* --+ [JJ* --+ f11J"* --+ 0 of chain complexes (with 
differentials of degree +1). Suppose, moreover, that we have commutative 
diagrams 

(81) 

where the h~, hn, and h~ satisfy (59) [respectively (60)]. Consider the 
induced diagram 

... --+ Hq(A'*) ~ Hq(A*) L Hq(A"*) ~ Hq+1(A'*) --+ ... 

1 St' 1 St' 1 St' 1 St' (82) 

... --+Hq+S(B'*)LHq+S(B*)LHq+S(B"*)~Hq+S+l(B'*)--+ ... 

which is defined for odd s (respectively, for even s). This diagram is clearly 
commutative except for the square containing connecting homomorphisms. 
For this square, let a E A q represent a cycle j (a) E A"*. Let a' be such 
that i(a') = da. Then in the case of odd s and odd p, for example, we have 

fh~n_.l(6.a') = h2n-l(6.(da)) 

= d ( -rph2n_p(6.a) + ~(-1)ih2n_i(-ri)) (83) 

by (63) and (64), where rp = (-l)m(q+1)m! and m = (p - 1)/2. 
Now, gh2n-kYi) = h~n-i(j(-ri)) = 0 for i < p (since "Ii, for i < p, is a 

sum of monomials each of which contains a factor da = i(a')). Thus we 
also have that 

-rph~n_p(6.j(a)) = g(-rph2n_p(6.a)) 

= 9 ( -rph2n-p(6.a) + ~(-1)ih2n-i(-ri)) . 
(84) 

From (83) and (84) we see that -rpoSt2n-p[j(a)] is represented by 
h~n_l(6.a'). But the latter also represents St2n-lo[j(a)]. In terms of StS 

this means that 

(85) 

We have proved this for odd s. The case of even s follows in the same way 
from (74). 

In the case p = 2 it can be seen, in the same way, that (82) is commu
tative when it is defined (since in this case, the image of StS consists of 
elements of order 2). 
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We wish to apply these remarks to spaces. Let A be a iP-taut subspace 
of X and assume that .;1* is flabby. The maps hn : Tp(.;1*) -+ $* restrict 
to maps Tp(.;1*IA) -+ $*IA, and the diagrams 

clearly commute. Thus, if we define the Bt8 on the relative cohomology of 
(X, A), for A iP-taut, via the isomorphism 12.1, it follows that the diagram 

... -+ H:(X,Aj...t) -+ H:(Xj...t) --+H:nA(Aj...t)--+ H:+l(X,Aj...t) --+ .•. 

1 St' 1 St' 1 St' 1 St' 

... --+ H:+8 (X, Aj...t) --+H:+8(Xj...t) --+H:~~ (Aj...t) --+ H:+8+1 (X, Aj...t) --+ ... 

commutes when defined, except for the square involving connecting homo
morphisms. This square commutes when n = 2 and satisfies (85) when p 
is odd. 

We remark that this result can be extended to nontaut A by using the 
naturality of the particular set of hn constructed in Section 21. 

20.10. We shall now consider the case in which .;1 and $ are torsion-free. 
We put .;1 p = .;1/ p.;1 and note that the given map h : Tp (.;1) -+ $ induces 
a symmetric homomorphism Tp(.;1p) -+ $p. 

Now Btj : Ht(X;.;1) -+ Ht+j(X;$) is defined for odd j, while Btj : 
Ht(Xj .;1p) -+ Ht+j (X; $p) (or from coefficients in.;1) is defined for all j. 
We wish to find relationships between these operations. 

If we use the fact, proved in Section 21, that the Bti can be defined using 
torsion-free resolutions of.;1 and $ then we could reduce these resolutions 
mod p to obtain resolutions of .;1 p and $p and could use these for our 
comparison. However, we prefer to use another method, which, although 
longer, does not depend on this fact and has, perhaps, some independent 
interest. 

The method we adopt utilizes the "mapping cone," of multiplication 
by p, of a differential sheaf. The mapping cone of p : ft* -+ ft* is the 
differential sheaf Mp(ft*), where 

I Mp(ft*)q = ftq+l EB ftq I 
and d : Mp(ft*)q -+ Mp(ft*)q+l is given by 

I d(a, b) = (-da,pa + db). I 
We have the exact sequences 

(86) 
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where p(b) = (O,b) and f3'(a,b) = a. If!/!* is a IP-acyclic resolution of 
a torsion-free sheaf !/!, then according to Exercise 50, there is a natural 
isomorphism 

Hq(rep(Mp(!/!*))) ~ H~(X;!/!p), 

and the homology sequence induced by rep of (86) can be identified with 
the cohomology sequence of the exact coefficient sequence 0 -+ !/! ~ !/! -+ 

!/!p -+ o. [Note that p becomes reduction mod p and f3 = -f3' becomes the 
connecting homomorphism, which is called the "Bockstein" homomorphism 
in this case. We retain the notation p and f3 for these induced cohomology 
homomorphisms. J 

Remark: The homology sequence of (86) shows that if !/!* is a resolution of a 
torsion-free sheaf fJ!, then 

.1{'Q(Mp(fl!*» ~ {fJ!p, for q = 0, 
0, for q =1= o. 

However, Mp(fJ!*) is not a resolution of fJ!p since Mp(fJ!*)-l ~ fJ!o =1= o. 
The minor alteration of dividing Mp(fJ!*)O by d(Mp(fJ!*)-l) provides a res
olution of fJ!p, but we need not use this fact. The augmentation is induced 
by the canonical inclusion b ..... (0, b) of fJ! in fJ!1 6:) fJ!0. 

Note that p - (J', as a polynomial in a, is divisible by T. We let W denote 
the quotient, so that 

P-(J'=WT. 

Now suppose that hn : Tp(!/!*) -+ .At* are homomorphisms that satisfy 
(59). We claim that the following two statements hold: 

(i) Let h~ : Tp(!/!*) -+ Mp(.At*) be defined by h~ = (0, hn). Then the h~ 
satisfy (59). 

(ii) Let h~ : Tp(!/!*) -+ Mp(.At*) be defined by h~n = (h2n- l , h2n ) and 
h~n+l = (h2n , -h2n+lW). Then the h~ satisfy (60). 

These facts are easily obtained by straightforward computations, which 
will be omitted. 

We shall digress for a moment to consider a construction to be used 
below. Define, for any differential sheaf..d* (or chain complex), the ho
momorphisms Band 1jJ of Tp(Mp(..d*)) -+ Tp(..d*) as follows: If x = 
(al' bl ) ® ... ® (ap, bp) E Tp(Mp(!/!*)) and if qi = degbi , then we put 

B(x) 
1jJ(x) = 

bl ® ... ® bp , 

al ® b2 ® ... ® bp + (-1)q1 bl ® a2 ® b3 ® ... ® bp 

+( _1)ql +q2 bl ® b2 ® a3 ® b4 ® ... ® bp + .. . 
+( -1)Ql+··+qp-1 bl ® ... ® bp - l ® ap • 

It is easy to check that 

{ Bd = p1jJ + dB, 
1jJd = -d1jJ. 
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Also note that 

{ 00. = 0.0, 
'l/Jo. = o.'I/J. 

Now define the homomorphisms 

by the equations 

We compute 

A2nd - dA2n = (h2nd - dh2n )0 + h2nP'I/J - (h2n+1d + dh2n+1)w'I/J 
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= h2n- 1aO + h2n(P - TW)'I/J (87) 
(h2n-10 + h2n'I/J)a = A2n-la . 

Similarly we have 

A2n-ld + dA2n-l (h2n- 1d + dh2n-t)0 + h2n- 1P'I/J - (h2nd - dh2n )'I/J 
= h2n-2TO + h2n-l(P - a)'I/J 
= (h2n- 20 + h2n- 1w'I/J)T = A2n-2T. 

(88) 
Thus, by (87) and (88), the An satisfy (59). 

Now we let A* = ~*(X;A) and let flJ* be any injective resolution of 
flJ as usual. By statement (i) above, we see that the homomorphisms 

satisfy (59), and by (ii), we see that the homomorphisms Vn defined by 

{ V2n = (A2n-lr A2n), 
V2n+1 = (A2n, -A2n+1W) 

satisfy (60). 
Since, in degree zero, A2n«0, bt} ® ... ® (0, bp » = h2n(b1 ® ... ® bp ), it 

follows that J.Lo and Vo both extend the homomorphism h : Tp(Ap) ~ flJp. 
We claim that the homomorphism Sti : H~(X; Ap) ~ H~+i (X; flJp) is 
induced by (a, b) 1-+ J.Ln(A(a, b)) for j odd and by (a, b) 1-+ vn(A(a, b)) for j 
even [where, of course, n = q(p -1) - j]. To see this, we note that there is 
a canonical homomorphism 

which takes (a, b) 1-+ b (mod p). This homomorphism clearly induces an 
isomorphism of derived sheaves, and in fact, it is just the map that identifies 
Hq(r~(Mp(A*») with H~(X;Ap) (see Exercise 49). The diagram 

Tp(Mp(A*)) ~ Mp(flJ*) 
! ! 

Tp(~*(X;Ap» ~ (flJp) * 
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[where ($p)* is any Z-injective resolution of $p] can then be treated as 
in 20.8, and our contention follows immediately. [Note that without mod
ification, Tp(Mp(..d'*)) is not a resolution of Tp(..d'p) , and in fact, some of 
the derived sheaves in negative degrees are nonzero. However, the derived 
sheaves in positive degrees are all zero by the algebraic Kiinneth formula 
applied to the stalks, and this is sufficient for the construction of the ho
motopies of 20.7.] 

Assume for the moment that p is odd. Taking sections, a q-cycle of 
f;p(Mp(..d'*)) is a pair (a, b) with degb = q, da = 0, and db = -pa. Thus, 
for coefficients in ..d'p and $p, St2n-l is induced by 

(a,b) I--t !J2n-l(1l.(a, b)) = (0, h2n- 1 (811.(a, b)) + h2n ('1/J1l.(a,b))), 

while St2n is induced by 

(a, b) I--t V2n(1l.(a, b)) = (h2n- 1 (811.(a, b)) + h2nCI/J1l.(a, b)), 
h2n (811.(a, b)) + h2n+1 (w'l/J811.(a, b))). 

Note that 811.(0, b) = ll.b and 'l/Jll.(0, b) = O. 
Recall that reduction modulo p is induced by b I--t (0, b) and that the 

Bockstein is induced by (a, b) I--t -a. It follows immediately that in the 
diagram 

(89) 

both of the triangles anticommute (and hence the outside square com
mutes). This also holds for p = 2 by the same arguments. 

Remark: If in (59) and in similar equations we had chosen to use dh ± hd rather 
than hd ± dh (which would have been more logical in some ways), we 
would have obtained strict commutativity in (89). Clearly, such a change 
merely appends the sign (_l)n to h2n and h 2n+1 . We have adopted the 
present conventions because they provide slightly simpler formulas in sev
eral places, such as (63). 

20.11. Let ..d'*, $*, 2*, and u1{* be differential sheaves (or chain com
plexes) and assume that we are given homomorphisms 

(90) 
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both of which satisfy the system (59) of equations. Let 

be the obvious "unshufHing" isomorphism (with the usual sign convention). 
It commutes with differentials. On Tp(A*) 0 Tp(2*) we use the notation 
tJ.:r = 101-a0a and f::1a = 101+a0a+··· ap- 10ap- 1 [so that A- 1(f::1r)>. 
and A-l(f::1a)A are the operators "r" and "a" on Tp(A* 02*)]. Also, let 
o = E a i 0 a j , where the summation is over the range 0 :::; i < j < p. The 
following identities are easy to verify: 

{
a 0 1 + (10 r)O = (10 a) (f::1a), 
10a-(r01)0 = f::1a, 

1 0 r + r 0 a = f::1r, 
10a-a01 = O(tJ.r). 

We define homomorphisms jn : Tp(A* 02*) ...... /!lJ* 0.At* by 

{ 12n = E[(h2i 0 k2n- 2i ) + (h2i+1 0 k2n- 2i -dOjA, 
j2n+1 = E[(h2i 0 k2n- 2i+l) + (h2i+l 0 k2n- 2i )ajA. 

(91) 

We claim that the jn also satisfy (59). This is easily shown by formal 
manipulation using the identities (91). Note that 0 = 10 a if p = 2, so 
that both equations can be combined in that case. 

Now suppose that A, /!lJ, 2, and.At are all sheaves of Zp-modules and 
that we are given symmetric homomorphisms 

Let A* = ~*(X;A) and similarly for /!lJ*, 2*, and .At*. These are all 
Zp-injective resolutions by (6) on page 6 since every (classical) Zp-module 
is Zp-injective. Thus the homomorphisms (90) can be constructed as in 
20.2. Defining jn as above, we see that jo extends 

Also, /!lJ* 0 .At*, being a resolution of /!lJ 0.At, can be mapped into any 
injective resolution. 

Now, for a E AS and b E 2t and for p odd, we have 

j2n(f::1(a 0 b)) = (_1)P(p-l)st/2 L h2i(f::1a) 0 k2n- 2i (f::1b) (92) 

since A(f::1(a 0 b)) = (_1)p(p-l)st/2(f::1a) 0 (f::1b) and since O(f::1a 0 f::1b) = 
p (~) (f::1a 0 f::1b) = O. Similarly, if p = 2, we have 

jn«a 0 b) 0 (a 0 b)) = (_l)st L hi(a 0 a) 0 kn-i(b 0 b) (93) 

(the sign is, of course, immaterial here). 
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Taking sections, passing to homology, and converting to upper indices, 
we get 

St2n (a U b) = (_I)p(p-l)8t/2 L St2i (a) U St2n- 2i (b) for p odd (94) 

by (92). These are maps H~(X; d) (6) Ht(X; 2) -+ H~~t.t2n(x; flJ (6) JIt) 
for sheaves of Zp-modules where <I> and Ware arbitrary support families. 
Similarly, by (93), 

of H~(X; d)@Ht(X;2) -+ H~~t.tn(X; flJ@JIt) for sheaves of Z2-modules. 
These equations are known as the Gartan formulas. 

21 The Steenrod operations 

In this section, which is a continuation of the last section, we shall find 
certain values of j for which the operation Stj is trivial. Using this infor
mation, we then alter these operations to define operations, the "Steenrod 
powers," that possess somewhat simpler properties than do the St j . 

21.1. We shall first apply the results of 20.7 to show that up to sign, the 
Stj are independent of the choice of the particular cyclic permutation a. 
We shall then use this fact to find, for p odd, various values of j for which 
the operation St j is trivial. 

Let a denote the particular cyclic permutation that we have been us
ing and let a' be any cyclic permutation of the factors of a p-fold ten
sor product. Then a and a' are conjugate in the symmetric group Sp. 
That is, there is an element , E Sp with ,a' = a,. If 7' = 1 - a' and 
17' = 1 + a' + ... + a,p-l, then we have 

Applying, to the right side of (59), we see that 

{ (h2n,)7: = (h2n+1,)d + d(h2n+n), 
(h2n-n)17 = (h2n,)d - d(h2n'). 

Also, ho, extends h, = h, since h is symmetric. However, if a E r4>(Jt*) 
is a cycle of degree q, then ,(boa) = (sgn,)qboa, so that 

(95) 

Thus St2n-l, defined by means of a', differs from St2n-l, defined by means 
of a, by the sign (sgn,)q in degree q. This is also true, clearly, for St2n 
when it is defined (Le., for pflJ = 0). 
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Let us now consider a particular choice of'Y E Sp and let p be odd. Let 'Y 
take the ith term into the (i/k)th place (modulo p), where k is a generator 
of the multiplicative group of Zp (which is cyclic of order p - 1). Then 
a' = 'Y-1a'Y takes the ith term into the k(i/k-1)st= (i-k)th place. Thus 
a' = a k • Moreover, 'Y takes (kl, k2 , •• • ,kP- 1 = 1) 1-+ (kP- 1 , P, k2 , • •• ), and 
so 'Y is an odd permutation. 

Now 0" = 0' for this choice of a' = a k and r' = 1- a k = (1 + a + ... + 
ak-1)r. Let us define 

An easy computation shows that the {h~} satisfy (59) with r replaced 
by r' = 1 - ak. But so do the {hn'Y}. By 20.7 it follows that for a E 

f<I>(....t*) a cycle of degree q, we have that (h2n-n)(Aa) is homologous to 
(h2n_1)(Aa) = h2n- 1«1 + a + ... + ak-1)n(Aa)) = knh2n_1(Aa). From 
this and (95) it follows that 

St2n-l : H~(Xj....t) --. H:q-2n+l(Xj fiJ) 

is zero unless 
kn == (-1)q (modp). (96) 

(Recall that the image of Sti consists of elements of order p.) If pfiJ = 0, 
we can prove a similar fact for St2n using the kn of 20.3. However, we can 
treat this case directly by using formula (61), which reduces the question 
to one concerning h2n. Again, it is seen that (h2n'Y)(Aa) is homologous to 
(h2n)(Aa) = knh2n(Aa), and by (95), it follows that 

St2n: H~(Xj....t) --. H:Q- 2n (XjfiJ) 

is zero unless formula (96) holds. 
Since k generates the multiplicative group of Zp, the equation kn == 1 

(modp) is equivalent to n = r(p -1) and the equation kn == -1 (modp) is 
equivalent to n = (2r + 1)(p - 1)/2 (where r is some integer). In terms of 
Sti , which is more convenient, a short calculation shows that our criterion 
(96) becomes 

Sti = 0 unless j = 2r(p - 1) or j = 2r(p - 1) + 1, for some r E Z. (97) 

21.2. We wish to show that Sti = 0 for j < 0 and to identify Sto. To 
do this we must, for the first time, give an explicit construction of one 
particular system of hi. We shall, in fact, construct such homomorphisms 
hi: Tp(....t*) --. fiJ*, where....t* = ~*(Xj....t) and fiJ* = ~*(Xj fiJ). This can 
then be followed by a map to an injective resolution of fiJ if so desired. 

Recall that ~*(Xj....t) is pointwise homotopically trivial. In fact, as in 
Section 2, let 1]x : ~o (X j ....t) x --. ....t x be the map assigning to a germ of a 
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serration f : X - - + d its value "Ix (I) = f (x) E d x at x. Then "Ix provides 
a splitting 

and hence, generally, a splitting 

yn(X;d)x 2 ~n(X;d)x ~ yn+l(X;d)x. 
'TJz Vx 

Then d = c8 : ~n(X; d) -+ ~n+l (X; d), and letting 

Dx = I/xTJx : ~n+l(X;d)x -+ ~n(X;d)x, 

we have that 

{ Dxd + dDx = 1 : ~n(X; d)x -+ ~n(X; d)x 
Dxd= 1-cTJx: ~o(X;d)x -+ ~o(X;d)x' 

Since TJxl/x = 0, we have 
D; =0. 

for n > 0, 

Tp(d*) = Tp(~*(X;d)) is also pointwise homotopic ally trivial, with 
the homotopy provided by the operator Ax defined by 

Ax(allZi"'1Zi ap) = cTJx(al) 1Zi···1Zi ETJx(ai-l) IZi Dx(ai) IZi aHllZi···1Zi ap, 

where al, ... , ai-l have degree zero and deg(ai) > O. It is easily computed 
that, as claimed, 

{ 
Axd + dAx = 1 in positive degrees, 
Axd = 1 - cTJx in degree zero, 
A; = 0, 

where cTJx stands for cTJx IZi ... IZi cTJx here. [Note that c = c IZi ... IZi c : 
Tp(d) -+ Tp(d*) is the augmentation.] 

We shall often suppress the variable x in Ax and in other operators. 
Define operators Ai on Tp(d*)x inductively by 

Since A 2 = 0 we have 

{ 
Al = A, 

A2n = ATA2n- 1 , 

A2n+l = A(J"A2n · 

(98) 
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Since D2 = 0, it is clear that An and Mn are linear combinations of 
terms of the form Kl ® K2 ® ... ® K p , where n of the Ki are D and the 
rest are 1 (or possibly e'f/). It follows that 

(99) 

It is easily shown by induction that for n ~ 1, we have 

{ A2nd = M 2n- l T - TA2n- l + dA2n , 
A 2n+l d = M2nT + (1A2n - dA2n+1! 

(100) 

where the first equation holds in degrees at least 2n and the second in 
degrees at least 2n + 1. However, another induction shows that for n ~ 1, 
these equations hold in degrees 2n -1 and 2n, respectively (using the facts 
that "1 commutes with T and (1 in degree zero, that "1A = 0, and that An = 0 
in degrees less than n). The equations also hold in degrees less than 2n - 1 
and 2n respectively, since all terms are zero in that case. Thus (100) is 
valid for n ~ 1 in all degrees. Similarly we obtain, for n ~ 1, 

{ M2nd = A2n- l (1 - (1M2n- l + dM2n , 
M2n+1d = A 2n(1 + TM2n - dM2n+1. 

(101) 

We shall now define hn : Tp(..J"*) ---+ $*. Note that to define hn it suffices 
to define "1xhn for each x E X. The definition proceeds by induction on n 
and on the total degree in Tp(..J"*). Define ho in degree zero by 

[That is, the serrations al, ... , ap of..J" are taken by ho into the serration 
x I--> h(al(x) ® ... ® ap(x)).] Note that "1xhoe"1x = h"1xe"1x = h"1x = "1xch'f/x 
so that 

hoe"1x = eh"1x = e"1x ho. 

Define ho in positive degrees, inductively, by 

"1xho = 8hoA. 

More generally we define, by double induction, 

(102) 

(We could leave the upper limits of summation open because of (99). The 
reader should notice the formal similarity with (63) and (74).) Note that 
if N is either Mj or Aj then "1xhnN = 0 by (102) and (98). Thus 

(103) 
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since vxa = 1 - c'f/x' 

To show that the hn satisfy (59), it suffices to prove that 

(104) 

and 

'f/x(h2n- 1d + dh2n- 1) = 'f/x h 2n-27 . 

We shall only prove (104), which is typical. The proof proceeds by 
double induction as in the definition (102). In degrees less than 2n - 1 
both sides of (104) are zero. In degree 2n -1 (so that the image has degree 
zero), the left-hand side of (104) is 

'f/xh2n d = 2::) -1)iah2n_iMi+1d = 0 
i=O 

by degree. The right-hand side of (104) is 

'f/x h 2n-1 eT = I) -1)iah2n_ i A i eT = 0 
i=1 

by (102) and degree. 
Now, for degrees greater than 2n - 1, it suffices to show that 

since Vx is one-to-one and Dx = vx'f/x' Using (102), (103), and (101) we 
have 

Also, by (102), 

l: (-1)ih2n-iMi+1d 
i=O 

h2n - h 2ndM1 + l: h2n-2j(A2jeT + 7M2j - dM2j+1) 
j=1 

- l: h2n-2j+1(A2j-tCT - eTM2j - 1 + dM2j ). 
j=1 

D x dh2n = h2n - dDxh2n = h2n - ~)_I)idh2n_iMi+l' 
i=O 

Subtracting and rearranging, we obtain 

Dxh2nd - D x dh2n = - 2::: (h2n- 2j d - dh2n - 2j ) M 2j+ 1 
j=O 

- l: (h2n - 2j+1 d + dh2n-2j+1)M2j 
j=1 

+ 2::: h2n-2j(A2j o + 7M2j) 
j=1 

- l: h2n-2j-1(A2j+1eT - eTM2j+d· 
j=O 
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Using the inductive assumption on the first two terms yields 

Dxh2nd - Dxdh2n = - L: h2n-2j-1(J'M2j+l - L: h2n-2jTM2j 
j=O j=1 

- L: h2n-2j-1(A2j+l(J' - (J'M2j+1) 
j=O 

+ L: h2n-2j(A2j(J' + TM2j ) 
j=1 

- L: h2n-2j-lA2j+l(J' + L: h2n-2jA2j(J' 
j=O j=1 

(L:(-1)ih2n- iAi )(J' = Dxh2n - 1 (J'. 
i=l 
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as was to be shown. [The last equation is obtained by applying Vx to (102) 
and using (103).] 

We claim that for the hn we have just constructed, 

This is easily proved by induction using the definition (102). In particular, 
we have 

hn(L).a) = 0 if n > (p -1) deg(a). (106) 

Remark: The construction of this special system of hn was undertaken for one 
purpose only, the proof of (105), and from now on this property is all we 
will use. It might be possible to show directly that the hn defined by 
the general procedure of 20.2 can be so chosen to possess this property, 
but it is not clear how to do this. Of course, the present hn have the 
added advantage of being homomorphisms into '(i/o (X; $) rather than into 
an injective resolution, and of being natural. This fact could be used to 
simplify and shorten the discussion of 20.10, but we prefer the method used 
there. 

21.3. It follows directly from (106) that 

Stj = 0 for j < O. (107) 

Now assume that .Yi and fIJ are sheaves of Zp-modules. By (61), (64), and 
(74), equation (105) implies that 

h(P-l)(q+l) (6. (da) ) = (_l)m(q+l) (m!)dh(p_1)q(6.a), 

where q = dega, p is odd, and m = (p-l)/2. For p = 2 we have, similarly, 

hq+l(da 0 da) = dhq(a 0 a), where q = dega. 

If p is odd we define 

tq = (_I)mq(q+l)/2(m!)-q E Zp, 

and if p = 2, we put tq = 1. Then it follows that the maps 

A : a 1-+ tqh(p_1)q(6.a) 
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of A q --+ &fl commute with the differential. For q = 0 this is just a f-+ 

ho(~a), so that), extends the map h~ : a f-+ h(~a) of A --+ $. Now 
h~ is a homomorphism since p$ = O. Moreover, by (61), (75), or their 
analogues for p = 2, it follows from (105) that), is a homomorphism. Thus 
), is a homomorphism of resolutions extending h~, and it follows that 
),* : H~(X;A) --+ H~(X;$) is just the homomorphism (h~)* induced by 
the coefficient homomorphism h~. Consequently, 

(108) 

21.4. For the remainder of this section we shall restrict our attention ex
clusively to sheaves of Zp-modules. 

For p = 2 we define the Steenrod squares by 

(109) 

since these homomorphisms already possess the properties we desire. 
We shall now restrict the discussion to the case of odd p. Taking cog

nizance of (97) and (108) as well as (89), we define the Steenrod pth powers 

I ga;: H~(X;A) --+ H~+2r(p-l)(X;$) I (110) 

by 

ga; = (-lttqSt2r(p-l) = (-lttqSt(p-l)(q-2r)' (111) 

By (108) we have 

I ga~ = (h~)* : H~(X; A) --+ H~(X; $), I 
which is the map induced by the coefficient homomorphism h~ : A --+ $. 

According to (62), Sto(a) = h*(aP) (aP denotes the cup pth power of 
a), and it follows easily from this and (107) that 

r(a) _ {h*(ap ), if dega = 2r, 
gap - 0, if dega < 2r. (112) 

[The verification of this uses the fact that (m!)2 == (_1)(P+l)/2 (modp), 
which follows easily from Wilson's theorem. Formula (112) is the reason 
for using the sign (-It in (111).) 

Similarly, 

Sqr(a) = {h*(a 2 ), if dega = r, 
0, if dega < r. 

An easy computation using (94) yields the Cartan formula 

I ga;(a U b) = E;=o ga~(a) U ga;-i(b) I 
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in the situation of (94), and similarly for the Sqr. 
Trivially, p; commutes with the homomorphisms induced by maps (or, 

generally, cohomomorphisms of coefficient sheaves) in the situation of 20.8. 
(See the diagram (80).) It also follows from (85) that p; commutes with 
connecting homomorphisms. That is, for A C X cP-taut, the diagram 

commutes, where s = 2r(p - 1), and similarly for Sqr. 

Exercises 

1. ® Show that 10.1 need not hold for A open and <I> not paracompactifying. 
In fact, give an example for which <I> = cldlX - A and H;(Xj PJr) =I 0, 
where f1J is a constant sheaf on A. 

2. ® Let X be a simply ordered set with the order topology and assume 
that X is compact. Prove that HP(X) = 0 for p > 0 with any constant 
coefficient sheaf. [Hint: Use the minimality principle 10.8 and the Mayer
Vietoris sequence.] 

3. ® Show that the "long line"s1 is acyclic with respect to any constant 
coefficients. [Hint: Use the "long interval," a compactified long ray, as a 
parameter space to define a contracting "long homotopy" of the long line 
and apply 11.12 and Exercise 2.] 

4. ® Let X be the real line and let {..J>.} be a direct system of sheaves 
on X with ..J = lim..J>.. Show, by examples, that the canonical map 
() : lim..J>.(X) ---+ ..J(X) need be neither one-to-one nor onto. 

5. Let <I> be a family of supports on X, and {Ua } an upward-directed family 
of open sets such that each K E <I> is contained in some U a. Then show 
that 

H;(Xj..J) ~ limH;lu" (Uaj..J). 

6. ® If X is not normal then show that X contains a closed, nontaut sub
space. Give such an example in which X is Hausdorff and the subspace is 
paracompact. [Thus it does not suffice for A to be paracompact in 9.5.] 

7. If..J is a sheaf of L-modules on X, where L is a ring with unit, show 
that ~·(X,Aj..J) is a ~o(XjL)-module and hence that it is <I>-fine for <I> 
paracompactifying. 

8. Call A hereditarily <I>-taut in X if A n U is <I>-taut in X for every open 
U eX. [Then An U is (<I> n U)-taut in U. J Prove that if A is hereditarily 
<I>-taut and B C A, then B is <I>-taut in X <=> B is (<I> n A)-taut in A. 

51 If n is the set of countable ordinal numbers as a well-ordered set, then the long roy 
Y is n x [0,1) with the dictionary order and the order topology. Then 0 x 0 is the least 
element of Y. The long line X is two copies of Y with their least elements identified. It 
is a nonparacompact topological I-manifold. 
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9. @ Define the "one-point paracompactification" X+ of a space X with a 
given paracompactifying family of supports <I> for which E( <1» = X, and 

show that H;(X;J1)::::: H*(X+;J1x +). 

10. @ If J1 is a sheaf on X such that J1IUx is flabby for some open neighbor
hood Ux of each x E X, then show that J1 is flabby. 

11. @ For paracompactifying <1>, Fe X closed and U = X - F, show that 

dim~,L X = max{dim~lu,L U, dim~IF,L F}. 

12. @ Let <I> be paracompactifying. Show that a sheaf J1 is <I>-fine ¢o> for every 
K E <I> and neighborhood U of K there is an endomorphism J1 --+ J1 that 
is 1 on K and 0 outside U. 

13. Let <I> be paracompactifying. Show that a sheaf J1 is <I>-soft ¢o> for every 
K E <I> and s E J1(K) and for every locally finite covering {U,,} of K in X 
there exist elements s" E J1(X) with Is,,1 c U" and with s = (E s,,)IK 
[i.e., sex) = E s,,(x) for x E K]. Also show that J1 is <I>-fine ¢o> there 
exists a partition of unity subordinate to any locally finite covering {U,,} 
of X containing (at least) one member of the form X - K where K E <I> 
[i.e., there exist endomorphisms h" E :ttMn(J1,J1) with Ih,,1 c U" and 
Eh" = 1]. 

14. @ (a) Let X and Y be locally compact Hausdorff and let J1 and ~ be 
c-fine sheaves on X and Y respectively. Show that J10~ is also c-fine. 
[Hint: By taking one-point compactifications, reduce this to the compact 
case. If K c X x Y and W is a neighborhood of K, let {U,,} and {V,a} 
be finite coverings of X and Y respectively such that {U" x V,a} refines 
{W, X - K}. Apply Exercises 12 and 13.] 
(b) If J1 and ~ are c-soft sheaves on the locally compact Hausdorff spaces X 
and Y respectively and if,6~ = 0, then show that J10~ is c-soft. [Hint: 
Consider the collection of all open sets W C X x Y such that (J10~)w is 
c-acyclic, and use the Kiinneth Theorem 15.2, the Mayer-Vietoris sequence 
(27), continuity 14.5, and 16.1.] 

15. @ If W is the one-point compactification of the locally compact Hausdorff 
space X and if i : X "--+ W is the inclusion, show that iJ1 is soft for any 
c-soft sheaf J1 on X. 

16. If L is a ring with unit and fI is an injective sheaf of L-modules on X, show 
that fI(X) is an injective L-module. [Hint: Map X into a point.] 

17. If fI is an injective sheaf on X, show that the sheaf :ttMn( J1, fI) is flabby 
for any sheaf J1 on X. (For J1 = fI, it follows that fI is <I>-fine for any 
paracompactifying family <I> of supports.) 

18. @ If the derived functors H:1x -A (X; e) of Hg(X, A; e) = r~IX_A(e) fit in 
an exact "cohomology sequence of a pair" 

••• --+ H:1X _ A (X; J1) --+H~(X; J1) --+ H~nA (A; J1IA) --+H:tLA (X; J1) --+ ... , 

then show that A is <I>-taut in X. 

19. Let (A, B) be a <I> n Il!-excisive pair of subspaces of X and assume that A is 
<I>-taut, B is Il!-taut, and Au B is (<I> n Il!)-taut. Show that, through 12.1, 
the cup product (33) on page 100 coincides with that of 7.1. 
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20. Let A and B be closed subspaces of X. Show that, through 12.3, the cup 
product (33) on page 100 coincides with that of 7.1. 

21. ® Show that for a sheaf 2 on the space X, the following four conditions 
are equivalent: 

(a) 2 is flabby. 

(b) 2 is <p-acyclic for all families <P of supports on X. 

(c) H~(X;2) = 0 for all <P. 

(d) Hl(X, U; 2) = 0 for all open sets U C X. 

22. Define DimX to be the least integer n (or 00) such that H~(X;d) = 0 
for all k > n, all sheaves d on X, and all <P; i.e., Dim X = sUP<I> dim<I>,z X. 
Show that the following three statements are equivalent: 

(a) DimX~n. 

(b) "m (X; A) is flabby for all d. 

(c) Every sheaf d on X has a flabby resolution oflength n. 

23. ® Let X be the subspace of the unit interval [0,1] consisting of the points 
{O} and {lIn} for integral n > O. Show that dimzX = 0 but Dim X = 1. 

24. If every point of X has an open neighborhood U with Dim U ~ n, show 
that Dim X ~ n. [Hint: Use Exercises 10 and 22.J 

25. ® If X is locally hereditarily paracompact, show that Dim X ~ dimz X + 
1. By 16.28, a topological n-manifold M n has dimz M n = n, and thus 
Dim M n is either n or n + 1. Show that in fact, Dim M n = n + 1 for n ~ 1. 
This latter fact is due to Satya Deo [31J. 

26. Let f : X -+ Y be a closed surjection between locally paracompact spaces. 
Assume that X is second countable and that each x E X has a neighbor
hood N such that fiN: N -+ feN) is a homeomorphism. Then show that 
dimL Y = dimL X. 

27. ® Define a topology on the set N of positive integers by taking the sets Un = 
{I, 2, ... , n} to be the only open sets, together with the whole space and the 
empty set. Show that every sheaf on N is equivalent to an inverse system of 
abelian groups based on the directed set N. If d is a sheaf on N, show that 
CO(Un; d) is isomorphic to the set of all n-tuples (al' """' an), where ai E 
Ai = d(Ui) and where the restriction to Um (m < n) takes (al' ... , an) into 
(al' ... ,am ). Show that Zl(Un;d) = ll(N;d)(Un) R! C°(Un-l;d) with 
the induced restriction map and such that the differential CO ( Un; d) -+ 

Zl(Un;d) takes (al' ... ,an) into (al - 1l"2a2, ... ,an-l - 1l"nan), where 1l"n 
denotes the restriction d(Un) -+ d(Un-l). Show that dimcld,z N = 1. 
Show that HO(N;d) = Urnd n, so that Hl(N;d) is the right derived 
functor Urn ld n of the inverse limit functor. Show that d is flabby ¢? 

each 1l"n : d n -+ d n- l is surjective, and that d is acyclic ¢? for every 
system {a; E A;} the system of equations 

1l"2a2 = al - ai, 
I 1l"3a3 = a2 - a2, 
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has a solution for the ai. 

Also show that an inverse sequence A = {AI, A 2, ... } is acyclic if it 
satisfies the "Mittag-Leffler condition" that given i, there is a j ~ i such 
that Im(Aj --> Ai) = Im(Ak --> Ai) for all k ~ j. 

28. ® If M is a torsion-free L-module, where L is an arbitrary ring, show that 
H~(X; M) is torsion-free over L for any space X and support family <I>. 
[Hint: Use I-Exercise 11.] Give an example of a torsion-free sheaf A on 
X = §l such that HI(X;A) is not torsion-free. 

29. ® Give an example of a sequence {2d of flabby sheaves on the unit interval 
such that lim 2i is not flabby. 

30. A Zariski space is a space satisfying the descending chain condition on 
closed subsets (such as an algebraic variety with the Zariski topology). If 
{2 -\} is a direct system of sheaves on a Zariski space X, show that the 
natural map 

limH*(X;2-\) --> H*(X;2) 

is an isomorphism, where 2 = lim 2-\. Also show that 2 is flabby if each 
2-\ is flabby. 

31. ® A Zariski space is called irreducible if it is not the union of two proper 
closed subspaces. The Zariski dimension Z-dim X of a space X is the 
least integer n (or 00) such that every chain Xo 2 Xl 2 X 2 2 ... 2 Xp =I 
o of closed irreducible subspaces of X has "length" p :::; n. Show that 
dimcld,zX :::; Z-dimX. [Hint: Prove an anologue of 16.14 and show that 
if X is irreducible then all constant sheaves on X are flabby.] 

32. A differential sheaf 2* on X is said to be homotopically <I>-fine, where <I> is 
a paracompactifying family, if for every locally finite covering {U,,} with 
one member of the form X - K for some K E <I>, there are endomorphisms 
h", E Hom( 2* , 2*) of degree zero with Ih" leU" and such that h = L: ho 
is chain homotopic to the identity. [That is, there exist homomorphisms 
D : 2* --> 2* of degree -1 with 1 - h = dD + Dd (d being the differential 
on Q'*).] If this holds for every locally finite covering of X, we merely say 
that 2* is homotopically fine. 

(a) If Q'* is homotopically <I>-fine, show that H*(H:(X; Q'*» = 0 for all 
p> O. [Hint: If ~ E C:(X; 2'), cover X by {Uo } such that Uoo = X -lsi 
and Vo E <I> for Q =I Qo, and such that slU", is a coboundary, say of t", E 
Cp-l(Uo ;Q"), with too = O. Let t = L:h~(to). Show that d't = hOes), 
where d' is the differential of C:i,(X;-), so that h*(~) = 0 in H:(X;2'), 
and finish the proof.] 

(b) Show that the sheaf .<:1, of singular chains defined in I-Exercise 12 
is homotopically fine. [Hint: Use the generalized operation of subdivision 
defined in [38, pp. 207-208] on the defining presheaf.] 

33. ® Let L be a principal ideal domain. Let us say that an L-module M has 
property F if for each finite set {aI, ... , an} eM, 

n 

N = {a E M I ka = L kiai for some ki ELand 0 =I k E L} 
i=l 

is free. Prove the following statements: 
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(a) If M is countably generated and has property F, then M is free. 

(b) If X is locally compact Hausdorff, then H~ (X; L) has property F. 
[Hint: Reduce this to the compact case and consider reduced coho
mology. Cover X by closed sets Kl, ... ,Kk with ajlKi E fIO(Ki;L) 
trivial for all i, j.] 

(c) If X is locally compact, Hausdorff, and locally connected, then 
H~(X; L) has property F. [Hint: Cover X by the interiors of sets 
K 1, ... , K k with each Ki compact for i > 1 and with KIa neighbor
hood of 00. Prove by induction on r that if {Di} is a closed covering 
of X with Di C int K i , then the image of N in H~ (Dl U ... U Dr; L) 
is finitely generated, and hence free by Exercise 28.] 

(d) If X is locally compact and separable metric, then H;(X; L) is count
ably generated. [Hint: Use continuity.] 

34. ® If S is a set, let B(S) be the additive group of all bounded functions 
f : S -+ Z. If X is a space, let C(X) be the group of all continuous 
functions f : X -+ Z where Z has the discrete topology. Prove the following 
statements: 

(a) HO(X;Z) ~ C(X) R:; AsHO(X;Z); generalize this to arbitrary con
stant coefficient groups. 

(b) B(S) ~ C(8), where 8 denotes the Stone-Cech compactification of 
the discrete space S. 

(c) The following two statements are equivalent: 

1. B(S) is free for every S with card(S) :S T). 

i1. C(X) is free for every compact Hausdorff space X with a dense 
set of cardinality :S T). 

(d) The same as part (c) with "free" replaced by "Ext(e,Z) = 0." 

Remark: N6beling [63] has proved that B(S) is free for all S (previ
ously, Specker [77] had done this for countable S) and so we conclude 
that H~(X; Z) is free for all locally compact Hausdorff X. The Univer
sal Coefficient Theorem II-15.3 and Exercise 28 then imply that the same 
holds for an arbitrary coefficient ring L. 

35. Let L be a Dedekind domain (i.e., a domain in which every ideal is pro
jective). Show that 16.12 remains true if condition (c) is replaced by the 
following two conditions: 

(c') A EB fjJ E 6 '* both A and fjJ are in 6. 
(c") Lu E 6 for all open sets U C X. 
Thus extend 16.31, 16.32, and 16.33 to Dedekind domains. [Hint: Use the 
known fact that every ideal of a Dedekind domain is finitely generated.] 

36. Let L be a principal ideal domain. If A is an L-module or a sheaf of L
modules and pEL is a prime, we say that A has p-torsion if multiplication 
by p : A -+ A is not a monomorphism. Let T(A) denote the set of all 
primes pEL such that A has p-torsion. Prove the following statements: 

(a) T(A) = U T(Ax). 
xEX 
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(b) T(A* f!il) = T(A) n T(f!il). (Prove this first for modules and then 
generalize to sheaves). 

( c) If F is a covariant left exact functor (from sheaves to sheaves or 
sheaves to modules) that preserves the L-module operations, then 

n 

T(F(A I ,A2 , ... ,An )) c nT(Ai). 
i=l 

[Note the cases: F(A, f!il) = C:(Xj A) * C~(Yj f!il)) and F(A, f!il) = 
r~(A 181 P) * rq,(f!il 181 uf') when P and uf' are torsion-free.] 

(d) T(A 181 f!il) c T(A) U T(PlJ). 

[Hint for (b): If p E T(A), there is a monomorphism Lp = L/pL -+ A. 
Moreover, Lp * B = Ker{p : B -+ B}.] 

37. ® Give an example of a compact, totally disconnected Hausdorff space 
X and a locally closed subspace A c X such that the canonical map 
UmA(U) -+ A(A), where U ranges over the neighborhoods of A, is not 
surjective for any constant sheaf A =I 0 on X. 

38. ® If A c X and A is a sheaf on X that is concentrated on A, then show 
that H:(X,AjA) ~ H;nA(A,A;A). 

39. ® Let A c X and let <P be a family of supports on X such that each 
K E <P n A is in the interior of A in A (Le., K has a neighborhood N with 
N n A c A). Show that C;nA(A, Aj A) = 0 for all sheaves A on X. If A 
is concentrated on A, show that the restriction Hi(XjA) -+ HinA(AjA) 
is an isomorphism. [Note that the conditions on <P are satisfied when A is 
locally closed and <pnA = <pnA, and each member of <P has a neighborhood 
in <P.] 

40. ® Let T = lR/Z. Let X be any space and let 87 (respectively, 870) denote 
the sheaf of germs of continuous functions from X to lR (respectively, T). 
Show that there is an exact sequence 

of sheaves, where j is induced by the canonical surjection lR -+ T. Conclude 
that if X is paracompact, then HI (X; Z) is isomorphic to the group [X j T] 
of homotopy classes of maps from X to T. Generalize this to arbitrary 
paracompactifying families of supports on X. 

41. ® Let .1{'*(X, AjA) be the derived sheaf of W*(X,AjA), and let A be 
constant. 

(a) Show that .1{'°(X,AjA) ~ AX-A. 

(b) Show, by example, that .1{'Q(X, Aj A) need not be zero for q> O. 

(c) If.1{'q (X, Aj A) = 0 for q > 0, show that there is a natural isomor
phism Hi(X,AjA) ~ Hi(XjAx_A) for any <P. 

(d) If there exists an isomorphism H*(U, AnUj.4) ~ H*(Uj.4U-A) that 
is natural for open sets U eX, show that .1{'q (X, A; A) = 0 for q > O. 
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42. Let Jd* and f!iJ* be differential sheaves on the spaces X and Y respectively. 
Suppose that Jdr,;&fI = 0 for all p, q. Show that there is a natural exact 
sequence 

0-+ EBdfP(Jd*)0dfQ (f!iJ*) -+ dfn(Jd*0f!iJ*) -+ EBdfP( • .t")'*dfq(f!iJ") -+ 0 
p+q=n p+q=n+l 

of sheaves on X x Y. In particular, show that Jd o0f!iJ" is a resolution of 
Jd0f!iJ if Jd" and f!iJ* are resolutions of Jd and f!iJ respectively such that 
Jdr,;&fI = 0 for all p, q. [Hint: Consider the algebraic Kiinneth formula for 
the double complex Jd"(U) 0 f!iJ"(V), where U and V are open in X and 
Y respectively.] 

43. Let <P be a paracompactifying family of supports on X. If {P>,} is any 
family of <p-soft sheaves on X, show that f1>. P>, is <p-soft. 

44. Let X be a locally paracompact space and let F be the fixed point set of 
a homeomorphism of period p on X, where p is a prime. Let L = Zp and 
assume that dimL X < 00. If X is dCL' show that F is also dCL' 

45. @ Let P be a sheaf on the Hausdorff space X such that P u is flabby for 
all open sets U C X. Show that lsi is discrete for all s E P(X). 

46. @ If X is a nondiscrete Hausdorff space and if M =f. 0 is a constant sheaf 
on X, show that there does not exist a sheaf P on X containing M as a 
subsheaf and such that P 0 Jd is <P-acyclic for all families <P of supports 
and all sheaves Jd on X. 

47. Let 
o -+ Jd" i f!iJ* j W" -+ 0 -----7 -----7 

19 1h 
0-+ P" i' .At" 

j' .;1/* -+ 0 -----7 -----7 

be a diagram of differential sheaves (or of ordinary chain complexes) such 
that the rows are exact and the square is homotopy commutative, i.e., there 
is a homomorphism D : f!iJ" -+.;1/* of degree -1 such that 

j' 9 - hj = dD + Dd. 

Define a homomorphism r : df*(Jd") -+ df"(P") as follows: If a E A" 
with da = 0 and if D(i(a)) = j'(m), put 

r[a] = [(i')-l(g(i(a)) - dm)], 

where square brackets denote homology classes. Show that the induced 
diagram 

... -+dfP(Jd") -S dfP(f!iJ") 2.:... dfP( W") ~dfP+l(Jd") -+ ... 

1r 19 o 1ho 1r 
... -+ dfP(P") ~dfP(.At") £"'dfP(.;I/*) ~ dfP+1 (P") -+ ... 

is commutative. 
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Similarly, suppose that 

0-+ .;{* i fjJ* -L. rr -+ 0 ---+ 

1f 19 

o -+ 9!* i' vIt* L .;Ii" -+ 0 ---+ 

has exact rows and homotopy commutative square, that is, 

gi - if 1= dD' + D'd, where D':.;{· -+ vIt*. 

Define h" : .1f"(~*) -+ .1f*(.;Ii") as follows: If bE fjJ* and db = i(a), put 

h*[j(b)] = [j'(g(b) - D'(a»]. 

Again, show that the diagram above of derived sheaves is commutative. 
Also show that these maps (t" in the first case and h" in the second) 

depend only on the homotopy class of D or of D'. Suppose that I, g, and h 
are all given such that both squares are homotopy commutative. Assume 
that there is a homomorphism J : .;{" -+ .;Ii", of degree -2, such that 
j'D' - Di = dJ - Jd. Then in the first case above, show that r is induced 
by I and in the second case, that h* is induced by h. 

48. Use the fact that ~*(X;.) is naturally pointwise homotopically trivial 
(see Section 2) to show that for any differential sheaf .;{*, the inclusion 
e : .;{* -+ ~*(X;';{·) is a pointwise homotopy equivalence. That is, for 
each x E X there are natural homomorphisms 

with 

of degree zero, 
of degree - 1, 

'fixe = 1 and 1 - e'flx = dDx + Dxd. 

Thus, for example, ~*(X;';{*) is a resolution of.;{ if';{· is. 

49. Let I : .;{* -+ $" be a homomorphism of differential sheaves. (We note the 
special case in which these are ordinary chain complexes with differentials 
of degree +1, for example, the induced map r~(.;{") -+ r~(fjJ*).) Define 
the mapping cone of I to be the differential sheaf vltj, where 

vltj = .;{pH EEl fjJP 

with differential given by d(a, b) = (-da,J(a) + db). [Note that r~(vltj) is 
the mapping cone of I : r~(.;{") -+ r(>(fjJ*).] Consider the exact sequences 

where i(b) = (0, b) and j(a, b) = a. Show that the connecting homomor
phism 0 : .1fP (.;{*) -+ .1fP ( fjJ*) of this sequence is just r. Note that j 
anticommutes with d. 

Suppose now that I is one-one and let ~* = Coker I, so that the 
sequence 0 -+ .;{* ....!..... fjJ* -.!!..... ~* -+ 0 is exact. Let 6' : .1fP( ~*) -+ 
.1fP+l(.;{*) be the connecting homomorphism of this sequence. Consider 
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the homomorphism h : .Atj --+ 'f,}P given by h(a, b) = g(b). Show that the 
diagram 

commutes up to the sign that is indicated. In particular, h* is an isomor
phism. 

[Note that if A* is ~-acyclic then passing to sections, we obtain that 
h* : HP(r 4(.Atj)) -+ HP(r4( 'f,}*)) is an isomorphism by applying the above 
results to the case of ordinary chain complexes and using the exactness of 
0--+ r4(A") --> r4(.'B*) --+ r4('f,}*) --> 0.) 

50. Let A be a torsion-free sheaf and consider the multiplication n : A --> A, 
where n =1= 0 is some fixed integer. Let A" be a given ~-acyclic resolution 
of A (not necessarily torsion-free) and let Mn(A*) denote the mapping 
cone of n : A* --> A* (see Exercise 49). Show that there is a natural 

isomorphism h" : HP(r4(Mn(A"))) ....::.. H~(X; An), where An = A/nA, 
such that the diagram 

commutes up to the signs indicated. [Here the top row is as in Exercise 
49, the vertical maps H"(r4(A")) --> H;(X;A) are the canonical isomor
phisms of 5.15, and the bottom sequence is the cohomology sequence of 
the coefficient sequence 0 --> A ~ A --> An --> 0.) 

[Hint: Compare A" with an injective resolution and then compare 
'f,}* (X; A) with the same injective resolution and apply Exercise 49.) 

51. ® Let A* and .'B" be ~-acyclic resolutions, of Z2-modules, of Z2 on X. 
Suppose that we are given a homomorphism 0 : A* 0 A" --> .'B" of differ
ential sheaves which is symmetric [Le., O(a0b) = (_1)(deg a)(deg b)O(b0a)] 
and which extends the multiplication map Z2 0 Z2 --> Z2. Then show that 
H~(X;Z2) = 0 for all q > O. Moreover, if ~ is paracompactifying with 
E(~) = X, and if A* and .'B* are ~-soft, then show that dimz2 X = O. 

52. Let p be a prime and let 2* be a sheaf of differential algebras over Zp on 
a space X (i.e., 2* is a differential sheaf of Zp-modules and we are given a 
homomorphism e : 2* 0 2* --> 2* of differential sheaves preserving degree 
and associative). Suppose that 2* is a ~-acyclic resolution of Zp, that 
e is (signed) commutative, and that e extends multiplication Zp 0 Zp --> 

Zp. Then show that H~ (X; Zp) = 0 for all n > O. If, moreover, ~ is 
paracompactifying with E(~) = X, and ::r is ~-soft, then show that 
dimzp X = O. 

53. ® Let A and .'B be sheaves on a Hausdorff space X, let ~ c c (but X 
need not be locally compact), and let q > O. For a E H~(X; A) and 
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fJ E Hq(X; &1), show that the cup product afJn = 0 for some integer n. 
[Hint: iP may as well be taken to be clK for some compact set K C X. 
Then n may be chosen to depend only on K and fJ. Use the fact that fJ is 
"locally zero."] 

54. ® Let G be a compact Lie group acting on the paracompact space X. Show 
that over any base ring L, dimL X/G ~ dimL X. [Hint: Use the fact that 
every orbit G(x) has a "tube" about it, that is, an invariant neighborhood 
N with an equivariant retraction r : N -+ G(x). Also, the set S = r-l(x) 

(called a "slice at x") induces a homeomorphism S/Gx ....::... N/G.] 
55. ® Let 0 -+ ,yf' -+ ,yf -+ ,yf" -+ 0 be an exact sequence of sheaves on 

the Hausdorff space X and assume that ,yf' and ,yf" are locally constant. 
Assume one of the following three conditions: 
(a) X is locally compact Hausdorff and clci. 
(b) X is clci and the stalks of,yf' are finitely generated. 
(c) X is clci and the stalks of ,yf' are finitely generated and free. 
Then show that ,yf is locally constant. (Compare I-Exercise 9.) Also, give 
an example showing that X being locally compact and cle l is not sufficient 
for the conclusion. 

56. ® If X is a locally compact Hausdorff space and dimz X = n, then show 
that dimz X x X is 2n or 2n - 1. (This is due to 1. Fary.) 

57. ® Call a space X rudimentary if each point x E X has a minimal neigh
borhood. (The prototype is the topology on the positive integers given 
by Exercise 27.) If {.P>.I >. E A} is an arbitrary family of sheaves on the 
rudimentary space X, then show that 

58. ® Let X be a rudimentary space. For x E X let Ux be the minimal 
neighborhood of X. If A C X, then show that A is rudimentary. If x E 
A C Ux , then show that all sheaves on A are acyclic and that A is taut in 
X. 

59. ® Let M = N x N where N is as in Exercise 27. Then a sheaf ,yf on M is 
equivalent to the double inverse system 

{Ai,j l'Tri,j : Ai,j -+ Ai-l,j; Wi,j : Ai,j -+ Ai,j-l; 'Tri,j-IWi,j = Wi-l,j'Tri,j}. 

Show that ,yf admits a flabby resolution 0 -+ ,yf -+ ,yfo -+ ,yfl -+ ,yf2 -+ 0, 
whence 

lim~jAi,j = Hn(M;,yf) = 0 for n> 2. 

Show, however, that for the inverse sequence ,yfl~ = {AI,1 <- A 2 ,2 <- ... } 

we have 
lim~jAi,j ~ limkAk,k, 

and hence that limLA;,j = 0 also. 

60. Let X be locally paracompact and let {Fa} be a locally finite closed cov
ering of X with dimL Fa ~ n. Then show that dimL X ::; n. 

61. Let K be a totally disconnected compact Hausdorff space. If,yf is a sheaf 
on K with r(,yf) = 0, then show that ,yf = O. 



Chapter III 

Comparison with Other 
Cohomology Theories 

We return in this chapter to the classical singular, Alexander-Spanier, de 
Rham, and Cech cohomology theories. It is shown that under suitable 
restrictions, these theories are equivalent to sheaf-theoretic cohomology. 
Homomorphisms induced by maps, cup products, and relative cohomology 
are also discussed at some length. In Section 3 the direct natural transfor
mation between singular theory and de Rham theory, which is important 
in the applications, is considered. 

Throughout this chapter L will denote a given principal ideal domain, 
which will be taken as the base ring. All sheaves are to be sheaves of 
L-modules; tensor products are over L; and so on. 

Most of this chapter can be read after Section 9 of Chapter II. 

1 Singular cohomology 

For the moment, let X be a fixed space and let /7* = /7*(X;L), in the 
notation from 1-7. For a sheaf A on X we define the singular cohomology 
groups of X with coefficients in A and supports in the paracompactifying 
family ~ by 

(1) 

For A locally constant with stalks G, we also have the functors L!.,H4,(X; A) 
= H* (r 1> (/7* (X; A))) of Chapter I, which coincide with classical singular 
theory when ~ is paracompactifying. There is, for A locally constant, the 
homomorphism 

J1: S*(U;L) 0A(U) --+ S*(U;AIU) 

given by J1U 0 g) (0') = j(O') . O'[';(g) E r(O'*A), where 0'['; : A(U) --+ 

(O'*A)(O'-lU) = r(O'*A) is the map (4) on page 12. Over an open set U 
on which A is constant, this is just the canonical map 

S*(U; L) 0 G = Hom(.6.*(U) , L) 0 G --+ Hom (.6. * (U), G) = S*(U; G). 

Since .6.*(U) is free, this is obviously an isomorphism when G is finitely 
generated. Therefore 

179 
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when ,yf is locally constant with finitely generated stalks. This is not true if 
the stalks are not finitely generated; see Exercise 7. However, for a general 
locally constant sheaf .Yi the map f.L is a map of differential presheaves, and 
so it induces a map of differential sheaves 

fl: /7*(X;L) ®.Yi -+ ,g>*(X;.Yi) 

and hence a natural map 

(2) 

to which we will return later. 
The cup product of singular cochains SP(U; L)®Sq(U; L) -+ Sp+q(U; L) 

induces a product ,g>P ®,g>q -+ /7p+q, which is a homomorphism of differen
tial sheaves when ,g>* ®,g>* is given the total degree and differential. Thus 
/70 is a sheaf of rings with unit and each ,g>P (and hence ,g>P ®.Yi) is an 
/70 -module. 

The sheaf /70 is clearly the same sheaf as Wo(X; L) and hence is flabby, 
and consequently is IP-fine for any paracompactifying family IP. Thus each 
/7P ®.Yi is also IP-fine. Similarly, /7* (X;.Yi) is IP-fine for IP paracompacti
fying and .Yi locally constant. 

Now, the stalks of /7P are torsion-free so that /7P ®.Yi and f<I>(/7P ® 
,.Yi) are exact functors of .Yi when IP is paracompactifying. Thus.Yi f-> 

sH;(X;.Yi) is a connected sequence of functors. The sequence 

0-+ f<I>(.Yi) ~ f<I>(/7° ®.Yi) ~ f<I>(/7 1 ®.Yi) ~ ... 

is of order two (see II-I). Hence E takes f<I>(.Yi) = Hg(X;.Yi) into Ker(d) = 
sHg (X; .Yi), yielding a natural transformation of functors 

Thus, by II-6.2, we obtain a unique extension (compatible with connecting 
homomorphisms) 

Ie: H;(X;.Yi) -+ sH;(X; .Yi)·1 

If X is HLC, then by II-I, ,g>* is a resolution of L, and since ,g>* is 
torsion free, ,g>* ®.Yi is a resolution of.Yi for any .Yi. By II-4.3 it follows that 
s H~ (X;.Yi) = 0 for p > 0 and .Yi flabby and also that e is an isomorphism 
in degree zero for IP paracompactifying. Thus, if X is HLC and IP is 
paracompactifying, then sH;(X;.Yi) is a fundamental connected sequence 
of functors, whence e is an isomorphism by II-6.2.1 

We shall be concerned with the properties of e for general X, with IP 
paracompactifying. 

lBy II-6.2 the inverse of () is the homomorphism p of II-5.15. 
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Again, for X general and <I> paracompactifying, the singular cup product 
induces a chain map 

and hence a homomorphism 

satisfying properties analogous to those in II -7.1. 
We claim that B preserves these products. That is, if <I> and 'II are 

paracompactifying, then the two maps 

H;(X; A) 0 H~(X; fiI) ---7 sH;nw(X; A 0 fiI) 

defined by 0: 0 13 f-+ B(o: u 13) and 0: 0 13 f-+ B(o:) U B(j3), coincide. To check 
this in degree zero, note that the obvious commutative diagram 

L0L 2.. L 

u 
--+ 

induces, upon tensoring with A 0 fiI, the commutative diagram 

L0A0L0fi1 --+ L0A0fi1 

10 ®1®E®1 ~ 10 ®1®1 

/70 0 A 0 /70 0 fiI --+ /70 0 A 0 fiI 

and this induces the commutative diagram 

in which the composition along the bottom is the degree zero cup product. 
By the definition of B this implies that B( 0: U 13) = B( 0:) U B(j3) in degree 
zero. The contention then follows from II-6.2 applied to the two natural 
transformations 0: 0 13 f-+ B(o: U 13) and 0: 013 f-+ B(o:) U B(j3). 

Now let J : X ---7 Y be a map and let <I> and'll be paracompactifying 
families on X and Y respectively, with <I> ::> I-1 iI!. Then I induces a 
homomorphism S*(U;L) ---7 S*(f-1(U);L), U c Y open and therefore an 
J-cohomomorphism of the induced sheaves 

r : /7*(Y;L)"""" /7*(X;L). 

Tensoring this with the J-cohomomorphism A ...,.,.. r A for a sheaf A on 
Y, we obtain a functorial J-cohomomorphism 

/7*(Y; L) 0 A...,.,.. /7* (X; L) 0 r A. 
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This induces, in turn, j* : rw(9'*(Y; L) ®.A) ---+ r<I>(9'*(X; L) ® j*.A), 
which extends the canonical map rw(.A) ---+ r<I>U*.A). (That is, we have 
compatibility with the augmentations.A >---+ 9'*(X;L) ®.A and j*.A >---+ 

9'*(X; L) ® j*.A.) This gives the commutative diagram 

o ---+ rw(.A) ~ r w(9'°(Y; L) ®.A) 

1/* 1/* 
o ---+ r<I>U*.A) ~ r<I>(9'°(X; L) ® j*.A), 

which induces the commutative diagram 

H&(Y;.A) 

1/* 
Hg(X;j*.A) 

Consider the diagram 

--.!!..... sH&(Y;.A) 

1/* 
--.!!..... sHg(X;j*.A). 

Hq,(Y;.A) --.!!..... sHq,(Y;.A) 

1/* 1/* 
H;(X;j*.A) --.!!..... sH;(X;j*.A). 

We claim that this diagram commutes. This is so in degree zero as just 
shown. Considering the upper left and lower right parts of the diagram as 
connected sequences of functors of .A, it is easily seen that both composi
tions j* 0 () and () 0 j* commute with connecting homomorphisms. Thus 
the contention follows from 11-6.2. 

Now we wish to study relationships with subspaces. Let F c X be 
closed and put U = X-F. Let {l be a paracompactifying family of 
supports on X. 

The exact sequence 0 ---+ .Au ---+ .A ---+ .A F ---+ 0 induces an exact 
sequence 0 ---+ fJ'*(X;L) ®.Au ---+ 9'*(X;L) ®.A ---+ fJ'*(X;L) ®.AF ---+ O. 
But 9'*(X; L)®.Au ~ (9'*(X; L)®.A)u. Therefore, also, 9'* (X; L)®.AF ~ 
(9'*(X; L) ® .A)F. 

The restriction homomorphism S* (V; L) ---+ S* (V n F; L), for V C X 
open, induces an epimorphism (fJ'*(X;L) ® .A) IF - 9'*(F;L) ®.A of 
sheaves on F. The kernel of this is an 9'°(X;L)IF-module and hence is 
{lIF-soft. Thus we have an epimorphism 

r<I>(9'*(X; L) ® .AF) = r<I>IF«9'* (X; L) ® .A)IF) -r<I>IF(fJ'*(F; L) ® .AIF) 

of chain complexes. The map f<I>(9'*(X; L) ®.A) ---+ r<I>(fJ'*(X; L) ®.A F) 
is also onto. Define the chain complex K;(X, F;.A) to be the kernel of the 
epimorphism f<I>(9'*(X; L) ®.A) - r<I>IF(9'*(F; L) ® .AIF). 

We define the relative singular cohomology with coefficients in the sheaf 
.A by 

I sH;(X,F;.A) = H*(K;(X,F;.A»·I 
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For d locally constant we have the commutative diagram 

o -+ K~(X, F; d) -+ f<I>(9'*(X; L) 0 d) -+ f<I>W(9'*(F; L) 0 dIP) -+ 0 
! ! ! 

0-+ S~(X,F;d) -+ S~(X;d) -+ S;W(F;d) -0 

in which the two vertical maps on the right are induced by p, and the one on 
the left is forced by commutativity and exactness of the rows. The 5-lemma 
shows that the vertical map on the left induces a homology isomorphism if 
both the p, maps do. 

To relate these relative groups to the absolute groups and to the sheaf
theoretic cohomology groups, we consider the homomorphisms 0 for the 
sheaves d u, d, d F, and the following diagram of chain groups: 

o - r~(9'·(XjL)®..du) - r~(9'·(XjL)®..d) - r~(9"(XjL) ®..dF) - 0 

1 1 = 1, 
0- K;(X, Fj..d) - r~(9'·(XjL)®..d) --+ r~IF(9'·(FjL)®..dIF) --+ o. 

This induces the following commutative diagram: 

H~lu(U; diU) H~IF(F; ~,fIP) 

II II 
... ~ H~(X;du) -+ H:(X;d) -+ H:(X; d F) -+ ... 

le le 1e 
... -+ sH:(X; du) -+ sH:(X;d) -+ sH:(X; d F) -+ ... 

1 1= 11* 
... -+ sH:(X, F; d) -+ sH:(X;d) -+ sH~IF(F; dIP) -+ ... 

The bottom row, for d = L, is just the singular cohomology sequence of 
the pair (X, F). The row of vertical maps marked "0" are isomorphisms if 
X is HLC. The composition of vertical maps on the right is the "0" map for 
F by the uniqueness part of II-6.2. Also, r, and hence each of the vertical 
maps on the bottom row, is an isomorphism if X and F are both HLC, as 
also follows from II-6.2. Note that (9'*(X; L) 0d)1U ~ 9'*(U; L) 0d and 
f<I>(9'* (X; L)0du) = f<I>((9'*(X; L)0d)u) = f<I>lu((9'* (X; L)0d)lU) = 
f<I>lu(9'* (U; L) 0 d), so that sH:(X; du) = sH~IU(U; dIU). 

It follows that if X and F are both HLC, then all vertical maps in 
the last diagram are isomorphisms, and in particular, the relative singular 
cohomology of (X, F) "depends" only on X -F = U;2 i.e., invariance under 
relative homeomorphisms is satisfied. Of course, this is false without the 
HLC condition on both X and F. 

Since CW-complexes are locally contractible, and hence HLC, we now 
know that sheaf-theoretic cohomology agrees with singular cohomology (in
cluding cup products) on pairs of CW-complexes. (This also follows from 

2Strictly speaking, it also depends on <l>IU, but in the most important case of compact 
supports on locally compact spaces, <l>IU = c is also intrinsic to U. 
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uniqueness theorems for cohomology theories on CW-pairs, but the present 
result is stronger because it covers the case of twisted coefficients.) 

For HLC pairs and constant coefficients, one can do much more using 
the methods employed at the end of the next sectionj see 2.1. 

If X is HLC, .;1 is locally constant, and <l> is paracompactifying, then 
97*(Xj L) ®.;1 and 97*(Xj.;1) are both <l>-acyclic resolutions of.;1, and it 
follows that p,* of (2) is an isomorphism. Since p, preserves cup products,3 
so does p,*. Therefore, for X HLC, .;1 locally constant, and <l> paracom
pactifying, we have the natural multiplicative isomorphisms 

Hi(Xj.;1) --.!!..... sHi(Xj.;1) L ~Hi(Xj.;1). 
~ ~ 

We summarize our discussion in the following theorem. 

1.1. Theorem. There exist the natural multiplicative transformations of 
functors (of X as well as of .;1) 

o ~. 
Hi(Xj.;1) ----+ sHi(Xj.;1) <- ~Hi(Xj.;1) 

in which the groups ~Hi(Xj A), and hence p,*, are defined only for locally 
constant.;1 and are the classical singular cohomology groups when <l> is 
paracompactifying. The map p,* is an isomorphism when .;1 has finitely 
generated stalks. Both () and p,* are isomorphisms when X is HLC and <l> 
is paracompactifying. Both natural transformations extend to closed pairs 
of spaces with the same conclusions. 0 

1.2. Example. Let X be the union of the 2-spheres of radius lin all 
tangent to the xy-plane at the origin Xo. (See II-lO.lD.) Let W be the 
same point set with the CW-topology. Then the identity map (W, xo) -+ 

(X, xo) is a relative homeomorphism, since the complement is a countable 
topological sum of 2-planes in both cases. However, by the foregoing results, 
~Hn(w, Xoj Z) ~ Hn(w, Xoj Z) ~ ffi:l H~(lR2j Z) vanishes for n > 2. On 
the other hand, ~Hn(X,xojZ) ~ ~Hn(XjZ) is nonzero for arbitrarily 
large n, as shown in [3]. 0 

1.3. Example. Let X be the Cantor set. Then by continuity II-l4.6 
we have H O (X j Z) ~ tin} Z2", which is countable. On the other hand, 
~HO(XjZ) ~ Hom(Ho(XjZ),Z) ~ Hom(ffixZ,Z) ~ TIxZ, which is un
countable. 0 

Another such example is the "topologist's sine curve" of II-lO.9. 

3This follows directly from the definition of the cup product in singular theory. 
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2 Alexander-Spanier cohomology 

Put..d* = ..d*(Xj L) as defined in 1-7. For any sheaf $ on X we define the 
Alexander-Spanier cohomology with coefficients in $ and supports in q> by 

(3) 

When $ = L and q> is paracompactifying, this coincides, by 1-7, with 
the classical Alexander-Spanier cohomology. This is also true for $ = G 
constant and q> paracompactifying, as we shall see presently. 

By II-I, ..d* is a resolution of L, and ..d* is torsion free. Thus, ..d* ® $ 
is a resolution of fiJ and is an exact functor of $. The cup product 
AP(Uj L) ® Aq(Uj L) --+ Ap+q(Uj L), defined by (f u g)(xo, ... , x p+q) = 
f(xo, . .. , xp)g(xp, .. . , xp+q), induces a product ..dP ®..dg --+ ..dp+q (a ho
momorphism of differential sheaves) and also (..dP ® fiJ) ® (..dq ® ~) --+ 

..dp+q ® (fiJ® ~). Thus..d° is a sheaf of rings with unit, and each..dP ®fiJ is 
an ..dO-module. Now..d° ~ ~o(XjL), and hence it is flabby. Thus, when 
q> is paracompactifying, ..dP ® fiJ is q>-fine. 

Since ..d* ® $ is a resolution of $, we have the homomorphism 

(4) 

of II-5.15. 
If q> is paracompactifying, then ..d* ® $ is q>-fine, so that p is an iso

morphism. (Its inverse is the analogue of the map () of Section 1.) For 
q> paracompactifying, a development similar to that of Section 1 can be 
made. It is somewhat simpler since () is now always an isomorphism. 

In particular, for F C X closed, U = X - F, and q> paracompactifying, 
there is the natural commutative diagram with exact rows: 

H: IU (U j fiJ) --+ 

1 
AH:(X, Fj fiJ) --+ 

H:(Xj fiJ) --+ H:IF(Fj fiJ) 

1 1 
AH:(Xj $) --+ AH:IF(Fj fiJ) 

where the relative Alexander-Spanier cohomology is defined to be the ho
mology of the kernel of the canonical surjection 

r4>(..d*(Xj L) ® $) --+ r4>IF(..d*(Fj L) ® fiJ). 

If f : UP+! --+ L is an Alexander-Spanier p-cochain on the open set 
U C X and if a : ~p --+ U is a singular p-simplex in U, put (>../)(a) = 
f(a(eo), ... , a(ep )), where the ei are the vertices of the standard p-simplex 
~p, This defines a natural map>.. : A*(Uj L) --+ S*(Uj L), which induces 
a homomorphism ..d* --+ f}J* of differential sheaves. This, in turn, induces 
a chain map r4>(..d* ® fiJ) --+ r4>(f}J* ® fiJ) and hence a natural homology 
homomorphism 
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When <I> is paracompactifying, the compatibility properties of ,\ *, to
gether with 11-6.2, imply that ,\* = Bp, where B is as in Section 1 and p is 
as in (4). 

We now turn to the case of constant coefficients in the L-module G. 
There is a natural map 

A*(Uj L) ® G -; A*(Uj G). 

Note that when G is finitely generated, this is already an isomorphism. 
This induces a homomorphism .;1* ® G -; .;1*(Xj G). Also, .;1* (X; G) is 
an .;1o(Xj L)-module and is a resolution of G. We have the maps 

r~(.;1* ® G) -; r~(.;1*(Xj G)) <- A~(Xj G), 

where A~ = AUAo' When <I> is paracompactifying, the first map induces 
an isomorphism in homology by 11-4.2, while the second map is already an 
isomorphism by 1-7. Thus, for <I> paracompactifying and G constant, 

I H~(X;G) ~ AH~(XjG) ~ AsH~(XjG)·1 
Moreover, these isomorphisms preserve the cup product, the first by the 
functorial method used in Section 1 (or by 11-7.5) and the second by its 
definition. 

Now suppose that B c X is arbitrary. Let A~ (X, Bj G) be the ker
nel of the canonical surjection A~(X; G) ~ A~nB(Bj G). The relative 
Alexander-Spanier cohomology group is defined by 

I AsH:(X,BjG) = HP(A~(X,Bj G))·I 

For U c X open, the restriction A*(Uj G) --+ A*(B n Uj G) is onto and 
hence, passing to the limit over neighborhoods U of x E B, the induced 
map .;1*(Xj G)x --+ .;1*(B; G)x is also onto. Thus the canonical cohomo
morphism .;1*(Xj G) ~ A*(Bj G) is surjective in the sense of 11-12. We 
have the commutative diagram 

A~(XjG) 
! 

r~(.;1*(XjG)) 

-+ A~nB(Bj G) 
! 

~ r~nB(.;1*(BjG)) 
in which the top map is always onto and the vertical maps are isomorphisms 
provided that <I> is paracompactifying. Thus Kerr* ~ A~(X, B; G), and 
by 11-12.17, 

I H:(X, Bj G) ~ AsH: (X, Bj G) I 
when <I> and <I> n B are both paracompactifying. 

In a similar manner, when X and B are both HLC,.;1 is locally constant, 
and <I> and <I> n B are both paracompactifying, one can show that 

I H:(X, Bj.;1) ~ aH:(X, Bj.;1) ~ sH:(X,Bj.;1). I 
We summarize the main results: 
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2.1. Theorem. There exist the natuml multiplicative tmnsformations of 
functors (of X as well as of JJ1) 

AsH;(XjJJ1) L AH;(XjJJ1) ~ H;(XjJJ1) 

1 A· 

sH;(XjJJ1) 

in which the groups AsH;(XjJJ1), and hence J.L*, are defined only for con
stant JJ1 and are the classical Alexander-Spanier cohomology groups. The 
map J.L* is an isomorphism when JJ1 = L or when il> is pamcompactifying. 
The map p is an isomorphism when il> is pamcompactifying. The map >. * 
is an isomorphism when X is HLC and il> is pamcompactifying. All three 
natuml tmnsformations extend to closed pairs of spaces with the same con
clusions. The isomorphism PJ.L* extends to arbitmry pairs (X, B) if il> and 
il> n B are pamcompactifying and JJ1 is constant. The isomorphism>. * p-l 
extends to arbitmry HLC pairs (X, B) when il> and il>nB are pamcompact
ifying and JJ1 is locally constant. 0 

3 de Rham cohomology 

Let X be a COO-manifold and let L = lR. Let JJ1 be any sheaf of lR-modules 
and define the de Rham cohomology with coefficients in A by 

'nH;(XjA) = H*(r~(n* ®JJ1))., 

Now, n* is a resolution of JR, so that n* ® A is a resolution of A. The 
exterior product /\ : nV(U) ® nq(U) --t nv+q(U) induces a product (nV ® 
JJ1) ® (nq ® $) --t nv+q ® (A ® $). Thus no is a sheaf of rings with unit 
and each nv ® A is an nO-module. [Recall that nO(U) is the ring of Coo 
real-valued functions on U.] 

For any pamcompactifying family q> on X and K, K' E il> with K c 
intK' there is an f E nO(X) with f(x) = 1 for x E K and f(x) = 0 for 
x ~ K'. Let 9 E r(noIK). We can extend 9 to a neighborhood, say K', 
of K by II-9.5. Then f . 9 is zero on the boundary of K' and thus can be 
extended to all of X. It follows that no is il>-soft, and hence each nv ® A 
is il>-fine for any paracompactifying family il>. 

By II-5.l5, there is a canonical map 

for arbitrary il>, and this is an isomorphism when il> is paracompactifying. 
Moreover, p preserves products when il> is paracompactifying by II-7.1. 
(This is also true for arbitrary il>, but we have not proved it.) 

For many applications it is important to have a more direct "de Rham 
isomorphism": s H; (X j A) ~ nH; (X j A), il> paracompactifying. We shall 
briefly describe this. 
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We use singular theory based on Coo singular simplices. Let wE np(X). 
We let k(w) denote the singular p-cochain defined as follows. Let a : tl.p ~ 
X be a Coo singular simplex. Then define 

k(w)(a) = f a"(w). 
lL1p 

Stokes' theorem may be interpreted as saying that 

k(dw)(a)= fa,,(dw)= fda,,(w)= f a"(w)=k(w)(8a) = (d(k(w))(a), 
1 ~p 1 ~p laL1p 

so that k(dw) = dk(w). That is, 

k: n"(X) ~ S"(X;IR) 

is a chain map.4 

Clearly Ik(w)1 = Iwl, so that k : n~(X) ~ S:'(X;lR) for any family iP. 
Thus k induces a homomorphism 

k" : nH:'(X) ~ L1H;(X; IR). 

We claim that k" is an isomorphism when iP is paracompactifying and, in 
fact, that k" = ep, where (j is as in Section 1. 

To do this, we first generalize k" as follows. The map k : n"(U) -+ 

S"(U;lR) induces a sheaf homomorphism n" ~ 9'''(X;lR), which extends 
to a map n" ® A ~ 9''' (X; IR) ® A inducing an extension of k to k : 
f;p(n" ® A) ~ f;p(9'''(Xj L) ® A). Thus we have, in general, a natural 
homomorphism 

I k" : nH:'(XjA) -+ sH:'(XjA) I 
coinciding with the former map for A = IR and iP paracompactifying. 

Now, when iP is paracompactifying, k : n" ® A -+ ,9'''(X; IR) ® A is 
a homomorphism of resolutions of A by iP-soft sheaves. Consequently k" 
is an isomorphism by II-4.2. This isomorphism k* also commutes with 
connecting homomorphisms, and it follows from II-6.2 that k* = ep. 

We summarize: 

3.1. Theorem. For smooth manifolds X and sheaves A of IR-modules, 
there are natural multiplicative transformations of functors (of X as well 
as of A) 

H:'(XjA) --.!!....... sH:'(Xj.d) 

~~ 
nH:'(XjA) 

in which all three maps are isomorphisms when ip is paracompactifying. 
The map k* is induced by the classical integration of differential forms 
over singular simplices. 0 

4For a reasonably complete exposition of these matters see [19, VJ. 
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4 Cech cohomology 

In 1-7 we defined Cech cohomology with coefficients in a presheaf and 
proved one substantial result in the classical case of coefficients in a con
stant presheaf. In this section, we further develop the Cech approach to 
cohomology with coefficients in a sheaf as well as in a presheaf and study 
the connections between the two. The reader is advised to review the 
material in 1-7 as to our notational conventions. 

Let A be a presheaf on X and II = {U a; a E I} an open covering of 
X. We shall use an to denote an ordered n-simplex (ao, ... , an) of the 
nerve N(ll) of ll, and Ucr" to denote Uao, ... ,a" = Uao II··· II Ua,.. Let 
c E eg(X; A). Then the support Icl of c is characterized by 

where Vx is an open neighborhood of x. 

4.1. Proposition. The functor en (ll; .) of presheaves is exact. 

Proof. It is essential to understand that this applies to exact sequences 
of presheaves and not to sheaves, since an exact sequence of sheaves is not 
generally right exact as a sequence of presheaves. 

Let 0 --+ A' --+ A --+ A" --+ 0 be an exact sequence of presheaves; that 
is, for all U C X open, 0 --+ A'(U) --+ A(U) --+ A"(U) --+ 10 is exact. Then 
the induced sequence 

has the form 

which is exact. D 

4.2. Theorem. If every member of <I> has a neighborhood in <I> then the 
functor eg (X; .) of presheaves is exact. 

Proof. By passing to the direct limit over the coverings II = {Ux ; x EX}, 
we see that, for an exact sequence 0 --+ A' --+ A --+ A" --+ 0, the sequence 

is exact by 4.1. It is also clear that 

0--+ eg(X; A') --+ eg(X; A) ~ eg(X; AI!) 

is exact, and it remains to show that j is surjective. Thus, suppose that c~ E 

e~(ll; A") represents a given element of eg(X; A"), where II = {Ux ; x E 
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X}, and that K = Ic~1 E <1>. Let K' E <I> be a neighborhood of K. Then for 
each x E X - K there is a neighborhood Vx C Ux such that c~(an)IUO'n n 
Vx = 0 in A" (U(J'n nVx) for all an. For x E K let Vx = Uxnint K'. Then for 
the refinement m = {Vx}, we see that the image c~ of c~ has c~(an) = 0 
whenever an = {xo, ... , Xn} has some vertex Xi ¢. K. If C~ = j<)J(c<)J) for 
some C<)J E Cn(m; A), then define c<)J E Cn(m; A) by 

_ ( n) = {c<)J(an), if all vertices Xi of an are in K, 
C<)J 0' 0, if some vertex Xi of an is in X - K. 

Then, also, j<)J(c<)J) = c~ and IC<)JI C K' E <1>. o 

It follows, of course, that if 0 --+ A' --+ A --+ A" --+ 0 is an exact sequence 
of presheaves, then there is an induced long exact sequence 

... --+ iIg(X; A') --+ iIg(X; A) --+ iIg(X; A") --+ iI~+l(X; A') --+ ... 

of Cech cohomology groups when <I> is paracompactifying. Presently we 
shall show that this also applies to short exact sequences of sheaves. 

4.3. Proposition. If <I> is paracompactifying, then any given cohomology 
class 'Y E iIg(X; A) is represented by a cocycle Cll E Cg(l1; A) for some 
locally finite covering 11 of X. 

Proof. Let 'Y be represented by the cocycle Cll E Cg(l1;A) for some open 
covering 11 = {Ux } and let K = Ici E <1>. Let K' E <I> be a neighborhood of K 
and K" E <I> a neighborhood of K'. For X E X - K there is a neighborhood 
Vx C Ux - K of X such that 0 = c(an)lVx n U(J'n E A(Vx n U(J'n) for all an. 
Let {Wa; a E I} be a locally finite open (in X) covering of K' in K" that 
refines the covering {Ux n int K"} and is such that if Wa n (X - K') f:. 0 
then Wa C Vx for some x. Then QJ = {Vx; x E X - K'} U {Wa; a E I} is a 
refinement of it The projection C<)J of Cll has the property that c<)J(an) = 0 
unless all vertices ai of an have Va, C K', since otherwise Va, C Vx for 
some x. Let mJ = {Wa; a E I} U {X - K' = Woo} (where 00 ¢. I) and let 
C!l1J E cg(mJ; A) be given by 

( n) = {c<)J(an), if no vertex of an is 00, 
C!l1J 0' 0, if some vertex of an is 00. 

Then QJ refines both 11 and mJ. Moreover, C!l1J projects to C<)J E cg(QJ; A). 
We have dC!l1J(an+1) = dC<)J(an+1) = ° ifno vertex of an+1 = {ao, . .. ,D:n+d 
is 00. Also, dC!l1J( an+1) = ° if an+1 has at least two such vertices. If only 
the vertex ak = 00, then 

dC!l1J(an+1) = ±c<)J(ao, ... , (ik, ... , a n+1)IWao n··· n Woo n··· n Wn+1 = 0, 

since Woo n Wa, = 0 unless Wa, n X - K' f:. 0, in which case Wa, C Vx 
for some x, whence dC!l1J(an+1) = ±c<)J(ao,oo.,(ik,oo.,an+l)IW(J'n+l = 0. 
Since mJ is locally finite, C!l1J is the required co cycle representative of 'Y. 0 
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4.4. Theorem. If <1> is pamcompactifying and A is a presheaf on X such 
that 9'kaf(A) = 0, then fIg(X; A) = 0 for all n. 

Proof. Let 'Y E fIg (X; A) be represented by the cocycle Cll E cg(U; A) 
where U = {Ua ; 0: E I} is a locally finite open covering of X. For each 
x E X there is an open neighborhood Vx of x such that Vx n U a =I- 0 for 
only a finite number of 0:. Then Vx can be further restricted so that each 
cll((1n)IU".n n Vx = 0 and such that sn = {Vx} refines U. But then the 
projection Cm E cg(l!J; A) of Cll is the zero cocycle, and so 'Y = O. 0 

4.5. Corollary. If<1> is pamcompactijying on X, A is a presheaf on X, and 
.yf = 9'kaf(A) , then the canonical map () : A ----.yf induces an isomorphism 

I fI4,(X; A) ---::.. fI4, (X; .yf)·1 

Proof. Let K = Ker () and I = 1m (). Then the exact sequences 

and 

o ---- I ---- .yf ---- .yf / I ---- 0 

of presheaves induce long exact cohomology sequences. Since 9'kaf(K) = 
o = 9'kaf(.yf / I), the claimed isomorphism follows. 0 

4.6. Corollary. If <1> is pamcompactifying and 0 ---- .yf' ~ .yf ~ .yf" ---- 0 
is an exact sequence of sheaves on X, then there is an induced long exact 
sequence 

of Cech cohomology groups. 

Proof. If A"(U) = .yf(U)/i.yf'(U) then the exact sequence 0 ---- .yf' ---
.yf ---- A" ---- 0 of presheaves induces a long exact cohomology sequence. 
But 9'heaf(A") = .yf" by definition, and so fIg (X; A") I:::: fIg(X;.yfIl) by 
4.5. 0 

4.7. Proposition. If.yf is a shea!, then for any open covering U of X, 
the presheaf V 1--+ Cn(U n V;.yf) is a sheaf. If.yf is flabby, then so are the 
Cn(U n e; .yf). 
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Proof. We have 

C1n (lln V;d) = II d(Ut7n n V) = IICit7n(dIUt7n))(V), 

where it7n : Ut7n '--+ X. Since the direct product of sheaves is a sheaf and 
the direct image of a flabby sheaf is flabby, the result follows. 0 

4.8. Lemma. Ifll = {U,,;a E I} is a covering of X that includes the set 
X, then bn(ll; A) = 0 for n > 0 and any presheaf A. 

Proof. Let W = {X}. Then 11 and W refine one another, whence C*(ll; A) 
is chain equivalent to C*(W; A), which vanishes in positive degrees. 0 

4.9. Theorem. If d is a sheaf on X and 11 = {U,,; a E I} is any open 
- * covering of X, then ~ (11; d) is a resolution of d. 

Proof. Let V be a neighborhood of a given point x E X, so small that 
V c U" for some a E I. We have the sequence 

0---- d(V) -=---. CO(lln V;d) ~ C1(lln V;d) £ C2 (lln V;d) ---- ... 

and Ker dP = 1m dp - 1 for p > 0 by the lemma. The remainder of the 
exactness comprises the conditions (Sl) and (S2) of I-I. Passage to the 
direct limit over neighborhoods V of x shows that 

-° -1 o ---- d x ---- ~ (11; d)x ---- ~ (U; d)x ---- ... 

is exact. o 

4.10. Corollary. Let A be a sheaf on X and let 11 be an open covering 
of X. Then bg (11; A) ~ f q, (A). If A is flabby, then bg (11; A) = 0 for 
n > O. 

Proof. Since V r-. cn(lln V; A) is a sheaf by 4.7, it is ~* (11; A). By 4.9, 
-° -1 0---- fq,(A) --+ fq,(~ (11; A)) ---- fq,(~ (ll;A)) is exact, whence fq,(d) ~ 

H°(rq,(~*(ll;d))) = HO(C;(ll;d)) = bg(ll;A). If d is flabby then 4.7, 
4.9, and II-4.3 show that 

-° -1 0--+ fq,(d) ---- fq,(~ (11; d)) --+ fq,(~ (U;d)) --+ ... 

is exact, so that bg(ll;A) = Hn(fq,(~*(ll;d))) = 0 for n > O. 0 

By passing to the limit over 11 we have: 

4.11. Corollary. Let A be a sheaf on X. Then bg(X;A) ~ fq,(A). If 
d is flabby, then iIg(X;d) = 0 for n > O. 0 

4.12. Corollary. For <I> paracompactifying and sheaves d on X there is 
a natural isomorphism 
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Proof. By the previous corollary and 4.6, fI~(XjA) is a fundamental 
connected sequence of functors of sheaves A. Thus the result follows from 
II-6.2. 0 

4.13. Theorem. Let A be a sheaf on X and let II = {U",j Q E I} be an 
open covering of X having the property that HP(U(J'njA) = 0 forp > 0 and 
all an E N(ll), all n. Then there is a canonical isomorphism 

I H*(XjA) ~ fI*(lljA)·1 

Proof. Let Aq = ~q(XjA) and consider the complex CP(lljA*) for p 
fixed. Since CP(llj e) is an exact functor of presheaves, we have 

Hq(CP(lljA*)) = CP(lljHq(r(A*le))) 
= CP(lljHq(ejA)) 
= { CP(llj A), for q = 0, 

0, for q =I- 0 

by the hypothesis that Hq (U (J'n j A) = 0 for q > O. 
Consider the diagram 

0 0 0 0 
! ! ! ! 

o~ r(A) ~ r(Ao) ~ r(A1) ~ r(A2) 

! ! ! ! 
o ~ CO(llj A) ~ CO(lljAo) ~ CO(lljA1) ~ CO(llj A2) 

! ! ! ! 
o -> C 1 (llj A) ~ C1(lljAo) ~ C1(lljA1) -> C 1(lljA2) 

! ! ! ! 
0-> C2(llj A) -> C2(lljAo) -> C2(lljA1) ~ C 2(llj A2) 

! ! ! ! 

~ ... 

~ ... 

---+ ••• 

---+ ••. 

in which the rows are exact, excepting the first, as just shown and the 
columns are exact, excepting the first, by 4.10 and 4.9. A diagram chase 
shows that the homology of the first (nontrivial) row is isomorphic to that 
of the first column. 0 

4.14. Let f: X ~ Y be a map and A a sheaf on Y. Then!* : A ....... !*A 
induces fu : A(U) ~ U* A)U-1U). If II = {U",j Q E I} is an open 
covering of Y and f-l(ll) = {J-l(U) I U Ell}, indexed by the same set I, 
then we can define 

fu: C~(lljA) -> C,_lipU-1llj!*A) 

by fu(c)(a n ) = fUun (c(an ). This is clearly a chain map, and so it induces 
a map 
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Following this with the canonical map 

iI7-1~(f-1U; r vi) -> iI7-1~(X; f* vi), 

we obtain maps 
iI~(u; vi) -> iI7-1~(X; r vi) 

compatible with refinements. Therefore, these induce homomorphisms 

I j* : iI~(Y;vi) -> iI7-1il>(X;f*vi)·1 

It is clear that for n = 0 this is just the canonical map 

r~(vi) -> r f-l~(f* vi). 

Therefore, by 11-6.2, j* becomes f*: H~(Y;vi) -> H7-1~(X;f*vi) under 
the isomorphisms of 4.12. 

4.15. For presheaves A and B on X, we can define a cup product 

U : 6~(X; A) ® 6:r(X; B) -> 6~~~(X; A ® B), 

where (A ® B)(U) = A(U) ® B(U), by 

Cl U C2( ao, ... ,an+m) = (Cl (ao, ... , an) ® c2(an, ... , an+m)) IUoo, ... ,On+=· 

This induces a cup product 

U : iI~(X; A) ® iI~(X; B) -> iI~~~(X; A ® B). 

If vi = Y'ko/(A) and $ = fl'ko/(B), then vi ® $ = Y'ko/(A ® B) by 
definition, whence this becomes a cup product 

U : iIg(X; vi) ® iI:r(X; $) -> iI~~~(X; vi ® $) 

when <I> and Ware paracompactifying. It is not hard to see, by using 11-7.1, 
that this coincides with the cup product for sheaf cohomology via 4.12. 

Exercises 
1. Complete the discussion of Section 2 with regard to homomorphisms in

duced by maps. 

2. Investigate the behavior of de Rham cohomology with respect to differen
tiable mappings. 

3. Let G be a compact Lie group acting differentiably on a Coo-manifold M. 
There is an induced action of G on n*CM) and on nH*CM) ~ H*CM;IR). 
Denoting invariant elements by a superscript G, show that the inclusion 
n*CM)G '-> n*CM) induces an isomorphism 

H*cn*CM)G) ....::.... H*CM)G. 

[This is nontrivial. Note that H*CM)G = H*(M) when Gis connected.J 
[Hint: Let J : n*CM) '-> n*(M) be the inclusion. By integration over 
G, define I : n*CM) ----> n*CM)G so that lo J = 1 and such that for 
a E HPCM)G and W E n*CM) representing a, lCw) also represents a.J 
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4. ® If X is hereditarily paracompact and G is a constant sheaf, show that 
9'"(X; G) and A"(X; G) are flabby. Thus W(r<I>(A*(X; G))) ~ H;(X; G) 
for any family <I> of supports. 

5. A continuous surjection I : X --+ Y is called "ductile" if for each y E Y, 
there exists a neighborhood V C Y of y which contracts to y through U in 
such a way that this contraction can be covered by a homotopy of l-l(V); 
see [16]. Let fS"(U;Z) = Hom(f*~~(f-l(U),Z)) where 1*~~(f-l(U)) 
is the image in ~~(U) of the classical singular chain complex of l-l(U) 
under I. If S*(W;Z) = Hom(~;(W),Z), as usual, then the inclusion 
1*~;(f-l(U)) '-+ ~;(U) induces a homomorphism S"(U;Z) --+ JS"(U;Z) 
of presheaves and hence a map 9'" --+ f9'" of the generated sheaves. If cI> 
is a paracompactifying family of supports on Y and if I is ductile, show 
that the induced map 

is an isomorphism, and that for any sheaf A on Y, the map 

is an isomorphism. (That is, for ductile maps, the singular cohomology 
of Y can be computed using only those singular simplices of Y that are 
images of singular simplices of X.) 

6. Let X be a complex manifold. Let AP,q denote the sheaf of germs of Coo 
differentiable forms of type (p, q) on X and let OP denote the sheaf of germs 
of holomorphic p-forms of X. (This is not to be confused with the notation 
used in the real case.) The operator d of exterior differentiation has the 
decomposition d = d' + d", where d' : AP,q --+ AP+1,q and d" : AP,q --+ 

AP,q+l, (d')2 = 0 = (d")2, and d'd" + d"d' = O. It can be shown that via 
d", A P," is a resolution of OP for each p. Using this fact, prove that (with 
the obvious notation) there is a natural isomorphism 

where <I> is paracompactifying, fjJ is any sheaf of complex vector spaces, and 
the tensor products are over the complex numbers. (This result is known 
as the theorem of Dolbeault [32].) 

7. ® Construct a compact space X with singular homology groups 

00 

Hl(X;Z) ~ EBZn, 
n=2 

Let Z be the base ring, let Q denote the rationals as a Z-module, and show 
that t>.H2(X;Q) = 0 while 

SH2(X; Q) i'::j SH2(X; Z) ® Q i'::j t>.H2(X; Z) I8i Q =1= O. 

In particular, unlike t>.H*, the sH" depend on the base ring. 

8. Show that HLC =? dez. 

9. If F C X is closed and A is a sheaf on X, show that fIn(X;AF) i'::j 

fIn(F; AIF). 
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10. ® Let X be a rudimentary space; see II-Exercise 57. Then show that 
H"(XjA) ~ H"(Xj.J) for all n and any presheaf A on X with .J = 
~(A). 

11. ® Let the Cech cohomology groups LFHn(Xj A) be defined using only 
locally finite coverings of X. If N is the rudimentary space of II-Exercise 
27, show that LFH"(Nj A) = 0 for all n > 0 and all presheaves A on N. 
(Compare Exercise 10.) 

12. Define and study relative Cech cohomology groups H~(X, Bj .J). 

13. ® For the sheaf.Jn on §1 described in 1-1.14, compute Hl(§lj.Jn). 

14. ® Use constant coefficients in some group throughout. Let X be a compact 
metric space and 0 =I , E Hn(x). Show that there is a number e > 0, 
depending on " such that if f : X -+> Y is a surjective map to a compact 
Hausdorff space Y with diamf-l(y) < e for all y E Y, then, = j*("{') for 
some " E H"(Y). 

15. For sheaves .J on X define a natural map hk : Hk(llj.J) -+ Hk(Xj .J). If 
for every intersection U of at most m+l members ofll we have Hq(Uj.J) = 
o for 0 < q < n, then show that h k is an isomorphism for k < min { n, m} 
and a monomorphism for k = min {n, m}. 

16. ® Construct an example showing that 4.2 is false without the assumption 
that each member of IP has a neighborhood in IP. 



Chapter IV 

Applications of Spectral 
Sequences 

In this chapter we shall assume that the reader is familiar with the the
ory of spectral sequences, especially with the spectral sequences of double 
complexes. This basic knowledge is applied specifically to the theory of 
sheaves in Sections 1 and 2. See Appendix A for an outline of the parts of 
the theory of spectral sequences we shall need. 

In Section 3 we define an important generalization of the direct image 
functor, the direct image relative to a support family. Its derived functors, 
which yield the so-called Leray sheaf, are studied in Section 4. It should 
be noted that the direct image functor fiJI generalizes the functor r iJI since 
they are equivalent when f is the map to a point. 

Section 5 is concerned with a construction dealing with support families 
and is primarily notational. 

In Section 6 the Leray spectral sequence of an arbitrary map is derived 
and a few remarks about it are given. The cup product in this spectral 
sequence is also discussed. This spectral sequence is the central result of 
this chapter, perhaps of the whole book, and the remainder of the chapter 
is devoted to its consequences. 

The important special case of a locally trivial bundle projection is dis
cussed in Section 7, and it is shown that under suitable conditions, the 
Leray sheaf (the coefficient sheaf in the Leray spectral sequence) is locally 
constant and has the cohomology of the fiber as stalks. We also obtain 
a generalization of the Kiinneth formula to the case in which one of the 
factors X of X x Y is an arbitrary space, provided, however, that the other 
factor Y is locally compact Hausdorff and deL and is provided with com
pact supports and constant coefficients in a principal ideal domain. These 
results are then applied to the case of vector bundles over an arbitrary 
space, and such things as the Thorn isomorphism and the Gysin and Wang 
exact sequences are derived. 

Some important consequences that the Leray spectral sequence and the 
fundamental theorems have for dimension theory are discussed in Section 8. 
That section also contains a strengthening of the Vietoris mapping theorem 
due to Skljarenko. 

In Section 9 the Leray spectral sequence is applied to spaces with com
pact groups of transformations acting on them, and the Borel and Cartan 
spectral sequences are derived. 

197 
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In Section 10 we apply the discussion of Section 7 to give a general 
definition of the Stiefel-Whitney, Chern, and symplectic Pontryagin char
acteristic classes, and to derive some of their properties. Applications to 
the study of characteristic classes of the normal bundle to the fixed point 
set of a differentiable transformation group are discussed at the end of this 
section. 

In Sections 11 and 12 we derive the Fary spectral sequence of a map 
with a filtered base space. This is applied in Section 13 to derive the Smith
Gysin sequence of a sphere fibration with singularities. In Section 14 we 
derive Oliver's transfer map and use it, as he did, to prove the Conner 
conjecture. 

1 The spectral sequence of a differential 
sheaf 

Let p* be a differential sheaf on X. We are concerned with two cases: 

(a) p* = 0 for q < qo. 

(b) dim<I>,L X < 00 for a given ground ring L and family <I> of supports. 

If we are in case (b) with dim<I>,L X :::; n, then 

is a resolution of A by <I>-acyclic sheaves and is an exact functor of A. In 
the discussion below, C~ (Xj A) should be replaced by r <I> of this resolution 
when we are in case (b). 

Let 
I LP,q = C:(Xjpq)·1 

We take d': Lp,q -> V+l,q to be the differential of the complex C~(XjPq) 
and (-1)Pd" : Lp,q -> LP,q+l to be the differential induced by the coefficient 
homomorphism pq -> pq+l. Let d = d' + d" be the total differential and 
L* the total complex, where 

Ln = E9 LP,q. 
p+q=n 

There are two spectral sequences, 'Ef,q and" Ef,q, of the double complex 
L*'* converging! to graded groups associated with filtrations on Hp+q(L*). 
We abbreviate this statement by the notation E~,q ===? Hp+q(L*); see 
Appendix A. 

IThe first spectral sequence converges because of condition (a) or (b). 
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In the first spectral sequence we have ' E~,q = I HP (" Hq (L *,*)) and in 
the second "E~,q = "HP('Hq(L*'*)), where 'H and"H are computed using 
d' and d" respectively. 

Now 
"Hq(L*'*) = C;(X;.1t'q(p*)) 

since C; (X; .) is an exact functor. Thus 

I' E~,q = H:(X; .1t'q(p*))·1 

1.1. In the second spectral sequence I Hq(L*'*) = H:(X; p*), so that 

I" E~,q = HP(Hl(X; p*))·1 

Note that in particular, "E~'o = HP(r~(p*)). 
In the second spectral sequence we have the edge homomorphism 

(1) 

HP(r~(p*)) = "E~'o -» "E~o >----> HP(L*). (2) 

Recall that this is induced by the chain map 

r~(pP) >----> LP, (3) 

given by r~(pp) >----> cg(X; PP) = LO,p >--t P; see Appendix A. 
Suppose that we are given a homomorphism p* -+ ~4t* of differential 

sheaves. Putting Mp,q = C:(X;~q), we have a map LP,q -+ MP,q of 
double complexes and hence a corresponding map of spectral sequences. 
Since (2) is induced by the chain map (3), it follows that the diagram 

commutes. 

HP(r~(p*)) -+ 

1 
HP(r~(~*)) -+ 

HP(L*) 
1 

HP(M*) 
(4) 

Let 0 -+ p* -+ .At* -+ JII* -+ 0 be an exact sequence of differential 
sheaves. Since C;(X;.) is an exact functor, the sequence 

o -+ LP,q -+ MP,q -+ NP,q -+ 0 

(with the obvious notation) is exact. We shall assume that the sequence 

o -+ r~(p*) -+ r~(~*) -+ r~(JII*) -+ 0 

is also exact. This is the case, for example, when p* is <I>-acyclic. 2 Then 
it follows that the diagram 

(5) 

is commutative, where the horizontal maps are the edge homomorphisms 
(2) and the vertical maps are the obvious connecting homomorphisms. 

2 Also see exercise 14. 
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1.2. We wish to obtain naturality relations such as (4) and (5) for the edge 
homomorphisms of the first spectral sequence. In order to obtain results 
of the generality needed, we must go into this situation somewhat more 
deeply than we did for the second spectral sequence. 

In the remainder of this section we shall assume either that dim<I>,L X < 
00 or that all differential sheaves considered are bounded below; that is, 
that condition (a) or (b) is satisfied. This assumption is needed to ensure 
the convergence of the "first" spectral sequences considered. 

Let Il* be a differential sheaf such that 

Let Il be some given sheaf and let Il ~ .1(0 ( Il*) be a given homomor
phism. Since 'E~·q = H:(X;.1(q(Il*» = 0 for q < ° we have the edge 
homomorphism 

Since we have not assumed that Il* vanishes in negative degrees, we 
cannot immediately conclude that (6) is induced by a chain map. In order 
to provide such a chain map, we make the following construction. Let Il~ 
be the differential sheaf defined by 

{ 
0, for q < 0, 

Ilg = Coker{Il- 1 ~ Ilo}, for q = 0, 
Ilq, for q>O, 

with differentials induced from those of Il*. We have the canonical map 

(7) 

and it is clear that the induced map .1(Q(Il*) ~ .1(Q(Il~) is an isomorphism 
for all q. Thus we have the isomorphism 

(8) 

for all p, q. 
The homomorphism (7) induces a map of the "first" spectral sequences, 

which, by (8), is an isomorphism from E2 on. Thus, with the obvious 
notation, we have the commutative diagram 

HP(L*) 

l~ (9) 

HP(Lo) 
in which the horizontal maps are edge homomorphisms. Note that the 
given map Il ~ .1(o(Il*) ~ .1(o(Il~) now arises from a homomorphism 
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!J! -+ !J!g. We also know that the edge homomorphism on the bottom of 
(9) arises from the chain map 

given by C:(Xi!J!) -+ C:(Xi!J!g) = Lb'o >-+ Lbi see Appendix A. It 
follows that the edge homomorphisms (6) satisfy, via (9), naturality rela
tions similar to (4) and (5). Explicitly, let ..At* be a differential sheaf with 
~q(..At*) = 0 for q < 0 and let ..At -+ ~o(..At*) be given. Then for any 
homomorphism !J!* -+ ..At* of differential sheaves and any compatible map 
!J! -+ ..At, the diagram 

commutes. 

H:(Xi!J!) -+ 

! 
H:(Xi..At) -+ 

HP(L*) 
! 

HP(M*) 
(10) 

Similarly, suppose we are also given vY" with ~q(vY") = 0 for q < 0 
and a compatible map..lf' -+ ~o(vY"). Suppose also that we have an exact 
sequence 0 -+ !J!* -+ ..At* -+ vY" -+ 0 of differential sheaves compatible with 
an exact sequence 0 -+ !l! -+ ..At -+ ..If' -+ 0, that is, such that the diagram 

o ---+ !J! ---+ ..At ---+ ..If' ---+ 0 

! ! ! 
~o(!l!*) -+ ~o(..At*) -+ ~o(vY") 

commutes. Then the diagram 

(11) 

commutes. 

Remark: The spectral sequences considered in this section are not changed, 
from E2 on, if we replace C;(X; e) by r~(.o/l"(X; e», where at·eX; e) is 
any exact functorial resolution by <l>-acyclic sheaves. To see this, consider 
the natural homomorphisms 

.o/l"(X;e) -> W"(at"(X; e» +- W"(X;e), 

where the middle term is considered as a functorial resolution with the 
total degree. Then apply these resolutions to !l?", take r ~, and consider 
the spectral sequences of the resulting double complexes. The contention 
follows immediately. Of course, in case (b), we must assume that at·(X; e) 
has finite length. For example, we could take at"eX; e) = g·(X; e) of 11-2. 
If <l> is paracompactifying, we could take .o/l"(X; e) =.o/l" ® ee), where .o/l. 
is a <l>-fine torsion-free resolution of the ground ring, such as the Alexander
Spanier sheaf. 
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2 The fundamental theorems of sheaves 

The previous section has two cases of importance, corresponding to the 
degeneracy of one or the other of the spectral sequences. 

Degeneracy of the second spectral sequence 

Assume that 

"E~,q = HP(H~(XjP*)) = 0 for q> O. 

This holds, for example, when each pP is <I>-acyclic. We also have that 

"Eg'o = HP(f<J?(P*)). 

It follows that the canonical homomorphisms HP(f<J?(P*)) -> HP(L*) of (2) 
are isomorphisms. The first spectral sequence then provides the following 
result: 

2.1. Theorem. (First fundamental theorem.) Let p* be a differential 
sheaf on X. Assume either that dim<J?,L X < 00 or that p* is bounded 
below (i. e., pq = 0 for q < qo, for some qo). Also assume that 

HP(H~(XjP*)) = 0 for q > O. 

Then there is a spectral sequence with 

o 

Note also that if ;Y(q(p*) = 0 for q < 0 and if P -> ;Y(o(P*) is a given 
homomorphism, then the edge homomorphism provides a canonical map 

which satisfies the naturality relations resulting from formulas (4), (5), 
(10), and (11) of Section 1. 

2.2. Theorem. (Second fundamental theorem.) Let h : p* -> .At* be 
a homomorphism of differential sheaves and assume that dim<J?,L X < 00 

or that both p* and.At* are bounded below. Also assume that for some 
0< N ::; 00 the induced map h* : ;Y(q(p*) -> ;Y(q(.At*) of derived sheaves 
is an isomorphism for q < N and that 

H*(H~(Xj PO)) = 0 = H*(H~(Xj .At*)) for q > O. 

Then the induced map Hn(f<J?(p*)) -> Hn(f<J?(.At*)) is an isomorphism 
for each n < N. 



§2. The fundamental theorems of sheaves 203 

Proof. If N = 00 (as suffices for most applications) then the proof is im
mediate from the fact3 that a homomorphism of regularly filtered complexes 
that induces an isomorphism on the E2 terms of the spectral sequences also 
induces an isomorphism on the homology of the complexes. In general, we 
must digress to study a purely combinatorial construction. 

For integers r ~ 2, define the collection 

Sr = {I, 1 + (r - 1),1 + (r - 1) + (r - 2), ... , 1 + (r - 1) + ... + 2 + 1, ~} 

of integers, where the symbol ~ indicates that all integers beyond that 
point are included in Sr. Then 

8rH = {I, 1 + r,l + r + (r - 1), ... ,1 + r + (r - 1) + ... + 2 + 1, ~}. 

Now, for P ~ 0, define kr(P) = N - p+ #(Sr n [O,p]). Note that m E 8 r <=> 
m + r E 8r+1 for m ~ O. This implies that krH (p + r) - kr(P) is constant 
in P ~ O. Therefore 

krH(P + r) - kr(P) = krH(r) - kr(O) 
-r + #(8rH n [0, r]) - #(8r n [0,0]) 

= -r+ 1- 0 
= -r + 1. 

Thus we have the partial recursion formula 

Also note that 

krH(P + r) = kr(P) - r + 1 for P ~ O. 

krH(P) ~ kr(P), 
k2(P) = N, 

koo(P) = N - P + 1 for P > 0, 
koo(O) = N. 

(12) 

For r ~ 2, we claim that E~,q(9?*) ---+ E~,q(.At*) is an isomorphism for 
q < kr (p). The proof is by induction on r. It is true for r = 2 since 
k2(P) = N for all p. Suppose it is true for r. Then we must show that 

q~kr(P) => q-r+l~krH(p+r) 

when P ~ 0 (regarding differentials leading out of E~,q) and 

q + r - 1 ~ kr(P - r) => q ~ krH(P) 

when P - r ~ 0 (regarding differentials leading into E~,q). But these follow 
immediately from (12). (We also need that krH(P) ~ kr(P) , which has also 
been noted.) 

In particular, Egoq(9?*) ---+ Egoq(.At*) is an isomorphism for P + q ~ N 
if P > 0 and for q ~ N - 1 if P = O. Therefore the total terms map 
isomorphically for total degree less than N. 0 

3See A-4. 
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Remark: The case N < 00 can also be attacked using a mapping cone argument; 
see II-Exercise 49. However the present method applies more generally 
since it is a pure spectral sequence argument. It also gives slightly better 
conclusions. Also note that Exercise 33 sharpens 2.2, perhaps only by an 
amount < e. 

The following result is needed in Section 12: 

2.3. Proposition. Let fl!* be a <P-soft differential sheaf on X with <P 
paracompactifying, and let A c X be locally closed. Then the spectral 
sequence 2.1 of the differential sheaf fl!~ on X with supports in <P is canon
ically isomorphic to the spectral sequence 2.1 of the differential sheaf fl!*IA 
on A with supports in <PIA (from E2 on). 

Proof. It is sufficient to prove this for the cases in which A is either open 
or closed. Note that since fjJ I---> fiJlA and fjJ I---> fiJA are exact functors, we 
have 

If U c X is open, then the map 

(using that fl!*IU = fl!~IU) induces a map of spectral sequences that on 
the E2 terms reduces to the natural isomorphism 

of II-1O.2. It follows that this map of spectral sequences is an isomorphism 
from E2 on, as was to be shown. 

If F c X is closed, then the map 

of II-8 induces a map of spectral sequences that on the E2 terms is the 
isomorphism 

of II-1O.2. Again, it follows that the spectral sequences in question are 
isomorphic from E2 on. D 

Degeneracy of the first spectral sequence 

Here we assume that ,yeq(fl!*) = 0 for ~ i- O. Also assume that either (a) 
or (b) of Section 1 holds. Let P = ,ye (P*). Note that these conditions 
hold, for example, when p* is a resolution of P. 
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We have that 

'EP,q _ { 0, for q f= 0, 
2 - H~(X; P), for q = 0, 

and it follows that the canonical homomorphism 

H~(X; P) --> HP(L*) 

of (6) is an isomorphism. From the second spectral sequence we conclude 
the following: 

2.4. Theorem. (Third fundamental theorem.) Let p* be a differential 
sheaf such that :Jeq(p*) = ° for q f= O. Assume either that dim<I>,L X < 00 

or that p* is bounded below. Then with P = :Jeo (P*), there is a spectral 
sequence with 

o 

In particular, the edge homomorphism gives a canonical homomorphism 

satisfying the naturality relations resulting from formulas (4), (5), (10), 
and (11) of Section 1. If p* is a resolution of P, then it follows from the 
naturality that this p is identical to the homomorphism p of II-5.15. 

Also, there is the following generalization of II-4.1: 

2.5. Theorem. (Fourth fundamental theorem.) Let p* be a differential 
sheaf such that :Jeq(p*) = 0 for 0 f= q < N and H*(H~(X; P*)) = 0 for 
q > O. Assume either that dim<I>,L X < 00 or that p* is bounded below. 
Then with P = :Jeo (p*), the edge homomorphism 

C : H¥;(X; P) = E;'o --» E~o >-> Hn(r<I> (P*)) 

in the spectral sequence 2.1 is an isomorphism for n < N and a monomor
phism for n = N.4 In particular, for N = 00 there is an isomorphism 

Proof. Since E~,q = 0 for 0 =1= q < N, ~n is an isomorphism for n < N. 
Also, E!i'o --» E!:o'o is an isomorphism, whence ~N is a monomorphism. D 

We shall conclude this section with six examples of applications. 

4 Also see Exercise 32. 
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2.6. Example. Let s:Jf*(X;Ji) = :Jf*(9'*(X;L) I8i Ji) be the singular 
cohomology sheaf. If cI> is paracompactifying, then 9'*(X; L) I8iJi is cI>-fine, 
whence 2.1 yields a spectral sequence with 

There is also a similar spectral sequence with the subscript S replaced by 
~ when Ji is locally constant. The edge homomorphism Hg(X;Ji) ~ 
Hg(X; s:Jf°(X;Ji)) = E~'o -+> E~o >--+ sHg(X;Ji) is the map () of III-I. 
If X is HLC2, then ~:J{'q(X; L) = 0 for 0 ::J q :0:::; n and ~:Jf°(X; L) ~ L. 
Therefore ~H~(X; L) ~ H~(X; L) for k :0:::; n. In particular, 

I HLC'{ =? clc2·1 

For some explicit cases see Exercises 22 to 25 and their solutions. 0 

2.7. Example. For the Alexander-Spanier sheaf Ji*(X; L) 18i$ we obtain 
from 2.4 a spectral sequence with 

This reduces to the isomorphism AHg(X; $) = HP(rcl>(Ji*(X; L) I8i $)) ~ 
Hg(X; $) when cI> is paracompactifying or when $ = L and X is heredi
tarily paracompact; see III-Exercise 4. 0 

2.8. Example. There is a spectral sequence with 

(See II-Exercise 41.) o 

2.9. Example. Let Ll* be the sheaf of germs of singular chains with 
coefficients in the given base ring L, as defined in I-Exercise 12, and let 
~:Jf *(X; L) denote its derived sheaf. Note that ~:J{' *(X; L) = 9'''-I(U f-+ 

~H;(X,X - U;L)), where ~H;(X,X - U;L) is the classical relative sin
gular homology group based on finite chains. Suppose that cI> is a para
compactifying family of supports on X and that dimcl>,L X < 00. Let se* 
be the differential sheaf defined by seq = Ll_q. Since se* is homotopically 
fine by II-Exercise 32b, it follows from II-Exercise 32a and 2.1 that there 
is a spectral sequence with 

where the right-hand side is H_p_q(rcl>(Ll*)), which is the classical singular 
homology group based on locally finite chains with supports in cI>. 5 

5That is, the union of the images of the simplices in a chain is in CPo 
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If X is a topological n-manifold, then it is clear that AXq(XjL) = ° 
for q =I=- n. Moreover, the "orientation sheaf" @ = AX n(Xj L) is locally 
constant (constant if X is orientable, by definition), with stalks isomorphic 
to L. It follows that for an n-manifold X there is the isomorphism 

This is the Poincare duality theorem. It is easy to generalize this theorem 
so that it will apply to arbitrary coefficient sheaves. One may also obtain 
extensions to relative groups. Since this is done in considerably more gen
erality in Chapter V, we shall not pursue the subject further here. <> 

2.10. Example. Let N be the positive integers with the topology as in 
II-Exercise 27. Let Al :J A2 :J ... be a decreasing sequence of subsets of a 
space X and let <I> be a family of supports on X. Assume either that <I> is 
paracompactifying and the Ai are arbitrary, or that <I> is arbitrary and each 
Ai is closed. Put K = n An and assume that K = n An and that Al E <I>. 
Let .;1* be a flabby differential sheaf on X. For a given index p consider 
the inverse system {f<I>IA n (.;1P)}. As in the exercise, this is a sheaf g;P on 
N. We claim that it is acyclic. According to the exercise, to prove this 
we must show that for every sequence {a~, a~, ... } of sections of .;1P with 
la~1 c An there exists such a sequence {al,a2,"'} with an+l = an - a~ 
for all n. Since.;1P is <I>-soft, we can find a section b1 E f <I> (.;1P) that 
coincides with a~ on X - A2 • (When <I> is paracompactifying make bi = a~ 
on X - intA2.) Then Ibil c Al and Ibi - a~1 c A 2 . Next, we can find 
a section b2 that coincides with a~ + a~ - bi on X - A3 • Then Ib2 1 c A2 
and Ib2 + b1 - a~ - a~1 c A 3 • Continue inductively in the obvious manner. 
Define b = b1 + b2 + ... on X - K. (This makes sense because each point 
x E X - K = X - nAn = U(X - An) has a neighborhood disjoint from 
all but a finite number of the An.) Since.;1P is flabby, b extends to all of 
X with support necessarily in <I>. Now put an = b - a~ - ... - a~_l' Then 
an+1 = an - a~, and at least outside of K, 

as required. 
Now the spectral sequence of 2.1 has 

For the limit term we have 

by II-Exercise 27. Also, E~,q = ° for p =I=- 0,1 since dimN = 1. We also 
have 
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and 
E~,q = Hl(Nj {Hq(r4>IA i (..d*))}) = limi Hq(r4>IA i (..d*)) 

by the exercise. Since all differentials are zero and only two columns are 
nonzero, the spectral sequence degenerates into the exact sequences 

that is, 

Now let us specialize to the case in which each An is open, <I> is para
compactifying, and ..d* = ~*(Xj..d). Then we have Hn(r4>IK(..d*)) f'::j 

Hg1K(Xj..d) f'::j Hn(x, X - Kj..d) by II-12.1 and II-12.9 since K has a 

neighborhood in <I>. Also, Hn(r4>IAi(..d*)) f'::j HgAi(Aij..d) since Ai is 
open. Therefore, for <I> paracompactifying, if U1 :J ~2 :J ... is a decreasing 
sequence of open sets with K = n Ui = n U i and U I E <I> , then we get the 
exact sequence 

Particularly note the case in which X is locally compact Hausdorff, <I> = c, 
and K is a point. In this case the exact sequence becomes 

where U ranges over the open neighborhoods of x and we assume that x 
has a countable neighborhood basis. Note that if K = n Ui = 0, then 
the middle term, whence each term, of (13) is zero. Thus this discussion 
is essentially an elaboration of the proof of the sum theorem II-16.40 in 
cohomological dimension theory. In V-5.15 we will have an application of 
these remarks to homology theory. 0 

2.11. Example. Let <I> be a family of supports on X and let Al C A2 C 
... be an increasing sequence of subspaces with X = UintAi . Assume 
either that each Ai is open or that <I> is paracompactifying and each Ai 
is closed. Let..d* be a flabby resolution of a given sheaf..d on X. Then 
one can treat the inverse system 2 P = {r4>nA. (..dPIAi )} as in 2.10. This 
situation is somewhat easier since 2 P is flabby on N in both caseSj Le., each 
restriction map r4>nAHl (..dPIAi+I) --+ r4>nA. (..dPIAi ) is surjective. As in 
2.10 we get a spectral sequence 

in either of our two cases, where 

\11 = {K c X closed I K n Ai E <I> n Ai all i}. 
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This degenerates to the exact sequence 

In particular, if <I> = cld, then there is an exact sequence 

whenever each Ai is open, or when X is paracompact and each Ai is closed 
with X = U int Ai. 

For example, consider the union X of the mapping cylinders of §1 -2... 
§l ~ §1 ~ ... Let Ai be the union of the first i of these. Then 
H2(Ai; Z) = 0 and the inverse system 

{Hl(Al;Z) +- Hl(A2;Z) +- ... } 

has the form Z .....:- Z ~ ... In V-5.15 we shall show that Urn1 of this is 
Ext(Q, Z) and that this is an uncountable rational vector space. Therefore 

H2(X; Z) ~ Ext(Q, Z), 

which is uncountable. On the other hand, the inverse sequence 

is flabby, and so 
H2(X;Q) = O. 

If K is the one-point compactification of X and x is the point at infinity, 
then by (41) on page 136 we have that 

H~(K; Z) ~ Ext(Q, Z) -::J 0 

even though dimz K = 2 and K is separable metric, contractible, and 
locally contractible. 

As another example consider the space X of 11-13.2. Let Nn be an 
open square of side lin about the origin, and put Kn = X - Nn. Then 
Hl(Kn; Z) = O. We deduce from (14) that 

Urn1Ho(Kn;Z) ~Hl(X;Z), 

which is uncountable. Note that HO(Kn; Z) is free abelian. Also note that 
the reasoning that showed that Hl (X; Z) is uncountable is also valid over 
a countable field L as base ring. Thus we conclude that unlike Ext and 
Tor, Urn 1 does not generally vanish over a field as base ring. However, an 
inverse sequence of finite-dimensional vector spaces is Mittag-Leffler, and 
so Urn1 does vanish in that case. 

As a nonexample consider X = §l and the arcs An = {e27ri6 I 0 ~ e ~ 
1 -lin}. Then Urn1HO(An;Z) = 0 = UrnHl(An;Z), but Hl(X;Z) =F O. 
This shows that the condition X = U int Ai is essential. 0 
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3 Direct image relative to a support family 

Let f : X --+ Y and let W be a family of supports on X. To simplify 
notation we let Ue = f-l(U) for U c Y. 

3.1. Definition. For an open set U C Y let W(U) be the family of rela
tively closed subsets A of U" such that each point y E U has a neighborhood 
N with AnNe E W n N" . 

Note that if this condition holds for N then it holds for any smaller 
neighborhood of y, and so N can be taken to be open in this definition. 

Taking N C U, which is no loss of generality, we remark that the 
condition A n N" E W n N e is equivalent to AnN" E W. To see this, 
note that if AnNe E W then AnNe = AnNe n N e E W n N e since 
AnNe n N e cAn U" = A n Ue c A. Conversely, if AnNe E W n Ne, 
then AnN" = K n N e for some K E W, and so AnNe c K = K E W. 

Also note that if Y is regular, then N, and hence N·, can be taken 
to be closed, in which case W n N" = wiNe, which may make it easier to 
understand this family. 

Also note that if Y is compact, then W(Y) = W because a family of 
supports is closed under finite unions. 

If A is a sheaf on X, then the presheaf U f-+ rw(u)(AIUe) is clearly a 
conjunctive monopresheaf, and hence a sheaf. 

3.2. Definition. Let A be a sheaf on X and let W be a family of supports 
on X. Then the "direct image of A with respect to W" is defined to be 
fwA, where 

Note that W(U) :::l W n U", so that there is the inclusion 

(15) 

For a section s E rw(u)(AIUe) and for any point y E U there is, by 
definition, an open neighborhood N of y such that lsi nNe E wnNe. Then 
siNe E rwnN0 (AINe). It follows that the map (15) of presheaves induces 
an isomorphism of the generated sheaves. Thus fwA can be described as 
the sheaf genemted by the monopresheaf 

a useful fact. However, this presheaf is not conjunctive. 
Obviously, the functor fw is left exact. 

3.3. Proposition. If!l! is a flabby sheaf on X and if ~ is a pamcom
pactifying family of supports on Y, then Jw!l! is ~-soft for any family W of 
supports on X.6 

6 Also see II-5.7 and Exercise 1. 
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Proof. Let s E (fwfl!)(K), where K E <P. By II-9.5, there is an open 
neighborhood U of K and an extension s' E (fwfl!)(U) = rw(u)(fl!IU·) of 
s. Since K has a paracompact neighborhood and since paracompact spaces 
are normal, there is an open neighborhood V of K with V c U and V E <P. 
Let s" = s'W· E rw(V)(fl!W·) and let t be the zero section of fl! over 
X - (V. n Is'l). 

Since s" and t agree where both are defined and since fl! is flabby, there is 
a section s· E fl!(X) extending both s" and t. Then Is·1 c V· n Is'l E W(Y). 
Thus we may regard s· as an element of (fwfl!)(Y), and as a section of Jwfl! 
it has support in V E <P. Thus s· is the required extension of s to rip (fwfl!). 

o 

3.4. Proposition. Let /F and fJl be sheaves of rings on X and Y re
spectively, and suppose that there exists an f -co homomorphism fJl "" /F 
preserving the ring structures. Then for any ff -module cd on X, f wcd is 
an fJl-module. In particular, if cd is a ~o(X;L)-module (where L is the 
base ring), then !wcd is a ~o(Y; L)-module. 

Proof. Note that (fwcd)(U) = rw(u)(cdIU·) is a module over ff(U·) via 
the cup product 

where the last map is induced by the module product ff (glcd -+ cd. Thus 
(fwcd)(U) is also an fJl(U)-module, via the J-cohomomorphism fJl (U) -+ 

/F(U·), whence fwcd is an fJl-module as claimed. 0 

3.5. We shall need the following elementary observations concerning the 
naturality of the direct image under cohomomorphisms. Let 

Xl ~ X 2 

1ft lh 
Y1 -.!::..... Y2 

be a commutative diagram of maps. Let cd i be sheaves on Xi (i = 1, 2) and 
let k : cd 2 "" cd 1 be a g-cohomomorphism. Let Wi be a family of supports 
on Xi with g-1(W2) c W1. 

For U2 C Y2, let Uz = r;\U2), U1 = h- 1(U2) and Ui = F;1(U1) = 
g-l(UZ)' The homomorphisms 

induced by k form an h-cohomomorphism of presheaves and hence give rise 
to an h-cohomomorphism 
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of induced sheaves. 
If A~ are also sheaves on Xi and 

is a commutative diagram of homomorphisms and g-cohomomorphisms, 
then the diagram 

also commutes. 

h,w2(A2 ) 

1 
h,w2(A;) 

The remaining material of this section is not used in this chapter 7 and 
is presented to aid the reader's understanding of the these matters. The 
following is actually a special case of 4.2, but this direct treatment may be 
useful. 

3.6. Proposition. Let f : X -+ Y be 1IJ -closed for a family 1IJ of supports 
on X. Then for any sheaf A on X, the sheaf twA is concentrated on f(X). 

Proof. We have that twA = fFlwa/(U f-t fwnu.(AIU·)). Let y E U with 
y rj. f(X), and let s E fwnu.(AIU·). Then lsi = K n U· for some K E 1IJ. 
Now, f(K) is closed and y rj. f(K). Thus there is an open neighborhood 
V c U of y with V· n K = 0. Therefore sW· = 0, showing that s induces 
o E (fwA)y = limfwnu. (AIU·). Consequently, (fwA)y = O. 0 

3.7. Corollary. Let i : A ~ X be the inclusion of a subspace and let 1IJ 
be a family of supports on A such that each member of 1IJ is closed in X. 
Also assume that every point of A has a neighborhood, in A, that is in 1IJ. 8 

Then iwA ~ AX. 

Proof. By 3.6, iwA vanishes outside of A. Now U· = UnA and 

iwA = !P1wa/ (U f-t f wnu. (AIU n A)) . 

Thus (iwA)IA = !P1wa/(U n A f-t fwnu. (AIU n A)). Since every point of 
A has a neighborhood, in A, in 1IJ, this is the same as the sheaf generated 
by the presheaf UnA f-t f(AIU n A), which is just A. But AX is the 
unique sheaf inducing A on A and zero on X-A. 0 

3.8. Corollary. If i : A ~ X is the inclusion of a locally closed subspace 
A of a locally compact Hausdorff space X, then we have icA ~ AX. D 

7The last corollary is used in Chapter V. 
8This implies that A is locally closed in X. 
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4 The Leray sheaf 

Let A eX, let W be a family of supports on X, let .Y1 be a sheaf on X, 
and let f : X --+ Y be a map. 

4.1. Definition. The "Leroy sheaf of the map f mod flA" is the sheaf 

13f~ (f, fIA;.Y1) = fJllwu/ (U 1-4 Hq,nuo (Ue , ue n A; .Y1lue» I 
on Y. 

For A = 0, 3f~(f;.Y1) = 9'Iwu/(Ul-4rw(u)(.Y1lue) = (fw.Y1)(U») , and 
so 

13f~(f;.Y1) = h.Y1·1 

Now, h~*(X,A;.Y1) is generated by the presheaf 

U 1-4 rwnuo(~*(X,A;.Y1)lue) 
= rwnuo(~*(Ue,ue nA;.Y1we» 
= Cq,nuo (Ue, Ue n A; .Y1lue). 

Thus its derived sheaf is the sheaf generated by the presheaf 

U 1-4 Hq,nuo (Ue, Ue n A; .Y1IUe), 

and so it is the Leray sheaf 3f~ (f, fIA;.Y1). That is, the Leray sheaf is the 
derived sheaf 

13f~(f, fIA;.Y1) = 3f*(fw ~*(X, A;.Y1»·1 

More generally, 

13f~(f,fIA;.Y1) ~ 3f*(fw.Y1*), I 
where .Y1* is any flabby differential sheaf of the form 

.Y1* = Ker{ k : !}!* --+ i.A'*}, (16) 

where !}!* is a flabby resolution of.Y1 on X, .A'* is a flabby resolution of 
.Y1IA on A, and k : !}!* "-+ .A'* is a surjective i-cohomomorphism, where 
i : A '-+ X. For example, .Y1* could be taken to be 9'*(X,A;.Y1); see 
II-12.17. 

For A = 0, the Leray sheaf is denoted by 3f~(f; .Y1), and by the pre
ceding remarks, it is the derived sheaf 

for any flabby (e.g., injective) resolution .Y1* of.Y1. Therefore 3f~(f;.Y1) is 
just the pth right derived functor of the left exact functor h. 
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The exact cohomology sequences of the pairs (U·, U· n A) induce an 
exact sequence 

I·· .-->.1f~(f, JIA; "')-->.1f~(f; "')-->.1f~(fIA; "')->.1f~+1 (f, JIA; "')-->' . ·1 (17) 

of sheaves on Y. 
For y E Y, let y. = f-l(y). The restriction map 

H~nu. (U., U· n A; "'IU·) -+ H~ny. (y., y. n A; Aly·) 

induces a homomorphism 

It will turn out to be of great importance to obtain sufficient conditions 
for r~ to be an isomorphism. Since r~ maps the sequence (17) into the 
cohomology sequence of the pair (y., y. n A), sufficient conditions in the 
absolute case, for both f and flA, will also be sufficient for the relative 
case. 

4.2. Proposition. Iff is iII-closed and y. = f-l(y) is iII-taut in X (e.g., 
if iII is paracompactifying or if iII contains a neighborhood of y. and y. is 
compact and relatively Hausdorff in X), then 

r; : .1f~ (f; A)y -+ H~ny. (y.; A) 

is an isomorphism for altA. (Also see Section 7.) 

Proof. This follows immediately from II-1O.6. o 

4.3. Consider the situation of 3.5. Let Ai C Xi, i = 1,2, be such that 
g(Al) C A2 and let "'; = ~*(Xi' Ai; "'i). The g-cohomomorphism k : 
A 2 "-+ A 1 extends to one A; "-+ A~ of differential sheaves. Thus we have 
the induced h-cohomomorphism 

of differential sheaves and hence an h-cohomomorphism 

.1f~2(h, h1A2; A 2) "-+ .1f~1 (11, fdA l ; AI) 

of graded sheaves. 

(19) 

Again, in the absolute case, consider the special case of an inclusion 
BeY and BO = f-l(B) C X. The cohomomorphism (19) gives rise to a 
homomorphism 

(20) 

If B is open, then it is clear that r* is an isomorphism, but this is false 
for general B. However, we have the following result: 
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4.4. Proposition. Let f : X -+ Y be 'IT -closed and let BeY be a sub
space such that for each y E B, f-l(y) is 'IT-taut in X. Then the natural 
map 

is an isomorphism. 

Proof. This follows immediately from 4.2 and II-12.14, which imply that 
r* in (20) is an isomorphism on each stalk. 0 

4.5. Let.;1 be a sheaf on X and fiJ a sheaf on Y, where f : X -+ Y. For 
open sets U C Y, the cup product on U· = f-l(U) induces the map 

Ht (U. , U- n A;.;1) ® fiJ(U) -+ Ht(U·, U- n A;.;1) ® (1* fiJ)(U-) 
= Ht(U·, U· n A;.;1) ® H°(U-; 1* fiJ) 
-+ Ht (U. , u· n A;.;1 ® 1* fiJ) 

of presheaves. This, in turn, induces a homomorphism 

1.1{~(f,JIA;.;1) ® fiJ -+ .1{~(f, fIA;.;1 ® 1* fiJ) I (21) 

of the generated sheaves. 
If f is 'IT-closed and if y. = f-l(y) is 'IT-taut in X, then on the stalks 

at y, (21) for A empty is just the cup product 

where M = fiJy • 

From these remarks and the Universal Coefficient Theorem II-15.3 we 
deduce: 

4.6. Proposition. Let f : X -+ Y be a closed map such that each y. = 
f-l(y) is compact and relatively Hausdorff in X. Let.;1 be a sheaf on X 
and fiJ a sheaf on Y such that fifiJ = 0 and such that HP+1 (y.; .;1)*fiJy = 0 
for all y E Y. Then the homomorphism 

of (21) is an isomorphism.9 o 

4.7. Again, let f : X -+ Y and A eX. Let 'IT and e be families of 
supports on X and let .;1 and fiJ be sheaves on X. For open sets U C Y, 
the cup product 

9 Also see Exercise 4. 
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on U· = J- 1 (U) is compatible with restrictions and therefore defines a cup 
product of the generated sheaves: 

Note that in particular, for A empty and p = ° = q this provides a natural 
map 

I jy,(Ji) 0 Je($) --; jy,ne(J10 $), I 
which is, of course, easy to describe directly from Definition 3.2. The reader 
should be aware of the fact that in the absolute case, this cup product sat
isfies an analogue of the uniqueness theorem II-7.1 since II-6.2 generalizes 
word for word to the case of functors from the category of sheaves on X to 
the category of sheaves on Y. (Specializing Y to be a point retrieves the 
original situation.) 

4.8. Example. Here is a simple, but not completely trivial, example of a 
Leray sheaf. Let X = lRlP'2 considered as the unit disk in lR2 with antipodal 
points on the boundary identified. The circle group C = §1 acts on X by 
rotations in the plane. Let Y = X/C be the orbit space, which can be 
considered as the cross section consisting of the interval [0,1] on the real 
axis. Let J : X --; Y be the orbit map. The point ° corresponds to a fixed 
point; the orbit corresponding to 1 is a circle wrapping around twice, and 
all other orbits are free. From this it is clear that the Leray sheaf .Yf1(f; Z) 
is the subsheaf of the constant sheaf Z on [0,1] that is ° at 0, 2Z at 1, and 
Z at interior points. (For example, a generator of H1(f-1(~, 1];Z) gives 
a section of .Yf 1 (f; Z) over (~, 1] that induces a generator of the stalk at 
1 since J-1(1) is a deformation retract of J- 1(l' 1], but it gives twice a 
generator in the stalk at x I- 1 since H1(f-1(2' 1];Z) --; H1(f-1(x);Z) 
does that.) Since all orbits are connected, .Yf0(f; Z) ~ Z, and of course, 
.YfP(f; Z) = ° for p I- 0, 1. <> 
4.9. Example. Let X = (IT x IT- {(o,~)} )/{ (0, y) rv (0, l-y) 10 ::; y < ~}, 
a square with the midpoint of one side deleted and the remaining two rays 
of that side identified. Let Y = IT and let J : X --; Y be the projection 
J(x, y) = x. Then the Leray sheaf .Yf1(f; Z) vanishes away from 0, but the 
stalk at ° E Y is .Yf1(f;Z)o ~ Z since H 1(f-1[0,.::);Z) ~ Z. Therefore 
.Yf1(f;Z) ~ Z{O} is nonzero even though H1(f-1(y);Z) = ° for all y E Y. 
Note that each J-1(y) is taut, but J is not closed. Now, X and Yare 
locally compact and J is c-closed, of course. The Leray sheaf .Yf!(f; Z) = 0 
since, for example, J- 1[0,.::] ~ j[J)2_{0} ~ §1 X (0,1] and H~b§1 x (0,1]; Z) ~ 
Hl(§l X [0, 1],§1 X {O};Z) = 0. By similar calculations, .Yfc(f;Z) = Z(O,1j' 
By 4.2 these stalks of .Yf~(f;Z) are the cohomology groups with compact 
supports of the corresponding fibers, as the reader may verify. <> 

In some situations it is possible to prove some general niceness results 
about the Leray sheaf. The material in the remainder of this section is 
based largely on the work of Dydak and Walsh [35]. 
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4.10. Definition. Let L be a principal ideal domain. A presheaf S of L
modules on X is said to be locally finitely generated if for each point x E X 
and open neighborhood U of x, there is an open neighborhood V C U of x 
such that Im(rv,u : S(U) -+ S(V)) is finitely generated over L. A sheaf 
.'Jl is said to be locally finitely generated if.'Jl = .'Jl1waf(S) for some locally 
finitely generated presheaf S. 

4.11. Theorem. Let L be a principal ideal domain. Suppose that S is 
a locally finitely generated pre sheaf of L-modules on the separable metric 
space Y. Let.'Jl = .'Jllwaf( S) and suppose that.'Jl has finitely generated stalks 
over L. Let G be a given L-module and put Ye = {y E Y l.'Jly ~ G}. Then 
Ye is covered by a countable collection of sets Yi, closed in Y, such that 
each .'JlIYi contains a constant sub sheaf ri with stalks G such that riy is a 
direct summand of f)Jy for each y E Yi. 

Proof. Let {Ui } be a countable basis for the topology of Y. Call a triple 
i, j, k of indices admissible if Uk c Uj , U j C Ui , and Gi,j = 1m rUj ,Ui is 
finitely generated. For y E Uj let ry,i,j : Gi,j -+ .'Jly denote the canonical 
map. Then for each y E Y and neighborhood U of y, there exists an 
admissible triple i,j, k such that y E Uk> Ui C U, and ry,i,j : Gi,j -+ f)Jy is 
an isomorphism onto .'Jly (since .'Jly is finitely generated). For an admissible 
triple i, j, k, let 

Bi,j = {y E Ye n Uj I ry,i,j is an isomorphism} 

and 

Ki,j,k = Bi,j n Uk. 

Suppose that x E Ki,j,k. Then there is an admissible triple p, q, r such 
that x E Un Up C Uj , and rx,p,q : Gp,q -+ f)Jx is an isomorphism. Since 
x E Bi,j n Uk, there is a point y E Bi,j n Ur • Since Up C Uj , there is the 
commutative diagram 

showing that G is a direct summand of .'Jlx. By construction, the closed 
sets Ki,j,k cover Ye. The maps rx,i,j : Gi,j -+ .'Jlx form a homomorphism 
of the constant sheaf ri with stalks G to f)JIKi,j,k, and we have shown this 
to be a monomorphism onto a direct summand on each stalk. D 

4.12. Corollary. With the hypotheses of 4.11, suppose that Y is locally 
compact or complete metrizable and assume that the stalks of.'Jl are mutu
ally isomorphic. Then there is an open dense subspace U of Y over which 
.'Jl is locally constant. 
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Proof. By the Baire category theorem some Yi must have nonempty in
terior. Thus U int Yi is dense in Y and /J? is locally constant on it. D 

4.13. Theorem. If f : X ---4 Y is a proper closed map between separa
ble metric spaces and L is a principal ideal domain then the Leray sheaf 
.Y{'n (f; L) is locally finitely generated over L. 10 

Proof. We may assume that X is a subspace of the Hilbert cube ][00; see 
[19,1-9]. Consider the presheaf Son Y given by S(U) = Hn(Nd(U)(U·); L), 
where d(U) is the diameter of U and Nd(U)(U·) is the set of points in ][00 

of distance less than d(U) from U·. Let /F = /F1wu/( S). 
We claim that the sets Nd(U) (U·) form a neighborhood basis of y. in ][00. 

If not, then there is an open neighborhood V of y. in ][00 containing no set 
of the form N1/n(f-1(N1/2n(Y)))' Let Zn E N1/n(f-1(N1/2n(Y))) - V and 
let Xn E f-1(N1/2n (Y)) with dist(xn, zn) < l/n. Then f(xn) E N 1/2n (y), 
so that f(xn) ---4 y. It follows that {y, f(X1), f(X2), ... } is compact. Since 
f is proper, some subsequence {xnJ must converge to a point x E X. 
Then f(x) = lim f(xnJ = y, so that x E y.. Since dist(xn, zn) < l/n, 
lim zni = x E y., contrary to the fact that no zn, is in V. 

Thus /Fy = Hn(y.; L). Now, the canonical map Hn(Nd(U)(U·); L) ---4 

Hn(y.; L) factors through Hn(u·; L), and the latter generate the Leray 
sheaf .Y{'n(f; L). This gives a map /J? ---4 :ltn(f; L), which is an isomorphism 
on each stalk. Therefore, /F ;:::, :ltn(f; L). Since the Hilbert cube][oo is cleL, 
it follows from II-17.5 that the presheaf S is locally finitely generated. D 

4.14. Corollary. Let f : X ---4 Y be a proper closed map between sepa
rable metric spaces such that the stalks H* (y.; L) of.Y{'* (f; L) are finitely 
generated for all y E Y. Let YG be as in 4.11. Then YG is covered by a 
countable family of sets Yi, closed in Y, such that each .Y{'* (f; L) I Yi contains 
a constant subsheaf rd, with stalks G, that is a stalkwise direct summand. 

D 

4.15. Example. Let Y = [-1,1]' 

X = {(x, O} I - 1 :::; x :::; 1} U {(x, I} I - 1 :::; x :::; O} U {(x, x} 10 :::; x :::; I}, 

and f(x, y) = x. Then YLEJ)L = Y. However,:It = :It°U; L) is not constant. 
Instead, there is an exact sequence 0 ---4 L ---4 :It -> L[-l,O] EEl L(O,l] -> O. 
No Yi, as in 4.14, can have {O} in its interior. The collection Yo = [-1,0] 
and Yn = [2- n, 2-n+1] for n > 0 works, and each :ltlYn is constant. 0 

4.16. Example. Let X be the Cantor set and let f : X ---4 Y = [0,1] be 
the identification of the end points in each complementary interval. Then 
f is 2-to-l over a countable set Q = YLEJ)L and I-to-l over P = Y -Q = YL . 

lOThis is also true without separability. One uses the space C(X) of continuous 
bounded real-valued functions on X instead of the Hilbert cube. Since C(X) is not 
locally compact, II-17.5 does not apply directly, but its proof does. 
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Now, for Q = U Qi as in 4.14, the Qi can simply be the points of Q. In any 
case there must be infinitely many Qi since they are closed and contained 
in Q. For P we could take Pt = Y. In any covering P C P l U P2 U··· with 
Pi closed in Y, some Pi must have nonempty interior by the Baire category 
theorem. Let U be an open interval inside some such Pi and let cI> = cl U. 
Then the exact coefficient sequence 0 -+ L -+ :Yt -+ fll-t 0 induces the 
exact sequence 

The right-hand term is Hl(Yj f L) ~ Hj- 1 <I>(Xj L) = 0 by II-11.1, and the 
previous term is H11U(Yj L) ~ H1(Uj L) ~ L. Thus r<I>(:Yt) -+ r<I>(fll) is 
not surjective, and so flllPi , and hence LI~, cannot be a direct summand 
of :YtIPi even though it is a stalkwise direct summand. 0 

5 Extension of a support family by a family 
on the base space 

Let f : X -+ Y with wand cI> being families of supports on X and Y 
respectively. 

5.1. Definition. Let the "extension cI>(w) of W by cI>" be the family of 
supports on X defined by 

I cI>(w) = {K E w(Y) I f(K) E cI>} = w(Y) n f- 1(cI»·1 

Intuitively, cI>(w) is the result of "spreading W out over cI>." The reason 
for considering this construction is the following: 

5.2. Proposition. For any sheaf A on X we have 

under the defining equality UwA)(Y) = rW(Y) (A) C A(X). 

Proof. Let s E UwA)(Y) = rw(y)(A) and K = lsi c X as a section 
of A. Then the support of s as a section of fwA is clearly f(K). By 
Definition 5.1, f(K) E q, ¢:} K E q,(w), since K E w(Y), and the result 
follows. D 

Most cases of interest are those in which q" w are one of the four com
binations of dd, c on locally compact Hausdorff spaces X and Y and map 
f : X -+ Y. The following table indicates the intuitive meaning of cI>(w) in 
these four cases: 
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cI> (on Y) \II (on X) cI>(\II) (on X) 
closed closed closed 
compact compact compact 
closed compact fiberwise compact 
compact closed basewise compact 

The following is immediate from the definitions. 11 

5.3. Proposition. If f : X ---+ Y is a map between locally compact Haus
dorff spaces, then 

(a) c(Y) = {K C X closed I flK : K ---+ Y is proper}, 

(b) cI>(c) = {K E f-1(cI» I flK: K ---+ Y is proper}, 

(c) \lie cI>(c) ¢:} (/(\11) C cI> and flK: K ---+ Y is proper for all K E \II). 
o 

We collect some further miscellaneous facts about this construction: 

5.4. Proposition. Let f : X ---+ Y, let cI>, 3 be families of supports on Y 
and \II, e families of supports on X. Then, with Ae = f- 1(A), 

1. \II C \II(Y), 

2. \II C 8 =? \II(Y) C 8(Y) and cI>(\II) C cI>(8), 

3. cI>(cld) = f- 1cI>, 

4. cld(\II) = \II(Y), 

5. \II(Y)(Y) = \II(Y), 

6. cI>( cI>(\II)) = cI>(\II), 

7. cI>(\II) n f-1(3) = (cI> n 3)(\11), 

8. f \II-closed, A C Y =? cI>(\II)IA· = (cI>IA)(\II) = (cI>IA)(\II n Ae ), 

9. cI>(\II) n 3(8) = (cI> n 3)(\11 n 8). 

Proof. Items 1-5 are clear. For 6, note that cI>(\II) C \II(Y) by definition. 
Thus cI>(\II)(Y) C \II(Y)(Y) = \II(Y) by 2 and 5. Therefore 

cI>(cI>(\II)) =def cI>(\II)(Y) n r1(cI» C \II(Y) n r1(cI» =def cI>(\II). 

Conversely, cI>(\II) C cI>(\II)(Y) by 1, and cI>(\II) C f-1(cI» by definition, 
whence cI>(\II) C cI>(\II)(Y) n f-l(cI» = cI>(cI>(\II)). 

llNote that 11K: K -+ Y being proper implies that I(K) is closed in Y. 
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For 8, note that 

{K E \lI(Y) I f(K) E cI> and K cAe} 
{K E \lI(Y) I f(K) E cI> and f(K) C A}. 
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Now suppose that K E cI>(\lI)IAe, and let y E f(K). Then by the definition 
of \lI(Y), there exists a neighborhood N of y and a K' E \lI such that 
K n Ne = K' n N e . Therefore f(K) n N = f(K') n N. Thus y E f(K') = 
f(K') since f is \lI-closed. Hence y E f(K). Thus f(K) is closed in Y, and 
so f(K) cA. Also, K' n Ae nNe = K n Ne since K cAe. Hence 

cI>(\lI)IAe = {K E \lI(Y) I f(K) E cI>IA} = (cI>IA)(\lI) 
(also) = {K E (\lI n Ae)(y) I f(K) E cI>IA} = (cI>IA)(\lI n Ae) 

as claimed. Items 7 and 9 are obvious. D 

5.5. Proposition. If f : X -+ Y with \lI paracompactifying on X and cI> 
paracompactifying on Y, then cI>(\lI) is paracompactifying on X. 

Proof. Since every member of <I> has a neighborhood in cI>, it suffices 
to consider the case in which Y E cI>. Thus we can assume that Y is 
paracompact and cI> = cld, whence cI>(\lI) = \lI(Y). It is also clear that we 
can assume that E(\lI) = X and hence that X is regular. Now, if K E \lI(Y), 
then there is a locally finite open covering {Ua} and a shrinking {Va} of 
{Ua } such that each K n f-l(V a ) E Ill. Therefore K = U", K"" where 
K", E III and K", C f-1(V",), for some such covering. Conversely, any 
set K that can be written this way is in IlI(Y). Now, any such set K is 
paracompact since a locally finite union of closed paracompact subspaces 
of a regular space is paracompact; see [34, p. 178]. Also, by considering 
sets W", with V'" c W", and W '" c U"" it is clear that such a set K has a 
neighborhood K' of this form. D 

6 The Leray spectral sequence of a map 

Let A c X, let f : X --+ Y, and let III and cI> be families of supports on X 
and Y respectively. In this section we shall assume that at least one of the 
following two conditions holds: 

(A) III = cld. 

(B) cI> is paracompactifying. 

Let A be a sheaf on X and let A* = ~*(X, A; A), or as in (16) in gen
eral. Then each hAP is cI>-acyclic by 3.3 or 11-5.7. Thus from 2.1 we have a 
spectral sequence, derived from the double complex C:(Y; fwAq), in which 
E~,q = H:(Y; ::te'iv(j, flA; A)) and Eoo is the graded group associated with 
some filtration of H*(f<p(jwA*)) = H*(f<p{IJI) (A*)) = H~)(IJI)(X,A;A). 

From this and 4.2 we obtain the following basic result, which is one of 
the most important consequences of sheaf-theoretic cohomology: 
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6.1. Theorem. If (A) or (B) holds, then there is a spectml sequence (the 
"Lemy spectml sequence") in which 

Moreover, if I is \It-closed and \It n A-closed and if each y. = I-l(y) is \It
taut and each y. nA is \ItnA-taut in X, then the canonical homomorphisms 

r; : .Jt7r,(J, IIA; vi)y ---> H~ny' (y., y. n A; vi) 

are isomorphisms. D 

This is clearly a far-reaching extension of the general Vietor is mapping 
theorem II-ILl; see 8.21. Most of the remainder ofthis chapter is concerned 
with applications of this spectral sequence. 

6.2. Let us briefly discuss the naturality of the Leray spectral sequence. 
Consider the situation and notation of 3.5 and 4.3. Let 4.>i be a family 
of supports on Yi satisfying (A) or (B) and with h- 1 (4.>2) c 4.>1. The 
h-cohomomorphism 12,'V2A; "" h,'Vl A~ induces an h-cohomomorphism 
~'(Y2; h,'V2A;) "" ~'(Yl; h,'V1A~) and hence a map of double complexes 

C;2 (Y2; h,'V2 A ;) ---> ct (Yl ; h,'Vl A~). 

Therefore there is an induced map of spectral sequences 

The homomorphism 2 E~,q ---> 1 E~,q, Le., 

H~2 (Y2; .Jtt2 (12, 12IA2; A 2)) ---> H~l (Yl ; .Jtt1 (h, h IAl; Ad), 

is induced by the h-cohomomorphism (19) of Leray sheaves. Moreover, 
the homomorphism 2 E~q ---> 1 E~q is the graded map associated to the 
homomorphism 

H;2('V2)(X2,A2;A2) ---> H;l('Vll(Xl ,Al;Al ) 

induced by k : A2 "" Al [note that g-l(4.>2(\It2)) C 4.>l(\ItdJ. 

6.3. In the situation of 6.1 again, let r denote the edge homomorphism 

of the Leray spectral sequence. We wish to relate this to more familiar 
maps. To do this, apply 6.2 to the diagram 
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of maps and support families. There is a map of the spectral sequence 
of f: (X,w) --+ (Y,ib) to that of (X,cld) --+ (X,f-lib). This gives the 
commutative diagram 

H:(YjflJt.4) 

1ft 
H;_l;p(Xj.4) 

since (f-l ib)( cld) = f- 1 ib. The edge homomorphism 1 ¢ is the identity, 12 
and £ * is induced by inclusion of supports. By the general discussion of 
6.2 the map ft is induced by the f-cohomomorphism h.4 "'-t lcld.4 =.4, 
which is equivalent to the inclusion of supports homomorphism flJt.4 --+ 

f.4, i.e., it is the composition flJt.4 --+ f.4 "'-t .4. Therefore, we have the 
general relationship 

1£* 0 r = ft : H:(Yj h.4) --+ Hj_l;p(Xj .4), I 

where ft is induced by the f-cohomomorphism flJt.4 "'-t .4 and L* is induced 
by the inclusion of supports ib(W) '-+ f- 1ib. 

Now suppose that W = cld. Then ft : H:(Yj f.4) --+ H;_l;p(Xj.4) 
is the map of that name in 11-8. Also, L * is the identity. Thus the edge 
homomorphism r is just the canonical map 

I r = ft : H:(Yjf.4) --+ H;_l;p(Yj.4) I 
of 11-8 induced by the f-cohomomorphism f.4 "'-t.4. 

Now also suppose that .4 = j*flJ for some sheaf flJ on Y. Then by 
(18) on page 63, j* = ft 0 {3*, where {3 : iJJ --+ f j* iJJ is the canonical 
homomorphism. Therefore the composition 

I r 0 (3* = j* : H:(Yj flJ) --+ H;_l;p(Xj j*iJJ) I 
is the usual homomorphism induced by f. 

See Exercise 5 regarding the other edge homomorphism. 

6.4. Example. Consider the map f : X --+ Y = [0,1) of 4.8. The Leray 
sheaf .7(1 (I; Z), as computed there, is a subsheaf of the sheaf Z(O,I] with 
quotient sheaf f!l having stalk Z2 at 1 and being zero elsewhere. We com
pute HP(][j Z(O,l]) = HP([, {O}j Z) = 0 for all p by II-12.3. Therefore, the 
cohomology sequence of the exact coefficient sequence .7(1 (lj Z) >-+ Z(O.l] -
f!l gives that HP(][j.7(l(1jZ)) :::::: HP-l([jf!l) :::::: HP-1({I}jZ2):::::: Z2 (by 11-
10.2) for p = 1 and is zero otherwise. Thus the Leray spectral sequence of 
f has Ei,l = Z2, E~'o = Z, and E~,q = 0 otherwise. This spectral sequence 
degenerates, i.e., E~q = E~,q, and gives, of course, the usual cohomology 
groups of the projective plane. 0 

12See Exercise 29. 
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6.5. Example. This is an example of the Leray spectral sequence in a 
case in which the map f is not closed and the r~ are not all isomorphisms. 
Let X = §2 - {xo}, where Xo is the north pole; let Y be the unit disk in 
the plane; and let f : X --> Y be the projection taking Xo ~ Yo, the center 
of the disk Y. Use closed supports. Then at points y =f. Yo in Y the Leray 
sheaf :Jfq (I; Z) is the same as that for the projection map from §2, and so 
it vanishes for q > 0. However, the stalk at Yo is 

where U ranges over the open disk neighborhoods of Yo, since such U· are 
disjoint unions of open disks and open annuli (Le., are homotopy equivalent 
to * + §l). It is fairly clear that :Jf°(l;Z) = fZ ~ Z EB ZY-B, where 
B = BY. Also, :Jfl(J; Z) ~ Z{yo}, the sheaf that has stalk Z at Yo and is 
zero elsewhere. Thus the Leray spectral sequence has 

E2P'o = HP(Y; :Jf0(l; Z)) ~ HP(Y; Z)EBHeP(Y -B; Z) ~ {Zo,' for p = 0,2, 
otherwise 

and 

1 1 {Z for p = 0, 
E~' = HP(Y;:Jf (I; Z)) ~ HP(Y; Z{yo}) ~ HP( {Yo}; Z) ~ 0,' for p =f. 0. 

Since this converges to the cohomology of the contractible space X, we 
must have that the only possible nonzero differential, 

is an isomorphism. 

'71 ~ EO,l d 2 E 2,o ~ '71 
~~ 2 ~ 2 ~~, 

It is of interest to consider the same example but with supports in c 
on X. Here, all of the hypotheses of 6.1 are valid, so that the Leray sheaf 
:Jf~(J; Z) vanishes for q =f. 0, and :Jf~(I; Z) = feZ has stalks 

{ 
Z, for y E B, 

:Jf~(J; Z)y ~ Z EB Z, for y E Y - B - {Yo}, 
Z, for y = Yo. 

Here, of course, the Leray spectral sequence degenerates to the isomorphism 

HP(Y, :Jf0(f' Z)) ~ HP(X Z) ~ {Z, for p = 2, 
, e' e' 0, for p =f. 2. 

From the stalks, one might think that :Jf~(J; Z) ~ ZEBZy -B-{yo}' but this 
cannot hold since r(:Jf~(I; Z)) = HO(y; :Jf~(J; Z)) = 0, so that :Jf~(J; Z) 
has no nonzero global sections. 0 
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6.6. Example. Let U1 C U2 C ... be an increasing sequence of open 
subsets of a space X with union X. Let N be as in II-Exercise 27. Define 
7r : X -+ N by 7r(x) = min{n I x E Un}. Then 7r is continuous (but not, of 
course, closed) since 7r- 1 {I, ... , n} = Un. Then the Leray spectral sequence 
of 7r with closed supports is identical to the spectral sequence of 2.11, as 
the reader may detail. 0 

As an application of the Leray spectral sequence, suppose that f : X -+ 

Y is a map between locally compact Hausdorff spaces. We say that f 
is a "c-Vietoris map" if Hr(f-l(y); L) = 0 for p > 0 and any constant 
coefficients L. We say that f is a "locally c-Vietoris map" if flU: U -+ Y 
is c-Vietoris for all open U C X, e.g., f finite-to-one or "discrete-to-one" 
such as any covering map. [Note that this implies that dimL f-l(y) = 0.] 

6.7. Theorem. If f : X -+ Y is a locally c- Vieto1"is map between locally 
compact Hausdorff spaces and if!J! is a c-fine sheaf on Y, then 1*!J! is a 
c-fine sheaf on X. 

Proof. In the Leray spectral sequence 

E~,q = Hg(Y; .Yf~(f; 1* !J!)) ==> Hg+q(X; 1*!J!) 

we have that the coefficient sheaf .Yf~(f; 1*!J!) has stalks Hg(f-l(y); !J!y) = 
o for q > 0 by 6.1 and our assumption. Also, .Yf~(f; 1*!J!) = fcf*!J! is c-fine 
by Exercise 8. Hence H;;(X; 1*!J!) = 0 for n > 0, meaning that 1*!J! is 
c-acyclic. This applies to the map flU for U C X open, and so (f*!J!) I U is 
c-acyclic. Therefore 1*!J! is c-soft by II-16.1. If!J! is a module over a c-soft 
(hence c-fine) sheaf f1Jl of rings, then 1*!J! is a module over the c-soft sheaf 
1* f1Jl of rings, so that 1*!J! is c-fine. D 

6.8. We conclude this section with a discussion of the cup product in 
the Leray spectral sequence. Recall that the Leray spectral sequence of 
f : X -+ Y mod A C X may be identified with the "first" spectral sequence 
of the double complex 

Now, for i = 1,2 let vii be a sheaf on X, Wi a family of supports 
on X, and <Pi a family of supports on Y. Let vii = $q(X;vi1), vi~ = 
$q(X,A;vi2), and vii,2 = $q(X,A;vil ®vi2). The cup product (25) on 
page 93 provides a chain map vii ® vi~ -+ vir:;t. Similarly, we obtain the 
following cup product of double complexes: 

F:1 (Y; fW1vii) ®F£'2 (Y; fw2vi~) (-l)·q~ F::-~\l>2 (Y; fW1 (vii) ® fW2 (vi~)) 

- F::-~\l>2 (Y; fw1nW2 (vii ® vi~)) 

- F::-~\l>2 (Y; fW1nw2viijt) 
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(see 4.7). This induces the cup product of the corresponding spectral se-
quences 

U : 1 E~,q 0 2 E:,t --+ 1,2 E~+8,q+t 

with the usual properties. On the E2 terms this coincides with the compo
sition 

Hg 1 (Yj .re~l (fjA 1 )) 0 H4:2 (Y; .re~2(f, flAj A I)) 

(-1)8QU • Hg;~<f12 (Yj .re~l (fj AI) 0 .re~2 (f,JIAj A 2 )) 

---•• H:;~<f12(Yj .ret~>l'2(f, flAj Al 0 A 2 )), 

and on Eoo it is compatible with the cup product 

U: Hg1(>l'1)(XjA1 ) 0H~(1V2)(X,A;A2) --+ He+m (X,A;A10A2) 

on the "total" cohomology, where e = <I> 1 (Ill 1) n <I>2 (Ill 2) = (<I>1 n <I> 2 ) (Ill 1 n 
1lI2)' [To see this, consider the second spectral sequence of the double 
complex F:(Yj f>l'Aq).] 

The differential dr satisfies the identity 

I dr(o: U (3) = dro: U (3 + (-l)p+qo: U dr(3, I 
where 0: E 1 E~,q (see Appendix A). 

6.9. Let us specialize to the case in which f : X --+ Y is Ill-closed and each 
f-1(y) is Ill-taut and <I> is paracompactifying on X. Also assume that the 
Leray sheaf .re':v(f; L) is constant with stalks H;(F; L), where L is some 
base ring with unit. There are the canonical homomorphisms H$ (F) --+ 

Hg (Y j H~ (F)) (the constant sections) and H: (Y; L) --+ Hg (Y j .reo (f)) 
induced by the canonical homomorphism L --+ .re0(f), which is often an 
isomorphism [e.g., when Y is locally connected and the f-1(y) are con
nected; but we need not assume this or even that .reo (f) is constant or 
that it has stalks H°(f-1(y))]. Thus we have the maps (coefficients in L) 

H~(Y) 0L H4,(F) --;H~(Y; .re0(f)) 0L HO(y; H4,(F)) ~ H~(Y; H4,(F)) = E~,q, 

and the preceding remarks imply that this is an algebra homomorphism 
with the usual cup product 

(a0b) U (c0d) = (_l)deg(b)deg(c)(aUc) 0 (bUd) 

on H:(Y; L) 0L H~(F; L). [The cup product on H~(F; L) is that of the 
stalk H~(f-1(y); L). We are assuming that this is independent of y E Y. 
The reader should show that this is always the case if Y is connected.] In 
particular, if L is a field and <I> = c = III on locally compact Hausdorff 
spaces, then 

H~(Yj L) 0L Hg(F; L) ~ H~(Y; Hg(F; L)) = E~,q 
is an isomorphism of algebras. More generally, this holds when L is a 
principal ideal domain and Hg(Fj L) is torsion-free over L. 
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7 Fiber bundles 
Clearly it is important to understand the Leray sheaf in particular cases. 
We begin by looking at the case of a projection in a product space: 

7.1. Theorem. Let f : Y x F ---- Y be the projection. Let e be a family 
of supports on F and put III = Y x e. Let $ be a sheaf on F and put 
A = Y x $. Let He (Fj $) denote the constant sheaf on Y with stalks 
He (Fj $). Then there is a canonical monomorphism 

7l'* : He(Fj $) >-> :Jt'~(fj A). 

Moreover, if the map r~ of 4.2 is an isomorphism for all y E Y, then 7l'* is 
an isomorphism. 

Proof. Let 7l' : Y x F ---- F be the projection. Then for open sets U C Y, 
7l' : U· = U x F ---- F induces the homomorphism 7l'* : He(Fj $) ---
Hitnuo (U· j A), which is a homomorphism of presheaves, the source being 
regarded as the constant presheaf. This then induces a homomorphism 
of the generated sheaves as required. On the stalks at y E Y this is a 
homomorphism 

7l'; : He (Fj $) ---- lin} Hitnuo (U.; A), 
yEU 

and it is clear that r~ 0 7l'; = 1. Thus 7l'* is a monomorphism, as claimed. 
Moreover, if r~ is an isomorphism, then 7l'; = (r~)-l, so that 7l'* is an 
isomorphism if this holds for all y E Y. 0 

Note that the condition that the r~ be isomorphisms holds for fiberwise 
compact supports on locally compact Hausdorff spaces. More generally: 

7.2. Theorem. Let Y be an arbitrary space and let F be a locally compact 
Hausdorff space. Let A be any sheaf on Y x F and let 7l': Y x F ---- Y be 
the projection. Then for any point y E Y, the homomorphism 

r;: :Jt'~xc(7l'jA)y ---- H;:(FjA) 

of 4.2 is an isomorphism. Thus, for any sheaf $ on F, the Leray sheaf 
:Jt'~xc(7l'j Y x $) is the constant sheaf H:;(F; $). 

Proof. Since 7l' is (Y x c)-closed, it suffices, by II-IO.6, to show that each 
7l'-l(y) = {y} x F is (Y x c)-taut. This is trivial if Y is locally paracompact 
(see item (d) below II-1O.5), but we wish to prove this for completely general 
Y, not necessarily even Hausdorff. 

Thus let i¥ be a flabby sheaf on Y x F and let s E rc(~I{y} x F) with 
lsi = {y}xK. Let W = YxF+, where F+ is the one-point compactification 
of F. By II-9.S there is an extension t E r(~wIU x F+) of s, where U 
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is some neighborhood of Y in Y. By cutting U down, we can assume that 
It I C U x K' for some compact K' that is a neighborhood of K. Then t 
extends by 0 to (U X F+) U (Y X (F+ - K')). Restrict this extension to 
Y x F and then extend it (using that flf is flabby) to a section t' E flf (Y x F) 
with WI c Y x K' E Y x c. This shows that rYxc(flf) --+ fc(flfl{Y} x F) 
is surjective. By II-9.22, flfl{Y} x K is soft for all compact KeF. By 
II-9.3, flfl{Y} x F is c-soft. Therefore, by Definition II-IO.5, {y} x F is 
(Y x c)-taut. 0 

This result has an obvious generalization to (locally trivial) fiber bun
dles. A "fiber bundle" is a map f : X --+ Y such that each point Y E Y has 
a neighborhood U such that there is a homeomorphism 

h: U x F --+ rl(U) = U· with fh(u, t) = u for u E Y, t E F. 

Often, h is restricted to belong to a smaller class of "admissible" homeo
morphisms forming what is called the structure group. 

Then let 'lI be a family of supports on X such that for sufficiently small 
open U c Y and any admissible representation of U· as a product U x F, 
we have that'll n U· = U x 8, where 8 is a given family of supports on 
F. (For locally compact Hausdorff spaces the families of closed, compact, 
fiberwise compact, or basewise compact supports all are examples.) 

Suppose also that .;i is a sheaf on X that for any admissible represen
tation U· ~ U x F has the form U x fiJ for a given sheaf $ on F. Then 
we deduce: 

7.3. Corollary. In the preceding situation, assume that each r; is an iso
morphism (which is the case, for example, for compact or fiberwise com
pact supports on locally compact Hausdorff spaces). Then the Leray sheaf 
:Jf~(f;.;i) is locally constant with stalks He(F; $). In this case, we usu
ally denote the Leray sheaf by :Jf~(F; $). 0 

Analogous results obviously can be formulated in the relative case of 
(X, A) --+ Y, where for any admissible h : U x F ~ U· we have that 
h-1(U· n A) = U x B for a given subspace B c F. 

7.4. Example. Consider the solenoid ~1, which is the inverse limit of the 
covering maps 

§1 ..2- §1 ~ §1 ..i- ... 
There is the projection 7r : ~1 --+ §1 to the first factor. This is a bundle 
whose fiber F is the inverse limit of the sequence 

of epimorphisms, which is homeomorphic to the Cantor set. By continuity 
II-14.6, F has cohomology (integer coefficients) only in dimension zero, 
where 
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which is free abelian on a countably infinite set of generators. (This also 
follows from II-Exercise 34.) Also by continuity, 

Hl(El);;:; Q, 

and of course HO(E l ) ;;:; Z since El is connected. The Leray sheaf.Ye = 
.Yeo (7r) is locally constant with stalks H by the preceding results. The Leray 
spectral sequence degenerates into the isomorphisms HO(El ) ;;:; f(.Ye) and 
Hl(El);;:; Hl(§l; .Ye). Since HO(El);;:; Z ¢ H, the sheaf.Ye is not constant 
(which is also clear from its definition). Of course .Ye = 7rZ, and so the 
isomorphism Hl (§l;.Ye) = Hl (§l; 7rZ) ;;:; Hl (El) is also a consequence of 
II-ll.l; also see 8.2l. Let y E §l be given. The exact sequence of the pair 
(§l, y) has the segment 

0- HO(§l;.Ye) _ HO(y; H) _ Hl(§l, y;.Ye) _ Hl(§l;.Ye) _ 0, 

which has the form 

O-Z-H~H-Q-O. 

It is fairly clear that g = 1 - 11, where 11 : H - H is the monodromy 
automorphism. There is the canonical homomorphism 

(3 : Z - 7r7r*Z = .Ye. 

On the stalks at y, this is just the inclusion 

Z ~ HO(7r- l (y);Z) = {continuous functions 7r- l (y) _ Z} 

of the set of constant functions into that of continuous functions. Thus 
the quotient sheaf ri = .Ye /Z is torsion-free. (In fact, the stalk of ri 
at y can be identified with the image of g, and so it is free abelian.) 
Since 7rt : Hl(§l; 7r7r*Z) _ Hl(El; 7r*Z) is an isomorphism by II-I l. 1 , 
(3* : Hl(§l; Z) _ Hl(§l;.Ye) can be identified, by (18) on page 63, with 
7r* : Hl(§l; Z) _ Hl(El; Z), which is the inclusion Z ~ Q. The exact 
sequence 0 - Z - .Ye - ri - 0 induces the exact sequence 

0- r(Z) - f(.Ye) _ r(ri) _ Hl(§l; Z) _ Hl(§l;.Ye) _ Hl(§l; ri) _ 0, 

which by the preceding remarks has the form ° _ Z _ Z _ f(ri) _ Z ~ Q _ Hl(§l; ri) _ 0, 

and so f(ri) = ° (since it is torsion-free) and Hl(§lj ri) ;;:; Q/Z. 0 

We wish to find other conditions on the spaces of projections X x F _ Y 
and the support families for which the r~ are isomorphisms. One useful 
such result is the following: 

7.5. Theorem. Let X be an arbitrary space and let Y be a locally compact 
Hausdorff space that is clcL where L is a given base ring that is a principal 
ideal domain. Let e be a family of supports on X and let.Yi be a sheaf of 
L-modules on X. Let 7r : X X Y - Y be the projection. Then the Leray 
sheaf .1t'~Xy(7rj.Yi x Y) of 7r is the constant sheaf He(X;.Yi) for all n < k, 
and similarly for 7r mod 7rIA x Y for any subspace A eX. 
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Proof. Let Y E Y and the integer n < k be fixed once and for all. If 
Kl is any compact neighborhood of Y in Y, the property clel implies 
that there exists a neighborhood K2 C Kl of Y such that the restriction 
Hq(K1,y;L) --+ Hq(K2,y;L) is trivial for all q::; k. By II-17.3 and II-15.3 
it follows that K 2 may be so chosen that 

is trivial for every L-module M and all q ::; n. Similarly, choose Kl :J 
K2 :J ... :J Km with the same property at each stage. 

Consider the Leray spectral sequence iE~,q of the projection TJ : X x 
Ki --+ X mod(X x {y}) with supports in e on X and closed on X x Ki 
and with coefficients in vi x K i • Thus 

iE~,q =H~(X; .1tq(TJj TJIXx{y}j vixKi» ~H~t'k(XxKi' XX{y}j vixKi). 

Since Ki and {y} are compact, the stalk at x E X of the Leray sheaf of TJ 
is Hq(Ki, Yjvix ). 

The inclusion Ki+l '--+ Ki induces a homomorphism of the spectral 
sequence iE~,q into i+lE~,q, which for r = 2 reduces to the homomorphism 
attached to the coefficient homomorphism of Leray sheavesj see 4.3. But 
this coefficient homomorphism is trivial for q ::; n and for all i by the choice 
of the K i . 

If follows that the homomorphism iE'goq --+ i+lE'goq is trivial for all 
q ::; n and all i = 1,2, ... , m - 1. Now the "total terms" are filtered as 
follows: 

HexKi (X x K i, X X {Y}j vi x Ki) = J?,n :J Ji1,n-l :J ... :J J?,Q :J 0, 

where Jf,q IJf+1,Q-l ~ iE'goq. This filtration is preserved by Ki+l '--+ Ki 
and is compatible with the homomorphism iE'goq --+ i+lE'goq (which is trivial 
for q ::; n). Thus the induced homomorphism from Ki+l '--+ Ki maps Ji,q 
into Jf:!,q-l for all i and all q ::; n. It follows that the restriction map 

HexKl (X x K1,X x {y},vi x K 1) --+ HexK,,.{X x Km,X x {y},vi x Km) 

is trivial for all m ~ n + 2. 
The cohomology sequences of the pairs (X x K i , X X {y}) show that 

any element a E HexKl (X x K 1; vi x K 1 ) that restricts to zero in X x {y} 
must also restrict to zero in X x Km for m ~ n + 2. 

Now let iy : X --+ X x K be the inclusion x f-+ (x, y) and consider the 
following commutative diagram: 

. .. 
Hn(x·vi)~ Hn (X x K'vi x K)~ Hn(x·vi) e , 9xK' e , 

~ fl~ / 
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in which the composition across the top is the identity and r; = lin} i;. 
The vertical map f is an isomorphism in the limit by the definition of the 
Leray sheaf of 7r. We have shown that if 0 E HexK(X >< K; A x K) and 
if i;(o) = 0, then also f(o) = O. It follows that r; is a monomorphism, 
and hence it must also be an isomorphism. The theorem now follows from 
7.1. 0 

Remark: Theorem 7.5 remains true if we take Y to be locally contractible 
(i.e., every neighborhood of y E Y contains a smaller neighborhood of y 
contracting through it), but not necessarily locally compact. The proof 
is essentially contained in the last paragraph above, with the preceding 
spectral sequence argument replaced by a more elementary argument using 
homotopy invariance in the form of II-ll.S. 

We shall now use 7.5 to prove a result of the Kiinneth type. 

7.6. Theorem. Let A C X, where X is any space, and let the base ring L 
be a principal ideal domain. Let A be a sheaf of L-modules on X and let 
<I> be any family of supports on X. Let Y be a locally compact Hausdorff 
and dCL space. Then there is a natural exact sequence 

which splits. 13 

Proof. Let 7r : X X Y -+ Y and 7] : X x Y -+ X be the projections. Let 
fit = ~*(Y; L), A* = ~*(X, A; A), and p* = ~*(X x Y, A x Y; 7]* A) [or 
use $*( e; e)]. The 1]-cohomomorphism A* "-+ p* induces a homomorphism 

r1>(A*) -+ r1)-1(1))(2*) '----+ rcldy(1)Xy)(2*) = r(7r1>xy2*) 

by 5.2, since 1]-1(<I» = <I> x Y c (<I> x Y)(Y) = ddy(<I> x Y) by 5.4. 
Thus the cup product on Y induces the following homomorphism of double 
complexes: 

Kp,q rc($P) 0 r1>(Aq) 
-+ rc($P) 0 r(7r1>xypq) 
-+ rc($p 0 7r1>Xypq) = LP,q. 

The "second" spectral sequence of the double complex LP,q shows that the 
homology of the total complex L* of L*'* is isomorphic to 

In the "first" spectral sequences of K*'* and L *'*, the homomorphism on 
the E1 terms induced by KP,q -+ LP,q is 

13Also see Exercises 18-19, and V-Exercise 25. 
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since [jJ* is torsion free, where .1(~(X, A; A) = .1(~Xy(1I', 1I'IA x Y; 7]* A) is 
constant by 7.1. Since [jJ* is torsion free and flabby, the universal coefficient 
theorem II-I5.3 in degree zero implies that this homomorphism on the 
El terms is an isomorphism and hence that the induced homomorphism 
Hn(K*) -+ Hn(L*) on the "total" terms is also an isomorphism. The result 
now follows from the algebraic Kiinneth theorem applied to the double 
complex K*·*. 0 

7.7. Example. We shall show by example that the condition clcL' in 7.6 
(and hence in 7.5) is necessary, as is taking c to be the support family on 
Y. Moreover, the coefficient sheaf on Y cannot generally be taken to be 
any torsion-free sheaf (even constant). 

Let A = L = Z. Let X be the disjoint union U Xn where Xn is a 
connected polyhedron with H2(Xn; Z) ;:::;: Zn and the other reduced coho
mology groups being zero. Let Y be a compact I-dimensional space with 
Hl(y; Z) ;:::;: IQ (the rationals), or let Y be a 2-dimensional locally com
pact HLC space that has the singular homology groups H1(Y;Z);:::;: IQ and 
H2(Y; Z) = 0 (so that H2(y; Z) ;:::;: Ext(lQ, Z), which is a nonzero rational 
vector space; see V-I4.8), or let IQ be the coefficient sheaf on Y.14 The 
contentions then follow from the fact that 

since I1n Zn is not all torsion. 
Note, however, that the condition that Y be clcL' was used in 7.6 only 

to ensure that the Leray sheaf of 11' : X x Y -+ Y modulo A x Y is the 
constant sheaf H;(X,A;A). <> 

7.8. Example. Here is another example, due to E. G. Skljarenko, showing 
that the clc1 assumption in 7.5 is needed. It is an instructive example about 
the Leray sheaf. For n = 1,2, ... , let Yn be the union of the circles in the 
upper half plane tangent to the x-axis at the origin and of radii 11k for 
integers k ~ n. Put Y = Yi and let Yo E Y be the origin. Let X be the 
same as Y but with the weak topology, making X a CW-complex. Let 
11' : X x Y -+ Y be the projection. Throughout the example, coefficients 
will be taken in the integers Z and will be suppressed from the notation. 
We wish to study the Leray sheaf .1(2(11'). Since Y is locally contractible, 
and hence clc, near all points except Yo, it is clear that .1(2(11') is zero at all 
points other than Yo. We claim that it is not zero at Yo. From continuity, 
II-lO.7, it is clear that 

i=n 

and if an, an+b'" is the obvious basis, the restriction Hl(Yn) -+ H1(yn+1) 
is the map that kills an and retains the others. 

14 The construction of such spaces is left to the reader. 
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Since Yn is compact, the Leray sheaf of the projection", : X X Yn ---+ X 
is constant with stalks H*(Yn) by 7.2, and so the Leray spectral sequence 
of", has 

E~,q = HP(X; Hq(yn)) ===} Hp+q(X x Yn), 

which vanishes for p > 1 or q > 1. Thus H2(X X Yn) ~ Hl(X; Hl(Yn». 
Since X is locally contractible, we have 

where the homology group is ordinary singular homology. Since X is a 
CW-complex with one O-cell and countably many I-cells, we have Hl(X) = 
EB:1Z, Thus 

H2(X X Yn ) ~ Hom C~ Z, l! Z) , 
where the restriction to H2(X X Yn+1) is induced by the map killing the 
basis element an in the second argument. Let bl> b2 , ... be the obvious basis 
of the first argument. Let f : EB:l Z ---+ EB~n Z be defined by f(b i ) = ai, 

this being regarded as zero if i < n. Then f survives in the direct limit 
over n, and so it defines a nonzero element of .1f2(7r)yO = lill}H2(X X Yn), 
as claimed. 0 

7.9. We shall now deal with the important special case of vector bundles 
at some length. Note that 

HP(]Rn ]Rn _ {O}. L) ~ {L, p = n, 
, , 0, p#-n. 

We shall take the base ring L to be a principal ideal domain. Note that 
comparison with Z using the universal coefficient theorem gives a preferred 
generator of Hn(]Rn,]Rn - {O};L) well-defined up to sign. 

Let e be an n-plane bundle over the arbitrary space Y, and let U be 
the total space of e. We shall identify Y with the zero section of e, and we 
put UO = U - Y. 

Let 71': U ---+ Y be the projection in e and let 71'0 = 7r1Uo. Let 7r- 1 (V) ~ 
V x F be an admissible representation as a product of the restriction of e to 
some open set V C Y, where F = ]Rn. Let D be the unit disk in F and aD 
its boundary. By homotopy invariance we have that over V, .1f* (71'; L) ~ 
.1f*(7I'1V x D; L) and .1f*(7r, 71'0; L) ~ .1f*(7rIV x D, 7I'1V x aD; L). It follows 
from 4.2 and 7.1 that globally, .1fq (7r; L) is the constant sheaf 

.1fq (7r'L) = .1fq (F- L) = {L, q = 0, , , 0, q #- 0 

and that .1fq (71',71'0; L) is the locally constant sheaf .1fq (F, FO; L) (where 
FO = F - {O}) with stalks 
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Hq(F FO'L) = {L, q = n, 
" 0, q =I- n, 

and this, for q = n, has a generator well defined up to sign. [We remark 
that ,1(q(1[", 1["0; L) ~ ,1(~(1["; L), where \[1 is the family of subsets of U that 
are "closed in the associated n-sphere bundle" (obtained by compactifying 
the fibers). For Y locally compact, \[1 consists ofthe fiberwise compact sets. 
However, Y would have to be assumed to be paracompact in the discussion 
below if we used this approach in place of the relative one.] 

Let fP = ,1(n (F, FO; L), the orientation sheaf, which is locally constant 
with stalks isomorphic to L. Each stalk fP y has a generator ey well-defined 
up to sign. Thus fP ®,1(n (F, FO; L) = fP ® fP is constant and has a canonical 
section given byey®ey = -ey®-ey in the fiber at y E Y. Let this canonical 
section be a E HO (Y; fP ® ,1(n (F, FO; L)). Alternatively stated, there is a 
canonical isomorphism 

Let flJ be any sheaf on Y. Again, a usage of homotopy invariance II-11.8 
together with 4.6 and (17) on page 214 ensures that the canonical maps 

and 
,1(q (1[",1["0; L) ® flJ --+ ,1(q (1[",1["0; 1["* flJ) 

of (21) on page 215 are isomorphisms. Thus we have 

,1(q(1["' 1["* flJ) ~ , -, { flJ q-O 
, '" 0, q =I- 0 

and 

{ fP®flJ ,1(q (1[",1["0; 1["* flJ) ~ 0, , q =n, 
q =I- n. 

Substitution of (ff ® flJ for flJ gives 

Now let <P be any family of supports on Y and let e = 1["-1 (<p). Consider 
the Leray spectral sequences 'E, "E, and'" E with 

'E~,q = HP(Y; (ff ® ,1(q(F, FOj L)) ==} Hp+q(U, UOj1["*fP) 

[since (ff ® ,1(q (F, FO; L) ~ ,1(q (1[",1["0; 1["* fP) canonically as noted above], 

"E~,q = H: (Y; ,1(q (1["; 1["* flJ)) ==} H~+q (U; 1["* flJ), 
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and 

Since these spectral sequences have only one nontrivial fiber degree, 
they provide the canonical isomorphisms 

HP(Y; L) :::::: HP(Y; @(8),yen(F,Fo;L)) :::::: HP+n(U, Uo; 11'*@), 

H:(Y; $) :::::: H~(U; 11'* $) via 11'* 

by 6.3, and, using that @ (8) @ (8) $ :::::: $ canonically, 

H:(Y; $) :::::: H~+n(U, Uo; 11'*(@ (8) $)), 

respectively. We have the cup product from 6.8: 

The homomorphism II E~'o --+ 11/ E~,n defined by a f-+ a U a is (-l)pn times 
the map 

induced by the coefficient homomorphism 

a U (.) : ,yeo (11'; 11'* $) --+ @ (8) ,yen (11', 11'0; 11'* $) 

[from @ (8) ,yen (11', 11'0; L) (8) ,yeo (11'; 11'* $) ~ @ (8) ,yen (11', 11'0; 11'* $)J. On the 
typical stalk at y E Y this is equivalent to the isomorphism 

Thus the map 

is an isomorphism for r = 2, and hence for any 2 :::; r :::; 00 and for the 
"total" terms. That is, a defines an element 7 E Hn (U, 0'0; 11'* @) :::::: I Eg.;n, 
and the map 

is an isomorphism. 
As remarked above, 11'* : H:(Y; $) --+ H~(U; 11'* $) is also an isomor

phism, and hence the map 

is an isomorphism. It is called the Thom isomorphism, and the class 7 E 
H n (U, uo; 11'* @) is called the Thom class of e. [More precisely, if the bundle 
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is orientable, then there is an isomorphism, by definition, @ ~ L well 
defined only up to sign in each fiber. An orientation is a choice of such 
an isomorphism. Given such a choice the element r produces a class in 
Hn(u, uo; L), and the latter class is called a Thorn class. It depends on a 
choice of orientation, unlike the class r E Hn(u, uo; 7r*@).] 

Let j* denote the canonical map H;(U, UO) -+ H;(U) for any III and 
any coefficients. The diagram 

HP(U, UO; 7r*@) ® H~(U; 11'* fiJ) 

lr®l 
HP (U; 11'* @) ® H~ (U; 11'* fiJ) 

commutes; that is, j*(O'. U (3) = j*(O'.) U (3. 
Let w = i*j*(r) E Hn(y; e), where i : Y '---+ U is the inclusion. Then 

i*j*(r U 11'*((3)) = i*(j*(r) U 11'*((3)) = W U i*7r*((3) = W U (3. That is, the 
following diagram commutes: 

Hg(Y; fiJ) 
wU(e) 

"" 1 rU1I'*(e) 

H~+n (U, UO; 11'* (@ ® fiJ)) 

The class w is called the Euler class of e. 

Hg+n(y; @® fiJ) 

"" 11l'*=(i*)-1 

H~+n(U; 7r*(@®fiJ)). 

(23) 

If there exists15 an associated n-disk bundle N to e, then U and UO may 
be replaced by N and aN. Note that aN can then be any (n - 1)-sphere 
bundle on Y, e being the associated n-plane bundle. 

Thus using (23), we see that if 11' : X -+ Y is an (n - 1)-sphere bundle, 
then there is the exact Gysin sequence: 

which results from the exact sequence of the pair (U, UO) and the fact that 
UO has X as a deformation retract preserving fibers. (This sequence can 
also be derived directly from the spectral sequence of 7r : X -+ Y in a 
similar manner to the derivation of the Wang sequence in 7.10.) Also, see 
Section 13. 

7.10. Let 11' : X -+ §n be a bundle projection with fiber F. Let e be any 
family of supports on F invariant under the structure group. By 7.5, the 
Leray sheaf is locally constant with stalks He(F; L). Thus it is constant 
for n > 1, and will be assumed here to be constant for n = 1. In the Leray 
spectral sequence of 11' we have 

15 Always when Y is paracompact. 
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where 111 is as in 7.3. Thus E~,q = ... = E~,q and E~t1 = ... = E~q. 
There are also the exact sequences 

and 

° -+ E~k-n -+ Hi(X) -+ E~k -+ 0, 

° -+ EO,k -+ EO,k ~ d (EO,k) -+ ° n+1 n n n , 

0 -+ d (EO,k) -+ E n,k-n+1 -+ En,k-n+1 -+ ° n n n n+1 . 
Putting these together, we obtain the exact sequence 

... -+ Hi(X) -+ Eg,k ~ E;,k-n+l -+ H~+l(X) -+ ... 

and hence the exact Wang sequence 

where i : F '--+ X is the inclusion. The map 6. results from 

HO(sn j H~(F)) = E~,k ~ E~,k-n+l = Hn(snj H~-n+l(F)). 

If 6 1 and 92 are two such support families on F and if we consider the cup 
product H~l (F) ® He2 (F) -+ H~~~e2 (F), then it follows from the general 
results in Appendix A that the maps 6. satisfy the relation 

16.(a U (3) = 6.a U {3 + (_1)k(n-1)a U 6.{3, 1 

where a E H~l (F) and /3 E He. (F). 

8 Dimension 

(26) 

In this section we apply the Leray spectral sequence and other results of 
this chapter to the theory of cohomological dimension. As before, for a 
map f : X -+ Y and BeY, we use the shorthand notation Be = f-1(B). 

If ~ is a paracompactifying family of supports on Y and A c Y, we 
define the relative dimension of A in Y to be 

'illm~,LA = sup{dimL K IKe A, 0 # KElP}.' 

Note that dim~,L0 = -00. Also note that dim~,LA ~ dim<I>,L A by II-16.9. 
This inequality may be strict as in the case for which Y = ]R2, 111 = cld, 
and A is the Knaster explosion set less the explosion point, since a subset 
K of A that is closed in Y is compact and totally disconnected, whence 
dimL K = 0, while dimL A = 1. 

Note that if A is locally closed in Y and IP is paracompactifying on Y, 
then ~IA is paracompactifying on A, and so dim~,LA = dim<I>IA,L A in this 
case by II-16.7. 
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8.1. Lemma. Let <P be paracompactifying on Y. If A c Y and.d is a 
sheaf of L-modules on Y that is concentrated on A, then H:(Y;.d) = 0 for 
p> dim~,LA. 

Proof. By 11-14.13 we have that H:(Y;..d) ~ limH:(y; 9'), where 9' 
ranges over sheaves concentrated on sets K E <PIA. But if 9' is concentrated 
on K E <PIA, then H:(Y; 9') = H:(Y; 9' K) ~ HP(K; 9'IK) = 0, by 11-10.2 
for p > dimL K, whence for p > dim~,LA. 0 

8.2. Theorem. (E. G. Skljarenko.) Let wand <P be paracompactifying 
families of supports on X and Y respectively and let f : X --+ Y be a 
W -closed map. Let L be an arbitrary base ring. Let 

Mk = {y E Y I dimw,LY· ~ k} 

and put dk = dim~,LMk. Then 

Proof. Let..d be a sheaf on X. Then.1f~ (f; ..d)y ~ H$ (y.;..d) = 0 
if Y ¢. Mk, so that .1f~(f;..d) is concentrated on Mk. By 8.1 we have 
that H: (y; .1f~ (f;..d)) = 0 for p > dk. Therefore, in the Leray spectral se
quenceoffwehaveE~,q = Oifp+q > sup{k+dk}, andsoH~(W)(X;..d) = 0 
for n > sup{k + dk }. The second inequality is obvious. 0 

8.3. Example. Given X there is generally no upper bound for dimL Y in 
the situation of 8.2, as is shown by letting Y be the Hilbert cube, X = Y 
but with the discrete topology, f : X --+ Y the identity, <P = cld, and W the 
family of finite subsets of X. Then f is w-closed but not closed. Of course, 
dimL X = 0 and dimL Y = 00. See, however, 8.12 and its succeeding 
results. 0 

When X and Yare both locally compact Hausdorff and W = c = <P, 
the conditions of 8.2 are all satisfied and so: 

8.4. Corollary. If f : X --+ Y is a map of locally compact Hausdorff 
spaces, then for any base ring L, 

dimL X $ sup{k + dk} $ dimL Y+ sup dimLY·, 
yEY 

where dk = sup{dimK 10 =I- K E c, Y E K ~ dimLY· ~ k}. 
K 

o 

Now suppose that X is locally compact Hausdorff and that Y is locally 
paracompact. Since the product of a compact space with a paracompact 
space is paracompact, X x Y is locally paracompact, and so dimL X x Y 
makes sense. 
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8.5. Corollary. If X is locally compact Hausdorff and Y is locally para
compact, then16 

I dimL X x Y ~ dimL X + dimL Y I 
for any base ring L. Moreover, if L is a principal ideal domain and there 
is an open set U C X such that H~im X (U; L) has L as a direct summand, 
then equality holds. In particular, equality always holds when L is a field. 

Proof. It follows from the local nature of dimension II-16.8 on locally 
paracompact spaces that it suffices to consider the case for which X is 
compact and Y is paracompact. Then 8.2 applies to the projection X x Y --+ 

Y with closed supports and immediately yields the desired inequality. 
For the second statement, let n = dimL X and m = dimL Y and recall 

from II-16.32 that there is an open set W C Y with Hdd1w(W; L) =I=- o. 
Consider the Leray spectral sequence of the projection trw : U X W --+ W 
with <I> = cldylW on Wand W = c x <I> on U x W. This has 

EP,q = HP(W· .Y{'q(U· L)) ==> HP+q (U x W· L) 
2 <I>' C , <1>(111) " 

and the Leray sheaf .Y{'~(U; L) on W is constant with stalks Hl(U; L) by 
7.2. [The Leray sheaf for W = c x W as in 7.2 is clearly the same as that 
for W = c x <I> as here.] Therefore .Y{'~(U; L) has the constant sheaf L as 
a direct summand, and so E,::;,n ~ E;"n = H:(W;H~(U;L)) =I=- 0 since 
E~,q = 0 for p > m or q > n. It follows that H~t1l1)(U x W; L) =I=- 0 and 
hence that dimL X x Y ~ n + m, since <I>(w) is paracompactifying by 5.5. 
[It can be seen that <I>(w) = cldxxYIU x w, but that is not needed here.] 

D 

8.6. Corollary. If Y is a separable metric space and X is a metric space, 
then 

I dimL X x Y ~ dimL X + Ind Y I 
for any base ring L with unit. 

Proof. According to [49, p. 65], Y can be embedded in a compact metric 
space K with Ind K = Ind Y. Since X x K is hereditarily paracompact, 
we have 

dimLX x Y < dimLX x K 
< dimLX +dimLK 
< dimL X + IndK 

dimL X + Ind Y. 

by II-16.8 
by 8.5 
by II-16.39 

D 

16The inequality is also valid for X locally contractible and X x Y locally paracompact. 
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8.7. Example. This example shows that the sets Mk in 8.2 need not be 
locally closed. Let Y = [0, 1] and let X be the union of Y with the vertical 
intervals {x} x [0, 1/ q], where x ranges over the rational numbers x = p / q 
in lowest terms. Let f : X --+ Y be the projection. Then Ml is the set of 
rationals in Y. Both X and Yare compact, whence f is closed. In this 
example, do = 0 = d1 . By 8.2, dimL X = 1. <> 

8.8. Example. This example shows that the condition that the map f 
be W-closed is essential to 8.2. Let X be the Knaster explosion set with 
the explosion point removed; see 11-16.22. Let Y be the Cantor set and 
f : X --+ Y the obvious map. The fiber y. is the set of rational points in 
an interval for some y and the set of irrational points for the other y. Thus 
dimL y. = 0 for all y and dimL Y = O. Therefore sup{ dk + k} = 0, while 
dimL X = 1. The map f is open but not closed. <> 

8.9. Theorem. Let Y be paracompact and X S;;; Y a dense paracompact 
proper subspace. Then for a principal ideal domain L we have 

I dimL Y ::; dimL X + ilimi (Y - X) + 1·1 

Proof. Let Ji be a sheaf on X and let i : X '-+ Y. The Leray spectral 
sequence of i has 

Now, for x E X and U ranging over the neighborhoods of x, we have 
:1fq(i;Ji)x = lin}Hq(U n X;Ji) = 0 for q > 0 by 11-10.6, since a point is 
taut. Thus:1fQ (i; Ji) is concentrated on Y - X for q > 0, whence E~,q = 0 
for p > dimi (Y -X) and q > 0, by 8.1. Also, :1fq(i; Ji) = 0 for q > dimL X 
since it is generated by the presheaf V n X f-t Hq(V n X; Ji) = 0 for 
q > dimL X, V open in Y. Thus all the terms E~'o survive to E!;,;o for 
p > dimL X + dimi (Y - X) + 1. Consequently, HP(Y; iJ'i) = E~'o ~ 
E!;,;o = HP(X; Ji) = 0 for p > dimL X +dimi (Y - X) + 1. Now let FeY 
be an arbitrary closed subspace, put U = Y - F, and specialize to the case 
in which J'i = LuIX. The canonical homomorphism Lu --+ i(LuIX) is a 
monomorphism by I-Exercise 18. Let!!l be its cokernel, so that there is the 
exact sequence 

0--+ Lu -. i(LuIX) --+ !!l --+ O. 

Now, i(LuIX)IX = LulX by I-Exercise 2, so that !!l is concentrated on 
Y - X. Consequently, Hk(Y;!!l) = 0 for k > dimi (Y - X) by 8.1. The 
cohomology sequence induced by the displayed coefficient sequence has the 
segment 

HP-l(Y;!!l) --+ HP(Y; Lu) --+ HP(Y; i(LuIX)). 

The two end terms vanish for p > dimL X + dimi (Y - X) + 1. Therefore 
HP(Y,F; L) ~ HP(Y; Lu) = 0 for p > dimL X +dimi (Y -X) + 1, and the 
result now follows from II-16.33. 0 
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8.10. Corollary. If X, Y, and X U Yare paracompact, Y <t X, and L is 
a principal ideal domain, then17 

dimL X U Y ::; dimL X + lliillZUY (Y - X) + 1 ::; dimL X + dimL Y + 1. 

Proof. If X is the closure of X in X U Y, then 

dimL X U Y < max{ dimL X, dimL(Y - X)} 
< max{ dimL X, dimZUY (Y - X)} 

< max{dimL X + dimZ (X - X) + 1, dimZUY (Y - X)} 
< max{ dimL X + dim£'UY (Y - X) + 1, dim£'UY (Y - X)} 

dimL X + dim£'UY (Y - X) + 1 ::; dimL X + dimL Y + 1 

by II-Exercise 11, II-16.8, and the theorem. 1s o 

This corollary is half of what is called the "decomposition theorem" in 
the classical dimension theory of metric spaces. That result says that a 
metric space X has Ind X ::; n <=} X is the union of n + 1 subspaces Ai 
with Ind Ai ::; O. The "decomposition" half of this cannot hold for dimL 
in place of Ind because that would imply that dimL X = Ind X whenever 
dimL X < 00 by II-16.35, and that is generally false even for L = Z and X 
compact metric. 

8.11. Example. Let X be the closure of the Knaster explosion set K 
in the plane; see II-16.22. Let A = X - K. Then A is the union of 
a countable number of sets closed in A and zero-dimensional since each 
of them is homeomorphic to a totally disconnected subset of an interval 
(the set of points of irrational height on the ray to a given end point of 
a complementary interval of the Cantor set, or the set of points of given 
rational height on all rays to the non-end points). Thus dimL A = 0 by 
11-16.40. Also, dim£' K = 0 even though dimL K = 1, since a compact 
subset C of K is totally disconnected and so has dimL C = O. For this 
example the first inequality in 8.10, for A and K in place of X and Y, 
reads dimL X::; 0 + 0 + 1. 0 

We turn now to inequalities of the opposite type to that in 8.2. 

8.12. Theorem. Let f : X ---» Y be a proper closed surjection between 
locally paracompact spaces such that the Leray sheaf .Y{'* (J; L) is locally 
constant with stalks H* that are finitely generated over the principal ideal 
domain L. Let n = max{p I rankHP > O}. Then dimL Y ::; dimL X - n. 

17The case X U Y metric and L = Z of the outside inequality is due to Rubin [71]. 
18Note that the proof of the first inequality does not use that Y is paracompact. 
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Proof. By II-16.8 we may assume that :f{'*(f;L) is constant. Since each 
y. is taut in X and Hn(y.; L) is finitely generated, we may also assume that 
the restriction Hn(x; L) ---. Hn(y.; L) is surjective for any given y E Y. 
By Exercise 5, this restriction is the composition of the edge homomor
phism Hn(X;L) ---. Eg,n = HO(Y;:f{'n(f;L)) = r(:f{'n(f;L)) with the 
map i~ : r(:f{'n(f; L)) ---. Hn(y.; L). Let (3 E r(:f{'n(f; L)) be in the image 
of the edge homomorphism and such that i~ ((3) is a generator of a direct 
summand isomorphic to L. Since:f{'n (f; L) is constant, we can pass to 
a neighborhood of y over which (3 is a constant section. Let 0 f- a E 

H~ (Y; L) for any paracompactifying family cI> of supports. The augmenta
tion L >---> .'1t0 (f; L) is to a direct summand, and so it induces a canonical 
monomorphism H~(Y;L) >---> H~(Y;:f{'°(f;L)), whence we may regard a 
as a class in E~'o (cI» = HS (Y; :f{'0 (f; L)) of the Leray spectral sequence. 
Also, (3 E Eg,n = HO(Y;:f{'n(f;L)) = r(:f{'n(f;L)). By the discussion in 
II-7.4, aU (3 E E~,n(cI» = HS(Y; :f{'n(f; L)) is the image of a under the 
map induced by the coefficient homomorphism L >---> :f{'o (f; L) ---. :f{'n (f; L) 
given by 1 f-+ 1 . (3(y) = (3(y) in the stalks at y. Since the latter is a 
monomorphism onto a direct summand, we have that aU (3 f- O. Since (3 is 
in the image of the edge homomorphism, it is a permanent cocycle. Also, a 
is automatically a permanent cocycle. It follows that aU (3 is a permanent 
co cycle , since dr(a U (3) = dra U (3 ± a U dr(3 = O. 

Now, if L were a field, then n would be the largest degree in which 
:f{'* (f; L) would be nonzero. Then a U (3 could not be killed, and so 
E~n(cI» f- 0, giving H;~;'iP(X) f- 0, whence k + n ::; dimL X. It would 
follow that H~(Y; L) = 0 for k > dimL X - n and any paracompactifying 
cI>, and so dimL Y ::; dimL X - n by II-16.33. 

In the general case, let p be a prime of L and let Lp = L/pL. The 
appropriate value of n for the field Lp is at least that for L, and so we know 
that dimLp Y ::; dimLp X -n ::; dimL X -no Let k > dimL X -no Then the 

exact coefficient sequences19 0 ~ L ~ L ~ Lp ---. 0 show that H~ (Y; L) is 
divisible, meaning that given any 0 f- mEL, there is a class a' E H~(Y; L) 
with a = rna'. As with a, a' U j3 is a permanent cocycle. Now, for any 
q > n, :f{'q (f; L) is killed by multiplication by some nonzero mEL, and 
so the same is true of each E~,q. Therefore, if a U j3 survives nonzero to 
E;,n and E;-r,n+r-l is killed by m and "( E E;-r,n+r-l has dr"( = a' U j3, 
where rna' = a, then 0 = dr(m"() = rna' U (3 = aU j3 f- 0, a contradiction. 
Thus such an a' U j3 survives nonzero to E~+nl' An inductive argument of 
this type shows that some element of E~,n must survive nonzero to E~n 
and so HJ~['iP (X; L) f- 0, contrary to our assumption that k + n > dimL X. 
The result follows as before. D 

8.13. Corollary. (Dydak and Walsh [37]) Let f : X ---# Y be a proper 
closed surjection between separable metric spaces. Let L be a principal 

19This is also what shows that dimLp X :S dimL X. 
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ideal domain and let H* be a finitely genemted gmded L-module such that 
H* (y.; L) ~ H* for all y E Y. Suppose that n is maximal such that 
rank Hn > O. Then dimL Y :5 dimL X - n. 

Proof. By 4.14, Y is the union of count ably many closed subsets Kover 
which .#*(1; L) is constant. By 8.12, dimL K :5 dimL X -n, and the result 
follows from the sum theorem II-16.40. D 

8.14. Corollary. (Dydak and Walsh [37])20 Let f : X -* Y be a proper 
closed surjection between sepamble metric spaces. For a given principal 
ideal domain L, assume that each H*(y·; L) is finitely genemted. Let m be 
a maximal integer such that there is a sequence21 G1 -1 G2 -1 ... -1 Gm of 
gmded groups Gi ~ H*(y;;L) for some points Yi E Y. Let n be such that 
for each y E Y, rank H 8 (y.; L) > 0 for some s :?:: n. Then 

1 dimL Y:5 m(dimL X - n) + m -1.1 

Proof. Let Yi be the set of all points y E Y such that there exists a chain 
of maximum length of the form H* (y.; L) = Gi -1 ... -1 Gm as in the state
ment. By 4.14, Yi is covered by a countable collection of relatively closed 
sets K such that .#*(1; L)/K is constant. By 8.13, dimL K :5 dimL X - n. 
By II-16.40, dimL Yi :5 dimL X - n. Since Y = Y1 U ... U Ym , an inductive 
use of 8.10 gives the desired formula. D 

Remark: Nowhere in the proofs of8.12, 8.13, or 8.14 did we use any information, 
such as the finite generation, about the sheaves ,1fQ(ji L) for 0 < q < n. 
Thus all of these results can be sharpened. 

Perhaps the item of greatest interest among all of our results in this 
direction is the following cohomological analogue and strengthening of a 
well-known fact from classical dimension theory: 

8.15. Theorem. Let f : X -* Y be a finite-to-one closed map between 
sepamble metric spaces. Suppose that nl < ... < nm are natuml numbers 
such that each y E Y has #y. = ni for some i. Then 

1 dimL X :5 dimL Y :5 dimL X + m - 11 
for any principal ideal domain L. 22 Moreover, if dimL Y = dimL X + m - 1 
and if we put y" = {y E Y / #y. :?:: np} and Xp = r 1 (Yp), then dimL Xp = 
dimL X and dimL Yp = dimL X + m - p for each 1 :5 p :5 m. 

20Both the hypotheses and conclusion are slightly weaker in [37]. 
21Here G -i H means that G is a graded proper direct summand of H. 
22This also holds for covering dimension because of the classical result implying that 

covdim Y ::::: covdim X + nm - 1 and the fact that covdim coincides with dimz for spaces 
of finite covering dimension. 
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Proof. The first inequality follows from 8.2. Put 

Wp = {y E Y I #y. = np} so that Yp = Wp U··· U W m . 

Then the theorem is the case p = 1 of the formula 

dimL Yp ::; dimL X + m - p. 

The proof of this formula will be by downwards induction on p. Suppose 
it is true for p > r (a vacuous assumption if r = m) and that Y = Yr. Let 
r ::; p ::; m and put k = dimL X + m - p. By 4.14, Wp is covered by a 
countable number of sets K, closed in Y, such that the constant sheaf LP 
on K is a subsheaf of .1f°(fjL)IK ~ gL, where 9 = !lK·, with quotient 
sheaf fll concentrated on K n Yp+1 • (Note that fll = 0 if p = m.) Let 
q> be a paracompactifying family of supports on K. The exact sequence 
0--+ LP --+ gL --+ fll --+ 0 of sheaves on K gives the exact sequence 

H~(Kj fll) --+ H!+l(Kj LP) --+ H!+l(KjgL). 

The term on the right is H!+1(KjgL) ~ H7~11iJ!(K·j L) = 0 by II-11.1 and 
since k + 1 > dimL X. The term on the left is zero since fll is concentrated 
on K n Yp+l, which has dimension at most dimL X + m - (p + 1) = k - 1 
by the inductive assumption. Thus H!+1(Kj L) = 0 and so dimL K::; k = 
dimL X + m - p. (Also, if p < m and dimL Yp+1 < k - 1, we would deduce 
that dimL K < k.) Doing this for each p, r ::; p ::; m, gives a countable 
closed covering of Y by sets K with dimL K ::; dimL X + m - r. By the 
sum theorem II-16.40, dimL Y ::; dimL X + m - r (with strict inequality if 
dimL Yp < k-1 for any r < p::; m), completing the induction. If for some p, 
dimL Xp < dimL X, then we would have that dimL Yp ::; dimL Xp +m -p < 
dimL X + m - p, whence dimL Y < dimL X + m - r. 0 

It is worthwhile stating some immediate special cases of 8.15. If the ni 
form the segment of integers between nand m, then we get: 

8.16. Corollary. Let f : X - Y be a finite-to-one closed map between 
separable metric spaces and let 1 ::; n ::; m. Assume that n ::; #y. ::; m for 
all y E Y. Then 

I dimL X ::; dimL Y ::; dimL X + m - n I 
for any principal ideal domain L. Moreover, if dimL Y = dimL X + m - n 
and if we put Yp = {y E Yip::; #y. ::; m} and Xp = f- 1(yp), then 
dimL Xp = dimL X and dimL Yp = dimL X + m - p for each n ::; p ::; m. 

D 

The cases n = 1 and n = m give the following two corollaries: 

8.11. Corollary. If f : X - Y is a closed surjection between separable 
metric spaces that is at most m-to-1, then dimL Y ::; dimL X - m + 1. D 
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8.18. Corollary. If f : X - Y is a closed map between separable metric 
spaces that is exactly m-to-l, then dimL Y = dimL X. 0 

Remark: Examples exist, for any m, of closed and at most m-to-1 maps f : 
X -+ Y of separable metric spaces for which dimz Y = dimz X + m - 1; 
see, for example, [62, p. 78). Thus the last part of 8.16 gives that dimz Yp = 
dimz X - m + p and dimz XI' = dimz X for all 1 ~ p ~ m. This shows that 
the inequalities in 8.16 are best possible. 

Finally, we present Skljarenko's improvement of the Vietoris mapping 
theorem. Note that 8.2 is an immediate consequence of the following the
orem, but the direct proof is just as easy. 

8.19. Theorem. Let f : X -+ Y be a 'iI!-closed map, where'iI! is a family 
of supports on X, and suppose that each y. is 'iI!-taut in X. Let..4 be a 
sheaf on X and cJ> a paracompactifying family of supports on Y. Let 

for k > 0 and put 
bk = dim~,LSk' 

For a given integer ( or 00) N let 

n = 1 + sup{ k + bk I 0 < k < N}. 

Then the edge homomorphism 

f o . HI' (y. f."..4) - Ep,o _ EP,o >-+ HI' (X, ..4) 
• 4> ' ''' - 2 00 4>(IJI) , 

in the Leroy spectral sequence is an isomorphism for n < p < N, an epi
morphism for p = n, and a monomorphism for p = N. 

Proof. As in the proof of 8.2 we have that E~,q = 0 for sup{k + bk 10< 
k < N} < p + q < N, and the result follows immediately. 0 

8.20. Proposition. Let f : X - Y be a closed surjection with each y. 
taut in X. Let $ be a sheaf on Y and cJ> a paracompactifying family of 
supports on Y. Let 

So = {y E Y I y. is not connected and $y '" O} 

and 

Then 
(3* : H: (Y; $) -+ H: (Y; f r $) 

is an isomorphism for p > 1 + bo and an epimorphism for p = 1 + bo. 
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Proof. By the proof of II-II. 7 it follows that the monomorphism {3 : ill >-+ 

f f* ill is an isomorphism on the complement of So. If rJ is the cokernel of 
{3, then rJ is concentrated on So, and hence Hg(y; rJ) = 0 for p > boo Thus 
the result follows from the cohomology sequence of the coefficient sequence 
o -t ill -t ff*ill -t rJ -t O. 0 

8.21. Corollary. (E. G. Skljarenko.) Let f : X -+> Y be a closed surjec
tion with each y. taut in X. Let ilJ be a sheaf on Y and if? a paracompact
ifying family of supports on Y. Let Sk and bk, k ~ 0, be as in 8.19 (with 
111 = cld and A = f* ilJ) and 8.20. For a given integer (or 00) N let 

n = 1 + sup{k + bk 10:5 k < N}. 

Then 
!*: Hg(Y;ilJ) -t Hj_lip(X;!*flJ) 

is an isomorphism for n < p < N, an epimorphism for p = n, and a 
monomorphism for p = N. 

Proof. Putting A = f* ilJ, the result follows from 8.19, 8.20, and the fact 
that f* = r 0 {3* when 111 = cld; see 6.3. 0 

9 The spectral sequences of Borel and 
Cartan 

In this section G will denote a compact Lie group (perhaps finite), and 
X will denote a space upon which G acts as a topological transformation 
group.23 We assume that the orbits of G are relatively Hausdorff in X, e.g., 
X Hausdorff. EG denotes a compact N-universal G-bundle; that is, for our 
purposes, EG is a compact Hausdorff space upon which G acts freely24 and 
such that HP(EG;L) = 0 for p < N. An N-universal bundle for G exists 
for all N and can be taken to be the join of sufficiently many copies of G. 
Thus we may assume that EG and BG = EG/G are locally contractible (in 
fact, finite polyhedra). The quotient space BG is called an N-classifying 
space for G. 

Let G act on the product X x EG by the diagonal action, that is, 
g(x, y) = (g(x),g(y», and denote by XG = X XG EG the quotient space of 
X x EG under this action of G. 

The projections X +- X X EG -t EG are G-equivariant, and hence they 
induce maps 

I X/G ..2!- XG ~ BG·I 

23G can be any compact group if X is locally compact Hausdorff and if we use compact 
supports on it throughout. 

24That is, for any y E EG, g(y) = Y => 9 = e. 
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For x E X, let x = G(x) = {g(x) 1 9 E G}, which is called the orbit of x. 
The isotropy subgroup of G at x is defined to be Gx = {g E G 1 g(x) = x}. 
It is easy to see that the natural map G/Gx -+ G(x), taking gGx into g(x), 
is a homeomorphism, since G is compact. Let 1 denote the canonical map 
X -+ X/G sending x into its orbit x, and note that 1 is a closed map. 

The set 1]-l(X) = G(x) XG EG C XG can be identified with BG", = 
EG/Gx as follows: Map EG/Gx into G(x) xG EG by taking the orbit 
Gx(Y), y E EG, into the orbit of (x, y) under the diagonal action. It is 
immediately verified that this map is continuous and bijective and hence 
is a homeomorphism since the spaces involved are compact Hausdorff. It 
is also easily seen that each 1]-1 (x) is relatively Hausdorff in XG and that 
1] is a closed map. 

Similarly, since G acts lreely on EG, the fibers of 7r are homeomorphic to 
X. It is not difficult to see that 7r is actually a bundle projection with fiber 
X and group G. In fact, if U c BG and h: G x U -+ EG is an admissible 
homeomorphism (in the sense of Section 7), we see that the composition of 
the canonical maps 

) 1xh X X U -+ X X G (G x U ---> X xG EG = XG (27) 

is an admissible homeomorphism onto 7r-l(U). 
Let <I> be a family of supports on X/G and let III = 17-1<I> be the cor

responding family of supports on X G . Note that on X x U, as above, 
III n (X x U) has the form e x U, where e = 1-1<I>. (That is, locally in 
BG, III = ex BG.) 

Let A be a sheaf on X/G, and note that (1]*A)IX = f*A, where X 
is any fiber of 7r. Consider the Leray spectral sequence I E~,q of 1] with 
coefficients in 1]* A, with closed supports on X G , and with <I>-supports on 
X/G. Then, since <I>(cld) = 1]-1<I> = Ill, 

'E~,q = H:(X/G;.1tq(1];1]*A)) ==> H~+q(XG;1]*A). (28) 

Also consider the Leray spectral sequence /I E~,q of 7r with coefficients in 
1]*A, with Ill-supports on XG, and with closed supports on BG. Then 

since cld(llI) = IlI(BG) = Ill, because BG is compact. 
We have 

(30) 

since 1] is closed, 1]-l(X) ~ BGx is compact and relatively Hausdorff, and 
1]*AI1]-l(X) is the constant sheaf with stalk Ax. [Thus the coefficients Ax 
on the right side of (30) are constant.] 

Note that on 7r-1(U) ~ X X U [as in (27)]1]*A has the form f*A x U. 
This fact, together with the fact that BG is compact and locally con
tractible, implies by 7.5 that .1t~ (7r; 1]* A) is locally constant with stalks 
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H~(X; /*.A) (and structure group G). Thus, as in Section 7, we use the 
notation 

,1(MX; f*.A) = ,1(~(1l"; 1/* .A). (31) 

If G is allowed to be any compact group, then this also follows from 7.3 
when X is locally compact Hausdorff and the support families e and \IT are 
c or c restricted to an open set. 

9.1. Lemma. Let V c XjG be an open set containing E(<I»; see 1-6. 
Suppose that Gx = {e} for all x with x E V. Then 

for 0 < q < N. [More generally, this is true when Hq(Ba",;.Ax) = 0 for 
o < q < N and all x E v.] 

Proof. Since V :J E( <I» it follows directly from the definition of coho
mology that H~(XjG; fiJ) = H;\V(V; fiJ) for any sheaf fiJ, since 

rri*(XjG; fiJ)JV = rri*(V; fiJ). 

In our situation, the coefficient sheaf vanishes on V, by (30), since Ba", = 
Ea is N -acyclic for x E V, and the result follows. 0 

Since each fiber Ba", of 1/ is compact and connected, it follows from 
11-11 that 

.A ~ 1/1/*.A = ,1(0 (1]; 1]* .A). 

Thus, under the assumptions of 9.1, we see that the first spectral sequence 
(28) and 6.3 imply that 

1/*: Hl;(XjG;.A) ~ H~(Xa;1/*.A) for 0:::; n < N. (32) 

If Nl < N 2 , universal bundles may be so chosen that there is a canon
ical G-equivariant map from the N1-universal bundle to the N2-universal 
bundle. This induces a map of spectral sequences that is an isomorphism 
in total degrees less than N 1• Thus, it is permissible to pass to a limit on 
N and think of Ea as being oo-universal. With this in mind, the second 
spectral sequence (29) in the situation of 9.1 yields the following result: 

9.2. Theorem. With the notation above, suppose that Hq(Ba",;.Ax) = 0 
for (,I q > 0 and all x with x in some neighborhood of E( <I». Then there 
is a spectral sequence (Borel) with 

This also holds for arbitrary compact groups G when X is locally compact 
Hausdorff and <I> = c = 9. 0 
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For G = Zp, p prime, Ba is an infinite lens space (real projective space 
for p = 2) and so 

Hk(B . Z) ~ {Zp, for k > 0 even, 
Zp' 0, for k > 0 odd. 

Also, for G = §l, Ba is an infinite complex projective space, so that 

Hk(B l' Z) ~ {Z, for k 2:: 0 even, 
s , 0, for k > 0 odd. 

For a finite group G, the transfer map IL for the covering map K. : Ea ---+ Ba 
satisfies: ILK.* : Hk(Bai L) ---+ Hk(Ea; L) ---+ Hk(Bei L) is multiplication 
by the order IGI of G. Thus IGI'Y = 0 for all 'Y E Hk(Bei L), k > O. In 
particular, 

Hk(Bai Q) = 0 for G finite, k > O. (33) 

9.3. Corollary. Suppose that dimL X = n < 00 and that the compact 
Lie group G acts on X. Assume that e = f-liP is paracompactifying on 
X. Suppose that F c X is closed with G(F) = F. Assume either that 
G x = {e} for all x E X - F or that Gx is finite for all x E X - F and d 
is a sheaf of Q-modules. Then the restriction 

H~(Xa; 1'/* d) ---+ H~\F(Fe; 1'/* d) 

is an isomorphism for n < k < N. 

Proof. Since IJ1 = Ba x e locally in Ba, it follows that IJ1 is paracom
pactifying. If U = X - F, then 

H~IUG(Ua;1'/*d) ~ H:'(ula)(U/G; d) for k < N 

by 9.2. This is zero for k > n since dimL U /G :'5 dimL X = n by II
Exercise 54. Thus the result follows from the cohomology sequence of the 
pair (Xa, Fe). 0 

In most cases of interest F is the fixed-point set of G on X. In that case 
Fa = F x Ba , so that the isomorphism of 9.3 gives a strong connection 
between the cohomology of X and that of F. The reader will find many 
applications of this in the references [6], [2], and [15]. We shall be content 
with the following application of 9.3 and (32). 

9.4. Theorem. Let L be a principal ideal domain. Let the circle group G 
act on a space X with fixed-point set F. Let d be a sheaf of L-modules on 
X/G. Assume that either G acts freely on X - F,25 or L = Q. Let iP be 
a family of supports on X/G with f-liP paracompactifying on X and with 
dimJ-1cp,L X < 00. 

Then, if Hj_1cp(X; j*d) = 0 for all p =f. 0, we also must have that 
Hg'F(FjdIF) = 0, for p =f. 0, and that the restriction map rcp(d) ---+ 

rcp\F(dIF) is an isomorphism. 

25This type of action on X is called "semi-free." 
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Proof. Let U = X-F. By (33) we have that HP(BH; Q) = 0 for p > 0, 
where H is any finite group. It follows that HP(Baz ;..11 x) = ° when p > 0 
and x E U /G. By 9.3 the restriction 

(34) 

is an isomorphism for large n (and larger N). Now Fa = F x Ba and 
TJ* ..11lFa = ..111F x Ba (where F is regarded as a subspace of X/G). Also, 
wlFa = (q>IF) x Ba· 

Consider the Leray spectral sequence E~,q of 1r. By (29) and (31) we 
have 

E~,q = HP(Ba; .1t'~(X; r..11)) ===} H:+q(Xa; TJ* ..11). 

Since by assumption H~ (X; r..11) = ° for q > 0, the spectral sequence 
of 1[" degenerates and provides the isomorphism 

H~(Xa; TJ*..11) :::::: Hn(Ba; .1t'~(X; r ..11)). 

We also have that Hg(X; f*..11) = re(f*..11) = r~(ff*..11) = r~(..11) by 
II-11, since f has compact, connected fibers and since q>(cld) = f-1q> = s. 
Now, G acts trivially on r~(..11), and it follows that the locally constant 
sheaf .1t'~ (X; r..11) is actually constant with stalks r ~ (..11). By the univer
sal coefficient formula, 

There is a natural map of the spectral sequence of 1[" : Xa --+ Ba into 
that of Fa --+ Ba. The differentials of the spectral sequence of the latter 
map are trivial since Fa = F x Ba. The restriction homomorphism (34) 
on the total spaces is an isomorphism for large degrees. It follows that the 
E~,q term of the spectral sequence of Fa --+ Ba must be zero for p large 
and q > 0; that is, 

HP(BG; H~IF(F;..11IF)) = 0 

for q > 0 and for p large.26 The universal coefficient formula gives that 
H~IF(F;..11IF) = 0 for q > O. Similarly, for q = 0, we see that we must 
have an isomorphism 

implying again that r~(..11) --+ r~IF(..11IF) is an isomorphism. o 

The reader is invited to prove an analogous result for the cyclic group 
of prime order. The fact that the circle group is connected was used to 
show that r ~ (..11) --+ r ~ (f f*..11) = r e (f* ..11) is an isomorphism, so that in 
the analogous case this will have to be assumed. 

26Recall that dim L,4>IFF ~ dim L,4>X/G < 00. 
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It should be noted that 9.4 and its generalization to orient able sphere 
fibrations with singularities also follows easily from the "Smith-Gysin" se
quence in Section 13. Moreover, by using the cup product structure (or 
the H*(Be;L)-module structure in the present treatment), one can show 
that the finite dimensionality assumption can be dropped when X is locally 
compact Hausdorff and cp = c (see Exercise 21). 

When G is finite, HP(Be; M) is denoted by HP( G; M). (Here M is 
a G-module and can be regarded as a locally constant sheaf on Be in a 
canonical manner: As a topological space it is Ee Xc M, and its map to 
Be is the induced projection to Ee Xc {O} = Ee/G = Be.) Thus 9.2 
translates to: 

9.5. Theorem. Let f : X --+ Y be a finite regula,,27 covering map with 
group G of deck transformations. Let cp be a family of supports on Y and 
put e = f-lcp. Then for a sheaf.J!!l on Y, there is a spectral sequence 
(Cartan) with 

where G operates on the cohomology of X in the canonical manner. 0 

As to applications, we content ourselves with the following well-known 
result: 

9.6. Corollary. If G is a finite group that can act freely on §n, then 
H* (G; Z) is periodic with period n + 1. That is, Hk (G; Z) ~ Hk+n+1 (G; Z) 
for all k > O. 

Proof. Let X = §n and Y = X/G. If any element of G reverses orienta
tion on X, then it is easy to see that n is even and G = Z2. Thus we can 
assume that G preserves orientation. Now, Hi(y; Z) = 0 for i > n since 
dimz Y = n. Also, the spectral sequence of 9.5 has E~,q = 0 for q =f 0, n. 
It follows that the differential dn+1 : E~,n --+ E~+n+1,o must be onto for 
k = 0 and an isomorphism for k > O. Thus 

Hk(G;Z) ~ Hk(G;Hn(x;z)) = E~,n ~ E~+n+1,O = Hk+n+l(G;Z) 

for k > 0, as claimed. o 

For much more on this topic see [24]. 

10 Characteristic classes 

In this section we take Y to be any connected space and e to be an n
plane bundle over Y in either the real orthogonal, complex unitary, or 

27Regularity of f means that G is simply transitive on the fibers. 
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quaternionic symplectic sense. Let d = 1,2, or 4, respectively, in these 
three cases, so that nd is the real dimension of e. We shall denote by G 
the multiplicative group of scalars of norm one; that is, G is the real unit 
(d - I)-sphere. 

We shall take the coefficient domain L to be Z2 in the real case and Z 
in the other two cases. Recall that H*(BG; L) ~ L[tJ, where degt = d. We 
shall make the choice of the generator t E Hd(BG; L) precise later. 

As in 7.9, we let U and F be the total space and fiber of e, respectively, 
and put UO = U - Y and FO = F - {O}. The group G operates on U in 
the canonical way, freely outside the zero section Y. With the notation of 
Section 9, Ua is a subspace of Ue. Let f : UG -+ Be be the projection, 
as in Section 9, and consider the Leray spectral sequence E¥,q of f mod 
flUa. By 7.5 the Leray sheaf :J{qU,JIUa ; L) is the locally constant sheaf 
:J{q(U, UO; L), and we have that 

E~,q = HP(Bei :J{q(U, UOj L)) ~ Hp+q(Ue, Uai L). 

By 7.9 we see that E¥,q = 0 for q < nd and moreover, the locally constant 
sheaf :J{nd (U, UO; L) with stalks L must actually be constant, since L = Z2 
in the real case and since Be is simply connected in the other two cases. 
Thus we have the natural isomorphisms 

The right-hand side of this equation is generated by the Thorn class28 

T, and we shall denote the corresponding generator of Hnd(u G, Ua ; L) by 
Te = Te(e). Then Te is the unique class that restricts to the orientation 
class in Hnd (F, FO ; L) under the restriction 

where U '-+ Ue is the inclusion of the fiber in the fibration Ue -+ Be. 
Note that F = ]Rnd has a canonical orientation when d = 2,4. 

The inclusion r : Y x Be = Ye '-+ Ue induces the homomorphism 

r* : H*(Ue, Ua ; L) -+ H*(Y x BG; L) ~ H*(Y; L) ® H*(Be; L), 

where we have used 7.6 and the fact that H*(Be; L) is torsion-free in the 
complex and quaternionic cases. 

We define the characteristic classes Xi = Xi(e) E Hid(y; L) by the 
equation 

I r*(Te) = E~=o Xi ® tn-i. I 
We also put X = E Xi E H*(Y; L). 

(35) 

10.1. Theorem. (Whitney duality.) llel and e2 are vector bundles (over 
the same fielfi) on Y, then X(el E9 e2) = X(el) . x(6). 

28See 7.9. 
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Proof. Let ei be an ni-plane bundle and Ui its total space. Then UI x U2 is 
a bundle over Y x Y and 6 EEl6 is, by definition, the restriction of this to the 
diagonal. We shall denote the total space of 6 EEl6 by UI /:;.U2 . Consider the 
map (UI/:;'U2) x Ee -> UI x Ee x U2 x Ee defined by (x, y, z) ~ (x, z, y, z). 
This induces a map 

and the diagram 

FI X F2 

/ ~ 
U1D..U2 • UI X U2 

1 1 
(UID..U2)e~ UI,e x U2,e 

commutes. It follows immediately that 

Te(6 EEl 6) = k*(Te(6) x Te(6)), 

since both sides of this equation restrict to the orientation class of FI x F2 . 

The diagram 

Y X Be = Ye __ ---:T __ -+. (U1/:;,U2)e 

1 ~ lk 
Y X Be x Y x Be = Ye x Ye 

also commutes. Consequently, we compute 

r*Te(6 EEl 6) = r*k*(Te(6) x Te(6)) = D..*(riTe(6) x riTe(6)) 
= riTe(6) U riTe(6). 

This implies, by definition, that 

~Xk(6EEl6)0tnl+n2-k = (~X,(6)0tnl-') ~;=XJ(6)0tn2-J) 
- 2: (2: X,(6)Xk-,(6) 0 tnl+n2-k 

k , 

(since deg t is even or L = Z2) and the theorem follows. o 

If f : X -> Y is a map and e is a vector bundle on Y, then it is clear 
that 

(36) 

where re is the induced bundle on X. That is, the Xi are natural. 
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Now consider the exact cohomology sequence of the pair (Ua, Ua) and 
note that by (32) we have H*(Ua; L) ~ H*(UO fG; L). Thus, using the 
isomorphism HP(Ua ; L) ~ HP(Ya ; L), we have the exact sequence 

Let T be the unit (nd - 1 )-sphere bundle associated with e. Then T f G is 
a (fiber) deformation retract of UO /G and is the projective space bundle 
associated with e. The exact sequence (37) may be rewritten as 

... -- HP-l(T/G) __ HP(Ua,Uc) ~ HP(Ya ) __ HP(T/G) __ ... (38) 

If Y is a point * and e is a line bundle, we have T / G ~ Y = * and 
Ya = Ba, so that the following sequence, resulting from (38), shows that 
r* is an isomorphism for p = d: 

0-- Hd - 1(Ba ) -- Hd - 1(*) -- Hd(Ua , Uc) ~ Hd(Ba) -- o. 

Thus, since r*(ra) = XO ® t E HO(*) ® Hd(Ba), Xo is a generator of 
HO(*). Since we have not yet made any definite choice of t as a generator 
of Hd(Ba), we are free to choose t such that Xo = 1 E HO(*). Then, by 
Whitney duality 10.1 and (36), it follows that 

! Xo(e) = 1 E HO(y; L)! 

for any e; for if f : * -- Y, then J*(Xo(e)) = xo(f*e) = 1. 
Note that the diagram 

(Y,0) 

1f 
(Ya , 0) 

commutes, so that for an n-plane bundle e, we have Xn(e) = J*CEXi ® 
tn-i) = J*r*(ra) = i*g*(ra) = i*(r) = w(e)' where w(e) is the Euler class 
of e; see Section 7. Thus 

! Xn(e) = w(e) for any n-plane bundle e on y.! (39) 

From the properties we have proved for the classes Xi(e) it can be 
shown that up to a possible sign of (_l)i, Xi(e) is the ith Stiefel-Whitney, 
Chern, or symplectic Pontryagin class Wi, Ci, or ei for real, complex, or 
quaternionic bundles, respectively. [Note that it follows from (39) that 
wn(e) is the reduction mod two of the integral Euler class of the n-plane 
bundle e.] 

Now let e be a complex n-plane bundle over Y, and let elR denote the 
underlying real 2n-plane bundle. Let R.* and C* be the sets of real and 
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complex numbers of norm one, respectively. Since JR.* C C* we have a 
natural diagram (taking EJR. = Ec.) 

and it follows that p(rc.) = 71R., where p is induced by UJR. --+ Uc. and by 
reduction of coefficients modulo two: Z --+ Z2' The diagram 

also commutes, where the map H*(Bc.jZ) --+ H*(BJR.jZ2) is induced by 
the canonical map BJR. = Ec·/JR.* --+ Ec./C* = Bc. and by reduction mod 
two. This map is a fiber bundle projection with circle fiber, and it is easily 
seen that the generator tc E H2(Bc. j Z) must be taken into the nonzero 
element ti E H2(BJR. j Z2). Therefore 

Similarly, if e is a quaternionic n-plane bundle with underlying complex 
bundle ec, then 

We shall now return to our general discussion. Let 7ra : Ua --+ Ya 
denote the map induced in the canonical way by the projection 7r : U --+ Y, 
and note that 7rar : Ya --+ Ya is the identity. Let h : Ya = Y x Ba --+ Y 
be the projection. 

Let <I> be any family of supports on Y and put IJ! = (h7ra)-l(<I» on 
Ua. Let A be any sheaf on Y and put flJ = 7rah* A on Ua. Note that for 
a E H~(YjA), we have 

h*(a) = a ® 1 E H~(Y; A) ® H*(Ba) = H.q,(Yaj flJ), 

using 7.6. 
Let ( be the composition 

Then r*«((a» = r*(ra U 7rah*(a» = r*(ra) U (a ® 1), so that the map 

r*«((e»: H;(YjA) --+ H,i,(YajflJ) = H;(YjA) ®H*(Ba) 
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is given by 
n 

r*«((o:)) = E (Xi U 0:) ® tn- i , 
i=O 

which generalizes (35). Since xo = 1, the map r* «( ( .)) is a monomorphism. 

10.2. The definition of characteristic classes that we have given is useful 
for studying the normal classes of the fixed-point set of a differentiable 
action of the group G (as above) on a differentiable manifold M. We 
shall illustrate this in the case of the circle group G = C*. Let M be 
(2n + k)-dimensional (real), and let Y be a k-dimensional component of 
the fixed-point set of some differentiable action of G on M. Assume, for 
simplicity, that G acts freely on the unit sphere in any normal disk to Y. 
Then the normal bundle e has a canonical complex structure in which the 
operation by C* coincides with the given action of G. Thus, e is a complex 
n-plane bundle. Let Ci E H2i(y; Z) be the ith Chern class of e. Let U be 
an open tubular neighborhood of Y in M. 

Let ~ be a family of supports on MIG with inverse image 8 on M. Let 
W = 17-1(~), where 17 : Ma ~ MIG is the projection; see Section 9. We 
shall assume that 8 n U = 1I"-1(8IY), where 11" : U ~ Y is the canonical 
projection of the tubular neighborhood U onto Y. (It follows that wnua is 
the same type of support family as that considered in the preceding general 
discussion.) For example, ~, and hence 8 and W, could be taken to consist 
of all compact sets or of all closed sets. By excision, we have the natural 
isomorphism 

H~nuG(Ua, Ue ) ~ H~(Ma, Me), 

where MO = M - Y. Thus r* factors as 

H~nuG(Ua,Ue) _--.:..r*_-+-. H~nYG(Ya) = He(Y)®H*(Ba) 

~ /<-
HJ,(Ma). 

10.3. Theorem. In the situation of 10.2, suppose that H~(M; Z) = 0 for 
all i = p (mod 2) with p + 2(n - j) < i $ p + 2n and let 0: E H~(Y). Then 
Ci U 0: = 0 for i > n - j, where Ci is the ith normal Chern class ofY in M. 

Proof. Consider j*«((o:)) E H~n+p(Ma). In the spectral sequence E:,t 
of the map Ma ~ Ba with supports in W we have that E:,t = 0 for all 
t = p (mod 2) with p + 2(n - j) < t $ p + 2n. Thus, the complementary 
degree of j*«((o:)) is at most p + 2(n - j). Since i* preserves filtration 
with respect to the spectral sequences of Ma ~ Ba and of Ya ~ Ba, it 
follows that r*«((o:)) = E(CiUo:)®tn-i has complementary degree at most 
p + 2(n - j). Thus we must have that Ci U 0: = 0 for p + 2i > p + 2(n - j) 
as claimed. 0 

Taking 0: = 1, we obtain: 
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10.4. Corollary. If Hi(M) = 0 for 2(n - j) < i :5 2n, then Ci = 0 for 
i>n-j. 0 

In the real case (Stiefel-Whitney classes of normal bundles to fixed-point 
sets of involutions) these results are due to Conner and Floyd [28]. 

We shall illustrate the real case by proving a result of Conner [25]: 

10.5. Theorem. Let F be a component of the fixed-point set of a differen
tiable involution on an m-manifold M, and let 8 be any family of supports 
on M that is invariant under the involution. Suppose that the restriction 
H~(Mj Z2) ~ HMFj Z2) is a monomorphism for all i < r. Then every 
component Y =1= F of the fixed-point set having some neighborhood in e has 
dimension at most m - r. 

Proof. Let Y, as above, have dimension p. Let n = m - p and let e be 
the normal bundle to Y in M. Let U be an open tubular neighborhood 
of Yin M with closure in 8. With the notation of 10.2 consider the class 
Ta E Hn(Ua, Uo) = H~nuG(Ua, Uo)· 

Let i* and j* be as in 10.2 and let k* : H~(Ma) --+ H~(Fa) be induced 
by the inclusion k : Fa ~ Ma. Now, k*j* = 0, but j*(Ta) =f. 0 since 
i*j*(Ta) = r*(Ta) = E Wi(e) ®tn- i =f. O. Thus k* : H~(Ma) ~ H~(Fa) is 
not a monomorphism. However, since the spectral sequence of Fa ~ Ba 
is degenerate, it follows from our hypotheses that 

is a monomorphism for i < r. Thus n ~ r, whence p = m - n:5 m - r. 0 

11 The spectral sequence of a filtered 
differential sheaf 

Let p* be a differential sheaf on the space X, and assume that we are given 
a filtration {FpP*} of P*, that is, for each q we have a sequence 

... J Fppq J Fp+lPq J ... 

(p E Z) of submodules of pq with pq = Up Fppq, and such that the 
differential ~ of p* maps Fppq into Fppq+l. 

We denote the associated graded sheaf by {GpP*}, where 

1 GpP* = FpP* I Fp+1P* ·1 

The differential ~ induces a differential on each GpP*, and the associated 
derived sheaf is denoted by 
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where q refers to the degree in !£*. As with filtered differential groups, there 
is associated with the filtered differential sheaf F!]!* a spectral sequence 
&,~,q of sheaves. (This is of secondary interest to us and is introduced for 
notational convenience.) Thus, we let 

11~ = {x E Fp!£* lox E Fp+r!£*} I 
and 

18~ = 1~/(OJ~=~+1 + J~~~)·I 
We also let J~,q and 8~,q be the terms in J~ and 8~ respectively of total 
degree p+q. Then, as with spectral sequences of filtered differential groups, 
o induces a differential or on 8~,q of degree (r, -r + 1), and the resulting 
derived sheaf is 8~tl. We have 8g = Gp!£* and 8f,q = .1('p+q(Gp!£*). In 
the application we will make of this in the next section, the differentials Or 
will vanish for r ;::: 1. Note that the stalks (8~,q)x, for any x E X, form 
the spectral sequence of the filtered differential group Fp(!£:) = (Fp!£*)x. 

We now turn to the spectral sequence of primary interest. Consider the 
double complex Lp,q = Ut C: (X; Ft!£q) with differentials d' and d" [with 
d" induced by (-1)Po] and the associated total complex L* with differential 
d = d' + d", as in Section 1. 

We shall define a new filtration of L * and study the resulting spectral 
sequence. Let 

FpL* = E9 C,(X; Ft!£*) , 
s+t=p 

where we consider C,(X; Ft ,!£*) to be a subgroup of C,(X; Ft!£*) for t' > t 
and hence have that FpL * ::) Fp+1 L *. Both differentials d' and d" preserve 
this filtration, and d', in fact, increases the filtration degree by one. 

Let {E~,q} be the spectral sequence of this filtration of L *. Thus 

I Z~ = {a E FpL* Ida = (d' + d")(a) E Fp+rL*} I 
and 

I EP = ZP/(dZp- r+1 + ZP+1) I r r r-l r-l 

and as usual, we replace the upper index p by p, q when we refer to homo
geneous terms of total degree p + q. 

We have 
Eg,q = GpLp+q = EBC:-t(X;Gt!£q+t). 

t 

Since d' increases filtration degree, we see that do is induced by d", that is, 
by 00. We shall continue to use the notation d" for do. 

Consequently, 

Ef,q = EBC:-t(X; tfi,q) = EBC:-t(X; .1('q+t(Gt!£*)). 
t t 
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Clearly, any element a E C:-t(X; Xq+t(GtP*» is represented by an ele
ment a E C:-t(X; FtPq+t) with d"a E C:-t(X; Ft+1pq+t+1). Now d'a 
represents the element d'a E C:+1- t(X;Xq+t (GtP*» c Ef+1,q, while 
d"a represents (-1)P- t8ia E C:+1-(t+1) (X; X q+(t+1) (Gt+1 P *» c Ef+1,q. 

Thus d1 : Ef,q -+ Ef+1,q is given by d1 = d' + c8i, where c denotes the 
sign (_l)P-t above. 

We now make the assumption 

(A) 81 : 8i,q -+ 8i+ 1,q is zero for all t, q. 

Under assumption (A), we have 

E~,q = E9 H:-t(X; 8~,q) = E9 H~-t(X; Xq+t(GtP*» 
t t 

since 8~,q = 8i,q = Xq+t(GtP*). 
We shall now compute d2 under assumption (A). Let 

a E H:-t(X; Xq+t(GtP*». 

The class a is represented by a d'-cocycle in C:-t(X; .7t,q+t(GtP*» and 
hence by an element b E c~-t(X; GtPq+t) with d"b = 0,29 and with d'b E 

c~-t+1(X;Im8o) = Imd"; that is, there is an element 

C E C:- t+1(X; Gtp q+t- 1) 

with d'b = -d"c. Let (3 E C:-t(X; FtPq+t) and "( E C:- t+1(X; FtPq+t- 1) 
represent band c respectively. We have that 

d'(3+d""( E c~-t+1(X;Ft+1pq+t) C Fp+2L*. 

Note that d" (3 E C:- t (X; Ft+1Pq+t+1) represents ±6i b = 0 since 81 = O. 
Thus d"(3 E C:-t(X; Ft+2P q+t+1) C Fp+2L*. Also, 

d'''( E C:-t+2(X; Ftpq+t-1) C Fp+2L*. 

Hence d((3 +"() = (d' + d")((3 +"() = d'''( + (d' (3 + d""() + d" (3 E Fp+2L*, and 
therefore (3 + "( E z~,q represents a E E~,q (since it represents b in Eg,q~. 
Consequently, d((3+"() = d'''(+(d'(3+d''''()+d"(3 represents d2a E E~+2,q- . 

We now make the further assumption that 

(B) 82 : 8;,q -+ 8~+2,q-1 is zero for all t, q. 

In case (A) and (B) both hold, d"(3 must be in c~-t(X; Ft+3Pq+t+1) C 
Fp+3L*, for otherwise 82b would be nonzero. Thus 

d(d"(3) = d'd"(3 E d'(Fp+3L*) c FpHL*, 
----------------------

29Recall that C; is exact, so that Kerd" = C;(Xj Ker 80 ), 
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so that d"{3 E Zp+2. Also, dd', = d"d', = -d'd", represents d'(-d"c) = 
d'd'b = 0 in C~-1+2(X; Gt2q+t) , so that d"(d',) E C~-t+2(X; Ft+l2q+t ). 
The latter element represents ±6i(d'c) = 0 [by (A)] so that in fact, 

dd', E C~-t+2(X; Ft+22q+2) C Fp+4L*. 

Thus d', E Z~+2. It follows that d' (3 + d", = d({3 + ,) - d', - d" {3 E 

Z~+2 and that all three elements d'" (d' {3 + d",) , and d" {3 represent 
classes in E~+2,q-1 with sum d2a. Clearly, d" (3 represents 0 = ±62a E 

H~-t(X; ~~+2,q-1), by (B). 
Now d', represents a class dga E H~-t+2(X; .req+t-1(Gt2*)), while 

(d'(3+d",) represents a class d~a E H~-t+l(X; .req+t (Gt+l2*)), where the 
superscript indicates the change of the degree "t." Note that both of these 
groups are direct summands of E~+2,q-l and that 

under conditions (A) and (B). We shall now give an interpretation of the 
operators dg and d~. 

For to fixed, the differential sheaf Gto (2*) gives rise to a spectral se
quence (1) on page 199 (which coincides with the present spectral sequence 
when 2* has the trivial filtration Fto 2* = 2*, Fto +1 2* = 0). Let us 
denote this spectral sequence by to E~,q and its differentials by to dr. Then 

to E~-to,q+to = H~-tO(X; .req+tO(Gto 2*)). 

By the construction of dg it is clear that 

(This can be seen by direct computation or by a more abstract approach. 
The details are left to the reader.) 

Recall that 61 is the connecting homomorphism of the homology se
quence of the short exact sequence 

Ft+12* Ft2 * 
o ---+ * ---+ * Ft+22 Ft+22 

---+ 0, 

and by (A), the resulting sequence 

0---+ .req+t(Gt+12*) ---+ .req+\Ft2* jFt+22*) ---+ .req+t (Gt2*) ---+ 0 (40) 

is exact. This exact "coefficient sequence" gives rise to a connecting homo
morphism 

We claim that ~ coincides with d~. This is merely a matter of tracing 
through the definition of ~. With notation as above, (3 determines a class 
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13' E c~-t (X; Ft2 q+t / Ft+22q+t) with d" 13' = 0, since d" 13 E Fp+2L *. 
Thus 13' determines a class b' E c~-t(X; :1{'q+\Ft 2* / Ft+22*». Now d'b' 
represents d'b = 0 in c~-t+l(X; :1{'q+t(Gt2*» , and hence d'b' may be 
regarded, by (40), to be in c~-t+l(X;:1{'q+\Gt+12*» and, by definition, 
represents t .6.a. Specifically, d'f3 + d", E c~-t+l (X; Ft+l2q+t) represents 
an element of C~-t+l(X; :1{'q+t(Gt+l2*» that maps into d'b'. This gives 

I d~a = t.6.a·1 

We shall now consider the question of convergence. Recall that the 
filtration of L * is called regular if FpLn = 0 for p > f (n) for some function 
f : Z --> Z. 

We shall now make two further assumptions: 

(C) The filtration of 2* is regular [that is, Fp2n = 0 for p > g(n) for 
some function gJ. 

(D) Either: 

(i) 2* is bounded below (that is, 2 n = 0 for n < no), or 

(ii) dim~ X < 00. 

Of course, in case D(ii) we replace C,; by a canonical resolution of finite 
length. 

We claim that under these assumptions the filtration of L * is also reg
ular. 

Indeed, in case D(i) assume, for convenience, that 2 q = 0 for q < O. 
We may also assume, in this case, that 9 is an increasing function. Note 
that 

n 

FpLn = EBC~(Xj Fp_ s2 n- s ). 

s=o 
Thus, if p > n + g(n), we have p - s ?: p - n > g(n) > g(n - s) and 
FpLn = o. 

In case D(ii), where m = dim~ X, we have 
m 

FpLn = EBC~(X; Fp_ s2 n- s ), 

.=0 
which is zero for p > m + sup{g(n - s) I 0:-:; s :-:; m}. 

Note that under assumption (D) we can show, as in Section 1, that 

Hn(L*) = Hn(ur~(F.2*» 
• 

when F2* consists of <p-acyclic sheaves. More generally, the assumption 

limtHq(H~(X;Ft:l'*» = 0 for p > 0 

implies this result. 
Thus, for example, we have proved the following: 
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11.1. Theorem. Let p* be a differential sheaf on X. Let {FpP*} be a 
filtration of p* consisting ofip-acyclic sheaves. Also assume that (A), (C), 
and (D) hold. Then there is a spectral sequence with 

E~·q = E,BH:-t (X;.1{'q+\Gt P*)) ===} HP+q(Ur4>(Fs P*)). 
t 8 

If, moreover, (B) holds, then on the summand H:- t (X;.1{'q+t(GtP*)) we 
have that 

I d2 = td2 + t~, I 
where td2 is the second differential of the spectral sequence (1) on page 199 
of the differential sheaf GtP*, and t ~ is the connecting homomorphism 
(41) of the coefficient sequence (40). 0 

12 The Fary spectral sequence 

We shall now apply the results of the previous section to a more specific 
situation. 

Let f : X -+ Y be a map and let 

be a decreasing filtration of Y by closed sets. Let 

Then 
... ::) U- 1 ::) Uo ::) U1 = 0, 

so that {Up} forms a decreasing filtration of Y by open sets. Also, put 

Let .A be a sheaf on X, and let IJ1 be a family of supports on X. Consider 
the differential sheaf 

!If* = liJt.A* 

on Y, where.A* = ~*(Xj.A). Then p* is filtered by the subsheaves 

and this filtration is bounded above by zero. The associated graded sheaf 
is 

and clearly, 
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since gj f-+ gj A is an exact functor for A C Y locally closed. Stalkwise, 
{FpQ'*} reduces to a filtration with only two terms, and it follows that 
8r = 0 for r ~ 1, where 8r is as in Section 11. Thus conditions (A) and 
(B) of Section 11 are satisfied. Condition (C) follows from the fact that 
{Up} is bounded above, and (D) is obviously satisfied. Note that the exact 
sequence (40) of Section 11 becomes 

0-+ :1trt (f;A)A'_l -+ :1t~-t(f;A)A,UA'_l -+ :1t~-t(f;A)A, -+ O. (42) 

If III is paracompactifying on Y, then by II-10.2 we have 

H~(Y; :1t~(f; A)A,) ~ H;IA, (At; :1t~(f; A)IAt). 

Since FpQ'* is Ill-soft and Utf<l>(Q'~J = fe(Q'*) = fscw)(A*), where 8 = 
Ut (Ill I Ut ), the spectral sequence of 11.1, together with 2.3, yields: 

12.1. Theorem. Let f : X -+ Y be a map, let Y = Ko J Kl J ... be a 
decreasing filtration of Y by closed subsets, and put At = K t - K t+1' Let 
III be a paracompactifying family of supports on Y, and let A be any sheaf 
on X. Then there is a spectral sequence (Fary) with 

E~,q = EBH:t~,(At;:1t~-t(f;A)IAt) ===> H~t:)(X;A), 
t 

where td2 is the second differential of the spectral sequence 2.1 of the differ
ential sheaf (fw «j* (X; <4)) IAt and t ll. is the connecting homomorphism of 
the cohomology sequence associated with the coefficient sequence (42) [that 
is, the cohomology sequence of the pair (Kt- 1 - K t+1, At) with coefficients 
in :1t~-t(f;A)l. 0 

We note that with suitable restrictions, :1t~-t (f; A) IAt is the Leray 
sheaf :1t~-;:,tA.(fIA~;A) of fIA~, where A~ = f-l(A t ). We shall now show , 
that under the same restrictions, the spectral sequence of the differential 
sheaf (fw«j*(X;A))IAt can be identified with the Leray spectral sequence 
of fiAt. 
12.2. Proposition. Let f : X -+ Y be iJI-closed, where each f-l(y), y E 

Y, is iJI -taut in X. Let III be a paracompactifying family of supports on Y 
and let A C Y be locally closed with A· = f-l(A). Then for any sheaf A 
on X, the spectral sequence 2.1 of the differential sheaf (fw «j* (X; A))IA on 
A, with supports in IllIA, may be identified with the Leray spectral sequence 

E~,q = H:IA(A;:1t~nA.(fIA·;AIA·)) ===> H:U)IA.(A·;AIA·) 

of fIA·. 
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Proof. Note that cp(\II)IAe = (cpIA)(\II n Ae) by 5.4(8). We have the 
canonical homomorphism 

which induces (20) on page 214, whence there is the homomorphism of 
double complexes 

There results a homomorphism of spectral sequences 2.1, which reduces to 

on the E2 terms. By 4.4, this map is an isomorphism and the result follows. 
o 

13 Sphere bundles with singularities 
In this section we will apply the Fary spectral sequence to obtain an exact 
sequence for a sphere bundle with singularities that we call the Smith-Gysin 
sequence because it is a generalization of the Gysin sequence of a sphere 
bundle and an analogue of the Smith sequences of periodic maps of prime 
order. 

Let f : X --+ Y be a closed map between Hausdorff spaces that is a 
k-sphere fibration with closed singular set FeY. That is, f : Fe = 
f-l(F) --+ F is a homeomorphism and f : X - Fe --+ Y - F is a fiber 
bundle projection with fiber Skj k ~ 1. (More generally, suppose the Leray 
sheaf of f has stalks as if this were the situation. For example, this applies 
to the orbit map of a circle group action with rational coefficients or a 
semi-free circle group action with integer coefficients.) 

We have 

{ 
L, q = 0, 

$q(jj L)IY - F = (ff, q = k, 
0, q -I- O,k, 

where (ff is a locally constant sheaf on Y - F with stalks L. The fibration 
f is said to be orientable if (ff is constant. This is always the case when f 
is the orbit map of a circle action. 

If &1 is any sheaf on Y, it follows from 4.6 that 

Also, it is clear that on F, 

q =0, 
q =k, 
q -I-O,k. 
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Now let Ko = Yi Kl = K2 = ... = Kk = Fi and Kp = 0 for p > k. 
The Fary spectral sequence with coefficients in !* fiI and supports in the 
paracompactifying family cI> on Y has 

and converges to H;-!:?IP(Xi!*fiI). Thus 

E~'o = H:IY-F(Y - Fi fiI), 
E~,k = H:IY -F(Y - F; @ ® fiI) E9 H:t; (Fi fiI), 

and E~,q = 0 for q =1= 0, k. [We have written @ ® fiI for @ ® (fillY - F) for 
simplicity of notation.] 

As with any spectral sequence in which E~,q is nonzero in only two 
complementary degrees q = 0, k, there results an exact sequence 

which yields the exact Smith-Gysin sequence: 

... -+ H!IY-F(Y - FjfiJ) -+ H;_l;z,(Xjj*fiJ) 

-+ H!i:-F(Y - Fj @® fiJ) E9 H!IF(Fj fiJ) -+ H:t~-F(Y - Fj fiJ) -+ ... 
(43) 

See [6J for some other applications of the Fary spectral sequence. See 
[15, III-lO] for a more elementary derivation of the Smith-Gysin sequence. 

Note that a somewhat less subtle "Smith-Gysin sequence" can be ob
tained directly from the Leray spectral sequence of f, namely, the exact 
sequence 

As an example of the use of the Smith-Gysin sequence (43), we have 
the following result: 

13.1. Theorem. Let f : X --+ Y be a closed map that is an orientable 
k-sphere fibration with closed singular set FeY. Let cI> be a paracom
pactifying family of supports on Y. Let L be a field and suppose that 
dimIP,L Y < 00. Then, with coefficients in L and for any p, we have the 
inequality 

00 00 

dimH:~_F(Y - F) + LdimH:t)(k+l)(F):::; LdimHj~!~k+l)(X). 
j=O j=O 
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Proof. Let 

Note that dim~1F F ~ dim~ Y by II-16.9, so that bq and cq are both zero 
for sufficiently large q. The sequence (43) implies that aq is also zero for 
large q. The exact sequence 

shows that 

which degenerates to 0 ~ 0 for q sufficiently large. Adding these inequalities 
for q = p + j(k + 1), j = 0,1,2, ... , we see that the terms in Ci cancel out, 
except for Cp-k, and there remains the inequality 

00 00 

Cp-k + L bp+;(k+l) ~ L ap+;(k+l) 
;=0 ;=0 

as claimed. o 

13.2. Theorem. Let f : X -+ Y be a closed map of Hausdorff spaces that 
is an orientable k-sphere fibration with closed singular set FeY. Let L 
be a principal ideal domain. Assume either that X is paracompact with 
dimL X < 00 or that X is compact. If X is acyclic over L, then Y and F 
are also acyclic over L.30 

Proof. Let it> = cldlY - F. The Smith-Gysin sequence shows that 

If X, whence Y, is compact, then the map H:-k(y - FjL) -+ H:+l(y_ 
Fj L) is the cup product with the Euler class wE Hk+l(y - Fj L), whence 
it is zero for large p by II-Exercise 53. In the paracompact case, dimL(Y -
F) ~ dimL X - k by 8.12. Thus, in either case, a downwards induction 
shows that H;(Y - Fj L) = 0 = H*(Fj L). The result then follows from 
the cohomology sequence of the pair (Y, F). 0 

Some other applications of the Smith-Gysin sequence can be found in 
[11]. 

30 Also see Exercise 21. 
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14 The Oliver transfer and the Conner 
conjecture 

267 

In this section we study the transfer map for actions of compact Lie groups 
due to Oliver [65] and use it to give Oliver's solution to the Conner conjec
ture. The results in this section are due to Oliver except for those at the 
end credited to Conner. 

Let G be a compact connected Lie group acting on a completely regular 
space X. In this situation, each orbit x = G(x) has an invariant neighbor
hood U· (where U C X/G is open) possessing an equivariant retraction 
ux,u : U· -+ G(x); see [15, II-5.4]. The neighborhood U· together with 
the retraction ux,u is called a "tube" about G(x). Let A C X be a closed 
subspace invariant under G and put W = X - A. 

Let L be a given base ring. Let f : X -+ X/G be the orbit map. We 
wish to define a natural homomorphism 

of the Leray sheaf of f to the constant sheaf on X/ G with stalks H n (G; L), 
where n is arbitrary for the present. Since .1(n(f,JIA;L) = .1(n(f;L)w/G, 
because WIG is open and :Jfn(f,fIA;L)y ~ Hn(y,ynA;L) = 0 for yEA 
by 4.2, 11" will induce a sheaf homomorphism 

and hence, by II-1O.2, 

11"* : H8(X/G; :Jfn(f,JIA; L)) -+ H 8(X/G; Hn(G; L)w/G) 

~ H 8 (X/G,A/G;Hn(G;L)). 

Because G is compact and, hence, f is closed, the canonical map r; : 
.1(n(f; L)x -+ Hn(G(x); L) of 4.2 is an isomorphism for all x EX/G. 

For x E X let T/x : G -+ G(x) be the equivariant map T/x(g) = g(x). 
Since G is connected, T/x depends on x, in its orbit, only up to homotopy. 
Thus T/; : Hn(G(x); L) -+ Hn(G; L) is well-defined, independent of x in its 
orbit X. Let 1I"(t = T/;r;: .1(n(f;L)x -+ Hn(G;L). Then the 1I"(t fit together 
to define a function 11", and we need only show that this is continuous. 

To show continuity, fix x and ux,u : U· -+ G(x) as above, and let 
y E U·. It is no loss of generality to assume that ux,u(y) = x. Also, let 
iu,y : G(y) ....... u· be the inclusion. Then ux,u(iu,y(T/y(g))) = ux,u(g(y)) = 
g(ux,u(y)) = g(x) = T/x(g); that is, the diagram 

U· ~ G(x) 

iu,v r r ~= 
G(y).....!!E.- G 



268 IV. Applications of Spectral Sequences 

commutes. Let Ou : Hn(UejL) -+ r(.1(n(fjL)IU) be the canonical map 
from presheaf to generated sheaf and let 

be the restriction. Then we have the diagram 

in which the composition along the bottom is 1f'y. The left-hand square 
commutes because it is just the definition of r~. The right-hand square 
commutes because it is induced by the preceding commutative diagram. 

Let a E Hn(G(x)j L), and put s = Oua; u(a) E r(.1(n(fj L)IU). Then 
the value of the section s at y is s(Y) = I'U,;(s) by the definition of 1'. We 
compute: 

1f'y s(y) = 1f'y I'U,y(s) 
= 11~ r~ l'u,y Ou a;,u(a) 

* .* * ( ) = 11y lU,y U x,U a 
= 11;(01) 
= 1f'x s(x), 

the last equation holding by substitution of x for y in the preceding parts. 
This equation shows that 1f' is constant on the image of the section s. 
The image under the isomorphism ri of the value of the section s at x is 
r;(s(x)) = r;l'u,x(s) = ril'u,,,Ouu;,u(a) = i'U,xu;,u(a) = 1*(01) = a. It 
follows that 1f' is continuous at the arbitmry element s(x) = (r;)-l(a) E 
.1(n(fj L)x and hence is continuous in the large as claimed. 

Now let us specialize to the case n = dim G and let >. : Hn (Gj L) -=:... L 
be an "orientation." The Leray spectral sequence of the map f : (X, A) -+ 

(X/G, A/G) has E;,t = 0 for t > n, and so there is the canonical homo
morphism 

and the composition of this with >. * 0 1f'* gives a natural homomorphism 

I TX,A : Hs+n(x, Aj L) -+ HS(X/G, A/G; L), I 
called the "Oliver transfer." 

14.1. Proposition. The Oliver tmnsfer T satisfies the relationship 

I Tx,A(f*({3) U a) = (3 U Tx(a), I 
where OlE H8+n(Xj L) and (3 E Ht(X/G, A/Gj L). 
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Proof. Let' E:,t be the Leray spectral sequence of f and E:,t the Leray 
spectral sequence of (f, fIA). The element a represents a class a r E 'E:,n 
for each 2 $ r $ 00 and TX ( a) = ,X * ( 11"* ( (2) ). The element 1* 13 represents 
a class 13r E E;'o for each 2 $ r $ 00, and 132 E H t(X/G;.1t°(f,flA;L)) 
corresponds to 13 E Ht(X/G, A/G; L) ~ Ht(X/G; Lw/ G ) under the canon-
ical isomorphism .1t°(f,fIA;L) ~ Lw/G • By 6.2 and 6.8, the composition 
Hs+n+t(X, A; L) _ E~t,n ~ E~+t·n takes 1*(13) Ua to 132 Ua2, and hence 
,X* 011"* takes this to 13 U Tx(a). But by definition, this composition takes 
1*(13) U a to TX,A(f*(13) U a). 0 

14.2. Corollary. The following diagram commutes: 

Hs+n-l(A; L) -.!...... Hs+n(X, A; L) 

IrA Irx.A 

HS-1(A/G; L) -.!...... HS(X/G, A/G; L). 

Proof. The proof is similar to Steenrod's proof of the similar relationship 
between the Steenrod squares and connecting homomorphisms; see [19, VI-
15.2] or [79, 1.2]. We consider the G-space I x X and its various subspaces, 
where G acts trivially on the factor I = [0,1]. Let Px : I x X --+ X, 
PI : I x X --+ I, and 'PI : I x X/G --+ I be the projections. Let W = 
{O} x X U I x A. Then the naturality of the Oliver transfer implies that it 
suffices to prove the result for the pair (W, I x A). Naturality then shows, in 
turn, that it suffices to prove it for the pair (W, {I} x A). Put C = {I} x A 
and B = [O,!] x Au {O} x X c W. Consider the commutative diagram 
(coefficients in L) 

---+ 0 

with exact row. Again, naturality applied to this diagram implies that 
it suffices to prove the result for the pair (W, B U C). By excision and 
homotopy invariance, it suffices to prove the result for the pair ([!, 1] x 
A, H} x AU{I} x A), which is equivalent to the pair (I x A, oI x A). Now, 
Hs+n(8I x A) is generated by elements of the form xU fj = x x y, where 
x E HO(8I), y E Hs+n(A), x = pj(x), and fj = pX(y). Let x = pj(x), so 
that I*(x) = x. We compute 

7"IxA,8IXA(6(x U fj)) = TIXA,8IXA(6(f*(x)) U y) 
= TIxA,8IXA(f*(6(x)) U y) 
= 6(x) U TIxA(fi) 
= 6(x U TIXA(Y)) 
= 6(TIXA(f*(X) U y)) 
= 6(TIxA(XUy)), 

by 14.1 
by II-7.1(b) 
by 14.1 
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and so TlxA,8IxA 0 Ii = Ii 0 TlxA. o 

This transfer map was the main (unknown at the time) tool in Oliver's 
solution of the Conner conjecture. We shall now go on to give his proof. 
The following result sums up the main usage of the transfer: 

14.3. Theorem. Let G be a compact, connected, nontrivial Lie group act
ing on a para compact space X. Let p be a prime number and let P c X 
be the union of the fixed-point sets of all order p subgroups of G. Then 
the transfer Tp : H8+n(Pj Zp) -+ H8(P /Gj Zp) is zero for all s. As
sume further that Ht(X/G,P/GjZp) = 0 for t > k. Then the transfer 
TX,p : Hk+n(X,PjZp) -+ Hk(X/G,p/GjZp) is an isomorphism and the 
canonical map Hk+n(X,PjZp) -+ Hk+n(XjZp) is a monomorphism. 

Proof. If w E W = X - P and if u is sufficiently near w, then Gu is 
conjugate to a subgroup of Gw , as follows from the existence of a tube 
about G(w). It follows that u E W. Thus P is closed and it is obviously 
invariant. 

As before, let f be the orbit map. Let x E P. Then the isotropy 
group Gx contains a subgroup of order p, and so Gx is either of positive 
dimension or it is finite of order a multiple of p. In both cases the map 
1/; : Hn(G(x)j Zp) ~ Hn(G/Gxj Zp) -+ Hn(Gj Zp) is zero. It follows that 
7r : ,1{nUIPjZp) -+ Hn(GjZp) is zero, and so the Oliver transfer Tp : 

H8+n(PjZp) -+ H8(P/GjZp) is zero for all s, proving the first assertion. 
Now, for x E W = X - P, we have that Gx is finite of order prime 

to p, so that the map 1/; : H*(G(x)j Zp) ~ H*(G/Gxj Zp) -+ H*(Gj Zp) 
is an isomorphism by II-19.2 since G is connected. It follows that the 
map 7r: ,1{*(f,fIPjZp) -+ H*(GjZp)w/G is an isomorphism, since it is an 
isomorphism on each stalk. Therefore, for the Leray spectral sequence of 
U, fI P ), we have 

E~,t = H8(X/Gj ,1{t(f, flPj Zp)) ~ H8(X/Gj Ht(Gj Zp)w/G) 

~ H8(X/G, P/Gj Ht(Gj Zp)). 

Thus E~,t = 0 for s > k and for t > n, and so the Oliver transfer, which is 
the composition 

of isomorphisms, is an isomorphism, proving the second assertion. The 
commutative diagram 

Hk+n-l(Pj Zp) 

lTP=o 
H k- 1(p/GjZp) 

{j -
{j -
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of 14.2 shows that 8 : Hk+n-1(p; Zp) -> Hk+n(x, P; Zp) is zero, giving the 
last assertion by the exact sequence of the pair (X, P). D 

14.4. Theorem. Let G be a compact Lie group acting on the paracompact 
space X. For a prime p, let P be the union of the fixed-point sets of all order 
p subgroups of G. Suppose that X is Zp-acyclic and has dimzp X < 00. 

Then H*(X/G, PIG; Zp) = 0.31 

Proof. By passing to the unreduced suspension of X, it can be assumed 
that G has a fixed point Xo on X. First, we shall reduce this to the case 
in which G is connected. Let G c K where K is a connected compact 
Lie group. (It is a standard result that this always exists, and in fact, K 
can be taken to be some unitary group.) Let K Xc X be the quotient 
space of K X X by the action g(k,x} = (kg- 1,g(x»). If [k,xl is the orbit 
of (k, x) under this action, then there is an action of K on Y given by 
h[k, xl = [hk, xl. The projection K x X -> K induces a map ~ : K Xc X -> 

K/G, which is a fiber bundle projection with fiber X. Moreover, the set 
K Xc Xo is a cross section of~. Let Y = (K Xc X)/(K Xc xo). Since 
X is Zp-acyclic and the stalks of the Leray sheaf of ~ are H*(X; Zp) by 
7.2, the map H*(K Xc X; Zp) -> H*(K Xc Xo; Zp) is an isomorphism. It 
follows from the relative homeomorphism theorem 11-12.11 that Y is Zp
acyclic. If Q is the union of the fixed point sets of order p subgroups of K 
on Y then we claim that Q = (K Xc P)/(K Xc xo). Indeed, suppose that 
h E K has order p and that h[k, xl = [k, xl. Then [hk, xl = [k, x], which 
means that there is agE G with (hk, x) = (kg-l,g(x»). Thus 9 E G x and 
h = kg- 1k- 1. Then 9 has order p and fixes x, whence x E P. 

Now, Y/K ~ X/G and Q/K ~ PIG, so that the result for Y and K 
would imply the result for X and G. Thus we may as well assume that G 
is connected. 

By II-Exercise 54, dimzp X/G :::; dimzp X < 00. If the theorem is 
false, then there exists an integer k with Hk(X/G, PIG; Zp) =1= 0 and 
Ht(X/G,P/G;Zp) = 0 for t > k. But then, since n = dimG > 0, the 
isomorphism TX,p: Hk+n(X,P;Zp) ~ Hk(X/G,P/G;Zp) =1= 0 and the 
monomorphism Hk+n(x, P; Zp) >--> Hk+n(x; Zp) of 14.3 show that X is 
not Zp-acyclic, contrary to assumption. D 

A compact Lie group S will be called a p-torus if S is an extension 
of a toral group by a p-group. The trivial group is regarded as a p-torus 
for all p. If T is a maximal torus of the compact Lie group H, then 
X(H/NH(T» = 1, as is well known. If S cHis a p-torus, then Smith 
theory shows that X((H/NH(T»S) == 1 (modp), whence (H/NH(T»S =1= 

0.32 This implies that S is conjugate to a subgroup of NH(T). Assuming, 
then, that S C NH(T), it follows that ST is a p-toral subgroup of H. In 
particular, if S is a maximal p-torus in H, then rankS = rankH. Any two 

31 Also see Exercise 20. 
32 XG denotes the set of fixed points of G on X. 
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maximal p-tori of H are conjugate in H, as follows immediately from the 
corresponding facts about maximal tori and about p-Sylow subgroups of a 
finite group. 

For a given action of a compact Lie group G on a space X, let <!:p be 
the collection of conjugacy classes in G of maximal p-toral subgroups of 
isotropy subgroups of G on X. For a subgroup S c G we let [SJ denote 
its conjugacy class. Note that an orbit type determines a corresponding 
member of <!:p, but two different orbit types might determine the same 
member of <!:p. There is a partial ordering of Itp given by [SJ < [T] if S is 
conjugate to a proper subgroup of T. 

We say that a subset ~ C <!:p is full if [SJ E ~ and [SJ < [TJ =} [TJ E ~. 
Also, let 

xa= U XS. 
[SIEa 

Note that xa is closed when ~ is full and that ~ C Q3 =} xa C XIS. Also, 
xa is G-invariant. 

14.5. Theorem. Suppose that the compact Lie group G acts on the para
compact p-acyclic space X with dimzp X < 00. Let ~ and Q3 be full subsets 
of Itp with ~ c Q3 and with Q3 - ~ finite. Then H*(XIS IG, xa IG; Zp) = o. 

Proof. The proof will be by induction on the cardinality of Q3 - ~ for 
a fixed~. Of course, the result is true when Q3 =~. Thus assume that 
H*(XIS' IG, xa IG; Zp) = 0 if ~ c Q3' <,;:; Q3. Suppose that [SJ E Q3 - ~ and 
is maximal with this property. Put Q3' = Q3 - {[ S]} <,;:; Q3. Consider the map 

() : X S IN(S) -t XIS IG. 

Let x E X s ; then Gx :J S. If x E XIS_XIS', then S is a maximalp-torus 
of Gx since S C S' for some maximal p-torus S' of Gx, so that [S'J E Q3' 
(whence x E XIS') if S f. S'. We claim that it follows that G(x)S IN(S) 
is a single point, whence () is one-to-one on (XS - XIS')IN(S). Indeed, 
suppose that g(x) E G(x)S for some 9 E G. Then Sg(x) = g(x), whence 
g-lSg C Gx. Since any two maximal p-tori of Gx are conjugate in Gx, 
there is an element k E Gx with k- 1g- 1Sgk = S, i.e., gk E N(S). But 
then g(x) = gk(x) E N(S)(x), whence N(S)(g(x)) = N(S)(x) as claimed. 

On the other hand, if x E XIS', then S is not a maximal p-torus in Gx . 

Then x(GxIS) == 0 (modp). Therefore x«GxIS)S) == 0 (modp) by Smith 
theory. But (GxIS)S = Naz(S)IS, and it follows that NaJS)IS contains 
an element of order p. 

These remarks show that () : (XS IN(S), PIN(S)) -t (XIS IG, XIS'IG) 
is a relative homeomorphism, where 

P = {x E X S I (N(S)IS)x contains an element of order pl. 

By 14.4, H*(XS IN(S), PIN(S); Zp) = O. Since () is a relative homeomor
phism, H*(XIS IG, XIS' IG; Zp) = 0 by II-12.5. This proves the inductive 
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step via the exact cohomology sequence ofthe triple (X 15/C, X 15'/C, X;f/C). 
o 

The case ~ = 0 and QS = <tp gives: 

14.6. Corollary. Suppose that the compact Lie group C acts on the para
compact space X with dimzp X < 00 and only finitely many orbit types. If 
X is p-acyclic, then X/C is also p-acyclic. 0 

If we define Zo = Q and the O-torus to be a torus (so that a maximal 
O-torus is just a maximal torus) then all these arguments apply to the 
case p = O. (Just replace the Smith theory arguments by ones using the 
Smith-Gysin sequence for rational coefficients.) Thus we have: 

14.7. Corollary. Suppose that the compact Lie group C acts on the para
compact space X with dimQ X < 00 and only finitely many orbit types. If 
X is Q-acyclic, then X/C is also Q-acyclic. 0 

For compact spaces, the universal coefficient theorem II-15.3 gives a 
corresponding result over the integers: 

14.8. Corollary. Suppose that the compact Lie group C acts on the com
pact space X with dimz X < 00 and only finitely many orbit types. If X is 
acyclic, then X/C is also acyclic.33 0 

Finally, a technique of Conner [26] removes the assumption on finiteness 
of number of orbit types and that of finite cohomological dimension in the 
last corollary. First, note that the case of C = §1 and rational coefficients 
follows from the Smith-Gysin sequence. For C = §1 and Zp coefficients, 
Smith theory gives that 

H;((xZpn _ xZpn+1 )/Zpn+l) ~ H*(xZpn /Zpn+l, xZpn+l) = 0, 

since this is just <7H*(xZpn) for the action of Zp ~ Zpn+l/Zpn on xZpn. 
(Also, we are using the fact that finite dimensionality is not needed for the 
Smith theory of actions on compact spaces.) Now, (xZpn - XZpn+l )/Zpn+l 
is an orientable Zp-cohomology circle bundle over (xZpn - XZpn+l )/C. 
Thus the Gysin sequence and II-Exercise 53 show that 

H*(xZpn /C, XZpn+l /G; Zp) ~ H;((xZpn - XZpn+l )/G; Zp) = O. 

Therefore, for Zp coefficients, 

the last isomorphism following from continuity II-14.6. Similarly, Smith 
theory gives 

33 Also see 14.10. 
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Also, the result is true when G is finite by II-19.13. 
Now, for any compact nonabelian group G, Oliver has constructed, in 

[66], an example of a smooth action of G on some disk D with no points 
left fixed by the whole group. Since such an action has only finitely many 
orbit types (see [6]) we know from 14.8 that D/H is acyclic for all He G. 
Conner called such a G-space D an acyclic model. 

Let L = Z or a prime field. For a general compact L-acyclic space X on 
which G acts, Conner's technique is to look at the twisted product X x a D. 
There are the maps 

X/G ~ X Xa D ~ D/G. 

The "fibers" of e have the form D /G x for x EX. Consequently, e is a 
Vietoris map. The fibers of 1] are X/Gy for y E D. Since G y =1= G, we can 
assume, by induction on the dimension and number of components of G, 
that these fibers are all L-acyclic. Therefore, the Vietoris mapping theorem 
II-ll.7 gives that H*(X/Gj L) ~ H*(X Xa Dj L) ~ H*(D/Gj L) = o. 
Thus, this argument gives the following main application of the Oliver 
transfer, the Conner conjecture, finally proved by Oliver: 

14.9. Theorem. (R. Oliver and P. Conner.) Let L = Z or a prime field. 
If the compact Lie group G acts on the compact L-acyclic space X, then 
X/G is also L-acyclic. 0 

Further arguments due to Conner [26] show that any action of a compact 
Lie group on euclidean space or a disk has a contractible orbit space. 

Finally, let us show that 14.8 holds with compactness replaced by para
compactness: 

14.10. Corollary. Suppose that the compact Lie group G acts on the para
compact space X with dimz X < 00 and only finitely many orbit types. If 
X is acyclic, then X/G is also acyclic. 

Proof. In Conner's argument concerning the twisted product X Xa D, 
each orbit of H eGan D has an equivariant tubular neighborhood since 
G acts smoothly on D. It follows that each r; : .rt'* (1]j Z)z ---t H*(ze j Z) 
is an isomorphism. Therefore, the Leray spectral sequence of 1] shows that 
1]* is an isomorphism provided we can show that each X/Gy is acyclic, 
y E D. Thus the argument works for X paracompact with dimz X < 00 

and with only finitely many orbit types as soon as we show that the result 
holds for actions of §1. In the latter case, there is a finite subgroup H c §1 

containing all finite isotropy groups.34 By II-19.13, X/His acyclic. Now, 
§l/H acts semi-freely on X/H and so X/§l = (X/H)/(§l/H) is acyclic 
by 13.2.35 0 

34Here we are using that if an action of a compact Lie group G on a space X has only 
finitely many orbit types, then the same is true for the action of any subgroup KeG. 
This is true since K has only finitely many orbit types on each G(x) ~ G/G.,; see [6]. 

35See [65] for an alternative proof. 
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Exercises 

1. ® Let f : X -> Y. Let \II and <I> be families of supports on X and Y 
respectively. Assume that <I> and <I>(\II) are both paracompactifying. Show 
that f~'-" is <I>-soft for any <I>(\II)-soft sheaf '-" on X. 

2. ® If Y C X = S" separates X, then show that dimfY ;::: n - 1. 

3. ® Let X be a compact metric space with dimL X = n, where L is a 
principal ideal domain. Assume that X = Au B, where B is totally 
disconnected. Then show that dimL A ;::: n - 1. 

4. Let f : X -> Y, where X and Y are locally compact Hausdorff. Let '-" and 
aJ be sheaves on X and Y respectively, such that ~aJ = O. Show that 
there is a natural exact sequence of sheaves on Y of the form 

o -> :If~(f; '-") ® aJ -> :If~(f; '-" ® raJ) -> :If~+l (f; '-") * aJ -> O. 

[Hint: :If~(f; '-" ® f* aJ) = 9'IteoI (U ~ H~(f-l(rJ); '-" ® (aJ(U»») by con
tinuity II-14.4. Apply II-15.3.] 

5. ® For differential sheaves !£* on a space Y define a natural homomorphism 

and show that the edge homomorphism 

~: H;(~)(X;'-") ..... E~n >-+ E~,n = r,z,(:If;'(f;'-"» 

of the Leray spectral sequence of f : X -> Y is just the composition 

H;(~)(X;'-") = Hn(r,z,(~) ~*(X; '-"» = H"(r,z,(f~ ~*(X; '-"») ~ 
r,z,(:lfn(h~·(X;'-"))) = r<t>(:If;'(f;'-"». 

Moreover, for y E Y, let i; : r,z,(:If;'(f;'-"» -> H;nyo(y·;'-") be the 
composition of the restriction r,z,(:If;'U;'-"» -> :If;'(f;'-")y with the map 
r; : :If;'(f; '-")y -> H;ny. (y.; '-"Iy·). Then show that i; 0 ~ is just the 
restriction map H;(~)(X;'-") -> H;nyo(y·;'-"Iy·). [Note that W n y. = 
<I>(w) n y. unless {y J ¢ <I>, in which case <I>(w) n y. = 0.] 

6. ® In the spectral sequence 9.2 of Borel, show that the edge homomorphism 

HJ;,(X/G;'-") ...... Eg;,",....... E~,n = r(.1t'E3(X;f*'-"» -> .1t'E3(X;f*'-")y 
~ H~(X; f*'-") 

(where y E Bo) is identical with f*. 
7. Let f : X -> Y be a closed map that is an orientable k-sphere fibration, 

with k ;::: 1, with closed singular set FeY as in Section 13. Let L be a 
principal ideal domain. Let <I> be a paracompactifying family of supports 
on Y with dim,z"L Y < 00 and assume that 

H;_l,z,(X; L) ~ { ~: 
for some integer n ;::: O. Show that 

H:IF(F; L) ~ { ~: 

for p = n, 
for p =F n, 

for p = r, 
for p =F r, 

for some integer r with 0 ::; r ::; n and also compute H;(Y; L). 
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8. Let f : X ---+ Y and let W be a family of supports on X. If fll is a sheaf of 
rings on Y, show that for any fll-module fiJ, h f* fiJ is also an fll-module. 
Thus, if fiJ is <I>-fine for any paracompactifying family <I> of supports on Y, 
hf*fiJ is also <I>-fine. [Hint: Use 3.4.] 

9. ® Let f : X ---+ Y be a W-closed map where W is a family of supports 
on X. Assume that for each y E Y, f-I(y) is W-taut in X and that 
dim'lt f-I(y) = O. Show that the functor f'lt from sheaves on X to sheaves 
on Y is exact. [In particular, for locally compact Hausdorff spaces, fe is 
exact when each f-I(y) has dimension zero.] 

10. ® With the notation of 7.9 show that TU7r"(W) = TUT. That is, the Thorn 
isomorphism applied to the Euler class yields the square of the Thorn class. 

11. ® If f : X ---+ Y is W-closed for a paracompactifying family W of supports on 
X and if BeY is locally closed, show that there is a natural isomorphism 
h(A /-1B) ::::; (hA)B for sheaves A on X. 

12. ® Let Y be a k-dimensional component of the fixed point set of a differ
entiable involution on an m-manifold M. Suppose that HP(Mj Z2) = 0 for 
o < p ~ m - k. Show that the fixed-point set is connected and that the 
normal Stiefel-Whitney classes of Y in M vanish; Conner [25]. 

13. ® Let A* be a differential sheaf with .1{'q(A*) = 0 for q < o. Assume 
either that A" is bounded below or that dim~ X < 00. Let h denote 
the differential A-I ---+ AD. If Aq is <I>-acyclic for all q, show that Imh 
and Coker h are <I>-acyclic. [Hint: Consider the spectral sequence of the 
differential sheaf fiJ" with ~ = Aq for q < 0 and ~ = 0 for q ;::: 0.] 

14. Let 0 ---+ fl" ---+ vf(" ---+ f ---+ 0 be an exact sequence of differential sheaves. 
Assume either that dim~ X < 00 or that fl", vf(* , and f are all bounded 
below. Also assume that H*(H:(X;fl"» = 0 for p > 0 and similarly for 
vf(" and f. Show that the inclusion 

Im{r~(vf(") ---+ r~(f)} "--> r~(f) 

induces an isomorphism in homology, so that there is an induced exact 
sequence 

Also show that the naturality relation (5) on page 199 is valid in this 
situation [see 2.1]. 

15. If f : X ---+ Y, let s.1f~(f;A) = .1fq(h(9'" (X; A))). Investigate the 
properties of this sheaf. Define a spectral sequence with 

E~,q = H:(Y;s.1f~(f;A» ==> sH:t,z) (X; A) 

when <I> is paracompactifying. 

16. Use Exercise 15 to prove that if f : X ---+ Y is closed and surjective and 
if each fiber r1(y) has a fundamental system of neighborhoods in X that 
are contractible, then there are natural isomorphisms 

H;_1~(X;L)::::; H:(Y; L)::::; SH;_1~(X;L) 

when <I> is paracompactifying. 
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17. With the hypotheses of Exercise 16 assume that Y is locally compact and 
hereditarily paracompact. Show that Y is clc'{'. 

18. Let X and Y be spaces with support families <I> and W respectively. Let 
A c X and let ..J be a sheaf of L-modules on X, where L is a principal ideal 
domain. Assume that the Leray sheaf of the projection 7r : X X Y -- Y 
mod A x Y is the constant sheaf H;(X,A;..J) (e.g., Y locally compact, 
Hausdorff, and clc'{'). Also assume that H: (X, A;..J) is a finitely generated 
L-module for each p. Show that for <I> paracompactifying or for <I> = cld, 
there is a split exact sequence 

where e = w(<I> x Y). (Note that e does not coincide with <I> x W in 
general. It does when <I> = cld or when W consists of compact sets.) [Hint: 
Consider the proof of 7.6 and note that f'll($0 M) = r'll($) 0 M when 
$ is flabby and torsion-free and M is finitely generated; see II-15.4.] 

19. Show that both 7.6 and Exercise 18 remain valid if the coefficient sheaf L 
on Y is replaced by a locally constant sheaf 2 with stalks L and ..J x Y is 
replaced by ..J 02. 

20. ® Let G be a compact connected Lie group acting on a paracompact space 
X that is acyclic and of finite dimension over Zp for some prime p. If 
p c X is the union of the fixed-point sets of all subgroups of G of order 
p, then show that P is Zp-acyclic. (This is due to Oliver [65].) 

21. Suppose that X and Yare locally compact Hausdorff spaces and that 
f : X -- Y is an orientable k-sphere fibration with singular set F as in 
Section 13. If H'f(X; r $) = 0 for p > n, show that H"g(F; $) = 0 for 
p> n and that Hg(y - F; $) = 0 for q> n - k. 

22. ® If X is arcwise connected and M is an abelian group regarded as a 
constant sheaf on X, show that the edge homomorphism 

of 2.6 is an isomorphism. 

23. ® If X is locally arcwise connected, show that the map r.p : H~(X; M) -
H~(X; ~dl'°(X; M)) of 2.6 is an isomorphism. 

24. ® Discuss the spectral sequence 

of 2.6 for X being the topologist's sine curve of 11-10.9. 

25. ® Discuss the spectral sequence 

of 2.6 for X being the union in the plane of circles of radius lin, n 
1,2,3, ... , all tangent to the x-axis at the origin. 
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26. Let Y be one strand of Wilder's necklace and 7r : Y -t T ~ §l the retraction 
to its thread; see II-17.14. Show that each stalk of the Leray sheaf .1('1 (7r; L) 
is isomorphic to L, but that HP(T;.1('1 (7r; L» = 0 for all p. Describe the 
rest of the Leray spectral sequence of 7r. If KeY is the complement of 
a small open disk in the side of one of the beads, investigate the nature of 
the Leray spectral sequence of 7rIK : K -t T. 

27. @ Consider double inverse systems {Ai,j} as in II-Exercise 59. Show that 
there is a spectral sequence 

E P,q - l;~P(l;~qA) ];~p+qA 
2 - ¥illi ¥illj i,j ===} ¥illi.j i,j' 

Conclude that there is an exact sequence 

and that llmt(llm} Ai,j) = O. 

28. Let A' be a flabby resolution of a sheaf A on X and let 11 be an open 
covering of X. Discuss the spectral sequences of the double complex cp,q = 
6~ (11; Aq) for <I> paracompactifying. 

29. @ Verify that for the identity map 1 : (X, cld) -t (X, IV), the edge homo
morphism 

1°: H~(X;A) = E;'o --» Er;.;°,..... H~(X;A) 

in the Leray spectral sequence, is the identity. 

30. @ Define a spectral sequence 

natural in the open coverings 11, and rework III-Exercise 15 in this context. 

31. @ Let f : X -t Y be a surjective map between compact Hausdorff spaces. 
Let FeB c Y be closed subspaces, and assume that F and Y are acyclic 
(with constant coefficient group IE). Suppose that f is an orientable §3 bun
dle over Y - B, an orientable §2 bundle over B - F, and a homeomorphism 
over F. Then show that 

32. @ Let P' be a differential sheaf on X that is <I>-acyclic and bounded 
below. Suppose that .1('q(P") = 0 for 0 #- q < n and that each point 
x E X has a neighborhood U such that the restriction Hn(r~(2"» -t 

Hn(r~nu(2"IU» is zero. Then show that the edge homomorphism r/ : 
H~(X; .1('°(2"» = E~'o ....,. E~o ,..... Hk(r~(p'» of the spectral sequence 
of IV-2.1 is an isomorphism for k S n. Also translate this into a statement 
about singular cohomology. 

33. @With the hypotheses of 2.2, suppose that r~(.1('N (P"» -t r~(.1('N (.At"» 
is a monomorphism (respectively, an epimorphism). Then show that the 
map H N (r ~ (P"» --+ H N (r ~ (.At"» is a monomorphism (respectively, an 
epimorphism) . 



Chapter V 

Borel-Moore Homology 

Throughout this chapter all spaces dealt with are assumed to be locally 
compact Hausdorff spaces. The base ring L will be taken to be a principal 
ideal domain, and all sheaves are assumed to be sheaves of L-modules. Note 
that over a principal ideal domain (and, more generally, over a Dedekind 
domain) a module is injective if and only if it is divisible. 

We shall develop a homology theory, the Borel-Moore homology theory, 
for locally compact pairs, with coefficients in a sheaf, and with supports 
in an arbitrary family. For constant coefficients and compact supports the 
theory satisfies the axioms of Eilenberg-Steenrod-Milnor on the full cate
gory of locally compact pairs and maps. Thus, it coincides with singular 
homology on locally finite CW-complexes. In Section 12 we show, more 
generally, that it coincides with singular homology on HLC spaces. 

The usefulness of the Borel-Moore homology theory lies largely in the 
fact that this theory corrects some of the "defects" of classical homology 
theories. The Cech homology theory is not exact, even for compact pairs, 
and this is a major fault of that theory. Also, singular homology (and 
cohomology) does not behave well with respect to dimension. The Borel
Moore homology theory does not possess these defects. However, it achieves 
this by sacrificing other desirable properties (and we shall show that such a 
sacrifice is necessary). For example, the homology group in dimension zero 
is generally rather complicated. Also, the group in dimension -1 is not 
obviously zero, although it does turn out to be so in most cases of interest 
(no case is known where it fails to be zero). A somewhat troubling "defect" 
of Borel-Moore theory is that it fails to satisfy "change of rings," that is, 
the homology groups may depend on the choice of base ring. Although 
this fault can be circumvented if one is willing to have a theory that is not 
defined for arbitrary sheaves of coefficients, that sacrifice is, to the author's 
mind, too great. Also, we shall show that this sacrifice is necessary if one 
wishes to maintain certain other desirable qualities. All these faults are 
present only when dealing with spaces with "bad" local properties. On the 
category of clc,£, spaces, we shall show that all these faults disappear; see 
Sections 12 through 15. 

An important property of the Borel-Moore homology theory is that 
it is closely related to the sheaf-theoretic cohomology theory. In fact, it 
is a sort of co-cohomology based on sheaf cohomology. This relationship 
with sheaf cohomology is exemplified by the universal coefficient formulas 
(9) and 12.8, the mixed homology-cohomology Kiinneth formula (58), the 
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cap product (Section 10), the basic spectral sequences (Section 8), and 
the Poincare duality theorem (Section 9). In Section 1, we consider the 
notion of a cosheaf, which is a type of dual to the notion of a sheaf, and 
in Section 2, we define the basic notion of the dual (differential sheaf) of a 
differential cosheaf. For most of the chapter the notion of a cosheaf plays a 
predominantly terminological role, while in Sections 12, 13, and 14 it takes 
on more significance. See Chapter VI for further development. 

The homology theory itself is defined, in Section 3, from a canonical 
chain complex. In Section 4 it is shown that for suitable supports and 
coefficient sheaves, every map of spaces induces a natural map on the chain 
groups of the spaces in question. (This basic property is more complicated 
in Borel-Moore theory than in the classical theories.) In Section 5, relative 
homology is introduced, the main problem being to show that the chain 
groups of a subspace can be canonically embedded as a subcomplex of 
the chain groups of the ambient space. In the same section, the axiom 
of excision and the relationship of the homology of a space to that of the 
members of the support family are considered. 

In Section 6 we prove a Vietoris mapping theorem for homology with 
an arbitrary coefficient sheaf, and this is used to verify the homotopy in
variance property for this homology theory. 

In Section 7 the homology sheaf of a map is defined. It is analogous 
to the Leray sheaf and generalizes the sheaf of local homology groups of a 
space defined in Section 3. 

In Section 8 the (mixed homology-cohomology) spectral sequence of 
a map is defined. Unlike the Leray spectral sequence, the main case of 
interest is that of the identity map. In this case, the spectral sequence 
leads to the Poincare duality theorem of Section 9, which is the central 
focus of this chapter. 

In Section 10 we define the cap product and study its relationship to the 
cup product and to Poincare duality. It is applied to intersection theory in 
Section 11. 

In Sections 12 and 13 we prove, among other things, that the homology 
of an HL C space coincides with the classical singular homology of the space. 
A universal coefficient formula for dCL spaces is also obtained. 

A Kiinneth formula relating the homology of a product space to the 
homology of its factors is obtained in Section 14 for deL! spaces. 

The problem of change of rings is considered in Section 15. An example 
is given to show that the homology groups may depend on the base ring. 
It is then shown that in some cases (e.g., for dcL! spaces) the homology 
groups are independent of the base ring. 

In Sections 16-18 we study homology (and cohomology) manifolds fairly 
extensively. 

Finally, the transfer map and the Smith theory of periodic transforma
tions are studied in Sections 19 and 20. 

Throughout this chapter we will use dim<p X as an abbreviation for 
dim<p,L X. 
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1 Cosheaves 

In this section we introduce, and study to a small extent, some elementary 
notions dual to those of a sheaf and presheaf. As stated above, throughout 
this chapter L stands for a given base ring that is a principal ideal domain. 

1.1. Definition. A "precosheaf" 2l on X is a covariant functor from the 
category of open subsets of X to that of L-modules. A precosheaf is a 
"cosheaf" if the sequence 

E9 Q!(Ua n U(1) ~ E92l(Ua ) .L. 2l(U) -> 0 
(a,{1) a 

is exact for all collections {Ua } of open sets with U = UQ Ua , where 9 = 
:E(a,{1)(iu""u""j3 - iUj3.u""j3) and f = :Eo iu.u", (iu.v being the canonical 
homomorphism 2l(V) -> 2l(U) for V C U). 

The constant precosheaf L is the precosheaf taking the value L on each 
U. There is no generally acceptable notion of a constant cosheaf on spaces 
that are not locally connected (a point to be commented upon later), but 
on locally connected spaces, a suitable notion of constant cosheaf is the 
precosheaf assigning to U the free L-module on the components of U. (To 
see this, use Exercise 3 and consider the simplicial Mayer-Vietoris sequence 
of the nerve of triples (U, V, U n V).) 

1.2. Definition. A cosheaf2l is said to be "flabby" ifix,u : 2l(U) -> 2l(X) 
is a monomorphism for each open U eX. 

Note that the constant cosheaf (when it exists) is usually not flabby. 

1.3. An important example is that of the singular cosheaf, which is defined 
as follows: Let Sp(U) be the singular chain group! in degree p of U with 
coefficients in L. This gives a precosheaf but not a cosheaf. Take the direct 
limit under barycentric subdivision of Sp(U). That is, if An = Sp(U) for 
all n = 1,2, ... and An -> An+! is the subdivision homomorphism, let 
6 p (U) = timAn. The reader may check that indeed, 6 p is a flabby cosheaf 
on Xj see Exercises 3 and 4. Note that the canonical map Sp(X) -> 6 p(X) 
induces an isomorphism 

since homology commutes with direct limits. When necessary, we shall 
denote the singular cosheaf 6* by 6*(Xj L). 

1.4. Definition. Let 2l be a flabby cosheaf and let s E 2l(U). Let lsi C U 
(the "support" of s) be defined by: x ¢. lsi if there is an open set V C U 
with x ¢. V and with s E Im(iu,v : 2l(V) -> 2l(U)). 

1 Also denoted by D.~(U) in I-Exercise 12. 
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1.5. Proposition. Let 21 be a flabby cosheaf and let s E 2l(U). Then lsi is 
compact, and for V C U open, lsi C V ¢:} s E Imiu,v, Moreover, lsi = 0 
¢:} s = O. 

Proof. It is immediate that s E Imiu,v ::} lsi C V. Let {U",} be a 
covering of U by open sets that are relatively compact in U, and let s E 
21(U). Then, immediately from Definition 1.1, s E 1m iu,w for some W 
that is the union of a finite number of the U",. Thus lsi is contained in 
a compact subset of U. If x i. lsi, then s E Imiu,u_{x}, whence lsi is 
contained in some compact subset of U - {x}. It follows that x has a 
neighborhood disjoint from lsi, whence lsi is compact. 

Now suppose that s = iu,p(sp) and s = iu,Q(sQ) for some open sets 
P, Q CU. In the commutative diagram 

21(P n Q) ~ 21(P) EB 21(Q) L 21(P U Q) --> 0 

1 iu,pnQ 1 iu,plifliu,Q 1 iu,pUQ 

21(U) --> 21(U) EB 21(U) --> 21(U) --> 0 

the verticals are monomorphic since 21 is flabby. The element (sp, -sQ) 
of 21(P) EB 21(Q) maps to f(s, -s) = s - s = 0 in 21(U), whence it maps 
to zero in 21(P U Q). Therefore there is an element spnQ E 2l(P n Q) 
with (sp, -sQ) = g(spnQ) = (ip,pnQ(spnQ), -iQ,pnQ(sPnQ)), whence s E 

Imiu,pnQ' 
Suppose now that lsi eVe U. We wish to show that s E Imiu,v. 

There is a relatively compact open set W C U with s E 1m iu, w, and it is 
no loss of generality to assume that V C W. If x E W - V then x i. lsi, 
so that there is a compact neighborhood Nx of x with s E Imiu,u_N.,. 
There is a finite set {Xl, ... ,xn } such that W - V C NXl U··· U Nxn • Let 
Vi = U - NXi ' Since 

s E 1m iu,w n 1m iu,v1 n··· n 1m iu,v" , 

we have that s E Imiu,Q, where Q = WnVln·· ·nvn = wnn(U -NxJ = 
W - UNXi C V, as required. 

If lsi = 0, then this shows that s E Imiu,0 = 0, so that s = o. 0 

The following proposition, together with 1.8, characterizes the class of 
flabby cosheaves as the class of cosheaves of sections with compact support 
of c-soft sheaves. 

1.6. Proposition. If!Z is a c-soft sheaf then the precosheaf r c!Z, where 

I (rc!Z)(U) = rc(!ZIU), I 

is a flabby cosheaJ. This cosheaf will also be denoted b'!? 

Irc{!Z} = rc!Z. I 

2Note that it is the absence of parentheses or the use of braces that distinguishes this 
from the grou.p r cUi). 
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Proof. By Exercise 3 it suffices to show that 

is exact for U, V open, since part (b) of that exercise clearly holds for 
2l = reP. But this follows from the Mayer-Vietoris sequence (27) on page 
94. 0 

Now we wish to prove the converse of 1.6. Let 2l be a flabby cosheaf 
and let A be the presheaf defined by A(U) = 2l(X)!2lx_u(X), where 

I2lB(X) = {s E 2l(X) Iisl C B}.I 

Let ..d = .97ko/'(A). Note that 

..dx = 2l(X)!2lx _{x} (X). 

There is the canonical map 

I () : 2l(X) --> ..d(X)·1 

Clearly, ()(s)(x) = 0 ¢:> lsi eX - {x}. Thus 1()(s)1 = lsi, and in particular, 
() maps 2l(X) into re(..d) monomorphically. We shall show that () maps 
onto r e(..d). 

1. 7. Lemma. Let U C X be open and let t E ..d(U). Suppose that S1> S2 E 

2l(X) are given such that ()(sl)IUi = tlUi for some open sets Ui C U, 
i = 1,2. If V;, is any open set with closure in Ui , i = 1,2, then there exists 
an element s E 2l(X) such that ()(s)l(Vl U V2) = tl(Vl u V2 ). 

Proof. Since lSI - s21 = 1()(sl - s2)1 = 1()(sI) - ()(s2)1 is contained in 
X - (Ul n U2), it is also contained in (X - VI) U (X - V2). Since 2l is a 
cosheaf, there exist elements ti E 2l(X), i = 1,2, with Itil c X - Vi and 
with SI - S2 = tl - t2. Let s = SI - tl = S2 - t2. Then 

for i = 1,2, as claimed. o 

1.8. Proposition. Every flabby cosheaf 2l has the form 2l = r e..d for a 
unique c-soft sheaf..d. Moreover, the sheaf..d is torsion-free ¢:> Imsl = lsi 
for all s E 2l(X) and all 0 =I- mEL. (In this case, we say that 2l is 
"torsion-free. It) 
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Proof. With the preceding notation, we claim that fJ maps onto rc(A). 
Indeed, let t E rc(A), and cover It I by open sets Ul , ... , Un such that there 
exist elements Si E ~(X) with fJ(si)IUi = tlUi . (Such a covering exists by 
the definition of A.) Let Uo = X -It I and So = O. There exists a covering 
of X by open sets Vo, Vl, ... , Vn with Vi CUi, and an easy induction on 
Lemma 1.7 shows that there exists an element s E ~(X) with fJ(s) = t on 
all of X. 

Since ~ is flabby, ~(U) ~ ~u(X), and hence fJ maps ~(U) isomorphi
cally onto rclu(A) = rc(AIU). 

To show that A is c-soft, let K C X be compact and let t E A(K). By 
II-9.5 there is an extension t' E A(U) of t to some open neighborhood U 
of K. Let {U;}, i = 1, ... , n, be an open covering of K in U such that there 
are elements Si E ~(X) with fJ(si)IUi = t'IUi . Again, an inductive use of 
Lemma 1. 7 shows that there exists an element s E ~(X) with fJ(s)IV = t'IV 
for some neighborhood V of K. Thus fJ(s) is an extension of t to rc(A). 

To show that A is unique, let fiJ be a c-soft sheaf such that ~ ~ r cfiJ 
naturally. That is, suppose that ~(U) ~ rc($IU) naturally in U. Let A 
be, as in the construction, the sheaf generated by the presheaf 

A: U f--+ ~(X) ~ rcfiJ . 
~x-u(X) {s E rc(fiJ) Iisl eX - U} 

There is the canonical map A : ~(X) ~ rc(fiJ) -+ $(U), which fits in the 
exact sequence 

o --+ ~x-u(X) -+ ~(X) ~ $(U), 

and so A induces a monomorphism A(U) ~ fiJ(U) of presheaves and 
).." 

hence a monomorphism A ----+ $ of the generated sheaves. Now, the 
restriction of sections Px :rc(fiJ) -+ fiJx factors as rc(fiJ) -+ A(U) -+ $x, 
for neighborhoods U of x. Hence, in the direct limit, Px factors as r c( fiJ) -+ 

A x £ $x. Since fiJ is c-soft, Px is surjective, and so the monomorphism 
A~ is an isomorphism, whence A" : A -+ fiJ is an isomorphism. 

For the last statement, let s E ~(X) = r c(A). If A is torsion-free then 
it is clear that Imsl = lsi. Conversely, if A is not torsion-free, then some 
A x has m-torsion for some integer m > 1; that is, there exists an element 
0=1- Sx E A x with msx = O. Since A is c-soft, there is a section s E r c(A) 
having value Sx at x. Then x E Isl-Imsl, so that lsi =I- Imsl. 0 

1. 9. Let ~ and IJ3 be flabby cosheaves on X, where ~ = rcA and IJ3 = r c$ 
with A and fiJ c-soft. Let h : ~ -+ IJ3 be a homomorphism of cosheaves, 
i.e., a natural transformation of functors. It follows easily from the proof 
of 1.8 that since Ih(a)1 C lal for a E ~(X), h induces a homomorphism of 
sheaves A -+ $ and that the induced map rcA -+ r cfiJ coincides with the 
original h. This also follows from the fact that, for example, 

A = ffYlu4(U f--+ ~(X)/~x_u(X)) 

and that the monomorphism ~(X - U) >--> ~(X) maps onto ~x_u(X). 
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1.10. Proposition. Let Ql be a cosheaf and M an L-module. Then the 
presheaf U 1---+ Hom(Ql(U), M) is a sheaf, denoted by Xnt(Ql, M). It is 
flabby if Ql is flabby and M is an injective module. It is torsion free if each 
Ql(U) is divisible. 

Proof. This is clear since Hom(., M) is left exact and is exact when M 
~~~w. 0 

Recall from II-3.3 that rcC!l'IU) is divisible if!l! is injective. 

1.11. Lemma. Let Ql be a flabby cosheaf and M an L-module. Let f E 

qXnt(Ql, M)) = Hom(Ql(X) , M). Then If I is the smallest closed set K 
such that f(s) = 0 for all s E Ql(X) with lsi n K = 0. 

Proof. Let K be such that f(s) = 0 for lsi eX - K. Then fiX - K = 
0, whence If I c K. If U = X - If I and s E Ql(X) has lsi c U, then 
s = ix.u(s') for some s' E Ql(U) by 1.5. But f(s) = (JIU)(s') = 0 since 
flU = O. Thus f(s) = 0 whenever lsi n If I = 0, so that the set If I does 
satisfy the stated condition. 0 

1.12. Proposition. Let Ql be a torsion free flabby cosheaf and let M be 
an injective L-module. Then r<I>(Xnt(Ql, M)) is divisible for any family <I> 
of supports. 

Proof. Let f E r(Xnt(Ql, M)) = Hom(Ql(X), M) and let 

B = Coker{Ql(X - If I) -+ Ql(Xn. 

Then B is torsion-free by 1.8, and 

Hom(B, M) = Ker{Hom(Ql(X), M) -+ Hom(Ql(X - Ifl), Mn. 

If 0 =I mEL, 0 -+ B ~ B is exact, so Hom(B,M) ~ Hom(B,M) -+ 0 
is also exact, since M is injective; that is, Hom(B, M) is divisible. Thus 
there is an element 9 E Hom(B, M) c Hom(Ql(X), M) with mg = f. By 
definition, 9 is zero on X - If I, whence Igl c X - (X - If I) = If I· 0 

1.13. For Ql flabby and M injective, there is a canonical map Ql(X) -+ 

Hom(rc(Xnt(Ql,M)),M) defined by s 1---+ s, where s(J) = f(s) for f E 
Hom(Ql(X), M) and If I compact. Now, s(J) = f(s) = 0 whenever If I c 
X -lsi, by 1.11, and it follows that lsi c lsi- Hence lsi is compact. Thus 
we have the canonical map 

which is easily seen to extend to a homomorphism of cosheaves: 
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If 21 = rcA for A c-soft, then this corresponds to a homomorphism 

1 A --+ .1&»n(r c.1&»n(r cA , M), M) 1 

of sheaves by 1.9. 

1.14. Let 21 be a torsion-free flabby cosheaf, that is, 21 = rcA, where A 
is a c-soft torsion free sheaf. Note that by II-15.3, 21(U) ® M = r c(AIU) ® 
M ~ rc((A ® M)IU) for any L-module M. Moreover, for any sheaf flJ on 
X, A ® flJ is c-soft by II-16.31. Consequently, we shall define 21 ® flJ to be 
the flabby cosheaf 

121 ® flJ = re{A ® flJ}·1 

(This notation will not be essentially used until the end of Section 12.) 

1.15. Definition. If f : X --+ Y is a map (of locally compact spaces) and 
21 is a precosheaf on X, then we let f21 be the precosheaf on Y defined by 

I (f21)(U) = 21(f-l(U))·1 

If f is an inclusion map, then f21 will also be denoted by 21Y . 

1.16. Proposition. Let 21 be a cosheaf. Then f21 is also a cosheaf. If 21 
is flabby, then f21 is flabby. If 21 = reA, where A is c-soJt, then f21 = 
rc{feA }. 

Proof. The first two statements follow immediately from the definitions. 
For A c-soft, feA is also c-soft by IV-Exercise 1. Then 

re{feA}(U) = re((feA)IU) 
= re(fe(Alf-1U)) 
= rc(c)(Alf-1U) 
= re(Alr1U) 
= (rcA)(f-lU) 
= 21(f-lU) 
= (f21)(U) 

proving the last statement. 

by definition 
since (fcA)IU = fc(Alr1U) 
by IV-5.2 
since c(c) = c 
by definition 
since 21 = reA 
by definition, 

o 

1.17. Corollary. If A c X is locally closed and 21 = rcA for A c-soJt, 
then 21x = re{Ax}. 

Proof. If i : A '--+ X is the inclusion, then 21x = i21 = r c{ icA} = 
rc{Ax} by IV-3.B. 0 

If 21 is a cosheaf, M is an L-module, and U c Y is open, then we have 
that 

.1&»n(f21, M)(U) = Hom((f21)(U) , M) = Hom(21(f-lU), M) 

= .1&»n(21, M) (f-l U) = (f .1&»n(21, M)) (U), 
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so that we have the natural equality 

1 :ffom(J2t, M) = I :ffom(2t, M) ·1 (1) 

If 2t and l.B are precosheaves on X and Y respectively, we define an 
I-homomorphism h : 2t "-+ l.B to be a collection of homomorphisms 

for U open in Y, commuting with inclusions. Clearly, I-homomorphisms 
2t "-+ l.B correspond naturally and in a one-to-one manner with homomor
phisms 12t ----> l.B of precosheaves on Y. 

1.18. We shall conclude this section with some further remarks on singular 
homology. 

Let A c X be a locally closed subspace. For U c X open, the classical 
relative singular chain group S*(U, UnA) can be identified canonically with 
the free group generated by those singular simplices of U that do not lie 
entirely in A.3 Thus S*(U, UnA) ----> S*(X, A) is a monomorphism, and 
therefore we have the following commutative diagram with exact rows and 
columns: 

o 
! 

o ----> S*(UnA) 
! 

o ----> S*(A) 

----> 

----> 

0 
! 

s*(U,un A) --+ 0 
! 

S*(X, A) ----> o. 

This remains exact upon passage to the direct limit over subdivisions. It 
follows that the precosheaf 6* (X, A; L) : U f-+ 6* (U, UnA) [the limit over 
subdivisions of S*(U, UnA)] is the cokernel of the canonical monomorphism 
6*(A; L)X >---> 6*(X; L) and it is a flabby and torsion-free cosheaf. [The 
reader should note that the cokernel of a homomorphism of cosheaves is 
itself a cosheaf. The fact that 6* (X, A; L) is torsion-free in the sense of 1.10 
is seen by noting that the limit over subdivisions of S*(X, A)/ S.(U, UnA) 
is torsion-free.] 

Let 9' *(X, A; L) denote the c-soft sheaf with 

6*(X,A;L) = r c9'*(X,A;L) 

whose existence is guaranteed by 1.8. The exact sequence 

of precosheaves is clearly equivalent to an exact sequence 

0----> 9' .(A; L)x ----> 9' *(X; L) ----> 9' *(X, A; L) --+ 0 

3Note, however, that this isomorphism is not preserved by subdivision. 
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of c-soft sheavesj see 1.17. 
Let Ji be any sheaf on X, and define 

19' .(X, A;Ji) = 9' .(X, A; L) ® Ji 1 

and 
1 6.(X,AjJi) = rc9'.(X,AjJi) = 6.(X,AjL) ®Ji 1 

(with the notation of 1.14). We have the exact sequence 

0-+ 9'.(AjJiIA)x -+ 9'.(XjJi) -+ 9'.(X,AjJi) -+ O. 

Let qJ be a paracompactifying family of supports on X. Then, since a 
c-soft sheaf is qJ-soft by II-16.5, the sequence 

is exact. 
We define the singular homology group of X (mod A) with supports in 

qJ and coefficients in Ji to be 

Then we have the exact sequence (for qJ paracompactifying) 

... -> sH:IA(AjJt) -> sH:(XjJt) -> sH:(X, AjJt) -> sH:~~(AjJt) -> ... 

and for 0 -+ Ji' -+ Ji -+ Ji" -+ 0 exact, we also have the exact sequence 

... -+ sH:(X,A;Ji') -> sH:(X, AjJi) -> sH:(X, A; Jill) 

-+ SH:_1 (X, Aj Ji') -+ ... 

The derived sheaf.1f p(9' .(X, Aj Ji» will be denoted by s.1fp(X, Aj Ji). 
See Exercise 16. 

1.19. Consider the natural map of presheaves 

~~(X,X - UjL) = S.(X, X - U;L) -> 6.(X,X - U;L) (2) 

(which is the inclusion into the direct limit over subdivisions), where we 
use the notation of I-Exercise 12 for reasons that will become apparent. 
Passing to generated sheaves, this gives rise to a homomorphism 

Ll.(Xj L) -+ 9\(X; L). (3) 

Since (2) induces an isomorphism in homology, so does (3). That is, the 
map 

is an isomorphism. 
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Now, .1* is homotopic ally fine, by II-Exercise 32, and .'J? *(X; L) is c
soft, and hence <I>-soft for <I> paracompactifying by II-16.5. Thus, by IV-2.2, 
(3) induces an isomorphism 

when <I> is paracompactifying and dim<I> X < 00 (and similarly for arbitrary 
coefficient sheaves, since .1*(X; L) and.'J? *(X; L) are both torsion-free). We 
also have this result, as already mentioned, for <I> = c without the condition 
on dimension. 

Note that by I-Exercise 12, f<I>(.1*(X; L)) is the group of locally finite 
singular chains with support in <I> (in the obvious sense). Thus, when <I> 
is paracompactifying and dim<I> X < 00 (or <I> = c), sH:(X; L) coincides 
with the classical singular homology group based on locally finite (finite if 
<I> = c) singular chains with support in <I>. Similar remarks also apply to 
the relative case. 

2 The dual of a differential cosheaf 
Let M be an L-module. M has the canonical injective resolution 0 ----; M ----; 
M O ----; Ml ----; 0, where M O = J(M) and Ml = J(M)jM; see II-3. Ml is 
injective since it is divisible and since L is a principal ideal domain. 

A differential cosheaf 11{* is a graded cosheaf together with a differential 
d : I1{p ----; I1{p-l of degree -1 with d2 = O. For our purposes, I1{p will often 
vanish for p > O. 

2.1. The dual of the differential cosheaf 11{* with respect to the L-module 
M is defined to be the differential sheaf 

(4) 

where as usual, the term in degree n is 

QlJn(I1{*;M) = EB Xm.(l1{p,Mq) = Xm.(l1{n,Mo) EB£Mn(l1{n_l,M1) 

p+q=n 

and where the differential QlJn ----; QlJn+1 is d = d' - d", d' being the homo
morphism induced by the differential Mq ----; Mq+1 and (-l)nd" being that 
induced by I1{p+l ----; I1{p. Explicitly, if 

f E QlJn(I1{*, M)(U) = EB Hom(l1{p(U) , Mq) 
p+q=n 

and if a E 11{* (U), then 

I (df)(a) = d(f(a)) - (-l)nf(da)·1 

Since M* is injective, QlJ( e; M) is an exact functor of differential cosheaves. 
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2.2. If p* is a c-soft differential sheaf, then r cpo will be regarded as a 
differential cosheaf with the gradation 

The differential sheaf !1l(r cP*; M) will also be denoted by 

Note that 

I !1l(P*IU; M) = !1l(P*; M)IU I (5) 

for open sets U eX. Also, as above, we let !1ln stand for !1l-n. For our 
purposes, !1ln will usually vanish for n < -1. Note that !1l( e; M) is an exact 
functor of c-soft differential sheaves. 

The differential cosheaf r c!1l* (2(*; M) will also be denoted by 

When M = L we shall often delete L from the notation. 
For a flabby differential cosheaf 2(* the construction of 1.13 provides a 

natural homomorphism 

2(* ---t !)(!)(2(*; M); M) (6) 

of differential cosheaves. This will be used in Section 12. 

Remark: The introduction of graded objects necessitates the use of a standard 
sign convention in the definition of (6) so that it will be a chain mapping. 
We shall indicate this for graded modules. The generalization to cosheaves 
follows immediately from the construction of 1.13. For graded modules A* 
and M*, the map A. ---t Hom(Hom(A.,M*),M*) is defined by a f-> a, 
where 

aU) = (_l)(dega)(degf) f(a). 

Note also that 

Hom(Hom(A.,M*),M*)n = E¥Hom (~HOm(An_r+ .. Mr),M') 

and that more explicitly, we have 

aU) = { (_l)n(n+s)f(a), 
0, 

when a E An and f E Hom(An- r+s , Mr). 

ifr = s, 
if r # s 
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2.3. For any differential cosheaf 2(* we have 

~(2(*; M)(U) = Hom(2(*(U), M*), 

and standard homological algebra provides a natural exact sequence 

Ext(Hp_1(2(*(U)), M) >-> HP(~*(2(*; M)(U)) - Hom(Hp(2(*(U)), M), 

which splits, nonnaturally; see [54] and [75]. 

2.4. If g;* is a c-soft differential sheaf, then with the conventional switching 
of indices, 2.3 becomes the exact sequence 

which is natural in the open set U and in M and splits. 

2.5. Let g;* be a c-soft differential sheaf. By 1.10, ~(g;*; M) is flabby, and 
it is also torsion-free when g;* is injective. 

Suppose that each gjP is a module over a given sheaf f!It of rings. Then 
since fe(g;*IU) is an &l(U)-module, so is Hom(fe(g;*IU),M*). It follows 
that ~p(g;*; M) is an &l-module. 

Taking &l = IIp .:J&.n(g;P, g;P) and recalling that a direct product of any 
family of iP-soft sheaves is iP-soft (II -Exercise 43), it follows that ~n (g;*; M) 
is iP-fine when each g;P is iP-fine, where iP is paracompactifying. 

2.6. Note that we have the natural equalities 

I ~(f2(*; M) = f~(2(*; M) I 

by (1), and 

where f : X ---+ Y is any map, since if .c* = f eg;* , then 

~(f e{Jeg;*}; M) 
~(f.c*;M) 
f~(.c*; M) 
f~(g;*;M) 

by definition 
by 1.16 
by (7) 
by definition. 

(7) 

2.7. If M* is replaced by another injective resolution of M, then ~(2(*; M) 
changes by a chain equivalence (unique up to chain homotopy). Thus such 
a change does not affect homology and similarly does not affect any other 
matters that we shall deal with. Thus we may replace M* by any injective 
resolution of M. For example, if M = L, it is sometimes convenient to let 
LO = Q, the field of quotients of L, and L1 = Q/ L. 
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3 Homology theory 

Consider the canonical injective resolution off* (X j L) of L (see II-3) and 
note that off*(Xj L)IU = off*(Uj L) for U c X open. For a sheaf..d on X, 
we define 

and 

I ~*(Xj..d) = !?A(off*(XjL)) ®..d, I 
I C~(Xj..d) = r~(~*(Xj..d)), I 

I H:(Xj..d) = Hp(C~(Xj..d))·1 
[Caution: Hp(Xj..d) corresponds to homology based on infinite, locally 
finite chains, while H~ (X j..d) is analogous to classical homology. J Recall 
that by our notational conventions, 

Cp(Uj L) = Hom(r c(offP(U; L»), LO) EEl Hom(r c(offP+1(U; L)), L1). 

Thus ct (X j..d) = 0 for p < -1. Since off* (X j L) is a module over the 
flabby sheaf ~o(Xj L) of rings, 2.5 gives the following facts: 

3.1. Proposition. ~ *(Xj..d) is a ~o(Xj L)-module and hence is iP-fine 
for any pamcompactifying family of supports iP. Also, ~ .(Xj L) is flabby 
and torsion-free. Consequently, ~*(Xj..d) is an exact functor of..d, as is 
C~(Xj..d) when iP is pamcompactifying. 0 

Thus, when iP is pamcompactifying and 0 --+ ..d' --+ ..d --+ ..d" --+ 0 is 
exact, we have the induced exact homology sequence 

Danger: It is important to realize that this sequence is not generally 
valid without the assumption that iP is paracompactifyingj see 3.12. 

For U C X open, (5) implies that ~.(Xj..d)IU = ~*(Uj..d). Hence, 
for any family iP of supports on X, we have the natural restriction homo
morphism 

and hence 
I i~'x : H~(Xj..d) --+ H~nu(Uj..d)·1 

We remark that one may think intuitively of H.(U;..d) as the homology of 
the pair (X+,X+ - U), where X+ is the one-point compactification of X; 
see 5.10. 

By 2.4 with JR. = off· , we have the fundamental exact sequence4 

10 --+ Ext(H~+1(Uj L), L) --+ Hp(Uj L) --+ Hom(H~(Uj L), L) --+ 0, I (9) 

4This sequence is the main resource for explicit computations. 
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which is natural with respect to inclusions U '--+ V of open subsets of 
X [that is, with respect to the induced maps Hp(V; L) --+ Hp(U; L) and 
Hf(U; L) --+ Hf(V; L)] and which is known to split by standard homologi
cal algebra. If!J!* is any c-soft resolution of L, we have a similar sequence 
2.4 (for M = L). There is a map!J!* --+ d*(X; L) of resolutions, unique up 
to chain homotopy, inducing a canonical map of (9) into the sequence of 
2.4 that is an isomorphism on the ends. Thus the 5-lemma implies that 

when !J!* is any c-soft resolution of L. (We shall generalize this later.) 
By (9), 

IH-1(X;L) =Ext(H~(X;L),L) =01 

(10) 

because of Nobeling's result implying that H~ (X; L) is free; see the remarks 
in II-Exercise 34. Also see 5.13 for the case of arbitrary support families 
and coefficient sheaves. 

The derived sheaf of the differential sheaf 'ff * (X; A) is called the sheaf 
of local homology groups, or simply the homology sheaf, and is denoted by 

Since 'ff*(X;A)IU = 'ff*(U;A), we have that 

The stalk 
1.rt'*(X;A)x = limH*(U;A) I 

(U ranging over the open neighborhoods of x) is called the local homology 
group at x of X. 

Note that for coefficients in L, the local homology group at x is given 
by the sequence (9) upon passage to the limit over the neighborhoods U of 
x. That is, we have the exact sequence 

lim Ext(H~+1(U;L),L)"""" .1fp (X;L)., --» lim Hom(H~(U;L),L). (11) 

It will be convenient for us to consider resolutions of L consisting of 
sheaves with the following properties: 

3.2. Definition. A sheaf!J! of L-modules on the locally compact space X 
is said to be "replete" if it is c-soft and if r c(!J!IU) is divisible for all open 
sets U C X. 

3.3. Proposition. If!J! is a replete sheaf on X and if A c X is locally 
closed, then !J!IA and!J! A are replete. An injective sheaf is replete. 
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Proof. By 1-6.6, fcUlAIU) = fc(Q'IA n U), which is divisible when A is 
open, by assumption. By II-9.3(iii), it is a quotient of f c(Q'IU) (and hence 
it is divisible) when A is closed. The result follows from the fact that every 
locally closed set is the intersection of an open set with a closed set. The 
last statement follows from II-3.3. D 

By 1.10 and 1.12 we have the following simple but basic fact: 

3.4. Proposition. If Q'* is a replete differential sheaf, then @(Q'*) is 
torsion-free and flabby. If,C* is a torsion-free flabby differential cosheaf, 
then @('c*) is replete. D 

Let Q'* be a replete resolution of L. Then @(Q'*) 0.;1 = fPlwa/(U ........ 
@(Q'*)(U) @ .;1(U)). Thus the derived sheaf is 

Since @(Q'*) is torsion-free, we have the natural exact sequence 

Hp(f!lJ(.9?*) (U)) @A(U) >---+ Hp(f!lJW*)(U) (>9 A(U)) --+> Hp-l(f!lJ(g;*)(U)) * A(U). 

Passing to the associated sheaves, we obtain an exact sequence of sheaves: 

If we take Q'* = #*(Xj L), then (12) becomes 

10 ---> df p(X; L) 0.;1 ---> df p(X;.;1) ---> df p-l (Xi L) * .;1 --+ 0.1 (13) 

On the stalk at x, (13) is the universal coefficient sequence of the chain 
complex ~*(X;L)x 0Jix and hence (13) is at least pointwise split. If 
dimL X = n, then df n(X; L) is torsion-free since it is generated by U 1-+ 

Hn(UjL) = Hom(H;;(UjL),L). Therefore 

(14) 

by (13). 
We already know from (10) that any homomorphism Q'* --+ #*(Xj L) 

of resolutions, with Q'* c-soft, induces a natural isomorphism 

(15) 

Thus, for Q'* replete we obtain a map of the sequence (13) into (12) that is 
an isomorphism on the ends. By the 5-lemma, the homomorphism in the 
middle is also an isomorphism: 
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3.5. Theorem. Let 2* be a replete resolution of L and ~ a paracompact
ifying family of supports on X. If dim4\ X < 00, then the map 

is an isomorphism for any sheaf A on X. (Also see 5.6.) If 2* is injective, 
then this holds without the condition on dimension. 5 

Proof. Since ~ is paracompactifying, (jj)(fJ!*)®A is ~-soft by II-16.31, and 
the result follows from (16) and IV-2.2. For the last statement note that for 
§* = §* (X j L) there are homomorphisms cp : §* -+ fJ!* and 'Ij; : fJ!* -+ §* 
of resolutions, and the compositions cp'lj; and 'lj;cp are chain homotopic to 
the identity. This persists on passing to duals, and so r4\((jj)(fJ!*) ® A) is 
chain equivalent to r4\((jj)(9*) ®A) = C~(XjA). 0 

It will be important to have this isomorphism for families ~ that are 
not paracompactifying (e.g., the family ~IF on X where F C X is closed). 
We also wish to have this result in certain cases without the condition on 
dimension. For this, the coefficient sheaf must be drastically restricted. In 
order to retain some degree of generality we make the following definition: 

3.6. Definition. A sheaf.At on X will be called "elementary" if it is lo
cally constant with finitely generated stalks (over L). For any sheaf.At on 
X let S1...(( be the smallest collection of open subsets U C X satisfying the 
following three properties: 

(a) .At constant on U ::::} U E S1...((, 

(b) U, V, U n V E S1...(( ::::} U U V E S1...((, 

(c) U = + U 011 U 01. E S1...(( for all a ::::} U E S1...((. 
01. 

[Clearly S1...(( is the collection of all open sets that can be reached from 
those of type (a) by a finite number of operations of types (b) and (c).] 

We say that "the pair (.At,~) is elementary" if .At is elementary and 
each K E ~ is contained in a member of S1...((. 

Note that (.At,~) elementary::::} (.AtIA, ~IA) elementary for A c X 
locally closed. 

Also note that if v« is elementary then (V«, ~) is elementary in any of 
the following three cases: 

(i) ~ = c, 

(ii) v« is constant, 

(iii) each member of ~ is paracompact. 

5By (15) we also have this for.A = L and ~ = cld without the condition on dimension. 
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Case (i) is obvious and uses only properties (a) and (b). Case (ii) is because 
X E nvf{ in that case. Case (iii) follows from the next lemma: 

3.7. Lemma. Let n be a collection of open sets in a paracompact, locally 
compact space X. Suppose that n satisfies the following three properties: 

(a) Every point of X has a neighborhood N such that U eN=? U E n. 

(b) U, V, U n V En=? U u V E n. 

(c) U = + U a, U a E n for all Q =? U En. 
a 

Then X E n. 

Proof, It is well known (see [19,1-12.11]) that a locally compact space is 
paracompact if and only if it is the topological sum of a-compact subspaces. 
Thus, by (c) it suffices to assume that X is a-compact. We can express X = 
U:l Fi , where the Fi are compact and Fi C intFi+l' using a-compactness. 
By use of (a) and (b) we can find open sets Vi E n that are finite unions of 
sets of the form in (a) such that Vi contains the compact set Fi+l - Fi and 
such that the V2j are all disjoint and the V2j - 1 are also all disjoint. By (c) 
U V2j E nand U V2j - 1 E n. Each Vi n Vi+! is a finite union of sets of the 
form in (a), and so by (b), Vi n Vi+! E n. Now, (U V2j ) n (U V2j - 1 ) is the 
disjoint union of the Vi n Vi+l, and so X = (U V2j) U (U V2j- dEn by (c) 
and (b). 0 

By II-5.13 we have the following result: 

3.8. Lemma. If.At is elementary and A is flabby and torsion-free, then 
A 0.At is flabby. 0 

We shall need the following result particularly for inclusion maps: 

3.9. Proposition. If f : X ----> Y, A is a flabby, torsion-free sheaf on X, 
and .At is an elementary sheaf on Y, then there is a natural isomorphism 

I (fA) 0.At "'=i f(A 0 j* .At). I 

(Also see 4.3.) 

Proof. For U c Y open, we have the natural map 

(fd)(U) 0.At(U) ----> d(f-lU) 0 (f* .At)(f-lU) 
----> (d0 j*.At)(f-lU) 
= f(d0 j*.At)(U), 

and hence we have the following map of the associated sheaves on Y: 

fA 0.At ----> f(d 0 j* .At). (17) 
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Both sides of (17) are exact functors of elementary sheaves uft [the 
right-hand side is exact since A 1)9 f* uft is flabby for ,At, and hence f* uft, 
elementary and since f(A 1)9f* uft)(U) = (A 1)9f* uft)(f-lU)]. The assertion 
is clearly a local matter, in Y, so that we may assume .At to be constant. 
Since the assertion is clear for uft free and finitely generated, it follows for 
general uft by passing to a quotient and using the exactness of both sides 
of (17). D 

3.10. If 0 --> 2* --> uft* --> JIi" --> 0 is an exact sequence of replete 
differential sheaves on X and A is any sheaf on X, then 

is exact because of 3.4. Also, 

is exact for <I> paracompactifying since !](JIi") 1)9 A is <I>-soft by II-9.18. It 
is also exact for arbitrary <I> when A is elementary, by 3.8. 

3.11. Let 2* be a replete resolution of L, and uft an elementary sheaf on 
X. Then !](2*) 1)9 uft is flabby, and it follows, as in 3.5, that the natural 
map 

H:(X;uft) --> Hp(r<f!(!](2*) l)9uft)) 

is an isomorphism for any family <I> of supports on X for which dim<f! X < 
00. We shall show that the condition on dimension can be replaced by 
the condition that (uft, <1» be elementary, but the proof of that must be 
deferred until Section 5. 

3.12. We remark that if 0 -+ uft --> ..d --> fIJ -+ 0 is exact, with uft 
elementary, and if 2* is a replete resolution of L, then 

is exact for any family <1>, since !](2*) is torsion-free and !](2*) 1)9 uft is 
flabby. In particular, when 2* = 9*(X; L), we obtain the exact sequence 

... --> H:(X;uft) --> H:(X;A) --> H:(X;fIJ) ~ H:_1(X;uft) --> ... J 

for any family <I> of supports on X. 
Danger: It is important to realize that this exact sequence is not valid 

without the assumption that uft be elementary (or that <I> be paracompact
ifying). For example, let F c X be closed, <I> = elF, and consider the exact 
sequence 0 --> LX-F ----> L ----> LF ----> O. Then (using some items later in the 
chapter) 

H cIF(X L ) "" Hp(cIFllx-F(X - F', L) p ; X-F .- by (34) on page 306 
o since supports are empty. 
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Also, 

by 5.7, and 

H~IF(X;LF) Hp(rcIF(~*(X;L)0LF)) 
Hp(rc(~ *(X; L) 0 LF)) 
H~(X;LF) 

;:;:: H~(X,X - F; L) 

V. Borel-Moore Homology 

by definition 
clearly 
by definition 
by (35) on page 306. 

Therefore, if the homology sequence for this example is exact, then we 
would have that H~(F; L) ;:;:: H~(X, X - F; L), which, of course, is almost 
never true. 

3.13. If M is any L-module, then 

by II-15.3, since ~(#*(X;L)) is flabby and torsion-free. Thus 

I C;(X; M);:;:: C;(X;L) 0 M, I 
and, by the algebraic universal coefficient theorem we obtain the split exact 
sequence6 

o -> H~(X; L) 0 M -> H~(X; M) -> H~_l (Xj L) * M -> O. 

3.14. Let K be a principal ideal domain that is also an L-module. Then 
homology with coefficients in K (or in any sheaf of K-modules) has two 
interpretations depending on whether we regard K or L as the base ring. It 
is not always the case that these interpretations give isomorphic homology 
groups (as K-modules). In certain cases, however, they do, as we shall 
show in Section 15. 

3.15. Suppose that L is a field and that X is compact. If X = UmXa for 
an inverse system of finite polyhedra X a , then 

Hp(X; L) ;:;:: Hom(HP(X; L), L) ;:;:: Hom (lim HP(Xa; L), L) 
;:;:: UmHom(HP(Xai L),L) ;:;:: UmHp(Xai L) ;:;:: Hp(X; L), 

the classical Cech homology group of X. Since any compact space is the 
inverse limit of polyhedra, we conclude that 

Hp(X; L) ;:;:: Hp(X; L) for X compact and L a field. 

This is not generally true for L = Z since Borel-Moore homology is exact 
and Cech homology, over Z, is not. In 5.18 and 5.19 we give conditions 
under which it does hold for L = Z. 

6 Also see 15.5. 
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4 Maps of spaces 

Let f : X -+ Y be a map between locally compact spaces. If vi and 
$ are sheaves on X and Y respectively and if k : $ "-+ vi is an f
cohomomorphism, then the induced maps I($f(x») -+ I(vix) give rise to 
an f -cohomomorphism kO : dO (Y; $) "'-+ ~ (X; vi). This, in turn, induces 
a compatible f-cohomomorphism of the quotient sheaves: ,t1(y; $) "-+ 

,t1(X; vi). Continuing inductively, we obtain an f-cohomomorphism k* : 
d* (Y; $) "-+ d* (X; vi) of resolutions. 

We now restrict attention to the case in which vi and $ are the constant 
sheaves with stalks L. For U c Y open, we obtain the canonical chain map 

and consequently the chain map 

K,u: Hom(ff-1c(d*(rIU;L)),L*) -+ Hom(fc(d*(U;L)),L*). (18) 

If f were proper, we would have that f-Ic = c, so that (18), for U = Y, 
would provide the chain map G*(X; L) -+ G*(Y; L) and consequently a 
canonical homomorphism f* : H*(X; L) -+ H*(Y; L). It is worthwhile to 
record the following immediate consequence of this definition. 

4.1. Proposition. If f : X -+ Y is proper, then there is the natural 
commutative diagram 

0-+ Ext(H[+l(U-; L), L) -+ Hp(U-; L) -+ Hom(H[(rr; L), L) -+0 

1 Ext(f* ,L) 1 f. lHom(r,L) 

0-+ Ext(H[+l(U; L),L) -+ Hp(U;L) -+ Hom(H[(U; L), L) -+0 

with exact rows, for open sets U C Y, and where U- = f-I(U). 0 

To define f* in the general case we must digress for a moment. 

4.2. Definition. If <I> is a family of supports on X, let <I># (the "dual" of 
<I» denote that family of supports on X consisting of all closed sets K c X 
such that K n K' is compact for every K' E <I>. 

Obviously, c# = cld and cld# = c. By Exercise 17, 

I (f-IC)# = cld(c) = c(Y) I 
is the family of fiberwise compact supports on X. 

Now let !l? be a c-soft sheaf on X, let M be an L-module, and let <I> :J c 
be a family of supports on X. The inclusion fc(.!l') '---+ f<I>(.!l') induces the 
map 

T: Hom(f<I>(!l?),M) -+ Hom(fc(.P),M) = f(Xm.(fc!l?,M)). 
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We shall now define a natural homomorphism 

(19) 

such that 

T7) = e : rcI>#(e) '----+ r(e) 

is the inclusion. Let f E rcI>#(.1&m(rc2,M)) with If I = K E cp#. If 
s E rcp(2) with lsi = K' E CP, then slK E rc(2IK), because K n K' E c. 
Since 2 is c-soft, it follows that there exists an element s' E rc(2) such 
that s'IK = siK. If s" E r c(2) also satisfies the equation s"IK = slK, 
then (s' - s")IK = 0, so that Is' - s"l n If I = 0, and by 1.11 it follows that 
f(s') = f(s"). Thus it makes sense to define, for any such s', 

17)(f)(s) = f(s')·1 

If 2 and JV are c-soft sheaves on X and Y respectively and if k : JV'V> 2 
is an f-cohomomorphism, then we have the induced homomorphism 

and thus 

Replacing Y by its open subsets U, this yields a natural homomorphism of 
sheaves: 

If 2* and JV* are c-soft differential sheaves and K, : JV* 'V> 2* is an 
f -cohomomorphism, then we obtain the homomorphism 

(20) 

of differential sheaves, which specializes to 

when 2* = /1* (X; L) and JV* = /1* (Y; L). We shall now generalize this 
map to the case of general coefficient sheaves. 

4.3. Lemma. Let 2 be a sheaf on X and ..d a sheaf on Y. Then the 
natural homomorphism fc(2) 0..d -+ fc(20 f*..d) of IV-(21) on page 
215 is an isomorphism when 2 is c-soft and torsion-free or when ..d is 
torsion-free.7 

7Note that this is a special case of IV-Exercise 4. 
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Proof. Recall that this homomorphism is induced by the cup product 

f c(U) (!lW-) ® oJI(U) ---+ fc(U) (!lW-) ® (f" oJI)(U-) -+ fc(u)(!l ® f" oJIIU-), 

where U- = f-1(U), and that on the stalks at y E Y it becomes the cup 
product 

f c(Ply·) ® M ---+ f c(P ® Mly·), 

where M is the L-module .Ji y' The latter map is an isomorphism by the 
universal coefficient theorem I1-15.3 under our hypotheses. 0 

If p* is a replete differential sheaf on X, then ~(P*) is flabby and 
torsion-free, so that for any sheaf.Ji on Y, 

(21) 

by 4.3. Combining this with (20), we obtain the natural homomorphism 

(22) 

which specializes to 

(23) 

The reader may verify that (23) is a ~o(Yj L)-module homomorphismj see 
IV-3.4. 

For any family \}I of supports on Y, we apply the functor fw to (22) 
and use the fact that fwfc = fw(c) , from IV-5.2, to obtain the chain map 

This specializes to a canonical chain map 

In turn, (25) induces the homomorphism 

I f* : H:(c)(Xjj*.Ji) ---+ H:(Yj.Ji)·1 

(Also see Exercise 7.) 

(24) 

(25) 

(26) 

4.4. Definition. Let f : X --t Y and let <I> and \}I be families of supports 
on X and Y respectively. Then we say that f is c-proper, with respect to 
<I> and \}I, if <I> C \}I(c). A homotopy F : X x ][ ---+ Y is said to be c-proper, 
with respect to <I> and \}I, if it is a c-proper map with respect to the families 
<I> x ][ and \}I. 

Recall from IV -5.3 that a family <I> of supports on X is contained in 'if (c) 
{:} (1(<1» c \}I and flK : K --t Y is proper for each K E <1». Therefore we 
have: 
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4.5. Proposition. A map I : X --+ Y between locally compact Hausdorff 
spaces is c-proper, with respect to ~ and W, <=} lor each K E ~, 11K: K --+ 

Y is proper and f(K) E W. 0 

In this situation we have the natural induced homomorphisms 

1*: H:(X;I*"') --+ H:(Yi"') for c-proper maps I: X --+ Y. 

In particular, 1* is always defined for compact supports (both ~ and w), as 
should be expected. For closed supports, 1* is defined when I is a proper 
map. 

Let fl* and.A'* be replete resolutions of L on X and Y respectively, and 
let fl* --+ §* (X; L) and .A'* --+ §" (Y; L) be homomorphisms of resolutions. 
For any I-cohomomorphism k :.A'* ~ fl* of resolutions, the diagram 

.A'* ~ fl" 
1 1 

§"(Y;L) ~ §*(X;L) 

of cohomomorphisms commutes up to chain homotopy, and it follows that 
the induced diagram 

C;(c) (X; 1*"') -+ C;(Y;"') 
1 1 

r;y(c)(fj(fl*) ® 1*"') --+ r;y(fj(.A'*) ® "') 

also commutes up to chain homotopy. Thus the following diagram com
mutes: 

H;(c) (X j 1* "') ~ H; (Y; "') 

1 1 (27) 

H .. (r;Y(c)(fj(fl") ® 1*"')) -S H .. (r;y(fj(.A'*) ®"')). 

Note that the vertical maps in (27) are often isomorphisms; see 3.5 and 
5.6. 

The reader may make the straightforward verification of the fact that 
for 

we have 

1 (/9)* = 1*9*·1 

Mapping X to a point induces, for any L-module M, the canonical 
"augmentation" 

1 e : H8(X; M) --+ M,I 
which is surjective because of the composition * --+ X --+ *. The kernel of e 
is, of course, called the reduced homology group of X in degree zero and is 
denoted by H8(X; M). 
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5 Subspaces and relative homology 

Let A c X be locally closed and hence locally compact. If ~ is a family of 
supports on X, note that for the inclusion i = iX,A : A '--+ X we have that 
~(c) = ~IA; see IV-5.3(b). Therefore, Section 4 provides the chain map 

I C~IA(A; .dIA) -+ C~(X;.d) I (28) 

and the induced homomorphism 

for any sheaf .d on X. In order to define relative homology, we shall show 
that (28) is a monomorphism. To do this we must consider the construction 
in Section 4 in more detail for this special case. 

Suppose that .d is a sheaf on X and that fiJ is a sheaf on A for which 
there is a surjective i-cohomomorphism k : .d "-t fiJ (Le., an epimorphism 
.dIA -+ fiJ). Suppose, moreover, that for each x E A we are given a splitting 
homomorphism jx : fiJx -+ .dx, Le., such that kxjx is the identity. We then 
have the induced maps 

Taking the product of these maps, we obtain the maps 

kO 
~(X; .d)(U) = II I(.dx) •. :. II I(fiJx) = ~(A; fiJ)(U n A) 

xEU Ju xEunA 

with k~j~ = 1, for U c X open. These induce 

with k~j~ = 1 and hence 

with kO jO = 1. (Note that jO does not commute with the augmentations, 
so that we cannot pass directly to quotient sheaves here.) Now, 

Ker k~ = II Ker I(kx) x II I(.d x), 
xEUnA xEU-A 

and Ker I(kx) ~ I(.dx)fImI(jx) is an injective L-module, since it is divis
ible. Also, Ker k~ is the value on U of the kernel ;J( of the homomorphism 
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dO (X;.A) -+ i~ (A; fiJ) canonically associated with the i-cohomomorphism 
kO. From this and II-(6) on page 41, we deduce that X is an injective sheaf. 
In particular, each stalk Xx is divisible by II-3.3 and hence is injective. Let 
x E A, and consider the diagram 

.Ax 
k", 

fiJx -+0 ----+ 

! ! 
o -+ Xx -+ ~(X;.A)x ~ dO(A; fiJ)x -+0 

19 1 1 
0-+ K 1 'k", 1 

-+ I (X; .A)x ----+ I (A; fiJ)x -+0 
! ! 
0 0, 

which is commutative (defining 'kx ) and which has exact rows and columns 
(defining K). It follows by a diagram chase that 9 is surjective. Thus K 
is divisible and hence injective. Since K is injective, the bottom row of 
this diagram splits, that is, for each x E A there is a homomorphism 
'jx : 11(A; fiJ)x -+ I\X; .A)x with 'kx'jx = 1. But this is just our initial 
situation with 11(X;.A) replacing .A and 11(A; fiJ) replacing fiJ, etc. It 
follows that by induction and then taking.A = Land fiJ = L, we have the 
maps 

f.p(d*(X; L)) 2 f.pnA(d*(A; L)) 
j. 

with k*j* = 1. (Note, however, that j* is not a chain map.) 
Translating (18) and (19), we have the diagram 

f cldIA(.1&m.(f cd*(A; L), L*)) ~ Hom(fc(d*(A; L)), L*) 

1~ y 
* ~ * Hom(fcnA(d (A;L)),L*) ~ Hom(fc(d (X;L)),L*) 

'"f 

in which c is the inclusion, c = T71, and 'YK = 1 (where K and "( are induced 
by k* and j* respectively). Note that cldlA = (c n A)# by Exercise 17(c). 

Let f E Hom(fc(d*(A;L)),L*) = f(.1&m.(fcd*(A;L),L*)). Since this 
is a torsion-free sheaf on A, we have that Imfl = If I for all 0 i= mEL. 
Assume that f = c(g) and that K71(g) = mh for some mEL and 

hE Hom(fc(d*(X;L)),L*). 

Let f' = T"(h). Then If'l = Imf'l = IT'YK71(g) I = IT71(g) I = Ic(g)1 = If I , 
and it follows that f' = c(g') for some g'. We have c(mg') = mf' = 
T"(mh) = T'YK71(g) = c(g) and hence 9 = mg'. Therefore m(K71(g')) = 
K71(g) = mh, and it follows that h = K71(g') by torsion-freeness. We have 
shown that if mh E Im(K71), then h E Im(K71). It follows from this fact that 
the quotient of Hom(fc(d*(X; L)), L*) by the image of the monomorphism 
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/'i,'f/ is torsion-free. This also holds if we replace X by an open subset U c X 
and A by An U. Thus, the map 

is a monomorphism, and the quotient presheaf, and hence the quotient 
sheaf, of this is torsion-free. Recall that icfiJ = afX for any sheaf fiJ on A 
by IV-3.8. Thus we have the canonical monomorphism 

for any sheaf A on X. By (21) this map can be identified with a map 

~*(A;AIA)X ~ ~*(X;A). 

We shall regard ~.(A;AIA)X as a subsheaf ofC.(X;A).8 
For any family <P of supports on X, the map (28) arises from this by 

applying rw and noting that rw(afX) = rWIA(fiJ) for sheaves fiJ on A by 
1-6.6. It follows that the canonical map (28) is a monomorphism for each 
A. Thus we shall define the relative chain groups by the exactness of the 
sequence 

o --. C~IA(A;AIA) --. C!(X;A) --. C!(X,A;A) --.0, (29) 

and we also define the relative homology as 

IH:(X,A;A) = Hp(C!(X,A;A»·1 

As usual, we obtain from (29) the exact homology sequence 

of the pair (X, A). 
We also define 

I ~.(X,A;A) = ~.(X;A)/~*(A;A)X ~ ~.(X,A;L) ®A·I 
Note that this sheaf vanishes on int(A) and that it is a ~o(X;L)-module. 
In general, ~ * (A; A)X is not <p-acyclic, so that we cannot generally assert 
that 

C~(X, AiA) ~ rw(~*(X, AiA». (30) 

However, (30) does hold when <P is paracompactifying, since ~.(A;A)X 
is then <P-soft, and it also holds when A is closed and A is elementary, by 
II-5.4, since ~ * (A; A)X is then flabby by 3.8 and II-5.8. We record these 
remarks for future reference: 

8Note that these sheaves coincide on int(A). 
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5.1. Proposition. The sheaf ~.(X,AjL) is torsion-free. Also, the sheaf 
~ .(X, Aj.d) vanishes on int(A) and it is a ~o(Xj L)-module (whence it is 
~-fine when ~ is paracompactifying). For A closed and vf{ elementary, 
~ .(X, Aj vf{) is flabby. 0 

We also let 

Now, ~.(X,Aj.d) can also be described as the sheaf generated by the 
presheaf 

U t-t ~ .(Xj .d)(U)/~ .(Aj .d)X (U) = G.(Uj .d)/GZlduIA(U n Aj.d) 
= G.(U, U n Aj .d). 

It follows that 

~ p(X, Aj.d) = !J?1u4(U t-t Hp(U, U n Aj .d)). 

Since A is locally closed, we have 

(31) 

since 

For U open in X we have 

so that 
(32) 

by (31). It follows that for F closed in X and with U = X - F we have 

~.(Xj.dF) = ~.(X,Uj.d). (33) 

Applying r~ to (32) and using 1-6.6, we obtain 

I H~ (X j.d u) ~ H~lu (Uj .dIU) I (34) 

for arbitrary ~. Similarly, from (33) we obtain 

I H~(Xj.dF) ~ H~(X, Uj.d) I (35) 

when ~ is paracompactifying. 
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Moreover, when <f) is paracompactifying, the homology sequence of the 
pair (X, U) can be identified, by (34) and (35), with the sequence (8) 
associated with the coefficient sequence 

o ---+ Ji u ---+ Ji ---+ Ji F ---+ O. 

If f : (X, A) ---+ (Y, B) is a map of pairs and if <f) and Ware families of 
supports on X and Y respectively with <I> C w(c), then <I>IA c (wIB)(c), 
and for any sheaf Ji on Y we obtain a canonical chain map 

I C!, (X, Aj r Ji) ---+ c: (y, Bj A) I 
and a map of the homology sequence of (X, A) into that of (Y, B). 

The following is the basic excision result for Borel-Moore homology: 

5.2. Theorem. Let A c X and suppose that <f) is paracompactifying. Let 
V be a subset of X with X - V locally closed and V C int(A). Then the 
map 

Hq,IX-V(X - v: A - V'A) ---+ Hq,(X A'A) 
p " p'" 

induced by inclusion, is an isomorphism for any sheaf Ji on X. This also 
holds for arbitrary <I> when A is closed and Ji is elementary. 

Proof. We shall use the relatively obvious fact that for an open subset 
U C X, the canonical map ~*(UjJiIU)X ---+ ~*(XjA) of Section 4 is 
a monomorphism onto the subsheaf ~ .. (Xj A)u. Consider the diagram 
(coefficients in A) 

o ---+ ~ .. (A - V)X ---+ ~ .. (X - V)X 

11 19 
o ~ ~ .. (A)X ~ ~ .. (X) ~ ~*(X,A) ~O 

in which the rows are exact. 
For x E X - V, the maps fx and gx are isomorphisms (by the preceding 

remark), and hence hx is also an isomorphism. For x E V C int(A), ix is 
an isomorphism, so that ~ .. (X,A)x = O. Now, ~*(X - V,A - V): = 0 
for x E V, so that hx is trivially an isomorphism for x E V. 

Thus h is an isomorphism. Similarly, we see that the map 
- -x v 

~ .. (X - V,A - V) - ---+ ~ .. (X - V,A - V) 

is an isomorphism. It follows that the canonical map 

~ .. (X - V, A - Vj A)x ---+ ~ .. (X, A; Ji) 

is an isomorphism, and hence that the induced map 

C!'lx-V(X - V,A - ViA) ---+ C!'(X,AjA) 

(obtained by applying r q,) is also an isomorphism, which is an even stronger 
result than that claimed by the theorem. 0 
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5.3. Theorem. If <P is a paracompactifying family of supports on X and 
vi is any sheaf on X, then the canonical map 

lin} H*(KjviIK) ~ H~(Xjvi) 
KElP 

is an isomorphism. 9 

Proof. It is sufficient to show that lin} C~(X, Kj vi) = 0, whence 
lin}H~(X,Kjvi) = O. But C~(X,Kjvi) = rIP(~*(X,Kjvi)) and the 
sheaf ~ *(X, Kj vi) vanishes on int(K). The assertion follows from the fact 
that each member of<p has a neighborhood in <P. [If s E rIP(~*(X,Kjvi)) 
has lsi C int(K'), K' E <P, then the image of s in rIP(~*(X,K'jvi)) will 
be zero.] 0 

We wish to obtain an analogue of 5.3 for nonparacompactifying families 
of supports. For this, the coefficient sheaf will have to be taken to be 
elementary. We shall now work towards this goal. 

5.4. Let!J?* be a replete differential sheaf on X and let A C X be locally 
closed with i : A "-+ X the inclusion. Since ic(!J?* IA) = !J?~ by IV-3.8, 2.6 
and 3.9 yield the isomorphism 

9IJ(!J?~) ® uIt ~ i( 9IJ(!J?* IA) ® ultlA) 

when uIt is elementary. If A = F is closed, then iEiJ = icEiJ = &r for any 
sheaf EiJ on F, so that 2.6 and 4.3 yield the isomorphism 

9IJ(!J?;') ® vi ~ (9IJ(!J?*IF) ® vilF)x 

for any sheaf A on X. 

5.5, Proposition. If!J?* is replete, Fe X is closed, and uIt is elementary, 
then there are natural isomorphisms 

rIPIF(9IJ(!J?*) ® uIt) ~ rIP(9IJ(!l?;') ® uIt) ~ rIP IF (Ql!(!J?* IF) ® ultlF) 

for any family <P of supports on X. This also holds when!J?* is only c-soft 
and uIt = L. 

Proof. The second isomorphism follows from 5.4 and 1-6.6. Let U = 
X-F. The exact sequence 0 ~ !J?~ ~ !J?* ~ !J?;' ~ 0 induces an exact 
sequence 0 ~ Ql!(!J?;') ® uIt ~ Ql!(!J?*) ® uIt ~ Ql!(!J?~) ® uIt ~ 0 since !J?~ is 
replete [whence Ql!(!J?~) is torsion-free]. These sheaves are all flabby, since 
uIt is elementary, by 3.8. Consider the commutative diagram 

9 Also see 5.6. 

(Ql!(P*) ® uIt)(X) 
! 

(Ql!(P*) ® uIt)(U) 

~ (Ql!(P~) ® uIt)(X) 
! 

~ (Ql!(!l?~) ® uIt) (U) . 
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The bottom map is an isomorphism since (!iJ(Q';") 0 .At)(U) = o. The 
vertical map on the right is also an isomorphism by 5.4. Consideration of 
supports shows that we have the commutative diagram 

f iJ> ( !iJ( Q'*) 0 .At) ...!!:.... fiJ>(!iJ(Q'i}) 0 uK) 

19 1~ 
f iJ>nU (( !iJ(Q'*) 0.At) IU) ~ f iJ>nu(( !iJ(Q'i}) 0 uI()IU)· 

Thus fiJ>[F(!iJ(Q'*) 0.At) = Kerg = Kerh ~ fiJ>(!iJ(Q';") 0.At), as claimed. 
The last statement follows easily from the foregoing proof with minor 
changes. 

The following is our major result on elementary coefficient sheaves. 

5.6. Theorem. Let (.At,~) be elementary.lO Then: 

(i) The natural map lim H * (K;.At) ---- H~ (X;.At) is an isomorphism. 
KEiJ> 

o 

(ii) The canonical map H~(X;.At) ---- H* (fiJ>(!iJ(Q'*) 0.At)) is an isomor
phism for any replete resolution Q'* of L. 

If ~ = c, then these statements hold for arbitrary sheaves .//{.ll 

Proof. Note that we already have part (ii) for.At = L and ~ = cld by 
(10) on page 293. 

Let Q'* be a replete resolution of L on X and let Q'* ---- d* ( X; L) be 
a homomorphism of resolutions. This induces a homomorphism Q'*IK ---
d*(X;L)IK ---- d*(K;L) for K E <1>, which in turn induces 

'tf*(K;.At) = !iJ(.1*(K;L)) 0.AtIK ---- !iJ(d*(X;L)IK) ,~.AtIK 

---- !iJ(.p* :'K) 0.At1K. 

Using 5.4, this gives rise to the commutative diagram 

'tf*(Kj.At)X 
----

(!iJ(d*(X; L)IK) 0.AtIK)X 
----

(!iJ(Q'*IK) 0.AtIK)X 

j 
1~ 1~ 

!iJ( d* ( X; L) K ) 0 .At !iJ( Q'~) 0 .At 

1 1 
'tf * (X;.At) --+ !iJ(.1*(X; L)) 0.At !iJ(Q'*) 0.At. 

lOThis theorem also holds under the hypothesis that .At is elementary and dim <f>,LX < 
00, the proof of which uses 3.11. This case was included in the first edition, but it 
has been dropped in this edition from the results using this theorem because of the 
unlikelihood of its usefulness beyond that covered by the (.At, cI» elementary case, which 
gives stronger results than the «cI>-elementary" condition used in the first edition. E.g., 
if X has finite covering dimension, then X is paracompact, and so any elementary sheaf 
.At is (.At, cI> )-elementary for any cI>. 

11 Also see 3.5 and 5.3. 



310 v. Borel-Moore Homology 

The reader may check that the vertical homomorphism on the left is 
the canonical inclusion described at the beginning of this section. Applying 
r~, we obtain the following commutative diagram (since K E <1»: 

C~(X; uIt) r~( QlJ(9'*) ® uIt). 

By 5.5, since K E <1>, 9 can be identified with the inclusion 

and hence it becomes an isomorphism upon passage to the direct limit over 
K E <1>. 

Assume for the moment that for any replete 9'*, f induces an isomor
phism in homology. If 9'* = d* (X; L), then h = 1, and thus we would 
obtain part (i) of our theorem; that is, k would induce an isomorphism in 
the limit. But then for any replete 9'*, h would induce an isomorphism; 
that is, we would obtain part (ii) of our theorem. 

Thus it suffices to prove part (ii) (only) of the theorem for X replaced 
by any K E <1>. That is, it suffices to prove (ii) for the case in which <1> = cld. 

Part (ii) clearly holds for uIt constant with finitely generated free stalks. 
An exact sequence 0 -t uIt' -t uIt -t uIt" -t 0 of elementary sheaves 
induces the following commutative diagram with exact rows (see 3.12): 

Hp(X;vIt') --; Hp(X;vIt) Hp(X;vIt") --; ... 
! ! ! 

... -+ Hp(r(~(2') ® vIt'» -+ Hp(r(~(2') ® vIt)) -+ Hp(r(~(2') ® vIt"» -+ ... 

The 5-lemma implies that (ii) holds for all constant sheaves uIt with finitely 
generated stalks, since any finitely generated L-module is the quotient of 
free finitely generated modules. 

Now let uIt be a fixed sheaf on X with (uIt, cld) elementary. Consider 
the collection 

n = {U c X open I H.(U; vltIU)--+H.(r(9lJ(.!l'·IU) ® vltIU)) is an isomorphism}. 

We have just shown that if ultlU is constant then U E fl. 
Now let U = U1 U U2 and V = U1 n U2, and suppose that U1 , U2, and 

V are all in fl. The exact sequence12 0 -t .p~ -t .P~l EB .P~2 -t .P~ -t 0 
induces the exact sequence 

Let us temporarily use the abbreviation G*(U) = r(QlJ(.p*IU) ® ultlU) 
for open sets U C X. Then, applying r to the preceding sequence and 

12See 11-13. 
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using 3.10 and 5.4, we obtain the following commutative diagram of chain 
complexes: 

where the first row coincides with the second when :;e* = #*(U; L). By 
assumption, g and h induce isomorphisms in homology. The 5-lemma, 
applied to the induced homology ladder, then implies that f induces an 
isomorphism in homology. This shows that U E O. 

Next, if U = + Uo: and each Uo: EO, then it is obvious that U E O. 
Therefore, 0 satisfies all the properties (a)-(c) of 3.6. Since O.A( is the 

smallest such collection, we have O.A( C O. Since X E cld we have X E O.A( 
and hence X E 0, which is the desired result. 

For the last statement of the theorem, part (i) already follows from 5.3. 
For part (ii), when <I> = c, consider the homomorphism 

By 3.4, II-Exercise 18, and II-14.5, it follows that both sides are exact 
functors of vi and commute with direct limits in vi. When vi = L u , for 
U open, 8 induces a homology isomorphism, since 

[by (5) on page 290] and by that part of 5.6 already proved. It follows 
immediately from II-16.12 that the class of sheaves vi for which 8 yields 
an isomorphism in homology consists of all sheaves. D 

5.7. Corollary. Let A C X be locally closed, let JIt be a sheaf on X, and 
assume that (JIt, <1>1 A) is elementary. Then the canonical map 

is an isomorphism. D 

Now we shall extend the excision property to more general situations 
than are covered by 5.2. 

5.8. Theorem. Let A C X be locally closed. Suppose that JIt is a sheaf 
on X such that (JIt, <l>IA) is elementary. Then 

Moreover, if X - A is <I>-taut and locally closed in X, this may be identified 
with 
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Proof. We have the commutative diagram 

C~(XjuH) ---+. C~(X,AjuH) ---+. 0 

1= 1 
C~(XjuH) -> C~(XjuH)/C~IA(XjuH) ->0 

in which the rows are exact. The first two vertical maps induce isomor
phisms in homology by 5.7, and the result follows from the 5-lemma. The 
second statement follows from the fact that the bottom of this diagram can 
be identified with the exact sequence 

where the exactness on the right is due to the tautness assumption and the 
fact that «i * (X j uH) is flabby by 3.8. 0 

5.9. Corollary. Let B cAe X, where B c A and where A and X - B 
are locally closed in X. Let q, and W be families of supports on X and 
X - B respectively, and assume that q, n X - A = W n X - A and that 
X - A is q,-taut in X and w-taut in X-B. Let uH be a sheaf on X such 
that (uH, q,IA) is elementary and (uHIX - B, q,IA-B) is elementary. Then 
there is a natural isomorphism 

I H~(X,AjuH) ~ H"!'(X - B,A - BjuH)·1 

Proof. We have 

Thus 

«i*(XjuH)IX - A (<(i*(XjuH)IX - B)IX - A 
~ «i*(X - BjuH)IX - A 
~ (<(i*(X - BjuH)IX - B)IX - A 

«i*(X - BjuH)IX - A. 

and the result follows from 5.8. 

Applying this to the case in which B = A = F is closed we get: 

o 

5.10. Corollary. If Fe X is closed and if uH is a sheaf on X such that 
(uH, q,1F) is elementary, then 

1 H~ (X, Fj uH) ~ H!'n(x -F) (X - Fj uH) .1 
o 
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Let U = X - F with F closed and let (.At, <I>IP) be elementary as in 
5.10. Then by 5.10 the exact homology sequence of the pair (X, F) may 
be written in the form 

.,. -+ H:IF(F;.At) -+ H:(X;.At) -+ H:nu(U;.At) -+ (36) 
H:~~(F;ul() -+ ... 

If (.At, <I» is elementary and if g;* is a replete resolution of L, then this 
sequence is induced, via 5.4 and 5.6(ii), by the exact sequence 

of chain complexes, which derives from the exact sequence 

5.11. Corollary . .Yfp(X; L)x ;:::; Hp(X, X - {x}; L). 

Proof. Since {x} is taut, the theorem gives 

as claimed. o 

5.12. Example. This simple example shows that 5.10 does not hold for 
general coefficient sheaves. Let X = [0,1] and F = {O, I}. Consider the 
sheaf LF on X. By (34) we have that 

Hp(X;LX_F);:::;H~(X-F;L);:::;{ oL,' P~Oo' 
Pr . 

The exact homology sequence of X induced by the coefficient sequence 
o -+ LX-F -+ L -+ LF -+ 0 shows that Hp(X; LF) = 0 for all p. Then 
the exact sequence of the pair (X, F) with coefficients in LF shows that 
Hl(X,F;LF) ;:::; Ho(F;L) ;:::; L EB L. This is the left-hand side of the 
isomorphism in 5.10, but the right-hand side is H1(X - F; LFIX - F) = 
H1(X -F;O) = O. Thus 5.10 fails even for closed supports on the compact 
space [0,1] for the coefficient sheaf L{O,l}' Consequently, it seems unlikely 
that there is a general "single space" interpretation of homology relative 
to a closed subspace analogous to that for cohomology or to that relative 
to an open subspace. 0 

Now we shall provide some criteria for H-l to be zero and investigate 
the nature of H8. 

5.13. Theorem. H'!:.l(X;A) = 0 for <I> paracompactifying and for any 
sheaf A on X and also for arbitrary <I> if A is elementary. 
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Proof. By 5.6, H'!:l(X;L) ;:::, lin}H-1(K;L), K ranging over <P. But 
H_1(K; L) = Ext(Hg(K; L), L) = 0 since Hg(K; L) is free by the result of 
Nobeling; see II-Exercise 34. Therefore 

(37) 

for any family <P of supports. 
Let Pp = ~p(X;L). For U c X open, d: Po(U) -+ P- 1(U) is onto 

since H-1(U;L) = 0 by (37). Let;J{ be the kernel of d : Po -+ P- 1, so 
that 

(38) 

is exact. The cohomology sequence with supports in <P of the coefficient 
sequence (38) shows that 

H~(X;;J{);:::, Coker{r4>(9!o) -+ r4>(9!-l)} = H~\(X;L) = 0 

by (37). Therefore;J{ is flabby by II-Exercise 21. The sheaves in (38) 
are torsion-free, so that (38) remains exact upon tensoring with.;1. Its 
cohomology sequence has the segment 

r 4> (Po 0.;1) ~ r4>(p -1 0.;1) -+ H~(X;;J{ 0 .;1), 

and by definition 
H'!.l(X;A) = Cokerdo· 

If <P is paracompactifying, then ;J{ 0.;1 is <P-soft by 11-9.6 and 11-9.18, so 
that do is onto, whence H'!:l (X; A) = O. If.;1 is elementary, then ;J{ 0.;1 
is flabby by 3.8, and so we have the same conclusion for arbitrary <P. 0 

5.14. Theorem. Let X be locally connected. If either L is a field or X is 
clcl, then H8(X; L) is the free L-module on the components of X .13 

Proof. We may as well assume X to be connected. Then H8(X; L) = 
lin}Ho(K;L), K ranging over the compact connected subsets of X. If L 
is a field, then Ho(K;L) ;:::, Hom(HO(K;L),L);:::, Hom(L,L);:::, L, and the 
result follows. 

Suppose that X is clel. By Exercise 28 of Chapter II we have that 
H1(K; L) is torsion-free for any K c X. If K c K' are both compact and 
connected with K C intK', then it follows from II-17.5 that the homomor
phism 

H 1(K'; L) -+ H1(K; L) 

has a finitely generated image. This image is torsion-free, and hence free, 
so that 

Ext(H1(K),L) -+ Ext(H1(K'),L) 

factors through zero. Therefore lin}Ext(H1(K),L) = 0, and we deduce 
that H8(X; L) ;:::, lin}Ho(K; L) ;:::, lin} Hom(HO(K; L), L) ;:::, L. 0 

13 Also see Exercise 26 and VI-1O.3. 
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5.15. Suppose that K1 f- K2 f- ••• is an inverse sequence of compact 
spaces with inverse limit K = lim Kn. By passing to a union of mapping 
cylinders, we may assume that K1 :J K2 :J ... is a decreasing sequence of 
spaces and K = n K i . Let M be a finitely generated L-module, and hence 
an elementary sheaf on K 1• By 5.5 and 5.6, if [£* is a replete resolution of 
Lon K l , then Hp{Kn; M) ~ Hp(r cldlKn (~(!£*) ® M)). Also, ~([£*) ® M 
is flabby by 3.4. Therefore, a translation of IV-2.10 shows that there is an 
exact sequence of the form 

0-> lim1Hp+1(Kn; M) -> Hp{K; M) -> limHp{Kn;M) -> O. 

Now suppose that the Kn are all polyhedra, so that their homology is 
simplicial homology. Then the right-hand term is just the Cech homology 
Hp{K; M) of K by the continuity property of Cech homology. Thus the 
sequence can be written 14 

Since H_l{K; M) = 0, there is the consequence that 

lim 1 Ho{Kn; M) = 0, 

which is perhaps not too hard to see directly. 
As an explicit instance of this, let each Kn = §1 and let Kn -> Kn- 1 

be the standard covering map of degree n. Then Z ~ HI {Kn; Z) -> 
H1{Kn- 1; Z) ~ Z is multiplication by n. The space K is a "solenoid" 
and has 

Ho{K; Z) ~ Hom{Ho{K; Z), Z) EB Ext{H1{K; Z),:1.:) ~ Z EB Ext{Q, Z), 

by (9) on page 292. The sequence (39) takes the form 

0-> liml{- .. ~:1.: ~ Z ~ Z} -> Ho(K;Z) -> Z -> O. 

It is not hard to see that the Z splits off uniquely, and so we conclude that 

Um1 {- .. ~ Z ~ Z ~ Z} ~ Ext{Q, Z). 

It will be shown in 14.8 that this group is uncountable. This also follows 
from 5.17. 

5.16. Proposition. If.;;1 = { ... -> A2 -> AI} is an inverse sequence of 
countable abelian groups and ifUm1.;;1 -# 0, then Um l .;;1 is uncountable. 

Proof. If Um l .;;1 -# 0, then .;;1 is not Mittag-Leffler, and so by passing 
to a subsequence (see II-11.6), we can assume that the subgroups h = 
Im(Ak -> AI) are strictly decreasing. Let Ki = Ker{Ai -> Ad, so that 
we have the exact sequence 0 -> :J{ -> .;;1 -> /J -> 0 of sheaves on N.15 

14This sequence is not valid without the finite-generation condition on M. For exam
ple, it does not hold when L = Z and M = Q, as can be seen by computing its terms 
for an inverse sequence of lens spaces and p = 1. 

15Here N is the topology on the positive integers from II-Exercise 27. 
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It follows that UrnI.d' ---. Urn1§ is surjective. Thus it suffices to show that 
UrnI§ is uncountable. That is, it suffices to prove the following lemma. 0 

5.17. Lemma. If.d' = {AI ::J A2 ::J .. -} is a strictly decreasing sequence 
of countable groups, then Urn 1.d' is uncountable. 

Proof. Let Qi = AI/Ai, and note that Ker(Qi+l ---. Qi) ~ Ai/Ai+l i= O. 
It follows that Urn:2! is uncountable. Consider the inverse system $, which 
is constant with group AI. Then we have the exact sequence 0 ---. .d' ---. 
$ ---. :2! ---. 0 of sheaves on N with PlJ flabby.15 Therefore there is the exact 
sequence Al = Urn $ ---. Urn:2! ---. Urn I.d' ---. O. Since Al is countable and 
Urn:2! is uncountable, Urn 1.d' must be uncountable. 0 

5.18. Corollary. If X is a compact metrizable space with HP(X; Z) and 
HP+I(X; Z) finitely generated, then Hp(X; Z) ~ Hp(X; Z) naturally. 

Proof. Such a space is an inverse limit of an inverse sequence of finite 
polyhedra Kn. By (9) on page 292, Hp(X; Z) is finitely generated and 
hence countable. By (39), Urn I Hp+l(Kn; Z) is finitely generated, and by 
5.16 it must be zero. 0 

5.19. Corollary. If X is compact, metrizable, and clc~+I, then we have 
that Hk(X; Z) ~ {heX; Z) naturally. 

Proof. This follows immediately from 5.18 and 11-17.7. o 

This last corollary is known without metrizability and holds for general 
constant coefficients; see VI-lO. 

Note that since Hp(K; L) ~ Hp(K; L) naturally for compact spaces K 
when L is a field by 3.15, we must have that 

for any inverse sequence of compact spaces Ki when L is a field. Since 
Urn1 need not vanish over a field as base ring (see 5.20), this represents a 
limitation on inverse sequences of vector spaces that can arise this way. 

00 

5.20. Example. Let Xn = U Gi , where G i is the circle in the plane of 
i=n 

radius l/i tangent to the real axis at the origin. We have 

Ho(Xn;L) ~Hom(L,L)EBExt(EBL,L) ~L. 

Then the inclusions Xn+l '----+ Xn give an inverse sequence whose inverse 
limit is a point * = n X n. Now, Hl(Xn; L) is the free L-module on 

15Here 1\1 is the topology on the positive integers from II-Exercise 27. 
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the basis {an,an+l, ... }, and the restriction Hl(Xn;L) ---> Hl(Xn+1;L) 
takes an I---> 0 and ak I---> ak for k > n. Dualizing to H1(Xn; L) = 
Hom(H1(Xn; L), L), we may regard H1(Xn; L) as the L-module of se
quences a = {an, an+1, .. . }, where ak ELand where a(aj) = aj for j 2:: n. 
For the inclusion i : X n+1 '-t Xn we have i*(a)(aj) = a(i*(aj)) = aj for 
j > nand i*(a)(an) = a(i*(an)) = a(O) = O. Thus i*(an+1,an+2, ... ) = 

00 00 

(0, an+l, an+2, .. . ). That is, i* is the inclusion IT L'-t IT L. Call this 
i=n+l i=n 

inverse sequence of L-modules :JJ. Then we have the exact sequence 

0---> Urn1:JJ ---> Ho(*; L) ---> UrnL ---> 0, 

and it follows that Urn1:JJ = O. This shows that the count ability hypothesis 
in 5.17 is essential. 

Note that :JJ = ITn :JJn, where :JJn = {L f- ••• f- L +- 0 f- 0 f- ••• } 

with the last nonzero term in the nth place. Since the inverse sequence :JJ n 

is Mittag-Leffler, it is acyclic. Since N is a rudimentary space, it follows 
from II-Exercise 57 that :JJ is acyclic, giving another, more direct, proofthat 
Urn1:JJ = O. (It is also quite easy to prove this directly from the definition.) 

Now let /J? be the similar inverse system obtained from :JJ by replacing 
the direct products by direct sums. There is the monomorphism /J? >--+ :JJ. 

00 00 

Now the map IT L'-t IT L induces an isomorphism 
i=n i=n+l 

Call this quotient group Q, so that there is the constant inverse sequence 
!ll with all terms Q. The exact sequence 0 ---> .IJl ---> iJ' ---> fli ---> 0 of sheaves 
on N induces the exact sequence 

Urn :JJ ---> Urn 22 ---> Urn l .lJl ---> Urn 1 :JJ, 

whose terms on the ends are both zero. This shows that 

which is an uncountably generated L-module for any L. In particular, when 
L is a field, this gives an example showing that Urn1 need not vanish over 
a field. (Of course, the fact that Urn1/J? is uncountable also follows from 
5.17, provided that L is countable.) <> 

6 The Vietoris theorem, homotopy, and 
covering spaces 

In this section we consider the homological version of the Vietoris mapping 
theorem and apply that to prove the homotopy invariance of homology. 
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We also apply the general theorem to the case of covering maps, obtaining 
a homological transfer map. 

6.1. Theorem. Let f : X ---+ Y be a proper surjective map between locally 
compact spaces, and suppose that each f- 1(y), y E Y, is connected and has 
HP(f-l(y); L) = 0 for 0 < p::; n. Then 

f*: H{lif!(X;j*flJ) ---+ H:(Y;flJ) 

is an isomorphism for p < n and an epimorphism for p = n, for all sheaves 
flJ on Y and all families cP of supports on Y. If L is a field, then f* is an 
isomorphism for p < n + 1 and an epimorphism for p = n + 1. 

Proof. Let §* = §*(X; L). By 2.6 we have ~(f§*) = f~(§*) since f is 
proper. 16 By (21) on page 301 we also have the natural isomorphism 

Applying H * (r if! (. )), this yields the isomorphism 

Hp(rif!(~(f§*) ® BfJ)) ~ H{lif!(X; j* BfJ). (41) 

Now, f* is clearly induced from (41) via the homomorphism h :!/!* ---+ f§* 
of differential sheaves associated with the canonical f-cohomomorphism 
!/!* ~ §*, where!/!* = §*(Y; L). 

The derived sheaf $* (f §*) is just the Leray sheaf $* (f; L) of f. Since 
f is proper and since each f-l(y) is connected and acyclic through degree 
n, we have that $0(f; L) ~ L and $P(f; L) = 0 for 0 < p::; n. Moreover, 
f§* is injective by 11-3.1. Therefore there exists an injective resolution $* 
of L on Y with r = f§P for p ::; n + 1, and there is a map j : $* ---+ 

f §* extending the identity in degrees at most n + 1. There also exist 
homomorphisms g : !/!* ---+ $* and k : $* ---+ !/!* of resolutions. Then kg 
and gk are chain homotopic to the identity maps, and j is chain homotopic 
to hk. This situation persists upon passing to duals, so that 

is a chain equivalence. Also, 

is the identity map in degrees at most n, whence 

is an isomorphism for p < n and an epimorphism for p = n. But j' ~ k' h', 
whence j* = k* h*. Since k.. is an isomorphism in all degrees, the result 

16 I being proper implies that Icd" = Id". 
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follows. If L is a field, then we can take L1 = 0, whence j' is the identity 
in degrees at most n + 1, giving the one-degree improvement. 0 

For coefficients in L one can prove much stronger results from the cor
responding facts for cohomology: 

6.2. Theorem. Let f : X --4 Y be a proper surjective map between locally 
compact spaces. Let 

For a given integer (or 00) N let 

n = 1 + sup{k + bk I 0 ~ k < N}. 

Then for any support family cI> on Y consisting of paracompact sets, 

f . Hr1if.> (X. L) --4 Hif.>(y· L) *. p , P' 

is an isomorphism for n < p < N - 1, a monomorphism for p = n, and an 
epimorphism for p = N - 1. If L is a field, then f* is also an isomorphism 
for p = N - 1 and an epimorphism for p = N. 

Proof. By 5.6 it suffices to prove the same thing for flf- 1 K : f- 1 K --4 

K, where K E cI>. But that follows immediately from IV-B.21 and 4.1. 0 

Let us call a space T acyclic if H* (T; L) = O. It should be noted that if 
L is a field or the integers, then by (9) on page 292, cohomological acyclicity 
for a compact space [e.g., f-1(y)] is equivalent to homological acyclicity, 
since Hom(M, L) = 0 = Ext(M, L) implies M = 0 in these cases; see [64] 
and 14.7. 

6.3. Theorem. Let T be a compact acyclic space. Let cI> be a family of 
supports on X and let vi be a sheaf on X. Then the inclusion it : X --4 

X x T [where it(x) = (x,t)] induces an isomorphism 

it . Hif.>(X· vi) ....::.. Hif.>XT(X x T· vi x T) *. *' * , , 

which is independent of t E T. 

Proof. If 71" : X x T ---> X is the projection, then 7I"*i; = 1. But 71"* is an 
isomorphism by 6.1, and so i; = 71";1. 0 

6.4. Corollary. If f, g : X ---> Y are c-properly homotopic maps, with 
respect to the families cI> and W of supports, then 

o 
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6.5. Corollary. If f, 9 : X ---> Y are homotopic maps, then 

f* = g* : H~(X; L) ---> H~(Y; L). 

If f and 9 are properly homotopic, then also 

D 

6.6. It is important to notice that the analogue of 11-11.1 does not hold for 
homology. (Indeed, such a homomorphism is not even generally defined.) 
For example, if f projects the unit circle onto the interval I = [-1,1]' then 
fL ~ L EEl Lu, where U = 1-81, and it is easily seen from (34) on page 
306 and 6.5 that H1(I;fL) = 0; whence H1(I;fL) ¢ Hl(§l;L) ~ L. 

However, such a result does hold for covering maps, and more generally 
for local homeomorphisms. We shall proceed to establish this contention 
and to indicate some further facts. In this connection, also see Section 19. 

Suppose from now on that 7f : X ---> Y is a local homeomorphism (not 
necessarily proper). Since the definition of ri * ( • ; L) is of a "local" charac
ter, we see easily that there is a natural isomorphism 

By 4.3 there is also a natural isomorphism 

for any sheaf Ji on X. Thus we have the isomorphisms 

Therefore 

and 

I H~(c)(X;Ji) ~ H~(Y;7fcJi)·1 
It can be shown that the diagram 

(42) 

(43) 

commutes, where h* is induced from the canonical homomorphism h : 
7f*7fcJi ---> 7f*7fJi ---> Ji. Since this will not be used, we leave the verification 
of it to the reader. 
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Now let fiJ be a sheaf on Y, and note that for y E Y, 

(7rc7r*fiJ)y = EB (7r*fiJ)", = EBfiJy 
.".(x)=y 
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[one copy for each x E 7r-1(y)]. Summation produces a natural map 
(7rc7r*fiJ)y ~ fiJy , and it is not hard to see that this gives a (continu
ous) homomorphism 

a : 7rc7r* fiJ -+ fiJ. 

[Note that the homomorphism 

7rc7r*~*(YjL) ~ 7l"c~*(XjL) -+ ~*(YjL), 

obtained from (42) and (20) on page 300, is of this type.] 
It can be checked that the diagram 

~*(YjL) ®7rc7r*fiJ 

11®0" 

~ *(Yj L) ® fiJ 

commutes and hence so does the diagram 

Hill (y. 7r 7r* fiJ) ~ Hill (c) (X· 7r* fiJ) 

P'~/' 
H:(Yj fiJ). 

Now, if 7l" is proper, so that 7l"c7l"* fiJ = 7r7r* fiJ, then the canonical map 
{3 : fiJ -+ 7r7r* fiJ has the property that a {3 is multiplication by the number 
k of sheets of 7r (in this case, 7r is necessarily a covering map, and k is 
constant on components of Y). Thus {3 induces a transfer homomorphism 

(when 7r is proper) with 7r*J.L = k (when k is constant). If 7r is a regular 
covering map (Le., if the group G of deck transformations is transitive on 
each fiber), then we also have that J.L7r * = ~9EG g •. 

Also, see Section 19 for a different, and essentially more general, treat
ment of the transfer map. Also, with a niceness assumption, an even closer 
analogue of 11-11.1 can be proved for infinite coveringsj see Exercise 37. 

We note that the discussion in 6.6 is also valid for singular homology 
with 9'* (. ; L) replacing ~ * ( • ; L). This is not generally the case for the 
method utilized in Section 19, and indeed, transfer maps in singular ho
mology (or cohomology) do not generally exist for ramified coverings as is 
shown by the following example: Let X be the union in R3 of 2-spheres Xn 
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of radius lin that are all tangent to one another at a given common point 
x. Let g : X -> X be the reflection through some plane through x that 
intersects each Xn in a great circle. Let G = {e, g}. In [3] a nontrivial ele
ment"( E SH3(X; Q) is constructed, and it is easy to check that g*("() = "(. 
Hence, if there were a transfer map M : SH3(X/G; Q) -> SH3(X; Q) with 
M7r* = 1 + g*, we would have that 0 f 2"( = M7r*("() = 0, since X/G is 
contractible. 

7 The homology sheaf of a map 

In this section, f : X -> Y is a map between locally compact spaces, ui is 
a sheaf on X, and W is a family of supports on X. For BeY, B· denotes 
r1BCX. 

7.1. Definition. The "homology sheaf" of the map f, with coefficients in 
ui and supports in W, is defined to be the derived sheaf .1(; (j; ui) of the 
differential sheaf h '(;{ * (X; ui) on Y. Similarly, if A c X is locally closed, 
then the derived sheaf of f\ll '(;{ *(X, A; ui) is denoted by.1(; (j, flA; ui). 

Recall that 

Thus 

Note that '(;{ *(X, A; ui) vanishes on int A and coincides with '(;{ *(X; ui) 
on X - A. Hence, for V C U open in Y with V c U and for W paracom
pactifying, there are the natural maps (coefficients in ui) 

It follows that . (. -) .1(p(J;ui)=!J?/waf UI----tHp(X,X-U ;ui) . (45) 

Clearly, U· may be replaced by u· in (45) without changing the associated 
sheaf. 

By (45) there is a canonical homomorphism, for y E Y, 

7.2. Proposition. If f is W-closed and W is paracompactifying, then the 
homomorphism r~ is an isomorphism for each y E Y. 
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Proof. If follows immediately from 5.3 that H~lx-y· (X - y.j.;1) = 

lin}H!IX-U· (X - U·j.;1), U ranging over the neighborhoods of y in Y, 
and the result follows upon consideration of the homology sequences of the 
pairs (X,X - y.) and (X,X - U·). 0 

Note that if Ix : X -+ X is the identity map and if 'l1 contains a 
neighborhood of each point, then 

1.1f~(1Xj..4) = .1f .. (Xj..4)·1 

We now consider the case in which "iT! = c and ..4 = j* flJ for some sheaf 
flJ on Y. By (21) on page 301 there is the natural isomorphism 

The right-hand side is, by definition, generated by the presheaf 

Since CZ(U) (U·j L) is torsion-free, we have the natural exact sequence 

O--+H~(U)(U.j L)@8fJ(U)--+Hp(C;(U)(U°jL) @8fJ(U)) --+H;~)(U·j L) * 8fJ(U)--+O 

and hence the exact sequence of associated sheaves 

o -+ .1f~(fj L) ® flJ -+ .1f~(fj j*flJ) -+ .1f~-l(fj L) * ,qJ -+ 0, (46) 

which generalizes (13) on page 294. 
Note that the map fc~ .. (XjrflJ) -+ ~ .. (YjflJ) of (35) on page 306 

induces a natural map 

.1f~ (f j r flJ) -+ .1f .. (Y j flJ) (47) 

(the reader is urged to consider generalizations of this). By definition, (47) 
is induced by the homomorphism 

f .. : H;(U)(U°jrflJ) -+ H .. (UjflJ), 

from (26), of presheaves on Y. 
If f is proper, then for W ::) c, .1f .. (fj.;1) = .1f~ (fj..4) = .1f~ (lj ..4), and 

we note that trivially, (47) is induced by the homomorphism 

If f is a Vietoris map [Le., proper, surjective, and with acyclic point 
inverses] then it follows that (47) provides an isomorphism 

1.1f .. (ljj*flJ) ~ .1f .. (Yj flJ) for f a Vietoris map. I (48) 
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8 The basic spectral sequences 

Here we produce the fundamental spectral sequence of a map that will be 
used in the next section to prove a very general Poincare duality theorem. 

8.1. Theorem. Let f : X ---> Y, let lit and <I> be families of supports on X 
and Y respectively, and assume that dim4> Y < 00. Let A c X be locally 
closed and let A be a sheaf on X. Assume that at least one of the following 
three conditions is satisfied: 

(a) <I> and <I>(IIt) are paracompactifying; 

(b) A is closed, A is elementary, and either <I> is paracompactifying or 
111 = cld; 

(c) A = 0 and <I> is paracompactifying. 

Then there is a spectral sequence with 

Proof. Consider the differential sheaf pq = f>v 'frf _q(X, A; A). Now pq 
is a 'frf°(Y; L)-module, by 5.1 and IV-3.4, whence it is <I>-fine for <I> para
compactifying. If lit = cld, A is elementary, and A is closed, then pq is 
flabby by 5.1 and 11-5.7. Thus, the spectral sequence is given by IV-2.1, 
since dim.p Y < 00. (The hypotheses ensure that the isomorphism (30) on 
page 305 holds.) D 

8.2. We shall describe some important special cases of 8.1. Let BeY be 
closed. Put U = Y - B. Let <I> be a paracompactifying family of supports 
on Y and assume that dim.p Y < 00. Also assume that f is lit-closed. Then 
there is a spectral sequence with 

'EP,q = HP (Y. B' ~>v (f' A)) ~ H4>(>V)IU· (U·· A) 2 4>" -q , -p-q' , 

where U· = f-l(U) as usual. To obtain this, apply 8.1 to the case in which 
A is empty and with supports on Y being <I>IU [use 11-12.1 and note that 
(<I>IU)(IIt) = <I>(IIt)IU· by IV-5.4(8) since f is lit-closed]. 

If <I>, lit, and <I>(IIt) are all paracompactifying and if f is lit-closed, then 
we have a spectral sequence with 

" EP,q = H P (B· ~>v (f· A) IB) ~ H.p(>v) (X u·· A) 2 .pIB' -q , -p-q , , , 

which is obtained from 8.1 by taking A = U·, noting that 

(see Exercise 11 of Chapter IV) and using 11-10.2. 
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8.3. We note that the spectral sequences I Er, Er (with A empty) and /I Er 
are respectively the spectral sequences of the double complexes 

and 

Thus, the exact sequence 0 --> 'MP,q --> MP,q --> "MP,q --> 0 yields a 
relationship among them. This will be applied in Section 9. 

8.4. Unlike the case of the Leray spectral sequence, the main case of im
portance of 8.1 is that for which f is the identity map X --> X. We shall 
now reformulate 8.1 for this important case. 

Let <I> be a family of supports on X with dim<I> X < 00. Let A c X 
be locally closed, and let A be a sheaf on X. Assume either that A is 
closed and A is elementary, or that <I> is paracompactifying. Then there is 
a spectral sequence with 

In this case, 8.2 becomes the following: Let F c X be closed with 
U = X - F, and assume that <I> is paracompactifying with dim<I> X < 00. 

Then there are the spectral sequences 

'EP,q = HP(X F':Jt' (X, A)) ====} H<I>IU (U'A) 2 <I>" -q , -p-q , 

and 
I" E~,q = H:IF(F;:Jt' _q(X; A) IF) ====} H'!.p_q(X, U; A)·I 

(Here, the family II! in 8.2 may be taken to be c.) 

8.5. For nonopen subsets (U as in 8.4) or nonparacompactifying supports 
<I> , we can still obtain these spectral sequences provided we consider only 
elementary coefficient sheaves. Thus let us assume A c X is locally closed, 
that dim <I> X < 00, and dim<I>IA X < 00, and let (.At, <I>IA) be elementary, 
where X - A is <I>-taut. Then there is the spectral sequence 

(use 5.7 and II-12.1), and we also have the spectral sequence 
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[The latter spectral sequence is obtained from 5.8 using the double complex 
C:nx_A(X - A; ce' _q(X;J()IX - A).] Again, as in 8.3, these spectral se
quences are linked together through a short exact sequence of their defining 
double complexes. 

Note that when X - A is cp-taut and dim~ X < 00, it follows from the 
cohomology sequence of the pair (X, X -A) that the condition dim~IA X < 
00 is equivalent to dim~n(x_A)(X - A) < 00, whence the convergence of 
the spectral sequence" E r . 

8.6. Similar considerations apply to the case of singular homology. We 
shall remark on the case of one space and leave the extension to maps to 
the reader. (See, however, IV-Exercise 1.) 

Let cI> be a paracompactifying family of supports on X and let &J be 
any sheaf on X and let A c X be locally closed. Consider the differential 
sheaf g;q = [j? _q(X, A; &J), which is c-soft and hence cI>-soft. It follows from 
IV-2.1 that if dim~ X < 00, then there is a spectral sequence with 

Remarks analogous to 8.2 and 8.3 also apply in this situation. Also see 
IV-2.9. 

As an immediate application of 8.1 we have the following. 

8.7. Proposition. Let f ; X --+ Y be a map between locally compact 
spaces with dimL Y < 00. Let n = max{k l.1fk(J; L) ::J O}, assuming that 
this exists. Then 

Proof. In the spectral sequence of 8.1 we have that E~,q = 0 for q < -n, 
whence r(.1f n(J; L» ~ HO(y;.1f n(J; L» = ~,-n ~ E2c,-n ~ Hn(X; L). 

o 

8.8. Example. As a simple example of 8.7 consider the case in which 
X = §1, and Y is the figure eight with f ; X --+ Y the obvious map with 
one double point at y E Y. Take coefficients in L = Z throughout. Then 
.1fp (J) = 0 for p ::J 1, and .1f1(J) has stalks Z except at y, where the 
stalk is Z $ Z. From 8.7 we have r(.1f1(J» ~ H 1(X) ~ Z. Also, consider 
the space W = §1 + §1, the topological sum of two circles, and the map 
9 ; W --+ Y with one double point. Then.1f 1 (g) has the same stalks as does 
.1t 1 (J), but these are not isomorphic sheaves on the figure eight since by 
the same reasoning, r(.1t1(g)) ~ H 1(W) ~ ZEElZ. The sheaf .1t1(Y) differs 
from both since .1t1(Y)y ~ H 1(Y, Y - {y}) ~ Ho(4 points) ~ Z EEl Z EEl Z. 
The reader might try to understand just how these sheaves look as spaces 
as well as to understand the homomorphisms .1t 1 (J) --+ .1t 1 (Y) f- .1t 1 (g), 
which are isomorphisms away from the point y. <> 
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8.9. Example. As an example of 8.1 consider the bundle projection f : 
K -+ Y = §1, where K is the Klein bottle. Use coefficients in Z throughout. 
The stalks of .1f i (I) are 

( ) (§1 (8)) (§1) {Z, for i = 1,2, .1f; f y;:::; Hi X IT, IT ;:::; H;-l ;:::; 0, for i -:j:. 1,2. 

It is clear that .1f 1 (I) is the constant sheaf Z and that .1f 2 (f) is the twisted 
sheaf zt of II-ll.3. In the spectral sequence we have Eg,--l = HO(y; ZJ ;:::; 
Z, E~,-l = H1(y; Z) ;:::; Z, Eg,-2 = HO(y; zt) = r(zt) = 0, E~'- = 

H1(y; zt) ;:::; Z2 (by II-l1.3), and E~,q = 0 otherwise. Thus the spectral 
sequence degenerates into the isomorphisms H2(K) ;:::; Eg;-2 ;:::; Eg,-2 ;:::; 0, 
Ho(K) ;:::; E;o-l ;:::; Ea,-l ;:::; H1(y;Z) ;:::; Z, and the exact sequence 0 -+ 

E~,-2 ----> H1(K) -+ E2,-1 -+ 0, which is 0 -+ Z2 -+ H1(K) -+ Z -+ o. <> 

8.10. Example. Consider the map f : §n -+ [-1,1]' the projection to a 
coordinate axis, and take coefficients in Z. At a point y E (-1,1) the stalk 
of .1f; (I) is 

.1fi(f)y;:::; Hi(§n-l x (IT,8IT));:::; Hi_1 (§n-1);:::; {Zo' ;or ~: II,n, 
, lor t I , n. 

At an end point, .1fi(l)y;:::; H;(JI)n,§n-l), which is Z fori = n and is zero 
otherwise. It is clear that .1f n (I) ;:::; Z, the constant sheaf, and .1f 1 (1) ;:::; 
Z(-1,l). Thus the spectral sequence has 

and 
EP,-n = HP([-1 1]. Z) ;:::; {Z, for p = 0" 

2 , , 0, for p -:j:. 0" 

Thus it degenerates into the isomorphisms Ho(§n) ;:::; E~,-1 ;:::; Z and 
Hn(§n) ;:::; Eg,-n ;:::; Z. <> 

8.11. Example. Consider X = 1R1P'2 with the usual action of the circle 
group G on it. (Thinking of X as the 2-disk with antipodal points on the 
boundary identified, the action is by rotations of the disk.) Let f : X ----> 

X/G = Y be the orbit map. Now Y can be thought of as the interval [0,1] 
with 0 corresponding to the fixed orbit, a point called the singular orbit; 
1 corresponding to the boundary of the disk, called the exceptional orbit; 
and points 0 < y < 1 corresponding to the other circles about the origin, 
called principal orbits. Let us compute the stalks of the sheaves .1f p(I). 
We have, with integer coefficients, 

p= 0, 
p= 1, 
p= 2. 
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Also, for ° < y < 1, 

and 
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p=o, 
p= 1, 
p= 2, 

p= 0, 
p = 1, 
p=2 

where M is a neighborhood of the exceptional orbit and is a Mobius strip. 
It is clear that 

.7t'2(1) ~ :£[0,1)' 

Similarly, it is clear that .7t'I(1) is constant over (0,1), and of course it 
vanishes at 0. To see its topology at 1, consider a local section 8 about 
1 giving the nonzero element of .7t'1 (lh ~ Z2. Since 28 vanishes at 1, it 
must vanish over a neighborhood of 1. Since the stalks of .7t'1 (I) are free 
at points other than 1, 8 itself must vanish on a neighborhood of 1, except 
at 1 itself.17 From this it is clear that 

Thus we compute 

for all p. Also, 

H'(Y;.1f I (I)) ~ H'([O, I]; Z(O,I}) '" H'( {I}; Z,) ~ { 
p= 0, 
p = 1, 
P ~ 0, 1. 

Therefore E~,-1 = H O(y;.7t'I(1)) ~ :£2, E~,-1 = Hl(Y;.7t'I(1)) ~ Z, and 
all other terms are zero. Thus the spectral sequence degenerates to give the 
familiar homology groups Ho(X) ~ E~,-l ~ Z and H1(X) ~ E~,-1 ~ Z2 
~R~. 0 

8.12. Example. Let X = 1I00 , the Hilbert cube. Then .7t'p(X;L) = ° 
for all p since every point has an open neighborhood basis consisting of 
sets homeomorphic to Y x (O,IJ for some locally compact Y and since 
Hf((O, 1]; L) ~ HP([O, IJ, {o}; L) = ° for all p. If the spectral sequence 
of 8.4 were valid in this case, we would have Eg,q = ° for all p, q whence 
H8(X; L) = 0, which is false. Consequently, the dimensional hypothesis of 
8.1 is essential. 0 

17 A more direct way to see this is to note that the generator of the stalk at 1 is given 
by the singular cycle made up of the exceptional orbit, as a cycle of (M, 8M), and that 
this induces the zero homology class at a nearby principal orbit. 



§9. Poincare duality 329 

8.13. Example. Let X = ][00, y = ][, and f : X -> Y a projection. Then 
for y = 0,1 we have .1t' q(J; L)y ~ Hq([O, 1) x ][00; L) ~ Hq([O, 1); L) = ° for 
all q. For y f:. 0,1 we have 

.1t'q(J;L)y ~ Hq((O, 1) x ][OO;L) ~ Hq((O, l);L) ~ {~: ~~~:;~: 
Clearly, .1t'1(J;L) ~ L(0,1) and .1t'q(J;L) = 0 for q f:.1. The basic spectral 
sequence 8.1 is valid here even though dimL X = 00. For it, we have 
E~,-1 ~ H1([0, 1]; L(o,1)) ~ L, and E~,q = 0 in all other cases. Thus 
the spectral sequence degenerates into the uninteresting isomorphism L ~ 
E~,-1 ~ H_1+1(][00; L). 0 

9 Poincare duality 

In this section we will establish Poincare duality for spaces having the local 
homological properties of n-manifolds with or without boundary. A general 
class of such spaces is given by the following definition: 

9.1. Definition. A locally compact space X is called an i'n-dimensional 
weak homology manifold over L" (abbreviated as n-whmL) if dimL X < 00 

and .1t' p(X; L) = ° for p f:. n and is torsion-free if p = n. .1t' n (X; L) is 
called the "orientation sheaf" of X and will be denoted by @ = @x. An 
n-whmL X is said to be an i'n-dimensional homology manifold over L" 
(abbreviated as n-hmL) if @ is locally constant18 with stalks isomorphic to 
L. It is said to be "orientable" if @ is constant. 

Note that for any n-whmL X, 

.1t'p(X;A) = { ~®A, :;~' 
by (13) on page 294. Also note that a topological n-manifold, with or 
without boundary, is an n-whmL, and it is an n-hmL if the boundary is 
empty. (We shall study homology manifolds with boundary in Section 16.) 

From 8.4 we immediately obtain: 

9.2. Theorem. If X is an n-whmL and CP is a paracompactifying family 
of supports on X, then there is a natural isomorphism 

I ~: H:(X;@ ®A) ~ H~_p(X;A) I 
for sheaves A on X. Moreover, ~ is an isomorphism of connected se
quences of functors of A; that is, a~ = ( _1)n ~8 in the diagram 

18See, however, 16.8. 
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induced by the exact coefficient sequence 0 --+ .;1' --+ .;1 --+ .;1" --+ 0, in 
addition to natumlity in the coefficient sheaf .;1. 

Proof. In the spectral sequence Ef,q of 8.4 we have E~,q = 0 for q =I
-no Thus H:(Xj~®.;1) ~ E~,-n ~ E~-n ~ H~p+n(Xj.;1) as claimed. 
The last statement follows from the compatibility relations proved in IV-I, 
the sign (_I)n being achieved by redefinition of ~ by induction on p if 
necessary. 0 

If F c X is closed and U = X - F, then we also obtain from 8.4 the 
isomorphisms 

and 
1 H:w(Fj ~ ®.;1) ~ H:_p(X, Uj .;1)·1 

However, these also follow directly from 9.2 by replacing .;1 by .;1u and 
.;1 F respectively. 

It follows easily from 8.3 that the diagram 

H:(Xj.;1 ® @) 

~1~ 
--+ H:w(Fj.;1 ® @) --+ ... 

~1~ (_l)n 

H:_p(X j.;1) --+ H:_p(X, Uj.;1) --+ ... 

commutes up to the indicated signs, where the first row is the cohomology 
sequence of (X, F) and the second row is the homology sequence of (X, U). 

For elementary coefficient sheaves we obtain, from 8.5, the following 
generalization of 9.2 valid for nonparacompactifying families of supports 
and more general subspaces: 

9.3. Theorem. Let X be an n-whmL,.At an elementary sheaf on X, and 
cI> a family of supports on X with dimcp X < 00. Then there is an isomor
phism 

1 ~ : H:(Xj ~ ®.At) ~ H:_p(Xj.At) 1 

natuml in .At. Assume, moreover, that A is a locally closed subspace oj X 
such that X - A is cI>-taut in X, and that (.At, cI>IA) is elementary. If, in 
addition, dimcplA X < 00, then 

and 
1 H:n(X -A) eX - Aj @ ®.At) ~ H:_pe X , Aj .At). I o 
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If all the conditions of 9.3 are satisfied, then as in 9.2 the following 
diagram commutes up to the indicated sign: 

... --+H:(X,X -Aj &®uH) --+ H:(Xj &®uH) --+ H:n(X_A) (X -Aj &®uH)--+ ... 

(-1)" t.l"" 1 t.l"" 1 t.l"" (_1)" 

•.. --+ H:~~(Aj uH) --+ H!_p(X j uH) --+ H!_p(X, Aj uH) --+ •.. 

Danger: When ~ is not paracompactifying, then as far as the author 
knows, unless X is locally hereditarily paracompact, one cannot draw the 
conclusion that dim~ X < 00 from the assumption that dimL X < OOj see 
11-16 and II-Exercise 25. Note, however, 11-16.10. 

9.4. As an example of the use of 9.3, let X be an orientable n-manifold 
with boundary consisting of the disjoint union A U B of closed sets. (A or 
B can be empty.) Then (ff = L X - A - B , and we have 

H~_p(X,AjL) ~ H:n(X-A) (X -AjLx-A-B) 

~ H:n(X-A) (X - A,BjL) ~ Hg(X,BjL), 

the last isomorphism following from invariance under homotopy. Also see 
16.30 for a generalization of this. 

9.5. If ~ consists of all closed sets in 9.3 and .At = L, we can substitute 
Hn-p(Uj (ff) for Hp(Uj L) in (9) on page 292 and obtain the exact sequence 

10 --+ Ext(Hg+1(Uj L), L) --+ Hn-p(Uj (ff) --+ Hom(Hg(Uj L), L) --+ 0 I 
natural in U. In particular, if L is a field, then there is a natural isomor
phism Hn-P(Uj (ff) ~ Hom(Hg(Uj L), L) for U open in an n-whmL X with 
dimcld U < 00. Also see 10.6. 

9.6. If X is an n-hmL' then (ff is a "bundle" of coefficients locally iso
morphic to L. This implies that there is an "inverse sheaf" (ff-l such that 
(ff ® (ff-l ~ Land (ff-l is unique up to isomorphism. In this case, 9.2 shows 
that 

H:(Xj.A) ~ H:(Xj (ff ® (ff-l ®.A) ~ H!_p(Xj ~1-1 ®.A) 

for ~ paracompactifying. Similarly 9.3 can be used to obtain the isomor
phism 

H:(Xj.At) ~ H!_p(Xj &-1 ®.At) 

when.At is elementary and dim~ X < 00. 

In [11) it is claimed that (ff ~ (ff-1 in general. Unfortunately, the proof 
is irretrievably incorrect, and this remains an unsolved conjecture. 

In particular, we have H~+1(UjL) ~ H:' 1(Uj (ff-1) = 0 by 5.13. Then 
it follows from 11-16.14 that 

I dimL X = n for an n-hmL X.I 
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9.7. For a topological n-manifold X (or a "singular homology manifold") 
we obtain the Poincare duality 

(for <I> paracompactifying and [JJ arbitrary) directly from 8.6. However, 
this also follows from the general Theorem 9.2 and from the uniqueness 
theorems that we shall prove in Section 12 showing that singular homology 
coincides with Borel-Moore homology in this case. Also see IV-2.9. 

9.B. Example. Duality, and indeed Borel-Moore homology itself, is use
ful mostly for reasonably locally well behaved spaces such as deL spaces. 
However, let us illustrate duality in the case of a "bad" space, the solenoid, 
i.e., an inverse limit ~ = UmCn , where Cn is a circle and Cn ----> Cn - 1 

is the usual covering map of degree n. Coefficients will be in L = Z if 
not otherwise specified. By continuity, HO (~) ~ Z, HI (~) ~ IQ, and 
Hi(~) = 0 for i > 1. Also, dimz ~ = 1. By Exercise 6 the precosheaf 
Sj~(~) : U f-+ HI(U) is a cosheaf, and by 1.10 and (9) on page 292, the 
presheaf U f-+ Hom(HI(U),Z) ~ H1(U) is a sheaf.19 It is, of course, the 
homology sheaf .1t"t(~). Now, every point in ~ has a fundamental sequence 
of neighborhoods U of the form U ~ K x (0,1), where K is a Cantor set. 
For such a set U, HI(U) ~ HO(K) ® Z ~ C(K), the group of continuous 
(Le., locally constant) functions K ----> Z. This is the free abelian group 
on a countably infinite set of generators; see II-Exercise 34. Similarly, 
H~ (U) = 0, so that .1t ° (U) = 0, and .1t i (U) = 0 for i > 1 trivially. Thus 
X is a 1-whmz with orientation sheaf @ = .1tl(~) : U f-+ Hom(HI(U),Z). 

The sheaf @ is not readily understood, but duality gives some easy 
information about it. We have HP(~; @) ~ Hl-p(~). In particular, 

so that @ has no nonzero global sections. On the other hand, @ is a very 
big sheaf because 

HI (~; @) ~ Ho(~) ~ Hom(H~(~), Z) EB Ext(H~ (~), Z) ~ Z EB Ext(lQ, Z) 

and Ext(lQ, Z) is uncountable; see 14.8. o 

9.9. Example. Again, let ~ be the solenoid. We will show that 9.3 cannot 
hold for L = Z and .At = IQ (which is not an elementary sheaf since IQ is 
not finitely generated over Z). By classical dimension theory, ~ can be 
embedded in §3; also, see the next example for an explicit embedding. The 
exact homology sequence of the pair (§3,~) shows that 

19These facts are not important for the example but are helpful in understanding the 
sheaf @. 
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by 3.13 and the computations in the previous example. If 9.3 held in this 
case, we would have that this is isomorphic to H l (§3 - 1:; Q). However, 
using Q as base ring,2o we compute 

HI (§3 - 1:; Q) ~ H2(§3, 1:; Q) 
~ H l (1:;Q) 
~ HomQ(Hl(1:;Q),Q) 
~ HomQ(Q, Q) ~ Q. 

by 9.3 
exact sequence of (§3, E) 
by (9) on page 292 

<> 

9.10. Example. Consider a standard solid torus Tl in §3. Inside Tl we 
can embed another solid torus T2 that winds around TI twice. Inside 
that we can embed another solid torus T3 that winds around T2 three 
times, and so on. If we make the diameters of the disk cross sections of 
Tn go to zero as n --+ 00, then the intersection of the tori is a solenoid 
1: = nTn. With integer coefficients, we have that Z ~ Hl(Tn+d --+ 

Hl(Tn) ~ Z is multiplication by n. By duality 9.3, this is equivalent to 
H2(§3, §3 - Tn+!) --+ H2(§3, §3 - Tn+l ), and by the exact sequences of the 
pairs (§3, §3 -Ti) this is equivalent to H l (§3 -Tn+!) --+ H 1(§3 -Tn). Thus 

the latter maps give the inverse sequence ... ~ Z ~ Z ~ Z. Also, 
H2(§3 - Tn) ~ HI (§3, Tn) ~ Ker (HI (Tn) --+ HI (§3)) = O. It follows from 
this and IV-2.11 that 

This can also be seen by the isomorphism H2(§3 - 1:) ~ HI (§3, E) of 9.3, 
the exact homology sequence of the pair (§3, 1:), and the calculation in 9.8 
that Ho(1:) ~ Z E9 Ext(Q, Z). <> 

9.11. Example. Suppose that Xc lR,n is compact, and let M be a finitely 
generated L-module. By 9.3 we have the natural isomorphism 

H (X, M) ~ Hn-p(lR,n lR,n - X· M) p ,~ , " 

and the cohomology group here can be taken to be singular cohomology 
by 111-2.1. Thus Borel-Moore homology for such spaces can be computed 
from ordinary singular cohomology. This is not true for coefficient groups 
M that are not finitely generated over L, as is shown by taking X to be a 
solenoid and computing these groups for L = Z and M = Q. (This is the 
failure of "change of rings"; see Section 18.) <> 

9.12. Example. Another example of an n-whmL that is not an n-hmL 
is the mapping cone C f of the covering map j : X = §l --+ §I = Y of 
degree d. This is a 2-whmz. Its orientation sheaf (P is constant with stalks 
Z over C f - Y. Over Y, (P has stalks Zd-l, and it is not too hard to see 
that (PlY ~ jZjZ, where Z sits in jZ as the "diagonal." It is somewhat 

20See Section 18. 
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harder to understand how these two portions of @ fit together, and we will 
not attempt to describe that. Duality gives 

as follows easily from the homology sequence of (Mj , X). One can compute 
these cohomology groups directly by looking at the exact sequence 

... -+ H~(Cj - Yj Z) -+ HP(Cjj @) -+ HP(Yj @IY) -+ ... 

as follows: Hg(Cj - Yj Z) ~ Hg(]R2j Z) ~ Z for p = 2 and is zero otherwise. 
The exact cohomology sequence induced on Y by 0 -+ Z -+ f'll -+ @IY -+ 0 
hits the portion HP(Yj Z) -+ HP(Yj f'll) ~ HP(Xj 'll) identified with r, so 
that HP(Yj @IY) ~ 'lld for p = 1 and is zero otherwise, yielding the desired 
calculation. 0 

9.13. Example. The purpose ofthis example is to show how Borel-Moore 
homology and duality can be used to understand a particular cohomology 
group (closed supports) of a certain space X. The space X is perhaps the 
simplest space that is locally compact but not compact, and connected but 
not locally connected. It is the "comb space" with the "base accumulation 
point" removed. Precisely, 

x = {(a, 0) E JR2 1 0 < a ~ I} U {(a, b) E JR2 1 0 < b ~ 1, a = 0, 1/2, 1/4, ... }. 

Note that the point (0,0) is missing. Regarding §2 as the compactified ]R2, 
let M = §2 - {(O, O)}, a euclidean plane containing X as a closed subspace. 

The group we wish to investigate is Hl(Xi 'll).21 One's first guess con
cerning this group might be that it is zero. The singular cohomology group 
SH1(XiZ) is clearly zero. Also, the closure of X in ]R2, the comb space 
itself, is contractible and so has the cohomology of a point. However, we 
will show that this guess is about as far from true as it can be. 

The exact sequence (coefficients are in Z when omitted) 

0= Hl(M) -+ Hl(X) -+ H2(M,X) -+ H2(M) = 0 

shows that Hl(X) ~ H 2(M, X). By duality 9.2, H2(M, X) ~ H;],CU), 
where U = M - X and \II = {K cUI K is closed in M}. Thus, by 5.3, 

Hl(X) ~ H6'(U) ~ lim Ho(K). 
KEiI! 

Also, there is the exact sequence 

0-+ lim Ext(H;(K), Z) -+ lim Ho(K) -+ lim Hom(H~(K), Z) -+ o. 
KEiI! KEiI! KEiI! 

2 1This example arose in an attempt to prove, for homology manifolds, a certain di
mensionality property that is a standard result for topological manifolds. 
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The term in Ext is surely zero, but we shall ignore it, as it is unimportant 
for the main conclusion. One set in W is 

Ko = {(a,a/2) E ]R21 a = 3/2n , n = 2,3,4, ... }. 

00 00 

We have H~(Ko) ~ EB z, so that Hom(H~(Ko), Z) ~ n z, which is un-
i=l i=l 

countable. Note that for any set K :J Ko in W, all but a finite number 
of the points of Ko must be in separate pseudo-components of K. This 
implies that 

00 

Ker{Hom(H~(Ko), Z) -> Hom(H~(K), Z)} c EBZ, 
i=l 

which is countable. It follows that limKEw Hom(H~(K), Z), and hence 
Hl(X) ~ Ht (U), is uncountable. It also seems likely that this group is 
not free, although it is torsion-free by II-Exercise 28. 0 

10 The cap product 

For sheaves A and $ on the locally compact space X, consider the canon
ical map 

of 1-5, that is, 

C~(XiA) ® H~(Xi $) -> C~nw(X;A ® $), (49) 

which is a chain map. For any integer m, we have the induced map 

n : H!(XiA) ® H~(X; $) -> H!nw(X;A ® $). (50) 

If 0 -> A' -> A -> A" -> 0 is exact and is such that 0 -> A' ® $ -> 

A ® $ -> A" ® $ -> 0 is also exact, then the fact that (49) is a chain map 
implies that for a E H! (X i A") and s E H~ (X i $) we have 

8(a n s) = (8a) n s (51) 

(defined when <P and <P n Ware paracompactifying). 
Now let m and a E H! (X i A) be fixed. If <P n W is paracompactifying, 

the functors 
Fq($) = H!~!(XiA ® $), 

with connecting homomorphism (-1) m times that in H~nw (X i • ), form an 
G' -connected sequence of functors, where G' is the class of pointwise split 
short exact sequences. By II-6.2 the natural transformation f3 f--+ a n (3 of 
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has a unique extension 

o:n . HP (X, flJ) -t H<Pn>It (X, ,;1 0. flJ) . >It' m-p' '<Y 

commuting with connecting homomorphisms. The uniqueness of o:n im
plies immediately that 0: n (3 is linear in 0: as well as in (3, so that we obtain 
the "cap product" 

In: H! (X;,;1) 0 H~ (X; flJ) -t H!~~ (X;,;1 0 flJ) I (52) 

when cI> n W is paracompactifying. By definition and II-6.2, we have that 
if 0 -t flJ' -t flJ -t flJ" -t 0 and 0 -t ,yf 0 ,0// -t ,;1 0 flJ -t ,;1 0 flJ" -t 0 are 
both exact, then 

(53) 

where 0: E H!(X; ,;1), (3 E H~(X; flJ"), and 8 and fJ are the connecting 
homomorphisms in H::n>It(X; e) and Hw(Xi e) respectively. 

By the uniqueness portion of II-6.2 we obtain, in the situation of (51) 
and for (3 E H~(X; flJ), 

18 (0: n (3) = (80:) n (3·1 (54) 

That is, the two homomorphisms H~(X; flJ) -t H!~~_l (Xj ,;110flJ) defined 
by (54) for fixed 0: E H! (X j ,;1") are identical. 

If 0: E H!(Xj,;1), S E r>It(flJ), t E re('~'), then it follows immediately 
from the definition of (49) and (50) that 

(0: n 8) n t = 0: n (8 u t), (55) 

where 8 UtE r<I>ne(flJ 0 ~). The uniqueness part of II-6.2 applied, in the 
appropriate way, to the functors 

H~(Xj flJ), He(X; ~), and H~n>Itne(X;,;1 0 flJ 0 ~) 

(,;1 being fixed) shows immediately that if cI>nw and cI>nwn8 are paracom
pactifying, then for 0: E H!(Xj ,;1), (3 E H~(Xj flJ), and J E H~(Xj ~) we 
have 

1 (0: n (3) n J = 0: n ((3 U J) 1 (56) 

(given by (55) in degree zero). 
Let f : X -t Y be a map between locally compact spaces and let cI> 

and W be families of supports on Y with <I> n W paracompactifying. Let 
,;1 and flJ be sheaves on Y. By definition of the isomorphism (21) and 
of the homomorphism (23) on page 23, we see that the following diagram 
commutes: 

~ * (Y;,;1) 0 flJ 
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It follows that we also have the commutative diagram 

fcf>(c)(~ *(Xj J*A)) ® f 1-1w(f*flJ) -+ f(cf>nw)(c)(~ *(Xj J*(A ® flJ))) 

110/' I 
fcf>(fc ~ .(Xj J* A)) ® fw(flJ) -+ fcf>nw(fc ~ .(Xj J*(A ® flJ))) 

1 1 
fcf>(~ .(Yj A)) ® fw(flJ) -+ fcf>nw(~ .(Yj A ® flJ)) 

[recalling from IV-5.4(7) that cp(c) n rl(\II) = (cp n \II)(c)]. 
Therefore the following diagram commutes for p = 0: 

H:,(c)(Xj J*A) ® Hj-1w(Xj J*flJ) ~ H~~~W)(c)(Xj J*(A ® flJ)) 

I10f" 
H:,(c)(Xj J*A) ® H~(Yj flJ) l. 

1/.01 

H:'(YjA) ® H~(Yj flJ) ___ n __ • H:'~:(Yj,7i ® flJ). 

For 0: E H:'(c) (X; J* A) it follows that the natural transformations 
H~(Y; flJ) -+ H:'~: (Y; A ®flJ) offunctors of flJ defined by /h .... f.(o:nJ* /3) 
and /3 f-+ f.(o:) n /3 coincide for p = O. Using (53), it follows from II-6.2 
that these transformations are identical. Thus, for 0: E H:'(c) (X; J*A) and 
/3 E H~ (Y; flJ), we always have that 

I f.(o: n J* /3) = f.(o:) n /3.\ (57) 

10.1. Theorem. Let X be such that dimL X < 00 and:J{' p(X; L) = 0 for 
p> n and with @ =:J{' n(X; L) torsion-free for p = n (as is always the case 
if n = dimL X; see Exercise 32). Then, for cP paracompact~fying, there is a 
natural homomorphism 

generalizing that of 9.2, which is an isomorphism for p = 0 and satisfies 
81:1 = (_l)n 1:16, where 8 and 6 are the connecting homomorphisms for the 
variable A. If cP and cP n \II are both paracompactifying families of supports 
on X, then, for 0: E H;(X; @ ® A) and /3 E H~(X; flJ), we have 

Proof. The homomorphism 1:1 is, up to sign, just the edge homomorphism 

HP (X, @ ® A) = EP,-n --+> EP,-n >--+ Hcf> (X d) cf> , 2 00 n-p" 

in the basic spectral sequence. The sign can be modified by induction on 
p, with no change when p = 0, to satisfy the stated formula with 8 and 6. 
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The fact that this generalizes the isomorphism /),. of 9.2 is immediate, as is 
the fact that it is always an isomorphism when p = O. 

The map 

r~(~ *(X; L) 181 A) 181 rw($) --+ r~nw(~*(X; L) 181 A 181 $) 

induces the commutative diagram 

that is, 

and it is clear that the vertical maps are precisely /),. -1 181 1 and /),. -1. 

Thus, we see that the formula /),.(a U (3) = (/),.a) n (3 of 10.1 holds when 
p = 0 = r. However, both sides of this formula are natural transforma
tions F[(A) 181 F!(i1JJ) --+ Fr,P(A, $) commuting with connecting homo
morphisms, as the reader may show, and where F[(A) = H~(X; (j) 181 A), 
F.P($) = HP(X·$) and Fr,p(A $) = H~nw (X'A,o, $) Thus the 2 W" , n-r-p' '<Y • 

result follows from 11-6.2. 0 

10.2. Corollary. In the situation of 10.1 assume that (j) is locally con
stant with stalks L and that X is pamcompact, e.g., X a pamcompact n
hmL. Put [Xl = /),.(1) E Hn(X; (j}-1), which is called the "fundamental 
homology class" of X, where 1 E L c r(L) = HO(X; L) is the section 
with constant value 1. Then for ili paracompactifying, the homomorphism 
/),. : H:(X; A) --+ H!_p(X; (j}-1 181 A) is given by 

I /),.(a) = [Xl n a·1 

Proof. We have [Xl n a = /),.(1) n a = /),.(1 U a) = /),.(a) by 10.1. 0 

10.3. We shall now consider "computation" of the cap product by means 
of resolutions and shall obtain in the process some additional facts about 
the cap product. 

For the remainder of this section we let p" be a c-soft, torsion-free 
resolution of L on X. Let JI;'* be a c-soft resolution of L on a space Y. 
Then P*~JV* is a c-soft resolution of L on X x Y by Exercise 14(b) of 
Chapter II. Moreover, if X = Y then P" 181 JV* is a c-soft resolution of L 
on X, by 11-9.2 applied to the diagonal, or, more directly, by 11-16.31. 



§10. The cap product 339 

By II-15.5, rc(9'*®.A'*) ~ rc(9'*) ® rc(.A'*) and so, using the identity 
Hom(A ® B,G) ~ Hom(A,Hom(B,G)), we obtain the canonical isomor
phism 

The homology of the left-hand side of this equation is H*(X x Yj L). 
If .A'* is torsion-free, then Hom(r c(.A'*), L*) is divisible, whence injective, 
so that the algebraic Kiinneth formula (see [54] or [75]) yields the exact 
sequence 

EaExt(H~(X;L),Hq(Y;L» >-+ H,,(X x Y;L) -* EaHom(H~(X;L).Hq(Y;L». (58) 

which splits. 
We now restrict our attention to the case of one space X = Y, and we 

let .A'* = #* (X j L) (or any injective resolution of L) for the remainder of 
this section. Consider the homomorphism 

n: Hom(rc(9'* ®.A'*IU),L*) ®9'*(U) -+ Hom(rc(vt"'IU),L*) 

of presheaves on X defined by (f n s)(t) = f(s u t), where U : 9'*(U) ® 
r c (.A'* IU) -+ r c (9'* ® .A'* I U). This defines a homomorphism of sheaves 

n : 9JJ(9'* ®.A'*) ® 9'* -+ 9JJ(.A'*). 

Let vII* = #*(X; L) (or any injective resolution of L) and let 9'* ®.A'* -+ 

vII* be a homomorphism of resolutions. We have the induced homomor
phism 9JJ( vii * ) -+ 9JJ( 9'* ® .A'*) and hence a homomorphism 

We shall show shortly that this product induces the cap product defined 
earlier. 

We claim that for fEr ~ ( 9JJm (vII*)) and s E r>It (9'*) we have 

d(f n s) = df n s + (_l)m f n ds. (60) 

In fact, for t E r c(.A'*) we compute [recall the definition of the differential 
in 9JJ* ( .A'* ) ] 

(d(fns))(t) = d«(fns)(t)) - (-l)m-p(fns)(dt) 
= d(f(s u t)) - (_l)m-p f(s U dt) 

(df)(s U t) + (_1)m f(d(s U t)) - (_1)m-p f(s U dt) 
= (df)(s U t) + (_1)m f(ds U t) 
= [df n s + (_1)m f n ds](t). 

Now, if..J1 and $ are sheaves on X, we have the homomorphism 

(9JJ(vII*) ®..J1) ® (:£* ® $) -+ 9JJ(.A'*) ® (..J1 ® $) (61) 
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and hence 

which, of course, also satisfies (60). Since fl* is torsion free, fl* 0 Ell is 
c-soft and hence Ill-soft for III paracompactifying, by II-16.31 and II-16.5. 
Also, if fl* is flabby and Ell is elementary, then p* 0 :11 is flabby by 3.8. 
Thus we see that (62) induces a product 

when either III is paracompactifying or :11 is elementary. 
When III and <I> n III are both paracompactifying, it is easy to see that 

(63) coincides with our previous definition (52). This can be seen directly 
for p = 0 and follows in general from II-6.2 and the fact from (60) that (63) 
commutes with connecting homomorphisms in the variable :11. 

10.4. We shall digress a moment to consider a slight generalization of the 
exact sequence (9) on page 292. Let fY be a locally constant sheaf on X 
with stalks isomorphic to L and let &l* be a replete resolution of L on X. 
(Note that repletion is easily seen to be a local property, so that &l* 0 fY 
is a replete resolution of fY.) The homomorphism 

e : Hom(rc(&l* 0 fYIU), L*) 0 fY(U) ---t Hom(rc(&l*IU), L*) 

of presheaves defined as in the development of (59) by B(J 0t)(s) = f(sut) 
induces a homomorphism 

of sheaves. This is an isomorphism since fY is locally isomorphic to L. 
Now, fY has an "inverse" sheaf fY- 1 (I.e., such that fY 0 fY- 1 ~ L). 

Thus we obtain the natural isomorphism 

and in particular, we have that 

If we take &l* = .9'* (X; L), then (64) and 2.3 provide the split exact se
quence 

We claim that when L is a field, the isomorphism provided by (65) is 
given by the cap product pairing. (Recall that we may take L· = L when 
L is a field, by 2.7.) 
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10.5. Theorem. If L is a field and if f!i is a locally constant sheaf with 
stalks L, then for each degree p the cap product pairing 

n : Hp(X; f!i-l) ® H~(X; f!i) _ H8(X; L) ~ L 

is nonsingular, and in fact, the induced map 

Hp(X; f!i-l) _ Hom(H~(X; f!i), L) 

is an isomorphism coinciding with that of (65). 

Proof. Note that over a field every c-soft sheaf is replete. Let g;", .A'* 
and .At* all be 9" (X; L), and as above, let U : g;* ®.A'* - .At" be any 
given homomorphism of resolutions. Use U to also denote the obvious map 
g;* ® f!i ®.A'* - .At* ® f!i, and consider the homomorphism 

defined by 
«((1)(8)) (t) = f(8 U t). 

Clearly, 1((1)(8)1 c If I n It I E c; compare (62). 
Since L is a field, the homology in degree m of the right-hand side of 

(66) can be identified with 

E9Hom(HnX;f!i),H~_p(X;L)). 
p 

Thus, using (64), (66) induces a map 

Hm(X;f!i- 1 ) - E9Hom(H~(X;f!i),H~_p(X;L)), 
p 

which is a f-t €Sa n (e) by the definition of (66) and of (63). 
Now, by (19) on page 300, there is a natural map 

17: fc(.1&m.(fc.A'*,L)) - Hom(r(.A'*),L) 

defined as follows: If f E Hom(fc(.A'*),L) with If I E c and if 8 E f(.A'*), 
select 8' E rc(.A'*) such that 8 = 8' on some neighborhood of If I and put 

17(1)(8) = f(8'). 

The augmentation L >-+ .A'* provides a canonical section 1 E r(.A'*) and a 
homomorphism 

Hom(r(.A'*),L) - Hom(L,L) - L 

taking 9 into g(l) E L. Together with 17, we obtain, finally, a homomor
phism 
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defined by v(f)(s) = rJ(f(s»(l). Note that the map rc(~(.A'*» --+ L 
induces the canonical surjection H8(X;L) ~ L defined by mapping X 
into a point. 

The homomorphism !J!* --+ !J!* 0.A'* defined by tensoring with 1 E 

r(.A'*) induces a map 

t-t : Hom(r c(uI(* 0 ff), L) --+ Hom(r c(!J!* 0 ff), L) 

defined by t-t(g)(s) = g(s U 1) E L. Thus we have the diagram 

Hom(r c(uI(* 0 ff), L) -L Hom(r c(!J!* 0 ff), r c( ~(.A'*») 
11L 111 (67) 

Hom(rc(!J!*0ff),L) 1. Hom(rc(!J!*0ff),L). 

We claim that this commutes. In fact, for f E Hom(r c(uI(* 0 ff), L) we 
have t-t(f)(s) = f(s U 1), while 

v «((f» (s) = rJ «((f)(s» (1) = «((f)(s» (I') = f(s U I') = f(s U 1), 

where I' = 1 on a neighborhood of lsi U 1((f)(s)1 E c and the support of I' 
is compact. 

Now using (64), (67) induces the commutative diagram 

Hm(X;ff- 1) £ EBHom(Hg(X;ff),H~_p(X;L» 

11L "=1 P 111" 
Hm(X; ff-l) "". Hom(H~(X; ff), L), 

where (*(0:)(,8) = 0: n ,8 and v* is the projection onto the factor with 
p = m followed by the canonical epimorphism € : H8(X; L) -+> L. The 
bottom horizontal map coincides, py definition, with that given by (65). 
The result follows. D 

10.6. Corollary. Let X be a paracompact n-whmL, where L is a field. 
Let ff be a locally constant sheaf on X with stalks L. Then the cup product 
pairing 0: 0 ,8 f--> €~ (0: U ,8) E L of 

HP(X; @ 0 ff-l) 0 H~-P(Xj ff) --+ Hr;(Xj @) ~ H8(Xj L) ~ L 
"" 

is nonsingular, and in fact, the induced homomorphism 

HP(Xj @ 0 ff-l) --+ Hom(Hr;-P(X; ff), L) 

is an isomorphism. 

Proof. We have ~(o: U,8) = (~o:) n,8 by 10.1, and the result follows 
immediately from this and 10.5. D 

10.7. Corollary. Let X be a compact n-hmL, where L is a field. Let ff 
be a locally constant sheaf on X with stalks L. Then HP(X; ff) has finite 
dimension over L for all p. 



§10. The cap product 

Proof. We have 

and 
H n -P(X;@@ff- 1) >:::;j Hom(HP(X;ff),L) 

since @@ (@@ ff- 1)-1 >:::;j @@ @-1 @ ff >:::;j ff. Therefore 

HP(X; ff) >:::;j Hom(Hom(HP(X; ff), L), L), 

which can happen only for a finite-dimensional vector space. 

343 

D 

Let us briefly indicate another definition of the cap product. By an 
inductive process we can define a natural homomorphism 

vi @ ~·(X; $) ....... ~·(Xj vi @ $) 

of differential sheaves. Thus we have the map 

~*(Xjvi) @ ~·(X;$) ....... ~.(Xj ~*(Xjvi @$)) 

[recalling that ~ .(Xjvi) = ~ .(X; L) @vi] and hence also 

If <P n \lI is paracompactifying, so that C~nw(X;.) is exact, a spectral 
sequence argument on the double complex on the right shows that its total 
homology is naturally isomorphic to H~nw(X;vi @$). Thus (68) induces 
a product that, as the reader is invited to prove, coincides with the cap 
product (52). 

10.8. Example. We shall illustrate the basic spectral sequence of 8.4 for 
3-manifolds with isolated singularities. Let K be a finite simplicial complex 
that is an orientable 3-manifold with boundary. (The main case of interest 
is that for which K is a convex solid polyhedron in IR3 .) Let M arise from 
K by identification, in pairs, of the 2-faces in oK. Then it is easy to see 
that M is locally euclidean except at its vertices. It will be orientable if 
the identifications all reverse orientation. In this case let L = Z or L = Z2. 
Otherwise, take L = Z2. The boundary of a star of a vertex (possibly after 
subdivision) is then a closed 2-manifold that is orient able if L = Z. Thus 
M is a manifold <=> each of these are 2-spheres. The sheaf .Yt 3 ( M j L) is 
constant with stalks L since it is represented everywhere by the 3-cycle 
that is the sum of all 3-simplices (coherently oriented if L = Z). The 
sheaf .Yt2 (Mj L) is concentrated at the vertices, and the stalk at a vertex is 
H 2 (UjL) >:::;j H 2 (U,BjL) >:::;j H 1(BjL); see 5.10, where U is the star at the 
vertex and B is its boundary, a 2-manifold. Hence.Yt 2 (M; L) = 0 <=> M is 
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a 3-manifold. Therefore r(.1t'2(M;L)) ~ Lk for some k, where k = 0 <=> M 
is a 3-manifold. In the spectral sequence of 8.4 we have 

E~,q = HP(M;.1t' _q(M; L)) ~ Lk, for q = -2 and p = 0, { 
HP(M; L), for q = -3, 

0, otherwise. 

Thus the spectral sequence degenerates into the exact sequence 

which is 

by 10.2. The Euler characteristic of this sequence gives bi - b2 + k - b2 + 
bi = 0, where bi is the ith Betti number of Mover L. Hence X(M) = 

1 - bi + b2 - 1 = b2 - bi = k/2. We conclude that M is a 3-manifold <=> 
X(M) = O. Of course, this is easy to derive by the elementary methods of 
simplicial homology and, in fact, is given in [73, p. 216]. <> 

11 Intersection theory 

This section is a continuation of the previous one. In it we show how 
to define a very nice intersection product in an n-hmL' For the sake of 
simplicity we restrict attention, for the most part, to the case of compact 
supports. Again for simplicity we shall assume that the n-hmL we deal 
with is locally hereditarily paracompact. This is so that we can conclude 
that dimclA X < 00 for any subspace A eM. 

Let M be a locally hereditarily paracompact n-hmL with orientation 
sheaf @ =.1t' n(M; L). Let.At and JII be elementary sheaves on M. By 5.7 
we have that 

for any closed subset F c M. By 9.6 we also have the isomorphism 

For A and B both closed in M there is also the cup product 

Combining these we define the intersection product 
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by 

I a. b = l1(Db U Da)·1 

(The reason for the reversal of order is indicated in [19J.) [The reader 
can verify that this generalizes to arbitrarily locally closed A and B with 
arbitrary support families ~ on A, 'II on B, and ~ n 'II on An B.J 

For the case A = M = B we have, using 10.2, 

a. b = l1(Db U Da) = [M] n (Db U Da) = ([M] n Db) n Da, 

so that 
I a • b = b n Da·1 

In the general case, using the notation iM,A : A <-t M, etc., we conclude 
from naturality that 

for a E H~(Aj (ff-l ®.At) and b E H~(Bj (ff-l ®JIr). Also, note the formulas 

I a. b = (_I)(n-deg (a))(n-deg (b))b. a I 
and 

I a. (be c) = (a. b) • c·1 

An obvious consequence of (69) is that for closed sets A, B c M, if a E 

H;(Aj (ff-l ® .At), b E H~(Bj (ff-l ® JIr), and i~,A(a) • i~,B(b) =I- 0, then 
An B =I- 0. 

If (ff-l ®.At ®JIr ~ L, then there is the augmentation e : H8(AnBj L) -+> 

L, and so we can define the intersection number 

I a· b = e(a. b) ELI 
for a E H;(Aj (ff-l ® .At), b E H~(Bj (ff-l ® JIr), and (ff-l ®.At ® JIr ~ L, 
with a given such isomorphism understood. Note then that 

I a· b = e(a. b) = e(b n Da) I 
for a E H~(Aj (ff-l ® .At), b E H~(Bj (ff-l ® JIr), and .At ® JIr ~ (ff. In 
particular, a· b is defined when a E H~(Aj L) and b E H~(Bj (ff-l ® L) or 
when a E H~(A; (ff-l ® L) and b E H~(Bj L). Note that the intersection 
number is a duality pairing. 

In [19, p. 373] an example is given of two tori A and B embedded in 
a 3-torus M such that 0 =I- [A]. [B] E H1(M) but with SHl(A n B) = O. 
In Borel-Moore homology, of course, we must have that H 1(A n B) =I- o. 
It is clear that Borel-Moore homology is the proper domain of intersection 
theory. 
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11.1. For the remainder of this section we shall restrict our attention to 
the case in which L is a field. Let ff be a locally constant sheaf on X with 
stalks L. Then we have the isomorphism 

1 "" 17: Hp(X;fY- ) ~ Hom(H~(X;fY),L) 

of 10.5 given by 17(a)({3) = c(a n (3). We introduce the notation 

I (a,{3) = c(a n (3) I 

for this pairing. Here a E Hp(X; ff-l) and (3 E Hf(X; ff). Note the 
formulas 

(ana,{3) = (a,aU{3), 
U*(a), (3) = (a, f*({3)), 

a· b = (a, Db), 
c(a) = (a, 1), 

all of which are immediate. Also note that since this "Kronecker pairing" 
is nonsingular, to define an element a E Hp(X; fY-l) it suffices to define 
(a,{3) for (3 in a basis of Hf(X;ff). 

We digress for a moment to discuss the homology cross product. Let 
ff and /7 be locally constant sheaves on X and Y respectively with stalks 
L. By the Kiinneth theorem, H~(X x Y; fY®/7) has a basis consisting 
of elements of the form a x (3, where a E Hf(X; ff) and (3 E Hg(Y; 9'). 
Therefore we can define a homology cross product 

by 

I (a x b,a x (3) = (_l)deg(a)deg(b)(a,a)(b,{3)·1 

(Note that deg(a) = deg(a) and deg(,B) = deg(b) when this expression is 
nonzero.) IfT: X x Y --7 Y X X is T(x,y) = (y,x), then 

since 

IT*(a x b) = (_l)(deg a)(deg b)b X aJ 

(a x b, a x (3) (-1 )deg(a) deg(b) (a, a) (b, (3) 
( -1 )deg(a) deg(b) (b, (3) (a, a) 
(b x a, (3 X a) 
(_l)deg (a)deg (b)(b X a,T*(a x (3)) 
(_l)deg(a) deg(b) (T.(b X a),a x (3). 

In dimension zero we have 

I c(a x b) = (a x b, 1) = (a x b, 1 x 1) = (a, l)(b, 1) = c(a)c(b).J 

(70) 
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In general, we have 

1 (a x b) n (0: x (3) = (_l)deg(a) deg(b) (a no:) X (biiflJ 

as can be verified easily by pairing both sides with cohomology classes of 
the form 0:' x f3' and comparing results. It is also easy to verify that in an 
n-hmL we have 

1 (a. b) x (c. d) = (_l)(n-deg(a))(n-deg(d))(a x c). (b x d). 1 

Remark: It is natural to ask how much more generally the homology cross 
product can be defined. In the present situation where L is a field, it is 
not hard to generalize to the case of arbitrary paracompactifying support 
families and arbitrary coefficient sheaves. If L is not a field, then one can 
still define the cross product for closed supports and coefficients in L by 
using the fact that Hp(X;L) ~ Hp(Hom(F*rc(.1*(X;L»,L», where F* 
denotes the passage to a projective resolution. However, I see no way to 
pass from this to general coefficient sheaves. 

11.2. Now we confine our attention to the case in which Mn is a com
pact, connected, metrizable n-hmL and L is a field. Recall from 10.7 that 
H*(Mj L) is finitely generated. Let [M] E Hn(Mj @-l) ~ HO(Mj L) ~ L 
be the fundamental class or any generator and let 'Y E Hn (M j @) be its 
Kronecker dual classj i.e., ([M], 'Y) = 1. Note then that [M] x [M] -I- 0 since 

([M] x [M], 'Y x 'Y) = ±([M], 'Y)([M], 'Y) = ±l. 

Thus we may take 
[M x M] = [M] x [M]. 

Note that ([M] x [M])n(Da x Db) = (-l)ndeg(b)([M]nDa) x ([M] nDb) = 
(_l)ndeg (b)a x b, so that 

1 D(a x b) = (_l)ndeg(b)D(a) x D(b)·1 

Let d : M ---+ M x M be the diagonal map. Then there are two "diagonal" 
classes, 

and 

11.3. Theorem. We have 

1 [Lll] = LaEB a X ao,1 

where B is a basis of H.(Mj L) and aO E H.(Mj @-l) is the element cor
responding to a in the intersection product dual basis (i. e., a . bO = Oa,b for 
a, bE B). Also, 
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Proof. We can write [~lj = 2:a,b Aa,ba x bO for some coefficients Aa,b E L. 
Note that deg(a) = deg(b) in this sum. Then, using lal = deg(a) , we 
compute 

Aa,b = c(Aa,b(a. aO) x (b. be)) 
(-l)lal(n-lal)c(Aa,b(ao. a) x (b. be)) 
(-l)lal(n-laIHlallblc(Aa,b(aO x b). (a x be)) 

= (_1)n 1a1c((ao x b) • Aa,b(a x be)) 
= (-1)n1a1c((ao x b) • [~1]) 
= (_1)n 1al ([~d, D(aO x b)) 

(-1)n 1al(d*[Mj, D(aO x b)} 
(-1)n 1al([M],d*D(aO x b)) 
([M], d*(D(aO) x D(b))) 
([Mj, D(aO) U D(b)) 
([Mj n D(aO), D(b)) 
(aO, D(b)) = b· aO = Oa,b, 

which gives the first formula. The second formula follows from the first by 
the rule (70) for changing order in a cross product. 0 

Now suppose that f : M ~ M is a self map, and put 

I W/j = (1 x f)*[~2j E Hn(M x M; @-l~L), I 
the fundamental class of the graph of f. Now, f* : Hn(M; L) ~ Hn(M; L) 
can be written in terms of the basis B as f*(b) = 2:aEB Aa,ba for some 
coefficients Aa,b E L. Then the Lefschetz fixed-point number is defined to 
be L(f) = 2:aEB(-l)deg (a)Aa ,a' 

11.4. Theorem. (Lefschetz fixed-point theorem.) Let M be a compact 
metrizable n-hmL where L is a field, and let f : M ~ M. Then 

In particular, if L(f) =1= 0, then f has a fixed point. 

Proof. We compute 
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Of course, the last statement holds because [r JJ . [D.lJ i:- 0 implies that the 
graph r J = {(x,J(x))} intersects the diagonal D. = {(x, x)} nontrivially, 
since [rJJ. [D.lJ can be regarded as a class in Ho(rJ n D.;L). 0 

This can easily be generalized to the case of homology manifolds with 
boundary (see Section 16) either directly or by the technique of doubling; 
see [19, p. 402J. The present version of the Lefschetz fixed-point theorem 
is not quite subsumed by the classical one, as given in [19, IV-23.5J, since 
there are homology manifolds that are not locally contractible. 

12 Uniqueness theorems 

In this section we show that on the category of de,£, spaces the definition 
of cohomology by means of flabby resolutions can be dualized to obtain the 
homology theory in an essentially unique manner. 

12.1. Definition. A precosheaf ~ on X is said to be "locally zero" if for 
any open set U C X and y E U there is a neighborhood V C U of y with 
iu,v : ~(V) -+ ~(U) trivial. 

Note that a cosheaf is locally zero -# it is zero. 

12.2. Definition. A homomorphism h : ~ -+ ~ of precosheaves is said 
to be a "local isomorphism" if the precosheaves Ker h and ~ / 1m h are both 
locally zero. 

If ~ and ~ are cosheaves and h : ~ -+ ~ is a local isomorphism, then 
a simple diagram chase shows that ~ / 1m h is a cosheaf. Another diagram 
chase then shows that h is actually an isomorphism of precosheaves. Thus 
a local isomorphism of cosheaves is an isomorphism. More generally, see 
Exercise 1 and Chapter VI. Note that for locally connected X the constant 
cosheaf .c, as defined in Section 1, exists and that the canonical homomor
phism .c -+ L to the constant precosheaf is a local isomorphism. 

For any precosheaf ~ on X and any L-module M we put ~(~, M) = 
fllleeal(U 1-+ Hom(~(U), M)) and &'J(~, M) = fllleeal(U 1-+ Ext(~(U), M)). 

12.3. Proposition. If h : ~ -+ ~ is a local isomorphism of precosheaves, 
then the induced sheaf homomorphisms ~(~, M) -+ .Y&me(~, M) and 
&'J(~, M) -+ &'J(~, M) are isomorphisms for any L-module M. 

Proof. Let J.t(U) = Ker h(U), J(U) = 1m h(U), and <!(U) = ~(U)/J(U). 
We have the exact sequences of precosheaves 

and 
o -+ J -+ ~ -+ <! -+ o. 
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For x EX, the definition of local isomorphism implies that for any neigh
borhood U of x there is a neighborhood V C U of x with J\(V) --+ J\(U) 
and \!(V) --+ \!(U) both trivial. We have the following exact sequences, 
natural in U: 

0--+ Hom(J(U), M) --+ Hom(2{(U), M) --+ Hom(J\(U) , M) 

--+ Ext(J(U), M) --+ Ext (2{(U) , M) --+ Ext(J\(U) , M) --+ 0, 

and 

o --+ Hom(\!(U), M) --+ Hom(~(U), M) --+ Hom(J(U), M) 

--+ Ext(\!(U), M) --+ Ext(93(U), M) --+ Ext(J(U), M) --+ o. 
These sequences remain exact upon passage to the direct limit over neigh
borhoods U of x. However, 

UmHom(J\(U), M) = 0 = UmExt(J\(U), M) 

and 
UmHom(\!(U),M) = 0 = UmExt(\!(U),M). 

This implies that the homomorphisms ~(~, M)x --+ ~(2{, M)x and 
~J(93, M)x --+ ~J(2{, M)x are isomorphisms. 0 

12.4. Definition. A locally compact space X is said to be k-hlcL if for 
each x E X and each neighborhood U of x there is a neighborhood V C U 
of x such that the homomorphism 

is trivial. The space X is hlc,£ if it is k-hlcL for all k $ n. 

For convenience we make the following definition. Note that it is not 
entirely symmetrical. 

12.5. Definition. Let M be an L-module. Let!J!* be a differential sheaf 
and let e : M --+ HO(!J!*) be a homomorphism of presheaves [i.e., M --+ 

HO(!J!*(U» for all open U]. Then !J!*, together with e, is called a "quasi
n-resolution" of M provided that 

(a) !J!* is bounded below, 
(b) 3{P(!J!*) = 0 for all 0 =f. p $ n, 
(c) e induces an isomorphism M --+ 3{o(!J!*) of sheaves. 

Similarly, let ,C* be a differential cosheaf and 'T/ : Ho('c*) --+ L a homo
morphism of precosheaves. Then ,C*' together with 'T/, is called a "quasi-n
coresolution" of L provided that 

( a/) ,C* is bounded below, 
(b/) Hp('c*) = 0 for p < 0 and Hp('c*) is locally zero for 0 =f. p ::; n, 
(c /) 'T/ is a local isomorphism of precosheaves. 

We call,C* an ''n-coresolution'' if also 'cp = 0 for p < o. 
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In the above situation we define HO(se·) Cokerc and Ho('c.) = 
Ker T}, the "reduced" groups in degree zero. Note, then, that the precosheaf 
Ho('c.) is locally zero, and the presheaf HO(se·) generates the zero sheaf. 

Immediately from the definition of Borel-Moore homology we have: 

12.6. Theorem. X is hlc'l ¢:} C;(e ;L) is a quasi-n-coresolution of L. 
D 

12.7. Theorem. If there exists a quasi-n-coresolution ,C. of L by flabby 
cosheaves, then X is clc'l and ~.(,C.; M) is a quasi-n-resolution of M by 
flabby sheaves for any L-module M. 

Proof. For U open in X, we have, by 2.3, the natural exact sequence 

0-> Ext(Hp_l ('c.(U)), M) -> HP(~· ('c.; M)(U)) 
-> Hom(Hp('c.(U)), M) -> O. 

(71) 

Since ~a:I(Hp_l('c.),M) = 0 for 1 -# p ::; n + 1 and ~a:I(Ho('c.),M) ~ 
~a:I(L, M) = 0 by 12.3, we obtain, also by 12.3, 

xP(~.('c . M)) ~ .Y&.n(H (,C ) M) ~ {.Y&.n(L, M) ~ M, for p = 0, ., ~ p., ~ 0, for 0 -# p ::; n. 

Also, by 12.5(b') we have HO(~.(,C.; M)(U)) ~ Hom(Ho('c.(U)) , M) and 
HP(~·('c.;M)) = 0 for 0 < p::; n. The hypothesized map Ho('c.) -> L 
induces a map 

M ~ Hom(L, M) -> Hom(Ho('c.(U)); M) ~ HO(~.(,C.; M)(U)), 

which induces the isomorphism M ~ X O ( ~. ('c.; M)). This shows that 
~.(,C.; M) is a quasi-n-resolution of M. Since Ext(L, M) = 0, it is easy to 
see that (71) also holds for the reduced groups in all three terms. 

Now, ~. (,c.; M) is flabby by 1.10, so that there is a natural isomorphism 
(in the reduced case also) 

(72) 

by IV-2.5. Now take p ::; n, M = L, and let W eVe U be neighborhoods 
of any point x E X for which the maps Hr('c.(W)) -+ Hr(.c.(V)) -> 
Hr(,C.(U)) are both zero for r = p or p - 1. We have the commutative 
diagram 

HP(U; L) 

_ 1 
-> HP(V;L) 

_ 1 
-> HP(W;L) 

with exact middle row. By II-17.3, the map ffP(U; L) -> HP(W; L) is 
trivial, and it follows from II-17.5 that X is clc'l. D 
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12.8. Suppose that X is hlc'l. Then combining 12.7 with (72) and the 
sequence (71) we obtain the split exact universal coefficient sequence 

I O--+Ext(H~_l (X; L), M) --+HP(X; M) --+Hom(H~(X; L), M) --+0 I 
for p :S n, where M is any L-module. In 13.7 we will extend this to the 
relative case. 

12.9. Theorem. Suppose that X is clc2+1. Then '1J(P*)is a flabby quasi
n-coresolution of L for any c-soft quasi-(n + I)-resolution p* of L. Also, 
X is hlc'l and there is a natural isomorphism Hp('1J(P*)(U)) ;::;; H~(U; L) 
for p:S n. 

Proof. Recall that '1J(2*) is the cosheaf U f--+ rc(~(2*)IU). Note that 
for K compact, 2*IK is also a c-soft quasi-(n + I)-resolution of Lon K. 
Also recall that 

by 5.5, where K ranges over the compact subsets of U. 
By IV-2.4 there are natural isomorphisms 

for p :S n + 1. By 2.4 we have the natural exact sequence 

Ext(HP+1(K; L), L) >---> Hp(r(~(2*IK))) --» Hom(HP(Kj L), L) (73) 

for p :S n, and passing to the limit over K c U (K compact, U open) we 
obtain the exact sequence (p:S n) 

lin} Ext (HP+1 (K), L) >---> Hp('1J(P*)(U)) --» lin} Hom(HP(K), L). (74) 

In particular, we conclude that Hp('1J(2*)(U)) = 0 for p < 0 because 
HO(K) is free, whence Ext(HO(K), L) = O. We also have the surjection 

Ho('1J(2*)(U)) ~ limHom(Ho(K),L) ~ Hom(L,L);::;; L. 

Thus we can form the reduced group iIo('1J(2*)(U)), and it is clear that 
(74) is defined and remains exact for the reduced groups in all three terms. 
It is also clear that it now suffices to show that for p :S n the precosheaf 
iIp('1J(2*)(e)) is locally zero for the first part of the theorem. 

Let U be a given neighborhood of x E X. According to the definition 
of the property clc2+1, we can find a compact neighborhood N of x with 
N c U and an open neighborhood V C N of x such that the restriction 
iIr(N) --+ iIr(v) is trivial for r :S n + 1. Thus, if K' and K are compact 
with K' eVe N eKe U, then iIr(K) --+ iIr(K') is trivial, as are 

Hom(iIp(K'), L) --+ Hom(iIP(K), L) 
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and 
Ext (HP+1 (K'), L) -+ Ext (HP+1 (K), L), 

for p ::s n. Thus the latter two maps induce zero homomorphisms upon 
passage to the direct limits over K' c V and K cU. If lV c V bears the 
same relationship to V as does V to U, an argument using II-17.3, similar 
to the one employed in the proof of 12.7, shows that the map 

is trivial for p ::s n, and this finishes the proof of the first part of the 
theorem. 

For the second part of the theorem, note that there exists a homo
morphism !J!* -+ 9*(X; L) of differential sheaves, unique up to homo
topy and inducing an isomorphism of derived sheaves through dimension 
n + 1 (which generalizes the same statement for resolutions), and in the 
same way as in the proof of (10) on page 293, we obtain an isomorphism 
Hp(X; L) ~ Hp(qj)(!J!*)(X)) for P::S n. Thus, we have (K ranging over the 
compact subsets of U) 

by 5.3 or 5.6 for p ::s n. That X is hlc,£ is implicit in the foregoing proof; 
it is also immediate from (9) on page 292. D 

From 12.6, 12.7, and 12.9 we have: 

12.10. Corollary. hlc,£ =} clc,£ =} hlc~-l. D 

12.1L Theorem. If £* is a quasi-(n + l)-coresolution of L by flabby 
cosheaves, then there is a natural isomorphism H~(X; L) ~ Hp(£*(X)) 
for p ::s n. If!J1* is also a flabby quasi-(n + l)-coresolution of Land 
f : £* -+ !J1* is a chain map preserving the augmentations, then the in
duced map Hp(£* (X)) -+ Hp(!J1* (X)) is an isomorphism for p :::; n. 22 

Proof. Consider the differential cosheaf Q(* = ::D (::D (£*)). The natural 
map £* -+ Q(* of differential cosheaves from (6) on page 290 induces a 
homomorphism 

(75) 

of differential sheaves. Both sides of (75) are flabby quasi-n-resolutions of 
M, by 12.7 and 12.9. It is easy to check that (75) preserves the augmenta
tions and hence that the induced homomorphism of derived sheaves is an 
isomorphism through degree n. By IV-2.2 it follows that the induced map 

22If we also assume that X is hlc~+l in this theorem, then the conclusion can be 
improved to p :S n + 1 by using results from Chapter VI. 



354 V. Borel-Moore Homology 

is an isomorphism for p ::; n. 
If M is injective, Hom(., M) is exact, and since we may take M* = M, 

we obtain the commutative diagram 

~ 

---; Hom(HpU~*(X)), M) 

for M injective and for p ::; n [or use (71)]. Thus, for p ::; n, 

Hom(Hp(Q{*(X)), M) -+ Hom(Hp(.c*(X)), M) 

is an isomorphism for all injective M. We claim that it follows that 
Hp(.c*(X)) -+ Hp(Q{*(X)) must be an isomorphism for p::; n. Indeed, sup
pose h : A -+ B to be a homomorphism of L-modules with Hom(B, M) ~ 
Hom(A, M) for all injective M. Letting K = Ker h, I = 1m h, and 
C = B / I, we have the exact sequences 

0-+ Hom(I, M) -+ Hom(A, M) --+ Hom(K, M) -+ 0 

and 
0-+ Hom(C, M) -+ Hom(B, M) -+ Hom(I, M) -+ O. 

If follows that Hom(C, M) = 0 = Hom(K, M) for all injective M. But 
any module admits a monomorphism into some injective module, whence 
C = 0 = K, and hence h: A ~ B as claimed. 

Moreover, by 12.7 and 12.9, Hp(Q{*(X)) ~ H~(X; L) for p::; n, and this 
completes the proof of the first part of the theorem. The last part of the 
theorem follows easily from the proof of the first part. 0 

12.12. Example. Take L = IR and let np be the sheaf of germs of differ
entiable p-forms on the oriented smooth manifold Mn. Put.cp = r cnn-p 
with the induced differential. If V ~ IRn is an open set in Mn, then 
Hp(.c*(V)) = H~-P(V; 1R) = IR for p = 0 and is zero otherwise. There is 
the augmentation 

Ho(.c*(U)) = H~(U; 1R) & R 

It follows that .c* is a flabby coresolution of R Thus, by 12.11, 

which is Poincare duality in this situation. 

12.13. Example. Let X = IRn and suppose that F c X is any closed 
subspace. Let 0 -+ L -+ vi° -+ ... -+ vin -+ 0 be any flabby resolution 
of Lon X. For example, by Exercise 28, we can take viP = <tjP(X; L) for 



§12. Uniqueness theorems 355 

p < n and.yin = In(X; L). For an open set U C X, define the precosheaf 
'cp on F by 

with the induced differential. (Note that this depends only on UnF rather 
than on U.) Then'cp is a flabby cosheaf on F by Exercise 3 and the remarks 
below (27) on page 94. Now, 

Hp(,C*(UnF)) = H~;~F(U;L) 
~ H~-P(U, U - F; L) 
~ H~(UnFiL) 

There is the augmentation 

since .yi* is flabby 
by 11-12.1 
by 9.3. 

Ho('c*(U n F)) ~ H8(U n F; L) ~ L. 

This is a local isomorphism of precosheaves on F if F is dci by 5.14. Also, 
for U C W, the map Hk('c*(U n F)) --+ Hk('c*(W n F)) is equivalent to 
the map Hk(U n F; L) --+ Hk(W n F; L) induced by inclusion. For k =I 0 
this is zero when U is a sufficiently small neighborhood of a given point 
x E W provided that F is k-hlcL . Consequently, Hk('c*) is locally zero <=> 
F is k-hlcL . Thus'c* is a flabby n-coresolution of Lon F if F is hlcY-. <> 

12.14. Theorem. If X is HLO£, then the singular cosheaf 6* of 1.3 is a 
flabby quasi-n-coresolution of L. 

Proof. Since H*(6*(U)) is naturally isomorphic to the singular homology 
of U, by 1.3, the result follows immediately from the definition of the 
property HLCY-. 0 

12.15. Corollary. If X is HLCl+1 then the Borel-Moore homology groups 
H~(X; L) are naturally isomorphic to the classical singular homology groups 
of X with coefficients in L for p ~ n. 0 

We shall now consider general sheaves of coefficients. Recall the nota
tion introduced in 1.14. 

12.16. Theorem. Suppose that,C* is a flabby, torsion-free quasi-(n + 2)
coresolution of L on X. For sheaves :?lJ on X, there is a natural isomor
phism 

for p:::; n. 
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Proof. Note that X is clC~+2 by 12.7 and hence hlc~+1 by 12.10. Thus 
1)(~·(X;L)) is a flabby, torsion-free quasi-(n + l)-coresolution of L but 
perhaps not a quasi-(n + 2)-coresolution. Let £. = reP •. There is the 
natural homomorphism 

resulting from (6) on page 290. Note that !lJ(!lJ( p.)) is also torsion-free by 
3.4. We have the induced homomorphism 

and hence, applying r e, 

where % = flI(P.), which is a flabby quasi-(n+ 2)-resolution of L by 12.7. 
Note that 1)(%) is a quasi-(n + l)-coresolution of L by 12.9. 

Letting ~. = ~·(X; L), there is a homomorphism of quasi-(n + 2)
resolutions % ---> ~ •• We have the induced maps 

that is, 

The terms in (76) are all exact functors of $ by II-16.31. Thus we have 
the induced maps of connected sequences of functors 

By II-14.5 the terms of (76), and hence of (77), commute with direct limits 
in $. By 12.11 the homomorphisms of (77) are isomorphisms when $ = L 
and p ~ n. The same fact also follows easily for $ = Lu, U open, since, for 
example, (£.0Lu )(X) = £.(U). By the 5-lemma and by II-16.12 it follows 
that the class of sheaves $ for which the maps (77) are isomorphisms for 
p ~ n consists of all sheaves.23 0 

12.17. Corollary. If X is HLC],+2, then for any sheaf fJJ on X there is 
the natural isomorphism 

for p :S n; see 1.18. o 

Note that if $ is locally constant, then sH;(X; $) is the classical sin
gular homology group of X with local coefficients in $. 

23For [1j] constant, an alternative proof is suggested in Exercises 12 and 13. 
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12.18. Let.c. be a flabby, torsion-free quasi-(n + 2)-coresolution of Lon 
X and let U c X be open. Then 

Hp((.c. 0 ,q]x -u )(X)) ~ H;(Xj,q]x -u) ~ H;(X, Uj ,q]) 

for p::; n, by 12.16 and (35) on page 306. If.c. = rcQ'., then 

Since (.c* 0 (e))(X) is an exact functor of sheaves, it follows that 

and hence that 

I H~(X, Uj,q]) ~ Hp((.c. 0 .o/J)(X)/(.c. 0 ,q])(U)) I (78) 

for p ::; n. In Section 13 this fact will be generalized to arbitrary locally 
closed subspaces. 

12.19. We shall now consider arbitrary paracompactifying families of sup
ports. We need some preliminary remarks. Suppose that h : 2{. -+ ~. is 
a homomorphism of flabby differential cosheaves, where 2{. = r coYi. and 
~. = rc,q]. with oYi. and &1. c-soft. By 1.9, h induces (and is induced by) 
a homomorphism oYi. -+ ,q]., which we shall also denote by h. On stalks at 
x E X the latter is the induced map 

of quotient groups. Suppose that 

(80) 

is an isomorphism for all p ::; n and all open U eX. Then the 5-lemma 
implies that (79) induces an isomorphism in homology, and thus the map 

is an isomorphism for all p ::; n. If <l> is a paracompactifying family of 
supports on X and if dim1> X < 00, then it follows from IV-2.2 and II-16.5 
that 

h. : H p (r1>(oYi.)) -+ H p (r1>(,q].)) 

is also an isomorphism for p ::; n. 

12.20. Theorem. Let.c. = fcQ'* be a flabby quasi-(n + 2)-coresolution 
of L on X, where dimL X < 00. Let,q] be a sheaf on X, and assume that 
either ,q] = L or that.c. is torsion-free. Then for any paracompactijying 
family <l> of supports on X, there is a natural isomorphism 

I H:(Xj,q]) ~ Hp(r1>(Q'. 0 ,q])) for p::; n.' 
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Proof. Consider the maps in (76) that are maps of differential cosheaves, 
as follows either from their definition or by replacing &1 by &1u and using 
their functorial nature. Both of these maps satisfy the hypotheses of 12.19 
that (80) is an isomorphism, as shown in the proof of 12.16, and the present 
result follows from 12.19. 0 

12.21. Corollary. If X is HLCL+2 and has dimL X < 00, then for if> 
pamcompactifying and &1 arbitmry there is a natuml isomorphism 

I sH:(X; &1) ~ H:(X; &1) I 
for p :5 n; see 1.18. o 

12.22. Let X be hlc2; n ~ O. Consider the canonical flabby quasi-n
coresolution ,c* = rcfl'*, where fl'* = Cjg'*(X;L). By the proof of 5.13 we 
see that d : ,co -+ ,c-1 is an epimorphism and that its kernel j{ is a flabby, 
torsion-free cosheaf. It follows that the differential cosheaf 

... -+ ,c2 -+ ,c1 -+ j{ -+ 0 

is a flabby, torsion-free n-coresolution of L; i.e., it vanishes in negative 
degrees. 

13 Uniqueness theorems for maps and 
relative homology 

In this section we shall apply the methods of the last section to maps of 
spaces and to relative homology theory. 

Suppose that f : X -+ Y is a map between locally compact spaces. Let 
JV* and fl'* be replete differential sheaves on X and Y respectively and let 
k' : fl'* "-> JV* be an f-cohomomorphism. By (24) on page 301 we have the 
induced homomorphism 

(81) 

for any sheaf A on Y and family if> of supports on Y. If JV* and fl'* are 
quasi-resolutions of L, then as in (27) on page 302 it can be seen that in 
homology, (81) induces the canonical homomorphism 

(82) 

either when if> = c or when if> is paracompactifying and dimL X and dimL Y 
are both finite, as well as in other cases (see 5.6). This was proved for 
resolutions, but the proofs apply to quasi-resolutions. 

Let 1)1* and ,c* be flabby, torsion-free quasi-(n + 2)-coresolutions of L 
on X and Y respectively, with 1)1* = r c..#* and ,c* = rcfl'*. Suppose we 
are given an J-homomorphism 

k : 1)1* "-> ,c* (83) 



§13. Uniqueness theorems for maps and relative homology 359 

(i.e., a homomorphism rn .. ~ ..coO)' Since rn .. = rc{fcuYoO}, k corresponds 
to a homomorphism fcuY .. ~ P... The homomorphisms ku : 1)1 .. (1-1 U) ~ 
..c .. (U) induce homomorphisms 

that is, an f-cohomomorphism 

(84) 

Letting p* = !1J(..c .. ) and.N* = !1J(I)1 .. ), we obtain the diagram. 

(85) 

where the lower map is from (81) and the vertical maps are from 1.13. It 
is easy to check that this diagram commutes. Tensoring with A, using 4.3, 
and applying r4>, we obtain the commutative diagram 

(86) 

If ~ = c or if ~ is paracompactifying and dimL X and dimL Yare both 
finite, then the vertical maps in (86) induce isomorphisms in homology in 
degrees at most n + 1 by 12.11 and 12.19. Thus, in either of these cases, 
the induced homomorphism 

may be identified, via 12.16 or 12.20, with f .. for p :5 n. 
In particular, if X and Yare both HL C'L+ 2 , the classical homomor

phism sH~(X) ~ sH~(Y) coincides with f .. : H~(X) ~ H~(Y) via 12.15 
for p:5 n. 

We shall now consider the relative homology of a pair (X, A) where A 
is locally closed in X. For A open this already has been discussed in 12.18. 
The discussion will be divided into several subsections. 

13.1. Let.N* be a c-soft differential sheaf on A. Then there is the canonical 
homomorphism 

(i c !1J(.N*))(X) = rcldIA(.mm(rc.N*,L*)) ~ Hom(rcnA(.N*),L*) 

= Hom(rc(i.N*), L*) = !1J(i.N*)(X) 

(see Section 4), where 71 is the monomorphism (19) on page 300. We have 
a similar map when X is replaced by an open subset U eX, and therefore 
we obtain the canonical monomorphism 

(87) 
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Now let !]!* and ,Ai* be replete quasi-resolutions of the L-module M on 
X and A respectively, and let 

be an epimorphism with c-soft kernel :J{*. Then the composition 

is a monomorphism. Denote its cokernel by .At *' so that the sequence 

(88) 

is exact. 
Note that if A were closed, then (87) would be an isomorphism by 2.6, 

and it would follow that .At* = @(:J{*). 
As in Section 4 (also see II-8), we can construct a diagram 

!]!* 

1 
~*(X; M) 

--; i.Ar* 
1 

---> i~*(A; M), 

which commutes up to chain homotopy. Letting M = L, we then obtain 
the "dual" diagram 

0-. ~*(A;L)X -. ~ *(X; L) -. ~*(X, A; L) -. 0 

1 1 (89) 

0-. @(uJr*)X --> @(!]!*) --> .At * --> 0, 

in which the square commutes up to chain homotopy. According to II
Exercise 47 this diagram induces, in a natural way, a commutative diagram 

(90) 

and it follows from the 5-lemma and (16) on page 294 that the vertical 
maps are all isomorphisms. 

The diagram (89) can be tensored with any sheaf.;1, and the rows will 
remain exact provided that .At * *.;1 = 0 [e.g., when A is closed and :J{* 
is replete, since .At* = !:Zi(:J{*) is then torsion free]. Thus, by the same 
argument we have that 

(91) 

when.At* *.;1 = o. 
Taking sections with supports in <1>, the rows of (89) (having previously 

been tensored with .;1) will remain exact provided that <1> is paracompact
ifying (or that A is closed and .;1 is elementary). Thus, using 3.5, 5.6, 
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and the above argument [on the analogue of (90) for global homology], we 
obtain the isomorphism 

I H~(X,A;A) ~ H.o(rif.>(vf{.o ®A)) I (92) 

when vf{.o * A = 0, provided either that ~ = c or that <I> is paracompacti
fying and dimL X < 00 [as well as other cases resulting from 5.6]. 

13.2. In this subsection we shall specialize the discussion to the case of a 
closed subset F = A and shall consider the situation in which JV" = 2* IF. 
Then the sequence 0 ---+ :J{* ---+ 2* ---+ iJV" ---+ 0 becomes 

(93) 

(all of which are replete by 3.3, since 2* is replete). Thus, in this case, we 
obtain the natural isomorphism 

(94) 

When <I> = c or when <I> is paracompactifying and dimL X < 00, then 

(95) 

Moreover, the homology sequence of the pair (X, F) may be identified with 
the sequence induced by (93). Also, see the remark below 5.10. 

13.3. Let m* and ,C. be flabby quasi-(n + 1)-coresolutions of L on A and 
on X respectively, and recall that by 2.6 we have 

(96) 

Recall also that by definition m; = im* and that, if m* = r c.;V* then 
m; = rc{ur;;} by 1.16. Let 

be a monomorphism (of differential precosheaves) with flabby coke mel Ji* 
(which is automatically a cosheaf, as is seen by an easy diagram chase). 
Then for any L-module M we have the induced exact sequence 

[by (96)] of differential sheaves. Note that by 12.6 this situation exists if 
X and A are both hlc'{+ 1 . 

13.4. Theorem. Suppose we are given flabby quasi-( n + 1) -coresolutions 
m* and ,C* of L on A and X respectively and a monomorphism m; >--+ ,C* 
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with flabby cokemel J{.. = reX.. ( where X" is c-soft). Then there is a 
natural isomorphism 

I Hp(J{" (X)) ~ H~(X, A; L) I 
for p S n. If dimL X < 00, then for any paracompactifying family q, we 
have the natural isomorphism 

for p < n. 

Proof. Let..c .. = re2 " , 1)1" = re.A'", and J{" = reX". Also, put 2" = 
@(..c .. ), f = @(1)1 .. ), and X* = @(J{*). The sequence 

o ---> 1)1: ---> ..c* ---> J{" ---> 0 

is equivalent to an exact sequence 

o --->.A'; ---> 2.. ---> X * ---> 0 

[see 1.9] and induces an exact sequence 

o ---> X* ---> 2* ---> if ---> 0 

[see (97)]. In turn, the latter sequence induces an exact sequence 

o ---> @(f)x ---> @(2*) ---> .AI * ---> 0 

[see (88)], that defines .AI*. 
The natural maps .A' .. ---> @(@(.A'*)) = @(f) and 2 .. ---> @(@(2 .. )) = 

@(2*), from (6) on page 290, induce a commutative diagram 

0---> ---> X" ---> 0 

1 (98) 

0---> ---> .AI * ---> o. 
[This is a special case of (85).] Applying r4> to this diagram, we see that the 
first two vertical maps induce isomorphisms in homology through degree 
n-1, by 12.11 and 12.19 [Le., the proof of 12.20]. The theorem now follows 
from the 5-lemma and formula (92). For q, = c we have the same conclusion 
through degree n by the proof of 12.11. 0 

Note that if all the sheaves in (98) are torsion-free, then we can tensor 
(98) with any sheaf A, retaining the exact rows, so that the conclusion 
of the theorem would remain true for arbitrary coefficient sheaves. In 
particular, this is the case when L is a field. If A is closed and if J{ .. 
is torsion-free (i.e., X* is torsion-free), then X* = @(J{*) is replete and 
.AI* = @(X*) (since A is closed) is torsion-free; see 3.4. Thus we have 
proved: 



§13. Uniqueness theorems for maps and relative homology 363 

13.5. Theorem. If in 13.4, A is closed or if L is a field, and if .c*, 1)1*, 
and J{* are torsion-free and dimL X < 00, then 

for p < n, for any sheaf.;{ and any paracompactifying family <P. If cp = c, 
then dimL X need not be finite. 0 

By 1.18 the preceding two theorems apply to the singular homology of 
HLC spaces. That is, we have the following consequence: 

13.6. Corollary. Let X and A be HLC'l+l. If either cp = c or dimL X < 
00 with cp paracompactifying, then there is a natural isomorphism 

I sH:(X,A;L) ~ H:(X,A;L) I 
for p < n (p ~ n if cp = c). If A is closed, or if L is a field, we also have 
the isomorphism 

I sH:(X,A;';{) ~ H:(X,Aj.;{) I 
for any sheaf.;{ on X and p < n. o 

13.7. Theorem. Suppose that A c X are both hlc!, and that M is an 
L-module. Then there is a natural exact sequence 

I Ext(H;_l(X, A; L), M) >---+ HP(X,A; M) -+> Hom(H;(X,A; L), M), I 
for p ~ n, which splits. (Also see 12.8.) 

Proof. First consider the diagram 

o - .Y{* - g;* - iJlr* -0 

1 1 (99) 
o - I.Y{* _ /J*(X; M) _ i/J*(A;M) -0 

from 13.1, which has exact rows (by definition of.Y{* and I.Y{*) and homo
topy commutative square. The sheaf I.Y{* is easily seen to be flabby; see 
I1-12, which is analogous.24 We shall assume that .Y{*, g;*, and JIr* are all 
flabby and that g;* and JIr* are quasi-n-resolutions of the L-module M. 

Applying r<l? to (99) and using II-Exercise 47, we obtain the isomor
phism 

24Using the constructions at the beginning of Section 5, it can actually be seen that 
1:1(* is injective, but this is not needed. 
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We could take ;Y{* = ~* (X, A; M), and it follows that for general ;Y{* 

HP(r<I>(;Y{*)) ~ H~(X, A; M) 

for p :s: n. In particular, for p :s: n we have that 

HP(r(;Y{*)) ~ H(X, A; M). (100) 

Now take;Y{* = ~(~*;M), where ~* = rc~*(X,A;L), and similarly 
for p* and JIi". We have the exact sequence 

o ~ ;Y{* -+ p* -+ ivY* -+ 0, 

so that (100) holds for this choice of ;Y{* by 12.7. The desired universal 
coefficient sequence now follows from 2.3 applied to ~*' 0 

Remark: The sequence analogous to 13.7, with homology and cohomology ex
changed, is not generally valid if A is not closed. For example, let A be 
the disjoint union of infinitely many disjoint open arcs in X = §1 and let 
L be a field. Then dimHl(X,AiL) is uncountable, but dimHl(X,A) is 
countable, which rules out the existence of such a sequence. 

14 The Kiinneth formula 
Recall that in II-15 we proved a Kiinneth formula for cohomology. In 
(58) on page 339 we also found a Kiinneth formula for mixed homology 
and cohomology. The homology Kiinneth formula does not always hold in 
Borel-Moore theory, and an example of that will be given at the end of this 
section. In certain situations, however, one does have a Kiinneth formula. 
We shall first show that this is the case for dcl;' spaces, with compact 
supports and arbitrary coefficients, using the results of Section 12. Then 
we shall also derive a K iinneth formula for general spaces X, Y provided 
that one of them has finitely generated cohomology modules. 

Assume, for the time being, that X and Yare both hlcL. Let"C* = reP * 
and S)1* = r cJV* be flabby, torsion-free quasi-n-coresolutions of L on X and 
Y respectively, where p. and JV. are c-soft and torsion-free. By 12.22 we 
may assume that they vanish in negative degrees. 

Let "C* ~S)1* denote the differential cosheaf r c {!l! * ~JV.} on X x Y. 25 By 
II-15.5 we have that 

("c.~S)1.)(u x V) = "C*(u) 0 S)1*(V) 

for U and V open in X and Y respectively. It follows that the precosheaf 
H n (..c. ~s.n.), where "C* ~S)1* is given the usual total degree and differential, 
satisfies a natural Kiinneth formula 

0-+ EBHp("c.(U» 0 Hq(S)1.(V» -+ Hk(("c*~S)1.)(U x V» 
p+q=k 

-+ EBHp("c*(U» * Hq(S)1.(V» -+ 0, 
p+q=k-l 

25The sheaf .Q? .®.A'. is c-soft by II-Exercise 14. 
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and it follows that 'c.@SJl. is a flabby quasi-n-coresolution of L on X x Y. 
In particular, X x Y is clc2 by 12.7. 

Now let vi and PlJ be sheaves on X and Y, respectively, such that 
JlfiPlJ = O. By definition we have 

and the value of this on X x Y is 

because of II-16.31, II-Exercise 36, and II-15.5. By II-Exercise 36 we have 
that 

(103) 

so that the algebraic Kiinneth formula [54], [75] may be applied to (102). 
Thus, using (101), 12.11, and 12.16, we obtain the following result: 

14.1. Theorem. Let X and Y be hlc~+l and let vi and PlJ be sheaves on 
X and Y, respectively, such that JlfiPlJ = o. Then there is a natural exact 
sequence 

o - E9H~(Xjvi) ® H~(Yj PlJ) - Hk(X x Yjvi@PlJ) 
p+q=k 

- E9H~(Xjvi) * H~(Yj PlJ) - 0 
p+q=k-l 

for k < n (k ~ n if vi = Land PlJ = L) which splits. o 

Taking Y to be a point, we deduce the universal coefficient formula: 

14.2. Corollary. Let X be hlc~+1 and let vi be a sheaf on X. Let M be 
an L-module such that.;i * M = o. Then there is a split exact sequence 

1 0 - Hk(Xj.;i) ® M - Hk(Xj.;i ® M)- Hk_1(Xj.;i) * M - 0 I 
for k < n. o 

We wish to obtain, from 14.1, a Kiinneth sequence for the sheaves of 
local homology groups. Note that, for example, 

.Jt'*(XjL) = f7J,,-/(U f-+ H~(X,X - UjL)), (104) 

since this is clearly the same as the sheaf generated by the presheaf 

U f-+ H;(X, X - UjL) 

and since 
H~(X,X - UjL) ~ H.(UjL) 
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when U is compact, by 5.10. Also, we have that 

H~(X,X - U;L) ~ H~(X;Lu) (105) 

by (35) on page 306. Taking.Yi = Lu and flJ = Lv in 14.1 and passing to 
generated sheaves yields the desired result: 

14.3. Corollary. If X and Yare hlc2+l, then there is an exact sequence 

--> EB.Yt'p(X;L)*'.Yt'q(Y;L) --> 0 
p+q=k-l 

of sheaves on X x Y for k < n. o 

We now turn to the case of general (locally compact) spaces X and Y. 
We shall indicate the proof of the following result: 

14.4. Theorem. Suppose that Hf(X;L) is finitely generated for each p. 
Let ~ be any family of supports on Y. Then there is a natural exact se
quence 

0--> EBHp(X; L) &;i Hi(Y; L) --> HtXif>(X X Y; L) 
p+q=k 

--> EB Hp(X; L) * Hi(Y; L) --> O. 
p+q=k-l 

This sequence splits when ~ = cld. 

Proof. By 5.6(i) and naturality it suffices to treat the case in which 
~ = cld. For the proof we introduce the notation 

C~ = C~(X; L) and C~ = cg(Y; L). 

Note that Cx &;i Cy = rc(~*(X; L)0~*(Y; L)), so that 

Hp(Hom(Cx &;iCy,L*)) ~ Hp(X x Y;L) (106) 

by (10) on page 293. 
Let FI and Fy be free chain complexes such that there exist chain 

maps 
FI --> Cx and Fy --> Cy 

inducing isomorphisms in homology.26 Since Hf(X; L) is finitely generated 
for each p, it can be shown that FI can be chosen to be finitely generated 
in each degree. 27 We assume that this is done. 

26For this one could take projective resolutions of the C·. 
27The proof, which is not difficult, can be found in [75J. 
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The induced homomorphisms 

Hom(C*,L*) -+ Hom(F*,L*) +- Hom(F*,L) 

induce isomorphisms in homology (the first, as in the proof of (10) on page 
293; the second, since F* is free). Also, the map 

F'X 0Fy -+ Cx 0Cy 

induces a homology isomorphism since the C* are torsion-free. It follows 
that 

(107) 

However, 

Hom(F'X 0 Fy , L) ~ Hom(F'X, L) 0 Hom(Fy , L) (108) 

(naturally) since F'X is free of finite type. Thus the algebraic Kiinneth 
formula applied to the right-hand side of (108) yields the desired result. 
The reader may make the straightforward verification of naturality. 0 

14.5. We shall now provide the promised counterexample to the general 
Kiinneth formula (for compact spaces). Let X = Y be a solenoid, that is, 
the inverse limit of a sequence of circles Cn , where Cn ...... Cn - 1 has degree 
n. By continuity II-14.6 we see that Hl(X;Z) ~ Q, the groups in higher 
degrees vanishing. From II-15.2 and (9) on page 292 we calculate 

H1(X x Y;Z) ~ Ext(Q,Z) #- 0 

[see 14.8 below]. However, Ho(X) o H1(Y) = 0 since H1(Y) = Hom(Q,Z) 
= 0, and Ho(X) * Ho(Y) = 0 since Ho(Y) = Z EB Ext(Q, Z) and Ext(Q, Z), 
being a vector space over Q, is torsion free. Thus the Kiinneth formula is 
not valid in this case. 

14.6. If L = Z or if L is a field, then the condition in 14.4 that Hg(X; L) 
be finitely generated for all p is equivalent to the condition that Hp(X; L) 
be finitely generated for all p. This is clear when L is a field. When L = Z, 
it follows from (9) on page 292 and the following algebraic fact. 

14.7. Proposition. For an abelian group A, iJHom(A,Z) and Ext(A,Z) 
are both finitely generated (respectively zero) then A is also finitely gener
ated (respectively zero). 

Proof. (The parenthetical case can be found in [64].) It is easy to reduce 
the proposition to the cases in which A is either a torsion group or is 
torsion-free. If A is all torsion, then the exact sequence 

0= Hom(A,IR) -+ Hom(A,IR/Z) ...... Ext(A,Z) ...... Ext(A,IR) = 0 
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(induced by 0 -+ Z -+ lR -+ lR/Z -+ 0) shows that 

Ext(A, Z) ~ A if A is all torsion, (109) 

where A denotes the Pontryagin dual of the discrete group A. The propo
sition follows immediately for torsion groups. 

If A is torsion-free, consider the canonical map 

A -+ Hom(Hom(A, Z), Z). (110) 

Let the kernel of this map be denoted by Ao. Since the right-hand side of 
(110) is a finitely generated free abelian group, we have an exact sequence 

o -+ Ao -+ A -+ F -+ 0, (111) 

where F is free and finitely generated. Note that (111) must split. Since 
by definition, the restriction Hom(A, Z) -+ Hom(Ao, Z) is trivial, it follows 
from (111) that Hom(Ao, Z) = 0 and that Ext(Ao, Z) is finitely generated. 
Since Ao is torsion-free, the exact sequence 

o -+ Ao ~ Ao -+ Ao/nAo -+ 0 

implies that Ext(Ao, Z) is divisible. Hence Ext(Ao, Z) = 0 since it is 
finitely generated and divisible. The latter sequence also implies that 
Ext(Ao/nAo, Z) = 0 and hence that Ao/nAo = 0 by (109). Thus Ao, 
being divisible and torsion-free, is a vector space over the field Q of ratio
nal numbers. Thus it suffices to show that Ext(Q, Z) i O. This follows 
from the next lemma. 0 

14.8. Lemma. Ext(Q, Z) is a Q-vector space of uncountable dimension. 

Proof. Consid~he exact sequence 0 -+ Z -+ Q -+ Q/Z -+ O. By (109), 

Ext(Q/Z, Z) = Q/Z. This is a compact group. It is not finite since its 
dual Q/Z is not finite. Thus it must be uncountable by the Baire category 
theorem on locally compact spaces [19, p. 57]. We have the exact sequence 

Z = Hom(Z, Z) -+ Ext(Q/Z, Z) -+ Ext(Q, Z) -+ Ext(Z, Z) = 0, 

and the lemma follows. o 

15 Change of rings 

Suppose that K is a principal ideal domain that is also an L-module, and 
let flJ be a sheaf of K-modules on X. The homology of X with coefficients 
in fjJ then has two interpretations depending on whether L or K is used 
as the base ring. We shall indicate the base ring, in this section only, by 
affixing it as a left superscript. Thus 
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while 
K H!(X; fil) = Hn(f<I>(K@(.9'*(X;K);K) Q9K $)). (113) 

Both of these are K-modules, but it is not clear whether or not there exists 
any relationship between them in general. 

The K-modules (112) and (113) need not be isomorphic, as is shown by 
the following example: Let X be a compact space with H2(X; Z) ~ Q/Z 
and Hl(X; Z) = 0 (e.g., an inverse limit of lens spaces). By (9) on page 

292, 3.13, and (109) we have Z HI (X; Q) ~ (iiiZ) Q9 Q =F 0, since iiiZ is 
torsion-free, Q/Z being divisible. However, by II-15.3 and (9), we have 
that QHI(X; Q) = O. Another example is provided by a solenoid; see 14.5. 

We shall say that "change of rings is valid," for X, <1>, K, and L, if (112) 
and (113) are naturally isomorphic. In the present section we shall see that 
change of rings is valid in two general situations. First this is shown for 
dc,£, spaces, with suitable restrictions on <1>, using the results of Section 12. 
Then we show that change of rings is valid when K = Lp = L/pL, where 
p is a prime in L, for general spaces X and support families <1>. 

15.1. Theorem. Let X be hlc2+2. Then there is a natural isomorphism 

L.1i' k(X; fil) ~ K.1i' k (X; fil) 

of sheaves of K -modules for k ::; n. If <1> = c or if dim<I>,L X < 00 with <1> 

paracompactifying, then there is a natural isomorphism 

I L Hf(X; fil) ~ K Hf(X; fil) I 

of K -modules for k ::; n. 28 

Proof. By definition, dim<I>,L X 2: dim.p,K X. Let,C* be a flabby, torsion
free quasi-(n + 2)-coresolution of L on X [such as :D(.9'*(X; L))] and let 
,C* = f c2 * with 2* c-soft. The algebraic universal coefficient theorem 
implies, quite easily, that ,C* Q9L K = f c{ 2 * Q9L K} is a flabby, torsion-free 
quasi-(n + 2)-coresolution of K on X. Since (2* Q9L K) Q9K fil ~ 2* Q9K fil, 
the last statement of the theorem follows directly from 12.16 and 12.20. 
The first statement of the theorem follows from the fact that, for example, 

L.1t k(X; fil) ~ .1t k(2 * Q9L fil) 

[see 12.19 and the proof of 12.20]. Alternatively, the first statement of the 
theorem follows from the last and the fact that 

L .1tk(X; fil) = f?1teaf (U f--+ L Hk(X, X - U; fil) = L Hk(X; filu)) . D 

15.2. Theorem. Let fil be a sheaf of Lp-modules, p prime in L, and let <1> 

be any family of supports on the arbitrary locally compact Hausdorff space 
X. Then there is a natural isomorphism of Lp-modules 

28 Also see VI-l1.5. 
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Proof. We note first that since L can be embedded in a torsion-free 
injective module (e.g., its field of quotients), .9'* (X; L) may be replaced by 
an injective resolution .9'* such that .9'0 is torsion-free [see the construction 
of II-3.2]. 

Since an injective L-module is divisible, there is, for any L-injective 
sheaf.9', an exact sequence 

where p stands for mUltiplication by pEL and p.9' is its kernel. Clearly, 
p.9' is a sheaf of Lp-modules. We need the following lemma: 

15.3. Lemma. p.9' is an Lp-injective sheaf. 

Proof. Consider the commutative diagram with exact row 

where f and 9 are given homomorphisms of sheaves of Lp-modules. Since 
.9' is L-injective, there exists the L-homomorphism h, as indicated, making 
the diagram commute. The diagram 

shows that 1m he p.9'. As a homomorphism into p.9', h is clearly Lp-linear, 
and this completes the proof of the Lemma. 0 

Since p.9' is Lp-injective, it is also flabby, and it follows that the sequence 

is exact for all open sets U in X. 
Note that the homology sequence (of sheaves) of 

shows that the differential sheaf $*, where $n = p.9'n+l, is a resolution of 
Lp (since pgD = 0). 

Let us fix the open set U C X for the moment and use the abbreviation 
In = rc(.9'nIU) and r = pIn+l = r c(p.9'n+lIU); see (114). Then the 
sequence 

(115) 
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is exact for each n. 
Let Q denote the field of quotients of L and note that we may take 

LO = Q and Ll = QIL [see 2.7]. Similarly, we take (Lp)O = Lp and 
(Lp) 1 = O. Then there is an exact sequence 

0--+ Lp --+ Q (JJ (QI L) ~ Q (JJ (QI L) --+ O. 

Applying this to the functor Hom (1* , .) and using the fact that A 0 Lp ~ 
Coker(p: A --+ A) for an L-module A, we obtain the isomorphism 

(116) 

(The subscripts n, n + 1 indicate total degree.) The sequences (115) also 
show that 

(117) 

since p : Ext (1* ,Lp) --+ Ext(1*, Lp) is trivial and Hom(1*, Lp) = 0 (since 
1* is divisible). (Also note that HomL = HomLp and 01, = 0Lp for Lp
modules so that we need not affix these subscripts.) 

The isomorphisms (116) and (117) are clearly natural in U. Thus they 
induce an isomorphism of sheaves of Lp-modules: 

L@(rc9*;L) 0 Lp ~ Lp@(rc$*;Lp) (118) 

[where we are using L* and (Lp)* as defined above; see 2.7]. The isomor
phism (118) may be tensored over Lp with any sheaf fiJ of Lp-modules, 
and we may take sections with supports in any family <P. Since 9* is an 
L-injective resolution of Land $* is an Lp-injective resolution of Lp, the 
theorem follows upon passage to homology. 0 

15.4. It is possible to define an alternative homology theory that does 
satisfy change of rings provided one is willing to sacrifice other desirable 
properties. For simplicity we shall confine the discussion to compact spaces 
and supports in this discussion. For an L-module M, define 

This does satisfy change of rings because29 

Hp(X;M) ~ Hp(r(@(~*(X;Z)0L;M))) 
~ Hp(HomL(C*(X; Z) 0 L; L M*)) 
~ Hp(HomL(F*C*(X;Z) 0LiM)) 
~ Hp(Homz(F*C*(X; Z); M)) 
~ Hp(Homz(C*(X;Z);zM*)) 

2.4 and (9) 
II-15.5(b) 
hyperhomology 
algebra 
hyperhomology, 

where F* denotes taking a free resolution over Z. However, this theory has 
two weaknesses: it does not extend30 to general coefficient sheaves, and it 
does not satisfy a universal coefficient formula such as 3.13. Indeed, we 
have (roughly stated): 

29The references are to similar items. 
30 As far as I know. 
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15.5. Theorem. There exists no "homology theory" L H*(X; M) defined 
for compact X and L-modules M that satisfies all three of the following 
conditions: 

(a) There is an exact sequence (with sheaf cohomology) 

0--+ ExtL(HP+l(X;L),L) --+ LHp(X;L) --+ HomL(HP(X;L),L) --+ O. 

(b) There is an exact sequence 

0--+ L Hp(X; L) 0L M --+ L Hp(X; M) --+ L Hp_1(X; L) *L M --+ O. 

(c) Change of rings: L Hp(X; M) ~ M Hp(X; M) when M is an L
module that is also a principal ideal domain. 

Also, there is no theory satisfying (a') and (b) where (a') is the stronger 
condition: 

(a') There is an exact sequence 

Proof. Assume that H * ( • ; M) satisfies all three conditions. (The su
perscript L can be omitted because of (c).) Let X be the solenoid of 
14.5. Then HO(X;Z) ~ Z, Hl(X;Z) ~ Q and H 1(X;Q) ~ Q by II-
15.3. By (a) we have Hl(X;Z) ~ Homz(Q,Z) = O. From (b) we have 
H1(X;Q) ~ Hl(X;Z) 0 Q = 00 Q = O. However, from (a) we have 
H1(X;Q) ~ HomQ(Q,Q) ~ Q, a contradiction. 

For the second statement let L = Z. Then by (b) we have 

(a) 
Z Ho(X; Q) ~ Z Ho(X; Z) 0 Q ~ Ext(Q, Z) 0 Q EB Q, 

which is a rational vector space of uncountable dimension. But from (a') 
we have 

a contradiction. o 

Note that Borel-Moore theory satisfies (a) and (b); singular theory sat
isfies (b) and (c); and the H * (X; M) theory satisfies (a') and (c). 

In a similar vein we have the following result showing that on compact 
spaces, sheaf-theoretic cohomology is not a "co" theory to any homology 
theory with integer coefficients. 

15.6. Theorem. There do not exist functors H*(X) of compact spaces X 
that provide an exact universal coefficient sequence of the form 

0--+ Ext(Hk _ 1(X),M) --+ Hk(X;M) --+ Hom(HdX),M) --+ 0 

for abelian groups M (with sheaf-theoretic cohomology). 



§16. Generalized manifolds 373 

Proof. Consider again the solenoid X, and note that Hl(X;Zp) = 0 
for all primes p. Then the sequence implies that Hom(H1 (X), Zp) = 0, 
whence also Hom(H1(X),Z) = O. Similarly, since H2(X;Z) = 0, the 
sequence implies that Ext(H1(X),Z) = o. By the result 14.7 of Nunke 
we have that H1(X) = O. However, the sequence for M = Q shows that 
Q ~ Hl(X;Q) ~ Hom(H1(X),Q) = 0, a contradiction. 0 

Even easier arguments of dimensionality give a similar result over the 
rationals as base ring. 

It is of interest to ask under what conditions the H. theory coincides 
with H •. In VI-11 it is shown that H~(X;M) ~ H;(X;M) when X is 
dcL', but we do not know whether or not this extends to the case of general 
paracompactifying supports. See VI-11 for further remarks on this. 

16 Generalized manifolds 

In this section we shall study various conditions on a locally compact space 
X that are equivalent to X being an n-hmL. We also prove a number of 
results about these spaces. 

First suppose that the homology sheaves .1t'p(X;L) are all locally con
stant. We shall show that under suitable conditions this implies that X is 
an n-hmL for some n. We first consider the case in which L is a field: 

16.1. Theorem. If L is a field and X is a connected and locally con
nected space for which dimL X = n < 00 and such that .1t' p(X; L) is locally 
constant for all p, then X is an n-hmL. 

Proof. Let Ap denote the stalk of .1t' p (X; L). We must show that An ~ 
L and that Ap = 0 for all p =f:. n. Let r = max{plAp =f:. O} and s = 
min{p lAp =f:. O}. Consider the spectral sequence of 8.4: 

E~,q = H~(U;.1t' _q(X;L)) =} H:p_q(U;L) 

(for U open in X). By passing to a small open subset we may as well assume 
that .1t'*(X;L) is constant. Then E~,q = 0 for p > n or q > -s, and hence 
E;'-s = H'{;(U; As) ~ H'{;(U; L) ® As is isomorphic to H;_n(U; L). This 
must vanish for n > s. By II-16.14, H'{;(U; As) =f:. 0 for some U. Hence 
n ~ s. Also, (11) on page 293 shows that r ~ n. Thus n = r = s. We now 
have that 

H8(U;L) ~ H'{;(U;L) ®An. 
Taking U to be connected, we have that H8(U; L) ~ L by 5.14, and hence 
An~L. 0 

We now take up the general case. 

16.2. Theorem. Let X be a connected and locally connected space for 
which dimLX = n < 00 and such that .1t'p(X;L) is locally constant and 
has finitely genemted stalks for all p. Then X is an n-hme-. 
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Proof. For the field K = L/pL where p is a prime of L we have the exact 
sequence 

of (13) on page 294. By I-Exercise 9, Xk(X; K) is also locally constant, 
and by IS.2 the hypotheses of 16.1 are satisfied by K in place of L. If Ak 
is the stalk of Xk(X; L), which is finitely generated by assumption, then 
Ak can have no p-torsion because otherwise Xk(X; K) and Xk+l(Xj K) 
would both be nonzero. Since this is true for all primes p of L, Ak is free 
over L, and it follows that Am ~ L for some m and Ak = 0 for k -=I- m. 
Thus X is an m-hmL. From 9.6 it follows that m = n. 0 

16.3. Theorem. Let X be a connected clc'f space for which dimL X = 

n < 00 and such that X p (X; L) is locally constant for each p. Then X is 
an n-hmL' 

Proof. Let m be the largest integer such that X m(Xj L) -=I- o. By 8.7, 
Hm(U; L) can be identified with f(X m(X; L)IU) for U open and para
compact. For V c U, the canonical homomorphism Hm(U) ----> Hm(V) 
corresponds to section restriction. Since X m(X) is locally constant, there 
is an open set U over which it is constant. We may take U to be paracom
pact and connected, and thus f(X m(X)IU) is isomorphic to the stalk. 
Let V be another connected paracompact open set with compact clo
sure in U. Then f(X m(X)IU) ----> f(X m(X)IV) is an isomorphism. But 
Hm(U) ----> Hm(V) has finitely generated image by II-17.S and II-17.3, since 
X is clc'f. Thus Xm(X;L) has finitely generated stalks. For any prime 
p of L, X is an hmLp ' and this implies that Xm(X;L) has no p-torsionj 
see the proof of 16.2. Similarly, the stalks of X m(Xj L) must be free of 
rank 1. If M = Xs(X; L), s -=I- m, then we must have, for the same reason, 
M 0 K = 0 = M * K for any L-module K that is a fieldj see IS.1. This 
implies that M = 0, whence X is an m-hmL and m = n. 0 

16.4. Definition. Precosheaves ~ and l.B on X are said to be "equivalent" 
if~ and l.B are equivalent under the smallest equivalence relation containing 
the relation of local isomorphism of 12.2 (see Exercise S). 

16.5. Definition. A precosheaf ~ will be said to be "locally constant" if 
each point x E X has a neighborhood U such that the precosheaf~IU on U 
[i.e., V f--> ~(V) for V C UJ is equivalent to a constant precosheaf If this 
is the constant precosheaf M, where M is an L-module, then ~ is said to 
be "locally equivalent to M. " 

16.6. Definition. The space X will be said to possess "locally constant 
cohomology modules over L locally equivalent to M* ," where M* is a graded 
L-module, if the precosheaf .fj~(X; L) : U f--> Hg(Uj L) is locally equivalent 
to MP for all p. 
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16.7. Definition. The space X is called an ''n-dimensional cohomology 
manifold over L" (denoted n-cmL) if X has locally constant cohomology 
modules, locally equivalent to L in degree n, and to zero in degrees other 
than n, and if dimL X < 00. 

16.8. Theorem. If X is connected, then the following four conditions are 
equivalent: 

(a) X is an n-cmL' 

(b) [27] dimL X = n < 00 and X has locally constant cohomology modules 
locally equivalent to M*, where M* is finitely generated. 

(c) X is clcf: and is an n-hmL. 

(d) [20], [14] X is clcf:, dimLX < 00, and the stalks of .1ti(X;L) are 
zero for i 1:- n and are isomorphic to L for i = n.31 

Proof. Using II-16.17, (a) =} (b) is clear. Assume that (b) holds. Then 
it follows from II-17.5 that X is clef:. By 12.3 we see that the sheaves 
~(,fj~(X;L),L) and &'<rI(jj~(X;L),L) are locally constant with stalks 
Hom(MP,L) and Ext(MP,L), respectively (which are finitely generated). 
By (9) on page 292 we have the exact sequence of sheaves: 

o -+ &,<rI(jj~+l(X;L),L) -+ .1tp(X;L) -+ ~(jj~(X;L),L) -+ 0, 

and it follows from I-Exercise 9 that .1tp(X;L) is locally constant with 
finitely generated stalks. Thus X is an n-hmL by 16.2. 

Now suppose that condition (c) holds. Using the definition of clef:, 
II-17.3, and the exact sequences 

0-+ Ext(HP+l(K;L),L) -+ Hp(K;L) -+ Hom(HP(K;L),L) -+ 0 

for K compact in X, we see that for any compact neighborhood K of a 
point x E X there is a compact neighborhood K' C K of x with Hp(K') -+ 

Hp(K) trivial for p 1:- o. It follows that for every neighborhood U of x there 
is a neighborhood V C U of x with H;(V) -+ H;(U) trivial for p 1:- O. By 
Poincare duality (assuming, as we may, that @ is constant), Hg(V) -+ 

Hg(U) is trivial for q 1:- n. Also, for any open set U, H';}(U; L) ~ H8(U; L) 
is the free L-module on the components of U by 5.14. Thus jj~(X; L) is 
locally equivalent to L for q = n, and to zero for q 1:- n, which is condition 
(a). 

Trivially, (c) implies (d). Assuming (d), to prove (c) we must show 
that X is "locally orientable," meaning that.1t n(X; L) is locally constant. 
Since this is a local matter and every point in X has an arbitrarily small 

31The implication (d) => X is an n-hmL requires only the assumption that X is 
locally connected rather than the full cleL condition. This implication is the "Wilder 
local orientability (former) conjecture." Also see 16.15. 
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open paracompact neighborhood (the union of an increasing sequence of 
compact neighborhoods), we may as well assume that X is connected and 
paracompact. With fP = .1t'n(X;L), suppose that L is a field and that 
a E r( fP) is nonzero. We claim that a must be everywhere nonzero. Let 
A = lal and suppose that A:;' X. Since L is a field, the section a induces 
a homomorphism L --+ fP that is an isomorphism over A. Therefore 

H;:(A; L) ~ H;:(A; fPIA) ~ H8(X, X - A; L) = 0 

by 9.2 and the exact sequence 

H8(X - A; L) --+ H8(X; L) --+ H8(X, X - A; L) --+ 0, 

the first map of which is onto. The exact sequence 

H;:(X - A; L) L H;:(X; L) --+ H;:(A; L) = 0 

shows that j* is onto. Now H::(X - A; L) ~ lim H::(U; L), where U ranges 
over the open paracompact sets with compact closure in X - A, by II-14.5 
applied to L ~ lim LU.32 Since Hn(UjL) ~ Hom(H::(UjL),L), naturally 
in U, by (9) on page 292, we deduce that 

j*: Hn(XjL) --+ UmHn(UjL) 

is a monomorphism. But by Poincare duality 9.2 or 8.7, j. can be identified 
with section restriction 

Since a E r( fP) restricts to zero on X - A, this is a contradiction. Thus a 
must be everywhere nonzero as claimed. 

Now, in the general case where L is a principal ideal domain, which may 
not be a field, note that if p is a prime in L then X satisfies (d) over the field 
K = L/pL with orientation sheaf fP ® K by 15.2. Let x E X and let a be 
a local section of fP near x that gives a generator of the stalk at x. Since x 
has a neighborhood basis at x consisting of open paracompact sets, we may 
assume that a is defined on a connected paracompact open neighborhood 
U of x. Then a defines a homomorphism of the constant sheaf L on U 
to fP/U that is an isomorphism on the stalks at x. By the case of a field 
applied to K = L/pL, the map L/pL --+ (fP ® LjpL)/U is an isomorphism 
for each prime p of L. But a homomorphism L --+ L of L-modules that 
induces an isomorphism LjpL --+ LjpL for all primes p of L is necessarily 
an isomorphism. Therefore the homomorphism L -> fP/U of sheaves over 
U is an isomorphism on each stalk and hence is an isomorphism of sheaves. 
Thus fP is constant over U, proving (c). 0 

For the case in which L = Z or is a field, we have the following simple 
cohomological criterion: 

32This is to avoid a paracompactness assumption on X-A. 
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16.9. Corollary. [20] If L is the integers or a field, then a locally compact 
space X is an n-emL <=> X is de,!:, dimL X < 00, and 

HP(X X _ {x}' L) :::::: {L, for p = n, 
, , 0, for p 1: n 

forallxEX. 

Proof. By 7.2 applied to the identity map we have 

:Jt'i(X;L)x:::::: H[(X, X - {x};L). 

Thus from 13.7 we have the exact sequence 

It follows from this and 14.7 that H*(X,X - {x};L) is of finite type <=> 
:Jt'*(X; L)x is of finite type. Hence the condition in the corollary is equiv
alent to 

:Jt' (X, L) :::::: {L, for p = n, 
P 'x 0, for p 1: n 

for all x E X. But this is precisely condition (d) of 16.8 (given the other 
conditions). 0 

16.10. Example. Let C be the open cone on R.1P'2, let E be the open ball 
of radius 1 in R.3, and let X be the one point union evE at the vertex 
Xo of the cone. Then if C denotes the closed cone on R.JP'2 and E = ][)3, we 
have 

and is otherwise zero. Outside xo, of course, X is a 3-manifold. The 
sheaf :Jt'3(X; Z) is isomorphic to fPx EBZE, where fP is the orientation sheaf 
of C - {xo}. Thus :Jt'3(X;Z) has stalks Z everywhere but is not locally 
constant. The sheaves :Jt'l and :Jt' 2 are, of course, concentrated at Xo. Note 
that with coefficients in a field K of characteristic other than two, we have 

:Jt' (X, K) :::::: {K, for n ~ 1,3, 
n 'Xo 0, otherwIse. 

Also, 
:Jt'3(X; K) :::::: (@x ® K) EB KE 

has stalks K everywhere but is not locally constant, and the homology 
sheaves in the adjacent dimensions 2 and 4 are zero. 

This shows that the local orient ability theorem, (d) :::::} (a) of 16.8, does 
not generalize in any obvious way to spaces in which the other homology 
sheaves are not all zero. There are many variations on this example. 0 
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The following result is responsible for much of the interest in generalized 
manifolds, because there are spaces X that are not manifolds but for which 
X X lR is a manifold. Factorizations of manifolds of this form are important 
in the theory of topological transformation groups on manifolds. 

16.11. Theorem. [6] The locally compact space X x Y is an n-cmL -# X 
is a p-cmL and Y is a q-cmL for some p, q with n = p + q. Moreover, the 
orientation sheaves satisfy the equation @xxy ~ @X®@y (with the obvious 
notation). 

Proof. It is not hard to prove that X x Y is clcl: -# both X and Yare 
clcl:. The proof of this follows from the Kiinneth formula II-15.2 applied 
to compact product neighborhoods of a point in X x Y, and will be left to 
the reader. The <= part of the theorem is also easy, so we shall prove only 
the::::} part. 

Let x E X and y E Y and let Mp = .1t'p(X;L)", and Nq = .1t'q(Y;L)y. 
By 14.3 we have the exact sequence 

o -+ E9 Mp ® Nn - p -+ L -+ E9 Mp * Nn - p- 1 -+ 0, 
p p 

and we also have that 

Mp ® Nq = 0 for p + q f:. n 

and 
Mp * Nq = 0 for p + q f:. n - 1. 

Clearly, we must have Mp ® Nn - p ~ L for some p (which we now fix). 
Let b E N n - p be such that a ® b f:. 0 E Mp ® N n - p for some a E Mp. 

The map Mp -+ Mp ®Nn - p ~ L defined by a I-t a®b has a nontrivial ideal 
of L as its image. Since L is a principal ideal domain, this implies that Mp 
has L as a direct summand. Similarly, N n - p has L as a direct summand. 
The fact that Mp ® N n - p ~ L implies that Mp ~ L and Nn - p ~ L. Since 
Mr ® Ns = 0 for r + s f:. n, we see that Mr = 0 for r f:. p and Ns = 0 for 
sf:. n - p. 

Now p depends on x, but n - p depends only on y E Y. Thus p is, in 
fact, constant. By 14.3 

Thus 

is locally constant (with stalks L). Similarly, .1t' n-p(Y) is locally constant. 
(Of course, local constancy also follows from 16.8(d).) 0 
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Now we shall consider further weakenings of the condition (d) of 16.8. 
In particular, we shall show that the condition dc'f' can be dropped if L is 
a field and X is first countable.33 First we need to discuss some technical 
items about "local Betti numbers." 

We define, for L a field, the "ith local Betti number of X at x" to be 

The following lemma is an elaboration of a method due to J. H. C. White
head [82] and Wilder [84]. 

16.12. Lemma. [14] Let Vl +- V2 +- V3 +- '" be an inverse sequence 
of vector spaces over the field L. Put Vi* = Hom(Vi, L) and W = limVi*. 
Then dimL W is countable ¢:> for each i there exists an index j > i such 
that dimL Im(V, -+ Vi) < 00. 

Proof. Put G i = Im(V, -+ Vl). It suffices to show that if each G i has 
infinite dimension then W has uncountable dimension. Now G l ~ G2 ~ ..• 

Suppose there is a j with Gj = Gj +1 = ... Then for i > j, Vi -+ Gi = Gj 

is onto, and hence Gj -+ Vi* is injective. Therefore Gj -+ W is injective, 
showing that W has uncountable dimension. 

If, on the contrary, the Gi are not eventually constant, we may assume 
that they decrease strictly. Then let gi E G i - GHl C Vl. The gi are 
independent and hence are a basis of a subspace H of Vl. Let Vl -+ H be 
a projection, and consider the dual H* -+ Vt -+ W. If u E H* maps to 
zero in W, then U(gi) = 0 except for finitely many i. Since such elements 
u form a countable-dimensional subspace of H*, we deduce that the image 
of H* -+ W, and hence W itself, has uncountable dimension. The converse 
~cleM. 0 

16.13. Theorem. [14] Let L be a field. If the locally compact space X is 
first countable and has dimL X < 00, then bi(x) is countable for all i and 
all x EX¢:> X is dCL. 34 

Proof. Let Ul :J U2 :J ... be a countable neighborhood basis at x. Then 
Hp(Ui ) ~ Hom(Hg(Ui),L) by (9) on page 292. By 16.12, .1fp(X)x = 
limHp(Ui) has countable dimension ¢:> for each i there exists a j > i with 
dimL{Im(Hg(Uj ) -+ Hg(Ui )} < 00. Since dimL X < 00, this is equivalent 
to the condition dCL by II-17.5. 0 

An old problem of Alexandroff [1] asks whether a finite-dimensional 
space that has constant finite local Betti numbers must be a manifold. 
Since hm's satisfy this, it is false; but it is reasonable to ask whether such 
spaces must be homology manifolds. We shall show that this is, indeed, the 

33We do not know whether these conditions are needed. 
34See [60] for a generalization to countable principal ideal domains L. 
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case under some mild restrictions. The original, slightly weaker, versions 
of these results can be found in [14]. 

16.14. Lemma. [14] Let L be a field. Suppose that X is second count
able and that dimL X < 00. For each i assume that bi(x) is finite and 
independent of x. Then X is an n-cmL for some n. 

Proof. By 16.13, X is clcL'. By IV-4.12, there is an open set U such that 
.1t'i(Xj L) is constant over U with finitely generated stalks. By 16.8(b), U 
is an n-cmL for some n. Thus bn(x) = 1 and bi(x) = 0 for i =I- n for all 
x E X. The result now follows from 16.8(d). D 

16.15. Theorem. [14] Let X be second countable with dimL X < 00, and 
assume that the stalks .1t'i(Xj L)x are finitely generated and mutually iso
morphic (i.e., independent of x) for each i. Then X is an n-hmL for some 
n. 

Proof. (If we assume that X is deL', then there is a direct proof out of 
IV-4.12.) Let p be a prime of L. Then Lp = L/pL is a field. Note that 
X is clcL' by 16.13 and change of rings 15.2. Let Ai be an isomorph of 

p 

.1t'i(Xj L)x' There is the universal coefficient sequence 

0--> Ai 0 Lp --> .1t'i(Xj Lp)x --> Ai- 1 * Lp --> 0 

of (13) on page 294. If Ai contains a factor Lpr, then .1t'i(Xj Lp}x and 
.1t'Hl(XjLp )x are both nonzero, contrary to 16.14. Thus Ai is free. Simi
larly, it follows that at most one Ai, say An, is nonzero, and this one has 
rank one. Since X is clcL' , it is locally connected. Thus by 16.8(d) and its 

p 

footnote, X is an n-hmL' D 

It has been shown in [43] and [60] that a first-countable n-hmz is neces
sarily clcz and hence is an n-cmz. Thus, for L = Z or a field, the conclusion 
of 16.15 can be sharpened to say that X is an n-cmz. [No example of an 
n-hmL that is not clCL is known to the author.] 

16.16. Theorem. Let X be a connected n-cmL, let F S;;; X be a proper 
closed subset, let U c X be any nonempty open subset, and let..Jt be an 
elementary sheaf on X. Then: 

(a) If..Jt has stalks L, then Hn(Fj..Jt} = 0 and Hn_l(Fj..Jt) is torsion-
freej 

(b) H~(Uj (1) is the free L-module on the components of Uj 

(c) H~(Fj..Jt) = 0; 

(d) jx,u: H~(Uj..Jt) --> H~(X;..Jt) is surjectivej 

(e) j'X,u : H~(Uj (1) --> H~(Xj (1) is an isomorphism if U is connectedj 
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(f) X is orientable {:::} H~(Xj L) ~ L. 

Moreover, if L = Z and fY is a locally constant sheaf on X with stalks Z, 
then: 

(g) H~(Xj fY) ~ Z2 unless fY ~ fffj 

(h) H~(Uj fY) ~ E9a Z EB E9,8 Z2, where 0: ranges over the components 
V of U for which fYlV ~ ffflV and (3 ranges over the remaining 
componentsj 

(i) The torsion subgroup of Hn-1(Xj fY-l) is zero if fY ~ fff and is Z2 
otherwise. 

Proof. The case n = 0 is trivial, so assume that n > o. Assuming part 
(c) for the moment, we have that Hn(Fj.At) ~ Hom(H~(Fj.At-l),L) = 0 
by 10.5, giving the first part of (a). The last part of (a) follows from 
the exact sequence (3.12) on page 297 induced by the coefficient sequence 
0-+ .At ~ .At -+ .At ® Lp -+ 0, where p is a prime in Lj from (a) in the 
case of the field Lp as base ringj and from change of rings 15.2. 

From 9.2 we have that H~(Uj fff) ~ H8(Uj L), whence (b) follows from 
5.14. Also, if U = X - F, then there is the exact sequence 

Hn(u· fff) -+ Hn(x· fff) -+ Hn(F- fff) -+ Hn+l(u· fI) = 0 c' c' c' c , , 

since dimL X = n, whence (b) implies that H~(Fj fff) = o. Therefore 
H~(Fj L) = 0 provided that ffflF is constant, hence for F sufficiently 
small. The cohomology sequence of the coefficient sequence 0 -+ L -+ 

L -+ L/pL -+ 0, for pEL a prime, shows that H~(F; L/pL) = 0 for 
F small. It follows that H'd(F;.At) = 0 for F small (so small that .AtIF 
and fllF are both constant). Now suppose that 0 i- a E H~(Fj .At). By 
II-10.8 there is a closed subset 0 c F with alO i- 0 E H~(Oj.At) but with 
alO' = 0 for all proper subsets 0' c O. Now 0 cannot be a singleton since 
n > o. Let x E 0 and let U be a connected open neighborhood of x such 
that fff and .At are both constant on U. Then the exact sequence 

H~(U n OJ.At) L H~(Oj.At) -+ H~(O - Uj.At) 

shows that a E Imj*. But H~(U n OJ.At) = 0, provided that UnO i- U, 
by the part of (c) already proven, since .At is constant on UnO and UnO 
is a proper closed subset of U. Thus we must have that UnO = U, and so 
x is an interior point of O. Hence 0 = X since 0 is open and closed and X 
is connected. Thus F is not proper, contrary to assumption, proving (c). 

Part (d) follows from the cohomology sequence of (X, U) and part (c) 
with F = X - U. Part (e) holds because an epimorphism L - L must 
be an isomorphism since L is a principal ideal domain. For (f), suppose 
that H~(XjL) ~ L. Let V c X be connected, open, and orientable. Then 
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by (e), H~ (V; L) -+ H~ (X; L) is surjective and hence is an isomorphism. 
From this and the natural isomorphisms 

we deduce that the restriction &(X) -+ &(V) is an isomorphism, whence 
X is orientable, giving (f). 

For part (g), note that H~(X; fI) is a quotient group of Z by (b) and 
(d), and so it has the form Zm = Z/mZ for some m, possibly O. Since the 
union of an increasing sequence of compact subsets of X is paracompact, 
H~(X; fI) ~ lin}vH~(V; fI), where V ranges over the connected, paracom
pact, and relatively compact subspaces of X. This shows, using (b) and 
(d), that we may assume that X is paracompact in the proof of (g). The 
exact sequence 

o -+ Ext(H~(X; fI), Z) -+ Hn-l(X; fI-l) -+ Hom(H~-l(X; fI),Z) -+ 0 

of (65) on page 340 shows that the torsion subgroup of Hn-1(X; fI-l) is 
Zm. This sequence also gives (i), assuming (b) and (g). From duality 9.2 
we have 

and similarly, for any integer k > 1, 

Hn(X;fI-1®Zk) ~ r(&®fI-1®Zk) ~ {Z2, if k is even, 
0, if k is odd, 

because & ® fI- 1 is a nonconstant bundle with fiber Z and structure group 

Z2. The coefficient sequence 0 -+ fI-1 ~ fI- 1 -+ fI-1 ® Zk -+ 0 induces 
the exact sequence 

0= Hn(X; fI-l) -+Hn(Xj fI- 1 ® Zk)-+Hn-1(Xj fI-l) ~ Hn-1(Xj fI- 1), 

which shows that Hn-1(X; fI-l) contains 2-torsion Z2 and no odd torsion, 
whence m = 2, proving (g).35 Part (h) is an immediate consequence of (b) 
and (g). 0 

16.17. Corollary. (F. Raymond [69J.) Let X be an n-cmL, and assume 
that H; (X j L) ~ H; (JRn j L). Then the one-point compactijication x+ of 
X is an n-cmL with H*(X+;L) ~ H*(,§P;L). 

Proof. That X+ has the stated global cohomology is immediate from the 
cohomology sequence of the pair (X+, 00). By 16.16(f), X is orientable. 
Thus H~(X; L) ~ H~-q(Xj L), whence H;(Xj L) = O. By II-17.16, X+ is 
clc,£,. By (9) on page 292, H*(X+j L) ~ H*(sn j L). The exact homology 
sequence of (X+,X) then shows that .1t'p(X+jL)oo ~ Hp(X+,X) is L for 
p = n and is zero for p =J n. This gives the result by 16.8(d). 0 

35Part (g) can also be proved by an argument similar to that of II-16.29. 
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16.18. Corollary. If A is a locally closed subspace of an n-cmL X, then 
dimL A = n {::} int A =f. 0.36 

Proof. The <= part is trivial. Also, we may as well assume that X is 
connected and orientable and that A is closed. In that case, if int A = 0 
then H:;(A n Uj L) = 0 by 16.16(c) for all open U. Then it follows from 
11-16.14 that dimL A < n. 0 

16.19. Corollary. (Invariance of domain.) If A c X and if A and X are 
both n-cmL 's, then A is open in X. 

Proof. By passing to a small open neighborhood of a point x E A we can 
assume that A and X are both orientable, that A is closed in X, and that 
X is connected. Since H:;(AjL) =f. 0 by 16.16(b), we must have A = X 
(locally at x in general) by 16.16(c). 0 

16.20. Theorem. Let X be a connected n-cmL and let Fe X be a closed 
subspace with dimL F ~ n - 2. Then X - F is connected. 

Proof. There is the exact sequence 

0= Hn- 1(F' fP) ~ Hn(x - po fP) ~ Hn(x· fP) ~ 0 c , c , c' , 

so that the result follows from part (b) of 16.16. o 

16.21. Theorem. Let X be an n-cmL and let Fe X be a closed subspace 
with dimL F = n - 1. Then there exists a point x E F such that all 
sufficiently small open neighborhoods of x are disconnected by Fj i. e., there 
exists an open neighborhood U of x such that for all open neighborhoods 
V C U of x, V - F is disconnected. Moreover, every point of X has 
an arbitrarily small open connected neighborhood V such that V - F is 
disconnected for all compact subspaces F of V with dimL F = n - 1 and 
Hn-l(F; L) =f. O. 

Proof. This is a local matter, and so we may as well assume that X is 
connected and orientable. By 11-16.17 there exists a point x E F and an 
open neighborhood W of x such that for all open neighborhoods U C W of 
x, H:;-l(U n Fj L) ~ H~-l(W n F; L) is nonzero. However, by definition 
of an n-cm, there is a neighborhood U of x so small that H~-l(U; L) ~ 
H~-l(Wj L) is zero. Let V CUbe a connected neighborhood of x. In the 
commutative diagram 

H:;-l(V;L) ~ H:;-l(VnFjL) ~ H:;(V-F;L) ~ H:;(VjL) 

10 1~0 
H:;-l(WjL) ~ H:;-l(wnF;L) 

36In a topological manifold, this holds for arbitrary subspacesj see [49, p. 46). 
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the map H~(V -F; L) -+ H~(V; L) is an isomorphism by 16.16(e) if V -F 
is connected. That contradicts the remainder of the diagram. Therefore 
V - F is disconnected for all open neighborhoods V c U of x. The last 
statement also follows from the displayed diagram, where now F c V. 0 

16.22. Corollary. If F c X is a closed subspace of the n-cmL X, then 
dimL F = n - 1 ¢:} int F = 0 and F separates X locally near some point. 

o 

We shall now introduce the notion of a generalized manifold with bound
ary. As always in this chapter, all spaces considered are assumed to be 
locally compact Hausdorff spaces. 

16.23. Definition. A space X is said to be an n-cmL with boundary B 
if B c X is closed, X - B is an n-cmL, B is an (n - l)-cmL, and the 
homology sheaf.1f n(X; L) vanishes on B. 

By 16.8 this is equivalent to the following five conditions: 

1. Be X is closed. 

2. X and Bare clcr:. 

3. dimL X < 00. 

4. The stalks .1fp(X; L)x are isomorphic to L for x E X - Band p = n, 
and are zero otherwise. 

5. The stalks .1f pCB; L)y are isomorphic to L for p = n - 1 and are zero 
for p =1= n - 1. 

Also, it follows from 9.6 and II-Exercise 11 that dimL X = n. Note that 
an n-cmL with boundary is an n-whmL. 

16.24. Proposition. If X is hereditarily paracompact and X - B is ori
entable over L, then condition 5 follows from the other conditions. 

Proof. By 9.2, H~_p(X, X - B) ~ H~(B; @IB) = 0 since @IB = O. By 
13.7, H*(X,X - B; L) = O. By II-16.1O, 9.3, and the cohomology sequence 
of (X,X - B) and the coefficient sequence 0 -+ LX-B -+ L -+ LB -+ 0 
we have Hp(B) ~ Hn-p(x,x - B;Lx-B) ~ Hn-p-l(x,X - B;LB). By 
the exact sequence of the pair (X, X - B) with coefficients in LB, this 
is isomorphic to Hn-p-l(x; LB) ~ Hn-p-l(B). These isomorphisms are 
natural, and so we have the natural isomorphism Hp(BnU) ~ Hn-p-l(Bn 
U) for U open. Taking the limit over neighborhoods U of x E B gives 
.1f p(B)x = 0 for P =1= n - 1 and .1f n-l (B)x ~ L. 0 

Remark: That orient ability is needed for 16.24 is shown by the example of an 
open cone over lRJP'2 with B the vertex and L a field of characteristic other 
than 2. We conjecture, however, that orientability is not needed if L = Z. 
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16.25. Theorem. Let X and Y have common intersection B = X n Y 
that is closed and nowhere dense in both X and Y. Then X U Y is an n
cmL and B is an (n-1)-cmL <=> both X and Y are n-cmL 's with boundary 
B. 

Proof. From a diagram using the Mayer-Vietoris sequence one sees easily 
from II-17.3 that if B is clc,£, then X n Yare clc,£, <=> X and Yare clc,£,. 
From the first Mayer-Vietoris sequence of Exercise 9 one derives the Mayer
Vietoris exact sequence (coefficients in L) 

of sheaves on B, and the <= implication follows immediately from this by 
examining stalks at points of B. For the::} portion, let W be a connected 
paracompact open neighborhood in X U Y of any point in B. Then W n X 
and W n Y are nonempty proper closed subsets of W. By 16.16(a) we 
have that Hn(W n X) = 0 = Hn(W n Y) and that Hn- 1(W n X) and 
Hn- 1(W n Y) are torsion-free. It follows that .7f n(X)IB = 0 = .7f n(y)IB 
and that .7f n-l(X)IB and .7f n-l(Y)IB are torsion-free. This again gives 
the result upon examination of the displayed sequence. 0 

16.26. Corollary. Let X be a connected, orientable n-cmL such that 
Hf(X; L) = 0 and let B c X be a closed, connected (n - l)-cmL. As
sume either that L = Z or that B is orientable. Then X - B has two 
components U and V. Moreover, U = U U B is an n-cm.~ with orientable 
boundary B, and similarly with V. 

Proof. Since H~-l(X;L) ~ Hf(X;L) = 0, the exact cohomology se
quence of (X, B) has the segment 

0-+ Hn- 1(B· L) -+ Hn(x - B· L) -+ Hn(x· L) -+ 0 c , c , c' , 

from which we deduce from 16.16(b, g) that X - B has exactly two com
ponents, say U and V (and that B is orientable in the case L = Z). That 
U = U U B follows from 16.21, and the result then follows from 16.25. 0 

Remark: Even in the case n = 3 and X = §3 the Alexander horned sphere shows 
that V need not be an actual 3-manifold with boundary. The standard 
embedding of R1P2 in R1P3 and L = Z3 shows that the condition "L = Z or 
B is orientable" is required. 

16.27. Theorem. Let B c X be closed and nowhere dense. Then X is 
an n-cmL with boundary B <=> the double dX = X UB X is an n-cmL. 

Proof. The::} part follows immediately from the preceding result. For 
<=, let Y denote a copy of X, let T : Xu Y -+ XU Y be the map switching 
copies, let i : X ~ X U Y be the inclusion, and let 11" : X U Y -+ X be the 
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folding map. Then 7ri : X -+ X is the identity. Let U be a connected open 
neighborhood in Xu Y of some point in B = X n Y that is invariant under 
T. Then the composition 

is the identity, and it induces maps of sheaves 

whose composition is the identity. It follows that .1t'p(X)IB = 0 for Pi:- n. 
But Hn(U n X) = 0 by 16.16(a). Thus .1t'p(X)IB = 0 for all p. Then the 
Mayer-Vietoris sequence 

shows that.1t' n-l(B) ~.1t' n(XUY)IB is locally constant with stalks Land 
that .1t'p(B) = 0 for p i:- n -1; that is, B is an (n -1)-cmL. Hence X is 
an n-cmL with boundary B by definition. 0 

16.28. Proposition. Let B c X be closed with both X and B being clel:. 
Then X is an n-emL with boundary B <=> the sheaf@ = .1t'p(X,B;L) has 
stalks L for p = n and vanishes for p =f n, and .1t'p(X; L)IB = 0 for all p. 

Proof. It follows from 16.8(d) that under either hypothesis, X - B is an 
n-cmL. For an open set U of X we have the exact sequence 

natural with respect to inclusions, and hence the exact sequence of sheaves 

... -+ .1t'p(X) -+ .1t'p(X, B) -+ .1t'p_l(B)X -+ .1t'p_l(X) -+"', 

yielding the isomorphism.1t' p(X, B)IB ~ .1t'p_l(B). Thus the result follows 
from 16.8(d). 0 

16.29. Proposition. For an n-cmL X with boundary B and its orienta
tion sheaves @ = .1t'n(X;L) and & = .1t'n(X,B;L), we have @ ~ &X-B. 
Moreover, @ is locally constant on X with stalks L. 

Proof. The first part is immediate. Let X U Y be the double of X along 
B. Then similarly to the previous proof, there is the exact sequence 

... -+ .1t'p(y)XUY -+ .1t'p(XUY) -+ .1t'p_l(XUY, Y) -+ .1t'P_l(Y)XUY -+ ... 

and by excision 5.10, .1t' p(X U Y, Y) ~ .1t' p(X, B)XUY. Since.1t' p(y)XUY 
restricts to the zero sheaf on X, we have that .1t'p(X,B) ~ .1t'p(XUY)IX. 
The latter sheaf is locally constant with stalks L by 16.8. 0 
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16.30. Theorem. Let X be an n-emL with boundary Au B where A and 
B are closed and are (n - l)-emL 's with common boundary An B. Let 
(.At, «PIA) be elementary on X, and assume that dimcl> X < 00.37 Then38 

Proof. To simplify notation we shall give the proof in the case for which 
.At = L and X is orientable, i.e., @ = L. There is no difficulty in general
izing it. Note that (ff = LX-A-B in this case. 

Let X+ = X UB=Bx{O} (B x II), let B+ be the image of B x {1}, and 
put XO = X+ - B+. Extend «P to X+ by adding the sets of the form K x II 
and their subsets. (Similarly, extend .At in the general case.) We shall still 
call this extended family CP. Put A + = A U « A n B) x II), and similarly for 
A O • In the same manner as in previous proofs, one can show that X+ is an 
n-emL with boundary A+ UB+ and XO is an n-emL with boundary AO and 
orientation sheaf Lxo_Ao. Consider the following diagram (coefficients in 
L when omitted): 

H:(X;Lx-A);:" H:(XO;Lxo_AO)"::' H:r:;:o(XO) ~H:_p(X+,B+) 
Ll 1 i' 1 i. 

H:n(X_B/X - B;Lx_B_A)~H:~~X-B)(X - B)~H:_p(X,B), 

which commutes. (The isomorphism on the upper left is a consequence of 
invariance of cohomology under proper homotopies.) Now, via the isomor
phisms on the right (from 5.10), the map j. is the composition 

H cI> (X+ +) ~ cI> (+ ) ~ cI> ( B) n-p ,B --+ Hn_p X ,B x II -- Hn_p X, 

(these maps are isomorphisms due to invariance of homology under c-proper 
homotopies) and hence is an isomorphism. The required isomorphism is 
then just the composition from the upper left to the lower right. 0 

The typical case of interest of 16.30 is the product (M, aM) x (N, aN) 
of two orient able manifolds (or em's) with boundary and A = aM x N, 
B = M x aN. Thus, with m = dimL M and n = dimL N, one gets the 
isomorphism 

H~«M,aM) x N;L) ~ H!+n_p(M X (N,aN);L) 

when cP is paracompactifying or when M x N is locally hereditarily para
compact. 

The first term on the bottom of the diagram in the proof of 16.30 and 
the commutativity of the diagram were not used in the proof. However, 

37E.g., «I> paracompactifying, or X locally hereditarily paracompact. 
38See [19, p. 358] for a classical account of this version of duality. 
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the composition 

H~(XjLX_A) ~ H~(XOjLxo_Ao) ~ H:n{X-B)(X - BjLx - B- A) 

is just the restriction homomorphism for the inclusion X - B ~ X, and 
so in the case A = 0 we also conclude the following result from the com
mutativity of the diagram: 

16.31. Proposition. Let X be an n-cmL with boundary B. Assume that 
dim.p X < 00 and dim.pn{x_B) X - B < 00. 39 Then for.At an elementary 
sheaf on X and an arbitrary family of supports ~ on X, the restriction 

H:(Xj.At) -+ H:n(X-B)(X - Bj.At) 

is an isomorphism for all p. Also see [68]. D 

An example of a 3-em with boundary that is not a manifold is the 
closure M of one of the components of the complement of an Alexander 
horned sphere B in 3-space. In this case there is no internal collar of the 
bounding 2-sphere. An example of a 3-em without boundary that is not 
a manifold is the quotient space M / B, as follows from 16.35. An example 
of a I-em that is not a manifold is the double of a compactified long line. 
However, separable metric n-emL's are manifolds for n ::::; 2 and any L, as 
we now show. 

16.32. Theorem. If X is a second countable n-hmL, with or without 
boundary, and n ::::; 2, then X is a topological n-manifold. 

Proof. Since X is completely regular and second countable, it is separable 
metrizable by the Urysohn metrization theorem; see [19, 1-9.11]. Also, X is 
an n-hmK for K = L/pL for any prime p in L, and so it suffices to consider 
the case in which L is a field. Then by 16.13, X is clCL. In particular, X 
is locally connected. A locally compact and locally connected metric space 
is locally arcwise connected in the sense that an "are" is a homeomorphic 
image of [0, l]j see [47, p. 116J. 

In case n = 0, X is totally disconnected by II-16.21. Since it is locally 
connected, it is discrete, proving that case. 

In case n = 1, first assume that ax = 0. By 16.21 any point x E X has 
a connected neighborhood U with U - {x} disconnected. Let a, b E U - {x} 
be points from different components. Then there is an arc A in U joining 
a and b. By invariance of domain 16.19, A - {a, b} is open in X, so that 
X is locally euclidean near x, proving that case. The case in which X has 
a boundary can be verified by looking at the double of X. The details of 
that argument are left to the reader. 

For the case n = 2, we must use the topological characterization of 2-
manifolds with boundary due to G. S. Young [87J. This says that a locally 

39E.g., ~ paracompactifying and X - B paracompact. 
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compact metric space X for which each point has a connected neighborhood 
U such that U - C is disconnected for all simple closed curves C in U, is a 
2-manifold, possibly with boundary. Consider first the case in which aX = 
0. Then the last part of 16.21 shows that X satisfies Young's criterion. 
Since the sheaf .1f n(X; L) vanishes on the boundary of an n-manifold, the 
topological manifold notion of boundary coincides with that defined for 
homology manifolds. Now consider the case in which B = aX f:. 0. Let 
X u Y be the double of X along B. Let x E B and let U be a symmetric 
neighborhood of x in Xu Y such that Un X is connected and with U not 
containing any component of B (which we now know to be a I-manifold). 
Also, take U so small that U is disconnected by all simple closed curves 
C cU. Then note that 

U - C = (U n X - C) U (U n (Y - B)). 

Now, Un (Y - B) is connected since H°(U n Y; L) ---. H°(U n (Y - B); L) 
is an isomorphism by 16.31. Also, the closure of U n (Y - B) intersects 
U n X - C nontrivially, since otherwise C would be a component of B, 
contrary to the selection of U as not containing a component of B. Thus, 
since U - C is disconnected, U n X - C must be disconnected. This shows 
that X satisfies Young's criterion. 40 D 

16.33. Theorem. (Wilder's monotone mapping theorem.) Let X be an 
n-hmL. Assume either that X is orientable or that L = Z. Let f : X ---. Y 
be a Vietoris map (i.e., proper, surjective, and with acyclic point inverses). 
Then Y is also an n-hmL' which is orientable if X is orientable. Also, Y 
is clcL (and hence is an n-cmL) if X is clcL' 

Proof. The hypothesis implies that f is proper and that the Leray sheaf 
.1fP(f; L) is L for p = 0 and vanishes otherwise. We shall prove the last 
statement first. For U C Y open and with U· = f-1U, the Leray spectral 
sequence degenerates to the natural isomorphism Hf(U; L) ~ Hf(U·; L). 
If U and V are open with U C V, then u· c V·. Therefore if X is dCL' 
then by II-17.5, Hf(U·;L) ---. Hf(Ve;L) has finitely generated image. 
Hence Hf(U; L) ---. Hf(V; L) has finitely generated image for all p, which 
means that Y is dCL by II-17.5. 

Now assume that X is orientable. Note that a point in a locally 
compact Hausdorff space has a fundamental system of open paracom
pact neighborhoods U (e.g., the union of an increasing sequence of com
pact neighborhoods). Since f is proper, U· is also paracompact. Now 
.Ytp(f;L) = flJ,,-/(U 1--+ Hp(Ue;L) ~ Hn-p(Ue;L)) ~ .Ytn-p(f;L). Thus 
we have 

.Ytp(Y;L) ~ .Ytp(f;L) by (48) on page 323 
~ .Ytn-p(f; L) since X is orientable 

~ {L, p = n f ~ 0, p f:. n since is a Vietoris map, 

~~------------------
40 Another treatment of these matters can be found in [85]. 
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which means that Y is an n-hmL as claimed. 
Now assume X to be nonorientable and that L = Z. Let y E Y, and put 

F = f-l(y). We claim that (J is constant on F. If not, then the units in the 
stalks give a nontrivial double covering space of F, so that Hl(F; Z2) i:- 0 
by II-19.6. This contradicts the universal coefficient theorem II-15.3. Now, 
(J must be constant on some open neighborhood of F = f-l(y) by II-9.5, 
and this neighborhood can be taken to be of the form u· = f-lU, U open. 
Then U· is orientable, and so U is an n-hmz by the part of the theorem 
previously proved. 0 

This result would be false for L a field of characteristic other than 2 
and X nonorientable, as shown by the map of lRlP'2 to a point. Of course, 
it is only the dimension of Y that goes wrong here. A more convincing 
example is given by X = lRlP'2 X lR and Y = (-00,0] U lRlP'2 X (0,00), where 
f : X ---+ Y is the obvious map and Y is given the quotient topology. Here 
f is a Vietoris map over fields L of characteristic other than 2, but Y fails 
to be an hmL for any L and even fails to have a uniform dimension over L. 

As an example of the use of 16.33, the identification space lR3 I A is a 
3-cmz, where A is a wild arc. Note that if x is the identification point, 
then U - {x} is not simply connected for any neighborhood U of x in this 
3-cmz· 

In Section 18 we shall present a considerable generalization of 16.33. 

16.34. Corollary. Let X be an n-cmL, and assume either that X is ori
entable or that L = Z. Let f : X ---+ Y be a Vietoris map. Then the 
mapping cylinder Mf is an (n + 1)-cmL with boundary X + Y. 

Proof. The obvious map X x §1 ---+ dMf of the double of X x][ to the 
double of M f is a Vietoris map, and so dMf is an (n + 1)-cmL by 16.33. 
Thus Mf is an (n + l)-cmL with boundary by 16.27. 0 

16.35. Corollary. Let X be an n-cmL with boundary and let B be a com
pact component of the boundary such that H.(B; L) :::::i H.(§n-l; L). Then 
the quotient space XI B is an n-cmL with boundary being the image of 
ax - B. 

Proof. The boundary component B is orientable by 16.16(f), and it fol
lows that M is orient able in a neighborhood of B. If M is the union of X 
with the cone CB on B, then M is an n-cmL by 16.9 (or 5.10) and 16.25. 
Also XIB ~ MICE. Since the map M ---+ MICB is Vietoris, the result 
follows from 16.33. 0 

16.36. We conclude this section with a short discussion of compactifica
tions of generalized manifolds. Let U be a connected n-hmL' Bya com
pactijication of U we mean a compact space X containing U as a dense 
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subspace and such that F = X - U is totally disconnected. It is the end
point compactijication of U if, in addition, F does not disconnect X locally 
near any point; see Raymond [69], on which this discussion is largely based. 

16.37. Theorem. Suppose that X is a compactijication of the n-hmL 
U. Then r{.rt'r(X;L)) :::::J Hr(X,U;L) for r < n. Moreover, for r < n, 
.rt'r(X;L) = 0 {:} Hr(X,U;L) = O. 

Proof. By II-Exercise 11, dimL X = n. Let F = X - U. By 8.4, there is 
a spectral sequence with 

Since F is totally disconnected, this reduces to the isomorphism 

r{.rt'r(X; L)IF) :::::J Hr(X, U; L). 

For r < n, .rt'r(X; L) is concentrated on F, so that 

The last statement follows from II-Exercise 61. o 

16.38. Lemma. Let X be the end-point compactijication of the connected 
n-CTnL U, n> 1. If U is orientable in the neighborhood of each point of X, 
then fP = .rt' n(X; L) is locally constant with stalks L. If X is hlc}" then 
.rt'l(X;L) = 0 = .rt'o(X;L). 

Proof. Suppose that V is an open connected subset of X with U n V 
orientable. If W is a connected open subset of V, then W - F is connected 
and H~(W - F; L) --+ H~(W; L) is an isomorphism. By 16.16, H~(W-

F; L) --+ H~(V n U; L) :::::J L is an isomorphism, whence H~(W; L) ~ 
Hn(Vi L) :::::J L. It follows that fPlV is constant with stalks L. 

Now assume, instead, that X is hie}.. Then a point x E X has a 
connected open neighborhood V so small that Hf(V; L) --+ Hf(X; L) is 
zero. Since V - {x} and X - {x} are connected and 10caUy connected, we 
have that Ho(V - {x}; L) = 0 = Ho(X - {x}; L) by 5.14. Therefore we 
have the commutative diagram 

Hf(Vi L) --+ Hf(V,V-{X}iL) --+ 0 

10 1~ 
Hf(X;L) --+ Hf(X,X-{x};L) --+ 0, 

where the vertical isomorphism is due to excision. It follows that 

.rt'l(X;L)x:::::J Hf.(X, X - {x};L) = O. 

A similar but easier argument shows that .rt'o(X; L) = O. o 
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16.39. Theorem. Let X be the end-point compactification of the con
nected n-cmL U, n > 1, that is orientable in the neighborhood of each 
point of X. Then the following three conditions are equivalent:41 

(a) X is an n-cmL. 

(b) H*(X; L) is finitely generated and Hr(X, U; L) = 0 for all 1 < r < n. 

(c) H* (X; L) is finitely generated and 

is an isomorphism for all 0 < r < n. 

Proof. By II-17.15, X is dCL <=> H*(X;L) is finitely generated. This 
gives (a) <=> (b) by 16.37 and 16.38. The basic spectral sequence 

E~,q = HP(X;:Jf _q(X; L» ~ H_p_q(X; L) 

has Eg,-q = f(:Jfq(X; L» ~ Hq(X, U; L) for q < n by 16.38. Also, 
E~·-n ~ HP(X; @). All other terms are zero. By 10.2, and the proof 
of 10.1, the edge homomorphism 

HP(X @) = EP,-n ...... EP,-n >---> H (X) , 2 00 n-p 

is the cap product [X] n (e) with [Xl = ~(1) E Hn(X; @-l), up to sign. 
Thus the latter is an isomorphism for 0 < p < n <=> Hq(X, U) ~ Eg,-q = 0 
for 1 < q < n, since Eg·- 1 ~ H1(X, U) = 0 by 16.38. Hence (b) <=> (c). 0 

Remark: As noted by Raymond [69, 4.12], the example of U = JRlP'2 X JR, X = 

~JRlP'2, and L a field of characteristic other than 2 shows that the hypothesis 
of orient ability of U near points of X is essential in 16.39. 

17 Locally homogeneous spaces 

A (locally compact, Hausdorff) space X is called "locally homogeneous" if 
for every pair x, y E X there is a homeomorphism h of some neighborhood 
of x onto a neighborhood of y with h(x) = y; see [4] and [29]. Bing and Bor
suk [4] have asked whether every locally contractible, locally homogeneous, 
finite dimensional, separable metric space is a generalized manifold (or, 
indeed, a topological manifold). A partial result in this direction follows 
immediately from 16.15: 

17.1. Theorem. [14] Suppose that X is second countable, that dimL X < 
00, that X is locally homogeneous, and that Hi (X, X - {x}; L) is finitely 
generated for each i. Then X is an n-hmL for some n. 0 

41 Raymond's Theorem 4.5 in [69J is equivalent to the present (a) ¢} (b) by the exact 
sequence of his Theorem 2.16, which is the homological analogue of the second exact 
sequence of our II-18.2. 
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The problem with this result is the condition that Hi(X, X - {x}; L) be 
finitely generated. This is a very strong condition that does not follow from 
any reasonable set-theoretic properties that we are aware of. For instance, 
local contractibility does not imply it. It would be nice if this condition 
could be replaced by condition dCL, for example. We shall prove such a 
result under a stronger type of local homogeneity: 

17.2. Definition. A space X will be called "locally isotopic" if X is locally 
arcwise connected and for each path ,X : II ---t X there is a neighborhood N 
of 'x(0) in X and a map A : II x N ---t X such that A(t, 'x(0)) = ,X(t) and 
such that each N is a homeomorphism of N onto a neighborhood of ,X(t), 
where N(x) = A(t, x). [With no loss of generality we may also assume that 
A(O, x) = x for all x E N.] 

This condition is slightly stronger than the notion of local homogeneity 
defined by Montgomery [61]. It is weaker than that defined by Hu [48], 
which coincides with the condition l-LH of Ungar [81]. 

Throughout the remainder of this section we shall impose the standing 
assumption that X is locally compact, Hausdorff, second countable and 
dCl:, and that L is a countable principal ideal domain. 

17.3. Lemma. If X is also locally homogeneous, then the homology sheaf 
:1fp(X;L) is a Hausdorff space. 

Proof. Let {Vi} be a countable basis for the topology of X. For any x E 
X and a E :1fp(X)x, there are indices i,j with x E Vj, Vj C Vi, and such 
that a is in the image of the canonical map r;,j,i : Im(Hp(Vi) ---t Hp(Vj)) ---t 

:1f p(X)x. Since X is dCl:, Im(Hp(Vi) ---t Hp(Vj)) is finitely generated, 
whence it is countable because L is countable. For Sn E Im(Hp(Vi) ---t 

Hp(Vj)) the definition an(x) = r;,j,i(Sn) gives a section an E f(.1t'p(Un)), 
where Un = Vj. Therefore .1t'p(X) is covered by the countable collection 
{an} of local sections. Put An = lanl and Cn = (8Un) U (8An). By the 
Baire category theorem, there is a point x not in any Cn. Each point of 
the stalk .1t'p(X)x has the form an(x) for some n. If an(x) =1= 0, then since 
x E An - 8An, an is nonzero on some neighborhood of x. By the group 
structure this implies that any two points of .1t' p(X)x can be separated by 
open sets in .1t'p(X). Since X is locally homogeneous, this is true at all 
points of X. 0 

17.4. Lemma. Suppose that X is also locally isotopic. Then the projec
tion 1r : .1t' p(X; L) ---t X has the path-lifting property. 

Proof. Let'x: II ---t X be any path and let a E H~(X, X - 'x(0)) = 
.1t' p(Xh(o) be given. Let N be a compact neighborhood of 'x(O) so small 
that A : ][ x N ---t X exists as in Definition 17.2. For t E ][, N is a 
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homeomorphism of (N, N - >'(0)) onto (Nt, Nt - >.(t)), where Nt = Af(N) 
is a neighborhood of >.(t). Thus 

A~ : H~(N,N - >'(0)) ~ H~(Nt,Nt - >.(t)), 

and we put 
at = A~(a) E .1fp(Xh(t). 

We must show that t f---+ at is continuous. For this, let U c N be an 
open neighborhood of >'(0) so small that a is the image of an element 
(3 E H;(N, N - U). Put Ut = At(U) and (3t = A~((3) E H;(Nt, Nt - Ut ). 
Let s E ][ be given and let V be a neighborhood of >.(s) so small that for 
some c > 0, V C Ut for all s - c < t < s + c. By homotopy invariance 
6.5, (3t maps to the same element "y E H~(X, X - V) = Hp(V) for all 
t E (s - c, s + c). Thus "y defines a section of X p(X) over V whose value 
at >.(t) is at for s - c < t < s + c, and this shows that at is continuous in 
t. Since 7r is a local homeomorphism, the path lifting is unique. 0 

Since a fibration with unique path lifting over a semilocally I-connected 
space is a covering map [75, p. 78], we have: 

17.5. Corollary. If X is semilocally I-connected and locally isotopic in 
addition to the standing assumptions, then each .1f p (X; L) is locally con
stant. 0 

From 16.1 and 16.3 we conclude: 

17.6. Theorem. [14] Let L be a countable principal ideal domain. Let X 
be second countable, semilocally I-connected, and locally isotopic. Assume 
further that n = dimL X < 00 and that X is connected and locally con
nected. If L is a field, then X is an n-cmL. If L is arbitrary and X is 
dcL', then X is an n-cmL. 0 

18 Homological fibrations and p-adic 
transformation groups 

The major unsolved question in the theory of continuous (as opposed to 
differentiable) transformation groups on topological manifolds is whether 
a compact group acting effectively on a manifold must necessarily be a Lie 
group. It is known that a counterexample to this would imply that some 
p-adic group 

Ap = llm{-" -> Zp3 -> Zp2 -> Zp}, 

p prime, can also act effectively on a manifold.42 In one direction, it is even 
unknown whether such a group Ap can act freely. (It might be expected 

42This follows from the known structure of compact groups together with Newman's 
Theorem [15, p. 156], stating that a finite group cannot act effectively on a manifold 
with uniformly small orbits. 
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that an effective action would imply a free one on some open subspace, but 
no one has been able to prove that either.) In this section we will present 
much of what is known about the homological implications of the existence 
of such an action. First we will study the notion of a homological fibration. 

18.1. Definition. [11] A "cohomology fiber space" over L (abbreviated 
cfs£) is a proper map f : X ----> Y between locally compact Hausdorff spaces 
X and Y such that the Leray sheaf :Jti(f; L) is locally constant for all i. 
We shall call it a cfsl if :Jt\f; L) = 0 for i > k and:Jtk (f; L) I- O. In this 
case we denote the common stalk of :Jti(f; L) by Hi(F). 

18.2. Proposition. [11] Suppose that f : X ----> Y is a cfst, and assume 
that dimL X = n < 00. If L is a field, then dimL Y ::; n - k. If L is any 
principal ideal domain, then dimL Y ::; n + 1. 

Proof. We may as well assume that :Jti(f; L) is the constant sheaf Hi(F). 
Let L be a field. Let y E Y. For U c Y open, consider the Leray spectral 
sequence 

E~,q(U) = HP(U; Hq(F)) ===} HP+q(Ue) 

(and also its analogue with compact supports) with coefficients in L, where 
ue = rl(U). Let 0 I- a E Hk(F). Since Hk(F) = limHk(Ve), there is 
a neighborhood V of y and an element av E Hk(ve) extending a. For 
U c V connected, let au E Hk(Ue) be the restriction of av and let a E 

Eg,k = HO(U; Hk(F)) be the image of au under the edge homomorphism 
Hk(Ue) ---» E~k >---+ Eg,k. Then a I- 0 is a permanent co cycle. Let 0 I
(3 E H~(U; HO(F)) = E;'o. Then (3 is trivially a permanent cocycle, and so 
aU(3 E E;,k is a permanent cocycle since dr (aU(3) = dr aU(3±aUdr (3 = O. 
Also, aU (3 I- 0 by II-7.4. Therefore H~+k(ue) I- O,and so r + k ::; n. 
Consequently, H~(U;HO(F)) = 0 for r > n - k. Since HO(F) is a free 
L-module, the composition L ----> HO(F) ----> L of coefficient groups implies 
that H~(U; L) = 0 for r > n-k. Therefore dimL U ::; n-k by II-16.14, and 
dimL Y ::; n - k by II-16.8. The case of a general principal ideal domain L 
follows from an easy universal coefficient argument. 0 

18.3. Proposition. [11][36] Suppose that f : X ----> Y is a cfsL such that 
each :Jti (f; L) has finitely generated stalks for i ::; k. If X is clc'£, then Y 
is also clc1.43 

Proof. We may as well assume that each :Jt\f; L) is constant for i ::; k. 
Let A, BeY be compact sets with A c int B. If Y is not clc1, then by 
II-17.5 there is a minimal integer m ::; k such that there are such sets A, B 
with the image of the restriction Hm(B; L) ----> Hm(A; L) not being finitely 

43The proof uses only that the sheaves ;Yfi(f; L) are locally constant for i ::; k rather 
than the full CfSL condition. 
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generated. From the universal coefficient sequence and II-17.3, it follows 
that E~,q(B') = HP(B'; Hq(F)) -+ HP(A'; Hq(F)) = E~,q(A') has finitely 
generated image for all p ::::: m - 2, q ::::: k and all such pairs A', B'. Let K 
be compact and such that A c int K and K c int B. Then by the diagram 

E;"O(B) -+ E!{"o(B) 

If Ih 
E;,-2,1(K) -+ E;"o(K) -+ E!{',O(K) 

1 19 

E;,-2,1(A) -+ E;"o(A) 

and II-17.3 it follows that 1m h is not finitely generated. Continuing this 
way, we see that there is such a K such that the image of E::"O(B) -+ 

E::"O(K) is not finitely generated. It follows that the image of Hm(Be) -+ 

Hm(Ke) is not finitely generated, contrary to II-17.5. 0 

18.4. Lemma. Suppose that f : X -+ Y is a cfs'L with each dti(f; L) 
constant, where L is a field. Then for U open in Y there is a spectml 
sequence of homological type44 with 

and that is natuml in U. Consequently, there is a spectml sequence of 
sheaves with 

10';,q = Xmt(Hq(F),dtp(Y)) ====} dtp+q(f)·1 

(Coefficients in L are omitted.) Also, the stalks satisfy 

I Xmt(Hq(F) , dt p(Y))y ~ Hom(Hq(F), dt p(Y)y)·1 

Proof. In the Leray spectral sequence 

E~,q = H~(U; Hq(F)) ====} H~+q(U-) 

we have Hf(U; Hq(F)) ~ Hf(U)0Hq(F) since L is a field. Also, Hom(., L) 
is exact, and so if we apply it to the spectral sequence and adjust indices, 
we get a homological spectral sequence with 

E;,q = Hom(Hf(U) 0 Hq(F), L) ~ Hom(Hq(F), Hom(Hf(U), L)) 

~ Hom(Hq(F), Hp(U)) 

and converging to Hom(Hf+q(Ue ), L) ~ Hp+q(Ue). The last statement is 
from the fact that Hom(.,.) commutes with direct limits in the second 
variable. 0 

44This means that dr : E;,q -+ E;-r,q+r-l' 
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18.5. Theorem. [11] Suppose that I: X -+ Y is a cl/t, and assume that 
X is an orientable n-hmL' where L is a field. Then Y is an (n - k)-hmL. 
Also, Y is orientable il each ,y{i (f; L) is constant. Moreover, each Hi (F; L) 
is finitely generated, and Hi(F; L) :::::: Hk-i(F; L) lor all i. 

Proof. We may as well assume that the Leray sheaf of I is constant. As 
in the proof of 16.33, we have that .1t'i(f) :::::: .1t'n-i(f). By assumption, 
this vanishes for n - i > k, that is, for i < n - k. It also vanishes, trivially, 
for n - i < 0, that is, i > n. Let m = min{p 1.1t' p(Y) -:j:. O} and M = 
max{p 1.1t' p(Y) -:j:. O}. Then, since L is a field and Hk(F) -:j:. 0 -:j:. HO(F), 
the terms &'~.o and &'~.k are nonzero and survive to &,~*.45 Therefore, 
m ~ n - k and M + k :5 n, whence m = M = n - k. Thus .1t' p(Y) = 0 for 
p -:j:. n - k, and the spectral sequence degenerates to the isomorphism 

It follows that .1t' n-k(Y) is constant. Call its common stalk S. Then we 
deduce that 

(119) 

In particular 

Hom(HO(F),S):::::: Hk(F) and Hom(Hk(F),S):::::: HO(F), 

which implies that rankHO(F) . rankS = rankHk(F) and rankHk(F) . 
rankS = rankHO(F) and that all these ranks are finite. Thus rankS = 1 
and Hq(F) :::::: Hk-q(F) by (119).46 0 

Remark: Orientability is needed in 18.5, as is shown by the orbit map of an 
action ofS1 on a Klein bottle. This is a cfsl for any field L with char(L) of 
2. The orbit space is an interval [0,1]. Also, see the examples below 16.33. 

A little work with the universal coefficient theorem yields a correspond
ing result over the integers: 

18.6. Corollary. [11] Suppose that I: X -+ Y is a cls~, a.nd assume that 
X is an orientable n-hmz and that the Leray sheaves ,y{i(f; IE) have finitely 
generated stalks. Then Y is an (n - k)-hmz and Hk(F;'J'.) :::::: HO(FjlE). 
Moreover, Y is orientable il each ,y{i(f; IE) is constant.47 0 

18.1. Let us now turn to actions of the p-adic group Ap on generalized 
manifolds. There is the p-adic solenoid Ep , which is the inverse limit of 
circle groups··· -+ §1 -+ §1, where all the maps are the p-fold covering 
maps. Then Ap C Ep are compact topological groups and Ep/ Ap :::::: §1. 

Continuity implies that 

45Look at the spectral sequence restricted to any stalk. 
46 Another proof can be based on Exercise 38. 
47 Also see Exercise 39. 
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the group of rational numbers whose denominators are powers of p. Also, 

Hl(~p; Q) R-:: Q, 
Hl (~p; Zp) R-:: 0, 
Hl(~p; Zq) R-:: Zq 

for any prime q -:f. p. All cohomology vanishes above dimension 1. 
Now suppose that Ap acts freely on an orientable n-hmL Mn. We 

shall assume that Ap preserves orientation; this is no loss of generality in 
studying the local properties of the orbit space since for L a prime field or 
Z (so that Aut(L) is finite) there is a subgroup of finite index in Ap that 
does preserve orientation. Let 

N n+l = ~p XAp M n 

with the notation of IV-9. Then Nn+1 is a bundle over §l = ~pIAp with 
fiber Mn, and so Nn+l is an (n + l)-hmL. Moreover, ~p acts freely on 
Nn+l and Nn+1 I~p R-:: Mn lAp. Now, ~p is a compact connected group, 
and so it operates trivially on the cohomology of Nn+1 by II-U.U. (This 
is the primary reason for making this construction here.) 

The orbit map 

f : N n+1 ~ N n+1 I~p R-:: M n lAp 

is a Vietoris map when L = Zp, and so we conclude from 16.33 that 

I Mn lAp is an (n + l)-hmL if L = Zp.1 

18.8. Lemma. In the above situation the Leroy sheaf:J{s (f; L) is constant 
with stalks H8(~p; L) for any L. 

Proof. Let 7ri : ~p ~ §l be the ith map in the inverse system defining 
~p. Let Ki = Ker7ri and let fi: Nn+1IKi ~ Nn+1/~p be the orbit map 
of ~pI Ki R-:: §l. For U c Nn+1 I~p open with U compact, U· = f-I(U) = 
Urnfi-l(U), and so H8(U;L) R-:: liIIJH8(fi- l (V);L) by continuity. Since 
the presheaf U 1-+ HS (fi- 1 (U); L) generates the Leray sheaf :J{s (/i; L), we 
conclude that :J{s(f; L) R-:: liIIJ:J{8(/i; L). But the sheaf :J{l(/i; L), being 
the Leray sheaf in the top dimension of an action of a compact Lie group, 
is constant, as is shown in IV-14. Hence :J{l(f; L) is constant. The same 
statement in other degrees is trivial. 0 

By the lemma the orbit map f is a cfs}. when L is a field of characteristic 
q -:f. p. Thus, by 18.5, we have that 

I Mn lAp is an n-hmL if L = Q or L = Zq, q -:f. p prime. I 
If Mn is an n-cmz, then it is also an n-cmL for all fields L (for Q since 

Mn is clcz). Thus the foregoing statements might seem contradictory, 
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but in fact, they appear to be logically consistent, and spaces with similar 
properties have been presented in the literature.48 

18.9. Now suppose that we are given an orientation preserving free action 
of Ap on an orientable n-cmz. We retain the notation of the previous 
subsection. Then the orbit map I : Nn+1 ---+ Nn+1 IEp ~ Mn lAp is a 
clsl by 18.8, but it does not satisfy the finite-generation condition of 18.6, 
and so we cannot assert that the orbit space is a homology manifold over 
Z; indeed, it cannot be one by the foregoing results and the universal 
coefficient theorem; also see 18.11. 

There are two tools we shall use to study this situation further. Consider 
the diagram 

~ N n +11Ap 

9 1 Sl 

Nn+l/'5:.p Nn+1 l'5:.p ~ Mn lAp' 

Note that Nn+1 lAp = (Ep XAp Mn)IAp ~ ('5:.pIAp) x Mn lAp ~ §1 X 

M n lAp' Let U c Mn I Ap ~ Nn+1 l'5:.p be an open set, and put U· = 1-1 U 
and U' = g-IU ~ UX§I. The first tool is the Gysin sequence of I: U· ---+ U 
as derived from the Leray spectral sequence of I. The second tool is the 
Borel spectral sequence 

whose coefficients are constant because Ap C '5:.p, and the latter operates 
trivially on H~(U·) by II-1Ll1. 

In order to use the Borel spectral sequence, we must calculate the co
homology of B Ap : 

18.10. Lemma. We have 

for s = 0, 
for s = 2, 
otherwise. 

Proof. A direct proof of this can be found in [21]. We shall give a much 
more efficient indirect proof. The cohomology of BEp follows immediately 
from the Leray spectral sequence of EEp ---+ BEp ' which gives 

and also shows that the map 

for s = 0, 
for s > ° even, 
otherwise 

48See the bibliography in [15], which is complete on this subject. 



400 V. Borel-Moore Homology 

is an isomorphism. The diagram 

induces a map of the spectral sequence of ( into that of'T}. On the Eg,! 
terms this is just the canonical inclusion 

and on the E~8,1 terms, for s > 0, it is the isomorphism 

It follows that 

in the spectral sequence of (, is the canonical inclusion and that 

is an isomorphism for s > O. Therefore, the only nonzero terms of the E~,q 
for ( are E~'o ~ Z and Ei'o ~ QpIZ, whence H*(BAp; Z) is as claimed. D 

Finally, we collect some miscellaneous facts about free actions of Ap on 
generalized manifolds. Again we stress that no examples of such actions 
are known, so the following theorem may be completely empty. 

18.11. Theorem. For an orientation-preserving free action of Ap on an 
orientable n-cmz Mn with Y = Mn lAp let 5J~(Y) denote the precosheaf 
U f-+ H~(U; Z) on Y. Then we have: 

(a) dimz Y = n + 2,49 

(b) Y is an (n + l)-cmzp' 

(c) Y is an n-cmZq for q =1= p prime, 

(d) Y is an n-cmQ, 

(e) 5J~(Y) is locally zero for i =1= n, n + 2, 

(f) 5J:;(Y) is equivalent to the precosheaf U f-+ H~(U·; Z) ~ Hf(U-; Z), 

(g) 5J:;+2(Y) is the constant cosheaf QpIZ, 

(h) dt'i(Y; Z) = 0 for i =1= n, n + 1, 

49Part (a) also holds for all effective actions; see [21] and [86]. 
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(i) :1f n(Y; Z) is constant with stalks Qp, 

--(j) :1f n+1 (Y; Z) is constant with stalks Qp/Z, 

(k) Y is j-clcz for all j i- 2, 

(1) Y is not 2-clcz, 

(m) f· N n+1 -> Y is a cf,sl where Nn+1 - ~ X A Mn . z, - p p , 

(n) n ~ 3. 

401 

Proof. Statements (b), (c), (d), and (m) have already been shown. In 
the Borel spectral sequence E~,t = H8(BAp;H~(Ue» =i> H~+t(U'), for 
U connected, we have that E~,t = 0 for s > 2 or t > n + 1. Therefore 
H:;+3(U') ::::; H2(BAp; H-:;+1(W» ::::; Qp/Z, and H~(U') = 0 for i > n + 3. 
Since U' ::::; U X §l, we deduce that H~(U) = 0 for i > n+2 and H-:;+2(U) ::::; 
Qp/Z naturally in U, proving (g). By 11-16.14 this also gives (a). 

To prove (e), note that for an open set V with V c U, the image 
of Hi(Ue) -> Hi(Ve) is finitely generated by 11-17.5. Since the direct 
limit of these is the cohomology of an orbit ~p, it follows that V can be 
chosen so small that Hi(ue) -> Hi(ve) is zero for i i- 0,1. By duality, 
Hj(Ue) -> Hj(ve) is zero for j i- n, n + 1. By the sequences (9) on page 
292 we derive that 

and 

Ext(Hg (Ue), Z) -> Ext(Hg (Ve), Z) is zero for j i- n + 1, n + 2. (120) 

Now the maps Hg (Ve) -> Hg (Ue) have finitely generated images by II-17.5. 
It follows fairly easily that V can be taken so small that Hg (Ve) -> Hg (Ue) 
is zero for j < n. Inductively assume that V can be taken so small that 
Hg (V) -> Hg (U) is zero for j < jo. Then by the universal coefficient 
theorem, we have that Hg(V;Qp) -> Hg(U;Qp) is zero for j < jo. The 
Gysin sequence of f has the segment 

H~O-2(V; Qp) -> HgO(V) -> Hgo (Ve). 

and it follows from 11-17.3 that V can be taken so that Hgo (V) -> Hgo (U) 
is zero, as long as jo < n. This proves (e) except in dimension n+ 1. Now, 
from the Borel spectral sequence we get that 

H-:;+2(U') ::::; H2(BAp; ~(ue» ::::; Qp/Z Q9 H;;(Ue) 

is all torsion. Thus its direct factor H-:;+1 (U) is all torsion. The Gysin 
sequence has the segment 
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so that f* = 0 here. Since the left-hand term is locally zero (by the 
universal coefficient theorem), so is the middle term, giving (e). 

For part (f) consider the segment 

of the Gysin sequence. The two outer terms are locally zero, so that the 
middle arrow is a local isomorphism as claimed. 

There is the exact sequence 

from which part (h) follows immediately. 50 It also gives .1(' n+l (Y; Z) ~ 

to:""(f)~+2(y), Z) ~ Q;fi" proving (j); see (109) on page 368. Also 

since f)~+l(y) is locally zero. By (f) this is the same as the sheaf generated 
by the presheaf U >-+ Hom(H~(U·), Z), which is the same as the sheaf gen
erated by the presheaf U >-+ Hn(U-) ~ Hl(U-) since Ext(H~+l(U-), Z) ~ 
Ext(Z, Z) = O. This is just the Leray sheaf of f. Thus.1(' n(Y; Z) ~ 
.1('1(f; Z), which is constant with stalks Hl(L-p) ~ Qp by 18.8, proving (i). 

To prove (k) and (1), note that by (e), for U an open neighborhood of 
y E Y there are open neighborhoods W eVe U of y with H~+l (W) -t 

H~+l(V) and H~(V) -t H~(U) both zero for i < n -1. By (9) on page 292 
and II-17.3, Hi(U) -t Hi(W) is zero for i < n - 1. By duality, assuming 
as we may that U and Ware paracompact, we have that Hn-i+l(U) -t 

Hn-i+l(w) is zero for i < n - 1; that is, Hj(U) -t HJ(W) is zero for 
j > 2. This shows that Y is j-clez for j > 2. Consider the Gysin sequences 
of f : Ae -t A for compact connected neighborhoods A of a given point 
y E Y. For B C int A another such set, we have the diagram 

0 -t Hl(A) -t Hl(Ae) -t HO(A; Qp) -t H2(A) 
1 1 1 1 

0 -t Hl(B) -t Hl(W) -t HO(B; Qp) -t H2(B) 
1 1 

H 1 (ye) -t HO(y; Qp) 

in which Hi(Be) -+ Hi(ye) has finitely generated image by II-17.5. Since y 
is a retract of A, HO(A; Qp) -t HO(y; Qp) ~ Qp is onto and hence does not 
have a finitely generated image. By II-17.3, the image of H2(A) -t H2(B) 
is not finitely generated. Thus Y is not 2-clez. The left part of the diagram 
shows that Hl(A) -t Hl(B) has finitely generated image, and since the 
direct limit of these is H1(y) = 0, it follows that Y is clel. 

Part (n) follows from (a), (d), and 16.32. 0 

50The case i = n - 1 uses (120). 
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Remark: Since Y is not clcz, it may not satisfy change of rings between Z and 
Q coefficients. Indeed, by (j) we have that ;Yf n+l (Y; Q) =1= 0 with Z as base 
ring even though Y is an n-cmQ. If one is trying to find a contradiction in 
the homology of this situation, care must be taken on this point. 

19 The transfer homomorphism in 
homology 

In homology, the strict analogue of 11-11.1 is false (except for covering 
maps), as seen in 6.6, so that to define the transfer homomorphism we 
must use a method different from that employed in 11-19. 

Let G be a finite group of homeomorphisms of the locally compact space 
X and let 7r : X --> X/G be the orbit map. The following lemma is basic. 
(The parenthetical cases are used only for dealing with arbitrary coefficient 
sheaves.) 

19.1. Lemma. If!l! is a sheaf on X/G that is c-soft (respectively, c-fine 
or replete), then 7r*!l! is also c-soft (respectively, c-fine or replete).51 

Proof. For any integer t let 

Ut = {y E X / G I 7r -1 (y) contains at least t points}. 

Then Ut is open and 

X/G = U1 ::l U2 ::l U3 ::l ... 

is a finite filtration of X/G. Correspondingly, !l! is filtered by 

!l! = !l!u, ::l !l!U2 ::l ... 

Let U; = 7r- 1 (Ut ). Then 7r*!l! is filtered by the subsheaves 

(7r* !l!)u: ~ 7r*(!l!ut ). 

Let !l! be c-soft. Since an extension of a c-soft sheaf by a c-soft sheaf is 
c-soft, an easy decreasing induction on t shows that in order to prove that 
7r* !l! is c-soft we need only show that 

(7r* !l!)u:/(7r* !l!) u:+ 1 ~ (7r*(21 Ut - UHd)x 

is c-soft. By 11-9.12 it further suffices to show that 7r*(!l! I Ut - Ut+d is 
c-soft. But c-softness is a local property, by 11-9.14, and 7rlUt - UH1 is a 
local homeomorphism. Thus 7r* !l! is c-soft when !l! is c-soft. 

Repletion is also a local property, as follows easily from II-Exercise 13. 
This property is also easily seen to be preserved by extensions. Thus, again, 
an inductive argument shows that if 2 is replete, then so is 7r*!l!. 

51Compare IV-6.7. 
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If !J! is c-fine, then it is a module over a c-soft sheaf [f}? of rings with 
unit; [f}? = .Y&mt(!J!, !J!), for example. Then 11'* f£ is a module over the c-soft 
sheaf 11'* [f}? Thus 1I'*!J! is c-fine. D 

19.2. Proposition. Let!J!* be a replete resolution of L on X/G, let <1> be 
a family of supports on X/G, and let $ be a sheaf on X/G. Assume that 
at least one of the following four conditions holds: 

(a) <1>=c. 
(b) 11'-1<1> is paracompactifyzng and dim1l"-11> X < 00. 
(c) ($, <1» is elementary. 52 
(d) (11'* $,11'-1<1» is elementary. 

Then there is a natural isomorphism 

Proof. Since 11' is proper, we have, by 2.6, that 

QlI( 11'11'* !J!*) = 11' QlI( 11'* f£*). 

By (21) on page 301 we also have that 

(121) 

QlI( 11'11'* !J!*) ® $ = (1I'QlI( 11'* !J!*)) ® $ ~ 11'( QlI( 11'* !J!*) ® 11'* $), (122) 

and by applying r 1> we obtain the natural isomorphism 

r 1> (QlI( 11'11'* !J!*) ® $) ~ r 11"-11> (QlI( 11'* !J!*) ® 11'* $) 

by IV-5.2 and IV-5.4(3). The proposition, in cases (a), (b), and (d), now 
follows from 3.5, 5.6, and 19.1. It is easily seen that (11'* $,11'-1<1» is elemen
tary when ($,<1» is elementary, so that case (c) follows from case (d). D 

Now, by 11-19, G acts, in a natural way, as a group of automorphisms 
of 1I'1I'*!J!*. 

The reader may verify the fact that the action of G on 1I'1I'*!J!* induces, 
via 19.2, the natural action of G on H;-I1>(X; 11'* $). There are the maps 

m* ~ *m* ~ __ 11'11'~ 
J1. 

of II-19, where f.Lj3 is multiplication by ord(G) and j3f.L = (J' = ,£g. We 
have the induced homomorphisms 

(123) 

Applying H*(r1>(-)) and using 19.2, we obtain the homomorphisms 

H:(X/G; $) ~ H;-l1>(X; 11'* $) 
11". 

52Recall that (c) is satisfied for any 1> when ~ = L. 
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when (a), (b), (c), or (d) of 19.2 is satisfied, since g;* can be taken to 
be .ff*(XjG;L). (The fact that 1f* is indeed induced from /3' 01 follows 
easily from its definition in Section 4.) The map JL* is called the transfer 
homomorphism. It is clear that 

and that 
11f *JL* is multiplication by ord( G) .1 

With the appropriate restrictions on supports and coefficient sheaves, 
we have the diagram 

for which we claim that 

n 
--> 

n 
--> 

for a E H!(XjG; A) and b E H~(XjG; fiJ). To see this, note that the 
diagram 

commutes. This shows that the formula holds for p = o. The general 
formula then follows from II-6.2. There is also the formula 

for a E H:;' -1 if> (X; 1f* A) and b E H!-1>It (X; 1T'* fiJ), by the more general 
formula (57) on page 337. The reader can verify the additional formulas 

for a E H!(XjG;A) and bE H!_1 >It (X; 1f* fiJ) , and, for the cup product, 

1 JL*(b U 1f*(c)) = JL*(b) U c 1 

for b E H;_1if>(X;1f*A) and C E Ht(XjG;fiJ). The reader should also 
verify these formulas for the case of the transfer for proper covering maps 
discussed in Section 6. 
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Consider a subgroup H c G and the map w ; X/ H -+ X/G. Then, 
using the fact from (48) on page 140 that (7r7r. flJ)H :::::! ww· flJ, we have that 

under conditions (a), (b), or (c). This leads to the transfer 1/*; 

H:(X/G; flJ)~ H;-l1> (X/H; w*flJ) 
w. 

19.3. Theorem. If X is an orientable n-hmz and if G is an effective 
finite group of orientation preserving tmnsformations of X, then the ho
mology sheaf.7f n(X/G; Z) is constant with stalks Z. 

Proof. We may assume that X is connected. We will use some items 
from the next section. Let S = {x E X/GIGx i= {e}}. We claim that 
dimz S ::; n - 2. If, on the contrary, dimz S = n, then S· contains an open 
set U. Since U is a finite union of the fixed-point sets of elements 9 E G 
of prime order, some such 9 must leave fixed an open set U C S·. Since 9 
has prime order, Smith theory implies that 9 leaves all of X fixed, and so 
G is not effective. If dimz S = n - 1, then similarly there is a 9 of prime 
order whose fixed-point set F separates X locally at some point x. Then 
there is a connected invariant open set U containing x such that U - F 
is disconnected. By Smith theory, F is an (n - 1)-hmz2 and g2 = e. It 
follows easily that locally at x, U - F consists of exactly two components, 
say V and W. If 9 preserves a component of U - F then, putting h(x) = x 
for x E Wand h(x) = g(x) for x ¢ W, h is a nontrivial transformation of 
period two fixing an open subset of U. This is contrary to Smith theory. 
Thus 9 must permute V and W. It follows from an easy Mayer-Vietoris 
argument that 9 reverses orientation, contrary to assumption. This proves 
our contention that dimz S ::; n - 2. 

If x E X - S·, then there is a connected open neighborhood U of x 
such that G(U) is the disjoint union of the sets gU, 9 E G. Consider the 
transfer 

1-£. ; Hn(7rU) -+ Hn(G(U)) = EB Hn(gU). 
gEG 

Let b E Hn(7rU) :::::! Z be a generator and let 1-£* (b) = EB bg, where bg E 

Hn(gU). Since g*l-£. = 1-£., we have that bg = g.(be). Then ord(G)b = 
7r.I-£.(b) = 7r.(2:: bg) = 7r*(2::g.(be)) = ord(G)7r*(be ). Thus 7r.(be) = b. 
Consequently, be is a generator of Hn(U), That is, the composition 

is an isomorphism, where j. is restriction. 
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Now let y E X/G be arbitrary and let W be a connected open neigh
borhood of y. Since dimz S ~ n - 2, the map H~(W - S) ~ H~(W) is 
an isomorphism, and it follows that the restriction Hn(W) ~ Hn(W - S) 
is an isomorphism. Let x E X - S· and U be as above with 'Il"(x) E W. 
Let W' be the component of W· containing U. We have the commutative 
diagram 

Hn(W - S) ~ Hn(W') 

1~ 1~ 
Hn('Il"U) ~ Hn(U) 

in which the isomorphism on the left follows from 8.7 since W - S is a 
connected orientable n-hmz.53 Since j*IL* is an isomorphism, as just shown, 
so is r*IL*. Therefore the composition of r*IL* with the inverse of the 
isomorphism Z ~ Hn(X) ~ Hn(W') gives isomorphisms Hn(W) ~ Z 
compatible with restrictions. 0 

20 Smith theory in homology 

We shall now apply the constructions of Section 19 to the special case in 
which G is cyclic of prime order p with generator g, and L is a field of 
characteristic p. These assumptions are made throughout this section. We 
shall also retain the notation of Section 19 and assume that at least one of 
the conditions (a), (b), or (c) of 19.2 is satisfied when we are dealing with 
global homology [as in (127), (132), and (134)] rather than with homology 
sheaves. Let F denote the fixed-point set of the action. 

As in II-19, we put 
T=l-g 

and 
a = 1 + 9 + g2 + ... + gP-l = T P- 1 • 

Let p* = §*(X/G; L), and put 

.JIi* = 7r* p* . 

Note that !:l!('Il".JIi*) = 'Il"!:l!(.JIi*) by (121). 
By (49) on page 141 we have the exact sequence 

o ~ p(7r.Jli*) ~ 'Il".JIi* Pff)j. p('Il".JIi*) EEl P;" - .... O. (124) 

Since p* is a ~o(X/G; L )-module, it follows that 7r.d* = 7r'll"* p* is 
also a ~o(X/G; L)-module by IV-Exercise 8, and hence it is c-fine. The 
operations of G on 'Il".JIi* are clearly ~o(X/G; L)-module isomorphisms, and 
it follows that p(7r.Jli*) is c-fine for both p = a and p = T. 

531t is orientable since J.L*7r. = ordG, whence Hn(W - S) i O. 
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Thus, applying 9lJ to (124), we obtain the exact sequence 

0-> 9lJ(p(;rJ'i*)) EB 9lJ(P;") -> 9lJ(;rJ'i*) -> 9lJ(p(;rJ'i*)) -> 0, (125) 

which remains exact upon tensoring with the sheaf $ of L-modules on 
X / G [since L is a field here]' and upon applying f <I> [since either <I> is 
paracompactifying or $ is elementary by assumption (a), (b), or (c)]. 

Note that 9lJ(P;") 0 iJJ ~ Ull(P*IF) 0 iJJ!F)x/G by 5.4, so that 

by (16) on page 294 and 

under one of the conditions (a) through (c) of 19.2 by 3.5 or 5.6. 
We define 

I p.Yfp(X; iJJ) = .Yfp(9lJ(p(;rJ'i*)) 0 $) I 
(which is a sheaf on X/G) and 

(126) 

(127) 

(128) 

1 pH:(X; $) = Hp(f<I> (9lJ(p(;rJ'i*)) 0 $))·1 (129) 

Note that p.Yf p(X; $) = !F1umf(U t--+ pHp(;r-lU; $)). 
Since ;r is proper and finite-to-one, the direct image functor :¥ t--+ ;r:¥ 

is exact by IV-Exercise 9. Thus we have 

.Yf p(9lJ(;rJ'i*) 0 $) ~ .Yfp(;r(9lJ(J'i*) 181 7r*iJJ)) by (122) 
~ ;r.Yfp(9lJ(J'i*) 181 ;r*$) exactness of;r (130) 
~ ;r.Yf p(X;;r* $) by (16), p. 294. 

[Note also that ;r.Yf p (X; ;r* $) ~ .Yf p (;r; ;r* $) directly from the definitions 
and the exactness of ;r. ] 

Using (126), (128), and (130), the sequence (125) induces the exact 
sequence 

... -> p.YfP+1(X;$).!!.::... p.Yfp(X;iJJ) EB.Yfp(F;$)x/G 

P.fJ)j • • ;r.Yfp(X;;r*$) ~ p.Yfp(X;$) -> ... 
(131) 

of sheaves on X/G. This is called the "local Smith sequence." 
Under any of the conditions (a) through (c) of 19.2, we also obtain the 

"global" exact Smith sequence 

... -> pH:+1 (X; $) .!!.::... pH:(X; iJJ) EB H:IF (F; .olJ) 

P.fJ)j • • H",-'<I>(X';r*$) ~ H<I>(X-$) ~ ... 
P' P p , 

(132) 
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By II-(50) on page 142 we have that 0'(71'.;1*) ~ !l!(X-F)/G' Thus, by 
(94) on page 361, we have the natural isomorphism 

'u.Yt *(X; flJ) ~ .Yt *(XjG, F; flJ)., (133) 

Moreover, under any of the conditions (a) through (c) of 19.2, we have 

I uH~(X; flJ) ~ H~(XjG, F; flJ) I (134) 

by (95) on page 361 [or by the remark below 5.10 in case (c)]. Note that 
in case (c) this is isomorphic to H!'n(X-F)/G((X - F)jG; flJ) by 5.10. 

We shall now confine our attention to the case of coefficients in L, and 
we shall take L = Zp for the most part. The following result is the "local" 
Smith Theorem. By using the Smith sequence (131) of local homology 
groups, its proof is no harder than the proof of the corresponding "global" 
theorem. 

20.1. Theorem. Let X be an n-hmL where L = Zp. Then F is the 
disjoint union of open and closed subsets Fr of F for r ~ n such that 
Fr is an r-hmL' Moreover, the orientation sheaf @Fr of}"r is canonically 
isomorphic to the restriction @x IFr of the orientation sheaf @X of X. 
Similarly, .Yt k (X j G, F; L) IFr is isomorphic to @x IFr for T < k ~ n and is 
zero for k ~ r and for k > n. 

Proof. Since dimL X < 00, it follows that dimL X/G < 00 and dimL F < 
00.54 Thus, by (133), u.Ytk(X; L) = 0 for k large. Using (131) inductively 
for both P = 0', T, we see that p.Ytk(X; L) = 0 = .Ytk(F; L) for k > 
n. Now restrict the sequence (131) to F and use the notation .Ytk(p) for 
p.Ytk(X; L)IF. Then (131) becomes the exact sequence 

M" () 8. M" (-) "" M" (F) 15. ff)j. • M"k (X) IF ••• ----> <A k+l P ---> <A k P <I7 <A k - <A 

i. M" ( ) 8. ---> <A k P ---+ ... 
(135) 

Note that the composition 

(136) 

is just operation by P* (which is 1 - g* or 1 + g* + ... + g~-l). Now, 
g. is an automorphism of period p, and the stalks of .Yt n(X) IF (which are 
isomorphic to L = Zp) have no nontrivial automorphisms of period p. Thus 
the composition (136) is zero for both P = 0', T. It follows that 

(137) 

54See II-Exercise 11. 
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is an isomorphism. Also 

(138) 

is an isomorphism for k < n, since .Jt'k(X) IF = a for k =1= n. 
Using the elementary fact that if A EB aJ is a locally constant sheaf with 

stalks L on F then the sets {x I A x = a} and {x I f1JJx = a} are disjoint 
closed sets with union F, we see immediately from (137) and (138) that 

n 
F = U Fr> where Fr = {x E F l.Jt'r(F)x =1= a}, and that the Fr are 

r=O 
disjoint closed sets. Moreover, restricting the sheaves to Fr , we see that 
the homomorphisms 

@xlFr ~ .Jt' n(P) ~.Jt' n-l(P) ~ ... ~ .Jt'r+1(TJ) ~ .Jt'r(Fr) (139) 

are isomorphisms for r < n [and .Jt' n(Fn) -=:.. @xlFnL where TJ = P or 
TJ = p according as n - r is even or odd. Moreover, it also follows that 
.Jt' k (p) = a for k :::; rand .Jt' k (Fr) = a for k =1= r. The theorem follows. 0 

With the same notation and assumptions we have the following addi
tional information: 

20.2. Proposition. The isomorphism @xlFr ~ @Fr resulting from (139) 
is independent of P (= 0', T). Moreover, n - r is even if p =1= 2. 

Proof. This is trivial for p = 2, so that we may assume that p > 2. The 
commutative diagram (55) on page 143 for J'i = A* and f1JJ = 2* induces 
a commutative diagram in homology that in particular takes the form 

.Jt'k(O') EB .Jt'k(Fr ) O'.$j • .. .Jt'k(X)lFr ~ .Jt'k(r) 8. ... -. ----> ... 

1 t. Elll 11 1 s. 

.Jt'k(r) EB .Jt'k(Fr) T.Ef1j. 
• .Jt'k(X)lFr 

i. .Jt'k(O') 8. ... -. ----> ----> ... 

1 s.EllO 1 t. 1 t. 

.Jt' k ( 0') EB .Jt' k ( Fr ) u.Ellj. , .Jt'k(X)lFr i. .Jt'k(r) 8. ... -. ----> ----> ... 

where s* is induced by the inclusion O'(1TA*) <.......+ r(1TA*) and t* is induced 
by operation by r P - 2 : T(1TJ'i*) ----> 0'(1TJ'i*) (and 1TJ'i* ----> 1TJ'i*). Since p > 2 
and .Jt' n(X)lFr has stalks L = Zp, we see that t* is zero on .Jt' n(X)lFr. 
Obviously, t* is also zero on .Jt'k(Fr). We have the commutative diagram 

8. 8. ",i? ( ) ----> . . . ----> d(, n P 

1h 
8. 8. ",i? ( ) ----> .. . ----> d(, n P 

where h = s* or h = t* according as p = T or p = 0', and k = 1 or k = a 
according as h = s* or h = t*. Since the horizontal maps are isomorphisms, 
we must have that k = 1. Thus p = T, and n - r is even. 0 
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Note that if X is del: (and hence is a cmL), then so is F by II-Exercise 
44. 

Exercises 
1. If··· -> 2(p+l -> 2(p -> 2(p-l -> ... is a sequence of cosheaves on X, we 

say that it is locally exact if it is of order two as a sequence of precosheaves 
and if the precosheaf U t-+ Hp (2(.(U» is locally zero for all Pi see 12.1. 

If 0 -+ 2(' -+ 2( -+ 2(" -+ 0 is a locally exact sequence of cosheaves 
on X, then show that 2('(U) -+ 2(U) -+ 2("(U) -+ 0 is exact for all open 
U c X. If, moreover, 2(" is a flabby cosheaf, show that 2('(U) -+ 2(U) is 
a monomorphism. If 2( and 2(" are both flabby cosheaves, then show that 
2(' is flabby. 

2. For any c-soft sheaf A and any injective L-module M define the natural 
homomorphism 

A -+ ~(rc~(rcA,M),M) 

of 1.13 directly without the use of 1.9. [Hint: Use (19) on page 300.] 

3. ® Suppose that 2( is a covariant functor on the open sets of X to L-modules 
that satisfies the following two conditions: 

(a) If U and V are open, then the sequence 

2(U n V) ~ 2(U) if) 2(V) --.!!..... 2(U U V) -+ 0 

is exact, where a = iU,unv - iV,unv and f3 = iuuv,u + iuuv, v· 

(b) If {UQ } is an upward-directed family of open sets with U = U UQ ' 

then 2(U) = lli:ij2l(UQ ). 

Show that 2l is a cosheaf and conversely [12]. 

4. ® Show that the precosheaf 6. of 1.3 is a flabby cosheaf. 

5. ® Let 2( and 'B be precosheaves on X. Show that 2l and 'B are equivalent 
in the sense of 16.4 ¢} there exists a precosheaf 11: and local isomorphisms 
2( -+ 11: and 'B -+ 11:. 

6. ® If dimL X = n, show that .f)~(XiA) [that is, U H H~(U;A)] is a 
cosheaf for any sheaf A of L-modules. 

7. ® Let J : X -+ Y and let A and fJJ be sheaves on X and Y respectively. 
Define an J-homomorphism h : A -+ fJJ to be a map of spaces such that 
the diagram 

A~fJJ 
1 1 
X~Y 

commutes and such that the induced maps hx : Ax -+ fJJf(x) are all homo
morphisms. Show that there is a natural homomorphism 

and investigate its properties. 
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8. @ Let A be any sheaf on X and <I> a paracompactifying family of supports 
on X. Let UI and U2 be open subsets of X with U = UI U U2 and V = 
U1 n U2 • Derive the following Mayer-Vietoris sequences (with coefficients 
in A): 

... -t H:IV (V) -t H: 1U1 (U1 ) EfJH:lu2 (U2) -t H: IU (U) -t H:~i (V) -t .. " 

... -t H: (X, V) -t H: (X, U1 ) EfJ H: (X, U2) -t H: (X, U) -t ..• 

9. @ Let .At be an elementary sheaf on X and <I> an arbitrary family of 
supports on X. If U1 and U2 are open, with X = U1 UU2 and V = U1 nu2, 
derive the Mayer-Vietoris sequence 

If Fl and F2 are closed, with F = Fl n F2 and X = Fl U F2 , derive the 
Mayer-Vietoris sequence 

provided that (.At, <I» is elementary. 

10. Use 5.3 to define homology groups of a general (Le., not locally compact) 
space X with supports in some family <I> consisting of locally compact 
subspaces of X (e.g., <I> = c) and develop properties of these groups. 

11. @ Let {A",} ::) <I> be an upward-directed system oflocally closed subspaces 
of X. If <I> is arbitrary and (A, <I» is elementary or if <I> is paracompactifying 
and A is arbitrary, show that the canonical map 

Um H;IA" (A",; A) -t H;(X;A) 

is an isomorphism. 

12. Call a sheaf or a cosheaf weakly torsion-free (respectively, weakly divisible) 
if its value on each open set is torsion-free (respectively, divisible). If 21. 
is a weakly torsion-free differential cosheaf, show that !m(21.) is weakly 
divisible. If A* is a c-soft and weakly divisible differential sheaf, show that 
::O(A·) is weakly torsion-free. [Hint: Use (19) on page 300.] 

13. If X is clc'!: and £. is a flabby, weakly torsion free quasi-coresolution of L 
on X, show that 

H;(X; M) >:::: Hp(£.(X) 0 M) 

for any L-module M. [Hint: Consider the proof of 12.11 and use the 
algebraic universal coefficient theorem.] 

14. Define, under suitable conditions, a relative cap product 

n: H!(X,A;A) 0H~(X;$) -t H!'2!(X, A; A 0 $) 

(for A C X locally closed) and discuss the conditions under which it is 
defined. 

15. Define a cap product 

n : sH!(X, A; A) 0 H~(Xj $) -t sH!'2!(X, Aj A 0 $) 

when <I> and <I> n llJ are paracompactifying. 
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16. For x E X, show that s.1t'p(X;.J)", R: sHp(X, X - {x};.J). 

17. ® With the notation of 4.2 prove the following statements: 

(a) ip C III ::} 1lI# C ip#. 

(b) ip C ip##; ip# = ip###. 

(c) Iff: X -> Y andip:::l cis a family of supports on Y, then U- 1 ip)# = 
ip#(c). 

18. Let f : X -> Y and let III be a family of supports on X. Show that there 
exists a spectral sequence of sheaves with 

and generalize to arbitrary coefficient sheaves. 

19. ® Determine the sheaves .1t' p(X; Z) for the one-point union X = 8 1 V 82 

and compute the E2 terms of the (absolute) spectral sequence of 8.4 for it. 

20. Let X be an n-whmL and let ip be paracompactifying. Let A C B C X be 
closed subspaces. Then show that 

H:1B(B,A;@®.J) R: H:~;-A(X - A,X - B;.J), 

naturally, for any sheaf .J on X. 

21. ® If {.J.\} is a direct system of sheaves on X and .J = li.!!}.J.\, then show 
that there is a natural isomorphism 

22. Let X be an HLC space and let ip and III be paracompactifying families 
of supports on X. Show that the cap product (52) on page 336 coincides 
with the singular cap product 

(defined either in the classical manner or similarly to (52) via the isomor
phisms of 111-1 and 12.21 or 12.17 when either dimL X < 00 or III :::l ip = c. 

23. ® Let the finite group a act on the locally connected, orientable n-hTnQ X, 
preserving orientation. Then show that x/a is also an orient able n-hmQ. 

24. Show that there is a natural isomorphism 

aH;(X; M) R: H·(r4>(~·(6.; M») 

for ip paracompactifying and with the left-hand side defined as in 1-7. [Hint: 
Show that the natural maps 

Hom(S.(U), M) -> Hom(S.(U), M·) +- Hom(6.(U), M·) 

of presheaves induce homology isomorphisms. Then pass to the associated 
sheaves.] 
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25. Let X and Y be locally compact and clcL and assume that H~(X; L) is 
finitely generated for each p. Let M be any L-module. Show that there is 
a split exact Kiinneth sequence 

[Hint: Use 12.7 and Section 14.] Also show that this does not hold when 
X and Yare interchanged in the sequence. In addition, show that the 
condition of finite generation is necessary even for M = L. [Note that if 
L = Z or is a field, the condition on H~(X; L) is equivalent to the analogous 
condition on H*(X; L); see 14.7.] 

In particular, there is a split exact sequence 

under the above hypotheses. 

26. ® If X is a separable metric, locally connected, and locally compact space, 
show that Ho(X; L) ~ IT., L." where L., ~ L and a ranges over the 
compact components of X. 

[Note that this implies that if X is a separable metric n-cmL with 
orientation sheaf {j}, then Hn(x; (j}) ~ IT., L." as above.] 

27. Let (X, A) be a locally compact pair, let A be a sheaf on X, and let <I> be 
a family of supports on X. Let K range over the members of <I>IA. Show 
that the canonical map 

limH~(X,K;A) ...... H;(X,A;A) 

is an isomorphism <=> the canonical map 

is an isomorphism. [See 5.3 and 5.6 for cases to which this applies, and 
also note that by 5.10 the homology of (X, K) can sometimes be replaced 
by that of X - K.] 

28. ® Suppose that X is a separable metric n-cmL. Show that HP(X, U; L) = 0 
for p > n and for any open set U C X. Conclude that ;;m(x; L) is flabby. 
[Hint: Use the fact, from Exercise 26, that Hn(V;L) = 0 when V c X is 
open and has no compact components.] 

29. Show that the exact sequences 

0 ...... Ext(H~+l(X;L),L) ...... Hp(X;L) ...... Hom(H~(X;L),L) ...... 0 

and the corresponding sequences for F and for U = X - F, where F is 
closed, are compatible with the homology and cohomology sequences of the 
pair (X, F) (i.e., the sequences (36) on page 313 with <I> = cld and II-I0.3 
with <I> = c). 

30. Let (uU, <I» be elementary on X. Let U and V be open sets in X and put 
F = X - U and G = X - V. Show that there is a diagram (with coefficients 
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in J( and where the supports for each subspace A appearing are taken in 
<I> n A) 

Hp(FnG) Hp(F) Hp(Fn V) 
[) 

Hp-l(F n G) --+ --+ -----+ 

1 1 1 1 
Hp(G) Hp(X) Hp(V) 

[) 
Hp-l(G) --+ --+ -----+ 

1 1 1 1 
Hp(GnU) Hp(U) Hp(Un V) 

[) 
Hp-l(GnU) --+ --+ -----+ 

1 1 1 1 
Hp_1(F n G) Hp_l(F) Hp-1(F n V) 

[) 
Hp_2(FnG) --+ --+ -----+ 

in which the rows and columns are the homology sequences (36) on page 313 
and that commutes except for the lower right-hand corner square, which 
anticommutes. 

31. Let X be an n-hmz with orientation sheaf @ = :If n(X; Z) that has stalks 
Z. Let G = Zp, p prime, act on M with fixed set F = + Fr , where Fr is 

an r-hmzp as in 20.1. Show that 
r 

for r + 2 ~ k < n, k - r even, 
for k = n if n - r is even, 
otherwise. 

(In particular, in the neighborhood of Fn - 1 (for p = 2) X/G is an n-hmz 
with boundary Fn - 1 , and in the neighborhood of Fn - 2 , X/G is an n-hmz.) 
[Hint: Compare 11-19.11.] 

32. ® Assume that dim~ X = n < 00 and either that <I> is paracompactifying 
or that A is elementary. Show that 

for p > n, 
for p = n. 

Moreover, if A is torsion-free, show that H!(X; A) is torsion-free. 

33. ® If dimL X < 00 and X #- 0, show that :If p(X; L) #- 0 for some p. [Also 
note Example 8.12.] 

34. Let L be a field and suppose that the point x E X has a countable funda
mental system of neighborhoods. Show that :If p(X; L)" = 0 {:} for each 
neighborhood U of x there is an open neighborhood V C U of x such that 
the homomorphism Hf(V; L) --+ Hg(U; L) is trivial. 

35. ® Let X be a hereditarily paracompact n-hmL, let <I> be a paracompacti
fying family of supports on X, let J( be an elementary sheaf on X, and let 
A c X be an arbitrary subspace, not necessarily locally compact. Then 
show that H:(X,X - A;J() = 0 for p < n - dim;;,LA. (This shows, for 
example, that if M n is a paracompact n-manifold and 11 c M n is totally 
disconnected, then the restriction H:(Mn; Z) --+ H:nM_ A (Mn - A; Z) is 
an isomorphism for p < n - 1 and a monomorphism if p = n - 1.) 

36. Let L be a field and assume that X is first countable. Consider the pre
cosheaf SJ~(X; L) of Exercise 6. Show that 

:lfp(X;L) = 0 {:} SJ~(X;L) is locally zero. 
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If dimL X ~ n, then show that 

:1t' n(X; L) = 0 ~ Sj~(X; L) = 0 ~ dimL X < n, 

and hence that dimL X = n ~ ,1f n(X; L) =f. O. 

For Z coefficients then as far as the author knows, it may be possible 
that dimzX = n but :1t'n(X;Z) = 0; see 18.11. 

37. ® Suppose that dimL Y < 00, that Y is dc,£" and that each :1t'p(Y; L) has 
finitely generated stalks. Let j : X --> Y be a covering map (generally with 
infinitely many sheets), let ~ be a paracompactifying family of supports 
on Y, and let Ji be a sheaf on X. Then show that there is a natural 
isomorphism 

4>( ) "" ,-14>( ) Hp Y;jJi --+Hp X;Ji. 

38. ® Let f : X --> Y be a cfs1 where L is a field. Assume that X is dc,£, and 
that dimL Y = n < 00. Then show that Y is an n-hmL ~ the homology 
sheaves :1t'p(J;L) are all locally constant. In this case, also show that the 
stalks of ,1fQ(J; L) and :1t' n+q(J; L) are of the same finite rank for all q. 

39. ® Let j : X --> Y be a cfs~ with connected fibers, and assume that the 
stalks Hi(F; Z) of :1t'i(J; Z) are finitely generated for all i. If X is an n
cmz, then show that the following statements are equivalent and imply 
that Y is an (n - k)-hmz: 

(a) Some fiber has an orientable neighborhood. 

(b) Hk(F; Z) ~ Z. 
(c) Every fiber has an orientable neighborhood. 

40. Show that the map 

2l(X) --> Hom(r c(.1&m(2!, M)), M) 

of 1.13 is a monomorphism. 

41. ® If X is an n-whmz, then show that dimz X ~ n + 1. 

42. ® Suppose that dimL X < 00 and that A C X is closed with dimL A = 1, 
e.g., A an arc. Show that there is an exact sequence 

o --> H~(A;:1t' n+l (X; L)IA) --> H~(X, X - A; L) --> r c(:1t' n(X; L)IA) --> O. 



Chapter VI 

Cosheaves and Cech Homology 

In this short chapter we study the notion of cosheaves on general topological 
spaces and we go into it a bit deeper than was done in Chapter V. Our 
main purpose, in this chapter, is to obtain isomorphism criteria connecting 
various homology theories. With the minor exceptions of some definitions, 
and excepting the sections (10 and 11) concerning Borel-Moore homology, 
this chapter does not depend on Chapter V. 

Basic definitions and simple results are given in Section 1. The notions 
of local triviality and local exactness are treated in Section 2. Local iso
morphisms and the notion of "equivalence" of precosheaves are discussed 
in Section 3. 

Section 4 is the backbone of this chapter. It initiates the study of 
Cech homology with coefficients in a precosheaf. This is used in Section 
5 to produce a functor !osl)eaf that is a reflector from the category of 
precosheaves that are locally isomorphic to cosheaves to the category of 
cosheaves. This is analogous to the functor flJ"-I in the theory of sheaves 
and presheaves. 

The basic spectral sequence attached to an open covering of a space and 
a differential cosheaf on the space is developed in Section 6. These spectral 
sequences are of central importance in the remainder of this chapter. 

Section 7 treats the notion of a coresolution and a semi-coresolution. 
Also in this section the spectral sequences of Section 6 are applied to 
prove theorems for coresolutions analogous to the fundamental theorems 
of sheaves in Chapter IV. This is generalized to relative Cech homology in 
Section 8. 

In Section 9, a method of Mardesic is used to remove a (global) para
compactness assumption in the fundamental theorems when dealing with 
locally paracompact spaces. 

In Sections 10, 11, and 12, the general theory is applied to get some 
comparison results for Borel-Moore homology, singular homology, and a 
modified version of Borel-Moore homology. The results in these sections 
complement the uniqueness theorems of V-12 and V-13. 

An application to acyclic open coverings is given in Section 13. In 
Section 14 the main spectral sequences are generalized to apply to maps, 
and some consequences of this are given. 

Throughout this chapter, L will denote a given principal ideal domain, 
which will be taken as the base ring. 

417 
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1 Theory of cosheaves 

Here we shall present a more elaborate discussion of the theory of cosheaves 
than the short exposition in Chapter V. We do not require the spaces here 
to be locally compact. In particular, there is no known fact about flabby 
cosheaves analogous to that on locally compact spaces that they are the 
cosheaves of sections with compact supports of c-soft sheaves. 

1.1. Definition. A precosheaf 21 is called an "epiprecosheaJ" if 

is exact for every collection of open sets Ua with U = Ua Ua and where 
f = :Ea iu,u". 

The following result shows that the cokernel of a homomorphism of 
cosheaves is a cosheaf. The proof is an elementary diagram chase, which 
will be omitted, and similarly with the second proposition. 

1.2. Proposition. Let 21' -+ 21 -+ 21" -+ 0 be an exact sequence of pre
cosheaves. If21' is an epiprecosheaf and 21 is a cosheaf, then 21" is a cosheaf 

o 

1.3. Proposition. Let 0 -+ 21' -+ 21 -+ !<t" -+ 0 be an exact sequence of 
precosheaves. If 21 is an epiprecosheaf and 21" is a cosheaf then 21' is an 
epiprecosheaf 0 

1.4. Proposition. Let 21 be a precosheaf Then 21 is a cosheaf <=} the 
following two conditions are satisfied: 

(a) 21(U n V) ~ 21(U) EB 21(V) ~ 21(U U V) -+ 0 is exact for all open 
U and V, where g = (iu,unv, -iv,unv) and f = iuuv,u + iuuv,v, 

(b) If {Ua} is directed upwards by inclusion, then the canonical map 
lliija21(U",) -+ 21(Ua Ua ) is an isomorphism. 

Proof. It suffices to prove that if (a) is satisfied then for any finite col
lection {Uo, . .. , Un} of open sets, the sequence 

E9 21(Ui n Uj ) ~ E9 21(Ui) ~ 21(U) -+ 0 
(i,j) i 

is exact, where U = Ui Ui . Exactness on the right is clear by an easy 
induction. The proof of exactness in the middle will also be by induction 
on n. Let U' = Ul U··· U Un, U = Uo U U', and V = Uo n U'. Let 
Sj E 21(Uj) , 0 :::; j :::; n, be such that :E;=oiu,uj(sj) = 0 in 21(U). Let 
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t' = 2:;=1 iUI,uj(Sj) E !l(U'). Then iu,uo(so) + iu,ul(t') = 0, so that (a) 
implies that there exists an element v E !l(Uo n U') with 

iuo,v(v) = so, and iUI,v(v) = -t'. 

Now, V = (Uo n U1) U··· U (Uo n Un), so that there exist Vj E !l(Uo n Uj), 
for 1 ~ j ~ n, with 

n 

V = L::>v,uonuj(vj). 
j=1 

Therefore 

9 (EBVj) 
(O,j) 

and a short computation shows that the element 

~s; - 9 (~~d E ~QI(U;) 
has zero component in !l(Uo) and projects to zero in !l(U1 U·· ·UUn). Thus 
the result follows from the inductive assumption. 0 

The following simple result is basic. 

1.5. Proposition. Let 0 -+ !l' L !l ~ !l" -+ 0 be an exact sequence of 
precosheaves. Assume that!l is a cosheaf and that !l" is a flabby cosheaf. 
Then!l' is a cosheaf. 

Proof. We will verify (a) and (b) of 1.4 for !l'. Part (b) is an immediate 
consequence of the exactness of the direct limit functor. Part (a) follows 
from a diagram chase in the commutative diagram 

0 
! 

0 -+ !l'(U n V) -+ !l(Un V) -+ !l"(U n V) -+0 
! ! ! 

0 -+ !l'(U) E9 !l'(V) -+ !l(U) E9 !l(V) -+ !l"(U) E9 !l"(V) -+0 
! ! ! 

0-+ 2('(U U V) -+ 2(UU V) -+ 2(1I(U U V) -+0 
! ! 
0 0 

with exact rows and columns (except for the!l' column). o 

1.6. Proposition. Let 2( be a precosheaf. Then the set of subprecosheaves 
of!l that a~ epiprecosheaves contains a maximum element, which will be 
denoted by!l. Any homomorphism ~ -+ 2(, with ~ an epiprecosheaJ, fac
tors through ~. 
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Proof. This follows from results of the general theory of categories, but 
we give a direct proof. Define, by transfinite induction, 

210 = 21, 
21a+1 = {s E 21a(U) I V coverings {U.8} of U, s E Im(E921a(U.8) -+ 21(U»}, 

21.8 = na<.8 21a(U) for f3 a limit ordinal. 

Then there exists an ordinal a with 21a+1 = 21a , and we let Qi = 21a. The 
claimed properties are immediate. 0 

Note that the last statement of 1.6 i!!lplies_that every homomorphism 
21 -+ !B restricts to a homomorphism 21 -+ !B, and hence 21 1--+ 21 is a 
functor. 

2 Local triviality 
Recall that a precosheaf 21 is said to be locally zero if for each x E X and 
open neighborhood U of x there is an open neighborhood V C U of x with 
iv,u : 21(V) -+ 21(U) zero. An epiprecosheaf is locally zero <=> it is zero by 
Exercise 2. 

2.1. Definition. A precosheaf 21 is said to be "semilocally zero" if each 
point x E X has a neighborhood U with ix,u : 21(U) -+ 21(X) zero. 

2.2. Definition. A sequence 21' ~ 21 ~ 21" of precosheaves is said to 
be "locally exact" if 9 0 f = 0 and if the precosheaf Ker 9 / 1m f is locally 
zero. 

2.3. Proposition. If 21" is a cosheaf and 21 is an epiprecosheaJ, then the 

sequence 21' ~ 21 --.!!..... 21" -+ 0 of cosheaves is locally exact <=> it is exact. 

Proof. The precosheaf Coker 9 is a cosheaf by 1.2 and so it is zero since 
it is locally zero by hypothesis. This gives exactness on the right. By 1.3, 
Ker 9 is an epiprecosheaf, and it follows that Ker g/ 1m f is an epiprecosheaf. 
Since Ker 9 / 1m f is locally zero, it must be zero, whence Ker 9 = 1m f. 0 

2.4. Proposition. If 0 -+ 21' ~ 21 --.!!..... 21" -+ 0 is a locally exact se
quence of cosheaves with 21" flabby, then this sequence is exact. If21 is also 
flabby, then so is 21'. 

Proof. This sequence is exact at 21 and at 21" by 2.3. By 1.5, Ker 9 = 1m f 
is a cosheaf. Then 0 -+ 21' -+ 1m f -+ 0 is locally exact and hence exact by 
2.3. The last statement follows from an easy diagram chase. 0 

2.5. Corollary. If 21N .!!!':!... •.. ~ 212 ~ 211 ~ 210 -+ 0 is a locally 
exact sequence of flabby cosheaves, then it is exact, and Ker dN is a flabby 
cosheaf 
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Proof. Let 3n = Ker dn. Then 

is locally exact. Also, by 2.3, 

is exact. By 1.5, 31 is a cosheaf, and by 2.4 it is flabby. By induction we 
see that each 3n is a flabby cosheaf and that each sequence 

o --+ 3n --+ 2(,. --+ 3n-l --+ 0 

is exact. o 

2.6. Lemma. The class of locally zero precosheaves is closed under the 
formation of subprecosheaves, quotient precosheaves, and extensions. 

Proof. All three parts may be handled simultaneously. Let 21' --+ 21 --+ 21" 
be exact with 21' and 21" locally zero. Let U be open and x E U. Let V c U 
be a neighborhood of x such that 21"(V) --+ 21"(U) is zero and let W c V 
be such that 21'(W) --+ 21'(V) is zero. Then 21(W) --+ 21(U) is zero by 
II-17.3. The cases of subprecosheaves and quotient precosheaves are given 
by taking 21' = 0 or 21" = 0 respectively. 0 

3 Local isomorphisms 

Recall from Chapter V that a homomorphism h : 21 --+ !:B of precosheaves 
is said to be a local isomorphism if Ker h and Coker h are locally zero. 

If 21 is an epiprecosheaf and !:B is a cosheaf, then a local isomorphism 
h : 21--+ !:B is necessarily an isomorphism by 1.2, 1.3, and Exercise 2. 

Consider commutative diagrams of precosheaves of the form 

(1) 

3.1. Proposition. If (1) is a pushout diagmm and if the map f is a local 
isomorphism, then so is h. Dually, if (1) is a pullback diagmm and if the 
map h is a local isomorphism, then so is f. 

Proof. We shall give the proof of the second part only since the two parts 
are analogous. If (1) is a pullback, then we may as well assume that 21 is 
given by 

21(U) = {(b, c) E !:B(U) x <t(U) I h(b) = k(cn. 
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Moreover, 9 and f are given by the projections to the first and second 
factors respectively. We see that Ker f = {(b,O) I h(b) = O}, so that 

o --> Ker f -.!!...." Ker h 

is exact. Similarly, if c E (t(U) and if k(c) E Imh, then c E Imf, and it 
follows that 

k o --> Coker f ~ Coker h 

is exact. The contention follows from 2.6 applied to these exact sequences. 
o 

3.2. Corollary. Let ~ and (t be precosheaves. Then the following two 
statements are equivalent: 

(a) There exist a precosheaf Q{ and local isomorphisms ~ <-- Q{ --> (t. 

(b) There exist a precosheaf fl and local isomorphisms ~ --> fl <-- (t. 0 

If one, hence both, of the conditions in 3.2 are satisfied, then ~ and (t 
are said to be equivalent. That this is an equivalence relation, and hence 
coincides with the definition given in Chapter V, follows from 3.2 and the 
next lemma. 

3.3. Lemma. Composites of local isomorphisms are local isomorphisms. 

Proof. Suppose that Q{ ~ ~ -.!!...." (t are local isomorphisms. Then we 
have the exact sequences 

0--> Ker f --> Ker gf ~ Ker g, 

Coker f -.!!...." Coker gf --> Coker 9 --> 0, 

and the result follows from 2.6. o 

As we have remarked, locally isomorphic cosh eaves are isomorphic. It 
is not so clear that this is true of equivalent cosheaves, but in fact, we will 
prove that in 5.7 

3.4. Definition. A precosheaf is said to be "smooth" if it is equivalent to 
a cosheaf 

Later, we shall show that for any smooth precosheaf Q{ there is an 
associated cosheaf (to5~eaf(Q{), unique up to isomorphism, and a canonical 
local isomorphism (to5~eaf(Q{) --> Q{. Also, the functor (to5~eaf will be 
shown to be a reflector1 from the category of smooth precosheaves to the 
category of cosheaves. This is analogous to the functor fJ?"-j. 

IThis means that any homomorphism Q( -+ <:8 of smooth precosheaves factors as 
Q( -+ ([osl)eaf (<:8) -+ <:8. 
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3.5. Proposition. Suppose that we have a commutative diagram 

of precosheaves such that a and {3 are local isomorphisms. Then the induced 
maps Ker h --+ Ker h', 1m h --+ 1m h', and Coker h --+ Coker h' are all local 
isomorphisms. 

Proof. Denote kernels, images, and cokernels by J\, 'J, and It respectively. 
Then we have the commutative diagrams 

0--+ J\ --+ Ql --+ 'J --+0 

IK Ia It 
0--+ J\' --+ Ql' --+ 'J' --+0 

and 
0--+ J --+ ~ --+ It --+0 

It 113 1~ 
0--+ 'J' --+ ~' --+ It' --+ 0, 

which induce the exact sequences 

o --+ Ker /l, --+ Ker a --+ Ker ~ --+ Coker /l, --+ Coker a --+ Coker ~ --+ 0, 
o --+ Kert --+ Ker {3 --+ Ker'Y --+ Cokert --+ Coker {3 --+ Coker'Y --+ O. 

By hypothesis, Ker a, Ker {3, Coker a, and Coker {3 are locally zero. It 
follows that Ker /l" Ker~, Coker~, and Coker'Y are locally zero and that 
Ker ~ --+ Coker /l, and Ker'Y --+ Coker ~ are local isomorphisms. Since Ker /, 
and Coker ~ are locally zero, it follows from 2.6 that their local isomorphs 
Coker /l, and Ker'Y are also locally zero. 0 

3.6. Corollary. Suppose that we have a commutative diagram 

Ql' a' Ql a" Ql" ---t ---t 

! ! ! 
!:s' 

13' 
~ 

13" 
~" ---t ---t 

of precosheaves in which the verticals are local isomorphisms and the com
positions in the rows are zero. Then the induced map 

Ker a" / 1m a' --+ Ker {3" / 1m {3' 

of precosheaves is a local isomorphism. o 
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4 Cech homology 

This section begins the major topic of this chapter. We shall define Cech 
homology with coefficients in a precosheaf and investigate its properties. 

Let 2£ be a precosheaf on a space X and let .11 = {U,,} be any open 
covering of X. For a p-simplex u = (ao, ... , ap ) of the nerve N(.11) (i.e., 
UO' = U"o,,,.,"p = U"o n ... n U"p =I- 0) let uti) = (ao, ... , ai,"" ap ). We 
define the group of Cech p-chains of the covering .11 to be 

0' 

where the sum ranges over all p-simplices u = (ao, ... , ap ). Thus a p-chain 
c is a finite formal sum 

of p-simplices, where arT E 2£(U(T)' Note that Op(.11; 2£) is an exact functor 
of precosheaves 2£. The differential 

is defined by 

where lU indicates operation by the map 2£(V) -+ 2£(U) when V c U, i.e., 
it is the dual of restriction. Also, there is the augmentation 

c : 0 0 (.11; 2£) -+ 2£(X) 

given by 

Note that c(E(T a(Tu) = E(T(a(T LX). 
As usual, the homology of the chain complex 0*(.11; 2£) is denoted by 

and the augmentation c induces a homomorphism 

'c* : Ho(.11; 2£) -+ 2£(X)., 

Recall that for an open set V C X, .11 n V denotes the covering {U" n V} 
of V. Thus V ~ Hn(.11 n V; 2£) defines a precosheaf on X denoted by 
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Also, there is the homomorphism 

of precosheaves. The following is an easy observation: 

4.1. Proposition. The homomorphism 

c* : SJo(.U; l2t) ---> l2t, 
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induced by the augmentation, is epimorphic Jor all it ifl2t is an epiprecosheaJ 
and is isomorphic for all it if l2t is a cosheaf. 0 

If QJ is a refinement of it and QJ ---> it is a refinement projection, then 
there is the induced chain map (\ (QJ; l2t) ---> 0* (it; l2t), which induces the 
homomorphism 

Hp(QJ; l2t) ---> fIp(it; l2t). 

The latter is independent of the particular refinement projection used; see 
the proof of the corresponding fact for cohomology in Chapter 1. Thus we 
may define the Cech homology of X with coefficients in the precosheaf l2t 
by 

I fIn (X; l2t) = UmufIn (it; l2t)·1 

Let SJn(X; l2t) denote the precosheaf 

From 4.1 we deduce: 

4.2. Proposition. If l2t is a cosheaf, then the augmentation homomor
phism 

is an isomorphism. 

For a covering it of X, the precosheaf 

V ...... Cn(it n V; l2t) 

will be denoted by ltn(it; l2t). Thus 

I ltn(U; l2t)(V) = On (it n V; l2t)·1 

o 

Since Op(it; l2t) is an exact functor of precosheaves, any short exact 
sequence 

o ---> l2t' ---> l2t ---> l2t" ---> 0 

induces a long exact sequence 

••• ---> fIn(U; l2t') ---> fIn(U; l2t) --> fIn(U; l2tff) ---> fIn- 1 (U; l2t') ---> ••. 

but, of course, this generally fails for the groups fI*(X; l2t) since the inverse 
limit functor is not generally exact. 
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4.3. Lemma. If21 is a cosheaf, then so is Itn(Uj21). The latter is flabby 
when 21 is flabby. 

Proof. It is clear that the direct sum of a family of cosheaves is a cosheaf. 
But tn(Uj 21) is the direct sum of precosheaves of the form V 1--+ 21(U n V) 
(where U = UQQ, ... ,Qn), and these are easily seen to be cosheaves when 21 is 
a cosheaf. The last statement holds by similar reasoning. 0 

4.4. Theorem. For a precosheaf 21 on X the sequence 

of precosheaves is locally exact for any covering U of X. 

Proof. Since this is a statement about small neighborhoods of a point, 
it suffices to prove that the sequence is exact if U"'( = X for some index 'Y. 
In that case, we can define a chain contraction D : On (Uj 21) -+ On+l (Uj 21) 
by 

D(auO') = au 'YO', 

where 'YO' = 'Y(0:0, ... ,O:p} = ("'t, 0:0, ... , O:p). Then aD + Da = 1, as the 
reader may check, if we interpret a as e in degree O. The naturality of this 
chain contraction implies that it induces one on the precosheaves t*(Uj 21) 
when X E U. 0 

4.5. Corollary. If 21 is a flabby cosheaf, then for any open covering U of 
X we have fjn(Uj 21) = 0 for n > 0, whence fjn(Xj 21) = 0 for n > O. 

Proof. This is an immediate consequence of 2.5,4.3, and 4.4. 0 

4.6. Theorem. Let X be a paracompact space and let 21 be a locally zero 
precosheaf on X. Then, for any open covering U of X there is a refinement 
!U -+ U such that the induced map On(!U; 21) -+ On(Uj 21) is zero for all 
n ~ O. 

Proof. We may assume that U is locally finite and "self-indexing." Let 
U' be a shrinking of U, i.e., a covering that assigns to each U E U an open -, 
set U' with U c U. For each U E U and x E U' we choose an open 
set W = W(x, U) c U' with the property that whenever U17 ••• , Un are 
in U and W n Uf n '" n U~ =I- 0 then W c U1 n··· n Un and the map 
21(W) -+ 21(U1 n . " n Un) is trivial. The existence of such sets follows 
easily from the local finiteness of U and local triviality of 21. We take the 
refinement projection W(x, U) 1--+ U. 

We claim that this covering satisfies the conclusion of the theorem. In 
fact, let 
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and suppose that Wo n ... n Wn 1:- 0. Then since Wo n ... n Wn C 

Ubn·· .nU~, we must have Wi C uon·· ·nUn for each i = 0, ... , n and that 
2l(Wi ) -> 2l(Uon.· ·nUn) is zero. Since 2l(Won· . . nWn) -> 2l(Uon·. ·nUn) 
factors through 2l(Wo), it is zero. 0 

4.1. Corollary. If X is paracompact and if 2l is a locally zero precosheaf 
on X then Hn(X;2l) = 0 for all n ~ O. 0 

4.8. Corollary. Let X be paracompact and let h : 2l --> 1:8 be a local 
isomorphism. Then h. : Hn(X; 2l) -> Hn(X; 1:8) is an isomorphism. 

Proof. Clearly, this reduces to the two cases in which Coker h = 0 or 
Ker h = O. These are sufficiently alike that we will deal only with the first. 
Thus let 0 -> Jt -> 2l -> 1:8 -> 0 be exact with Jt locally zero. For each open 
covering U of X we have the exact homology sequence 

Using 4.6 and the following lemma, we see that the induced map h. is an 
isomorphism. 0 

4.9. Lemma. Let {A",,j,,,,,e}, {B""g"",e}, {C"" h"",e}, and {D"" k"",e} be 
inverse systems of abelian groups and let 

be exact sequences commuting with the projections. Assume that for each 
a there is a (3 > a such that f"",e : A,e -> A", and k"",e : Dtl -> DOl are zero. 
Then the induced map 

is an isomorphism. 

Proof. Let {b",} E UmB", be in Ker Jl. Then Jl",(b",) = 0 for all a, and 
so b", = A",(a",) for some a", E A",. Given a, there is a (3 > a with 
f"",e = 0 = k"",e. Thus b", = g"",e(b,e) = g"",e(A,e(a,e)) = A",(f"",e(a,e)) = 0, 
which shows that Jl is monomorphic. 

Now let {c"'} E UmC"" With (3 as above, we have 

so that c'" = Jl",(b~) for some b~ E B",. Let (3 be as above in relation to a 
and let, > (3 be arbitrary. Note that b~ = g,e''Y(b~) (modlmAj9) since Jlj9 
takes them to the same thing. Applying g"",e, we obtain g"",e(b~) = g""'Y(b~) 
since g"",eA,e = A",f"",e = O. Let b", be this common element g"",e(b~) for 
(3 > a sufficiently large. Then we have g'Y,c(bo) = b'Y for any 8 >" whence 
{b",} E UmB",. Also Jl",(b",) = Jl",(g"",e(b~)) = h"",e(Jl,e(b~)) = h"",e(cfj) = 
c"" which shows that Jl is epimorphic. 0 
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5 The reflector 

For a smooth precosheaf 21 on X we define the precosheaf 

I !osl)eaf(21) = iJO(Xi ~), I 
where ~ is the maxima~ epiprecosheaf in 21 of 1.6. (This makes sense for 
all precosheaves 21, but 21 will be a cosheaf only if 21 is smooth, as we shall 
show presently.) Note that !osl)eaf(~) = ltosl)eaf(21). There is the natural 
homomorphism 

I () : ltosl)eaf(21) -+ 21 I 
given by the composition 

() : iJo(Xj~) ~ ~ '-> 21. 

By 4.2, () is an isomorphism if 21 is a cosheaf. Also, if h : 21 -+ ~ is a 
homomorphism of precosheaves, then there is an induced homomorphism 

h: ltosl)eaf(21) -+ ltosl)eafUB). 

The following is a basic result: 

5.1. Theorem. If h : 21 -+ ~ is a local isomorphism of precosheaves and 
if either 21 or ~ is a cosheaf, then h is an isomorphism of ltosl)eaf(21) onto 
!osl)eaf(~). 

Proof. First assume that 21 is a cosheaf. Then h(21) C ~ since h(21) is 
an epiprecosheaf by Exercise 1. It is also clear that h _: 21 -+ ~ is a local 
isomorphism. Thus we may as well assume that ~ = ~, Le., that ~ is an 
epiprecosheaf. Then Coker h is also an epiprecosheaf by Exercise 1, and 
being locally zero, it is zero by Exercise 2. Let j{ = Ker h. 

Let .u = {U a} be an open covering of an open set U C X so fine that 
j{(Ua) -+ j{(U) is zero for all 0:. Consider the commutative diagram 

ES21(Ua,p) -+ES~(Ua,p)-+ 0 

1 1k 
0-+ ESj{(Ua) -+ ES21(Ua) ...J...." ES~(Ua) -+0 

10 1f j .. ' 1 ~. 

0-+ j{(U) -+ 21(U) -+ ~(U) -+0 

! ! 
0, 0 

which is exact except for the ~ column. We see that Ker f ::> Ker g, 
so that the additive relation j = fg- 1 is single-valued and hence is a 
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homomorphism. Clearly, j is onto, and diagram chasing shows that Ker j = 
g(Ker f) = 1m k. Thus we have the induced isomorphism 

cp: Ho(U; Q3) -=-. Ho(U; m). 

Note that cp is an inverse of the natural map 

Therefore, h* (U) is an isomorphism, and upon passage to the limit over U, 
we see that h(U) = llmuh.(U) is an isomorphism, as claimed. 

Now suppose that Q3 is a cosheaf and that m is arbitrary. Again Coker h 
is an epiprecosheaf, and hence it is zero. Let Si = Ker h as before. Fix an 
open set U C X for the time being, and choose an open covering {Ucr} of 
U such that each Si(UaJ ---+ Si(U) is zero. Let A = Im{E£)m(UaJ ---+ m(U)}. 
The maps E£)m(ucr) ---+ E£)Q3(Ucr) ---+ Q3(U) are onto, whence A ---+ Q3(U) is 
onto. Consider the commutative diagram 

E£) m(Ucr,/3) ---+ E£) Q3(Ucr ,/3) -.... 0 

1 1 
0---+ E£) Si(Ucr) ---+ E£)m(ucr) ---+ E£) Q3(Ucr) -.... 0 

10 1 1 
0---+ Si(U) n A ---+ A ---+ Q3(U) -.... 0 

1 1 
0 0, 

which is exact except the middle vertical at the E£) m(ucr) term, where it is of 
order two. Diagram chasing reveals that the left-hand vertical map is onto, 
whence Si(U) n A = O. Therefore the map A ---+ Q3(U) is an isomorphism. 
It follows that a refinement of {Ucr} yields the same subgroup A of m(U). 
Thus, in fact, in the notation of the proof of 1.6, A = m1 (U), which is the 
set of elements of m( U) in the image of E£) m( U oJ for eve:ry open covering 
{Ucr} of U. Th~s shows that m1 ---+ Q3 is an isomorphism, and since Q3 is a 
cosheaf, m1 = m and it is a cosheaf. Thus 

h : e:o.5~eaf(m) = 2i -=-. Q3 = e:o.5~eaf(Q3), 

as claimed. o 

The latter part of the proof of 5.1 shows more: 

5.2. Theorem. Let h : m ---+ Q3 be a local isomorphism, and suppose that 
Q3 is a cosheaf. Then there exists a local isomorphism k : ~B ---+ m such that 
hk = 1. 

Proof. The map k is m!;rely the inverse of the restriction 2i ---+ Q3 of h 
followed by the inclusion m ~ m. We have the split exact sequence 

o ---+ Si ---+ m ~ Q3 ---+ 0, 
k 
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and it follows that Ker k = 0 and that Coker k ~ Ker h = J:t is locally zero, 
whence k is a local isomorphism. 0 

5.3. Corollary. If the precosheaf 2( is equivalent to the cosheaf 1l3, then 
there exists a local isomorphism Il3 ---+ 2(. 0 

5.4. Corollary. For a smooth precosheaf 2(, (.toslJeaf(2() is a cosheaf and 
e : (.toslJeaf(2() ---+ 2( is a local isomorphism. 

Proof. By 5.3 there is a local isomorphism h : Il3 ---+ 2( for some cosheaf 
1l3. We have the commutative diagram 

Ii 
---+ (.toslJeaf(2() 

h 
---+ 

1 
2(. 

By 5.1, h is an isomorphism, and hence the map <!:oslJeaf(2() ---+ 2( may be 
identified with h : Il3 ---+ 2(, and the result follows. 0 

5.5. Corollary. Let rt be the category of cosheaves on X and!Jl the cat
egory of smooth precosheaves on X. Then (.toslJeaf : !Jl ---+ rt is a reflector 
from!Jl to rt. 0 

5.6. Corollary. If h : 2( ---+ Il3 is a local isomorphism, where 2( and Il3 are 
smooth, then h: <!:osl)eaf(2() ---+ <!:osl)eaf(ll3) is an isomorphism. 

Proof. By 5.3 there exists a cosheaf (.t and a local isomorphism k : <!: ---+ 2(. 
The diagram 

2( __ -=.::.h __ ... , Il3 

~r 
<!: 

consists of local isomorphisms. In the induced diagram 

<!:oslJeaf(2() ~ <!:osl)eaf(ll3) 

~/ 
ltoslJeaf( <!:) 

the diagonals are isomorphisms by 5.1, and so h is also an isomorphism. 0 

5.7. Corollary. If 2( and Il3 are equivalent cosheaves, then they are iso
morphic. 0 

5.S. Proposition. If 2(' ---+ 2( ---+ 2(" is a locally exact sequence of smooth 
precosheaves, then ltoslJeaf(2(') ---+ ltosl)eaf(2() ---+ <!:osl)eaf(2(") is also locally 
exact. 
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Proof. Apply 3.6 and 5.4 to the commutative diagram 

\!O.5~eaf(~/) 

1 
~' 

--+ \!o.5~eaf(~) 

1 
--+ ~ 

--+ \!o.5~eaf(~II) 

1 
--+ ~". 
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o 

5.9. Example. Not every precosheaf is smooth. For a simple example let 
X = IT and let ~ be the precosheaf on X that assigns to U the group of 
singular I-chains of U. The associated epiprecosheaf i2i has i2i(U) equal to 
the subgroup generated by the constant singular I-simplices. The inclusion 
i2i '---4 ~ is not a local isomorphism, and it follows that \!o.5~eaf(~) --+ ~ 
cannot be a local isomorphism. This would contradict 5.4 if~ were smooth. 

o 

5.10. If ~ is a smooth precosheaf, then the inclusion i2i '---4 ~ is a local 
isomorphism. Therefore, if X is hereditarily pamcomyact, then it follows 
from 4.8 that the induced map \!o.5~eaf(~) = j)o(X;~) -+ j)o(X;~) is an 
isomorphism. This probably does not hold without the paracompactness 
assumption. 

5.11. Proposition. If X is locally connected and M is an L-module, then 
the constant precosheaf M on X is smooth. The associated cosheaf!.Ut = 
\!o.5~eaf(M) is the constant cosheaf of Chapter V. 

Proof. Recall that the constant cosheaf!.Ut is defined by letting !.Ut(U) be 
the free L-module on the components of U. The summation map !.Ut(U) --+ 

M gives a local isomorphism of precosheaves since X is locally connected, 
whence !.Ut ~ \!o.5~eaf(M) by 5.7. 0 

6 Spectral sequences 

Let ~* be a flabby differential cosheaf that is bounded below; Le., ~i = 0 
for i < io for some i o. Given an open covering 11 of X, consider the double 
complex 

Lp,q = Cp(11; ~q). 

There are two spectral sequences of this double complex. In one of them 
we have 

by 4.5. Thus 
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Since this spectral sequence degenerates, we have the natural isomorphism 

where L* is the total complex of L*,*. 
In the other spectral sequence we have 

whence 

By the assumption that Qt. is bounded below, this spectral sequence con
verges to Hn(L.). Therefore we have the spectral sequences 

(2) 

which are functorial in the coverings 11 as well as in the flabby differential 
cosheaves Qt •. 

7 Coresolutions 

Let n be an integer. By a semi-n-coresolution of a cosheaf Qt we mean 
a differential cosheaf Qt. vanishing in negative degrees together with an 
augmentation homomorphism Qto --+ Qt such that the precosheaf Hp(Qt.(e)) 
is locally zero for p ~ n - 1 and Hn (Qt. (e)) is semilocaUy zero. It is an 
n-coresolution if Hn(Qt. (e)) is locally zero. Of course, the statement that 
Hp(Qt.(e)) is locally zero for p ~ n -1 just means that the sequence 

is locally exact. Note that by 2.3 the portion Qt! --+ Qto --+ Qt --+ 0 is actually 
exact, and so 

In this section we fix the integer n > 0 and assume that Qt. is a given 
flabby semi-n-coresolution of a given cosheaf Qt. We shall study the spec
tral sequences of the previous section. We shall also assume that X is 
paracompact. 

7.1. Lemma. IfU is a sufficiently fine open covering of X, then the canon
ical projection Hk(Qt.(X)) --;> Ek,"o(U) is an isomorphism for all k ~ n. 
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Proof. Let ito = {X}, the trivial covering. Construct a sequence of 
coverings lli such that 

Et,k-i(llHd --+ Et,k-i(~) 

is zero. If i = 0, then this is Ho(llliflk(Q(*)) --+ Ho({X}iflk(Q(*)) 
flk(Q(*)(X), which is zero for some III since flk(Q(*) is semilocally zero. 
If 0 < i < k, then flk-i(Q(*) is locally zero, so that the refinement ~+l 
exists by 4.6. The fact that E;k-i(~+d --+ E;k-i(~) is zero implies that 
E[ k-i(~+d --+ Efk-i(~) is z~ro for all r ~ 2 including r = 00, for i < k. 

, Now, for the sp~ctral sequence of ~ the total term Hk(Q(*(X)) is filtered 
by submodules 

Hk(Q(*(X)) = J'k,o ::J JL1,1 ::J ... ::J JJ,k ::J 0 

such that E~k_p(~) ~ J~,k_p/ J;-l,k-p+l' Since the refinements have no 
effect on the common total terms Hk(Q(*(X)), each map Jk~l -+ Jto is 

an isomorphism. Consequently each map J~t~p --+ J~,k-l) is a monomor
phism. Note that J8 k = J~ o. The fact that Eik-i(~+l) -+ Eik_i(~) is 

zero means that the ~efinerr:ent takes J;,t~i >--> JL1,k-i+l' Thu~ 
J k Jk-l Jl JO 0 k-l,l >--> k-2,2 >--> ••• >--> O,k >--> -l,k+l = , 

o 

Now let II be a given open covering sufficiently fine so that it satisfies 
7.1, and put III = ll. Fix some k ::; n. Construct refinements ~ of ~-l 
for i = 2, ... , k such that 

E;,q(~) -+ E;,q(~-l) 

is zero for all p, q with p + q < k and q -:f O. This can be done by 4.6 since 
flq(Q(*) is locally zero for 0 < q < k. 

Then the image of E~,o(Un) --+ E~,o(Un-d consists of d2-cycles and 
hence induces a homomorphism 

E~,o(llk) --+ E~,o(llk-d· 

Similarly, we obtain homomorphisms 

Ef,o(llk-l) -+ Ef,o(llk-2) -+ ... -+ Eztl(lld = Bk,'o(ll) , 

whence the composition gives a homomorphism 

This provides the commutative diagram 

Hk(llkiQ() ~ 
t 

Hk(lli Q() ~ 

(3) 

(4) 
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Letting Uk = SU, this yields the diagram 

ih(Ui SU) 

1j 

ih(UiQ() 

Hk(Q(*(X)) 

II 
Hk(Q(*(X)), 

where j is the refinement projection, the ).'s are edge homomorphisms, and 
f..L is induced by (3). Checking the definitions, we see that the following 
commutativity relations hold: 

Also, ). and>..' are monomorphisms. The relations show that Imj = 1m A 
and that 

j : 1m A' ....::.. 1m A. 

Thus we have proved the following result: 

7.2. Theorem. Let Q(* be a flabby semi-n-coresolution of the cosheaf Q( 
on the pamcompact space X. Then for k :S n, the edge homomorphisms 
All : Hk(Q(*(X)) -+ fh(Ui Q() of the spectml sequences of the coverings U 
induce an isomorphism in the limit over {it} : 

D 

In fact, we have shown that if U is a sufficiently fine open covering of 
X, then All : Hk(Q(*(X)) -t Hk(Ui Q() is a monomorphism onto the image 
of the canonical projection 

and, moreover, that 1f' is a monomorphism. Moreover, given this U, then 
for any sufficiently fine refinement !U of it we have 1m j = 1m A = 1m 1f' and 
j : 1m>..' --=::.. 1m A, with the notation as in the proof. 

8 Relative Cech homology 

Here we shall indicate how to generalize the previous results to relative 
cohomology. This is relatively important since we do not have a way of 
introducing support families into Cech homology. 

Let A c X be an arbitrary subspace. For a precosheaf Q( on A recall 
that Q( x denotes the precosheaf 

Q(X (U) = Q((U n A) 
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on X. Also take note of Exercise 3. 
A covering of the pair (X, A) is a pair (U,11o), where U is a covering of 

X and 110 c U is a covering of A in X. If l.2( is a precosheaf on A, then we 
have the canonical isomorphism 

Suppose that l.2( and !B are precosheaves on A and X respectively and 
that we are given a monomorphism of precosheaves 

Then we obtain the induced monomorphic chain map 

and we shall denote its co kernel by 

Thus we have the natural exact sequence 

of chain complexes. As usual, we define 

There is the usual long exact sequence in homology 

... --+ Hn(Uo n Ai 2l) --+ Hn(Ui 23) --+ Hn(U,lloi 23, 2l) --+ Hn-l(llo n Ai 2l) --+ ... 

We also define 

Now assume that ~ and !B are flabby cosheaves. Then 4.5 applied to the 
relative homology sequence yields the conclusion that Hn(U,Uo;!B, l.2() = 0 
for n > 1 and also yields the exact sequence 

The two middle terms of this sequence are canonically isomorphic to 
l.2(x (X) = ~(A) and !B(X) respectively by 4.1, and the map between them 
is the monomorphism "l(X). Therefore 

- { 0 for n =f. 0, 
Hn (U,110; !B, l.2() = Coker"l(X) : l.2(A) --+ !B(X), for n = 0 

when l.2( and !B are flabby cosheaves. 
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Now suppose that 2(* and 25* are flabby differential cosheaves on A and 
X respectively that are bounded below. Also suppose that we are given an 
exact sequence 

o -+ 2(; -+ 25* -+ ([* -+ 0, 

defining ([*' of differential cosheaves. 
Given the pair (U, Uo ) of coverings, we consider the double complex 

Lp,q(U, Uo) = (7p(U, Uo ; SEq, 2(q). 

As before, it follows that there is a natural spectral sequence E;,q (U, Uo ) 

with 

and 
E;,q(U,Uo ) = 'Hp(lfHq(L*,*(U,Uo ))) ==> Hp+q(([*(X)). (5) 

Now suppose that 25* is a flabby semi-n-coresolution of the cosheaf 25 
on X and that 2(* is a flabby (n - l)-coresolution of the cosheaf 2( on A.2 
For each p, the exact sequence 

0-+ Cp(Uo n A; 2(*) -+ Cp(U; 25*) -+ Cp(U,Uo; 25*, 2(*) -+ 0 

induces a long exact sequence of the form 
• • 1 

... -+ Cp(Uo n A;SJq(2(*)) -+ Cp(U;SJq(25*)) -+ Ep,q(U,Uo) -+ 

... -+ Cp(U;SJl(25*)) -+ E;,l(U,UO ) -+ Cp(Uo nA)50(2(*)) = 0, 
(6) 

where f;0(2(*) = Ker{SJo(2(*) -+ 2(} = O. Moreover, we have the exact 
sequence 

This gives 
E;,o(U,Uo ) = Cp(U,Uo; 25, 2(), 

E;,o(U,Uo ) = Hp(U,Uo ;25,2(). 

Moreover, if X and A are both paracompact, then by (6) and 4.6 (twice) 
there exists a refining pair (QJ, QJo) of (U, Uo) and a refinement projection 
such that the induced homomorphism 

E~,q(m, mo) -+ E~,q(U,Uo) 

is zero for all p < k and all q > 0 with p+q = k :::; n. Also, the commutative 
diagram 

EJ,k(QJ, mo) -+ Co(QJo n A; SJk-l(2(*)) 

! 10 
Co(U;SJk(25*)) -+ EJ,k(U,Uo ) -+ Co (Uo n A; SJk-l (2(*)) 

10 ! 
Hk(25*(X)) -+ Hk(([*(X)) 

2Note that unless A is closed, it does not generally follow that <1:. is a coresolution 
of Coker(Q!x -+ 'B). 
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shows that (U,Uo) and (m, mo) can be arranged so that EJ,k(m, mo) -> 

Hk(~*(X)) is zero. 
We now have all the information needed to repeat the arguments in 

Section 7 in the relative case. Summing up, we have the following relative 
version of 7.2: 

8.1. Theorem. Let A c X both be paracompact, let Q(. be a flabby (n
l)-coresolution of the cosheaf Q( on A, and let ~. be a flabby semi-n
coresolution of the cosheaf ~ on X. Suppose thatO -> Q(~ -.... ~* -> ~* -> 0 
is an exact sequence of differential cosheaves. Then for k ~ n the edge ho
momorphisms 

of the spectral sequences (5) induce isomorphisms 

in the limit over covering pairs (U, Uo ). o 

It is easy to see that via 8.1 and 7.2 the exact sequence 

can be identified with the sequence 

which is the inverse limit of the sequences for covering pairs. In particu
lar, it follows that this homology sequence is exact, a fact that limits the 
possibilities for the existence of the hypothesized coresolutions, since Cech 
homology is not generally exact. 

8.2. We wish to generalize 4.8 to the relative case. Thus assume that Q(l 

and Q(2 are precosheaves on A and that ~l and ~2 are precosheaves on X, 
and assume that we are given homomorphisms forming the commutative 
diagram 

Q(r -> ~l 

lh lk 
Q(f -> ~2. 

Then we have the following result, whose proof is essentially the same as 
that for 4.8 and so will be omitted. 

8.3. Proposition. If (X, A) is a paracompact pair and hand k are local 
isomorphisms, then the induced map 

is an isomorphism. D 
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9 Locally paracompact spaces 

By a strategy introduced by Mardesic [59J in the locally compact case, 
one can prove a result similar to 8.1 for locally paracompact, but possibly 
not paracompact, spaces. This is the process of introducing paracompact 
carners. 

Suppose that <p is a paracompactifying family <P of supports on X with 
E(<P) = X. Then the family <po of paracompact open sets U with U E <P 
will be called a carner family. We shall not be concerned with any other 
type of support family in this chapter. Recall that for any sets K, K' E <P 
with K c int K' there is a set U E <po with with K c U and U C int K' 
(the union of an increasing sequence of members of <P containing K, each 
a neighborhood of the last and contained in K" E <P for some K" C 
intK'; see [34, p. 165]). Therefore a carrier family exists {=} X is locally 
paracompact . 

The most important case is that of locally compact spaces and <P = c. 
The next most important is the case in which X is paracompact and <I> = 
cld. 

Let (X, A) be a locally paracompact pair. Let <I>0 and WO be carrier 
families on X and A respectively. Then we define3 

H'k(X, A; IB, Ql) = li!!}Hk(U, V; IB, Ql), 

where the limit is taken over pairs (U, V), where V C U, U E <po, and 
V E Wo. Note that for any cosheaf \t, 

because for any c E \t(X) and a covering 11 = {Ua E <I>0}, c comes from 
some \t(Uao U··· U Uak ) and Uao U··· U Uak is contained in some U E <I>0. 
Consequently, 

Hk(\t.(X)) = li!!}UE<I> 0 Hk(\t. (U)), 

for any differential cosheaf \t.. Therefore we have: 

9.1. Theorem. With the hypotheses of 8.1 except that X and A are as
sumed to be locally paracompact rather than paracompact, there is a canon
ical isomorphism 

Hk(C?:.(X)) i'::;j Hk(X, Ai IB, Ql) 

for all k :S n. In particular, if such a \to exists, then the groups on the right 
are independent of the carner family <pO used to define them. Also, 

HZ(X, A; IB, Ql) i'::;j Hk(X, A; IB, Ql) 

if X and A are paracompact. D 

The analogue of 8.3 also obviously holds in this case. 

30r course these groups may depend on the families <I> and >It, but in our applications 
they will not. Thus we chose this relatively uncluttered notation over one displaying the 
families explicitly. 
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10 Borel-Moore homology 

We now apply 8.1 to the case of Borel-Moore homology. Thus we consider 
only locally compact spaces in this section. 

First, we shall associate to any sheaf Ji on a locally connected (and 
locally compact) space a certain cosheaf on X: 

10.1. Proposition. Let X be locally compact. Then for any sheaf Ji on 
X, the precosheaf H8(.; Ji) is a cosheaf. 

Proof. Let!Ip = <&p(X; L), the sheaf of germs of Borel-Moore p-chains, 
and let .Y{ = Ker(d : !Io -> !I-I). Then by the proof of V-5.l3, .Y{ ® Ji is 
c-soft and the sequence 

is exact. Thus fc(.Y{ ® JiIU) is the group of O-cycles of U. Therefore, by 
definition, we have the exact sequence 

of precosheaves. Since the first two terms are cosheaves by V-1.6, the last 
is also a cosheaf by 1.2. D 

By the proof of 10.1, the Borel-Moore chain complex CZ(X; Ji) can be 
replaced by a chain complex vanishing in negative degrees without changing 
the homology with compact supports, namely: 

Also note that by the proof of 10.1 the precosheaf 

i!;(X;Ji): U I-t C~(U;Ji) 

is a flabby cosheaf. 

for p > 0, 
for p = 0, 
for p < 0. 

By general results from Chapter V there is an exact sequence 
-c X -c -c ° -> Itp(A;JiIA) -> Itp(X;Ji) -> Itp(X, A; Ji) -> 0, 

which defines the right-hand term. 

10.2. Definition. A locally compact space X is said to be semi-hlc'£ if the 
precosheaf U I-t iI~(U; L) is locally zero for all k < nand semilocally zero 
for k = n. 

10.3. Proposition. Let X be hlc1. Then X is locally connected, and for 
the constant sheaf M we have 

I H8(·; M) r:::;J lto.5~eaf(M)·1 



440 VI. Cosheaves and Cech Homology 

Proof. The universal coefficient sequence V-3.l3 shows that H8(U; M) ::::; 
H8(U;L) 181 M since H~l(U;L) = O. It follows that H8(e;M) is locally 
zero. There is the natural exact sequence 

0-> H8(u; M) -> H8(U; M) -> M -> 0 

of precosheaves, by definition of the reduced groups. Thus H8( e; M) -> 

M is a local isomorphism. Since H8(e; M) is a cosheaf by 10.1, M is 
smooth, and the local isomorphism H8( e ; M) -> M induces an isomor
phism H8(e; M) -> (toslJeaf(M). By Exercise 5,4 X is locally connected. 

o 
10.4. Proposition. If X is semi-hlc£ and if M is a constant sheaf, then 
~~(X; M) is a flabby semi-n-coresolution of the cosheaf H8(e; M). If X is 
hlc£ and if.Yi is locally constant, then e:~ (X;.Yi) is a flabby n-coresolution 
of the cosheaf H8( e ; cd). 

Proof. By the definition of semi-hic2, the precosheaf U f-+ H~(U; L) is 
locally zero for 0 < p < n, is semilocally zero for p = n, and is locally 
isomorphic to L for p = O. That takes care of the case M = L. For general 
M the universal coefficient formula V -3.13 and II-17.3 show that Hk (e ; M) 
is locally zero for k < n. For k = n and appropriate choices of U and V 
they give the diagram 

H;(V;M) -+> H;_l(V; L) * M 

1 10 

H;(U;L) 181M >-> H;(U;M) -+> H;_l(U; L) * M 

10 1 
H;(X;L) 181M >-> H;(X;M), 

again giving the result via II-17.3. The locally constant case with the 
stronger condition obviously reduces to the constant case. 0 

Finally, from 10.4, 8.1, and 9.1 we have: 

10.5. Theorem. Let (X, A) be a locally compact pair. Let.Yi be a sheaf 
on X and let Sjo(X, A;.Yi) denote the cosheaf pair H8( e; .YiIA) -> H8( e;.Yi) 
on X. Then we have a canonical isomorphism 

I Hk(X,A;.Yi)::::; iI~(X,A;Sjo(X, A;.Yi)) I 
for all k ~ n under either of the following two conditions: 

(a) X is semi-hlc2, A is hlc2- 1, and.Yi is constant. 

(b) X is hlc2, A is hlc2- 1 , and.Yi is locally constant. 0 

10.6. Corollary. (Jussila [50].) Let (X, A) be a locally compact pair, and 
assume that X is semi-hlc2 and A is hic2- 1 for some n > 0.5 Then for 

40r by the implications hlc~ => dc~ => locally connected. 
5The condition n > 0 is to ensure that M is smooth. 



§10. Borel-Moore homology 441 

any L-module M regarded as a constant sheaf and constant precosheaf pair, 

I Hk(X, A; M) ~ Hf(X, Ai M) I 
for all k ~ n. 

Proof. By 10.3, M is locally isomorphic to \tos~eaf(M) ~~ H8(.; M), and 
similarly on A. Thus the result follows from 10.5 and 8.3. 0 

10.7. Example. For i = 1,2, . .. let Ki be a copy of §n. Let fi : Ki+l -+ 

Ki be a base point preserving map of degree i and let Mi be the mapping 
cylinder of fi. Let Ii be the generator of Mi between the base points and 
let g : Ii -+ §l wrap the arc Ii once around the circle. Let 

There is a surjection 1rm : X m+1 ....... Xm collapsing Mm+1 to its generator. 
Finally, let X = UmXm . Then with integer coefficients one can compute 
that Hi(Xm ) = 0 for 0 < i ~ nand H n+1(Xm ) ~ Z for all m. Also, the 
inverse system 

has the form 

Consequently, Hi(Xm) = 0 for 0 < i ~ n and the direct system 

has the form 

Therefore, by continuity II-14.6, we have 

Thus 
Hn(X;Z) ~ Ext(Q,Z), 

which is a rational vector space of uncountable dimension by V-14.8. Also, 

• 2 3 
Hn(X;Z) = Um{Z <- Z <- ... } = O. 

Now, any point of X has arbitrarily small neighborhoods that are either 
contractible or homotopy-equivalent to the one-point union of n-spheres 
converging to a point. Thus X is hlcz-1 and HLCz-1 . Since Ext(Q,Z) ~ 
Hn(X; Z) >j:J Hn(X; Z) = 0, X cannot be semi-hlc£, something for which 
there is no obvious direct argument. <> 
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11 Modified Borel-Moore homology 

Here we shall treat the theory 

where M* is an injective resolution of the L-module M. Recall that this 
was discussed briefly in V-lB. Of course, this coincides with Borel-Moore 
homology when M = L. We shall confine the discussion to the absolute 
case. Again, this section is restricted to locally compact Hausdorff spaces. 

11.1. Lemma. If X is clc2+1 then:D * (.9"* (X; L); M) is a flabby quasi-n
coresolution of the constant precosheaf M.6 

Proof. There are the exact sequences (natural in compact A by an ana
logue of V -4.1) 

o -+ Ext(H~+1(A;L),M) -+ Hk(A;M) -+ Hom(H~(A;L),M) -+ 0, 

which with II-17.3 show that for any compact neighborhood A of a point 
x E X there is a compact neighborhood B of x such that H k(B; M) -+ 

H k (A; M) is zero for 0 < k ::; n. Thus the precosheaf H~ ( • ; M) is locally 
zero for 0 < k ::; n. An argument similar to the proof of V-5.14 shows that 
H~(. ; M) is locally isomorphic to M. 0 

In the same way as for standard Borel-Moore homology, one can modify 
:D*(.9"*(X; L); M) in degree zero, without changing H~(.; M), to produce 
a flabby n-coresolution of M. Then 7.2 gives us: 

11.2. Theorem. If X is clc2+1, then there is a canonical isomorphism 

I H~(X; M) ;:::J fIZ(X; M) I 
for all k ::; n. o 

Since clc2+1 => hlc£ by V-12.1O, we deduce the following sufficient 
condition for this modified theory to be equivalent to the standard Borel
Moore homology theory, using 10.5 and 11.2. 

11.3. Corollary. If X is clc2+1, then there is a canonical isomorphism 

IH~(X;M);:::J Hk(X;M) I 
for all k ::; n. o 

6If X is compact and Hn+l(XjL) -+ Hn+1(KjL) is zero for some compact neigh
borhood K of each point, then this is a flabby semi-(n + l)-coresolution. This is true, 
for example if X is compact and H n +1 (Xj L) is finitely generated over L. 
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Remark: This result also follows fairly easily from the results of V-12 as long 
as M is finitely generated over L. But for general M, that approach does 
not seem to work. Some such result is probably true for general paracom
pactifying supports, but one such is not known to the author. 

It is worth noting the following consequence of the last corollary. 

11.4. Corollary. If X is compact and clc2+1, then there are the split exact 
sequences 

0-> Ext(Hk+1(X; L), M) -> Hk(X; M) -> Hom(Hk(X; L), M) -> 0 

for all k :S n. o 

11.5. Corollary. If X is clc2+1, then change of rings is valid for Borel
Moore homology with compact supports through degree n. 0 

12 Singular homology 

Now we apply the results ofthis chapter to classical singular homology. We 
shall use the approach to singular homology suggested in 1-7. Thus, for a 
sheaf ..;i on X, we define 

(T 

where the sum ranges over all singular p-simplices (J : L:lp - .... U. (Although 
this makes sense for all sheaves ..;i, our main results will require ..;i to 
be locally constant.) Then S* (U;..;i) has a boundary operator as in 1-7. 
There is also a subdivision operator Y : Sp(U;..;i) -> Sp(U;..;i) defined in 
the obvious way via the map L:l~ -> L:lp on the barycentric subdivision L:l~ 
of the standard p-simplex L:lp . 

Consider the direct system 

Sp(U;..;i) 2.. Sp(U;..;i) 2.. ... , 
and let 6 p(X;..;i)(U) be its direct limit. Then 6 p(X;..;i) is a precosheaf 
on X. Now subdivision induces an isomorphism in homology, and so the 
canonical map 

Hp(S*(U;..;i» -> Hp(6*(X;..;i)(U» 
is an isomorphism. We denote it by 

I AH~(U;..;i) = Hp(6.(X;..;i)(U)·1 

If ..;i is constant, then this is the classical singular homology group, and for 
..;i locally constant it is the classical singular homology group with twisted 
coefficients as defined by Steenrod.7 

12.1. Proposition. The precosheaf 6 p(X;..;i) is a flabby cosheaf. 

7The superscript c is used to maintain notational consistency with other parts of the 
book. 



444 VI. Cosh eaves and Lech Homology 

Proof. For U c X open, Sp(U; vi) - Sp(X; vi) is a monomorphism. 
Since the direct limit functor is exact, Sp(X; vi)(U) - Sp(X; vi) (X) is a 
monomorphism. This will show that Sp(X; vi) is flabby once we show it to 
be a cosheaf. To see the latter, note that for open sets U and V and any n
chain s E Sp(U U V; vi), there is an integer k such that the kth subdivision 
yk(s) is the sum s = Su + sv, Su E Sp(U;vi) and Sv E Sp(V;vi). This 
means that f(s, t) = s + t of 

is onto. It is also clear that its kernel is the image of 

where g(s) = (s, -s). Thus Sp(X;vi) satisfies condition (a) of 1.4. It also 
satisfies (b) since direct limits commute with one another. 0 

If A c X is any subspace, then there is the exact sequence 

where the relative precosheaf Sp(X, A; vi) is defined in a manner similar to 
that of the absolute groups. By 1.2, Sp(X, A; vi) is a cosheaf. It is flabby 
for the same reason that the absolute ones are. 

12.2. Proposition. For any sheaf vi on X, the precosheaf l!.H8( e ; vi) is 
a cosheaf. If X is locally arcwise connected and if vi = M is constant, then 
this cosheaf is the constant cosheaf 

Il!.H8( e; M) = l[o5~eaf(M).1 

Proof. By definition, we have the exact sequence 

SI(X;vi) - So(X;vi) -l!.Ho(e;vi) - 0 

of precosheaves on X. By 1.2, l!.H8( e; vi) is a cosheaf. 
Also, l!.H8(U; M) is the direct sum of copies of M over the arc compo

nents of U. Thus the augmentation l!.H8(U; M) - M is an isomorphism 
if U is arcwise connected, and this means that l!.H8( e; M) - M is a local 
isomorphism of cosheaves when X is locally arcwise connected. 0 

12.3. Definition. A space X is said to be semi-HLC£ if the precosheaf 
U - l!.Hfc(U; L) is locally zero for all k < nand semilocally zero for k = n. 

Using the usual universal coefficient formula for singular homology, the 
proof of the following fact is completely analogous to that of 10.4: 
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12.4. Proposition. If X is semi-HLOl, and if M is a constant sheaf, then 
6*(X, A; M) is a flabby semi-n-coresolution of the cosheaf AH8(.; M). If 
X is HLOl, and if.;1 is locally constant, then 6*(X, A;.;1) is a flabby n
coresolution of the cosheaf t:.H8(.;.;1). D 

Finally, from 12.4, 8.1, and 9.1 we have: 

12.5. Theorem. Let A c X be locally paracompact, let.;1 be a sheaf on X, 
and let t:.5)o(X, A;.;1) denote the cosheaf pair t:.H8(.; .;1IA) -+ t:.H8(. j.;1) 
on X. Then there is a canonical isomorphism 

I t:.Hk(X, Aj.;1) ~ Hk(X, Aj A5)O(X, Aj .;1)) I 

for k ::::; n, under either of the following two conditions: 

(a) X is semi-HLOl" A is HLC{-l, and.;1 is constant. 

(b) X is HLC'l, A is HLC{-l, and.;1 is locally constant. D 

12.6. Corollary. (Mardesic [59].) Let (X, A) be a locally paracompact 
pair and assume that X is semi-HLC£ and A is HLC{-l. Then for any 
L-module M regarded as a constant sheaf and constant precosheaf pair, 

I t:.Hk(X, Aj M) ~ Hk(X, Aj M) I 
for all k ::::; n. D 

13 Acyclic coverings 

Let 2(* be a flabby differential cosheaf vanishing in negative degrees, and 
put 2( = Coker{2(l -+ mo}. Consider the spectral sequence (2). We have 
the edge homomorphism 

The following is immediate: 

13.1. Theorem. If each intersection U of at most m + 1 members of 11 
has 

then 
All: Hk(2(*(X)) -+ Hk(l1j 2() 

is an isomorphism for all k < min {n, m} and a monomorphism for k = 
min{n,m}. D 

Applying this to Borel-Moore homology, we have: 
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13.2. Corollary. Let.A be an arbitrary sheaf on the locally compact Haus
dorff space X. Let il be an open covering of X such that for each intersec
tion U of at most m + 1 members of il, Hg(U;.A) = 0 for all 0 < q < n. 
Then the canonical map 

is an isomorphism for all k < min{ n, m} and a monomorphism for k = 
min{n,m}. D 

Similarly, for singular homology we have: 

13.3. Corollary. Let.A be an arbitrary sheaf on the space X. Let il be 
an open covering of X such that for each intersection U of at most m + 1 
members of il, ~Hg(U;.A) = 0 for all 0 < q < n. Then the canonical map 

is an isomorphism for all k < min {n, m} and a monomorphism for k = 
min{n,m}. D 

14 Applications to maps 

In this section we consider a map 

f: E --> X. 

Recall that for a precosheaf !B on E there is the direct image f!B on X 
defined by 

Obviously, f!B is a cosheaf when !B is a cosheaf, and f!B is flabby when !B 
is flabby. 

If !B* is a flabby differential cosheaf on E, then 2(* = f!B* is a flabby 
differential cosheaf on X. Also .5Jq (2l*) = f.5J q (!B*) since f is an exact 
functor of precosheaves, and so the spectral sequence (2) has 

natural in coverings il of XO 
In particular, for Borel-Moore homology (with X locally compact Haus

dorff), we have the spectral sequences 

natural in coverings il and in sheaves .A on E. 
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Similarly, for singular homology, we have the spectral sequences 

natural in coverings it and in sheaves ..4 on E. 
Now we shall prove a generalization of 7.2. Suppose that 2l. is a flabby 

differential cosheafwith 2lp = 0 for p < 0 (or generally just bounded below). 
Also suppose that we are given integers 0 ::; k < n such that 

(A) SJq (2l.) is locally zero for all q '" k, q < n, and semilocally zero for 
q = n. 

Let 3p = Ker{dp : 2lp -- 2lp-d. Then, by 2.5, 

is exact and 
3k is a flabby cosheaf. 

Moreover, it is clear that 

2ln+1 -- ... -- 2lk+1 -- 3k -- SJk(2l.) -- 0 

is locally exact. Thus, under the assumption (A), we see that SJk(2l.) is a 
cosheaf and that the differential cosheaf 2l~, defined by 

for q < 0, 
for q = 0, 
for q > 0 

is a flabby semi-(n - k)-coresolution of SJk(2l.). 
By 7.2 and 9.1 we deduce: 

14.1. Theorem. Let X be locally paracompact and let 2l. be a flabby dif
ferential cosheaf on X that is bounded below and is such that condition (A) 
is satisfied. Then there is the canonical isomorphism 

for all p ::; n. o 

Returning to the case of a map f : E -- X, let Eo c: E be any sub
space. Applying 14.1 to the flabby differential cosheaves fet; (E, Eoj..4) 
and f6.(E,Eoj..4), we have: 

14.2. Corollary. Suppose that X and (E, Eo) are locally compact, that..4 
is a sheaf on E, and that there are integers k < n such that the precosheaf 
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is locally zero for k =1= q < nand semilocally zero for q = n. Then this 
precosheaf is zero for q < k and is a cosheaf for q = k. Moreover, there is 
a canonical isomorphism 

for all p ::; n. D 

14.3. Corollary. Suppose that X is a locally paracompact space, that.Yi 
is a sheaf on E, and that there are integers k < n such that the precosheaf 

is locally zero for k =1= q < nand semilocally zero for q = n. Then this 
precosheaf is zero for q < k and is a cosheaf for q = k. Moreover, there is 
a canonical isomorphism 

for all p ::; n. D 

Exercises 

1. If h : 21 -+ 'B is an epimorphism of precosheaves and 21 is an epiprecosheaf, 
then show that 'B is an epiprecosheaf. 

2. If 21 is a locally zero epiprecosheaf, then show that 21 = O. 

3. For an inclusion A c X and a precosheaf21 on A, show that 21x is a cosheaf 
~ 21 is a cosheaf and that 21x is flabby ~ 21 is flabby. 

4. ® Let 21. be a flabby n-coresolution of the cosheaf 21 on the paracompact 
space X. Show that for every open covering II of X, the canonical maps 
Hn +l(21.(X)) -+ Hn +l(ll;21) +- Hn +1(X;21) have equal images. 

5. ® If the constant precosheaf M i= 0 on X is smooth, show that X is locally 
connected. 

6. ® If X is connected and semi-hlcl, then show that H8(X; L) = O. (This 
shows, for example, that the solenoid is not semi-hl~, something that is 
not immediately obvious.) 
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Spectral Sequences 

This appendix is not intended as an exposition of the theory of spectral 
sequences, but rather as a vehicle for the establishment of the notation and 
terminology that we adopt and as an outline of the basic theory. Most of 
the proofs, which are not difficult, are omitted. We assume that a base 
ring L is given. 

1 The spectral sequence of a filtered 
complex 

Let C* be a complex, that is, a graded module with differential d : C* ---> C* 
of degree + 1. A (decreasing) filtration {FpC*} of C* is defined to be a 
collection of sub modules Fpcn of cn (for each n) such that the following 
three conditions are satisfied: 

... J Fp_1Cn J FpCn J Fp+1Cn J ... ; 

C n = UFpCn ; 
p 

(1) 

(2) 

(3) 

The filtration is said to be regular if FpCn = 0 for p > f(n), for some 
function f. (This definition of regularity is stronger than the usual one, 
but it is convenient for our purposes.) 

The graded module associated with the filtration {FpC*} is defined to 
be {GpC*}, where 

GpC* = FpC* / Fp+1 C*. (4) 

We define the graded modules 

Z~ = {e E FpC* I de E Fp+rC*} (5) 

and 

(6) 

(for r ~ 0), and we let zf,q and Ef,q denote the summands of Zf and Ef, 
respectively, consisting of terms of total degree (that degree induced from 
the degree in C*) equal to p + q. That is, 

z~,q = Z~ n FpCp+q = {e E FpCp+q I de E Fp+rCp+q+1} 

449 
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and zp,q 
EP,q = r 

r dZp-r+1,q+r-2 + ZP+1,q-l . 
r-l r-l 

The index p is called the filtration degree and q is called the complementary 
degree. 

The differential d on C* induces a differential dr on E;'*, which increases 
the filtration degree by r by (5) and hence decreases the complementary 
degree by r - 1 since the total degree of d is + 1. That is, 

(7) 

It is easy to check that the homology of Er with respect to dr is naturally 
isomorphic to Er+1• That is, 

Er+1 ~ H (Er' dr ) preserving both degrees. (8) 

It may also be checked that 

with d1 corresponding to the connecting homomorphism associated with 
the short exact sequence 

of chain complexes. 
The collection of bigraded modules Ef,q for r ~ 2 (and sometimes for 

r ~ 1) together with the differentials dr as in (7) and satisfying (8) is 
what is known abstractly as a spectral sequence. We have described the 
construction of the spectral sequence of a filtered complex. We continue 
with the discussion of this special case. 

The definitions (5) and (6) can be extended in a reasonable manner to 
make sense for r = 00 if we define FooC* = 0 and F_ooC* = C*. Thus we 
define 

z~ = {c E FpC* I dc = O} (9) 

and 
EP = Z~ = Z~p . 

00 (FpC* n dC*) + Z~+1 Boo 
(10) 

We introduce a filtration on H* (C*) by setting 

(11) 

Then there is a natural isomorphism 

(12) 
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Note that there are inclusions 

'" c B~ c B:+1 c ... c B~ c z~ c··· c Z:+1 c Z~ c ... (13) 

Suppose now that the filtration {FpC*} of C* is regular. Then zr,q = 
Z::l = ... = Zgoq for r sufficiently large, p and q being fixed. (Equiva
lently, dr : Er,q -+ Er+r,q-r+1 is zero for large r.) Thus there are natural 
epimorphisms (for r sufficiently large) 

(14) 

One can check that in fact, 

(15) 

when the filtration is regular. (Usually, in the applications we even have 
that the E~,q are constant for large r and fixed p and q.) 

Let {Er,q j dr } be any spectral sequence such that for fixed p and q we 
have that dr : E~,q -+ E~+r,q-r+1 is zero for sufficiently large r. Then we 
have the epimorphisms E~,q --» E::l for r large as in (14), taking a dr-cycle 
in Er into its homology class in E r+1 , and we define Egoq by (15). Suppose 
that we are given a graded module A* and a filtration {FpA*} of A* such 
that 

E P,q,... G Ap+q 
00"" p • 

Then this fact will be abbreviated by the notation 

E~,q ==> Ap+q. 

For example, in the case of a regularly filtered complex C* we have, by 
(12), 

2 Double complexes 

Suppose that C*,* is a double complex, that is, a family of modules doubly 
indexed by the integers and with differentials 

d' : cp,q -+ CP+1,q and d": cp,q -+ cp,q+1 

such that (d')2 = 0, (d")2 = 0 and d'd" + d"d' = O. Let C* be the "total" 
complex, with 

and differential d = d' + d". 
We introduce two filtrations into the complex C*. The first filtration 

, F is defined by 
I FtCn = E9 cp,q 

p~t 

p+q = n. 
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Similarly, the second filtration" F is given by 

"FtCn = Ef1CP,q 
q?t 

p+ q = n. 

From these filtrations we obtain spectral sequences denoted by {' E!?,q} and 
{" E!?,q} respectively. 

Denoting homology with respect to d' and d" by' Hand" H respectively, 
it can be seen that 

(16) 

with differentials d l corresponding to the differentials induced by d' and d" 
respectively. Therefore 

'E~,q;:::;; 'HP("Hq(C*'*)) and "E~,q;:::;; "HP('Hq(C*'*)). (17) 

Note that if CM = 0 for P < Po (Po fixed), then the second filtration is 
regular, while if cp,q = 0 for q < qo, the first spectral sequence is regular. 
Another useful condition implying regularity of both filtrations is that there 
exist integers Po and PI such that cp,q = 0 for P < Po and for P > Pl' 

Assume, for the remainder of this section, that C*,* is a double complex, 
with cp,q = 0 for q < O. For r ~ 2, ' E!?'o consists entirely of dr-cycles, so 
that there is a natural epimorphism 

, EP'o -» I EP'o 
r r+l 

assigning to a cycle its homology class. Also, 

'E~o = 'GpHP(C*) = 'FpHP(C*) C HP(C*) 

[since I Fp+IHP(C*) = 0 in the present situation]. Thus we obtain the 
homomorphisms 

'HP("Ho(C"*)) = 'E~'o -» 'E~o >-> HP(C*), (18) 

whose composition is called an edge homomorphism. Since" HO (C*,*) may 
be identified with the d"-cycles of C*,o, there is a monomorphism 

(19) 

which is seen to be a chain map with respect to the differentials d' = 
d l and d respectively. The homology homomorphism induced by (19) is 
easily checked to be identical with (18). [The reader should note that 
the homomorphism (18) is defined under more general circumstances. For 
example, it suffices that CM = 0 for q < qo and that I E~,q = 0 for q < 0.] 

If CM = 0 for P < 0 as well as for q < 0, then there is an analogous 
edge homomorphism 

HP(C*) =' FoHP(C*) -»'GoHP(C*) =' Er;;; >->' Eg'P =' HO( /I HP(C*'*)). 

There are also, of course, similar edge homomorphisms for the second spec
tral sequence. 
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3 Products 

Let 1 C*, 2C*, and 3C* be complexes, and assume we are given homomor
phisms 

(20) 

such that 

d(a{3) = (da)(3 + (_l)deg Q a (d(3), (21) 

where we denote h(a 0 (3) by the juxtaposition a(3. 
Assume further that we are given filtrations of each of these complexes 

such that 

Denote the spectral sequence of the filtered complex iC· by tEr,q}. It 
follows easily from the definition (6) that there are induced products 

(23) 

and that the differentials dr satisfy the analogue of (21). Also, the product 
hr+1 is induced from hr via the isomorphism: Er+l ~ H(Er). It is also 
clear that hoo is induced from the hr via the isomorphism Eoo ~ lim Er 
when the filtrations in question are regular. 

On the other hand, because of (21), h induces a product 

satisfying the analogue of (22), for the filtrations given by (11). Because 
of this analogue of (22) we obtain an induced product 

By (12) this is equivalent to a product 

which can be seen to coincide with hoo . 

A special case of importance is that in which the iC* are the total 
complexes of double complexes iC*'* and in which h arises from a product 

In this case the condition (22) is satisfied for both the first and second 
filtrations. 
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4 Homomorphisms 

Let 1 C* and 2C* be complexes with given filtrations and assume that we 
are given a chain map 

(24) 

such that 
(25) 

This situation is actually a special case of that considered in Section 3. 
In brief, h induces homomorphisms 

(26) 

which commute with the differentials dr; hr+1 is induced from hr via the 
isomorphism Er+1 ::::J H (Er); and in the case of regularly filtered complexes, 
hoc is induced from the hr via the isomorphism Eoc ::::J lin} Er. Moreover, 
hoc is compatible, in the obvious sense, with the homomorphism 

It is sometimes useful to note that h* cannot decrease the filtration degree 
of an element, which is the same as to say that it cannot increase the 
complementary degree. 

A basic and often used fact concerning this situation is that if h is a 
chain map of regularly filtered complexes such that for some k, 

is an isomorphism for all p and q, then so is h * : Hn (1 C*) --+ Hn (2C*). This 
is proved by a standard spectral sequence argument as follows: The fact 
that hk is a dk-chain map and that hk+1 is the induced homomorphism 
in homology implies that hk+l is an isomorphism. Inductively, hr is an 
isomorphism for r 2: k, and consequently, hoc is also an isomorphism, by 
regularity. Then a repeated 5-lemma argument, using the regularity of the 
filtrations of Hn(iC*), shows that 

is an isomorphism for each p. The contention then follows from the fact 
that Hn(iC*) = Up FpHn(iC*). 

When hr is an isomorphism for all r 2: k including r = 00 and when h* 
is also an isomorphism, then we say that this map of spectral sequences is 
an "isomorphism from Ek on." Thus, for regularly filtered complexes, this 
is equivalent to the hypothesis that hk be an isomorphism. 
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Solutions to Selected Exercises 

This appendix contains the solutions to a number of the exercises. Those 
exercises chosen for inclusion are the more difficult ones, or more interesting 
ones, or were chosen because of the importance of their usage in the main 
text. 

Solutions for Chapter I: 
1. By definition, i*.J = {(b, a) E B x .J I b = 1I'(a)} and .JIB = 11'-1 (B). The 

functions (b, a) 1-+ a of i*.J -- .JIB and a 1-+ (1I'(a), a) of .JIB -- i*.A are 
both continuous and mutually inverse. 

2. We will use the fact from I-Exercise 1 that (i.%')IB ~ i*i.%'. The canonical 
homomorphism a : i*i.%' ~ .%' of Section 1-4 is the composition 

(i*i.%')b = (i.%')i(b) = fun (i.%')(U) = fun .%'(C1U) --fun .%'(V) = .%'b 
i(b)EU i(b)EU bEY 

on the stalks at b E B, this holding for any map i : B -- X of arbitrary 
spaces. In our case, in which i : B '--+ X is an inclusion of a subspace, the 
sets i- 1U = Un B form a neighborhood basis of bin B. It follows that 
the arrow in the displayed composition is an isomorphism. Thus a is an 
isomorphism on each stalk and hence is an isomorphism. 

4. Let X be a locally connected Hausdorff space without isolated points and 
let iP be a projective sheaf on X. Suppose that G = ·'1'zo =1= 0 for some 
Xo E X. Let ri be the constant sheaf on X with stalk G. Let A = {xc}, and 
note that riA ~ [J' A. Let k : [J' ~ riA be the composition of the canonical 
epimorphism [J' -- [J' A with an isomorphism iP A -- riA. The diagram 

ri-riA-O 

"h· ........ l k 

iP 

can be completed since iP is projective. Let s be a section, nonzero at xo, 
of iP over a connected neighborhood U of Xo. Then h(s(xo)) =1= 0, and this 
implies that h 0 s is nonzero on some connected neighborhood V C U of Xo 
since ri is constant. Let x E V, x =1= Xo, and put B = {xo,x}. There is the 
inclusion map i : riA'--+ riB. Consider the diagram 

ri-.i...... riB-O 

> ........ l io k 

iP, 

455 
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where j is the canonical epimorphism. Since V is connected, h' 0 s is 
everywhere nonzero on V (since each Wg = {y E V I h'(s)(y) = g} is open 
for 9 E G and also closed since its complement is U{Wgl I g' ¥ g}, which 
is open). Therefore 0 ¥ j 0 h' 0 sex) = i 0 k 0 sex) = 0, because ('BA):. = O. 
This contradiction shows that [jJ = 0, as claimed. 

8. Let s E UA)(Y) correspond to t E A(X). For y E Y we have that 

y (j. lsi ~ 3 open neighborhood V of y with V nisi = 0 
~ 3V 3 0 = rv,y(s) E (fA)(V) 
~ 3V 3 0 = r,-l(V),X(t) E AU-IV) 
~ 3V 3 rl(V) n It I = 0 
~ 3V 3 Vnf(lt/) = 0 

~ 3V 3 V n f(lt/) = 0 

~ y (j. f(lt/). 

Therefore lsi = f(lt/). Consequently, if lsi E CP, then It I c rl(lsl) E 
f-I(cp). Conversely, if It I E f-I(cp), then there is a closed set K E cP with 
It I c rl(K), and so f(ltl) c K. Hence lsi = f(ltl) c K, and so lsi E CPo 

9. Let yo E Y. For a sufficiently small open and connected neighborhood U 
of yo we have that j~o,u : A'(U) -+ A~o and j~o,u : A"(U) -+ A~o are 
isomorphisms. If s~, ... , s~ are generators of A~o' let Si be elements of A YO 

mapping to s~'. Then U can also be assumed so small that SI, ... , Sk are 
in the image of illo,u : A(U) -+ Ayo. Then the composition A(U) -+ 
AyO -+ A~o is onto. It follows that A(U) -+ A"(U) is onto. Since A' 
and A" are locally constant and U is connected, j~,u : A' (U) -+ A~ and 
j~,u : A" (U) -+ A~ are isomorphisms for all y E U. Consider the following 
commutative diagram: 

o -+ A' (U) -+ A(U) -+ A"(U) -+ 0 

1 .. 
o -+ A~ -+ 

1 
Ay 

1 .. 
-+ A~ -+ O. 

The 5-lemma implies thatjy,u : A(U) ~ Ay for all y E U. Let A = A yo . 
Then the map J: U x A -+ AIU, given by J(y,a) = jy,u(j~~u(a», is an 
isomorphism of sheaves. The continuity of J follows from the fact that 
each j~~u(a) E A(U) is a section. 

Note that A may be nonconstant even when A' and A" are constant, 
which is shown by the "twisted" sheaf A on §1 with stalks Z4 and the 
subsheaf A' = 2.YI R: Z2. 

10. Let en, n ~ 1, be the circle of diameter lin tangent to the real axis at 
the origin. Let X = U en. Let 9'n be the locally constant sheaf with 

00 

stalk Z4 on X that is "twisted" on en (only), and put A = EB 9'n. Then 
n=1 

the subgroups Z2 in each summand of each stalk of A provide a subsheaf 
A' CA. The quotient sheaf A" = A I A' is isomorphic to 04', and both 

00 

A' and A" are constant sheaves with stalks EB 2:2. The sheaf A is not 
n=l 

locally constant since Alen is not constant because of the twisted Z4 in 
the nth factor. 
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11. It is only necessary to show that r4>(A) -> r4>(A") is surjective. Let Gil 
be the common stalk of A". For S E r4>(A") and g E Gil let Ug = {x E 
X I S (x) = g}. This is an open set since it is essentially the intersection of 
sex) with the constant section equal to g. Since X - Ug = U{Uh I h :f; g} 
is open, Ug is also closed. If G is the stalk of A, let f : Gil -> G be a 
function (not a homomorphism) splitting the surjection G -> Gil such that 
f(O) = 0. Put t(x) = f(s(x». Then t is a section of A and It I = lsi. Thus 
t E r4>(A), and it maps to s E r4>(A"). 

12. Take G as coefficient group. For a (possibly infinite) singular p-chain s, 
we will use the notation s = ~O' s(O')O', where 0' ranges over all singular 
simplices 0' : ~p -> X and s(O') E G. By abuse of notation we also set 
0' n U = O'(~p) n U eX. If s E ~p(X,X - U) and J; E U, then there 
is an open neighborhood V of x such that s(O') :f; 0, for at most a finite 
number of 0' such that 0' n V :f; 0. Let teO') = s(O') if 0' n V :f; 0 and 
teO') = ° if un V = 0. Then t E ~~(X,X - V), and the canonical 
inclusion ~~(X, X - V) '--+ ~p(X, X - V) takes t to s. It follows that 
the induced homomorphism of generated sheaves is an isomorphism. Let 
A(U) = ~p(X, X - U). To show that A is a monopresheaf, let U = U Uot> 
and suppose that s E A(U) has each Sa = slU" = 0 in A(U,,). This 
means that s is a chain in X - U" for all Q; (i.e., that s(O') = ° whenever 
un U" :f; 0). Therefore s is a chain in X - U U" = X - U, but that means 
that s = ° in A(U). 

Now let X = UU", and s" E A(U,,). Assume that s",IU" n U{3 = 
s{3IU" n U{3 for all Q;,(3. Given the singular simplex 0', define f : ~p -> G 
by f(x) = s,,(O') for any Q; such that O'(x) E U". If O'(x) E U" n U{3, then 
s,,(O') = Sfl(O') since s" - s{3 is a chain in X - (U" nU(3) c: X - {x}. Thus f 
is well-defined. Now, f is locally constant and hence continuous, where G 
has the discrete topology. Since ~p is connected, f is constant. Therefore 
the definition s(O') = f(x) for x E O'(~p) makes sense and defines a chain 
s. Since s(O') = s,,(O') for all 0' such that 0' n U" :f; 0, it follows that s is 
locally finite and that slU" = s". Thus A is conjunctive for coverings of 
X. By 1-6.2, 8 : A(X) -> r(..1.) is isomorphic when X is paracompact. If 
s E A(X) is a locally finite chain such that 8(s) E rc(..1.) and K = 18(s)l, 
then s(O') = ° whenever 0' n K :f; 0. Since K is compact and s is locally 
finite, it follows that s is finite. Therefore, 8 restricts to an isomorphism 
~~(X) -==-. r c(..1.).l 

To see that A(U) is not generally fully conjunctive, consider two open 
sets Ul and U2 and a singular simplex 0' intersecting both U1 and U2 but 
not intersecting Ul n U2. Then O'E A(U1 ) and ° E A(U2) restrict to the 
same element 0 E A(Ul n U2) but do not come from a common element of 
A(Ul UU2). Also, if X = [0,1] and Un = (lin, 1), then one can find locally 
finite chains Sn E A(Un ) that do come from a (unique) chain s in (0,1), 
but with s not locally finite in X.2 

14. That d is onto is the statement that a continuous function is locally inte
grable. That 1m i = Ker d is the statement that a differentiable function 
on an open neighborhood U of x E X whose derivative is zero on U is 

1 Note, however, that c is not paracompactifying unless X is locally compact. 
2Note that the boundary operator does not make sense for infinite non-locally finite 

chains in general. 
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constant on some smaller neighborhood V of x, indeed V can be taken to 
be the component of U containing x. The statement that d is onto is that 
a continuous function on an open neighborhood U of x can be integrated 
on a smaller open neighborhood V of x. The group R(X) of global sec
tions is just the group of constant functions on X since X is connected. 
Also, !JJ(X) is the group of continuously differentiable functions on X, and 
W(X) is the group of continuous functions on X. Several standard results 
of elementary calculus imply that 

o --> R(X) ~ !JJ(X) ~ ~(X) L R --> 0 

is exact, whence Coker dx ~ JR. Note also that 0 --> IR(U) -> !JJ(U) -> 

W(U) --> 0 is exact for all proper open U C X. Also keep in mind that for 
example, IR(U) is not the group of constant functions on U but rather the 
group of functions on U that are constant on each component of U. 

15. First let us show that the presheaf U ...... C(U) = i¥(U)/Z(U) is a sheaf. (Z 
is regarded as a sheaf here, so that Z(U) is the set of all locally constant 
functions U --> Z; Le., functions that are constant on each component of 
U.) Let U = U U'" and let j : i¥(U) --> C(U) be the projection. To prove 
(81), let s, t E f7(U) be such that j(s)IU", = j(t)IU", for each 0:. This 
means that s - t is locally constant on U. But that implies that j (s) = j (t) 
onU. 

To show that C is conjunctive, let s'" E i¥(U",) be such that j(s",) = 
j(Sf3) on U'" n Uf3. This means that s'" - Sf3 is locally constant on U'" n Uf3. 
If V is a component of U, then V is an open interval. One can find an 
increasing, doubly infinite, discrete on V set of points Xn E V, nEZ, 
such that each (Xn -1 , Xn+ 1) is contained in some U"'. 3 Let Un denote one 
such U"'. On the interval (Xn,Xn +1), both Sn and Sn+1 are defined and 
their difference is constant on (Xn,Xn+1)' Let Pn = Sn - Sn+1 E Z be this 
constant value. Define a function s: V -> Z by sex) = So on (X-1,X1), by 
sex) = Sn + pn-1 + ... + Po on (X n-1,Xn+1) for n > 0, and by s (x) = Sn -
(Pn + ... + P-1) on (Xn-1, Xn+1) for n < O. We see immediately that these 
definitions agree on the overlaps (Xn-1,Xn+1) n (Xn,Xn+2) = (Xn,Xn +1), 
and so s is well-defined. Putting these together on all components of U 
gives a function s E f7(U) that differs from s'" on U'" by a locally constant 
function. Hence, j(s) E f7(U)/Z(U) extends each j(s",). 

Thus the generated sheaf ri is just ri(U) = f7(U)/Z(U), and in partic
ular, f7(X) -> ri(X) is onto. 

Let t E rc(ri), and pull t back to some s E qi¥). Suppose that It I c 
[-n, nJ. Then s is constant on (-00, -n). We can modify s by a constant 
function so that the new s is zero on (-00, -n). Then s is uniquely defined 
by this requirement and the fact that it maps into t by the exact sequence 
o -> Z --> f7(X) --> ri(X) -> O. Then t is constant on (n,oo). Set k(s) 
equal to this constant value. Clearly k(s) = 0 {=> t E rc(f7). Therefore 

k induces an exact sequence 0 --> rc(Z) --> rc(i¥) -> rc(ri) ~ Z -> 0, as 
claimed. Note that r c(Z) = O. 

30ne chooses Xn (and x-n) by induction on n 2: 0 as follows: If Xn has been chosen, 
consider all intervals (u, v) with Xn E (u, v) C U'" n V for some Q. Let N = sup(v - xn) 
over this collection of intervals and choose Xn+1 > Xn so that Xn+1 - Xn > N/2. 
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Those who have delved into Chapters II and III will note a trivial 
solution of this problem coming from the exact sequences 

and 
0-+ fc(Z) -+ rc(6) -+ fc((q) -+ H~(lRjZ) -+ H~(lRj6) 

and the facts that HI (lRj Z) = 0, H~ (lRj Z) ~ Z, and H~ (lRj 6) = 0 since 
6 is (obviously) flabby. This indicates the power of the theory in Chapter 
II. 

18. As remarked in 1-4, the composition 

is the identity. This implies that!3 is monomorphic over f(A) (for any sheaf 
.At). But Ker!3 is a subsheaf of a constant sheaf (hence an open subset as 
a space) and this implies that N = {x E X I (Ker !3)", i= O} is open. Since 
N n f(A) = 0 and f(A) is dense in X we must have that N = 0, i.e., 
that Ker!3 = O. For the requested counterexample for arbitrary .At, take 
A = (0,1), X = [0,1], f : A ...... X, and.At = Z{O}. Then ff*.At = O. 

19. We know that ASW;(Xj G) ~ iIJ;(Xj G). But for a cochain c E Cn(llj G), 
e(ao, ... ,an) i= 0 => UOQ, ... ,On C lei. Thus, if 0 i= e E CJ;(lljG), then {x} 
is open in X, in which case the result is trivial. 

Solutions for Chapter II: 

1. (Compare Section 11-18.) Take X = [0,1], F = {O, I}, A = X - F = (0,1), 
clJ = cldlF, G any nonzero constant sheaf on X, and $ = GIA. Then $ is 
constant on A and $x = GA. We have that 

since clJlA = o. Also, 

by 11-12.1 since an open set A is always taut. The exact sequence of the 
pair (X, A) with coefficients in GA has the segment 

(1) 

But the first term is r(GA) = 0 and the second term is r(GIA) ~ G i= 0, 
so that Hi(Xj $x) ~ HI(X, Aj GA) i= o. 

It is of interest to note that the next term in the exact sequence (1) 
is H1(XjGA) ~ HI(X,FjG) ~ G by 11-12.3 and using the fact from 
Chapter III that this is isomorphic to singular cohomology (or using a direct 
computation). The next term is HI (Aj GIA) = 0 since A is contractible and 
GIA is constant. It follows that for G = Z we have that HI (X, Aj ZA) ~ 
Z$Z. 
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2. First suppose that A c X is closed. Then we claim that A contains a 
smallest element. To see this, consider the family ~ of sets of the form 
F", = {y E A I y ~ x} for x E A. Then ~ satisfies the finite intersection 
property and so has a nonempty intersection. Obviously this intersection 
must be a single element, which is min A. Similarly, A contains a largest 
element. Now assume that 0 # a E HP(X) for some p > O. Let A be a 
minimal closed set such that 0 # alA E HP(A), which exists by 11-10.8. 
Let Xo = minA and Xl = maxA. Now, A # {XO,Xl}, since HP(A) # 0, 
and so there is an x E A with Xo < x < Xl. Put Ao = {y E A I y ~ x} and 
Al = {y E A I y 2: x}. Then Ao n Al = {x} and Ao U Al = A. The exact 
Mayer-Vietoris sequence 

shows that a restricts nontrivially to at least one of Ao, AI. This contra
diction shows that a cannot exist. 

3. Let T be the "long ray" [0,0) compactified by the point 0 at infinity. 
By II-Exercise 2, T is acyclic. Let L be the long line (-0,0) U [0,0). 
Define the "long contraction" h : L x T --+ L by h(a, b) = min(a, b) and 
h(-a,b) = -min(a,b) for a 2: O. Then h(x,O) = 0 and h(x,O) = x for 
all x E L. Let 71" : L x T --+ L be the projection and it : L --+ L x T the 
inclusion it(a) = (a, t). By II-l1.8, 71"" is an isomorphism and i; = (71"")-1. 
Now, h 0 io(x) = hex, 0) = 0 and h 0 in(x) = hex, 0) = x. Therefore 

0= constant" = (h 0 io)* = (h 0 in)* = I" = 1 : HP(L) --+ HP(L) 

for p > 0, whence HP(L) = O. 

4. Let.4n = Z(-oo,n). Then linJ.4n = Z, r(.4n) = 0 and r(z) = z, so that 
() is not onto. Let fiJn = Zln,oo). Then linJfiJn = 0 and linJr(fiJn) = Z, so 
that () is not one-to-one. 

6. Let A and B be two closed subspaces of X that cannot be separated by 
open sets. There is the canonical map p : linJr(ZIW) --+ r(ZIA U B), 
induced by restrictions, where W ranges over the open neighborhoods of 
AUB. The section s E r(ZIAUB) taking value 0 on A and 1 on B cannot 
be in Imp because ift E r(ZIW) has pet) = s, then the sets U = {w E W 
I t(w) = O} and V = {w E WI t(w) = I} are open neighborhoods of A and 
B that are disjoint. This shows, by 11-10.6, that AU B is not taut. 

One example in which the subspace A U B is paracompact is given 
by the topological 2-manifold M whose boundary consists of an uncount
able number of components each homeomorphic to IR and whose boundary 
can be split into two unions A and B, of its components, that cannot be 
separated by open sets; see [19, 1-17.5). 

9. Let X+ = X + {oo} with open sets the open sets of X and the complements 
X+ - K of the members of ip. Since every point of X has a neighborhood 
in ip, X+ is Hausdorff. We claim that X+ is paracompact. To see this, 
let {U "'} be an open covering of X+, and assume that 00 E U "'0 . Then 
K = X+ - U",o E ip. Let K' E ip be a neighborhood of K. Then K' is 
covered by the sets Va = U a n int K' and V = K' - K. Let {W /3} be a 
locally finite refinement of {V",} on K'. Then the sets W /3 n int K' and 
U",o = X+ - K form a locally finite refinement of {U",}. For a sheaf .4 
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on X we have H*(X+;Jtx +) ~ H;(X;Jt) by 11-10.1 since <I> = cldlX and 
cld is paracompactifying on X+. 

10. Let s E Jt(V) for V C X open. Consider the collection O)f of all pairs 
(W, sw), where W J V is open, Sw E Jt(W), and swlV = s. Order O)f by 
(W, sw) < (W', SW' ) if W C Wi and sW11 W = SW. The union of any chain 
in O)f is in O)f, and so O)f is inductively ordered. Suppose that (W, sw) is 
maximal in O)f. If W # X, then let x E X - Wand let U = U"'. Then there 
is a section Su E Jt(U) with sulunv = slunv. Now, Sw - Su on wnu 
extends to some t E Jt(U), since JtIU is flabby. Then sw - Su - t = 0 on 
W n U so that Sw on W and Su + t on U match on W n U, and so combine 
to give an extension of sw to W U U. This contradicts the maximality of 
(W, sw) and shows that W = X as desired. 

11. This an immediate consequence of the cohomology sequence of (X, F), 
11-10.1, and II-1O.2. 

12. Since <I> is paracompactifying, K has a neighborhood K' E <I> with K' cU. 
Suppose that Jt is <I>-fine. Then, by definition, the sheaf :tf}"..(Jt,Jt) is 
<I>-soft. Thus the section f E r(:tf}"..(Ji,Jt)IK U 8K'), which is 1 on K 
and 0 on 8K', can be extended to K and then can be extended by 0 to 
all of X. The resulting extension 9 E r(:tf}"..( Jt, Jt»= Hom( Jt, Jt) has 
the desired properties. Conversely, suppose that the stated property holds. 
Let f E r(:tf}"..(Jt,Jt)IK). By 11-9.5, f extends to 9 E r(:tf}"..(Jt,Ji) IV) = 
Hom(JtIV,JiIV) for some open V J K. There is an open neighborhood 
U of K with V C V since K has a paracompact neighborhood. Let h E 
Hom(Jt, Jt) be 1 on K and 0 outside U as hypothesized. Then hg E 
r(:tf}"..(Jt,Jt)IV) is 9 on K and vanishes on V-V. Extending hg by 0 
to all of X gives an extension of f to some k E r( df'-MI« Jt, Jt». Thus 
:tf}"..(Jt, Jt) is <I>-soft, whence Jt is <I>-fine. 

14. (a) This reduces immediately to the compact case by 11-9.12. Let K, W, 
{Ua}, and {V{3} be as in the hint. By II-Exercise 13 there are partitions 
of unity {ha } C :tf}"..(Jt,Jt) and {kill C :tf}"..(&1, &1) subordinate to {Ua } 

and {V{3} respectively. Let s = L ha®k{3, the sum ranging over those pairs 
(o.,{3) for which Ua x V{3 C W, and let t be the same sum over all other 
pairs (a, {3). Then 

s+t = LLha@kll = Lha@Lkll = Lha~~1 = 1@1 = 1, 
{3 a Il a 

so that s is an endomorphism of Jt@&1 that is 1 on K and 0 outside W. 
Consequently, Jt@fiJ is c-fine by II-Exercise 12. 

(b) Let f.l = Ji@&1 and let .At denote the collection of all open sets 
W of X x Y such that f.lw is c-acyclic. Let .Al l denote the collection of 
all open subsets W = U x V where U C X and V C Yare open. Since 
f.luxv = Jtu@fiJv, II-15.2 implies that U x V E.At, that is,.At1 c.At. Let 
.At k be the collection of all unions of k members of .At 1 Since 

k 

(U x V) n U(Ui x Vi) = (UI n U) x (VI n V) U ... U (Uk n U) x (Vk n V), 
i=l 

we see that WE.At1, W' E.Atk => wnw' E .Atk. Suppose that.Atk c.At, 
and let W E .Atl and Wi E .Atk. Then W, W', and W n Wi are all in 
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.At, and it follows from the Mayer-Vietoris sequence (27) on page 94 that 
W U W' E.At. Thus vltk+1 C vIt. By induction, vIt(X) = Uk vltk C vIt. 
Now, .At(X) is directed by inclusion, and any open set W C X x Y is the 
directed union of those members of.At(X) contained in W. By continuity, 
II-14.5, it follows that vIt consists of all open sets in X x Y. Thus!F is 
c-soft by II-16.1. 

15. We are to show that ivi(W) ---> ivi(K) is onto for K C W closed. Let 
S E ivi(K). If 00 f/: K, then the argument in the proof of 11-9.3 shows 
that s, as a member of vi(K), extends to X so as to be zero outside some 
compact neighborhood of K. Hence it extends by 0 to a global section of 
ivi. If 00 E K, then s extends to a compact neighborhood K' of K by 
I1-9.5. Let G = W - int(K') C X, which is compact. Since vi is c-soft and 
vi = (ivi)IX, sl8G extends to G, and this extends s to a global section 
of ivi. (Note that a virtually identical argument applies to the one-point 
paracompactification of II-Exercise 9.) 

18. The hypothesized exact sequence of (X,A) has H!lx_A(X;vi) = 0 = 

H!(X;vi) for p > 0 and vi flabby. Thus r~(vi) ---> r~nA(viIA) is onto 
and H!nA(A;viIA) = 0 for p > 0 and vi flabby, which is precisely the 
definition of A being <I>-taut. 

21. (a) =} (b) by 11-5.5. 
(b) =} (c) is tautological. 

(c) =} (d) by HI(X,U;!F):::> H~ldIX_U(X;!F) from II-12.1. 

(d) =} (a) by the exact sequence HO(X;!F) ---> HO(U; !FlU) ---> HI (X, U; !F). 

23. Let U = {lin I n ~ I}, which is open in X, and consider the sheaf vi = Zu. 
The section 1 of Zu over U cannot be extended to X because an extension 
would have to be 0 at {O}, since Zu has stalk 0 at {O}, and hence would have 
to be 0 in a neighborhood of {O}. Thus vi is not flabby, and so Dim X > 0 
by II-Exercise 21. The inclusion vi '---+ ~o(X;vi) is an isomorphism on 
U, and so :;l(X;vi) is concentrated on {O} and hence is flabby. By I1-
Exercise 22, DimX :::; 1, and so DimX = 1. (Alternatively, use 11-16.11.) 
Note that H~ldl{O}(X;Zu) :::> H1(X,U;Zu) =I 0 by II-12.1 and the exact 
sequence HO(X;Zu) ---> HO(U;ZuIU) ---> HI(X,U;Zu). 

25. By II-16.8 and I1-16.11, every point has a neighborhood U with Dim U :::; 
n + 1. By II-Exercise 22, :;n+1 (X; vi) IU is flabby. By II-Exercise 10, 
:;n+1 (X; vi) is flabby. By II-Exercise 22, Dim X :::; n + 1. 

For the second part let FeRn be the union of the spheres about 
the origin x = 0 of radii 1,~,~, .... Let sn be the compactified R n , and 
let U = sn - {x} - F. Let W be the family of supports on sn - {x} 
consisting of the sets K closed in sn - {x} and contained in U. Then 
we have Hn(Sn - {x};Zu):::> H¥,(U;Z):::> n:':lZ, which is uncountable. 
Also, regarding Zu as a sheaf on sn, Hn(sn;zu) :::> H:;(U;Z) :::> EB:':l Z 
is countable. The exact sequence of (sn, sn - {x}) with coefficients in Zu 
has the segment 

Hn(§n;Zu) ---> Hn(§n _ {x};Zu) ---> Hn+1 (§n,Sn - {x};Zu). 

It follows that H n+1(sn,sn - {x};Zu) is uncountable. By excision, 

H~+l(Rn;Zu):::> Hn+I(Rn,Rn - {x};Zu) 
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is uncountable, where e = {{x}, 0}. Therefore Dim M n = n + 1 for any 
n-manifold M n (n > 0). This fact is due to Satya Deo [31]. 

27. If {...In, 7rn } is an inverse sequence, then the definition <d(Un) = ...In with 
7rn : d(Un) -+ d(Un- 1) and d(N) = Umdn gives a presheaf on N that 
is clearly a conjunctive monopresheaf and hence a sheaf. Conversely, if 
...I is a presheaf, then putting ...In = d(Un ) with 7rn the restriction map 
gives an inverse sequence. Moreover, the only thing preventing ...I from 
being a sheaf is the requirement that d(N) = Umd(Un). (Hence also 
HO(N; d) = Umdn .) 

A serration over Un is just an n-tuple (at, ... ,an) with ai E ...Ii, whence 
CO(Un;d) is the group of such n-tuples. The sheaf ~o(N;d) is equivalent 
to the inverse sequence in which the nth term CO(Un; d) is the group of 
n-tuples (a1, ... ,an) and the restriction CO(Un;d) -+ CO(Un- 1;d) takes 
(al, ... ,an) to (al, ... ,an-I). The inclusion e : ...I ~. ~o(N;d) takes 
an E d(Un) to the n-tuple (a1, ... ,an), where ai-1 = 7rio,i for all 1 < i::; n. 
The presheaf cokernel of e has value on Un that is the quotient of the 
group of n-tuples (at, ... ,an) modulo those that satisfy ai-1 = 7riai. The 
map (a1, ... 'an} ...... (a1 - 7r2a2, ... ,an-1 -7rnan) E CO(Un-1;d) induces 
an isomorphism on this cokernel, and it is onto CO(Un-1;d), since given 
(a~, ... ,a~-l)' the system of equations 

a~ = al - 7r2a2 
a~ = a2 - 7r3a3 

has a solution (solving backward from an = 0). Therefore Zl(Un ;d), 
11(N;d), and d : C°(Un;d) -+ Zl(Un;d) are as claimed. Now ...I is 
flabby ~ each d(N) -+ d(Un ) is surjective. This means that given an E 

...In, there are an+1, ... with 7riQ,; = ai-1 for all i > n. Therefore ...I is 
flabby ~ each 7rn is surjective. 

Since 11(N;d) ~ 1/~o(N;d), where 1/ : N -+ N is given by 1/(n) 
n + I, it is flabby by 11-5.7 or by direct examination. Therefore 

0-+ ...I -+ ~o(N;d) --+ 11(N;d) -+ 0 

is a flabby resolution of ...I, and so dimN ::; 1 (indeed DimN ::; 1; see 
Exercise 11-22). Using this resolution, HI (N; d) is the cokernel of d : 
CO(N;d) --+ Zl(N;d), and so ...I is acyclic ~ d : (a1, ... 'an' ... ) ...... 
(a1 - 7r2a2, ... ,an - 7rn+1an+l, ... ) is surjective, leading to the claimed 
criterion. 

The inverse system ...I in which ...In = Z for all n and 7rn : ...In --+ d n-1 
is multiplication by n gives a sheaf that is not acyclic since the system of 
equations 

2a2 = al - 1 
3a3 = a2 - 1 

has no solution in integers. [For if there is a solution, then an induction 
shows that 

a1 = n!an + (n - 1)! + ... + 2! + I!. 
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From this we conclude that if n + 1 is prime, then an =I 0, since if an = 0 
then al = (n - I)! + ... + 2! + 1! and al = (n + 1)!an +1 + n! + aI, whence 
n + 1 divides nL But if an =I 0, then 

lall 2: In! - {(n - I)! + ... + 1!}1 > In! - (n - 1)(n - 1)'1 = (n - I)!, 

and this cannot happen for infinitely many n.] Therefore this HI(N;.yf) =I 
0, and so dim N 2: 1, whence dim N = 1. (For another proof of this, and in 
fact, a proof that if.yf = {AI :J A2 :J ... } is any strictly decreasing inverse 
sequence of subgroups of Z then Urn l.yf is uncountable, see V -5.17.) 

To prove the last statement, suppose that .yf satisfies the Mittag-Leffler 
condition. For each n, let /In = 1m 7l'n,m for m large. Then this is an 
inverse sequence that is clearly a flabby sheaf on N; i.e., each /In+l -> /In 
is surjective. Also, there is the inclusion i : /I ~ .yf. Let 'fi! be the cokernel 
of i, so that there is the short exact sequence 0 -> /I -> .yf -> 'fi! -> 

o of sheaves on N. The induced exact cohomology sequence shows that 
Urn l.yf n ~ Urn I 'fi! n. Now 'fi! has the property that for each n, there is an 
m > n with 'fi! m -> 'fi! n zero. Since by II-l1.6 passage to a subsequence 
does not affect Urn I , we may assume that each 'fi! n+l -> 'fi! n is zero. But 
then 'fi! is obviously acyclic by our given criterion for acyclicity. 

The reader might note that every sheaf on N is soft, so that this exercise 
gives another example of a soft sheaf that is not acyclic. 

28. For 0 =I n E L we have the exact sequence ° -> M -::.. M -> M/nM -> 0, 
which induces the exact sequence 

since r4> is exact on sequences of constant sheaves by I-Exercise 11. This 
gives the first statement. The requested example is given by II-l1.5. For 
another example, let zt be the twisted locally constant sheaf on Sl with 
stalk Z; see I-Example 3.4. Take n = 2. Then there is the exact sequence ° -> zt --=-. zt -> Z2 -> 0, which induces the exact cohomology sequence 

Since r(zt) = 0, HI(SI; zt) has 2-torsion. Although not requested, we 
shall go on to show that in fact, HI(S1; zt) ~ Z2. Consider the covering 
map f : X = SI -> SI = Y of degree 2. From I-Example 3.4 we have 
the exact sequence 0 -> Z -> fZ -> zt -> O. The induced cohomology 
sequence has the segment 

By II-l1.2 the composition of h with ft : HI (Y; fZ) ~ HI (X; Z) is just 
r, which is multiplication by 2 (using that this is the same as the map 
in singular theory). The contention follows. Another, more direct, way of 
doing this computation is to decompose SI as the union of two intervals 
and apply the Mayer-Vietoris sequence II-(26): 
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A little thought about sections of zt over the two intervals and their inter
section SO shows that with appropriate choices of generators a, b of the left
hand group and u, v for HO(SO; Z), we have g(a) = u - v and g(b) = u + v. 
Thus H1(Sl;Zt) ~ Cokerg = {u,vlu = v, u = -v} ~ Z2. Also see the 
solution to III-Exercise 13. 

29. Let An = {1,~, ... , ~}. Then 2n = ZAn is obviously flabby. Then we 
claim that the sheaf 2 = lim 2 n is not flabby. Indeed, the restriction 
2(II) --+ 2((0,1]) is not onto because the section over (0,1] which is 1 at 
all points 1, ~, k, ... does not extend to II since it would be 0 at 0 (since the 
stalk at 0 is trivial), and so must coincide with the zero section on some 
neighborhood of 0 E II. 

31. Let Z-dim X = n, and assume that the result holds for Zariski spaces 
K with Z-dimK < n. We need only show that Hn+1(x;zu) = 0 for 
all open U c X since then 11-16.12 and II-Exercise 30 would imply that 
dimz X :S n. Now, one can express X = Xl U X 2 U ... U Xk where the 
Xi are irreducible and no Xi contains Xj for j =f. i. (These are called the 
irreducible components of X.) Let Y = Xl U ... U X i - 1 • Then clearly 
Z-dim Y n Xi < n, so that dimz Y n Xi < n. Then the Mayer-Vietoris 
sequence 

shows that by a finite induction, we need only show that dimz Xi :S n; i.e., 
we may as well assume that X is irreducible. In that case note that if U 
and V are nonempty open subsets of X, then U n V =f. 0 since otherwise 
(X - U) U (X - V) = X and so X is not irreducible. Therefore any open 
subspace U ~ X is connected, and so any section of Z over U is constant. 
That implies that r(Z) --+ r(ZIU) is surjective, whence Z is a flabby sheaf 
on X. Now, F = X - U is a Zariski space with Z-dimF < n. Also, 
Hn(x; ZF) ~ Hn(F; Z) by 11-10.2. Therefore the exact sequence 

0= Hn(X;ZF) --+ H n+1(X;Zu) --+ Hn+1(X;Z) = 0 

proves the result. (The equality on the left is by the inductive assumption 
and the one on the right is because Z is flabby on X.) 

33. (a) Let M be generated by a1,a2, ... , and put 

n 

N n = {a E M I ka = L kiai for some k i E L, O~.j, k E L}. 
i=l 

By hypothesis, N n is free. By looking at M ® Q, where Q is the field 
of fractions of L, we see that rank N n :S n. We inductively construct a 
basis for each N n as follows. Suppose that {b1, ... ,b.} is a basis of N n. If 
N n+1 = N n , then take the same basis. If N n+1 =f. N n , then Nn+dNn is 
finitely generated and torsion-free, whence free, and is of rank one. Let 
b.+1Nn be a generator (whence an+1Nn = qb.+1Nn for some q E L). Then 
b1, ... , bs+1 form a basis of N n+1 • Finally, b1, b2, ... span N = U N n and are 
independent, so they form a free basis of N. 

(b) Since H~(X; L) ~ iIO(x+; L), it suffices to consider reduced co
homology of a compact space, and so we shall assume X to be compact. 
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Let {aI, ... , an} C HO(X; L) be given and let N be as described. Let IV 
be the image of N in flo (X; L). It suffices to show that N and IV are 
finitely generated since a-dimensional cohomology with coefficients in L is 
torsion-free. Also, N is finitely generated <=> IV is finitely generated. Let 
KI, ... ,Kk be as described in part (b). We argue, by induction, that the 
image of N (or IV) in HO(KI U·· ·UKi) is finitely generated. If a E N, then 
ka ...... a in flO(Kj) for some k E L. This implies that a ...... a in flO(Kj) 
since this group is torsion-free. Thus the contention is true for i = 1. Sup
pose it is true for i and put K = KI U··· U Ki . If K n Ki+l =I 0, then the 
Mayer-Vietoris sequence 

a -> flo(K U K i+l ) -> flo(K) EB flo(Ki+d -> flo(K n Ki+l) 

proves the inductive step since the images of IV in flO(Ki+I) and (hence) 
in flO(K n Ki+d are zero. If K n Ki+l = 0, then HO(K U Ki+l ) ~ 
HO(K) EB HO(Ki+I), and the contention again follows from this. 

(c) Let Ki be as in the hint. Assume, by induction on r, that whenever 
Di C int Ki , with {Di} a closed covering of X, the image of N in H~(DI U 
... U Dr-I) is finitely generated. Let Ei be compact sets with Di C int Ei , 
Ei C intKi . Put D = DI U ... U Dr-I, E = EI U ... UEr - l , and K = 
KI U··· U K r- l . By the inductive assumption, the image of N in H~(E) 
is finitely generated. By choice of the K i , all bjlKi = a. Since H~(Ki) is 
torsion-free by II-Exercise 28, the image of N in H~(K;) is zero. Consider 
the diagram 

H~(K U Kr) -> H~(K) EB HI(Kr) 

HO(EnEr ) -> 
I 1 

He(EUEr) 
1 kffJkr 

-> H~(E) EB HI(Er) 

ljr 
1 1 HO(DnDr) -> He(D U Dr). 

The image of jr is finitely generated by 11-17.5. Also, the image of N in 
H1(E) EB H~(Er) is finitely generated by the inductive assumption. By 
II-17.3, the image of N in H~(DUDr) is finitely generated, completing the 
induction and the proof of (c). 

(d) Since the one-point compactification of a locally compact separable 
metric space is separable metric, we may restrict attention to the compact 
case. Now X can be embedded in the Hilbert cube rroo. Let pn ; rroo -> rrn 
be the projection, and put Xn = Pn(X). Then X ~ llmXn, and so 
H*(X) ~ lillJH*(Xn). Thus it suffices to show that H*(Xn) is countably 
generated. But any compact subset Xn of rrn c ]Rn is the intersection of a 
descending sequence of finite polyhedra, and so H*(Xn) is the direct limit 
of a sequence of finitely generated groups, and such a group is obviously 
countably generated. 

34. (a) IfZ is regarded as the constant sheaf, then HO(X;Z) = r(Z) ~ C(X). 
Now, AO(U;Z) = {j ; U -> Z} is a sheaf. For f E AO(X;Z) we have 
df(xo,XI) = f(XI) - f(xo). Also, A6(X;Z) = {j; X x X -> Zif = a on 
a neighborhood of the diagonal .6. C X x X}. Therefore AsHO(X; Z) = 
Ker{d; AO(X) -> AI(X)/A6(X)} = {j ; X -+ Z I f is locally constant} = 
C(X). The reader may handle the arbitrary coefficient case. 



from Chapter II 467 

(b) f E B(S) => :3 unique extension j E C(S). Conversely, j E C(S) 
=> j is bounded => f = jls E B(S). 

(c) (i) => (ii): Let SeX be dense of cardinality::; TJ. Restriction gives 
a monomorphism C(X) ,...... B(S). Thus B(S) free => C(X) free, since a 
subgroup of a free group is free. (ii) => (i): Let card(S) ::; TJ and put 
X = S. By (ii), C(X) is free. By (b), B(S) is free. 

(d) The proof is identical to that of (c) using that Ext(., Z) is right 
exact. 

37. Let 0' = 0 U {O} be the set of ordinals up to and including the least 
uncountable ordinal 0 and WI = W U {w} the set of ordinals up to and 
including the least infinite ordinal w. Give these the order topologies. Then 
let X be the "Tychonoff plank" O'xw' and let A = 0 x {w} U {O} x w. 
For any constant sheaf A with stalks L =1= 0 on X, let 0 =1= a ELand 
let s E A(A) be defined by sex) = 0 for x E 0 x {w} and sex) = a for 
x E {O} x w. If s extends to t E A(U) for some open U :::J A, then 
V = {x E U I t(x) = O} and W = {x E U I t(x) = a} are disjoint open 
sets with U = V U W. For nEw there is an element an E 0 such that 
[an,O] x {n} C W. There is a /3 < 0 with an < /3 for all n. Then 
([/3,0] x Wi) - {O X w} C W; but this must intersect V, a contradiction. 
Therefore s E A(A) does not come from lin}A(U). 

38. Since A = AA., we have H;'(X;A) = H;'(X;AA.) ~ H;nA.(A;AIA) by 
11-10.2. The desired result then comes from the 5-lemma applied to the 
pairs (X, A) and (A, A). 

39. By construction, ~. (A, A; d) is zero on int A, whence C;nA.(A, A; d) = 0 
by the hypothesis on <P. The last part follows from II-Exercise 38 and the 
cohomology sequence of (X, A). 

40. Let M(U, lR) stand for the group of continuous functions U ---; lR, etc. This 
is a conjunctive monopresheaf and so 3 = M(., lR). Similarly, Z = M(., Z) 
and 3 0 = M(., T). Standard covering-space theory applied to the covering 
lR ---+ T shows that 

0---; M(U, Z) ---; M(U, lR) .!!!... M(U, T) ---; [U; T] ---; 0 

is exact. Now, if f : U ---; T and x E U, then there is a neighborhood 
V C U of x such that flV is homotopic to the constant map to 0 E T. 
(Just take V = rl(W), where W is an open arc about f(x).) It follows 
that 9'heof([.; T]) = 0, whence we have the induced exact sequence 

o ---; Z ---; 3 ---; 3 0 ---; 0 

of sheaves. Now assume that X is paracompact. Then fiJ; is soft by II-9.4. 
Therefore the exact cohomology sequence of this coefficient sequence has 
the form 

where jr is equivalent to jx. Hence 

[X; T] ~ Coker jk ~ Coker jr ~ Hl(X; Z), 

finishing the first part. See II-13.2 for an interesting example of this. 
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For a paracompactifying family of supports <P =f cld on X, the sequence 

o -+ r~(.¥) -L r<l>(.¥o) --> H~(X;/z) -+ 0 

is exact, and it is clear that r~(.¥) = M~(X, JR) and r<l>(.¥o) = M<I>(X; T), 
with M~ standing for maps that vanish outside some member of <P. Again, 
covering space theory immediately yields that Coker j ~ [X; T]~, where 
the latter denotes homotopy classes where one demands all maps and ho
motopies to be constant to the zero element of JR or T outside some element 
of <P. In particular, for locally compact spaces we deduce that 

and in particular that 

That this formula, in the case <P = c1d, does not hold for spaces that 
are not paracompact is shown by the following example. Let L be the 
"long ray" compactified at both ends; see II-Exercise 3. Let x E L be 
the maximal element. Let L1 and L2 be two copies of L with Xi E Li 

corresponding to x E L. Let A be the one-point union of Ll and L2 

obtained by identifying Xl with X2. We will denote this common point by 
x. Let 1= [-1,1]. Define 

X = A x I, X = X - {x x o}. 

We claim that HI (X; /Z) ~ /Z. To see this, let Xl = (A x [0, 1]) n X 
and X 2 = (A x [-1,0]) n X. Since Xl has A x {l} as a strong deformation 
retract, we have that Hn(Xl;/Z) ~ Hn(A;/z) by II-ll.I2. But Hn(A;/z) = 
o for n > 0 by II-Exercise 2, and HO(A; /Z) ~ /Z since A is connected. Now, 
Xl "X2 consists of two disjoint copies of the "open" long ray, and the 
latter is acyclic by II-Exercise 3. Thus, the Mayer-Vietoris sequence (26) 
on page 94 completes the computation. 

Next, we claim that [X;T] = O. To see this, let f : X -+ §l and let 
r E [-1,1] = I. Then a well-known property of the long interval implies 
that there is an interval [Yl(r),Y2(r)] C A containing x on which f is 
constant. A similar property of the long ray shows that there is a Yi E L, 
Yi =f x, such that Yi > Yi(r) for all rational r. Then f is constant on 
[Yl, Y2J x {r} for all rational r, and continuity shows that this is also the 
case for irrational r. That means that on [Yl, Y2] x I, f is the projection 
[Yl, Y2] x I --t I followed by some continuous function I --t T. It follows 
that f extends continuously to a map X -+ T. Since X is compact, the 
first part of the problem gives [X;T] ~ Hl(X;/Z) ~ Hl(A;/z) = 0, since 
X has A as a deformation retract. 

Note that it follows that in the example, .¥ is a c-soft sheaf on X which 
is not acyclic for c1d supports. 

41. (a) .'lI'*(X,A; .. d) = .'/'/'efl/(U t-+ H*(U,A n U;J'i)). There is the exact 
sequence 0 --t HO(U, AnU; ,.d) -+ HO(U; J'i) -+ HO(AnU; J'i), and the last 
map is just the restriction J : r(J'iIU) -+ r(J'iIAnU). Thus .1f°(X, A; J'i) = 
'/Yt(3(i'(Ker j) = .'I'Iwuj'(U ........ rU-A(,dIU)). Since J'i is constant, a section 
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of JiIU with support in U - A must actually have support in U - A. 
Hence (Ker j)(U) = f u_A(JiIU) ~ f(Ji x_AIU), which generates the sheaf 
Ji X _ A' 

(b) The stalk .1fn(lRn ,lRn - {O};Z)o ~ Hn(lRn,lRn - {O};Z) ~ Z. 

(c) If .1fn(X, A; Ji) = 0 for q > 0, then ~'(X, A; Ji) is a flabby resolu
tion of Ji x _ A, and so 

(d) Under the hypothesis, the stalk at x is 

lin HP(U, A n U; Ji) ~ lin HP(U; JiU _ A) 
.1fP(X;JiX_A)x = 0 

for p > 0, since ~*(X;JiX_A) is a resolution. 

45. Let x E lsi. Since 2 x -{x} is flabby, there is a section t E 2(X) such that 
t(x) = 0 and t(y) = s(y) for all y :f= x. But t(x) = 0 implies that t is zero 
on a neighborhood of x. Thus, also s = 0 on some U - {"c} with U open in 
X. Therefore x is isolated in lsi, and so lsi is discrete. We note that this 
shows that flabbiness of a sheaf Ji rarely implies the flabbiness of Ji u, as 
distinct from the situation for soft sheaves; see II-9.13. 

46. Note that 2®Zu = 2u. Thus H~(X;2u) = 0 for all<I>. By II-Exercise 
21, 2u is flabby for all open U. But M '-> 2 gives a section s which is 
nowhere zero. By II-Exercise 45, X = lsi is discrete. 

This exercise shows dramatically that resolutions of the type 2* ® Ji 
do not suffice for computing cohomology for all sheaves Ji and support 
families <I> , in distinction to the case of paracompactifying families, where 
such resolutions do suffice. 

51. Following () by a map of gj* to an injective resolution shows that we may 
as well assume that gj* is injective over Z2. Then the map ho of 11-20 can 
be taken to be (). Then hOT = 0 = hoCT, so that we can take hl and kl' 
and hence the rest of the hi and ki, to be zero. It follows that Stn(a) = 0 
for n > 0 and all a E H:(X;Z2), whence Sti(a) = 0 for j = q - n < q. 
Therefore, a = StO(a) = 0 for deg(a) > O. For U C X open, passage to Ji'i! 
and gj'U gives H: (U; Z2) = 0 for q > 0, whence dimz2 X = 0 by II-16.32. 

53. Let K = lal E <I> , where a E C:(X;Ji) is a cocycle representative of o. 
For any point x E X there is a neighborhood Ux of x such that ,BIU", = 0 
in Hq(Ux ; gj) since a point is always taut and q > O. Since K is compact, 
K C UX1 U ... U UXn for some points Xi. Let Uo = X - K, Ui = UXi and 
Vk = Uo U ... U Uk. Let 

~k=Ji®gj®···®gj. 
'--v--' 

k times 

For 0 :S k:S n we claim that o,BkWk = 0 in H:~t~ (Vk; ~k). The proof is by 
induction on k. It is true for k = 0 since alva = alX - K ,= O. Suppose it is 
true for a particular value of k. Then by the exact sequence of (X, Vk), a,Bk 
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comes from an element, E H:t;:Vk(Xj ~k) R:i H:+kq(X, Vkj ~k). Simi
larly, 13 comes from an element 13' E H: 1X- Uk+1 (Xj an) R:i H:(X, Uk+lj an). 
Thus af3k+l comes from 

13, HP+(k+1)q (X CL) ) ~ H P+(k+l)q(X Vi CL) ) ,U E oI>IX-Vk+l j fl)k+l ~ 01> , k+lj fl)k+l 

since (<PIA) n (<pIB) = <p1(A n B). Consequently, af3k+1lVk+l = 0, com
pleting the induction. Since Vn = X, we conclude that af3n = 0 in 
H:+nq(Xj ~n). 

54. Using double induction on dimG and the number of components of G, 
we can assume the result holds for any action of a proper subgroup of 
G. Let F C X be the fixed-point set of G on X. Then dimL X/G = 
max{dimL F,dimL(X - F)/G} by II-Exercise 11. By the inductive as
sumption, the existence of slices, and the local nature of dimension (see 
11-16.8), we have that dimL(X - F)/G :5 dimL X - F :5 dimL X. Since 
dimL F :5 dimL X, the result follows. 

55. We may as well assume that Jt' and Jtl/ are constant. The conditions are 
to assure that for any point x E X and neighborhood U of x there is a 
neighborhood V of x such that H 1(UjJt') --+ H 1(VjJt') is zero. In case 
(a) this follows by selecting compact neighborhoods and using the universal 
coefficient formula 11-15.3 and II-17.3. In case (b) it follows from the exact 
sequence of the coefficient sequence 0 --+ Z --+ Z --+ Zn --+ 0 and 11-17.3. In 
case (c) it is obvious. Since X is clei, it is locally connected. Then for such 
U and V, which can be taken to be open and connected, and any x E V, 
consult the commutative diagram 

o --+ Jt'(U) --+ Jt(U) --+ Jtl/(U) --+ H 1(UjJt') 

1 .. 1 1 .. 10 
0--+ Jt'(V) --+ Jt(V) --+ Jt'(V) --+ H 1(VjJt') 

1 .. 1 k 0--+ Jt' --+ Jt., --+ Jt., --+ O. ., 

A diagram chase shows that Jt(V) --+ Jt., is an isomorphism (for any 
x E V). Now the same argument as in the last part of the proof of 1-
Exercise 9 shows that Jt is constant on V. For the counterexample let 
X be similar to the example in the solution of I-Exercise 10 but using 
projective planes rather than circles. This space is seen to be clci from 
continuity and the fact that Hl(1P'2jZ) = 0, but it is not, of course, clei, 
nor is it clQ2' 

56. This follows immediately from 11-15.2, 11-16.14, and 11-16.26 provided we 
can show that A ® A = 0 = A * A => A = 0 for abelian groups A (applied 
to A = H~ (U j Z». To prove this, consider the exact sequence 

Now (A ® Zp) ® (A ® Zp) R:i (A ® A) ® Zp = O. But A ® Zp is a Zp-vector 
space, and so this implies that A ® Zp = O. The sequence then shows that 



from Chapter II 471 

A Rl A®Z is divisible and hence injective. If A of 0, then Ext(Q/Z, A) = 0 
since A is injective, so that the exact sequence 

Hom(Q, A) -+ Hom(Z, A) -+ Ext(Q/Z, A) 

shows that A contains a nonzero subgroup of the form Q/ K for some sub
group K of Q. Since Q/ K is divisible, it is injective, and that implies that 
Q/ K is a direct summand of A, whence Q/ K satisfies the same hypotheses 
as does A. Since Q ® Q of 0, we have K of O. Now Q ® Q/K = 0 since 
Q/ K is all torsion. Thus the exact sequence 

o = Q * Q/ K -+ Q/ K ® Q/ K -+ Z ® Q/ K -+ Q ® Q/ K = 0 

shows that 0 = Q/ K ® Q/ K Rl Z ® Q/ K Rl Q/ K of 0, a contradiction. 
We remark that Boltjanskir constructed a compact metric space X with 

dimzX = 2 and dimzX x X = 3. 

57. For x E X, the minimal neighborhood U of x must be open and unique. 
Also, !Pz = !P(U) for any sheaf !P on X, and it follows that (fL !P~)z = 
IL (!P~)z. The remainder of the proof of 11-5.10 now applies. 

58. If a E A then Ua n A is the smallest neighborhood of a in A, and so A 
is rudimentary. If x E A c Uz , then the only relatively open set in A 
containing x is A itself. Let Ji* be a flabby resolution of a given sheaf Ji 
on X. Then the restriction .;1* (Uz ) -+ Ji; is an isomorphism by definition. 
Consequently, 

Therefore H* (U z j.;l) ~ H* ( {x} j Ji z). This also applies to the space A 
and shows that H*(AjJiIA) ~ H*({x}jJiz), whence JiIA is acyclic. It 

also follows that H*(Uzj.;l) ~ H*(AjJiIA), whence A is taut by 11-10.6. 

59. Let Un,m = Un X Um. These only form a basis for the open sets, but that 
is sufficient for describing sheaves, and so we will ignore the other open 
sets. For any sheaf Ji, CO(Un,mjJi) is just the group of n x m matrices 
(ai,;), where ai,; E Ai,;. Using 1r and tv for all the 1rid and tvi,j, there is 
the sequence 

dO 
0-+ Ji(Un,m) -+ C°(Un,mj Ji) --+ C°(Un-l,mj Ji) EB C°(Un,m-l j Ji) 

d
1 ° --+ C (Un-l,m-ljJi) -+ 0, 

where cf(ai,j) = (ai,j -1raHl,;) EB (ai,j - tvai,Hl) and dl«ai,;) EB (bi,j)) = 
(ai,; - bi ,; - tvai,j+l + 1rbHl,;). It is easy to see that this sequence is exact 
and gives the exact sequence 

0-+ Ji -+ ~o(MjJi) -+ 1],~o(MjJi)EBrl'~o(MjJi) -+ 1]'1],,~o(MjJi) -+ 0, 

where 1]' (n, m) = (n + 1, m) and 1]"(n, m) = (n, m + 1). We omit the other 
details, which are straightforward. 

For the last part, consider the map I : M -+ III given by I(n, m) = 
max(n, m). Then one sees easily that I is closed and continuous. Also, 
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each f-l(n) is taut and acyclic by II-Exercise 58 since Un,n is the smallest 
open set containing (n,n) and (n,n) E rl(n) c Un,n. Also, (f.A)(Un) = 
.A(rlUn) = .A(Un,n), so that f.A ~ .AI~. By II-l1.1 we have 

Solutions for Chapter III: 
4. Let U C X be open. Since U is paracompact, SP(U; G) -; r(Y'PIU) is 

onto by 1-6.2. Any singular cochain on U can be arbitrarily extended to 
one on X, and so SP (X; G) -; SP (U; G) is onto. Thus the composition 
SP(X; G) -; r(9'p) -; r(Y'PIU) is onto, which implies that Y'P is flabby 
by definition. The analogous argument works for .A*(X;G). 

7. A disjoint union of lens spaces converging to a point serves for X. Then 

Also, by II-15.1, 

SH2(X; Q) ~ H2(rc:r 0 Q)) ~ H2(r(Y'*) 0 Q) 
~ H2(r(Y'*)) 0 Q 
~ H2(X;Z)0Q~Ext(EBZn,Z)0Q 
~ Hom( EBZn, Q/Z) 0 Q 
~ (IT Zn) 0 Q # O. 

10. If U'" is the minimal open set containing x, then the covering U = {U",} 
refines all other coverings of X, so that ir(x; A) = iln(u; A). Also, 
A(U",) =.A", = .A(U",) for all x. Since y E Ux =? Uy C Ux , A agrees with 
.A on all simplices {xo,oo.,xn } of N(ll) , whence iln(X;A) = iln(x;.A). 
In particular, iln(X;A) = 0 if .A = O. Thus iln(x;.A) is a fundamental 
connected sequence of functors of sheaves .A on X with ilo (X;.A) ~ r(.A). 
Therefore iln(x; A) ~ iln(x;.A) ~ Hn(x;.A) by II-6.2. 

11. Any locally finite covering of N contains {N}. Thus the result follows from 
1II-4.8 (or by direct examination). 

13. For an arc (x, y) of §l containing Xo one sees that .Anl(x, y) has a subsheaf 
isomorphic to Z("'O,I/) with quotient sheaf isomorphic to Z(x,xo]' We have 
W«(x,y);Z(XO,y») ~ H*(x,y), (x,xo];Z) = 0 and H*((x,y);Z(x,xo]) ~ 
H*((x,xo];Z) ~ H*(*;Z). Thus Hi«(x,y);.An ) = 0 for i > 0, whence III-
4.13 applies and shows that il(X; .An) can be computed using a covering U 
by three arcs (actually two arcs would also do). For an appropriate choice 
of bases one computes easily that the incidence matrix for d : 6 1 (U; .A n) -; 
6 2 (U; .An) is 

n 
-1 
1 

~ ], 
-1 

which is unimodularly equivalent to diag(l, 1, n-l), whence ill (§l; .An) ~ 
Z/(n-l)Z. Particularly note the cases ill (§l; .Ao) = 0 and ill (§1;.A -I) ~ 
Z2. [The sheaf .A-I is the same as zt of 1-3.4 and so the solution to I1-
Exercise 28 gives another computation of ill(§l;.A_I}.] 
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14. There is an open covering 11 of X such that 'Y is the image of some 'Yil E 
jfn(l1) via the canonical map jfn(l1) -+ jfn(x) R! Hn(x). Let e be a 
Lebesgue number for 11 and let j : X ...... Y be as described. If y E 
Y, then diamj-l(y) < e, whence j-l(y) C U for some U E 11. Thus 
y has a neighborhood Vy with rl(Vy ) C U. Let!lJ = {VYI y E Y}. 
Then j-l !lJ refines 11. Since f is surjective, it maps the nerve N(f-l!lJ) 
isomorphicallyonto N(!lJ). Thus the induced map jfn(!lJ) -+ jfn(f-l!lJ) 
is an isomorphism. The result then follows from the commutative diagram 

16. Let X be any space with a nonisolated point x. Let A be the constant 
presheaf with values M =1= 0 and let A" be the presheaf with A"(U) = 0 if 
x fj. U and A"(U) = M if x E U. Then there is the epimorphism A ...... A" of 
presheaves. Let q> = {{x}, 0}. Then Cg(l1i A) = 0 for any covering 11 since 
if 0 =1= c E Cg(l1i A), then c(U) =1= 0 for some U E 11, whence {x} :) Icl :) U. 
But ~o (11; A") is concentrated on {x} so that cg (l1i A") = CO (l1i A") = 
I1{M I x E U Ell}. Now any open covering is refined by some 11 = {Uy} 
such that x fj. Uy for all y =1= x. For such 11, Cg(l1i A") = A"(U",) = M. 
Consequently, Cg(XiA) = 0 and Cg(XiA") R! M, so that Cg(XiA) -+ 

Cg(Xi A") is not surjective. 

Sol utions for Chapter IV: 
1. Let K E q> and 8 E (f'll..d)(K). Extend 8 to an open set U :) K giving t E 

(f'll..d)(U) = r'll(U) (..dlr l (U)). Let L E q> with K C intL and LeU. As 
a section of..d over j-l(U), t restricts to t' E r iI>('II)1f-1(L)(..dlj-l L). Since 
..d is q>(w)-soft, t' extends to 8' E ril>('11)(..d) by 11-9.3. But ril>('11)(..d) = 
ril>(f'll..d) by IV-5.2, and under that equivalence 8' becomes an extension 
of the original section 8. This shows that ril>(f'll..d) -+ (h..d)(K) is onto 
for all K E q>, which implies that j'll..d is q>-soft by definition. 

2. By assumption there are compact sets A, B in X with A nBc Y and 
Au BuY = X. If Au B =1= X, then Y contains an open set, and we 
are finished. If AU B = X, then X - (A n B) = U u V (disjoint), where 
U = A - (A n B) = X - B and V = B - (A n B) = X - A, which shows 
that the compact set A n B disconnects X. The Mayer-Vietoris sequence 

has the direct sum term zero by 11-16.29, and so dimL An B ;::: n - 1. It 
follows that dimfY ;::: n - 1 since An BE clY. 

3. Since a compact totally disconnected space has dimension zero by 11-16.19, 
we have dimf (B - A) = O. The result then follows from the first inequality 
of IV-B.10. 

5. Let A be the presheaf with A(U) = Hn(!l'*(U)) and let..d = ~(A) = 
.1{'n(!l'*) by definition. Then there is the canonical map () : A(Y) -+ ..d(Y) 
of Chapter I. Now A(Y) = Hn(r(!l'*)) and ..d(Y) = r(.1fn(!l'*)), so that 
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e : Hn(r(p*» -+ r(.1fn(p*». If s E r(.P*) is a cocycle representing 
[s) E Hn(r(p*», then for y E Y, s(y) is an n-cocycle of P; representing 
the cohomology class [s(y») E .1fn(p*)y. By definition e[s)(y) = [s(y»). 
Now, if s(y) = 0, then [s(y») = 0, so that y f. le(s)l. That is, 

le(s)1 c lsi· 

Therefore if s E r4>(p*), then e(s) E r4>(.1fn(p*», so that 

e : H n (r4>(p*» -+ r4>(.1fn(p*» 

as desired. 
We shall treat the remainder more generally in the context of IV-2.1, 

where P* is a differential sheaf on Y consisting of cI>-acyclic sheaves. (The 
case of the Leray spectral sequence is that for which pq = h(req(Xj...t».) 
The spectral sequence in question is the first spectral sequence of the double 
complex Lp,q = r4>( rep(Yj pq» together with the fact that the second 
spectral sequence of this degenerates to an isomorphism induced by the 
monomorphism 

c: r4>(p*) >-+ r4>(reo(YjP*», 

which identifies r4>(p*) with the d' O-cocycles of L*'· = r4>(re*(YjP*». 
Thus cohomology classes of the total complex L * are given by the im
age of c* : H"(r4>(p*» ...::... Hn(r4>(re*(YjP*»). Let us describe this 
explicitly. Start with a section s E r4>(pn) that is a cocycle. Then 
c(s) is given just by regarding s as a serration, and we shall continue 
to name it s. Then s(y) E P: is a cocycle of P= representing [s(y») E 
.1fn(p*)y. Then y 1-+ [s(y») is a serration of .1fn(p*), that is, an element 
of r 4> ( reo (Y j .1fn (P*))). By general principles this is a cocycle, and its 
cohomology class in HO(r4>(re*(Yj.1fn(p*»» = H~(Yj.1fn(p*» = 'E~,n 
is just e[s), where e is the edge homomorphism. Hence, as a section of 
.1fn(p*), we have that e[s)(y) = [s(y») = e[s)(y). Therefore e = e as 
claimed. 

If Y is a single point y, then it is clear that e is the identity. Thus 
naturality applied to the diagram 

y. <---+ X 
t t 
y ...... Y 

gives the commutative diagram 

H;('l1) (X j...t) 
( 

r4>(.1f~(fj ...t» --> 

restriction 1 1 i; 
H~ny. (yOj ..dIYO) (=1 

--> H~nyo (yO j ..dIYO), 

since we may as well assume that {y} E cI>. This proves the last statement. 
The proof could also be based on 11-6.2. 

6. The indicated edge homomorphism is the composition ( = i; 0 e 0 TJ* , where 
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is induced by T/ : XG -+ X/G; 

e: H;(XG;T/*d) -+ r(.1{e(X;j*d» 

is the edge homomorphism of the Leray spectral sequence of 7r : XG -+ BG, 
as in IV-Exercise 5; and 

i: : r(.1{e(X; j* d» ~ H~(X; j* d) 

is as in IV-Exercise 5, where y E BG. Let j : X Rj X XG G ...... X XG EG = 
XG be the inclusion of the fiber corresponding to y E BG. Then the 
diagram 

X Rj XXGG ..L. X/G 

1i 
" 

XG=X xGEG ~ X/G 
commutes; that is, T/ 0 j = f. By IV-Exercise 5 we have i: 0 e = j*. 
Therefore ( = i: 0 e 0 T/* = j* 0 T/* = r as claimed. 

9. The first derived functor of Iq, is d ...... .1{l(hd), whose stalk at y E Y 
is .1{~(J;d)1I Rj H~nllo(y·;d) = 0 by IV-4.2 and the assumption that 
dimq,(y·) = O. Therefore h is exact. 

10. We have T U 7r*(w) = T U 7r*(i*j*(T» = T U j*(T) = T U T by (23) on page 
236 and 11-12.2. 

11. It suffices to treat the two cases B = V open and B = F closed. Thus 
let FeY be closed, and put V = Y - F. For U open in Y, the exact 
sequence 

0-+ dvo -+ d -+ dFO -+ 0 

(restricted to U) induces the exact cohomology sequence 

o -+ H~nuo(U·;dvo) -+ H~nuo(U·;d) -+ H~nuo(U·;dFo) -+ ... 

and hence the exact sequence of sheaves 

0-+ h(dvo) ...:!..... h(d) ~ h(dFO) -+ .1{~(J;,.tvo) -+ ... 

For y E F there is the commutative diagram 

and T is trivially an isomorphism since d Foly· = dlyo. Since f is w
closed, the maps r; are isomorphisms by IV-4.2. Therefore 811 is an iso
morphism for y E F. and so 

is an isomorphism. It is obvious that Iq, (d FO ) IV = 0, and so 8 induces 
an isomorphism fq,(d)F ~ h(dFO), which is our result for B = F. 
On the other hand, the fact that (lIF is an isomorphism implies that 
Iq,(dvo )IF = 0 by exactness of the previous sequence. Consequently, '" 
induces a homomorphism fq,(dvo) -+ h(d)v, which is an isomorphism 
since fq,(dFo)1V = 0, and this is our result for B = V. 
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12. The statement about normal Stiefel-Whitney classes follows from the obvi
ous real analogue of IV-lO.4. If Y is not the complete fixed-point set, then 
let F be some other component. By hypothesis, Hi(M; Z2) ---> Hi(F; Z2) 
is vacuously a monomorphism for i < m - k + 1. Therefore, by IV-IO.5 we 
have that k = dim Y ::; m - (m - k + 1) = k - 1, a contradiction. 

13. Since .1t'-1(J'li'*) = 0, we have 

Thus the spectral sequence of IV-2.1 has 

E~.q = { H~(X;lmh), 
0, 

for q = -1, 
otherwise. 

for q = -1, 
for q -# -1. 

Consequently, there is the induced isomorphism 

which vanishes for p 2>: 1 since flfI = 0 for q 2>: O. Therefore 1m h is cI>
acyclic. The exact cohomology sequence induced by the exact coefficient 
sequence 0 ---> 1m h ---> J'li'0 ---> Coker h ---> 0 then shows that Coker h is 
cI>-acyclic since J'li'0 and 1m hare cI>-acyclic. 

20. By IV-I4.4, H*(X/G,P/G;Zp) = O. By the proof of IV-I4.3, the Leray 
spectral sequence of (f, lIP), where I : X ---> X/G is the orbit map, has 
E;,t = HS(X/G, PIG; Ht(G; Zp)) = 0 converging to Hs+t(X, P; Zp). Thus 
the latter group is zero, and the result follows from the exact sequence of 
the pair (X, P). (This result, due to Oliver [65], is not true without the 
condition that the group be connected.) 

22. Mapping X to a point * induces, by the naturality of fJ, the commutative 
diagram 

HO(*; M) ~ l:J.HO(*;M) 

1~ 1~ 
HO(X;M) ~ t;.HO(X;M), 

so that fJ is an isomorphism as claimed. 

23. The map 'P is induced by the augmentation e : M -+ t;..1t'°(X; M), so that 
it suffices to prove that e is an isomorphism when X is locally arcwise 
connected. But t;..1t'°(X; M) = 9'1r-I(U >-+ t;.HO(U; M», and e is induced 
by the classical augmentation M >---+ t;.HO(U; M). Since U can be restricted 
to arcwise connected open sets, the contention follows. 

24. It is clear that t;..1t'Q(X; M) = 0 for q =f 0, so that the spectral sequence 
degenerates to the isomorphism 

and it is elementary that the group on the left is zero for p =f O. Let.1t' - -° -and .1t' denote t;..1t'°(X; M)and t;..1t' (X; M) respectively. Note that .1t' is 
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concentrated on the closed line segment where X is not locally arcwise 
connected. There is an exact sequence 

o -+ M -+ :1t' -+ it -+ 0, 

which induces the exact sequence 

0-+ HO(XjM) ~ HO(Xj:1t') -+ Ho(Xjit) -+ H1(XjM) -+ H 1(Xj:1t'), 

and H1(Xj:1t') ~ ~H1(XjM) = 0 and similarly, r(:1t') = HO(Xj:1t') ~ M. 
Thus this sequence has the form 

8 -0-+ M ---+ M -+ r(:1t') -+ M -+ O. 

The map (J here is an isomorphism by IV-Exercise 22. Consequently we 

have that r(~it° (Xj M)) ~ M. The reader might attempt to see this 
directly by studying the sheaf it. 

25. Since X is locally arcwise connected, the sheaf ~:1t'°(Xj M) ~ M via the 
augmentation. It is also clear that the sheaves ~:1t'q(Xj M) are concen
trated at the origin Xo for q > O. [For q > 1 these are probably zero, but 
we know no proof of that. The analogue in higher dimensions is false.] 
Let s:a = ~:1t'l(XjM)",o' which is expected to be quite large. [At least for 
M = Q this is uncountable.] Then we have E~'o ~ M, E~'o = H1(Xj M) ~ 
E9~lM by continuity 11-14.6, E~,q = r(~:1t'q(XjM)) ~ ~:1t'q(XjM)",o' 
and all others are zero. Consequently, there is an exact sequence 

00 

0-+ E9 M -+ ~H1(Xj M) -+ s:a -+ 0 
;=1 

and isomorphisms 

probably all zero, for q > 1. Note that the term E9~1 M represents those 
classes in ~H1(Xj M) that are locally zero. 

27. This follows immediately from IV-2.11 applied to the open subspaces An = 
Un X N, and the fact, from II-Exercise 59, that lim~,jAi,j = 0, once we 
show that Hq(Un x NjA) ~ lim1An,j' To see this, consider the projection 

f : Un X N -+ N. This is closed and each r1(m) is taut and Alr1(m) is 
acyclic by II-Exercise 58. Also, fA(Uk) = AU-1Uk) = A(Un,k) = An,k, 
so that fA is the inverse sequence {An,l +-- An,2 +-- ••• }. Therefore 
Hq(Un x NjA) ~ Hq(Nj fA) = lim1An,j by 11-11.1, as claimed. The 
spectral sequence can also be derived as the Leray spectral sequence of the 
projection 71'1 : N X N -+ No 

29. Let A* = ~*(XjA). By definition, 1° is the composition of the edge 
homomorphism in the first spectral sequence of the double complex LP,q = 
Ct(XjAq) with the inverse of that for the second spectral sequence. These 
edge homomorphisms are induced by the canonical monomorphisms 

Cq:(X;A) >-+ E9 Ct(XjAq) +-< rw(An). 
p+q=n 
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These are all exact functors of ..d. Consequently, the derived maps 

which are the edge homomorphisms, are maps of fundamental connected 
sequences of functors of ..d. In degree zero this composition is the identity, 
as is seen by chasing the exact commutative diagram 

0 0 0 
1 1 1 

0 ---+ r'l1(..d) ---+ r'l1(..d°) ---+ r'l1(..d I ) 

1 1 1 
0 ---+ C~(Xi..d) ---+ C~(Xi..d°) ---+ C~(Xi..dl) 

1 1 1 
0 ---+ C!,(Xi..d) ---+ C!,(Xi..d°) ---+ C!,(X;..d I). 

Thus the contention follows from 11-6.2. 

30. Let Lp,q = CP(lliCq(ei..d)) = CP(lli ~q(Xi..d)). In the second spectral 
sequence of this double complex we have 

"EP,q = iIP(ll' ~q(X'..d» = {r(~q(Xi..d», for p = 0, 
I " 0, for p =1= 0 

by 111-4.10. Therefore this spectral sequence degenerates to the isomor
phism 

Hn(L·) ~ Hn(Xi..d). 

In the first spectral sequence E~,q(ll) = I E~,q we have 

by 111-4.1, whence 

In the situation of III-Exercise 15, E~,q(ll) = iIp(lliHq(ei..d)) = 0 for 
p < m and 0 =1= q < n, which implies that the edge homomorphism 

iIk(lli..d) = E;'o -+> E~o >-+ Hk(Xi..d) 

is isomorphic for k < min(n, m) and monomorphic for k = min(n, m). 

31. Put Ko = Y, KI = B, and K2 = K3 = F. Then, for the Fary spectral 
sequence, we have Ao = Y - B, Al = B - F, A2 = 0, and A3 = F. Thus 

where the coefficient sheaves are constant and either 0 or Z. The nonzero 
cases are 

E~,3 H~(Y - B) ill H~+1(B - F) ill HP+3(F), 
E~,I H~+I(B - F), 
E~'o H~(Y - B). 



from Chapter IV 479 

Also, d2 = td2 + t.6., where td2 = 0 since E~,l and E~'o do not involve a 
common At. Thus d2 : E~-l,l --+ E~+1,O is the connecting homomorphism 
t.6. = 8 in the exact sequence 

H%(Y - F) --+ H%(B - F) ~ H%+\Y - B) --+ H%(Y - F). 

But H; (Y - F) = H* (Y, F) = 0 since Y and F are both acyclic. Con
sequently, d2 is an isomorphism, killing everything except the E~,3 terms. 
Therefore the spectral sequence degenerates from Ef,q on, giving 

HP(X) ::::: Ef-3,3 ::::: E~-3,3 ::::: H%-3(y - B) EEl H%-2(B - F) EEl HP(F). 

Now, H'g-3(y - B) ::::: HP-3(y, B) ::::: ffP-4(B) and Hf-2(B - F) ::::: 
HP-2(B, F) ::::: fIP-2(B), yielding the claimed isomorphism. 

32. By IV-2.5, r/ is an isomorphism for k < n and a monomorphism for 
k = n. By the solution of IV-Exercise 5, the edge homomorphism ~ : 
Hn(r.p(p*» ...... Er;;,n >-+ Eg,n = r.p(xn(p*» is just the canonical map 
e : Hn (r.p (P*» --+ r.p (.1{'n (P*)). The assumption that H n (r.p (P*» --+ 

Hn(r.pnu(P*IU» is zero for small U implies that e = O. This implies that 
Er;;,n = 0, whence E'{;,;o ,...... Hn(r.p(p*» is onto, so that rt is onto. 

For the application to singular cohomology take, for example, P* = 
9'*(X; M) = 9''-{(U >-+ S*(U; M», which is ~-soft when ~ is para
compactifying. Then the result, together with IV-2.5, says (for X para
compact): If every neighborhood U of x E X contains a neigborhood 
V of x with AfIk(U; M) --+ AfIk(V; M) zero for all ~: < n, then r/ : 
Hk(X; M) --+ AHk(X; M) is an isomorphism for k < n and a monomor
phism for k = n. If in addition, each point has a neighborhood V with 
AHn(x; M) --+ AHn(v; M) zero, then r-,n is an isomorphism. (Actually, 
as the proof shows, it is enough that for each , E A H''' (X; M) and each 
x E X there is a V = V(r,x) with ,IV = 0.) 

33. Let I E~,q = E~,q(P*) and E~,q = E~,q(.A(*). By hypothesis, 'Eg,N ,...... 
Eg,N. But' Er;;,N ,...... 'Eg,N and Er;;,N >-+ Eg,N, so that' Er;;,N ,...... Er;;,N. The 

proof of IV-2.2 showed that 'E'~N-p ....::... E~N-p for p > O. Thus, for the 
filtrations of the total terms, we have HN (r.p(p*» = 'FN J 'FN - 1 J ... , 

and we deduce that' FN-1 ....::... FN-1 in both cases. In the first case, we 
have that 'FN/'FN- 1 = 'Er;;,N >-+ Er;;,N = FNIFN-1, which implies that 
'FN >-+ FN as claimed. 

For the second case, note that the proof of IV-2.2 also showed that 
'E;,N -r+1 ....::... E;,N -r+1 since 

kr(r) = N - r + #(Sr n [O,rD = N - r + 2> N - r + 1. 

Hence, if we have proved that 'E~,N ...... E~,N, then the diagram 

'E~,N ...... E~,N 

l'd~N 1 d~N 
'E;,N-r+1 ....::... E;,N-r+1 

shows that 'E~~ = Ker' ci].;N ...... Ker d~t = E~~. Thus' FN I' FN -1 = 
'Er;;,N ...... Er;;,N = FN I FN -1, and we conclude that' FN -» FN, as claimed. 



480 B. Solutions to Selected Exercises 

Solutions for Chapter V: 
3. The solution is given in VI-l.4. 

4. The solution is given in VI-12.1. 

5. The solution is given in VI-3.2 and VI-3.3. 

6. The Mayer-Vietoris sequence (coefficients in vi) 

H~(U n V) --> H~(U) ffi H~(V) --> H~(U n V) --> H~+l(U n V) = 0 

shows that S)~(X;vi) satisfies condition (a) of V-Exercise 3, and continuity 
II-14.5 applied to the direct system {viuo} shows that it satisfies condition 
(b). 

7. Such a map h induces a homomorphism hi : vi --> r fJJ (and conversely). 
Thus h. can be defined as the composition 

of h: with the homomorphism f. of (26) on page 301. 
Let 9 : Y --> Z and let k : fJJ --> '(i be a g-homomorphism. Let <I> be a 

family of supports on Z, and put w = <I>(c) and e = w(c). Then we have 
the diagram 

in which the square commutes by the naturality of f. and the triangles 
commute by the definitions of h. and k •. This shows that 

k.h. = g.f.k~h: = (gf).(kh): = (kh)., 

the last equality being by the definition of (kh) •. 

8. The first sequence is induced by the exact coefficient sequence 0 --> vi v --> 

viu, ffiviu2 --> viu --> 0 via (34) on page 306 and (8) on page 292. The 
second is similarly induced by the coefficient sequence 0 --> vi G --> vi F, ffi 
viF2 --> viF --> 0, where G = X - V, Fi = X - Ui , and F = X - U, and 
using (35) on page 306. 

9. Let fR· = ,9'·(X;L), and plug the exact sequence 0 --> fRv --> fRu, ffi 
fRU2 ---> fR· ---> 0 into the functor r~(~(.) @uU), which is exact on replete 
sheaves by V-3.1D. Then use that r~(~(fRu) @ uU) ~ r~nu(~(!z·IU) @ 

uUIU) ~ C~nu (U; uU) by V-5.4. This gives the first sequence. The second 
follows similarly from the sequence 0 --> fR· --> fR;', ffi fR;'2 --> fR;' --> 

0, V-5.4 [showing that r~(~(fR;') @ uU) ~ r~((~(fR·lF) @ uUlF)X) ~ 
r~IF(~(fR'lF) @uUlF)], V-3.3, and V-5.6. 

11. This is an immediate consequence of V-5.6 when (vi, <1» is elementary, and 
of V-5.3 when <I> is paracompactifying. 
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17. (a)<I>CW =? w#={KILEW =? KnLEc}c{KILE<I> =? 

KnL E c} = <I>#. 

(b) <I>## = {K I L E <I># =? K n L E c} :) <I> by the definition of <I>#. 
Hence also (<I>#)## :) <I>#, and (<I>##)# C <I># by (a) applied to (b). 

(c) Recall that <I>#(c) = {K E c(Y) I f(K) E <I>#} = {K E c(Y) I f(K) E 
<I>#} since K E c(Y) implies that flK is closed and proper. We have 

(I- 1<I»# = {K C X I K' E rl(<I» =? K' n K E c} 
= {K C X I L E <I> =? rl(L) n K E c}. 

Since <I> :) c, such sets K are in c(Y). Also note that f(r 1(L)nK) = 
Ln f(K), and so rl(L)n K is compact ¢? Lnf(K) is compact, for 
K E c(Y), since flK is proper. Thus 

{K E c(Y) I L E <I> =? r 1 (L) n K E c} 
{K E c(Y) I L E <I> =? L n f (K) E c} 
{K E c(Y) I f(K) E <I>#} 
<I> # (c). 

19. We omit the details concerning the sheaf .1t'2(X), which is easy to un
derstand and is isomorphic to Zs2. Consequently, E~,-2 = HP(XjZs2) ~ 
HP(§2 jZ). The sheaf .1t'1(X) is more difficult. It is clear that it vanishes 
on §2 - {x}, where x is the common point of the two spheres. On §1 - {x} it 
is constant with stalks Z. At the point x we have .1t'1 (X)", ~ H 1(N, 8N) ~ 
Ho(8N) ~ HO(§1 +SO) ~ ZEElZ, where N is a neighborhood of x having the 
structure of a 2-disk punctured at x with an arc. To understand the way 
the stalks fit together around x, it is useful to think in terms of the singular 
homology of (N, N - {x}) and note that this has a basis consisting of the 
class s of the singular cycle given by a singular I-simplex running from the 
SI portion of N - {x} through x and to the §2 portion. Similarly let t be the 
class of such a I-simplex running from the S2 portion through x and to the 
SI portion on the "opposite" side of x from that side along which s runs. 
Then s induces a local section of .1t'1(X) near x that gives a generator at 
points in SI to one side of x and 0 at points on the other side. The section 
given by t is 0 on the first of these sides and a generator on the other. 
Neither of these local sections extends to a global section, but s + t does 
come from a global section (since we arranged for s and t to travel along 
SI in the same direction). There is only one topology consistent with these 
facts. Let!l = .1t'1(X)ISI . Since .1t'1(X) vanishes outside s1, we have 
HP(Xj.1t'I(X)) ~ HP(S\!l). To compute this, consider U = SI - {y}, 
where y =f x, and let A and B be the two rays from x making up U. (Then 
An B = {x}.) Note that !lIU ~ ZA EEl ZB. (We remark that !l could 
be described as ZA EEl ZB patched at the missing point y in an essentially 
unique manner.) Now, Hf(UjZA) ~ Hf(AjZ) ~ HP([O,I],{O}jZ) = o. 
Consequently, Hr(Uj !lIU) = o. The exact sequence of the pair (s1, {y}) 
with coefficients in !l then shows that HP(S\!l) ~ Z for p = 0 and is zero 
for p =f o. Therefore we have E~,-1 = HO(Xj.1t'I(X» ~ HO(§lj!l) ~ Z, 
E~,-2 = HO(Xj .1t'2(X)) ~ HO(S2j Z) ~ Z, E~,-2 = H2(Xj .1t'2(X)) ~ 
H2 (S2 j Z) ~ Z, and all other terms are zero. 



482 B. Solutions to Selected Exercises 

21. We have 

li!!}H~(XiJ'i>.) li!!}Hp(rc('6'.(X;L) 0J'i>.)) 
::::; Hp(li!!}rc('6'.(X; L) 0J'i>.)) 
::::; Hp(rc(li!!}('6'.(X;L) 0J'i>.))) 
::::; Hp(rc('6'.(X;L) 0li!!}J'i>.)) 

H;(X;J'i) 

23. If 7r : X --. X/G, then there are the maps 

. )~ ( Hp(U ;Q __ Hp U;Q) 
1". 

by definition 
since li!!} is exact 
by 11-14.5 
by (13) on page 20 
by definition. 

for U c X/G open. These induce sheaf homomorphisms 

7r.1t' p(X; Q) • > .1t' p(X/G; Q) 
1". 

with *.11. = ordG and 11.*. = EgEGg •. Since 

(7r.1t'p(X;Q))y::::; EB .1t'p(X;Q)x = 0, 
".(x)=y 

for p;;/; n, we have that *.11. is an isomorphism factoring through 0, whence 
.1t'p(X/G;Q) = o for p;;/; n. Also,I1.: .1t'n(X/G;Q)y --. (7r.1t'p(X;Q))y isa 
monomorphism onto the group (7r.1t' n (X; Q))~ of invariant elements, which 
is the diagonal in EB".(x)=y Q, since G preserves orientation. It follows 
that .1t' n(X/G; Q)y ::::; Q, so that X/G is an n-hmQ by V-16.8(d), since 
X/G is locally connected. Also, r(.1t'n(X/G;Q)::::; Hn(X/G;Q);;/; 0 since 
11.*. = ordG;;/; 0, so that X/G is orientable. (Note that the proof applies 
to any field L of characteristic prime to ord G, in place of Q. Also note 
that X/G is dc'L if X is dc'L by II-19.3.) 

26. By II-Exercise 33, H1(X; L) is free, whence Ext(H1(X; L), L) = O. By 
(9) on page 292, Ho(X; L) ::::; Hom(H~(X; L), L) ::::; Hom{rc(L) , L). Since 
r c(L) is the direct sum of copies of L over the compact components of X, 
this is the direct product of copies of L over the compact components of X, 
as claimed. For an n-cmL this is isomorphic to Hn(x; @) by V-9.2. For X 
orientable it follows similarly from V-12.8 and duality that Hn(x; M) = 
Il. M", for any L-module M. The consequence that Hn(u; M) = 0 for U 
open in Rn , where this can be regarded as ordinary singular cohomology, 
seems surprisingly difficult to prove without advanced tools. I know of no 
way to prove it that is suitable for a first course in algebraic topology. 

28. First restrict attention to the case in which X is orientable and has no 
compact components. By V-Exercise 26 and duality, HP(U; L) = 0 for 
p ~ n. The exact sequence 

HP- 1 (U; L) --. HP(X, U; L) --. HP(X; L) 

shows that HP(X, U; L) = 0 for all p > n. Since Hl(X, U; ;;n(X; L)) ::::; 
Hn+l(x, U; L) = 0 (see 11-12.1 and the proof of II-16.2), ;;n(x; L) is 
flabby by II-Exercise 21. Since flabbiness is a local property by II-Exercise 
10, it follows that ;;n(X; L) is flabby in the general case of an arbitrary 
separable metric n-cm X. This implies, by the reverse of the reasoning 
above, that Hn+l(x, U; L) = 0 in the general case. 
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32. Under the hypotheses, the spectral sequence of V-B.4 has 

By (9) on page 292, .1fk(X; L) = 0 for k > n and for k < -1. Also, 
.1fk(X;A) = 0 for k > n by (14) on page 294. 

Now E~,q = 0 for p+q < -n, whence Ht(X;A) = 0 for k > n. For p+ 
q = -n, the only nonzero term in {E~,q} is E~,-n = H~(X;.1f n(X; A)) = 

r <I> (.1f n (X; A)), whence this is isomorphic to the "total" group H! (X; A). 

If A is torsion-free, then for k E Z there is an exact sequence 0 -+ A ~ 
A -+ $ -+ o. The induced exact sequence 

<I> ( <I> k <I> ( 0= Hn+l X; $) -+ Hn (X;A) ---> Hn X;A) 

shows that H! (X; A) is torsion-free. 

33. Assume that .1f n(X; L) = 0 for all n. Since the union of an increasing 
sequence of compact subsets of X is paracompact, there exists an open 
paracompact subspace of X. Thus we may as well assume that X is para
compact. Let <.P = cld on X. Let x E X and construct a sequence of 
open neighborhoods Ui of x in X with Vi+l C Ui for all i and with VI 
compact. Let A = nUi = nVi , which is compact and nonempty. Then 
X - A = U X - Ui is paracompact, and so dim<l>IA,L X :s; 1 + dimL X < 00 

by 11-16.10. Now the spectral sequence 

of V-B.5 has E~,q = 0, so that we have that Ho(A; L) ,= 0 in particular. 
Hence Hom(HO(A; L), L) = 0 by (9) on page 292. But HO(A; L) has L as 
a direct summand since A =1= 0, a contradiction. 

Here is another proof in the case L = Z (the argument also applies to L 
being a field). If dimL X < 00 and .1f.(X; L) = 0, then the basic spectral 
sequence of B.1 implies that H.(U; L) = 0 for all open U C X. This 
implies, by (11) on page 293, that Ext(H~(U),L) = 0 = Hom(H~(U),L). 
This implies, by V-14.7, that H~(Uj L) = O. By 11-16.14 dimL X = 0, 
and by 11-16.21, X is totally disconnected. Therefore, x has a compact 
open neighborhood K. But then HO(Kj L) = H~(Kj L) = 0 implies that 
K = 0, a contradiction. 

Note that this, together with V-Exercise 32 shows that the assumption 
that dim<l>,L Y < 00 in V-B.I cannot be usefully weakened to the hypothesis 
that .1f: (f, flA; A) = 0 for p ::; n < 00. 

35. By tautness and the cohomology sequence of (X, X - A), or directly from 
II-12.1, we see that H:(X, X - Aj.At) ~ limH:(X,X -. K;.At) where K 
ranges over <.PIA. This is isomorphic to limHn-p(K;.At® (ij-l) by V-9.3 
since K E <.P. By V-Exercise 32 this vanishes for n-p > dimL K and hence 
for n - p > dim;,LA by the definition of the latter. 

37. Consider the f-cohomomorphism 

~.(Y) ® fA ........ r~.(Y) ®A ~ ~.(X) ®A, 
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which corresponds to a homomorphism ~ .(Y) 0 fA ~ fer ~ .(Y) 0 A). 
First, we claim that this induces a homology isomorphism 

since the direct image functor fJJ f-> ffJJ is exact here by IV-7.S. It suffices 
to prove this on the stalks at y E Y. Let Kp = ~ p(Y)y and let A" be the 
stalk at x'" E f-I(y) of A. Then the map on the stalks at y is 

" '" 
There is the commutative diagram 

in which the isomorphisms on the ends are due to Hp(K.) being finitely 
generated. By the five-lemma the map in the center is also an isomorphism, 
proving the contention. Since Y is finite-dimensional and eI> is paracom
pactifying, the induced maps 

are isomorphisms by IV-2.2. The term on the left is H:(Y; fA) by defini
tion, and the one on the right is 

Hp(r~(f~.(X;A»):=;::j Hp(r~(cld)(~.(X;A») = Hr'~(X;A) 

since eI>(dd) = rIel> by IV-S.4. 

3S. Let Hq(F) denote the stalk of :It'q(f; L). For ~ consider the spectral 
sequence ~;.q = .:m-(Hq(F),:It'p(Y;L» ~ :It'p+q(f;L) of V-lS.4. As
suming, as we may, that Y is orientable and that:lt'*(f; L) is constant, 
this degenerates into the isomorphism .:m-( Hq (F), L) :=;::j :It' n+q (f), which 
shows that the latter sheaf is locally constant. 

For ~ let Hq(F) denote the common stalk of :It'q(f;L) and assume 
that this sheaf is constant. Also assume that the Leray sheaf :It'P(f; L) is 
constant with stalks HP(F). Suppose that Hq(F) = 0 unless s ::; q ::; t and 
that it is nonzero on the two ends of this interval. Then in the basic spec
tral sequence E~·q = HgcU;:It' -q(f; L» ~ H:'p_q(U") the term E;'-' 
survives and shows that H;_n(U") '" O. Consequently, s 2:: n. However, if 
s > n, the same spectral sequence shows that H8(U") = 0, an absurdity. 
Thus s = n. 

Now, using the basic spectral sequence V-S.l in the same way as the 
Leray spectral sequence was used in the proof of V-lS.4, and using V-l2.S, 
we derive the spectral sequence 

~;,q = .:m-(Hq(F),:It' _p(Y; L» ~ :It'p+q(f; L) = Hp+q(F). 

The term ~=-n,n = .:m-(Hn(F),:It' n(Y; L» survives and is isomorphic to 
the limit term :It'0(f; L) = HO(F), which is constant. This can happen 
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only if :Yf n(Yj L) is constant. Let its common stalk be denoted by S =I O. 
Now let r = min{p 1:Yf p(Yj L) =I O} and note that r ~ n = dimL Y. Then 
:Yfr(Yj L)y =I 0 for some y E Y. The 8~r,t term of the spectral sequence 
survives to give the isomorphism .1&m(Ht(F),:Yfr(Y;L)) ~ :Yft-rUjL). 
In particular, Ht-r(F) ~ :Yft-r(fjL)y ~ .1&m(Ht(F),:Yfr(YjL)y) =I O. 
It follows that t - r :S k. Now, in the spectral sequence of V-lS.4, the 
term 8~,k = .1&m(Hk(F),:Yf n(Y)) survives and shows that Hn+k(F) =I 0, 
whence n + k ~ t. From the last two inequalities we get n + t - r ~ 
n + k ~ t, whence n ~ r. But we had that r ~ n, and so n = r. Therefore 
:Yfp(Yj L) = 0 for p =I n. 

Now, both homological spectral sequences degenerate to the isomor
phisms Hom(Hq(F), S) ~ Hq-n(F) and Hom(Hq-n(F), S) ~ Hq(F), from 
which it follows that all these are all finite-dimensional and S has rank one. 
Thus Y is an n-hmL' and rank Hq(F) = rankHq-n(F). 

We remark that X need not be a homology manifold in this situation. 
For example, I could be the projection to the y-axis Y of X = YU([O, 1] x 
{O}). Another example is the one-point union of a manifold Y with the 
Hilbert cube JIoo with I being the quotient map identifying JIoo to a point. 
This shows that X need not even be finite-dimensional. 

39. Condition (a) implies (b) by V-lS.6. Thus we need only show that (b) 
implies (c). Since X is orientable over Z2, we know that Y is an (n - k)
hmz2 by V-IB.5. Note that dimz Y ~ n - k by IV-B.12. Suppose that 
y E Y is such that I-l(y) has no orient able neighborhood. Let U be a 
connected open neighborhood of y and consider the Leray spectral sequence 
of rl(U) --+ U. We have 

H;;-k(UjZ) = E;-k,k = E;:,,-k,k = H;;U-l(U)jZ) ~ Z2 

by V-16.16(g) since l-l(U) is not orientable. Moreover, for V C U an
other connected open neighborhood of y we have that H;;-(f-l(V)jZ) --+ 

H;;-U-l(U)jZ) is an isomorphism by V-16.16(d). Applying Hom(-,Z2) to 
II-15.3 and using that Hom(H~(U;Z2),Z2) ~ Hi (UjZ2), we get the exact 
commutative diagram 

The groups in the middle are isomorphic to Z2 and so it follows that 
:Yfn-k-l(YjZ2)y =I 0, contrary to Y being an (n - k)-hmz2' 

41. If m > nand U C X is open and paracompact, then 

whence Ext(H;,+l(UjZ),/l) = 0 = Hom(H;'(UjZ),Z). By V-14.7 we 
deduce that H~(Uj Z) = 0 for k > n + 1, and the result follows from 
II-16.16. 

42. This follows immediately from the spectral sequence /I Ef,q of V-S.4. 
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Solutions for Chapter VI: 
4. As the proof shows, the diagram (4) on page 433 is valid for k = n + 1, 

except that the horizontal maps on the right side are only epimorphisms. 
The result follows. [Note that this does not imply that Hn+l(Q(.(X» -> 

fln+l(X;no(Q(.» is surjective, and indeed, that is not generally true.] 

5. Let!m = l.!:o.6~eClf(M). Then there is the local isomorphism h : !m --> M. 
Let ~ = Ker h and I.!: = Coker h. Since!m is a cosheaf and M is an 
epiprecosheaf, I.!: is an epiprecosheaf by VI-Exercise 1. By VI-Exercise 2, 

I.!: = O. Thus we have the natural exact sequence 0 -> ~(U) -> !m(U) ~ 
M -> O. In particular, ju "# 0 whenever U "# 0. Let U be an open 
neighborhood of the point x E X and let V cUbe an open neighborhood 
of x so small that ~(V) -> ~(U) is zero. Suppose that U = Uo + Ul is a 
decomposition of U into two disjoint open sets with x E Uo. Let W c Uo 
be an open neighborhood of x so small that ~(W) -> ~(V) is zero. Let 
Vi = V n Ui. Then the commutative diagram 

~(U) ,....... !m(Uo) EB !m(Ul) -» M 

10 r 1= 
~(V) >--t !m(V) -» M 

10 1 1= 
~(W) >--t !m(W) -» M 

shows that the image of !m(V) -> !m(U) equals the image of !m(W) -> 

!m(U). But the component of this image in !m(Ul ) is zero since W c Uo. 
lt follows that !m(VI) -> !m(Ul ) is zero. However, this contradicts the fact 
that jVl : !m(Vl) -> M is nonzero unless Vl = 0. Therefore V C Uo. Since 
this is independent of the choice of the decomposition U = Uo U Ul , it 
follows that the psuedo-component of U containing x is open. This being 
true for all x and U implies that X is locally connected. 

6. Let 'Y E fl8(X; L). Since H8(X; L) = lim Ho(K; L), where K ranges over 
compact subsets of X, there is a compact set K such that 'Y is in the image 
from Ho(K; L). Cover K by sets Uo, . .. , Un such that each H8(Ui; L) -> 

fl8 (X; L) is zero. Adding sets to this collection, if necessary, we can assume 
that Uo U··· U Un is connected, since X is connected. We can then reindex 
this collection such that (UoU·· ·UUk)nUk+l "# 0 for all 0::; k < n. Then, 
with U = Uo U ... U Uk and V = Uk+l we have the exact commutative 
Mayer-Vietoris diagram (coefficients in L) 

H8(U n V) -> H8(U) EB H8(V) -> H8(U U V) -> 0 

10 

H8(X) 
10 

-> H8(X) EB H8(X) -> 
19 

H8(X) -> 0, 

by V-Exercise 9. By induction on k, this shows that 9 = O. Consequently, 
H8(Uo U ... U Un) -> H8(X) is zero. Since by construction, 'Y is in the 
image of this map, 'Y = O. 



Bibliography 

[1] Alexandroff, P., On the local properties of closed sets, Annals of Math., 36 
(1935) 1-35. 

[2] Allday, C., and Puppe, V., Cohomological Methods in Transformation 
Groups, Cambridge Univ. Press (1993). 

[3] Barratt, M. G., and Milnor, J., An example of anomalous singular homology, 
Proc. A.M.S., 13 (1962) 293-297. 

[4] Bing, R. H., and Borsuk, K., Some remarks concerning topologically homo
geneous spaces, Annals of Math., 81 (1965) 100-111. 

[5] Borel, A., The Poincare duality in generalized manifolds, Michigan Math. 
Jour., 4 (1957) 227-239. 

[6] Borel, A., et al, Seminar on Transformation Groups, Annals of Mathematics 
Study, 46 (1960). 

[7] Borel, A., and Haefliger, A., La classe d 'homologie fondamentale d 'un espace 
analytique, Bulletin, Soc. Math. de France, 89 (1961) 461-513. 

[8] Borel, A., and Hirzebruch, F., On characteristic classes of homogeneous 
spaces, I, Amer. Jour. of Math., 80 (1958) 458-538; II, Amer. Jour. of Math., 
81 (1959) 315-382. 

[9] Borel, A., and Moore, J. C., Homology theory for locally compact spaces, 
Michigan Math. Jour., 7 (1960) 137-159. 

[10] Bourgin, D. G., Modern Algebraic Topology, Macmillan (1963). 
[11] Bredon, G. E., Cohomology fibre spaces, the Smith-Gysin sequence and ori

entation in generalized manifolds, Michigan Math. Jour., 10 (1963) 321-333. 
[12] Bredon, G. E., Cosheaves and homology, Pacific Jour. of Math., 25 (1968) 

1-23. 
[13] Bredon, G. E., Examples of differentiable group actions, Topology 3 (1965) 

115-122. 
[14] Bredon, G. E., Generalized manifolds, revisited, in Topology of Manifolds, 

Markham Publ. Co., Chicago (1970) 461-469. 
[15] Bredon, G. E., Introduction to Compact Transformation Groups, Academic 

Press, New York (1972). 
[16] Bredon, G. E., On the continuous image of a singular chain complex, Pacific 

Jour. of Math., 15 (1965) 1115-1118. 
[17] Bredon, G. E., Orientation in generalized manifolds and applications to the 

theory of transformation groups, Michigan Math. Jour., 7 (1960) 35-64. 
[18] Bredon, G. E., The cohomology ring structure of a fixed point set, Annals of 

Math., 80 (1964) 534-537. 
[19] Bredon, G. E., Topology and Geometry, Springer-Verlag, New York (1993). 
[20] Bredon, G. E., Wilder manifolds are locally orientable, Proc. Nat. Acad. Sci. 

U.S.A. 63 (1969), 1079-1081. 
[21] Bredon, G. E., Raymond, F., and Williams, R. F., p-adic groups of trans

formations, Trans. A.M.S., 99 (1961), 488-498. 
[22] Cartan, H., Espaces Fibres et Homotopy, Seminaire, Ecole Normal Sup., 

(1949/50). 

487 



488 Bibliography 

[23] Cartan, H., Cohomologie des Groups, Suite Spectral, Faisceaux, Seminaire, 
Ecole Normal Sup., (1950/51). 

[24] Cartan, H., and Eilenberg, S., Homological Algebra, Princeton Univ. Press., 
(1956). 

[25] Conner, P. E., DifJeomorphisms of period two, Michigan Math. Jour., 10 
(1963) 341-352. 

[26] Conner, P. E., Retraction properties of the orbit space of a compact topolog
ical transformation group, Duke Math. Jour., 27 (1960) 341-357. 

[27] Conner, P. E., and Floyd, E. E., A characterization of generalized manifolds, 
Michigan Math. Jour., 6 (1959) 33-43. 

[28] Conner, P. E., and Floyd, E. E., Differentiable Periodic Maps, Academic 
Press (1964). 

[29] van Dantzig, D., Uber topologisch homogene kontinua, FUnd. Math., 15 
(1930) 102-125. 

[30] Deheuvals, R., Homologie des ensembles ordonnes et des espaces topologi
ques, Bulletin, Soc. Math. de France, 90 (1962) 261-321. 

[31] Deo, S., The cohomological dimension of an n-manifold is n + 1, Pacific 
Jour. of Math., 67 (1978) no. 1, 155-160. 

[32] Dolbeault, P., Sur la cohomologie des varieUs analytiques complexes, C. R 
Acad. Sci. Paris, 236 (1953) 175-177. 

[33] Dranishnikov, A. N., On a problem of P. S. AleksandrofJ, Mat. Sbornik, 135 
(1988) 551-557. 

[34] Dugundji, J., Topology, Allyn and Bacon (1966). 
[35] Dydak, J., and Walsh, J., Sheaves that are locally constant with applications 

to homology manifolds, in Geometric Topology and Shape Theory, Springer
Verlag, New York, (1987) 65-87. 

[36] Dydak, J., and Walsh, J., Cohomologicallocal connectedness of decomposi
tion spaces, Proc., A. M. S., 107 (1989) 1095-1105. 

[37] Dydak, J., and Walsh, J., Estimates of the cohomological dimension of de
composition spaces, Topology and its Applications, 40 (1991) 203-219. 

[38] Eilenberg, S., and Steenrod, N., Foundations of Algebraic Topology, Prince
ton Univ. Press (1952). 

[39] Fary, I., Values critiques et algebres spectrales d'une application, Annals of 
Math., 63 (1956) 437-490. 

[40] Godement, R, Topologie Algebrique et Theorie des Faisceaux, Hermann, 
Paris (1958). 

[41] Grothendieck, A., Sur quelques points d'algebre homologique, Tohoku Math. 
Jour., 9 (1957) 119-221. 

[42] Grothendieck, A., (with Dieudonne, J.), Elements de Geometrie Algebrique, 
Pub. Math. Inst. des Hautes Etudes, Paris (1960-). 

[43] Harlap, A. E., Local homology and cohomology, homology dimension and 
generalized manifolds, Mat. Sbornik, 96 (1975) 347-373. 

[44] Heller, A., and Rowe, K. A., On the category of sheaves, Amer. Jour. of 
Math., 84 (1962) 205-216). 

[45] Hilton, P. J., and Wylie, S., Homology Theory, Cambridge Univ. Press 
(1960). 

[46] Hirzebruch, F., Topological Methods in Algebraic Topology, Third Edition, 
Springer-Verlag (1966). 

[47] Hocking, J. G., and Young, G. S., Topology, Addison-Wesley (1961). 
[48] Hu, S. T., Fiberings of enveloping spaces, Proc. London Math. Soc., 11 



Bibliography 489 

(1961) 691-707. 
[49] Hurewicz, W., and Wallman, H., Dimension Theory, Princeton Univ. Press 

(1948). 
[50] Jussila, 0., On homology theories in locally connected spaces, II, Ann. Acad. 

Sci. Fenn. (A) 378 (1965) 8pp. 
[51] Kan, D. M., Adjoint functors, Trans. Amer. Math. Soc., 87 (1958) 295-329. 
[52] Kawada, Y., Cosheaves, Proc. Japan Academy, 36 (1960) 81-85. 
[53] Kelley, J. L., General Topology, Van Nostrand (1955). 
[54] Kelly, G. M., Observations on the Kiinneth theorem, Proc. Camb. Phil. Soc., 

59 (1963) 575-587. 
[55] Kuz'minov, V. I., and Liselkin, V. D., The softness of an inductive limit of 

soft sheaves, Siberian Math. Jour., 12 (1971) 820-82l. 
[56] Leray, J., L'anneau spectral et l'anneaufiltre d'homologie d'un espace locale

ment compact et d'une application continue, Jour. Math. Pures et Appl., 29 
(1950) 1-139. 

[57] Leray, J., L'homologie d'un espacefibre dont lafibre est connexe, Jour. Math. 
Pures et Appl., 29 (1950) 169-213. 

[58] Mac Lane, S., Homology, Academic Press (1963). 
[59] Mardesic, S., Comparison of singular and Cech homology in locally connected 

spaces, Mich. Math. J., 6 (1959) 151-166. 
[60] Mitchell, W. J. R., Homology manifolds, inverse systems and cohomological 

local connectedness, J. London Math. Soc. (2), 19 (1979) 348-358. 
[61] Montgomery, D. Locally homogeneous spaces, Annals of Math., 51 (1950) 

261-271. 
[62] Nagata, J., Modern Dimension Theory, Interscience Publ. (1965). 
[63] Nobeling, G., Verallgemeinerung eines Satzes von Herrn E. Specker, Inven

tiones Math., 6 (1968) 41-55. 
[64] Nunke, R. J., Modules of extensions over Dedekind rings, Illinois Jour. of 

Math., 3 (1959) 222-24l. 
[65] Oliver, R., A proof of the Conner conjecture, Annals of Math., 103 (1976) 

637-644. 
[66] Oliver, R., Smooth Compact Lie Group Actions on Disks, Mathematische 

Zeitschrift, 149 (1976) 79-96. 
[67] Pol, E., and Pol, R., A hereditarily normal strongly zero-dimensional space 

with a subspace of positive dimension and an N-compact space of positive 
dimension, Fund. Math., 97 (1977) 43-50. 

[68] Raymond, F., Local cohomology groups with closed supports, Mathematische 
Zeitschrift, 76 (1961) 31-4l. 

[69] Raymond, F., The end point compactification of manifolds, Pacific Jour. of 
Math., 10 (1960) 947-963. 

[70] Roy, P., Failure of equivalence of dimension concepts for metric spaces, Bull. 
A. M. S., 68 (1962) 609-613. 

[71] Rubin, L. R., Characterizing cohomological dimension: The cohomological 
dimension of AU B, Topology and its Appl., 40 (1991) 2:33-263. 

[72] Rubin, L. R., and Schapiro, P. L., Compactifications which preserve coho
mological dimension, Glasnik Mat., 28 (1993) 155-165. 

[73] Seifert, H., and Threlfall, W., A Textbook of Topology (translation), Acad. 
Press (1980) 

[74] Serre, J.-P., Faisceaux algebraique coherents, Annals of Math., 61 (1955) 
179-278. 



490 Bibliography 

[75] Spanier, E. H., Algebraic Topology, McGraw-Hill (1966). 
[76] Spanier, E. H., Cohomology theory for general spaces, Annals of Math., 49 

(1948) 407-427. 
[77] Specker, E., Additive Gruppen von Folgen ganzer Zahlen, Port. Math., 9 

(1950) 131-140. 
[78] Steenrod, N., The Topology of Fibre Bundles, Princeton Univ. Press (1951). 
[79] Steenrod, N., and Epstein, D. B. A., Cohomology Operations, Annals of 

Math. Study, 50 (1962). 
[SO] Swan, R. G., The Theory of Sheaves, Univ. of Chicago Press (1964). 
[SI] Ungar, G. S., Local homogeneity, Duke Math. Jour., 34 (1967) 693-700. 
[S2] Whitehead, J. H. C., Note on the condition n-colc, Michigan Math. Jour., 4 

(1957) 25-26. 
[S3] Wilder, R. L., Monotone mappings of manifolds, I, Pacific J. Math., 7 (1957) 

1519-152S; II, Michigan Math. Jour., 5 (1958) 19-23. 
[84] Wilder, R. L., Some consequences of a method of proof of J. H. C. White

head, Michigan Math. Jour., 4 (1957) 27-31. 
[S5] Wilder, R. L., Topology of Manifolds, Amer. Math. Soc. Colloquium Pub. 

32 (1949). 
[86] Yang, C. T., p-adic transformation groups, Michigan Math. Jour., 7 (1960) 

201-21S. 
[S7] Young, G. S., A characterization of 2-manifolds, Duke Math. Jour., 14 

(1947), 979-990. 



List of Symbols 

Ax 2 covdimX 29 
9'h-{(A) 3 Sn(X;A) 30 
A/:::,.fiJ 3 ~*(X, A) 31 
A(Y) 4 .1* 31 
AIY 7 ;JtP(p*) 34 

lsi 7 HLC 35 
fiJ/A 10 U --+ A 36 

~ 11 ~*(X;A) 37 

AA 11 l*(X;A) 37 

fA 12 C;P(X;A) 38 

f*fiJ 12 H;p(X;A) 38 

fiJ"-tA 14 3T*(X;A) 39 

A0fiJ 18 F;(XjA) 39 

A*fiJ 18 M*(XjA) 39 

A0fiJ 19 Ext~,&l(A, fiJ) 43 

fifiJ 19 J(A) 44 

AtJ)fiJ 19 .9'*(XjA) 44 

AxfiJ 19 $*(XjA) 44 

lin} A", 2tl aUf3 57 

:Jfom(A, fiJ) 21 axf3 59 
f* 62 

E(<I» 22 
ft 63 

c 22 
N 78 

cld 22 
~*(X,AjA) 84 

f4> 22 C;P(X, AjA) 84 
<I>nY 23 H;P(X, AjA) 84 
<I>IY 23 dim4>,L X 111 
<I>xW 23 dimLX 112 r 1w 23 Ind4> X 122 
A*(XjG) 24 indX 124 
AsH;P(XjA) 25 H*(Xj L) 126 
S*(X;A) 26 clc2 126 
.9'*(XjA) 26 Tp(A) 149 
~H;P(XjA) 26 Stn, St j 153 
O*(X) 27 Sqj 168 
oH;P(X) 27 p1, 168 
6;P(11; G) 27 DimX 171 
~*(11; G) 27 sH~(X;A) 179 
h;P(l1; G) 28 AH;p(X; fiJ) 185 
6;P(XjG) 28 E~,q ==? Hp+q ( • ) 198 
h;P(X;G) 28 U· 210 

491 



492 List of Symbols 

w(U) 210 <tos~eC1f(21) 428 
h,Ji 210 q'p (U, 110; IB, 21) 435 
.1t'~ (j, jlA; Ji) 213 Hp(U,Uo ; IB, 21) 435 
cp(w) 219 Hp(X, A; IB, 21) 435 

r 222 FpC* 449 
dim~,LA 237 GpC· 449 
21(U) 281 zp,q 449 r 

6.(X; L) 281 EP,q 
r 450 

rcQ', rc{Q'} 282 
~(21,M) 285 
210 B(J 286 
j21 286 
21x 286 
9' * (X, A; Ji) 287 
sH:(X,A;Ji) 288 
QlJ(21.; M) 289 
f)(21*; M) 290 
QlJ(Q'*; M) 290 
W*(XjJi) 292 
C~(XjJi) 292 
H:(XjJi) 292 
.1t'.(X;Ji) 293 
cp# 299 
C~(X,AjJi) 305 
H~(X,AjJi) 305 
W *(X,AjJi) 305 
.1t'; (f,fIA; Ji) 322 
n-whmL 329 
n-hmL 329 
@ 329 
~ 329 
@-l 331 
O'.n(3 336 
~d(21,M) 349 
hld'], 350 
n-cmL 375 
0'.-(3 345 
0'..(3 345 
(a, (3) 346 
2i 419 
Cp(U; 21) 424 
Hp(Uj 21) 424 
Hp(X;21) 425 
t,p(X; 21) 425 
E;,q(U) 432 



List of Selected Facts 

The relationships among the various classes of acyclic sheaves are many and 
varied. Since they are also scattered throughout the text, we have appended 
this list of many of them for the convenience of the reader. The cross
references provide justifications for the statements. For the full statements, 
see these references. In statements involving the properties cI>-soft and cI>
fine, we tacitly assume that cI> is paracompactifying. 

(a) We have the following implications: 
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<p-fine =======::}; <p-soft 

II-5.3, II-9.6, II-9.16, II-Exercise 17, V-3.2. 
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(c) ..;{ flabby '* f..;{ flabby; II-5.7. 
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o '* ..;{ ®.At flabbYj II-5.13. 

(e) ..;{ flabby '* f"iJ(..;{ cI>-softj IV-3.3. 
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(i) ..;{ cI>-soft '* ..;{IA (cI>IA)-soft; II-9.2. 
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monodromy, 229 
monopresheaf, 6, 23, 31 
monotone mapping, 389, 397 
Montgomery, D., 393 
multifunctor, 53 

N 
nerve, 29 
Nobeling, G., 173, 293,314 
Nunke, 373 

o 
Oliver, R., 145, 267, 277, 476 
operation 

cohomology, 148 
orbit, 137, 178, 216, 247, 267 
orientable, 329 

locally, 372, 377 
orientation, 236, 268 
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see sheaf, orientation 

P 
p-adic group, 394, 397, 399 
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orbit space of, 398, 400 

pair 
excisive, 96, 98-100, 170 

pairing 
intersection, 345 
Kronecker, 346 
Poincare, 341-342 

paracompact 
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hereditarily, 21,66, 73, 112-113, 
277 

locally, 112 
paracompactification, 170 
paracompactifying, 22 

for a pair, 70, 73 
Poincare duality 

see duality, Poincare 
Poincare Lemma, 36 
pointwise split, 18 
Pol, E. and R., 123 
Pontryagin, 118 
Pontryagin class, 254 
precosheaf, 281 

constant, 281 
equivalent, 374, 422 
local isomorphism of, 349, 421 
locally constant, 374 
locally zero, 349, 421, 426 
smooth, 422, 428, 430, 448 

presheaf, 1 
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conjuntive, 22 
constant, 2 
differential, 34 
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graded,34 
locally finitely generated, 217 
mono-, 6 

principle 
minimality, 74, 169 
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cap, 336, 340-341, 343, 412-413 
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cross, 59, 81, 100, 107, 126, 346 
cup, 25, 27, 57, 64, 71, 81, 86, 

94, 100, 149, 171, 178, 
180-181, 183, 185-186,215, 
225-226, 237 

direct, 19 
intersection, 344 
tensor, 18, 70, 120 
torsion, 18 
total tensor, 19, 107, 110, 170, 

175 
total torsion, 19 

projective plane, 216, 223 
projective sheaf 

see sheaf, projective 
projective space, 13, 77 
proper map 

see map, proper 

Q 
quasi-coresolution, 350, 352-353, 

355 
example of, 354-355 

quasi-resolution, 350 
quotient sheaf 

see sheaf, quotient 

R 
Raymond, F., 134, 137, 382, 391 
reduced cohomology 

see cohomology, reduced 
reduced homology 

see homology, reduced 
refinement, 28 
reflector, 422, 428, 430 
relative homeomorphism 

see homeomorphism, relative 
relatively Hausdorff, 66, 73 
resolution, 34, 47, 51, 111, 175 

canonical, 37, 39 
canonical injective, 44 
homotopically trivial, 37-38 
injective, 42, 45 

restriction, 73 
Roy, P., 125 
Rubin, L. R., 241 

S 
81, 6 
82, 6 
section, 2, 4 

discontinuous, 16, 36 
locally trivial, 6 
of homology sheaf, 326 
presheaf of, 4 
support of, 7 
zero, 4 

sections 
restriction of, 24 
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admissible, 52 
cohomology, 84, 170 
connected, 18, 52, 56 
exact, 9 
fundamental, 53 
Gysin, 236 
homology, 292, 305,307 
left exact, 9, 22 
locally exact, 411 

Index 

Mayer-Vietoris, 94, 98, 100, 169, 
412 

of a pair, 72 
of order two, 34 
of triple, 88 
pointwise split, 18, 52 
Smith, 142, 408 
8mith-Gysin, 251, 264-265 
Wang, 237 
Kiinneth, see Kiinneth theorem, 

serration, 16, 36 
sheaf,3 

acyclic, 46-47, 49, 65, 68, 
110-111,171,175,276 

Alexander-Spanier, 201 
concentrated on subspace, 

106-107, 174, 212, 238 
constant, 7, 31 
constant, subsheaf of, 12, 32 
derived, 34, 174 
differential, 34, 198, 202 
elementary, 295, 297, 305, 

307-309,311-313,325 
J-cohomomorphism of, 14 
J-homomorphism of, 411 
filtered differential, 257 
fine, 69-70, 107, 169-170,225, 
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flabby, 47, 49, 66, 70-71, 
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graded, 34 
Hom, 21 
homology, 7, 34, 137, 322 
homotopically fine, 172 
injective, 41, 48, 170,293 
Leray, 213-216, 218, 222, 

227-229, 231-233, 236, 252, 
267, 277, 395 

Leray, of bundle, 228 
Leray, of projection, 227, 229 
locally constant, 7, 31, 178 
locally finitely generated, 217 
of germs, 3, 10, 174, 195 
of local homology groups, 293 
of modules, 3 
of rings, 3, 8, 38, 211 
orientation, 7, 77, 207, 234, 329, 

386, 414 
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projective, 30 
quotient, 10, 16 
replete, 293, 295, 297, 301, 

308-309, 403 
restriction of, 7, 66, 71 
soft, 65-66, 68-70, 102, 110-111, 

119-120,170,175,210,275, 
282, 284, 286, 288, 299, 352, 
403, 464 

topology of, 2, 4-5 
torsion-free, 38, 177, 286 
twisted, 13 
weakly torsion-free, 412 

sine curve 
topologist's, 74, 184, 277 

Skljarenko, E. G., 121, 232, 238, 
245-246 

slice, 178 
Smith sequence 

see sequence, Smith 
Smith theorem, 143,409 
Smith, P. A., 143 
Smith-Gysin sequence 

see sequence, Smith-Gysin 
soft 

see sheaf, soft 

solenoid, 80, 103, 228, 315, 
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embedding of, 333 
space 

acyclic, 79-80, 144, 147, 169, 
271-274, 319 
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lens, 145, 472 
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locally homogeneous, 392 
locally isotopic, 393 
orbit, 137, 144, 146-147, 216, 

271,398, 400, 409 
paracompact, 21 
rudimentary, 78, 178, 317 
simply ordered, 169 
well pointed, 95 
zero dimensional, 122 

Spanier, E. H., 35,. 73 
Specker, E., 173 
spectral sequence 

for inverse system, 207 
for relative cohomology, 206 
for singular cohomology, 276 
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of a cIs, 396, 484 
of a covering, 278, 431-432, 436 
of Borel, 248, 275 
of Cartan, 251 
of Fary, 263-265 
of filtered differential sheaf, 258, 

262 
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of inclusion, 240 
of Leray, 222, 225, 229-230, 233, 

236-237, 263, 268, 270, 275 
of map for homology, 324 

sphere 
separation of, 275 

sphere bundle 
see bundle, sphere 
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Steenrod, 30, 148, 162 
Steenrod power, 168 
Steenrod square, 168 
Stiefel-Whitney class, 254, 276 
Stokes' theorem, 188 
structure group, 228 
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taut, see taut 

sum 
direct, 19 

support, 7, 281 
supports 

closed,22 
compact, 22, 74 
empty, 22 
extension of, 219 
extent of, 22 
family of, 21, 23, 219 

suspension, 95 
system 

T 

direct, 20, 30 
inverse, 100 

taut, 35, 73, 85, 90-91, 99, 169-170 
hereditarily, 169 

tensor product 
universal property of, 31 

theory 
cohomology, 56 

Thorn class, 235, 252, 276 
Thorn isomorphism, 235, 276 
Torhorst, 134 
torsion, 172-173 
transfer, 77, 139, 321, 405 

of Oliver, 268-270 
transformation group 

see group, transformation 
tube, 178, 267 
Tychonoff plank, 467 

U 
Ungar, G. S., 393 
unity 

partition of, 170 
universal coefficient theorem, 109, 

275, 298, 352, 363, 365, 414 

V 
vector bundle 

see bundle, vector 
Vietoris, 76, 78, 222, 245-246, 317 
Vietoris map, 323, 389-390, 398 

C-, 225 

W 
Walsh, J., 216, 242-243 
Wang sequence 

see sequence, Wang 
Whitehead, J. H. C., 379 
Whitney duality 

see duality, Whitney 
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Young, G. S., 388 
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Zariski space, 172 
zero 

extension by, 11, 49, 71, 212, 286 
locally, 9, 349 
semilocally, 420 
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