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Preface 

Their memorials are covered by sand, 
their rooms are forgotten. 
But their names live on by the books they wrote, 
for they are beautiful. 

(Egyptian poem, 1500--1000 BC) 

The theory of Bergman spaces experienced three main phases of development 
during the last three decades. 

The early 1970's marked the beginning of function theoretic studies in these 
spaces. Substantial progress was made by Horowitz and Korenblum, among others, 
in the areas of zero sets, cyclic vectors, and invariant subspaces. An influential pre­
sentation of the situation up to the mid 1970 's was Shields' survey paper "Weighted 
shift operators and analytic function theory". 

The 1980's saw the thriving of operator theoretic studies related to Bergman 
spaces. The contributors in this period are numerous; their achievements were 
presented in Zhu's 1990 book "Operator Theory in Function Spaces". 

The research on Bergman spaces in the 1990 's resulted in several breakthroughs, 
both function theoretic and operator theoretic. The most notable results in this 
period include Seip's geometric characterization of sequences of interpolation and 
sampling, Hedenmalm's discovery of the contractive zero divisors, the relationship 
between Bergman-inner functions and the biharmonic Green function found by 



vi Preface 

Duren, Khavinson, Shapiro, and Sundberg, and deep results concerning invari­
ant subspaces by Aleman, Borichev, Hedenmalm, Richter, Shimorin, and Sund­
berg. 

Our purpose is to present the latest developments, mostly achieved in the 
1990's, in book form. In particular, graduate students and new researchers in 
the field will have access to the theory from an almost self-contained and read­
able source. 

Given that much of the theory developed in the book is fresh, the reader is 
advised that some of the material covered by the book has not yet assumed a 
final form. 

The prerequisites for the book are elementary real, complex, and functional 
analysis. We also assume the reader is somewhat familiar with the theory of 
Hardy spaces, as can be found in Duren's book "Theory of HP Spaces", Gar­
nett's book "Bounded Analytic Functions", or Koosis' book "Introduction to if 
Spaces". 

Exercises are provided at the end of each chapter. Some of these problems 
are elementary and can be used as homework assignments for graduate students. 
But many of them are nontrivial and should be considered supplemental to the 
main text; in this case, we have tried to locate a reference for the reader. 

We thank Alexandru Aleman, Alexander Borichev, Bernard Pinchuk, Kristian 
Seip, and Sergei Shimorin for their help during the preparation of the book. We 
also thank Anders Dahlner for assistance with the computer generation of three 
pictures, and Sergei Treil for assistance with one. 

January 2000 Haakan Hedenmalm 
Boris Korenblum 

Kehe Zhu 
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1 
The Bergman Spaces 

In this chapter we introduce the Bergman spaces and concentrate on the general 
aspects of these spaces. Most results are concerned with the Banach (or metric) 
space structure of Bergman spaces. Almost all results are related to the Bergman 
ke:rnel. The Bloch space appears as the image of the bounded functions under the 
Bergman projection, but it also plays the role of the dual space of the Bergman 
spaces for small exponents (0 < p ~ l). 

1.1 Bergman Spaces 

Throughout the book we let C be the complex plane, let 

JI})= {z EC: Izl < I} 

be the open unit disk in C, and let 

1I' = {z E C : Izl = I} 

be the unit circle in <C. Likewise, we write IR for the real line. The normalized 
area measure on JI}) will be denoted by d A. In terms of real (rectangular and polar) 
coordinates, we have 

I I 
dA(z) = - dx dy = - r dr de, z = x + iy = re i8 . 

n n 
We shall freely use the Wirtinger differential operators 

a l(a .a) -=- --/-
az 2 ax ay' 
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where again Z = x + i y. The first acts as differentiation on analytic functions, and 
the second has a similar action on antianalytic functions. 

The word positive will appear frequently throughout the book. That a function 
I is positive means that I(x) 2: 0 for all values of x, and that a measure JL is 
positive means that JL(E) 2: 0 for all measurable sets E. When we need to express 
the property that I(x) > 0 for all x, we say that I is strictly positive. These 
conventions apply - mutatis mutandis - to the word negative as well. Analogously, 
we prefer to speak of increasing and decreasing functions in the less strict sense, 
so that constant functions are both increasing and decreasing. 

We use the symbol'" to indicate that two quantities have the same behavior 
asymptotically. Thus, A '" B means that AI B is bounded from above and below 
by two positive constants in the limit process in question. 

For 0 < p < +00 and -1 < a < +00, the (weighted) Bergman space 
A~ = A~ (j[})) of the disk is the space of analytic functions in LP(j[}), dAa), where 

dAa(z) = (a + 1)(1 - Id)a dA(z). 

If I is in LP(j[}), dAa), we write 

1l/lIp.a = [L I/(z)iP dAa(Z)f
IP 

When I :s p < +00, the space LP(j[}), dAa) is a Banach space with the above 
norm; when 0 < p < 1, the space LP(j[}), dAa) is a complete metric space with 
the metric defined by 

d(f, g) = III - gll~.a. 

Since d(f, g) = d(f - g, 0), the metric is invariant. The metric is also p­
homogeneous, that is, deAf, 0) = IAIPd(f,O) for scalars A E Co Spaces of this 
type are called quasi-Banach spaces, because they share many properties of the 
Banach spaces. 

We let LOO(j[})) denote the space of (essentially) bounded functions on j[}). For 
IE LOO(j[})) we define 

11/1100 = esssup {1/(z)1 : Z E j[})}. 

The space L 00 (j[})) is a Banach space with the above norm. As usual, we let H oo 
denote the space of bounded analytic functions in j[}). It is clear that H oo is closed 
in L 00 (j[})) and hence is a Banach space itself. 

PROPOSITION 1.1 Suppose 0 < p < +00, -I < a < +00, and that K is 
a compact subset olj[}). Then there exists a positive constant C = C(n, K, p, a) 
such that 

sup {1/(n)(Z)1 : Z E K} :s C IIfllp.a 

lor all I E A~ and all n = 0, 1, 2, .... In particular, every point-evaluation in j[}) 
is a bounded linear functional on A~. 
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Proof. Without loss of generality we may assume that 

K = {z E C : Izl ::; r} 

for some r E (0, I). We first prove the result for n = O. 
Let a = (l - r)/2 and let B(z, a) denote the Euclidean disk at z with radius 

a. Then by the subharmonicity of I f I P , 

If(z)jP ::; ~ r If(w)jP dA(w) 
a J B(z.a) 

for all Z E K. It is easy to see that for all z E K we have 

1- Id ~ I - Izl ~ (l - r)/2. 

Thus, we can find a positive constant C (depending only on r) such that 

If(z)jP ::; C 1 If(w)jP dAa(w) ::; C i If(w)jP dAa(w) 
B(z.a) IIJJ 

for all z E K. This proves the result for n = O. 
By the special case we just proved, there exists a constant M > 0 such that 

If(nl :::: Mllfllp,a for alll~ 1= R, where R = (l + r)/2, Now if z E K, then by 
Cauchy's integral formula, 

(n) n! 1 f(nd~ f (z) = -. . 
2m I{I=R (~ - z)n+l 

It follows that 

(n) n!M R 
If (z)l::; ~ Ilfllp.a a 

for all z E K and f E Ag. • 
As a consequence of the above proposition, we show that the Bergman space 

Ag is a Banach space when 1 ::; p < +00 and a complete metric space when 
O<p<1. 

PROPOSITION 1.2 For every 0 < p < +00 and -I < ct < +00, the weighted 
Bergman space Ag is closed in LP(ID, dAa). 

Proof. Let (fn}n be a sequence in Ag and assume fn -7 fin LP(ID, dAa). 
In particular, (fn}n is a Cauchy sequence in LP(ID, dAa). Applying the previous 
proposition, we see that {fn}n converges uniformly on every compact subset ofID. 
Combining this with the assumption that fn -7 f in LP(ID, dAa), we conclude 
that fn(z) -7 fez) uniformly on every compact subset of ID. Therefore, f is 
analytic in ID and belongs to Ag. • 

In many applications, we need to approximate a general function in the Bergman 
space Ag by a sequence of "nice" functions. The following result gives two 
commonly used ways of doing this, 
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PROPOSITION 1.3 For an analytic function f in IlJJ and 0 < r < 1, let fr be 
the dilated function defined by fr(z) = f(rz), Z E IlJJ. Then 

(1) For every f E Ag, we have IIfr - fllp.a --+ Oas r --+ 1-. 

(2) For every f E Ag, there exists a sequence {Pn}n of polynomials such that 
IIPn - fllp,a --+ 0 as n --+ +00. 

Proof. Let f be a function in Ag. To prove the first assertion, let <5 be a number 
in the interval (0, 1) and note that 

llfr(z) - f(z)iP dAa(z) < ( Ifr(z) - f(z)iP dAa(z) 
11zl -:08 

+ { (lfr(z)1 + If(z)IY dAa(z). 
18<lzl<1 

Since f is in LP(IlJJ, dAa ), we can make the second integral above arbitrarily small 
by choosing <5 close enough to 1. Once <5 is fixed, the first integral above clearly 
approaches 0 as r --+ 1-. 

To prove the second assertion, we first approximate f by fr and then 
approximate fr by its Taylor polynomials. _ 

Although any function in Ag can be approximated (in norm) by a sequence of 
polynomials, it is not always true that a function in Ag can be approximated (in 
norm) by its Taylor polynomials. Actually, such approximation is possible if and 
only if 1 < P < +00; see Exercise 4. 

We now turn our attention to the special case P = 2. By Proposition 1.2 the 
Bergman space A~ is a Hilbert space. For any nonnegative integer n, let 

en(z) = 
r(n+2+a) n 
~----z , 
n! r(2 + a) 

Z E IlJJ. 

Here, r (s) stands for the usual Gamma function, which is an analytic function of s 
in the whole complex plane, except for simple poles at the points {a, -1, -2, ... }. 
It is easy to check that {en}n is an orthonormal set in A~. Since the set of poly­
nomials is dense in A~, we conclude that {en}n defined above is an orthonormal 
basis for A~. It follows that if 

+00 
fez) = Lanzn 

n=O 

are two functions in A~, then 

and 
+00 

g(z) = Lbnzn 
n=O 

2 +00 n! r (2 + a) 2 

IIfII2 =?; r(n +2+a) lanl 
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and 

+00 n! r (2 + a) _ 
(f, g)a = ?; r(n + 2 + a) anbn, 

where (., ·)a is the inner product in A~ inherited from L2(lDl, dAa). 

PROPOSITION 1.4 For -1 < a < +00, let Pa be the orthogonal projection 
from L2(lDl, dAa) onto A~. Then 

P _ [ few) dAa(w) 
af(z) - j'J]J (1 - ZW)2+a ' Z E lDl, 

Proof. Let {enln be the orthonormal basis of A~ defined a little earlier. Then 
for every f E L2(lDl, dAa) we have 

+00 
Paf = L(Paf, en)a en· 

n=O 

In particular, 

+00 
Paf(z) = L(Paf, en)a en(z) 

n=O 

for every Z E lDl and the series converges uniformly on every compact subset of lDl. 
Since 

we have 

Paf(z) 
+00 r(n+2+a) i 
L f(w)(zw)n dAa(w) 
n=O n! r(2 + a) 'J]J 

[ [+OOr(n+2+a) ] 
j'J]J few) ?; n! r(2 + a) (zW)n dAa(w) 

~ f(w)dAa(w) 
jT£, (1 - zW)2+a . 

The interchange of integration and summation is justified, because for each fixed 
z E lDl, the series 

converges uniformly in w E lDl. • 
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The operators Pa above are called the (weighted) Bergman projections on lDJ. 
The functions 

1 
Ka(z, w) = (l _ zw)2+a' z, wE lDJ, 

are called the (weighted) Bergman kernels of lDJ. These kernel functions play an 
essential role in the theory of Bergman spaces. 

Although the Bergman projection Pa is originally defined on L2(lDJ, dAa), the 
integral formula 

Paf(z) = f f(w)dAa(w) 
J][]) (l - zw)2+a 

clearly extends the domain of Pa to Ll (lDJ, dAa). In particular, we can apply Pa 
to a function in LP(lDJ, dAa) whenever 1 ::s p < +00. 

If f is a function in A~, then Paf = f, so that 

fez) = f][]) f(w)dAa(w) 
J[ (l - zw)2+a ' 

Since this is a pointwise formula and A~ is dense in A~, we obtain the following. 

COROLLARY 1.5 Iff is afunction in A~, then 

fe z) = f][]) few) dAa(w) 
J[ (l - zw)2+a ' 

Z E lDJ, 

and the integral converges uniformly for z in every compact subset oflDJ. 

This corollary will be referred to as the reproducing formula. The Bergman 
kernels are special types of reproducing kernels. 

On several occasions later on theorems will hold only for the un weighted 
Bergman spaces. Thus, we set A P = Ag and call them the ordinary Bergman 
spaces. The corresponding Bergman projection will be denoted by P, and the 
Bergman kernel in this case will be written as 

1 
K(z,w)= 2' 

(l - zw) 

The Bergman kernel functions are intimately related to the Mobius group 
Aut (lDJ) of the disk. To see this, let z E lDJ and consider the Mobius map ({Jz of 
the disk that interchanges z and 0, 

z-w 
({Jz(w) = -1 ---, 

-zw 
WE lDJ. 

We list below some basic properties of ({Jz, which can all be checked easily. 

PROPOSITION 1.6 The Mobius map ({Jz has the following properties: 

(1) ({i;l = ({Jz. 
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(2) 'T'h lIb' d . if . I '( )12 (1 - Id)2 
I J e rea Jaco zan etermmant 0 cpz at W IS CPz W = 11 _ zwI4 . 

(3) 1 _ I (w)12 = (1 - Id)(1 - Iw12) 
({Jz 11 - zwI2 

As a simple application of the properties above, we mention that the formula 
for the Bergman kernel function Ka (z, w) can be derived from a simple change of 
variables, instead of using an infinite series involving the Gamma function. More 
specifically, if f E A';, then the rotation invariance of dAa gives 

f(O) = 10 f(w)dAa(w). 

Replacing f by f 0 ({Jz, making an obvious change of variables, and applying 
properties (2) and (3) above, we obtain 

2 2+a r few) dAa(w) 
fez) = (1 - Izl) }'I} (1 _ wZ)2+a(1 _ zW)2+a' 

Fix z E ]jJ), and replace f by the function w 1-+ (1 - wz)2+a few). We then arrive 
at the reproducing formula 

- r few) dA w 
fez) - }'I} (1 _ zW)2+a a(), Z E]jJ), 

for f E A';. From this we easily deduce the integral formula for the Bergman 
projection Pa . 

1.2 Some LP Estimates 

Many operator-theoretic problems in the analysis of Bergman spaces involve esti­
mating integral operators whose kernel is a power of the Bergman kernel. In this 
section, we present several estimates for integral operators that have proved very 
useful in the past. In particular, we will establish the boundedness of the Bergman 
projection P a on certain LP spaces. 

THEOREM 1.7 For any -1 < a < +00 and any real fl, let 

r (1- Iwl2)a 
Ia.fi(Z) = }'I} 11 _ zwl2+a+ fi dA(w), Z E]jJ), 

and 

Z E]jJ). 
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Then we have 

la.,(z) - J,(z) - { 

as Izl -+ 1-. 

1 
loo----=­

e 1 _ Izl2 
1 

if fJ < 0, 

if fJ = 0, 

if fJ > 0, 

Proof. The condition -1 < a < +00 ensures that the integral Ia.fJ (z) is 
convergent for every z E lJ)). The integral lf3(z) clearly converges for all z E lJ)). 

Let A = (2 + a + fJ)/2. If A is a nonpositive integer, then clearly fJ < ° and 
la.fJ(z) is bounded. In what follows, we assume that A is not a nonpositive integer. 
In this case, we make use of the following power series: 

1 +00 r(n + A) _ n 

(l - zwY' = ~ n! rCA) (zw) . 

Since the measure (1 - Iwl2)a dA(w) is rotation invariant, we have 

Ia.fJ(z) = ~ (l - Iwl2)a dA(w) 

J)1, 11 - zwl2A 

" Izl2n (l - Iwl2)al w l2n dA(w) 
+00 r(n + A)2 i 
-f:o (n!)2r(A)2 ][JI 

r(a + 1) +00 r(n + A)2 2n 

r(A)2 ~ n! r(n + a + 2) Izl . 

By Stirling's formula, 

r(n + A)2 
----- '" (n + I)fJ- 1, 
n!r(n+a+2) 

If fJ < 0, then the series 

+00 Izl2n 

~ (n + I)I-fJ 

n -+ +00. 

clearly defines a bounded function on lJ)), and so I a.f3(z) is bounded on lJ)). 
If fJ = 0, then we have 

+00 Izl 2n 1 
Ia.o(z) '" ~ n + 1 '" log 1 _ Izl2 

as Izl-+ 1-. 
If fJ > 0, then we have 
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as Izl ~ 1-, because 

1 +00 f(n + fJ) 2n 

(l - IzI2).8 =?; n! r(fJ) Izl 

and 

by Stirling's formula again. 

f (n + fJ) '" (n + 1).8-1 
n!r(fJ) 

The estimate for J.8(z) is similar; we omit the details. • 
The following result, usually called Schur's test, is a very effective tool in proving 

the LP -boundedness of integral operators. 

THEOREM 1.8 Suppose X is a measure space and JL a positive measure on X. 
Let T (x, y) be a positive measurable function on X x X, and T the associated 
integral operator 

Tf(z) = IxT(X,Y)f(Y)dJL(Y), x E X, 

defined wherever the integral converges. If, for some 1 < P < +00, there exists a 
strictly positive measurable function h on X and a positive constant M such that 

Ix T(x, y) h(y)q dJL(Y) :::: M h(x)q, x EX, 

and 

Ix T(x, y) h(x)P dJL(x) :::: M h(y)P, Y E X, 

where p-l + q-l = 1, then T is bounded on LP(X, dJL) with I\TI\ :::: M. 

Proof. Fix a function f in LP(X, dJL). Applying HOlder's inequality to the 
integral below, 

IT f(x)1 :::: Ix h(y) h(y)-1 If(y)1 T(x, y) dJL(Y), 

we obtain 
I I 

ITf(x)l:::: [Ix T(x, y) h(y)q dJL(y)r [Ix T(x, y)h(y)-Plf(y)IP dJL(y)Y . 

Using the first inequality in the assumption, we have 

I 

ITf(x)1 :::: M 1/q h(x) [lxT(X, y)h(y)-Plf(y)IP dJL(y)Y . 
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Using Fubini's theorem and the second inequality in the assumption, we easily 
arrive at the following: 

Ix ITf(xW df.1,(x) ~ MP Ix If(y)IP df.1,(Y)· 

Thus, T is a bounded operator on LP(X, df.1,) of norm less than or equal to M .• 

We now prove the main result of this section. 

THEOREM 1.9 Suppose a, b, and c are real numbers and 

df.1,(z) = (1 - Id)C dA(z). 

Let T and S be the integral operators defined by 

r (1 - Iwl2)b 
Tf(z) = (1 - Izl2)a l'D (1 _ zW)2+a+b few) dA(w) 

and 

r (1 -lwI2)b 
Sf(z) = (1 -Id)a l'D 11 _ Zwl2+a+b f(w)dA(w). 

Thenfor 1 ~ p < +00 the following conditions are equivalent: 

(1) T is bounded on U(JD, df.1,). 

(2) S is bounded on LP(JD, df.1,). 

(3) -pa < c+ 1 < p(b+ 1). 

Proof. It is obvious that the boundedness of Son LP(I!), df.1,) implies that of T. 
Now, assume that T is bounded on LP(JD, df.1,). Apply T to a function of the form 

fez) = (1 - IzI2)N, where N is sufficiently large. An application of Theorem 1.7 
then yields the inequality c + 1 > - pa. To prove the inequality c + 1 < pCb + 1), 
we first assume p > 1 and let q be the conjugate exponent. Let T* be the adjoint 
operator of T with respect to the dual action induced by the inner product of 
L 2(JD, df.1,). It is given explicitly by 

T*f( ) = (1 _ I 12)b-c r (1 - IwI2)a+c few) dA(w) 
z z l'D (1 _ zW)2+a+b ' 

must be bounded on Lq(JD, df.1,).Again, by looking at the action ofT* on a function 
of the form fez) = (1 - IzI2)N, where N is sufficiently large, and applying 
Theorem 1.7, we obtain the inequality c + 1 < pCb + 1). If p = 1, then T* is 
bounded on L 00 (JD), and the desired inequality becomes c < b. Let T* act on the 
constant function 1. We see that c ~ b. To see that strict inequality must occur, we 
consider functions of the form 

(1 - zw)2+a+b 
fz(w) = II _ zwl2+a+b ' z, WE JD. 



1.2. Some LP Estimates 11 

Clearly, IIfz 1100 = 1 for every z E ][Jl. If b = c, then 

r (1 - IwI2)a+c dA(w) 
T* fz(z) = in 11 _ zwl2+a+c '" log 1 _ Iz12' Izl-+l-, 

by Theorem 1.7. This implies II T* fz 1100 -+ +00 as Izl -+ 1-, a contradiction 
to the boundedness of T* on LOO(][Jl). Thus, the boundedness of Ton LP(][Jl, d/L) 
implies the inequalities -pa < c + 1 < p(b + 1). 

Next, assume - pa < c + 1 < p(b + 1). We want to prove that the operator Sis 
bounded on LP(][Jl, d/L). The case p = 1 is a direct consequence of Theorem 1.7 
and Fubini's theorem. When p > 1, we appeal to Schur's test. Thus, we assume 1 < 
P < +00 and seek a positive function h(z) on ][Jl that will satisfy the assumptions 
in Schur's test. Itturns out that such a function exists in the form h(z) = (1-lzI2y, 
where s is some real number. In fact, if we rewrite 

r (1 - Id)a(1 - IwI2)b-c 
Sf(z) = in 11 _ zwl2+a+b f(w)d/L(w), 

then the conditions that the number s has to satisfy become 

i (1 - IwI2)b+qs dA(w) C 
< 2 ' n 11 - zwl2+a+b - (1 - Izl )a-qs 

Z E][Jl, 

and 

~ (1 - IzI 2)a+ps+c dA(z) < C 
it, II - zwl2+a+b - (1 - IwI 2)b-ps-c' 

w E][Jl, 

where q is the conjugate exponent of p and C is some positive constant. According 
to Theorem 1.7, these estimates are correct if 

b+qs>-l, a -qs > 0, 

and 

a + ps +c > -1, 

We rewrite these inequalities as 

b - ps - c > O. 

b+ 1 a a+c+l b-c 
--- <s <-

q q' 
----<s<--. 

p p 

It is easy to check that the inequalities - pa < c + 1 < p(b + 1) are equivalent to 

b+l b-c a+c+l a 
---<-- <-

q p' p q' 

which clearly imply that the intersection of intervals 

(_b;I,~)n(_a+;+I, b~C) 

is nonempty. This shows that the desired s exists, and so the operator S is bounded 
on LP(][Jl, d/L). • 
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One of the advantages ofthe theory of Bergman spaces over that of Hardy spaces 
is the abundance of analytic projections. For example, it is well known that there 
is no bounded projection from LI of the circle onto the Hardy space HI, while 
there exist a lot of bounded projections from L I (JD), dA) onto the Bergman space 
A I , as the following result demonstrates. 

THEOREM 1.10 Suppose -1 < a, fJ < +00 and 1 :5 p < +00. Then P,B is a 
bounded projection/rom U(JD), dAaJ onto Ag ifand only ifa + 1 < (fJ + l)p. 

Proof. This is a simple consequence of Theorem 1.9. • 
Two special cases are worth mentioning. First, if a = fJ, then Pa is a bounded 

projection from LP(JD), dAa) onto Ag if and only if 1 < p < +00. In particular, 
the (unweighted) Bergman projection P maps LP(JD), dA) onto AP if and only if 
1 < P < +oo.Second,ifp = l,thenP,BisaboundedprojectionfromL I (lIJ>,dAa ) 

onto A~ if and only if fJ > a. In particular, P,B is a bounded projection from 
L I (JD), dA) onto A I when fJ > O. 

PROPOSITION 1.11 Suppose 1 :5 P < +00, -1 < a < +00, and that n is a 
positive integer. Then an analytic function I in lIJ> belongs to Ag if and only if the 
function (1 - Id)n /(n)(z) is in LP(JD), dAa). 

Proof. First assume IE Ag. Fix any fJ > a. Then, by Corollary 1.5, 

r (1 - IwI2).B 
fez) = (fJ + 1) lID! (1 _ zW)2+.B I(w) dA(w), Z E JD). 

Differentiating under the integral sign n times, we obtain 

(1 - Id)n I(n)(z) = C (1 - Izl2)n r (1 - Iwe),B W" I(w) dA(w), 
lID! (1 - zW)2+n+.B 

where C is the constant 

C = (fJ + 1)(fJ + 2) ... (fJ + n + 1). 

By Theorem 1.9, the function (1 - Izl2)n I(n)(z) is in LP(JD), dAa). 

Next, assume that / is analytic in JD) and the function (1 - Izl2)n I(n)(z) is in 
LP (JD), d Aa). We show that I belongs to the weighted Bergman space Ag. Without 
loss of generality, we may assume that the first 2n + 1 Taylor coefficients of I are 
all zero. In this case, the function qJ defined by 

(1 - Id)n I(n)(z) 
qJ(z) = C n ' 

Z 
Z E lIJ>, 

is in LP(JD), dAa), for any constant C. Fix fJ, a < fJ < +00, and let g = P.BqJ. By 
Theorem 1.10, the function g belongs to Ag. The explicit formula for g is 

r (1-lwe).B 
g(z) = (fJ + 1) lID! (1 _ zw)2+.B qJ(w) dA(w), Z E JD). 
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If we set the constant C to be 

I 
C- ----------------------

- (f3 + 1)(f3 + 2) ... (f3 + n + I)' 
then differentiating n times in the formula for g yields 

g(n)(z) = (n + f3 + I) - l(n\w)dA(w), j (l IwI2)n+.B 

][]) (l - zw)2+n+.B 
Z E ID. 

Applying Corollary 1.5 again, we find that g(n) = I(n), so that I and g differ only 
by a polynomial. Since g is in Ag, we have I E Ag. • 

1 .. 3 The Bloch Space 

An analytic function I in ID is said to be in the Bloch space B if 

1I/IIs = sup {(l-ld)I/'(z)1 : Z E ID} < +00. 

It is easy to check that the seminorm II . lis is Mobius invariant. The little Bloch 
space Bo is the subspace of B consisting of functions I with 

lim (1 -ld)I/'(z)1 = o. 
Izl-+l-

The Bloch space plays the same role in the theory of Bergman space as the space 
BMOA does in the theory of Hardy spaces. When normed with 

IIfII = 1/(0)1 + lillis, 

the Bloch space B is a Banach space, and the little Bloch space Bo is the the closure 
of the set of polynomials in B. 

If I is an analytic function in ID with IIflloo ::::: 1, then by Schwarz's lemma, 

Z E ID. 

It follows that H oo C B with 1I/IIs ::::: 1111100. 
Let C (ID) be the space of continuous functions on the closed unit disk ID. Denote 

by Co(ID) the subspace of C( ID) consisting of functions vanishing on the unit circle 
1r. It is clear that both C(ID) and Co(ID) are closed subspaces of Loo(ID). 

THEOREM 1.12 Suppose -1 < Ci < +00 and that P", is the corresponding 
weighted Bergman projection. Then 

( 1) P '" maps L 00 (ID) boundedly onto B. 

(2) P", maps C(ID) boundedly onto Bo. 

(3) P", maps Co(ID) boundedly onto Bo. 
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Proof. First assume g E L OO (]]))) and 1= Pag, so that 

I(z) = (a + 1) [ (1 - Iwl2)a g(w) dA(w), 
Jll) (1 - zw)2+a 

Z E]])). 

Differentiating under the integral sign and applying Theorem 1.7, we see that I 
belongs to B with 

1/(0)1 + IIfIIB :::: C1iglloo 

for some positive constant C (independent of g). Thus, P a maps L 00 (]]))) boundedly 
into B. 

Next, assume g E c(if)). We wish to show that 1= Pag is in the little Bloch 
space. By the Stone-Weierstrass approximation theorem, the function g can be 
uniformly approximated on ]])) by finite linear combinations of functions of the 
form 

Z E]])), 

where nand m are nonnegative integers. Using the symmetry of]])), we easily check 
that each Pagn.m belongs to the little Bloch space. Since Pa maps L OO (]]))) bound­
edly into B, and Bo is closed in B, we conclude that P a maps C(]]))) boundedly 
into Bo. 

Finally, for I E B we write the Taylor expansion of I as 

I(z) = a + bz + cz2 + II (z), Z E ]])), 

where !I (0) = I{ (0) = 0, and define a function g in L 00 (]]))) by 

2 [ a 2 + 5a + 6 a 2 + 7a + 12 2 I{ (Z) ] 
g(z) = (1 - Izl ) a + (a + 1)2 bz + 2(a + 1)2 cz + z(a + 1) . 

It is clear that g is in Co(]]))) if I is in the little Bloch space. A direct calculation 
shows that I = Pag. Thus, Pa maps L OO (]]))) onto B; and it maps Co(]]))) (and 
hence C(ll))) onto Bo. • 

PROPOSITION 1.13 Suppose n is a positive integer and I is analytic in]])). Then 
IE B if and only if the function (1 -lzI2)n I(n)(z) is in L OO (]]))), and lEBo if 
and only if the function (1 - Izl2)n I(n)(z) is in C(iD) (or Co (]])))). 

Proof. If I is in the Bloch space, then by Theorem 1.12 there exists a bounded 
function g such that 

I(z) = [ g(w)dA(w), 
Jll) (1 - ZW)2 

Z E]])). 

Differentiating under the integral sign and applying Theorem 1.7, we see that the 
function (l - Izl2)n I(n)(z) is bounded. 

If the function g above has compact support in ]])), then clearly the function 
(l-lzI2)n I(n)(z) is in Co(]]))) (and hence in C(if))). If I is in the little Bloch space, 
then by Theorem 1.12 we can choose the function g in the previous paragraph to 
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be in Co(lD). Such a function g can then be uniformly approximated by continuous 
functions with compact support in llJJ. This shows that thefunction (1-lz 12)n fen) (z) 
is in Co(llJJ) (and hence in C(~)) whenever f is in the little Bloch space. 

To prove the "if' parts of the theorem, we may assume the first 2n + 1 Taylor 
coefficients of f are all zero. In this case, we can consider the function 

(1 - Id)n f(n)(z) 
g(z) = C n ' 

Z 
Z E llJJ. 

By the proof of Proposition 1.11, the functions f and Pg differ by a polynomial. 
The desired resul t then follows from Theorem 1.12. • 

As a consequence of this result and Proposition 1.11, we see that B is contained 
in every weighted Bergman space Ag. We can then use this observation and the 
following result to construct nontrivial functions in weighted Bergman spaces. In 
particular, we see that every weighted Bergman space contains functions that do 
not have any boundary values. 

Recall that a sequence {A.n}n of positive integers is called a gap sequence if there 
exists a constant A > 1 such that An+ 11 An 2: A for all n = 1, 2, 3, .... In this case, 
we call a power series of the form L~~ anzAn a lacunary series. 

THEOREM 1.14 A lacunary series defines a function in B if and only if the 
coefficients are bounded. Similarly, a lacunary series defines a function in Bo if 
and only if the coefficients tend to O. 

Proof. Suppose {an}n is a sequence of complex numbers with Ian I ::::: M 
for all n = 1, 2, 3, ... , and suppose {An}n is sequence of positive integers with 
An+ I jAn 2: A for all n = 1, 2, 3, ... , where 1 < A < +00 is a constant. Let 

+00 

fez) = L anzAn , 
n=O 

Clearly, f is analytic in llJJ and 

+00 
f' (z) = L anAnzAn-1 , 

n=O 

Z E llJJ. 

Z E llJJ. 

Let C = Aj(A - 1); then 1 < C < +00. It is easy to check that 

n = 1,2,3, .... 

This implies that 

An+IizIAn+l- 1 ::::: C (An+1 - An) IzIAn+l- 1 

::::: C (lzlAn + ... + IzIAn+l-I), n = 1,2,3, .... 

We also have, rather trivially, 

Allzl A1 - 1 ::::: 1 + Izl + ... + IzI A1 -1 ::::: C (1 + Izl + ... + IzI A1 -1). 



16 1. The Bergman Spaces 

It follows that 

+00 MC 
If'(z)l::: MCLlzi n = -1-1 I' 

n=O Z 
Z E 1Ol, 

and hence f is in the Bloch space. 
A similar argument shows that if f is defined by a lacunary series whose 

coefficients tend to 0, then f must be in the little Bloch space. 
Conversely, if 

+00 
f(z) = Lanzn, Z E 1Ol, 

n=O 

is any function in the Bloch space, we show that its Taylor coefficients must be 
bounded. By Corollary 1.5, we have 

, i 1-lwe , f (z) = 2 3 f (w) dA(w), 
j[]) (1 - zw) 

Z E 1Ol, 

whence it follows that 

an = f(n)(o) = (n+ 1) r wn (1-lwI 2)f'(w)dA(w), 
n! Jj[]) 

n = 1,2,3 .... 

This clearly implies that {an}n is bounded. Similarly, the formula above together 
with an obvious partition of the disk implies that {an}n converges to 0 if f is in 
the little Bloch space. • 

Finally in this section we present a characterization of the Bloch space in terms 
of the Bergman metric. Recall that for every z E 1Ol, the function f{Jz is the Mobius 
transformation that interchanges z and the origin. The pseudohyperbolic metric p 
on lIJJ is defined by 

I z-w I p(z, w) = If{Jz(w) 1 = 1 _ zw ' z,W EIOl, 

and the hyperbolic metric fJ, also called the Bergman metric or the Poincare metric, 
is defined by 

1 1 + p(z, w) 
fJ(z, w) = 2 log 1 _ p(z, w)' z,W EIOl. 

It is easy to check that the pseudohyperbolic metric (and hence the hyperbolic 
metric) is Mobius invariant. The infinitesimal distance element for the Bergman 
metric on IOl is given by 

Idzl 
1 - Iz1 2 • 

THEOREM 1.15 An analytic function f in IOl belongs to the Bloch space if and 
only if there exists a positive constant C such that 

If(z) - f(w)1 ::: C fJ(z, w) 



1A. Duality of Bergman Spaces 17 

holds for all z and w in lDJ. 

Proof. If f is analytic in lDJ, then 

fez) - f(O) = z 101 f'(tz)dt 

fOlf all z E lDJ. If f is in the Bloch space, then it follows that 

If(Z)-f(O)1 rl dt 
z ::: IlfIIB Jo 1 _ IZl2t2 = IIfllB ,B(z, 0) 

for all z E lDJ. Replacing f by f 0 rpz, replacing z by rpz(w), and applying the 
Mobius invariance of both II . liB and ,B, we arrive at 

I/(z) - f(w)1 ::: IIfIIB ,B(z, w) 

for all I E Band z, w E lDJ. 
The other direction follows from the identity 

lim I/(w) - f(z)1 = (1 - Id)lf'(z)l, 
w--*z ,B(w, z) 

which can easily be checked. 

Carefully examining the above proof, we find that 

Z E lOl, 

{ I/(z) - f(w)1 } 
II/IIB=SUP :Z,wElDJ,z=l=w . 

,B(z, w) 

With the help of functions of the type 

1 1 + zew 
fez) = 2 log 1 _ zeie ' Z E lOl, 

we: can also prove that 

fez, w) = sup {1/(z) - l(w)1 : II/IIB::: l}. 

• 

These formulas exhibit the precise relationship between the Bloch space and the 
Bergman metric. 

1.4 Duality of Bergman Spaces 

Suppose 0 < p < +00 and -1 < a < +00. A linear functional F on Ag is called 
bounded if there exists a positive constant C such that IF (I) I ::: Cli 11100.p for all 
I 1= Ag, where 

1I/1I00.p = [ll/(ZW dAO'(Z)r
IP 

Recall that point evaluation at every Z E lDJ is a bounded linear functional on every 
Ag. In particular, every weighted Bergman space Ag has nontrivial bounded linear 
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functionals. We let A~* denote the space of all bounded linear functionals. Then 
A~* is a Banach space with the nonn 

IIFII = sup {IF(f)1 : IIflla.p ~ 1}, 
even though A~ is only a metric space when 0 < p < 1. 

THEOREM 1.16 For 1 < p < +00 and -1 < ex < +00, we have A~* = AZ 
under the integral pairing 

where q is the conjugate exponent of p: p-l + q-l = 1. 

Note that the identification isomorphism A~* = AZ need not be isometric for 
p i= 2. 

Proof. By HOlder's inequality, every function g in AZ defines a bounded linear 
functional on A~ via the above integral pairing. Conversely, if F is a bounded 
linear functional on A~, then by the Hahn-Banach extension theorem, F can be 
extended to a bounded linear functional (still denoted by F) on LP(]jJ), dAa) with­
out increasing its norm. By the duality theory of LP spaces, there exists a function 
cp in U(]jJ), dAa) such that 

F(f) = kf(Z)CP(Z)dAa(Z), f E A~. 
Writing f = Paf and using the fact that the operator Pa is self-adjoint with 
respect to the inner product associated with dAa, we obtain 

F(f) = k f(z)Pacp(z)dAa(z), f E A~. 

Letting g = P aCP and using Theorem 1.10, we conclude that g is in AZ and that 

F(f) = k fez) g(z) dAa(z) 

• 
In order to identify the dual space of A~ when 0 < p :::: 1, we first introduce a 

certain type of fractional differentiation and integration. 
Let H (]jJ)) denote the space of all analytic functions in ]jJ) and equip H (]jJ)) with 

the topology of "uniform convergence on compact subsets". Thus, a linear operator 
T on H (]jJ)) is continuous if and only if T fn ~ T f uniformly on compact subsets 
whenever fn ~ f unifonnly on compact subsets. 

LEMMA 1.17 For every ex, -1 < ex < +00, there exists a unique linear operator 
Da on H (]jJ)) with the following properties: 

( 1) Da is continuous on H (]jJ)). 

(2) D~ [(1 - ZW)-2] = (1 - zw)-(2+a) for every W E ]jJ). 
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Proof. Recall that 
1 00 

------,-;:;-2 = ~)n + l)znwn 
(l - zw) n=O 

and 

1 ~r(n+2+a) n-n 
(l - ZW)2+a = f;:o n! r(2 + a) z w . 

If we define 

a n r(n + 2 + a) n 
D (z)=(n+l)!r(2+a)z 

for all n = 0, 1,2,3, ... and extend Da linearly to the whole space H(IDl), then 
the resulting operator Da has the desired properties. The uniqueness also follows 
from the earlier series expansions. _ 

By Stirling's formula, 

r(n +2+a) 

(n + I)! r(2 + a) 
'" na 

as n -+ 00. Thus, the operator D a can be considered a fractional differential 
operator of order a in the case ex. > 0. 

It is easy to see that for each -1 < a < +00, the operator Da can also be 
represented by 

Da fez) = lim r f(rw) dA(w) , 
r-+ 1- in (l - zW)2+a 

Z E IDl, 

for f E H (IDl). In particular, the limit above always exists. If f is in AI, then 

Da fez) = r few) dA(w) , 
in (1 - zW)2+a 

Z E IDl. 

LEMMA 1.lS For every -1 < a < +00, the operator Da is invertible on H (IDl). 

Proof. Define an operator Da on monomials by 

n (n+ 1)!r(2+a) n 
Da(z)= r(n+2+a) z 

and extend Da linearly to the whole space H(IDl). Then Da is a continuous linear 
operator on H(IDl), and it is the inverse of Da . • 

It is easy to see that 

1 (l-lwI2)a 
Daf(z) = lim (a + 1) 2 f(rw)dA(w), 

r-+I- n (l - zw) 
Z E IDl, 

for every f E H (IDl). When a > 0, the operator Da is a fractional integral operator 
of order a. 
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We now proceed to identify the dual space of Ag when 0 < p :s I. The 
following two lemmas will be needed for this purpose, but they are also of some 
independent interest. 

LEMMA 1.19 For every 0 < p :s I and -I < a < +00, there exists a constant 
C, 0 < C < +00, such that 

llf(Z)1 (1 - Id)-2+C2+a)/p dA(z) :s C Ilflla,p 

for all f E Ag. 

Proof. For z E IDJ, we let D(z) be the Euclidean disk centered at z with radius 
(l - Izl)/2. By the subharmonicity of IfI P, we have 

If(z)iP :s (1 41 1)2 r If(w)iP dA(w), 
- z JD(z) 

Since (l - Iwl) ~ (l - Izl) for w E D(z), we can find a positive constant C such 
that 

If(z)1 :s C (1 - Id)-(2+a)/p Ilflla,p, 

for all f E Ag, For 0 < p :s 1, we can write 

If(z)1 = If(z)iP If(z)11-P; 

Z E IDJ, 

use the above inequality to estimate the second factor, and write out the remaining 
integral. What comes out is the desired result. • 

LEMMA 1.20 Suppose -1 < ex < +00 and f is analytic in IDJ. If either f or 
the function (l-lzI2)-a fez) is bounded, then thefunction (l-lzI2)a D a fez) is 
area-integrable and 

l fez) g(z) dA(z) = (a + 1) l D a fez) g(z) (1 - Izl2)a dA(z), 

for all g E H OO • 

Proof. The case a = 0 is trivial. If 0 < ex < +00, then by the integral 
representation of D a and Theorem 1.7, the function (l-lzI2)a Da fez) is bounded. 

If -1 < a < 0 and f is bounded, then Theorem 1.7 and the integral 
representation of D a imply that D a fez) is bounded, and hence the function 
(l - Izl2)a D a fez) is area-integrable. 

If -1 < a < 0 and If(z)1 :s C[ (l - IzI2)a, then by Theorem 1.7 and the 
integral representation of Da, we have 

1 
'2 < Izl < 1, 

and hence (1 - Izl2)a Da fez) is area-integrable. 
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The desired identity now follows from the integral form of Da , the reproducing 
property ofPa , and Fubini's theorem. -

THEOREM 1.21 Suppose 0 < p .:::: 1, -1 < ex < +00, and f3 = (2 +ex)/ p - 2. 
Then Ag* = B under the integral pairing 

{f, g} = lim [ f(rz)g(z)(l - Id)p dA(z), 
r-+!- j'JJJ 

where f E Ag and g E B. 

Proof. First assume FE Ag* and f E Ag. Since IIf - frlla.p ~ Oasr ~ 1-, 
we have 

Write 

F(f) = lim F(fr), 
r-+!-

fr(z) = [ fr(w) dA(w) , 
j'JJJ (1 - ZW)2 

Z E lTh. 

Since the integral converges in Ag, the continuity of F implies that 

FUr) = L fr(w) F [(1 _lzW)2J dA(w). 

where on the right hand side we think of F as acting with respect to the running 
variable z. Let 

hew) = F [(1_1zW)2 J, 
Then h is analytic in lTh and 

WE lTh. 

Put 

F(fr) = L fr(w) h(w)dA(w). 

2+ex 
f3=---2 

p 

and apply Lemma 1.20, with the result 

FUr) = (f3 + 1) L fr(w) DPh(w) (1 -lwI2)p dA(w). 

Let g = (f3 + 1) DP h and apply the second property of Lemma 1.17. Then 

g(w) = (f3 + 1) F [(l _ z~(2+a)/p ] 
and 

'ew) - (f3 + 1)(2 + ex) F [ z ] lTh 
g - P (l -ZW)(2+a)/p+! ' wE. 
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Using Theorem 1.7 and the boundedness of F, we easily check that g is in the 
Bloch space and that 

FU) = lim [ f(rw) g(w) (l - Id).B dA(w) 
r-+)- J'IJJ 

for every f E Ag. 
Next, assume g E B. We show that the formula 

defines a bounded linear functional on Ag. By Theorem 1.12, there exists a function 
rp E L 00 (]IJl) such that 

[ (l - IwI2).B 
g(z) = P.Brp(z) = (f3 + 1) J'IJJ (l _ zw)2+.B rp(w) dA(w), Z E]IJl. 

Using Fubini's theorem and the reproducing property ofP.B, we easily obtain 

By Lemma 1.19, we have 

FU) = l fez) rp(z) (1 - Id).B dA(z), f E Ag, 

and this defines a bounded linear functional on Ag. • 

1.5 Notes 

The notions of Bergman spaces, Bergman metric, and Bergman kernel are by now 
classical. General references include Bergman's book [19], Rudin's book [105], 
Dzhrbashian and Shamoyan's book [36], and Zhu's book [135]; see also Axler's 
treatise [14]. The classical reference for Bloch spaces is [9]. 

Theorems 1.7 and 1.10 were proved by Forelli and Rudin in [47] in the context 
of the open unit ball in en. Proposition 1.11 should be attributed to Hardy and 
Littlewood [53]. That the Bergman projection maps LOO(]IJl) onto the Bloch space 
was first proved by Coifman, Rochberg, and Weiss [34]. The duality results in 
the case 1 ::s p < +00 follow directly from the estimates of the Bergman kernel 
obtained by Forelli and Rudin [47]. The duality problem for 0 < p < 1 has been 
studied by several authors, including [41] and [115]. Theorem 1.21 is from Zhu 
[136]. 
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1.6 Exercises and Further Results 

1. Suppose 1 < p < +00. Show that fn -+ 0 weakly in AP as n -+ +00 
if and only if {II fn II p}n is bounded and fn (z) -+ 0 uniformly on compact 
subsets of JD) as n -+ +00. 

2. For -1 < a < +00, show that the dual space of the little Bloch space can 
be identified with A~ under the integral pairing 

(f,g) = lim [f(rz)g(z)dAa(z), f E Bo, g E A~. 
r-+I- lJ1J 

3. Show that fn -+ 0 in the weak-star topology of A~ if and only if the sequence 
{fn}n is bounded in norm and fn(z) -+ 0 uniformly on compact subsets of 
JD) as n -+ +00. 

4. For an analytic function f on JD), let fn be the n-th Taylor polynomial of f. 
If 1 < p < +00, -1 < a < +00, and f E AK, show that fn -+ f in norm 
in AK as n -+ +00. Show that this is false if 0 < p :s 1. 

5. Prove Proposition 1.6. 

6. If f is a function in the Bloch space, then there exists a positive constant C 
such that If(z)1 :s C log(l/(l-lzI2» for all z with -! :s Izl < 1. Similarly, 
if f is in the little Bloch space, then for every s > 0 there exists 0 E (0, 1) 

such that If(z)1 < slog(l/(l - Id» for all z with 0 < Izl < 1. 

7. For every 0 E (0, 1), there exists a positive constant C = C(p, 0) such that 
if f and g are analytic functions in JD) with If(z)1 :s Ig(z)1 for 0 < Izl < 1, 
then 

L If(z)iP dA(z) :s C L Ig(z)iP dA(z). 

8. There exists an absolute constant ()", 0 < ()" < 1, such that 

L If(z)1 2 dA(z) :s L Ig(z)12 dA(z) 

whenever If(z)1 :s Ig(z)1 on ()" < Izl < 1, where f and g are analytic in JD). 

For details, see [87], [57], and [75]. 

9. For 1 < p < +00, let Bp denote the space of analytic functions f in JD) 

such that 

where 

d)'" _ dA(z) 
(z) - (l _ Iz12)2 
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is the Mobius-invariant measure on lDl. These are called analytic Besov 
spaces. Show that the Bergman projection P maps LP(lDl, dA) onto Bp for 
alII < p < +00. For details, see [135]. 

10. If I < p .:s 2, p-l + q-l = I, and 

is in AP, then 

+00 
fez) = "L:anzn 

n=O 

+00 Ian Iq 
'" I < +00. ~ (n + I)q-

For problems 10-14, see [95]. 

11. Suppose I < p .:s 2 and p-l + q-l = I. If 

+00 lanl P ?; (n + I)P-I < +00, 

then the function 

+00 
fez) = "L:anzn 

n=O 

belongs to Aq. 

12. If I .:s p .:s 2 and 

+00 
fez) = "L:anZn 

n=O 

belongs to AP, then 

+00 lanl P 
'" 3 < +00. ~ (n + I) -P 

13. If 1 .:s p .:s 2 and the function 

is in AP, then the function 

+00 
fez) = "L:anzn 

n=O 

+00 a 
g(z) = ?; (n + ;)I/pZn 

belongs to the Hardy space H p. 
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14. If 2 :::: p < +00 and the function 

+oc 
fez) = LanZn 

n=O 

is in H P, then the function 

+oc 
g(z) = L(n + 1)lfpanzn 

n=O 

belongs to AP. 

15. Suppose 0 < p < +00 and f is analytic and bounded in ID>. Then 

lim (If(z)iP dAa(z) = _1 {2:n: If(eit)iP dt. 
a-+-l+ 1If} 2rr 10 

16. Suppose rp is analytic in ID>. Then rpAg C Ag if and only if rp E Hoc. 

17. Suppose rp is analytic in ID>. Show that rpB c B if and only if rp E HOC and 

sup {(1 - Id)lrp'(z)llog[1/(1 - Id)) : z E ID>} < +00. 

Fonnulate and prove a similar result for the little Bloch space. See [134]. 

18. Recall that Ka(z, w) is the reproducing kernel for the weighted Bergman 
space A~. Show that 

IKa(z, w)1 2 :::: Ka(z, z) Ka(w, w) 

for all z and w in ID>, and that 

N N 
LLCjCk K(zj, Zk) ~ 0 
j=l k=l 

for all Cl, ... , CN in C and all Zl, ... , ZN in ID>. 

19. Let X be a linear space of analytic functions in ID>. Suppose there exists a 
complete seminonn II . II on X such that: 

(1) IIf 0 rpll = 1If11 for any f E X and any Mobius map rp of the disk. 
(2) Point evaluations are bounded linear functionals on X. 

Then X C B. See [104]. 

20. Let X be a linear space of analytic functions in ID>. Suppose there exists a 
complete semi-inner product (., .) on X such that: 

(1) (f 0 rp, gorp) = (f, g) for all f, g in X and any Mobius map rp of the 
disk. 

(2) Point evaluations are bounded linear functionals on X. 

Then X = B2 (See Exercise 9). Note that B2 is usually called the Dirichlet 
space and frequently denoted by D. See [11]. 
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21. Show that there exist infinite Blaschke products in the little Bloch space. 
See [23]. 

22. If lEAP and q; : II} ~ II} is analytic, then 10 q; E AP. See [135]. 

23. For 0 < p < +00 and -1 < ex. < +00, define 

dp.a(z, w) = sup {1/(z) - l(w)1 : IIfllp.a ~ I}, z, wE II}. 

Show that 

. dp.a(w, z) { I' I } hm = sup I (z) I : II II p.a ~ 1 , 
W"""+Z Iw - zl 

for each z ElI}. See [137]. 

24. There exist functions in the little Bloch space whose Taylor series do not 
converge in norm. 

25. Let Bl consist of analytic functions I in II} such that I" E AI. Show that 
I E Bl if and only if there exists a sequence {cnln in [1 and a sequence 
{anln in II} such that 

+00 an - z 
I(z) = Len , 

n=O 1 - anz 
Z E II}. 

26. Show that the Bergman projection P maps the space Ll(lI}, d)") onto Bl, 
where d)" is as in Exercise 9. 

27. Show that for I E H (II}) and 1 < p < +00, we have I E B p if and only if 

r r I/(z) - l(wW dA(z) dA(w) < +00. 
iF) iF) 11 - zwl4 

See [135]. 

28. For each 1 ~ p < +00 and -1 < ex. < +00, there exists a positive constant 
C such that 

IIfllp.a ~ C IIRefllp.a 

for all I E A~ with 1(0) = O. 

29. For each 1 ~ P < +00 and -1 < ex. < +00, there exists a positive constant 
C such that 

In lu(z)IP dAa(z) ~ C In lu(zW dAa(z) 

for all harmonic functions u in II}, where u is the harmonic conjugate of u 
with u(O) = O. 

30. Solve the extremal problem 

inf{lIfllp.a: I E A~, I(w) = 1}, 
where w is any point in II}. 
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31. Try to extend Proposition 1.11 to the case 0 < p < 1. 



2 
The Berezin Transform 

In this chapter we consider an analogue of the Poisson transform in the context of 
Bergman spaces, called the Berezin transform. We show that its fixed points are 
precisely the harmonic functions. We introduce a space of BMO type on the disk, 
the analytic part of which is the Bloch space, and characterize this space in terms 
of the Berezin transform. 

2.1 Algebraic Properties 

Recall that one way to obtain the Poisson kernel is to start out with a harmonic 
function h in lIJl that is continuous up to the boundary and apply the mean value 
property to get 

1 10 2][ h(O) = - h(eit ) dt. 
2][ 0 

Replace h by h 0 ({Jz, where ({Jz is the Mobius map interchanging 0 and z, 

z-w 
((Jz(w) = -1---' -zw 

and make a change of variables. Then 

W E lIJl, 

1 12][ 1 - Izl2 it 
h(z) = - . 2h(e )dt. 

2][ 0 11 - z e-1I 1 
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This is the Poisson formula for harmonic functions. The integral kernel 

it 1 - Izl2 
Pee ,z) = 11 _ Z e-it 12 

is the Poisson kernel, and the transform 

is the Poisson transform. 
Now, let us start out with a bounded harmonic function h in D and apply the 

area version of the mean value property 

h(O) = k hew) dA(w). 

Again replace h by h 0 C{Jz and make a change of variables. We get 

{ (1 -ld)2 
h(z) = j'llJl 11 _ zwl4 hew) dA(w), zED. 

By a simple limit argument, we see that the formula above also holds for every 
harmonic function h in L I (D, dA). 

For every function f ELI (D, dA), we define 

Bf(z) = { (1 - Id)2 few) dA(w), ZED. 
j'llJl 11-zw14 

The operator B will be called the Berezin transform. 
Actually, we shall need to use a family of Berezin type operators. Recall that 

for a > -1, we have 

dAa(z) = (a + 1)(1 - Id)a dA(z). 

Suppose h is a bounded harmonic function on D. The mean value property together 
with the rotation invariance of dAa implies that 

h(O) = (a + 1) k h(w)(l - Iwl2)a dA(w). 

Replacing h by h 0 C{Jz and making a change of variables, we get 

h(z) = (a + 1) { (l-ld)a+2(l-lwI2)a h(w)dA(w), zED. 
j'llJl 11 - zwl4+2a 

Thus, for f E LI(D, dAa) we write 

Baf(z) = (a + 1) { (1 -lzI2)a+2(l-lwI2)a f(w)dA(w), zED. 
j'llJl 11 - zwl4+2a 

A change of variables shows that we also have 

Baf(z) = k f 0 C{Jz(w)dAa(w), zED, 
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for every f E Ll(JlJl,dAa).NotethatBo =B. 

PROPOSITION 2.1 Suppose -I < a < +00 andcp is a Mobius map of the disk. 
Then 

Proof. For every z E JlJl, the Mobius map cp",(z) 0 cp 0 cpz fixes the origin. Thus, 
there exists a unimodular number ~ (depending on z) such that 

CP",(z) 0 cp 0 cpz(w) = ~w, that is, cp 0 cpz(w) = Cprp(z)(~w), 
for all W E JlJl. It follows that 

BaU 0 cp)(z) ~ f 0 cp 0 cpz(w) dAa(w) 

~ f 0 Cprp(z)(~w) dAa(w) 

(Ba f) (cp(z»). 

In the last equality above, we used the rotation invariance of dAa. • 
Since dAa is a probability measure for -I < a < +00, the operator Ba is 

clearly bounded on LOO(JlJl). Actually, IIBafiloo :5 IIflloo for all-I < a < +00. 

PROPOSITION 2.2 Suppose -I < a < +00, 1 :5 p < +00, and that f3 E R 
ThenBa isboundedonLP(JlJl,dAfJ)ifandonlyif-(a+2)p < f3+1 < (a+l)p. 

Proof. This is a direct consequence of Theorem 1.9. • 

Fix an a, -1 < a < +00. By Proposition 2.2, the operator BfJ is bounded 
on Ll(JlJl, dAa) if and only if f3 > a. Actually, BfJ is uniformly bounded on 
L 1 (JlJl, dAa) as f3 -+ +00. To see this, first use Fubini's theorem to obtain 

{ {{ (l - Id)2+fJ 10 IBfJf(z)1 dAa(z) :5 (fJ + 1) 10 If(w)1 10 11 _ zw12f3+4 dAa(Z) dAfJ(w). 

Making the change of variables z ~ CPw (z) in the inner integral, we get 

{ {{ (1 - Id)2+a+fJ 
10 IBfJf(z)1 dAa(z) :5 (fJ + I) 10 If(w)1 10 11 _ zwl2a+4 dA(z) dAa(w). 

Note that for all z, w E JlJl, we have 

1 1 1 + Izl 2 
II-zwl :5 I-Izl = 1-lz12 :5 1-lzI2· 

It follows that for fJ > a + 1, 

~ IBfJf(z)1 dAa(z) :5 C ~ If(w)1 dAa(w) ~ (1- Id)fJ-(a+2) dA(z), 
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where C = 4a +2(,8 + 1); that is, 

l 4a+2(,8 + 1) l 
IBpf(z)1 dAa(z) :s If(w)1 dAa(w). 

D ,8-a-l D 

This clearly shows that Bp is uniformly bounded on L I (ID>, dAa) when,8 ~ +00. 

PROPOSITION 2.3 Suppose -1 < a < +00 and f E C( iih Then we have 
Baf E C(ii) and f - Baf E Co(ID»· 

Proof. We use the formula 

Baf(z) = L f o'Pz(w)dAa(w), Z E ID>. 

Since 'Pz(w) ~ zo as Z ~ zo E T, the dominated convergence theorem shows 
that Baf(z) ~ f(zo) whenever z ~ Zo E T. This shows that f - Baf E Co (ID». 
In particular, we have Baf E C(ii). • 

PROPOSITION 2.4 If -1 < ,8 < a < +00, then BaBp = BpBa on 
LI(ID>, dAp). 

Proof. By Proposition 2.2, the operator Ba is bounded on L I (ID>, dAp). Thus, 
BpBaf makes sense for every f E LI(ID>, dAp). Also, the operator Bp maps 
L 1 (ID>, dAp) boundedly into L 1 (ID>, dAa). Hence BaBpf is well defined for f E 

Ll(lD>, dAp). 
Let f E Ll(lD>, dAp). To prove BaBpf = BpBaf it suffices to show -

according to Proposition 2.1- that BaBpJ(O) = BpBaf(O). Now, 

BaBpf(O) = L BfJf(z)dAa(z) 

C f(w)dA(w) - - dA(z), 1 1 (1 IwI2)P(1 IzI 2)a+P+2 

D D 11 - zw1 2P+4 

where C = (a + 1)(,8 + 1). Making the change of variables z t-+ 'Pw(z) in the 
inner integral, we find that a and,8 will switch positions, and hence BaBpf(O) = 
BfJBaf(O). • 

PROPOSITION 2.5 Let -1 < a < +00 and f ELI (ID>, dAa). Then Bp f ~ f 
in L 1 (ID>, dAa) as ,8 ~ +00. 

Proof. First, assume that f is continuous on the closed disk. Since dAfJ is a 
probability measure, we have the formula 

Bpf(z) - f(z) = (,8 + 1) fo (l - Iwl2l (J 0 'Pz(w) - f(z») dA(w). 

Writing ID> as the union of a slightly smaller disk ID>r of radius r E (0, 1) centered 
at 0 and an annulus, estimating the integral over ID>r by the uniform continuity of 
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I on lOl, and estimating the integral over lOl \ lOlr using the fact that I is bounded 
and that 

we easily find that 

Bpl(z) ~ I(z), Z E lOl, 

as{3 ~ +00. Since IIBpilioo :s 11/1100 for every {3, it follows from the dominated 
convergence theorem that Bp I ~ I in L 1 (lOl, d Aa) as {3 ~ +00. The general 
case then follows from a simple limit argument, using the density of C (ii}) in 
L 1 (lOl, d Aa) and the uniform boundedness of the operators B p on L 1 (lOl, d Aa) .• 

PROPOSITION 2.6 For each a with -1 < a < +00, the operator Ba is ane­
ta-one on the space Ll(lOl, dAa). 

Proof. Suppose IE LIclOl, dAa) and Bal = O. Let 

F( ) _ r I(w) dAa(w) 
z - JJj]) (l - zw)2+a(l - zw)2+a' Z E lOl. 

Since 

F( ) _ Bal(z) 
z - (1 _ JzJ2)2+a' 

we have F(z) = 0 throughout lOl, and hence 

an+mF 
azn8zm (0) = 0 

for all nonnegative integers nand m. Differentiating under the integral sign, we 
find that 

L tv" wm I(w) dAa(w) = 0 

for all nonnegative integers nand m. This clearly implies that I = O. • 

2.2 Harmonic Functions 

Recall that if I is a harmonic function in L 1 (lOl, dA), then B I = I. In this section 
we prove the converse, that is, the conditions I ELI (lOl, d A) and B I = I imply 
that I is harmonic. 

In dealing with harmonic functions on the unit disk, we find it more convenient 
to use the invariant Laplacian A instead of the usual Laplacian d. We shall use 
the operator 
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where z = x + iy, as the Laplacian (this is a quarter of the standard Laplacian). 
This renormalization has the advantage that certain formulre assume a particularly 
attractive form; for instance, if f is a holomorphic function, then ~lfl2 = If'12. 
The invariant Laplacian is defined by 

~f(z) = (l - Id)2 ~f(z). 

As its name suggests, the invariant Laplacian ~ is Mobius invariant, namely, 

I::..U 0 rp)(z) = (I::..f)(rp(z)) 

for every Mobius map rp of the disk. We may interpret I::.. as the Laplace-Beltrami 
operator on JI)), provided JI)) is supplied with the Poincare metric. 

PROPOSITION 2.7 For -1 < a < +00, the identity 

I::..Baf = (a + 1) (a + 2) (Baf - BaH f) 

holds for every f E Ll(JI)), dAa). 

Proof. By the Mobius invariance of both Ba and 1::.., it suffices to show that 

I::..Baf(O) = (a + 1)(a + 2) (Baf(O) - Ba+tf(O)) 

holds for every f E Ll(JI)), dAa). This follows from differentiating under the 
integral sign and regrouping terms. • 

In other words, for -1 < a < +00, we have the operator identity 

B 1 - (1- I::.. ) B a+ - (a + 1)(a + 2) a· 

The following conclusion is immediate. 

COROLLARY 2.8 Suppose n is a positive integer, and set 

Gn (z) = D (1 - k (k ~ 1)) , Z E C. 

Then Bn = Gn(l::..) Bon Ll(JI)), dA). 

Let 

G(z) = D (1 - k (k ~ 1)) . 
It is clear that G is an entire function and that Gn(z) --+ G(z) uniformly on 
compact sets of C. It should not be surprising now to see that the function G plays 
an important role in our analysis of the Berezin transform. 

Throughout this section, we let 

~ = {w E C: -1 < Re w < 2}, 

and 

Q = {z E C: Z = -w(1 - w) for some w E ~} . 
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By the open mapping theorem for analytic functions, Q is a connected open subset 
ofC. 

PROPOSITION 2.9 Ifz = -w (1 - w), then 

G(z) = sin(Jrw) 
Jrw(1 - w) 

Furthermore, G(z) =1= 1 for z E Q \ {OJ. 

Proof. The k-th factor in the product 

G(z) = n (1 + w(1 - W») 
k=! k(k + 1) 

equals 

The desired formula for G then follows from the well-known identities 

and 

__ 1 __ = e-Yz n (1 + :.) e-z/ k 
r(z+l) k=! k 

Jr 
r(z)r(1 - z) = -.-. 

SlDJrZ 

To show that G(z) =1= 1 for z E Q \ {OJ, it suffices to show that the function 

Jrw(1 - w) 
<p(w) = ----

sin(Jrw) 

has <P(w) =1= 1 for w E :E \ {O, I}. 
Observe that <p has the symmetry property 

<p (~+ w) = <p (~ - w), 
and that it has 

<p (~+ iY) = Jr(y2 + !) < 1 
2 cosh(Jry) 

for all real y. Thus, it suffices to show that the only solution of cP (w) = 1 in the 
strip -1 < Re w < ! is w = O. We achieve this with the help of the Argument 
Principle. 

By an easy estimate, we can choose a positive number A such that 1<P(w)1 < 1 
for all w = u + iv, where -1 suS! and v is real with Ivl ~ A. We now 
consider the positively oriented contour y given by the following picture. 



-1+iA 

-1 +i£ 

-~ 

-1- iA 
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1 +iA 2 

1 
2: 

1 'A 2: -I 

We proceed to show that the image of the contour y, <I>(y), winds around the 
point 1 exactly once. We start from w = 1 on y and move upwards. The curve 
<I>(y) will then start at Jr /4 and move toward 0 along the real axis. When w makes 
a left turn at 1 + i A and moves horizontally to the left, the curve <I> (y) oscillates 
in the half-plane to the left of the point 1. For w between -1 + iA and -1 + i£, 
we have 

<1>(-1 + iv) = . Jr [-3v + i(v2 - 2)J. 
slllh(Jrv) 

This part of <I>(y) meets the real axis to the left of the point 1 when (and only 
when) v = -/2. So far, the image of y under <I> has not reached the real axis to 
the right of the point 1. Next, consider <I> (w) for w on the little semicircle near the 
point w = -1. An easy calculation shows that 

2 
<I>(w) = -- + 'l1(w), 

w+ 1 

where 'l1 (w) is analytic near w = -1. It follows that 

. 2. 
<1>( -1 + £e lt ) = _e- ll + 0(£). 

£ 

This shows that if £ > 0 is small enough, then the curve 

crosses the real axis near the point 2/£; the winding number of <I>(y) around 1 
will not depend on the exact number of times the above curve crosses the real axis. 
Finally, by the analysis above and the symmetry relation <I>(w) = <I>(w), when 
w moves downward from -1 - £i and comes back to the starting point 1, the 
image <I>(w) will not cross the real axis from the right-hand side of the point 1. 
We conclude that the curve <I>(y) winds around the point 1 exactly once. _ 



36 2. The Berezin Transform 

We need the following facts about eigenfunctions of the invariant Laplacian 
before we can prove our main result. 

PROPOSITION 2.10 Suppose a and A are complex numbers related by A = 
-a(l - a). Let X).. be the eigenspace of A corresponding to the eigenvalue A. Let 

(l - Id)a r21f de 
ga(Z) = 2rr 10 11 _ ze-ili 12a' Z E IDJ. 

Then we have: 

(1) The function ga belongs to X)... 

(2) iff E X).. and f is radial, then f = f(O)ga. 

(3) The space X).. contains a nonzero function in LI (IDJ, dA) ifand only ifa E E. 

Proof. Let P (e ili , z) be the Poisson kernel. Then the function ga can be rewritten 
as 

ga(Z) = 2~ fo 21f 
[P(eili,z)f de, Z E IDJ. 

Part (1) now follows from differentiating under the integral sign and the fact that 
P(eili , z) is harmonic in z. 

To prove (2), we let fez) = g(lzI2) be a radial function in X)... It is easy to 
check that the function g(x), 0 < x < 1, is a solution to the following differential 
equation: 

x(l - x)2g" (x) + (1 - x)2g' (x) = Ag(X), 0 < x < 1. 

The solution space of the above differential equation is two-dimensional, and we 
can exhibit a basis for it. In fact, by (1), the function gl (x) = ga (.Jx) is a solution, 
and an easy calculation shows that the function 

0< x < 1, 

is also a solution. It is obvious that gl and g2 are linearly independent. Thus, there 
exist constants a and b such that g = a gl + b g2. Since the functions g and gl are 
bounded near x = 0 and g2 is unbounded near x = 0, we must have b = 0 and 
hence g = g(O)gl, so that f = f(O)ga. 

To prove (3), let us assume that X).. contains a nonzero function f ELI (IDJ, dA). 
By invariance, we can also assume that f(O) ::I O. It is easy to check that f E X).. 
implies that its radialization 

1 fo 21f 
f#(z) = - f(zeit)dt, 

2rr 0 
Z E IDJ, 

also belongs to X)... By (2), we have f# = f(O)ga. This clearly implies that X).. 
contains a nonzero function of L 1 (IDJ, dA) if and only if ga ELI (IDJ, dA). By 
Theorem 1.7, the function ga is in LI(IDJ, dA) if and only if a E E. • 
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We now prove the main result of the section. 

THEOREM 2.11 Suppose I E LI(lDl, dA). Then I is harmonic if and only if 
BI= I· 

Proof. Let M be the set of fixed points of Bin LI(JDl, dA). It is easy to see 
that M is a closed subspace of L I (JDl, d A). We already know that every harmonic 
function in LI(JDl, dA) belongs to M. We proceed to show that every function in 
M is harmonic. 

By the integral formula for the operator B, every function satisfying I = B I is 
real-analytic in JDl. In particular, we can apply the Laplacian to every function in 
M. Let ll.M be the restriction of ll. to M. By Proposition 2.7, 

IEM. 

Since BI is bounded on LI(JDl, dA), we see that ll.M maps M boundedly into 
L I (JDl, dA). Moreover, since BBI = BIB, we have 

I EM. 

Thus ll.M maps Minto M, and hence ll.M is a bounded linear operator on the 
Banach space M. 

Recall from Corollary 2.8 that 

IEM. 

Since Gn -+ G uniformly over compact subsets ofC, and ll.M is a bounded linear 
operator on M, we have Gn(ll.M) -+ G(ll.M). This together with Proposition 2.5 
shows that G(ll.M) I = I for every I E M, making G(ll.M) the identity operator 
onM. 

Suppose "J... is an eigenvalue of ll.M. By Proposition 2.10, we must have "J... E Q. 

Also, if I is a nonzero eigenfunction corresponding to "J..., then 

1= G(ll.M)I = G("J...)I· 

It follows that G("J...) = 1. By Proposition 2.9, we must then have"J... = O. Thus, the 
only eigenvalue of the operator ll.M is O. 

Recall that G(z) - 1 = zH(z), where H is an entire function with H(O) i= O. 
By the holomorphic functional calculus (see, for instance Rudin's book [106]), we 
have 

where I is the identity operator on M. Since the only eigenvalue of ll.M is 0, the 
spectral mapping theorem (see, for instance, [106, Theorem 10.33]) implies that 
the only eigenvalue of H (ll.M) is H (0) i= O. In particular, H (ll.M) is one-to-one: 
after all, if for some I E M, H(ll.M) I = 0 holds, then I is an eigenvector for 
(eigenvalue) 0, which is possible only for I = 0, as 0 fails to be an eigenvalue of 
H(ll.M)· Now if IE M, then H(ll.M)ll.MI = O. It follows that ll.MI = 0; in 
other words, I is harmonic. _ 
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2.3 Carles on-Type Measures 

Just as we can integrate the Poisson kernel against a measure on the circle, we can 
also integrate the kernel of the Berezin transform against a measure on the disk. 
More specifically, for a positive Borel measure f-L on ]])l, we consider the function 

Bf-L(z) = (1 - Id)2lIId~~~14' Z E]])l. 

In this section we characterize those positive Borel measures f-L on ]])l such that 
Bf-L is bounded. As a by-product we also characterize those measures f-L such that 
Bf-L(z) ~ 0 as Izl ~ 1-. 

Recall that 

{3( ) 11 II-zwl+lz-wl 
z, w = - og 

2 11 - zwl-Iz - wi 

is the Bergman metric on ]])l. Throughout this section, we fix some positive radius 
o < r < +00 and consider disks D(z, r) in the Bergman metric. The set 

D(z, r) = {w E]])l: {3(z, w) < r}, Z E]])l, 

is called the hyperbolic disk of radius r about z.1t is well known (see [49] or [135]) 
that D(z, r) is a Euclidean disk with Euclidean center (1 - s2)Z/(1 - s21z12) and 
Euclidean radius (1 -lzI2)s/(1 - s2Ize), where s = tanhr E (0,1). 

Let ID(z, r)IA denote the normalized area, or the dA-measure, of D(z, r); the 
subscript indicates precisely that dA is used. Then ID(z, r)IA '" (1 - IZl2f as z 
approaches the unit circle. The following lemma lists some additional properties 
of the hyperbolic disks. 

LEMMA 2.12 Let r, s, and R be positive numbers. Then there exists a positive 
constant C such that for all z and w in ]])l, we have 

(1) C-1 (1 - Id) :::: 11 - zwl :::: C (1 - Iz12) when {3(z, w) :::: r. 

(2) C-1ID(z, r)IA :::: ID(w, S)IA :::: C ID(z, r)IA when {3(z, w) :::: R. 

Proof. If w E D(z, r), then w = qJz(u) for some lui:::: s, where s = tanh r. It 
follows that 

1 _ zw = 1 - Izl2 
l-zu 

This clearly implies (1). Since the condition {3(z, w) :::: r is symmetric, (1) also 
holds with the positions of z and w interchanged. In particular, we have 1 -lzl2 '" 
1 -lwl2 if {3(z, w) :::: r. Thus 

ID(z, r)IA '" (1 - Id)2 '" (1 - Iw12)2 '" ID(w, S)IA 

for {3(z, w) :::: R. • 
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LEMMA 2.13 Fix r, 0 < r < +00. There exists a positive integer N and a 
sequence {an}n in ]])I such that: 

(1) The disk]])l is covered by {D(an, r)}n. 

(2) Every point in]])l belongs to at most N sets in {D(an, 2r)}n. 

(3) Ifn ::/= m, then {3(an, am) ~ r/2. 

Proof. It is easy to construct a sequence {an}n in]])l satisfying conditions (1) and 
(3). We show that (2) has to hold, too. In fact, if we let N be the smallest integer 
such that D(O, 2r) can be covered by N hyperbolic disks of radius r / 4, then by 
Mobius invariance of the Bergman metric every hyperbolic disk of radius 2r can 
be covered by N hyperbolic disks of radius r /4. Now, if a point z in ]])I belongs to 
N + 1 disks D(ank , 2r), 1 ::s k ::s N + 1, then ank E D(z, 2r) for 1 ::s k ::s N + 1. 
Let D(zk. r/4), 1 ::s k ::s N, be a cover of D(z, 2r). Then at least one of the disks 
D(zk. r /4) contains two points from ank' 1 ::s k ::s N + 1. Two such points will 
have hyperbolic distance less than r /2, a contradiction to (3). • 

In connection with the above lemma, we mention that a sequence {a j } j of points 
in]])l is said to be separated (or uniformly discrete) provided that 

0< inf {{3(aj, ak) : j ::/= k}. 

LEMMA 2.14 Fix an r, 0 < r < +00. Then there exists a positive constant 
C = C(r) such that 

If(z)iP ::s C r If(w)I P dA(w), z E ]])I, 
ID(z, r)IA JD(z.r) 

holds for all f analytic in ]])I and all 0 < p < +00. 

Proof. Recall that D(O, r) is a Euclidean disk centered at the origin. By the 
subharmonicity of IfI P , 

If(O)iP ::s ID(OI )1 r If(w)iP dA(w). 
,r A J D(O.r) 

Replace f by f 0 cpz and make a change of variables. Then 

If( )IP < 1 1 If( )IP (1 - Id)2 dA( ) 
z - ID(O )1 w 11 _ 14 w . ,r A D(z.r) zw 

The desired result then follows from Lemma 2.12. • 
As a consequence of Lemmas 2.14 and 2.12, we obtain the following inequality: 

(1 - Id)Slf(z)I P ::s C 1 (1 - IwI 2)S-2 If(w)I P dA(w), 
D(z.r) 

where f is analytic in ]])I, s is real, and 0 < p, r < +00, and C is a constant 
depending on p, r, and s (but not on the function f and the point z E ]])I). 

We now prove the main result of this section. 
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THEOREM 2.15 Fix 0 < p, r < +00, and let /L be a positive Borel measure on 
TIl Then the following are equivalent: 

( 1) The function B/L is bounded on TIl 

(2) Thefunction lir(z) = /L(D(z, r»/ID(z, r)IA is bounded on TIl 

(3) The Bergman space AP is boundedly contained in LP(]]J), d/L). 

Proof. Recall that 

B/L(z) = [ (1 -lze)2 d/L(w) ~ [ (1 -ld)2 d/L(w). 
JDJ 11 - zwI4 J D(z.r) 11 - zwl4 

That (1) implies (2) now follows from (1) of Lemma 2.12 and the fact that 
ID(z, r)IA is comparable to (1 - Id)2. 

To see that (3) implies 0), assume that there exists a constant C > 0 such that 

k If(w)iP d/L(z) .:s C k If(w)iP dA(w) 

for all f E AP. Fix z E]]J) and let 

[ 1 -lzl2 J2/P 
few) = (1 - zw)2 ' w E]]J). 

Then we obtain B/L(z) .:s c. 
It remains to show that (2) implies (3). Thus, we assume there exists a positive 

constant Cl such that /L(D(z, r» .:s Cl ID(z, r)IA for all z E ]]J). Pick a sequence 
{an}n in]]J) satisfying the conditions in Lemma 2.13. For f E AP, we have 

k If(z)iP d/L(z) < % /v(an. r) If(z)iP d/L(z) 

+00 
< L /L(D(an, r» sup{lf(z)iP : Z E D(an, r)}. 

n=] 

By Lemmas 2.14 and 2.12, there exists a positive constant C2 such that 

C? 1 sup{lf(z)iP : Z E D(an , r)} .:s ID( - )1 If(z)iP dA(z) 
an, r A D(an.2r) 

for all n = 1,2,3, .... It follows that 

[ If(z)iP d/L(z) .:s C]C2 ~ [ If(z)iP dA(z). 
JDJ n=] J D(an .2r) 

Since every point in ]]J) belongs to at most N of the sets D(an , 2r), we conclude 
that 
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for every f E A P • • 

Note that if a positive measure f.l satisfies anyone of the three conditions in the 
theorem, then f.l must be finite. The following is the "little oh" version of the above 
theorem. 

THEOREM 2.16 Fix 1 < p < +00 and 0 < r < +00. Let f.l be a positive Borel 
measure on III Then the following conditions are equivalent: 

(1) The function Bf.l is in Co(JIll). 

(2) The function fir is in Co(JIll). 

(3) AP C LP(IDl, df.l) and the inclusion map is compact. 

Proof. That (1) implies (2) follows from the estimate in the first paragraph of 
the proof of the previous theorem. 

To prove (3) implies (1), recall that 

Z E 1Dl, 

where 

[ 1 -Id J21P 
fz(w) = (1 - zw)2 ' z, WE 1Dl. 

Itis easy to check that fz --+ o weakly in AP as Izl --+ 1-. Thus, the compactness of 
the inclusion map from AP into LP(IDl, df.l) implies that Bf.l(z) --+ 0 as Izl --+ 1-. 

To prove (2) implies (3), let us assume that fir (z) --+ 0 as Iz I --+ 1- and fn --+ 0 
weakly in AP as n --+ +00. We must show that fn --+ 0 in norm in LP(IDl, df.l) 
as n --+ +00. Let {an}n be the sequence from Lemma 2.13. It is easy to see that 
Ian I --+ 1- as n --+ +00. Given c > 0, we can find a positive integer No such 
that f.l(D(an, r»/ID(an, r)IA < c for all n ::: No. Since fn --+ 0 weakly in AP as 
n --+ +00, we can find a positive constant C such that II fn II P .::: C for all n ::: 1; 
see Exercise 1 of Chapter 1. The desired result now follows from the inequality 

In fact, we can break the sum above into two parts; the first part is for 1 .::: n .::: No 
and the second part for n > No. The first part can be made arbitrarily small by 
choosing k sufficiently large, because fk --+ 0 weakly in A P implies that fk (z) --+ 0 
uniformly over compact sets. By the technique used in the proof of the previous 
theorem, the second part here can be shown to be less than a constant (independent 
of c) times c. We omit the details of this elementary c-N argument. _ 
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2.4 BMO in the Bergman Metric 

A well-known characterization of BMO on the unit circle is Garsia's lemma (see 
[49]), which says that a function f in L2 of the circle belongs to BMO of the circle 
if and only if the function 

Z t-+ _1 r27C P(eit , z)lf(eit )1 2 dt _1_1 r2rr P(eit , z)f(eit ) dtl2 
2Jr 10 2Jr 10 

is bounded, where P(eit , z) is the Poisson kernel at z. A similar result also holds 
for functions in VMO of the circle. The purpose of this section is to develop this 
theory in the Bergman metric. 

Recall that for 0 < r < +00 and z E ill1, the set D(z, r) is the hyperbolic disk 
with hyperbolic center z and hyperbolic radius r. Also, ID(z, r)IA is the Euclidean 
area of D(z, r) divided by Jr. 

For a locally integrable function f on lJ), we define the averaging function f,. 
as follows: 

~ 1 1 fr(Z) = ID()I f(w)dA(w), 
z, r A D(z.r) 

Z E lJ). 

If f is locally square-integrable, then we define the mean oscillation of f at Z in 
the Bergman metric as 

MOr(f)(z) = [ 1 r If(w) - f,.(z) 12 dA(W)]i 
ID(z, r)IA 1D(z.r) 

Let BMOr = BMOr (lJ) denote the space of all locally square-integrable functions 
f such that 

IIfllr = sup {MOr(f)(z) : z E lJ)} < +00. 

The main result of this section is that the space BMOr is independent of r and can 
be described in terms of the Berezin transform. 

LEMMA 2.17 Suppose rand s are positive numbers and {3 is the Bergman metric 
on lJ). Then the following conditions on a function f defined on lJ) are equivalent. 

(1) Mr = sup{lf(z) - f(w)1 : {3(z, w) < r} < +00. 

(2) Ms = sup{lf(z) - f(w)1 : {3(z, w) < s} < +00. 

(3) If(z) - f(w)1 ::s C ({3(z, w) + 1) for some positive constant C and all 
z, WE lJ). 

Proof. Assume r < s. Then Mr ::s Ms, and hence (2) implies (1). It is clear 
that (3) implies (2). To prove the remaining implication, we fix two points z and w 
in lJ) with {3(z, w) > r; the desired inequality is obvious if {3(z, w) ::s r. Let a(t), 
o ::s t ::s 1, be the geodesic from z to w in the hyperbolic metric. Let N be the 
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smallest integer greater than or equalto P(z, w)jr. For tk = kj N, 0 ~ k ~ N - 1, 
we have 

It follows that 
N-l 

I/(z) - l(w)1 ~ L !/(a(tk)) - I(a(tk+l)! ~ N Mr. 
k=l 

By the choice of N, we have 

N ~ P(z, w) + 1 ~ ~ (P(z, w) + 1). 
r r 

Thus, 

2Mr ( ) I/(z) - l(w)1 ~ - P(z, w) + 1 
r 

for all P(z, w) > r. • 
The Bergman metric grows logarithmically: 

1 1 + Izl 
P(z, 0) = "2 log 1 _ Izl' Z E lD>. 

It follows that a Borel measurable function 1 which satisfies any of the three equiv­
alent conditions of Lemma 2.17 is in LP(lD>, dA) for all finite positive exponents 
p. 

We can now prove the main result of the section. For convenience, we introduce 
for 1 E L2(lD>, dA) the following notation: 

1 

MO(f)(z) = [B(1/12)(z) -IB/(z) 12r . 
It is easy to see that B(1/12)(z) 2: IB 1 (z) 12, so that the above expression is 

well-defined. In fact, we can write 

MO(f)(z) ~ (1 - Izl')' [10 10 I (l !~~~{~v~Z),I' dA(u)dA(v) r 
THEOREM 2.18 Suppose 0 < r < +00 and ·that the function 1 is locally 
square-integrable in lD>. Then 1 E BMOr if and only if 1 E L 2(lD>, dA) and the 
function MO(f) is bounded on III 

Proof. By Lemma 2.12, we can choose a small constant a > 0 such that 

Ik (w)12 > a 
z - ID(z, r)IA 

for all z E lD> and w E D(z, r), where 

k 1 -lzl2 
z(w) = (1 - wZ)2 
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are the normalized reproducing kernels of A 2 . In view of the above formula for 
MO(f), we have 

[MO(f)(Z)]2 = ~ L L If(u) - f(v)12Ikz(u)12Ikz(v)12 dA(u) dA(v) 

which we compare with 

[MOr (f)(Z)]2 = 1 21 1 If(u) - f(v)1 2 dA(u) dA(v) 
2ID(z, r)I A D(z.r) D(u) 

for z E ITlJ. By shrinking the domain of integration ITlJ to D(z, r), we obtain 

MO(f)(z) :::: a MOr(f)(z), Z E ITlJ. 

Thus, the boundedness of the function MO(f) implies that f E BMOr . 
Next, assume that f is in BMOr . Let r = 2s, and recall that is is the averaging 

function for f with parameter s. Write f = fl + 12, where !I (z) = is(z) and 
h(z) = fez) -is(z). Since the space of functions f in L2(ITlJ, dA) with bounded 
MO(f) is linear, it suffices to show that both fl and 12 have this property. 

First, using the identity 

is(z) -is(w) = 1 1 [feu) -is(w)] dA(u) 
ID(z, S)IA D(z.s) 

and the Cauchy-Schwarz inequality we easily obtain 

< 1 1 1 If(u) - f(v)1 2 dA(u) dA(u). 
- ID(z, S)IA ID(w, S)IA D(z.s) D(w.s) 

If fJ(z, w) :s s, then 

D(z,s) c D(Z,r), D(w,s) C D(z,r), 

and 

ID(w, S)IA ~ ID(z, S)IA ~ ID(z, r)IA; 

see Lemma 2.12. Thus, there exists a positive constant C such that 

C 2 [ [ If(u) - f(v)1 2dA(u)dA(v) 
2ID(z, r)I A JD(z,r) JD(z.r) 

C [MOr (f)(z)]2 

for all fJ(z, w) :s s. Since MOr(f) is bounded, it follows from Lemma 2.17 that 
there exists a positive constant C I such that 

lis(z) -is(w)1 :s CI (fJ(z, w) + 1) 
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for all z and W in lDl. In particular, is E L2(lDl, dA). Now, 

2 [MO(is)(z) f 
k k If(u) - f(v)12Ikz(u)12Ikz(v)12 dA(u)dA(v) 

< cf k k (f3(u, v) + 1)2Ikz(u)12Ikz(v)12 dA(u)dA(v) 

c? k k (f3(u, v) + 1)2 dA(u) dA(v). 

The last equality follows from a change of variables and the invariance of the 
hyperbolic metric. The last integral above can easily be checked to be finite. Hence 
the function MO(is) is bounded. 

Second, we look at h = f - fs. Then, by the triangle inequality, 
I 

[ 1 /, If(w) _ is(w)12 dA(W)] "2 
ID(z, S)IA D(z.s) 

< 

I 

[ ID( 1 )1 [ If(w) - is(Z) 12 dA(W)] "2 
Z, S A J D(z.s) 

I 

+ [ID( 1 )1 /, lis(z) - is(w)12 dA(W)] "2 
Z, S A D(z.s) 

The last term is bounded inz because of an earlier estimate on is. The term 
preceding it is bounded, too, because f E BMOr and 

Z E j[]), 

which follows from Lemma 2.12 and the double-integral formula for MOr (f) used 
earlier in the proof. By Theorem 2.15, the function B(lhI 2) is bounded, which 
obviously implies that h E L2(j[]), dA) and that MO(h) is bounded. _ 

It follows from Theorem 2.18 that the space BMOr does not depend on the 
parameter r, 0 < r < +00 (but the norm changes with r, of course). Let us 
write BMOa = BMOa(j[]) for the space BMOr , for any 0 < r < +00. The new 
notation signifies the independence of the parameter r; it also emphasizes the fact 
that whether or not a function from L2(j[]), dA) belongs to BMOa is a boundary 
property. 

It is easy to check that BMOa becomes a Banach space with the norm 

II!11 = IBf(O)1 + sup {MO(f)(z) : Z E j[])}. 

If the term involving 

Bf(O) = l f(z)dA(z) 

is removed, then what remains is only a seminorm. This seminorm is Mobius 
invariant, although the norm above is not. 
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Let VMOr be the space oflocally square-integrable functions I in lJ)) such that 
MOr(f)(z) -+ 0 as Izl -+ 1-. It is clear that VMOr is contained in BMOr. 

THEOREM 2.19 A locally square-integrable function I in lJ)) belongs to VMOr 

ijandonlyijMO(f)(z) -+ Oas Izl-+ 1-. 

Proof. The proof is similar to that of the previous theorem; we leave the details 
to the interested reader. _ 

Again we let VMOa = VMOa(lJ))) stand for the space VMOr for any r, 0 < 
r < +00. It is easy to check that VMOa is a closed subspace of BMOa and that 
VMOa contains C(IT)). 

THEOREM 2.20 Let H (lJ))) be the space 01 analytic functions in lJ)). Then 

(1) BMOa n H(lJ))) = B. 

(2) VMOa n H(lJ))) = Bo. 

Proof. Since both BMOa and B are contained in L2(lJ)), dA), we may begin 
with a function I in A 2 . By the symmetry of lJ)), 

1'(0) = 2i w (f(w) - I(O))dA(w). 

Replacing I by I 0 CfJz and performing an obvious estimate, we get 

(1 - IZI2)21/' (z)12 ~ 4i'1 0 CfJz(w) - l(z)1 2 dA(w) 

for every Z E lJ)). Since BI = I for analytic I, we easily verify that 

ill 0 CfJz(w) - l(z)1 2 dA(w) = B(1/12)(z) -IB/(z)12. 

This shows that BMOa n H(lJ))) c B. 
On the other hand, if I E B, then by Theorem LIS, there exists a positive 

constant C such that I/(z) - l(w)1 ~ CfJ(z, w) for all z, w E lJ)). This, together 
with the integral formula for B(1/12) - IB/12 in the previous paragraph, then 
shows that Be BMOa n H(lJ))). 

The proof of the identity VMOa n H (lJ))) = Bo is similar. _ 

2.5 A Lipschitz Estimate 

Let a(t) be a smooth curve in lJ)). If s(t) is the arc length of a(t) in the Bergman 
metric, then 

ds la'(t) I 
dt = 1 - la(t)1 2 ' 
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For a point a E ID), we let TIa denote the rank-one orthogonal projection from A 2 

onto the one-dimensional subspace spanned by ka , where 

1 -lal2 

ka(z) = (l - GZ)2' 

which is a unit vector in A 2 . In concrete terms, 

ZED, 

a ED. 

LEMMA 2.21 Let aCt) be a smooth curve in][]), and let s(t) be the arc length of 
a(t) in the Bergman metric. Then 

~: = ~ II (I - TIa(t») (:t ka(t») II, 

where II . II is the norm in A2 and I is the identity operator. 

Proof. Since 

d a'(t)a(t) + a(t)a'(t) 2za'(t)(l -la(t)12) 
-k (t)(z) - - + ---==---
dt a - (1 - a(t)z)2 (1 - a(t))3 

a simple calculation gives 

( d ) _ -a'(t)a(t)+a(t)C?{t) 
TIa(t) dt ka(t) (Z) - (1 _ a(t)z)2 ' 

and so 

( d) 2a'(t) (z - aCt»~ 
(I - TIa(t») d/a(t) (z) = (1 _ a(t)z)3 . 

By a change of variables we then obtain 

II (d) 112 2Ia'(t)12 

(I - TIa(t») d/a(t) = (1 _ la(t)12)2' 

which clearly implies the desired result. • 
THEOREM 2.22 Let a(t) be a smooth curve in][]), and let set) be the arc length 
ofa(t) in the Bergman metric. Then,forany f E BMOa, we have 

I ~Bf(a(t»1 :s 2.J2MO(f)(a(t» ds. 
dt dt 

Proof. Recall that 

Bf(a(t» = L few) Ika(t)(w)1 2 dA(w). 
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Differentiation under the integral sign gives 

:t Bf(a(t)) = 2 t f(w)Re [(:tka(t)(W») ka(t) (W)] dA(w). 

Also, differentiation of the identity (ka(t) , ka(t)) = I gives 

Re (:t ka(t) , ka(t)) = O. 

Using this and the formula 

na(t) (:t ka(t)) = (:t ka(t) , ka(t)) ka(t), 

we then obtain 

It follows that 

:t Bf(a(t» = 2 t few) Re [(I - na(t)) (:/a(t)) (W) ka(t)(W)] dA(w). 

On the other hand, 

t (I - na(t)) (:/a(t)) (w) ka(t)(w) dA(w) = 0 

by the definition of na(t). Therefore, the derivative dBf(a(t»/dt is equal to 

2 t (J(w) - Bf(a(t»)Re [(1- na(t) (:/a(t)) (W)ka(t)(W)] dA(w), 

and hence IdBf(a(t»/dtl is less than or equal to 

2 t If(w) - Bf(a(t»llka(t)(w)II(I- na(t) (:/a(t)) (W)I dA(w). 

The desired result now follows from Lemma 2.21 and an application of the Cauchy­
Schwarz inequality. • 

COROLLARY 2.23 For f E BMOa, we have 

IBf(z) - Bf(w)1 ~ 2h IIfIIBMo (3(z, w) 

for all z and W in ]])l, where 

II fIIBMO = sup {MO(f)(z) : z E ]])l} • 
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Proof. Fix z and w in JI]) and let aCt), 0 :s t :s 1, be the geodesic from z to w 
in the Bergman metric. Then, by the above theorem, 

IBf(z) - Bf(w)1 = II I dill ds -Bf(a(t»dt :s 2v'2 MO(f)(a(t» -dt 
o dt 0 dt 

< 
{I ds 

2v'2llf1lBMO 10 dt dt = 2v'2llf11BMO {3(z, w), 

as claimed. • 

2.6 Notes 

The Berezin transform was introduced by Berezin in [17] and [18]. Most applica­
tions of the Berezin transform so far have been in the study of Hankel and Toeplitz 
operators; see [l35]. Section 2.1 is elementary. All results in Section 2.2 are taken 
from the paper [4]. The results of Section 2.3, in various forms, are due to Hast­
ings [54], Luecking [92], and Zhu [l33]. The theory of BMO and VMO in the 
Bergman metric, as presented in Sections 2.4 and 2.5, was begun by Zhu in his 
thesis [l32] and then developed by Bekolle, Berger, Coburn, and Zhu in [15]. 

2.7 Exercises and Further Results 

1. If f ELI (JI]), d A) is subharmonic, then B f is subharmonic and f :s B f on 
JI]). 

2. If f E LOO(JI]) and f has a nontangentiallimit L at some boundary point 
~ E 1I', then B f also has nontangentiallimit L at ~ . 

3. Find a real-valued function f ELI (JI]), dA), strictly negative on a subset of 
positive area, such that B f is strictly positive on ID. 

4. Show that there exist two functions f and g in A2 such that BClfe) < 
B(lgI 2) on ID, but nevertheless 

~ If(z)p(z)1 2 dA(z) > ~ Ig(z)p(z)1 2 dA(z) 

holds for some polynomial p. 

5. Show that the Berezin transform commutes with the invariant Laplacian on 
the space C2 (ii5). 

6. If f is a bounded subharmonic function in ID, then {Bn f}n converges to a 
harmonic function in ID. 

7. If f is continuous on ii5, then {Bn f}n converges uniformly in ID to the 
harmonic extension of the boundary function f. See [42]. 
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8. If f is bounded and radial, then B f E Co (J[))) if and only if 

1 11 l-r r f(t)dt -+ 0 

as r -+ 1-. See [89]. 

9. If f E VXl(J[))), then Bf E Co(J[))) if and only if 

n l f(z)lzI 2n dA(z) -+ 0 

asn -+ +00. 

10. For fez) = -2 log Izl onJ[)), show that Bf(z) = l-Ize. 

11. If f E C 2(ll}), then 

Bf(z) = F(z) -l [1-llPz(z)1 2] dwf(w)dA(w), Z E J[)), 

where F is the harmonic extension of the boundary function of f. 

12. If f E C 2(ll}), then 

fez) = F(z) + l[IOg IlPz(W)12] dwf(w) dA(w), Z E J[)), 

where F is the harmonic extension of the boundary function of f. 

13. For fez) = 10g[lj(l - Iz12)] on J[)), show that Bf = f + 1. 

14. Let 0 < p < +00. Characterize those functions IP E HOC such that 

a llf(ZW dA(z) < lllP(Z)f(ZW dA(z) 

for all f E AP and some constant a > 0 (depending on IP and p but not on 
f). See [29]. 

15. Suppose 2 S p < +00 and that f is an analytic function on J[)). Show that 
MO(f) E LP(J[)), d'J..) if and only if f E Bp (the analytic Besov spaces). 
See Exercise 9 in Chapter 1 for the definition of d'J... See [135]. 

16. A bounded function IP on j[» is a pointwise multiplier of BMOa if and only 
if MO(IP) log(l - Id) is bounded in J[)). See [134]. 

17. Fix a sequence {Zn}n in J[)). For t > 0, let At be the operator on [2 whose 
matrix under the standard basis has 

(l - IZm 12)1/2(1 - IZn 12)t/2 

(1 - zmzn)f 

as its (m, n) entry. For t > 1, At is bounded on [2 if and only if {Zn}n is 
the union of finitely many separated sequences; for t = 1, At is bounded on 
[2 if and only if {Zn}n is the union of finitely many (classical) interpolating 
sequences. See [142]. 
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18. Show that the Bergman projection maps BMOa onto the Bloch space. 
Similarly, the Bergman projection maps VMOa onto the little Bloch space. 

19. Fix -1 < a < +00 and 0 < p < +00. For a sequence A = {an}n in ill), let 
RA be the operator that sends an analytic function J to the sequence 

{(l -lanI2 )(2+a)/p J(an) In' 

Show that RA is bounded from A~ to [P if and only if A is the union of 
finitely many separated sequences. See [139]. 

20. If f E BMOa, then the function 

(1 - Id)IVBJ(z)1 

is bounded on ]]}. Here, V stands for the gradient operator. 



3 
A P -Inner Functions 

In this chapter, we introduce the notion of A~ -inner functions and prove a growth 
estimate for them. The A~-inner functions are analogous to the classical inner 
functions which play an important role in the factorization theory of the Hardy 
spaces. Each A~-inner function is extremal for a z-invariant subspace, and the 
ones that arise from subspaces given by finitely many zeros are called finite zero 
extremal functions (for a = 0, they are also called finite zero-divisors). In the 
unweighted case a = 0, we will prove the expansive multiplier property of AP­
inner functions, and obtain an "inner-outer" -type factorization of functions in A p. 

In the process, we find that all singly generated invariant subspaces are generated 
by its extremal function. In the special case of p = 2 and a = 0, we find an 
analogue of the classical Caratheodory-Schur theorem: the closure of the finite 
zero-divisors in the topology of uniform convergence on compact subsets are the 
A 2-subinner functions. In particular, all A 2 -inner functions are norm approximable 
by finite zero-divisors. 

3.1 Ag-Inner Functions 

Classical inner functions in lI} play an important role in the theory of Hardy spaces. 
Recall that a bounded analytic function cp in II)) is called inner if Icp(z) I = 1 for 
almost all Z E T. This is clearly equivalent to 

I 127r - (lcp(z)iP - 1) zn Idzl = 0 
2rr 0 
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for all nonnegative integers n; and the condition above is independent of p, 0 < 
p < +00. This motivates the following definition of inner functions for Bergman 
spaces. 

DEFINITION 3.1 Afunction cP in Ag is called an Ag-inner function if 

In (lcp(z)iP - 1) zn dAa(z) = 0 

for all nonnegative integers n. 

It follows easily from the above definition that a function cp in Ag is an Ag-inner 
function if and only if 

In Icp(z)iP q(z) dAa(z) = q(O) 

for every polynomial q, and this condition is clearly equivalent to 

In Icp(z)iP h(z) dAa (z) = h(O), 

where h is any bounded harmonic function in 1Dl. In particular, every Ag-inner 
function is a unit vector in Ag. 

An obvious example of an Ag-inner function is a constant times a monomial. 
In fact, for any n = 0, 1,2, ... , the function 

1 

[ r(¥+a+2) JP n 
cp(z)= r(¥+I)r(a+2) z 

is Ag-inner. More examples of Ag-inner functions will be presented later when 
we study a certain extremal problem for invariant subspaces. 

Our first goal is to show that Ag-inner functions grow much more slowly near 
the boundary than an arbitrary function from Ag does. The following lemma tells 
us how fast an arbitrary function from Ag grows near the boundary. 

LEMMA 3.2 If f is a unit vector in Ag, then 

Z E 1Dl. 

Proof. Let u be a positive subharmonic function in 1Dl. Then by the sub-mean 
value property of subharmonic functions on circles and by using polar coordinates 
we have 

u(O) s In u(z) dAa(z). 

Replace u by u 0 CPa, where, for a E 1Dl, 

a-z 
CPa(Z) = -1 -, -az 

Z E 1Dl. 
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We conclude that 

u(a) :s l u 0 CPa(Z) dAa(z) 

for all a E lDl. Making an obvious change of variables, we obtain 

u(a) :s l u(z) Ik~(z)12 dAa(z) 

for all a E lDl, where 

(1 - lae)(2+a)/2 
ka (z) - ---'-""";"""-.".--

a - (1 _ az)2+a 

are the normalized reproducing kernels of A~. 
Now suppose I is a unit vector in A~. Fix any a E lDl, and let 

Z E lDl. 

Applying the estimate in the previous paragraph, we conclude that 

I/(a)(k~(a)r2/pr :s 1, 

that is, 

1 
I/(a)1 :s (1- laI2)(2+a)/p 

for all a E lDl, completing the proof of the lemma. • 
Since the polynomials are dense in A~, it is an immediate consequence of 

Lemma 3.2 that for I E A~, 

I/(z)1 = 0 (O-lzl;)(2+a)/p) as Izl -+ 1, 

which means that the boundary growth is actually not quite as fast as permitted by 
Lemma 3.2. 

To obtain a better estimate for A~-inner functions, we are going to show that 
every A~-inner function is a contractive multiplier from the classical Hardy space 
H P into A~. Recall that H P consists of analytic functions I in lDl such that 

If IE HP, then the radial limits I(eit ) exist for almost all real t and 

II/IItp = _1 r21f I/(eit)I P dt. 
2:!r 10 

The books [37], [49], and [82] are excellent sources of information about Hardy 
spaces. 
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THEOREM 3.3 If cp is Ag -inner, then cp is a contractive multiplier from H Pinto 
Ag, and consequently, 

zED. 

Proof. Suppose f E HP and let h be the least harmonic majorant of If(z)IP. 
More explicitly, 

1 [2rr 
h(z) = 2n: 10 P(eit,z)lf(eit)IPdt, zED, 

where P(eit , z) is the Poisson kernel at zED. By Fatou's lemma and the definition 
of Ag-inner functions, 

[ Icp(z)IP h(z) dAa(z) :s lim inf [ Icp(z)IP hr(z) dAa(z) = h(O), lJD Hl- lJD 
where hr(z) = h(rz) for z E D.1t follows that 

l'CP(Z)f(z)IP dAa(z) :s l'CP(z)IPh(Z) dAa(z) :s h(O) = IIfll~p, 

so that cp is a contractive multiplier from H Pinto Ag. 
For any zED, consider the function 

( l-Id )I/P 
fz(w) = (l - zw)2 ' WED. 

Then fz is a unit vector in H P, and so cp fz has norm less than or equal to 1 in Ag. 
Applying Lemma 3.2 to the function cpfz, we conclude that 

zED, 

as claimed. • 

3.2 An Extremal Problem 

In this section, we exhibit the close relationship between Ag-inner functions and 
invariant subspaces of Ag. In particular, this will provide us with more examples 
of A£-inner functions. 

A closed subspace I of Ag is called invariant if zf E I whenever f E I. Here, 
z denotes the identity function on D. It is easy to see that a closed subspace I 
is invariant if and only if it is closed under multiplication by bounded analytic 
functions. 

We give two examples of invariant subspaces in Ag. First, if A = {an}n is a 
sequence of points from D, and if IA consists of all functions in AP whose zero 
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sets contain A (counting multiplicities), then I A is an invariant subspace of A P . 

We call such spaces zero-based invariant subspaces. 
Next, if f is any function in Ag, and if If is the closure in Ag of the set consisting 

of all polynomial multiples of f, then If is an invariant subspace (called the 
invariant subspace generated by f). We call such spaces singly generated invariant 
subspaces, or sometimes, cyclic invariant subspaces. Note that the notation [f] is 
sometimes used instead of If. 

For any invariant subspace I of Ag, we let n = n[ denote the smallest 
nonnegative integer such that there exists a function f E I with f(n)(o) I- O. 

THEOREM 3.4 Suppose I is an invariant subspace of Ag and G is any function 
that solves the extremal problem 

sup {Re f(n) (0) : f E I, IIfllp.a :s I}, 

where n = n [. Then G is an Ag -inner junction. 

Proof. It is obvious that G is a unit vector. We will prove the theorem by a 
variational argument. 

Fix a positive integer k, and set 

re ill = L IG(zWl dAa(z), 

where 0 < r < 1 and -Jr < e :s Jr (polar coordinates). For any complex number 
A, we consider the function 

G(z)(l + AZk ) 

f;.Jz) = IIG(l + Azk)lIp.a· 

Since h. is a unit vector in I, the extremal property of G gives 

Re fin) (0) :s G(n) (0). 

This implies that 

for all A E <C, so that 

1 :s 1 + P Re [A L IG(z)iPzk dAa(z) ] + 0(IAI 2). 

Put A = _£e- ill , where £ > 0 is small and e is as above. We then obtain 

O:s -r + 0(£). 

Letting £ ~ 0, we see that r = 0, and so Gis Ag-inner. • 

For any invariant subspace I, the extremal problem stated in the theorem above 
will be referred to as the extremal problem for I. It is now natural to ask when the 
extremal problem for I has a solution, and when the solution, if it exists, is unique. 
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PROPOSITION 3.5 Suppose 1 ~ P < +00 and I is an invariant subspace of 
A~. Then the extremal problem for I has a unique solution. 

Proof. Let S be the supremum in the extremal problem for I. Choose a sequence 
Uk}k of unit vectors in I such that 

S = lim It) (0), 
k 

where n = nI. By a normal family argument, we may assume fk(Z) -+ fez) as 
k -+ +00, uniformly on compact subsets oflDl. By Fatou's lemma, Ilfllp.a ~ 1, 
and also, f is in the weak closure of I. Basic Functional Analysis tells us that the 
weak closure and norm closure of a subspace in Ag, for 1 ~ P < +00, are the 
same. It follows that f belongs to I and solves the extremal problem for I. 

To prove uniqueness, suppose f and g are two solutions to the extremal problem. 
Then f andg are unit vectors in I, and for every t E (0, 1), thefunctiontf +(l-t)g 
also solves the same extremal problem. It follows that 

IItf + (1 - t)gllp = 1 = IItfllp + 11(1 - t)gllp, 

for all t E (0, 1). From Real Analysis we know that 

IIF + Gllp = IlFllp + IIGllp 
if and only if one of the two functions is a positive constant multiple of the other. 
From this we conclude that f = g. • 

When 0 < p < 1, the space Ag is no longer locally convex, and so we do 
not know automatically whether the weak and "norm" closures of I coincide. 
Neither the existence nor the uniqueness of solutions is known in general in the 
case 0 < p < 1. However, if I is a zero-based invariant subspace in A~, then the 
existence of a solution to the extremal problem for I, even when 0 < p < 1, is 
easily established by a normal family argument; we are going to show later in the 
chapter that such a solution is also unique in the un weighted case. 

If the extremal problem for I has a unique solution, we then denote it by G I and 
call it the extremal function of I. In particular, if I = IA is a zero-based invariant 
subspace in A P, then the corresponding extremal function G A = G lA will be 
called a zero divisor. The phrases canonical divisor or contractive zero divisor are 
sometimes used as well. 

The extremal problem is explicitly solvable only in very special cases. We give 
several simple examples here. 

First, if p = 2, then every invariant subspace I in A~ has a reproducing kernel 
Kf(z, w). If in addition nl = 0, then the extremal function G~ for I is simply 

G~(z) = Kf(z, 0)1) Kf(O, 0). 

We now mention an iterative procedure for obtaining the reproducing kernel 
function for finite zero-based invariant subspaces, which by the above leads to 
explicit formulas for the corresponding extremal functions. Let A = {aJ, ... , aN} 
be a finite sequence of points in 1Dl, and suppose a E IDl\A. To simplify the notation, 



58 3. AP -Inner Functions 

we write K~ for KfA • Then the kernel function for an additional zero at a is given 
by 

(Z, w) E j[J) x j[J). 

Iteratively this formula gives us the kernel function for finitely many distinct zeros. 
The first step is to apply the formula to the case of A = 0, and get 

K a w _ 1 _ ( 1 - lal2 )2+a 
a (z, ) - (1- zw)2+a (1- az)(1 - aw) , 

where we write a in place of {a}. As we insert this into the formula for the extremal 
function Ga for fa = {f E A~ : f(a) = O}, we arrive at 

In general, for a finite zero sequence A = {aj, ... , aN} of distinct points in j[J), the 
extremal function G~ is a linear combination of the functions 

1 1 
1, (1 _ alz)2+a' ... , (l - aNz)2+a' 

which are the reproducing kernel evaluated at the zeros and at the origin. If mUltiple 
zeros are encountered, then derivatives of the kernel function, 

aj zj 

aw j (1 - zw)2+a = (2 + a)··· (j + 1 + a) (l _ zw)2+j+a' 

are needed for the construction of G~ . 
We return to general p, 0 < p < +00, but put a = O. For a point a E j[J) \ {O}, 

let f nxa be the invariant subspace of the unweighted Bergman space AP consisting 
offunctions having a zero at z = a of order at least n. Then the extremal problem 
for f nxa has a unique solution G nxa (see Section 3.5 for uniqueness), which is 
given explicitly by 

( a _Z)n ( np l- la I2 )2/P 

Gnxa(Z) = c 1 _ az 1 +"2 1 - az ' 

where 

We leave the necessary verifications as an exercise to the reader. Hansbo has ob­
tained an analogous explicit formula for the case of two different zeros of arbitrary 
multiplicities [52]; a Bessel-type function appears as a result of interaction between 
the zeros. Finally, if 0 < a < +00, and 

( I+Z) Sa(Z) = exp -0'-- , 
l-z 

Z E j[J), 
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is the singular inner function with atomic singularity at z = 1, then the invariant 
subspace [Sa] of the unweighted Bergman space AP generated by Sa gives rise to 
a unique extremal function Ga (see Theorem 3.33 for uniqueness), where 

( pa) 2/ P ( 1 + Z) Ga(z) = (l + pa)-l/p 1 + -- exp -a-- , 
l-z l-z 

Z E j[J). 

This follows from the formula in the previous paragraph. In fact, if a = an 
1 - a /n in the extremal function in the previous paragraph, then Gnxan -+ Ga 
as n -+ +00. Again, we leave the verification and justification of this limit as an 
exercise to the reader. 

3.3 The Biharmonic Green Function 

Our next goal in this chapter is to show that AP -inner functions have the so-called 
expansive multiplier property, or equivalently, the contractive divisibility property. 

We recall that we have normalized the Laplacian: 

!lo = !loz = ~ ( 02
2 + (2

2 ), 
4 ox oy z=x+iy. 

In terms ofWirtinger derivatives, we have the following alternative and often more 
convenient expression for the Laplacian: 

02 
!loz = --. 

OZOZ 

We recall that a function f defined on a planar region is harmonic if !lof = O. A 
real-valued twice differentiable function f on a planar domain is subharmonic if 
!lof 2: O. We shall write ds for normalized length measure: 

d ( ) _ Idzl 
s z - . 

2rr 

The starting point for our proof of the expansive multiplier property is the 
classical Green formula below, which can be found in any book on multivariable 
calculus and whose proof will be omitted here. 

THEOREM 3.6 Suppose Q is a domain in the complex plane whose boundary 
o Q consists of a finite number of smooth curves. Iff and g have continuous second 
derivatives on Q, the closure ofQ, then 

[ 11 (Of Og) (f!log - g!lof) dA = - g- - f - ds, 
n 2 an on on 

where %n is the inward normal derivative. 
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COROLLARY 3.7 Suppose 0 < r < +00 and f has continuous second 
derivatives on the closed disk Iwl :::: r. Then we have the identity 

f (r 2 -ld)llf(z)dA(z)=r f f(z)ds(z)- f f(z)dA(z). 
J1z1<r J1z1=r J1z1<r 

Proof. This is a straightforward application of Green's formula. -
COROLLARY 3.8 Suppose 0 < r < +00 and f has continuous second 
derivatives on the closed disk Iwl :::: r. Then for any fixed z with Izl < r, 

1 I r(z - w) I 1 1 r2 - Izf 2 log 2 Ilf(w) dA(w) = f(z) - - 2 f(w) ds(w). 
Iwl<r r - zw r Iwl=r Iz - wi 

Proof. For small positive e, we remove a closed disk centered at Z with radius 
e from the disk Iwl < r and denote the remaining domain by Qe . We note that the 
function 

I Ir(z-w)1 w ~ og 2 _ 
r -zw 

is harmonic in Qe. The desired result then follows from applying Green's formula 
to the domain Qe and then letting e shrink to zero. We omit the routine details. _ 

The Green function for ID is 

G(Z,W)=IOgl Z-w 12 =210g l z-w I, 
1 - zw 1- zw 

(z, w) E ID x ID. 

The Green potential of a function f is then the function defined by 

G[f](z) = In G(z, w)f(w) dA(w), Z E ID. 

In what follows we let Ck(X), where X is a planar set, denote the space of 
complex-valued functions on X whose k-th-order partial derivatives are all con­
tinuous on X. To make this precise, it is sometimes necessary to obtain extensions 
of the functions beyond X, and apply the differentiation to the extended function. 

THEOREM 3.9 Suppose f E C(j[j) n C2 (1D). Then 

( 1) G[f] E C (ID) n C 2(1D). 

(2) IlG[f] = f in ID. 

(3) G[f] = 0 on T. 

Moreover, these conditions determine the Green potential G[f] uniquely. 
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Proof. For any fixed z E ill), we let cpz denote the conformal mapping of lDl 
defined by 

z - w 
cpz(w) = -1 - , 

-zw 
w ElDl. 

By a change of variable argument, 

~ (1-ld)2 
G[f](z) = log Iwl2 f 0 cpz(w) 4 dA(w). 

[]) 11 - zwl 

nlis clearly shows that G[f] E C2 (lDl). 
Next we show that G[f] E C(IT:») and G[f] = 0 on T. Fix a point a E T, and 

write 

G[f](z) 1 (1 - Iz12)2 
log Iwl2 [J 0 cpz(w) - f(a)] 4 dA(w) 

[]) 11- zwl 

+ f(a) r log 1 z - _w 12 dA(w). J[]) 1 - zw 

If we use the function Iwl2 and r = 1 in Corollary 3.8, the result is 

r log 1 z - ~ 12 dA(w) = -(1 -Id). J[]) 1- zw 

It follows that 

1 (1-ld)2 
G[f](z) = log Iwl2 [J 0 cpz(w) - f(a)] _ 4 dA(w) - f(a) (1-lzI2). 

[]) 11 - zwl 

The second term on the right-hand side above clearly tends to zero as z -+ a. 
To see that the first term also goes to zero as z -+ a, break the integral into two 
parts, one over the disk Iwl :s 0, where 0 E (0, 1), and the other over the annulus 
o < Iwl < 1. The integral over the annulus can be made arbitrarily small by 
choosing 0 close enough to 1, because log I w I -+ 0 as I w I -+ 1 and 

r (1 - Iz12)2 
J[]) If 0 cpz(W) - f(a)1 11 _ zwl4 dA(w) :s 211f1l00. 

The integral overthe disk Iwl :s 0 tends to 0 as z -+ a, because f ocpz(w) -+ f(a) 
uniformly for Iwl :s o. This shows that G[f](z) -+ 0 as z -+ a and hence 
completes the proof of (1) and (3). 

To prove (2), take any Coo function g with compact support in lDl. By Green's 
formula and Fubini's theorem, 

l ~G[f](z)g(z) dA(z) l G[f](z)~g(z) dA(z) 

l ~g(z) dA(z) l G(z, w)f(w) dA(w) 

l few) dA(w) l G(z, w)~g(z) dA(z). 
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By Corollary 3.8, 

g(w) = l G(z, w)~g(z) dA(z) 

whenever g is Coo with compact support in JD). It follows that 

l ~G[f](z) g(z) dA(z) = l few) g(w) dA(w). 

This clearly implies that ~G[f] = f. • 
The above theorem tells us how to solve the Laplace equation ~f = g. It also 

tells us that the solution is unique with the additional boundary condition f = 0 
on T. 

It turns out that we can also solve the fourth-order partial differential equation 
~ 2 f = g on JD) in a similar fashion. For that we introduce the biharmonic Green 
function for JD): 

r(z, w) = Iz _ wl210g 1 z - w 12 + (I - IzI2)(1 - IwI2), 
I-zw 

(z, w) E JD) x JD). 

The biharmonic Green potential of a function f is then defined as the function 

r[f](z) = l r(z, w)f(w)dA(w), 

THEOREM 3.10 Suppose f E C 1(fi) n C4 (JD)). Then 

(1) r[f] E C 1(fi) n C4 (JD)). 

(2) ~2r[f] = f in JD). 

(3) r[f] = :n ['[f] = 0 on T. 

Z E JD). 

Furthermore, these conditions uniquely determine the potential ['[f]. 

This theorem will not actually be used for the presentation of the material in this 
book, and its proof is rather tedious though analogous to that of Theorem 3.9, so 
we omit the proof here. However, the above properties are important for the gen­
eral understanding of biharmonic Green potentials. We shall need several further 
properties of the biharmonic Green function. It is good to know approximately 
how big r(z, w) is. 

LEMMA 3.11 For all z, w E JD), we have 

(I - IzI2)2(1 - Iw12)2 (1 - Id)2(1 - Iw12)2 ------=--- < r(z w) < "':"---':'-':""=--":'-"":--'--'--
211-zw12 - , - Il-zwl2 

In particular, r(z, w) is strictly positive. 
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Proof. Simple manipulations with the definition of r (z, w) and the well-known 
identity 

yield the formula 

\ \
2 z-w 

1- -­
l-zw 

(l - Id)(1 - Iw12) 

11 - zwl2 

(l - Id)2(1 - Iw12)2 ( \ z - W \2) 
r(z, w) = 2 F 1 - ----= , 

11 - zwl 1- zw 

where 
(l-x)log(l-x)+x 

F(x) = 2 
x 

It is easy to see that 

+00 xn 

F(x) = L (k+ 1)(k+2)' 
k=O 

Ixl ~ 1. 

This implies that 

I 2 ~ F(x) ~ 1, 0 ~ x ~ 1, 

and the desired estimate for r(z, w) follows. _ 

We emphasize three points that are easily seen from the asymptotic formula for 
r(z, w) above. First, the biharmonic Green function is positive on JI) x JI). Second, 
if z E JI) is fixed, then 

r(z, w) ~ (I -lwI2)2, 

Finally, for fixed z E JI), we have 

a 
r(z, w) = -;--) r(z, w) = 0 

an(w 

for alllwi = 1 (this can be checked directly from the definition of r or from the 
power series expansion of F in the proof of the lemma above). 

LEMMA 3.12 Fix w E JI). Then 

where 

bozr(z, w) = G(z, w) + (l - IwI 2)H(z, w), 

1 -lzwl2 

H(z, w) = 11 _ zwl2 · 

ZEJI)\{W}, 

Proof. This is a straightforward calculation using Wirtinger derivatives. We 
omit the details. _ 

We need the following monotonicity property of the above function H. 
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LEMMA 3.13 Fix Z E '[' and w E JD). Then the function 

r r.> rH(z, 7) 
is increasing on the interval (Iwl, 1). 

Proof. For Iwl < r < 1, we have 

H(Z, W) = (r2 -lwI2):. 
r r21r - wzl-

A computation shows that the derivative 

~H(Z, W) 
dr r 

is equal to 

It then follows that the derivative 

is equal to 

(r2 - Iw12)2 ( r - Iwl 2 1 1) 
rlr - wzI2 r(r + Iwl) + r -Iwl - r - wz - r - wz ' 

which is greater than or equal to 

(r2 - IwI2)2(r -Iwl) 
2 ' r21r - wzi (r + Iwl) 

because for r > Iwl we have 

_1_ + _1_ = 2 Re (_1_) < 2 < __ 2_ 
r - wz r - wz r - wz - Ir - wzl - r - Iwl 

The proof is complete. • 
The monotonicity of H leads to a corresponding monotonicity property of the 

Green function r, as the two are related by the formula 

r(z, w) = 2.1' jJr H(eie,~) H(eie, W) de ~ d~. 
J[ max{lzl.lwll -Jr ~ ~ 

This identity can be verified by explicit computation. However, it is more appro­
priate to view it as a special case of Hadamard's variational formula, which will 
be discussed in detail in Chapter 9. 
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LEMMA 3.14 Fix z, w E ]j). Then the function 

r f-+ rr(z, ~) 
is increasing on the interval Owl, 1). 

Proof. By the above integral representation of the biharmonic Green function, 

rr(z W) - ~ t ilf H(ei(l ':')rl; H(eill ~)d()dl; 
'r - If Jrnaxllzl.lwl/r} -If ' I; , rl; 

for Iw I < r < 1. Note that the interval 

gets bigger as r increases. On the other hand, since I w I / r < 1;, we have I w I < r I; , 
and hence 

rl; H(ej(l, ~) 

is an increasing function of r, according to Lemma 3.13. The proof is complete .• 

Recall that for a function f in ]j) and 0 < r < 1, the dilation fr is defined by 
fr(z) = f(rz), z E ]j). 

LEMMA 3.15 If f is a positive locally summable function in ]j), then 

r31[fr ](z) ~ 1[f](z), z E ]j), 

for all 0 < r < 1. Moreover, r31[fr] increases monotonically to r[f] pointwise 
on ]j) as r -+ 1 - . 

Proof. After a change of variables, the formula 

r3r[fr ](z) = r3l r(z, w) fr(w) dA(w), 

becomes 

r3r[fr](Z) = 1, rr (z, W) f(w)dA(w), 
Iwl<r r 

The assertion is now immediate from Lemma 3.14. 

Z E ]j), 

Z E ]j). 

• 
LEMMA 3.16 Suppose 0 < p < +00 and f is an analytic function on ]j). Then 
the potential r 1[~lfrIP] increases monotonically to 1[~lfIP], pointwise in]j), 
asr-+l-. 

Proof. Since Ifl P is subharmonic, the function ~lflP is positive. Moreover, 

~lfr(zW = r2 ~lfIP(rz), Z E ]j). 

The desired result then follows from Lemma 3.15. • 
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3.4 The Expansive Multiplier Property 

In this section we prove an integral formula concerning AP-inner functions. As 
a consequence we obtain the expansive multiplier property for such functions. 
Note that the results in this section are stated and proved in the unweighted case; 
they cannot be generalized to the weighted Bergman spaces Ag in the full range 
-1 < a < +00. 

We shall need the following lemma from integration theory. 

LEMMA 3.17 Suppose that p, is a finite positive measure on the measure space 
X and that 0 < p < +00. If fn and fare p,-measurable functions on X such that 
fn(x) --+ f(x) p,-almost everywhere as n --+ +00 and 

lim sup { Ifnl P dp,:::: { Ifl P dJl < +00, 
n-Hoo ix ix 

then 

lim (Ifn - flP dp, = o. 
n-++oo ix 

Proof. Let E be any measurable set in X. Then by Fatou's lemma, 

It follows that 

Given any positive number 10, we can choose 0 > 0 such that 

L Ifl P dp, < 10 

whenever p,(E) < o. By Egorov's theorem (see any book on Real Analysis), there 
exists Xl C X such that p,(X \ Xl) < 0 and fn --+ f uniformly on Xl. It is 
elementary to check that 
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for all 0 < p < +00 and all complex numbers z and w. Thus, 

{ Ifn - flP dJ-L + ( Ifn - flP dJ-L 
lXl lx\X) 

< {Ifn - flP dJ-L + 2P { (lfnl P + IfI P) dJ-L. 
}Xl }X\x) 

Since the integral over X I above tends to zero by uniform convergence, we obtain 

completing the proof of the lemma. 

Recall the expression of the kernel ~zr(z, w) from Lemma 3.12. 

PROPOSITION 3.18 If 0 < p < +00 and f is analytic in lIJl, then 

k r(z, w)~lf(zW dA(z) = k ~zr(z, w)lf(zW dA(z) 

for all w E lIJl. Furthermore, either integral is finite if and only if f E A p. 

• 

Proof. We observe that for fixed w E lIJl, ~zr(z, w) is positive except on a 
compact subset of lIJl, and that part makes a finite contribution to the right hand 
side. So, if the right-hand integral diverges, it is because of the contribution from 
points near the boundary, in which case the integral equals +00. 

If f is analytic in n, then the desired identity follows directly from Green's 
formula and the fact that 

a 
r(z, w) = --r(z, w) = 0 

. on(z) 

for z E 1'; the zeros of f and the logarithmic singularity of ~zr(z, w) at z = W 

can be taken care of by removing from lIJl a finite number of disks with radius £ 

and then taking the limit as £ tends to zero. In particular, the identity holds if f is 
replaced by fr, 0 < r < l. The general case then follows from an obvious limit 
argument involving Lemma 3.16. • 

COROLLARY 3.19 Suppose 0 < p < +00 and rp is an A P -inner function. Then 

k r(z, w)~lrp(zW dA(z) = k G(z, w)lrp(zW dA(z) + 1 -lwl 2 

for all WE lIJl. 

Proof. Recall that by Lemma 3.12, 

2 1 -lzwl2 
~zr(z, w) = G(z, w) + (1 - Iwl ) 2' 

11- zwl 
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For any fixed W E II}, the function 

1 -Izwe z t-+ ----=-
11 - zwl2 

is bounded and harmonic in II}. The assertion then follows from Proposition 3.18 
and the definition of A P - inner functions. _ 

Using the identities 

[ G(z, w) dA(z) = [ log 1 z - W 12 dA(z) = -(1 - IwI2), 
}'I) }'I) 1 - zw 

WE II}, 

we can rewrite Corollary 3.19 as 

Since the Green function G(z, w) is negative and the biharmonic Green function 
r(z, w) is positive, it follows that 

0:::: r [~lqJIP] (z) = G [lqJlP - 1] (z) :::: 1 - Id, Z E II}, 

for all AP-inner functions qJ. 
We can now prove the main result of the section. 

THEOREM 3.20 Suppose 0 < p < +00 and qJ is an AP -inner function. Then 

llqJl P g dA = l g dA + II r(z, w)~g(w)~lqJ(zW dA(z) dA(w) 

for all g E C2(iD). In particular, if g is also subharmonic, then 

l g(z) dA(z) :::: lICP(ZW g(z) dA(z). 

Proof. By Theorem 3.9, there exists a bounded harmonic function h in II} such 
that 

g(z) = G [~g] (z) + h(z), 
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Using the definition of AP -inner functions, Fubini's theorem, and the remark after 
Corollary 3.19, we obtain 

l (lcplP - 1) gdA = l (Icp(z)I P - 1) [h(z) + G [~g] (z)] dA(z) 

l (lcp(z)IP - 1) l G(z, w)~g(w) dA(w) dA(z) 

= l ~g(w) l G(z, w) (Icp(zW - 1) dA(z) dA(w) 

l ~g(w) l r(z, w)~lcp(zW dA(z) dA(w) 

l L r(z, w)~g(w)~lcp(zW dA(z)dA(w). 

If g is also subharmonic, then ~g 2: 0 in II); since r(z, w) and ~lcp(z)IP are both 
positive, we conclude that 

l g(z) dA(z) s lICP(ZW g(z) dA(z), 

as asserted. -The form of Theorem 3.20 that we will actually use runs as follows. 

COROLLARY 3.21 Suppose 0 < p, q < +00 and cp is an AP-inner junction. 
Then 

llCPIPlflq dA = llflq dA+ II r(z, w)~lf(w)lq ~lcp(zW dA(z)dA(w) 

provided f is analytic in iij. 

Proof. Although the function g = Ifl P is not necessarily in C2 (iij), the proof 
of Theorem 3.20 can easily be modified to work in this case; all one has to do is 
remove from II) tiny disks centered at the finitely many zeros of f and then use a 
limit argument. _ 

COROLLARY 3.22 /fO < p < +00 and cp is AP-inner, then 

L If(zW dA(z) s lICP(Z)f(Z)I P dA(z) 

for all f E H oo. 

Proof. By an obvious approximation argument, we may assume that f is ana­
lytic in iij. The assertion now follows from Corollary 3.21 with q = p, in view of 
the positivity of the biharmonic Green function and the subharmonicity of IfIP.-
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COROLLARY 3.23 Suppose 0 < p < +00 and cP is a bounded AP-inner 
function. Then 

llf(Z)iP dA(z) S lICP(Z)f(Z)I P dA(z) 

holdsfor all f E AP. 

Proof. This follows from Corollary 3.22 if we approximate f by its dilates fr 
with 0 < r < 1, given by fr(z) = f(rz) for z E lDl. • 

The property exhibited in the two corollaries above will be called the expansive 
multiplier property of AP -inner functions. 

We observe from Corollary 3.21 that if p = 2 and cP is an A2-inner function, 
then 

llCPhl2 dA = llh l2 dA + II f'(z, w)lcp'(z)12Ih'(w)1 2 dA(z) dA(w), 

where h is any function analytic in lDl. 
We conclude the section with an integral estimate for dilated A P -inner functions, 

which should be compared with Corollary 3.19. 

PROPOSITION 3.24 Suppose 0 < p < +00 and cP is an AP-inner function. 
Then, for 0 < r < l, we have 

l f'(z, w).6. ICPr(z) IP dA(z) S l G(z, w)ICPr(z)iP dA(z) + 1 - Iwl2 

for all WE III 

Proof. By Lemma 3.12 and Proposition 3.18, 

l f'(z, w).6.ICPr(z)iP dA(z) = l G(z, w) ICPr(z)IP dA(z) 

2 { I-lzwl2 

+(1 -Iwl ) Jr; 11 _ zwe ICPr(z)iP dA(z), 

where we observe that the function 

1 -lzwl2 
P(z, w) = 11 _ zwl2 

is the Poisson kernel extended harmonically to both variables. We are to show that 

l P(z, w) ICPr(Z)I P dA(z) S 1. 

Consider, for A E lDl, the function 

Z E lDl, 

where we recall thenotationds(z) = Idzl/(2rr) for normalized arc length measure. 
As a function of A, it is harmonic with boundary values Icp(ZA)IP, and in view of 
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the fact that the function 1q>(ZA)IP is subharmonic as a function of A, we obtain 
from the sub-mean value property that 

1q>(ZAW S ~ P(A, ~) 1q>(z~W ds(~), Z E ]D). 

Specializing to A = r, we obtain 

lq>r(ZW S ~ P(r,~) 1q>(z~W ds(~), Z E ]D). 

Since q> is AP-inner, an application of Fubini's theorem gives 

L P(z, w) lq>r(zW dA(z) < L P(z, w) ~ P(r,~) 1q>(z~W ds(~) dA(z) 

~ P(r,~) L P(z, w) 1q>(z~W dA(z)ds(~) 

= ~ P(r,~) P(O, w) ds(~) 

= ~ P(r,~) ds(~) = P(r, 0) = 1, 

as claimed. _ 

The above proof actually shows that for an AP -inner function q> and 0 < r < 1, 
the dilation q>r is a subinner function in the sense of Section 3.7, that is, 

L h(z) lq>r(z)IP dA(z) S h(O) 

holds for all positive harmonic functions h on ]D). 

3.5 Contractive Zero Divisors in A P 

In this section we take a closer look at the extremal problem for invariant subspaces 
generated by zero sets of AP. We show that a unique solution exists in this case, 
even when 0 < p < 1. Recall that existence follows from a normal families 
argument (see Section 3.2). We will also prove that the extremal function, which 
we call a (contractive) zero divisor, is analytic across the unit circle when the zero 
set is finite. 

We begin with the case of a single zero with multiplicity 1. 

LEMMA 3.25 Suppose 0 < p < +00 and a is a nonzero point in ]D). Let fa be 
the invariant subspace of AP consisting offunctions f E AP with f(a) = O. Then 
the extremal problem for fa has a unique solution, and the solution is given by 

z - a [ p ( _ z - a )J2IP 
Ga(z) = Ca --_- 1 + - I +a--_- , 

1 - az 2 1 - az 
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where 

Ca = -- 1 + -(1 - lal 2) . 
a [p ]-l/P 
lal 2 

Proof. 'Let q be any polynomial. Then a change of variables leads to 

[ IGa(z)IPq(z)dA(z) = (1-laI2)2ICaIP [ Ik(w)12IwIPq [ w +_a ] dA(w), 
~ ~ I+aw 

where 

k(w) = 1 + (p/2)(1 + aw) 
(1 + aw)2 

Now, let 

+00 
k(w) = Lbnwn ( w +a) +00 

and few) = k(w) q --_- = LcnWn, 
1 + aw n=O n=O 

and integrate by polar coordinates to get 

+00 2 
(1 - lal2)2lCa IP L bncn 

n=O 2n + p + 2 
iIGa(z)IPq(Z)dA(Z) 

(1-laI 2)2 ICa IP fe-a); 

here, we used the fact that bn (n + p/2 + I)(-an ). The definitions of Ca 
and k easily reduce the last expression above to q(O), so that Ga is an AP-inner 
function that clearly belongs to la. Since Ga is analytic on IT», the expansive mul­
tiplier property of Ga becomes Ilglip ::::: IIGagli p for all g E AP, or equivalently, 
IIg/ Ga lip ::::: IIgli p for all g E la, since Ga only vanishes at a in D. 

Suppose g E la and II gil P ::::: 1. Then 

I~~~~) I::::: II ~a t ::::: IIgll p ::::: I, 

so that G a is an extremal function for la. Since the first inequality above is strict 
unless g / G a is constant, we see that G a is the unique solution of the extremal 
problem for la; otherwise, taking g to be another extremal function would yield 
g(O) < Ga(O), a contradiction. _ 

COROLLARY 3.26 Suppose 0 < p < +00, A is an AP-zero set, and IA is 
the corresponding invariant subspace in A p. If G is any solution of the extremal 
problemfor lA, then G has no extraneous zeros. 

Proof. If A consists of a single zero of multiplicity 1, then an inspection of the 
formula for G A in Lemma 3.25 reveals that G A has no extraneous zeros. 

In the general case let us assume, for the sake of arriving at a contradiction, that 
G has an extraneous zero at z = a; thus either a is a new zero, or a E A but G 
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has a zero at z = a of order higher than prescribed in A. It is obvious that a i= O. 
Let Ga be the function from Lemma 3.25. Then GIGa belongs to lA, and the 
expansive multiplier property of G a gives II GIG a II P :::: 1. Since 0 < G a (0) < 1, 
the function G IGa solves the extremal problem for fA better than G does, which 
is a contradiction. -

Our next step is to show that for a finite zero set A the extremal problem for 
fA in AP has a unique solution and that the solution is analytic in a larger disk. 
Recall that the uniqueness for 1 :::: p < +00 follows from the local convexity of 
the space AP. 

LEMMA 3.27 Suppose 1 :::: q < +00 and p = mq for some integer m :::: 2. Let 
G be the zero divisor in AP of a finite zero set {Zj }j' and let H be the zero divisor 
in A q of the zero set {w j } j obtained from {z j } j by including each z j exactly m 
times. Then H = Gm . 

Proof. By an approximation argument, we may assume that {Zj}j does not 
contain O. Since by Corollary 3.26, the zeros of H are exactly the Z j 's, each of 
which is of order m, we see that HI/m (the branch with HI/m(o) > 0) is analytic 
and has all the properties required in the extremal problem that determines G. Thus 
HI/m = G, or H = Gm, by uniqueness. _ 

We will need to use the reproducing kernel functions for a class of Hilbert spaces 
of analytic functions in ]]]). Thus, we consider a weight function 

Z E]]]), 

where 0 < t < +00 and h is a function in the Bergman space At (not identically 
zero). For 0 < p < +00 let BP(w) be the space of analytic functions f in]]]) such 
that 

IIfllp.w = (L If(z)lPW(Z)dA(Z») I/p < +00. 

It is easy to show that each point evaluation in]]]) is a bounded linear functional on 
the space BP(w). In fact, if f is any analytic function in]]]), then the subharmonicity 
of the function IflPw implies that any point evaluation at Z E ]]]), where w(z) > 0, 
is bounded on BP(w); actually, if K is any compact subset of]]]) where w is strictly 
positive, then point evaluations at Z are uniformly bounded on BP (w) for Z in K. If 
Z is a point with w(z) = 0, then we can find a sufficiently small positive number r 
such that the circle S = {w E C : Iw - zi = r} is contained in]]]) and w is positive 
there. An application of Cauchy'S formula, together with the earlier remark that 
point evaluations at WE S are uniformly bounded on BP(w), then shows that the 
point evaluation at Z is also bounded on BP(w). Using the continuity of w, we see 
that the argument above also works for z in a sufficiently small neighborhood of 
a zero of w. We conclude that point evaluations at z are uniformly bounded on 
BP(w) if z is restricted to any compact subset of]]]), and consequently, each space 
BP(w) is complete. 
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It is clear that each BP(w) contains H oo . Let AP(w) be the closure of the set of 
polynomials in BP(w). Equivalently, AP(w) is the closure of H oo in BP(w). For 
p = 2, B2(w) is a Hilbert space, and then so is A 2(w), with the inner product 

(j, g)w = k fez) g(z) w(z) dA(z). 

LEMMA 3.28 Let Kw(z, w) be the reproducing kernel for the Hilbert space 
A 2(w). Then Kw(z, w) :j:. Of or all z and w in II)), 

Proof. We first show that Kw(z, 0) is nonvanishing in JI}. It is obvious that 

Kw(O, 0) = sup{lf(0)12 : IIfllw.2 :::: I} > 0; (3.1) 

the maximizing function is fez) = Kw(z, O)I.jKw(O, 0). If KW(A, 0) = 0 for 
some A E JI} \ {O}, we consider the function 

F(z) = Kw(z, O)/G).,(z), Z E JI}, 

where 

is the one-point zero divisor in A 2. The function G)., is analytic on jj) and vanishes 
only at A in JI}. By the subharmonicity of IF ew and the expansive multiplier prop­
erty of G)., (see Theorem 3.20 and its corollaries; the lower degree of smoothness 
of w at its zeros can easily be taken care of by a limit argument), we have 

llF(Z) 12W(Z)dA(Z):::: lIKw(Z,0) 12W(Z)dA(Z) = Kw(O,O). 

Since 0 < G)., (0) < 1, the function F (z) I -J Kw(O, 0) solves the extremal problem 
in (3.1) better than the function Kw(z,O)I-JKw(O,O) does. This contradiction 
shows that Kw(z, 0) :j:. 0 for all z E JI}. 

To show that Kw(z, w) :j:. 0 for all z and w in JI}, observe that for any Mobius 
map ¢ preserving the disk JI}, we have 

Kw(¢(z), ¢(w» = Kw,p(z, w) 

for all z and w in JI}, where 

Z E JI}, 

is a weight of the same type as w (since ¢' is nonvanishing). Combining this with 
the result in the previous paragraph, we conclude that Kw(z, w) :j:. 0 for all z and 
WE~ • 

We return to the extremal problem for zero sets. For general p, 0 < p < +00, 
and a finite zero set A = {a j }~=l' we are going to show that any solution of the 
extremal problem for fA in APJcan be written as the corresponding finite Blaschke 
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product 

bA(Z) = fI lajl aj - Z 
j=l aj 1-ajZ 

times the reproducing kernel of the weighted Bergman space A 2(w), where w = 
IbA (z)IP, so the uniqueness of the extremal solution follows. Then we are going to 
show that the reproducing kernel ofthis A2(w) has an analytic continuation across 
the unit circle. Note that A2(w) = B2(w) = A2 as spaces in the present situation. 

LEMMA 3.29 Suppose 0 < p < +00, A is a finite zero set, and IA is the 
corresponding invariant subspace in A p. If G = G A solves the extremal problem 
for lA, then 

Z E][]), 

where w = Ibl P and b is the Blaschke product corresponding to A. In particular; 
G is unique. 

Proof. Since G has no extraneous zeros, we can write G(z) = b(z) k(Z)2/ P, 
where k is a nonvanishing function in A 2 . By the same variational argument as 
used in the proof of Theorem 3.4, with the variation G* = G + Azh instead, where 
h E IA and A E <C, we see that 

£ IG(z)I P- 2G(z) zh(z) dA(z) = 0 

for all hE IA. Since IA = bAP, the decomposition f = (f - f(O)) + f(O) gives 

£ IGIP-2G bf dA = f(O) £ IGI P- 2Gb dA, 

where f is any function in A p. Using the factorization of G, we obtain 

Combining this with the fact that IIGlip = 1, we get 

1 = £ kl-2/Pk2/Pk Ibl P dA = k(0)2/p £ k l- 2/Pk Ibl P dA. 

It follows that 

l k l- 2/ p fklbl P dA = k(0)-2/p f(O) 

for all f E AP. 
If 0 < p S 2, we can choose f = hk(2/ p)-l , where h is any polynomial. Then 

f E AP (since 0 S 2 - p < 2) and 

k(O) £ h k Ibl P dA = h(O). 
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A simple approximation argument then shows that the above also holds for all 
h E A2(w); thus k(O) k(z) = Kw(O, z) by the uniqueness of the reproducing 
kernel in A 2 (w). 

If 2 < p < +00, we can choose an integer m :::: 2 such that q = p / m :5 2. By 
Lemma 3.27, the function Gm = bmk2/q is the zero divisor in Aq corresponding to 
the zero set of bm • According to the previous paragraph, we must have k(O)k(z) = 
Kw(O, z), where Kw(z, w) is the reproducing kernel of A2(1bm Iq) = A2(lbI P). 
This shows that the desired representation of G holds for all p. • 

LEMMA 3.30 Suppose 0 < p < +00 and IA is the invariant subspace of AP 
corresponding to afinite zero set A. Then the zero divisor G A (the unique solution 
of the extremal problemfor IA) has an analytic continuation across the unit circle. 

Proof. We assume that A consists of distinct points al, ... ,an; the case of 
multiple zeros will then follow from the formulas in the following proof and an 
obvious limit argument. 

Letb = bA betheBlaschkeproductcorrespondingtoA,andforeach 1 :5 j :5 n, 
let b j denote the Blaschke product corresponding to A \ {a j }. For any w E ]])l and 
h E Hoo, an application of the residue theorem yields 

~ ( b(w~z b(z)h(z)dz = h(w) _ t bk(W) 1 -lakl2 h(ak). 
2m J1z1=1 1 - ZW k=1 1 - akw bk(ak) 

Rewriting the left-hand side as 

21. ( 1b(W~Z b(z) Ib(z)IPh(z)dz, 
m J1z1=1 - zw 

and applying the Cauchy-Green's formula to this integral, we obtain 

l b(w) [(l :%)2 + (i + 1) lz~~~ ] h(z)lb(z)iP dA(z) 

= h(w) - t bk(W) 1 -lakl2 h(ak). 
k=! 1 - akW bk(ak) 

Writing the right-hand side above as an integral involving the reproducing ker­
nel Kw(z, w) of A2(w), where w = IbI P, and then using the uniqueness of the 
reproducing kernel, we conclude that 

b(w) [ b(z) + (E. + 1) zb'(z) ] 
(1 - ZW)2 2 1 - zw 
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Setting z = 0 reveals that Kw(O, w) has a conjugate analytic continuation across 
the unit circle. In view of Lemma 3.29, the proof is now complete. -

We can now prove the existence and uniqueness of the solution of the extremal 
problem for any zero-based invariant subspace in A p. 

THEOREM 3.31 Suppose 0 < p < +00, A is an AP-zero set, and IA is the 
corresponding invariant subspace in AP. Then the extremal problem/or IA has a 
unique solution GA. Furthermore, GA has no extraneous zeros in JI)), IIGA/llp ~ 
II flip/or all / E AP, and IIg/GAli p S IIglip/orall g E fA. 

Proof. Recall that the existence of an extremal function follows from a simple 
normal family argument, and that any such extremal function has no extraneous 
zeros in JI)). 

Write A = {aI, a2, a3,"'}' and for any positive integer n, write An = 
{aI, ... ,an} for the corresponding cut-off sequence. Let Gn be the (unique) zero 
divisor for IAn in AP. Let G be any solution of the extremal problem for IA. By 
Corollary 3.26, the function G has no extraneous zeros in JI)). We will show that 
Gn -+ G in norm, which clearly gives the desired uniqueness. 

Since IIGnli p = I for all n, the sequence {Gn}n is a normal family. Thus a 
subsequence {Gnk}k converges uniformly on compact sets to an analytic function 
H in JI)). Since each Gn has no extraneous zeros, Hurwitz's theorem tells us that 
either H is identically zero, or H has A as its zero set. 

The function G belongs to each IAn' So the extremal property of Gn gives 
Gn (0) ~ G(O) > 0 (an obvious adjustment can be made if 0 E A). This implies 
that H(O) ~ G(O), and hence H has A as its zero set. Also, Fatou's lemma tells 
us that IIHllp S 1. Combining this with the extremal property of G, we obtain 
H(O) = G(O). 

Another application of Fatou's lemma gives 

1 = I~~~I S lI~t S IIGlip = 1. 

This implies that G = H. And using Fatou's lemma one more time, we see that 
IIg/Gli p S IIgli p for all g E IA. 

The same arguments above show that each subsequence of {Gn}n has a subse­
quence that converges uniformly on compact sets to the function G. It follows that 
Gn -+ G uniformly on compact sets. Since IIGn lip = IIGlip = 1, an application 
of Lemma 3.17 shows that Gn -+ G in norm. In particular, the extremal function 
G is unique. 

Finally, given any / E A P, if II G fII p = +00, we automatically have II G / II p ~ 

II flip· Otherwise, using g = G/ E AP we obtain 

IIfllp = IIg/Gli p S IIgli p = IIGfllp· 

This completes the proof of the theorem. -We mention that even when A is infinite, the contractive zero divisor GAin AP 
has an analytic continuation across any open arc of the unit circle that does not 
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contain any accumulation point of A. The rest of the book does not use this fact, 
so we have not included a proof here. The interested reader should consult [128] 
for details. 

3.6 An Inner-Outer Factorization Theorem for AP 

Recall from the theory of Hardy spaces that every function f E H P admits a 
factorization f = G F, where G is an inner function (a bounded analytic function 
whose boundary values have modulus 1 almost everywhere) and F is a cyclic vector 
in HP (a function that has the whole HP as its generated invariant subspace). In 
this section, we show that an analogue of this holds for the Bergman spaces A P • 

Also, recall that for a weight function of the form w(z) = Ig(z)l t , we defined 
the spaces BP(w) and AP(w) in the previol,ls section. We introduce another space 
X P (w) here, which consists of all analytic functions f in II) such that 

IIfll~p(w) = IIfII~ + ~ ~ r(z, w).6.lf(z)iP .6.w(w) dA(z) dA(w) < +00. 

We are going to use the dilations fr (0 < r < 1), where fr(z) = f(rz) for z Ell). 

THEOREM 3.32 Suppose 0 < P < +00, cP is AP-inner, and II{) is the invariant 
subspace of AP generated by cpo Then, 

(a) we have 

II{) = cpAP(w) = cpxP(w) c cpBP(w) cAP, 

where w = IcpIP; 

(b) we have the norm relations 

for g E II{) and 

Ilfcplip = IIfllxP (w) 

for f E XP(w); 

(c) for g = fcp E II{)' we have IIfrCP - frpllp ~ 0 as r ~ 1-. 

Proof. First, assume that g E II{). Then there exists a sequence {Pn}n of poly­
nomials such that IIPnCP - g lip ~ 0 as n ~ +00. By the expansive multiplier 
property of cp, the sequence {Pn}n is Cauchy in AP, so that {Pn}n converges in 
norm to some f E AP. In particular, g = fcp. Recall from Corollary 3.21 that 

IIPnCPII~ = IIPn II~ + ~ ~ r(z, w).6.IPn(z)iP .6.lrp(w)IP dA(z) dA(w). 
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Since the biharmonic Green function r(z, w) is positive, and since IIPnCPlip -+ 
IIgli p and IIPn lip -+ II flip, an application of Fatou's lemma shows that 

II r(z, w)~lf(zW ~lcp(wW dA(z) dA(w) :s IIgll~ - IIfII~ < +00, 

which we write as 

g=fCPElcp. (3.2) 

In particular, f E XP(w), and hence g E cpXP(w). 
Next, assume that g = cpf, where f E XP(w). Applying Corollary 3.21 to fr 

with q = P and then using Lemma 3.16, we obtain 

rllfrCPII~ rllfrlliP(w) 

rllfrll~ + r l r[~lfrIP](w) ~lcp(wW dA(w) 

< IIfll~ + l r[~lfIP](w) ~lcp(wW dA(w) 

IIflliP(w) < +00, 

for all 0 < r < 1. This together with Fatou's lemma shows that 

IIfcpllp:S IlfllxP(w) < +00, (3.3) 

so that g = cp f E A p. The function f cp is then a weak limit of the functions 
frCP E lcp as r -+ 1-, so that by basic Functional Analysis, we have f cP E lcp in 
the case 1 :S P < +00; the case 0 < P < 1 will be handled a little later. 

The space cpBP(w) coincides with the subspace of AP of all functions that 
vanish on the zero set of cp, counting multiplicities, so that by the above, we have 
the inclusion XP(w) C BP(w). 

Combining the above two inequalities (3.2) and (3.3), we obtain the isometry 

IIg/cpllxP(w) = Ilgllp, 
Since Mcp, the operator of multiplication by cp, is an isometry from AP(w) to 
If, it follows from the above that A P (w) c X P (w), and that the inclusion map 
is an isometry. Moreover, we have obtained the equality AP(w) = XP(w) for 
I ::: P < +00. 

We proceed to show that II frCP - f cp II P -+ 0 as r -+ 1-, provided that g = 
fcp E lcp. By Lemma 3.17, it suffices to show that IIfrCPllp -+ IIfcplip as r -+ 1-. 
In view of the isometry IIh/cpllxP(w) = IIh lip for h E lcp, this means that we should 
verify that II fr II XP(w) -+ II f IIxP(w) as r -+ 1-. Recall that 

IIfrlliP(w) = IIfrCPII~ = IIfrll~ + l r[~lfrIP](w) ~lcp(wW dA(w). 

From Lemma 3.16, we see that rr[~lfrIP] increases monotonically to 
r[~ I f I P] as r -+ 1-. So, by the Monotone Convergence Theorem, 

lim r r[~lfrIP](w) ~lcp(wW dA(w) = r r[~lfIP](w) ~lcp(wW dA(w). 
r-+l- JID> JID> 
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It follows that 

It remains for us to prove that lcp = cpXP(w) in the case 0 < p < 1. To this 
end, observe that the above proof can be modified to produce the identity X2 (w) = 
A2(w) with equality of norms. Furthermore, if IE A2(w), then IIlr - 1112.w --70 
as r --7 1-. 

For the remainder of this proof, we assume 0 < p < 1. Let I be a function in 
XP(w). Then we know that I E BP(w). We are going to show that Icp E lcp, or, 
in other words, I E AP(w). 

First, suppose that I is zero-free in IIJ). Then we may form the power (f)P/2, 
which is an element of B 2(w). Since 

the functions (fr )p/2 converges weakly to (f)p/2 in B2(w) as r --7 1-. But all the 
functions (fr )p/2 belong to A 2(w), and we know that the weak closure of a sub­
space in B2(w) is the same as the norm closure, so it follows that (f)p/2 E A2(w). 
By the observation in the previous paragraph, the functions (fr )p/2 converges to 
(f)p/2 in norm in the space A2(w) as r --7 1-. In view of Lemma 3.17, we get 
that Ir --7 I in norm in the space BP(w) as r --7 1-, and hence IE AP(w), as 
we wanted, because Ir E A P (w) for each r, 0 < r < 1. 

Next, we consider the case when I has finitely many zeros. Let 1f! be the extremal 
function in AP for those zeros, which extends analytically to a neighborhood of 
iD, by Lemma 3.30. Then 1= 1f!g, where the zero-free function g is in XP(w). In 
fact, from the early part of this proof, we have 

because rllgr lI~p(w) is monotonically increasing in r. If we apply this to both I 
and g, taking into account the properties of 1f!, we find that g E XP(w). We now 
apply the result proved in the previous paragraph to the zero-free function g to 
obtain that g E A P (w) and that gr --7 g in norm as r --7 1-. Since 1f! is bounded, 
we also have I E AP(w) with Ir --7 I in norm as r --7 1-. 

Finally, we tum to the case when I has infinitely many zeros. Let A = 
{ai, a2, a3, ... } denote the sequence of zeros of I in D. Let N be a large pos­
itive integer, and split the zeros into two portions: A(N) = {ai, a2, ... , aN} and 
A(N) = {aN+I, aN+2, ... }. Let ¢N be the extremal function in AP for the zero 
sequence A(N), and let 1f!N be the extremal function for A (N). For 0 < r < 1, let 
A(N)(r) = (r- I A(N» n IIJ) and A (N)(r) = (r- I A (N» n D be the correspondingly 
dilated zero sequences, restricted to the unit disk. Observe that they are both fi­
nite sequences. We let ¢N.r be the extremal function in AP for the zero sequence 
A(N)(r), and let 1f!N,r be the extremal function for A(N)(r). It is easy to see that 
as r --7 1-, ¢N,r --7 ¢N and 1f!N,r --7 1f!N in the norm of AP. Let gN.r be the 
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function 

gN,r(Z) = A. (),', ()' 
'i'N,r Z 'f'N.r Z 

Ir(Z) 
Z E lDl, 

which is zero-free in the disk and extends analyti<,:ally across the unit circle. From 
the contractive division property of the functions <PN.r and 1{IN.r, together with the 
fact that r II Ir II ~ p (w) is monotonically increasing in r, 0 < r ::::: 1, we see that 

IIgN.rCPllp::::: II/rCPlip = II/rllp.w 

II/rIlXP(w) ::::: r-1/Pll/llxp(w) 

for all 0 < r < 1. Since each gN.r is zero-free, this is the same as 

O<r<1. 

For 0 < r < 1, each function gN,r is holomorphic on ii}, so that in particular 
(gN,r)p/2 E A 2(w). As r ~ 1-, we have 

( ) P/2 ~ (H )P/2 _ ( I(z) )P/2 
gN.r(Z) N(Z) - <PN (Z)1{IN (Z) , Z E lDl, 

where the equality is used to define HN, and the convergence is uniform compact 
subsets of lDl. It follows that (HN)P/2 is a weak limit in B2(w) of functions in 
A2(w), and hence (HN)P/2 E A 2(w). We now argue as we did for zero-free I, 
and obtain that HN E AP(w). The property of being in AP(w) is preserved under 
multiplication by an H oo function, and hence we have <PNHN = 1/1{IN E AP(w) 
as well. By the contractive divisor property of 1{IN, 

1I1/1{INll p,w = IIlcp/1{INll p ::::: II/cpllp, 

and since 1{IN(Z) ~ 1 as N ~ +00 uniformly on compact subsets oflDl (after all, 
the zero sequence A (N) for 1{1 N gradually evaporates as N ~ +00; see Exercise 
3), it follows from Lemma 3.17 that f/1{IN ~ I in the norm of BP(w). Since each 
1/1{IN is in AP(w), we conclude that IE AP(w) as well. • 

Recall that if 0 < p < 1, then neither the existence nor the uniqueness of 
the solution of the extremal problem for an arbitrary invariant subspace in AP is 
known. In the previous section we proved the existence and uniqueness for zero­
based invariant subspaces. The next result shows that we have both existence and 
uniqueness for singly generated (or cyclic) invariant subspaces in A p. In addition, 
the extremal function generates the invariant subspace. 

THEOREM 3.33 If I is a cyclic invariant subspace 01 AP, then there exists a 
unique solution cP to the extremal problem lor I. Furthermore, I = I<p. 

Proof. Suppose I = If for some I E A p. We assume 1(0) i= 0; the re­
maining case is handled by the observation that for a function g E A P, we have 
I zg = zIg. Letthe spaces AP(I/IP) and A 2(I/IP) be the weighted Bergman spaces 
with weight w = I/IP, with norms II . IIp.lflP and II . 112.lfIP, respectively. Then 



82 3. AP -Inner Functions 

multiplication by f, denoted by M f' is an isometry from AP(lfI P) to AP; it is clear 
that the range is If, so that If = f AP(lfI P). By Lemma 3.28, the reproducing 
kernel function KlflP for A 2(lfI P) never vanishes on the bidisk][Jl x ][Jl. We claim 
that the extremal function CfJ = CfJ f for If is unique and given by the formula 

Z E][Jl, (3.4) 

which is analogous to the formula obtained for the invariant subspace associated 
. with finitely many zeros, with the Blaschke product b in place of f. The function 
KlflP(" 0) maximizes the value at the origin among all unit vectors in A 2C1fI P). 
We claim that the function 

H(z) = KlfIP(O, O)-l/p KlfIP(Z, 0)2/p 

is the unique maximizer of the value at 0 among all unit vectors in APClfIP). 
Clearly, IIHllp.lflP = 1. Let qn be a (maximizing) sequence of polynomials such 
that IIqn IIp.lflP = 1 and 

qn(O) -+ sup {lg(O)1 : g E AP(lfI P), IIgllp.lflP = I} as n -+ +00. 
Similarly, let Pn be another (maximizing) sequence of polynomials such that 
IIPn 112.lf1P = 1 and 

Pn(O) -+ sup {lh(O)1 : hE A 2(lfI P), IIh1l2.lflP = 1} as n -+ +00. 
For each n, let CfJn be the contractive zero divisor in AP corresponding to the zeros 
of qn, and let 1/In be the contractive divisor in A2 corresponding to the zeros of Pn. 
Then, by Theorem 3.31, 

IIqnjcpnllp.lfl P = IIqnf/CfJnllp::'S IIqnfli p = IIqnllp.lflP· 

Since 0 < CfJn (0) < 1, we have Iqn (0) 1 < Iqn (0) / CfJn (0) I, so that by replacing qn 
by qn/CfJn if necessary, we may assume that each qn has no zeros in ][Jl. Now, of 
course, qn need not be a polynomial any more, but at least it extends analytically 
to a neighborhood of the closed unit disk. Similarly, Theorem 3.31, for P = 2, has 
an analogue which states that 

IIPn/1/In 112.lf1 P ::'S IIPn 112.lfIP; 

the derivation is analogous to that of Theorem 3.31. Since 0 < 1/In (0) < 1, we 
have IPn(O)1 < IPn (0)/1/In (0)1, so that by replacing Pn by Pn/1/In if necessary, we 
may assume that each Pn has no zeros in ][Jl. Again, Pn need not be a polynomial 
any more, but it extends analytically to a neighborhood of the closed disk. We 
compare the sequences {(qn)p/2}n and {Pn}n in the one maximization problem, 
and {(Pn)2/p}n and {qn}n in the other. The conclusion is that the maximization 
problems are equivalent, and that since we know that Pn -+ (H)p/2 in the norm 
of A 2(lfI P), we must have that qn -+ H in the norm of APClfI P) as well (use 
Lemma 3.17). Since the maximization problem that qn approximates is equivalent 
to the extremal problem for CfJ - in view of the fact that Mf : AP(lfI P) -+ If 
is an isometry - it follows that the extremal function CfJ exists, is unique, and is 
explicitly given by (3.4). 
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We proceed to show that f E II{J' which will complete the proof. In the following, 
we set 

F(z) = (f/cp)p/2(Z) = KlfIP(O, 0)1/2 KlfIP(Z, a)-I, 

The zero-free function F is in B2(lcpIP), because 

Z E lDl. 

iIF121CPIPdA = ilflCPIPICPIPdA = ilflPdA < +00. 

We recall the polynomials Pn from the maximization problem, and note that 
PnF -+ 1 as n -+ +00, uniformly on compact subsets oflDl. Moreover, since 

IIPnFII~.II{JIP = l'Pn F ,2ICP'PdA = l'Pn,2If'PdA = IIPnll~.lfiP = 1 

and 11111~.II{JIP = IIcplI~ = I, Lemma 3.17 shows that PnF -+ 1 in the norm of 
B2(lcpIP). For j = 1,2,3, ... , we find that 

1 zj F(z)lcp(z)IPdA(z) = KlfiP(O, or l / 2 i zj KlfIP(O, z)lf(zW dA(z) = 0, 

by the reproducing property of the kernel. Let IF stand for the closure of the 
polynomial mUltiples of F in B2(lcpIP); in other words, IF is the invariant sub­
space generated by F in B2(lcpIP). From the above, we know that 1 E IF, and 
that 1 1.. ZIF, which we compress to 1 E IF e ZIF. We can represent IF as 
F A 2(IFI 2IcpIP) = F A2(lfI P). It follows that for fixed A E lDl, g E (z - A)IF 
if and only if g E IF and g(A) = o. Consequently, again for fixed A E lDl, the 
function 

F(z) - F(A) 
z~ 

Z-A 
is in IF, and hence the fact that 1 E IF e ZIF entails that 

r z F(z) - :(A) Icp(z)IP dA(z) = 0, 
In z-

A E lDl. (3.5) 

Since 

1 zF(z) - AF(A) 12 1 F(z) - F(A) 12 
= F(A) + z , 

Z-A Z-A 

expanding the expression on the right-hand side and then integrating over the disk 
- with respect to the reproducing probability measure Icp(z)IPdA(z) - we obtain 
from the above identity (3.5) that 

1 [I ZF(Z~ = ~F(A) 12 - 'A'21 F(Z~ = :(A) n Icp(zW dA(z) 



84 3. AP -Inner Functions 

We are going to integrate this identity over the circle IAI = r for 0 < r < 1, but 
first let us observe that we can write 

1 
zF(z) - AF(A) 12 1 F(z) - F(A) 12 = F(z) + A----

Z-A Z-A 

= IF(z)1 2 + 2Re [F(Z)A F(z) - F(A)] + IAI21 F(z) - F(A) 12, 
Z-A Z-A 

and so, by the mean value property of harmonic functions, 

I L(z) I P = ~ 1 [I zF(z) - AF(A) 12 - r21 F(z) - F(A) 12] dS(A), 
rp r IAI=r Z - A z - A 

where we recall the notation ds(z) = Idzl/(21T).1t follows that 

[ If(z)JP dA(z) = ~ [ IL(A)IP 
dS(A) 

JJJ]I r J1AI=r rp 

+~ [[ (Id - r2) I F(z) - F(A) 12 dS(A) Irp(z)JP dA(z), 
r JJJ]I J1AI=r z - A 

and so 

[ If(z)JP dA(z) :::: ~ [ IL(A)I P dS(A) 
JJJ]I r J1AI=r rp 

1 1 1 r2 - Izl2 2 
-- 2 IF(z) - F(A) I Irp(z)JP dA(z) dS(A). 

r Izl<r IAI=r Iz - AI 
(3.6) 

Write w in place of A, and apply Corollary 3.7 to the first integral on the right-hand 
side, which gives 

[ IL(w)IP 
ds(w) = 

J1wl=r rp 
~ [ (r2 - Iw12) L'.\ IL(w)I P dA(w) 
r J1wl<r rp 

+~ [ IL(w)IP 
dA(w). 

r J1wl<r rp 

Next, we apply Corollary 3.8 to the second integral on the right-hand side, which 
result in 

11, r2 - Izl2 2 
- 2 IF(z) - F(w)1 ds(w) 
r Iwl=r Iz - wi 

= - [ G (~, W) L'.\ IL(w)IP dA(w). 
J1wl<r r r rp 
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Putting things together in (3.6), we then have 

r If(z)IP dA(z) :::: ~ r It(W)I
P 

dA(w) Jlf) r J1wl<r 'P 

+~ r (r2 - Iw12) D..lt(W)I P dA(w) 
r J1wl<r 'P 

+ r r G (~, W) D..lt(W)I P dA(w) 1'P(z)iP dA(z). 
J1z1<r J1wl<r r r 'P 

After an appropriate dilation in both variables, the inequality reads 

llf(Z)iP dA(z) :::: ll£(rw)I
P 

dA(w) 

+ l (1 - Iw12) D..w 1£(rw)IP 
dA(w) 

+r2ll G(z, w) D..w 1£(rw)I
P 

dA(w) l'Pr(z)iP dA(z). 

We now invoke Proposition 3.24 to handle the last integral expression on the 
right-hand side, and find that 

llf(z)iP dA(z) :::: ll£(rW)I
P 

dA(w) 

+(1 - r2) l (1 - Iw12) D.. w 1£(rw)IP 
dA(w) 

+r2ll r(z, w) llw 1£(rw)I
P 

dA(w) llzl'Pr(z)iP dA(z). 

Letting r -+ 1- and applying Fatou's lemma results in 

IIfll~ :::: 1If/'PII~ + l r(z, w) D..I£(W)I
P 

D..1'P(z)iP dA(z)dA(w). 

This shows that f/'P belongs to the space XP(I'PIP), and hence according to 
Theorem 3.32, the function f is in I'P' so that I = If = I'P. • 

We can now prove the "inner-outer" factorization for functions in A p. First recall 
that a function f E AP is called a cyclic vector if there exists a sequence {Pn}n of 
polynomials such that IIPnf - Il1p -+ 0 as n -+ +00. 

THEOREM 3.34 Suppose 0 < p < +00 and f E AP. Then there exists an AP­
inner function G and a cyclic vector Fin AP such that f = GF. Furthermore, 
IlFllp::::: IIfllp· 

Proof. Let I be the invariant subspace generated by f. According to Theo­
rem 3.33, there is a unique solution G to the extremal problem for I, the quotient 
F = fiG belongs to AP, and there exists a sequence {Pn}n of polynomials such 
that II Pn f - Gil P -+ 0 as n -+ +00. The expansive multiplier property of G 
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together with the fact that I = IG implies that G is a contractive divisor on the 
whole space I. Thus {PnF}n is a Cauchy sequence in AP. Since Pn(z)F(z) ~ 1 
pointwise, we must have II Pn F - 111 P ~ 0, that is, F is cyclic in A p. • 

In the classical theory of H P spaces, the inner-outer factorization is unique (up to 
a unimodular constant multiple ofthe inner factor). Unfortunately, the factorization 
here in AP does not have such a strong uniqueness property; counterexamples will 
be constructed in Chapter 8. 

3.7 Approximation of Subinner Functions 

A classical theorem of Caratheodory-Schur (see [49]) states that if F is an element 
of the closed unit ball of HOC!, then there exists a sequence of finite Blaschke 
products bn such that bn ~ F uniformly on compact subsets of]j}) as n ~ +00. 

The purpose of this section is to show that a version of this result also holds for 
Bergman spaces. In other words, we are going to characterize the normal limits of 
finite zero divisors in Bergman spaces. Recall that G is called a finite zero divisor in 
A P if there is a finite zero set Z such that G is the extremal function of the invariant 
subspace lz in A p. We begin with the following simple necessary condition. 

PROPOSITION 3.35 If {Gn}n is a sequence of finite zero divisors in A P and 
Gn ~ G, as n ~ +00, uniformly on compact sets, then 

lIG(zWh(Z) dA(z) S h(O) 

holds for all positive harmonic functions h in ]j}). 

Proof. Let h be any positive harmonic function in]j}). For any n = 1,2,3, ... , 
define a bounded harmonic function hn on ]j}) by 

hn(z) = h(nz/(n + 1)), Z E]j}). 

Since each Gn is an A P -inner function, we have 

lIGn(ZWhn(Z)dA(Z) = hn(O) = h(O), n = 1,2,3, .... 

The desired inequality now follows from this and Fatou's lemma. • 
The rest of this section is devoted to proving that the converse of the proposition 

above also holds, at least in the case P = 2. For convenience, we introduce the 
following. 

DEFINITION 3.36 Afunction F E Ag called an A~-subinner function if 

lIF(ZWh(Z)dAa(Z) S h(O) 

holds for all (bounded) positive harmonic functions h on ]j}). 



3.7. Approximation of Subinner Functions 87 

The Hardy space analogue of this definition, with the normalized measure d Aa 
on lDl replaced by normalized arc length measure ds on 1', requires that the function 
F E H P have IF (z) I s I almost everywhere on 1', in which case F is in the closed 
unit ball of H oo . The Caratheodory-Schur theorem then asserts that such functions 
are indeed normal limits of finite Blaschke products. 

We now prove the following Bergman space analogue of the Caratheodory-Schur 
theorem. 

THEOREM 3.37 Let F be a sub inner function in A 2. Then there exists a sequence 
offinite zero divisors C{Jn in A2 such that C{Jn ~ F uniformly on compact subsets 
oflDl as n ~ +00. 

Proof. For N = 1,2,3, ... , let <PN denote the Fejer kernel: 

Hi I sin2 ~(N + 1)8 
<PN(e ) = N + I . 21 

Sill '2.0 
o ER 

It is positive, and we use it to mollify the subinner function F, 

Z E lDl, 

which constitutes a polynomial of degree N or less. Let h be a positive harmonic 
function in lDl. Then, by the Cauchy-Schwarz inequality, Fubini's theorem, and the 
observation that the property of being a subinner function is rotation invariant, 

l iFNI2 hdA II h F(Z~)<PNO;)ds(O 12 h(z)dA(z) 

< lh IF(z~)12 <PN(l;) h(z) ds(OdA(z) 

< h(O) h <PNO;)dsO;) = h(O). 

It follows that the polynomial F N is a subinner function. As N ~ +00, F N 

approaches F, uniformly on compact subsets of lDl. Consequently, if we can ap­
proximate each of the polynomials FN by finite zero divisors, then F, too, is so 
approximable. 

We may now, without loss of generality, assume that F itself is a polynomial; 
let N be the degree of F. Moreover, we can assume that the function is strictly 
subinner, in the sense that 

l h(z) IF(z)12 dA(z) s (1 - £) h(O) (3.7) 

holds for some small fixed £, 0 < £ < 1, and all bounded positive harmonic 
functions h on lDl. For f EL I (D), let P*[f] be the function 

Z E 1', 
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which is in L 1 (T) and has the property that 

h h(z) P*[f](z) ds(z) = l h(z) fez) dA(z), (3.8) 

for all bounded harmonic h. The function P*[f] is frequently called the sweep of 
f. Note that a function CfJ is A2-inner if and only if 

P*[ICfJI2] = 1, 

and a function F is A2-subinner if and only if 0 :s P*[IFI 2 ] :s 1. As we apply the 
operation P* to IFI2, we obtain a trigonometric polynomial: 

+00 
P*[IFI 2](z) = L Ai zi, 

i=-oo 
Z E T, (3.9) 

where Ai = (F, zi F) for j :::: 0 and Ai = (C iF, F) for j < O. The inequality 
(3.7) together with the property (3.8) implies that 

O:s P*[IFI 2 ] :s 1 - 8 

on T. The function 1 - P*[I F e] is a positive trigonometric polynomial of degree 
N. By a classical theorem of Fejer and Riesz (See Exercise 19), there exists an 
analytic polynomial G of degree N, zero-free in the closed disk ii), such that 
IGI2 = 1 - P*[IFI 2 ] on T; then e :s IGI2 :s 1 on T, and by the maximum 
principle, also on 1Ol. 

We now put, for n = 1,2,3, ... , 

fn(Z) = F(z) + -In+l zn G(z), z E 1Ol, (3.10) 

and let Mn be the invariant subspace generated by fn. Let CfJn be the extremal 
function for Mn. The functions CfJn are finite zero divisors, and we shall see that 
CfJn -+ F, uniformly on compact subsets of 1Ol. The assertion of the theorem is 
immediate once this has been achieved. 

By the definition of fn, we have 

Ifn(z)1 2 = IF(z)1 2 + (n + 1) Izl 2n IG(z)12 

+ 2-Jn+l Re (zn G(z) F(z)) (3.11) 

for all z E 1Ol. As n -+ +00, 

-In+lk1zn G(z) F(z)1 dA(z) -+ 0, 

so that the third term on the right-hand side of (3.11) is eventually insignificant. 
As for the second term, we have 

(n + 1) Izl2n IG(z)12 dA(z) -+ IG(z)12 ds(z), 

in the weak-star topology of Borel measures, where ds is the normalized arc-length 
measure on the unit circle T, and 

(n + 1) P*[lzn G(z)1 2](z) -+ IG(z)1 2 
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uniformly on ']['; both limits are taken as n ~ +00. From the construction of G 
we see that P*[lfn 12] is approximately I for large values of n, so that fn is, in 
a sense, an approximate A2-inner function. In other words, we expect ({In not to 
differ much from fn for large n. The rigorous demonstration of this requires some 
technical work. 

LEMMA 3.38 There exists a positive integer L = L(F, e) such that 

for any n with L :5 n < +00. 

Proof. Since F is bounded and e :5 IGI2 :5 1, there exists an L = L(F, e) 
such that for n with L :5 n < +00, 

1 
IF(z)1 :5 4 ~ Izln IG(z)l, rn < Izl < 1, 

provided that 0 < rn < 1 and rn is so close to 1 that its n-th power is bounded 
away from 0 as n ~ +00. Then in the same annulus, 

3 3 
4 J(n + 1) e Izln :5 4 ~ Izln IG(z)1 :5 Ifn(z)l, rn < Izl < 1. 

It follows from the above estimate that for g E A 2 , 

~ (n + 1) e [ Ig(z)12 Izl2n dA(z) 
16 rn<lzl<l 

:5 [ Ifn(z) g(z)1 2 dA(z) :5 IIfn g1l2. 
rn<IZI<1 

Let Mg be the radial square-mean function 

Mg(r) = _1 I Jr 
Ig(re ie )1 2 de, 

2][ -Jr 

which increases with r. Then 

0< r < 1, 

[ Ig(z)12IzI2n dA(z) = 2 [I Mg(r) r2n+1 dr, 
rn<lzl<1 rn 

(3.12) 

(3.13) 

and using the monotonicity of Mg and redistributing masses along the interval 
(0, 1), we have 

1 - r;(n+l) 101 
Mg(r) rdr 

n + 1 0 
< 

< [1 Mg(r) r2n+1 dr. 
rn 
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Combining this with (3.12) and taking into account (3.13), we arrive at 

~6 e (1 - r,;(n+I») IIgll 2 = ~ e (I - r;(n+I)) fo I Mg(r) r dr 

< ~e(n+I)(I-r;(n+l») foIMg(r)r2n+ldr 

9 
16 e (n + 1) (1 - r;(n+I») IIzn gll2 

< ~ e (n + 1) 11 Mg(r) r2n+l dr 
8 rn 

= 96 e (n + I) 1 Ig(z)12 Izl2n dA(z) 
1 rn<lzl<1 

< IIfn g1l2. (3.14) 

Choosing rn such that 3r;(n+l) = 1 then finishes the proof of the lemma. _ 

For large n, therefore, the polynomial fn has no zeros on T. The function CPn 
is defined as the extremal function for the invariant subspace Mn in A2 generated 
by fn. We may assume, without loss of generality, that fn(O) =1= 0, and after a 
rotation, that fn (0) > O. Then CPn solves the extremal problem 

max {Recp(O) : cP E Mn, IIcpli = 1}, 

so that the function qn E A2 defined by CPn = fnqn solves the related extremal 
problem 

max {Req(O) : q E A2, IIfn qll = I}. 
In a Hilbert space of holomorphic functions, the function maximizing the value 
at a point among the elements of the unit ball equals an appropriate constant 
multiple of the kernel function. In other words, if A2(lfne) stands for the space 
of holomorphic functions f on JlJl with norm 

IItIIA2(lfnI2) = IIfn til < +00, 

and K lfnl2 is the associated kernel function, then 

Z E JlJl; 

compare with formula (3.4). We intend to show that CPn converges to F as n ~ +00, 
uniformly on compact subsets of JlJl. From the above identity, it follows that it 
suffices to show that K lfn 12 (z, 0) ~ 1 as n ~ +00, uniformly on compact subsets 
ofJlJl. 

LEMMA 3.39 If L = L(F, e) is the constant from Lemma 3.38, then for any n 
with L :::; n < +00 we have 
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for z ElI». 

Proof. For z ElI», the quantity K 1fnI2(Z, z)~ expresses the norm of the pointeval­

uation functional at z in the space A2(lI», Ifn 12). However, each element A2(lfnI 2) 
is in A2 (and vice versa), and for f E A2, we have the growth estimate 

< IIfII 
If(z)1 - 1 _ Iz12' Z ElI»; 

see Lemma 3.2. The assertion now follows from Lemma 3.38. • 
To complete the proof of Theorem 3 .37, we shall need to understand the behavior 

of the inner products (zj fn, fn) for j = 0, 1,2, .... A computation based on (3.10) 
yields 

(zj F, F) +.In+1 (zj F, znG) 

+.In+1 (zn+ j G, F) + (n + 1) (zn+ j G, znG). 

For n with N < n < +00 we have (zn+ j G, F) = 0, as the functions G and F are 
polynomials of degree at most N. The above identity then simplifies to 

(zj fn, fn) = (zj F, F) +.In+1 (zj F, znG) + (n + l)(zn+ j G, znG). (3.15) 

Expanding the polynomial G in a power series 

+00 
G(z) = L G(n) zn, 

n=O 

where G(n) = 0 for n = N + 1, N + 2, ... , we find that 

and hence 

(~jG,G)H2-(n+l)(zn+jG'ZnG)=I:. j+k G(k)G(j+k). 
k=OJ +k +n + 1 

Each term on the right-hand side vanishes for N < j + k < +00, and hence 

I (zj G, G) H2 - (n + 1) (zn+ j G, zn G) I 
+00 . +k 

:s L. } IG(k) G(j + k)1 
k=oJ+k+n+l 

N +00 
:s L IG(k) G(j + k)1 

N +n + 1 k=O 

N N 
:s N + n + 1 II G II ~2 :s N + n + 1 (3.16) 
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where we used the fact that IGI ~ I on T. The inner products (zj F, F) appear as 
Fourier coefficients of the function P*[lFI2], and the inner products (zj G, G) H2 
are the Fourier coefficients of IGI2. From the identity 

on T it then follows that 

j =0, 1,2,3, ... , (3.17) 

where OJ.o is the Kronecker delta symbol. The expanded expression (3.15) then 
assumes the form 

(zj In, In) = OJ.O +.In+l (zj F, znG) (3.18) 

+ (n + I) (zn+ j G, znG) - (zj G, G)H2. 

Expanding the function F in a power series as well, 

+00 
F(z) = L F(n) zn, 

n=O 

where F(n) = 0 for n = N + 1, N + 2, ... , we obtain 

+00 
(zj F, znG) = L F(k) (zi+k, znG), 

k=O 

so that the Cauchy-Schwarz inequality yields 

+00 
i(zjF,znG)i ~ LIF(k)li(zj+k,znG)i (3.19) 

k=O 

< (~IF(k)12)~ (t(k+ I) i(zi+k,znG)i2)~ 
k=O k + I k=O 

A subinner function has norm at most I, which shows that the first factor on the 
right-hand side of (3.19) is bounded by 1. Since IGI ~ I on T, the maximum 
principle informs us that IGI ~ 1 on]J} as well. Consequently, 

and hence (3.19) leads to the estimate 

1 

j n [N k+l ]"! 2(N+l) 
i(z F,z G)i~2 t;U+ k + n + 2)2 ~ N+n+j+2· (3.20) 
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Summing up and using the identity (3.18) together with the estimates (3.16) and 
(3.20), we obtain 

(N + 1)v'n+T N 
< 2 +----

N+n+j+2 N+n+l 
N+l 

< 3 C71' j =0, 1,2, .... 
v n + 1 

(3.21) 

Recall that we need to show that K lfn J2 (z, 0) -+ 1 uniformly as long as z is confined 
to compact subsets of 1Dl. We expand the kertiel in a convergent power series, 

+00 
K lfnI2(Z, n = L B/n zi, 

j=O 

where the functions B j are antiholomorphic. By the reproducing property of the 
kernel function applied to the constant function 1, we have 

+00 
1 = L Bj(n (zj in, in), 

j=O 

which we may rewrite as 

t E 1Dl, 

+00 
1 - K lfnI2(0, n = (II in 112 - 1) Bo(l;) + L Bj(n (zj in, in), (3.22) 

j=! 

in view of the fact that Bo(n = K lfnI2(0, n. We recover the Taylor coefficients 
Bj(n via the integral formula 

Bj(n = (j + n + 1) ~ zj K lfnI2(Z, n Izl2n dA(z), t E 1Dl, 

which leads to the following estimate for t E IDl and large n: 

here we used Lemma 3.38 as well as Lemma 3.39. Looking at the support set 
for the Taylor coefficients of in, we see that (zj in, in) vanishes for j off the set 
[0, N] U [n - N, n + N]. For large n, the estimate (3.23) simplifies to (restricting 
it to the relevant interval) 

sEIDl, O:s j :s n + N. (3.24) 
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It follows from (3.21) and (3.24) that for large n and I; E JI)), 

+00 
L IBj(l;)ll(zj in, in}1 
j=j 

< 

N 

L IBj(l;)ll(zj in, in}1 
j=<j 

n+N 

+ L IBj(l;)ll(zj in, in}1 
j=n-N 

27 (N + 1)2 1 

e v'n+T 1- 11;12' 
by counting the number of terms. Similarly, 

I ( 1 + 12 1) B I 9 N + 1 1 1 In 1 - 0(1;):S ~ v'n+T 1 _ 11;12' 

(3.25) 

(3.26) 

We now see from the identity (3.22) and the estimates (3.25) and (3.26) that 

K lfn 12 (0, I;) -+ 1 

as n -+ +00, uniformly when I; is confined to compact subsets ofJl)). 
The proof of Theorem 3.37 is now complete, because K lfnI2(z, 0) equals the 

complex conjugate of K lfn 12 (0, z). • 

3.8 Notes 

The study of Bergman inner functions originated from Hedenmalm's paper [59], 
which marked the beginning of a very fruitful period for the study of Bergman 
spaces. 

Lemma 3.2 is from Vukotic [131]. This estimate is almost "obvious", but it is 
critical in the proof of Theorem 3.3. 

Theorem 3.3 is from Hedenmalm's paper [59] for p = 2 and a = 0; the general 
case here was shown in Zhu [144]. This result will play an important role when 
we study zero sequences in Chapter 4 and interpolating sequences in Chapter 5. 

The extremal problem of Section 3.2 is classical in the study of Hardy spaces. 
The importance of this extremal problem for the study of factorization and the 
structure of invariant subspaces in the Bergman spaces was first demonstrated by 
Hedenmalm in [59]. 

The connection between Bergman inner functions and the biharmonic Green 
function was found by Duren, Khavinson, Shapiro, and Sundberg in [38], and was 
further studied in [39], [40], and [7]. Lemma 3.13 is from Abkar's thesis [2]. 

The expansive multiplier property, or equivalently, the contractive divisibility 
property, of Bergman inner functions was first obtained by Hedenmalm [59] in A2, 

and then by Duren, Khavinson, Shapiro, and Sundberg [38], [39], and [40], in AP 
for general exponents p, ° < p < +00. Lemma 3.28 - even in the more general 
setting oflogarithmically subharmonic weights - is due to Hedenmalm (see [40)). 
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Hedenmalm and Zhu [73] showed that the expansive multiplier property fails 
for the weighted Bergman spaces A~ with I < a < +00. Shimorin [120, 121] 
later found that the expansive multiplier property remains valid for the spaces A~ 
with -1 < a ::: 1; Hedenmalm [60] had settled the case AT earlier (see also [65]). 
The case of 0 < a < 1 remains open for p of. 2. 

The uniqueness of the contractive zero divisors in A P for 0 < p < +00, p of. 2, 
is due to Duren, Khavinson, Shapiro, and Sundberg. The proof of Lemma 3.30 
here is taken from [94]. Sundberg [128] proves that the contractive zero divisor of 
IA in AP has an analytic continuation across each open arc of the unit circle that 
does not contain an accumulation point of A. 

The material in Section 3.6 is from the fundamental paper [7] of Aleman, Richter, 
Sundberg. The final touch in the proof of Theorem 3.33, involving the dilation of 
the A P - inner function, however, is new. It was inspired by the paper of Hedenmalm, 
Iakobsson, and Shimorin [69]. 

The material in Section 3.7 is from Shimorin's paper [125]. It is an open problem 
to do the same for AP, P of. 2. 

3.9 Exercises and Further Results 

1. Let A = {aj, ... , an} be a finite sequence of distinct points in JD). Show that 
G A in A 2 is a linear combination of the functions 

1 1 
1, (I-ajz)2' ... , (l-a n Z)2' 

2. If Gis Ag-inner, then 1 ::: IG(nl whenever i; E '][' is a point of continuity 
ofG. 

3. Let A = {aj, a2, a3, ... } be the zero sequence of a function in AP. For 
positive integers N, let A (N) be the tail sequence 

A(N) = {aN+j, aN+2, aN+3, ... }. 

Let G A(N) be the canonical divisor for the zero sequence A (N). Show that 
G A (N) (Z) --J> 1, uniformly on compact subsets of JD), as N --J> +00. 

4. Let us say that a sequence A = {aj, a2, a3, ... } is a sub-zero sequence for 
AP if there exists a function f E AP which vanishes along A without being 
identically zero. In other words, a sub-zero sequence is a subsequence of 
a zero sequence. Consider the extremal function G A for A, and show by 
an argument which involves a competing function for the extremal problem 
that G A vanishes precisely on A. Consequently, each sub-zero sequence is 
itself a zero sequence. 

5. If G is A P -inner and bounded, then G is a zero divisor whose zero set is the 
union of finitely many interpolating sequences. See [77]. 
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6. Show that the contractive zero divisor G A of an A P -zero set A has an analytic 
continuation across any arc of 1l' that does not contain an accumulation point 
of A. See [128]. 

7. Derive the formula for the zero divisor in A P corresponding to a single point 
a repeated n times. 

8. Derive the formula for the extremal function of the invariant subspace in A P 

generated by the singular inner function with an atomic mass a at z = I. 

9. Let G a be the extremal function of the invariant subspace in A 2 generated 
by the singular inner function Sa with an atomic mass a at Z = 1. Show that 

[21-ld 1 
J'JJJ I GO" (z)1 11 _ Zl2 dA(z) = 2a + 1 

for all a > 0. 

10. Let G be any A~-inner function. Then 

[ IG(z)IP 1 - IZl22 dAa(z) = 1 
J'JJJ 11 - szl 

for almost all s E 1l'. 

11. Show that for certain a the zero divisor in A~ with a single zero a E JI)) can 
have extraneous zeros. Then deduce that zero divisors in such cases fail to 
be contractive. See [73]. 

12. Show that if -1 < a :::: 0, then zero divisors in A~ are contractive. See 
[120], [122], as well as Chapter 9. 

13. If G is the extremal function for an invariant subspace] of A 2 , then 

1 
IG(z)12 :::: 1 _ Izl2 - (1 - Id)K[.L(z, z) 

for z E JI)), where K[.L (z, w) is the reproducing kernel for ]1.. 

14. Show that 

1Jf(z)exp (-2 ~ ~~)12 dA(z):::: L Izf(z)12 dA(z) 

for all f E A2. See [86]. 

15. Show that 

[ 1 fez) 12 dA(z):::: [ Izf(z)12 dA(z) 
J'JJJ 2 -z J'JJJ 

for all f E A2. 
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16. Show that 

l If(z)1 2 I CPa (z) Ib(a) dA(z) :s lIZf(Z)12 dA(z) 

for all a E ][)) and f E A2, where b(a) = 2 (1 + lal)/(1 - lal), and 
CPa : ][)) --+ ][)) is the usual Mobius involution associated with a. 

17. Show that 

../2 - r2 
1 1

2 

l 2 _ rz f(z) dA(z):s lIZf(Z)12 dA(z) 

for all 0 < r < 1 and f E A 2. Moreover, equality holds above if and only 
if for some constant C, 

2 -rz 
f(z) = C (1-rz)2· 

18. Suppose f is an analytic function f in ][)) and 0 < p < +00. Show that f 
belongs to A P if and only if 

l (1 - Id)2 b.lf(z)IP dA(z) < +00. 

19. Suppose f is a positive trigonometric polynomial on 'lI' of degree N. Then 
there exists an analytic polynomial p(z) of degree N, zero-free on ii}, such 
that Ipf = f on 'lI'. This is usually referred to as a the Fejer-Riesz theorem. 

20. If {In}n is a decreasing sequence of cyclic invariant subspaces of AP, then 
I = nnln is cyclic (singly generated). Moreover, if I i= {OJ and CPn is the 
extremal function for In, then CPn converges in AP to the extremal function 
for I. In particular, if IA is the invariant subspace of all functions that vanish 
on the zero set A, then IA is generated by its extremal function GA. For 
details, see [7]. 



4 
Zero Sets 

For an analytic function f in 1IJl, not identically zero, we let Z f denote the zero 
sequence of f, with multiple zeros repeated according to multiplicities. A sequence 
A = {an}n in IIJl is called a zero set for Ag if there exists a nonzero function f E Ag 
such that A = Z f' counting multiplicities. Zero sets for other spaces of analytic 
functions are defined similarly. 

In this chapter, we study the zero sets of functions in several Bergman-type 
spaces. It is well known that the zero sets cannot be described in terms of a simple 
Blaschke-type condition, because the angular distribution of the zeros plays a role. 
We shall obtain sharp necessary conditions for a sequence A to be a zero set 
for Ag, and sharp sufficient conditions as well. The gap between necessary and 
sufficient conditions is quite small. The characterizations are in terms of partial 
Blaschke sums on Stolz star domains and the Beurling-Carleson characteristic of 
the corresponding boundary set. In the case of the Bergman-Nevanlinna class A~, 
however, we shall be able to characterize its zero sets by a simple Blaschke-type 
condition. 

4.1 Some Consequences of Jensen's Formula 

An effective tool for studying zeros of analytic functions is the classical Jensen 
formula, which gives us a relationship between the growth of the function and the 
growth of its zero set. 

PROPOSITION 4.1 Suppose the function f is analytic in IIJl and f(O) i= O. For 
o < r < 1, let a], ... , an be the zeros of f in the disk Izl < r, repeated according 
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to multiplicity. Then 

n r 1 10 2IT 
log 1/(0)1 + I)og - = - log I/(reili)1 de. 

k=1 lakl 2:n: 0 

Proof. First, assume that I is nonvanishing on the closed disk Izl :::: r. Then 

log 1/(0)1 = _1 [2IT log I/(reili)1 de, 
2:n: 10 

since the function log I/(z)1 is harmonic on Izl :::: r. 
Next, assume that I is nonvanishing on Izl < r but has a single zero a = reit 

on the circle Izl = r. Then the function g(z) = I(z)/(z - a) is analytic and 
Ilonvanishing on I z I :::: r, so that 

1 [2IT [ 'Ii '0' ] 
log Ig(O)1 = 2:n: 10 log I/(re' )1 -log Ire' - relll de. 

Since 

log Ig(O)1 = log 1/(0)1 -logr 

and 

we conclude that 

log 1/(0)1 = _1 [2IT log I/(reiO)1 de 
2:n: 10 

whenever I is nonvanishing on Izl < r and has a single zero on Izl = r. By 
induction, the above formula remains valid if I is nonvanishing on Izl < rand 
has a finite number of zeros on Izl = r. 

Finally, if al,'" , an are the zeros of I in Izl < r, repeated according to 
multiplicity, then the function 

is analytic ill JD), nonvanishing on Iz I < r, and has a finite number of zeros on 
Izl = r. Thus, 

log W(O)I = _1 [2IT log IF(reie)1 de. 
2:n: 10 

Since IF(z)1 = I/(z)1 on Izl = rand 

F(O) = 1(0) fI (-~) , 
k=1 ak 
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Jensen's formula results. • 
Let f be an analytic function in ][}J, not identically zero, but with a zero of order 

mat z = 0, m :::: O. Applying Jensen's formula to the function g(z) = f(z)/zm, 
we obtain 

1 !o2Tl. I f(m)(o) I n r 
- log If(rele)1 de = m logr + log + L log-, 
2][ 0 m! k=1 lakl 

where 0 < r < I and al, ... , an are the zeros of fin 0 < Izl < r. It follows that 
for every 0 < a < 1, there exists a constant C = C (a) such that 

1 !o2Tl C S - log If(re;!!)1 de 
2][ 0 

for all r with a < r < 1. 
For f analytic in ][}J and 0 < r < 1, we let n (r) = n f (r) be the number of zeros 

of f in I z I < r, counting multiplicity. If f (0) -# 0, we let 

!o r n(t) 
N(r) = Nf(r) = - dt. 

o t 

The counting functions n (r) and N (r) play important roles in the study of zeros 
of analytic functions. 

PROPOSITION 4.2 Suppose f is analytic in][}J with f(O) # O. Then 

n r 
N(r) = L log-, 

k=1 lakl 

where ai, ... , an are the zeros of fin Izl < r, repeated according to multiplicity. 

Proof. Since net) = 0 for 0 < t S lall, we have 

n-I1Iak+" net) l r n(t) 
N(r) = L -dt + -dt. 

k= I lak I t Ian I t 

By definition, net) = k for lakl < t S lak+ll, and net) = n for lanl < t Sr. It 
follows that 

n-I 

N(r) = L [k (log lak+11 -log lak I) ] + n (logr - log Ian I) . 
k=1 

A little manipulation then shows that 

as claimed. 

n r 
N(r) = Llog-, 

k=1 lakl 

• 
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PROPOSITION 4.3 Suppose f.l is a probability measure on a measure space X 
and that g is a positive measurable function on the measure space X. Then 

L logg(x) df.l(x) ~ log [L g(x) df.l(x) ] . 

Proof. This is a special case of a general result in Real Analysis, which is 
usually called the arithmetic-geometric mean inequality. _ 

We proceed to prove some necessary conditions for a sequence in ID> to be a zero 
set for Ag. 
PROPOSITION 4.4 Suppose IE Ag with 1(0) =1= O. Then 

2 rl (1 _ r 2)aepN(r) rdr ~ _1_ r I/(z)iP(l-lzI 2)a dA(z). 10 I/(O)IP lJD 

Proof. If I is analytic in ID> with 1(0) = 1, then by Propositions 4.1 and 4.2, 

N(r) = _1 r2rr log I/(reie)1 de 
2:7r 10 

for all 0 < r < 1. The desired result then follows from the arithmetic-geometric 
mean inequality. The general case follows by considering g = fll(O). _ 

COROLLARY 4.5 Suppose I E Ag with 1(0) =1= O. Let ai, a2, a3, ... be the 
zeros 01 I, repeated according to multiplicity and arranged so that lall ~ la21 ~ 
la31 ~ .... Then 

n 1 
1/(0)10-1 -I ~ Cn(a+I)/Pll/llp.a 

k=1 ak 

lor all n = 1, 2, 3, ... , where C is a positive constant dependent only on p and a. 

Proof. Recall from Proposition 4.2 that 

n(r) P 
epN(r) = 0 _r_, 

k=llakl P 

where we recall that n(r) counts the number of zeros in Izl < r. It follows that 

n r P 
epN(r) > 0--

- k=1 lakl P 

for every positive integer n. Combining this with Proposition 4.4, we obtain 

p On 1 r(a + 2 + np/2) r p 

1/(0)1 k=1 laklP ~ r(et + 2)r(l + np/2) lJD I/(z)1 dAa(z). 
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The desired result now follows from Stirling's formula. • 
It is easy to see that (see Exercise 15 of Chapter 1) 

lim [11(zW dAO'(z) = _1 [211: II(eitW dt 
0'-->-1+ JIDJ 2:rr Jo 

for every function I in the Hardy space H p. It follows from the proof of the above 
corollary that 

+00 1 
11(0)1 D ~ :s 1I111HP 

for every I E HP with 1(0) i= O. This clearly implies the Blaschke condition 

L(l - lakJ) < +00 
k 

for zero sets of functions in Hardy spaces. 
We are going to show that zero sets for A~ satisfy a slightly weaker condition. To 

accomplish this, we need an estimate for the growth of n(r) and N(r) associated 
with functions in A~. 

PROPOSITION 4.6 Suppose I E A~ with 1(0) i= O. Then there exists a positive 
constant C such that lor all r E (0, 1), 

and 

1 
(l - r)n(r) :s Clog-­

l-r 

a + 1 1 
N(r) :s C + --log --. 

p 1- r 

Proof. By Proposition 4.4, the quantity 

C = (a + 1) 10 1 (1 - t)O'ePN(t) dt 

is finite. Since N(t) is increasing on (0, 1), we have 

C > (a + 1) 11 (l - t)O'ePN(t) dt 

> (a + l)epN (r) 11 (1 - t)O' dt = epN (r)(1 - r)O'+1 

for every r E (0, 1). It follows that 

a + 1 1 
N(r) :s --log -- + CI 

p 1- r 

for all r E (0, 1) and some positive constant C I. 



4.1. Some Consequences of Jensen's Fonnula 103 

Since nCr) is monotone, we have 

n(r2)(r - r2) ~ net) dt ~ N(r) ~ --log -- + CI ir a + 1 1 
r2 p l-r 

for all r E (0, 1). This together with the assumption f(O) -1= 0 easily implies that 

1 
(1 - r) nCr) ~ C2 log--

1- r 

for all r E (0, 1) and some positive constant C2. 

We can now prove the main result of the section. 
• 

THEOREM 4.7 Suppose f E A~ with f(O) -1= O.lf{ak}k is the zero sequence of 
f, then for every positive e we have 

~ l-Iakl 
~ I I+E < +00. 

k=1 [log Hakl] 

Proof. It is clear that the desired result is equivalent to the convergence of the 
integral 

I I I-t 
I = I+E dn(t), 

a [log I:t] 
where a = lall E (0, 1). Integrating by parts and applying Proposition 4.6, we 
obtain 

where 

I I 1 + e + log _1_ 1-1 
I = 2+e net) dt = II + h, 

a [lOg 1:1] 

I I n(t)dt 
II = (l + e) 2+E' 

a [100- _I ] 
'" 1-1 

whose convergence is also guaranteed by Proposition 4.6, and 

h = II n(t)dt ~ II dN(t) 

[log 1:1 f+e [log I:C ]I+E· 

We integrate by parts again to get 

II dN(t) N(t) II 11 (l +e)N(t)dt 

[ JI+E = [ JI+E + []2+E· 
a log 1:1 log 1:1 a a (l - t) log \:c 

By Proposition 4.6, both terms above converge. • 
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COROLLARY 4.8 If{anln is a zero setforsome A~, then for every £ > 0, 

L(l-lan I2 )1+c < +00. 
n 

4.2 Notions of Density 

In order to better understand the structure of zero sets for Bergman spaces, we 
need to introduce several notions of density for sequences in the unit disk. The 
reason is that it is well known that the zero sets cannot be captured by a simple 
Blaschke-type condition in terms of moduli: indeed, a spread-out zero set need not 
fulfill the Blaschke condition, whereas a concentrated one must do so - if, say, all 
the zeros are contained in a finite union of Stolz angles. 

For a point z E 'IT', we let 5 z denote the standard relatively closed Stolz angle in 
]]]) with vertex at z and aperture n /2. Thus, 5 z is the convex hull of the set 

{zl U {w E C : Iwl ::::; l/h} , 

with the vertex point z removed. The term Privalov "ice cream" cone is also used 
in the literature. 

For an arc I C 'IT', let III be its arc length, and Ills = III/(2n) its normalized 
arc length. The sUbscript s refers to the measure ds(z) = Idzl/(2n). For a closed 
and proper subset F of 'IT' with complementary arcs {In In, we define 

~" e K(F) = £......IInl s log-, 
n lIn Is 

where e = 2.71828 ... is the base for the natural logarithm. ThequantitYK(F) will 
be called the Beurling-Carleson characteristic of F. Sometimes the term entropy 
is also used forK(F). We define K(0) = 0 for the empty set. 

A closed subset F of 'IT' is called a Beurling-Carleson set if F is nonempty, has 
Lebesgue length measure zero, and K(F) < +00. It is clear that 1 S K(F) for 
such sets, with equality occurring only for one-point sets F. Let dlf be the standard 
metric on the unit circle 'IT': 

d1r(z,w) = larg(~)I, 
where the argument function is assumed to take values in the interval (-n, nJ. 
The distance to a closed subset F of 'IT' is then 

d1r(z, F) = inf {d1r(z, w) : wE F}, 

and F is a Beurling-Carleson set if and only if 

~ h n K(F) = log ds(z) < +00. 
1r dlf(Z, F) 
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Actually, the left hand side only represents the integral over the complement of F, 
which does not matter as long as F has zero length. Let de stand for the Euclidean 
metric in <C: dc(z, w) = Iz - wi. Then, for any closed subset F ofT, 

2 
- d'f(z, F) s dc(z, F) s d'f(z, F), 
n 

Z E T, 

where the distance to sets is defined in terms of an infimum as for d'f, so that by 
the above, 

~ i I ~ I K(F) -logn Slog ds(z) S K(F) - og2, 
'f dc(z, F) 

provided F has zero length. 
For most of our discussion, we assume that F is a finite set. In association with 

F, we define the Stolz star domain SF as follows: 

SF = U{Sz : Z E F}. 

Let A = {an}n be a sequence of (not necessarily distinct) points from [J). We 
will not be primarily interested in the order that the the various points an appear, 
but rather think of A as a subset of [J), except that multiplicities are allowed. For 
an arbitrary subset E of [J), we form the partial Blaschke sum 

:E(A, E) = ~ L {I -lanl2 : an E E}. 
2 n 

We note that for points a E [J) close to T, the quantitities 1(1 - lal 2 ) and I - lal 
are very close. Later on, we also need the related "logarithmic" sum 

A(A, E) = L {IOg_I_: an E E}; 
n lanl 

again, for a E [J) close to T, the quantity we sum over, 10g[I/lal]' is very close 
to I - lal. Another thing to think of is that the above sums are in fact taken over 
the "sets" A n E, by which we mean that all the points of A are included with 
multiplicities, provided they are in E. We shall sum over the Stolz stars SF, where 
F C l' is finite: the K -density of the sequence A in the Stolz star SF is 

DEFINITION 4.9 Let A be a sequence of points in [J) and F befinite subsets of 
'f. Then the quantities 

and 

D+(A) = lim sup D(A, SF) 
K(F)--++oo 

D-(A) = liminf D(A,SF) 
K(F)--++oo 

are called the upper and lower asymptotic K-densities of A, respectively. 
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The upper asymptotic K -density will be crucial for our description of zero sets for 
the Bergman spaces. It will also play an essential role later when we characterize 
sequences of interpolation for the Bergman spaces. 

We proceed to give several equivalent definitions of the upper asymptotic K­

density. First, observe that replacing the standard Stolz angle Sz by a general Stolz 
angle sz.a with any fixed aperture 0 < ex < :rr and making the corresponding 
changes in the definitions of SF, E (A, SF), and D(A, SF) will not alter the quan­
tities D±(A). What is somewhat surprising is that the angle ex can be reduced to 
o with no effect on D+(A). More specifically, for a finite set F and a sequence A 
of points in II), we set 

tF = {rz ElI): 0 ~ r < 1, Z E F}. 
The set t F is the union of radii from 0 to the points of F. Then we have the 
following result. 

PROPOSITION 4.10 Let A = {anln be any sequence of points from II) and F be 
finite subsets ofT. Then 

E(A, tF) 
D+ (A) = lim sup ~ . 

K(F)->-+oo K(F) 

To prove the identity above, we need yet another notion of density based on 
Carleson squares. Recall that for an open arc leT, with II I = 2:rr II Is < 1, the 
associated Carleson square is the set 

Q(l) = {w E II) \ {Ol: 1 - III < Iwl, w/lwl E I}; 

for open arcs of bigger length, we let Q(l) be the entire sector 

Q(l) = {w E II) \ {Ol: w/lwl E I}. 
If {Inln are the complementary arcs of a finite set F in T, we define 

qF = II) \ Un Q(ln). 

We then arrive at another way of obtaining D+(A). 

PROPOSITION 4.11 Let A = {anln be any sequence of points from II) and F be 
finite subsets ofT. Then 

D +(A) l' E(A, qF) = lmsup ~ . 
K(F)->-+oo K(F) 

We proceed now to prove the two above propositions, that is, the equivalence of 
all the three definitions of D+ (A). Note that the lim sup in each of these definitions 
will not change if we allow closed countable sets F of finite entropy as well. 

We start with the proof of Proposition 4.11. 

Proof. Enlarge every finite set F by inserting on each complementary arc I 
of F additional points accumulating at the endpoints of I so that their distances 
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from the nearest endpoint of I form a geometric progression with some fixed ratio 
q, 0 < q < 1. An elementary computation then shows that the augmented set 
FI ~ F will have the property 

K(F) < K(FI) < K(F) + C, 

where the constant C depends only on the ratio q. We can also choose q such that 

qF C SF C qFj' 

so that 

This proves Proposition 4.11. • 
We turn to the proof of Proposition 4.10. 

Proof. Observe that tF C SF, and thus E(A, tF) ::::: E(A, SF), which implies 

. E(A, tF) . E(A, SF) 
hm sup ~ ::::: hm sup ~ . 

K(F) ... .-+oo K(F) K(F)->+oo K(F) 

By Proposition 4.11, the reverse inequality is equivalent to 

. E(A, qF) . E(A, tF) 
hm sup ~ ::::: hm sup ~ . 

K(F)->+oo K(F) K(F)->+oo K(F) 

At first glance this looks highly improbable, since the sum defining E(A, qF) 

involves all points from qF, while the sum defining E(A, tF) involves only those 
points lying on one of the radii from 0 to points of F. However, a more careful 
argument will prove the above inequality. 

Without loss of generality, we may assume that the lim sup on the left-hand 
side of the desired inequality is positive. Let L be a positive number less than this 
lim sup. This implies that there are finite subsets F of l' of arbitrarily large K(F) 
such that 

E(A, qF) = ~ L (l -lad) > LK(F). 
akEqF 

Until the end of the proof, we shall assume that F satisfies this inequality. 
Let FI equal the set F plus the radial projections z/lzl of points from the set 

An (qF \ tF), so that 

Let kn be the number of such radial projections (counting multiplicities) that lie 
on In, where In is a complementary arc to the finite set F C 1'. Observe now that 
the contribution to K(FI) from the complementary arcs of FI contained in In does 
not exceed the quantity 

IInis [lOg _e_ + log(kn + 1)] , 
IInis 
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which corresponds to the case of kn equidistant points of (Fj \ F) n In. Therefore, 

K(F) :::: K(Fj) :::: K(F) + reF), 

where reF) is the "remainder" term 

reF) = L lIn Is log(kn + 1). 
n 

Suppose the point a j E A n (qF \ t F) is such that its radial projection lies on In. 
Then I In I = 2l! I In Is < 1 by the construction of the Carleson squares forming the 
complement of q F in JD), and moreover, we have la j I :::: 1 - I In I. It follows that 

I I I 2 
IInis < l! IInis = "2I Inl :::: "2 (l + lajl)(l -Iajl) = "2 (1 - lajl ). 

This leads to the the conclusion 

Lkn IInis :::: ~(A, qF \ tF) :::: ~(A, qF). 
n 

We now show that the "remainder" term is small: 

reF) = o(~(A, qF» as K(F) ~ +00. 

To this end, we pick a positive integer N and split the sum defining reF) into two 
parts, keeping the above estimate in mind: 

reF) = [t; + k~] IInis log(kn + l) 

10g(N + 1) " 
< 10g(N + 1) + N ~ kn IInis 

kn>N 

10g(N + 1) 
< 10g(N + 1) + N ~(A, qF). 

Letting K(F) ~ +00, with ~(A, qF) ~ +00, first holding N constant and then 
making N ~ +00, we obtain reF) = o(~(A, qF», as desired. Consequently, 

K(Fj) =K(F) + o(~(A, qF» 

asK(F) ~ +00. Since by the above, ~(A, qF):::: ~(A, tFl)' we get 

~(A, tFl) ~(A, qF) 
~~~~ > =---~-=~--~ 

K(Fj) - K(F) + o(~(A, qF» 

as K(F) ~ +00. This implies that 

. ~(A, tF) 
hmsup ~ I 2: L. 

i((F)--Hoo K(Fj) 

Since FJ above can be substituted for F, and L can be chosen arbitrarily close to 

I. ~(A, qF) 
1m sup ~ , 

i((F)--Hoo K(F) 
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Proposition 4.10 is proved. -

Let A = {an}n be a sequence in lDJ, and fix a real parameter (! E (0, +00). If, 
for every finite subset F of'll', 

l;(A,SF):::: (!K(F) + C, 

for some constant C independent of F, then by the inclusion t F C SF, we also 
have 

l;(A, tF) :::: (!K(F) + C. 

Conversely, if for every finite subset F of 'll', 

l;(A, tF) :::: (!K(F) + C, 

then by Proposition 4.10, D+(A) :::: (!, so that 

l;(A,SF):::: «(!+c)K(F)+C'(c) 

for every c > 0, where C'(c) is a constant that is independent of the finite set 
F C 'll', but may vary with c. 

We shall need a similar but more precise comparison between l;(A, SF) and 
l; (A, t F) for some slightly different asymptotic restrictions on the latter. 

PROPOSITION 4.12 Fix 0 < (!, TJ < +00. Suppose that the sequence A in lDJ is 
such that 

l;(A, tF) :::: (!K(F) + TJ 10gK(F) + C, 

for every finite nonempty subset F of'll', where C is a constant. Then 

l;(A, SF) :::: (!K(F) + (TJ + (!) 10gK(F) + c', 
for every finite nonempty subset F of'll', for some other constant C'. 

Proof. As in the proofs of Propositions 4.10 and 4.11, we can show that the 
second inequality here is equivalent to a similar estimate with summation over 
Stolz stars SF replaced by summation over the regions qF with omitted Carleson 
squares: 

l;(A, qF) :::: (!K(F) + (TJ + (!) 10gK(F) + 0(1), 

where 0 (1) stands for a quantity that is bounded independently of the finite set F. 
Let Fe 'll' be finite, and {In}n the collection of complementary arcs; {Q(In)}n 

are the associated Carleson squares. Project all points from A n qF (other than 0) 
radially to 'll', and let 

F' = {~ E 'll': Z E An qF, Z #= o} 
Izi 

be the resulting set, so that l;(A, qF) :::: l;(A, tF'). We put kn = card (In n F'), 
and note that an elementary argument shows 

K(F) :::: K(F') :::: K(F) + L lIn Is log(kn + 1), 
n 
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with equality occurring in the right hand side inequality if the kn points from F' nIn 
divide In into kn + 1 equal subarcs. On the other hand, as we saw in the proof of 
Proposition 4.10, 

L)n IInis :::: I:(A, qF) :::: I:(A, tF'). 
n 

Since Ln lIn Is = 1, the concavity of the function log t (that is, the geometric­
arithmetic mean value inequality) gives 

~ IInis log(kn + 1) :::: log (1 + ~knIInls) :::: log (1 + I:(A, qF»). 

Now, replace F with F' in the assumption of the proposition and use two of the 
above inequalities to get 

I:(A, qF) :::: I:(A, tF') :::: r/K:(F') + 1] logK(F') + 0(1) 

:::: (lK(F) + (l logI:(A, qF) + 1] log (K(F) + logI:(A, qF») + 0(1). 

From the proofs of Propositions 4.10 and 4.11, we know that 

logI:(A, qF):::: logK(F) + 0(1), 

and thus 

I:(A, qF) :::: (lK(F) + (1] + (l) IogK(F) + 0(1), 

which is equivalent to the inequality stated at the beginning of the proof. _ 

4.3 The Growth Spaces A-a and A-co 

In this section, we introduce a class of Bergman-type spaces, denoted by A-a 
and A -00, which are closely related to the Bergman spaces A~ and are sometimes 
called growth spaces, and begin the study of their zero sets. 

DEFINITION 4.13 For any a > 0, the space A -a consists of analytic functions 
f in ID> such that 

IIfII-a = sup{(1-ld)alf(z)l: z E ID>} < +00. 
It is easy to verify that A-a is a (nonseparable) Banach space with the norm 

defined above. Each space A -a clearly contains all the bounded analytic functions. 
The closure in A -a of the set of polynomials will be denoted by Aoa, which is a 
separable Banach space and consists of exactly those functions f in A -a with 

lim (1 - Id)alf(z)1 = 0. 
Izl--+l-

We will also consider the space 

A-oo = U A-a. 
O<a<+oo 
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It is clear that an analytic function f in ]]J) belongs to A -00 if and only if there exist 
positive constants C and N such that 

Z E]]J). 

It is also clear that 

u 
o<p<+oo 

for any Q' E (-1, +00). The space A -00 is a topological algebra when endowed 
with the inductive-limit topology (for a definition, see any book on Functional 
Analysis). 

For an analytic function f in ]]J) that is not identically zero, we define its 
hyperbolic exponential type 

(f) I· log If(z)1 
t = Imsup I 

Izl-+l- log I-izi 

The function f is said to be offinite hyperbolic exponential type if t(f) < +00. 
It is clear that 

t (f) = inf {Q' : f E A -a } . 

When f E A-a for Q' = t(f), we say that f is of exact type. If t(f) = 0, we say 
that f is of minimal type. Clearly, t(f) = 0 if and only if f E A-a for all Q' > O. 

The space A -00 then consists of 0 and functions of finite hyperbolic exponential 
type. 

In order to understand the complexity of the zero sets for Bergman spaces, 
we first show that zero sets for Bergman spaces cannot be characterized by any 
condition that involves only the modulus of the zeros. 

Let Zo be a point on the unit circle. Then, for 1 < a < +00, the set 

ra(zo) = z E ]]J) : :::: a { Iz - zol } 
1 -Izl 

behaves like a Stolz angle at zoo 

THEOREM 4.14 Suppose f is in A-oo . If the zeros of f, A = {an}n, lie in some 
r a (zo), with zo E T, then A satisfies the Blaschke condition 

LO - Ian!) < +00. 
n 

Proof. Using a rotation if necessary, we may assume thatzo = 1. By eliminating 
a finite number of zeros, our assumption then implies that the zeros of f all lie in 
the circle Iz - ~I < !. 

Since f is in A -00, there exists a constant A. such that the function (1-lzl)A fez) 
is bounded in]]J). It follows easily that the function g(z) = (1- Z)2A fez) is bounded 
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in the disk Iz - ! I < !. Since the disk Iz - ! I < ! is mapped to the unit disk j[J) 

by the mapping W = 2z - 1, the function h(w) = g«w + 1)/2) is bounded and 
analytic in j[J). 

The zeros of hare Wk = 2ak - 1, k = 1,2,3, .... Since the points {adk lie 
in an angle at z = 1, it follows that the {Wk}k lie in an angle at w = 1. Thus, the 
Blaschke condition Lk (1 - I Wk I) < +00 implies that Lk 11 - Wk I < +00. Since 
11 - wkl = 211 - akl, we obtain Lk 11 - akl < +00. By the triangle inequality, 
this implies that Lk(1 -Iakl) < +00. • 

To better formulate the main results about zero sets for Bergman-type spaces, 
we introduce two additional types of spaces. Thus, we set 

A:;:a = n A-13 = {OJ U {f E H(j[J)): t(f):::; a} 
13:I3>a 

and 

A:a = U A-13 = {OJ U {J E H(JI))) : t(f) < a}. 
13:13 <a 

It is clear that 

A:a c AQa C A-a c A:;:a. 

We can now state the main results of this chapter; the next two sections are 
devoted to their proofs. 

THEOREM 4.15 Let A = {an}n be a sequence in j[J). Then A is a zero set for 
A:;:a if and only if D+ (A) :::; a. 

In concrete terms, we prove that the condition D+(A) :::; a is necessary and 
the condition D+(A) < a is sufficient for A to be an A-a zero set. This clearly 
implies the following. 

COROLLARY 4.16 A sequence A = {an}n in j[J) is an A:a zero set ifand only 
ifD+(A) < a. 

COROLLARY 4.17 A sequence A C j[J) is a zero set for A-OO if and only if 
D+(A) < +00. 

4.4 A-a Zero Sets, Necessary Conditions 

We begin the proof of the necessity of the condition D+(A) :::; a for A-a zero 
sets with the following balayage-type estimate, which enables us to "sweep" zeros 
of an analytic function f radially to the circumference 1l' and convert them into 
singular masses without increasing If I in a certain critical region. 

LEMMA 4.18 Let.51 be the standard Stolz angle at z = 1. Then 

I a - z I ::: exp [(lOg a) 1 - IZI:] 
1 - az 11 - zl 
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for all 0 < a < 1 and Z E [J) \ .51. 

Proof. Using the Cayley transform 

l+z 
w =4>(z) =--

1- z 
from [J) onto the right half-plane C+ = {w E C : Re w > A}, we can rewrite the 
desired inequality as 

Ib - wi> exp [(IOg~) u], 
b+w - b+l 

where w = u + iv E C+ \ 4>(.51) and 

l+a 
b=-->1. 

I-a 

We are going to take the logarithm on both sides of this second inequality and 
show that it actually holds for w in the larger set C+ \ Q, where 

Q = {w = u + iv : u > 1, Ivl < u}. 

To see that Q is smaller than 4>(.5]), observe that o(K-1(Q» consists of parts of 
two orthogonal circles through 1 and -1 and an arc of the circle through 0 and 1 
tangent to 11' at 1. Then it is geometrically obvious that K- 1(Q) C .51. 

We now show that 

1 b2 + u2 + v2 + 2bu b + 1 
- 100" < 2100" --
U b b2 + u2 + v2 - 2bu - b b - 1 ' 

where b > 1 and w = u + iv E C+ \ Q. It is easy to check that the left-hand side 
above decreases, for any fixed u, as I v I increases; and for v = 0, it is an increasing 
function of u. Thus, the inequality above holds in the strip 0 ::s u ::s 1 with equality 
attained at u = 1 and v = O. It remains to verify the case Ivl = u: 

for u :::: 1. 

1 b2 + 2u 2 + 2bu b + 1 
- 100" < 2100" -­
u b b2 + 2u 2 - 2bu - b b - 1 

Let u = bt. It then suffices to show that 

1 1 + 2t2 + 2t b + 1 
- 100" < 2b log -­
t b 1 + 2t2 - 2t - b - 1 

for b > 1 and t > O. The right-hand side here is decreasing in b and tends to 4 as 
b ~ +00. So it is enough to show that 

1 1 + 2t2 + 2t 
-log ::s 4 
t 1 + 2t2 - 2t 

for all t > O. An easy computation shows that the function 

f(t) = 4t + logO + 2t2 - 2t) - 10g(1 + 2t2 + 2t) 
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has a positive derivative on (0, +00): 

f'(t) = 8t2(1 + 2t2)/(1 + 4t4 ). 

Thus, 

f(t) > f(O) = 0, t > 0, 

and the proof of the proposition is complete. _ 

Given a finite subset E of the punctured disk]]}) \ {OJ, we define the push-out 
measure dAE: 

1 
dAE = L)og-doz-, 

zEE Izl 

where z* = z/Izl E 'f is the the pushed-out point and dOl; stands for the unit point 
mass at ~ E 'f. This measure is related to the counting function A(A, E) which 
we met back in Section 4.2. It can also be defined for more general subsets E of]]}). 
For a finite Borel measure J-L on 'f, we recall the definition ofthe Poisson extension 

P[J-L](z) = fr P(z, w) dJ-L(w), Z E]]}), 

where 

1 -lzwl2 
P(z, w) = 11- zwl2 

is the Poisson kernel. Lemma 4.18 states that the following assertion holds for a 
one-point set A; the general case follows by iteration. 

COROLLARY 4.19 Suppose f E A-a and A = {al, ... ,an} C ]]}) \ {OJ are 
some of the zeros of f. Let BA be the Blaschke product associated with A, and let 
A* = {al/lall, ... an/Ian!} be the pushed-out sequence on 'f. Then 

I fez) I < II !II-a (P[A ]( )) ]]}) \ 
BA(z) - (l-lzI2)a exp A Z, Z E SA"· 

We shall need some estimates for several auxiliary harmonic functions. Recall 
from Section 4.2 that for a closed set F in 'f, 

dc(z, F) = inf{lz - ~I : ~ E F}, Z E]]}), 

is the Euclidean distance from z to F. Also, recall that ds is the normalized arc­
length measure on 'f. 

LEMMA 4.20 Suppose F is a finite set in '][' and its complementary arcs 
h, ... ,In satisfy Ihl = 2Jl"lhls < 1, for all k = 1, ... ,n. Then the harmonic 
junction 

U ( ) - r 1 - Id 10 1 ds() 
F Z - JT I~ _ Zl2 g dc(~, F) ~, Z E]]}), 
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is positive and satisfies 

Z E lJ)). 

Proof. We have 

1 1 
log = max log --, 

dc(z, F) ~EF Iz - ~I 
Z E lJ)), 

so that the left hand side expresses a positive subharmonic function on lJ)) whose 
boundary values equal those of U F(Z). Hence the desired inequality follows from 
the maximum principle. • 

For 0 < p < 1, consider the harmonic function 

Z E lJ)), 

where ~ is a point on 'll'. The choice of the constant factor involving the secant 
function ensures that 

(z,o E lJ)) x 'll'. 

Also, for ~ E 'll', and 0 < c < !, let y(~, p, c) be the curve 

y(~, p, c) = {z E ~: 1 - Id = c I~ - zI2- p }, 

which makes one loop around the origin and touches the unit circle exactly at ~. 
More generally, for a finite subset F of'll', we define the curve 

y(F, p, c) = {z E ~: 1 -lzl2 = cdc(z, F)2- P }, 

which encloses a star-shaped domain touching the unit circle exactly at the points 
of F (see Figure 4.1). 

We now compare the kernel Vp(z, 0 to the Poisson kernel P(z, O. 

LEMMA 4.21 Fix 0 < p < 1 and 0 < c < !. Then, for fixed ~ E 'll', 

1 -lzl 2 

I~ _ Zl2 = P(z, 0 < c Vp(z, 0 

for all z in the region between 'll' and y (~, p , c). 

Proof. In the region between y(~, p, c) and 'll', we have 

1-ld < cl~ - ZI2-p, 

and there 

1 - Izl2 -
I~ _ Zl2 < c 11- ~zl-P ~ c Vp(z, 0, 

by the inequality we derived before the statement of the lemma. • 
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Figure 4.1. The curve y(F, p, c) and the domain it encloses 

For a finite Borel measure Jl on 'Jr, let 

ZED, 

be corresponding potential, which represents a harmonic function on D. 

Nota bene: We restrict the parameters p and c to 0 < p < 1 and 0 < c < t, 
and assume that the finite set F has complementary arcs {h}k satisfying Ihl 
2nlhls < 1 forallk. 

LEMMA 4.22 Let Jl a finite positive Borel measure on 'Jr, supported on a finite 
set F. Then the inequality 

holds for all Z between 'Jr and the curve y (F, p, c). 

Proof. The function P[Jl] is a finite sum of Poisson kernels; apply Lemma 4.21 
to each term. As the set of points between 'Jr and y (F, p, c) is the intersection of 
the domains described in Lemma 4.21 over I; E F, the assertion is immediate. _ 

The key to our necessary conditions for A-a zero sets is the following Jensen­
type inequality. Recall the definition of the logarithmic sum 

A(A, E) = L {lOg _1_ : aj E E} 
. lajl 

] 

from Section 4.2, where A = {aj}j, counting multiplicities. 
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THEOREM 4.23 Let f be a nonzero function in A-a having zeros (counting 
multiplicities) at A = {an}n with 0 f/. A. Then, for any finite set F in T, 

A(A, 'F) - odogA(A, 'F) 

S a[K(F) + 10gK(F)] - a(loga - 2) + log IIf11-a -log If(O)1 

whenever4a < A(A, 'F)K(F). 

Proof. We can assume A to be a finiie sequence. By Corollary 4.19, 

I fez) I 1 log Slog IIf11-a+alog 2 +P[AAnrF](Z), 
BAnrF(Z) 1 - Izi 

Z E y(F, p, c), 

where BAnrF(Z) is the Blaschke product for the zeros A n 'F and the push-out 
measure dAAnrF is as before. We now apply Lemmas 4.20 and 4.22, and use the 
geometric properties of the curve y (F, p, c), to obtain 

log I fez) Is a(2 - p) UF(Z) + a log ~ + c Vp[AAnrF](Z) + log IIf11-a 
BAnrF(Z) C 

for Z E y(F, p, c); the function U F is as in Lemma 4.20. The left-hand side here 
is a subharmonic function in the region enclosed by the curve y(F, p, c). Note 
that 

log IBAnrF(O)1 = -A(A, 'F) and Vp[AAnrF](O) = (sec P;) A(A, 'F). 

Hence, by the maximum principle, we then have 

log I B~~~~O) I = log If(O)1 + A(A, 'F) 

1 
S a(2 - p) UF(O) + a log - + c Vp[AAnrF](O) + log IIf11-a 

c 

= a(2 - p) r log 1 ds(S) + a log ~ JT dd~, F) c 

+ (c sec P;) A(A, 'F) + log IIfll-a, 

By what we did in Section 4.2, the integral expression above is less than or equal 
tOK(F), and it is elementary that 

Thus, 

pn 1 
sec- < --. 

2 I-p 

..... (c) 1 log If(O)1 S a(2 - p)K(F) + -- - 1 A(A, 'F) + a log - + log IIf11-a. 
I-p c 

To minimize the right-hand side, we put 

a 
c= .-... 

A(A, 'F)K(F) 
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The desired result then follows. • 
Note that the result above implies that A(A, T:F) < +00 for every finite subset 

F of,][,. 
We now prove two necessary conditions for A -a zero sets. 

THEOREM 4.24 If A = {an}n is an A-a zero sequence, then 

~(A, T:F) :s a[K(F) + 210gK(F)] + 0(1), 

where 0 (1) stands for a quantity which is uniformly bounded independently of the 
finite nonempty subset F ofT 

Proof. Since 

1 2 1 
- (1 - t ) < 100" -
2 l::> t' 0< t < 1, 

a comparison of the summation functions ~ and A shows that by Theorem 4.23, 

~(A, T:F) - a log+ ~(A, T:F) :s a[K(F) + 10gK(F)] + 0(1). 

We readily find an "almost inverse" to the mapping t f-+ t - a log t for large 
positive t, which results in 

~(A, T:F) :s a[K(F) + 210gK(F)] + 0(1), 

as asserted. 

THEOREM 4.25 If A = {an}n is an A-a zero sequence, then 

~(A, SF) :s a[K(F) + 310gK(F)] + 0(1), 

• 

where 0 (1) stands for a quantity which is uniformly bounded independently of the 
finite nonempty subset F of,][,. 

Proof. This is a direct consequence of the preceding theorem and Proposi-
tion 4.12. • 

We derive two useful corollaries from the above necessary conditions. 

COROLLARY 4.26 Let A = {an}n be an A-co zero sequence. Then 

S(r) = L(l-lanl)=O(IOgl~r) asr~I-, 
lanl<r 

andfor each 8 > 0, we have 

,, __ I_---'.la....:.::.n.:...,..1 ,---

~ I <+00. 
n [log I-Ian I ] +e 

Proof. Taking 

F = {exp(2kJri/N) : 1 :s k :s N} 
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in Theorem 4.25 and letting N -7 +00 yields the first estimate, because the Stolz 
star SF will then cover a disk of radius 1 - n / N, and a computation reveals that 
K(F) = 1 + log N. Since 

"'" 1 - lanl 
L [ Jl+8 

n log I-Ian I 

10 1 dS(r) 

o [log I=-r r+c 
. [1 S(r)dr 

S(O) + (1 + £) 10 2+e' 

o (1 - r) [log I=-r J 
the second estimate then follows from the first one. • 
COROLLARY 4.27 If A is an A-ex-zero sequence, then D+(A) ::: a. 

4.5 A -Ci Zero Sets, a Sufficient Condition 

In this section, we present a sufficient condition for a sequence A in []) to be an A-ex 
zero set. The proof of the main theorem consists of two key ideas: an "oblique" 
projection technique, and a technique from Linear Programming. 

Throughout this section, we let s( denote a Stolz angle with the vertex at ~ E l' 
and an arbitrary but fixed aperture cp with n /2 ::: cp < n. Thus, s( is the convex 
hull of 

{n U {z E C: Izl ::: sin(cp/2)}, 

with the vertex ~ removed. As before, for a finite subset F of 1', 

SF = U{s( : ~ E F} 

is the corresponding Stolz star domain. 
Given a point A E []), contained in the annulus sin(cp/2) < IAI < 1, there are 

exactly two Stolz angles s~ (with 5 E 1') such that A E as~. Let 51 and 52 be 
the corresponding points of 1', which of course depend on A. Given another point 
~ E 1', we pick the one (out of 51,52) which is the farthest away from S, and call it 
the oblique projection ID( (A) of A. This can be done unless A is on the straight line 
connecting s with -s; however, we shall mainly be interested in A E []) \ s{(,_(}. 

We also need the concept of a tent: for an open arc I C l' with endpoints (VI 

and (V2, we define the tent I:J I as the component of []) \ S{WI ,wz} abutting on I. The 
geometric situation is illustrated in Figure 4.2. 

LEMMA 4.28 Fix the aperture of the Stolz angles cp E [3n/5, n). Then for all 
z = t S, 0 < t < 1, and A E []) \ S{(,-n, we have 

I A - z I (1 - Id)(l - IAI2) 
log --_- + < 0, 

1 - AZ 211 - IDzl2 -

where ID = ID( (A). 
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Figure 4.2. The oblique projection ?iTs (A) 

Note that the inequality above means that on the radius {z = 0; : 0 < t < I}, 
the Blaschke factor (A - z) / (I - iz) is dominated in modulus by the singular inner 
function exp[ -a(w- + z)/(w- - z)], where a = (l - IAI2)/2. 

Proof. Using the identity 

1 _I A - _z 12 = (1 - IAI2)~ - Id) 
I - AZ 11 - Azl2 

we can rewrite the desired inequality as 

where 

Since 

it suffices for us to prove 

log(l - 2aa2) + 2aal :5 0, 

+00 (2aa2)n - L + 2aa l 
n=l n 

(2aa2)2 
< 2a(al - a2) - 2(1 _ aa2) 

2a(al - a2 - aala2) 

I-aa2 
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which is equivalent to 

that is, 

Let 

fi = I arg(~/w-)I, y = I arg(~ /A)I, 

where as usual the argument takes values in the interval (-Jr, Jr]. The definition 
of oblique projection implies that 0 < fi /2 :s y :s fi < Jr, and a geometric 
consideration reveals that 

q; 1 
1 - IAI :s (fi - y) cos 2" < '2 (Jr - q;)(fi - y). 

Using the expansions 

1
1 12 1 2 IAI - - A = - + IAI - 2- cos y 
Z Izl2 Izl 

and 

I ~ _ w-12 = _1_ + 1- ~cosfi, 
Z Izl2 Izl 

we obtain the reformulation 

Since 

cos fi - IAI cos y :s ~ (Izl + I~I) (1 - IAI2) . 

1 
Izl+- > 2, 

Izl 
Z E jlJ) \ {O}, 

it is enough to prove 

We can further assume fi < Jr /3; otherwise, the above inequality holds for all 
A E jlJ). Solving the quadratic inequality, we are led to check that 

o :s 1 - IAI :s (l - cos y) + [(l - cos y)2 + 4 sin fi ; y sin fi ; Y f/2 

The right-hand side is actually greater than (2/Jr)(fi - y). For ~Jr :s q; < Jr, we 
have 

1 Jr 2 
1 - IAI < '2 (Jr - q;)(fi - y) :s "5 (fi - y) < n (fi - y), 
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which completes the proof of the lemma. • 
In the remainder of this section, we assume that the aperture cp of the Stolz 

angles is chosen in the interval [3n/5, n), so that the conclusion of Lemma 4.28 
holds true. For instance, we can pick cp = 3n /5. Given an arc I of the circle '[', let 
K(l) be the quantity 

e 
K(l) = Ills log-. 

Ills 
DEFINITION 4.29 Suppose A = {an}n is a finite sequence in JI)), wo is a point 
in '[', and ex is a positive number. A positive Borel measure J.t on '[' is (A, ex, wo)­
admissible if 

(i) J.t({wo}) =0; 

(ii) for each open arc I C '[', with Wo fj. I, the following inequality holds: 

o ~ J.t(l) ~ ex K(l) + E(A, ~l), 

where ~l is the tent associated with I. 

The set of all (A, ex, wo)-admissible measures will be denoted by M(A, ex, wo), 
or just M. The second condition above, (ii), clearly implies that J.t({t}) = 0 for 
any t E '[', not just for t = woo 

LEMMA 4.30 Suppose 0 < ex < +00, Wo E '[', and A = {an}n is a finite 
sequence in TIl Then 

sup {J.t('['): J.t E M} = inf {exK(F) + E(A,JI)) \SF): Fe ,[,finite, Wo E F}, 

where M = M(A, ex, wo) is the set of all (A, ex, wo)-admissible measures. 
Furthermore, there is at least one maximal admissible measure J.tofor which 

J.to('[') = inf{exK(F)+ E(A,JI))\SF): Fe ,[,finite, Wo E F}. 

Proof. The set JI)) \ SF is a disjoint union of tents of the kind ~I, with wo fj. I, 
so by the definition of the (A, ex, wo)-admissible measures, the "sup" on the left 
hand side is less than or equal to the "inf" on the right hand side. 

Define a finite set Fo consisting of Wo and all those points on '[' which are 
"oblique projections" of points of A in the annulus sin(cp/2) < Izl < 1. Here, that 
a point t E '[' is an "oblique projection" of a set B C JI)) means that (as{) n B =I 0. 
Let {ldr be the complementary arcs of Fo. The point wo acts as a divider; it 
permits us to order the arcs h according to their position relative WOo 

For every J.t E M, let il denote the measure with constant density on each It and 
such that il(h) = J.t(h) for all k. We claim that J.t E M implies il E M. In fact, 
if the endpoints eitJ and eit2 . of some arc I are not in Fo, then the right-hand side 
of the inequality in Definition 4.29 is a locally continuous and concave function 
of t1 and t2, and so replacing J.t by il will not invalidate that inequality. For the 
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same reason, to ascertain that a measure JL = il is in M, it is enough to check 
the inequality in Definition 4.29 only for arcs I with Wo rf. I, whose endpoints 
are in Fo. Each such measure is described by a vector x = (XI, ... , XN), where 
N = cardFo and Xk = JL(h). We are thus led to a standard optimization problem 
from Linear Programming: maximize the functional 

L(x) = XI + ... +XN, 

where the positive vector X = (XI, ... , XN) satisfies N(N + 1)/2 restrictions of 
the type 

Xk + Xk+ I + ... + XI :s bk.l, 1:s k :s I :s N, 

which correspond to the inequality in Definition 4.29 with arcs I whose endpoints 
are in Fo. Written out, the quantities bk.l are 

bk.l = ct K(lk.l) + E(A, ~h./)' 

where h.l is the arc obtained by filling in finitely many points in the union h U 
h+ I U ... U II. We will refer to this as the optimization problem. Let C denote the 
closed convex polyhedron in lRN defined by the above-mentioned restrictions 

Xk +Xk+l + ... +XI :s bk.l, 1:s k:s l:s N, 

and denote by C+ its intersection with lR~; lR~ stands for the N -fold Cartesian 
product ofthe half-axis lR+ = [0, +00). 

The "inf' over all finite subsets F c 11' appearing in the formulation of the lemma 
can only get bigger if we restrict F to be subsets of the "obliquely projected" set 
Fo, so it is clearly enough to prove the equality under the additional restriction 
F C Fo. In fact, one can argue that only subsets of Fo have a chance of being 
extremal for the "inf'. Thus, in terms of the optimization problem stated earlier, 
the assertion of the lemma can now be reformulated as follows: 

max{L(x) : X E C+} = min I)kv.lv, 
v 

where the minimum is taken over all simple coverings Ukv,lv]}v of NN = 
{1, 2, ... , N}. We will refer to this as the min-max equation. Note that we here 
deviate from standard notation and let [k, I] stand for an interval consisting of 
integers and not of reals. 

It is at least clear that on C+, L(x) assumes its maximum somewhere. We claim 
that the maximum is in fact assumed at some point X = (XI, ... , XN) E C+ with 
Xj > 0 for all j = I, ... , N. To this end, take a point X E C+, with Xj = 0 for 
some j. There may be a few zero slots clustering together, so say that X j = 0 on 
the "interval" k < j < I, but that at the end points we have Xk > 0 and XI > O. 
For a small parameter e > 0, consider the point 

x' = (XI, ... , Xk-I, Xk - e(1 - k - 1), e, ... , e, XI, ..• , XN). 

We now use a property of the given quantities bk.l, namely that they are positive 
and strictly monotonically increasing in the interval [k, I]: bk.l < bk'.I' whenever 
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[k, [] is strictly contained in [k', I']. It follows that the competing point x' is in 
C+ for sufficiently small c, and moreover, L(x') = L(x). If x is the point where 
L(x) assumes its maximum, we treat all clusters of zeros the same way, and find 
a (perhaps different) point x' E C+ with L(x') maximal, and xi > ° for all 
j = 1, ... , N. 

We next claim that L(x) :s L(x') for all x E C. By what we have done so far, 
it is so for all x E C+. Suppose for the moment that at some point xO E C, the 
inequality L(xo) > L(x') holds. Then we consider points x close to x' along the 
line segment connecting x' with xo. Such x will be in C by convexity, and they 
are in JR~, and hence in C+. The value of L(x) must then be slightly bigger than 
L(x'), a contradiction. 

We can now apply the standard duality theorem a/Linear Programming due to 
Gale, Kuhn, and Tucker [48], [127, p. 28]. To formulate the result, we write the 
N(N + 1)/2 inequalities defining Cas 

(X ej) < b· , - i' j = 1,2, ... ,N(N + 1)/2, 

where b j equals bu for the pair (k, I) numbered by j, and similarly, e j stands for 
the vector (0, ... , 0, 1, ... , 1, 0, ... , 0) in JRN, with 1 's precisely on the interval 
[k, [] associated with the index j. Here, (., .) is the usual inner product of JRN: 

We also write L(x) = (x, L), where L = (1,1, ... ,1). The assertion of the 
duality theorem is 

max { (x, L) : x E C+} = max { (x, L) : x E C} 

= min I ~ 8 j b j : 8 j E JR+ for all j, ~ 8 j e j = L ). 

The min-max equation we encountered earlier claims that the above minimum is 
achieved with coefficients 8 j E {O, l}. The points 8 = (81, ... ,8N(N+I)/2) E 

JR~(N+I)/2 with 

I:8je j = L 
j 

constitute - by inspection of the vectors involved (the e j 's and L) - a closed convex 
lower-dimensional polyhedron S contained in the cube [0, 1]N(N+I)/2. We show 
that the polyhedron S is the (closed) convex hull of "edge points" 8 E S of the 
type that 8 j E {O, I} for every j. The min-max equation then follows easily. Points 
8 with positive rational coordinates are dense in S, and it suffices to obtain that 
they are in the convex hull of the "edge points". Multiplying by the least common 
denominator n of the positive rationals 81, ... ,8N(N+I)/2, we have 

(4.1) 
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where U j = ne j E Z+. Here, Z+ = {I, 2, 3, ... } stands for the set of all positive 
integers. We interpret the above situation in tenns of coverings. Let J stand for 
the set of all closed intervals J = [k, l] in the integers Z whose endpoints are 
integers satisfying 1 ~ k ~ l ~ N. A system 'P = {Jv}v = {[kv, lv]}v of such 
intervals (repetitions are allowed) is called an n10ld covering (or n-covering, to 
shorten the notation) of NN = {l, 2, ... , N} if every n E NN belongs to exactly 
n intervals from 'P (if n = 1, we speak of a simple covering). In (4.1), we have an 
n-fold covering ofNN supplied by the various support intervals of the coordinates 
of the vectors e j , with multiplicities as expressed by e j. We now claim: 

Every n-covering 'P of NN is the union of n simple coverings. In fact, every 
interval J = [k, l] E 'P with l < N has the property that l + 1 is covered n times 
by 'P \ {J} while l is covered only n - 1 times. This is possible only ifthere is an 
interval in 'P \ {J} whose left endpoint is l + 1. The rest is done by induction. 

This means that the integer-valued vector U = (UI, ... , UN(N+I)/2) can be 
written as a sum of n vectors of the type E = (EI, ... ,EN(N+I)/2), where Ej E 

{O, I} for all j and 

LEjej = L; 
j 

each E is then an "edge point" of S. That is, e is a convex combination of "edge 
points", as claimed. The proof is complete. _ 

The reason why we introduced the splitting point wo E T is that without it, we 
cannot assert that an n-covering is the union of n simple coverings, a technical 
point needed in the proof of the lemma. For example, there is a 2-covering of 
{I, 2, 3} - made cyclic by declaring that after 3 comes again 1- which cannot be 
decomposed as the union of two simple coverings. 

We can now prove the main result of this section. 

THEOREM 4.31 Suppose A = {an}n is a sequence in ID>. Suppose 

~(A, SF) ~ ctK(F) + 0(1) 

holds for all finite subsets F of T, where 0 (1) is bounded independently of F. 
Then A is an A -a zero sequence. 

Proof. Without loss of generality, we can assume that 0 f/. A. Let Ao be afinite 
subsequence of A. Now we choose an arbitrary Wo E T, construct as in Lemma 4.30 
a maximal (Ao, ct, wo)-admissible measure /LO, and fonn the function 

fo(z) = BAo(z) <I>(z), 

where BAo is the Blaschke product for Ao and <I> is the outer function 

<I>(z) = exp { r ~ + z d/LO(~)} . 
J.r~-z 

We are going to obtain an upper estimate for II foll-a and a lower estimate for 
Ifo(O)I, both independent of Ao C A. To this end, we fix a point ~ E T and 
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consider two subsequences of Ao: Ao = Ao nSg',-s} and Ao = Ao \ Ao. Let BA~ 
and BAli be the Blaschke products for Ao and Ao, respectively. For each an E Ao, 
let W'n ~ W's (an) be its oblique projection. Form an atomic measure a on '][' by 
placing at each W'n a point mass of magnitude an = !(1-lan 12), and let \}I = <l>Sa, 
where Sa is the singular inner function 

Sa(Z) = exp {- ( ~ + z da(~)}. 
JJf~-Z 

From its definition, we see that the measure a has 

0'(1) = E(Ao, ~I) = E(Ao, ~I) 

for each open arc I in the punctured circle '][' \ g', -no The (Ao, a, wo)­
admissibility of /LO means that 

/Lo(1) Sa K(1) + E(Ao, ~I) 

for any open arc I in '][' \ two}. We need this inequality for arcs that contain the 
point Wo, too. This is achieved by the following argument, if we pay a small price. 
If we partition an arc I C '][' into two arcs hand h, then 

e e e e 
Ills log - S Ihls log - + Ihls log - S Ills log - + (log2Wls' 

Ills Ih Is Ihls Ills 

This implies that 

/Lo(1) S a K(1) + a (log 2)IIls + E(Ao, ~I) 

holds for all arcs I, also those containing the point wOo 

The boundary measure for the zero-free function \}I is /LO - a, and putting the 
above observations together, we have 

(/LO - 0')(1) Sa K(1) + a(log2)IIls 

for every arc I in '][' \ {~, -no We apply this to arcs having ~ as one endpoint, 
Using integration by parts (see Exercise 1), we derive from this 

C 
1\}I(z)1 S (l _ IzI2)a' z = t~, 

for 0 S t < 1, where the constant C = C(a) only depends on a. At this point, we 
apply Lemma 4.28, to get 

z = t~, 

for 0 S t < 1. Since I B Ao (z) I SiB Ao (z) I, we obtain 

Ifo(z)1 IBAo(z)<I>(z)IS IBAO(Z)<I>(Z) I 
C 

< I \}I (z) I S (1 -lzI2)a' Z = t~, 

where 0 S t < 1. The point ~ E '][' is arbitrary, and hence II fo II-a S C. 
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We note that 

log IBAo(O)1 = -A(Ao, JI») and log 1<1>(0)1 = JLo(']:'), 

where the logarithmic sum function A is as in Section 4.2, so that for the function 
10 = BAo<l>, we have 

log 1/0(0)1 = -A(Ao, JI») + JLo(1'). 

By Lemma 4.30 and the maximality of JLO, 

JLo(1') = inf {aK(F) + I:(A, JI» \ SF) : F C l' finite, Wo E F}. 

We obtain 
1 

log -- = A(Ao, JI))) - JLo(1') 
1/0(0)1 

Since 

= - inf {aK(F) + I:(A, JI» \ SF) : Fe l' finite, Wo E F} 

+I:(Ao, JI))) + [A(Ao, JI») - I: (Ao, JI)))] 

= sup {I:(A,SF) -aK(F): Fe 1'finite, Wo E F} 

+[A(Ao, JD» - I:(Ao, JI»)]. 

1 1 2 2 
0< log - - -(1 - t ) = 0[(1 - t) ] 

- t 2 
ast-+l, 

and the assumption on the sequence A = {an}n easily implies (see the proof of 
Corollary 4.26) 

we have that 

A(Ao, JD» - I:(Ao, JI») = 0(1), 

with a bound that is independent of which particular finite subsequence Ao we 
have picked. From the assumption of the theorem, we thus have 

1 
log 1/0(0)1 = 0(1), 

with a bound independent of Ao C A. 
Now, take a nested sequence of finite subsets of A, AI C A2 C A3 C ... , 

with A = UnAn, and construct as above functions In for each An. The functions 
Un}n form a normal family. Hence there is a subsequence Unk}k converging to an 
analytic function I uniformly on compact subsets of JI»; the function I is in A-a 
and its zero sequence is A. • 

COROLLARY 4.32 Suppose A is a sequence in JI» with D+(A) < a. Then A is 
a zero set lor A-a. 
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4.6 Zero Sets for Ag 
In this section, we consider zero sets for the standard weighted Bergman spaces 
Ag. The main work was done in the previous sections; we only have to take care 
of some minor technical points here. 

We begin with a Blaschke-type product that can be used to divide out zeros of 
functions in weighted Bergman spaces. In the unweighted case, this product is not 
really necessary, since the contractive zero divisors will do the job even better. 

Recall that the Blaschke factor induced by a single point a in I!} is defined as 

lal a-z 
Ba(z) = -----, 

a l-az 
Z E I!}; 

for a = 0 we set Bo(z) = z. 

PROPOSITION 4.33 Suppose A = {an}n is a sequence of points in I!} with 

+00 
L(1-lan I2)2 < +00. 
n=! 

Then the product 

+00 
HA(Z) = n Ban(z) [2 - Ban (z)] 

n=! 

converges uniformly on every compact subset ofl!}; the zero set of HA is exactly A 
(counting multiplicities); and the function HA is independent of the order of the 
factors. 

Proof. Without loss of generality, we may assume an -:/= 0 for every n. Then it 
is easy to check that 

11 - Ban (z) (2 - Ban (z») I 11 - Ban (z)1 2 

1 
an +zlanl 12 (I-lani)2. 

an(1 - anz) 

The desired results now follow from standard facts about the convergence of infinite 
products of analytic functions. • 

The function HA is known as the Horowitz product. 

LEMMA 4.34 Suppose 0 < p < +00 and -1 < a < +00. Let f E A~ be 
afunction with f(O) -:/= 0, and let A = {an}n be its sequence of zeros, counting 
multiplicities. Then there exists a positive constant C = C(p, a) such that 

If(O)1 < C 
n~~ lan l(2 -Iani) - IIfll p .a. 
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Proof. It is clear that we may assume 1(0) = 1. Let n = n f and N = N f be 
the usual counting functions associated with I. Consider the expression 

+00 1 10 1 1 
S = L log = log dn(r). 

n=1 lanl(2-lan l) 0 r(2-r) 

By Proposition 4.6 and integration by parts (twice), 

rl N(r)dr 
S = 2 10 (2 _ r)2 . 

Since 1(0) = 1, Jensen's formula gives 

1 10 21T N(r) = - log II(reiO)1 de. 
2n 0 

It follows that 

where 

10 1 1 1 
CI = 2 log dr, 

o r(2 - r)2 (1 - r 2)a 

and 

d _ dA(z) 
JL(z) - Izl (2 - Izl)2 

is a probability measure on 1Dl. The desired result then follows from the arithmetic­
geometric mean inequality; see Proposition 4.3. • 

Since lal(2 -Ial) :s 1 for all a E 1Dl, we see that the lemma above remains true 
if we replace the zero sequence {an}n by any of its subsequences. 

THEOREM 4.35 Suppose 0 < p < +00 and -1 < ex < +00. Then there exists 
a positive constant C = C(p, ex) such thatlor every 1 E Ag that has A as its zero 
set, we have 1If! HA Ila.p :s Cllflla.p. 

Proof. Let 1 be a function in Ag with zero setA = {an}n. For every WE IDl\A, 
let Iw = 10 CPw, where 

W-z 
({Jw(z) = -1 -, 

-wz 
Z E 1Dl. 

Then Iw is in Ag and its zero set is {({Jw(an)}n, which does not contain O. Fix any 
f3 > ex, and apply Lemma 4.34 to the function Iw. Then 

II(w)1 < C 
f1~~ Icpw(an)l(2 - Icpw(an)l) - IIlw II p.,8, 
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where C is a positive constant depending only on p, a, and fJ. Since 

for all a, W E ~,we obtain 

I ~~~) r < CP(fJ + 1) L Ifw(z)IP(l - IzI2).B dA(z) 

CP(fJ + 1) r If(z)IP (l - IzI2).B(l - IwI2).B+2 dA(z) 
1'IJJ 11 - wzI 2.B+4 

for all w not in A. By continuity, the above also holds for other w's in ~. The 
desired nonn estimate now follows from Fubini's theorem and Theorem 1.7. • 

Again, the theorem above remains true if A is replaced by a subsequence of A. 
The next corollary is then obvious. 

COROLLARY 4.36 Suppose 0 < p < +00 and -1 < a < +00. Then any 
subset of an Ag -zero set is also an Ag -zero set. 

We now derive some very sharp conditions that are necessary or sufficient for a 
sequence to be an Ag-zero set. For -1 < a < +00 and 0 < p < +00, let 

AP+ = U Aq a a 
q:p<q 

and 

Ag- = n AZ· 
q:q<p 

THEOREM 4.37 Suppose 0 < p < +00, -1 < a < +00, and that A is a 
sequence in ~. Then A is a zero set for Ag- if and only if D+ (A) :s (1 + a) / p. 

Proof. If D+(A) :s (1 +a)/ p, then, by Theorem 4.15, A is a zero set for A~.B, 
where fJ = (1 + a) / p. Since A~.B c Ag-, we conclude that A is a zero set for 
Ag-. 

Conversely, if A is a zero set for Ag-, then A is a zero set for AZ for every 
q < p. Let G q be an extremal function for the invariant subspace of AZ generated 
by the sequence A. Then Gq E A-(l+a)/q, by Theorem 3.3. Let Aq be the zero 
set of Gq . Then A C Aq , and hence by Theorem 4.15, 

D+(A) :s D+(Aq) :s 1 + a. 
q 

Letting q -+ p-, we arrive at D+(A) :s (l + a)/p. • 
COROLLARY 4.38 Suppose 0 < p < +00, -1 < a < +00, and A is a 
sequence in~. Then A is a zero set for Ag+ if and only if D+ (A) < (1 + a) / p. 
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Note that the results above simply state that the condition D+(A) ~ (1 + Ci)/ p 
is necessary and the condition D+(A) < (1 + Ci)/ p is sufficient for A to be an 
A~-zero set. 

4.7 The Bergman-Nevanlinna Class 

In this section, we consider the Bergman-Nevanlinna class A~, -1 < Ci < +00, 
consisting of analytic functions f in j[)) with 

klog+ If(z)1 (1 - Idyl! dA(z) < +00, 

where 10g+ x = log x if x ::: 1 and log+ x = 0 if 0 < x < 1. Our main purpose is 
to characterize the zero sets of A~ by a Blaschke-type condition. The spaces A~ 
appear in the limit as p -* 0 of the weighted Bergman spaces A~, in the sense of 

t P - 1 
lim -- = logt, 0 < t < +00. 
P~o p 

We begin with the elementary factors from the classical Weierstrass factorization 
theory for entire functions. For any nonnegative integer N, let EN be the entire 
function defined by 

( 
Z2 ZN) 

EN(Z) = (1- z)exp z +"2 + ... + Ii ' Z E C. 

It is easy to see that its derivative is 

, N (Z2 ZN) EN(z)=-z exp z+"2+"'+1i . 

Since EN(O) = 1, we must have 

EN(Z) = 1 + ZN+! FN(Z), 

where F N is an entire function. This proves the following lemma. 

LEMMA 4.39 For every nonnegative integer N, there exists a positive constant 
C such that 

IEN(Z)I ~ 1 + C IzI N +!, 11 - EN(z)1 ~ C IzI N +!, 

for alllzi ~ 2. 

We can now prove the main result of this section. 

THEOREM 4.40 Fix -1 < Ci < +00. A sequence A = {an In in j[)) is the zero 
set of a function in A~ if and only if 

+00 L (1 - Ian l)a+2 < +00. 
n=! 
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Proof. First, assume f E A~ with zero set A = {an}n. To simplify the use Of 
Jensen's formula, we may as well assume f(O) = 1. In this case, Jensen's formula 
yields 

r I 12rr 1 12rr L log -X[lanl.1)(r) = - log If(rei!)1 dt :s - log+ If(rei!)1 dt. 
n Ian I 27r 0 27r 0 

Integrating the inequality over [0, 1) with respect to 2r(l - r 2)a and applying 
Fubini's theorem to the left-hand side, we obtain 

L 11 2r(l - r 2)a log _r_ dr:S { log+ If(z)1 (l - Id)a dA(z). 
n lanl lanl JIT]; 

By integration by parts, the integral on the left-hand side equals 

-- (l - r2y~+1 -, 1 11 dr 
a + 1 lanl r 

which is obviously greater than 

_1_11 (l _ r)a+1 dr = (l-lan l)a+2 . 
a + I lanl (a + 1)(a + 2) 

This shows that 

L(l -lanI2)a+2 :s (a + l)(a + 2) { log+ If(z)1 (1 - Id)a dA(z) < +00. 
n JIT]; 

Next, assume that A = {an}n is a sequence in lDJ satisfying 

+00 L (l - Ian l)a+2 < +00. 
n=1 

We shall construct a function in A~ whose zero set is exactly A, counting 
multiplicities. To do this, we may assume an =I 0 for every n. 

Fix a positive integer N such that N > a + 1. Consider the product expression 

+00 (1 la 12) fez) = n EN - n . 
n=1 1 - anz 

It is clear that each factor in the above product is analytic in lDJ. Since 

11 - 'a121 < 2, 
1- az -

for each a E lDJ, we have from Lemma 4.39 

Z E lDJ, 

11- EN (1- lan I2 )1 < C 11-lanI2IN+1, 
l-an z - l-an z 

for all n = 1, 2, 3, .... This, along with 

(1- lan I2 )N+1 :s (l - lane)a+2, 

Z E lDJ, 
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shows that the infinite product defining f converges, and that the function f is 
analytic in IT» with zero set A = {an In. 

To show that the function f belongs to A~, we apply Lemma 4.39 and the 
obvious inequality 

log(l + x) :s x, x> 0, 

to obtain 

Z E!Dl. 

This implies that 

Applying Theorem 1.7, we obtain another positive constant C' such that 

which completes the proof of the theorem. • 

4.8 Notes 

It is still an open problem to characterize geometrically the zero sets for Bergman 
spaces. And it is well known that this problem is very difficult; for example, 
Theorem 4.14 clearly shows the subtlety of the problem. Only a handful of papers 
exist on zero sets for Bergman spaces. 

Horowitz studied zero sets in his thesis and subsequent papers [76, 77]. His 
main tools were the classical Jensen's formula and lacunary series. In particular, 
Horowitz was able to show, using those elementary tools, that different Bergman 
spaces have different zero sets, that the union of two zero sets for a Bergman space 
can fail to be a zero set for the same space, but that any subset of a zero set for a 
Bergman space is still a zero set for the same space. Also, Theorem 4.35 is due to 
Horowitz. 

Deeper properties of Bergman space zero sets were obtained by Korenblum in 
[83], and in a sharper form, by Seip in [112] and [113]. In particular, the results 
of Sections 4.2-4.5 are essentially Korenblum's, although the proofs here have 
been improved over those in the original paper. Theorem 3.3 allows us to obtain 
Korenblum's main results in the context of Ag; this is done in Section 4.6. The 
oblique projection technique is due to Seip [113]. The use of Linear Programming 
techniques first appeared in the context of A-oo zero sets in [83]. 
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Luecking [93] has reformulated the condition on a sequence of points in lID to 
be a zero sequences for the growth space A -(l in terms of harmonic majorants; he 
also has a similar condition for the Bergman spaces A p. 

Probabilistic results on zero sets for the Bergman spaces were obtained by 
Shapiro [116], and later, in a different vein, by LeBlanc and Bomash [90, 24]. 

Theorem 4.40 is due to Heilper [74] in the case a = 0; the proof here is basically 
from [36]. 

4.9 Exercises and Further Results 

1. Carry out the integration by parts argument needed to show that 1\IJ(tOI :::: 
C (I - t 2 )-a for 0 < t < 1 in the proof of Theorem 4.31. See [83]. 

2. If I is an invariant subspace of A P and I contains a Blaschke product, then 
I is generated by a Blaschke product. 

3. Fix a space AP, 0 < p < +00. For the singular inner function Sa with a 
single point mass (J at Z = 1, construct a sequence of Blaschke products 
{Bn}n such that Bn -+ Sa uniformly on compact sets. If Gn is the extremal 
function of the invariant subspace generated by Bn in A P, and G a is the 
extremal function of the invariant subspace generated by Sa in A P, show 
that Gn -+ Ga in norm. 

4. Explicitly construct a zero sequence for A~ that is not a Blaschke sequence. 

5. Let IA be the invariant subspace of A2 generated by a zero set A. Show 
that the orthogonal complement of IA is the closed linear span of the kernel 
functions (1 - QZ)-2, with a EA. 

6. For a zero set A for the space AP, let IA be the corresponding zero-based 
invariant subspace, and G A the associated extremal function. Suppose we 
have two zero sets A and B, with A C B. Show that the closure of I BIG A = 
{f / G A : I E I B } equals I B\A· 

7. Suppose {An}n is a decreasing sequence of zero sets in AP with 

Show that the closure of U{lAn : n ~ I} is IA. 

8. Fix 0 < a < +00. Construct a zero sequence for A-a that is not a zero 
sequence for Aoa. Hint: consider the regular sequences of Section 5.4. 

9. Let A be a zero set for A2 and let HA be the product defined in 
Proposition 4.33. Show that 11I1 HA 112 :::: 11/11 for all lElA. 

10. For any 0 < p < +00 and -1 < a < +00, there exist two zero sets A and 
B for Ag such that A U B is no longer a zero set for A~. See [76]. 
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11. Decide whether for (p, a) I- (q, f3), the spaces A~ and A~ have different 
zero sets. This is probably still an open problem. 

12. If A = {aj, ... , an} is a finite sequence in ]jJ), then G A (0) :::: laj ... an I. 

13. Let A = {an}n be a zero set for A2 with an I- am for n I- m. If we apply 
the Gram-Schmidt process to the functions 

K(z, aj), K(z, a2),· .. , K(z, an), .. · , 

where K is the Bergman kernel, then the result is the following orthonormal 
system: 

K(z, al) KAJ (z, a2) 

y'K(al, aj)' JKAI (a2, a2)' 

Here; An = {al, ... , an} and KAn is the reproducing kernel of IAn' In 
particular, the above system forms an orthonormal basis for If. See [140]. 

14. Let A = {an}n be a uniqueness sequence for A2 (that is, A is not a zero 
set for A2) with an I- am for n I- m. For any n :::: 1 and 1 :s k :s n, let 
A~ = {aj, ... , an} \ {ad and let 

Z E]jJ). 

Then 
n 

! = lim L teak) C(Jn.k 
n-++oo k==l 

for every ! E A 2. The convergence is in norm, and each C(Jn.k is a linear 
combination of the Bergman kernel functions K(z, aj), 1 :s j :s n. See 
[140]. 



5 
Interpolation and Sampling 

In this chapter, we define and study sequences of interpolation and sampling for 
the Bergman spaces A -a and Ag. The main results include the characterization 
of interpolation sequences in terms of an upper density and the characterization of 
sampling sequences in terms of a lower density. 

We will make use of the several notions of density introduced in Chapter 4. We 
will also introduce a new Mobius invariant density and show how it is related to 
the ones in Chapter 4. 

As a final item, we show (in Section 5.4) how to compute the upper and lower 
densities of regular sequences. 

5.1 Interpolation Sequences for A-ex 

Recall that A -a, with 0 < ex < +00, is the Banach space of analytic functions f 
in ][)I such that 

lIiII-a = sup{(1 - Id)alf(z)1 : z E][)I} < +00. (5.1) 

We say that a sequence [' = {z j} j C ][)I of distinct points is an interpolation 
sequence (or set) for A -a if the restriction operator Rr defined by 
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maps A-a onto C-a(f). Here, C-a(f) denotes the Banach space of sequences 
a = {a j}j with the norm 

Write 

lIall-a.r = sup (1 - IZjl2tlajl. 
j 

Kr = ker Rr = {f E A-a: fir = O}, 

and observe that Rr induces the quotient map 

(5.2) 

which has norm ~ 1. Suppose f is an interpolating sequence for A-a; this then 
means that Rr is onto, so that by Basic Functional Analysis, Rr is an invertible 
operator. Let M(r) = Ma(r) be the norm of the inverse of the above quotient 
map. Then it follows easily from a normal family argument that for every sequence 
a E C-a (r) there is a solution f E A -a to the interpolation problem 

for all j, (5.3) 

with IIfII-a ~ Ma(r)lIall-a.r. We write Ma(f) = +00 if f fails to be an 
interpolation sequence for A-a. 

We shall also consider the separable subspace AQa of A-a, whose elements 
satisfy 

fez) = 0 [(1 - Id)-a] , 

as well as the corresponding sequence space CiJa (f). The definition of the concept 
ofAiJa-interpolation sequence as well as the meaning ofMo = Mo(f) = Mo.a(f) 
are then self-explanatory. 

If <I> is a Mobius map of JD>, then a straightforward computation shows that the 
transformation T 4> defined by 

(T4>f)(z) = <I>'(z)a f(<I>(z» (5.4) 

is a unitary operator on both A -a and Aoa. This implies that interpolation sets 
for A -a and AQa are Mobius invariant, and so are the interpolation constants: 

Ma(f) = Ma(<I>(f», Mo.a(f) = MO.a(<I>(r). 

LEMMA 5.1 Suppose f E A -a and 

Saf(z) = (1 -lzI2)a fez), Z E [ll. 

Then there exists a constant Ca (depending only on a) such that 

ISaf(a) - Saf(b)1 ~ Ca IIfII-a pea, b) (5.5) 

for all a and bin [ll with pea, b) ~ !, where p is the pseudohyperbolic distance. 
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Proof. By Cauchy's formula, 

f'( ) = _1 1 f(ndl; 
Z 2:rri 1S"-zl=(l-lzl)/2 (I; - Z)2' 

Z E [}), 

which yields the estimate 

If'(z)l::::: Yallfll-a(1-ld)-a-l, Z E [}). 

If pea, b) ::::: ~, then 1 -Id ~ 1 -lal 2 for all Z lying on the line segment joining 
a and b; also, 

la - bl ~ pea, b)(1 - laI2). 

Therefore, if d Sa (Z) is the total differential of Sa at z, then 

IdSaf(z)1 ::::: [2(l-ld)a- 1If(z)1 + (l-ld)alf'(z)l] Idzl 

::::: [(2 + Ya)(l - Id)-llIfll-a] Idzl· 

It follows that 

ISaf(a) - Saf(b)1 ::::: Y~lIfII-a(1 -laI 2)-lla - bl ~ Y~lIfII-a pea, b), 

as claimed. • 
Recall that a sequence r = {Zj}j of points in [}) is called separated (in the 

hyperbolic or pseudohyperbolic metric) if 

0< inf{p(zk. Zt) : k 1:- l}. 

COROLLARY 5.2 Every A-a-interpo!ation sequence r = {Zj}j is separated. 

Proof. Fix k, and define a sequence {a j}j by 

aj = (l - Izd)-a OJ.k. 

where 0 j.k is the Kronecker delta symbol. Choose f E A -a such that II f II-a ::::: 
Ma(r) and f(zj) = aj for all j. If j 1:- k, then according to Lemma 5.1, either 
p(Zj, Zk) > ~ or 

1 = IS(zj) - S(zdl ::::: CaMa(r)p(zj, Zk). 

Thus, it follows that 

• 
If r = {Zj}j is a separated sequence in [}), then by the estimate following 

Lemma 2.14 we can find a positive constant C (independent of f) such that 

LO- lzjI2Ylf(Zj)iP::::: C L If(z)iP(l-ld)S-2dA(z) (5.6) 
} 
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for all analytic I in lDl. Obviously, the above estimate is also possible if f' is the 
union of finitely many separated sequences. 

We already mentioned that A-a-interpolation sequences are Mobius invari­
ant. Next, we show that A-a-interpolation sequences are invariant under small 
perturbations with respect to the hyperbolic metric. 

PROPOSITION 5.3 Let f' = {Zj}j be an A-a-interpolation sequence. Then 
there is some constant 8 E (O,!], depending only on Ma (1) and a, such that 
each sequence f" = {zj}j satisfying p(Zj, zj) :::: 8 is also an A-a-interpo[ation 
sequence. 

Proof. We fix 8 > 0, whose value will be determined later, and assume that 
{zj } j is a sequence satisfying P (z j, zj) :::: 8 for all j. Given a sequence {w j } j with 
I W j I :::: 1 for all j, we wish to solve the interpolation problem 

(l-lzj I2)a I(zj) = Wj = W]O), j = 1,2,3, .... (5.7) 

We proceed by iteration. We first find a function II such that II II II-a :::: Ma (1) 
and (l - IZj12)a II (Zj) = W]O) for all j. Set 

j = 1,2,3, .... 

By Lemma 5.1, we have IwY)1 :::: CaMa(1)8. We can now find h E A-a such 

that IIhll-a :::: CaMa(1)28 and (l -lzjI2)a h(zj) = wY) for all j. Define 

j=I,2,3, .... 

By Lemma 5.1 again, we have Iwj2) I :::: C~Ma(1)282 for j = 1,2,3, .... 
Continuing this process, we get a sequence Un}n of functions in A -a with 

II In II-a :::: C~-I Ma(f')n8n- 1 

for all n = 1, 2, 3, ... , and a doubly indexed sequence {w ;n)} j.n with 

Iw]n)1 :::: C~Ma(f')n+18n 

for all j and n, such that 

(1 - Izll2)a In (z'.) = w~n-I) - w~n) 
] ] ] ] 

for all j and n. If 8 is chosen so small as to satisfy 8 CaMa(f') < 1, then the series 
I = L:~ In will converge in the norm of A -a, and the function I will solve 
the interpolation problem (5.7). Moreover, 

M (f") < II I II < Ma (1) 
a - -a - 1 - Ca8Ma(1) (5.8) 

The proof is complete. • 
We are going to combine the basic properties above with the properties of A-a _ 

zero sets studied in Chapter 4 to obtain necessary and sufficient conditions for 
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A -a -interpolation sets. As a matter offact, we will show thatthe density conditions 
that more or less described the zero sets for A -a, if made Mobius invariant, will 
completely describe the A-a-interpolation sets. 

Given a sequence f' = {Zj}j in ]j)) \ {OJ and a finite subset F of 11.', we recall 
from Chapter 4 the logarithmic summation function 

A(f', tF) = L {lOg _1_ : Zj E tF}' 
j IZjl 

where tF is the union of radii from 0 to points in F. 

LEMMA 5.4 Suppose f' = {Zj}j is the zero set of a function f E A-a with 
f (0) = 1. Then,for every e > 0, 

A(f', tF) ::::: (a + e)K(F) + 2 log IIfII-a + 0(1), 

where 0(1) expresses a bounded quantity that only depends on a and e. 

Proof. This is an immediate consequence of Theorem 4.23. • 
For a sequence f' = {Zj}j of distinct points in ]j)) (not containing the origin), 

recall from Chapter 4, Section 4.2, that the upper asymptotic K-density D+(f') is 
the infimum of all positive real numbers Q for which 

A(f', tF) ::::: QK(F) + 0(1), 

uniformly in all the finite subset F of 'lI'. We want to define a Mobius invariant 
uniform density. To this end, we introduce the Mobius maps 

<I> ( ) = Zn - Z 
n Z 1 ' - ZnZ 

Zn E f', 

and consider the shifted sequence <l>n (f') with the origin removed: 

n = 1,2,3, .... 

DEFINITION 5.5 The uniform separating upper asymptotic K-density Dt(f') is 
the infimum of all positive real numbers Q for which: 

supA(f'n, tF) ::::: QK(F) + 0(1) 
n 

holds uniformly in all the finite subset F of'lI'. 

Observe that the logarithmic singularity at the origin in the definition of A (f', t F) 
puts a severe penalty on points of f' too close to 0, and as we insert this into the 
Mobius invariant form with the shifted sequences f' n, we see that any sequence 
r with Dt (f') < +00 is separated. Conversely, any separated sequence f' has 
Dt(f') < +00. See Exercises 16 and 17 for details. Like the upper asymptotic 
K-density D+(f') of Chapter 4 (see Section 4.2), the uniform density Dt(f') can 
also be expressed as a lim sup: 

D +(f')- I' sUPnA(f'n,tF) 
u - lmsup ~ . 

;«F)-++oo K(F) 
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We can now give a characterization of A -a -interpolation sequences in terms of 
the uniform separating upper asymptotic K -density. 

THEOREM 5.6 Let r = {z j} j be a sequence in ID. Then theiollowing conditions 
are equivalent: 

(i) r is an A-a-interpolation sequence. 

(ii) There is some 8 > 0 such that r is an A-f3-interpolation sequenceior all 
f3 > a - 8. 

(iii) D;;(r) < a. 

Proof. Clearly, it is enough to prove the equivalence of (i) and (iii). 
We first prove that (i) implies (iii). For each n = 1,2,3, ... , the iden­

tity Ma (r) = Ma (<I>n (r)) - which expresses the Mobius invariance of the 
interpolation problem - implies that there is a function in E A -a such that 

II in II-a :5 Ma(r), in(O) = 1, and inlrn = O. 

Using Lemma 5.4, we see that for each e > 0 and finite subset F C T, 

supA(rn, t:F) :5 (a + e)K(F) + 0(1), 
n 

where the bound 0(1) only depends ona, e, and the interpolation constant Ma(r). 
We proceed to improve this estimate. 

For each n = 1,2,3, ... , write r n = {Zk.n}t~ and construct for positive 
parameter 8 a perturbed sequence r~ = {ztn} t~ by setting 

Z%.n = IZk.n III Zk.n 

for all k. Note that on the left hand side, 8 is only a superscript, whereas on the 
right, it is an exponent. The points of the sequence r~ are pushed inward into the 
disk compared with r. We see that 

Il IZk.n I - IZk.n 11+8 
P(Zk.n, Zk.n) = 1 _ I 12+1l 

Zk.n 

Let Ca be the constant of (5.8), which comes from Lemma 5.1. By Mobius 
invariance, 

so that if 8 is so small that 

8 
-<----
2 - 2CaMaCr)' 

then the estimate (5.8) implies the following: for each n, there exists a function 
in E A-a (not the previous in, of course) with 

II in II-a :5 2Macr), in(O) = 1, and in Ira = o. 
n 
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By the definition of the logarithmic sum and the perturbed sequence, 

A(r~, 1:F) = (1 + 8)A(rn, 1:F) 

holds for all n. We apply Lemma5.4 to these new functions fn, and obtain, for 
everye > 0, 

(1 + 8)A(rn, 1:F) .:::: (a + s)K"(F) + 0(1), 

where the bound 0(1) only depends ona, e, and the interpolation constant Ma(r). 
This implies that 

supA(rn,1:F) .:::: (1 + 8)-I(a + e)K"(F) + 0(1), 
n 

so that if we let 8 be as big as allowed, 

we get 

supA(rn,1:F)':::: CaMa(r) (a + e)K"(F) + 0(1), 
n 1 + CaMa(r) 

uniformly in the finite subsets F ofT. As e is an arbitrarily small positive number, 
it follows that 

D+ r < CaMa(r) 
u ( ) - 1 + CaMa(r) a < a. 

This proves that (i) implies (iii). 
To prove the reverse implication, the following observation is essential. If we 

replace the radial stars 1: F with Stolz stars SF, the crucial estimate of Lemma 5.4 
remains unaffected. This follows from the methods we developed in Chapter 4. 
Thus, we may assume that the definition of D: (r) is based on A (r, 5 F) instead 
ofA(r,1:F). 

We now prove that (iii) implies (i). Assume that Q = D:(n < a. By the 
proof of Theorem 4.31 and Mobius invariance, there exist analytic functions gk E 
A-(Q+a)/2, for k = 1,2,3, ... , such that 

and 

Z E lIJl, 

where C is a positive constant independent of k. The interpolation problem is then 
solved explicitly by the function 

fez) = ~ Wk (1 _ Izd)(CI+a)/2gk (z) (\ -=-1~:~2) e , (5.9) 
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where e is a real parameter with e > 1 + Ca - (2)/2. To see that f E A-a, we 
observe that 

IfCz)1 ~ C s~p {(l - Izd)alwkl} Cl - Id)-(a+e)/2 

(1 - Iz . eiJ-(a-e)/2 x" J 
~ 11- zjzl(! , 

J 

Z E ID>. 

Since {Zj}j is separated, an application of C5.6) yields a positive constant M such 
that 

(1 - Iz ·1 2 )(!-(a-e)/2 i Cl - IwI2)1I-(a-e)/2-2 "J < M dACw) 
~ 11-zjzlll - ~ 11-wzlli 

J 

for all z E ID>. Combining this with Theorem 1.7, we can find a positive constant 
C such that 

Z E ID>. 

This completes the proof of the theorem. • 
Note that the proof of Theorem 5.6 implies an additional property of A-a_ 

interpolation sequences r, namely that M.Bcr) is bounded for f3 in some interval 
[a - 8, a]. 

THEOREM 5.7 Every AQa -interpolation sequence is also a sequence of 
interpolation for A-a, and vice versa. 

Proof. First, let r = {Zj}j be an Aoa-interpolation sequence and leta = {aj}j 
be a sequence in C-a cr). Consider the truncated sequences 

a(N) = {al, ... ,aN, 0, O, ... }, N = 1,2,3, .... 

For each N, there exists an fN E Aoa such that fNlr = a(N) and 

IIfNII-a ~ MO.a (r)lIall-a. 

By a normal family argument, we can extract from UN}N a subsequence con­
verging to some f E A-a uniformly on compact sets. Clearly, fir = a and 
IIf11-a ~ MO.acr). This shows that r is an A-a-interpolation sequence with 
MaCr) ~ MO.a(r)· 

Next, let r = {z j } j be an A -(l - interpolation sequence and let a = {a j } j be a 
sequence in eoa (r). We can assume lIa II-a ~ 1 and pick a sequence of natural 
numbers 

such that the tails 
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satisfy lIa(k)lI_a.r :s 2-k+l for all k = 1,2,3, .... Consider now the finite 
sequences 

b(k) = {O, ... ,0, aNk' aNk+1 ... ,aNk+l-1, O, ... }, k = 1,2,3, .... 

Each b(k) belongs to all Cc/ (r), 13 > O. Also, we can choose 13k < a so close to 
a that IIb(k) II-Ilk < 2-k+ 1 and M-Ilk(r) :s C for all k, where C is some constant. 
For each k, there exists a function ik E A-Ilk C Aoa with fklr = b(k) and 

IIfk II-a :s lIikll-llk :s THIC. 

It follows that the function f = Lk ik is in A-a with IIfII-a :s 2C. Clearly, the 
function f solves the interpolation problem fir = a. -

The rest of the section will be devoted to proving that the uniform upper asymp­
totic K-density D;; (r) is equivalent to a simpler and more elegant notion of density. 
This will result in a more transparent characterization of A-a-interpolation sets 
than that provided by Theorem 5.6. 

It is sometimes necessary to distinguish between the notion of a countable set 
r C II)) and that of an associated sequence (or arrangement), although we may use 
the same notation for both. Two sequences associated with the same set will be 
called rearrangements of each other. A sequence r = {Zj}j is naturally ordered if 
IZII :s IZ21 :s ... :s IZn I :s .... 

For a (countable) subset r of II)) that is separated in the pseudohyperbolic metric, 
we define 

per) = inf{p(a,b): a,b E r, a::j:. b}. 

Suppose {r(n)}n is a sequence of subsets in II)) such that p(r(n» 2: 8 > 0 for 
all n. We say that {r(n)} converges weakly to a separated set r, and then write 
r(n) -+ r as n -+ +00, if there are naturally ordered arrangements r(n) = {zjn)}j 

and some I :s N :s +00 such that 

and 

I· (n) "" 1m Z). = Zj E JJJI, 
n~+oo 

I :s j < N, 

j ?:. N. 

The limit set r is then defined as {Zj}~':-/ for N > I and as the empty set for 
N=l. 

LEMMA 5.8 Every sequence {r(n)}n of sets satisfying p(r(n» 2: 8 > Ofor all 
n contains a subsequence that converges weakly to a separated set r (which may 
be empty). 

Proof. Arrange each r(n) into a naturally ordered sequence r(n) = {zjn)}j. Pick 

a subsequence {r(nk)}k such that z~nk) converges to some ZI E II)) or Iz~nk)1 -+ 1 
as k -+ +00. In the latter case we stop, since the weak limit of {r(nk)}k is empty. 
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In the former case, we pick a subsequence {r(md}k of {r(nk)}k such that either 

z~md converges to some Z2 in lIJ) or Iz~md I --+ 1 as k --+ +00. If this process does 
not stop after a finite number of steps, then the resulting diagonal sequence of sets 
converges weakly to r = {ZI, Z2, Z3, ... }. • 

LEMMA 5.9 If{r(n)} converges weakly to r, then 

Ma (f) = lim inf Ma (r(n). 
n-->+oo 

Proof. We may assume that{ Ma (r (n))}n converges; otherwise, we could replace 
{r(n)}n by a suitable subsequence. There are arrangements r(ll) = {zjn)}j and 

r = {Zj}j such that zjn) --+ Zj as n --+ +00 for each j. Let {b j}j be a sequence in 

the unit ball of Zoo. Then for each n there is a solution fn E A -a to the interpolation 
problem 

j = 1,2,3, ... , 

such that Ilfnll-a :::: Ma(r(n). By a normal family argument, there is a subse­
quence {fnk}k that converges to some f E A-a uniformly on compact subsets of 
lIJ). Clearly, IIf11-a :::: limn Ma(r(n), and 

j = 1,2,3, .... 

This shows that r is an A-a-interpolation set. • 
LEMMA 5.10 Given 80, Zo, and (Y, there exists a positive constant c such that if 
r is an A-a-interpoZation set with Ma(f) :::: Zo, and if zo is a point in lIJ) with 
p(zo, f) ::: 80, then there is an eZement f E A-a for which fir = 0, IIf11-a :::: 1, 
and (1 - IZoI 2)alf(zo)1 ::: c. 

Proof. By Mobius invariance, we may assume that Zo = O. If the assertion is 
false, then there exists a sequence of sets r(n) = {zjn)}j (n = 1,2, ... ) such that 

p(O, r(n) ::: 80, Ma(r(n) :::: Zo, and 

sup {If(O)1 : f E A-a, IIf11-a :::: 1, flr(n) = o} --+ 0 (5.10) 

as n --+ +00. By Lemma 5.8, there is a subsequence {r(nk)}k that converges 
weakly to a set r' = {zj}j. For notational simplicity, assume that {r(nk )} is 

the original sequence {r(n)Jn. Since r(n) is an A-a-interpolation sequence with 
Ma(r(n) :::: 10 for each n, an obvious normal family argument shows that r' is 
also an A-a-interpolation sequence with Ma(r') :::: 10. By Theorem 5.7, r' is 
also an ADa -interpolation set and therefore an ADa -zero set. Choose an arbitrary 
rp Eo ADa such that IIrpll-a = 1, rplr' = 0, and rp(O) = Y > O. We can solve the 
interpolation problem 

f (zkn) = rp(zkn), k = 1,2,3, ... , 
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for each n by a function 1fin with 

II1finll-a :s 10 sup {(1-lzknlI2)alqJ(zinl)I}. 
k 

Since qJ(zinl ) -+ qJ(Zk) = ° as n -+ +00 for each k, and because qJ E Aoa , the 
above supremum tends to ° and l11fin II-a -+ ° as n -+ +00. Now, the function 

fn = qJ -1fin 
IIqJ -1finll-a 

vanishes on r (n l, II fn II-a = 1, and fn (0) -+ y, which is a contradiction to (5.10) . 

• 
We will need a modification ofthe notion of uniform separated upper asymptotic 

K-density D;; (r). More specifically, we want to extend the family {<Pnln of Mobius 
shifts involved in the definition of D;; (r) to the entire Mobius group Aut (D) of 
D. We modify the Stolz stars SF slightly: 

sF = SF \ D(O, 1), 
where D(O, 1) = {Z E <C : Izl < 1} is the Euclidean disk of radius 1 about the 
origin. 

DEFINITION 5.11 The uniform upper asymptotic K+density Dtu(r) of r is 
the infimum of all positive real numbers Q for which: 

supA(<P(r), SF) :s Q K(F) + 0(1) 
cJ> 

holds uniformly in all the finite subset F ofT. Here, the supremum ranges over all 
<P E Aut (JI])). 

We check the relation to the density D;;(r). 

LEMMA 5.12 Ifr is separated in the pseudohyperbolic metric, then Dtu(r) = 
D;;(r). 

Proof. First note that whereas D;; (r) < +00 implies that r is separated, it is 
not the case for Dtu (r). 

A comparison of the definitions in terms of radial and modified Stolz stars 
immediately reveals that D;;(r) :s D;;u(r), since r is assumed separated. 

Assume now that V; (r) < Dtu (r), and pick a real parameter CY. between 
D;;(r) and Dtu(r): 

D;;(r) < CY. < D;;u(r). 

By Theorem 5.6, r is an A-a-interpolation set. Then, by Lemma 5.10, there is a 
positive constant c such that 

sup {If(O)1 : IIfII-a = 1, flcJ>(ry = O} ::=: c 

for all <P E Aut (D), where 

<p(r)* = <P(r) \ D(O, 1)' 
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Thus, for every <1> E Aut Cj[])) there is a function f = f¢ E A-a with 
c 

IfCO)1 > 2' IlfII-a = 1, and fl¢(ft = O. 

Applying Lemma 5.4 to the function fI fCO), with Acr, tF) replaced by Acr, sF)' 
we find that 

AC<1>Cr), sF) ::::: Ca + c)KCF) + 0(1), C5.11) 

where the bound 0(1) only depends on a, c, and c. The small positive number cis 
arbitrary, and hence it follows from the definition of the uniform upper asymptotic 
K-:;:-density that D;;ucr) ::::: a, which contradict how we defined a. The proof is 
complete. _ 

We are now ready to introduce a more transparent notion of density and show that 
it is equivalent to the uniform separated upper asymptotic K-density for separated 
sequences. 

Suppose r = {z j} j is separated and r E C 1, I). Let 

Lj {lOg IZ~I : 1 < IZjl < r} 
Dcr,r) = I . 

log l-r 
C5.12) 

For every Z E j[]), we form a new sequence 

r7 = { Zj - z} . 
~ 1 - ZjZ j 

The upper Seip density of r is then defined as 

D;Cr) = limsupsupDCrz,r). C5.13) 
r-+l- ZEj[]) 

Note that because of rotational symmetry, D.tCr) can also be defined as 

D;Cr) = lim sup sup DC<1>cr),r). (5.14) 
r-+l- ¢E Aut (][]) 

THEOREM 5.13 Ifr = {Zj}j is separated, then D;;Cr) = D.tcr). 

Proof. For every r E C 1, 1), we can construct a standard Stolz star 

SF = U {s~ : ~ E F} 

containing the disk Izi ::::: r, so that F = Fr consists of a minimum number 
Nr of points placed equidistantly on T. A simple computation shows that Nr is 
approximately C / C 1 - r) as r -+ 1-, for some positive constant C. Therefore, 

~ 1 
KCFr ) = log Nr + 1 = log -- + 0(1). 

1 - r 

By Lemma 5.12, we have D;;u(r) = D;;(r). We recall the estimate from the 
definition of D;;u (r), 

supA(<1>Cr), sF) ::::: QKCF) + 0(1), 
¢ 
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forallfixede with Dt,(r) < e < +oo.IfweapplythistoequidistantsetsF = Fr , 

using the separation of the sequence r, the assertion D; (r) ::::: Dt, (r) = Dt (r) 
is immediate. 

To prove the reverse inequality Dt(r) ::::: D;(r), we need the notion of the 
K-area of a (Borel) measurable set S C ][JJ: 

KA(S) = r dA(z) . 
is 1 - Izl2 

(5.15) 

In the rest of the proof, we will use the notation SF to denote only standard regions 
made up of the standard Stolz angles Ss with aperture n /2. If other Stolz angles 
are used with an aperture q; E ('f, n), we will indicate this by writing 

s~ = s~.tp = U {5~.tp : ~ E F} . 
Now, an elementary computation shows that 

(5.16) 

where the constant C depends on the aperture q; but not on the finite set F C 1'; 
see Exercise 25. 

Let r be an arbitrary set in ][JJ, with separation constant p(r) = 0 > 0, and 
Seip density D; (r) = y < +00. For any s > 0, let rl = rl (B) be so large that 
D(<I>(r), r) ::::: y + B for all <I> E Aut (llJJ) and all r with rl < r < 1. Choose the 
aperture q; so large that for each finite subset F C l' and each ~ E a s~, I ~ I < 1, 
we have p (~, SF) 2: rl; it is easy to check that this is possible (q; will of course 
have to depend on rl = TI (B». 

For any finite subset F C 1', we consider the set <I>(r)nSF, where <I> E Aut (][JJ) 
is a Mobius automorphism. For each k = 0, 1, 2, ... , consider the radii 

( l-rl)k 

( k 1 + rl ) 1 - l+q . 
rk = tanh - log -- = k' 

2 1 - rl 1 + (l-q ) 
l+rl 

note that this is consistent for index k = 1. For k = 0, we have ro = 0, and with 
increasing k, rk increases up to 1. The consecutive pseudohyperbolic distance is 
constant: p(rb rk+l) = rl. For each k = 0, 1,2, ... , we introduce an annulus 

ak = {z E C : rk ::::: Izl < rk+2}' 

and consider the associated Blaschke product 

n Izl z-w 
Bk(W) = -~' 

ZE<I>(r)nSFnClk z - zw 

so that 

W E][JJ, 

log 1 =:L{lOg 1 : ZE<I>(r)nSFnak}. 
IBk(W)1 z p(z, w) 
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We shall apply Jensen's formula to the function Bk in the disk 

][])(O, Tk+l) = {z E C: Izl < Tk+d· 

First, recall that ds(w) = Idwl/(2n) is the normalized length measure, and for 
o < T < I, introduce the notation ']['(0, T) for the circle {w E C : I w I = T}. 
Jensen's formula then results in 

L log ~ = L log Tk+l 
zE<!>(f)nSFna;; Izl zE<!>(f)nSFnUkna;;_1 Izl 

+_1_ ( log _1_ ds(~), 
Tk+l l1f(oJk+Il IBk(OI 

and considering that Uk = (Uk n uk-d U (Uk n Uk+l), we see that 

1 1 ~ 1 L log - < -- log --- ds(~). 
zE<!>(f)nSFna;;nUk+l Izl - Tk+l 1f(O.rk+Il IBk(~)1 

We shall study the sets ']['(0, Tk+l) n s'F ' and their "complementary .<p 
']['(0, Tk+l) \ s~.<p. For ~ E ']['(0, Tk+l) \ s~.<p' we have 

10CT _1_ L {lOg _1_ : Z E <P(r) nSF n Uk} 
b IBk(~)1 z p(~, z) 

2 1 - 1zt2 
C (l - Tk+l) L 2 ' 

zE<!>(f)nSFna;; I~ - zl 
< 

(5.17) 

sets" 

for some absolute constant C. Integrating the above inequality term by term and 
using the fact that 

where (J is a small but positive constant, we find 

_1_ ( log _1_ ds(~) s C (l - Tl) L (l - Id). 
Tk+l l1f(o.rk+Il\s~.<p IBk(~)1 zE<!>(f)nSFna;; 

Applying the estimate following Lemma 2.14 in the same fashion as we did for 
(5.6), using the separation of r, we see that 

L (1-ld) s C(8) ( IdA (Z)2 = C(8)KA(ak ns~); 
ZE<!>(f)nSFna;; la;;ns~ - Izl 

8 is the separation constant, and C(8) a positive constant which depends on 8. 
Putting things together, we obtain 

_1_ ( log_l-ds(~)sC(8)(l-Tl)KA(ukns~), 
Tk+l l1f(o.rk+l)\s~<p IBk(~)1 

(5. I 8) 

where the value of the constant has changed. 
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Now, consider the part of the integral on the right hand side of (5.17) over 
1I'(0, rk+l) n S~.CP' We need separate estimates for the quantities 

QI = L {I - p(z, ~) : Z E <p(r) nSF n ak, p(z,~) < rl} 
7 

and 

Q2 = L {1- p(z,~): Z E <p(r) nSF nak, r] :::: p(z,~) < l}, 
Z 

for ~ E 1I'(0, rk+l) n s~.CP' The first sum Q] differs from 

L {lOg _1_ : Z E <p(r) n SF, ~ ::s p(z,~) < rl} 
z p(z, ~) 2 

by a bounded quantity. Therefore, by the choice of the radius rl = T] (s), we have 

1 
QI :::: (y + s) log -- + 0(1). 

1 - r] 

To estimate Q2, first observe that 1 - t :::: 1 - t 2 for 0 :::: t < 1, so that 

{ 
(1 - IzI2)(1 - 1~12) } 

Q2 :::: L 2: Z E <p(r) nSF n ak, rl :::: p(z,~) < 1 
z 11 - z~1 

and if we again use the estimate following Lemma 2.14, we find 

Q2 :::: c(o) [ (1 - p2(w, ~)) (1 ~AI(~;)2' 
}S(~.rt) w 

for some positive constant C(O), where 

S(~,r]) = {w E][}) : r] < pew, ~), Iwl < I~I ~rl }. 
1 + I Ir] 

The above integral is bounded; to obtain the bound we apply a Mobius change of 
variables that takes ~ to 0: 

[ (1 - p2(w, ~)) (1 ~AI(~;)2 :::: [ Id~iw;2 = KA(S(rl)); 
}S(~.rt) w }S(rt) w 

here 

S(rl) = {w E][}): Iwl > rl, Iw _ 1 ~ rll < 1: rl }. 

A straightforward computation then shows that the K-area of SeT]) is bounded by 
a constant Co that is independent of rl . 

We now combine the above estimates, and obtain 

_1_ [ log _1_ ds(O 
rk+1 I'§:(O.rk+dn5~ IBk(~)1 

:::: 11I'(O,rk+l)ns~ls ((Y+S)IOg-1-+co+C](O)), (5.19) 
rk+] 1- r] 



5.1. Interpolation Sequences for A -a 151 

where I . Is is the normalized length (measure) of the set in question and CI (0) 

corresponds to the contribution from the points z E <I>(r)nSF for which p(z, 5") ::::; 
!; it depends on the separation constant O. 

For k = 1,2,3, ... and any 0 < rl < 1, we have 

1 1 - rk 
log -- ::::; log + 0(1) 

1 - TJ 1 - rk+1 

and 

1']['(0, rk+ I) n s~ Is 1 - rk / 
------=--log ::::; KA(sF n Uk n Uk-I). 

rk+1 1 - rk+1 

With these estimates in our pocket, we see from (5.19) that 

1 h 1 - 100--- ds(5") 
rk+1 1I'(O.rk+l)ns~ l:> IBk(5")1 

( C2(0) ) / ::::; y+£+ I KA(sFnUknUk-I). 
log-

1-'1 

Adding (5.18) and (5.20), we then deduce from (5.17) that 

+(y+£+ C2(0! )KA(S~nUknUk_J}. 
log I-q 

Summing over all indices k = 1,2,3, ... , we get 

where ][}leO, rt} = {z E rc : Izl < rIl and C3(0, rp) is a constant. 

(5.20) 

Since p(<I>(r» = per) = 0 > 0 for each <I> E Aut (][}l), the number of points 
from <I>(r) in the annular region ][}leO, r]) \ ]])leO, !) is bounded by a constant that 
depends only on rl and 0 but not on the Mobius automorphism <1>; we can therefore 
include in the sum above all the points z E <I>(r) nSF \ ]])leO, !) and obtain for 
all finite F C T the following estimate of the modified logarithmic summation 
function: 

sup A(<I>(r), SF) ::::; (y + £ + C(£, 0) )K(F) + C(£, 0): 
<l>E Aut (j[J) 
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here, we recall the notation sF = SF \ ]D)(O, 1). We replaced the K-area of s~ by 
K(F), because we know the two are comparable. The constants have the following 
properties: C(e, 0) -+ 0 as e -+ 0, and C(e, 0) is independent of F but may grow 
to +00 if we let e -+ O. Comparing this with the definition of the uniform upper 
asymptotic K-*-density D';;u(r), we conclude that D;;/(r) :s y = D;(r). In 
view of Lemma 5.12, which states that for separated r, D;;(r) = D,t(r), this 
completes the proof of the identity D;;(r) = D;(r). • 

COROLLARY 5.14 A sequence r in ]D) is an A -a -interpolation sequence if and 
only ifr is separated and D;(r) < (¥. 

5.2 Sampling Sets for A-(¥ 

A relatively closed subset r of]D) is called an A-a-sampling set (or a sampling set 
for A-a) if there exists a positive constant L such that 

IlfII-a :s L sup{(l -ld)alf(z)1 : z E r} (5.21) 

for all f E A-a. The smallest such constant L will be denoted L(r) = La(r); 
we will write L (r) = +00 if r is not not a set of sampling for A -a. It is easy to 
check that L(r) = L (<I>(r» for every Mobius map <I> of the disk. 

For two relatively closed subsets rand r' of]D), we define 

per, r') = sup {pew, r')} = sup ifnf ,pew, w'). 
WEr WEr W Er 

The quantity 

[r, r'] = max {per, r'), per', r)} 

is called the Hausdorff pseudohyperbolic distance between rand r'. 

LEMMA 5.15 If rand r' are two relatively closed subsets of]D) with 

then 

, . {I 1 } 
per, r) < mm 2' Ca La(r) , 

La(r) 
La(r'):s --------

1 - CaLa(np(r, r')' 

where Ca is the constant in Lemma 5.1. 

Proof. For any f E A-a and any w, w' E ]D) with pew, w') < 1, Lemma 5.1 
says that 

IO-lw I2)alf(w)l- O-lw'12)alf(w')11 :s Callfll-aP(w, w'), 

which implies that 

(l-lw'12)alf(w')1 :::: (1 -lwI 2)alf(w)l- Callfll-aP(w, w'). 
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For every w E r, the definition of per, r') implies that there is some w' E r' 
with pew, w') < per, r') + c, where c > 0 is arbitrary. 

Now, by assumption, there is some w E r such that 

La(r)(l - IwI 2 )alf(w)1 ::::. IIflla - c. 

Thus, there exists some w' E r' with 

Since c can be arbitrarily small, we have 

sup {(l - Iw'1 2)a If(w')1 : w' E r'} ::::. IIf II-a (La~r) - Cap(r, r'») , 
whence the assertion follows. • 
COROLLARY 5.16 Ifr is an A-a-sampling set, then r contains a separated 
sequence that is also sampling for A-a. 

Since any superset of an A -a -sampling set is also A -a -sampling, the corollary 
above tells us that to characterize sampling sets for A -a, it suffices to consider 
separated sequences. 

COROLLARY 5.17 Ifr = {Zj}j is a separated A-a-sampling sequence, then 
there exists a constant 0 > 0 such that every sequence r' = {zj} j with p (z j , zj) < 

8[or all j is also an A-a-sampling sequence. Moreover, La(r') :s C, where C 
depends only on 0 and La (r). 

The above corollary states that separated A-a-sampling sequences are stable 
under small perturbations in the pseudohyperbolic metric. Recall that sequences 
of interpolation for A -a also have this property. 

The A -a -sampling sets will be characterized in terms of a certain notion of 
lower density. More specifically, if r = {Zj}j is separated, then the lower Seip 
density of r is defined as 

D;(r) = lim inf inf D(rz, r), 
r--+ 1- zE][lJ 

(5.22) 

where r z and D(r, r) are the same as in the definition of the upper Seip density; 
see equations (5.12) and (5.13) in the preceding section. 

We can now characterize the sampling sets for A -a. 

THEOREM 5.18 A set r c ][J) is A-a-sampling if and only if it contains a 
separated sequence r' with a < D; (r'). In particular, if r itself is separated, 
then r is sampling if and only if a < D; (r). 

Proof. We first prove the necessity of the condition. By Corollary 5.16, we may 
assume that r is a separated sequence. Put f3 = D; (r) and assume L(r) < +00. 
Let {c j} j be a sequence of positive numbers approaching zero, and pick a sequence 
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{Wj}j of points in lJ)) and a sequence {Tj}j (with 1 - Bj < Tj < 1 for all j) such 
that 

j = 1,2,3, ... , (S.23) 

where r W j is the Mobius shifted sequence, as above. For each W j in the sequence, 
put r Wj = r j = {Zk.j}k and construct a new sequence of points rj = {Z~.j}k 
as follows. If Zk.j =1= 0, set z~.j = Zk.j IZk.j 1-80 ; otherwise, set zi. j = 80. Here, 

80 E (0,1) is so small that SUPj L(rj) < +00. By Corollary S.17, this can be 

accomplished,becauseaneasycomputationshowsthatp(z, Izl-8z) -+ Oas8 -+ 0 
uniformly in Z E lJ)). We now have 

for all j. On the other hand, the modified finite Blaschke products 

zi ·-z 
h (z) = fl ' : _, ) 

k:lzk)<Tj Izk.jl( Zk.jZ 

satisfy II h II-a 2': 1 and 

sup (1 - IzI 2)all/z )1 ::s exp ( L log -I / 1 - ex log _1_2 ) , 
f ' Zk· I-T. 

zE j k:lzk)<Tj.J J 

which by (S.23) and (S.24) implies that 

C 
(1 - 80)(f3 + Bj) + --1 2': ex, 

log-
Ej 

(S.24) 

where C depends only on L(r) and 80. Since B j -+ 0 as j -+ +00, we have 
proved that f3 > ex. 

To prove the sufficiency part of the condition, we assume now that a separated 
sequence r with D; (r) > ex is not sampling for A-a. Then there exists a sequence 
offunctions Un}n in A -a and a corresponding sequence of points {an}n in lJ)), such 
that II In II-a = nand 

but 

sup(l-lzI2 )alfn(z)1 :s C, 
ZEf 

where C is a constant (independent of n). We now apply the unitary operator Tn 
to In, where 
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The resulting functions 

(I - Ian 12)a ( Z + an ) 
gn Cz) = Cl + anz)2a fn I + anz 

have the properties that IIgn II-a = n, Ign CO) I ~ ~, and 

sup {(I - IdtlgnCz)1 : Z E r -an} :'S C, 

where r -an = <Pn cr). 
By Lemma 5.8 and a normal family argument, there exists a sequence of indices 

n] < n2 < ... such that r -ank -+ r' and fnk/nk -+ h uniformly on compact 
subsets of lDl, as k -+ +00, where r' is a separated sequence with D; cr') > a. 
Also, II h II-a :'S 1, I h CO) I ~ -!' and hi r' = O. Thus, r' is a zero sequence for .A -a, 
which, according to Corollary 4.27, implies that D+cr') :'S a. On the other hand, 
repeating the argument used in the first part of the proof of Theorem 5.13, we 
obtain D+ cr') ~ D; cr') > a and arrive at a contradiction. This completes the 
proof of the theorem. _ 

Note that it is also easy to prove that r' is not a zero set for .A -a, when D; cr') > 
a, by using the classical Jensen's formula. 

5.3 Interpolation and Sampling in Ag 
In this section, we show how the techniques of the previous two sections can be 
adapted to yield characterizations of interpolating and sampling sequences for the 
spaces A~. We begin with A~-interpolation sequences. 

A sequence r = {Z)}) of distinct points in lDl is called an Ag -interpolation 
sequence (or a sequence of interpolation for A~) if for every sequence {w)}) of 
complex numbers satisfying the condition 

L(l-lz)12)2+al w)I P < +00, 
) 

there exists a function f E A~ such that f Cz) = w) for all j. The compatibil­
ity condition above follows easily from estimate C5.6); that any A~-interpolation 
sequence is separated will be proved shortly. 

It will be convenient for us later if we introduce the weighted restriction operator 
Rr = Rr.p.a, which is defined by assigning to every analytic function f in lDl the 
numerical sequence 

Rr f = {C 1 -lz)12)(2+a)/p fCz)}). 

In terms of this restriction operator, we see that r is an Ag -interpolation sequence 
if and only if [P C RrCA~). 

Recall from Exercise 19 of Chapter 2 that the restriction operator Rr maps 
A~ boundedly into lP if and only if the sequence r is the union of finitely many 
separated sequences. Thus, if we can show that every Ag-interpolation sequence is 
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separated, then for every A~ -interpolation sequence r we actually have Rr (A~) = 
[P. 

It is important to realize that the space A~ possesses a natural group of unitary 
operators. More specifically, if cf> is a Mobius map of the disk and U CI> is the 
operator defined by 

UCI>f(z) = f 0 <l>(z) (<l>'(z)) (2+a)/p , 

then U CI> is an isometric isomorphism of A~. 

LEMMA 5.19 Ifr is an A~-interpo[ation sequence, then r is separated, and so 
Rr maps A~ boundedly onto iP. 

Proof. Assume that r = {Zj}j is not separated. Then there is a sequence 
{(wn, W~)}n of pairs of distinct points from r such that p(wn, w~) ::s 2-n for all 
n. From the interpolation assumption on r, we see that there must exist a function 
f E A~ such that 

(l-lwnI2)(2+a)/p f(wn) = T.Jri for all n, 

and f(z) = 0 for all z E r \ {wnln. 
Consider now the functions gn = Unf, where Un is the unitary operator on A~ 

introduced earlier that corresponds to the Mobius map 

Wn -z 
({In(Z) = 1 ' 

- WnZ 
Z E 1Dl. 

, Wn - w~ 
l;n = ({In(w ) = -----'~ 

n l-wnw~ 

In particular, the sequences {gn}n and {g~}n are both uniformly bounded on 
compact subsets of 1Dl. 

For each n, we have 

Il;nl = p(wn, w~) ::s Tn. 

Now, write gn(l;n) - gn(O) = -2-.Jri as an integral of the derivative g~ along 
the line segment joining 0 and l;n, and apply the triangle inequality. The result is 
that for each n, there exists some en E [0, 1] such that Ig~(enl;n)1 2: 2n-.Jri. This 
contradicts the earlier conclusion that {g~}n is uniformly bounded on compact 
subsets in 1Dl. • 

If r = {Zj}j is an A~-interpolation sequence, then r is clearly an A~-zero set, 
and the invariant subspace Ir = {f E A~ : fir = O} is the kernel of the weighted 
restriction operator Rr : A~ --+ lP. Since Rr is bounded and onto, the quotient 
map Rr : A~ / Ir --+ I P has a bounded inverse with the norm 

M(r) = sup I inf {lIfllp.a : f(Zj) = Wj} : ~(l -IZjI2)2+alwjIP ::s I}. 
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A normal family argument shows that the infimum above is always achieved. The 
quantity M(r) is Mobius invariant, that is, M(r) = M(<I>(r» for every Mobius 
map <1>. We will call M(r) the Ag-interpolation constant of r. By convention, we 
are going to write M(r) = +00 if r is not an Ag-interpolation sequence. 

We need an estimate for the IP-distance between Rr f and Rr , f, where f E Ag, 
and r and r' are two sequences close in the hyperbolic metric. This will enable 
us to prove that Ag-interpolation sequences are stable under small perturbations 
with respect to the hyperbolic metric. 

LEMMA 5.20 Let r = (Zj li be a separated sequence with separation constant 

PO = p(r) = inf{p(a, b) : a, bE r, a =1= b} > O. 

Then there exists a positive constant C = C(p, ct, po) with the property that if 
r' = (zj}j is another sequence inlD with p(Zj, zj) :s o:S po/8forall j, thenfor 
each f E Ag we have 

Proof. For each j, let D j, Dj, and D'f be the closed pseudohyperbolic disks 
"centered" at Zj with "radius" po/2, po/4, and PO/8, respectively. Also let 

mj = mj(f) = max{lf(z)1 : Z E Dj} 

and 

mj = mj(f) = max{lf(z)1 : Z E D'f}. 

Using the fact that p(a, b) is comparable to la - bl/{l - lal2) for p(a, b) :s ~;. 
we get 

1(1 _ lzjI2)(2+a)/p f(zj) - (1 _lzj I2)(2+a)/p f(zj)1 

:s (1 -lzjI2)(2+a)/Plf(zj) - f(zj)1 

x 1(1 _lzjI2)(2+a)/p - (1 -lzjI2)(2+a)/pllf(zj)1 

:s C [(1-l zjI2)1+(2+a)/Pm j + (1 -lzjI2)(2+a)/Pmj ] p(Zj, zj). 

By Cauchy's formula, mj :s Clmj/(1 -lzjI2). Thus, 

1(1 _ lzjI2)(2+a)/p f(zj) - (1 -lzj I2)(2+a)/p f(zj)1 

:s C2(1 -lzjI2)(2+a)/Pmjo. 

Here, the constants C, Cl, and C2 depend only on p, ct, and Po. It follows that 

IIRr f - Rr'fII~ :s CfoP L(1-IZjI2)2+amr 
j 
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By Lemma 2.14 and the remark thereafter, there exists another positive constant 
C3, depending only on p, a, and PO, such that 

m~::5 2(1 _ ~3.12)2+a r If(z)I P dAa(z) 
Po Z] JDj 

for all j. The desired inequality now follows immediately. • 
LEMMAS.21 Let r = {zjb be an A~-interpolation sequence with Po = 
P (r) > O. Then there exists a positive constant 0 such that any other sequence 
r' = {zj}j satisfying p(Zj, zj) ::5 0 for all j is also a sequence of interpolation 
for A~. 

Proof. The proof is similar to that of Proposition 5.3. However, since for 0 < 
p < 1 the "norms" II . IIp.a and II . IIIP do not satisfy the triangle inequality, we 
have to use the metric d(f, g) = IIf - gll~.a in A~ and d(a, b) = lIa - bllfp in [P, 

rather than the norms, in proving the convergence of the iteration process. Because 
of this complication, we obtain two different estimates for M (r'), namely, if 

o<mm -. (PO 1 ) 
- 8' CM(r) , 

then 

M(r') < M(r) 
- 1- CoM(r) 

for 1 ::5 p < +00, and 

M(r') < M(r) 
- [I - (CoM(r))p]l/P 

for 0 < p < 1. Here, C is the constant in Lemma 5.20. • 
We can now characterize the A~-interpolating sequences in terms of the upper 

densities D;;(r) and D:(r). 

THEOREM 5.22 Suppose 0 < p < +00, -I < a < +00, and r is a sequence 
of distinct points in TIl Then the following conditions are equivalent: 

(i) r is a sequence of interpolation for A~. 

(ii) r is separated and D:(r) < (a + 1)/ p. 

(iii) D;;(r) < (a + l)/p. 

Proof. According to Theorem 5.13, we only need to prove the equivalence of 
(i) and (iii). Essentially we are going to modify the proof of Theorem 5.6 to suit 
the present situation. 

First assume that r = {Zj}j is a sequence of interpolation for A~. For each n, 
the identity M(r) = M(<Pn(r)), where <Pn(z) = (Zn - z)/(I - ZnZ), implies that 
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there is a function fn E Ag such that 

IIfn IIp.a :::: M(r), fn(O) = 1, and fnlr. = 0; 

recall that fn = <Pn(f) \ {OJ = <Pn{f \ {znD. On the other hand, the extremal 
function Gn for the invariant subspace Ir. maximizes If(O)1 on the unit ball of 
Ir., so that Gn(O) :::: M(f)-l for all n. According to Theorem 3.3, the function 
Gn belongs toA-(l+a)/p with IIGnll-(l+a)/p :::: 1. Using the Jensen-type estimate 
of Lemma 5.4, we see that for every e > 0, 

( 1 +a )~ 
s~pA(fn, tF):::: -p- + e K(F) + 0(1), 

uniformly in the finite subsets F of ']['. In other words, D;; (r) :::: (1 + a) / p. 
To prove that we actually have the strict inequality D;; (f) < (a+ 1) / p, we write 

f n = {Zk.n}k and construct a new sequence f~ = {Z~.n}b where z~.n = Zk.n IZk.n 18, 
and proceed exactly as we did in the proof of Theorem 5.6, except that we use 
Lemma 5.21 here instead of Proposition 5.3. This completes the proof that (i) 
implies (iii). 

Next, we assume that (iii) holds. By Theorem 5.6 and Corollary 5.2, the sequence 
f is separated. We now fix any f3 such that 

D;;(f) < f3 < (a + 1)/p. 

By Corollary 4.32 and Mobius invariance, there exists a sequence {gklk offunctions 
in A-.8 such that for each k, 

and 

j = 1,2,3, ... , j =1= k, 

which meet the growth restriction 

Z E 11), 

for all k, where C is some constant independent of Z and k. 
If {Wk}k is a sequence of complex numbers satisfying the compatibility condition 

L(l-lzkI2)a+2IwjIP < +00, 
k 

we can construct a function f E Ag such that f (z j) = W j for all j. In fact, if we 
fix a sufficiently large number () and define 

" 2.8 (1-IZd)& fez) = ~ Wk(l - IZkl ) gk(Z) 1 ' 
k - ZkZ 

Z E 11), 

then it is clear that f is analytic in 11) with f (z j) = W j for all j. It remains to show 
that f E Ag. 
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If 0 < p :5 1, then 

II-IZdlep 
If(z)IP :5 L IWkIP(I - Izd}BPlgk(Z)IP , 

k 1 - ZkZ 
Z E ID>. 

Using the growth condition that each gk satisfies, we can find a positive constant 
C such that 

(1 I 12)-.BP 
If(z)iP :5 C'"' IWkIP(l - Izd)p(.B+e) - z tI' Z E ID>. 7 11- zkzlP 

An application of Theorem 1.7 then yields that f E Ag. 
If 1 < p < +00, we let q be the conjugate exponent with p-l + q-l = 1. By 

the growth constraint of each gb we can find a positive constant C 1 such that 

(l-ld).Blf(z)1 :5 CI L IWkl(l -IZkI2)a (tI-=-I;:~~b, 
k 

where a and b are constants satisfying a + b = f3 + e. We then apply Holder's 
inequality to get 

1 1 

(l-ld).Blf(z)l:5 CI [L IWkIP(I-IZd)pa]p [L (I-IZd)bq]<i 
k 11 - zkzl2 k 11 - zkzl li 

The second sum above can be estimated as follows: 

'"' (l - Izd)bq < C r (1 - IwI2)bq-2 dA(w) < C (1 _ I 12)bq-e. 
7 II-zkzll'l - 2JIT) II-wzle - 3 z , 

here the first inequality follows from (5.6) and the second from Theorem 1.7, 
provided that e is sufficiently large and bq > 1 (which are easy to achieve). We 
can now find a positive constant C3 such that 

If(z)I P :5 C3(l - Id)p(b-.B-e/q) ~ IWkl;I(~ ~~~~t)pa , 

If e is sufficiently large and 

P(b- f3 -%)+a>-I, 

Z E ID>. 

which are again easy to achieve, another application of Theorem 1.7 shows that 

r If(z)iP dAa (z):5 CL(l-lzd)2+alwk IP, 
JIT) k 

where C is some other constant. This completes the proof of Theorem 5.22. • 

We now turn to the study of Ag-sampling sequences. 
A sequence r = {Zj}j of (not necessarily distinct) points in ID> is called an Ag­

sampling sequence (or a sequence of sampling for Ag) if there exists a positive 
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constant C such that 

C- 1 [ If(z)iP dAa(z) S I:(l- IzjI2)2+alf(zj)iP Sci If(z)iP dAa(z) 
in j=l n 

(5.25) 

for all f E Ag. Once again, the second inequality above implies that r is the union 
of finitely many separated sequences. 

THEOREM 5.23 Suppose 1 S p < +00, -1 < a < +00, and r is a sequence 
of points in III Then r is a sequence of sampling for Ag if and only if r is the 
union offinitely many separated sequences and contains a separated sequence r' 
such that D;(r') > (a + 1)1 p. In particular; ifr itself is separated, the criterion 
for sampling is D; (r) > (a + 1)1 p. 

Proof. Assume that r is an Ag-sampling sequence. Then r is the union of 
finitely many, say n, separated sequences. We show that r contains an Ag-sampling 
sequence that is the union of n - 1 separated sequences. By induction, it will 
then follow that every Ag-sampling sequence contains a separated Ag-sampling 
sequence. 

Let r = rl U r2, where r2 is separated with p(r2) = P2 > 0 and rl is the 
union of n - 1 separated sequences: 

If 

n-l 
rl = U rl. j . 

j=l 

8 = inf{p(ZI' Z2) : Zl E rl, Z2 E r2} > 0, 

there is nothing to prove because 

r = (rl.1 U r2) U r1.2 u··· u rl.n-l, 

and so r is the union of n - I separated sequences. If 8 = 0, we split r2 into two 
sequences, r2 = r 2 u r~, where 

r 2 = {z E r2 : p(z, rl) < e} 

and r~ = r2 \ r 2; here e is any fixed positive number less than or equal to pz/8. 
Write r 2 = {Z2.j}. For each j, pick some z;.j E rl with p(z;.j' Z2.j) < e. Let 

r~ = {z;.j}j be the resulting sequence. It follows from Lemma 5.20 that for every 
f E Ag we have 

IIIRr; flip - IIRr2fllpi S IIRr; f - Rr2 f1i p S C(p, a, P2) II flip.a e. 

For IIfllp.a = 1, we obtain 

IIIRr;fIi~ -IIRr2fll~1 SCURr;! - Rr2'fllp S C'(p,a, pz)e, 
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and so by homogeneity, 

IIIRr;fII~ -IIRr~fII~l:'S C'(p,a,p2)ellfll~.a 
for all f E Ag. This implies that 

L {(l -ld)2+alf(zW : Z E f'} = IIRr fll~ 
z 

= IIRr2f11~ + IIRr~fII~ + IIRr;fII~ + IIRrl-r;fII~ 
:'S 2l1Rrlur2f11~ + C'lIfII~.ae. 

Since f' is Ag-sampling, the above inequality implies that f'1 U f'2 is also Ag­
sampling, provided that e is small enough. On the other hand, 

inf{p(ZI, Z2) : ZI E f'1, Z2 E f'21 > O. 

Therefore, f'1 U f'2 is the union of n - 1 separated sequences. This com­
pletes the proof that every Ag-sampling sequence contains a separated sampling 
subsequence. 

Next, we show that if f' is a separated Ag -sampling sequence, then D-; (1) > 
(a + 1)/ p. The proof is very similar to that of the necessity part of Theorem 5.18; 
it involves the following steps. 

Step 1. Stability and Mobius invariance. For a separated sequence f' = {Zj }j' 
let L(f') = L(f'; p, a) denote the smallest constant L such that 

llf(ZW dAa(z) :'S L ~(I -lzjI2)a+2 If(zjW (5.26) 

for all f E Ag; we put L(1) = +00 if f' is not Ag-sampling. Stability means that 
if L (1) < +00 then there exist positive constants 8 and C such that every sequence 
f" = {zj}j with p(Zj, zj) < 8 for all j satisfies L(f") :'S C; moreover, 8 and C 
depend only on p(1) and L(1). Mobius invariance means that L(f') = L(<I>(f'», 
where <I> is any Mobius map of the disk. The proof of Mobius invariance is based 
on the unitary transformations of Ag; see the paragraph preceding Lemma 5.19. 
The proof of stability is essentially a replica of the proof of Corollary 5.17. 

Step 2. By moving radially every Z j away from the origin and replacing it with 
~j = Zj IZjl-8, where 8 is sufficiently small, we obtain a new sequence f" = {~j}j 
that is also Ag-sampling (by stability) but has smaller local densities: 

, C 
D(f' ,r) :'S (l - 8)D(f', r) + --1-' 

log l-r 

Step 3. The desired result then follows by constructing a Blaschke product B 
with zeros from f" lying in a disk of radius r and substituting B for f in (5.26). 

The above is an outline of the proof of the necessity part of Theorem 5.23. 
Details are left out to avoid repetition. 
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To prove the sufficiency part of Theorem 5.23, let us assume that r = {Zj}j is 
a separated sequence with D;(r) > (rt + l)/p. Write f3 = (rt + l)/p and pick 
some 8 > 0 such that f3 + 8 < D;(r). By Theorem 5.18, r is a sequence of 
sampling for A-(fl+e). This implies that the linear transformation 

f r-+ Tf = {(1 - IZjI2)fl+S f(zj) }j' 

is a bounded invertible operator from Ao(fl+s ) onto a closed subspace of the 
sequence space Co (consisting of sequences that converge to 0). Denote this sub­
space by ao. Then any bounded linear functional cp on Ao(fl+e) induces a bounded 
linear functional cp on ao via T, with IIcpli :s Kllcpli. For each t; E lDJ, let e~ 
denote the normalized functional on Ao(fl+e) of point evaluation at t;, that is, 
el;(f) = (1 - It;e)fl+E f(t;). We have Ile~ II = 1. Since the dual space of Co is Zl, 
an application of the Hahn-Banach extension theorem shows that for each t; E lDJ, 
there exists a sequence {gj(O}j in Zl such that 

(1 -1t;1 2)fl+E f(t;) = L (1 - lzjI 2)fl+e f(zj)gj(t;), (5.27) 
zjEf 

with 

(5.28) 

The factors gj(t;) in (5.27) are not uniquely determined, and we shall see that 
we can use this uncertainty to make them behave like 0 [( 1 - It; 12)] as I t; I -+ 1-, 
and in the process improve the convergence of (5.27). Fix an arbitrary number c, 
and for each t; E lDJ, define 

. { 1 (1 - It; 12)(1 - Id) } 
A(j, t;, C) = Z E r : p(z,O > 2"; Igj(nl > c 11 _ zt;12 . 

By (5.28), each A(j, t;, c) is a Blaschke sequence, so that we may apply (5.27) to 
B A f, where f E Ao(fl+e) and B A is the Blaschke product associated with the set 
A = A(j, t;, c). Thus, 

(l-1t;12)fl+E BA(Of(i;) = L(1-IZjI2)fl+E f(zj)'gj(t;), (5.29) 
j 

where gj en = B A (Z j ) g j (t;). It is easily seen that for all j, we have 

1 ~.er)1 < c(1-1t;12)(1 -Izje) 
g; ~ - II-zjt;12 t; E lDJ, 

where C is independent of t;. In fact, if Zj E A(j, t;, c), then gj(t;) 0; if 
Zj rt A(j, t;, c) with p(Zj, n > 1, then by the definition of A(j, t;, c), 

Igjenl :s c (1 - It; 12)(1 - IZjI2) 
II-t;ZjI2 
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Observe that 

IBA(OI = n p(Zj,O :::: c, 
Z j EA(j./;.c) 

where C is independent of s. This follows from the facts that all factors in the 
above product are greater than or equal to ~ and that 

L {I - p(Zj, 0 2 : Zj E A(j, S, C)} ::::: K. 
j C 

We thus obtain the following sharper form of C5.27): 

(1-lsI2)1'l+S f(0 = L (1-lzjI2).B+e fCzj)hjCS), C5.30) 
zjEf 

where h JCO = gj (0/ BA CO satisfies 

L IhjCOI ::::: C, Ihj(OI ::::: C(l -lsI2)(1 -lzjI2) (5.31) 
j II - SZjl2 

To complete the proof of Theorem 5.23, we only need to verify (5.26) for 
f E Ao(.B+e) nAg, because this space is dense in Ag. 

ForI < p < +oowithi+~ = 1, we use (5.30), C5.31),andHOlder'sinequality 
to get 

(1 -lsI2)alfCs)iP ::::: (1- IsI2)a-(.B+s)p [~(l-IZjI2).B+SlfCZj)hj(0Ir 
< (1 _lsI2)-I-sp L(1 -lzjI2)a+l+pslfCzj)iPlhj(01 

j 

We now integrate over ID and use Theorem 1.7, to obtain 

k IfCs)iP dAaCO ::::: C L(1 - lzjI 2)2+alf(Zj)iP. 
) 

The case p = I follows from (5.30), (5.31), and Theorem 1.7 as well; we simply 
proceed as in the previous paragraph but omit the use of HOlder's inequality. _ 
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5.4 Hyperbolic Lattices 

In this section, we present a class of sequences in the disk for which the upper and 
lower Seip densities are computable. Basically, these sequences are lattices in the 
hyperbolic metric. Because the hyperbolic lattices are easier to describe and easier 
to visualize in the upper half plane, we will need to switch between the unit disk 
and the upper half plane via the Cayley transform. 

For a positive Borel measure f.J, on ID and r E (0, 1), we use nJi-(r) to denote the 
f.J,-measure of the disk Izi < r. Define 

NJi-(r) = for nJi-(t)dt, 0< r < 1. 

It is easy to see that 

NJi-(r) = [ (r-lzl)df.J,(z). 
J1z1<r 

If r is a sequence in ID and 

df.J, = Lday 
yEr 

is corresponding atomic measure, where each day is a unit point mass at y, then 
n Ji- and N Ji- are the classical counting functions associated with r (except that N Ji­
is slightly different here); see Section 4.1. 

We introduce two more counting type functions. Thus, for ° < r < 1 we define 

BJi-(r) = ( log...!-.df.J,(Z) 
J!<lzl<r Izi 

and 

CJi-(r) = ( log ~ df.J,(z). 
h<lzl<r Izi 

Observe again that if f.J, is the atomic measure associated with a sequence r in ID, 
then 

BJi-(r) = L {IOg...!-.: Z E r, ~ < Izi < r} 
z Izl 2 

and 

CJi-(r) = L {lOg ~ : z E r, ~ < Izl < r} . 
z Izl 2 

The counting function BJi- appears as the numerator in the definition of the Seip 
densities; see the previous two sections. The denominator in the definition of the 
Seip densities, log l~r' has the same magnitude as NJi-(r), BJi-(r), and CJi-(r), if 
we take 

d _ dA(z) 
f.J,(z) - (1 _ IzI2)2' 
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the Mobius invariant area measure on 1Dl. 

LEMMA 5.24 Suppose f..L is a positive Borel measure on IDl such that 

Then 

nJ1.(r) = 0 (_1_), 
l-r 

NJ1.(r) = 0 (lOg _1_) , 
l-r 

Furthermore, we have 

and 

Proof. The estimate on N J1. (r) follows immediately from integrating the growth 
bound on n J1. (r ). Also, after a second integration, we have 

Since 

r (r - IzI)2 df..L(z) = 0(1), 
J1z1<r 

BJ1.(r) - CJ1.(r) = log ~ [ df..L(z) = [n/L(r) - n/L(! +)] log~, 
r J~<lzl<r r 

the assumption on the growth of nIL gives 

Finally, we can write 

[ (IOg~ -1 +~) df..L(z) 
J~<lzl<r Izi r 

+ (1 - r) r (1 -~) df..L(z) 
h<lzl<r r 

- r (r - Izl) df..L(z). 
Jlzl~~ 

(5.32) 

By the growth conditions on nIL and N/L' the last two terms above are 0(1) as 
r ~ 1-; also, combining the estimate (5.32) with 

1 
log - = 1 - t + 0((1 - t)2), 

t 

we see that the third term is 0(1) as r ~ 1-. • 
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Note that the estimates in the lemma above are uniform in cp E Aut (llJ) if JL 
is replaced by the atomic measures associated with cp(r), where r is a separated 
sequence in llJ) and Aut (llJ) is the full Mobius group. This is because the counting 
function nil associated with cp(r) has the estimate 

nJl(r) = 0 (_1_) , 
1-r 

uniformly in cpo As a consequence, we see that when computing the Seip densities 
Dt(r) and D;(r), we may use NJl(r) or CJl(r) in place of BJl(r), with JL being 
the atomic measure associated with r. This helps us develop better geometric 
intuition for the Seip densities. 

We now begin the construction of hyperbolic lattices in llJ). 

A sequence of points {x j} j on the real line IR has pure density e provided that 
the points are separated (in the usual Euclidean metric) and 

#({x j}j n [A, BJ) = (B - A) e + 0(1), 

where 0(1) stands for a quantity bounded by a constant that is independent of 
A, B; and # counts the number of points in a set. 

If we have a sequence of sequences {x?)b, {xY)}j, {x?)}j, ... , each of which 
has pure density e, we say that they have pure density e uniformly provided that 

inf {Ix\k) - x(k)1 : j =1= l} > 0 
j.k.l J I 

and 

s~p 1#({xY)}j n [A, B]) + (A - B) el = 0(1), 

where again 0 (1) stands for a quantity that is bounded independently of A and B. 
Let 1l.J be the open upper half plane. Recall that the hyperbolic metric on 1l.J is 

given by 

I 1 l+p'(z,w) 
fJ (z, w) = "2 log 1 _ p'(Z, w)' 

where p' is the pseudo-hyperbolic metric on 1l.J: 

'iz-Wi p(z,w)= ~ . 
z-w 

We shall first construct a sequence r ' = {~n}n in 1l.J, and then map it to a sequence 
r in llJ) by the Cayley transform 

~ - i 
</>(n = ~ +i' ~ E 1l.J. 

THEOREM 5.25 Fix a real parameter fJ E (1, +(0). For each integer k, let 
{xY)}j be a sequence in IR with pure density e. Also, assume that these sequences 
have pure density e uniformly in k. Let r ' = {~j.k}j.k be the doubly indexed 
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sequence 

~j.k = fJk (xy) + i) 
in 1l.J, and let r = {Zj.k}j,k be the image sequence in D under the Cayley transform. 
Then r is separated, and 

Proof. Clearly, the sequence r is separated, as the hyperbolic distance between 
two points of r' is bounded from below by a positive number and the Cayley 
transform preserves the hyperbolic metric. 

For ~ E 1l.J, let 

~ E 1l.J, 

be the associated conformal mapping 1l.J ~ D. We need to estimate N</>~(r')(r) for 
r E (0, 1) close to 1, because this is equivalent to N<p(r)(r) for Mobius maps cp of 
D. We do this by first estimating n</>~ (r') (r), which equals the number of points of 
r' in the pseudohyperbolic disk . 

D1[J(~, r) = {z E 1l.J : p'(z, w) < r}. 

The Euclidean center of this disk is located at the point 

1 + r2 
Re ~ + i 1 _ r2 1m ~, 

and the Euclidean radius is 2r(1 - r2)-I 1m ~. 
The points of r' are located along the horizontal lines 1m ~ = fJk, with k 

an integer. The number of different such lines intersecting the disk D1[J(~, r) is 
approximately given by 

2 10<> I+r 
b I-r 

log fJ 

If we, instead of counting the number of points on each such line 1m ~ = fJk in 
r1[Jn D1[J(~, r),just calculate Q fJ-k times the Euclidean length of the line segment, 
the error we make each time will be 0(1) uniformly in k, by the assumptions we 
made on the sequence r'. Adding up the errors, we obtain a total error of the order 
of magnitude 

0(10<> _1_) 
b 1- r ' 

which is negligible compared with the total number of points in the disk D1[J(~, r), 
the latter being of the order of magnitude (1 - r) - I , for r close to 1. Let us write 
this down more carefully. 
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Let IL be the positive Borel measure on 1U defined by 

r f(ndlL(n = ~ ~ r+oo f(x+if3n)dx, 
lu n=-oo f3 1-00 

for compactly supported continuous functions f. Then 

nq>(I)(r) = n<pdll[J)(r) = Qn<p~IL(r) + o( log 1 ~ J as r --7 1, 

where 41t IL is the positive Borel measure on ][)) defined by 

d(41tlL)(Z) = dlL(41i1(z», 

provided that ~ E 1[J is chosen such that 411; (r') equals qJ(r) modulo a rotation. 
After an integration, we obtain 

as r --7 1. (5.33) 

We turn to the function C<p~IL (r), which is equivalentto N <P'iIL (r) by Lemma 5.24. 
It is easy to see that 

We show that 

~ I log \ ~ - ~ \ dlL(n = 0(1), 
ivl[J(I;.,) ~ - ~ 

(5.34) 

uniformly in ~ E 1U. In fact, it follows from the construction that the JL-mass of 
the pseudohyperbolic disk Du(~, !) is uniformly bounded in~. The kernel 

100-\ ~ - ~ \ 
o ~_~ 

is bounded in the variable ~ except for a logarithmic singularity at ~ = ~; the 
logarithmic singularity is leveled out in the integral by the fact that d IL is so smooth 
in the Re ~ direction. To simplify the calculations, we switch from integrating over 
the disk Du(~, !) to the larger square (after all, the integrand is positive) 

{z = x + i Y E 1U: Ix I :s: i 1m ~, ~ 1m ~ :s: y :s: 3 1m ~ }. 

After some simplifications, it remains to show that 

1 11 t 2 + (1 + Bf3n)2 ~ f3-n log dt 
B L., _1 t 2 + (1 - Bf3n)2 

n: j- :o;epn:o;3 3 

is uniformly bounded in B, 0 < B < +00. This is easily verified, and the claim 
(5.34) follows. 
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We now introduce the function 

F(~,I];r)= [ 10gjr({-ii)jdJ.t({), 
J Du(;.r) { - I] 

which, according to (5.34) and the above observation that the J.t-mass of Du(~, i) 
is uniformly bounded in ~, satisfies 

C"'iJl.(r) = F(~,~; r) + 0(1), (5.35) 

uniformly in ~. The advantage with the function F (~, 1]; r) is that in 1], it solves a 
boundary value problem on Du(~, r): it vanishes on the boundary aDu(~, r), and 
inside, its Laplacian is, in the sense of distribution theory, 

1 
l:l.1JF(~, 1]; r) = -2 dJ.t(I]). 

We will return to this function shortly. 
Let H be the Heaviside junction, so that H(x) = 1 for 0 < x < +00 and 

H (x) = 0 for -00 < x .:s 0, and consider the function 

0< x < +00. 

The series converges, because only finitely many terms with negative index n 
actually occur in the sum. This function has the functional property 

U(fJx) = U(x) + I, 0< x < +00; 

the verification involves two manoeuvres, the first one being to check that the two 
sides have the same derivative, and the second to obtain that U (fJ) = 1 whereas 
U(I) = O. Using the above functional equation, we easily establish that 

0< logx - U(x) < 3 
- logfJ - , 0< x < +00. (5.36) 

The second derivative of U is 

+00 
U"(x) = - L fJ-n 0f3n (x), 0< x < +00, 

n=-oo 

where Of3n (x) represents the unit point mass at x = fJn . In view of the definition 
of the Borel measure J.t, it follows that 

1 
l:l.1J (U(Iml]») = --dJ.t(I]), 

4n 
I] E llJ. 

The factor n -1 comes from our choice of interpreting locally integrable functions 
u on a domain Q as distributions via the duality 

(f, u) = k fez) u(z)dA(z). 
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We return to the function F (~, 71; r), and conclude that 

F(~, 71; r) = 21T (U(1m 71) - U~(TJ)), 71 E D1[J(~, r), 

where U~(TJ) stands for the harmonic function on D1[J(~, r) which equals U( 1m 71) 
along the boundary. The harmonic extension operation respects inequalities, so 
that in view of (5.36), we can get F(~, 71; r) trapped: 

~ F(~,TJ;r) ~ 
V(lmTJ)-V~(TJ)-6~ 21T ~V(lmTJ)-V~(TJ)+6, TJED1[J(~,r), 

where V(x) = (logx)/(log,B), and ~(TJ) stands for the harmonic function 
on Dv(~, r) which equals V(1m 71) along the boundary. Since the Laplacian 
of V(lm 71) is readily calculated, an application of Green's formula yields the 
representation 

~ 1 1 Ir(~ -ij) I dA(~) V(1m 71) - V~(TJ) = -- log 2· 
2 log ,B Dv(~.r) ~ - 71 (1m~) 

Plugging in 71 = ~, we have 

F(~,~; r) = _1_ r log Ir(~ -~) I dA(O + 0(1). 
21T 210g,B JDv(~.r) ~ - ~ (1m 0 2 

Performing the integration on the unit disk instead, using the change of variables 
z = (h(o, we obtain 

F(~,~; r) = _2_ r log.!....- dA(z) + 0(1). 
21T 10g,B J1z1<r Izl (1 - Iz12)2 

An easy calculation then shows that 

21T 1 
F(~,~; r) = - log -- + 0(1). 

10g,B 1 - r 

Combining this with (5.33), (5.35), and Lemma 5.24, we conclude that 

hQ 1 
Bq;(I)(r) = -1 - log -- + 0(1), 

og,B 1 - r 
uniformly in cP E Aut (]D). It is now immediate from the definitions of the Seip 
densities that 

D+(r) = D-(f') = 21TQ , 
S S 10g,B 

and we are done. • 

5.5 Notes 

The characterization of interpolation and sampling sequences for the spaces A-a 
is due to Seip [112], where the spaces A~ are also discussed. The cases A~, as 
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presented here in Section 3, essentially follow from Seip's proof in [112] as well. 
Seip's work was strongly influenced by Beuding's results [22] on interpolation 
and sampling for the Banach space offunctions of exponential type S a, bounded 
on the real line. 

The proofs of Theorems 5.18 and 5.23 supply no quantitative information 
concerning the size of the sampling constants; such information would be desirable. 

We believe that Theorem 5.23 holds for 0 < p < I as well. However, this 
cannot be proved using the line of ideas pursued in Section 3. It appears that a 
proof for 0 < p < I can be built by suitably modifying the methods in [20]. 

In [130], Thomson applies Seip's sampling theorem to show that the closure of 
the polynomials in LP(lD), df.L) can change quite dramatically with the parameter 
p: for a certain Borel probability measure f.L this closure is a space of hoi om orphic 
functions on]]J) if p is large, but for small p it becomes all of LP(lDl, df.L»; see also 
Thomson's fundamental paper [129]. 

The section on hyperbolic lattices is new: it was left unexplored by Seip be­
cause he first characterized extremely regular lattices in terms of sampling and 
interpolation properties using very explicit methods [111], and only later in terms 
of counting functions for the sets [112]. Counting points in hyperbolic space is a 
bit tricky because the space expands faster than in Euclidean geometry: the hyper­
bolic area of the (hyperbolic) annulus between the disks of radii Rand R + 1 is 
comparable to that of the whole disk of radius R. 

5.6 Exercises and Further Results 

1. If A is a classical interpolating sequence, then A is a sequence of 
interpolation for AP. 

2. There exist two sequences of interpolation for AP such that their union is a 
sampling sequence for AP. See [61]. 

3. Let A = {an}n be a sequence of distinct points in ]]J). Then A is sampling 
for A 2 if and only if atomic decomposition for A 2 holds on A, that is, an 
analytic function f in ]]J) belongs to A 2 if and only if 

+00 1 - lanl2 

f(z) = Len (1- )2 
n=! anz 

for some {cn}n E [2 and the series converges in norm. See [139]. 

4. For a sequence A = {an}n of distinct points in ]]J),let RA denote the operator 
that sends a function f E A2 to the sequence {(l - lanI2)f(an)}n. Recall 
from Exercise 19 of Chapter 2 that RA maps A 2 into [2 if and only if A is the 
union of finitely many separated sequences. For such a sequence A, show 
that RA has closed range in [2 if and only if A is a sampling sequence for 
A2 or A is a sequence of interpolation for A2. See [139]. 
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5. Suppose A is sequence of distinct points in ID such that the operator RA 
defined above maps A 2 onto a closed subspace of [2. Then A is sampling 
for A2 if and only if A is not a zero sequence for A2; and A is a sequence of 
interpolation for A2 if and only if A is a zero sequence for A2. See [139]. 

6. Let A = {an}n be a sequence of interpolation for A2. Define a sequence 
{qJn}n of functions in A 2 by 

ZEID, n=I,2,3, ... , 

where An = A \ {an} for all n = 1,2,3, ... , and KAn is the reproduc­
ing kernel function for the zero-based invariant subspace fAn. Show that 
qJn (an) = 1 and qJn (am) = 0 if n =f. m. 

7. With the same assumption and notation as before, show that there exists a 
positive constant C such that 

1 -lanl2 :::: IIqJnll :::: C (l-lanI2) 

for all n = 1,2,3, .... For Problems 7-12, see [140]. 

8. With the same assumption and notation as before, show that the sequence 
{(l - lan I2)-3/2qJn(Z)}n is uniformly bounded on every compact subset of 
ID. 

9. With the same assumption and notation as before, show that for every 
sequence {wn}n of complex numbers satisfying 

L(1-lan I2)lwn I2 < +00, 
n 

the series Ln WnqJn converges (in norm) to a function in A2 that uniquely 
solves the minimal interpolation problem: 

infUlfil : J(an ) = W n , n :::: I}. 

10. With the same assumption and notation as before, show that the reproducing 
kernel KA of fA admits the following partial fraction expansion: 

11. With the same assumption and notation as before, show that every function 
J in f f admits the following expansion: 

fez) = L (f, qJn) 2' 
n (1 - anz) 

with the series converging in norm. 
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12. Let A = {an}n be a sequence of interpolation for A2. Show that an analytic 
function f in ]j)) belongs to I X if and only if 

1 - lan l2 

fez) = I.>n (1- )2' n anz 

where {cn}n E [2 and the series converges in norm. In fact, the mapping that 
sends {Cn}n to f via the above series is an invertible operator from [2 onto 
IX. 

13. Every Ag-sampling sequence is the union of finitely many Ag-interpolating 
sequences. In fact, every separated sequence is a finite union of Ag­
interpolating sequences. 

14. A sequence r of distinct points in ]j)) is called a weak A-a-interpolating 
sequence if there exists a positive constant C such that for each k there 
is a function gk E A-a with IIgkll-a ::::: C, (1 - Izd)agkCZk) = 1, and 
gkCZj) = 0 for j i= k. Show that r is a weak A-a-interpolating sequence 
if and only if it is an A-a-interpolating sequence. See [110]. 

15. Formulate and prove a result in the context of Ag that is similar to the above. 

16. Show that if the sequence r is separated in ]j)), then D;i(1) < +00 and 
D;- (1) < +00. 

17. Show that the condition D;i(r) < +00 implies that r is separated. Does 
this hold for D;-cr)? 

18. Define and characterize interpolating sequences for the space A -00. See 
[32] and [96]. 

19. Let us call the sequence r = {z j li of distinct points in ]j)) a type sampling 
sequence if for each f E A-oo we have 

1· log If(zj)1 I' log If(z)1 (f) 
1m sup 1 = 1m sup 1 = t . 
j-++oo log l-Izjl Izl-+l- log l-Izl 

Characterize the type sampling sequences. This is an open problem; for 
partial results, see [78]. 

20. Suppose A = {an}n is a zero set of AP consisting of distinct points. For 
n = 1,2,3, ... , define An = A \ {an} and let Gn be the contractive zero 
divisor for An in A P . Show that A is an interpolating sequence for A P if and 
only if there exists a positive constant 0 such that 8 ::::: G n (an) for all n. See 
[109]. 

21. Give another proof, based on Lemma 5.1, Corollary 5.2, and the contrac­
tive imbedding Ag C A-(2+a)/p, that every Ag-interpolation sequence is 
separated. 
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22. Show that if r is a separated sequence, then there exists a positive constant 
C such that the number of points of r lying in Izl < r is less than or equal 
to C/(l - r), where r E (0,1). 

23. Suppose A and B are disjoint sequences in [J). Show that 

D;(A U B) ~ D;(A) + D;(B) 

and 

D;(A U B) :::: D;(A) + D;(B). 

24. Do the analysis of Section 5.4 for concentric circles about the origin in [J) 

instead of horizontal lines in the upper half plane U. 

25. Prove the estimate (5.16) relating the Beurling-Carleson characteristic to the 
K-area of the corresponding Stolz star. 



6 
Invariant Subspaces 

In this chapter we study several problems related to invariant subspaces of Bergman 
spaces. First, we show by explicit examples that there exist invariant subspaces of 
index n for all 0 :s n :s +00. Then we prove a theorem that can be considered an 
analogue to the classical Beurling's theorem on invariant subspaces of the Hardy 
space. It states that in the spaces A~, with -1 < (X :s 0, each invariant subspace I 
is generated by I ezI. In the classical Hardy space case, I ezI is one-dimensional, 
and spanned by a classical inner function (unless I = {On. In A~, the dimension 
may be bigger, but all elements of I e zI of unit norm are A~-inner functions. 

6.1 Invariant Subspaces of Higher Index 

Let I be an invariant subspace of A~. We say that I has index n (or the codimension 
n property) if n = dim(l/zI). In this section we show that for any 0 :s n :s +00 
there exists an invariant subspace I of Ag of index n. Of course, n = 0 occurs 
only for the trivial subspace I = {O}. 

First observe that if I is a singly generated invariant subspace, or a zero-based 
invariant subspace of A P, then I has index 1; see Exercise 13. 

LEMMA 6.1 If I is an invariant subspace of A~ with index J, then there exists a 
nonzero continuous linear functional ({J : I ~ <C such that ({J vanishes exactly on 
zI. 
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Proof. Let n be the smallest nonnegative integer such that there exists a function 
f E I with f(n) CO) "# O. Define cp : I .-...+ <e by 

cpU) = f(n)co), f E I. 

Then cp has the desired properties. • 
LEMMA 6.2 Fix a positive integer n and let h , h, ... , In be invariant subspaces 
of Ag, all having index I. If there exists a positive number £ such that 

IIfl + ... + fnll :::: £ Cllh II + ... + Ilfnll) 

for all h E h, ... , fn E In, then I = h + ... + In is an invariant subspace of 
Ag having index n. 

Proof. It is easy to see that the reverse triangle inequality implies that I 
h + ... + In is a direct sum and that I is closed in Ag. In particular, I is an 
invariant subspace of Ag. 

For each 1 ::: k ::: n, let CPk : h .-...+ <e be a nontrivial continuous linear functional 
that vanishes on zh. Define cP : I .-...+ <en by 

where fk E h for 1 ::: k ::: n. The reverse triangle inequality guarantees that cP is 
continuous. Since each CPk is surjective, cP is also surjective. And since the kernel 
of each CPk is zh, the kernel of cP must be zI = zh + ... + ZIn. It follows that cP 
induces an isomorphism between 1/ Czl) and <en, so that the quotient space 1/ Czl) 
is n-dimensional. • 

We proceed to construct zero-based invariant subspaces of Ag that satisfy the 
reverse triangle inequality Lemma 6.2. This will then produce invariant subspaces 
of arbitrary index. 

LEMMA 6.3 Suppose 0 < p < +00, -1 < ct < +00, and n is a positive integer 
greater than or equal to 2. Then there exists a sampling sequence Afor Ag, and a 
decomposition of it as afinite disjoint union A = U'j=1 A j, with the property that 

each A \ Aj is an interpolating sequencefor Ag. 

Proof. First recall from Chapter 5 that a sequence A is sampling for Ag if it 
is a finite union of separated sequences and contains a separated subsequence Ao 
with 

ct+l 
D;CAo) > --. 

p 

Similarly, a sequence A is interpolating for Ag if it is separated with 

+ ct+l 
Ds CA) < --. 

p 

We say that a sequence A is regular if its upper and lower Seip densities coincide, 
in which case we write DsCA) in place of DiCA) = D;(A). 
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Let A be a regular sequence as constructed in Section 5.4. More specifically, let fJ 
and Q be real parameters with 1 < fJ < +00 and 0 < Q < +00, let A' = {aj.k}j.k 
be the doubly indexed sequence in 10 defined by 

aj.k = fJk (Qj + i), 
where j and k run over all the integers, and let A = {a j.k }j.k be the image sequence 
in ]jJ) under the Cayley transform 

~ - i 
<p(n = ~ + j' ~ E 10. 

By Theorem 5.25, the sequence A is regular with 

2JrQ 
Ds(A) = --. 

log fJ 

For m = 1,2, ... , n, let Am be the image under the Cayley transform of A;", 
where A;" consists of those points aj.k in A' such that j == m (mod n). Clearly, 
A = U~=1 Am, and the sets Am, m = 1,2, ... , n, are disjoint. Each Am contains 
every n-th element of A, and by the analysis of Chapter 5 (Theorem 5.25), each 
sequence Am is regular with its Seip density given by 

Ds(A) 2JrQ 
Ds(Am) = -- = --. 

n n 10gfJ 

Analogously, each sequence A \ Am is regular with its Seip density given by 

n - 1 2(n - l)Jr Q 
Ds(A \ Am) = -- Ds(A) = . 

n n 10gfJ 

It follows that 
n n 

Ds( U Am) = L Ds(Am); 
m=1 m=1 

when this happens, we say that the decomposition A = U~=1 Am is homogeneous. 
We need to fulfill the requirements 

and 

a+l 2JrQ 
-- < Ds(A) =--

p 10gfJ 

Ds(A \ Am) = 2(n - l)JrQ 
n log fJ 

a+l 
<--, 

p 
m = 1,2, ... , n. 

These amount to the condition 

a + 1 2Jr Q n a + 1 
-- < Ds(A) = -- < -- --. 

p 10gfJ n - 1 p 

All that remains is for us to pick the density in this nonempty interval. This is 
easily done by suitably adjusting the parameters fJ and Q. • 
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THEOREM 6.4 For j = I, ... ,n, let Ij = IA\Aj be the invariant subspace of 
AK consisting of all functions that vanish on A \ A j, where A and A j are as in 
the previous lemma. Then there exists some e, 0 < e < 1, such that 

II II + ... + fn II ~ e (II fl II + ... + II fn II) 

for all !k E IA\Ak' I ::s k ::s n. 

Proof. For each point a E A, and for fl E II, ... , fn E In, we have 

Since A is sampling, there are positive constants KI and K2 such that 

f E Ag. 

Apply these inequalities to each fk and then to f = II + ... +" fn. We conclude 
that 

n n 

Kl L IIfjllP < L L(l -la I2)2+al/j(a)IP 
j=1 j=laEA 

= L(l-la I2)2+alf(a)IP ::S K2I1f11 P• 

aEA 

This is the sought-after reverse triangle inequality, except that it is with p-th powers 
of norms. But in finite-dimensional spaces, [P and [I norms are equivalent, so the 
result follows. • 

COROLLARY 6.5 For any positive integer n there exists an invariant subspace 
of Ag with index n. 

The technique used in this section does not allow us to find invariant subspaces 
of infinite index. However, the main scheme, to form the closure of the sum I I + 
/z + 13 + ... , denoted h v /z v h v ... , where h, /Z, h, ... are index-one 
invariant subspaces, still applies. Essentially, by requiring the subspaces Ij to 
be "far apart" from each other, we obtain an invariant subspace of infinite index 
in Ag; the details are worked out in [71]. An alternative construction, which is 
perhaps more flexible and applies to a large collection of (quasi) Banach spaces 
of holomorphic functions on the unit disk, can be found in [26]; see also [I]. It 
is known that the elements of invariant subspaces of index bigger than or equal 
to 2 must exhibit rather bad boundary behavior; for instance, if we restrict our 
attention to p = 2 and Cl = 0, then at each point of 'f, every such function must 
have the whole plane <C as cluster set (part of this assertion can be found in [62]). 
A considerably more precise statement can be found in [8]. 
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6.2 Inner Spaces in A; 
In the classical theory of Hardy spaces it was shown by Beurling that every invariant 
subspace I of H2 is of the form I = rp H2, where rp is inner. Furthermore, the 
invariant subspace I determines the inner function uniquely up to a unimodular 
constant. Therefore, Beurling's theorem can be restated as follows: The invariant 
subspaces of H2 are in a one-to-one correspondence with the (one-dimensional) 
spaces Crp, where rp is inner. In the next section we will show that an analogue 
holds in the Bergman space setting, except that here one-dimensional spaces will 
not be enough. 

DEFINITION 6.6 A closed subspace X of A~ is called an inner space if every 
unit vector in X is A~ -inner. 

The next result characterizes inner spaces in A~, whose proof works in much 
more general settings (an injective bounded operator with closed range on separable 
Hilbert space). 

THEOREM 6.7 A closed subspace X of A~ is inner if and only if there exists an 
invariant subspace I of A~ such that X = Ie zI. 

Proof. If I is an invariant subspace of A~, then it is obvious that every unit 
vector in I e zI is an A~-inner function, so that I e zI is an inner space. 

Next assume that X is an inner space in A~. Let I be the invariant subspace 
generated by X. We proceed to show that X = I e zI. 

Let {en}n be an orthonormal basis for X. In particular, each vector en is A~ -inner. 
To prove X C I e zI, or X 1.. zI, it suffices to show that 

k = 1,2,3, ... , 

for all indices m and n. If n = m, then the desired equalities follow from the fact 
that en is A~-inner. If n i= m, we use a polarization trick. The function 

is A2-inner for all complex numbers a and b with lal2 + Ibl2 > 0, because the 
space X is inner. It follows that 

(a en + bern, l(aen + bern)) = 0 

for all complex numbers a and b. Since 

(en, Zken ) = (em, /em) = 0, 

we obtain 
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for all complex a and b. By first setting a = b :1= 0, and then setting a = ib :1= 0, 
we: easily obtain 

This proves X C I 8 zI. 
If X is not all of I 8 zI, then there exists a unit vector 1 E I 8 zI such that 

1 .1. X. It is of the form 

where each Pkm) is a polynomial and Nm is a positive integer. Write 

Nm Nm Nm 

L pkm) ek = L (Pkm) - Pkm) (0» ek + L Pkm) (0) ek, 
k=l k=l k=l 

and denote the two sums on the right-hand side above by !l.m and h.m, respec­
tively. Then !l.m 1.. h.m, by what was proved in the previous paragraph. Also, 
1 1.. X implies that 1 1.. h.m, and 1 1.. zI implies that 1 1.. Am. Thus, by the 
Pythagorean theorem, 

!It -~plm)'kr ~ II! - fLm - fz.mll' 

= 111112 + IIAmll2 + lIh.mll2 :::: IIfII2 = 1. 

This contradicts the assumption that 

Nm 

1 = lim L Pkm)ek, 
m-++oo k=l 

and hence completes the proof of the theorem. • 
Combining the theorem above with results from the previous section, we con­

clude that the dimension of an inner space in A~ can assume any value in the set 
{O, 1,2,3, ... , +oo}. 

6.3 A Beurling-Type Theorem 

The purpose of this section is to show that invariant subspaces of A~ are in a 
one-lo-one correspondence with inner spaces in A~, provided that -1 < ct :::: O. 
More specifically, we show that every invariant subspace I in A~ is generated by 
18zI. 

Actually, we will prove a stronger result in the context of general Hilbert spaces. 
Throughout this section we let rt be a separable (infinite-dimensional) Hilbert 
space and let T : 1{ --* 1{ be a bounded linear operator satisfying 
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(a) IITx + yll2 ~ 2 (lIxll2 + IITyIl2), x, y E 1t, 

(b) n {Tn1{ : n :::: O} = {O}. 

First note that setting x = 0 in condition (a) above shows that T is bounded 
below. In particular, the operator T is one-to-one and has closed range, so that the 
operator T*T is invertible. The operator 

Tl = T(T"'T)-l 

will play a vital role in our analysis. In the following, operator inequalities are 
given the standard interpretation in terms of positive definiteness. 

LEMMA 6.8 For all x E 1{, we have 

IITixll2 + IIxll2 ~ 211Tlx1l2. 

Proof. Let y = (T*T)-1/2Z in condition (a). Then 

IITx + (T*T)-1/2Z I1 2 ~ 2 (IIXIl2 + IIT(T*T)-1/2z112) 

for all x and z in 1{. An easy calculation shows that 

IIT(T*T)-1/2z11 2 = IIzll2 

for any z E 1{. Thus, 

IITx + (T*T)-1/2Z11 2 ~ 2(lIx1l2 + IIz1l2) 

for all x, z E 1i. 
Consider the operator S : 1{ E9 1{ -+ 1{ defined by 

Sex, z) = Tx + (T*T)-1/2z, (x, z) E 1{ E91{. 

We have IISII ~ -/2, so that SS* ~ 21, where 1 is the identity operator on 1t. Since 

S*(y) = (T*y, (T*T)-1/2y), y E 1{, 

it follows that 

SS* = TT* + (T*T)-l, 

and so 

TT* + (T*T)-l ~ 21. 

Multiplying both sides by Ti from the left and by Tl from the right, we arrive at 

1 + Ti2Ti ~ 2TiTl, 

which is clearly what we wanted. • 
We will say that the operator Tl is concave down. This concavity of Tl is the 

key to the success of our analysis. 

LEMMA 6.9 IITIX II :::: IIx II for all x E 1i. 
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Proof. For any x E 'H, the sequence {II T7 X 112}n is positive and concave down, by 
Lemma 6.8. It follows that IIT7xl12 is increasing in n; in particular, IITlxll ~ IIxll . 

• 
In what follows, we let 

'HI = n {T7'H : n ~ o}. 
It is obvious that 'H I is invariant under T I. Also, the operator T I maps H I onto 
'H I. In fact, if x E 'H I, then for any n = 0, 1, 2, ... , we can find Yn E 'H such that 
X= T7 Yn· In particular, 

x = TIYI = TI (T7-1 Yn) 

for all n = 1,2,3, .... Since T is one-to-one on H, so is TI. Therefore, YI 
T7-1 Yn for all n = 1, 2, 3, ... , which implies that YI E 'HI. Combining these with 
Lemma 6.9, we conclude that the restriction of TI to HI is an invertible operator. 

LEMMA 6.10 The restriction ofT I to HI is unitary: TI'HI = 'HI and IITlxll = 
IIxliforallx E HI. 

Proof. Fix a point x E 'HI. For any n = 0, 1,2, ... , pick Yn E 'HI such 
that x = T7Yn. Since TI is one-to-one, we easily obtain Yn-I = TIYn for all 
n = 1,2,3, .... An application of Lemma 6.9 then shows that the sequence 
{llYn lI}n is decreasing. 

On the other hand, the concavity of T I (see Lemma 6.8) gives 

I 12 12 T2 2 I 2 IYn-11 + IIYn+11 II IYn+11I + IYn+111 

< 211TIYn+11I 2 = 211Yn1l2, 

so that the sequence {llYn 112}n is positive and concave down, which implies that 
{llYn lI}n is increasing. We conclude that the sequence {llYn Illn is constant. In 
particular, 

IITIYIII = lIyoll = IIYIII· 

Since x is arbitrary and T I is invertible on HI, it follows that YI = Til x is 
arbitrary in HI, that is, we have shown that II T I Y II = II Y II for all Y E HI. • 

D:EFINITION 6.11 Let R be a bounded linear operator on a general Hilbert 
space 'H. A closed subspace g ofH is said to be reducing for R if both g and its 
orthogonal complement 'H e g are invariant under R. 

LEMMA 6.12 The subspace HI is reducing for the operator TI. 

Proof. We have already shown that the restriction of TI to HI is a unitary 
operator. Given any x E 'HI, an easy calculation shows that PI TtTlx = x, where 
PI is the orthogonal projection from H onto HI. It follows that 

((TtTI - I)x, x) = 0, x E HI. 
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By Lemma 6.9, the operatorTI is norm expansive, which means that TiTl - I :::: 0. 
In view of the above, we conclude that TiTlx = x for all x E HI; see Exercise 
16. Combining this with the fact that T IH I = HI, we arrive at TjH I = HI. In 
particular, H I is invariant under Ti, and hence H e H I is invariant under T. • 

In the remainder of this section, we let 

E = ker(T*) = H e TH 

and 

L = Tj = (T*T)-IT*. 

It is easy to check that LT = I, the identity operator on H, and that I - TL = Pt:, 
where Pt: is the orthogonal projection from H onto E. 

LEMMA 6.13 For n = 1,2,3, ... , we have 

ker(Ln) = E + TE + ... + Tn-IE. 

Proof. By the definitions of E and L we have L(E) = to}, and so Ln(E) = to} 
for all n = 1,2,3, .... Since LT = I, we have 

Lk+lTk(E) = L(E) = to} 

for k = 0, 1, 2, ... , and so 

Ln(E + TE + ... + Tn-IE) = to}. 

On the other hand, 

n-I n-I 
1- TnLn = LTk(I - TL)Lk = LTkPt:Lk. 

k=O k=O 

Thus, x E ker(Ln) implies that 

n-I 
X = LTkpt:Lkx E E + TE + ... + r-IE. 

k=O 

This proves the desired formula for ker(Ln). 

We are now ready to prove the main theorem of this section. 

THEOREM 6.14 1fT: H --+ H satisfies conditions (a) and (b), then 

H = [E) = V {Tnx : x E E, n :::: O}, 
where E = ker(T*) = H e TH. 

Proof. It is easy to check that TiTI is invertible on H, and that T 
TI (TjTI)-I. Since HI reduces TI, it also reduces T. 

If R = TIHI and RI = TIIH 1 , then we have 

R = RI(RjRI)-1 = (Rt)-I, 

• 
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because HI is reducing for both T and TI, and as RI is invertible, we obtain that 
R is invertible. 

Write H = HI t:B Ht and use the fact that T(HI) = HI. We obtain HI C TnH 
for all n = 1,2, 3, .... It follows that 

+00 +00 
HI c n TnH = n TnH = to}, 

n=1 n=O 

so that HI = to}. By the definition of HI, we have 

+00 +00 

to} = n T7 H = n T7H. 
n=O n=1 

Taking the orthogonal complement, we get 

[
+00 ] J.. +00 +00 

H = D T7H = ~ (T7H)J.. = ~ ker(Ln ). 

The last identity holds because the kernel of the adjoint equals the orthocomplement 
of the range of the operator. The desired result now follows from Lemma 6.13 .• 

As an application of the above operator-theoretic result we obtain the following 
Beurling-type theorem for invariant subspaces of the Bergman space. 

THEOREM 6.15 Suppose -1 < ct S 0 and I is an invariant subspace oj A~. 
Then I is generated by I e zI. 

Proof. Let S be the operator of mUltiplication by z on A~. We shall see that 
condition (a) holds for S: 

J,g E A~. 

Scrutinizing the proof of Lemma 6.8, we see that this is in fact equivalent to the 
operator inequality 

SS* + (S* S)-I S 21. 

Using Taylor expansions, we realize that the latter is equivalent to the concavity 
of the sequence {I / wn}n, where 

n!r(2+ct) 
W ------

n - r(n+2+ct)' 

plus the condition Wo S 2 WI, which is satisfied for all -1 < ex S o. The concavity 
condition reads 

1 1 2 
--+--S-, n = 1,2,3, ... , 
Wn-I Wn+1 Wn 

which is equivalent to 

n(n + l)r(n + 1 + ex) + r(n + 3 + ex) S 2(n + l)r(n + 2 + ex). 
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Using the well-known functional identity r (x + 1) = x r (x), we reduce the above 
to 

n(n + 1) + (n +2+a)(n + 1 +a) ::::: 2(n + 1)(n + 1 +a), 

which is easily seen to be the same as 

a+a2 ::::: 0. 

n = 1,2,3, ... , 

We conclude that the sequence {I / wn}n is concave for -1 < a ::::: O. 
To treat the general case, let T be the restriction of S to the invariant subspace 

I. The property (a) holds for T since it does for S. Likewise, it is obvious that T 
satisfies condition (b). The result is now immediate from Theorem 6.14. • 

COROLLARY 6.16 Fix a, -1 < a ::::: O. If I is an invariant subspace of A~ of 
index 1, then I is generated by its extremal function G /, and II fI G /11 ::::: II f II for 
all f E I. 

Proof. If I has index 1 and G / is the extremal function of I, then it is easy to 
see that 

I ezI = CG/. 

The assertion that I is generated by G I then follows from Theorem 6.15. We omit 
the proof that G / is a contractive divisor on I; this is a special case of Exercise 8 
in Chapter 9. • 

COROLLARY 6.17 If -1 < a ::::: 0, then every function f E A~ admits a 
factorization f = G F, where G is A~ -inner and F is cyclic in A~. 

Proof. Let G be the extremal function of If, where If is the invariant subspace 
generated by f. Then If is generated by G, since If has the index 1. It follows 
that f = G F with II F II ::::: II f II. Furthermore, if p is a polynomial, then 

IIpFIl = II~II::::: IIpfll· 

Now, if {Pn}n is a sequence of polynomials such that Pnf ~ G in norm, then 
Pn(z)F(z) ~ 1 pointwise. But the inequality 

IIPn F - PmFIl ::::: IIPnf - Pmfll 

shows that {Pn F}n is a Cauchy sequence. We must have Pn F ~ 1 in norm, 
making F cyclic in A~. • 

6.4 Notes 

That an invariant subspace I of a Bergman space may have index greater than 1 was 
first proved by Apostol, Bercovici, Foia~, and Pearcy in [10]; their proof, however, 
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is only an existence result and gives no clue of what such invariant subs paces 
look like. Explicit construction of such spaces was first carried out by Hedenmalm 
in [61], based on Seip's work on interpolation and sampling sequences, in the 
case n = dim(l/zI) < +00; this construction was later improved to cover the 
case dim(l/z/) = +00 in the paper [71]. It should be mentioned that the reverse 
triangle inequality of Lemma 6.2 is by no means necessary for the index one 
invariant subspaces II, ... , In to generate an invariant subspace of index n. 

The notion of inner spaces was introduced by Zhu in [143], where another 
notion called maximal inner spaces was also introduced. Several characterizations 
and examples of maximal inner spaces can be found in [143] as well. 

Theorem 6.15, which we call a Beurling-type theorem, was proved by Aleman, 
Richter, and Sundberg in [7] in the special case a = O. The proof given here, 
which covers the cases -1 < a S 0, is due to Shimorin; see [126]. The case 
o < a S 1 remains open. We point out that, unlike the classical Beurling theorem 
for H2, Theorem 6.15 does not imply a function-theoretic description of invariant 
subspaces of A~. Such a description in the context of Bergman spaces is known 
only for A-oo ; see [84]. 

One of the reasons that Bergman spaces have attracted so much attention in 
recent years is that they are closely related to an old open problem in Opera­
tor Theory. More specifically, the invariant subspace problem (of whether every 
bounded linear operator on a separable Hilbert space of dimension greater than one 
has a nontrivial invariant subspace) is equivalent to the following question about 
z-invariant subspaces of the Bergman space A2: Given two invariant subspaces I 
and 1 of A2 with I C 1 and dim(J e I) = +00, does there exist another invariant 
subspace L of A2lying strictly between I and 1? See [71] for an explanation and 
references. 

6.5 Exercises and Further Results 

1. A maximal invariant subspace is an invariant subspace contained in no other 
invariant subspace than the whole space. Show that if I is a maximal invariant 
subspace of Ag, then I = Ia for some point a E ill), where Ia stands for the 
subspace of all functions that vanish at a. See [67]. 

2. If an invariant subspace I contains a Nevanlinna function, then I is generated 
by a Nevanlinna function. See [143]. 

3. If {In}n is an increasing sequence of invariant subspaces in Ag and each In 
has index 1, show that the closure of Un {In} also has index 1. 

4. Let I be an invariant subspace of Ag. Then 1 = {f E Ag : zf E l} is also 
an invariant subspace of Ag. Furthermore, I and 1 have the same index. See 
[80]. 

5. For any function f E A2, the space 11 = {g E A2 : PUg) = O} is an 
invariant subspace of A 2. 
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For Problems 5-8, see [143J. 

6. Let G be an A 2-inner function. With the notation from the previous problem, 
show that JG either has index 1 or 2. 

7. A maximal inner space in A 2 is an inner space contained in no larger inner 
space. Show that every inner space is contained in a maximal inner space. 
Hint: apply Zorn's lemma. 

8. If G is an A2-inner function, then the one-dimensional space generated by 
G is a maximal inner space if and only if JG has the index 1, where JG is 
as defined in Problem 5. 

9. For an invariant subspace I in A 2 , let Mz[I] denote the multiplication oper­
ator on I induced by the coordinate function z. Show that Mz[I] and Mz[J] 
are unitarily equivalent if and only if I = J. 

10. Let I = A2 and J be an invariant subspace of A2. Show that Mz[I] and 
Mz [J] are similar if and only if J is generated by a Blaschke product whose 
zero set is the union of finitely many interpolating sequences. See [29]. 

11. Let 1= A2, and let J be an invariant subspace of A2. Show that Mz[I] and 
Mz[J] are quasi-similar if and only if J is generated by a bounded analytic 
function. See [70]. 

12. For any positive real number a, let Ia be the invariant subspace of A2 
generated by the singular inner function Sa (with a single point mass a at 
z = 1). Show that Mz[Ia] and Mz[Ir] are similar for all positive a and T. 

See [141]. 

13. Show that if the invariant subspace I of A 2 is singly generated or if I is 
zero-based, then I has the index 1. 

14. If A and B are disjoint regular sequences, then A U B is regular, and the 
decomposition A U B is homogeneous. 

15. If I and J are invariant subspaces in A~ of index 1, with the properties that 
I C J and n = dim(J / I) < +00, then there exists a Blaschke product b 
with n zeros such that 1= bJ. What if I, J have higher index, say 2? 

16. Let A be a positive bounded operator on the (separable) Hilbert space 1i 
(over the scalar field C, as usual), which means that {Ax, x} 2: 0 for all 
x E 1i. Suppose 1i1 is a closed subspace of1i, and that {Ax, x} = 0 for all 
x E 1i1. Show that Ax = 0 for all x E 1i1. 

17. Fix 0 < p < +00 and -1 < a < +00. Recall thatthe index of an invariant 
subspace I in A~ is defined as the dimension of the quotient space 1/ zI. 
Show that for)... E JD>, (z - )",)1 is a closed subspace of I, and that the 
dimension of the quotient space I/(z - )",)1 does not depend on ).... Hint: 
prove that the dimension is a locally constant function of ).... 



6.5. Exercises and Further Results 189 

18. Fix 0 < p < +00 and -1 < Q! < +00. Suppose 1 is an invariant subspace 
of Ag other than the trivial one {O}. Let Z(1) denote the common zero set 
of the functions in I; we think of it as a discrete subset of lIJ). Then 1 has 
index 1 if and only if it satisfies the following division property: for each 
A. E lIJ) \ Z(1), the function 

f. ( ) = I(z) 
A z 1 ' 

Z-I\. 
ZElIJ)\{A.}, 

extended analytically across the point A., is in 1 whenever 1 Eland 1 (A.) = 
O. 

19. Suppose 1 is an invariant subspace of A2 having index 2. This means that 
1 e zl is an inner space of dimension 2. Let (,01, (,02 be two orthogonal 
inner functions in 1 e zl. Then each function 1 E 1 can be written 1 = 
fI(,Ol + !z(,02, where fI, !z E A2 and IIfI 112 + 11!z1l2 ~ 11/112. What should 
be added to insure uniqueness? Can we get fI (,01, !zc.oz E A 2? See [7]. 
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Cyclicity 

In this chapter, we study the cyclic functions in the Bergman spaces A p. First, 
we identify them with the AP-outer functions, which are defined in terms of a 
notion of domination, in a fashion analogous to what is done in the classical Hardy 
space setting. Second, we show that a function that belongs to a smaller space Aq, 
P < q, is cyclic in A P if and only if it is cyclic in the growth space A -00 • Then we 
characterize the cyclic vectors for A -00 in terms of boundary premeasures; this 
constitutes the bulk of the material in the chapter. 

7.1 Cyclic Vectors as Outer functions 

A function in AP is said to be cyclic if it generates AP as an invariant subpace, 
that is, the smallest invariant subspace of AP containing the function is the whole 
space. Thus, f is cyclic in AP if and only if the closed linear span of the vectors 
f, zf, z2 f, ... is all of AP. 

In the classical Hardy space theory, a function f E H P (0 < P < +00) is said to 
be outer if it is zero-free in the disk IDl, and if the harmonic function log If I equals 
the Poisson integral of its boundary values; the latter condition may be formulated 
as 

log If(O)1 = _1 l lC log If(ei&)1 de, 
277: -lC 

where the boundary values of f are obtained from nontangential approach regions. 
It is well known that a function in H P is cyclic if and only if it is outer; see [37], 
[49], or [82]. 
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An alternative characterization of classical outer functions is as follows: f E H P 

is outer if and only if whenever the conditions g E H P, Ig I ::: I f I on 1r hold, we 
also have that Ig(O)1 ::: If(O)I. This latter fonn is amenable to generalization. 
In fact, it is clear that the condition that Igl ::: If I on 1r (almost everywhere) is 
equivalent to requiring IIgq II HP ::: II f q II HP for all polynomials q. This motivates 
the following definitions. 

DEFINITION 7.1 For f, g E AP, we say that f dominates g in AP, denoted 
g -< f, if IIgq IIAP ::: II f q IIAP holds for all polynomials q. And we say that a 
junction f E AP is AP-outer iflg(O)1 ::: If(O)1 whenever g -< fin AP. 

THEOREM 7.2 Let f E AP with 0 < P < +00. Then f is AP -outer if and only 
if it is cyclic in AP. 

Proof. We first assume that f is cyclic, with the intention to prove that it is 
AP-outer. Let g E AP with g -< f. Since f is cyclic, there exists a sequence of 
polynomials {qn}n such that f qn converges to the constant function 1 in the nonn 
of AP. Since g -< f, 

Ig(O)qn(O)I::: IIgqnlIAP::: IIfqnllAP --+ 1 asn --+ +00, 

and qn (0) --+ 1/ f (0) as n --+ +00, it follows that Ig(O) I ::: If (0) I, and so f is 
AP-outer. 

For the reverse implication, we assume instead that f is AP-outer. Let cp be 
the extremal function for the invariant subspace If generated by f in A p. By 
Theorem 3.33, Icp = If, and IIqflcpliAP ::: IIqfllAP for all polynomials q. Thus, 
fI cp -< f, so by the definition of outer functions, 

If(O)1 ::: If(O)I. 

Since Icp = If, the left-hand side cannot vanish, and hence we must have 1 < 
Icp(O)I. Since cp has nonn 1, we must then have cp(z) == 1, so that f is cyclic. • 

7 .. 2 Cyclicity in AP Versus in A-oo 

Just as in the case of the Bergman spaces AP, a function f in A-oo is said to be 
cyclic in A -00 if the functions f, zf, Z2 f, z3 f, ... span a dense subspace of A -00. 

Since the topology in A-oo is softer than that of any AP, 0 < P < +00, it is 
immediate that a cyclic function in A P is cyclic in A -00, too. It is a meaningful 
question whether these two concepts are in fact equivalent, that is, whether a 
function f E AP that is cyclic in A-oo is automatically cyclic in AP. In the next 
chapter we will show that this is not true in general. However, if the function f 
belongs to a slightly smaller space than A P, then cyclicity in A -00 implies cyclicity 
inAP. 
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THEOREM 7.3 Let IE Aq with 0 < p < q < +00. Then I is cyclic in AP if 
and only if it is cyclic in A -00. 

Proof. By the definition of the topology in A-oo , the fact that I is cyclic 
translates to the requirement that for some sequence {Qn}n of polynomials and 
some fixed r, 0 < r < +00, I Qn tends to the constant function 1 in norm in AT as 
n ~ +00. The assertion holds automatically if p :::: r, and hence we may restrict 
our attention to the case r < p. 

If these polynomials Qn were all zero-free in lIl>, we could run the following 
argument. For real e, 0 < e < 1, we form the powers 1£ and q~ to obtain 
well-defined holomorphic functions in lIl>, and in particular, r belongs to Aqls. 
Moreover, if the power is chosen in such a way that r Q~ tends to 1 uniformly on 
compact subsets of lIl> as n ~ +00, then one shows that the convergence is also 
in norm in ATls. This is a consequence ofthe fact that in ATIs, the norm of r Q~ 
tends to the norm of 1; see Lemma 3.17. For sufficiently small e, the functions 
I Q~ = I I-s r Q~, which are elements of A q, tend to II-s as n ~ +00 in the 
norm of A p. Scrutinizing the requirement for e, we find that for the above to work, 
e should satisfy 

O < r(q - p) 
<e . 

- p(q - r) 

We conclude that I I-s belongs to the invariant subspace If generated by I in A p. 

Proceeding analogously, we also get 11- 2£ E If. By choosing e in such a way 
that 1/ e is an integer, we get eventually that 1 is in If, which clearly implies that 
I is cyclic. 

Now we return to the real world where the polynomials Qn need not be zero­
free at all. Let Zn denote the finitely many zeros the polynomial Qn may have 
in lIl> (with multiplicities), and let 'Pn be the corresponding canonical zero divisor 
(extremal function) in AT. It is the function of norm 1 in AT that vanishes on Zn 
and has biggest value in modulus at O. Since I Qn for large n has norm close to 1, 
and the ~alue at 0 c!9se to 1, we conclude that l'Pn(O)1 ~ 1 as n ~ +00. We now 
form I Qn, where Qn = Qn/'Pn, and observe that it has smaller norm than I Qn 
in AT, by the contractive division property of canonical divisors. Therefore, 

lim sup II f!2n II Ar :::: 1, 
n 

whereas the limit of the values at the origin is 

lim I/(O)Qn(O)1 = 1, 
n 

so that in a first step, I Qn ~ 1 uniformly on compact subsets oflIl>, and in a second 
step, the convergence is in the norm of AT; see Lemma 3.17. We are now able to 
work with the zero-free functions Qn in place of the functions Qn in the above 
argument; they are not polynomials, but certainly approximable by polynomials, 
since the extremal function 'Pn extends holomorphically across the unit circle and 
is bounded away from 0 in a neighborhood of ']['. • 
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Although a complete "geometric" characterization for cyclic vectors in A P is 
stm lacking, the corresponding problem for A -00 was solved over twenty years 
ago. The key idea of the solution is the notion of premeasures for functions in 
A-oo . 

7.3 Premeasures for Functions in A-oo 

Let B(1l') be the set of all open, closed, and half-open arcs of1l', including 1l', 0, and 
all one-point sets. A real-valued function /-t defined on B(1l') is called apremeasure 

if 

(i) /-t(1l') = O. 

(ii) /-t(h U lz) = /-t(h) + /-t(lz) for all h, lz E B(1l') with h n lz = 0 and 
II U 12 E B(1l'). 

(iii) /-t(/n) ~ 0 as n ~ +00 whenever {In}n is a decreasing sequence in B(1l') 

with empty intersection. 

Every premeasure is immediately extended by finite additivity to the class of 
sets of the form 

n 

S=Uh, 
k=! 

where each h is in B(1l'). In particular, if {hh is a finite collection of mutually 
disjoint arcs in 1l', then 

,U(Ukh ) = L /-t(h). 
k 

For every premeasure /-t, we define a real-valued function /i on (0,2n] as 
follows: 

/ice) = /-t(/e), e E (0, 2n], 

where 

Ie = {e it : 0 ::S t < e}. 

Thus, a one-to-one correspondence is established between the set of premeasures 
and the set of real-valued functions f on (0, 2n] such that 

(a) f(e-) exists for all e E (0, 2n] and f(e+) exists for all e E [0,2n). 

(b) fee) = f(e-) for all e E (0,2n]. 

(c) f(2n) = O. 

It is clear that any function f satisfying the above conditions has only a countable 
number of discontinuities, all of which are jumps. 
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For an arc I on the unit circle 1', let I I Is = I I I I (2n) be its normalized length, 
as in Chapter 4. The logarithmic entropy of I is the quantity 

e 
K(l) = Ills log-. 

Ills 
A premeasure /L is said to be K -bounded above if 

/L(l) :::: C K(l) 

for all arcs I, with some positive constant C independent of I. The least such 
constant C will be called the K-bound of /L and will be denoted by II/LII+. The set 
of all premeasures /L with II /L II + < +00 will be denoted by K B+. For comparison, 
consider the case when /L(l) :::: C Ills for all arcs I. Then the premeasure /L is an 
ordinary real-valued Borel measure, with the property that d/L - C ds is a negative 
measure, where ds(z) = Idzl/(2n) is the normalized arc length measure on 1', as 
usual. 

It is clear that in general, II/LII+ :::: 0, and II/LII+ = 0 holds if and only if /L = O. 
The space K B+ is not linear; it is only a cone. In fact, for all /L I, /L2 E K B+ and 
reals 0:::: tl, t2 < +00, we have IItl/LIII+ = tili/LIII+ and 

IItl/L1 +t2/L211+:::: tili/LIII+ +t211/L211+. 

To obtain a vector space we should instead consider premeasures of the form 
K B+ - K B+; these are the so-called premeasures of bounded K-variation (see 
Exercise 4). This concept is important for the study of merom orphic functions of 
the class of quotients A -00 I A -00 as well as for the description of all invariant 
subspaces of A-oo. However, it will not be needed for the study of cyclicity in 
A-oo . 

We now prove that a large class of real-valued harmonic functions in lID can be 
represented as the Poisson integral of premeasures that are K-bounded above. 

THEOREM 7.4 Let U be a real-valued harmonic function in lID with U(O) = 0, 
such that/or some positive constants A and B, 

I 
U(z) :::: A log 1 _ Izl2 + B, Z E lID. (7.1) 

Then/or every open arc I 0/1' the/ollowing limit exists: 

/L(l) = /Lu(l) = lim f U(rz)ds(z), 
r-+I I 

(7.2) 

where ds is the normalized arc-length measure. Moreover, there exists an absolute 
constant C such that 

/L(l) :::: 2AK(l) + (A + B)C Ills· (7.3) 

We can represent U in terms o/the Poisson integral 0/ /L." 

[ 1 - Izl2 
U(z) = j,r I~ _ zl2 d/L(n, Z E lID. (7.4) 
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Proof. The proof consists of three steps. First we establish a crude estimate for 

sup {II U(rz)ds(z)1 : 0 < r < 1, IE .8(,][,)} , 

where .8('][') is the collection of all arcs in ']['. In particular, this implies that the 
supremum is finite. Based on that crude estimate, we then refine it to obtain that 
for all arcs I on '][' and r with 0 < r < 1, 

I U(r~)ds(n .:s 2AK(l) + C(A + B) Ills· 

To derive from this the existence of the limit (7.2) we need a compactness property 
of premeasures that are uniformly K-bounded above; this is analogous to the classi­
cal Helly selection theorem for functions of bounded variation. The representation 
(7.4), the uniqueness thereof, and the existence of the limit (7.2) then follow. Note 
that the integral in (7.4), although it involves a premeasure J.t, can be understood 
as a classical Stieltjes integral involving the integrated function /1. 

Step 1. Fix r, 0 < r < 1, and let I (~l, ~2) (the arc running counterclockwise 
from ~l to ~2) be a solution to the extremal problem 

min {I U(rnds(n: IE .8(,][,)}. 

Since U is harmonic and U (0) = 0, this minimum will be negative or 0; and if we 
denote it by -M, where 0 .:s M < +00, then we see that 

M = max {i U(rnds(n: J E .8(,][,)} , 

the extremum being attained for J = '][' \ I (~l, ~2). It follows that 

-M = 1 U(rnds(n.:s 1 U(rnds(n 
I (<;1.<;2) I 

< [ U(rnds(n = M, 
J.F\l (<;1.<;2) 

for all I E .8(']['). 
Consider the harmonic function 

where 

Vo(z) = [ P(z, n U(rnds(n 
J.F\l (<;1.<;2) 

U(rz) -1 P(z, n U(rnds(n, 
1(<;1.<;2) 

P(z, n = 1 -lz~12 
11 - z~12 

is the Poisson kernel. Let S(~l, ~2) be the sector of II)) bounded by two radii and 
the arc I(~l, ~2). Using the symmetry and unimodality of the Poisson kernel, we 
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obtain by applying integration by parts the estimate 

1 _/Z/2 
Vo(z) ::s U(rz) + M 2' 

dc(z, {~l, ~2}) 
(7.5) 

where as usual de is the Euclidean metric in C. After all, in the remaining sector 
]j)) \ S(~l, ~2), the distance to the arc l(~l, ~2) coincides with the distance to the 
two end points {~l, ~2}. Consider now the curve yet:, ~l, ~2)joining ~l and ~2: 

where 0 < t: < i. The curve yet:, ~l, ~2) consists of two arcs of congruent circles 
tangent to l' at ~l and ~2, respectively, which are joined at a point outside the sector 
S(~l, ~2). To get the general idea, take a look at Figure 4.1. An easy way to see 
this is to identify the circles to which the arcs belong as level sets for the Poisson 
kernels P(·, ~l) and P(·, ~2). We have from (7.5) that 

1 
Vo(z) ::s A log 2 + B + t:M, 

t:dc(z, {~l, ~2}) 
Z E yet:, ~l, ~2), 

and Vo(z) = 0 for z E I(~l, ~2). We can rewrite this in the form 

Vo(Z) 

for Z E yet:, ~l, ~2). 

< 2 A max {lOg 2 , log __ 2_ } 
/Z-~l/ /Z-~2/ 

1 
+A log- + B +t:M 

4t: 

< 2 A (lOg 2 + log 2 ) 
/Z-~l/ /Z-~2/ 
1 

+A log- + B +t:M, 
4t: 

(7.6) 

The function Vo vanishes on l(~l, ~2), so that (7.6) holds on I(~l, ~2) as well. 
Since the· right-hand side of (7.6) is a harmonic function, we can apply the maxi­
mum principle to the domain bounded by the closed contour yet:, ~l, ~2)UI (~l, ~2) 
to get that (7.6) holds there, and in particular at the origin, so that 

1 4 
Vo(O) = M ::s 4 A log 2 + A log - + B + t: M = A log - + B + t: M, 

4t: t: 

which yields, for instance by fixing t: = ~, that 

M::s4(A+B). (7.7) 
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Step 2. Let I be an arbitrary arc of 'IT' and let S(l) be the associated sector 
bounded by two radii and I. We want to establish a sharper upper estimate for 

1 U(rOds(O, 

valid for all r, 0 < r < 1. We define, for 0 < s < !, 

y'(s, l) = \z E S(l) : 1 - Id 2 = s}, 
dc(z, {$1, $2l) 

(7.8) 

where $1 and $2 are the endpoints of the arc I (ordered so that we go coun­
terclockwise as we go from $1 to $2 along I), and consider the harmonic 
function 

Vl(Z) = 1 P(z, 0 U(rOds(n, Z E II)). 

Repeating the argument based on unimodality of the Poisson kernel, we obtain 

l-lzl2 
Vl(Z) :s U(rz) + M 2' 

dc(Z, {$1, $2}) 
Z E S(l). 

It follows that 

1 
< A log 1 _ IzI2 + B + Ms 

1 
A log 2 + B + Ms 

(dc(Z, {$1, $2}) 
1 1 

< 2 A log ( ) + A log - + B + M s 
de z, {$1, $2} s 

< A (210g (1 ) +IOg~+4S) +B(I+4s), 
de z, {$1, $2} s 

where have used (7.7). 
Consider now a harmonic function V2 on II)) with boundary values 

V2(O = dC<~.{~1.~2))' , { log 1 ~ E I 

0, ~ E 'IT' \ I. 

In terms of an integral formula, it is expressed by 

V2(Z) = 1 P(z, 0 log dd~, {~1' $2}) ds(~), (7.9) 

so that 

1 I N'!'' 1 - log - dt + o(IIls) 
7r 0 t 

e 
= Ills log - + O(IIls) = K(l) + O(IIls) 

Ills 
as Ills ~ o. 
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One shows that 

Z E y'(8, I), (7.10) 

with some constant C 1 independent of I and 8. This can be seen either directly 
from (7.9), which is somewhat messy, or by comparing V2(Z) with the harmonic 
function (recall that the real part times the imaginary part of a holomorphic function 
is always harmonic) 

1 I (~o - Z)2 I 1 ( ~o - Z)2 ) Q(z) = log - + log . - arg , (7.11) 
Ills (~l - Z)(~2 - z) 1T (~l - Z)(~2 - z) 

where ~o is the midpoint of the arc I = I (~l, ~2), and the branch of the argument 
in the third term is chosen such that its value at 0 equals O. The boundary values 
of the third term are 1 on I(~l, ~o), -1 on I(~o, ~2), and Oon the remaining T\ I. 
A close inspection of the second term (the first term is a constant) then leads to 
the conclusion that Q(O ~ V2(O on T. Hence Q(z) ~ V2(Z) throughout ]D. 

Moreover, from geometric considerations, it is evident that Q(z) satisfies 

1 
Q(z) :::: log ddz, {~l, ~2}) - C2 

on the part of y' (8, I) corresponding to the first quarter of I starting from ~l, where 
C2 is a constant. Thus, (7.10) holds on that part of y'(8, I). A similar argument 
establishes (7.10) for the quarter of I ending at b and finally for the middle half 
of I, too. Of course, we need different harmonic functions for comparison in each 
case. 

We also need a harmonic function V3 (z) with boundary values 1 on I and 0 on 
T \ I. It is given by the explicit formula 

1 ~2 - z 
V3(Z) = - arg -- - Ills, 

1T ~I - z 
and a simple geometric argument shows that 

min {V3(Z): z E y'(8, I)} :::: 1 - C(8) Ills, 

with C(8) ~ 0 as 8 ~ O. We also have V3(0) = Ills. 
Combining all the above facts, we see that the harmonic function 

V4(Z) = VI (z) - 2A V2(Z) 

- (ACI + A log ~ + AC(8) + B + B C(8») (V3(Z) + C(8)l/ls) 

is negative in the domain bounded by T \ I and y' (8, I), which contains the origin. 
Therefore, fixing some value of 8, we get 

V4(0) = r U(rO ds(O - 2A Ills log ~ - C4Al/is - CsBl/ls < 0, llf Ills 
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which is equivalent to 

1 U(rnds(n ~ 2AK(1) + C(A + B)llIs, (7.12) 

as asserted. 

Step 3. For r with 0 < r < 1, we can represent the function Ur(z) = U(rz) as 
a Poisson integral 

Ur(z) = ~ P(z, n d/-Lr(n, (7.13) 

where d/-Lr(O = Ur(l;) ds(~) is the corresponding boundary measure. This 
measure is also a premeasure, and by (7.12), 

/-Lr(1) = 1 U(rn ds(n ~ 2A K(1) + C (A + B) Ills, (7.14) 

which makes the family of premeasures /-Lr, 0 < r < 1, uniformly K-bounded 
above. By the above-mentioned compactness principle, there is a sequence of 
radii rl < r2 < ... -+ 1 and a premeasure /-L that is K-bounded above such that 
/-Ln = /-Lrn -+ /-L weakly (as premeasures) as n -+ +00. Weak convergence (as 
premeasures) of /-Ln to /-L means that /-Ln (1) -+ /-L (1) for all arcs I, with the possible 
exception of a countable set of arcs with the property that /-L carries nonzero mass 
at at least one of the endpoints of the arc. This weak convergence permits us to go 
to the limit in the Poisson integral (7.13): 

U (z) = ~ P(z, n d/-L(n, 

which is (7.4). Clearly, /-L satisfies (7.3). The existence of the limit (7.2) then 
follows from (7.4) by integration by parts, computation of the integral in (7.2), and 
subsequent transition to the limit as r -+ 1. • 

Note that the term C(A + B)llIs in the theorem above can be discarded at the 
cost of increasing the coefficient of the principal quantity K(1). In particular, the 
/-L in the theorem is a premeasure that is K-bounded above. 

A converse statement to Theorem 7.4 is supplied by Exercise 1 of Chapter 4: if 
/-L E K B+ with IIJLII+ = A, then its Poisson extension has the bound 

1 
P[/-L](z) ~ A log 1 _ Izl2 + B, z E ][]l, 

for some constant B. 
Given a premeasure /-L E K B+, it is natural for us to ask whether /-L can be 

reasonably defined for sets F C T that are more general than finite unions of arcs. 
If F is closed, then it is natural to define 

/-L(F) = - L JL(1k), 
k 

where {Iklk is the collection of complementary arcs of Fin T. For this definition 
to be useful (or just for it to be meaningful), the series above should be absolutely 
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convergent. If, in addition, we want the corresponding series for any closed subset 
of F also to be absolutely convergent for all p., E K B+, then F must have finite 
entropy: K(F) < +00. In particular, this is so for Beurling-Carleson sets F, which 
in addition have zero length. 

Now suppose p., E K B+ and F is a Beurling-Carleson set in 11'. Then p., generates 
a negative Borel measure 0" JL. F on the 0" -algebra of all Borel measurable subsets of 
F; see Exercise 7. Furthermore, if FI and F2 are two Beurling-Carleson sets, then 
the measures O"JL,Fj andO"IL,F2 coincide on FI nF2. The totality of all O"JL.F, where F 
is Beurling-Carleson in 11', form the K -singular part of p." and is denoted by 0" JL; it is 
a negative Borel measure defined on the 0" -algebra generated by Beurling-Carleson 
sets. 

Recall that the logarithmic entropy of an arc I on the circle 11' is the quantity 

e 
K(/) = Ills log-. 

Ills 
The definition extends to unions of disjoint open arcs: 

K(Uj lj) = LK(/j), 
j 

so that for a closed subset F of 11', we have the identity 

K(F) = K(lI' \ F). 

The K-singular part 0" JL of a premeasure p., E K B+ satisfies 

-1Ip.,II+K(F) ~ O"JL(F) ~ 0, 

for all Beurling-Carleson sets F. Recall from Section 4.2 that the entropy of F can 
also be written as 

~ i TC K(F) = log ds(t;), 
l' d'f(~, F) 

provided that F is a Beurling-Carleson set. Here, for z and w in 11', the distance on 
the circle is 

d'f(z, w) = larg ~ I ' 
with arg taking values in (-TC, TC], and 

d'f(l;, F) = inf{d'f(~, w) : w E F}. 

The K-singular part O"JL of p., is supported on a "small" set. In fact, there exists 
an increasing sequence {Fn}n of Beurling-Carleson sets such that 0" JL is supported 
on E = UnFn. Note that the total K-singular measure of 11' might be infinite: 

For a closed set F, let 
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be the a-neighborhood of F, which is an open set. It can be shown that 

K(F8) = r log 7r ds(S) -+ 0 
JF~ dT(~,F) 

as a -+ 0+, 

for all Beurling-Carleson sets F; see Exercise 8. From this and the definition of 
J1-(F), we conclude that 

(1J,t(F) = lim J1-(F8) = lim J1-(F8), 
8--+0+ 8--+0+ 

which then implies that 

for all J1-1 and J1-2 in K B+. 
A premeasure J1- in K B+ will be called K-smooth, or K-absolutely continuous, if 

there exists a sequence {J1-n}n of premeasures in K B+ such that J1- + J1-n is in K B+ 
for all n, 

and 

sup 1IJ1- + J1-n 11+ < +00, 
n 

sup 1(J1- + J1-n)(I) I -+ 0 
I 

as n -+ +00, where the second supremum is taken over all arcs in T. 
The rest of the section is devoted to the following approximation theorem for 

premeasures. 

THEOREM 7.5 A premeasure J1- in K B+ is K-absolutely continuous if and only 
if its K -singular part, (1 JJ.> is zero. 

This theorem is critical for describing the cyclic vectors of A -00. To better 
understand it, let us first consider the classical setting of BOO and explain the 
underlying ideas. 

A function f E BOO is called weakly cyclic if there exists a sequence Un}n 
of functions in BOO such that sUPn IIfnflloo < +00 and fn(z)f(z) -+ 1, as 
n -+ +00, uniformly on compact sets of IT». One obvious condition for f to be 
weakly cyclic is that f be zero-free. The other condition is that the boundary 
Herglotz measure J1- = J1- f of log If (z) I, determined by 

r 1 -lzl2 
log If(z)1 = JT I~ _ zl2 dJ1-f(S), 

be absolutely continuous with respect to Lebesgue measure, that is, the (negative) 
singular part (1 J,t of J1- must be zero. 

The classical singular part (1 J,t is "indestructible", in the sense that (1 J,t Ig :s (1 J,t I 

for all g E BOO. Therefore, we cannot "whittle down" the singular part of J1- f. On 
the other hand, we can do that with an absolutely continuous measure 

dJ1- f(S) = log If(s)1 ds(S) 
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by truncating the L 1_ function log If (n I and gradually reducing itto zero; namely, 
we can achieve this by mUltiplying f by suitable functions gn E H oo . 

In the A -00 setting, the truncation process is not available for premeasures. 
Therefore, to show that the condition a Jl = 0, where J-L = J-L f is the premeasure 
of the harmonic function log I f I, is sufficient for f to be cyclic in A -00, we must 
find an alternative method. 

We now begin the proof of Theorem 7.5. 

Proof. The necessity is relatively simple. Thus, we assume that J-L is K -absolutely 
continuous, so that there exists a sequence {J-Ln}n in K B+ such that II J-L + J-Ln II + ~ C 
for all nand (J-L + J-Ln )(1) -?- 0, as n -?- +00, uniformly in I, where C is a positive 
constant and I is any arc in T. 

Take an arbitrary Beurling-Carleson set F and let {In}n be its complementary 
arcs in 1l'. We have 

and so 

-limninf aJl+/-Ln(F) ~ C L K(1n)· 
n>N 

Letting N -?- +00 and using K(F) < +00, we obtain 

lim inf a /-L+/-Ln (F) ~ o. 
n 

Since J-Ln E K B+, its K-singular part is negative, and so a /-L+Jln (F) ~ a /-L (F). 
It follows that aJl(F) ~ 0 for all Beurling-Carleson sets F. On the other hand, 
J-L E KB+ implies that a/-L(F) ~ O. Thus, a/-L(F) = 0 for all Beurling-Carleson 
sets F, and we have proved the necessity of the condition a /-L = 0 in order for J-L 
to be K-absolutely continuous. 

We will need several auxiliary results before we can prove the sufficiency part 
of Theorem 7.5. The following is a kind of "normal families" result for Beurling­
Carleson sets. 

LEMMA 7.6 Let {Fn}n be a sequence of sets, each of which is the union of a 
finite number of closed arcs. Suppose that IFn Is -?- 0 and K(1l' \ Fn) = 0(1) as 
n -?- +00. Then there exists a subsequence {Fndk and a Beurling-Carleson set 
Foo with the following property: For every a > 0, there is some N = No with 
Fnk C F! and Foo C F~kfor all k > N, where we recall the notation F O for the 
a-neighborhood of F. 

Proof. For each n, let {!t.n : k = 1,2, ... } be the complementary arcs of 
Fn arranged so that l!t.n Is is decreasing in k. First, we show that the sequence 
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{Ih.nlsln is bounded away from zero. In fact, 

"e e K(T \ Fn) = ~ Ih.nls log -- ::: IT \ Fnls log --, 
k Ih.nls Ihnls 

and therefore, 

e K(T\Fn) 
log-- < . 

Ihnls - IT \ Fnls 

Since IT \ Fn Is --+ 1 and K (T \ Fn) = 0 (1) as n --+ +00, the inequality above 
shows that the sequence of normalized lengths {I hn Is In is bounded away from 
zero. 

Next, choose a subsequence {F~}k = {Fnk lk such that I{.n --+ 11 as n --+ +00, 
where I{.n are the complementary arcs of F~ and 11 is some open arc of positive 
length. If IJIls = 1, then {F~ln is the desired subsequence and 

Foo = T \ 11 

is the desired Beurling-Carleson set. 
If IJIls < 1, then the same argument shows that 

I e K(T\F~) 
og II2.nls :s IT \ F~ls -II{,n ls ' 

Since IT \ F~ Is - II{,nIs -+ 1 - 1111s > 0 as n --+ +00, the sequence of normal­
ized lengths {I hn Is In must be bounded away from zero. We can then choose a 
subsequence {Ft}k = {F~k lk such that I£n --+ h as n -+ +00; here Ik.n are the 
complementary arcs of F~'. 

Continuing this process, we then arrive at two scenarios. Either 

(1) after a finite number of steps, we obtain a subsequence {FJ/)ln, such that 
I}~~ --+ h as n --+ +00 for all 1 :s k :s I and IJIls + ... + 11Lis = 1, in which 

case {FJ1)}n is the desired sequence and 

Foo = T \ Ui=llk 
is the desired Beurling-Carleson set, or 

(2) the number of steps is infinite, in which case we must have 

+00 
Lllkls = 1, 
k=1 

which follows from 

and the fact that 11Lis --+ 0 as I --+ +00. Here, A is any upper bound for the 
sequence {K(T \ Fn)}n. Taking the diagonal subsequence {FJn)ln, we then get the 
required result, with Foo = T \ ut~ lk. 
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The proof of the lemma is complete. • 
To state the next lemma, we need to introduce a certain notion of covering for 

intervals of integers. 
For any integers k and l with k :s l, we let I = [k, l] denote the set of integers 

n with k :s n :s l and call I an interval of integers. In particular, [n, n] = in}. 
A simple covering of [p, q] is a system of intervals {In}n of integers such that 

L XIn = X[p.q), 
n 

where XI denotes the characteristic function of the interval I. 

LEMMA 7.7 Consider the following system of N(N + 1)/2 linear inequalities 
with N unknowns Xl, '" , XN: 

I 

LXj :s bk./, 
j=k 

I :s k :s l :s N, 

subject to the constraint Xl + ... +XN = O. The necessary and sufficient condition 
for this system to have a solution is that Ln bkn.ln ::: 0 for every simple covering 
P = {[kn, In]}n of[l, N]. 

Proof. The necessity part is easy. In fact, if Ln bkn.ln < 0 for some simple 
covering P = {[kn, In]}n, then adding up the inequalities 

I 

LXj :s bk./ 
j=k 

corresponding to [kn, in] E P yields Xl + ... + XN < 0, which contradicts the 
constraint Xl + ... + XN = 0, and so the system has no solution. 

To prove the sufficiency part, we proceed somewhat analogously to the proof 
of Lemma 4.30, and let C be the closed convex set in IRN consisting of vectors 
X = (Xl, ... , XN) such that Xk + ... + Xl :s bk./ for all 1 :s k :s I :s N (without 
the constraint Xl + ... + X N = 0). It is clear that C contains all X with sufficiently 
large (in absolute value) negative coordinates. Therefore, the linear functional 

L(x) = (x, L) = Xl + ... + XN 

maps C onto some interval (-00, AD]. In the above, the symbol L stands for the 
vector (1, ... , I) E IRN as well as the associated functional, and (., ) is the inner 
product of IR N . 

Number the N(N + 1)/2 different intervals of integers [k, l] by the index j, 
and let e j be the vector (0, ... ,0, 1, ... , 1,0, ... , 0) with l's precisely on the 
interval [k, l], and write bj for the bound bk./; in both instances, we assume [k, 1] 
and j are in correspondence. We recall from the proof of Lemma 4.30 the assertion 
of the duality theorem of Linear Programming [127, p. 28]: 

max{(x,L): X ECl = min !Z;=0jbj : OJ EIR+forallj, Z;=oje j =L). 
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N(N+1)/2 
e = (e1, ... , eN(N+1)/2) E lR+ 

over which the minimum is taken on the right hand side form a closed convex lower­
dimensional polyhedron S contained in the cube [0, I]N(N+ 1)/2. Using a covering 
type argument, we showed in the proof of Lemma 4.30 that the polyhedron S is 
the (closed) convex hull of all its "edge points" E, which are characterized as those 
points E = (E1, ... , EN(N+1)/2) E S that have E j E to, I} for all j. In particular, 
the above minimum is achieved by one of the finitely many "edge points". The 
assumption Ln bkn.ln :::: 0 for every simple covering P = {[kn,ln]}n of [1, N] 
means that for any "edge point" e, we have Lj ej b j :::: O. By the duality theorem, 
the maximum AD on the left hand side is then:::: 0, too. Since the whole interval 
(--00, AD] is attained by the functional L on C, it follows that there exists a point 
x E C with L(x) = O. The proof is complete. _ 

LEMMA 7.8 For a premeasure f.1, E KB+, the following conditions are equi­
valent: 

(1) f.1, is K-absolutely continuous. 

(2) There is a positive constant C with the property that for every e > 0 there 
exists some positive real number M such that the system 

{

Xk./ :::: M K(Ik./), 

f.1,(Ik./) + Xk./ :::: min {C K(Ik./), e} , 
,,1-1 

Xk.1 = L-s=k XS •s+1, 
XO.N = 0, 

with unknowns Xk.l, 0 :::: k < I :::: N, is consistent for all positive integers 
N. Here, 

h.l = {e ifl : 27ik/N :::: e < 27il/N} 

for 0 :::: k < I :::: N. 

Proof. If f.1, is K-absolutely continuous, then Xk./ = f.1,(Ik./), 1 :::: k < I :::: N, 
satisfy the system in (2). 

If the system in (2) is consistent for every N = 1, 2, 3, ... , then for every N we 
pick a solution xN = {xtl}k./ ofthe system and form a measure f.1,x having constant 
density xs.s+1/lls.s+1Is on each I s.s+1; the density is with respect to normalized 
arc length measure ds. Using the Helly-type selection principle for premeasures 
and effecting the transition to the limit over a subsequence N1 < N2 < N3 < ... , 
we obtain a premeasure x satisfying 

x(I) :::: M K(I), f.1,(I)+x(I) ::::min{CK(I),e}, 
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for all open arcs 1 C l' that do not contain { = 1; this condition on 1 can be 
removed if (1 + log 2) C and 2e are substituted for C and e, respectively. This 
shows that IL is K-absolutely continuous. _ 

We continue the proof of Theorem 7.5, and now supply the sufficiency part. 
Thus, we assume that IL is not K-absolutely continuous. Using Lemma 7.8 we 

see that for every positive constant C there exists an e > 0 such that no matter how 
large M is, the system in (2) of Lemma 7.8 has no solution for some N. Combining 
Lemmas 7.7 and 7.8, with unknowns Xu + lL(h.I), we conclude that for such a 
combination of C, e, and M, there is a simple covering of l' by a finite number of 
disjoint half-closed arcs {lvlv such that 

Lmin {IL{/v) + M K(/v), C K(/v), e} < O. 
v 

Let {l~}v be those arcs from {lv}v for which 

min {IL{/v) + M K(/v), C K(/v), e-} = IL{/v) + M K(/v), 

and let {l;}v = {lv}v \ {l~}v. Clearly, IL{/~) < 0 if M > C. Setting FM = Uv/~, 
we find that 

IL(FM) < -MK(FM) - CL {K(/:): 1/:ls < o} -e L {I: 1/:ls ~ o}, 
v v 

where 0 is defined by the equation 
e 

C o log 8" = e. 

Let C = 3111L1I+ in the rest of the proof. For M > 2C, the collection {l; : 
1/;ls > o} is nonempty; otherwise, the displayed inequalities in the previous two 
paragraphs would imply that 

o 1L(1') = IL(FM) + 1L(1' \ FM) 
< -2CLvK(/~) - CLvK(/:) + 1I1L1I+LvK(/:) 

= -6111L1I+ LK(/~) - 2111L1I+ LK(/:) < 0, 
v v 

which is a contradiction. 
We can also show that as M 4- +00, 

LK(/:) = 0(1) 
v 

and 

K(FM) = LK(/~) 4- 1. 
v 

In fact, for any partition of 1', and in particular for {l v} v, we have 

L IIL(/v) 1 L IL{/v)+ + L IL{/v)-
v v v 

= 2 L IL{/v)+ ~ 2111L1I+ L K(/v), 
v v 
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so that 

/L(FM) ~ -211/L1I+ I>(/v). 
v 

The desired estimates then follow from this and our earlier estimate about J-L(F M)' 
Note that above, we adhere to the standard convention to write t+ = max {t, O} 
and t- = max{-t, O}. 

Applying Lemma 7.6, we can extract a sequence Mn ~ +00 as n ~ +00 such 
that FMn converges to a Beurling-Carleson set Foo. To simplify the notation, we 
write Fn in place of F Mn . 

To summarize the situation, the assumption that /L is not K-absolutely continuous 
implies the existence of a sequence {Fn}n of sets with each Fn composed of a finite 
number of closed arcs such that 

(i) K(Fn) ~ 0 and afortiori IFn Is ~ 0 as n ~ +00, 
(ii) K('[' \ Fn) :::: A for some constant A and all n, 

(iii) /L(Fn) :::: -311/L1I+ [K(Fn) + Lk {K(h.n) : Ih.nls < a}] - S, 

where {h.n}k are the complementary arcs of Fn, and 0 and S are some positive 
constants. Moreover, there is a Beurling-Carleson set F 00 such that for every p > 0 
the p- neighborhood of Foo, Ff:o, contains all but a finite number of Fn, and Foo 
is contained in all but a finite number of F!:. 

We are going to show that aJ1.(Foo ) < 0, where aJ1. is the K-singular part of 
/L. We actually show that the contrary assumption aJ1.(Foo ) = 0 would lead to a 
contradiction. 

Thus, we assume aJ1.(Foo ) = O. Since 

aJ1.(Foo) = lim /L(Ff:o), 
p->-o+ 

we can replace Fn by Fn \ Ft;, in (i)-{iii) and choose Pn so small that (i)-(iii) 
still hold, although perhaps with a smaller s. Therefore, we can choose a sequence 
{Pn}n of positive numbers, decreasing to 0, as well as a sequence {Fn}n of sets 
(composed of a finite number of closed arcs) such that 

Fn C Ft;, \ Ft;,+l 

and 

where 

Gn = (Ft;, \ Ft;,+l ) \ Fn. 

Let Tn, .:Tn, and JCn denote the systems of arcs I of which Fn, Gn, and Ft;, are 
composed, respectively. Let To be the system of arcs that form '[' \ F6J, and let 

Sn = (~Ik) U (~.:Tk) UJCn+l. 
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Adding up the estimates about t-t(Fn) in the previous paragraph, and keeping in 
mind that C = 3 1It-t1l +, we get 

n 

L 1t-t(I)1 + L 1t-t(I)1 ~ L 1t-t(Fv)1 
JeIo JeSn v=! 

> C [~K(Fn) + ~K(Gn)] +ne 

= C L K(I)-C L K(I)+ne 
JeSn JelCn+l 

= C [ L K(I) - L K(I) - L K(I)] +ne. 
JeS.uIo JelCn+l JeIo 

Since 

lim '" K(I) = 0, 
n-++oo ~ 

JelCn+1 

for large enough n, we must have 

L 1t-t(I)1 ~ 311t-t1l+ L K(I), 
JeSnuIo JeSnuIo 

which contradicts an earlier estimate, because Sn U Io is a system of non­
overlapping arcs covering 1'. 

The proof of Theorem 7.5 is now complete. • 

7.4 Cyclicity in A-oo 

Recall that A-oo is the space of analytic functions f in][}) such that 

If(z)1 = 0 (1 _llzI)N) 

for some positive constant N = N(f). If 

+00 

f(z) = L l(n) zn, 
n=O 

Z E][}), 

then it is easy to see that f E A -00 if and only if 

as n ~ +00, 

for some positive constant A = AU). In the rest of this section, We shall make no 
distinction between A -00 as a space of analytic functions and A -00 as a space of 
sequences. 
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We have 

and we define the topology of A -00 as that of the inductive limit of A P as p ~ 0+. 
Let A oo be the space of functions that are infinitely differentiable on ID and 

analytic in JI)). If 

+00 

f(z) = Li(n)zn, Z E JI)), 

n=O 

then f E Aoo if and only if 

li(n)1 = O(n-A), as n ~ +00, 

for all positive constants A. It is well known that the dual space of A-oo is A oo 

under the following duality pairing, for f E A-oo and g E Aoo : 

+00 ~ (f, g) = L i(nfi(n) = lim f(rOg(rOds(O, 
n=O r-+l- l' 

where ds(z) = Idzl/(2n) is normalized arc length measure. 
It will be convenient for us to view A -00 as a closed subspace of a larger space 

C-oo consisting of formal Fourier (or Laurent) series 

+00 

f(O = L i<n)sn, S E 'll', 
n=-oo 

with the coefficients satisfying 

li(n)1 = O(lnIA), as Inl ~ +00, 

for some positive constant A = A(f). The space C-oo consists of all Schwartzian 
distributions on 'll'. We shall think of it both as a space of distributions and as a 
space of sequences. As with A -00, a topology can be put on C-oo via an inductive 
limit. 

Let Coo be the space of infinitely differentiable functions on 'll', 

+00 

fG) = L i<n) sn, S E 'll'; 
n=-oo 

it is well known that f E Coo if and only if 

li(n)1 = O(lnl-A), as Inl ~ +00, 

for all positive constants A. It is classical that Coo and C-oo are each other's dual 
spaces via the the duality pairing 

+00 
(f, g) = L i<n)g(n), 

n=-oo 
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where f E C-oo and g E Coo. 
It is clear that A oo can be viewed as a subspace of Coo. Note also that A oo is a 

subspace of A -00. 

Let x be the operation of multiplication on functions defined in terms of the 
usual convolution * of the corresponding coefficient sequences. We are going to 
use the operation x in the following cases: 

(ii) Coo x Coo C Coo. 

It is important to keep in mind that the operation x may not be the same as 
pointwise multiplication, even if the latter is well-defined. However, in the case 
Coo x Coo the operation x coincides with pointwise multiplication on '][', and 
in the case A -00 x A -00 it agrees with pointwise multiplication in JD). The case 
A-ooxCoo may be treacherous. 

Of the above cases only (i) needs a proof. 

PROPOSITION 7.9 Fix g E Coo. Then f H- gxf is a well-defined continuous 
linear operator on C-oo. 

Proof. Since f E C-oo, there exist positive constants A and C such that 

for all integers n, positive or negative. Since g is in Coo, we can choose another 
positive constant C' such that 

C' 
li(n) I :::: (In I + I)H2 

again for all integers n. Using the elementary inequality 

1 + In -ml:::: (l + Iml)(l + Inl) 

and the definition 
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in the sense of formal Fourier series, we then obtain 

< cc'" (1 + Imll 
L (1 + In - ml)H2 m 

c c' L (~I++I~m~)~1t 
m 

< CC' [~(l +~ml)2] (Inl + 1)'-

for all integers n, which shows that g x f is in C-oo and that the operation is 
continuous in f, as the sum of reciprocals of squared positive integers converges . 

• 
We now use the operation x and the space Coo to construct a class of invariant 

subspaces for A -00. 

PROPOSITION 7.10 For g E Coo, define 

Ig = {f E A-oo : gxf E A-oo }. 

Then Ig is a closed invariant subspace of A-OO • Furthermore, if g rt A oo, then 
Ig i= A-oo (but it may happen that Ig = {O}). 

Proof. This follows immediately from Proposition 7.9 and the fact that 

gx(zf) = z(gxf) E A-oo 

if g x f E A -00. If g is not in A 00, then I g does not even contain the constant 
function 1. • 

We need another lemma before we can characterize the cyclic vectors of A -00 • 

LEMMA 7.11 If F C 1I' is a Beurling-Carleson set, then there exists an outer 
function <l> E A 00 with <l> (0) = I and <l> (z) i= 0 for Z E iD \ F, which is flat on F: 
<l>(n)(z) = Of or all n = 0,1,2,3, ... and z E F. 

Proof. Let 1I' \ F = UnIn, where In are the complementary arcs of F. For 
each n, let In = U} In.} be a partition of In into nonoverlapping closed arcs In.} 
(that two arcs are nonoverlapping means that their intersection is empty or a single 
point) satisfying 

Iln.}ls = d1f(Jn.} , F)/(2n) 

for all j. Relabel the doubly indexed sequence {In,} }n,} as {lv}v. It is clear that 
this sequence of arcs has F as "cluster set". For each v, let eifiv be the middle point 
of lv and av = rveifiv (with 1 < rv < +(0) be the point in rc from which lv is 
seen at a right angle. Clearly, rv - I is approximately Ilvl/2 = nllvl s and 

LK(Jv) = L Ilvls log _e_ :s CK(F) < +00 
v v Ilvls 
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for some positive constant C. Pick some real numbers Av > 0 such that Av --+ +00 
as v --+ +00 and 

:L:>v K(Jv) = L AV I Iv Is log _e_ < +00, 
v v Ilvls 

and consider the function 

It can be seen that <t>1 is an outer function with 1<t>I(Z)1 < 1 in [J). Furthermore, 
we have 

1<t>I(Z)1 ~ exp (CAv e ), 
logllvls 

for some positive constant c, and 

Z E Iv. 

Hence 

as d1['(z, F) --+ 0, 

for all positive constants N. On the other hand, for n = 1,2,3, ... , we easily 
calculate the n-th derivative: 

where 

en 
l4>n(z)1 ~ d1['(z, F)2n 

holds for some positive constant Cn. It follows that the function <t>(z) = 
<t>1 (z) / <t>1 (0) has all the desired properties. • 

THEOREM 7.12 A function f E A-CO is cyclic in A-CO if and only if f is 
nonvanishing in [J) and the premeasure /-L = /-L f in the representation 

fez) = 1(0) exp [ r ~ + Z d/-L(n] 11[' ~-z 
is K-absolutely continuous. 

Proof. The sufficiency follows directly from Theorem 7.5 (the approximation 
theorem for premeasures). 

To prove the necessity, we assume that the K -singular part of /-L f' denoted a = 
a f' is nonzero. Then there exists a Beurling-Carleson set F C 1I' with -00 < 
a(F) < O. Let <t> be the function as in Lemma 7.11. Clearly, the powers <t>k 
(k = 2, 3, ... ) also have the same properties. 



7.4. Cyclicity in A-oo 213 

Now, for k = 1,2,3, ... , define 

IJIk(Z) = [<PCz)]k exp [- ( /; + z da Cn] , iF /;-z 
Z E lDJ. 

Each IJIk is analytic in lDJ, and in fact, it extends to a Coo function on lDJ \ F. It 
also belongs to the Nevanlinna class, but it is not in A -00, because its boundary 
Cpre)measure has a positive K-singular part Cnamely, the restriction of -a to F). 

If we define IJIkCn = 0 for /; E F and k = 1,2,3, ... , then IJIk becomes a 
Coo function on T. This is because every derivative of the first factor <pk in IJIk 
is 0 [deC/;, F)n] for all n :::: 0, whereas the derivatives of the second factor in IJIk 
increases not faster than some negative power of deC/;, F) as deC/;, F) -+ O. 

Let gkCz) = fCz)lJIkCz) for k = 1,2,3, ... and z E lDJ. We can write 

gkCZ) = f(O) exp [ { /; + z (dfLCn - daFC/;) + k log l<Pcnl dsCn)] , 
JJf/;-z 

where aF is the restriction of a to F, and dscn = Id/;I/C2n) is normalized arc 
length measure, as usual. The boundary premeasure of gk is 

dfLgk = dfL - daF + k log I<pcnl dsCI;). 

Let I be an arbitrary open arc in T. If I n F = 0, then 

fLgk(J) = fL(J) + k I log l<Pcnl dscn :s a K(J) + bills 

for some positive constants a, b, both independent of I, because fL is K-bounded 
above and log I<pcnl is bounded above. If In F i= 0, we let {iv}v be the com­
ponents of the open set I \ F. For every e, 0 < e < +00, there exists a constant 
bCe) such that 

log l<Pcnl :s elogd']['C/;, F) + bCe) 

for all /; E T. Since at least one of the endpoints of each Iv belongs to F, we 
obtain by integration 

for all indices v. If we choose e > a / k, then 

fLgk (J) ~ fL(Jv) + k ~ Iv log l<Pcnl dscn 

< (a - ke) LK(Jv) + bee) Ills :s bCe) Ills. 
v 

This shows that fLgk is K-bounded above, and so each gk belongs to A -00. 

Take k = 3, and let 

S(z) = exp [{ /; + z da Cn] , 
JF/;-Z 

Z E lDJ. 
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Then 

/x W3 / x (<1>3 S-I) = / x [<1>2 x (<1>S-I) ] 

(f<1>2)X(<1>S-I) = [(/<1>S-I) x (<1>S)] X(<1>S-I) 

(f<1>S-I) x <1>2 = /<1>3 S-1 = /W3. 

Here we treat <1> S-I , <1>2 S-I , and <1>3 S-I as elements of Coo; <1>, <1>2, <1>3, and <1>S 
as elements of Aoo; and /<1>S-l and /W3 as elements of A-oo . We also used the 
associative law for the operation x. 

As /W3 E A-oo , and W3 E Coo \Aoo as a boundary function, Proposition 7.10 
tells us that / E iljJ3 and that iljJ3 is a proper invariant subspace of A-oo. This 
shows that / is not cyclic in A -00 . • 

7.5· Notes 

A difficult (and still open) problem in the theory of Bergman spaces is te> charac­
terize the cyclic vectors. Theorem 7.2 was conjectured by Korenblum in [88] and 
later proved by Aleman, Richter, and Sundberg in [7]. The description of cyclic 
vectors for A-oo was given by Korenblum in [84], where it is a corollary of the 
theorem describing all invariant subspaces of A -00 in terms of zeros and boundary 
premeasures. Partial results on cyclic vectors were obtained in [117] and [102]. 

Theorem 7.3 is from Brown and Korenblum [31]; however, the proof is simpli­
fied by the use of the results on A P -inner functions in Chapter 3. The combination 
of Theorems 7.3 and 7.12 seems to be the most powerful tool available to deal 
with cyclic vectors in the Bergman spaces AP. However, as will be clear from the 
next chapter, there exist functions in AP that are cyclic for A-oo but not for AP. 

7.6 Exercises and Further Results 

1. Show that every classical outer function in Ag is necessarily a cyclic vector 
in Ag. 

2. If / and g are functions in Ag with / = cpg, where cp is a classical outer 
function, then / and g generate the same invariant subspace. Does this 
remain true if cp is just a cyclic vector in Ag? 

3. Fix 0 < p < +00 and -1 < Ci < +00. Show that there exists a classical 
inner function cp such that l/cp belongs to Ag. 

4. Let K V be the space of premeasures f.L = f.L 1 - f.L2, where f.L 1 and f.L2 belong 
to K B+ . Prove that f.L E K V if and only if there exists a constant C > 0 such 
that for any finite partition 'JI' = Ukit, where each it E 8('JI') and it n 1/ = Qj 
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for k i= 1, we have 

:2)JL(h) I ::: c I>(h). 
k k 

See [35]. 

5. Recall that for f E A-oo we use of to denote the K-singular measure of f. 
Show that O'fg = of + O'g for all f and g in A-oo. 

6. Let Z be a zero set for Ag and 0' be a K-singular measure on 1['. Show that 

J(Z, 0') = {f E Ag : Z C Zf, 0' ::: O'f} 

is an invariant subspace of Ag . Here Z f is the zero set of f, and the inclusion 
Z C Z f takes multiplicities into account. 

7. Suppose JL E KB+ is a premeasure and let F be a Beurling-Carleson set. 
Show that - in the context of the material following after the proof of The­
orem 7.4 - the "restriction" of JL to F is a negative Borel measure. See 
[83]. 

8. Let F be a Beurling-Carleson set, and FO its o-neighborhood, for positive 
o. Show that K(FO) ~ 0 as 0 ~ 0+. See [84]. 



8 
Invertible N oncyclic Functions 

A function f in a space X of analytic functions is said to be invertible if 1/ f also 
belongs to X. In the classical theory of Hardy spaces, every invertible function in 
H P is necessarily cyclic in H p. This is also true in the A -00 theory; an invertible 
function in A -00 is always cyclic in A -00 • 

In this chapter, we construct invertible functions in AP that are not cyclic there. 
What makes the construction possible is a delicate combination of growth and 
decay. The construction is quite challenging technically, which may explain why 
it took some 30 years for the solution to appear after Shapiro first posed the problem. 

The functions we construct will in some sense be extremal in the given space. 
In particular, the set of points E in the unit circle where the function is "maximal" 
should be rather massive. Our functions exhibit bad boundary behavior everywhere 
on the unit circle. However, it is possible to modify our constructions so that the 
resulting functions extend analytically across any given proper arc of the unit circle. 

In Section 8.1, we supply an estimate of Poisson integrals of Borel measures in 
terms of the size of of the smallest supporting arc, and introduce harmonic measure. 
Sections 8.1-8.5 are devoted to the technical details of constructing certain real­
valued harmonic functions h on IDl with specific properties, and the non-cyclic 
element f of AP is then obtained from h via the formula 

f(z) = exp (h(z) + ih(z)) , Z E 1Dl, 

where the tilde indicates the harmonic conjugation operation. 
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8.1 An Estimate for Harmonic Functions 

ForI :s p < +00, lethP (ID» denote the Banach space of complex-valued harmonic 
functions f in the disk ID> with finite norm 

IIfllhP = sup - If(reill)IPde < +00. ( 1 j1f )l/P 
O<r<1 2Jr -1f 

Also, let hOO(ID» be the Banach space of complex-valued bounded harmonic 
functions on ID>, with norm 

IIfllhOC = sup {If(z)1 : z E ID>} < +00. 

For a finite complex-valued Borel measure p, on 1', its Poisson integral is the 
function 

P p,(z) = h P(z, S) dp,(S), Z E ID>, 

where 

1 -lzl2 

P(z, n = I~ _ Z12' (z, n E ID> x 1', 

is the Poisson kernel. It is well known that a harmonic function belongs to hI (ID» 
if and only if it is the Poisson integral of a finite Borel measure. Moreover, for 
1 < p :s +00, the space hP(ID» coincides with the space of Poisson integrals of 
LP (1') functions. We shall need to estimate the size of the Poisson integral of a 
measure with small support. For a Borel measure p, on 1', 1Ip,1I stands for its total 
variation. 

THEOREM 8.1 For 0 :s t :s 2Jr, let J(t) be the closed arc connecting the point 
1 with eit , running counterclockwise. If p, is a complex-valued Borel measure 
supported on J(f3) for some f3, 0 < f3 < 2Jr, which has 1Ip,1I = 1 and p,(1') = 0, 
then 

P l-Id 
I p,(z) I :s f3 dc(z, J (f3))3 ' Z E ID>, 

where de is the Euclidean metric. In particular, 

IPp,(z)1 :s (l ~~ZI)2' Z E ID>. 

Proof. Let M(eill ) be the function p,(J(e)), which is well defined at 1 because 
/1-(1') = O. The function M is supported on J(f3) with IIMIlLoc :s !. Integration 
by parts gives 

j 1f P(z, eill) dp,(eill) = (1 _ Id) j1f M(eill ) ~ leill _ zl-2d e. - - ~ 
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Since 

Z E [J), 

we get 

< 

< 

The proof is complete. • 
We will need to use harmonic measure late on, so we briefly review the notion 

here. Let Q be a bounded planar domain such that the Dirichlet problem can 
be solved on Q. In other words, for any continuous function f on the boundary 
aQ, there is a harmonic function on Q which extends continuously to Q and has 
boundary values f. By the maximum principle, the harmonic function is uniquely 
determined by its boundary values. We write H (f) for the harmonic extension of 
f. The mapping H is clearly linear. In view of the maximum principle, 

IH(f)(z)1 ::ssup{lf(nl: l; E aQ}, Z E Q, 

so that for each z E Q, the mapping f 1-+ H(f)(z) is a bounded linear functional 
of norm 1 on the space C(aQ) of continuous functions on aQ. By the Riesz 
representation theorem, there is a Borel measure dwz on aQ of total variation 
norm 1 such that 

H(f)(z) = [ fen dWz(n JaQ 
for all f E c(aQ). If we apply this to the constant function 1, we realize that dwz 
is a probability measure. It is called harmonic measure. To indicate properly the 
dependence on the point z and the domain Q, we shall write 

dw(z,·, Q) 

in place of dwz, and for Borel measurable subsets E of aQ, w(z, E, Q) is the 
corresponding mass of E with respect to harmonic measure. Actually, the notion 
of harmonic measure can be extended to much more irregular domains than those 
for which the Dirichlet problem can be solved. 

Harmonic measure has a well-known interpretation in terms of Brownian mo­
tion. The quantity w(z, E, Q) represents the probability that a Brownian motion 
starting at the point z E Q will exit the domain Q on the subset E of aQ. It 
is assumed that the Brownian motion comes to a halt once the boundary aQ is 
reached. 
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8.2 The Building Blocks 

Our basic building blocks in later constructions will be the functions <pa . .B, where 
o < a < fJ ~ 2Jr, which are defined as 

1 1 
<pa . .B(z) = ~ w(z, lea), lD» - 73 w(z, l(fJ), lD», Z E lD>. 

Here, w is harmonic measure and I ( r) is the arc defined by 

l(r) = {e ill : e E [-!r, !r]}. 
In the case fJ = 2Jr we write <Pa in place of <Pa .2rr. Thus 

1 1 
<Pa(z) = - w(z, lea), lD» - -, 

a 2Jr 

We extend the function <pa . .B to the boundary T by declaring 

ZET\I(fJ), 
{ 

0, 

<pa . .B(z) = -l/fJ, 

l/a - I/fJ, 

Z E l(fJ) \ lea), 

Z E lea). 

One checks that <pa . .B(O) = O. An elementary solution of the Dirichlet problem 
(see [49, pp. 41-42]) yields the explicit formula 

1 ( eia/ 2 - Z ) a 
w(z, lea), lD» = - arg . /2 - -2 ' 

Jr e-W - Z Jr 
Z E lD>, 

with a suitable choice of the argument function, so that 

1 (I_Ze-ia/2) 
<pa(z) = - arg . /2 ' 

Jra 1 - Z eW 
Z E lD>, 

and <pa . .B = <Pa - <P.B. For 0 ~ r < 1, put 

Qa . .B(r) = max {<pa./3(Z): Izi = r}, 

and extend the function continuously to [0, 1] by setting Qa . .B(l) = l/a - I/fJ. 
Note that it is increasing in r, and has the property that the function Qa . .B (el ) 

is convex on (-00,0]. For geometric reasons, the above maximum is attained at 
Z = r, and an explicit computation yields 

2 rsin!a 2 rsin!fJ 
Qa . .B(r) = <Pa . .B(r) = - arctan 1 - - arctan 1 . 

Jra l-rcosza JrfJ l-rcoszfJ 

For 0 < a ~ Jr, the value of Qa . .B at r = cos !a is readily estimated as follows: 

cos!a ~ r < 1. 
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We proceed to get an estimate on a longer interval. For 0 < a < trr, we have 

so that 

1 < 

1 I . 1 
cos -a > I - - sm -a 

2 3 2' 

r sin 1a 
1 ' 1 - rcos za 

1 . 1 I - - sm -a < r < 1 2 2 - , 

and consequently, 

1 1 1 1 
2a - p < Qa,p(r) < ;; - P' 

The second derivative of Qa.p(r) is 

1 . 1 
1 - - sm -a < r < 1. 2 2 -

" 4 (cos 1a - r) sin 1a 4 (cos 1,8 - r) sin 1,8 
Qap(r) = - 2 - - 2' 

. rra (1+r2-2rcos1a) rr,8 (1+r2-2rcos1,8) 

When 0 < a < ,8 < rr, we have Q~,p(r) > 0 on the interval 0 < r < cos 1a, 
so that Qa,p is convex there. In the special case ,8 = 2rr, we write Qa in place of 
Qa,2n:, 

2 r sin 1a 
Qa(r) = - arctan 1 ; 

rra 1 - r cos za 

its second derivative reduces to 

" 4 (cos 1a - r) sin 1a 
Qa(r) = - 2' 

rra (1+r2-2rcos1a) 

It follows that Qa is convex on [0, cos 1a], and concave on [cos 1a, 1]. The value 
at the inflexion point is 

1 2 sin 1a cos 1a 
Qa(cos -a) = - arctan 2 1 

2 rra 1 - cos za a rr 

so that by convexity (0 < a < rr), 

rr-a 
Qa(r) ::: 1 r, 

rracosza 
o ::: r ::: cos 1a. 

For 0 < a ::: 1rr, we have 

rr - a < (rr -1a) cos 1a, 

since 1 - 1a2 < cos a. Therefore, 

o ::: r ::: cos 1a. 
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We also need to estimate the first derivative of Qa(r), 
. 1 

, 2 sm"ia 
Qa(r) = - 1 . 

11:a 1 + r2 - 2r cos "ia 

It can be checked that Q~(r) attains its maximum at the point r = cos 1a (which 

is the inflection point for Qa (r)), so that for 0 < a :5 111:, 

, '( 1) 2 ./i Qa(r) :5 Qa cos"ia = . 1 :5 2' 
11:asm "ia a 

Here, we used the fact that (sinx)/x :::: 23/ 211:-1 for 0 < x :5 11:/4. The function 
Q~(r) increases on [0, cos 1a] and decreases on [cos 1a, 1], so by estimating its 

values at r = 0 and r = 1, we see that (0 < a ":5 111:) 

1 , ./i 4 < Qa(r) :5 a2 ' 0:5 r :5 1, (8.1) 

and 

(8.2) 

Define 

r sin 1a 
A(r, a) = arctan 1 ' 

1 - rcos"ia 

and 

Then 

r Q~(r) = sin A(r, a) 

Qa(r) A(r, a)B(r, a) 

Using this identity and the elementary estimate 2/11: < (sin x) / x < -1 for 0 < x < 
1 "i11:, we get 

1 rQ~(r) 
-<---
2 Qa(r) , 

0< r :5 1, 0 < a :5 111:, (8.3) 

and 

2 rQ~(r) 3 
-<---<-
3a Qa(r) Q!' 

(8.4) 

At some point, we shaIl also need to be able to handle the function Q2rr-a(r) for 
smaIl positive angles Q!. One shows that for 0 < a :5 111:, 

1 rQ;rr_a(r) 
- < < 1 0 < r :5 1. (8.5) 
4 Q2rr-a(r) , 

We omit the details. 
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Figure 8.1. The set EU(N, a) 

8.3 The Basic Iteration Scheme 

We now describe an iteration scheme that produces bounded harmonic func­
tions with certain desired properties. First, we need some notation. For k 
0, 1, ... , N - 1 and 0 < O! < Zrr, define arcs h(O!, N) and h(O!, N) by 

h(O!, N) = {e ill : e E (~(Zrrk - !O!), ~ (Zrrk + !O!))} , 
and 

Jk(O!, N) = {eW : e E (~ (Zrrk + !O!), ~ (Zrr(k + 1) - !O!)) } , 
and form the set 

EU = EU(N, O!) = {re ill : r! ~ r ~ rN' eill E y i j (0!/2, N) I' (8.6) 

where rN = 1 - (N log N)-I and r! = 1 - Z(N log N)-I. The set EU looks like 
a union of equidistributed rectangular boxes placed along a concentric circle (see 
Figure 8.1). 

LEMMA 8.2 Let u(t) = 1 -log(1 - t) and vet) = fJ u(t), where fJ is a positive 
constant. Suppose f E hOO(IDl) is real-valued and satisfies 

-v(lz!) - A ~ fez) ~ u(lz!) + B, Z E 1Dl, 

for some constants A and B. Let p E (0, 1) and £ > 0 be given. Also, .fix a 
parameterO! with 0 < O! ~ min{l, 2fJ}. Then for any real parameter~, there is a 
radius e E (p, 1) and a constant C = C(O!) such thatfor sufficiently large positive 
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integers N we can find a real-valuedfunction g E hOO(lOl) satisfying the following: 

and 

If(z) - g(z)1 s e, 

-v(lz!) - A - e S g(z) s u(lz!) + B + e, 
-v(lz!) s g(z) s u(lz!) - ~ + c, 

u(lz!) - ~ - C s g(z), 

Furthermore, the function g can be made to satisfy 

Izl s p, 

p < Izl < Q, 

Q S Izl < 1, 

l exp (g(z») dA(z) s C e-~ + eE l exp (f(z») dA(z) 

as well. 

Proof. We may assume that f extends continuously to the closed disk IT). If it 
is not, we can replace f by its dilate fr, where fr(z) = f(rz) for z E lOl, with 
o < r < 1 sufficiently close to 1. 

Let 4>a and Qa be as in the previous section. For any positive integer N, let 
4>N(Z) = 4>a(ZN) and qN(r) = Qa(rN). Then 4>N is harmonic in the unit disk 
and qN(r) is the maximum of 4>N(Z) on the circle Izl = r. The function 4>N(Z) 
extends continuously to the unit circle except for a finite set of points, and equals 
Ija-lj(21l") on Uk/k(a, N),and-lj(21l") on Uk1k(a, N). As a matter of notation, 
let us agree to write ik(a, N) and ik(a, N) for the closures of the respective arcs. 

Step 1. For any real t, define 

{ qN(r) } 
AN(t) = sup : aCt) S r < 1 , 

u(r) - t 
(8.7) 

where 

aCt) = max {~, 1 - e-2t }. 

Note that u(r) - t is at least 1 for a(t) S r < 1. By the properties of the functions 
u(r) and aCt), we also have 

1 2 u(r) S u(r) - t, aCt) S r < 1. (8.8) 

It is clear by inspection that the supremum in (8.7) is attained at some point of 
[aCt), 1), because the function u(r) tends to +00 as r ---+ 1. Since 

d qN(r) q~(r)(u(r) - t) - qN(r)u'(r) 

dr u(r) - t (u(r) _ t)2 

after some simplifications we see that this derivative has the same sign as 

Q' (rN) r u'(r) 
rN a - - (89) 

Qa(rN) N u(r) - t . 
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Suppose the variable t is confined to some given finite interval [-T, TJ. The first 
term of (8.9) is greater than 1, by (8.3); for r = aCt), the second term tends to 
o as N grows to infinity, so that for large N, the sign of the quantity in (8.9) is 
positive, and the supremum in (8.7) is not attained at ttIe left boundary point. So, 
for N large, any point r = rN(t) where this m~ximum is attained is an interior 
point, and hence, by elementary calculus, we have that 

Q' (rN) r u'(r) 
r N Q:(rN) = N u(r) _ t' r = rN(t). 

This identity, together with (8.3), (8.4), and (8.8), shows that for large N we can 
estimate the position of a point where the maximum in (8.7) is attained: 

CI C2 
1 - < rN(t) < 1 - (8 10) 

NlogN - - NlogN' . 

where the constants C I and C2 depend only on the parameter a. For example, we 
may pick CI to be 2a and C2 to be a/4. 

Step 2. For any large N and real t, put 

One then calculates that 

a-I - (2:n,)-1 
11.* (t) = ------

N 10g(N log N) - t 

I A~(t) - A~(t) I ~ C 
(8.11) 

for some positive constant C = C(a) that depends only on a, provided that N 
is large enough. This is so because 1 - rN(t)N is comparable to (logN)-1 and 
qN(rN(t» = Qa(rN(t)N), so that when we plug in the point r = rN(t) into (8.7), 
and use the estimate (8.10), the value of the denominator on the right-hand side of 
(8.7) is close to AN (t) -I, and the numerator is close to 1; see Exercise 1. 

By the way the parameter AN(t) was defined, 

4JN(Z) < u(1 I) - t 
AN(t) - Z , 

Combining this with (8.11) we obtain 

4JN(Z) < u(1 I) - t + C 
AN(t) - Z , 

aCt) ~ Izi < 1. 

aCt) ~ Izl < 1, 

with a positive constant C that depends only on a. 

(8.12) 

The point r'N = 1 - (N log N)-I is similar to the point rN(t), where the max­
imum in (8.7) is attained, in that the corresponding distances to the point 1 are 
comparable. We shall now show that for some positive constant C = C(a), which 
depends only on a, the following estimate holds for large N: 

( ) 4JN(Z) 
u Izl - t - C < -­

- AN(t) , 
Z E EU(N, a). (8.13) 
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We first observe that by the definition of rN(t), 

<PN(Z) = u(1 I) - t _z_ E E(N), 
AN(t) Z , rN(t) 

where E(N) is the set of N-th roots of unity consisting of 

ek(N) = exp(2rrikj N), k=O, ... ,N-1. 

Next, by using (8.1), we see that replacing AN(t), rN(t) with A'N(t), rN carries 
the cost of introducing a positive constant C = C(a) depending only on a, in the 
sense that 

( ) <PN(Z) Z 
u Izi - t - C < -- -;- E ECN). 

- A'NCt) , rN 

Extending the estimate beyond the set E(N) to the union of rectangular-shaped 
boxes Ett(N, a) requires some simple estimates of harmonic measure, which are 
left to the reader; see Exercise 2. 

Step 3. Up to this point, the parameter t is confined to a prescribed interval 
[-T, T], and N is a large integer depending on T and a. We now let T equal the 
supremum of If(z) + sl on lOl. Let ek(N) = exp(2rrikjN) be an N-th root of 
unity, and set 

tk(N,s) = f(ek(N)) +s· 
Then tk(N, s) is confined to the interval [-T, T], and we can consider 

(N 1:) = A* (t (N 1:))-1 = 10g(N log N) - f(ek(N)) -s 
iLk '':i N k ,':i a-I _ (2rr)-1 

and the associated function 

1 N-I 

XN.~(Z) = N L iLk(N, s) 4.>a/N.2Jr/N(ek(N)z), 
k=O 

Z E lOl. 

The points ek(N) = exp(-2rrikjN) are the complex conjugates of the ek(N). 
The size of the function 4.>a/N.2lC/N(Z) is estimated by means of Theorem 8.1; for 
large Nand 0 < a ::::: !rr this results in 

10gN 8a 
IXN.~(z)1 ::::: t:I (1 - Iz1)2' 

The function <PN(Z) may be written as 

1 N-I 

<PN(Z) = N L ¢>a/N.2lC/N(ek(N)z), 
k=O 

Z E lOl. (8.l4) 

Z E lOl. 

We intend to compare XN.~(Z) with the more easily analyzed function X;;:~(Z) = 
iLk(N, s) <PN(Z). It, too, enjoys (for large N) the estimate 

I (k) I log N 8a 
XN.~(Z) ::::: t:I (1 _ Iz1)2' Z E lOl. 
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The difference is 

1 N-I 

N L (fJ,j(N, 0 - M(N, ~))<I>a/N.2n/N(ej(N)z) 
j=o 

(a- I - (2Jr)-lr l IN 
N-I 

x L (f(ek(N)) - f(ej(N))) <l>a/N.2n/N (ej(N)z). 
j=o 

By the uniform continuity of f on ~, we can fix a positive 0 such that If(z) -
f(w)1 :s 1 whenever Iz - wi :s o. Split up the index set {a, 1, ... ,N - I} into 
two parts, one, X (k, N), consisting of those j for which Ie j (N) - ek (N) I :s 0, and 
the other, Y(k, N), where the opposite occurs. Then, since the various building 
blocks <l>a/N.2n/ N (ej (N)z) are supported on disjoint arcs of 11' for different j, we 
see that the quantity 

N[ -I ~ (2 )-1] L I (t(ekC N )) - f(ej(N)))<l>a/N.2n/N(ej(N)z) I 
a Jr jEX(k.N) 

is less than or equal to 1. Summing over the remaining indices in Y(k, N) and 
noticing that 

we conclude that the quantity 

N[ -I ~ (2 )-1] L I (t(ek(N)) - f(ej(N)))<I>a/N.2n/N(ej(N)z) I 
a Jr jEY(k.N) 

is less than or equal to 2T w(z, 11' \ Lk, lDl), where w is harmonic measure, Lk = 
LkCo) is the arc on 11' of points within distance 10 from ek(N), and N is so large 

that 2Jr I N is considerably smaller than 10. These two estimates lead to 

Z E lDl. (8.15) 

Let Dk = Dk(O, T) be the lunula that is the intersection with lDl of a disk 
centered at the point ek(N) with radius depending only on T and 0, such that 
2T w(z, 11' \ Ld :s 1 for z E Dk; then, by (8.15), 

I (k) I XN.~ (z) - XN.s (z) :s 2, (8.16) 

We may assume that all the Dk are contained in the annulus aCT) < Izl < 1, and 
that the radius of each Dk is at most 10. By (8.12) and (8.13), 

aCT) :s Izl < 1, 

and 
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Since If(z) - f(ek(N)) I :::: 1 for z E Db we get from (8.16) that 

f(z) + XN.~(Z) :::: f(ek(N)) + X~!~(z) + 3:::: u(lzl) - ~ + C' (8.17) 

for z E Db and 

u(lzi) - ~ - c' :::: f(ek(N)) + X~!~(z) - 3:::: f(z) + XN.~(Z) (8.18) 

for z E Dk n EU(N, a); here C' = C + 3 with C = C(a) being the constant 
appearing in (8.12) and (8.13). For large N, the distance between the centers 
ek(N) of the lunula! Dk gets much smaller than the radius (which is independent 
of k and N), so that UkDk contains an annulus if < Izl < 1, where if = if(8, T) 
has 0 < if < 1. Moreover, for large N, the set EU(N, a) will be contained in the 
annulus if < Izl < 1, by (8.10). So it follows from (8.17) and (8.18) that 

f(z) + XN.~(Z) :::: u(lzi) - ~ + C', if < Izl < 1, 

and 

u(lzl) - ~ - c' :::: f(z) + XN.~(Z), 

Step 4. Let Po be the bigger of the two numbers P and if. Let l2 
l2(p, if,~, a, f), with PO < l2 < 1, be so close to 1 that 

1 
If(z)1 :::: "2/3 u(lzi) - 2, l2 < Izl < 1; 

after all, f is a bounded function. By (8.14), we have 

Izl < l2, 

provided that N is large enough. We now make the pick 

g(z) = f(z) + XN.~(Z), Z E JI)); 

this function meets all the required conditions, save the control from below and 
the integral estimate. If we can show that 

1 
-XN.~(Z) :::: Z-/3 u(lzl) + 2 

on l2 < Iz I < 1, we will be done with the control from below. We turn to estimating 
the function XN.~(Z) from below on the lunula Dk. We have 

so we estimate the simpler function instead. We solve the problem of estimating 

-x~!~(z)/v(lzl) = -J-Lk(N, ~)<I>N(z)/v(lzl) 
from above by first noting that along any concentric circle Izl = r, the value is the 
biggest when ZN is real and negative. It is easily checked that 

-<I>a(-w) = (2Jra-1 - 1)<I>2rr-a(W), 
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(8.19) 

The extremal problem on the right-hand side is of the same kind as (8.7), and based 
on (8.5), one shows with the same methods as were used for problem (8.7) that the 
point where the above supremum is attained satisfies the analogue of the estimate 
(8.10), only this time the constants are absolute. When this information is inserted 
into (8.19), one obtains, using (8.11), that for large N, 

{ 
-X(k) (z) } a 

sup N.!; : Z E JI)) <-; 
v(lz!) - 4f3 

see Exercise 3. It follows from the restrictions on a that 

1 
-XN.!;(Z) ::::: "2f3 u(lzi) 

on Q < Izl < 1, as desired. 

(8.20) 

Step 5. We need an additional estimate of the function g = t + XN.!;, one that 
is so accurate that it allows us to say how big the integral 

l exp (g(z») dA(z) 

is. To this end, we look again at the extremal problem in (8.7) for t = 0 and 
1 ::::: r ::::: (cos 1a)I/N, and note by the considerations involving the sign of (8.9) 

that the extremal value is attained at the right endpoint r = (cos 1a)I/N, at least 
for large N. This entails that 

qN((COS 1a)I/N) Qa(cos 1a) 
--'-----,!'----'-- u (r) = u (r ) 
u((cos 1a)I/N) u((cos 1a)I/N) 

a-I _ n-1 a-I _ n- I 
---:----;-----:----:- U (r) < u (r ) 
u((cos1a)I/N) -logN+C(a) 

for 

1 I liN "2 ::::: r ::::: ( cos 2a ) , 

where C(a) is a real-valued constant. In the setting of the estimate (8.17), with the 
necessary modifications due to ~, we then arrive at 

t(ek(N») + ILk(N, ~)¢NCZ) < thCN») + ILk(N, ~)qN(lz!) 

< theN») + (1 - 2:) uClzl) 

for large N and for 
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If the parameter Q selected in Step 4 is sufficiently close to 1, any fixed fraction of 
u(lzl) will dominate over f(ek(N)) + S for Q :::: Izl < 1, so that we can get 

f(ek(N)) + i1k(N, S)<PN(Z) :::: (1 - ~) u(lzi) - S (8.21) 

for 

Q:::: Izl:::: (cos-!a)IIN. 

By (8.21) and the appropriate analogue of (8.17) involving S, 

fez) + XN.~(Z) :::: (1 - ~) u(lzi) - S + 3 (8.22) 

for Q :::: Izl :::: (cos -!a)IIN. From Step 4, we know that IXN.~(z)1 < c holds on 
Izl < Q. To control f + XN.~ in the remaining annulus 

( 1 liN 
cos "2a) < Izl < 1, 

we need the following elementary estimates of Qa, which follow from (8.2) (ro is 
a number in the interval cos -!a < ro < 1): 

Qa(r) = Qa(ro) - fro Q~(t) dt :::: Qa(rO) - a-2(ro - r) 

for cos(a/2) :::: r :::: ro, and 

Qa(r) = Qa(ro) + r Q~(t) dt :::: Qa(ro) + ha-2(r - ro) iro 
for ro :::: r :::: 1. With ro = (r';v)N ~ 1 - 1/ log N, these estimates lead to 

qN(r) :::: qN(r';v) - a-2 (r';v)N - rN) 

for (cos(a/2)) liN:::: r :::: r';v, and 

qN(r) :::: qN(r';v) + ha-2 (r N - (r';v)N) 

for rN :::: r :::: 1. For large N, we know that 

f(ek(N)) + i1k(N, s) qN(r';v) 

is within an additive constant (depending only on a) of 

u(r';v) - S = 1 + 10g(N log N) - s; 
just look at how we got (8.17) and (8.18). Using the above estimates of qN(r), we 
obtain a constant C(a) such that for large N, 

f(ek(N)) + i1k(N, s) <PN(Z) < f(ek(N)) + i1k(N, s) qN(lzi) 

< u(r';v)-s 

10<1 N 
(b ) (l-lzIN)+C(a) 

a 1 - a/(2n) 
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for (cos(a/2))I/N :::: Izl :::: r';.r, and 

f(ek(N») + fLk(N,~) ¢N(Z) :::: f(ek(N») + fLk(N,~) qN(lzi) 

:::: u(r';.r) - ~ + C(a) 

for r';.r :::: Izl < 1. By the localization trick of (8.17), involving the lunulce, these 
estimates lead to 

(log N)(1 - IzIN) , 
fez) + XN.s(Z) :::: u(r';.r) - a(l _ a/(2n») - ~ + C (a) 

for (cos(a/2)I/N :::: Izl :::: r';.r, and 

fez) + XN.~(Z) :::: u(r';.r) - ~ + C'(a), r';.r :::: Izl < 1, 

for some other constant C'(a). It follows from (8.24) and 

u(r';.r) = 1 + 10g(N log N) 

that 

[ exp (t(z) + XN.~(Z») dA(z) :::: C(a)e-S, 
Jr'N:5:IZI<1 

(8.23) 

(8.24) 

where C(a) is a positive constant. An exercise involving Taylor series shows that 
for positive real r, 

1 4 1 - e-r 
exp ( - r(l -lzIN») dA(z) :::: e-r + - , 

~ N r 

so that by (8.23), 

[ exp(t(z)+XN.~(z»)dA(z)::::C(a)e-S (8.25) 
J(cos(0l/2))I/N <Izl<r;:' 

if a(l - a/(2n» < 1, where C(a) is a positive constant, possibly different from 
the earlier one. Since 1 - a/8 < 1, we get from (8.22) that 

[ exp(t(z)+XN.~(z»)dA(z)::::C(a)e-';, (8.26) 
J Q<lzl «cos(0l/2»I/N 

where C(a) is yet another positive constant. Moreover, since IXN.s(z)1 < eon 
Izl < (2, we obtain 

f exp (t(z) + XN . .;(Z») dA(z) :::: eO [ exp (t(z») dA(z). (8.27) 
Izl<1? J~ 

The last part of the lemma now follows from (8.25), (8.26), and (8.27). • 

8.4 The Mushroom Forest 

Let N (n) be a sequence of positive integers approaching +00 rapidly, and let E~ 
be given by (8.6), with N = N (n). Moreover, let ~n be a sequence of nonnegative 
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numbers that tend to +00 rather slowly. For a Borel subset E of]]), let I E I A denote 
the normalized area of E (the usual area divided by n). If instead E is a rectifiable 
curve or a (relative Borel) subset of one, we let lEis be the length of E divided by 
2n. The latter definition is related to ds, the normalized one-dimensional Lebesgue 
measure in the complex plane. Suppose h is a subharmonic function about which 
it is known (I) that it is bounded from above by some unspecified constant, (2) 
that 

h(z) s y u(lzi), Z E !Dl, (8.28) 

holds for some positive constant y, and (3) 

00 1 1 Le-~n -u- ~ exp (h(z»)dA(z) s M < +00. 
n=l IEnlA En 

(8.29) 

We wish to estimate the average radial growth of h(z). More to the point, we want 
to know how quickly the integral mean i: h+(reifl)de 

increases as r approaches I, where h+(z) = max (h(z), o}. Fubini's theorem 
together with the Intermediate Value Theorem of Calculus tells us that there is a 

radius RIl , r~(Il) < Rn < r~(n)' such that with En = E;' n (RnlI'), 

_1_ [ exp(h(z))ds(z) S -~- [nexp(h(Z»)dA(Z), 
IEnis JEn IEnlA len 

so that 

00 I 1 L>-~n y- exp(h(z»)ds(z) s M < +00. 
n=1 I nls En 

A crude estimate of each term leads to 

We note that 

_1_ ( exp (h(z») ds(z) s M et.n. 
IEnis JEn 

(8.30) 

so that IEnl" = aRn/(4n) tends to a/(4n) as n ~ +00. Introduce the union of 
rectangular boxes Ln, 

eifl E U i j (a/4, N(n»)}, 
.i 

and put a hat on each box to form TIll = E/1 U Ln. The set TIll looks like a 
collection of identical mushrooms, with stems affixed to the ground, the unit circle. 
Let QII = ]]) \ U~n TIj, which is an open subset of]]), and let Q~ be the connected 
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Figure 8.2. The mushroom forest 

component that contains the origin (see Figure 8.2 for a graphic illustration of the 
set Q~), which is easily seen to be simply connected. The boundary aQ~ of Q~ 
consists of a closed subset of the unit circle T, mushroom hats Ej, or parts of them, 
and stem sides 

eill E U alj (a/4, N(n»)}, 
.i 

or parts of them, as well, for j = n, n + I, n + 2, ... ; on the right-hand side of the 
displayed formula, the a is the boundary operation with respect to the topology of 
T. 

Recall that we reserve the symbol w for harmonic measure; we sometimes write 
dw(z,~, Q) and think of it as a measure, where the variable of integration is ~. 
Since h(z) is subharmonic and bounded above in Jl)l, h+(z) is subharmonic and 
bounded as well. If hn is the harmonic function in Q~ defined by 

Z E n~, 

then, by the maximum principle, h+(z) :::: hn (z) on Q~. For any r with riD c Q~, 
the mean-value property for harmonic functions gives 

~ 1 h+(z)ds(z):::: ~ 1 hn(z)ds(z) = hn(O) = ( h+(~).d(J)(O.~, n~). 
r r1' r r1' Jao~ 

This calculation suggests that we should estimate w(O, L, Q~) for various Borel 
subsets L of aQ~. 

One quickly checks that w(O, L, Q~) is ° if L is a subset of T n aQ~. The 
principle of extension of the domain (see any book on Harmonic Measure) states 
that the harmonic measure of a piece of the boundary of a region with respect to 
a fixed interior point gets larger if the region is expanded in such a way that the 
boundary piece remains on the boundary. If L is a Borel subset of 
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for some k = n, n + I, n + 2, ... , we replace Q~ with ]])l \ Yj.b and see that 

w(O, L, Q~) :::: w(O, L,]])l \ Yj.d :::: C(a) ILI.~, (8.31) 

for some positive constant C (a). The remaining type of boundary parts is formed by 
the stem sides. So, let L bea subsetofal>LknaQ~ forsomek = n, 11+ I, n+2, ... , 
and suppose for simplicity that it is a subset of a single stem side of one mushroom. 
Then, if we remove all the other mushrooms, the harmonic measure of L increases, 
but it is still quite small. We can visualize this by thinking of harmonic measure as 
arising from Brownian motion: to reach L, the particle starting at the origin first 
has to reach some point of the opening between the hat and the unit circle, and 
second, it must then also hit the stem, and in particular, the part that lies on L. 
The hat and the stem define a "boxed" region of dimension ka N(k)-l by I - Rb 
so that an estimate of the second process using harmonic measure for the boxed 
region shows that 

w(O, L, Q~) :::: C(a) N(k)-v(OI) ILI.~, 

for some positive constants C(a) and v(a); v(a) = a/6 should work. 
The estimates (8.30) and (8.31) will be used to control 

( h+(~)dw(O,~,Q~) 
ian~ 

(8.32) 

(8.33) 

on the hats of the mushrooms, and (8.28) and (8.32) to control it on the stems. Not 
all mushrooms are so lucky as to form part of the boundary of Q~, as many are 
contained in the stems of earlier generations of them, and some are trapped between 
two bigger intersecting mushrooms. Approximately the proportion a / (8Jl') of those 
remaining are lost with each new generation, and by jacking up the growth of the 
N(II), we may safely claim that the proportion is between a/30 and a/20 each 
time. 

We first do the stems. In generation k, k = n, 11 + 1,11 + 2, ... , there are N(k) 
different mushrooms in Db but at most (I - a/30)k-n N(k) of them make it to 
aQ~. The integral of u(lzi) along the two sides of a single mushroom is at most 

2 t u(t)dt < _6_, iRk - N(k) 

where the estimate holds for large N(k). It follows from (8.28) and (8.32) that the 
integral (8.33) taken only over the stems is bounded by the series 

C(a) y f (I _ ~)k-Il N(k)-V(OI), 
k=1l 30 

which converges quite rapidly. 
We turn to the hats. In generation k (k = n, n + I, ... ), there are N(k) different 

mushrooms in Db but at most (I-a/30)k-n N(k), and at least (l-a/20l-1l N(k), 

of them make it to aQ~. Since exp(h+) :::: exp(h) + I, an application of Jensen's 
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inequality shows that 

1 ~ ( h+(z)ds(z) 
IEk n ann Is hknan~ 

< log (1 + 1 Q ( exp (h(z») dS(Z»). 
IEk n annls JEknan~ 

and together with (8.30) and the fact that 

( a )k-fl I (Ek n aQ~ 1.\ ( a )k-Il 1-- < < 1--
20 - IEkl.1 - 30 ' 

we see that 

( h+(z)ds(z) ~ (1 - ~)k-n IEkis log (1 + (1 _ ~)n-k Me~k) 
J Eknan~ 30 20 

Since IEkis = aRk/(4rc) < a/(4rc), it follows that 

f: ( b h+(z)ds(z) 
k=n JEknann 

< ~ f (I - ~)k-Il log (I + (I _ ~)"-k Me~k) , (8.34) 
4rc k=11 30 20 

where the right-hand side converges, provided that 

f (I - ~)k ~k < +00. 
k=l 30 

By estimates (8.31) and (8.34), the integral (8.33) is controlled on the hats as well. 
For the choice ~n = 2 log n, we get more specifically 

< ( h+(I;)dw(O.~. n~) 
Jan~ 

< C + C' ~n = C + 2C' log n. 

where C = C(a, y, M) and C ' = C'(a) are positive constants. 
We summarize what we have done in this section as the following. 

LEMMA 8.3 Let h be a subharmonic function on ]]J) that is bounded above, and 
write ~Il = 2 log n. Suppose h satisfies, for positive constants y and M, 

h(z) ::: y u(lzl), Z E ]]J), 

and 
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Then if the sequence N (n) increases sufficiently rapidly, there are two positive 
constants C = C(ct, y, M) and C' = C'(ct) such that 

~ 1 h+(z)ds(z)::s C + C';n, 
r r'][' 

0< r < Rn, 

for n = 1,2,3, ... , where Rn belongs to the interval r!(n) < Rn < rN(n)" 

8.5 Finishing the Construction 

We first use Lemmas 8.2 and 8.3 to construct an extremally growing harmonic 
function. 

THEOREM 8.4 Let u and v be as in Lemma 8.2 and ct = min{ 1, 2,B}. Moreover, 
let N(n) be an increasing sequence of positive integers approaching +00, and E~ 
be the union over n = 1,2,3, ... of the sets E~ = E~(N(n), ct) appearing in 
(8.6). Then, if the positive integers N(n) increase sufficiently rapidly, there are an 
increasing function uo : [0,1) -+ [0, +00), with uo(t) = o(u(t)) as t -+ 1 and 
limt-> 1 uo(t) = +00, and a real-valued harmonic function f in][) such that 

(1) -v(lzi) - 1 ::s fez) ::s u(lz!) - uo(lz!) + C for all z E ITl 

(2) u(lz!) - uo(lz!) - C ::s f(z)for all z E E~. 

(3) l exp(J(z))dA(z)::s c. 

(4) lim sup (~1 f-(z)ds(z) - AUO(r)) = +00. 
r->l- r r'][' 

Here A is any positive constant and f-(z) = max { - fez), o}. Furthermore, ifh 
is any subharmonic function on ][) that is bounded above and satisfies 

l exp(J(z) + h(z))dA(z) ::s 1, 

then 

~ 1 h+(z)ds(z)::s C (1 + uo(r)), 
r r'][' 

O<r<l. 

Above, C = C (ct) stands for a positive constant. 

Proof. We produce iteratively functions fn E hoo (][)), radii r n, positive constants 
Cn, and compact subsets E~·u, as follows. Along the way, we will define increasing 
functions UO. n : [0, 1) -+ [0, +00) that tend to the desired function uo as n -+ 

+00. We start with fo = 0, ro = 1, Co = 1, and Eg·u = 0. We also set uo.o(t) = 0 
on [0, 1). In general, the radius rn will be chosen such that rn-l < rn < 1, and 
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such that the set E!~I is contained in the disk Izl < rn. Moreover, as n ~ +00, 

we want rn ~ 1. Suppose we have In-I and E!~I satisfying 

-v(lzl) - 1 + T n+1 .:s In-I (z) .:s u(lzl) - UO.n-1 (lzl) + C - T n+1 

for z E]jJ), 

u(lzl) - UO.n-1 (Izl) - C + T n+1 .:s I(z) 

for z E E!~I' and 

L exp(In-l(z»)dA(z).:s Cn-I. 

At this point we choose rn as prescribed above. If N(n) is large enough, Lemma 
8.2 - with s = 2-n, p = r n, and ~ = ~n = 2 log n - will then deliver a radius 
Q = Qn with rn < Qn < 1, a compact set E~ = EU(N(n), a) contained in the ring 
Qn < Izl < 1, and a function g = In E hOO(]jJ) such that (use a slightly different 
constant than in the lemma) 

-v(lzl) - 1 + Tn .:s In(z) .:s u(lzl) - UO.n-1 (Izl) + C - Tn 

for Izl < Qn, 

-v(lzl) .:s In(z) .:s u(lzl) - ~n - 1 + C 

for Qn .:s Izl < 1, 

u(lzl) - UO.n-1 (Izl) - C + Tn .:s In(z) 

" EU,U lor Z E n-l' 

u(lzl) - ~n - C + 1 .:s In(z) 

for z E E~, and 

L exp (In (z») dA(z) .:s Cn. 

Here 

Cn = C e-~n + exp(2-n) Cn-I. 

Declare UO. n (t) = UO.n-1 (t) for 0 .:s t < Qn, and UO. n (t) = ~n = 2 log n for 
Qn .:s t < 1. It is readily checked that this defines an increasing function. Also, put 

EU,u = E U,u U EU 
n n-I no 

Part of the above estimates then simplifies to 

-v(lzl) - 1 + Tn .:s In(z) .:s u(lzl) - uO.n(lzl) + C - Tn 

for Z E]jJ), and 

u(lzl) - UO.n-1 (Izl) - C + Tn .:s In(z) 
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for z E E~·u. As n ~ +00, the functions fn E hOO(ID) converge, uniformly 
on compact subsets of ID, to a harmonic function f in ID, and the functions UO.n 

converge to a function uo. Since Ln e-i;n = Ln n-2 converges, the constants Cn 
converge to a limit Coo as welL Thus, we obtain 

-v(lzl) - 1 S f(z) s u(lzJ) - uo(lzl) + C 

for z E ID, 

u(lzl) - uo(lzl) - C s f(z) 

for z E E~ = ut~ E~, and 

k exp (!(z») dA(z) s Coo· 

For rapidly increasing N(n), the radii Qn, being contained between r~(n_I) and 
r~(n)' tend to 1 very rapidly in n, so that we can make uo(t) go to +00 as slowly 

as we like as t ~ 1. In particular, we can get Uo (t) = 0 (u (t)) as t ~ 1. 
We now turn to the assertion that 

lim sup (~1 f-(z) ds(z) - A uo(r») = +00. 
r-+ I r rlI' 

Since f is big and positive on E~, the integrals 

~ 1 f+(z) ds(z) 
r rlI' 

are correspondingly big for r = r~(n)' and the order of magnitude is at least a pos­
itive constant times u(r~(n)' By the mean value theorem for harmonic functions, 
the integrals where f+ is replaced by f- are of the same magnitude, whence the 
assertion follows. 

Finally, we look at the part of the assertion involving the function h. Since f 
has the bound from below, the integrability of exp(f + h) on the unit disk forces 
the subharmonic function to satisfy (8.28), for some y = y(a, f3), by the mean­
value property of subharmonic functions on disks. In fact, if we subtract a suitable 
absolute constant from h, we can get y = f3 + 2. Moreover, by the way the function 
Uo was defined in terms of ~n, and the control from below on f on E~, (8.29) holds 
for some M = M(a). So, we can apply Lemma 8.3 to get the desired estimate, 
by replacing the ~n with the appropriate expression in terms of uo; see Exercise 4. 
1be proof is complete. _ 

As a consequence of Theorem 8.4, we obtain an extremally growing analytic 
function in ID, which will enable us to construct noncyclic invertible functions in 
the Bergman spaces. 

COROLLARY 8.5 For any f3 > 0, there are an increasingfunction uo : [0, 1) ~ 
[0, +(0), withuo(t) = o( -log(l-t)) butuo(t) ~ +00 ast ~ 1-, andafunction 
F holomorphic on ID, such that: 
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(1) lIF(Z)1 dA(z) < +00. 

(2) (l-lzl)i3 s IF(z)1 S C (l-Izl)-I exp ( - uo(lzl) ) for all z E lJJJ and some 
positive constant C. 

(3) lim sup ((2Jr)-11 JT 10g-lF(reili)1 de - A uo(r») = +oofor all A> O. 
r-+ I -JT 

(4) If h is any subharmonic function on lJJJ that is bounded above and satisfies 

lIF(Z)lexP(h(Z))dA(Z) = M < +00, 

then 

_I_1JT h+(reifi ) de s log+ M + C uo(r), 
2Jr -JT 

for 0 < r < 1 and some constant C that does not depend on hand M. 

We can now prove the main result of the chapter. Recall that H (lJJJ) is the space 
of all analytic functions in lJJJ, with the usual topology of uniform convergence on 
compact sets. 

THEOREM 8.6 For any positive exponents p and q, there exists afunction f in 
AP such that f is not cyclic in AP but Ilf belongs to Aq. 

Proof. Let F be as in Corollary 8.5, with 0 < f3 < plq. Then the function 
f = Flip is in AP, and Ilf is in Aq, because (1 - Izl)i3JP S If(z)l. We need 
to show that f is noncycIic in A p. Let gk be a sequence of functions in H oo such 
that fgk converges in norm in AP. By property (4) of Corollary 8.5 applied to the 
functions log Igkl, we have 

_1 l JT log+ Igk(reifi)1 de s C (1 + uo(r»), 
2Jr -JT 

for a positive constant C. If gk -+ g in H (lJJJ), then 

0< r < 1, 

limsup_I l JT (log-lf(reiIJ)I-Iog+ Ig(reifi)l)de = +00 
r-+ I 2Jr -JT 

by property (3) of Corollary 8.5. This, however, cannot be true if the limit fg is 
the constant function 1, for then log-Ifl = log+ Igi. The proof is complete. _ 

8.6 Two Applications 

As consequences of Theorem 8.6 we discuss two problems related to "inner" and 
"outer" functions in the context of Bergman spaces. 
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First, recall from Theorems 7.3 and 7.12 that if a function f E A P belongs to a 
slightly smaller space Aq (q > p), then f is cyclic in AP if and only if f has no 
zeros in the disk j[)) and carries no K-singular measure on the circle 1'. It is natural 
to ask whether the extra assumption that f E A q with q > p is really needed. The 
following corollary answers this question. 

COROLLARY 8.7 For any 0 < p < +00, there exists a noncyclic function 
f E AP such that f has no zeros in j[)) and carries no K-singular measure on 1'. 

Proof. Let f be the function from Theorem 8.6; it does not matter what the 
value of q is. Since Ilf belongs to Aq c A-oo, we see that f is invertible in 
A-oo, so that f is cyclic in A-oo (see Exercise 6). By Theorem 7.12, the function 
f is zero-free in j[)) and carries no K-singular measure on 1'. • 

Next, recall from Theorem 3.34 that every function f E AP admits an "inner­
outer" factorization, f = GF, where G is AP-inner and F is cyclic in AP. 
A natural follow-up question is whether this factorization is unique. The next 
corollary answers this question in the negative. 

COROLLARY 8.8 For any 0 < p < +00, there exists a function g E A P such 
that g admits two different "inner-outer" factorizations. 

Proof. Let f be the function from Theorem 8.6. It does not matter what q is here. 
According to Theorems 3.33 and 3.34, the invariant subspace of AP generated by 
f yields a unique extremal function G E A P, and fI G E A P is cyclic. It follows 
that the function I/G = (fIG)(l/f) belongs to A-oo. Applying Theorem 7.3, 
we see that if E: is a sufficiently small positive number, then both G-e and G 1- e 

are cyclic in AP. Let g = G 1- e . Then 

g = 1 . G 1-e = G . G-e 

are two different "inner-outer" factorizations of g in A p. • 

8.7 Notes 

The results of this chapter, along with their proofs, are taken from the paper [27] 
by Borichev and Hedenmalm. 

Considering the Hardy space situation, where the "largest" functions are outer, 
and hence cyclic, it is perhaps surprising that "largeness" can imply non-cyclicity. 
But in spaces determined by growth, say the separable spaces Aoa, largeness 
can imply non-cyclicity, as is seen from the following general idea. If a function 
f E AQa grows almost as fast as allowed on a sufficiently massive set, and for 
polynomials qn we have that f qn is norm bounded in Aoa uniformly in n, then the 
polynomials qn will be very much controlled on the massive set, and this implies 
that we can estimate qn uniformly in n by a radial function which increases very 
slowly in toward the boundary in j[)). Then f qn cannot tend to the constant function 
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1, and consequently, f is non-cyclic. The Bergman spaces AP share a lot of the 
characteristics of the growth spaces, and the construction here shows that this idea 
for growth spaces carries over to the Bergman space setting. 

In view of Theorem 8.6, it is natural to ask if there exists at all a decreasing radial 
function <P(z) = <P(lzi), with <P(r) -+ 0 as r -+ 1-, such that the conditions 
f E AP and <P(lzi) S If(z)1 for z E lDl would imply that f is cyclic. In [25], 
Borichev shows that the answer is affirmative. More specifically, the function 

[ ( 1) 1/2+<:] <P(lzi) = 0 exp - log -- , 
1 -Izl 

Z E lDl, 

has the desired property when 0 and £ are positive. 

8.8 Exercises and Further Results 

1. Fill in the details of the verification of (8.11). 

2. Show how to use estimates of harmonic measure so as to obtain the esti­
mate (8.13) from the corresponding estimate on the set rN E(N). Hint: the 
argument is simplified if one introduces the complex variable w = ZN and 
recalls that ¢N(Z) = <pa(ZN) = <Pa(w). 

3. Check that (8.20) holds for sufficiently large N. 

4. Fill in the details of how the mushroom forest Lemma 8.3 is applied at the 
end of the proof of Theorem 8.4. 

5. Fix 0 < p < +00. An A P -inner function G has the estimate 

Z E lDl, 

which we derived in Chapter 3 from the fact that G is a contractive multiplier 
H P -+ A p. The latter means that G has the stronger property that I G I P d A 
is a Carleson measure. Check that the function f in Theorem 8.6 has an 
estimate of the same kind as the extremal functions, but with a constant. Then 
show that for the same f, we can modify the construction so that IflPdA 
is a Carles on measure. Hint: a Carleson measure f.L is a finite positive Borel 
measure on lDl with f.L(Q) S c .e(Q), for some constant C, where Q is a 
Carles on square and .e(Q) is the side length of the square. It is therefore 
enough to get a radial majorant to f which is in LP(lDl, dA). See [27]. 

6. Show that if both f and 1/ f are in A -00, then f is cyclic in A -00 . 

7. Show that for every 0 < p < +00, there exists an A P -inner function G 
such that IIfllp S IIfG lip holds for all f E H oo but not all f E AP. 
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8. Show that for every 0 < p < +00, there exists an A P - inner function G such 
that (GAP) nAP is not the same as the invariant subspace of AP generated 
by G. 

9. Suppose f and g are cyclic vectors in A2 such that fg belongs to A2. Is fg 
necessarily cyclic in A2? 

10. Generalize the constructions in this chapter to the setting of the spaces Ag, 
with 0 < p < +00 and -1 < a < +00. 

II. We now mention an open problem. Let the Bergman-Dirichlet space BV2('ll) 
consist of formal Laurent series 

+00 
fez) = L an zn, 

n=-oo 

where 

2 +00 lane +00 2 
IIfllBD2 = L -- + L(n + 1) la-nl < +00. 

n=O n + I n=l 

The shift operator Sf(z) = z fez) acts boundedly on this space, and so does 
its inverse S-l. Closed subspaces invariant under both Sand S-l are called 
bilaterally invariant. Does there exist a bilaterally invariant subspace J in 
Bv2 ell) such that the intersection J n A 2 , which is an invariant subspace in 
A2, is nontrivial in A2? In radially weighted Bergman spaces, with weights 
that drop down to zero very quickly near 1[', the corresponding question has 
an affirmative answer [28]. To throw further light on the issue, we mention 
that the invariant subspace I = J n A 2 then has index 1 and no common 
zeros in][J), and hence is generated by a zero-free A2-inner function cpo The 
function cp should also be cyclic in A -00, and hence similar to the functions 
constructed in this chapter (if it exists). 



9 
Logarithmically Subharmonic Weights 

In this chapter, we study weighted Bergman spaces for weights that are logarithmi­
cally subharmonic and reproduce for the origin; the latter means that if we integrate 
a bounded harmonic function against the weight over ][}, we obtain the value of 
the harmonic function at the origin. Two important examples of such weights are 
w(z) = IG(z)IP, where G is an AP-inner function, and 

w(z) = (a + 1)(1 - IzI2)'¥, Z E ][}, 

where -1 < a ~ O. Not only are these weights interesting in themselves, they 
also have nice applications to the study of unweighted Bergman spaces. The main 
result of the chapter is that the weighted biharmonic Green function r til is positive, 
provided that the weight is logarithmically subharmonic and reproduces for the 
origin. As a consequence, we will prove the domination relation II G A !II P ~ 

II G B!II P' where f is any function in A P, and G A and G B are contractive zero 
divisors in AP with A C B. 

9.1 Reproducing Kernels 

Suppose E is any set and 'It is a Hilbert space of complex-valued functions on 
E such that the point evaluation at each point in E is a bounded linear functional 
on 'It. Then by the Riesz representation theorem, for each y E E there exists a 
function K y = K ( . , y) in 'It such that 

fey) = {f, K y }, f E 'It. 

The function K (x, y), with (x, y) E E x E, is called the reproducing kernel of 'It. 
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It is natural to ask what kind of functions K : E x E -+ e arise as reproducing 
kernels of Hilbert spaces of functions on E. We will need the following classical 
characterization of reproducing kernels. We recall that a square matrix {A j.dJk=1 
is said to be positive definite if 

N 

L Aj.k Wj Wk ::: 0, 
j.k=1 

If we require strict inequality for all nonzero vectors in eN, the matrix is called 
strictly positive definite. 

PROPOSITION 9.1 Afunction K : E x E -+ e is the reproducing kernel of a 
Hilbert space of functions on E if and only if K is positive definite, that is, for any 
finite subset {XI, ... ,XN} of E the matrix {K (Xi, X j) Wj=1 is positive definite. 

Proof. First assume that K is the reproducing kernel of a Hilbert space H 
of functions on E. Given any finite set {Xl, ... ,XN} of E and any finite subset 
{cl, ... , C N } of e we consider the function 

f(x) = cIK(x,XI) + ... +cNK(x,XN), 

Then f E 1{, and the reproducing property of K yields 

N 

L K(Xj,Xk)C/Ck = (j, f) ::: O. 
j.k=l 

X E E. 

This shows that the matrix {K(xj, Xk)}Jk=1 is positive definite. 
Next assume that a function K : E x E -+ e is positive definite. Let Ho be the 

vector space of functions of the form 

X E E, 

where N is any positive integer, C), .•. ,CN are arbitrary complex constants, and 
XI, ... ,XN are arbitrary points in E. If 

and 

are two functions in Ho, we define 

N M 
(j,g) = LLCjdkK(Xj,Yk). 

j=1 k=1 

That K is positive definite implies that (., .) defined above is an inner product on 
Ho, because it is easy to check that any element in Ho of norm 0 assumes the 
value 0 at all points. Let H be the completion of Ho with respect to this inner 
product. Then every point evaluation is a bounded linear functional on H, and H is 
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a space of functions on E, because any element of the completion which vanishes 
as a function on E must be orthogonal to all the spanning vectors, as the latter 
are correspond to point evaluations. The kernel K is the reproducing kernel of the 
Hilbert space of functions 'H.. • 

Let K be the reproducing kernel of a Hilbert space of functions on E. For any 
two points x and y in E, the matrix 

( K(X,X) 
K(y, x) 

K(x, y») 
K(y, y) 

is positive definite. In particular, the above matrix is self-adjoint, so that 

K(y,x) = K(x,y). 

Moreover, a positive definite matrix has a nonnegative determinant, so that 

IK(x, Y)1 2 :::: K(x, x)K(y, y), x,y E E. 

This will be referred to as the Cauchy-Schwarz inequality for reproducing kernels. 
If 'H. is a separable Hilbert space, so that it has a countable orthonormal basis 
{en}~:t, we can represent the reproducing kernel as a series: 

+00 
K(x, y) = L en(x)en(y), (x,y) E E x E. 

n=l 

It is worth noting that it does not matter which particular orthonormal basis is used. 
We will be concerned with the case E = lDJ. Also, we will be interested in 

only Hilbert spaces of analytic functions in lDJ on which the point evaluations are 
bounded linear functionals. In terms of kernel functions, we will study functions 
K : lDJ x lDJ -+ C such that K(z, w) is analytic in z (and hence conjugate analytic 
in w). 

More specifically, we will be concerned with weighted Bergman spaces. We 
first specify the kind of weights to be used. Therefore, throughout the chapter, we 
use w to denote a function from lDJ to [0, +00) such that 

(a) w is logarithmically subharmonic, that is, log w is subharmonic on lDJ. 

(b) w is reproducing for the origin, that is, 

p(O) = 1 p(z)w(z) dA(z) 

for every polynomial p. 

Note that if we take p = 1, the constant polynomial, in condition (b) above, 
then we get 

L w(z)dA(z) = 1. 
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For a holomorphic function 1 on the unit disk, we consider the norm 

II/lIw = (10 I/(Z) 12W(Z)dA(Z») 1/2, 

and let B2(w) consist of all such 1 for which the above norm is finite. For each 
o < p < +00, the space BP(w) is defined in a similar way. 

PROPOSITION 9.2 The point evaluations on the space B2(w) are uniformly 
bounded on compact subsets olID. 

Proof. Fix an interior point Zo E ID, and for 0 < r < 1 - Izol, let ID(zo, r) be 
the Euclidean disk 

ID(zo,r)={ZEC: Iz-zol:::;r}. 

For a holomorphic function 1 on ID, the function I/lPw is subharmonic, and 
therefore, by the sub-mean value property, 

so that 

I/(zo)12w(zo) :::; ~ [ I/(z)1 2w(z)dA(z) :::; r-2I1f11~, 
r J'D(zo.r) 

2 1 2 
I/(zo)1 :::; 2 ( ) IIfllw' 

r w zo 

Taking logarithms, we obtain 

IIfllw 1 1 
log I/(zo)1 :::; log -- + - log --. 

r 2 w(zo) 

The point Zo E ID is arbitrary, the left-hand side is subharmonic, and the right-hand 
side is superharmonic. So we obtain the estimate 

IIfllw 1 1 1 log I/(zo)1 :::; log -- + - log -- ds(z), 
r 2r &'D(zo.r) w(z) 

where ds(z) = Idzl/(2;r); the subharmonicity of log w implies that it is inte­
grable on circles in ID such as aID(zo, r). Introducing the Poisson kernel in these 
calculations allows us to get a uniform estimate on compact subsets. _ 

Note that the above proof does not use the assumption that w is reproducing for 
the origin. Also, the proof works for all B P (w) with 0 < p < +00. 

Let A2(w) be the closure of the polynomials in B2(w). Although for most 
weights that come to mind these two spaces coincide, there are weights for which 
A2(w) is strictly smaller than B 2(w); see Exercise 13. Being a closed subspace of 
B2(w), the space A2(w) is a Hilbert space of analytic functions on]])) with locally 
uniformly bounded point evaluations. 

The reproducing kernel for A2(w) will be denoted by Kw. Since w reproduces 
for the origin, we have Kw(z, 0) = Kw(O, w) = 1 for all z and w in ID. Before 
we can obtain deeper properties of K w , we need to know how the operator of 
multiplication by z acts on A2(w). 
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Let S denote the operator of multiplication by z on A2(w). Thus Sf(z) = zf(z), 
Z E ill), for all f E A2(w). The operator S is obviously bounded on A2(w) with 
IISII = 1. 

PROPOSITION 9.3 For any twofunctions f, g E A 2(w), we have the inequality 

II Sf + gll~ ~ 2(llfII~ + IISgll~). 

Proof. It is enough to obtain the inequality when f and g are polynomials. 
We prove the result under the additional assumption that the weight w is Coo 
up to the boundary. The general case then follows from a simple application of 
Theorem 9.14 (whose proof will be independent of the present result). 

For any A E C \ {O}, we have 

o < ~z(lg(Z)-A-1Z3f(z)12W(Z)) 

~z(lg(z)12w(Z)) -2Re(X-l~z(g(z)z3 fcz)w(z))) 

+ IAI-2 ~z(IZ3 f(z)1 2 w(z)), 

for Z E ill), where the first inequality holds because the product of a logarithmically 
subharmonic function and the modulus square of a holomorphic function is again 
logarithmically subharmonic, and in particular, subharmonic. Setting A = Z2, we 
obtain 

o < ~z(lg(z)12w(Z)) -2Re(z-2~z(g(z)z3 f(z)w(z))) 

+ Izl-4 ~z(IZ3 f(z)1 2 w(z)). 

None of the three terms on the right-hand side has any singularity at the origin, 
even though it may seem so to the inexperienced eye. We are going to integrate 
the above inequality, term by term, against the positive measure (l-lze)2 dA(z). 

By Green's formula, 

A slightly more sophisticated exercise involving Green's formula shows that if 
]]}leO, e) stands for a small circular disk about the origin of radius e, then 

[ (l - Id)2 (z-2 ~z (g(Z)z3 fez) w(z))) dA(z) 
JJTh\lDl(O.E) 

= 2 [ z g(z) fez) w(z) dA(z) + O(e), 
JJTh\lDl(O.E) 
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where the normal derivative is taken inward with respect to the disk lD(O, e). We 
apply Green's formula a third time to obtain 

{ (1-ld)2 (lzl-4 ~z(lz3 f(z) 12 w(Z))) dA(z) 
J[,;\[,;(O.e) 

= { (4 - 21d) If(z)12 w(z) dA(z) + O(e). 
J[';\[';(O.e) 

Let e -+ O. We obtain 

o < k (41d - 2) Ig(z)1 2w(z)dA(z) 

-4Re k zg(z) /(z) w(z) dA(z) 

+ k (4 - 21d) If(z)1 2w(z)dA(z), 

which expresses the inequality we are looking for in expanded form. _ 

In addition to the forward shift S, we will also need the backward shift T defined 
by 

Tf(z) = fez) - f(O) , z E lD, 
z 

which we think of as acting on A2 (w). It is clear that T S is the identity operator 
and ST is given by 

STf(z) = fez) - f(O), 

The shift S is a contraction on A 2 (w), and so is ST, because the reproducing 
property of the weight w leads to the norm identity 

1If1l~ = IIf - f(O)II~ + If(0)12 , 

What we shall actually use later is the following variant of Proposition 9.3. 

COROLLARY 9.4 For any two functions f, g E A 2(w), we have the inequality 

II Sf + TglI~ :::: 2(1If1l~ + IIgll~). 

Proof. Just replace g by Tg in the theorem and use the fact that ST is a 
contraction. 

The following structure result is key to our further investigations. 

THEOREM 9.5 The function Lw defined by 

Kw(z, l;) = 1 - zt Lw5z, l;) 
(1 - zl;)2 

is the reproducing kernel of a Hilbert space of analytic functions on ITl 

-



248 9. Logarithmically Subharmonic Weights 

Proof. Solving for Lw, we find that 

Since 

Lw(z,O = Z~ (1 - (l - z~)2Kw(z, 0) 
1- Kw(z, 0 -
--=--- + 2 Kw(z, 0 - z1; Kw(z, O· 

z1; 

Kw(z,O) = Kw(O, 0 = 1, (Z,O E j[)) X j[)), 

the function Lw(z, 0 is analytic in Z (and conjugate analytic inO. According to 
Proposition 9.1, we need only show that Lw is positive definite. In other words, 
we need to show that for any finite subset {Zl, Z2, ... , ZN} of j[)), the inequality 

N 

L Lw(zj, Zk) Wj Wk :::: 0 
j.k=l 

(9.1) 

holds for all sequences {w j }7=1 E eN. From the reproducing property of the 
kernel Kw, we easily deduce that 

If we define a function f by 

N 

fez) = L Wj Kw(z, Zj), 
j=l 

then (9.1) is equivalent to 

Z E j[)), 

We proceed to show that (9.2) holds for all f E A 2(w). 
Let S* and T* denote, respectively, the adjoint of operators Sand T on the 

Hilbert space A 2(w). Using the formula for Lw at the beginning of the proof and 
the fact that Kw(z, 0) = Kw(O, w) = 1 for all Z and W in j[)), we obtain 

. k Lw(z, I;) f(O w(O dA(1;) 

1 
= _-C.. (f, T K w(·, z))w + 2 (f, K w(·, z))w - Z (f, SKw(·, z))w 

Z 

1 * * )) = -- (T f, KwC·, z))w + 2 (f, KwC·, z))w - Z (S f, K w(·, Z w 
Z 
1 

=--T*f(z)+2f(z)-zS*f(z), ZEj[)), 
Z 
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for every f E A 2(w). Since T* f(O) = 0, which is a consequence of the 
reproducing property of the weight w, we can condense the above to 

l Lw(z, {) f({) w(l;) dA({) = -TT* f(z) + 2 f(z) - S S* f(z), 

Integrating now with respect to the z variable, we arrive at 

l (l Lw(z, {) j(z) f({)W({)dA({») w(z)dA(z) 

. = -(TT* f, f}w + 2 (j, f}w - (SS* f, f}w 

= -IIT* fII~ + 211f11~ - IIS* fII~, 

which shows that what we are trying to prove is the operator inequality 

2 - TT* - S S* ~ O. 

To prove (9.3), we consider the operator 

R : A2(w) EEl A2(w) -+ A2(w) 

defined by 

1 
R(j, g) = T2 (Sf + Tg), 

An easy calculation shows that the adjoint of R is given by 

R*(h) = Ti (S*h, T*h). 

It follows that 

R R* f = ~ (SS* f + TT* f), 

Z E][)). 

(9.3) 

Thus the operator inequality (9.3) can be rewritten as R R* ~ 1. According to 
Corollary 9.4, the operator R is a contraction, which is equivalent to RR* ~ 1, 
completing the proof of the theorem. _ 

COROLLARY 9.6 ILw(z, {)I < 1 for all Z and I; in][)). 

Proof. Since Kw(z, z) ~ 0 and Lw(z, z) ~ 0 for all z E ][)), the identity 

K _ 1 -ldLw(z, z) 
w(z, z) - (1 _ Iz12)2 ' Z E][)), 

together with the subharmonicity of Lw(z, z) shows that 0 ~ Lw(z, z) ~ 1. In fact, 
unless Lw(z, z) is identically 1, we must have the strict inequality Lw(z, z) < 1. 

If Lw(z, z) == 1, we must also have Lw(z, {) == 1, because·an analytic kernel 
function is determined by its values along the diagonal. In this case, Kw becomes 
the reproducing kernel of the space H2, which is impossible, since H2 is not of 
the type A2(w). 
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We conclude that L(,iz, z) < 1 for all z E lDl. An application of the Cauchy­
Schwarz inequality for reproducing kernels then yields IL(,iz, nl < 1 for all z 
and tin lDl. • 

COROLLARY 9.7 The reproducing kernel Kw satisfies 

1 - Izt 1 K 1 + Izt 1 
Il-ztl2 ::: 1 w(z,nl::: Il-ztl2 

for all z and t in lDl.In particular, the kernelfunction Kw is nonvanishing on lDl x lDl. 

Proof. This is immediate from Corollary 9.6. • 
The kernel Lw has the following boundary behavior. 

THEOREM 9.S Suppose w is continuous on ii}. Then wi1r ~ 1, and the diagonal 
function Lw(z, z) has a continuous extension to lDl. More specifically, 

1 
Lw(z, z) = 1 - w(z)' Z E 1'. 

Proof. For).. E lDl, let k).. be the normalized reproducing kernel of A 2, that is, 

l-I)..e 
k)..(z) = (1 _ Iz)2' Z E lDl. 

Fix a point t E 1'. Since Ik)..(z) 12 is the real Jacobian of the involutive Mobius 
map ({l).., a change of variable combined with the continuity of w at t gives 

i1k)"(Z)12W(Z)dA(Z) -+ wen 

as)..-+t· 
On the other hand, the reproducing property 

together with the Cauchy-Schwarz inequality yields 

so that 

1 2 2 = Ik)..()..)1 2 ::: Kw()..,)..) ( 1 k)..(z) 12 w(z) dA(z), 
(l -1)..1 ) In 

< lim inf (l - 1)..12)2 Kw().., )..) 
)..--*s 

lim in£( 1 - I)..e Lw().., )..») 
)..--*!; 

1 - lim sup Lw().., )..), 
)..--*s 
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which leads to half of the desired assertion, 

1. 1 
1m sup Lw(A, A) :::: 1 - --, 

;"->1; wen 
For the other half, we use the normalized reproducing kernels of A2(w). Thus 

for A E ]jJ), we let G;,. be the function 
1 

G;,.(z) = Kw(A, A)-2 Kw(z, A), Z E]jJ), 

which has norm I in A 2(w). By Corollary 9.7 and the easy fact that Kw(A, A) --+ 

+00 as IAI --+ 1, the function G;,. tends to 0 uniformly off a fixed neighborhood of 
the point s as A approaches s E 11'. In particular, the measure I G;,. 12 w d A converges 
to a point mass at S as A --+ s. In view of Corollary 9.7, we can write 

G;"(A) = [ G;,.(z)dA(z). 
JIf) (l - AZ)2 

By the Cauchy-Schwarz inequality, 

Kw(A, A) = IG;"(A)12 :::: (l - IAI2)-2kIG;"(Z)12 dA(z), 

so that 

It follows that 

[ IG;,.(z)1 2 dA(z) --+ _1_ 
JIf) wen 

I - lim inf Lw(A, A) 
;"->1; 

lim sup (1- IAI2 Lw(A, A») 
;"->1;" 

and consequently, 

This proves that 

lim sup (l - IA12)2 Kw(A, A) 
;"->1; 

< 

1 

1 
1---wen' 

1 - -- :::: lim inf Lw(A, A), wen ;"->1;" 

. 1 
hm Lw(A, A) = 1 - --. 

;"->1; wen 

S E 11'. 

The inequality wen :::: 1 then follows from the factthat Lw(z, z) :::: 0 for all Z E ]jJ) . 

• 
The harmonic polynomials are functions of the form p + ij, where p and q 

are (analytic) polynomials. Let HP2(w) denote the closure of the harmonic poly­
nomials in L 2(]jJ), w dA). We collect the elementary properties of this weighted 
Bergman space of harmonic functions in the next proposition. 
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PROPOSITION 9.9 HP2(w) is a Hilbert space with locally uniformly bounded 
point evaluations. Let A~.o denote the subspace of A2(w) consisting of those 

functions that vanish at the origin, and A!.o its image under complex conjugation. 
Then the harmonic Bergman space splits as 

2 2 -2 
HP (w) = A (w) EI7 Aw.o, 

the two subspaces on the right-hand side being orthogonal. Moreover, the kernel 
function Qwfor HP2(w) has theform 

Qw(z, n = 2Re Kw(z, n - 1, z,l; E lIJ). 

Proof. Let p and q be analytic polynomials. If q (0) = 0, then by the reproducing 
property of w, 

(p, ij)w = l p(z) q(z) w(z) dA(z) = 0, 

and so A2(w) and A!.o are perpendicular. The Pythagorean theorem then gives 

IIp+qll~ = IIpll~+ llqll~. 

Ifwe take a Cauchy sequence {p j +7ij}j of harmonic polynomials in L2(lIJ), w dA) 
with qj (0) = 0 for all j, then the above identity shows that {p j } j is a Cauchy 
sequence in A2(w), and {qj}j a Cauchy sequence in A~.o' By the completeness 

of the spaces A2(w) and A~.o there are elements f E A2(w) and g E A~.o such 
that p j --+ f and qj --+ g as j --+ +00. The limit function h = f + g is then 
harmonic in lIJ), and we have 

IIhll~ = IIf + gll~ = IIfll~ + llgll~. 
The local bounded ness of point evaluations now follows from Proposition 9.2. 

The reproducing kernel for A2(w) is Kw, and for A!.o it is Kw - 1. It follows 
from the direct-sum decomposition of HP2(lIJ), w) that Qw is the sum of these two 
kernels. _ 

The function Lw is bounded and sesqui-holomorphic on lIJ)2, meaning that the 
function Lw(z, f) is a holomorphic function of two variables there, and hence it 
possesses radial boundary values almost everywhere on the torus 'f2. It follows 
that the kernels Kw and Qw, too, have radial boundary values almost everywhere 
on 'f2. The following result will be used later in the proof of the positivity of the 
weighted biharmonic Green function. 

COROLLARY 9.10 If w is continuous on lIJ), then we have 

(z, n E'f x 'f \ oC'f), 
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almost everywhere with respect to sUrface measure, where 8('][') denotes the 
diagonal in '][' x 1l'. 

Proof. Since Lw is a reproducing kernel, we have 

z, ~ E JI)). 

Applying Theorem 9.8 and the geometric-arithmetic mean inequality, we obtain 

ILw(z,nl < (1- _1 )1(1 __ 1 )1 
w(z) w(n 

< (9.4) 

for almost all (z, n E ']['2. Since 

Kw(z, n = 1 - z~ Lw(z, n = _1 __ + z~ (1 - zn2 1 - z~ (1 -zn2 

it follows that 

1 1 
Kw(z, n = 1 _ z~ - Iz _ ~12 - Iz _ ~12 Lw(z, n, (z, ~) E ']['2 \ 8(']['), 

for almost all (z, n E ']['2 \ 8(']['). 
The first term on the right-hand side has real part 1. In view of Proposition 9.9, 

the above representation formula, and inequality (9.4), we see that 

• 

9.2 Green Functions with Smooth Weights 

Throughout this section we assume that w, in addition to being logarithmically 
subharmonic and reproducing for the origin, is strictly positive and real-analytic 
on ifi" (this means that the weight is real-analytic in a neighborhood ofifi"). 

Let D C JI)) be a simply connected domain with Coo boundary. The Green 
function r w. D for the weighted biharmonic operator /)"w -I/),. is defined as follows. 
For fixed ~ E D, the function r w.D(·, n is the unique solution to the boundary 
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value problem 

.6..z w(z)-l.6.. zr w.D(Z, n 
rw.D(Z, n 

an(z)r w.D(Z, n 

0s(Z), Z E 1), 

0, zEa1), 

0, Z E a1). 

As we integrate back one Laplacian, we see that 

.6..z r w.D(Z, n = w(z) (GD(Z, n + Hw.D(Z, n), 

(9.5) 

where GD is the Green function for .6.. on 1), and the function Hw.D(Z, n is 
harmonic in the first variable Z on j[]). In view of the boundary condition 

r w.D(·, nlaD = 0, 
the integral version of this identity is 

r w.D(Z, n = Iv GD(Z, 5) (GD(~' n + Hw.D(~, n) w(~)dA(5). (9.6) 

An application of Green's formula along with the zero boundary data of r w.D 
shows that for a harmonic function h that is smooth up to the boundary of 1), the 
kernel Hw.D has the balayage property 

Iv h(z) (G D(Z, n + Hw.D(Z, n) w(z) dA(z) = O. (9.7) 

We call Hw,D the harmonic compensator (for the Green function G D with 
respect to the weight w).1t follows from (9.7) that Hw,D(', n equals the weighted 
harmonic projection of -G D(" n: 

Hw.D(Z, n = - Iv Qw.D(Z,~) G D(~,~) w(~) dA(~), (9.8) 

where Qw.D is the reproducing kernel for the weighted harmonic Bergman space 
HP2(1), w), the completion of the harmonic polynomials in L 2(1), w dA). Taking 
the Laplacian with respect to ~, we obtain 

.6..SHw.D(Z, n = -wen Qw,D(Z, n 
a nice relationship between the harmonic compensator and the harmonic 
reproducing kernel. 

The remainder of this section is devoted to proving that the weighted biharmonic 
Green function 

rw = rw,IlJ) 

is positive on j[]) x j[]), a result that turns out to have far-reaching consequences. 
Unfortunately, the proof depends on the following result. Recall that ds(z) = 
Idzl/(2;r). 

THEOREM 9.11 For each 0 < r ::'S 1, there is a (unique) simply connected 
domain 1)(r) contained in j[]) and a conformal map CPr : j[]) -+ 1)(r) with the 
following properties: 
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( 1) The boundary of D(r), 0 D(r), is a real-analytic Jordan curve. 

(2) Each D(r) contains the origin and each ¢r preserves the origin. 

(3) The domains D(r) are increasing in r with D(I) = JD), and their intersection 
is the point at the origin. 

(4) The reproducing property 

r 2h(0) = [ h(z)w(z)dA(z) 
JD(r) 

holds for all bounded harmonic functions h on D(r). 

(9.9) . 

(5) The mapping (r, z) t-+ ¢r(Z) extends to a holomorphic function of two 
complex variables on a neighborhood of (0, 1] x jij. 

(6) For each 0 < r' .::; 1, there is a small open interval J around it such that 
all the functions ¢r, r E J, extend as conformal maps to one and the same 
neighborhood ofjij. 

(7) For each 0 < r' < 1, we have 

1 dUJr'(z) 
2 (')2 ID(r)\D(r') (z) dA(z) --+ ()' r - r w Z 

(9.10) 

as r --+ /+, in the weak-star topology of the Borel measures. Here, UJr is 
harmonic measure on oD(r); we do not use the notation w for harmonic 
measure here, to avoid confusion with the weight. 

(8) The evolution equation 

d¢r ,[ ~ + z ds(O 
dr (z) = rZ¢r(z) Ir ~ - Z w(¢r(~» 1¢~(~)12 (9.11) 

holds for all 0 < r < 1 and z E JD). 

The proof of this theorem is too technical and depends on the theory of weighted 
Hele-Shaw flows, and is therefore omitted. The interested reader is referred to [69]. 

We will call the domain D(r) an w-mean value disk of radius r. The reproducing 
property (4) above is the most fundamental; in fact, it uniquely determines the 
domain D(r). 

Let r w.r denote the weighted biharmonic Green function r w.D(r). Similarly, 
let Gr be the classical Green function for D(r), and let Hw •r be the harmonic 
compensator corresponding to the weight wand the domain D(r). We shall derive 
a variational formula, originally found by Hadamard in 1908, which describes the 
development of r w.r as r increases quantitatively [50, pp. 515-641]. Since w is 
real-analytic on jij and the w-mean value disks D(r) depend on r very smoothly, we 
conclude that the Green function r W.T extends real-analytically to a neighborhood 
of the set 

D(r) x D(r) \ 8(D(r», 



256 9. Logarithmically Subhannonic Weights 

where 

o(D(r» = {(Z, Z) : Z E D(r)} 

is the diagonal. In particular, for fixed s E D(r), the function r w.r solves the 
differential equation 

t-. w- I t-.r w.r(·, 0 = 0;; 

on a neighborhood of D(r) \ {S}. 
We consider two parameter values rand r', with 0 < r < r' < I, and introduce 

the expression 

Fr.r'(~' S, z) = (Gr(~, z) + Hw.r(~, z)) (Gr'(~' s) + Hw.r'(~' 0). 

By (9.6) and (9.7), 

rw.r(Z,O= r· Fr.r'(~,S,z)w(~)dA(~) 
JD(r) 

for (z, 0 E D(r) x D(r), and 

r w.r'(z, 0 = r Fr.r'(~' S, z) w(~) dA(~) 
JD(r') 

for (z, 0 E D(r') x D(r'). 
Since D(r) C D(r'), we have 

r w.r'(z, 0 - r w.r(Z, 0 = r Fr.r'(~' S, z)w(~)dA(~) 
J D(r')\D(r) 

for (z, 0 E D(r) x D(r). If r' is sufficiently close to r, we can actually take 
(z, s) E D(r') x D(r'). It follows from (9.10) that as r' -+ r, 

~rw.r(Z,0=2r r Hw.r(~,z)Hw.r(~,s)dwA~). (9.12) 
dr JaD(r) 

Here, we have used the fact that the Green function Gr vanishes when one of the 
variables is on the boundary 8D(r). 

We want to tum the differential equation (9.12) into an integral equation. Note 
that when one of the variables Z and s is on the boundary 8D(r) and the other is 
in the interior D(r), we have r w.r(Z, 0 = O. If we integrate (9.12) with respect 
to r, the following formula emerges: 

r w.r(Z, s) = l r r HW.Cl(~' z) Hw.Cl(~' OdwCl(~) 2e de, 
max{R(z).R(1;)) JaD(Cl) 

(9.13) 

for(z,O E D(r) x D(r).Here, R(z) stands for the parameter value of e for which 
the boundary of D(e) reaches the point z: 

R(z) = inf {e : z E pee)}· 
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The integral fonnula (9.13) will be referred to as Hadamard's variational formula; 
it clearly shows that the positivity of the weighted bihannonic Green function 
will be established once we are able to show that the hannonic compensators are 
positive. To this end, we proceed to show that the hannonic compensators can be 
written as an integral in terms of the Poisson kernel and the weighted hannonic 
reproducing kernel. 

Let Pr be given by 

(z, ~) E D(r) x 8D(r), 

the nonnal derivative being taken with respect to the boundary a D(r) in the interior 
direction. This function serves as a Poisson kernel on D(r). For instance, we have 
the identity 

dwAz) = Pr(zo, z)ds(z), Z E aD(r). 

Using arguments similar to the proof of (9.12), we can show that 

d i dwA~) 
-d Gr(z, 0 = -2r Pr(Z,~) Pr(~,~) (1::)' 

r aD(r) W 'i 

for (z, 0 E D(r) x D(r). In integral form this becomes 

Gr(z, 0 = - r r PQ(z,~) Pe(~,~) dW"~;) 2QdQ 
lrnax{R(z).R(Ol laD(e) W 

for (z, 0 E D(r) x D(r). Combining this with equation (9.8), we get 

which transfonns to 

HwA~, z) = r r r Qw.r(~, 11) PQ(I1,~) W(I1)dA(I1) 1 R(z) laD(e) 1 D(e) 

dW"e(~) 
x Pe(z,~) w(~) 2Q dQ, (9.14) 

where (z, ~) E D(r) x D(r). 
As a consequence offormula (9.14), we see that if 

r Qw.r<~, 11) Pe(I1,~) W(I1)dA(I1) ::: 0 iDee) 
(9.15) 

for(~,O E aD(Q) x D(r),whereO < Q < r < 1, then the harmonic compensator 
Hw.r is positive on D(r) x D(r). Note that the function Qw(~,') is harmonic on 
D(r), and in particular, bounded there. Since the Poisson kernel PC~) is area 
summable on D(Q), we see that the integral in (9.15) makes sense. 

We are going to prove the following result, which is seemingly stronger than, 
but actually equivalent to, inequality (9.15). 
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LEMMA 9.12 Fix Q and r such that 0 < Q < r < 1. Let h be a positive harmonic 
function on D(Q), and define 

hr(z) = 1 QwAz, ~) h(~) w(~) dA(~), 
D(e) 

Then hr is positive on D(r). 

Z E D(r). 

Proof. It suffices to obtain the result under the proviso that h is harmonic 
and strictly positive on D(Q). Since QwAO,·) = r-2, a consequence of the 
reproducing property of the domain D(r), the value of the function hr at the 
center point 0 is 

1 1 Q2 hr(O) = "2 h(~)w(~)dA(~) = "2 h(O), 
r D~) r 

which is positive. We split the proof into three parts. 

Part 1: continuity of hr in r. The function hr is the orthogonal projection of 
h 1 D(e)' interpreted to vanish on D(r) \D(Q), onto the weighted harmonic Bergman 
Hp2(D(r), w). From the smoothness of the harmonic compensator Hw.r in the r 
variable alluded to above, and the corresponding fact for the weighted harmonic 
Bergman kernel Qw.r as deduced from the identity 

Qw.r(Z, n = -w(Z)-1 tl.t;Hw.r(z, n, 
it is immediate that hr (z) is real-analytic in the coordinates (z, r) in a neighborhood 
of the set 

{(z,r): Z E D(r), r E (Q, l]} U {(z,r): Z E D(r), r E [Q, IJ}. 

We need to investigate the continuity of hr(z) near the left endpoint r = Q. By the 
reproducing property of the domains D(Q), 

1 2 ~ 
Qw.r(Z,~) w(~) dA(~) = Q Qw.r(Z,O) = 2' 

D~ r 
Z E D(r), 

and hence 

hr(z) - r: h(z) = 1 Qw.r(Z,~) (h(~) - h(z)) w(~) dA(~) 
Q D(e) 

(9.16) 

for Z E D(r), provided that r is so close to Q that h is defined as a harmonic 
function on D(r). Since 

h(~) - h(z) = O(lz - ~I) 

for Z and ~ in some fixed neighborhood of D(Q), part of the singularity of the 
kernel Qw.r is neutralized by the appearance of this factor on the right-hand side 
of (9.16). Let Wr stand for the pulled-back weight on the unit disk, 

wr(z) = r-2 w 0 <Pr(Z) 1<p~(z)12, 
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which is reproducing for the origin as well as logarithmically subharmonic. It 
follows from the conformal invariance of the reproducing property of the weighted 
harmonic Bergman kernel that 

(9.17) 

for (z, I;) E lDl x lDl. Applying Corollary 9.7 to KWr and using the relationship 
between the harmonic and analytic kernels of Proposition 9.9, we obtain 

r21 Qw,r(¢r(Z), ¢r(l;)) 1 = 1 Qwr(z, 1;)1 :s 1 + 11 _4Z~12 (9.18) 

for (z, I;) E lDl x lDl. Rewriting (9.16) in terms of the variable ~, ¢r(1;) = ~, we get 

r2 
hr 0 ¢r(Z) - 2 h 0 ¢r(Z) (9.19) 

Q 

= [ QWr (z, I;) (h(¢r(~» - h(¢r(z») wr(1;) dA(1;) 
J",;I(D(Q» 

for Z E lDl, where ¢; 1 (D(Q» c lDl. Given the estimates mentioned previously, it is 
easily deduced from this identity thathro¢r ~ hO¢Q uniformly on lDl as r ~ Q. In 
fact, if r E (g, 1) is close enough to g, the function h is well defined and harmonic 
on D(r), so that the above integral also makes sense when we extend the domain 
of integration to lDl. And the integral over lDl is zero, by the reproducing property 
of the harmonic kernel. So the right hand side of (9.19) reduces to an integral over 
the thin "circular" band lDl \ ¢;l(D(g», which is quite small. In particular, since 
we assume h to be strictly positive on D(g), it follows that hr 0 ¢r is uniformly 
(in r) strictly positive on jj} for r in some short interval (g, Q + 8], with 8 > o. 

Part 2: the derivative of hr o¢ro The derivative of the composition hr o¢r with 
respect to the parameter r is, by the chain rule, 

(9.20) 

where the partial derivatives with respect to rand Z correspond to thinking of the 
function hr as a function of two variables: hr(z) = h(z, r). The derivative of ¢r 
with respect to r is supplied by formula (9.11), which simplifies to 

d¢r (z) = ~ ¢~(z) [ ~ + z ds(1;) = ~ ¢~(z) H+ [~J (z) 
dr r JT ~ - z Wr(1;) r Wr 

(9.21) 

for z E lDl, where the symbol H+ stands for the Herglotz transform. 
To find a way to express the partial derivative orhr, let r', g < r' < r, be so 

close to r that hr' extends harmonically and boundedly to D(r). Then, from the 
reproducing property of the weighted harmonic Bergman kernel, 

hrl(z) = [ Qw.r(Z,~) hr'(~) w(~) dA(~) 
JD(r) 

(9.22) 
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for Z E D(r). On the other hand, by the reproducing property again, 

r QwAz,~) Qw.r'(~' n w(~) dA(~) = QwAz, n 
JD(r') 

for (z, n E D(r) x D(r'), so that 

r Qw.r(Z,~) hr'(~) w(~) dA(n 
JD(r') 

= r QwAz,~) r Qw.r'(~' n hen wen dA(n w(~) dA(~) 
J D(r') J D(e) 

= r Qw.r(Z, n hen wen dA(n = hr(z) (9.23) 
JD(e) 

for Z E D(r). Forming the difference between (9.22) and (9.23), we obtain 

hr(z) - hr,(z) = - r' Qw.r(Z,~) hr'(~) w(~) dA(~) (9.24) 
J D(r)\D(r') 

for Z E D(r). It follows from (9.10) and (9.24) that 

ahr 1 -a (z) = -2r Qw.r(Z,~) hr(~) dwA~), 
r iJD(r) 

Z E D(r). 

Shifting the coordinates back to the unit disk and keeping in mind (9.17), we obtain 

ahr 2 ~ -a 0 ¢r(Z) = -- QWr (Z, n hr 0 ¢r{l;) ds(n, 
r r '][' 

Z E JI)J. (9.25) 

By the Poisson integral formula for harmonic functions in JI)J, we have the 
representation 

~ I-Id 
hr 0 ¢r(Z) = - 2 hr 0 ¢r(l;) ds(n, 

'][' 11 - z~1 
Z E JI)J, 

which easily yields 

,ahr i ~ ¢r(Z) -a . O¢r(Z) = (1 )2 hr o¢r(nds(n. 
Z '][' - Z~ . 

Z E JI)J. (9.26) 

We insert the above representation formulas (9.21), (9.25), and (9.26) into (9.20), 
and obtain that the derivative ir hr 0 ¢r(Z) is equal to 

~ h { Re (H+ [~r ] (z) (1 ~~n2) - Qwr(z, n} hr 0 ¢r(~) ds(n. 

wherez E JI)J. Just as in the proof of Corollary 9.10, we notice the appearance of the 
Kcebe function. Suppose for the moment that for some value of the parameter r, 
Q < r < 1, the real-analytic function h r 0 ¢r hI.' vanishes along with its (tangential) 
derivative at some point Zl E 1'. Then hr 0 ¢r(Z) = O(lz - z112) as Z approaches 
Zl along 1', which counterbalances the singularities ofthe Kcebe function and the 
weighted harmonic Bergman kernel, as estimated by (9.18), at least when Z E JI)J 
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approaches the boundary point Zl radially. Taking into account the well-known 
boundary behavior of the Kcebe function, we obtain in the limit that (the real 
part of the Herglotz transform is the Poisson integral, with well-known boundary 
values) 

If, in addition, 0 :::: hr 0 CPr on D, then by invoking Corollary 9.10, which states 
that 

~ E l' \ {zd, 

we can assert that 

o < ~ h wr~n I~ _1 zl12 hr 0 CPr(n ds(n :::: :r hr 0 ¢r(ZI). (9.27) 

The leftmost inequality holds because hr 0 CPr cannot vanish identically, since we 
know that 0 < hr(O) = hr 0 CPr (0). 

Part 3: the finishing argument. Consider the function 

her) = min {hr(z): Z E D(r)} = min {hr 0 CPr(Z) : zED}, Q < r < 1, 

which, by the results of Part 1, extends continuously to the interval [Q, 1), and 
is positive at the left endpoint. We shall demonstrate that 0 < her) holds for all 
r E [Q, 1), which is actually slightly stronger than what is needed. We argue by 
contradiction and thus assume her) :::: 0 for some r E (Q, 1). Forming the infimum 
over all such r, We find a parameter value rl E (Q, 1) with h(q) = 0 such that 
o < h(r) holds for all r E [Q, rl). By the maximum principle, there exists a point 
Zl E l' such that hq q cPq (Zl) = 0 and 0 :::: hq 0 cPq elsewhere on D. The point 
Zl is precisely of the type considered in Part 2, so that by (9.27), 

d 
- hr 0 CPr(zdl _ > O. dr r-q 

We immediately see that hr 0 ¢r(ZI) < 0 for r, Q < r < rj, sufficiently close 
to rl; and hence h(r) < 0 for such r. This contradicts the minimality of q, and 
completes the proof of the lemma. _ 

Combining the lemma above with equations (9.13) and (9.14), we conclude that 
for any r E (0, 1), both Hw.r and r w.r are positive on D(r) x D(r). In fact, they 
are strictly positive on D(r) x D(r). Consequently, under the assumptions that 
w is logarithmically subharmonic, reproducing for the origin, real-analytic on D, 
and strictly positive on D, we have the following result. 

THEOREM 9.13 The weighted biharmonic Greenfunction r w is strictly positive 
on]!]l x]!]l. 
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9.3 Green Functions with General Weights 

To prove that Theorem 9.13 remains valid without the assumptions that w is 
real-analytic and strictly positive on ll), we need only establish the following two 
approximation results. 

THEOREM 9.14 For each positive e, there is another logarithmically subhar­
monic weight w that is reproducing for the origin such that: 

( 1) w is real-analytic on the closed disk ll). 

(2) w is strictly positive on ll). 

(3) ilw(z) - w(z)1 dA(z) < e. 

Proof. Let Aut (IDl) denote the automorphism group ofIDl. Every ¢ E Aut (IDl) 
admits a unique factorization ¢ = RfJ 0 cp).. with fJ E '][' and A E IDl, where RfJ is a 
rotation and 

A-Z 
cp)..(z) = --_-, 

1- AZ 
Z E IDl. 

Thus we can identify Aut (IDl) with the set '][' x IDl. Under the representation above, 
the (invariant) Haar measure on Aut (IDl) is given by 

d - dA(A) d (fJ) 
¢ - (l - IA12)2 S . 

Fix a real-analytic function <I> : Aut (IDl) ~ (0, +00) in the following form: 

¢ = RfJ 0 cp).., 

where 

for some integer N = 2, 3, 4, ... , so that 

( <I> A dA(A) - 1 
}'I} 2() (1 - IA12)2 - , 

and <1>1 : '][' ~ (0, +00) is some real-analytic function with 

h CP1 (fJ) ds(fJ) = 1. 

For instance, we can take 

1- Q2 
<1>1 (fJ) = 11 + QfJ12' 

for some real parameter Q with 0 < Q < 1. 

fJ E 11', 

(9.28) 

(9.29) 
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It is easy to see that 

f ct>(¢)hO¢-I(O)d¢=h(O) 
Aut(][]J) 

(9.30) 

for all bounded harmonic functions h on JI)). In fact, for ¢ = Rf3 0 ({l).., we have 
¢-l = ((l).. 0 R~, so that ¢-l (0) = A, and the left-hand side of (9.30) becomes 

i dA(A) 
ct>l (f3)ct>2(A)h(A) ds(f3) 2 2 

lrx][]J (l -IAI) 

= (N - 1) ~ ct>l (f3) ds(f3) l (l -- IAI2)N-2 h(A) dA(A). 

An application of the mean value theorem then shows that the integral above equals 
h(O) for all bounded harmonic functions h on JI)). 

We use the function ct> to regularize w. More specifically, we consider the 
function 

w<!>(z) = f ct>(¢) w 0 ¢(z) I¢' (z)1 2d¢. 
Aut(][]J) 

(9.31) 

It is clear that w<!> is strictly positive on JI)). The function w<!> is also logarithmically 
subharmonic, because each individual function wo¢ 1¢'12 occurring in the integral 
is, and because the logarithmically subharmonic functions form a cone. If h is 
bounded harmonic function in JI)), we use (9.30) to obtain 

l h(z) w<!>(z) dA(z) f ct>(¢) [h(z)wo¢(z)I¢'(z)1 2dA(z)d¢ 
Aut(][]J) J][]J 

f ct>(¢) [ho¢-I(Z)w(z)dA(z)d¢ 
Aut(][]J) J][]J 

f ct>(¢)ho¢-I(O)d¢=h(O), 
Aut(][]J) 

so that w<!> is representing for the origin. 
A change of variables gives 

w<!>(z) = (1 - Id)-2 f ct>(¢ 0 ({lz) w 0 ¢(O)I¢' (0)1 2 d¢ 
Aut(][]J) 

for z E JI)). This clearly shows that w<!> is real-analytic in JI)). 

In order for w<!> to approximate w in L 1 (JI))), we just need to choose ct> so that 
most of its mass is concentrated near the unit element of Aut (JI))). This will be 
achieved if the parameter N is sufficiently large in ct>2 and if the function ct>l has 
most of its mass near the point -Ion the unit circle. 

We have thus shown that w can be approximated in L 1 (JI))) by a logarithmically 
subharmonic weight that is reproducing for the origin, real-analytic in JI)), and 
strictly positive on JI)). So, in the rest of this proof we will assume that w itself has 
all these additional properties. 
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For 0 < r < I, let wr(z) = w(rz) be the associated dilation of w. Each Wr 
is logarithmically subharmonic, strictly positive, and real-analytic on the closed 
disk iD, but obviously, Wr is not representing for the origin. However, each Wr is 
subrepresenting, that is, for all positive bounded harmonic functions h on D we 
have 

L h(z) wr(z) dA(z) :::; h(O). (9.32) 

If fact, if P(z, n denotes the Poisson kernel 

P Z _ l-Id 
( ,n - 11 _ z~ 12' (z, nED x T, 

then for each zED the function 

A 1-+ h P(A, a) w(az) ds(a) 

is harmonic in lDl and equals W(A,,;) for A E T. Since the function W(AZ) is 
subharmonic in the variable A, we must have 

W(AZ) :::; h P(A, a) w(az) ds(a), 

In particular, 

Wr(z) :::; h P(r, a) w(az) ds(a), 

By the reproducing property of w, 

(z, A) ED x D. 

zED. 

( h(z) wr(z) dA(z) < ( h(z) P(r, a) w(az) dA(z) ds(a) 
J~ JTx~ 

h P(r, a) L h(z) w(az) dA(z) ds(a) 

= h P(r, a) h(O) ds(a) = h(O) 

for all positive bounded harmonic functions h in D. 
We now complete the subrepresenting weight Wr by adding a suitable small term 

which will make the sum representing for the origin but at the same time preserve 
the other properties of Wr . 

First, consider the harmonic function 

Z E lDl, 

where we have extended the Poisson kernel to the interior: 

P z _ l-lz~12 
( ,n - 11 _ z~ 12 ' (z, nED x D. 

This is the sweep of f, a function we encountered back in Chapter 3. The function 
P*[wr ] extends harmonically to a neighborhood of the closed unit disk. By the 
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subrepresenting property (9.32) of Wn we have 0 < P*[wr ] :s 1 throughout II». 
and hence 0 :s P"[wr ] :s 1 also on ']f. 

Next. let f) be a real parameter with 0 < f) < 1, and consider the function 

H(z) = 1 - f) P*[wr ](z). Z ElI», 

which is harmonic. bounded above by 1. and positive. on some £11I» with 1 < £1 < 
+00. The function 

[ (1 - £1-2)2 
F(z) = Jr 11 _ £1- 1zt14 H(£1S)ds(S), Z E £11I», (9.33) 

is then real-analytic. strictly positive, and logarithmically subharmonic in £11I». 
Moreover. for each z in II» we have 

P*[F](z) = L P(z, n F(n dA(S) 

[ P(z, n [ (1 - £1~2)2 4 H(£1~) ds(~) dA(n 
Jll) Jr 11 - £1- ~~I 

[ [ P(z, n (1 - £1~2)2 4 dA(S) H (£1~) ds(~) 
JrJll) 11-£1-~~1 

~ p(£1-l z.~) H(£1~) ds(~) = H(z). 

It follows that the weight function 

w(z) = f) wr(z) + F(z) 

is logarithmically subharmonic, strictly positive, and real-analytic on some 
neighborhood of ll}. It also satisfies P"[w] = 1, which is equivalent to 

L h(z) w(z) dA(z) = h(O), 

where h is any bounded harmonic function in II». Therefore. w is representing for 
the origin as well. 

If the parameter r is close to 1, then the dilation Wr is close to W in L 1 (II»). Also, 
if f) is close to 1, the function f) Wr still approximates W well in L 1 (II»). But this 
means that f) P*[wr ](0) is close to 1, and since the L 1 (II») norm of F equals the 
difference 1 - P*[wr ](0), the modified weight w approximates W well in L 1 (II»). 
The proof is complete. • 

Note that if W = IG A1 2, where G A is a finite zero divisor in A2, then the proof 
above can be greatly simplified. For example, we can take 

w(z) = (1 - 0) w(z) + 0, Z ElI», 

for sufficiently small positive o. 

PROPOSITION 9.15 Let wand wn, for n = 1, 2, 3, ... , be logarithmically 
subharmonic weights that reproduce for the origin. If Wn -+ W in the norm of 
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L 1 ([[J) as n -+ +x. then r,o" (z. n -+ ev(z. n pointwise in [[J) x [[J) as 11 -+ +00. 

Proof. Let v denote a weight of the same general type as wand W il • and recall that 
by the reproducing property of v, we have the following identity of reproducing 
kernel functions (see Proposition 9.9): 

Q,,(z.O = 2 Re K,.(z. 0 - 1. (z.o E [[J) x [[J). 

Let H" (.. n be the harmonic compensator function 

HI' (z. n = - C Q v (z. 17) G (17. ~) v (17) d A (17)· irk 
so that 

(z. n E [[J) x [[J). 

r,,(z, n = £ G(z. 0 (G(~. n + H,,(~. 0) v(~) dA(O 

(9.34) 

(9.35) 

for (z. 0 E [[J) x [[J). By Corollary 9.7 and the relationship (9.34). we have the 
estimate 

(z.o E [[J) x [[J). (9.36) 

We shall use this to estimate the size of the kernel HI" We observe that by the 
reproducing property of v. 

Z E [[J), (9.37) 

and that by Fatou's lemma, the integral on the left-hand side is bounded by I for 
z E T. For ~ conflned to a compact subset X of [[J), the Green function G(I7. n 
is comparable to -(1 - 11712) near the boundary, which allows us to use estimate 
(9.36) in conjunction with (9.37) to obtain the uniform estimate 

Z E [[J). ~ EX, (9.38) 

for some positive constant C depending on X, universal for all the weights v. We 
now show that H,v" (-,0 -+ H,vC, n in an appropriate norm. For flxed ~ E [[J), the 
function Fc(-. n, deflned by 

F,,(z.O = G(z, n + H\,(~, 0. 

is perpendicular to bounded harmonic functions with respect to the inner product 
of L 2([[J). v). Using this fact and the estimate (9.38), we arrive at the identities 
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and 

£ IH(,,(Z, n - Hwn(z, nI2Wn(Z)dA(Z) 

= £ (lFw(z, nl2 - IFwn (z, nI 2)wn(z) dA(z). 

We add these together to obtain 

£ IHw(z, n - Hwn(z, nI 2 (w(z) + Wn(z)) dA(z) 

= k (lFw(z, nl2 - IFwn (z, nI 2 )(wn(z) - w(z)) dA(z). 

The weight I! always satisfies 

Z E j[)); 

see Exercise 1. By estimate (9.38), the above growth estimate of weights, and the 
assumed L I (j[))) convergence Wn ->- w, we have 

as n ->- +00 (9.39) 

uniformly for I; E X; in other words, HWn (., n ->- Hw(-, n in the norm of 
L2(j[)), w). Now, by (9.35), 

r w(z, n - r Wn (z, n = k G(z,~) (Hw(~, n - Hwn (~, n) w(~) dA(~) 

+ k G(z,~)(G(~,n+Hwn(~,n)(w(O-wn(~))dA(~) 
for (z, n E j[)) x j[)), so that the desired result follows from (9.38), (9.39), the growth 
estimate of weights, and the L I (j[))) convergence Wn .-+ w. • 

Combining Theorem 9.13, Theorem 9.14, and Proposition 9.15, we have now 
proved the following result under the standing assumptions that W is logarithmically 
subharmonic on j[)) and reproducing for the origin, but without the assumptions that 
W is real-analytic and strictly positive on ~. 

THEOREM 9.16 The weighted biharmonic Greenfunction r w is positive on the 
setj[)) x j[)). 

9.4 An Application 

In this section, we use the positivity of the weighted biharmonic Green function 
to prove an important result about contractive zero divisors of ordinary (that is, 
unweighted) Bergman spaces. 
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Fix 0 < p < +00. We write ({J A for the contractive zero divisor in A P associated 
with the zero sequence A; we do not use G A to avoid conflict with notation for the 
Green function for the Laplacian. 

THEOREM 9.17 Let A and B be two zero sequences for AP with A C B. Then 

II({JAfll :::: II({JBfIi 

for all f E AP, where II . II is the norm in AP. 

Proof. For finite sequences A and B, the functions ({J A and ({J B are holomorphic 
in a neighborhood of[». We consider the function ¢B.A that solves the boundary 
value problem 

~¢B.A(Z) = I({JB(zW - I({JA(zW, 

¢B,A(Z) = 0, 

Z E lDJ, 

Z E 1'. 

From an application of Green's formula, we see that the fact that the function 
I({JB IP -I({JA IP annihilates harmonic functions in L 2(lDJ) translates to the additional 
boundary condition 

Z E 1'. 

Dividing the differential equation by I({JA(z)1 2, then applying another Laplacian, 
we find that 

~ 1 ~ ¢ () _ ~ I ({JB(Z) IP 

I({JA(z)IP B.A Z - ((JA(Z) , 
Z E lDJ, 

which is positive on lDJ. In view of the given boundary data, we may write the 
function ¢ B.A as an integral in terms of the weighted biharmonic Green function 
rl'PAIP: 

r I ({JB(S) IP 
¢B.A(Z) = J'liJ) rl'PAIP(Z, S) ~I; ((JA(S) dA(S), Z E lDJ, 

which is then positive. The importance of the potential function ¢ B. A comes from 
the fact that Green's formula yields the identity 

II({JBfIi~p -1I({JAfll~p = L ¢B.A(Z) ~zlf(zW dA(z), Z E lDJ, 

for polynomials f. Because we can approximate functions in AP by polynomials, 
and because the functions ({JA and ({JB are bounded on lDJ, we have proved the desired 
result in the case of finite zero sets. Furthermore, setting g = ({J B f leads to 

(9.40) 

for all g E A P that vanish on B. 
If A and B are arbitrary zero sequences, we form finite subsequences A' C A 

and B' C B with A' c B'. Then inequality (9.40) holds with A and B replaced 
by A' and B', respectively, and with g vanishing on B. Letting A' grow up to A, 
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and B' up to B, then CPA' --+ CPA and CPB' --+ CPB in AP. An application of Fatou's 
lemma delivers the inequality (9.40) for arbitrary A and B, which easily implies 
the assertion of the theorem. _ 

9.5 Notes 

Proposition 9.1 is a key result in the theory of reproducing kernels, due to Aronszajn 
[12], KreIn, Mercer, Moore, and Schwartz; see [107]. The other results of this 
chapter, along with their proofs, are taken from the papers [69,72] by Hedenmalm, 
J akobsson, and Shimorin. The assumption on the weight w that it is logarithmically 
subharmonic has a natural differential geometric interpretation: it means that the 
unit disk lDJ equipped with the (isothermal) Riemannian metric .jw(z)ldzl has 
negative Gaussian curvature everywhere (in other words, it is a hyperbolic surface). 
The differential operator we have studied, I:1w- 1 1:1, then corresponds to the squared 
Laplace-Beltrami operator on the Riemannian manifold. 

Englis has made explicit computations of certain weighted biharmonic Green 
functions [45]. 

Hadamard's variational formula is from the classical paper on plaques elastiques 
encastrees [50, pp. 515-641], and the version that applies to the Laplacian 1:1 is 
of fundamental importance for conformal mapping; see [97, pp. 42-48, pp. 263-
265]. It has been used by Lowner [91] and then later by de Branges [30] in his 
proof of the Bieberbach conjecture. 

There exists a vast mathematical literature on Hele-Shaw flows; here, we men­
tion only Richardson's paper [99]. However, these flows have been studied almost 
exclusively in the context of Euclidean space, with an irregular but nonempty blob 
of liquid at time t = O. 

9.6 Exercises and Further Results 

1. If (J) is logarithmically subharmonic and reproduces at the origin, then we 
have the growth estimate 

w(z) ::::: (1 - Id)-l, Z E lDJ. 

2. The function 

Jo;(z, n = (1 - z~) K(Az, n 
is the reproducing kernel of a Hilbert space of analytic functions on lDJ. 

3. Suppose Kl and K2 are two analytic reproducing kernels on lDJ. If 

Kl(Z, z) = K2(Z, z) 

for all z E lDJ, then 
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for all Z and w in ]I). 

4. Prove Corollary 9.7. 

5. Show that Kw(z, z) -+ +00 as Izi -+ 1-, provided that the weight won ]I) 
is logarithmically subharmonic and area-summable. 

6. Let A and B be two zero sequences for A 2 such that B \ A consists of a single 
point a E ]I). Then the quotient fa = CPB/CPA is a bounded holomorphic 
function on ]I), and it vanishes only at the point a in lJ)). Moreover, if ba is 
the Blaschke factor corresponding to the point a, then Ifa/bal :::: 1 holds 
throughout lJ)). In particular, fa (J]))) covers the whole disk lJ)). 

7. Let B be a zero sequence for AP and M an invariant subspace in AP. If M 
has index 1 and if MB eM, then M = MA for some subsequence A of B. 
For details, consult [69]. 

8. Assume that w is logarithmically subharmonic and reproducing for the 
origin, and let cP E A2(w) be an A2(w)-inner function; these are defined 
analogously as for the spaces Ag. Then IIfllw ::s IIcpfllw for all polynomials 
f. In fact, 

Ilcpfll~ = IIfll~ + r fw(z, {) Icp'(z)1 2If'({)1 2dA(z)dA({) 
JJfJ)xJfJ) 

for all f E A2(lcpI2 w). Hint: follow the general outline of the proof of 
Theorem 9.17. 

9. Assume that wand w' are two logarithmically subharmonic weights that are 
reproducing for the origin. Suppose that in addition, both are Coo on iD, and 
that the quotient w' /w is subharmonic. Then IIfllw ::s IIfllw' holds for all 
f E A2. 

10. Under the same assumptions of the previous exercise, the difference Kw -
Kw' is a reproducing kernel on lJ)) x lJ)). In other words, 

Lw'(z, {) - Lw(z, {) 

(1 - Z{)2 

is a reproducing kernel on lJ)) x lJ)). What about the kernel 

Lw'(z, {) - Lw(z, ~) ? 

1- z~ . 

The latter is an open problem; see [69]. 

11. We now mention an open problem. Let w be a logarithmically subharmonic 
weight that is reproducing for the origin. Decide whether for each a E lJ)) \ {O}, 
the one-point zero divisor in A2(w), 

( -1) ( Kw(z, a)) 
CPa(Z) = 1 - Kw(a, Cl() 1 - Kw(a, a) , Z E lJ)), 
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is univalent, and in particular whether CPa (lDl) is starshaped about the origin. 
Is the function always bounded by 3 in modulus? The problem about star­
shapedness would follow if a certain additional property of the weighted 
biharmonic Green function r w were known, namely 

a 1 a 
an(z) w(z) lI.zr w(z,l;) = -2 P(z,l;) + an(z) Hw(z,l;) :s 0 

for all z E 1I' and ~ E lDl. Here, P is the Poisson kernel, Hw is the har­
monic compensator, and the normal derivative is in the interior direction. 
Together with the positivity of the Green function r w, this conjectured prop­
erty constitutes the strong maximum principle for biharmonic operators, as 
envisaged by Hadamard in his treatise on plaques elastiques encastrees [50, 
pp. 541-545]. See [69] for details. 

12. Suppose 0 < p < +00 and 0 < al < a2 < +00. Let GI and G2 be 
the extremal functions of the invariant subspaces of AP generated by the 
functions SUI and SU2' respectively, where Su is the classical atomic singular 
inner function with a point mass a atz = 1. Show that IIGdilp :s IIG2fllp 
for all bounded analytic functions f in lDl. 

13. If w(z) = IG(z)12 for some A2-inner function G, then B2(w) = A2(w) if 
and only if G is a zero divisor. 

14. Suppose I is an invariant subspace of A2(w), where the weightw is logarith­
mically subharmonic and reproduces for the origin. Prove that I = [I e zI], 
that is, I is generated by Ie zI. Hint: try to apply Theorem 6.14. 

15. Fix the parameter -1 < a < +00. Show that each function u on lDl with 
lI.w;;lll.u = 0 is of the form u(z) = g(z) + Izl 2a+2h(z), where g and hare 
harmonic. This is an Almansi-type representation of weighted biharmonic 
functions. Use this information to find an explicit formula for the harmonic 
compensator for the weight Wa. See [64]. 

16. Fix the parameter -1 < a < +00 . Use the positivity of the harmonic com­
pensator for the weight Wa to prove that the Green function r w" is positive 
on lDl x lDl. Hint: apply Hadamard's variational formula with concentric cir­
cles about the origin. See [64]. For 0 :s a < +00, Wa is logarithmically 
subharmonic, making this a special case of Theorem 9.16. 

In the exercises that follow, w is a Coo -smooth strictly positive weight on 
D that need not be logarithmically subharmonic, nor reproducing for the 
origin. The symbol Mw stands for the operator of multiplication by w. We 
also let WI, W2, and v be weights of the same type. 

17. Associate with the reproducing kernel Kw the integral operator 

Kwf(z) = l Kw(z,l;) f(l;) dA(~), Z E]])), 
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and do the same for the weights WI and Wz as well. Show that as operators 
on L2(]IJ), dA), we have 

KfUl = KWI + KWI (MW1 - MfUl)Kwl 

+KWI (MW1 - MfUl)Kwl (MW1 - MW')Kwl + ... , 
provided WI and Wz are sufficiently close uniformly on ]IJ). We mention that 
an analogous perturbation formula was key to Fefferman's analysis of the 
Bergman kernel in en [46]. 

18. Suppose Wt = W + tv for 0 ::::: t < +00. Do the perturbation formula of 
Exercise 17 infinitesimally, to obtain 

d 
- KWt = -KwtMvKw,. 
dt 

19. Do Exercises 17 and 18 with Qw instead of Kw. The variational formula 
from Exercise 18 of course takes the form 

d 
dt QWt = -QwtMvQw,. 

20. It is known that the reproducing kernel Kw for A2(w) extends to a Coo_ 
smooth function on (iD x iD) \ 8(1'), where 8(1') is the boundary diagonal. 
The following seems to be an open problem: Find an asymptotic expansion 
for singular behavior (that is, the behavior modulo COO-smooth functions 
on iD x iD) of Kw near 8(1'). 

21. Do the same analysis for the kernel Qw. The following may be helpful. 
If W reproduces for the origin, then we know from Proposition 9.9 that 
Qw = 2 Re Kw - 1. If W is not reproducing, is it still true that Qw - 2 Re Kw 
is a Coo -smooth kernel on iD x iD? 

22. Let R denote the operation of restriction to the boundary 1'. Let HL2(]IJ) 
denote the subspace of L2(]IJ), dA) consisting of harmonic functions. The 
restriction of a function i!1 HL2(]IJ) to l' is in the Sobolev space W- I/2(1') 
of distributions f on l' with (formal) Laurent (or Fourier) series expansion 

+00 
f(z) = L i(n)zn, 

n=-oo 

+00 li(n)12 L --<+00. 
n=-oo Inl + 1 

In fact, R maps the harmonic subspace HL2(]IJ)) onto W- I / 2(1'). We should 
specify that Rf is defined as the distributional limit as r ~ 1 of the dilated 
functions fr(z) = fr(z), with z E l' and 0 < r < 1. 

23. Let us take a closer look at the perturbation formula of Exercise 19. Consider 
the kernel 



9.6. Exercises and Further Results 273 

and check that the perturbation formula implies that 

~(Wt(z)Vt(z,n)= [Vt(~,z)Vr(~,nv(~)dA(~). 
dt J~ 

24. Write the variational formula of Exercise 23 in integral form: 

Wt(z) Vt(z, n = w(z) Vo(z, n + fot ~ Ve(~, z) V(I(~, n v(~)dA(~)de. 
Let P be the Poisson transform (or Poisson solver): 

Pf(z) = .h P(z, n f(~) ds(n, Z E ID, 

where P(z, n is the Poisson kernel. Using the harmonicity of Vt(z, n in 
the first variable z, we can then write 

Vr(z, n = P [: Vo(-, nJ (z) 

+ fot ~ P [ve~, .) ] (z) Ve(~, n v(~) dA(~) de. 

This equation is amenable to treatment with the classical Picard process 
from the theory of Ordinary Differential Equations [79]. As a result, if we 
assume Vo(z, n 2: 0 on ID x 1', we get Vt(z, n 2: 0 on ID x l' for all 
o < t < +00. See [66]; the technical details involve the operator R met 
in Exercise 22, and studying integral operators on Sobolev spaces, using 
boundary correspondences as exemplified in Exercise 22. 

25. Let us say that the weight W2 is more suppressive than WI if the harmonic 
compensators satisfy 

HW'J. (z, n :::: HWI (z, n, (z, n E ID x ID. 

Show that if W2 is more suppressive than W\, or vice versa, we have, for all 
real parameters 0 < tl, t2 < +00, 

(z, n E ID x ID. 

This is a concavity-type property of the biharmonic Green function in the 
weight space. Show by a local analysis near l' in the first variable z that the 
above conclusion leads to 

t\ WI (z) HfJ)l (z, n + t2W2 (z) HW'J. (z, n :::: (t\ WI (z) + tl WI (z)) HfJ)t (z, n, 
for z E l' and ~ E ID. Hint: consider Wt = W + tv as before and find a 
variational formula for r fJ)t' analogous to that of QWt in Exercise 19. See 
[66] for details. 

26. In Exercise 25, do we really need the assumptions on the two weights to 
have the concavity-type property? Is there a counterexample? 
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B p, the Besov space, 23 
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D(z, r), hyperbolic disk, 38 
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Da, "fractional integration", 19 
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G[f], Green potential, 60 
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Ba, the weighted Berezin transform, 

29 
{3, the hyperbolic metric, 16 
V, the Dirichlet space, 25 
C(]),13 
Co(IDl), 13 
oCT), diagonal, 253 
HP2(w),251 
MO(f), "mean oscillation", 43 
MOr (f), mean oscillation, 42 
H(IDl), the space of all holomorphic 

functions, 18 
Hoo,2 
KB+,194 
K·-absolutely continuous, 201 
K·-area, 148 
K·-bound,194 
K·-bounded above, 194 
K·-density, 105 
K -smooth, 201 
K-variation, 194 
A, invariant Laplacian, 32 
V, the gradient, 51 

Index 283 

w, harmonic measure, 218 
w, weight, 242, 244 
w-mean value disk, 255 
~(A, E), partial Blaschke sum on E, 

105 
A(A, E), partial logarithmic Blaschke 

sum on E, 105 
P, Bergman projection, 6 
P a, weighted Bergman projection, 6 
p, the pseudohyperbolic metric, 16 
~,2 

SF, Stolz star, 105 
Sz,a, Stolz angle with aperture ct, 106 
Sz, Stolz angle, 104 
rpz, the Mobius involution, 6 
W"r, harmonic measure, 255 
KCF), Beurling-Carleson 

characteristic, 104 
dA, the normalized area element, 1 
dAa, the weighted area element, 2 
dAE, push-out measure, 114 
dc, Euclidean metric on the plane, 

105 
d1f, circle metric, 104 
ds, normalized arc length measure, 

59, 104 
nCr), counting function, 100 
n I , common multiplicity of zero at the 

origin, 56 
BMOa,45 
BMOr ,42 
VMOa,46 
VMOr ,46 
"inner-outer" factorization, 78, 186, 

239 

absolutely continuous measure, 201 
admissible, 122 
analytic projection, 12 
aperture, 104, 106 
arc length, 104 
arc length 

normalized, 104 
arithmetic-geometric mean inequality, 

101 
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asymptotic K-density 
lower, 105 
upper, 105 

atomic singularity, 59 

balayage-type estimate, 112 
Berezin transform, 28 
Bergman kernel, 6 
Bergman metric, 16 
Bergman projection, 6 
Bergman space, 2 
Bergman-Nevanlinna class, 98, 131 
Besov space, 24, 50 
Beurling's theorem, 176 
Beurling-Carleson characteristic, 104 
Beurling-Carleson set, 104,200 
Beurling-type theorem, 181 
bi-harmonic Green function, 62 
bi-harmonic Green potential, 62 
biharmonic Green function, 59, 242 
Blaschke product, 26 
Bloch space, 13 
BMO,42 
BMO in the Bergman metric, 42 
BMOA,13 
bounded K-variation, 194 
building blocks, 219 

Caratheodory-Schur theorem, 87 
Carleson measure, 38 
Carleson square, 106, 240 
Cayley transform, 113, 165, 167 
complementary arcs, 104 
concave operator, 182 
concave sequence, 183 
concavity-type property 

of the biharmonic Green function, 
273 

conjugate exponent, 18, 160 
contractive divisibility property, 59 
contractive mUltiplier, 54 
contractive zero divisors, 71 
covering, 125,204 
cyclic function, 190 
cyclic invariant subspace, 56 

cyclic vector, 78,85, 190 

density, 104 
Dirichlet space, 25 
division property, 189 
domination, 190, 191 
duality theorem 

of Linear Programming, 124,204 

edge point 
in polyhedron, 124 

eigenfunctions, 36 
eigenvalue, 37 
elementary factors, 131 
entropy, 104 
exact type, 111 
expansive multiplier property, 59, 66, 

70 
extraneous zero, 72 
extremal function, 57 
extremal problem, 26, 55, 56, 195 
extremal problem for I, 56 

factorization, 78 
Fejer kernel, 87 
fractional differentiation, 18 
fractional integration, 18 
functions of bounded variation, 195 

gap sequence, 15 
Garsia's lemma, 42 
generation, 233 
geometric progression, 107 
Green function, 59 
Green potential, 60 
Green's formula, 59 
growth space, 110 

Hadamard's variational formula, 255, 
257 

Hankel operator, 49 
Hardy space, 12,54,78 
harmonic compensator, 254, 266 
harmonic conjugate, 26 
harmonic majorant, 55 



harmonic measure, 218, 219, 225, 232 
Helly selection theorem, 195 
Herglotz measure, 201 
Herg10tz transform, 259 
homogeneous decomposition, 178 
Hurwitz's theorem, 77 
hyperbolic center, 42 
hyperbolic disk, 38 
hyperbolic exponential type, 111 
hyperbolic metric, 16 
hyperbolic radius, 42 

index, 176 
index n, 176 
index of an invariant subspace, 176 
inner function, 52, 78 
inner function for Bergman spaces, 53 
inner space, 180 
inner-outer factorization, 78 
interpolating sequence, 50, 136 
interpolation problem, 137 
invariant Laplacian, 32 
invariant subspace, 55 
invariant subspace problem, 187 
iteration scheme, 222 

Jensen's formula, 98 
Jensen-type inequality, 116 

Krebe function, 260 

lacunary series, 15 
Laplace equation, 62 
Laplace-Beltrami operator, 33 
Laplacian, 32 
Laplacian 

invariant, 32 
Linear Programming, 119 
Linear Programming 

duality theorem, 124, 204 
little Bloch space, 13 
localization trick, 230 
logarithmic entropy, 194 
logarithmically sUbharmonic, 94, 242, 

244 

Index 285 

lower asymptotic K-density, 105 
lower Seip density, 153 
lunula,227 

Mobius group, 6 
Mobius map, 6 
Mobius transformation, 16 
maximal inner space, 187 
mean oscillation, 42 
min-max equation, 123 
minimal type, 111 
mushroom, 231 
mushroom forest, 230 
mushroom hat, 232 
mushroom stem, 231 

nonoverlapping arcs, 211 
normalized arc length, 59, 104 

oblique projection, 119 
optimization problem, 123 
outer function, 190 

perturbation, 139 
Poincare metric, 16 
point-evaluation, 2 
Poisson extension, 114 
Poisson formula, 29 
Poisson kernel, 29, 114 
Poisson solver, 273 
Poisson transform, 28, 29, 114,273 
positive 

function, 2 
measure, 2 

premeasure, 190, 193 
pseudohyperbolic metric, 16 
push-out measure, 114 

quasi-Banach space, 2 
quasi-similar operators, 188 

regular sequence, 177 
reproducing for the origin, 242 
reproducing kernel, 57, 242 
residue theorem, 76 
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restriction operator, 155 
reverse triangle inequality, 177 

sampling sequence, 136 
Schur's test, 9, 11 
Seip density 

lower, 153 
Seip density 

upper, 147 
separated sequence, 39,50, 138 
sequence of interpolation, 136 
sequence of sampling, 136 
sesquiholomorphic, 252 
similar operators, 188 
simple covering, 125,204 
singly generated invariant subspace, 

56 
singular inner function, 59 
singular measure, 201 
spectral mapping theorem, 37 
Stieltjes integral, 195 
Stolz angle, 104 
Stolz star, 105 
strictly positive, 2 
subinner function, 86 
suppressive weight, 273 
sweep of a function, 88, 264 

Toeplitz operator, 49 
truncation, 202 
type, hyperbolic exponential, III 

uniform separating upper asymptotic 
K-density, 140 

uniform upper asymptotic K-*-density, 
146 

uniformly discrete, 39 
upper asymptotic K-density, 105 
upper Seip density, 147 

variational argument, 56 
variational formula, 255 
VMO,42 

weakly cyclic, 201 
Weierstrass factorization, 131 
weighted Bergman kernel, 6 
weighted Bergman projection, 6 
weighted Bergman space, 2 
weighted biharmonic Green function, 

242 
weighted Hele-Shaw flows, 255 
Wirtinger derivatives, 1 

zero divisor, 57 
zero sequence, 98 
zero set, 98 
zero-based invariant subspace, 56 
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