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Preface

Their memorials are covered by sand,

their rooms are forgotten.

But their names live on by the books they wreote,
Jor they are beautiful.

(Egyptian poem, 1500—-1000 BC)

The theory of Bergman spaces experienced three main phases of development
during the last three decades.

The early 1970°s marked the beginning of function theoretic studies in these
spaces. Substantial progress was made by Horowitz and Korenblum, among others,
in the areas of zero sets, cyclic vectors, and invariant subspaces. An influential pre-
sentation of the situation up to the mid 1970’°s was Shields’ survey paper “Weighted
shift operators and analytic function theory”.

The 1980°s saw the thriving of operator theoretic studies related to Bergman
spaces. The contributors in this period are numerous; their achievements were
presented in Zhu’s 1990 book “Operator Theory in Function Spaces™.

The research on Bergman spaces in the 1990’s resulted in several breakthroughs,
both function theoretic and operator theoretic. The most notable results in this
period include Seip’s geometric characterization of sequences of interpolation and
sampling, Hedenmalm’s discovery of the contractive zero divisors, the relationship
between Bergman-inner functions and the biharmonic Green function found by
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Duren, Khavinson, Shapiro, and Sundberg, and deep results concerning invari-
ant subspaces by Aleman, Borichev, Hedenmalm, Richter, Shimorin, and Sund-
berg.

Our purpose is to present the latest developments, mostly achieved in the
1990’s, in book form. In particular, graduate students and new researchers in
the field will have access to the theory from an almost self-contained and read-
able source.

Given that much of the theory developed in the book is fresh, the reader is
advised that some of the material covered by the book has not yet assumed a
final form.

The prerequisites for the book are elementary real, complex, and functional
analysis. We also assume the reader is somewhat familiar with the theory of
Hardy spaces, as can be found in Duren’s book “Theory of H Spaces”, Gar-
nett’s book “Bounded Analytic Functions”, or Koosis’ book “Introduction to H
Spaces”.

Exercises are provided at the end of each chapter. Some of these problems
are elementary and can be used as homework assignments for graduate students.
But many of them are nontrivial and should be considered supplemental to the
main text; in this case, we have tried to locate a reference for the reader.

We thank Alexandru Aleman, Alexander Borichev, Bernard Pinchuk, Kristian
Seip, and Sergei Shimorin for their help during the preparation of the book. We
also thank Anders Dahlner for assistance with the computer generation of three
pictures, and Sergei Treil for assistance with one.

January 2000 Haakan Hedenmalm
Boris Korenblum
Kehe Zhu
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1

The Bergman Spaces

In this chapter we introduce the Bergman spaces and concentrate on the general
aspects of these spaces. Most results are concerned with the Banach (or metric)
space structure of Bergman spaces. Almost all results are related to the Bergman
kernel. The Bloch space appears as the image of the bounded functions under the
Bergman projection, but it also plays the role of the dual space of the Bergman
spaces for small exponents (0 < p < 1).

1.1 Bergman Spaces

Throughout the book we let C be the complex plane, let
D={zeC:|z| <1}

be the open unit disk in C, and let
T={zeC:|z|=1}

be the unit circle in C. Likewise, we write R for the real line. The normalized
area measure on ID will be denoted by 4 A. In terms of real (rectangular and polar)
coordinates, we have

1 1 4
dA(z) = —dxdy = —rdrd9, z=x+iy=reé?.
b4 m

We shall freely use the Wirtinger differential operators

] 1(6 .3) a 1 8+i3
=z — il ’ === - PN k]
dz 2 \9x ay dz 2 \ox dy



2 1. The Bergman Spaces

where again z = x + iy. The first acts as differentiation on analytic functions, and
the second has a similar action on antianalytic functions.

The word positive will appear frequently throughout the book. That a function
f is positive means that f(x) > O for all values of x, and that a measure u is
positive means that w(E) > 0 for all measurable sets E. When we need to express
the property that f(x) > 0 for all x, we say that f is strictly positive. These
conventions apply — mutatis mutandis — to the word negative as well. Analogously,
we prefer to speak of increasing and decreasing functions in the less strict sense,
so that constant functions are both increasing and decreasing.

We use the symbol ~ to indicate that two quantities have the same behavior
asymptotically. Thus, A ~ B means that A/B is bounded from above and below
by two positive constants in the limit process in question.

For0 < p < 400 and —1 < o < +o0, the (weighted) Bergman space
AL = AE(D) of the disk is the space of analytic functions in L? (D, dA,), where

dAy(2) = (@ + 1)(1 — |z1)* dA(2).
If fisin LP(D,dAy), we write

1/p
ufnp,a:[ /D If(z)l"dAa(z)] .

When 1 < p < +o0, the space L?(D, dA,) is a Banach space with the above
norm; when 0 < p < 1, the space LP(D, dA,) is a complete metric space with
the metric defined by

dif,e) =IIf —glha

Since d(f,g) = d(f — g,0), the metric is invariant. The metric is also p-
homogeneous, that is, d(Af, 0) = |A|Pd(f, 0) for scalars A € C. Spaces of this
type are called quasi-Banach spaces, because they share many properties of the
Banach spaces.

We let L°°(ID) denote the space of (essentially) bounded functions on D. For
f € L*®°(D) we define

Il flloo = esssup {|f(2)|: z € D}.

The space L°°(D) is a Banach space with the above norm. As usual, we let H*
denote the space of bounded analytic functions in D. It is clear that H* is closed
in L°°(D) and hence is a Banach space itself.

PROPOSITION 1.1 Suppose 0 < p < +00, —1 < a < +00, and that K is
a compact subset of D. Then there exists a positive constant C = C(n, K, p, @)
such that

sup {177 @)1= z € K} <Clflpa

forall f € Af andalln =0, 1,2, . ... In particular, every point-evaluation in D
is a bounded linear functional on AE.
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Proof. Without loss of generality we may assume that
K={zeC:|z| <r}

for some r € (0, 1). We first prove the result for n = 0.
Leto = (1 — r)/2 and let B(z, o) denote the Euclidean disk at z with radius
o . Then by the subharmonicity of | f |7,

1
P2 [ i@l daw)
o B(z.0)

forall z € K. It is easy to see that for all z € K we have
1=z = 1—lzl = A =r)/2.

Thus, we can find a positive constant C (depending only on r) such that

|ﬂoWscf

B(z.0)

£ )P dAg(w) < C fD 1 )P dAq(w)

for all z € K. This proves the result for n = 0.

By the special case we just proved, there exists a constant M > 0 such that
| fI = M| fllpqforall || = R, where R = (1 +r)/2. Now if z € K, then by
Cauchy’s integral formula,

f(”)(z) = _ri/ M
27i Jip =g (¢ — )"
It follows that
FP@) < ZMR g
- gntl p.a
forallz € K and f € AL. »

As a consequence of the above proposition, we show that the Bergman space
A} is a Banach space when 1 < p < +o00 and a complete metric space when
O<p<l.

PROPOSITION 1.2 Forevery0 < p < +ooand —1 < o < +00, the weighted
Bergman space AL is closed in LP(D, d Ag).

Proof. Let {f,}, be a sequence in AL and assume f, — fin LP(D,dA,).
In particular, { .}, is a Cauchy sequence in L? (D, dA,). Applying the previous
proposition, we see that { f,, },, converges uniformly on every compact subset of ID.
Combining this with the assumption that f, — f in L?(D, dA,), we conclude
that f,(z) — f(z) uniformly on every compact subset of . Therefore, f is
analytic in D and belongs to AZ. n

In many applications, we need to approximate a general function in the Bergman
space AZ by a sequence of “nice” functions. The following result gives two
commonly used ways of doing this.
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PROPOSITION 1.3 For an analytic function f inD and 0 < r < 1, let f, be
the dilated function defined by f,(z) = f(rz), z € D. Then

(1) Forevery f € AL, we have || f, — fllpe —>0asr — 1.

(2) For every f € AL, there exists a sequence {py}, of polynomials such that
lpn — flipa —> O0asn — +oco.

Proof. Let f be a function in AL. To prove the first assertion, let § be a number
in the interval (0, 1) and note that

Auxn—fwwmu@ < [lgﬁm—f@dea)
*ﬂé L FEIH @) dAu

Since f isin L? (D, dA,), we can make the second integral above arbitrarily small
by choosing & close enough to 1. Once § is fixed, the first integral above clearly
approaches OQasr — 17.

To prove the second assertion, we first approximate f by f, and then
approximate f, by its Taylor polynomials. ]

Although any function in A2 can be approximated (in norm) by a sequence of
polynomials, it is not always true that a function in A% can be approximated (in
norm) by its Taylor polynomials. Actually, such approximation is possible if and
only if 1 < p < +0o0; see Exercise 4.

We now turn our attention to the special case p = 2. By Proposition 1.2 the
Bergman space A:‘; is a Hilbert space. For any nonnegative integer n, let

_ 'n+2+a) ,
en(z)—,/ TG T o) 7", zeD.

Here, I' (s) stands for the usual Gamma function, which is an analytic function of s
in the whole complex plane, except for simple poles at the points {0, —1, =2, ... }.
It is easy to check that {e,}, is an orthonormal set in Ai. Since the set of poly-
nomials is dense in Ag, we conclude that {e,}, defined above is an orthonormal
basis for A2. It follows that if

+00 +00
f@=) anz" and  g(@)= > baz”
n=0 n=0

are two functions in A2, then

X nre+w
2 _ n 2
Hﬂb—Z;Fm+2+aﬂnl
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and

“i” nTR+a) -

= by,
(f, &) - I,(n+2+a)an n

where (-, -), is the inner product in Ag inherited from LZ(D, d Ay ).

PROPOSITION 14 For —1 < a < +00, let P, be the orthogonal projection
from L*(D, dAy) onto A2. Then

Fw)ydAy(w)

D—(T.——Z_E)ZT’ zeD,

Paf(Z) =
forall f e L*(D, dAy).

Proof. Let {e,}, be the orthonormal basis of Ag defined a little earlier. Then
for every f € L*(D, dA,) we have

400
P.f= Z(Paﬁ €n)a en
n=0

In particular,

+00
Pof@) =) (Pufi en)aen@
n=0

for every z € D and the series converges uniformly on every compact subset of .
Since

(Pof, en)a = (f, Paenla = ([, €n)a
we have

+2’°F(n+2+oe)
n!'Tr2+a)

_ +°°1"(n—|—2—}—az) .
= /f()|:~0 T QT )(w)jldAa(w)
f(w)dAu(w)

D (1 —z‘u?)z“‘“ )

P.f(a) = /Df(w)(z'u?)"dAa(w)

The interchange of integration and summation is justified, because for each fixed
z € D, the series

+i:'°I‘(n+2+oz)

W TG ta) O

n=0

converges uniformly in w € D. =



6 1. The Bergman Spaces

The operators P, above are called the (weighted) Bergman projections on D.
The functions

1
(1- Zw)2+ot ’
are called the (weighted) Bergman kernels of ID. These kernel functions play an
essential role in the theory of Bergman spaces.

Although the Bergman projection P, is originally defined on L(D, dA,), the
integral formula

Ko(z, w) = z,weD,

J(w)dAg(w)
D (1 _ Zw)2+cx

Py f(2) =

clearly extends the domain of P, to LYD,dAy). In particular, we can apply Py
to a function in L?(D, d A,) whenever 1 < p < +00.
If f is a function in Ag, then P, f = f, so that

[ fw)dAa(w)
f@)= p (1—zw)*te’

zeD.
Since this is a pointwise formula and A2 is dense in A}, we obtain the following.
COROLLARY 1.5 If f is a function in AL, then

[ fw)dAg(w)
f@)= p (1 —qu—)z’m ’

and the integral converges uniformly for z in every compact subset of D.

zeD,

This corollary will be referred to as the reproducing formula. The Bergman
kernels are special types of reproducing kernels.

On several occasions later on theorems will hold only for the unweighted
Bergman spaces. Thus, we set A? = Ag and call them the ordinary Bergman
spaces. The corresponding Bergman projection will be denoted by P, and the

Bergman kernel in this case will be written as
K(z, w) 1
W)= —/———5.

z (1 — zw)?

The Bergman kernel functions are intimately related to the Mobius group
Aut (D) of the disk. To see this, let z € D and consider the Mobius map ¢, of
the disk that interchanges z and O,

Z—w
w e D.

(pZ (w) = 1 —
—zw
We list below some basic properties of ¢,, which can all be checked easily.

PROPOSITION 1.6 The Mobius map @, has the following properties:

(1) ;' =0,
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(1 —|z»?

(2) The real Jacobian determinant of ¢, at w is I(p;(w)[2 = T—zolt

_ (=12 = wp?)
|1 —zw|? ’

(3) 1—lp(w)l?

As a simple application of the properties above, we mention that the formula
for the Bergman kernel function K, (z, w) can be derived from a simple change of
variables, instead of using an infinite series involving the Gamma function. More
specifically, if f € A é, then the rotation invariance of d A, gives

10 = [ £ dauu).
Replacing f by f o ¢,, making an obvious change of variables, and applying
properties (2) and (3) above, we obtain

|Z|2)2+a f(w) dA(X(w) )
D (1 - wZ)”"‘(l - z'u7)2+“

f@)y=1-

Fix z € D, and replace f by the function w +> (1 — wZ)>+® f(w). We then arrive
at the reproducing formula

f(w)
f()—/(1 e dAy(w), z €D,

for f € Al. From this we easily deduce the integral formula for the Bergman
projection P,,.

1.2 Some LP Estimates

Many operator-theoretic problems in the analysis of Bergman spaces involve esti-
mating integral operators whose kernel is a power of the Bergman kernel. In this
section, we present several estimates for integral operators that have proved very
useful in the past. In particular, we will establish the boundedness of the Bergman
projection P, on certain L7 spaces.

THEOREM 1.7 Forany —1 < a < +00 and any real B, let

(1 = w?)*
I g(2) = /“ s AW, zeD,

and

2 de
J = —_— D.
8(2) _/0 11— ze—i0|TP z€
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Then we have

1 ifg <0,

1 e
Lp(d) ~ Jp(x) ~ | 1°8 =P #6=0
ifB >0,

(1-1z1»Ff

as |zl —> 1.

Proof. The condition —1 < a < +oo ensures that the integral Iy g(z) is
convergent for every z € . The integral Jg(z) clearly converges for all z € D.
Let A = (24 « + B)/2. If A is a nonpositive integer, then clearly 8 < 0 and
Jo.p(2) is bounded. In what follows, we assume that A is not a nonpositive integer.
In this case, we make use of the following power series:
1 Trn+xr
T L e

£ 1T (0

Since the measure (1 — |w|?)* d A(w) is rotation invariant, we have

(1= lw»* dA(w)
fffliiffwzﬁﬂf(l—lwﬁwnm”dAaw
Loy o

_ T@+D]®  T'n+r)? o
T T2 rgn!r‘(n—ka—i—Z) 2l

By Stirling’s formula,

I'(n+ A)?
_.._.__(_n_—f-___)._._,\,(n+1)5—1, n — 4o00.
n'T(n+a+2)
If B < O, then the series
400 IZIZn
1—
=+ DIP

clearly defines a bounded function on D, and so I, g(z) is bounded on D.
If B = 0, then we have

400 lZ|2n 1
f0(2) ~ ZO Al e T
n=

as|z| - 17.
If B > 0, then we have
1

+00
~ -1 2n .
Lo.p(2) Z;n+n 2~ T
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as |z] — 17, because

1 +i:’°r(n+ﬁ)

- TAPT 2n
A= 122)P AT

n=0
and
'n+ B)
n!T(B)

by Stirling’s formula again.
The estimate for Jg(z) is similar; we omit the details. n

~ (n+4 P!

The following result, usually called Schur’s test, is a very effective tool in proving
the LP-boundedness of integral operators.

THEOREM 1.8 Suppose X is a measure space and | a positive measure on X.
Let T(x,y) be a positive measurable function on X x X, and T the associated
integral operator

Tf(2) =fXT(x,y)f(y)du(y), xeX,

defined wherever the integral converges. If, for some 1 < p < 400, there exists a
strictly positive measurable function h on X and a positive constant M such that

[ T hoydue) < Mhwr, xex.
and
/X T(x, yyh(x)P du(x) <Mh)?,  yeX,
where p~! 4+ g~ = 1, then T is bounded on L? (X, du) with |T| < M.

Proof. Fix a function f in LP(X, du). Applying Holder’s inequality to the
integral below,

ITf(x)| < th(y)h(y)—1 IFIT (x, y)du(y),

we obtain

1

q P
ITf(0)] < [/X T (x,y)h(y)? du(y)] [/X T, YR PIfODIP du(y)]
Using the first inequality in the assumption, we have

i

ITf(x)] <MY h(x) [ fx T (x, Yh)“PIFO)IP du(y)} "
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Using Fubini’s theorem and the second inequality in the assumption, we easily
arrive at the following:

/X ITf()IP dutx) < MP [X FOIP du(y).

Thus, T is a bounded operator on L?(X, du) of norm less than or equal to M. m

We now prove the main result of this section.
THEOREM 1.9 Suppose a, b, and ¢ are real numbers and
du(z) = (1 = Iz1)° dA().
Let T and S be the integral operators defined by

o [ A=wP)?
17@ = -1y [ C Fndaw

and
_ e [ _(L—Tw??
5@ = (1 =1z [ Sl fw)daw).
Then for 1 < p < 400 the following conditions are equivalent:
(1) T is bounded on LP (D, du).
(2) S is bounded on LP(D, du).

(3) —pa<c+1<pb+1).

Proof. It is obvious that the boundedness of S on L (D, du) implies that of T'.

Now, assume that T is bounded on L? (D, di). Apply T to a function of the form
fz) = (1 —|z]®)", where N is sufficiently large. An application of Theorem 1.7
then yields the inequality ¢ + 1 > — pa. To prove the inequality c+ 1 < p(b+ 1),
we first assume p > 1 and let g be the conjugate exponent. Let 7* be the adjoint
operator of T with respect to the dual action induced by the inner product of
L%(D, dp). It is given explicitly by

(1 = [wP)**€ f(w)

a- Zﬁ)2+a+b

T*f(2) = (1 = 1z)"~¢ dA(w),
must be bounded on L4 (ID, d ). Again, by looking at the action of 7* on a function
of the form f(z) = (1 — |z|%)", where N is sufficiently large, and applying
Theorem 1.7, we obtain the inequality ¢ + 1 < p(b+ 1).If p = 1, then T* is
bounded on L°°(D), and the desired inequality becomes ¢ < b. Let T* act on the
constant function 1. We see that ¢ < b. To see that strict inequality must occur, we
consider functions of the form

(1 _ Zw)2+a+b

JS(w) = ¥ _—Z_u7|2+a+b, z,w e D.
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Clearly, || f;llco = 1 forevery z € D. If b = c, then

. (1 — [w|>)a+¢ d A(w) 1 _
T fZ(Z):,/]D) Il_zw_|2+a+c Nlogl_lZP’ |ZI_> 1 )

by Theorem 1.7. This implies |7* f;lcc — 400 as |z] — 17, a contradiction
to the boundedness of T* on L (D). Thus, the boundedness of T on LP (D, d )
implies the inequalities —pa < c+ 1 < p(b + 1).

Next, assume —pa < ¢+ 1 < p(b-+1). We want to prove that the operator S is
bounded on L? (D, du). The case p = 1 is a direct consequence of Theorem 1.7
and Fubini’s theorem. When p > 1, we appeal to Schur’s test. Thus, we assume 1 <
p < 400 and seek a positive function A(z) on I that will satisfy the assumptions
in Schur’s test. It turns out that such a function exists in the form h(z) = (1—|z|2)",
where s is some real number. In fact, if we rewrite

1— 2\a 1— 2\b—c
SF(2) =fD( 270 Tl ) ducw),

|1 — Z_IEIZ'HH’[’

then the conditions that the number s has to satisfy become

_ 2\b+gs
(1 — (w4 dAw) _ C LeD
D |1 _ Zw|2+a+b - (- IZIZ)a—qx ’ ’
and
_112ya+ps+c
(1 —|z|*) dA(2) < C weD
D 1 — Z'ﬁ|2+a+b - - lw|2)b—ps—-c’ ’

where g is the conjugate exponent of p and C is some positive constant. According
to Theorem 1.7, these estimates are correct if

b+gs > —1, a—gqgs >0,
and
a+ps+c>-—1, b—ps—c>0.
We rewrite these inequalities as
b+1 a a+c+1 b—c
—_— <5< -, —_— <5< .
q q P P
It is easy to check that the inequalities —pa < ¢+ 1 < p(b+ 1) are equivalent to
b+1 b-c atc+1 a
- < 3 - < —,
q p p q

which clearly imply that the intersection of intervals

(_b—i—l )m< at+c+1 b—c)
q9 g p ' p

is nonempty. This shows that the desired s exists, and so the operator S is bounded
on LP(D, dw). =
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One of the advantages of the theory of Bergman spaces over that of Hardy spaces
is the abundance of analytic projections. For example, it is well known that there
is no bounded projection from L! of the circle onto the Hardy space H!, while
there exist a lot of bounded projections from L' (ID, dA) onto the Bergman space
Al, as the following result demonstrates.

THEOREM 1.10 Suppose —1 < a, 8 < +ooand 1 < p < 400. Then Pgisa
bounded projection from LP (D, dAy) onto AL ifand only ifa +1 < (B + 1)p.

Proof. This is a simple consequence of Theorem 1.9. ]

Two special cases are worth mentioning. First, if « = B, then P, is a bounded
projection from L?(D, dA,) onto A if and only if 1 < p < +o00. In particular,
the (unweighted) Bergman projection P maps L? (D, dA) onto AP if and only if
1 < p < +o00.Second, if p = 1, then Pg is abounded projection from L1(D, dA,)
onto A) if and only if 8 > «. In particular, Py is a bounded projection from
L'(D, dA) onto A! when g8 > 0.

PROPOSITION 1.11 Suppose 1 < p < 400, =1 < o < +00, and that n is a
positive integer. Then an analytic function f in D belongs to AL if and only if the
function (1 — |z|2)" f™(2) is in LP(D, d Ay).

Proof. First assume f € AZ. Fix any 8 > «. Then, by Corollary 1.5,
(1 - JwP?
f(Z)—(ﬂ‘f‘l)/D-(‘l——_:)mf( w)dA(w), zeD.
Differentiating under the integral sign » times, we obtain
|w|*)?

1 — |zl )nf(n)(Z) C( -z )n[ El—‘mﬁwn f(w)dA(w),

where C is the constant
=@B+DB+2)---(B+n+1).
By Theorem 1.9, the function (1 — |z]2)* f ™ (z) is in L?(D, d A).

Next, assume that f is analytic in D and the function (1 — 12]2)" f (M (z) is in
LP(D, dAy). We show that f belongs to the weighted Bergman space AZ. Without
loss of generality, we may assume that the first 2n + 1 Taylor coefficients of f are
all zero. In this case, the function ¢ defined by

— |712yn £(n)
M@:C(lld;f ©  .p

isin LP(D, dAy), for any constant C. Fix 8, ¢ < 8 < 400, and let g = Pgo. By
Theorem 1.10, the function g belongs to AZ. The explicit formula for g is

Gl Ul dA D
g =B+ L = z)2*P p(w) dA(w), zeD.
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If we set the constant C to be
C— 1
B+DB+2)---B+n+1)
then differentiating n times in the formula for g yields

(1 — JwH+8
(1- ZTU-)2+"+‘3

gY@ =mn+B+ 1)/D FPw)dAw), zeD.

Applying Corollary 1.5 again, we find that g™ = £ so that f and g differ only
by a polynomial. Since g is in AL, we have f € AL. n

1.3 The Bloch Space
An analytic function f in D is said to be in the Bloch space B if

1715 = sup {(1 = 121 £ : 2 € D} < +o0.

It is easy to check that the seminorm || - ||z is Mbius invariant. The little Bloch
space By is the subspace of B consisting of functions f with

Jim (1= 1z2)if @) =o.

The Bloch space plays the same role in the theory of Bergman space as the space
BMOA does in the theory of Hardy spaces. When normed with

1A= 1O+ 115

the Bloch space B is a Banach space, and the little Bloch space By is the the closure
of the set of polynomials in B.
If f is an analytic function in D with || f |l < 1, then by Schwarz’s lemma,

A=z @D <1—1f@F  zeDb.

It follows that H*® C B with || fllg < | f llco-

Let C(D) be the space of continuous functions on the closed unit disk D. Denote
by Co(D) the subspace of C( D) consisting of functions vanishing on the unit circle
T. It is clear that both C(D) and Co(D) are closed subspaces of L (D).

THEOREM 1.12 Suppose —1 < « < +oo and that P, is the corresponding
weighted Bergman projection. Then

(1) Py maps L°°(D) boundedly onto B.
(2) Py maps C (ﬁ) boundedly onto By.
(3) Py maps Co(D) boundedly onto By.
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Proof. First assume g € L°°(D) and f = Pyg, so that

_ (1 — lw?)?g(w)
f(z)-(a+1)/DW

Differentiating under the integral sign and applying Theorem 1.7, we see that f
belongs to B with

dA(w), zeD.

IfF @I+ 1flB = Cligleo

for some positive constant C (independent of g). Thus, P, maps L*° (D) boundedly
into B.

Next, assume g € C(ID). We wish to show that f = P, g is in the little Bloch
space. By the Stone-Weierstrass approximation theorem, the function g can be
uniformly approximated on D by finite linear combinations of functions of the
form

gnm(2) = 2"7", zeD,

where n and m are nonnegative integers. Using the symmetry of DD, we easily check
that each P, g, ,» belongs to the little Bloch space. Since P, maps L°(ID) bound-
edly into B, and By is closed in B, we conclude that P, maps C (ﬁ) boundedly
into By.

Finally, for f € B we write the Taylor expansion of f as

f(z):a+bz+cz2+f1(z), zeD,
where f1(0) = f{(0) = 0, and define a function g in L>° (D) by
o +5a+6 ?+Te+12 5, fl@ ]
502 5—C2" + = .
(@+1) 2(a + 1)? Z(a+ 1)

It is clear that g is in Co(D) if f is in the little Bloch space. A direct calculation
shows that f = Pyg. Thus, P, maps L°°(D) onto B; and it maps Co(D) (and
hence C(ID)) onto By. ]

mm=a—m%%+

PROPOSITION 1.13 Suppose n is a positive integer and f is analytic inD. Then
f € Bifand only if the function (1 — |z|*)" f ™ (z) is in L (D), and f € By if
and only if the function (1 — |z|*)" f™(z) is in C(D) (or Co(D)).

Proof. If f is in the Bloch space, then by Theorem 1.12 there exists a bounded
function g such that

[ gw)dA(w)

Differentiating under the integral sign and applying Theorem 1.7, we see that the
function (1 — |z|2)" £®(z) is bounded.

If the function g above has compact support in D, then clearly the function
(1—1z%)" £ (z) is in Co(D) (and hence in C(D)). If f is in the little Bloch space,
then by Theorem 1.12 we can choose the function g in the previous paragraph to

z € D.
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be in Co(D). Such a function g can then be uniformly approximated by continuous
functions with compact support in . This shows that the function (1— 125" F™(2)
is in Co(ID) (and hence in C(ID)) whenever f is in the little Bloch space.

To prove the “if” parts of the theorem, we may assume the first 2n + 1 Taylor
coefficients of f are all zero. In this case, we can consider the function

(1 =1z ™ (z)

8()=C zeD.

By the proof of Proposition 1.11, the functions f and Pg differ by a polynomial.
The desired result then follows from Theorem 1.12. ]

As a consequence of this result and Proposition 1.11, we see that B is contained
in every weighted Bergman space A5. We can then use this observation and the
following result to construct nontrivial functions in weighted Bergman spaces. In
particular, we see that every weighted Bergman space contains functions that do
not have any boundary values.

Recall that a sequence {A,}, of positive integers is called a gap sequence if there
exists a constant A > 1 such that A,4+1/A, > Aforalln = 1,2, 3, ....Inthis case,
we call a power series of the form Z:{;’B anz* alacunary series.

THEOREM 1.14 A lacunary series defines a function in B if and only if the
coefficients are bounded. Similarly, a lacunary series defines a function in By if
and only if the coefficients tend to 0.

Proof. Suppose {a,}, is a sequence of complex numbers with |a,| < M
foralln = 1,2,3,..., and suppose {A,}, is sequence of positive integers with
Ant1/An = Aforalln =1,2,3,..., where | < A < 400 is a constant. Let

+00
f@=) a*,  zeD.
n=0

Clearly, f is analytic in D and
+00
f@=) arad™!,  zeD.
=0

LetC =A/(L — 1);then 1 < C < 400. It is easy to check that
Antl < C (pg1 — An), n=1,2,3,....
This implies that
An 2171 < € (gt = 1) J et
< C(Izl*" oot |z|*"+‘"1), n=1,2,3,....
We also have, rather trivially,

Mz < T lal 44 T s C A+ Izl 2.
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It follows that

+o0
MC
If' @l <MCY_lal" = . zeD,
=0 L=l

and hence f is in the Bloch space.

A similar argument shows that if f is defined by a lacunary series whose
coefficients tend to 0, then f must be in the little Bloch space.

Conversely, if

+00
f(z)=Zanz”, zeD,
-0

is any function in the Bloch space, we show that its Taylor coefficients must be
bounded. By Corollary 1.5, we have

, 1—|w?
F@=2] —— fw)dAw), zeD,
p (1 — zw)
whence it follows that

(n)
70 =0+ 1)/ w1 — ]w|2) f(w)dA(w), n=12,3....
D

n!

an

This clearly implies that {a,}, is bounded. Similarly, the formula above together
with an obvious partition of the disk implies that {a,}, converges to 0 if f is in
the little Bloch space. n

Finally in this section we present a characterization of the Bloch space in terms
of the Bergman metric. Recall that for every z € D, the function ¢, is the M&bius
transformation that interchanges z and the origin. The pseudohyperbolic metric p
on D is defined by

Z
1—zw
and the hyperbolic metric B, also called the Bergman metric or the Poincaré metric,
is defined by

oz, w) = lo (w)| =

w
l, z,weD,

1 1 s
Bz w) = 5100____”(2 W) weD.

" 1-pz,w)’
It is easy to check that the pseudohyperbolic metric (and hence the hyperbolic
metric) is Mobius invariant. The infinitesimal distance element for the Bergman
metric on D is given by
ldz]|
1—z?”

THEOREM 1.15 An analytic function f in D belongs to the Bloch space if and
only if there exists a positive constant C such that

If @) — f(w)] = C Bz, w)
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holds for all z and w in D.

Proof. If f is analytic in I, then

1
ﬂo—ﬂm=zﬁfmnm

for all z € D. If f is in the Bloch space, then it follows that

f@— £ booar
’—z—~1 < HfHB/O Toepe = I fliz Bz, 0)

for all z € . Replacing f by f o ¢,, replacing z by ¢,(w), and applying the
Mbbius invariance of both || - |5 and 8, we arrive at

If (@) = fw) < [ fliB Bz, w)

forall f € Band z, w € D.
The other direction follows from the identity

fim L =TSOyl zeD,
wos B(w,2)

which can easily be checked. [

Carefully examining the above proof, we find that

|f (@) — f(w)l
I fllz=su {———————:z,weD,z#—w .
P B(z, w)
With the help of functions of the type
1 1+ ze'?
= —log ———, D,
@) 3log T z€e

we can also prove that

Bz, w) =sup{If(z) — f(w)|: I flp < 1}.

These formulas exhibit the precise relationship between the Bloch space and the
Bergman metric.

1.4 Duality of Bergman Spaces

Suppose 0 < p < +ooand —1 < @ < +00. A linear functional F on AZ is called
bounded if there exists a positive constant C such that |F(f)| < C|| flle. p for all
f € AL, where

1/p
1 flloap = [/le(z)l"dAa(z)] .

Recall that point evaluation at every z € D is a bounded linear functional on every
AL In particular, every weighted Bergman space A% has nontrivial bounded linear
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functionals. We let A2™ denote the space of all bounded linear functionals. Then
Ag * is a Banach space with the norm

IFI = sup {IF(N)I: I fllap < 1},
even though Af is only a metric space when 0 < p < 1.

THEOREM 1.16 For1 < p < 400 and —1 < & < +00, we have AR™ = Al
under the integral pairing

(f.g) = /D F@QE@DdAu),  feAl, geal,

where q is the conjugate exponent of p: p~' + ¢~ = 1.

Note that the identification isomorphism A%Z™ = A% need not be isometric for
p#F2

Proof. By Hélder’s inequality, every function g in AZ defines a bounded linear
functional on A2 via the above integral pairing. Conversely, if F is a bounded
linear functional on Ag , then by the Hahn-Banach extension theorem, F can be
extended to a bounded linear functional (still denoted by F) on L?(ID, d Ay) with-
out increasing its norm. By the duality theory of L? spaces, there exists a function
@ in L9(D, d A,) such that

F(f) = /D FQPDdAL),  f e AL

Writing f = P, f and using the fact that the operator P, is self-adjoint with
respect to the inner product associated with dA,, we obtain

F(f)= /Df(Z) Pop(z)dAq(2), f €Al
Letting g = Py and using Theorem 1.10, we conclude that g is in A and that

F(f) = /D f(@) 8@ dAy(2)

forall f € AL. [

In order to identify the dual space of A? when 0 < p < 1, we first introduce a
certain type of fractional differentiation and integration.

Let H(D) denote the space of all analytic functions in D and equip H (D) with
the topology of “uniform convergence on compact subsets”. Thus, a linear operator
T on H (D) is continuous if and only if Tf,, — T f uniformly on compact subsets
whenever f, — f uniformly on compact subsets.

LEMMA 1.17 Foreverya, —1 < o < 400, there exists a unique linear operator
D% on H (D) with the following properties:

(1) D is continuous on H(D).

(2) D [(1 —zw) 2] = (1 — zw) =@+ for every w € D.
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Proof. Recall that

iz Zw)2 Z(n + DZ"w"

and

1 X Tn+24+a) ,_
(1 — zw)?te = go n' Q2+ a) .
If we define
rn+2+a) ,
G+ DITC+a)
foralln =0,1,2,3,... and extend D¥ linearly to the whole space H (D), then

the resulting operator D* has the desired properties. The uniqueness also follows
from the earlier series expansions. n

Da (Zn) —

By Stirling’s formula,
F'n+2+a
wrDITQre "
as n — o00. Thus, the operator D® can be considered a fractional differential
operator of order « in the case « > 0.

It is easy to see that for each —1 < o < 00, the operator D? can also be
represented by

@fg) = fim [ Lr4Aw)
Dr@=lm | G —amra <P

for f € H(D). In particular, the limit above always exists. If f isin A', then

o _ [ f(w)dA(w)
D% f(z) = Mgy rg zeD.

LEMMA 1.18 Forevery —1 < a < 00, the operator D® is invertible on H (D).

Proof. Define an operator D, on monomials by
n+D'T2+a) ,

Dy(7") =
«@) = T T 2w
and extend D, linearly to the whole space H (D). Then Dy, is a continuous linear
operator on H (D), and it is the inverse of D*. ]

It is easy to see that

lw|“)*

Dy f(z) = lim (a + 1)/ (—1——‘_—2— frw)dA(w), zeD,
r—1- D (1 )

forevery f € H(D). Whena > 0, the operator Dy, is a fractional integral operator
of order «.
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We now proceed to identify the dual space of A when 0 < p < 1. The
following two lemmas will be needed for this purpose, but they are also of some
independent interest.

LEMMA 1.19 ForeveryQ < p < 1and —1 < o < 400, there exists a constant
C,0 < C < 400, such that

/D If @) (1 =z 2 CHD/P GA(Z) < Clifllacp
forall f € AL,

Proof. For z € D, we let D(z) be the Euclidean disk centered at z with radius
(1 — |z|)/2. By the subharmonicity of | f|?, we have

[f@)IF < -—i—f [f (w)|? dA(w).
~1-1z20? Jpw
Since (1 — |w]) ~ (1 — |z|) for w € D(z), we can find a positive constant C such
that
IF@ < CU =12 P fllap,  z€D,

forall f e Ag. For 0 < p < 1, we can write

If @I = If@IP 1 f @77

use the above inequality to estimate the second factor, and write out the remaining
integral. What comes out is the desired result. ]

LEMMA 1.20 Suppose —1 < a < +o00 and f is analytic in D. If either f or
the function (1 — |z|2)™% f (z) is bounded, then the function (1 — |z|?)* D® f (z) is
area-integrable and

[Df(z)g_(z')dA(z)=<a+1)/DD°‘f(z)§‘<z_>(1—|zi2)“dA<z),
forall g € H*.

Proof. The case o = 0 is trivial. If 0 < « < 400, then by the integral
representation of D* and Theorem 1.7, the function (1 — 1z|2)® D* £(z) is bounded.

If -1 < « < 0 and f is bounded, then Theorem 1.7 and the integral
representation of D% imply that D” f(z) is bounded, and hence the function
(1 — |z1%)® D% f (z) is area-integrable.

If—-1<a<Oand|f@ <Ci1 (- 1z|2)®, then by Theorem 1.7 and the
integral representation of D%, we have

1 1
A= [zP*ID*f@I < C2 (1 = |2 log ——, 5 <zl <1,
1—z| 2

and hence (1 — |z|2)®D® f(z) is area-integrable.
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The desired identity now follows from the integral form of D%, the reproducing
property of P,, and Fubini’s theorem. ]

THEOREM 1.21 Suppose0 <p <1, -1 <a <+oo,andf = 2+a)/p—2.
Then AL" = B under the integral pairing

(f8)= lim /@ frg@1 — 1217 dA),
where f € AE and g € B.

Proof. First assume F € Ag* and f € AL . Since | f—frlla.p = Oasr — 17,

we have
F(f)= lm F(f),  feA].
Write
Sfr(w) dA(w)
r = -—:—' D.
@ p (1—zw)? ze

Since the integral converges in A%, the continuity of F implies that
1
F = [ s F [—tﬂ dAw).
D (1 - zw)
where on the right hand side we think of F as acting with respect to the running
variable z. Let

— 1
h =F|————], e D.

@ [( 1- z"u7)2] v
Then 4 is analytic in D and

F(f) = /D f(w) (@) dAw).

Put
2+«
p
and apply Lemma 1.20, with the result

p=""-2
F(f) =@+ fD frw) DPh(w) (1 - ) dA(w).
Let g = (8 + 1) DPh and apply the second property of Lemma 1.17. Then

- 1
gw)=(B+1DHF [-————]

(1 — zw)@+a)/p

and

gl(w):(ﬂ+1)(2+a)F[ z ] w <D.

p (1-— Z-u—))(2+a)/P+l
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Using Theorem 1.7 and the boundedness of F, we easily check that g is in the
Bloch space and that

F() = lim /D Forw) 3@ (1 — 22 dAw)

for every f € AL.
Next, assume g € B. We show that the formula

Fp = tim [ 3@ 0 - kP dA@. feal

defines a bounded linear functional on AZ. By Theorem 1.12, there exists a function
¢ € L°°(D) such that

(1 w?)?
8@ =Ppo(@) = B+ 1) [ TS g dAw). zeD.

Using Fubini’s theorem and the reproducing property of Pg, we easily obtain

/D £(@)e@ 0 —1z)PdA() = /D frw) o) (1 — |w?)f dA(w).

By Lemma 1.19, we have
F(f) = /D FQeD - 12D dAG).  f e AL,

and this defines a bounded linear functional on AZ. n

1.5 Notes

The notions of Bergman spaces, Bergman metric, and Bergman kernel are by now
classical. General references include Bergman’s book [19], Rudin’s book [105],
Dzhrbashian and Shamoyan’s book [36], and Zhu’s book [135]; see also Axler’s
treatise [14]. The classical reference for Bloch spaces is [9].

Theorems 1.7 and 1.10 were proved by Forelli and Rudin in [47] in the context
of the open unit ball in C". Proposition 1.11 should be attributed to Hardy and
Littlewood [53]. That the Bergman projection maps L°°(ID) onto the Bloch space
was first proved by Coifman, Rochberg, and Weiss [34]. The duality results in
the case 1 < p < +oo follow directly from the estimates of the Bergman kernel
obtained by Forelli and Rudin [47]. The duality problem for 0 < p < 1 has been
studied by several authors, including [41] and [115]. Theorem 1.21 is from Zhu
[136].
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Exercises and Further Results
Suppose 1 < p < 4o00. Show that f, — O weakly in A? as n — +0o0

if and only if {|| f.|lp}» is bounded and f,,(z) — O uniformly on compact
subsets of D as n — +o0.

. For —1 < a < 400, show that the dual space of the little Bloch space can

be identified with A, under the integral pairing
{f, &) = lim / fr2)g(@ dAq(z), feBo, ge AL
r—1-JD

Show that f,, — Oin the weak-star topology of A} if and only if the sequence
{ fu}n is bounded in norm and f,,(z) — O uniformly on compact subsets of
Dasn — +oo.

For an analytic function f on D, let f, be the n-th Taylor polynomial of f.
Ifl < p<+00,—1 <a < +oo,and f € A%, show that f, — f in norm
in AZ as n — 4-00. Show that this is false if 0 < p < 1.

Prove Proposition 1.6.

. If f is a function in the Bloch space, then there exists a positive constant C

such that | f(z)] < Clog(1/(1 — |z}?)) for all z with % < |z| < 1. Similarly,
if f is in the little Bloch space, then for every & > 0 there exists § € (0, 1)
such that | f(z)] < elog(1/(1 — 1z|2)) for all z with & < |z] < 1.

For every § € (0, 1), there exists a positive constant C = C(p, §) such that
if f and g are analytic functions in D with | f(z)] < |g(z)| foré§ < |z] < 1,
then

f I fIPdA(z) < Cf lg(@)I? dA(Z).
D D

. There exists an absolute constant o, 0 < o < 1, such that

‘/If&NZdA&)SQ/lg@NZdA&)
D D

whenever | f(z)] < |g(z)|ono < |z] < 1, where f and g are analytic in D.
For details, see [87], [57], and [75].

For 1 < p < 400, let B, denote the space of analytic functions f in D
such that

Aa—umﬂf@wwun<+m,

where
dA(z)

di =
© =T py
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is the Mobius-invariant measure on . These are called analytic Besov
spaces. Show that the Bergman projection P maps L? (D, d) onto B, for
all 1 < p < 4o0. For details, see [135].

10. Ifl<p<2,pl4+g1=1,and
+00
f@ =) ad"
n=0

isin AP, then

+00

Z lan | < 400
1 .
= (n+ 1)

For problems 10-14, see [95].
11. Suppose | < p<2and p~l4+g 1 =1.1f

+00

Z |Gn|? < 400
(n+ 1)1”"1 ’
n=0

then the function
+00
f@ =) ap?"
n=0

belongs to AY.

12. f1 < p <2and
40
f@ =) an"
n=0

belongs to A”, then

400

ol e
(n+1)3-p ’
n=0

13. If 1 < p < 2 and the function
+00
f@) =) an?"
=0

is in AP, then the function

+oo

an n
g() = Z——-———(n THR-

n=0

belongs to the Hardy space H”.
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If 2 < p < 400 and the function
+00
f@) =) an?"
n=0

is in H?, then the function

+00

g@) =) (n+1)"/?a,"
n=0

belongs to A?.

Suppose 0 < p < +oo and f is analytic and bounded in D. Then

1 2n .
im [ F@P dAa) = — f F @7 d.
1+ Jp 21 Jo

a——

Suppose ¢ is analytic in D. Then 9 AL c Af if and only if p € H.

17. Suppose ¢ is analytic in ID. Show that ¢ B C B if and only if ¢ € H* and

sup {(1 — 12)1¢/ @ log[1/(1 ~ 12)] : 2 € D} < +oc.
Formulate and prove a similar result for the little Bloch space. See [134].

Recall that K, (z, w) is the reproducing kernel for the weighted Bergman
space AZ. Show that

|Ko(z, w)]? < Ko (2, 2) Ka(w, w)

for all z and w in D, and that

N N
Z cjick K(zj,z) = 0
j=1k=1
forallcy,...,cxyinCandall zy,...,zy inD.

Let X be a linear space of analytic functions in ID. Suppose there exists a
complete seminorm || - {| on X such that:

(D) 1 f opll = || fl for any f € X and any M&bius map ¢ of the disk.
(2) Point evaluations are bounded linear functionals on X.

Then X C B. See [104].

. Let X be a linear space of analytic functions in . Suppose there exists a

complete semi-inner product (-, -) on X such that:

(1) (foe,goep)=(f, g) forall f, gin X and any Mo6bius map ¢ of the
disk.
(2) Point evaluations are bounded linear functionals on X.
Then X = B; (See Exercise 9). Note that B; 1s usually called the Dirichlet
space and frequently denoted by D. See [11].



26

21.

22.
23.

24.

25.

26.

27.

28.

29.

30.
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Show that there exist infinite Blaschke products in the little Bloch space.
See [23].

If f € AP and ¢ : D — D is analytic, then f o ¢ € AP, See [135].
For0 < p < 4ocand —1 < & < +00, define
dpa(z,w) =sup{|f@) — fW)I: Iflpa <1}, zweD.

Show that

lim dp.a(w, )
w—z iw — ZI

for each z € . See [137].

—_—sup{lf'(z)l Nfllpe = 1}’

There exist functions in the little Bloch space whose Taylor series do not
converge in norm.

Let B; consist of analytic functions f in D such that f” € Al. Show that
f € By if and only if there exists a sequence {c,}, in /! and a sequence
{an}n in D such that

+00 an — 2
f@=3 et zeD.
n=0

Gz’
Show that the Bergman projection P maps the space L!(ID, dA) onto By,
where dA is as in Exercise 9.

Show that for f € H(D) and 1 < p < 400, we have f € B, if and only if

[ [ DL oy anuy < o
pJp 1—zw*

See [135].

Foreach 1 < p < +ooand —1 < @ < +00, there exists a positive constant
C such that

1fllpe < ClRe fllpa
forall f € AL with £(0) = 0.

Foreachl < p < +ooand —1 < o < 400, there exists a positive constant
C such that

/ 4(2)|P dAg(2) < C/ [u(2)|? dAa(z)
D D

for all harmonic functions u in I, where % is the harmonic conjugate of u
with #(0) = 0.

Solve the extremal problem
inf {|| fllp.o : f € AL, f(w) =1},

where w is any point in D.
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31. Try to extend Proposition 1.11 to the case 0 < p < 1.



2

The Berezin Transform

In this chapter we consider an analogue of the Poisson transform in the context of
Bergman spaces, called the Berezin transform. We show that its fixed points are
precisely the harmonic functions. We introduce a space of BMO type on the disk,
the analytic part of which is the Bloch space, and characterize this space in terms
of the Berezin transform.

2.1 Algebraic Properties
Recall that one way to obtain the Poisson kernel is to start out with a harmonic

function 4 in I that is continuous up to the boundary and apply the mean value
property to get

1 2 .
h(0) = ——/ h(e'")dt.
27 Jo
Replace & by k o ¢, where ¢, is the Mobius map interchanging O and z,

zZ—w
—— wel,
1—zZw

(W) =

and make a change of variables. Then

1 [ 1—z2 ;
h = — —  _h(e'M)d:.
@) =5 /0 (e
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This is the Poisson formula for harmonic functions. The integral kernel

; 1—z?
P, 7)) = ———

( ll -z 3_”I2
is the Poisson kernel, and the transform

2
f e L\(T,dt) — E%fo P(e'",2) f(e)de

is the Poisson transform.
Now, let us start out with a bounded harmonic function 4 in D and apply the
area version of the mean value property

h(0) = / h(w) dA(w).
D
Again replace 4 by 4 o ¢, and make a change of variables. We get

0=z
~Jo 1 —zw)

h(z) h(w)ydA(w), zeD.

By a simple limit argument, we see that the formula above also holds for every
harmonic function # in L1(ID, dA).
For every function f € L1(D, dA), we define

1— 252
Q2 s ia, zem

The operator B will be called the Berezin transform.
Actually, we shall need to use a family of Berezin type operators. Recall that
for « > —1, we have

dAq(z) = (@ + 1)(1 — [z|})¥ dA(2).

Suppose £ is a bounded harmonic function on . The mean value property together
with the rotation invariance of d A, implies that

Bf(z) =

hO) = (@+ 1) fD hw)(1 — w2 dAGw).

Replacing A by £ o ¢, and making a change of variables, we get

1212 +2(1 — |w|?)®
|1 _ Zﬁ|4+2a

h@) = (o + 1)/ (- h(w)dA(w), zeD.
D

Thus, for f € LY(D, dA,) we write

— 121H%2(1 — jw]?)®
Il _ qu—’4+2a

Bof(2) = (@+1) fD ( fw)dA(w), zeD.

A change of variables shows that we dlso have

B, f(z) = /ID)f op(w)ydAg(w), zeD,
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for every f € L'(D, dA,). Note that By = B.

PROPOSITION 2.1 Suppose —1 < a < 400 and ¢ is a Mobius map of the disk.
Then

Baflop=Bu(fop)
forevery f € L'(D, dAy).

Proof. For every z € D, the M6bius map ¢, () © ¢ o ¢, fixes the origin. Thus,
there exists a unimodular number ¢ (depending on z) such that

Vo) 0P o @ (w) = ¢w, thatis, @ o@ (W)= @y (fw),
for all w € D. It follows that

Bo(fop)@) = /Df0<00<ﬂz(w)dAa(w)

= foo%(z)(;w)dAa(w)
(Baf) (¢(@)-

In the last equality above, we used the rotation invariance of d A, . n

It

Since dA,, is a probability measure for —1 < a < +o0, the operator B, is
clearly bounded on L°(D). Actually, [|By flloo < [ flleo for all -1 < o < -+o0.

PROPOSITION 2.2 Suppose —1 < ¢ < +00,1 < p < 400, and that B € R.
Then By is bounded on LP (D, dAg) ifand only if —(¢+2)p < B+1 < (a-+1)p.

Proof. This is a direct consequence of Theorem 1.9. ]

Fix an o, —1 < « < +co. By Proposition 2.2, the operator Bg is bounded
on LI(D,dA,) if and only if 8 > «. Actually, Bg is uniformly bounded on
LY(D,dA,) as B — +00. To see this, first use Fubini’s theorem to obtain

(1 —|z)**P
D 11 — zw|?h+4

Making the change of variables z +> ¢,,(z) in the inner integral, we get

[DIBﬁf(Z)|dAa(Z) =B+ 1)/le(w)l dAq(z) dAg(w).

(1 _ IZ|2)2+a+ﬁ
[ Bar@ldan < @+ [ 17 [ S A dauw.
Note that for all z, w € D, we have
1 1 14 |z] 2
< e < .
N—zw| ~ 1—lz]  1—z> ~ 1—z)?

It follows that for B > o + 1,

/ Bs £ ()| dAa(2) < C /D | f ()] d Ag (w) fD (1 = 122~ dA(),
D
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where C = 42+2(8 + 1); that is,

a+2(ﬂ

/ IBs ()| dAa(z) < P T D / | f ()] d Aa(w).
D - B—a-—1 Jp

This clearly shows that Bg is uniformly bounded on L'(D,dA,) when 8 — +o00.

PROPOSITION 2.3 Suppose —1 < a < tooand f € C (D). Then we have
Byf € C(D)and f — By f € Co(D).

Proof. We use the formula
B.f(2) = /D fopw)dAgw),  zeD.

Since ¢, (w) — zo as z — zo € T, the dominated convergence theorem shows
that By f(z) — f(z0) whenever z — zo € T. This shows that f — B, f € Co(D).
In particular, we have B, f € C(D). [ ]

PROPOSITION 24 If -1 < B < & < +00, then B,Bg = BgB, on
LY(D, dAgp).

Proof. By Proposition 2.2, the operator B, is bounded on LY(D,dA g). Thus,
BB, f makes sense for every f € LY(D, dApg). Also, the operator Bg maps
LY(D, d Ag) boundedly into LY(D,dA,). Hence BBy f is well defined for f €
LY(D, dAp).

Let f € LY(D,dAp). To prove ByBgf = BgBqf it suffices to show —
according to Proposition 2.1 — that B, Bg f(0) = BgB, f(0). Now,

BoBjsf(0) = /D B £(2) dAa(2)

_ 2\B(1 _ |12 a+B+2
C/Df(w)dA(w)fD(l Lod W ki o dA(2),

|1 — zw|2h+4

where C = (o + 1)(8 + 1). Making the change of variables z +> ¢, (z) in the
inner integral, we find that @ and 8 will switch positions, and hence B,Bg f(0) =
BgB, f(0). n

PROPOSITION 2.5 Let —1 <o < +ocand f € LY(D, dAy). Then Bgf — f
in LY(D, dAy) as B — +oc.

Proof. First, assume that f is continuous on the closed disk. Since dAg is a
probability measure, we have the formula

Bsf(2)— £@) = (B+ 1) /D (1= wPP(f 0 g:(w) — £(2)) dAw).

Writing D as the union of a slightly smaller disk D, of radius r € (0, 1) centered
at 0 and an annulus, estimating the integral over I, by the uniform continuity of
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f on D, and estimating the integral over D \ D, using the fact that f is bounded
and that

B+ 1)/ 1 -1z1HPdA) — 0, B — 400,
D\D,

we easily find that

Bsf(z) = f(2), zeD,
as B — +00. Since ||Bg flloo < || flloo for every B, it follows from the dominated

convergence theorem that Bg f — f in L'(D,dAy) as B — +o0. The general

case then follows from a simple limit argument, using the density of C(D) in
LY(D, dA,) and the uniform boundedness of the operators Bg on L'(D,dAy). m

PROPOSITION 2.6 For each a with —1 < a < 400, the operator B, is one-
to-one on the space L'(D, d Ay,).

Proof. Suppose f € L'(D,dA,) and B, f = 0. Let
Fo) = / f(w)dAq(w) 2eD
D

(1 — zw)?re(1 — Zw)2te’

Since
B, f(2)
Fy= —22
(Z) (1 _ |Z|2)2+a

we have F(z) = 0 throughout D, and hence

3n+mF

——(0) =0

37" 82’"( )

for all nonnegative integers n and m. Differentiating under the integral sign, we
find that

fw" w” f(w)dAg(w) =0
D

for all nonnegative integers n and m. This clearly implies that f = 0. n

2.2 Harmonic Functions

Recall that if f is a harmonic function in L!(ID, dA), then Bf = f. In this section
we prove the converse, that is, the conditions f € L'(D, dA) and Bf = f imply
that f is harmonic.

In dealing with harmonic functions on the unit disk, we find it more convenient
to use the invariant Laplacian A instead of the usual Laplacian A. We shall use

the operator
Ao 3 1(9? N 32)
T 9z07 4 \axZ2  9y?)’
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where z = x + iy, as the Laplacian (this is a quarter of the standard Laplacian).
This renormalization has the advantage that certain formule assume a particularly
attractive form; for instance, if f is a holomorphic function, then A| f 12 =|f%
The invariant Laplacian is defined by

Af@@) =1~ z2P)YAf@).
As its name suggests, the invariant Laplacian A is Mobius invariant, namely,
A(fop)(z) = (Af)(p()

for every Mobius map ¢ of the disk. We may interpret A as the Laplace-Beltrami
operator on D, provided ID is supplied with the Poincaré metric.

PROPOSITION 2.7 For —1 < a < +0o0, the identity
AB. f = (¢ + 1)(a+2) (Bof — Boyi f)
holds for every f € L'(ID, dAy).

Proof. By the Mobius invariance of both B, and A, it suffices to show that

AB, f(0) = (a + D(a + 2) Bo f(0) — Bat1 £(0))

holds for every f € L'(D,dAg). This follows from differentiating under the
integral sign and regrouping terms. ]

In other words, for —1 < a < 400, we have the operator identity

A
Bos1 = (1 - m) B

The following conclusion is immediate.

COROLLARY 2.8 Suppose n is a positive integer, and set

u z
Gn<z>=H(1~m), zeC.

k=1
Then B, = G,(A)B on L'(D, dA).
Let
+00 z
G =T1(1-—2-—).
@ Dl( k(k+1))

It is clear that G is an entire function and that G,(z) — G(z) uniformly on
compact sets of C. It should not be surprising now to see that the function G plays
an important role in our analysis of the Berezin transform.

Throughout this section, we let

Y={weC: -1 < Rew < 2},

and

Q={z€C:z=-w( —w) forsome w € T}.
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By the open mapping theorem for analytic functions, €2 is a connected open subset
of C. ’

PROPOSITION 2.9 Ifz = —w (1 — w), then

G() = sin(r w)

aw(l —w)’
Furthermore, G(z) # 1 for z € 2\ {0}

Proof. The k-th factor in the product
+00
w(l —w)
G(z) = 1+ —-—=
@ g( T REF D )

equals

[+ 2) ][ (14 152) o] {(l %)‘kw«]

The desired formula for G then follows from the well-known identities

1 Foo z
——=e ¥ 1+ =) e ¥k
F'z+1D 11;[1 ( k)
and
r@ra -z =——.
SINTZ

To show that G(z) # 1 for z € Q \ {0}, it suffices to show that the function
1—
o) = *2d—w

sin(mw w)

has ®(w) # 1 forw € £\ {0, 1}.
Observe that ® has the symmetry property

*(@re)=olG)

241
®<%+iy)zw<l

cosh(y)

and that it has

for all real y. Thus, it suffices to show that the only solution of ®(w) = 1 in the
strip —1 < Rew < % is w = 0. We achieve this with the help of the Argument
Principle.

By an easy estimate, we can choose a positive number A such that |®(w)| < 1
forall w = u +iv, where —1 < u < % and v is real with |v] > A. We now
consider the positively oriented contour y given by the following picture.
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~1+iA  t+iA

—
—1H+ie
1
_:1 5
—1=ie
-1-iA 3—iA

We proceed to show that the image of the contour y, ®(y), winds around the
point 1 exactly once. We start from w = % on y and move upwards. The curve
® () will then start at 77 /4 and move toward O along the real axis. When w makes
a left turn at % + i A and moves horizontally to the left, the curve ®(y) oscillates
in the half-plane to the left of the point 1. For w between —1 + i A and —1 + ig,
we have

(1 +iv) = — [—3u +ie? — 2)] .
sinh(rr v)
This part of ®(y) meets the real axis to the left of the point 1 when (and only
when) v = +/2. So far, the image of y under ® has not reached the real axis to
the right of the point 1. Next, consider ®(w) for w on the little semicircle near the
point w = —1. An easy calculation shows that

2
(D(w) = m + \IJ(UJ),

where W(w) is analytic near w = —1. It follows that
it 2 i
D(—14¢ee"’)y=—e"" + O(e).
£

This shows that if ¢ > 0 is small enough, then the curve

it T b4
P(—1+ee”), 7S5,
crosses the real axis near the point 2/¢; the winding number of ®(y) around 1
will not depend on the exact number of times the above curve crosses the real axis.
Finally, by the analysis above and the symmetry relation ®(w) = ®(w), when
w moves downward from —1 — ¢i and comes back to the starting point %, the
image ®(w) will not cross the real axis from the right-hand side of the point 1.
We conclude that the curve ®(y) winds around the point 1 exactly once. [ |
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We need the following facts about eigenfunctions of the invariant Laplacian
before we can prove our main result.

PROPOSITION 2.10 Suppose o and ) are complex numbers related by A =
—a(l —a). Let X, be the eigenspace of A corresponding to the eigenvalue A. Let

(1 - |z]?)® [2” ae
o |

2 1 — Ze—i6|2a ’ zeD.

8a (z) =

Then we have:
(1) The function gy belongs to X,.
(2) If f € X, and f is radial, then f = f(0)gq.

(3) The space X, contains anonzero function in L' (D, dA) ifand only ifa € X.

Proof. Let P(¢'?, z) be the Poisson kernel. Then the function g, can be rewritten
as

1 27 ) P
8«(2) = —/ [P(e’e, z)] do, ze€D.
2 0

Part (1) now follows from differentiating under the integral sign and the fact that
P(e'?, 7) is harmonic in z.

To prove (2), we let f(z) = g(|z|®) be a radial function in Xj. It is easy to
check that the function g(x), 0 < x < 1, is a solution to the following differential
equation:

x(1=x)28" () + (1 —x)%g'(x) = Agx), O0<x<1.

The solution space of the above differential equation is two-dimensional, and we
can exhibit a basis for it. In fact, by (1), the function g (x) = g4 (/%) is a solution,
and an easy calculation shows that the function

ne=aw [ o 0<x<l,

is also a solution. It is obvious that g1 and g; are linearly independent. Thus, there
exist constants a and b such that g = a g1 + b g2. Since the functions g and g; are
bounded near x = 0 and g3 is unbounded near x = 0, we must have b = 0 and
hence g = g(0)g1, so that f = f(0)g,.

To prove (3), let us assume that X, contains a nonzero function f € LY(D, dA).
By invariance, we can also assume that f(0) # 0. It is easy to check that f € X
implies that its radialization

2
) = i A f(ze't) dt, zeD,

also belongs to X,. By (2), we have f* = f(0)g. This clearly 1mp11es that X,
contains a nonzero function of L1(ID, dA) if and only if g, € L'(ID,dA). By
Theorem 1.7, the function g, is in L'(ID, dA) if and only if @ € . .
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‘We now prove the main result of the section.

THEOREM 2.11 Suppose f € L'(D,dA). Then f is harmonic if and only if
Bf =7

Proof. Let M be the set of fixed points of B in Ll(]D), dA). It is easy to see
that M is a closed subspace of L!(D, dA). We already know that every harmonic
function in L' (DD, dA) belongs to M. We proceed to show that every function in
M is harmonic.

By the integral formula for the operator B, every function satisfying f = B f is
real-analytic in . In particular, we can apply the Laplacian to every function in
M. Let Ay be the restriction of A to M. By Proposition 2.7,

Auf =2(f =Bif), feM.

Since B; is bounded on LY(D, dA), we see that Ay maps M boundedly into
LY(D, dA). Moreover, since BB; = B;B, we have

BAyf=2Bf-BB1f)=2(f-Bif)=Aunf, feM.

Thus Ap maps M into M, and hence Ay is a bounded linear operator on the
Banach space M.
Recall from Corollary 2.8 that

B,f =Gr(A)Bf = Gn(Am)f, feM.

Since G,, — G uniformly over compact subsets of C, and A 7 is a bounded linear
operator on M, we have G, (A py) — G(A p). This together with Proposition 2.5
shows that G{(A y) f = f forevery f € M, making G(A ) the identity operator
onM.

Suppose A is an eigenvalue of A s. By Proposition 2.10, we must have A € Q.
Also, if f is a nonzero eigenfunction corresponding to A, then

fF=6Amf =GN/

It follows that G(A) = 1. By Proposition 2.9, we must then have A = 0. Thus, the
only eigenvalue of the operator A is 0.

Recall that G(z) — 1 = zH (z), where H is an entire function with H (0) # 0.
By the holomorphic functional calculus (see, for instance Rudin’s book [106]), we
have

0=G(Am) -1 =H(Am)Ap,

where I is the identity operator on M. Since the only eigenvalue of Ay is 0, the
spectral mapping theorem (see, for instance, {106, Theorem 10.33]) implies that
the only eigenvalue of H (A ) is H(0) # 0. In particular, H (A ;) is one-to-one:
after all, if for some f € M, H(Apy) f = O holds, then f is an eigenvector for
(eigenvalue) 0, which is possible only for f = 0, as O fails to be an eigenvalue of
H(Ap). Now if f € M, then H(Ap)Apy f = 0. It follows that Ay f = 0; in
other words, f is harmonic. ]
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2.3 Carleson-Type Measures

Just as we can integrate the Poisson kernel against a measure on the circle, we can
also integrate the kernel of the Berezin transform against a measure on the disk.
More specifically, for a positive Borel measure 1 on D, we consider the function

du(w)

= D.
D |1 — zwl* ¢€

Bu@@) = (1-Iz»?
In this section we characterize those positive Borel measures p on D such that
B/ is bounded. As a by-product we also characterize those measures y such that
Bu(z) > 0Oas|z] -> 1™.
Recall that
I1—zw|+ |z — w|
[1—2zW| — |z — w|

1
Bz, w) = ) log

is the Bergman metric on D. Throughout this section, we fix some positive radius
0 < r < +oo and consider disks D(z, r) in the Bergman metric. The set

D(z,r)={weD: B w)<r}, zeD,

is called the hyperbolic disk of radius r about z. It is well known (see [49] or [135])
that D(z, r) is a Euclidean disk with Euclidean center (1 — s%)z/(1 — s2|z|2) and
Euclidean radius (1 — |z|?)s /(1 — s2|z|%), where s = tanhr € (0, 1).

Let |D(z, r)| 4 denote the normalized area, or the d A-measure, of D(z, r); the
subscript indicates precisely that dA is used. Then [D(z,r)|a ~ (1 — |z|2)2 as z
approaches the unit circle. The following lemma lists some additional properties
of the hyperbolic disks.

LEMMA 2.12 Letr, s, and R be positive numbers. Then there exists a positive
constant C such that for all 7z and w in D, we have

(1) €711 = z1%) < |1 — zw] < C (1 — |z|*) when B(z, w) <.
(2) C7YD(z,r)|a < |D(w,s)|a < C|D(z,r)|a when B(z, w) < R.

Proof. If w € D(z,r), then w = @, (u) for some |u| < s, where s = tanhr. It
follows that

1— |z
1—zu

1l—zw =

This clearly implies (1). Since the condition 8(z, w) < r is symmetric, (1) also
holds with the positions of z and w interchanged. In particular, we have 1 — |z|> ~
1 — |w)?if B(z, w) < r. Thus

ID(z,r)la ~ (1= z)? ~ 1 — [w*>)? ~ |D(w, 5)|a
for B(z, w) < R. ]
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LEMMA 213 Fixr, 0 < r < 4oo. There exists a positive integer N and a
sequence {an}y in D such that:

(1) The disk D is covered by {D(a,, r)}n-
(2) Every point in D belongs to at most N sets in {D(ay, 2r)},.
(3) Ifn # m, then B(a,,am) >=r/2.

Proof. It is easy to construct a sequence {a, }, in D satisfying conditions (1) and
(3). We show that (2) has to hold, too. In fact, if we let N be the smallest integer
such that D(0, 2r) can be covered by N hyperbolic disks of radius r /4, then by
Mobius invariance of the Bergman metric every hyperbolic disk of radius 2r can
be covered by N hyperbolic disks of radius r /4. Now, if a point z in D belongs to
N +1disks D(ay,,2r),1 <k < N+1,thena, € D(z,2r)forl <k < N+1.
Let D(zx,r/4), 1 <k < N, be acover of D(z, 2r). Then at least one of the disks
D(zx, r/4) contains two points from a,,, | <k < N 4+ 1. Two such points will
have hyperbolic distance less than 7 /2, a contradiction to (3). [ ]

In connection with the above lemma, we mention that a sequence {a;} ; of points
in D is said to be separated (or uniformly discrete) provided that

0< inf{,B(aj,ak) T ;ék}.

LEMMA 214 Fix anr, 0 < r < +400. Then there exists a positive constant
C = C(r) such that

C

F@F < s [ ifiPdaw),  zeD,
ID(z, )l D(z.r)

holds for all f analyticinD and all 0 < p < 400.

Proof. Recall that D(0, r) is a Euclidean disk centered at the origin. By the
subharmonicity of | f]7,

1
[fO)7 < —*—f |f (w)|? dA(w).
D(0.r)

T 1D, N)la
Replace f by f o ¢, and make a change of variables. Then
1 (1 [z%)?
| f@)IP < ——————/ | f ()P ——=F dA(w).
ID(0,r)a JDzr) 11— zwl|*
The desired result then follows from Lemma 2.12. [}

As aconsequence of Lemmas 2.14 and 2.12, we obtain the following inequality:

A~ 12’ If @I < c/ (A — 1wy 721 f (w)I? dA(w),
D(z.r)
where f is analytic in D, s is real, and 0 < p,r < 400, and C is a constant
depending on p, r, and s (but not on the function f and the point z € D).
‘We now prove the main result of this section.
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THEOREM 2.15 Fix0 < p,r < +0o0, and let u be a positive Borel measure on
D. Then the following are equivalent:

(1) The function Bu is bounded on D.
(2) The function 1&,(z) = u(D(z, r))/|1D(z, )| 4 is bounded on D.
(3) The Bergman space AP is boundedly contained in LP(D, d ).

Proof. Recall that

[ A=1g»? (1 — |z|%)?
Bu(z) = b mdu(w) > /D(z.r) —Il_:‘z_wleﬂ(w)‘

That (1) implies (2) now follows from (1) of Lemma 2.12 and the fact that
|D(z,r)|a is comparable to (1 — |z|%)2.
To see that (3) implies (1), assume that there exists a constant C > 0 such that

/le(w)lpdl/«(Z) < C'/le(w)l"dA(w)
forall f € AP Fix z € D and let

2
I_IZIZ ] /p

— D.
a —Ew)z w e

f(w)=|:

Then we obtain Bu(z) < C.

It remains to show that (2) implies (3). Thus, we assume there exists a positive
constant C; such that u(D(z,r)) < C1|D(z,r)|4 for all z € D. Pick a sequence
{an}n in D satisfying the conditions in Lemma 2.13. For f € A, we have

+00
Pd Pd
fD F@OPdu) < ; /D P

+00
< D u(D(@n, 1)) sup{lf (DI : 2 € D(ay, 1)}
n=1

By Lemmas 2.14 and 2.12, there exists a positive constant Cy such that

Cr

sup{|f ()P : z € D(an, 1)} < m

/ 1F@IP dAG)
D(a,.2r)
foralln =1,2,3,....It follows that
“+0o0
[reravsacy. [ ir@rdae.
D n=1D(an.2r)

Since every point in D belongs to at most N of the sets D(a,, 2r), we conclude
that

/D F @I du(z) < CLCoN [D 1F @I dAR)
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forevery f € AP. n

Note that if a positive measure u satisfies any one of the three conditions in the
theorem, then p must be finite. The following is the “little oh™ version of the above
theorem.

THEOREM 2.16 Fix1 < p < +ooandQ < r < +00. Let . be a positive Borel
measure on D. Then the following conditions are equivalent:

(1) The function By is in Co(D).
(2) The function i, is in Co(DD).

(3) AP C LP (D, dp) and the inclusion map is compact.

Proof. That (1) implies (2) follows from the estimate in the first paragraph of
the proof of the previous theorem.
To prove (3) implies (1), recall that

Bu(z) = fD )P dpw),  zeD,
where

1— 172 1%P
fz(w)=|:————|zl ] , z,weD.

(1 —zw)?

Itis easy to check that f, — Oweakly in A” as|z| — 17. Thus, the compactness of
the inclusion map from A? into L (D, du) implies that Bu(z) — Oas |z] — 1™.
To prove (2) implies (3), let us assume that @i, (z) — Oas|z] — 17 and f, = O
weakly in A? as n — +o00. We must show that f,, — 0 in norm in LP(ID, dp)
as n — +o00. Let {a,}, be the sequence from Lemma 2.13. It is easy to see that
la,] — 17 asn — +oo. Given ¢ > 0, we can find a positive integer Ny such
that y(D(an, r))/|D(an, r)la < € foralln > Np. Since f, — 0 weakly in AP as
n — +00, we can find a positive constant C such that || f, ||, < C forall n > 1;
see Exercise 1 of Chapter 1. The desired result now follows from the inequality

+00
[rorao=y. [ iwerde.
D n—=1" D{an.r)

In fact, we can break the sum above into two parts; the first partis for 1 < n < Ny
and the second part for n > Np. The first part can be made arbitrarily small by
choosing k sufficiently large, because fi — 0 weakly in A? implies that f;(z) — 0
uniformly over compact sets. By the technique used in the proof of the previous
theorem, the second part here can be shown to be less than a constant (independent
of &) times &. We omit the details of this elementary s-N argument. ]
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2.4 BMO in the Bergman Metric

A well-known characterization of BMO on the unit circle is Garsia’s lemma (see
[49]), which says that a function f in L? of the circle belongs to BMO of the circle
if and only if the function

2

2
L / PG, 2) f (e dt
27[ 0

1 2 it itN12
= ——/ P, ) f ()P di —
27!' 0

is bounded, where P(e¥*, z) is the Poisson kernel at z. A similar result also holds
for functions in VMO of the circle. The purpose of this section is to develop this
theory in the Bergman metric.

Recall that for 0 < r < 400 and z € D, the set D(z, r) is the hyperbolic disk
with hyperbolic center z and hyperbolic radius r. Also, | D(z, r)|4 is the Euclidean
area of D(z, r) divided by . N

For a locally integrable function f on D, we define the averaging function f;,
as follows:

o) = fw)dA(w),  zeD.

.
|D(z,r)|la Jp@.r

If f is locally square-integrable, then we define the mean oscillation of f at z in
the Bergman metric as

|D(z,7)|a

Let BMO, = BMO, (D) denote the space of all locally square-integrable functions
f such that

- 3
MOr(f)(z)=l: /D ( )lf(w)—fr(z)lz dA(w)] .

Ifll- = sup {MO,(f)(2) : z € D} < +o0.

The main result of this section is that the space BMO; is independent of  and can
be described in terms of the Berezin transform.

LEMMA 2.17 Supposer and s are positive numbers and B is the Bergman metric
on . Then the following conditions on a function f defined on D are equivalent.
(1) M, = sup{| f(z) — f(w)|: B(z, w) < r} < +oo0.
(2) Ms =sup{|f(z) — f(w)|: Bz, w) < s} < +o0.

(3) 1f(@) — f(w)| < C(B(z,w) + 1) for some positive constant C and all
z, w € D.

Proof. Assume r < s. Then M, < Mg, and hence (2) implies (1). It is clear
that (3) implies (2). To prove the remaining implication, we fix two points z and w
in D with B(z, w) > r; the desired inequality is obvious if B(z, w) < r. Let a(¢),
0 <t < 1, be the geodesic from z to w in the hyperbolic metric. Let N be the
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smallest integer greater than or equal to 8(z, w)/r.Forty =k/N,0 <k < N—1,
we have

Blo(te), altey1)) = 'B(Z]\’]w) <r
It follows that
N—1
[f(@) — fw)| < Z | fla@)) — flaltes)] < N M;.
k=1

By the choice of N, we have
Nié(zr-’—w—z-}—lig(ﬁ(z,w)%—l).
Thus,
1f(2) = fw)| <= — (Bz, w) + 1)

for all B(z, w) > r. |

2M,
r

The Bergman metric grows logarithmically:

1 1+ Iz]
,0)= -log ,
Pl 0y =3 loe T

It follows that a Borel measurable function f which satisfies any of the three equiv-
alent conditions of Lemma 2.17 is in L?(ID, dA) for all finite positive exponents
p-

We can now prove the main result of the section. For convenience, we introduce
for f € L?(D, d A) the following notation:

zeD.

1
MO()@) = [BUF D@ — BF ]

It is easy to see that B(|f|®)(z) = IBf(2)|?, so that the above expression is
well-defined. In fact, we can write
f)— f)

M = (1 —|z]%? /f
O(f) @) = (1 = [z]) {D T =20 — w22

THEOREM 2.18 Suppose 0 < r < +oo and that the function f is locally
square-integrable in D. Then f € BMO, if and only if f € L*(D, dA) and the
function MO(f) is bounded on D.

) 1/2
dA(u)dA(v):| .

Proof. By Lemma 2.12, we can choose a small constant ¢ > 0 such that

o
ke (w))? > ———
[D(z,r)|a
forall z € D and w € D(z, r), where
1—|z)?

kz(U)) s m
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are the normalized reproducing kernels of A%. In view of the above formula for
MO(f), we have

1
mmﬁmf=iéévwwvwﬁwwﬁmwﬁmwwmw

which we compare with
1
MO, 2z / f - ZdA(w)dA
MO, (/) ()] 20N Joen Joen [f () — f)I*dA(u) dA(v)

for z € D. By shrinking the domain of integration D to D(z, r), we obtain
MO(f)(z) = o MO, (f)(2), zeD.

Thus, the boundedness of the function MO( f) implies that f € BMO,.

Next, assume that f is in BMO,. Let r = 2s, and recall that }‘; is the averaging
function for f with parameter s. Write f = f1 + f», where f1(z) = fs(z) and
@)= f(2)— f;(z). Since the space of functions f in LZ(ID, dA) with bounded
MOC(f) is linear, it suffices to show that both f; and f> have this property.

First, using the identity

i@ - fiw) = [£) — Fs(w)] dAw)

e ),
|D(z,5)la Jp@z.s)
and the Cauchy-Schwarz inequality we easily obtain

-~ =~ 2
|£5@) — fs(w)|

- 1
~ ID(z,5)|a|1D(w, s)|a

If B(z, w) < s, then

]’ /' 1f ) — F)2 dA®w) dA).
D(z.s) / D(w.s)

D(z,s) C D(z,r), D(w,s)C D(z,r),
and
ID(w, s)la ~ |D(z,5)la ~ |D(z,r)|a;

see Lemma 2.12. Thus, there exists a positive constant C such that

- Fwf < —S / / ~ F)*dAm)dA
/@ - Fw)|’ < A5G Joen Dlﬂvw> F)2dA@w) dAv)

= CIMO, (/)P

for all B(z, w) < s. Since MO, (f) is bounded, it follows from Lemma 2.17 that
there exists a positive constant C; such that

17:z) — ()| < C1 (B(z, w) + 1)
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for all z and w in D. In particular, f; € L2(D, dA). Now,
-~ 2
2 [MO(F)(@)]
- fD /D £ @) = F )Pl ()2 ke ()P d AW A)

A

C%/}D/D(ﬁ(u, v) + 1)2|k3(u)|2|k3_(v)|2 dAWdA(®)

= Cff /(ﬁ(u,v)+1)2dA(u)dA(u).
DJD

The last equality follows from a change of variables and the invariance of the
hyperbolic metric. The last integral above can easily be checked to be finite. Hence
the function MO( f;) is bounded.

Second, we look at f, = f — f;. Then, by the triangle inequality,

Iz b _l_ﬁ/ |f ()~ f(w)P dA( )]%
| f2l s(Z)] - [[D(z,s)IA D(z.5) S o !

i
2z

1 SO
D@ A — fs@)*dA
|:|D(z,s)|A /D(z,s)‘f(w) f@I (w)}

I

1 R o ]7
Dz, $)la s\&) = Js dA .
M [ID(Z,S)]A /D(M) | fs(2) — Fe(w)|* d A(w)

The last term is bounded in z because of an earlier estimate on f;. The term
preceding it is bounded, too, because f € BMO, and

MO;(f)(2) = C2 MO, (f)(2), zeD,

which follows from Lemma 2.12 and the double-integral formula for MO, ( ) used
earlier in the proof. By Theorem 2.15, the function B(] f]?) is bounded, which
obviously implies that f» € L2(D, dA) and that MO( f2) is bounded. |

It follows from Theorem 2.18 that the space BMO, does not depend on the
parameter r, 0 < r < +oco (but the norm changes with r, of course). Let us
write BMOy = BMOy (D) for the space BMO,, for any 0 < r < +o00. The new
notation signifies the independence of the parameter r; it also emphasizes the fact
that whether or not a function from L%(ID, dA) belongs to BMOj is a boundary
property.

It is easy to check that BMOj, becomes a Banach space with the norm

ILfIl = IBf(0)] + sup {MO(f)(z) : z € D}.
If the term involving
BfO) = [ f@dA@

is removed, then what remains is only a seminorm. This seminorm is M&bius
invariant, although the norm above is not.
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Let VMO, be the space of locally square-integrable functions f in D such that
MO, (f)(z) — Oas |z] — 1~.Itis clear that VMO, is contained in BMO,.
THEOREM 2.19 A locally square-integrable function f in D belongs to VMO,
if and only if MO(f)(z) —> Oas |z] - 1™.

Proof. The proof is similar to that of the previous theorem; we leave the details
to the interested reader. |

Again we let VMO = VMO, (D) stand for the space VMO, for any r, 0 <
r < 4o00. It is easy to check that VMO; is a closed subspace of BMOj and that
VMOjy contains C(D).

THEOREM 2.20 Let H(D) be the space of analytic functions in D. Then
(1) BMOy N H(D) = B.
(2) VMO, N H(D) = By.

Proof. Since both BMOj and 3 are contained in L%(D, dA), we may begin
with a function f in A2. By the symmetry of I,

£0) =2 [D T (f(w) — £(0) dA(w).
Replacing f by f o ¢, and performing an obvious estimate, we get
(1= PRI P <4 /D 1f 0 pa(w) — F@IPdAw)
for every z € . Since Bf = f for analytic f, we easily verify that
fD |f o p:(w) — f@IPdAw) =B(f*)(2) — Bf ).

This shows that BMOy N H(D) C B.

On the other hand, if f € B, then by Theorem 1.15, there exists a positive
constant C such that | f(z) — f(w)| < CB(z, w) for all z, w € D. This, together
with the integral formula for B(| f|?) — |Bf|? in the previous paragraph, then
shows that B € BMOy N H(D).

The proof of the identity VMOy N H(D) = By is similar. | ]

2.5 A Lipschitz Estimate

Let a(f) be a smooth curve in D. If s(¢) is the arc length of a(¢) in the Bergman
metric, then

ds lod’ (1))

dt — 1—|a@®)]?
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For a point a € D, we let I1, denote the rank-one orthogonal projection from A?
onto the one-dimensional subspace spanned by k,, where
1—lal?

kqo(2) = Rk

ze€D,

which is a unit vector in A2. In concrete terms,
Maf = (fka) ko = (1= la|®) f@ks, a€D.

LEMMA 2.21 Let (t) be a smooth curve in D, and let s(t) be the arc length of
«(t) in the Bergman metric. Then

ds 1 d

—=—|(I—-T1I —k ,

dt /2 ( ‘X(t)) (dt Ot(t)) II
where || - || is the norm in A% and I is the identity operator.

Proof. Since

_ AW +a®d @) | 220 — le®))

d —
.ka = —
(l‘)(z) (1 ——a(l)Z)2 (1 —O((t))3

dt

a simple calculation gives

d —a' (Na(t) +a(t)a’(t)
My | =k, = Al
® (dr (’)) @ (1 —a(2)?

and so

d 200 (2 —
(7 =~ M) (g,‘kam) () = 20/(1) (2 — (1))

(1 —a(t)z)3
By a change of variables we then obtain
d 2 20/ ()2
I-11 —k =
H( ) (dr "“”) (I~ l@P?
which clearly implies the desired result. [ ]

THEOREM 2.22 Let a(t) be a smooth curve in D, and let s(t) be the arc length
of w(t) in the Bergman metric. Then, for any f € BMO,, we have

d
ZEBf(a(f))

< 2/IMO(H(@(t) -

Proof. Recall that

Bf(a(t))=/Df(w) |y )| dAw).
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Differentiation under the integral sign gives
d d -
—Bfa@®) =2 | f(w)Re || Fkay(W) ) ka)(w) | dA(w).
dt D dt
Also, differentiation of the identity (ky(r), ko)) = 1 gives
d
Re Eka(t)’ ko)) =0.
Using this and the formula

d d
1§ PP (ak(x(t)) = <Et‘ka(t), ka(t)) ke(r),

we then obtain

d
Re [Ha(t) (d a(t)) (w) ka(t)(w)]

It follows that

d d S

—Bf(a(®)) = 2/ F)Re | (I — o) | kot ) (W) kary(w) | dA(w).

dt D dt
On the other hand,

d -
|- 0) (—kam) (W) By (@) dAw) =
D dt
by the definition of I, (). Therefore, the derivative dB f(«(¢))/dt is equal to
d P

2/@ (fw) —=Bf(a(®))Re [(1 — My)) ( cx(t)) (w) ka(t)(w)] dA(w),

and hence |dB f («())/dt| is less than or equal to

f | f () = Bf(@®))| [ka@y(w)] |(T — am)( am) (w)[ dA(w).

The desired result now follows from Lemma 2.21 and an application of the Cauchy-
Schwarz inequality. ]

COROLLARY 2.23 For f € BMO;, we have
IBf(z) — Bf (w)| < 2v2 | fllsmo Bz, w)
for all z and w in D, where

Il fliemo = sup {MO(f)(z) : z € D}.
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Proof. Fix z and w in D and let « (1), 0 < ¢ < 1, be the geodesic from z to w
in the Bergman metric. Then, by the above theorem,

fl

1 1 d
Bf(2) - Bf (w)| / diBf(aa))dt <23 f MO(F) () 2 ar
o at 0 dt

IA

g
2v2 |1 f Mo fo = a1 =22 flwo Bz, w),

as claimed. n

2.6 Notes

The Berezin transform was introduced by Berezin in [17] and [18]. Most applica-
tions of the Berezin transform so far have been in the study of Hankel and Toeplitz
operators; see [135]. Section 2.1 is elementary. All resulits in Section 2.2 are taken
from the paper [4]. The results of Section 2.3, in various forms, are due to Hast-
ings [54], Luecking [92], and Zhu [133]. The theory of BMO and VMO in the
Bergman metric, as presented in Sections 2.4 and 2.5, was begun by Zhu in his
thesis [132] and then developed by Békollé, Berger, Coburn, and Zhu in [15].

2.7 Exercises and Further Results
1. If f € L}(D, dA) is subharmonic, then B f is subharmonic and f < Bf on
D.

2. If f € L*®(D) and f has a nontangential limit L at some boundary point
¢ € T, then B f also has nontangential limit L at £.

3. Find a real-valued function f € L(D, dA), strictly negative on a subset of
positive area, such that B f is strictly positive on D.

4. Show that there exist two functions f and g in A% such that B(| f|?) <
B(|g|%) on D, but nevertheless

/le(z)P(Z)lsz(Z)>/Dlg(Z)p(z)I2dA(Z)

holds for some polynomial p.

W

. Show that the Berezin transform commutes with the invariant Laplacian on
the space C2(DD).

6. If f is a bounded subharmonic function in 1D, then {B” f},, converges to a
harmonic function in .

7. If f is continuous on D, then {B" f}, converges uniformly in D to the
harmonic extension of the boundary function f. See [42].
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10.
11.

12.

13.
14.

15.

16.

17.

2. The Berezin Transform

. If f is bounded and radial, then Bf € Cy(DD) if and only if

1
—l—f f@®)dt— 0
1—-rJ,

asr — 17. See [89].
If f € L*°(D), then Bf € Co(D) if and only if

n [D F@IZP dAG) — 0

asn — +oc.
For f(z) = —2log |z] on D, show that Bf(z) = 1 — |z|2.
If f € C?(D), then

Bf@=F@ - [ [1- @] Auf@)daw),  zeD,
where F is the harmonic extension of the boundary function of f.

If f € C%(D), then
1@ =F@+ [ [logle.o)i’] Aufwydaw),  zeD,

where F is the harmonic extension of the boundary function of f.
For f(z) =log[1/(1 — |z|?)] on D, show that Bf = f + 1.

Let 0 < p < +oc. Characterize those functions ¢ € H such that

U/DIf(Z)IpdA(Z)</D[<p(z)f(z)|”dA(z)

for all f € AP and some constant o > 0 (depending on ¢ and p but not on
f)- See [29].

Suppose 2 < p < 400 and that f is an analytic function on D. Show that
MO(f) € LP(D, dA) if and only if f € B, (the analytic Besov spaces).
See Exercise 9 in Chapter 1 for the definition of dA. See [135].

A bounded function ¢ on D is a pointwise multiplier of BMOj if and only
if MO(p) log(1 — |z|?) is bounded in ID. See [134].

Fix a sequence {z,}, in D. For ¢t > 0, let A; be the operator on [2 whose
matrix under the standard basis has

(A~ lzm)'? (A — |20 )"
(I — zmzn)!
as its (m, n) entry. For ¢t > 1, A, is bounded on 12 if and only if {z,}, is
the union of finitely many separated sequences; for # = 1, A; is bounded on

12 if and only if {z,}, is the union of finitely many (classical) interpolating
sequences. See [142].




2.7. Exercises and Further Results 51
18. Show that the Bergman projection maps BMOj onto the Bloch space.
Similarly, the Bergman projection maps VMO; onto the little Bloch space.

19. Fix -1 <o < +ocand 0 < p < +o. For a sequence A = {a,}, in D, let
R 4 be the operator that sends an analytic function f to the sequence

{1 = 1anHEVP f(ap)} .

Show that R4 is bounded from A% to I7 if and only if A is the union of
finitely many separated sequences. See [139].

20. If f € BMOjy, then the function
(1 —1zZHIVBF (2|

is bounded on ID. Here, V stands for the gradient operator.
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AP-Inner Functions

In this chapter, we introduce the notion of AZ-inner functions and prove a growth
estimate for them. The AZ-inner functions are analogous to the classical inner
functions which play an important role in the factorization theory of the Hardy
spaces. Each AZ-inner function is extremal for a z-invariant subspace, and the
ones that arise from subspaces given by finitely many zeros are called finite zero
extremal functions (for « = 0, they are also called finite zero-divisors). In the
unweighted case @ = 0, we will prove the expansive multiplier property of A?-
inner functions, and obtain an “inner-outer”-type factorization of functions in A?.
In the process, we find that all singly generated invariant subspaces are generated
by its extremal function. In the special case of p = 2 and @ = 0, we find an
analogue of the classical Carathéodory-Schur theorem: the closure of the finite
zero-divisors in the topology of uniform convergence on compact subsets are the
AZ-subinner functions. In particular, all AZ-inner functions are norm approximable
by finite zero-divisors.

3.1 AP-Inner Functions

Classical inner functions in D play an important role in the theory of Hardy spaces.
Recall that a bounded analytic function ¢ in I is called inner if |p(z)| = 1 for
almost all z € T. This is clearly equivalent to

2r

1
5 | Ue@I” =D 2"idzl =0
T Jo
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for all nonnegative integers n; and the condition above is independent of p, 0 <
p < -+oo. This motivates the following definition of inner functions for Bergman
spaces.

DEFINITION 3.1 A function ¢ in AL is called an AL -inner function if
/D(lfp(Z)ip - 1Dz"dA(z) =0

for all nonnegative integers n.

It follows easily from the above definition that a function ¢ in AP isan A2 -inner
function if and only if

fD 01 4(2) dAa(2) = q(0)

for every polynomial ¢, and this condition is clearly equivalent to
[ @17 1@ dae) = ho,

where 4 is any bounded harmonic function in D. In particular, every AZ-inner
function is a unit vector in AJ.

An obvious example of an AJ-inner function is a constant times a monomial.
In fact, foranyn = 0, 1, 2, . . ., the function

1
| T(#E+ae+2) |7,
wla) = {r (%F + 1)I‘(a+2)}

is AZ-inner. More examples of AZ-inner functions will be presented later when
we study a certain extremal problem for invariant subspaces.

Our first goal is to show that A%-inner functions grow much more slowly near
the boundary than an arbitrary function from AZ does. The following lemma tells
us how fast an arbitrary function from AZ grows near the boundary.

LEMMA 3.2 If f is a unit vector in AL, then

1

|f(Z)lSm2)-(§1m, z € D.

Proof. Let u be a positive subharmonic function in ID. Then by the sub-mean
value property of subharmonic functions on circles and by using polar coordinates
we have

u(0) = / u(z) dAq(2).
D
Replace u by u o ¢,, where, fora € D,

‘Pa(z):a—z z € D.

1-az’
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‘We conclude that
u(a) < / 4 0 pa(2) dAa(2)
D

for all a € D. Making an obvious change of variables, we obtain
ua) < /D u(2) kG @) dAq ()

for all a € D, where
(1 _ ]aIZ)(2+a)/2

kﬂ (Z) - (1 — EZ)Z-HZ

are the normalized reproducing kernels of Ag.
Now suppose f is a unit vector in AS. Fix any a € ID, and let

-2 4
u(z) = lf(z)(kff(z)) /pl ) zeD.
Applying the estimate in the previous paragraph, we conclude that
-2 14
lr@@s@) ™" <1,

that is,

1
[fla)| < W

for all a € D, completing the proof of the lemma.

Since the polynomials are dense in AZ, it is an immediate consequence of

Lemma 3.2 that for f € Ab,

1
[f (@) ZO(WW) as |z|] = 1,

which means that the boundary growth is actually not quite as fast as permitted by

Lemma 3.2.

To obtain a better estimate for AZ-inner functions, we are going to show that
every A}-inner function is a contractive multiplier from the classical Hardy space

HP into AZ. Recall that H? consists of analytic functions f in D such that

2n

1 .
IFIes =Osup1 7 I | f(re')|P dt < +oo.
<r<

If f € H?, then the radial limits f(e'?) exist for almost all real ¢ and

1 2 i
118, = 5;/0 \f(e)P dt.

The books [37], [49], and [82] are excellent sources of information about Hardy

spaces.
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THEOREM 3.3 If ¢ is AL-inner, then ¢ is a contractive multiplier from HP into
Ag, and consequently,

1

lo(z)] < (TWIM’ z € D.

Proof. Suppose f € H? and let & be the least harmonic majorant of | f (z)|?.
More explicitly,

1 27 X i

ho = [ Pt aisEnparn  zeD,
2 0

where P(e'!, z) is the Poisson kernel at 7 € ID. By Fatou’s lemma and the definition

of AZ-inner functions,

/D PDIPh(2) dAg() < limint /D 0 (@)1Phy(2) dAa(2) = h(O),

where h,(z) = h(rz) for z € D. It follows that
fD 02 F@)IP dAa(z) < /D 0@IPh(2) dAa(@) < h(0) = [ F1E,p,

so that ¢ is a contractive multiplier from H? into A% .
For any z € D, consider the function

i/p
1—|zf?
w)=|——r— s w e D.
Then f; is a unit vector in H”, and so ¢f; has norm less than or equal to 1 in AZ.
Applying Lemma 3.2 to the function ¢f,, we conclude that

0@ <

__W;)/_p, zeD,

as claimed. u

3.2 An Extremal Problem

In this section, we exhibit the close relationship between Ag -inner functions and
invariant subspaces of A% . In particular, this will provide us with more examples
of AL-inner functions.

A closed subspace I of A} is called invariant if zf € I whenever f € I. Here,
z denotes the identity function on ID. It is easy to see that a closed subspace 1
is invariant if and only if it is closed under multiplication by bounded analytic
functions.

We give two examples of invariant subspaces in A%. First, if A = {a,}, is a
sequence of points from D, and if I4 consists of all functions in A? whose zero
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sets contain A (counting multiplicities), then I4 is an invariant subspace of AP.
We call such spaces zero-based invariant subspaces.

Next, if f isany functionin A, and if I 7 is the closure in A% of the set consisting
of all polynomial multiples of f, then Iy is an invariant subspace (called the
invariant subspace generated by f). We call such spaces singly generated invariant
subspaces, or sometimes, cyclic invariant subspaces. Note that the notation [ f] is
sometimes used instead of 1.

For any invariant subspace I of AP, we let n = n; denote the smallest
nonnegative integer such that there exists a function f € I with f ™) £ 0.

THEOREM 3.4 Suppose I is an invariant subspace of Ak and G is any function
that solves the extremal problem

sup {Re f(0): f € L1 fllpa < 1},
wheren = nj. Then G is an Ag -inner function.
Proof. It is obvious that G is a unit vector. We will prove the theorem by a

variational argument.
Fix a positive integer k, and set

re? = fD IG(2)1PZF dAq(2),

where 0 < r < 1 and —m < 6 < 7 (polar coordinates). For any complex number
A, we consider the function

G()(1 + rz5)
G+ }\Zk)"p.ot )

Since f3 is a unit vector in I, the extremal property of G gives

A=

Re £ (0) < G™(0).

This implies that
1< f IGQ@IPI1 + AP dAg ()
D
for all A € C, so that

1 <1+ pRe [k/ 1G(2)|PZF dAa(z)] + O(A).
D

Put A = —se~?, where ¢ > 0 is small and @ is as above. We then obtain
0<—r+0(s).
Letting ¢ — 0, we see that 7 = 0, and so G is A§-inner. n

For any invariant subspace I, the extremal problem stated in the theorem above
will be referred to as the extremal problem for I. It is now natural to ask when the
extremal problem for I has a solution, and when the solution, if it exists, is unique.
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PROPOSITION 3.5 Suppose 1 < p < +oco and I is an invariant subspace of
AL. Then the extremal problem for I has a unique solution.

Proof. Let S be the supremum in the extremal problem for 7. Choose a sequence
{ ft}x of unit vectors in I such that

§ =1lim £ (0),

where n = n;. By a normal family argument, we may assume f;(z) — f(z) as
k — +o00, uniformly on compact subsets of D. By Fatou’s lemma, || fllp.o < 1,
and also, f is in the weak closure of /. Basic Functional Analysis tells us that the
weak closure and norm closure of a subspace in AL forl < p < o0, are the
same. It follows that f belongs to I and solves the extremal problem for /.

To prove uniqueness, suppose f and g are two solutions to the extremal problem.
Then f and g are unit vectorsin I, and forevery t € (0, 1), the functiontf+(1—1)g
also solves the same extremal problem. It follows that

lef + (A =n)gllp =1=ltfll, + I —)gllp,
for all ¥ € (0, 1). From Real Analysis we know that
IF+Gllp=I1Flp+I1Glp

if and only if one of the two functions is a positive constant multiple of the other.
From this we conclude that f = g. ]

When 0 < p < 1, the space A} is no longer locally convex, and so we do
not know automatically whether the weak and “norm” closures of I coincide.
Neither the existence nor the uniqueness of solutions is known in general in the
case 0 < p < 1. However, if I is a zero-based invariant subspace in A2, then the
existence of a solution to the extremal problem for 7, even when 0 < p < 1, is
easily established by a normal family argument; we are going to show later in the
chapter that such a solution is also unique in the unweighted case.

If the extremal problem for I has a unique solution, we then denote it by G; and
call it the extremal function of 1. In particular, if I = I, is a zero-based invariant
subspace in AP, then the corresponding extremal function G4 = G, will be
called a zero divisor. The phrases canonical divisor or contractive zero divisor are
sometimes used as well.

The extremal problem is explicitly solvable only in very special cases. We give
several simple examples here.

First, if p = 2, then every invariant subspace I in Ag has a reproducing kernel
K{(z, w). If in addition n; = 0, then the extremal function GY for I is simply

Gi(2) = K{(z,0)/,/K}(0,0).

We now mention an iterative procedure for obtaining the reproducing kernel
function for finite zero-based invariant subspaces, which by the above leads to
explicit formulas for the corresponding extremal functions. Let A = {a, . .. ,an}
be a finite sequence of points in D, and suppose a € D\ A. To simplify the notation,
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we write K¢ for K }"AA Then the kernel function for an additional zero at a is given

by

K4 (z,a)K4(a, w)
K X (a, a)

Kiuim (@ w) = Kj(z, w) — , (z,w) e D x D.

Iteratively this formula gives us the kernel function for finitely many distinct zeros.
The first step is to apply the formula to the case of A = @, and get

. B 1 1—lal? e
Ko w) = 4 gpre ~ ((1 ~an —am) ’

where we write a in place of {a}. As we insert this into the formula for the extremal
function G, for I, = {f € Ag : f(a) = 0}, we arrive at

_ 2\ 2+a
Ga(z):(l—(1—|a|2)2+°f)‘% [1—(1 2] ) } zeD.

1—-az
In general, for a finite zero sequence A = {ay, ... , ay} of distinct points in D, the
extremal function G¢ is a linear combination of the functions
1 1
(1—az)>te’ 7 (1 —ayz)*e’

which are the reproducing kernel evaluated at the zeros and at the origin. If multiple
zeros are encountered, then derivatives of the kernel function,
EY 1 zJ
- =2 (41 _—
aw/ (1 - zw)2+e @ra)-(t+lta) (1 — zw)?+i+e

are needed for the construction of G§.

We return to general p, 0 < p < 00, but put @ = 0. For a pointa € D \ {0},
let I,, < be the invariant subspace of the unweighted Bergman space A” consisting
of functions having a zero at z = a of order at least n. Then the extremal problem
for I,,x, has a unique solution G,, (see Section 3.5 for uniqueness), which is
given explicitly by

a—z\" np 1 — a2\ *?
Guxa(@) =c _Z 1+“£ I_I s
1—az 2 1—az

(A (1™ )
C*(lal) (1+ Z 1~ al ))

We leave the necessary verifications as an exercise to the reader. Hansbo has ob-
tained an analogous explicit formula for the case of two different zeros of arbitrary
multiplicities [52]; a Bessel-type function appears as aresult of interaction between
the zeros. Finally, if 0 < o < 400, and

1
So(2) = exp (——01 +Z) s zeD,
—Z

where
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is the singular inner function with atomic singularity at z = 1, then the invariant
subspace [ S, ] of the unweighted Bergman space A? generated by S, gives rise to
a unique extremal function G, (see Theorem 3.33 for uniqueness), where

2/p
o 14z
Go(2) = (14 po)~ /P (1 + lp——z) exp (—U:) , zeD.

This follows from the formula in the previous paragraph. In fact, if a = a, =
1 — o/n in the extremal function in the previous paragraph, then G, x4, = Go
as n — +00. Again, we leave the verification and justification of this limit as an
exercise to the reader.

3.3 The Biharmonic Green Function

Our next goal in this chapter is to show that AP-inner functions have the so-called
expansive multiplier property, or equivalently, the contractive divisibility property.
We recall that we have normalized the Laplacian:

A=A L2 + ” +1i
=A==+, =x+iy.
© 4\ 0x2 0 9y? ¢ Y

In terms of Wirtinger derivatives, we have the following alternative and often more
convenient expression for the Laplacian:
82

¢ Bz07
We recall that a function f defined on a planar region is harmonic if Af = 0. A
real-valued twice differentiable function f on a planar domain is subharmonic if
Af > 0. We shall write ds for normalized length measure:
|ldz|

d = —.
s@) 2
The starting point for our proof of the expansive multiplier property is the

classical Green formula below, which can be found in any book on multivariable
calculus and whose proof will be omitted here.

THEOREM 3.6 Suppose 2 is a domain in the complex plane whose boundary
82 consists of a finite number of smooth curves. If f and g have continuous second
derivatives on 2, the closure of 2, then

N of g
fQ(ng—gAf) "A—Efm (337 fan) ds,

where 3/3n is the inward normal derivative.



60 3. AP-Inner Functions

COROLLARY 3.7 Suppose 0 < r < +o00 and f has continuous second
derivatives on the closed disk \w| < r. Then we have the identity

/| | (r* = 1zI) Af(2)dAGR) = r f(2)ds(z) — f(2)dA®Q).
zZ|<r

|zl=r lzl<r

Proof. This is a straightforward application of Green’s formula. n

COROLLARY 3.8 Suppose 0 < r < +o00 and f has continuous second
derivatives on the closed disk \w| < r. Then for any fixed z with |z| < r,

2/ log
lw|<r

Proof. For small positive ¢, we remove a closed disk centered at z with radius
¢ from the disk |w| < r and denote the remaining domain by 2. We note that the
function

r? —Jz)?

1
Af(w)ydA(w) = f(z)— ;[ — f(w)ds(w).

lwl=r 12 — w|?

r(z—w)

r? —zw

r(z —w)

w +> log >
ré—zw

is harmonic in ;. The desired result then follows from applying Green’s formula
to the domain 2, and then letting ¢ shrink to zero. We omit the routine details. m

The Green function for D is

2
—1, (z,w) e D xD.

G(z,w) =log

Z—w
1—

Z
=21
0g |7
The Green potential of a function f is then the function defined by
61110 = [ GG fwdAw),  zeD.
D

In what follows we let C*(X), where X is a planar set, denote the space of
complex-valued functions on X whose k-th-order partial derivatives are all con-
tinuous on X. To make this precise, it is sometimes necessary to obtain extensions
of the functions beyond X, and apply the differentiation to the extended function.

THEOREM 3.9 Suppose f € C(D) N C*(D). Then
(1) GIfle C(D)NC*D).
(2) AG[f]= finD.
(3) G[f1=00nT.

Moreover, these conditions determine the Green potential G| f] uniquely.
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Proof. For any fixed z € D, we let ¢, denote the conformal mapping of D
defined by

o (w) = £ — weD
1—zZw
By a change of variable argument,
(1~ Jz*)?
GLAE = [ Togiwf 1 o p.w) T2 daqw).
D 11 —Zzw]

This clearly shows that G f] € C*(D).
Next we show that G[f] € C(D) and G[f] = O on T. Fix a pointa € T, and
write

5 (1—z?)?
Glflm) = /D log |w| [fo<pz(w)-f<a>]“—_§u—)lfdA(w)
2
-
—i—f(a)fDlog 5w dA(w).

If we use the function |w|? and r = 1 in Corollary 3.8, the result is

2

i dAw) = —(1 — |z).

e
/D"gl—

Glfl(z) = fD log |wl? [ f 0 o (w) — f(@)]

It follows that

(- 1z%?
————dAw) — f(a) (1 —|z1).
11 —Zw|
The second term on the right-hand side above clearly tends to zero as z — a.
To see that the first term also goes to zero as z — a, break the integral into two
parts, one over the disk jw] < §, where § € (0, 1), and the other over the annulus
8 < |w| < 1. The integral over the annulus can be made arbitrarily small by
choosing & close enough to 1, because log |w| — 0 as |w| — 1 and

(1 —1z]%)?

o AW <20 oo

[ 17 00w - @)
The integral over the disk |w| < § tends to O as z — a, because f o, (w) — f(a)
uniformly for jw| < §. This shows that G[f](z) — 0 as z — a and hence
completes the proof of (1) and (3).
To prove (2), take any C* function g with compact support in D. By Green’s
formula and Fubini’s theorem,

fD AGIf)(Dg(@) dAR) = /D GLA@)Ag(2) dAR)

/Ag(z)dA(z)/ Gz, w) f(w)dA(w)
D D

Af(w)dA(w)AG(z, w)Ag(z)dA(z).
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By Corollary 3.8,
g(w) = /DG(Z, w)Ag(z)dA(z)

whenever g is C* with compact support in D. It follows that

[D AGLA1(2) g(2) dAG) = [D Fw) g(w) dAw).

This clearly implies that AG[f] = f. [ ]

The above theorem tells us how to solve the Laplace equation Af = g. It also
tells us that the solution is unique with the additional boundary condition f = 0
onT.

It turns out that we can also solve the fourth-order partial differential equation
A?f = g on D in a similar fashion. For that we introduce the biharmonic Green
function for D:

2
+ (1 =z = wP), (z,w)eDxD.

7 —
I w) =z —wllog |5
The biharmonic Green potential of a function f is then defined as the function

I'lflz) = /DF(Z, w) f(w) dA(w), zeD.

THEOREM 3.10 Suppose f € C1(D) N C*(D). Then
(1) T[f1e C'D) N CHD).
(2) A’T[f]1=finD.
(3) TIf1=ZTf1=00nT.
Furthermore, these conditions uniquely determine the potential I'[ f].

This theorem will not actually be used for the presentation of the material in this
book, and its proof is rather tedious though analogous to that of Theorem 3.9, so
we omit the proof here. However, the above properties are important for the gen-
eral understanding of biharmonic Green potentials. We shall need several further
properties of the biharmonic Green function. It is good to know approximately
how big I'(z, w) is.

LEMMA 3.11 Forall z, w € D, we have

(1 — 121201 — |w|?)?
2|1 — zw)?

- (=120 — w)?
- 11— zw|?

<TI'(z, w)

In particular, T (z, w) is strictly positive.
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Proof. Simple manipulations with the definition of I"(z, w) and the well-known
identity

A=z = w]?)
|1 — zw|?

I—w 2
1 —

1—zw

yield the formula

1— 221_ 232 _ 2
I,(Z’w):( Izl)(_vlwl) rlio 12220,
|1 — zw|* 1 —zw
where
1 —x)log(l —
Py = A0l =) x
X
It is easy to see that
400 xn
F(x) = _ x| < 1.
) kZ:O(k+1)<k+2) o

This implies that
1
ESF(X)SI, 0=<x=<1,

and the desired estimate for I'(z, w) follows. |

We emphasize three points that are easily seen from the asymptotic formula for
I'(z, w) above. First, the biharmonic Green function is positive on D x . Second,
if z € D is fixed, then

Pw)~ (1= wP? — jw -1
Finally, for fixed z € D, we have
a
'z, w)=——-7T(,w)=0
(z, w) () (z, w)

for all jw| = 1 (this can be checked directly from the definition of T or from the
power series expansion of F in the proof of the lemma above).

LEMMA 3.12 Fixw € D. Then

AT (z,w) =Gz, w)+ (1 — [wPHH(E w), zeD\{w}
where
1 —|zw|?

H(z,w) = .
@) =T e

Proof. This is a straightforward calculation using Wirtinger derivatives. We
omit the details. [

We need the following monotonicity property of the above function H.
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LEMMA 3.13 Fixz € T and w € . Then the function

w
r— rH(z, —)

r

is increasing on the interval (Jw|, 1).
Proof. For |lw| <r < 1, we have

)

A computation shows that the derivative

d w
a@7)
is equal to
G (- w(2) (3 Lo, )
rlr—ﬁzlz lr—"zﬂz,z rP i (r—wz)  r2(r-wz))’

It then follows that the derivative

)= n(e ) o)
is equal to

(r2—|w|2)2( r— |w] 2 1 1 )
r k]

(r+wl) r—|w| r—wz r-—wz

—_ 2
r|r —wz|
which is greater than or equal to
(r2 = wi?)*¢ = Jw)

r2|r —wz|* ¢ + w])

because for r > |w| we have

1 1
r—wz r—wz

2 2
_)S — < .
r —wzg [r — wz]| r — |w|

:2Re(

The proof is complete. ]

The monotonicity of H leads to a corresponding monotonicity property of the
Green function I, as the two are related by the formula

T'(z,w) = %/m:x“d.w /_7; H(e"f’, g) H(e"", %) do & dk.

This identity can be verified by explicit computation. However, it is more appro-
priate to view it as a special case of Hadamard’s variational formula, which will
be discussed in detail in Chapter 9.



3.3. The Biharmonic Green Function 65

LEMMA 3.14 Fix z, w € D. Then the function

w
r rl"(z, —)
p

is increasing on the interval (Jw|, 1).

Proof. By the above integral representation of the biharmonic Green function,
1 1 b/4 . .
rr(z, ﬂ) =—f / H(e’g,i)ré H(e'f’,ﬂ)dedg
r T Jmax{|zl.lwl/r} J—n & r§

for |w| < r < 1. Note that the interval

o

gets bigger as r increases. On the other hand, since (w|/r < &, we have |w| < r§,
and hence

r& H(em, %)

is an increasing function of r, according to Lemma 3.13. The proof is complete. B

Recall that for a function f in D and 0 < r < 1, the dilation f;, is defined by
fr(@) = f(rz), z e D.

LEMMA 3.15 If f is a positive locally summable function in D, then
PTI£1@) < TIfl@),  zeD,

forall 0 < r < 1. Moreover, r3T'[ f,] increases monotonically to T'[ f] pointwise
onDasr — 17.

Proof. After a change of variables, the formula

ST :r3/ I'(z, w) fr(w)dA(w), zeD,
D
becomes

U1 = f

lwi<r

w
T (z, —) fw)dAw),  zeD.

r
The assertion is now immediate from Lemma 3.14. [ ]

LEMMA 3.16 Suppose 0 < p < +00 and f is an analytic function on D. Then
the potential r T[A| fr|?] increases monotonically to T'[A| f|P], pointwise in D,
asr — 1".
Proof. Since | f|” is subharmonic, the function A|f|? is positive. Moreover,
Alf, @I =r?AlfIP(rz),  zeD.

The desired result then follows from Lemma 3.15. ]
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3.4 The Expansive Multiplier Property

In this section we prove an integral formula concerning A”-inner functions. As
a consequence we obtain the expansive multiplier property for such functions.
Note that the results in this section are stated and proved in the unweighted case;
they cannot be generalized to the weighted Bergman spaces A% in the full range
-1 <o < +o0.

We shall need the following lemma from integration theory.

LEMMA 3.17 Suppose that | is a finite positive measure on the measure space
X andthat 0 < p < 400. If fy and f are u-measurable functions on X such that
fn(x) = f(x) pu-almost everywhere as n — +o0o and

limsupf ful? d 5/ f1P dp < +oo,
X X

n—> 400

then

n——+00

lim [Ifn—fl"du=0-
X

Proof. Let E be any measurable set in X. Then by Fatou’s lemma,

/If]"du < liminf/lfnl”du
E n E
< nmsupU Ifn!"du—/ Ifnl"dﬂ]
n X X\E
< flfl”du—liminf/ fulP i
X n o Jx\E
=<

/Ifl"du—f Ifl”du=/ f1P dp.
X X\E E

It follows that

nm/ Ifnl”du=[ \f1P dp.
n E E

Given any positive number ¢, we can choose § > 0 such that

f flPdp <e
E

whenever (E) < §. By Egorov’s theorem (see any book on Real Analysis), there
exists X; C X such that u(X \ X;) < é and f, — f uniformly on X;. It is
elementary to check that

lz — wl? <27 (]zI” + |w|?)
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for all 0 < p < 4-oc and all complex numbers z and w. Thus,

Alfn—flpdu /;(llfn—fl”du+/ \fs — FIPdp

X\X1

IA

[ if=sraus2 [ (AP +17P) du
X1 \Xy
Since the integral over X above tends to zero by uniform convergence, we obtain
lim sup/ \fa— fIPdu < 21’“/ |fIPdp < 2P* e,
n X E

completing the proof of the lemma. n

Recall the expression of the kernel A,I'(z, w) from Lemma 3.12.

PROPOSITION 3.18 If0 < p < 400 and f is analytic in D, then

/ Tz, wAlf(2)IP dAR) = _/ AT (z, )| f@IP dA()
D D
for all w € D. Furthermore, either integral is finite if and only if f € AP.

Proof. We observe that for fixed w € D, A,I'(z, w) is positive except on a
compact subset of ID, and that part makes a finite contribution to the right hand
side. So, if the right-hand integral diverges, it is because of the contribution from
points near the boundary, in which case the integral equals +oc.

If f is analytic in D, then the desired identity follows directly from Green’s
formula and the fact that

I'(z, y}) = a—jzz)—r(z, w) =0

for z € T; the zeros of f and the logarithmic singularity of A, I'(z, w) atz = w
can be taken care of by removing from I a finite number of disks with radius ¢
and then taking the limit as ¢ tends to zero. In particular, the identity holds if f is
replaced by f;, 0 < r < 1. The general case then follows from an obvious limit
argument involving Lemma 3.16. [ ]

COROLLARY 3.19 SupposeQ < p < +oc and ¢ is an AP-inner function. Then
/D Iz, w)Alp(2)|P dA(z) = /D G(z, w)lp(@)|” dA(z) + 1 — [w|?
forallw e D.
Proof. Recall that by Lemma 3.12,
1 — |zw|?

A:T(z, w) = Gz, w) + (1 — [w|?) —.
11— zw)|



68 3. AP-Inner Functions

For any fixed w € D, the function

1 — |zw|?
11— zw|?
is bounded and harmonic in D. The assertion then follows from Proposition 3.18
and the definition of AP-inner functions. [ ]

Using the identities

2
7 —

fG(z, w)dA(z)=/10g —

we can rewrite Corollary 3.19 as

dA(z) = —(1 — |w]?), weD,

T [AlplP] = G[lplP —1].

Since the Green function G(z, w) is negative and the biharmonic Green function
I'(z, w) is positive, it follows that

0<T[AlplP]@ =G[lol” —1]@ <1—z, zeD,

for all AP-inner functions .
‘We can now prove the main result of the section.

THEOREM 3.20 Suppose 0 < p < +00 and ¢ is an AP-inner function. Then
/ lplPgdA = [ gdA + f / I'(z, w)Ag(w)Ale(2)|P dA(z) d A(w)
D D DJD
forallg e C 2(ﬁ). In particular, if g is also subharmonic, then

/g(z)dA(z)S/ lp(2)|Pg(2) dA(2).
D D

Proof. By Theorem 3.9, there exists a bounded harmonic function 4 in I such
that

g(@) = G[Ag] () + h(z), z eD.
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Using the definition of A”-inner functions, Fubini’s theorem, and the remark after
Corollary 3.19, we obtain

/D (lglP —1) gdA = fD (l0@)1” — 1) [h(2) + G [Ag) ()] dAG)

- fD (le@1? — 1) /D Gz, w)Ag(w) dAw) dA()

fDAg(w)/DG(z, w) (lp()|” — 1) dA(z) dA(w)

f Ag(w)/ T'(z, wAlp(2)|? dA(z) d A(w)
D D

Il

fD/DI‘(z,w)Ag(w)AIcp(z)IpdA(z)dA(w).

If g is also subharmonic, then Ag > 0 in D ; since I'(z, w) and A|p(z)|? are both
positive, we conclude that

/ 2D dAQ) < f 10(2)178(2) dA(),
D D

as asserted. ™

The form of Theorem 3.20 that we will actually use runs as follows.

COROLLARY 3.21 Suppose 0 < p,q < +00 and ¢ is an AP-inner function.
Then

[orisaa= [ 1r0aa+ [ [ rewalfwr sipor dae daw)
D D DJD
provided f is analytic in D.

Proof. Although the function g = | f|” is not necessarily in C*(D), the proof
of Theorem 3.20 can easily be modified to work in this case; all one has to do is

remove from D tiny disks centered at the finitely many zeros of f and then use a
limit argument. n

COROLLARY 3.22 If0 < p < +oo and ¢ is AP-inner, then
[ir@rae < [ vororae
forall f € H®.
Proof. By an obvious approximation argument, we may assume that f is ana-

lytic in D. The assertion now follows from Corollary 3.21 with ¢ = p, in view of
the positivity of the biharmonic Green function and the subharmonicity of | f|7. »
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COROLLARY 3.23 Suppose 0 < p < 400 and ¢ is a bounded AP-inner
function. Then

[ir@raae < [ w@rerde
holds for all f € AP.
Proof. This follows from Corollary 3.22 if we approximate f by its dilates f,
with0 <r < 1, given by f,(z) = f(rz) forz € D. [ ]

The property exhibited in the two corollaries above will be called the expansive
multiplier property of AP-inner functions.

We observe from Corollary 3.21 that if p = 2 and ¢ is an A%-inner function,
then

[ ph?dA = [ P dA + / / [z, w)l¢' @) PIF ()2 dAG) dAw),
D D DJD

where / is any function analytic in D.
We conclude the section with an integral estimate for dilated A?-inner functions,
which should be compared with Corollary 3.19.

PROPOSITION 3.24 Suppose 0 < p < +00 and ¢ is an AP-inner function.
Then, for 0 < r < 1, we have

[ rewale@r s < [ 6e i@ dac +1- i
D
forallw € D.

Proof. By Lemma 3.12 and Proposition 3.18,

/Df‘(z,w)Altpr(z)lpdA(Z) = /DG(z,w)I%(z)lpdA(Z)

1— 2
=) [ S @ dAG),
p |1 —zw|

where we observe that the function
1 — |zw|?
1 — zw)?

is the Poisson kernel extended harmonically to both variables. We are to show that

P(z,w) =

/ P(z, w) lor(2)|P dA(z) < 1.
D
Consider, for A € D, the function
/TPO», &) lp(z&)IP ds (&), zeD,

where we recall the notation ds(z) = |dz|/(27) for normalized arc length measure.
As a function of A, it is harmonic with boundary values |¢(zA)|?, and in view of
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the fact that the function |@(zA)|P is subharmonic as a function of A, we obtain
from the sub-mean value property that

lp@EMIP < /T P(LE) I0(E)P dsE),  zeD.

Specializing to A = r, we obtain

o @I < fT P(r&)lp@E)Pds).  zeD.

Since ¢ is A?-inner, an application of Fubini’s theorem gives

/D PG w) I (P dAG) < /D Pz, w) fT P(,8) 191 ds(8) dA)
- fT P(£) /D Pz, w) 19(z6)IP dA(2) ds(®)
= /Tp(r,s)P(O,w)dS(S)

- /Tp<r,g)ds(s>=P<r,0>=1,
as claimed. "

The above proof actually shows that for an A”-inner functionp and0 < r < 1,
the dilation ¢, is a subinner function in the sense of Section 3.7, that is,

fD 1@ lor (@) dAE) < h(O)

holds for all positive harmonic functions # on D.

3.5 Contractive Zero Divisors in AP

In this section we take a closer look at the extremal problem for invariant subspaces
generated by zero sets of AP. We show that a unique solution exists in this case,
even when 0 < p < 1. Recall that existence follows from a normal families
argument (see Section 3.2). We will also prove that the extremal function, which
we call a (contractive) zero divisor, is analytic across the unit circle when the zero
set is finite.

We begin with the case of a single zero with multiplicity 1.

LEMMA 3.25 Suppose 0 < p < +o0 and a is a nonzero point in D. Let I, be
the invariant subspace of AP consisting of functions f € AP with f(a) = 0. Then
the extremal problem for 1, has a unique solution, and the solution is given by

— _ 2/p
Ga)=Co =L 11+ 2 (1+52=2 ,
1—az 2 1-az
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where
1/p

Co= 1+ 2a=1ap)]

Proof. Let g be any polynomial. Then a change of variables leads to

/ 1Go(2)1Pq(z) dA(Z) = (1 — [a[?)?|Cal? / lk(w)I2|w|Pq [ wta } dA(w),
D D 1 w
where
k(w) = 1+(p/2)_(1 +aw)
(1 +aw)?
Now, let

2 ) = Zc,,w

+00
k(w) =) byw" and f(w)=k(w) q (
n=0

and integrate by polar coordinates to get

2.2 400 2
G p dA = (1- “|Cq|? —b
[ Ga@ramase) = a-wupric 3 syt
= (1 —=1aP?ICal” f(—a);

here, we used the fact that b, = (n + p/2 + 1)(—a"™). The definitions of C,
and k easily reduce the last expression above to ¢(0), so that G, is an AP-inner
function that clearly belongs to I,. Since G,, is analytic on D, the expansive mul-
tiplier property of G, becomes ||g|l, < [|Gagllp for all g € AP, or equivalently,
lg/Gallp < ligllp forall g € I, since G, only vanishes at a in D.

Suppose g € I; and ||gl, < 1. Then

' g(0) &
Ga(0)| —

<llgllp =1,
P

a

so that G, is an extremal function for 1,. Since the first inequality above is strict
unless g/ G, is constant, we see that G, is the unique solution of the extremal
problem for I,; otherwise, taking g to be another extremal function would yield
2(0) < G4(0), a contradiction. ]

COROLLARY 3.26 Suppose 0 < p < +o00, A is an AP-zero set, and 1, is
the corresponding invariant subspace in AP. If G is any solution of the extremal
problem for 14, then G has no extraneous zeros.

Proof. If A consists of a single zero of multiplicity 1, then an inspection of the
formula for G 4 in Lemma 3.25 reveals that G 4 has no extraneous zeros.

In the general case let us assume, for the sake of arriving at a contradiction, that
G has an extraneous zero at z = a; thus either a is a new zero, ora € A but G
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has a zero at z = a of order higher than prescribed in A. It is obvious that a # 0.
Let G, be the function from Lemma 3.25. Then G/G, belongs to 14, and the
expansive multiplier property of G, gives |G/ Gyl < 1. Since 0 < G,(0) < 1,
the function G/ G, solves the extremal problem for 4 better than G does, which
is a contradiction. [ |

Our next step is to show that for a finite zero set A the extremal problem for
I4 in AP has a unique solution and that the solution is analytic in a larger disk.
Recall that the uniqueness for 1 < p < +oo follows from the local convexity of
the space AP.

LEMMA 3.27 Suppose 1 < q < +o00 and p = mq for some integer m > 2. Let
G be the zero divisor in AP of a finite zero set (z;};, and let H be the zero divisor
in A9 of the zero set {w;}; obtained from {z;}; by including each z; exactly m
times. Then H = G™.

Proof. By an approximation argument, we may assume that {z;}; does not
contain 0. Since by Corollary 3.26, the zeros of H are exactly the z;’s, each of
which is of order m, we see that H!/™ (the branch with H1/™(0) > 0) is analytic
and has all the properties required in the extremal problem that determines G. Thus
HY™ = G, or H = G™, by uniqueness. [

‘We will need to use the reproducing kernel functions for a class of Hilbert spaces
of analytic functions in D. Thus, we consider a weight function

w(2) = |h@)I', z€D,

where 0 < ¢t < +o00 and 4 is a function in the Bergman space A’ (not identically
zero). For 0 < p < 400 let B?(w) be the space of analytic functions f in D such
that

1/p
1 fllpow= (/D | F(D)IPw(z) dA(z)) < +00.

Itis easy to show that each point evaluation in D is a bounded linear functional on
the space B? (w). In fact, if f is any analytic function in D, then the subharmonicity
of the function | f|Pw implies that any point evaluation at z € D, where w(z) > 0,
is bounded on B” (w); actually, if X is any compact subset of I where w is strictly
positive, then point evaluations at z are uniformly bounded on B? (w) for z in K. If
z is a point with w(z) = 0, then we can find a sufficiently small positive number r
such that the circle S = {w € C : {w — z| = r} is contained in D and w is positive
there. An application of Cauchy’s formula, together with the earlier remark that
point evaluations at w € S are uniformly bounded on B?(w), then shows that the
point evaluation at z is also bounded on B? (). Using the continuity of w, we see
that the argument above also works for z in a sufficiently small neighborhood of
a zero of w. We conclude that point evaluations at z are uniformly bounded on
B?(w) if z is restricted to any compact subset of D, and consequently, each space
BP(w) is complete.
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It is clear that each BP (w) contains H*. Let A” (w) be the closure of the set of
polynomials in B? (). Equivalently, A? () is the closure of H* in B?(w). For
p =2, B*(w) is a Hilbert space, and then so is A%(w), with the inner product

(F 8o = /D FRTD 0@ dAQ).

LEMMA 3.28 Let K, (z, w) be the reproducing kernel for the Hilbert space
A2(w). Then K, (z, w) # O for all z and w in D.

Proof. We first show that K,,(z, 0) is nonvanishing in . It is obvious that
K,(0,0) = sup{| F(O)* : || fllw2 < 1} > O; (3.D

the maximizing function is f(z) = K, (z,0)/+~/K,(0,0). If K,(x,0) = O for
some A € D\ {0}, we consider the function

F(z) = K»(z,0)/Gx(2), zeD,

where

6r = o [ 1 - (ALY
T V2= AP 1 -3z

is the one-point zero divisor in A2. The function Gy, is analytic on D and vanishes
only at A in D. By the subharmonicity of | F|>w and the expansive multiplier prop-
erty of G, (see Theorem 3.20 and its corollaries; the lower degree of smoothness
of w at its zeros can easily be taken care of by a limit argument), we have

/D F(2)Poo(2) dAG) < fD Koz, 0)P0(2) dAQ) = Ko (0, 0).

Since 0 < G;(0) < 1, the function F(z)/+/ K, (0, 0) solves the extremal problem
in (3.1) better than the function K,,(z,0)/+/K»(0, 0) does. This contradiction
shows that K, (z,0) # 0 for all z € D.

To show that K,,(z, w) # O for all z and w in D, observe that for any Mobius
map ¢ preserving the disk D, we have

Ku(9(2), ¢ (w)) = Koy (z, w)
for all z and w in D, where
w(2) = ¢ @DIPwop(z), zeD,

is a weight of the same type as w (since ¢’ is nonvanishing). Combining this with
the result in the previous paragraph, we conclude that K,,(z, w) # 0 for all z and
weD. -

We return to the extremal problem for zero sets. For general p, 0 < p < 400,
and a finite zero set A = {a; };le, we are going to show that any solution of the
extremal problem for 74 in A? can be written as the corresponding finite Blaschke



3.5. Contractive Zero Divisors in AP 75

product

n
lajl aj —z
ba(z) = — =
Jl;[l a; 1—ajz

times the reproducing kernel of the weighted Bergman space A%(w), where » =
[ba(2)|?, so the uniqueness of the extremal solution follows. Then we are going to
show that the reproducing kernel of this A%(w) has an analytic continuation across
the unit circle. Note that A2(w) = BZ(w) = A? as spaces in the present situation.

LEMMA 3.29 Suppose 0 < p < 400, A is a finite zero set, and 14 is the
corresponding invariant subspace in AP. If G = G 4 solves the extremal problem
for 14, then

G(2) = Ku(0,0)7 VP b(2) Ky(z, )¥P,  z €D,

where w = |b|? and b is the Blaschke product corresponding to A. In particular,
G is unique.

Proof. Since G has no extraneous zeros, we can write G(z) = b(z) k(z)*?,
where k is a nonvanishing function in A2. By the same variational argument as
used in the proof of Theorem 3.4, with the variation G* = G -+ Azh instead, where
h e l4and A € C, we see that

/ 1G(2)|P~2G ) zh(z) dA(z) = 0
D
forall h € 14. Since Iy = bAP, the decomposition f = (f — f(0)) + f(0) gives
/ [GIP2GbfdA = f(O)/ |G|P~2GbdA,
D D
where f is any function in A”. Using the factorization of G, we obtain
/ k'=%PE f1b|PdA = f(O)/ k'72/Pk |b|P dA, f € AP.
D D
Combining this with the fact that |G|, = 1, we get
1= / KImHPR2IPE BIP dA :k(O)z/"/ k'72PE |b)P dA.
D D
It follows that
/ kK122 fE|bIP dA = k(©) ¥ £(0)
D
forall f € AP.
If0 < p <2, we can choose f = hk®/P)~1 where h is any polynomial. Then
feAP (since0<2—p <2)and

k(O)/ hk|b|P dA = h(0).
D
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A simple approximation argument then shows that the above also holds for all
h € A%(w); thus k(0)k(z) = K,(0,z) by the uniqueness of the reproducing
kernel in A%(w).

If2 < p < 400, we can choose an integer m > 2 such thatg = p/m < 2. By
Lemma 3.27, the function G™ = b™k?/4 is the zero divisor in A7 corresponding to
the zero set of ™. According to the previous paragraph, we must have k(0)k(z) =
K (0, z), where K,,(z, w) is-the reproducing kernel of Az(lb’” 19) = A%(|b|P).
This shows that the desired representation of G holds for all p. ]

LEMMA 3.30 Suppose 0 < p < 400 and 14 is the invariant subspace of AP
corresponding to a finite zero set A. Then the zero divisor G 4 (the unique solution
of the extremal problem for 14) has an analytic continuation across the unit circle.

Proof. We assume that A consists of distinct points ay, ... , a,; the case of
multiple zeros will then follow from the formulas in the following proof and an
obvious limit argument.

Letb = by be the Blaschke product corresponding to A, and foreach 1 < j < n,
let b; denote the Blaschke product corresponding to A \ {a;}. For any w € D and
h € H®®, an application of the residue theorem yields

— n _ 2
1 b(w)z mh(Z)dZ _ h(UJ) _ Z bk(w) 1 |ak| h(ak).

= 1—ayw bilar)

2ﬂi lz]=1 I—Zw

Rewriting the left-hand side as

! bW 3 16 1Ph(2) dz,

27l'i lz]=1 1——'Zw

and applying the Cauchy-Green’s formula to this integral, we obtain

/D b(w) [ﬂ)— +(24+1) 22 ]h(z)]b(z)lpdA(z)

(1—zw)? " \2 1—zw

n a2
3 ) el

= 1 —aww bilax)

Writing the right-hand side above as an integral involving the reproducing ker-
nel K, (z, w) of A%2(w), where @ = |b|P, and then using the uniqueness of the
reproducing kernel, we conclude that

m[ b(z) N (p N 1) zb'(2) :|

(1—zw?  \2 1—zw

2o be(w) 1 — el
= K2, - — —— K, (z, ax).
(z, w) ,;l—akw D) zZ, ak
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Setting z = O reveals that K,,(0, w) has a conjugate analytic continuation across
the unit circle. In view of Lemma 3.29, the proof is now complete. n

We can now prove the existence and uniqueness of the solution of the extremal
problem for any zero-based invariant subspace in A”.

THEOREM 3.31 Suppose 0 < p < +00, A is an AP-zero set, and 14 is the
corresponding invariant subspace in AP. Then the extremal problem for 15 has a
unique solution G 4. Furthermore, G 4 has no extraneous zeros in D, |G fllp >
I flipforall f € AP, and |ig/Gallp < lIgllp forall g € I4.

Proof. Recall that the existence of an extremal function follows from a simple
normal family argument, and that any such extremal function has no extraneous
zeros in D.

Write A = {a;,a,a3,...}, and for any positive integer n, write A, =
{ai, ..., ay,} for the corresponding cut-off sequence. Let G,, be the (unique) zero
divisor for 14, in AP. Let G be any solution of the extremal problem for /4. By
Corollary 3.26, the function G has no extraneous zeros in . We will show that
G, — G in norm, which clearly gives the desired uniqueness.

Since [|G,llp, = 1 for all n, the sequence {G,}, is a normal family. Thus a
subsequence {G, }x converges uniformly on compact sets to an analytic function
H in . Since each G, has no extraneous zeros, Hurwitz’s theorem tells us that
either H is identically zero, or H has A as its zero set.

The function G belongs to each I4,. So the extremal property of G, gives
Gn(0) > G(0) > O (an obvious adjustment can be made if 0 € A). This implies
that H(0) > G(0), and hence H has A as its zero set. Also, Fatou’s lemma tells
us that |H||, < 1. Combining this with the extremal property of G, we obtain
H(©0) = G(0).

Another application of Fatou’s lemma gives

7ol |7
HO)|  |H

= Gll, =1
p
This implies that G = H. And using Fatou’s lemma one more time, we see that
lg/Gllp < ligllp forall g € Ia.

The same arguments above show that each subsequence of {G,}, has a subse-
quence that converges uniformly on compact sets to the function G. It follows that
Gpn — G uniformly on compact sets. Since |G|, = G, = 1, an application
of Lemma 3.17 shows that G,, — G in norm. In particular, the extremal function
G is unique.

Finally, given any f € AP,if |Gf|, = 400, we automatically have |Gf||, >
Il f1l p. Otherwise, using g = Gf € AP we obtain

Wfllp =1g/Gllp < lighp = 1GSllp.
This completes the proof of the theorem. ]

‘We mention that even when A is infinite, the contractive zero divisor G4 in AP
has an analytic continuation across any open arc of the unit circle that does not
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contain any accurmnulation point of A. The rest of the book does not use this fact,
so we have not included a proof here. The interested reader should consult [128]
for details.

3.6 An Inner-Outer Factorization Theorem for AP

Recall from the theory of Hardy spaces that every function f € H? admits a
factorization f = G F, where G is an inner function (a bounded analytic function
whose boundary values have modulus 1 almost everywhere) and F is acyclic vector
in H? (a function that has the whole H? as its generated invariant subspace). In
this section, we show that an analogue of this holds for the Bergman spaces A”.

Also, recall that for a weight function of the form w(z) = |g(z)|", we defined
the spaces B?(w) and AP () in the previous section. We introduce another space
X?(w) here, which consists of all analytic functions f in D such that

11 = 115+ [ [ P walr@pr aow dae daq) < +oo.

We are going to use the dilations f, (0 < r < 1), where f,(z) = f(rz) forz € D.

THEOREM 3.32 Suppose 0 < p < 400, ¢ is AP-inner, and I, is the invariant
subspace of AP generated by ¢. Then,

(a) we have
I, = AP (0) = pXP(0) C 9BP(w) C A?,
where w = |p|P;
(b) we have the norm relations
lg/ollxr = lgllp
forg € I, and
Ifellp = 1 fllxr@)
for f € XP(w);

(c) forg = fo € I,, we have || fro — foll, > Oasr — 17.

Proof. First, assume that g € I,,. Then there exists a sequence {py}, of poly-
nomials such that || p,¢ — gll, = 0 as n — +0c0. By the expansive multiplier
property of ¢, the sequence {p,}, is Cauchy in A”, so that {p,}, converges in
norm to some f € AP. In particular, g = f¢. Recall from Corollary 3.21 that

1Pl = 1 pul + /D fD T'(2, w)Alpa(@)I? Alp(w)? dA(R) d Aw).
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Since the biharmonic Green function I'(z, w) is positive, and since || p, || p—
llgllp and || pxllp = Il f1p» an application of Fatou’s lemma shows that

/DfDF(z, WA f(R)IP Alpw)|P dA(z) dAw) < lIgllh — I flI5 < +o0,
which we write as

I fllxr@) < Ifellp = liglp, g=foel, (3.2

In particular, f € X?(w), and hence g € pXP(w).
Next, assume that g = ¢f, where f € XP(w). Applying Corollary 3.21 to f,
with ¢ = p and then using Lemma 3.16, we obtain

rifrelly = rlfillfew

= rllfrllg+r/DF[Alfrl”](w)Alw(w)lpdA(w)

IA

IIfHZ+fDF[Alfl"](w)Altp(w)l”dA(w)

= ”f“f(p(w) < +00,

for all 0 < r < 1. This together with Fatou’s lemma shows that

1 folp S 1 fllxe) < o0, 3.3)

so that g = ¢f € AP. The function f¢ is then a weak limit of the functions
fro € I, as r — 17, so that by basic Functional Analysis, we have f¢ € Iy in
thecase 1 < p < +o0; the case 0 < p < 1 will be handled a little later.

The space ¢ BP(w) coincides with the subspace of AP of all functions that
vanish on the zero set of ¢, counting multiplicities, so that by the above, we have
the inclusion X?(w) C B?(w).

Combining the above two inequalities (3.2) and (3.3), we obtain the isometry

lg/ellxrw) = lIgllp, g €ly.

Since M, the operator of multiplication by ¢, is an isometry from A”(w) to
Iy, it follows from the above that A?(w) C XP(w), and that the inclusion map
is an isometry. Moreover, we have obtained the equality A? (w) = XP(w) for
1 <p<-oo.

We proceed to show that || f,¢ — foll, — Oasr — 17, provided that g =
fo € I,. By Lemma 3.17, it suffices to show that || fr¢|, — I fellpasr — 17.
In view of the isometry ||k/@||xrw) = ||kl for h € I,, this means that we should
verify that || £ || xrw) = Il fllxew) as r — 17. Recall that

Il kp @y = U0l = 1L£ 15 +/DF[A{frl"](w)Alw(w)l”dA(w)-

From Lemma 3.16, we see that rI'[A|f;|?] increases monotonically to
I'[AlfIPl1asr — 17. So, by the Monotone Convergence Theorem,

rl_i)nll_/DF[AIfrI"](w)Alw(w)lpdA(w) =A)I’[Alfl”](w)Alqﬂ(w)lpdA(w)-
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It follows that
bm 1 frollp = 17 Wk, f € XP(@).

It remains for us to prove that I, = ¢X”(w) in the case 0 < p < 1. To this
end, observe that the above proof can be modified to produce the identity X () =
A?(w) with equality of norms. Furthermore, if f € A2(w), then || fy — fll2.0 — O
asr — 17.

For the remainder of this proof, we assume 0 < p < 1. Let f be a function in
X?(w). Then we know that f € B”(w). We are going to show that f¢ € I, or,
in other words, f € AP (w).

First, suppose that f is zero-free in D. Then we may form the power (f)P/2,
which is an element of B2(w). Since

[P215, = 1w = 1 frlxp@ = [ fllxr@ — asr—17,

the functions ( f;)?/? converges weakly to (f)P/?in B3(w) asr — 1~.Butall the
functions (f,)P/2 belong to A%(w), and we know that the weak closure of a sub-
space in B2(w) is the same as the norm closure, so it follows that ( ) PI2 ¢ A2(w).
By the observation in the previous paragraph, the functions ( f,)?/? converges to
(£)?/? in norm in the space A%(w) as r — 1~. In view of Lemma 3.17, we get
that f, — f in norm in the space B?(w) as r — 17, and hence f € AP(w), as
we wanted, because f, € AP(w) foreachr,0 <r < 1.

Next, we consider the case when f has finitely many zeros. Let ¥ be the extremal
function in A? for those zeros, which extends analytically to a neighborhood of
D, by Lemma 3.30. Then f = g, where the zero-free function g is in X? (). In
fact, from the early part of this proof, we have

gl xrw) = rEHIL llgrllxr(w) = rir?_ lgrllipo = rgr{l_ lgrellp,

because r|| g,[|§'( Pw) is monotonically increasing in r. If we apply this to both f
and g, taking into account the properties of ¥, we find that g € X?(w). We now
apply the result proved in the previous paragraph to the zero-free function g to
obtain that g € AP(w) and that g, — g in norm as r — 17. Since ¥ is bounded,
we also have f € AP(w) with f, — finnormasr — 1.

Finally, we turn to the case when f has infinitely many zeros. Let A =
{a1,az, a3, ...} denote the sequence of zeros of f in D. Let N be a large pos-
itive integer, and split the zeros into two portions: A(vy = {ai, a2, ... ,ay} and
AM™ = {ani1,an42, ... ). Let ¢y be the extremal function in AP for the zero
sequence A (y), and let ¥y be the extremal function for AM. For 0 < r < 1, let
Ay(r) = " TAwy) ND and AM(r) = r=1AM) N D be the correspondingly
dilated zero sequences, restricted to the unit disk. Observe that they are both fi-
nite sequences. We let ¢, be the extremal function in A? for the zero sequence
Ay (r), and let Y - be the extremal function for AV (r). It is easy to see that
asr — 17, ¢y, — ¢y and ¥y, — Yn in the norm of AP. Let gy, be the
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function

fr(@
N (DYUNF(2)
which is zero-free in the disk and extends analytically across the unit circle. From

the contractive division property of the functions ¢, and ¥ ,, together with the
fact that r || f, llf(p(w) is monotonically increasing in 7, 0 < r < 1, we see that

gn.r(2) = zeD,

lgnrllpw = llgnrellp < I frollp = 1 frllpw
I frllxr@ <7771 flixrw)

forall 0 < r < 1. Since each gy, is zero-free, this is the same as

vy < Uy, O<r <l

Il

For 0 < r < 1, each function gy , is holomorphic on I, so that in particular
(gn.r)P/? € A2(w). AsT — 17, we have

/2 P2 _ (@) )p/Z
(evr @) — (Hn (D) (————¢N o) - iED

where the equality is used to define Hy, and the convergence is uniform compact
subsets of D. It follows that (Hy)?/? is a weak limit in B2(w) of functions in
A%(w), and hence (Hy)P/? € A%(w). We now argue as we did for zero-free f,
and obtain that Hy € AP (w). The property of being in A?(w) is preserved under
multiplication by an H* function, and hence we have ¢y Hy = f/¥n € AP(w)
as well. By the contractive divisor property of ¥y,

W /¥nlpw = Ifo/¥nlp < Il fellp,

and since ¥y (z) — 1as N — 400 uniformly on compact subsets of ID (after all,
the zero sequence AY) for ¥ gradually evaporates as N — +00; see Exercise
3), it follows from Lemma 3.17 that f/¥n -> f inthe norm of B (w). Since each
f/¥n is in A?(w), we conclude that f € AP (w) as well. n

Recall that if 0 < p < 1, then neither the existence nor the uniqueness of
the solution of the extremal problem for an arbitrary invariant subspace in A? is
known. In the previous section we proved the existence and uniqueness for zero-
based invariant subspaces. The next result shows that we have both existence and
uniqueness for singly generated (or cyclic) invariant subspaces in A”. In addition,
the extremal function generates the invariant subspace.

THEOREM 3.33 If I is a cyclic invariant subspace of AP, then there exists a
unique solution ¢ to the extremal problem for 1. Furthermore, I = I,.

Proof. Suppose I = Iy for some f € AP. We assume f(0) # 0; the re-
maining case is handled by the observation that for a function g € AP, we have
Iy = zl,. Letthe spaces AP (| f|7) and A2(| £|?) be the weighted Bergman spaces
with weight @ = | f|?, with norms || - tp.irip and || - |l2,|£|p, respectively. Then
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multiplication by f, denoted by M ¢, is an isometry from A” (| f|7) to AP} itis clear
that the range is Iy, so that Iy = fAP(|f|”). By Lemma 3.28, the reproducing
kernel function K ¢» for A2(|£|?) never vanishes on the bidisk D x D. We claim
that the extremal function ¢ = ¢y for Iy is unique and given by the formula

@) = K 51,0, 00”7 f(2) K| 1r (2, 0)*/7, zeD, (3.4)

which is analogous to the formula obtained for the invariant subspace associated
“with finitely many zeros, with the Blaschke product b in place of f. The function
K| 7r (-, 0) maximizes the value at the origin among all unit vectors in A%(|F1P).
We claim that the function

H(z) = K1 (0, 0)—1/p Kifp(z, 0)2/p

is the unique maximizer of the value at O among all unit vectors in AP (| f|P).
Clearly, | H]|p.;r|» = 1. Let g, be a (maximizing) sequence of polynomials such
that [|gnlp.|ri» = 1 and

gn(0) — sup {Ig(0)| : g € AP(IfIP), liglpisip =1} as n— +oc.

Similarly, let p, be another (maximizing) sequence of polynomials such that
| pnll2.1f1p = 1 and

pn(0) — sup{[h(O)I the A2(|f|p), all2. 1P = 1} as n — +o0.

For each n, let ¢, be the contractive zero divisor in A corresponding to the zeros
of g,,, and let ¥, be the contractive divisor in A% corresponding to the zeros of p,,.
Then, by Theorem 3.31,

Ngn/enllp.ifir = 1gnf/onllp < Ngn fllp = lgnlip.is1r-

Since 0 < ¢,(0) < 1, we have |g,(0)| < |g,(0)/©,(0)|, so that by replacing g,
by gn /¢, if necessary, we may assume that each g, has no zeros in D. Now, of
course, g, need not be a polynomial any more, but at least it extends analytically
to a neighborhood of the closed unit disk. Similarly, Theorem 3.31, for p = 2, has
an analogue which states that

{pn/Ynll2irie < pnll2.fies

the derivation is analogous to that of Theorem 3.31. Since 0 < ¥, (0) < 1, we
have | p,(0)| < |pn(0)/¥,(0)|, so that by replacing p, by pn/¥n if necessary, we
may assume that each p, has no zeros in . Again, p, need not be a polynomial
any more, but it extends analytically to a neighborhood of the closed disk. We
compare the sequences { (gn)P/?}, and {pp}, in the one maximization problem,
and {(p,,)z/ Pin and {gn}, in the other. The conclusion is that the maximization
problems are equivalent, and that since we know that p, — (H )P/2 in the norm
of A2(|£|P), we must have that g, — H in the norm of A?(|f|P) as well (use
Lemma 3.17). Since the maximization problem that g, approximates is equivalent
to the extremal problem for ¢ — in view of the fact that My : AP(|fIP) — Iy
is an isometry — it follows that the extremal function ¢ exists, is unique, and is
explicitly given by (3.4).



3.6. An Inner-Outer Factorization Theorem for AP 83

We proceed to show that f € I, which will complete the proof. In the following,
we set

F(2) = (f/9)""%(2) = K| 110, 02 Ky 1 (2, 0) 71, zeD.

The zero-free function F is in BZ(I(pV’ ), because

f |FPlglPd A :f |f/elPlelPdA =/ |fIPdA < +o0.
D D D

We recall the polynomials p, from the maximization problem, and note that
pnF — 1 as n — +00, uniformly on compact subsets of D. Moreover, since

1PnF I3 10 = /D pnFPlpIPdA = fD PP F1PdA = Ipal o = 1

and ||1||%~|W, = ||(p||§ = 1, Lemma 3.17 shows that p,F — 1 in the norm of
B2(|p|P). For j = 1,2,3, ..., we find that

szjF(z)lw(z)l”dA(z) = K7¢ (0, 0)—1/2/H)z11<,f|p(0, DIFDIP dA(z) =0,

by the reproducing property of the kernel. Let Jr stand for the closure of the
polynomial multiples of F in B2(|¢|P); in other words, Jr is the invariant sub-
space generated by F in Bz(]golp ). From the above, we know that 1 € Jr, and
that 1 1L zJg, which we compress to 1 € Jr © zJr. We can represent Jr as
F A2(IFP|@|P) = F A%(|£|P). It follows that for fixed A € D, g € (z — A)JF
if and only if g € Jr and g(A) = 0. Consequently, again for fixed A € D, the
function

F(z)—F(
H ——
zZ—A
is in Jr, and hence the fact that 1 € Jr © zJr entails that
F(z)— F(\
/ z —LZ)———(—) ()P dA(z) =0, reD. 3.5)
D Z—A
Since
2F(2) — AF(}) F@) = FW)[

s

2
= 'F(k)+z

Z—A - A

expanding the expression on the right-hand side and then integrating over the disk
— with respect to the reproducing probability measure |¢(z)|?d A(z) — we obtain
from the above identity (3.5) that

F(2) — AF (V) 2 - 2
/ [———————Z @AW e fQ 2D :llw(z)l"dA(z)
D zZ—A — A
4 F(z) — F(\) |
- lim + / (2P = ppy | ERZED o aac.
@ D Z—A
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We are going to integrate this identity over the circle |A| = r for 0 < r < 1, but
first let us observe that we can write

2F(z) — AF (M) |2
Z—A

F(z) — 2

= IF(Z)+A

2 | F2) — 2

= |F@)|*>+2Re [F_(zh -
2
:| ds(A),

F(z) — F(k)}
A

and so, by the mean value property of harmonic functions,

Lol =1

where we recall the notation ds(z) = |dz|/(2m). It follows that

zF(z) —
zZ—A

2 F(z) -

(@) p—

1 f P
[ | f(2)IPdA(z) = —/ = ds())
D r Ja=r | @
F(z) 2

ds(}) le(2)|? dA(2),

and so

f / (Iz* -
IA=r
1
flf(z)l”dA(z)z—/ U
D r Al=r @

“/,I /M Iz_lf[[z |F(2) = FO)Plp(@)1? dA ) ds(h). (3.6)

p
ds())

Write w in place of A, and apply Corollary 3.7 to the first integral on the right-hand
side, which gives

f

/lw(=r

p

dA(w)

P
ds(w) = %/u (r2—|w|2)Alf

1
[
r Jiwl<r

p

=(w)
2

Next, we apply Corollary 3.8 to the second integral on the right-hand side, which

result in

dA(w).

-/ EL'IF@ Fw)| ds(w)
lwl=r &=

r

:_/leqa( ]f

dA(w).
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Putting things together in (3.6), we then have

/If(z)l”dA(z)Z—lz-/ f
D re Jywi<r

+i (r? = 1wl?) ‘f

lw|<r

[|<r /w]<r r r

After an appropriate dilation in both variables, the inequality reads
p

p
dA(w)

dA(w)

f dA(w) lp(2)1P dA(2).

f IF@IPdAR) > / L w)| daw)
D DI¢
14
+/ (1-1w?)a dA(w)
D @
f p
42 / / Gz w) Ap | L(rw)| dAMW) 10, (@17 dAG).
DJD (4

We now invoke Proposition 3.24 to handle the last integral expression on the
right-hand side, and find that

/le(Z)l”dA(z)Zf li

+a —r2)f ~ wp)

+r2//r(z, w) Ay !
DJD (Y

Letting r — 1~ and applying Fatou’s lemma results in

14
dA(w)

p
dA(w)

p
dAw) Azler ()P dA(z).

(rw)

p
LAIS = N flellh + /D I'(z,w)A Alp(2)|? dA(z) dA(w).

f—(w)
@

This shows that f/¢ belongs to the space X?(|¢|?), and hence according to
Theorem 3.32, the function f isin Iy, sothat I = Iy = [,. ]

‘We can now prove the “inner-outer” factorization for functions in A?. First recall
that a function f € AP is called a cyclic vector if there exists a sequence {p,}, of
polynomials such that |[p, f — 1]|, - Oasn — +o00.

THEOREM 3.34 Suppose 0 < p < +oo and f € AP. Then there exists an AP-
inner function G and a cyclic vector F in AP such that f = GF. Furthermore,

Fp < 1f 1l p-

Proof. Let I be the invariant subspace generated by f. According to Theo-
rem 3.33, there is a unique solution G to the extremal problem for 7, the quotient
F == f/G belongs to A?, and there exists a sequence {p,}, of polynomials such
that {|p, f — G|, — 0 as n — +o0. The expansive multiplier property of G
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together with the fact that / = I implies that G is a contractive divisor on the
whole space I. Thus {p, F}, is a Cauchy sequence in A?. Since p,(z)F(z) — 1
pointwise, we must have ||p, F — 1][, — 0, that is, F is cyclic in AP. [ ]

In the classical theory of H? spaces, the inner-outer factorization is unique (up to
aunimodular constant multiple of the inner factor). Unfortunately, the factorization
here in A? does not have such a strong uniqueness property; counterexamples will
be constructed in Chapter 8.

3.7 Approximation of Subinner Functions

A classical theorem of Carathéodory-Schur (see [49]) states that if F is an element
of the closed unit ball of H®, then there exists a sequence of finite Blaschke
products b, such that b, — F uniformly on compact subsets of D as n — +o00.
The purpose of this section is to show that a version of this result also holds for
Bergman spaces. In other words, we are going to characterize the normal limits of
finite zero divisors in Bergman spaces. Recall that G is called a finite zero divisor in
AP if there is a finite zero set Z such that G is the extremal function of the invariant
subspace Iz in AP. We begin with the following simple necessary condition.

PROPOSITION 3.35 If {Gp}n is a sequence of finite zero divisors in AP and
G, — G, as n — +00, uniformly on compact sets, then

[ 16@1Ph@ dAG) < ho)
D
holds for all positive harmonic functions h in D.

Proof. Let & be any positive harmonic functioninD. Foranyn =1,2,3, ...,
define a bounded harmonic function £, on D by

hn(z) = h(nz/(n + 1)), z € D.

Since each G, is an AP-inner function, we have
[ 164@1Ph@dA@) = @) =hO,  n=1,23.....
D

The desired inequality now follows from this and Fatou’s lemma. ]

The rest of this section is devoted to proving that the converse of the proposition
above also holds, at least in the case p = 2. For convenience, we introduce the
following.

DEFINITION 3.36 A function F € A} called an AL-subinner function if
[ iF@Phe dan < ho)
D

holds for all (bounded) positive harmonic functions h on D.
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The Hardy space analogue of this definition, with the normalized measure d A,
on D replaced by normalized arc length measure ds on T, requires that the function
F € H? have |F(2)| < 1 almosteverywhere on T, in which case F is in the closed
unit ball of H°. The Carathéodory-Schur theorem then asserts that such functions
are indeed normal limits of finite Blaschke products.

We now prove the following Bergman space analogue of the Carathéodory-Schur
theorem.

THEOREM 3.37 Let F be a subinner function in A%. Then there exists a sequence
of finite zero divisors @, in A such that ¢, — F uniformly on compact subsets
ofDasn — +oo0.

Proof. For N = 1,2, 3, ..., let @y denote the Fejér kernel:

- 21
@N(eig) _ 1 sin®5(N + 1)0 6 cR.
N+1 sin? %9 ’

It is positive, and we use it to mollify the subinner function F,

FN(Z)=F*‘DN(Z)=I;IF(ZE)¢N(§)dS(§), zeD,

which constitutes a polynomial of degree N or less. Let & be a positive harmonic
function in D. Then, by the Cauchy-Schwarz inequality, Fubini’s theorem, and the
observation that the property of being a subinner function is rotation invariant,

- 2
/IFlehdA _ /lfF(z;)ch(c)ds(c) h(2) dA(Z)
D D T
< /D /T IFED)|? ®n (@) h(z)ds @) dA®)
< hO) [T On () ds(¢) = h(0).

It follows that the polynomial Fy is a subinner function. As N — +o00, Fy
approaches F, uniformly on compact subsets of D. Consequently, if we can ap-
proximate each of the polynomials Fy by finite zero divisors, then F, too, is so
approximable.

We may now, without loss of generality, assume that F itself is a polynomial;
let N be the degree of F. Moreover, we can assume that the function is strictly
subinner, in the sense that

fD D) IF@PdA®@) < (1 — &) h(0) 37

holds for some small fixed &, 0 < ¢ < 1, and all bounded positive harmonic
functions h on D. For f € L1(D), let P*[ f] be the function

2
PUIE = [ SE f© dA©),  zeT
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which is in L!(T) and has the property that

/T h(2) P*LAI) ds(2) = /D h2) £(2) dAQ), 3.8)

for all bounded harmonic 4. The function P*[ f] is frequently called the sweep of
f. Note that a function ¢ is A%-inner if and only if
Plel1=1,

and a function F is A2-subinner if and only if 0 < P*[|F|?] < 1. As we apply the
operation P* to | F|?, we obtain a trigonometric polynomial:

PIFPI) = Z Ajzl,  zeT, (3.9)
j_—OO
where A = (F, zZ/F) for j > 0 and Aj = (z7/F, F) for j < 0. The inequality
(3.7) together with the property (3.8) implies that
0<PIFP1<1-3

on T. The function 1 — P*[|F|?] is a positive trigonometric polynomial of degree
N. By a classical theorem of Fejér and Riesz (See Exercise 19), there exists an
analytic polynomial G of degree N, zero-free in the closed disk D, such that
|G|2 = 1 — P*[|[F|*]on T; then ¢ < |G|*> < 1 on T, and by the maximum
principle, also on D.
We now put, forn =1,2,3,...,
@ =F@+vVn+12"G(), zeD, (3.10)

and let M, be the invariant subspace generated by f,. Let ¢, be the extremal
function for M,,. The functions ¢, are finite zero divisors, and we shall see that
¢, — F, uniformly on compact subsets of ). The assertion of the theorem is
immediate once this has been achieved.

By the definition of f,, we have

@1 = IF@QP+@+Dz*IG@
+2v/n +1Re (2" G(z) F(2)) (3.11)

forallz € D. Asn — +o0,
JiF1 / 2" G(2) F(2)| dA() — O,
D

so that the third term on the right-hand side of (3.11) is eventually insignificant.
As for the second term, we have

(n+ Dz IG@)P dARZ) — |G (@) ds(2),

in the weak-star topology of Borel measures, where ds is the normalized arc-length
measure on the unit circle T, and

(n+ 1) P*[12" G@)P] @) = 1G@)P
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uniformly on T; both limits are taken as n — +00. From the construction of G
we see that P*[| f,|2] is approximately 1 for large values of n, so that f; is, in
a sense, an approximate A%-inner function. In other words, we expect @, not to
differ much from f,, for large n. The rigorous demonstration of this requires some
technical work.

LEMMA 3.38 There exists a positive integer L = L(F, &) such that
3 3
sellel’ = e+ DI el < fuglh?,  geA?,
foranynwith L < n < +o0.

Proof. Since F is bounded and ¢ < [G]2 < 1, there exists an L = L(F, &)
such that for n with L <n < +o00,

FOI< VAt TG r<lel <1,

provided that 0 < r, < 1 and r, is so close to 1 that its n-th power is bounded
away from 0 as n — +oc0. Then in the same annulus,

%\/(’l +De 2" < %vn + 112" 1G@) = | fn(2)], rm <z < 1.

It follows from the above estimate that for g € A2,
9
— (n+ 1)8/ lg@)1? 1z1*" dA(z)
16 rp<|zl<l1

sf AECTORICRITATS (3.12)

Let M, be the radial square-mean function

M(r)—i ”| (reé')? ao 0 1
g = o _ﬂg e s <r<l,

which increases with r. Then

1
/ 18()*1z]*" dA(z) =2 f M (ryr+lar, (3.13)
rm<lz|<l n

and using the monotonicity of M, and redistributing masses along the interval
0, 1), we have

1 2(n+1)

1
———/ Mg(ryrdr < (1—r,%<"+1>)[ Mg(ryr* ' ar
n+1 0

IA

1
] Mg (r) rntl gy,
n
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Combining this with (3.12) and taking into account (3.13), we arrive at

9 9 1
(=) gl = 2e(1-r20) [ Myoyrar
16 8 0
9 1
< gee+D(1- r3<"+1>)/ Mg(r)r***ldr
0
9
= Ig e(n+1) (1 — r,%("_H)) Hz"g“z
9 1
< gen+ 1)/ M(r)r*"*dr
n
9
= e+ 8@ 121*" dA(2)
rp<|z]<1
< lfagl® (3.14)
Choosing r,, such that 3r3 @+D _ 1 then finishes the proof of the lemma. ]

For large n, therefore, the polynomial f, has no zeros on T. The function ¢,
is defined as the extremal function for the invariant subspace M), in A% generated
by f.. We may assume, without loss of generality, that f,(0) # 0, and after a
rotation, that f,,(0) > 0. Then ¢, solves the extremal problem

max {Re¢(0) : ¢ € My, lloll =1},

so that the function g, € A? defined by ¢, = f,g, solves the related extremal
problem

max {Req(0) : ¢ € 4%, [ fuqll = 1}.

In a Hilbert space of holomorphic functions, the function maximizing the value
at a point among the elements of the unit ball equals an appropriate constant
multiple of the kernel function. In other words, if A2(| fn [2) stands for the space
of holomorphic functions f on DD with norm

Nf a2 f2) = 1fn FII < 400,

and K L2 is the associated kernel function, then

1
an(2) = K £,12(0,0)72 K| £ 2(z, 0), zeDy;

compare with formula (3.4). We intend to show that ¢, convergesto F asn — 00,
uniformly on compact subsets of . From the above identity, it follows that it
suffices to show that K ¢ 2(z, 0) — lasn — +o0, uniformly on compact subsets
of D.

LEMMA 3.39 If L = L(F,¢) is the constant from Lemma 3.38, then for any n
with L <n < 400 we have
8 1
0<Ksp(z,2) < 3 a

—~|z|%)?
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forz e D.

Proof. Forz € I, the quantity X 1, 2(z, z) 2 expresses the norm of the point eval-

uation functional at z in the space AZ(D, | fn1%). However, each element A(] 21
is in A? (and vice versa), and for f € A2, we have the growth estimate

rais . zen

see Lemma 3.2. The assertion now follows from Lemma 3.38. n

To complete the proof of Theorem 3.37, we shall need to understand the behavior
of the inner products (z/ f;, f,) for j =0, 1,2, .... A computation based on (3.10)
yields

@ fur fo) = @F,Fy+Vn+1{/F,7"G)
+Vn+ 176G, FYy+ (n+1) ("G, 2"G).

Forn with N < n < 400 we have (z*t/G, F) = 0, as the functions G and F are
polynomials of degree at most N. The above identity then simplifies to

(& far fa) = @ F,F) + Vn+ 1/ F,"G) + (n + V(" G, "G). (3.15)
Expanding the polynomial G in a power series
too
G =) Gmz7",
n=0
where a(n) =0forn=N-+1,N+2, ..., wefind that

+00 N/pN oy
16,76y = 33 GO EU +D)

= j+k+n+1

and hence
; L = j+k ~ =
G, G -+ DG, PG = —— Gk) G(j + k).
( Yz — (n 4+ 1) ) §J+k+n+1 &) G(j +k)

Each term on the right-hand side vanishes for N < j + k < 400, and hence

|<sz G)Hz —(n+ 1) ("G, "G

Z +k+ — 160 GG+

< mglmkwu + k)|

N
G2

< ——— <——, .16
“N4n+1 IIHz‘N+n+1 (3.16)
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where we used the fact that |G| < 1 on T. The inner products (z/ F, F) appear as
Fourier coefficients of the function P*[|F|?], and the inner products (z/ G, G) 2
are the Fourier coefficients of |G|2. From the identity

PYIFI+1G* =1
on T it then follows that
(@ F,F)+ (G, ,G)yr =80, j=0,1,23,..., (3.17)

where §; ¢ is the Kronecker delta symbol. The expanded expression (3.15) then
assumes the form

(Z fu, ) = Sjo+~/n+1(/F,7"G) (3.18)
+@n+1) ("G, 2"G) - (Z/ G, G) .

Expanding the function F in a power series as well,

+00 -

F=) Fm?7,

n=0

where f(n) =0forn=N+1,N +2,...,we obtain
. +m —_— .
(@F, "Gy =) F(k) (™, 2"G),
=0

so that the Cauchy-Schwarz inequality yields

+00
| F,26)| < Y IF®I [/, 26 (3.19)
=0
too B2\ 3 /N 2
2 |F (k)| e )
< (k+ 1) [/ ,z”G)|) :
(Z5) (&

A subinner function has norm at most 1, which shows that the first factor on the
right-hand side of (3.19) is bounded by 1. Since |G| < 1 on T, the maximum
principle informs us that |G| < 1 on D as well. Consequently,

2

J+k nG </ j+k+ndA N —
[(z/*,2"GY| < thl @) FE

and hence (3.19) leads to the estimate

1
N 2
. k+1 2N+ D
JF,7"G)| <2 < . 3.20
I'F.26)] < [,g(j+k+n+2)2} N4+n+j+2 (320)
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Summing up and using the identity (3.18) together with the estimates (3.16) and
(3.20), we obtain

, (N +1 WES! N
N+n+j+2 N+n+1
N+1

< 3 ,

vn+1

Recall that we need toshow that X ¢ 12(z, 0) — 1 uniformly as long as z is confined

to compact subsets of ID. We expand the keriiel in a convergent power series,

[z fo, fu) — 80| <

j=012,.... 321

+00 )
Kp §)=ZB]'(C)Z’, (z,¢) € D?,
j=0

where the functions B; are antiholomorphic. By the reproducing property of the
kernel function applied to the constant function 1, we have

+00
1= Bi@) (& fu ), ¢ €D,
j=0
which we may rewrite as

+00
1= K7 200,2) = (1fall> = 1) Bo@) + Y _ Bi(©) (& fu, fu)s  (322)

j=t1

in view of the fact that Bo(¢) = Ky, 12(0, {). We recover the Taylor coefficients
B;(¢) via the integral formula

Bi(O)=(G+n+ 1)/sz Ki;p@ Q) e dAG), ¢ eD,

which leads to the following estimate for { € ID and large n:

A

BiOI < G+n+ DI Ky oG 0] (3.23)

1
8\2 Vj+n+1
(§> m " fn K[fnlz(" {)“

1
8\ [ . 8 JITj/n
— — 1 — K , 2 < — ——
(38) +n+1 12 G ~3g 1—J¢|?

here we used Lemma 3.38 as well as Lemma 3.39. Looking at the support set
for the Taylor coefficients of f;, we see that (z/ f,, f,) vanishes for j off the set
[0, N]U[n — N, n -+ NJ. For large n, the estimate (3.23) simplifies to (restricting
it to the relevant interval)

3
IB; (D) = =
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It follows from (3.21) and (3.24) that for large n and ¢ € D,

+00 N
IBi O fur fu)] = DB @I (2 fur £)]
j=1 j=1
n+N )
+ D 1B O fur £
j=n—N
27 (N+D? 1
— 25
S e arl I-RP 429
by counting the number of terms. Similarly,
9 N+1 1
(1 £l = 1) Bo(@)] < = —— ¢ eD. (326)

enr1l—|¢P
‘We now see from the identity (3.22) and the estimates (3.25) and (3.26) that
Klfnlz(o’ ;) — 1

as n — 00, uniformly when ¢ is confined to compact subsets of .
The proof of Theorem 3.37 is now complete, because K 2(z, 0) equals the
complex conjugate of K ¢ 2(0, z). n

3.8 Notes

The study of Bergman inner functions originated from Hedenmalm’s paper [59],
which marked the beginning of a very fruitful period for the study of Bergman
spaces.

Lemma 3.2 is from Vukoti¢ [131]. This estimate is almost “obvious”, but it is
critical in the proof of Theorem 3.3.

Theorem 3.3 is from Hedenmalm’s paper [59] for p = 2 and @ = 0; the general
case here was shown in Zhu [144]. This result will play an important role when
we study zero sequences in Chapter 4 and interpolating sequences in Chapter 5.

The extremal problem of Section 3.2 is classical in the study of Hardy spaces.
The importance of this extremal problem for the study of factorization and the
structure of invariant subspaces in the Bergman spaces was first demonstrated by
Hedenmalm in [59].

The connection between Bergman inner functions and the biharmonic Green
function was found by Duren, Khavinson, Shapiro, and Sundberg in [38], and was
further studied in [39], [40], and [7]. Lemma 3.13 is from Abkar’s thesis [2].

The expansive multiplier property, or equivalently, the contractive divisibility
property, of Bergman inner functions was first obtained by Hedenmalm [59] in A2,
and then by Duren, Khavinson, Shapiro, and Sundberg [38], [39], and [40], in A?
for general exponents p, 0 < p < +00. Lemma 3.28 — even in the more general
setting of logarithmically subharmonic weights — is due to Hedenmalm (see [40]).
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Hedenmalm and Zhu [73] showed that the expansive multiplier property fails
for the weighted Bergman spaces Ag with 1 < o < 4o00. Shimorin [120, 121]
later found that the expansive multiplier property remains valid for the spaces Ag
with —1 < « < 1; Hedenmalm [60] had settled the case A% earlier (see also [65]).
The case of 0 < o < 1 remains open for p # 2.

The uniqueness of the contractive zero divisors in A” for0 < p < 400, p # 2,
is due to Duren, Khavinson, Shapiro, and Sundberg. The proof of Lemma 3.30
here is taken from [94]. Sundberg [128] proves that the contractive zero divisor of
I4 in A? has an analytic continuation across each open arc of the unit circle that
does not contain an accumulation point of A.

The material in Section 3.6 is from the fundamental paper [7] of Aleman, Richter,
Sundberg. The final touch in the proof of Theorem 3.33, involving the dilation of
the AP-inner function, however, is new. It was inspired by the paper of Hedenmalm,
Jakobsson, and Shimorin [69].

The material in Section 3.7 is from Shimorin’s paper [ 125]. It is an open problem
to do the same for AP, p # 2.

3.9 Exercises and Further Results

1. Let A = {ay, ..., a,} be afinite sequence of distinct points in D. Show that
G4 in A? is a linear combination of the functions

1 1
T -@m? T (1 -a)?

2. If G is AL-inner, then 1 < |G(¢)| whenever ¢ € T is a point of continuity
of G.

3. Let A = {a),az,as,...} be the zero sequence of a function in A”. For
positive integers N, let A™) be the tail sequence

N
AN = {an+1, any2, ans, ..}

Let G 4 be the canonical divisor for the zero sequence AY). Show that
G 4 (2) — 1, uniformly on compact subsets of D, as N — +oc0.

4. Let us say that a sequence A = {a1, az, as, ... } is a sub-zero sequence for
AP if there exists a function f € A? which vanishes along A without being
identically zero. In other words, a sub-zero sequence is a subsequence of
a zero sequence. Consider the extremal function G4 for A, and show by
an argument which involves a competing function for the extremal problem
that G 4 vanishes precisely on A. Consequently, each sub-zero sequence is
itself a zero sequence.

5. If G is AP-inner and bounded, then G is a zero divisor whose zero set is the
union of finitely many interpolating sequences. See [77].
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11.

12.

13.

14.

15.
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. Show that the contractive zero divisor G 4 of an A”-zero set A has an analytic

continuation across any arc of T that does not contain an accumulation point
of A. See [128].

. Derive the formula for the zero divisor in A? corresponding to a single point

a repeated 7 times.

. Derive the formula for the extremal function of the invariant subspace in A?

generated by the singular inner function with an atomic mass o at z = 1.

Let G, be the extremal function of the invariant subspace in A? generated
by the singular inner function S, with an atomic mass o at z = 1. Show that

/10 OPL ha =
D 1—z2 7 26+1

forall o > 0.

Let G be any AZ-inner function. Then

2
fl ()I" 'Z'l dAg(@) =1

for almost all ¢ € T.

Show that for certain « the zero divisor in A2 with a single zero a € D can
have extraneous zeros. Then deduce that zero divisors in such cases fail to
be contractive. See [73].

Show that if —1 < @ < 0, then zero divisors in A% are contractive. See
[120], [122], as well as Chapter 9.

If G is the extremal function for an invariant subspace I of A2, then
1
G@P < {7 — A= 1)K D)
for z € D, where K1 (z, w) is the reproducing kernel for 1 L

Show that

rom(215)
/D z)exp 14z
forall f € AZ. See [86].

/’f@ 2
Dl2—z

2
dAQ) < fD l2f @IFdAG)

Show that

dAG) < /D 2f @I dAG)

forall f € A2.
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Show that
/D F @12 lea@1°@ dA(z) < fD l2f ()12 dA(2)

foralla € Dand f € A2, where b(a) = 2(1 + la)/(1 — |a|), and
@q : D — D is the usual Mdbius involution associated with a.

Show that
S — 2 2
/ —;——-r—f(z) dAQR) < f l2f (2)? dA(2)
D —rz D

forall 0 < r < 1and f € A2 Moreover, equality holds above if and only
if for some constant C,

2—rz
(1-r)?
Suppose f is an analytic function f inD and 0 < p < +4o00. Show that f
belongs to A” if and only if

f@=C

fD (1 ZPPAIF QP dA®) < +0o.

Suppose f is a positive trigonometric polynomial on T of degree N. Then
there exists an analytic polynomial p(z) of degree N, zero-free on D, such
that |p|? = f on T. This is usually referred to as a the Fejér-Riesz theorem.

If {I,}, is a decreasing sequence of cyclic invariant subspaces of A?, then
I = N, 1, is cyclic (singly generated). Moreover, if I # {0} and ¢, is the
extremal function for I, then ¢, converges in A” to the extremal function
for 1. In particular, if I, is the invariant subspace of all functions that vanish
on the zero set A, then I4 is generated by its extremal function G 4. For
details, see [7].
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Zero Sets

For an analytic function f in D, not identically zero, we let Z ¢ denote the zero
sequence of f, with multiple zeros repeated according to multiplicities. A sequence
A = {a,}, inDis called a zero set for AZ if there exists a nonzero function f € A}
such that A = Z ¢, counting multiplicities. Zero sets for other spaces of analytic
functions are defined similarly.

In this chapter, we study the zero sets of functions in several Bergman-type
spaces. It is well known that the zero sets cannot be described in terms of a simple
Blaschke-type condition, because the angular distribution of the zeros plays arole.
We shall obtain sharp necessary conditions for a sequence A to be a zero set
for A%, and sharp sufficient conditions as well. The gap between necessary and
sufficient conditions is quite small. The characterizations are in terms of partial
Blaschke sums on Stolz star domains and the Beurling-Carleson characteristic of
the corresponding boundary set. In the case of the Bergman-Nevanlinna class Ag,
however, we shall be able to characterize its zero sets by a simple Blaschke-type
condition.

4.1 Some Consequences of Jensen’s Formula

An effective tool for studying zeros of analytic functions is the classical Jensen
formula, which gives us a relationship between the growth of the function and the
growth of its zero set.

PROPOSITION 4.1 Suppose the function f is analytic in D and f(0) # 0. For
0<r<l,letay,...,ay,bethezeros of f inthedisk |z| < r, repeated according
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to multiplicity. Then

- r 1 [ ;
log | £ (0)| + 1oo—=——f log | f(re'?)| do.
RO ; g = ), loslf

Proof. First, assume that f is nonvanishing on the closed disk |z| < r. Then

1 27 .
log | £ (0)] = — / log | £ (re®)| 6.,
2 0

since the function log | f ()| is harmonic on |z| < r.

Next, assume that f is nonvanishing on |z| < r but has a single zero a = re'!
on the circle |z] = r. Then the function g(z) = f(z)/(z — a) is analytic and
nonvanishing on |z| < r, so that

1 27 . . .
log |2(0)] = E/o [log | (re'®)| — log rei® — re”l] de.

Since

log |g(0)| =log | f(0)| —logr
and

27 .
/ log|1 — €% |do =0,
0

we conclude that

1 2n .
log |f O] = 5 /0 log | £ (re®)| 6

whenever f is nonvanishing on |z] < r and has a single zero on |z| = r. By
induction, the above formula remains valid if f is nonvanishing on |z| < r and
has a finite number of zeros on |z] = r.

Finally, if a1, --- , a, are the zeros of f in |z] < r, repeated according to
multiplicity, then the function

F) = f(2) 1‘[

r(z

is analytic in ID, nonvanishing on [z| < r, and has a finite number of zeros on
|z] = r. Thus,

1 2 .
log | F(0)| = Z/o log |[F(re'®)| deé.

Since |F(z)| = | f(z)| on |z] =r and

I r
F0)= £ -1,
©) f()g( ak)
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Jensen’s formula results. |

Let f be an analytic function in I, not identically zero, but with a zero of order
m atz = 0, m > 0. Applying Jensen’s formula to the function g(z) = f(z)/z™,
we obtain

1 2 ) m) o n
—f log | f(re'?)|d6 = mlogr + log A C) +Zlog—f—,
27 Jo m! = lak]
where 0 <r < landay,...,a, are the zeros of f in 0 < |z| < r. It follows that

for every 0 < o < 1, there exists a constant C = C (o) such that

1 27 .
C < —-/ log | f(re'®)| do
2 0

forall r witho <r < 1.
For f analyticinDand 0 < r < 1, we let n(r) = n s (r) be the number of zeros
of f in |z| < r, counting multiplicity. If £(0) # 0, we let

T n(t)
N(r):Nf(r):/ = ar.
0

The counting functions n(r) and N(r) play important roles in the study of zeros

of analytic functions.

PROPOSITION 4.2 Suppose f is analytic in D with f(0) # 0. Then

n
r
N(r) = log —,
k; la]

where ay, ... ,ap are the zeros of f in|z| < r, repeated according to multiplicity.

Proof. Since n(t) = 0for0 <t < |a;|, we have

n=l plagyl n(t) T on(t)
N = —=dt +/ —=dt.
=Y /| -

k=1 Y laxl 4 an|

By definition, n(t) = k for |ag| < t < |ag41l,and n(®) =nfor|a,| <t <r. It
follows that

n—1
N(r) = Z [k Qoglak+1] —loglax]) ] +n (logr — log |axl) -
k=1

A little manipulation then shows that

as claimed. (]
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PROPOSITION 4.3 Suppose u is a probability measure on a measure space X
and that g is a positive measurable function on the measure space X. Then

flogg(x)du(x)slog U g(x)du(x)].
X X

Proof. This is a special case of a general result in Real Analysis, which is
usually called the arithmetic-geometric mean inequality. ]

We proceed to prove some necessary conditions for a sequence in D <ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>