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Preface to the English Edition

A book about numbers sounds rather dull. This one is not. Instead it 1s a
lively story about one thread of mathematics—the concept of “number” —
told by eight authors and organized into a historical narrative that leads
the reader from ancient Egypt to the late twentieth century. It is a story
that begins with some of the simplest ideas of mathematics and ends with
some of the most complex. It is a story that mathematicians, both amateur
and professional, ought to know.

Why write about numbers? Mathematicians have always found it diffi-
cult to develop broad perspective about their subject. While we each view
our specialty as having roots in the past, and sometimes having connec-
tions to other specialties in the present, we seldom see the panorama of
mathematical development over thousands of years. Numbers attempts to
give that broad perspective, from hieroglyphs to K-theory, from Dedekind
cuts to nonstandard analysis. Who first used the standard notation for
7 (and who made it standard)? Who were the “quaternionists” (and can
their zeal for quaternions tell us anything about the recent controversy
concerning Chaos)? What happened to the endless supply of “hypercom-
plex numbers” or to quaternionic function theory? How can the study of
maps from projective space to itself give information about algebras? How
did mathematicians resurrect the “ghosts of departed quantities” by rein-
troducing infinitesimals after 200 years? How can games be numbers and
numbers be games? This is mathematical culture, but it’s not the sort of
culture one finds in scholarly tomes; it’s lively culture, meant to entertain
as well as to inform.

This is not a book for the faint-hearted, however. While it starts with
material that every undergraduate could (and should) learn, the reader is
progressively challenged as the chapters progress into the twentieth century.
The chapters often tell about people and events, but they primarily tell
about mathematics. Undergraduates can certainly read large parts of this
book, but mastering the material in late chapters requires work, even for
mature mathematicians. This is a book that can be read on several levels,
by amateurs and professionals alike.

The German edition of this book, Zahlen, has been quite successful.
There was a temptation to abbreviate the English language translation
by making it less complete and more compact. We have instead tried to
produce a faithful translation of the entire original, which can serve as a
scholarly reference as well as casual reading. For this reason, quotations



vi Preface to the English Edition

are included along with translations and references to source material in
foreign languages are included along with additional references (usually
more recent) in English.

Translations seldom come into the world without some labor pains. Au-
thors and translators never agree completely, especially when there are
eight authors and one translator, all of whom speak both languages. My
Job was to act as referee in questions of language and style, and I did so in
a way that likely made neither side happy. I apologize to all.

Finally, I would like to thank my colleague, Max Zorn, for his helpful
advice about terminology, especially his insistence on the word “octonions”
rather than “octaves.”

March 1990 John Ewing



Preface to Second Edition

The welcome which has been given to this book on numbers has pleasantly
surprised the authors and the editor. The scepticism which some of us had
felt about its concept has been dispelled by the reactions of students, col-
leagues and reviewers. We are therefore very glad to bring out a second
edition—much sooner than had been expected. We have willingly taken up
the suggestion of readers to include an additional chapter by J. NEUKIRCH
on p-adic numbers. The chapter containing the theorems of FROBENIUS
and HoprF has been enlarged to include the GELFAND—MAZUR theorem.
We have also carefully revised all the other chapters and made some im-
provements in many places. In doing so we have been able to take account
of many helpful comments made by readers for which we take this opportu-
nity of thanking them. P. ULLRICH of Miinster who had already prepared
the name and subject indexes for the first edition has again helped us with
the preparation of the second edition and deserves our thanks.

Oberwolfach, March 1988 Authors and Publisher



Preface to First Edition

The basic mathematical knowledge acquired by every mathematician in the
course of his studies develops into a unified whole only through an aware-
ness of the multiplicity of relationships between the individual mathemat-
ical theories. Interrelationships between the different mathematical disci-
plines often reveal themselves by studying historical development. One of
the main underlying aims of this series is to make the reader aware that
mathematics does not consist of 1solated theories, developed side by side,
but should be looked upon as an organic whole.

The present book on numbers represents a departure from the other vol-
umes of the series inasmuch as seven authors and an editor have together
contributed thirteen chapters. In conversations with one another the au-
thors agreed on their contributions, and the editor endeavored to bring
them into harmony by reading the contributions with a critical eye and
holding subsequent discussions with the authors. The other volumes of the
series can be studied independently of this one.

While it is impossible to name here all those who have helped us by
their comments, we should nevertheless like to mention particularly Herr
Gericke (of Freiburg) who helped us on many occasions to present the
historical development in its true perspective.

K. Peters (at that time with Springer-Verlag) played a vital part in
arranging the first meeting between the publisher and the authors. The
meetings were made possible by the financial support of the Volkswagen
Foundation and Springer-Verlag, as well as by the hospitality of the Math-
ematical Research Institute in Oberwolfach.

To all of these we extend our gratitude.

Oberwolfach, July 1983 Authors and Editor
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Introduction
K. Lamotke

Mathematics, according to traditional opinion, deals with numbers and
figures. In this book we do not begin, as EUCLID began, with figures but
with numbers.

Mathematical research over the last hundred years has created abstract
theories, such as set theory, general algebra, and topology, whose ideas
have now penetrated into the teaching of mathematics at the elementary
level. This development has not been ignored by the authors of this book;
indeed, they have willingly taken advantage of it in that the authors assume
the reader to be familiar with the basic concepts of (naive) set theory and
algebra. On the other hand, a first volume on numbers should emphasize
the fact that modern research in mathematics and its applications is, to a
considerable extent, linked to what was created in the past. In particular,
the traditional number system is the most important foundation of all
mathematics.

The book that we now present is divided into three parts, of which the
first, which may be regarded as the heart, describes the structure of the
number-system, from the natural numbers to the complex and p-adic num-
bers. The second part deals with its further development to ‘hypercomplex
numbers,” while in the third part two relatively new extensions of the real
number system are presented. The six chapters of the first part cover those
parts of the subject of ‘numbers’ that every mathematician ought to have
heard or read about at some time. The other two parts are intended to
satisfy the appetite of a reader who is curious to learn something beyond
the basic facts. On the whole, “the structure of number systems” would be
a more accurate description of the content of this book.

We should now like to say a few words in more detail about the various
contributions, the aims that the authors have set out to achieve, and the
reasons that have induced us to bring them together in the form in which
they are presented here.



2 Introduction

PART A

Since the end of the last century it has been customary to construct the
number system by beginning with the natural numbers and then extending
the structure step-by-step to include the integers, the rational numbers,
the real numbers, and finally the complex numbers. That is not, however,
the way in which the concept of number developed historically. Even in
ancient times, the rational numbers (fractions and ratios) and certain irra-
tional numbers (such as =, the ratio of the circumference to the radius of
a circle, and square-roots) were known in addition to the natural numbers.
The system of (positive) rational and irrational numbers was also described
theoretically by Greek philosophers and mathematicians, but it was done
within the framework of an autonomous theory of commensurable and in-
commensurable proportions, and it was not thought of as an extension of
the natural numbers. It was not until after many centuries of working nu-
merically with proportions that the realization dawned in the 17th century
that a number is something that bears the same relationship to (the unit)
one as a line segment bears to another given segment (of unit length). Neg-
ative numbers, which can be shown to have been in use in India in the 6th
century, and complex numbers, which CARDAN took into consideration in
1545 as a solution of a quadratic equation, were still looked upon as ques-
tionable for a long time afterwards. In the course of the 19th century the
construction that we use today began to emerge.

Each chapter contains a contribution that includes a description of the
historical development of the fundamental concepts. These contributions
are not intended to replace a history of the number concept, but are aimed
at contributing towards a better understanding of the modern presentation
by explaining the historical motivation.

In this sense, Chapter 1, §1 begins with the oldest of the representations
of numbers that have been handed down to us by tradition, and leads into
§2 in which the ideas involved in counting are given axiomatically following
the methods introduced by DEDEKIND, by using the concepts of set-theory.

In the ensuing step-by-step construction of the number-system certain
themes constantly recur. (1) The step from one stage to the next is prompted
each time by the desire to solve problems that can be formulated but not
solved in terms of numbers defined so far. (2) The number system of the
next stage is constructed, with the help of the operations of set-theory, as
an extension of the existing system designed to make the initial problem
solvable. For this the following items are necessary. (3) The existing compu-
tational operations and relations must be carried over to the new system.
(4) The validity of all the computational rules in the new context has to
be checked. The processes (1) to (3) are always carried out, in the chapters
that follow, but item (4) usually involves tedious verifications, which soon
become a matter of routine. Here the authors allow themselves to carry out
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only a few of them by way of example, and to leave the rest as a routine
exercise for the reader.

By the end of Chapter 1 the rational numbers have thus been reached.
In Chapter 2, §2 they are extended to the real number system, by means
of Dedekind cuts. The preceding §1 begins with the discovery of the irra-
tional numbers by the Pythagoreans and describes the philosophical and
mathematical attempts in earlier times that finally led to DEDEKIND’s con-
struction. CANTOR’s method of completing the rational number system,
through the use of fundamental sequences, is described in §3. Here the his-
torical roots stretched back only a few decades, but the procedure turned
out later to be fruitful, because valuation rings, metric spaces, topological
vector spaces, and general uniform structures can all be completed in ex-
actly the same way. The third approach to the real numbers, described in
§4, follows WEIERSTRASS. It is based on the idea, going back to ancient
times, of enclosing a number whose exact value is not easily determined,
within small intervals bounded by rational numbers. This idea still finds
application today in the estimation of errors in numerical computation.

By §2 of Chapter 2, a system of axioms for the real numbers has been for-
mulated. In §5 it is shown that they characterize these numbers to within
isomorphism. In that section the structure of the number system is re-
constituted from these axioms, and numerous different formulations of the
concept of the “completeness” of the real numbers are compared with one
another.

Chapters 3 to 5 are devoted to the complex numbers. Using linear al-
gebra as a tool, it is easy for us today to describe them as pairs of real
numbers, which can be added like vectors and multiplied according to an
explicitly specified rule. This definition, in §2 of Chapter 3, is preceded
by a summary of the historical development that shows how it took 300
years from the discovery of the complex numbers until, with the advent of
GAUss, they became generally understood and accepted. One basic thought
runs through the history until GAuss: The complex numbers make possible
the impossible. Above all, they make it possible to solve all equations of
the second or higher degree. Chapter 4 is devoted to demonstrating this
result, known as the fundamental theorem of algebra. Two proofs, going
back to ARGAND and LAPLACE respectively, are presented which require
no complex function theory.

As far as complex numbers are concerned, the reader may be surprised
to find that the whole of Chapter 5 is devoted to the special number =.
Now as explained in Chapter 3, and used in Chapter 4, the representation
by polar co-ordinates is an essential feature of the complex number system.
To provide a deeper understanding of this representation, the complex ex-
ponential function exp is treated in Chapter 5. This function is closely
connected with 7, because exp(z) = 1 if and only if z is an integral multi-
ple of 27i. Indeed this relation serves as a definition of x, and all the other
commonly used descriptions of 7 (that is, as a number associated with the
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circle, as the value of an integral, as the limit of an infinite series or infinite
product) may be deduced from it.

The complex numbers formed the point of departure for one of the great-
est creations of 19th century mathematics, complex function theory.

In modern number theory, the p-adic numbers have equal importance
with the reals. Chapter 6 contains two approaches to the p-adic numbers.
At the beginning of the twentieth century, HENSEL created the p-adic num-
bers by modeling them on the power series and Laurent series of complex
function theory. One can also view them, however, in a different way as a
natural completion of the field of rationals. Just as the reals are the com-
pletion of the rationals using the usual absolute value, the p-adic numbers
can be thought of as the completion when the absolute value is replaced by
a p-adic valuation. We only hint at the importance of the p-adic numbers
for number theory in this chapter.

PART B

With the complex numbers the construction of the number system is in
a sense completed. If, following the model provided by the complex num-
bers, which form a two-dimensional real vector-space, one tries to make
higher-dimensional real vector spaces into hypercomplex number systems
(nowadays usually called algebras), then either infinite dimension must be
allowed or else familiar field axioms must be given up such as the commu-
tativity or associativity of multiplication, or the possibility of performing
division. If too many of such axioms are given up, then there is an over-
whelming flood of new number systems. To act as a kind of flood barrier, in
Part B of this book, we shall confine ourselves mostly to finite-dimensional
systems in which division is possible.

The four-dimensional division algebra of quaternions, and the eight di-
mensional one of octonions, which were discovered shortly after one another
in the year 1843, are discussed in detail in Chapters 7 and 9 respectively.
Just as the complex numbers allow the Euclidean geometry of the plane
to be described in an often amazingly simple way (§4, Chapter 3 contains
a few samples), so the quaternions are suited to description of three- and
four-dimensional geometry. All this is gone into in Chapter 7 as well.

The other chapters in Part B deal, from various points of view, with the
uniqueness of the four algebras of the real numbers, the complex numbers,
the quaternions and the octonions. If commutativity alone is abandoned,
then the quaternion algebra is the only possibility (FROBENIUsS 1877; proof
in the second part of Chapter 8). If one retains commutativity but is pre-
pared to give up associativity, real and complex numbers are the only pos-
sibilities (H. HoPF 1940; proof in the third part of Chapter 8). The proof
uses non-trivial topological methods. By the same methods the theorem
of GELFOND and MAZUR can be proved (1938; fourth part of Chapter
8): The real numbers, the complex numbers, and the quaternions are the
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only possible normal associative real division algebras, even when infinite-
dimensional algebras are admitted. If both commutativity and associativity
are abandoned but still a weaker form of associativity represented by the
law z(zy) = 22y and (zy)y = zy? is retained, then the octonions represent
the only possibility (ZoRN 1933; proof at the end of Chapter 9).

Another characterization of the four algebras was found by HURWITZ
in 1898; they are the only possible division algebras with unit element,
which are at the same time Euclidean vector-spaces with a norm-preserving
multiplication (||«|| - [ly|]| = ||z - y||). This is closely connected with the fact
that the product of two natural numbers, each of which is the sum of 2,
4 or 8 squares, is itself a sum of a like number of squares, and that the
corresponding statement for n squares is true only when n = 2, 4 or 8.
Chapter 10 deals with these things.

So far all the results are given with proofs that assume some linear alge-
bra, differential calculus of several variables, and the rudiments of algebra
and topology. Chapter 11 deals with the most far-reaching result; namely,
that finite-dimensional division algebras are possible only when the number
of dimensions is 1, 2, 4 or 8. Here the conclusion can be drawn without any
other assumption. This theorem was proved, to the great surprise of alge-
braists, in 1958 by BoTT, KERVAIRE and MILNOR, and moreover, as with
HopP¥r’s results, by topological methods. This time however the whole ex-
tensive apparatus of algebraic topology has to be employed, and in Chapter
11 only an outline of the proof can be sketched.

HAMILTON regarded his discovery of quaternions in the year 1843 as one
of the most important events in the history of mathematics. However, it
turned out, that quaternions (and even more so octonions) come far behind
complex numbers in importance. Non-commutativity has proved to be an
insurmountable obstacle to the creation of a quaternionic analysis.

ParT C

The real number system has appeared for some time to be a completed
edifice from the standpoint of mathematical research, but some new ideas
have emerged fairly recently.

In the year 1960 ROBINSON discovered how an infinitesimal calculus mod-
elled on that of the 17th and 18th century, and operating with infinitesimal
quantities, could be precisely defined and operated on a secure foundation.
To do this, he extended the field of real numbers to an ordered field of non-
standard numbers incorporating infinitely small as well as infinitely large
numbers. The construction of this extension is described in Chapter 12. It
requires no greater effort than, for example, CANTOR’s construction of the
real numbers (cf. §3 of Chapter 2); and the differential and integral calculus
based on infinitesimal quantities will seem to some readers to be simpler
and more intuitive than the customary methods. Unfortunately there is a
price to be paid. All statements needing ‘translation’ from real numbers
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to non-standard numbers, have first to be expressed in a formal language;
and this means that mathematicians need to delve rather more deeply into
formal logic than most of them are accustomed to do.

CONWAY’s ingenious idea is still more recent, about ten years later. He
hit upon a way of defining a large ordered number field ab initio without
any intermediate steps by a process of iterated Dedekind-cut operations,
and to interpret the elements of this field as “games” that could be ordered
by making use of the concept of a winning strategy. All this is defined and
explained in Chapter 13.

In the two Chapters, 12 and 13, it is ideas in the main that are presented
and we do not go into all the details. For Conway’s construction, naive set
theory does not entirely suffice. Chapter 14 therefore contains an account
of the fundamental principles of the axiomatic set theory developed by
ZERMELO and FRAENKEL. This chapter is also intended for a reader of the
first two chapters of this book who, when the natural numbers and their
extensions to this system are introduced, does not wish to rely on a naively
understood set theory. From a strictly logical standpoint this chapter should
be at the beginning, but we have taken heed of SCHILLER’s advice (in a
letter to GOETHE, dated the 5th February 1796): “Wo es die Sache leidet,
halte ich es immer fiir besser, nicht mit dem Anfang anzufangen, der immer
das Schwerste ist.” which could be roughly translated as “I always think
it better, whenever possible, not to begin at the beginning, as it is always
the most difficult part.”
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From the Natural Numbers, to the Complex
Numbers, to the p-adics
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Natural Numbers, Integers,
and Rational Numbers

K. Mainzer

Die ganzen Zahlen hat der liebe Gott gemacht, alles andere
ist Menschenwerk (KRONECKER, Jahresber. DMV 2, S. 19).

[God made the whole numbers, all the rest is the work
of Man.]

Die Zahlen sind freie Schépfungen des menschlichen Geistes,
sie dienen als ein Mittel, um die Verschiedenheit der Dinge
leichter und scharfer aufzufassen (DEDEKIND, Was sind
und was sollen die Zahlen? Braunschweig 1887, S. III).

[Numbers are free creations of the human intellect,
they serve as a means of grasping more easily and more
sharply the diversity of things.]

§1. HISTORICAL

1. Egyptians and Babylonians. Symbols for numbers are found in the
earliest remains of human writing. Even in the early stone age we find them
in the form of notches in bones or as marks on the walls of caves. It was
the age when man lived as a hunter and today we can only speculate as
to whether [|]| for example was intended to represent the size of the kill.
Number systems mark the beginning of arithmetic. The first documents go
back to the earliest civilizations in the valley of the Nile, Fuphrates and
Tigris. Hieroglyphs for the numbers 10 000, 100 000 and 1 000 000 are to
be found on a mace of King Narmer, of the first Egyptian dynasty (circa
3000 BC). The numbers are reproduced schematically below:

1 10 100 1000
| n @ b
10000 100000 1000000

) S kg
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The pictures used may refer to practical occurrences connected with the rel-
evant numbers; for example @ may be a symbol for a measuring tape with
100 units. On the other hand it is also possible that the symbols represent
objects whose initial letter is the same as that for the word for the corre-
sponding number. New numbers are formed by an additive notation based
on juxtaposition, for example, %“kﬂmz =2210000r Y N = 10010.
Thus addition and subtraction present no problem. For example, N || = 12
added to NI = 11 gives NN 1= 23. Multiplication and division are reduced
to a succession of doubling and halving operations. The resulting fractions
are expressed as sums of unit fractions (fractions whose numerator is 1),
the sign © being used to indicate that the number symbol above which it
is placed represents the denominator of a unit fraction. Thus for example
the fraction 1/12 is written as ﬁ . To represent the fraction 3/12, the
calculation three times one-twelfth is performed as follows:

1 1—12 (that is once times 11_2 - 11_2)
2 £ (doubling)
Lo S e

so that the fraction 3/12 is written as %ﬁ, that is, .

To perform calculations of this kind with general fractions, one needs to
be able to express the halves and doubles of unit fractions as sums of
unit fractions with odd denominators. The Rhind papyrus (about 1650
BC) contains tables giving such decompositions of the fraction 2/n for odd
integers n. (For details of Egyptian calculation, see the Moscow papyrus
(28] and the Rhind papyrus [23].)

The Babylonians used cuneiform symbols on clay tablets. These were
based on a mixed decimal and sexagesimal position notation: ¥ stood for
1, 60, 602,...; while < stood for 10, 10 - 60!, 10 - 602, ... and so on. A
zero symbol was not always used by the Babylonians, and they never used
a mark like our decimal point. In a positional notation the role of the zero
is that of a sign marking a “gap.” A sign of this kind, two small wedge
marks 1 , is already to be found in an old Babylonian text from Susa ( Tezt
12, p. 4), but only in isolated instances (TROPFKE [29], p. 28).

In the absence of such a sign, the positional value has to be deduced in
each case from the context. Thus, for example, << ¥ < could mean any
of the numbers 21 - 60 + 10 or 21 - 602 4 10 - 60* or 21 - 602 + 10 and so
on. Examples of sexagesimal fractions are <<< for 0.30 = 30/60 = 1/2
or  yywss for 0.64 = 6557 +40 - 55 = §. (For details of Babylonian
calculation see NEUGEBAUER [20], BRUINS-RUTTEN [7].)

The Babylonians show themselves to have been highly talented arith-
meticians and algebraists. They developed sophisticated tables for use in
calculations involving multiplication and division, and for solving quadratic
and cubic equations. They gave rules for solving mixed quadratic equations
by the process of “completing the square” and even for solving mixed cubic
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equations with the help of tables of z%(z + 1). We shall also be mentioning
their methods of approximating the roots of equations in Chapter 2. At
all events it is safe to assert that the Babylonians, with their skillful and
ingenious methods of calculation exercised a considerable influence on the
subsequent development of arithmetic and algebra.

2. Greece. The number system of the Greeks was decadic, though not
positional. The earlier system used individual symbols for the decadic steps,
which were the initial letters of the corresponding words for the numbers
concerned. By combining the symbol for 5 with the other symbols, the
intermediate steps of 50, 500, ... could be represented, so that the set of
symbols ran as follows:

I 7 A P HF X T M "
5

1 10 50 100 500 1000 5000 10000 50000

The later system of representing numbers by letters (about 450 BC) was
used in mathematical texts. It comprised the 24 letters of the standard
Greek alphabet with three further symbols from oriental tradition:

1-9 a,,@>7,6,5,$:<,77:6 ( ¢ :6)
10-90 L,IC,/\,/!,V,{,O,T, S ( S = 90)
100 — 900 P 0, T)Uﬂp;X!'pywa ] ( h = 900)

1000 — 9000 ,a, ,8,... (written with a subscript accent
on the left)
10000 M (M = Mupias)

Addition of numbers was indicated by the juxtaposition of the corre-
sponding symbols, so that for example 18 = 104+ 2 = 12, o3 = 200+ 20+
2 = 222, ,are = 1000 + 300 + 5 = 1305. The number of tens of thousands
(myriads) was written above the symbol M, so that, for example

g
M epy = 25000+ 40 + 3 = 25043.

Unit fractions were usually indicated by a superscript accent to the right of
the letter denoting the denominator of the fraction. More general fractions
were written in various different ways (for example, by writing the letter
for the numerator underneath the letter for the denominator). The Greek
system, unlike our decimal notation, was therefore not purely positional
and calculation was rather tedious.

Alongside an arithmetic with numbers represented by symbols, one can
find from an early stage a representation of numbers by counters (such
as the beads of an abacus, pebbles and so on), which was a means by
which arithmetical theorems were discovered. Thus ARISTOTLE mentions
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the Pythagorean EURYTOS who is said “to have determined what is the
number (6p1B6g) of what object and imitated the shapes of living things
by pebbles (yfipor) after the manner of those who bring numbers into the
forms of triangle or square” (ARISTOTLE [1], 1092b, 10.12). For example,
the odd numbers can be arranged in succession in the manner illustrated
below to form the squares

0O 0 o0
(ol e} ® © O
[o] ®Q ® 0 O

1 143 14345

By dividing the squares into sections parallel to one of the diagonals and
counting the number of pebbles in each line we can read off

22=142+1, 3 =1424342+1,
and, in general,
=142+ 4+n+--+241,

so that 142+ ---+(n~1) = 1(n? —n) (ArisTOTLE [2], I1I 4, 203a, 13-15,
BECKER [3], p. 34ff).

While the Egyptians and Babylonians contented themselves with devel-
oping highly sophisticated numerical techniques, the Pythagoreans became
primarily interested in the philosophical significance of numbers. In their
philosophy the entire universe was characterized by numbers and their rela-
tionships, and thus the problem arose of defining generally what a number
was. EUCLID defines in the Elements, VII, 2, a number as “the multitude
made up of units” having previously (Elements, VII, 1) said that a unit is
“that by virtue of which each of existing things is called one.” As a unit is
not composed of units, neither EUCLID nor ARISTOTLE regard a unit as a
number, but rather as “the basis of counting, or as the origin of number.”
There is an echo of this Euclidean definition in CANTOR’s definition of the
cardinal number as a set composed of nothing but units (CANTOR (8], p.
283).

Apart from this definition of number, which is oriented towards the idea
of counting, one can also find in ARISTOTLE the following statement: that
which is divisible into discrete parts is called nAfifog (multitude), and the
bounded (finite) multiplicity is called the number (ARiSTOTLE [1], 1020a,
7.14).

The Greeks thus regarded as numbers, only the natural numbers ex-
cluding unity; fractions were treated as ratios of numbers, and irrational
numbers as relationships between incommensurable magnitudes in geome-
try (cf. Chapter 2).
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3. Indo-Arabic Arithmetical Practice. Between 300 BC and 600 AD
the present-day positional decimal notation with 0 and its own particular
symbols 1,...,9, came into existence in India, presumably under Babylo-
nian influence. Thus, for example, from the primitive forms —, =, there
arose at first the symbols = ==, which eventually developed into 1, 2. The
Indian notation was taken over by the Arabs, not least by their astronomers.
The Indians had signs for positive and negative numbers; namely, “dhana”
or “sva” (denoting ownership) and “rina” or “kéaya” (diminution, debit).
Arithmetic rules for handling positive and negative numbers are found in
the works of BRAHMAGUPTA (born 598) (JUSHKEWITSCH [15], p. 126).
However, there is nothing to indicate that negative numbers were generally
recognized as solutions of equations. Thus negative solutions to such prob-
lems as those where it was a question of finding the number of monkeys in a
horde were regarded as meaningless. On the other hand, a negative solution
to a problem involving distances was on at least one occasion interpreted
as a distance measured in the opposite direction.

The Indian mathematician SRIDHARA (about 850-950) laid down arith-
metical rules for operations with zero, symbols for which had already ap-
peared among the Egyptians (the symbol ~—~—is to be found in an inscrip-
tion of the second century BC in a temple of Edfu), the Greeks (the symbol
o, which is possibly the initial letter of the word ’ové£v = nothing), and
the Indians (who from the 5th century AD used the word “sunya” for the
void). The Arabs used the word “al-sift” for zero, from which was derived
the word “cifra,”! which was still used by GAUss with the meaning zero
(JuscHkEWwITZ [15], p. 107, LEPSIUS [19] and GAuss [12], p. 8). A dot or
a circle was used as a symbol for zero in India, from the seventh century
AD onwards.

4. Modern Times. Indo-arabic arithmetical practices were disseminated
throughout the Western world by arithmetical textbooks in the 13th to the
16th centuries (for example, those of LEONARDO of PisaA, RIESE, STIFEL)
and made possible the subsequent successes of the Italian mathematicians
of the Renaissance (such as DEL FERRO, CARDAN, and FERRARI) in the
solution of algebraic equations. STIFEL says, in talking about negative num-
bers, that they are not just “meaningless twaddle” but on the contrary that
it is “not without usefulness” to feign numbers below zero, that is to fab-
ricate fictitious numbers that are less than nothing (STIFEL [27], p. 248 et
seq.).

In the new algebra of the Renaissance, zero and the negative numbers
acquired a new function as they made it possible to assimilate several types
of equations under one category. From the time of DESCARTES equations

1See the English word ‘cypher’ one of whose meanings is zero.
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have been written in the form
2”4+ ap_ 12" 14+ 4ag=0

(though without coefficient suffixes in the case of DESCARTES) where the
coefficients a; may be positive, negative or zero.

Although mathematicians have, from the very beginning of their science,
operated with numbers and discovered theorems about numbers, it was not
until the 19th century that they gave mathematically serviceable definitions
of the concept of number. Their foremost consideration was initially to
provide secure foundations for analysis by defining more precisely the real
numbers. It was not until after DEDEKIND and CANTOR (and others) had
defined real numbers by means of sets of rational numbers (see Chapter
2) that the classical definitions of the natural numbers in terms of logic
and set theory then followed. The realization that the extensions of the
natural numbers to the integers and the rationals could still essentially be
regarded as a topic of algebra was closely bound up with the introduction
of the fundamental algebraic ideas of ring theory and field theory.

§2. NATURAL NUMBERS

Counting with the help of number symbols marks the beginning of arith-
metic. Computation presugposes counting. Until well into the nineteenth
century, efforts were made to trace the idea of number back to its ori-
gins in the psychological process of counting. The psychological and philo-
sophical terminology used for this purpose met with criticism, however,
after FREGE’s logic and CANTOR’s set theory had provided the logico-
mathematical foundations for a critical assessment of the number concept.
DEDEKIND, who had been in correspondence with CANTOR since the early
1870’s, proposed in his book Was sind und was sollen die Zahlen? [9] (pub-
lished in 1888, but for the most part written in the years 1872-1878) a
“set-theoretical” definition of the natural numbers, which other proposed
definitions by FREGE and CANTOR and finally PEANO’s axiomatization
were to follow. That the numbers, axiomatized in this way, are uniquely
defined, (up to isomorphism) follows from DEDEKIND’s recursion theorem.
From now on we shall take as known the basic concepts of set theory
(although the reader may consult the last chapter of this book).

1. Definition of the Natural Numbers. The natural numbers form a
set N, containing a distinguished element 0, called zero, together with a
successor function S:N — N, of N into itself, which satisfies the following
axioms:

(S1) S is injective,
(52) 0 ¢ S(N),
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(S3) If a subset M C N contains zero and is mapped into itself by S, then
M =N,

The successor function S describes, in the language of set theory, the
process of counting. The idea is that S assigns to every natural number n
its successor S(n). Thus 1 := S(0), 2 := S(1), 3 := S(2) and so on. The
first axiom asserts that in counting one never encounters the same number
more than once. The second axiom expresses the fact that 0 is the starting
point of the counting process, or, alternatively that 0 is never encountered
as a successor during the process. Many mathematicians prefer, as did
DEDEKIND, to begin the counting process with 1. The third axiom is the
set theoretic formulation of the

Principle of complete induction. If a certain property E is possessed by the
number 0 (the commencement of the induction) and if, for every number n
which has the property E, its successor S(n) also has the property E (the
induction step), then this property is possessed by all the natural numbers.

The equivalence of this principle to the third axiom is seen when the
property E is replaced by the subset M of numbers possessing the property.
Instead of saying “n has the property E” we can also say “the proposition
E applies to n” or “E(n) holds.” The principle of induction is not some
new kind of syllogism of mathematicians set apart from the ordinary rules
of inference in logic; it is merely the use of axiom S3 to prove that certain
statements are valid for all natural numbers.

A set M is said to be infinite if there exists an injective mapping f: M —
M, of M into itself, such that f(M) # M. This definition expresses the fact
that only infinite sets can be mapped injectively onto one of their proper
subsets. Historically this was the definition given by DEDEKIND in Was
sind und was sollen die Zahlen? Instead of speaking of injective mappings,
DEDEKIND used the term (§5, No. 64) “dhnliche Abbildungen” [similarity

mappings].

Theorem. There ezists an infinite set, if and only if there is a set N
satisfying the azioms (S1)-(S3).

Proof. If there is such a set N, then by axioms (S1) and (S2), there must
also exist an infinite set (putting f = S).

Let A be an infinite set. Then by definition there is an injective mapping
f:A — A with f(A) # A. Consequently there must also be an element
0 € A with 0 g f(A). Let I be the class of all sets M C A with0 e M
and f(M) C M. By hypothesis I # 0. Thus we can define the intersection
Marer M. This set satisfies the axioms (S1)~(S3), if one takes f | M as the
successor function S. a
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Remark. DEDEKIND also gave a proof of the existence of an infinite set, but
it was based on the inconsistent concept of the set of all sets (5, No. 66). A
similar unsuccessful attempt is to be found in BOLZANO’s Paradozien des
Unendlichen [4, §13]. We assume, under the aziom of infinity (see Chapter
13), that there are infinite sets. In our proof N is a “smallest” infinite set
contained in an infinite set. DEDEKIND therefore speaks of “simple infinite
systems” (§6, No. 71). The construction of N given in the proof depends
on the choice of A, f and 0. The fact that N, the successor function S,
and 0, are all uniquely defined to within isomorphism, will be shown in
paragraph 2 (uniqueness theorem). According to VON NEUMANN, there is
a canonically defined set-theoretic model for N, on the basis of the Zermelo-
Fraenkel set theory (VoN NEUMANN [21], see also Chapter 13).

FREGE and CANTOR defined the natural numbers as “finite potencies”
and “finite cardinal numbers” respectively (FREGE [11], p. 73 et seq., CAN-
TOR [8], p. 119, see also Chapter 13). This formulation is also found in
RusseLL [25], p. 116 and BouRrBAKI [6], I, Chap. III, §4, Def. 1.

2. The Recursion Theorem and the Uniqueness of N. New concepts
for natural numbers are for the most part introduced recursively. One also
talks of inductive definitions. For example, addition may be defined in-
ductively by successively stipulating that m 4+ 0 := m, m + 1 := S(m),
m+2:= S(m+ 1), and generally m + S(n) := S(m + n). The justification
establishing that this recursive procedure gives a meaningful definition, is
provided by the following result.

Recursion Theorem (DEDEKIND 1888). Let A be an arbitrary set con-
taining an element a € A, and g a given mapping g: A — A of A into iiself.
Then there is one and only one mapping p: N — A with the two properties
p(0)=a and poS=gof.

The mapping ¢ is said to be defined recursively starting from ¢(0) = a,
by the recursion formula p(n + 1) = g(p(n)).

Proof. To show the uniqueness of the mapping ¢, we consider two map-
pings @1, ¢z from N to A with the stated properties. We show, by in-
duction on n, that ¢1(n) = p2(n) for all n. The induction begins with
©1(0) = @ = ¢5(0). Since, by the inductive hypothesis, ¢1(n) = @2(n) it
follows that

p1(5(n)) = g(p1(n)) = g(p2(n)) = p2(S(n)).

To prove the ezistence of ¢, we consider all subsets H C N x A having
the two properties (1) (0,a) € H and (2) for all n, b, if (n,b) € H, then
(S(n),g(b)) € H. Since the whole set N x A is such a set H, and all sets H
contain the element (0, a), the intersection D of all the H is the smallest



§2. Natural Numbers 17

subset of N x A satisfying (1) and (2). We now assert that D is the graph
of a mapping ¢:N — A, and prove this assertion by complete induction:

(*) To every n € N, there is just one b, such that (n,b) € D.

To begin the induction we note that, by (1), (0,a) € D. If (0,c) € D
were possible with ¢ # a, then one could remove (0,¢) from D, and the
remaining set D \ {(0,c)} would still have the properties (1) and (2), in
contradiction to the fact that D is the smallest set of this kind.

We now complete the inductive argument as follows. By the inductive
hypothesis there is just one b, such that (n,b) € D. By (2) we then have
(S(n),g(b)) € D. If (S(n),c) € D and ¢ # g(b) were possible, then one
could remove (S(n),c) from D and by the same argument as was used at
the start of the induction, we should arrive at a contradiction. Now that
the proposition (%) has been proved, D can be written, as the graph of a
mapping ¢: N — A, namely D = {(n,¢(n)) | n € N}. The property (1) of
D means that ¢(0) = a, and the property (2) that (S(n), g(¢(n))) € D
and hence ¢ 0 S(n) = g o p(n) for all n.

Ezample. The nth power ¢” of a real number ¢ is defined by the recursion
formula ¢*t! = ¢" . ¢ starting from ¢® = 1. Here we apply the Recursion
theorem with A = R (the set of real numbers), a = 1 and g(b) = b - c.

As a first application of the Recursion theorem we shall now prove the
uniqueness of N.

Uniqueness Theorem. Let N’ be a set with a successor function S’, a dis-
tinguished element 0' and satisfying the azioms (S1)—~(S3). Then N and N’
are canonically isomorphic, that is, there ezists just one bijective mapping
o:N - N with p(0) =0’ and S'op=poS.

Proof. By the Recursion theorem, applied to A = N, a = 0’ and ¢ = 5,
there is just one mapping p:N — N’ with ¢(0) = 0’ and ¢ o S = S’ 0 9. By
interchanging the roles of N and N’ one obtains a corresponding mapping
Y oN' — N with ¥(0') = 0 and ¢ 0 S’ = S o ). To prove that ¥ o p = id
(the identity mapping), we use the uniqueness assertion of the Recursion
theorem for A = N, a = 0, and ¢ = S. Both ¢ o ¢ and id are mappings
®:N — N, for which ®(#) = 0 and ® 0 S = S o ® and therefore 9 o ¢ must
be the same as id. Similarly ¢ o ¢ = id. O

3. Addition, Multiplication and Ordering of the Natural Num-
bers. For every fixed natural number m, the addition m + n is defined,
starting from m + 0 = m, by the recursion formula m + S(n) = S(m + n).
Here again the Recursion theorem is being appliedfor A=N,a=m,¢g =S
and ¢(n) = m+n. In particular, it follows for 1 := S(0) that m+1 = S(im)
1s the successor of m.
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All the well-known rules of addition now must be proved. We shall confine
ourselves to the proof of the associative law and refer the reader to the
classical work by LANDAU [18], Chapter 1, §2.

Theorem. For all k,m,n €N, (k+m)+n==Fk+ (m+n).

Proof. The induction begins with n = 0, for which n = 0: (k + m) + 0 =
k+m =k + (m + 0). The inductive argument from n to n + 1 runs as
follows:

(k+m)+(n+1) =((k+m)+n)+1 Z(k+(m+n))+1
Zk+((m+n)+1) = k+(m+(n+1)).

The steps marked with * use the recursive formula for addition. Those
marked with #* use the inductive hypothesis. o

One can easily convince one’s self in this way that N is ¢ commutative
semigroup with cancellation law, in respect of addition. The cancellation
law asserts that n 4+ k = m+ k implies n = m, for all k, m,n € N,

Analogously to addition, the operation of multiplication m -n, by a fixed
number m, can be defined, starting from m - 0 = 0, recursively by the
formula m - (n + 1) = m - n + m. All the well-known arithmetical rules
of multiplication again require proofs, for which we refer the reader to
LaNDAU [18], Chapter 1, §4.

An order relation < may be defined on N as follows: the relation n < m
holds if and only if there is a ¢ € N such that n + ¢t = m. The usual
properties of an order relation, namely 1) reflexivity, 2) antisymmetry and
3) transitivity hold good, that is to say for all m,n,l € N:

1) n<n.
2) if n < m and m < n, then m = n.
HIfn<mand m<I{ thenn<l

We write m < n if and only if m < n and m # n. The ordering is linear
(or total, as opposed to a partial order), that is to say for all [,;m,n €
N it follows from m < n that m +1 < n + 1 (and the corresponding
statements are true with < in place of <). Analogous statements also hold
for multiplication, that is, m < n implies m-l < n-l with the corresponding
statements with < instead of < being true (provided { # 0).

4. PEANO’s Axioms. Following the Italian mathematician PEANO (1858~
1932) the natural numbers can also be described in terms of the following
axioms for the basic concepts N, 0 and S:

(P1) 0 €N.
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(P2) if n € N then S(n) € N.
(P3) if n € N then S(n) # 0.

(P4) if 0 € N and if it always follows from n € E that S(n) € E, then
NCE.

(P5) if m,n € N, then S(m) = S(n) implies that m = n.

If (P1)—~(P5) are interpreted set theoretically, then they are equivalent to
the definition in §1.1. In contrast to DEDEKIND, however, PEANO was not
primarily interested in a set theoretical construction of the natural num-
bers, but in their axiomatization in a formal language. In this sense, (P4)
should be read as meaning: if zero has the property E and if, from the
fact that n has the property E, it always follows, that the successor S(n)
has the property E, then the property E follows from the property N of
being a natural number. We shall not pursue this particular aspect, namely
that of a formal language, any further here, but it will be of importance
later in the transition from standard to non-standard numbers discussed in
Chapter 12.

Historically PEANO in 1889 laid down a set of nine axioms (with 1 as the
distinguished element) in his Arithmetices principia nova methodo exposita
[24]. On the relationship between his system and DEDEKIND’s definition he
writes “Utilius quoque mihi fuit recens scriptum: R. DEDEKIND, Was sind
und was sollen die Zahlen, Braunschweig 1888, in quo quaestiones, quae ad
numerorum fundamenta pertinent, acute examinantur.” ([24], p. 22). [The
recent work by DEDEKIND Was sind und was sollen die Zahlen, Brunswick
1888, in which questions relating to the foundations of numbers are acutely
analyzed, was also particularly useful to me.]

§3. THE INTEGERS

Subtraction cannot be done without restriction in the domain of the nat-
ural numbers. While the negative numbers (“false” numbers as they were
called by DESCARTES) had at first been treated warily, like roots and imag-
inary numbers, as fictitious expressions, KRONECKER in the 19th century
described integers as the “natural starting point for the development of
the concept of number” (see TROPFKE [29], p. 126; KRONECKER [16]).
KRONECKER’s famous quip that the Good Lord made the integers and
that all the rest is the work of man is well known. However, according to
DEDEKIND even the positive integers were not simply “given by nature”
but rather “free creations of the human mind,” namely, set-theoretic con-
cepts.. Algebraically, it is a question of extending the additive semigroup
of the natural numbers to the group of integers, and central to this topic
is the algebraic concept of an integral domain, which was introduced by
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KRONECKER [17] in his “Grundziige einer arithmetischen Theorie der alge-
braischen Grossen” (§5) [Foundations of an arithmetical theory of algebraic
magnitudes] as the so-called “Integritatsbereich.”

1. The Additive Group Z. The systematic introduction of the integers is
motivated by the following considerations. Every integer can be expressed
as a difference a — b between two natural numbers a and b. This suggests
that the integer a — b should be described by the pair (a, b), but of course
one must be careful to remember that other pairs (c,d) can describe the
same number a — b = ¢ — d, in fact whenever a + d = b + ¢. We therefore
proceed as follows.
We consider the relation, defined on N x N, by

(a,b) ~(c,d) ifandonlyif a+d=0>b+c.

We then establish that this is an equivalence relation. For example, tran-
sitivity may be proved as follows: if (a,b) ~ (¢,d) and (c,d) ~ (e, f) then
by definition, a +d = b+ ¢ and ¢+ f = d + e. By addition we obtain
a+d+c+ f =b+c+ d+ e and by cancellation of ¢ + d we obtain
a+ f =b+e, that is (a,b) ~ (e, f). (We have also made use of the com-
mutativity and associativity of addition.)

The integers may now be defined as equivalence classes of the relation ~.
The class represented by (a,b), is denoted by [a,d]. The set of all integers
(a set of equivalence classes) is denoted by Z.

We can define on N x N a componentwise addition, (a,b) + (¢,d) :=
(a + ¢,b + d). The commutative and associative laws hold, and the zero
element is (0, 0). This addition is compatible with the relation ~, that is to
say, if (a’, ') ~ (a,b) and (¢, d') ~ (c,d) then (a’+c', b/ +d') ~ (a+c, b+d).
It is therefore meaningful to introduce in Z, an addilion Z x Z — Z,
[a,b] + [¢,d] := [a+ ¢, b +d], which is likewise commutative and associative
and which has [0,0] as zero element. By passing to equivalence classes
(integers) we have gained more. Every integer [a, b] has an inverse, namely,
the integer [b,a]. We have established the following.

Theorem. The integers form a commutative group with respect to addition.

The element inverse to a € Z is uniquely determined, and is denoted by
—ov. Subtraction in Z is defined by a — 8 := a + (-0).

The mapping ¢:N — Z, a — [a, 0] is injective and compatible with addi-
tion. It is usual to identify N with the subset of Z, ¢(N) C Z, isomorphic
to it. The integer [a,b] is then written as a — b, and we have thus justified
the notation, which provided the motivation. If one uses N* = N\ {0}, one
can represent Z as a union of three disjoint sets Z = —Nt U {0} U N*.
Depending on whether a > b, a = b or a < b the integer [a,b] = a — b lies
in N*, in {0} or in —N*.
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The construction of the integers is an algebraic one. Instead of starting
from N, one could have begun with any commutative semigroup H and
constructed from it as above a commutative group G. If the cancellation law
does not hold in H some modifications are required: we define (a, b) ~ (¢, d)
if and only if there is an e such that a + d + ¢ = b + ¢ + e. However in this
case ¢: H — G is no longer injective.

2. The Integral Domain Z. The representation of integers as differences
provides a motivation for the definition of their multiplication. We should
like (a — b) - (¢ — d) to be equal to (ac+ bd) — (ad + bc) and accordingly this
leads to the following definition:

[a,b] - [e,d] = [ac + bd,ad + be] for a,b,c,d €N.

This definition is independent of the particular choice of the representative
pairs.

Theorem. The integers form an integral domain with respect to addition
and multiplication (that is, a commutative ring without zero divisors and
with identity element).

Incidentally, Z is the smallest integral domain containing N as a subset:
to every domain of integrity R D N there is just one monomorphism (that
is, injective mapping, compatible with + and ) ¢:Z — R with ¢ | N =
inclusion of N in R.

3. The Order Relation in Z is defined by

a<b ifandonlyif b—a€N.

Theorem. The ring Z of integers is linearly (completely) ordered by the
relation <. For all a,b,c € Z the relation a < b implies a+ ¢ < b+ ¢ and,
whenc>0,a-¢c<b-c as well

The natural numbers other than zero are thus the integers > 0, the so-
called positive integers. A number a is said to be negative whenever —a is
positive.

Remarks. Every commutative ring R expressible as a disjoint union R =
—P U {0} U P where P is additively and multiplicatively closed, can be
totally ordered by the relation a < bif b—a € P U{0}.

Historically, it was also DEDEKIND who introduced the idea of defining
integers by pairs from N xN. In a letter from the 82-year-old mathematician
written in 1913 to a former student, DEDEKIND ([10], p. 490) describes an
extension of the domain N of natural numbers to the domain G of the
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integers. LANDAU [18] first constructs the rational numbers > 0 from N,
and then extends this set by means of the negative rational numbers, to
the field Q (see §4) obtaining Z as a subring of Q.

§4. THE RATIONAL NUMBERS

1. Historical. Division, as the inverse of multiplication, cannot be done
without restriction in the domain of integers. Fractions, which make di-
vision always possible, were already considered in early times. They were
never surrounded by such mystery as were the negative numbers, which
were thought of as being in some never-never land below “nothing,” or
the irrational and imaginary numbers, which we still have to discuss. The
first systematic treatment of rationals is found in Book VII of EucLID’s
Elements, which deals with the ratios of natural numbers. The idea, which
is so familiar to us, of interpreting ratios as fractions and of extending in
this way the domain of whole numbers first arises in comparatively modern
times. The first theoretical investigations stem from the nineteenth century.

BoLzaNo [5] in a posthumously published paper entitled “Reine Zahlen-
lehre” developed a theory of rational numbers, and in fact a theory of those
sets of numbers that are closed with respect to the four elementary arith-
metic operations. One also finds, in a paper by Oum [22] (the brother of
the famous physicist) an intention to define the rational numbers “solely
through the basic truths relating to addition, substraction, multiplication
and division.”

Their foremost consideration was therefore the investigation of certain
arithmetical relationships, and not a philosophical question about the na-
ture of number. Finally, with HANKEL ([13], p. 2), in his Theorie der com-
plezen Zahlensysteme of 1867, it comes down to this: The laws of these
operations determine “the system of conditions ... which are necessary and
sufficient to define the operation formally.” Apart from the rational num-
bers, the notion of a field (as a concept, even if not yet under this name)
had also been discussed in the writings of ABEL and GALoIS, where, for
example, a root of an equation is adjoined to the rationals and an inves-
tigation is made of all possible expressions that can be formed from it by
means of the four operations, addition, subtraction, multiplication and di-
vision. KRONECKER in 1853 speaks in his theory of algebraic quantities of
“domains of rationality” (KRONECKER (17], §1), and DEDEKIND, at first of
“rational domains” and finally of “fields” in the case of real and complex
numbers (DEDEKIND (12], p. 224). Number fields were also investigated by
WEBER [30] and HILBERT [14]. In 1910 STEINITZ [26] gave an abstract def-
inition of this fundamental algebraic concept. STEINITZ also brought out
clearly the fact that behind this extension of the integers to the rational
numbers there lies a general algebraic construction, namely, that of the
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embedding of an integral domain in a field by the formation of fractions.

2. The Field Q. Following the example of WEBER in his Lehrbuch der Al-
gebra of 1895, we shall introduce fractions as equivalence classes of integers,
and guided by the relation

a

<
b d
we start from the equivalence relation ~ defined on Z x (Z \ {0}) by

if and only if ad = bc,

(a,b) ~ (c,d) if and only if ad = bc.

These definitions are independent of the particular choice of representa-
tives. In LANDAU [18], Chapter 2, §§3-4, is given a detailed proof of the

Theorem. The set Q of rational numbers, with the addition and multipli-
cation defined above, constitutes a field.

Z is mapped isomorphically on the subring ¢«(Z) C @ by the mapping
©:Z — Q, a — $. Z is usually identified with ((Z). The field Q is the
smallest field containing Z as a subring.

3. The Ordering of Q. A fraction a/b is said to be positive if a,b are
both positive or both negative. The set P of positive fractions is closed
with respect to the operations + and -. Q is expressible as a union of
disjoint sets —P U {0} U P. As in the remark in 3.3 a total order relation
on Q can be defined by r < s if and only if s —r € P U {0} which coincides
with the order on Z defined in 3.3.

The order relation in Q is Archimedean, that is, for all positive rational
numbers 7,5 € QQ there exists a natural number n with s < n - r. To prove
this, we write s = p/h and r = ¢/h as fractions whose numerators and
denominators are natural numbers and with a common denominator h.
The truth of the statement then follows as soon as it has been proved that
p < n - q for natural numbers > 0. The latter can be demonstrated for a
fixed ¢ > 1 by induction over p = 1,2,... A noteworthy property, which
distinguishes the field Q from the ring of integers Z is its density: for all
r,s € Q with » < s, a t € Q can always be found such that r < ¢ < 5. One
can, for example, choose the arithmetic mean ¢ := 1(r + s).
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Real Numbers

K. Mainzer

Aéyo & glvar cuveygdg Stav Tabtd yévirar kal £v to
¢xatépov mépug olg dmtovia, xal domep onpaiver todvopd,
cuvéynra

(ARISTOTLE, Physics 227a, 11-12).

[I call it holding together if it is the same and a single thing
that becomes the boundary for each of the parts to which
they cling and, as the word signifies, it is kept together.]
Continuum est totum cuius duae quaevis partes cointegrantes
(seu quae simul sumtae toti coincidunt) habent aliquid com-
mune, ... saltem habent communem terminum)

(G.W. LEIBNIZ, Mathem. Schr. VII, 284).

[A continuum is a whole when any two component parts
thereof (or more precisely any two parts which together make
up the whole) have something in common, ... at the very
least they have a common boundary.]

Zerfallen alle Punkte der Geraden in zwei Klassen von der Art,
daB jeder Punkt der ersten Klasse links von jedem Punkt der
zweiten Klasse liegt, so existiert ein und nur ein Punkt, welcher
diese Einteilung aller Punkte in zwei Klassen, diese Zerschnei-
dung der Geraden in zwei Stiicke, hervorbringt (R. DEDEKIND,
Stetigkeit und irrationale Zahlen, Braunschweig 1872, 10).

[If the points of a line are divided into two classes, in such a
way that each point of the first class lies to the left of every
point of the second class, then there exists one and only

one point of division which produces this particular subdivision
into two classes, this cutting of the line into two parts.]

§1. HISTORICAL

1. HTPPASUS and the Pentagon. When today we define the real num-
bers as elements of a completely ordered field, we tend to forget the mag-
nitude of the intellectual and philosophical crisis brought about by the
discovery that there were things outside the grasp of the rational numbers.
Indeed, if we can trust later legends, the discoverer incurred the wrath of
the Gods. We mean of course the discovery ascribed to the 5th century
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B.C. Pythagorean, HIPPASUS of METAPONT, that there are line segments
whose ratios are incommensurable. The discovery is said to have caused a
great shock in Pythagorean circles because it finally called into question
one of the basic tenets of their philosophy, that everything was expressible
in terms of whole numbers.

To understand the effects of this crisis, one has to remember that the
Pythagoreans were not only active as a highly influential mathematical
school, who were the first to raise the requirement for exact mathematical
science and who insisted on a strict education in arithmetic, geometry,
astronomy and music for their members, but that in addition to all this
they pledged themselves to an orderly way of life. Until the uprising of 445
BC, they had been a dominant force throughout Southern Italy. In this
political turmoil, HIPPASUS is presumed to have played an important role
(see IAMBLICHUS [14], p. 77, 6f; also FrITZ [10], HELLER [11]).

The treatment of ratios of line-segments had come out of traditionally
employed practices in measurement. A segment a of a line had traditionally
been measured by laying along the line unit measures e, one after the other,
along the line, as many times as were necessary:

a=e+---+e=m-e.
N i’

m times

Two segments ag and a; are said to be commensurable if they can both
be measured, in this sense, with the same unit of measurement e, so that
ay = m-e and a; = n - e with m, n being two natural numbers. In this
case the ratio ag : a; of the line segments is equal to the ratio m : n of two
natural numbers.

The method of finding a common measure of two line segments ao, a1 had
already been practiced, before the days of Greek philosophy and science,
by craftsmen, by a process of alternate “taking away.” EUCLID described
the process in his Elements which now goes by the name of the Euclidean
algorithm. The smaller segment a; is taken away from the larger segment
a¢ as many times as possible, until the residue left is smaller than a;, so
that, if as is this residue, then

ag =nia; +ay with ag < az.
One then continues in the same way:

a; = nsas +az  with a3z < as,
a, = naaz + ag with a4 < as,

If ay and a; have a common measure, the process comes to an end after
a finite number of steps, so that there is a k with ax_; = niag, and a is
a common measure of apg and a;.
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At first, it was probably felt intuitively that this process would always
terminate, and that therefore there would always be a common measure.
In modern language, however, all that this procedure shows is that every
ratio of line segments can be developed as a continued fraction

ag:a;=n;+az:a

1
=n ot =n
a :az ny+asz:az
1 1
:n1+__.___:...=n1+
1 1
n2+ az:a3 n2+ na4--

which is finite when ag and a; is commensurable.

The badge or symbol of their order used by the Pythagoreans was the
Pentagram, which still retained its magical potency in mediaeval astrology
and according to legend was used by Faust to exorcize Mephistopheles.
There is good reason to believe that HIPPASUS by working from this symbol
found that two of the lines therein were incommensurable (see IAMBLICHUS
[15], p. 132, 11-12; for references to the sources see FRITZ [10], HELLER
[11], TROPFKE [23]).

To see this, we begin with the regular pentagon ABCDE in which all
five diagonals have been drawn. The diagonals intersect to form a smaller
regular pentagon A’B’C’'D'E’ in the middle. Because of symmetry, each
side of a regular pentagon is parallel to one of the diagonals. Thus, the
triangle AED and BE’C have their corresponding sides parallel and are
therefore similar, so that AD : AE = BC : BE'. Now BE' = BD — BC,
since BC = AE = DFE’, as EA is parallel to DB, and DE is parallel to
AC. Consequently for any regular pentagon

diagonal: side = side:(diagonal — side).
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If we denote the diagonal by ag, the side by a; and their difference by
a2 = ag — ai, then ag : a1 = a; : az and in particular a; < a,. If we now
form the difference az = a; — as, we obtain the same equation between the
ratios a) : az = a2 : a3, and in particular a3 < as. The process can clearly
be continued indefinitely:

az =ap—4ay, a3 =043 —0az, 044=0az—as---
ap a1 = Ay 1Az =QA2 A3 = A3 : A4 = -
The Euclidean algorithm for ag and a;, namely

ap =1-a;+ ay,
alzl-a2+a3,
as =1-az3+ a4

never terminates, thus the side a; and diagonal ag of the pentagon are not
commensurable.
We obtain for the ratio, the continued fraction

1

ag:a; =1+
14
1+
1+

1
1+

It follows from ap : @1 = a; : (ap — ay) that ag a1 = %(1 + \/5) This ratio
1s known as the golden section. The fact that the Euclidean algorithm never
terminates can be seen at once from the diagram, which shows that each
pentagon always has a smaller one within it so that there is an infinity of
pentagons, whose sides are of length a1, as, as,... and diagonals of length
asy, a4, ag, . .. respectively.

2. EUDOXUS and the Theory of Proportion. The Babylonians
worked with rational approximations to irrational (incommensurable) ra-
tios. For example, they used the sexagesimal fractions 1; 25 and 1; 24, 51,
10 as approximations to V2. But we owe to Greek mathematics the funda-
mental discovery that v/2, the ratio of the diagonal to the side of a square,
is incommensurable. In EUCLID’s Elements X, §115a, we find the following
proof. Let a be the side and d the diagonal of a square. If they were com-
mensurable then the same number would have to be both odd and even,
which is absurd. For, clearly d? = 242, and since d and @ have been assumed
to be commensurable, d : a = m : n where m, n are natural numbers which
may be taken to be the smallest possible. Then d? : a®> = m? : n?%, but
since d? = 2a? it follows that m? = 2n?. Thus m? is even, and hence m is
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even, say m = 2l. Now since m, n are by hypothesis the smallest numbers
satisfying d : a = m : n, they must be relatively prime and this implies
that n must be odd. Since m = 2I, it follows that m? = 4% and thus since
m? = 2n?, we have n? = 2I?> which implies that n? and hence n are both
even.

However, the irrationality of /2 was certainly known before EUCLID. Ac-
cording to PLATO ( Theaetetus 147d) the irrationality of certain square roots
such as v/3,v/5, ...,+/17 had been demonstrated earlier by THEODORUS of
CYRENE. In PLATO’s Laws (819d-820c) there is a passage where the Athe-
nian stranger speaks of the shameful ignorance of the generality of Greeks
who are unaware that not all geometrical quantities are commensurable
with one another and adds that it was only late (in life, or possibly late in
the day) that he himself learned the truth. (See HEATH’s History of Greek
Mathematics, p. 156.)

A decisive factor in the rapid progress of Greek mathematics was the
distinctive logic. The form of inference known as reductio ad absurdum
(proving the truth of a proposition by showing that the assumption of its
falsity leads to a contradiction) allows them to give the first “impossibility”
proofs and the first precise statements about the “infinite.” As HERMANN
WEYL wrote, Mathematics became for the first time, in the hands of the
Greeks, the “science of the infinite.”

It was the brilliant stroke of a genius, EUDOXUS of KNIDOS, the contem-
porary and acquaintance of PLATO, that created a geometrical theory of
proportion capable of dealing with incommensurable as well as commensu-
rable magnitudes. This theory has come down to us in Book V of EUuCLID’s
Elements. EuDOXUS starts off from (positive) geometrical magnitudes of a
like kind; for example, line segments a,b, ... or areas A, B, .... He postu-
lates that magnitudes of the same kind can be added, and tacitly assumes
that the addition obeys the commutative and associative law. Magnitudes
of the same kind are ordered: a < b if and only if there exists a ¢ such that
a+c =b. It is assumed that when a # b, one of the two relations ¢ < b
or b < a must hold. Integral multiples are defined by repeated addition, so
that m-a = a + - -- + a with m summands on the right. The axiom now
usually called the axiom of ARCHIMEDES is assumed. This states that for
any given a,b there exists a natural number n for which a < n -b. Thus
infinitely small quantities are excluded. (It was reserved for a later age to
allow these, see Chapter 12 in this connection.)

The ratios between geometrical magnitudes of the same kind, which do
not necessarily have to be commensurable with one another (ratios of line
segments, of areas, and so on) form the subject of the theory. To enable such
ratios to be compared with one another, the following is given (Definition
5 in Book V of EUCLID’s Elements in Heath’s translation): “Magnitudes
are said to be in the same ratio, the first to the second and the third to
the fourth when, if any equimultiples whatever be taken of the first and
third, and any equimultiples whatever of the second and fourth, the former
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equimultiples alike exceed, are alike equal to, or alike fall short of, the
latter equimultiples respectively taken in corresponding order.” Expressed
in modern mathematical language this means: we define ¢ : b = A : B as
being equivalent to the statement “n-a > m - b if and only if nA > mB,
n-a=m-bifandonlyifn-A=m-B,and n-a < n-bif and only if
nA < nB,” where m,n are any two natural numbers.

Many of the theorems in the theory of proportion can nowadays be inter-
preted simply as arithmetical laws governing calculations with real num-
bers. It should always be remembered, however, that the Greeks never at
any time regarded rational ratios, let alone irrational ratios, as extensions
of the domain of natural numbers. They saw them as a concept sui generis.
The objectives of the theory of proportion were geometrical results such
as, for instance, the accurate substantiation of numerous formulae relating
to areas and volumes. The geometrical proofs of these, which for the most
part use reductio ad absurdum arguments, may seem to us long-winded and
involved. But it was not until the 19th century, that more elegant methods,
developed mainly since the Renaissance, could be provided with a justifica-
tion as rigorous as that which had been customary in Greek mathematics.

3. Irrational Numbers in Modern (that is, post-mediaeval) Math-
ematics. After the geometrical theory of proportion of the Greeks, we now
turn to the arithmetic aspect which becomes important for the develop-
ment of mathematics in the modern era. Its history can be traced back
to the practical calculation of approximate values, which had been prac-
ticed since very early times by mathematicians interested in astronomy and
civil engineering. After the Babylonians, we need especially to remember
ARCHIMEDES who, in his determination of the circumference of a circle,
succeeded in showing that 7 lay between 31 and 3%—?— and PTOLEMY (circa
150 AD) the great astronomer of the Ancient and Mediaeval world, who
chose the sexagesimal fraction 3;8,30 as a mean between 3-.1,: = 3;8,34 and
3;—% = 3;8,27. The process of nesting of intervals is applied here.

While Greek mathematics was showing little interest in arithmetical cal-
culations, which were kept very much in the background compared with
geometrical constructions and proofs of propositions by logical inference,
the development of the number concept gained a decisive impetus from
the influence of Indo-Arabic algebra. Thus, for example, the Arab mathe-
matician ABU KAMIL (circa 850-930) was able to work with expressions
involving square roots, using such rules as, among others:

VP+Va=\[p+a+2-Vpe

(TROPFKE [23], p. 135). One begins to operate with new expressions with-
out realizing that they are a new type of number. This process received a
further impetus through the discovery, in the 16th century, of the formulae
for the solution of cubic and biquadratic equations. The reader will find
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more on this subject in Chapter 3, §1.

M. STIFEL [22] still wrote, in his Arithmetica integra of 1544 “So wie
eine unendliche Zahl keine Zahl ist, so ist eine irrationale Zahl keine wahre
Zahl, weil sie sozusagen unter einem Nebel der Unendlichkeit verborgen
ist.” [Just as an infinite number is no number, so an irrational number
is not a true number, because it is so to speak concealed under a fog of
infinity.]

This “fog of infinity” is already defined rather more precisely by STEVIN
(1548-1620) as an infinite sequence of decimal fractions, representing a se-
quence of nested intervals, which he develops, for example, in finding succes-
sive approximations to the solution of the equation z3 = 300z + 33 900 000.
He writes: “... et procédant ainsi infintment, I’on approche infiniment plus
prés au requis” [and proceeding in this way unendingly, one approaches
infinitely closer to the required value] (S. STEVIN [21], p. 353).

In the Geometrie of 1637 by DESCARTES, the operations of addition,
subtraction, multiplication, division and root extraction of line segments
are defined in such a way that the result of the operation is again a line seg-
ment in each case. Whereas the product of two line segments had hitherto
always been interpreted as a rectangle, DESCARTES obtains the product as
the fourth proportional in the Intercept theorem, when the first intercept
is taken to be of unit length, so that 1 is to b as a is to a - b.

The development of the number concept received a new boost through
the infinitesimal calculus in the 17th and 18th century. Here the theory of
series, especially from the time of LEIBNIZ and the brothers BERNOULLI,
opened up new possibilities for the representation of numbers. In the Arith-
metica infinitorum of 1655, by WALLIS (1616 1703) we find, for example,
the infinite product 3 =2.2.4.2.8.8....

Representations of numbers by infinite sums and infinite products were
not defined however—as has usually been the case since CAUCHY and
WEIERSTRASS—as convergent sequences, using the concept of a limit. In-

stead, a sum such as
o0
Z 1
k(lc +1)

was said to differ from 1 by an “infinitesimal” or “infinitely small” quan-
tity. EULER [9] formulated in 1734 a convergence criterion for series in
the language of infinitesimals. Apart from the “finite” and “actual” (real)
numbers, which found their application as values in measurement, there ap-
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peared to be also “infinitesimal” numbers and “ideal” numbers. In the 19th
century such terms were banned from mathematics as being too imprecise
and “psychologizing” a form of expression, and were felt to be superfluous
after the clarification which had been brought about by the introduction
of the concept of a limit. It is only with the comparatively recent non-
standard analysis (see Chapter 12) that infinitely small numbers have once
more come into fashion and achieved full respectability.

4. The Formulation of More Precise Definitions in the Nineteenth
Century. CAUCHY in his Cours d’analyse of 1821, formulated the conver-
gence criterion called after him and considered it as self-evident as the
laws of arithmetic. The completeness of the system of real numbers, the
property which CAUCHY is here expressing, had however already been as-
sumed before him. Thus, for example, LEIBNIZ assumed that a continuous
line drawn on a surface, and lying partly within and partly without some
portion of that surface, must intersect the boundary of that portion.

In 1817, BoLzZANO [4] proved the Intermediate value theorem under the
assumption of the CAUCHY criterion. However, it should be pointed out
that he already had this criterion at his disposal before CAUCHY. Recently,
a BOLZANO manuscript was discovered containing an unpublished draft of
a book entitled Gréssenlehre (Theory of Quantities) in which he attempted
to base the theory of real numbers on firmer foundations by using sequences
of intervals.

With WEIERSTRASS consideration of the foundations of the real number
system entered into the basic mathematical curriculum. All that has come
down to us of this, however, are some notes written by his pupils and which
were in part criticized by WEIERSTRASS. The central idea of the concept
of a real number as visualized by WEIERSTRASS [24] is expressed in terms
of the principle of nesting of intervals. He also uses this to prove his well-
known Limit-point Theorem (see, also DUGAC [8]). A systematic definition
of real numbers in terms of nested intervals was given by BACHMANN [1]
in 1892.

Another method of defining real numbers was introduced by CANTOR in
his theory of fundamental sequences (see 2). Shortly before, MERAY (1835~
1911) had used (though CANTOR was not aware of this) this approach to
the definition of irrational numbers by regarding them as “fictive” limits of
convergent sequences and, harking back to the discovery in classical times,
calling them “nombres incommensurables.”

Finally, DEDEKIND (1831-1916) in his famous book Stetigkeit und Ir-
rationalzahlen (7] published in 1872 took up the theory of proportion of
Euboxus and presented it in a modernized form with exemplary clarity.
DEDEKIND’s definition expresses our geometrical intuition of the contin-
uum, which has been so deeply rooted since the days of classical antig-
uity. This intuition tells us that the points of a straight line are defined
by “the bisection of a line into two parts” (DEDEKIND) by “the common
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boundary between two parts, which together constitute the whole” (LEIB-
NIZ) or by the “extremities of two parts which touch” (ARISTOTLE) see
§1). The question of whether Eunoxus and EUCLID with their theory of
proportion had satisfactorily settled the matter of defining the irrational
numbers led to some controversy in connection with the work published by
DEDEKIND in 1872. Thus LIPSCHITZ wrote to DEDEKIND in 1876: “... Ich
kann nur sagen, daf8 (ich) die von Euclid V, 5 aufgestellte Definition .. . fiir
genauso befriedigend halte, als Ihre Definition. Aus diesemn Grunde wiirde
ich wunschen, dal namentlich die Behauptung wegfiele, daff solche Satze
wie v/2 - v/3 = /6 bisher nicht wirklich bewiesen seien.” [I can only say
that I personally find the definition in Euclid V, 5 just as satisfactory as
yours. For this reason I would have liked to have seen omitted, in particu-
lar, the statement that such propositions as V2 - /3 = /6 have never yet
really been proved.] Characteristic is LIPSCHITZ’s remark: “Was Sie an der
Vollstandigkeit des Gebietes erwahnen, die aus Ihren Principien abgeleitet
wird, so fallt dieselbe in der Sache mit der Grundeigenschaft einer Linie
zusammen, ohne die kein Mensch sich eine Linie vorstellen kann.” [What
you say in regard to the completeness of the domain, deduced from your
principles, in point of fact merely coincides with the basic property of a
line, without which no one can possibly imagine a line.]

While LIPSCHITZ thus expresses an attitude recalling that of the math-
ematicians of the previous century who were frequently content to rely on
an intuitive understanding of the foundations of their science, DEDEKIND
stands at the start of an era heralding a new methodical approach. He
is concerned—as were CANTOR, FREGE, PEANO and others—to formulate
explicitly and precisely the concepts on which mathematics is founded. And
so DEDEKIND writes to LIPSCHITZ with particular reference to the concept
of completeness: “.. Aber Euklid schweigt vollstindig iber diesen, fir die
Arithmetik wichtigsten Punkt, und deshalb kann ich Threr Ansicht nicht
zustimmen, dal bei Euklid die vollstandigen Grundlagen fiir die Theorie
der irrationalen Zahlen zu finden seien.” [“...But Euclid is completely silent
on this, the most important point for arithmetic, and therefore I cannot
share your opinion that a complete theory of irrational numbers is to be
found in Euclid.”]

The real number concept became a problem area once more in the dis-
cussions of the nineteen twenties between HILBERT and BROUWER on the
foundations of mathematics, after RUSSELL had derived contradictions from
the so-called “naive” set theory of CANTOR and FREGE, and after it was
found that even the new axiomatized versions of set theory could not be
proved to be consistent, and, as GODEL showed, were inherently incapable
of being proved consistent by finite methods. Within mathematical logic
these considerations led to an interesting discussion, which continues up to
the present day, of more limited concepts such as, for example, computable
numbers, and constructive real numbers (see, BisHoP (3], HERMESs [12],
LoRENZEN [18]).
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§2. DEDEKIND CurTs

The incompleteness of the field @ of rational numbers can be repaired by
making “cuts” in Q, which in an entirely natural way can be completely
and totally (= linearly) ordered. Addition and multiplication are defined
for these new objects in such a way that they form a field. Altogether
these cuts possess the following properties (R1)-(R3), which are nowadays
usually taken as a set of axioms for the real numbers.

A set (K, +, -, <) with the two (internal) compositions + and -, and the
binary relation < is said to be the set of real numbers if and only if the
following axioms are satisfied:

(R1) (K, +, ) is a field.

(R2) < is a linear order relation on K, compatible with addition and mul-
tiplication.

(R3) Completeness: any non-empty subset M of K, bounded below, has an
infimum in K.

A lower bound s of an ordered set M is said to be an infimum of M (the
standard abbreviation is inf M) if all lower bounds of M are < s. Thus
inf M is clearly the greatest lower bound of M.

1. The Set R of Cuts. A Dedekind cut is an ordered pair (a, ) of two
sets, a (the “left” or “lower” set) and f# (the “right” or “upper” set) with
«, f C Q, satisfying the following conditions:

(D1) Every rational number belongs to one of the two sets «, 3.
(D2) Neither a nor B are empty.
(D3) Every element of a is less than every element of 3.

(D4) B has no least element (8 has no minimum).

Every cut is uniquely determined by its left and right set each of which
determines the other. We may therefore from now on identify it with its
right-hand set 3, which has the following properties:

(D’1) S and its complementary set 3 = Q \ § are non-empty.

(D'2) If re B,s€ Qand r < s then s € 8.

(D’'3) B has no least element (minimum).
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In the following treatment we shall use Greek letters «,f3,... to denote
right-hand sets and call a Dedekind cut a real number. The set of all
Dedekind cuts is denoted by R.

Every rational number s defines the cut: s := {r:r € Q, s < r}, which
is described as rational. A cut « is rational, if and only if @ has a largest
element (maximum). Q is embedded in R by the mapping @ — R, 5 s.

Not all cuts are rational. For example v/2, that is the cut defined by
a:={rir € Q, r >0, 72 > 2}, is not rational. It is easily verified that o
satisfies the first two axioms for a cut. To verify the third we need to show
that for every r € a, there is an s € « satisfying s < r. To this end we

choose s := 222 > 0. Since r — s = ':_"_'22 and 2 > 2, the inequality r > 0

entails s < r. Since 52 —2 = 3((52:)%1 and r2 > 2 we have s > 2. The cut a
is trrational because the complementary set @ has no maximum element.
For r € & with r > 0 (and thus r? < 2) we again choose s as above. It then
follows, since s2 < 2, that s € @ and r < s.

2. The Order Relation in R. For any two cuts (right-hand sets) the order
relation a < 3 is defined by the set-theoretic inclusion relation 8 C «. The
reflexivity, transitivity and antisymmetry of this relation is easily proved.
The ordering is total (linear). For, suppose a # 3, and say r € a, with
r ¢ 8. Then r € §, and for every s € f it follows that r < s, and hence
s € a, or in other words, 8 C a. The ordering is complete in the sense of
the axiom (R3). To see this, let A be a set of cuts bounded from below.
Then § = {Jyeq @ is a cut. (Since A is bounded below there is a ¢ € Q
with ¢ € 8.) The second and third cut axioms for § are easily checked as
is the fact that 8 is an infimum of A.

If we carry out the Dedekind cut construction once again on R, we obtain
nothing new. To every cut a in R there corresponds a ¥ € R such that
a = {a € R: v < a}. In fact, we simply take the infimum v = [J ¢, @ of a.

This fact is expressed by the third of the quotations which stand at
the head of this chapter. The other two quotations (from ARISTOTLE and
LEIBNIZ) show that the basic underlying idea of the connected continuum
1s very old.

The embedding of Q in R (see 1) is compatible with the order relation.
The rational numbers are dense in R: given any two cuts (real numbers) o
and 3, there exists an » € Q) such that o < r < 8.

3. Addition in R. For any two cuts « and £ in R, the sum a+ 3 is defined
as the set {r + s:» € a, s € 3}. The three characteristic properties of a
cut follow for « + 3, from the corresponding properties of « and 3, and so
a+ B € R. On the subset Q of R the sum coincides with the one defined
by the usual addition of rational numbers. As far as the order relation is
concerned it is immediately clear that if a, § are any two cuts such that



38 2. Real Numbers
a < f, then a + v < B+ 7 for every ¥ belonging to R.

Theorem. The set R is an ordered commutative group with respect to
addition, with (the cut) zero as its neutral element.

Proof. Associativity, commutativity and a + 0 = « follow immediately
from the definition of addition. The inverse of a cut o € R is defined as
—a = {-r:r € a, r # maxa}. (—maxa has to be excluded to ensure
that the condition (D’3) is satisfied.) For the proof that o + (—a) = (, the
inclusion C is easily checked. Conversely, suppose r € Q and thus r > 0;
we have to show that r € o + (—«). Since @ and a come arbitrarily close
to each other, there isan s € @ and at € asuch that 0 <t —s < r.
Without loss of generality we may suppose s # max &, —s € —a, and there-
foret — s € a + (—a), and because r > t — s, we must also have r € a+
(—a). o

4. Multiplication in R. In the case where the cuts a, 8 are both > 0,
the product is defined in the way that obviously suggests itself, namely, by
a-B={r sr € s €&} Onecan then check in routine fashion that
a - (3 satisfies the axioms (D’1) to (D’3) for a cut; that this multiplication is
associative and commutative; that 1 is a unit element; that the distributive
law holds; and that multiplication is order preserving.

The difficulties begin with the existence of multiplicatively inverse ele-
ments. If « > 0 is a cut, we define

a~l:={rlirea,r>0,r#maxa}.

We leave it for the reader to check that a~! isin fact a cut and that a-a™! C
1. To prove that a-a~! = 1 it only remains to show that 1 C a-a~!, which
can be seen as follows. Suppose r € 1, and thus r—1 > 0. Suppose ¢ € o~ 1.
By the principle of Archimedes (see Chapter I, §4.2) for rational numbers,
there is a natural number n for which ¢ < n - (r — 1). We now follow the
same procedure as that used in the proof that a + (—a) = 0 (see 3 above).
Since a and & come arbitrarily close to one another, ans€ @ andat € a
can be found such that 0 < t—s < n™!, where, without loss of generality, it
may be assumed that s # max& and ¢~! < s. Then s™! € o~ %, and hence
t-slea-a”l.Nowt sl <(s+n s I=14nls7t<l+nlg<r
and therefore r € o - a7 1.

A further difficulty lies in the fact that the definition given above, namely,
a-f={r-s:r € a, s € f}, makes sense only when o > 0, # > 0 because
otherwise it does not define a cut. In order to multiply with negative cuts
as well, we adopt the procedure already used in defining the multiplication
of integers (see Chapter I, §3.2). We first show that every cut ¥ can be
written as the difference of two non-negative cuts @ > 0 and g > 0, so that
¥ = o — 3. The product of v = a~ 8 and 4’ = o’ — ' where o/, ' are also
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> 0, can then be defined by the expression obtained by multiplying out
vy == (-f)=ad+p-f -a-p~-pd

It is easily checked that the cut so defined depends only on 4 and ¥4’ and
not on the particular difference representations chosen. When v and 7’ are
both > 0 the new definition agrees with the old. This latter point is easily
seen by considering the representation ¥y = v — 0, v/ = 4’ — 0. However, it
is a tedious if routine business to verify that all the axioms for a field are
verified. E. LANDAU who carries out this task in detail in [16], writes in
his “Vorwort fiir den Kenner” [Foreword for the expert]: “Ein anderer hat
sich meine zum Teil langweilige Miihe nicht gemacht.” [... but no one else
has undertaken this task which is in part rather boring.] In his “Vorwort
fiir den Lernenden” [Foreword for the student] on the other hand, he says:
“Bitte vergifi alles, was Du auf der Schule gelernt hast; denn Du hast es
nicht gelernt.” [Please forget all you learnt at school because you never
learnt it.]

It is undoubtedly true that when we set out to justify all the operations
with numbers which have been so familiar to us from our school days, we
have to take great care to use only what has already been proved, and not
to assume things to be true merely because they are so familiar to us.

§3. FUNDAMENTAL SEQUENCES

1. Historical Remarks. The definition of real numbers by means of fun-
damental sequences, which goes back to CANTOR and MERAY [19], uses the
idea that every real number is the limit of a sequence of rational numbers,
in which the differences between the successive terms become arbitrarily
small. Such a sequence is known as a “fundamental sequence,” and is illus-

trated below, the successive terms 71,79, ... being indicated by subscripts.
limr,
— - l ———t ' '
ry rs rs ry rg Trg rs r,

CANTOR’s contribution to the theory of irrational numbers forms part
(89) of a larger work, Grundlagen einer allgemeinen Mannigfaltigkeitslehre
[Foundations of a general theory of manifolds (that is, sets in present-
day terminology)] published in 1883, in which he develops his new theory
of sets. In addition to his own definition, CANTOR also mentions the ap-
proach taken by WEIERSTRASS and the work of DEDEKIND. In CANTOR’s
view the logical clarity of DEDEKIND’s definition has to be set against the
“great disadvantage” that “numbers in analysis never present themselves
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in the form of “cuts,” and therefore have first of all to be brought into this
form by elaborate artifices.” On the other hand, CANTOR leaves no doubt
that he regards his form of definition as the “simplest and most natural
of all.” He mentions as contributing to the historical development of this
approach a paper of his own published in 1871 (Math. Ann: 5, p. 123) and
a book by LipscHITZ [17].

Quite apart from its use in the definition of real numbers, the CANTOR
construction with fundamental sequences has turned out to be the most
fruitful, inasmuch as it can also be used for the completion of metric spaces.
In this sense one has to agree with CANTOR when he asserts, in speaking of
his construction: “Man hat an ihr den Vorteil, da8 sie sich dem analytischen
Kalkil am unmittelbarsten anpaft.” [It has the advantage of being the one
most immediately suited to analytical calculations.] In the following section
the basic facts about sequences will be assumed.

2. CAUCHY’s Criterion for Convergence. In accordance with
CANTOR’s basic idea, real numbers can be described by convergent rational
sequences. Two rational sequences (r,) and (s, ) have the same (real) limit,
if and only if the sequence of their differences (r, — s,) converges to zero.
It is natural therefore to define the real numbers as equivalence classes of
convergent rational sequénces; two sequences being equivalent when their
difference sequence converges to zero. For this definition to be meaningful,
the convergence of a sequence has to be characterized without making use
of its limit. This can be done with the help of Cauchy’s criterion, which
will be used to define the sequences concerned.

A sequence (r,) of rational numbers is said to be a fundamental sequence
or Cauchy sequence, if, for every rational ¢ > 0, there is an index k, such
that |rp, — r,| < ¢ for all m,n > k.

The rational sequence (ry) is said to be rationally convergent if there is
a rational number r, such that for every € > 0, there exists an index k,
with |r, — r| < ¢ for all n > k. In that case r is defined uniquely, and one
writes 7 = limr,. Every rationally convergent sequence is a fundamental
sequence.

On the other hand there are fundamental sequences which do not con-
verge rationally. Every non-periodic decimal fraction provides an example,
for example, the one for V2, where

ro=1;, r =14; ro=141;, rz=1414; r4=14142;....

To give another example, where the law for formation of the terms of the
sequence is shown explicitly, we consider the continued fraction for the ratio
i1+ v/5) corresponding to the golden section (see, 1.1). This continued
fraction is defined recursively by the sequence rg = 1, rp41 = 1+ 1—+1—r: To
prove that this is a fundamental sequence, we shall show that |r, 41 —7,] <
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:}lrn — rn_1]. For

1 Tn-1—"Tn
n - =1 -1 =
Tn+1 = Tn + 147, ( * 1+7'n—1) (14 ra)(1+7a-1)

and r,_y,r, > 1. It follows therefore, by complete induction, that
'7‘"+1 - 1"n| < 2_nl1"1 - 7‘0] = 2—n—1’
and hence

'Tn+k - rnl < Irn+k - rn+k—1| + lrn+lc—1 - "'n+k—2| + -4 IT'n+1 - Tnl
< 2—n—k + 2—n—k—1 4.4 2—11—1 < 9-n

For any given ¢ > 0, we can choose [ so that 2! < ¢. Consequently |r, 41 —
rp] <eforalln > 1 and all k.

3. The Ring of Fundamental Sequences. The set F' of all fundamental
sequences becomes a ring when addition and multiplication are defined
termwise:

(rn) + ('Sﬂ) = (rﬂ + sn) and (rn) : (Sn) = (rn : Sn)-

It is verified as follows, that the sum and product are likewise fundamental
sequences. For any given € > 0, k may be chosen large enough to ensure that
[rm—ra] < %6 and |s;,—sn| < %5 forallm,n > k. Then |rm+sm—rn—8n| <
|Pm — Pnl + |8m — 8n| < €. In the case of the product we first use the fact
that fundamental sequences are bounded so that there is a ¢ > 1, such that
|7l Isnl < c. For any given £ > 0, we choose k large enough to ensure that
[7m — Tnl, |$m — sn| < £ for all m,n > k. Then

I"'msm - rnsnl = Irm(sm - Sn) + sn("'m e rn)l
le le
——4c-—=¢.

< - - —
_lrmllsm 3n|+l5nHT'm Tnl<c2c 2e

Q can be embedded as a subring in F' by associating with each » € Q the
constant sequence (r,r,r,...).

4. The Residue Class Field F/N of Fundamental Sequences Mod-
ulo the Null Sequence. A rational sequence (r,) is said to be a null
sequence when limr, = 0. The set N of null sequences is an ideal in F, or
in other words, (1) if (r,) and (s,) are null sequences, then so is (r, + s,)
and (2) if (rn) is a null sequence and (s,) any fundamental sequence, then
(7n - 85) is a null sequence.

Two fundamental sequences are said to be equivalent if their difference
is a null sequence. (The reader should check that this does in fact define an
equivalence relation.) The equivalence class represented by (r,) is (rp) +
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N = {(rn + hn): (hn) € N}. It is called the residue class of r, modulo N.
As N is an ideal, the residue classes can be added and multiplied: ((r,) +
N)+((sn)+N)=(rn+sn)+N and ((rn)+N)-((sn)+N) = (rn-sp)+ N.
The set F//N of residue classes in this way constitutes a commutative ring
with unit element. It contains Q) as a subset, where we identify each rational
r with its associated class of constant sequences modulo N.

Theorem. The residue classes of the fundamental sequences modulo the
null sequences form a field F/N.

Proof. For every (r,)+ N with (r,) € N we have to be able to define a class
which is its multiplicative inverse. The obvious candidate is (1/r,) + N.
However, for this we need to have r, # 0. In point of fact we are entitled to
assume this. Since (r,) € N, only a finite number of terms of the sequence
are equal to zero. We replace these by 1. This does not alter the class of
(rn) + N. We now have to show that (1/r,) is a fundamental sequence:
since (rn) € N and all r,, are nonzero, there is § > 0 such that |r,| > é for
all n. For any given € > 0 we choose the index k large enough to ensure
that |r,, — rn| < 6%¢ for all m,n > k. Then

1 1 2

Tm Tn

|rm — o] 6%

< —— = €.
IPmrn 66

Following CANTOR we now define the field of real numbers as R :=
F/N. w}

5. The Completely Ordered Residue Class Field F/N. A rational
fundamental sequence (r,;) is said to be positive if there is a rational ¢ > 0
such that r, > ¢ for almost all (that is, for all but a finite number of)) indices
n. Let P be the set of positive fundamental sequences. Clearly P+ N C P,
P+ PCPand P-P C P. The set F of all fundamental sequences can be
expressed as a union of disjoint subsets F = —PU N U P. We can therefore
obtain a well defined total ordering on F/N by defining

(rn)+ N >(sn)+ N ifand onlyif (rn—s,)€ PUN.

The sum and product of positive elements in F/N are themselves positive.
On the subset Q C F/N, the ordering coincides with the usual ordering of
the rational numbers.

It follows from the definition of positive rational fundamental sequences
that for every p € F/N with p > 0, there is an r € Q, with 0 < r < p.
It makes no difference, therefore, to the definition of convergence in F/N,
whether one allows all positive ¢ € F/N, or only those that belong to Q.
It is equally true that for every ¢ € F//N there is an s € Q, with s > o.
(This is trivial for o < 0, and if not one can choose an r € Q, such that
0<r<o~!andtakes=r"1)
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The ordering of F/N is Archimedean, for if a, 8 are both positive and
belong to F//N, a natural number n such that na > 8 can be found in the
following manner. We choose a,b € Q, such that 0 < ¢ < « and 8 < b.
Since Q is Archimedically ordered there is an n such that na > b, and thus
na>na>b>f.

The field F//N was so constructed that (1) every p € F/N is the limit
of a rational sequence (r,) and (2) every rational fundamental sequence in
F/N converges. We can improve (2) to the following.

Theorem. Cauchy’s criterion for convergence is valid in F/N. A sequence
(pn) in F/N converges if and only if the following condition is satisfied: for
every £ > 0 there is an index k, such that

Ipm — pal <€ forall m,n>k.

Proof. By (1) there is, for every pn, an r, € Q, such that |p, — | < .
Then (r,) is a fundamental sequence: for any given ¢ > 0 we choose the
index k so that § < e and |p,n — pn| < 3¢ for all m,n > k. Then

1 1
Irm = ral < Irm = pml| + lom — pal + pn — 7] < E"' 55"' n <E.
By (2) the sequence (r,) converges to a p € F/N, and hence (p,) also
converges to p, because to any given € > 0 one can choose the index !
sufficiently large to ensure that ; < ¢ and |p—rp| < e foralln > 1 and
thus |p— pa| < |p—rn|+|rn—pn| < e+ L1 <eforalln>1l m|

Numerous different formulations for the completeness of totally ordered
fields will be given in 5.2 and compared with one another. In particular
it will emerge among other things that the completeness axiom (R3) is
equivalent to the assertion that the ordering is Archimedean and that the
Cauchy criterion for convergence holds. Thus the Cantor field F/N satisfies
all the azioms for the real numbers. Any two fields satisfying these axioms
will be shown in 5.3 to be canonically isomorphic. In particular therefore
F/N is isomorphic to the field of Dedekind cuts.

§4. NESTING OF INTERVALS

1. Historical Remarks. The idea of fitting intervals, one within another,
to form a so-called nest of intervals is an old one and is found above all in
applied mathematics in connection with the calculation of approximate
values. In Babylonian times, we already find the sexagesimal fractions
;26 =14 g—g and 1;24,51,10 = 1 + % + 6—501—, + 610% as approximations
for v/2 (see, NEUGEBAUER AND SACHS [20], p. 42). These can be obtained
by the following general process for enclosing v/a within smaller and smaller
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intervals, which is applicable to any a > 1:

a>+a>1,

1
zo==(a+1)>+Va> —a-,
2 )

1 a a
1?1—5(1‘[)-’-1:—0))\/(;);1,

1
:CQZ—(21+i)>\/E>i.

2 I T2

In fact, when a = 2, we obtain the values 2o = % =1;30,z, = %(% + %) =

i—; =1;25 and z9 = %(-}—;’ + f—f}) = %—; = 1;24,51,10. However, the general
process is not explicitly given as such in the Babylonian texts, so that
we are relying on a plausible assumption. This process can be regarded
as an application of the proposition that the geometric mean lies between
the harmonic mean and the arithmetic mean: az—'”l <va-b< “—"%9, to the
particular case b = 1. This was already known to the Pythagoreans, as a
fragment from ARCHYTAS OF TARENTUM shows (see BECKER [2], p. 78 et
seq.).

The determination of the area of a circle as lying between those of in-
scribed and circumscribed polygons is another example of the nesting of
intervals. It was STEVIN who around the year 1594 used the technique of
calculating with decimals and defined a real number by the nesting of in-
tervals (see, 1.3). In the 19th century nested intervals were used in proving
some of the central theorems of analysis. An attempt to define real num-
bers by certain sequences of intervals in order to prove CAUCHY’s criterion
for convergence goes back to BoLZANO [4]. WEIERSTRASS [24] uses the
nesting of intervals to prove his theorem on limit points (the theorem that
a bounded infinite set has a limit point). Finally, BACHMANN in his Vor-
lesungen uber die Theorie der Irrationalzahlen (Leipzig, 1892) introduces
real numbers by systematically making use of nested intervals.

2. Nested Intervals and Completeness. The introduction of real num-
bers by means of nested intervals is motivated by the following situation.
We consider a sequence of intervals I ,15,...,I,, ..., on the arithmetical
line continuum (or real axis) each of which is contained within the one
which precedes it, and such that the length of I,,, the nth interval, tends to
zero as n increases. (In the particular case of decimal intervals the length
of I, is 10~™, and the endpoints of I, are integral multiples of 107 ".) We
require that corresponding to every such sequence of nested intervals there
should exist one and only one point on the real axis which is contained in
all the intervals of the sequence:
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A rational sequence of nested intervals, or more shortly a rational net, is a
sequence of closed intervals [ry, s,] with r,, 5, € Q, such that I, D I, for
all n, and lim(s, —r,) = 0. A net (Jy,) is said to be finer than (I,), if J, C
I, for alln. We say that (I,) and (I]) are equivalent if there is a net (J,,)
which is finer than each, and we say that (J,) is a refinement of (I,) and of
(17,)- This is so, if and only if v/} = max(rp,r,) < sif = min(s,, s, ) because
Il = [r}l, sii] is then a common refinement. We can now define real numbers
as equivalence classes of nets. The rational numbers are embedded in these
real numbers inasmuch as to every r € Q, corresponds the equivalence class
containing the (constant) net (I,,) defined by I, := [r, 7] for all n.

An example of a net of nested intervals is ([en, €},]) where ¢, := (1+21)"

and e, := (1+ %)"H. This net defines the real number e = 2.71828 ..,
introduced by EULER, which is of fundamental importance in analysis in
the theory of the logarithmic and exponential functions (see also Chapter
5).

At this point addition, multiplication and an ordering for these equiva-
lence classes of nets ought to be defined and the axioms (R1)-(R3) stated at
the beginning of §2 ought to be verified. We shall not adopt this course, how-
ever, but instead set up a direct correspondence between nets and Dedekind
cuts (§2) on the one hand, and between nets and fundamental sequences
(§3) on the other.

Corresponding to a given net ([ry, s,]) we form the sets a := {z:z € Q,
andz < s, foralln} and §' := {y:y € Qand y > r,, for all n}. If B’ contains
a least element, we remove it and form the set 8 := # — {mmn §'}. Then
(o, B) has the properties (D1)-(D4) of the Dedekind cut (see 2.1). If we
refine the net, the cut remains unchanged. Conversely, to every Dedekind
cut (o, B) there corresponds a net ([rn, sn]) with r, € a and s, € 3. We
begin with any ry € a, sp € # and proceed recursively: having obtained
Tyn, S, we form the arithmetic mean d,, = %(rn + s,) and define

[dmsn]a if d,€a,
[ratvsnet] = L0y it d e B,

All nets [r,, s,] with 7, € a and s,, € § are equivalent. We associate («, 8)
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with the equivalence class. The two correspondences that have thus been
defined are mappings inverse to one another. If the rational numbers are
regarded firstly as equivalence classes of constant nets, and secondly as
rational cuts, then the former is the image of the latter and vice versa in
the correspondence which has just been described.

The direct relationship between nets and fundamental sequences rests on
the following facts: (1) every bounded, monotone sequence is a fundamen-
tal sequence. (2) to every rational fundamental sequence (a,) corresponds
a monotonically increasing rational sequence (r,) and a monotonically de-
creasing rational sequence (s,), such that (r, —a,) and (s, — a,) are null
sequences. Now if ([ry, s,]) is a given net of nested intervals, (r,,) and (s,)
are fundamental sequences, and (s, — r,) is a null sequence. If the net
is refined to ([r},,s}]), (r, — rn) is a null sequence. The correspondence
([rn, sn]) = (rn) therefore induces a well defined mapping of equivalence
classes of rational nets of nested intervals into the Cantor field F//N of fun-
damental sequences modulo the null sequences. Conversely, corresponding
to any given fundamental sequence (a,) one can choose a monotonically
increasing sequence (7,) and a monotonically descreasing sequence (s,) by
the rule (2), and then ([rp, sn]) will be a net. If one had started from an-
other fundamental sequence (a,) instead of from (a,) so that (a}, — a,)
were a null sequence, and had then chosen (r}) and (s/,) by the rule (2),
then clearly ([r,, sn]) would be equivalent to ([r},,s}]). We therefore have
a well defined mapping of the fundamental sequences modulo the null se-
quence into the set of equivalence classes of nets of nested intervals. This
mapping is inverse to the one described above.

The practical advaniages of nested intervals over cuts or fundamental
sequences are as follows. If the real number z is described by (I,) the
position of z on the number axis is fixed within defined bounds by each
I,. On the other hand with a fundamental sequence (r,), the knowledge of
one 7, still tells us nothing about the position of z. Again, the description
of z as a cut (a,f) can result from a definition of the set & by means of
statements which say nothing directly about the position of z.

The theoretical disadvantage of using the nested interval approach is that
introducing the < relation between equivalence classes of nets of nested
intervals and verifying the field properties for addition and multiplication
is somewhat troublesome.

§5. AXIOMATIC DEFINITION OF REAL NUMBERS

While axiomatic methods were at first used only in geometry (see, EUCLID’s
Elements), it was not until comparatively recently with the publication of
HILBERT’s Grundlagen der Geometrie [13] [Foundations of geometry] that
they were also used for real numbers. The axiomatic treatment that follows
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will however be based not on the system of axioms proposed by HILBERT (in
§13 of [13], where it is called “the theory of ratios,” following the tradition
set by EUCLID in his Elements), but on the axioms (R1)-(R3) of §2.

1. The Natural Numbers, the Integers, and the Rational Numbers
in the Real Number Field should all be recoverable once the latter has
been defined axiomatically by (R1)-(R3). For this purpose only (R1) and
(R2) are needed. Thus let K be a totally ordered field, or in other words
let K satisfy the axioms (R1) and (R2) of §2. We shall say that a subset
M C K isinductive,if0 € M and z+1 € M whenever z € M. For example,
K itself and the subset K* = {z:z € K, £ > 0} are both inductive.
The intersection N of all inductive subsets of K, is the smallest inductive
subset of K. It fulfils, with the successor function S(z) := £+ 1 the axioms
(S1)—(S3) for the natural numbers, formulated in 2.1 of Chapter 1. By the
Uniqueness theorem (2.2 of Chapter 1) the set N C K can therefore be
identified unambiguously with N.

Let Z C K be the smallest subring containing 1. By complete induction,
it follows that N C Z. Thus Z, as the smallest ring that contains N, is in a
unique way isomorphic to Z (see 3.2 of Chapter 1).

Let @ C K be the smallest subfield. It contains the smallest subring Z,
and hence Q is in a unique way isomorphic to Q (see Chapter 1, §4.2).

The ordered field K has the Archimedean property (that is, given any two
elements a,b> 0 in K, an n € N can always be found such that na > b) if
and only if Q is dense in K, that is to say, between any two elements x < y
w K, there is an r € Q, such that x < r < y.

This proposition has already been proved in one direction (when Q is
dense in K) in §3.5 (with K = F/N). Conversely, ifa = 1and b = (y—z)~!
there is an n € N with (y—z)~! < n. Moreover, we can now find an m € Z,
such that 2 < z < 24l and then ¢ < BH < z+1 < y, the last inequality
being a consequence of (y —z)~! < n.

2. Completeness Theorem. Each of the three different methods of con-
structing the real numbers, by cuts, by fundamental sequences, and by
nested intervals, is based on a different formulation of the idea of com-
pleteness. We shall now show that each is equivalent to the completeness
axiom (R3) of §2.

Let K be a totally ordered field, that is, suppose the azioms (R1) and (R2)
of 82 to be satisfied for K. Then the following statements are equivalent.

(a) Every subset of K that is bounded below possesses an infimum (greatest
lower bound).

(a") Every subset of K that is bounded above possesses a supremum (least
upper bound).

(b) If (o, B) 4s a cut in K (that is, the azioms (D1)—~(D4) of §2 are
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satisfied when elements of K instead of rational numbers are taken)
then o contains a mazimum element.

(c) Every monotonically decreasing sequence, bounded below, converges
i K.

(c') Every monotonically increasing sequence, bounded above, converges
in K.

(d) The field K has an Archimedean ordering and every fundamental se-
quence (Cauchy sequence) of elements of K converges in K.

(e) The field K has an Archimedean ordering and for every sequence of
nested intervals Iy D Iy D - D I, --- in K, for which the lengths of
I, converge to zero with increasing n, there exisis one and only one
s lying in all the intervals I,,.

(a) and (@) are obviously equivalent: if and only if M is bounded below
is —M = {~z:z € M} bounded above, and —inf M = sup(—M). Similarly
(c) and (c’) are equivalent. The complete equivalence of all the assertions
will follow from the implications (a) — (b) — (c) — (d) — (e) — (a) which
we shall prove in turn.

(a) — (b): The set 3 is bounded below, every a € « is a lower bound.
By (a) 8 has an infimum. Since 8 has no minimum, inf # € a. Since a < b
holds for all ¢ € @ and b € 3, we have a < inf § for all a € a, that is inf 8
is the maximum of a.

(b) — (c): Let (b;) be a monotonically decreasing sequence, bounded
below. We can define a cut (o, 3) by o = {z:z < b, for all n} and 8 = {y:
there is an n such that b, < y}. By (b) the set a has a maximum s. We can
now show that (b,) converges to s. To prove this suppose € > 0 be given,
then there is an index k such that by < s+ ¢ because if s + ¢ were < b, for
all k, we should have s + € € a, in contradiction to s = maxa. As (b,) is
monotonically decreasing, b,, < by for all m > &, and since s < b,,,; for all
m, we therefore have s <b,, <b; <s+eforallm>k.

(¢) — (d): The Archimedean property of the ordering of K can be proved
as follows. Let a,b be > 0, and suppose that na < b for all n € N. Then
(na) would be a monotonically increasing sequence bounded above, which
by (c¢) would converge to some s. There would therefore also be an index
k such that s — a < na < s for all n > k. Between s — a and s there is
however room for only one term na of the sequence (na).

To prove that every fundamental sequence converges, we need two lem-
mas.

(1) Every sequence (a,) has a monotonic subsequence.

(2) Every fundamental sequence is bounded.
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We shall postpone the proof of (1) and (2) for a moment and first show
that every fundamental sequence (a,) converges. Let (a,) be a monotonic
subsequence. It is bounded and hence s = lim;_., a,;, exists. We assert
that s = limy .o @n; for given any € > 0, one can choose the index & so
that |a,, —a,| < %5 for all m,n > k, and there is then a j such that n; > k
and |a,; — s| < e. It now follows that |a, — s| < |a, —an;|+ |a,, —s| < ¢
for all n > k.

Proof of Lemma (1). We shall say that the sequence (a,) has a peak ay
for the index k, if a > a,, for all n > k. If there is an infinity of peaks then
they form a monotonic non-increasing sequence. If there are no peaks or
only a finite number of peaks, there is a last index k beyond which there
are no peaks. We begin our subsequence with ny = k + 1. Since a,, is not
a peak there is an n; > ng, for which a,, > a,,. Since a,, is not a peak,
there is an ny > ny, such that a,, > a,, and so on. We have thus found
by recursion a monotonically increasing subsequence (a,;).

Proof of Lemma (2). Let (a,) be a fundamental sequence. There is an
index k such that |a,, —a,| < 1 for all m,n > k. In particular therefore all
subsequent terms a, for n > k lie within the bounded interval (a; — 1, a; +
1). The finitely many initial terms ag,...,a;_; of the sequence obviously
also form a bounded set, and consequently the set of all terms a,, with
n € N is also bounded.

(d) — (e): Let ([an,bs]) be a sequence of nested intervals. Then (a,) is
a fundamental sequence, because, for every k and all m,n > k, an,,a, lie
in [ag,b;], and hence |a,, — a,| < by — ai. Since lim(b, — a,) = 0 we can
therefore ensure that |a, — a,| < € by choosing k large enough. By (d),
s = lima, exists. Since (a,) increases monotonely, a, < s for all n. As
ar < by, for all k and n, we also have s < b, for all n, and thus s € [a,, b,)
for every n. Since b, — a, becomes arbitrarily small as n increases, s is
defined unambiguously.

(e) — (a): Let M be a non-empty subset of K, bounded below. We
can construct a sequence of nested intervals ([an, b,]), in which all the a,
are lower bounds of M, while none of the b,, are lower bounds of M. We
begin with any lower bound ag and a by which is not. We then proceed
recursively: having already defined [a,,,b,] we form the arithmetic mean
d, = %(aﬂ + b,) and define

[a bpt] = [dn,b,], if dj is a lower bound

PAL It T ) {an, dn), if dy, is not a lower bound.
Then bpy1 — @ng1 = %(b,, — an), so that b, — a, = 27"(by — ag). As the
ordering is Archimedean, lim(b, — a,) = 0. By (e) there is just one s which
lies in all the intervals [a,, b,]. Now c is a lower bound of M, for otherwise
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there would be an # € M with z < ¢, and since every a, < z we should
have b, — a, > ¢ — a5, > ¢ — ¢ which would contradict lim(b,, — a,) = 0.
This ¢ is the greatest of the lower bounds, because if b > ¢ were a lower
bound, we should have to have b, > b and b, —a, > b—-—a, > b—cin
contradiction to lim(b, — a,) = 0. a

The list (a)-(e) of equivalent statements by no means exhausts all the
possible formulations. One could for example also mention the HEINE-
BOREL covering property or the fact that every bounded infinite subset
contains a limit point. The student learns about these and other results, as
consequences of the property of completeness, in every introductory course
on analysis.

There are totally ordered fields in which every fundamental sequence
converges, but in which the ordering is not Archimedean. An example of
this will be given in Chapter 12 where the real numbers will be extended
to the field *R of non-standard numbers. In this extended field there are
infinitely small and infinitely large numbers, and for this reason *R is not
Archimedean, while every fundamental sequence is constant and therefore
convergent. Just how much the Archimedean axiom restricts the possibili-
ties is shown clearly by the following result due to HOLDER [13a], see also
CARTAN [6]: An ordered group is Archimedean if and only if it is isomor-
phic to a subgroup of the additive group of real numbers. One does not
even have to assume that the group is commutative; it follows from the
other hypotheses.

3. Existence and Uniqueness of the Real Numbers. We now show
that the axiom system (R1)—(R3) for the real numbers characterizes them
unambiguously. Let F/N be the Cantor field of fundamental sequences
modulo the null sequences.

Theorem. Every ordered field K satisfying the azioms (R1)-(R3) is iso-
morphic to F/N in one and only one way.

Proof. The mapping ¢: K — F/N is defined as follows. Let z be an element
of K; since Q is dense in K, there is a rational fundamental sequence ()
with limz,, = z. We set ¢(z) = (z,)mod N. This definition does not
depend on the choice of (z,) because, for any other choice, say (z},) the
differences z, — z,, form a null sequence. As the limit is compatible with
the sum and product, ¢ is a homomorphism. Clearly ¢ maps the rationals
on to themselves, and in particular ¢ is not the null homomorphism, while
its kernel must be the null ideal, or in other words ¢ is injective. So far we
have used only the fact that K is Archimedean. From the hypothesis that
every (rational) fundamental sequence in K converges, it follows that ¢ is
also surjective, and hence an isomorphism.

The uniqueness of ¢ is a consequence of the following result, which is
also of interest in itself.
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The field of real numbers has no automorphisms apart from the identily
mapping.

By the “field of real numbers” is here meant any field K which satisfies
the axioms (R1)-(R3). To prove this we start from the fact that K must
contain the field Q@ of the rationals. Every automorphism ¢ of K maps
Q identically on to itself, since ¢(0) = 0 and ¢(1) = 1 and it follows
therefore by complete induction that o | N = idy. As every element of Q
can be expressed in the form (a — b)/c with a,b, ¢ € N, it then follows that
o | Q=idg.

The ordering relation in K can be defined on the basis of the field struc-
ture alone. We have £ > y if and only if there exists a z € K such that
22 = £ —y. It follows that every automorphism o is order preserving. If now
a sequence (z,) converges to z in K, the image sequence (¢(z,)) must con-
verge to o(z), or in other words ¢ is continuous. As Q is dense in K, there
is, for every z € K, a sequence in Q@ which converges to z. This sequence
is mapped identically on to itself by o. Regarded as an image sequence it
converges to o(z). Since a limit is uniquely defined, o(z) = z. a

In Chapters 1 and 2, we have created R, starting from an infinite set, and
using the methods of set theory to construct in succession the sets N, Z and
Q on the way. The existence of R is therefore assured, provided that we
accept the validity of this set theory. Expressed in other words we may say
that the axioms (R1)-(R3) are consistent (that is, free from contradiction),
provided that the set theory we have used is consistent. The problem of
the consistency of set theory is dealt with in the last chapter.
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Complex Numbers

R. Remmert!

Ex irrationalibus oriuntur quantitates impossibiles seu
imaginariae, quarum mira est natura, et tamen non
contemnenda utilitas (LEIBNIZ).

[From the irrationals are born the impossible or imaginary
quantities whose nature is very strange but whose use-
fulness is not to be despised.]

The quadratic equation z2 + 1 = 0 has no solutions in the field R of real
numbers, because every sum of squares r> + 1 with » € R is positive.
A new epoch in the mathematics of modern times was inaugurated by
the recognition that this incompleteness of the real number system could
be obviated by yet another simple extension of the number domain, the
extension of R to the field C of complex numbers.

The development of the theory of complex numbers makes an impressive
chapter in the history of mathematical concepts. When they first made
their appearance at the time of the Renaissance these new numbers were
called impossible quantities (quantitates impossibiles), just as had hap-
pened earlier with the negative numbers. Mathematicians began to use
complex numbers in their calculations but at first warily and without really
accepting them. Until the end of the eighteenth century there was no pre-
cise foundation for the theory of imaginary numbers. A quantity i = /—1,
whose square 12 = —1 was negative, remained unimaginable. Nevertheless,
despite this awkward fact, from the days of BOMBELLI, and certainly from
EULER onwards, imaginary numbers were used ever more successfully and
with greater assurance. Their applicability, exceeding all expectations; the
unassailability of the results achieved by their use; and above all the va-
lidity of the Fundamental Theorem of Algebra (see Chapter 4), eventually
helped to ensure their full recognition, especially after their representation
as points on a plane had enabled everyone to visualize them.

The genesis of the complex numbers is described in §1 of this chapter.
In §§2 to 5 we develop the elementary theory of these numbers as far as

'] am indebted to the Volkswagen Foundation for the award of a research grant
during the academic year 1980/81, as a result of which the work on Chapters 3,
4 and 5 of this book was very considerably facilitated.
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can be done without using the methods of analysis. In §6 we deal with the
polar coordinate representation of complex numbers

z = |2]e" = |z|(cos @ + isin p).

Here we have to draw upon properties of the exponential and of trigono-
metrical functions, whose proofs lie deeper. In particular we shall need ,
the ratio of the circumference to the diameter of a circle. This number =
forms the subject of Chapter 5 where it is discussed in detail.

Complex numbers provide the basis for the theory of holomorphic func-
tions. This theory is dealt with in R. Remmert, Theory of Complez Func-
tions, GTM/RIM 122, Springer-Verlag, 1990.

§1. GENESIS OF THE COMPLEX NUMBERS

It is almost impossible for anyone today who already hears at school about
i = /=1 being a solution of 2 + 1 = 0 to understand what difficulties the
complex (that is, imaginary) numbers presented to mathematicians and
physicists in former times.

We summarize below the important historical dates. As secondary source
material we have made use of the following books:

ARNOLD, W. UND WussING, H. (Herausgeber): Biographien bedeutender
Mathematiker, Aulis Verlag Deubner u. Co KG, Koln 1978

BoYEer, C.B.: A History of Mathematics, John Wiley and Sons, Inc., New
York, London, Sidney 1968

CARTAN, E.: Nombres complexes. Exposé, d’aprés Varticle allemand de E.
Study (Bonn), Encyclop. Sci. Math. édition francaise 15, 1908; see also
E. Cartan OEuvres II, 1, 107-247

CooLIDGE, J.L.: The Geometry of the Complex Domain. Oxford Univer-
sity Press 1924; especially Chapter 1

HANKEL, H.: Theorie der complexen Zahlensysteme, Leipzig 1867

KLINE, M.: Mathematical Thought from Ancient to Modern Times, Oxford
University Press, New York 1972

MARKUSCHEWITSCH, A.l.: Skizzen zur Geschichte der Analytischen Funk-
tionen, VEB Deutscher Verlag der Wissenschaften, Berlin 1955

STUDY, E.: Theorie der gemeinen und héheren complexen Grossen, Encykl.
Math. Wiss. 1.1, 147-183, Teubner Verlag Leipzig, 1898-1904

TROPFKE, J.: Geschichte der Elementarmathematik, 4. Aufl., Bd. 1: Arith-
metik und Algebra, Vollstindig neu bearbeitet von Kurt Vogel, Karin
Reich und Helmuth Gericke; Walter de Gruyter, Berlin, New York 1980

The article by CARTAN essentially complements the one by STUDY and
goes into greater depth.
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1. CARDANO (1501-1576). Imaginary quantities make their first ap-
pearance during the Renaissance. In 1539, Girolamo CARDANO, a math-
ematician and renowned physician in Milan, learned from TARTAGLIA a
process for solving cubic equations; in 1545 he broke his promise never to
divulge the secret to anyone. In 1570 he was imprisoned on a charge of hav-
ing cast the horoscope of Christ. In 1571 he became a protégé of Pope Pius
V who granted him an annuity for life. (See Dictionary of Scientific Biog-
raphy, vol. 3.) In his book entitled Artis magnae sive de regulis algebraicis
liber unus he tries to work with imaginary roots in dealing with quadratic
equations: in Chapter 37 he boldly ascribes the solution 5 + /—15 and
5 — /=15 to the equation (10 — z) = 40, saying: “Manifestum est, quod
casus seu quaestio est impossibilis, sic tamen operabimus...”. As the sym-
bols written down appear to be meaningless, he calls v/—15 a “quantitas
sophistica” which should perhaps be translated as a “formal number.”?

It is not clear whether CARDAN (to use the name by which he is usually
known in English) was led to complex numbers through cubic or quadratic
equations. While quadratic equations x? + b = az, where the solution is

given by the formula ¢ = 1a £ 1/%a% — b have no real roots (and are

therefore impossible equations) when a? < 4b, cubic equations z3 = pz + ¢
have real roots which are given as sums of imaginary cube roots.3
Cardan points out in Chapter 12 that his formula

2= {fa/2+Va+fa/2~Va with d:=(a/2) ~ (0/3)

fails in the case (p/3)3 > (¢/2)%. He gives examples such as the equations
z3 = 20z + 25 and z3 = 30z + 36 (which can be derived from the identity
23 = (2% — z)z + z? by substituting 5 and 6 respectively): his formula leads
to roots of negative numbers, but the equations are not impossible because
the solutions £ = 5 and z = 6 are obvious. Whether Cardan had seen this
clearly is questionable.

2. BOMBELLI (1526-1572). CARDAN’s algebra was further developed
by Rafael BoMBELLI, whose “L’algebra,” published in Bologna in 1572
probably originated between 1557 and 1560. BOMBELLI, without having
thought too much about the nature of complex numbers, laid down eight

%In discussing the product (5 ++/—15)(5 — v/=15) Cardan writes “dismissis
incruciationibus,” meaning no doubt that the (imaginary) cross product terms
cancel each other. It is tempting to read in these words the additional meaning
given by the translation “setting aside any intellectual scruples” (from friciatus—
torture, mental anguish, etc.) and to assume that Cardan was indulging in a play
on words—but this interpretation is probably unjustified.

3Nowadays it is well known that it is impossible to solve, by real radicals, an
irreducible cubic equation over (J whose three roots are all real (the so-called
casus irreducibilis). For further details on this see Van Der Waerden, Algebra,
Part I, Springer-Verlag, Berlin-Heidelberg-New York, 7th ed. 1966, p. 194.
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fundamental rules of computation. The last (in modern notation) is
(=%)(—%) = —1. BOMBELLI carries out correctly a few calculations and
knows for example that

(2£43 =211, sothat /2++v/—121=2++/—1.

He applies this identity to the equation z3 = 15z + 4, where Cardan’s
formula yields the solution

z={/2+ V=121 + {/2 - v—T3L.

The obvious solution 4 is given by (2++/—1)4(2—+/—1) so that he arrives
with the help of complex numbers at real solutions. BOMBELLI was the first
to teach the art of correct formal computation with complex numbers.

.3. DESCARTES (1596-1650), NEWTON (1642-1727) and

LEIBNIZ (1646— 1716). René DESCARTES in his “La géométrie” (Ley-
den 1637) brings out the antithesis between real and imaginary. He says,
in essence, that one can imagine, for every equation, as many roots as are
indicated by the degree of the equation, but these imagined roots do not
always correspond to any real quantity. Incidentally, DESCARTES candidly
confesses that one is quite unable to visualize imaginary quantities.

Isaac NEWTON regarded complex roots as an indication of the insolu-
bility of a problem, expressing himself as follows: “But it is just that the
Roots of Equations should be impossible, lest they should exhibit the cases
of Problems that are impossible as if they were possible” ( Universal arith-
metic, 2nd ed., 1728, p. 193). In Newtonian times complex numbers had
not yet arisen anywhere in physics. Gottfried Wilhelm LEIBNIZ in a letter
to HUYGENS written in 1674 or 1675 (see LEIBNIZ Math. Schriften, ed.
GERHARDT, vol. 1, II, p. 12) enriched the theory of imaginaries by noting
the surprising relation

V14V +4/1-V=3= V6.

In 1702, in an article appearing in the Leipzig Acta Eruditorum, a journal
which he had founded, and the first scientific periodical to be published in
Germany* (see also Math. Schriften, ed. GERHARDT, vol. 5, p. 357) he calls
imaginary roots ... a subtle and wonderful resort of the divine spirit, a kind
of hermaphrodite between existence and non-existence (inter Ens et non
Ens Amphibio). LEIBNIZ had already, by 1712, claimed that log(—1) is an
imaginary number.

*The true founder of this periodical, modeled on the Journal des Savants was
Mencke. The Acta Eruditorum ceased publication in 1782.
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4. EULER (1707-1783). This great Swiss mathematician had no scru-
ples about making use of complex numbers in his calculations but intu-
itively used them correctly and in a masterly fashion. He was already aware,
by 1728, of the transcendental relationship

o 1 . P
tlogi = ~57 or, what amounts to the same thing  =e 3"

but he made no attempt to give a rigorous proof. In his famous textbook,
the “Introductio in Analysin infinitorum” imaginary numbers first appear
in §30, quite suddenly and completely unmotivated. They play a decisive
role in §138 in the derivation of the “Euler formulae”

1,; - 1, . .
cosz = 5(6“” +e7**) and sinz = E(e'” —e™ ).

Leonhard EULER’s elementary textbook on algebra® was first published
in 1768 in Russian in St. Petersburg and then later in a German edition in
1770 as the “Vollstandige Anleitung zur Algebra” (Opera Omnia 1, 1-498,
ed. WEBER, also reprinted in English translation as “Elements of Alge-
bra” by Springer-Verlag, 1983). Euler had great difficulty in explaining and
defining just what the imaginary numbers, which he had been handling so
masterfully during the past forty years and more, really were. He points
out that the square root of a negative number can be neither greater than
zero, nor smaller than zero, nor yet equal to zero, and writes in Chapter 13,
Article 143: “it is clear therefore that the square roots of negative numbers
cannot be reckoned among the possible numbers: consequently we have to
say that they are numbers which are impossible. This circumstance leads us
to the concept of numbers, which by their very nature are impossible, and
which are commonly called imaginary numbers or fancied numbers because
they exist only in our fancy or imagination.” One would smile nowadays
at such a sentence if it had not been written by the great EULER. In his
book on algebra, EULER occasionally makes some mistakes, for example,

he argues that v/—1v/—2 = v/4 = 2, because \/avh = Vab.

5. WALLIS (1616-1703), WESSEL (1745-1818) and ARGAND
(1768-1822). The first vague notions on a correspondence between com-
plex numbers and points on a plane were put forward by the English math-
ematician John WALLIS is his “De algebra tractatus,” a work published in
1685. However his ideas remained muddled and exercised no influence on his
contemporaries. The first representation of the points of a plane by complex
numbers which has to be taken seriously was proposed by the Norwegian

®Euler, who had by then already become blind, dictated the book to an amanu-
ensis who had formerly been a tailor by profession. It is said that BEuler let the
text stand only when he had satisfied himself that the writer had fully understood
it (the ultimate aim of all applied didactics).
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surveyor Caspar WESSEL. WESSEL, who was self-taught, wrote a memoir
“On the analytical representation of direction—an essay” which is to be
found in the Transactions of the Danish Academy for 1798. WESSEL’s pri-
mary object was to be able to operate with directed line segments and he
thus hit upon the idea of representing them as complex numbers—not the
other way around. WESSEL introduced an imaginary axis, perpendicular to
the axis of real numbers (he wrote ¢ for v/—1) and interpreted vectors in the
plane as complex numbers. He defined the usual operations for vectors and
thus for complex numbers geometrically in a perfectly satisfactory manner.
Despite its considerable merit WESSEL’s work remained unnoticed until a
French translation appeared in 1897.

A somewhat different geometrical interpretation of complex numbers was
given by the Swiss accountant Jean Robert ARGAND in his “Essai sur
une maniere de représenter les quantités imaginaires dans les constructions
géometriques.” ARGAND, who like WESSEL was also an amateur, interprets
v/—1 as a rotation through a right angle in the plane and justifies this on
the grounds that two such rotations, that is, the product /—1/=1 = —1,
are equivalent to a rotation through two right angles or in other words,
a reflection. (We shall describe this interpretation more fully in 6.2.) AR-
GAND’s work also remained largely without influence, although in the older
literature there are frequently references to the ARGAND plane (or ARGAND
diagram).

There are good grounds for believing that, as early as 1749, EULER had
visualized complex numbers as points of a plane. In his paper “De la con-
troverse entre Mrs. LEIBNIZ et BERNOULLI sur les logarithmes des nombres
négatifs et imaginaires” (Mémoires de I’Académie des Sciences de Berlin
[6], (1749), 1751, 139-179; Opera Omnia, 1, Ser. XVII, 195-232) he says
(in French p. 230): ...“In every other case the number « is imaginary: to
find it one has only to take an arc g of the unit circle and determine its
sine and cosine. The number sought is then

z=cosg++v—1-sing.”

6. GAUSS (1777-1855). Views on complex numbers first began to change
through the influence of Carl Friedrich GAuss. He was aware of the inter-
pretation of complex numbers as points of the complex plane from about
1796 and made use of it in 1799 in his dissertation where he proves the
fundamental theorem of algebra (see on this point, Chapter 4), though in a
carefully disguised form. In the year 1811 GAUss wrote to BESSEL ( Werke
8, p. 90): “...Just as one can think of the whole domain of real magnitudes
as being represented by an infinite straight line, so the complete domain of
all magnitudes, real and imaginary numbers alike, can be visualized as an
infinite plane, in which the point defined by the ordinate a and the abscissa
b, likewise represents the magnitude a + bi.” This is the representation by
real number pairs expressed in geometric language.
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By 1815, at the latest, GAUSs was in full possession of the geometrical
theory. But true dissemination of the idea of the complex number plane
did not occur until 1831 with the publication of Gauss’s Theoria Resid-
uorum Biquadraticorum. Commentatio Secunda ( Werke 2, 93-148). In the
now classical introductory review which he wrote summarizing this sec-
ond memoir ( Werke 2, 169-178) he sets out clearly his views in a manner
which overcomes all logical objections. He coins the expression “complex
number” and describes the attitude of his contemporaries to these numbers
as follows: “but these imaginary numbers, as opposed to real quantities—
formerly, and even now occasionally, though improperly called impossible—
have been merely tolerated rather than given full citizenship and appear
therefore more like a game played with symbols devoid of content in itself,
to which one refrains absolutely from ascribing any visualizable substra-
tum. In saying this one has no wish to belittle the rich tribute which this
play with symbols has contributed to the treasury of relations between real
numbers.” As regards the aura of mystery which still clung to complex
numbers, he writes (pp. 177-178): “If this subject has hitherto been con-
sidered from the wrong viewpoint and thus enveloped in mystery and sur-
rounded by darkness, it is largely an unsuitable terminology which should
be blamed. Had +1, —1 and /-1, instead of being called positive, negative
and imaginary (or worse still impossible) unity, been given the names, say,
of direct, inverse and lateral unity, there would hardly have been any scope
for such obscurity.” And later (after 1831, Werke 10, 1, p. 404) he says,
looking back:

| et allom dom sind dee m7mafre/?7%vsﬁd&al d0 A/n/p/
chre rwnal(a;e/ Dvmer s on tiner Jichion %M//a/nn{} en
l&rjdﬁemwfuf nectl gor00Fd e M;,»/u’nf«zf’f, als wiel
ety nwr wie gecleilded éa/rac«/b/p/, tend rwel dayvon end -
/émf/eﬂkém' arid olen reellen /7‘311677 a,a/ Gohe —é}ué

/crz‘m rse werclen . duc einer golithen. @@@%7 if aber

clot fein Frond mchr, nachden dii //ef.f,? sih dor
irriaginren f,%w tn hr wabres Lokt /M@ZM;‘M

muﬁfcwie/;en ot o&se, eben 10 nole die me L;’&n/

1:/;45 reafe WMM%%& ﬂe(ew{wn/ Kablen ..

Reproduced by kind permission of the State and University Library, Géttingen.
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[It could be said in all this that so long as imaginary quantities were still
based on a fiction, they were not, so to say, fully accepted in mathematics
but were regarded rather as something to be tolerated; they remained far
from being given the same status as real quantities. There is no longer any
Jjustification for such discrimination now that the metaphysics of imaginary
numbers has been put in a true light and that it has been shown that they
have just as good a real objective meaning as the negative numbers.]

It was the authority of GAUSS that first removed from complex num-
bers all aura of mysticism: his simple interpretation of complex numbers as
points in the plane freed these fictive magnitudes from all mysterious and
speculative associations and gave them the same full citizenship rights in
mathematics as those enjoyed by the real numbers. “You have made pos-
sible the impossible” is a phrase used in a congratulatory address made to
GAUSS in 1849 by the Collegium Carolinum in Brunswick (now the Tech-
nical University) on the occasion of the 50-year jubilee of his doctorate.
The German Post Office issued a stamp in 1977 illustrating the Gaussian
number plane to celebrate the bicentenary of his birth.

7. CAUCHY (1789-1857). The French mathematician Augustin-Louis
CaucHY did not regard the geometric interpretation of complex numbers
as the last word on the subject. He wrote in 1821, in his “Cours d’Analyse
de Ecole Royale Polytechnique”: “On appelle expression imaginaire toute
expression symbolique® de la forme a+bv/—1, a, b désignant deux quantités
réelles . .. toute equation imaginaire n’est que la représentation symbolique
de deux équations entre quantités réelles.” [We call an imaginary expres-
sion, any symbolic expression of the form a 4 by/=1, where a,b denote
two real quantities ... Every imaginary equation is only just the symbolic
representation of two equations between real quantities.] (Oeuvres 3, 2
Ser., 17-331, p. 155). This conception of imaginary expressions as symbolic

8Cauchy also tries to explain what a symbolic ezpression is. He says (p. 153):
“En analyse, on appelle expression symbolique ou symbole toute combinaison de
signes algébriques qui ne signifie rien par elle-méme ou i laquelle on attribue
une valeur différente de celle qu’elle doit naturellement avoir.” Hankel, who in
1867, in his book “Theorie des complexen Zahlensysteme” was wrestling with the
metaphysics of the foundations of mathematics, called this amazing definition a
Gaukelspiel (conjuring trick or illusion) and (p. 73) a galimatias (a meaningless
jumble of words, nonsense). Incidentally the origin of this word is unknown, but
according to Meyers Enz. Lexik. 1973, it is probably compounded from the low
Latin galli a term used for certain disputants at the Sorbonne, and the Greek
pabeia (learning). He writes, somewhat aggressively (p. 14): “Ich glaube nicht
zu viel zu sagen, wenn ich dies ein unerhortes Spiel mit Worten nenne, das der
Mathematik, die auf die Klarheit und Evidenz ihrer Begriffe stolz ist und stolz
sein soll, schlecht ansteht.” {I do not think I am exaggerating in calling this an
outrageous play on words, ill becoming Mathematics, which is proud and rightly
proud of the clarity and convincingness of its concepts.]
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representations of two real numbers is, in contrast to GAUSS’s geometric
interpretation, purely algebraic.

CAUCHY was still, in 1847, and thus long after HAMILTON (see next
paragraph) unsatisfied with the interpretation of the symbol . In a note in
the Comptes rendus entitled “Mémoire sur une nouvelle théorie des imag-
inaires, et sur les racines symboliques des équations et des équivalences”
(Oeuvres 10, 1 Ser., 312-323) he gives a definition which makes it possible
“...a réduire les expressions imaginaires, et la lettre 7 elle méme, & n’étre
plus que des quantités réelles.” Using the concept of equivalence (with an
explicit reference to the work of GAUSS on classes of quadratic forms) he
now interprets computations involving complex numbers as computations
with real polynomials modulo the polynomial X2+ 1. In modern terminol-
ogy this is equivalent to interpreting the field C of complex numbers as the
splitting field of X2 + 1 that is, C = R[X]/(X?+ 1). CAUCHY thus proves
here a special case of what is now known as KRONECKER’s theorem, the
theorem that for every (abstract) field K and every irreducible polynomial
f € K[X] the residue class ring L = K[X]/(f) is a finite extension field of
K, in which f has at least one zero.

8. HAMILTON (1805-1865). However helpful the geometric interpre-
tation of complex numbers as points, or vectors on a plane may be (“seeing
is believing” ), a geometrical foundation for computation with such numbers
is not entirely satisfactory (“On ne cherche pas & voir, mais & comprendre”).
The important (if now seemingly trivial) step to the formal definition as an
ordered pair of real numbers still remained to be taken. This first occurred
in 1835 through Sir William Rowan HAMILTON, probably in the course of
the preliminary studies preceding his discovery of quaternions. In his work
with the strange title” “Theory of Conjugate Functions, or Algebraic Cou-
ples, with a Preliminary and Elementary Essay on Algebra as the Science of
Pure Time” (Math. Papers 3, 3-96) is to be found (p. 81) for the first time
the definition of complex numbers as ordered pairs of real numbers. HAMIL-
TON defines addition and multiplication in such a way that the well-known
arithmetical laws (the distributive, associative and commutative laws) re-
main valid. We shall be following HAMILTON’s example when we introduce
complex numbers in 2.1. GAUss, in a letter of 1837 to Wolfgang BoLYAI,
says that the representation by ordered pairs had already been familiar to

"This remarkable title owes its origin to Kant. Real numbers at that time
were usually defined as the ratio of the length of a line segment to that of a
given unit line segment. Now Kant had said that geometry belongs to space,
and arithmetic—and therefore numbers—to time. Accordingly Hamilton, with
Kant’s perception of numbers in mind, defined numbers as ratios of time intervals.
Naturally, from a purely mathematical standpoint, nothing was gained by this,
but it is interesting to note that, long before Weierstrass and in ignorance of
Bolzano, he sought to give a new definition of real numbers.
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him since 1831.

9. Later Developments. Complex numbers during the last century be-
gan their tempestuous and triumphant march through every field of math-
ematics. For Bernhard RIEMANN (1826-1866) they are already a matter
of course. In his 1851 Gottingen inaugural dissertation “Grundlagen fiir
eine allgemeine Theorie der Funktionen einer veranderlichen complexen
Grosse” (Werke 5-43) he philosophizes (pp. 37,38) “Die Einfiilhrung der
complexen Groflen in die Mathematik hat ihren Ursprung und néchsten
Zweck in der Theorie einfacher durch Grofienoperationen ausgedriickter
Abhangigkeitsgesetze zwischen veranderlichen Gréen. Wendet man diese
Abhangigkeitsgesetze in einem erweiterten Umfang an, indem man den
veranderlichen Groflen, auf welche sie sich beziehen, complexe Werte gibt,
so tritt eine sonst versteckt bleibende Harmonie und RegelmaBigkeit her-
vor.” [The original purpose and immediate objective in introducing com-
plex numbers into mathematics is to express laws of dependence between
variables by simpler operations on the quantities involved. If one applies
these laws of dependence in an extended context, by giving the variables
to which they relate complex values, there emerges a regularity and har-
mony which would otherwise have remained concealed.] On the other hand,
in 1854, the 23-year-old mathematician Richard DEDEKIND (1831-1916),
who was a friend of RIEMANN’s and who, in the words of BELL (Men of
mathematics, p. 518) “... occupied a relatively obscure position for fifty
years while men who were not fit to lace his shoes filled important and influ-
ential university chairs,” judged the position differently. In his habilitation
presentation® at Gottingen at which GAUSS was present (Math. Werke 3, p.
434), DEDEKIND said “Bis jetzt ist bekanntlich eine vorwurfsfreie Theorie
der imaginédren... Zahlen entweder nicht vorhanden, oder doch wenigstens
noch nicht publiziert.” [Until now we have had available no theory of com-
plex numbers entirely free from reproach. .. or at least none has so far been
published.]

Complex numbers soon begin to be used in Physics as well. Already
in 1823 FRESNEL used complex numbers in his theory of total reflection
(published in 1831). Nowadays physicists think nothing of talking about
complex-valued physical objects: the basic equations of quantum mechanics
are written, without any compunction, in the form:

h h 0¥

—qp=— — = —-HV.
Pe=® =90 Bt

Complex numbers have also long been used in electrical engineering; the
electrical engineer writes j instead of ¢ (as ¢ is reserved as the symbol for
current intensity). It is a little known fact that one of the first comput-
ers ever built was a “complex number computer” to multiply and divide

8The oral thesis presented at German universities to qualify as a lecturer.
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complex numbers. It was developed during the years 1938 to 1940 by the
engineer STIBITZ in the Bell Telephone laboratories, and thus before ZUSE’s
programmable computer, and before the ENIAC in Princeton. Admittedly
STIBITZ’s machine, which worked with relays, was not a program-controlled
machine. It was used successfully from 1940 to 1949 on network analysis
computations, particularly on telephone switching problems.

The numeri impossibiles have thus during the course of the last few
centuries taken a firm place in science and engineering; they are used con-
fidently and consistently in calculations, without fear of encountering any
contradictions, and mathematicians no longer worry about such philosoph-
ical questions as the ens or non-ens of i = /—1.

§2. THE FIELD C

We shall introduce complex numbers® following HAMILTON (see 1.8), as
ordered pairs of real numbers. They form a commutative, 2-dimensional
extension field C of the field R. There is an element i € C with 2+ 1 =0,
and every complex number z can be written uniquely in the form z + iy,
with z,y € R. Complex numbers can also be described elegantly as real
2 x 2 matrices.

1. Definition by Pairs of Real Numbers. The set R x R of all ordered
pairs of real numbers z := (z,y) is an Abelian group with respect to the
natural eddition defined by

(1) (z1,91) + (22, 92) := (21 + T2, 11 + ¥2).
We introduce a multiplication in R x R by the definition

(2) (z1,91) - (22, ¥2) = (2122 — Y12, 1Yo + Y122)

which may at first sight appear to be rather artificial. It can then be easily
verified that the commutative, associative and distributive laws hold. The
element e := (1,0) is the unit element. Direct calculation shows that if
z=(z,y) #0, then

z—l-: __1:_____—__3{___
: x2+y2’x2+y2

1=

ts the inverse of z, that is zz~ e.

®The adjective “complex” was first used in its present technical sense by Gauss
in 1831. Until then he had also used the word “imaginary.” Bézout had earlier
used the expression complex number in an entirely different sense in his “Cours
de mathématiques a I’usage des gardes du pavillon et de la marine. I partie.
Eléments d’arithmétique” published in Paris in 1773 where, on page 105 et seq.
he uses it to denote a number involving several different units of measure, e.g.
days, hours and minutes.
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The set R x R is therefore a commutative field with respect to the laws
of composition (1) and (2). It is called the field C of complex numbers.

Since (21,0) + (z2,0) = (21 + 22,0) and (z1,0)(z2,0) = (z1z2,0), the
mapping R — C, ¢ — (z,0) is an embedding of the field R into the field
C. The real number z is identified with the complex number (z,0). Thus
C is a field extension of R with the unit element e = (1,0) = 1. AsCis a
2-dimensional real vector space, C is of degree 2 over R, in the language of
algebra.

The set C\ {0} of all non-zero complex numbers is denoted by C*. CX is
an Abelian group with respect to multiplication in C, whose neutral element
is the unit element 1 (the multiplicative group of the field C).

One can motivate the particular definition of multiplication in (2) by the
following considerations. In the R-vector space R? with the natural basis
(1,0), (0,1) the first vector is to represent the unit element, and the second
vector should have the property that its square is the negative of the unit
element, in other words we require (0,1)? = —(1,0). It then follows, if the
ordinary laws are to hold, that

(1?1,3/1)(102, y2) = [xl(l) 0) + y1(0, 1)][1’2(1’ 0) + 92(0’ 1)]
= z129(1,0) + (192 + y122)(0,1) + y132(0,1)?
= (z122 — n192)(1,0) + (2192 + 1122)(0,1)
= (2122 — Y1¥2, T1Y2 + Y1 22).

Note. The motivation for (2) is rather different with HAMILTON: first he
finds it suggestive to define products with real numbers by the rule
r(z1,y1) := (rz1,7y1) (R vector space structure). One then already has

(z1, 1) = z1e + y1¢ with e :=(1,0), €:=(0,1).

Now if e is to be the unit element and the distributive laws are to hold,
then one must have

(*) (z1€ + yi€)(z2e + y26) = T120€ + (2192 + Y1Z2)E + Y1y2e”

The multiplication law is therefore determined as soon as €2, which must
be of the form pe + q¢ is known. There are however infinitely many ways of
choosing p and ¢ so that the resulting multiplication has an unique inverse.
(The reader may care to find examples.) HAMILTON therefore postulates
(as he does later in the case of his quaternions, see, 6.E.2) the product rule:
the length of the product of two factors is equal to the product of the lengths
of the factors, where the length |z| of z = (z,y) is defined as +/z2 + y2.
It is then only necessary to apply this product rule to

ef=pe+ge and (e+e)e—¢)=e—e®>=(1-p)e—ge

to deduce that p = —1, ¢ = 0 (since |¢?| = [¢||¢| = Ll and |e+¢| = |e—¢| =
v/2) so that () becomes the same as equation (2).



§2. The Field C 67
On the product rule, see also 3.4.

2. The Imaginary Unit i. Traditionally one uses the notation which
has been customary since the time of EULER and which became common
practice through the influence of GAuss

i:=(0,1)eC.

This symbol is often called the imaginary unit of C, and we have 2 = —1.
In the field C the real polynomial X2 + 1 has the two zeros i and —i. In
the complex polynomial ring X2 4+ 1 decomposes into linear factors.

For all z = (z,y) € C the equation (z,y) = («,0) + (0,1)(y,0) holds and
we therefore obtain the usual notation for complex numbers:

z=z+ 1y, z,y € R.

The real and imaginary parts of 2 = = + iy are defined by Rez := z,
Im z := y. Two complex numbers 23, z2 are equal if, and only if, they have
equal real parts and equal imaginary parts:

z1=29¢ Rez; =Rez; and Imz; =Imz,.

A number z € C is called real if Imz = 0, and purely imaginary if
Rez = 0, so that in the latter case 2 = iy. The mappings Re:C — R,
Im:C — R are linearly independent linear forms of the R-vector space C.

3. Geometric Representation. Since the days of WESSEL, ARGAND and
GAuss (see 1.5 and 1.6) complex numbers have been visualized geometri-
cally as points in the plane with a rectangular coordinate system (Fig. a).
Addition of complex numbers is then represented by the familiar vector
addition, in accordance with the parallelogram law illustrated in Fig. b.

iy-axis

i
i
i
|
1
€

R
Fig. a Fig. b

Multiplication of complex numbers is entirely governed by the one equa-
tion i2 = —1. It follows automatically (see Para. 1) that

(21 + iy1)(z2 + iy2) = (122 — v1y2) + i(Z1y2 + Y122).
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The geometrical interpretation of complex numbers in polar coordinates is
no longer completely elementary and will be postponed until 6.2. O

The unique representability of complex nurmbers in the form z + iy to-
gether with the equation i> = —1, expressed in the language of algebra,
says:

The field C is a 2-dimensional (algebraic) extension of the field R and is
isomorphic to the splitting field of the irreducible polynomial X241 € R[X].

We are now already in a position to prove a first uniqueness theorem for

C.

Theorem. Every 2-dimensional ring extension K of R which has a unit
and no divisors of zero is isomorphic to the field C.

Proof. Since dimg K = 2 there exists au € K \R. Then 1 e R C K and u
together form a basis of the R-vector space K. Consequently u? = ¢ 4 2du
with numbers ¢,d € R. For v := u —d ¢ R, it follows that v> = r where
r:= ¢+ d? € R. r must be negative because otherwise /7 would belong
to R and we should have n = +,/7 € R. Accordingly there exists an s € R
with s = —r~1. Hence for w := sv € K \ R, we have w? = ~1. The
mapping C — K, z + iy — = + wy 1s now a field isomorphism. a

The foregoing theorem will be significantly generalized in 4.3.5 using the
fundamental theorem of algebra.

4. Impossibility of Ordering the Field C. The field R of real numbers
is an ordered field (see Chapter 2, §2). The field of complez numbers, on
the other hand, cannot be ordered, that is to say it is impossible to define
a relation “> 07, a relation of “being positive” in such a way that the
following two rules are both satisfied:

1) For every z € C, one and only one of the three relations z > 0, 2 =0,
—z > 0 s vald.

2) Ifw>0 and z > 0 then w+ 2z > 0 and wz > 0.

Proof. Suppose there were such an ordering relation “> 0” in C. Then, as
in the real case, we should have z? > 0 for every non-zero z. In particular
we should have 12 > 0, i2 > 0 and consequently 0 = 2 + 1 > 0, which is
absurd. (]

The impossibility of ordering C is a further reason for the difficulties en-
countered in the 18th and 19th centuries with complex numbers. Eloquent
evidence of this is afforded by the extracts from EULER’s Anleitung zur
Algebra quoted in 1.4.
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5. Representation by Means of 2 x 2 Real Matrices. Instead of pairs
of real numbers, real 2 x 2 matrices can be used for introducing complex
numbers. With every complex number ¢ = a + ib we associate the C-linear
mapping
T.:C—-C, z+> cz = az — by + i(bz + ay)

(the so-called left regular representation as defined in Algebra). This spec-
ifies more precisely, and generalizes, ARGAND’s interpretation of complex
numbers. Thus, for example, the linear transformation z — iz correspond-
ing to i is the counterclockwise rotation through one right angle, which
sends 1 into 7, ¢ into —1, and so on (see also 1.5). If one identifies C with

R2byz=z+iy= (z), then it follows that

n(3)=(eie)=(G 2)6)

The linear transformation 7T, determined by ¢ = a + b is thus described by

the matrix (a

b -;b). One is thus led to consider the following mapping

F:C — Mat(2,R), c:a+ibn—+<z _ab>

of the field C into the non-commautative ring Mat(2,R) of real 2 x 2 ma-
trices (forgetting the motivation via 7.). This mapping is R-linear and
multiplicative, that is

F(re+1'cd)=rF(c)+ 7 F(c), F(cc')=F(c)F(c'), rr" €R; ¢,d €C

where F(c)F(c') is the matriz product. Clearly F(1) = E := (é (1)), and

it can be seen that; A
a -—
ThesetC::{(b a

matriz addition and matriz multiplication, a commutative field whose unit
element is the unit matrizc E. The R-linear transformation

‘a,b € ]R} 1s, with respect to the operation of

F:C—¢, atbi— (‘; ;”) with I:=F(i) = ((1) ‘01) I? = —-E,
is a field isomorphism; the matriz I is the “imaginary unit” in C.

Introducing complex numbers through 2 x 2 matrices has the advantage
over introducing them through ordered pairs of real numbers, that it is
unnecessary to define an ad hoc multiplication. Current textbooks do not
normally define complex numbers in terms of real 2 x 2 matrices; an excep-
tion is the book by CoPsoN, An Introduction to the Theory of Functions
of a Compler Variable (Oxford: Clarendon Press, 1935).
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There are infinitely many other subfields, apart from C, isomorphic to C
in Mat(2, R). The following theorem gives a complete picture of what they
are.

Theorem. a) For every invertible real 2 x 2 matriz W the mapping
guw:C — Mat(2,R), a+bi»—->W<‘; _ab) w-1

s @ monomorphism of real algebras (compare R.3).
b) Every R-linear homomorphism ¢g:C — Mat(2,R), g # 0, is of the
form gy .

Proof. a) The case W := E = the unit matrix was treated above. Since
the mapping Ty,: Mat(2,R) — Mat(2,R), A — WAW ! is an R-algebra
automorphism, a) follows from the fact that g, = T}, o gg.

b) For A := g(1), B := g(i) € Mat(2,R) we have A2 = A, BA = AB =
B, B* = —A. Since C is a field, g is injective, and therefore A # 0. We
choose a column vector v € R? such that w := Av # 0. Then
(*)

Aw = A%v = Av=w, A(Bw)= BAw=Bw, Blw=-Aw=-w.

In view of the last equation, w, Bw are linearly independent, because oth-
erwise there would be an equation Bw = Aw, with A € R, and this would
lead to the contradiction A2 = —1. The matrix W := (w, Bw) € Mat(2,R)
is thus invertible, and by (*) it follows that AW = W, whence A = E, and

furthermore BW = (Bw,—w) = (w, Bw) <(1) —61) = WI. It has thus
been shown that g(1) = E = gy(1), g(i) = WIW~! = g, (i). From the
R-linearity of g and g,, it now follows that g = g,,. O
2 3
By way of example, for W := 1 9, ve have

86 —13b
gw(C)={(a-;b a_Sb):a,belR}:(C;

in this example (g :183> is the “imaginary unit.”
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§3. ALGEBRAIC PROPERTIES OF THE FIELD C

The field C possesses the conjugation automorphism C — C, z — Z, which
is fundamental in many contexts.

The scalar product (w, z) in C, and the associated absolute value function
|| can be introduced by

(w, z) := Re(wz) = uz + vy, 2] := Vzz = /22 + 42,

where w = u + v, z = z + iy. With the help of the function |z| it will
be shown in §5, by elementary arguments, that every quadratic equation
224 az+b=0, a,b € C is solvable in C. This statement is a first indication
that the field C is more “complete” than the field R. The theorem on the
solvability of all quadratic equations in C was already known long before
EULER, it is a particular case of the famous and profound fundamental
theorem of algebra which states that every non-constant polynomial with
complex coefficients has at least one zero. This theorem will be discussed
in Chapter 4.

1. The Conjugation C — C, z ~ z. As is well known, the field R has
no automorphism apart from the identity (see Chapter 2, 5.3). In contrast
with this the field C has an infinity of automorphisms. Among them is one
which is distinguished from all others by the fact that it maps R onto itself,
and sends ¢ into the second zero —i (which, in principle, has precisely the
same status) of the polynomial X? + 1.

For every complex number 2 = z + iy, z,y € R, the complex number

Z:=z—1iy=2Rez -2

is known as the complez conjugate of 2.1° In the Gaussian number plane z
is represented by the reflection of z in the real axis (see figure). We have

1
Rez=§(z+2), Imz:%(z—f), z2=z24+y?’€R, 22> 0 for z#0;

In particular z is real if and only if z = Z, and purely imaginary if and only
if 2z = —2Z.

Operations with complex conjugate numbers are governed by the follow-
ing

1°The term “conjugate” (conjugué) was introduced in 1821 by Cauchy in his
Cours d’analyse.
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Ny

Theorem. The conjugation mapping C—C, 2z %, is an automorphism
of the field C, that is, 1 =1 and

w+z=w+Z, wz = wz forall w,ze€C.

The relation Z = z always holds. The fized point set {z € C:z = z} is the
field R.

All these statements follow without difficulty from the definition of z; we
shall content ourselves with verifying the multiplication rule. Let w = u+iv,
z = +1y. Then wz = ux — vy + i(vz + uy) while

Wz = uz — vy — i(ve + uy) = (v — iv)(z — iy) = Wz ]

Ezercise. Show that, for all a,b,¢,d € C with a@ = bb = c¢, we have
(a = b)(c — d)(a — d)(¢ — b) + i(ct — dd)Im(ch — ca — ab) € R. m]

The proof of the following criterion for linear independence is straight-
forward: Two numbers w,z € C are linearly dependent over R, if and only
if wz € R.

The conjugation transformation can be used advantageously to describe
all R-linear transformations T:C — C. R-linearity means that, for z =
z + iy we have T(z) = zT(1) + yT'(¢). This immediately gives us:

The following assertions about a transformation T:C — C are equivalent:

i) T is R-linear.

ii) T(2) = az + bz where a,b are constants belonging to C.

An R-linear transformation T:C — C is C-linear if and only if T(3) =
iT'(1); this applies if and only if T(2) = az.

The isomorphism F':C — C introduced in 2.5 has the property that

F(©) = F(c)' for ceC
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where the transpose of a matrix A is denoted by A’. Thus conjugation in
C is nothing else but transposition in C.

2. The Field Automorphisms of C. The mapping z — Z can be simply
characterized.

Theorem. The conjugation mapping is the only field automorphism of C
which maps R into itself, and which is different from the identily mapping.

Proof. If f:C — C is an automorphism with f(R) C R, then in the first
place f(z) = z for all z € R. It then follows that, for all z = z+iy, z,y € R

f(z) = f(z +1y) = f(2) + fF()f(y) = = + f(D)y.

Since i2 = —1, we have f(i)2 = f(i%) = f(~=1) = —1, hence f(i) = &i. The
case f(i) = ¢ gives f = id, the case f(i) = —i gives conjugation. ]

At the beginning of this century (1901), no less famous an authority than
DEDEKIND wrote: “die Zahlen des reellen Kérpers scheinen mir durch die
Stetigkeit so unloslich miteinander verbunden zu sein, da8 ich vermute, er
konne aufler der identischen gar keine andere Permutation [= Automor-
phismus] besitzen, und hieraus wiirde folgen, da$$ der Korper aller Zahlen
[= Kérper C] nur die beiden genannten Permutationen besitzt. Nach eini-
gen vergeblichen Versuchen, hieriiber Gewiflheit zu erlangen, habe ich diese
Untersuchung aufgegeben; um so mehr wiirde es mich erfreuen, wenn ein
anderer Mathematiker mir eine entscheidende Antwort auf diese Frage mit-
teilen wollte.” (Math. Werke 2, S.277). [The numbers of the real field seem
to me to be so inextricably connected to one another, that I would con-
jecture that this field has no automorphism other than the identity; and
it would follow from this that the field of all numbers (the field C) would
possess only the two above-mentioned automorphisms. After a few unsuc-
cessful attempts to establish this proposition on a rigorous basis, I have
abandoned this investigation; I would therefore be all the more delighted
if some other mathematician would let me have a decisive answer to this
question.] It is now known that there are, in fact, infinitely many other
automorphisms of C (which necessarily do not map R into itself). Such
mappings are constructed by appealing to the axiom of choice. No one has
yet actually seen such an automorphism. See Grundwissen Mathematik,
Vol. 2, Lineare Algebra und analytische Geometrie, p. 44.

3. The Natural Scalar Product Re(wz) and Euclidean Length |z|.
The Euclidean scalar product in the real vector space C = R? is given by
(w, z) := Re(wz) = uz + vy, where w=1u+1iv, z=z+1y.

As zZ = 2% + y? is never negative, the nonnegative real square root

2] := +1/(z,2) = +V2Z = /22 + y2
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always exists; it measures the Fuclidean distance of the point z from the
origin in the Gaussian number plane, or in other words the length of the
vector z. The number |z| is known as the absolute value'l of z. When z is
real, |z| coincides with the absolute value, as defined in the usual way for
real numbers. Clearly

lz] = |z] forall ze€C.
Since zz = |2|* we have the following elegant representation of the inverse

=2 forall z € C*.
|z|2
The mapping C x C — R, (w, z) — (w, 2} is R-bilinear, symmetric, and
positive definite, that is, for all w, w'z € C we have

(w+v,z) = (w,2)+ (W, z2); (aw,z) =a{w,z), a€R,
(w,2) = (z,w); (z,z) >0 whenever z#0;
these rules follow immediately from the definition of (, ). o]
Two vectors w, z are called orthogonal (are perpendicular to one another)
when (w, z) = 0. The vectors iz and z are always perpendicular to each
other because Re(izz) = |z|?Re(i) = 0. More generally, since zz € R we

have the result:
the vectors z,cz € C* are orthogonal if and only if ¢ is purely imaginary.

The reader may like to use this for a simple proof of the theorem that
the altitudes of a triangle meet in a common point, the orthocenter (see
the figure above where the orthocenter is —gfi).

It is amusing to interpret the scalar product Re(w?) in the field C of real

2 x 2 matrices (z —ab). We set the following as an
Ezercise. Show that

(A, B) = %trace(A -BY), A,Be€C,

11Weierstrass used the term “absolute value” (absoluter Betrag) in his lectures:
until then the usual expression had been “modulus.”
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18 a positive-definite, symmetric bilinear form. Show that the isomorphism
F:C — C is length preserving, that is, (F(w), F(z)) = (w, z}. Show further
that

(A, A) = det A.

4. Product Rule and the “Two Squares” Theorem. For calculating
with absolute values we have the product rule:

|wz| = |w||z| forall w,zeC.
To prove this we write |wz|? = wz(Wz) = wwzz = |w|?|z|%. o

The product rule contains a famous theorem, already known to Dio-
PHANTUS OF ALEXANDRIA (Greek mathematician of the second half of the
third century A.D.).

“Two Squares” Theorem. For all u,v,z,y € R we have

(u? + v?) (2% + %) = (uz — vy)® + (uy + vz)*.

Proof. We apply the product rule to w := u + iv, 2 ;= = + iy. O

Here complex numbers serve only to discover the two-squares theorem.
Once found it can easily be verified, by “multiplying out,” that the iden-
tity is valid for any commutative ring, and in particular for the ring Z of
integers. This fact is important in elementary number theory. Thus for ex-
ample it shows that a natural number n > 1 is a sum of two squares of
natural numbers if each of its prime factors has this property. It is shown
in elementary number theory that the primes of the form 1?2 + m?, with
I,m € N, are just the odd primes of the form 4k + 1 and the prime 2.

Generalizations of the “two-squares” theorem will play an important role
in the later chapters of this book (see, for example, 6.2.3, 8.2.4 and Chapter
9). o

The product rule implies the
division rule |w/z| = |w|/|2| forall weC, zeC*.
The product rule also implies, as an immediate corollary:

The set S* := {z € C:|z| = 1} of all complez numbers of unit length is
a subgroup of (C*,-) with respect to multiplication in C.

S?! is represented in the Gaussian plane by the circumference of the unit
circle centered on the origin. We shall call S the circle group, and it will
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be used in 5.2 in defining the orthogonal group O(C). It plays a decisive
role in the introduction of polar coordinates in §6.

There is an important relationship between the three multiplicative groups
C*, S and R := {z € R, z > 0}:

The mapping C* — R x S, z — (|2}, z/|2| is a (topological) isomor-
phism of the (topological) group C* onto the product of the (topological)
groups RY and S*.

Ezercise. Let ¢ € S1. Show that there is a w € {1,—1,4,—i} such that
|c — w| < 1. (See also 4.2.4 in this connection.)

5. Quadratic Roots and Quadratic Equations. To every real number
r > 0, there is precisely one real number s > 0 such that s2 = r; s is called
the nonnegative square root of r, and is written as /r (this fact has already
been used in the definition of |z]). It is not possible to extract a real square
root from a negative real number. With complex numbers the situation is
better.

Existence Theorem. Let ¢ = a + ib where a,b € R, be any complex
number. Let £ be defined by

1) £:=\/30el+a) +imy 3(1el - )

where 1 := 1 with the sign chosen so that b = n|b|. Then €2 = c.

The proof is straightforward. We arrive at (1) automatically by starting
from the equation (z+iy)? = a-+1b which is equivalent to the two equations
2 — y? = a, 2zy = b. It follows, since =% + y* = |¢|, that 222 = |¢| + a
and 2y? = |c| — a, thus verifying (1). As in the real case, the number £ is
called a square root of ¢ and is denoted by \/c. Apart from ¢, the only other
square root of ¢ is —£. The symbol 1/c is therefore two-valued.

All quadratic equations, in standard form

224+ 2z24d=0, ¢,d eC,

can now be solved immediately. Using the age-old trick of the Babylonians,
the device of completing the square, the equation becomes

(z+c)2+d—c2:0
whose two solutions zy, 29 can be read off at once:

z1 ;= —c+Vc2—d, 29 := —c— Ve —d,
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where v/¢Z — d in both cases denote the same square root. One obtains the
linear factorization

224 2z+4d=(2-2)(z — 23)
and in particular the well-known rule taught at school.
Vieta’s Rule.l? 2y + 20 = —2¢, 2129 =d.

In 6.3 we shall give the solution of quadratic equations in polar coordi-
nates.

In 5.2 we shall use the proposition:
To every number ¢ = a + tb € S* with a > 0 there exists a £ € S such
that

(1) £=c and |imel < =l

7

Proof. Let & be chosen to satisfy (1). Since |£|]2 = |¢] = 1, € € S!. Since
1=1a?+b%and a > a%as0<a<l,itfollows by (1) that 2|Im¢|? =
1—a<1-a%=1b% which is equivalent to (1). o

The existence theorem for square roots has some unsuspected conse-
quences. We give a first sample in the next paragraph.

6. Square Roots and nth Roots. Let n > 1 be a natural number, and
let ¢ € C. Every complex number £ such that " = c is called an ntk root
of c. The existence theorem 5 is so powerful that the existence of nth roots
can be speedily deduced from it.

Theorem. Every complez number ¢ has nth roots for 1 < n < co.
Proof. We use induction on n and make use of the proposition

(*) Every real polynomial of odd degree has a real root, that is, it vanishes
Jor some real value of the variable (by the intermediate value theorem) and

in particular every number r € R has a (2m+ 1)th root in R, m=1,2,....

By Theorem 5 the proposition is true for n = 2 (it is trivial for n = 1).
Suppose n > 2. In the case n = 2m, there is in the first place an n € C

2 Frangois Vieta (1540-1603, Paris, Government official) introduced calculation
with letters as symbols for numbers, using vowels for unknown and consonants
for known quantities.
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such that n% = ¢. Since m < n, there is then, by the inductive hypothesis,
a & € C such that £™ = 5. It follows that £” = c.

Now suppose n to be odd. Because of () we may assume that ¢ € R and
le| = 1. We choose a d € C such that d?> = ¢. Then dd = 1. Consider the
polynomial

p(X) :=i[d(X + )" — d(X - i)"] = i(d — d)X" + lower order terms.

Since p(x) = p(z) for all z € R, p is a real polynomial. Since d ¢ R, p has
the odd degree n. By (*) there is therefore a A € R such that p(}) = 0.
We conclude

d(A+19)* = d(A—14)", hence (;\+z) :%—_—dzzc. O
—1

The theorem can also be formulated as follows:

Every polynomial in C(z) of the form z™ —c of degee n > 1 has a complez
zero.
This is an important special case of the fundamental theorem of algebra.

Historical Note. The existence of nth roots is usually shown with the help
of the complex exponential function, see 6.4, this method being particularly
simple and economical. The fact that nth roots can be constructed in an
elementary fashion without a knowledge of the exponential function had
already been pointed out by DEDEKIND in a letter of 1878 to LIPSCHITZ (see
LipscHITZ Briefwechsel ed. SCHARLAU, Vol. 2, Brunswick, Vieweg, 1986,
p. 91). HURWITZ in 1911 beautifully demonstrated the power of the process
of (iterated) square root extraction in his method of introducing the real
logarithm function (see Uber die Einfithrung der elementaren Funktionen
in der algebraischen Analysis, Math. Ann. 70, 33-47; Math. Werke 1, 706~
721).

‘We shall see in 4.2 that the existence of square roots in the final analysis
leads to the fundamental theorem of algebra; we shall furthermore show
in 7.4 that the famous GELFAND—MAZUR theorem in functional analysis is
really based on nothing more than the ezistence of square roots and simple
topological properties of normed vector spaces.

§4. GEOMETRIC PROPERTIES OF THE FIELD C

In this paragraph, the scalar product (w,z), the length function |z|, and
the cross ratio of four points in C, will constitute the focus of our attention.

We shall prove, among other things, PTOLEMY’s famous theorem, now
almost two thousand years old, on the diagonals of a cyclic quadrilateral,
and the theorem on the WALLACE lines. We should like to make it clear
that these particular geometric applications have been chosen on historical
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grounds. Many other equally striking and less well known applications could
easily be found. We refer those interested to YAGLOM, Complez Numbers
in Geometry, New York, Academic Press, 1968.

1. The Identity (w,2z)? + (iw,2)? = |w|?|z|?. Since we always have
Re(iz) = —Imz, it follows that (iw,z) = —Imwz. We can therefore de-
duce, with the help of the product rule 3.4 the following useful identity
1) (0,22 + (i, 2)? = |wl?le,  wz€C.

Proof. (w, 2)? + (iw, z)? = (Rew?)? + (~-Imwz)? = |wz|? = |w|?|z|?. O

As a corollary we obtain

The CAucHY-SCHWARZ Inequality. |[(w, z)| < |w||z] for all w, z € C with
the equality sign applying if and only if w, z are linearly dependent.

Proof. The inequality is implicit in the identity (1), which also im-
plies that there is equality when (fw,2} = —ImwZ = 0, that is, when
wz € R. 0

We give a second proof which uses the product rule and the inequalities
|IRez| < |z, Imz| < |2|, 2 € C which clearly follow from the respective
definitions. We have |(w, z)| = |Re(wz)| < |wz| = |w||z] = |w||2| from
which we deduce that |Re(wz)| = |wZ| if and only if wz € R.

2. Cosine Theorem and the Triangle Inequality. Just as for every
scalar product, we have

|w+ z|? = |w|® + |2]? + 2Re (wZ) (cosine)
Proof. Thanks to the additivity and symmetry of (w, z) we have
lw+ z|? = (w+ z,w+ 2) = (w,w) + (w, 2) + (z,w) + (2, 2)
= |w|® + 2 Re(w?) + |2). 0
We shall return to the cosine theorem in 6.2, where the reason for the

choice of name will be explained. With the help of the CAUCHY—SCHWARZ
inequality one can prove the

Triangle Inequality. For all w,z € C, we have |w + z| < |w| + |z|. The
equality sign applies if and only if wz > 0.

Proof. |w+ 2|7 = [wf? +2(w,2) + ol < [w]® + 2wl|z] + |2 = (ju] +
[2[)2. By the CAUCHY-SCHWARZ inequality |(w, z)| = |w||z]| & wz € R.
Consequently the case (w, z) = |w||z| applies if and only if wz > 0.

A mapping ||: K — R of a (commutative) field K into R is called a
valuation of K, when, for all w, z € K, the following relations hold:
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D |2]20, |z=0&2=0,
2) |wz| = |w| |7 (Product rule)
3) lw+z| <|w|+|2] (Triangle inequality).

A field together with a valuation is called a field with valuation. The fields Q
and R are fields with valuation. We have seen that C can be provided with
a valuation, by means of the absolute value function |:C — R, z — |z,
and that this valuation is an extension of the valuation of R by means of
the absolute value.

A subtle interplay between the absolute value function and the field
operations is revealed in the following

“Three-party” Theorem. Let 21, z2, 23 be three distinct complez num-
bers such that |z1| = |22| = |23|. Then the following statements are equiva-
lent:

i) 21, 29, 23 are the vertices of an equilateral triangle
ll) 21 +22+Z3:0
i) 2y, 29, 23 are the roots of an equation Z3 = ¢ where ¢ € C.

If one thinks of z;, 24, 23 as political parties, interpreting equal in length
as equal in strength then the implication (i) to (ii) provides the motivation
for the name of the theorem.

The proof may be left to the reader. It can be reduced to the case
212223 = 1, and to prove i1} = iii) one can consider the expression 21 z223(Z1+
Zo + 23). 0

If one defines the centroid of a triangle with vertices zy, 23, 23 as the point
3(2z1 + 22 + z3), the equivalence of i) and ii) asserts that the centroid of
a triangle is at the center of its circumcircle if and only if the triangle is

equilateral.
In analogy with the foregoing, if 2y, 29, 23,24 € C and |z1| = - -+ = |24|
the following three statements are equivalent:

1) 21, 29, 23,24 are the vertices of a rectangle.
1]) 21+22+23+Z4:0.
iii) 21,...,24 are the roots of an equation (Z2 — a?)(Z? — b2) with |a| =

bl # 0.

3. Numbers on Straight Lines and Circles. Cross-Ratio. Two num-
bers a, b € C lie on a straight line through 0, if and only if ab € R (see 3.1).
More generally:
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Three numbers a,b,c € C, a # b, are collinear if and only if

1 c-a eR, that is, if and only if cb—ca —ab € R.
b

a

The proof is trivial because the line through a,b has the parametric
representation a + (b — a)s, s € R. a

If a,b,c,d € R with a # d, b # ¢, then the cross-ratio or anharmonic
ratio, denoted by C'R(a,b,¢c,d) is defined by
a=b c—b (a—b)c—d)
a-d c—d  (a—d)(c—1b)
_ (a—b)c—d)@a-d)(E-b)
B la — d|?|c — bJ?

This number depends on the order of the four points, a, b, ¢, d. The recip-
rocal value is obtained when the points undergo a cyclic permutation:

CR(b,c,d,a) = CR(a,b,c,d)™ .

(2) CR(a,b,c,d) :=

eC.

We now prove:

Theorem. Four numbers a,b,c,d € C, a # d, b # ¢, not all on the same
straight line, lie on a circle if and only if their cross-ratio is real.

Proof. Suppose say that a, b, ¢ are not collinear. Since this property and the
cross-ratio are both translation invariant, we may assume that the center of
the circumcircle of the triangle with vertices a,b, ¢ lies at the origin. Then
la| = |8} = |c| and

(a —b)(c — d)(@— d)(¢ — b) + i(|c|* — |d|*)Im(cb — ca ~ ab) € R

by exercise 3.1. Since a, b, ¢ are not collinear, Im(cb — ca — ab) # 0 by (1).
It follows therefore that

(@a=b)(c—d)@a—-d)(c—d) ER < |c| = |d|
and by (2) this is what the theorem asserts. ]

In the theory of fractional linear transformations z — %ﬂ'—g the cross-
ratio plays a central role. In this theory the argument z is allowed to assume
the value co. The cross-ratio is invariant under all fractional linear trans-
formations, and this makes possible a new proof of the preceding theorem.
See, for example CONWAY, Functions of One Complex Variable, Springer,

1978, p. 43.

4. Cyclic Quadrilaterals and Cross-Ratio. Any four distinct points
a,b,c,d € C define a quadrilateral abed in C with vertices a, b, ¢, d, whose
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sides are the line-segments joining a to b, bto ¢, ¢ to d and d to a. A
quadrilateral is said to be cyclic when its vertices all lie on a circle and
when two different sides intersect in a vertex, if they intersect at all. (The
figure in the next paragraph illustrates a cyclic quadrilateral abed; the
quadrilateral abcd which would be obtained by interchanging the vertices
b and ¢ would not be a cyclic quadrilateral.)

Theorem. A quadrilateral abed is cyclic if and only if the cross-ratio
CR(a,b,c,d) is negative.

Proof (using a continuity argument). Let S! be the given circle. The
squares @, @' whose vertices are respectively the points 1,7, —~1, —i and 1,
—1, —1, 7 are cyclic and the cross-ratio of their vertices is —1. It is “obvi-
ous” that a quadrilateral V can be obtained from @ or Q' by a continuous
displacement of the vertices along the circumference of S! in such a way
that two vertices never coincide during the displacement.

Since the cross-ratio of four different points on S! is, by Theorem 3, a real
number and since it is a continuous non-vanishing function of its arguments,
it follows from the intermediate value theorem that a quadrilateral with
vertices a,b,c,d € S? is cyclic if and only if CR(a,b, ¢,d) < 0.

5. PTOLEMY’s Theorem. The Egyptian mathematician Claudius
PTOLEMY (Alexandria, circa 150 A.D.) proved in his Almagest, Book 1,
Chapter 10 the following theorem which is still occasionally discussed in
school geometry:

In any cyclic quadrilateral abed the sum of the products of the opposite
sides is equal to the product of the diagonals

[a=b]-le=d|+|a—d|-|[c=b=]a—c|-|b—d]

PTOLEMY made this theorem serve Astronomy and used it as a tool in
the computation of his famous table of chords. If, in fact, one of the sides
is a diameter, then it is an easy matter to derive the addition theorem

sin(a — B) = sin & cos § — cos asin §.

PTOLEMY proved his theorem by an elegant trick of elementary geometry.
He constructs a point e on the line ac so that Zabe = Zcbd. The triangles
abe and bed are then similar, and a simple argument then leads to the
desired conclusion. )
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To prove PTOLEMY’s theorem and more, with the aid of complex num-
bers, we assign to every quadrilateral abed in C the “PTOLEMY number”

P(abed) = |(a - b)(c — ) + |(a = d)(c = b)| = [(a— )(b - D).
Since (a—b)(c—d)~(a—d)(c—b) = (a—c)(b—d) holds for every commutative

ring, and since CR(a,b,c,d) = (a — b)(c — d)(a — d)~(c — b)~, a direct
verification shows that

P(abed) = |(a — d)(b - ¢)||CR(a,b,c,d)| + 1 — |CR(a,b,c,d) — 1|.

Since, by the triangle inequality |w — 1| = jw| + 1 if and only if w is real
and < 0, we have, thanks to Theorem 4, demonstrated

Theorem. The following two statements about a quadrilateral abed in C
are equivalent:

i) The assertion in PTOLEMY ’s theorem holds for abed: P(abed) = 0.
ii) The quadrilateral abed is cyclic.

The converse of PTOLEMY’s theorem, that is the implication i) => ii),
was proposed in 1832 in CRELLE’s Journal, Vol. 8, p. 320 as an exercise.
Solutions are to be found in Volumes 10, p. 41; 11, 264-271 and 13, 233-236.
CLAUSEN among others gave an elegant solution.

6. WALLACE’s Line. Suppose a,b,u € C, a # b. The foot v of the
perpendicular from u on to the line L := {2z = a + s(b — a): s € R} through
a and b is, since i(b — a) is orthogonal to (b — a), the point of intersection
of L with the line L' := {z = u+ it(b — a)}, (see Fig. a). This gives for s,t
the condition s — ti = (u — a)(b—a)~!, and thus 2s = (v —a)(b—a)~! +
(@ — a)(b— @)~! and therefore

v-—-l-[a+u+(ﬁ &)b—a]
T2 b—aj
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In the case |a| = |b] we have (b—a)(b—a)~! = —b(a)~! and consequently
1 _ab .
(*) v:—2—(a+b+u—u-|—a—l—2—), if |a] = b].

We make use of (%) to prove a little-known statement about three
“remarkable” 13 points of a triangle.

/' WALLACE’s
line

Fig. a Fig. b

Theorem. Let a,b,c € C be the vertices of a triangle, and vy, va, v the feet
of the perpendiculars from an arbitrary point u € C onto the lines through
the pair of points a,b; b, c; c,a respectively. Then the following statements
are equivalent (see Fig. b):

1) The points vi, va, vs are collinear.

i) The point u lies on the circumcircle of the triangle whose vertices are
a,b e

Proof. We may assume that the circumcircle is S*. We then have, by (*),
if we make the initial hypothesis that vy # vs, u # 0.

vi—v3 b—c—aab+iac _(c—b)(@a-1) c—b ~a-b
vg—v3 b—a—dabc+iac (a—b)tc—1) c—a"! a-u?
= CR(c,b,a,a7t).

The equivalence i) <> ii) now follows from the results of Section 3, since
@1 € S! is equivalent to u € S1. The case vs = v3 is, by virtue of a # b,
possible only if tic = 1, that is, if u € S!. In the case u = 0, we have

13The word “remarkable” is used in classical elementary geometry in the sense
of “worthy of notice.”
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(v1 — v3):(vg — v3) = (¢ — b):(a — b), so that vy, v, vz are not collinear
because a, b, ¢ are not. (]

In the case where u lies on the circumcircle, the line through vy, vy, v3
is called WALLACE’s line,!* after the self-taught Scottish mathematician
William WALLACE (1768-1843) who, after having been a teacher in Perth,
was Professor of Mathematics at Edinburgh University from 1819. This
line is also sometimes (in fact more usually, if mistakenly) known as the
SIMSON line, after the Scottish mathematician Robert SiMsoN (1687-1768)
who successfully sought to revive the study of ancient Greek geometry in
England. However MACKAY showed, in two articles in the Proceedings of
Edinburgh Mathematical Society 9, 1891, 83-91 and 23, 1905, 80-85, that
no comparable result is to be found in the published works of SiMsON,
whereas the implication ii) = 1) appears, obviously for the first time, in an
article by WALLACE in the Mathematical Repository 2, 1799-1800, p. 111.

§5. THE GROUPS O(C) AND SO(2)

In the following paragraphs we shall show, among other things, that the
circle group S! is isomorphic to the orthogonal group SO(2) of orthogonal
2 x 2 matrices with determinant 1, under the mapping F: C — C, a + bi —

b
the group SO(2).

(a :lb). We shall also obtain a classical parametric representation of

1. Distance Preserving Mappings of C. A (not necessarily R-linear)
mapping f:C — C is called distance preserving (or isometric), if

[f(w)— f(z)|=|w—2] for w,z€C.

Theorem. The following statements about f:C — C are equivalent:
1) f satisfies f(2) = f(0) + cz or f(z) = f(0) + ¢z with c € S*.
i) f is distance preserving.

Proof. i) = ii). This is trivial since f(w) — f(2) = ¢(w — 2) or = ¢(w — Z)
respectively.

ii) =1). As ¢ := f(1)—f(0) € S?, the mapping g:C — C, z ~ ¢~ 1(f(2)~
f(0)) is certainly distance preserving. Since g(0) = 0 and g(1) = 1 we
have ]g(2)|2 = |z|? and [g(2) — 1|> = |z — 1|2. It follows from this that
Reg(z) = Rez, and in particular that g(7) = +i. In the case where g(i) = i,
then §(z) := —ig(iz) is distance preserving with §(0) = 0, §(1) = 1, and

*Not to be confused with the well-known Wallace line in geography and natural
history.
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therefore (from what has just been proved) Re(—ig(iz)) = Rez, that is,
Img(z) = Imz, whence g(z) = z and f(z) = f(0) + cz. In the other case
where g(i) = —i, it follows similarly with §(z) := ig(iz) that Re(ig(iz)) =
Rez, that is Img(z) = —Imz, and hence f(z) = f(0) + cz. O

In particular every distance preserving mapping of C into itself which
fixes the origin is R-linear.

In linear algebra every distance preserving mapping of an Euclidean vec-
tor space V into itself is called a motion (or displacement). The statement
which we have just proved above is thus a special case of the general theo-
rem that every (Euclidean) motion f:V — V has the form z — f(0)+ h(z)
where h:V — V is orthogonal.

2. The Group O(C). An R-linear mapping f: C — C is called orthogonal if
(f(w), f(2)) = (w, z) for all w, z € C. Every orthogonal mapping f:C — C
is length preserving: |f(z)| = |z|, and therefore because of R-linearity, also
distance preserving.

Theorem. A mapping f:C — C is orthogonal if and only if
f(z)=cz or f(z)=cz with ceS.

Proof. The specified mappings are orthogonal. For example in the second
case

(f(w), f(2)) = Re(cti(c2)) = |c|*Re(w2) = (w, z)

since ¢ € S1.
Conversely, if f is orthogonal it is distance preserving and the statement
follows from Theorem 1 because f(0) = 0. a

Ezercise. Prove the theorem directly by using the characterization of R-
linear mappings in 3.1 and showing, by verification, that

laz +bz| = |z|forall z€C©a€ S andb=0ora=0and be S

The orthogonal mappings of C form a non-Abelian group, under the oper-
ation of composition, the so-called orthogonal group O(C). The orthogonal
mappings of the form T,(z) = cz, ¢ € S, are called rotations, and con-
stitute a normal subgroup SO(C) of S(C). It follows from the foregoing
considerations that:

The mapping S* — SO(C), ¢+ T,, is a group isomorphism.
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In particular the group SO(C) is Abelian. The mappings f(z) = cz,
c € S? are called reflections; they constitute the only other coset in O(C)
relative to SO(C).

3. The Group SO(2) and the Isomorphism S! — SO(2). The set
(1) 0(2) := {A € GL(2,R): AA' = E}

of all real orthogonal 2 x 2 matrices is an important subgroup of the group
GL(2,R) of all real invertible 2 x 2 matrices. Since det A = det A* we have
det A = +1 for all A € O(2). The set

SO(2) := {A € 0(2):det A =1}

is a normal subgroup of O(2), and is the group of all proper orthogonal
2 x 2 real matrices. Denoting by C the subfield of Mat(2,R) which was
introduced in 2.5, we then have the following:

Theorem. SO(2) = {A € C:det A = 1}.

Proof. For A = (Z we can verify immediately that AA* = (det A)E,

from which it follows that {A € C:det A = 1} C SO(2).

b
For A = (i d) € SO(2) we have A1 = A = (Z ;) by (1). On
the other hand since A~! = _dc _ab) on account of det A = 1, it follows

that d = a, ¢ = —b, or in other words A € C.

This immediately yields the:
Isomorphism Theorem. The circle group S' is mapped isomorphically
on to the group SO(2) by the mapping F:C — C, a + bi — (Z _ab).

Proof. The statement is clearly true since

F(Sl):{A:(z —ab)e(,’:detA:az+b2:1}. 0
The orthogonal groups SO(3) and SO(4) will be described in Chapter
6, §3 with the help of quaternions.

4. Rational Parametrization of Properly Orthogonal 2 x 2 Matri-
ces. The set S \ {—1} is mapped bijectively on to the imaginary axis, by
mapping the point @ + i3 of S! onto i), the point of intersection between
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the line joining —1 to « + i8 and the imaginary axis (see figure). A simple
calculation (intercept theorem of THALES) gives:
1-2)2 2 B8
1 = — = —Q = —
M e= 12

It follows that a + ¢ = u’ so that we have the rational parametrization

@) ST\ {- 1}—{”’2,\ IR}

where the real and imaginary parts of ¢ := %_:L;\\ are rational, that is, belong
to Q, if and only if A is rational.
In view of F(S') = SO(2), this result can be expressed in the form

1 1-2%2 -2
®  son\-m={rm ("o ) rer),
the matriz is rational if and only if X is rational.
Remark. One can get rid of the exceptional role of —1 and —F in the

equations (2) and (3) if one replaces A by A/k and simplifies. We then
have, without any restriction

(2) 5= {SE N e R\ O]

K

= {KZHQ[(K — A%) + 2kMd]: (k, ,\)e]Rz\{O}}

® s ={s (Vo 57NN R\ (0},

We shall make our acquaintance in 6.3.5 with EULER’s famous rational
parametric representation of the group SO(3), which includes, as a special
case, the representation (3') of SO(2).



§6. Polar Coordinates and nth Roots 89

The representation (3) for proper orthogonal 2 x 2 matrices is really
nothing more than CAYLEY’s representation

(*) A= (E—-X)"Y(E+ X), where X € Mat(2,R) is skew symmetric,

for all 2 x 2 skew symmetric matrices are of the form A ((1) -E)l ), A ER,

and since X2 = —A2E, the equation (*) is the analogue of the equation
a+if = (1 -2~} (1+ Ai). Since (E— X)~! = (14 A?)"}(E+ X) we have

A= (14X E+X)?2 = (14271~ A)E + 2X]
=(1+ /\2)—1 (1 ;/\,\2 1__2;2) .

The equations (1) for the rational points on S* contain the so-called
“Indian formulae” for Pythagorean triplets. A triplet of nonzero natural
numbers k, I, m is said to be Pythagorean if k? 4+ 1> = m?. It is obvious
that at least one of the numbers &, must be even. We shall show that:

If k,l,m is a Pythagorean triplet and l is even, then there are nonzero
natural numbers r,s,t such that

k= (r?=s®t, 1=2rst, m=(r’+s%)t (the Indian formulae).

Proof. Corresponding to each m™1k+im~1l € S'\{—1} thereisa A = s/r,
with r,s € N'\ 0 such that by (1)

If we now choose r,s to be relatively prime, then 72 + s2, rs also are
relatively prime (the reader should prove this). As £l = £ € N, it

r24s?
follows that ¢ := -r—,—'fs-; € N which proves the proposition. u|

§6. POLAR COORDINATES AND nTH ROOTS

Polar coordinates are introduced in the complex number plane by writing
every point z € C = R? in the form (r cos ¢, rsin ¢) as in the figure. Here
r := |z| is the distance of the point z from the origin, and ¢ is the angle
in circular measure (radians) between the positive z-axis and the position
vector of z. Every complex number z # 0 thus has the form

z = r(cosp + isinp),
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where the angle ¢ is uniquely determined apart from an arbitrary integral
multiple of 2.

Although these things are clear enough intuitively, it is another matter
to establish them precisely and a rigorous proof is not trivial. One needs
properties of the sine and cosine function which despite being well known
have proofs which lie rather deeper. In the treatment which follows we shall
work mainly with the complex exponential function

[ve]
ZI/
expz:E =
~ v

defined everywhere in C.
We write e*¥ := exp(ip) and appeal essentially to the

Epimorphism Theorem. The mapping p:R — S, ¢ s €'¥ is a group
epimorphism of the (additive) group R onto the (multiplicative) circle group
S. There is ezactly one positive real number m such that:

a) the group 27Z is the kernel {r € R:p(r) = 1} of p; in particular:

p(p) =p(¥) @ o —v e2xZ;  p([0,27)) = S .

b) p(w/2) = 1.

It follows automatically from b) that p(7) = —1, p(%r) = —1i. We call
p the polar coordinate eptmorphism. The connection between p and the
trigonometrical functions

- 2v _ ( 1) 2 +1
cos z ;= Z 21/)' , sinz: Z s 1)' vt 2z €eC,
0

is obtained by means of EULER’s formula

expiz = cosz+ isinz
which obviously implies:

¢) p(p) = €' = cosp + ising for all p € R.
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EuLER’s formula and above all the epimorphism theorem are discussed
at length in Chapter 5, see in particular 5.3.1 and 5.3.6.

1. Polar Coordinates. One of the consequences of the epimorphism the-
orem is the following;:

Theorem. Every complez number z € C* can be written uniquely in the
form

(1) z=re** =r(cosp+ising) with r:=|z| and ¢ €[0,27).

For every other representation z = pe'¥ = p(cos ¢ + sinv) with p,Y € R,
p > 0, the numbers p,p are given by p=r and = p + 2nw with n € Z.

Proof. Since r~'z € S*, there is a ¢ € [0,27) such that p(p) = r~'z. This
means that z = re'¥ = r(cosyp + ising). If z = pe'¥ with p > 0, ¥ € R,
then |z| = p since ¢'¥ € S!. Hence €' = ¥, so that p — ¢ € 27Z. a

The equation (1) is called a representation in polar coordinates, the num-
bers r, p, or more generally r, i, where ¥ = ¢ + 2nw, are called polar
coordinates of z. The number ¢ € [0,27] is known as the argument or
amplitude of z € CX.

Polar coordinates were already used by NEWTON in 1671 in investigating
plane spirals. The representation of complex numbers in polar coordinates
first appears in EULER and D’ ALEMBERT; the factor cos ¢ +isin ¢ is called
by CaucHY in 1821 (in his Cours d’analyse) an “expression réduite.”

The numbers 1, 7, —1, —i have the following polar coordinate represen-
tations

1=1-(cos0+ isin0), i:l-(cosg-+isin%),

—1=1(cosm+isinm), —i:l-(cos%t-i—isin?—zz);

so that we have the classical diagram illustrated below with the four values
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ei?r/Z = ei1r =1 et'3‘ll’/2 = —3 621“' =1
- - ’ - ’ )
these are particular cases of the identity

m = (eivr/2)m = eim';r/z’ meZ.

The representation of conjugate complex numbers and of inverses is sim-
ple in polar coordinates. Since cos(—¢) = cos ¢ and sin(—¢p) = —sinp, it
follows that:

If z = |z|e'* = |z|(cos p + isin ), then
(2) : :
Z=|z]e7* = |z|(cosp — ising), 27! =|z|7 e = |z|7 (cos p — isin ).

The second equation follows from the first since 27! = |z|~2z.

The real polar coordinate mapping

{reR:r>0} xR—C*, (r,¢)+— (z,y):=(rcosy,rsinep)
is differentiable arbitrarily often in the real domain. We have
det (x' :c‘,,) = det (cpsgo —rsm(p) =r#0,
Y Yo sing rcosgp

and therefore there exists everywhere a real differentiable inverse mapping
(which is given by

(z,y) — <\/.’L‘2 + y2, arccos ;)
/122 + y2

assuming the appropriate branch of the arccosine function is chosen).

2. Multiplication of Complex Numbers in Polar Coordinates. Since
e¥e'? = ' (¥19¢) we have immediately for w, z € C*, the following.

Theorem. If

w = |w|e? = |w|(cos ¢ + isinp), z=|z]e'® = |z|(cosp + isinp),
then
(1) wz = |w] |2V = ] |z|(cos(v + ) + isin(p + @),

and hence also

2 = Moo < Plicosw - o) + isingy - ).

z | 7|
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The products and quotients of two complex numbers are therefore ob-
tained by respectively multiplying and dividing their absolute values, and
respectively adding and subtracting their amplitudes (see Fig. a). The equa-
tion (1) is fundamental and far more than simply a convenient calculating
rule which makes the use of polar coordinates obviously advantageous in
multiplying complex numbers. It is a profound and unexpected justifica-
tion for the geometric interpretation of complex numbers in the plane. The
mathematical power of this equation was already known to EULER.!®

iy wz = |w||zl(cos(¥ + @)
+ isin(y + @)

e w = |w|(cosy + isiny)
z = |z|(cos ¢ + isin @)

X

Fig. a Fig. b

The scalar product (w, z) = Re(wz) takes the well known form (w, z) =
|w]|z| cos x, where x := 1) — ¢ is the “angle between the vectors w and 2,”
as in seen by using the equation (1) in the form

wz = |w]|z|(cos(y — ) + isin(y — ¢))

(see Fig. b). It now becomes clear why the equation |w+z|% = |w|? + 2|2 +
2Re(wz) was referred to as the cosine theorem in 4.2; since a + x = 7
(see Fig. b) we have cosx = —cosa and hence |w + 2|? = |w|? + |2|? -
2|w| |z]| cos a.

3. de MOIVRE’s Formula. (cosp + ising)” = cosny + isinng for
n € Z. This is clear from (¢¥)® = €”%; more generally, we have the
following

Theorem. For every complez number z = re'¥ = r(cos ¢ + isinp) € C*
the equation 2" = r"e*™¥ = r™(cos ny + isinny) holds for all n € Z.

The French huguenot mathematician Abraham DE MOIVRE (1667-1754)
emigrated to London after the revocation of the Edict of Nantes in 1685. He
became a member of the Royal Society in 1697 and later of the Academies

'On page 154 of Cauchy’s Cours d’analyse of 1821, we read however the sen-
tence, so astounding to modern ears “L’équation cos(a + b) ++/—1sin(a + b) =
(cosa ++/—1sina)(cosb ++/—1sind) elle-méme, prise i la lettre, se trouve inex-
acte et n’a pas de sens.”
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in Paris and Berlin. His famous book on probability theory, the Doctrine
of chances was published in 1718; he discovered the well known “Stirling’s
formula” n! & /2mn(n/e)" before Stirling; and in 1712 he was appointed by
the Royal Society to adjudicate on the merits of the rival claims of NEWTON
and LEIBNIZ in the discovery of the infinitesimal calculus. NEWTON in his
old age, is said to have replied, when asked about anything mathematical
“Go to Mr. DE MOIVRE; he knows these things better than I do.” DE
MOoIVRE gave the first indication in 1707 of his “magic” formula by means
of some numerical examples. By 1730 he seems to have been aware of the
general formula

1 - 1 —
cosp = 3 Y/cosnp + isinnp + 5\"/cosntp—zsmn<,o, n> 0.

In 1738 he describes (in a rather long-winded fashion) a procedure for
finding roots of the form </a + ib, which is equivalent as far as content
goes, to the formula now known by his name. The formula in the form in
which it is now usually expressed is first found in EULER in Chapter VIII
of his Introductio in analysin infinitorum published in 1748. It was also
EULER who, in 1749, gave the first valid proof of the formula for all n € Z
and who stripped DE MOIVRE’s formula of all its mystery by the equation
(eiw)n - eimp.

DE MoIVRE’s formula provides a very simple method of expressing cos np
and sin ny as polynomials in cos ¢ and sin ¢, for all n > 1. Thus for exam-
ple, we obtain for n = 3, by separating the real and imaginary parts:

cos 3p = cos> p — 3 cos psin? e, sin3p = 3cos? psinp — sin® .

The trigonometrical representation of the solutions of the quadratic equa-
tion z2 + az + b = 0 foreshadowed in 3.5 arises in the following way: we
write $(a? — 4b) = r(cos ¢ + isin ¢) and the roots then take the form

1 .
zy = —%a+\/;(cos§+isin %), Zz =50 —\/;(COS’E'H'S”’ g)

4. Roots of Unity. As one of the most important applications of polar
coordinates, we shall demonstrate the following.

Lemma. Let n > 1 be a natural number. Then there are precisely n differ-
ent complex numbers z, such that 2" =1, namely

omi
C,,::expﬂu, v=0,1,...,n—1.
n

In particular ¢, = (¥ where  := (3.
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Proof. The equations ¢, = (¥ and (]} = 1 clearly hold (DE MoIVRE). Since

_ 2r
CCpt =exp *n—(V - 1),

it follows that {, = {, if and only if %(V — p#) € Z because the kernel
of pis 27Z. Since —n < v — p < n it follows that v = u, or in other
words o,(1,---,(n-1 are all distinct from each other. For z = |z|e!¥ we
have z" = 1 if and only if |2z] = 1 and €"? = 1, that is, if ¢ = %
with k € Z. As 0 < ¢ < 2m, it follows that k € {0,1,...,n — 1}, that
is z = (. Accordingly there are no other complex numbers z, apart from
C0,€1,.--,Cn—1 satisfying the equation 2" = 1. ]

The n numbers 1,(,¢?,...,¢{" ! are called the nth roots of unity. Ge-
ometrically, they represent the vertices of a regular n-sided polygon (the
figure shows the fifth roots of unity). An nth root of unity is said to be
primative if all the other nth roots can be represented by one of its powers;
the root ( is always a primitive nth root, that is, for n = 5

(= ‘/54‘ Ly 2\/2(5+ V5).

{ =cos72°
S +ésin72°

The lemma above can be immediately generalized. Writing
1 .
& = /|c|exp ¥ for c= lelet? € C%,
n
where {/|c| denotes the positive real nth root of |c|, we have the following:

Existence and Uniqueness Theorem for nth Roots. Every complex

number ¢ = |c|e!? € C* has precisely n different complez nth roots, for
every n € N, n > 1, namely the roots £,6C,EC?,...,6C" ! where ¢ :=
exp &

This provides a new proof of the theorem 3.6.
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Realization of the many-valuedness of roots gradually developed during
the 17th century. For example, the theorem that nth roots have n distinct
values was, by 1690, already very familiar to Michael ROLLE (1652-1719),
a mathematician who worked in Paris and was a member of the Académie
Francaise. Incidentally ROLLE found the well known theorem in the differ-
ential calculus which bears his name in the course of researches into the
roots of polynomials, when he observed that between any two neighboring
real roots of a real polynomial, there must always lie a root of the first
derivative.

The British mathematician Roger COTES (1682-1716) who was a student
and then Professor at Cambridge, and a friend of NEWTON, investigated in
1714 the factorization of the polynomials Z” —1 and Z?"+aZ" + 1 into real
quadratic factors, in connection with his researches into the integration of
rational functions by the method of decomposition into partial fractions.
He was aware for example of the formula

n

AL H<22—2Zcos 2V2;17r+1>.

v=1

CoTES’s results were first published posthumously in 1722 under the title
Harmonia mensurarum. It was the desire to round off and improve upon
these results which motivated DE MOIVRE among others.
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The Fundamental Theorem
of Algebra

R. Remmert

Was beweisbar ist, soll in der Wissenschaft nicht ohne
Beweis geglaubt werden (DEDEKIND 1887).

[In science, what is provable should never be believed
without proof.]

We saw in 3.3.5 that every quadratic polynomial vanishes at two (possibly
coincident) points in C, the zeros of the polynomial, as they are often
called. This statement is a special case of a far more general theorem,
which GAuss in 1849 ( Werke 3, 73) called the fundamental theorem of the
theory of algebraic equations, and which is now generally known in the
literature as the so-called fundamental theorem of algebra.

Every nonconstant complez polynomial has at least one zero in the field

C.

In Algebra, a field is said to be algebraically closed if every polynomial
f € K[X]\ K has a zero in K. The fundamental theorem can therefore
also be stated in the form:

The field C of compler numbers is algebraically closed.

The designation of this statement as the fundamental theorem of algebra
dates from a time when the word algebra was still understood as being
broadly synonymous with the theory of polynomials with real or complex
coefficients. This existence theorem, which is in fact nontrivial even for
polynomials of the form Z" — a (see 3.3.6 and 3.6.4), will be discussed in
some detail in this chapter, and proved in an “elementary” manner. It is
equivalent to the theorem that every real polynomial can be expressed as
a product of real linear and real quadratic factors.

The fundamental theorem of algebra is of outstanding significance in the
history of the theory of complex numbers because it was the possibility of
proving this theorem in the complex domain that, more than anything else,
paved the way for a general recognition of complex numbers.
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The genesis of the fundamental theorem will be fully explained in Section
1. In Section 2 we shall give what is possibly the simplest of all the proofs,
one based on an old and beautiful idea used by ARGAND, which goes back
to D’ALEMBERT. In Section 2 we shall give some first applications of the
fundamental theorem, which will be called upon more and more in the later
chapters on algebras. In particular we shall prove in 3.5 the theorem first
published by HANKEL in 1867 on the uniqueness of the field C.

In a supplementary paragraph we also discuss LAPLACE’s elegant proof
which is more “algebraic” than ARGAND’s. The reader should consult the
article by ZAsSENHAUS, On the Fundamental Theorem of Algebra, Amer.
Math. Monthly, 74(1967), 485-497. A review of nearly a hundred classical
proofs of the fundamental theorem was given in 1907 by NETTO and LE
VAVASSEUR in their article “Les fonctions rationelles,” Enc. Sciences Math.
Pures Appl., 1, 2, 1-232, on pages 189-205.

§1. ON THE HISTORY OF THE FUNDAMENTAL THEOREM

In this paragraph f = ag + a1 X + ---a, X™ € R[X] always denotes a real
polynomial of degree n (and therefore a, € R, a, # 0). We consider only
nonconstant polynomials, or in other words, we assume that n > 1. By a
zero or root of f we mean any element ¢ of any field K which is an extension
of R, such that f(c) = 0. The element c is also said to be a solution of the
polynomial equation f(z) = 0. By equation we always mean a polynomial
equation.

The most natural and straightforward way of showing that real equations
always have complex solutions is to give an ezplicit procedure for finding the
roots which does not lead outside C. This happens with quadratic equations
(see 3.3.5); it is what CARDAN succeeded in doing for cubic equations, and
the same thing applies to biquadratic equations. We have formulae for the
solutions which are “nested radical expressions” in which each radicand
is a polynomial in the coefficients ag,...,a, and radical expressions of
lower order. It can at once be verified without difficulty that the solutions
constructed in this way are complex numbers (see VAN DER WAERDEN
Algebra 1, Berlin 1955, §59).

The situation is quite different with equations of the fifth and higher
degrees. No method of solving such equations by radicals could be found;!
until GAUss all mathematicians believed in the existence of solutions in
some sort of no-man’s land (nowadays we would say in an unknown exten-
sion field of C) and tried imaginatively to show that these solutions were

IN.H. Abel showed in 1826 in a paper published in the first volume of Crelle’s
Journal “Beweis der Unmoglichkeit, algebraische Gleichungen von héheren
Graden, als den vierten, allgemein aufzuldsen,” 65-84 (see also Oeuvres com-
pletes, 1, 66-87) that it is fundamentally impossible to solve general equations of
degree higher than the fourth by means of radicals.
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in fact complex numbers.

We summarize below the main dates, starting from the first mystical
appearance of the fundamental theorem to its present-day acceptance as a
virtually self-evident truth. In addition to the references to the literature
given in 3.1 we may also mention: Abrégé d’histoire des mathématiques,
I, sous la direction de Jean Dieudonné, Paris, Hermann, 1978, especially
Chapter IV.

1. GIRARD (1595-1632) and DESCARTES (1596-1650). Peter
RoTH in 1608 stated that equations of the nth degree have at most n solu-
tions; VIETA (1540-1603), thanks to his theorem on the roots of equations,
had been able to write down equations of the nth degree which actually
have n roots. It was the now forgotten Flemish mathematician Albert GI-
RARD who was the first to assert that there are always n solutions. In his
L’invention en algébre, a work which appeared in 1629, he wrote “Toutes
les équations d’algebre regoivent autant de solutions, que la dénomination
de la plus haute quantité le démonstre ...” GIRARD gives no proof or any
indication of one, but merely explains his proposition by some examples,
including that of the equation z* — 4z + 3 = 0 whose solutions are 1, 1.
—144iv2, -1 - V2.

GIRARD does not assert that the solutions must always be of the form
a+ b/=1, a,b € R, apart from real solutions “(those that are > 0 and
those that are < 0)” there are “autres enveloppées, comme celles qui ont
des /=, comme /-3, ou autres nombres semblables.” He thus leaves open
the possibility of solutions which are not complex. In modern language he
was putting forward the following proposition:

GIRARD’s Thesis. For every polynomial f € R[X] of degree n there
erists a field K, an extension of R, such that f has ezactly n zeros (not
necessartly distinct) in K. The field K may perhaps be a proper overfield

of C.

DESCARTES in 1637, in the third and last book of his La géoméirie,
gives a brief summary of what was then known about equations. He notes
the important theorem? that a polynomial which vanishes at ¢ is always
divisible by the factor X — ¢; he also described the so-called “Descartes’
rule of signs” named after him. (See HAUPT, “Einfiihrung in die Algebra,”
2. Teil, Akad. Verl. Ges. Geest u. Portig 1954, S. 411.)

?This theorem was probably already known to Thomas Harriot (1560-1621)
who in 1585 surveyed, on behalf of Sir Walter Raleigh, the colony of Virginia and
was thus the first mathematician to live in North America.
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DESCARTES takes a rather vague position on the thesis put forward by
GIRARD (see 3.1.3).

2. LEIBNIZ (1646-1716). Through his efforts to integrate rational func-
tions by decomposition into partial fractions, LEIBNIZ was led to consider
the question of whether every real polynomial can be expressed as a prod-
uct of factors of the first and second degrees. He put forward in 1702 in a
work published in the Acta Eruditorum the view that this is not so, and
supported this contention by pointing out that in the decomposition

X*+a* = (X?-a?%) (X2 +a%) = (X +aVi)(X —aVi)(X +av/=i)(X —aV/—i)

the product of any two linear factors on the right is never a quadratic real
polynomial. It does not seem to have occurred to LEIBNIZ that v/7 could
be of the form a + bi; because if he had seen that

Vi= %\/5(14-:') and vZi= %\/5(1 —4)

he would have noticed that the product of the first and third factors, and
of the second and fourth factors are both real, and instead of his false
assertion he would have obtained

X* +a* = (X% + av2X + a?)(X? - aV2X + d?).

It is remarkable that he should not have been led to this factorization by
the simple device of writing X* + a* = (X? + a?)? — 242X 2.

3. EULER (1707-1783). In a letter to Nikolaus BERNOULLI of the 1
November 1742 EULER enunciates the factorization theorem for real poly-
nomials in precisely the form which LEIBNIZ had maintained was false.
The presumed counter-example proposed by BERNOULLI, the polynomial
X% —4X3 4+2X?% +4X + 4 with zeros

Tro=1%1/24iV3, z34=1%1/2-iV3

was shown to be devoid of force, by proving that (X — z,)(X — z3) and
(X — 22)(X — z4) are real polynomials, namely

X?—2+a)X+1+V7+a and X’ —(2-a)X+14+V7~a

with a := V4 + 2V7.

Soon afterwards, in a letter of the 15 February 1742 to his faithful cor-
respondent GOLDBACH, EULER repeats his assertion but adds that he has
not been able to prove it completely, but only “ungefahr, wie gewisse Fer-
matsche Satze” [only roughtly, as with certain theorems of Fermat]. In this
letter he also mentions incidentally—something that seems perfectly clear
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to us nowadays and that has nothing to do with the problem of the exis-
tence of complex roots—that the imaginary roots of real polynomials can
always be grouped together in pairs so as to produce real polynomials of
the second degree after multiplication of the corresponding factors.® GoLp-
BACH remains sceptical even about this simple assertion and adduces as a
counter-example the polynomial Z4+7222 —20, which EULER immediately
factorizes.

EULER’s factorization theorem goes beyond GIRARD’s thesis of which
EULER must have been well aware. Since quadratic equations always have
complex solutions, his statement is nothing else but the

Fundamental Theorem of Algebra for Real Polynomials. Every
polynomial of the nth degree f € R[X] has precisely n zeros in the extension
field C.

EULER was able to prove this theorem rigorously for all polynomials of
degree < 6. In 1749 (Recherches sur les racines imaginaires des équations.
Histoire de I’Académie Royale des Sciences et Belles Letires, Année MD-
CCXLIX, Berlin 1751, 222-228, see also Opera omnia 6, 1 ser., 78-147) he
attacked the general case. His idea was to decompose every monic polyno-
mial P of degree 2® > 4 into a product Py P, of two monic polynomials
of degree m := 2"~1. If this could be done then his theorem would be
proved because an arbitrary polynomial # 0 can always be converted into
such a polynomial by multiplication by aX? and iteration of the decom-
position procedure finally yields a decomposition of P into real quadratic
polynomials.

EULER makes the initial assumption that P is of the form

P(X) =X2m+BX2m_2+CX2m_3+'” ’

which is permissible since the coefficient A of X?™~! can always be made
to vanish by a translation X +— X — 2_1m'A' This reduction had been known
since the days of CARDANO (Ars magna, Chapter 17) if not earlier; VIETA
had called the process “expurgatio.” The polynomials P;, P, now take the
form

Xm +uXm—1 +aXm—2 +ﬂXm—3+ e

Xm—uXm—1+AXm_2+uXm—3+"'

because the coefficients of X™~! differ only in sign, in view of the vanishing
of the coefficient of X?™-1 in P(X). By multiplying out and comparing co-

efficients, one obtains equations involving B,C, ... and u,o,83,..., A, i, ....
EULER asserts that o, 3,...,A, i, ... are rational functions in B,C, ... and
u, and that by elimination of &, 3,...,A, y,... a monic real polynomial in

3 This had already been remarked by Bombelli around 1560.
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2 . . . ) .
u of degree ( T;n) is obtained whose constant term is negative. Now this

polynomial has a zero u, by the intermediate value theorem (BOLZANO-
CAUCHY theorem) as EULER clearly saw. All this is carried out explicitly
for 2m = 4 (see loc.cit. pp. 93/94) but the proof in the general case is only
sketchy (see pp. 105/106), and EULER passes over in silence many details
(as Guass was to criticize later—see Section 6).

EULER also stated his theorem in terms of complex numbers (loc.cit. p.
112):

St une équation algébrique, de degré qu’elle soil, a des racines imagi-
naires, chacune sera comprise dans cette formule générale M + N+/—1, les
lettres M et N marquant des quaniités réelles.

4. ’ALEMBERT (1717-1783). Three years before EULER, Jean le
Rond D’ ALEMBERT in 1746 made the first serious attempt to prove the fac-
torization theorem (Recherches sur le calcul intégral, Histoire de [’Academie
Royale des Sciences et Belles Lettres, année MDCCXLVI, Berlin 1748, 182~
224). Accordingly this theorem has ever since been referred to in the French
literature as D’ ALEMBERT’s theorem. The basic idea is simple, even if heav-
ily concealed. It is to iry to minimize the absolute value of the polynomial f
by an eppropriate choice of ils argument. D’ ALEMBERT uses the following
auxiliary proposition which he assumes without proof, and which was first
correctly derived in 1851 by PUISEUX (on the implicit assumption of the
Fundamental theorem!):

To every pair (b,c) of complez numbers with f(b) = ¢, there corresponds
a natural number ¢ > 1, and a series

h(w) =b+ Ec,,(w — )"/,
v=1

convergent in a neighborhood of ¢, such that for all numbers w near c,

f(h(w)) = w.

D’ALEMBERT now starts from real numbers b, ¢ satisfying f(b) = ¢ (in
fact he chooses b so that the real function has a minimum at b) and then
finds, if ¢ # 0, with the help of his PUISEUX expansion, complex numbers
21, w1 with |wi| < ¢, such that f(21) = w;. Repetition of this process leads
to smaller and smaller values for the absolute value of f, and by using
a simple compactness argument (which D’ALEMBERT was unable to do),
eventually to a zero of f.

The weaknesses in D’ ALEMBERT’s argument, which were inevitable in the
prevailing circumstances, are subject to the criticisms which were rightly
made by GAUSs (see paragraph 6). Nevertheless GAUSS also says, almost
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prophetically ( Werke 3, p. 11): “Aus diesen Griinden vermag ich den
d’Alembertschen Beweis nicht fiir ausreichend zu halten. Allein das verhin-
dert mich nicht, da mir der wahre Nerv des Beweises trotz aller Einwande
unberiihrt zu sein scheint; ich glaube . . ., daf man auf dieselben Grundlagen
einen strengen Beweis unseres Satzes aufbauen kann.” [For these reasons I
am unable to regard the proof by d’Alembert as entirely satisfactory, but
that does not prevent, in my opinion, the essential idea of the proof from
being unaffected, despite all objections; I believe that ... a rigorous proof
could be constructed on the same basis.]

This is precisely what ARGAND did in 1814 (see paragraph 8).

As a result of this work of D’ ALEMBERT and EULER the view gradually
came to prevail that it required only the existence of a single imaginary
quantity v/—1 in order to ensure that n roots could be assigned to every
algebraic equation of degree n (Gauss, Werke 10, 1, p. 404).

5. LAGRANGE (1736-1813) and LAPLACE (1749-1827). Already
by 1772 Joseph Louis LAGRANGE in his memoir “Sur la forme des racines
imaginaires des équations” (Nouveauz mémoires de I’Académie Royale des
Sciences et Belles Lettres, Année MDCCLXXVII, Berlin 1774, 222-258
and Oeuvres complétes, 3, 477-516) had raised objections against EULER’s
proof. He remarked, among other things, that EULER’s equation for u could
have undefined coefficients of the form %. LAGRANGE made a new attempt
to demonstrate the existence of the factorization P = PyP, sought by
EULER. Thanks to his results on the permutation of roots of equations he
succeeded to a large extent in closing the gaps in EULER’s proof: but he
also had to appeal to fictitious roots.

In the year 1795, Pierre Simon de LAPLACE® in his “Legons de mathéma-
tiques données a I’Ecole Normale” (Journal de U’Ecole Polytechnique,
Septiéme et Huitieme cahier, Tome 11, 1-278, Paris, 1812, especially pp.
56-58; see also Oeuvres complétes 14, 10-111, especially 63-65) made an at-
tempt to prove the Fundamental theorem, quite different from the EULER—~
LAGRANGE attempt. He uses ideas involving the discriminant of a poly-
nomial. LAPLACE, like his predecessors, assumes that roots of polynomials
“exist” in the platonic sense of the word. His extremely elegant proof has
long been forgotten, and we reproduce it in modernized form as an ap-
pendix to this chapter.

*Laplace was appointed Minister of the Interior by Napoleon, who removed
him from office after only six weeks because he brought the spirit of the infinitely
small into the government [il portait enfin I’esprit des infiniment petits dans
P’administration] (Napoleon I. Mémoires pour servir a Uhistoire de France, écrits
a Sainte- Héléne, sous la dictée de ’empereur, dicté au général Gourgaud, London
1823, Vol. 1, 111-112). After the restoration of the Bourbons, he was made a
marquis and a peer of France.
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6. GAUSS’s Critique. In October 1797 GAuUss writes in his diary “Ae-
quationes habere radices imaginarias methodo genuina demonstratum” (see
Math. Ann. 57, p. 18, 1903). He published the above-mentioned proof of
the Fundamental theorem, which however by no means meets modern stan-
dards of rigor, in 1799 in his doctoral thesis “Demonstratio nova theore-
matis omnem functionem algebraicam rationalem integram unius variabilis
in factores reales primi vel secundi gradus resolvi posse” (Werke 3, 1.30)
which he submitted in absentia to PFAFF (1765-1825) at the University of
Helmstedt, and through which he obtained his doctorate. GAUss begins his
dissertation by a detailed critical examination of all previous attempts to
prove the theorem known to him. This is not the place to discuss in detail
the objections raised by the twenty-two year old student against the proofs
of D’ALEMBERT, EULER, and LAGRANGE—and thus against the leading
mathematicians of the time—(the reader interested in this may refer, for
example, to TROPFKE, Vol. 1, 1980, 494-499). GAUSS’s main objection was
that the existence of a point at which the polynomial takes the value zero is
always assumed and that this existence needs to be proved. Thus for exam-
ple he reproaches EULER for using hypothetical roots ( Werke 3, pp. 5, 14):°
“..., wenn man dann mit diesen unmoglichen Wurzeln so verfahrt, als ob sie
etwas Wirkliches seien, und beispielsweise sagt, die Summe aller Wurzeln
der Gleichung X™ + AX™! 4+ ... = 0 sei = —A, obschon unmégliche
unter ihnen sind (das heifit eigentlich: wiewoh! einige fehlen), so kann ich
dies durchaus nicht billigen.” [... if one carries out operations with these
impossible roots, as though they really existed, and says for example, the
sum of all the roots of the equation 2™ + AX™~1 4 ... =0 is equal to —A,
even though some of them may be impossible (which really means: even if
some are nonexistent and hence are missing), then I can only say that I
thorougly disapprove of this type of argument.]

The improved proof by LAGRANGE is likewise disallowed. GAUSS writes
(Werke 3, p. 20):% “Dieser grofie Mathematiker bemiihte sich vor Allem, die
Liicken in Eulers erstem Beweise auszufilllen, und wirklich hat er das, was
oben §8 den zweiten und den vierten Einwurf ausmacht, so tief durchforscht,
daB nichts Weiteres zu wiinschen iibrig bleibt. ... Den dritten Einwurf
dagegen beriihrt er iliberhaupt nicht; ja auch seine ganze Untersuchung
ist auf der Voraussetzung aufgebaut, jede Gleichung m-ten Grades habe
wirklich m Wurzeln.” [This great mathematician tried above all to fill in
the gaps in EULER’s first proof, and indeed, as regards what constitutes
the second and fourth objections referred to in §8 above, he has pursued
his investigations so profoundly that nothing more remains to be desired.

5See next footnote.

®Citations based on the German translation in Ostwald’s Klassikern der Ez-
akten Wissenschaften, No. 14. “Die vier Gauischen Beweise fiir die Zerlegung
ganzer algebraischer Funktionen in reelle Faktoren ersten und zweiten Grades
(1799-1849),” made by Netto in 1899.
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... On the other hand he has not touched at all the third objection; in fact
his whole investigation is based on the assumption that every equation of
the mth degree actually has m roots.] And in 1815 (Werke 3, p. 105) he
even talks in this connection of a “true petitio principii.”

GAUSs in 1799 was not yet aware of LAPLACE’s proof. However later on,
even this attempt did not find favor in his eyes; he comments on it in 1815 in
the Géttingische gelehrten Anzeigen (Werke 3, p. 105) writing “die scharf-
sinnige Art, wie spater LAPLACE diesen Gegenstand behandelt hat, [kann]
gerade von dem Hauptvorwurfe, welcher alle jene versuchten Beweise trifft,
nicht freigesprochen werden.” [The ingenious way in which LAPLACE dealt
with this matter cannot be absolved from the main objections affecting all
these attempted proofs.]

We would now like to take another look at the situation from our modern
point of view. In all the pre-Gaussian attempts, the question asked at the
outset was not so much “do roots of an equation exist?” but rather “what
form do they have?” and “are they of the form a+b/—17” GIRARD’s thesis
is tacitly taken as an axiom, and no reasons of any kind are put forward
in justification. It was even believed for a long time, that there existed a
whole hierarchy of imaginary quantities—called by GAUSs in his dissertation
(Werke 3, p. 14) “vera umbrae umbra” [veritable shadows of shadows]—of
which the complex numbers a + by/—1, a,b € R were the simplest. It was
not until the 18th century when the idea had gained general acceptance
that the solutions of polynomial equations were capable of being defined
by “algebraic/analytical methods which never led outside the domain C,”
that the following problem (which no longer seems so paradoxical knowing
the background) began to be seriously considered:

“Show that every imaginary quaniity has the form a + b/—1.

Interpreted with a little goodwill, the statement to be proved is nothing
more than the assertion that the field C is complete and not capable of
any further algebraic extension. In the work quoted in paragraph 3, the
“Recherches sur les racines...” by EULER can be read (p. 147) the words:
“Puisque donc toutes ces quantités imaginaires, qui sont formées par des
opérations transcendantes, sont aussi comprises dans la forme générale M +
N+/=1, nous pourrons soutenir sans balancer, que généralement toutes
les quantités imaginaires, quelques compliquées qu’elles puissent é&tre, sont
toujours réductibles & la forme M + N+/—1.” [Since all these imaginary
quantities, produced by transcendental operations, are also comprized in
the general form M + N+/—1, we can maintain, without hesitation, that
generally all imaginary quantities, no matter how complicated, are always
reducible to the form M + Nv/—1.]

The Gaussian objection against the attempts of EULER—LAGRANGE and
LAPLACE was invalidated as soon as Algebra was able to guarantee the
existence of a splitting field for every polynomial. From that moment on,
as Adolf KNESER already observed in 1888 (Crelle’s Journal 102, p. 21),
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the attempted proofs became in effect fully valid. In 1907 FROBENIUS said
(Ges. Abhandl. 3, p. 733) on the occasion of the official ceremony at Basle
University to commemorate the bicentenary of Leonhard EULER’s birth:
“Fiir die Existenz der Wurzeln einer Gleichung flihrt er jenen am meisten
algebraischen Beweis, der darauf fuBit, dal jede reelle Gleichung unpaaren
Grades eine reelle Wurzel besitzt. Ich halte es fiir unrecht, diesen Beweis
ausschlieBlich GAUSs zuzuschreiben, der doch nur die letzte Feile daran
gelegt hat.” [He gave the most algebraic of the proofs of the existence of
roots of an equation, the one which is based on the proposition that every
real equation of odd degree has a real root. I regard it as unjust to ascribe
this proof exclusively to Gauss, who merely added the finishing touches.]

7. GAUSS’s Four Proofs. The fundamentally new element in GAUss’s
proof of 1799 is that he does not set out to calculate a root, but to prove
its existence. To do this required, in the words of HANKEL (p. 97): “einen
eminenten Aufwand von Scharfe des Gedankens und Productionskraft, wie
beides in Gaufl wunderbar vereinigt war.” [a high degree of perspicacity of
thought and fertility of invention which in GAuss were wonderfully com-
bined]. GAUSS in his doctoral dissertation does not however claim that he
was the first to produce a correct proof of the Fundamental theorem, as
is already made clear by the word “Nova” in the title, and as his remarks
on D’ALEMBERT’s attempted proof also bear witness (see paragraph 4),
GAUss gave, in all, four proofs of the Fundamental theorem of algebra,
the fourth being published in 1849 in the year of the golden jubilee of his
doctorate (see Ostwald’s classics No. 14).

I
(RefK(z) =0

The first proof, of 1799, is topological, but has some significant gaps
when judged in the light of present-day understanding. Let us take a closer
look at the problem involved: the complex zeros of the real polynomial f
of degree n are the points of intersection of the two real algebraic curves
(Re f)(z) = 0 and (Im f)(z) = 0. If R is sufficiently large, then exactly
2n points of each curve will lie on every circle |z| = r for which r > R.
Outside the circular disc {z € C:|2] < R} these points can each be asso-
ciated with 2n continuous branches A, and B,, 1 < v < 2n, extending to
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infinity, and in fact these branches are so situated that between any two
consecutive “branches” of the curve (Re f)(z) = 0, there lies a branch of
the curve (Im f)(z) = 0 and vice versa. The figure illustrates the example
F(Z) := Z3+ Z% — 2 whose zeros are the points 1, —1 +1i. Gauss says (Art.
21): “Nun a8t sich aus der gegenseitigen Lage der in die Kreisscheibe ein-
tretenden Zweige der Schluss, dass innerhalb des Kreises ein Schnitt eines
Zweiges der ersten mit einem Zweige der zweiten Linie vorhanden sein
miisse, auf so viele Arten ziehen, daB ich fast nicht weiss, welche Methode
an erster Stelle vor den iibrigen zu bevorzugen sei.” [Now this alternation
in the positions of the points of entry of the branches entering the disc
allows us to draw the conclusion that a branch of the first curve must in-
tersect with a branch of the second curve at some point in the interior of
the circular disc. This conclusion can be drawn in so many different ways
that I hardly know which method should be given pride of place.] In the
subsequent geometrical argument on which he bases his proof, GAUSS uses
results from higher geometry and in particular the theorem that “... if a
(non-compact) branch of an algebraic curve enters a bounded space (here,
a circular disc) it must necessarily emerge from this space.” This theorem
whose truth was taken for granted for over a hundred years, lies at the
heart of the proof. Topologists have so far been able to prove it only by so-
phisticated arguments. GAUSS remarks in an explanatory footnote ( Werke
3, p- 27, Ostwald’s classics No. 14, p. 33): “Wie mir scheint, ist es wohl
hinreichend sicher bewiesen, daf eine algebraische Curve weder plotzlich ir-
gendwo abbricht, noch sich nach unendlich vielen Umldufen gewissermafien
in einem Punkt verlieren kann (wie die logarithmische Spiral).” [It seems
to me that it can be taken as sufficiently securely established, that an al-
gebraic curve can neither suddenly end abruptly anywhere, nor lose itself,
so to speak, in a point after an infinity of circuits (as in the case of a
logarithmic spiral).]

A careful and balanced criticism together with a completion of the first
Gaussian proof was first given in 1920 by A. OsTROWSKI: (“Uber den er-
sten und vierten GauBschen Beweis des Fundamentalsatzes der Algebra,”
Gauss Werke 10.2, Abh. 3). OsTROWSKI began with the words: “Wahrend
die im ersten Teil der Gaufischen Dissertation enthaltene Besprechung der
fritheren Beweisversuche des Fundamentalsatzes der Algebra sich durch
ganz auflerordentliche Sorgfalt auszeichnet, fallt daneben der im zweiten
Teil entwickelte Beweis dieses Satzes etwas ab. Nicht etwa, weil dieser Be-
weis in geometrischer Einkleidung vorgetragen wird, sondern, weil bei ihm
Eigenschaften der algebraischen Kurven verwendet werden, die weder in
der Dissertation selbst, noch in der vorgauf3schen Literatur bewiesen sind.”
[While the discussion, in the first part of GAUsS’s dissertation, of the earlier
attempts at proving the Fundamental theorem of algebra is distinguished
by extraordinarily thorough and painstaking care, the proof of this theorem
developed in the second half falls away somewhat from this high standard.
Not so much because it is presented in a geometrical guise but rather be-
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cause the proof makes use of geometrical properties of algebraic curves
which are neither proved in the dissertation itself nor had been proved in
the pre-Gaussian literature.]

In 1816 GAuss gave a second proof of the Fundamental theorem which
is almost completely algebraic. The only fact used taken from analysis is
the theorem that any real polynomial of odd degree always has a real zero.
GAuss takes up the basic algebraic idea from EULER with a simplification
proposed by DE FONCENEX in 1759, and uses the truly algebraic device
of indeterminates, even though he does not have at his disposal the gen-
eral concept of a field. He carries out mathematical operations which his
predecessors had performed on illegitimately assumed roots, and which are
perfectly valid in his case precisely because the operands are legitimately
regarded as indeterminates. Such considerations still underlie the usual
modern proof of the existence of a splitting field. GAUSs’s second proof is,
even by modern standards, absolutely correct.

GAuss’s third proof likewise dates from 1816; it is once more topological,
but this time the idea is to count—by means of a double integral—the num-
ber of circuits which the image point f(z) makes around the origin 0 € C
when the point z describes a closed curve around the origin z = 0. The ba-
sic idea of this proof is still to be found in the modern “function-theoretic”
proofs based on evaluating the contour integral (1/2i) [(f'(z)/f(2))d=
(ROUCHE’s theorem).

Until 1849 all proofs, including those found in the intervening period by
CAUCHY, ABEL, JACOBI and others, dealt with real polynomials only. It
was only in his fourth proof, which is a variant of the first, that Gauss
in 1849, the time now being ripe for this step, allowed arbitrary complex
polynomials. However this apparent generalization is not one of any real
significance, because one can immediately switch from a complez polyno-
mial f € C[Z] to a real polynomial g € R[Z], by means of g(z) := f(Z)f(2).
If ¢ is a zero of g, then ¢ or ¢ is a zero of f. To modern eyes the proof for real
polynomials is no simpler than for complex polynomials (and vice versa).

8. ARGAND (1768-1822) and CAUCHY (1798-1857). What may
well be the simplest of all the proofs of the Fundamental theorem of algebra
was published in 1814 by R. ARGAND in his “Réflexions sur la nouvelle
théorie d’analyse” Annales de Mathématiques 5, 197-209. ARGAND who
had already sketched the essence of his proof in his essay on the repre-
sentation of complex numbers, simplifies astonishingly the application of
D’ALEMBERT’s basic idea. He uses the general theorem on the existence of
a minimum of a (continuous) function and so arrives at a completely new
kind of proof. As ARGAND says nothing to justify the existence of the mini-
mum, his elementary proof was not at first accepted. CAUCHY in 1820 gave
what is essentially the same proof in his paper, “Sur les racines imaginaires
des équations” (Oeuwvres 1, 2, Ser., 2568-263) but in a more accessible form,
thereby contributing greatly to a wider dissemination of ARGAND’s ideas.
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Even with CAUCHY the proposition that |f(z)| must somewhere attain
its minimum is not properly established; it only became possible to do
this after the general concept of the lower bound had been introduced.
CAucHY devotes a whole chapter (Chapitre X) of his Cours d’analyse to
the fundamental theorem, but without mentioning ARGAND.

In the 19th century ARGAND’s method of proof was adopted in various
textbooks, e.g. in LIPSCHITZ’s Lehrbuch der Analysis, Vol. 1 of 1877, and in
the book published in 1886 by CHRYSTAL, Algebra, An elementary textbook
for higher classes of secondary schools and for colleges. CHRYSTAL, whose
textbook had an unusually great influence (see the discussion on CHRYS-
TAL’s algebra by ABHYANKAR in The mathematical intelligencer 1, 1978,
p. 37) called ARGAND’s proof “both ingenious and profound” (p. 248).

ARGAND’s proof has nowadays tended to fall into oblivion. Towards the
end of the twenties, SCHREIER reproduced this proof in his Hamburg Lec-
tures on Analytical geometry and algebra; it is given for example in the first
volume of the first edition of the book by SCHREIER and SPERNER (Teub-
ner Verlag, pp. 221 et seq.). LANDAU, in 1934, also presented a version of
the ARGAND proof in his characteristic style (pp. 233 et seq.); the ARGAND
proof is also to be found in the second volume of MANGOLDT and KNoOPP
(11th edn., Hirzel Verlag, Stuttgart 1958, pp. 546 et seq.). The ARGAND
proof is reproduced in this chapter.

9. The Fundamental Theorem of Algebra: Then and Now. Nowa-
days one can only speculate about how mathematicians before the begin-
ning of the nineteenth century had visualized the solutions of equations in
their mind’s eye. It is difficult for us to understand why, until the time of
GAvuss, they had an unshakable belief in a kind of “extraterrestrial” ex-
istence of such solutions “somewhere or other,” and then sought to show
that these solutions were complex numbers. Still less can one conceive why
it should be that, until far into the nineteenth century, algebra textbooks
hardly ever troubled to enunciate this Fundamental theorem but juggled
with it in a most amazing fashion (see HANKEL, 1867, p. 98). An honorable
exception to this general attitude was the Go6ttingen mathematician and
physicist Abraham Gotthelf KASTNER (1719-1800) who was GAUSS’s pre-
decessor at the Observatory (and who also wrote epigrams, satirical pieces,
aphorisms and pointed comments on the latest literary novelties, and was
friendly with GOTTSCHED). In 1767, KASTNER, in Article 210 of his An-
fangsgrinde der endlichen Analysis expressly postulated the Fundamental
theorem as an aziom.

Nowadays the Fundamental theorem of algebra is one of the established
propositions of algebra and of the theory of holomorphic functions respec-
tively which students accept without protest. All proofs require, in the final
analysis, the aid of non-algebraic (analytic, transcendental) methods and
concepts. Either—like D’ ALEMBERT, ARGAND and CAUCHY—one reduces
successively the absolute value of the polynomial by a suitable choice of
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its argument, in which case one has to solve pure binomial equations and
one needs to have available some theorem guaranteeing the existence of a
minimum; or else—like EULER, LAGRANGE and LAPLACE—one splits off
factors, and then the contribution needed from analysis can be kept more
in the background. We require “only” the existence of square roots of com-
plex numbers and the theorem that real polynomials of odd degree have a
real zero.

Particularly favored are proofs which draw on results from CAUCHYs the-
ory of functions: for instance the mazimum modulus principle or the open
mapping theorem, or LIOUVILLE’s theorem to the effect that any function
which is holomorphic and bounded throughout C is necessarily a constant.
(See J. Conway, Functions of One Complex Variable, Springer-Verlag,
1978, p. 77.) Many mathematicians believe that there can be no purely
algebraic proof, because the field R, and consequently its extension field C,
is a construct belonging to analysis.

10. Brief Biographical Notes on Carl Friedrich GAUSS. He was
born on the 30th April 1777 in Brunswick. He was a mathematician, as-
tronomer, geodesist and physicist. In 1792 at the age of fifteen he had al-
ready conjectured the Prime number theorem (first proved a hundred years
later) by counting from tables of primes and tables of logarithms which
he had been given. He studied at Gottingen from 1795 to 1798 as holder
of a special scholarship from the Duke of Brunswick. In 1796 he discov-
ered thr ruler and compass construction of the regular 17-sided pclygon. In
1799, he was awarded his doctorate in absentia by PFAFF at the University
of Helmstedt which then belonged to the State of Brunswick. In 1801 he
published the immortal, Disquisitiones arithmeticae, the “bible” of number
theory. The same year he was appointed corresponding member of the St.
Petersburg Academy. 1801 also saw his calculation of the orbit of Ceres
by numerical analysis using only scanty observational data. In 1807 he was
appointed Professor of Astronomy and Director of Gottingen Observatory
and 1810 he refused the offer of a post in Berlin. In 1818 he began his
work on the survey of the Kingdom of Hanover. In 1820 he invented the
heliotrope—an instrument with a movable mirror for reflecting the sun’s
rays, used especially in geodesy. From 1821 to 1825 he directed survey
work in the field. In 1828, he was guest of Alexander von HUMBOLDT in
Berlin and made the acquaintance of Wilhelm WEBER. In 1841 he decided
to learn Russian so as to be able to read the works of LOBACHEVSKY on
non-Euclidean geometry which he had known about for a long time. In
1842 he was a founder member of the order “Pour le mérite” for the Arts
and Sciences.” In 1845 he carried out long and wearisome calculations in

"Other founder members of the civilian division of the Pour le mérite order
founded in 1842 by King William IV of Prussia were: J.I. Berzelius (chemist),
F.W. Bessel (astronomer), J. Daguerre (painter and inventor of the daguer-
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connection with the reorganization of the pension fund for the widows of
Gottingen professors. He died in Gottingen the 23rd February 1855. Large
parts of his mathematical knowledge were not made public until the papers
which he left at his death were published; his motto was: Pauca sed matura.
After his death medals were struck in the Kingdom of Hanover at the initia-
tive of the King, on which he was described as “Princeps mathematicorum”
a name by which he had already been called during his lifetime. By careful
reading of foreign and other newspapers in a reading room in Gottingen
and a systematic evaluation of the financial news, GAUSS managed to accu-
mulate a considerable private fortune through stock exchange speculation.
An obituary memoir Gauss zum Geddchtnis written by his friend Sarto-
rius von WALTERSHAUSEN came out in 1856. A very stimulating book is
the critical study by W.K. BUHLER published in 1981 by Springer-Verlag,
GAUSS, a Bibliographical Study.

§2. PROOF OF THE FUNDAMENTAL THEOREM BASED ON
ARGAND

ARGAND’s proof makes use of three auxiliary propositions:
0) Every complezx polynomial is a continuous function in C.

1) Every continuous function f: K — R on a compactum K in R? as-
sumes a mintmum in K.

2) Every complez number has square roots.

The first two statements belong to the foundations of analysis; statement
2) was proved in 3.3.5, and it was deduced therefrom in 3.3.6 (cf. also 3.6.4)
that:

2"} Every complex number has kth roots, 1 < k < co.

We prove the theorem in three stages. First we show by a simple growth
argument that the absolute value function (or modulus) |f(z)| of any com-
plex polynomial f(z) in C always assumes a minimum value; this is the
so-called Minimum theorem of CAucHY. The D’ ALEMBERT—GAUSS theo-
rem now states that, for a nonconstant polynomial this minimum is al-
ways zero. The proof of this is given in three lines in 2.3 with the help of
ARGAND’s inequality, which provides a bound for the value of a complex

rotype), J.L. Gay-Lussac (chemist and physicist), J. Grimm (Germanist), F.H.A.
v. Humboldt (Naturalist and geographer first chancellor of the order), C.G.J.
Jacobi (mathematician), F. Liszt (musician), J.L.F. Mendelssohn- Bartholdy
(composer), F. Riickert (poet and orientalist), A.W. v. Schiegel (poet), and L.
Tieck (poet). Details taken from “Orden Pour Le Mérite fiir Wissenschaften Und
Kiinste,” Gebr. Mann Verlag, Berlin 1975.
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polynomial. This inequality, which is the core of ARGAND’s argument, will
be derived in 3, and depends on a simple inequality for polynomials of the
type 1 +bZ*% + Z¥g(Z) where g(0) = 0.

1. CAUCHY’s Minimum Theorem. For every polynomial f(Z) = ag+
a1Z + -+ a,2" € C[Z] there is a ¢ € C such that |f(c)| = inf |f(C)|.

Proof. We can assume that a, # 0 with n > 1. We need a statement about
growth:

(%) there ezists an r € R such that |f(z)| > |f(0)] for all z € C with
|z] > r.

For z # 0, we have |f(2)| = |2[*|an + h(z71)| with A(W) := an_ 1 W + -+ -+
aoW" € C[W]. Since h is continuous at 0, there is § > 0 such that |h(w)| <
L|an|, whenever |w| < &. It follows that |f(2)] > |2|*(Jas]| — [R(z"1)]) >
zlan| 2|, when |z| > §~1. It suffices therefore to choose r > §~1 in order
to ensure that |a,|r™ > 2}agl.

After this preliminary work the proof of the minimum theorem can be
swiftly concluded. Since f(z) is continuous in C, the same is true of |f(z)|
and therefore |f(2)| assumes a minimum in the compact circle K := {z €
C:|z| < r} by reason of statement 1) of the introduction. There is therefore
o c € K with /9] = inf (). As f(9] < 1FO) < nf /(€ \ K] by
virtue of (x), it follows that |f(c)| = inf | f(C)|.

CAucHY likewise drew upon the existence of the minimum in his Cours
d’analyse of 1821 for a proof of the D’ ALEMBERT—-GAUSS theorem (Chapitre
X). The existence of minima in compact sets, which we have taken without
proof from real analysis, had of course not yet been proved in CAUCHY’s
time.

Some statement about the growth of polynomials, such as the one repre-
sented here by (%) is also needed in most of the function theoretical proofs.

2. Proof of the Fundamental Theorem. In addition to the minimum
theorem we need:

ARGAND’s Inequality: Let f(Z) be a nonconstant polynomial. Then for
every point ¢ € C with f(c) # 0 there is another point ¢’ € C with

£ < 15 ()l

This inequality will be proved in the next paragraph, by the extraction
of kth roots. It follows at once from the inequality that every nonconstant
complex polynomial f(Z) € C[Z] must have a zero ¢ in C. For by the
minimum theorem there exists a ¢ € C such that |f(c)| < |f(2)] for all
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z € C. If f(c) were nonzero there would, by ARGAND’s inequality, be a
¢ € C with |f(c")| < |f(c)|, which would be absurd.

3. Proof of ARGAND’s Inequality. The decisive role in the proof is
played by the following.

Lemma. Let k be a natural number, not zero, and let
h:=14bZ% 4+ ZFg with beC*, g€ C[Z], g(0) =0.
Then there is ¢ u € C such that |h(u)| < 1.

Proof. We choose a kth root d € C, of —1/b, so that bd* = —1 (proposition
2’ of the introduction). For all real ¢ with 0 < ¢t < 1, we then have

|h(dt)] < |1 — t*| + |d¥tEg(dt)| = 1 — tF + t*|d*g(dt)|.

Since g, being a polynomial, is continuous at 0 (proposition 0 of the intro-
duction), and since g(0) = 0, there exists a §, with 0 < 6§ < 1, such that
|d¥g(dt)| < % for all t satisfying the inequality 0 < t < é. For every such ¢,
it then follows that |h(dt)| < 1—tF + 2tF < 1. 0

The reader will notice that, apart from g(0) = 0, the only property of
9:C — C which has been used, is that of continuity at the origin. The
lemma therefore holds for all such functions. The argument shows that h
assumes values less than 1 in an arbitrarily small neighborhood of the origin.

ARGAND’s inequality now quickly follows: a nonconstant f(Z) implies
that f(Z) := f(c+ Z)/f(c) € C[Z] is not constant. Now

F(Z) =14 b, 2% + by  ZFP 4 4 5,2" with by #0, 1<k <n.

Writing ¢(Z) = bxp1Z + - + b Z"F, we have f = 1+ by 2% + Zkg
with ¢(0) = 0. By the Lemma there exists therefore an u € C, such that
|h(u)] < 1. For ¢/ := ¢ + u, we then have

£ = IR £ ()] < [£(e)I- o

In function theory ARGAND’s inequality is a special case of the gen-
eral “open mapping theorem” which asserts that nonconstant holomorphic
functions always map open sets on to open sets. (See J. Conway, Functions
of One Complez Variable, Springer-Verlag, 1978, p. 95.)

4. Variant of the Proof. We describe here a variant of the proof of the
Fundamental theorem in which the existence of kth roots, with k& > 2, is
assumed only for positive real numbers, and their existence for arbitrary
complex numbers is proved as a consequence. We use induction on the
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degree of the polynomial f, the initial step in the induction being clear.
Since the polynomial f defined in the previous paragraph has the same
degree as f and since the truth of of Lemma 3 for all polynomials h of
degree < n follows from the truth of the Fundamental theorem for all
polynomials of degree < n (via the ARGAND inequality) it suffices to show
that:

If the Fundamental theorem holds for all polynomials of degree < n,
n > 2, then Lemma 3 holds for all polynomials h of degree n.

Let h be any of the admissible polynomials of degree n in Lemma 3. We
distinguish three cases:

(1) k < n. Then by hypothesis the Fundamental theorem holds for all
polynomials z¥ — a, a € C; all a € C therefore have kth roots and the
lemma can be proved as in 3.

(2) k = n, with n even. Then h = 1 4 bz" with b # 0. Choose a square
root  of —1/b and let u be a k/2th root of n (which is allowable since
k/2 < n); it then follows that A(u) =0 < 1.

(3) k = n, with n odd. Again h = 1+ bz" with b # 0. One can then
find a u € C satisfying |1 + bu™] < 1 in the following amusing way: for
¢ := —|b|/b € S? there is a w € {1,~1,i,—i} such that |c — w| < 1 (see
Exercise 3.3.4). As n is odd, the set {1,—1,i,—¢} is mapped onto itself
by the transformation z +— z", and there is therefore a v € C such that
" = w. For u := v/ {'/I-E—] € C we have |b|- u™ = w and hence bu" = —w/c.
Since |c| = 1 it follows that

1+ =1~wfe|=|c-w| < 1. O

The first inductive proof of this kind was given in 1941 by J.E. LITTLE-
wooD: “Mathematical notes (14): every polynomial has a root.” J. Lond.
Math. Soc., 16, 95-98. An even simpler proof was given in 1956 by T. Es-
TERMANN “On the fundamental theorem of algebra,” J. Lond. Math. Soc.,
31, 238-240.

5. Constructive Proofs of the Fundamental Theorem. The ARGAND—
CAucHY proof is purely an existence proof and is non-constructive. As early
as 1859 WEIERSTRASS in his note “Neuer Beweis des Fundamentalsatzes
der Algebra” (Math. Werke 1, 247-256) had made the following start to-
wards a constructive proof: given a polynomial f(Z), a number 25 :=c € C
is chosen arbitrarily and the sequence z, := zp_1 — f(2zn—1) defined recur-
sively. WEIERSTRASS says (p. 247) “... it can be shown that when n is
increased indefinitely, z, under certain conditions, tends to a limit z satis-
fying the equation f(z) = 0.” More than 30 years later (1891, Math. Werke
3, 251-269) WEIERSTRASS once again discusses in detail the problem of a
constructive proof by asking the following question:
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“Is it possible for any given polynomial f € C[Z], to produce a sequence
z,, of complex numbers by an effectively defined procedure, so that |f(zy )|
is sufficiently small in relation to |f(z,-1)| that it converges to a zero of
f?” H. KNESER in 1940 in his paper entitled “Der Fundamentalsatz der
Algebra und der Intuitionismus,” Math. Z., 46, 287-302, defined such a
process which yields a constructive variant of the ARGAND—CAUCHY proof
and which also satisfies the criticisms of the intuitionists. M. KNESER in
1981 further simplified his father’s process in a paper entitled “Erganzung
zu einer Arbeit von Hellmuth KNESER iiber den Fundamentalsatz der Al-
gebra,” Math. Z., 177, 285-287.

In 1979 HirscH and SMALE described a “sure fire algorithm” which
produces, for any nonconstant polynomial f(Z) € C[Z] and any arbitrary
initial point ¢ € C a sequence z,, with zg = ¢, which converges to a zero of
f. More precisely it is shown that:

(*) |f(za)l < K™Mf(c)], n=0,1,2,...

with a positive real constant K < 1, depending only on the degree of f, not
on f itself. For details, see the article “On algorithms for solving f(z) = 0”
in Comm. Pure Appl. Math., 32, 281-312 and in particular pp. 303 et seq.
The inequality (*), and with it a “sure fire algorithm” is already to be
found in KNESER, loc. cit., p. 292, formula (6), except that, to satisfy the
demands of the intuitionists, |f(¢)] is replaced by Max(1,|f(c)|).

§3. APPLICATION OF THE FUNDAMENTAL THEOREM

The existence of at least one zero for every nonconstant complex polyno-
mial already implies that complex polynomials decompose into linear and
that real polynomials decompose into linear and quadratic factors. These
consequences of the Fundamental theorem are completely elementary, and
are a result of the simple fact that a polynomial with a zero at ¢ always
has the factor z — c.

1. Factorization Lemma. If ¢ € C is a zero of the polynomial f € C[Z]
of degree n, then there is just one polynomial g € C[Z] of degree n—1, such
that f(Z) = (Z - ¢)9(2).

Proof. Let f = ag+a1Z+---+an,Z", an # 0. Since Z¥ —c¥ = (Z—¢)q.(2)
with ¢,(2) := 2""1 + Z¥"%¢ 4+ --- + ¢! it follows that

f2)=F(2)~ fl) =D a,(2" ~¢*) = (Z - 0)9(2),
1

where

Q(Z) = ZaVQV(Z)'
1
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It is clear that f is of degree n — 1: since g(z) = (z —¢)"1f(2), 2 # ¢, g is
uniquely determined by f and c. (m]

The factorization lemma holds for all commutative rings, provided that
one gives up the uniqueness of ¢g. By induction on n we at once obtain the

Corollary. A polynomial f € C[Z] of degree n has at most n zeros.

2. Factorization of Complex Polynomials. Every complez polynomial
f € C[Z] of degree n > 1 is, disregarding the order of the factors, uniquely
representable in the form

(1) f(Z)y=a(Z —e1)"(Z =)™ ... (Z =),
where a € C*; r € N, ¢1,...,¢, € C are distinct from one another, and

ni,...,nr EN\ {0} withny +ny+---+n, =n.

Proof. We use induction on n, the case n = 1 being clearly true. Suppose
n > 1. By the Fundamental theorem of algebra there exists a ¢; € C for
which f vanishes. By lemma 1, f(Z) = (Z — ¢1)g(Z), where g(Z) € C[Z] is
of degree n — 1. By the inductive hypothesis there is a unique factorization

9WZ)=a(Z —c))" N Z —c))"*-...-(Z —c,)™
withn; >1,...,n, 21, ny—14n2+---+n.=n-1¢,...,¢0 €C
distinct from one another, and a € C*. Consequently (1) holds. O
The theorem just proved is often stated in the form:
Every complez polynomial of the nth degree has precisely n zeros where

each of the zeros ¢; is counted according to its multiplicity n;.

3. Factorization of Real Polynomials. Every rea!l polynomial f =
Ya, X" is a complex polynomial satisfying the additional condition

f(z) = f(z) forall ze€C,

for since @, = a, it follows that Y a,z¥ =Y a,z". In particular @ is a zero
of f[X], whenever c is. We easily deduce from this the

Theorem. Every real polynomial f € R[X] of degree n > 1 is (disregarding
the order of the factors) uniquely representable in the form

1) fX)=aX —c))™ (X =)™ q(X)" (X))

where the following conditions hold:
(a) a € R,a#0;st€EN;c,...,c; €R are distinct from one another;
my,...,my, ny,...,n EN\ {0} withm; +---+m, +2n1+---+2n, = n.
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(b) ¢;(X)=X?—b;X —a; withb? +4a; <0 forj=1,...,t; q1,...,q
are distinct from one another.

Proof. We regard f as a complex polynomial and factorize it in accordance
with Theorem 2. We denote by ¢y,...,c, the real zeros. The other truly
complex zeros are taken in conjugate pairs to form real quadratic polyno-
mials ¢(z) = (z — ¢)(z — ¢) = 22 — (¢ + ¢)z + c¢ € R[z]. Writing b := ¢+ ¢,
a := —c¢ we have b% + 4a < 0, for otherwise g(z) = (z — £b)? — 1(b% + 4a)
would have a real zero. The assertion in the theorem now follows immedi-
ately. O

Complex numbers no longer appear in the above enunciation of the pre-
ceding theorem. In the proof however they play an essential role as a deus
ez machina. GAUss himself, incidentally, in his dissertation formulated the
fundamental theorem of algebra as a theorem on the factorization of real
polynomials, as its title already indicates (see 1.6). The latter form of the
theorem is used, among other places, in finding the indefinite integrals of
rational functions by partial fractions (see, for example, any standard Cal-
culus text).

4. Existence of Eigenvalues. If ¢: E — F is a C-linear mapping of a
C-vector space E into itself, the A € C is called an eigenvalue of ¢, if
there is a vector v # 0 in E such that ¢(v) = Av. With the help of the
fundamental theorem of algebra we can prove the following:

Theorem. If E # 0 is a finite dimensional C-veclor space, then every
C-linear mapping p: E — E has at least one eigenvalue.

Proof (without using determinants). The set of all C-linear mappings of
E into itself is a finite dimensional C-algebra, with respect to the compo-
sition of mappings (which is isomorphic to the algebra of all complex n x n
matrices). The elements id, ¢, ?,..., ¢, ... are therefore linearly depen-
dent, that is, there is a polynomial f € C[Z], f # 0 such that f(p) = 0. By
the factorization theorem 2 there exists an equation f = aJ],_,(Z—c,)".
Consequently

(p—c1id)™ - (p — e2id)™ - ... - (p — ¢pid)? = 0.

Thus the mappings ¢ — ¢,id: E — E' are not all invertible. Suppose that,
say, ¥ := ¢ — c;id is not invertible, then since E is finite dimensional, v
is not injective. There must therefore be a v # 0 in F with ¢(v) = 0. It
follows that ¢(v) = ¢;v, that is, ¢; is an eigenvalue of (. m]

A far-reaching generalization of this theorem will be found in 8.4.7.
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5. Prime Polynomials in C[Z] and R[X]. We reformulate the results
of paragraphs 2 and 3 in a wider context. Let K be any (commutative)
field whatsoever. Then a polynomial p € K[X]\ K whose term of highest
degree has the coefficient 1 is said to be a monic prime polynomial, if p
is not expressible as a product of two polynomials ¢,h € K[X]\ K. All
polynomials X — ¢, ¢ € K are monic prime polynomials. We shall take
from Algebra the following result:

The polynomial ring K[X] has unique faclorization, that is to say, every
polynomial f € K[X]\ {0} is (disregarding the order in which the factors
are arranged) expressible uniquely in the form

f=appy?----. 7 with r€N; my,...,m, € N\ {0},

where a € K \ {0} and p1,p2,...,pr € K[z] are monic prime polynomials
distinct from one another.

In the cases K = C and K = R the decomposition of polynomials into
prime factors is described more precisely by theorems 2 and 3 respectively.

In the polynomial ring C[Z] every monic prime polynomial p is linear,
that is, (Z)=Z — ¢, c e C.

In the polynomial ring R[Z] every monic prime polynomial p is either
linear or quadratic: p(X) = X —c¢,c € R, or p(X) = X? ~ bX — a with
b% + 4a < 0.

Each of the last two statements is equivalent to the Fundamental the-
orem of algebra. In arbitrary base fields K there exist in general prime
polynomials of arbitrarily high degree in K[X]. For example in Q[X] the
polynomial X™ — 2 is a monic prime polynomial for every n > 1.

6. Uniqueness of C. The choice of the field C of complex numbers is
neither arbitrary nor haphazard. We have already become aware in 3.2.3 of
one uniqueness result for C. We shall now, with the help of the Fundamental
theorem of algebra, establish a more general

Uniqueness Theorem for C. Let K be a commautative extension ring of R
without divisors of zero and with unit element 1 and such that every element
of K is algebraic over R, that is, a zero of a real nonzero polynomial. Then
K is isomorphic to R or to C.

To prove this theorem we use the following simple lemma, based on the
Fundamental theorem.

Lemma. On the hypotheses of the Uniqueness theorem every element v €
K \ R satisfies an equation v? = a + bv with a,b € R.
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Proof. By hypothesis there exists a nonzero polynomial f such that f(v) =
0. As K has no divisors of zero, it follows by Theorem 3 that there is also
a polynomial p of degree 1 or 2 which vanishes for the argument v. Since
p cannot be linear because v ¢ R, p(X) must be of the form p(X) =
X2 - bX — a, that is, v2 = a + bv.

We now come to the actual proof of the Uniqueness theorem. Suppose
K # R. We choose an element v € K \ R and consider the 2-dimensional
real vector space V = R+ Rv generated by 1 and v. Since v, by the lemma,
satisfies an equation v? = a + bv with a,b € R, it follows that for any
arbitrary elements 21 + y1v, 22 + y2v € V:

(z1 + y1v) (@2 + y2v) = (2122 + Y1y20) + (21y2 + V1Z2 + b € V.

Thus V is a commutative, 2-dimensional ring over R without zero divisors
and with unit element, and is therefore, by theorem 3.2.3 isomorphic to C.

It only remains to show that K = V. Let u be any element of K \ R.
There is a real polynomial f # 0 with f(u) =0. Over C >~V C K, f splits
into linear factors X — ¢, ¢ € V. Since K has no divisors of zero, one of
these linear factors must vanish at u, that is, u = ¢ € V. We have therefore
verified that K =V ~ C. o

The hypothesis in the Uniqueness theorem, that every element w € K is
algebraic is always satisfied when K is a finite dimensional vector space over
R: for the powers 1, w, w?,...,w", ... are then linearly dependent, that is,
there is an equation ag + a1w + -+ - + a,w™ = 0, in which the coefficients
a, do not all vanish.

7. The Prospects for “Hypercomplex Numbers.” The Uniqueness
theorem asserts in particular:

The field C is (up to isomorphism) the only proper commutative algebraic
field over R, and in particular there is no commutative algebraic extension

field of C other than C itself.

This theorem was presented by WEIERSTRASS in his Berlin lectures from
1863 onwards. It was published for the first time by HANKEL in his book
Theorie der complezen Zahlensysteme. It is stated by HANKEL in the words
(p. 107):

“Ein hoheres complezes Zahlensystem, dessen formale Rechenoperatio-
nen nach den Bedingungen des §28 bestimmt sind, und dessen Einheitspro-
dukte in’s Besondere lineare Functionen der urspriinglichen Einheiten sind,
und in welchem kein Product verschwinden kann, ohne dass einer seiner
Factoren Null wiirde, enthalt also in sich einen Widerspruch und kann
nicht ezistieren.” [A higher complez number system, whose formal laws of
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operation are determined by the conditions of §28% and whose products of
units are in particular linear functions of the original units, and in which
no product can vanish unless one of its factors is zero, is a contradiction of
terms and cannot ezist.]

HANKEL proudly declares (p. 107): “Damit ist die Frage beantwortet,
deren Losung 1831 Gauss (Werke 2, S. 178) versprochen, aber nicht gegeben
hat, “warum die Relationen zwischen Dingen, die eine Mannigfaltigkeit von
mehr als zwet Dimensionen darbieten, nicht noch andere in der allgemeinen
Arithmetik zulissige Arten von Grifen liefern kénnen.” [This answers a
question whose solution GaUss had promised in 1831 (Werke, 2, p. 178)
but never gave: the question of why relations between objects, which rep-
resent a manifold of more than two dimensions, cannot give rise to other
permissible kinds of magnitudes in generalized arithmetic.)

The hypothesis of commutativity is essential in the Uniqueness theo-
rem. As is well known the hypercomplex system of quaternions described
by HAMILTON in the year 1843 is a 4-dimensional noncommutative field ex-
tension of R. Moreover there is also the 8-dimensional hypercomplez system
of octonions which is a further extension of R, that is neither commuta-
tive nor associative, but yet has no divisors of zero. We shall discuss these
algebras in depth in Chapters 7 and 8 of this volume.

The hypothesis that the system must not contain divisors of zero is also
an immediate condition for the validity of the Uniqueness theorem. For
example the system R x R with a “ring-direct multiplication” defined by

(a,b)(c,d) := (ac, bd)

is a 2-dimensional commutative ring extension of R with unit element
e := (1,1) which has, for example, (1,0) as a divisor of zero, and con-
sequently is not isomorphic to C. WEIERSTRASS (1884) and DEDEKIND
(1885) showed that this example is significant and that every finite dimen-
stonal, commutative ring extension of R with unit element but no nilpotent
elements, is isomorphic to a ring direct sum of copies of R and C. (An
element z # 0 is said to be nilpotent if there is an exponent n > 2 such
that 2" = 0.)

Appendix: Proof of the Fundamental Theorem, after LAPLACE

We shall discuss here the beautiful algebraic proof, which LAPLACE sketched
in 1795 and which is somewhat different and perhaps simpler than the
second proof that Gauss gave in 1816. This proof is to be found in N.
BouRrBAKI’s Algébre, Chap. VI, 1952, pp. 40-41. In the Note historique
BOURBAKI ascribes the proof to GAauss (p. 150). Our source is an article

8The conditions of §28 state in effect that the system is a commutative ring
with unit element, which is a finite dimensional vector space over R.
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by Hellmuth KNESER entitled “Laplace, Gauss und der Fundamentalsatz
der Algebra” which was published in 1939 in Deutsche Mathematik 4, 318-
322.

1. Results Used. We shall use the following well-known results.

1) Every real polynomial of odd degree has at least one real zero (Corollary
of the Intermediate value theorem).

2) Given any real polynomial f which is not a constant, there exists an
extension field K of the field R, such that f splits in K[X] into linear
factors (existence of a splitting field).

3) Let K be an extension field of R, let (1,...,(, be elements of K, and

let
nk:= Z Clll""‘cllk
1€v1<-<veln

be the “elementary symmetric functions in (1,...,(s (so that py =
G4 +Cny. o =C1- ... Cn). Then (with X as indeterminate)

n

[IX =¢) =X —=mX ™t 4 X 72 = 4 (=1) s

v=1
and every polynomial symmetric® in (y,...,(, belonging to
R[¢1,-.-,Cn] 1s a real polynomial in 1, ..., 0q (Main theorem on sym-

metric functions).
4) Every quadratic complex polynomial splits into linear factors in C[Z].

Of these four statements only the main theorem on symmetric functions,
which was proved by NEWTON in 1673 would not necessarily be covered in
a general mathematical education.

2. Proof. For ease in utilizing the statement (1.3) we shall write the co-
efficients of the given polynomial with alternating signs. The Fundamental
theorem of algebra will have been proved as soon as it is shown that:

Every polynomial h = X™ — b X"~ 1 45, X" 2 — ... + (=1)"b, € R[X],
n > 1, has a zero ¢c € C.

Proof (following LAPLACE). We write n in the form 2Fg, where ¢ € N
is an odd number, and use induction on k. The start of the induction,
k = 0, is clear, since the statement holds by virtue of 1). Suppose that

? A polynomial p(Cy, -..,¢x) is said to be symmetric, if it is invariant under
any permutation of the indices 1, ..., n.
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k > 1. By 2) there is a field K D R and elements (1,...,{n € K, such
that h = (X ~ (1)(X —¢2) -...- (X — ¢a) € K[X]. Using an artifice due to
LAPLACE, we now form, for any real number ¢, the polynomial

Lt = H (X-Cu—Cu—tCqu)€K[X]-

1<u<vin

When this polynomial is expanded in powers of X, all the coefficients are
real symmetric polynomials in (1,...,(,, because L;, by its definition, re-
mains invariant when the (j,...,{, are permuted in any way. By 3) these
coefficients are real polynomials in the elementary symmetric functions
of the (3,...,(n, that is, in the real numbers by,...,b,. It follows that
L: € R[X]. Since L, is of degree in(n — 1) = 2¥~1¢(2¥g — 1) and as
q(2¥q — 1) is odd when ¢ is odd, because k > 1, it follows from the induc-
tive hypothesis that L; has a zero in C. The product form of L; now shows
that for every t € R, there must be indices u < v, such that ¢, +¢, +1¢,(,
lies in C. As there are only %n(n— 1) index pairs (g, v) with1 < pu<v<n
and infinitely many real numbers, it must always be possible to find r,s € R
with r # s and &, A with 1 <k < A < n, such that

GO+ €l (+O+sGOeC
Since r # s it follows from this that
u=CGOHeEC, vi=(¢G+0GelC
and that (., () are the roots of the polynomial
Z2? —vZ +ueC[Z]
and that consequently, by 4), {,¢{, € C.

3. Historical Note. LAGRANGE said in 1797/98 about LAPLACE’s proof
that it “ne laisse rien & désirer comme simple démonstration” but held
against it the fact that the calculations required would be virtually “impos-
sible” to carry out in practice (De la résolution des équations numériques
de tous les degrés, Paris, An VI, 1797/98, pp. 200-201). In the 2nd edi-
tion of this treatise by LAGRANGE, which appeared in 1808, no mention is
made, incidentally, of GAUSS’s first proof of 1799, and doubtless this was
due to the limited circulation which the latter had enjoyed. H. KNESER
commented in this connection “it is perhaps even more remarkable that in
the third edition (which came out in 1828, after LAGRANGE’s death, in a
new version rearranged and edited by PoINSOT) nothing had changed. Not
only was POINSOT completely unaware of GAUSS’s second and third proofs,
which had appeared in 1816 in the Géttinger Commentationes, but he also
expresses his complete satisfaction at what LAGRANGE and LAPLACE had
achieved. Thus GAUss’s criticisms and ideas had not yet penetrated to
Paris after nearly thirty years, twelve of which had been years of peace.”
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What is 7

R. Remmert

And he made a molten sea, ten cubits from the

one brim to the other; it was round all about, and his
height was five cubits, and a line of thirty cubits

did compass it round about.

(I Kings, Chapter 7, verse 23).

There are many possible ways of introducing the number 7, associated with
the circle. We shall obtain = from the complez exponential function

z 22
expz=1+ﬁ+—2—!-+---.
There is a (uniquely defined) real number m# > 0, such that the numbers
2nwi, n € Z, constitute the set of numbers mapped on to 1 by the exponential
mapping exp z; or, in other words, there is a unique number © with the
property that

(D {w e Ciexpw = 1} = 27iZ.

We shall take (1) as the definition of 7, and deduce from it all its well-known
properties. To go into more detail, we shall adopt the following procedure;
after describing the history of the number 7 in Section 1, we shall begin by
developing the theory of the exponential function in the complex domain
as far as is necessary for our purpose, and we shall assume that the reader
has a certain familiarity with the basic ideas of real analysis. Absolutely
convergent series are defined as in the real domain. The field C inherits
the completeness of the field R so that CAuCHY’s Multiplication theorem
remains valid for absolutely convergent series of complex numbers. We shall
use these elementary things without stopping to substantiate them afresh
for the complex domain, and we shall also have nothing to say about the
general limit concept for series of functions.! The central result of Section 2
is the Epimorphism Theorem 2.3, which describes the exponential function

! We justify this unsystematic procedure by appealing to a fundamental prin-
ciple of applied didactics, which Schiller expressed in a letter to Goethe of the
5th February 1796 in the following words: “Wo es die Sache leidet, halte ich
es immer fir besser, nicht mit dem Anfang anzufangen, der immer das Schw-
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as a homomorphism exp:C — C*, mapping the additive group C onto
the multiplicative group C*. This is quickly established once it is known
that the image set exp(C) contains a neighborhood of the point 1. We
give two proofs for this: a very short one based on differentiation, and a
completely elementary one, which uses no differential calculus but merely
the Intermediate value theorem for real continuous functions (see 2.3 and
the appendix to §2).

Once the Epimorphism theorem is available, it is easy to verify the equa-
tion (1). After that the existence of the polar coordinate epimorphism,
indispensable to the introduction of polar coordinates, can then be quickly
established. This is the epimorphism p : R — S, ¢ — ei¥ whose kernel is
27Z. However the proof that p(w/2) = ¢ requires the use of the Intermediate
Value Theorem (see 3.5 and 3.6).

“After ... exponentials ... the sine and cosine need to be considered,
because they ... arise from exponential quantities as soon as these involve
imaginary numbers.” So wrote EULER in 1748 in §126 of his Introductio in
analysin infinitorum. True to this sentiment we shall introduce in Section
3 the trigonometric functions by means of the exponential function. The
famous EULER formulae

cosz = —2-(6"z +e7"), sinz = —21—i(e” —e ")

are raised to the status of definitions. EULER’s discovery of the relationship
between the trigonometric functions and the exponential function com-
pletely recast the whole of analysis from its foundations. All the proposi-
tions of the elementary theory of the circular functions now follow almost
by themselves and in particular the BALTZER-LANDAU characterization of
m (see 1.5 and 1.6). In Section 4 we discuss some classical formulae for
7; we refer there also to the questions of irrationality and transcendence.
The key to the solution of the problem of squaring of the circle lies in the
fundamental relation e2™ = 1.

§1. ON THE HISTORY OF 7
We summarize the important historical facts. Our sources are:

TROPFKE, J.: Geschichte der Elementar-Mathematik, 4, Ebene Geometrie,
3rd ed., pp. 260ff., De Gruyter, Berlin 1940

JuscuKEwITscH, A.P.: Geschichte der Mathematik im Mittelalter,
Teubner- Verlag, Leipzig 1964

erste ist.” [Whenever the subject allows, I always think it better not to begin
at the beginning, which is always the most difficult.] This “theorem” to which
mathematicians can hardly do justice in lectures and textbooks, was found, in-
cidentally recorded in Riemann’s posthumous papers right in the middle of some
calculations.
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Rupio, F.: ARCHIMEDES, HUYGENS, LAMBERT, LEGENDRE. Vier Ab-
handlungen iiber die Krelsmessung, Deutsch herausgegeben und mit
einer Ubersicht iiber die Geschichte des Problems von der Quadratur
des Zirkels, von den altesten Zeiten bis auf unsere Tage, Teubner Verlag,
Leipzig 1892. Reprint Dr. Martin Sandig OHG 1971

BECKMANN, P.: A history of = (Pi), The Golem Press, Boulder, Colorado,
4th ed., 1977

1. Definition by Measuring a Circle. In any circle the ratio of the
circumference C' to the diameter, and the ratio of the area A to the square
of the radius is constant. ARCHIMEDES (287-212 B.C.) recognized that in
each case the constant is the same. Since the time of EULER (1737) this
constant has been denoted by m, so that if we write r for the radius, we

have:
C = 2ar, A=mrl.

The letter m appears for the first time in a book by the English math-
ematician W. OUGHTRED (1575-1660), who taught J. WALLIS, entitled
Theorematum in libris Archimedis de sphaera et cylindro declaratio, Oxo-
niae 1663. Whether EULER knew of OUGHTRED is difficult to determine,
but he may well have thought of this symbol as the initial letter of the
ordinary Greek word for circumference (weptdépeta). Until 1735 EULER
still wrote p rather than .

2. Practical Approximations. For the architects of the “molten sea”
in the courtyard of the temple of King Solomon, mentioned in the Book
of Kings, = was 3. This value was also the one used in the main by the
Babylonians. A surprisingly good approximation is found in the Egyptian
arithmetic book of AHMES (circa 1900 B.C.) which gives the rule that
the area of a circle of diameter d is (d — g)z' This corresponds to an

approximation of = by (lgg)2 ~ 3.16. How this value was found is not
recorded.

In the Indian Sulbasiitras (literally “cord-rules,” that is, rules for con-
structing altars of specified form by means of cords or ropes) are found two
rules:

1) to find a square equal in area to a given circle, deduct 2/15 from the

diameter, which leads to an approximate value for 7 of (%g_)z ~ 3.0044;

2) to find a circle equal in area to a given square, take as radius the
line M@ in the figure below, where RQ = %RP, which corresponds to
7 = 3.088.
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The Salbastitras were written down about 500 B.C. It is not known how
long before then their content had been handed down by oral tradition.

g

R

~_

Albrecht DURER (1471-1528) of Nuremburg gives the following solution
for the second problem:? divide the diagonal of the square into 10 parts
and take 8 of them as the diameter of the circle. This amounts to saying
that 1 ~ (%\/i)zw, that is, 7 ~ 3%. Thus DURER does not take the then
generally accepted value of 3%, which is probably to be explained by the
fact that he liked to draw rather than calculate, and that there is no rational
geometrical construction based on division which leads to 31. (The reader
may care to try to prove this.)

According to K.R. POPPER (The open sociely and ils enemies, volume
1, the spell of Plato, 5, revised ed., Routledge and Kegan Paul, London
and Henley, 1966), PLATO (427-348/47) already knew a surprisingly good
approximation for 7; he is said to have given the estimate v/2 + v/3 =
3.14626 which has an error of less than 1.5 parts in a thousand.

3. Systematic Approximation. ARCHIMEDES was the first to give upper
and lower bounds for #. He compared the circumference of the circle with
the total length of the sides of the inscribed and circumscribed regular n-
sided polygons and obtained for n = 96 the inequalities 3% <7< 3%.
The estimate m > 3 is trivial because an inscribed regular hexagon has a
periphery of length 6. The value 7 = 3% =~ 3.14 is still used today as a
sufficiently close approximation for many practical purposes.

With ARCHIMEDES’s method it became possible to determine the value of
7 more accurately. Already APOLLONIUS who was about 25 years younger
than ARCHIMEDES calculated some better approximations. This is reported
by EuTocIUs in his commentary on ARCHIMEDES’s On the measurement
of a circle [ARCHIMEDES, Opera, Vol. 3, Leipzig, Teubner 1915, Reprint

2Underweysung der Messung mit dem Zirckel und Richtscheyt in Linien,
Ebnen, und gantzen Corporen, Nuremberg 1525, 21528; end of the 2nd Book,
figure 34 (facsimile edition published by A. Jaeggli und Chr. Papesch, Zirich
1966).
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1972, pp. 258-9]; unfortunately he gives no numbers. PTOLEMY (around 150
A.D.) chose a mean between the two values of ARCHIMEDES, namely 7 =
3T12_70' ~ 3.14166. .. (Handbuch der Astronomie, Deutsch von K. MANITIUS,
2nd ed., Leipzig 1963, pp. 384-5).

Since then astronomers in all nations strove to find improved values
for m. The Chinese knew of some already in the first century A.D. Thus
the astronomer and philosopher ZHANG HENG (78-139) worked with the
value /10 ~ 3.162; while the scholar and warlord WANG FAN (died 267)
was aware of the better fractional approximation 17452 ~ 3.155. Liu Hul
calculated (circa 263) from a regular polygon of 192 sides the bounds
3.146—6,‘,4—5 < 7T < 3.14%2— and later from one of 3,072 sides an approxi-
mate value corresponding to the decimal fraction 3.14159. Finally, from Zu
CHONG-ZHI (430-501) came the approximation 7 & 233 which is accurate
to the first six decimal places. This approximation, as is well known, is one
of the convergents in the expansion of 7 as a regular continued fraction
(see 5.6). This fraction was rediscovered by the Dutchman Valentin OTHO
towards the end of the 16th century. Whether the Chinese had learnt any-
thing from the discoveries of ARCHIMEDES or PTOLEMY is not known, but
anyhow there were already cultural contacts at the time because Chinese
silk was being sold in Rome.

In the Indian astronomical work, the Stryasiddhanta (circa 400 A.D.)
V10 is used, ARAYBHATA gives ggggg in 498 A.D. This value also appears in
the works of al-HwAR1zZMI (Baghdad, beginning of the 9th century A.D.).
The height of achievement of the Islamic astronomers in such calculations
was reached, though much later, by al-KASI, who was an astronomer at
the observatory in Samarkand founded by ULuc BEG. He calculated the
circumference of a circle of unit radius by means of a regular polygon of
3.2% sides and thus found 27 in the form of a sexagesimal fraction 6; 16,
59, 28, 1, 34, 51, 46, 14, 50 with an error of less than a quarter-unit in the
last place. He then converted this to the decimal fraction 6.283 185 307 179
586 5 (one of the earliest appearances of decimal fractions).

Rules for the mensuration of circles, equivalent to taking a value of 3%
for 7, seem to have spread through the western world through the activities
of Roman surveyors and the writings of BOETHIUS (circa 480-524 A.D.).
LEONARDO of Pisa (circa 1170-12407) who made himself master of the
mathematical knowledge of the time in the course of his travels in the Ori-
ent, calculated 7 from a 96-sided polygon to obtain 7 & % ~ 3.141818 ...
(La pratica di geometria. In Scritti di Leonardo Pisano, B. Boncompagni,
ed., Vol. 2, Rome 1862, pp. 90 et seq.); LunoLPH VAN CEULEN (1540-
1610, Leyden) gave the value correct to 35 decimal places, and so 7 is often
called after him, LunoLPH’s number. The first twenty correct decimals are
as follows:

T = 3.14159 2653589793 23846.. . . .
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The House of Representatives of the State of Indiana in the U.S.A. unan-
imously passed in 1897 an “Act introducing a new mathematical truth,”
which proposed two values for 7, namely 4 and 3.2. The Senate of Indiana
postponed “indefinitely” the adoption of this measure. Fortunately for the
people of Indiana, the “indefinitely” still continues (see D. SINGMASTER,
The legal values of pi, Math. Intelligencer, 7(2), 1985, 69-72).

4. Analytical Formulae. The first analytical representation of = was
found by VIETA in 1579 in the form of the infinite product

z_ﬁ 1+1ﬁ 1.1 /1+1\ﬁ
r V2 V2 2V2 V22 VoaT oV

This is probably the very first infinite product in the history of mathemat-
ics. WALLIS in 1655 discovered, in the course of investigations to do with
integration, his famous product

1r224466 2n-2n

271335 5.7 7 (@n-1)-2n+1)
It is remarkable that these first formulae for 7 are not infinite series.

The next great advances towards an understanding of the number 7 had
to await the development of the infinitesimal calculus and the theory of
infinite series. In 1671 James GREGORY gave the classical series represen-
tation

T 1 1 1 1

1= T3ty Trto
which was rediscovered in 1674 by LEIBNIZ, but which, like WALLIS’s prod-
uct, is unsuitable for numerical calculations because of the slowness of its

convergence. NEWTON by putting z := 5 in the arc sin series
122 1 328 1-3. (2n—1) z2ntl
2.

aresinz=z+og+g gyt 1o il

obtained, around 1665, the representation

m_1 lll+l§11+l§§li+
6-2t2'3 8%t 15 30 4°6 7 128 '

which enabled him to calculate with great ease the first 14 decimal places
of =.

5. BALTZER’s Definition. If one wishes to express the geometric def-
initions of = given in paragraph 1 in an analytical form, one has to use
integrals. The unit circle may be described by z2 + y? = 1; the arc length
of its upper half and its total area are given by

1 1
/ ydx:/ \/1—m2da::%
-1 -1
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and
1 24 1 1 d
JIT @2 x=/ L =
[.1 ) ~1V1—2z? re

respectively.

These equations can be elevated to the status of definitions of =. It is
worth pointing out here that WEIERSTRASS as early as 1841 in his func-
tion theoretic proof of the Expansion theorem now usually known as the
LAURENT series theorem, had already introduced the idea of defining 7 by
the improper integral

(Math. Werke 1, p. 53).

In lectures and books on the infinitesimal calculus, integrals are not
normally used to define =, because as a general rule the integral calculus
is not treated until after the differential calculus, while = and %w need to
be introduced at an early stage as zeros of the sine and cosine functions
respectively. It is more usual therefore to define %7!' as the smallest positive
zero of the cosine function defined by its power series; the existence of such
a zero being proved with the help of the Intermediate value theorem. This
method of introducing the number 7 was already used by Richard BALTZER
(1818-1887), who was a professor at Giessen from 1869 onwards, and a
friend of KRONECKER. In the first volume of his Elemente der Mathematik
one reads (see, for example, 5th ed., 1875, p. 195) “Wahrend z den realen
Weg von 1 bis 2 zuriicklegt, geht cos z ohne Unterbrechung der Continuitat
aus dem Positiven ins Negative:

2 4 5-6

1 2 22
cos2:—§—6-!—(1—7—:—8)—---<0

also giebt es zwischen 1 und 2 einen realen Werth z, bei welchem cos z null
ist. Dieser Werth ... wird durch 7 bezeichnet.” [While z travels along the
real path from 1 to 2, cos = goes without any break in continuity from a
positive value to a negative value:

cosl:l——1-+-1—(1———l—)+~->0,

cosl=1—1+l(l—i)+-~>0

2 4! 5-6
1 26 22
cos2_1—§—a(1_m)_...<0

so that there is a real value of z between 1 and 2 for which cos z has the
value zero. This value ... is denoted by %‘n’]

6. LANDAU and His Contemporary Critics. BALTZER’s method of
introducing 7 is not geometrical, but it is probably the most convenient way
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of arriving rapidly at 7 in the real domain. Edumund LANDAU (1877-1938)
advocated and publicized this approach in his Gottingen lectures and his
Einfikrung in die Differentialrechnung und Integralrechnung (Verlag No-
ordoff, Groningen) published in 1934, and written in his characteristic “tele-
graphic” style. On page 193 of this book can be read “Die Weltkonstante
aus Satz 262 werde dauernd mit © bezeichnet.” [The universal constant in
Theorem 262 will always be denoted by 7.] LANDAU, who was a pupil of
FROBENIUS, was appointed in 1909 Professor of Mathematics in Goéttingen
as successor to MINKOWSKI. In 1933 he was dismissed on racial grounds.
There is an obituary notice by K. KNOPP in Jahresber. DMV, 54, 1951,
55-62.

The definition of %‘Il' as the smallest positive zero of cosz is now com-
monplace. It is therefore all the more incomprehensible to us nowadays
that this particular method of defining 7 should have unleashed in 1934 an
academic dispute for which the epithet “disgraceful” would be far too mild
a description. A highly distinguished colleague in Berlin attacked LANDAU
savagely. It will be enough to quote two of his sentences: “Uns Deutsche
laBt eine solche Rumpftheorie unbefriedigt” (Sonderausg. Sitz. Ber. Preuss.
Akad. Wiss., Phys.-Math. Kl. XX, p. 6); und weitaus deutlicher: “So ist
... die mannhafte Ablehnung, die ein grofler Mathematiker, Edmund LAN-
DAU, bei der Gottinger Studentenschaft gefunden hat, letzten Endes darin
begriindet, daB der undeutsche Stil dieses Mannes in Forschung und Lehre
deutschem Empfinden unertraglich ist. Ein Volk, das eingesehen hat, . .. wie
Volksfremde daran arbeiten, ihm fremde Art aufzuzwingen, mufl Lehrer von
einem ihm fremden Typus ablehnen.” (Personlichkeitsstruktur und math-
ematisches Schaffen, Forsch. u. Fortschr., 10. Jahrg. Nr. 18, 1934, p. 236.)
[Such a tail-end of a theory leaves us Germans quite unsatisfied] and more
specifically: [Thus ... the valiant rejection by the Gottingen student body
which a great mathematician, Edmund LANDAU, has experienced is due in
the final analysis to the fact that the un-German style of this man in his
research and teaching is unbearable to German feelings. A people who have
perceived, ... how members of an