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Preface

With the advent of powerful computing tools and numerous advances in math-
ematics, computer science and cryptography, algorithmic number theory has
become an important subject in its own right. Both external and internal
pressures gave a powerful impetus to the development of more powerful al-
gorithms. These in turn led to a large number of spectacular breakthroughs.
To mention but a few, the LLL algorithm which has a wide range of appli-
cations, including real world applications to integer programming, primality
testing and factoring algorithms, sub-exponential class group and regulator
algorithms, etc ...

Several books exist which treat parts of this subject. (It is essentially
impossible for an author to keep up with the rapid pace of progress in all
areas of this subject.) Each book emphasizes a different area, corresponding
to the author’s tastes and interests. The most famous, but unfortunately the
oldest, is Knuth’s Art of Computer Programming, especially Chapter 4.

The present book has two goals. First, to give a reasonably comprehensive
introductory course in computational number theory. In particular, although
we study some subjects in great detail, others are only mentioned, but with
suitable pointers to the literature. Hence, we hope that this book can serve
as a first course on the subject. A natural sequel would be to study more
specialized subjects in the existing literature.

The prerequisites for reading this book are contained in introductory texts
in number theory such as Hardy and Wright [H-W] and Borevitch and Shafare-
vitch [Bo-Sh]. The reader also needs some feeling or taste for algorithms and
their implementation. To make the book as self-contained as possible, the main
definitions are given when necessary. However, it would be more reasonable for
the reader to first acquire some basic knowledge of the subject before studying
the algorithmic part. On the other hand, algorithms often give natural proofs
of important results, and this nicely complements the more theoretical proofs
which may be given in other books.

The second goal of this course is practicality. The author’s primary in-
tentions were not only to give fundamental and interesting algorithms, but
also to concentrate on practical aspects of the implementation of these algo-
rithms. Indeed, the theory of algorithms being not only fascinating but rich,
can be (somewhat arbitrarily) split up into four closely related parts. The first
is the discovery of new algorithms to solve particular problems. The second is
the detailed mathematical analysis of these algorithms. This is usually quite
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mathematical in nature, and quite often intractable, although the algorithms
seem to perform rather well in practice. The third task is to study the com-
plexity of the problem. This is where notions of fundamental importance in
complexity theory such as NP-completeness come in. The last task, which
some may consider the least noble of the four, is to actually implement the
algorithms. But this task is of course as essential as the others for the actual
resolution of the problem.

In this book we give the algorithms, the mathematical analysis and in
some cases the complexity, without proofs in some cases, especially when it
suffices to look at the existing literature such as Knuth’s book. On the other
hand, we have usually tried as carefully as we could, to give the algorithms
in a ready to program form—in as optimized a form as possible. This has the
drawback that some algorithms are unnecessarily clumsy (this is unavoidable
if one optimizes), but has the great advantage that a casual user of these
algorithms can simply take them as written and program them in his/her
favorite programming language. In fact, the author himself has implemented
almost all the algorithms of this book in the number theory package PARI
(see Appendix A).

The approach used here as well as the style of presentation of the algo-
rithms is similar to that of Knuth (analysis of algorithms excepted), and is
also similar in spirit to the book of Press et al [PFTV] Numerical Recipes (in
Fortran, Pascal or C), although the subject matter is completely different.

For the practicality criterion to be compatible with a book of reasonable
size, some compromises had to be made. In particular, on the mathematical
side, many proofs are not given, especially when they can easily be found
in the literature. From the computer science side, essentially no complexity
results are proved, although the important ones are stated.

The book is organized as follows. The first chapter gives the fundamental
algorithms that are constantly used in number theory, in particular algorithms
connected with powering modulo N and with the Euclidean algorithm.

Many number-theoretic problems require algorithms from linear algebra
over a field or over Z. This is the subject matter of Chapter 2. The highlights
of this chapter are the Hermite and Smith normal forms, and the fundamental
LLL algorithm.

In Chapter 3 we explain in great detail the Berlekamp-Cantor-Zassenhaus
methods used to factor polynomials over finite fields and over Q, and we also
give algorithms for finding all the complex roots of a polynomial.

Chapter 4 gives an introduction to the algorithmic techniques used in
number fields, and the basic definitions and results about algebraic numbers
and number fields. The highlights of these chapters are the use of the Hermite
Normal Form representation of modules and ideals, an algorithm due to Diaz
y Diaz and the author for finding “simple” polynomials defining a number
field, and the subfield and field isomorphism problems.
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Quadratic fields provide an excellent testing and training ground for the
techniques of algorithmic number theory (and for algebraic number theory
in general). This is because although they can easily be generated, many
non-trivial problems exist, most of which are unsolved (are there infinitely
many real quadratic fields with class number 17). They are studied in great
detail in Chapter 5. In particular, this chapter includes recent advances on the
efficient computation in class groups of quadratic fields (Shanks’s NUCOMP
as modified by Atkin), and sub-exponential algorithms for computing class
groups and regulators of quadratic fields (McCurley-Hafner, Buchmann).

Chapter 6 studies more advanced topics in computational algebraic num-
ber theory. We first give an efficient algorithm for computing integral bases
in number fields (Zassenhaus’s round 2 algorithm), and a related algorithm
which allows us to compute explicitly prime decompositions in field exten-
sions as well as valuations of elements and ideals at prime ideals. Then, for
number fields of degree less than or equal to 7 we give detailed algorithms
for computing the Galois group of the Galois closure. We also study in some
detail certain classes of cubic fields. This chapter concludes with a general
algorithm for computing class groups and units in general number fields. This
is a generalization of the sub-exponential algorithms of Chapter 5, and works
quite well. For other approaches, I refer to [Poh-Zas| and to a forthcoming
paper of J. Buchmann. This subject is quite involved so, unlike most other
situations in this book, I have not attempted to give an efficient algorithm,
just one which works reasonably well in practice.

Chapters 1 to 6 may be thought of as one unit and describe many of the
most interesting aspects of the theory. These chapters are suitable for a two
semester graduate (or even a senior undergraduate) level course in number
theory. Chapter 6, and in particular the class group and unit algorithm, can
certainly be considered as a climax of the first part of this book.

A number theorist, especially in the algorithmic field, must have a mini-
mum knowledge of elliptic curves. This is the subject of chapter 7. Excellent
books exist about elliptic curves (for example [Sil]), but our aim is a little
different since we are primarily concerned with applications of elliptic curves.
But a minimum amount of culture is also necessary, and so the flavor of this
chapter is quite different from the others chapters. In the first three sections,
we give the essential definitions, and we give the basic and most striking results
of the theory, with no pretense to completeness and no algorithms.

The theory of elliptic curves is one of the most marvelous mathematical
theories of the twentieth century, and abounds with important conjectures.
They are also mentioned in these sections. The last sections of Chapter 7,
give a number of useful algorithms for working on elliptic curves, with little
or 1o proofs.

The reader is warned that, apart from the material necessary for later
chapters, Chapter 7 needs a much higher mathematical background than the
other chapters. It can be skipped if necessary without impairing the under-
standing of the subsequent chapters.
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Chapter 8 (whose title is borrowed from a talk of Hendrik Lenstra) consid-
ers the techniques used for primality testing and factoring prior to the 1970’s,
with the exception of the continued fraction method of Brillhart-Morrison
which belongs in Chapter 10.

Chapter 9 explains the theory and practice of the two modern primal-
ity testing algorithms, the Adleman-Pomerance-Rumely test as modified by
H. W. Lenstra and the author, which uses Fermat’s (little) theorem in cyclo-
tomic fields, and Atkin’s test which uses elliptic curves with complex multi-
plication.

Chapter 10 is devoted to modern factoring methods, i.e. those which run
in sub-exponential time, and in particular to the Elliptic Curve Method of
Lenstra, the Multiple Polynomial Quadratic Sieve of Pomerance and the Num-
ber Field Sieve of Pollard. Since many of the methods described in Chapters
9 and 10 are quite complex, it is not reasonable to give ready-to-program al-
gorithms as in the preceding chapters, and the implementation of any one of
these complex methods can form the subject of a three month student project.

In Appendix A, we describe what a serious user should know about com-
puter packages for number theory. The reader should keep in mind that the
author of this book is biased since he has written such a package himself (this
package being is available without cost by anonymous ftp).

Appendix B has a number of tables which we think may useful to the
reader. For example, they can be used to check the correctness of the imple-
mentation of certain algorithms.

What I have tried to cover in this book is so large a subject that, neces-
sarily, it cannot be treated in as much detail as I would have liked. For further
reading, I suggest the following books.

For Chapters 1 and 3, [Knul] and [Knu2]. This is the bible for algorithm
analysis. Note that the sections on primality testing and factoring are out-
dated. Also, algorithms like the LLL algorithm which did not exist at the
time he wrote are, obviously, not mentioned. The recent book [GCL] contains
essentially all of our Chapter 3, as well as many more polynomial algorithms
which we have not covered in this book such as Grobner bases computation.

For Chapters 4 and 5, [Bo-Sh], [Mar] and [Ire-Ros]. In particular, [Mar]
and [Ire-Ros| contain a large number of practical exercises, which are not far
from the spirit of the present book, [Ire-Ros] being more advanced.

For Chapter 6, [Poh-Zas| contains a large number of algorithms, and treats
in great detail the question of computing units and class groups in general
number fields. Unfortunately the presentation is sometimes obscured by quite
complicated notations, and a lot of work is often needed to implement the
algorithms given there.

For Chapter 7, [Sil] is an excellent book, unfortunately it contains only
about half of the necessary theory. It also has numerous exercises. The neces-
sary second volume is rumored to be in preparation. Another good reference
is [Hus], as well as [Ire-Ros| for material on zeta-functions of varieties. The
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algorithmic aspect of elliptic curves is beautifully treated in [Cre], which I also
heartily recommend.

For Chapters 8 to 10, the best reference to date, in addition to [Knu2], is
[Rie]. In addition, Riesel has several chapters on prime number theory.

Note on the exercises. The exercises have a wide range of difficulty,
from extremely easy to unsolved research problems. Many are actually imple-
mentation problems, and hence not mathematical in nature. No attempt has
been made to grade the level of difficulty of the exercises as in Knuth, except
of course that unsolved problems are mentioned as such. The ordering follows
roughly the corresponding material in the text.

WARNING. Almost all of the algorithms given in this book have been
programmed by the author and colleagues, in particular as a part of the Pari
package. The programming has not however, always been synchronized with
the writing of this book, so it may be that some algorithms are incorrect, and
others may contain slight typographical errors which of course also invalidate
them. Hence, the author and Springer-Verlag do not assume any responsibility
for consequences which may directly or indirectly occur from the use of the
algorithms given in this book. Apart from the preceding legalese, the author
would appreciate corrections, improvements and so forth to the algorithms
given, so that this book may improve if further editions are printed. The
simplest is to send an e-mail message to

cohen@ecole.ceremab.u-bordeaux.fr

or else to write to the author’s address.
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Chapter 1

Fundamental Number-Theoretic Algorithms

1.1 Introduction

This book describes in detail a number of algorithms used in algebraic number
theory and the theory of elliptic curves. It also gives applications to problems
such as factoring and primality testing. Although the algorithms and the the-
ory behind them are sufficiently interesting in themselves, I strongly advise
the reader to take the time to implement them on her/his favorite machine.
Indeed, one gets a feel for an algorithm mainly after executing it several times.
(This book does help by providing many tricks that will be useful for doing
this.)

We give the necessary background on number fields and classical algebraic
number theory in Chapter 4, and the necessary prerequisites on elliptic curves
in Chapter 7. This chapter shows you some basic algorithms used almost
constantly in number theory. The best reference here is [Knu2].

1.1.1 Algorithms

Before we can describe even the simplest algorithms, it is necessary to pre-
cisely define a few notions. However, we will do this without entering into the
sometimes excessively detailed descriptions used in Computer Science. For us,
an algorithm will be a method which, given certain types of inputs, gives an
answer after a finite amount of time.

Several things must be considered when one describes an algorithm. The
first is to prove is that it is correct, i.e. that it gives the desired result when
it stops. Then, since we are interested in practical implementations, we must
give an estimate of the algorithm’s running time, if possible both in the worst
case, and on average. Here, one must be careful: the running time will always
be measured in bit operations, i.e. logical or arithmetic operations on zeros and
ones. This is the most realistic model, if one assumes that one is using real
computers, and not idealized ones. Third, the space requirement (measured in
bits) must also be considered. In many algorithms, this is negligible, and then
we will not bother mentioning it. In certain algorithms however, it becomes
an important issue which has to be addressed.

First, some useful terminology: The size of the inputs for an algorithm will
usually be measured by the number of bits that they require. For example,
the size of a positive integer N is |lgN| + 1 (see below for notations). We
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will say that an algorithm is linear, quadratic or polynomial time if it requires
time O(In N), O(In®N), O(P(In N)) respectively, where P is a polynomial. If
the time required is O(N?), we say that the algorithm is exponential time.
Finally, many algorithms have some intermediate running time, for example

CvInNinlnN

€ )

which is the approximate expected running time of many factoring algorithms
and of recent algorithms for computing class groups. In this case we say that
the algorithm is sub-ezponential.

The definition of algorithm which we have given above, although a little
vague, is often still too strict for practical use. We need also probabilistic
algorithms, which depend on a source of random numbers. These “algorithms”
should in principle not be called algorithms since there is a possibility (of
probability zero) that they do not terminate. Experience shows, however, that
probabilistic algorithms are usually more efficient than non-probabilistic ones;
in many cases they are even the only ones available.

Probabilistic algorithms should not be mistaken with methods (which I
refuse to call algorithms), which produce a result which has a high probability
of being correct. It is essential that an algorithm produces correct results
(discounting human or computer errors), even if this happens after a very
long time. A typical example of a non-algorithmic method is the following:
suppose N is large and you suspect that it is prime (because it is not divisible
by small numbers). Then you can compute

21 mod N

using the powering Algorithm 1.2.1 below. If it is not 1 mod N, then this
proves that IV is not prime by Fermat’s theorem. On the other hand, if it is
equal to 1 mod N, there is a very good chance that N is indeed a prime. But
this is not a proof, hence not an algorithm for primality testing (the smallest
counterexample is N = 341).

Another point to keep in mind for probabilistic algorithms is that the idea
of absolute running time no longer makes much sense. This is replaced by the
notion of expected running time, which is self-explanatory.

1.1.2 Multi-precision

Since the numbers involved in our algorithms will almost always become quite
large, a prerequisite to any implementation is some sort of multi-precision
package. This package should be able to handle numbers having up to 1000
decimal digits. Such a package is easily to write, and one is described in detail
in Riesel’s book ([Rie]). One can also use existing packages or languages, such
as Axiom, Bignum, Cayley/Magma, Derive, Gmp, Lisp, Macsyma, Maple,
Mathematica, Pari, Reduce, or Ubasic (see Appendix A). Even without a
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multi-precision package, some algorithms can be nicely tested, but their scope
becomes more limited.

The pencil and paper method for doing the usual operations can be imple-
mented without difficulty. One should not use a base-10 representation, but
rather a base suited to the computer’s hardware.

Such a bare-bones multi-precision package must include at the very least:

o Addition and subtraction of two n-bit numbers (time linear in n).

e Multiplication and Euclidean division of two n-bit numbers (time linear
in n?).
o Multiplication and division of an n-bit number by a short integer (time

linear in n). Here the meaning of short integer depends on the machine. Usually
this means a number of absolute value less than 215, 231 935 or 263,

o Left and right shifts of an n bit number by small integers (time linear
in n).

e Input and output of an n-bit number (time linear in n or in n? depending
whether the base is a power of 10 or not.

Remark. Contrary to the choice made by some systems such as Maple, 1
strongly advise using a power of 2 as a base, since usually the time needed for
input/output is only a very small part of the total time, and it is also often
dominated by the time needed for physical printing or displaying the results.

There exist algorithms for multiplication and division which as n gets
large are much faster than O(n?), the best, due to Schonhage and Strassen,
running in O(nlnnlnlnn) bit operations. Since we will be working mostly
with numbers of up to roughly 100 decimal digits, it is not worthwhile to
implement these more sophisticated algorithms. (These algorithms become
practical only for numbers having more than several hundred decimal digits.)
On the other hand, simpler schemes such as the method of Karatsuba (see
[Knu2] and Exercise 2) can be useful for much smaller numbers.

The times given above for the basic operations should constantly be kept
in mind.

Implementation advice. For people who want to write their own bare-
bones multi-precision package as described above, by far the best reference
is [Knu2] (see also [Rie]). A few words of advice are however necessary. A
priori, one can write the package in one’s favorite high level language. As
will be immediately seen, this limits the multi-precision base to roughly the
square root of the word size. For example, on a typical 32 bit machine, a
high level language will be able to multiply two 16-bit numbers, but not two
32-bit ones since the result would not fit. Since the multiplication algorithm
used is quadratic, this immediately implies a loss of a factor 4, which in fact
usually becomes a factor of 8 or 10 compared to what could be done with the
machine’s central processor. This is intolerable. Another alternative is to write
everything in assembly language. This is extremely long and painful, usually
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bug-ridden, and in addition not portable, but at least it is fast. This is the
solution used in systems such as Pari and Ubasic, which are much faster than
their competitors when it comes to pure number crunching.

There is a third possibility which is a reasonable compromise. Declare
global variables (known to all the files, including the assembly language files
if any) which we will call remainder and overflow say.

Then write in any way you like (in assembly language or as high level
language macros) nine functions that do the following. Assume a,b,c are
unsigned word-sized variables, and let M be the chosen multi-precision base,
so all variables will be less than M (for example M= 232). Then we need the
following functions, where 0 < ¢ <M and overflow is equal to 0 or 1:

c=add(a,b) corresponding to the formula a+b=overflow-M+c.

c=addx(a,b) corresponding to the formula a+b+overflow=overflow-M+c.
c=sub(a,b) corresponding to the formula a-b=c-overflow-M.
c=subx(a,b) corresponding to the formula a-b-overflow=c-overflow-M.
c=mul (a,b) corresponding to the formula a-b=remainder-M+c,

in other words c contains the low order part of the product, and remainder
the high order part.

c=div(a,b) corresponding to the formula remainder-M+a=b-c+remainder,

where we may assume that remainder<b.

For the last three functions we assume that M is equal to a power of 2, say
M=2m

c=shiftl(a,k) corresponding to the formula 2Xa=remainder-M+c.

c=shiftr(a,k) corresponding to the formula a-M/2k=c-M+remainder,

where we assume for these last two functions that 0 < k < m.

k=bfffo(a) corresponding to the formula M/2 < oKa < M, ie k =
[lg(M/(22))] when a # 0, k =m when a = 0.

The advantage of this scheme is that the rest of the multi-precision package
can be written in a high level language without much sacrifice of speed, and
that the black boxes described above are short and easy to write in assembly
language. The portability problem also disappears since these functions can
easily be rewritten for another machine.

Knowledgeable readers may have noticed that the functions above cor-
respond to a simulation of a few machine language instructions of the
68020,/68030/68040 processors. It may be worthwhile to work at a higher
level, for example by implementing in assembly language a few of the multi-
precision functions mentioned at the beginning of this section. By doing this
to a limited extent one can avoid many debugging problems. This also avoids
much function call overhead, and allows easier optimizing. As usual, the price
paid is portability and robustness.

Remark. One of the most common operations used in number theory is
modular multiplication, i.e. the computation of a * b modulo some number
N, where a and b are non-negative integers less than N. This can, of course,
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be trivially done using the formula div(mul(a,b),N), the result being the
value of remainder. When many such operations are needed using the same
modulus N (this happens for example in most factoring methods, see Chapters
8, 9 an 10), there is a more clever way of doing this, due to P. Montgomery
which can save 10 to 20 percent of the running time, and this is not a negligible
saving since it is an absolutely basic operation. We refer to his paper [Monl]
for the description of this method.

1.1.3 Base Fields and Rings

Many of the algorithms that we give (for example the linear algebra algo-
rithms of Chapter 2 or some of the algorithms for working with polynomials
in Chapter 3) are valid over any base ring or field R where we know how to
compute. We must emphasize however that the behavior of these algorithms
will be quite different depending on the base ring. Let us look at the most
important examples.

The simplest rings are the rings R = Z/NZ, especially when N is small.
Operations in R are simply operations “modulo N” and the elements of R can
always be represented by an integer less than N, hence of bounded size. Using
the standard algorithms mentioned in the preceding section, and a suitable
version of Euclid’s extended algorithm to perform division (see Section 1.3.2),
all operations need only O(In®N) bit operations (in fact O(1) since N is con-
sidered as fixed!). An important special case of these rings R is when N = p
is a prime, and then R = F,, the finite field with p elements. More generally,
it is easy to see that operations on any finite field F, with ¢ = p* can be done
quickly.

The next example is that of R = Z. In many algorithms, it is possible to
give an upper bound N on the size of the numbers to be handled. In this case
we are back in the preceding situation, except that the bound N is no longer
fixed, hence the running time of the basic operations is really O(In>N) bit
operations and not O(1). Unfortunately, in most algorithms some divisions
are needed, hence we are no longer working in Z but rather in Q. It is possible
to rewrite some of these algorithms so that non-integral rational numbers
never occur (see for example the Gauss-Bareiss Algorithm 2.2.6, the integral
LLL Algorithm 2.6.7, the sub-resultant Algorithms 3.3.1 and 3.3.7). These
versions are then preferable.

The third example is when R = Q. The main phenomenon which occurs
in practically all algorithms here is “coefficient explosion”. This means that in
the course of the algorithm the numerator and denominators of the rational
numbers which occur become very large; their size is almost impossible to
control. The main reason for this is that the numerator and denominator of
the sum or difference of two rational numbers is usually of the same order
of magnitude as those of their product. Consequently it is not easy to give
running times in bit operations for algorithms using rational numbers.
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The fourth example is that of R = R (or R = C). A new phenomenon
occurs here. How can we represent a real number? The truthful answer is that
it is in practice impossible, not only because the set R is uncountable, but also
because it will always be impossible for an algorithm to tell whether two real
numbers are equal, since this requires in general an infinite amount of time
(on the other hand if two real numbers are different, it is possible to prove
it by computing them to sufficient accuracy). So we must be content with
approximations (or with interval arithmetic, i.e. we give for each real number
involved in an algorithm a rational lower and upper bound), increasing the
closeness of the approximation to suit our needs. A nasty specter is waiting for
us in the dark, which has haunted generations of numerical analysts: numerical
instability. We will see an example of this in the case of the LLL algorithm
(see Remark (4) after Algorithm 2.6.3). Since this is not a book on numerical
analysis, we do not dwell on this problem, but it should be kept in mind.

As far as the bit complexity of the basic operations are concerned, since
we must work with limited accuracy the situation is analogous to that of Z
when an upper bound N is known. If the accuracy used for the real number
is of the order of 1/N, the number of bit operations for performing the basic
operations is O(In®N).

Although not much used in this book, a last example I would like to
mention is that of R = Q,, the field of p-adic numbers. This is similar to the
case of real numbers in that we must work with a limited precision, hence the
running times are of the same order of magnitude. Since the p-adic valuation is
non-Archimedean, i.e. the accuracy of the sum or product of p-adic numbers
with a given accuracy is at least of the same accuracy, the phenomenon of
numerical instability essentially disappears.

1.1.4 Notations

We will use Knuth’s notations, which have become a de facto standard in the
theory of algorithms. Also, some algorithms are directly adapted from Knuth
(why change a well written algorithm?). However the algorithmic style of writ-
ing used by Knuth is not well suited to structured programming. The reader
may therefore find it completely straightforward to write the corresponding
programs in assembly language, Basic or Fortran, say, but may find it slightly
less so to write them in Pascal or in C.

A warning: presenting an algorithms as a series of steps as is done in
this book is only one of the ways in which an algorithm can be described.
The presentation may look old-fashioned to some readers, but in the author’s
opinion it is the best way to explain all the details of an algorithm. In particular
it is perhaps better than using some pseudo-Pascal language (pseudo-code).
Of course, this is debatable, but this is the choice that has been made in this
book. Note however that, as a consequence, the reader should read as carefully
as possible the exact phrasing of the algorithm, as well as the accompanying
explanations, to avoid any possible ambiguity. This is particularly true in if
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(conditional) expressions. Some additional explanation is sometimes added to
diminish the possibility of ambiguity. For example, if the if condition is not
satisfied, the usual word used is otherwise. If if expressions are nested, one
of them will use otherwise, and the other will usually use else. I admit that
this is not a very elegant solution.

A typical example is step 7 in Algorithm 6.2.9. The initial statement If
¢ =0 do the following: implies that the whole step will be executed only
if ¢ = 0, and must be skipped if ¢ # 0. Then there is the expression if
j =1 followed by an otherwise, and nested inside the otherwise clause is
another if dim(...) < n, and the else go to step 7 which follows refers to
this last if, i.e. we go to step 7 if dim(...) > n.

I apologize to the reader if this causes any confusion, but I believe that
this style of presentation is a good compromise.

|z| denotes the floor of z, i.e. the largest integer less than or equal to z.
Thus [3.4] =3, |[-3.4] = —4.

[z] denotes the ceiling of z, i.e. the smallest integer greater than or equal
to z. We have [z] = —|—=z].

|z] denotes an integer nearest to z, i.e. |z] = [z + 1/2].

[a, b[ denotes the real interval from a to b including a but excluding b. Sim-
ilarly ]a, b] includes b and excludes a, and |a, b is the open interval excluding a
and b. (This differs from the American notations [a,b), (a,b] and (a, b) which
in my opinion are terrible. In particular, in this book (a, ) will usually mean
the GCD of a and b, and sometimes the ordered pair (a,b).)

lg z denotes the base 2 logarithm of z.
If E is a finite set, |E| denotes the cardinality of F.

If A is a matrix, A® denotes the transpose of the matrix A. A 1 x n (resp.
n X 1) matrix is called a row (resp. column) vector. The reader is warned that
many authors use a different notation where the transpose sign is put on the
left of the matrix.

If a and b are integers with b # 0, then except when explicitly mentioned
otherwise, a mod b denotes the non-negative remainder in the Euclidean di-
vision of a by b, i.e. the unique number r such that ¢ = r (mod b) and
0<r<lbl.

The notation d | n means that d divides n, while d||n will mean that d | n
and (d,n/d) = 1. Furthermore, the notations p | n and p®||n are always taken
to imply that p is prime, so for example p®||n means that p® is the highest
power of p dividing n.

Finally, if @ and b are elements in a Euclidean ring (typically Z or the
ring of polynomials over a field), we will denote the greatest common divisor
(abbreviated GCD in the text) of a and b by ged(a,b), or simply by (a,b)
when there is no risk of confusion.
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1.2 The Powering Algorithms

In almost every non-trivial algorithm in number theory, it is necessary at
some point to compute the n-th power of an element in a group, where n may
be some very large integer (i.e. for instance greater than 10!°°). That this
is actually possible and very easy is fundamental and one of the first things
that one must understand in algorithmic number theory. These algorithms
are general and can be used in any group. In fact, when the exponent is non-
negative, they can be used in any monoid with unit. We give an abstract
version, which can be trivially adapted for any specific situation.

Let (G, x) be a group. We want to compute ¢g" for g € G and n € Z in an
efficient manner. Assume for example that n > 0. The naive method requires
n~—1 group multiplications. We can however do much better (A note: although
Gauss was very proficient in hand calculations, he seems to have missed this
method.) The idea is as follows. If n = 3, €;2" is the base 2 expansion of n

with ¢, =0 or 1, then
=TI (¢*) .

51':1

hence if we keep track in an auxiliary variable of the quantities gzi which we
compute by successive squarings, we cbtain the following algorithm.

Algorithm 1.2.1 (Right-Left Binary). Given g € G and n € Z, this algorithm
computes g" in G. We write 1 for the unit element of G.

1. [Initialize] Set y « 1. If n = 0, output y and terminate. If n < 0 let N «— —n
and z « g~1. Otherwise, set N < n and z « g.

2. [Multiply?] If N is odd set y « z - y.

3. [Halve N] Set N « [N/2|. If N =0, output y as the answer and terminate
the algorithm. Otherwise, set z «— z - z and go to step 2.

Examining this algorithm shows that the number of multiplication steps
is equal to the number of binary digits of |n| plus the number of ones in the
binary representation of [n| minus 1. So, it is at most equal to 2|lg |n||+1, and
on average approximately equal to 1.51g |n|. Hence, if one can compute rapidly
in G, it is not unreasonable to have exponents with several million decimal
digits. For example, if G = (Z/mZ)*, the time of the powering algorithm is
O(In*mIn|n|), since one multiplication in G takes time O(Inm).

The validity of Algorithm 1.2.1 can be checked immediately by noticing
that at the start of step 2 one has g" = y - zN. This corresponds to a right-
to-left scan of the binary digits of |n|.

We can make several changes to this basic algorithm. First, we can write
a similar algorithm based on a left to right scan of the binary digits of |n].
In other words, we use the formula g" = (g*/?)? if n is even and g" = g -
(g™=1/2)2 if n is odd.
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This assumes however that we know the position of the leftmost bit of |n|
(or that we have taken the time to look for it beforehand), i.e. that we know
the integer e such that 2¢ < |n| < 2¢*1, Such an integer can be found using a
standard binary search on the binary digits of n, hence the time taken to find
it is O(lglg|n|), and this is completely negligible with respect to the other
operations. This leads to the following algorithm.

Algorithm 1.2.2 (Left-Right Binary). Given g € G and n € Z, this algorithm
computes g" in G. If n # 0, we assume also given the unique integer e such that
2¢ < |n| < 2°*F1. We write 1 for the unit element of G.

1. [Initialize] If n = 0, output 1 and terminate. If n < 0 set N « —n and
z « g~1. Otherwise, set N < n and z < g. Finally, set y « 2, E « 2¢,
N—N-E.

2. [Finished?] If E = 1, output y and terminate the algorithm. Otherwise, set
E — E/2.

3. [Multiply?] Set y «— y-y and if N > E,set N— N~ FE and y « y- 2. Go
to step 2.

Note that E takes as values the decreasing powers of 2 from 2¢ down to
1, hence when implementing this algorithm, all operations using F must be
thought of as bit operations. For example, instead of keeping explicitly the
(large) number E, one can just keep its exponent (which will go from e down
to 0). Similarly, one does not really subtract E from N or compare N with
E, but simply look whether a particular bit of N is 0 or not. To be specific,
assume that we have written a little program bit(N, f) which outputs bit
number f of N, bit 0 being, by definition, the least significant bit. Then we
can rewrite Algorithm 1.2.2 as follows.

Algorithm 1.2.3 (Left-Right Binary, Using Bits). Given g € G and n € Z,
this algorithm computes g™ in G. If n # 0, we assume also that we are given the

unique integer e such that 2¢ < |n| < 2°*1. We write 1 for the unit element of
G.

1. [Initialize] If n = 0, output 1 and terminate. If n < 0 set N « —n and
z « g~L. Otherwise, set N « n and z « g. Finally, set y « 2, f « e.

2. [Finished?] If f = 0, output y and terminate the algorithm. Otherwise, set
fef—-1
3. [Multiply?] Set y «— y -y and if bit(N, f) =1, set y < y - z. Go to step 2.

The main advantage of this algorithm over Algorithm 1.2.1 is that in step
3 above, z is always the initial g (or its inverse if n < 0). Hence, if g is
represented by a small integer, this may mean a linear time multiplication
instead of a quadratic time one. For example, if G = (Z/mZ)* and if g (or
g ! if n < 0) is represented by the class of a single precision integer, the
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running time of Algorithms 1.2.2 and 1.2.3 will be O(lnmIn|n|) instead of
O(in®mn |n|) for Algorithm 1.2.1.

Algorithm 1.2.3 can be improved by making use of the representation of
[n| in a base equal to a power of 2, instead of base 2 itself. In this case, only
the left-right version exists.

This is done as follows (we may assume n > 0). Choose a suitable positive
integer k (we will see in the analysis how to choose it.optimally). Precompute
g% and by induction the odd powers g3, ¢°, ..., g2 ~1, and initialize y to g
as in Algorithm 1.2.3. Now if we scan the 2¥-representation of |n| from left
to right (i.e. k bits at a time of the binary representation), we will encounter
digits @ in base 2¥, hence such that 0 < a < 2%, If a=0, we square k times
our current y. If a # 0, we can write a = 2'b with b odd and less than 2,
and 0 < t < k. We must set y « yzlc -g2tb, and this is done by computing
first yzk_t - g° (which involves k — ¢ squarings plus one multiplication since g®
has been precomputed), then squaring ¢ times the result. This leads to the
following algorithm. Here we assume that we have an algorithm digit(k, N, f )
which gives digit number f of N expressed in base 2*.

Algorithm 1.2.4 (Left-Right Base 2¥). Given g € G and n € Z, this algorithm
computes g™ in G. If n # 0, we assume also given the unique integer e such that
2ke < |n| < 2k(e+1) We write 1 for the unit element of G.

L. [Initialize] If n = 0, output 1 and terminate. If n < 0 set N — —n and
z — g~1. Otherwise, set N «—n and z — g and f —e.

. k
2. [Precomputations] Compute and store 23, 25, ..., 22 ~1.

3. [Multiply] Set a «— digit(k, N, f). If a = 0, repeat k times y — y-y. Otherwise,
write a = 2'b with b odd, and if f # e repeat k — t times y — y - y and set
y — y- 2% while if f = e set y « 2° (using the precomputed value of z%),
and finally (still if @ # 0) repeat ¢ times y « y - y.

4. [Finished?] If f = 0, output y and terminate the algorithm. Otherwise, set
f«— f—1and go to step 3.

Implementation Remark. Although the splitting of a in the form 2¢b takes
very little time compared to the rest of the algorithm, it is a nuisance to have
to repeat it all the time. Hence, we suggest precomputing all pairs (¢,b) for
a given k (including (k,0) for a = 0) so that ¢ and b can be found simply by
table lookup. Note that this precomputation depends only on the value of k
chosen for Algorithm 1.2.4, and not on the actual value of the exponent n.

Let us now analyze the average behavior of Algorithm 1.2.4 so that we can
choose k optimally. As we have already explained, we will regard as negligible
the time spent in computing e or in extracting bits or digits in base 2¥.

The precomputations require 2¥~! multiplications. The total number of
squarings is exactly the same as in the binary algorithm, i.e. |Ig|n|], and the
number of multiplications is equal to the number of non-zero digits of |n| in
base 2%, i.e. on average
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(-2) (%] )

so the total number of multiplications which are not squarings is on average
approximately equal to

2k 1
m(k) =281 + ( ) lg|n| .

k2k
Now, if we compute m(k + 1) —m(k), we see that it is non-negative as long as

k(k + 1)22
2kl k2

Hence, for the highest efficiency, one should choose k equal to the smallest
integer satisfying the above inequality, and this gives k = 1 for |n| < 256,
k = 2for |n| < 224 etc ... . For example, if |n| has between 60 and 162 decimal
digits, the optimal value of k is kK = 5. For a more specific example, assume
that n has 100 decimal digits (i.e. lgn approximately equal to 332) and that
the time for squaring is about 3/4 of the time for multiplication (this is quite
a reasonable assumption). Then, counting multiplication steps, the ordinary
binary algorithm takes on average (3/4)332+332/2 = 415 steps. On the other
hand, the base 2° algorithm takes on average (3/4)332+16+(31/160)332 ~ 329
multiplication steps, an improvement of more than 20%.

There is however another point to take into account. When, for instance
G = (Z/mZ)* and g (or g~! when n < 0) is represented by the (residue) class
of a single precision integer, replacing multiplication by g by multiplication
by its small odd powers may have the disadvantage compared to Algorithm
1.2.3 that these powers may not be single precision. Hence, in this case, it may
be preferable, either to use Algorithm 1.2.3, or to use the highest power of k
less than or equal to the optimal one which keeps all the 2® with b odd and
1 < b < 2k — 1 represented by single precision integers.

Ig|n| <

Quite a different way to improve on Algorithm 1.2.1 is to try to find a
near optimal “addition chain” for |n|, and this also can lead to improvements,
especially when the same exponent is used repeatedly (see [BCS]. For a de-
tailed discussion of addition chains, see [Knu2].) In practice, we suggest using
the 2k-algorithm for a suitable value of k.

The powering algorithm is used very often with the ring Z/mZ. In this case
multiplication does not give a group law, but the algorithm is valid nonethe-
less if either n is non-negative or if g is an invertible element. Furthermore,
the group multiplication is “multiplication followed by reduction modulo m”.
Depending on the size of m, it may be worthwhile to not do the reductions
each time, but to do them only when necessary to avoid overflow or loss of
time.

We will use the powering algorithm in many other contexts in this book, in
particular when computing in class groups of number fields, or when working
with elliptic curves over finite fields.
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Note that for many groups it is possible (and desirable) to write a squaring
routine which is faster than the general-purpose multiplication routine. In
situations where the powering algorithm is used intensively, it is essential
to use this squaring routine when multiplications of the type y «— y -y are
encountered.

1.3 Euclid’s Algorithms

We now consider the problem of computing the GCD of two integers a and
b. The naive answer to this problem would be to factor a and b, and then
multiply together the common prime factors raised to suitable powers. Indeed,
this method works well when a and b are very small, say less than 100, or when
a or b is known to be prime (then a single division is sufficient). In general this
is not feasible, because one of the important facts of life in number theory is
that factorization is difficult and slow. We will have many occasions to come
back to this. Hence, we must use better methods to compute GCD’s. This
is done using Euclid’s algorithm, probably the oldest and most important
algorithm in number theory.

Although very simple, this algorithm has several variants, and, because of
its usefulness, we are going to study it in detail. We shall write (a,b) for the
GCD of a and b when there is no risk of confusion with the pair (a,b). By
definition, (a, b) is the unique non-negative generator of the additive subgroup
of Z generated by a and b. In particular, (a,0) = (0,a) = |a| and (a,b) =
(lal, |b]). Hence we can always assume that a and b are non-negative.

1.3.1 Euclid’s and Lehmer’s Algorithms

Euclid’s algorithm is as follows:

Algorithm 1.3.1 (Euclid). Given two non-negative integers a and b, this
algorithm finds their GCD.

1. [Finished?] If b= 0 then output a as the answer and terminate the algorithm.

2. [Euclidean step] Set r «— a mod b, @ — b, b — 7 and go to step 1.

If either a or b is less than a given number N, the number of Euclidean
steps in this algorithm is bounded by a constant times In N, in both the
worst case and on average. More precisely we have the following theorem (see
[Knu2]):

Theorem 1.3.2. Assume that a and b are randomly distributed between 1
and N. Then

(1) The number of Euclidean steps is at most equal to
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In(v5N)
In(

— Y2 | 2~ 2078InN + 1672 .
(1+\/5)/2)]

(2) The average number of Euclidean steps is approrimately equal to

12In2

5~ InN +0.14 ~ 0.843In N +0.14 .

However, Algorithm 1.3.1 is far from being the whole story. First, it is not
well suited to handling large numbers (in our sense, say numbers with 50 or 100
decimal digits). This is because each Euclidean step requires a long division,
which takes time O(lnzN ). When carelessly programmed, the algorithm takes
time O(InN). If, however, at each step the precision is decreased as a function
of a and b, and if one also notices that the time to compute a Euclidean
step a = bg + 7 is O((Ina)(lng + 1)), then the total time is bounded by
O((InN)((>-Ing) + O(InN))). But > lng = InJ]¢g < Ine < In N, hence if
programmed carefully, the running time is only O(ln2N ). There is a useful
variant due to Lehmer which also brings down the running time to O(In> N ).
The idea is that the Euclidean quotient depends generally only on the first
few digits of the numbers. Therefore it can usually be obtained using a single
precision calculation. The following algorithm is taken directly from Knuth.
Let M = mP be the base used for multi-precision numbers. Typical choices
arem=2,p=15/16,31,0or 32, orm=10,p=4or 9.

Algorithm 1.3.3 (Lehmer). Let a and b be non-negative multi-precision inte-
gers, and assume that a > b. This algorithm computes {a, b), using the following
auxiliary variables. &, b, A, B, C, D, T and g are single precision (i.e. less than
M), and t and r are multi-precision variables.

1. [Initialize] If b < M, i.e. is simple precision, compute (a,b) using Algorithm
1.3.1 and terminate. Otherwise, let a (resp. b) be the single precision number
formed by the highest non-zero base M digit of a (resp. b). Set A «— 1, B « 0,
C—0, D1

2. [Test quotient] If b+C = 0orb+D = 0 go to step 4. Otherwise, set

g (@a+A)/(b+C)|. Ifq+#|(a+B)/b+ D)]|, go to step 4. Note that
one always has the conditions

0<a+A<M, 0<b+C< M,

0<a+B<M, 0<b+D<M.

Notice that one can have a single precision overflow in this step, which must
be taken into account. (This can occur only if 4 = M —1 and A =1 or if
b=M-1land D=1.)
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3. [Euclidean step] Set T «— A—qC, A« C,C «T,T « B—¢qD, B — D,
DT, T+—a—- qB, 4 —b beTand go to step 2 (all these operations are
single precision operations).

4. [Multi-precision step] If B = 0, set t «— amod b, a « b, b « t, using multi-
precision division (this happens with a very small probability, on the order of
1.4/M) and go to step 1. Otherwise, set t «— Aa, t < t + Bb, r — Ca,
7«1+ Db, a «— t, b « r, using linear-time multi-precision operations, and
go to step 1.

Note that the number of steps in this algorithm will be the same as in
Algorithm 1.3.1, i.e. O(InN) if a and b are less than N, but each loop now
consists only of linear time operations (except for the case B = 0 in step
4 which is so rare as not to matter in practice). Therefore, even without
using variable precision, the running time is now only of order O(ln2N ) and
not O(In®N). Of course, there is much more bookkeeping involved, so it is
not clear how large N must be before a particular implementation of this
algorithm becomes faster than a crude implementation of Algorithm 1.3.1. Or,
even whether a careful implementation of Algorithm 1.3.1 will not compete
favorably in practice. Testing needs to be done before choosing which of these
algorithms to use.

Another variant of Euclid’s algorithm which is also useful in practice is
the so-called binary algorithm. Here, no long division steps are used, except
at the beginning, instead only subtraction steps and divisions by 2, which are
simply integer shifts. The number of steps needed is greater, but the operations
used are much faster, and so there is a net gain, which can be quite large for
multi-precision numbers. Furthermore, using subtractions instead of divisions
is quite reasonable in any case, since most Euclidean quotients are small. More
precisely, we can state:

Theorem 1.3.4. In a suitable sense, the probability P(q) that a Euclidean
quotient be equal to q is

P(g) =1lg((g+1)*/((g+1)* - 1)) .

For example, P(1) = 0.41504..., P(2) = 0.16992..., P(3) = 0.09311...,
P(4) = 0.05890.. ..

For example, from this theorem, one can see that the probability of oc-
currence of B = 0 in step 4 of Algorithm 1.3.3 is lg(1 + 1/M), and this is
negligible in practice.

One version of the binary algorithm is as follows.

Algorithm 1.3.5 (Binary GCD). Given two non-negative integers a and b,
this algorithm finds their GCD.

1. [Reduce size once] If a < b exchange a and b. Now if b = 0, output a and
terminate the algorithm. Otherwise, set r «— a mod b, a « b and b « 7.
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2. [Compute power of 2] If b = 0 output a and terminate the algorithm. Otherwise,
set k — 0, and then while a and b are both even, set k — k+ 1, a «— a/2,
b—b/2.

3. [Remove initial powers of 2] If a is even, repeat a — a/2 until a is odd.
Otherwise, if b is even, repeat b «— b/2 until b is odd.

4. [Subtract] (Here a and b are both odd.) Set t « (a — b)/2. If t = 0, output
2ka and terminate the algorithm.

5. [Loop] While t is even, set t «— t/2. Then if t > 0 set a « t, else set b «— —t¢
and go to step 4.

Remarks.

(1) The binary algorithm is especially well suited for computing the GCD
of multi-precision numbers. This is because no divisions are performed,
except on the first step. Hence we suggest using it systematically in this
case.

(2) All the divisions by 2 performed in this algorithm must be done using
shifts or Boolean operations, otherwise the algorithm loses much of its
attractiveness. In particular, it may be worthwhile to program it in a
low-level language, and even in assembly language, if it is going to be
used extensively. Note that some applications, such as computing in class
groups, use GCD as a basic operation, hence it is essential to optimize the
speed of the algorithm for these applications.

(3) One could directly start the binary algorithm in step 2, avoiding division
altogether. We feel however that this is not such a good idea, since a and
b may have widely differing magnitudes, and step 1 ensures that we will
work on numbers at most the size of the smallest of the two numbers a
and b, and not of the largest, as would be the case if we avoided step 1. In
addition, it is quite common for b to divide a when starting the algorithm.
In this case, of course, the algorithm immediately terminates after step 1.

(4) Note that the sign of ¢ in step 4 of the algorithm enables the algorithm
to keep track of the larger of a and b, so that we can replace the larger of
the two by [t| in step 5. We can also keep track of this data in a separate
variable and thereby work only with non-negative numbers.

(5) Finally, note that the binary algorithm can use the ideas of Algorithm
1.3.3 for multi-precision numbers. The resulting algorithm is complex and
its efficiency is implementation dependent. For more details, see [Knu2
p.599].

The proof of the validity of the binary algorithm is easy and left to the reader.
On the other hand, a detailed analysis of the average running time of the bi-
nary algorithm is a challenging mathematical problem (see [Knu2] once again).
Evidently, as was the case for Euclid’s algorithm, the running time will be
O(In%N) bit operations when suitably implemented, where N is an upper
bound on the size of the inputs a and b. The mathematical problem is to find
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an asymptotic estimate for the number of steps and the number of shifts per-
formed in Algorithm 1.3.5, but this has an influence only on the O constant,
not on the qualitative behavior. ]

1.3.2 Euclid’s Extended Algorithms

The information given by Euclid’s algorithm is not always sufficient for many
problems. In particular, by definition of the GCD, if d = (a,b) there exists
integers u and v such that au+bv = d. It is often necessary to extend Euclid’s
algorithm so as to be able to compute u and v. While u and v are not unique,
u is defined modulo b/d, and v is defined modulo a/d.

There are two ways of doing this. One is by storing the Euclidean quotients
as they come along, and then, once d is found, backtracking to the initial
values. This method is the most efficient, but can require a lot of storage. In
some situations where this information is used extensively (such as Shanks’s
and Atkin’s NUCOMP in Section 5.4.2), any little gain should be taken, and
so one should do it this way.

The other method requires very little storage and is only slightly slower.
This requires using a few auxiliary variables so as to do the computations as
we go along. We first give a version which does not take into account multi-
precision numbers.

Algorithm 1.3.6 (Euclid Extended). Given non-negative integers a and b,
this algorithm determines (u, v, d) such that au + bv = d and d = (a,b). We use
auxiliary variables vy, vs, 1, t3.

1. [Initialize] Set uw < 1, d — a. If b =0, set v « 0 and terminate the algorithm,
otherwise set v; «— 0 and v3 « b.

2. [Finished?] If v3 = 0 then set v « (d — au)/b and terminate the algorithm.

3. [Euclidean step] Let ¢ — |d/v3| and simultaneously t3 < d mod v3. Then set
i1 < u—qui, u v, dv3, v; — 1, v3 — t3 and go to step 2.

“Simultaneously” in step 3 means that if this algorithm is implemented in
assembly language, then, since the division instruction usually gives both the
quotient and remainder, this should of course be used. Even if this algorithm
is not programmed in assembly language, but a and b are multi-precision
numbers, the division routine in the multi-precision library should also return
both quotient and remainder. Note also that in step 2, the division of d — au
by b is exact.

Proof of the Algorithm. Introduce three more variables vg, t5 and v. We want
the following relations to hold each time one begins step 2:

aty +bto =tz , au+bv=d, avi+bvy=uv; .
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For this to be true after the initialization step, it suffices to set v « 0, vy « 1.
(It is not necessary to initialize the ¢ variables.) Then, it is easy to check that
step 3 preserves these relations if we update suitably the three auxiliary vari-
ables (by (vg, t2,v) « (f2, v —qua,va)). Therefore, at the end of the algorithm,
d contains the GCD (since we have simply added some extra work to the ini-
tial Euclidean algorithm), and we also have au + bv = d. O

As an exercise, the reader can show that at the end of the algorithm,
we have v; = £b/d (and v, = Fa/d in the proof), and that throughout the
algorithm, |v1], |ul, |t1] stay less than or equal to b/d (and |va|, |v], |to| stay
less than or equal to a/d).

This algorithm can be improved for multi-precision numbers exactly as in
Lehmer’s Algorithm 1.3.3. Since it is a simple blend of Algorithms 1.3.3 and
1.3.5, we do not give a detailed proof. (Notice however that the variables d
and vz have become a and b.)

Algorithm 1.3.7 (Lehmer Extended). Let a and b be non-negative multi-
precision integers, and assume that a > b. This algorithm computes (u, v, d) such
that au+bv = d = (a, b), using the following auxiliary variables. &, b A B, C,D,
T and q are single precision (i.e. less than J\/I), and t, r, vy, vs are multi-precision
variables.

1. [Initialize] Set A—1, B+~ 0,C«—0,D—1,ue1, v; 0.

2. [Finished?] If b < M, i.e. is simple precision, compute (u, v, d) using Algorithm
1.3.6 and terminate. Otherwise, let @ (resp. b) be the single precision number
formed by the p most significant digits of a (resp. b).

3. [Test quotient] If b+ C = 0 or b+ D = 0 go to step 5. Otherwise, set
g—|(@+A)/b+C)]. fq#|(@a+ B)/(b+ D], go to step 5.
4. [Euclidean step] Set T — A —qC, A~ C,C T, T «— B—¢D, B« D,

D—T,T—a- qb @b be—Tand go to step 3 (all these operations are
single precision operations).

5. [Multi-precision step] If B = 0, set g < |a/b| and simultaneously t < a mod b
using multi-precision division, thena « b, b — t,t —u—qui, u — vy, v; — t
and go to step 2.

Otherwise, set t «— Aa, t —t+Bb,r—Ca, r—71r+Db a1t b,
t— Au, t —t+Bvy, 7« Cu, v < r+Dv1, u —t, v; « r using linear-time
multi-precision operations, and go to step 2.

In a similar way, the binary algorithm can be extended to find u and v.
The algorithm is as follows.

Algorithm 1.3.8 (Binary Extended). Given non-negative integers a and b,
this algorithm determines (u, v, d) such that au + bv = d and d = (a,b). We use
auxiliary variables v1, v, t1, t3, and two Boolean flags fi and f.
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1. [Reduce size once] If a < b exchange a and b and set f; «— 1, otherwise set
f1 « 0. Now if b = 0, output (1,0,a) if f; = 0, (0,1,a) if f; = 1 and
terminate the algorithm. Otherwise, let a = bg + r be the Euclidean division
of a by b, where 0 < r < b, and set a « b and b « r.

2. [Compute power of 2] If b = 0, output (0,1,a) if fi =0, (1,0,a) if f; =1
and terminate the algorithm. Otherwise, set k < 0, and while a and b are both
even,set k — k+1,a —a/2, b—b/2.

3. [Initialize] If b is even, exchange a and b and set f; « 1, otherwise set f «— 0.
Thenset w «— 1, d «— a, vy < b, v3 — b. If a is odd, set t; « 0, t3 «— —b
and go to step 5, else set ¢; « (1+b)/2, t3 — a/2.

4. [Remove powers of 2] If t3 is even do as follows. Set t3 « t3/2, t; « t1/2 if
t1 is even and t; «— (t1 + b)/2 if t; is odd, and repeat step 4.

5. [Loop] If t3 > 0, set u < t; and d « t3, otherwise, set v; «— b—ty, v3 — —ts3.

6. [Subtract] Set ¢; «— u— vy, t3 — d —wvs. If t; <0, set t; « ¢, + b. Finally, if
t3 # 0, go to step 4.

7. [Terminate] Set v «— (d — au)/b and d « 2*d. If f, = 1 exchange u and v.
Then set u < u — vq. Finally, output (u,v,d) if fi =1, (v,u,d) if f; =0,
and terminate the algorithm.

Proof. The proof is similar to that of Algorithm 1.3.6. We introduce three
more variables vq, t2 and v and we require that at the start of step 4 we
always have

Aty + Bty =t3 , Au+Bv=d, Av;+Bvy=v;,

where A and B are the values of a and b after step 3. For this to be true, we
must initialize them by setting (in step 3) v «— 0, v +— 1—a and t; — —1ifa
is odd, ta « —a/2 if a is even. After this, the three relations will continue to
be true provided we suitably update va, t2 and v. Since, when the algorithm
terminates d will be the GCD of A and B, it suffices to backtrack from both
the division step and the exchanges done in the first few steps in order to
obtain the correct values of u and v (as is done in step 7). We leave the details
to the reader. O

Euclid’s “extended” algorithm, i.e. the algorithm used to compute (u, v, d)
and not d alone, is useful in many different contexts. For example, one frequent
use is to compute an inverse (or more generally a division) modulo m. Assume
one wants to compute the inverse of a number b modulo m. Then, using
Algorithm 1.3.6, 1.3.7 or 1.3.8, compute (u,v,d) such that bu + mv = d =
(b,m). If d > 1 send an error message stating that b is not invertible, otherwise
the inverse of b is u. Notice that in this case, we can avoid computing v in
step 2 of Algorithm 1.3.6 and in the analogous steps in the other algorithms.

There are other methods to compute b~ mod m when the factorization
of m is known, for example when m is a prime. By Euler-Fermat’s Theorem
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1.4.2, we know that, if (b,m) = 1 (which can be tested very quickly since the
factorization of m is known), then

b =1 (mod m) ,

where ¢(m) is Euler’s ¢ function (see [H-W]). Hence, the inverse of b modulo
m can be obtained by computing

b1 = poim—1 (mod m) ,

using the powering Algorithm 1.2.1.

Note however that the powering algorithms are O(lan) algorithms, which
is worse than the time for Euclid’s extended algorithm. Nonetheless they can

be useful in certain cases. A practical comparison of these methods is done in
[Brel].

1.3.3 The Chinese Remainder Theorem

We recall the following theorem:

Theorem 1.3.9 (Chinese Remainder Theorem). Let my, ..., my and z,
., x be integers. Assume that for every pair (i,j) we have

z;=z; (mod ged(ms,my)) .
There exists an integer x such that

z=z; (modm;) for1<i<k .

Furthermore, x is unique modulo the least common multiple of my, ... , mg.
Corollary 1.3.10. Let mq, ..., my be pairwise coprime integers, i.e. such
that

ged(mg,mj) =1 wheni#j .

Then, for any integers x;, there exists an integer x, unique modulo []m;, such
that
z=1x; (modm;) for1<i<k.

We need an algorithm to compute z. We will consider only the case where
the m; are pairwise coprime, since this is by far the most useful situation.
Set M = [],<;<pmi and M; = M/m;. Since the m; are coprime in pairs,
ged(M;, m;) = 1 hence by Euclid’s extended algorithm we can find a; such
that a;M; =1 (mod m;). If we set
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r = E aiMixi y

1<i<k

it is clear that z satisfies the required conditions. Therefore, we can output
z mod M as the result.

This method could be written explicitly as a formal algorithm. However
we want to make one improvement before doing so. Notice that the necessary
constants a; are small (less than m;), but the M; or the a;M; which are also
needed can be very large. There is an ingenious way to avoid using such large
numbers, and this leads to the following algorithm. Its verification is left to
the reader.

Algorithm 1.3.11 (Chinese). Given pairwise coprime integers m; (1 < i < k)
and integers z;, this algorithm finds an integer z such that z = z; (mod m;) for
all 7. Note that steps 1 and 2 are a precomputation which needs to be done only
once when the m; are fixed and the z; vary.

1. [Initialize] Set j < 2, C; « 1. In addition, if it is not too costly, reorder the
m; (and hence the z;) so that they are in increasing order.

2. [Precomputations] Set p «— mimg---mj_; (mod m;). Compute (u,v,d)
such that up + vm; = d = ged(p,m;) using a suitable version of Euclid’s
extended algorithm. If d > 1 output an error message (the m; are not pairwise
coprime). Otherwise, set C; — u, j < j + 1, and go to step 2 if j < k.

3. [Compute auxiliary constants] Set y; < z; mod my, and for j = 2,...,k
compute (as written)

yj < (&5 — (y1 + ma(y2 + ma(ys + -~ + mj—2y;-1) - ))Cj mod m; .
4. [Terminate] Output

z—yr+mi(y2 +ma(ys + -+ me—1yx) )

and terminate the algorithm.

Note that we will have 0 <z < M = [[m;,.

As an exercise, the reader can give an algorithm which finds x in the more
general case of Theorem 1.3.9 where the m; are not assumed to be pairwise
coprime. It is enough to write an algorithm such as the one described before
Algorithm 1.3.11, since it will not be used very often (Exercise 9).

Since this algorithm is more complex than the algorithm mentioned pre-
viously, it should only be used when the m; are fixed moduli, and not just for
a one shot problem. In this last case is it preferable to use the formula for two
numbers inductively as follows. We want ¢ = z; = (mod m;) for i = 1,2.
Since the m; are relatively prime, using Euclid’s extended algorithm we can
find v and v such that

um; +vmg =1 .
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It is clear that
T = umixy + vmoxy mod myms

is a solution to our problem. This leads to the following.

Algorithm 1.3.12 (Inductive Chinese). Given pairwise coprime integers m;
(1 < i < k) and integers z;, this algorithm finds an integer x such that z = z;
(mod m;) for all 4.

1. [Initialize] Set ¢ «— 1, m «— my, ¢ — ;.

2. [Finished?] If i = k output z and terminate the algorithm. Otherwise, set
i < 1+ 1, and by a suitable version of Euclid's extended algorithm compute u
and v such that um +vm; = 1.

3. [Compute next z] Set z «— umz; + vm;z, m «— mm;, x < z mod m and go
to step 2.

Note that the results and algorithms of this section remain true if we
replace Z by any Euclidean domain, for example the polynomial ring K[X]
where K is a field.

1.3.4 Continued Fraction Expansions of Real Numbers

We now come to a subject which though closely linked to Euclid’s algorithm,
has a different flavor. Consider first the following apparently simple problem.
Let z € R be given by an approximation (for example a decimal or binary
one). Decide if z is a rational number or not. Of course, this question as
posed does not really make sense, since an approximation is usually itself a
rational number. In practice however the question does make a lot of sense
in many different contexts, and we can make it algorithmically more precise.
For example, assume that one has an algorithm which allows us to compute x
to as many decimal places as one likes (this is usually the case). Then, if one
claims that z is (approximately) equal to a rational number p/q, this means
that p/q should still be extremely close to z whatever the number of decimals
asked for, p and ¢ being fixed. This is still not completely rigorous, but it
comes quite close to actual practice, so we shall be content with this notion.
Now how does one find p and ¢ if x is indeed a rational number? The
standard (and algorithmically excellent) answer is to compute the continued
fraction expansion of x, i.e. find integers a; such that a; > 1 for ¢ > 1 and

1
T=ao+ 1 )

a1+—1—
az +

a3+"-

which we shall write as z = [ag, a1, a2, as, ... ]. If a/bis the given (rational) ap-
proximation to x, then the a; are obtained by simply using Euclid’s algorithm
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on the pair (a,b), the a; being the successive partial quotients. The number
x is rational if and only if its continued fraction expansion is finite, i.e. if and
only if one of the a; is infinite. Since z is only given with the finite precision
a/b, x will be considered rational if z has a very large partial quotient a; in
its continued fraction expansion. Of course this is subjective, but should be
put to the stringent test mentioned above. For example, if one uses the ap-
proximation 7 &~ 3.1415926 one finds that the continued fraction for = should
start with [3,7,15,1,243,...] and 243 does seem a suspiciously large partial
quotient, so we suspect that m = 355/113, which is the rational number whose
continued fraction is exactly [3,7,15, 1]. If we compute a few more decimals of
7 however, we see that this equality is not true. Nonetheless, 355/113 is still
an excellent approximation to 7 (the continued fraction expansion of 7 starts
in fact [3,7,15,1,292,1,...].

To implement a method for computing continued fractions of real numbers,
I suggest using the following algorithm, which says exactly when to stop.

Algorithm 1.3.13 (Lehmer). Given a real number z by two rational numbers
a/b and a' /b’ such that a/b < z < a' /b, this algorithm computes the continued
fraction expansion of x and stops exactly when it is not possible to determine
the next partial quotient from the given approximants a/b and o’ /¥, and it gives
lower and upper bounds for this next partial quotient.

1. [Initialize] Set i « 0.

2. [Euclidean step] Let @ = bg + r the Euclidean division of a by b, and set
v —a —Vq Ifr <O0orr’ >¥ set ¢ — |a’/V'] and go to step 4.

3. [Output quotient] Set a; « q and output a;, thenset i — i+1,a « b, b« r,
a —band bt «— 7. Ifb=0, set ¢ — oo and go to step 4. If b’ = 0 set
g’ «— oo and go to step 4. Otherwise, go to step 2.

4. [Terminate] If ¢ > ¢’ output the inequality ¢ < a; < g, otherwise output
q < a; < ¢'. Terminate the algorithm.

Note that the co mentioned in step 3 is only a mathematical abstraction
needed to make step 4 make sense, but it does not need to be represented in
a machine by anything more than some special code.

This algorithm runs in at most twice the time needed for the Euclidean
algorithm on a and b alone, since, in addition to doing one Euclidean division
at each step, we also multiply ¢ by ¥'.

We can now solve the following problem: given two complex numbers z;
and 29, are they QQ-linearly dependent? This is equivalent to z3/z9 being ra-
tional, so the solution is this: compute z « z1/2o. If the imaginary part of
z is non-zero (to the degree of approximation that one has), then z; and 29
are not even R-linearly dependent. If it is zero, then compute the continued
fraction expansion of the real part of z using algorithm 1.3.13, and look for
large partial quotients as explained above.
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We will see in Section 2.7.2 that the LLL algorithms allow us to determine
in a satisfactory way the problem of Q-linear dependence of more than two
complex or real numbers.

Another closely related problem is the following: given two vectors a and
b in a Euclidean vector space, determine the shortest non-zero vector which
is a Z-linear combination of a and b (we will see in Chapter 2 that the set
of such Z-linear combinations is called a lattice, here of dimension 2). One
solution, called Gaussian reduction, is again a form of Euclid’s algorithm, and
is as follows.

Algorithm 1.3.14 (Gauss). Given two linearly independent vectors a and b in
a Euclidean vector space, this algorithm determines one of the shortest non-zero
vectors which is a Z-linear combination of a and b. We denote by - the Euclidean
inner product and write |a|2 = a-a. We use a temporary scalar variable T, and
a temporary vector variable t.

1. [Initialize] Set A « |a|?, B « |bJ%2. If A < B then exchange a and b and
exchange A and B.

2. [Euclidean step] Set n « a-b, r « |n/B], where |z] = |z + 1/2] is the
nearest integer to x, and T « A — 2rn + r%B.

3. [Finished?] If T > B then output b and terminate the algorithm. Otherwise,
sett—a—rb,a—b, bt A— B, B« T and go to step 2.

Proof. Note that A and B are always equal to |a|? and |b|? respectively. I first
claim that an integer r such that |a — rb| has minimal length is given by the
formula of step 2. Indeed, we have

la—zb|? = Bz? —2a-bz+ A ,

and this is minimum for real  for £ = a - b/B. Hence, since a parabola is
symmetrical at its minimum, the minimum for integral x is the nearest integer
(or one of the two nearest integers) to the minimum, and this is the formula
given in step 2.

Thus, at the end of the algorithm we know that |a — mb| > |b]| for all
integers m. It is clear that the transformation which sends the pair (a,b) to
the pair (b,a — rb) has determinant —1, hence the Z-module L generated
by a and b stays the same during the algorithm. Therefore, let x = ua + vb
be a non-zero element of L. If u = 0, we must have v # 0 hence trivially
|x| > |b|. Otherwise, let v = ug+r be the Euclidean division of v by u, where
0 <7 < |u|. Then we have

x| = |u(a + gb) +7b| > [ulla + gb| — |r[[b] = (Ju] — |r[)|b] > [b]

since by our above claim |a + gb| > |b| for any integer ¢, hence b is indeed
one of the shortest vectors of L, proving the validity of the algorithm.
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Note that the algorithm must terminate since there are only a finite num-
ber of vectors of L with norm less than or equal to a given constant (com-
pact+discrete=finite!). In fact the number of steps can easily be seen to be
comparable to that of the Euclidean algorithm, hence this algorithm is very
efficient. O

We will see in Section 2.6 that the LLL algorithm allows us to determine
efficiently small Z-linear combinations for more than two linearly independent
vectors in a Euclidean space. It does not always give an optimal solution, but,
in most situations, the result are sufficiently good to be very useful.

1.4 The Legendre Symbol

1.4.1 The Groups (Z/nZ)*

By definition, when A is a commutative ring with unit, we will denote by A*
the group of units of A, i.e. of invertible elements of A. It is clear that A* is
a group, and also that A* = A\ {0} if and only if A is a field. Now we have
the following fundamental theorem which gives the structure of (Z/nZ)* (see
[Ser] and Exercise 13).

Theorem 1.4.1. We have

@2y = e =n][ (1-7) .

pin

and more precisely
z/nz)” =~ ] @/p*2)* ,
p|n
where
(Z/p*2)" ~Z/(p—1)p*"'Z

(i.e. is cyclic) whenp >3 orp=2 and a < 2, and
(Z)2°Z)* ~ 7J2Z x 7.J2°*7Z.
when p =2 and o > 3.

Now when (Z/nZ)* is cyclic, i.e. by the above theorem when n is equal
either to p®, 2p® with p an odd prime, or n = 2 or 4, an integer g such that the
class of g generates (Z/nZ)* will be called a primitive root modulo n. Recall
that the order of an element g in a group is the least positive integer n such
that g™ is equal to the identity element of the group. When the group is finite,
the order of any element divides the order of the group. Furthermore, g is a
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primitive root of (Z/nZ)* if and only if its order is exactly equal to ¢(n). As
a corollary of the above results, we obtain the following:

Proposition 1.4.2.
(1) (Fermat). If p is a prime and a is not divisible by p, then we have

a®'=1 (modp) .

(2) (Euler). More generally, if n is a positive integer, then for any integer a
coprime to n we have

a®™ =1 (modn) ,

and even
a®™/2 =1 (mod n)

if n is not equal to 2, 4, p® or 2p® with p an odd prime.

To compute the order of an element in a finite group G, we use the fol-
lowing straightforward algorithm.

Algorithm 1.4.3 (Order of an Element). Given a finite group G of cardinality
h = |G|, and an element g € G, this algorithm computes the order of g in G. We
denote by 1 the unit element of G.

1. [Initialize] Compute the prime factorization of h, say h = p}'p3*-- - p;*, and
sete — h, 1 — 0.

2. [Next p;] Set i « ¢+ 1. If ¢ > k, output e and terminate the algorithm.
Otherwise, set e «— e/p.*, g1 < g°.

3. [Compute local order] While g; # 1, set g; < g¢}* and e — e - p;. Go to step
2.

Note that we need the complete factorization of h for this algorithm to
work. This may be difficult when the group is very large.

Let p be a prime. To find a primitive root modulo p there seems to be no
better way than to proceed as follows. Try g =2, g =3, etc ... until g is a
primitive root. One should avoid perfect powers since if g = g, then if g is a
primitive root, so is gop which has already been tested.

To see whether g is a primitive root, we could compute the order of g
using the above algorithm. But it is more efficient to proceed as follows.

Algorithm 1.4.4 (Primitive Root). Given an odd prime p, this algorithm finds
a primitive root modulo p.

1. [Initialize a] Set a < 1 and let p — 1 = p{*p3? - - - p* be the complete factor-
ization of p — 1.
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2. [Initialize check] Set @ «—a +1 and i « 1.

3. [Check p;] Compute e «— aP~D/P:_|f ¢ = 1 go to step 2. Otherwise, set
1—1+1.

4. [finished?] If i > k output a and terminate the algorithm, otherwise go to step
3.

Note that we do not avoid testing prime powers, hence this simple algo-
rithm can still be improved if desired. In addition, the test for p; = 2 can be
replaced by the more efficient check that the Legendre symbol (%) is equal to
—1 (see Algorithm 1.4.10 below).

If n is not a prime, but is such that there exists a primitive root modulo n,
we could, of course, use the above two algorithms by modifying them suitably.
It is more efficient to proceed as follows.

First, if n =2 orn =4, g =n — 1 is a primitive root. When n = 2¢ is
a power of 2 with a > 3, (Z/nZ)* is not cyclic any more, but is isomorphic
to the product of Z/2Z with a cyclic group of order 22=2. Then g = 5 is
always a generator of this cyclic subgroup (see Exercise 14), and can serve as
a substitute in this case if needed.

When n = p? is a power of an odd prime, with a > 2, then we use the
following lemma.

Lemma 1.4.5. Let p be an odd prime, and let g be a primitive root modulo
p. Then either g or g+ p is a primitive root modulo every power of p.

Proof. For any m we have m? = m (mod p), hence it follows that for every
prime [ dividing p — 1, g?*~ @1/l = g(P=1)/L £ 1 (mod p). So for g to be a
primitive root, we need only that g?" (=1 % 1 (mod p?). But one checks
immediately by induction that z” = 1 (mod p®) implies that z = 1 (mod p®)
for every b < a — 1. Applying this to z = g”a_2(p_1) we see that our condition
on g is equivalent to the same condition with a replaced by a — 1, hence by
induction to the condition gP~! # 1 (mod p?). But if g?~! = 1 (mod p?),
then by the binomial theorem (g + p)?~! = 1 — pgP~2 # 1 (mod p?), thus
proving the lemma. O

Therefore to find a primitive root modulo p® for p an odd prime and a > 2,
proceed as follows: first compute g a primitive root modulo p using Algorithm
1.4.4, then compute g; = g?~! mod p?. If g; # 1, g is a primitive root modulo
p® for every a, otherwise g + p is.

Finally, note that when p is an odd prime, if g is a primitive root modulo
p® then g or g + p® (whichever is odd) is a primitive root modulo 2p®.
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1.4.2 The Legendre-Jacobi-Kronecker Symbol

Let p be an odd prime. Then it is easy to see that for a given integer a, the
congruence
?=a (mod p)

can have either no solution (we say in this case that a is a quadratic non-
residue mod p), one solution if a = 0 (mod p), or two solutions (we then say
that a is a quadratic residue mod p). Define the Legendre symbol (%) as being
—1if a is a quadratic non-residue, 0 if a = 0, and 1 if a is a quadratic residue.
Then the number of solutions modulo p of the above congruence is 1 + (%)
Furthermore, one can easily show that this symbol has the following properties
(see e.g. [H-W]):

Proposition 1.4.6.
(1) The Legendre symbol is multiplicative, i.e.

()6)=()

In particular, the product of two quadratic non-residues is a quadratic
residue.
(2) We have the congruence

alP~H/2 = (%) (mod p) .

(3) There are as many quadratic residues as non-residues mod p, i.e. (p—1)/2.

We will see that the Legendre symbol is fundamental in many prob-
lems. Thus, we need a way to compute it. One idea is to use the congruence
aP~1/2 = (4)  (mod p). Using the powering Algorithm 1.2.1, this enables

us to compute the Legendre symbol in time O(In®p). We can improve on this
by using the Legendre-Gauss quadratic reciprocity law, which is itself a result
of fundamental importance:

Theorem 1.4.7. Let p be an odd prime. Then:

W (i) = (~1)-D/2 | (2) = (-1)¥* -0
P p

(2) If q is an odd prime different from p, then we have the reciprocity law:

(e
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For a proof, see Exercises 16 and 18 and standard textbooks (e.g. [H-W],
[Ire-Ros]).

This theorem can certainly help us to compute Legendre symbols since
(%) is multiplicative in a and depends only on ¢ modulo p. A direct use of
Theorem 1.4.7 would require factoring all the numbers into primes, and this
is very slow. Luckily, there is an extension of this theorem which takes care of
this problem. We first need to extend the definition of the Legendre symbol.

Definition 1.4.8. We define the Kronecker (or Kronecker-Jacobi) symbol ()
for any a and b in Z in the following way.

(1) If b= 0, then (%) =1 ifa = %1, and is equal to 0 otherwise.

(2) For b # 0, write b =[] p, where the p are not necessarily distinct primes
(including p = 2), or p = —1 to take care of the sign. Then we set

(5)-11() -

where (%) is the Legendre symbol defined above for p > 2, and where we
define

a 0, if a is even

<5) N { (~1)@-D/8 £ q is odd.
a\ 1, ifa>0
(—_1> a { ~1, ifa<o0.

Then, from the properties of the Legendre symbol, and in particular from
the reciprocity law 1.4.7, one can prove that the Kronecker symbol has the
following properties:

and also

Theorem 1.4.9.

(1) (%) =0 if and only if (a,b) # 1
(2) For all a, b and ¢ we have

ab a\ (b a a\ [a
(9)-C)C - G)-6)E) v
(3) b > 0 being fired, the symbol (%) is periodic in a of period b if b # 2
(mod 4), otherwise it is periodic of period 4b.
(4) a # 0 being fized (positive or negative), the symbol (%) is periodic in b of
period |a] if a =0 or 1 (mod 4), otherwise it is periodic of period 4|al.
(5) The formulas of Theorem 1.4.7 are still true if p and q are only supposed
to be positive odd integers, not necessarily prime.



1.4 The Legendre Symbol 29

Note that in this theorem (as in the rest of this book), when we say that a
function f(z) is periodic of period b, this means that for all z, f(z+b) = f(z),
but b need not be the smallest possible period.

Theorem 1.4.9 is a necessary prerequisite for any study of quadratic fields,
and the reader is urged to prove it by himself (Exercise 17).

As has been mentioned, a consequence of this theorem is that it is easy
to design a fast algorithm to compute Legendre symbols, and more generally
Kronecker symbols if desired.

Algorithm 1.4.10 (Kronecker). Given a,b € Z, this algorithm computes the
Kronecker symbol (%) (hence the Legendre symbol when b is an odd prime).

1. [Test b equal to 0] If b = 0 then output 0 if |a| # 1, 1 if |a| = 1 and terminate
the algorithm.

2. [Remove 2's from b] If a and b are both even, output 0 and terminate the
algorithm. Otherwise, set v «— 0 and while b is even set v « v + 1 and
b «— b/2. Then if v is even set k «— 1, otherwise set k — (—1)(@*=D/8 (by
table lookup, not by computing (a? — 1)/8). Finally if b < 0 set b « —b, and
if in addition @ < 0 set k «— —k.

3. [Finished?] (Here b is odd and b > 0.) If a = O then output 0 if b > 1, k if
b =1, and terminate the algorithm. Otherwise, set v — 0 and while a is even
dowvv+1anda« a/2. Ifvisodd set k « (—1)(*"~V/8k,

4. [Apply reciprocity] Set
k — (_1)(a—1)(b—1)/4k ,

(using if statements and no multiplications), and then r « |a|, a < b mod r,
b« r and go to step 3.

Remarks.

(1) As mentioned, the expressions (1)@ ~1/8 and (—1)(e=1(¢-1/4 ghould
not be computed as powers, even though they are written this way. For
example, to compute the first expression, set up and save a table tab2
containing

{0,1,0,-1,0,-1,0,1} ,

and then the formula (—1)(“2“1)/ 8 = tab2[ak7], the & symbol denot-
ing bitwise and, which is a very fast operation compared to multipli-
cation (note that a&7 is equivalent to a mod 8). The instruction k «
(=1)(e=D-1/4k i5 very efficiently translated in C by

if (a&b&2) k= -k;

(2) We need to prove that the algorithm is valid! It terminates since, because
except possibly the first time, at the beginning of step 3 we have 0 < b < a
and the value of b is strictly decreasing. It gives the correct result because
of the following lemma which is an immediate corollary of Theorem 1.4.9:
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Lemma 1.4.11. Ifa and b are odd integers with b > 0 (but not necessarily
a > 0), then we have

() -crl)

(3) We may want to avoid cleaning out the powers of 2 in step 2 at each pass
through the loop. We can do this by slightly changing step 4 so as to
always end up with an odd value of b. This however may have disastrous
effects on the running time, which may become exponential instead of
polynomial time (see [Bac-Sha] and Exercise 24).

Note that Algorithm 1.4.10 can be slightly improved (by a small constant
factor) by adding the following statement at the end of the assignments of
step 4, before going back to step 3: If a > r/2, then a = a — r. This simply
means that we ask, not for the residue of a mod r which is between 0 and
r — 1, but for the one which is least in absolute value, i.e. between —r/2 and
/2. This modification could also be used in Euclid’s algorithms if desired, if
tests suggest that it is faster in practice.

One can also use the binary version of Euclid’s algorithm to compute
Kronecker symbols. Since, in any case, the prime 2 plays a special role, this
does not really increase the complexity, and gives the following algorithm.

Algorithm 1.4.12 (Kronecker-Binary). Given a,b € Z, this algorithm com-

putes the Kronecker symbol (¢) (hence the Legendre symbol when b is an odd

prime).

1. [Test b= 0] If b = 0 then output 0 if |a|] # 1, 1 if |a] = 1 and terminate the
algorithm.

2. [Remove 2's from b] If a and b are both even, output 0 and terminate the
algorithm. Otherwise, set v « 0 and while b is even set v «— v + 1 and
b — b/2. Then if v is even set k — 1, otherwise set k « (—1)(@*=1/8 (by
table lookup, not by computing (a? —1)/8). Finally, if b < 0 set b «— —b, and
if in addition a < 0 set k «— —k.

3. [Reduce size once] (Here b is odd and b > 0.) Set a « a mod b.

4. [Finished?] If a = 0, output 0 if b > 1, k if b = 1, and terminate the algorithm.

5. [Remove powers of 2] Set v « 0 and, while a is even, set v «— v + 1 and
a— a/2. If vis odd, set k — (—1)®*~1/8f,

6. [Subtract and apply reciprocity] (Here a and b are odd.) Set r < b—a. If r > 0,
then set k « (—1)@"DO-1/4k (ysing if statements), b — a and a «— 7, else
set a «— —r. Go to step 4.

Note that we cannot immediately reduce a modulo b at the beginning of
the algorithm. This is because when b is even the Kronecker symbol (%) is not
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periodic of period b in general, but only of period 4b. Apart from this remark,
the proof of the validity of this algorithm follows immediately from Theorem
1.4.10 and the validity of the binary algorithm. |

The running time of all of these Legendre symbol algorithms has the same
order of magnitude as Euclid’s algorithm, i.e. O(ln2N ) when carefully pro-
grammed, where N is an upper bound on the size of the inputs a and b. Note
however that the constants will be different because of the special treatment
of even numbers.

1.5 Computing Square Roots Modulo p

We now come to a slightly more specialized question. Let p be an odd prime
number, and suppose that we have just checked that (%) = 1 using one of the
algorithms given above. Then by definition, there exists an z such that z2 = a
(mod p). How do we find 7 Of course, a brute force search would take time
O(p) and, even for p moderately large, is out of the question. We need a faster
algorithm to do this. At this point the reader might want to try and find one
himself before reading further. This would give a feel for the difficulty of the
problem. (Note that we will be considering much more difficult and general
problems later on, so it is better to start with a simple one.)

There is an easy solution which comes to mind that works for half of the
primes p, i.e. primes p = 3 (mod 4). I claim that in this case a solution is
given by

z = aPt/4 (mod p) ,

the computation being done using the powering Algorithm 1.2.1. Indeed, since
a is a quadratic residue, we have a»=*/2 =1 (mod p) hence

2 =aPtV/2=q.4®P V2 =4 (mod p)

as claimed.
A less trivial solution works for half of the remaining primes, i.e. primes
p =5 (mod 8). Since we have aP~V/2 = 1 (mod p) and since F, = Z/pZ is a
field, we must have
aP~D/ = 41 (mod p) .

Now, if the sign is +, then the reader can easily check as above that
z=aP*¥/8  (mod p)

is a solution. Otherwise, using p = 5 (mod 8) and Theorem 1.4.7, we know
that 2(P~1/2 = —1 (mod p). Then one can check that

z =2a-(4a)P®/® (mod p)

is a solution.
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Thus the only remaining case is p = 1 (mod 8). Unfortunately, this is the
hardest case. Although, by methods similar to the one given above, one could
give an infinite number of families of solutions, this would not be practical in
any sense.

1.5.1 The Algorithm of Tonelli and Shanks

There are essentially three algorithms for solving the above problem. One is
a special case of a general method for factoring polynomials modulo p, which
we will study in Chapter 3. Another is due to Schoof and it is the only non-
probabilistic polynomial time algorithm known for this problem. It is quite
complex since it involves the use of elliptic curves (see Chapter 7), and its
practicality is not clear, although quite a lot of progress has been achieved
by Atkin. Therefore, we will not discuss it here. The third and last algorithm
is due to Tonelli and Shanks, and although probabilistic, it is quite efficient.
It is the most natural generalization of the special cases studied above. We
describe this algorithm here.
We can always write

p—1=2°.q, withq odd.

The multiplicative group (Z/pZ)* is isomorphic to the (additive) group Z/(p—
1)Z, hence its 2-Sylow subgroup G is a cyclic group of order 2¢. Assume that
one can find a generator z of G. The squares in G are the elements of order
dividing 2°~!, and are also the even powers of z. Hence, if a is a quadratic
residue mod p, then, since

aP /2 = (@)@ D =1 (modp) ,

b = a? mod p is a square in G, so there exists an even integer k with 0 < k < 2¢
such that
adzF=1 inG .

If one sets
z = glatV/2 /2

it is clear that 22 = @ (mod p), hence 7 is the answer. To obtain an algorithm,
we need to solve two problems: finding a generator z of G, and computing the
exponent k. Although very simple to solve in practice, the first problem is the
probabilistic part of the algorithm. The best way to find z is as follows: choose
at random an integer n, and compute z = n? mod p. Then it is clear that z is a
generator of @ (i.e. 22 = —1in @) if and only if n is a quadratic non-residue
mod p, and this occurs with probability close to 1/2 (exactly (p — 1)/(2p)).
Therefore, in practice, we will find a non-residue very quickly. For example,
the probability that one does not find one after 20 trials is lower than 1075,
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Finding the exponent & is slightly more difficult, and in fact is not needed
explicitly (only a(4+1)/22%/2 is needed). The method is explained in the fol-
lowing complete algorithm, which in this form is due to Shanks.

Algorithm 1.5.1 (Square Root Mod p). Let p be an odd prime, and a € Z.
Write p — 1 = 2° - ¢ with ¢ odd. This algorithm, either outputs an z such that
22 = a (mod p), or says that such an x does not exist (i.e. that a is a quadratic

non-residue mod p).

1. [Find generator] Choose numbers n at random until (%) = —1. Then set
z « n4 (mod p).

2. [Initialize] Set y « 2, 7 « e,  « al@1/2 (mod p), b « az? (mod p),
z «— az (mod p).

3. [Find exponent] If b = 1 (mod p), output z and terminate the algorithm.
Otherwise, find the smallest m > 1 such that 2" = 1 (mod p). If m = r,
output a message saying that a is not a quadratic residue mod p.

4. [Reduce exponent] Set t — 2 ",y — {2, v — m, z — xt, b — by (all
operations done modulo p), and go to step 3.

Note that at the beginning of step 3 we always have the congruences
modulo p:

ab=2? | =1, =1,

If G, is the subgroup of G whose elements have an order dividing 27, then this
says that y is a generator of G, and that b is in G,_1, in other words that b is
a square in G,.. Since r is strictly decreasing at each loop of the algorithm, the
number of loops is at most e. When r < 1 we have b = 1 hence the algorithm
terminates, and the above congruence shows that = is one of the square roots
of @ mod p.

It is easy to show that, on average, steps 3 and 4 will require e?/4 mul-
tiplications mod p, and at most e2. Hence the expected running time of this
algorithm is O(In*p). O

Remarks.

(1) In the algorithm above, we have not explicitly computed the value of the
exponent k such that a?2* = 1 but it is easy to do so if needed (see
Exercise 25).

(2) As already mentioned, Shanks’s algorithm is probabilistic, although the
only non-deterministic part is finding a quadratic non-residue mod p,
which seems quite a harmless task. One could try making it completely de-
terministic by successively trying n = 2,3... in step 1 until a non-residue
is found. This is a reasonable method, but unfortunately the most pow-
erful analytical tools only allow us to prove that the smallest quadratic
non-residue is O(p®) for a non-zero «. Thus, this deterministic algorithm,
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although correct, may have, as far as we know, an exponential running
time.

If one assumes the Generalized Riemann Hypothesis (GRH), then
one can prove much more, i.e. that the smallest quadratic non-residue
is O(Inp), hence this gives a polynomial running time (in O(Inp) since
computing a Legendre symbol is in O(In®p)). In fact, Bach [Bach] has
proved that for p > 1000 the smallest non-residue is less than 21n%p. In
any case, in practice the probabilistic method and the sequential method
(i-e. choosing n = 2,3 --) give essentially equivalent running times.

(3) If m is an integer whose factorization into a product of prime powers
is completely known, it is easy to write an algorithm to solve the more

general problem z? = a (mod m) (see Exercise 30).

1.5.2 The Algorithm of Cornacchia

A well known theorem of Fermat (see [H-W]) says that an odd prime p is a sum
of two squares if and only if p = 1 mod 4, i.e. if and only if —1 is a quadratic
residue mod p. Furthermore, up to sign and exchange, the representation of p
as a sum of two squares is unique. Thus, it is natural to ask for an algorithm
to compute x and y such that 22+ y? = p when p = 1 mod 4. More generally,
given a positive integer d and an odd prime p, one can ask whether the equation

> +dy* =p

has a solution, and for an algorithm to find z and y when they exist. There is
a pretty algorithm due to Cornacchia which solves both problems simultane-
ously. For the beautiful and deep theory concerning the first problem, which
is closely related to complex multiplication (see Section 7.2) see [Cox].

First, note that a necessary condition for the existence of a solution is that
—d be a quadratic residue modulo p. Indeed, we clearly must have y # 0 mod p
hence

(.ry_l)2 =—-dmodp ,

where y~! denotes the inverse of y modulo p. We therefore assume that this
condition is satisfied. By using Algorithm 1.5.1 we can find an integer zo such
that

23 = —d mod p

and we may assume that 0 < zg < p. Cornacchia’s algorithm tells us that we
should simply apply Euclid’s Algorithm 1.3.1 to the pair (a,b) = (p, zg) until
we obtain a number b such that b < ,/p. Then we set ¢ — (p —b?)/d, and if ¢
is the square of an integer s, the equation 2% + dy? = p has (z,y) = (b,s) as
(essentially unique) solution, otherwise it has no solution. This leads to the
following algorithm.

Algorithm 1.5.2 (Cornacchia). Let p be a prime number and d be an integer
such that 0 < d < p. This algorithm either outputs an integer solution (z,y) to
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the Diophantine equation z2 + dy? = p, or says that such a solution does not
exist.

1. [Test if residue] Using Algorithm 1.4.12 compute k « (:;1)_ If k = —1, say
that the equation has no solution and terminate the algorithm.

2. [Compute square root] Using Shanks's Algorithm 1.5.1, compute an integer 2
such that 22 = —d mod p, and change g into £z +kp so that p/2 < zy < p.
Thenset a «— p, b — xg and [ «— [\/ﬁj

3. [Euclidean algorithm] If b > [, set r < a mod b, @ < b, b < 7 and go to step
3.

4. [Test solution] If d does not divide p — b% or if ¢ = (p— b?)/d is not the square
of an integer (see Algorithm 1.7.3), say that the equation has no solution and
terminate the algorithm. Otherwise, output (z,y) = (b, /c) and terminate the
algorithm.

Let us give a numerical example. Assume that we want to solve z2 4 2y% =
97. In step 1, we first compute (;—72) by Algorithm 1.4.12 (or directly since here
it is easy), and find that —2 is a quadratic residue mod 97. Thus the equation
may have a solution (and in fact it must have one since the class number
of the ring of integers of Q(v/2) is equal to 1, see Chapter 5). In step 2, we
compute zg such that z3 = —2 mod 97 using Algorithm 1.5.1. Using n = 5
hence z = 28, we readily find g = 17 . Then the Euclidean algorithm in step
3 gives 97 =5-174+ 12, 17 =1-12 4+ 5 and hence b = 5 is the first number
obtained in the Euclidean stage, which is less than or equal to the square root
of 97. Now ¢ = (97 — 52)/2 = 36 is a square, hence a solution (unique) to our
equation is (z,y) = (5,6). Of course, this could have been found much more
quickly by inspection, but for larger numbers we need to use the algorithm as
written.

The proof of this algorithm is not really difficult, but is a little painful
so we refer to [Mor-Nic]. Note also that Algorithm 1.3.14 above can also be
used to solve the problem, and the proof that we gave of the validity of that
algorithm is similar, but simpler.

When working in complex quadratic orders of discriminant D < 0 con-
gruent to 0 or 1 modulo 4 (see Chapter 5), it is more natural to solve the
equation

2% + [Dly* = 4p
where p is an odd prime (we will for example need this in Chapter 9).

If4 | D, we must have 2 | z, hence the equation is equivalent to o +dy? =
p with ©’ = z/2 and d = |D|/4, which we can solve by using Algorithm 1.5.2.

If D=1 (mod 8), we must have 2 — y2 = 4 (mod 8) and this is possible
only when z and y are even, hence our equation is equivalent to x’ 24 dy’ 2= P
with ' = x/2, y' = y/2 and d = |D|, which is again solved by Algorithm 1.5.2

Finally, if D =5 (mod 8), the parity of x and y is not a priori determined.
Therefore Algorithm 1.5.2 cannot be applied as written. There is however a
modification of Algorithm 1.5.2 which enables us to treat this problem.
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For this compute zo such that 3 = D (mod p) using Algorithm 1.5.1,
and if necessary change zo into p — zg so that in fact 22 = D (mod 4p). Then
apply the algorithm as written, starting with (a,b) = (2p, z), and stopping
as soon as b < I, where | = [2\@] Then, as in [Mor-Nic] one can show that
this gives the (essentially unique) solution to 22 + |D|y? = 4p. This gives the
following algorithm.

Algorithm 1.5.3 (Modified Cornacchia). Let p be a prime number and D
be a negative integer such that D = 0 or 1 modulo 4 and |D| < 4p. This
algorithm either outputs an integer solution (z,y) to the Diophantine equation
z? + |D|y? = 4p, or says that such a solution does not exist.

1. [Case p = 2] If p = 2 do as follows. If D +8 is the square of an integer, output
(v D + 8,1), otherwise say that the equation has no solution. Then terminate
the algorithm.

2. [Test if residue] Using Algorithm 1.4.12 compute k «— (%). If kK = —1, say
that the equation has no solution and terminate the algorithm.

3. [Compute square root] Using Shanks's Algorithm 1.5.1, compute an integer
o such that 23 = Dmod p and 0 < z < p, and if 2o Z D (mod 2), set
g «— p — xo. Finally, set a «— 2p, b — zg and | — |_2\/;5J

4. [Euclidean algorithm] If b >, set 7 — a mod b, a < b, b «— 7 and go to step
4,

5. [Test solution] If |D| does not divide 4p — b2 or if ¢ = (4p — b?)/|D| is not
the square of an integer (see Algorithm 1.7.3), say that the equation has no

solution and terminate the algorithm. Otherwise, output (z,y) = (b, +/c) and
terminate the algorithm.

1.6 Solving Polynomial Equations Modulo p

We will consider more generally in Chapter 3 the problem of factoring poly-
nomials mod p. If one wants only to find the linear factors, i.e. the roots mod
p, then for small degrees one can use the standard formulas. To avoid writing
congruences all the time, we implicitly assume that we work in F, = Z/pZ.

In degree one, the solution of the equation ax +b = 0is 2 = —b-a"1,
where a™! is computed using Euclid’s extended algorithm.

In degree two, the solutions of the equation az? + bz + ¢ = 0 where a # 0
and p # 2, are given as follows. Set D = b2 — 4ac. If (%) = —1, then there
are no solutions in F. If (%) =0, ie. if p| D, then there is a unique (double)
solution given by z = —b- (2a)~!. Finally, if (%) = 1, there are two solutions,
obtained in the following way: compute an s such that s> = D using one of
the algorithms of the preceding section. Then the solutions are as usual
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(=b+s) (2a)7 .

In degree three, Cardano’s formulas can be used (see Exercise 28 of Chap-
ter 3). There are however two difficulties which must be taken care of. The
first is that we must find an algorithm to compute cube roots. This can be
done in a manner similar to the case of square roots. The second difficulty lies
in the handling of square roots when these square roots are not in F,, (they are
then in F2). This is completely analogous to handling complex numbers when
a real cubic equation has three real roots. The reader will find it an amusing
exercise to try and iron out all these problems (see Exercise 28). Otherwise,
see [Wil-Zar] and [Morl], who also gives the analogous recipes for degree four
equations (note that for computing fourth roots one can simply compute two
square roots).

In degree 5 and higher, the general equations have a non-solvable Galois
group, hence as in the complex case, no custom algorithms are known, and
one must rely on general methods, which are slower. These methods will be
seen in Section 3.4, to which we refer for notations and definitions, but in the
special case of root finding, the algorithm is much simpler. We assume p > 2
since for p = 2 there are just two values to try.

Algorithm 1.6.1 (Roots Mod p). Given a prime number p > 3 and a polyno-
mial P € F,[X], this algorithm outputs the roots of P in F,. This algorithm will
be called recursively, and it is understood that all the operations are done in F,.

1. [Isolate roots in F,] Compute A(X) «— (X? — X, P(X)) as explained above.
If A(0) =0, output 0 and set A(X) — A(X)/X.

2. [Small degree?] If deg(A) = 0, terminate the algorithm. If deg(A) = 1, and
A(X) = a1 X +aqg, output —ag/a; and terminate the algorithm. If deg(A4) = 2

and A(X) = agX? + a1 X + ao, set d — aj — dapaz, compute s — (&) using
Algorithm 1.4.12; if s = —1, terminate the algorithm; if s = 1, compute

e «— v/d using Algorithm 1.5.1, output (—a; +€)/(2az2) and (—a; —e)/(2a2),
and terminate the algorithm. (Note that one cannot have s = 0.)

3. [Random splitting] Choose a random a € F,, and compute B(X) «— ((X +
a)P=1/2 _ 1 A(X)) as explained above. If deg(B) = 0 or deg(B) = deg(4),
go to step 3.

4. [Recurse] Output the roots of B and A/B using the present algorithm recur-
sively (skipping step 1), and terminate the algorithm.

Proof. The elements of F, are the elements z of an algebraic closure which
satisfy 27 = z. Hence, the polynomial A computed in step 1 is, up to a
constant factor, equal to the product of the X — x where the x are the roots
of P in F,. Step 3 then splits the roots = in two parts: the roots such that
z + a is a quadratic residue mod p, and the others. Since a is random, this
has approximately one chance in 29¢8(4)~1 of not splitting the polynomial A
into smaller pieces, and this shows that the algorithm is valid. O



38 1 Fundamental Number-Theoretic Algorithms

Implementation Remarks.

(1) step 2 can be simplified by not taking into account the case of degree
2, but this gives a slightly less efficient algorithm. Also, if step 2 is kept
as it is, it may be worthwhile to compute once and for all the quadratic
non-residue mod p which is needed in Algorithm 1.5.1.

(2) When we are asked to compute a GCD of the form ged(u™ — b,c), we
must not compute u™ — b, but instead we compute d «— u™ mod ¢ using
the powering algorithm. Then we have ged(u™ — b,¢) = ged(d — b, ¢).
In addition, since u = X + a is a very simple polynomial, the left-right
versions of the powering algorithm (Algorithms 1.2.3 and 1.2.4) are more
advantageous here.

(3) When p is small, and in particular when p is smaller than the degree
of A(X), it may be faster to simply test all values X = 0,...,p — 1.
Thus, the above algorithm is really useful when p is not too small. In
that case, it may be faster to compute ged(X ®=1/2 — 1, A(X — a)) than
ged((X + a)P=1/2 — 1, A(X)).

1.7 Power Detection

In many algorithms, it is necessary to detect whether a number is a square or
more generally a perfect power, and if it is, to compute the root. We consider
here the three most frequent problems of this sort and give simple arithmetic
algorithms to solve them. Of course, to test whether n = m*, you can always
compute the nearest integer to e!®®/* by transcendental means, and see if the
k'™ power of that integer is equal to n. This needs to be tried only for k < Ign.
This is clearly quite inefficient, and also requires the use of transcendental
functions, so we turn to better methods.

1.7.1 Integer Square Roots

We start by giving an algorithm which computes the integer part of the square
root of any positive integer n. It uses a variant of Newton’s method, but works
entirely with integers. The algorithm is as follows.

Algorithm 1.7.1 (Integer Square Root). Given a positive integer n, this
algorithm computes the integer part of the square root of n, i.e. the number m
such that m? < n < (m + 1)2.

1. [Initialize] Set z «— n (see discussion).
2. [Newtonian step] Set y « |(z + |n/x])/2] using integer divides and shifts.

3. [Finished?] If y < z set z «— y and go to step 2. Otherwise, output z and
terminate the algorithm.
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Proof. By step 3, the value of z is strictly decreasing, hence the algorithm
terminates. We must show that the output is correct. Let us set ¢ = |y/n].

Since (t + n/t)/2 > y/n for any positive real value of t, it is clear that
the inequality = > ¢ is satisfied throughout the algorithm (note that it is also
satisfied also after the initialization step). Now assume that the termination
condition in step 3 is satisfied, i.e. that y = | (z+n/z)/2| > x. We must show
that z = ¢q. Assume the contrary, i.e. that £ > g + 1. Then,

T+n/z njr—z n— z?
y — T = —_—— —_ = —_— =
2 2 2z
Since z > g+ 1 > /n, we have n — z? < 0, hence y — = < 0 contradiction.
This shows the validity of the algorithm. O
Remarks.

(1) We have written the formula in step 2 using the integer part function
twice to emphasize that every operation must be done using integer arith-
metic, but of course mathematically speaking, the outermost one would
be enough.

(2) When actually implementing this algorithm, the initialization step must
be modified. As can be seen from the proof, the only condition which must
be satisfied in the initialization step is that x be greater or equal to the
integer part of y/n. One should try to initialize = as close as possible to
this number. For example, after a O(Inlnn) search, as in the left-right
binary powering Algorithm 1.2.2, one can find e such that 2¢ < n < 2¢+1,
Then, one can take z «— 21(e+2)/2] Another option is to compute a single
precision floating point approximation to the square root of n and to
take the ceiling of that. The choices between these options is machine
dependent.

(3) Let us estimate the running time of the algorithm. As written, we will
spend a lot of time essentially dividing = by 2 until we are in the right
ball-park, and this requires O(Inn) steps, hence O(In*n) running time.
However, if care is taken in the initialization step as mentioned above, we
can reduce this to the usual number of steps for a quadratically convergent
algorithm, i.e. O(Inlnn). In addition, if the precision is decreased at each
iteration, it is not difficult to see that one can obtain an algorithm which
runs in O(lnzn) bit operations, hence only a constant times slower than
multiplication/division.

1.7.2 Square Detection

Given a positive integer n, we want to determine whether n is a square or
not. One method of course would be to compute the integer square root of
n using Algorithm 1.7.1, and to check whether n is equal to the square of
the result. This is far from being the most efficient method. We could also
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use Exercise 22 which says that a number is a square if and only if it is a
quadratic residue modulo every prime not dividing it, and compute a few
Legendre symbols using the algorithms of Section 1.4.2. We will use a variant
of this method which replaces Legendre symbol computation by table lookup.
One possibility is to use the following algorithm.

Precomputations 1.7.2. This is to be done and stored once and for all.

1. [Fill 11] For k =0 to 10 set q11[k] < 0. Then for k =0 to 5 set q11[k? mod
11] « 1.

2. [Fill 63] For k = 0 to 62 set ¢63[k] < 0. Then for k = 0 to 31 set ¢63[k? mod
63] — 1.

3. [Fill 64] For k = 0 to 63 set ¢64[k] — 0. Then for k = 0 to 31 set g64[k? mod
64] — 1.

4. [Fill 65] For k = 0 to 64 set g65[k] < 0. Then for k = 0 to 32 set ¢65[k? mod
65] — 1.

Once the precomputations are made, the algorithm is simply as follows.

Algorithm 1.7.3 (Square Test). Given a positive integer n, this algorithm
determines whether n is a square or not, and if it is, outputs the square root of
n. We assume that the precomputations 1.7.2 have been made.

1. [Test 64] Set t « n mod 64 (using if possible only an and statement). If
g64[t] = 0, n is not a square and terminate the algorithm. Otherwise, set
T < n mod 45045.

. [Test 63] If ¢63[r mod 63] = 0, n is not a square and terminate the algorithm.
. [Test 65] If ¢65[r mod 65] = 0, n is not a square and terminate the algorithm.
. [Test 11] If g11[r mod 11] = 0, n is not a square and terminate the algorithm.

G b W N

. [Compute square root] Compute g «— |/n| using Algorithm 1.7.1. If n £ ¢2,
n is not a square and terminate the algorithm. Otherwise n is a square, output
g and terminate the algorithm.

The validity of this algorithm is clear since if n is a square, it must be a
square modulo £ for any k. Let us explain the choice of the moduli. Note first
that the number of squares modulo 64,63,65,11 is 12,16,21,6 respectively (see
Exercise 23). Thus, if n is not a square, the probability that this will not have
been detected in the four table lookups is equal to

121621 6 6

64636511 715
and this is less than one percent. Therefore, the actual computation of the
integer square root in step 5 will rarely be done when n is not a square. This
is the reason for the choice of the moduli. The order in which the tests are
done comes from the inequalities
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12 16 21 6

64<63<65<11 '
If one is not afraid to spend memory, one can also store the squares modulo
45045 = 63 - 65 - 11, and then only one test is necessary instead of three, in
addition to the modulo 64 test.

Of course, other choices of moduli are possible (see [Nic]), but in practice
the above choice works well.

1.7.3 Prime Power Detection

The last problem we will consider in this section is that of determining whether
n is a prime power or not. This is a test which is sometimes needed, for
example in some of the modern factoring algorithms (see Chapter 10). We
will not consider the problem of testing whether n is a power of a general
number, since it is rarely needed.

The trick is as follows. Assume n = p*, where p is prime. Then we have
a™ = a (mod p) by Fermat’s theorem, hence

pl(a"—a,n) .

Conversely, it is reasonable to expect that for most values of a, (a™ —a,n) = p.
This will be at least true for a = p. We can therefore use the following simple-
minded algorithm.

Algorithm 1.7.4 (Prime Power Test). Given a positive integer n, this algo-
rithm tests whether n is of the form p* with p prime, and if it is outputs the prime
.

1. [Initialize] Set a « 1.

2. [Compute GCD] Set a «— a + 1 and compute b < a™ mod n using one of
the powering algorithms in the ring Z/nZ, and then compute the GCD p «
(b—a,n).

3. [Finished?] If p = 1, n is not a prime power, and terminate the algorithm.
Otherwise, using a compositeness test (see Section 8.2), test whether p is
composite. If it is, go to step 2.

4. [Final test] (Here p is almost certainly prime.) Using a primality test (see
Chapters 8 and 9) prove that p is prime. If it is not (an exceedingly rare
occurrence), go to step 2. Otherwise, by dividing n by p repeatedly, check
whether n is a power of p or not. If it is not, n is not a prime power and
terminate. if it is, output p and terminate the algorithm.

We have been a little sloppy in this algorithm. First, when one finds that
p > 1 is composite in step 3, we could use this information for the next trial.
In fact, we could apply the algorithm recursively by replacing n by p. This
occurs rarely however and so it is not necessary to bother.

Second, to check whether n is a power of p, instead of repeatedly dividing
by p, one can use a binary search analogous to the binary powering algorithm.
We leave this as an exercise for the reader (Exercise 4).
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1.8 Exercises for Chapter 1

10.

11.

12.

Write a bare-bones multi-precision package as explained in Section 1.1.2.

Improve your package by adding a squaring operation which operates faster than
multiplication, and based on the identity (aX + b)® = a®*X? +b* + ((a + b)* —
a? —b%) X, where X is a power of the base. Test when a similar method applied
to multiplication (see Section 3.1.2) becomes faster than the straightforward
method.

Given a 32-bit non-negative integer x, assume that we want to compute quickly
the highest power of 2 dividing z (32 if z = 0). Denoting by e(z) the exponent
of this power of 2, show that this can be done using the formula

e(z) = t[(z"(z — 1)) mod 37]

where t is a suitable table of 37 values indexed from 0 to 36, and a"b denotes
bitwise exclusive or (addition modulo 2 on bits). Show also that 37 is the least
integer having this property, and find an analogous formula for 64-bit numbers.

Given two integers n and p, give an algorithm which uses ideas similar to the
binary powering algorithm, to check whether n is a power of p. Also, if p is
known to be prime, show that one can use only repeated squarings followed by
a final divisibility test.

Write a version of the binary GCD algorithm which uses ideas of Lehmer’s
algorithm, in particular keeping information about the low order words and the
high order words. Try also to write an extended version.

Write an algorithm which computes (u,v,d) as in Algorithm 1.3.6, by storing
the partial quotients and climbing back. Compare the speed with the algorithms
of the text.

Prove that at the end of Algorithm 1.3.6, one has vi = +b/d and v2 = Fa/d,
and determine the sign as a function of the number of Euclidean steps.

Write an algorithm for finding a solution to the system of congruences z = x1
(mod m;) and z = z2 (mod my) assuming that 1 = z2 (mod ged(mi, m2)).

Generalizing Exercise 8 and Algorithm 1.3.12, write a general algorithm for
finding an z satisfying Theorem 1.3.9.

Show that the use of Gauss’s Algorithm 1.3.14 leads to a slightly different algo-
rithm than Cornacchia’s Algorithm 1.5.2 for solving the equation 22 + dy? = p
(consider a = (p,0) and b = (zo, Vd)).

Show how to modify Lehmer’s Algorithm 1.3.13 for finding the continued fraction
expansion of a real number, using the ideas of Algorithm 1.3.3, so as to avoid
almost all multi-precision operations.

Using Algorithm 1.3.13, compute at least 30 partial quotients of the continued
fraction expansions of the numbers e, €2, e®, €*/3 (you will need some kind of
multi-precision to do this). What do you observe? Experiment with number of
the form e/®, and try to see for which a/b one sees a pattern. Then try and
prove it (this is difficult. It is advised to start by doing a good bibliographic
search).
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13.

14.

15.
16.

17.
18.

19.

20.

21.

22.

23.

24.

25.

26.

Prove that if n = niny with ny and ng coprime, then (Z/nZ)" ~ (Z/mZ)* x
(Z/n2Z)*. Then prove Theorem 1.4.1.

Show that when ¢ > 2, g = 5 is always a generator of the cyclic subgroup of
order 2472 of (Z/2°7)".
Prove Proposition 1.4.6.

Give a proof of Theorem 1.4.7 (2) along the following lines (read Chapter 4 first
if you are not familiar with number fields). Let p and g be distinct odd primes.
Set ¢ = €*"/?, R =Q(¢) and

o)=Y (5) ¢

amodp

)(p /2 and that 7(p) is invertible in R/gR.
) (mod ¢R).
(2), and modify the above arguments so as to prove

a) Show that 7(p)® =

b) Show that 7(p)? =

c) Prove Theorem 1.4.
Theorem 1.4.7 (1).

Prove Theorem 1.4.9 and Lemma 1.4.11.

Let p be an odd prime and n and integer prime to p. Then multiplication by n
induces a permutation 7y, of the finite set (Z/pZ)". Show that the signature of
this permutation is equal to the Legendre symbol (ﬂ) Deduce from this another
proof of the quadratic reciprocity law (Theorem 1.4.7).

(-~
(
7

'El-a

Generalizing Lemma 1.4.11, show the following general reciprocity law: if a and
b are non-zero and a = 2%a; (resp. b = 2°b;) with a1 and b1 odd, then

(ﬂ) — (_1)(‘11—1)(b1—1)/4+(Si€"(al)—1)(Sig“(b1)-1)/4 <9>
b a)

Implement the modification suggested after Algorithm 1.4.10 (i.e. taking the
smallest residue in absolute value instead of the smallest non-negative one) and
compare its speed with that of the unmodified algorithm.

Using the quadratic reciprocity law, find the number of solutions of the congru-
ence z2 = 1 (mod p). Deduce from this the number of cubic residues mod p, i.e.
numbers a not divisible by p such that the congruence z°> = a (mod p) has a

solution.

Show that an integer n is a square if and only if (%) =1 for every prime p not
dividing n.

Given a modulus m, give an exact formula for s(m), the number of squares
modulo m, in other words the cardinality of the image of the squaring map from
Z/mZ into itself. Apply your formula to the special case m = 64, 63,65, 11.

Show that the running time of Algorithm 1.4.10 modified by keeping b odd, may
be exponential time for some inputs.

Modify Algorithm 1.5.1 so that in addition to computing z, it also computes
the (even) exponent k such that a?2* = 1 in G, using the notations of the text.

Give an algorithm analogous to Shanks’s Algorithm 1.5.1, to find the cube roots
of a mod p when a is a cubic residue. It may be useful to consider separately
the cases p = 2 {mod 3) and p=1 (mod 3).
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27.

28.

29.

30.

31.

32.
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Given a prime number p and a quadratic non-residue a mod p, we can consider
K = F,2 = Fy(v/a). Explain how to do the usual arithmetic operations in K.
Give an algorithm for computing square roots in K, assuming that the result is
in K.

Generalizing Exercise 27, give an algorithm for computing cube roots in F 2, and
give also an algorithm for computing roots of equations of degree 3 by Cardano’s
formulas (see Exercise 28 of Chapter 3).

Show that, as claimed in the proof of Algorithm 1.5.1, steps 3 and 4 will require
in average e2 /4 and at most e? multiplications modulo p.

Let m = Hp p°? be any positive integer for which we know the complete factor-
ization into primes, and let a € Z.

a) Give a necessary and sufficient condition for a to be congruent to a square
modulo m, using several Legendre symbols.

b) Give a closed formula for the number of solutions of the congruence
22 =a (mod m).

c¢) Using Shanks’s Algorithm 1.5.1 as a sub-algorithm, write an algorithm
for computing a solution to 2 = a (mod m) if a solution exists (you should
take care to handle separately the power of 2 dividing m).

Implement Algorithm 1.6.1 with and without the variant explained in Remark
(3) following the algorithm, as well as the systematic trial of X =0,...,p— 1,
and compare the speed of these three algorithms for different values of p and
deg(P) or deg(A4).

By imitating Newton’s method once again, design an algorithm for computing
integer cube roots which works only with integers.



Chapter 2

Algorithms for Linear Algebra and Lattices

2.1 Introduction

In many algorithms, and in particular in number-theoretic ones, it is necessary
to use algorithms to solve common problems of linear algebra. For example,
solving a linear system of equations is such a problem. Apart from stability
considerations, such problems and algorithms can be solved by a single algo-
rithm independently of the base field (or more generally of the base ring if we
work with modules). Those algorithms will naturally be called linear algebra
algorithms.

On the other hand, many algorithms of the same general kind specifically
deal with problems based on specific properties of the base ring. For example,
if the base ring is Z (or more generally any Euclidean domain), and if L is
a submodule of rank n of Z", then Z"/L is a finite Abelian group, and we
may want to know its structure once a generating system of elements of L
is known. This kind of problem can loosely be called an arithmetic linear
algebra problem. Such problems are trivial if Z is replaced by a field K. (In
our example we would have L = K™ hence the quotient group would always
be trivial.) In fact we will see that a submodule of Z" is called a lattice, and
that essentially all arithmetic linear algebra problems deal with lattices, so we
will use the term lattice algorithms to describe the kind of algorithms that are
used for solving arithmetic linear algebra problems.

This chapter is therefore divided into two parts. In the first part, we give
algorithms for solving the most common linear algebra problems. It must be
emphasized that the goal will be to give general algorithms valid over any
field, but that in the case of imprecise fields such as the field of real numbers,
care must be taken to insure stability. This becomes an important problem
of numerical analysis, and we refer the reader to the many excellent books
on the subject ([Gol-Van], [PFTV]). Apart from mentioning the difficulties,
given the spirit of this book we will not dwell on this aspect of linear algebra.

In the second part, we recall the definitions and properties of lattices.
We will assume that the base ring is Z, but essentially everything carries
over to the case where the base ring is a principal ideal domain (PID), for
example K[X], where K is a field. Then we describe algorithms for lattices. In
particular we discuss in great detail the LLL algorithm which is of fundamental
importance, and give a number of applications.
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2.2 Linear Algebra Algorithms on Square Matrices

2.2.1 Generalities on Linear Algebra Algorithms

Let K be a field. Linear algebra over K is the study of K-vector spaces and K-
linear maps between them. We will always assume that the vector spaces that
we use are finite-dimensional. Of course, infinite-dimensional vector spaces
arise naturally, for example the space K[X] of polynomials in one variable
over K. Usually, however when one needs to perform linear algebra on these
spaces it is almost always on finite-dimensional subspaces.

A K-vector space V is an abstract object, but in practice, we will assume
that V is given by a basis of n linearly independent vectors vy, ... v, in some
K™ (where m is greater or equal, but not necessarily equal to n). This is of
course highly non-canonical, but we can always reduce to that situation.

Since K™ has by definition a canonical basis, we can consider V as being
given by an m x n matrix M (V) (i.e. a matrix with m rows and n columns)
such that the columns of M(V) represent the coordinates in the canonical
basis of K™ of the vectors v;. If n = m, the linear independence of the v;
means, of course, that M (V') is an invertible matrix. (The notation M (V) is
slightly improper since M (V) is attached, not to the vector space V, but to
the chosen basis v;.)

Note that changing bases in V is equivalent to multiplying M (V') on the
right by an invertible n x n matrix. In particular, we may want the matrix
M(V) to satisfy certain properties, for example being in upper triangular
form. We will see below (Algorithm 2.3.11) how to do this.

A linear map f between two vector spaces V and W of respective dimen-
sions n and m will in practice be represented by an m x n matrix M(f), M(f)
being the matrix of the map f with respect to the bases M (V) and M(W) of
V and W respectively. In other words, the j-th column of M ( f) represents the
coordinates of f(v;) in the basis w;, where the v; correspond to the columns
of M(V), and the w; to the columns of M(W).

Note that in the above we use column-representation of vectors and not
row-representation; this is quite arbitrary, but corresponds to traditional us-
age. Once a choice is made however, one must consistently stick with it.

Thus, the objects with which we will have to work with in performing linear
algebra operations are matrices and (row or column) vectors. This is only for
practical purposes, but keep in mind that it rarely corresponds to anything
canonical. The internal representation of vectors is completely straightforward
(i.e. as a linear array).

For matrices, essentially three equivalent kinds of representation are pos-
sible. The particular one which should be chosen depends on the language in
which the algorithms will be implemented. For example, it will not be the
same in Fortran and in C.

One representation is to consider matrices as (row) vectors of (column)
vectors. (We could also consider them as column vectors of row vectors but
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the former is preferable since we have chosen to represent vectors mainly
in column-representation.) A second method is to represent matrices as two-
dimensional arrays. Finally, we can also represent matrices as one-dimensional
arrays, by adding suitable macro-definitions so as to be able to access individ-
ual elements by row and column indices.

Whatever representation is chosen, we must also choose the index num-
bering for rows and columns. Although many languages such as C take 0 as
the starting index, for consistency with usual mathematical notation we will
assume that the first index for vectors or for rows and columns of matri-
ces is always taken to be equal to 1. This is not meant to suggest that one
should use this in a particular implementation, it is simply for elegance of
exposition. In any given implementation, it may be preferable to make the
necessary trivial changes so as to use 0 as the starting index. Again, this is a
language-dependent issue.

2.2.2 Gaussian Elimination and Solving Linear Systems

The basic operation which is used in linear algebra algorithms is that of Gaus-
sian elimination, sometimes also known as Gaussian pivoting. This consists
in replacing a column (resp. a row) C by some linear combination of all the
columns (resp. rows) where the coefficient of C must be non-zero, so that (for
example) some coeflicient becomes equal to zero. Another operation is that of
exchanging two columns (resp. rows). Together, these two basic types of oper-
ations (which we will call elementary operations on columns or rows) will allow
us to perform all the tasks that we will need in linear algebra. Note that they
do not change the vector space spanned by the columns (resp. rows). Also, in
matrix terms, performing a series of elementary operations on columns (resp.
rows) is equivalent to right (resp. left) multiplication by an invertible square
matrix of the appropriate size. Conversely, one can show (see Exercise 1) that
an invertible square matrix is equal to a product of matrices corresponding to
elementary operations.

The linear algebra algorithms that we give are simply adaptations of these
basic principles to the specific problems that we must solve, but the underlying
strategy is always the same, i.e. reduce a matrix to some simpler form (i.e. with
many zeros at suitable places) so that the problem can be solved very simply.
The proofs of the algorithms are usually completely straightforward, hence will
be given only when really necessary. We will systematically use the following
notation: if M is a matrix, M; denotes its j-th column, M/ its i-th row, and
m;, ; the entry at row ¢ and column j. If B is a (column or row) vector, b; will
denote its i-th coordinate. :

Perhaps the best way to see Gaussian elimination in action is in solving
square linear systems of equations.

Algorithm 2.2.1 (Square Linear System). Let M be an n x n matrix and B
a column vector. This algorithm either outputs a message saying that M is not
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invertible, or outputs a column vector X such that M X = B. We use an auxiliary

column vector C.

1. [Initialize] Set j « 0.

2. [Finished?] Let j < j+ 1. If j > n go to step 6.

3. [Find non-zero entry] If m; ; = 0 for all i > j, output a message saying that
M is not invertible and terminate the algorithm. Otherwise, let ¢ > j be some
index such that m; ; # 0.

4. [Swap?] If ¢ > j, for I = j,...,n exchange m;; and m;;, and exchange b; and
b;.

5. [Eliminate] (Here m; ; # 0.) Set d « mJ_]1 and for all k > I set ¢, — dmy, ;.
Then, for all k > j and I > j set my; — mg,; — ckm;j,. (Note that we do not
need to compute this for [ = j since it is equal to zero.) Finally, for k > j set
by, + bx, — cxb; and go to step 2.

6. [Solve triangular system] (Here M is an upper triangular matrix.) For i =
n,n —1,...,1 (in that order) set z; « (b; — Ei<j<n m; j&;)/m; ;. output
X = (%i)1<i<n and terminate the algorithm.

Note that steps 4 and 5 (the swap and elimination operations) are really
row operations, but we have written them as working on entries since it is not
necessary to take into account the first j — 1 columns.

Note also in step 5 that we start by computing the inverse of m; ; since
in fields like F,, division is usually much more time-consuming than multipli-
cation.

The number of necessary multiplications/divisions in this algorithm is
clearly asymptotic to n3/3 in the general case. Note however that this does
not represent the true complexity of the algorithm, which should be counted
in bit operations. This of course depends on the base field (see Section 1.1.3).
This remark also applies to all the other linear algebra algorithms given in
this chapter.

Inverting a square matrix M means solving the linear systems M X = E;,
where the E; are the canonical basis vectors of K™, hence one can achieve
this by successive applications of Algorithm 2.2.1. Clearly, it is a waste of
time to use Gaussian elimination on the matrix for each linear system. (More
generally, this is true when we must solve several linear systems with the same
matrix M but different right hand sides B.) We should compute the inverse
of M, and then the solution of a linear system requires only a simple matrix
times vector multiplication requiring n? field multiplications.

To obtain the inverse of M, only a slight modification of Algorithm 2.2.1
is necessary.

Algorithm 2.2.2 (Inverse of a Matrix). Let M be an n X n matrix. This
algorithm either outputs a message saying that M is not invertible, or outputs
the inverse of M. We use an auxiliary column vector C and we recall that B
(resp. X!) denotes the i-th row of B (resp. X).
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—

. [Initialize] Set j < 0, B « I,,, where I,, is the n X n identity matrix.

. [Finished?] Let j « j + 1. If j > n, go to step 6.

. [Find non-zero entry] If m; ; = 0 for all ¢ > j, output a message saying that
M is not invertible and terminate the algorithm. Otherwise, let i > j be some
index such that m; ; # 0.

4. [Swap?] If i > j, for | = j,...,n exchange m;; and m;,;, and exchange the

rows B} and B.

5. [Eliminate] (Here m; ; # 0.) Set d — mJ_J1 and for all k > j set ¢, — dmy ;.
Then for all k > j and [ > j set my; < my; — cym;,. (Note that we do not
need to compute this for [ = j since it is equal to zero.) Finally, for all k£ > j
set By « By — cxBj and go to step 2.

w N

6. [Solve triangular system] (Here M is an upper triangular matrix.) For i =
n,n—1,...,1 (in that order) set X — (B, -3 m; ;X;)/mi, output
the matrix X and terminate the algorithm.

i<j<n

It is easy to check that the number of multiplications/divisions needed is
asymptotic to 4n3/3 in the general case. This is only four times longer than the
number required for solving a single linear system. Thus as soon as more than
four linear systems with the same matrix need to be solved, it is worthwhile
to compute the inverse matrix.

Remarks.

(1) In step 1 of the algorithm, the matrix B is initialized to I,,. If instead, we
initialize B to be any n x m matrix N for any m, the result is the matrix
M~'N, and this is of course faster than computing M~! and then the
matrix product. The case m = 1 is exactly Algorithm 2.2.1.

(2) Instead of explicitly computing the inverse of M, it is worthwhile for many
applications to put M in LUP form , i.e. to find a lower triangular matrix
L and an upper triangular matrix U such that M = LUP for some per-
mutation matrix P. (Recall that a permutation matriz is a square matrix
whose elements are only 0 or 1 such that each row and column has exactly
one 1.) Exercise 3 shows how this can be done. Once M is in this form,
solving linear systems, inverting M, computing det(M), etc ... is much
simpler (see [AHU] and [PFTV]).

2.2.3 Computing Determinants

To compute determinants, we can simply use Gaussian elimination as in Al-
gorithm 2.2.1. Since the final matrix is triangular, the determinant is trivial
to compute. This gives the following algorithm.

Algorithm 2.2.3 (Determinant, Using Ordinary Elimination). Let M be an
n X n matrix. This algorithm outputs the determinant of M. We use an auxiliary
column vector C.
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1. [Initialize] Set j — 0, z « 1.
2. [Finished?] Let j < j 4+ 1. If j > n output = and terminate the algorithm.

3. [Find non-zero entry] If m; ; = 0 for all ¢ > j, output 0 and terminate the
algorithm. Otherwise, let ¢ > j be some index such that m; ; # 0.

4. [Swap?] If i > j, for I = j,...,n exchange m;; and m;;, and set x «— —z.

5. [Eliminate] (Here m; ; # 0.) Set d «— mJ_]1 and for all k > j set ¢y — dmy ;.
Then for all k > j and | > j set my,; — my, — cxm;,i. (Note that we do not
need to compute this for [ = j since it is equal to zero.) Finally, set z — z-m; ;

and go to step 2.

The number of multiplications/divisions needed in this algorithm is clearly
of the same order as Algorithm 2.2.1, i.e. asymptotic to n3/3 in general.

Very often, this algorithm will be used in the case where the matrix M
has entries in Z or some polynomial ring. In this case, the elimination step
will introduce denominators, and these have a tendency to get very large.
Furthermore, the coefficients of the intermediate matrices will be in Q (or some
rational function field), and hence large GCD computations will be necessary
which will slow down the algorithm even more. All this is of course valid for
the other straightforward elimination algorithms that we have seen.

On the other hand, if the base field is a finite field F,;, we do not have
such problems. If the base field is inexact, like the real or complex numbers or
the p-adic numbers, care must be taken for numerical stability. For example,
numerical analysis books advise taking the largest non-zero entry (in absolute
value) and not the first non-zero one found. We refer to [Gol-Van], [PFTV]
for more details on these stability problems.

To overcome the problems that we encounter when the matrix M has
integer coefficients, several methods can be used (and similarly when M has
coefficients in a polynomial ring). The first method is to compute det(M) mod-
ulo sufficiently many primes (using Algorithm 2.2.3 which is efficient here),
and then use the Chinese remainder Theorem 1.3.9 to obtain the exact value
of det(M). This can be done as soon as we know an a priori upper bound
for | det(M)|. (We then simply choose sufficiently many primes p; so that the
product of the p; is greater than twice the upper bound.) Such an upper bound
is given by Hadamard’s inequality which we will prove below (Corollary 2.5.5;
note that this corollary is proved in the context of real matrices, i.e. Euclidean
vector spaces, but its proof is identical for Hermitian vector spaces).

Proposition 2.2.4 (Hadamard’s Inequality). If M = (mjj)i<ij<n 18 @
square matriz with complex coefficients, then

1/2

ldet(M)| < T | D Imyl?

1<i<n \1<j<n
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This method for computing determinants can be much faster than a di-
rect computation using Algorithm 2.2.3, but will be slower when the number
of primes needed for the Chinese remainder theorem is large. This happens
because the size of the Hadamard bound is often far from ideal.

Another method is based on the following easily proved proposition due
to Dodgson {alias Lewis Caroll), which is a special case of a general theorem
due to Bareiss [Bar].

Proposition 2.2.5. Let My = (a?,j)lﬁi,jsn be an n x n matriz where the
coefficients are considered as independent variables. Set cg = 1 and for 1 <
k < n, define recursively

w_ 1 |al7Y ol (k) (k—1)

— = | Tkk 23 — . — -

a;; = (k=1) (k-1 | ° My = (a’i,j Jk+1<ij<n  Ond  Cp = gk~ -
Ck—1 a; a; ;

Then, all the divisions by cx—; are ezact; we have det(My) = cZ_k_l det(M,),
and in particular det(M;) = c,.

Proof (Sketch). Going from Mjy_; to My is essentially Gaussian elimination,
except that the denominators are removed. This shows that

Cn—k:—l
det(My) = *—— det(Mp_1)
Ck—1

thus proving the formula for det(My) by induction.
That all the divisions by cx_1 are exact comes from the easily checked fact
that we can explicitly write the coefficients a® as k41 x k+ 1 minors of the

3
matrix My (see Exercise 5). O

We have stated this proposition with matrices having coefficients consid-
ered as independent variables. For more special rings, some ¢, may vanish,
in which case one must exchange rows or columus, as in Algorithm 2.2.3,
and keep track of the sign changes. This leads to the following method for
computing determinants.

Algorithm 2.2.6 (Determinant Using Gauss-Bareiss). Given an n X n ma-

trix M with coefficients in an integral domain R, this algorithm computes the

determinant of M. All the intermediate results are in R.

1. [Initialize] Set k — 0, c — 1, s 1.

2. [Increase k] Set k — k+1. If k = n output sM, , and terminate the algorithm.
Otherwise, set p «— my .

3.[lsp =07 If p# 0 go to step 4. Otherwise, look for the first non-zero
coefficient m;  in the k-th column. If no such coefficient exists, output 0 and
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terminate the algorithm. If it does, for j = k,...,n exchange m; ; and my ;,
then set s «— —s and p «— my .

4. [Main step] (p is now non-zero.) For i = k+1,...,nand j =k+1,...,n set
t «— pm; ; — m; gMy j, then m; j — t/c where the division is exact. Then set
¢« p and go to step 2.

Although this algorithm is particularly well suited to the computation of
determinants when the matrix M has integer (or similar type) entries, it can
of course, be used in general. There is however a subtlety which must be taken
into account when dealing with inexact entries.

Assume for example that the coefficients of M are polynomials with real
coefficients. These in general will be imprecise. Then in step 4, the division
t/c will, in general, not give a polynomial, but rather a rational function. This
is because when we perform the Euclidean division of ¢ by ¢, there may be
a very small but non-zero remainder. In this case, when implementing the
algorithm, it is essential to compute t/c using Euclidean division, and discard
the remainder, if any.

The number of necessary multiplications/divisions in this modified algo-
rithm is asymptotic to n? instead of n3/3 in Algorithm 2.2.3, but using Gauss-
Bareiss considerably improves on the time needed for the basic multiplications
and divisions and this usually more than compensates for the factor of 3.

Finally, note that although we have explained the Gauss-Bareiss method
for computing determinants, it can usually be applied to any other algorithmic
problem using Gaussian elimination, where the coefficients are integers (see
Exercise 6).

2.2.4 Computing the Characteristic Polynomial

Recall that if M is an n X n square matrix, the characteristic polynomial of
M is the monic polynomial of degree n defined by

P(X) = det(XI, — M) ,

where as usual I, is the n x n identity matrix. We want to compute the coefhi-
cients of P(X). Note that the constant term of P(X) is equal to (—1)™ det(M),
and more generally the coefficients of P(X) can be expressed as the sum of
the so-called principal minors of M which are sub-determinants of M. To
compute the coefficients of P(X) in this manner is usually not the best way
to proceed. (In fact the number of such minors grows exponentially with n.)
In addition to the method which I have just mentioned, there are essentially
four methods for computing P(X).

The first method is to apply the definition directly, and to use the Gauss-
Bareiss algorithm for computing det(XI, — M), this matrix considered as
having coefficients in the ring K[X]. Although computing in K[X] is more
expensive than computing in K, this method can be quite fast in some cases.
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The second method is to apply Lagrange interpolation. In our special case,
this gives the following formula.

det(XI, — M) = zn:det(kIn -m) ] (X - 7) .
k=0 o<i<nyze F 7

This formula is easily checked since both sides are polynomials of degree
less than or equal to n which agree on the n + 1 points X =i for 0 <i < n.

Hence, to compute the characteristic polynomial of M, it is enough to
compute n + 1 determinants, and this is usually faster than the first method.
Since multiplication and division by small constants can be neglected in timing
estimates, this method requires asymptotically n*/3 multiplications/divisions
when we use ordinary Gaussian elimination.

The third method is based on the computation of the adjoint matriz or
comatriz of M, i.e. the matrix M?4 whose coefficient of row i and column j is
equal to (—1)"*/ times the sub-determinant of M obtained by removing row
j and column ¢ (note that ¢ and j are reversed). From the expansion rule of
determinants along rows or columns, it is clear that this matrix satisfies the
identity

MM = MM = det(M)T,, .

We give the method as an algorithm.

Algorithm 2.2.7 (Characteristic Polynomial and Adjoint Matrix). Given an

n x n matrix M, this algorithm computes the characteristic polynomial P(X) =

det(X I, — M) of M and the adjoint matrix M?Y of M. We use an auxiliary

matrix C and auxiliary elements a;.

1. [Initialize] Set i — 0, C «— I, ap « 1.

2. [Finished?] Set i « i + 1. If i = n set a, — —Tr(MC)/n, output P(X) «
Y o<icn @ X", M2 — (—1)""1C and terminate the algorithm.

3. [Compute next a; and C] Set C — MC, a; — —Tr(C)/i, C « C+a;I,, and
go to step 2.

Before proving the validity of this algorithm, we prove a lemma.

Lemma 2.2.8. Let M be an n X n matriz, A(X) be the adjoint matriz of
XI,~M, and P(X) the characteristic polynomial of M. We have the identity

Tr(A(X)) = P'(X) .
Proof. Recall that the determinant is multilinear, hence the derivative of an

n X n determinant is equal to the sum of the n determinants obtained by
replacing the j-th column by its derivative, for 1 < j < n. In our case, calling
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E; the columns of the identity matrix (i.e. the canonical basis of K™), we
have, after expanding the determinants along the j-th column

P/(X) = (det(XI - M))' = Y A;;(X)

1<j<n

where A; ;j(X) is the n — 1 x n — 1 sub-determinant of X1 — M obtaining by
removing row and column j, i.e. A; ; is the coeflicient of row and column j of
the adjoint matrix A(X), and this proves the lemma. 0O

Proof of the Algorithm. Call A(X) the adjoint matrix of X I,,— M. We can write
A(X) = Yocicn_1 CiX™ 71 with constant matrices C;. From the lemma, it
follows that if P(X) = 3 )<<, a: X" * we have

(n —t)a; = Te(C;) .

On the other hand, since P(X)I, = (X1, — M)A(X), we obtain by comparing
coefficients Cy = I, and for i > 1

C;=MCi_1+a;1,

Taking traces, this gives (n—i)a; = Tr(MC;_1)+na;, i.e. a; = — Tr(MC;—1)/i.

Finally, it is clear that A{0) = C,_; is the adjoint matrix of —M, hence
(-=1)*'C,_; is the adjoint matrix of M, thus showing the validity of the
algorithm. O

The total number of operations is easily seen to be asymptotic to n*
multiplications, and this may seem slower (by a factor of 3) than the method
based on Lagrange interpolation. However, since no divisions are required the
basic multiplication/division time is reduced considerably—especially when
the matrix M has integral entries, and hence this algorithm is in fact faster.
In addition, it gives for free the adjoint matrix of M (and even of XI,, — M
if we want it).

The fourth and last method is based on the notion of Hessenberg form of
a matrix. We first compute a matrix H which is similar to M (i.e. is of the
form PMP~1), and in particular has the same characteristic polynomial as
M, and which has the following form (Hessenberg form)

hii ha2 his ... hin
ko h272 h2,3 . hgyn
H = 0 ks h3,3 ... hg,n

)

In this form, since we have a big triangle of zeros on the bottom left, it is not
difficult to obtain a recursive relation for the characteristic polynomial of H,



2.2 Linear Algebra Algorithms on Square Matrices 55

hence of M. More precisely, if p,,(X) is the characteristic polynomial of the
sub-matrix of H formed by the first m rows and columns, we have po(X) = 1
and the recursion:

pm(X) = (X - hm,m)pm—l(X) - z_: hi,m('H kj)pi—l(X)

i=1 j=i+1

This leads to the following algorithm.

Algorithm 2.2.9 (Hessenberg). Given an n X n matrix M = (m; ;) with
coefficients in a field, this algorithm computes the characteristic polynomial of M
by first transforming M into a Hessenberg matrix as above.

1. [Initialize] Set H — M, m « 2.

2. [Search for non-zero] If all the h; m—1 with ¢ > m are equal to 0, go to step
4. Otherwise, let i > m be the smallest index such that h;m,—1 # 0. Set
t — him—1. Then if i > m, for all j > m — 1 exchange h;; and hy, ; and
exchange column H; with column H,p,.

3. [Eliminate] Fori = m+1, ..., ndo the following if h; m—1 # 0: u — h;m—1/t,
for all j > m set h; j < h; j—uhm j, and finally set column H,;, < Hp,+uH;.

[Hessenberg finished?] If m < n —1, set m «— m + 1 and go to step 2.
[Initialize characteristic polynomial] Set po(X) < 1 and m « 1.
. [Initialize computation] Set p,,,(X) — (X — hm,m)Pm-1(X) and t « 1.

N o o s

. [Compute p,,] Fori =1, ..., m — 1 do the following: set ¢t < thm_it1,m—i,
pm(X) = pm(X) - thm—i,mpm—i—l(X)'

8. [Finished?] If m < n set m « m + 1 and go to step 6. Otherwise, output

pn(X) and terminate the algorithm.

This algorithm requires asymptotically only n® multiplications/divisions
in the general case, and this is much better than the preceding algorithms
when n is large. If M has integer coefficients however, the Hessenberg form as
well as the intermediate results will usually be non-integral rational numbers,
hence we lose all the advantage of the reduced operation count, since the time
needed for the basic multiplications/divisions will be large. In that case, one
should not use the Hessenberg algorithm directly. Instead, one should apply
it to compute the characteristic polynomial modulo sufficiently many primes
and use the Chinese remainder theorem, exactly as we did for the determinant.
For this, we need bounds for the coefficients of the characteristic polynomial,
analogous to the Hadamard bound. The following result, although not optimal,
is easy to prove and gives a reasonably good estimate.

Proposition 2.2.10. Let M = (m; ;) be an nxn matriz, and write det(X I,,—
M) =Y ocrenak X" ¥ with ag = 1. Let B be an upper bound for the moduli
of all the m; j. Then the coefficients ax satisfy the inequality
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|ak| < (:)kk/sz )

Proof. As already mentioned, the coefficient aj, is up to sign equal to the sum of
the (Z) principal k& x k minors. By Hadamard’s inequality (Proposition 2.2.4),
each of these minors is bounded by [[(3 |m;|?)!/? where the product and
the sums have k terms. Hence the minors are bounded by (kB?)*/2 = k*/2Bk,
and this gives the proposition. a

Remarks.

(1) The optimal form for computing the characteristic polynomial of a matrix
would be triangular. This is however not possible if the eigenvalues of
the matrix are not in the base field, hence the Hessenberg form can be
considered as the second best choice.

(2) A problem related to computing the characteristic polynomial, is to com-
pute the eigenvalues (and eigenvectors) of a matrix, say with real or com-
plex coefficients. These are by definition the roots of the characteristic
polynomial P(X). Therefore, we could compute P(X) using one of the
above methods, then find the roots of P(X) using algorithm 3.6.6 which
we will see later, and finally apply algorithm 2.2.1 to get the eigenvectors.
This is however not the way to proceed in general since much better meth-
ods based on iterative processes are available from numerical analysis (see
[Gol-Van], [PFTV]), and we will not study this subject here.

2.3 Linear Algebra on General Matrices

2.3.1 Kernel and Image

We now come to linear algebra problems which deal with arbitrary m x n
matrices M with coefficients in a field K. Recall from above that M can be
viewed as giving a generating set for the subspace of K™ generated by the
columns of M, or as the matrix of a linear map from an n-dimensional space
to an m-dimensional space with respect to some bases. (Beware of the order
of m and n.) It is usually conceptually easier to think of M in this way.

The first basic algorithm that we will need is for computing the kernel of
M, i.e. a basis for the space of column vectors X such that MX = 0. The
following algorithm is adapted from [Knu2].

Algorithm 2.3.1 (Kernel of a Matrix). Given an m x n matrix M = (m; ;)
with 1 <7 < m and 1 < j < n having coefficients in a field K, this algorithm
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outputs a basis of the kernel of M, i.e. of column vectors X such that M X = 0.

We use auxiliary constants ¢; (1 <i<m)and d; (1<i<n).

1. [Initialize] Set r « 0, k « 1 and for s = 1,...,m, set ¢; — O (there is no
need to initialize d;).

2. [Scan column] If there does not exists a j such that 1 < j < m with m;x # 0
and ¢; =0 then set 7 «— r 41, d < 0 and go to step 4.

3. [Eliminate] Set d « —-m;,i, mjr — —land fors=k+1,...,nset m;, «
dm; . Then for all ¢ such that 1 <4 <m and i # j set d — m; g, m;x < 0
and for s = k+1,...,n set m; s < m; s + dm; . Finally, set ¢; < k and
dk — _]

4. [Finished?] If k < n set k — k + 1 and go to step 2.

5. [Output kernel] (Here r is the dimension of the kernel.) For every k such that
1 <k <nanddg = 0 (there will be exactly r such k), output the column
vector X = (z;)1<i<n defined by

Mg, k, ifd; >0
T, = 1, ifi=k
.0, otherwise.

These r vectors form a basis for the kernel of M. Terminate the algorithm.

The proof of the validity of this algorithm is not difficult and is left as an
exercise for the reader (see Exercise 8). In fact, the main point is that ¢; > 0
if and only if m; ., = —1 and all other entries in column c; are equal to zero.

Note also that step 3 looks complicated because I wanted to give as effi-
cient an algorithm as possible, but in fact it corresponds to elementary row
operations.

Only a slight modification of this algorithm gives the image of M, i.e. a
basis for the vector space spanned by the columns of M. In fact, apart from
the need to make a copy of the initial matrix M, only step 5 needs to be
changed.

Algorithm 2.3.2 (Image of a Matrix). Given an m x n matrix M = (m; ;)
with 1 <4 < m and 1 < j < n having coefficients in a field K, this algorithm
outputs a basis of the image of M, i.e. the vector space spanned by the columns
of M. We use auxiliary constants ¢; (1 <i < m).

1. [Initialize] Setr — 0, k — landfori =1,...,m, set¢; < 0, and let N «— M
(we need to keep a copy of the initial matrix M).

2. [Scan column] If there does not exists a j such that 1 < j < m with m;x # 0
and ¢; =0 then set 7 «— 7 + 1, dy « 0 and go to step 4.

3. [Eliminate] Set d « —m;i, mj, < —1and for s=k+1,...,n set mj, <
dm;s. Then for all i such that 1 <i <mand i # jset d  my, mix < 0
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and for s = k4 1,...,n set m; s < m; s + dm;,. Finally, set ¢; «— k and
di < j.
4. [Finished?] If k < n set k — k + 1 and go to step 2.

5. [Output image] (Here n — r is the dimension of the image, i.e. the rank of the
matrix M.) For every j such that 1 < j < m and ¢; # 0 (there will be exactly
n —r such j), output the column vector N, (where Ny is the k-th column of
the initial matrix M). These n — r vectors form a basis for the image of M.
Terminate the algorithm.

One checks easily that both the kernel and image algorithms require
asymptotically n?m/2 multiplications/divisions in general.

There are many possible variations on this algorithm for determining the
image. For example if only the rank of the matrix M is needed and not an
actual basis of the image, simply output the number n — r in step 5. If one
needs to also know the precise rows and columns that must be extracted from
the matrix M to obtain a non-zero (n—r) x (n—r) determinant, we output the
pairs (j, ¢;) for each j < m such that ¢; # 0, where j gives the row number,
and c; the column number.

Finally, if the columns of M represent a generating set for a subspace of
K™, the image algorithm enables us to extract a basis for this subspace.

Remark. We recall the following definition.

Definition 2.3.3. We will say that an m x n matriz M is in column echelon
form if there exists 1 < n and a strictly increasing map f from [r + 1,n] to
[1,m] satisfying the following properties.

(1) Forr+1<j<mn, myy,; =1 mi; =0ifi > f(§) and mpgy; =0 if
k<j.
(2) The first r columns of M are equal to 0.

It is clear that the definition implies that the last n — r columns (i.e. the
non-zero columns) of M are linearly independent.

It can be seen that Algorithm 2.3.1 gives the basis of the kernel in column
echelon form. This property can be useful in other contexts, and hence, if
necessary, we may assume that the basis which is output has this property.
In fact we will see later that any subspace can be represented by a matrix in
column echelon form (Algorithm 2.3.11).

For the image, the basis is simply extracted from the columns of M, no
linear combination being taken.
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2.3.2 Inverse Image and Supplement

A common problem is to solve linear systems whose matrix is either not square
or not invertible. In other words, we want to generalize algorithm 2.2.1 for
solving M X = B where M is an m x n matrix. If X is a particular solution
of this system, the general solution is given by X = Xy+Y where Y € ker(M),
and ker(M) can be computed using Algorithm 2.3.1, so the only problem is
to find one particular solution to our system (or to show that none exist). We
will naturally call this the inverse image problem.

If we want the complete inverse image and not just a single solution, the
best way is probably to use the kernel Algorithm 2.3.1. Indeed, consider the
augmented m x (n + 1) matrix M; obtained by adding B as an n + 1-st
column to the matrix M. If X is a solution to MX = B, and if X; is the
n + l-vector obtained from X by adding —1 as n+ 1-st component, we clearly
have M;X; = 0. Conversely, if X; is any solution of M;X; = 0, then either
the n + 1-st component of X; is equal to 0 (corresponding to elements of
the kernel of M), or it is non-zero, and by a suitable normalization we may
assume that it is equal to —1, and then the first n components give a solution
to M X = B. This leads to the following algorithm.

Algorithm 2.3.4 (Inverse Image). Given an m x n matrix M and an m-
dimensional column vector B, this algorithm outputs a solution to M X = B or
outputs a message saying that none exist. (The algorithm can be trivially modified
to output the complete inverse image if desired.)

1. [Compute kernel] Let M, be the m x (n+ 1) matrix whose first n columns are
those of M and whose n + 1-st column is equal to B. Using Algorithm 2.3.1,
compute a matrix V' whose columns form a basis for the kernel of M;. Let r
be the number of columns of V.

2. [Solution exists?] If vp41,; = 0 for all j such that 1 < j < r, output a message
saying that the equation M X = B has no solution. Otherwise, let j < r be
such that v, 11 ; # 0 and set d «— —1/vp41 ;.

3. [Output solution] Let X = (z;)1<s<n be the column vector obtained by setting
x; < dv; ;. Output X and terminate the algorithm.

Note that as for the kernel algorithm, this requires asymptotically n?m/2
multiplications/divisions, hence is roughly three times slower than algorithm
2.2.1 when n = m.

If we want only one solution, or if we want several inverse images cor-
responding to the same matrix but different vectors, it is more efficient to
directly use Gaussian elimination once again. A simple modification of Algo-
rithm 2.2.2 does this as follows.

Algorithm 2.3.5 (Inverse Image Matrix). Let M be an m X n matrix and V'
be a m x r matrix, where r < n < m. This algorithm either outputs a message
saying that some column vector of V is not in the image of M, or outputs an xr
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matrix X such that V = MX. We assume that the columns of M are linearly
independent. We use an auxiliary column vector C and we recall that Bj (resp.
X!) denotes the i-th row of B (resp. X).

1. [Initialize] Set j — 0 and B « V.
2. [Finished?] Let j « j+ 1. If j > n go to step 6.

3. [Find non-zero entry] If m;; = 0 for all i such that m > i > j, output
a message saying that the columns of M are not linearly independent and
terminate the algorithm. Otherwise, let i be some index such that m > ¢ > j
and mi, 75 0.

4. [Swap?] If i > j, for I = j,...,n exchange m;; and m;,, and exchange the
rows B; and B.

5. [Eliminate] (Here m; ; # 0.) Set d « mJ_J1 and for all k such that m > k > j
set ¢y < dmyg ;. Then for all k and l suchthat m > k> jandn > 1> j
set mg, «— my, — cxmy,. Finally, for all k such that m > k > j set B} «
B}, — ¢k B} and go to step 2.

6. [Solve triangular system] (Here the first n rows of M form an upper tri-
angular matrix.) For i = n,n — 1,...,1 (in that order) set X «— (B! —
Lici<n Mg X;)/ M.

7. [Check rest of matrix] Check whether for each k such that m > k > n we
have By = M; X. If this is not the case, output a message that some column
vector of V' is not in the image of M. Otherwise, output the matrix X and
terminate the algorithm.

Note that in practice the columns of M represent a basis of some vector
space hence are linearly independent. However, it is not difficult to modify
this algorithm to work without the assumption that the columns of M are
linearly independent.

Another problem which often arises is to find a supplement to a subspace
in a vector space. The subspace can be considered as given by the coordinates
of a basis on some basis of the full space, hence as an n x k matrix M with
k < n of rank equal to k. The problem is to supplement this basis, i.e. to
find an invertible n x n matrix B such that the first £ columns of B form the
matrix M. A basis for a supplement of our subspace is then given by the last
n — k columns of B.

This can be done using the following algorithm.

Algorithm 2.3.6 (Supplement a Basis). Given an n x k matrix M with k < n
having coefficients in a field K, this algorithm either outputs a message saying
that M is of rank less than k, or outputs an invertible n x n matrix B such that
the first k columns of B form the matrix M. Recall that we denote by B; the
columns of B.

1. [Initialize] Set s — 0 and B « I,,.
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2. [Finished?] If s = k, then output B and terminate the algorithm.

3. [Search for non-zero] Set s «— s+ 1. Let t be the smallest j > s such that
mys # 0, and set d «— mt_s1 If such a t < n does not exist, output a message
saying that the matrix M is of rank less than k and terminate the algorithm.

4. [Modify basis and eliminate] Set B; « B (if t # s), then set By «— Mj.
Then for j = s+1,...,k, do as follows. Set m; ; « dm; ; and if t # s, set
my,; < Mgy Then, for all i # s and @ # t, set m;; «— m;; — My My ;.
Finally, go to step 2.

Proof. This is an easy exercise in linear algebra and is left to the reader
(Exercise 9). Note that the elimination part of step 4 ensures that the matrix
BM stays constant throughout the algorithm, and at the end of the algorithm
the first k rows of the matrix M form the identity matrix Iy, and the last n—k&
rows are equal to 0. O

Often one needs to find the supplement of a subspace in another subspace
and not in the whole space. In this case, the simplest solution is to use a
combination of Algorithms 2.3.5 and 2.3.6 as follows.

Algorithm 2.3.7 (Supplement a Subspace in Another). Let V (resp. M)
be an m x 7 (resp. m x n) matrix whose column form a basis of some subspace
F (resp. E) of K™ with r < n < m. This algorithm either finds a basis for a
supplement of F' in E or outputs a message saying that F' is not a subspace of
E.

1. [Find new coordinates] Using Algorithm 2.3.5, find an n x r inverse image
matrix X such that V = MX. If such a matrix does not exist, output a
message saying that F' is not a subspace of E and terminate the algorithm.

2. [Supplement X] Apply Algorithm 2.3.6 to the matrix X, thus giving an n x n
matrix B whose first r columns form the matrix X.

3. [Supplement F in E] Let C be the n x n — r matrix formed by the last n —r
columns of B. Output M C and terminate the algorithm (the columns of MC
will form a basis for a supplement of F' in E).

Note that in addition to the error message of step 1, Algorithms 2.3.5 and
2.3.6 will also output error messages if the columns of V or M are not linearly
independent.

2.3.3 Operations on Subspaces

The final algorithms that we will study concern the sum and intersection of
two subspaces. If M and M’ are m x n and m x n’ matrices respectively, the
columns of M (resp. M’) span subspaces V (resp. V') of K™. To obtain a
basis for the sum V + V' is very easy.
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Algorithm 2.3.8 (Sum of Subspaces). Given an m x n (resp. m x n’) matrix
M (resp. M') whose columns span a subspace V' (resp. V') of K™, this algorithm
finds a matrix N whose columns form a basis for V + V",

1. [Concatenate] Let M; be the m X (n + n') matrix obtained by concatenating
side by side the matrices M and M’. (Hence the first n columns of M; are
those of M, the last n’ those of M'.)

2. Using Algorithm 2.3.2 output a basis of the image of M; and terminate the
algorithm.

Obtaining a basis for the intersection ¥V N V" is not much more difficult.

Algorithm 2.3.9 (Intersection of Subspaces). Given an m x n (resp. m x n')
matrix M (resp. M') whose columns span a subspace V (resp. V') of K™, this
algorithm finds a matrix N whose columns form a basis for VN V",

1. [Compute kernel] Let M7 be the m x (n+n’) matrix obtained by concatenating
side by side the matrices M and M’. (Hence the first n columns of M; are
those of M, the last n’ those of M’.) Using Algorithm 2.3.1 compute a basis
of the kernel of Mj, given by an (n + n') x p matrix N for some p.

2. [Compute intersection] Let Ny be the n x p matrix obtained by extracting from
N the first n rows. Set My «— M Ny, output the matrix obtained by applying
Algorithm 2.3.2 to M, and terminate the algorithm. (Note that if we know
beforehand that the columns of M (resp. M’) are also linearly independent,
i.e. form a basis of V (resp. V'), we can simply output the matrix M> without
applying Algorithm 2.3.2.)

Proof. We will constantly use the trivial fact that a column vector B is in the
span of the columns of a matrix M if and only if there exists a column vector
X such that B=MX.

Let Ni be the n’ x p matrix obtained by extracting from N the last n’
rows. By block matrix multiplication, we have M Ny + M'N{ = 0. If B; is the
i-th column of My = M N; then B; € V, but B; is also equal to the opposite
of the i-th column of M’Nj, hence B; € V'. Conversely, let B € VNV'. Then
we can write B = MX = M’X’ for some column vectors X and X'. If Y is
the n + n’-dimensional column vector whose first n (resp. last n’) components
are X (resp. —X'), we clearly have M;Y = 0, hence Y = NC for some column
vector C'. In particular, X = NiC hence B = MN,;C = M,C, so B belongs
to the space spanned by the columns of Mj. It follows that this space is equal
to VNV’ and the image algorithm gives us a basis.

If the columns of M (resp. M’) are linearly independent, then it is left
as an easy exercise for the reader to check that the columns of M; are also
linearly independent (Exercise 12), thus proving the validity of the algorithm.

O

As mentioned earlier, a subspace V of K™ can be represented as an m xn
matrix M = M (V') whose columns are the coordinates of a basis of V on the
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canonical basis of K™. This representation depends entirely on the basis, so
we may hope to find a more canonical representation. For example, how do
we decide whether two subspaces V and W of K™ are equal? One method is
of course to check whether every basis element of W is in the image of the
matrix V and conversely, using Algorithm 2.3.4.

A better method is to represent V by a matrix having a special form, in
the present case in column echelon form (see Definition 2.3.3).

Proposition 2.3.10. If V is a subspace of K™, there exists a unique basis
of V such that the corresponding matriz M(V') is in column echelon form.

Proof. This will follow immediately from the following algorithm. a

Algorithm 2.3.11 (Column Echelon Form). Given an m X n matrix M this
algorithm outputs a matrix N in column echelon form whose image is equal to
the image of M (i.e. N = M P for some invertible n x n matrix P).

1. [initialize] Set i < m and k — n.

2. [Search for non-zero] Search for the largest integer j < k such that m; ; # 0.
If such a j does not exist, go to step 4. Otherwise, set d « 1/m; j, then for
I=1,... i sett«—dmy;, myj < Mk (If_] # k) and my g < t.

3. [Eliminate} For all j such that 1 < j < n and j # k and for all I such that
1 <1l <isetmy ;< my;—mygm;;. Finally, set k — k — 1.

4. [Next row] If i = 1 output M and terminate the algorithm. Otherwise, set
i+ 1—1 and go to step 2.

The proof of the validity of this algorithm is easy and left to the reader
(see Exercise 11). The number of required multiplications/divisions is asymp-
totically n?(2m —n)/2 if n < m and nm?/2 if n > m.

Since the non-zero columns of a matrix which is in column echelon form
are linearly independent, this algorithm gives us an alternate way to compute
the image of a matrix. Instead of obtaining a basis of the image as a subset of
the columns, we obtain a matrix in column echelon form. This is preferable in
many situations. Comparing the number of multiplications/divisions needed,
this algorithm is slower than Algorithm 2.3.2 for n < m, but faster when
n > m.

2.3.4 Remarks on Modules

We can study most of the above linear algebra problems in the context of
modules over a commutative ring with unit R instead of vector spaces over a
field. If the ring R is an integral domain, we can work over its field of fractions
K. (This is what we did in the algorithms given above when we assumed that
the matrices had integral entries.) However, this is not completely satisfactory,
since the answer that we want may be different. For example, to compute the
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kernel of a map defined between two free modules of finite rank (given as
usual by a matrix), finding the kernel as a K-vector space is not sufficient,
since we want it as an R-module. In fact, this kernel will usually not be a free
module, hence cannot be represented by a matrix whose columns form a basis.
One important special case where it will be free is when R is a principal ideal
domain (PID, see Chapter 4). In this case all submodules of a free module of
finite rank are free of finite rank. This happens when R = Z or R = k[X] for
a field k. In this case, asking for a basis of the kernel makes perfectly good
sense, and the algorithm that we have given is not sufficient. We will see later
(Algorithm 2.4.10) how to solve this problem.

A second difficulty arises when R is not an integral domain, because of
the presence of zero-divisors. Since almost all linear algebra algorithms involve
elimination, i.e. division by an element of R, we are bound at some point to get
a non-zero non-invertible entry as divisor. In this case, we are in more trouble.
Sometimes however, we can work around this difficulty. Let us consider for
example the problem of solving a square linear system over Z/rZ, where r is
not necessarily a prime. If we know the factorization of r into prime powers,
we can use the Chinese remainder Theorem 1.3.9 to reduce to the case where
r is a prime power. If r is prime, Algorithm 2.2.1 solves the problem, and if r
is a higher power of a prime, we can still use Algorithm 2.2.1 applied to the
field K = Q, of p-adic numbers (see Exercise 2).

But what are we to do if we do not know the complete factorization of r?
This is quite common, since as we will see in Chapters 8, 9 and 10 large num-
bers (say more than 80 decimal digits) are quite hard to factor. Fortunately,
we do not really care. After extracting the known factors of r, we are left with
a linear system modulo a new r for which we know (or expect) that it does
not have any small factors (say none less than 10%). We then simply apply
Algorithm 2.2.1. Two things may happen. Either the algorithm goes through
with no problem, and this will happen as long as all the elements which are
used to perform the elimination (which we will call the pivots) are coprime to
r. This will almost always be the case since r has no small factors. We then
get the solution to the system. Note that this solution must be unique since
the determinant of M, which is essentially equal to the product of the pivots,
is coprime to r.

The other possibility is that we obtain a pivot p which is not coprime to r.
Since the pivot is non-zero (modulo 7), this means that the GCD (p,r) gives
a non-trivial factor of r, hence we split r as a product of smaller (coprime)
numbers and apply Algorithm 2.2.1 once again. The idea of working “as if” r
was a prime can be applied to many number-theoretic algorithms where the
basic assumption is that Z/rZ is a field, and usually the same procedure can
be made to work. H. W. Lenstra calls the case where working this way we
find a non-trivial factor of r a side ezit. In fact, this is sometimes the main
purpose of an algorithm. For example, the elliptic curve factoring algorithm
(Algorithm 10.3.3) uses exactly this kind of side exit to factor r.
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2.4 Z-Modules and the Hermite and Smith Normal
Forms

2.4.1 Introduction to Z-Modules

The most common kinds of modules that one encounters in number theory,
apart from vector spaces, are evidently Z-modules, i.e. Abelian groups. The
Z-modules V that we consider will be assumed to be finitely generated, in
other words there exists a finite set (v;)1<;<k of elements of V' such that any
element of V can be expressed as a linear combination of the v; with integral
coefficients. The basic results about such Z-modules are summarized in the
following theorem, whose proof can be found in any standard text (see for
example [Lang]).

Theorem 2.4.1. Let V be a finitely generated Z-module (i.e. Abelian group).

(1) If Viors is the torsion subgroup of V, i.e. the set of elements v € V such
that there ezists m € Z\ {0} with mv = 0, then Vios s a finite group, and
there exists a non-negative integer n and an isomorphism

Ve~ Vtors X 7"

(the number n is called the rank of V).

(2) If V is a free Z-module (i.e. if V ~ Z™, or equivalently by (1) if Viers =
{0}), then any submodule of V' is free of rank less than or equal to that of
V.

(3) If V is a finite Z-module (i.e. by (1) if V is of zero rank), there exists n
and a submodule L of Z™ (which 1is free by (2)) such that V ~Z"/L.

Note that (2) and (3) are easy consequences of (1) (see Exercise 13).

This theorem shows that the study of finitely generated Z-modules splits
naturally into, on the one hand the study of finite Z-modules (which we will
usually denote by the letter G for (finite Abelian) group), and on the other
hand the study of free Z-modules of finite rank (which we will usually denote
by the letter L for lattice (see Section 2.5)). Furthermore, (3) shows that
these notions are in some sense dual to each other, so that we can in fact
study only free Z-modules, finite Z-modules being considered as quotients of
free modules.

Studying free modules L puts us in almost the same situation as studying
vector spaces. In particular, we will usually consider L to be a submodule
of some Z™, and we will represent L as an m X n matrix M whose columns
give the coordinates of a basis of L on the canonical basis of Z™. Such a
representation is of course not unique, since it depends on the choice of a
basis for L. In the case of vector spaces, one of the ways to obtain a more
canonical representation was to transform the matrix M into column echelon
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form. Since this involves elimination, this is not possible anymore over Z.
Nonetheless, there exists an analogous notion which is just as useful, called the
Hermite normal form (abbreviated HNF). Another notion, called the Smith
normal form (abbreviated SNF) allows us to represent finite Z-modules.

2.4.2 The Hermite Normal Form

The following definition is the analog of Definition 2.3.3 for Z-modules.

Definition 2.4.2. We will say that an m x n matrizc M = (m; ;) with integer
coefficients is in Hermite normal form (abbreviated HNF) if there exists r < n
and a strictly increasing map f from [r+1,n] to [1,m] satisfying the following
properties.

(1) Forr+1<j<n, mgGy,; =21, m;=0ifi> f(j) and 0 < mypy,; <

Mg (k) k ifk <j.
(2) The first r columns of M are equal to 0.

Remark. In the important special case where m = n and f(k) = k (or
equivalently det(M) # 0), M is in HNF if it satisfies the following conditions.
(1) M is an upper triangular matrix, i.e. m; ; = 0if ¢ > j.

(2) For every i, we have m;; > 0.

(3) For every j > ¢ we have 0 < m; ; < my ;.

More generally, if n > m, a matrix M in HNF has the following shape

00 ... 0  *x ... %
00 ... 00 = ... %
0 0 ... 00 ... 0 =

where the last m columns form a matrix in HNF.

Theorem 2.4.3. Let A be an m x n matriz with coefficients in Z. Then there
exists a unique m x n matric B = (b; ;) in HNF of the form B = AU with
U € GL(Z), where GL,(Z) is the group of matrices with integer coefficients
which are invertible, i.e. whose determinant is equal to +1.

Note that although B is unique, the matrix U will not be unique.

The matrix W formed by the non-zero columns of B will be called the
Hermite normal form of the matrix A. Note that if A is the matrix of any
generating set of a sub-Z-module L of Z™, and not only of a basis, the columns
of W give the unique basis of L whose matrix is in HNF. This basis will be
called the HNF basis of the Z-module L, and the matrix W the HNF of L.
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In the special case where the Z-module L is of rank equal to m, the matrix
W will be upper triangular, and will sometimes be called the upper triangular
HNF of L.

We give the proof of Theorem 2.4.3 as an algorithm.

Algorithm 2.4.4 (Hermite Normal Form). Given an m x n matrix A with
integer coefficients (a; ;) this algorithm finds the Hermite normal form W of A.
As usual, we write w; ; for the coefficients of W, A; (resp. W;) for the columns
of A (resp. W).

1. [Initialize] Set i —m, k—n, l=1ifm<n, l=m-n+1ifm>n.

2. [Row finished?] If all the a; ; with j < k are zero, then if a;; < O replace
column Ay by — Ay and go to step 5.

3. [Choose non-zero entry| Pick among the non-zero a; ; for j < k one with the
smallest absolute value, say a; j,. Then if jo < k, exchange column A with
column A;,. In addition, if a; x < 0 replace column Ay by —Aj. Set b — a; .

4. [Reduce] For j =1,...,k — 1 do the following: set ¢ «— |a;;/b], and A; —
A; — qAg. Then go to step 2.

5. [Final reductions] Set b «— a; . If b = 0, set k — k + 1 and go to step 6.
Otherwise, for j > k do the following: set ¢ « |a; ;/b], and A; — A; — qA;.

6. [Finished?] If ¢ = [ then for j = 1,...,n —k + 1 set W; « A1 and
terminate the algorithm. Otherwise, set i — i — 1, k — k — 1 and go to step
2.

This algorithm terminates since one can easily prove that |a; x| is strictly
decreasing each time we return to step 2 from step 4. Upon termination, it is
clear that W is in Hermite normal form, and since it has been obtained from
A by elementary column operations of determinant 1, W is the HNF of A.
We leave the uniqueness statement of Theorem 2.4.3 as an exercise for the
reader (Exercise 14). O

Remarks.

(1) Tt is easy to modify the above algorithm (as well as the subsequent ones)
so as to give the lower triangular HNF of A in the case where A is of rank
equal to m.

(2) If we also want the matrix U € GL,(Z), it is easy to add the corresponding
statements (see for example Algorithm 2.4.10).

Consider the very special case m = 1, n = 2 of this algorithm. The result
will be (usually) a 1 x 1 matrix whose unique element is equal to the GCD
(a1,1,a1,2). Hence, it is conceptually easier, and usually faster, to replace in the
above algorithm divisions by (extended) GCD’s. We can then choose among
several available methods for computing these GCD’s. This gives the following
algorithm.
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Algorithm 2.4.5 (Hermite Normal Form). Given an m x n matrix A with
integer coefficients (a;,;) this algorithm finds the Hermite normal form W of A.
We use an auxiliary column vector B.

1. [Initialize] Set i —m, j—n, k—n,l=1ifm<n,l=m-n+1ifm>n.

2. [Check zero] If j =1 go to step 4. Otherwise, set j < j — 1, and if a; ; = 0
go to step 2.

3. [Euclidean step] Using Euclid's extended algorithm, compute (u, v, d) such that
ua; k +va; ; = d = ged(as k, a;,5), with |u) and |v] minimal (see below). Then
set B «+— uAy +’UA]‘, Aj — (ai,k/d)Aj - (ai,j/d)Ak, Ap «— B, and go to step
2.

4. [Final reductions] Set b — a; k. If b < 0 set Ay, — —A, and b «— —b. Now if
b=0,set k— k+1 and go to step 5, otherwise for j > k do the following:
set ¢ — [ai,j/bj, and Aj — Aj — qAg.

5. [Finished?] If i = I then for j = 1,...,n —k+ 1 set W; — A, x-1 and
terminate the algorithm. Otherwise, set i — i — 1, k — k~ 1, j < k and go
to step 2.

Important Remark. In step 3, we are asked to compute (u,v,d) with |u]
and |v| minimal. The meaning of this is as follows. We must choose among all
possible (u,v), the unique pair such that

—l%l < wsign(b) <0 and 1< usign(a)<

|b
ik

In fact, the condition on u is equivalent to the condition on v and that such
a pair exists and is unique is an exercise left to the reader (Exercise 15). The
sign conditions are not important, they could be reversed if desired, but it is
essential that when d = |a|, i.e. when a | b, we take v = 0. If this condition is
not obeyed, the algorithm may enter into an infinite loop. This remark applies
also to all the Hermite and Smith normal form algorithms that we shall see
below.

Algorithms 2.4.4 and 2.4.5 work entirely with integers, and there are no
divisions except for Euclidean divisions, hence one could expect that it be-
haves reasonably well with respect to the size of the integers involved. Un-
fortunately, this is absolutely not the case, and the coefficient explosion phe-
nomenon occurs here also, even in very reasonable situations. For example,
Hafner-McCurley ([Haf-McCur2]) give an example of a 20 x 20 integer matrix
whose coefficients are less than or equal to 10, but which needs integers of up
to 1500 decimal digits in the computations of Algorithm 2.4.4 or Algorithm
2.4.5 leading to its HNF. Hence, it is necessary to improve these algorithms.

One modification of Algorithm 2.4.5 would be for a fixed row i, instead
of setting equal to zero the successive a; ; for j =k — 1,k —2,...,1 by doing
column operations between columns 7 and j, to set these a; ; equal to zero
in the same order, but now doing operations between columns k and k — 1,
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then k — 1 and k£ — 2, and so on until columns 2 and 1, and then exchanging
columns 1 and k. This idea is due to Bradley [Bra].

Still another modification is the following. In Algorithm 2.4.5, we perform
the column operations as follows: (k,k — 1), (k,k —2), ..., (k,1). In the
modified version just mentioned, the order is (k,k — 1), (k -1,k —2), ...,
(2,1), (1,k). One can also for row i do as follows. Work with the pair of
columns (j1, j2) where a; ;, and q; j, are the largest and second largest non-
zero elements of row ¢ with § < k. Then experiments show that the coefficient
explosion is considerably reduced, and actual computational experience shows
that it is faster than the preceding versions. However this is still insufficient
for our needs.

When m < n and A is of rank m (in which case W is an upper triangular
matrix with non-zero determinant D), an important improvement suggested
by several authors (see for example [Kan-Bac]) is to work modulo a multiple
of the determinant of W, or even modulo a multiple of the exponent of Z™ /W
(Note that D is equal to the order of the finite Z-module Z™ /W; the exponent
is by definition the smallest positive integer e such that eZ™ C W. It divides
the determinant.)

In the case where m = n, we have det(W) = + det(A) hence the determi-
nant can be computed before doing the reduction if needed. In the general case
however one does not know det(WW) in advance, but in practice, the HNF is
often used for obtaining a HNF-basis for a Z-module L in a number field (see
Chapter 4), and in that case one usually knows a multiple of the determinant
of L. One can modify all of the above mentioned algorithms in this way.

These modifications are based on the following additional algorithm, es-
sentially due to Hafner and McCurley (see [Haf-McCur2)):

Algorithm 2.4.6 (HNF Modulo D). Let A be an m xn integer matrix of rank
m. Let L = (I; j)1<i,j<m be the m x m upper triangular matrix obtained from
A by doing all operations modulo D in any of the above mentioned algorithms,
where D is a positive multiple of the determinant of the module generated by the
columns of A (or equivalently of the determinant of the HNF of A). This algorithm
outputs the true upper triangular Hermite normal form W = (w; j)1<s,j<m of A.
We write W; and L; for the i-th columns of W and L respectively.

1. [Initialize] Set b — D, i — m.

2. [Euclidean step] Using a form of Euclid's extended algorithm, compute (u, v, d)
such that ul;; + vb = d = ged(l; ;,b). Then set W; «— (uL; mod b) (recall
that @ mod b is the least non-negative residue of a modulo b). If d = b (i.e. if
b|l;;) set in addition w; ; < d (if d # b, this will already be true, but if d = b
we would have w; ; = 0 if we do not include this additional assignment).

3. [Finished?] If i > 1, set b « b/d, i — i — 1 and go to step 2. Otherwise,
fori=m—1,m~-2,...,1,and for j =i+ 1,...,m set ¢ — |w;;/wi],
W; — W, — qW;. Output the matrix W = (w; ;j)1< j<m and terminate the
algorithm.
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We must prove that this algorithm is valid. Since step 2 is executed exactly
m times, the algorithm terminates, so what we need to prove is that the
matrix W that the algorithm produces is indeed the HNF of A. For any
m x n matrix M of rank m, denote by ~;(M) the GCD of all the i x ¢ sub-
determinants obtained from the last 7 rows of M for 1 < ¢ < m. It is clear
that elementary column operations like those of Algorithms 2.4.4 or 2.4.5 leave
these quantities unchanged. Furthermore, reduction modulo D changes these
i X i sub-determinants by multiples of D, hence does not change the GCD of
v;(M) with D. It is clear that ym—i41(W) = w;; - Wm,m divides det(W),
hence divides D. Therefore we have:

w”---wmingcd( y Ym— z+1(W))
= ged(D, Ym-i+1(4))
= ged(D, Ym-i+1(L))
= ged(D, lii -+~ lm,m)- (L)

hence the value given by Algorithm 2.4.6 for wp, m is correct. Call D; the
value of b for the value 4, and set P, = w4141 Wm,m. Then if we assume
that the diagonal elements w; ; are correct for j > ¢, we have by definition
D; = D/P,. Hence, if we divide equation (1;1;) by P; we obtain

1 =ged(Dy, (lit1,i41* * lmm) / Pr)
for 1 < i < m. Now if we divide equation (1;) by P; we obtain
Wi = ng( i (lz it m,m)/-Pi) = ng(Dia li,i)

by the preceding formula, hence the diagonal elements of the matrix W which
are output by Algorithm 2.4.6 are correct. Since W is an upper triangular
matrix, it follows that its determinant is equal to the determinant of the HNF
of A.

To finish the proof that Algorithm 2.4.6 is valid, we will show that the
columns W; = (uL; mod D;) output by the algorithm are in the Z-module L
generated by the columns of A. By the remark just made, this will show that,
in fact, the W; are a basis of L, hence that W is obtained from A by elementary
transformations. Since step 3 of the algorithm finishes to transform W into a
Hermite normal form, W must be equal to the HNF of A. Since

Wi = Z Ci’jAj-{-DiBi

1<j<m

where the A; are the columns of A, B; is a (column) vector in Z™ whose
components of index greater than i are zero, and the ¢; ; are integers, the
claim concerning the W; follows immediately from the following lemma:

Lemma 2.4.7. With the above notations, for every ¢ with 1 <1i < m and any
vector B whose components of index greater than i are zero, we have D; B € L.
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Proof. Consider the ¢ x ¢ matrix N; formed by the first ¢ rows and columns
of the true HNF of A. We already have proved that the diagonal elements are
wj,; as output by the algorithm. Now if one considers Z' as a submodule of
Z™ by considering the last m — i components to be equal to 0, then we see
that the columns of N; (extended by m — i zeros) are Z-linear combinations
of the columns A; of A, ie. are in L. Now det(N;) = wy1---w;; and by
definition D; is a multiple of w1 -+ - w; ;. Hence, if L; is the submodule of VA
generated by the columns of N;, we have on the one hand L; C Z!*N L, and
on the other hand, since det(N;) = [Z¢ : L;], we have det(N;)Z! C L; which
implies D;Z! C L, and this is equivalent to the statement of the lemma. This
concludes the proof of the validity of Algorithm 2.4.6. 0

Note that if we work modulo D in Algorithm 2.4.5, the order in which
the columns are treated, which is what distinguishes Algorithm 2.4.5 from
its variants, is not really important. Furthermore, the proof of Algorithm
2.4.6 shows that it is not necessary to work modulo the full multiple of the
determinant D in Algorithm 2.4.5, but that at row ¢ one can work modulo D;,
which can be much smaller. Finally, note that in step 2 of Algorithm 2.4.5, if
we have worked modulo D (or D;), it may happen that a; ; = 0. In that case,
it is necessary to set a; < D; (or any non-zero multiple of D;). Combining
these observations leads to the following algorithm, essentially due to Domich
et al. [DKT]. :

It should be emphasized that all reductions modulo R should be taken
in the interval | — R/2, R/2|, and not in the interval [0, R[. Otherwise, small
negative coefficients will become large positive ones, and this may lead to
infinite loops.

Algorithm 2.4.8 (HNF Modulo D). Given an m X n matrix A with integer
coefficients (a; ;) of rank m (hence such that n > m), and a positive integer D
which is known to be a multiple of the determinant of the Z-module generated
by the columns of A, this algorithm finds the Hermite normal form W of A. We
use an auxiliary column vector B.

1. [Initialize] Set i — m, j «—n, k —n, R — D.

2. [Check zero] If j = 1 go to step 4. Otherwise, set j «— j — 1, and if a; ; =0
go to step 2.

3. [Euclidean step] Using Euclid's extended algorithm, compute (u,v,d) such
that ua; x + va;; = d = ged(a;k, aij), with |u| and |v| minimal. Then set
B — uA, + UAj, Aj — ((ai’k/d)AJ‘ - (ai,j/d)Ak) mod R, A, — B mod R,
and go to step 2.

4. [Next row] If s = 1, output the matrix W = (w; j)1<i j<m and terminate the
algorithm. Otherwise, use Euclid’s extended algorithm to find (w,v,d) such
that ua; x + vR = d = ged(aik, R). Set W; — uAg mod R (here taken in
the interval [0,R —1]), and for j = i+ 1,...,m set ¢ — |w;;/w;;| and
W; «— W; — qW;. Finally, set R — R/d, i —i—1,k+ k—1,j«k, and if
a;x = 0 set a; x — R. Go to step 2.
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This will be our algorithm of choice for HNF reduction, at least when
some D is known and A is of rank m.

Remark. It has been noted (see Remark (2) after Algorithm 2.4.4) that it is
easy to add statements so as to obtain the matrix U such that B = AU where
B is the n x m matrix in Hermite normal form whose non-zero columns form
the HNF of A. In the case of modulo D algorithms such as the one above, it
seems more difficult to do so.

2.4.3 Applications of the Hermite Normal Form

In this section, we will see a few basic applications of the HNF form of a
matrix representing a free Z-module. Further applications will be seen in the
context of number fields (Chapter 4).

Image of an Integer Matrix. First note that finding the HNF of a matrix
using Algorithm 2.4.5 is essentially analogous to finding the column eche-
lon form in the case of vector spaces (Algorithm 2.3.11). In particular, if the
columns of the matrix represents a generating set for a free module L, Algo-
rithm 2.4.5 allows us to find a basis (in fact of quite a special form), hence
it also performs the same role as Algorithm 2.3.2. Contrary to the case of
vector spaces, however, it is not possible in general to extract a basis from a
generating set (this would mean that (a,b) = |a| or (a,b) = |b| in the case
m =1, n = 2), hence an analog of Algorithm 2.3.2 cannot exist.

Kernel of an Integer Matrix. We can also use Algorithm 2.4.5 to find the
kernel of an m X n integer matrix A, i.e. a Z-basis for the free sub-Z-module
of Z™ which is the set of column vectors X such that AX = 0. Note that
this cannot be done (at least not without considerable extra work) by using
Algorithm 2.3.1 which gives only a Q-basis. What we must do is simply keep
track of the matrix U € GL,(Z) such that B = AU is in HNF. Indeed, we
have the following proposition.

Proposition 2.4.9. Let A be an m x n matriz, B = AU its HNF with U €
GL,(Z), and let r be such that the first r columns of B are equal to 0. Then
a Z-basis for the kernel of A is given by the first v columns of U.

Proof. If U; is the i-th column of U, then AU; is the i-th column of B so is
equal to 0 if ¢ < r. Conversely, let X be a column vector such that AX = 0
or equivalently BY = 0 with Y = U~!'X. Solving the system BY = 0 from
bottom up, bg(x),x > 0 for k > r (with the notation of Definition 2.4.2) implies
that the last n — r + 1 coordinates of Y are equal to 0, and the first r are
arbitrary, hence the first r canonical basis elements of Z" form a Z-basis for
the kernel of B, and upon left multiplication by U we obtain the proposition.

O
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This gives the following algorithm.

Algorithm 2.4.10 (Kernel over Z). Given an m X n matrix A with integer
coefficients (a; ;), this algorithm finds a Z-basis for the kernel of A. We use an
auxiliary column vector B and an auxiliary n X n matrix U.

1. [Initialize] Seti —m, j —n, k—n, U I, —1ifm<n,l—m-n+1
if m > n.

2. [Check zero] If j =1 go to step 4. Otherwise, set j — j —1, and if a; ; =0
go to step 2.

3. [Euclidean step] Using Euclid’'s extended algorithm, compute (u,v,d) such
that ua; x + va;; = d = ged(a;k,ai,;), with |u| and |v| minimal. Then set
B — uAp +vAj, Aj «— (aix/d)A; — (a;;/d)Ar, Ar «— B; similarly set
B — uUy +vUj, Uj « (aix/d)U; — (a;,;/d)Ux, Uy < B, then go to step 2.

4. [Final reductions] Set b «— a; . If b < 0 set Ay — —Ag, Uy — —Uj; and
b— —b. Now if b =0, set k — k+ 1 and go to step 6, otherwise for j > k
do the following: set ¢ « |a;;/b|, A; — A; — qAx and U; «— U; — qUy.

5. [Finished?] If i = [ then for j = 1,...,k — 1 set M; « Uj, output the matrix
M and terminate the algorithm. Otherwise, set i — i —1, k—k—1, j — k
and go to step 2.

Remark. Although this algorithm correctly gives a Z-basis for the kernel
of A, the coefficients that are obtained are usually large. To obtain a really
useful algorithm, it is necessary to reduce the basis that is obtained, for ex-
ample using one of the variants of the LLL algorithm that we will see below
(see Section 2.6). However, it is desirable to obtain directly a basis of good
quality that avoids introducing large coefficients. This can be done using the
MLLL algorithm (see Algorithm 2.7.2), and gives an algorithm which is usu-
ally preferable.

In view of the applications to number fields, limiting ourselves to free
submodules of some Z™ is a little too restrictive. In what follows we will
simply say that L is a module if it is a free sub-Z-module of rank m of Q™.
Considering basis elements of L, it is clear that there exists a minimal positive
integer d such that dL C Z™. We will call d the denominator of L with respect
to Z™. Then the HNF of L will be by definition the pair (W,d), where W is
the HNF of dL, and d is the denominator of L.

Test for Equality. Since the HNF representation of a free module L is
unique, it is clear that one can trivially test equality of modules: their denom-
inator and their HNF must be the same.

Sum of Modules. Given two modules L and L’ by their HNF, we can com-
pute their sum L+ L' = {z 4+ 2’,2 € L,z’ € L'} in the following way. Let
(W,d) and (W’,d’) be their HNF representation. Let D = dd’/(d,d') be the
lowest common multiple of d and d’. Denoting as usual by A; the i-th column
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of a matrix A, consider the m x 2m matrix A such that A; = (D/d)W; and
Amyi = (D/d' )W/ for 1 < i < m, then it is clear that the columns of A gener-
ate D(L + L'), hence if we compute the HNF H of A and divide D and H by
the greatest common divisor of D and of all the coefficients of H, we obtain
the HNF normal form of L + L'. Apart from the treatment of denominators,
this is similar to Algorithm 2.3.8.

Test for Inclusion. To test whether L' C L, where L and L' are given by
their HNF, the most efficient way is probably to compute N = L+ L’ as above,
and then test the equality N = L. Note that if d and d’ are the denominators
of L and L’ respectively, a necessary condition for L’ C L is that d’ | d, hence
the LCM D must be equal to d.

Product by a Constant. This is especially easy: if ¢ = p/q € Q with
(p,q) = 1 and q > 0, the HNF of cL is obtained as follows. Let d; be the
GCD of all the coefficients of the HNF of L. Then the denominator of ¢L is
qd/((p,d)(g,d1)), and the HNF matrix is equal to p/((p,d)(q,d;)) times the
HNF matrix of L.

We will see that the HNF is quite practical for other problems also, but
the above list is, I hope, sufficiently convincing.

2.4.4 The Smith Normal Form and Applications

We have seen that the Hermite normal form permits us to handle free Z-
modules of finite rank quite nicely. We would now like a similar notion which
would allow us to handle finite Z-modules G. Recall from Theorem 2.4.1 (3)
that such a module is isomorphic (in many ways of course) to a quotient
Z™/L where L is a (necessarily free) submodule of Z" of rank equal to n.
More elegantly perhaps, we can say that G is isomorphic to a quotient L'/L
of free Z-modules of the same (finite) rank n. Thus we can represent G (still
non-canonically) by an nxn matrix A giving the coordinates of some Z-basis of
L on some Z-basis of L. In particular, A will have non-zero determinant, and
in fact the absolute value of the determinant of A is equal to the cardinality
of G, i.e. to the index [L’ : L] (see Exercise 18).

The freedom we now have is as follows. Changing the Z-basis of L is
equivalent to right multiplication of A by a matrix U € GL,(Z), as in the
HNF case. Changing the Z-basis of L’ is on the other hand equivalent to left
multiplication of A by a matrix V € GL,(Z). In other words, we are allowed
to perform elementary column and row operations on the matrix A without
changing (the isomorphism class of) G. This leads to the notion of Smith
normal form of A.

Definition 2.4.11. We say that an n x n matriz B is in Smith normal form
(abbreviated SNF) if B is a diagonal matriz with nonnegative integer coeffi-
cients such that b1 41 | bi for all i < n.
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Then the basic theorem which explains the use of this definition is as
follows.

Theorem 2.4.12. Let A be an n x n matriz with coefficients in Z and non-
zero determinant. Then there exists a unique matriz in Smith normal form B
such that B = VAU with U and V elements of GL,(Z).

If we set d; = b;;, the d; are called the elementary divisors of the matrix
A, and the theorem can be written

a0 ... 0
a=yr| 0 o
Do 0
0 ... 0 dn

with d; 1 | d; for 1 <i < n.
This theorem, stated for matrices, is equivalent to the following theorem
for Z-modules.

Theorem 2.4.13 (Elementary Divisor Theorem). Let L be a Z-submodule
of a free module L' and of the same rank. Then there exist positive integers
dy, ..., dy (called the elementary divisors of L in L') satisfying the following
conditions:

(1) For every i such that 1 <i < n we have d;11 | d;.
(2) As Z-modules, we have the isomorphism

U'/L~ @ (z/dZ) ,

1<i<n

and in particular [L' : L] =dy - --dy, and dy is the exponent of L' /L.
(3) There exists a Z-basis (vy,...,vn) of L' such that (dyvi,...,dpvy) is a
Z-basis of L.

Furthermore, the d; are uniquely determined by L and L'.

Remarks.

(1) This fundamental theorem is valid more generally. It holds for finitely
generated (torsion) free modules over a principal ideal domain (PID, see
Chapter 4). It is false if the base ring R is not a PID: applying the theorem
ton =1, L' = R and L any integral ideal of R, it is clear that the truth
of this theorem is equivalent to the PID condition.

(2) We have stated Theorem 2.4.12 only for square matrices of non-zero deter-
minant. As in the Hermite case, it would be easy to state a generalization
valid for general matrices (including non-square ones). In practice, this is
not really needed since we can always first perform a Hermite reduction.
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The proof of these two theorems can be found in any standard textbook
but it follows immediately from the algorithm below.

Since we are going to deal with square matrices, as with the case of the
HNF, it is worthwhile to work modulo the determinant (or a multiple). In most
cases this determinant (or a multiple of it) is known in advance. It should also
be emphasized again that all reductions modulo R should be taken in the
interval | — R/2, R/2], and not in the interval [0, R|.

The following algorithm is essentially due to Hafner and McCurley (see
[Haf-McCur2}).

Algorithm 2.4.14 (Smith Normal Form). Given an nxn non-singular integral
matrix A = (a;;), this algorithm finds the Smith normal form of A, i.e. outputs
the diagonal elements d; such that d;;1 | d;. Recall that we denote by A; (resp.
A?) the columns (resp. the rows) of the matrix A. We use a temporary (column
or row) vector variable B.

1. [Initialize ¢] Set i — n, R « |det(4)|. If n = 1, output d; «— R and terminate
the algorithm.

[Initialize j for row reduction] Set j « i, ¢ « 0.

[Check zero] If j = 1 go to step 5. Otherwise, set j « j — 1. If a; ; = 0 go
to step 3.

4. [Euclidean step] Using Euclid's extended algorithm, compute (u,v,d) such
that ua;; +va;; = d = ged(ai;, a;5), with u and v minimal (see remark
after Algorithm 2.4.5). Then set B «— uA; + vA;, A; « ((a;;/d)A; —
(@i,;/d)A;) mod R, A; — B mod R and go to step 3.

[Initialize j for column reduction] Set j « i.

[Check zero] If j =1 go to step 8. Otherwise, set j « j — 1, and if a;; =0
go to step 6.

7. [Euclidean step] Using Euclid’s extended algorithm, compute (u,v,d) such
that ua;; + va;; = d = ged(ai;,a;,:), with u and v minimal (see remark
after Algorithm 2.4.5). Then set B « uA] + vA}, A} « ((ai:/d)A; -
(aji/d)A]) mod R, A} — Bmod R, ¢« ¢+ 1 and go to step 6.

[Repeat stage i?] If ¢ > 0 go to step 2.

[Check the rest of the matrix] Set b «— a;;. For 1 < k,l < i check whether
b | ax,i. As soon as some coefficient ay,; is not divisible by b, set A} «— A}+ A},
and go to step 2.

10. [Next stage] (Here all the ax,; for 1 < k,l < ¢ are divisible by b). Output
d; = ged(ai, R) and set R — R/d;. If i = 2, output d; = ged(ay 1, R) and
terminate the algorithm. Otherwise, set i < i — 1 and go to step 2.

This algorithm seems complicated at first, but one can see that it is ac-
tually quite straightforward, using elementary row and column operations of
determinant +1 to reduce the matrix A.
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This algorithm terminates (and does not take too many steps!) since each
time one returns to step 2 from step 9, the coeficient a; ; has been reduced at
least by a factor of 2.

The proof that this algorithm is valid, i.e. that the result is correct, follows
exactly the proof of the validity of Algorithm 2.4.6. If we never reduced modulo
R in Algorithm 2.4.14, it is clear that the result would be correct (however
the coeflicients would explode). Incidentally, this gives a proof of Theorems
2.4.12 and 2.4.13.

Hence, we must simply show that the transformations done in step 10
correctly restore the values of d;. Denote by §;(A) the GCD of the determinants
of all i X 1 sub-matrices of A, and not only from the first 7 rows as in the proof
of Algorithm 2.4.6. Then, in a similar manner, these §; are invariant under
elementary row and column operations of determinant 1. Hence, denoting
by A the diagonal SNF of A, by D the determinant of A, and by S = (a; ;)
the final form of the matrix A at the end of Algorithm 2.4.14, we have:

di--dp =ged(D, bp—i11(A))
= ged(D, 8p—i+1(A))
= ged(D, bp—i4+1(9))
=ged(D, i ann)- (2;)

Hence, if we set P; = d;11 - - - d,,, exactly as in the proof of Algorithm 2.4.6 we
obtain

1= (D/P;,(@i+1,i+1" " n,n)/ Pi)
(divide formula (2;4+1) by P;), then

di = (D/ Py, (aii@i41,i41 " Qnyn)/ Fi)
(divide (2;) by P;), and hence
= (D/Pi,ai,i) .

But clearly in stage i of the algorithm, R = D/P;, thus proving the validity
of the algorithm. m]

Note that we have chosen an order for the d; which is consistent with our
choice for Hermite normal forms, but which is the reverse of the one which is
found in most texts. The modifications to Algorithm 2.4.14 so that the order
is reversed are trivial (essentially make i and j go up instead of down) and
are left to the reader.

The Smith normal form will mainly be used as follows. Let G be a finite
Z-module (i.e. a finite Abelian group). We want to determine the structure of
G, and in particular its cardinality. Note that a corollary of Theorem 2.4.13
is the structure theorem for finite Abelian groups: such a group is isomorphic
to a unique direct sum of cyclic groups Z/d;Z with d;1 | d;.
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We can then proceed as follows. By theoretical means, we find some integer
n and a free module L’ of rank n such that G is isomorphic to a quotient L'/L,
where L is also of rank n but unknown. We then determine as many elements
of L as possible (how to do this depends, of course, entirely on the specific
problem) so as to have at least n elements which are Q-linearly independent.
Using the Hermite normal form Algorithm 2.4.5, we can then find the HNF
basis for the submodule L; of L generated by the elements that we have found.
Computing the determinant of this basis (which is trivial since the basis is in
triangular form) already gives us the cardinality of L'/L;. If we know bounds
for the order of G (for example, if we know the order of G up to a factor of
v/2 from above and below), we can check whether L; = L. If not, we continue
finding new elements of L until the cardinality check shows that L; = L. We
can then compute the SNF of the HNF basis (note that the determinant is
now known), and this gives us the complete structure of G.

We will see a concrete application of the process just described in the
sub-exponential computations of class groups (see Chapter 5).

Remark. The diagonal elements which are obtained after a Hermite Normal
Form computation are usually not equal to the Smith invariants. For example,
the matrix (g ;) is in HNF, but its Smith normal form has as diagonal
elements (4,1).

2.5 Generalities on Lattices

2.5.1 Lattices and Quadratic Forms

We are now going to add some extra structure to free Z-modules of finite rank.
Recall the following definition.

Definition 2.5.1. Let K be a field of characteristic different from 2, and let
V be a K-vector space. We say that a map q from V to K is a quadratic form
if the following two conditions are satisfied:

(1) For every A € K and x € V we have

g(A - z) = Nq(z) .

(2) If we setb(z,y) = 3(q(z+y)—q(z)—q(y)) then b is a (symmetric) bilinear
form, i.e. b(x +2',y) = b(z,y) + b(z',y) and b(X - z,y) = \b(z,y) for all
A€ K, z, 2/ andy in V (the similar conditions on the second variable
follow from the fact that b(y,z) = b(z,y)).

The identity b(z,z) = ¢(z) allows us to recover g from b.
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In the case where K = R, we say that g is positive definite if for allz € V
we have ¢g(z) > 0.

Definition 2.5.2. A lattice L is a free Z-module of finite rank together with
a positive definite quadratic form q on L @ R.

Let (b;)1<i<n be a Z-basis of L. If x =", ., @;b; € L with z; € Z, the
definition of a quadratic form implies that

q(x) = Z q;,j X with Qi,j = b(biabj)

1<i,j<n

where as above, b denotes the symmetric bilinear form associated to q.

The matrix Q = (¢;,;)1<i,j<n is then a symmetric matrix which is positive
definite when q is positive definite. We have b(x,y) = Y!QX and in particular
q(x) = X'QX where X and Y are the column vectors giving the coordinates
of x and y respectively in the basis (b;).

We will say that two lattices (L, q) and (L', q') are equivalent if there exists
a Z-module isomorphism between L and L' sending q to ¢'. We will identify
equivalent lattices. Also, when the quadratic form is understood, we will write
L instead of (L, q).

A lattice (L, q) can be represented in several ways all of which are useful.
First, one can choose a Z-basis (b;)i1<i<n of the lattice. Then an element
of x € L will be considered as a (column) vector X giving the (integral)
coordinates of x on the basis. The quadratic form g is then represented by the
positive definite symmetric matrix @ as we have seen above.

Changing the Z-basis amounts to replacing X by PX for some P €
GL,(Z), hence q(z) = (PX)'Q(PX) = X'Q'X with Q' = P!'QP. Hence,
equivalence classes of lattices correspond to equivalence classes of positive
definite symmetric matrices under the equivalence relation Q' ~ Q if and only
if there exists P € GL,(Z) such that @ = P'QP. Note that det(P) = *1,
hence the determinant of @ is independent of the choice of the basis. Since @
is positive definite, det(Q) > 0 and we will set d(L) = det(Q)'/? and call it
the determinant of the lattice.

A second way to represent a lattice (L,q) is to consider L as a discrete
subgroup of rank n of the Euclidean vector space E = LQR. Then if (b;)1<i<n
is a Z-basis of L, it is also by definition of the tensor product an R-basis of E.
The matrix of scalar products @ = (b; - b;)1<; j<n (where b;-b; = b(b;, b))
is then called the Gram matriz of the b;. If we choose some orthonormal basis
of E, we can then identify F with the Euclidean space R™ with the usual
Euclidean structure coming from the quadratic form g(x) = 2% + - - - + z2.

If B is the n X n matrix whose columns give the coordinates of the b; on
the chosen orthonormal basis of E, it is clear that Q = B!B. In particular,
d(L) = | det(B)|. Furthermore, if another choice of orthonormal basis is made,
the new matrix B’ will be of the form B’ = KB where K is an orthogonal
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matriz, i.e. a matrix such that K*K = KK* = I,,. Thus we have proved the
following proposition.

Proposition 2.5.3.

(1) If Q is the matriz of a positive definite quadratic form, then Q is the Gram
matriz of some lattice basis, i.e. there exists a matrizx B € GL,(R) such
that Q = B'B

(2) The Gram matriz of a lattice basis b; determines this basis uniquely up to
isometry. In other words, if the b; and the b} have the same Gram matriz,
then the bl can be obtained from the b; by an orthogonal transformation.
In matriz terms, B' = KB where K is an orthogonal matriz.

It is not difficult to give a completely matrix-theoretic proof of this propo-
sition (see Exercise 20).

It follows from the above results that when dealing with lattices, it is not
necessary to give the coordinates of the b; on some orthonormal basis. We
can simply give a positive definite matrix which we can then think of as being
the Gram matrix of the b;,.

We see from the above discussion that there are natural bijections between
the following three sets.

{Isomorphism classes of lattices of rank n} ,

{Classes of positive definite symmetric matrices Q}/ ~ ,

where Q' ~ @ if and only if Q' = P*QP for some P € GL,(Z), and
GL,(R)/ ~ ,

where B’ ~ B if and only if B" = KBP for some P € GL,(Z) and some
orthogonal matrix K.

Remarks.

(1) We have considered L in particular as a free discrete sub-Z-module of the
n-dimensional Euclidean space L ® R. In many situations, it is desirable
to consider L as a free discrete sub-Z-module of some Euclidean space F
of dimension m larger than n. The matrix B of coordinates of a basis of
L on some orthonormal basis of E will then be an m X n matrix, but the
Gram matrix Q = B!B will still be an n x n symmetric matrix.

(2) By abuse of language, we will frequently say that a free Z-module of finite
rank is a lattice even if there is no implicit quadratic form.
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2.5.2 The Gram-Schmidt Orthogonalization Procedure

The existence of an orthonormal basis in a Euclidean vector space is often
proved by using Gram-Schmidt orthonormalization (see any standard text-
book). Doing this requires taking square roots, since the final vectors must be
of length equal to 1.

For our purposes, we will need only an orthogonal basis, i.e. a set of mu-
tually orthogonal vectors which are not necessarily of length 1. The same
procedure works, except we do not normalize the length, and we will also call
this the Gram-Schmidt orthogonalization procedure. It is summarized in the
following proposition.

Proposition 2.5.4 (Gram-Schmidt). Let b; be a basis of a Euclidean vector
space E. Define by induction:

i—1
bf =b;—> m;b; (1<i<n),
j=1

where
pij=b;-bi/bI-b;  (1<j<i<n),

then the b} form an orthogonal (but not necessarily orthonormal) basis of

E, b} is the projection of b; on the orthogonal complement of Z;;ll Rb; =

Z;_ll Rb?, and the matriz M whose columns gives the coordinates of the b}

in terms of the b; is an upper triangular matriz with diagonal terms equal to
1. In particular, if d(L) is the determinant of the lattice L, we have d(L)? =

HISiSn ”b”l2

The proof is trivial using induction. O
We will now give a number of corollaries of this construction.

Corollary 2.5.5 (Hadamard’s Inequality). Let (L,q) be a lattice of deter-
minant d(L), (b;)i<i<n a Z-basis of L, and for x € L write |x| for q(x)'/2.
Then

d(L) < [T Ibif -
=1

Equivalently, if B is an n X n matriz then

1/2

ldet(B)| < [ [ D 1oyl

1<i<n \1<j<n

Proof. If we set B; = |b?|?, the orthogonality of the b} implies that
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g(bi) = |bi* = Bi+ > ul;B;
1<j<i

hence d(L)? = T, ;< Bi < [11<icn [bil*. o

Corollary 2.5.6. Let B be an invertible matriz with coefficients in R. Then
there exists unique matrices K, A and N such that:

(1) B= KAN.

(2) K is an orthogonal matriz, in other words K* = K1,

(3) A is a diagonal matriz with positive diagonal coefficients.

(4) N is an upper triangular matriz with diagonal terms equal to 1.

Note that this Corollary is sometimes called the Iwasawa decomposition
of B since it is in fact true in a much more general setting than that of the
group GL,(R).

Proof. Let B’ be the matrix obtained by applying the Gram-Schmidt process
to the vectors whose coordinates are the columns of B on the standard basis
of R™. Then, by the proposition we have B’ = BN where N is an upper
triangular matrix with diagonal terms equal to 1. Now the Gram-Schmidt
process gives an orthogonal basis, in other words the Gram matrix of the b}
is a diagonal matrix D with positive entries. Let A be the diagonal matrix
obtained from D by taking the positive square root of each coefficient (we will
call A the square root of D). Then the equality BB’ = D is equivalent to
B’ = K A for an orthogonal matrix K, hence BN = K A which is equivalent
to the existence statement of the corollary.

The uniqueness statement also follows since the equality B’ = BN =
K A means that the b form an orthogonal basis which can be expressed on
the b; via an upper triangular matrix with diagonal terms equal to 1, and
the procedure for obtaining this basis (i.e. the Gram-Schmidt coefficients) is
clearly unique. O

Remarks.

(1) The requirement that the diagonal coefficients of A be positive is not
essential, and is given only to insure uniqueness.

(2) By considering the inverse matrix and/or the transpose matrix of B, one
has the same result with N lower triangular, or with B = NAK instead
of KAN.

(3) T = AN is an upper triangular matrix with positive diagonal coefficients,
and clearly any such upper triangular matrix 7 can be written uniquely
in the form AN where A and N are as in the corollary. Hence we can use
interchangeably both notations.
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Another result is as follows.

Proposition 2.5.7. If Q is the matriz of a positive definite quadratic form,
then there exists a unique upper triangular matriz T with positive diagonal
coefficients such that Q = T*T (or equivalently Q = N!DN where N is an
upper triangular matriz with diagonal terms equal to 1 and D is a diagonal
matriz with positive diagonal coefficients).

Proof. By Proposition 2.5.3, we know that there exists B € GL,(R) such that
Q = B!B. On the other hand, by the Iwasawa decomposition we know that
there exists matrices K and T such that B = KT with K orthogonal and T
upper triangular with positive diagonal coefficients (T' = AN in the notation
of Proposition 2.5.6). Hence Q = BB = T'T thus showing the existence of
T.

For the uniqueness, note that if 7*T = T'*T” with T and T" upper trian-
gular, then

T/t_]'Tt — T/T—l

where taking inverses is justified since @) is a positive definite matrix. But
the left hand side of this equality is a lower triangular matrix, while the right
hand side is an upper triangular one, hence both sides must be equal to some
diagonal matrix D, and plugging back in the initial equality and using again
the invertibility of T, we obtain that D? is equal to the identity matrix. Now
since the diagonal coefficients of D = T"T~! must be positive, we deduce that
D itself is equal to the identity matrix, thus proving the proposition. O

We will give later an algorithm to find the matrix T’ (Algorithm 2.7.6).

2.6 Lattice Reduction Algorithms

2.6.1 The LLL Algorithm

Among all the Z bases of a lattice L, some are better than others. The ones
whose elements are the shortest (for the corresponding norm associated to
the quadratic form ¢) are called reduced. Since the bases all have the same
determinant, to be reduced implies also that a basis is not too far from being
orthogonal.

The notion of reduced basis is quite old, and in fact in some sense one
can even define an optimal notion of reduced basis. The problem with this
is that no really satisfactory algorithm is known to find such a basis in a
reasonable time, except in dimension 2 (Algorithm 1.3.14), and quite recently
in dimension 3 from the work of B. Vallée [Val].

A real breakthrough came in 1982 when A. K. Lenstra, H. W. Lenstra and
L. Lovész succeeded in giving a new notion of reduction (what is now called
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LLL-reduction) and simultaneously a reduction algorithm which is determin-
istic and polynomial time (see [LLL]). This has proved invaluable.

The LLL notion of reduction is as follows. Let by,bs, ... ,b,, be a basis of L.
Using the Gram-Schmidt orthogonalization process, we can find an orthogonal
(not orthonormal) basis b}, b3, ... ,b% as explained in Proposition 2.5.4.

Definition 2.6.1. With the above notations, the basis by, ba, ..., b, is called
LLL-reduced if

|pij < for1<j<i<n

N =

and 3
b} + piiabi_y * > Zlbf—1|2 forl<i<n,

or equivalently

* 3 *
|b; '2 2 (Z _:uz?,i—-1> |bi—1|2 .

Note that the vectors b} + u;;—1b}_; and b}_; are the projections of b;
and b;_; on the orthogonal complement of 23;21 Rb;.
Then we have the following theorem:

Theorem 2.6.2. Let by, bs,...,b, be an LLL-reduced basis of a lattice L.
Then

(1)
d(L) < ] Ios| < 2"n=D/4q(L)
=1
(2) _
Ibj| <26-D2by| if1<j<i<n,

3)
|b1| < 2(n—1)/4d(L)1/n ,

(4) For every x € L with x # 0 we have
[by| < 207Dy

(5) More generally, for any linearly independent vectors xi,...,x; € L we
have

|b;| <2V 2 max(|xy|, ..., |[x|])  forl<j<t.
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We see that the vector b; in a reduced basis is, in a very precise sense, not
too far from being the shortest non-zero vector of L. In fact, it often is the
shortest, and when it is not, one can, most of the time, work with b, instead
of the actual shortest vector.

Notation. In the rest of this chapter, we will use the notation x - y instead
of b(x,y) where b is the bilinear form associated to g, and write x? instead of

x-x = q(x).

Proof. As in Corollary 2.5.5, we set B; = |b}|?. The first inequality of (1)
is Corollary 2.5.5, Since the b; are LLL-reduced, we have B; > (3/4 —
p2;_1)Bisy > Bi_1/2 since |u;;-1| < 1/2. By induction, this shows that
B; <2i79B; for i > j, hence

27141

b2 <
v 2

Bi )

and this trivially implies Theorem 2.6.2 (1), in fact with a slightly better
exponent of 2. Combining the two inequalities which we just obtained, we
get for all j <, b? < (272 4+ 2°7971)B; which implies (2). If we set j = 1
in (2) and take the product of (2) for i = 1 to i = n, we obtain (b?)" <
2n(n=1/21], ., Bi = 2M»=1D/24(L