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Preface

The computation of invariants of algebraic number fields such as integral
bases, discriminants, prime decompositions, ideal class groups, and unit
groups is important both for its own sake and for its numerous applications,
for example, to the solution of Diophantine equations. The practical com-
pletion of this task (sometimes known as the Dedekind program) has been
one of the major achievements of computational number theory in the past
ten years, thanks to the efforts of many people. Even though some practical
problems still exist, one can consider the subject as solved in a satisfactory
manner, and it is now routine to ask a specialized Computer Algebra Sys-
tem such as Kant/Kash, LiDIA, Magma, or Pari/GP, to perform number field
computations that would have been unfeasible only ten years ago.The (very
numerous) algorithms used are essentially all described in A Course in Com-
putational Algebraic Number Theory, GTM 138, first published in 1993 (third
corrected printing 1996), which is referred to here as [Coh0]. That text also
treats other subjects such as elliptic curves, factoring, and primality testing.

It is important and natural to generalize these algorithms. Several gener-
alizations can be considered, but the most important are certainly the gen-
eralizations to global function fields (finite extensions of the field of rational
functions in one variable over a finite field) and to relative extensions of num-
ber fields. As in [Coh0], in the present book we will consider number fields
only and not deal at all with function fields.

We will thus address some specific topics related to number fields; contrary
to [Coh0], there is no attempt to be exhaustive in the choice of subjects. The
topics have been chosen primarily because of my personal tastes, and of course
because of their importance. Almost all of the subjects discussed in this book
are quite new from the algorithmic aspect (usually post-1990), and nearly all
of the algorithms have been implemented and tested in the number theory
package Pari/GP (see [Coh0] and [BBBCO]). The fact that the subjects are
new does not mean that they are more difficult. In fact, as the reader will see
when reading this book in depth, the algorithmic treatment of certain parts
of number theory which have the reputation of being “difficult” is in fact
much easier than the theoretical treatment. A case in point is computational
class field theory (see Chapters 4 to 6). I do not mean that the proofs become
any simpler, but only that one gets a much better grasp on the subject by
studying its algorithmic aspects.

As already mentioned, a common point to most of the subjects discussed
in this book is that we deal with relative extensions, but we also study other
subjects. We will see that most of the algorithms given in [Coh0Q] for the
absolute case can be generalized to the relative case.

The book is organized as follows. Chapters 1 and 2 contain the theory and
algorithms concerning Dedekind domains and relative extensions of number



vi Preface

fields, and in particular the generalization to the relative case of the round 2
and related algorithms.

Chapters 3, 4, 5, and 6 contain the theory and complete algorithms con-
cerning class field theory over number fields. The highlights are the algo-
rithms for computing the structure of (Zx/m)*, of ray class groups, and
relative equations for Abelian extensions of number fields using Kummer the-
ory, Stark’s conjectures, and complex multiplication. The reader is warned
that Chapter 5 is rather technical but contains a wealth of information useful
both for further research and for any serious implementation. The analytic
techniques using Stark’s conjecture or complex multiplication described in
Chapter 6 are fascinating since they construct purely algebraic objects using
analytic means. .

Chapters 1 through 6 together with Chapter 10 form a homogeneous
subject matter that can be used for a one-semester or full-year advanced
graduate course in computational number theory, omitting the most technical
parts of Chapter 5.

The subsequent chapters deal with more miscellaneous subjects. In Chap-
ter 7, we consider other variants of the notions of class and unit groups, such
as relative class and unit groups or S-class and unit groups. We sketch an
algorithm that allows the direct computation of relative class and unit groups
and give applications of S-class and unit groups to the algorithmic solution
of norm equations, due to D. Simon.

In Chapter 8, we explain in detail the correspondence between cubic fields
and binary cubic forms, discovered by H. Davenport and H. Heilbronn, and
examine the important algorithmic consequences discovered by K. Belabas.

In Chapter 9, we give a detailed description of known methods for con-
structing tables of number fields or number fields of small discriminant, either
by using absolute techniques based on the geometry of numbers or by using
relative techniques based either on the geometry of numbers or on class field
theory.

In Appendix A, we give and prove a number of important miscellaneous
results that can be found scattered in the literature but are used in the rest
of the book.

In Appendix B, we give an updated but much shortened version of [CohO0,
Appendix A] concerning packages for number theory and other useful elec-
tronic information.

In Appendix C, we give a number of useful tables that can be produced
using the results of this book.

The book ends with an index of notation, an index of algorithms, and a
general index.

The prerequisites for reading this book are essentially the basic defini-
tions and results of algebraic number theory, as can be found in many text-
books, including [Coh0]. Apart from that, this book is almost entirely self-
contained. Although numerous references are made to the algorithms con-
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tained in [Coh0], these should be considered as “black boxes” and used as
such. It would, however, be preferable at some point for the reader to study
some of the algorithms of [Coh0]; in particular, those generalized here.

WARNINGS

(1) As usual, neither the author nor Springer-Verlag can assume any respon-
sibility for consequences arising from the use of the algorithms given in
this book.

(2) The author would like to hear about errors, typographical or otherwise.
Please send e-mail to

cohen@math.u-bordeaux. fr
Lists of known errors, both for [Coh0] and for the present book, can be
obtained by anonymous ftp from the URL
ftp://megrez.math.u-bordeaux.fr/pub/cohenbook
or obtained through the author’s home page on the Web at the URL
http://wuw.math.u-bordeaux.fr/"cohen

(3) There is, however, another important warning that is almost irrelevant in
[Coh0]. Almost all of the algorithms or the algorithmic aspects presented
in this book are new, and most have never been published before or
are being published while this book is going to press. Therefore, it is
quite possible that major mistakes are present, although this possibility
is largely diminished by the fact that almost all of the algorithms have
been tested, although not always thoroughly. More likely it is possible
that some algorithms can be radically improved. The contents of this
book only reflect the knowledge of the author at the time of writing.
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1. Fundamental Results and Algorithms in
Dedekind Domains

1.1 Introduction

The easiest way to start studying number fields is to consider them per se, as
absolute extensions of Q; this is, for example, what we have done in {Coh0].
In practice, however, number fields are frequently not given in this way. One
of the most common other ways is to give a number field as a relative exten-
sion, in other words as an algebra L/K over some base field K that is not
necessarily equal to Q. In this case, the basic algebraic objects such as the
ring of integers Z 1, and the ideals of Z 1, are not only Z-modules, but also Z -
modules. The Z g-module structure is much richer and must be preserved.
No matter what means are chosen to compute Z, we have the problem of
representing the result. Indeed, here we have a basic stumbling block: consid-
ered as Z-modules, Z, or ideals of Z, are free and hence may be represented
by Z-bases, for instance using the Hermite normal form (HNF); see, for ex-
ample, [Coh0, Chapter 2]. This theory can easily be generalized by replacing
7Z with any other explicitly computable Euclidean domain and, under certain
additional conditions, to a principal ideal domain (PID). In general, Zg is
not a PID, however, and hence there is no reason for Z, to be a free module
over Zg. A simple example is given by K = Q(+/=10) and L = K (v/-1)
(see Exercise 22 of Chapter 2).

A remarkable fact, discovered independently by several authors (see [Bos-
Poh] and [Coh1]) is that this stumbling block can easily be overcome, and
there is no difficulty in generalizing most of the linear algebra algorithms
for Z-modules seen in [Coh0, Chapter 2] to the case of Z g-modules. This is
the subject matter of the present chapter, which is essentially an expanded
version of [Cohl].

Thus, the basic objects of study in this chapter are (finitely generated)
modules over Dedekind domains, and so we will start by giving a detailed
description of the main results about such modules. For further reading, 1
recommend [Fro-Tay] or [Boul).

Note that, as usual, many theoretical results can be proved differently by
using algorithmic methods. After finishing this chapter, and in particular after
the study of the Hermite and Smith normal form algorithms over Dedekind
domains, the reader is advised to try and prove the results of the next section
using these algorithms.
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1.2 Finitely Generated Modules Over Dedekind
Domains

I would like to thank J. Martinet for his help in writing this section. For the
sake of completeness, we first recall the following definitions.

Definition 1.2.1. Let R be a domain, in other words a nonzero, commuta-
tive ring with unit, and no zero divisors.

(1) We say that R is Noetherian if every ascending chain of ideals of R is
finite or, equivalently, if every ideal of R is finitely generated.

(2) We say that R is integrally closed if any z belonging to the ring of frac-
tions of R which is a root of a monic polynomial in R[X] belongs in fact
to R.

(3) We say that R is a Dedekind domain if it is Noetherian, integrally closed,
and if every nonzero prime ideal of R is a mazimal ideal.

Definition 1.2.2. Let R be an integral domain and K its field of fractions.
A fractional ideal is a finitely generated, nonzero sub-R-module of K or,
equivalently, an R-module of the form I/d for some nonzero ideal I of R and
nonzero d € R. If we can take d = 1, the fractional ideal is an ordinary ideal,
and we say that it is an integral ideal.

Unless explicitly mentioned otherwise, we will always assume that ideals
and fractional ideals are nonzero.

We recall the following basic facts about Dedekind domains, which explain
their importance.

Proposition 1.2.3. Let R be a Dedekind domain and K its field of fractions.

(1) Every fractional ideal of R is invertible and is equal in a unique way to
a product of powers of prime ideals.

(2) Every fractional ideal is generated by at most two elements, and the first
one can be an arbitrarily chosen nonzero element of the ideal.

(3) (Weak Approzimation Theorem) Let S be a finite set of prime ideals of
R, let (ep)pes be a set of integers, and let (z,)yes be a set of elements
of K both indezed by S. There exists an element ¢ € K such that for
allp € S, vp(z — zp) = ep, while for all p & S, vy(x) > 0, where vp(z)
denotes the p-adic valuation.

(4) If K 1s a number field, the ring of integers Zk of K is a Dedekind domain.

In the context of number fields, we recall the following definitions and
results.

Definition 1.2.4. Let | | be a map from K to the set of nonnegative real
numbers.
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(1) We say that | | is a field norm on K if [z| =0 < z =0, |z +y| <
|z| + |y|, and |zy| = |z||y| for all z and y in K.

(2) We say that the norm is non-Archimedean if we have the stronger condi-
tion |z + y| < max(|z|,|y|) for all z and y in K; otherwise, we say that
the norm is Archimedean.

(3) We say that the norm is trivial if |z| = 1 for all z # 0.

(4) We say that two norms are equivalent if they define the same topology
on K.

Theorem 1.2.5 (Ostrowsky). Let K be a number field and let o; be the
n =r; + 2ry embeddings of K into C ordered in the usual way.

(1) Let p be a prime ideal of K. Set
|z, = N (p)~*»)

if x # 0, and |0, = O otherwise. Then |z|, is @ non-Archimedean field
norm.

(2) Any nontrivial, non-Archimedean field norm is equivalent to }:zc|p for a
unique prime ideal p.

(3) If o is an embedding of K into C and if we set

|zl, = lo(2)] ,

where | | is the usual absolute value on C, then |z|, is an Archimedean
field norm.

(4) Any Archimedean field norm is equivalent to |z|, for a unique o; with
1 <i <7+ 7. (Note that |:1c|¢,‘+r2 is equivalent to |z|, forr < i<
™ -+ 7‘2.)

Definition 1.2.6. A place of a number field K is an equivalence class of
nontrivial field norms. Thus, thanks to the above theorem, the places of K
can be identified with the prime ideals of K together with the embeddings o;
for1 <i<ry+rs.

Finally, we note the important product formula (see Exercise 1).

Proposition 1.2.7. Letn; =1 for 1 <i<ry,n; =2ifr1 <i <1y +7re.
Then, for all x € K we have

II &

ISiSrl +ra

:;H|z|p=1.
p

With these definitions, in the context of number fields we have a strength-
ening of Proposition 1.2.3 (3) to the case of places as follows.
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Proposition 1.2.8 (Strong Approximation Theorem). Let S be a fi-
nite set of places | |; of K, let (x;)ics be a set of elements of K, and let
(:)ies be a set of positive real numbers both indexed by S. There existsz € K
such that |z — z;|; < &; for all | |, € S, while |z|; <1 for all places | |, ¢ S
except perhaps at one place not belonging to S, which can be arbitrarily cho-
sen.

Note that, due to the product formula, it is necessary to exclude one place,
otherwise the proposition is trivially false (see Exercise 2). Clearly the weak
approximation theorem is a consequence of the strong one (we choose for the
excluded place any Archimedean one, since there always exists at least one).
The following corollary is also important.

Corollary 1.2.9. Let Sp be a finite set of prime ideals of K, let (ep)pes, be
a set of integers indexed by S, and let (s, )scs,, be a set of signs +1 indezed
by the set Soo of all r1 real embeddings of K. There erists an element x € K
such that for all p € So, vy(z) = ey, for all 0 € Su, sign(o(z)) = s, while
for all p & So, vy(z) > 0, where vp(x) denotes the p-adic valuation.

Proof. Set S = Sp U So considered as a set of places of K thanks to
Ostrowsky’s theorem. For p € Sy, we choose

Yp € p% ~p*t! and g, =N(p)~* ,

while for ¢ € S, we choose

Yo =S, and ca¢,=l .
2
The strong approximation theorem implies that there exists y € K such that
ly — ysl, <é&p for p € So and |y — Yol, < €s for o € Se, and |y, < 1 for all
p ¢ S except at most one such p.

The condition |y — ¥y |p < €y is equivalent to y—y, € pe»*1; hence vy(y) =
ep by our choice of yp.

Since s, = +1, the condition |y —y,|, < 1/2 implies in particular that
the sign of y is equal to s,.

Finally, if p ¢ S, the condition |y|, <1 is evidently equivalent to v,(y) >
0.

Thus y is almost the element that we need, except that we may have
vpo(y) < O for some pp ¢ S. Assume that this is the case (otherwise we
simply take z = y), and set v = —vp,(y) > 0. By the weak approximation
theorem, we can find an element 7 such that vy, (%) = v, vp(w) = 0 for all
p € So, and vy(m) > 0 for p ¢ SoU {po} (we can use the weak approximation
theorem since we do not need to impose any Archimedean conditions on 7).
Since a square is positive, it is immediately checked that z = 72y satisfies
the desired properties. ]
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Corollary 1.2.10. Let m be any nonzero ideal. There exists a € m such that
for every prime ideal p such that v,(m) # 0 we have vy(a) = vy(m). Such an
element a will be called a uniformizer of the ideal m.

Proof. This is an immediate consequence of Corollary 1.2.9. O

The two most important examples are the following: if m = p is a prime
ideal, then a is a uniformizer of p if and only if o € p\ p?; if m = p~ 1 is
the inverse of a prime ideal, then « is a uniformizer of p~! if and only if
a € p_l N Zk.

Corollary 1.2.11. Let m be any (nonzero) integral ideal, and let a be an
ideal of R. There exists a € K* such that aa is an integral ideal coprime to
m; in other words, in any tdeal class there exists an integral ideal coprime to
any fized integral ideal.

Proof. Indeed, apply the weak approximation theorem to the set of prime
ideals p that divide m or such that vy(a) < 0, taking e, = —vy(a). Then, if
« is such that vy(a) = e, for all such p and nonnegative for all other p, it is
clear that aa is an integral ideal coprime to m. a

In this chapter, R will always denote a Dedekind domain and K its field of
fractions. In the following sections, we will also assume that we can compute
explicitly in R (this is, for example, the case if K is a number field), but for
the theoretical part, we do not need this.

The main goal of this section is to prove the following results, which
summarize the main properties of finitely generated modules over Dedekind
domains (see below for definitions).

Theorem 1.2.12. Let M be a finitely generated module over a Dedekind
domain R.

(1) The R-module M is torsion-free if and only if M is a projective module.
(2) There exists a torsion-free submodule N of M such that
M= Mtors ®N and N~ M/Mtors .

(3) If M is a torsion-free R-module and V = KM, there exist (frac-
tional) ideals a; and elements w; € V such that

M=aquw @®aw & ---Da,w, .

The ideal class of the product a = ayaz---a, in the class group of R
depends only on the module M and is called the Steinitz class of M.

(4) The module M is a free R-module if and only if its Steinitz class is equal
to the trivial class, in other words if and only if a is a principal ideal.
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(5) If M is a torsion module, there exist unique nonzero integral ideals d; of
R and (nonunique) elements w; € M such that

M= (R/o1)w1 & & (R/0n)wn

and0;—1 C0; for2<i<n.

Corollary 1.2.13. Let M be a finitely generated module over R of rank r.
There exist fractional ideals ay,. .., a,, unique integral ideals 9;,...,0, (pos-
sibly equal to zero), and elements wy, ... ,w, in M such that

(1) M =(a1/0101)w1 & -+ B (an/0nan)wn,
(2) 0,1 C0; for2<i<m,
(3) 9; ={0} ifand only if 1 <i <.

We will prove these results completely in this section, and in passing we
will also prove a number of important auxiliary results.

1.2.1 Finitely Generated Torsion-Free and Projective Modules

Definition and Proposition 1.2.14. Let M be an R-module.

(1) We say that M is finitely generated if there exist oy,...,an belonging
to M such that any element x of M can be written (not necessarily
uniquely) as T = Y o, Tio; with z; € R.

(2) We define KM = K ®gr M ; in other words,

KM= (K x M)/R ,

where R is the equivalence relation defined by
Zia R %1—,3 <= 3d € R~ {0} such that d(beaia —azb18) =0,
2 2

and with a natural definition of addition and multiplication.
(3) If M is finitely generated, then KM is a finite-dimensional K -vector
space, whose dimension is called the rank of the R-module M.

Proof. All the assertions are clear, except perhaps for the fact that R is

a transitive relation.
Assume that (a1/az)a R (by/b2)B and (b1/b2)8 R (c1/c2)y. Then, by
definition, there exist nonzero elements d; and dy of R such that

di(bea1a — a2b1 B) = da(cob1 B — bacyy) =0€ M .
Set z = cpa1a — ascyy. We have

d1d2b2Z = dzCz(d1b2a1a) - dlag(dzbzcyy)
= dzcz(dlazblﬁ) - dlaz(dQCzblﬂ) =0.



1.2 Finitely Generated Modules Over Dedekind Domains 7

Since dy # 0, dy # 0, bs # 0, and R is an integral domain, it follows that R
is an equivalence relation, as desired. O

Remark. It is easy to see that if we had defined (a; /as)a R (b1 /)8 <
byaja—azb; B = 0, this would in general not have been an equivalence relation
(see Exercise 3).

Definition 1.2.15. Let M be an R-module.
(1) The torsion submodule of M is defined by

Miors = {z € M [/ 3a € R\ {0},az =0} .

An element of Mios is called a torsion element.

(2) We say that M is torsion-free if O is the only torsion element; in other
words, if Miors = {0}.

(3) We say that M is a torsion module if all the elements of M are torsion
elements or, equivalently, if M = Miors.

Thus, the equivalence relation R defined above can also be given by saying
that (ay/az)a R (b1/b2)B if and only if bya;a — a2b B is a torsion element.
In particular, if A = a; /a2, an element (A, a) of KM is equal to zero if and
only if aja is a torsion element, hence either if A = 0 or if « itself is a torsion
element. -

For notational convenience, the equivalence class (A, a) in KM of a pair
(A, a) will be denoted Aa. Note that when X\ € R, this is equal (modulo the
equivalence relation) to the pair (1, Aa), and hence the two notations are
compatible. L

Note also that when M is torsion-free, the map a — (1,a) is injective,
and hence in this case M can be considered as a sub-R-module of KM, and
K M is simply the K-vector space spanned by M.

Definition and Proposition 1.2.16. A module P is projective if it satis-
fies one of the following three equivalent conditions.

(1) Let f be a surjective map from a module F onto a module G. Then for
any linear map g from P to G there ezists a linear map h from P to F
such that g = f o h (see diagram below).

(2) If f is a surjective linear map from a module F onto P, there ezists
a section h of f, in other words a linear map from P to F such that
foh=1idp (where idp denotes the identity map on P).

(3) There ezists a module P' such that P @ P’ is a free module.

N

1

W

*
>
-~
@«

i
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Proof. Let us prove that these conditions are equivalent. (1) implies (2) is
obvious by taking G = P and g = idp. Assume (2), and let (g;):cs be a (not
necessarily finite) system of generators of P. Let F = R{) be the set of maps
v from I to R such that v(i) = 0 for all but a finite number of 7. Then F is
a free R-module with basis v; such that v;(¢) = 1 and v;(j) = 0 for j # s.
Finally, let f be the map from F' to P such that f(v;) = g;. By definition, f
is a surjective linear map. By (2), we deduce that there exists a section h of
f from P to F.

Set P, = h(P). Since f o h = idp, the map h is injective; hence P; is
isomorphic to P. In addition, I claim that F = P; @ Ker(f). Indeed, for
future reference, we isolate this as a lemma:

Lemma 1.2.17. If f is a surjective map from any module F onto a pro-
jective module P and if h is a section of f (so that f o h = idp), then
F = h(P) ® Ker(f).

Proof. Indeed, if z € F, then y = z — h(f(z)) is clearly in Ker(f) since
f o h =idp; hence z € h(P) + Ker(f), so F = h(P) + Ker(f). Furthermore,
if z € h(P) N Ker(f), then since z € h(P), x = h(z) for some z € P; hence
since z € Ker(f), 0 = f(z) = f(h(2)) = 2, hence z = h(0) = 0, so we have a
direct sum, proving the lemma. |

This lemma implies Proposition 1.2.16 (3).

Finally, assume that N = P @ P' is a free module, and let F', G, f, g be
as in (1). Denote by = the projection from N to P defined by n(p+p') = p if
p € Pand p' € P, denote by ¢ the injection from P to N so that moi = idp,
let (u;); be a basis of N, and set g’ = g o 7 (see preceding diagram).

Since f is surjective, we can find elements v; € F' such that f(v;) = ¢'(us).
We arbitrarily fix such elements and set h’' (Zz xiui) = Y, z;v;. Since N is
free, this is a well-defined linear map from N to F which clearly satisfies
g'=foh';hence g=g'oi= foh'oi,and so h = h' o1 satisfies (1). n|

Note that the classical proof above is valid in any (commutative) ring,
and not only in a Dedekind domain, and does not need the condition that
the modules be finitely generated. Note also that the proof of (3) is essentially
the proof that a free module is projective.

Corollary 1.2.18. A projective module is torsion-free.

Proof. Indeed, the third characterization of projective modules shows that
a projective module is isomorphic to a submodule of a free module and hence
is torsion-free since a free module is evidently torsion-free. O

The first important result of this section is the converse of this corollary
for finitely generated modules over Dedekind domains.
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Theorem 1.2.19. Let M be a finitely generated, torsion-free module of rank
n over a Dedekind domain R. Then M is a projective module. In addition,
there exists an ideal I of R such that

M=~R"'®I.
Before proving this theorem we prove some lemmas.

Lemma 1.2.20. If I and J are any fractional ideals of R, we have an iso-
morphism of R-modules:
IoJ~RolJ .

Proof. Since I ~ kI for any k € R, we can always reduce to the case where
I and J are integral ideals. By Corollary 1.2.11, in the ideal class of J there
exists an integral ideal J; coprime to I. Thus, there exists @ € K* such that
J1 = aJ, and it follows that J; ~ J and IJ; ~ IJ, so we may replace J by
J1; in other words, we may assume that I and J are coprime integral ideals.

Let f be the map from I & J to R defined by f(z,y) = z +y. Since R
is free, hence projective, and since I 4 J = R, f is surjective, so there exists
a map ¢ from R to I @ J such that f o g = id. Lemma 1.2.17 says that
I ®J = g(R) & Ker(f). Since f o g = id, g is injective; hence g(R) ~ R.
Finally,

Ker(f) ={(z,-z)/z € I,—z € J} ={(z,—z)/z e INJ}~INT =1J
since I and J are coprime, proving the lemma. a

Remark. We will see later how to transform this important isomorphism
into an algorithmic equality (Corollary 1.3.6 and Proposition 1.3.12).

Corollary 1.2.21. Every fractional ideal is a projective R-module.

Proof. Simply apply the preceding lemma to J = I~ and use Proposition
1.2.16 (3). o

Lemma 1.2.22. Let M be a finitely generated, torsion-free module of rank
n, set V. = KM, which is a K-vector space of dimension n, and let e be a
nonzero element of V. Finally, set

I={AeK/dec M} .

Then

(1) I is a fractional ideal of R,
(2) M/Ie is a torsion-free R-module of rank n — 1.
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Proof. (1). It is clear that I is a nonzero R-module. Since M is torsion-free,
as an R-module, I is isomorphic to Ie (send z to ze), which is a submodule of
the finitely generated module M. Since R is a Noetherian ring, a submodule
of a finitely generated module is still finitely generated, hence I is finitely
generated. It follows that I is a fractional ideal (take as denominator for I
the product of denominators of generating elements of I).

(2). Let = € M/Ie be a torsion element. Thus, there exists a € R \ {0}
such that az € Ie C Ke, so z € KenN M. It follows that £ = Ae € M, hence
X € I, so ¢ € Ie or, equivalently, z = 0, so M/Ie is torsion-free. We have
(M/Ie)K = (MK)/(Ke) and Ke is of dimension 1; hence M/Ie is of rank
n—1. O

Proof of Theorem 1.2.19. We prove the theorem by induction on the rank
of M. If the rank of M is zero, then M is torsion, and since M is torsion-
free, M = {0}. Assume the theorem proved up to rank n — 1, and let M
be a torsion-free module of rank n. Let e be a nonzero element of M. By
Lemma 1.2.22 above, M/Ie is a torsion-free module of rank n — 1; hence by
our induction hypothesis, M/Ie is a projective module and isomorphic to
R"? @ J for some ideal J (or is zero if n = 1). Lemma 1.2.17 implies that
M = g(M/Ie)® Ie for a section g of the canonical surjective map from M to
M/Ie, and since g is injective, M ~ M/Ie & Ie. Since M/Ie is projective by
induction and Te ~ I is also projective by Corollary 1.2.21, we deduce that
M is projective. In addition, we have M ~ R* 2@ JaoI ~ R 1@ IJ by
Lemma. 1.2.20, thus showing our induction hypothesis and finishing the proof
of Theorem 1.2.19. 0o

Before finishing this section, we must study in more detail the relationship
between the module M and the ideal I such that M ~ R"" ! & I.

Theorem 1.2.23. Let I be a fractional ideal of R. Then R*~ 1 @ I is a free
R-module if and only if I is a principal ideal.

Proof. If I is a principal ideal, then I ~ R; hence R** & I ~ R" is
free. Conversely, assume that R*~! @ I is free. Since I is of rank 1, we have
R @I ~ R™. Let f be an isomorphism from R™ to R*~!®1. Let (€:)1<i<n
be the canonical basis of R". Any element z € K™ can be written uniquely
as T =Y., c;<, Ti€; for some z; € K. If we set g(x) = Y, ;< Tif(€:), it is
clear that g(z) € (R* @)K = K™, that g is a well-defined isomorphism
from K™ into itself such that the restriction of g to R™ is equal to f. In other
words, g can be considered as an element of GL,(K). Let M = (a; ;) be the
matrix of g on the canonical basis, so that g(e;) = f(e;j) = D1 <icn @i jei for
all j. I claim that I is the principal ideal generated by det(M) — in other
words, that I = det(M)R.
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Note first that by definition, for all j such that 1 < j < n we have
a;j € R for i <n and a, ; € I. If we expand det(M) along the bottom row,
it immediately follows that det(M) € I, hence that det(M)R C I.

Conversely, since f is surjective, it follows that for all u € I there exists
v = 3<jcnVi€; € R" such that f(v) = ue,, which implies that u =
You< <j<n On,355 hence the a, ; generate the ideal I. Moreover, for any i < n,
there exists i = },<;<n ¥ij€j Such that f(y;) = e;. Fix an index 4o, and let
X = (z; ;) be the n X n matrix defined by z; ; = y;; for j <n, z;, =0 for
i # ig, and T;,» = 1. It is clear that we have the block matrix equality

MX:(I"‘l C) ,

0 Qn, i

where I,,_; is the (n — 1) x (n — 1) identity matrix and C an (n — 1) x 1
column matrix. Taking determinants, we deduce that a, ;, € det(M)R. Since
this is true for all 49 and since the a, ;, generate the ideals I, it follows that
I C det(M)R; hence I = det(M)R, as was to be proved.

Note that this proof is valid over any integral domain, not only over a
Dedekind domain (I thank D. Bernardi for simplifying my initial proof). O

Corollary 1.2.24. If I and J are two (fractional) ideals of R and R™1 &
I~R '@ J, then m =n and J and I are in the same ideal class (in other
words, there ezists a € K* such that J = al).

Proof. Since I and J are of rank 1, it is clear that m = n. From the given
isomorphism, we deduce that

R lelel'~ReoJol™!
Using Lemma 1.2.20, we obtain
R ~RreJIt
Thus Theorem 1.2.23 implies that JI ™! is a principal ideal, whence the corol-
lary. |

This corollary shows that, if M ~ R"~! & I as in Theorem 1.2.19, the
ideal class of I is well-defined and depends only on M. We will call it the
Steinitz class of M and denote it by St(M).

We can restate the above results by saying that the isomorphism class of a
finitely generated, torsion-free (or projective) module is completely classified
by its rank and its Steinitz class.

Corollary 1.2.25. Let M be a finitely generated, torsion-free module. There
exist elements w1, . ..,wn in M and fractional ideals 01, ..., a, of R such that

M=auw @ Dapw, .
The Steinitz class of M is the ideal class of the product a; ---an
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Proof. From Theorem 1.2.19, we know that M is isomorphic to R*™! @ I
for some ideal I whose ideal class is the Steinitz class of M. Replacing if
necessary I by I/a for some nonzero element a of I, we may assume that 1 €
I. Let f be the isomorphism from R*~! @I to M, lete; = (0,...,1,...,0) €
R" 1T (with 1 at the ith component), and let w; = f(e;) € M. Since f is an
isomorphism, we have M = aq1w; ®--- @ ayw,, withg; = Rfor1<i<n-1
and a, = I.

By Lemma 1.2.20 we have

QW O Oawn 2R (a1 ap) ,

so the corollary follows. |

Corollary 1.2.26. Let M, N, and P be three finitely generated, torsion-free
modules. Assume that PO M ~P@® N. Then M ~ N.

Proof. Using Theorem 1.2.19, we have M ~ R™ 1@ St(M), N~ R" "' o
St(N), P ~ RP~! @ St(P), so that

RPY™ 2 @ St(P) @ St(M) ~ RPt"2 @ St(P) & St(IV)
or, in other words, by Lemma 1.2.20,
RP*™~1 @ St(P) St(M) ~ RP*™~1 @ St(P) St(N) .
We deduce from Corollary 1.2.24 that m = n and that there exists a € K

such that St(P)St(M) = aSt(P)St(N); hence St(M) = aSt(N) ~ St(N)
since St(P) is invertible, so M ~ N. O

We end this section with the following two propositions.

Proposition 1.2.27. Let
0—M —M-—M'—0
be an exact sequence of finitely generated, torsion-free modules. Then
M~MeoM' and  St(M) = St(M')St(M") .

Proof. The isomorphism follows immediately from Lemma 1.2.17: if f is
the map from M to M", there exists a map h from M" to M such that
foh =idy» and M = h(M") & Ker(f) ~ M" @ M’ since the sequence is
exact. The required equality of Steinitz classes now follows immediately from
Theorem 1.2.19 and Lemma 1.2.20. o

Proposition 1.2.28. If R is a Dedekind domain with only a finite number
of prime ideals, then R is a principal ideal domain.
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Proof. Let b be the product of the (nonzero) prime ideals of R, which are
finite in number. If ¢ is an ideal of R, by Corollary 1.2.11 we can find an
z € K* such that zc is an integral ideal coprime to b. But this means that
zc is not divisible by any prime ideal of R, hence z¢ = R, and so ¢ = (1/z)R
is a principal ideal, hence R is a principal ideal domain. o

1.2.2 Torsion Modules

We first show that one can split the study of finitely generated modules over a
Dedekind domain into two essentially nonoverlapping parts: the torsion-free
modules we have just studied (Corollary 1.2.25 in particular) and the torsion
modules.

Proposition 1.2.29. Let M be a finitely generated R-module, and let Miors
be the torsion submodule of M. Then there exists a torsion-free submodule N
of M such that

M= Mtors &N .

Proof. If P = M/Mo.s, then P is torsion-free. Indeed, if y € Piors, there
exists a € R \ {0} such that ay € M., and hence there exists b € R\ {0}
such that bay = 0, 50 y € Miors since R is an integral domain, and so y = 0.
From Theorem 1.2.19, we deduce that P is a projective R-module. It follows
that there exists a linear map h from P to M such that f o h = idp, where
we denote by f the canonical surjection from M onto P = M/M;es. From
Lemma 1.2.17 we deduce that M = h(P) @ M;ors, and, since h is injective,
N = h(P) is isomorphic to P, hence is projective (or torsion-free), thus
proving the proposition. O

Thus, to finish our study of the structure of finitely generated modules
over Dedekind domains, it remains only to study torsion modules. The main
result is the following theorem.

Theorem 1.2.30. Let M be a finitely generated torsion module over a
Dedekind domain R. There exist nonzero integral ideals v1,...,0,, different
from R, and elements w; € M such that

(1) M =(R/o)w1 & & (R/0)wr,
(2) 0,1 C0; for2<i<r.

The ideals 9; are unique and depend only on the isomorphism class of M.
We first prove two lemmas that are of independent interest.

Lemma 1.2.31. Let S be a finite set of prime ideals of R and let z € K*
such that vy(z) > 0 for allp € S. There exist n and d in R such that x = n/d
and d not divisible by any p in S.
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Proof. Let £ = n/d with n and d in R, for the moment arbitrary. By the
approximation theorem, there exists b € K such that

VpES, vp(b) = —vp(d) and  Vp ¢S, vp(b) >0 .

1t follows that for p € S, vp(db) = 0 and for p ¢ S, vp(db) > 0, so db € R and
is not divisible by any p in S. Since for all p € S, v,(z) > 0 or, equivalently,
vy (n) > vp(d), it follows that vy (nb) > v,(db) = 0 for p € S and vy(nd) > 0
for p ¢ S, hence nb € R, so z = (nb)/(db) is a suitable representation of
T. a

Lemma 1.2.32. Let a be a nonzero integral ideal of R and set
B={zeK/Vp|a, vp(z) >0} .
Then

m
B={s=7/ndeR @Ra)=1} ;

in other words, B = S™'R, where S is the multiplicative set of elements
of R coprime to a. (We write (I,J) = 1 for two integral ideals I and J
to mean that they are coprime — in other words, that I + J = R.)

(2) B is a principal ideal domain.

Proof. (1). It is clear that if (dR,a) = 1, then vy(n/d) = vp(n) > 0 for
all p | a, and hence n/d € B. Conversely, let z € B. Taking for S the set
of prime ideals dividing a, it follows from Lemma 1.2.31 that one can write
z = n/d with n and d in R and d coprime to a, proving (1).

(2). It is clear that B is a ring, and it is also a domain since B C K. By
general properties of rings of fractions S~! R, we know that the prime ideals
of B are exactly the ideals S~!p for the prime ideals p such that pN S = @,
hence in our case the prime ideals dividing a, which are finite in number. Since
B = S~1Ris also a Dedekind domain, it follows from Proposition 1.2.28 that
B is a principal ideal domain. o

Proof of Theorem 1.2.30. Let a be the annihilator of M in R, so that
a={z€R/zM ={0}} .

Clearly, a is an R-module contained in R, hence is an integral ideal, and it is
nonzero since M is a finitely generated torsion module (it is the intersection
of the annihilators of some generators of M, hence a finite intersection of
nonzero ideals). Call B the ring defined in Lemma 1.2.32 above. Then B is a
principal ideal domain. Furthermore, if z € B, then ¢ = n/d with (dR,a) = 1;
hence dR+ a = R. Multiplying by M, we obtain dM = M, hence M = M/d,
and so M =nM/d C M; hence BM C M, and so BM = M sincel € B. It
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follows that M can be considered as a B-module instead of as an R-module.
The main advantage is that B is a principal ideal domain. Since R C B,
M is still a torsion module. Hence the structure theorem for modules over
principal ideal domain applies and we deduce that

M~B/b;®---®B/b,

for some integral ideals b; of B, not equal to {0} or B, and such that b;_; C b;
for2<i<r.

Since B = S~!R and b; = S~'0; for some ideal 9; divisible only by prime
ideals dividing a, we have B/b; ~ R/0;, showing the existence of ideals ?;
such that M ~ @ R/v;. Let f be the isomorphism from € R/0; to M.
Then, if we let w; = f(0,...,1,...,0) (with 1 at the ith component), we
have M = @(R/0;)w; as desired. The uniqueness statement follows from the
uniqueness of the b;. 0

Thanks to Theorem 1.2.30, we can give the following definition.

Definition 1.2.33. (1) Let M be a finitely generated torsion module over a
Dedekind domain R, and let 0; be the ideals given by Theorem 1.2.30. We
will say that the O; are the invariant factors or the elementary divisors of
M, and the ideal product a = 0y - -- 3, will be called the order-ideal of the
torsion module M.

(2) Let P and Q be two finitely generated, torsion-free R-modules having the
same rank and such that P C Q. The order-ideal of the torsion module
Q/P will be called the index-ideal of P into Q and denoted [Q : P).

(3) More generally, if P and Q are two finitely generated, torsion-free R-
modules having the same rank and such that PN Q is also of the same
rank, then the (fractional) indez-ideal of P into Q) is defined by the for-
mule [Q: P)=[Q:PNQ)-[P:PNQ]™

It is easy to see that the definition of the fractional index-ideal does not
depend on the common submodule of P and @ that is chosen, as long as it
is of maximal rank.

When R = Z, the unique positive generator of the order-ideal of a finite
Z-module M is clearly equal to the order of M. When R = Zg for some
number field K, the order-ideal of a Z gx-module M is a nonzero ideal a of
Z g, and by the multiplicativity of the norm, we can recover the order itself by
the formula |M| = |Zk/a| = M (a). Thus, the order-ideal is a richer invariant
than the order.

We also have the following simple proposition.

Proposition 1.2.34. Assume that there exist nonzero ideals a; such that an
R-module M satisfies M ~ @, ;<) R/ai. Then the order-ideal of M is equal

to HlSiSk a;.
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Proof. This immediately follows from the fact that the order-ideal is un-
changed by module isomorphism, and that the order-ideal of a product of
two modules is equal to the product of the order-ideals. O

We end this section with the elementary divisor theorem for torsion-free
modules, which is now easy to prove using the above techniques.

Theorem 1.2.35. Let M and N be two torsion-free (or projective) modules
of rank m and n, respectively, such that N C M (son < m). There exist frac-
tional ideals by,...,b, of R, a basis (e1,...,em) of V. = KM, and integral
ideals 01, ...,0, such that

M= 5161 @"'@bmem, N-_—a]_blel @---@Dnbnen

and 0,1 C0; for2<i < n.
The ideals 0; (for 1 < i < n)and the ideal classes of the ideal products
by ---b, and b,y - - by, depend only on M and N.

Proof. Let us first prove uniqueness, so let 9; and b; be ideals as in the
theorem. Since b;/0;0; ~ R/0;, we have

M/N~R/%;®--R/o,®R™" |

hence (M/N)tors =~ R/01 @ - - - R/0p, so the uniqueness statement for the ;
follows from the uniqueness statement of Theorem 1.2.30. Furthermore, M ~
b1® - -®byp ~ R™ Dby --- b,, by Lemma 1.2.20, and similarly N ~ R*~! &
01 ---0nby---b,. By Corollary 1.2.24, the ideal class of 01 :-:0,b;:--b, is
well-defined, hence also that of by - - - b, since the 9; are unique. Finally, the
ideal class of by - - - b,,, is well-defined, hence also that of by, 4 - - - by,

To prove the existence statement, we first reduce to the case where m =n
by writing M/N = (M/N)tors @ M’ for some torsion-free module M’, which
can be done using Proposition 1.2.29. If we set M" = {x € M/ zmod N €
(M/N)iors }, then M" /N = (M/N)ors- Hence, once suitable ideals 9; and b;
are found for the pair (M", N), we add some extra ideals b; by using Theorem
1.2.19 applied to the torsion-free module M'.

Hence, we now assume that m = n, so M/N is a finitely generated torsion
module. We prove the result by induction on n. Assume that n > 1 and that
it is true for n — 1. By Theorem 1.2.30, we have M/N = @, aw; for
certain ideals 9;. Using the same method as in the proof of Theorem 1.2.19,
we see that if by = {z € K/ zw; € M}, then M = byw;, ® g(M/byw1), where
g is a section of the canonical projection of M onto M/byw;. Similarly, if
¢q = {z € K/ zwi € N}, then N = qqw; & ¢'(N/cyw1). Since N C M, we
have ¢; C by, and in fact ¢; = b10;, and in addition ¢’ can be taken to be the
restriction of g to N/cyw;. Thus, we apply our induction hypothesis to the
modules N¢;wy C M/bjw; of rank n—1, and we obtain the desired result. O
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Remark. The reader will have noted that in many cases we have tried as
much as possible to give equalities between modules, and not simply isomor-
phisms, even if the isomorphisms are canonical. This is essential in algorithmic
practice.

We now have at our disposal the main theoretical results we will need
about finitely generated modules over Dedekind domains. We will always
implicitly assume that all R-modules are finitely generated.

In the next section, we will study the algorithmic aspects. The reader
will notice that many of the algorithms that will be described give alternate
proofs of the theoretical results.

1.3 Basic Algorithms in Dedekind Domains

From now on, R will denote a Dedekind domain in which it is possible to
compute efficiently. The reader can think of R = Zg, since this is the only
application that we have in mind (see [Coh0, Sections 4.6.1 and 4.6.2] for
a brief overview). However, the ring R could also be a maximal order in a
global field of positive characteristic, for example.

1.3.1 Extended Euclidean Algorithms in Dedekind Domains

Proposition 1.3.1. Given two coprime integral ideals a and b in R, we can
find in polynomial time elements a € a and b € b such thata+b=1.

Proof. Since this is a very simple but basic proposition, we give the proof
as an algorithm.

Algorithm 1.3.2 (Extended Euclid in Dedekind Domains). Let R be a

Dedekind domain in which one can compute, and let (w;)1<i<n be an inte-

gral basis chosen so that wy = 1 (it is easy to reduce to this case, and in practice

it is always so). Given two coprime ideals a and b given by their HNF matrices

A and B on this integral basis, this algorithm computes a € a and b € b such

thata+b=1.

1. [Apply Hermite] Let C be the n x 2n matrix obtained by concatenating A
and B (we will denote this by C « (A|B)). Using one of the polynomial-
time algorithms for HNF reduction (see, for example, [Coh0, Section 2.4.2]),
compute an HNF matrix H and a 2n x 2n unimodular matrix U such that
CU = (0|H).

2. [Check if coprime] If H is not equal to the n x n identity matrix, output
an error message stating that a and b are not coprime, and terminate the
algorithm.

3. [Compute coordinates| Set Z + Upnyi, the (n+ 1)st column of the matrix U,
and let X be the n-component column vector formed by the top n components

of Z.
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4. [Terminate] Let a be the element of K whose coordinate vector on the integral
basis is AX, and set b + 1 —a. Output a and b, and terminate the algorithm.

Indeed, the HNF of the matrix C is the HNF of the ideal a-+b. Since a and
b are coprime, it is the identity matrix. It follows that CZ = (1,0,...,0)".
If we split Z into its upper half X and its lower half Y, it is clear that AX
and BY represent on the integral basis elements a € a and b € b such that
a + b =1, and hence the algorithm is valid. O

Implementation Remarks

(1) It was, of course, not really necessary in the proof that the ideals be given
by HNF matrices, but only by Z-bases. If we really do have HNF bases,
the first column of the matrix A of a will correspond to a generator z, of
a N Z, and similarly the first column of B will correspond to a generator
zp of b N Z. Frequently, 2, and 2z, will be coprime. In that case, the
usual extended Euclidean algorithm will easily find » and v such that
uz, + v2zp = 1, and we can take a = uz, and b = vz,.

(2) Since the algorithm underlying this proposition will be absolutely basic
to all our algorithms on Dedekind domains, we must ensure that it gives
results that are as reasonable as possible. Indeed, the elements a and b
are not unique and can be modified by adding and subtracting from a
and b, respectively, some element of the ideal product ab. Hence it would
be nice to have an element r € ab such that a —r is “small” (and then we
replace a by a—r and b by b+7 = 1— (a—r), which will also be “small”).
In Algorithm 1.4.13 we will see how this can be done reasonably well.

(3) This is the most important part of this chapter, where we specifically use
the fact that the Dedekind domain R is the ring of integers of a number
field, so as to be able to compute a and b in polynomial time.

We now come to a theorem that is trivial to prove but is the basic tool for
our algorithms. It is a generalization to Dedekind domains of the extended
Euclidean algorithm, as follows.

Theorem 1.3.3. Let a and b be two (fractional) ideals in R, let a and b be
two elements of K not both equal to zero, and set ® = aa + bb. There exist
u € ad~ ! and v € bO~! such that au + bv = 1, and these elements can be
found in polynomial time.

Proof. If a (resp., b) is equal to zero, we can take (u,v) = (0,1/d) (resp.,
(u,v) = (1/a,0)), since in that case we have 1/b € bd~! = R/b (resp.,
1/a € ad~! = R/a). So assume a and b are nonzero.

Set I = aad~! and J = bb0d~}. By the definition of 97!, I and J are
integral ideals and we have I + J = R. By Proposition 1.3.1, we can thus find
in polynomial time e € I and f € J such that e+ f = 1, and clearly u = e/a
and v = f/b satisfy the conditions of the lemma. u}
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Remark. Although this proposition is very simple, we will see that the
essential conditions v € ad™! and v € bd~! bring as much rigidity into the
problem as in the case of Euclidean domains, and this proposition will be
regularly used instead of the extended Euclidean algorithm. It is, in fact,
clear that it is an exact generalization of the extended Euclidean algorithm.
Note that this lemma is useful even when R is a principal ideal domain, since
R is not necessarily Euclidean.

We also need the following.

Proposition 1.3.4. Let a, b, ¢, 0 be fractional ideals of R, and let a, b, c,
d be elements of K. Set e = ad — be, and assume that

ab=ed, acacl, bebcl, ceal, debo!.

Finally, let z and y be two elements of an R-module M, and set

a c
@ =6 3
Then
az +by=cz’' +0oy .
Proof. We have ' = ax + by and y' = cz + dy; hence

ez’ + 0y’ C (ac+ cd)z + (be + do)y C az + by .

Conversely, we have £ = (dz' — by')/e and y = (—cz' + ay')/e; hence
1
az + by C E(aba”lx' +abc™ty)
and since ab C ec?,

az+by Cd@ 7z + )=’ + 0y,

thus showing the double inclusion.

Note that, although we have used only the inclusion ab C ecd in the
proof, the hypotheses on q, b, ¢, and d imply that ecd C ab, so we must have
equality. O

Corollary 1.3.5. Let a and b be two ideals, a and b be two elements of K
not both zero, ® = aa+bb, and u € ad0~!, v € bd~! such that au+bv =1 as
given by Theorem 1.3.3.

Let x and y be two elements of an R-module M, and set

@ =6,

Then
az + by = abd 12’ + 0y’ .
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Proof. Since b € b~10 and a € a~!0, this is clearly a special case of
Proposition 1.3.4 with ¢ = abd™1. ]

Corollary 1.3.6. Let a, b be two ideals. Assume that a, b, ¢, and d are four
elements of K such that

ad—bc=1, a€a, beb, ceb™!, deal.

Let 1t and y be two elements of an R-module M, and set

(e v)=(s v) (Z Z)

Then
az + by = Rz’ + aby’ .

Proof. This is also a special case of Proposition 1.3.4 with ¢ = R and
0 = ab. We will see in Proposition 1.3.12 how to find @, b, ¢, and d, given a
and b. B

Remarks

(1) The type of elementary transformation described in Proposition 1.3.4,
particularly in its two corollaries above, will be the only one we are
allowed to use. For example, if we want simply to replace = by = — gy for
some g in the field K (which is the usual elementary transformation), we
must have g € ba™!, as can easily be checked.

(2) With the notation of Proposition 1.3.4, note that we also have the formal

equality
(1 o7l) = (a7 b1) (a C)

Indeed, since @ € ac~! and b € bc™!, it is clear that aa™! + bb~1 C
¢~L. Conversely, since e = ad — bc, we have e € abd™! + bad™*, hence
ecd C abc + bac, and since ab = ecd, we obtain the reverse inclusion
¢! C aa~! 4+ bb~L. The second equality 9! = ca~! +db~! is proved in a
similar manner. We will see in Section 1.7 that the “real” reason for these
identities is that for any nonzero ideal a, the ideal a=! can be canonically
identified with the set of R-linear maps from a to R (see Exercise 6).

1.3.2 Deterministic Algorithms for the Approximation Theorem

It will also be useful (although not essential) to have some algorithms linked
to the approximation theorem in Dedekind domains. In this section, we give
straightforward deterministic versions, but in practice it is much better to
use the randomized methods that we explain in the next section.
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Proposition 1.3.7. Given ideals a; for 1 <i < k whose sum is equal to R,
we can in polynomial time find elements a; € a; such that Y ;a; = 1.

Proof. Same proof as for Proposition 1.3.1, except that we concatenate
the k HNF matrices of the ideals and we split Z into k pieces at the end.
Note that the matrix U will be an nk x nk unimodular matrix, which can
become quite large. O

Proposition 1.3.8. Let S be a finite set of prime ideals of R and let
(ep)pes € Z5. There ezists a polynomial-time algorithm that finds a € K
such that vy(a) = ey forp € S and vy(a) >0 forp ¢ S.

Proof. We can write e, = f, — gp with f, > 0 and g, > 0. If we can find n
(resp., d) such that the conditions are satisfied with e, replaced by f, (resp.,
gp), it is clear that a = n/d satisfies our conditions. Thus, we may assume
that e, > 0 for p € S. Following the classical proof (see, for example, [Coh0,
Proposition 4.7.8]), we compute the ideal product

I = H pe;.-f‘l

peS
and we set for each p € S
ap = I_p—€p—'1 .

Then the a, are integral ideals that sum to R, so by Proposition 1.3.7, we can
in polynomial time find a, € a, whose sum is equal to 1. Furthermore, we can
find b, € p \ pe»*! (for example, by taking the epth power of an element
of p \ p? which can be found in polynomial time). Then a = Zpe gapbp is a
solution to our problem.

Corollary 1.3.9. Given two integral ideals a and b of R such that the fac-
torization of the norm of b is known, there ezists a polynomial-time algorithm
that finds x € K such that za is an integral ideal coprime to b, and similarly
finds y € K such that ya~* is an integral ideal coprime to b.

Proof. For z, apply Proposition 1.3.8 to S equal to the prime ideal factors
of b and to e, = —vp(a) for all p € S. For y, apply Proposition 1.3.8 to S
equal to the prime ideal factors of a and band to e, = vp(a) forallp€ S. O

Proposition 1.3.10. Let a be an integral ideal of R and a € a, a # 0.
Assume that the prime ideal factorization of a is known. Then there ezists a
polynomial-time algorithm that finds b € a such that a = aR + bR.

Proof. Write aR = Hp p® with e, > 0. Thus, a = Hp p?*(®) with 0 <
vp(a) < e,. By Proposition 1.3.8 we can, in polynomial time, find b € R such
that vp(b) = vp(a) for all p | a; by looking at p-adic valuations, it is clear that
a=aR+bR. O
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Remarks
Recall that R is the ring of integers of a number field.

(1) If p is a prime ideal given by a Z-basis, the above proposition shows that
we can, in polynomial time, find a two-element generating system for
p. Indeed, we take @ = p, and using the polynomial-time algorithm of
Buchmann and Lenstra (see [Coh0, Algorithm 6.2.9]), we can factor pR
into prime ideals so the condition is satisfied.

(2) To factor a it is enough to factor the absolute norm A(a) € Z of aq,
since we can use the Buchmann-Lenstra algorithm to factor into prime
ideals the prime factors of A'(a), then use [Coh0, Algorithm 4.8.17] for
computing p-adic valuations, which is also polynomial-time as soon as a
two-element generating set is known for every prime ideal p, which is the
case by (1).

(3) As mentioned earlier, it is much faster in practice to perform a search
for the elements that we need in Corollary 1.2.11 and Proposition 1.3.10.
Of course, the time to perform this search is a priori exponential, but
in practice it will always be very fast (see Algorithms 1.3.14 and 1.3.15
below).

The strong form of the approximation theorem can be dealt with in the
same manner:

Proposition 1.3.11. Let S be a finite set of prime ideals of R, let (ep)pes €
Z5, and let (z,)pes € KS. Then there eists a polynomial-time algorithm that
finds z € K such that vy(x —zp) =€, forp € S and vp(z) 20 forp ¢ S.

Proof. Assume first that the e, are nonnegative and z, € R. Then we
introduce the same ideals I and a, and elements a, as in the proof of Propo-
sition 1.3.8. If we set

z= Z apTp ,

peS

it is easy to see that z satisfies the required conditions.

Consider now the general case. Let d € R be a common denominator for
the z,, and multiply d by suitable elements of R so that e, + vy(d) > 0 for
all p € S. According to what we have just proved, there exists y € R such
that

VpeS, wv(y—dzp)=ep+v,(d) and
Vpld, p¢ S, vp(y—dzp) =v,(d) .

It follows that = = y/d satisfies the given conditions. O
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Finally, we show how to find elements satisfying Corollary 1.3.6.

Proposition 1.3.12. Let a and b be two (fractional) ideals in R. Assume
that the prime ideal factorization of a or of b is known. Then it is possible
to find in polynomial time elementsa € a, b€ b, ce€ b™!, and d € a™? such
that ad — bc = 1.

Proof. Multiplying if necessary a and b by an element of Q*, we can reduce
to the case where a and b are integral ideals. Assume, for example, that the
factorization of b is known. According to Corollary 1.2.11, we can, in poly-
nomial time, find a € R such that aa~! is an integral ideal (or, equivalently,
a € a) and coprime to b. According to Proposition 1.3.1, we can thus find
e€aatand f € bsuchthat e+ f =1. Clearly, b= f,c=-1,and d = e/a
satisfy the required conditions. O

Remark. All of the above can also be done in polynomial time without
knowing any prime ideal factorizations by using factor refinement, which we
will not explain here (see [Bac-Shal}).

1.3.3 Probabilistic Algorithms

The algorithms given above suffer from two defects. First, although they
are polynomial-time, they are rather slow; second, the size of the computed
objects will usually be unreasonably large. We have given the algorithms just
to show their existence (in any case, they are all very easy), but in practice
it is much better to use randomized algorithms, as is usually the case in
computational problems. Although we have already done so, we explicitly
specialize to R = Z .

In all these randomized algorithms, we will have to pick at random ele-
ments from a given fractional ideal. This can be done in the following simple
way.

Algorithm 1.3.13 (Random Element in an Ideal). Let a be an ideal of a

number field K of degree m over Q@ given by some generating system over Z.

This algorithm outputs a small random element of a.

1. [LLL-reduce] Using an algorithm for LLL-reduction, compute an LLL-reduced
basis (a;)1<i<m for the ideal a.

2. [Output random element] For 1 < i < m, let z; be randomly chosen integers
such that |z;| < 3. Output Y, ., ., Tia; and terminate the algorithm.

Remarks

(1) On the one hand, it is essential to do an LLL-reduction in the first step so
as to have small elements. On the other hand, in practice this algorithm
is not used as written since we will need several random elements from
the same ideal a. Hence, we compute once and for all an LLL-reduced
basis of a, and then execute step 2 as many times as necessary.
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(2) The constant 3 used in step 2 is arbitrary but is more than sufficient for
essentially all purposes. Probably the constant 2 would also be more than
enough, and perhaps even the constant 1 for most applications. Since a
factor of 3 in the size of the coefficients is usually not too costly, the
constant 3 seems a good choice.

We now give simple-minded but efficient randomized versions of the algo-
rithms implicit in Corollary 1.3.9, Proposition 1.3.10, and Proposition 1.3.12.

Algorithm 1.3.14 (Coprime Ideal Class). Given two integral ideals a and b

of a number field K of degree m over Q, this algorithm computes a € K such

that aa is an integral ideal coprime to b.

1. [Compute a~!] Using [CohO, Algorithm 4.8.21], compute the HNF of the ideal
a~! on some fixed integral basis, then an LLL-reduced basis (a;) of a~!.

2. [Pick random element] Using the (a;) and step 2 of Algorithm 1.3.13, pick a

small random element a € a~ 1.

3. [Check if OK] Form the m x 2m matrix M whose first m columns give the
product of a by the basis elements of a, and the last m columns gives a Z-basis
of b on the fixed integral basis. Compute the HNF of the ideal sum aa+ b by
computing the HNF of the matrix M. If this HNF is not equal to the identity
matrix, go to step 2. Otherwise, output a and terminate the algorithm.

Since o is chosen in a~!, we have aa+b = Z if and only if vy (@) = —vy(a)
for every prime ideal p dividing b. This occurs with probability J], (1 -
1/(N(p))), so the algorithm should be successful quite rapidly. a

We leave as a (trivial) exercise for the reader to write the corresponding
algorithm for computing 8 € K such that Sa~! is coprime to b (Exercise 10).
In fact, we will use it implicitly in Algorithm 1.3.16.

Remark. In this algorithm as well as in the following two, it is not really
necessary to compute the full HNF of the matrix M, only the determinant
of this HNF, which usually can be done much faster.

Algorithm 1.3.15 (Two-Element Representation). Given a fractional ideal a
in a number field K and a nonzero element a € a, this algorithm computes b € a
such that a = aZ g + bZ .

1. [Compute an LLL-reduced basis] If not given in this form, compute first the
HNF matrix A of the ideal a on a fixed integral basis. Then, using an LLL
algorithm, compute an LLL-reduced basis (a;)i<i<m of a.

2. [Compute matrix M,] Compute the matrix M, whose columns give on a fixed
integral basis the product of a by the elements of the integral basis (thus M,
will be equal to al,, if a € Q).

3. [Pick random element] Using the (a;) and step 2 of Algorithm 1.3.13, pick a
small random element b € a, and compute the matrix M, in a similar way as
the matrix M,.
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4. [Check if OK] Compute the HNF of the matrix (M,|M;) obtained by con-
catenating the matrices M, and M. If it is not equal to A, go to step 3.
Otherwise, output b and terminate the algorithm.

A similar analysis to the one made above shows that even though the
algorithm may seem simple-minded, it is in fact rather efficient. O

Algorithm 1.3.16 (ad—bc = 1 Algorithm). Given two fractional ideals a and
b, this algorithm outputs four elements a, b, ¢, and d such that a € a, b € b,
ceb !, deal and ad —bc=1.

1. [Remove denominators] Let d; € Q (or even in K') be a common denominator
for the generators of a, and similarly dz for b, and set a < dya, b + d3b.

2. [LLL-reduce] Using an LLL-algorithm, compute an LLL-reduced basis (a;) of
a.

3. [Compute a~!] Using [CohO, Algorithm 4.8.21], compute the HNF of a=! on
some fixed integral basis.

4. [Pick random element] Using the (a;) and step 2 of Algorithm 1.3.13, pick a
small random element a € a.

5. [Check if OK] Form the m x 2m matrix M whose first m columns give the
product of a by the basis elements of a=!, and the last m columns give a
Z-basis of b on the fixed integral basis. Compute the HNF of the ideal sum
aa~! + b by computing the HNF of the matrix M. If this HNF is not equal
to the identity matrix, go to step 4.

6. [Euclidean step] Using Algorithm 1.3.2, compute e € aa™ and f € b such
thate+ f =1.

7. [Terminate] Set a « a/dy, b + f/da, ¢ + —ds, set d « ed;/a if a # 0,
d + dy otherwise, and terminate the algorithm.

Remarks

(1) In step 5, if we keep the unimodular transformation matrix U of the
HNF algorithm, the elements e and f necessary for step 6 can be read off
immediately as in Algorithm 1.3.2 by looking at an appropriate column
of U.

(2) The special case a = 0 can occur only if b = Z x (after step 1), and since
in that case a = 0 and bc = ~1, we can choose any value of d belonging
to a~t. Since after step 1, a is an integral ideal, 1 € a™!, and hence we
may take d = d;.

1.4 The Hermite Normal Form Algorithm in Dedekind
Domains

In this section we will consider only finitely generated, torsion-free R-
modules; we refer to Section 1.7 for torsion modules.
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1.4.1 Pseudo-Objects

In view of Theorem 1.2.25, it is natural to give the following definition.

Definition 1.4.1. Let M be a finitely generated, torsion-free R-module, and
setV=KM.

(1) A pseudo-element of V is a sub-R-module of V of the form aw with
w €V and a a fractional ideal of R or, equivalently, an equivalence class
of pairs (w,a) formed by an element of V and a fractional ideal of R
under the equivalence relation (w,a) R («',a') if and only if aw = a'w’
as sub-R-modules of rank 1 of V.

(2) The pseudo-element aw is said to be integral if aw C M.

(3) If a; are fractional ideals of R and w; are elements of V, we say that
(wi,ai)1<i<k s a pseudo-generating set for M if

M=aquw + - +arwi .
(4) We say that (ws,a:i)1<i<k is a pseudo-basis of M if
M=aquw & ®agwg .

Note that, according to Theorem 1.2.25, any finitely generated, torsion-
free module has a pseudo-basis.

Let (ws, 6;)1<i<n be a pseudo-basis of M. Then n is equal to the rank of
M. 1t is clear that, among other transformations, we can multiply a; by a
nonzero element of K as long as we divide w; by the same element, and we
will still have a pseudo-basis. In particular, if so desired, we may assume that
the a; are integral ideals, or that the w; are elements of M. On the other hand,
it is generally not possible to have both properties at once. For example, let
M = a be a nonprincipal, primitive integral ideal. The general pseudo-basis
of M is (a,a/a), and so to have both an element of M and an integral ideal,
we would need a € @ and a/a C R, which is equivalent to a = aR, contrary
to our choice of a.

Furthermore, restricting either to elements of M or to integral ideals
would be too rigid for algorithmic purposes, so it is preferable not to choose
a pseudo-basis of a particular type.

We will systematically represent finitely generated, torsion-free R-modules
by pseudo-bases. To be able to do this, we need to know how to compute such
pseudo-bases and how to perform usual operations on these pseudo-bases. As
in the case of R = Z, the basic algorithm for doing this is the Hermite
normal form algorithm, and we will see that such an algorithm does indeed
exist. Before doing this, however, let us see how one can go from one basis to
another.
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The following proposition is a generalization of Proposition 1.3.4.

Proposition 1.4.2. Let (w;,a;); and (1;,b;); be two pseudo-bases for an R-
module M, and let U = (u; ;) be the n x n matriz giving the n; in terms of
the w; (so that (m,...,Mn) = (w1,...,wn)U).

Seta=a;---a, and b = by---b,. Then u;; € a,-bj—l and a = det(U)b
(note that, by Theorem 1.2.25, we know that a and b are in the same ideal
class). Conversely, if there exist ideals b; such that a = det(U)b (with b =
b1 bn)and u;; € a,-bj_l, then (n;,b;); is a pseudo-basis of M, where the
n; are given in terms of the w; by the columns of U.

Proof. Since

n; € b;lM = b;l éa,wi = éaibj—lwi s

i=1 i=1

it follows that u;; € a;b7".

It is easily proven by linearity or by induction on n that e = det(U) €
ab~!, so eb C a. Similarly, the matrix U~! expresses the w; in terms of the
ni, so det(U~1) € ba~l. But since det(U~!) = 1/e, we have a/e C b or,
equivalently, a C eb, from which it follows that a = eb.

Conversely, if U has the above properties, by looking at the adjoint matrix
of U it is easy to see that U~! is of a similar form with a and b exchanged (it
is of course essential that a = det(U)b). If X = (=z1,...,z,)" is the column
vector of components of an element m of M in the pseudo-basis (w;, a;);, then
m=(wy,...,wn)X =(,...,0)U X, and U1 X = (y1,...,yn)" satisfies
y; € b; for 1 < i < n. Since the y; are unique, this shows that (n;,b;); is a
pseudo-basis of M, proving the proposition. O

It is clear that Proposition 1.3.4 is the special case n = 2 of this proposi-
tion. Since that special case is constantly used, however, we have presented
it separately.

Corollary 1.4.3. Let M be a finitely generated, torsion-free R-module to-
gether with a nondegenerate, bilinear pairing T(z,y) from M x M to R
(for example, M = Zp, where L is a number field containing K, and
T(z,y) = Trp/k(z - y)). For any pseudo-basis B = (wj,a;) of M, let
discr(B) be the ideal defined by discr(B) = det(T(w;,w;))a®, where as usual
a = ay---a,. Then if B' = (n;,b;) is another pseudo-basis of M, we have
diSCT(B’) = diSCT(B).

Proof. Note that, since in general w; ¢ M, in the above definition we
extend the bilinear form T to V x V (where V = K M) by bilinearity.

Let U be the matrix expressing the n; in terms of the w;. We know that
a = det(U)b. By bilinearity, it is clear that if G (resp., G') is the matrix of
the T'(w;,w;) (resp., T(ni,7m;)), then G' = U'GU. It follows that
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discr(B') = det(G')b? = det(G) det(U)?a?/ det(U)? = det(G)a? = disc(B).
O

Since discy(B) does not depend on the chosen pseudo-basis B, we will
denote it by 0r(M) and call it the discriminant ideal of M with respect to
the pairing T'(z,y).

Remark. We can also define det(T'(w;,w;)) as an element dr(M) €
K*/K *2 since, under a change of pseudo-basis, this determinant is mul-
tiplied by det(U)? € K*2. The pair discr(M) = (d7(M),dr(M)) will simply
be called the discriminant of M with respect to T. Note that knowledge of
one of the components of the pair does not imply knowledge of the other;
hence the pair itself is useful. In the absolute case where M = Z is the
ring of integers of a number field K considered as a Z-module and T is the
trace, the discriminant ideal 37 (M) gives the absolute value of the usual
discriminant, and dp (M) gives its sign (and some other information already
contained in 37 (M)).

Since we represent finitely generated, torsion-free modules by pseudo-
bases, we must also explain how to represent linear maps between such mod-
ules. This is done using the following proposition, which is, of course, similar
in nature to Proposition 1.4.2.

Proposition 1.4.4. Let (w;,a;); be a pseudo-basis for a finitely generated,
torsion-free module M, and similarly (w},a5); for a module M'. Let f be a
K -linear map from M' to M. There exists a matriz A = (a;;) such that
a;j € a,-a;»_1 and

f(; a;w;) _ z(; ) |

i

Conversely, if A = (a;;) 15 such that a;; € aia;-_l for all i, j, the above
formula defines a K -linear map f from M' to M.

Proof. The (very easy) proof is left to the reader (Exercise 11). The matrix
A will of course be called the matrix of the map f on the chosen pseudo-bases
of M’ and M. Note that we need only a matrix and not a pseudo-matrix (see
Definition 1.4.5) to represent a map. Thus, we will represent maps by such
matrices A. O

1.4.2 The Hermite Normal Form in Dedekind Domains

The main theorem of this section is that the notion of Hermite normal form
can be extended to Dedekind domains. As is well known, the Hermite normal
form algorithm is a direct generalization of the extended Euclidean algorithm.
Since we now have such an algorithm available to us (Theorem 1.3.3), it is
not surprising that this can be done.
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We first introduce a definition.

Definition 1.4.5. (1) A pseudo-matrix is a pair (A, I), where A = (a; ;) is
an n x k matriz with entries in K, and I = (a;) is a list of k fractional
ideals.

(2) The map associated with this pseudo-matriz is the map f from a; X - -Xag
to K™ defined by f(ay,...,ax) = lejSk a;jA;, where the A; are the
columns of A.

(3) The module associated with this pseudo-matriz is the module M =
21<j<k a;A; C K™, or in other words the image of the map f, so that
(A;,a;) is a pseudo-generating set for M. We will also call this module
the image of the pseudo-matriz (A,I).

(4) The kernel of the pseudo-matriz (A, I) is the kernel of the associated map
7.

Theorem 1.4.6 (Hermite Normal Form in Dedekind Domains). Let
(A, I) be a pseudo-matriz, where I = (a;) is a list of k fractional ideals, and
A = (a;;) is an n x k matriz. Assume that A is of rank n (so k > n) with
entries in the field of fractions K of R (we could just as easily consider the
case of a matriz of lower rank). Let M = 3. a;A; be the R-module asso-
ciated with the pseudo-matriz (A,I). There exist k nonzero ideals (b;)1<j<
and a k x k matriz U = (u; ;) satisfying the following conditions, where we
seta=a;---ar and b =by---by.

(1) For all i and j we have u; ; € u,-bj_l.
(2) We have a = det(U)b.
(3) The matriz AU is of the following form.:

0 0 ... 01 x ... =%
00 ... 00 1
00 ... 00 ... 0 1

where the first k — n columns are zero (we will write this in abbreviated
form as AU = (0|H)).

(4) If we call w; the elements corresponding to the nonzero columns of AU
and ¢; = bg_nyj for 1 < j < n, then

M=C1wl@"'@cnwn N

in other words, (wj,¢j)i1<j<n is a pseudo-basis of the image M of the
pseudo-matriz (A, I).

(5) If we denote by U; the columns of U, then (U;,b;)1<j<k—n s a pseudo-
basis for the kernel of the pseudo-matriz (A, I).
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Proof. We give the proof of the existence of the HNF as an algorithm,
very similar to [Coh0, Algorithm 2.4.5], which is the naive HNF algorithm.

Algorithm 1.4.7 (HNF Algorithm in Dedekind Domains). Given an n x k
matrix A = (a; ;) of rank n, and k (fractional) ideals a; in a number field K,
this algorithm computes k ideals b; and a k x k matrix U such that these data
satisfy the conditions of Theorem 1.4.6. We will make use only of elementary
transformations of the type given in Theorem 1.3.3 combined with Corollary
1.3.5. We denote by A; (resp., U;) the columns of A (resp., U).

1. [Initialize] Set ¢ « n, j < k, and let U be the k x k identity matrix.

2. [Check zero] Set m « j, and whilem > 1 and a;, =0, set m + m — 1. If
m = 0, the matrix A is not of rank n, so print an error message and terminate
the algorithm. Otherwise, if m < j, exchange A, with 4;, ap, with a;, Un,
with Uj, and set m « j.

3. [Put 1 on the main diagonal] Set A; « A;/a;;, U; « Uj/a; ;. and a; +
a; ja;. (We now have a; ; = 1.)

4. [Loop] If m = 1, go to step 6. Otherwise, set m <~ m — 1, and if a; , =0,
go to step 4.

5. [Euclidean step] (Here a; ; = 1 and a;,» # 0.) Using the algorithm contained
in the proof of Theorem 1.3.3, set 3 = a; ;am + a; and find u € 6,07}
and v € ;07! such that a; mu + v = 1. Then set (Am,4;) + (Am —
@i mAj, uAm+vA;), (Un,U;) < (Un—aimUj, uUpn+0U;), and (am, a;)
(ama;071,0). Finally, go to step 4.

6. [Final reductions of row i) For m = j+1,...,n, find g € amuj—1 such that
a;.m — g is small (see below), and set Ay, - Ap, —qA; and Uy, < U, — qUj.

7. [Finished?] If i = 1, then output the matrix U, the modified matrix A (the
matrix AU in the notation of Theorem 1.4.6), and the modified ideals a; (or
b, in the notation of Theorem 1.4.6), and terminate the algorithm. Otherwise,
seti<i—1,7+ j—1, and go to step 2.

Proof of Theorem 1.4.6 and Algorithm 1.4.7.

Ignoring step 6 for the moment, we clearly see that this algorithm, which
is essentially identical to the one for Z, terminates with a new matrix A of
the form required by Theorem 1.4.6. Furthermore, the elementary transfor-
mations that are used are either exchanges of columns (and the correspond-
ing ideals) or transformations allowed by Corollary 1.3.5; hence the module
a1wy + - -+ + agwy stays unchanged.

Call a the initial ideal product and b the current one. All the elementary
operations are of determinant +1 (in which case b is unchanged), except in
step 3 where the determinant is 1/a; ; and b is multiplied by a; ;; hence the
relation a = det(U)b is preserved throughout. We also clearly have u;; €
aibj_l. This shows (1), (2), and (3) of the theorem.
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Upon termination we have a direct sum, and not simply a sum, since the
last n columns of A are then linearly independent, showing (4).

Finally, let us prove (5). Since for all ¢, j we have u; ; € q; bj“1 and AU; =0
for 1 < j <k —n, it is clear that (Uj, b;) belongs to the kernel of (4,I) for
1 < j <k —n. Conversely, let X € a; x -+ X ar be an element of the kernel
of (A,I). Set Y = U7X = (y1,...,yx)". Since U is invertible, AX = 0 if
and only if AUU1X = AUY = 0 and, using the special form of the matrix
AU, if and only if y; =0 for k —n +1 < j < k. Hence, AX = 0 if and only
if X = UY = Y, ick—n¥iUj- By symmetry with (1), U™ = (v;;) with
Vi € biaj_l, hence y; € b; 50 X € 32, <4, b;Uj, as was to be proved. We
will come back to step 6 of the algorithm in Section 1.4.3. O

Remark. Note that this proof gives an algorithm to find an HNF of a
matrix, but this algorithm is certainly not polynomial-time since the cor-
responding naive algorithm for HNF over Z is already not polynomial-time
because of coefficient explosion. The existence of a polynomial-time algorithm
for HNF reduction (including finding the matrix U) is rather recent (see [Haf-
McC]). Note that in practice, n will be the relative degree of number fields
extensions, and so in many cases the naive algorithm will be sufficient.

We now consider the problem of uniqueness in Theorem 1.4.6. We first
need a definition.

Definition 1.4.8. Let (A,I) be a pseudo-matriz with I = (a;). If iy,...,ir
are v distinct rows of A and jy,...,Jr are r distinct columns, we define the
minor-ideal corresponding to these indices as follows. Let d be the determinant
of the r X r minor extracted from the given rows and columns of A. Then the
minor-ideal is the ideal daj, ---a; .

r

With this definition we can state the following result.

Theorem 1.4.9. With the notation of Theorem 1.4.6, for 1 < j < n, set
¢; = bg—ntj. Then the ideals c; are unique. More precisely, if we call g; =
g;(A) the ideal generated by all the (n +1 — j) X (n + 1 — j) minor-ideals in
the last n + 1 — j rows of the matriz A, then ¢; = gn+1_jg;1j.

Proof. One easily checks that the ideals g,,(A) are invariant under the
elementary transformations of the type used in Algorithm 1.4.7. In particular,
g;(A) = g;(AU). But in the last n+1— j rows of AU there is a single nonzero
minor whose value is trivially equal to 1; hence we have g;(A) = cp41—j - tn,
proving the theorem. 0

Proposition 1.4.10. If AU is of the form given by Theorem 1.4.6, a nec-
essary and sufficient condition for AV to be of the same form with the same
ideals b; for j > k —n is that U™V be a block matriz (8 ) with D an
n X n upper-triangular matriz with 1 on the diagonal such that for each i, j
the entry in row i and column j belongs to cicj_l.
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Proof. Trivial and left to the reader. o

Corollary 1.4.11. For each i and j with1 <i < j <n, let S;; be a system
of representatives of K[ cic;'l. Write AU = (0|H) as in Theorem 1.4.6. Then
in that theorem, we may assume that for every i and j such that i < j the
entry in row ¢ and column j of the matriz H is in S; ;, in which case the
matriz H is unique.

Proof. For i < j, let h; ; be the entry in row ¢ and column j of the matrix
H. There exists a unique h; ; € S; ; such that

— HK! -1
q= h’i,j - hi,j € Ge; o .

If the H; are the columns of H, then by Proposition 1.4.10 the replacement
of H; by H; — qH; is a legal elementary operation that transforms h; ; into
h; ;, proving the existence. The uniqueness follows also from this, since there
was a unique possible g. O

1.4.3 Reduction Modulo an Ideal

We can now comment on step 6 of Algorithm 1.4.7. By Corollary 1.4.11, the
reduction done in step 6 is legal. Ideally, for each ¢ and j, we would like to
find a system of representatives of K/ c,~cj_1 as well as an algorithm for finding
the representative of a given element of K. There are at least two different
methods for doing this, both of which have advantages and disadvantages.

The first method is to compute the (usual) HNF matrix H of cicjfl on
some fixed integral basis of K. If (d;)1<i<m are the diagonal elements of H
(with m = [K : Q]), then we can take S =[], .;,, Q/d;Z (and, for example,
the interval [0,d;[ as system of representatives of Q/d;Z). If z € K, we
express z as a column vector (with rational entries) on the integral basis and
then reduce z modulo c,-cj—l from bottom up by subtracting from z suitable
multiples of the columns of H so that the coordinates of z fall in the interval
[0, di[ for each 1.

We write this out explicitly as an algorithm.

Algorithm 1.4.12 (HNF Reduction Modulo an Ideal). Given an ideal a by

its m x m upper-triangular HNF matrix H = (h; ;) in some basis of K, and

an element £ € K given by a column vector X = (z;) in the same basis, this

algorithm computes a “canonical” representative of z modulo a, more precisely

an element y € K such that z — y € a and the coordinates y; of ¥ in the basis

satisfy 0 < y; < hi ;.

1. [Initialize] Set i < m, y « z.

2. [Reduce] Set q « |yi/hii). y < y — qH; (recall that H; is the ith column of
H).

3. [Finished?] If ¢ = 1, output y and terminate the algorithm; otherwise set
14 i—1 and go to step 2.
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This method has the advantage of giving a unique and well-defined rep-
resentative of z modulo c,-cj_l as well as an algorithm to find it. In practice,
however, it often happens that the first few rows of the HNF matrix H are
very large, and the others much smaller. Hence the resulting “reduced” ele-
ment will in fact often be quite large.

The second method consists of first finding an LLL-reduced basis L of
cicj_l, which will generally have much smaller entries than the HNF matrix

H. We must then find an element g € cic]-"1 such that £—q is small (we already
mentioned the need for this in the remarks following Proposition 1.3.1). It
is well known that this is a difficult problem (probably NP-complete). If,
however, we write x = Y, .., %;L; with z; € Q (where the L; are the
elements of the basis L) and choose

g= Y |zlL;

1<j<m

(where |a] denotes one of the nearest integers to a), it is clear that g € c; cj‘l
and that z — ¢ is reasonably “small”. Note that it is essential that the basis
L be LLL-reduced before doing this operation, otherwise £ — ¢ would not be
small at all in general.

We write this out explicitly as an algorithm.

Algorithm 1.4.13 (LLL-Reduction Modulo an Ideal). Given an ideal a by
an m x m matrix H = (h; ;) representing a Z-basis of a in some basis of K,
and an element z € K given by a column vector X = (z;) in the same basis,
this algorithm computes a noncanonical but “small” representative of z modulo
a, in other words an element y € K such that £ — y € a and the coordinates y;
of y in the basis are reasonably smalil.

1. [LLL-reduce] Using the LLL algorithm or one of its variants, let L be the matrix
of an LLL-reduced basis of a.

2. [Find coefficients] Using Gaussian elimination, find the solution Z = (z;) to
the linear system LZ = X (we have Z = L™1X, but it is faster to compute
Z directly than to invert L unless many elements are to be reduced modulo
the same ideal).

3. [Reduce] Set Y + X — >, ;<. | 2] Li, output the element y corresponding
to Y, and terminate the algorithm.

The main advantage of this method is that the reduced vector will have
much smaller entries. The reduction is not unique, however, and takes more
time since the LLL algorithm is usually slower than the HNF algorithm,
although it can of course be performed once and for all for a given ideal.
Only practice can tell which method will be preferable. In the modular HNF
method explained below, however, it is essential to use this method to avoid
coefficient explosion.
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The above algorithm can be improved by using an unpublished idea due
to Peter Montgomery. Instead of doing an LLL-reduction of the ideal, which
is an expensive operation, we can perform a fast partial reduction of the
matrix (a matrix A with columns A; will be said to be partially reduced if
for any distinct columns we have ||A4; = A4;]| > ||4;1}).

The resulting basis will usually not be LLL-reduced, but its entries will
be of much smaller size than the Hermite-reduced one. Furthermore, this
method is particularly well suited to matrices that have a few rows much
larger than the others, such as typical HNF matrices for ideals.
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