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Preface to the Second Edition

During the past twenty years many connections have been found between the
theory of analytic functions of one or more complex variables and the study of
commutative Banach algebras. On the one hand, function theory has been used to
answer algebraic questions such as the question of the existence of idempotents in
a Banach algebra. On the other hand, concepts arising from the study of Banach
algebras such as the maximal ideal space, the Šilov boundary, Gleason parts, etc.
have led to new questions and to new methods of proof in function theory.

Roughly one third of this book is concerned with developing some of the princi-
pal applications of function theory in several complex variables to Banach algebras.
We presuppose no knowledge of several complex variables on the part of the reader
but develop the necessary material from scratch. The remainder of the book deals
with problems of uniform approximation on compact subsets of the space of n

complex variables. For n > 1 no complete theory exists but many important
particular problems have been solved.

Throughout, our aim has been to make the exposition elementary and self-
contained. We have cheerfully sacrificed generality and completeness all along
the way in order to make it easier to understand the main ideas.

Relationships between function theory in the complex plane and Banach alge-
bras are only touched on in this book. This subject matter is thoroughly treated
in A. Browder’s Introduction to Function Algebras, (W. A. Benjamin, New York,
1969) and T. W. Gamelin’s Uniform Algebras, (Prentice-Hall, Englewood Cliffs,
N.J., 1969). A systematic exposition of the subject of uniform algebras including
many examples is given by E. L. Stout, The Theory of Uniform Algebras, (Bogden
and Quigley, Inc., 1971).

The first edition of this book was published in 1971 by Markham Publishing
Company. The present edition contains the following new Sections: 18. Subman-
ifolds of High Dimension, 19. Generators, 20. The Fibers Over a Plane Domain,
21. Examples of Hulls. Also, Section 11 has been revised.

Exercises of varying degrees of difficulty are included in the text and the reader
should try to solve as many of these as he can. Solutions to starred exercises are
given in Section 22.

ix



x Preface to the Second Edition

In Sections 6 through 9 we follow the developments in Chapter 1 of R. Gunning
amd H. Rossi, Analytic Functions of Several Complex Variables, (Prentice-Hall,
Englewood Cliffs, N.J., 1965) or in Chapter III of L. Hörmander, An Introduction
to Complex Analysis in Several Variables, (Van Nostrand Reinhold, New York,
1966).

I want to thank Richard Basener and John O’Connell, who read the original
manuscript and made many helpful mathematical suggestions and improvements.
I am also very much indebted to my colleagues, A. Browder, B. Cole, and B. We-
instock for valuable comments. Warm thanks are due to Irving Glicksberg. I am
very grateful to Jeffrey Jones for his help with the revised manuscript.

Mrs. Roberta Weller typed the original manuscript and Mrs. Hildegarde Kneisel
typed the revised version. I am most grateful to them for their excellent work.

Some of the work on this book was supported by the National Science
Foundation.

John Wermer
Providence, R.I.
June, 1975



Preface to the Revised Edition

The second edition of Banach Algebras and Several Complex Variables, by John
Wermer, appeared in 1976. Since then, there have been many interesting new
developments in the subject. The new material in this edition gives an account of
some of this work.

We have kept much of the material of the old book, since we believe it to be
useful to anyone beginning a study of the subject. In particular, the first ten chapters
of the book are unchanged.

Chapter 11 is devoted to maximum modulus algebras, a class of spaces that
allows a uniform treatment of several different parts of function theory.

Chapter 12 applies the results of Chapter 11 to uniform approximation by
polynomials on curves and arcs in Cn.

Integral kernels in several complex variables generalizing the Cauchy kernel
were introduced by Martinelli and Bochner in the 1940s and extended by Leray,
Henkin, and others. These kernels allow one to generalize powerful methods in
one complex variable based on the Cauchy integral to several complex variables. In
Chapter 13, we develop some basic facts about integral kernels, and then in Chapter
14 we give an application to polynomial approximation on compact sets in Cn.
Later, in Chapter 19, a different application is given to the problem of constructing
a complex manifold with a prescribed boundary.

Chapter 21 studies geometric properties of polynomial hulls, related to area,
and Chapter 22 treats topological properties of such hulls. Chapter 23 is concerned
with relationships between pseudoconvexity and polynomial hulls, and between
pseudoconvexivity and maximum modulus algebras.

A theme that is pursued throughout much of the book is the question of the
existence of analytic structure in polynomial hulls. In Chapter 24, several key
examples concerning such structures are discussed, both healthy and pathological.

At the end of most of the sections, we have given some historical notes, and
we have combined sketches of some of the history of the material of Chapters 11,
12, 20, and 23 in Chapter 25. In addition to keeping the old bibliography of the
Second Edition we have included a substantial “Additional Bibliography.”

Several other special topics treated in the previous edition are kept in the present
version: Chapters 16 and 17 deal with Hörmander’s theory of the ∂̄-equation in

xi



xii Preface to the Revised Edition

weighted L2-spaces, and the application of this theory to questions of uniform
approximation.

Chapter 18 is concerned with the existence of “Bishop disks,” that is, analytic
disks whose boundaries lie on a given smooth real submanifold of Cn, and near a
point of that submanifold.

Chapter 15 presents the Arens-Royden Theorem on the first cohomology group
of the maximal ideal space of a Banach Algebra.

The Appendix gives references for a number of classical results we have used,
without proof, in the text.

It is a pleasure to thank Norm Levenberg for his very helpful comments. Thanks
also to Marshall Whittlesey.

Herbert Alexander and John Wermer
January 1997



1

Preliminaries and Notation

Let X be a compact Hausdorff space.
CR(X) is the space of all real-valued continuous functions on X.
C(X) is the space of all complex-valued continuous functions on X. By a mea-

sure µ on X we shall mean a complex-valued Baire measure of finite total
variation on X.

|µ| is the positive total variation measure corresponding to µ.
‖µ‖ is |µ|(X)

C is the complex numbers.
R is the real numbers.
Z is the integers.

Cn is the space on n-tuples of complex numbers.
Fix n and let � be an open subset of Cn.

Ck(�) is the space of k-times continuously differentiable functions on �, k � 1,
2, . . . ,∞.

Ck
0 (�) is the subset of Ck(�) consisting of functions with compact support

contained in �.
H(�) is the space of holomorphic functions defined on �.

By Banach algebra we shall mean a commutative Banach algebra with
unit. Let A be such an object.

M(A) is the space of maximal ideals of A. When no ambiguity arises, we shall
write M for M(A). If m is a homomorphism of A → C, we shall
frequently identifiy m with its kernel and regard m as an element of M.
For f in A, M in M,

f̂ (M) is the value at f of the homomorphism of A into C corresponding to M .
We shall sometimes write f (M) instead of f̂ (M).

Â is the algebra consisting of all functions f̂ on M with f in A. For x in A,
σ(x) is the spectrum of x � {λ ∈ C|λ − x has no inverse in A}.

rad A is the radical of A. For z � (z1, . . . , zn) ∈ Cn,
|z| �

√
|z1|2 + |z2|2 + · · · + |zn|2.

For S a subset of a topological space,
Ṡ is the interior of S,

1



2 1. Preliminaries and Notation

S̄ is closure of S, and
∂S is the boundary of S.

For X a compact subset of Cn,
P(X) is the closure in C(X) of the polynomials in the coordinates.

Let � be a plane region with compact closure �̄. Then
A(�) is the algebra of all functions continuous on �̄ and holomorphic on �.

Let X be a compact space, L a subset of C(X), and µ a measure on X. We write
µ ⊥ L and say µ is orthogonal to L if∫

f dµ � 0 for all f in L

We shall frequently use the following result (or its real analogue) without
explicitly appealing to it:

Theorem (Riesz-Banach). Let L be a linear subspace f C(X) and fix g in C(X).
If for every measure µ on X

µ ⊥ L implies µ ⊥ g,

then g lies in the closure of L. In particular, if

µ ⊥ L implies µ � 0,

then L is dense in C(X).

We shall need the following elementary fact, left to the reader as

Exercise 1.1. Let X be a compact space. Then to every maximal ideal M of C(X)

corresponds a point x0 in X such that M � {f in C(X)|f (x0) � 0}. Thus
M(C(X)) � X.

Here are some example of Banach algebras.
(a) Let T be a bounded linear operator on a Hilbert space H and let A be the

closure in operator norm on H of all polynomials in T . Impose the operator
norm on A.

(b) Let C1(a, b) denote the algebra of all continuously differentiable functions on
the interval [a,b], with

‖f ‖ � max
[a,b]

|f | + max
[a,b]

|f ′|.

(c) Let � be a plane region with compact closure �̄. Let A(�) denote the algebra
of all functions continuous on �̄ and holomorphic in �, with

‖f ‖ � max
z∈�̄

|f (z)|.

(d) Let X be a compact subset of Cn. Denote by P(X) the algebra of all functions
defined on X which can be approximated by polynomials in the coordinates
z1, . . . , zn uniformly on X, with

‖f ‖ � max
x
|f |.



1. Preliminaries and Notation 3

(e) Denote by H∞(D) the algebra of all bounded holomorphic functions defined
in the open unit disk D. Put

‖f ‖ � sup
D

|f |.

(f) Let X be a compact subset of the plane. R(X) denotes the algebra of all
functions on X which can be uniformly approximated on X by functions
holomorphic in some neighborhood of X. Take

‖f ‖ � max
x
|f |.

(g) Let X be a compact Hausdorff space. On the algebra C(X) of all complex-
valued continuous functions on X we impose the norm

‖f ‖ � max
x
|f |.

Definition. Let X be a compact Hausdorff space. A uniform algebra on X is an
algebra A of continuous complex-valued functions on X satisfying

(i) A is closed under uniform convergence on X.
(ii) A contains the constants.

(iii) A separates the points of X

A is normed by ‖f ‖ � maxx |f | and so becomes a Banach algebra.
Note that C(X) is a uniform algebra on X, and that every other uniform algebra

on X is a proper closed subalgebra of C(X). Among our examples, (c), (d), (f),
and (g) are uniform algebras; (a) is not, except for certain T , and (b) is not.

If A is a uniform algebra, then clearly

(1) ‖x2‖ � ‖x‖2 for all x ∈ A.

Conversely, let A be a Banach algebra satisfying (1). We claim that A is
isometrically isomorphic to a uniform algebra. For (1) implies that

‖x4‖ � ‖x‖4, . . . , ‖x2n‖ � ‖x‖2n

, all n.

Hence

‖x‖ � lim
k→∞

‖xk‖1/k � max
M
|x̂|.

Since A is complete in its norm, it folows that Â is complete in the uniform norm
on M, so Â is closed under uniform convergence on M. Hence Â is a uniform
algebra on M and the map x → x̂ is an isometric isomorphism from A to Â.

It follows that the algebra H∞(D) of example (e) is isometrically isomorphic
to a uniform algebra on a suitable compact space.

In the later portions of this book, starting with Section 10, we shall study uniform
algebras, whereas the earlier sections (as well as Section 15) will be concerned
with arbitrary Banach algebras.



4 1. Preliminaries and Notation

Throughout, when studying general theorems, the reader should keep in mind
some concrete examples such as those listed under (a) through (g), and he should
make clear to himself what the general theory means for the particular examples.

Exercise 1.2. Let A be a uniform algebra on X and let h be a homomorphism of
A → C. Show that there exists a probability measure (positive measure of total
mass 1) µ on X so that

h(f ) �
∫

x

f dµ, all f in A.



2

Classical Approximation Theorems

Let X be a compact Hausdorff space. Let A be a subalgebra of CR(X) which
contains the constants.

Theorem 2.1 (Real Stone-Weierstrass Theorem). If A separates the points ofX,
then A is dense in CR(X).

We shall deduce this result from the following general theorem:

Proposition 2.2. Let B be a real Banach space and B∗ its dual space taken in the
weak-∗ topology. Let K be a nonempty compact convex subset of B∗. Then K has
an extreme point.

Note. If W is a real vector space, S a subset of W , and p a point of S, then p is
called an extreme point of S provided

p � 1
2 (p1 + p2), p1, p2 ∈ S ⇒ p1 � p2 � p.

If S is a convex set and p an extreme point of S, then 0 < θ < 1 and p �
θp1 + (1 − θ)p2 implies that p1 � p2 � p.

We shall give the proof for the case that B is separable.

Proof. Let {Ln} be a countable dense subset of B. If y ∈ B∗, put

Ln(y) � y(Ln).

Define

l1 � sup
x∈K

L1(x).

Since K is compact and L1 continuous, l1 is finite and attained; i.e., ∃x1 ∈ K with
L1(x1) � l1. Put

l2 � sup L2(x) over all x ∈ K, with L1(x) � l1.

5



6 2. Classical Approximation Theorems

Again, the sup is taken over a compact set, contained in K , so ∃x2 ∈ K with

L2(x2) � l2 and L1(x2) � l1.

Going on in this way, we get a sequence x1, x2, . . . in K so that for each n.

L1(xn) � l1, L2(xn) � l2, . . . , Ln(xn) � ln,

and

ln+1 � sup Ln+1(x) over x ∈ K with L1(x) � l1, . . . , Ln(x) � ln.

Let x∗ be an accumulation point of {xn}. Then x∗ ∈ K .
Lj(xn) � lj for all large n. So Lj(x

∗) � lj for all j .
We claim that x∗ is an extreme point in K . For let

x∗ � 1
2 y1 + 1

2 y2, y1, y2 ∈ K.

l1 � L1(x
∗) � 1

2 L1(y1) + 1
2 L1(y2).

Since

L1(yj ) ≤ l1, j � 1, 2, L1(y1) � L1(y2) � l1.

Also,

l2 � L2(x
∗) � 1

2 L2(y1) + 1
2 L2(y2).

Since L1(y1) � l1 and y1 ∈ K, L2(y1) ≤ l2. Similarly, L2(y2) ≤ l2. Hence

L2(y1) � L2(y2) � l2.

Proceeding in this way, we get

Lk(y1) � Lk(y2) for all k.

But {Lk} was dense in B. It follows that y1 � y2. Thus x∗ is extreme in K .

Note. Proposition 2.2 (without separability assumption) is proved in [23, pp. 439-
440]. In the application of Proposition 2.2 to the proof of Theorem 2.1 (see below),
CR(X) is separable provided X is a metric space.

Proof of Theorem 2.1. Let

K � {µ ∈ (CR(X))∗|µ ⊥ A and ‖µ‖ ≤ 1}.
K is a compact, convex set in (CR(X))∗. (Why?) Hence K has an extreme point σ ,
by Proposition 2.2. Unless K � {0}, we can choose σ with ‖σ‖ � 1. Since 1 ∈ A
and so ∫

1 dσ � 0,

σ cannot be a point mass and so ∃ distinct points x1 and x2 in the carrier of σ .



2. Classical Approximation Theorems 7

Choose g ∈ A with g(x1) �� g(x2), 0 < q < 1. (How?) Then

σ � g · σ + (1 − g)σ � ‖gσ‖ gσ

‖gσ‖ + ‖(1 − g)σ‖ (1 − g)σ

‖(1 − g)σ‖ .

Also,

‖gσ‖ + ‖(1 − g)σ‖ �
∫

g d|σ | +
∫

(1 − g) d|σ | �
∫

d|σ | � ‖σ‖ � 1.

Thus σ is a convex combination of gσ/‖gσ‖ and (1 − g)σ/‖(1 − g)σ‖. But
both of these measures lie in K . (Why?) Hence

σ � gσ

‖gσ‖ .

It follows that g is constant a.e. - d|σ |. But g(x1) �� g(x2) and g is continuous
which gives a contradiction.

Hence K � {0} and so µ ∈ (CR(X))∗ and µ ⊥ A ⇒ µ � 0. Thus A is dense
in CR(X), as claimed.

Theorem 2.3 (Complex Stone-Weierstrass Theorem). A is a subalgebra
of C(X) containing the constants and separating points. If

(1) f ∈ A ⇒ f̄ ∈ A,

then A is dense in C(X).

Proof. Let L consists of all real-valued functions in A. Since by (1) L contains Re
f and Im f for each f ∈ A, L separates points on X. Evidently L is a subalgebra
of CR(X) containing the (real) constants. By Theorem 2.1 L is then dense in
CR(X). It follows that A is dense in C(X). (How?)

Let �R denote the real subspace of Cn � {(z1, . . . , zn) ∈ Cn|zj is real, all j}.

Corollary 1. Let X be a compact subset of �R . Then P(X) � C(X).

Proof. Let A be the algebra of all polynomials in z1, . . . , zn restricted to X. A
then satisfies the hypothesis of the last theorem, and so A is dense in C(X); i.e.,
P(X) � C(X).

Corollary 2. Let I be an interval on the real line. Then P(I) � C(I).

This is, of course, the Weierstrass approximation theorem (slightly complexi-
fied).

Let us replace I by an arbitrary compact subset X of C. When does P(X) �
C(X)? It is easy to find necessary conditions on X. (Find some.) However, to get
a complete solution, some machinery must first be built up.

The machinery we shall use will be some elementary potential theory for the
Laplace operator � in the plane, as well as for the Cauchy-Riemann operator

∂

∂z̄
� 1

2

(
∂

∂x
+ i

∂

∂y

)
.



8 2. Classical Approximation Theorems

These general results will then be applied to several approximation problems in the
plane, including the above problem of characterizing those X for which P(X) �
C(X).

Let µ be a measure of compact support⊂ C. We define the logarithmic potential
µ∗ of µ by

(2) µ∗(z) �
∫

log

∣∣∣∣ 1

z − ζ

∣∣∣∣ dµ(ζ ).

We define the Cauchy transform µ̂ of µ by

(3) µ̂(z) �
∫

1

ζ − z
dµ(ζ ).

Lemma 2.4. The functions∫ ∣∣∣∣log

∣∣∣∣ 1

z − ζ

∣∣∣∣∣∣∣∣ d|µ|(ζ ) and
∫ ∣∣∣∣ 1

ζ − z

∣∣∣∣ d|µ|(ζ )

are summable - dx dy over compact sets in C. It follows that these functions are
finite a.e. - dx dy and hence that µ∗ and µ̂ are defined a.e. - dx dy.

Since 1/r ≥ | log r| for small r > 0, we need only consider the second integral.
Fix R > 0 with supp |µ| ⊂ {z∣∣|z| < R}.

γ �
∫
|z|≤R

dx dy

{∫ ∣∣∣∣ 1

ζ − z

∣∣∣∣ d|µ|(ζ )

}
�
∫

d|µ|(ζ )

∫
|z|≤R

dx dy

|z − ζ | .

For ζ ∈ supp |µ| and |z| ≤ R, |z − ζ | ≤ 2R.∫
|z|≤R

dx dy

|z − ζ | ≤
∫
|z′|≤2R

dx ′ dy ′

|z′| �
∫ 2R

0
r dr

∫ 2π

0

dθ

r
� 4πR.

Hence γ ≤ 4πR · ‖µ‖.

Lemma 2.5. Let F ∈ C1
0(C). Then

(4) F (ζ ) � − 1

π

∫
C

∫
∂F

∂z̄

dx dy

z − ζ
, all ζ ∈ C.

Note. The proof uses differential forms. If this bothers you, read the proof after
reading Sections 4 and 5, where such forms are discussed, or make up your own
proof.

Proof. Fix ζ and choose R > |ζ | with supp F ⊂ {z∣∣|z| < R}. Fix ε > 0 and
small. Put �ε � {

∣∣|z| < R and |z − ζ | > ε}.
The 1-form F dz/z − ζ is smooth on �ε and

d

(
F dz

z − ζ

)
� ∂

∂z̄

(
F

z − ζ

)
dz̄ ∧ dz � ∂F

∂Z̄

dz̄ ∧ dz

z − ζ
.
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By Stokes’s theorem ∫
�ε

d

(
F dz

z − ζ

)
�
∫

∂�ε

F dz

z − ζ
.

Since F � 0 on {z∣∣|z| � R}, the right side is∫
|z−ζ |�ε

F dz

z − ζ
� −

∫ 2π

0
F(ζ + εeiθ )i dθ,

so ∫
�ε

∂F

∂z̄

dz̄ ∧ dz

z − ζ
� −

∫ 2π

o

F (ζ + εeiθ )i dθ.

Letting ε → 0 we get∫
|z|<R

∂F

∂z̄

dz̄ ∧ dz

z − ζ
� −2πiF (ζ ).

Since ∂F/∂z̄ for |z| > R and since dz̄ ∧ dz � 2i dx ∧ dy, this gives∫
∂F

∂z̄

dx dy

z − ζ
� −πF(ζ ),

i.e., (4).

Note. The intuitive content of (4) is that arbitrary smooth functions can be
synthesized from functions

fδ(ζ ) � 1

λ − ζ

by taking linear combinations and then limits.

Lemma 2.6. Let G ∈ C2
0 (C). Then

(5) G(ζ ) � − 1

2π

∫
C

∫
�G(z) log

1

|z − ζ | dx dy, all ζ ∈ C.

Proof. The proof is very much like that of Lemma 2.5. With �ε as in that proof,
start with Green’s formula∫

�ε

∫
(u�v − v�u) dx dy �

∫
∂�ε

(
u

∂v

∂n
− v

∂u

∂n

)
ds

and take u � G, v � log |z − ζ |. We leave the details to you.

Lemma 2.7. If µ is a measure with compact support in C, and if µ̂(z) � 0 a.e.−
dx dy, then µ � 0. Also, if µ∗(z) � 0 a.e. − dx dy, then µ � 0.

Proof. Fix g ∈ C1
0(C). By (4)∫

g(ζ ) dµ(ζ ) �
∫

dµ(ζ )

[
− 1

π

∫
∂g

∂Z̄
(z)

dx dy

z − ζ

]
.
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Fubini’s theorem now gives

(6)
1

π

∫
∂g

∂z̄
(z)µ̂(z) dx dy �

∫
g dµ.

Since µ̂ � 0 a.e., we deduce that∫
g dµ � 0.

But the class of functions obtained by restricting to supp µ the functions in C1
0(C)

is dense in C(supp µ) by the Stone-Weierstrass theorem. Hence µ � 0.
Using (5), we get similarly for g ∈ C2

0 (C),

−
∫

g dµ � 1

2π

∫
�g(z) · µ∗(z) dx dy

and conclude that µ � 0 if µ∗ � 0 a.e.
As a first application, consider a compact set X ⊂ C.

Theorem 2.8 (Hartogs-Rosenthal). Assume that X has Lebesgue two-dimen-
sional measure 0. Then rational functions whose poles lie off X are uniformly
dense in C(X).

Proof. Let W be the linear space consisting of all rational functions holomorphic
on X. W is a subspace of C(X). To show W dense, we consider a measure µ on X

with µ ⊥ W . Then µ̂(z) � ∫ dµ(ζ )/ζ − z � 0 for z /∈ X, since 1/ζ − z ∈ W

for such z. and µ ⊥ W .
Since X has measure 0, µ̂ � 0 a.e. −dx dy. Lemma 2.7 yields µ � 0.
Hence µ ⊥ W ⇒ µ � 0 and so W is dense.

As a second application, consider an open set � ⊂ C and a compact set K ⊂ �.
(In the proofs of the next two theorems we shall supposed � biunded and leave
the modifications for the genereal case to the reader.)

Theorem 2.9 (Runge). If F is a holomorphic function defined on �, there exists
a sequence {Rn} of rational functions holomorphic in � with

Rn → F uniformly on K.

Proof. Let �1, �2, . . . be the components of C\K . It is no loss of generality to
assume that each �j meets the complement of �. (Why?) Fix pi ∈ �j\�.

Let W be the space of all rational functions regular except for the possible poles
at some of the pj , restricted to K . Then W is a subspace of C(K) and it suffices
to show that W contains F in its closure.

Choose a measure µ on K with µ ⊥ W . We must show that µ ⊥ F .
Fix φ ∈ C∞(C), supp φ ⊂ � and φ � 1 in a neighborhood N of K .
Using (6) with g � F · φ we get

(7)
1

n

∫
∂(Fφ)

∂z
(z)µ̂(z) dx dy �

∫
Fφdµ.
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Fix j .

µ̂(z) �
∫

dµ(ζ )

ζ − z

is analytic in �j and

dkµ̂

dzk
(pj ) � k!

∫
dµ(ζ )

(ζ − pj )k+1
, k � 0, 1, 2, . . . .

The right-hand side is 0 since (ζ−pj )
−(k+1) ∈ W and µ ⊥ W . Thus all derivatives

of µ̂ vanish at pj and hence µ̂ � 0 in �j . Thus µ̂ � 0 on C\K . Also, Fφ � F

is analytic in N , and so

∂

∂z̄
(Fφ) � 0 on K.

The integrand on the left in (7) thus vanishes everywhere, and so∫
F dµ �

∫
F� dµ � 0.

Thus µ ⊥ W ⇒ µ ⊥ F .

When can we replace “rational function” by “polynomial” in the last theorem?
Suppose that � is multiply connected. Then we cannot.
The reason is this: We can choose a simple closed curve β lying in � such that

some point z0 in the interior of β lies outside �. Put

F(z) � 1

z − z0
.

Then F is holomorphic is �. Suppose that ∃ a sequence of polynomials {Pn}
converging uniformly to F on β. Then

(z − z0)Pn − 1 → θ uniformly on β.

By the maximum principle

(z − z0)Pn − 1 → 0 inside β.

But this is false for z � z0.

Theorem 2.10 (Runge). Let � be a simply connected region and fix G holomor-
phic in �. if K is a compact subset of �, then ∃ a sequence {Pn} of polynomials
converging uniformly to G on K .

Proof. Without loss of generality we may assume that C\K is connected.
Fix a point p in C lying outside a disk {z∣∣|z| ≤ R}which contains K . The proof

of the last theorem shows that ∃ rational functions Rn with sole pole at p with

Rn → G uniformly on K.
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The Taylor expansion around 0 for Rn converges uniformly on K . Hence we can
replace Rn by a suitable partial sum Pn of this Taylor series, getting

Pn → G uniformly on K.

We return now to the problem of describing those compact sets X in the z-plane
which satisfy P(X) � C(X).

Let p be an interior point of X. Then every f in P(X) is analytic at p. Hence
the condition

(8) The interior of X is empty.

is necessary for P(X) � C(X).
Let �1 be a bounded component of C X. Fix F ∈ P(X). Choose polynomials

Pn with

Pn → F uniformly on X.

Since ∂�1 ⊂ X,

|Pn − Pm| → 0 uniformly on ∂�1

as n, m → 0. Hence by the maximun principle

|Pn − Pm| → 0 uniformly on �1.

Hence Pn converges uniformly on �1 ∪ ∂�1 to a function holomorphic on �1,
continuous on �1 ∪ ∂�1, and � F on ∂�1.

This restricts the elements F of P(X) to a proper subset of C(X). (Why?) Hence
the condition

(9) C\X is connected.

is also necessary for P(X) � C(X).

Theorem 2.11 (Lavrentieff). If (8) and (9) hold, then P(X) � C(X).

Note that the Stone-Weierstrass theorem gives us no help here, for to apply it
we should need to know that z̄ ∈ P(X), and to prove that is as hard as the whole
theorem.

The chief step in our proof is the demonstration of a certain continuity property
of the logarithmic potential α∗ of a measure α supported on a compact plane set E

with connected complement, as we approach a boundary point z0 of E from C\E.

Lemma 2.12 (Carleson). Let E be a compact plane set with C\E connected and
fix z0 ∈ ∂E. Then ∃ probability measures σt for each t > 0 with σt carried on
C\E such that:
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Let α be a real measure on E satisfying

(10)

∫
E

∣∣∣∣log

∣∣∣∣ 1

z0 − ζ

∣∣∣∣∣∣∣∣ d|α|(ζ ) < ∞.

Then

lim
t→0

∫
α∗ dσt (z) � α∗(z0).

Proof. We may assume that z0 � 0. Fix t > 0. Since 0 ∈ ∂E and C\E is
connected, ∃ a probability measure σt carried on C\E such that

σt {z|r1 < |z| < r2} � 1

t
(r2 − r1) for 0 < r1 < r2 ≤ t

and σt � 0 outside |z| ≤ t .
If some line segment with 0 as one end point and length t happens to lie in C\E,

we may of course take σt as 1/t ·linear measure on that segment. (In the general
case, construct σt .)

Then for all ζ ∈ C we have∫
log

∣∣∣∣ 1

z − ζ

∣∣∣∣ dσt (z) ≤
∫

log

∣∣∣∣ 1

|z| − |ζ |
∣∣∣∣ dσt (z)

� 1

t

∫ t

0
log

1

|r| − |ζ || dr

� log
1

|ζ | +
1

t

∫ t

0
log

1

|1 − r/|ζ || dr.

The last term is bounded above by a constant A independent of t and |ζ |. (Why?)
Hence we have

(11)

∫
log

∣∣∣∣ 1

z − ζ

∣∣∣∣ dσt (z) ≤ log
1

|ζ | + A, all ζ, all t > 0.

Also, as t → 0, σt → point mass at 0. Hence for each fixed ζ �� 0.

(12)

∫
log

∣∣∣∣ 1

z − ζ

∣∣∣∣ dσt (z) → log
1

|ζ | .

Now for fixed t Fubini’s theorem gives

(13)

∫
α∗(z)dσt (z) �

∫ {∫
log

∣∣∣∣ 1

z − ζ

∣∣∣∣ dσt (z)

}
dα(ζ ).

By (11), (12), and (10), the integrand on the right tends to log 1/|ζ | dominatedly
with respect to |α|. Hence the right side approaches∫

log
1

|ζ | dα(ζ ) � α∗(0)
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as t → 0, and so

lim
t→0

∫
α∗(z)dσt (z) � a∗(0).

Proof of Theorem 2.11. Let α be a real measure on X with α ⊥ Re(P (X)).
Then ∫

Re ζ ndα(ζ ) � 0, n ≥ 0

and ∫
Im ζ ndα �

∫
Re(−iζ n)dα � 0, n ≥ 0,

so that ∫
ζ ndα � 0, n ≥ 0.

For |z| large,

log

(
1 − ζ

z

)
�

∞∑
0

cn(z)ζ
n,

the series converging uniformly for ζ ∈ X. Hence∫
log

(
1 − ζ

z

)
dα(ζ ) �

∞∑
0

cn(z)

∫
ζ ndα(ζ ) � 0,

whence ∫
Re

(
log

(
1 − ζ

z

))
dα(ζ ) � 0

or ∫
log |z − ζ |dα(ζ ) −

∫
log |z|dα(ζ ) � 0,

whence ∫
log |z − ζ |dα(ζ ) � 0,

since α ⊥ 1. Since ∫
log |z − ζ |dα(ζ ) � 0

is harmonic in C\X, the function vanishes not only for large |z|, but in fact for all
z in C\X, and so

α∗(z) � 0, z ∈ C\X.
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By Lemma 2.12 it follows that we also have

α∗(z0) � 0, z0 ∈ X,

provided (10) holds at z0. By Lemma 2.4 this implies that

α∗ � 0 a.e. − dx dy.

By Lemma 2.7 this implies that α � 0. Hence

(14) Re P(X) is dense in CR(X).

Now choose µ ∈ P(X)⊥. Fix z0 ∈ X with

(15)

∫ ∣∣∣∣ 1

z − z0

∣∣∣∣ d|µ|(z) < ∞.

Because of (14) we can find for each positive integer k a polynomial Pk such
that

(16) | Re Pk(z) − |z − z0|| ≤ 1

k
, z ∈ X

and

Pk(z0) � 0.(17)

fk(z) � e−kPk(z) − 1

z − z0

is an entire function and hence its restriction to X lies in P(X). Hence

(18)

∫
fk dµ � 0.

Equation (16) gives

Re kPk(z) − k|z − z0| ≥ −1,

whence

|e−kPk(z)| ≤ e−k|z−z0|+1, z ∈ X.

It follows that fk(z) → −1/z − z0 for all z ∈ X\{z0}, as k → ∞, and also

|fk(z)| ≤ 4

|z − z0| , z ∈ X.

Since by (15) 1/|z − z0| is summable with respect to |µ|, this implies that∫
fk dµ → −

∫
dµ(z)

z − z0

by dominated convergence.
Equation (18) then gives that ∫

dµ(z)

z − z0
� 0.
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Since (15) holds a.e. on X by Lemma 2.4, and since certainly∫
dµ(z)

z − z0
� 0 for z0 ∈ C\X

(why?), we conclude that µ̂ � 0 a.e., so µ � 0 by Lemma 2.7. Thus µ ⊥
P(X) ⇒ µ � 0, and so P(X) � C(X).

NOTES
Proposition 2.2 is a part of the Krein–Milman theorem [4, p. 440]. The proof

of Theorem 2.1 given here is due to de Branges [Bra]. Lemma 2.7 (concerning
µ̂) is given by Bishop in [Bi1]. Theorem 2.8 is in F. Hartogs and A. Rosenthal,
Über Folgen analytischer Funktionen, Math. Ann. 104 (1931). Theorem 2.9 is due
to C. Runge, Zur Theorie der eindeutigen analytischen Funktionen, Acta Math. 6
(1885). The proof given here is found in [Hö2, Chap. 1]. Theorem 2.11 was proved
by M. A. Lavrentieff, Sur les fonctions d’une variable complexe représentables
par des séries de ploynomes, Hermann, Paris, 1936, and a simpler proof is due
to S. N. Mergelyan, On a theorem of M. A. Lavrentieff, A.M.S. Transl 86 (1953).
Lemma 2.12 and its use in the proof of Theorem 2.11 is in L. Carleson, Mergelyan’s
theorem on uniform polynomial approximation, Math. Scand. 15 (1964), 167–175.

Theorem 2.1 is due to M. H. Stone, Applications of the theory of Boolean rings
to general topology, Trans. Am. Math. Soc. 41 (1937). See also M. H. Stone, The
generalized Weierstrass approximation theorem, Math. Mag. 21 (1947–1948).
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Operational Calculus in One Variable

Let F denote the algebra of all functions f on −π ≤ θ ≤ π , with

f (θ) �
∞∑
−∞

Cne
inθ ,

∞∑
−∞
|Cn| < ∞,

Exercise 3.1. M(F) may be identified with the circle |ζ | � 1 and for f �∑∞
∞ Cne

inθ , |ζ0| � 1,

f̂ (ζ0) �
∞∑
−∞

Cnζ
n
0 .

If f ∈ F and f never vanishes on −π ≤ θ ≤ π , it follows that f̂ �� 0 on
M(F) and so that f has an inverse in F , i.e.,

1

f
�

∞∑
−∞

dne
inθ

with
∑∞
−∞ |dn| < ∞.

This result, that nonvanishing elements of F have inverses in F , is due to Wiener
(see [Wi, p. 91]), by a quite different method.

We now ask: Fix f ∈ F and let σ be the range of f ; i.e.,

σ � {f (θ)| − π ≤ θ ≤ π
}

.

Let � be a continuous function defined on σ , so that �(f ) is a continuous function
on [−π, π ]. Does �(f ) ∈ F?

The preceding result concerned the case �(z) � 1/z.
Lévy [Lév] extended Wiener’s result as follows: Assume that � is holomorphic

in a neighborhood of σ . Then �(f ) ∈ F .
How can we generalize this result to arbitrary Banach algebras?

Theorem 3.1. Let A be a Banach algebra and fix x ∈ A. Let σ(x) denote the
spectrum of x. If � is any function holomorphic in a neighborhood of σ(x), then
�(x̂) ∈ Â.

17
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Note that this contains Lévy’s theorem. However, we should like to do better. We
want to define an element �(x) ∈ A so as to get a well-behaved map: � → �(x),
not merely to consider the function �(x̂) on M. When A is not semisimple, this
becomes important. We demand that

(1) �̂(x) � �(x̂) on M.

The study of a map � → �(x), from H(�) → A, we call the operational
calculus (in one variable).

For certian holomorphic functions � it is obvious how to define �(x). Let �

be a polynomial

�(z) �
N∑

n�0

anz
n.

We put

(2) �(x) �
N∑

n�0

anx
n.

Note that (1) holds. Let � be a rational function holomorphic on σ(x),

�(z) � P(z)

Q(z)
,

P and Q being polynomials and Q(z) �� 0 for z ∈ σ(x). Then

(Q(x))−1 ∈ A (why?)

and we define

(3) �(x) � P(x) · Q(x)−1

We again verify (1).
Now let � be an open set with σ(x) ⊂ � and fix � ∈ H(�). It follows from

Theorem 2.9 that we can choose a sequence {fn} of rational functions holomorphic
in � such that fn → � uniformly on compact subsets of �. (Why?) For each n,
fn(x) was defined above. We want to define

�(x) � lim
n→∞ fn(x).

To do this, we must prove

Lemma 3.2. limn→∞ fn(x) exist in A and depends only on x and �, not on the
choice of {fn}.

We need

*Exercise 3.2. Let x ∈ A, let � be an open set containing σ(x), and let f be a
rational functional holomorphic in �.
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Choose an open set �1 with

σ(x) ⊂ �1 ⊂ �̄1 ⊂ �

whose boundary γ is the union of finitely many simple closed polygonal curves.
Then

(4) f (x) � 1

2πi

∫
γ

f (t) · (t − x)−1 dt.

Proof of Lemma 3.2. Choose γ as in Exercise 3.2. Then∥∥∥∥∥fn(x) − 1

2πi

∫
γ

�(t) dt

t − z

∥∥∥∥∥ �
∥∥∥∥∥ 1

2πi

∫
γ

fn(t) − �(t)

t − x
dt

∥∥∥∥∥
≤ 1

2π

∫
γ

∣∣fn(t) − �(t)
∣∣ ∥∥∥(t − x)−1

∥∥∥ dx

→ 0 as n → ∞, since ‖(t − x)−1‖ is bounded on γ while fn → � uniformly
on γ . Thus

(5) lim
n→∞ fn(x) � 1

2πi

∫
γ

�(t) dt

t − x
.

Now let {Fn} be a sequence in H(�). We write

Fn → F in H(�)

if Fn tends to F uniformly on compact sets in �.

Theorem 3.3. Let A be a Banach algebra, x ∈ A, and let � be an open set
containing σ(x). Then there exists a map τ : H(�) → A such that the following
holds. We write F(x) for τ(F ):
(a) τ is an algebraic homomorphism.
(b) If Fn → F in H(�), then Fn(x) → F(x) in A.
(c) F̂ (x) � F(x̂) for all F ∈ H(�).
(d) If F is the identity function, F(x) � x.
(e) With γ as earlier, if F ∈ H(�),

F(x) � 1

2πi

∫
γ

F (t) dt

t − x
.

Properties (a), (b), and (d) define τ uniquely.

Note. Theorem 3.1 is contained in this result.

Proof. Fix F ∈ H(�). Choose a sequence of rational functions {fn} ∈ H(�)

with fn → F in H(�). By Lemma 3.2

(6) lim
n→∞ fn(x)
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exists in A. We define this limit to be F(x) and τ to be the map F → F(x).
τ is evidently a homomorphism when restricted to rational functions. Equation

(6) then yields (a). Similarly, (c) holds for rational functions and so by (6) in
general. Part (d) follows from (6).

Part (e) coincides with (5). Part (b) comes from (e) by direct computation.
Suppose now that τ ′ is a map from H(�) to A satisfying (a), (b), and (d).
By (a) and (d), τ ′ and τ agree on rational functions. By (b), then τ ′ � τ on

H(�).

We now consider some consequences of Theorem 3.3 as well as some related
questions.

Let A be a Banach algebra. By a nontrivial idempotent e in A we mean an
element e with e2 � e, e not the zero element or the identity. Suppose that e is
such an element. Then 1− e is another. e is not in the radical (why?), so ê �≡ 0 on
M. Similarly, 1̂ − e �≡ 0, so ê �≡ 1. But ê2 � ê, so ê takes on only the values 0
and 1 on M. It follows that M is disconnected.

Question. Does the converse hold? That is, if M is disconnected, must A contain
a nontrivial idempotent?

At this moment, we can prove only a weaker result.

Corollary. Assume there is an element x in A such that σ(x) is disconnected.
Then A contains a nontrivial idempotent.

Proof. σ(x) � K1 ∪ K2, where K1, K2 are disjoint closed sets. Choose disjoint
open sets �1 and �2,

K1 ⊂ �1, K2 ⊂ �2.

Put � � �1 ∪ �2. Define F on � by

F � 1 on �1, F � 0 on �2.

Then F ∈ H(�). Put

e � F(x).

By Theorem 3.3,

e2 � F 2(x) � F(x) � e

and

ê � F(x̂) �
{

1 on x̂−1(K1),
0 on x̂−1(K2).

Hence e is a nontrivial idempotent.

Exercise 3.3. Let B be a Banach space and T a bounded linear operator on B

having disconnected spectrum. Then, there exists a bounded linear operator E on
B, E �� 0, E �� I , such that E2 � E and E commutes with T .
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Exercise 3.4. Let A be a Banach algebra. Assume that M is a finite set. Then
there exist idempotents e1, e2, . . . , en ∈ A with ei · ej � 0 if i �� j and with∑n

i�1 ei � 1 such that the following holds:
Every x in A admits a representation

x �
n∑

i�1

λiei + ρ,

where the λi are scalars and ρ is in the radical.

Note. Exercise 3.4 contains the following classical fact: If α is an n×n matrix with
complex entries, then there exist commuting matrices β and γ with β nilpotent, γ
diagonalizable, and

α � β + γ.

To see this, put A � algebra of all polynomials in α, normed so as to be a Banach
algebra, and apply the exercise.

We consider another problem. Given a Banach algebra A and an invertible
element x ∈ A, when can we find y ∈ A so that

x � ey?

There is a purely topological necessary condition: There must exist f in C(M)

so that

x̂ � e′ on M.

(Think of an example where this condition is not satisfied.)
We can give a sufficient condition:

Corollary. Assume that σ(x) is contained in a simply connected region �, where
0 �∈ �. Then there is a γ in A with x � ey .

Proof. Let � be a single-valued branch of log z defined in �. Put y � �(x).

N∑
0

�n

n!
→ e� � z in H(�), as N → ∞.

Hence by Theorem 3.3(b), (
N∑
0

�n

n!

)
(x) → x.

By (a) the left side equals

N∑
0

(�(x))n

n!
→ ey.

Hence ey � x.
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To find complete answers to the questions about existence of idempotents and
representation of elements as exponentials, we need some more machinery.

We shall develop this machinery, concerning differential forms and the ∂̄-
operator, in the next three sections. We shall then use the machinery to set up
an operational calculus in several variables for Banach algebras, to answer the
above questions, and to attack various other problems.

NOTES
Theorem 3.3 has a long history. See E. Hille and R. S. Phillips, Functional

analysis and semi-groups, Am. Math. Soc. Coll. Publ. XXXI, 1957, Chap. V. In the
form given here, it is part of Gelfand’s theory [Ge]. For the result on idempotents
and related results, see Hille and Phillips, loc. cit.
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Differential Forms

Note. The proofs of all lemmas in this section are left as exercises.

The notion of differential form is defined for arbitrary differentiable manifolds.
For our purposes, it will suffice to study differential forms on an open subset � of
real Euclidean N -space RN . Fix such an �. Denote by x1, . . . , xN the coordinates
in RN .

Definition 4.1. C∞(�) � algebra of all infinitely differentiable complex-valued
functions on �.

We write C∞ for C∞(�).

Definition 4.2. Fix x ∈ �. Tx is the collection of all maps v : C∞ → C for
which
(a) v is linear.
(b) v(f · g) � f (x) · v(g) + g(x) · v(f ), f, g ∈ C∞.

Tx evidently forms a vector space over C. We call it the tangent space at x and
its elements tangent vectors at x.

Denote by ∂/∂Xj |x the functional f → (∂f/∂xj )(x). Then ∂/∂xj |x is a tangent
vector at x for j � 1, 2, . . . , n.

Lemma 4.1. ∂/∂x1|x, . . . , ∂/∂xN |x forms a basis for Tx .

Definition 4.3. The dual space to Tx is denoted T ∗x .

Note. The dimension of T ∗x over C is N .

Definition 4.4. A 1-form ω on � is a map ω assigning to each x in � an element
of T ∗x .

Example. Let f ∈ C∞. For x ∈ �, put

(df )x(v) � v(f ), all v ∈ Tx.

23
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Then (df )x ∈ T ∗x .

df is the 1-form on � assigning to each x in � the element (df )x .

Note. dx1, . . . , dxN are particular 1-forms. In a natural way 1-forms may be
added and multiplied by scalar functions.

Lemma 4.2. Every 1-form ω admits a unique representation

ω �
N∑
1

Cjdxj ,

the Cj being scalar functions on �.

Note. For f ∈ C∞,

df �
N∑

j�1

∂f

dxj

dxj .

We now recall some multilinear algebra. Let V be an N -dimensional vector
space over C. Denote by ∧k(V ) the vector space of k-linear alternating maps of
V × · · · × V → C. (“Alternating” means that the value of the function changes
sign if two of the variables are interchanged.)

Define G(V ) as the direct sum

G(V ) � ∧0(V ) ⊕ ∧1(V ) ⊕ · · · ⊕ ∧N(V ).

Here∧0(V ) � C and∧1(V ) is the dual space of V . Put∧j (V ) � 0 for j > N .
We now introduce a multiplication into the vector space G(V ). Fix τ ∈

∧k(V ), σ ∈ ∧1(V ). The map

(ξ1, . . . , ξk, ξk+1, . . . , ξk+1) → τ(ξ1, . . . , ξk)σ (ξk+1, . . . , ξk+1)

is a (k + l)-linear map from V × · · · × V (k + l factors)→ C. It is, however, not
alternating. To obtain an alternating map, we use

Definition 4.5. Let τ ∈ ∧k(V ), σ ∈ ∧l(V ), k, l ≥ 1.

τ ∧ σ(ξ1, . . . , ξk+1)

� 1

(k + l)!

∑
π

(−1)πτ (ξπ(1), . . . , ξπ(k)) · σ(ξπ(k+1), . . . , ξπ(k+l)),

the sum being taken over all permutations π of the set {1, 2, . . . , k+ l}, and (−1)π

denoting the sign of the permutation π .

Lemma 4.3. τ ∧ σ as defined is (k+ l)-linear and alternating and so ∈ ∧k+l(V ).

The operation ∧ (wedge) defines a product for pairs of elements, one in ∧k(V )

and one in ∧l(V ), the value lying in ∧k+l(V ), hence in G(V ). By linearity, ∧
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extends to a product on arbitrary pairs of elements of G(V ) with value in G(V ).
For τ ∈ ∧0(V ), σ ∈ G(V ), define τ ∧ σ as scalar multiplication by τ .

Lemma 4.4. Under ∧, G(V ) is an associative algebra with identity.

G(V ) is not commutative. In fact,

Lemma 4.5. If τ ∈ ∧k(V ), σ ∈ ∧l(V ), then τ ∧ σ � (−1)klσ ∧ τ .

Let e1, . . . , eN form a basis for ∧1(V ).

Lemma 4.6. Fix k. The set of elements

ei1 ∧ ei2 ∧ · · · ∧ eik , 1 ≤ i1 < i2 < · · · < ik ≤ N,

forms a basis for ∧k(V ).

We now apply the preceding to the case when V � Tx , x ∈ �. Then ∧k(Tx) is
the space of all k-linear alternating functions on Tx , and so, for k � 1, coincides
with T ∗x . The following thus extends our definition of a 1-form.

Definition 4.6. A k-form ωk on � is a map ωk assigning to each x in � an element
of ∧k(Tx).

k-forms form a module over the algebra of scalar functions on � in a natural
way.

Let τ k and σ l be, respectively, a k-form and an l-form. For x ∈ �, put

τ k ∧ σ l(x) � τ k(x) ∧ σ l(x) ∈ ∧k+1(Tx).

In particular, since dx1, . . . , dxN are 1-forms,

dxi1 ∧ dxi2 ∧ · · · ∧ dxik

is a k-form for each choice of (i1, . . . , ik).
Because of Lemma 4.5,

dxj ∧ dxj � 0 for each j.

Hence dxi1 ∧ · · · ∧ dxik � 0 unless the iv are distinct.

Lemma 4.7. Let ωk be any k-form on �. Then there exist (unique) scalar functions
Ci1 , . . . , ik on � such that

ωk �
∑

i1<i2<···<ik

Ci1 · · · ikdxi1 ∧ · · · ∧ dxik .

Definition 4.7. ∧k(�) consists of all k-forms ωk such that the functions Ci1 . . . ik
occurring in Lemma 4.7 lie in C∞. ∧0(�) � C∞.

Recall now the map f → df from C∞ → ∧1(�). We wish to extend d to a
linear map ∧k(�) → ∧k+1(�), for all k.
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Definition 4.8. Let ωk ∈ ∧k(�), k � 0, 1, 2, . . .. Then

ωk �
∑

i1<···<ik

Ci1 · · ·ik dxi1 ∧ · · · ∧ dxik .

Define

dωk �
∑

i1<···<ik

dCi1 · · ·ik ∧ dxi1 ∧ · · · ∧ dxik .

Note that d maps ∧k(�) → ∧k+1(�). We call dωk the exterior derivative of
ωk .

For ω ∈ ∧1(�),

ω �
N∑

i�1

Cidxi,

dω �
∑
i,j

∂Ci

∂xj

dxj ∧ dxi �
∑
i<j

(
∂Cj

∂xi

− ∂Ci

∂xj

)
dxi ∧ dxj .

It follows that for f ∈ C∞,

d(df ) � d

(
N∑

i�1

∂f

dxi

dxi

)

�
∑
i<j

(
∂

∂xi

(
∂f

∂xj

)
− ∂

∂xj

(
∂f

∂xi

))
dxi ∧ dxj � 0

or d2 � 0 on C∞. More generally,

Lemma 4.8. d2 � 0 for every k; i.e., if ωk ∈ ∧k(�), k arbitrary, then d(dωk) �
0.

To prove Lemma 4.8, it is useful to prove first

Lemma 4.9. Let ωk ∈ ∧k(�), ωl ∈ ∧l(�). Then

d(ωk ∧ ωl) � dωk ∧ ωl + (−1)kωk ∧ dωl.

NOTES
For an exposition of the material in this section, see, e.g., I. M. Singer and J. A.

Thorpe, Lecture Notes on Elementary Topology and Geometry, Scott, Foresman,
Glenview, Ill., 1967, Chap. V.
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The ∂̄-Operator

Note. As in the preceding section, the proofs in this section are left as exercises.

Let � be an open subset of Cn.
The complex coordinate functions z1, . . . , zn as well as their conjugates

z̄1, . . . , z̄n lie in C∞(�). Hence the forms

dz1, . . . , dzn, dz̄1, . . . , dz̄n

all belong to ∧1(�). Fix x ∈ �. Note that ∧1(Tx) � T ∗x has dimension 2n over
C, since Cn � R2n. If xj � Re(zj ) and yj � Im(zj ), then

(dx1)x, . . . , (dxn)x, (dyl)x, . . . , (dyn)x

form a basis for T ∗x . Since dxj � 1/2(dzj + dz̄j ) and dyj � 1/2i(dzj − dz̄j ),

(dz1)x, . . . , (dzn)x, (dz̄1)x, . . . , (dz̄n)x

also form a basis for T ∗x . In fact,

Lemma 5.1. If ω ∈ ∧1(�), then

ω �
n∑

j�1

ajdzj + bjdz̄j ,

where aj , bj ∈ Cx .

Fix f ∈ Cx . Since (x1, . . . , xn, y1, . . . , yn) are real coordinates in Cn,

df �
n∑

j�1

∂f

∂xj

dxj + ∂f

∂yj

dyj

�
n∑

j�1

(
∂f

∂xj

· 1

2
+ ∂f

∂yj

· 1

2i

)
dzj +

(
∂f

∂xj

· 1

2
− 1

2i

∂f

∂yj

)
dz̄j .

27



28 5. The ∂̄-Operator

Definition 5.1. We define operators on C∞ as follows:

∂

∂zj

� 1

2

(
∂

∂xj

− i
∂

∂yj

)
,

∂

∂z̄j

� 1

2

(
∂

∂xj

+ i
∂

∂yj

)
.

Then for f ∈ C∞,

(1) df �
n∑

j�1

∂f

∂zj

dzj + ∂f

∂z̄j

dz̄j .

Definition 5.2. We define two maps from C∞ → ∧1(�), ∂ and ∂̄ . For f ∈ C∞,

∂f �
n∑

j�1

∂f

∂zj

dzj , ∂̄f �
n∑

j�1

∂f

∂z̄j

dz̄j .

Note. ∂f + ∂̄f � df , if f ∈ C∞.

We need some notation. Let I be any r-tuple of integers, I � (i1, i2, . . . , ir ),
1 ≤ ij ≤ n, all j . Put

dzI � dzj1 ∧ · · · ∧ dzir .

Thus dzI ∈ ∧r (�).
Let J be any s-tuple (j1, . . . , js), 1 ≤ jk ≤ n, all k, and put

dz̄J � dz̄j1 ∧ · · · ∧ dz̄js
.

So dz̄J ∈ ∧s(�). Then

dzI ∧ dz̄J ∈ ∧r+s(�).

For I as above, put |I | � r . Then |J | � s.

Definition 5.3. Fix integers r, s ≥ 0. ∧r,s(�) is the space of all ω ∈ ∧r+s(�)

such that

ω �
∑
I,J

aIJ dzI ∧ dz̄J ,

the sum being extended over all I, J with |I | � r , |J | � s, and with each
aIJ ∈ C∞.

An element of ∧r,s(�) is called a form of type (r, s). We now have a direct sum
decomposition of each ∧k(�):

Lemma 5.2.

∧k(�) � ∧0,k(�) ⊕ ∧1,k−1(�) ⊕ ∧2,k−2(�) ⊕ · · · ⊕ ∧k,0(�).

We extend the definition of ∂ and ∂̄ (see Definition 5.2) to maps from∧k(�) →
∧k+1(�) for k, as follows:
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Definition 5.4. Choose ωk in ∧k(ω),

ωk �
∑
I,J

aIJ dzI ∧ dz̄J ,

∂ωk �
∑
I,J

∂aIJ ∧ dzI ∧ dz̄J ,

and

∂̄ωk �
∑
I,J

∂̄aIJ ∧ dzI ∧ dz̄J .

Observe that, by (l), if ωk is as above,

∂̄ωk + ∂ωk �
∑
I,J

daIJ ∧ dzI ∧ dz̄J � dωk,

so we have

(2) ∂̄ + ∂ � d

as operators from ∧k(�) → ∧k+1(�). Note that if ω ∈ ∧r,s , ∂ω ∈ ∧r+1,s and
∂̄ω ∈ ∧r,s+1.

Lemma 5.3. ∂̄2 � 0, ∂2 � 0, and ∂∂̄ � ∂̄∂ � 0.

Why is the ∂̄-operator of interest to us? Consider ∂̄ as the map from C∞ →
∧1(�). What is its kernel?

Let f ∈ C∞. ∂̄f � 0 if and only if

(3)
∂f

∂z̄j

� 0 in �, j � 1, 2, . . . , n.

For n � 1 and � a domain in the z-plane, (3) reduces to

df

∂z̄
� 0 or

∂f

∂x
+ i

∂f

∂y
� 0.

For f � u + iv, u and v real-valued, this means that

∂u

∂x
� ∂v

∂y
,

∂v

∂x
� − ∂u

∂y
,

or u and v satisfy the Cauchy-Riemann equations. Thus here

∂f � 0 in � is equivalent to f ∈ H(�).

Definition 5.5. Let � be an open subset of Cn. H(�) is the class of all f ∈ C∞

with ∂̄f � 0 in �, or, equivalently, (3).
We call the elements of H(�) holomorphic in �. Note that, by (3), f ∈ H(�)

if and only if f is holomorphic in each fixed variable zj (as the function of a single
complex variable), when the remaining variables are held fixed.
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Let now � be the domain

{z ∈ Cn
∣∣|zj | < Rj, j � 1, . . . , n},

where R1, . . . , Rn are given positive numbers. Thus � is a product of n open plane
disks. Let f be a once-differentiable function on �; i.e., ∂f/∂xj and ∂f/∂yj exist
and are continuous in �, j � 1, . . . , n.

Lemma 5.4. Assume that ∂f/∂z̄j � 0, j � 1, . . . , n, in �. then there exist
constants Av in C for each tuple ν � (ν1, . . . , νn) of nonnegative integers such
that

f (z) �
∑

ν

Aνz
ν,

where zν � z
ν1
1 · zν2

2 · · · zνn
n , the series converging absolutely in � and uniformly

on every compact subset of �.

For a proof of this result, see, e.g., [Hö, Th. 2.2.6].
This result then applies in particular to every f in H(�). We call

∑
ν Aνz

ν the
Taylor series for f at 0.

We shall see that the study of the ∂̄-operator, to be undertaken in the next
section and in later sections, will throw light on the holomorphic functions of
several complex variables.

For further use, note also

Lemma 5.5. If ωk ∈ ∧k(�) and ωl ∈ ∧l(�), then

∂̄(ωk ∧ ωl) � ∂̄ωk ∧ ωl + (−1)kωk ∧ ∂̄ωl.
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The Equation ∂̄u � f

As before, fix an open set � ⊂ Cn. Given f ∈ ∧r,s+1(�), we seek u ∈ ∧r,s such
that

(1) ∂̄u � f.

Since ∂̄2 � 0 (Lemma 5.3), a necessary condition on f is

(2) ∂̄f � 0.

If (2) holds, we say that f is ∂̄-closed. What is a sufficient condition on f ? It
turns out that this will depend on the domain �.

Recall the analogous problem for the operator d on a domain � ⊂ Rn. If ωk is
a k-form in ∧k(�), the condition

(3) dωk � 0 (ω is “closed”)

is necessary in order that we can find some τ k−1 in ∧k−1(�) with

(4) dτ k−1 � ωk.

However, (3) is, in general, not sufficient. (Think of an example when k � 1
and � is an annulus in R2.) If � is contractible, then (3) is sufficient in order that
(4) admit a solution.

For the ∂̄-operator, a purely topological condition on � is inadequate. We shall
find various conditions in order that (1) will have a solution. Denote by �n the
closed unit polydisk in Cn : �n � {z ∈ Cn

∣∣|zj | ≤ 1, j � 1, . . . , n}.

Theorem 6.1 (Complex Poincaré Lemma). Let � be a neighborhood of �n.
Fix ω ∈ ∧p,q(�), q > 0, with ∂̄ω � 0. Then there exists a neighborhood �* of
�n and there exists ω* ∈ ∧p,q−1(�∗) such that

∂̄ω∗ � ω in �∗.

We need some preliminary work.

31
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Lemma 6.2. Let φ ∈ C1(R2) and assume that φ has compact support. Put

�(ζ) � − 1

π

∫
R2

φ(z)
dx dy

z − ζ
.

Then � ∈ C1(R2) and ∂�/∂ζ̄ � φ(ζ ), all ζ .

Proof. Choose R with supp φ ⊂ {z∣∣|z| ≤ R}.

π�(ζ ) �
∫
|z|≤R

φ(z)
1

ζ − z
dx dy �

∫
|z′−ζ |≤R

φ(ζ − z′)
dx ′ dy ′

z′

�
∫

R2
φ(ζ − z′)

dx ′ dy ′

z′
.

Since 1/z′ ∈ L1(dx ′ dy ′) on compact sets, it is legal to differentiate the last
integral under the integral sign. We get

π
∂�

∂ζ̄
(ζ ) �

∫
R2

∂

∂ζ̄
[φ(ζ − z′)]

dx ′ dy ′

z′
�
∫

R2

∂φ

∂z̄
(ζ − z′)

dx ′ dy ′

z′

�
∫

R2

∂φ

∂z̄
(z)

dx dy

ζ − z
.

On the other hand, Lemma 2.5 gives that

−πφ(ζ ) �
∫

R2

∂φ

∂z̄
(z)

dx dy

z − ζ
.

Hence ∂�/∂ζ � φ.

Lemma 6.3. Let � be a neighborhood of �n and fix f in C∞(�). Fix j, 1 ≤ j

≤ n. Assume that

(5)
∂f

∂z̄k

� 0in �, k � k1, . . . , ks, each ki �� j.

Then we can find a neighborhood �1 of �n and F in C∞(�1) such that
(a) ∂F/∂ζ̄j � f in �1.
(b) ∂F/∂ζ̄k � 0 in �1, k � k1, . . . , ks .

Proof. Choose ε > 0 so that if z � (z1, . . . , zn) ∈ Cn and |zν | < 1 + 2ε for
all ν, then z ∈ �.

Choose ψ ∈ C∞(R2), having support contained in {z∣∣|z| < 1 + 2ε}, with
ψ(z) � 1 for |z| < 1 + ε. Put

F(ζ1, . . . , ζj , . . . , ζn)

� − 1

π

∫
R2

ψ(z)f (ζ1, . . . , ζj−1, z, ζj+1, . . . , ζn)
dx dy

z − ζj

.

For fixed ζ1, . . . , ζj−1, ζj+1, . . . , ζn with |ζν | < 1 + ε, all ν, we now apply
Lemma 6.2 with

φ(z) � ψ(z)f (ζ1, . . . , ζj−1, z, ζj+1, . . . , ζn), |z| < 1 + 2ε

� 0 outside supp ψ.
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We obtain

∂F

∂ζ̄j

(ζ1, . . . , ζj , . . . , ζn) � φ(ζj ) � f (ζ1, . . . , ζj−1, ζj , ζj+1, . . . , ζn),

if |ζj | < 1 + ε, and so (a) holds with

�1 � {ζ ∈ Cn||ζν | < 1 + ε, all ν}.

Part (b) now follows directly from (5) by differentiation under the integral sign.

Proof of Theorem 6.1. We call a form∑
I,J

CIJ dzl ∧ dz̄j

of level ν, if for some I and J with J � (j1, j2, . . . , ν), where j1 < j2 <

· · · < ν, we have CIJ �� 0; while for each I and J with J � (j1, . . . , js) where
j1 < · · · < js and js > ν, we have CIJ � 0.

Consider first a form ω of level 1 such that ∂̄ω � 0. Then ω ∈ ∧p,1(�) for
some p and we have

ω �
∑

I

aI dz̄1 ∧ dzI , aI ∈ C∞(�) for each I.

0 � ∂̄ω �
∑
I,k

∂aI

∂z̄k

dz̄k ∧ dz̄I ∧ dzI .

Hence (∂aI /∂z̄k)dz̄k ∧ dz̄1 ∧ dzI � 0 for each k and I . It follows that

∂aI

∂z̄k

� 0, k ≥ 2, all I.

By Lemma 6.3 there exists for every I, AI in C∞(�1), �1 being some
neighborhood of �n, such that

∂AI

∂z̄1
� aI and

∂AI

∂z̄k

� 0, k � 2, . . . , n.

Put ω̃ � ∑I AIdzI ∈ ∧p,0(�1).

∂̄ω̃ �
∑
I,k

∂AI

∂z̄k

dz̄k ∧ dzI � ω.

We proceed by induction. Assume that the assertion of the theorem holds when-
ever ω is of level ≤ ν − 1 and consider ω of level ν. By hypothesis ω ∈ ∧p,q(�)

and ∂̄ω � 0.
We can find forms α and β of level ≤ ν − 1 so that

ω � dz̄ν ∧ α + β (why?).

0 � ∂̄ω � −dz̄ν ∧ ∂̄α + ∂̄β,
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where we have used Lemma 5.5. So

(6) 0 � dz̄ν ∧ ∂̄α − ∂̄β.

Put

α �
∑
I,J

aIJ dzI ∧ dz̄j , β �
∑
I,J

bIJ dzI ∧ dz̄J .

Equation (6) gives

0 � dz̄ν ∧
∑
I,J,k

∂aIJ

∂z̄k

dz̄k ∧ dzI ∧ dz̄J(7)

−
∑
I,J,k

∂bIJ

∂z̄k

dz̄k ∧ dzI ∧ dz̄J .

Fix k > ν, and look at the terms on the right side of (7) containing dz̄ν ∧ dz̄k .
Because α and β are the level ≤ ν − 1, these are the terms:

dz̄ν ∧ ∂aIJ

∂z̄k

dz̄k ∧ dzI ∧ dz̄J .

It follows that for each I and J ,

∂aIJ

∂z̄k

� 0, k > ν.

By Lemma 6.3 there exists a neighborhood �1 of �n and, for each I and J ,
AIJ ∈ C∞(�1) with

∂AIJ

∂z̄ν

� aIJ ,
∂AIJ

∂z̄k

� 0, k > ν.

Put

ω1 �
∑
I,J

AIJ dzI ∧ dz̄J ∈ ∧p,q−1(�1),

∂̄ω1 �
∑
I,J,k

∂AIJ

∂z̄k

dz̄k ∧ dzI ∧ dz̄J

�
∑
I,J

aIJ dz̄ν ∧ dzI ∧ dz̄J + γ,

where γ is a form of level ≤ ν − 1. Thus

∂̄ω1 � dz̄ν ∧ α + γ.

Hence

∂̄ω1 − ω � γ − β

is a form of level ≤ ν − 1. Also

∂̄(γ − β) � ∂̄(∂̄ω1 − ω) � 0.
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By induction hypothesis, we can choose a neighborhood �2 of �n and τ ∈
∧p,q−1(�2) with ∂̄τ � γ − β. Then

∂̄(ω1 − τ) � ∂̄ω1 − ∂̄τ � ω + (γ − β) − (γ − β) � ω.

ω1 − τ is now the desired ω*.

NOTES
Theorem 6.1 is in P. Dolbeaut, Formes différentielles et cohomologie sur une

variété analytique complexe, I, Ann. Math. 64 (1956), 83-130; II, Ann. Math. 65
(1957), 282-330. For the proof cf. [Hö2, Chap. 2].
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The Oka-Weil Theorem

Let K be a compact set in the z-plane and denote by P(K) the uniform closure on
K of the polynomials in z.

Theorem 7.1. Assume that C\K is connected. Let F be holomorphic in some
neighborhood � of K . Then F |K is in P(K).

Proof. Let L denote the space of all finite linear combinations of functions 1/(z−
a)p, where a ∈ C\�, p an integer ≥ 0. By Runge’s theorem (Theorem 2.9), F |K
lies in the uniform closure of L on K . We claim that L ⊂ P(K). For let µ be a
measure on K, µ ⊥ P(K). Then for |a| large,∫

dµ(z)

z − a
� −

∫ ( ∞∑
0

zn

an+1

)
dµ � 0.

But the integral on the left is analytic as a function of a in C\K and, since C\K
is connected, vanishes for all a in C\K . By differentiation,∫

dµ(z)

(z − a)p
� 0, p � 1, 2, . . . , a ∈ C\K.

Thus µ ⊥ L, so L ⊂ P(K), as claimed. The theorem follows.

How can we generalize this result to the case when K is a compact subset of
Cn, n > 1?

What condition on K will assure the possibility of approximating arbitrary
functions holomorphic in a neighborhood of K uniformly on K by polynomials
in z1, . . . , zn?

Note that the condition “C\K is connected” is a purely topological restriction on
K . No such purely topological restriction can suffice when n > 1. As an example,
consider the two sets in C2.

K1 � {(eiθ , 0)|0 ≤ θ ≤ 2π},
K2 � {(eiθ , e−iθ )|0 ≤ θ ≤ 2π}.

36
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The two sets are, topologically, circles. The function F(z1, z2) � 1/z1 is
holomorphic in a neighborhood of K1.

Yet we cannot approximate F uniformly on K1 by polynomials in z1, z2. (Why?)
On the other hand, every continuous function on K2 is uniformly approximable
by polynomials in z1, z2. (Why?)

To obtain a general condition valid in Cn for all n we rephrase the statement
“C\K is connected” as follows:

Lemma 7.2. Let K be a compact set in C. C\K is connected if and only if for
each x0 ∈ C\K we can find a polynomial P such that

(1) |P(x0)| > max
K
|P |.

Proof. If C\K fails to be connected, we can choose x0 in a bounded component
of C\K and note that (1) violates the maximum principle.

Assume that C\K is connected. Fix x0 ∈ C\K . Then K ∪ {x0} is a set with
connected complement. Choose points xn → x0 and xn �� x0. Then

fn(z) � 1

z − xn

is holomorphic in a neighborhood of K ∪ {x0}. Hence by Theorem 7.1 we can find
a polynomial Pn with∣∣∣∣Pn(z) − 1

z − xn

∣∣∣∣ <
1

n
, all z ∈ K ∪ {x0}.

For large n, then, Pn satisfies (1).

Definition 7.1. Let X be a compact subset of Cn. We define the polynomially
convex hull of X, denoted h(X), by

h(X) � {z ∈ Cn
∣∣|Q(z)| ≤ max

x
|Q|

for every polynomial Q}.
Evidently h(X) is a compact set containing X.

Definition 7.2. X is said to be polynomially convex if h(X) � X.
Note that X is polynomially convex if and only if for every x0 in Cn\X we can

find a polynomial P with

(2) |P(x0)| > max
x
|P |.

For X ⊂ C, Lemma 7.2 now gives that C\X is connected if and only if X is
polynomially convex. Theorem 7.1 can now be stated: For X ⊂ C, the approxima-
tion problem on X is solvable provided that X is polynomially convex. Formulated
in this way, the theorem admits generalization to Cn for n > 1.

Theorem 7.3 (Oka-Weil). Let X be a compact, polynomially convex set in Cn.
Then for every function f holomorphic in some neighborhood of X, we can find a
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sequence {Pj } of polynomials in z1, . . . , zn with

Pj → f uniformly on X.

Note. In order to apply this result in particular cases we of course have to verify
that a given set X is polynomially convex. This is usually quite difficult. However,
we shall see that in the theory of Banach algebras polynomially convex sets arise
in a natural way.

André Weil, who first proved the essential portion of Theorem 7.3 [L’Intégrale
de Cauchy et les fonctions de plusieurs variables, Math. Ann. 111 (1935), 178-182],
made use of a generalization of the Cauchy integral formula to several complex
variables. We shall follow another route, due to Oka, based on the Oka extension
theorem given below.

Definition 7.3. A subset � of Cn is a p-polyhedron if there exist polynomials
P1, . . . , Ps such that

� � {z ∈ Cn
∣∣|zj | ≤ 1, all j, and |Pk(z)| ≤ 1, k � 1, 2, . . . , s}.

Lemma 7.4. Let X be a compact polynomially convex subset of �n Let O be an
open set containing X. Then there exists a p-polyhedron � with X ⊂ � ⊂ O.

Proof. For each x ∈ �n\O there exists a polynomial Px with |Px(x)| > 1 and
|Px | ≤ 1 on X.

Then |Px | > 1 in some neighborhood Nx of x. By compactness of �n\O, a
finite collection Nx1 , . . . , Nxr

covers �n\O. Put

� � {z ∈ �n
∣∣|Px1(z)| ≤ 1, . . . , |Pxr

(z)| ≤ 1}.
If z ∈ X, then z ∈ �, so X ⊂ �.

Suppose that z �∈ O. If z �∈ �n, then z �∈ �. If z ∈ �n, then z ∈ �n\O. Hence
z ∈ Nxj for some j . Hence |Pxj (z)| > 1. Thus z �∈ �. Hence � ⊂ O.

Let now � be a p-polyhedron in Cn,

� � {z ∈ �n
∣∣|Pj (z)| ≤ 1, j � 1, . . . , r}.

We can embed � in Cn+r by the map

� : z → (z, P1(z), . . . , Pr(z)).

� maps � homeomorphically onto the subset of �n+r defined by the equations

zn+1 − P1(z) � 0, . . . , zn+r − Pr(z) � 0.

Theorem 7.5 (Oka Extension Theorem). Given f holomorphic in some neigh-
borhood of �; then there exists F holomorphic in a neighborhood of �n+r such
that

F(z, P1(z), . . . , Pr(z)) � f (z), all z ∈ �.
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The Oka-Weil theorem is an easy corollary of this result.

Proof of Theorem 7.3. Without loss of generality we may assume that X ⊂ �n.
(Why?) f is holomorphic in a neighborhood O of X. By Lemma 7.4 there exists
a p-polyhedron � with X ⊂ � ⊂ O. Then f is holomorphic in a neighborhood
of �. By Theorem 7.5 we can find F satisfying

(3) F (z, P1(z), . . . , Pr(z)) � f (z), z ∈ �,

F holomorphic in a neighborhood of �n+r . Expand F in a Taylor series around 0,

F(z, zn+1, . . . , zn+r ) �
∑

ν

aνz
ν1
1 · · · zνn

n z
νn+1

n+1 · · · zνn+r

n+r .

The series converges uniformly in �n+r . Thus a sequence {Sj } of partial sums of
this series converges uniformly to F on �n+r , and hence in particular on �(�).
Thus

Sj (z, P1(z), . . . , Pr(z))

converges uniformly to F(z, P1(z), . . . , Pr(z)) for z ∈ �, or, in other words,
converges to f (z), by (3). Since Sj (z, P1(z), . . . , Pr(z)) is a polynomial in z for
each j , we are done.

We must now attack the Oka Extension theorem. We begin with a generalization
of Theorem 6.1.

Theorem 7.6. Let � be a p-polyhedron in Cn and � a neighborhood of �. Given
that φ ∈ ∧p,q(�), q > 0, with ∂̄φ � 0, then there exists a neighborhood �1 of
� and ψ ∈ ∧p,q−1(�1) with ∂̄ψ � φ.

First we need some definitions and exercises.
Let � be an open set in Cn and W and open set in Ck . Let u � (u1, . . . , un) be

a map of W into �. Assume that each uj ∈ C∞(W).

Exercise 7.1. Let a ∈ C∞(�), so a(u) ∈ C∞(W). Then

d{a(u)} �
n∑

j�1

∂a

∂zj

(u)duj + ∂a

∂z̄j

(u)dūj .

Both sides are forms in ∧1(W).
Let �, W , and u be as above. Assume that each uj ∈ H(W). For each I �

(i1, . . . , ir ), J � (j1, . . . , js) put

duI � dui1 ∧ dui2 ∧ · · · ∧ duir

and define dūJ similarly. Thus duI ∧ dūJ ∈ ∧r,s(W).
Fix ω ∈ ∧r,s(�),

ω �
∑
I,J

aIJ dzI ∧ dz̄J .
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Definition 7.4.

ω(u) �
∑
I,J

aIJ (u)duI ∧ dūJ ∈ ∧r,s(W).

Exercise 7.2. d(ω(u)) � (dω)(u) and ∂̄(ω(u)) � (∂̄ω)(u). We still assume, in
this exercise, that each uj is holomorphic.

Proof of Theorem 7.6. We denote

P k(q1, . . . , qr) � {z ∈ �k
∣∣|qj (z)| ≤ 1, j � 1, . . . , r},

the qj being polynomials in z1, . . . , zk . Every p-polyhedron is of this form.
We shall prove our theorem by induction on r . The case r � 0 corresponds to

the p-polyhedron �k and the assertion holds, for all k, by Theorem 6.1.
Fix r now and suppose that the assertion holds for this r and all k and

all (p, q), q > 0. Fix n and polynomials p1, . . . , pr+1 in Cn and consider
φ ∈ ∧p,q(�), � some neighborhood of P n(p1, . . . , pr+1). We first sketch the
argument.

Step 1. Embed P n(p1, . . . , pr+1) in P n+1(p1, . . . , pr) by the map u : z →
(z, pr+1(z)). Note that p1, . . . , pr are polynomials in z1, . . . , zn+1 which do not
involve zn+1. Let

∑
denote the image of P n(p1, . . . , pr+1) under u. π denotes

the projection (z, zn+1) → z from Cn+1 → Cn. Note π ◦ u � identity.

Step 2. Find a ∂̄-closed form �1 defined in a neighborhood of

P n+1(p1, . . . , pr)

with �1 � φ(π) on
∑

.

Step 3. By induction hypothesis, ∃� in a neighborhood of P n+1(p1, . . . , pr) with
∂̄� � �1. Put ψ � �(u). Then

∂̄ψ � (∂̄�)(u) � �1(u) � φ.

As to the details, choose a neighborhood �1 of P n(p1, . . . , pr+1) with �̄1 ⊂ �.
Choose λ ∈ C∞(Cn), λ � 1 on �̄1, λ � 0 outside �. Put � � (λ ·φ)(π), defined
� 0 outside π−1(�).

Let χ be a form of type (p, q) defined in a neighborhood of P n+1(p1, . . . , pr).
Put

(4) �1 � � − (zn+1 − pr+1(z)) · χ.

Then �1 � � � φ(π) on
∑

.
We want to choose χ such that �1 is ∂̄-closed. This means that

∂̄� � (zn+1 − pr+1(z))∂̄χ
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or

(5) ∂̄χ � ∂̄�

(zn+1 − pr+1(z))
.

Observe that ∂̄� � ∂̄φ(π) � 0 in a neighborhood of
∑

, whence the right-hand
side in (5) can be taken to be 0 in a neighborhood of

∑
and is then in C∞ in a

neighborhood of P n+1(p1, . . . , pr). Also

∂̄

{
∂̄�

(zn+1 − pr+1(z))

}
� 0.

By induction hypothesis, now, ∃χ satisfying (5). The corresponding �1 in (4) is
then ∂̄-closed in some neighborhood of P n+1(p1, . . . , pr). By induction hypoth-
esis again, ∃a (p, q − 1) form � in a neighborhood of P n+1(p1, . . . , pr) with
∂̄� � �1. As in step 3, then, making use of Exercise 7.2, we obtain a (p, q − 1)
form ψ in a neighborhood of P n(p1, . . . , pr+1) with ∂̄ψ � φ.

We keep the notations introduced in the last proof.

Lemma 7.7. Fix k and polynomials q1, . . . , qr in z � (z1, . . . , zk). Let f be
holomorphic in a neighborhood W of � � P k(q1, . . . , qr). The ∃F holomorphic
in a neighborhood of �′ � P k+1(q2, . . . , qr) such that

F(z, q1(z)) � f (z), all z ∈ �.

[Note that if z ∈ �, then (z, q1(z)) ∈ �′.]

Proof. Let
∑

be the subset of �′ defined by zk+1 − q1(z) � 0. Choose φ ∈
C∞0 (π−1(W)) with φ � 1 in a neighborhood of

∑
.

We seek a function G defined in a neighborhood of �′ so that with

F(z, zk+1) � φ(z, zk+1)f (z) − (zk+1 − q1(z))G(z, zk+1),

F is holomorphic in a neighborhood of �′. We define φ · f � 0 outside π−1(W).
We need ∂̄F � 0 and so

f ∂̄φ � (zk+1 − q1(z))∂̄G

or

(6) ∂̄G � f ∂̄φ

(zk+1 − q1(z))
� ω.

Note that the numerator vanishes in a neighborhood of
∑

, so ω is a smooth form
in some neighborhood of �′. Also ∂̄ω � 0. By Theorem 7.6, we can thus find
G satisfying (6) in some neighborhood or �′. The corresponding F now has the
required properties.

Proof of Theorem 7.5. p1, . . . , pr are given polynomials in z1, . . . , zn and � �
P n(p1, . . . , pr). f is holomorphic in a neighborhood of �. For j � 1, 2, . . . , r
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we consider the assertion

A(j) : ∃Fj holomorphic in a neighborhood of P n+j (pj+1, . . . , pr)

such that Fj (z, p1(z), . . . , pj (z)) � f (z), all z ∈ �.
A(1) holds by Lemma 7.7. Assume that A(j) holds for some j . Thus Fj is holo-

morphic in a neighborhood of P n+j (pj+1, . . . , pr). By Lemma 7.7, ∃Fj+1 is holo-
morphic in a neighborhood of P n+j+1(pj+2, . . . , pr) with Fj+1(ζ, pj+1(z)) �
Fj (ζ ), ζ ∈ P n+j (pj+1, . . . , pr), and ζ � (z, zn+1, . . . , zn+j ).

By choice of Fj .

Fj (z, p1(z), . . . , pj (z)) � f (z), all z in �.

Hence

Fj+1(z, p1(z), . . . , pj (z), pj+1(z)) � f (z), all z in �.

Thus A(j + 1) holds. Hence A(1), A(2), . . . , A(r) all hold. But A(r) provides F

holomorphic in a neighborhood of �n+r with

F(z, p1(z), . . . , pr(z)) � f (z), all z in �.

Exercise 7.3. Let A be a uniform algebra on a compact space X with generators
g1, . . . , gn (i.e., A is the smallest closed subalgebra of itself containing the gj ).
Show that the map

x → (ĝ1(x), . . . , ĝn(x))

maps M(A) onto a compact, polynomially convex set K in Cn, and that this map
carries A isomorphically and isometrically onto P(K).

Exercise 7.4. Let X be a compact set in Cn. Show that M(P (X)) can be identified
with h(X). In particular, if X is polynomially convex, M(P (X)) � X.

NOTES
Theorem 7.5 and the proof of Theorem 7.3 based on it is due to K . Oka, Do-

maines convexes par rapport aux fonctions rationelles, J. Sci. Hiroshima Univ. 6
(1936), 245-255. The proof of Theorem 7.5 given here is found in Gunning and
Rossi [GR, Chap. 1].
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Operational Calculus in Several
Variables

We wish to extend the operational calculus established in Section 3 to functions
of several variables. Let A be a Banach algebra and x1, . . . , xn ∈ A. If P is a
polynomial in n variables

P(z1, . . . , zn) �
∑

ν

Aνz
ν1
1 · · · zνn

n ,

it is natural to define

P(x1, . . . , xn) �
∑

ν

Aνx
ν1
1 · · · xνn

n ∈ A.

We then observe that if y � P(x1, x2, . . . , xn), then

(1) ŷ � P(x̂1, . . . , x̂n) on M.

Let F be a complex-valued function defined on an open set � ⊂ Cn. In order
to define F(x̂1, . . . , x̂n) on M we must assume that � contains

{(x̂1(M), . . . , x̂n(M))|M ∈ M}.

Definition 8.1. σ(x1, . . . , xn), the joint spectrum of x1, . . . , xn, is {(x̂1(M), . . . ,

x̂n(M))|M ∈ M}.
When n � 1, we recover the old spectrum σ(x). You easily verify

Lemma 8.1. (λ1, . . . , λn) in Cn lies in σ(x1, . . . , xn) if and only if the equation
n∑

j�1

yj (xj − λj ) � 1

has no solution y1, . . . , yn ∈ A.

We shall prove

Theorem 8.2. Fix x1, . . . , xn ∈ A. Let � be an open set in Cn with
σ(x1, . . . , xn) ⊂ �. For each F ∈ H(�) there exists y ∈ A with

(2) ŷ(M) � F(x̂1(M), . . . , x̂n(M)), all M ∈ M.

43
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Remark. This result is, of course, not a full generalization of Theorem 3.3.
We shall see that it is adequate for important applications, however, When A
is semisimple, we can say more. In that case y is determined uniquely by (2) and
we can define

F(x1, . . . , xn) � y.

Now H(�) is an F -space in the sense of [DSch, Chap. II]. Hence by the closed
graph theorem (loc. cit.), the map

F → F(x1, . . . , xn)

is continuous from H(�) → A. Thus

Corollary. If A is semisimple, Fj → F in H(�) implies that Fj (x1, . . . , xn) →
F(x1, . . . , xn) in A.

We shall first prove our theorem under the assumption that

x1, . . . , xn generate A; i.e., the smallest closed subalgebra of A

containing x1, . . . , xn coincides with A.(3)

Lemma 8.3. Assume (3). Then σ(x1, . . . , xn) is a polynomially convex subset
of Cn.

Proof. Fix z0 � (z0
1, . . . , z0

n) with

|Q(z0)| ≤ max
σ
|Q|, all polynomials Q,

where σ � σ(x1, . . . , xn).

max
σ
|Q| � max

M
|Q(x̂1, . . . , x̂n)| � max

M
|Q ̂(x1, . . . , xn)|

≤ ||Q(x1, . . . , xn)||.
Hence the map χ : Q(x1, . . . , xn) → Q(z0) is a bounded homomorphism from

a dense subalgebra of A → C. (Check that χ is unambiguously defined.) Hence
χ extends to a homomorphism of A → C, so ∃M0 ∈ M with χ(f ) � f̂ (M0),
all f ∈ A. In particular,

χ(xj ) � x̂j (M0) or z0
j � x̂j (M0), j � 1, . . . , n.

Thus z0 ∈ σ . Hence σ is polynomially convex.

Exercise 8.1. Let F be holomorphic in a neighborhood of �N with

F(ζ ) �
∑

ν

Cνζ
ν1
1 · · · ζ νN

N .

Given that y1, . . . , yN ∈ A, maxM |ŷj | ≤ 1, all j . Then∑
ν

Cνy
ν1
1 · · · yνN

N



8. Operational Calculus in Several Variables 45

converges in A.

Proof of Theorem 8.2, assuming (3). Without loss of generality, ||xj || ≤ 1 for
all j By Lemma 8.3, σ � σ(x1, . . . , xn) is polynomially convex, and σ ⊂ �n. By
Lemma 7.4, ∃ a p-polyhedron

∏
with σ ⊂ ∏ ⊂ �,

∏ � P n(p1, . . . , pr). Fix
φ ∈ H(�). By the Oka extension theorem, ∃� holomorphic in a neighborhood
of �n+r with

�(z1, . . . , zn, p1(z), . . . , pr(z)) � φ(z), z ∈
∏

.

Put y1�x1, . . . , yn � xn, yn+1 � p1(x1, . . . , xn), . . . , yn+r � pr(x1, . . . , xn).
We verify that maxM |ŷj | ≤ 1, j � 1, 2, . . . , n + r . By Exercise 8.1,∑

ν

Cνx
ν1
1 · · ·νn

n (p1(x))νn+1(pr(x))νn+r

converges in A to an element y, where
∑

ν Cνζ
ν is the Taylor expansion of � at

0 and pj (x) denotes pj (x1, . . . , xn). Then

ŷ(M) � �(x̂1(M), . . . , x̂n(M), p1(x̂(M)), . . . , pr(x̂(M)))

� φ(x̂1(M), . . . , x̂n(M)), all M ∈ M,

since (x̂1(M), . . . , x̂n(M)) ∈ σ ⊂ ∏. We are done.
If we now drop (3), σ is no longer polynomially convex. Richard Arens and

Alberto Calderon fortunately found a way to reduce the general case to the finitely
generated one.

Let x1, . . . , xn ∈ A, let W be an open set in Cn containing σ(x1, . . . , xn),
and fix F ∈ H(W). For every closed subalgebra A′ of A containing elements
ζ1, . . . , ζk of A, let σA′(ζ1, . . . , ζk) denote the joint spectrum of ζ1, . . . , ζk relative
to A′.

Assertion. ∃C1, . . . , Cm ∈ A such that if B is the closed subalgebra of A
generated by x1, . . . , xn, C1, . . . , Cm, then

(4) σB(x1, . . . , xn) ⊂ W.

Grant this for now. Let π be the projection z1, . . . , zn, zn+1, . . . , zn+m) →
(z1, . . . , zn) of Cn+m → Cn. Because of (4), σB(x1, . . . , xn, C1, . . . , Cm) ⊂
π−1(W). Define a function φ on π−1(W) by

φ(z1, . . . , zn, zn+1, . . . , zn+m) � F(z1, . . . , zn).

Thus φ is holomorphic in a neighborhood of σB(x1, . . . , xn, C1, . . . , Cm), and
so, by Theorem 8.2 under hypothesis (3) applied to B and the set of generators
x1, . . . , Cm, ∃y ∈ B with

ŷ � φ(x̂1, . . . , x̂n, Ĉ1, . . . Ĉm)

� F(x̂1, . . . , x̂n) on M(B).

If M ∈ M, then M ∩ B ∈ M(B) and hence ŷ(M) � F(x̂1(M), . . . , x̂n(M)).
We are done, except for the proof of the assertion.
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Let A0 denote the closed subalgebra generated by x1, . . . , xn and put σ0 �
σA0(x1, . . . , xn). If σ0 ⊂ W , take B � A0. If not, consider ζ ∈ σ0\W .

Since ζ �∈ σ(x1, . . . , xn), ∃y1, . . . , yn ∈ A such that
∑n

j�1 yj (xj − ζj ) � 1.
Denote by A(ζ ) the closed subalgebra generated by x1, . . . , xn, y1, . . . , yn. Then
∃ neighborhood Nζ of ζ in C such that if α ∈ Nζ , then

∑
j yj (xj −αj ) is invertible

in A(ζ ). It follows that if α ∈ Nζ , then α �∈ σA(ζ )(x1, . . . , xn).
By compactness of σ0\W , we obtain in this way a finite covering of

σ0\W by neighborhoods Nζ . We throw together all the corresponding yj and
call them C1, . . . , Cm, and we let B be the closed subalgebra generated by
x1, . . . , xn, C1, . . . , Cm. Note that σB(x1, . . . , xn) ⊂ σ0. (Why?) If α ∈ σ0\W ,
then α lies in one of our finitely many Nζ , and so ∃u1, . . . , un ∈ B such
that

∑
j uj (xj − αj ) is invertible in B. Hence α �∈ σB(x1, . . . , xn). Thus

σB(x1, . . . , xn) ⊂ W , proving the assertion. Thus Theorem 8.2 holds in general.
As a first application we consider this problem. Let A be a Banach algebra and

x ∈ A. When does x have a square root in A, i.e., when we can find y ∈ A with
y2 � x?

An obvious necessary condition is the purely topological one:

(5) ∃y ∈ C(M) with y2 � x̂ on M.

Condition (5) alone is not sufficient, as is seen by taking, with D � {z∣∣|z| ≤ 1},
A � {f ∈ A(D)|f ′(0) � 0}.

Then z2 ∈ A, z �∈ A, but (5) holds. However, one can prove

Theorem 8.4. Let A be a Banach algebra, a ∈ A. and assume that ∃h ∈ C(M)

with h2 � â. Assume also that â never vanishes on M. Then a has a square root
in A.

We approach the proof as follows: First find a2, . . . , an ∈ A such that ∃F
holomorphic in a neighborhood of σ(a, a2, . . . , an) in Cn with F 2 � z1. By
Theorem 8.2, ∃y ∈ A, with ŷ � F(â, â2, . . . , ân) on M. Then ŷ2 � â on M. If
A is semisimple, we are done. In the general case, put ρ � a−y2. Then ρ ∈ rad A.
Since ŷ2 � â, y2 is invertible and ρ/y2 ∈ rad A. Then (y

√
1 + ρ/y2)2 � y2(1+

ρ/y2) � a, so y
√

1 + ρ/y2 solves our problem provided that
√

1 + ρ/y2 ∈ A.
It does so by

Exercise 8.2. Let A be a Banach algebra and x ∈ rad A. Then ∃ζ ∈ A with
ζ 2 � 1 + x and ζ̂ ≡ 1 on M.

We return to the details.

Lemma 8.5. Given a as in Theorem 8.4, ∃a2, . . . , an ∈ A such that if K �
σ(a, a2, . . . , an) ⊂ Cn, then we can find H ∈ C(K) with H 2 � z1 on K .
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Proof. In the topological product M ×M put

S � {(M, M ′)|h(M) + h(M ′) � 0},
where h is as in Theorem 8.4. S is compact and disjoint from the diagonal. (Why?)
Let x � (M1, M ′

1) ∈ S. Since M ′
1 �� M1, ∃bx ∈ A with b̂x(M1) − b̂x(M

′
1) �� 0.

By continuity b̂x(M)− b̂x(M
′) �� 0 for all (M, M ′) in some neighborhood Nx of

x in S. By compactness, Nx2 , . . . , Nxn
cover S for a suitable choice of x2, . . . , xn.

Put aj � bxj
, j � 2, . . . , n. Put

K � σ(a, a2, . . . , an)

and fix z � (â(M), â2(M), . . . , ân(M)) ∈ K .
We define a function H on K by H(z) � h(M). To see that H is well defined,

suppose that for (M, M ′) ∈ M ×M,

(6) â(M) � â(M ′), âj (M) � âj (M
′), j � 2, . . . , n.

(M, M ′) �∈ S, for this would imply that (M, M ′) ∈ Nxj
for some j , denying

(6). Hence h(M) �� −h(M ′). By (6), h2(M) � h2(M ′). Hence h(M) � h(M ′),
as desired. It is easily verified that H is continuous on K , and that H 2 � z1.

Proof of Theorem 8.4. It only remains to construct F holomorphic in a
neighborhood of K with F 2 � z1.

For each x ∈ K and r > 0, let B(x, r) be the open ball in Cn centered at
x and of radius r . If x � (α1, . . . , αn) ∈ K, α1 �� 0. Hence ∃r > 0 and Fx

holomorphic in B(x, r), with F 2
x � z1 in B(x, r). By compactness of K , a fixed r

will work for all x in K . This is not enough, however, to yield an F holomorphic in
a neighborhood of K with F 2 � z1. (Why not?) But we can require, in addition,
that Fx � H in B(x, r) ∩ K . Put � � ⋃

x∈K B(x, r/2). For ζ ∈ �, define
F(ζ ) � Fx(ζ ) if ζ ∈ B(x, r/2), x ∈ K . To see that this value is independent of
x ∈ K , suppose that ζ ∈ B(x, r/2) ∩ B(y, r/2), x, y ∈ K .

Then y ∈ B(x, r)∩K . Hence Fx(y) � H(y). Also, Fy(y) � H(y). Hence Fx

and Fy are two holomorphic functions in B(x, r)∩B(y, r/2) with F 2
x � F 2

y � z1

there and Fx � Fy at y. So Fx(ζ ) � Fy(ζ ). (Why?) Thus F ∈ H(�) and F 2 � z1

in �.

Theorem 8.4 holds when the square-root function is replaced by any one of
a large class of multivalued analytic functions. (See the Notes at the end of this
section.)

As our second application of Theorem 8.2, we take the existence of idempotent
elements.

Theorem 8.6 (Šilov Idempotent Theorem). Let A be a Banach algebra and
assume that M � M1 ∪M2, where M1 and M2 are disjoint closed sets. Then
∃e ∈ A with e2 � e and ê � 1 on M1 and ê � 0 on M2.
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Lemma 8.7. ∃a1, . . . , aN ∈ A such that if â is the map of M → CN : M →
(â1(M), . . . , âN (M)), then â(M1) ∩ â(M2) � ∅.

The proof is like that of Lemma 8.5 and is left to the reader.

Proof of Theorem 8.6. By the last Lemma, ∃a1, . . . , aN ∈ A, so that â(M1)

and â(M2) are disjoint compact subsets of CN . Choose disjoint open sets W1 and
W2 in CN with â(Mj ) ⊂ Wj, j � 1, 2. Put W � W1 ∪ W2 and define F in W

by F � 1 on W1 and F � 0 on W2. Then F ∈ H(W). By Theorem 8.2, ∃t ∈ A
with ŷ � F(â1, . . . , ân) on M. Then ŷ � 1 on M1, ŷ � 0 on M2. We seek
u ∈ rad A so that (y + u)2 � y + u. Then e � y + u will be the desired element.

The condition on u ⇔
(7) u2 + (2y − 1)u + ρ � 0,

where ρ � y2 − y ∈ rad A.
The formula for solving a quadratic equation suggests that we set

u � − 2y − 1

2
+ 2y − 1

2
ζ,

where ζ is the element of A, provided by Exercise 8.2, satisfying

ζ 2 � 1 − 4ρ

(2y − 1)2
and ζ̂ ≡ 1.

We can then check that u has the required properties, and the proof is complete.

Corollary 1. If M is disconnected, A contains a nontrivial idempotent.

Corollary 2. Let A be a uniform algebra on a compact space X. Assume that M
is totally disconnected. Then A � C(X).

Note. The hypothesis is on M, not on X, but it follows that if M is totally
disconnected, then M � X.

Proof of Corollary 2. If x1, x2 ∈ X, x1 �� x2, choose an open and closed
set M1 in M with x1 ∈ M1, x2 �∈ M1. Put M2 � M\M1. By Theorem 8.6,
∃e ∈ A, ê � 1 on M1 and ê � 0 on M2. Thus e is a real-valued function in A
which separates x1 and x2. By the Stone-Weierstrass theorem, we conclude that
A � C(X).

Corollary 3. Let X be a compact subset of Cn. Assume that X is polynomially
convex and totally disconnected. Then P(X) � C(X).

Proof. The result follows from Corollary 2, together with the fact that
M(P (X)) � X.

NOTES
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Theorem 8.2 was proved for finitely generated algebras by G. E. Šilov, On
the decomposition of a commutative normed ring into a direct sum of ideals,
A.M.S. Transl. 1 (1955). The proof given here is due to L. Waelbroeck, Le Calcul
symbolique dans les algèbres commutatives, J. Math. Pure Appl. 33 (1954), 147-
186. Theorem 8.2 for the general case was proved by R. Arens and A. Calderon,
Analytic functions of several Banach algebra elements, Ann. Math. 62 (1955),
204-216. Theorem 8.4 is a special case of a more general result given by Arens
and Calderon, loc. cit. Theorem 8.6 and its corollaries are due to Šilov, loc. cit.

Our proof of Theorem 8.4 has followed Hörmander’s book [Hö, Chap. 3].
For a stronger version of Theorem 8.2 see Waelbroeck, loc. cit., or N. Bourbaki,

Théories spectrales, Hermann, Paris, 1967, Chap. 1, Sec. 4.



9

The Šilov Boundary

Let X be a compact space and F an algebra of continuous complex-valued
functions on X which separates the points of X.

Definition 9.1. A boundary for F is a closed subset E of X such that

|f (x)| ≤ max
E
|f |, all f ∈ F, x ∈ X.

Thus, for example, if D is the closed unit disk in C and P the algebra of
all polynomials in z, restricted to D, then every closed subset of D containing
{z||z| � 1} is a boundary for P .

Theorem 9.1. Let X and F be as above. Let S denote the intersection of all
boundaries for F . Then S is a boundary for F .

Note.
(a) It is not clear, a priori, that S is nonempty.
(b) S is evidently closed.
(c) It follows from the theorem that S is the smallest boundary, i.e., that S is a

boundary contained in every other boundary.

Lemma 9.2. Fix x ∈ X\S. ∃ a neighborhood U of x with the following property:
If β is a boundary, then β\U is also a boundary.

Proof. x �∈ S and so ∃ boundary S0 with x �∈ S0. For each y ∈ S0, choose
fy ∈ F with fy(x) � 0, fy(y) � 2.

Ny � {|fy | > 1} is a neighborhood of y. Then ∃y1, . . . , yk so that Ny1 ∪ · · · ∪
Nyk

⊃ S0. Write fj for fyj
. Put

U � {|f1| < 1, . . . , |fk| < 1}.
Then U is a neighborhood of x and U ∩ S0 � ∅

Fix a boundary β and suppose that β\U fails to be a boundary. Then ∃f ∈
F maxx |f | � 1, with maxβ\U |f | < 1.

50
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Assertion. ∃n so that maxX |f nfi | < 1, i � 1, . . . , k.
Grant this for now. Since S0 is a boundary, we can pick x̄ ∈ S0 with |f (x̄)| � 1.

By the assertion, |fi(x̄)| < 1, i � 1, . . . , k.
Hence x̄ ∈ U , denying U ∩ S0 � ∅. Thus β\U is a boundary, and we are done.
To prove the assertion, fix M with maxX |fi | < M, i � 1, . . . , k. Chose n so

that (maxβ\U |f |)n · M < 1. Then |f nfi | < 1 at each point β\U for every i. On
U, |f nfi | < 1 by choice of U . Hence the assertion.

Proof of Theorem 9.1. Let W be an open set containing S. For each x ∈ X\W
construct a neighborhood Ux by Lemma 9.2. X\W is compact, so we can find
finitely many such Ux , say U1, . . . , Ur , whose union covers X\W .

X is a boundary. By choice of U1, X\U1 is a boundary. Hence (X/U1)\U2 is a
boundary, and at last X∗ � X\(U1 ∪U2 ∪ · · · ∪Ur) is a boundary. But X∗ ⊆ W .
Hence if f ∈ F , maxX |f | ≤ supW |f |. Since W was an arbitrary neighborhood
of S, it follows that S is a boundary. (Why?)

Note. What properties of F were used in the proof?

Let A be a Banach algebra. Then Â is an algebra of continuous functions on
M, separating points. By Theorem 9.1 ∃a (unique) boundary S for Â which is
contained in every boundary.

Definition 9.2. S is called the Šilov boundary of A and is denoted Š(A).

Exercise 9.1. Let � be a bounded plane region whose boundary consists of finitely
many simple closed curves. Then Š(A(�)) � topological boundary ∂� of �.

Exercise 9.2. Let Y denote the solid cylinder = {(z, t) ∈ C × R
∣∣|z| ≤ 1, 0 ≤

t ≤ 1}. Let A(Y ) � {f ∈ C(Y )| for each t, f (z, t) is analytic in |z| < 1}. Then
Š(A(Y )) � {(z, t)

∣∣|z| � 1, 0 ≤ t ≤ 1}.

Exercise 9.3. Let Y be as in Exercise 9.2 and put L(Y ) � {f ∈ C(Y )|f (z, 1) is
analytic in |z| < 1}. Then Š(L(Y )) � Y .

Exercise 9.4. Let �2 � {(z, w) ∈ C2
∣∣|z| ≤ 1, |w| ≤ 1} and A(�2) � {f ∈

C(�2)|f ∈ H(�), where � � interior of �2}. Show that Š(A(�2)) � T �
{(z, w)||z| � |w| � 1}. Note that here the Šilov boundary is a two-dimensional
subset of the three-dimensional topological boundary of �2.

Exercise 9.5. Let Bn � {z ∈ Cn|∑n
i�1 |zi |2 ≤ 1} and A(Bn) � {f ∈

C(Bn)|f ∈ H(�), � � interior of Bn}. Show that Š(A(Bn)) � topological
boundary of Bn.

Note that in all these examples, as well as in many others arising naturally,
the complement M\Š(A) of the Šilov boundary in the maximal ideal space is



52 9. The Šilov Boundary

the union of one or many complex-analytic varieties, and the elements of Â are
analytic when restricted to these varieties.

We shall study this phenomenon of “analytic structure” in M\Š(A) in several
later sections.

We now proceed to consider one respect in which elements of Â act like analytic
functions on M\Š(A).

Let � be a bounded domain in C. We have

(1) For F ∈ A(�), x ∈ �, |F(x)| ≤ max
∂�
|F |.

The analogous inequality for an arbitrary Banach algebra A is true by definition:
For f ∈ A, x ∈ M,

|f̂ (x)| ≤ max
Š(A)

|f̂ |.

However, we also have a local statement for A(�). Fix x ∈ � and let U be a
neighborhood of x in �. Then

(2) For F ∈ A(�), |F(x)| ≤ max
∂U
|F |.

The analogue of (2) for arbitrary Banach algebras is by no means evident. It is,
however, true.

Theorem 9.3 (Local Maximum Modulus Principle). Let A be a Banach algebra
and fix x ∈ M\Š(A). Let U be a neighborhood of x with U ⊂ M\Š(A). Then
for all f ∈ A,

(3) |f̂ (x)| ≤ max
∂U
|f̂ |.

Lemma 9.4. Let X be a compact, polynomially convex set in Cn and U1 and U2

be open sets in Cn with X ⊂ U1 ∪U2. If h ∈ H(U1 ∩U2), then ∃ a neighborhood
W of X and hj ∈ H(W ∩ Uj), j � 1, 2, so that

h1 − h2 � h in W ∩ U1 ∩ U2.

Proof. Write X � X1 ∪ X2, where Xj is compact and Xj ⊂ Uj , j � 1, 2.
Choose f1 ∈ C∞0 (U1) with 0 ≤ f1 ≤ 1 and f1 � 1 on X1. Similarly, choose
f2 ∈ C∞0 (U2). Then f1 + f2 ≥ 1 on X, and so f1 + f2 > 0 in a neighborhood
V of X. In V define

η1 � f1

f1 + f2
, η2 � f2

f1 + f2
.

Then η1, η2 ∈ C∞(V ), η1 + η2 � 1 in V , and supp ηj ⊂ Uj , j � 1, 2. With no
loss of generality, Uj � Uj ∩ V . Define functions Hj in C∞(Uj ), j � 1, 2 by

H1 � η2h in U1 ∩ U2, H1 � 0 in U1\U2.

H2 � −η1h in U1 ∩ U2, H2 � 0 in U2\U1.
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Then

H1 − H2 � (η1 + η2)h � h in U1 ∩ U2.

Hence ∂̄H1 � ∂̄H2 in U1 ∩ U2. Let f be the (0, 1)-form in U1 ∪ U2 defined
by f � ∂̄H1 in U1, f � ∂̄H2 in U2. Then f is ∂̄-closed in U1 ∪ U2. We can
choose a p-polyhedron

∏
with X ⊂ ∏ ⊂ U1 ∪ U2. By Theorem 7.6, then, ∃ a

neighborhood W of
∏

and F ∈ C∞(W) with ∂̄F � f in W .
Put hj � Hj − F in Uj ∩ W, j � 1, 2. Then h1 − h2 � h in U1 ∩ U2 ∩ W ,

and ∂̄hj � f − f � 0 in Uj ∩ W ; so hj ∈ H(Uj ∩ W), j � 1, 2.

Lemma 9.5. Let K be a compact set in CN and U1 and U2 open sets with

(4) U1 ∪ U2 ⊃ K,

(5) U1 ∩ U2 ⊂ {Re z1 < 0} and ∃ h1 ∈ H(U1), h2 ∈ H(U2)

with

(6) h1 − h2 � log z1

z1
in U1 ∩ U2 and K ∩ U2 ⊂ {Re z1 ≤ 0}.

Then ∃F holomorphic in a neighborhood of K with F � 1 on K ∩ {z1 � 0} ∩U2

and |F | < 1 elsewhere on K .

Proof. By (5) we have in U1 ∩ U2,

z1h1 − z1h2 � log z1 so ez1h1 � z1e
z1h2 .

It follows that if we define

f �
{

ez1h1 in U1,
z1e

z1h2 in U2,

then f ∈ H(U1 ∪ U2). Also

(7) f never vanishes on K\({z1 � 0} ∩ U2).

Assertion. ∃ε > 0 such that if z ∈ K\({z1 � 0} ∩ U2), then f (z) lies outside
the disk {|w − ε| ≤ ε}.

Assume first that z ∈ U2. Then

z1 � e−z1h2f, so z1h2 � e−z1h2 · h2f,

or z1h2 � C · f , with C ∈ H(U2). Hence z1 � f e−Cf � f + kf 2, with
k ∈ H(U2). By shrinking U2 we may obtain |k| ≤ M on U2, M a constant. Since
Re z1 ≤ 0 by (6), we have, at z,

0 ≥ Re f + Re(kf 2) ≥ Re f − |f |2|k|
≥ Re f − M|f |2.
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Put f (z) � w � u + iv. Then

u − M(u2 + v2) ≤ 0,

and so (
u − 1

2M

)2

+ v2 ≥ 1

4M2
.

Thus f (z) lies outside the disk:

|w − 1

2M
| <

1

2M
.

On the other hand, K\U2 is compact and f �� 0 there. Hence for some r >

0, |f (z)| ≥ r if z ∈ K\U2. The assertion now follows.
Let Dε be the disk {|w − ε| ≤ ε} just obtained and put

F � − ε

f − ε
.

By choice of Dε, F is holomorphic in some neighborhood of K . Also on {z1 �
0} ∩U2, F � 1 since f � 0, and everywhere else on K , |F | < 1 since |f − ε| >

ε.

Lemma 9.6. Let A be a Banach algebra, T a closed subset of M and U an open
neighborhood of T . Suppose that ∃φ ∈ A with φ̂ � 1 on T , |φ̂| < 1 on U\T .
Then ∃� ∈ A with �̂ � 1 on T , |�̂| < 1 on M\T .

Proof. T and M\U are disjoint closed subsets of M. Hence ∃g2, . . . , gn ∈
A such that if ĝ : M → Cn−1 is the map m → (ĝ2(m), . . . , ĝn(m)), then
ĝ(T ) ∩ ĝ(M\U) � ∅. (Why?)

Put g1 � φ − 1. Then ĝ1 � 0 on T and Re ĝ1 < 0 on U\T . Let now
G : M → Cn be the map sending m → (ĝ1(m), ĝ2(m), . . . , ĝn(m)). Then
G(M) � σ(g1, . . . , gn). We have

G(T ) is a compact subset of {z1 � 0},(8)

G(T ) is disjoint from G(M\U),(9)

G(U\T ) ⊂ {Re z1 < 0}.(10)

Choose a neighborhood � of G(T ) in Cn with �̄ ∩ G(M\U) � ∅. It is easily
seen that ∃ an open set D0 in Cn such that

(11) D0 ∪ � ⊃ G(M) and D0 ∩ � ⊂ {Re z1 < 0}.
By a construction used in the proof of Theorem 8.2, ∃C1, . . . , Cm ∈ A such

that if B is the closed subalgebra generated by g1, . . . , gn, C1, . . . , Cm, then
σB(g1, . . . , gn) ⊂ D0 ∪ �.

Put σ � σ(g1, . . . , gn, C1, . . . , Cm) ⊂ Cn+m, and let σ̂ be the polynomially
convex hull of σ in Cn+m. Let π be the natural projection of Cn+m on Cn.
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Since σ ⊂ σB(g1, . . . , gn, C1, . . . , Cm), and since the latter set is polynomially
convex because g1, . . . , Cm generate B, σ̂ ⊂ σB(g1, . . . , gn, C1, . . . , Cm), and
so

π(σ̂ ) ⊂ π(σB(g1, . . . , Cm)) � σB(g1, . . . , gn).

Thus π(σ̂ ) ⊂ D0 ∪ �, and so

(12) σ̂ ⊂ π−1(D0) ∪ π−1(�).

Because of (11) we have

(13) π−1(D0) ∩ π−1(�) ⊂ {Re z1 < 0}.
Now σ̂ is polynomially convex and (log z1)/z1 is holomorphic in π−1(D0) ∩

π−1(�). Lemma 9.4 then yields a neighborhood W of σ̂ , and h1 ∈ H(π−1(D0) ∩
W), h2 ∈ H(π−1(�) ∩ W) such that

h1 − h2 � log z1

z1
in π−1(D0) ∩ π−1(�) ∩ W.

We now apply Lemma 9.5 with σ � K, U1 � π−1(D0) ∩ W , and U2 �
π−1(�)∩W . Since σ ⊆ σ̂ , hypotheses (4) and (5) hold. By choice of � and (10),
G(M) ∩ � ⊂ {Re z1 ≤ 0}, whence σ ∩ π−1(�) ⊂ {Re z1 ≤ 0}. So hypothesis
(6) also holds. We conclude the existence of F holomorphic in a neighborhood of
σ with F � 1 on {z1 � 0} ∩ π−1(�) ∩ (�) ∩ σ and |F | < 1 elsewhere on σ .

By Theorem 8.2, ∃� ∈ A with

�̂(M) � F(ĝ1(M), . . . , ĝn(M), Ĉ1(M), . . . , Ĉm(M))

for all M ∈ M. For M ∈ T , the corresponding point of σ is in {z1 � 0}∩π−1(�),
so �(M) � 1. For M ∈ M\T , the corresponding point of σ is not in {z1 �
0} ∩ π−1(�), so |�̂(M)| < 1.

Proof of Theorem 9.3. Suppose that (3) is false. Chose x0 ∈ Ū with |f̂ (x0)| �
maxŪ |f̂ |. Then

(14) |f̂ (x0)| > max
∂U
|f̂ |.

Without loss of generality, f̂ (x0) � 1. Let T � {y ∈ Ū |f̂ (y) � 1}. Then T is
compact and ⊂ U . Put φ � 1

2 (1 + f ). Then φ ∈ A, φ̂ � 1 on T , |φ̂| < 1 on
U\T .

Lemma 9.6 now supplies � ∈ A, with �̂ � 1 on T , |�̂| < 1 on M\T . Since
U ⊂ M\Š(A), we get that |�̂| < 1 on Š(A). This is impossible, and so (3)
holds.

Note. Some, but not all, of the following exercises depend on Theorem 9.3.

Exercise 9.6. Let A be a Banach algebra and assume that Š(A) �� M. Show that
the restriction of Â to Š(A) is not uniformly dense in C(Š(A)).
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Exercise 9.7. Let A be a Banach algebra and assume that Š(A) �� M. Show that
Š(A) is uncountable.

Exercise 9.8. Let A be a Banach algebra and fix p ∈ Š(A). Assume that p is an
isolated point of Š(A), viewed in the topology induced on Š(A) by M. Show that
p is then an isolated point of M.

Theorem 9.7. Let A be a uniform algebra on a space X. Let U1, U2, . . . , Us

be an open covering of M. Denote by L the set of all f in C(M) such that
for j � 1, . . . , s, f |Uj

lies in the uniform closure of Â|Uj
. Then L is a closed

subalgebra of C(M) and Š(L) ⊆ X.

Proof. The proof is a corollary of Theorem 9.3. We leave it to the reader as
*Exercise 9.9.

Exercise 9.10. Is Theorem 9.3 still true if we omit the assumptionU ⊂ M\Š(A)?

NOTES
Theorem 9.1 is due to G. E. Šilov, On the extension of maximal ideals, Dokl.

Acad. Sci. URSS (N.S.) (1940), 83-84. The proof given here, which involves no
transfinite induction or equivalent argument, is due to Hörmander [Hö2, Theorem
3.1.18]. Theorem 9.3 is due to H. Rossi, The local maximum modulus principle,
Ann. Math. 72, No. 1 (1960), 1-11. The proof given here is in the book by Gunning
and Rossi [GR, pp. 62-63].
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Maximality and Radó’s Theorem

Let X be a compact space and A a uniform algebra on X. Denote by || || the
uniform norm on C(X). Note that if x, y ∈ A, then x + ȳ ∈ C(X), so that
||x + ȳ|| is defined.

Lemma 10.1 (Paul Cohen). Let a, b ∈ A. Assume that

||1 + a + b̄|| < 1.

Then a + b is invertible in A.

Note. When b � 0, this of course holds in an arbitrary Banach algebra.

Proof. Put f � a + b. We have

||1 + a + b̄|| < 1, hence ||1 + ā + b|| < 1,

whence

||1 + a + b + 1 + ā + b|| < 2 or k � ||1 + Re f || < 1.

For all x ∈ X, then

|1 + Re f (x)| ≤ k.

This means that f (x) lies in the left-half plane for all x, which suggests that for
small ε > 0,

1 + εf (x)

lies in the unit disk for all x. Indeed,

|1 + εf (x)|2 � 1 + ε2|f (x)|2 + 2ε Re f (x)

≤ 1 + cε2 + 2dε,

where c � ||f ||2 and d � −1+ k < 0. Hence for small ε > 0, |1+ εf (x)| < 1
for all x, or ||1 + εf || < 1, as we had guessed.

It follows that εf is invertible in A for some ε and so f is invertible.

57
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We shall now apply this lemma to a particular algebra. Let D � closed unit disk
in the z-plane and � the unit circle. Let A(D) be the space of all functions analytic
in D̊ and continuous in D. Put

A0 � (A(D)|�
and give A0 the uniform norm on �. A0 is then isomorphic and isometric to A(D)

and is a uniform algebra on �. The elements of A0 are precisely those functions
in C(�) that admit an analytic extension to |z| < 1.

A0 is approximately one half of C(�). For the functions

einθ , n � 0,±1,±2, . . .

span a dense subspace of C(�), while A0 contains exactly those einθ with n ≥ 0.

Exercise 10.1. Put g � ∑p
−p cνe

iνθ , where the cν are complex constants. Com-
pute the closed algebra generated by A0 and g, i.e., the closure in C(�) of all
sums

N∑
ν�0

aνg
ν, aν ∈ A0.

Theorem 10.2 (Maximality Of A0). Let B be a uniform algebra on � with

A0 ⊆ B ⊆ C(�).

Then either A0 � B or B � C(�).

We shall deduce this result by means of Lemma 10.1 as follows. Assuming
B �� A0, we construct elements u, v ∈ B with

(1) ||1 + z · u + z̄v̄|| < 1,

where z � eiθ . Then we conclude that zu + zv is invertible in B, when z is
invertible in B. Hence B ⊃ einθ , n � 0,±1,±2, . . ., so B � C(�), as required.
To construct u and v we argue as follows: For each h ∈ C(�), put

hk � 1

2π

∫ 2π

0
h(eiθ )e−ikθ dθ, k � 0,±1,±2, . . . .

Exercise 10.2. Let h ∈ C(�). Prove that h ∈ A0 if and only if hk � 0, for all
k < 0.

Suppose now that B �� A0. Hence g ∈ B with gk �� 0, for some k < 0.
Without loss of generality we may suppose that g−1 � 1. (Why?)

Choose a trigonometric polynomial T with

(2) ||g − T || < 1.

We can assume T−1 � 1, or

T �
−2∑
−N

Tνz
ν + z−1 +

N∑
0

tνz
ν.
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Hence

zT �
−2∑
−N

Tνz
ν+1 + 1 + z

N∑
0

Tνz
ν

� z̄ · P̄ + 1 + zQ,

where P and Q are polynomials in z. Equation (2) gives

||zg − zT || < 1 or ||z(Q − g) + z̄P̄ + 1|| < 1.

Also Q − g ∈ B, P ∈ B, so we have (1), and we are done.

Theorem 10.3 (Rudin). Let L be an algebra of continuous functions on D such
that
(a) The function z is in L.
(b) L satisfies a maximum principle relative to �:

|G(x)| ≤ max
�
|G|, all x ∈ D, G ∈ L.

Then L ⊆ A(D).

Proof. The uniform closure of L on D, written A, still satisfies (a) and (b).
Put B � A|� . Because of (b), B is closed under uniform convergence on � and

by (a), A0 ⊆ B. So Theorem 10.2 applies to yield B � A0 or B � C(�).
Consider the map g → G(0) for g ∈ B, where G is the function in A with

G � g on �. By (b), G is unique. The map is a homomorphism of B → C and
is not evaluation at a point of �. (Why?) Hence B �� C(�), and so B � A0.

Fix F ∈ A. F |� ∈ A0, so ∃F ∗ ∈ A(D) with F � F ∗ on �. F − F ∗ then ∈ A
and by (b) vanishes identically on D. So F ∈ A(D) and thus A � A(D), whence
the assertion.

Now let X be any compact space, L an algebra of continuous functions on X,
and X0 a boundary for L in the sense of Definition 9.1; i.e., X0 is a closed subset
of X with

(3) |g(x)| ≤ max
X0

|g|, all g ∈ L, x ∈ X.

Lemma 10.4 (Glicksberg). Let E be a subset of X0 and let f ∈ L and f � 0
on E. Then for each x ∈ X either
(a) f (x) � 0, or
(b) |g(x)| ≤ supX0\E |g|, all g ∈ L.

Proof. Fix g ∈ L. Then f · g ∈ L. Fix x ∈ X with f (x) �� 0. We have

|(fg)(x)| ≤ max
X0

|fg| � sup
X0\E

|fg|

≤ sup
X0\E

|f | · sup
X0\E

|g|.
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Hence

|g(x)| ≤ K sup
X0\E

|g|,

where K � |f (x)|−1 · supX0\E |f |. Applying this to gn, n � 1, 2, . . . gives

|g(x)|n � |gn(x)| ≤ K sup
X0\E

|gn| � K( sup
X0\E

|g|)n.

Taking nth roots and letting n → ∞ gives (b).

Consider now the following classical result: Let � be a bounded plane region
and z0 a nonisolated boundary point of �. Let U be a neighborhood of z0 in C.

Theorem 10.5. Let f ∈ A(�) and assume that f � 0 on ∂� ∩ U . Then f ≡ 0
in �.

If we assume that

(4) ∃a sequence {zn}in C\�̄with zn → z0,

then Lemma 10.4 gives a direct proof, as follows.
Put X � �̄, L � A(�). Then ∂� is a boundary for L. Put E � ∂� ∩ U .
With zn as in (4), put

gn(z) � 1

z − zn

.

Then gn ∈ L. If ε > 0 is small enough, we have for all x ∈ � with |x − z0| < ε,

|gn(x)| > sup
∂�\E

|gn|

for all large n. Hence the lemma gives f (x) � 0 for all x ∈ � with |x − z0| < ε,
and so f ≡ 0.

If we do not assume (4), the conclusion follows from

Theorem 10.6 (Radó’s Theorem). Let h be a continuous function on the disk
D. Let Z denote the set of zeros of h. If h is analytic on D̊\Z, then h is analytic
on D̊.

Proof. We assume that Z has an empty interior. The case Z̊ �� ∅ is treated
similarly.

Let L consist of all sums
N∑

ν�0

aνh
ν, aν ∈ A(D).

If f ∈ L, f is analytic in |z| < 1 except possibly on Z, so

(5) |f (x)| ≤ max
�∪Z

|f |, all x ∈ D.
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We apply Lemma 10.4 to L with X0 � � ∪Z, E � Z. Since h ∈ L and h � 0
on Z we get by the lemma

(6) |g(x)| ≤ sup
�

|g|, all g ∈ L,

if x ∈ D\Z, since then h(x) �� 0.
By continuity, (6) then holds for all x ∈ D. Thus L satisfies the hypotheses of

Theorem 10.3, and so L ⊆ A(D). Thus h is analytic on D̊.

Note that Theorem 10.5 follows at once from Radó’s theorem.
For future use we next prove

Theorem 10.7. Let A be a uniform algebra on a space X with maximal ideal
space M. Let f ∈ A satisfying
(a) |f | � 1 on X.
(b) 0 ∈ f (M).
(c) ∃ a closed subset �0 of � having positive linear measure such that for each

λ ∈ �0 there is a unique point q in X with f (q) � λ.
Then

For each z1 ∈ D̊ there is a unique x in M with f (x) � z1.(7)

If g ∈ A, ∃G analytic in D̊ such that(8)

g � G(f ) on f −1D̊).

Proof. For each measure µ on X, let f (µ) denote the induced measure on �; i.e.,
for S ⊂ �,

f (µ)(S) � µ(f −1(S)).

where f −1(S) � {x ∈ X|f (x) ∈ S}.
Since by (b), f (M) contains 0, and by (a), f (X) ⊂ �, it follows that f (M) ⊃

D. (Why? See Lemma 11.1.) Fix p1 and p2 in M with

f (p1) � f (p2) � z1 ∈ D̊.

We must show that p1 � p2. Suppose not. Then ∃g ∈ A with g(p1) � 1 and
g(p2) � 0. Choose, by Exercise 1.2, positive measures µ1 and µ2 on X with

h(pj ) �
∫

hdµj , all h ∈ A,

for j � 1, 2.
Let G be a polynomial. Then∫

Gd(f (µ1)) �
∫

G(f )dµ1 � G(f (p1))

and similarly for µ2. Hence f (µ1) − f (µ2) is a real measure on � annihilating
the polynomials. Hence f (µ1) − f (µ2) � 0. (Why?)
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Since by (c), f maps f −1(�0) bijectively on �0, it follows that µ1 and µ2

coincide when restricted to f −1(�0). Hence the same holds for the measure gµ1

and gµ2.
Put λj � f (gµj ), j � 1, 2. Then λ1 and λ2 coincide when restricted to �0.

For a polynomial G we have∫
Gdλj �

∫
G(f )gdµj � G(f (pj ))g(pj ).

Hence by choice of g, ∫
Gdλ1 � G(z1),∫
Gdλ2 � 0.

Thus

(9)

∫
Gd(λ1 − λ2) � G(z1), all G.

It follows that the measure (z − z1)d(λ1 − λ2) is orthogonal to all polynomials.
By the theorem of F. and M. Riesz (see [Bi2, Chap. 4]), ∃k ∈ H 1 with

(z − z1) d(λ1 − λ2) � k dz.

It follows that k � 0 on �0. Since �0 has positive measure, k ≡ 0. (See [Hof,
Chap. 4].) But z−z1 �� 0 on �, so λ1−λ2 � 0, contradicting (9). Hence p1 � p2,
and (7) is proved.

It follows from (7) that if g ∈ A, ∃G continuous on D̊, with g � G(f ) on
f −1(D̊). It remains to show that G is analytic.

Fix an open disk U with closure Ū ⊂ D̊. Let L be the algebra of all functions

G � g(f −1), g ∈ A,

restricted to Ū .
Choose x ∈ U . f −1(U) is an open subset of M with boundary f −1(∂U), and

f −1(x) ∈ f −1(U).
By the local maximum modulus principle, if h ∈ A,

|h(f −1(x))| ≤ max
f −1(∂U)

|h|

or

|H(x)| ≤ max
∂U
|H |

if H � h(f −1) ∈ L. Note also that z � f (f −1) ∈ L.
Theorem 10.3 (which clearly holds if D is replaced by an arbitrary disk) now

applies to the algebra L on Ū . We conclude that L ⊆ A(Ū), and so G � g(f −1)

is analytic in U for every g ∈ A.
Thus G is analytic in D̊, whence (8) holds.
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NOTES
Lemma 10.1 and the proof of Theorem 10.2 based on it are due to Paul Cohen, A

note on constructive methods in Banach algebras, Proc. Am. Math. Soc. 12 (1961).
Theorem 10.2 is due to J. Wermer. On algebras of continuous functions, Proc.
Am. Math. Soc. 4 (1953). Paul Cohen’s proof of Theorem 10.2 developed out of
an abstract proof of the same result by K. Hoffman and I. M. Singer, Maximal
algebras of continuous functions, Acta Math. 103 (1960). Theorem 10.3 is due
to W. Rudin, Analyticity and the maximum modulus principle, Duke Math. J. 20
(1953). Lemma 10.4 is a result of I. Glicksberg, Maximal algebras and a theorem
of Radó, Pacific J. Math. 14 (1964). Theorem 10.6 is due to T. Radó and has
been given many proofs. See, in particular, E. Heinz, Ein elementarer Beweis des
Satzes von Radó-Behnke-Stein-Cartan. The proof we have given is to be found
in the paper of Glicksberg cited above. Theorem 10.7 is due to E. Bishop and is
contained in Lemma 13 of his paper [Bi3].
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Maximum Modulus Algebras

Let A be an algebra of functions defined and analytic on a plane region �. Fix a
disk � � {z : |z − z0| ≤ r} ⊆ �. Then the inequality

(1) |f (z0)| ≤ max
z∈∂�

|f (z)|

holds for every function f in A.
In more complicated situations, one often meets the following generalization of

(1): We consider an algebra A of continuous complex-valued functions defined on
a locally compact Hausdorff space X. We assume that A separates the points of X.
We fix a function p in A and an open set � in C, such that p is a proper mapping
of X onto �, “proper” meaning that p−1(K) is compact for each compact set K

in �. We now assume, for each λ0 ∈ � and each closed disk � centered at λ0, the
inequality

(2) |g(x0)| ≤ max
p−1(∂�)

|g|

for each x0 ∈ p−1(λ0) and g ∈ A.
If (2) holds, we say that (A, X, �, p) is a maximum modulus algebra (on X,

with projection p over �).

Exercise 11.1. Let X be the product of the open unit disk and the closed unit
interval, i.e.,

X � {(λ, t) : λ ∈ C, |λ| < 1, 0 ≤ t ≤ 1}.
Let A be the algebra of functions continuous on X, such that, for all t , 0 ≤ t ≤ 1,

λ �→ f (λ, t)

is analytic on {|λ| < 1}. Put p(λ, t) � λ. Show that (A, X, �, p) is a maximum
modulus algebra on X.

Exercise 11.2. Let λ, w be complex coordinates in C2. Let � denote the complex
curve w2 � z in C2, i.e., � � {(z, w) ∈ C2 : w2 � z}. We take X �
� ∩ (� × C), where � � {λ ∈ C : 0 < |λ| < 1} and p(λ, w) � λ. Note

64
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that for each λ ∈ �, p−1(λ) is the pair of points (λ,
√

λ), (λ,−√λ). Let A be
the algebra of all functions g on X that are analytic on X, in the sense that near
each point (λ0, w0) ∈ X, g can be written as g � G ◦ p for some G analytic on
a neighborhood of λ0. Show that (A, X, �, p) is a maximum modulus algebra on
X.

We now fix a plane region � that contains the closed unit disk and consider a
maximum modulus algebra (A, X, �, p) over �. We put � equal to the unit circle
and Y � p−1(�). We fix a point x0 in p−1(0). As in Exercise 1.2, this yields the
existence of a probability measure µ on Y such that

f (x0) �
∫

Y

f dµ

for all f ∈ A; µ is a representing measure for x0. Each continuous function φ on
� “pulls back” to a function φ̃ on Y defined by φ̃ � φ ◦ p. We define the “push
forward” µ∗ of µ as the measure on � given by

(3) µ∗(E) � µ(p−1(E))

for each Borel set E ⊆ �. For each φ ∈ C(�), we then have

(4)

∫
Y

φ̃dµ �
∫

�

φdµ∗,

as is easily verified. Also, clearly, µ∗ is a probability measure on �.
In particular, fixing a positive integer n and putting φ(λ) � λn, λ ∈ � we get

φ̃(y) � pn(y), y ∈ Y , and so (4) now gives∫
Y

pndµ �
∫

�

λndµ∗, n � 1, 2, . . . .

By the choice of µ, the left-hand side equals pn(x0) � 0, since x0 lies over 0. So

0 �
∫

�

λndµ∗, n � 1, 2, . . . .

Taking complex conjugates, we get

0 �
∫

�

λ̄ndµ∗, n � 1, 2, . . . .

Also, 1 � ∫
�

dµ∗.
Hence the Fourier coefficients of the measures µ∗ and dθ/2π coincide, and

hence µ∗ � dθ/2π . It follows that

(5)

∫
Y

φ̃dµ � 1

2π

∫
�

φdθ, φ ∈ C(�).

Hence, if φ ∈ C(�), we deduce that

(6)

∫
Y

|φ̃|2dµ � 1

2π

∫
�

|φ|2dθ.
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We now form the space L2(µ) of all functions on Y measurable-dµ and square
summable. Fix φ ∈ L2(�, dθ

2π
). We shall “lift” φ to a function φ̃ on Y as follows:

Choose a sequence {φn} ∈ C(�) such that φn → φ in L2(�, dθ
2π

). In view of (6),
the sequence φ̃n converges in L2(µ). We put φ̃ � limn→∞ φ̃n, in L2(µ). Again by
(6), φ̃ is independent of the choice of the sequence {φn}, and (6) remains valid for
φ and φ̃. We define a subspace C of L2(µ) by,

C � {φ̃ ∈ L2(µ) : φ ∈ L2(�,
dθ

2π
)}.

C is then a closed subspace of L2(µ). We regard its elements as those functions in
L2(µ) which are “constant on each fiber of the map p.” We may identify C with
L2(�, dθ

2π
) by identifying φ̃ with φ.

We now shall consider the following: We fix a function F in A. Restricted to Y ,
F lies in L2(µ). We shall study the orthogonal projection G of F on the subspace
C and show that G has interesting properties related to F . We write co(S) for the
closed convex hull of a set S ⊆ C.

Theorem 11.1. Fix F ∈ A. Let G denote the orthogonal projection in L2(µ) of
F to C . Then

(7) G ∈ H∞ on � and

(8) G(0) � F(x0)

(9) For a.a. θ ∈ [0, 2π ], G(eiθ ) ∈ co(F (p−1(eiθ ))).

Note. H∞ denotes the space of functions in L∞(�) that are a.e. radial limits of
functions bounded and analytic in the unit disk.

Proof. F − G is orthogonal to C in L2(µ), or∫
Y

(F − G)ḡdµ � 0, ∀g ∈ C.

This is equivalent to

(10)

∫
Y

F ḡdµ �
∫

Y

Gḡdµ.

Since G and ḡ ∈ C, using our identification of C with L2(�, dθ
2π

), G and ḡ ∈
L2(�, dθ

2π
), and we verify that the right side in (10) is (1/2π)

∫
�

G(eiθ )g(eiθ )dθ ;
so we get

(11)

∫
Y

F ḡdµ � 1

2π

∫
�

Gḡdθ.
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We now fix a positive integer n and put g � p̄n. Then g is identified with λ̄n in
L2(�, dθ

2π
), and so we get

(12)

∫
Y

Fpndµ � 1

2π

∫
�

Gλndθ.

By choice of µ and choice of x0, the left-hand side � F(x0)(p(x0))n. So

(13) 0 �
∫

�

G(eiθ )einθdθ, n � 1, 2, . . . .

Thus G belongs to the Hardy space H 2 on �.
Taking g � 1 in (11), we get F(x0) � ∫

Y
Fdµ � 1

2π

∫
�

Gdθ � G(0), and
so assertion (8) holds.

Fix next λ0 � eiθ0 ∈ �. For each δ > 0, let α denote the arc of � from ei(θ0−δ)

to ei(θ0+δ) and put

gδ(e
iθ ) �

{
π/δ, θ0 − δ ≤ θ ≤ θ0 + δ

0, |θ − θ0| > δ

so that

(14)

∫
Y

F ḡδdµ � 1

2π

∫
�

Gḡδdθ � 1

2δ

∫ θ0+δ

θ0−δ

G(eiθ )dθ.

Also,
∫
Y

ḡδ ◦ pdµ � 1
2δ

∫ θ0+δ

θ0−δ
π
δ
dθ � 1, and supp(ḡδ ◦ pdµ) ⊆ p−1(α).

The right side of (14) approaches G(λ0) for a.a. λ0 ∈ �. The left side of (14)
approaches a point in the convex hull of the set F(p−1(λ0)), since the probability
measures ḡδ ◦ pdµ have a weak-* convergent subsequence approaching some
probability measure supported in p−1(λ0). Hence G(λ0) ∈ co(F (p−1(λ0))) for
a.a. λ0 ∈ �. Thus assertion (9) holds. Since F is bounded on Y , it follows that
G ∈ L∞(�), and, since G ∈ H 2, this yields G ∈ H∞, i.e., (7) holds. Theorem
11.1 is proved.

We next replace the unit disk by an arbitrary disk � with center λ0, fix a point
x0 in the fiber p−1(λ0), and prove the analogue of Theorem 11.1.

Theorem 11.2. Let (A, X, �, p) be a maximum modulus algebra on � and fix
F ∈ A. Choose a closed disk � contained in �, with center λ0, and fix a point x0

in p−1(λ0). Then there exists a bounded analytic function G on int(�) such that

(15) G(λ0) � F(x0), and

(16) G(λ) ∈ co(F (p−1(λ))) for a.a. λ ∈ ∂�.

Proof. Let χ(λ) � aλ + b, a, b ∈ C, be a conformal map of � onto the unit
disk {|z| ≤ 1}, χ(λ0) � 0. Put � � χ ◦ p. Then � ∈ A and χ maps � on the
region χ(�) and � on the closed unit disk. Hence (A, X, χ(�), �) is a maximum
modulus algebra over χ(�). Also, �(x0) � 0. By Theorem 11.1 there exists a
function H ∈ H∞ such that H(0) � F(x0) and H(eiθ ) ∈ co(F (p−1(eiθ ))),
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θ a.e. on �. Put G � H ◦ χ . Then G ∈ H∞(�), G(λ0) � F(x0), and
G(λ) � H(χ(λ)) ∈ co(F (�−1(χ(λ))) a.e. on ∂�. Also, �−1(χ(λ)) � p−1(λ),
so G(λ) ∈ co(F (p−1(λ))) a.e. on ∂�. This gives the theorem.

Corollary 11.3. Let (A, X, �, f ) be a maximum modulus algebra and fix a closed
disk � ⊆ �. Assume that X lies one sheeted over �, in the sense that f −1(λ)

consists of a single point for each λ ∈ �. Then, over �, every g ∈ A is an analytic
function of f , i.e., there exists G analytic on int� and continuous on � such that
g � G ◦ f on f −1(�).

Proof. Fix g ∈ A. By Theorem 11.2, there exists a bounded analytic function G

on int(�) such that

G(λ) ∈ co(g(f −1(λ)) for a.a. λ ∈ ∂�.

By hypothesis, f −1(λ) is a singleton; so co(g(f −1(λ))) � g(f −1(λ)), and so
G(λ) � g(f −1(λ)) a.e. on ∂�. f is a one-one continuous map of f −1(∂�) onto
∂�, and therefore f −1 is continuous on ∂�, and therefore g(f −1(λ)) is continuous
on ∂�.

It follows that G is continuous on the closed disk �. Hence we can choose a
sequence of polynomials {Pn} such that Pn → G uniformly on �. Hence Pn ◦
f → G ◦ f uniformly on f −1(∂�). Pn ◦ f ∈ A, for each n, and tends to
G ◦ f � g uniformly on f −1(∂�). By the maximum principle for A, it follows
that, on f −1(�),

|Pn ◦ f − g| ≤ max
f −1(∂�)

|Pn ◦ f − g|.

Hence |Pn ◦ f − g| → 0 uniformly on f −1(�), and G ◦ f � g on f −1(�).

We fix a maximum modulus algebra (A, X, �, p). To each F ∈ A, various
scalar-valued functions defined on � are associated, by considering for each λ the
set

F(p−1(λ)) ⊂ C,

i.e., the image under F of the fiber over λ. Each such set is compact.

Definition 11.1. ZF (λ) � maxy∈p−1(λ) |F(y)|, λ ∈ �.

Definition 11.2. Fix an integer n ≥ 2. Let S be a compact set contained in C. Put

dn(S) � max
z1,z2,···,zn∈S

(
∏
j<k

|zj − zk|)
2

n(n−1) .

We call dn(S) the n-diameter of S.

Example.

d2(S) � max
z1,z2∈S

|z1 − z2|.
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So d2(S) is just the diameter of S:

d3(S) � max
z1,z2,z3∈S

(|z1 − z2||z1 − z3||z2 − z3|) 1
3 .

For F ∈ A and n fixed, the function

λ �→ dn[F(p−1(λ))], λ ∈ �

is another example of a scalar-valued function defined on �, attached to F .

Exercise 11.3. Fix F ∈ A. Then ZF is upper semicontinuous on �; i.e., for each
λ0 ∈ �,

ZF (λ0) ≥ lim sup
λ→λ0

ZF (λ).

A real-valued function defined on � is subharmonic on � if:
(i) u is upper semicontinuous at each λ ∈ � , and

(ii) For each closed disk � � {|λ − λ0| ≤ r}
contained in �, we have the inequality

(17) u(λ0) ≤ 1

2π

∫ 2π

0
u(λ0 + reiθ )dθ.

See Appendix A1 for references to subharmonic functions.

Theorem 11.3. Let (A, X, �, p) be a maximum modulus algebra over �. Fix
F ∈ A. Then λ �→ log ZF (λ) is subharmonic on �.

Proof. In view of Exercise 11.3, it suffices to show that log ZF satisfies the
inequality (17).

We fix a disk � � {|λ − λ0| ≤ r} contained in � and apply Theorem 11.2 to
the function F , a point x0 ∈ p−1(λ0), and the disk �. This yields G ∈ H∞(int�)

with G(λ0) � F(x0), and, by (16), |G(λ)| ≤ maxy∈p−1(λ) |F(y)| � ZF (λ) for
a.a. λ ∈ ∂�. By Jensen’s inequality on int�, we have

log |G(λ0)| ≤ 1

2π

∫ 2π

0
log |G(λ0+ reiθ )|dθ ≤ 1

2π

∫ 2π

0
log ZF (λ0+ reiθ )dθ.

The left-hand side � log |F(x0)|, so inequality (17) holds, and we are done.

We wish to study the functions

λ �→ log dn[F(p−1(λ))], λ ∈ �,

with dn given by Definition 11.2.
We next develop some machinery concerning the n-fold tensor product of the

algebra A. Fix an integer n ≥ 1. Define Xn � X ×X × · · · ×X, the topological
product of n copies of X. Define the n-fold tensor product of A, ⊗nA, by

⊗nA � {g ∈ C(Xn) : g(x1, x2, . . . , xn) �
N∑

j�1

gj1(x1)gj2(x2) . . . gjn(xn),
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(x1, x2, . . . , xn) ∈ Xn, where each gjν ∈ A, N is arbitrary}.
Define the map � : Xn → Cn by �(x1, x2, · · · , xn) � (p(x1), p(x2), · · · ,

p(xn)). Let �n denote the closed polydisk in Cn and T n � {(z1, z2, · · · , zn) ∈
�n : |zj | � 1, 1 ≤ j ≤ n}. Put γ � {(λ, λ, · · · , λ) ∈ T n : |λ| � 1}, so γ is a
closed curve lying in T n.

Theorem 11.4. Let (A, X, �, p) be a maximum modulus algebra over �. Assume
that � � {|z| ≤ 1} ⊂ �. Fix F ∈ ⊗nA and fix x0 ∈ �−1(0, 0, · · · , 0). Then

|F(x0)| ≤ max
�−1(γ )

|F |.

Note. By definition,

�−1(γ )

� {(x1, x2, · · · , xn) ∈ Xn : p(x1) � · · · � p(xn), and |p(x1)| � 1}

To prove Theorem 11.4, we need the following.

Lemma 11.5. Under the hypothesis of Theorem 11.4, there exists a function G ∈
H∞(T n) such that

(18) G(0, 0, · · · , 0) � F(x0), and,

if U is any relatively open subset of T n,

(19) ||G||L∞(U) ≤ sup
�−1(U)

|F |.

Remark. Just as in the case where n � 1, H∞(T n) is defined as the set
G ∈ L∞(T n, dθ1 · · · dθn) such that

∫
T n Geis1θ1 . . . eisnθndθ1 . . . dθn � 0, if

s1, · · · , sn ∈ Z and sj > 0 for some j . An analogous definition gives H 2(T n).
H∞(T n) can be identified, by the Cauchy integral formula, with the Banach algebra
of bounded analytic functions in the open unit polydisk. Thus, in (18), G(0, · · · , 0)

denotes the value at 0 ∈ Cn of the extension of G ∈ H∞(T n) to the polydisk.

Proof. x0 � (x0
1 , · · · , x0

n) and p(x0
j ) � 0, for all j . We may choose representing

measures µk for x0
k , supported on p−1(∂�), such that

g(x0
k ) �

∫
p−1(∂�)

gdµk, g ∈ A, for k � 1, 2, . . . , n.

We form the product measure µ � µ1 × µ2 × · · · × µn, supported on �−1(T n).
We denote by µ∗ the “push forward” of µ on T n under the map �.

Exercise 11.4. Show that the measure

µ∗ �
(

1

2π

)n

dθ1dθ2 · · · dθn, on T n.
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We claim that µ is a representing measure, for the algebra ⊗nA, i.e.,

(20)

∫
�−1(T n)

hdµ � h(x0), h ∈ ⊗nA.

Without loss of generality, we consider h(x) � g1(x1)g2(x2) · · · gn(xn), x �
(x1, x2, · · · , xn), gj ∈ A for all j :∫

�−1(T n)

hdµ

�
∫

�n
j�1(p

−1
j

(∂�))

g1(x1)g2(x2) · · · gn(xn)dµ1(x1)

× dµ2(x2) × · · · × dµn(xn)

� �n
j�1

∫
p−1

j
(∂�)

gj (xj )dµj (xj ) � �n
j�1gj (x

0
j ) � h(x0),

proving (20).
For φ ∈ C(T n), we define φ̃ on �−1(T n) by φ̃(y) � φ(�(y)), y ∈ �−1(T n).

Then we have

(21)

∫
�−1(T n)

φ̃dµ �
∫

T n

φdµ∗ �
(

1

2π

)n ∫
T n

φdθ1 · · · dθn,

and so

(22)

∫
�−1(T n)

|φ̃|2dµ �
(

1

2π

)n ∫
T n

|φ|2dθ1 · · · dθn.

This last inequality allows us to lift each φ ∈ L2(T n), taken with respect to the
Haar measure on T n, to a function φ̃ in L2(µ) that is “constant on the fibers of �.”
We put, as in Theorem 11.1,

C � {φ̃ ∈ L2(µ) : φ ∈ L2(T n)}.
We identify C with L2(T n), by identifying φ with φ̃. Arguing as in the proof of
Theorem 11.1, we assign to a given F0 ∈ ⊗nA the orthogonal projection of F0 to
C, in L2(µ), denoted by G0. Then∫

�−1(T n)

F0ḡdµ(23)

�
∫

�−1(T n)

G0ḡdµ �
(

1

2π

)n ∫
T n

G0ḡdθ1 · · · dθn, g ∈ C.

We claim that G0 ∈ H 2(T n), which means that

(24)

∫
T n

G0e
is1θ1 . . . eisnθn � 0,

where sj are integers with at least one of them being positive. Fix such an n-tuple

(s1, s2, · · · , sn), where, without loss of generality, s1 > 0, and put g � p
s1
1 · · · psn

n .
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Then, by (23), we have

(25)

∫
�−1(T n)

F0p
s1
1 · · · psn

n dµ �
(

1

2π

)n ∫
T n

G0e
is1θ1 . . . eisnθndθ1 . . . dθn,

since p
s1
1 · · · psn

n , in C, is identified with eis1θ1 . . . eisnθn in L2(T n). Without loss of
generality, F0(x) � g1(x1) . . . gn(xn), where each gj ∈ A, and then∫

�−1(T n)

F0p
s1
1 . . . psn

n dµ

�
∫

�−1(T n)

p
s2
2 . . . psn

n [ps1
1 g1 . . . gn]dµ

�
∫

�n
j�2p

−1(∂�)

p
s2
2 . . . psn

n ×
[∫

p−1(∂�)

p
s1
1 (x1)g1(x1) . . .

gn(xn)dµ1(x1)

]
dµ2(x2) . . . dµn(xn).

The inner integral equals p
s1
1 (x0

1 )g1(x
0
1 )g2(x2) . . . gn(xn) � 0, since p1(x

0
1 ) � 0.

By (25), it follows that
∫
T n G0e

is1θ1 . . . eisnθndθ1 · · · dθn � 0, i.e., (24) holds, and
so G0 ∈ H 2(T n), as claimed.

To prove assertion (19), we fix a relatively open subset U of T n and put M �
sup |F | on �−1(U). Fix λ0 � (eiθ0

1 , eiθ0
2 , · · · , eiθ0

n ) in U . For each δ > 0, form the
set Kδ � {(eiθ0

1 , eiθ0
2 , · · · , eiθ0

n ) : |θj − θ0
j | ≤ δ, 1 ≤ j ≤ n}. We choose gδ to be

the characteristic function of Kδ normalized so that ( 1
2π

)n
∫
T n gδdθ1 · · · dθn � 1.

Applying (23) with g � gδ , F0 � F , and G0 � G, we get

(26) |
∫

�−1(Kδ)

Fgδdµ| � |cδ

∫
Kδ

Gdθ1 . . . dθn|,

where cδ � (volume(Kδ))
−1. As δ → 0, the right-hand side tends to G(λ0) for

a.a. λ0 in U . For fixed λ0 in U and all small δ, the left-hand side≤ max�−1(Kδ) |F | ≤
sup�−1(U) |F |. Hence |G(λ0)| ≤ sup�−1(U) |F |, a.e. on U . Hence (19) holds and
also G ∈ H∞(T n) . The lemma follows.

Proof of Theorem 11.4. We shall use the fact that, at almost every point,
(eiθ1 , eiθ2 , · · · , eiθn ) ∈ T n relative to the Haar measure G(eiθ1 , eiθ2 , . . . , eiθn ) �
limr→1 G(reiθ1 , reiθ2 , · · · , reiθn ). We fix a neighborhood U of γ on T n. Fix a circle
γ 1 � {(ζ eiθ1 , ζ eiθ2 , · · · , ζ eiθn ) : |ζ | � 1} ⊆ U such that for a.a. ζ on {|ζ | � 1},
G(ζeiθ1 , ζ eiθ2 , . . . , ζ eiθn ) � limr→1 G(rζeiθ1 , rζ eiθ2 , . . . , rζ eiθn ). On the disk
bounded by γ 1, that is, on {(ζ eiθ1 , ζ eiθ2 , · · · , ζ eiθn ) : |ζ | < 1},

|G| ≤ ess sup
|ζ |�1

|G(ζeiθ1 , ζ eiθ2 , . . . , ζ eiθn )| ≤ ess sup
U
|G| ≤ sup

�−1(U)

|F |

by (19). In particular, |G(0, 0, . . . , 0)| ≤ sup�−1(U) |F |.
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Given ε > 0, we choose U such that sup�−1(U) |F | ≤ sup�−1(γ ) |F | + ε. It
follows that

|G(0, 0, . . . , 0)| ≤ sup
�−1(γ )

|F | + ε.

Since ε is arbitrary, we conclude that

|G(0, 0, . . . , 0)| ≤ sup
�−1(γ )

|F |.

Also, by (18), G(0, 0, . . . , 0) � F(x0). So

|F(x0)| ≤ sup
�−1(γ )

|F |.

Theorem 11.4 is proved.

We now look at the “diagonal” of the product space Xn, given by

Definition 11.3.

X(n) � {(x1, x2, . . . , xn) ∈ Xn : p(x1) � p(x2) � · · · � p(xn)}.
We define the projection function π : X(n) → � by

π(x1, x2, . . . , xn) � p(x1)(� p(x2) � · · · � p(xn)).

We also put

Definition 11.4. A(n) is the restriction of ⊗nA to X(n).

Theorem 11.6. (A(n), X(n), �, π) is a maximum modulus algebra.

Proof. Clearly, A(n) is an algebra of continuous functions on X(n). Let � be a
closed disk in � with center λ0. Fix x0 ∈ π−1(λ0) ⊆ X(n). We must show that

(27) |F(x0)| ≤ max
π−1(∂�)

|F |, F ∈ ⊗nA.

Without loss of generality, λ0 � 0 and � is the unit disk. We have that
π−1(∂�) � {(x1, x2, . . . , xn) : p(x1) � · · · � p(xn) � ζ with |ζ | � 1}
and �−1(γ ) � {(x1, x2, . . . , xn) : (p(x1), . . . , p(xn)) ∈ γ }. Since γ �
{(λ, λ, . . . , λ) : |λ| � 1}, π−1(∂�) � �−1(γ ). By Theorem 11.4, |F(x0)| ≤
max�−1(γ ) |F |. Hence (27) holds and Theorem 11.6 is proved.

Now let (A, X, �, f ) be a maximum modulus algebra. Fix g ∈ A. For each
λ ∈ �, the set g(f −1(λ)) ⊆ C. We fix an integer n and we form the function

λ �→ dn(g(f −1(λ))), λ ∈ �,

where dn is the n-diameter defined in Definition 11.2.

Theorem 11.7. λ �→ log dn(g(f −1(λ))) is subharmonic on �.
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Proof. For ease of understanding we take n � 3. The proof is the same for
each n ≥ 2. log(d3(g(f −1(λ)))) � log[max |z1 − z2||z1 − z3||z2 − z3|]1/3, the
maximum being taken over all triples (z1, z2, z3) with each zj ∈ g(f −1(λ)).

Now the statement zj ∈ g(f −1(λ)) means that there exists xj ∈ f −1(λ) with
g(xj ) � zj . So a triple (z1, z2, z3) is in the competition exactly when it has the form
(g(x1), g(x2), g(x3)) with f (xj ) � λ, j � 1, 2, 3. By Definition 11.3, the triple
(x1, x2, x3) ∈ X(3) if and only if f (x1) � f (x2) � f (x3) and π(x1, x2, x3) �
f (x1), where π is the projection of X(3) to �. Hence

log d3(g(f −1(λ)))

� log[ max
π(x1,x2,x3)�λ

|g(x1) − g(x2)||g(x1) − g(x3)||g(x2) − g(x3)|]1/3.

We define, for (x1, x2, x3) ∈ X(3),

G(x1, x2, x3) � (g(x1) − g(x2))(g(x1) − g(x3))(g(x2) − g(x3)).

Thus G ∈ A(3). We have log d3(g(f −1(λ))) � 1
3 log[max |G(x1, x2, x3)|, the

maximum being taken over π−1(λ) ⊆ X(3).
By Theorem 11.6, (A(3), X(3), �, π) is a maximum modulus algebra, and,

hence, by Theorem 11.3, λ �→ log[maxπ−1(λ) |G|] is subharmonic on �. Thus
λ �→ log(d3(g(f −1(λ)))) is subharmonic on � and Theorem 11.7 is proved.

We shall write #S for the cardinality of a set S.

Definition 11.5. Let (A, X, �, p) be a maximum modulus algebra. Let E be a
subset of �. For n an integer≥ 1, we say that (A, X, �, p) lies at most n-sheeted
over E if #p−1(λ) ≤ n for each λ ∈ E.

Example 11.3. Let � be a region in C and let a1, a2, . . . , an be analytic functions
defined on �. We let X be the set in C2 defined by the equation

(28) wn + a1(z)w
n−1 + a2(z)w

n−2 + · · · + an(z) � 0,

in the sense that X � {(z, w) ∈ C2 : (z, w) satisfies (28)}.
Let A be the algebra consisting of all restrictions to X of polynomials in z and

w. Then A is an algebra of continuous functions on X. Put p(z, w) � z, for
(z, w) ∈ X. Then p ∈ A and p : X → � is a proper map.

We claim that (A, X, �, p) is a maximum modulus algebra, and that it lies at most
n-sheeted over �—provided that the polynomial of (28) satisfies an additional
hypothesis on its discriminant, to be formulated below.

For each z ∈ �, equation (28) has n roots in C, and we denote these roots by
w1(z), w2(z), . . . , wn(z), taken in some order. If σ is any symmetric function of
n variables, the number σ(w1(z), w2(z), . . . , wn(z)) is independent of the order
of the roots and hence gives a single-valued function of z on �.
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In particular, if we take σ to be
∏

i<j (wi − wj)
2, and define D(z) �∏

i<j (wi(z) − wj(z))
2, then D is a single-valued function on � called the

discriminant.

Hypothesis. We shall assume that D is not identically 0 on �.
The coefficient functions aj in (28) correspond to the elementary symmetric

functions. Since
∏

i<j (wi − wj)
2 is a polynomial in the elementary symmetric

functions, it follows that D is analytic in �. Since, by hypothesis, D is not iden-
tically 0, the zeros of D form a discrete subset � of �; � is empty, finite, or
countably infinite.

Fix z0 ∈ � \ �. Then the roots w1(z), w2(z), . . . , wn(z) are distinct. Cauchy
theory yields that, in some neighborhood U of z0, there are n single-valued
analytic functions w1, w2, . . . , wn that provide the roots of (28). For z ∈ U ,
the points of X over z, i.e., which are mapped to z by p, are the points
(z, w1(z)), (z, w2(z)), . . . , (z, wn(z)). Fix a function f ∈ A. Then there exists
a polynomial Q(z, w) such that f ((z, wj (z))) � Q(z, wj (z)), j � 1, . . . , n.
Thus the function z �→ f ((z, wj (z))) is analytic on U for each j . We define
the symmetric function σ(α1, α2, · · · , αn) � max1≤j≤n |αj |. Hence the function
u : z �→ max1≤j≤n |f ((z, wj (z)))| is well defined on � \ �. By the above dis-
cussion, |f ((z, wj (z)))| is locally subharmonic at each point z0 in � \ �. Hence
u is subharmonic on � \ � and has isolated singularities at the points of �. In
a deleted neighborhood of each point of �, u is locally bounded. It follows (see
[Tsu] Thm. III.30) that, if we define u(z1) � limz→z1u(z), then u is subharmonic
on all �. We claim that the equality u(z) � max1≤j≤n |f ((z, wj (z)))| remains
true at points z ∈ �; by the definition of u, we already know that it holds for
points z ∈ � \ �. Let λ ∈ � and fix one of the roots wj0(λ) at λ. Then, by the
Cauchy theory, there exists zk → λ, zk ∈ � \ � and points {wjk

(zk)} such that
wjk

(zk) → wj0(λ) . It follows that z �→ max1≤j≤n |f ((z, wj (z)))| is continuous
at z � λ and so the claim follows.

Now let � be any closed disk contained in �, with center λ0, and let x0 be
a point of X lying over λ0. Since x0 can be written (λ0, wj (λ0)) for some j ,
|f (x0)| ≤ max1≤j≤n |f (λ0, wj (λ0))| � u(λ0). Since u is subharmonic on �,
u(λ0) ≤ maxλ∈∂� u(λ) � maxp−1(�)(|f |). Hence |f (x0)| ≤ maxp−1(�)(|f |).
Thus (A, X, �, f ) is a maximum modulus algebra, as claimed. That it lies at
most n-sheeted over � is clear from the definition.

We next show that a maximum modulus algebra (A, X, �, f ) which lies finite-
sheeted over a sufficiently large subset E of � is an algebra of analytic functions on
a certain Riemann surface, in the sense of the following theorem. See the Appendix
for the notion of logarithmic capacity.

Theorem 11.8. Let (A, X, �, f ) be a maximum modulus algebra. Assume that,
for some integer n, there exists a Borel set E ⊆ � of logarithmic capacity c(E) >

0, such that, for every λ ∈ E, #f −1(λ) ≤ n. Then:
(i) #f −1(λ) ≤ n for every λ ∈ �, and
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(ii) there exists a discrete subset � of � such that f −1(�\�) admits the structure
of a Riemann surface on which every function in A is analytic.

Proof. Fix a function g ∈ A. By hypothesis, if λ ∈ E, #f −1(λ) ≤ n;
so #g(f −1(λ)) ≤ n and hence dn+1(g(f −1(λ))) � 0. We define ψ(λ) �
log dn+1(g(f −1(λ))) for λ ∈ �. Then ψ(λ) � −∞ on E. Also by Theorem
11.6, ψ is subharmonic on �. By the Appendix, since c(E) > 0, this implies that
ψ is identically equal to −∞. Hence dn+1(g(f −1(λ))) � 0 for all λ ∈ �.

Fix λ0 ∈ �. Suppose that #f −1(λ0) ≥ n + 1 . Then, because A separates the
points of X, we may choose g ∈ A such that the set g(f −1(λ0)) contains at least
n + 1 points. Hence dn+1(g(f −1(λ0))) �� 0. This is a contradiction; so no such
λ0 exists. Thus #f −1(λ) ≤ n for every λ ∈ �. Assertion (i) is proved.

Define �n � {λ : #f −1(λ) � n}. We clearly may assume that �n is nonempty.
Fix p ∈ f −1(�n). We shall construct a neighborhood of p in X such that f maps
this neighborhood one-one onto a disk in �, centered at λ0 � f (p).

By hypothesis, f −1(λ0) � {p1, p2, . . . , pn}. Without loss of generality, p �
p1. We choose disjoint compact neighborhoods Uj of pj , 1 ≤ j ≤ n, and choose
a closed disk � � {λ : |λ − λ0| ≤ r0} with f −1(�) ⊆ ∪n

j�1Uj . For each j ,
we put Xj � f −1(�) ∩ Uj . Then f −1(�) � ∪n

j�1Xj . By shrinking �, we may
assume that there exists h ∈ A, such that the sets h(Xj ), 1 ≤ j ≤ n, lie in disjoint
closed disks in C.

Fix g ∈ A. Define g̃ on f −1(�) by

g̃ �
{

g on X1

0 on ∪j ��1Xj .

Claim 1. g̃ is the uniform limit on f −1(�) of a sequence of functions in A.

Proof. Since the sets h(Xj ), 1 ≤ j ≤ n, lie in disjoint closed disks, we can
choose a sequence of polynomials {Pn} such that Pn → 1 uniformly on h(X1)

and Pn → 0 uniformly on h(Xj ), for each j �� 1. Hence the sequence (Pn ◦ h)g

tends to g̃ uniformly on ∪n
j�1Xj � f −1(�). Since (Pn ◦ h)g ∈ A for each n,

Claim 1 is proved.

Claim 2. Fix a closed disk T , with center λ1, contained in int�. Fix x1 ∈
f −1(λ1) ∩ X1. Then

|g(x1)| ≤ max
f −1(∂T )∩X1

|g|.

Proof. In view of Claim 1, there exists a sequence {gk} in A tending uniformly
to g̃ on each Xj , 1 ≤ j ≤ n. For each k, |gk(x1)| ≤ maxf −1(∂T ) |gk|. Letting
k → ∞, we get |g̃(x1)| ≤ maxf −1(∂T ) |g̃|, and so |g(x1)| ≤ maxf −1(∂T )∩X1 |g|, as
claimed.
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Claim 3. Fix r , 0 < r ≤ r0. Let T be the disk {λ ∈ C : |λ − λ0| ≤ r} ⊆ int�.
Then

f (f −1(∂T ) ∩ X1) � ∂T .

Proof. Suppose not. Then f (f −1(∂T ) ∩ X1) is a proper closed subset γ0 of
∂T . We may choose a polynomial Q with |Q(λ0)| > maxγ0 |Q|. Now p1 ∈
f −1(λ0) ∩ X1. By Claim 2,

|(Q ◦ f )(x1)| ≤ max
f −1(∂T )∩X1

|Q ◦ f |.

Also, |(Q ◦ f )(x1)| � |Q(λ0)| > maxf −1(∂T )∩X1 |Q ◦ f |. This is a contradiction;
hence Claim 3 holds.

It is clear that in the last three claims we may replace X1 by any Xj . We now
put X0

j � Xj ∩ f −1(int(�)), 1 ≤ j ≤ n. We denote by fj the restriction of
f to X0

j and by Aj the restriction of the algebra A to X0
j . Claim 3 yields that

f (X0
j ) ⊇ int�, for all j . In view of the last three claims, (Aj , X0

j , int�, fj ) is
a maximum modulus algebra over int�. Since #f −1(λ) ≤ n for each λ ∈ �,
it follows that each X0

j is mapped one-one by fj to int�j . By Corollary 11.3 of
Theorem 11.2, we obtain the following.

Claim 4. If g ∈ A, 1 ≤ j ≤ n, there exists Gj analytic on int� and continuous
on � such that

g � Gj ◦ f on f −1
j (�).

Now we have shown that f is a local homeomorphism from f −1(�n) to �n.
This means that f −1(�n) is a Riemann surface defined by using f as a local
coordinate at each point—the “transition functions” between the local patches are
just the identity functions in all cases. Moreover, by Claim 4, the functions in A

are analytic with respect to this Riemann surface structure. Finally, by definition
of �n, f is an n-to-one map of f −1(�n) onto �.

We shall show that � \ �n is a discrete subset of �. Fix λ0 ∈ �n and choose
g ∈ A such that g separates the points of f −1(λ0). For λ ∈ �, let p1, p2, . . . , pn

denote the n points of f −1(λ) and put D(λ) � ∏i<j (g(pi) − g(pj ))
2. Note that

D(λ) is independent of the ordering of the points {pj }.
Fix λ1 ∈ �n. As we saw, there exist a disk � centered at λ1 and neighborhoods

X1, X2, · · · , Xn of the points p1, p2, . . . , pn in f −1(λ1) such that on each Xj ,
g admits a representation g � Gj ◦ f , where Gj is analytic on int�. Hence
D(λ) � ∏i<j (Gi(λ) − Gj(λ))2 is analytic in λ on �n.

Let b be a point of � lying on the boundary of � \ �n.

Claim 5. D(λ) → 0, as λ → b.

Proof. We need only consider sequences {λk} in �n that converge to b. Without
loss of generality, |g| ≤ M for some M . Fix ε > 0. Since b ∈ ∂(� \ �n),
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b ∈ �s for some s < n; so f −1(b) � {q1, · · · , qs}. Choose compact disjoint
neighborhoods Uj of qj such that |g(q)− g(q ′)| ≤ ε for q and q ′ in Uj , for each j .
For k large, f −1(λk) ⊆ ∪s

j�1Uj . Since f −1(λk) consists of n points p1, . . . , pn,
and n > s, there exist two points pα and pβ over λk belonging to the same Uj ,
and so |g(pα) − g(pβ)| ≤ 2ε. Then

|D(λk)| �
∏
i<j

|g(pi) − g(pj )|2 ≤ ε22n(n−1)Mn(n−1)−2.

Hence D(λk) → 0, as k → ∞, so the claim is proved.

Thus D is continuous on � and vanishes on ∂(� \ �n). It follows from Rado’s
theorem (Theorem 10.9) that D is analytic on �. Hence the zero set of D is discrete
and so, if � � � \ �n, then � is a discrete subset of �, as claimed. This proves
assertion (ii) of Theorem 11.8.

Exercise 11.5. Let (A, X, �, f ) be a maximum modulus algebra such that, for
some integer n, #f −1(λ) ≤ n for all λ ∈ � and such that there exists λ0 ∈ �

with #f −1(λ0) � n. Show that, for all g ∈ A, there exist analytic functions
a1, a2, . . . , an on � such that

gn + a1(f )gn−1 + · · · + an(f ) � 0

on X.

We now shall consider a special class of maximum modulus algebras, which
arise in the study of uniform algebras.

Let A be a uniform algebra on a compact space Y and denote by M the maximal
ideal space of A. Fix a function f ∈ A.

The image f (Y ) of Y under f is a compact subset of C. We fix an open set
� ⊆ C \ f (Y ) such that f −1(�) � {m ∈ M : f (m) ∈ �} is nonempty. Then
f −1(�) is a locally compact Hausdorff space. We write A for the restriction of Â
to f −1(�).

Theorem 11.9. (A, f −1(�), �, f ) is a maximum modulus algebra.

This assertion is an immediate consequence of Rossi’s Local Maximum Modulus
Principle, Theorem 9.3.

Exercise 11.6. Use Theorem 9.3 to give a proof of Theorem 11.9.

An elementary proof of Theorem 11.9, independent of Theorem 9.3, was found
by Slodkowski [Sl2]. We now shall give a version of that proof.

Proof of Theorem 11.9. It is clear that f gives a proper map of f −1(�) to
�. We also need that f maps f −1(�) onto �. Suppose otherwise. Then, since
f −1(�) is nonempty, there exists a λ0 ∈ � \ f (M) such that dist(λ0, f (M)) <
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dist(λ0, f (Y )). Hence there exists x0 ∈ M, with f (x0) ∈ � and |f (x0) − λo| �
dist(λ0, f (M)). Then g ≡ 1/(f − λ0) ∈ A and |g(x0)| � 1/|f (x0) − λ0| >

supy∈Y 1/|f (y) − λ0| � ||g||Y , a contradiction. Thus f maps f −1(�) onto �.
Now fix a closed disk � ⊆ �, with center λ0. Choose a point x0 ∈ f −1(λ0). Let

µ0 be a representing measure for x0 on Y . For each λ ∈ �, we define a functional
mλ on A by putting

mλ(h) �
∫

Y

(
f − λ0

f − λ

)
hdµ0, h ∈ A.

Then

(29) mλ0(h) � h(x0), h ∈ A.

We next fix λ ∈ � and denote by Iλ the closed ideal in A, which is the closure
of

(f − λ)A � {h ∈ A : ∃g ∈ A with h � (f − λ)g}.
We form the quotient algebra A/Iλ and write ||[h]||λ for the quotient norm of

the coset [h] in A/Iλ, for h ∈ A. Put

C � max
λ∈�,y∈Y

∣∣∣∣ f (y) − λ0

f (y) − λ

∣∣∣∣ .
Then, putting ||h|| � maxY |h|,

|mλ(h)| ≤ C||h||, h ∈ A.

Also,

mλ((f − λ)g) �
∫

Y

(f − λ0)gdµ0 � 0, g ∈ A,

so mλ � 0 on Iλ. Fix h ∈ A. For each k in the coset [h], we have

|mλ(h)| ≤ C||k||;
therefore, we get

(30) |mλ(h)| ≤ C||[h]||λ, h ∈ A.

Finally, the definition of mλ yields that we have

(31) λ �→ mλ(h) is analytic on � for each h ∈ A.

Now fix g ∈ A with g(x0) �� 0, and fix λ ∈ �. For n � 1, 2, . . . ,

|mλ(g
n)| ≤ C||[gn]||λ � C||[g]n||λ.

If we apply (31) to h � gn, we may conclude that

λ �→ log |mλ(g
n)|

is subharmonic on �. Hence

log |gn(x0)| � log |mλ0(g
n)| ≤ 1

2π

∫
∂�

log |mλ(g
n)|dθ.
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Therefore, using (30), we get

log |g(x0)| ≤ 1

2π

∫
∂�

1

n
log[C||[gn]||λ]dθ.

It follows that

(32) log |g(x0)| ≤ 1

2π

∫
∂�

1

n
log Cdθ + 1

2π

∫
∂�

log[||[gn]||1/n

λ ]dθ.

Now A/Iλ is a commutative Banach algebra. Each point of f −1(λ) induces a
homomorphism of A/Iλ into C. We leave it to the reader to verify that, conversely,
each such homomorphism arises in this way. Hence the maximal ideal space of
A/Iλ may be identified with f −1(λ). By the spectral radius formula, then,

lim
n→∞[||[g]n||λ]

1
n

exists and equals maxx∈f −1(λ) |g(x)|. Letting n → ∞ in (32) and using Fatou’s
Lemma, we get

log |g(x0)| ≤ 1

2π

∫
∂�

log[ max
f −1(λ)

|g|]dθ.

It follows that

log |g(x0)| ≤ log[ max
f −1(∂�)

|g|],

and so

|g(x0)| ≤ max
f −1(∂�)

|g|.

This holds for each g, x0, and �. Therefore, (A, f −1(�), �, f ) is a maximum
modulus algebra and Theorem 11.9 is proved.

In the next results we again let A be a uniform algebra on the space Y , M the
maximal ideal space of A, and f an element of A. As a corollary of Theorem 11.8
and Theorem 11.9, we obtain:

Corollary 11.11. Let U be a connected component of C \ f (Y ). Assume that, for
some integer n > 0, #f −1(λ) ≤ n for each λ ∈ U . Then there exists a discrete
subset � of U such that f −1(U \�) admits the structure of a Riemann surface on
which every function in Â is analytic.

Assume A, Y, M, f as above. Let U be a connected component of C \ f (Y ).
Let m denote the arc-length measure.

Theorem 11.12. Assume that ∂U contains a smooth arc α as an open subset, and
assume that there exists a closed subset E of α such that m(E) > 0 and such
that #f −1(λ) ≤ n for for each λ ∈ E. Then #f −1(ζ ) ≤ n for each ζ ∈ U , and
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hence the conclusion of Theorem 11.8 holds for the maximum modulus algebra
(A, f −1(�), �, f ) given by Theorem 11.9 with � � U .

Proof. Recall the k-diameter dk as in Definition 11.2. Suppose that f −1(ζ ) > n

for some ζ ∈ U . We construct a region U0, with a piecewise smooth boundary,
such that U0 contains α as a part of its boundary and with ζ ∈ U0 ⊆ U .

Claim. Fix λ0 ∈ E. Fix g ∈ A. Put

F(λ) � log[dn+1(g(f −1(λ))], λ ∈ U0.

Then lim supλ→λ0,λ∈U0
F(λ) � −∞.

Proof of Claim. Denote by q1(λ0), q2(λ0), · · · , qk(λ0) the points of f −1(λ0).
By choice of λ0, k ≤ n. Next consider the points g(qj (λ0)), j � 1, . . . , k in
C. Consider closed disks �j with center g(qj (λ0)), j � 1, . . . , k, and radius ε,
for a small fixed ε > 0, where the disks �j are disjoint or coincide, according
to whether the points g(qj (λ0)), j � 1, . . . , k are distinct or not. Let {λν} be a
sequence in U0 converging to λ0. Choose a neighborhood N of f −1(λ0) in M
such that g(N ) ⊆ ∪k

j�1�j .
Choose ν0 such that, for ν ≥ ν0, f −1(λν) ⊆ N . Fix ν ≥ ν0. Then

g(f −1(λν)) ⊆ ∪k
j�1�j .

Suppose first that there are n + 1 distinct points z1, · · · , zn+1 in g(f −1(λν)).
Since k ≤ n, then at least two of them lie in the same �j . Without loss of generality
we may assume that z1, z2 is such a pair, and so |z1 − z2| ≤ 2ε. Also, for every
pair of indices α, β with 1 ≤ α, β ≤ k,

|zα − zβ | ≤ 2||g||.
Hence ∏

α<β

|zα − zβ | ≤ (2ε)(2||g||) (n+1)n

2 −1.

By definition of dn+1, then

dn+1(g(f −1(λν))) ≤ ((2ε)(2||g||) (n+1)n

2 −1)
2

(n+1)n ,

and hence

(33) F (λν) � log[dn+1(g(f −1(λν)))] ≤ 2

(n + 1)n
log((2ε)(2||g||) (n+1)n

2 −1).

On the other hand, if there do not exist n + 1 distinct points in g(f −1(λν)), then
F(λν) � −∞. Hence (33) holds for all ν ≥ ν0. Hence lim supν→∞ F(λν) has
the same bound. This holds for all ε > 0, and so lim supν→∞ F(λν) � −∞. The
claim follows.

We now need the following result on subharmonic functions from the Appendix,
A3.
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Proposition. Given U0, α, E as above, and given a subharmonic function χ

defined on U0, suppose that

lim sup
λ→λ0,λ∈U0

χ(λ) � −∞

for each λ0 ∈ E. Then χ ≡ −∞ in U0.

By hypothesis, there exist n+1 distinct points p1, p2, · · · , pn+1 ∈ f −1(ζ ). We
choose g ∈ A with g(p1), g(p2), · · · , g(pn+1) distinct points in C. Put F(λ) �
log[dn+1(g(f −1(λ)))], λ ∈ U0, as before. By Theorem 11.7, F is subharmonic
in U0. Also, the set g(f −1(ζ )) contains the n + 1 distinct points g(pj ), j �
1, 2, · · · , n + 1. Hence dn+1(g(f −1(ζ ))) �� 0, and so F(ζ ) > −∞.

On the other hand, by the claim and the proposition, F ≡ −∞ in U0, and so
in particular F(ζ ) � −∞. This is a contradiction. Hence #f −1(ζ ) ≤ n for all
ζ ∈ U , and Theorem 11.12 is proved.

It will be useful in some applications to derive the old inequality

(2) |g(x0)| ≤ max
p−1(∂�)

|g|, g ∈ A,

for each x0 ∈ p−1(λ0) and g ∈ A, which is assumed to hold for every closed disk
� ⊆ �, from the following weaker assumption:

(34) ∀λ0 ∈ �, ∃ ε(λ0) > 0 such that |g(x0)| ≤ max
p−1(∂�)

|g|, g ∈ A

for each x0 ∈ p−1(λ0), and g ∈ A for every closed disk � with center λ0 and
radius r < ε(λ0).

Proposition 11.13. Let (A, X, �, p) satisfy all of the assumptions for a maximum
modulus algebra except for (2). Suppose that (34) holds. Then (2) holds as well,
and (A, X, �, p) is a maximum modulus algebra on X with projection p.

Proof. Fix λ0 ∈ �. Choose ε(λ0) as in (34). Let � � {λ : |λ− λ0| ≤ r}, where
r ≤ ε(λ0). Fix g ∈ A and define Zg as in Definition 11.1. It is clear from the
definitions that Zg , and hence log Zg , are upper semi-continuous on �.

It follows that we can choose a sequence {uk} of continuous functions on �

such that uk ↓ log Zg on �. For each k, let Qk be a polynomial in λ such that
|Re Qk − uk| ≤ 1/k on ∂�. Then

(35) log Zg ≤ Re Qk + 1/k on ∂�.

Fix x0 ∈ p−1(λ0). We now apply (34) to g replaced by ge−(Qk(p)+1/k). Strictly
speaking, since e−(Qk(p)+1/k) need not be in the algebra A, we first apply (34) with
the exponential function replaced by the partial sums (polynomials) of its Taylor
series and then take a limit. We get

|g(x0)|e−(Re(Qk(λ0))+1/k) ≤ |ge−(Qk(p)+1/k)(y)|
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for some y ∈ p−1(∂�). Hence, with λ � p(y),

|g(x0)|e−(Re(Qk(λ0))+1/k) ≤ Zg(λ)e−(Re(Qk(λ))+1/k) ≤ 1,

by (35). Hence

|g(x0)| ≤ eRe(Qk(λ0))+1/k.

Since this holds for every x0 ∈ p−1(λ0), we have

log Zg(λ0) ≤ Re Qk(λ0) + 1/k

� 1

2π

∫
∂�

Re(Qk + 1/k)dθ ≤ 1

2π

∫
∂�

(uk + 2/k)dθ.

Letting k → ∞ and using the monotone convergence theorem, we arrive at

(36) log Zg(λ0) ≤ 1

2π

∫
∂�

log Zgdθ.

It follows from (36) (see the Appendix) that log Zg is subharmonic on �. By the
maximum principle for subharmonic functions, this implies (2) for g and gives the
proposition.
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Hulls of Curves and Arcs

In this chapter we shall study the polynomial hull of a curve in CN , or, more
generally, of a finite union of curves in CN , by making use of the results on
maximum modulus algebras that we gave in the preceding chapter.

Let γ1, γ2, . . . , γp be a finite collection of compact smooth curves in CN and
let γ be their union. We shall write γ̂ for the polynomial hull h(γ ).

Theorem 12.1. If γ is not polynomially convex, then γ̂ \ γ is a one-dimensional
analytic subvariety of CN \ γ .

We use zj , 1 ≤ j ≤ N , for the complex coordinates in CN . In order to prove
Theorem 12.1 we shall carry out the following steps.

Step 1. Fix a point x0 ∈ γ̂ \ γ . Construct a polynomial f in z1, . . . , zN such that
f (x0) � 0 and 0 �∈ f (γ ).

Notation. For S a subset of C,

f −1(S) � {(z1, . . . , zN) ∈ γ̂ : f (z1, . . . , zN) ∈ S}.
We say that f −1(S) lies at most k-sheeted over S if, for each λ ∈ S, #f −1(λ) ≤ k.
We say that f −1(S) lies finite-sheeted over S if f −1(S) lies at most k-sheeted over
S for some k.

Step 2. Let U and V be components of C \ f (γ ) that share a common boundary
arc α such that, for some integer s, there are exactly s points of γ which are mapped
to each point of α. (We will say that f |γ is s to 1 over α .) Show that if f −1(U)

lies at most k-sheeted over U , then f −1(V ) lies at most (k + s)-sheeted over V .

Step 3. Let U0 denote the unbounded component of C \ f (γ ). Show that f −1(U0)

lies at most 0-sheeted over U0; i.e., if λ ∈ U0, then there exists no point z in γ̂

with f (z) � λ.

84
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Step 4. Let U ∗ denote the component of C \ f (γ ) that contains 0. Show that there
exists a sequence

U1, U2, . . . , U�

of components of C \ f (γ ) such that
(1) U0 and U1 share a boundary arc α0 such that f |γ is s0 to 1 over α0 for some

positive integer s0.
(2) Uj and Uj+1 share a boundary arc αj such that f |γ is sj to 1 over αj for some

positive integer sj , j � 1, 2, . . . , � − 1.
(3) U� � U ∗.

Proof of Theorem 12.1. First we get the sequence

U1, U2, . . . , U� � U ∗

from Step 4. By Step 3, f −1(U0) lies at most 0-sheeted over U0. Then, using Step
2 at each of the “edges” α0, α1, . . . , α�−1 we deduce, after � applications of Step
2, that f −1(U ∗) lies finite-sheeted over U ∗. By Corollary 11.11, f −1(U ∗) is a
finite-sheeted analytic cover of U ∗. Since x0 ∈ f −1(U ∗) , f −1(U ∗) provides a
neighborhood of x0 in γ̂ . Thus γ̂ is locally an analytic variety at x0. Since this
holds for each x0 ∈ γ̂ \ γ , γ̂ \ γ is a one-dimensional analytic subvariety of
CN \ γ and we see that Steps 1 through 4 imply Theorem 12.1.

We now proceed to carry out Steps 1 through 4.
We need, for Step 1, to define R(X) for X a compact subset of CN as the

uniform closure in C(X) of the rational functions r � p/q, where p and q

are polynomials in z1, z2, · · · , zN and q(z) �� 0 for z ∈ X. We shall use the
observation that, if zj (X) ⊆ C has zero planar measure for all j , 1 ≤ j ≤ N ,
then R(X) � C(X). Indeed the assumption implies, by the Hartogs–Rosenthal
theorem (Theorem 2.8), that the function λ �→ λ̄ can be uniformly approximated
on zj (X) by rational functions of λ with poles off of zj (X). Composing these
rational functions with zj we see that the function z �→ z̄j belongs to R(X) for
each j . Now the Stone–Weierstrass theorem yields R(X) � C(X).

Now suppose that x0 �∈ γ . Set X � {x0} ∪ γ . Since γ is smooth, g(X) has zero
planar measure for all polynomials g on CN . By the previous paragraph, we have
that R(X) � C(X). The function on X that is 1 at x0 and � 0 on γ is continuous
on X. Uniformly approximating it by a rational function, we get r � p/q such
that r(x0) � 1 and |r| < 1 on γ , and q �� 0 on X. Now set f � p − q. We have
f (x0) � 0 and f �� 0 on γ , since r �� 1 on γ . This completes Step 1.

We lead up to Step 2 with some discussion and a lemma. Let f be a nonconstant
function in the disk algebra A(�), and let p be a point in the open unit disk. Put
f (p) � λ0. The open mapping principle for an analytic functions tells us that
each neighborhood of p in � is mapped by f onto a neighborhood of λ0.

The analogous statement for a uniform algebra is not true in general, as we
shall see in Example 12.1 further on. However, a violation of the “open mapping
principle” has a consequence for the algebra given in the following lemma.
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Lemma 12.2. Let (A, X, M) be a uniform algebra. Fix p ∈ M \ X, f ∈ A,
and put λ0 � f (p). Define K , a subset of C, by

K � {λ : |λ − λ0| ≤ r, α ≤ arg(λ − λ0) ≤ β},
where −π/2 < α < β < 3π/2. Assume that for some compact neighborhood
N of p in M \ X we have f (N ) ⊆ K . Then p is not a peak-point of the algebra
A|f −1(λ0) on the space f −1(λ0).

Proof. By the Local Maximum Modulus Principle,

|g(p)| ≤ max
∂N

|g|, g ∈ A.

Hence there exists a representing measure µ for p on ∂N , with

g(p) �
∫

∂N
gdµ, g ∈ A.

Choose a function φ continuous on K , analytic on intK , such that φ(λ0) � 1 and
|φ(λ)| < 1 for λ ∈ K \ {λ0}. Then φ is a uniform limit on K of polynomials in
λ. For n � 1, 2, . . . , define the measure µn � (φ ◦ f )nµ, on ∂N .

Fix q ∈ ∂N \ f −1(λ0). Then f (q) ∈ K \ {λ0} so |φ(f (q))| < 1 and hence
(φ ◦ f )n(q) → 0 as n → ∞. It follows that, if g ∈ A,

g(p) �
∫

∂N
gdµn �

∫
∂N

g(φ ◦ f )ndµ →
∫

∂N∩f −1(λ0)

gdµ.

If G ∈ A|f −1(λ0), there exists a sequence {gν} in A such that gν → G uniformly
on f −1(λ0). Hence

G(p) �
∫

∂N∩f −1(λ0)

Gdµ.

It follows, since p ∈ N , that p cannot be a peak-point for A|f −1(λ0).

Example 12.1. Let (A, X, M) be the uniform algebra where X is the torus T 2 �
{(z, w) ∈ C : |z| � |w| � 1}, A is the bidisk algebra on T 2, and M is the closed
bidisk �2.

Fix p � (1, 0) ∈ M \X, and let f be the first coordinate function (z, w) �→ z.
Every neighborhood N of p in M maps into {|z| ≤ 1}, and so f (N ) contains no
neighborhood of f (p) � 1.

We note that, as predicted in Lemma 12.2, p is not a peak-point of A|f −1(1),
since f −1(1) is the disk {(1, w) : |w| ≤ 1}.

We now use Lemma 12.2 to prove the following.

Lemma 12.3. Fix a compact set X in CN and let A � P(X) denote the uni-
form closure on X of the polynomials in z1, z2, . . . , zN . Fix f ∈ A. Let U be a
component of C \ f (X) such that f −1(U) lies k-sheeted over U .
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Let α be a smooth arc on ∂U such that X lies s-sheeted over α for some positive
integer s. Then, for almost all λ0 ∈ α, there are at most k + s points in X̂ lying
over λ0.

Proof.

Claim 1. For almost all λ0 ∈ α there exists an open triangle S such that S̄ ⊆
U ∪ {λ0}, with vertex at λ0, and there exist k single-valued bounded CN -valued
analytic functions on S:

ω1, ω2, · · · , ωk

such that

(4) f −1(S) �
k⋃

ν�1

{ων(λ) : λ ∈ S}

and

(5) lim
λ∈S→λ0

ων(λ) exists.

To verify Claim 1, we first fix τ ∈ U such that f −1(τ ) consists of exactly k

distinct points z0
1, z0

2, · · · , z0
k . Let g be a polynomial in CN that separates the points

z0
1, z0

2, · · · , z0
k . By Exercise 11.5, we form the polynomial

P(λ, Z) � Zk + ak−1(λ)Zk−1 + · · · + a0(λ)

such that, for λ ∈ U , the roots of P(λ, Z) are the values of g on the k (with mul-
tiplicity) points of f −1(λ). The coefficient functions a0(λ), a1(λ), · · · , ak−1(λ)

are bounded analytic functions on U . Let D(λ) be the discriminant function of
P(λ, Z). If D(λ) �� 0, then f −1(λ) contains k distinct points. D is a bounded
analytic function on U and D(τ) �� 0. Hence it has a nontangential limit that is
different from 0 a.e. on α, say, except on a subset Q1 of α of measure zero.

It follows that, if λ0 ∈ α \ Q1, there exists an open triangle S contained in
U with one vertex at λ0 and such that S approaches λ0 nontangentially in U and
such that D �� 0 in S. For each λ1 ∈ S there is a neighborhood η(λ1) contained
in S and k CN -valued analytic functions ω1, ω2, · · · , ωk on η(λ1) such that, for
all λ ∈ η(λ1), f −1(λ) consists of the k distinct points ω1(λ), ω2(λ), · · · , ωk(λ).
It follows from the Monodromy Theorem, since S is simply connected, that the
functions ω1, ω2, · · · , ωk on a given initial η(λ1) can be analytically continued to
give single-valued analytic functions on S. By analytic continuation their values
at every λ ∈ S are always in f −1(λ). Also, their values are always distinct—for if
continuations ωa and ωb from η(λ1) are equal at some point λ2 ∈ S, then ωa � ωb

on a neighborhood of λ2 and so ωa � ωb on all of S. Thus (4) follows.
It remains to establish (5). For each coordinate function zj we form, as was done

above for g, the polynomial

Pj (λ, Z) � Zk + ak−1,j (λ)Zk−1 + · · · + a0,j (λ)
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associated to zj ; i.e., the roots of Pj (λ, Z) are the values of zj at the k points of
f −1(λ), for each λ ∈ U . The finite set {at,j } of bounded analytic functions have
nontangential limits everywhere on α except for, say, a set Q2 of zero measure.
We will show that (5) holds for λ0 ∈ α \ (Q1 ∪ Q2).

Fix λ0 ∈ α \ (Q1 ∪ Q2) and the associated triangle S and functions
ω1, ω2, · · · , ωk . Fix ν, 1 ≤ ν ≤ k. We verify (5) for ων . Write ων �
(h1, h2, · · · , hN), where the hj are bounded complex-valued analytic functions
on S. Fix j . It suffices to show that limλ→λ0 hj (λ) exists. For all λ ∈ S, hj (λ) is a
root of Pj (λ, Z). As λ ∈ S approaches λ0, the coefficients of Pj (λ, Z) approach
the corresponding coefficients of Pj (λ0, Z), by the construction of Q2. It follows
that the roots of Pj (λ, Z) approach the roots of Pj (λ0, Z) as λ ∈ S approaches
λ0. Hence the set of all limit points of the values of hj (λ), as λ ∈ S approaches
λ0, is a subset of the finite set consisting of the roots of Pj (λ0, Z). This set L of
limit points can be written as

L �
∞⋂

m�1

hj ({λ ∈ S : |λ − λ0| ≤ 1/m}).

Since the sets hj ({λ ∈ S : |λ − λ0| ≤ 1/m}) are connected, it follows that L is
connected. Hence L, being finite and connected (and nonempty), is a single point.
This means that limλ→λ0 hj (λ) exists. This gives Claim 1.

Fix λ0 as above. Put

ων(λ0) � lim
λ∈S→λ0

ων(λ), ν � 1, 2, . . . , k

for each ν, and put

p0
ν � ων(λ0).

Then p0
1, p0

2, · · · , p0
k are points in f −1(λ0). Let q1, q2, · · · , qs be the s points in

X ∩ f −1(λ0).
We now fix a point p ∈ f −1(λ0).

Claim 2. If p �� p0
ν for each ν, 1 ≤ ν ≤ k, and p �� qj for each j , 1 ≤ j ≤ s,

then p is not a peak-point of A|f −1(λ0).

Proof of Claim 2. We choose a compact neighborhood N of p in X̂ that excludes
p0

1, p0
2, · · · , p0

k and q1, q2, · · · , qs . Suppose, by way of contradiction, that for
m � 1, 2, . . ., f (N ) meets (S \ {λ0}) ∩ {|λ − λ0| ≤ 1/m}. Then there exists
pm ∈ N with f (pm) ∈ S \ {λ0} and |f (pm) − λ0| ≤ 1/m. Therefore, pm ∈
f −1(S); so, putting zm � f (pm); we have, by (4), pm � ων(zm) for some ν,
depending on m, 1 ≤ ν ≤ k. By passing to a subsequence, we may assume that
ν is fixed. As m → ∞, pm → ων(λ0) � p0

ν . Since N is compact and each
pm ∈ N , p0

ν ∈ N . This contradicts the choice of N . So, for a certain m, f (N )

fails to meet (S \ {λ0})∩{|λ−λ0| ≤ 1/m}. It follows that f (N ∩f −1({|λ−λ0| ≤
1/m}) ⊆ {|λ − λ0| ≤ 1/m} \ S. By Lemma 12.2 applied to the neighborhood
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N ∩ f −1({|λ − λ0| ≤ 1/m}), then, p is not a peak-point of A|f −1(λ0)). Claim 2 is
proved.

Claim 2 yields that the set of peak-points of A|f −1(λ0) is contained in the finite
set

p0
1, p0

2, · · · , p0
k , q1, q2, . . . , qs .

Hence f −1(λ0) is a subset of this set. This gives Lemma 12.3.

We now can complete Step 2. By Lemma 12.3, almost all points λ ∈ α have
the property that f −1(λ) ∩ γ̂ contains at most k + s points. By the regularity of
arclength measure, therefore, there is a compact subset E of α of positive measure
such that f −1(λ) ∩ γ̂ contains at most k + s points for all λ ∈ E. Then Theorem
11.12 implies that f −1(V ) lies at most (k + s)-sheeted over V . This gives Step 2.

For Step 3 we recall from the first paragraph of the proof of Theorem 11.9 that
either f (γ̂ ) contains U0 or f (γ̂ ) is disjoint from U0—we use the fact that, by
Exercise 7.4, γ̂ is the maximal ideal space of P(γ ). Since |f (z)| ≤ ||f ||γ < ∞
for all z ∈ γ̂ , f (γ̂ ) does not contain U0. Hence f (γ̂ ) is disjoint from U0. This
gives Step 3.

Finally we carry out Step 4. We can parametrize γ by a finite set of C1 maps
φj : Jj ≡ [aj , bj ] → CN , 1 ≤ j ≤ n. Since 0 �∈ f (γ ), we have f ◦ φj �� 0
and so we have well-defined maps ψj ≡ f ◦ φj/|f ◦ φj | : Jj → �, where � is
the unit circle. Let Cj be the set of critical values of ψj . This includes ψj(∂Jj ).
By Sard’s theorem (see the Appendix), Cj is a compact subset of � of (linear)
measure zero. Let C be the union of the Cj ; C is also a compact subset of �

of (linear) measure zero. Hence there exist −π/2 < α < β < π/2 such that
γ0 � {eit : α ≤ t ≤ β} is disjoint from C. By the chain rule, ψj is regular on
Jj \ ψ−1

j (C).

Consider the set ψ−1
j (γ0) ⊆ Jj . This set is a union of a finite number of closed

intervals {γj,k} such that f ◦ φj maps each such interval γj,k homeomorphically
onto an arc σj,k ⊆ C, where each σj,k is contained in the “wedge” V � {ζ : α ≤
arg ζ ≤ β}; each σj,k joins the ray {arg ζ � α} to the ray {arg ζ � β} and meets
each ray {arg ζ � t}, α ≤ t ≤ β, exactly once. There are, say, Kj such intervals,
for each j , 1 ≤ j ≤ n.

For α < t < β, let m(t) be the number of points in the set

{arg ζ � t} ∩
⋃
j,k

σj,k.

Then m(t) ≤ K1+K2+· · ·+Kn. Choose a t0 such that m(t0) � maxα<t<β m(t).
We put � � m(t0). By the continuity of the maps f ◦ φj , there exists ε > 0
such that m(t) ≡ � for t0 − ε ≤ t ≤ t0 + ε and there exist � distinct and
disjoint arcs σs , 1 ≤ s ≤ �, among the arcs {σj,k} ∩ W , where W is the wedge
{ζ : t0 − ε ≤ arg ζ ≤ t0 + ε} ∪ {0}. That is, each of the K1 + K2 + · · · + Kn

arcs σj,k ∩ W is equal to one of the � arcs σs . Then the set

E � W \
⋃

1≤s≤�

σs
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consists of � + 1 components W0, W1, . . . , W�, where W0 is unbounded and W�

contains 0. Since f (γ ) ∩ W � E, each Ws is contained in a component Us of
C \ f (γ ) for 1 ≤ s ≤ �. Clearly, (3) holds since 0 ∈ W� ⊆ U�. Also, (1) and (2)
hold, by the construction of the γj,k and σj,k , since the arcs {αs} of (1) and (2) are
just the arcs {σs}. This gives Step 4 and concludes the proof of Theorem 12.1.

In the case that γ is a smooth arc, we can deduce the following from Theorem
12.1.

Theorem 12.4. Let γ be a smooth arc in CN . Then γ is polynomially convex and
P(γ ) � C(γ ).

Proof. First we show that γ is polynomially convex. Arguing by contradiction,
we suppose that there exists x0 ∈ γ̂ \ γ . By Step 1 in the proof of Theorem 12.1,
there exists a polynomial f such that f (x0) � 0 and f �� 0 on γ . Since γ is an
arc, there exists an open simply connected neighborhood U of γ in CN such that
f has an analytic logarithm U . That is, there exists an analytic function h defined
on U , such that eh � f on U . By Theorem 12.1, A � γ̂ \ γ is a one-dimensional
analytic subset of CN \ γ .

Choose U0 open in CN such that γ ⊆ U0 ⊆ U0 ⊆ U . Then Q � A \ U0 is a
compact subset of A such that the boundary of Q in A lies in U , so that f has a
logarithm on the boundary of Q. It follows by the argument principle that f has
no zeros on Q. This is a contradiction, since f (x0) � 0 and x0 ∈ Q. Thus γ is
polynomially convex.

Before proceding we shall give a few more details about this application of the
argument principle. Except for singular points, A is a Riemann surface. This means
that we can triangulate A using “triangles” {T } (2-simplices with smooth edges,
oriented by the analytic structure) such that the interior of each of these triangles
contain only regular points and f �� 0 on ∂T for all T — in particular, x0 is an
interior point of one of these triangles, say T0. By the classical argument principle
in a triangle,

1

2πi

∫
∂T

df

f
≥ 0

for all T , and

1

2πi

∫
∂T0

df

f
≥ 1.

Let � be the union of all the triangles that meet Q. Since

∂� �
∑
{∂T : T meets Q},

we get

1

2πi

∫
∂�

df

f
≥ 1.
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On the other hand, since Q ⊆ �, after cancellation of common boundaries along
the triangles comprising �, we have ∂� ⊆ U and so, since f � eh on U ,

1

2πi

∫
∂�

df

f
� 1

2πi

∫
∂�

dh � 0.

This is the desired contradiction arising from the argument principle.
We have that γ is polynomially convex. Hence γ is the maximal ideal space

of P(γ ). This implies that if g is analytic on a neighborhood of zj (γ ) ⊆ C,
then g ◦ zj ∈ P(γ ). Consequently, the argument used in Step 1 of the proof
of Theorem 12.1, to show that R(X) � C(X), shows in the present case that
P(γ ) � C(γ ).

For certain applications it is sometimes useful to have a statement that is more
general than Theorem 12.1. The following result reduces to Theorem 12.1 when
K � ∅.

Theorem 12.5. Let γ be a finite union of smooth compact curves in CN (as in
Theorem 12.1) and let K be a compact polynomially convex set in CN . Then
K̂ ∪ γ \ (K ∪ γ ) is a (possibly empty) one-dimensional analytic subvariety of
CN \ (K ∪ γ ).

Sketch of proof. Suppose that there exists x0 ∈ K̂ ∪ γ \ (K ∪ γ ). We must
show that K̂ ∪ γ is a one-dimensional analytic set near x0. The first step is to
produce a polynomial f in z1, z2, · · · , zN such that f (x0) � 0, 0 �∈ f (γ ), and
Re(f ) < 0 on K . This uses the polynomial convexity of K—we omit the details.
Now the proof of Theorem 12.1 carries over to give Theorem 12.5. In particular,
the construction in Step 4 of the proof of Theorem 12.1 works here because f (K)

lies in the left half-plane and the wedge V constructed in Step 4 lies in the right-half
plane, and so f −1(V ) ∩ (γ ∪ K) � f −1(V ) ∩ γ .
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Integral Kernels

13.1 Introduction

Let D be a smoothly bounded domain in Cn. By a kernel K(ζ, z) for D we mean
a differential form

(1) K(ζ, z) �
n∑

j�1

aj (ζ, z)dζ̄1 ∧ · · · ∧ d̂ ζ̄j ∧ · · · ∧ dζ̄n ∧ dζ1 ∧ · · · ∧ dζn

whose coefficient functions aj are defined and smooth for ζ, z ∈ D̄ with ζ �� z.
Here x̂xx means omit xxx.

We are aiming for a formula

(2) c0f (z) �
∫

∂D

f (ζ )K(ζ, z), z ∈ D,

which is valid for every f ∈ A(D), with c0 a constant, where A(D) denotes the
algebra of functions that are continuous on D̄ and holomorphic on D. In the case
n � 1, we have the celebrated formula

(3) f (z) � 1

2πi

∫
∂D

f (ζ )
dζ

ζ − z
.

Here the kernel C(ζ, z) � dζ/(ζ − z) is the Cauchy kernel. Formula (1) gives a
form of type (n, n− 1) in ζ , which allows us to integrate expressions f (ζ )K(ζ, z)

over ∂D.
In all that follows, the differential operators d, ∂, ∂̄ will be understood to be

taken with respect to the ζ -variables.
We list three properties enjoyed by the Cauchy kernel C(ζ, z):

(i) dC � 0 on C \ {z}.
(ii)

∫
|ζ−z|�ε

C(ζ, z) � 2πi, ∀z ∈ C, ε > 0.
(iii) For every continuous function g on C,

92
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∣∣∣∣∣
∫
|ζ−z|�ε

g(z)C(ζ, z)

∣∣∣∣∣ ≤ 2π max
|ζ−z|�ε

|g(ζ )|,

valid for all z ∈ C, ε > 0.

Exercise 13.1. Verify properties (i), (ii), and (iii).

We now turn to the case n > 1, and consider a smoothly bounded domain D in
Cn. We fix a kernel K(ζ, z) given by (1) and we impose on K the following three
conditions, analogous to (i), (ii), (iii):
(4) dK � 0 on D \ {z}.
(5)

∫
|ζ−z|�ε

K � c0, where c0 is a constant independent of z and ε. (Here, z ∈ D

and {|ζ − z| � ε} is the sphere in Cn of center z and radius ε.)
(6) There exists a constant M such that, for every continuous function g on D,∣∣∣∣∣

∫
|ζ−z|�ε

g(ζ )K(ζ, z)

∣∣∣∣∣ ≤ M max
|ζ−z|�ε

|g(ζ )|, z ∈ D, ε > 0.

Theorem 13.1. Assume that K is given by (1) and satisfies (4), (5), and (6). Then,
for each f ∈ A(D) ∩ C1(D̄), we have

(7) c0f (z) �
∫

∂D

f (ζ )K(ζ, z), z ∈ D.

Proof. Fix ε > 0 and put Dε � D \ {|ζ − z| ≤ ε}. On Dε , K is a smooth
(n, n − 1)-form in ζ .

Fix f ∈ A(D) ∩ C1(D̄). We have on Dε ,

d(f (ζ )K(ζ, z)) � df ∧ K + f dK � df ∧ K

by (4). Also, df ∧K � ∂̄f ∧K + ∂f ∧K � 0, since ∂̄f vanishes because f is
analytic, and ∂f ∧ K � 0 since ∂f is of type (1, 0) and K is of type (n, n − 1).
Stokes’ Theorem on Dε now gives∫

∂Dε

f K �
∫

Dε

d(f K) � 0,

or ∫
∂D

f K −
∫
|ζ−z|�ε

f K � 0,

where {|ζ − z| � ε} is taken with the positive orientation. Thus∫
∂D

f K �
∫
|ζ−z|�ε

f K �
∫
|ζ−z|�ε

(f (ζ ) − f (z))K + f (z)

∫
|ζ−z|�ε

K(8)

�
∫
|ζ−z|�ε

(f (ζ ) − f (z))K + c0f (z),
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by (5). In view of (6),∣∣∣∣∣
∫
|ζ−z|�ε

(f (ζ ) − f (z))K

∣∣∣∣∣ ≤ M max
|ζ−z|�ε

|f (ζ ) − f (z)|.

Since f is continuous at z,

lim
ε→0

[ ∫
|ζ−z|�ε

(f (ζ ) − f (z))K
] � 0.

It follows from (8), letting ε → 0, that∫
∂D

f K � c0f (z).

Thus (7) is proved.

13.2 The Bochner–Martinelli Integral

Fix n > 1. How shall we obtain a kernel K satisfying (4), (5), and (6)? In the
1940s, Martinelli and then Bochner (independently) constructed such a kernel. We
denote it by KMB . It is defined by

(9) KMB(ζ, z) �
n∑

j�1

ζ̄j − z̄j

|ζ − z|2n
dζ̄1 ∧ dζ1 ∧ · · · ∧ d̂ ζ̄j ∧ dζj ∧ · · · ∧ dζ̄n ∧ dζn.

For fixed z ∈ Cn, the coefficients of KMB are smooth on Cn \ {z}.

Lemma 13.2. KMB satisfies (4), (5), and (6) on each smoothly bounded domain
D ⊆ Cn. The constant c0 in (5) equals (2πi)n/(n − 1)!.

Proof. For each j , 1 ≤ j ≤ n, we put

(10) ωj � dζ̄1 ∧ dζ1 ∧ · · · ∧ d̂ ζ̄j ∧ dζj ∧ · · · ∧ dζ̄n ∧ dζn.

Then

KMB �
n∑

j�1

ζ̄j − z̄j

|ζ − z|2n
ωj .

Exercise 13.2. For each j , we have

dζ̄j ∧ ωj � ∧n
j�1dζ̄j ∧ dζj .

We put β � ∧n
j�1dζ̄j ∧ dζj , and so we have

(11) dζ̄j ∧ ωj � β, j � 1, 2, · · · , n.
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We proceed to calculate dKMB :

dKMB �
n∑

j�1

d
[ ζ̄j − z̄j

(|ζ − z|2)n
] ∧ ωj

�
n∑

j�1

[ |ζ − z|2ndζ̄j − (ζ̄j − z̄j )n(|ζ − z|2)n−1d(|ζ − z|2)
|ζ − z|4n

] ∧ ωj .

Now,

d(|ζ − z|2) � d
[ n∑

k�1

(ζk − zk)(ζ̄k − z̄k)
] � n∑

k�1

[
(ζk − zk)dζ̄k + (ζ̄k − z̄k)dζk

]
.

Since ωj contains each dζk as a factor, dζk∧ωj � 0 for all k. Similarly, dζ̄k∧ωj �
0 unless j � k. Finally, dζ̄j ∧ ωj � β by (11). Hence

dKMB � 1

|ζ − z|4n

n∑
j�1

× [|ζ − z|2ndζ̄j ∧ ωj − |ζj − zj |2n(|ζ − z|)2n−2)dζ̄j ∧ ωj

]
� 1

|ζ − z|4n

[
n|ζ − z|2nβ − n|ζ − z|2nβ

] � 0.

Thus KMB satisfies (4).
Next, with z ∈ Cn, ε > 0, we have∫

|ζ−z|�ε

KMB �
n∑

j�1

∫
|ζ−z|�ε

1

ε2n
(ζ̄j − z̄j )ωj .

Writing, as earlier,

β � dζ̄j ∧ ωj � ∧n
j�1dζ̄j ∧ dζj ,

we have by Stokes’ Theorem, for each j ,∫
|ζ−z|�ε

(ζ̄j − z̄j )ωj �
∫
|ζ−z|≤ε

d[(ζ̄j − z̄j )ωj ] �
∫
|ζ−z|≤ε

dζ̄j ∧ωj �
∫
|ζ−z|≤ε

β,

and so ∫
|ζ−z|�ε

KMB � n

ε2n

∫
|ζ−z|≤ε

β.

We write ζj � ξj + iηj , j � 1, 2, . . . , n, with ξj , ηj real. Then β �
∧n

j�1(dξj − idηj ) ∧ (dξj + idηj ) � (2i)ndξ1 ∧ dη1 ∧ · · · ∧ dξn ∧ dηn. Let dx

denote Lebesgue measure on Cn � R2n. Then, as a measure on R2n, β � (2i)ndx.
So ∫

|ζ−z|�ε

KMB � n

ε2n
(2i)n

∫
|ζ−z|≤ε

dx � n

ε2n
(2i)nε2nvol(B2n),
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where B2n is the unit ball in R2n. Thus∫
|ζ−z|�ε

KMB � n(2i)n
πn

n!
� (2πi)n

(n − 1)!
.

Thus (5) holds with c0 � (2πi)n

(n−1)! .
Finally, let g be a continuous function on Cn. Fix z ∈ Cn, ε > 0:∫

|ζ−z|�ε

gKMB �
n∑

j�1

1

ε2n

∫
|ζ−z|�ε

g(ζ )(ζ̄j − z̄j )ωj .

We make the change of variable: ζ � z + εb, where b � (b1, b2, · · · , bn) is
in Cn. After this change of variable, {ζ : |ζ − z| � ε} � {b :

∑n
j�1 |bj |2 � 1},

and we denote the right-hand side by S. Then, for all j ,∫
|ζ−z|�ε

g(ζ )(ζ̄j − z̄j )ωj

�
∫

S

g(z + εb)(εb̄j )(εdb̄1) ∧ (εdb1) ∧ · · · ∧ (̂εdb̄j )

∧ (εdbj ) ∧ · · · ∧ (εdb̄n) ∧ (εdbn)

� ε2n

∫
S

g(z + εb)σj (b),

where σj (b) � b̄j db̄1 ∧ db1 ∧ · · · ∧ d̂ b̄j ∧ dbj ∧ · · · ∧ db̄n ∧ dbn. Here, σj is
a (2n − 1)-form in b, independent of z and ε. It follows that, for some constant k,

|
∫

S

h(θ)σj | ≤ k max
S
|h|,

for every continuous function h on S. Thus, for each j ,

|
∫

S

g(z + εb)σj (b)| ≤ k max
|ζ−z|�ε

|g|,

and hence∣∣∣∣∣
∫
|ζ−z|�ε

gKMB

∣∣∣∣∣ ≤ n∑
j�1

1

ε2n
ε2n

∣∣∣∣∫
S

g(z + εb)σj (b)

∣∣∣∣ ≤ nk max
|ζ−z|�ε

|g|.

So KMB satisfies (6), with M � nk. We are done.

In view of Theorem 13.1, the lemma gives

Theorem 13.3. For each smoothly bounded domain D ⊆ Cn,

(12)
(2πi)n

(n − 1)!
f (z) �

∫
∂D

f (ζ )KMB(ζ, z),

whenever z ∈ D and f ∈ A(D) ∩ C1(D̄).
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Remark. It follows immediately from (4) and Stokes’ Theorem that
∫
∂D

KMB(ζ, z) � 0 if z ∈ Cn \ D̄.

13.3 The Cauchy–Fantappie Integral

For various applications, kernels other than the Bochner–Martinelli kernel are
desirable. We shall introduce a certain class of kernels.

For a smoothly bounded region D ⊆ Cn, fix functions w1(ζ, z), . . . , wn(ζ, z),
defined and smooth on D̄ × D̄ \ {ζ � z}. Assume that

(13)

n∑
j�1

wj(ζ, z)(ζj − zj ) � 1, ζ ∈ D̄, z ∈ D̄, ζ �� z.

We write d, ∂, ∂̄ for the differential operator relative to ζ . We define

w(ζ, z) � (w1(ζ, z), w2(ζ, z), . . . , wn(ζ, z)) ζ ∈ D̄, z ∈ D̄, ζ �� z.

Thus w is a vector-valued map defined on D̄ × D̄ \ {ζ � z}. Given w as above,
satisfying (13), we define the corresponding Cauchy–Fantappie form Kw(ζ, z) by

(14) Kw(ζ, z) �
n∑

j�1

(−1)j−1wjdw1∧· · ·∧ d̂wj ∧· · ·∧dwn∧dζ1∧· · ·∧dζn.

Theorem 13.4 (Leray’s Formula). With D, w as above, we have

(15) f (z) � a0

∫
∂D

f (ζ )Kw(ζ, z),

for every f ∈ A(D) ∩ C1(D̄) and z ∈ D, where a0 � (−1)n(n−1)/2(n −
1)!/(2πi)n.

We shall deduce formula (15) from the corresponding result (12) for the
Bochner–Martinelli kernel. To this end, we now prove a number of lemmas.

Fix a point (z1, z2, . . . , zn) in Cn. We use complex coordinates Z1, . . . Zn,
W1, . . . Wn in C2n and define a set �0 in C2n by

(16)

n∑
k�1

Wk(Zk − zk) � 1.

If (Z1, . . . Zn, W1, . . . , Wn) lies on �0, Zk �� zk for some k, so we can locally
represent �0 by the equation

Wk � (1 −
∑
j ��k

Wj (Zj − zj ))(Zk − zk)
−1.

It follows that �0 is a complex manifold of complex dimension (2n − 1).

Lemma 13.5. Fix positive integers N, k with k < N . Let � be a k-dimensional
complex submanifold of CN , and let α be a holomorphic k-form on CN . Denoting
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by α|� the form on � obtained by restricting α to �, then,

dα|� � 0 on �.

Proof. Let j : � → CN be the (holomorphic) inclusion map. Then α|� is just
the “pull back” j ∗(α). By a standard property of pull backs, d(j ∗(α)) � j ∗(dα).
Hence dα|� is a holomorphic (k + 1)-form on �, being the pull back of the
holomorphic (k + 1)-form dα on Cn. Since there are no nonzero holomorphic
(k + 1)-forms on a complex k-dimensional manifold, we conclude that dα|� � 0
on �.

We next fix a function f ∈ A(D)∩C1(D̄) and define a form α on C2n∩{Z ∈ D}
by

(17) α � f (Z)

n∑
k�1

(−1)k−1WkdW1∧· · ·∧ d̂Wk∧· · ·∧dWn∧dZ1∧· · ·∧dZn.

Then α is a holomorphic (2n − 1)-form on C2n ∩ {Z ∈ D}. We now restrict α to
�0, where �0 is given by (16). Lemma 13.5 then gives d(α|�0) � 0.

We next make a particular choice of functions wj by putting

w̃j (ζ, z) � ζ̄j − z̄j

|ζ − z|2 , j � 1, 2, . . . , n.

Since
n∑

j�1

w̃j (ζ, z)(ζj − zj ) �
n∑

j�1

|ζ̄j − z̄j |2
|ζ − z|2 � 1, ζ �� z,

condition (13) is satisfied. We form the kernel

Kw̃(ζ, z) �

n∑
j�1

(−1)j−1 ζ̄j − z̄j

|ζ − z|2 d(
ζ̄1 − z̄1

|ζ − z|2 )

∧ · · · ∧
̂

d(
ζ̄j − z̄j

|ζ − z|2 ) ∧ · · · ∧ d(
ζ̄n − z̄n

|ζ − z|2 ) ∧ dζ1 ∧ · · · ∧ dζn.

Exercise 13.3. Let P1, P2, . . . , Pn and φ be functions defined and smooth on an
open set U ⊆ Cn, with φ �� 0 on U . Then we have on U ,

n∑
k�1

(−1)k−1 Pk

φ
d

(
P1

φ

)
∧ · · · ∧

̂
d

(
Pk

φ

)
∧ · · · ∧ d

(
Pn

φ

)

� 1

φn

n∑
k�1

(−1)k−1Pk dP1 ∧ · · · ∧ d̂Pk ∧ · · · ∧ dPn.
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Applying the exercise to Pk � ζ̄z − z̄k, k � 1, 2, . . . , n, and φ � |ζ − z|2,
we get

Kw̃ � 1

|ζ − z|2n

n∑
k�1

(−1)k−1(ζ̄k − z̄k)dζ̄1 ∧ · · · ∧ d̂ ζ̄k ∧ · · · ∧ dζ̄n ∧ dζ,

where dζ � dζ1 ∧ dζ2 ∧ · · · ∧ dζn. Recall that the Bochner–Martinelli kernel

KMB � 1

|ζ − z|2n

n∑
k�1

(ζ̄k − z̄k)dζ̄1 ∧ dζ1 ∧ · · · ∧ d̂ ζ̄k ∧ dζk ∧ · · · ∧ dζ̄n ∧ dζn.

Exercise 13.4. For qn � n(n − 1)/2,

KMB � (−1)qnKw̃

We next define a family of maps χt , 0 ≤ t ≤ 1, from ∂D into C2n, given by

χt(ζ ) � (ζ, t
ζ̄ − z̄

|ζ − z|2 + (1 − t)w(ζ, z)), ζ ∈ D.

For each ζ ,

n∑
k�1

[
t

ζ̄k − z̄k

|ζ − z|2 + (1 − t)wk(ζ, z)
]
(ζk − zk)

� t

n∑
k�1

ζ̄k − z̄k

|ζ − z|2 (ζk − zk) + (1 − t)

n∑
k�1

wk(ζ, z)(ζk − zk) � 1,

in view of (13) and the corresponding equality for w̃. It follows that the point χt(ζ )

satisfies (16) for each ζ ∈ ∂D. Thus the cycle χt(∂D) lies on the manifold �0

defined by (16), for each t , 0 ≤ t ≤ 1. It follows that the family of maps χt ,
0 ≤ t ≤ 1, provides a homotopy between the maps

χ0 : ζ �→ (ζ, w(ζ, z))

and

χ1 : ζ �→ (ζ, w̃(ζ, z))

as maps from ∂D to �0. Hence the cycles χ0(∂D) and χ1(∂D) are homologous in
�0. It follows by Stokes’ Theorem that we have

(18)

∫
χ0(∂D)

α �
∫

χ1(∂D)

α,

where α is the form defined by (17), since we have seen that the restriction of α to
�0 is a closed form.
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From the definition of α and of the maps χ0 and χ1, we have that∫
χ0(∂D)

α

�
∫

∂D

f (ζ )

n∑
k�1

(−1)k−1wkdw1 ∧ · · · ∧ d̂wk ∧ · · · ∧ dwn ∧ dζ

�
∫

∂D

f (ζ )Kw(ζ, z),

and similarly ∫
χ1(∂D)

α �
∫

∂D

f (ζ )Kw̃(ζ, z).

By (18), then, the two integrals over ∂D are equal. By Exercise 13.4,

Kw̃(ζ, z) � (−1)qnKMB(ζ, z).

So ∫
∂D

f (ζ )Kw(ζ, z) � (−1)qn

∫
∂D

f (ζ )KMB(ζ, z) � (−1)qn
(2πi)n

(n − 1)!
f (z)

by Theorem 13.3. Thus

(−1)qn
(2πi)n

(n − 1)!
f (z) �

∫
∂D

f (ζ )Kw(ζ, z).

Theorem 13.4 is proved.

The last two results will be used in Chapter 14.

Lemma 13.6. Fix z ∈ D, then dKw(ζ, z) � 0 for ζ ∈ D \ {z}.
Proof. Note that (13) yields d(

∑n
j�1(wj (ζ, z)(ζj − zj )) � 0, or

(19)

n∑
j�1

[∂̄wj (ζj − zj ) + ∂wj (ζj − zj ) + wjdζj ] � 0.

From (14),

dKw �
n∑

j�1

(−1)j−1dwj ∧ dw1 ∧ · · · ∧ d̂wj ∧ · · · ∧ dwn ∧ dζ1 ∧ · · · ∧ dζn.

Put

βj � ∂̄wj ∧ ∂̄w1 ∧ · · · ∧ ̂̄∂wj ∧ · · · ∧ ∂̄wn ∧ dζ.

Then dKw �
∑n

j�1(−1)j−1βj . Note that, for all j , βj � (−1)j−1[∧n
k�1∂̄wk]∧ ζ .

Fix ζ �� z. Without loss of generality, ζ1 �� z1. Equation (19) yields

(ζ1 − z1)∂̄w1 � − (ζ1 − z1)∂w1 − w1dζ1(20)

−
∑
j ��1

[∂̄wj (ζj − zj ) + ∂wj (ζj − zj ) + wjdζj ].
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Let us wedge equation (20) with (∧k ��1∂̄wk) ∧ dζ . We get on the left (ζ1 −
z1)(∧n

k�1∂̄wk) ∧ dζ and on the right we get 0, because of repetitions. Hence
(ζ1 − z1)βj � 0 for all j . It follows that dKw � 0.

Lemma 13.7. Fix z ∈ D, and choose ε > 0 such that the closed ball {|ζ−z| ≤ ε}
is contained in D. Then

1 � a0

∫
{|ζ−z|�ε}

Kw(ζ, z),

where a0 � (−1)n(n−1)/2(n − 1)!/(2πi)n.

Proof. Put Dε � D \ {|ζ − z| ≤ ε}. ∫
∂Dε

Kw �
∫
Dε

dKw � 0, by Lemma 13.6.
So ∫

∂D

Kw �
∫
{|ζ−z|�ε}

Kw.

By Leray’s formula (15),

1 � a0

∫
∂D

Kw.

Hence

1 � a0

∫
{|ζ−z|�ε}

Kw,

which is the assertion.

NOTES
The integral representations in this chapter generalize the Cauchy integral for-

mula to smoothly bounded domains in Cn, n > 1. Theorem 13.3 was discovered
by E. Martinelli in [Mar] and independently by S. Bochner [Boc].

The generalization of the Bochner–Martinelli formula given in Theorem 13.4,
which deals with the Cauchy–Fantappie kernels Kw, is due to J. Leray [Ler] (1956)
and is based on earlier work by L. Fantappie (1943). For an exposition of the theory
and generalizations, see the book of Henkin and Leiterer [HenL], Chapter 1.
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Perturbations of the
Stone–Weierstrass Theorem

Let D be the closed unit disk in C. Given functions f, g on D, we denote by
[f, g] the algebra of all functions P(f, g) on D, where P is a polynomial in two
variables.

If z is the complex coordinate in C, the Stone–Weierstrass approximation theo-
rem gives that [z, z̄] is dense in C(D). What if we keep the function z, but replace
z̄ by a function by a function z̄ + R(z), where R(z) is a “small” function? Do we
then have that [z, z̄ + R] is dense in C(D)?

If “small” is taken to mean:

|R(z)| ≤ ε for all z ∈ D

with ε sufficiently small, the answer is No! Given ε > 0, we define

R(reiθ ) � ρ(r)e−iθ , 0 ≤ r ≤ 1, 0 ≤ θ ≤ 2π,

where ρ(r) � −r , 0 ≤ r ≤ ε and ρ(r) � −ε, ε ≤ r ≤ 1. Then |R| ≤ ε on D,
but z̄ + R(z) � 0, |z| ≤ ε. So every function in [z, z̄ + R] is analytic on |z| < ε,
and hence each uniform limit of a sequence of such function on D is analytic there.
Hence [z, z̄ + R] is not dense in C(D).

However, if “small” is taken in terms of the Lipschitz norm of R, the answer
becomes Yes, as will be shown in Theorem 14.3 below. We require two lemmas.

Lemma 14.1. Given an integer n ≥ 1, there exists a polynomial Pn so that∣∣∣∣∣Pn(w) − 1

w + 1
n

∣∣∣∣∣ ≤ 1

n
, w ∈ S,

where S is the closed semidisk

{w ∈ C : Re(w) ≥ 0 and |w| ≤ r0}, r0 fixed.

Proof. Exercise 14.1.

102
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Lemma 14.2. Let S be as above. There exists a sequence of polynomials {Pn}
such that

Pn(w) → 1

w
, w ∈ S \ {0}, as n → ∞, and(1)

|Pn(w)| ≤ C

|w| , w ∈ S \ {0}, n � 1, 2, . . . ,(2)

where C � r0 + 1.

Proof. Let Pn be as in Lemma 14.1. Then

|wPn(w)|

� |w|
∣∣∣∣∣Pn(w) − 1

w + 1
n

+ 1

w + 1
n

∣∣∣∣∣ ≤ |w|
∣∣∣∣∣Pn(w) − 1

w + 1
n

∣∣∣∣∣
+
∣∣∣∣∣ w

w + 1
n

∣∣∣∣∣ ≤ |w|
n
+ 1 ≤ C, w ∈ S,

since |w| < |w+ 1/n| as Re(w) > 0. Also, for each w ∈ S \ {0}, Pn(w)− 1
w
→

0. We are done.

Theorem 14.3. Assume that there is a constant k < 1 such that

(3) |R(z) − R(z′)| ≤ k|z − z′|, z, z′ ∈ D.

Then [z, z̄ + R(z)] is dense in C(D).

Proof. Write A � [z, z̄ + R(z)]. Fix a point a ∈ C. Let µ be a measure on D

with µ ⊥ A. If |a| > 1, we have

1

z − a
� −

∞∑
n�0

zn

an+1
,

so

(4)

∫
D

dµ(z)

z − a
� −

∞∑
n�0

1

an+1

∫
D

zndµ(z) � 0.

Next assume that |a| ≤ 1 and

(5)

∫
D

d|µ|(z)
|z − a| < ∞.

Note that (5) holds for almost all points a. We shall construct a sequence of elements
bj in A, j � 1, 2, · · · , such that

bj (z) → 1

z − a
pointwise on D \ {a},(6)

|bj (z)| ≤ C

|z − a| , z ∈ D, j � 1, 2, . . . ,(7)

where C is a constant.
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Once this is done we have

0 �
∫

D

bj (z)dµ(z) →
∫

D

1

z − a
dµ(z),

by dominated convergence, in view of (5) and (6). So
∫
D

1
z−a

dµ(z) � 0 a.e. in
C. By Lemma 2.7, this implies that µ � 0. It follows that A is dense in C(D), as
desired.

It remains to construct the functions bj . We fix a ∈ D. We put

h(z) � (z − a)(z̄ + R(z) − (ā + R(a))).

Then

(8) h(z) � |z − a|2 + (z − a)(R(z) − R(a)) � |z − a|2 + B(z).

Because of our condition (3),

(9) |B(z)| ≤ k|z − a|2 < |z − a|2, z ∈ D \ {a}.
Now (8) and (9) give

(10) Re h(z) > 0, z ∈ D \ {a}.
It follows that h(D) is a compact subset of {Re w ≥ 0} and h(D \ {a}) ⊆

{Re w > 0}. We fix a closed semidisk S contained in {Re w ≥ 0} that contains
h(D).

Next we choose polynomials Pn by Lemma 14.2, satisfying (1) and (2). We then
put, for j � 1, 2, . . . ,

bj (z) � [(z̄ + R(z)) − (ā + R(a))]Pj (h(z)).

Since z ∈ A and z̄ + R(z) ∈ A, also h ∈ A, and hence bj ∈ A, for each j .
Fix z ∈ D \ {a}. As j → ∞,

bj (z) → [(z̄ + R(z)) − (ā + R(a))] · 1

h(z)
,

since Pj (w) → 1
w

at w � h(z). So we have

bj (z) → 1

z − a
, z ∈ D \ {a}.

Furthermore, for z ∈ D,

|bj (z)| ≤ |[(z̄ + R(z)) − (ā + R(a))]| · 2

|h(z)| �
2

|z − a| .

So (6) and (7) hold, and we are done.

Exercise 14.2. Show that the hypothesis: k < 1, in Theorem 14.3, cannot be
weakened.

We now ask: How does Theorem 14.3 generalize when the disk D is replaced
by a compact set X in Cn, n > 1?
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For functions f1, f2, · · · , fk in C(X) we denote by [f1, f2, · · · , fk] the al-
gebra of all functions P(f1, f2, · · · , fk) with P a polynomial in k variables.
The Stone–Weierstrass theorem gives that [z1, · · · , zn, z̄1, · · · , z̄n] is dense in
C(X). We now fix functions R1, R2, · · · , Rn and consider the algebra A �
[z1, · · · , zn, z̄1,+R1 · · · , z̄n +Rn] of functions on X. When is A dense in C(X)?

We aim for a sufficient condition on the Rj similar to the hypothesis (3) in
Theorem 14.3.

For convenience we assume the existence of a neighborhood N of X such that
each Rj is defined in N and lies in C1(N). We write R � (R1, R2, · · · , Rn). For
w ∈ Cn, we write |w| �

√
|w1|2 + · · · + |wn|2. We shall prove

Theorem 14.4. Assume that there exists k, 0 ≤ k < 1, with

(11) |R(z) − R(z′)| ≤ k|z − z′|, z, z′ ∈ N.

Then A � [z1, · · · , zn, z̄1 + R1, · · · , z̄n + Rn] is dense in C(X).

The method of proof consists of replacing the Cauchy kernel dz/(z − a), used
in the proof of Theorem 14.3, by a suitably constructed Cauchy–Fantappie kernel
K(ζ, z).
Construction of the Kernel K(ζ, z)

We introduce some notation. For each ζ, z ∈ N ,

(12) Hj (ζ, z) � (ζ̄j + Rj(ζ )) − (z̄j + Rj(z)), j � 1, 2, · · · , n.

All differential operators d, ∂, ∂̄ are with respect to ζ , holding z fixed. Then

dHj � dζ̄j + dRj (ζ ).

As earlier, we put

dζ � dζ1 ∧ dζ2 ∧ · · · ∧ dζn,

(13) G(ζ, z) �
n∑

j�1

Hj(ζ, z)(ζj − zj ),

(14) wj (ζ, z) � Hj(ζ, z)

G(ζ, z)
j � 1, 2, · · · , n.

We shall show in (17) below that G(ζ, z) �� 0 for ζ �� z. Hence wj(ζ, z) is a
smooth function on N ×N \ {ζ � z}. Also, for ζ ∈ N , z ∈ N , ζ �� z, (14) gives

n∑
j�1

wj(ζ, z)(ζj − zj ) �
n∑

j�1

Hj(ζ, z)

G(ζ, z)
(ζj − zj ) � 1.

With w � (w1, · · · , wn), the Cauchy–Fantappie kernel Kw(ζ, z) is given by

(15) Kw(ζ, z) �
n∑

j�1

(−1)j−1(
Hj

G
)d(

H1

G
)∧· · ·∧

̂
d(

Hj

G
)∧· · ·∧d(

Hn

G
)∧dζ.
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Exercise 13.3 yields that

Kw(ζ, z) � 1

Gn

n∑
j�1

(−1)j−1HjdH1 ∧ · · · ∧ d̂Hj ∧ · · · ∧ dHn ∧ dζ.

We put

(16) Kj (ζ, z) � Hj

Gn
, j � 1, 2, · · · , n.

Then

Kw(ζ, z) �
n∑

j�1

(−1)j−1Kj(ζ, z) ∧ ηj (ζ ) ∧ dζ,

where ηj (ζ ) ≡ dH1 ∧ · · · ∧ d̂Hj ∧ · · · ∧ dHn is independent of z.
With w � (w1, · · · , wn), where wj is given by (14), 1 ≤ j ≤ n, we put, from

now on,

K � Kw.

We shall deduce Theorem 14.4 from the following three lemmas.

Lemma 14.5. Let φ ∈ C1
0(N). Fix z ∈ N . Then

φ(z) � − (n − 1)!

(2πi)n

∫
N

∂̄φ(ζ ) ∧ K(ζ, z).

Lemma 14.6. Let µ be a measure on X with ||µ|| < ∞ and µ ⊥ A. Fix z such
that ∫

X

d|µ|(ζ )

|ζ − z|2n−1
< ∞.

Then ∫
X

Kj(ζ, z)dµ(ζ ) � 0, j � 1, 2, . . . , n.

Lemma 14.7. Let µ be a measure on X with ||µ|| < ∞ such that µ ⊥ A. Then,
for each φ ∈ C1

0(N), we have ∫
X

φ(z)dµ(z) � 0.

Exercise 14.3. The restriction of C1
0(N) to X is dense in C(X).

Proof of Theorem 14.4. Lemma 14.7 and Exercise 14.3 imply that when-
ever µ ⊥ A, then µ ⊥ C(X). Hence A is dense in C(X), and Theorem 14.4
follows.
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We begin the proofs of the three lemmas by establishing certain inequalities for
G and Hj , 1 ≤ j ≤ n.

Claim. For ζ, z ∈ N ,

Re G(ζ, z) > 0 if ζ �� z,(17)

|G(ζ, z)| ≥ (1 − k)|ζ − z|2,(18)

|Kj(ζ, z)| ≤ C
1

|ζ − z|2n−1
, Ca constant, and(19)

|Hj(ζ, z)| ≤ (1 + k)|ζ − z|.(20)

Proof.

Hj(ζ, z)(ζj − zj ) � |ζj − zj |2 + (Rj (ζ ) − Rj(z))(ζj − zj ), ∀j.
Hence

G(ζ, z) �
n∑

j�1

|ζj − zj |2 +
n∑

j�1

(Rj (ζ )− Rj(z))(ζj − zj ) � |ζ − z|2 + B(ζ, z),

where

|B(ζ, z)| ≤ |R(ζ ) − R(z)||ζ − z| ≤ k|ζ − z|2 < |ζ − z|2

if ζ �� z. So

G(ζ, z) � |ζ − z|2 + B(ζ, z) ∈ {Re w > 0},
whence (17) holds. Next,

|G(ζ, z)| ≥ |ζ − z|2 − k|ζ − z|2 � (1 − k)|ζ − z|2,
so (18) holds. Furthermore,

|Kj(ζ, z)| � |Hj(ζ, z)|
|G(ζ, z)|n ≤

|ζj − zj | + |Rj(ζ ) − Rj(z)|
|G(ζ, z)|n

≤ |ζ − z| + |R(ζ ) − R(z)|
(1 − k)n|ζ − z|2n

≤ (1 + k)|ζ − z|
(1 − k)n|ζ − z|2n

� C
1

|ζ − z|2n−1
,

where C � (1 + k)/(1 − k)n. This gives (19).

In a similar way, (12) gives (20). The claim is proved.

Proof of Lemma 14.5. We are given φ ∈ C1
0(N) and a point z ∈ N . We choose

a smoothly bounded region D with D̄ ⊆ N and suppφ ⊆ D.
We fix ε > 0 and put

Dε � D \ {|ζ − z| ≤ ε}.
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Lemma 13.7 then gives

(21) 1 � (2πi)n

(n − 1)!

∫
|ζ−z|�ε

K(ζ, z).

Applying Stokes’ Theorem to the smooth (2n − 1)-form φ(ζ )K(ζ, z) on Dε , we
get∫

∂Dε

φ(ζ )K(ζ, z) �
∫

Dε

d(φ(ζ )K(ζ, z)) �
∫

Dε

(∂̄φ)(ζ ) ∧ K(ζ, z) (why?),

and so

(22)

∫
∂D

φ(ζ )K(ζ, z) −
∫
|ζ−z|�ε

φ(ζ )K(ζ, z) �
∫

Dε

(∂̄φ)(ζ ) ∧ K(ζ, z).

Also, ∫
|ζ−z|�ε

φ(ζ )K(ζ, z)(23)

�
∫
|ζ−z|�ε

(φ(ζ ) − φ(z))K(ζ, z) +
∫
|ζ−z|�ε

φ(z)K(ζ, z).

Exercise 14.4.

lim
ε→0

∫
|ζ−z|�ε

(φ(ζ ) − φ(z))K(ζ, z) � 0.

Using (21) and Exercise 14.4, we get

lim
ε→0

∫
|ζ−z|�ε

φ(ζ )K(ζ, z) � (n − 1)!

(2πi)n
φ(z).

Letting ε → 0 in (22) then gives∫
∂D

φ(ζ )K(ζ, z) − (n − 1)!

(2πi)n
φ(z) �

∫
D

(∂̄φ)(ζ ) ∧ K(ζ, z).

Since ∂D lies outside suppφ, the first integral on the left vanishes, and we get

− (n − 1)!

(2πi)n
φ(z) �

∫
D

(∂̄φ)(ζ ) ∧ K(ζ, z) �
∫

N

(∂̄φ)(ζ ) ∧ K(ζ, z).

Thus Lemma (5) is proved.

Exercise 14.5. Each Kj satisfies

Kj(ζ, z) � −Kj(z, ζ ), ζ, z ∈ N.

Exercise 14.6. Let µ be a complex measure on X of finite total mass. Then∫
d|µ|(ζ )

|ζ − z|2n−1
< ∞

for a.a. z in Cn.
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Proof of Lemma 14.6. We define

Sz � {G(ζ, z) : ζ ∈ X}.
Then Sz is a compact set in C and, by (17), Sz lies in the closed half-plane {Re w ≥
0}. We choose a closed semidisk S such that

Sz ⊆ S ⊆ {Re w ≥ 0}.
By Lemma 14.2, there exists a sequence of polynomials {Pν} satisfying (1) and
(2),

lim
ν→∞ Pν(G(ζ, z)) � 1

G(ζ, z)
, ζ ∈ X \ {z}

and

|Pν(G(ζ, z))| ≤ C

|G(ζ, z)| , ζ ∈ X \ {z}, ν ≥ 1.

In view of (18), then,

|Pν(G(ζ, z))| ≤ C

(1 − k)|ζ − z|2 , ζ ∈ X \ {z}, ν ≥ 1.

It follows that for each ζ ∈ X \ {z}, and for each j ,

lim
ν→∞Hj(ζ, z)(Pν(G(ζ, z)))n � Hj(ζ, z)

(G(ζ, z))n
� Kj(ζ, z)

and

|Hj(ζ, z)||(Pν(G(ζ, z)))n| ≤ |Hj(ζ, z)|( C

1 − k
)n

1

|ζ − z|2n

≤ (1 + k)|ζ − z|( C

1 − k
)n

1

|ζ − z|2n
� C ′

|ζ − z|2n−1
,

where C ′ is a constant independent of ν.
By hypothesis, 1

|ζ−z|2n−1 ∈ L1(|µ|). Thus the sequence {HjPν(G)n : ν �
1, 2, · · ·} converges to Kj(ζ, z) pointwise on X \ {z}, and dominatedly with re-
spect to |µ|. Also, the missing point {z} has |µ|-measure 0 (why?). Thus, by the
dominated convergence theorem,

(24)

∫
X

Hj(ζ, z)Pν(G(ζ, z))ndµ(ζ ) →
∫

X

Kj(ζ, z)dµ(ζ ),

as ν → ∞. But

Hj(ζ, z) � (ζ̄j + Rj(ζ )) − (z̄j + Rj(z));
hence Hj ∈ A and so G ∈ A, and so Hj(ζ, z)Pν(G(ζ, z))n ∈ A for every ν.
Hence the left-hand side in (24) vanishes for all ν. Thus

∫
X

Kj(ζ, z)dµ(ζ ) � 0,
and Lemma 14.6 is proved.
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Proof of Lemma 14.7. Since φ ∈ C1
0(N), for each z ∈ N , Lemma 14.5 gives

(25) cnφ(z) � −
∫

N

∂̄φ(ζ ) ∧ K(ζ, z),

with cn � (2πi)n

(n−1)! . Hence

cn

∫
X

φ(z)dµ(z) �
∫

X

[ − ∫
N

∂̄φ(ζ ) ∧ K(ζ, z)
]
dµ(z)

� −
∫

X

[ ∫
N

n∑
j�1

(−1)j+1∂̄φ(ζ ) ∧ Kj(ζ, z)

∧ ηj (ζ ) ∧ dζ
]
dµ(z)

� −
n∑

j�1

(−1)j+1
∫

X

dµ(z)

∫
N

∂̄φ(ζ )

∧ Kj(ζ, z) ∧ ηj (ζ ) ∧ dζ.

For each j , ∂̄φ(ζ ) ∧ ηj (ζ ) ∧ dζ is a 2n-form on N . We write it as

Fj (ζ )dx,

where Fj is a scalar-valued function and dx is a Lebesgue 2n-dimensional measure.
Then

(26) cn

∫
X

φ(z)dµ(z) � −
n∑

j�1

(−1)j+1
∫

X

dµ(z)

∫
N

Fj (ζ )Kj (ζ, z)dx.

Fix j . By Fubini’s Theorem, we have

(27)

∫
X

dµ(z)

∫
N

Fj (ζ )Kj (ζ, z)dx �
∫

N

Fj (ζ )
[ ∫

X

Kj(ζ, z)dµ(z)
]
dx.

Exercise 14.7. Justify this application of Fubini’s Theorem.

By Exercise 14.5, Kj(ζ, z) � −Kj(z, ζ ). Hence, for each ζ ∈ N ,∫
X

Kj(ζ, z)dµ(z) � −
∫

X

Kj(z, ζ )dµ(z).

Lemma 14.6 then gives that

(28)

∫
X

Kj(ζ, z)dµ(z) � 0

for a.a. ζ . Since this holds for each j , (26), (27), and (28) yield∫
X

φ(z)dµ(z) � 0.

This proves Lemma 14.7.
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As we saw earlier, Theorem 14.4 follows.

NOTES
The perturbed Stone–Weierstrass theorem in one complex dimension, given

in Theorem 14.3, is due to Wermer [We7]. The generalization to higher dimen-
sions, given in Theorem 14.4, was proved under stronger smoothness conditions
by Hörmander and Wermer [HöWe]. That proof is based on the theory of approx-
imation on totally real submanifolds in Cn, and is presented in Chapter 17. The
proof given in the present chapter, based on certain specially constructed integral
kernels, is due to B. Weinstock [Wei].
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The First Cohomology Group of a
Maximal Ideal Space

Given Banach alebras A1 and A2 with maximal ideal spaces M1 and M2, if A1

and A2 are isomorphic as algebras, then M1 and M2 are homeomorphic. It is thus
to be expected that the topology of M(A) is reflected in the algebraic structure of
A, for an arbitrary Banach algebra A.

One result that we obtained in the direction was this: M is disconnected if and
only if A contains a nontrivial idempotent.

We now consider the first Čech cohomology group with integer coefficients.
H 1(M, Z), of a maximal ideal space M.

For decent topological spaces Čech cohomology coincides with singular or
simplicial cohomology. We recall the definitions. Let X be a compact Hausdorff
space. Fix an open covering U � {Uα} of X, α running over some label set.
We construct a simplicial complex as follows: Each Uα is a vertex, each pair
(Uα, Uβ) with Uα ∩ Uβ �� ∅ is a 1-simplex, and each triple (Uα, Uβ, Uγ with
Uα ∩ Uβ ∩ Uγ �� ∅ is a 2-simplex. A p-cochain (p � 0, 1, 2) is a map cp

assigning to each p-simplex an integer, and we require that cp be an alternating
function of its arguments; e.g., c1(Uβ, Uα) � −c1(Uα, Uβ).

The totality of p-cochains forms a group under addition, denoted Cp(U).
Define the coboundary δ : Cp(U) → Cp+1(U) as follows: For c0 ∈ C0(U),

(Uα, Uβ) a 1-simplex,

δc0(Uα, Uβ) � c0(Uβ) − c0(Uα).

For c1 ∈ C1(U), (Uα, Uβ, Uγ ) a 2-simplex,

δc1(Uα, Uβ, Uγ ) � c1(Uα, Uβ) + c1(Uβ, Uγ ) + c1(Uγ , Uα).

c1 is a 1-cocycle if δc1 � 0. The set of all 1-cocycles forms a subgroup F1

of C1(U), and δC0(U) is a subgroup of F1. We define H 1(U, Z) as the quotient
group F1(U)/δC0(U). We shall define the cohomology group H 1(X, Z) as the
“limit” of H 1(U, Z) as U get finer and finer. More precisely

Definition 15.1. Given two coverings U and V of X, we say “V is finer than U”
(V > U) if for each Vα in V ∃φ(α) in the label set of U with Vα ⊂ Uφ(α).

112
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Note. φ is highly nonunique.

Under the relation > the family F of all coverings of X is a directed set. We
have a map

U → H 1(U, Z)

of this directed set to the family of groups H 1(U, Z).
For a discussion of direct systems of groups and their application to cohomology

we refer the reader to W. Hurewicz and H. Wallman, Dimension Theory (Princeton
University Press, Princeton, N.J., 1948, Chap. 8, Sec. 4) and shall denote this
reference by H.-W.

To each pair U and V of coverings of X with V > U corresponds for each p a
map ρ:

Cp(U) → Cp(V),

where ρcp(Vα0 , Vα1 , . . . , Vαp
) � cp(Uφ(α0), . . . , Uφ(αp)), φ being as in Definition

15.1.

Lemma 15.1. ρ induces a homomorphism KU,V : Hp(U, Z) → Hp(V, Z).

Lemma 15.2. KU,V depends only on U and V , not on the choice of φ.

For the proofs see H.-W.
The homomorphisms KU,V make the family {Hp(U, Z)|U} into a direct system

of groups.

Definition 15.2. H 1(X, Z) is the limit group of the direct system of groups
{H 1(U, Z)|U}.
∃ a homomorphism KU : H 1(U, Z) → H 1(X, Z) such that for V > U we

have

(1) KV ◦ KU,V � KU .

(See H.-W.)
Our goal is the following result: Let A be a Banach algebra. Put

A−1 � {x ∈ A|x has an inverse in A}
and

exp A � {x ∈ A|x � ey for some y ∈ A}.
A−1 is a group under multiplication and exp A is a subgroup of A−1.

Theorem 15.3 (Arens-Royden). Let M � M(A). Then H 1(M, Z) is
isomorphic to the quotient group A−1/ exp A.

Corollary. If H 1(M, Z) � 0, then every invertible element x in A admits a
representation x � ey, y ∈ A.



114 15. The First Cohomology Group of a Maximal Ideal Space

Exercise 15.1. Let A � C(�), � the circle. Verify Theorem 15.3 in this case.

Exercise 15.2. Do the same for A � C(I), I the unit interval.

In the exercises, take as given that H 1(�, Z) � Z and H 1(I, Z) � {0}.

Theorem 15.4. Let X be a compact space. ∃ a natural homomorphism

η : C(X)−1 → H 1(X, Z)

such that η is onto and the kernel of η � exp C(X).

Proof. Fix f ∈ C(X)−1. Thus f �� 0 on X. We shall associate to f an element
of H 1(X, Z), to be denoted η(f ).

Let U � {Uα} be an open covering of X. A set of functions gα ∈ C(Uα) will
be called (f, U)-admissible if

(2) f � egα in Uα

and

(3) |gα(x) − gα(y)| < π for x, y in Uα.

Such admissible sets exist whenever f (Uα) lies, for each α, in a small disk
excluding 0. Equations (2) and (3) imply that gβ − gα is constant in Uα ∩ Uβ .

Now fix a covering U and an (f, U)-admissible set gα . Then ∃ integers hαβ with

1

2πi
(gβ − gα) � hαβ in Uα ∩ Uβ.

The map h : (Uα, Uβ) → hαβ is an element of C1(U); in fact, h is a 1-cocycle.
For given any 1-simplex (Uα, Uβ, Uγ )

δh(Uα, Uβ, Uγ ) � hαβ + hβγ + hγα

� 1

2πi
{gβ − gα + gγ − gβ + gα − gγ } � 0

at each point of Uα ∩ Uβ ∩ Uγ .
Denote by [h] the cohomology class of h in H 1(U, Z).

(4) [h] is independent of the choice of {gα} and depends only on f and U .

For let {g′α} be another (f, U)-admissible set. By (2) and (3), ∃kα ∈ Z with

g′α(x) − gα(x) � 2πikα for x ∈ Uα.

The cocylce h′ determined by {g′α} is given by

h′αβ � h′(Uα, Uβ) � 1

2πi
(g′β(x) − g′α(x))

(x ∈ Uα ∩ Uβ). Hence

h′αβ � hαβ + δk,
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where k is the 0-cochain in C0(U) defined by k(Uα) � kα . Thus [h′] � [h], as
desired.

We define

ηU(f ) � [h]

and

η(f ) � KU ([h]) ∈ H 1(X, Z).

Using (1) we can verify that η(f ) depends only on f , not on the choice of the
covering U .

(5) η maps C(X)−1 onto H 1(X, Z).

To prove this fix ξ ∈ H 1(X, Z). Choose a covering U and a cocycle h in C1(U)

with KU ([h]) � ξ . Put hνµ � h(Uν, Uµ). Since X is compact and so an arbitrary
open covering admits a finite covering finer than itself, we may assume that U is
finite, U � {U − 1, U2, . . . , Us}.

Choose a partition of unity χα , 1 ≤ α ≤ s, with supp χα ⊂ Uα, χα ∈ C(X),
and

∑s
α�1 χα � 1. For each k define

gk � 2πi

s∑
ν�1

hνkχν(x) for x ∈ Uk,

where we put hνk � 0 unless Uν meets Uk . Then gk ∈ C(Uk). Fix x ∈ Uj ∩ Uk .
Note that unless Uν meets Uk ∩ Uj , χν(x) � 0. Then

(gk − gj )(x) � 2πi
∑

ν

χν(x)(hνk − hνj ).

Since h is a 1-cocyle, hkν + hνj + hjk � 0 whenever Uk ∩ Uν ∩ Uj �� ∅. Hence
in Uj ∩ Uk ,

gk − gj � 2πi
∑

ν

xνhjk � 2πihjk.

Define fα in Uα by fα � egα . Then fα ∈ C(Uα) and in Uα ∩ Uβ ,

fβ

fα

� egβ−gα � e2πihαβ � 1.

Thus fα � fβ in Uα ∩ Uβ , so the different fα fit together to a single function f

in C(X). Also,

fα � egα in Uα and gβ − gα � 2πihαβ in Uα ∩ Uβ.

From this and the definition of η, we can verify that η(f ) � KU ([h]) � ξ .

(6) Fix f in the kernel of η. Then f ∈ exp C(X).

For η(f ) is the zero element of H 1(X, Z). Hence ∃ covering V such that if h

is the cocycle in C1(V) associated to f by our construction, then the cohomology
class of h is 0; i.e., if

f � egα in Uα,
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then ∃H ∈ C0(V) such that

gβ − gα � 2πi(Hβ − Hα) in Vα ∩ Vβ.

Then

gβ − 2πHβ � gα − 2πHα in Vα ∩ Vβ.

Hence ∃ global function G in C(X) with G � gα − 2πHα in Vα for each α. Then
f � eG, and we are done.

Since it is clear that η vanishes on exp C(X), the proof of Theorem 15.4 is
complete.

Note. We leave to the reader to verify that η is natural.

Now let X be a compact space and L a subalgebra of C(X). The map η (of
Theorem 15.4) restricts to L−1 � {f ∈ L|1/f ∈ L}, mapping −∞ into H 1(X, Z).

Definition 15.3. L is full if
(a) η maps L−1 onto H 1(X, Z).
(b) x ∈ L−1 and η(x) � 0 imply ∃y ∈ L, with x � ey .

Next let X be a compact polynomially convex subset of Cn.

Definition 15.4. H(X) � {f ∈ C(X)|∃ neighborhood of U of X and ∃F ∈
H(U) with F � f on X}.

H(X) is a subalgebra of C(X).

Lemma 15.5. H(X) is full.

Proof. Fix γ ∈ H 1(X, Z). Then ∃ a covering U of X and a cocycle h ∈ C1(U)

with KU ([h]) � γ .
Without loss of generality, we may assume that

U � {Uα ∩ X|1 ≤ α ≤ s}, each Uα open in Cn.

(Why?)
For each α choose ξα ∈ C∞0 (Uα), with

∑s
α�1 ξα � 1 in some neighborhood N

of X. Put hαβ � h(Uα ∩ X, Uβ ∩ X) ∈ Z. Fix α and put for x ∈ Uα ,

gα(x) � 2π

s∑
ν�1

hναξν(x),

where hνα � 0 unless Uν ∩ Uα �� ∅. Then gα ∈ C∞(Uα), and, as in the proof of
Theorem 15.4, we have in Uα ∩ Uβ ∩ N ,

(7) gβ − gα � 2πihαβ.

Hence ∂̄gβ − ∂̄gα � 0 in Uα ∩ Uβ ∩ N , so the ∂̄gα fit together to a ∂̄-closed (0,
1)-form defined in N .
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By Lemma 7.4 ∃ a p-polyhedron
∏

with X ⊂ ∏ ⊂ N . By Theorem 7.6 ∃ a
neighborhood W of

∏
and u ∈ C∞(W) with

(8) ∂̄u � ∂̄gα in W ∩ Uα.

Put Vα � Uα ∩ W , 1 ≤ α ≤ s. Then U � {Vα ∩ X|1 ≤ α ≤ s}.
Put g′α � gα − u in Vα . Then g′α ∈ H(Vα), by (8). Also, by (7),

1

2π
(g′β − g′α) � 1

2π
(gβ − gα) � hαβ in Vα ∩ Vβ.

Define f � egα in Vα for each α. In Vα ∩ Vβ the two definitions of f are

eg′α and e
g′

β � eg′α+2πhαβ � eg′α .

Hence f is well defined in
⋃

α Vα and holomorphic there, so f |x ∈ H(X) and,
in fact, ∈ (H(X))−1.

g′β − g′α � 2πihαβ , whence η(f ) � KU ([h]) � γ . We have verified (a) in
Definition 15.3.

Now fix f ∈ (H(X))−1 with η(f ) � 0. Let F be holomorphic in a
neighborhood of X with F � f on X.

Since η(f ) � 0, ηU(f ) � 0 for some covering U . Choose a covering of X by
open subsets Wα of Cn, 1 ≤ α ≤ s, such that

W > U .(9)

∃Gα ∈ H(Wα) with F � eGα in Wα.(10)

|Gα(x) − Gα(y)| < π for x, y ∈ Wα.(11)

If Wα ∩ Wβ �� ∅, then Wα ∩ Wβ meets X.(12)

Let W � {Wα ∩ X|1 ≤ α ≤ s}. ηU(f ) � 0 , so ηW(f ) � 0. Hence ∃
integers kα such that if (Wα ∩X)∩ (Wβ ∩X) �� ∅, then in (Wα ∩X)∩ (Wβ ∩X),

(13)
1

2π
(Gβ − Gα) � kβ − kα.

Now fix α and β with Wα ∩ Wβ �� ∅. By (12), (Wα ∩ X) ∩ (Wβ ∩ X) �� ∅.
Hence, by (13),

Gβ − Gα � 2πkβ − 2πikα in Wα ∩ Wβ ∩ X.

Also, because of (10) and (11),

Gβ − Gα is constant in Wα ∩ Wβ.

Hence

Gβ − Gα � 2πikβ − 2πikα in Wα ∩ Wβ

or

Gβ − 2πikβ � gα − 2πikα in Wα ∩ Wβ.

Hence ∃G ∈ H(
⋃

α Wα) with G � Gα − 2πikα in Wα for each α. Then

F � eG in
⋃
α

Wα.
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Since G|x ∈ H(X), we have verified (b) in Definition 15.2. So the lemma is
proved.

Lemma 15.6. Let L be a finitely generated uniform algebra on a space X with
X � M(L). Then L is full [as subalgebra of C(X).]

Proof. By Exercise 7.3 it suffices to assume that L � P(X), X a compact
polynomially convex set in Cn.

By the Oka-Weil theorem H(X) ⊂ P(X). Fix γ ∈ H 1(X, Z). By the last
lemma, ∃f ∈ (H(X))−1 with η(f ) � γ . Then f ∈ (P (X))−1. Thus η maps
(P (X))−1 onto H 1(X, Z). Now fix f ∈ (P (X))−1 with η(f ) � 0, and fix ε > 0.
Choose a polynomial g with

||g − f || < ε < inf
x
|f |,

the norm being taken in P(X). Put h � (f − g)/f . Then ||h|| < 1 and g �
f (1 − h). Hence 1 − h ∈ exp C(X) (why?) and so η(1 − h) � 0. Hence

η(g) � η(f ) � 0.

But g ∈ (H(X))−1, whence by the last lemma ∃g◦ ∈ H(X) with g � eg◦ .
Also, 1 − h � ek for some k ∈ P(X), since ||h|| < 1. (Why?) Hence f �

eg◦−k , so f ∈ exp(P (X)). Thus P(X) is full.

To extend this result to a uniform algebra A that fails to be finitely generated, we
may express A as a “limit” of its finitely generated subalgebras. For this extension
we refer the reader to H. Royden, Function algebras, Bull. Am. Math. Soc. 69
(1963), 281-298. The following is proved there (Proposition 11):

Lemma 15.7. Let L be an arbitrary uniform algebra on a space X with X �
M(L). Then L is full.

Proof of Theorem 15.3. Put X � M and let L be the uniform closure of A on
X. Then X � M(L). By Lemma 15.7 L is full [as subalgebra of C(X)].

Let x ∈ A−1. Then x̄ ∈ (C(X))−1. Define a map � of A−1 into H 1(X, Z) by

�(x) � η(x̄).

We claim � is onto H 1(X, Z). Fix γ ∈ H 1(X, Z). Since L is full, ∃f ∈ L−1 with
η(f ) � γ . Choose ε > 0 with infx |f | > ε, and choose g ∈ A with |ĝ − f | < ε

on X. Then g ∈ A−1, ĝ � f (1 − (f − ĝ)/f ), and supx |(f − ĝ)/f | < 1.
Hence ∃b ∈ C(X) with 1 − (f − ĝ)/f � eb, and so η(ĝ) � η(f ) � γ . Thus
�(g) � γ , so � is onto, as claimed.

Next we claim that the kernel of � � exp A. Since one direction is clear, it
remains to show that x ∈ A−1 and �(x) � 0 implies that x ∈ exp A.

Then fix x ∈ A−1 with �(x) � η(ĝ) � 0. Since L is full and x̂ ∈ L−1, ∃F ∈ L
with x̂ � dF . Since F is in the uniform closure of A, eF is in the uniform closure
of functions eh, h ∈ A.
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Hence ∃g � eh with h ∈ A and

|x̂ − ĝ| <
1

3
inf
X
|x̂| on X.

Then

|ĝ| > 2
3 infX |x̂|, so

1

|ĝ| <
3

2
· 1

infx |x̂| .

Hence uniformly on X,

|1 − x̂ĝ−1| � |x̂ − ĝ| · |ĝ−1| <
1

2
.

It follows that for large n, ||(1 − xg−1)n||1/n < 3
4 , and so the series

−
∞∑
1

1

n
(1 − xg−1)n

converges in A to an element k. Since

log(1 − z) � −
∞∑
1

1

n
zn, |z| < 1,

k � log(xg−1), so that xg−1 � ek . Hence x � ek+h ∈ exp A. Hence the kernel
of � is exp A, as claimed.

� thus induces an isomorphism of A−1/ exp A onto H 1(X, Z), and Theorem
15.3 is proved.

Note. No analogous algebraic interpretation of the higher cohomology groups
Hp(M, Z), p > 1, has so far been obtained. However, one has the following
result:

Theorem 15.8. Let A be a Banach algebra with n generators. Then Hp(M, C) �
0, p ≥ n.

This result is due to A. Browder, Cohomology of maximal ideal spaces, Bull.
Am. Math. Soc. 67 (1961), 515-516. Observe that if A has n generators, then M
is homeomorphic to a subset of Cn and hence that the vanishing of Hp(M, C) is
obvious for p ≥ 2n.

NOTES
For the first theorem of the type studied in this section (Theorem 15.4) see S.

Eilenberg, Transformations continues en circonférence et la topologie du plan,
Fund. Math. 26 (1936) and N. Bruschlinsky, Stetige Abbildungen und Bettische
Gruppen der Dimensionszahl 1 und 3, Math. Ann. 109 (1934). Theorem 15.3 is due
to R. Arens, The group of invertible elements of a commutative Banach algebra,
Studia Math. 1 (1963), and H. Royden, Function algebras, Bull. Am. Math. Soc.
69 (1963). The proof we have given follows Royden’s paper.
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The ∂̄-Operator in Smoothly Bounded
Domains

Let � be a bounded open subset of Cn. We are essentially concerned with the
following problem: Given a form f of type (0, 1) on � with ∂̄f � 0, find a
function u on � such that ∂̄u � f .

In order to be able to use the properties of operators on Hilbert space in attacking
this question, we shall consider L2-spaces rather than (as before) spaces of smooth
functions.

L2(�) denotes the space of measurable functions u on � with
∫
�
|u|2dV < ∞,

where dV is Lebesgue measure.
L2

0,1(�) is the space of (0, 1)-forms

f �
n∑

j�1

fjdz̄j ,

where each fj ∈ L2(�). Put |f |2 � ∑n
j�1 |fj |2. Analogously, L2

0,2(�) is the
space of (0, 2)-forms

φ �
∑
i<j

φij dz̄i ∧ dz̄j ,

where each φij ∈ L2(�).
We shall define an operator T0 from a subspace of L2(�) to L2

0,1(�) such that
T0 coincides with ∂̄ on functions that are smooth on �̄.

Definition 16.1. Let u ∈ L2(�). Fix k ∈ L2(�) and fix j, 1 ≤ j ≤ n. We say

∂u

∂z̄j

� k

if for all g ∈ C∞0 (�) we have

−
∫

�

u
∂g

az̄j

dV �
∫

�

gkdV .

Note. Thus k � ∂u/∂z̄j in the sense of the theory of distributions. If u is smooth
on �̄, then k � ∂u/∂z̄j , in the usual sense.

120
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Definition 16.2.

DT0 �
{

u ∈ L2(�)| for each j, 1 ≤ j ≤ n∃kj ∈ l2(�) with
∂u

∂z̄j

� kj

}
.

For u ∈ DT0 ,

T0u �
n∑

j�1

∂u

∂z̄j

dz̄j ∈ L2
0,1(�).

Fix
∑n

j�1 fjdz̄j with each fj ∈ L2(�). ∂fj/∂z̄k and ∂fk/∂z̄j are defined as
distributions.

Definition 16.3.

DS0 �
⎧⎨⎩f �

n∑
j�1

fjdz̄j ∈ L2
0,1 | |

∂fj

∂z̄k

− ∂fk

∂z̄j

∈ L2(�), all j, k

⎫⎬⎭ .

For f ∈ DS0 ,

S0f �
∑
j<k

(
∂fj

∂z̄k

− ∂fk

∂z̄j

)
dz̄k ∧ dz̄j ∈ L2

0,2(�).

Note that S0 coincides with ∂̄ on smooth forms f . Note also that if u ∈ DT0 , then
T0u ∈ DS0 , and

(1) S0 · T0 � 0.

Now let � be defined by the inequality ρ < 0, where ρ is a smooth real-valued
function in some neighborhood of �. Assume that the gradient of ρ �� 0 on ∂�.
We impose on ρ the following condition:

(2) For all z ∈ ∂�, if (ξ1, . . . , ξn) ∈ Cn and
∑

j

∂ρ/∂zj (z)ξj � 0,

then ∑
j,k

∂2ρ

∂zj ∂z̄k

(z)ξj ξ̄k ≥ 0.

Theorem 16.1. Let ρ satisfy condition (2). For every g ∈ L2
0,1(�) with S0g �

0, ∃u ∈ DT0 such that
(a) T0u � g, and
(b)

∫
�
|u|2dV ≤ eR2 · ∫

�
|g|2dV,

if � ⊂ {z ∈ Cn
∣∣|z| ≤ R}.

We need some general results about linear operators on Hilbert space.
Let H1 and H2 be Hilbert spaces, and let A be a linear transformation from a

dense subspace DA of H1 into H2.
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Definition 16.4. A is closed if for each sequence gn ∈ DA,

gn → g and Agn → h

implies that g ∈ DA and Ag � h.

Definition 16.5.

DA∗ � {x ∈ H2|∃x∗ ∈ H1 with (Au, x) � (u, x∗) for all u ∈ DA.}
Since DA is dense, x∗ is unique if it exists. For x ∈ D∗

A, define A∗x � x∗. A∗ is
called the adjoint of A. DA∗ is a linear space and A∗ is a linear transformation of
DA∗ → H1.

Proposition. If A is closed, then DA∗ is dense in H2. Moreover, if β ∈ H1 and if
for some constant δ

|(A∗f, β)| ≤ δ||f ||
for all f ∈ DA∗ , then β ∈ DA.

For the proof of this proposition and related matters the reader may consult, e.g.,
F. Riesz and B. Sz.-Nagy, Lecons d’analyse fonctionelle, Budapest, 1953, Chap. 8.

Consider now three Hilbert spaces H1, H2, and H3 and densely defined and
closed linear operators

T : H1 → H2 and S : H2 → H3.

Assume that

(3) S · T � 0;
i.e., for f ∈ DT , Tf ∈ DS and S(Tf ) � 0.

We write (u, v)j for the inner product of u and v in Hj, j � 1, 2, 3, and
similarly ||u||j for the norm in Hj .

Theorem 16.2. Assume ∃ a constant c such that for all f ∈ DT ∗ ∩ DS ,

(∗) ||T ∗f ||21 + ||Sf ||23 ≥ c2||f ||22.
Then if g ∈ H2 with Sg � 0, ∃u ∈ DT such that

(4) T u � g

and

(5) ||u||1 ≤ 1

c
||g||2.

Proof. Put NS � {h ∈ DS |Sh � 0}. NS is a closed subspace of H2. (Why?)
We claim that if g ∈ NS , then

(6) |(g, f )2| ≤ 1

c
||T ∗f ||1 · ||g||2,
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for all f ∈ DT

To show this, fix f ∈ DT ∗ .

f � f ′ + f ′′, where f ′ ⊥ NS, f ′′ ∈ NS.

By (*) we have ||T ∗f ′′||1 ≥ c||f ′′||2. Then

|(f, g)2| � |(f ′′, g)2| ≤ ||g||2 · ||f ′′||2 ≤ 1

c
||g||2 · ||T ∗f ′′||1.

But T ∗f ′ � 0, for if h ∈ DT , (T h, f ′) � (h, T ∗f ′) and the left-hand side
� 0, because f ′ ⊥ NS while S(T h) � 0 by (3). Hence T ∗f � T ∗f ′′, and so (6)
holds, as claimed.

We now define a linear functional L on the range of T ∗ in H1 by

L(T ∗f ) � (f, g)2, f ∈ DT ∗ , g fixed in NS.

By (6), then,

|L(T ∗f )| ≤ 1

c
||g||2||T ∗f ||1.

It follows that L is well defined on the range of T ∗ and that ||L|| ≤ (1/c)||g||2.
Hence ∃u ∈ H1 representing L; i.e.,

L(T ∗f ) � (T ∗f, u)1,

and ||u||1 � ||L||. It follows by the proposition that u ∈ DT , and

(f, g)2 � (T ∗f, u)1 � (f, T u)2,

all f ∈ DT ∗ .
Hence g � T u, and ||u||1 ≤ (1/c)||g||2. Thus (4) and (5) are established.

It is now our task to verify hypothesis (*) for our operators T0 and S0 in order to
apply Theorem 16.2 to the proof of Theorem 16.1. This means that we must find
a lower bound for ||T ∗0 f ||2 + ||S0f ||2. For this purpose it is advantageous to use
not the usual inner product on L2(�) but an equivalent inner product based on a
weight function.

Let φ be a smooth positive function defined in a neighborhood of �̄. Put H1 �
L2(�) with the inner product

(f, g)1 �
∫

�

f ḡe−φdV .

Similarly, let H2 be the Hilbert space obtained by imposing on L2
0,1(�) the inner

product ⎛⎝ n∑
j�1

fjdz̄j ,

n∑
j�1

gjdz̄j

⎞⎠
2

�
∫

�

⎛⎝ n∑
j�1

fj ḡj

⎞⎠ e−φdV .
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Finally define H3 in an analogous way by putting a new inner product on L2
0,2(�).

Then

T0 : H1 → H2, S0 : H2 → H3.

It is easy to verify that DT0 , DS0 are dense subspaces of H1 and H2, respectively,
and that T0 and S0 are closed operators. Our basic result is the following: Define
C1

0,1(�̄) � {f � ∑n
j�1 fjdz̄j | each fj ∈ C1 in a neighborhood of �̄.}

Theorem 16.3. Fix f in C1
0,1(�̄). Let f ∈ DT ∗0 ∩ DS0 . Then

||T ∗0 f ||21 + ||S0f ||23 �
∑
j,k

∫
�

fj f̄k

∂2φ

∂zj∂z̄k

e−φdV(7)

+
∑
j,k

∫
�

∣∣∣∣∣ ∂fk

∂z̄j

∣∣∣∣∣
2

e−φdV +
∑
j,k

∫
∂�

fj f̄k

∂2ρ

∂zj ∂z̄k

e−φdS,

dS denoting the element of surface area on ∂�.

Suppose for the moment that Theorem 16.3 has been established. Put

φ(z) �
n∑

j�1

|zj |2 � |z|2.

Then ∂2φ/∂zj ∂z̄k � 0 if j �� k,� 1 if j � k. The first integral on the right in
(7) is now

n∑
j�1

∫
�

|fj |2e−φdV � ||f ||22.

The second integral is evidently ≥ 0. Now∑
j,k

∂2ρ

∂zj ∂z̄k

fj f̄k ≥ 0 if
∑

j

∂ρ

∂zj

fj � 0 on ∂�,

by (2). Hence (7) gives

(8) ||T ∗0 f ||21 + ||S0f ||23 ≥ ||f ||22,
if

(9)
∑

j

∂ρ

∂zj

fj � 0 on ∂�.

We shall show below that (9) holds whenever f ∈ DT ∗0 ∩ DS0 and f is C1 in a
neighborhood of �̄. Thus Theorem 16.3 implies that (8) hold for each smooth f

in DT ∗0 ∩ DS0 .
We now quote a result from the theory of partial differential operators which

seems plausible and is rather technical. We refer for its proof to [39], Proposition
2.1.1.
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Proposition. Let f ∈ DT ∗0 ∩ DS0 (with no smoothness assumptions). Then ∃a
sequence {fn} with fn ∈ DT ∗0 ∩ DS0 and fn in C1 in a neighborhood of �̄ such
that as n → ∞,

||fn − f ||2 → 0, ||T ∗0 fn − T ∗0 f ||1 → 0, ||S0fn − S0f ||3 → 0.

Since (8) holds when f is smooth, the proposition gives that (8) holds for all
f ∈ DT ∗0 ∩ DS0 .

Theorem 16.2 now applies to T0 and S0 with c � 1. It follows from (4) and (5)
that if g � ∑n

j�1 gjdz̄j ∈ H2, and if S0g � 0, then ∃u in H1 with T0u � g and
||u||1 ≤ ||g||2. Thus ∫

�

|u|2e−φdV ≤
∫

�

|g|2e−φdV .

Now if � ⊂ {z ∈ Cn||z| ≤ R}, then∫
�

|u|2dV �
∫

�

|u|2e−φ · eφdV

≤
∫

�

|u|2e−φ · eR2
dV ≤ eR2

∫
�

|g|2e−φdV

≤ eR2
∫

�

|g|2dV,

and so (b) holds. Thus Theorem 16.1 follows form Theorem 16.3.
From now on ρ is assumed to satisfy (2) and � is defined by ρ < 0. We also

shall write T and S instead of T0 and S0. Let us now begin the proof of (7).

Lemma 16.4. Let f � ∑n
j�1 fjdz̄j ∈ C1

0,1(�̄). If f ∈ DT ∗ , then

(9)

n∑
j�1

fj

∂ρ

∂zj

� 0 on ∂�,

and

(10) T ∗f � −
n∑

j�1

eφ ∂

∂zj

(fj e
−φ).

Proof. Let h be a function in C2 in a neighborhood of �̄ and h > 0. Put R � h ·ρ.

Fix z ∈ ∂� and choose (ξ1, . . . , ξn) satisfying

(11)

n∑
j�1

∂R

∂zj

(z)ξj � 0.
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Then at z,

∂2R

∂zj∂z̄k

� ∂

∂z̄k

(
h

∂ρ

∂zj

+ ∂h

∂zj

ρ

)

� ∂h

∂z̄k

∂ρ

∂zj

+ h
∂2ρ

∂zj ∂z̄k

+ ∂2h

∂zj∂z̄k

ρ + ∂h

∂zj

∂ρ

∂z̄k

.

Hence ∑
j,k

∂2R

∂zj∂z̄k

ξj ξ̄k �
(∑

k

∂h

∂z̄k

ξ̄k

)⎛⎝∑
j

∂ρ

∂zj

ξj

⎞⎠
+ h

∑
j,k

∂2ρ

∂zj ∂z̄k

ξj ξ̄k + ρ
∑ ∂2h

∂zj∂z̄k

ξj ξ̄k

+
⎛⎝∑

j

∂h

∂zj

ξj

⎞⎠(∑
k

∂ρ

∂z̄k

ξ̄k

)
.

Now (11) implies that
∑

j (∂ρ/∂zj )ξj � 0 on ∂�. Also ∂ρ/∂zk � ∂ρ/∂z̄k ,
whence

∑
k(∂ρ/∂z̄k)ξ̄k � 0 on ∂�. Since ρ � 0 on ∂� and h > 0 there, (2)

implies that

(12) On ∂�,
∑
j,k

∂2R

∂zj∂z̄k

ξj ξ̄k ≥ 0 if
∑

j

∂R

∂zj

ξj � 0.

Now choose a function h as above with h � 1/|grad ρ| in a neighborhood of
∂�. Then R � h · ρ � ρ/| grad ρ| there, whence | grad R| � 1 on ∂�. Also �

is defined by R < 0 and (12) holds.
The upshot is that we may without loss of generality suppose that | grad ρ| � 1

on ∂�. It then holds that grad ρ is the outer unit normal to ∂� at each point of ∂�.
The divergence theorem now gives for every smooth function v on �̄,

(13)

∫
�

∂v

∂xj

dV �
∫

∂�

v
∂ρ

∂xj

dS

for all real coordinates x1, . . . , x2n in Cn. Hence for 1 ≤ j ≤ n,

(14)

∫
�

∂v

∂z̄j

dV �
∫

∂�

v
∂ρ

∂z̄j

dS.

Now fix f � ∑n
1 fjdz̄j ∈ C1

0,1(�̄), and fix u ∈ C1(�̄). Then with ( , )j
denoting the inner product in Hj as defined above,

(T u, f )2 �
⎛⎝∑

j

∂u

∂z̄j

dz̄j ,
∑

j

fjdz̄j

⎞⎠
2

�
∫

�

⎛⎝∑
j

∂u

∂z̄j

f̄j

⎞⎠ e−φdV .
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Fix j . Then∫
�

∂u

∂z̄j

f̄j e
−φdV

�
∫

�

∂

∂z̄j

(uf̄j e
−φ)dV −

∫
�

u
∂

∂z̄j

(f̄j e
−φ)dV

�
∫

∂�

uf̄j e
−φ ∂ρ

∂z̄j

dS −
∫

�

u
∂

∂z̄j

(f̄j e
−φ)dV,

where we have used (14). Hence we have

(T u, f )2 � −
∫

�

u

⎡⎣∑
j

∂

∂z̄j

(f̄j e
−φ)

⎤⎦ dV

+
∫

∂�

u

⎛⎝∑
j

f̄j

∂ρ

∂z̄j

⎞⎠ e−φdS.

Now if f ∈ DT ∗ , it follows that we also have

(T u, f )2 �
∫

�

uT ∗f e−φdV .

Since the last two equations hold for all u in C1(�̄), we conclude that

(15)
∑

j

f̄j

∂ρ

∂z̄j

� 0 on ∂�,

which yields (9), and that

T ∗f e−φ � −
∑ ∂

∂z̄j

(f̄j e
−φ)

� −
∑

j

∂

∂zj

(fj e−φ), whence (10).

Define an operator δj by

δjw � eφ ∂

∂zj

(we−φ).

Fix f ∈ C1
0,1(�̄) ∩ DT ∗ . By (10), T ∗f � −∑j δjfj , and so

(16) ||T ∗f ||21 �
∑
j,k

∫
�

δjfj · δkfke
−φdV .

Now fix A, B ∈ C1(�̄). Applying (14) with v � AB̄e−φ and j � ν gives∫
�

∂

∂z̄ν

(AB̄e−φ)dV �
∫

∂�

AB̄e−φ ∂ρ

∂z̄ν

dS.



128 16. The ∂̄-Operator in Smoothly Bounded Domains

Hence ∫
�

∂A

∂z̄ν

B̄e−φdV � −
∫

�

A
∂

∂z̄ν

(B̄e−φ)dV +
∫

∂�

AB̄e−φ ∂ρ

∂z̄ν

dS

� −
∫

�

AδνBe−φdV +
∫

∂�

AB̄
∂ρ

∂z̄ν

e−φdS.

Writing
∫
�

( ) for f ( )e−φdV and similarly for ∂�, we thus have

(17)

∫
�

∂A

∂z̄v

B � −
∫

�

AδvB +
∫

∂�

AB̄
∂ρ

∂z̄v

.

Putting A � δkw, B � v, and ν � j in (17) gives

(18)

∫
�

∂

∂z̄j

(δkw) · v̄ � −
∫

�

δkw · δjv +
∫

∂�

δkw · v̄ ∂ρ

∂z̄j

.

Direct computation gives for all u(
δk

∂

∂z̄j

− ∂

∂z̄j

δk

)
(u) � ∂2φ

∂z̄j ∂zk

· u,

so

− ∂

∂z̄j

(δkw) � ∂2φ

∂z̄j ∂zk

w − δk

(
∂w

∂z̄j

)
.

Hence

(19)

∫
�

− ∂

∂z̄j

(δkw) · v̄ �
∫

�

∂2φ

∂z̄j ∂zk

wv̄ −
∫

�

δk

(
∂w

∂z̄j

)
v̄.

Putting A � v, B � ∂w/∂z̄j , and ν � k in (17), we get

(20)

∫
�

∂v

∂z̄k

∂w

∂z̄j

� −
∫

�

vδk

(
∂w

∂z̄j

)
+
∫

∂�

v
∂w

∂z̄j

∂ρ

∂z̄k

,

which combined with the complex conjugate of (19) gives∫
�

− ∂

∂z̄j

(δkw)v̄ �
∫

�

∂2φ

∂zj∂z̄k

w̄v −
∫

�

vδk

(
∂w

∂z̄j

)
(21)

�
∫

�

∂2φ

∂zj∂z̄k

w̄v −
∫

∂�

v
∂w

∂z̄j

∂ρ

∂z̄k

+
∫

�

∂v

∂z̄k

∂w

∂z̄j

.

Combining (21) with the complex conjugate of (18) gives∫
�

δjv · δkw �
∫

�

∂2φ

∂zj∂z̄k

w̄v +
∫

�

∂v

∂z̄k

∂w

∂z̄j

(22)

−
∫

∂�

v
∂w

∂z̄j

∂ρ

∂z̄k

+
∫

∂�

δkw · v ∂ρ

∂zj

.
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By (16),

||T ∗f ||21 �
∑
j,k

∫
�

δjfj δkfk,

so

||T ∗f ||21 �
∫

�

∑
j,k

∂2φ

∂zj∂z̄k

fj f̄k +
∫

�

∑
j,k

∂fj

∂z̄k

∂fk

∂z̄j

(23)

−
∫

∂�

∑
j,k

fj

∂fk

∂z̄j

∂ρ

∂z̄k

+
∫

∂�

∑
j,k

δkfk · fj

∂ρ

∂zj

.

Assertion.

−
∑
j,k

fj

∂fk

∂z̄j

∂ρ

∂z̄k

�
∑
j,k

fj f̄k

∂2ρ

∂zj ∂z̄k

on ∂�.

For, by (9), ∑
k

fk

∂ρ

∂zk

� 0 on ∂�.

Hence the gradient of the function
∑

k fk(∂ρ/∂zk) is a scalar multiple of grad ρ.
Hence ∃ function λ on ∂� with

∂

∂z̄j

(∑
k

fk

∂ρ

∂zk

)
� λ

∂ρ

∂z̄k

, j � 1, 2, . . . , n,

or ∑
k

∂fk

∂z̄j

∂ρ

∂zk

+
∑

k

fk

∂2ρ

∂z̄j ∂zk

� λ
∂ρ

∂z̄j

.

Multiplying by f̄j and summing over j gives∑
j,k

f̄j

∂fk

∂z̄j

∂ρ

∂zk

+
∑
j,k

f̄j fk

∂2ρ

∂z̄j ∂zk

� λ
∑

j

f̄j

∂ρ

∂z̄j

� λ
∑

j

fj

∂ρ

∂zj

� 0.

Complex conjugate now gives the assertion. The last term on the right in (23)

�
∫

∂�

(∑
k

δkfk

)⎛⎝∑
j

fj

∂ρ

∂zj

⎞⎠ � 0, by (9).

Equation (23) and the assertion now yield

Lemma 16.5. Fix f ∈ DT ∗ ∩ C1
0,1(�̄). Then

(24)

||T ∗f ||21 �
∫

�

∑
j,k

∂2φ

∂zj∂z̄k

fj f̄k +
∫

�

∑
j,k

∂fj

∂z̄k

∂fk

∂z̄j

+
∫

∂�

∑
j,k

fj f̄k

∂2ρ

∂zj ∂z̄k

.
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Lemma 16.6. Fix f ∈ DS ∩ C1
0,1(�̄). Then

(25) ||Sf ||23 �
∫

�

∑
j,k

∣∣∣∣∣ ∂fk

∂z̄j

∣∣∣∣∣
2

−
∫

�

∑
j,k

∂fj

∂z̄k

∂fk

∂z̄j

.

Proof. Since f ∈ C1
0,1(�̄). Then

Sf � ∂̄f �
∑

α

⎛⎝∑
β

∂fα

∂z̄β

dz̄β

⎞⎠ ∧ dz̄α

�
∑
α<β

(
∂fβ

∂z̄α

− ∂fα

∂z̄β

)
dz̄α ∧ dz̄β .

Hence

||Sf ||23 �
∫

�

∑
α<β

(
∂fβ

∂z̄α

− ∂fα

∂z̄β

) (
∂fβ

∂z̄α

− ∂fα

∂z̄β

)

�
∫

�

∑
α<β

∣∣∣∣ ∂fβ

∂z̄α

∣∣∣∣2 + ∫
�

∑
α<β

∣∣∣∣∣ ∂fα

∂z̄β

∣∣∣∣∣
2

−
∫

�

∑
α<β

∂fβ

∂z̄α

∂fα

∂z̄β

−
∫

�

∑
α<β

∂fα

∂z̄β

∂fβ

∂z̄α

,

Which coincides with (25)

Proof of Theorem 16.3. Adding equations (24) and (25) gives (7).

Note. The proof of Theorem 16.1 is now complete.

In the rest of this section we shall establish some regularity properties of
solutions of the equation ∂̄u � f , given information on f .

Lemma 16.7. Put B � {z ∈ Cn||z| < 1}. There exists a constant K such that
for w ∈ C∞(Cn),

(26) |w(0)| ≤ K

{
||w||L2(B) + sup

B

(
max

j

∣∣∣∣∣ ∂w

∂z̄j

∣∣∣∣∣
)}

.

Proof. It is a fact form classical potential theory that if f ∈ C∞0 (RN), then

(27) f (y) � C

∫
RN

�F
dx

|x − y|N−2
,

where C is a constant depending on N and dx is Lebesgue measure on RN .
Now let χ ∈ C∞(Cn), supp χ ⊂ B, and χ � 1 in |z| < 1

2 . Then by (27) with
y � 0 and f � χw,

w(0) � (χw)(0) �
∫

Cn

�(χw)E(x)dx,
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where we put E(x) � C/|x|2n−2. Thus

w(0) � I1 + 2I2 + I3,

where

I1 �
∫

�χ · wE dx,

� I3

∫
�w · χE dx,

and

I2 �
∫

(grad χ, grad w)E dx.

With xj the real coordinates in Cn, we have∫
χxi

wxi
E dx �

∫
wxi

(χxi
E)dx � −

∫
w(χxi

E)xi
dx,

so I2 � −
∫

w
∑

i (χxi
E)xi

dx.
Since χxi

and �χ vanish in a neighborhood of 0 and supp χ ⊂ B, we have,
with K a constant,

|I1| ≤ K||w||L2(B), |I2| ≤ K||w||L2(B).

Also,

I3 �
∫

4

⎛⎝∑
j

∂2w

∂zj∂z̄j

⎞⎠ χE dx

� 4
∑

j

∫
∂

∂zj

(
∂w

∂z̄j

)
χE dx � −4

∑
j

∫
∂w

∂z̄j

∂

∂zj

(χE) dx.

Since ∂E/∂xj ∈ L1 locally, we have

|I3| ≤ K sup
B

(
max

j

∣∣∣∣∣ ∂w

∂z̄j

∣∣∣∣∣
)

.

Equation (26) follows.

Choose χ ∈ C∞(Cn), χ ≥ 0, χ(6) � 0 for |y| > 1, and
∫

χ(y)dy � 1,
where we write dy for Lebesgue measure on Cn. Put χε(y) � (1/ε2n)χ(y/ε).
then for every ε > 0,

χε ∈ C∞(Cn), χε(y) � 0 for |y| > ε,∫
χε(y)dy � 1.
Let now u ∈ L2(Cn) and put

uε(x) �
∫

u(x − y)χε(y)dy.
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Note that this integral converges absolutely for all x. We assert that

uε ∈ C∞(Cn).(28)

uε → u in L2(Cn), as ε → 0.(29)

If u is continuous in a neighborhood of a closed ball,(30)

then uε → u uniformly on the ball.

The proofs of (28), (29), and (30) are left to the reader.

Lemma 16.8. Let B � {z ∈ Cn
∣∣|z| < 1}. Let u ∈ L2(B). Assume that for each

j , ∂u/∂z̄j , defined as distribution on B, is continuous. (Recall Definition 16.1.)
Then u is continuous and (26) holds with w � u.

Proof. Fix x ∈ Cn and r > 0 and put B(x, r) � {z ∈ Cn
∣∣|z− x| < r}. A linear

change of variable converts (26) into

(31) |w(x)| ≤ K

{
r−n||w||L2(B(x,r)) + r sup

B(x,r)

(
max

j

∣∣∣∣∣ ∂w

∂z̄j

∣∣∣∣∣
)}

.

Extend u to all of Cn by putting u � 0 outside B. Then u ∈ L2(Cn). For each
ρ > 0, put Bρ � {z

∣∣|z| < ρ}. Fix R < 1 and fix r < 1 − R. For each x ∈ BR ,
then, B(x, r) ⊂ BR+r � B ′.

Fix x ∈ BR . If ε, ε′ > 0, uε − uε′ ∈ C∞(Cn). Equation (31) together with
B(x, r) ⊂ B ′ gives

|uε(x) − uε′(x)|

≤ K

{
r−n||uε − uε′ ||L2(B ′′) + r sup

B ′

(
max

j

∣∣∣∣∣ ∂uε

∂z̄j

− ∂uε′

∂z̄j

∣∣∣∣∣
)}

.

Now, by (29), ||uε − uε′ ||L2(B ′) → 0 as ε, ε′ → 0. Also, it is easy to see that
∂uε/∂z̄j − ∂uε′/∂z̄j → 0 uniformly on B ′ as ε, ε′ → 0. Hence uε(x)−uε′(x) →
0 uniformly for x ∈ BR . Hence U � limε→0 uε is continuous in BR . Also, by
(29), uε → u in L2(B). Hence U � u and so u is continuous in BR . It follows
that u is continuous in B, as claimed.

Fix ε > 0 and ρ < 1. Then, by (31),

|uε(0)| ≤ K

{
ρ−n||uε||L2(Bρ) + ρ sup

Bρ

(
max

j
| ∂uε

∂z̄j

|
)}

.

As ε → 0, uε(0) → u(0), ||uε||L2(Bρ) → ||u||L2(Bρ), and ∂uε/∂z̄j → ∂u/∂z̄j

uniformly on Bρ for each j . Hence

|u(0)| ≤ K

{
ρ−n||u||L2(Bρ) + ρ sup

Bρ

(
max

j
| ∂u

∂z̄j

|
)}

.

Letting ρ → 1, we get that (26) holds with w � u.
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Lemma 16.9. Let � be a bounded domain in Cn and u ∈ L2(�). Assume that
for all j ,

(32)
∂u

∂z̄j

� 0 as a distribution on �.

Then u ∈ H(�).

Proof. Define u � 0 outside �. Then u ∈ L2(Cn). By a change of variable, we
get

uε(z) � inf u(ζ )χε(z − ζ )dζ.

Fix j . Note that (∂{χε(z − ζ )}/∂z̄j ) � −(∂{χε(z − ζ )}/∂ζ̄j ). Hence

∂uε

∂z̄j

(z) �
∫

u(ζ )
∂

∂z̄j

(χε(1 − ζ ))dζ � −
∫

u(ζ )
∂

∂ζ̄j

(χε(z − ζ ))dζ.

Fix z ∈ � and choose ε < dist(z, ∂�). Put g(ζ ) � χε(z − ζ ). Then supp g is
a compact subset of �. By (32),∫

u(ζ )
∂g

∂ζ̄j

(ζ )dζ � 0.

Thus ∂uε(z)/∂z̄j � 0. Hence uε ∈ H(�).
Fix a closed ball B ′ ⊂ �. By (32), ∂u/∂z̄j is continuous in a neighborhood of

B ′ and so, by (30), uε → u uniformly in B ′ as ε → 0. Hence u ∈ H(B̊ ′). So
u ∈ H(�).

NOTES
The fundamental result of this section, Theorem 16.1, is due to L. Hörmander.

It is proved in considerably greater generality in Hörmander’s paper, L2 estimates
and existence theorems for the ∂̄-operator. We have followed the proof in that paper,
restricting ourselves to (0, 1)-forms. The method of proving existence theorems
for the ∂̄-operator by means of L2 estimates was developed by C. B. Morrey,
The analytic embedding of abstract real analytic manifolds, Ann. Math. (2), 68
(1958), and J. J. Kohn, Harmonic integrals on strongly pseudo-convex manifolds,
I and II, Ann. Math. (2), 78 (1963) and Ann. Math. (2), 79 (1964). These methods
have proved to be powerful tools in many questions concerning analytic functions
of several complex variables. For such applications the reader may consult, e.g.,
Hörmander’s book An Introduction to Complex Analysis in Several Variables [Hö2,
Chaps. IV and V].

In section 17 we shall apply Theorem 16.1 to a certain approximation problem.



17

Manifolds Without Complex Tangents

Let X be a compact set in Cn which lies on a smooth k-dimensional (real) subman-
ifold

∑
of Cn. Assume that X is polynomially convex. Under what conditions on∑

can we conclude that P(X) � C(X)?
If
∑

is a complex-analytic submanifold of Cn, it does not have this property. On
the other hand, the real subspace

∑
R of Cn does have this property. What feature

of the geometry of
∑

is involved?
Now fix a k-dimensional smooth submanifold

∑
of an open set in Cn, and

consider a point x ∈ ∑. Denote by Tx the tangent space to
∑

at x, viewed as a
real-linear subspace of Cn.

Definition 17.1. A complex tangent to
∑

at x is a complex line, i.e., a complex-
linear subspace of Cn of complex dimension 1, contained in Tx .

Note that if
∑

is complex-analytic, then it has one or more complex tangents
at every point. whereas

∑
R has no complex tangent whatever.

Definition 17.2. Let � be an open set in Cn and let
∑

be a closed subset of �.∑
is called a k-dimensional submanifold of � of class e if for each x0 in

∑
we

can find a neighborhood U of x0 in Cn with the following property: There exist
real-valued functions ρ1, ρ2, . . . , ρ2n−k in Ce(U) such that∑

∩U � {x ∈ U |ρj (x) � 0, j � 1, 2, . . . , 2n − k},
and such that the matrix (∂ρj/∂xv), where x1, x2, . . . , x2n are the real coordinates
in Cn, has rank 2n − k.

Exercise 17.1. Let
∑

, ρ1, . . . , ρ2n−k , be as above and fix x0 ∈ ∑. If there exists
a tangent vector ξ to

∑
at x0 of the form

ξ �
n∑

j�1

cj

∂

∂z̄j

such that ξ(ρv) � 0, all v, then
∑

has a complex tangent at x0.

134
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Theorem 17.1. Let
∑

be a k-dimensional sufficiently smooth submanifold of an
open set in Cn. Assume that

∑
has no complex tangents.

Let X be a compact polynomially convex subset of
∑

. Then P(X) � C(X).

Note 1. “Sufficiently smooth” will mean that
∑

is of class e with e > (k/2)+ 1.
It is possible that class 1 would be enough to give the conclusion.

Note 2. After proving Theorem 17.1, we shall use it in Theorem 17.5 to solve a
certain perturbation problem.

Sketch of Proof. To show that P(X) � C(X) we need only show that P(X)

contains the restriction to every X of every u ∈ C∞(Cn), since such functions are
dense in C(X).

Fix u ∈ C∞(Cn). By the Oka-Weil theorem it suffices to approximate u uni-
formly on X by functions defined and holomorphic in some neighborhood of X in
Cn. To this end, we shall do the following:

Step 1. Construct for each ε > 0 a certain neighborhood ωε of X in Cn to which
Theorem 16.1 is applicable.

Step 2. Find an extension Uε of u|X to ωε such that ∂̄Uε is “small” in ωε.

Step 3. Using the results of Section 16, find a function Vε in ωε such that ∂̄Vε �
∂̄Uε in ωε and supX |Vε| → 0 as ε → 0,

Once step 3 is done, we write

Uε � (Uε − Vε) + Vε in ωε.

Then Uε − Vε is holomorphic in ωε, since ∂̄(Uε − Vε) � 0 by step 3. Since
supX |Vε| → 0, this holomorphic function approximates u � Uε as closely as we
please on X.

Definition 17.3. Let � be an open set in Cn and fix F ∈ C2(�). F is plurisub-
harmonic (p.s.) in � if

(1)

n∑
j,k�1

∂2F

∂zj∂z̄k

(z)ξj ξ̄k ≥ 0

if z ∈ � and (ξ1, . . . , ξn) ∈ Cn.
F is strongly p.s. in � if the inequality in (1) is strict, except when (ξ1, . . . , ξn) �

0.

Lemma 17.2. Let
∑

be a submanifold of an open set in Cn of class 2 such that
∑

has no complex tangents. Let d be the distance function to
∑

; i.e., if x ∈ Cn, d(x)

is the distance from x to
∑

. Then ∃ a neighborhood ω of
∑

such that d2 ∈ C2(ω)

and d2 is strongly p.s. in ω.
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Exercise 17.2. Prove the smoothness assertion; i.e., show that d2 is in C2 in some
neighborhood of

∑
.

Proof of Lemma 17.2. Let U be a neighborhood of
∑

such that d2 ∈ C2(U).
Fix z0 ∈

∑
. We assert that

(2)

n∑
j,k�1

∂2(d2)

∂zj ∂z̄k

(z0)ξj ξ̄k > 0

for all ξ � (ξ1, . . . , ξn) with ξ �� 0.
Without loss of generality z0 � 0. Let T be the tangent space to

∑
at 0 and put

d(z, T ) � distance from z to T .

*Exercise 17.3.

(3) d2(z) � d2(z, T ) + o(|z|2).

Also

(4) d2(z, T ) � H(z) + Re A(z),

where H(z) � ∑n
j,k�1 hjkzj z̄k is hermitean-symmetric and A is a homogeneous

quadratic polynomial in z.
Equations (3) and (4) imply that

(5)

n∑
j,k�1

∂2(d2)

∂zj ∂z̄k

(0)zj z̄k � H(z).

Now

d2(z, T ) + d2(iz, T ) � 2H(z).

If z �� 0, either z of iz �∈ T , since by hypothesis T contains no complex line.
Hence H(z) > 0. Because of (5), this shows that (2) holds.

It follows by continuity from (2) that
n∑

j,k�1

∂2(d2)

∂zj ∂z̄k

(z)ξj ξ̄k > 0

for all z in some neighborhood of
∑

and ξ �∈ 0.

From now on until the end of the proof of Theorem 17.1 let
∑

and X be as in
that theorem and let d be as in Lemma 17.2.

Lemma 17.3. There exists an open set ωε in Cn containing X such that ωε is
bounded and

If z ∈ ωε, then d(z) < ε.(6)

If z0 ∈ X and |z − z0| < ε/2, then z ∈ ωε.(7)
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∃ a function uε in C∞ in some neighborhood of ω̄ε such that ωε(8)

is defined by

uε(z) < 0.

uε � 0 on ∂ωε and grad uε �� 0 on ∂ωε.(9)

uε is p.s. in a neighborhood of ω̄ε.(10)

Proof. Choose ω by Lemma 17.2 so that d2 is strongly p.s. in ω. Next choose
β ∈ C∞0 (ω) with β � 1 in a neighborhood of X and 0 ≤ β ≤ 1. Let � be an
open set with compact closure such that

supp β ⊂ � ⊂ �̄ ⊂ ω.

Since d2 is strongly p.s. in ω, we can choose ε > 0 such that

φ � d2 − ε2β

is p.s. in �. Further, choose ε so small that β(z) � 1 for each z whose distance
from X < ε. Next, choose an open set �1 with

supp β ⊂ �1 ⊂ �̄1 ⊂ �.

Assertion. ∃ ∈ C∞(Cn) such that u is p.s. in �1 and

(11) |u − φ1 <
ε2

4
on �1.

We proceed as in the last part of Section 16. Choose χ ∈ C∞(CN), χ ≥
0, χ(y) � 0 for |y| > 1 and

∫
χ(y)dy � 1. Put χδ(y) � (1/δ2n)χ(y/δ) and put

φδ(x) �
∫

φ(x − y)χδ(y)dy,

where we have defined φ � 0 outside �.
Then, as in Section 16, if δ is small,

φδ ∈ C∞(Cn).(12)

φδ → φ uniformly on �1 as δ → 0.(13)

Also for each (ξ1, . . . , ξn) ∈ Cn, z ∈ �1:

∑
j,k

∂2φδ

∂zj ∂z̄k

(z)ξj ξ̄k �
∫ ⎧⎨⎩∑

j,k

∂2φ

∂zj∂z̄k

(z − y)ξj ξ̄k

⎫⎬⎭ χδ(y)dy ≥ 0,

since φ is p.s. in �. Hence

(14) φδis p.s. in �1.

Choose δ such that |φ − φδ| < ε2/4 on �1 and put u � φω. Thus the assertion
holds.
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Since u ∈ C∞(Cn), a well-known theorem yields that the image under u of the
set grad u � 0 has measure 0 on R. Hence every interval on R contains a point t

such that the level set u � t fails to meet the set grad u � 0. Choose such a t with

− 1
2 ε2 < t < − 1

4 ε2.

Define

ωε � {x ∈ �1|u(x) < t}.
We claim that ωε has the required properties. Put

uε � u − t.

Then ωε � {x ∈ �1|uε < 0}. It is easily verified that ωε ⊂ supp β. It follows
that uε � 0 on ∂ωε.

Since u � t on ωε, it follows by choice of t that grad u, and hence grad uε, �� 0
on ∂ωε. Thus (8) and (9) hold and (10) holds since u is p.s. in �1.

Equations (6) and (7) are verified directly, using (11) and the fact that−ε2/2 <

t < −ε2/4.
Thus the lemma is established. This completes step 1.

Lemma 17.4. Fix a compact set K on
∑

. Let u be a function of class Ce defined
on
∑

. Then ∃ a function U of class C1 in Cn with
(a) U ≡ u on K .
(b) ∃ constant C with∣∣∣∣∣ ∂U

∂z̄j

(z)

∣∣∣∣∣ ≤ C · d(z)e−1, all z, j � 1, . . . , n.

Proof. We first perform the extension locally.
Fix x0 ∈

∑
. Choose an open set � in Cn such that x0 ∈ �, and choose real

functions ρj such that∑
∩� � {x ∈ �|ρ1(x) � · · · � ρm(x) � 0},

where each ρj is of class Ce in � and such that u has an extension to Ce(�), again
denoted u.

We assert that ∃ a neighborhood ω0 of x0 and ∃ integers v1, v2, . . . , vn such that
the vectors (

∂ρνj

∂z̄1
, . . . ,

∂ρνj

∂z̄n

)
x

, j � 1, . . . , n

form a basis for Cn for each x ∈ ω0.
Put

ξv �
(

∂ρν

∂z̄1
, . . . ,

∂ρν

∂z̄n

)
x0

, v � 1, . . . , m.
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Suppose that ξ1, . . . , ξm fail to span Cn. Then ∃c � (c1, . . . , cn) �� 0 with∑n
j�1 cj (∂ρν/∂z̄j ) � 0, v � 1, . . . , m. In other words, the tangent vector to Cn

at x0,

n∑
j�1

cj

∂

∂z̄j

,

annihilates ρ1, . . . , ρm, and hence by Exercise 17.2
∑

has a complex tangent at
x0, which is contrary to assumption.

Hence ξ1, . . . , ξm span Cn, and so we can find v1, . . . , vn with ξv1 , . . . , ξvn

linearly independent. By continuity, then, the vectors(
∂ρνj

∂z̄1
, . . . ,

∂ρνj

∂z̄n

)
x

, j � 1, . . . , n

are linearly independent, and so form a basis for Cn, for all x in some neighborhood
of x0. This was the assertion.

Relabel ρv1 , . . . , ρvn
to read ρ1, . . . , ρn. Define functions h1, . . . , hn in ω0 by(

∂u

∂z̄1
, . . . ,

∂u

∂z̄n

)
(x) �

n∑
i�1

hi(x)

(
∂ρi

∂z̄1
, . . . ,

∂ρi

∂z̄n

)
x

, x ∈ ω0.

Solve for hi(x). All the coefficients in this n × n system of equations are of class
e − 1, so hi ∈ Ce−1(ω0). We have

∂̄u �
n∑

i�1

hi∂̄ρi in ω0.

Put u1 � u −∑n
i�1 hiρi . So u1 � u on

∑
, and

∂̄u1 � ∂̄u −
n∑

i�1

hi∂̄ρi −
n∑

i�1

∂̄hi · ρi � −
n∑

i�1

∂̄hi · ρi.

In the same way in which we got the hi , we can find functions hij in Ce−2(ω0)

with

∂̄hi �
n∑

j�1

hij ∂̄ρj , i � 1, . . . , n.

Since ∂̄ρ1, . . . , ∂̄ρn are linearly independent at each point of ω0, the same is
true of the (0, 2)-forms ∂̄ρj ∧ ∂̄ρi with i < j .

0 � ∂̄2u � ∂̄

(
n∑

i�1

hi∂̄ρi

)
�
∑

i

⎛⎝∑
j

hij ∂̄ρj

⎞⎠ ∧ ∂̄ρi

�
∑
i<j

(hij − hji) · ∂̄ρj ∧ ∂̄ρi
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Hence hij � hji for i < j . Put

u2 � u1 + 1

2!

∑
i,j

hijρiρj .

So u2 � u on
∑

and

∂̄u2 � −
∑

i

∂̄hi · ρi + 1

2!

∑
i,j

∂̄(hijρiρj + R,

where

R � 1

2

∑
i,j

hijρi ∂̄ρj + 1

2

∑
i,j

hijρj ∂̄ρi

� 1

2

∑
i

∂̄hi · ρi + 1

2

∑
j

∂̄hjρj ,

so

∂̄u2 � 1

2!

∑
i,j

∂̄hij · ρiρj .

We define inductively functions hI on ω0, I a multiindex, by

∂̄hi �
n∑

i�1

hIj ∂̄ρj ,

and we define functions uN , N � 1, 2, . . . , e − 1, by

uN � uN−1 + (−1)N

N !

∑
|I |�N

hIρI ,

where I � (β1, . . . , βn), |I | �
∑

βi , ρI � ρ
β1
1 · · · ρβn

n . Then hI ∈ Ce−N(ω0) if
|I | � N , and uN ∈ Ce−N(ω0).

We verify

∂̄uN � (−1)N

N !

∑
|I |�N

∂̄hI · ρI , for each N.

By slightly shrinking ω0 we get a constant C such that |ρI (z)| ≤ Cd(z)N in ω0 if
|I | � N , and hence there is a constant C1 with∣∣∣∣∣ ∂uN

∂z̄j

(z)

∣∣∣∣∣ ≤ C1d(z)N , j � 1, . . . , n, z ∈ ω0.

In particular, ue−1 ∈ C1(ω0), ue−1 � u on
∑

, and∣∣∣∣∣ ∂ue−1

∂z̄j

∣∣∣∣∣ ≤ C1d(z)e−1, C1 depending on ω0.

Also, u � 0 on an open subset of ω0 implies that ue−1 � 0 there.
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For each x0 ∈ K we now choose a neighborhood ωx0 in Cn of the above type.
Finitely many of these neighborhoods, say, ω1, . . . , ωg , cover K .

Choose χ1, . . . , χg ∈ C∞(Cn) with supp χα ⊂ ωα, 0 ≤ χα ≤ 1, and∑g

α�1 χα � 1 on K .
By the above construction, applied to χαu in place of u, choose Uα in C1(ωα)

with Uα � χαu in
∑ ∩ωα, supp Uα ⊂ supp χαu, and

(∗)
∣∣∣∣∣ ∂Uα

∂z̄j

(z)

∣∣∣∣∣ ≤ Cα · d(z)e−1, z ∈ ωα, j � 1, . . . , n.

Since supp Uα ⊂ ωα , we can define Uα � 0 outside ωα to get a C1-function in
the whole space, and (*) holds for all z in Cn.

Put U � ∑g

α�1 Uα . Then U ∈ C1(Cn), and for z ∈ K ,

U(z) �
g∑

α�1

Uα(z) �
g∑

α�1

χα(z)u(z) � u(z)
∑

α

χα � u(z).

For every z,

∂U

∂z̄j

(z) �
g∑

α�1

∂Uα

∂z̄j

(z),

so, by (*), ∣∣∣∣∣ ∂U

∂z̄j

(z)

∣∣∣∣∣ ≤ g · C · d(z)e−1, where C � max
1≤α≤g

Cα.

This completes step 2.

Proof of Theorem 17.1. It remains to carry out step 3.
Without loss of generality,

∑
is an open subset of some smooth k-dimensional

manifold
∑

1 such that the closure of
∑

is a compact subset of
∑

1. It follows
that the 2n-dimensional volume of the ε-tube around

∑
, i.e, {x ∈ Cn|d(x), ε},

� O(ε2n−k) as ε → 0.
Fix ε and choose the set of ωε by Lemma 17.3. By (6), ωε ⊂ ε-tube around

∑
,

so the volume of ωε � O(ε2n−k).
By (8), (9), and (10), Theorem 16.1 may be applied to ωε, where we take ρ � uε.
Given that u is in C∞(Cn), by Lemma 17.4 with K � X we can find Uε in

C1(Cn) such that for all z and j ,∣∣∣∣∣ ∂Uε

∂z̄j

∣∣∣∣∣ ≤ Cd(z)e−1 and Uε � uon X.

By (6) this implies

(15)

∣∣∣∣∣ ∂Uε

∂z̄j

∣∣∣∣∣ ≤ Cεe−1in ωε.
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Put g � ∂̄Uε. Then ∂̄g � 0 in ωε. By Theorem 16.1, ∃Vε in L2(ωε) such that,
as distributions, ∂̄Vε � g; i.e.,

(16)
∂Vε

∂z̄j

� ∂Uε

∂z̄j

, all j,

and

(17)

∫
ωε

|Vε|2dV ≤ C ′
∫

ωε

⎛⎝ n∑
j�1

∣∣∣∣∣ ∂Uε

∂z̄j

∣∣∣∣∣
2
⎞⎠ dV .

Equations (15) and (17) and the volume estimate on ωε give

(18)

∫
ωε

|Vε|2dV ≤ C ′′ε2e−2+2n−k.

By (16) and Lemma 16.8, Vε is continuous in ωε. Further, fix x ∈ X and put
Bx � ball of center x, radius ε/2. Lemma 16.8 implies that

(19) |Vε(x)| ≤ K

{
ε−n||Vε||L2(Bx) + ε sup

Bx

(
max

j

∣∣∣∣∣ ∂V ε

∂z̄j

∣∣∣∣∣
)}

.

But Bx ⊂ ωε by (7), so (18), (15), and (16) give

(20) |Vε(x)| ≤ K{εe−1−(k/2) + εe},
where K is independent of x. Thus if e > k/2 + 1, supX |Vε| → 0 as ε → 0.

Step 3 is now complete. Theorem 17.1 is thus proved.

As an application of Theorem 17.1, we consider the following problem: Let X

be a compact subset of Cn and f1, . . . , fk elements of C(X). Let

[f1, . . . , fk|X]

denote the class of functions on X that are uniform limits on X of polynomials in
f1, . . . , fk . The Stone-Weierstrass theorem gives

[z1, . . . , zn, z̄1, . . . , z̄n|X] � C(X).

We shall prove a perturbation of this fact. Let � be a neighborhood of X and let
R1, . . . , Rn be complex-valued functions defined in �. Denote by R the vector-
valued function R � (R1, . . . , Rn).

Theorem 17.5. Assume that ∃k < 1 such that

(21) |R(z1) − R(z2)| ≤ k|z1 − z2| if z1, z2 ∈ �

Assume also that each Rj ∈ Cn+2(�). Then

[z1, . . . , zn, z̄1 + R1, . . . , z̄n + Rn|X] � C(X).

Note. Equation (21) is a condition on the Lipschitz norm of R. No such condition
on the sup norm of R would suffice.
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Exercise 17.4. Put X = closed unit disk in the z-plane and fix ε > 0. Show that
∃ a function Q, smooth in a neighborhood of X, with |Q| ≤ ε everywhere and
[z, z̄ + Q|X] �� C(X).

Let � denote the map of � into C2n defined by

�(z) � (z, z̄ + R(z))

and let
∑

be the image of � under �. Evidently
∑

is a submanifold of an open set
in C2n of dimension 2n and class n+ 2. Since n+ 2 > (2n/2)+ 1, the condition
of “sufficient smoothness” holds for

∑
.

Lemma 17.6.
∑

has no complex tangents.

Proof. If
∑

has a complex tangent, then ∃ two tangent vectors to
∑

differing
only by the factor i.

With d� denoting the differential of the map �, we can hence find ξ, η ∈ Cn

different from 0 so that at some point of �,

(22) d�(η) � id�(ξ).

Let Rz denote the n × n matrix whose (j, k)th entry is ∂Rj/∂zk and define Rz̄

similarly. For any vector α in Cn,

d�(α) � (α, ᾱ + Rzα + Rz̄ᾱ).

Hence (22) gives

(η, η̄ + Rzη + Rz̄η̄) � i(ξ, ξ̄ + Rzξ + Rz̄ξ̄ ).

It follows that η � iξ and

(23) ξ̄ + Rz̄ξ̄ � 0.

By Taylor’s formula, for z ∈ �, θ ∈ Cn, and ε real,

R(z + εθ) − R(z) � Rzεθ + Rz̄εθ̄ + o(ε).

Applying (21) with z1 � z + εθ , z2 � z, and letting ε → 0 then gives

(24) |Rzθ + Rz̄θ̄ | ≤ k|θ |.
Replacing θ by iθ gives

(24′) |Rzθ − Rz̄θ̄ | ≤ k|θ |.
Equations (24) and (24′) together give

(25) |Rz̄θ̄ | ≤ k|θ | for all θ ∈ Cn,

and this contradicts (23). Thus
∑

has no complex tangent

Lemma 17.7. �(X) is a polynomially convex compact set in C2n.
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Proof. Put A � [z1, . . . , zn, z̄1 + R1, . . . , z̄n + Rn|X],

A1 � [z1, . . . , z2n|X1], where X1 � �(X).

The map � induces an isomorphism between A and A1. To show that X1 is poly-
nomially convex is equivalent to showing that every homomorphism of A1 into
C is evaluation at a point of X1, and so to the corresponding statement about A
and X.

Let h be a homomorphism of A into C. Choose. by Exercise 1.2, a probability
measure µ on X so that

h(f ) �
∫

x

f du, all f ∈ A.

Put h(zi) � αi, i � 1, . . . , n and α � (α1, . . . , αn). Choose an extension of
R to a map of Cn to Cn such that (21) holds whenever z1, z2 ∈ Cn. This can be
done by a result of F. A. Valentine, A Lipschitz condition preserving extension of
a vector function, Am. J. Math. 67 (1945).

Define for all z ∈ X,

f (z) �
n∑

i�1

(zi − αi)((z̄i + Ri(z)) − (ᾱi + Ri(α))).

Since zi and z̄i + Ri(z) ∈ A and αi and Ri(α) are constants, f ∈ A. Evidently
h(f ) � 0. Also, for z ∈ X,

f (z) �
n∑

i�1

|zi − αi |2 +
n∑

i�1

(zi − αi)(Ri(z) − Ri(α)).

The modulus of the second sum is≤ |z − α||R(z)− R(α)| ≤ k|z − α|2, by (21).
Hence Re f (z) ≥ 0 for all z ∈ X, and Re f (z) � 0 implies that z � α. Also,

0 � Re h(f ) �
∫

X

Re f dµ.

It follows that α ∈ X and that µ is concentrated at α. Hence h is evaluation at α,
and we are done.

Proof of Theorem 17.5. We now know that �(X) is a polynomially convex
compact subset of

∑
and that

∑
is a submanifold of C2n without complex tangents.

Theorem 17.1 now gives that P(�(X)) � C(�(X)), and this is the same as to
say that

[z1, . . . , znz̄1 + R1, . . . , z̄n + Rn|X] � C(X).

NOTES
A result close to Theorem 17.1 was first announced by R. Nirenberg and R.

O. Wells, Jr., Holomorphic approximation on real submanifolds of a complex
manifold, Bull. Am. Math. Soc. 73 (1967), and a detailed proof was given the same
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authors in Approximation theorems on differentiable submanifolds of a complex
manifold, Trans. Am. Math. Soc. 142 (1969). They follow a method of proof
suggested by Hörmander. A generalization of Theorem 17.1 to certain cases where
complex tangents may exist was given by Hörmander and Wermer in Uniform
approximation on compact sets in Cn, Math. Scand. 23 (1968). Theorem 17.5 is
also proved in that paper, the case n � 1 of Theorem 17.5 having been proved
earlier by Wermer in Approximation on a disk, Math. Ann. 155 (1964), under
somewhat weaker hypotheses. Various other related problems are also discussed
in the papers by Nirenberg and Wells and by Hörmander and Wermer. Further
results in this area are due to M. Freeman. The proof of Lemma 17.4 is due to
Nirenberg and Wells. (For recent work, see Wells [Wel].)

An elementary proof of Theorem 17.5, based on a certain integral transform,
has recently been given by Weinstock in [Wei1].
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Submanifolds of High Dimension

In Sections 13, 14 and 17 we have studied polynomial approximation on certain
kinds of k-dimensional manifolds in Cn. In this Section we consider the case k > n.
Let

∑
be a k-dimensional submanifold of an open set in Cn with n < k < 2n.

Let X be a compact set which lies on
∑

and contains a relatively open subset of∑
.

Lemma 18.1.

P(X) �� C(X).

We first prove

Lemma 18.2. Let S be a set in Cn homeomorphic to the n-sphere. Then h(S) �� S.

Proof. h(S) � M(P (S)). The algebra P(S) has n generators and hence by
Theorem 15.8 the n’th cohomology group of M(P (S)) with complex coefficients
vanishes. But Hn(S, C) �� 0. Hence S �� h(S).

Proof of Lemma 18.1. Choose a set S ⊂ X with S homeomorphic to the n-
sphere. By the last Lemma h(S) �� S and so P(S) �� C(S). Since an arbitrary
continuous function on S extends to an element of C(X), this implies P(X) ��
C(X).

We should like to explain the fact that arbitrary continuous functions on X cannot
be approximated by polynomials, in terms of the geometry of

∑
as submanifold

of Cn.
Fix x0 ∈ ∑ and a neighborhood U of x0 on

∑
. We shall try to construct

an analytic disk E in Cn whose boundary lies in U . In other words, we seek
a one-one continuous map � of |z| ≤ 1 into Cn with � analytic in |z| < 1
and �(|z| � 1) ⊂ U . We then take E � �(|z| ≤ 1). Then every function
approximable by polynomials uniformly on U extends analytically to E and hence
P(X) �� C(X) whenever X contains U .

146
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Example. Let
∑

be the 3-sphere |z1|2+|z2|2 � 1 in C2 and fix x0 ∈ ∑. Without
loss of generality, x0 � (i, 0). We shall describe a family of analytic disks near
x0 each with its boundary lying on

∑
.

Fix t > 0 and define the closed curve γt by:

z1 � i
√

1 − t2, z2 � tζ, |ζ | � 1.

γt lies on
∑

and bounds the analytic disk Et defined:

z1 � i
√

1 − t2, z2 � tζ, |ζ | ≤ 1.

As t → 0, yt → x0.
We wish to generalize this example. Let

∑2n−1 be a smooth (class 2) (2n− 1)-
dimensional hypersurface in some open set in Cn and fix x0 ∈ ∑2n−1. Let U be
a neighborhood of x0 on

∑2n−1.

Theorem 18.3. ∃ an analytic disk E whose boundary ∂∃ lies in U .

Note. After proving this theorem, we shall prove in Theorem 18.7 an analogous
result for manifolds of dimension k with n < k. The method of proof will be
essentially the same, and looking first at a hypersurface makes it easier to see the
idea of the proof. By an affine change of complex coordinates we arrange that
x0 � 0 and that the tangent space to

∑2n−1 at 0 is given by: y1 � 0, where
x1, y1, x2, y2, . . . , xn, yn are the real coordinates in Cn. Then

∑2n−1 is described
parametrically near 0 by equations

(1).

⎧⎪⎪⎪⎨⎪⎪⎪⎩
z1 =x1 + ih(x1, w2, . . . , wn)

z2 =w2
...

zn =wn,

where x1 ∈ R, (w2, . . . , wn) ∈ Cn−1 and h is a smooth real valued function
defined on ×Cn−1 with h vanishing at 0 of order 2 or higher.

We need some definitions.

Definition 18.1. Put � � {ζ ||ζ | � 1)}. A function f in C(�) is a boundary
function if ∃F continuous in |ζ | ≤ 1 and analytic in |ζ | < 1 with F � f on �.

Given u defined on �, we put

u̇ � d

dθ
(u(eiθ )).

Definition 18.2. H1 is the space of all real-valued functions u on � such that u is
absolutely continuous, u ∈ L2(�) and u̇ ∈ L2(�). For u ∈ H1, we put

||u|1 � ||u||L2 + ||u̇||L2 .
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Normed with || ||1, H1 is a Banach space. Fix u ∈ H1.

u � a0 +
∞∑

n�1

an cos nθ + bn sin nθ.

Since u̇ ∈ L2,
∑∞

1 n2(a2
n + b2

n) < ∞ and so
∑∞

1 (|an| + |bn|) < ∞.

Definition 18.3. For u as above,

T u �
∞∑

n�1

an sin nθ − bn cos nθ.

Observe the following facts:

If u, v ∈ H1, then u + iv is a boundary function provided u � −T v.(2)

If u ∈ H1, then T u ∈ H1 and ||T u||1 ≤ ||u||1.(3)

Definition 18.4. Let w2, . . . , wn be smooth boundary functions and put w �
(w2, . . . , wn). w is then a map of � into Cn−1. For x ∈ H1,

Awx � −T {h(x, w)},
where h is as in (1). Aw is thus a map of H1 into H1.

Let U be as in Theorem 18.3 and choose δ > 0 such that the point described
by (1) with parameters x1 and w lies in U provided |x1| < δ and |wj | < δ, 2 ≤
j ≤ n.

Lemma 18.4. Let w2, . . . , wn be smooth boundary functions with |wj | < δ for
all j and such that w2 is schlicht, i.e., its analytic extension is one-one in |ζ | ≤ 1.
Put A � Aw. Suppose x∗ ∈ H1, |x∗| < δ on � and Ax∗ � x∗. Then ∃ analytic
disk E with ∂E contained in U .

Proof. Since Ax∗ � x∗, x∗ � −T {h(X∗, w)}, and so x∗ + ih(x∗, w) is a
boundary function by (2). Let ψ be the analytic extension of x∗ + ih(x∗, w) to
|ζ | < 1. The set defined for |ζ | ≤ 1 by z1 � ψ(ζ ), z2 � w2(ζ ), . . . , zn � wn(ζ )

is an analytic disk E in Cn. ∂E is defined for |ζ | � 1 by z1 � x∗(ζ ) + ih(x∗(ζ ),
w(ζ )), z2 � w2(ζ ), . . . , zn � wn(ζ ) and so by (1) lies on

∑2n−1. Since by
hypothesis |x∗| < δ and |wj | < δ for all j, ∂E ⊂ U .

In view of the preceding, to prove Theorem 18.3, it suffices to show that A � Aw

has a fix-point x∗ in H1 with |x∗| < δ for prescribed small w. To produce this
fix-point, we shall use the following well-known Lemma on metric spaces.

Lemma 18.5. Let K be a complete metric space with metric ρ and � a map of
K into K which satisfies

ρ(�(x), �(y)) ≤ αρ(x, y), all x, y ∈ K.

where α is a constant with 0 < α < 1. Then � has a fix-point in K .
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We give the proof of Exercise 18.1.
As complete metric space we shall use the ball in H1 of radius M , BM � {x ∈

H1

∣∣||x||1 ≤ M}. We shall show that for small M if |w| is sufficiently small and
A � Aw, then

A maps BM into BM.(4)

∃α, 0 < α < 1, such that(5)

||Ax − Ay||1 ≤ α||x − y||1 for all x, y ∈ BM.

Hence Lemma 18.5 will apply to A.
We need some notation. Fix N and let x � (x1, . . . , xN) be a map of � into

RN such that xi ∈ H1 for each i.

ẋ � (ẋ1, . . . , ẋN ), |x| �
√√√√ n∑

i�1

|xi |2

||x||1 �
√∫

�

|x|2dθ +
√∫

�

|ẋ|2dθ

||x||∞ � sup |x|, taken over �.

Observe that ||x||∞ ≤ C||x||1, where C is a constant depending only on N . In
the following two Exercises, h is a smooth function on RN which vanishes at 0 of
order ≥ 2.

*Exercise 18.2. ∃ constant K depending only on h such that for every map x of
� into RN with ||x||∞ ≤ 1,

||h(x)||1 ≤ K(||x||1)2.

*Exercise 18.3. ∃ constant K depending only on h such that for every pair of
maps x, y of � into RN with ||x||∞ ≤ 1, ||y||∞ ≤ 1.

||h(x) − h(y)||1 < K||x − y||1(||x||1 + ||y||1).
Fix boundary functions w2, . . . , wn as earlier and put w � (w2, . . . , wn). Then

w is a map of � into Cn−1 � R2n−2.

Lemma 18.6. For all sufficiently small M > 0 the following holds: if ||w||1 <

M and A � Aw, then A maps BM into BM and ∃α, 0 < α < 1, such that
||Ax − Ay||1 ≤ α||x − y||1 for all x, y ∈ BM .

Proof. Fix M and choose w with ||w||1 < M and choose x ∈ BM . The map
(x, w) takes � into R × Cn−1 � R2n−1. If M is small, ||(x, w)||∞ ≤ 1. Since
(x, w) � (x, 0) + (0, w),

||(x, w)||1 ≤ ||(x, 0)||1 + ||(0, w)||1 � ||x||1 + ||w||1.
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By Exercise 18.2,

||h(x, w)||1 < K(||(x, w)||1)2

< K(||x||1 + ||w||1)2 < K(M + M)2 � 4M2K.

||Ax||1 � ||T {h(x, w)}||1 ≤ ||h(x, w)||1 < 4M2K.

Hence if M < 1/4K, ||Ax||1 ≤ M . So for M < 1/4K , A maps BM into BM .
Next fix M < 1/4K and w with ||w||1 < M and fix x, y ∈ BM . If M is small,

||(x, w)||∞ ≤ 1 and ||(y, w)||∞ ≤ 1.

Ax − Ay � T {h(y, w) − h(x, w)}.
Hence by (3), and Exercise 18.3, ||Ax − Ay||1 ≤ ||h(y, w) − h(x, w)||1 ≤
K||(x, w) − (y, w)||1(||x, w)||1 + ||(y, w)||1) ≤ K||x − y||1(||x||1 + ||y||1 +
2||w||1) ≤ 4MK||x − y||1. Put α � 4MK . Then α < 1 and we are done.

Proof of Theorem 18.3. Choose M by Lemma 18.6, choose w with ||w||1 < M

and put A � Aw. In view of Lemmas 18.5 and 18.6, A has a fix-point x∗ in BM .
Since for x ∈ H1, ||x||∞ ≤ C||x||1, where C is a constant, for given δ > 0 ∃M
such that x∗ ∈ BM implies |x∗| < δ on �. By Lemma 18.4 it follows that the
desired analytic disk exists. So Theorem 18.3 is proved.

We now consider the general case of a smooth k-dimensional submanifold
∑k

of Cn with k > n. Assume 0 ∈ ∑k . Denote by P the tangent space to
∑k at 0,

regarded as a real-linear subspace of Cn. Let Q denote the largest complex-linear
subspace of P .

Exercise 18.4. dimC Q � k − n.

Note. It follows that, since k > n,
∑k has at least one complex tangent at 0.

It is quite possible that dimC Q � k − n. This happens in particular when Q

is a complex-analytic manifold, for then dimC Q � k/2, and k/2 > k − n since
2n > k.

We impose condition

(6) dimC Q � k − n.

Exercise 18.5. Assume (6) holds. For each x in
∑k denote by Qx the largest

complex linear subspace of the tangent space to
∑k at x. Show that dimC Qx �

k − n for all x in some neighborhood of 0.

Theorem 18.7. Assume (6). Let U be a neighborhood of 0 on
∑k . Then ∃ an

analytic disk E whose boundary ∂E lies in U .

Note. When k � 2n − 1, k − n � n − 1 and since dimC Q ≤ n − 1, Exercise
18.4 gives that dimC Q � n − 1. So (6) holds. Hence Theorem 18.7 contains
Theorem 18.3.



18. Submanifolds of High Dimension 151

Lemma 18.8. Assume (6). Then after a complex-linear change of coordinates
∑k

can be described parametrically near 0 by equations

(7)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

z1 � x1 + ih1(x1, . . . , x2n−k, w1, . . . , wk−n)

z2 � x2 + ih2(x1, . . . , x2n−k, w1, . . . , wk−n

...
z2n−k � x2n−k + ih2n−k(x1, . . . , x2n−k, w1, . . . , wk−n)

z2n−k+1 � w1
...

zn � wk−n

where x1, . . . , x2n−k ∈ R, wq, . . . , wk−n ∈ C and h1, . . . , h2n−k are smooth
real-valued functions defined on R2n−k × Ck−n � Rk in a neighborhood of 0 and
vanishing at 0 of order ≥ 2.

Proof. Put zj � xj + iyj for 1 ≤ j ≤ n. The tangent space P to
∑k at 0 is

defined by equations:
n∑

j�1

aν
j xj + bν

j yj � 0, ν � 1, 2, . . . , 2n − k

where aν
j , bν

j are real constants. We chose complex linear functions

Lν(z) �
n∑

j�1

cν
j zj , ν � 1, 2, . . . , 2n − k

where cν
j are complex constants such that

∑n
j�1 aν

j xj + bν
j yj � Im Lν(z) for each

ν. So P is given by the equations:

Im Lν(z) � 0, ν � 1, 2, . . . , 2n − k.

We claim that L1, . . . , L2n−k are linearly independent functions over C.
For consider the set Q1 � {z ∈ Cn|Lν(z) � 0 for all ν}. Q1 is a complex linear

subspace of P . If the Lν were dependent, dimC Q1 > n − (2n − k) � k − n,
contradicting (6). So they are independent. We define new coordinates Z1, . . . , Zn

in Cn by a linear change of coordinates such that Zν � Lν for ν � 1, . . . , 2n− k.
Put Zν � Xν + iYν . Then P has the equations

Y1 � Y2 � · · · � Y2n−k � 0.

Without loss of generality, then, P is given by equations:

(8) y1 � y2 � · · · � y2n−k � 0.

Let xj � xj (t), yj � yj (t), 1 ≤ j ≤ n, t ∈ Rk , be a local parametric repre-
sentation of

∑k at 0 with t � 0 corresponding to 0. Since P is given by (8), at
t � 0 ∂yj/∂t1 � ∂yj/∂t2 � · · · � ∂yj/∂tk � 0, j � 1, 2, . . . , 2n − k. Since
the Jacobian of the map:

t → (x1(t), y1(t), . . . , xn(t), yn(t))
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at t � 0 has rank k, it follows that the determinant∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

∂x1

∂t1
· · · ∂x1

∂tk
...

∂xn

∂t1
· · · ∂xn

∂tk
∂y2n−k+1

∂t1
· · · ∂y2n−k+1

∂tk
...

∂yn

∂t1
· · · ∂yn

∂tk

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
t�0

�� 0.

Hence we can solve the system of equations:

x1 � x1(t)

...

xn � xn(t)

y2n−k+1 � y2n−k+1(t), t � (t1, . . . , tk)

...

yn � yn(t)

for t1, . . . , tk in terms of x1, . . . , xn, y2n−k+1, . . . , yn locally near 0. Let us put

u1 � x2n−k+1, . . . , uk−n � xn,

v1 � y2n−k+1, . . . , vk−n � yn.

Put x � (x1, . . . , x2n−k , u � (u1, . . . , uk−n), v � (v1, . . . , vk−n). Then
parametric equations for

∑k at 0 can be written:

x1 � x1

y1 � h1(x, u, v)

...

x2n−k � x2n−k

y2n−k � h2n−k(x, u, v)

x2n−k+1 � u1

y2n−k+1 � v1

...

xn � uk−n

yn � vk−n,
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where each hj is a smooth function on Rk , in a neighborhood of 0. In view of (8),
each hj vanishes at 0 of order ≥ 2. Setting

uj + ivj � wj, j � 1, 2, . . . , k − n,

we obtain (7).

We sketch the proof of Theorem 18.7:
With h1, . . . , h2n−k as in (7), we put

h(x, w) � (h1(x, w), . . . , h2n−k(x, w)).

h is a map defined on a neighborhood of 0 in Rk and taking values in R2n−k . We
shall use this vector-valued function h in the same way as we used the scalar-valued
function h of (1) in proving Theorem 18.3.

Fix smooth boundary functions w1, . . . , wk−n on � such that w1 is schlicht and
put w � (w1, . . . , wk−n). We seek a map x∗ � (x∗1 , . . . , x∗2n−k) of � → R2n−k

such that

x∗ + ih(x∗, w)

admits an analytic extension ψ � (ψ1, . . . , ψ2n−k) to |ζ | < 1 which takes values
in C2n−k . Then the subset of Cn defined for |ζ | ≤ 1 by

z1 � ψ1(ζ ), . . . , z2n−k � ψ2n−k(ζ ), z2n−k�1 � w1(ζ ), . . . , zn � wk−n(ζ )

is an analytic disk E in Cn whose boundary ∂E is defined for |ζ | � 1 by

z1 � x∗1 + ih1(x
∗, w), . . . , z2n−k � x∗2n−k + ih2n−k(x

∗, w),

z2n−k+1 � w1, . . . , zn � wk−n

and so in view of (7), ∂E lies on
∑k .

We construct the desired x∗ by a direct generalization of the proof given for
Theorem 18.3. In particular we extend the definition 18.3 of the operator T to
vector-valued functions u � (u1, . . . , us) by: T u � (T u1, . . . , T us). We omit
the details.

What can be said if
∑

is a smooth k-dimensional manifold in Cn with k � n?
It is clear that no full generalization of Theorem 18.7 is possible in this case, since
the real subspace

∑
R of Cn is such a submanifold and there does not exist any

analytic disk in Cn whose boundary lies on
∑

R .
What if

∑
is a compact orientable n-dimensional submanifold of Cn? When

n � 1, this means that
∑

is a simple closed curve in C and so
∑

is itself the
boundary of an analytic disk in C. When n > 1, we still see by reasoning as in
the proof of Lemma 18.2 that h(

∑
) �� ∑

. However, there need not exist any
point p ∈ ∑ with the property that every neighborhood of p on

∑
contains the

boundary of some analytic disk. This happens, in particular, when
∑

is the torus:
|z| � 1, |w| � 1 in C2. This torus contains infinitely many closed curves which
bound analytic disks in C2, but these curves are all “large.”

A striking result, due to Bishop, [9], is that if
∑

is a smooth 2-sphere in C2,
i.e., a diffeomorphic image of the standard 2-sphere, satisfying a mild restriction,
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then
∑

contains at least two points p such that every neighborhood of p on
∑

contains the boundary of some analytic disk.

NOTES
This section is due to E. Bishop, Differentiable manifolds in complex Euclidean

space, Duke Math Jour. 32 (1965).
Given a k-dimensional smooth compact manifold

∑
in Cn, it can occur that

there exists a fixed open set O in Cn such that every function analytic in a neigh-
borhood of

∑
, no matter how small, extends to an analytic function in O. This

phenomenon for k � 2n − 1 was discovered by Hartogs. For k � 4, n � 3 an
example of this phenomenon was given by Lewy in [Lew] and treated in general
by Bishop in his above mentioned paper, as an application of the existence of
the analytic disks he constructs. Substantial further work on this problem has been
done. We refer to the discussion in Section 4 of R. O. Wells’ paper, Function theory
on differentiable submanifolds, Contributions to Analysis, a collection of papers
dedicated to Lipman Bers, Academic Press (1974), and to the bibliography at the
end of Wells’ paper.

In the present Section we studied the problem of the existence of analytic va-
rieties of complex dimension one whose boundary lies on a given manifold

∑
.

What can be said about the existence of analytic varieties of dimension greater
than one whose boundary lies on

∑
? In particular, let M2k−1 be a smooth odd-

dimensional orientable compact manifold in Cn of real dimension 2k − 1. When
is M2k−1 the boundary of a piece of analytic variety, i.e. when does there exist a
manifold with boundary Y (possibly having a singular set) such that the boundary
of Y is M2k−1 and Y\M2k−1 is a complex analytic variety of complex dimension
k? When k � 1, M2k−1 is a closed Jordan curve and Y exists only in the case
that M2k−1 fails to be polynomially convex and in that case Y is the polynomially
convex hull of M2k−1. This situation was in effect, treated in Chapter 12 above.
For arbitrary integers k the problem was solved by R. Harvey and B. Lawson in
[HarL2], [Har]. For k > 1 the relevant condition on M2k−1 is expressed in terms
of the complex tangents to M2k−1.
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Boundaries of Analytic Varieties

Part 1

Let γ be a simple closed oriented curve in C2. Under what conditions does γ

bound an analytic variety of complex dimension one? More precisely, when does
there exist an analytic variety � in some open set in C2 such that the closure of �

is compact and γ is the boundary of �? Here we take “boundary” in the sense of
Stokes’ Theorem; i.e., ∫

γ

ω �
∫

�

dω,

for every smooth 2-form ω on C2. This is stronger than being a boundary in a
point-set theoretical sense and in particular takes orientation into account.

We have studied a related question regarding the polynomial hull of γ , in Chapter
12. Here we shall use a method of Harvey and Lawson [HarL2] based on the Cauchy
transform.

We assume that γ is C2-smooth. Let π denote the projection of C2 on C with

π(z, w) � z, ∀z, w.

The image curve π(γ ) ⊆ C is then a smooth curve in C with possible self-
intersections. We assume, for simplicity, that the set � of self-intersections is
finite, and that there exists a C2-function f on π(γ ) \ � such that γ admits the
representation:

η � f (ζ ), ζ ∈ π(γ ) \ �,

where (ζ, η) is a point in C2.
To obtain the necessary conditions, we first assume that a variety � as above

exists. We seek to describe the points of � in terms of the data on the curve γ .
Consider a fixed component ω of C \ π(γ ). Since � is an analytic one-

dimensional set, π−1(ω) � {(z, w) ∈ � : z ∈ ω} lies over ω as an n- sheeted
analytic cover for some integer n ≥ 0. For z ∈ ω, we denote by w1(z), . . . , wn(z)

the points of � over z; the wj(z) are not in general single-valued analytic functions

155
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of z in ω. The set π−1(ω) is then described by the equation

(1)

n∏
j�1

(w − wj(z)) � 0, z ∈ ω.

If we expand the product on the left-hand side, we obtain the expression

wn − A1(z)w
n−1 + A2(z)w

n−2 + · · · + (−1)nAn(z),

where A1(z) �
∑n

j�1 wj(z), A2(z) �
∑

j<k wj (z)wk(z), and so on. The coef-
ficient functions A1, . . . , An are thus the elementary symmetric expressions in
w1, . . . , wn. It follows that the Aj are single-valued analytic functions on ω.

Next we shall show that n, the number of “sheets” of � over ω, is the winding
number n(π(γ ), z) of the closed plane curve π(γ ) about z, for any point z ∈ ω.
Indeed this winding number is given by the integral

1

2πi

∫
π(γ )

dζ

ζ − z
,

which is equal to the integral

1

2πi

∫
γ

dζ

ζ − z
.

We can evaluate the integral by applying the residue theorem on � to the form
dζ

ζ−z
. We may assume that � does not branch over z. We conclude that the integral

is just 1 + · · · + 1 (n terms) � n.
We shall next calculate the product in (1) for (z, w) with z ∈ ω, w ∈ C, with

|w| large, from the data on the curve γ . We write (ζ, η) for the coordinates of an
arbitrary point on γ . Choose R > 0 such that R > |η| for each (ζ, η) ∈ γ . For
w such that |w| > R, log(1 − η/w) is then well-defined for each (ζ, η) ∈ γ . We
have

(2) log(w − η) � log(w) + log(1 − η/w)

for all (ζ, η) ∈ γ , where log w is defined up to an integer multiple of 2πi. We set

(3) �(z, w) � 1

2πi

∫
γ

log(w − η)

ζ − z
dζ,

for z ∈ C \ π(γ ), |w| > R. Then

(4) �(z, w) � (log w)
1

2πi

∫
γ

dζ

ζ − z
+ 1

2πi

∫
γ

log(1 − η/w)

ζ − z
dζ

� n log(w) + 1

2πi

∫
γ

log(1 − η/w)

ζ − z
dζ,

where n enters here as the winding number of π(γ ) about the point z.
Fix w, |w| > R. We calculate the integral in (4) by applying again the residue

theorem to �. We assume first that � does not branch over z. Then the n functions
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wj are locally analytic near z and we get

(5) �(z, w) � n log(w) +
n∑

j�1

log(1 − wj(z)

w
).

By continuity, (5) holds as well if � branches over z.
We now define

(6) F (z, w) � e�(z,w), z ∈ ω, |w| > R.

Even though log(w) in (4) is only defined up to an integer multiple of 2πi,
F(z, w) is unambiguously defined. Combining (5) and (6), we get

F(z, w) � wn
n∏

j�1

(1 − wj(z)

w
) �

n∏
j�1

(w − wj(z))(7)

� wn − A1(z)w
n−1 + A2(z)w

n−2 + · · · + (−1)nAn(z)

for z ∈ ω, |w| > R.
Thus F is a single-valued analytic function in ω × {|w| > R} that extends

to be analytic on ω × C as a monic polynomial in w of degree n � n(π(γ ), z)

with coefficients being bounded analytic functions in ω. Moreover, this extension
vanishes precisely on � ∩ π−1(ω).

One further consequence of the existence of � is the following condition: Let
� be a polydisk containing γ , and let ψ(ζ, η) and σ(ζ, η) be analytic functions
on �. Then

(8)

∫
γ

ψ(ζ, η)dζ + σ(ζ, η)dη � 0.

This is because � must be contained in �, and so ψ(ζ, η)dζ + σ(ζ, η)dη is a
holomorphic one-form on � ∪ γ with γ � b�. It is clear that it is equivalent to
say that the integral vanishes if ψ and σ are replaced by polynomials ζ and η, i.e.,
that

(9)

∫
γ

P (ζ, η)dζ + Q(ζ, η)dη � 0

for all polynomials P and Q. We shall refer to either (8) or (9) as the moment
condition on γ . We thus have established the necessity part of the following
result.

Theorem 19.1. Let γ be an oriented simple closed curve in C2 with a finite number
of self-intersections. Then a necessary and sufficient condition that there exists a
bounded analytic variety � in C2 with b� � ±γ is that γ satisfies (9) (moment
condition).

The complete proof of this theorem involves a considerable number of technical
details, and we shall refer the reader to the paper of Harvey and Lawson [HarL2]
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for these. Here we shall present a sketch that we hope conveys the essential aspects
of the construction.

The orientation of an analytic variety in C2 is always taken to be the “natural”
one induced by the complex structure. It clear that if a simple closed oriented
curve γ satisfies the moment condition, then, if we reverse the orientation of γ ,
the moment condition is still satisfied. This explains the need for the “±” in the
statement of the theorem.

We define U0 to be the unbounded component of C \ π(γ ) and denote by
U1, U2, . . . the bounded components of C \ π(γ ). We put

U �
⋃
j≥0

Uj ,

that is, U � C \ π(γ ). For each Uj , j � 0, 1, . . ., set nj equal to the winding
number of π(γ ) about points of Uj . We have seen above that nj also equals
the number of sheets of � over Uj , a nonnegative integer. Thus we have nj ≥
0, for j � 0, 1, . . . .

Now we shall assume (8) and our objective is to produce an analytic variety �

such that γ � b�, in the sense of Stokes’ Theorem, after a possible change of
orientation of γ .

Fix R > 0 as above. We define

�(z, w) � 1

2πi

∫
γ

log(w − η)

ζ − z
dζ

for z ∈ U and |w| > R, and also

F(z, w) � e�(z,w),

for z ∈ U and |w| > R. For each i, i � 0, 1, . . ., we define Fi as the restriction
of F to Ui × {|w| > R}. Thus each Fi is a single-valued non vanishing analytic
function on Ui × {|w| > R}. Splitting � in (4), we note that the second integral in
(4) is analytic in w near∞ and takes on the value 0 at w � ∞. Hence the Laurent
decomposition of Fi has the form

Fi(z, w) �
ni∑

k�−∞
fik(z)w

k

for (z, w) ∈ Ui × {|w| > R}, with fik holomorphic functions on Ui .
We need the following result: Let �+ and �− be two plane domains with

common boundary arc α, where α is oriented positively with respect to �+. (When
�+ and �− are components of C \ π(γ ), this means that as z moves from �−

to �+ across α, the winding number of π(γ ) about z increases by 1.) Let g be a
C2-smooth function defined on α. Put

G+(z) � 1

2πi

∫
α

g(ζ )dζ

ζ − z
, z ∈ �+

and

G−(z) � 1

2πi

∫
α

g(ζ )dζ

ζ − z
, z ∈ �−.
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See the book of Muskhelishvili [Mu] for a discussion of the following.

Plemelj’s Theorem. G+ and G− have continuous extensions to α, again denoted
G+ and G−. On α we have

(10) G+(z) − G−(z) � g(z), z ∈ α.

Lemma 19.2. Let i, j be indices such that the regions Ui, Uj have a common
smooth (open) boundary arc α, with α positively oriented for Uj . Then:
(i) Fi has a continuous extension to (Ui∪α)×{|w| > R} and Fj has a continuous

extension to (Uj ∪ α) × {|w| > R};
(ii) Fj (a, w) � (w − f (a))Fi(a, w), a ∈ α, |w| > R, where (a, f (a)) is the

unique point on γ over a.

Proof. We note that the hypothesis, that α is positively oriented for Uj , is equiv-
alent to the identity nj � ni + 1 for the winding numbers. We represent γ by the
equation:

η � f (ζ ), ζ ∈ π(γ ).

Fix w with |w| > R. For z ∈ Ui we have

�(z, w) � 1

2πi

∫
γ

log(w − η)

ζ − z
dζ � 1

2πi

∫
π(γ )

log(w − f (ζ ))

ζ − z
dζ.

π(γ ) is the union of α and a complementary curve β. So

(11) �(z, w) � 1

2πi

∫
α

log(w − f (ζ ))

ζ − z
dζ + 1

2πi

∫
β

log(w − f (ζ ))

ζ − z
dζ.

Now f is smooth on α and a is at a positive distance from β. It follows that the
integral over β is continuous (across α) at a. Put

Li � lim
z∈Ui→a

�(z, w), Lj � lim
z∈Uj→a

�(z, w).

Plemelj’s theorem, combined with (11), gives (i) and

Lj − Li � log(w − f (a)).

Exponentiating, we get

exp(Lj )

exp(Li)
� w − f (a),

so exp Lj � (exp Li)(w − f (a)). Thus

lim
z∈Uj→a

Fj (z, w) � lim
z∈Ui→a

Fi(z, w)(w − f (a)).

This gives (ii) and we are done.

We continue with the notation of Lemma 19.2. Let � be a domain in the z-plane
and α a boundary arc of �. Denote by A the ring of functions analytic on � and
continuous on � ∪ α.



160 19. Boundaries of Analytic Varieties

Lemma 19.3. Let G be a function continuous on (� ∪ α) × {|w| > R} and
analytic on � × {|w| > R}, and let N be a nonnegative integer such that

(12) G(z, w) �
N∑

k�−∞
gk(z)w

k z ∈ � ∪ α, |w| > R,

where each gk lies in A. Assume that for each a ∈ α, the function w �→ G(a, w) is
rational of order at most M , for some positive integer M . Then there exist functions

P(z, w) �
k∑

j�0

pj (z)w
j , Q(z, w) �

l∑
j�0

qj (z)w
j

with each pj ∈ A, qj ∈ A, such that G � P/Q on � × {|w| > R}.
Proof. By shrinking α we may assume that there is an integer l, 0 ≤ l ≤ M , such
that, for each a ∈ α, G(a, w) can be written as a quotient of two relatively prime
polynomials in w such that the denominator is always of degree exactly equal to l.

A is an integral domain, and we form the field of quotients of A, denoted F .
The space F l+1 of (l + 1)-tuples (t1, . . . , tl+1) of elements of F is then an (l +
1)-dimensional vector space over F .

We denote by W the subspace of F l+1 spanned by the set of vectors

(g−i , g−i−1, . . . , g−i−l), i � 1, 2, . . . ,

where the gn are the Laurent coefficients of G.

Claim. W has dimension < l + 1.

Proof of Claim. If dim W ≥ l + 1, then we can choose l + 1 positive integers
i1, i2, · · · , il+1 such that the vectors

(g−iν , g−iν−1, · · · , g−iν−l), ν � 1, 2, · · · , l + 1,

are linearly independent in F l+1. Then the determinant

D �

∣∣∣∣∣∣∣∣∣
g−i1 g−i1−1 · · · g−i1−l

g−i2 g−i2−1 · · · g−i2−l

...
...

...
...

g−il+1 g−il+1−1 · · · g−il+1−l

∣∣∣∣∣∣∣∣∣
in A is nonzero.

On the other hand, fix a ∈ α. By the choice of l above, there exist p0
1, . . . , p0

k

and q0
1 , . . . , q0

l in C such that

k∑
j�0

p0
jw

j � (

N∑
s�−∞

gs(a)ws)(

l∑
j�0

q0
j w

j ), |w| > R,

with q0
l �� 0. Since the coefficients of wj on the left-hand side vanish for j < 0,

in particular for j � −iν, j � −iν − 1, · · · , j � −iν − l, ν � 1, 2, . . . , l + 1,
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we have the system of l + 1 equations:

g−iν (a)q0
0 + g−iν−1(a)q0

1 + · · · + g−iν−l(a)q0
l � 0, ν � 1, 2, . . . , l + 1.

The coefficient matrix of this system has a vanishing determinant, since q0
l �� 0.

Thus D(a) � 0.
This holds for each a ∈ α. Since D is analytic on � and continuous on � ∪ α,

it follows that D � 0 in A. This is a contradiction and so dimW < l + 1, as
claimed.

Because of the claim, there exists (C0, C1, · · · , Cl) ∈ F l+1 with not all Cj � 0,
such that

(13) g−iC0 + g−i−1C1 + · · · + g−i−lCl � 0, i � 1, 2 . . . .

Since each Cj ∈ F , it follows by clearing the denominators that there exist qj ∈ A,
j � 0, 1, · · · , l, not all zero, so that

(14) g−iq0 + g−i−1q1 + · · · + g−i−lql � 0, i � 1, 2 . . . .

But (14) is equivalent to

(15) (

N∑
−∞

gnw
n)(

l∑
j�0

qjw
j ) �

k∑
j�0

pjw
j ,

for some functions p0, p1, · · · , pk ∈ A. This yields Lemma 19.3.

Lemma 19.4. F(z, w) � 1 for z ∈ U0, |w| > R, where U0, as earlier, is the
unbounded component of C \ π(γ ).

Proof. Recall that R can be chosen so that γ is contained in the polydisk � �
{(ζ, η) : |ζ | < R, |η| < R}. Fix z, w in C such that |z| > R and |w| > R. Then,
with an appropriate choice of a branch of the logarithm,

log(w − η)

ζ − z

is an analytic function of (ζ, η) on �. By the moment condition (8), then,∫
γ

log(w − η)

ζ − z
dζ � 0.

This holds for all z with |z| > R, and hence, by analytic continuation, for all
z ∈ U0. Thus �(z, w) � 0, for z ∈ U0, |w| > R. Hence F(z, w) � 1, for
z ∈ U0, |w| > R, as desired.

Lemma 19.5. Fix i ≥ 0. Then Fi is the quotient of two polynomials in w with
coefficients analytic for z ∈ Ui , |w| > R. In particular, Fi has a meromorphic
continuation to Ui × C.

Proof. The statement for i � 0 follows from Lemma 19.4.
Now consider the situation when Uk and Uj are adjacent components of C \

π(γ ) with common boundary arc α. Suppose, for definiteness, that α is positively
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oriented with respect to Uj , that is, nj � nk + 1. We want to show that if the
conclusion of the lemma holds for one of Fj , Fk , then it holds for the other.
By Lemma 19.2 we know that both Fk and Fj have continuous extensions to α.
Suppose that we know that Fj is rational in w on Uj . It follows by continuity that
Fj is rational in w on α. By Lemma 19.2, Fj (a, w) � (w − f (a))Fk(a, w), for
all a ∈ α, |w| > R. Therefore, Fk(a, w) � Fj (a, w)/(w − f (a)) is rational in
w. Now Lemma 19.3 yields that Fk is rational in w on Uk . In the same way, one
shows that if Fk is rational in w on Uk , then Fj is rational in w on Uj .

For any s we choose a sequence of indices

i0 � 0, i1, . . . , im−1, im � s

such that Uij−1 and Uij share a common boundary arc for j � 1, 2, · · · , s. Now
starting from U0 and applying the previous paragraph, it follows by induction on
the length m of the sequence that Fs is rational in w on Us .

Definition 19.1. Let � be an open set in Cn. A holomorphic chain of complex
dimension k in � is a formal sum

∑
njVj , where the branches {Vj } constitute a

locally finite family of irreducible analytic subvarieties of complex dimension k

in � and the nj are nonzero integers, possibly negative.

A holomorphic chain can be thought of as an analytic variety with additional
structure; namely, a holomorphic chain has branches Vj that carry a multiplicity
|nj | and an orientation given by the sign of nj . The variety � that we seek in
Theorem 19.1 should be more precisely viewed as a holomorphic chain. The set of
holomorphic chains in � forms an abelian group under addition of the formal sums
giving the chains. If F is a meromorphic function on �, then we can associate a
holomorphic chain of complex dimension n − 1 in � to F (also known as “the
divisor of F ”); this chain is the sum of branches of the zero set of F taken with
positive orientation and appropriate multiplicity and the branches of the pole set
of F taken with negative orientation and appropriate multiplicity.

Sketch of a Proof of Theorem 19.1.
For each j ≥ 0 we have

Fj (z, w) � Pj (z, w)

Qj(z, w)

for z ∈ Uj , where Pj is a monic polynomial in w of degree Nj , say, and Qj is a
monic polynomial in w of degree Zj , say. The “crossing over the edge” argument
of Lemma 19.5 shows that Nj − Zj � nj , since both the difference Nj − Zj and
the winding number nj change by 1 when we cross an edge α. We let Vj be the
holomorphic chain of complex dimension 1 associated to Fj in Uj × C . (This
means that the zero set of Pj is taken with the positive orientation and with the
multiplicity induced by the order of the zero, and that the zero set of Qj is taken
with the negative orientation and the appropriate multiplicity.)
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Let α be an edge between Uj and Uk . We want to show that Vj and Vk “patch
together” nicely over α. We can assume that α is positively oriented with respect
to Uj , i.e., nj � nk + 1. We know that Pj (z, w), Qj(z, w), Pk(z, w), Qk(z, w)

extend continuously in z to α. We first define an exceptional set of points E of
α as the set of points z ∈ α, where the discriminant of any of the four functions
Pj (z, w), Qj (z, w), Pk(z, w), Qk(z, w) (as polynomials in w) vanishes, or where
Pj (z, w), Qj (z, w) are not relatively prime, or where Pk(z, w), Qk(z, w) are not
relatively prime .

Fix z ∈ α \ E. Since Fj (z, w) � (w − f (z))Fk(z, w), we get

Pj

Qj

� (w − f (z))
Pk

Qk

as rational functions of w. Therefore,

Pj (z, w)Qk(z, w) � (w − f (z))Pk(z, w)Qj(z, w),

and so the linear factor (w − f (z)) divides Pj (z, w)Qk(z, w). Hence there are
two cases: (a) Qj(z, w) � Qk(z, w) and Pj (z, w) � (w − f (z))Pk(z, w) or (b)
Qj(z, w)(w − f (z)) � Qk(z, w) and Pj (z, w) � Pk(z, w). These two cases are
similar, and we shall treat case (a) in detail.

First we note that the fact that case (a) holds at z implies that it holds for z′ ∈ α

near z. Indeed, the linear factor (w− f (z)) divides Pj (z, w). It cannot also divide
Qk(z, w), for then it would divide Pk(z, w)Qj(z, w) and so it would also divide
Pk(z, w) or Qj(z, w). Hence Pj (z, w), Qj (z, w) or Pk(z, w), Qk(z, w) would
not be relatively prime, contradicting the choice of the set E. Thus (w − f (z))

does not divide Qk(z, w). Hence Qk(z, f (z)) �� 0. Therefore, Qk(z
′, f (z′)) �� 0

for z′ ∈ α near z. Hence (w − f (z′)) divides Pj (z
′, w) for z′ ∈ α near z.

We have, since Qj � Qk on α, that Zj � Zk . The corresponding coefficients
of w in Qk and Qj are continuous near α and analytic off of α. It follows that the
coefficients are analytic in a neighborhood of z ∈ α\E in C. It is then clear that
the zero sets of Qk and Qj patch together to form a variety over α.

Now, for z ∈ Ūj near a fixed point a ∈ α\E, we can factor Pj (z, w) into Nj

distinct linear factors in w with coefficients continuous in Ūj and analytic in Uj .
For z ∈ α, one of these factors is w−f (z). Hence one of the linear factors L(z, w)

(for z ∈ Uj ) of Pj (z, w) has w − f (a) as its “boundary value” at z ∈ α. Then
we can form locally on Ūj near a the function P̃ (z, w) � Pj (z, w)/L(z, w) and
argue (as before for Qk and Qj ) that the zero sets of P̃ and Pk “patch” over α to
form an analytic variety. Summarizing, we get that, over a point a ∈ α \ E, the
union of the closures of Vj and Vk patch together to give varieties without boundary
over α (Nk of them with positive orientation, Zk with negative orientation) together
with one variety (with positive orientation) with boundary {w � f (z)} over α .
This completes case (a). Case (b) is quite similar except that the one variety with
boundary in {w � f (z)} occurs with negative orientation.

Thus we have produced a global holomorphic chain � by patching the {Vj }.
Aside from the exceptional points on the arcs α separating the components {Uj },
our construction shows that locally, the boundary of � is γ , in the sense of Stokes’
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Theorem. For a complete proof, one still needs to show that the boundary of �

in the sense of Stokes’ Theorem is precisely equal to γ . In particular, one must
discuss the exceptional points. For these rather technical issues, we refer to the
original paper [HarL2].

Until now we have not used the hypothesis that γ is a single curve and we know
only that � is a finite union of branches each with positive or negative orientation.
Suppose, by way of contradiction, that � had more than one branch (irreducible
component). Consider an arc α on the boundary of the unbounded component U0.
Then, since the winding number changes by ±1 as we cross α, there is only one
of the irreducible components of � that contains limit points on the part of γ

over α. This means that one of the branches V of � has as its boundary a proper
compact subset τ of γ . In particular, τ is contained in a Jordan arc. The maximum
principle shows that V is contained in the polynomial hull of τ . But the proof of
Theorem 12.4 (basically, the argument principle) implies that τ is polynomially
convex. This is the desired contradiction!

Thus � is irreducible, i.e., it consists of a single branch whose boundary is
contained in γ . From this one can deduce that, by reversing the orientation of �

if necessary in order that the orientation of � be positive, b� � ±γ .

Remark. As noted in the proof, the argument used in Theorem 19.1 applies when
γ is only assumed to be a finite union of disjoint simple closed oriented curves, of
course satisfying the moment condition. The conclusion is then that there exists a
holomorphic chain V such that bV � γ .

Part 2

Theorem 19.1 is only a special case of a general result of Harvey and Lawson
[HarL2] that characterizes the compact odd-dimensional oriented real manifolds
M in Cn that bound analytic varieties V . These varieties are bounded sets such
that bV � M in the sense of Stokes’ Theorem.

There is an obvious necessary condition that bV � M: Suppose that V has
complex dimension p > 1; therefore, M has real dimension 2p − 1 > 1. For
each z ∈ M , the tangent space to M , Tz(M), is a real linear space of dimension
2p − 1.

Exercise 19.1. Show that Tz(M) contains a complex subspace of complex dimen-
sion p − 1 for each z ∈ M . [Since the pair (V , M) is a manifold with boundary,
V has a tangent space at z ∈ M that, being the limit of the (complex!) tangent
spaces of points of V \M , is also a complex linear space. Tz(M) is a subspace of
real codimension 1 in this complex linear space.]

The complex subspace of Tz(M) has the largest complex dimension possible
for a subspace of a real linear space of real dimension 2p − 1. This explains the
following terminology.
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Definition 19.2. M (of real dimension 2p − 1) is maximally complex if, for all
z ∈ M , Tz(M) contains a complex subspace of complex dimension p − 1.

We saw above that M is maximally complex if it bounds some V as above.
Another necessary condition (this one global) can be obtained from Stokes’ The-
orem. Let ω be a smooth (p, p − 1)-form on Cn such that ∂̄ω � 0. Hence
dω � ∂̄ω + ∂ω � ∂ω. Then, assuming that bV � M , Stokes’ Theorem gives∫
M

ω � ∫
V

dω � ∫
V

∂ω � 0, since ∂ω is of type (p + 1, p − 1) and so is
identically zero on the complex p-dimensional manifold V .

Definition 19.3. M satisfies the moment condition if
∫
M

ω � 0 for all (p, p − 1)

forms ω such that ∂̄ω � 0.

Exercise 19.2. Let ω be a smooth (1, 0)-form on C2. Then ∂̄ω � 0 if and only
if ω � Adz1 + Bdz2, with A, B entire functions on C2.

Hence, for n � 2, Definition 19.3 coincides with (8).
For p � 1, maximal complexity on M is vacuous and the appropriate condition

for the existence of V such that bV � M is the moment condition on M , as
we have indicated in Theorem 19.1. However, when p > 1, Harvey and Lawson
[HarL2] showed that these two obviously necessary conditions on M are indeed
equivalent, and each implies that there exists a V such that bV � M .

A complete proof of the Harvey–Lawson [HarL2] result involves a considerable
number of technical details. In particular, as in the case when M is a real curve,
the variety V must be taken as having an orientation and a multiplicity. Thus V

should be viewed as a holomorphic chain. Moreover, there are technical problems
in establishing the validity of Stokes’ Theorem in the presence of unavoidable
possible singularities of V and also of singularities in the way in which M bounds
V (even when both M and V are smooth). Harvey and Lawson [HarL2] overcome
these difficulties by working with currents, that is, they define a holomorphic chain
to be a current and they take the statement bV � M in the sense of currents. We
shall not define currents here. Instead, we shall only give an incomplete discussion
of a simple case of a three-dimensional manifold in C3.

Theorem 19.6. Let M be a compact connected oriented three-dimensional sub-
manifold of C3. Suppose that M is maximally complex or, equivalently, that M

satisfies the moment condition. Then there exists a (bounded) holomorphic chain
V of complex dimension 2 in C3 \ M such that bV � M .

Rather than give a complete proof of this theorem, we shall indicate how the
details of the proof of Theorem 19.1 formally carry over to this higher dimensional
case. A principal point here is that the Cauchy integral of the previous proof is
replaced by the Bochner–Martinelli integral in this case.

We denote a point Z ∈ C3 by Z � (z, w), where z � (z1, z2) ∈ C2, w ∈ C,
and π : C3 → C2 is the projection π(Z) � z. Let M � π(M) ⊆ C2. Then
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M is an immersed 3-manifold with an orientation inherited from M . We write
U � C2 \ M � ∪j≥0Uj , where the Uj are the connected components of U and
U0 is the unbounded component.

Recall that the Bochner–Martinelli kernel was defined in (13.9). We shall make
a minor change in notation and write KBM(ζ, z) for the (n, n − 1)-form (in ζ )

defined in (13.9) multiplied by the appropriate normalizing constant (depending
only on n), so that ∫

S(z,r)

KBM(ζ, z) � 1,

where S(z, r) denotes the sphere centered at z of radius r > 0. For the remainder
of this chapter we shall take n � 2, so that KBM(ζ, z) will be a (2, 1)-form in
C2. The pull back π∗(KBM(ζ, z)) is a (2, 1)-form in C3. We can integrate these
3-forms over M and M , respectively

First we want to define the index I (z, M) of a point z ∈ C2 \M with respect
to M. This is the direct analogue of the winding number in the complex plane.
We set

I (z, M) �
∫

M
KBM(ζ, z),

for z ∈ C2 \M . We claim that this is an integer. To see this, choose a small ball
of radius r disjoint from M and centered at z and thus with boundary S(z, r) .
Then, for some integer N , M is homologous to NS(z, r) in C2 \ {z}, and, since
dζKBM(ζ, z) � 0 in C2 \ {z}, we have, by Stokes’ Theorem, that∫

M
KBM(ζ, z) � N

∫
S(z,r)

KBM(ζ, z) � N.

This gives the claim. Since I (z, M) is clearly continuous in z, we conclude that
I (z, M) is constant (and integer-valued) on each component Uj .

Finally, we claim that I (z, M) � 0 for z ∈ U0. It suffices to show this for large
z. If z lies outside a large ball containing M, then M is homologous to 0 inside
that ball and the above application of Stokes’ Theorem yields that I (z, M) � 0.

We now take R such that |w| > R for all (z, w) ∈ M and define

(16) �(z, w) �
∫

M

log(w − η)π∗(KBM(ζ, z))

for z ∈ U and |w| > R, where (ζ, η) gives a point of M . (This is completely
analogous to the definition in (3), where the Cauchy integral is used for the one-
dimensional case.) More precisely, the logarithm in (16) is defined, for a fixed w,
only up to integer multiples of 2πi. Hence, since the index is also an integer, � is
well-defined up to integer multiples of 2πi.

Thus we can put

F(z, w) � e�(z,w),

to get a single-valued function for z ∈ U and |w| > R . For each i, i � 0, 1, . . .,
we define Fi as the restriction of F to Ui × {|w| > R}.
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In the previous case, analyticity of the Cauchy kernel in the z variable made it
obvious that � is analytic. It the present case, since the Bochner–Martinelli kernel
is not analytic in z, it is no longer obvious that � is analytic on U × {|w| > R}.
However, this is exactly where the hypothesis that M is maximally complex enters
and yields the fact that indeed � is analytic. This follows from the following
proposition.

We shall write K for the Bochner–Martinelli kernel KMB in C2.

Proposition 19.7. Let ψ(ζ, η) be a function analytic on a neighborhood of M in
C3, where ζ � (ζ1, ζ2). Put

F(z) �
∫

M

ψ(ζ, η)π∗(K(ζ, z)), z ∈ U.

Then F is analytic on U .

Proof. We regard K as defined on C2 × C2 \ {z � ζ }. Here

(17) K(ζ, z) � (
ζ̄1 − z̄1

|ζ − z|4 dζ̄2 − ζ̄2 − z̄2

|ζ − z|4 dζ̄1) ∧ dζ1 ∧ dζ2.

So ∂̄zK(ζ, z) is a form on C2 × C2 \ {z � ζ } of type (2, 1) in ζ and type (0, 1) in
z. We define a form K1 on C2 × C2 \ {z � ζ } that is of type (2, 0) in ζ and type
(0, 1) in z by

K1(ζ, z) � (
ζ̄2 − z̄2

|ζ − z|4 dz̄1 − ζ̄1 − z̄1

|ζ − z|4 dz̄2) ∧ dζ1 ∧ dζ2.

Then ∂̄ζK1(ζ, z) is a form on C2 ×C2 \ {z � ζ } of type (2, 1) in ζ and type (0, 1)

in z and so of the same type as ∂̄zK(ζ, z).

Lemma 19.8. −∂̄ζK1(ζ, z) � ∂̄zK(ζ, z).

Proof. See Appendix A13.

Lemma 19.9. For (ζ, η) ∈ M (and z ∈ U fixed)

ψ(ζ, η)π∗(∂̄ζK1(ζ, z)) � d(ψ(ζ, η)π∗(K1(ζ, z))).

Proof. Since the map π and the function ψ are holomorphic, we have

ψ(ζ, η)π∗(∂̄ζK1(ζ, z)) � ∂̄ζ (ψ(ζ, η)π∗(K1(ζ, z)))

� ∂̄ζ,η(ψ(ζ, η)π∗(K1(ζ, z))).

This holds on the open set W of C3 containing M , where ψ is defined. On W we can
write the exterior derivative d as the sum d � ∂̄ζ,η + ∂ζ,η. We have ∂ζ,η � ∂ζ + ∂η.

Since π∗(K1(ζ, z)) is of type (2, 0) in ζ , we have ∂ζ (ψ(ζ, η)π∗(K1(ζ, z))) � 0.
Hence we get on W :

ψ(ζ, η)π∗(∂̄ζK1(ζ, z)) � d(ψ(ζ, η)π∗(K1(ζ, z))) − (∂ηψ) ∧ π∗(K1(ζ, z)).
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Thus it remains to show that α � (∂ηψ) ∧ π∗(K1(ζ, z)), a (3,0)-form in (ζ, η),
is zero when restricted to M . This follows from the fact that M is maximally
complex, as the next lemma shows.

Lemma 19.10. Let α be a form of type (3, 0) defined on a neighborhood of a
maximally complex real 3-manifold M in C3. Then the restriction of α to M is
identically zero.

Proof. We need only verify this at the tangent space Tx(M) at a single point
x ∈ M . By a linear change of variable we may assume, by the maximal complexity
of M , that Tx(M) � {(z1, z2, z3) ∈ C3 : Im(z2) � 0, z3 � 0}. We have
α(x) � Adz1 ∧ dz2 ∧ dz3, since α is a (3, 0)-form. Then the restriction of α(x)

to Tx(M) vanishes since dz3 vanishes on Tx(M), and this gives Lemma 19.10.
By (17) and Lemma 19.8, then, we have

∂̄zF (z) �
∫

M

ψ(ζ, η)∂̄zπ
∗(K(ζ, z))(18)

�
∫

M

ψ(ζ, η)π∗(∂̄zK(ζ, z)) � −
∫

M

ψ(ζ, η)π∗(∂̄ζK1(ζ, z)).

By Lemma 19.9, we get

(19) ∂̄zF (z) � −
∫

M

d(ψ(ζ, η)π∗(K1(ζ, z))) � 0,

by Stokes’ Theorem. Thus F is analytic.

For additional simplicity in the exposition we shall assume that π maps M one-
one to M except over the self-intersection set � of M, which we assume to be
a compact subset of M of finite two-dimensional measure. Thus we can write M

over M \ � as a graph η � f (ζ ) for ζ ∈ M \ �. Consequently, we can also
write

�(z, w) �
∫

M
log(w − f (ζ ))KBM(ζ, z)

for z ∈ U and |w| > R.
We shall need to “cross over a boundary” between two adjacent components

Uj , Uk . For this we use the analogue of Plemelj’s theorem for the Bochner–
Martinelli kernel. This can be formulated as follows. Let �+ and �− be two
domains in C2 with common boundary set α, where α is a smooth three-
dimensional manifold, oriented positively with respect to �+. (About M, this
means that as z moves from one component �− of U to another �+ across M,
the index of M about z increases by 1.) Let g be a C2-smooth function defined on
α. Put

G+(z) �
∫

α

g(ζ )KBM(ζ, z), z ∈ �+
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and

G−(z) �
∫

α

g(ζ )KBM(ζ, z), z ∈ �−

See Appendix B of [HarL2] for the proof of the following generalization of
Plemelj’s formulae.

Jump Theorem. G+ and G− have continuous extensions to α, again denoted
G+ and G−. On α we have

G+(z) − G−(z) � g(z), z ∈ α.

We have chosen notation so that the analogue of Lemma 19.2 is valid in the
present setup with the only change being that now the common boundary set α is
a smooth 3-manifold instead of a real curve; otherwise, the statement and proof
are the same. With the same change, Lemma 19.3 carries over.

To verify the analogue of Lemma 19.4 we need that

�(z, w) �
∫

M

log(w − η)π∗(KBM(ζ, z)) � 0

for large w and z. We have noted above that � is analytic on U0. This means that, for
w fixed with |w| sufficiently large, z �→ �(z, w) is analytic in C2 outside of some
large ball. In particular, for z2 fixed with |z2| sufficiently large, λ �→ �(λ, z2, w)

is an entire function of λ ∈ C. It is clear, by looking at the integral defining �, that
�(λ, z2, w) → 0 as λ → ∞, for z2, w fixed as above. By Liouville’s theorem,
we conclude that �(λ, z2, w) � 0 for z2, w sufficiently large and for all λ. By
analytic continuation it follows that � ≡ 0 on U0. This gives Lemma 19.4 in our
setting.

From this point on we conclude the argument by repeating the proof of Theorem
19.1. As in Lemma 19.5, the Fj have meromorphic extensions to Uj × C. A
holomorphic chain Vj is associated to each function Fj , and these Vj are pasted
together over common boundaries of the Uj , Uk . We refer the reader to the work
of Harvey and Lawson [HarL2] for the full details of the proof of this beautiful
theorem.

To conclude this chapter we shall sketch a single application of the general
theorem of Harvey and Lawson. Let W be an analytic submanifold of C3 \ K of
complex dimension 2, where K is a compact subset of C3. Then W extends to be
a subvariety of all of C3. To see this, we let M be the intersection of W with a
sphere of large radius centered at the origin. Then M is maximally complex of real
dimension 3. This is because locally M bounds the part W1 of W lying outside of
the sphere. By Theorem 19.6, M bounds a subvariety V inside the sphere. Finally,
one can show that V and W1 patch together across the sphere to give a global
variety in C3.



20

Polynomial Hulls of Sets Over the
Circle

I Introduction

Let X be a compact set in Cn. Denote by π the projection (z1, · · · , zn) �→ z1 that
maps Cn to the complex plane C. π(X) is a compact set in C, and π(X̂) is another
such set. Of course,

(1) π(X̂) ⊇ π(X),

and it can happen that

(2) π(X̂) �� π(X).

Example 20.1. X � the torus T 2 � {(eiθ1 , eiθ2) : θ1, θ2 ∈ R}. Then X̂ � the
closed bidisk �2, so π(X̂) � � while π(X) � the unit circle �.

It also can happen that even though X̂ is strictly larger than X, we have

(3) π(X̂) � π(X).

Example 20.2. X � the sphere {|z1|2 + |z2|2 � 1} in C2. Then X̂ is the ball
{|z1|2 + |z2|2 ≤ 1} and π(X̂) � {|z1| ≤ 1} � π(X).

If we are in the case of (2), we may consider a connected component W of the
open set C \ π(X) with the property that there exists z0 � (z0

1, · · · , z0
n) ∈ X̂ with

z0
1 � π(z0) ∈ W . In that case,

(4) π(X̂) ⊇ W.

Indeed, the following fact was verified in the first paragraph of the proof of Theorem
11.9.

Lemma 20.1. Let A be a uniform algebra on a compact space X. Let f ∈ A and
let W be a component of C \ f (X). If f takes a value λ0 at a point of M, where
λ0 ∈ W , then f (M) ⊇ W .

Exercise 20.1. Show that (4) follows from Lemma 20.1.

170
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Suppose that X is a compact set in Cn such that (2) holds. Consider a component
W of C \ π(X) such that π(X̂) ⊇ W . If K is a compact subset of W , we put

π−1(K) � {z ∈ X̂ : π(z) ∈ K}.
If π−1(K) is non-empty, then π−1(K) is a closed subset of X̂ and π maps π−1(K)

onto K , in view of (4). So we may think of π−1(K) as the portion of X̂ that lies
over K .

We fix a closed disk � ⊆ W . Put Y � π−1(∂�).

Exercise 20.2. Ŷ � π−1(�).

We use this fact as follows: If we can discover analytic structure in Ŷ , this
provides us with analytic structure for that portion of X̂ which lies over �. On the
other hand, Y is a set lying over the circle ∂�. One may hope that the fact that Y

lies over a circle can be useful in the study of Ŷ , and this will turn out to be true.
We begin by taking n � 2 and Y a compact set in C2 lying over the unit circle

� � {λ ∈ C : |λ| � 1}. Clearly, to go from the unit circle to an arbitrary circle
is a minor matter. For each λ ∈ �, we put

Yλ � {w ∈ C : (λ, w) ∈ Y }.
Yλ is a compact set in the w-plane. We shall call it the fiber over λ. Strictly speaking,
the fiber of the map π over λ is

{(λ, w) : w ∈ Yλ}.
We denote by F the space of all functions f bounded and analytic on {|λ| < 1}
such that

(5) f (λ) ∈ Yλ for a.a. λ ∈ �.

Claim. Fix f ∈ F . The graph of f ,

{(λ, f (λ)) : |λ| < 1},
is contained in Ŷ .

Proof. Let P be a polynomial in λ and w. Then g(λ) ≡ P(λ, f (λ)) ∈ H∞.
Also, for a.a. λ ∈ �, f (λ) ∈ Yλ; therefore

(6) |P(λ, f (λ))| ≤ ||P ||Y
for a.a. λ ∈ �. Hence

|g(λ0)| ≤ ess sup
�

|g| ≤ |P ||Y

for all λ0 in the open unit disk, i.e.,

|P(λ0, f (λ0))| ≤ ||P ||Y ,

i.e, (λ0, f (λ0)) ∈ Ŷ . This gives the claim.
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Theorem 20.2. Fix a compact set Y in C2 lying over �. Assume

(7) Yλ is convex for every λ ∈ �.

Then Ŷ \ Y equals the union of all graphs {(λ, f (λ)) : |λ| < 1} with f ∈ F .

Proof. Because of the claim just proved, it suffices to show that if (λ0, w0) ∈
Ŷ \ Y , then there exists f ∈ F with f (λ0) � w0.

We first take λ0 � 0. Since (0, w0) ∈ Ŷ , we may choose a probability measure
µ on Y such that, for each polynomial P(λ, w),

(8) P (0, w0) �
∫

Y

P (λ, w)dµ(λ, w).

Under the projection map π : (λ, w) �→ λ, µ “disintegrates” (see the Appendix)
in the sense that there exists a probability measure µ∗ on � � π(Y ), and for
a.a. λ-dµ∗ on � there exists a probability measure σλ on Yλ, such that, for all
f ∈ C(Y ), ∫

Y

f dµ �
∫

�

[∫
Yλ

f (λ, w)dσλ(w)

]
dµ∗(λ).

In view of (8), we have for n � 1, 2, · · · , 0 � ∫
Y

λndµ � ∫
�

λndµ∗(λ).
This implies, writing λ � eiθ for λ ∈ �, µ∗ � 1

2π
dθ . (Why?) So we have for

each f ∈ C(Y )

(9)

∫
Y

f dµ �
∫

�

[∫
Yλ

f (λ, w)dσλ(w)

]
1

2π
dθ.

We define

W(λ) �
∫

Yλ

wdσλ, λ ∈ �.

W is defined a.a. on � and lies in L∞(�, dθ). For n � 1, 2, . . . ,∫
�

W(λ)λn dθ

2π
�
∫

�

λn

[∫
Yλ

wdσλ

]
dθ

2π
�
∫

Y

λnwdµ � 0,

because of (8) and (9).
It follows that W ∈ H∞. For n � 0, the same calculation yields

W(0) �
∫

�

W(λ)
dθ

2π
�
∫

Y

wdµ � w0.

Thus W is the boundary value on � of a bounded analytic function on {|λ| < 1}
that takes the value w0 at 0.

Finally, since σλ is a probability measure on Yλ, for a.a. λ ∈ �,
∫
Yλ

wdσλ

can be approximated arbitrarily closely by convex combinations of finite point-
sets w1, · · · , wk in Yλ. Since Yλ is convex by hypothesis, and also is closed,∫
Yλ

wdσλ ∈ Yλ. Thus W(λ) ∈ Yλ for a.a. λ in �. Thus W ∈ F , and W(0) � w0,
as desired.
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Next fix λ0 in {|λ| < 1}. We shall reduce our problem to the previous case. We
put

χ(λ) � λ − λ0

1 − λ̄0λ
;

therefore, χ gives a homeomorphism of � onto �, and χ(λ0) � 0.
We define the set Y ′ over � by putting

Y ′ζ � Yχ−1(ζ ), ζ ∈ �.

Then Y ′ is compact. We verify that (0, w0) ∈ Ŷ ′. By the previous result, there exist
f ∈ H∞, f (0) � w0, and f (ζ ) ∈ Y ′ζ for a.a. ζ ∈ �. Putting g(λ) � f (χ(λ)),
we then see that g ∈ H∞, g(λ0) � w0, and g(λ) ∈ Yλ for a.a. λ in �, as desired.

Finally, fix (λ0, w0) in Ŷ with λ0 ∈ �.

Exercise 20.3. (λ0, w0) ∈ Y .

This exercise completes the proof that Ŷ \ Y � {(λ, f (λ)) : |λ| < 1, f ∈
F}.

Consistent with our earlier notation, we now define, for |λ| ≤ 1,

Ŷλ � {w ∈ C : (λ, w) ∈ Ŷ }.

Theorem 20.3. Let Y be a compact set in C2 lying over �. Assume again that
each fiber Yλ, λ ∈ �, is convex. Then each fiber Ŷλ, |λ| < 1, is convex.

Proof. Fix λ0, |λ0| < 1, and choose points w1, w2 ∈ Ŷλ0 . By Theorem 20.2,
there exist f1, f2 ∈ F with fj (λ0) � wj , j � 1, 2. Put

f � 1
2 (f1 + f2).

Then f is bounded and analytic on |λ| < 1 and, for a.a. λ ∈ �, f (λ) � 1
2 (f1(λ)+

f2(λ)) ∈ Yλ, since f1(λ) ∈ Yλ, f2(λ) ∈ Yλ, and Yλ is convex. Thus f ∈ F . It
follows that (λ0, f (λ0)) ∈ Ŷ . Thus 1

2 (w1+w2) � f (λ0) ∈ Ŷλ0 . So Ŷλ0 is convex,
as claimed.

Theorems 20.2 and 20.3 suggest the following question: Given a family of
convex sets Yλ in the complex plane, defined for each λ ∈ �, such that the set

Y � {(λ, w) ∈ C : λ ∈ �, w ∈ Yλ}
is compact—for example, each fiber Yλ, λ ∈ �, may be a line segment, a triangle, or
an ellipse—how can we explicitly describe the family of compact sets Ŷλ, |λ| < 1?
Or, equivalently, how can we explicitly describe the set Ŷ ? A tractable example
is given by the case where each Yλ is a closed disk. In the next section, we shall
study some examples of this case, and in the Notes we shall point out related, more
general, results.
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II Sets Over the Circle with Disk Fibers

We choose a continuous complex-valued function α: λ �→ α(λ), defined on �,
and we put

Y � {(λ, w) : λ ∈ �, |w − α(λ)| ≤ 1}.
Each Yλ is then a disk of radius 1.

Example 20.3. In the case α(λ) � λ, and therefore also in the case Y � {(λ, w) :
λ ∈ �, |w − λ| ≤ 1}, we claim that Ŷ � {(λ, w) : |λ| ≤ 1, |w − λ| ≤ 1}.

To see this, fix (λ0, w0) ∈ Ŷ . Put P(λ, w) � w − λ. Then P is a polynomial
and |P | ≤ 1 on Y . Hence |w0 − λ0| � |P(λ0, w0)| ≤ 1.

Conversely, fix (λ0, w0) with |w0 − λ0| ≤ 1. Consider the analytic disk �,
defined by w − λ � w0 − λ0, |λ| ≤ 1. The boundary ∂�, lying over �, is
contained in Y . If Q(λ, w) is any polynomial, the restriction of Q to � is analytic
and hence satisfies the maximum principle. Thus

|Q(λ0, w0)| ≤ max
∂�
|Q| ≤ max

Y
|Q|.

So (λ0, w0) ∈ Ŷ , and therefore we are done.

Exercise 20.4. Let α(λ) � 2λ̄, Y � {(λ, w) : |w − 2λ̄| ≤ 1}. Show that Ŷ \ Y

is empty. [Hint: Apply Theorem 20.2.]

Exercise 20.5. Let α(λ) � λ̄, Y � {(λ, w) : |w − λ̄| ≤ 1}. Show that Ŷ \ Y is
the analytic disk {|λ| < 1, w � 0}.

A simple condition which assures that Ŷ \ Y contains an open subset of C2

is the existence of a constant k such that |α(λ)| ≤ k < 1 for every λ in �.
Suppose that this holds and put Y � {(λ, w) : |λ| � 1, |w − α(λ)| ≤ 1}. Fix r ,
0 < r < 1 − k. Then for each λ ∈ �, the disk {|w| ≤ r} ⊆ Yλ, and it follows
that each “horizontal” disk: w � w0, |λ| ≤ 1, where |w0| ≤ r , is contained in Ŷ ,
and hence Ŷ does have interior in C2.

We now consider the following special case. Let P, Q be polynomials in λ such
that Q �� 0 on �, and assume that there exists k < 1 such that

(10a)

∣∣∣∣ P(λ)

Q(λ)

∣∣∣∣ ≤ k ∀λ ∈ �.

Assume also that

(10b) Each zero of Q in {|λ| < 1} is simple.

Put

Y �
{
(λ, w) : λ ∈ � and

∣∣∣∣w − P(λ)

Q(λ)

∣∣∣∣ ≤ 1

}
.
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In Theorem 20.5 below, we shall give an explicit description of Ŷλ for each λ in
{|λ| < 1}.

We can write

Q(λ) � Q0(λ)R(λ),

with

Q0(λ) �
n∏

i�1

λ − λi

1 − λ̄iλ
,

where λ1, λ2, · · · , λn are the zeros of Q in {|λ| < 1} and R is a rational function
with R(λ) �� 0 in {|λ| ≤ 1}. We put

(11) wj � − P(λj )

R(λj )
, j � 1, 2, · · · , n.

We let, as before, F denote the space of all functions f ∈ H∞ such that f (λ) ∈ Yλ

a.e. on �.

Lemma 20.4. F consists of all functions f on {|λ| < 1} that can be written in
the form

(12) f � P

Q
+ B

Q0

with B ∈ H∞, ||B||∞ ≤ 1, and

(13) B(λj ) � wj, 1 ≤ j ≤ n.

Proof. Suppose that f ∈ F . Define the function ζ by

f � P

Q
+ ζ.

Then ζ is meromorphic on {|λ| < 1} with a simple pole at each λj . Also,

ζ � f Q − P

Q
�
(

f Q − P

R

)
1

Q0
.

Put B � (f Q − P)/R. Then B ∈ H∞, B(λj ) � wj for each j and, for a.a.
λ ∈ �,

|B(λ)| �
∣∣∣∣ f Q − P

Q
(λ)

∣∣∣∣ |Q0(λ)| �
∣∣∣∣(f − P

Q
)(λ)

∣∣∣∣ ≤ 1.

Hence ||B||∞ ≤ 1. Thus

f � P

Q
+ B

Q0
,

where B satisfies (13) and ||B||∞ ≤ 1.
Conversely, suppose that f has the representation (12) for some B ∈ H∞ with

||B||∞ ≤ 1 and such that (13) holds. Then f is meromorphic on {|λ| < 1} with
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(possibly removable) singularities at the λj and is regular elsewhere on {|λ| < 1}.
We have

resλj

P

Q
� P(λj )

Q′(λj )
,

and

resλj

B

Q0
� B(λj )

Q′
0(λj )

� − P(λj )

R(λj )

1

Q′
0(λj )

� − P(λj )

Q′(λj )
,

j � 1, · · · , n. Hence resλj
f � 0 for all j . Since f has at each λj at most a simple

pole, it follows that λj is a removable singularity for f for all j . So f ∈ H∞.
Then, for almost all λ ∈ �,∣∣∣∣f (λ) − P(λ)

Q(λ)

∣∣∣∣ � ∣∣∣∣ B(λ)

Q0(λ)

∣∣∣∣ � |B(λ)| ≤ 1.

So f ∈ F , and we are done.

To motivate what follows, we shall briefly review the interpolation theory in the
disk developed by G. Pick and R. Nevanlinna early in the twentieth century.

Consider m distinct points z1, . . . , zm in {|z| < 1}. We ask for which m-tuples
of complex numbers β1, . . . , βm there exists F ∈ H∞ such that

(14) ||F ||∞ ≤ 1 and F(zj ) � βj , 1 ≤ j ≤ m.

For each set β1, · · · , βm we denote by M � M(z1, · · · , zm|β1, · · · , βm) the m×m

Hermitian matrix (
1 − βj β̄k

1 − zj z̄k

)m

j,k�1

.

Pick’s Theorem. Given β1, · · · , βm in C, there exists F ∈ H∞ satisfying (14)
if and only if the matrix M is positive semi-definite. Also, there exists F ∈ H∞

satisfying (14) and with ||F ||∞ < 1 if and only if the matrix M is positive definite.

We shall discuss this result in the Appendix.
Put � � {λ ∈ C : |λ| < 1 and λ �� λj for j � 1, · · · n}. We put, for λ ∈ �

and w ∈ C,

(15) D(λ, w) � det (M(λ1, · · · , λn, λ|w1, · · · , wn, w)),

where the wj are given by (11). Note that D is real-valued since M is Hermitian.
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Example 20.4. Take n � 2. Then

D(λ, w) �

∣∣∣∣∣∣∣∣∣∣∣

1 − w1w̄1

1 − λ1λ̄1

1 − w1w̄2

1 − λ1λ̄2

1 − w1w̄

1 − λ1λ̄
1 − w2w̄1

1 − λ2λ̄1

1 − w2w̄2

1 − λ2λ̄2

1 − w2w̄

1 − λ2λ̄
1 − ww̄1

1 − λλ̄1

1 − ww̄2

1 − λλ̄2

1 − ww̄

1 − λλ̄

∣∣∣∣∣∣∣∣∣∣∣
.

Exercise 20.6. For each n and each λ ∈ �, w ∈ C,

D(λ, w) � a|w|2 + bw + b̄w̄ + c,

where a, b, c are rational functions of λ, λ̄.

Now fix polynomials P, Q as above, with Q �� 0 on �, such that (10a) and
(10b) hold. Define wj by (11), 1 ≤ j ≤ n.

Theorem 20.5. For each λ ∈ �, we have

{w : D(λ, w) ≥ 0} is a nondegenerate closed disk, and(16)

Ŷλ �
{

P(λ)

Q(λ)
+ w

Q0(λ)
: D(λ, w) ≥ 0

}
.(17)

Remark. Formula (17) is the “explicit” description of Ŷ we have been aiming at.
Since the set {w : D(λ, w) ≥ 0} is a disk of positive radius, for each fixed λ ∈ �,
(17) yields that Ŷλ is a closed nondegenerate disk as well.

Proof. We fix λ ∈ � and put

Eλ � {w : D(λ, w) > 0}.

Claim. Eλ is nonempty.

Proof. Fix r < 1 − k. As we saw earlier, our hypothesis that |P/Q| ≤ k on
� implies that, for fixed w0 with |w0| ≤ r , the disk {w � w0, |λ| ≤ 1} lies in
Ŷ , and so the constant function w0 belongs to F . By Lemma 20.4, this yields the
existence of B0 ∈ H∞ such that

(18) B0(λj ) � wj, j � 1, · · · , n,

and

(19) w0 � P(ζ )

Q(ζ )
+ B0(ζ )

Q0(ζ )
, |ζ | < 1.

Then (19) holds a.e. on �. Hence we have

|B0(ζ )| �
∣∣∣∣w0 − P(ζ )

Q(ζ )

∣∣∣∣ ≤ |w0| +
∣∣∣∣ P(ζ )

Q(ζ )

∣∣∣∣ ≤ r + k
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for a.a. ζ ∈ �. Hence ||B0||∞ ≤ r + k < 1. Set w′ � (w0 − P(λ)/Q(λ))Q0(λ).
We then have B0(λj ) � wj , 1 ≤ j ≤ n and B0(λ) � w′. By Pick’s Theorem, it
follows that

(20) M(λ1, · · · , λn, λ|w1, · · · , wn, w′) is positive definite,

and hence D(λ, w′) > 0. The claim is proved.
Further, (20) implies that

(21) M(λ1, · · · , λn|w1, · · · , wn) is positive definite.

Now fix w with D(λ, w) > 0. Then the matrix M(λ1, · · · , λn, λ|
w1, · · · , wn, w) has all of its principal minors positive, because (20) shows this
for all but the (n + 1) × (n + 1) minor, which equals D(λ, w). It follows that
M(λ1, · · · , λn, λ|w1, · · · , wn, w) is positive definite.

By Pick’s Theorem, then, there exists B ∈ H∞, ||B||∞ < 1, with B(λj ) � wj ,
1 ≤ j ≤ n, and B(λ) � w. By Lemma 20.4, then

f � P

Q
+ B

Q0
∈ F,

and so

P(λ)

Q(λ)
+ w

Q0(λ)
∈ Ŷλ.

Assume next that D(λ, w) ≥ 0. By the claim, w � limn→∞ wn with
D(λ, wn) > 0. Letting n → ∞, we get that P(λ)

Q(λ)
+ w

Q0(λ)
∈ Ŷλ. Thus the

RHS (right-hand side) in (17) is contained in the LHS (left-hand side) in (17).
Finally, fix w ∈ Ŷλ. Then there exists f ∈ F with f (λ) � w and so, by

Lemma 20.4, there exists B ∈ H∞, ||B||∞ ≤ 1, B(λj ) � wj , 1 ≤ j ≤ n with
f � P/Q + B/Q0. We put B(λ) � w′. Then

w � f (λ) � P(λ)

Q(λ)
+ B(λ)

Q0(λ)
� P(λ)

Q(λ)
+ w′

Q0(λ)
.

Also, by Pick’s Theorem, M(λ1, · · · , λn, λ|w1, · · · , wn, w′) is positive semi-
definite. Hence D(λ, w′) ≥ 0. So w ∈ RHS in (17), and therefore LHS ⊆
RHS.

Thus LHS = RHS and (17) holds. Also, the claim shows that {w : D(λ, w) ≥ 0}
is nondegenerate, so (16) also holds. We are done.

Theorem 20.5 leaves open the description of the fibers Ŷλ for λ �∈ �. The final
result in this chapter fills this gap.

Corollary 20.6. The fibers {Ŷλ : |λ| < 1} form a continuously varying family of
nondegenerate closed disks.

Proof. We know that the fibers are nondegenerate since Ŷλ ⊇ {|w| ≤ 1 − k}
for all λ with |λ| < 1. Fix b in the open disk and suppose that {zν} is a sequence
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in � approaching b. By Theorem 20.5, the fiber for each zν is a closed disk Dν .
By the compactness of Ŷ , after passing to a subsequence, these disks converge to
a nondegenerate disk E ⊆ Ŷb. Without loss of generality, we may assume that the
disks converge for the original sequence.

Claim. E � Ŷb. Let w ∈ Ŷb. By Theorem 20.2, there exists f ∈ F such that
f (b) � w. Also, f (zν) ∈ Dν . Since limν→∞ f (zν) � f (b), we conclude that
w � f (b) ∈ E. This shows that E ⊇ Ŷb and gives the claim.

Thus we have that the fiber Ŷb is a nondegenerate disk and that for every sequence
{zν} in � there is a subsequence whose fibers converge to Ŷb. This yields the desired
continuity of the fibers.
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Areas

We begin with a theorem that gives a lower bound on the area of the spectrum of
a member of a uniform algebra. Let A be a uniform algebra on the compact space
X with maximal ideal space M . Let φ ∈ M and let µ be a representing measure
supported on X for φ. We can view elements of A as continuous functions on M .

Theorem 21.1. Let f ∈ A and suppose that φ(f ) � 0. Then[
π

∫
|f |2 dµ ≤ area(f (M)).

]

Applied to the disk algebra, this says that, for a function f in this algebra with
f (0) � 0, we have 1

2

∫ |f |2 dθ ≤ area(f (D)). Or, writing f (z) � ∑∞
1 anz

n,
we get π

∑∞
1 |an|2 ≤ area(f (D)). This can be compared with the classi-

cal area formula
∫
D
|f ′|2dx dy � area-with-multiplicity(f (D)), which gives

π
∑∞

1 n|an|2 � area-with-multiplicity(f (D)).
For the proof of the theorem we need two lemmas. The first is an elegant com-

putation due to Ahlfors and Beurling [AB]. The supremum of a function g over a
compact set X is denoted by ||g||X.

Lemma 21.2. Let K be a compact subset of the plane, and set

F(z) �
∫ ∫

K

1

ζ − z
dudv, where ζ � u + iv.

Then F is continuous on the plane and ||F ||K ≤ (π area(K))
1
2 .

Proof. The continuity of F is a consequence of the fact that the convolution of
a local L1 function with a bounded function of compact support is continuous.
To estimate F(z), we may assume, by a translation, that z � 0. Then, by a
rotation we may assume that F(0) is real and positive. Writing ζ � reiθ , we have
F(0) � Re(F (0)) � ∫ ∫

K
cos(θ) dr dθ . Letting K+ be the part of K in the right

half-plane, we get F(0) ≤ ∫ ∫
K+ cos(θ) dr dθ . Let �(θ) be the linear measure of

180
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the set of points ζ of K+ with arg(ζ ) � θ . We have

F(0) ≤
∫ ∫

K+
cos(θ)drdθ �

∫ π
2

− π
2

�(θ) cos(θ)dθ ≤ (
π

2

∫ π
2

− π
2

�(θ)2dθ)
1
2 .

The reader can verify that∫
{r:reiθ∈K+}

rdr ≥
∫ �(θ)

0
rdr � �(θ)2

2
.

We conclude that

F(0) ≤ (π

∫ ∫
K+

r dr dθ)
1
2 � (π area(K+))

1
2 ≤ (π area(K))

1
2 .

We recall that R(K) denotes the uniform closure in C(K) of the rational func-
tions with poles off of K . By an abuse of notion we write z̄ as the conjugate function
in the plane. We view z̄ as an element of C(K) in the following lemma.

Lemma 21.3. dist(z̄, R(K)) ≤ ( 1
π

area(K))
1
2 .

Note that Lemma 21.3 is a quantitative version of the Hartogs–Rosenthal the-
orem that R(K) � C(K) if K has zero area; for then z̄ is in C(K) and so
R(K) � C(K) by the Stone–Weierstrass theorem.

Proof of Lemma 21.3. Let ψ be a C∞ function with compact support in the plane
such that ψ(z) ≡ z̄ on a neighborhood of K . By the generalized Cauchy integral
formula,

ψ(z) � − 1

π

∫ ∫
∂ψ

∂ζ̄

dudv

ζ − z
, ζ � u + iv,

for all zεC. Restricting ψ to K , and using ∂ψ

∂ζ̄
≡ 1 on K we get

z̄ � − 1

π

∫ ∫
K

dudv

ζ − z
− 1

π

∫ ∫
K ′

∂ψ

∂ζ̄

dudv

ζ − z

for z ∈ K , where K ′ � C \ K . Since the integrand in the second integral is, for
fixed ζ , a function in R(K), it follows (approximate the integral by a sum!) that
the second integral represents a function in R(K). We get

dist(z̄, R(K)) ≤ sup
z∈K

| 1

π

∫ ∫
K

dudv

ζ − z
|.

Lemma 21.3 follows by applying Lemma 21.2 to this last integral.

Now we can prove Theorem 21.1. Let ε > 0 and put K � f (M). By Lemma
21.3 there is a rational function r(z) with poles off of K such that

||z̄ − r(z)||K < (
area(K) + ε

π
)

1
2 .
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Since r is holomorphic on a neighborhood of the spectrum K of f , it follows from
the Gelfand theory that g � r ◦ f ∈ A and ||f̄ − g||M < ((area(K) + ε)/π)

1
2 .

We have |f |2 � f (f̄ − g)+fg. Since g ∈ A, we get
∫

fgdµ � φ(f )φ(g) � 0
and so

∫ |f |2 dµ � ∫ f (f̄ − g)dµ. Thus
∫ |f |2 dµ ≤ ||f̄ − g||M

∫ |f |dµ ≤
((area(K) + ε)/π)

1
2
∫ |f |dµ. Now, letting ε → 0 yields∫
|f |2 dµ ≤ (

area(K)

π
)

1
2

∫
|f |dµ.

Estimating the last integral by Hölder’s inequality,
∫ |f |dµ ≤ (

∫ |f |2dµ)
1
2 , gives

the theorem.

As another application of Lemma 21.3 we shall give a proof of the classical
isoperimetric inequality. This begins with a lower bound for dist(z̄, R(K)).

Proposition 21.4. Let � be a closed Jordan domain in the plane with a
smooth boundary. Let A � area(�) and let L � length(b�). Then 2A/L ≤
dist(z̄, R(�)).

Proof. Let ε > 0 and choose g a rational function with no poles on � such that
||z̄ − g||� < dist(z̄, R(�)) + ε. We have, since

∫
b�

gdz � 0 by Cauchy,

|
∫

b�

z̄dz| � |
∫

b�

(z̄ − g) dz| < L(dist(z̄, R(�)) + ε).

By Stokes’ Theorem we have 2iA � ∫
�

dz̄dz � ∫
b�

z̄dz. We get 2A <

L(dist(z̄, R(�)) + ε). Now the proposition follows by letting ε → 0.

Now, combining Lemma 21.3 and Proposition 21.4 gives

2A/L ≤ dist(z̄, R(�)) ≤ (A/π)1/2.

The isoperimetric inequality follows directly:

4πA ≤ L2.

A different idea also can be used to study the metric properties of the set f (M).
Here f, M, X, A, φ and µ are as in the first paragraph of this chapter. There exists
a point x0 ∈ M such that φ(f ) � f (x0) for all f ∈ A. (Recall that we view
elements f of A as functions on M .) Let �t � {z ∈ C : |z| � t}. Let � denote
arclength measure on �t .

Theorem 21.5. Let f εA and suppose that φ(f ) � 0. Then for all t ≥ 0,

2πtµ{x ∈ X : |f (x)| ≥ t} ≤ �(�t ∩ f (M)).
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Integrating this estimate from t � 0 to ∞ in fact implies Theorem 21.1. This
follows from the general fact that∫

2tµ{x ∈ X : |f (x)| ≥ t}dt �
∫
|f |2 dµ.

To verify this identity, we compute
∫

2tχ(x, t) dµ(x)× dt (where χ is the char-
acteristic function of the set {(x, t) ∈ X × R+ : |f (x)| ≥ t}) in two ways as
iterated integrals, using Fubini’s theorem.

Proof of Theorem 21.5. Fix t > 0. Let ε > 0 and put γ � �t ∩ f (M). Choose
a continuous real-valued function h on �t such that 0 ≤ h ≤ 1, h is identically
1 on a neighborhood of γ , and

∫ 2π

0 h(teiθ )dθ < t−1(�(γ ) + ε). Let u be the
harmonic extension of h to the interior of �t , and let v be the harmonic conjugate
of u with v(0) � 0. Set F(z) � u(z)+ iv(z) for |z| < t . Define F(z) for |z| > t

by F(z) � 2 − F(z∗), where z∗ � t2/z̄ is the reflection of z in �t . Thus F is
analytic off of �t and, by the reflection principle, F is analytic on a neighborhood
of γ . This means that F is analytic on f (M).

By the Gelfand theory, F ◦ f ∈ A, and so

F(0) � F ◦ f (x0) �
∫

F ◦ f dµ.

We have

F(0) � u(0) � 1

2π

∫ 2π

0
h(teiθ )dθ < (2πt)−1(�(γ ) + ε).

Taking real parts gives∫
Re(F ◦ f )dµ < (2πt)−1(�(γ ) + ε).

Since 0 < u(z) ≤ 1 on |z| < t , it follows that 1 ≤ 2 − u(z). We conclude that
ReF > 0 on f (M) and that ReF ≥ 1 on {z ∈ f (M) : |z| ≥ t}. Hence∫

Re(F ◦ f )dµ ≥
∫
{x:|f (x)|≥t}

Re(F ◦ f )dµ ≥
∫
{x:|f (x)|≥t}

1 dµ

� µ{x : |f (x)| ≥ t}.
We now have µ{x : |f (x)| ≥ t} ≤ (2πt)−1(�(γ ) + ε). Letting ε → 0 gives the
theorem.

We now shall apply Theorem 21.1 to analytic 1-varieties and polynomial hulls
in Cn.

Lemma 21.6. Let V be a one-dimensional analytic subvariety of an open subset
of Cn. Then

area(V ) �
n∑

j�1

area-with-multiplicity(zj (V )).
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Here, by the area of V we understand the usual area of the set Vreg of regular
points of V viewed as a two-dimensional real submanifold in R2n. This agrees
with H2(V ), where H2 denotes two-dimensional Hausdorff measure in Cn. See the
Appendix for references to Hausdorff measure. The natural proof of this formula
for varieties of arbitrary dimension k involves considering the form ωk , where
ω � i/2

∑
j dzj ∧ dz̄j . We shall give a more classical proof in the case k � 1.

Proof. This is a local result and so we can assume that V can be parameterized by
a one-one analytic map f : W → V ⊆ Cn, where W is a domain in the complex
plane. Let ζ ∈ W be ζ � s + it and let f � (f1, f2, . . . , fn), where fk �
uk + ivk . Set X(s, t) � f (ζ ) and view X as a map of W into R2n. The classical
formula for the area of the map X is

∫
W
|Xs ||Xt | sin(θ) ds dt , where θ is the angle

between Xs and Xt . We have Xs � (f ′1, f ′2, . . . , f ′n) and Xt � (if ′1, if ′2, . . . , if ′n)
by the Cauchy–Riemann equations. Hence |Xt | � |Xs | and the vectors Xs and Xt

are orthogonal in R2n, and so sin(θ) ≡ 1. Thus the previous formula for the area of
the image of X becomes area(V ) � ∫

W
(
∑

j |f ′j |2) ds dt � ∑
j

∫
W
|f ′j |2 ds dt .

Since
∫
W
|f ′j |2 ds dt is the area-with-multiplicity of fj (W), this completes the

proof.

Let V be a one-dimensional analytic subvariety of an open set � in Cn. Let
p ∈ V and suppose that the closure of B(p, r) (the open ball of radius r centered at
p) is contained in �. Then it is a theorem of Rutishauser that the area of V ∩B(p, r)

is bounded below by πr2. Our next result generalizes this by showing that the lower
bound πr2 for the “area of V ∩ B(p, r),” which, by Lemma 21.6, equals the sum
of the areas-with-multiplicity of the n coordinate projections, is in fact a lower
bound for a smaller quantity, the “the sum of the areas (without multiplicity) of the
coordinate projections.” We shall prove this more generally for polynomial hulls.
The connection between hulls and varieties is given by the following lemma.

Lemma 21.7. Let V be a k-dimensional analytic subvariety of an open set �

in Cn. Suppose that the closure of the ball B(p, r) is contained in �. Let X �
V ∩ bB(p, r). Then X̂ ∩ B(p, r) � V ∩ B(p, r).

Now Rutishauer’s result [Rut] is a consequence of the following fact about
polynomial hulls.

Theorem 21.8. Let X be a compact subset of Cn. Suppose that p ∈ X̂ and that
B(p, r) ⊆ X̂ \ X. Then

∑n
j�1 H2(zj (X̂ ∩ B(p, r)) ≥ πr2.

In general, polynomial hulls are not analytic sets, but the following shows that,
locally, hulls that are not analytic sets have large area.

Theorem 21.9. Let X be a compact subset of Cn. Suppose that p ∈ X̂ \ X and
that, for some neighborhood N of p in Cn, H2(X̂ ∩ N) < ∞. Then X̂ ∩ N is a
one-dimensional analytic subvariety of N .
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This yields another generalization of Rutishauser’s result to polynomial hulls.

Corollary 21.10. Let X be a compact subset of Cn. Suppose that p ∈ X̂ and that
B(p, r) ⊆ Cn \ X. Then H2(X̂ ∩ B(p, r)) ≥ πr2.

Proof of the Corollary. If H2(X̂ ∩ B(p, r)) < ∞, then the theorem implies
that X̂ ∩ B(p, r) is a one-dimensional analytic set and so Rutishauser’s theorem
applies. If H2(X̂ ∩ B(p, r)) is infinite, the conclusion is obvious.

Proof of Lemma 21.7. By the maximum principle, it follows that V ∩B(p, r) ⊆
X̂.

Conversely, suppose that q ∈ B(p, r) \ V . Let r ′ > r be such that B(p, r ′) ⊆
�. There exists a function F that is holomorphic on B(p, r ′) such that F(q) � 1
and F ≡ 0 on V ∩B(p, r ′)—this is by the solution to the second Cousin problem
on B(p, r ′). In particular, F ≡ 0 on X. Approximating F uniformly on B̄(p, r)

by polynomials with the Taylor series, it follows that q /∈ X̂. This shows that
B(p, r) \ V ⊆ B(p, r) \ X̂. Hence we have the reverse inclusion X̂ ∩ B(p, r) ⊆
V ∩ B(p, r). This gives the lemma.

Proof of Theorem 21.8. We may, without loss of generality, suppose that p � 0.
Take s < r . Set Z � X ∩ bB(p, s). By the local maximum modulus theorem, it
follows that Ẑ � X̂∩ B̄(p, s). We let A be the uniform closure of the polynomials
in C(Z). Then the maximal ideal space M of A is just Ẑ � X̂ ∩ B̄(p, s). Then,
for f ∈ A, f �→ f (0) is a continuous homomorphism φ on A represented by a
measure µ on Z. The coordinate function zk belongs to A with φ(zk) � 0, and
so by Theorem 21.1 we have π

∫ |zk|2 dµ ≤ H2(zk(X̂ ∩ B̄(p, s)). Now we sum
over k and use the fact that

∑n
k�1 |zk|2 ≡ s2 on Z to get πs2 ≤ ∑n

k�1 H2(zk(X̂ ∩
B̄(p, s)). Letting s increase to r now gives the theorem.

Proof of Theorem 21.9. Without loss of generality we may suppose that p � 0.
Consider complex hyperplanes though the origin. Since H2(X̂ ∩ N) < ∞, there
is a complex hyperplane H such that H1(X̂ ∩ N ∩ H) � 0. (See the Appendix
on Hausdorff measure.) We may suppose that H is the hyperplane {zn � 0}. We
write z � (z′, zn) for z ∈ Cn with z′ ∈ Cn−1. The fact that H1(X̂ ∩ N ∩H) � 0
implies (Appendix) that X̂ ∩ N is disjoint from {(z′, zn) : ||z′|| � δ, zn � 0} for
almost all δ > 0.

Fix δ > 0 such that B(0, δ) ⊂ N and X̂ ∩ N is disjoint from {(z′, zn) :
||z′|| � δ, zn � 0}. Then there exists ε > 0 such that X̂ ∩ N is disjoint from
{(z′, zn) : ||z′|| � δ, |zn| ≤ ε}. Let � � {(z′, zn) : ||z′|| < δ and |zn| < ε} and
set ρ(z) � zn. We can assume, by choosing ε small enough, that �̄ ⊆ N . Note
that (X̂ ∩N)∩ b� is contained in the set where {|zn| � ε}. This is because X̂ ∩N

is disjoint from {(z′, zn) : ||z′|| � δ, |zn| ≤ ε}.
We restrict the map ρ to X̂ ∩� and consider the 4-tuple (A, X̂ ∩�, D(ε), ρ),

where A is the restriction of the polynomials to X̂ ∩ � and D(ε) � {λ ∈ C :
|λ| < ε}. We claim that this is a maximum modulus algebra. This follows from
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the local maximum modulus principle and the fact that ρ is a proper map from
X̂ ∩ � to D(ε). The map is proper because X̂ ∩ b� is contained in the set where
{|zn| � ε}.

Since H2(X̂ ∩ �) < ∞, it follows (see the Appendix on Hausdorff measure)
that, for almost all points λ of D(ε) with respect to planar measure, the set ρ−1(λ)∩
(X̂ ∩ �) is finite. Hence there exists a positive integer m and a measurable set E

in D(ε) of positive planar measure such that ρ−1(λ) ∩ (X̂ ∩ �) contains exactly
m points for every λ ∈ E. We now can apply Theorem 11.8 to conclude (i) that
#ρ−1(λ) ≤ m for every λ ∈ D(ε) and (ii) that X̂ ∩ � has analytic structure. The
analytic structure given by part (ii) of Theorem 11.8 yields (cf. Exercise 11.5) the
fact that X̂ ∩ � is a one-dimensional analytic set.

NOTES
Rutishauser’s work [Rut] appeared in 1950. Estimates on the volume of an

analytic variety were an essential part of the important paper of E. Bishop [Bi4].
Theorems 21.1 and 21.5 appear in [Al7]. The version for the disk was given by
Alexander, Taylor, and Ullman [ATU]. Applications of this to analytic varieties can
be found in the book by Chirka [Chi1]. Gamelin and Khavinson [GK] discuss the
connection between the isoperimetric inequality and the area theorem. Theorem
21.9 is due independently to Sibony [Sib] and Alexander [Al6].
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Topology of Hulls

1

We begin by stating some basic results about Morse theory. A nice description of
what we need about Morse theory is given in Part I of Milnor’s text [Mi2]. We
will restrict our attention to open subsets M of Rs . Let φ be a smooth function on
M . A point p ∈ M is a critical point of φ if ∂φ/∂xk(p) � 0 for 1 ≤ k ≤ s. A
critical point p is nondegenerate if the (real) Hessian matrix (∂2φ/∂xj∂xk(p)) is
nonsingular. Then one defines the index of φ at p to be the number of negative
eigenvalues of this matrix. Nondegenerate critical points are necessarily isolated.
A Morse function ρ on M is a smooth real function such that Ma ≡ {x ∈ M :
ρ(x) ≤ a} is compact for all a, all critical points of ρ are nondegenerate, and
ρ(p1) �� ρ(p2) for critical points p1 �� p2. The following lemma produces
Morse functions.

Morse’s Lemma. Let f : M → R be a smooth function, let K be compact and
U be open and relatively compact in M such that K ⊆ U ⊆ M , and let s > 0
be an integer. Then there exists a smooth function g : M → R such that g has
nondegenerate critical points on K , the derivatives of g uniformly approximate
the corresponding derivatives of f up to order s on U , and g agrees with f off
of U .

The main results from Morse theory that we shall need are contained in the
following theorem.

Morse’s Theorem. Let ρ be a Morse function on M .
(a) If ρ has no critical points in the set {x ∈ M : a ≤ ρ(x) ≤ b} , then Ma is

diffeomorphic to Mb.
(b) If ρ has a single critical point p of index λ in the set {x ∈ M : a ≤ ρ(x) ≤ b}

and a < ρ(p) < b, then Mb has the homotopy type of Ma with a λ-cell
attached.

187
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We will not give the definitions here. The reader may find it instructive for (b)
to sketch level sets of the function F(x) � ∑s−λ

j�1 x2
j −

∑s
j�s−λ+1 x2

j near the
origin in Rs ; the origin is a non-degenerate critical point of index λ for F . For our
purposes, the important point is the following consequence of the theorem. Here,
G is an arbitrary abelian group and, for spaces Y ⊆ X, Hk(X, Y ;G) is the relative
kth homology group of (X, Y ) with coefficients in G, the most important cases
being C, R, Z, and Z2.

Corollary. Let ρ be as in the theorem and a < b.
(i) In case (a), Hk(M

b, Ma;G) � 0 for all k.
(ii) In case (b), Hλ(M

b, Ma;G) � G and Hk(M
b, Ma;G) � 0 for k �� λ.

(iii) Suppose that the index of ρ is ≤ σ at every critical point of ρ. Then
Hk(M

b, Ma;G) � 0 if k ≥ σ + 1.
(iv) Suppose that the index of ρ is ≥ σ at every critical point of ρ. Then

Hk(M
b, Ma;G) � 0 if k ≤ σ − 1.

We remark that the above theorem and corollary remain valid, with the same
proof, if we relax the condition that Ma ≡ {x ∈ M : ρ(x) ≤ a}must be compact
for all a in the definition of a Morse function to be that {x ∈ M : a ≤ ρ(x) ≤ b}
is compact whenever a < b.

2

Let ψ be a smooth strictly plurisubharmonic function on an open set � in Cn.

Lemma 22.1. Let p be an isolated nondegenerate critical point of ψ . Then the
index of ψ at p is ≤ n.

Proof. We can assume that p � 0 and that ψ(z) � ψ(0) + ∑ c
ij

zizj +
Re
∑

aij zizj + O(|z|3), where the first sum is positive definite, and so we can
further assume that c

ij
� δij . Thus the real Hessian 2n × 2n matrix of ψ at

p is I2n + Q′, where Q′ is the matrix of the quadratic form on R2n given by
X → Re

∑
aij zizj , where X � (Re z, Im z), z � (z1, z2, · · · , zn). Since re-

placing z by iz in the quadratic form takes Q′ to −Q′, and since the map z → iz

induces an orthogonal map when viewed as a map of R2n, it follows that the
matrices Q′ and −Q′ are similar. Hence, if v ∈ R2n is an eigenvalue of Q′ of
multiplicity m, then −v is an eigenvalue of Q′ of multiplicity m. Hence at least n

of the eigenvalues of Q′ are nonnegative. Therefore at least n of the eigenvalues of
I2n + Q′ are greater than or equal to 1. Thus the number of negative eigenvalues
of I2n + Q′ (the index) is at most n.

Definition 21.1. A Runge domain� in Cn is an open subset of Cn such that K̂ ⊆ �

for every compact subset K of �. (We remark that the definition here of Runge
domain coincides with what is often called an open polynomially convex set. Our
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notion of Runge domain agrees with what is sometimes called a holomorphically
convex Runge domain.)

The following two theorems are the main results that we shall present about the
topology of polynomial hulls.

Theorem 22.2 (Andreotti and Narasimhan [AnNa]). If � is Runge in Cn, then

Hk(�;G) � 0 for k ≥ n

Theorem 22.3 (Forstnerič [Fo2]). Let K be a compact polynomially convex set
in Cn (n ≥ 2). Then

Hk(C
n \ K;G) � 0 for 1 ≤ k ≤ n − 1

and

πk(C
n \ K) � 0 for 1 ≤ k ≤ n − 1.

Lemma 22.4. Let K be polynomially convex in Cn with K ⊆ U , with U open
and bounded. Then there exists a smooth strictly plurisubharmonic function ρ :
Cn → R and R > 0 such that:

(i) ρ < 0 on K and ρ > 0 on Cn \ U ;
(ii) ρ(z) � |z|2 for |z| > R; and

(iii) ρ is a Morse function on Cn.

Proof of the Lemma. We first construct a smooth strictly plurisubharmonic
function v on Cn satisfying (i). Choose C > the maximum of |z|2 on K . Let
L � {z ∈ Cn : |z|2−C ≤ 0} \U . Then L is compact and disjoint from K . For all
x ∈ L, we can choose a polynomial px such that |px | < 1 on K and |px(x)| > 2,
and so |px | > 2 on a neighborhood of x. By the compactness of L we get a finite
set of {px} such that the maximum φ of their moduli satisfies φ > 2 on L. Then φ

is also plurisubharmonic and φ < 1 on K . Now set v0 � max(φ − 1, |z|2 − C).
This is plurisubharmonic on Cn and satisfies the conditions of (i). Finally, by
smoothing v0 and adding ε|z|2 for small positive ε, we get the desired smooth
strictly plurisubharmonic function v on Cn, satisfying (i).

Choose R > 0 such that U ⊆ B(0, R/3). Let h : R → R be a smooth
function such that h ≥ 0, h ≡ 0 for t ≤ R/3, h is strictly convex and increasing
for t > R/3, and h(t) � t2 for t ≥ R (h can be constructed from its second
derivative). Let χ be a smooth function on R such that 0 ≤ χ(t) ≤ 1, χ(t) � 1
for t < R/2 and χ(t) � 0 for t ≥ R. Consider the smooth function

ρ(z) � h(|z|) + εχ(|z|)v(z).

For sufficiently small ε > 0, ρ is strictly plurisubharmonic and satisfies (i) and
(ii). Since all of the critical points of ρ are contained in B(0, R), we can, by the
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Morse lemma, make a small modification of ρ on B(0, R) so that it becomes a
Morse function—the properties (i) and (ii) are preserved.

Proof of Theorem 22.2. Let K be a compact subset of �. It suffices to show that
Hk(L;G) � 0 for k ≥ n for some compact subset L of � such that K ⊆ L—
this is because Hk(�;G) is the (inverse) limit of such Hk(L;G). Replacing K

by its polynomially convex hull, we may assume, since � is Runge, that K is
polynomially convex. In Lemma 22.4, take U to be � and get a Morse function
ρ on Cn. Choose a < 0 a regular value of ρ such that ρ < a on K . Then
Ma � {z ∈ Cn : ρ(z) ≤ a} is a compact subset of � and K ⊆ Ma . We take Ma

to be the set L. For a < b we have from Section 1, since the index of ρ is ≤ n

at each critical point, that Hk(M
b, Ma;G) � 0 for k ≥ n + 1. Letting b → ∞

gives Hk(C
n, Ma;G) � 0 for k ≥ n + 1. From the long exact sequence we get

Hk+1(C
n, Ma;G) → Hk(M

a;G) → Hk(C
n;G) � 0

for k ≥ n. We conclude that Hk(M
a;G) � 0.

Proof of Theorem 22.3. Let U be an open set in Cn containing K . Apply
the previous lemma to get ρ. Let ψ � −ρ. Then the critical points of ψ are
nondegenerate and the index of ψ at each of its critical points p equals 2n (the
index of ρ at p). Hence the index of ψ is ≥ n at each critical point. Now set
Xa ≡ {x ∈ Cn : ψ ≤ a}. We apply the remark at the end of Section 1 to ψ .
Using −R2 < 0 in (iv) of the corollary of Section 1 gives Hk(X

0, X−R2;G) � 0
for 0 ≤ k ≤ n − 1. From the long exact sequence we have

Hk(X
−R2;G) → Hk(X

0;G) → Hk(X
0, X−R2;G)

for 0 ≤ k ≤ n − 1. Note that X−R2 � {z ∈ Cn : |z| ≥ R} is topologically the
product of an interval and S2n−1. Hence Hk(X

−R2;G) � 0 for 1 ≤ k ≤ n − 1,
and we conclude that Hk(X

0;G) � 0 for 1 ≤ k ≤ n − 1. Note that Cn \ U ⊆
X0 ⊆ Cn \K and hence that Hk(C

n \K;G) is the (direct) limit of the Hk(X
0;G)

as U shrinks to K . We conclude that Hk(C
n \ K;G) � 0 for 1 ≤ k ≤ n − 1.

The second part of the theorem on homotopy groups follows by the same proof
as just given for the homology groups. We omit the details.

From Theorem 22.2, we get a corresponding statement for the real singular
cohomology groups of a Runge domain in Cn: Hk(�;R) � 0 for k ≥ n. This
implies the same for the Čech cohomology groups (since these agree with the
singular groups of open sets): Ȟ k(�;R) � 0 for k ≥ n.

Lemma 22.5. If K in Cn is polynomially convex, then K is a decreasing limit of
Runge domains. More precisely, if U is an open set containing K , then there exists
a bounded Runge domain � such that

K ⊆ � ⊆ U.
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Remark. We give the short proof; it is essentially the proof of Lemma 7.4. We
could also appeal directly to Lemma 7.4, which, with a “change of scale,” implies
the present lemma.

Proof. Choose a constant C > 0 such that |zj | ≤ C on K for 1 ≤ j ≤ n and
set L � {z ∈ Cn : |zj | ≤ C for 1 ≤ j ≤ n} \U . Then L is compact and disjoint
from K . For all q ∈ L, there exists a polynomial px such that |px | < 1 on K

and |px | > 2 on a neighborhood of x. By the compactness of L there is a finite
set of the {px}, call them p1, p2, · · · , ps , such that |pj | < 1 on K and for all
x ∈ L there is a k such that |pk(x)| > 2. Now put � � {z : |zj | < C for 1 ≤
j ≤ n and |pj (z)| < 1 for 1 ≤ j ≤ s}. (� is a “polynomial polyhedron”— this
is slightly more general than the notion of p-polyhedron of Definition 7.3.) The
reader can easily check that � is a Runge domain and that K ⊆ � ⊆ U .

It follows from Lemma 22.5 by a basic continuity property of Čech cohomology
that, for K polynomially convex, Ȟ k(K;R) � 0 for k ≥ n. For “nice” sets K ,
the singular cohomology and Čech cohomology agree, and in those cases one can
say that Hk(K;R) � 0 for k ≥ n when K is polynomially convex. The same
statements with coefficients R replaced by C are equally true.

Note that if K ⊆ Rn ⊆ Cn, then K is polynomially convex, by the Stone–
Weierstrass approximation theorem. By choosing K to be a union of spheres of
dimension ≤ n − 1, one sees that the groups Hk(K;R) for 0 ≤ k ≤ n − 1 need
not vanish for polynomially convex sets.

We can now verify Browder’s theorem (Theorem 15.8), that Ȟ n(M;C) � 0,
whereM is the maximal ideal space of a Banach algebra Agenerated by n elements.
By the paragraph after the proof of Lemma 22.5 it suffices to show that M is
homeomorphic to a polynomially convex set in Cn. This follows from Lemma 8.3
(semi-simplicity is not used in the argument of Lemma 8.3).

3

We now can obtain an application of Theorem 22.2. Let Bn denote the open unit
ball in Cn. Recall that Ŷ denotes the polynomially convex hull of Y .

Theorem 22.6. Let f be a continuous complex-valued function defined on bBn,
n ≥ 2. Let G(f ) be the graph of f in Cn+1. Then Ĝ(f ) covers Bn; i.e., the
projection of the set Ĝ(f ) to Cn is Bn.

Remark. This theorem is of course false for n � 1. In that case we know, by
Chapter 20, that the part of Ĝ(f ) over the open unit disk is either empty or is
an analytic graph. In particular, if f is real-valued and nonconstant, then G(f ) is
polynomially convex.
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Proof. Let π : Cn+1 → Cn be the projection π(z, zn+1) � z for z ∈ Cn. We
argue by contradiction and suppose that π(Ĝ(f )) does not contain Bn. By applying
a biholomorphism of Bn we may assume (since the the group of biholomorphisms
of the ball is transitive—see the Appendix) that 0 /∈ π(Ĝ(f )). Then Ĝ(f ) ⊆
(Cn \ {0}) × C. By Lemma 22.5, there exists a Runge domain � with Ĝ(f ) ⊆
� ⊆ (Cn \ {0}) × C. We can approximate f uniformly on bBn by a smooth
function g such that G(g) ⊆ �.

Consider the Bochner–Martinelli form

ω �
n∑

j�1

(−1)j−1 zj

|z|2n
dz1 ∧ · · · ∧ d̂zj ∧ · · · dzn ∧ dz1 · · · ∧ dzn.

Then ω is a closed (2n− 1)-form (i.e., dω � 0) on Cn \ {0}. Let π0 : � → Cn be
the restriction of π to �. Let σ � π∗0 (ω) be the “pull back” of ω to �. Then, since
dσ � dπ∗0 (ω) � π∗0 (dω) � 0, we have that σ is a closed (2n− 1)-form on �. By
Theorem 22.2, since � is Runge in Cn+1 and 2n − 1 ≥ n + 1, H2n−1(�;C) � 0
and therefore H 2n−1(�;C) � 0. Since the singular group H 2n−1(�;C) agrees
with the deRham cohomology group, we conclude that σ is exact; i.e., there is a
2n − 2-form β on � such that dβ � σ . Hence we get∫

bBn

ω �
∫

G(g)

σ �
∫

G(g)

dβ � 0

by Stokes’ Theorem, since G(g) ⊆ � is a smooth manifold without boundary. On
the other hand, one has

ω �
n∑

j�1

(−1)j−1zjdz1 ∧ · · · ∧ d̂zj ∧ · · · dzn ∧ dz1 · · · ∧ dzn

on bBn. Hence, by Stokes’ Theorem,∫
bBn

ω � n

∫
Bn

dz1 ∧ · · · dzn ∧ dz1 · · · ∧ dzn �� 0.

Contradiction.

NOTES
The special case of Theorem 22.2 when G � C and k > n can be proved for

a pseudoconvex domain � via the complex DeRham Theorem; see the text of L.
Hörmander [Hö2], Theorem 4.2.7. The case of Theorem 22.2 when G � C and
k � n is due to Serre [Ser]. The idea of using Morse theory appeared in the the
papers of Andreotti and Frankel [AnFr] and Andreotti and Narasimhan [AnNa].
Morse theory, which yields more precise conclusions than we have stated here, has
the advantage of giving results for arbitrary coefficient groups. Part I of Milnor’s
text [Mi2] gives a very readable introduction to the Morse theory required in this
chapter.

The intuitive idea that the pair (X̂, X) is somehow like a manifold with boundary,
where X̂ is the polynomial hull of a compact set X ⊆ Cn, can be made precise with
the concept of the linking number of two manifolds in Cn. Connections between
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polynomial hulls and linking were given in [Al4]; the proofs use Theorem 22.2.
This was further developed by Forstnerič in [Fo2], which contains Theorem 22.3.

Additional applications of Theorem 22.2 to hulls were given in [Al3]. In par-
ticular, Theorem 22.6 appeared in that paper with two proofs; the one that was
suggested by J. P. Rosay appears here.
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Pseudoconvex sets in Cn

1 Smoothly Bounded Domains

Consider a region � in RN , given by a condition

ρ(x) < 0,

where ρ is a C2-function defined in a neighborhood of �̄, such that

∇ρ � (
∂ρ

∂x1
, · · · , ∂ρ

∂xN

) �� 0 on ∂�.

Fix a point x0 ∈ ∂� and put

(1) Tx0 � {ξ ∈ RN :
N∑

j�1

(
∂ρ

∂xj

)
0

ξj � 0}

where the notation (·)0 means “evaluated at x0.”
Tx0 is the tangent hyperplane to ∂� at x0. We can tell whether or not � is convex

by looking at these Tx0 , x0 ∈ �. � is convex if and only if the translate of Tx0 ,
{ξ + x0 : ξ ∈ Tx0}, lies entirely outside of �, and this is equivalent to

(2)

N∑
j,k�1

(
∂2ρ

∂xj∂xk

)
0

ξj ξk ≥ 0 ∀ξ ∈ Tx0 .

In the early twentieth century, E.E. Levi discovered that a complex analogue
of condition (2), in Cn, has significance in the theory of analytic functions of n

complex variables. We now consider a domain � in Cn, defined by an inequality

ρ < 0,

with ρ as above. Note that since ρ is a real-valued function, the condition∇ρ �� 0
is equivalent to

(
∂ρ

∂z1
, · · · , ∂ρ

∂zn

) �� 0.

194
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We replace the differential operators ∂
∂xj

and ∂2

∂xj∂xk
on RN by the operators

∂
∂zj

and ∂2

∂zj ∂z̄k
on Cn. This leads us to define a complex tangent vector to ∂�

at z0 to be a vector ζ � (ζ1, · · · , ζn) ∈ Cn satisfying

(1′)
n∑

j�1

(
∂ρ

∂zj

)
0

ζj � 0.

Exercise 23.1. Fix z0 ∈ ∂� and fix a vector ζ ∈ Cn. Let L denote the complex
line consisting of all vectors wζ , w ∈ C. Show that L is contained in the real
tangent space Tz0 to ∂� at z0 if and only if ζ satisfies (1′).

Fix z0 ∈ �.

Definition 23.1. ∂� is pseudoconvex in the sense of Levi at z0 if ρ satisfies

n∑
j,k�1

(
∂2ρ

∂zj ∂z̄k

)
0

ζj ζ̄k ≥ 0(2′)

∀ζ in the complex tangent space to ∂� at z0.

Thus pseudoconvexity of ∂�, in the sense of Levi, is the analogue of convexity
in RN if we replace the real tangent vectors ξ in RN by the complex tangent vectors
ζ in Cn and replace the symmetric quadratic form in (2) by the Hermitinan form
in (2′).

Example 23.1. Let a, b be positive constants. Put � � {(z1, z2) : a|z1|2 +
b|z2|2 < 1}. Fix z0 � (z0

1, z0
2) ∈ ∂�. Then ζ � (ζ1, ζ2) is a complex tangent

vector to ∂� at z0 if and only if az̄1ζ1 + bz̄2ζ2 � 0. We have

n∑
j,k�1

(
∂2ρ

∂zj ∂z̄k

)
0

ζj ζ̄k � a|ζ1|2 + b|ζ2|2.

Hence (2′) is satisfied and so ∂� is pseudoconvex at z0. (Note: In this case, (2′) is
evidently satisfied for every ζ ∈ C2. In general, at a pseudoconvex point, this will
not be so.)

Exercise 23.2.
(a) Let � be an entire function on C2 such that d� �� 0 on |�| � 1. Put

� � {(z1, z2) ∈ C2 : |�(z1, z2)| ≤ 1}. Show, by direct computation, that
∂� is pseudoconvex at each point.

(b) Show that pseudoconvexity is invariant under local biholomorphisms.
(c) Use (b) to give an alternate proof of (a).

Exercise 23.3. Show that if � is the exterior of the unit ball in C2, i.e.,

� � {(z1, z2) ∈ C2 : |z1|2 + |z2|2 > 1},
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then ∂� is not pseudoconvex at any point.

2 Exhaustion Functions

We wish to extend the notion of pseudoconvexity to domains with nonsmooth
boundaries. To point the way toward a good definition, we first look at a convex
domain � in RN without making any smoothness assumption on ∂�. By an ex-
haustion function for � we mean a continuous real-valued function U defined on
� such that the sublevel sets

Kt � {x ∈ � : U(x) ≤ t}, t ∈ R,

are compact.
Since � is convex, � possesses an exhaustion function that is a convex function.

Now let � be a domain in Cn. The complex analogue of a convex exhaustion
function is a plurisubharmonic function (see the Appendix) on �, which is an
exhaustion function for �.

Definition 23.2. Let � be a domain in Cn. � is pseudoconvex if there exists a
continuous plurisubharmonic exhaustion function on �.

If � is pseudoconvex, then ∂� is pseudoconvex in the sense of Levi at each
smooth point, and Definitions 23.1 and 23.2 are consistent in the sense that a
smoothly bounded domain � ⊆ Cn is pseudoconvex in the sense of Definition
23.2 if and only if ∂� is pseudoconvex in the sense of Levi at each point.

We have the following result. Let us put, for z ∈ �,

δ(z) � distance(z, ∂�).

Proposition. Let � be a bounded domain in Cn. Then � is pseudoconvex if and
only if the function

z �→ − log δ(z)

is plurisubharmonic on �.

Proof. See [Hö2], Chapter II.
We note that since δ(z) → 0 as z → ∂�, − log δ(z) is an exhaustion function

for �.

3 Pseudoconvexity and Polynomial Hulls in C
2

In this section we shall show that polynomial hulls in C2 have a close relationship
with pseudoconvex domains. We shall prove the following result of Slodkowski
[Sl1].
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Theorem 23.1. Fix a compact set Y in C2 and fix a point p0 ∈ Ŷ \ Y . Let B be an
open ball in C2, centered at p0, such that B̄ does not meet Y . Then each connected
component of B \ Ŷ is pseudoconvex.

Why should we expect this theorem to be true? Let Y be a smooth closed curve
in C2 with Ŷ \ Y nonempty. Then Ŷ \ Y is a one-dimensional analytic variety by
Chapter 12. Fix p0 ∈ Ŷ \ Y . In a small ball B centered at p0, Ŷ is defined by an
equation,

F(z1, z2) � 0,

where F is analytic in B̄. We put ψ(z1, z2) � − log |F(z1, z2)| − log δ(z1, z2),
where δ is the distance function to the boundary of B. By the proposition above,
− log δ(z1, z2) is plurisubharmonic on B. Also, log |F | is pluriharmonic on B \ Ŷ .

Fix z′ ∈ ∂(B \ Ŷ ) and let z(n) be a sequence of points in B \ Ŷ converging to
z′. Either z′ ∈ ∂B or z′ ∈ Ŷ . In the first case − log(δ(z(n))) → +∞, and in the
second case − log |F(z(n))| → +∞. In either case ψ(z(n)) → +∞. It follows
that the sublevel sets {ψ ≤ c} are compact. So ψ is a plurisubharmonic exhaustion
function of B \ Ŷ , and so B \ Ŷ is pseudoconvex.

Exercise 23.4. Let B be a ball in C2 and let δ denote the distance function to ∂B.
Show by direct calculation that − log δ is plurisubharmonic in B.

Exercise 23.5. Verify Theorem 23.1 by direct calculation for the case that Y is
the torus: {(z1, z2) ∈ C2 : |z1| � |z2| � 1}.

To prove the theorem we shall relate pseudoconvexity in C2 to “Hartogs figures”
in C2.

Let P � {z � (z1, z2) ∈ C2 : |z1| ≤ 1, |z2| ≤ 1}, the unit polydisk in C2, and
let 0 < q1, q2 < 1. Set H � {z � (z1, z2) ∈ P : |z1| ≥ q1 or |z2| ≤ q2}. Then
(P, H) is a Euclidean Hartogs figure in C2. Suppose that � is a biholomorphism
� : P → C2. Set P̃ � �(P ) and H̃ � �(H). Then (P̃ , H̃ ) is a general Hartogs
figure in C2. See [GF] for the generalization to Cn.

Remark. Given a general Hartogs figure (P̃ , H̃ ) in C2 with P̃ � �(P ). Consider
the analytic disks Fw : D → C2 , where D is the closed unit disk, given by
Fw(λ) � �(λ, w). Suppose that H̃ ⊆ � and P̃ �⊆ �. Then, for all w, the
boundary of Fw is contained in the compact subset H̃ of �. However, since P̃ �⊆
�, for some w, the disk Fw(D) is not contained in �. But for w � 0, F0(D)

is contained in H̃ ⊆ �. In other words, we have a continuous one (complex)
parameter family {Fw} of analytic disks all of whose boundaries lie in a fixed
compact subset of �, such that F0(D) is contained in � but such that Fw is not
contained in � for some w.

Lemma 23.2. Let W be a bounded domain in C2 that is not pseudoconvex. Then
exists a general Hartogs figure (P̃ , H̃ ) in C2 such that H̃ ⊆ W and P̃ �⊆ W .
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Remark. If W ⊆ B, where B is a ball, then P̃ ⊆ B. Indeed, this follows
by applying the maximum principle to the function ρ(z, w) � |z|2 + |w|2 to
each of the disks Fw(D), the boundary of which is contained in B. Alternatively,
Fw(D) ⊆ F̂w(∂D) ⊆ B since Fw(∂D) ⊆ B.

Proof of Lemma 23.2. (Cf. [Hö2], proof of Theorem 2.6.7) We assume that W

is not pseudoconvex. Let δ(z) be the distance from z to ∂W . Then − log δ is not
plurisubharmonic in W . Therefore there exists a complex line L and there exists
a disk D0 ⊆ W ∩ L such that − log δ, restricted to L, violates the mean value
inequality on D0. We write D0 : z � z0 + τω, |τ | ≤ r , where z0 and ω are fixed
vectors in C2. Hence there exists a polynomial f , nonconstant, such that

(3) − log δ(z0 + τω) ≤ Ref (τ), |τ | � r

and

(4) − log δ(z0) > Ref (0).

Indeed, we first obtain (3) and (4) for Re(f ) replaced by a harmonic function h(τ)

and then approximate h by the real part of a polynomial f . We may assume that
f (0) is real. By (4),

δ(z0) < e−Ref (0) � e−f (0).

We choose ε > 0 with

(5) δ(z0) < (1 − ε)e−f (0).

Fix z′ ∈ ∂W such that |z′ − z0| � δ(z0). Then put a � (1 − ε) z′−z0

|z′−z0| , so
|a| � 1 − ε. Finally, put

(6) z̃ � z0 + e−f (0)a.

We claim that a and ω are linearly independent over C. To see this, we argue
by contradiction. If not, then the disk D0 and the point z′ both lie in the complex
line L. Say that z′ � z0 + τ ′ω for some τ ′ with |τ ′| > r . It follows that (i)
δ(z0 + τω) ≤ |τ − τ ′||ω| for |τ | � r and (ii) δ(z0) � |τ ′||ω|. Now we define a
harmonic function h on |τ | ≤ r by

h(τ) � Re(f (τ )) + log |τ − τ ′| + log |ω|.
Then by (i) and (3) we have h ≥ 0 on |τ | � r . On the other hand, by (ii) and(4),
we have h(0) < 0. Contradiction! The claim follows.

By (6) and (5),

|z̃ − z0| � |e−f (0)||a| � e−f (0)(1 − ε) > δ(z0).

Thus z̃ is further along the ray from z0 to z′ than z′ itself, and so the segment from
z0 to z̃ contains z′.

We next define for each real λ, 0 ≤ λ ≤ 1,

zλ(τ ) � z0 + τω + λe−f (τ)a,
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|τ | ≤ r , and Dλ � {zλ(τ ) : |τ | ≤ r}.
For each λ, 0 ≤ λ ≤ 1,

zλ(0) � z0 + λe−f (0)a.

Hence for λ � 0, zλ(0) � z0 and for λ � 1, zλ(0) � z0 + e−f (0)a � z̃. Since
zλ(0) moves continuously with λ along the segment from z0 to z̃, there exists λ0

with zλ0(0) � z′, and hence Dλ0 contains z′.
We denote by λ1 the smallest λ such that Dλ meets ∂W . Then

0 < λ1 ≤ λ0 ≤ 1.

Consider the map

�(τ, λ) � z0 + τω + λe−f (τ)a

when (τ, λ) varies over a neighborhood of {|τ | ≤ r} × {λ1} in C2. Note that, for
all λ, Dλ is the image of {|τ | ≤ r} × {λ} under �.

The determinant of the Jacobian matrix of � is given by∣∣∣∣ ω1 − λf ′(τ )e−f (τ)a1 e−f (τ)a1

ω2 − λf ′(τ )e−f (τ)a2 e−f (τ)a2

∣∣∣∣ � ∣∣∣∣ ω1 e−f (τ)a1

ω2 e−f (τ)a2

∣∣∣∣ � e−f (τ)

∣∣∣∣ ω1 a1

ω2 a2

∣∣∣∣ �� 0,

where a � (a1, a2)
T and ω � (ω1, ω2)

T , because a and ω are linearly inde-
pendent. Moreover, it is straightforward to check that � is one-one on the disk
{|τ | ≤ r} × {λ � λ1}. It follows that if � is a sufficiently small closed disk
centered at λ1, then � is a biholomorphism of {|τ | ≤ r} × � to C2.

We claim that � yields the required general Hartogs figure. Indeed, if z ∈ ∂Dλ1 ,
then |z − (z0 + τω)| � |λ1||ef (τ)||a| ≤ (1 − ε)e−Ref (τ). By (3), δ(z0 + τω) ≥
e−Ref (τ). Therefore,

(7) |z − (z0 + τω)| ≤ (1 − ε)δ(z0 + τω).

Hence ∂Dλ1 ⊆ W and so, if T ⊆ W is a compact neighborhood of ∂Dλ1 , then
∂Dλ ⊆ T if λ lies in � and the radius of � is sufficiently small. Let �′ be a closed
subdisk of � centered at λ′ < λ1 such that λ1 ∈ �′. Then by choice of λ1 we
have Dλ′ ⊆ W and Dλ1 �⊆ W .

Now � : {|τ | ≤ r} × �′ → C2 is a biholomorphism that gives the required
general Hartogs figure of Lemma 23.2, except for the fact that the domain of �

is the polydisk {|τ | ≤ r} × �′ rather than the unit polydisk. Composition with a
simple affine change of variables that takes (0, λ′) to (0, 0) ∈ C2 yields a � that
satisfies this final requirement.

Proof of Theorem 23.1. Let � be a connected component of B \ Ŷ . Arguing
by contradiction, we suppose that � is not pseudoconvex. Applying Lemma 23.2
and the remark following it, with W � � ⊆ B, we get a general Hartogs figure P̃

in C2 such that H̃ ⊆ �, P̃ �⊆ �, and P̃ ⊆ B. Set K � P ∩ �−1(P̃ ∩ (Ŷ \ Y )).
Since (Ŷ \ Y )∩ H̃ is empty, it follows that K ⊆ P \H and so z2 �� 0 on K . Since
P̃ ⊆ B and P̃ �⊆ �, K is nonempty. Moreover, since � is a biholomorphism on
the closed polydisk P , we can enlarge the domain of � in the z2-variable and so,
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by rescaling in z2, we may assume that K meets the set {|z2| < 1} at some point
(a, b), say. Since the local maximum modulus principle holds on Ŷ \ Y , it follows,
since � is a biholomorphism, that it also holds on K . Namely, if g is holomorphic
on a neighborhood of K , then, since K ∩ ∂P � K ∩ {|z2| � 1},

|g|K ≤ |g|K∩{|z2|�1}.

Now, applying this to g(z) ≡ 1/z2 yields 1/|b| ≤ 1. This is a contradiction, and
Theorem 23.1 follows.

Exercise 23.6. Let Y be the set

{(0, 0, w) : |w| � 1}
in C3. Thus Y is a circle lying on a complex line in C3.
(a) Show that Ŷ � {(0, 0, w) : |w| ≤ 1}.
(b) Choose a small ball B in C3 centered at a point (0, 0, w0) in Ŷ \ Y . Show that

B \ Ŷ is not pseudoconvex.
(c) Deduce that the direct analogue of of Theorem 23.1 fails if C2 is replaced by

C3.

4 Maximum Modulus Algebras and Pseudoconvexity

Let Y be a set in C2 lying over the unit circle � in the λ-plane. Put X � Ŷ \ Y ,
D � {|λ| < 1} and let A be the restrictions to X of all polynomials in λ and w.
Put π � the map (λ, w) �→ λ of C2 → C. It follows from the local maximum
principle on Ŷ that (A, X, D, π) is a maximum modulus algebra on X. We saw
in Theorem 23.1 that, locally on X, C2 \ X is pseudoconvex. We now consider a
result that goes in the opposite direction. In order to formulate the result, we need
to define a strong version of pseudoconvexity in the sense of Levi.

Definition 23.3. Let � be a bounded domain in C2, defined by {ρ < 0}, with ρ

continuous. Fix z0 ∈ ∂� such that ρ is C2 on a neighborhood of z0. We say that
∂� is strictly pseudoconvex at z0 if we have

(8)

N∑
j,k�1

(
∂2ρ

∂zj ∂z̄k

)
0

ζj ζ̄k > 0 ∀ complex tangents ζ �� 0 ∈ Tz0 .

Remark. This definition is analogous to strict convexity in RN . In fact, the next
lemma, due to R. Narasimhan, shows that there is more than an analogy here.

Lemma 23.3. Suppose that ∂� is strictly pseudoconvex at z0, where � ⊆ Cn.
Then there exists an open neighborhood V of z0 in Cn and a biholomorphism φ of
V onto an open set in Cn such that φ(� ∩ V ) is strictly convex in Cn.
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Remark. Suppose that z0, �, and V are as in the lemma. Then there exists a
function ψ holomorphic in V such that

Z(ψ) � {z ∈ V : ψ(z) � 0}
is a complex submanifold of V that passes through z0 and satisfies

(9) Z(ψ) \ {z0} ⊂ Cn \ �̄.

In fact, if � is strictly convex at z0, then for ψ we can take the the affine complex
linear function F such that {ReF � 0} � z0 + Tz0(∂�). In the general case, we
apply the lemma and we set ψ � F ◦ φ, where F is the affine linear function for
the strictly convex image φ(� ∩ V ).

Proof of Lemma 23.3. Without loss of generality we may assume that z0 � 0
and that Tz0(∂�) � {xn � 0}. We write

ρ(z) � xn + Re(
∑

1≤j,k≤n

αjkzj zk) +
∑

1≤j,k≤n

cjkzj z̄k + o(|z|2),

where (cjk) is Hermitian positive definite. We make a quadratic change of
coordinates, putting

wj � zj , 1 ≤ j < n and wn � zn +
∑

1≤j,k≤n

αjkzj zk.

Then z �→ w ≡ φ(z) gives a biholomorphism near z � 0, and in the
w-coordinates

ρ � Re wn +
∑

1≤j,k≤n

cjkwj w̄k + o(|w|2).

Writing wj � uj + ivj , 1 ≤ j ≤ n, we see that the real Hessian H of ρ ◦ φ−1

at w � 0, with respect to the real coordinates u1, v1, u2, · · · , un, vn, is given by
H(u1, v1, u2, · · · , un, vn) �

∑
1≤j,k≤n cjkwj w̄k . Hence, since (cjk) is Hermitian

positive definite, it follows that H is (real) positive definite—this yields the desired
strict convexity.

We shall denote the projection map of C2 to the first coordinate by π , i.e.,
π(λ, w) � λ. In the proof of the next theorem, we shall view π as a map restricted
to a subset K of C2, and we shall write π−1(S) � {(λ, w) ∈ K : π(λ) ∈ S}.

Theorem 23.4. Let � be a domain in the product set {|λ| < 1} × C ⊂ C2

so that ∂� ∩ {|λ| < 1} is smooth and strictly pseudoconvex at each point. Put
K � [{|λ| < 1} × C] \ �. Assume that K is bounded in C2. Denote by A the
algebra of restrictions to K of all polynomials in λ and w. Then (A, K, D, π) is
a maximum modulus algebra on K .

Proof. We first fix a point (λ0, w0) in K that lies on ∂� ∩ {|λ| < 1}. Since ∂� is
strictly pseudoconvex at (λ0, w0), we can use the remark to obtain a neighborhood
V of (λ0, w0) in C2 as well as a function ψ holomorphic in V such that Z(ψ) passes
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through (λ0, w0), and otherwise lies totally outside of �̄. We write � � Z(ψ).
Let us denote by � the restriction of the coordinate function λ to �.

Case 1. � is not a constant.

Then there exists ε > 0 such that the image of � under � contains the disk
{|λ − λ0| ≤ ε}. We define the region

W � {|� − λ0| < ε}
on �. Then

∂W � {|� − λ0| � ε}
on �. Since � \ {(λ0, w0)} lies outside �̄, � ⊆ K . Hence ∂W ⊆ K , and so

∂W ⊆ π−1({|λ − λ0| � ε}).
Now fix a polynomial Q in λ and w. The restriction of Q to � is analytic on �.
The maximum principle on W then gives

|Q(λ0, w0)| ≤ max
∂W

|Q| ≤ max
π−1({|λ−λ0|�ε})

|Q|.

Case 2. � is constant on �.

Then � ≡ λ0 on �, so � is an open set on the complex line {λ � λ0}. Since
� \ {(λ0, w0)} lies outside �̄, � \ {(λ0, w0)} lies in the interior of K , and so we
can choose a region W on � such that (λ0, w0) ∈ W and ∂W is a compact subset
of int(K). It follows that there exists ε > 0 such that, for each (λ, w1) ∈ ∂W , the
entire horizontal disk

{(λ0 + τ, w1) : |τ | ≤ ε}
is contained in K . The boundary of the disk,

{(λ0 + τ, w1) : |τ | � ε},
then is contained in

π−1({|λ − λ0| � ε}).
Fix a polynomial Q(λ, w). Then

(10) |Q(λ0, w0)| ≤ |Q(λ0, w1)|
for some (λ0, w1) ∈ ∂W . Then, by the maximum principle on the horizontal
complex line through (λ0, w1),

(11) |Q(λ0, w1)| ≤ |Q(λ0 + τ, w1)|
for some τ with |τ | � ε. It follows from (10) and (11) that |Q(λ0, w0)| ≤
maxπ−1({|λ−λ0|�ε}) |Q|.
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We have completed the case of a point (λ0, w0) in K that lies on ∂�∩{|λ| < 1}.
The case of (λ0, w0) ∈ K , but (λ0, w0) �∈ ∂�, clearly reduces to the previous
one.

Finally, it remains to show that π is a proper map of K onto D � {|λ| < 1}.
That π is proper is clear since K is a bounded and relatively closed subset of
D × C. In particular, π(K) is a closed subset of D. To see that π maps onto D

it therefore suffices to show that π(K) is an open subset of D. We have K �
int(K) ∪ (∂�) ∩ (D × C)). π(int(K)) is clearly open and so it suffices to show
that π(∂� ∩ (D × C)) is contained in the interior of π(K). This is clear from the
discussions of Case 1 and of Case 2 above. This completes the proof.

5 Levi-Flat Hypersurfaces

Consider a region � in RN defined by an inequality ρ(x) < 0, where ρ is as in
Section 1. Fix x0 ∈ ∂�. If ∂� is flat, i.e., if a neighborhood of x0 on ∂� lies on
a hyperplane, then both � and its complementary region are convex near x0. The
complementary region is given by the inequality ρ(x) > 0 near x0, so we have,
in view of (2), the two relations

(13)

N∑
j,k�1

(
∂2ρ

∂xj∂xk

)
0

ξj ξk ≥ 0 ∀ξ ∈ Tx0 , and

(14)

N∑
j,k�1

(
∂2ρ

∂xj∂xk

)
0

ξj ξk ≤ 0 ∀ξ ∈ Tx0 .

Hence we have

(15)

N∑
j,k�1

(
∂2ρ

∂xj∂xk

)
0

ξj ξk � 0 ∀ξ ∈ Tx0 .

Now let � be a domain in Cn defined by ρ(z) < 0, and fix z0 ∈ ∂�, where ∂� is
smooth near z0. By analogy with (15), we make the following definition.

Definition 23.4. ∂� is Levi-flat at z0 if we have

(15′)
n∑

j,k�1

(
∂2ρ

∂zj ∂z̄k

)
0

ζj ζ̄k � 0

for every complex tangent vector ζ to ∂� at z0.

Exercise 23.7. Let φ be a function analytic on C2 and let � be the domain

|φ(z1, z2)| < 1

in C2. Fix z0 ∈ ∂� such that ∂� is smooth near z0. Show that then ∂� is Levi-flat
at z0.
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For simplicity, we restrict ourselves to the case where n � 2 for the rest of this
section. Now let � be an analytic disk in C2 given by

(16) z � f (λ), |λ| < 1,

where f (λ) � (f1(λ), f2(λ)) with each fj analytic in {|λ| < 1}. We put

df

dλ
� (

df1

dλ
,

df2

dλ
).

Theorem 23.5. Let � be a region in C2 and fix z0 ∈ ∂� with ∂� smooth near
z0. Assume that there exists an analytic disk, z � f (λ), with f (0) � z0, which is
contained in ∂�, and df

dλ
(0) �� 0. Then ∂� is Levi-flat at z0.

Proof. Let � be given by {ρ(z) < 0} with ρ smooth in a neighborhood of z0.
Then

ρ(f (λ)) � 0, |λ| < 1.

Differentiating, we get, writing f ′j � dfj/dλ, ∂/∂λ(ρ(f (λ)) � 0 or

2∑
j�1

∂ ρ

∂zj

(f (λ))f ′j (λ) � 0.

It follows that f ′(0) is a complex tangent to ∂� at z0. Differentiating the last
equation with respect to λ̄, we get∑

j

[
∑

k

∂2

∂z̄k∂zj

(f (λ))f ′j (λ)f ′k(λ)] � 0, or

(17)
∑
j,k

∂2ρ

∂zj ∂z̄k

(f (λ))f ′j (λ)f ′k(λ) � 0,

In view of (1′), the totality of complex tangent vectors to ∂� at z0 is a one-
dimensional complex subspace of C2. Fix such a complex tangent vextor ζ . Then
there exists a λ ∈ C such that ζ � λf ′(0). Hence we get∑

j,k

∂2ρ

∂zj ∂z̄k

(0)ζj ζk �
∑
j,k

(
∂2ρ

∂zj ∂z̄k

)
0

|λ|2f ′j (0)f ′k(0) � 0,

in view of (17). Thus ∂� is Levi-flat at z0, as claimed.

Levi-flat hypersurfaces arise narturally in the study of polynomial hulls.

Example 23.2. Let T denote the torus {|z1| � 1, |z2| � 1} in C2. Put � � int�2.
Then T̂ � �̄. Theorem 23.5 (or direct calculation) yields that ∂� is Levi-flat at
each point (λ0, w0) in ∂� with |λ0| < 1.

This example points the way to the following theorem.
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Theorem 23.6. Let Y be a compact set in C2 lying over the circle {|z1| � 1}. Let
� be the interior of Ŷ (� is contained in {|z1| < 1}). Then ∂� is Levi-flat at each
point z0 � (z0

1, z0
2) with |z0

1| < 1 at which ∂� is smooth near z0.

Proof. Fix z0 ∈ ∂� with |z0
1| < 1. Choose a defining function ρ for � such that

� � {ρ(z) < 0},
ρ is smooth in a neighborhood of z0 in C2, and (∇ρ)0 �� 0.

Let B be a small ball centered at z0. We put ω � B \ Ŷ . By Theorem 23.1, ω is
pseudoconvex. We choose a defining function ρ̃ for ω such that ρ̃ coincides with
−ρ in a neighborhood of z0 in C2. Since ω is pseudoconvex, we have∑

j,k

(
∂2ρ̃

∂zj ∂z̄k

)
0

ζj ζ̄k ≥ 0

for every complex tangent ζ to ∂� at z0 and hence

(18)
∑
j,k

(
∂2ρ

∂zj ∂z̄k

)
0

ζj ζ̄k ≤ 0

for every such ζ .
On the other hand, since � is the interior of the polynomially convex set Ŷ ,

� is a Runge domain and hence pseudoconvex, and therefore � is pseudoconvex
in the sense of Levi at each of its smooth points z0. (See the Appendix for these
implications.) It follows that

(19)
∑
j,k

(
∂2ρ

∂zj ∂z̄k

)
0

ζj ζ̄k ≥ 0

for every complex tangent ζ to ∂� at z0. Now (18) and (19) yield (15′); i.e., ∂� is
Levi-flat at z0.
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Examples

Let Y be a compact set in Cn and fix a point ζ ∈ Cn \ Y . What is the “reason” that
ζ lies in the hull of Y , or, in other words, how can we account for the inequality

(1) |P(ζ )| ≤ max
Y
|P |

for all polynomials P on Cn?
The simplest explanation for (1) would be to reduce the inequality to the maxi-

mum principle for analytic functions on some analytic variety. Suppose that there
exists an analytic variety � such that:

(i) ζ ∈ �;
(ii) the boundary of �, ∂�, is contained in Y ; and

(iii) � ∪ ∂� is compact.
If, then, P is any polynomial, the restriction of P to � is analytic, and so (1) is

a consequence of the maximum principle for analytic functions on �.
In the 1950s, the question was asked whether, indeed, for each compact set Y

in Cn with Ŷ �� Y , some analytic variety of positive dimension is contained in Ŷ .
A counterexample was given by Stolzenberg in [St2] in 1963.

In this chapter we shall give a number of examples related to the problem of the
existence of analytic varieties in hulls.

Definition 24.1. Let X be a compact subset of Cn. Then R0(X) denotes the algebra
of continuous functions f on X of the form f � A/B, where A and B are
polynomials and B has no zero on X. R(X) denotes the closure of R0(X) in the
uniform norm over X.

Definition 24.2. Let X be a compact subset of Cn. The rationally convex hull
of X, denoted hr(X), is the set {z ∈ Cn : for all polynomials p in Cn, if p(z) �
0, then p has a zero on X}.

The reader can verify that (a) hr(X) ⊆ X̂ and (b) the maximal ideal space of
R(X) can be naturally identified with hr(X).

206
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Example 24.1. Let S be a closed subset of {|ζ | ≤ 1} that contains the unit circle.
Denote by D1, D2, . . . the components of the complement of S in {|ζ | < 1}. For
each i, put

Hi � {(z, w) ∈ C2 : z ∈ Di, |w| � 1}
and

Ki � {(z, w) ∈ C2 : |z| � 1, w ∈ Di}.
�2 denotes the closed bidisk and ∂�2 its topological boundary. We can picture
each Hi or Ki as a solid torus in ∂�2. We denote

XS � ∂�2 \
∞⋃
i�1

Hi ∪ Ki.

Thus XS is obtained from ∂�2 by removing a family of solid tori. Another
representation of XS is

XS � {(z, w) : z ∈ S, |w| � 1} ∪ {(z, w) : |z| � 1, w ∈ S}.

Claim 1. Assume that S has no interior. Then hr(X) contains no analytic disk.

Proof. Suppose that E is an analytic disk contained in hr(XS). Either z or w is
not a constant on E. Suppose that z is not constant. Then z(E) contains interior
in C and so the z-projection of hr(XS) has interior points. On the other hand, this
z-projection is contained in S. To see this, consider (z0, w0) ∈ hr(XS). If z0 �∈ S,
then z − z0 �� 0 on S. But z − z0 vanishes at (z0, w0), and this contradicts the
definition of hr(XS). So z0 ∈ S, as claimed. Since by hypothesis S has no interior,
we have a contradiction. Thus E cannot exist.

Of course, given S it may be that hr(XS) coincides with XS , and in this case
Claim 1 gives no information. We now shall construct S such that S has no interior
and hr(XS) �� XS .

Let S, Di, Hi, Ki, i � 1, 2, . . . be as above. For each n, we put

Yn �
n⋃

i�1

Hi ∪ Ki.

Claim 2. Fix p ∈ �2. If p �∈ hr(XS), then for some n, p ∈ Ŷn in the sense that
for every polynomial f , |f (p)| ≤ supYn

|f |.

Proof. Since p �∈ hr(XS), there exists a polynomial Q with Q(p) � 0 and
Q �� 0 on XS . Since Q is continuous and XS � ∂�2 \ ⋃∞

i�1 Hi ∪ Ki , we can
choose n with Q �� 0 on ∂�2 \⋃n

i�1 Hi ∪ Ki .
Denote by V the connected component of the zero-set of Q containing p. Then

V ∩ ∂� ⊆ ⋃n
i�1 Hi ∪ Ki . If now f is a polynomial, the maximum principle
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applied to V gives

|f (p)| ≤ max
V∩∂�

|f | ≤ sup |f |,

where the sup is taken over
⋃n

i�1 Hi ∪ Ki , as claimed.

Claim 3. There exists a sequence D1, D2, . . . of disjoint open subsets of {|ζ | < 1}
such that, if we put

S � {|ζ | < 1} \
∞⋃
i�1

Di,

and define Hi, Ki as earlier, then we have:

S lacks interior, and(2)

(0, 0) ∈ hr(XS).(3)

Proof. We choose a countable dense subset {aj } of {|ζ | < 1} avoiding 0.
We shall show that there exists a sequence {Dj } of disjoint open disks contained

in {|ζ | < 1} such that for each n we have

aj ∈
n⋃

i�1

Di for 1 ≤ j ≤ n, and(4)

0 �∈ Ŷn, where Yn �
n⋃

i�1

Hi ∪ Ki.(5)

Fix r1 with 2r1/|a1|2 < 1. Put G(z, w) � (z − a1)(w − a1)/a
2
1 . Put D1 �

{|ζ − a1| < r1}. Then G(0, 0) � 1 and, for (z, w) ∈ H1 ∪ K1, |G(z, w)| ≤
2r1/|a1|2 < 1. So (4) and (5) hold for n � 1.

Suppose now that disjoint open disks D1, D2, . . . , Ds have been chosen so that
(4) and (5) hold for n � 1, 2, . . . , s, and also that ∂Di does not meet {aj } for
i � 1, 2, . . . , s. Let a be the first aj not contained in ∪s

i�1Di . It follows from (5)
for n � s that there exists a polynomial P with |P(0, 0)| > 1 and |P | ≤ 1/2 on
∪s

i�1Hi ∪ Ki . (Why?) Put λ � max∂�2 |P |. Choose k such that

( 1
2 )k4

|a|2 < 1

and choose r with

λk2r

|a|2 < 1.

Put Ds+1 � {|ζ − a| < r}. We may assume that Ds+1 fails to meet ∪s
i�1Di and

that ∂Ds+1 does not meet {aj }. Put

Q(z, w) � (P (z, w))k(z − a)(w − a)/a2.
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Then |Q(0)| > 1 and on ∪s
i�1Hi ∪ Ki ,

|Q|2 ≤ ( 1
2 )k4

|a|2 < 1.

So 0 �∈ Ŷn for n � 1, 2, . . . , s.
On Hs+1 ∪Ks+1, either |z− a| < r or |w − a| < r , so |Q| < λk2r

|a|2 < 1. Thus

0 �∈ Ŷs+1, and so (5) holds for n � s + 1. By choice of Ds+1, as+1 ∈ ∪s+1
i�1Di . So

(4) and (5) hold for D1, . . . , Ds, Ds+1. Thus by induction, the desired sequence
{Di} exists satisfying (4) and (5) for each n. We now put S � {|ζ | ≤ 1} \ ∪∞i�1Di .

Because of Claim 2, together with (5), we have that 0 ∈ hr(XS). Also, ∪∞i�1Di

contains each aj , and hence S lacks interior. This gives Claim 3.
Finally, Claim 1 gives that hr(XS) contains no analytic disk. We have proved

Theorem 24.1. There exists S such that hr(XS) �� XS and hr(XS) contains no
analytic disk.

It is shown in the Appendix that, if X is a compact set in Cn, then R(X) is
generated by n + 1 functions.

Exercise 24.1. Let S be as in Theorem 24.1. Let g1, g2, g3 be three functions in
R(XS), generating that algebra. Denote by Y the image in C3 of XS under the map
g � (g1, g2, g3). Show that Ŷ �� Y and Ŷ contains no analytic disk.

Example 24.2. Let A be a uniform algebra on a compact space X, and let M be
the maximal ideal space of A. Fix f ∈ A. Assume that f (X) is the unit circle and
that f (M) is the unit disk.

In Chapter 20 we studied this situation in a special case, and in Theorem 20.2
we found a class of such algebras where M must contain analytic disks.

However, we have the following result of Cole [Co1]:

Theorem 24.2. There exists a uniform algebra A on a compact metric space X,
with maximal ideal space M and f ∈ A such that

f (X) is the unit circle.(6)

f (M) is {|z| ≤ 1}.(7)

M contains no analytic disk.(8)

Proof. Let �0 be the closed unit disk and let �1, �2, . . . be a sequence of copies
of the disk {|z| ≤ 2}. Let � � �0 × �1 × �2 × · · · be the topological product
of all of these disks. Then � is a compact metrizable space. A point of � will be
denoted by (z, ζ1, ζ2, . . .), where |z| ≤ 1 and |ζj | ≤ 2 for all j . We denote the
coordinate functions by z, ζ1, ζ2, . . .. Each coordinate function is continuous on
�.
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Let {ai} be a countable dense subset of {|z| < 1}. We denote by Y the subset of
� consisting of all points (z, ζ1, ζ2, . . .) satisfying

ζ 2
1 � z − a1, ζ 2

2 � z − a2, · · · .
Y is thus the common null-set of a family of continuous functions on �, and so Y

is closed and hence compact. Let A(Y ) denote the uniform algebra on Y spanned
by all of the polynomials P(z, ζ1, ζ2, . . . , ζn), n � 1, 2, . . . in the coordinate
functions.

Put X � {(z, ζ1, ζ2, . . .) ∈ Y : |z| � 1}. We claim that X is a boundary for
A(Y ), in the sense of Definition 9.1.

Fix n and consider the variety Vn � {(z, ζ1, ζ2, . . . , ζn) : ζ 2
j � z − aj , 1 ≤

j ≤ n} ⊆ Cn+1. Let K denote the polydisk in Cn+1 consisting of all points
(z0, z1, . . . , zn) with |z0| ≤ 1 and |zj | ≤ 2 for j � 1, 2, . . . , n. Then Vn ∩
Ko is an analytic subvariety of Ko, where Ko denotes the interior of K . Let
(z0, ζ 0

1 , ζ 0
2 , . . . , ζ 0

n ) be a boundary point of Vn ∩ Ko. If |z0| �� 1, then |ζ 0
j | � 2

for some j . But |ζ 0
j |2 � |z0 − aj | < 2, so this cannot occur. Hence

(9) ∂(Vn ∩ Ko) ⊆ {(z, ζ1, ζ2, . . . , ζn) : |z| � 1}.
Consider a polynomial P on Cn+1 and let g � P(z, ζ1, ζ2, . . . , ζn) be

the corresponding element of A(Y ). Fix y � (z0, ζ 0
1 , ζ 0

2 , . . .) ∈ Y . Then
(z0, ζ 0

1 , ζ 0
2 , . . . , ζ 0

n ) ∈ Vn ∩ K . By the maximum principle on Vn and (9), there
exists (z′, ζ ′1, ζ ′2, . . . , ζ ′n) ∈ Vn with |z′| � 1 such that

|g(y)| � |P(z0, ζ 0
1 , ζ 0

2 , . . . , ζ 0
n )| ≤ |P(z′, ζ ′1, ζ ′2, . . . , ζ ′n)|.

Next, we can (clearly) choose ζ ′n+1, ζ ′n+2, . . . so that y ′ � (z′, ζ ′1, ζ ′2, . . . ,

ζ ′n, ζ ′n+1, ζ ′n+2, . . .) ∈ Y . Then |g(y)| ≤ |g(y ′)|. Since y ′ ∈ X, it follows that
X is a boundary for A(Y ), as claimed.

The restriction of A(Y ) to X is then a uniform algebra A on X. It is easy to see
that the maximal ideal space of A is Y , and we leave it to the reader to verify this.

We take f to be the coordinate function z and let M denote the maximal ideal
space of A. Then f (X) is the unit circle and f (M) is the unit disk.

We assert that M contains no analytic disk. Suppose that there were such a disk
E. This means that there is a continuous one-one map � of {|λ| < 1} onto E such
that h ◦ � is analytic on {|λ| < 1} for every h ∈ A. We first suppose that f is not
constant on E and put F � f ◦�. Then F is a nonconstant analytic function and
so F({|λ| < 1/2}) contains an open disk. In that disk there are infinitely many of
the aj . For each such j choose λj in {|λ| < 1} with F(λj ) � aj .

Fix j . Since the coordinate function ζj satisfies ζ 2
j � z − aj , we have ζ 2

j �
f − aj , and so (ζj ◦ �)2 � F − aj . Hence the derivative F ′ of F vanishes at λj .
Hence F ′ vanishes infinitely often in {|λ| < 1/2} and so F is a constant. This is a
contradiction. So f is constant on E.

Thus for some a ∈ �0, f −1(a) contains E. We claim, however, that for each
z0 ∈ �0, f −1(z0) is totally disconnected, and this will yield a contradiction. Let
Gj be the two element group {−1, 1} for j � 1, 2, · · · and let G be the topological
product, G � ∏∞

j�1 Gj . An element of G is a sequence g � (g1, g2, . . .), where
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each gj � 1 or� −1. G is a compact, totally disconnected, Hausdorff space. We
shall construct a homeomorphism of G onto f −1(z0). Each point of f −1(z0) has
the form x � (z0, w1, w2, . . .), where w2

j � z0−aj for all j . We only consider the
case when z0 �� aj for all j , and so wj �� 0 for all j . The case z0 � aj for some j

is similar. Fix x ′ � (z0, w′1, w′2, . . .) ∈ f −1(z0). For each g � (g1, g2, · · ·) ∈ G,
map g → gx ′ � (z0, g1w

′
1, g2w

′
2, . . .). Then gx ′ again belongs to f −1(z0). It

is easy to verify that the map g → gx ′ maps G onto f −1(z0), and that the map
is one-one and continuous. Since G is compact, the map is a homeomorphism.
Hence f −1(z0) is totally disconnected, as claimed. We are done.

Note. In an intuitive sense, the space Y in the preceding example is a Riemann
surface lying over the unit disk, which “has a dense set of branch points.” Taking
this point of view, in the following example, we shall construct a variant of the
space Y that lies in C2.

Example 24.3. We next give an example of a hull without analytic structure. Let
π denote the projection of C2 to C given by

π(z1, z2) � z1.

Theorem 24.3. There exists a compact subset Y of C2 with π(Y ) � {|z| � 1}
and π(Ŷ ) � {|z| ≤ 1} such that Ŷ \ Y contains no analytic disk.

Note. By a change of variable we may replace the unit circle by the circle {|z| �
1/2} and the unit disk by {|z| ≤ 1/2}; we shall prove Theorem 24.3 for this case.
The convenience that results is that for |a|, |b| ≤ 1/2 we have |a − b| ≤ 1.

Proof of Theorem 24.3. We denote by a1, a2, . . . the points in the disk {|z| ≤
1/2}, both of whose coordinates are rational. For j � 1, 2 . . ., we denote by Bj

the algebraic function

Bj(z) � (z − a1)(z − a2) · · · (z − aj−1)
√

z − aj .

Fix constants c1, c2, . . . , cn in C and put

gn(z) �
n∑

j�1

cjBj (z).

We denote by �(c1, c2, . . . , cn) the portion of the Riemann surface of gn that lies
in {|z| ≤ 1/2}. In other words,

�(c1, c2, . . . , cn) � {(z, w) : |z| ≤ 1/2, w � wj, j � 1, 2, . . . , 2n},
where wj, j � 1, 2, . . . , 2n are the values of gn at z. In the following discussion,
we shall always assume, whenever z occurs, that

(10) |z| ≤ 1
2 .
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Lemma 24.4. There exist two sequences of positive constants cj , j � 1, 2, . . .

and εj , j � 1, 2, . . . such that c1 � 1/10, cj+1 ≤ (1/10)cj , j � 1, 2, . . ., and
there exists a sequence of polynomials Pn in z and w, n � 1, 2, . . . such that:

{Pn � 0} � �(c1, c2, . . . , cn), n � 1, 2, . . . ,(11)

{|Pn| ≤ εn} ⊆ {|Pn−1| ≤ εn−1}, n � 2, 3, . . . ; and(12)

if |a| ≤ 1/2 and |Pn(a, w)| ≤ εn, then there exists wn with(13)

Pn(a, wn) � 0 and |w − wn| < 1/n, n � 1, 2, . . . .

Proof. For j � 1, we take

c1 � 1

10
, ε1 � 1

4
, P1(z, w) � w2 − 1

100
(z − a1).

Then (11) and (13) hold for n � 1, and (12) is vacuous.
Suppose now that cj , εj , Pj have been chosen for j � 1, 2, . . . , n, so that our

three conditions are satisfied for each j . We shall choose cn+1, εn+1, Pn+1.
We denote by wj(z), j � 1, 2, . . . , 2n, the roots of Pn(z, ·) � 0. To each

constant c ≥ 0 we assign the polynomial Pc(z, w) defined so that the roots of
Pc(z, ·) � 0 are wj(z) ± cBn+1(z), j � 1, 2, . . . , 2n, and Pc(z, w) is monic in
w. Thus

Pc(z, w) �
2n∏

j�1

(w − [wj(z) + cBn+1(z)])(w − [wj(z) − cBn+1(z)])

�
2n∏

j�1

[(w − wj(z))
2 − c2(Bn+1(z))

2].

By construction, the zero-set of Pc(z, w) is �(c1, . . . , cn, c).
Choose M > 0 such that, if we put �M � {(z, w) : |z| ≤ 1/2, |w| ≤ M},

then

{|Pc| <
ε2
n

2
} ⊆ �M

for all c, 0 ≤ c ≤ 1.

Claim. For sufficiently small positive c, we have

(14) {|Pc| ≤ ε2
n

2
} ⊆ {|Pn| < εn}.

Proof Claim. Suppose that the claim is false. Then for arbitrarily small c > 0
there exists ζc ∈ �M with |Pc(ζc)| ≤ ε2

n/2 and |Pn(ζc)| ≥ εn. Since �M is
compact, the set {ζc} has an accumulation point ζ ∗ ∈ �M . As c → 0, Pc → (Pn)

2

uniformly on compact sets in C2, and so |P 2
n (ζ ∗)| ≤ ε2

n/2 and |Pn(ζ
∗)| ≥ εn. This

is false. Thus the claim follows.
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Now fix c such that (14) is true, and such that c < (1/10)cn. We have

Pc(z, w) �
2n+1∏
j�1

(w − w′j (z)),

where w′j (z) are the zeros of Pc(z, ·). Hence, if ε > 0 and if |Pc(z, w)| < ε, then

|w − w′j (z)| < ε1/2n+1
for some j .

It follows that we can choose εn+1 with εn+1 < ε2
n/2 and such that |Pc(z, w)| <

εn+1 implies that there exists wn+1 with Pc(z, wn+1) � 0 and |w − wn+1| <

1/(n + 1). Putting cn+1 � c, and then, putting Pn+1 � Pc and choosing εn+1 as
above, we have that (11), (13), and (12) are satisfied for j � 1, 2, . . . , n+ 1. The
lemma now follows by induction.

Definition 24.3. With Pn, εn chosen as in Lemma 24.4, we put (recall that {|z| ≤
1/2} is understood!)

X �
∞⋂

n�1

{|Pn(z, w)| ≤ εn}.

It follows from this definition that X is a compact polynomially convex subset
of {|z| ≤ 1/2} ⊆ C2. For each n we put

�n � {Pn � 0} � �(c1, . . . , cn),

where c1, c2, . . . is the sequence obtained in Lemma 24.4.

Lemma 24.5. A point (z, w) belongs to X if and only if there exists a sequence
{(z, wn)} with (z, wn) ∈ �n for each n and wn → w as n → ∞.

Proof. Fix (z, w) and assume that such a sequence {(z, wn)} exists. Fix n0.
Because of (12),

{|Pk| ≤ εk} ⊆ {|Pn0 | ≤ εn0}
if k > n0. Since Pk(z, wk) � 0 for each k,

(z, wk) ∈ {|Pn0 | ≤ εn0}
for each k > n0. Hence (z, w) ∈ {|Pn0 | ≤ εn0}. Since this holds for each n0,
(z, w) ∈ X.

Conversely, assume that (z, w) ∈ X. Fix n. Then {|Pn(z, w)| ≤ εn}. By (13)
there hence exists wn with (z, wn) ∈ �n and |w − wn| < 1/n. Thus {(z, wn)} is
a sequence as required.

Lemma 24.6. Let � be a region contained in {|z| < 1/2}. There does not exist a
continuous function f on � whose graph {(z, f (z)) : z ∈ �} is contained in X.

Proof. Suppose that such a function f exists. We choose a rectangle: s1 ≤ Re z ≤
s2, t1 ≤ Im z ≤ t2 contained in �, with s1, s2, t1, t2 irrational numbers. Let γ
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denote the boundary of this rectangle. Denote by z1 the midpoint of the left-hand
edge of γ , by z0 the midpoint of the right-hand edge, and let γ1 denote the punctured
curve γ \ {z1}.

For each j , Bj(z) � (z − a1) · · · (z − aj−1)
√

z − aj has two single-valued
continuous branches defined on γ1. If aj lies outside γ , then each branch extends
continuously to γ , while if aj lies inside γ , each branch has a jump discontinuity
at z1. By construction, no aj lies on γ . We choose one of these two branches,
arbitrarily, and call it βj . Then |βj | is single-valued and nonvanishing on γ .

Let n be the smallest index such that an lies inside γ , and let c1, c2, . . . , cn be
the constants constructed in Lemma 24.4. The algebraic function

∑n
j�1 cjBj has

on γ1 the 2n branches
n∑

j�1

cjρjβj ,

where each constant ρj � 1 or � −1.

Definition 24.4. K is the collection of all 2n functions
∑n

j�1 cjρjβj on γ1, where
each ρj is a constant � 1 or � −1.

Claim 1. Fix z ∈ γ1. There exists k ∈ K, depending on z, such that

(15) |f (z) − k(z)| ≤ 1
4 |βn(z)|cn.

Proof of Claim. Since (z, f (z)) ∈ X, Lemma 24.5 gives wN such that
(z, wN) ∈ �N and R(z) � f (z) − wN satisfies

(16) |R(z)| ≤ 1
10 |βn(z)|cn.

Thus f (z) � ∑N
j�1 cjρj (z)βj (z) + R(z), where each ρj (z) � 1 or � −1. So

f (z) �
n∑

j�1

cjρj (z)βj (z) +
N∑

j�n+1

cjρj (z)βj (z) + R(z)

� k(z) +
N∑

j�n+1

cjρj (z)βj (z) + R(z),

where k ∈ K. Then

(17) |f (z) − k(z)| ≤
N∑

j�n+1

cj |βj (z)| + |R(z)|.

For each j ,

|βj+1(z)| � |(z − a1) · · · (z − aj )||
√

z − aj+1|

≤ |(z − a1) · · · (z − aj )|
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≤ |(z − a1) · · · (z − aj−1)|
√|z − aj | � |βj (z)|,

where we have used that we are working in the disk {|z| ≤ 1/2}. So

N∑
j�n+1

cj |βj (z)| ≤
N∑

j�n+1

cj |βn(z)|

≤ |βn(z)|[ cn

10
+ cn

102
+ · · ·] � 1

9
|βn(z)|cn.

Together with (16) and (17), this gives (15).

Claim 2. Fix z ∈ γ1. Let g, h be distinct functions in K. Then

(18) |g(z) − h(z)| ≥ 3
2 |βn(z)|cn.

Proof of Claim.

g(z) �
n∑

j�1

cjρjβj (z), h(z) �
n∑

j�1

cjρ
′
jβj (z),

where ρj , ρ ′j are constants � 1 or −1. For some j , ρj �� ρ ′j . Let j0 be the first
such j . Then

g(z) − h(z) � ±2cj0βj0(z) +
n∑

j�j0+1

cj (ρj − ρ ′j )βj (z).

So

|g(z) − h(z)| ≥ 2cj0 |βj0(z)| − 2
n∑

j�j0+1

cj |βj (z)|

≥ 2cj0 |βj0(z)| − 2|βj0(z)|
n∑

j�j0+1

cj

≥ 2|βj0(z)||cj0 −
n∑

j�j0+1

cj |

≥ 2|βj0(z)|cj0(1 − 1
9 ) � 16

9 |βj0(z)|cj0

≥ 3
2 |βn(z)|cn,

proving our claim.

Claim 3. Choose k0 ∈ K such that |f (z0) − k0(z0)| ≤ (1/4)|βn(z0)|cn, which is
possible by Claim 1. Then we have for all z ∈ γ1

(19) |f (z) − k0(z)| ≤ 1
3 |βn(z)|cn.
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Proof of Claim. Put O � {z ∈ γ1 : (19) holds at z}. The O is an open subset
of γ1, containing z0. If O �� γ1, then there is a boundary point p of O on γ1. Then

(20) |f (p) − k0(p)| � 1
3 |βn(p)|cn.

By Claim 1, there is some k1 ∈ K such that

(21) |f (p) − k1(p)| ≤ 1
4 |βn(p)|cn.

Thus |k0(p)− k1(p)| ≤ (7/12)|βn(p)|cn. Also, k0 �� k1, in view of (20) and (21).
This contradicts (18). Hence O � γ1, and so the claim follows.

For each continuous function u defined on γ1 that has a jump at z1, let us write
L+(u) and L−(u) for the two limits of u(z) as z → z1 along γ1. Then, by (19),

|L+(f ) − L+(k0)| ≤ 1
3 |βn(z1)|cn

and

|L−(f ) − L−(k0)| ≤ 1
3 |βn(z1)|cn.

Hence

|(L+(f ) − L−(f )) − (L+(k0) − L−(k0))| ≤ 2
3 |βn(z1)|cn.

But f is continuous at z1, so the jump of k0 at z1 is in modulus less than or equal
to (2/3)|βn(z1)|cn. But k0 ∈ K, and so its jump at z1 is 2|βn(z1)|cn. This is a
contradiction.

So f does not exist, and Lemma 24.6 is proved.

Lemma 24.7. Suppose that D is an analytic disk contained in X. Then z is a
constant on D (“D is a vertical disk”).

Proof. If z is nonconstant on D, then, without loss of generality, D is given by
an equation w � f (z), where f is a single-valued analytic function on a domain
� ⊆ {|z| < 1/2}. Then f is continuous on � and the graph of f is contained in
X. This contradicts Lemma 24.6. So z is constant on D, as desired.

Fix z0 and denote by π−1(z0) the fiber over z0, i.e.,

π−1(z0) � {w ∈ C : (z0, w) ∈ X}.

Lemma 24.8. Let K be a connected component of π−1(z0). Then K is a single
point.

Proof. We first assume that z0 �� aj for all j . Fix an integer N . For each ν,
choose one of the values of Bν at z0 and denote it Bν(z0). For j � 1, 2, . . . , 2N ,
put

wj �
N∑

ν�1

cνρ
(j)
ν Bν(z0),
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where ρ
(j)

1 , ρ
(j)

2 , . . . , ρ
(j)

N is an N -tuple of 1′s and (−1)′s. Then wj, j �
1, 2, . . . , 2N , are the w-coordinates of the points of �N lying over z0. By a
calculation similar to the one in the proof of (18), we find that

(22) |wj − wk| ≥ 3
2 |BN(z0)|cN, 1 ≤ j, k ≤ 2N, j �� k.

Consider the closed disks with center wj, j � 1, 2, . . . , 2N , and radius
(1/2)|BN(z0)|cN . Because of (22), these disks are disjoint.

Claim. Fix b ∈ π−1(z0). Then b belongs to the union of the 2N disks.

Proof of the Claim. By Lemma 24.5 there exists M > N and there exists
(z0, w′) ∈ �M such that

|b − w′| < 1
9 cN |BN(z0)|.

Now w′ � ∑M
ν�1 cνρνBν(z0), where each ρν � 1 or � −1.

Since (z0, w′) ∈ �M ,

w′ �
N∑

ν�1

cνρνBν(z0) +
M∑

ν�N+1

cνρνBν(z0)

� wj +
M∑

ν�N+1

cνρνBν(z0)

for some j , 1 ≤ j ≤ 2N . So

|w′ − wj | ≤
M∑

ν�N+1

cν |Bν(z0)| ≤ 1
9 cN |BN(z0)|.

Thus b belongs to the disk with center wj and radius (1/2)cN |BN(z0)|, and hence
to the union of these 2N disks, as claimed.

Since K is a connected component of π−1(z0) and K is contained in the union
of the disjoint disks

{|w − wj | ≤ (1/2)cN |BN(z0)|}, j � 1, . . . , 2N,

it follows that K is contained in one of the disks and so diam K ≤ cN . This holds
of each N . So diam K � 0, and therefore Lemma 24.8 is proved in this case.

If z0 � aj for some j , then BN(z0) � 0 for N > j . Hence π−1(z0) is finite,
and so again each component of π−1(z0) is a single point.

It follows from Lemma 24.8 that X contains no disk on which z is constant (no
“vertical disk”).

Lemma 24.9. Put

Y � X ∩ {|z| � 1
2 }.

Then X � Ŷ .
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Proof. Since X is polynomially convex, Ŷ ⊆ X.
Now fix (z, w) ∈ X. Choose a sequence {(z, wk)} converging to (z, w) such

that (z, wk) ∈ �k for each k. For each k put ∂�k � �k ∩ {|z| � 1/2}.
Let Q be a polynomial on C2. By the maximum principle of �k , for each k,

|Q(z, wk)| ≤ |Q(z′k, w′k)|,
where (z′k, w′k) ∈ ∂�k .

Let (z∗, w∗) be an accumulation point of the sequence {(z′k, w′k)}. Fix n0. For
k > n0, (z′k, w′k) ∈ {|Pk| ≤ εk} ⊆ {|Pn0 | ≤ εn0}. Letting k → ∞, we get

(z∗, w∗) ∈ {|Pn0 | ≤ εn0}.
Since this holds for each n0, (z∗, w∗) ∈ X. Also, |z∗| � 1/2. Further, by letting
k → ∞, we get

|Q(z, w)| ≤ |Q(z∗, w∗)|.
So |Q(z, w)| ≤ max |Q| over X ∩ {|z| � 1/2} � Y . Thus (z, w) ∈ Ŷ , and so
X ⊆ Ŷ .

It follows that X � Ŷ .

In view of Lemmas 24.7 , 24.8, and 24.9, Ŷ contains no analytic disk. Also,
π(Y ) � {|z| � 1/2} and π(Ŷ ) � {|z| ≤ 1/2}.

Theorem 24.3 is proved.

Example 24.4. We now discuss an example of Ahern and Rudin [AR] of a totally
real 3-sphere � in C3. We refer to Item 9 of Chapter 25 for the significance of this
type of example. We recall that “totally real” means that the tangent space at each
point contains no complex subspace of positive dimension. Let S3 � {(z, w) ∈
C2 : zz + ww � 1} and let σ be a smooth complex-valued function defined on
a neighborhood of S3. Let � be the 3-sphere in C3 that is the image of S3 under
the embedding E : S3 → C3 given by E(z, w) � (z, w, σ (z, w)); i.e., � is the
graph of σ |S3. Set

L � w
∂

∂z
− z

∂

∂w
,

the tangential Cauchy–Riemann operator on S3.

Proposition 24.10. � is totally real if and only if Lσ �� 0 at every point of S3.

Proof. Fix (a, b) ∈ S3. Then the complex line tangent � to S3 at (a, b) can be
parameterized by

λ → (a + bλ, b − aλ).

It is straightforward to check that

σ(a + bλ, b − aλ) � σ(a, b) + (Lσ)(a, b)λ + (Lσ)(a, b)λ + o(|λ|),
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as λ → 0, where L � w ∂
∂z
− z ∂

∂w
; indeed, it suffices to show that ∂

∂λ
and ∂

∂λ

of both sides agree at λ � 0. The orthogonal projection π : C3 → C2 takes
a complex tangent to � at (a, b, σ (a, b)) to the complex line �, and so the only
possible complex tangent line to � at (a, b, σ (a, b)) is a graph over � of the first-
order terms of σ(a + bλ, b − aλ), viewed as a function of λ. This is a complex
line (no λ term!) if and only if Lσ(a, b) � 0.

We shall need the following.

Lemma 24.11. Let � be a bounded domain in C such that 0 ∈ b� and such
that � is disjoint from the negative real axis. Let ζ0 ∈ �. For 0 < r < |ζ0|, let
�r � {ζ ∈ � : |ζ | > r} and let αr � {ζ ∈ b�r : |ζ | � r}; assume that �r is
connected. Then there exists C > 0 (depending on ζ0 but not on r) such that the
harmonic measure of αr with respect to the point ζ0 and the domain �r is≤ C

√
r .

Proof. Denote by
√

ζ the principal value of the square root on the plane cut by the
negative real axis. In the right half-plane define a nonnegative harmonic function

H(z) � 2

π
arg(

z + i
√

r

z − i
√

r
).

We have H(z) ≡ 1 if |z| � √r . On �r , define a nonnegative harmonic function
h(ζ ) � H(

√
ζ ). Since h ≥ 0 on �r and h ≡ 1 on αr , we get:

h(ζ0) ≥ harmonic meas(αr).

Finally, we use the estimate

h(ζ0) � 2

π
arg(

√
ζ0 + i

√
r√

ζ0 − i
√

r
) ≤ C

√
r

for some C > 0.

We now make a special choice of σ . For (z, w) ∈ C2 set σ(z, w) � zw(ww +
izz). It is straightforward to check that Lσ �� 0 at every point of S3, and so we
obtain the totally real 3-sphere in C3 that we seek as the 3-sphere �, which is the
graph of the function σ on S3.

We know, say by Browder’s Theorem 15.8, that � is not polynomially convex.
To conclude this example, we shall determine the polynomially convex hull of
�. For this we shall use a method of Anderson [An] and Wermer [We8]. Let
F(z) � z1z2z3, a polynomial in C3, where z � (z1, z2, z3). Then, for z ∈ �,
we have F(z) � z1z2σ(z1, z2) � |z1|2|z2|2(|z2|2 + i|z1|2). Thus the set F(�)

is a curve � in the plane parameterized by γ : [0, 1] → C, given by γ (t) �
t2(1 − t2)(1 − t2 + it2). We note that |γ (t)| ≤ t2(1 − t2) and hence |ζ | ≤ 1
on �. Since γ is one-to-one except that γ (0) � 0 � γ (1), � is a Jordan curve
through the origin bounding a domain �. Moreover, � is smooth except at the
origin, where there is a cusp consisting of two curves that meet with an internal
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angle of π/2; this implies that the harmonic measure on � for points in � is of the
form Kds, where ds denotes arc length and K is continuous on �.

Let τ be the real-valued function on � \ {0} that is the inverse of γ |(0,1). Then,
for z ∈ �, γ (|z1|) � F(z) and so the fiber (F |�)−1(ζ ) for ζ �� 0 ∈ � is the
torus {(z1, z2, z3) : |z1| � τ(ζ ), |z2| �

√
1 − τ(ζ )2, and z3 � ζ/(z1z2)}.

Lemma 24.12.
(a) For ζ �� 0 ∈ �, the torus (F |�)−1(ζ ) is polynomially convex.
(b) F(�̂) � �.

Proof.
(a) It follows easily that the polynomials are dense in the space of all continuous

functions on (F |�)−1(ζ ) since z1 and z2 are in the closure of the polyno-
mials on (F |�)−1(ζ ). To see this, one need only write z1 � τ(ζ )2/z1 �
τ(ζ )2z3z2/ζ on � and similarly for z2.

(b) It suffices to show that F(�̂) ⊃ �—the rest is clear. Suppose that this is not
the case. Then F(�̂) is disjoint from �, and so F(�̂) � �. Since every point

of � is a peak point of P(�), it follows that (F |�̂)−1(ζ ) � ̂(F |�)−1(ζ ) �
(F |�)−1(ζ ) for all ζ �� 0 ∈ �. Hence �̂ \ � ⊆ (F |�)−1({0}). Hence
z1z2 ≡ 0 on �̂ \�, and in particular the projection of � to C2 does not cover
the unit ball in C2. This contradicts Theorem 22.6.

For ζ ∈ � we define

Zi(ζ ) � max{|zi | : z ∈ �̂ and F(z) � ζ }, i � 1, 2, 3.

By a previous result we know that log Zi is subharmonic on �. We need to examine
the boundary behavior of the Zi . By Lemma 24.12, (F |�̂)−1(ζ ) � (F |�)−1(ζ )

for all ζ �� 0 ∈ �. Hence, since �̂ is compact, it follows that the boundary
values of the Zi are given by: Z1(ζ ) � τ(ζ ), Z2(ζ ) �

√
1 − τ(ζ )2, and Z3(ζ ) �

|ζ |/(τ(ζ )
√

1 − τ(ζ )2) for all ζ �� 0 ∈ �. Consider harmonic functions Ui in
� with boundary values log Zi , for i � 1, 2, 3. Since the functions log Zi are
not bounded on �, the existence of the Ui needs justification. It follows from the
estimate log Zi ≥ log |ζ | − A on �, for i � 1, 2, 3 (see the proof of Lemma
24.13), and the remark above about harmonic measure on � that the Ui can be
defined by Ui(ζ ) � ∫

log Zi(λ)dµζ (λ) for all ζ ∈ �, where µζ is harmonic
measure for ζ on �. In particular, U3(ζ ) � log |ζ | − U1(ζ ) − U2(ζ ) for all
ζ ∈ �.

Since we are dealing with unbounded functions, the following inequality is not
a direct consequence of the maximum principle.

Lemma 24.13. log Zi(ζ ) ≤ Ui(ζ ) for all ζ ∈ �, i � 1, 2, 3.

Proof. Fix ζ0 ∈ � and let 0 < r < |ζ0|. Let µr be harmonic measure for ζ0 on
b�r . In �, log Z1 is a subharmonic function bounded above by M . Since log Z1
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is subharmonic and has continuous boundary values in �r , we have

log Z1(ζ0) ≤
∫

b�r

log Z1(λ)dµr(λ).

Splitting b�r into the disjoint union of αr (recall Lemma 24.11) and βr , we get

(23) log Z1(ζ0) ≤
∫

βr

U1(λ)dµr(λ) + MC
√

r.

For λ ∈ αr , we have

U1(λ) �
∫

�

log τ(ζ )dµλ(ζ ).

From the estimate |ζ | � |γ (τ(ζ ))| ≤ τ(ζ )2(1− τ(ζ )2) for ζ ∈ � \ {0}, we have
log τ ≥ log |ζ |; hence U1(λ) ≥ log r for λ ∈ αr . Therefore,

(24) U1(ζ0) �
∫

βr

U1dµr +
∫

αr

U1dµr ≥
∫

βr

U1dµr + log r · C√r.

Now, letting r → 0, it follows from (23) and (24) that log Z1(ζ0) ≤ U1(ζ0).
An analogous argument gives the statement for i � 2, 3. (For i � 3, one uses
the estimate log(|ζ |/(τ(ζ )

√
1 − τ(ζ )2)) ≥ 1/2 log |ζ | − A in place of log τ ≥

log |ζ |.)

For ζ ∈ �, we have, since ζ � F(z) for some z ∈ �̂, that |ζ | � |z1z2z3| ≤
|Z1(ζ )Z2(ζ )Z3(ζ )| and therefore log |ζ | � log |z1| + log |z2| + log |z3| ≤
log Z1(ζ ) + log Z2(ζ ) + log Z3(ζ ) ≤ U1(ζ ) + U2(ζ ) + U3(ζ ) ≡ log |ζ |. We
conclude that Ui ≡ log Zi on � and that Zi(z1z2z3) ≡ |zi |.

Let Vi be a harmonic conjugate of Ui in � and set φi � eUi+
√−1Vi , for

i � 1, 2. Put φ(ζ ) � (φ1(ζ ), φ2(ζ ), ζ/(φ1(ζ )φ2(ζ ))), an analytic map from
� to C3. We claim that φ(�) ⊆ �̂. First note that, for fixed θ1, θ2 ∈ R,
� is invariant under the map (z1, z2, z3) �→ (eiθ1z1, eiθ2z2, e−i(θ1+θ2)z3), since
σ(eiθ1z1, eiθ2z2) � e−i(θ1+θ2)σ (z1, z2). Therefore, �̂ is invariant under the same
maps. Let ζ ∈ �. Hence there exists (z1, z2, z3) ∈ �̂ such that F((z1, z2, z3)) �
ζ and Zi(z1z2z3) � |zi |, i � 1, 2, 3. Hence |φi(ζ )| � eUi(ζ ) � Zi(ζ ) � |zi |, i.e.,
φj (ζ ) � eiθj zj , j � 1, 2. By the invariance of �̂ we conclude that φ(ζ ) ∈ �̂.

Now set φθ1,θ2(ζ ) � (eiθ1φ1(ζ ), eiθ2φ2(ζ ), e−i(θ1+θ2)ζ/(φ1(ζ )φ2(ζ ))), for
(θ1, θ2) ∈ [0, 2π) × [0, 2π). The argument of the last paragraph shows that
φθ1,θ2(�) ⊆ �̂. Conversely, the same argument shows that if z � (z1, z2, z3) ∈ �̂

and F(z) ∈ �, then there exists φθ1,θ2 such that z � φθ1,θ2(F (z)). Thus we have
shown that �̂ ∩ F−1(�) is a disjoint union of the analytic disks φθ1,θ2(�). In view
of Lemma 24.12 and the comments preceding it, it remains only to determine the
set �̂ ∩F−1({0}). Since � ∩F−1({0}) is the union of the two circles {(z1, z2, z3) :
|z1| � 1, z2 � z3 � 0} and {(z1, z2, z3) : |z2| � 1, z1 � z3 � 0}, it follows that
�̂ ∩ F−1({0}) is the union of the two disks {(z1, z2, z3) : |z1| ≤ 1, z2 � z3 � 0}
and {(z1, z2, z3) : |z2| ≤ 1, z1 � z3 � 0}. This completes the construction of
the hull of �. We have shown that �̂ \ � is the disjoint union of the 2-parameter
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family of disks φθ1,θ2(�) and the two coordinate disks. We mention here without
proof that Ahern and Rudin [AR] have shown further that �̂ is a graph over the
closed unit ball in C2.

We note that the disks φθ1,θ2 are not smooth on the unit circle; they are examples
of H∞ disks. H∞ disks are bounded analytic mappings whose boundary values
exist only a.e. on the unit circle. This is in contrast to analytic disks, which extend
smoothly to the unit circle. More precisely, except at one point of the unit circle,
the φθ1,θ2 are smooth on the circle and with boundary values in �. It turns out that
such special nonconstant H∞ disks always exist for n-dimensional totally real
submanifolds of Cn—see Chapter 25.

Example 24.5. We next give an example of an arc in C3 that is not polynomially
convex. In this connection recall that we have shown in Theorem 12.4 that a smooth
arc is polynomially convex! If γ is an arc in the plane, denote by Aγ the algebra
of functions continuous on the Riemann sphere S2 and analytic on S2 \ γ .

Lemma 24.14. If γ has positive plane measure, then Aγ contains three functions
that separate the points on S2.

Remark. To obtain an arc having positive plane measure, one can proceed as
follows: Choose a compact totally disconnected set E on the real line, having
positive linear measure. Then E × E is a compact, totally disconnected subset of
R2 having positive planar measure. Through every compact totally disconnected
subset of the plane an arc may be passed, as was shown by F. Riesz [Rie] ; γ can
be such an arc. The first example of an arc of positive planar measure was found
by Osgood in 1903 by a different method.

Proof. Put

F(ζ ) �
∫

γ

dx dy

z − ζ
.

F (ζ ) → 0 as ζ → ∞ and limζ→∞ ζ · F(ζ ) �� 0. Hence F is not a constant. Fix
ζ0 ∈ γ . The integral defining F(ζ0) converges absolutely. (Why?) We claim that
F is continuous at ζ0. For this put

g(z) �
{

1/z for |z| < R

0 for |z| ≥ R

for R some large number. Then g ∈ L1(R2):

|F(ζ ) − F(ζ0)| ≤
∫

γ

∣∣∣∣ 1

z − ζ
− 1

z − ζ0

∣∣∣∣ dx dy

�
∫

γ

|g(z − ζ ) − g(z − ζ0)|dx dy → 0
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as ζ → ζ0, since g ∈ L1(R2). Hence the claim is established. Thus F ∈ C(S2),
and, since F evidently is analytic on S2 \ γ , F ∈ Aγ .

Now fix a, b ∈ S2 \ γ with F(a) �� F(b). Then F2, F3 ∈ Aγ , where

F2(z) � F(z) − F(a)

z − a
, F3(z) � F(z) − F(b)

z − b
.

Fix distinct points z1, z2 ∈ S2. It is easily checked that if F(z1) � F(z2), then
either F2 or F3 separates z1 and z2. Hence F , F2, and F3 together separate points
on S2.

We now define an arc J0 in C3 as the image of a given plane curve γ having
positive planar measure under the map ζ �→ (F (ζ ), F2(ζ ), F3(ζ )).

Theorem 24.15. J0 is not polynomially convex in C3. Hence P(J0) �� C(J0).

Proof. Fix ζ0 ∈ S2 \ γ . Then x0 � (F (ζ0), F2(ζ0), F3(ζ0)) �∈ J0. Yet, if P is
any polynomial in C3,

|P(x0)| ≤ max
J0

|P |.

Indeed, f � P(F, F2, F3) ∈ Aγ , and so, by the maximum principle,

|f (ζ0)| ≤ max
γ
|f |,

as asserted. Hence x0 ∈ Ĵ0 \ J0, and we are done.

Exercise 24.2. If φ is a nonconstant element of P(J0), then φ(J0) is a Peano curve
in C; i.e., φ(J0) contains interior points. In particular, the coordinate projections
of J0, zk(J0), are points or Peano curves. [Hint: Apply the argument principle to
show that f (S2) � f (J0) for all f ∈ Aγ —use the fact that γ is an arc.]

NOTES
Example 24.1, which is a variant of Stolzenberg’s example, is given in Wermer

[We9]. Example 24.2 is given in B. Coles’s thesis [Col]. Example 24.3 is given
by Wermer in [We11]. Example 24.4 is due to Ahern and Rudin in [AR] and to
J. Anderson [An]. The example of a nonpolynomially convex arc, Example 24.5,
is due to Wermer in [We2]. Such an arc in C2 was constructed by Rudin in [Ru2].

The phenomenon of a small set in Cn having a large hull was exhibited by
Vituškin [V]. He constructed a compact totally disconnected set in C2 whose
polynomial hull contains the bidisk.
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Historical Comments and Recent
Developments

1 Introduction

We shall discuss some historical background, including some recent applications.
We also shall supply some references for Chapters 11, 12, 20, and 23.

We begin with the following.

Definition 25.1. Let � be a domain in Cn and let E be a relatively closed subset
of �. E is called pseudoconcave in � if the open set � \ E is pseudoconvex.

Note. The term “pseudoconcave” first appeared in Nishino’s paper [Ni].

Example 25.1. Let � be the cylindrical domain {|z| < 1} × C in C2. Chose an
analytic function f on {|z| < 1} and let E be the graph of f , i.e., E � {(z, f (z)) :
|z| < 1}. Then E is pseudoconcave in �.

Proof. Put ψ(z, w) � − log |w−f (z)| for (z, w) ∈ �\E. Since (w−f (z))−1

is analytic on � \ E, clearly ψ is an exhaustion function for � \ E.

Exercise 25.1. Choose � as in the preceding example. Let a1, a2, . . . , an be
analytic functions on {|z| < 1} and let E be the subset of � given by

wn + a1(z)w
n−1 + · · · + an(z) � 0.

Then E is pseudoconcave in �.

2 Hartogs’ Theorem

In his fundamental paper [Ha] in 1909, F. Hartogs proved results including the
following.

Theorem 25.1. Let E be a pseudoconcave set in {|z| < 1} × C in C2 that lies
one-sheeted over {|z| < 1}, in the sense that each complex line {z � z0} with

224
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|z0| < 1 meets E exactly once. Then E is the graph of an analytic function on
{|z| < 1}.

Hartogs also proved in [Ha] the analogous result for the case that E lies finite-
sheeted over {|z| < 1}.

In the short paper [Ok1] in 1934, which contained statements of results but no
proofs, K. Oka developed the theory of pseudoconcave sets, extending Hartogs’
work. In 1962, T. Nishino in [Ni] gave an exposition of the theory, with detailed
proofs. In particular, Oka and Nishino gave results for pseudoconcave sets which
are models for many of the results that we proved for maximum modulus algebras
in Chapter 11.

3 Maximum Modulus Algebras

Maximum modulus algebras (A, X, �, p), with X a plane region and p the identity
function, occurred first in Rudin’s paper [Ru1] in 1953. In particular, Rudin proved
Theorem 10.3 there.

Rossi’s Local Maximum Modulus Principle, which is given as Theorem 9.3
above, vastly increased the list of examples of maximum modulus algebras. (See
Theorem 11.9 above.)

In 1980, in [We12] one of us proved

Theorem 25.2. Let X be a pseudoconcave set contained in the open bidisk {|z| <

1, |w| < 1} ⊆ C2. Denote by A the algebra of polynomials in z and w restricted to
X. Putting D � {|z| < 1} and π : (z, w) �→ z, then (A, X, D, π) is a maximum
modulus algebra.

In 1981, in [Sl1], Z. Slodkowski introduced the concept of an analytic set-valued
function. Consider a map � : λ �→ Kλ defined on a plane region with values that
are compact subsets of C. We say that � is upper semi-continuous at λ0 if, given
any neighborhood N of Kλ0 in C, there exists an ε > 0 such that Kλ ⊆ N if
|λ − λ0| < ε.

Definition 25.2. The set-valued map � : λ �→ Kλ, with Kλ a compact subset of
C for each λ ∈ G, is analytic if:

(1) � is upper semi-continuous, and (2) The set of all (λ, w) with λ ∈ G and
w ∈ C \ Kλ is a pseudoconvex subset of C2.

Note. We could also express condition (2) by saying that the graph of � consisting
of all points (λ, w) with λ ∈ G and w ∈ Kλ is pseudoconcave in G × C.

Slodkowski showed in Theorem 2.1 of [Sl1] that, if X is a relatively closed set
contained in a cylinder domain G×C ⊆ C2, A is the restriction to X of the algebra
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of polynomials in z and w, and π is the projection (z, w) �→ z, then (A, X, G, π)

is a maximum modulus algebra if and only if X is pseudoconcave in G × C.

Note. The definition of maximum modulus algebra in [Sl1] is somewhat stronger
than the definition we have given in Chapter 11. For details see [Sl1].

Slodkowski’s paper [Sl1] contains a number of interesting results relating ana-
lytic set-valued functions to operator theory and to the study of uniform algebras.
An exposition of these relationships, and related questions, is given by B. Aupetit
in [Au1] and [Au2].

An expository article on maximum modulus algebras is given by one of us in
[We13]. Further work in this field is to be found in the book Uniform Frechet
Algebras [Go] by H. Goldman, Chapters 15 and 16. Proofs of Theorem 11.7 were
given by Slodkowski in [Sl2] and Senichkin in [Sen]. See also Kumagai [Kum].

4 Curve Theory

In Chapter 12 we studied the problem of finding the hull of a given curve γ in Cn.
The case of a real-analytic curve was treated in the 1950s by one of us in the papers
[We3], [We4], [We5], and [We6]. The principal tool in these papers was the Cauchy
transform. An elegant treatment of this case and applications to the study of the
algebra of bounded analytic functions on Riemann surfaces was given in [Ro2].

In two very influential papers, [Bi3] and [Bi2], Errett Bishop gave an abstract
Banach algebra approach to the problem of finding hulls of curves. In particular,
Bishop he proved a version of our Theorem 11.8 for the case of Banach algebras
in [Bi3].

Based in part on Bishop’s work, G. Stolzenberg solved the problem for C1-
smooth curves in [St2]. The case when γ is merely rectifiable was treated by
Alexander in [Al1].

Independent of the study of algebras of functions, B. Aupetit in [Au3] applied
the theory of subharmonic functions to problems in the spectral theory of operators.
Aupetit and Wermer in [AuWe] gave a new proof and generalization of Bishop’s
result in [Bi3], by adapting the methods used in [Au3].

An independent proof of the result in [AuWe] was given by Senichkin in [Sen].

5 Boundaries of Complex Manifolds

Given a k-dimensional manifold X in Cn, identifying the polynomial hull in the
case k > 1 turned out to be a much harder problem than in the case k � 1.

The first major result was found by A. Browder in [Bro1] in the case k � n.
Let X be a compact orientable n-manifold in Cn; Browder shows that X̂ is always
larger than X.
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Exercise 25.2. Why is this true when k � n � 1?

In [Al2], Alexander obtained the stronger result that, if X is as in Browder’s
situation, then the closure of X̂ \ X contains X, so X̂ \ X is “large.”

Let X be a k-dimensional smooth oriented manifold in Cn, where k is an odd
integer. If X is the boundary of a complex manifold � with � ∪ X compact, then
� ⊆ X̂. So we may ask: Given X, when does such a � exist?

The solution was found in 1975 by R. Harvey and Blaine Lawson in their
fundamental paper [HarL2] and developed in [Har]. To obtain a tractable problem,
one allows � to have singularities and thus seeks an analytic variety � with
boundary X, rather than a manifold. We have sketched a proof of the result of
[HarL2] in Chapter 19 for X in C3.

One may ask a related question: Given a closed curve in the complex projective
plane CP2, when does there exist an analytic variety in CP2 with boundary γ ?
This problem was solved by P. Dolbeault and G. Henkin in [DHe].

6 Sets Over the Circle

Let X be a compact set in Cn lying over the unit circle. Suppose that under the
projection (λ, w1, . . . , wn−1) �→ λ, X̂ covers some point in the open disk {|λ| <

1} and hence covers every point. We are interested in discovering all analytic disks,
if any, contained in X̂ \ X.

Theorem 20.2 tells us that if the fiber Xλ with λ ∈ � is a convex set, then X̂ \X

is the union of a family of analytic disks, each of which is moreover a graph over
{|λ| < 1}. Theorem 20.2 was proved independently by Alexander and Wermer
[AW] for n � 2 and by Slodkowski [Sl3] for arbitrary n.

Forstneric̆ showed in [Fo1] that the hypothesis “Xλ is convex for all λ” could
be replaced by the hypothesis “Xλ is a simply connected Jordan domain varying
smoothly with λ ∈ �, such that 0 ∈ int(Xλ), for all λ,” with the same conclusion
as in Theorem 20.2. The following stronger result was proved by Slodkowski in
[Sl4], and a closely related result was proved by Helton and Marshall in [HeltM]:

Theorem 25.3. Assume that each fiber Xλ, λ ∈ �, is connected and simply
connected. Then X̂ \ X is a union of analytic graphs over {|λ| < 1}.

What if the fibers Xλ are allowed to be disconnected? We saw in Chapter 24,
Theorem 24.3, that X̂ \ X may fail to contain any analytic disk, so no extension
of Theorem 25.3 to arbitrary sets over the circle is possible.

A number of interesting applications have been found for results concerning
polynomial hulls of sets over the circle. We shall write D for the open unit disk.

(i) Convex domains in Cn. Let W be a smoothly bounded convex domain in Cn.
In [Lem], Lempert constructed a special homeomorphism � of W onto the
unit ball in Cn, which can be viewed as an analogue of the Riemann map in
the case n � 1. The construction of � is based on certain maps of D into
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W , called extremal: Given a ∈ W and ξ ∈ Cn \ {0}, an analytic map f of
D into W is called extremal with respect to a, ξ if f (0) � a, f ′(0) � λξ ,
where λ > 0, such that, for every analytic map g of D into W with g(0) � a,
g′(0) � µξ with µ > 0, we have λ ≥ µ.

It is shown that, given a, ξ , there exists a unique such corresponding ex-
tremal map. In [Sl5], Slodkowski gives a construction of Lempert’s map �

by using properties of polynomial hulls of sets over the circle.
(ii) Corona Theorem. Carleson’s Corona Theorem [Carl2] states that if f1, . . . ,

fn are bounded analytic functions on D such that there exists δ > 0 with∑n
j�1 |fj (z)| ≥ δ for all z ∈ D, then there exist bounded analytic functions

g1, . . . , gn on D satisfying
n∑

j�1

fjgj � 1

on D. In [BR], Berndtsson and Ransford gave a geometric proof of the Corona
Theorem in the case n � 2, basing themselves on the existence of analytic
graphs in the polynomial hulls of certain sets in C2 lying over the circle, as
well as results on analytic set-valued functions in [Sl1]. In [Sl6], Slodkowski
gave a related proof of the Corona Theorem for arbitrary n.

(iii) Holomorphic motions. Let E be a subset of C. A holomorphic motion of E

in C, parametrized by D, is a map F : D × E into C such that:
(a) For fixed w ∈ E, z �→ f (z, w) is holomorphic on D.
(b) If w1 �� w2, then f (z, w1) �� f (z, w2) for all z in D.
(c) f (0, w) � w for all w ∈ E.
In this “motion,” time is the complex variable z.

Extending the earlier work of Sullivan and Thurston [SuT], Slodkowski
shows in [Sl7] that a holomorphic motion of an arbitrary subset E of C can
be extended to a holomorphic motion of the full complex plane. As in earlier
applications, his proof makes use of results about the structure of polynomial
hulls of sets lying over the circle.

(iv) H∞ control theory. A branch of modern engineering known as “H∞ control
theory” leads to mathematical problems of which a simple example is this:
for each λ on the unit circle �, specify a closed disk Yλ in C. Find all bounded
analytic functionsf on the unit disk such that for almost allλ ∈ �,f (λ) ∈ Yλ.
In view of Theorem 20.2 in Chapter 20, this problem is closely related to
finding the polynomial hulls of sets lying over the unit circle. For references,
see J. W. Helton [Helt1], [Helt2] as well as the references given therein.

7 Sets with Disk Fibers

Let X be a compact set in C2 lying over the unit circle � such that each fiber Xλ

is a closed disk. We write

Xλ � {w ∈ C : |w − α(λ)| ≤ R(λ)}
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for λ ∈ �, where we assume that α is a continuous complex-valued function on
� satisfying |α(λ)| ≤ R(λ) for all λ ∈ � and R is a smooth function with values
greater than zero. Under these assumptions, it is shown in [AW] that if there exists
b with |b| < 1 such that X̂b contains more than one point, then there exists a
function � of λ and w such that

X̂ ∩ {|λ| < 1} � {(λ, w) : |λ| < 1 and |�(λ, w)| ≤ 1},
and there exist analytic functions A, B, C, D on |{λ| < 1} such that

�(λ, w) � A(λ)w + B(λ)

C(λ)w + D(λ)
, |λ| < 1, |w| < ∞.

In the special case where the center function α is a rational function satisfying
hypotheses (20.10a) and (20.10b) and R ≡ 1, Theorem 20.5 gave an explicit
construction of X̂. The above-mentioned result is based on the classical result of
Adamyan, Arov, and Krein [AAK], which solves the following problem: Give a
function h0 in L∞(�) to describe the totality of functions

h � h0 + φ, φ ∈ H∞

such that ||h|| ≤ 1. A proof of the result in [AAK] is also given in Garnett [Ga]
and related work is found in Quiggin [Q]. Further related results are due to Wegert
[Weg].

8 Levi-Flat Hypersurfaces

At the end of Chapter 23 we saw how Levi-flat hypersurfaces occur in the study
of certain polynomial hulls. An existence result in this connection is given by
Berndtsson in [B].

9 Polynomial Hulls of Manifolds

We have seen in Theorem 18.7, due to E. Bishop, that certain real manifolds � ⊆
Cn contain the boundaries of analytic disks near points p ∈ � where the tangent
space to � at p contains complex linear subspaces of positive dimension. Thus,
by the maximum principle, the polynomial hull of � contains the corresponding
analytic disks. In some cases, these disks form a set that is strictly larger than �,
and so their presence “explains” the fact that � is not polynomially convex.

On the other hand, totally real manifolds by definition do not contain complex
linear subspaces of positive dimension in their tangent spaces. These manifolds
do not bound “small” analytic disks near a point. In fact, one can show (see [AR],
pp. 25–26) that totally real manifolds M are locally polynomially convex in the
following sense: For all x ∈ M and all neighborhoods U of x in M there exists
a compact neighborhood K of x in M with K ⊆ U such that K is polynomially
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convex . Nevertheless, one still wants to “explain” the fact that a totally real man-
ifold M is not polynomially convex by producing analytic disks with boundary in
M . For this purpose one can use analytic disks that are smooth up to the unit circle
or disks (so-called H∞ disks) given only by bounded analytic functions whose
boundary values (as maps to Cn) exist and lie in M only a.e. on the unit circle.
Such disks were given in Example 24.4 for the totally real 3-sphere in C3 of Ahern
and Rudin.

Gromov [Gr] has given a technique to produce analytic disks with boundary in
a special class of totally real manifolds of real dimension n in Cn, the Lagrangian
manifolds. The classical case of a Lagrangian manifold is one whose tangent
space at each point is of the form URn, where U is a unitary transformation of
Cn. (A totally real manifold of real dimension n in Cn can be described as one
whose tangent space at each point is of the form ARn, where A is a complex
linear transformation of Cn.) In [Al5], Gromov’s method was adapted to compact
orientable totally real manifolds (without boundary) of real dimension n in Cn. In
general, nonconstant analytic disks do not exist in this setting, but H∞ disks do
exist.

Recently, Duval and Sibony [DS] have shown, for compact totally real manifolds
M in Cn, that rational convexity is equivalent to the existence of certain Kähler
forms (which we will not define here) on Cn that vanish on M . For compact totally
real manifolds M of real dimension n in Cn, the existence of these forms is precisely
the (“Lagrangian”) condition needed in Gromov’s theorem. Combining Gromov’s
theorem and the result of Duval and Sibony, one concludes, in this situation, i.e.,
for a compact totally real manifold M of real dimension n in Cn, if M is rationally
convex, then M bounds a non constant analytic disk. This implies, for example,
that a totally real 3-sphere in C3 is never rationally convex (see [DS] Example 3.6).

10 The Polynomial Hull

The most straightforward explanation of why the polynomial hull X̂ of a compact
set X in Cn contains a point x is by the maximum principle applied to an analytic
disk through x with boundary in X. One step removed from this is a point on an
H∞ disk with boundary in X. Quite different approaches to the hull have been
given. Duval and Sibony [DS] discuss the connection between hulls and certain
positive currents. Poletsky [Po] has described the polynomial hull of X in terms
of pluriharmonic measure. We refer the reader to these papers for the relevant
definitions and results.
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Appendix

A1. An account of the theory of subharmonic functions (of one complex variable)
can be found in the books by M. Tsuji [Tsu], Chapter 2, and L. Hörmander [Hö2],
pp. 16–21. For logarithmic capacity, see [Tsu], Chapter III, or Ransford [Ra],
Chapter 5.

A2. We shall require the following result of H. Cartan: A function subharmonic
in a region and equal to −∞ on a Borel set of positive logarithmic capacity is
identically −∞ in the region. For a proof, see [Ra], Theorem 3.5.1.

A3. We are given a plane region U0, a smooth free boundary arc α of U0, and a
closed subset E of α with m(E) > 0, where m is arclength measure. We also are
given a function χ bounded and subharmonic on U0 such that lim supλ→λ0χ(λ) �
−∞ for each λ0 ∈ E. Now fix a point λ1 ∈ U0. We choose a simply connected
region � contained in U0 such that the boundary of � is a Jordan curve containing
the arc α and λ1 ∈ �. Let � be a conformal map of the unit disk D onto � with
�(0) � λ1, and let α′ � �−1(α) and E′ � �−1(E). Put f � χ ◦ �. Then f is
subharmonic and bounded on D and f (z) → −∞ as z → ζ , for each ζ ∈ E′.

We identify the unit circle with [0, 2π) and E′ with a subset of [0, 2π). Put
M � sup f over U0. Then, for each r < 1, we have

f (0) ≤ 1

2π

∫
E′

f (reiθ ) dθ + 1

2π

∫
[0,2π)\E′

f (reiθ ) dθ

≤ 1

2π

∫
E′

f (reiθ ) dθ + M.

As r → 1, f (reiθ ) → −∞ for each θ ∈ E′. Since m(E) > 0, and � is
diffeomorphic as a map of α′ onto α, m(E′) > 0. It follows by the bounded
convergence theorem that

1

2π

∫
E′

f (reiθ ) dθ → −∞

231
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as r → 1. Hence χ(λ1) � f (0) ≤ −∞. So χ(λ1) � −∞. Thus χ ≡ −∞ on
U0. Therefore, the proposition is proved.

A4. For the disintegration of a measure under a map we refer to the book of
Federer [Fe], 2.5.20, where the term decomposition, rather than (Bourbaki’s)
disintegration, is used.

A5. Pick’s Theorem is due to Georg Pick [Pi]. A proof and a discussion of related
matters are given in a book by Garnett [Ga], pp. 6–10.

A6. A real-valued function ψ defined on an open set � in Cn is called plurisub-
harmonic on � if it is upper semi-continuous and its restriction to each complex
line L is subharmonic on L ∩ �. If ψ belongs to C2, then ψ is plurisubharmonic
on � if and only if for each p ∈ � the inequality

n∑
j,k�1

∂2ψ

∂zj∂z̄k

(p)ξj ξ̄k ≥ 0

holds for every vector (ξ1, . . . , ξn) in Cn. The basic facts about plurisubhar-
monic functions and their relation to pseudoconvex domains in Cn are presented
in L. Hörmander’s book [Hö2], 2.6, and also in the book by R. Gunning [Gu], Vol.
1, Part K.

The “Levi condition” (23.2′) was discovered by E. E. Levi in 1910 [Lev].

A7. Let M andN be smooth manifolds andf a smooth map ofM into N . A critical
point p of the map is a point at which the differential df fails to be surjective as a
map between tangent spaces.

Sard’s Theorem states that the set of critical values, i.e., {f (p) ∈ N : p is a
critical point of f }, has measure 0 in N . This result is due to Sard [Sa]; see also
J. Milnor [Mi], p. 16. In our application, we take M to be an interval Jj , N to be
the unit circle, and f to be the map ψj .

A8. We recall that a subvariety V of an open subset � of Cn is a closed subset
of � that is given locally as the set of zeros of a finite set of locally defined
analytic functions. For simplicity, we shall restrict our attention to one-dimensional
subvarieties. A one-dimensional subvariety V is then a closed subset of � such that
at each of its points p, except for a discrete “singular” subset of �, there are local
coordinates f1, f2, . . . , fn in a neighborhood W of p (i.e., f � (f1, f2, . . . , fn)

map. W biholomorphically to an open subset of Cn) such that V ∩W � {z ∈ W :
f2(z) � 0, f3(z) � 0, . . . , fn(z) � 0}. Note that if g is the inverse map of f ,
then V can be locally parametrized by λ �→ g(λ, 0, 0, . . . , 0). It follows that the
maximum principle holds in the following sense: If F is a holomorphic function on
an open subset of Cn whose domain contains a relatively compact open subset W0

of V , then F attains its maximum modulus over W̄0 on bW0. A good introduction
to this topic can be found in Gunning [Gu], Vol 2., Parts B, C, and D. The book by
E. Chirka [Chi1] also can be consulted for a less algebraic approach.
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A9. We have defined Runge domain in Chapter 22. The following gives examples
of these domains—which we do not assume to be connected here.

Lemma. Let L be polynomially convex in Cn and let � be the interior of L. Then
� is a Runge domain.

Proof. Let C be a compact subset of �. Choose a compact set C1 ⊆ � such that
C ⊆ int C1. Then Ĉ ⊆ int Ĉ1. (Why?) Since L is polynomially convex, Ĉ1 ⊆ L

and so int Ĉ1 ⊆ int L � �. Hence Ĉ ⊆ �, and therefore � is Runge.

Every Runge domain is pseudoconvex. If � is pseudoconvex, the ∂� is pseudo-
convex in the sense of Levi at each point where ∂� is smooth. For these standard
implications we refer to Chapter II of [Hö2].

A10. We use a few basic properties of the Hausdorff measure. A very readable,
brief presentation of this is given in the paper by Shiffman [Sh]. A comprehensive
treatment of this subject is given by Federer [Fe]. We denote the α-dimensional
Hausdorff measure of a set Y by Hα(Y ). We list a number of results that can be
found in [Sh].

(a) If α < β and Hα(Y ) < ∞, then Hβ(Y ) � 0.
(b) Let Y be an arbitrary subset of Cn and let α > 0. If H2k+α(Y ) � 0, then there

exists a complex (n − k)-plane P through 0 such that Hα(Y ∩ P) � 0.
(c) Let X be a metric space with a ∈ X and Y ⊆ X. Let S(a, r) denote the sphere

in X centered at a with radius r ≥ 0.
Let H1(Y ) � 0. Then Y ∩ S(a, r) is empty for almost all r .

(d) Let A be a subset of Rn and let π : Rn → R2 be the projection to the last two
coordinates. Suppose that H2(A) < ∞. Then for almost all points x ∈ R2

(with respect to planar measure) A ∩ π−1(x) is finite.

A11. Recall that for X a compact subset of Cn, R(X) denotes the closure in the
uniform norm of the functions on X that are (restrictions of) rational functions
with poles not on X. R(X) is a subalgebra of C(X).

Proposition. R(X) is generated by n + 1 functions.

For the proof, see H. Rossi [Ros2].

A12. We recall that for any two points in the unit disk in C, there is a Möbius
transformation of the disk that maps the first point to the second. In Chapter 22,
we used the fact that the same is true for the unit ball in Cn. That is, the group of
automorphisms (biholomorphic self-mappings) of the unit ball is transitive. For
this one can consult Chapter 2 of Rudin’s book [Ru3].

A13. We give here the proof of Lemma 19.8, whose statement we recall for the
reader’s convenience:



234 26. Appendix

Lemma 19.8. −∂̄ζK1(ζ, z) � ∂̄zK(ζ, z).

Proof of Lemma 19.8. We define functions

F(w) � w̄2

|w|4 and G(w) � w̄1

|w|4 ,

for w ∈ C2. Then, suppressing for now the factor dζ1 ∧ dζ2,

K1 � F(ζ − z) dz̄1 − G(ζ − z) dz̄2

and

K � F(z − ζ ) dζ̄1 − G(z − ζ ) dζ̄2.

Since F and G are odd functions of w, it follows that each of the functions
∂F/∂w̄1, ∂F/∂w̄2, ∂G/∂w̄1, ∂G/∂w̄2 is an even function of w.

We have

∂̄ζK1 �
(

∂

∂ζ̄1
F(ζ − z) dζ̄1 + ∂

∂ζ̄2
F(ζ − z) dζ̄2

)
∧ dz̄1

−
(

∂

∂ζ̄1
G(ζ − z) dζ̄1 + ∂

∂ζ̄2
G(ζ − z) dζ̄2

)
∧ dz̄2.

Hence

∂̄ζK1 �
(

∂F

∂w̄1
(ζ − z) dζ̄1 + ∂F

∂w̄2
(ζ − z) dζ̄2

)
∧ dz̄1 (A.1)

−
(

∂G

∂w̄1
(ζ − z) dζ̄1 + ∂G

∂w̄2
(ζ − z) dζ̄2

)
∧ dz̄2.

Further,

∂̄zK �
(

∂F

∂w̄1
(z − ζ ) dz̄1 + ∂F

∂w̄2
(z − ζ ) dz̄2

)
∧ dζ̄1 (A.2)

−
(

∂G

∂w̄1
(z − ζ ) dz̄1 + ∂G

∂w̄2
(z − ζ ) dz̄2

)
∧ dζ̄2.

∂F

∂w̄1
(w) � −w̄2 · 2|w|2w2

|w|8 , (A3a)

∂F

∂w̄2
(w) � |w|4 − w̄2 · 2|w|2w2

|w|8 , (A3b)

∂G

∂w̄1
(w) � |w|4 − w̄1 · 2|w|2w1

|w|8 , (A3c)

∂G

∂w̄2
(w) � −w̄1 · 2|w|2w2

|w|8 , (A3d)

We next compare the corresponding terms in (A.1) and (A.2). We need to
verify that the coefficients of each of the dζ̄j ∧ dz̄k differ only in sign. For the
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dζ̄j ∧ dz̄j , j � 1, 2, terms, this follows from the fact noted above, that the first
partial derivatives of F and G are even functions.

Consider now the dζ̄2 ∧ dz̄1 coefficients. We need to verify that

∂F

∂w̄2
(ζ − z) � − ∂G

∂w̄1
(z − ζ ). (A.4)

We note that sum of the right-hand sides of (A.3b) and (A.3c) is identically zero,
for all w. Then (A.4) follows by taking w � ζ − z in this identity. Finally, the
dζ̄1 ∧ dz̄2 term is treated in the same way. This completes the proof of Lemma
19.8.
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Solutions to Some Exercises

Solution to Exercise 3.2. Choose relatively prime polynomialsP andQwithQ �� 0
in � such that f � P/Q. For t ∈ C,

f (t) − f (x)

t − x
� Q(x)P (t) − P(x)Q(t)

Q(t)Q(x)(t − x)

� F(x, t)

Q(t)Q(x)
,

where F is a polynomial in x and t ,

� 1

Q(x)

N∑
j�0

aj (t)x
j ,

where each aj is holomorphic in �. Hence∫
y

f (t) − f (x)

t − x
dt � 1

Q(x)

N∑
j�0

{∫
γ

aj (t) dt

}
xj � 0,

since each aj is analytic inside γ . Also
∫
γ

dt/t − x � 2πi. (Why?) Hence the
assertion.

Solution to Exercise 9.9. We must prove Theorem 9.7 and so we must show that
Š(L) ⊂ X.

Š(L) is a closed subset of M. Suppose ∃x0 in Š(L)\X. Choose an open neigh-
borhood V of x0 in M with V ∩ X � ∅. We may assume that V̄ ⊂ Uj for some
j . Since x0 ∈ Š(L), ∃f ∈ L with

max
M\V

|f | < sup
V

|f |,

and so

max
∂V
|f | < sup

V

|f |.

237
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Since f ∈ L, ∃fn ∈ A with fn → f uniformly on V̄ . Hence for large n,

max
∂V
|fn| < sup

V

|fn|.

Since V ⊂ M\X and Š(A) ⊂ X, this contradicts Theorem 9.3. The assertion
follows.

Solution to Exercise 17.3 Denote by x1, . . . , x2n the real coordinates in Cn.
Since a rotation preserves everything of interest to us, we may assume that T is
given by

x1 � x2 � · · · � xl � 0, l � 2n − k.

Since d2(x) ≥ 0 for all x and d2(0) � 0, we have ∂(d2)/∂xj � 0 at x � 0 for
all j , and so

d2(x) � Q(x) + o(|x|2),
where Q(x) � ∑2n

i,j�1 aij xixj , aij ∈ R. Then

Q(x) �
l∑

i,j�1

aij xixj + R(x),

R(x) being a sum of terms aij xixj with i or j > l. Note that aij � aji , all i and j .

Assertion. R � 0.

We define a bilinear form [ , ] on Cn by

[x, y] �
2n∑

i,j�1

aij xiyj .

This form is positive semidefinite, since [x, x] � Q(x) ≥ 0 because d2 ≥ 0.
Also the form is symmetric, since aij � aji .

Fix xα ∈ Cn with xα � (0, . . . , 1, . . . , 0), where the 1 is in the αth place and
the other entries are 0. Then [xα, xβ] � aαβ . If α > l, then xα ∈ T .

If x ∈ T , then d2(s) � o(|x|2), so Q(x) � 0. Fix α > l. Then [xα, xα] � 0. It
follows that [xα, y] � 0 for all y ∈ Cn. (Why?) In particular, aαβ � [xα, xβ] � 0
for all β. Hence R � 0, as claimed. Thus

Q(x) �
l∑

i�1

aij xixj . (a)

If x is in the orthogonal complement of T and if |x| is small, then the unique near-
est point to x on � is 0, so d2(x) � |x|2. Thus if x � (x1, x2, . . . , xl, 0, . . . , 0),
d2(x) � ∑l

i�1 x2
i , so

Q(x) �
l∑

i�1

x2
i . (b)
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Equations (a) and (b) yield that

Q(x) �
l∑

i�1

x2
i

for all x. But
∑l

i�1 x2
i � d2(x, T ), So

d2(x) � d2(x, T ) + o(|x|2).

Solution to Exercise 18.2 For simplicity, we denote all constants by the same
letter C. By hypothesis we have |h(t)| ≤ C|t |2 for t ∈ RN , |t | ≤ 1. We regard x

as a map from (0, 2π) → RN . For fixed θ in (0, 2π),

|h(x(θ))|2 ≤ C|x(θ)|4 ≤ C(‖x‖∞)4 < C(‖x‖1)
4.

Hence ∫ 2π

0
|h(x(θ))|2 dθ < C(‖x‖1)

4. (1)

Also |hti (t)| ≤ C(t) for |t | ≤ 1. Writing dxi/dθ � ẋi , this gives∣∣∣∣ d

dθ
(h(x(θ)))

∣∣∣∣ �
∣∣∣∣∣∑

i

hti (x(θ))ẋi(θ)

∣∣∣∣∣
≤
∑

i

C|x(θ)||ẋi (θ)| ≤ C‖x‖∞
∑

|ẋi (θ)|.

Hence, ∣∣∣∣ d

dθ
(h(x(θ)))

∣∣∣∣2 ≤ C(‖x‖1)
2

N∑
i�1

|ẋi (θ)|2,

and so ∫ 2π

0

∣∣∣∣ d

dθ
(h(x(θ)))

∣∣∣∣2 dθ ≤ C‖x‖2
1 · ‖x‖2

1.

(1) and (2) together give ‖h(x)‖1 ≤ C(‖x‖1)
2.

Solution to Exercise 18.3 Fix t , t ′ ∈ RN , |t | ≤ 1, |t ′| ≤ 1. We claim

|h(t) − h(t ′)| ≤ C(|t | + |t ′|)|t − t ′). (1)



240 27. Solutions to Some Exercises

For

|h(t ′) − h(t)| �
∣∣∣∣∣
∫ 1

0

d

ds
{h(t + s(t ′ − t))} dx

∣∣∣∣∣
�
∣∣∣∣∣
∫ 1

0

{
N∑

i�1

hti (t + s(t ′ − t))(t ′i − ti)

}
ds

∣∣∣∣∣
≤
∫ 1

0

{
N∑

i�1

|hti (t + s(t ′ − t))|
}
|t ′ − t | ds.

Also

|hti (ζ )| ≤ C|ζ | for |ζ | ≤ 1.

Hence,

|h(t ′) − h(t)| ≤ C(|t | + |t ′|)|t ′ − t |, i.e., (1).

Fix θ . By (1)

|h(x(θ)) − h(y(θ))| ≤ C(|x(θ)| + |y(θ)|)(|x(θ) − y(θ)|)
≤ C(‖x‖∞ + ‖y‖∞)(‖x − y‖∞)

≤ C(‖x‖1 + ‖y‖1)(‖x − y‖1).

Since this holds for all θ , we have

‖h(x) − h(y)‖L2 ≤ C(‖x‖1 + ‖y‖1)(‖x − y‖1). (2)

Also for fixed θ ,∣∣∣∣ d

dθ
{h(x) − h(y)}

∣∣∣∣ �
∣∣∣∣∣∑

i

hti (x)(ẋi − ẏi ) +
∑

i

(hti (x) − hti (y))ẏi

∣∣∣∣∣
≤
∑

i

C|x| ∣∣ẋi − ẏi

∣∣ +∑
i

C|x − y| ∣∣ẏi

∣∣
≤
∑

i

C‖x‖1|ẋi − ẏi | +
∑

i

C‖x − y‖1|ẏi |.

Hence{∫ 2π

0

∣∣∣∣ d

dθ
{h(x) − h(y)}

∣∣∣∣2 dθ

}1/2

≤ C‖x‖1

∑
i

‖ẋi − ẏi‖L2

+ C‖x − y‖1

∑
i

‖ẏi‖L2 ≤ C‖x‖1‖x − y‖1 + C‖x − y‖1 · ‖y‖1.

So we have{∫ 2π

0

∣∣∣∣ d

dθ
{h(x) − h(y)}

∣∣∣∣2 dθ

}1/2

≤ C(‖x‖1 + ‖y‖1) · ‖x − y‖1.

Putting (2) and (3) together, we get the assertion.
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du plan, Fund. Math. 26 (1936).

[Fe] H. Federer, Geometric Integration Theory, Springer-Verlag, New York
(1969).
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[HaR] F. Hartogs and A. Rosenthal, Über Folgen analytischer Funktionen,

Math. Ann. 104 (1931).
[HarL1] R. Harvey and B. Lawson, Boundaries of complex analytic varieties,

Bull. A.M.S. 80 (1974).
[HarL2] R. Harvey and B. Lawson, On boundaries of complex analytic varieties.

I, Ann. Math. 102 (1975), 233–290.
[He] E. Heinz, Ein elementarer Beweis des Satzes von Radó-Behnke-Stein-
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