Hershel M. Farkas
Irwin Kra

Riemann
Surfaces

Second Edition

®); Springer



Graduate Texts in Mathematics 71

Editorial Board
S. Axler FW. Gehring K.A. Ribet

Springer Science+Business Media, LLC



Graduate Texts in Mathematics

O 00 NN O

11

12
13

14
15
16
17
18
19
20
21
22

23
24

25
26
27
28
29
30

31

32

TAKEUTV/ZARING. Introduction to
Axiomatic Set Theory. 2nd ed.

OxToBY. Measure and Category. 2nd ed.
ScHAEFER. Topological Vector Spaces.
HILTON/STAMMBACH. A Course in
Homological Algebra. 2nd ed.

MaAc LANE. Categories for the Working
Mathematician. 2nd ed.

HUGHES/PIPER. Projective Planes.

SERRE. A Course in Arithmetic.
TAKEUTV/ZARING. Axiomatic Set Theory.
HuMPHREYS. Introduction to Lie Algebras
and Representation Theory.

CoHeN. A Course in Simple Homotopy
Theory.

CoNway. Functions of One Complex
Variable 1. 2nd ed.

BEALS. Advanced Mathematical Analysis.
ANDERSON/FULLER. Rings and Categories
of Modules. 2nd ed.
GOLUBITSKY/GUILLEMIN. Stable Mappings
and Their Singularities.

BERBERIAN. Lectures in Functional
Analysis and Operator Theory.

WINTER. The Structure of Fields.
ROSENBLATT. Random Processes. 2nd ed.
HALMos. Measure Theory.

HALMos. A Hilbert Space Problem Book.
2nd ed.

HuseMoLLER. Fibre Bundles. 3rd ed.
HUMPHREYS. Linear Algebraic Groups.
BARNES/MACK. An Algebraic Introduction
to Mathematical Logic.

GREUB. Linear Algebra. 4th ed.

HoLMEs. Geometric Functional Analysis
and Its Applications.
HEWITT/STROMBERG. Real and Abstract
Analysis.

MANEs. Algebraic Theories.

KELLEY. General Topology.
ZARISK/SAMUEL. Commutative Algebra.
Vol.l

ZARISKUSAMUEL. Commutative Algebra.
Vol.IL.

JAcoBSON. Lectures in Abstract Algebra I.
Basic Concepts.

JACOBSON. Lectures in Abstract Algebra
II. Linear Algebra.

JACOBSON. Lectures in Abstract Algebra
III. Theory of Fields and Galois Theory.

33
34

35

36

37
38

39

41

42

43

45

47

48

49

50
51

52
53
54

55

56

57

58

59
60

HirscH. Differential Topology.

SprTzer. Principles of Random Walk.
2nd ed.

ALEXANDER/WERMER. Several Complex
Variables and Banach Algebras. 3rd ed.
KELLEY/NAMIOKA et al. Linear
Topological Spaces.

MonNK. Mathematical Logic.
GRAUERT/FRITZSCHE. Several Complex
Variables.

ARVESON. An Invitation to C*-Algebras.
KEMENY/SNELL/KNAPP. Denumerable
Markov Chains. 2nd ed.

AposToL. Modular Functions and
Dirichlet Series in Number Theory.
2nd ed.

SERRE. Linear Representations of Finite
Groups.

GILLMAN/JERISON. Rings of Continuous
Functions.

KENDIG. Elementary Algebraic Geometry.
LokVE. Probability Theory 1. 4th ed.
LoEVE. Probability Theory II. 4th ed.
Moise. Geometric Topology in
Dimensions 2 and 3.

SacHs/Wu. General Relativity for
Mathematicians.

GRUENBERG/WEIR. Linear Geometry.
2nd ed.

EDWARDS. Fermat’s Last Theorem.
KLINGENBERG. A Course in Differential
Geometry.

HARTSHORNE. Algebraic Geometry.
MANIN. A Course in Mathematical Logic.
GRAVER/WATKINS. Combinatorics with
Emphasis on the Theory of Graphs.
BROWN/PEARCY. Introduction to Operator
Theory I: Elements of Functional
Analysis.

MASSEY. Algebraic Topology: An
Introduction.

CroweLL/Fox. Introduction to Knot
Theory.

KoBLiTz. p-adic Numbers, p-adic
Analysis, and Zeta-Functions. 2nd ed.
LANG. Cyclotomic Fields.

ARNOLD. Mathematical Methods in
Classical Mechanics. 2nd ed.

continued after index



H.M. Farkas 1. Kra

Riemann Surfaces

Second Edition

With 27 Figures

/st Springer




Hershel M. Farkas Irwin Kra

Department of Mathematics Department of Mathematics
Hebrew University State University of New York
Jerusalem 91904 Stony Brook, NY 11794-3651
Israel USA
Editorial Board
S. Axler F.W. Gehring K.A. Ribet
Mathematics Department Mathematics Department  Department of
San Francisco State University  East Hall Mathematics
San Francisco, CA 94132 University of Michigan University of California
USA Ann Arbor, MI 48109 at Berkeley
USA Berkeley, CA 94720-3840
USA

Mathematics Subject Classification (1991): 30F10, 32C10

Library of Congress Cataloging-in-Publication Data
Farkas, Hershel M.
Riemann surfaces / H.M. Farkas, I. Kra. — 2nd ed.
p. cm. — (Graduate texts in mathematics; 71)
Includes bibliographical references and index.
ISBN 978-1-4612-7391-2 ISBN 978-1-4612-2034-3 (¢Book)
DOI 10.1007/978-1-4612-2034-3
I. Riemann surfaces. I. Kra, Irwin. II. Title. III. Series.
QA333.F37 1991
515°.223—dc20 91-30662

Printed on acid-free paper.

© 1992 Springer Science+Business Media New York
Originally published by Springer-Verlag New York Inc. in 1980, 1992
Softcover reprint of the hardcover 2nd edition 1992

All rights reserved. This work may not be translated or copied in whole or in part without the
written permission of the publisher (Springer Science+Business Media, LLC), except for brief
excerpts in connection with reviews or scholarly analysis. Use in connection with any form of
information storage and retrieval, electronic adaptation, computer software, or by similar or
dissimilar methodgology now known or hereafter developed is forbidden.

The use of general descriptive names, trade names, trademarks, etc., in this publication, even
if the former are not especially identified, is not to be taken as a sign that such names, as
understood by the Trade Marks and Merchandise Marks Act, may accordingly be used freely
by anyone.

Production coordinated by Brian Howe and managed by Francine Sikorski; manufacturing

supervised by Robert Paella.
Typeset by Asco Trade Typesetting Ltd., Hong Kong.

9876543

ISBN 978-1-4612-7391-2



To
Eleanor
Sara



Preface to the Second Edition

It is gratifying to learn that there is new life in an old field that has been at
the center of one’s existence for over a quarter of a century. It is particularly
pleasing that the subject of Riemann surfaces has attracted the attention of
a new generation of mathematicians from (newly) adjacent fields (for
example, those interested in hyperbolic manifolds and iterations of rational
maps) and young physicists who have been convinced (certainly not by
mathematicians) that compact Riemann surfaces may play an important
role in their (string) universe. We hope that non-mathematicians as well
as mathematicians (working in nearby areas to the central topic of this
book) will also learn part of this subject for the sheer beauty and elegance
of the material (work of Weierstrass, Jacobi, Riemann, Hilbert, Weyl)
and as healthy exposure to the way (some) mathematicians write about
mathematics.

We had intended a more comprehensive revision, including a fuller
treatment of moduli problems and theta functions. Pressure of other
commitments would have substantially delayed (by years) the appearance of
the book we wanted to produce. We have chosen instead to make a few
modest additions and to correct a number of errors. We are grateful to the
readers who pointed out some of our mistakes in the first edition; the
responsibility for the remaining mistakes carried over from the first edition
and for any new ones introduced into the second edition remains with the
authors.

June 1991
Jerusalem H.M. FARKAS
and and

Stony Brook I. Kra



Preface to the First Edition

The present volume is the culmination of ten years’ work separately and joint-
ly. The idea of writing this book began with a set of notes for a course given
by one of the authors in 1970-1971 at the Hebrew University. The notes
were refined several times and used as the basic content of courses given sub-
sequently by each of the authors at the State University of New York at
Stony Brook and the Hebrew University.

In this book we present the theory of Riemann surfaces and its many dif-
ferent facets. We begin from the most elementary aspects and try to bring the
reader up to the frontier of present-day research. We treat both open and
closed surfaces in this book, but our main emphasis is on the compact case.
In fact, Chapters 111, V, VI, and VII deal exclusively with compact surfaces.
Chapters I and 11 are preparatory, and Chapter I'V deals with uniformization.

All works on Riemann surfaces go back to the fundamental results of Rie-
mann, Jacobi, Abel, Weierstrass, etc. Our book is no exception. In addition
to our debt to these mathematicians of a previous era, the present work has
been influenced by many contemporary mathematicians.

At the outset we record our indebtedness to our teachers Lipman Bers and
Harry Ernest Rauch, who taught us a great deal of what we know about this
subject, and who along with Lars V. Ahlfors are responsible for the modern
rebirth of the theory of Riemann surfaces. Second, we record our gratitude
to our colleagues whose theorems we have freely written down without attri-
bution. In particular, some of the material in Chapter III is the work of
Henrik H. Martens, and some of the material in Chapters V and VI ultimately
goes back to Robert D. M. Accola and Joseph Lewittes.

We thank several colleagues who have read and criticized earlier versions
of the manuscript and made many helpful suggestions: Bernard Maskit,



X Preface to the First Edition

Henry Laufer, Uri Srebro, Albert Marden, and Frederick P. Gardiner. The
errors in the final version are, however, due only to the authors. We also
thank the secretaries who typed the various versions: Carole Alberghine and
Estella Shivers.

August 1979 H.M. FARKAS 1. KRA
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CHAPTER 0
An Overview

The theory of Riemann surfaces lies in the intersection of many important
areas of mathematics. Aside from being an important field of study in its
own right, it has long been a source of inspiration, intuition, and examples
for many branches of mathematics. These include complex manifolds, Lie
groups, algebraic number theory, harmonic analysis, abelian varieties, alge-
braic topology.

The development of the theory of Riemann surfaces consists of at least
three parts: a topological part, an algebraic part, and an analytic part. In
this chapter, we shall try to outline how Riemann surfaces appear quite
naturally in different guises, list some of the most important problems to
be treated in this book, and discuss the solutions.

As the title indicates, this chapter is a survey of results. Many of the
statements are major theorems. We have indicated at the end of most
paragraphs a reference to subsequent chapters where the theorem in question
is proven or a fuller discussion of the given topic may be found. For some
easily verifiable claims a (kind of) proof has been supplied. This chapter
has been written for the reader who wishes to get an idea of the scope of
the book before entering into details. It can be skipped, since it is independent
of the formal development of the material. This chapter is intended primarily
for the mathematician who knows other areas of mathematics and is inter-
ested in finding out what the theory of Riemann surfaces contains. The
graduate student who is familiar only with first year courses in algebra,
analysis (real and complex), and algebraic topology should probably skip
most of this chapter and periodically return to it.

We, of course, begin with a definition: A Riemann surface is a complex
1-dimensional connected (analytic) manifold.
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0.1. Topological Aspects, Uniformization,
and Fuchsian Groups

Given a connected topological manifold M (which in our case is a Riemann
surface), one can always construct a new manifold M known as the universal
covering manifold of M. The manifold M has the following properties:

1. There is a surjectlve local homeomorphism n:M — M.

2. The manifold M is simply connected; that is, the fundamental group of
M is trivial (n,(M) = {1}).

3. Every closed curve which is not homotopically trivial on M lifts to an
open curve on M, and the curve on M is uniquely determined by the
curve on M and the point lying over its initial point.

In fact one can say a lot more. If M* is any covering manifold of M, then
7,(M*) is isomorphic to a subgroup of n,(M). The covering manifolds of
M are in bijective correspondence with conjugacy classes of subgroups of
n,(M). In this setting, M corresponds to the trivial subgroup of m,(M).
Furthermore, in the case that the subgroup N of n,(M) is normal, there is
a group G = n,(M)/N of fixed point free automorphisms of M* such that
M*/G = M. Once again in the case of the universal covering manifold M,
G =1, (M). (1.24;1V.5.6)

If we now make the assumption that M is a Riemann surface, then it is
not hard to introduce a Riemann surface structure on any M* in such a
way that the map n: M* - M becomes a holomorphic mapping between
Riemann surfaces and G becomes a group of holomorphic self-mappings of
M* such that M*/G =~ M. (IV.5.5-1V.5.7)

It is at this point that some analysis has to intervene. It is necessary to
find all the simply connected Riemann surfaces. The result is both beautiful
and elegant. There are exactly three conformally (= complex analytically)
distinct simply connected Riemann surfaces. One of these is compact, it is
conformally equivalent to the sphere C U {o0}. The non-compact simply
connected Riemann surfaces are conformally equivalent to either the upper
half plane U or the entire plane C. (IV.4)

It thus follows from what we have said before that studying Riemann
surfaces is essentially the same as studying fixed point free discontinuous
groups of holomorphic self mappings of D, where D is either C U {0}, C,
or U. (IV.5.5)

The simplest case occurs when D = C U {c0}. Since every non-trivial
holomorphic self map of Cu {00} has at least one fixed point, only the
sphere covers the sphere. (IV.6.3)

The holomorphic fixed point free self maps of C are of the form
z+—z + b, with b € C. An analysis of the various possibilities shows that a
discontinuous subgroup of this group is either trivial or cyclic on one (free)
generator or a free abelian group with two generators. The first case
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corresponds to M = C. The case of one generator corresponds to a cylinder
which is conformally the same as a twice punctured sphere. Finally, the case
of two generators z —z + w,;, z —z + w, with w,/w,; =1 and Im7 >0
(without loss of generality) corresponds to a torus. We consider the case
involving two generators. This is an extremely important example. It
motivates a lot of future developments. The group G is to consist of
mappings of the form

Z—>zZ + n+ mt,

where 7 € C is fixed with Im 7 > 0, and m and n vary over the integers. (This
involves no loss of generality, because conjugating G in the automorphism
group of C does not change the complex structure.) If we consider the
closed parallelogram .# with vertices 0, 1, 1 + 7,and 7 as shown in Figure 0.1,
then we see that

1. no two points of the interior of .# are identified under G,

2. every point of C is identified to at least one point of .# (. is closed), and

3. each interior point on the line a (respectively, b) is identified with a unique
point on the line a’ (respectively, b').

From these considerations, it follows rather easily that C/G is .# with the
points on the boundary identified or just a torus. (IV.6.4)

These tori already exhibit a very important phenomenon. Every 7 € C,
with Im t > 0, determines a unique torus and every torus is constructed as
above. Given two such points 7 and 7', when do they determine the same
torus? This is the simplest illustration of the general problem of moduli of
Riemann surfaces. (IV.7.3; VIL.4)

The most interesting Riemann surfaces have the upper half plane as
universal covering space. The holomorphic self-mappings of U are z
(az + b)/(cz + d) with (a,b,c,d) € R and det[? 5] > 0. We can normalize so
that ad — bc = 1. When we do this, the condition that the mapping be
fixed point free is that |a + d| > 2. It turns out that for subgroups of the
group of automorphisms of U, Aut U, the concepts of discontinuity and
discreteness agree. Hence the Riemann surfaces with universal covering
space U (and these are almost all the Riemann surfaces!) are precisely U/G
for discrete fixed point free subgroups G of Aut U. In this case, it turns out
that there exists a non-Euclidean (possibly with infinitely many sides and

E T, g 1+ T
o w e
Im z=0- :O R
Re: z=0

Figure 0.1
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possibly open) polygon contained in U and that U/G is obtained by certain
identifications on the boundary of the polygon. (IV.5 and IV.9)

We thus see that via the topological theory of covering spaces, the study
of Riemann surfaces is essentially the same as the study of fixed point free
discrete subgroups of Aut U, which is the canonical example of a Lie group,
SL(2,R)/+1.

It turns out that the Riemann surfaces U/G are quite different from those
with C as their holomorphic universal covering space. For example, a
(topological) torus cannot have U as its holomorphic universal covering
space. (I11.6.3; 111.6.4; IV.6)

Because we are mainly interested in analysis and because our objects of
study have low dimensions, we shall also consider branched (= ramified)
covering manifolds. The theory for this wider class of objects parallels the
development outlined above. (IV.9)

In order to obtain a clearer picture of what is going on let us return to the
situation mentioned previously where M = C and G is generated by z —
z+ 1,z z 4 1, with t € U. We see immediately that dz, since it is invariant
under G, is a holomorphic differential on the torus C/G. (Functions cannot
be integrated on Riemann surfaces. The search for objects to integrate
leads naturally to differential forms.) In fact, dz is the only holomorphic
differential on the torus, up to multiplication by constants. Hence, given
any point z € C there is a point P in the torus and a path ¢ from 0 to that
point P such that = is obtained by integrating dz from 0 to P along c. Now
this remark is trivial when the torus is viewed in the above way; however,
let us now take a different point of view.

0.2. Algebraic Functions

Let us return to the torus constructed in the previous section. The mero-
morphic functions on this torus are the elliptic (doubly periodic) functions
with periods 1, 7. The canonical example here is the Weierstrass @-function
with periods 1, 7:

(2) : + Y ! 1
2 (z) = — _ .
v z? (n.m) % (0.0) (z—n—m1)* (n+ mr)?

(n,m)eZ
The g-function satisfies the differential equation
07 =4p —e)p — e)(p — e3).

The points e; can be identified as

1 T 1+1
6’1:505, 9228}]5, €3 = [ B .
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It is important to observe that g’ is again an elliptic function; hence a
meromorphic function on the torus. If we now write w = p’, z = g, we
obtain

w? =4(z — e,)(z — ey)(z — e3),

and we see that w is an algebraic function of z. The Riemann surface on
which wis a single valued meromorphic function is the two-sheeted branched
cover of the sphere branched over z =¢;, j =1, 2, 3, and z = co. Now it is
not difficult to show that on this surface dz/w is a holomorphic differential.
Once again, given any point z in the plane there is a point P on the surface
and a path ¢ from co to P such that z is the result of integrating the holo-
morphic differential dz/w from oo to P. That this is true follows at once by
letting z = g (&). So we are really once again back in the situation discussed
at the end of the previous section. This has, however, led us to another
way of constructing Riemann surfaces.

Consider an irreducible polynomial P(z,w) and with it the set S = {(z,w) €
C?; P(z,w) = 0}. It is easy to show that most points of S are manifold points
and that after modifying the singular points and adding some points at
infinity, S is the Riemann surface on which w is an algebraic function of z;
and S can be represented as an n-sheeted branched cover of C U {oo}, where
n is the degree of P as a polynomial in w. The branch points of S alluded to
above, and the points lying over infinity are the points which need to be
added to make S compact. (IV.11.4-1V.11.11)

In the case of the torus discussed above, we started with a compact
Riemann surface and found that the surface was the Riemann surface of an
algebraic function. The same result holds for any compact Riemann surface.
More precisely, given a compact Riemann surface (other than C u {o0})
there are functions w and z on the surface which satisfy an irreducible
polynomial P(z,w) =0. Hence every compact Riemann surface is the
Riemann surface of an algebraic function. Another way of saying the pre-
ceding is as follows: We saw in the case of the torus that the field of elliptic
functions completely determined the torus up to conformal equivalence.
If M is any compact Riemann surface and (M) is the field of meromorphic
functions on M we can ask whether the field has a strictly algebraic charac-
terization and whether the field determines M up to conformal equivalence.
Now if

f:M—>N
is a conformal map between Riemann surfaces M and N, then
f*. A (N)—> A (M)
defined by
ffo=9f, @eX(N),

is an isomorphism of #°(N) into (M) which preserves constants. If M and
N are conformally equivalent (that is, if the function f above, has an analytic
inverse), then, of course, the fields 2 (M) and #'(N) are isomorphic. If,
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conversely, ©: 4 (N) - (M) is an isomorphism which preserves constants,
then there is an f such that @¢ = f*¢p, and M can be recovered from .# (M)
in a purely algebraic manner. The above remarks hold as well in the case
of non-compact surfaces. The compact case has the additional feature that
the field of meromorphic functions can be characterized as an algebraic
function field in one variable; that is, an algebraic extension of a transcen-
dental extension of C. (IV.11.10)

0.3. Abelian Varieties

Every torus is a compact abelian group. When we view the torus as C/G
where G is the group generated by z +— z + 1, z+ z + 1, addition of points
is clearly well-defined modulo m + nt with m, n € Z. What can we say about
other compact surfaces? The only two compact surfaces we have actually
seen are the sphere and the torus. The sphere is said to have genus zero
and the torus genus one. In general a compact surface is said to have genus
g, if its Euler characteristic is 2 — 2g. Examples of compact Riemann surfaces
of genus g are the surfaces of the algebraic functions

2g+2

wi=[] (z—e). ¢ #eforj#k.

ji=1

We will show that on the above surfaces of genus g, the g differentials
dz/w, ...,z 'dz/w are linearly independent holomorphic differentials. In
fact, on any compact surface M of genus g, dim # (M) = g, where # (M)
is the vector space of holomorphic differentials on M. Furthermore, the
rank of the first homology group (with integral coefficients) on such a sur-
face is 2g. Let a,,...,a,, by, ..., b, be a canonical homology basis on M.
It is possible to choose a basis ¢y, ..., ¢, of #'(M) so that jaj O =0p
(= Kronecker delta).
In this case the matrix

Il = (njk)’ Tjk = Lj Dy

is symmetric with positive definite imaginary part. It then follows that C?
factored by the group of translations of C? generated by the columns of
the matrix (I,IT) is a complex g-torus and a compact abelian group. Hence
we will see that each compact surface of genus g has associated with it a
compact abelian group. (111.6)

In the case of g = 1, we saw that choosing a base point on the surface
and integrating the holomorphic differentials from the base point to a
variable point P on the surface gave an injective analytic map of the Riemann
surface onto the torus. In the case of g > 1 we have an injective map into
the torus by again choosing a base point on the surface and integrating the
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vector differential @ = (¢,,...,p,) from a fixed base point to a variable
point P. In this case the map cannot, of course, be surjective. If we want to
obtain a surjective map, we must map unordered g-tuples of points into the
torus by sending (P,, ...,P,) into the sum of the images of the points P,.
This result is called the Jacobi inversion theorem. Two proofs of this theorem
will be found in this book; one of them using the theory of Riemann’s theta
function. (I11.6.6; V1.4.4)

A complex torus is called an abelian variety when the g x 2g matrix
(A,B), whose columns are the generators for the lattice defining the torus,
has associated with it a 2g x 2g rational skew symmetric matrix P with the

property that
‘A
(4,B)P (’B) =0

i(4,B)P (:g)

is positive definite. In this case one can demonstrate the existence of multi-
plicative holomorphic functions. These functions then embed the torus as
an algebraic variety in projective space. In our case the matrix P can always
be chosen as the intersection matrix of the cycles in the canonical homology

basis; thatis, [_9 I].

and

0.4. More Analytic Aspects

The most important tools in studying (compact) Riemann surfaces are the
meromorphic functions on them. All surfaces carry meromorphic functions.
(I1.5.3; IV.3.17)

What kind of singularities can a meromorphic function on a compact
surface have? The answer is supplied by the Riemann-Roch theorem.
(IT1.4.8-111.4.11; IV.10)

We finish this introductory chapter with one last remark. Let M be a
compact Riemann surface. Assume that M is not the sphere nor a torus;
that is, a surface of genus g > 2. For each point P € M, we construct a se-
quence of positive integers

Vi<V, < <y <,

as follows: v, appears in the list if and only if there exists a meromorphic
function on M which is regular (holomorphic) on M\{P} and has a pole
of order v, at P. Question: What do these sequences look like? Answer:
For all but finitely many points the sequence is

g+1,g+2 g+3,....
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The finite number of exceptions are the Weierstrass points; they carry a
lot of information about the surface M. One of the fascinating aspects of
the study of Riemann surfaces is the ability to obtain such precise information
on our objects. (II1.5)

We shall see how to use the existence of these Weierstrass points in order
to conclude that Aut M is always finite for g > 2. (V.1)

Another object of study which is extremely important is the Jacobian
variety J(M). It, together with the theory of Riemann’s theta function, also
is a source of much information concerning M. (I11.6; I11.8; I11.11; VI; VII)



CHAPTER 1
Riemann Surfaces

In this chapter we define and give the simplest examples of Riemann surfaces.
We derive some basic properties of Riemann surfaces and of holomorphic
maps between compact surfaces. We assume the reader is familiar with the
elementary concepts in algebraic-topology and differential-geometry needed
for the study of Riemann surfaces. To establish notation, these concepts
are reviewed. The necessary surface topology is discussed. In later chapters
we will show how the complex structure can help obtain many of the needed
results about surface topology. The chapter ends with a development of
various integration formulae.

I.1. Definitions and Examples

We begin with a formal definition of a Riemann surface and give the simplest
examples: the complex plane C, the extended complex plane or Riemann
sphere C = C U {0}, and finally any open connected subset of a Riemann
surface. We define what is meant by a holomorphic mapping between
Riemann surfaces and prove that if f is a holomorphic map from a Riemann
surface M to a Riemann surface N, with M compact, then f is either constant
or surjective. Further, in this case, f is a finite sheeted ramified covering map.

I.1.1. A Riemann surface is a one-complex-dimensional connected com-
plex analytic manifold; that is, a two-real-dimensional connected manifold
M with a maximal set of charts {U, z,},. , on M (that is, the {U,},. 4 con-
stitute an open cover of M and

z,:U, » C (1.1.1)
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is a homeomorphism onto an open subset of the complex plane C) such that
the transition functions

fog = 2a° 25 “:2)(Uy 0 Up) = 2(U, A Uy (1.1.2)

are holomorphic whenever U, n U; # . Any set of charts (not necessarily
maximal) that cover M and satisfy condition (1.1.2) will be called a set of
analytic coordinate charts.

The above definition makes sense since the set of holomorphic functions
forms a pseudogroup under composition.

Classically, a compact Riemann surface is called closed; while a non-
compact surface is called open.

1.1.2. Let M be a one-complex-dimensional connected manifold together
with two sets of analytic coordinate charts U, = {U,,z,},. 4, and A, =
{V3.ws} s 5. We introduce a partial ordering on the set of analytic coordinate
charts by defining %, > U, if for each a € A, there exists a § € B such that

U,cV; and z,= Wp1ua,~

It now follows by Zorn’s lemma that an arbitrary set of analytic coordinate
charts can be extended to a maximal set of analytic coordinate charts. Thus
to define a Riemann surface we need not specify a maximal set of analytic
coordinate charts, merely a cover by any set of analytic coordinate charts.

Remark. If M is a Riemann surface and {U,z} is a coordinate on M, then
for every open set V' = U and every function f which is holomorphic and
injective on z(V), {V,f ° (z|;)} is also a coordinate chart on M.

1.1.3. Examples. The simplest example of an open Riemann surface is the
complex plane C. The single coordinate chart (C,id) defines the Riemann
surface structure on C.

Given any Riemann surface M, then a domain D (connected open subset)
on M is also a Riemann surface. The coordinate charts on D are obtained
by restricting the coordinate charts of M to D. Thus, every domain in C is
again a Riemann surface.

The one point compatification, C U {co}, of C (known as the extended
complex plane or Riemann sphere) is the simplest example of a closed (= com-
pact) Riemann surface. The charts we use are {U,z;} ;- , with

U, =C
U, = (C\{0}) U {0}

and

’

zi(z) == ze Uy,
z,(z) = 1/z, ze U,.

(Here and hereafter we continue to use the usual conventions involving
meromorphic functions; for example, 1/c0 = 0.) The two (non-trivial) tran-
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sition functions involved are

with
fii(2) = 1/z.

I.1.4. Remark. Coordinate charts are also called local parameters, local
coordinates, and uniformizing variables. From now on we shall use these
four terms interchangeably. Furthermore, the local coordinate {U,z} will
often be identified with the mapping z (when its domain is clear or not mate-
rial). We can always choose U to be simply connected and f(U) a bounded
domain in C. In this case U will be called a parametric disc, coordinate disc,
or uniformizing disc.

I.1.5. A continuous mapping
f:M —> N (1.5.1)

between Riemann surfaces is called holomorphic or analytic if for every
local coordinate {U,z} on M and every local coordinate {V,(} on N with
Un f~}(V)# O, the mapping

efozbiz(Un fTHV)) - V)

is holomorphic (as a mapping from C to C). The mapping f is called con-
formal if it is also one-to-one and onto. In this case (since holomorphic
mappings are open or map onto a point)

fTLN->M
is also conformal.

A holomorphic mapping into C is called a holomorphic function. A holo-
morphic mapping into C u {0}, other than the mapping sending M to o,
is called a meromorphic function. The ring (C-algebra) of holomorphic
functions on M will be denoted by #(M); the field (C-algebra) of mero-
morphic functions on M, by S (M). The mapping f of (1.5.1) is called
constant if f(M) is a point.

Theorem. Let M and N be Riemann surfaces with M compact. Let f-M — N
be a holomorphic mapping. Then f is either constant or surjective. (In the latter
case, N is also compact.) In particular, #(M) = C.

PRrROOF. If f is not constant, then f(M) is open (because f is an open mapping)
and compact (because the continuous image of a compact set is compact).
Thus f(M) is a closed subset of N (since N is Hausdorff). Since M and N are
connected, f(M) = N. O

Remark. Since holomorphicity is a local concept, all the usual local properties
of holomorphic functions can be used. Thus, in addition to the openness
property of holomorphic mappings used above, we know (for example) that
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holomorphic mappings satisfy the maximum modulus principle. (The prin-
ciple can be used to give an alternate proof of the fact that there are no non-
constant holomorphic functions on compact surfaces.)

I.1.6. Consider a non-constant holomorphic mapping between Riemann
surfaces given by (1.5.1). Let P € M. Choose local coordinates ¥ on M van-
ishing at P and { on N vanishing at f(P). In terms of these local coordinates,
we can write
(=13 =) a2 n>0,a,+#0.
k>n
Thus, we also have (since a non-vanishing holomorphic function on a disc

has a logarithm) that
C=2"h(E)" = (Zh(2)),

where h 1s holomorphic and h(0) # 0. Note that Z + Zh(Z) is another local
coordinate vanishing at P, and in terms of this new coordinate the mapping

f 1is given by
L= (1.6.1)

We shall say that n (defined as above—this definition is clearly independent
of the local coordinates used) is the ramification number of f at P or that f takes
on the value f(P) n-times at P or f has multiplicity n at P. The number (n — 1)
will be called the branch number of f at P, in symbols b ,(P).

Proposition. Let f:M — N be a non-constant holomorphic mapping between
compact Riemann surfaces. There exists a positive integer m such that every
0 € N is assumed precisely m times on M by f——counting multiplicities; that is,
forallQ e N,
(bg(P) + 1) = m.
Pes Q)

Proor. For each integer n > 1, let

z, = {Q eN; Y (b(P)+ 1= n}.
Pef~ Q)
The “normal form” of the mapping f given by (1.6.1) shows that X, is open
in N. We show next that it is closed. Let Q = lim,_,, Q, with Q, € X,. Since
there are only finitely many points in N that are the images of ramification
points in M, we may assume that b (P) =0 forall Pe f~ 1(Q,), each k. Thus
£~ 1Q,) consists of >n distinct points. Let P4, . .., P,, benpointsin f~ 1(Q,).
Since M is compact, for each j, there is a subsequence of {P, j} that con-
verges to a limit P;. We may suppose that it is the entire sequence that
converges. The points P; need not, of course, be distinct. Clearly f(P;) = Q,
and since f(P,;) = Q, it follows (even if the points P; are not distinct) that
Zpef_l(Q)(bf(P) + 1) > n. Thus each X, is either all of N or empty. Let
Qo€ N be arbitrary and let m =) p_ ;-1 (b(P) + 1). Then 0 <m < o0,
and since Qo€ X,,, Z,, = N.Since Q, ¢ 2,1, 2,,+  must be empty. O
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Definition. The number m above, will be called the degree of f (= deg f),
and we will also say that f is an m-sheeted cover of N by M (or that f has m
sheets).

Remarks

1. If f is a non-constant meromorphic function on M, then (the theorem
asserts that) f has as many zeros as poles.

2. We have used the fact that (compact) Riemann surfaces are separable, in
order to conclude that it suffices to work with sequences rather than nets.
We will establish this in IV.5.

3. The above considerations have established the fact that a single non-
constant meromorphic function completely determines the complex structure
of the Riemann surface. For if f € #’(M)\C,and P € M,and n — 1 = b,(P),
then a local coordinate vanishing at P is given by

(f = f(PY" if f(P) # o0,

and

foum if f(P) = 0.

I.1.7. Since an analytic function (on the plane) is smooth (C*), every
Riemann surface is a differentiable manifold. If {U,z} is a local coordinate
on the Riemann surface M, then x =Rez, y=Imz (z= x + iy) yield
smooth local coordinates on U. In 1.3 we shall make use of the underlying
C™-structure of M.

Remark. Every surface (orientable topological two-real-dimensional mani-
fold with countable basis for the topology) admits a Riemann surface struc-
ture. We shall not prove (and not have any use for) this fact in this book.

[.2. Topology of Riemann Surfaces

Throughout this section M denotes an orientable two-real-dimensional
manifold.

We review the basic notions of surface topology to recall for the reader the
facts concerning the fundamental group of a manifold and the simplicial
homology groups. This leads us naturally to the notion of covering manifold
and finally to the normal forms of compact orientable surfaces. Covering
manifolds lead us to the monodromy theorem, and the normal forms lead
us to the Euler—Poincaré formula. As one application of these ideas, we
establish the Riemann-Hurwitz relation.

I.2.1. We assume that the reader has been exposed to the general notions
of surface topology, in particular to the fundamental group and the simplicial
homology groups. We thus content ourselves with a brief review of these
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ideas. In this section the word curve on M will mean a continuous map c¢ of
the closed interval I = [0,1] into M. The point ¢(0) will be called the initial
point of the curve, and c(1) will be called the terminal or end point of the
curve. Furthermore since we shall be primarily interested in compact
Riemann surfaces, we shall (in general) assume that the manifold is compact,
triangulable, and orientable. (All Riemann surfaces are triangulable and
orientable.)

1.2.2. n, (M) = Fundamental Group of M. If P, Q are two points of M and
¢; and ¢, are two curves on M with initial point P and terminal point Q, we
say that ¢, is homotopic to ¢, (¢, ~ ¢,) provided there is a continuous map
h:1 x I - M with the properties h(t,0) = c,(t), h(t,1) = ¢,(t), h(O,u) = P and
h(l,u) = Q (for all ¢, u € I).

If P is now any point of M, we consider all closed curves on M which pass
through P. This is the same as all curves on M with initial and terminal
point P. We say that two such curves ¢,, ¢, are equivalent whenever they are
homotopic. The set of equivalence classes of closed curves through P forms a
group in the obvious manner. The product of the equivalence class of the
curve ¢, with the equivalence class of the curve c, is the equivalence class
of the curve ¢, followed by c,. The inverse of the equivalence class of the
curve t > c(t) is the curve t —>¢(1 — t). The group of equivalence class so
constructed is called the fundamental group of M based at P. 1t is easy to
see that the fundamental group based at P and the fundamental group
based at Q are almost canonically isomorphic as groups. The isomorphism
between these two groups depends only on the homotopy class of the path
from P to Q. The fundamental group of M, (M), is therefore defined to be
the fundamental group of M based at P, for any Pe M. For most
applications, the dependence of 7, (M) on the base point P will be irrelevant.

Remark. It is easy to see that the fundamental group is a topological invariant.

1.2.3. Homology Groups. In a triangulation of a manifold we call the tri-
angles two-simplices, the edges one-simplices, and the vertices zero-simplices.
The orientation on the manifold induces an orientation on the triangles
which in turn can be used to orient the edges bounding the triangle. An
edge receives opposite orientation from the two triangles for which it is a
common side. Further, the vertices {P,,P,,P, ...} can be used to label the
edges and triangles. Thus (P,,P,) is the oriented edge from the vertex P,
to P,, and {P,,P,,P;) is the oriented triangle bounded by the oriented
edges (P;,P,), {P,,P;), {P;,P,). We identify the triangle {P,,P,,P;) with
—{P3,P,,P;) and the edge <P;,P,) with —<P,,P;>. An n-chain (n =
0,1,2) is a finite linear combination of n-simplices with integer coefficients.
We define an operator 6 from n-chains to n — 1 chains as follows: For
n =0, we define 6{P) = 0. For n = 1, we define 6{P,,P,) = {P,) — {P;).
For n =2, we define 6{P,,P,,P;> =<P,,Py> — (P;,P;> + {P;,P,)>. The
preceding defines 6 on an n-simplex and we extend the definition to
n-chains by linearity.
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It is clear that the set of n-chains forms a group under addition and that
4 is a group homomorphism of the group of n-chains to the group of (n — 1)
chains. We denote the group of n-chains by C, (C, = {0} for n > 2). Let
Z, denote the kernel of 6:C, - C,_,. Furthermore, let B, denote the image
of C,,, in C, under 8. Since 6 = 0, it is clear that B, is a subgroup of Z,,
and in fact since all groups in sight are abelian, a normal subgroup. It there-
fore follows that C,/Z, is isomorphic to B,_,. The group we are interested
in is, however, H (M) = H,, = Z,/B, and we call this group the nth simplicial
homology group (with integer coefficients). (By definition H, = {0} forn > 2.)

Let us now denote by [z] the equivalence class in H, of z € Z,. We shall
say that [z;],j=1,..., B,, are a basis for H, provided each element of H,
can be written as an integral linear combination of the [z;] and provided the
integral equation Y %2, o;[z;] = 0 implies «; = 0. In this case we shall call
the number B, the nth-Betti number of the triangulated manifold.

It is very easy to describe the groups H, and H,, and thus the numbers
Bo and B,. In fact it is apparent that 8, = 1, and that H, is isomorphic to the
integers. As far as H, is concerned, a little thought shows that there are
exactly two possibilities. If M is compact, then H, is isomorphic to the
integers and B, = 1. If M is not compact, then H, is trivial and f§, = 0.

The only non-trivial case to consider is H, and ;. We have seen in the
previous paragraph that Hy and H, are independent of the triangulation.
The same is true for H, although this is not at all apparent. One way to see
this is to recall the fact that H, is isomorphic to the abelianized fundamental
group. We shall not prove this result here. Granting the result, however, and
using the normal forms for compact surfaces to be described in 1.2.5, it will
be easy to compute H (M) and hence f, for compact surfaces M.

1.2.4. Covering Manifolds. The manifold M* is said to be a (ramified) cover-
ing manifold of the manifold M provided there is a continuous surjective
map (called a (ramified) covering map) f:M* — M with the following prop-
erty: for each P* € M* there exist a local coordinate z* on M* vanishing at
P*, a local coordinate z on M vanishing at f(P), and an integer n > 0 such
that f is given by z = z*" in terms of these local coordinates. Here the integer
n depends only on the point P* € M*. If n > 1, P* is called a branch point of
order n — 1 or a ramification point of order n. (Compare these definitions with
those in 1.1.6.) If n = 1, for all points P* € M* the cover is called smooth or
unramified.

ExAMPLE. Proposition 1.1.6 shows that every non-constant holomorphic
mapping between compact Riemann surfaces is a finite-sheeted (ramified)
covering map.

Continuing the general discussion, we call M* an unlimited covering mani-
fold of M provided that for every curve ¢ on M and every point P* with
S(P*) = ¢(0), there exists a curve c* on M* with initial point P* and f(c*) = c.
The curve c* will be called a lift of the curve c.
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There is a close connection between n,(M) and the smooth unlimited
covering manifolds of M. If M* is a smooth unlimited covering manifold of
M, then ©(M*) is isomorphic to a subgroup of r,(M). Conversely, every
subgroup of n,(M) determines a smooth unlimited covering manifold M*
with 7,(M*) isomorphic to the given subgroup. (Conjugate subgroups deter-
mine homeomorphic covers.)

This is also a good place to recall the monodromy theorem which states:
Let M* be a smooth unlimited covering manifold of M and c,, ¢, two curves on
M which are homotopic. Let c¥, c% be lifts of c,, ¢, with the same initial point.
Then c¥ is homotopic to c¢%. In particular, the curves c¥ and c¢% must have the
same end points.

If M* is a covering manifold of M with covering map f, then a homeo-
morphism h of M* onto itself with the property that f o h = f is called a
covering transformation of M*. The set of covering transformations forms
a group, which is called transitive provided that whenever f(P¥) = f(P%) there
is a covering transformation & which maps P¥ onto P%. For the smooth unlim-
ited case, the group of covering transformations is transitive if and only if
n,(M*) is isomorphic to a normal subgroup of 7,(M) and in this case the
group of covering transformations is isomorphic to n,(M)/n,(M*).

The case where the cover M* is determined by the trivial subgroup of
7,(M) is of particular importance and is called the universal, simply con-
nected or homotopy cover of M. It will be denoted by M. We note that the
universal cover is indeed simply connected (that is, its fundamental group is
trivial) and that the group G of covering (also called deck) transformations
is isomorphic to the fundamental group of M. Since this isomorphism will
be used extensively, we discuss it in some detail. Let p: M > M be a
universal covering map. Let P be a point in M and P a point of M lying
above P; that is, p(P) = P. Let n,(M,P) be the fundamental group of M
based at P. Let ¢ be a curve representing an element of n,(M,P). Lift the
curve ¢ to a curve & on M with initial point P. Since ¢ is a closed path, the
terminal point of ¢ projects to P and hence there is a deck transformation
T."! € G that takes P to the terminal point of 5. The map T :c — T, is the
desired isomorphism. Thus by definition

T.7}(P) = end point of 5.
Note that for any A4 € G, the lift of a closed curve ¢ through P to a curve
with initial point A(P) is C4p) = A(Cp), and therefore the terminal point of
Caepy 18 just
A(terminal point of ¢3)
which is equal to (4 o T,”')(P). It thus follows that (CICZ)p = (Q)p(tz)r 15y

and that its terminal point is T, ' (terminal point of (cz),,) =(T'o 1)(P)
We have therefore shown that

T =T oT;'=(T,oT,)"

€162

and therefore that the map T is a group homomorphism. This map is easily
seen to be both injective and surjective. We leave it to the reader to verify



1.2. Topology of Riemann Surfaces 17

these facts and to generalize the discussion to a covering corresponding to
an arbitrary normal subgroup of the fundamental group of M. The reason
for the appearance of inverses in the definition of the map T should be clear
to the reader: paths are composed from right to left and maps are
composed (backwards according to some cultures) from left to right.

Let us now assume that M is a Riemann surface. Then the definition of
covering manifold shows that M* has a unique Riemann surface structure
on it which makes f a holomorphic map. Furthermore, the group of covering
transformations consists now of conformal self maps of M*. In the converse
direction things are not quite so simple. If M is a Riemann surface and G is
a fixed point free group of conformal self maps of M, it is not necessarily
the case that the orbit space M/G is even a manifold. However, if the group
G operates discontinuously on M, then M/G is a manifold and can be made
into a Riemann surface such that the natural map f: M — M/G is an
analytic map of Riemann surfaces. More details about these ideas will be
found in IV.5 and IV.9.

1.2.5. Normal Forms of Compact Orientable Surfaces. Any triangulation of
a compact manifold is necessarily finite. Using such a triangulation we can
proceed to simplify the topological model of the manifold. We can map
successively each triangle in the triangulation onto a Euclidean triangle and
by auxilliary topological mappings obtain at each stage k, a regular (k + 2)-
gon, k > 2. This (k + 2)-gon has a certain orientation on its boundary which
is induced by the orientation on the triangles of the triangulation. When we
are finished with this process we have an (n + 2)-gon (n being the number of
triangles in the triangulation). Since each side of this polygon is identified
with precisely one other side, the polygon has an even number of sides. This
polygon with the appropriate identifications gives us a topological model
of the manifold M.

In order to obtain the normal form we proceed as follows: We start with
an edge of the triangulation which corresponds to two sides of the polygon.
The edge can be denoted by <P,Q), where both P and Q correspond to two
vertices of the polygon. In traversing the boundary of the polygon we cross
the edge (P,Q)> once and the edge {Q,P) once. We will label one of these
edges by ¢ and the other by ¢~ '. In this way we can associate a letter with
each side of the polygon, and call the word obtained by writing the letters in
the order of traversing the boundary the symbol of the polygon. The re-
mainder of the game is devoted to simplifying the symbol of the polygon.

If the sides a and a~! follow one another in the polygon, and there is at
least one other side then you can remove both sides from the symbol and the
new symbol still is the symbol of a polygon which is a topological model
for M.

The polygon’s sides have been labeled and so have the vertices of the
polygon. We now wish to transform the polygon into a polygon with all
vertices identified. This is done by cutting up the polygon and pasting in a
fairly straight forward fashion. To illustrate, suppose we have a vertex Q not
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identified with a vertex P, as in Figure I.1. Make a cut joining R to P and
paste back along b to obtain Figure 1.2. We note that the number of Q
vertices has been decreased by one. Continuing, we end up after a finite
number of steps with a triangulation with all the vertices identified.

Figure 1.1 Figure 1.2

The final simplification we need involves the notion of linked edges. We
say that a pair of edges a and b are linked if they appear in the symbol of
the polygon in the order a---b---a~!---b~1--- It is easy to see that
each edge of the polygon is necessarily linked with some other edge (unless
we are in the situation that there are only two sides in the polygon). We
can then transform the polygon, by a cutting and pasting argument simi-
lar to the one used above so that the linked pair is brought together as
aba”'b~!. We finally obtain the normal form of the surface. The normal
form of a compact orientable surface is a polygon whose symbol is aa™* or
abyay byt - -ab,a; b, ' In the former case we say that the genus of M
is zero and in the latter case we say that the genus is g. It is clear that g is a
complete topological invariant for compact orientable surfaces.

From the normal form we can, of course, reconstruct the original surface
by a “pasting” process. Figures 1.3 and 1.4 explain the procedure.

In particular, a surface of genus g is topologically a sphere with g handles.
A surface of genus 0 is topologically (also analytically—but this will not be

a;' b,
/"
: (YD
o 08— (0
Q

Figure 1.3. Surface of genus 1.

Figure 1.4. Surface of genus 2.



1.2. Topology of Riemann Surfaces 19

seen until I11.4 or IV.4) a sphere. A surface of genus 1 is topologically a torus.
There are many complex tori. (In fact, as will be seen in IV.6, a one-complex-
parameter family of tori.)

Using the common vertex of the normal form as a base point for the
fundamental group, one shows that n,(M) is generated by the 2g closed
loops ay, ..., a,, by, ..., b, subject to the single relation a;bya;*b?
a;b,a,'b;* = 1. Hence H,(M) is the free abelian group on the generators
[a;], [b1, j=1, ..., g. In particular for a compact surface of genus g,

H,(M) = 7% and B, = 2g.

Remark. The “pasting” process is, of course, not uniquely determined by the
symbol. For example, in the case of genus 1, after joining side a; Yo a,, we
may twist the resulting cylinder by 27 radians before identifying by ! with b,.
The “twisted” surface is, of course, homeomorphic to the “untwisted” one.
The homeomorphism is known as a Dehn twist.

Caution. The normal form for the polygon can lead to two different (but, of
course, equivalent) presentations for n,(M). For the first form of the
presentation (the one given above), we must properly interpret the symbol
of the polygon. For the second presentation, it is helpful to use the
isomorphism between the fundamental group m,(M,P), here P is the base
point for the fundamental group, and the group G of deck transformations
on the universal cover M.

To derive the defining relation listed above, let us give the counter-
clockwise orientation to the boundary of the polygon. Since all the vertices
are identified on the surface, each side projects to a curve through the same
point P on M and hence each of the sides a;, b; determines an element
of n,(M,P). To see what elements they generate, we let a; (f;) be the
(homotopy class of the) projection of the side g; (b;) to the surface M. We
shift our point of view slightly. We can (and indeed will) consider the
polygon as sitting in M, the universal covering space of M. Hence the sides
of the polygon can be considered as lifts to M of closed curves on M
through P. Let z be the initial point of the side a,. It is then obvious that
a, is a lift of «; from z. In the language of 1.2.4, which we will now use,
a, = a,,. Now, b, is a lift of B, that starts at the end point of a, rather than
its initial point. Thus a, b, is a lift of alﬁl that starts at z. Similarly, for the
remamlng elements. Thus ¢ = a,;b,a;'bh;* - agbgaglb 1is a lift of y =

ay Brog Bt oy By 18,1 that starts at z; since c is a closed curve on M,y
is homotopxcally trivial. This discussion allows us also to identify «; with g;
and B; with b;.

To determine the second form of the presentation of the fundamental
group suggested by the polygon, we observe that the sides a; and a; ' of the
polygon (sitting in M) project to the same curve on M. Hence there exists
an element 4; € G with A4;(a)) = g; 1. Similarly, there exists an element B,e G
with Bj(b;) = b;'. Let us order the vertices of the normal form of the
polygon in the counterclockwise direction by z = zg, zy, ..., Z4y-1> Zag = Zo-
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It thus follows that for j=1, ..., g the elements 4; and B; satisfy the
following conditions:

Af24j-a) = 24j-1> AfZ4j-3) = Z4j-2,  Bj(z4j-3) = z4; and
Bi(z4j-2) = 2451
A simple chase of points shows that
(Bj ° Ajil ° Bj_l o Aj)(z4j—4) = (B, o Aj_1 o Bj_l)(z4j—1)
= (Bj o Aj—l)(z4j—2) = Bj(z4j—3) = Z4j-
It follows that
B,oA;'oB; oA, - BjoA{' o B{'o A,

fixes the point z, and must be the identity since the covering group acts
fixed point freely.

To compare the two presentations (for the covering group, say), let !
(#;') be the motion in G that identifies the initial point of &;_(p;,) with its
terminal point. Since /; = T, and %; = T,, we have the following defining
new relation for these new generators of the covering group:

‘ng_lo"dy_lO'%goﬂg"'gl_loﬂl_logloﬂp

We want to express each of these new generators for G in terms of the old
ones. It is useful to introduce the commutator C of two elements of G as

C=[B,A]=B'oA'oBoA
and to let
C;=[B',4], Cy,=1
Observe that
a;=(Gy 00 Cr o C)(G;)

and o
bj = (Afl o Bf1 o Aj o Cj~1 o-roCjo Co)(ﬁ',)-

Thus we see that
end point of &;_ = (Cg' o+ 0 C7})(z4-3)
and
end point of [}jz =(Colo o C o A7 o Bjo Aj)(z4j-,);
from which we conclude that
A =ColooCioA o Bt oAj0oCiyo - 0CoCy
and

,%_1:C(;lo-“oc.__lloA._lijoAjij_loAjoC};lo-~-oC10C0,

J J
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The relation for the new generators is hence given in terms of the old
generators as
Ciloo Gl =1,

that is, the inverse of the old relation for the old generators.

1.2.6. Euler—Poincaré. The Euler—Poincaré characteristic y of compact
surfaces of genus g is given by y = ay — a; + a,, where , is the number of k
simplices in the triangulation. A triangulation of the normal form gives
¥ = 2 — 2g. The Euler—Poincaré characteristic is also given by 8, — 8, + S5,
where f is the kth Betti number. Thus the computations of the Betti numbers
in .2.4 and 1.2.6 yield an alternate verification of the value of .

1.2.7. As an application of the topological invariance of the Euler- Poincaré
characteristic, we establish a beautiful formula relating various topological
indices connected with a holomorphic mapping between compact surfaces.

Consider a non-constant holomorphic mapping f : M -- N between com-
pact Riemann surfaces. Assume that M is a compact Riemann surface of
genus g, N is a compact surface of genus y. Assume that f is of degree n
(that is, f~*(Q) has cardinality n for almost all Q € N). We define the total
branching number (recall definition preceding Proposition 1.1.6) of f by

B=Y by(P).

PeM

Theorem (Riemann—Hurwitz Relation). We have

g=n(y—1)+ 1+ B/2.

PrOOF. Let S = {f(x); x e M and b (x) > 0}. Since S is a finite set, we can
triangulate N so that every point of S is a vertex of the triangulation. Assume
that this triangulation has F faces, E edges, and V vertices. Lift this triangula-
tion to M via the mapping f. The induced triangulation of M has nF faces,
nE edges, and nV — B vertices. We now compute the Euler—Poincaré charac-
teristic of each surface in two ways:

F-E+V=2-2
nF —nE +nV—B=2-2g.
From the above we obtain
1 —g=n(l —y)— B/2. O

1.2.8. We record now (using the same notation as above) several immediate
consequences.

Corollary 1. The total branching number B is always even.

Corollary 2. Assume that f is unramified. Then
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a.g=0=n=1andy=0.
b. g = 1=y =1 (narbitrary).
c. g>1l=>g=vyforn=1
=g >7y>1 for n> 1 (and n divides g — 1).

Corollary 3

a. Ifg=0,theny=0.
b. If 1 < g =7y, then either n =1 and (thus) B =0 or g = 1 and (thus) B = 0.

1.3. Differential Forms

We assume that the reader is familiar with the theory of integration on a
differentiable manifold. We briefly review the basic facts (to fix notation),
and make use of the complex structure on the manifolds under consideration
to simplify and augment many differential-geometric concepts. The necessity
of introducing differential forms stems from the desire to have an object
which we can integrate on the surface. The introduction of 1-forms allows us
to consider line integrals on the surface, while the introduction of 2-forms
allows us to consider surface integrals. Various operators on differential
forms are introduced, and in terms of these operators we define and charac-
terize different classes of differentials.

Remark. We shall use interchangeably the terms “form”, “differential”, and
“differential form”.

1.3.1. Let M be a Riemann surface. A 0-form on M is a function on M. A

1-form w on M is an (ordered) assignment of two continuous functions f and
g to each local coordinate z (= x + iy) on M such that

fdx +gdy (3.1.1)

is invariant under coordinate changes; that is, if 7 is another local coordinate
on M and the domain of Z intersects non-trivially the domain of z, and if w
assigns the functions f, § to Z, then (using matrix notation)

f@|_ (’? (:? f(:(f)) (3.12)
g(2) x Oy g(z(2)
oy 0y

on the intersection of the domains of z and Z. The 2 x 2 matrix appearing in
(3.1.2) is, of course, the Jacobian matrix of the mapping Z + z.
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A 2-form Q on M is an assignment of a continuous function f to each local

coordinate z such that
fdxnady (3.1.3)

is invariant under coordinate changes; that is, in terms of the local coordinate
Z we have

72) = (z(27) o)

3.14
FEATN (.14

where 0(x,y)/0(%,7) is the determinant of the Jacobian. Since we consider
only holomorphic coordinate changes (3.1.4) has the simple form

dz|?

f(2) = 1(z(2)

= (3.1.4a)

I.3.2. Many times it is more convenient to use complex notation for
(differential) forms. Using the complex analytic coordinate z, a 1-form may
be written as

u(z) dz + v(z) dz, (3.2.1)
where
dz =dx + i dy, (322)
dz =dx —idy,
and hence comparing with (3.1.1) we see that
f=u+u,
g =i(u—v).
Similarly, a 2-form can be written as
g(z)dz ndz.
It follows from (3.2.2) that
dz adZ = —2idx ndy. (3.2.3)

1.3.3. Remark. To derive (3.2.3), we have made use of the “exterior” multi-
plication of forms. This multiplication satisfies the conditions: dx A dx =
0=dyAady, dx ndy = —dy A dx. The product of a k-form and an I-form
is a k+ | form provided k + [ <2 and is the zero form (still k + ) for
k+1>2

In view of the last remark, we let /\* denote the vector space of k-forms.
We see that /\is a module over /\” and that A\* = {0} for k > 3. Further

N=NeN &N

is a graded anti-commutative algebra under the obvious multiplication of
forms.
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1.3.4. A 0-form can be “integrated” over O-chains; that is, over a finite
set of points. Thus, the “integral” of the function f over the 0-cycle

Yn,P,, P,e M, n,eZ

2 f(Py).

A 1-form w can be integrated over 1-chains (finite unions of paths). Thus,
if the piece-wise differentiable path ¢ is contained in a single coordinate disc
z=Xx+1iy,c:I » M (I = unit interval [0,1]), and if w is given by (3.1.1), then

d
ffo={ { (x(0),1(0)) +g(x(t)y())d—f}dz.

By the transition formula for w, (3.1.2), the above integral is independent
of choice of z, and by compactness the definition can be extended to arbitrary
piece-wise differentiable paths.

Similarly, a 2-form Q can be integrated over 2-chains, D. Again, restricting
to a single coordinate disc (and Q given by (3.1.3)),

ffn Q= ffD f(x.y) dx A dy.

The integral is well defined and extends in an obvious way to arbitrary
2-chains.

It is also sometimes necessary to integrate a 2-form Q over a more general
domain D. If D has compact closure, there is no difficulty involved in extend-
ing the definition of the integral. For still more general domains D, one must
use partitions of unity.

Remark. We will see in IV.5 that evaluation of integrals over domains on an
arbitrary surface M can always be reduced to considering integrals over
plane domains.

1.3.5. For C!-forms (that is, forms whose coefficients are C ! functions), we
introduce the differential operator d. Define

df = f.dx + f,dy
for C! functions f. For the C! 1-form w given by (3.1.1) we have (by definition)
do =d(fdx) + d(gdy)=df ndx + dgrdy
=(fedx + f,dy)Andx + (g, dx + g, dy) ndy
= (g« — fy) dx ndy.
For a 2-form Q we, of course, have (again by definition)
dQ = 0.

The most important fact concerning this operator is contained in Stokes’
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theorem. If w is a C! k-form (k = 0,1,2) and D is a (1 + k)-chain, then

@ = fD dw.

(Of course, the only non-trivial case is k = 1.)
Note also that
d* =0,

whenever d? is defined.
1.3.6. Up to now we have made use only of the underlying C* structure of
the Riemann surface M—except, of course, for notational simplifications

provided by the complex structure. Using complex analytic coordinates we
introduce two differential operators ¢ and ¢ by setting for a C! function f,

of = f.dz and Of = f, dz;
and setting for a C! 1-form w = u dz + v dz,

0w =0undz+0vndz=v,dz A dz,

0w =0undz + OvAdZ=u.dz ndz = —u,dz A dz,
where
f=3(fe = i)
f=3(f+1f).

For 2-forms, the operators @ and d are defined as the zero operators.

Recall. The equation f; = 0 is equivalent to the Cauchy-Riemann equations
for Re f, Im f; that is, f; = 0 if and only if f is holomorphic.

It is easy to check that the operators on forms we have defined satisfy

d=27+0.
It is also easy to see that

0?=00+00=0*=0,

whenever these operators are defined.

1.3.7. In the previous paragraph the complex structure on M was still
not used in any essential way. We shall now make essential use of it to define
the operation of conjugation on smooth (C! or C2—as is necessary) differ-
ential forms.

We introduce the conjugation operator * as follows: For a 1-form w given
by (3.1.1), we define

*w=—gdx+ fdy. (3.7.1)

This is the most important case and the only one we shall need in the sequel.
To define the operator * on functions and 2-forms, we choose a non-vanishing
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2-form A(z) dx A dy on the surface. (Existence of such a canonical 2-form will
follows trivially from IV.8.) If f is a function, we set

*f = f(2)(A(z) dx A dy).
For a 2-form Q, we set
*Q = Q/A(z) dx Ady.
It is clear that for each k =0, 1, 2,
A AT
and ** = (— 1)*. Further, if o is given in complex notation by (3.2.1), then
*w = —iu(z) dz + iv(z) dzZ. (3.7.2)

The operation * defined on 1-forms  has the following geometric inter-
pretation. If f is a C' function and z(s) = x(s) + iy(s) is the equation of a
curve parametrized by arc-length, then the differential df has the geometric
interpretation of being (3f/0t) ds, where df/dt is the directional derivative of
f in the direction of the tangent to the curve z. In this context, *df has the
geometric interpertation of being (df/dn) ds, where df/0n is the directional
derivative of f in the direction of the normal to the curve z. (Note that
ds = |dz| in this discussion.)

Remark. The reader should check that the above definitions (for example
(3.7.1)) are all well defined in the sense that *w is indeed a 1-form (that is,
it transforms properly under change of local coordinates).

1.3.8. Our principal interest will be in 1-forms. Henceforth all differential
forms are assumed to be 1-forms unless otherwise specified. A form w is called
exact if w = df for some C? function f on M; w is called co-exact if *w is
exact (if and only if w = *df for some C? function f). We say that w is closed
provided it is C! and dw = 0; we say w is co-closed provided *w is closed.

Note that every exact (co-exact) differential is closed (co-closed). Whereas
on a simply connected domain, closed (co-closed) differentials are exact
(co-exact). Hence, closed (co-closed) differentials are locally exact (co-exact).
If f is a C? function on M, we define the Laplacian of f, Af in local coor-
dinates by

Af = (fax + fiy) dx A dy.

The function f is called harmonic provided Af = 0. A 1-form w is harmonic
provided it is locally given by df with f a harmonic function.
Remarks
1. It is easy to compute that for every C? function f,
—2i00f = Af = d*df. (3.8.1)
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2. It must, of course, be verified that the Laplacian operator 4 is well defined.
(Here, again, the fact that we are dealing with Riemann surfaces, and not
just a differentiable surface, is crucial.)

3. The concept of harmonic function is, of course, a local one. Thus we know
that locally every real-valued harmonic function is the real part of a
holomorphic function. Further, real valued harmonic functions satisfy
the maximum and minimum principle (that is, a non-constant real-valued
harmonic function does not achieve a maximum nor a minimum at any
interior point).

Proposition. A4 differential w is harmonic if and only if it is closed and co-closed.

PrOOF. A harmonic differential is closed (since d* = 0). It is co-closed by
(3.8.1). Conversely, if w is closed, then locally w = df with f a C? function.
Since w is co-closed, d(*df) = 0. Thus, f is harmonic. O

At this point observe that we have a pairing between the homology group
H, and the group of closed n-forms of class C'. This pairing is interesting
for n = 1, and we describe it only in this case. If ¢ is a 1-cycle and w is a closed
1-form of class C', define {c,w) = [, . The homology group H, is defined by
Z,/B,, where Z, is the kernel of 6 and B, is the image of the 2-chains in the
one chains. The operator d on functions of class C? and differentials of class
C! gives rise also to subgroups of the group of closed 1-forms. In particular
the exact differentials are precisely the image of C? functions (0-forms) in
the group of 1-forms, and the closed forms themselves are the kernel of d
operating on C' 1-forms. Hence the quotient of closed 1-forms by exact
1-forms is a group and we have for compact surfaces a nonsingular pairing
between H, and this quotient group. We shall soon see that this quotient
group is isomorphic to the space of harmonic differentials. (See 11.3.6.)

1.3.9. A 1-form w is called holomorphic provided that locally w = df with
f holomorphic.

Proposition. a. If u is a harmonic function on M, then ¢u is a holomorphic
differential.
b. A differential w = udz + vdz is holomorphic if and only if v =0 and u is
a holomorphic function (of the local coordinate).

ProOF. If u is harmonic, then ddu = 0. Since du = u,dz, we see that u, is
holomorphic (u.- = 0) and thus it suffices to prove only part (b), which is,
of course, trivial (since we can integrate power series term by term). O

1.3.10. Assume w = udz + vdz is a C! differential. Then (using d = J + 0)
we see that
do = (u; — v,)dz A dz,
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and
d*w = —i(u; + v,)dz A dz.

Thus, we see that w is harmonic if and only if u and 7 are holomorphic.
Hence, we see that if w is harmonic, there are unique holomorphic differentials
w, and w, such that

w=w; + 0,

1.3.11. Theorem. A differential form w is holomorphic if and only if ® = a + i*a
for some harmonic differential o.
PRrROOF. Assume that « is harmonic. Then
a=w; + 0,
with w; (j = 1,2) holomorphic. Thus
*o = —iw, + i®,.

Thus,
o+ i*a = 2w,

is holomorphic. Conversely, if w is holomorphic, then w and @ are harmonic
and so is

0—-0
=
Further
—iw — i@
*a= 2
Thus
w = o+ i*a. O

Corollary. A differential w is holomorphic if and only if it is closed and
*0 = —iw.

ProOF. The forward implication has already been verified (every holomorphic
differential is harmonic). For the reverse, note that if @ is given by (3.2.1)

and *w = —iw, then (3.7.2) implies that w = udz. Since dw =0, u is
holomorphic. 0

I.4. Integration Formulae

In this section we gather several useful consequences of Stokes’ theorem.

1.4.1. Theorem (Integration by Parts). Let D be a relatively compact region
on a Riemann surface M with piecewise differentiable boundary. Let f be a
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C? function and w a C! 1-form on a neighborhood of the closure of D. Then

apfwszpfdw_ffl,a”\df- (4.1.1)

ProoF. Apply Stokes’ theorem to the 1-form fw and observe that d( fw) =
fdo +df A w. O

Corollary 1. If w is a closed (in particular, holomorphic) 1-form, then (under
the hypothesis of the theorem)

w=0.
6D

PRrOOF. Take f to be the constant function with value 1. O

Corollary 2. Let f be C' function and w a C* 1-form on the Riemann surface
M. If either f or w has compact support, then

ﬂMfdw-fwaAdfzo. (4.1.2)

PRrOOF. If M is not compact, then take D to be compact and have nice bound-
ary so that either f or w vanishes on 6D and use (4.1.1). If M is compact
cover M by a finite number of disjoint triangles 4;,j = 1,. .., n. Over each
triangle (4.1.1) is valid. We obtain (4.1.2) by noting that

n
fa) = O’
J,gl 34
since each edge appears in exactly 2 triangles with opposite orientation. []

1.4.2. We fix a region D on M. By a measurable 1-form v on D, we mean
a 1-form (given in local coordinates by)

w=udz+vdz,

where u and v are measurable functions of the local coordinates. As usual,
we agree to identify two forms if they coincide almost everywhere (sets of
Lebesgue measure zero are well defined on M!). We denote by L*D) the
complex Hilbert space of 1-forms w with

lollp = [, 2 *@ < o0, (4.2.1)
Note that in local coordinates
WA*D =i(ut + vD)dz AdZ
= 2(|ul* + [v|*)dx A dy.
We also define the inner product of w,, w, € L*D) by

(©1,04)p = f fD Wy A*@s. 4.2.2)
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Using obvious notational conventions, we see that

Wy A *®0y = (uydz + vdZ) A (—iuydz + iv,dZ) = i(u U, + v,0,)dz A dZ,

and thus
(w1,w3)p = J‘fu w, A*¥D, = iff(ulﬁz + v,0,)dz A dZ

= iff(ﬁluz + T,0,)dzAdZ = ffp Wy A*@D,

= (w29wl)Ds

as is required for a Hilbert space inner product. Further,
(*w*wy)p = ffn Yoy A — o,

= ffbwz A*®y = (w;,01)p = (01,07)p.

Remark. Whenever there can be no confusion, the domain D will be dropped
from the symbols for the norm (4.2.1) and inner products (4.2.2) in L*D).

1.4.3. Proposition. Let D be a relatively compact region on M with piecewise
differentiable boundary. Let @ be a C' function and o a C! differential on a
neighborhood of the closure of D. Then

(dp,*a) = f fD pdi— [ oa (4.3.1)
PRrROOF. By Stokes’ theorem

o= [l on = [ o Jfdona

= J‘J‘D @ da — (do,*). |

1.4.4. Proposition. If ¢ and  are C? functions on a neighborhood of the
closure of D, then

(do.d) = — ([, 070 + |,, 0 *@. (44.1)

PROOF. By Stokes’ theorem
J:sz) @*dy = ffDd((P *dy)

- [ton 3+ [, 07

— (dody) + [[, 0 49. 0
Corollary. We have
ffl, (e Ay —y do) = | (o*dy — ¢ *dg). (4.4.2)
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PrOOF. Rewrite (4.4.1) with § replacing . Rewrite the resulting expression
by interchanging ¢ and . Subtract one from the other, and use the fact
that (do,dyy) = (dy,d®). |

1.4.5. Proposition. We have
(dg.*dy) = — [, pd.

PrOOF. The notation is of Proposition 1.4.4. Apply Proposition 1.4.3 with
a = d (recall that d? = 0). O

1.4.6. We apply now the previous results (D is as defined in Proposition
1.4.3) to analytic differentials.

Proposition. If ¢ is a C! function and w is closed (in particular, an analytic
differential) on a neighborhood of the closure of D, then

f o0 = f j dp A @.
oD D
ProOF. Use (4.3.1) with & = w and observe that @ is also closed. O

Corollary. If f and g are C? (in particular, holomorphic functions) on a
neighborhood of the closure D, then

M)fd_g: - angdf'

PRrOOF. By the proposition

[ 1= [[,dr ndg.

ngdfszbd_g/\df. 0

Also,

1.4.7. Proposition. If f is a holomorphic function and w is a holomorphic dif-
ferential on a neighborhood of the closure of D, then

([ drna=>2 [,pRe N)@ = 2i [,,am 1.
PrOOF. Observe that
LD(Ref—iImf)u—):LD]’@=o

by Cauchy’s theorem (or because d( fw) = 0 since fw is a holomorphic form).
Thus

2 Refa =LD(Ref+ im f)@ :ffbdfm.
Thus, also

2 fw Re(if )@ = iﬂndfmr). ]



CHAPTER 11
Existence Theorems

One way to study Riemann surfaces is through the meromorphic functions
on them. Our first task is to show that every Riemann surface carries non-
constant meromorphic functions. We do so by constructing certain harmonic
differentials (with singularities). From the existence of harmonic differen-
tials, it is trivial to construct meromorphic differentials. A ratio of two
linearly independent meromorphic differentials produces a non-constant
meromorphic function.

Our basic approach is through the Hilbert space L?*(M) introduced in
1.4.2. 1t is the key to the existence theorem for harmonic differentials with
and without singularities. This method should be contrasted with the
equally powerful method to be developed in Chapter IV.

I1.1. Hilbert Space Theory—A Quick Review

We need only the first fundamental theorem about Hilbert space: the
existence of projections onto arbitrary closed subspaces.

IL.1.1. Let H be a (complex) Hilbert space with inner product (-,-) and
norm ||-||. If F is any subspace of H, then the orthogonal complement of F in

>

Ft=(heH;(f,hy=0all feF}

is a closed subspace of H (hence a Hilbert space). About the only non-trivial
result on Hilbert spaces that we will need is
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I1.1.2. Theorem. Let F be a closed subspace of a Hilbert space H. Then every
h € H can be written uniquely as

h=f+g

with f € F, g e F*. Furthermore, f is the unique element of F which minimizes
lh=ol. @eF.

I1.1.3. Writing f = Ph, we see that we also have the following equivalent
form of the previous

Theorem. Let F # {0} be a closed subspace of a Hilbert space H. There
exists a unique linear mapping

P:H->F
satisfying:

o P =1
b. P? = P (P is a projection), and
c. ker P = F-.

The mapping P is called the orthogonal projection onto F. The proofs of
the above theorems may be found in any of the standard text books on
Hilbert spaces.

I1.2. Weyl’s Lemma

We have introduced, in 1.4.2, the Hilbert space L%(M) of square integrable
(measurable) 1-forms on the Riemann surface M. In this section we lay the
ground-work for characterizing the harmonic differentials in L*(M). The
characterization is in terms of integrals. We show that a “weak solution” to
Laplace’s equation is already a harmonic function. The precise meaning of
the above claim is the content of

11.2.1. Theorem (Weyl’s Lemma). Let ¢ be a measurable square integrable
function on the unit disk D. The function ¢ is harmonic if and only if

[[,oan=o0 2.1.1)

for every C® function n on D with compact support.

Remark. In the above theorem, the sentence “¢ is harmonic” should, of
course, be replaced by “¢ is equal almost everywhere (a.e.) to a harmonic
function”. We will in similar contexts make similar identifications in the
future.
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PROOF OF THEOREM. Assume that ¢ is harmonic. Let D, = {z e C; |z| < r},

and assume that 7 is supported in D,. Use 1(4.4.2) and conclude that

[ @an=nag)= [ @+dn—nrdp)=0 (2.12)

(because  and *dn vanish on éD,). Thus

ffvr""'”: fforﬂﬂfp=0 (2.1.3)
.HL¢A”:JI»¢Am (2.1.4)

and thus the necessity of (2.1.1) is established.

To prove the converse, we assume first that ¢ is C2. Choosing 0 < r < 1
as before, we obtain (2.1.2) as a consequence of 1(4.4.2), and hence (2.1.3)
because of (2.1.1). As a consequence of (2.1.4) we may assume r = 1. Equation
(2.1.3) shows that 4¢ =0 in D. To verify this claim it clearly suffices to
consider only real-valued functions ¢ and 7. Let y(z) = 40%¢/0z 0z. If
Y(zo) > 0 for some z, € D, we choose a neighborhood U of z, such that
Cl U (= the closure of U) = D and such thaty > 0in U. Select a C* function
n with n(zo) > 0 and 5 supported in U. It is clear that for such #, [[,7 A > 0.
Thus 4¢ = 0 and ¢ is harmonic in D.

The heart of the matter is to drop the smoothness assumption on ¢. Fix
0 < ¢ < % Construct a real-valued C* (= smooth) function p on the positive
real axis [0,00) such that

(because 4¢ = 0). But

0<p<],
p(r)=0 ifr>eg,
and
pin=1 if0<r<eg
(See Figure 11.1)

Set for r > 0,
1
o(r) = o p(r)logr.
(See Figure I1.2)
p(r) wl(r)
1
f T r i ! r
€/2 € e/2 €

Figure II.1 Figure I1.2
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Defineon C x C

(‘12

4 ja
§zl) =9 ¢

0 ifz=2¢

“ollz =) itz

tl[

Since log|z — (| is a harmonic function of z on C\{{}, y(z,{) =0 for
|z — (] < ¢/2 (also for |z — (| > ¢).
Let u be a C* function with support in D, _,,. Consider

2) = J’fb o(|¢ = 2|l )Lﬁf{é zeC. (2.1.5)

It is clear that y is a continuous function on C with supportin D, _,. Observe
that we may integrate over C instead of over D, and that by a change of
variable (after extending u to be zero outside its support)

d¢ A dC
o) = [fLolue +2=55.

Thus
= [t e+ ”’“f
- [[ ot i + 2528
[ ot IQ—Z\% dC/\dC.
Similarly,

0 dind
tﬁ ﬂ (It - - ) C_A ‘C ’
Thus y is C*. We claim that

oy
620

dC/\d5

= —ud) + [, 720u© (2.1.6)

Note that
1 d¢ Adl
Y(z) = f Jiooyen, w08l — 2 T

+ J] C—z|>&/2 w(IC - l)#(C dCAd(

= a(z) + p(2).
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Note further that

2B
4 0z 0z = fﬁc—nzc/z Mz0mu(E) _

i ndT
- [ om0 217)

Al Adl
2i

We have already shown that Ada exists (¢ is C*). Thus we may compute
formally. Now éo/dz can be computed formally without any difficulty (since
differentiating under the integral sign leads to a Lebesgue integrable function).
First

Foek == g 2 - - -3
and thus .
%Ozf - 4Ln ffls’—zl <e/2 ,:H(_C)Z dC_AZidC~ (2.1.8)
That
4 65_2: =# (2.19)

will follow from

I1.2.2. Lemma (Cauchy’s Integral Formula). Let B be connected open subset
of C bounded by finitely many C* Jordan curves. If ue C*(Cl B), then for

z€eB,
2niu(z) = f u ey f fB a“ff e A dT. 2.2.1)

BL—z ¢

PRrROOF. Let ¢ > 0 be chosen so that the closed ball of radius ¢ about z is
contained in B. Let B, be the complement in B of this ball. Start with Stokes’

theorem
. 0 )
fch Cui{)z ¢ = ff . ﬁ(gu(_ z

>ﬂAﬂ,

B Be
Figure I11.3 Figure 11.4
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and obtain

J‘J‘ oufoC dC/\dC e (C) f u(z + e€'®)do.

Letting ¢ — 0, we obtain (2.2.1). O

I1.2.3. Proof of Weyl’s Lemma (Conclusion). To verify formula (2.1.9), it
suffices to assume that p has support in |{ — z| <¢/2, and thus that the
integral in (2.1.8) extends over C. To check this last claim, define

v(0) = p2|¢ — zhpu(©), CeC.

Note that
u(&) d{ndl V(C ) d{ndl
J‘J'lé—2|<m’2 g’ —z =2 ffl{ z|<a/2£ —2i
uQ) — Q) d{ A dT )31
+ffs |<e/2 (-2 -2’ ( )
v(Q) = p() for |{ —z| < ¢/4,
and that

v(()=0 for |l —z|>¢2

The third integral in (2.3.1) represents a holomorphic function of z, and thus
the Z-derivative of the first and second integral in (2.3.1) must coincide. So
now we assume that y has support in |C — z| < ¢/2. As before (when we
computed 0y/0zZ),

ﬁ_a_if w( + z) d{ ndl
47

oz 5 —2i
and thus
% uz(c +2)diAdT 1 e+ 2)dUAdD
0zoz f —2i __ﬂ 20
6/1/6{ dl A dg 1
47.[ ff —z — "’ZH(Z)
by (2.2.1).

We now use condition (2.1.1) with n = (of the previous construction
via (2.1.5)). Thus we obtain

0=[f, 00 =~ [f, ot 2 + ] ()( Z)d‘_Azfz,
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where (40%8/0z 0z) is given by (2.1.7). Hence for every C* function pu with
support in D, we have by Fubini’s theorem

Hu(z)(p(z) () d~_/\2i1~ _UD(z) ffmo dS_/\Z‘jS d:/;zdb

N ffmo K@) ffmn (.0 dZ_/\zc:E dg_/\;jz- (23.2)

(In the above D(z) is just another symbol for D, and the (z) is supposed to
remind the reader that we are integrating with respect to z.) It thus follows
(because C* functions of compact support are dense in the L? functions) that

I, oo ©

Clearly the left-hand side is C* (in (), and thus the proof is complete.

= ¢({),ae (e D. (2.3.3)

Remark. We do not need to know that C* functions of compact support
are dense in L*D). We show that we can do with slightly less. Let ¢(()
denote the left-hand side of (2.3.3). If (2.3.3) is not true then (for real ¢)
one of the sets

D, ={zeC; p(z) > ¢(2)}

D_={zeC;d(z) < o(2)}
has positive measure. Hence we may assume that one of these sets has
interior. If we now choose u to be non-negative and to have support in this
set, then we obtain a contradiction to (2.3.2) as in the arguments that estab-
lished sufficiency for a C? function ¢. Thus u could have been assumed to

have support in an arbitrarily small set to begin with, simplifying slightly
the reasoning at the beginning of this paragraph.

EXERCISE

Prove the following alternate form of Weyl’s lemma: Let ¢ be a measurable square
integrable function on the unit disk D. The function ¢ is holomorphic if and only if

ﬂn (p(z)%';dz Adz=0 (2.3.4)
for every C* function n on D with compact support.
Hints.
(1) Let ¢ be holomorphic and 7, smooth with compact support. Then

0= ondz= f fDF(wndz). (23.5)

This establishes necessity of (2.3.4). (The fact that ¢ is not defined on 4D should
not cause any trouble.)
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(2) For sufficiency, first assume ¢ is C*. Use that for every n with compact support
(2.3.5) holds, and thus

~ffl)(,afr; dzA dz = ffD(pnfdzAdf =0.

From this equation deduce the Cauchy-Riemann equations.

(3) Now take arbitrary ¢. Note that for arbitrary n with compact support,

ffn 10) ;;ZZ dzndz = ﬂ; 1) (%(Z) dz A dz.

Thus by the form of Weyl’s lemma at our disposal, ¢ is C*.
The above form of Weyl’s lemma can, of course, also be proven directly, and
our form recovered (with a few more technical complications) from this form.

11.2.4. Exercise

Let f € L*([0,1]). Show that f equals almost everywhere a constant if and only if

Jo feg'x)dx = 0

for all C* functions g on (0,1) with compact support.
This is the one-dimensional analogue of Weyl’s lemma.

I1.3. The Hilbert Space of Square Integrable Forms

We decompose the space of square integrable 1-forms into closed subspaces.
The basic tool is Weyl’s lemma. The decomposition will prove to be most
useful for compact surfaces. In general, we establish a sufficient condition
for the existence of a non-zero square integrable harmonic 1-form. For
compact surfaces, the condition is also necessary.

IL.3.1. Throughout this section, M will denote a Riemann surface and
L?(M), the Hilbert space of (measurable) square integrable 1-forms with inner
product (-,-) and norm ||-|| (as defined in 1.4.2). Throughout this chapter
the word smooth will denote C*.

Definition. We denote by E the L%(M) closure of

{df ; f is a smooth function on M with compact support},
and by
E* = {we LAM); *w e E}.

Thus, for every w e E(E*), there exists a sequence of smooth functions
f, on M with compact support such that

w = lim df, <=lim *df,,).
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Corresponding to these closed subspaces we have orthogonal decom-
positions of L%(M),
L*(M)=E®E*
= E*@ E**, (3.1.1)
where, as usual,
E* = {w e LYM); (wdf) = 0, for all smooth functions f on
M with compact support},

E** = {we LAM); (w,*df ) = 0, all f as above}.

11.3.2. Proposition. Let « € L(M) be of class C*. Then o € E** (respectively,
E*1) if and only if « is closed (co-closed).

PROOF. Assume that « is closed. Let /' be a smooth function on M with
support inside D (with Cl D compact). Then

(o *df) = —ffb andf = —ﬂ;} [d(af) — danf]
= — [, ) = [, a7 =0.

Thus a € E**. Conversely, we have starting from the second equality
ffM daun f =0, allsmooth f on M with compact support.

This, of course, is sufficient to conclude do = 0. The argument for « € E'
is similar. O

We let
H = E' ~(E*)",

and obtain the following orthogonal decomposition
LXM)=E®E*® H. (3.2.1)

Note that from Proposition I1.3.2 we deduce that E and E* are orthog-
onal subspaces. It then follows that the direct sum E @ E* is closed and
thus also a Hilbert subspace of L% (M). By orthogonal decomposition
(Theorem I1.1.1), we therefore certainly have LA(M) = (E ® E*) @ (E ® E*)*,
and all we need to establish (3.2.1) is to verify the easy identity (E @ E*)* =
E* N (E*)*. Comparing (3.2.1) with (3.1.1) we see that

E'=E*®H

E** =E@®H.
I1.3.3. Let ¢ be a simple closed curve on M. Cover ¢ by a finite number
of coordinate disks and obtain a region Q containing c¢. We call this region

Q, a strip around c. By choosing Q sufficiently small, we may assume that
it is an annulus and that Q\c consists of two annuli Q~, Q*. We orient ¢
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so that Q~ is to the left of c. We put a smaller strip, Q,,(with corresponding
one-sided strips 24, 24 ) around ¢ in Q. We construct a real-valued function
S on M with the following properties (see Figure I1.5):

f(P)=1, PeQ,

f(P)=0, Pe M\Q,
and
fis of class C*® on M\c.

We now define a C* differential

_Jdf onQ\,
€= onM\Qu e

Figure I1.5

It is clear that 7 is a closed, smooth, real differential form with compact
support. It is, in general, not exact. We call it the differential form associated
with the closed curve c.

Proposition. Let o € L%(M) be closed and of class C!. Then

ﬁ o = (2,*7). (3.3.1)

Proor. We compute

o=~y son=~l, anar [, 4o
= ([, dm — [[, rrda= ], d(fa)

= mﬁfoz:fca. O

11.3.4. Proposition. Let o € L*(M) be of class C*. Then o is exact (respectively,
co-exact) if and only if (a,) = O for all co-closed (closed) smooth differentials
B of compact support.

PROOF. If o is C! and exact, then o = df with f of class C2. If § is co-closed,
smooth, with support in D (with Cl D compact), then

@p) = [f, dr n*B = [[, [d(r*P) — fa*B]
= [, /*B=0.
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To establish the converse, it suffices to show (because « is closed by Propo-
sition 11.3.2) that [, a =0 for all simple closed curves. But this follows
from the hypothesis and (3.3.1). The assertion for the co-exact differentials
follows from the part of the proposition already established. d

I1.3.5. The most important result about L?(M) is contained in the following

Theorem. The Hilbert space H consists of the harmonic differentials in L*(M).

ProoF. If w € L%(M) is harmonic, then w is smooth, closed, and co-closed.
Thus by Proposition 11.3.2, w € E* N (E*)* = H

For the converse, let w € H. Choose a coordinate disk D on M with local
coordinate z = x + iy. Choose a real-valued function # that is smooth and
supported in D. Let ¢ = dn/dx and yy = 0n/dy. Then ¢ and yy are C* functions
on M with support in D and d¢/dy = dy/dx. Write w as pdx + qdy (with p
and g measurable) on D. Since w € E* n (E*)*,

0= (dp) = [[,(pos + ap, dx ndy, (35.1)

= @rdy) = [[,(=py, + qudxndy. (352)
Thus
= (0, dg — *dy) = [[p(@. + ¥)dx ndy

= f f pan. (3.5.3)

By Weyl’s lemma, p is harmonic and hence C!. Applying this result to
*w (which also belongs to E* n E*!) we see that g is C!. Hence o is of class
C!. Proposition 11.3.2 now yields that w is closed and co-closed (that is,
harmonic). O

Remark. The space L*(M) can best be represented by the “three” dimen-
sional “orthogonal” diagram given in Figure I1.6.

E(exact)
//
// /
/oéf;d /i
/// ///// // —— E"(co-exact)
/ _?j,* CO~( clfcigeidi —

(harmonic)H
Figure 11.6
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Corollary

a. The LXM) closure of the square integrable closed (respectively, co-closed)
differentials is E@® H (E* ® H).

b. The square integrable smooth differentials are dense in L*(M).

b'. The smooth differentials with compact support are dense in L*(M).

The verification of (a) and (b) is at this stage trivial. For example, if w is closed,
then w e E** = E@® H. Conversely, if we E@® H, then o = v, + w, with
w; € E and w, € H. Thus, w, is closed (it is harmonic) and w, = lim, df,
with f, smooth of compact support. We have shown that w is the limit of
closed differentials.

We cannot at this point establish (b’). We need to know that

M =)D,
where

D, is open,

Dn < Dn+ 1s
and

Cl D, is compact

(a fact that will follow from IV.5). Having such an “exhaustion” of M, we
construct a sequence of smooth functions { f,} on M with

0<f <1,
f,=1 onD,,
(support of f,) = D, ;.

It clearly suffices to show that every a € H can be approximated in L*(M)
by smooth forms with compact support. Now f,« € L*(M) is smooth and
has compact support. By the Lebesgue dominated convergence theorem,

lim | f,0 — af = 0.

n— oo
Caution. Not every exact (co-exact) differential is in E(E*). For example:
consider the unit disk D. Let f be a function holomorphic in a neighborhood
of the closure of D. Then df € H. Clearly, df is exact as well as harmonic.

For compact surfaces E does, of course, contain all the exact differentials.

Thus, our picture is quite accurate in this case. (The above analysis shows
that a compact surface carries no non-constant harmonic functions. The
differential of such a function would have to be in both E and H, which would
imply the function is constant. This fact can, of course, also be established
as a consequence of the maximum and minimum principles for real valued
harmonic functions.)

I1.3.6. As a digression, we consider the situation of a compact Riemann
surface M, and expand slightly our discussion of 1.3.8. We define the first
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de Rham cohomology group of M, H*(M), as the smooth closed differentials
modulo the smooth exact differentials. If a is a closed smooth differential,
then its equivalence class in H!(M) is called the cohomology class of a. There
is a pairing
H,(M)x H' (M) -» C
which maps the pair (c,x), where ¢ is a closed piecewise differentiable path
on M and a is a smooth 1-form, onto |, a. It is quite clear that this integral
depends only on the homology class of ¢ and the cohomology class of o.
It vanishes for a given cohomology class « over all curves ¢ if and only if
is the zero class (represented by an exact differential). Thus the above pairing
is non-singular. Further, every homomorphism of H,(M) into C is given by
integration over curves against some « € H'(M). (See also I11.2).
Note also that
H'(M)=>=H, (3.6.1)

and that the cohomology class of the 1-form 5, constructed in I1.3.3 is
uniquely determined by equation (3.3.1) and depends only on the homology
class of ¢. The isomorphism of (3.6.1) is the surface version of the much more
general Hodge theorem.

I1.3.7. Theorem. A sufficient condition for the existence of a non-zero harmonic
differential on a Riemann surface M is the existence of a square integrable
closed differential which is not exact. If M is compact, the condition is also
necessary. Explicitly, for every closed w € L*(M), there exists a w, € H such
that |, w = |, w, for all closed curves c on M.

PRrOOF. Let w € L*(M) be closed and not exact. Then w e (E*)* = E @ H.
Thus, w = w; + w, with o, € E and w, € H. Note that », must be C'.
Since  is not exact, there is a closed curve ¢ with [,  # 0. Since |, w; =0,
we must have |, w, = |, ® # 0. Hence w, # 0.

If M is compact, then there are no exact harmonic differentials so that any
0 # w € H is closed and not exact. O

11.3.8. In view of Theorem I1.3.7 we see that in order to construct harmonic
differentials, we must construct closed differentials that are not exact.

Let ¢ be a simple closed curve on the Riemann surface M that does
not separate (that is, M\c is connected). We construct now a closed curve

AT

Figure I1.7
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c* (a dual curve to ¢) by starting on the right(+) side of ¢ and ending up on
the other (= left (—)) side of c. (See Figure 11.7).

The curve c* will intersect ¢ in exactly one point P. Using the construction
and notation of I1.3.3, we see that

o = lim f(Q)— lim f(Q)=1
Q-P- Q-P+

(here, of course, lim,_, p- means you approach P through Q7). This remark
together with Theorem I1.3.7 establishes the following

Theorem. If the Riemann surface M carries a closed curve that does not sep-
arate, then there exists a closed non-exact differential in L*(M) and therefore
a non-zero harmonic differential.

I1.4. Harmonic Differentials

We have seen in the previous sections that on a compact surface there do
not exist exact (non-zero) harmonic differentials. To construct “exact har-
monic differentials” we must hence allow singularities. In this section we
construct harmonic functions and differentials with a prescribed isolated
singularity.

IL.4.1. Let D be a parametric disc with local coordinate z = x + iy on a
Riemann surface M. It involves no loss of generality to assume that z maps D
onto the open unit disc. We assume that z = 0 corresponds to the point
P, € M. We define a function h on M by choosing a real numbera,0 < a < 1,
an integer n > 1, and setting

Py
2(P)" + 2223 if Pe D and |2(P)) < a,

h(P) =
0 otherwise.
(In the future we will identify the point P € D with its image z(P) e C and
hence write the above equation for h

—=n

27"+ aZZ" for |z| < a,

h(z) =

0 for |z| > a.

In this convention the points in M\D are denoted by {|z| > 1}.)
We define another function 6 on M by setting

0(z) = h(z) for|z| > a/2,

and requiring 6 to be smooth in {|z| < a}.
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We form the differential d§ € L%(M) (this terminology involves some abuse
of notation since 6 is C* only on M\{|z| = a}). It is smooth whenever 0 is.
Note that because of the discontinuity of 0, df does not have to belong to
E**+. Write

df = o + w, (4.1.1)

withae Eand we Et = E* @ H.

Let U be a parametric disk about the point Qo€ M. Let { = & + iy be a
local coordinate vanishing at Q,. We choose a real-valued smooth function
p on M with support in U and set ¢ = ¢p/¢&, = dp/dn (as in 11.3.5). Write
o = pd¢ + qdnin U. Since « € E**, obtain as in (3.5.2),

0= (dy) = [[, (= pv, + ap)di ndn

Also since w € E*, we obtain as in (3.5.1),

(d0,dg) = (x.de) = ffu(pw; + 4, dE A dn.

The difference of the last two expressions yields (as in (3.5.3))
(d0,dg) = HL pAp. (4.1.2)

Similarly, by interchanging the roles of ¢ and y and adding (rather than
subtracting) the two resulting expressions, we obtain

(dO,dy) = ﬂu q4p. (4.1.3)

We know that o € E**. Thus « is annihilated by all co-exact differentials
with compact support. Thus if o is C! on a given open subset of M, it must
be a closed form on that subset by Proposition I1.3.2. As an illustration we
assume that Q, does not belong to {|z| < aj = Cl D, and we take U also to
belong to the complement of C1 D,. In this case (since df vanishes on { |z| > a})

(d0,dy) = 0 = (dO.,do),

and we conclude from (4.1.2) and (4.1.3) and Weyl’s lemma that p and ¢
are harmonic (thus C*) in U. In particular, « is a smooth closed differential
on M\CI1 D,. (The above was not necessary because of the stronger statement
we are about to prove. We included it to help the reader.)

Our first step is to show that « is harmonic on M\Cl D, ,. So we assume
that U <« M\Cl D,,,. We compute (using (4.1.2))

f y PAp = (d0.do)y
= (dead(p)Du 2 + (d()»d(P)Du\Da 2 + (dgad(p)M\D“'

We have
(d0,dp)p,, =0, sincedp =0onD,;,

(d0,d@)rrp, = 0, since dd = 0 on M\D,.
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It remains to evaluate the middle integral. We will show that is it zero. If
U = M\D,, the integral vanishes because d¢ = 0 on D,. It hence involves
no loss of generality to assume that U = D and that z = {.

We recall the formula 1(4.4.1)

(d9d0)p, p,., = [, . dor*dD

- _ffbu\Da/'z ¢ 40+ 8(Da\Da2) (p(*dH)_

Again, the double integral (on the right-hand side) vanishes because 0 is
harmonic on D,\Cl D, ,. Similarly, the line integral vanishes because ¢ = 0
on {|z| = a/2}, while by a simple calculation

a0 a0

(where ¢6/0n is the normal derivative of 6 and @0/0r is the radial derivative
of 0) vanishes on {|z| = a}. Thus we see that a is closed on M\CI D,, ;.
We compute next for p with compact support inside M\Cl D,,:

(dp) = (d0.dp) ~ (.dp) = (d0.dp)
= (d0.dp)p,p,,, = O,

by the argument just used. Thus « is co-closed on M\CI D,;, by Proposition
11.3.2; that is, « is harmonic on M\C1 D,,.

Finally, what happens close to the singularity of h? Assume that the
support of p is now contained inside D,. We have

(@d0.d0) = [ (0.p.c + 0,p,,) dx ndy,
and

0 = (d0,*dy) = _ffna (0.pyy — 0,p,,) dx A dy.

The first equality on the last line follows from the fact that d@ is closed on
D, and hence € E** (with respect to D,). As a consequence we obtain from
the above two equations:

(d0.dop) = ffb O (pxx + pyy) dx ndy = ffl, 0, 4p.
It follows therefore from (4.1.2) that

0= ffl, (p—0,) 4p.

Similarly, we can obtain

0= ([, (a0, 4p.

Thus, by Weyl’s lemma, p — 0, and ¢ — 0, are harmonic in D,. In particular,
p and g are smooth on D,.
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We have shown that o« € E = (E* @ H)* is smooth. Since E* @ H contains
the co-closed differentials with compact support, o is exact by Proposition
11.3.4. Hence there is a smooth function f on M with df = a. Since « is
harmonic on M\CI D,,,, so is f.

By (4.1.1),d(0 — f) = w € E*. Since 6 — f is smooth on D,, d(0 — f)is a
co-closed differential on D,. Since d(6 — f) is clearly closed on D,, we con-
clude that d(0 — f) is a harmonic differential on D, or that § — f is harmonic
in D,. We now define a function u on M

u=f—0+h

For 0 < |z| < a, f — 6 and h are harmonic. For |z| > a/2, f is harmonic and
h — 0 = 0. Thus u is harmonic on M\{P,}.
We summarize our conclusions in the following

Theorem. Let M be a Riemann surface with z a local coordinate vanishing at
Py € M. There exists on M a function u with the following properties:

u is harmonic on M\{P,}, (4.1.4)
u — z~ " is harmonic on every sufficiently small neighborhood N of P,, (4.1.5)
[§pn dun*du < o, and (4.1.6)
(du,df) = 0 = (du,*df’) for all smooth functions f on M that have

compact support and vanish on a neighborhood of P, (4.1.7)

PROOF. Only (4.1.7) needs verification, and this follows because du is in H
with respect to the surface M\CI N. [l

I1.4.2. Note that condition (4.1.5) is invariant under a limited class of
coordinate changes. (Determine this class!) It can, of course, also be replaced
by

u — Re z7" (resp., u — Im z™") is harmonic in a neighborhood N of Py. (4.2.1)

In this case we may require u to be real valued.
Observe also that if M is compact, then u is unique up to an additive
constant.

IL.4.3. We note that most of our arguments to prove Theorem I1.4.1 did not
depend on the chioce of the particular form of the function h with
singularity as long as
h is harmonic in {a/2 < |z| < aj,
and
*dh = 0 on {|z| = aj.

Thus, another candidate for & is the function

z—1z,z—a*%,

h(z) = log

, 2| <a,0 <z,

|z2| < a/2.

z—2z,z—d?*/Z,
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Theorem. Let M be a Riemann surface and P, and P, two points on M. Let
z; (j = 1,2) be a local coordinate vanishing at P;. There exists on M a real-
valued function u with the following properties:

u is harmonic on M\{P,,P,}, (4.3.1)

u — log|z,| is harmonic in a neighborhood of P,
and u + log|z,| is harmonic in a neighborhood of P,, 4.3.2)

[ fsndu A *du < co, for every open set N containing P, and P,, and (4.3.3)

(du,df) = 0 = (du,*df') for all smooth functions f on M that have
compact support and vanish on a neighborhood of P, and P,. 4.34)

Note that condition (4.3.2) is invariant under certain coordinate changes.
See, for example, IV.3.6.

ProOF OF THEOREM. The arguments preceding the statement of the theorem
establish it for P, and P, sufficiently close. If P, and P, are arbitrary, we can
join P, to P, by a chain P, = Q,, Q,,...,Q, = P, so that Q; is close to
Q;-1,j=1,...,n For each pair of points there is a function u; with appro-
priate singularity at Q;_, and Q;. Let

u=u,+ -+ u,
and note that uisregularat Q,, ..., Q,_, and has appropriate (logarithmic)
singularities at Q, and Q,. ad
Remark. For compact M, the function u is unique up to an additive constant.
I1.4.4. We can also let

z—z,z—a*/3,

h(z) = arg< ) lz| < a,0 < |zy], |25| < a/2.

z—z2,z— a7,
This case is slightly different from the previous one. The function A is not
well defined on M. It is well defined on M\{slit joining z, to z,}. Of course,
the differential du obtained by this procedure is well defined. We leave it
to the reader to formulate the analogue of Theorem I11.4.3 in this case.

I1.4.5. The decomposition (3.2.1) is closely related to the Dirichlet Principle,
which we proceed to explain. Let D be a domain on a compact Riemann

surface M, whose boundary 6D consists of finitely many simple closed
analytic arcs. Thus, topologically D is a compact Riemann surface of genus
g = 0 from which n > 0 discs have been removed. Consider now two copies
D and D’ of D. We shall construct a compact Riemann surface M = CID u D’
known as the double of D. We use the usual local coordinates on D. A function
z is a local coordinate at P’ € D' if and only if Z is a local coordinate at the
corresponding point P € D. We now identify each point P € 6D with the
corresponding point P’ € 6D'. To construct local coordinates at points of
0D, we map a neighborhood U of P € 6D by a conformal mapping z into the
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closed upper half plane such that U n 8D goes into a segment of the real axis.
By the reflection principle z is a local coordinate at P € M. Note that M is a
compact Riemann surface of genus 2g + n — 1, and that there exists on M
an anti-conformal involution j such that j(D) = D’ and j(P) = P for all
P € 6D. From now on we may forget about M, and think of D as a domain
on its double M. (The above discussion is not strictly necessary for what
follows. It was introduced for its own sake.) We consider now the following
problem:

Fix a C? function @ defined on a neighborhood of C1 D. Among all functions
@, C? on a neighborhood of Cl D, find (if it exists) one u that has the same
boundary values (on dD) as ¢, and minimizes ||do)||, over this class.

Assume that u is a harmonic function with the same boundary values as
@o. We compute for arbitrary ¢ with the same boundary values;

lldo||* = (d(¢ — u) + du, d(¢ — u) + du)
= |ld(o — w)||* + ||dul|* + 2 Re(d(p — u),du).

Now use Proposition 1.44 to conclude that (d(¢ — u),du) =0 (since
@ —u=0o0ndD and du = 0 on D). Thus

ldg|[* = lld(e — w)[* + [[dul* = |du][*.

Thus our problem has a unique solution—if we can find a harmonic
function with the same boundary values as ¢,. We shall in IV.3 solve this
problem by Perron’s method. Here we outline how the decomposition of
L*(D) given by (3.2.1) can be used to solve our problem. Finding a function
for which a given non-negative function on L*(D) achieves a minimum is
known as the Dirichlet Principle.

Consider the function ¢,. Since dg, is exact (and thus closed), do, €
E @ H. Now let w be the orthogonal projection of dg, onto H. We have
already seen that o is exact and harmonic. Thus w = du, for some harmonic
function u on D. Now d(u — @) € E. Thus

(du — @) =0, allaeH.

Let up,p, be the function produced by Theorem I1.4.3. By letting o run
over the set of differentials

{duPIPz; Pl ED/, PZEDq’

one can show that u — ¢, is C? on a neighborhood of C1 D and thatu — ¢, =
0 on éD.

I1.5. Meromorphic Functions and Differentials

Using the results of the previous section, we construct first meromorphic
differentials on an arbitrary Riemann surface M and then (non-constant)
meromorphic functions.
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I1.5.1. By a meromorphic differential on a Riemann surface we mean an
assignment of a meromorphic function f to each local coordinate z such that

f(z) dz

is invariantly defined.

Theorem

a. Let Pe M and let z be a local coordinate on M vanishing at P. For every
integer n > 1, there exists a meromorphic differential on M which is holo-
morphic on M\{P} and with singularity 1/z"*" at P.

b. Given two distinct points P, and P, on M and local coordinates z; vanishing
at P;, j =1, 2, there exists a meromorphic differential ¢», holomorphic on
M\{P,P,}, with singularity 1/z; at P and singularity —1/z, at P,.

PrOOF. Let o = du where u is the function whose existence is asserted by
Theorem 11.4.1 for part (a) and by Theorem 11.4.3 for part (b). In the former
case set

w=—/(a + i*u),
2n( )

and in the latter
w=o+ i*ou O

I1.5.2. Let g be an integer. By a (meromorphic) g-differential  on M we
mean an assignment of a meromorphic function f to each local coordinate
zon M so that

f(z) dz* (5.2.1)

is invariantly defined. For g = 1, these are just the meromorphic differentials
previously considered, and they are called abelian differentials.

If w is a g-differential on M, and z is a local coordinate vanishing at
P e M, and o is given by (5.2.1) in terms of z, then we define the order of ®
at P by

ordp, w = ord, f.

(If we write f(z) = z"g(z) with g holomorphic and non-zero at z = 0, then
ord, f = n.) It is an immediate consequence of the fact that local parameters
are homeomorphisms that the order of a g-differential at a point is well
defined.

Note that {P e M; ordp  # 0} is a discrete set on M; thus a finite set,
if M is compact.

If w is an abelian differential, then we define the residue of w at P by

respm =a_q,

where w is given by (5.2.1) in terms of the local coordinate z that vanishes at
P, and the Laurent series of f is
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The residue is well-defined since

1
resp w = —f w,
27i Je

where c is a simple closed curve in M that bounds a disk D containing P such
that ¢ has winding number 1 about P and w is holomorphic in C1D\{P}.

11.5.3. Theorem. Let P, . .., P, be k > 1 distinct points on a Riemann surface
M. Let ¢y, ..., ¢, be complex numbers with Y %_, ¢; = 0. Then there exists a

meromorphic abelian differential w on M, holomorphic on M\{P,, . .. P} with
ordp, = —1, resp, 0 = ;.

PrOOF. Let Poe M, Py # P;, j=1,...,k Choose a local coordinate z;

vanishing at P;, j=0,...,k For j=1,...,n, let w; be an abelian differ-

ential with singularities 1/z; at P;and —1/z, at P, and no other singularities.
Set

w=) o, O

Corollary. Every Riemann surface M carries non-constant meromorphic
functions.

PRrOOF. Let P,, P,, P, be three distinct points on M. Let w, be a differential
holomorphic on M\{P,,P,} with
ordp, w; = —1 = ordp, w,
resp, w; = +1, resp, w; = — 1.

Let w, be a differential holomorphic on M\{P,,P;} with

ordp, w, = —1 = ordp, w,,
resp, w, = 1, resp, w, = — 1.
Set f = w,/w,. Note that f has a pole at P, and a zero at P;. O

I1.5.4. Proposition. Let M be a compact Riemann surface and « an abelian
differential on M. Then

Y respw=0. (5.4.1)

PeM

ProOOF. Triangulate M so that each singularity of w is in the interior of one
triangle. Let 4,, 4,,..., 4, be an enumeration of the 2-simplices in the
triangulation. Then

1 k
Z I€Sp w = 7 Z J\ w, (542)
54;

PeM 2 ij=1
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where 4, is the (positively oriented) boundary of 4;. Since each 1-simplex
appears twice, with opposite signs, in the sum (5.4.2), we conclude that
(5.4.1) holds. O

EXERCISE

Using only formal manipulations of power series show that the residue of a meromorphic
abelian differential is well defined.

Remark. The above proposition shows that the sufficient condition in
Theorem I1.5.3 is also necessary if the surface M is compact.

EXERCISE

Give an alternate proof of Proposition 1.1.6 in the special case that N = C U {o0}.
First reduce to showing that it suffices to establish that f has as many poles as zeros.
Then relate ord, f to resp(df/f).

I1.5.5. Remark. The existence of meromorphic functions shows at once
that every compact Riemann surface M is triangulable. Let

fiM - Cu {0}

be a non-constant meromorphic function. Triangulate C U {o0} with a
triangulation 4, 4,, ..., 4, such that the image under f of every ramified
point (points P € M with b (P) > 0) is a vertex of the triangulation and
such that f restricted to the interior of each component of f ~(4)) is injective.
It is clear that this triangulation of C U {00} lifts to a triangulation of M.

The existence of meromorphic functions has many other important
consequences. We will discuss these in IV.3 and IV.5. Also, in IV.3 we will
establish the existence of meromorphic functions without relying on integra-
tion (for which triangulations are needed). Thus we will be able to derive the
above topological facts from the complex structure on the Riemann surface.



CHAPTER III
Compact Riemann Surfaces

This is one of the two most important chapters of this book. In it, we prove
(based on the existence theorems of the previous chapter) the three most
important theorems concerning compact Riemann surfaces: the Riemann-
Roch theorem, Abel’s theorem, and the Jacobi inversion theorem. Many
applications of these theorems are obtained; and the simplest compact
Riemann surfaces, the hyperelliptic ones, are discussed in great detail.

II1.1. Intersection Theory on Compact Surfaces

We have shown (in 1.2) that a single non-negative integer (called the genus)
yields a complete topological classification of compact Riemann surfaces.
Every surface of genus 0 is topologically the sphere, while a surface of positive
genus, g, can be obtained topologically by identifying in pairs appropriate
sides of a 4g-sided polygon. The reader should at this point review Figures 1.3
and 1.41in 1.2.5. Thus, with each surface ofgenus g > 0 we associate a 4¢g-sided
polygon with symbol b a,b;'a;" -+~ ba,b;'a;' (as in 1.2.5). The side of
the polygon correspond to curves (homology classes) on the Riemann surface.
These curves intersect as shown in the figures referred to above. Our aim is to
make this vague statement precise. This involves the introduction of a
cononical homology basis (basis for H;) on M.

I11.1.1. Let ¢ be a simple closed curve on an arbitrary Riemann surface M.
We have seen (I1.3.3) that we may associate with ¢ a (real) smooth closed
differential n, with compact support such that

fd— o*n.) = _UMO‘A”C’ (1.1.1)
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for all closed differentials o. Since every cycle ¢ on M is a finite sum of cycles
corresponding to simple closed curves, we conclude that to each such c,
we can associate a real closed differential n, with compact support such that
(1.1.1) holds.

Let a and b be two cycles on the Riemann surface M. We define the
intersection number of a and b by

a b= ([, nann,= 0= *n,). (1.1.2)

Proposition. The intersection number is well defined and satisfies the following
properties (here a, b, ¢ are cycles on M):

a - b depends only on the homology classes of a and b, (1.1.3)
a-b=—b-aq, (1.1.4)
(@a+b)-c=a-c+b-c, (1.1.5)

and
a-bel. (1.1.6)

Furthermore, a - b “counts” the number of times a intersects b.

ProoF. To show that (1.1.2) is well defined, choose 7, and #, also satisfying

(1.1.1). We must verify
J];n;An;=.ﬂ;naAn»

Note that while #, and 5, are only closed, their difference #, — n, = df,
where f is a C* function which is constant on each connected component
of the complement of a compact set on M. Thus it suffices to show

ffM df nn, =0, all f as above.

Assume that M is compact. In this case, [[y df A n,= —(df, *n,) =0,
because df € E and *5, € E* (by Proposition 11.3.2). For the general case,
assume that the support of #, is contained in D, where D is a domain on M
with smooth boundary and compact closure. Then

JL af Ay = IL d(fn,) = fL d(fns)

= J S, =0
éD
because #, vanishes on éD.
The verification of (1.1.3), (1.1.4), and (1.1.5) is straightforward. To check
(1.1.6), it suffices to assume that a and b are simple closed curves. Therefore
we have (as in 11.3.3),

a'b=ffM Ma ATy = —ffM Mo A a

= (Mp,*10) = J; Np-
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Figure I11.1

But |, 77, contributes +1 for each “intersection” of a with b. (This can be
verified as in 11.3.8 using Figure III.1.) O

II1.1.2. We now consider a compact Riemann surface of genus g > 0, and
represent this surface by its symbol

-1

aa (genus 0),

g
1—11 ba;b'a; ! (genus g > 1).
=

The sides of the polygon corresponding to the symbol give a basis for the
homology, H, = H,(M), of M. Assume now that g > 1. It is easy to check
that this basis has the following intersection properties

aj.bkzéjk={? ;i:
a;-ay=0=b;" by
We can represent all this information in an intersection matrix J. This J is a
2g x 2g matrix of integers. If we label
Nj=a;,j=1,...,9 and N;=b;, ., j=g+1,...,29,  (1.2.1)

then the (j,k)-entry of J is the intersection number N; - NX,. Thus J is of the

form
0 I
-1 0of

where 0 is the g x g zero matrix and I is the g x g identity matrix.

Any basis {N;,... ,N,,} of H, with intersection matrix J will be called a
canonical homology basis for M. Given a canonical homology basis we can
use (1.2.1) to define the “a” and “b” curves. Note that we do not claim that
these curves come from a polygon in normal form.

I11.2 Harmonic and Analytic Differentials
on Compact Surfaces

We compute the dimensions of the spaces of holomorphic and harmonic
differentials on a compact Riemann surface. Certain period matrices are
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introduced and we determine some of their basic properties. The key tool
is Theorem I1.3.5.

I1L.2.1. Theorem. On a compact Riemann surface M of genus g, the vector
space H of harmonic differentials has dimension 2g.

ProOF. The theorem is easy to prove if g = 0. For in this case, let « be a
harmonic differential on M. Fix P,e M and define

u(P)=J:; n PeM.

The function u is well defined (since M is simply connected). By the maximum
principle for harmonic functions, u is constant. Thus o = 0. (The maximum
principle implies, of course, that there are no non-constant harmonic func-
tions on any compact Riemann surface.)
Assume g > 0. Let {X,,...,X,,} be a canonical homology basis on M.
Construct a map
®:H—->C¥» or H-R?*,

depending on whether we are interested in complex-valued harmonic differ-
entials or real-valued harmonic differentials, by sending a € H into the

2g-tuple

If dim H > 2g, then @ has a non-trivial kernel; that is, there exists an a € H,
all of whose periods are zero. Such an « must be the differential of a harmonic
function. Since there are no non-constant harmonic functions on a compact
surface, dim H < 2g. The above argument also establishes the injectivity of
&. It remains to verify surjectivity. As we saw in the previous chapter,
(Theorem I1.3.7) it suffices to find a closed differential with period 1 over
a cycle NX; and period 0 over cycles X, k # j.
Let

&%= Mp» j=1...,49,
o= —Ma;_,» j=g+1,...,2.

Then we see (by(1.1.1)) thatfork =1,..., g,

Lk & = —ff,‘, o A Ny

M ! _(ak.aj—g)=09 ]=9+1,,2g,

and

Lk %= —ffu %j Ay, = J]M Noic N %

_{bk'bj=0, j=1,...,g,
_(bk'aj_g):aj_g'bk=5j_g‘k, j=g+1,...,2g.
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We summarize the above information in

1, k=j, 1, k=j—g,
Lk %= {0, otherwise, fbk %= {0, otherwise.

In other words,
ka 0 =0, i k=1,...,29. 211 O
Thus we have proven the following.
Corollary. Given a canonical homology basis {X,, ... N,,} for H,(M) there
is a unique dual basis {a,, ... 0,,} of H; that is, a basis satisfying (2.1.1).
Furthermore, each ; is real.
Thus given any set of 2g complex numbers ¢y, . .. ,c,,,
29
a= 3y cu
j=1

is the unique harmonic differential whose N, period (that is ij o) is ¢, for
k=1,...,2g.

II1.2.2. We have seen that the 2g x 2g matrix with (k,j)-entry ij o 1s the

identity. We note that
P DU [ S
s, T T g BN = ‘
—ffMozk/\aj_g, j=g+1,...,2g

From this it is evident that the matrix whose (k, j)-entry is [{,, oy A a; is of the
form [ 9 {] = J. We conclude that

(o, — *Olj) =Ny - Nj'

We will investigate a companion matrix I" whose (k, j)-entry is (o,a;) =
{§ar ou A *o;. We note immediately that I is a real matrix. Further from 1.4,

(%‘:“k) = (*aja*ak) = ffM *“j/\ oy = ffM Oy A *aj = (kaﬂj)-

Thus, I' is symmetric. Before continuing our investigation of the matrix I,
we establish the following

I11.2.3. Proposition. If 0 and 0 are two closed differentials on M (compact of

genus g), then
{looro-%|f0f,0-f00 0] @31
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ProOOF. The right-hand side of (2.3.1) is obviously unchanged if we replace
6 by 0 + df with f a C2-function. The left-hand side is also unchanged since

[0+ 478 = 0+, 5= 0.~*0) = [[,, 010,

by Proposition I1.3.2. Replacing thus 6 and § by harmonic differentials
with the same periods, we may assume

2g 29

0= woy, 0= fpy  w.f;eC, (232)
=1

J

where {«;} is the basis dual to the canonical homology basis {a, ... .a,,
by,....b} = {N,,... N,,}. Thus,

ffM OnG= § ik ”M oAy = ijil iR - Ry

k,j=1

g 2g
=3 Wil RN+ Y (NN (23.3)
=1 j

j=g+1

Now it follows immediately from (2.3.2) that

y,.=ij0 and ;L:LJ 7. (2.3.4)

We now substitute (2.3.4) into (2.3.3) and obtain, using the fact that for
j=L..,9 &N, )=1Landforj=g+1,...,29, (N;"N;_ )= —1,

J‘fMeAé':jilfNjengug— zzg: fNjgj‘Nj—gg

j=g+1

=j§1£’10.£>j§-ﬁ>,-6.£,~§‘ O

Corollary. If 0 is a harmonic 1-form on M, then

o= % [f, 00— [, 0, ] 2339

PRrOOF. Since 0 is harmonic, *8 is also closed. Thus, we compute

loll? = [f, 01

by (2.3.1) and obtain (2.3.5). O

Remark. We may view the Riemann surface M as a polygon .# whose
symbolis [ [%-, ajbja; 'b; '. Since # is simply connected 6 = df on .#. Thus,

[fuoro= [l arad=f aud =], 10
-5 [J;jf§+ﬁjf§+fa}1f§+fbj‘fé].
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Let z, € .# be arbitrary, then for z € .#,
&= e

Letting z and z’ denote two equivalent points on the sides ajand a; ' of d.4

we see that
o0 [o=[ [ fo- oo
=Lj_[fbj9}§= fofa

The remaining terms can be treated similarly to obtain an alternate proof
of Formula (2.3.1).

I11.2.4. We return to the matrix I" and note that its (k, j)-entry 7% 18 given by

g
m=lunn £ L f, o], ]

f *o . = *a. k—l,...,g,
J J?
— bx Ng+k

—Lb *o ;= — *u;, k=g+1,...,2g.
9

Ni-g

We show next that the real and symmetric matrix I" is positive definite
(I' > 0). Let

2g 2g
0=7) &o, with eC, Y |&]*>0.
k=1 k=1
Recall that the differentials o, are real and that ||6]| # 0. Thus, by (2.3.5),
g

o< Z [L’ kgl St fbf :il G = LJ‘ k§1 i La‘ 1§1 El*“’]

i=1

f EE il [L, Oy ch *oy — J;,- oy L]_ *az:l

ki=1 j

I

2g _
Z Ekivu-

k=1

It is now convenient to write

A B
r=
< o)
with A4, B, C, D, g x g matrices. Note that we have established (since ‘I’ = I'

and I > 0) these are real with
B="C, A="4, D ='D, (2.4.1)



I11.2. Harmonic and Analytic Differentials on Compact Surfaces 61

and
A>0, D > 0. (24.2)
IIL2.5. Let us consider * as an operator on the space of complex-valued
harmonic differentials. It is clearly C-linear and *? = —I. We represent *
by a 2g x 2g real (since * preserves the space of real harmonic forms) matrix
% with respect to the basis ay, . . ., a,,:
G = (A), k,j=1,...,2g,

Thus

2g

Y =) Ay, k=1,...,2g.

j=1
If we represent by .o/ the column vector of the basis elements a;, ..., o5,
then we can consider ¢ as defined by the equation

*oA =G

Since *2 = —1I, 42 = —I. We wish to compute the matrix 4. We note that

29
Y = (0g,00) = (%o, %) = ( Z lljaj’*ak)
=1 /
2g

29
= Z /R,Ij(aj,*ak): Z A"'U ffM otk/\ij.
j=1

i=1

In I11.2.2 we saw that, the matrix with (k,j)-entry [{,, o, A a;is given by J =

_% §] It therefore follows that the above equation can be written as

r=9%". (2.5.1)

_ Ay Ay
o[ i)

we find as a consequence of (2.5.1) that

If we now write

We therefore conclude, because of (2.4.1) and (2.4.2), that

Ao = =24, Ay =14y, Ay =143, (2.5.2)
and
A, >0, —13>0. (2.5.3)

Since ¥* + I,, = 0, we see that ¢ satisfies the additional equations:
A% + /12/:3 + Ig = 0, ).1)..2 = lztil, /“.311 = IAI/A‘.3. (2.5.4)

I11.2.6. Up to now we have essentially used only the space of real-valued
harmonic forms. (A basis over R for the space of real-valued harmonic
forms is also a basis over C for the space of complex-valued harmonic forms.)
We construct the holomorphic differentials

w; = o; + i*a;, j=1,...,2g,
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and a matrix whose (k, j)-entry is
%(wk’wj) = 3o + %(“Ini*“j) + 5 *a,0) + %(i*“ksi*%‘)
= (%ﬂj) - i(ab*ij) = (o, + i*“j) = (akswj)'
We see from the above that this is the matrix

r+iJ,
and since (recall 1.3.11)

g
(o, ;) =1 A AND; =1 a D; — a ®;
ks ) ffM k I=Z1 I:Ln k b J J;z k J;I 1]

~ifak? wj, k=g+1,...,2g,

this matrix can be viewed as a period matrix.
Observe also that

%(wk»wj) = %(wj’(j)k) = (2;,1)
~ifbjwk, ji=1...,9,

if on =g+ 1.2 (2.6.1)
aj-g
Before continuing our investigation of the matrix I" + iJ, we establish

II1.2.7. Proposition On a compact Riemann surface of genus g, the vector
space # = #'(M) of holomorphic differentials has dimension g. Furthermore,
{wy, . ...0,) forms a basis for #.

PrOOF. We show that we have a direct sum decomposition of the space H
of complex-valued harmonic forms
H=#@ #, (2.7.1)
where # represents the anti-holomorphic (= complex conjugates of holo-
morphic) differentials. It is obvious that J# n # = {0}. It remains to
verify that the decomposition (2.7.1) is possible. If « € H, then o + i*a € #,
a — i*x € A# (since & + i*x e #), and o = L(a + i*a) + $(a — i*a).
Since w +— @ is an R-linear isomorphism of # onto 7, it follows from
(2.7.1) that | 1
dim¢e # = idimR,}f = idimR H=yg.

To show that {w,, ... ,w,} form a basis for # it suffices to show that this is
a linearly independent set. Let

‘C=(cp,...,c,),withc;e C,A=Re C,B=1ImC,
Q= (wy,...,0,),

Ay = (o, ... ,2,), Uy = (0415 - - - 02)
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Assume (recall that 4, and 4, have been defined in 111.2.5)

0="'C0Q=(A+iB(AU, + i*A,) = (A + I'B)[ A, + i(%, A, + 1,2,)]
=AU, — ‘B4, A, + A,U,) + i['BA, + A4, A, + 4,0)].
Thus, we obtain two equations:
(A —'BA)A, ='Bi,U,, (‘B +"AL)U, = —"A2,U,.

Since the differentials in 2, are linearly independent from the differentials
in ,, we conclude that

‘Bi,=0="44,.

Since 4, is non-singular,
'‘B=0="4. O

I11.2.8. We return now to the matrix I' + iJ. In particular, we restrict
our attention to the first g rows of this matrix; that is, the g by 2g matrix

(g, — Ay + i),

We have shown by (2.6.1) that the (j,k)-entry of 4, is —i |, w;; and the
(j,k)-entry of —2, + il isi {, ;.

We conclude that if we consider iw,, ..., iw, as a basis for the vector
space #, of holomorphic differentials on M, then the period matrix (whose
(j,k)-entry is [y, iw;) with respect to this basis is

(_’:'l + II’ _/12)
Similarly, the holomorphic differentials w, ., ,, . . ., w,, are linearly indepen-
dent (over C), and the last g rows of the matrix I' + iJ is the g x 2g matrix
(='4, —il, —23).

Thus, the period matrix of iw,,, ..., iw,, (Whose (j,k)-entry is ij iw;4,)
is of the form
(= Az, A, +il).

We now make another change of basis. Let

E=y el =(=A3) Miwyy, - . - i03,).
With respect to the basis = of #, we obtain the period matrix

(I, (= A3) YA, + (= 4y~ Y = (L) (2.8.1)

Proposition. There exists a unique basis {{,,....,} for the space of holo-
morphic abelian differentials (= space #) with the property _[,,J (=0
Fyrthermore, for this basis, the matrix I1 = (n) with ny, = L,J, {y is symmetric
with positive definite imaginary part.
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PrOOF. We must only verify that IT is symmetric and Im IT > 0. To show
that IT is symmetric it suffices (because ‘4 = ;) to show that (—4;) !4,
is symmetric. But (recall (2.5.4))

=43 2] = A(="29) " = Ay(—2y) ! = (=43~ 1A,

Note that since Im IT = (— 43) !, positive definiteness is not an issue.  [J

Remark. Note that (—43) = I ifand only if for k, j=g + 1,..., 2g,

1 . 1, k=j
s =i f, o= {0, k#)°

if and only if (w, + l/ﬁ, ce ,wzg/\/i) is an orthonormal basis for # viewed
as a Hilbert subspace of L*(M). Can this happen? Yes, if and only if Im IT = I
(see (2.8.1)).

I11.3. Bilinear Relations

We start with a compact Riemann surface M of positive genus g > 0, and
a canonical homology basis {a,,....a,b,,....,b,} on M. Let {{,....(,}
be the dual basis for holomorphic dlﬂ"erentla]s (that is, [, ;= ;). Represent
the Riemann surface M by a 4g-sided polygon .# with identification. Our
starting point is Formula (2.3.1) for the “inner product” of closed differentials.
Let 0 and 0 be closed differentials. Since .# is simply connected, 6 = df on
A with f a smooth function on .# (note that at equivalent points on 6.4,
f need not take on the same value). As we have seen in the remark in 111.2.3,
formula (2.3.1), may be viewed as a consequence of two identities:

[aona={, 7. (3.0.1)
Jyu19= [:il U, of[o-{ 0] 5}. (3.0.2)

We shall see in this section that normalizing a set of meromorphic differ-
entials (with or without singularities) forces certain identities between
their periods. These are the “bilinear relations” of Riemann. They will turn
out to be useful in the study of meromorphic functions on M.

and

IIL.3.1. Let us assume that 6 and  are holomorphic differentials, then

i[f 0f,0 fﬂf‘ﬂ (3.1.1)

Equation~(3.1‘1) follows from (3.0.2) by Cauchy’s theorem, or fzom (2.3.1)
since 0 A 0 = 0 for holomorphic 6 and 0. We now let 6 = {; and 0 = {,, and
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obtain
fb, L=, G (3.12)

Of course, (3.1.2) is just another way of saying that the matrix IT introduced
in I11.2.8 is symmetric.

II1.3.2. Next we let § = {; and 6 =T,. We note that (df = {; on /) by
Stokes’ theorem (Formula (3.0.1))

J;L”ka = ffﬁ Cj/\Zk'
_i(Cj’Ck) = J;j gk - J;k Cj

= —2i(Im my)

We conclude that

(as usual j, is the (j,k)-entry of the matrix IT). In particular,

Imn;; > 0.

Applying the same argument to
g9

9 = Z Cka’ ck € Ca
k=1
we conclude that

Im IT > 0.
These facts have already been established in II1.2.

1I1.3.3. Proposition. Let 6 be a holomorphic differential. Assume either

a. all the “a” periods of 8 are zero (that is, f 0=0,j=1,...,9),o0r
b. all the perzods of 0 are real.
Then 6 = 0.

PrOOF. We compute

10 = [fu0r 0 =1 [f, 007
=iZ[L:0L19_L'9L'0]‘

In either case (a) or (b) we conclude that ||6||> = 0, and hence 6 = 0. O

Remark. The above observation (plus the fact that dim # =g, where
# = #'(M)) can be used to give an alternate proof of the theorem that
there is a basis for # dual to a specific canonical homology basis. (The
reader is invited to do so!)

II1.3.4. We shall now adopt the following terminology: Recall that
meromorphic one-forms are called abelian differentials. The abelian differ-
entials which are holomorphic will be called of the first kind; while the
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meromorphic abelian differentials with zero residues will be called of the
second kind. Finally, a general abelian differential (which may have residues)
will be called of the third kind. Before proceeding let us record the following
consequence of the previous proposition.

Corollary. We can prescribe uniquely either
a. the “a” periods or
b. the real parts of all the periods

of an abelian differential of the first kind.

Proof. Consider the maps # — C° and # — R?* defined by ¢+—
(Jay @5 -+ sfa, @ and @ —=(Im [, o, ...,Im [, ¢,Im |, @,....Im [, @), re-
spectively. The map # — C? is a linear transformation of # viewed as a
g-dimensional vector space over C, and the map # — R?? is a linear trans-
formation of # viewed as a 2g-dimensional vector space over R. The
proposition tells us that these maps have trivial kernels and thus are iso-
morphisms (since the domains and targets have the same dimensions). [

Remark. Parts (a) of the proposition and its corollary have previously been
established (Proposition I11.2.8).

II1.3.5. Let us consider abelian differentials of the third kind on M.
Choose two points P and Q on M. It involves no loss of generality to assume
that the canonical homology basis has representatives that do not contain
the points P and Q. Let us consider a differential 7, regular (= holomorphic)
on M\{P,Q}, with
ordpt= —1 = ord, 7, (3.5.1)
resp T =1, resp T = —1.
Let ¢ be a closed curve on M. It is, of course, no longer true that |, T depends
only on the homology class of the curve ¢. However (assuming P, Q are
not on the curves in question) if ¢ and ¢’ are homologous, then there is an
integer n such that

J; T — fc T = 2nin. (3.5.2)

The easiest way to see (3.5.2) is as follows: Let 6 be an arbitrary abelian
differential of the third kind on M. Let P, ..., P, (k > 1) be the singularities
of 6. Assume that the canonical homology basis for M does not contain
any of the points P;. Let ¢;, j=1,...,k, be a small circle about P;. We
may assume that the curves

ay,...,a, by,..., b, Ciyevvy Cp

are mutually disjoint except that a; and b; must cross for j=1,..., g. Itis
easy to see that on M’ = M\{P,...,P}, ¢, is homotopic to

g k—1

-1 -1
[ babta;* [] ¢,
j=1 j=1
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and that the curves

a,...,a, by, ..., b, Ciyvevs Che

form a basis for H,(M’). Hence, if c is a curve on M which is homologous
to zero, then on M’ it is homologous to a linear combination of ¢, ..., ¢;_;.
Thus there are integers n; with ¢ homologous to Y %2} ;¢;. The differential 0
is closed on M’. Hence

k-1 k—1
[lo=% n [ 0=2mi ¥ nresy,0. (3.5.3)
¢ i=1 € j=1

Clearly (3.5.2) is a special case of (3.5.3).

In particular, for 7 as before, fx,- 7 is defined only modulo 27iZ (hereafter,
mod 27i).

I11.3.6. To get around the above ambiguity, we consider M as represented
by the polygon .# with identifications. We choose two points P and Q in
the interior of .#. Let t be a differential of the third kind satisfying (3.5.1).
By subtracting an abelian differential of the first kind, we normalize 7 so that

L_r=0, i=1,....4 (3.6.1)
fx_ v is purely imaginary, j=1,...,2g. (36.2)

We denote the (unique) differential t with the first normalization by
Tpo and the one with the second normalization by wpg.

Warning. In (3.6.1) we think of a; as a definite curve——not its homology
class. If we want to think of it as a homology class, (3.6.1) must be replaced
by

fav t=0(mod 2ni), j=1,...,q, (3.6.1a)
and 1pq is no longer unique.

Applying (3.0.2) with 6 = {; and 0= Tpg, We obtain
fm firg = fb, tro:

The line integral around the boundary of .# can be evaluated by the residue
theorem, since

1o =g

with the path of integration staying inside .#. Thus we obtain
[1.0 freo =27i(f(P) = fQ)),
. (P
2ni fQ (= fb o, (3.6.3)

as long as we integrate {; from Q to P along a path lying in ./.
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Similarly,

2mi JZ (= J;,- Wpg ~ l=il ) L‘ Wpg;
where 7, is the (j,/)-entry of the period matrix I1.
II1.3.7. We treat now the case where
0 = 1pg, 0 = 1gs

(P, Q, R, S are all interior points of .#). Here we cannot assert that 6 = df
on ./ . To get around this little obstruction, we cut .# by joining a point 0 on
o.4 to P by one curve and to Q by another curve. We obtain this way a simply
connected region .#’ (see Figure 111.2).

In /', 0 = df where
f@= 0.
Now a simple calculation yields
o f0 = 2ni[resg f0 + resg f0]
= 2mi(f(R) — f(S))

= 2mi J;R 0.

The formula analogous to (3.0.2) is

fM,f§=li[ﬁloﬁlé—ﬁlﬂfmé]qufcﬂi

where c is a curve from 0 to Q back to 0 (“on the other side”) to P and back to
0. Now the value of f on the + side of ¢ differs from the value of f on the
— side by 27i (by the residue theorem).

Thus
[0=m 70 [20]2ni [}

We summarize our result in

R P
fs Tpo = fQ TRs

-1
b, gy

Figure II1.2. Illustration for genus 2.
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(where as before each path of integration is restricted to lie in .#" = 4"\
{lines joining R and S to 0}). For the differential wpy, a similar formula can
be derived; namely

R P
RCJ; CUPQ = Re fQ WRs-

II1.3.8. Let Pe M and choose a local coordinate z vanishing at P. We
have seen that there exists on M\{P} a holomorphic differential § whose
singularity at P is of the form

g =

&

n>2.

n°

(8]

Assume that § is normalized so that it has zero periods over the cycles
ais,...,a, Let

M8

0=¢= ( a}”z’) dz atP. (3.8.1)
1=0
Then, as before,
~ 2ni .
fb =, (3.8.2)
We will denote the differential § considered above by the symbol

P,

and note it depends on the choice of local coordinate vanishing at P. (For
our applications, this ambiguity will not be significant.)

II1.3.9. A few other possibilities remain. We will not have any use for
other bilinear relations. The reader who is looking for further amusement
may derive more such relations.

II1.4. Divisors and the Riemann—Roch Theorem

We come now to one of the most important theorems on compact Riemann
surfaces—the Riemann-Roch theorem, which allows us to compute the
dimensions of certain vector spaces of meromorphic functions on a compact
Riemann surface. The beauty and importance of this theorem will become
apparent when we start deriving its many consequences in subsequent sec-
tions. As immediate corollaries, we obtain the fact that every surface of genus
zero is conformally equivalent to the Riemann sphere and give a new (an-
alytic) proof of the Riemann-Hurwitz relation.

Although many definitions will make sense on arbitrary Riemann surfaces,
most of the results will apply only to the compact case. We fix for the duration
of this section a compact Riemann surface M of genus g > 0. We let (M)
denote the field of meromorphic functions on M.
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111.4.1. A divisor on M is a formal symbol

A = PIPY - - - P, 4.1.1)
with P;e M, a; € Z. We can write the divisor U as
A= J] PP, (4.1.1a)
PeM

with «(P) € Z, a(P) # 0 for only finitely many P e M.
We let Div(M) denote the group of divisors on M ; it is the free commutative

group (written multiplicatively) on the points in M. Thus, if U is given by
(4.1.1a) and

B — l‘[ pAp)
PeM
then
AB = PP +BP)
AL
and
At = ] P,
PeM

The unit element of the group Div(M) will be denoted by 1.
For A € Div(M) given by (4.1.1a), we define
deg A=Y P

PeM

It is quite clear that deg establishes a homomorphism
deg:Div(M) - Z

from the multiplicative group of divisors onto the additive group of integers.
If f € #(M)\{0}, then f determines a divisor (f) € Div(M) by

(f)= ] P’ (4.1.2)

PeM

It is clear that we have established a homomorphism
( ):A(M)* > Div(M)

from the multiplicative group of the field 2#' (M) into the subgroup of divisors
of degree zero (see Proposition 1.1.6). A divisor in the image of ( ) is
called principal. The group of divisors modulo principal divisors is known
as the divisor class group. It is quite clear that the homomorphism, deg,
factors through to the divisor class group. The (normal) subgroup of principal
divisors introduces an equivalence relation on Div(M). Two divisors 2, B
are called equivalent (U ~ B) provided that /B is principal. If f € A (M)\C,
then
f— I(OO) — n Pmax(-ordp f,0}

PeM
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defines the divisor of poles of (or polar divisor of ) f. Similarly,
f— 1(0) — l—[ Pmax(ordp 1,0}

PeM
defines the divisor of zeros of (or zero divisor of ) f. Both divisors have the
same degree as the function f, and since

f710)
S o0)’
they are equivalent. More generally, for ¢ € C,

=0 =710

Thus the divisor class of f~'(c) is independent of ¢ € C U {oo}. (It will be
clear from the context when f = (c) stands for a divisor or just for the under-
lying point set.)

One more remark about equivalent divisors: Let f; and f, be mero-
morphic non-constant functions on M. Assume that f; = 4 o f, for some
Mébius transformation A. Then f7 '(o0) = f5 (4~ *(c0)). Thus f] Y(o0) ~
f2'(0).

If 0 # w is a meromorphic g-differential, then we define the divisor of
o in anology to (4.1.2) by

(f) =

(w)y= [] Pre.
PeM

A divisor of a meromorphic g-differential is called a g-canonical divisor,
or simply a canonical divisor if ¢ = 1. We note that if w, and w, are two
non-(identically) zero meromorphic g-differentials, then w,/w, € A (M)*
and hence the divisor class of (w,) is the same as the divisor class of (w,).
We will call it the g-canonical class (canonical class, if g = 1). Since abelian
differentials exist, the g-canonical class is just the gth power of the canonical
class.

II1.4.2. The divisor U of (4.1.1a) is integral (in symbols, A > 1) provided
a(P) > 0 for all P. If, in addition, A # 1, then A is said to be strictly integral
(in symbols, A > 1). This notion introduces a partial ordering on divisors;
thus A > B (or A > B)ifand only if AB "' > 1 (or AB ! > 1).

A function 0 # f € A (M) (resp., a meromorphic g-differential 0 # w) is
said to be a multiple of a divisor A provided (f)A ! > 1 (resp., (w)A~* > 1).

In order not to make exceptions of the zero function and differential, we
will introduce the convention that (0)2 ™! > 1, for all divisors A € Div(M).
Thus, f is a multiple of the divisor 2 of (4.1.1a) provided f = 0 or

ordpf = a(P), all Pe M.

Hence such an f must be holomorphic at all points P € M with «(P) = 0;
f must have a zero of order > a(P) at all points P with «(P) > 0; and f
may have poles of order < —«(P) at all points P with a(P) < 0.
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II1.4.3. For a divisor A on M, we set
LAY = {fe A (M);(f) = U}.
It is obvious that L(?) is a vector space. Its dimension will be denoted by
r(A), and we will call it the dimension of the divisor U.
Proposition. Let U, B € Div(M). Then
B> A= L(B) = LAN).

PrOOF. Write
B=A3

with 3 integral. If f € L(B), then (f)B ! > 1. But
NA'=(NB'I>T>1.
Thus f € L(). O
I11.4.4. Proposition. We have L(1) = C, and thus r(1) = 1.
PRrooF. If f € L(1), then (f) > 1; that is,
ordp f>0 allPeM.

Since f has no poles it is constant by Proposition 1.1.6. O

I11.4.5. Proposition. If A € Div(M) with deg U > 0, then r(A) = 0.

ProOF. If 0 # f e L(), then deg(f) = deg A > 0, contradicting Proposition
I.1.6. O

II1.4.6. For A € Div(M), we set

Q(A) = {w; w is an abelian differential with () > A},
and
i(A) = dim Q(A).

We call i(), the index of specialty of the divisor .
Theorem. For A € Div(M), r(N) and i(N) depend only on the divisor class of U.
Furthermore, if 0 # w is any abelian differential, then i(2) = r(W(w) " *).

ProOF. Let A, be equivalent to A, (that is, A, A5 ! is a principal divisor
or A, A5 ! = (f) for some 0 # f € A (M)). Then the mapping

L(A,)> h+— hf € L(A,)
establishes a C-linear isomorphism, proving that
r(A,) = r(A,). (4.6.1)
Next, the mapping

QA) 3 — é e L(A(w)™ 1)
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also establishes a C-linear isomorphism proving that
i(A) = r(Ww)™1). (4.6.2)

Finally, if 9, is equivalent to ,, then (4.6.1) and (4.6.2) yield (upon
choosing a non-zero abelian differential w)

i(UAy) = r(Wy(@) ™) = r( W)™ ") = i(Ay). 0

IIL.4.7. It is quite easy to verify the following

Proposition. We have Q(1) = #'(M), the space of holomorphic abelian
differentials (see Proposition 111.2.7) and thus i(1) = g

I11.4.8. We will first prove our main result in a special case.

Theorem (Riemann—Roch). Let M be a compact Riemann surface of genus g
and U an integral divisor on M. Then

HUA ) =deg A — g + 1 + i(2A). (4.8.1)

Proor. Formula (4.8.1) holds for 2 = 1 by Proposition 111.4.4 and Prop-
osition I11.4.7. Thus, it suffices to assume that U is strictly integral.

A =pr-.. P PieM,njeZ,n;>0,
degQ[:an>0.
=1

Note that C = L(A~'). Furthermore, if f € L(A ), then f is regular on
M\{P,,...,P,} and f has at worst a pole of order n; at P;. Choosing a local
coordinate z; vanishing at P;, we see that for such an f, the Laurent series
expansion at P; is of the form

> Cjkz'f-

k=—nj
Consider the divisor
A = P’;1+l e P"I"m'f'l‘

Let {aj,...,a,b,,...,b,} be a canonical homology basis on M. We think
of the elements of this basis as fixed curves in their homology classes and
assume they avoid the divisor 2. Let Q2 ') be the space of abelian
differentials of the second kind that are multiples of the divisor ' ! and
have zero “a” periods. We can easily compute the dimension of Q,(2'~1).
Recall the abehan differentials 7§ introduced in I11.3.8. For P = P; and
2<n<n;+ 1,1 e QA" "). Thus

dim Qy(A'~ ‘ZZn, deg .
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Conversely, if w € Qo(A' ™ 1), then
(l)=( Z dijL(')de Withdj‘_1=0
k=—-n;j—1
in terms of the local coordinates z;. Thus we define a mapping

S:Qo(W 1) — Clee¥
by setting

S()=(dy,—2, -y, —ny—1:825-25 -y —pymts oo o2y o i, — = 1)

If w € Kernel S, then w is an abelian differential of the first kind with zero
“a” periods, and hence w = 0 by Proposition II1.3.3. Hence S is injective,
dim Qy(A ") = deg A, and every w € Qo(A ~!) can be written uniquely as

m -2
w = Z Z djkT(P: k). (4.8.2)

=1 k=-nj-1

We consider the differential operator
d: LAY - QoA™Y

Since Kernel d = C, it is necessary in order to compute (2~ ') to charac-
terize the image of d. Now w € dL(U ') if and only if w has zero “b” periods.
We conclude that

dim Imaged > deg A — ¢ (4.8.3)

(since each “b” curve imposes precisely one linear condition). Using the
“classical” linear algebra equation

r(A™!) = dim Image d + 1, (4.8.4)
we obtain from (4.8.3), the Riemann inequality,
FA ) >deg A —g+ 1.
To obtain the Riemann-Roch equality we must evaluate dim Image d. We

use bilinear relation (3.8.2), to observe that the differential w of (4.8.2) has
zero b, period if and only if

m -2 1
2mi ——daaP_(P)=0 48.5
y2 j;l k=—Z”j71 k + 1 jka k 2( j) ] ( )

where {(;,....(,} is a basis for the holomorphic differentials of the first
kind dual to our canonical homology basis and the power series expansion
of {; in terms of z; is given (in analogy to (3.8.1)) by

(zz(

DM 8

ocg”(Pj)zj) dz; atP;

1]

0
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We recognize from (4.8.5) that the image of d is the kernel of a certain operator
from C%#¥ to C% Consider the operator

T:Q(1) — Cles¥

defined by T(w) = (€1.05- - - €1.n, - 15€2,05 - - - €m,05 - - - €mym, — 1) Where w e
(1) has Taylor series expansion

< Z eij§> de at P}
k=0

Represent the linear operator T with respect to the basis {{,, ... .{,} of (1)
and the standard basis of C#¥ as the matrix

[oa(P)  oP(P) o AP
APy (P
A (P,) 2 (P,)
AV, A(P)
o) () a2 (P - 9 (P)

Thus we recognize that
Image d = Kernel ‘T.

We thus conclude that
dim Image d = dim Kernel 'T = deg A — dim Image ‘'T

= deg A — dim Image T

= deg A — (dim Q(1) — dim Kernel T).
Since Kernel T = Q(), and dim Q(1) = g, we have shown that

dim Image d = deg A — g + i(A),
and (4.8.4) yields (4.8.1). ]
I11.4.9. We collect some immediate consequences of our theorem.
Corollary 1. If the genus of M is zero, then M is conformally equivalent to the
complex sphere C U {o0}.
PrOOF. Consider the point divisor, P € M. Then
r(P~ Y =2

Thus, there is a non-constant meromorphic function z in L(P~!). Such a
function provides an isomorphism between M and C U {co} by Proposition
I.1.6.
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Corollary 2. The degree of the canonical class Z is 2g — 2.

ProoF. If g = 0, then compute the degree of the divisor dz (which is regular
except for a double pole at o0). Thus we may assume g > 0. Since the space
of holomorphic abelian differentials has positive dimension, we may choose
one such non-trivial differential; say (. Since ({) is integral

r((0)"1) = deg({) — g + 1+ i((0)).

By Theorem I11.4.6 we have r(({)~ ') = i(1) and i(({)) = r(1). Thus we have
g = deg({) — g + 1 + 1, and hence the corollary follows. U

Corollary 3. The Riemann-Roch theorem holds for the divisor W provided
that

a. W is equivalent to an integral divisor, or
b. Z/U is equivalent to an integral divisor for some canonical divisor Z.

Proor. Statement (a) follows from the trivial observation that all integers
appearing in the Riemann-Roch theorem depend only on the divisor class
of A (by Theorem II1.4.6). Thus, to verify (b), we need verify Riemann-Roch
for 2 provided we know it for Z/A. Now
i(A)=r(W/Z)=deg Z/U — g+ 1 +i(Z/AN)

=degZ —degA—g+ 1+ AT

=29—2—degWA—g+1+rA").
Hence, we have proven the Riemann-Roch theorem for 2. O

I11.4.10. To conclude the proof of the Riemann—Roch theorem (for arbitrary
divisors), it suffices to study divisors 2 such that neither 2 nor Z/ is equi-
valent to an integral divisor, for all canonical divisors Z.

Proposition. If r(A~!) >0 for A e Div(M), then U is equivalent to an
integral divisor.

PROOF. Let 0 # f € L(A™!). Then (f)U is integral and equivalent to 2A. [

Corollary. If i(A) > 0 for A € Div(M), then Z/U is equivalent to an integral
divisor.

ProoF. Use i(A) = r(W/Z). O
I11.4.11. If A € Div(M), and neither 2 nor Z/A is equivalent to an integral

divisor, then i(A) = 0 = r(A~*). Thus, the Riemann-Roch theorem asserts
in this case (to be proven, of course)

degU =g — 1. (4.11.1)

Thus verification of (4.11.1) for divisors 2 as above will establish the following
theorem.
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Theorem. The Riemann-Roch theorem holds for every divisor on a compact
surface M.

ProOF. We write the above divisor U as
A= ‘H1/ 912,

with 9 (j = 1,2) integral and the pair relatively prime (no points in common).
We now have
deg A = deg A, — deg A,

and by the Riemann inequality
FUAT Y >degU, —g+ 1 =deg A, + deg A — g + 1.

Assume that
deg A > g.
We then have
r(A; Y > deg A, + 1.

Thus, we can find a function 0 # f € L(2;!) that vanishes at each point in
A, (to the order specified by this divisor). (Vanishing at points of U,
imposes deg 2, linear conditions on the vector space L({'). If r(ATY)
is big enough, linear algebra provides the desired function.) Thus fe
L(A,/A,) = L(A™'), which contradicts the assumption that #(2 ™) = 0. Hence

degAU<g—1.
Since 0 = i(A) = r(A/Z), it follows that
deg(Z/A) <g—1,

or
degA>g—1,

concluding the proof of the Riemann-Roch theorem. O

I11.4.12. As an immediate application of Corollary 2 to Theorem I11.4.8 we
give another proof of the Riemann—Hurwitz formula (Theorem 1.2.7). Our
first proof was topological. This one will be complex analytic. Let f be an
analytic map of a compact Riemann surface M of genus g onto a surface N
of genus y. Let n = deg f. Let w be a meromorphic g-differential on N. We
lift  to a meromorphic g-differential Q on M as follows: Let z be a local
coordinate on M and ( a local coordinate on N. Assume that in terms of
these local coordinates we have

Ifwis

in terms of {, then we set Q to be

h(f(2))f'(2)*dz* (4.12.1)
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in terms of z. Note that if z is replaced by z,, with z = w(z,), then in terms
of z, the map f is given by
C = (f © W)(Z]),

and thus we assign to z,

h(f(W(z)))f ' (W(z1))*W'(z,)" d2§

which shows that Q is indeed a meromorphic g-differential. Without loss of

o

generality, we may assume that for P € M, z vanishes at P, { vanishes at

f(P),

{ = SbsPr 1
From this and (4.12.1) we see that
ordp Q = (by(P) + 1)ord,p) @ + gb(P). 4.12.2)

Formula (4.12.2) will be very useful in the sequel. For the present we merely
use it for ¢ = 1. We rewrite it as (for g = 1)

ordp Q = (b,(P) + 1) ord sp)  + b (P). (4.12.3)

Let us choose an abelian differential w that is holomorphic and non-zero

at the images of the branch points of f. (With the aid of Riemann-Roch

(and allowing lots of poles) the reader should have no trouble producing

such an w. If y > 0, w can be chosen to be holomorphic.) We wish to add

(4.12.3) over all P e M. Observe that Corollary 2 of Theorem 111.4.8 gives
Y ordp Q=29 -2,

PeM

and recall that by definition
Y b(P)=B.

PeM

We need only analyze
Z (bf(P) + 1) Ordf(P) w = Z Ordf(P) w

PeM PeM
bs(P)=0

= Y nordyw=n(2y - 2).
QeN
This last equality is a consequence of the fact that each Q e M with
ordy w # 0 is the image of precisely n points on M.

I11.4.13. We discuss some elementary concepts that will turn out to be useful
throughout this book. If D is a divisor on M given by the right side of the
equality in formula (4.1.1a), then the integer «(P) will be called the order or
multiplicity of D at P € M. The complete linear series or system of the divisor
D, denoted by the symbol |D|, is the set of integral divisors equivalent to
D.
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Proposition. For every divisor D on M, the points in |D| are in one-to-one
canonical correspondence with the points in PL(1/D), the projective space of
the vector space L(1/D).

Proor. If D, €|D|, then D, is integral and D, = D(f) for some not
identically zero meromorphic function f on M. Since D, > 1, f e L(1/D).
Conversely, for every f € L(1/D), D(f) is an integral divisor equivalent to D.
Two functions f and g in L(1/D) define the same divisor if and only if
f = Ag for some non-zero complex number A. Thus |D| is the projectiviza-
tion of L(1/D). O

A linear subspace of a complete linear series is called a linear series or
system. A linear series of the divisor D is thus of the form 2 = PV, where V
is a vector subspace of L(1/D); this linear series is said to be a gj if

deg D =d, dimV=r+1.

A base point of the linear series 2 is a point common to all the divisors in
the space 2.

Assume that P is a base point of a linear series. Using the above
notation, we see that this means that (f)D > P for all fe V or that the
multiplicity of P in every divisor in 2 is greater than minus the multiplicity
of P in D. In particular, if we are considering the complete linear series of
the divisor D and if the multiplicity of P in D is zero, then P is a base point
of |D| if and only if every function in L(1/D) vanishes at P.

II1.5. Applications of the Riemann—Roch Theorem

What can we say about the meromorphic functions on the compact Riemann
surface M with poles only at one point? What is the lowest degree of such a
function? In this section we shall show that on a compact Riemann surface
of genus g > 2, there are finitely many points P € M (called Weierstrass
points) such that there exists on M a meromorphic function f regular on
M\{P} with deg f< ¢.

We shall see when we study hyperelliptic surfaces (in I11.7) and when we
study automorphisms of compact surfaces (in Chapter V) that these
Weierstrass points carry a lot of information about the Riemann surface.

Throughout this section, M is a compact Riemann surface of genus g
(usually positive), and Z € Div(M) will denote a canomnical divisor.

II1.5.1. We recall (to begin) that the Riemann—Roch theorem can be written
for D € Div(M) as
rD™')=degD—g+ 1+ r(D/Z). (5.1.1)
Furthermore,
r(D) = 0 provided deg D > 0, (5.1.2)
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and
i(D) = 0 provided deg D > 2g — 2. (5.1.2a)
If deg D = 0, then
rD) <1, (5.1.3)
and
r(D) = 1 <> D is principal. (5.1.4)

Finally, for any ge Z

L(Z™%) = #%M), the vector space of
holomorphic g-differentials. (5.1.5)

To verify (5.1.5) note that we can choose an abelian differential w # 0
such that (w) = Z, and now observe that f € L(Z79) if and only if fw?is a
holomorphic g-differential. The mapping

L(Z79) > fi> fw?e #4M)
establishes a C-linear isomorphism between the spaces involved.

II1.5.2. Proposition. Let q € Z. The dimension of the space of holomorphic
g-differentials on M is given by the following table:

Genus Weight Dimension
g=0 g<0 1—-2q
q>0 0
g=1 all g 1
g>1 q<0 0
q=0 1
qg=1 g

q>1 (29 —Ng-1)

PRrOOF. Let D = Z9in (5.1.1), then
HZ 9 =QRq—1)g-1)+rZh) (5.2.1)
From (5.1.5), the dimension to be computed is r(Z ™ 9).
Assume that g > 1. If ¢ < 0O, then
deg Z 9= —q(29 — 2) > O,

and thus r(Z7% =0 by (5.1.2). We already know that r(1) =1, and that
rZ Y)=g. For g > 1, (29" ') =0 (by what was said before), and (5.2.1)
gives a formula for r(Z™9).

Next for g = 1, (5.2.1) reads

rZ™%) =rz"), (5.2.2)

and hence gives little information. If 0 # w is a holomorphic g-differential,
it must also be free of zeros (deg(w) = 0). Thus w™ is a (— g)-differential.
Let w be a non-trivial holomorphic differential. Multiplication by w estab-
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lishes an isomorphism of #(M) onto #7"1(M), for every integer q. From
r(1) = 1, we conclude that r(Z%) = 1, by induction on g.

Finally, for g =0, deg Z = —2. Thus r(Z") =0 for n < —1, and (5.2.1)
yields the required results. O

EXERCISE

Establish the above proposition for g = 0 and 1 without the use of the Riemann-Roch
theorem. (For g = 0, write any w € #4M) as w = fdz? with f € #(M). Thus f is a
rational function. Describe the singularities of f.)

II1.5.3. Theorem (The Weierstrass “gap” Theorem). Ler M have positive
genus g, and let P € M be arbitrary. There are precisely g integers

l=n<n<---<n <2y (5.3.1)

such that there does not exist a function f € A (M) holomorphic on M\{P}
with a pole of order n; at P.

Remarks

1. The numbers appearing in the list (5.3.1) are called the “gaps” at P. Their
complement in the positive integers are called the “non-gaps”. The
“non-gaps” clearly form an additive semi-group. There are precisely g
“non-gaps” in {2,...,2g} with 2g always a “non-gap.” These are the
first g “non-gaps” in the semi-group of “non-gaps.”

2. The Weierstrass “gap” theorem trivially holds for g = 0. Since on the
sphere there is always a function with one (simple) pole, there are no
“gaps”.

3. The Weierstrass “gap” theorem is a special case of a more general theorem
to be stated and proven in the next section.

IIL.5.4. We stay with the compact Riemann surface M of positive genus

g. Let
P, P,, P, ...

be a sequence of points on M. Define a sequence of divisors on M by
Dy =1, D;,, =DP;,,, j=0,1,....
We now pose a sequence of questions.
Question “j” (j=1,2,...):
Does there exist a meromorphic function f on M with
(/)= D;' and (f)#Dj4?
We can also phrase the question in another way. Does there exist a (non-

constant) function f € L(D; ')\L(D; },)?

Theorem (The Noether “gap” Theorem). There are precisely g integers 1y
satisfying (5.3.1) such that the answer to Question “j” is no if and only if jis
one of the integers appearing in the list (5.3.1).
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Remark. Taking
P:P1=P2:"':Pj="'

we see that the Weierstrass “gap” theorem is a special case of the Noether
“gap” theorem. We shall say that jis a “gap” provided the answer to Question

j™" is no. When there is need, we will distinguish the “Weierstrass gaps”
from the “Noether gaps”.

PROOF OF THEOREM. The answer to Question “1” is always no, since g > 0.

[TE3L]

Thus n; = 1, as asserted. The answer to Question “j” is yes if and only if
r(Dj ') — r(D;!y) = 1 (the answer is no if and only if (D} !) — r(D;j}y) = 0).
From the Riemann-Roch theorem

r(D; ') = (DY) = 1 +i(D)) — i(D;_,). (5.4.1)
Thus for every k > 1:

k
r(D ') —r(Dg ') =Y (r(D; ') — (D))
j=1

k
=k + Z (i(Dj) - i(Djfl)) =k + i(Dk) - i(Do),
=1
or ’ .
r(D') = 1=k +i(Dy) — g,
and this number is the number of “non-gaps” <k. Thus for k > 2g — 2
(thus deg D, > 2g — 2 and i(D,) = 0)
k — (number of “gaps” < k) =k — g.

Thus there are precisely g “gaps” and all of them are <2g — 1. O

IILS.5. We now begin a more careful study of the Weierstrass “gaps”.
Let P € M be arbitrary, and let

<oy <o, < <a,=2g

be the first g “non-gaps”.

Proposition. For each integer j, 0 < j < g, we have

o+ oy ;> 2g.

PROOF. Suppose that o; + a,_; < 2g. Thus for each k <j we would also
have o, + o, _; < 2g. Since the sum of “non-gaps” is a “non-gap”, we would
have at least j “non-gaps” strictly between ,_ ; and o, Thus at least (g — j) +
j+1=g+1 “non-gaps” <2g, contradicting the fact that there are only
g such “non-gaps”. O

IIL5.6. Proposition. If o; = 2, then a; = 2j and o; + o, ;=29 for0<j<g.

PrOOF. If «; = 2, then 2, 4, ..., 2g are g “non-gaps” <2g, and hence these
are all the “non-gaps” <2g. O
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II1.5.7. Proposition. If o, > 2, then for some j with 0 < j < g, we have
“j + ag_}' > 2g

PrOOF. If g = 2, then our assumption implies that o, = 3 and «, = 4 and
there is nothing to prove. If g = 3, then the possible “non-gaps” are {3,4,6},
{3,5,6}, and {4,5,6}, and again there is nothing to prove. So assume that
g > 4. We assume that o; + a,_; = 2g for all j with 0 < j <g. For g e R, let
[4] be the greatest integer <q. Then o, 2oy, ..., [2g/o; Jo; are “non-gaps”
<2g. If o, > 2, then the above accounts for at most g < g “non-gaps”, and
there must be another one <2g. Let o be the first “non-gap” not appearing
in our previous enumeration. For some integer r, 1 <r < [2g/a;] <g — 1,
we must have
rog <o < (r+ Day.

Thus we have “non-gaps”
oy, a2:2(x1’ s o, = Iy, Uy = &,
and by our assumption
ag—l =2g—¢11, L] ag—r=2g—ra15 ag—(r+1):2g_a'

The integers in the last line are all the “non-gaps” which are >a,_ ., and
<2g. It follows that

Uy + 0oy =0 + 29 — =29 — (0 — o)) >2g — roty =0y,

It therefore follows that there is a “non-gap” <2g, greater than a,_, and not
in the list &, 4, ..., 0y_+1). This is an obvious contradiction. O

Corollary. We have

g—1

Y o=g(@—1),

j=1

with equality if and only if o, = 2.

PrOOF. From Proposition 1I1.5.5, 2 )41 o; > 2g(g — 1). Furthermore if
a, = 2, then we have equality in the above by Proposition I11.5.6. If o; > 2,
we must have strict inequality by Proposition II1.5.7. O

I11.5.8. We have seen in II1.5.4, that j > 1 is a “gap” at P € M if and only if

r(P~7) = r(P~i*1) =0,
if and only if
i(P~YH—i(P)=1;

that is, if and only if there exists on M an abelian differential of the first kind
with a zero of order j — 1 at P. Thus the possible orders of zeros of abelian
differential of the first kind at P are precisely

O=n—-1<n—-I<-<n-1<29-2,

where the n;’s are the “gaps” at P (appearing in the list (5.3.1)). The above
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situation is a special case of a general phenomenon, which we shall proceed
to study.

Before proceeding to study the general situation, let us observe that we
have established the following basic Fact. Given a point P on a compact
Riemann surface M of genus g > O, then there exists an abelian differential
w of the first kind (w € #*(M)) that does not vanish at P (that is, ordp @ = 0).

Let A be a finite-dimensional space of holomorphic functions on a
domain D < C. Assume that dim A =n > 1. Let ze D. By a basis of A
adapted to z, we mean a basis {¢, . .. ,p,} with

ord, ¢, <ord, ¢, <---<ord, @,. (5.8.1)

To construct such a basis, let
u; = min {ord; ¢},

pe A
and choose ¢, € A with ord. ¢, = p;. Then
Ay ={peA;ord, ¢ >}
is an (n — 1)-dimensional subspace of 4, and we can set

U, = min {ord; ¢}.

Qe

By induction, we can now construct the basis satisfying (5.8.1). The basis

adapted to z is (of course) not unique. We can make it unique as follows:

Let yu; = ord; ¢;. Consider the Taylor series expansion of ¢; at z (in terms

of {) %

<p,-(C) = Z akj(C - Z)k-
k=0

We may and hereafter do require that

a — 1’ k=j’
e 0, k#]w

wherej,k=1,...,n

Remark. On a Riemann surface “the unique” basis adapted to a point will,
of course, depend on the choice of local coordinate.
It is obvious that u; > j — 1. We define the weight of z with respect to A by

1(z) = Z (1 —J + 1), (5.8.2)

Proposition. Let {¢,, ... ,p,} be any basis for A. Consider the holomorphic
function (the Wronskian)

ei(z) 0 l2)
oz) 0 eu2)

®(z) = det : (5.8.3)

e ) e ()
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Then
ord, @ = 1(2).

PROOF. It is easy to see that a change of basis will lead to a non-zero constant
multiple of ¢. Hence we may assume, whenever necessary, that the basis
used is adapted to the point z. Let us abbreviate equation (5.8.3) by

P(z) = det[@,(2), . . . .0(2)]-

In order to prove the proposition we derive some easy properties of the
function @. First: for every holomorphic function f,

det[ fo,,....fo,] = ["det[o,,....0.]) (5.8.4)
This follows from well-known properties of determinants. Explicitly,

det[ fo,,... ,f(g,,]

f(pl T f(pn
for + fo, o Jout+ [,
= det| fo +2f'01 + ["¢, e fon + 2 on + [0,

Lf(p(lﬂfl)_’_..._'_f("*l)(pl f(p:."‘l)+...+f("*1)(p"_
K2 ERR |

:f®tﬁﬂ+f@1 o Jon+ e,
—f(p(l'l_l)+...+f("'1)¢l f(pgl_l)_*_..._{,f("‘l)(p"d
K2 ERR ]
_f(p(l'l_l)+...+f("_1)(p1 f(P;"‘l)_’_..._*_f("*l)(Pn—

where the last equality arises from multiplying the first row of the determinant
by —f" and adding the result to the second row. In a similar fashion we can
remove from each column the appropriate multiple of ¢; leaving us with the
previous expression equal to

N @,
Jo' e fon
[ det] foi + 2f'¢) o fon + 2f o,
L e e U N (O R o (LR V) A7
N @,
o o

= f2det| fo + 2f'¢} e fon + 2f e,

iV 4 = DfT g fl Dk (= DDy
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We now repeat the same procedure to remove from each column the appro-
priate multiple of ¢). This clearly terminates with the preceding equal to

fn det[(pl’ e ’q)n]'

We now turn our attention to the proof of the proposition which shall be
by induction on n. Clearly the result is true for n = 1. Let us now assume that
the proposition is true for n = k. Explicity we are thus assuming that

k
ordz det[(pl’ s sq)k] = Z (#J _.] + 1)’
j=1
where y; = ord, ¢;. Consider now det[¢,, ...,@,4 ] It is clear from the
preceding remarks that

det[@, ..., 0+ 1] = (P‘iﬂ detD#’z/‘Pb Qi 101 ]

Now the right-hand side is simply @%* ! det[(@,/0,), .. . (@x+1/®1)] The
induction hypothesis now gives that

ord, {of " det[(@2/@,), ..., (Ge+1/91) 1}
k+1

=k + Dy, + ;{(#j—ul—l)—(j—Z)}

k+1

= + _ZZ(”j_j'l' 1),
j=

provided that for each j, u; — (j — 1) — u; > 0. Since the {¢;} are a basis
adapted to z, this inequality is always satisfied, and we have

k+1

Ordz det[(pl’ e 7(pk+l] = Z (l’tj ——J + 1)

Jj=1

This concludes the proof of the proposition.

Remark. Let {¢,, ..., ,} be any set of n holomorphic functions on D. We
can define ¢ = det[¢,,...,p,]. Our argument here shows that @ is iden-
tically zero if and only if the functions ¢, . . . ,¢, are linearly dependent.

Corollary 1. Let A be a finite-dimensional space of holomorphic functions on
a domain D < C. The set of z € D with positive weight with respect to A is
discrete.

Corollary 2. Under the hypothesis of Corollary 1, for an open dense set in D,
the basis {@,, . . . ,p,} of A adapted to z has the property

ord, ¢; =j — 1.

ProOF. By the hypothesis ord, ¢; = p;. It follows from Corollary 1 that
1(z) = Y-, (4; — j + 1) = 0 for an open dense set. Since (as we have pre-
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viously remarked) u; > j — 1 we have u; =j — 1 for each j, on this open
dense set. o

IIL.5.9. The considerations of the last paragraph apply (of course) to the
space #%M) of holomorphic g-differentials (g > 1) on a compact Riemann
surface of genus g > 1. A point P € M will be called a g-Weierstrass point
provided its weight with respect to s#%4M) is positive. A 1-Weierstrass point
is called simply a Weierstrass point or a classical Weierstrass point. It is clear
from the ideas in the previous paragraph that we have the following

Proposition. A point P on a Riemann surface M of genus g > 2 is a g-Weier-
strass point if and only if there exists a (not identically zero) holomorphic g-
differential on M with a zero of order > dim #%M) at P. For q = 1, this
condition is equivalent to either (and hence both)

a. i(P?%) >0, or
b. r(P~%) > 2 (that is, at least one of the integers 2, . .., g is not a “gap”).

II1.5.10. There are clearly no g-Weierstrass points (for any g > 1) on a
surface of genus 1. We assume thus that g > 2.

Proposition. For g > 2, g > 1, let ©(P) be the weight of P € M with respect
to #M). Let W, be the Wronskian of a basis for #4M). Set d =d, =
dim #’M). Then W, is a (non-trival) holomorphic m = m-differential where
m=(d/2)2q — 1 + d). Hence

Y ©(P)=(g— 1)d(2g — 1 +d).

PeM

PrROOF. We must merely verify that the determinant ¢ defined by (5.8.3)
transforms as an m-differential under changes of coordinates. Explicitly,
let {{y,....,(4) be a basis for #%M). Let z and 2 be local coordinates with
Z = f(z) on the overlap of their respective domains. Assume that

svj = (Pj(—')dfq = @j(f)dfq

(that is,

Gf(Nf(2) = @j(2))
in terms of the local coordinates - and . We must show that

(det[@y, ... .p4])dz" = (det[Py, . . . ,Py]) dZ™ (5.10.1)
But it is easy to verify that
det[@y, ... .@q4] = det[(§, o NSV ... ABa> NS)]

= (fY"(det[@,, ....34]° )

which is equivalent to (5.10.1). (|

Corollary. For g > 2 there are q-Weierstrass points for every q > 1.
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PrOOF. Any m -differential always has zeros. O

II1.5.11. We now finish the study of classical Weierstrass points (the case
qg=1).

Theorem. For g > 2, the weight of a point with respect to the holomorphic
abelian differentials is <g(g — 1)/2. This bound is attained only for a point P
where the “non-gap” sequence begins with 2.

PrOOF. We have seen that (Proposition 111.5.10)
Z ©(P)=(g — g(g + 1). (5.11.1)

PeM
The above, of course, gives a trivial estimate on 7(P). We need a better one.
Let2 <o, <a, <-- - <a,=2g be the first g “non-gaps” at P. Then let 1 = n,
<n, <---<n,<2g be the g-"gaps” at P. (That is, the sequence of n;’s is

the complement in {1, ....,2g} of the sequence of «;’s.) Then (recall 111.5.8)
[ 29 9 g9
(P)=3 (m—j)= 2 j— )y o~ 2 J
ji=1 ji=1 ji=1 ji=1
2g—1 ) g—1 39
= Y j-YXu<Tl-D-glg-1
j=g+1 i=1
=g(g —1)/2,
by the Corollary to Proposition II1.5.7, with equality holding if and only
ifo;, = 2. (]

Corollary. Let W be the number of Weierstrass points on a compact surface of
genus g > 2, then2g +2< W <g*—g.

PROOF. The first inequality follows from (5.11.1) and the fact that the max-
imum weight of a Weierstrass point is g(g — 1)/2 > 0. The second from the
fact that the minimum weight of a Weierstrass point is 1 (so called simple
Weierstrass points). U

Remark. The first equality is attained if and only if at every Weierstrass
point the “gap” sequence is 1, 3, ..., 2g — 1. These are the hyperelliptic sur-
faces to be studied in II1.7. The second equality is attained if and only if the
“gap” sequence at each Weierstrass pointis 1,2,...,g9 — 1, g + 1. Existence
of such surfaces will be demonstrated in VIIL.3.9.

ITL.5.12. In this section we present an interesting application of the theory
developed so far, and exhibit a striking difference between open and closed
Riemann surfaces. If M is a Riemann surface, then we define the ( first)
holomorphic de Rham cohomology group as the vector space of holomorphic



IIL.5. Applications of the Riemann—-Roch Theorem 89

differentials on M factored by the subspace of exact holomorphic differentials
(the latter are the images of holomorphic functions under the differential
operator d). We denote this group by Hy,(M). It is obviously a complex
vector space. We have seen that if M is a compact surface of genus g, then

dim Hy (M) = g.

Theorem. Let M be a compact Riemann surface of genus g >0 and let P,
..., P, be k > 0 distinct points on M. Set M' =M — {P,, ...,P.}. Then

dim Hi,(M') =29 + k — 1.

Further, each element of H_,(M') may be represented by an abelian differ-
ential of the third kind on M that is regular on M’ has a pole of order at most
2g at P, and at most a simple pole at P, j=2,..., k.

PRrROOF. We observe that the rank of H,(M’), the first homology group of
M',is 2g + k — 1. A holomorphic 1-form on M’ that has zero periods over
a basis for H,(M’) must be exact. Hence we conclude that

dim Hl,(M') <29 + k — 1.

Since the d operator sends regular functions to regular differentials, mero-
morphic functions to meromorphic differentials, and functions with essen-
tial singularities to differentials with essential singularities, the theorem will
be proved if we show that the quotient of the meromorphic 1-forms on M
that are regular on M’ by the subspace of images under d of the mero-
morphic functions on M that are regular on M’ is exactly (it would suffice
to show it is at least) 2g + k — 1.

We use induction on k. Assume that k = 1. For each integer n with
n > 2g, there exists a meromorphic function f on M which is regular on
M — {P,} and has a pole of order n at P,. Therefore, every meromorphic
1-form on M which is regular except possibly at P, is equivalent modulo
exact forms to one with a pole of order at most 2g. We compute the
dimension of

Q(P*)
dL(Pl—2g+1)‘

The above dimension equals i(P;29) — (r(P; ?**!) — 1) since the kernel of d
consists of the constants. The Riemann—-Roch theorem shows that the
above difference is 2g. Hence the result is verified for k = 1. O

Assume now that k> 1 and let M" =M — {P,,...,P,_,}. We assume
that the theorem holds on M”. Observe that (by the Noether “gap”
theorem, for example) for each positive integer n, there exists a mero-
morphic function on M which is regular except possibly at P, and P, and
which has a pole of order n at P,. It follows that in passing from M” to M’
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the dimension of the de Rham cohomology group can go up by at most
one. To show that it actually increases, we observe that the differential of
the third kind wp, p is not holomorphic on M” and represents a nontrivial
(since it cannot possibly be exact) class in the cohomology group of M'.

IIL5.13. We shall now refine the results of the last section and give an
alternate proof of the inequality

dim H}(M') > 2g + k — 1.

We single out one of the punctures on M’, say P,, and then construct a
unique representative for each cohomology class in H},(M’'). We choose
holomorphic forms on M’ as follows:

(a) a basis for the holomorphic differentials of the first kind on M (for
example, a normalized basis {,, ..., {, dual to some canonical homology
basis on the compact surface (without punctures)) as defined by Propo-
sition 111.2.8;

(b) for j=2,..., k, we let 7; be any meromorphic differential of the third
kind on M that is regular on M’ and has simple poles at both P, and P,
(if k = 1, then we do not need any differentials of the third kind); and (c)
for j=1,..., g, we let 6, be any meromorphic differential of the second
kind on M that is regular on M’ and has a pole of order n; + 1 at Py,
where n,, ..., n, is the “gap” sequence at Py, see (5.3.1).

(c) We note that n, + 1 < 2g and that we can take for 6; the differential
tps 1) defined in II1.3.8. We now have the following:

Proposition. Each element of H.,(M’) is uniquely represented by a mero-
morphic differential in the linear span of the 2g + k — 1 linearly independent
differentials defined by (a), (b), and (c).

PROOF. Let us write an element in this span as { + 7, where ( is of the first
kind and 7 is of the third kind. Assume that this differential is exact and
equal to df, then T must be zero since an exact differential cannot have any
non-zero residues. Let —n = ordp {. If n >0, then n>1 and deg f =
—ordp f=n—1 contradicting the fact that n — 1 is a gap. Thus n <0
and ( is of the first kind (on M). It must hence be the zero differential.

O

Remark. The differentials in (a) and (b) span Q(1/P, --- B).

Corollary. If P, is not a Weierstrass point on M then each element of
H. (M) is uniquely represented by a meromorphic differential in

QPP - PTY).



111.6. Abel’s Theorem and the Jacobi Inversion Problem 91

I11.6. Abel’s Theorem and the Jacobi
Inversion Problem

In this section we determine necessary and sufficient conditions for a divisor
of degree zero to be principal (Abel’s theorem), and begin the study of the
space of positive (integral) divisors on a compact Riemann surface. To each
compact surface of positive genus g, we attach a complex torus (of complex
dimension g) into which the surface is imbedded. This torus inherits many of
the properties of the Riemann surface, and is a tool in the study of the surface
and the divisors on it.

The Riemann-Roch theorem showed that every surface of genus O is
conformally equivalent to the sphere C U {00} (Corollary 1 in 111.4.9). Abel’s
theorem (Corollary 1 in 111.6.4) shows that every surface of genus 1 is a torus
(C modulo a lattice). These are uniformization theorems for compact surfaces
of genus g < 1. For uniformization theorems for surfaces of genus g > 2,
we will have to rely on different methods (involving more analysis and
topology). These methods, which will be applicable to all surfaces, will be
treated in IV.4 and IV.5.

Throughout this section M represents a compact Riemann surface of
genus g > 0.

I11.6.1. We start with
{ay,...a,by,....b,} = {ab},

a canonical homology basis on M, and

2

{gb LR sé’g} = {C}’
the dual basis for #!(M); that is,

[LG=0s k=124

We have seen in I11.2, that the matrix I7T with entries

thk=J;ij, j,k=],...,g,

is symmetric with positive definite imaginary part. Let us denote by L = L(M)
the lattice (over Z) generated by the 2g-columns of the g x 2g matrix (1,I1).
Denote these columns (they are clearly linearly independent over R) by
eV, .., e9 M . 29, A point of L can be written uniquely as

9 g
) D wi
Y mie?+ Y naY, withm, n;je Z,
i=1 i=1

or

Im+IIn  withm ="'(m,,... ,m))eZ%and n="(n,, ... n,)e 2%
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We shall call J(M) = C?/L(M) the Jacobian variety of M. It is a compact,
commutative, g-dimensional complex Lie group. We define a map

oM - J(M)

by choosing a point P, € M and setting

P t P P
QD(P):J '§= (J‘ Cl”J‘ Zg)

Proposition. The map ¢ is a well defined holomorphic mapping of M into J(M).
It has maximal rank.

PROOF. Let ¢; and ¢, be two paths joining P, to P, then c,c5 ! is homologous
to (a,b)[ 7] for some m, n € Z%. Thus

L'c—fcz'c=1m+nneL(M).

If z is a local coordinate vanishing at P and ¢,, . . ., ¢, are the components
of ¢ (in C?), then writing {; = n;dz, we have

P z
@i(z) = J gj + J‘ '7;(2) dz,
Py 0
and we see that

Co;
52’ =71 j(Z)-

Thus ¢ would not have maximal rank if there were a point at which all the
abelian differentials of the first kind vanished. Since this does not occur
(recall 1I1.5.8), the rank of ¢ is constant and equals one. O

A map y : M - J(M) of the form
Y(P)=9(P)+c, PeM,

with fixed ¢ € J(M) will be called as Abel-Jacobi embedding of M and its
Jacobian variety.

IIL6.2. Let, for every integer n > 1, M, denote the set of integral divisors
of degree n. We extend the map ¢:

¢:M, > J(M)
by setting for

D=P, P, D)= ¢(P)
i=1
Note that (since ¢(D) = @(P,D))
OM, 1) > oM,) > -2 (M) = o(M).

We can also obtain a map that does not depend on the base point P,,.
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Let Div®(M) denote the divisors of degree zero of M; define

¢:Div(M) - J(M)
by setting

o(D)= 3 o(P)— 2 (@)

for
D=P,- PO, Q.

It is clear that if r = s, (D) is independent of the base point; that is, the map
¢ :DiviO(M) - J(M)

is independent of the base point.

I11.6.3. Theorem (Abel). Let D e Div(M). A necessary and sufficient con-
dition for D to be the divisor of a meromorphic function is that

@(D) = 0 mod (L(M)) and degD =0. (6.3.1)

PROOF. Assume that f is a meromorphic function. Let D = (f). We have seen
(Proposition 1.1.6) that deg D = 0. Since for D = 1, Abel’s theorem trivially
holds, we assume that f ¢ C. Write

D= Pallx C. Pik/Qllh C er’ k> 1,r> 1, (632)
with
P, %0, alljl;
Pj;éP, and Qj?éQl, allj;él,

k r
;“j: ;ﬂj(zl)-

Without loss of generality, we may assume that none of the points P;, Q;
lie on the curves representing the canonical homology basis. Recall the
normalized abelian differentials 7p, of the third kind introduced in IIL3.
Observe that df/f is an abelian differential of the third kind with simple
poles and

(6.3.3)

Tf: ordp f, forallPe M.

resp

Thus
d k r
%_ <Z %Thp, = 2, 5jTQ,»Po>
j=1 j=1

(where P, is not any of the P; or Q; nor on the curves a;, b)) is an abelian
differential of the first kind. Hence, we can choose constants ¢;,j = 1,...,4¢,
such that
df k r g
7= 2, %Thpo JZI Bitg,po + _Zl 3182
< i=

Jj=1
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It follows that

— =,

a,f

and by the bilinear relations for the normalized differentials 7,

df . x P, d J e g
=Sl S nfa) £ om
Since df/f = d log f, we see that
df af

. 7 = 2nim,, N 7 = 2nin,,
where m;, n; are integers. It follows that the /th component of ¢(D) is
: P ’ 0. 1 pdf 1 &
j; j fPo & j; Bi e, G nido f 0 2mi & i

g
=n— ) mm,
j=1

and thus ¢(D) = 0 mod(L(M)). We have used P, as the base point for ¢.
Recall that since D is of degree 0, ¢(D) is independent of P,,.
To prove the converse, we let D be given by (6.3.2) subject to (6.3.3).

Choose a point Q, not equal to Py, nor any of the P; nor any of the Q; nor
lying on any of the curves a;, b;. Set

k P r P g P
f(P) = exp(}gll aj fQO ‘rPJ‘PO - _’;1 ﬁ] fQO ‘EQJ'PO + J;l Cj fQO CI)

fP
= ex T
P o, ©

where the constants c,, ..., ¢, are to be determined. It is clear that f is a
meromorphic function with (f)= D, provided f is single-valued. We
compute

k r
thz Z O(j J;I IPjPO— Z ﬂjj:u TQ;PO+ Cl= Cl,
j=1 j=1

and
k r [
f,, =) “1_‘; Thpo = 2. ﬁjﬁ, Tope + 2. il

1 P 1 Py 1 Py
j=1 j=1 Jj=1

k P; r Q; g

. , .
= 2mi 21 o fpo { — 2mi '21 Bip, G¥ '21 Cimj.
J= 1= J=

For f to be single-valued, we must have that |,, , [, T are of the form 27in,
ne Z. Now (6.3.1) yields,

. P; d Qj J
Z % ff’o ST Z ﬂj J;’u Co=mt Z Mt
j=1 ji=1 ji=1
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withm, mjeZ,1=1,...,9,j= 1,...,g. This means we can choose paths
y; and J; joining P, to P; and Q; respectively, such that integrating over
these paths, leads to the above equation. It is clear that if we choose ¢; =
—2nim;, f will be single-valued. O

EXERCISE

We outline an alternate proof of the necessity part of Abel’s theorem. Let f be a non-
constant meromorphic function on M. For each a € C U {00}, let f ~!(a) be viewed as
the integral divisor of degree deg f, consisting of the preimage of «. Then o +— ¢ (f ™~ !(x))
is a holomorphic mapping of C U {0} into J(M). Since C U {oo} is simply connected,
it lifts to a holomorphic mapping of C U {00} into C*. Since C U {c0} is compact this
mapping is constant and thus ¢(f ~1(0)) = o(f ™ *(00)).

I11.6.4. For g = 1, J(M) is of course a compact Riemann surface. We have
the following

Corollary 1. If M is of genus 1, then
o:M - J(M)

is an isomorphism (conformal homeomorphism).

Proor. Clearly ¢ is surjective (since it is not constant). Let P,Q € M, P # Q.
If ¢(P) = ¢(Q), then P/Q is principal by Abel’s theorem. Thus there is a
meromorphic function on M with a single simple pole. This contradiction
shows that ¢ is injective. O

Corollary 2. If M has genus > 1, then ¢ is an injective holomorphic mapping
of M onto a proper sub-manifold p(M) of J(M).

I11.6.5. Let D be an integral divisor of degree g on M ; that is,
D=P, P, (PieM,j=1,...49) (6.5.1)
Then by the Riemann-Roch theorem
r(D-")=1+iD)>1.

We call the divisor D special provided r(D™1!) > 1.

Theorem. Let D € Div(M) with D > 1 and deg D = g. There is an integral
divisor D' of degree g close to D such that D' is not special. Further D' may
be chosen to consist of g distinct points.

Remark. Write D as in (6.5.1), and choose a neighborhood U; of P;. The
condition that D’ be close to D is that D' = P} - - - P, with Pje U;.
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PRrOOF oF THEOREM. Note that for divisors of degree g,
r(D"Y)=1<iD)=0
Assume that D is given by (6.5.1) and define
D;j=P, - P; (j=1,....9).

J

Thus D, = D. Set D, = 1. We prove by induction that for j > 1, we can
find a divisor Dj of the form D_,Pj (D, = 1) with P} arbitrarily close to
P;and i(Dj))=g —j,j=1,...,g. The Riemann-Roch theorem (or linear
algebra) implies that i(D}) > g — j (for any integral divisor D; of degree j).
Note that for arbitrary P, (as we have seen before),

i(P)=rPi )~ 1+g—1=rPT)+g—2=g—1

(since C = L(P;'), because a surface of positive genus does not admit a
meromorphic function with a single pole). Thus, it suffices to take Py = P;.
Assume that for some 1 < j < g, we have constructed a D of the required
type. Let {¢y,...,@,—;} be a basis for the abelian differentials of the first
kind vanishing at Py, ..., P;. Look at ¢. If ¢,(P;,,) # 0, then i(D}P;, ) <
g — (j + 1), and we are done If ,(P;. ) = 0, then arbitrarily close to P, ,
there is a point Pj,, with ¢,(Pj,,)# 0 and once again i(DjPj,,)
g—@+1.

m

I11.6.6. We consider now the map
oM, - J(M).

We will show that this map is always surjective (generalizing the first corollary
in 111.6.4). To this end let D, = P, - - P, with P;e M, P; # P, for j # k be
such that i(Dy) = 0. Let U; be a coordinate disk around P; with local co-
ordinate t; vanishing at P;. Let K = ¢(P; - P,). In terms of the local
coordinates t; we write {, = m(t;)dt; and thus in terms of the local coor-
dinates ¢; at P; the mapping ¢ in a neighborhood of the origin (0, .. .,0)
is simply
(2. 2)) P K+ (@21, -2, - s @2y, - - 12,)),

where

RS Zf ny(t;) dt .
Thus

2

0. 0) = mul0) = Py

(the last equality is merely a convenient abbreviation). Thus the Jacobian
of the map p at P, --- P, is

Gi(Py) o (:l(Pg)

Cg(Pl) e Cg(Pg)
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The condition i(P, --- P,) = 0, however, gives us immediately that the rank
of the Jacobian is g. Therefore, the map

Uy x---xU,»>C
is a homeomorphism in a neighborhood of (0, . . . ,0) by the inverse function
theorem; and thus covers a neighborhood U of K (in C? or in J(M)). Let

c="cy,...,c,) € C’ Then for a sufficiently large integer N, K + ¢/N e U,
and thus there exists a Q, . .. ,Q, such that

Q- Q)=K+ /N

N(p(@Q, - Q) - K)=c

Thus to show that ¢ € Image ¢, it suffices to show that there exists an integral
divisor D of degree g such that

(D) = N(p(Q, - Q,) — K).
Consider the divisor (P, -+ P)V/(Q, - - - Q)" P%. The Riemann—Roch theo-

rem gives
(PI.”Pg)N _ (QIQQ)NP%
'((Ql F QQ)NP%) =i ’< (P, P ) =1

Hence, there is an f € L((P, - P)"/(Q, - - - Q,)"P})); that is, there is an
integral divisor D of degree g such that
_ D(P, - P

(Qy - Q)"PY

or

(f)
By Abel’s theorem
@(D) + No(Py -~ P)) = No(Q, -~ Q).
We have solved the Jacobi inversion problem:

Theorem (Jacobi Inversion). Every point in J(M) is the image of an integral
divisor of degree g.

Corollary. As a group J(M) is isomorphic to the group of divisors of degree
zero modulo its subgroup of principal divisors.

Remark. We have shown (Corollary 1 of I11.6.4) that every surface of genus
one can be realized as C modulo a lattice. This is the uniformization theorem
for tori. We shall return to this topic (including uniformization theorems
for surfaces of genus > 1) in the next chapter.

I11.6.7. Exercise

We have seen that an arbitrary torus M is conformally equivalent to C/G where G
is the group generated by two elements z+—z + 1 and z+—z + 7, Im 7 > 0. Further,
the origin of C/G may be made to correspond to any point in M.



98 III Compact Riemann Surfaces

(a) Every meromorphic function f on M can be viewed as a doubly periodic function
f (this identification should cause no confusion) on C; that is, a meromorphic
function f on C with

f+1)=f)=f(z+1), allzeC.

The Weierstrass g-function is defined by

o) =+ ( By 'f),ze([:,
f z? (n(m;g):(q_z(), (z—n—mt)* (n+ mo)?

Note that ¢ is an even function. Let P, Q € M. Let f € L(1/PQ)\C. Show that there
exists a € Aut M (the group of conformal automorphisms of M), § € Aut(C U {o0}),
such that

f=Bopoa
(For a discussion of Aut M, see V.4.)

(b) Show that every meromorphic differential on M is of the form f(z)dz where f is
a doubly periodic function. If we choose the loop corresponding to z+— z + 1 as
the “a-curve” and z +— z + 1 as the “b-curve”, then we have a canonical homology
basis on M. The basis for #'(M) dual to this canonical homology basis is then
{dz}.

(c) From what we said above, g(z)dz is an abelian differential of the third kind with
zero residue and singularity 1/z2 at the origin. Hence there exists a meromorphic
function { on C such that {' = — . This function { cannot be doubly periodic
(why?). However, { satisfies for all ze C

{z+ D) =02 +m,
{(z+1)= C(Z) + N2,
where #n, and 7, satisfy Legendre’s equation

T — N, = 27 (6.7.1)
Derive (6.7.1) from (3.8.2).

I11.6.8. The following technical and important result is suggested by the
development of Section I11.6.6.

Proposition. Let M be a compact Riemann surface of genus g > 2. For all
q > 1, the differentials with simple zeros are dense and open in #(M).

ProoF. Let d = dim #9(M) and recall that 1 <d < . Let w; and w, be
two linearly independent elements of #9(M) without common zeros. To
construct such differentials, let w, be any non-trivial holomorphic g-
differential. The set of differentials vanishing at a point in the divisor of w,
is a finite union of codimension one subspaces of #9(M). We can clearly
find an w, in the complement of the finitely many hyperplanes. Then
f =w,;/w, is a non-construct meromorphic function on the surface of
degree q(2g — 2). Let a be a complex number which is not a branch value
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of f. We have excluded a finite (non-empty) set of values. The function f
takes on the value a at q(2g — 2) distinct points. These points must be zeros
of the differential w, — aw,; they must be all the zeros of this differential
and all of these must be simple zeros since the degree of the divisor of
w; — aw, is q(2g — 2). We have shown that the set of g-differentials with
simple zeros is dense. O

Next we show that the differentials with simple zeros are open. Let w be
a differential with simple zeros at P, ..., P,,,_, and let o, ..., w, be a
basis for the holomorphic g-differentials. Choose a small disc D; with center
at P;; we assume that these discs are all disjoint and that the closure of each
D; is contained in the domain of a single local coordinate z; vanishing at
P,. Let us write in terms of these local coordinates w = ¢(z;) dz} and
@y = ¢j(z;) dzf. Our assumption that w has a simple zero at each P, means
that ¢,(0) = 0 and that ¢; does not vanish on the boundary c; of D;; hence
the absolute value of ¢; has a positive minimum m; on ¢;. Let m,; be the
maximum of the absolute value of ¢; on ¢;. Choose a positive ¢ such that

&

M=

m;<m; forj=1,...,d
k

1

Then for 5y, ..., n, arbitrary complex numbers with |7,| < ¢, the differential
0 = w + )% mw, has one simple zero inside each disc D;, j=1, ...,
4(2g9 — 2), by Rouche’s theorem, since on ¢;

d
Z ’7k¢kj
k=1

Once again these g(2g — 2) zeros account for all the points where the
differential 6 vanishes and each zero is simple.

d d
< kz Imlmy; < e kzl m; < m.
=1 =

II1.7. Hyperelliptic Riemann Surfaces

In this section we study hyperelliptic Riemann surfaces—the simplest
surfaces. These are the two-sheeted (branched) coverings of the sphere. We
shall see that there exist hyperelliptic surfaces of each genus g, and that these
surfaces are the ones for which the number of Weierstrass points is precisely
2g + 2. These surfaces thus show that the lower bound obtained in the
Corollary to Theorem II1.5.11 is sharp.

III.7.1. A compact Riemann surface M is called hyperelliptic provided
there exists an integral divisor D on M with
deg D =2, rD™ 1> 2.

Equivalently, M is hyperelliptic if and only if M admits a non-constant
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meromorphic function with precisely 2 poles. If M has such a function, then
each ramification point has branch number 1, and hence the genus g of M
and the number B of branch points (= ramification points) of f are related by
(using Riemann-Hurwitz)

B=2g+2.

Remarks

1. We can hence describe a hyperelliptic surface of genus g as a two-sheeted
covering of the sphere branched at 2g + 2 points.

2. Some authors restrict the term hyperelliptic to surfaces of genus > 2 that
satisfy the above condition.

II1.7.2. Proposition. Every surface of genus <2 is hyperelliptic.

PrOOF. Let D be an integral divisor of degree 2. Riemann-Roch yields
r(D°Y=2-g+1+iD). (7.2.1)

Thus r(D™ ') > 2 for g < 1, and the only issue is g = 2.

First proof for g = 2: Let P be a Weierstrass point on a surface of genus 2.
Then there is a non-constant f '€ L(P ™ 2).(This function cannot have degree 1.)

Second proof for g = 2: Choose w # 0, an abelian differential of the first kind
on M. Then, since deg(w) = 2,

(w) = PQ.
Since i(PQ) = 1, (7.2.1) yields (P7'Q ') = 2. O

Remark. Surfaces of genus 1 are also called elliptic (tori). Surfaces of genus

zero admit, of course, functions of degree 1. Thus, hyperelliptic surfaces are
those which admit functions of lowest possible degree.

I11.7.3. Let M be a hyperelliptic Riemann surface of genus > 2. Choose a
function z of degree 2 on M. Let f be another such function. We claim that f'is
a Mobius transformation of z. Let the polar divisor of z be P,Q; and the polar
divisor of f be P,Q,. It suffices to show that P,Q; ~ P,Q,. For then there is
an he A (M), such that multiplication by h establishes an isomorphism
between L(P;!Q;") and L(P;'Q5"). Since {l,z} and {1,f} are bases for
these spaces, there are constants o, f§, y, 4 such that

1 =ah + Bhz

f =7vyh + dhz
or

f:*,'+5z

o+ fz
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To establish the above equivalence, we observe first that the branch points
of f are precisely the Weierstrass points of M. To see this let Pe M be a
branch point of f. Then f is locally two-to-one at P. Thus if f(P) = oo, f has
a pole of order 2 at P (and no other poles) and then P is a Weierstrass point.
If f(P) # o, then
1

f—7P

has a pole of order 2 at P, proving that P is a Weierstrass point on M. It now
follows by Proposition II1.5.6 that the “gap” sequence at any of the 2g + 2
branch points of f is

L3,...,29—1,

and thus the weight of any of these points is

g g9
Y k-1 Y k=g 9D Cgg )
k=1 k=1 2 2
Thus these 2g + 2 points contribute g(g> — 1) to the sum of the weights of the
Weierstrass points. Since the sum of the weights of all the Weierstrass points
is precisely g(g*> — 1) there are no other Weierstrass points.

Let us choose any Weierstrass point P on M. We claim that the polar
divisor of f is equivalent to P2 If f(P)= oo, there is nothing to prove.
Otherwise, look at the function 1/(f — f(P)) = F. Its polar divisor is P2
which is equivalent to the polar divisor of f since F is a Mobius transforma-
tion of f (that is, f ~!(c0) ~ f1(f(P))).

We have therefore established most of the following

Theorem. Let M be a hyperelliptic Riemann surface of genus g > 2. Then the
Jfunction z of degree 2 on M is unique up to fractional linear transformations.
Furthermore, the branch points of z are precisely the Weierstrass points of M.
The hyperelliptic surfaces of genus g > 2 are the only ones with precisely 2g + 2
Weierstrass points.

PROOF. Only the last statement needs verification. It is clear that if a surface

has precisely 2g + 2 Weierstrass points, then the weight of each such point
must be 1g(g — 1) by I11.5.10 and II1.5.11, and thus, as we saw there, the

“non-gap” sequence must begin with 2. O

Remark. We show next that on a hyperelliptic surface each of the Weierstrass
points is also a g-Weierstrass point for every g > 1. It follows from the fact
that the “gap” sequence is 1, 3,...,2g — 1 for each Weierstrass point P,
that there is an abelian differential ¢ of the first kind with divisor P29~ 2,
Thus ¢?is a holomorphic q differential with divisor P#?9~ 2 Since g(2g — 2) >
(2g — 1)(g — 1) — 1, P must also be a g-Weierstrass point.
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I11.7.4. We now wish to construct another function on a hyperelliptic
surface of genus g > 1. Let z be a function of degree 2. Let Py, ..., P,,., be
the branch points of z. Without loss of generality we assume that

2P)# o0, j=1,...,29+2

Consider “the function”
2g+2

1_[ (z— z(Pj)). (7.4.1)
j=1

Remark. We have introduced above a multivalued function which we will
show to be single-valued. Multivalued functions are treated in IIL.9. In IV.11,
we will show how the function w can be obtained without the use of multi-
valued functions.

Proposition. The above defines w as a meromorphic function on M whose
divisor is
Py---P 2g9+2
Qg1+ IQ%+ 1

where Q,Q, is the polar divisor of z.

(7.4.2)

Proor. Since all the branch points of z have ramification number 2, w
locally defines a meromorphic function on M which is two-valued. We must
show we can choose a single valued branch. It is convenient at this point
to introduce a “concrete” representation of the surface M as a two-sheeted
covering of the sphere C U {o0}. If P e M, z(P) # oo and P is not a branch
point of z, then z — z(P) is a local coordinate vanishing at P. If z(P) =

(recall we have assumed that P is not a branch point), then 1/z is a local
coordinate vanishing at P. If P is a branch point, then either branch of
/z — z(P) is a local coordinate vanishing at P. With slight and obvious
modification, the above procedure could have been carried out with any
meromorphic function on any (compact or not) surface (recall Remark 3
in I.1.6). We define now e; = z(P)). Then these e; are distinct; and z” Ya)
consists of precisely two points on M for all ae C U {oo}\{ey, ... .e25+2},
whereas z 7 '(e;) consists only of the point P;. We picture now two copies
of the sphere. We label these two copies sheet I and sheet II. On each sheet
for each k =1,...,g + 1, we draw a smooth curve called a “cut” joining
€21 to e, We may assume that the e;’s have been ordered so that these
cuts do not intersect. Each “cut” is considered to have two banks; an N-bank
and an S-bank. We construct a Riemann surface M by joining every S-Bank
on sheet I to an N-bank of the corresponding “cut” on sheet II, and then
joining the corresponding S-bank on sheet II to the N-bank of the corre-
sponding “cut” on sheet I. It is quite clear that M is a compact Riemann
surface and z is a meromorphic function on M. Thus M is indeed a concrete
model for M. We remark that a simple closed curve around a point e;, that
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Figure II1.3. Cross “cuts” for a hyperelliptic surface of genus 2.

does not go around any e, with k # j, may be pictured as beginning in one
sheet say at R,, continuing around until the point, R,, on the second sheet
with z(R;) = z(R,) and returning back to R,. We now construct a canonical
homology basis for M using this two sheeted representation. Draw simple
smooth closed curves a,, k = 1, . .., g, winding once around the “cut” from
ey-1 to ey in one sheet of M oriented as indicated in Figure II1.3. This
curve a, exists because we cross between sheets only through the “cuts”.
Next choose curves by, k=1,...,g¢, starting from a point on the “cut”
from ey, to e, going on the first sheet to a point on “cut” from e,,,, to
e,,4+2 and returning on the second sheet (indicated in Figure I11.3 by dotted
lines) to the original point. The orientation of the b-curves is again illustrated
in Figure III.3. Let us stop to analyze what is happening on the surface
itself.

The reader should convince himself (or herself) that the picture on the
surface (Figure II1.4) is actually the lift of the picture in the extended plane
via the two-sheeted covering z. (Note that all we are using is that a curve
in the plane passing through e; can be lifted in two ways as a curve in M
passing through P;.) We have actually constructed a canonical homology
basis, since by inspection the intersection matrix is of the form

alb
a 01
bl —-110

We return—after this lengthy digression—to investigate the behavior of
our function w. We need only look at what happens in the plane if we continue
analytically a branch of \/z — e;. The analytic continuation of this function

Figure II1.4. The hyperelliptic model in genus 2.
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element around a closed path changes sign if and only if the path has odd
winding number about e; (if it has even winding number, we return to the
original function element). Thus w changes sign if we continue it along a
simple closed path in C U {co} that encloses an odd number of the e;. If a
curve in Cu{o}\{ey,....e5,+,} begins at z and returns to this pomt,
enclosing an odd number of e;, then this curve must cross one of the “cuts”
and thus its lift to M is a curve joining the points P and Q, P # Q, on M with
z(P) = z(Q). Thus w can be continued analytically along all paths in M.
Furthermore, continuation along any closed path in M (which must encircle
an even number of e;’s when viewed in the plane) leads back to the original
value of w. Thus w is single-valued on M, and for any P, Q on M with P # Q,
we have

z(P) = z(Q) = w(P) = —w(Q).

The fact that (w) is given by (7.4.2) is an immediate consequence of (7.4.1).

g
I11.7.5. The above proposition has some immediate consequences.
Corollary 1. The g differentials
Zdz .
, Jj=0,...,9—-1, (7.5.1)
W

form a basis for the abelian differentials of the first kind on M.

ProoF. Without loss of generality z(P;) # 0, and
0304
(2) = :
0.9,

It is clear of course that the differentials in (7.5.1) are linearly independent,
and all we must show is that they are holomorphic. Since

(dZ) — 1 2g+2’
0103

we see that
Zdz

(—) _ 01108 10304
w

This divisor is integral as long as j < g — 1 and therefore these differentials
are holomorphic. O

Corollary 2. On a hyperelliptic surface of genus g > 2 the products of the
holomorphic abelian differentials (taken 2 at a time) forma(2g — 1)-dimensional
subspace of the (3g — 3)-dimensional space of all holomorphic quadratic
differentials.
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PrOOF. Using the basis constructed in Corollary 1, the span of the products
has a basis consisting of

2J(dz)?

w2’

j=0,...,29 -2 (1.52) O

Remarks

1. Note that 29 — 1 = 3g — 3 if and only if g = 2.

2. To obtain a basis for the holomorphic quadratic differentials for a hyper-
elliptic surface of genus g > 2 we must add to the list in (7.5.2), the
differentials

2(dz)?

w

s j=0,...,9—3.

EXERCISE

Obtain a basis for the holomorphic g-differentials on a hyperelliptic surface. What is
the dimension of the span of the homogeneous polynomials (of degree g in g variables)
of the abelian differentials of the first kind?

II1.7.6. Recall the injective holomorphic mapping
@M — J(M)

of a Riemann surface M into its Jacobian variety introduced in I11.6.1. Let
n be a positive integer. Since J(M) is a (commutative) group, we say that a
point e € J(M) is of order n, provided ne = 0 and me # 0 for all integers n
with 0 <m < n.

Proposition. Let M be a hyperelliptic Riemann surface of genus >2. Choose
a Weierstrass point Py as a base point for the map ¢. Let Pe M,, P # P,.
Then @(P) is of order 2 whenever P is a Weierstrass point.

PrROOF. We have seen that there is a meromorphic function f on M whose
polar divisor is P2. Since P, is a branch point of f, (f — f(P,)) = P2/P2.
Thus P§ ~ P? and by Abel’s theorem,

2¢(P) = ¢(P?) = ¢(P5) = 0. O

EXERCISE

Let M be an arbitrary compact Riemann surface of genus g > 1. Let ¢:M — J(M) be
the embedding of M into its Jacobian variety with base point P,. Assume that o(P)
has order n, for some P e M, P # P,. Show that there exists an [ € .# (M) with f)=
P"/Pg. In particular if g > 1 and 2 < n < g, then both P and P, are Weierstrass points
on M.
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For g = 1, return to the Weierstrass g-function considered in Exercise II1.6.7.
Show that the 4 branch points of ¢ are precisely the 4 half periods of J(M).

II1.7.7. If M is an arbitrary Riemann surface, we denote by Aut M the
group of conformal automorphisms of M. Let H = Aut M be a finite sub-
group. For P e M, set

Hp={he H;h(P)= P}.

Then H, is clearly a subgroup of H. We claim that Hp is cyclic. This is a
consequence of the following

Proposition. Let hy, . .., h, be n holomorphic functions defined in a neighbor-
hood of the origin. Assume that hj(0)=0,j = 1,..., n, and that these n-functions
form a group H under composition. Then H is a rotation group (that is, there
is a simply connected neighborhood D of the origin and a conformal mapping
f of the unit disk A onto D such that f(0)=0, hjD)=D and f~' o h;o f is
arotation forj=1,...,n).

Remark. The existence of a simply connected D invariant under H implies
the rest of the proposition. In this case, choose f to be a Riemann map of 4
onto D with f(0) = 0. Then

Ej = f —1, hj o f
is a conformal self-mapping of the unit disk that fixes 0, and hence of the form

hi(z) = ¥z, 0<6;<2m

2mif,,

Choosing the smallest positive f; and calling it 6, we see that h(z)=e
generates the group f~'Hf. Thus we also have

Corollary. The group Hp is cyclic.

PROOF OF THE PROPOSITION. Let h be a typical element of H. Then #'(0) # O,
since h is invertible. We claim that there is an ¢ > 0 such that h maps every
disk {|z] < r < ¢} onto a convex region. Such a region is convex if and only
if ¢ = (h{|z| = r}) is a convex curve if and only if the direction of the tangent
vector to ¢ is a monotonically increasing function of arg z; that is, if and
only if the angle (37 + arg z + arg h'(z)) is an increasing function of arg z on
{|z| = r}. A simple calculation shows that the hypothesis (h'(0) # 0) guarantees
the monotonicity of the direction of the tangent line. The derivative of the
above angle with respect to arg z is (recall arg h'(z) = Re(—i log h'))
zh”
1 + Re W
and this derivative is positive as long as |z is small.
Now choose ¢ so small, so that letting 4, = {z € C; |z| < &} we have that

hj(4,)is convex forj=1,..., n.
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Let D = (\_, h;(4,); D is convex and hence simply connected. Furthermore
h,D = D for j=1,..., n. By the remark preceding the proof, we are done.

Remark. The material of the next chapter (in particular IV.8 and IV.9) will
allow us to present at least two other proofs of the corollary to the above
proposition.

II1.7.8. We continue to use the notation introduced at the beginning of
II1.7.7. We give a Riemann surface structure to the orbit space M/H as
follows. First, we topologize M/H such that the natural projection

n:M > M/H

from a point onto its orbit is continuous. It is straightforward to check
that this makes M/H into a Hausdorff space and = an open mapping. We
introduce next a complex structure on M/H. If Pe M, and H, is trivial,
then any local coordinate at P serves as a local coordinate at n(P) on M/H.
In general, choose a neighborhood U of P in M so that H, fixes U and so
that in terms of some local coordinate vanishing at P, the action of the
generator of Hp on U is given by

Zh> 2™tk

Then z* is a local coordinate on M/H vanishing at n(P).

Remark. The Riemann—Hurwitz relation allows us to compute the genus of
M/H in terms of the genus of M and the branch points of = (= fixed points
of elements of H). We will use this fact in V.1.

I11.7.9. Proposition. Let M be a compact Riemann surface of genus g. Then
M is hyperelliptic if and only if there exists a conformal involution J (J € Aut M
with J2 = 1) on M that fixes 2g + 2 points.

ProoFr. Assume M is hyperelliptic. Let z be a function of degree 2 on M.
For Pe M set J(P) to be the unique point Q such that z(P) = z(Q) and
Q # P if such a point exists and J(P) = P otherwise. It is clear that J is con-
formal and that if { is the local coordinate, { = \/z — z(P,) in a neighborhood
of a branch point P; of z, then J({) = — (. It should be obvious to the reader
why J will also be called the sheet interchange or the hyperelliptic involution.
The fixed points of J are clearly the 2g + 2 branch points of z.

Conversely, let J be a conformal involution of M with 2g + 2 fixed
points. Consider the group of order 2, (J), generated by J, and the
two-sheeted covering

M- M/KJ>

which is branched at the 2g + 2 fixed points of J. Riemann-Hurwitz implies
that M/{J) has genus 0, and thus M has a meromorphic function of degree 2.

a
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Corollary 1.If g > 2, then the fixed points of the hyperelliptic involution are
the Weierstrass points.

Corollary 2. If g > 2, then the hyperelliptic involution is the unique involu-
tion with 2g + 2 fixed points.

PrROOF. Let J be another involution with 2g + 2 fixed points. Then, as we
have seen, the fixed points must be the Weierstrass points. Also if z is a
function of degree 2 on M, so is z J. Thus by Theorem I11.7.3, there is
a Mobius transformation A such that z o J = Aoz Let Py, ..., Py, be
the Weierstrass points on M. Then z(P;) = z(J(P;)) = A(z(P;)). Thus A fixes
z(P;), 2g + 2 distinct complex numbers (or o0), and must be the identity.
Hence J is the sheet interchange. O

Corollary 3. The hyperelliptic involution J on a (hyperelliptic) surface M of
genus g > 2 is in the center of Aut M.

PRrROOF. Let h e Aut M. Then h - J - h~ ! is an involution and fixes the 2g + 2
points h(P;). Thus it is the hyperelliptic involution. Hence h o J < h'=J,
or h commutes with J. O

I11.7.10. Proposition. On a hyperelliptic surface of genus g any function of
degree < g must be of even degree.

Prook. Clearly the proposition has content only for g > 3. Let f be a mero-
morphic function with polar divisor D with deg D < g. Riemann—Roch says

2<r(D Y)y=degD — g+ 1+ i(D).

Thus i(D) > 1 and there is a holomorphic abelian differential w such that
fw is also a holomorphic abelian differential. Using the basis for abelian
differentials of the first kind introduced in Corollary 1 to Proposition 111.7.4,
we see that

g 7 ldz
w=Y q
s ow ’
g A 4
&
fo =73 B ,
i=1 w

with a;, B; € C. Thus
j—1
PRV
T
J=1%j
is a rational function of z (a function of degree 2), and must be of even degree.

O

I11.7.11. Proposition. Let M be a hyperelliptic Riemann surface of genus > 2.
Let Te Aut M. Assume T ¢ {(J>, where J is the hyperelliptic involution. Then
T has at most four fixed points.
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PROOF. Let z be a function with two poles on M. For Te Aut M, z o T is also
a function with two poles. Thus there is a Mobius transformation A4 =
[¢ %] # 1 such that

We thus obtain an anti-homomorphism
Aut M - SL(2,C)/+1.
The kernel of this anti-homomorphism is <J ). If P is a fixed point of T, then

z2(P) = z(T(P)) = A(z(P)),

and z(P) is a fixed point of A. Since A # 1, A4 can have at most 2 fixed points
and T can have at most 4. O

Corollary. If T fixes a Weierstrass point, then T has at most 2 other fixed
points.

ProoF. Without loss of generality, we may assume the Weierstrass point
is a pole of order 2 of z. Thus the A4 above fixes oo, and must be affine (of
the form [§ }]). Since such an A4 has at most one other fixed point, T can
have at most two other fixed points. O

II1.8. Special Divisors on Compact Surfaces

Throughout this section, M is a compact Riemann surface of positive genus
g. As before, Div(M) denotes the group of divisors on M and Z denotes
a canonical divisor (usually integral).

In this section we use the Clifford index (an integer invariant of a divisor
class) to characterize hyperelliptic surfaces and to show (among other things)
that every surface of genus 4 can be represented as either a two- or three-
sheeted cover of the sphere (this is an improvement over the Weierstrass
“gap” theorem).

The object is to represent a compact Riemann surface of genus g as a
branched m-sheeted covering of the sphere, with m as small as possible.
The methods of this section give sharp answers only for small g.

II1.8.1. Let D € Div(M). We define the Clifford index of D by
c(D)=deg D — 2r(D™ ') + 2.

The fact that we have introduced a useful concept is not at all clear.
Clifford’s theorem (I11.8.4) will convince the reader of the usefulness of this
definition.
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We are interested in special divisors; that is, integral divisors D such that
there exists an integral divisor D* with

DD* = Z.

We call D* a complementary divisor of D.
It should be noted that for an integral divisor D, we have:

(a) D is special if and only if i(D) > 0;

(b) D is special whenever deg D < g — 1 (because by Riemann—Roch,
i(D) > r(D7') > 1); and

(c) if deg D =g, then D is special if and only if r(D™') > 2, if and only if
L(D™") contains a non-constant function (again by Riemann—Roch as in
I1L.6.5).

Trivial (but Important) Remark. From the definition of ¢(D) it follows that
¢(D) and deg D have the same parity (both are even or both are odd).

I11.8.2. It is clear that the Clifford index depends only on the divisor class.
More is true.

Proposition. For D € Div(M), ¢(D) = c¢(Z/D).
PrROOF. We compute
c(Z/D) = deg(Z/D) — 2r(D/Z) + 2
=29 — 2 —deg D — 2i(D) + 2
=29—2—degD—2(r(D"')~degD+g—1)+2
=deg D —2r(D™ ') + 2 = ¢(D). 0

Remark. Again, from Riemann—Roch,

c¢(D)=degD —2(degD —g+ 1 +i(D)) + 2
= —deg D + 2g — 2i(D). (8.2.1)

Thus, the proposition can be restated as

2i(D) + deg D = 2i(Z/D) + deg(Z/D).
or
i(D) — i(Z/D) = (g — 1) — deg D.

In particular, if deg D = g — 1, then i(D) = i(Z/D).

II1.8.3. Let D, and D, be integral divisors. The greatest common divisor
(gcd) of D, and D, is the unique integral divisor D satisfying the following
two properties:

a. D<D,,D<D,, and

b. whenever D is an integral divisor with D < D, and D < D,, then D < D.
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If the divisor D; is given by

D;=[] P¥®  (a(P)=0forall Pe M and
PeM a;(P) > 0 for only finitely many P € M), (8.3.1)
then
ged(Dy,Dy) = (Dy,D,) = [] Pminta®razpy,
PeM

Similarly, the least common multiple (Icm) of D, and D, is the unique
integral divisor D satisfying:
a. D>D;and D > D,, and _
b. whenever D is an integral divisor with D > D, and D > D,, then D > D.

If D; is given by (8.3.1), then
lem(D,,D,) = l_[ Ppmax{zi(Pax(P)}

PeM
Furthermore,

lem(D,,D,) ged(D,,D,) = D, D,.
Proposition. Let Dy, D, be integral divisors. Set D = (D,,D,). Then

r(DiY +rD; ) —rD YH < r<DlDD2>‘

PrOOF. Observe that
L(D; 'Y< L(DD{'D; ).

This inclusion follows from the fact that D,D,/D is integral and is >D),
forj =1, 2. Thus

L(D{")v L(D;") = L(DDy 'D3 1Y), (8.32)
where v denotes linear span. Next we show
L(D{") n L(D; ') = L(D™"). (8.3.3)

To verify (8.3.3) assume D; is given by (8.3.1). If f € L(D{ ') n L(D; ') has a
pole at P of order o > 1, then
a < oj(P), j=12
Thus also )
a < min {a;(P),o,(P)},
and f € L(D™!). We have established
L(DiYn L(D; ') = L(D™Y).
The reverse inclusion follows from the fact that D;> D, j=1,2. This ver-
ifies (8.3.3).
Finally, using (8.3.2) and (8.3.3) and a little linear algebra,
r(Dy 1)+r(D{1)—r(D_1)=dimL(Df1)+dimL(D2_1)—dim(L(Df HAL(D; 1))
=dim(L(D{')v L(D; Y))<dim L(DD{'D; ")
=r(DD{ D).
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Corollary 1. Under the hypothesis of the proposition,
¢(D,) + ¢(D;) = ¢(D) + c(D,D,D1). (8.3.4)

PROOF. The proof is by direct computation. O

Corollary 2. If D is a special divisor with complementary divisor D*, then
¢(D) = ¢((D,D*)).
PrOOF. By Corollary 1 and Proposition 111.8.2,

o= eipooy + o PP
2¢(D) = ¢(D) + ¢(D*) = ¢((D,D*)) + (<[D,D*)>

= 2¢((D,D¥)). O

I11.8.4. Theorem (Clifford). Let D be a special divisor on M. We have:

a. ¢(D) > 0.

b. Ifdeg D = 0ordeg D = 2g — 2, then ¢(D) = 0.

c. If ¢(D) =0, then deg D = 0 or deg D = 2g — 2 unless the Riemann surface
M is hyperelliptic.

PRrROOF. Since ¢(D) = ¢(D*) and deg D + deg D* = 2g — 2, where D* is a
complementary divisor of D, the theorem need be verified only for special
divisors of degree < g — 1.

Ifdeg D = 0, then r(D ') = 1 and ¢(D) = 0. Thus part (b) is verified. Next,
if deg D = 1, then also ¢(D) = 1. We proceed by induction. Suppose now
that 1 <deg D < g — 1, and ¢(D) < 0. Thus

r(D"')y>%degD +1>2.

Thus there is a non-constant function in L(D ~!'). Let D* be a complementary
divisor. Replacing D by an equivalent divisor (it has the same Clifford index
as D), we may assume that (D,D*) # D. (This last assertion is of critical
importance. It will be used in ever more sophisticated disguises. We shall
hence verify it in detail. We must show that there is P € M which appears in
D* with lower multiplicity than in an integral divisor equivalent to D. Let
w be an abelian differential of the first kind such that (w) = DD*. Let
f e L(D”')\C. Then for all ce C, (f — ¢)D is integral and equivalent to D.
By properly choosing ¢ (for example, f ~!(¢) should contain a point not in D¥),
(f — ¢)D will contain a point not in D*. Now (f — ¢)D and D* are still com-
plementary divisors since (f — ¢)DD* = ((f — ¢)w).) By Corollary 2 to our
previous proposition, ¢((D,D*)) < 0. But deg(D,D*) < deg D and (D,D*) is
a special divisor. By repeating the procedure we ultimately arrive at a divisor
of degree zero or 1, which is a contradiction. This establishes (a).

It remains to verify (c). We have seen that if 0 < deg D < 2g — 2 with
c¢(D)=0,then 1 <deg D < 2g — 3, and

rD"')=1degD + 1. (8.4.1)
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If deg D = 2, then r(D™') =2 and the surface is hyperelliptic. Now since
deg D is even, we may assume that deg D > 4. Choose D from its equivalence

class so that
1 # (D,D*) # D. (8.4.2)

This can be done since (D~ ') > 3. All we want is a function in L(D™ ')
that vanishes at some point of D* and at one point not in D*. Let f be such a
function. Then (f)D is integral, equivalent to D, and satisfies (8.4.2). We
have produced a special divisor (D,D*) with 0 < deg(D,D*) < deg D and
¢((D,D*)) = 0. Thus 2 < deg(D,D*) < deg D — 2, and we can arrive at a
special divisor of degree 2, with Clifford index zero. O

L8.5. We now derive some consequences of Clifford’s theorem. If
D e Div(M) is arbitrary with 0 < deg D < 2g — 2, then ¢(D) > deg D unless
r(D~')> 2. In the latter case (since there is a non-constant function f in
L(D™")) we have D' = (f)D is integral and equivalent to D. Since equivalent
divisors have the same Clifford index, we have almost obtained

Corollary 1. Let D be a divisor on M with0 < deg D < 2g — 2. Then ¢(D) > 0.
Equality occurs if and only if D is principal or canonical, unless M is a hyper-
elliptic Riemann surface.

ProoF. The remarks preceding the statement of the corollary show that unless
"D™')> 2, ¢(D) > deg D. If (D™ ') > 2, we have D equivalent to an integral
divisor D" of the same degree. Proposition 111.8.2 allows us to assume with
no loss of generality that deg D < g — 1. Now D’ is a special divisor. The
fact that ¢(D’) = ¢(D) > 0 follows from Clifford’s theorem. If D is neither
principal nor canonical (and since as already stated we may restrict our atten-
tion to divisors of degree <g — 1, we are only interested in the case of D
not principal), we have ¢(D) =0 gives (D" ') =1+ L deg D. If deg D > 0
we have once again r(D™"') > 2, and as before D is equivalent to a special
divisor and Clifford’s theorem implies that M is hyperelliptic. If deg D = 0,
we have r(D™') = 1 and D is principal. O

Corollary 2. If D is a divisor on M with 0 < deg D < 2g — 2, then
deg D
i(D)<g— 87
2
Equality implies that D is principal or canonical, unless M is hyperelliptic.
PrOOF. In view of (8.2.1), this is a restatement of Corollary 1. O
Corollary 3. Let M be a compact Riemann surface of genus g > 4. Let D,

and D, be two inequivalent integral divisors of degree 3 such that r(D; ') =
2 =r(D3"). Then M is hyperelliptic.

ProOF. Choose non-constant functions f; € L(D; '), j = 1, 2. We may assume
that each f; is of degree 3 as otherwise there is nothing to prove. Since D,



114 III Compact Riemann Surfaces

and D, are inequivalent, f; # cf, for any c € C. As a matter of fact, we have
that f; # A o f, for any Mobius transformation A (of course, 4o f, =
(af; + b)/(cf, + d) where a, b, ¢c,d € C, ad — bc # 0). For if f; = A f,, then
the divisor of poles of f; would be equivalent to the divisor of poles of f,
(since the polar divisor of f, is equivalent to the polar divisor of A o f3).
This would contradict the fact that f; is of degree 3, and that the two divisors
D; are inequivalent. Thus, we have 4 linearly independent functions in
L(D;{'D3 1Y), namely: 1, f,, f>, f, f>. For if

cotcefiterfatesfifa=0

with ¢;e C, then f} is a Mobius transformation of f,. Thus r(1/D,D,) >
4 =%deg D,D, + 1, and ¢(D,D,) = 0. Since deg D,D, = 6 < 2g — 2, Clif-
ford’s theorem implies that M is hyperelliptic. O

Remark. Since M is hyperelliptic Proposition I11.7.10 implies that M has
no functions of degree three. Hence the functions f; and f; are really functions
of degree 2, and thus by Theorem 1I1.7.3, f] is indeed a M&bius transfor-
mation of f.

Furthermore, the above remark and the proof of Corollary 3 yield

Corollary 4. If a surface of genus g > 4 admits a function f of degree 3, then
any other function of degree 3 must be a fractional linear transformation of
f. Further, on this surface we cannot find a function of degree 2.

I11.8.6. What happens in genus 4? We prove a special case of a more general
(see the Corollary to Theorem I11.8.13) result.

Proposition. Every surface M of genus 4 has a special divisor D of degree 3
withr(D™1) = 2.

PrROOF. Let {{;,...,(4} be a basis for the abelian differentials of the first
kind on M. Then

2 v v P I A )
Cla 61625 -+ -5 6164562562635 -+ -5 6364564

are 10 holomorphic quadratic differentials on M. They are linearly dependent
since the dimension of the space of holomorphic quadratic differentials on
M is 9. Hence, there are constants a;, (1 < k < 4,1 < j < k) such that

Z ajkij:k =0.

i<k
We write this dependence relation in matrix form
ay; 3ay, 3413 3a14| [
1 1 1
v e v v 2d az, 24 243 8
Crlalala) |F12 22 22 e n2 g, (8.6.1)
2013 2033 d33 2034 |63

1 1 1
2014 2024 2034 Adag| LS4
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Let £ be the column vector of differentials appearing in (8.6.1), = =
Yy, .. Ls). We rewrite (8.6.1) as

ZAE = 0. (8.6.2)

Since A is symmetric, there exists a non-singular matrix B such that
'BAB is a diagonal matrix with 1 on the first [ (<4) diagonal entries and
zeros on the rest of the diagonal. Thus, we rewrite (8.6.2) with respect to
B7!Z, a new basis for abelian differentials of the first kind, as

YB'Z)YBAB(B 'E)=0. (8.6.3)

From now on we replace A by ‘BAB and = by B™'Z.

We claim now that A has rank 3 or 4. It clearly has positive rank. It
cannot have rank 1, since in this case (8.6.3) reads (? = 0. Similarly, it cannot
have rank 2, since in this case (8.6.3) reads

G+3=0,

which implies that ({,) = ({,) and hence that {, and (, are dependent. Thus,
the relation (8.6.3) is of the form

G+8348G=0 or J+3+G+8G=0.

Another change of basis (for example, w, = {, + i(;, w, = {; — i{5, w3 =
{3+ il,, —wy4 =5 —il,, in the second case) leads to the simpler relations

SV% = {30, or (=100, (8.6.4)
Write
(&) =P, o Pe.

Thus either {5 or {, (say {3) must vanish at at least 3 of the zeros of {,. Thus
(4/¢5 1s a non-constant function with at most three poles. This function gives
rise to a special divisor D of degree 3 with r(D™') > 2. Theorem 111.8.4
shows that r(D~!) < 2. Hence r(D " ') = 2. O

I11.8.7. Theorem. Let M be a compact Riemann surface of genus 4. Then one

and only one of the following holds:

a. M is hyperelliptic.

b. M has a function f of degree 3 such that (f) = A/D with D, W integral and
D?* ~ Z. Any other function of degree 3 on M is a fractional linear trans-
formation of f.

c. M hasexactly two functions of degree 3 that are not Mobius transformations
of each other.

Proor. Proposition I11.7.10 implies that (a) cannot occur simultaneously
with (b) or (c). We have already shown that every compact surface of genus
4 admits a non-constant function of degree <3. Note that for any divisor
D of degree 3 on M (of genus 4), we have

rD™ ') = i(D). (8.7.1)
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Suppose we are in case (b). Let us assume there is an integral divisor
D, # D withdeg D, = 3 and r(D; ') = 2. Let f, e L(D; *\C. If D, is equiv-
alent to D, then f; is a Mobius transformation of f. To see this, let h € A (M)
be such that (h)D, = D. Then L(D™') =<1, f> and L(D;') = {(h, fh) =
{1, f1>. Thus, there are constants a, f§, 7, 6 such that

| =oh + Sfh
fi=3h + ofh
or
[t of
Jo= i :8/

Thus we assume that f; is not a Mobius transformation composed with f,
which implies that D, is not equivalent to D. We therefore have 1, f, f,. ffi
are 4 linearly independent functions in L(D~'D;"). Then r(D"'D;') > 4
and hence

iDD))=r(D"'D{Y)—6+4—12>1.

Because deg DD, = 6, DD, must be canonical, and hence i(DD,) = 1. Since
also i(D?) = 1 by hypothesis, we conclude D, is equivalent to D. This con-
tradiction establishes the uniqueness of f up to Mdbius transformations.

We consider case (c). We assume that for no function f of degree 3 is it
true that the square of the polar divisor D of f is canonical. Let (/) = /D.
Choose D, integral of degree 3, such that DD, ~ Z. Note that D and D,
are inequivalent (otherwise D? ~ Z). Since r(D ') = 2, we conclude from
(8.7.1) that there is a divisor D, of degree 3 such that D, # D, and DD, ~ Z.
Choose holomorphic abelian differentials w; such that (w;) = DD; (j = 1,2)
and set f; = w,/w;. Thus, since the polar divisor D, of f; is not linearly
equivalent to D, we have produced a function of degree 3 which is not a
Mobius transformation of f.

If A is the polar divisor of an arbitrary function h of degree 3, and h is
not a Mobius transformation of £, then 1, f, h, fh are 4 linearly independent
functions in L(1/DA). Thus r(1/DA) > 4 and by Riemann-Roch we must
have equality, and also conclude that D is canonical. Hence D is the
divisor of the differential ¢;», + ¢,w, for some constants ¢, ¢, (not both
zero). Say ¢, # 0. Then w,/(¢;®m, + ¢,w,) is a meromorphic function with
divisor D,/U. Hence h is a Mobius transformation of f;. O

Remark. Cases (b) and (c) correspond to the relations of rank 3 and 4 of
(8.6.4) respectively. In case (c) we have (f) = U/D, (f,) =U,/D, = D,/D,.
Consider the identity

(DD )(UA,) = (AD)(DA,).
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There are holomorphic differentials {;, j =1, ..., 4, satisfying
(Cl):DDl’ (C4):(f1C1):D‘H1,

A
(sz) = (f‘:4) = E DQIl = QIQIna

e D, A
() =(frfl)= iBD‘Hl =D,

Thus, by multiplying these differentials by constants, we obtain,
C10o = (304

The four differentials we have produced are linearly independent, since other-
wise the functions f'and f; would be related by a Mdbius transformation.
This follows from the fact that {,/{, = f1 %, $2/8a = f, (3/¢4a = f11f. Thus,
we have a relation of rank 4. In case (b), we start from the identity

(DD,)* = D*D3,

where D, # D is chosen to be equivalent to D. We know there are differentials
{; satisfying

. . . . D
(éz)zDza ((;) = DDy, (é3)=(€1f1)=DDJFI=D%,

(where (f;) = D,/D). Thus, we obtain the relation of rank 3 (after adjusting
constants)

Cf = {5(5-
Again, the three differentials in question are independent, since D, # D.

Thus if a,{, + a,{, + a3{3 =0, choosing a point Pe D, P¢ D,, gives
a3 = 0. Similarly, choosing a point Pe D,, P ¢ D, gives a, = 0.

I11.8.8. Proposition. Let B be the polar divisor of a meromorphic function on
M. Let A be an arbitrary divisor on M. Then

2r(A™ ) <A 'B ')+ r(BA™Y). (8.8.1)

PRrOOF. If B = 1, the result reduces to a trivial equality. So assume B is not
the unit divisor. Thus, there is a non-constant function f on M with polar
divisor B. We can now find integral divisors B’ and B” such that

B ~B~B,

and such that the above three divisors have no points in common (for
example, B’ = f~1(0), B" = f (1))
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We claim that
LA YA L(B"A"Y(B) ') = L(B"A™"). (8.8.2)
It is clear that
L(B'’A Y)Y < L(A™Y), L(B’A™Y< L(B'"A"Y(B)™ 1),

and thus L(B"A~!) is contained in the intersection.

Conversely, suppose f € L(A™') n L(B"A~'(B)~"). Thus (f)4 = I, and
(f)AB'/B" = 1, with I, and I, integral divisors. It follows therefore that
I, = B"I,/B’. Since B” and B’ have no points in common, I, can be integral
only if I, is a multiple of B'. Thus I, = B'I3and I, = B"I;, and in particular
(f)A/B" =1,/B" =15 or f € L(B"A™"). This concludes the proof of (8.8.2).

We observe next that

LA™Y LA Y(B)Y), LB'A"'B) ') < LA '(B)™).
It thus follows that
A YY)+ r(B"A"Y(B) ') — r(B"A™") = dim(L(4~ YV L(B"A™YB)™ 1Y)
<A YB)Y).
Since B ~ B' ~ B”, (8.8.1) follows from the above. O

Corollary 1. Under the hypothesis of the proposition,

2¢(A) = c(AB) + c(AB™1).
Corollary 2. Let M be a compact Riemann surface of genus g > 4. Let A and
B be inequivalent integral divisors with

3<degB<degA<g-—-1,
and

Then unless B = A* (a complementary divisor of A) M is hyperelliptic.
PrOOF. From the definition of Clifford index,

2r(A" ) =1+ deg A > 4
Thus r(4A~!) > 2 and (B~ !) > 2. There are now two possibilities.

Case I: B is not the polar divisor of a function. Then there is at least one
P e B such that r(PB™!) = r(B™!). Let B = B'P and observe that
2<degB <g -2,
and
¢(B')y=deg B — 2r((B)” 42
=degB—1-2r(B"Y)+2=¢(B)—1=0.

Hence the surface is hyperelliptic by Clifford’s theorem.
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Case 11: B is the polar divisor of a function. In this case we apply Corollary 1
and Corollary 1 to Clifford’s theorem (II1.8.5), to obtain

2 = 2¢(A) > c(AB) + ¢(AB™1) > 0.

Recall that the degree and Clifford index of a divisor have the same parity.
Thus, A, B have odd degree and AB and AB™! have even degree and also
even Clifford index. Thus either ¢(AB) =0 or c¢(AB~!)=0. If ¢(AB) =0,
then by Clifford’s theorem (Corollary 1 in II1.8.5), M is hyperelliptic unless
AB ~ Z. If ¢c(AB™ ') = 0, then M is hyperelliptic unless AB~! is principal.
In this latter case 4 ~ B, contrary to hypothesis. O

II1.8.9. Proposition. Let A and B be integral divisors of the same degree
<g—1withr(A"Y)=r(B )=t +1,t > 1. Then,

c(AB) < deg(A4,B) — ¢((A,B)) + 2(c(A) — s), (8.9.1)
whenever s is defined by
DA B Y)=r(A B ') —s, (89.2)
for some integral divisor D of degree s < t with (A,B)/D integral.

ProOF. We write
A= A'D, B = B'D,

with A’, B’ integral divisors. Clearly L((4,B)/AB) < L(D/AB). Hence
r((4,B)/AB) < r(D/AB), and thus (8.9.2) implies

Hf——=]—s2>r .
AB AB

Translating the above inequality to Clifford indices, we obtain

deg(4B) — ¢(AB) — 2s > deg AB — deg(A,B) — ¢ <(:1;)>,

or

AB
¢(AB) < deg(A4,B) + C((A,B)) — 2s.

We now use Corollary 1 to Proposition I11.8.3 in the form 2¢(4) > ¢((A4,B)) +
¢(AB/(A,B)) to obtain (8.9.1). O

I11.8.10. Let A’, B’ be two integral divisors of the same degree. Assume that
(A7) =rB ') =1+ 1, with t > 1. For almost all (to be defined in the
proof of the assertion) integral divisors D of positive degree s < ¢, it is possible
to find integral divisors A4, B satisfying

A~ A, B~ F (8.10.1)
(A,B)/D is integral, (8.10.2)
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and
HA 'B™Y)—s=rDA 'B™ ) (8.10.3)

To verify the above claim, we begin by showing that for every s <t + 1
there is an integral divisor D = P, - - - P such that r(1/4'B’) — s = r(D/A'B’).
This is clearly equivalent to showing that the matrix (f(P)), k=1, ..., d,
j=1,...,s with f;,..., f; a basis for L(1/4'B’), has rank s. Note first
thatd >t+1>s.

We choose P, such that P, does not appear in A'B’ and such that f,(P;) #
0. Consider now the meromorphic function of P:

£ foPy)
det[fl(P) £(P) }

Since {f,f,} are linearly independent, the determinant is not identically
zero, and thus we can find P, such that P, does not appear in A'B’ and
such that the determinant does not vanish at P,. Hence

rankl:fl(Pl) fd(Pl):|=2.
filPy) o fu(Py)

Having now chosen P, ...,P,_, such that no P, appears in A’B’" and such
that det(f,(P)), m=1,...,k—1,j=1,...,k—1 (k < s) does not vanish,
we consider
Hi(Py) o fPy)
det filPe—y) - SPe-) |
S1(P) o filP)

The linear independence of {f},...,fi} assures us that the determinant
does not vanish identically so that we can choose P, not to appear in A'B’
and such that det(f,(P;)),m=1,...,k,j=1,..., k does not vanish. Hence

fl(Pl) fd(Pﬂ

rank = k.

P - fuPy

This verifies the existence of a divisor D of degree s with the required
properties and in fact, shows that almost all divisors D of degree s would
work.

Finally, we need show the existence of divisors 4 ~ A" and B ~ B’ such
that (A4,B)/D is integral. To this end consider L(D/A’). Clearly (for s <1t)
r(D/A’) >t + 1 — s> 1, and thus there is a non-constant function f € L(D/4’)
such that (f) = DI,/A’ and we may take A = DI;. Similarly there is an
integral divisor I, such that B may be chosen as DI,.
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I11.8.11. Theorem. Let M be a compact Riemann surface of genus g > 4.
Assume that M is not hyperelliptic. Let W be an integral divisor of degree
<g— 1 withc(A) = 1. Then r(A ') < 2 (and thus deg A < 3) except possibly
if g = 6. In this case it is possible that r(A~ ') = 3 and U? is canonical.

PRrOOF. Suppose that r(A~!)>2 Let s=r(A"!)—2. Choose integral
divisors 4, B, D with deg D = s such that they satisfy (8.10.1), (8.10.2), and
(8.10.3) with A’ = A = B'. We use now (8.3.4) to obtain

C((ﬁn) +c((4,B)) < c(4) + ¢(B) = 2.

From (8.10.2) we see that

1<s=degD <deg(4,B)<deg A <g—1, (8.11.1)
and hence, g AB -, .
=B ap)=0 7

Thus, by Clifford’s theorem,

B
c< i B)) =1 =c((A,B)).

We now consider cases:
Case I: r(1/(A,B)) = 1.
From the definition of Clifford index,
1 = ¢((A,B)) = deg(A,B).
But Proposition I11.8.9 implies that
¢(A?) = ¢(AB) < deg(A4,B) — c((A4,B)) + 2(1 — s) = 2(1 — s).

Since s > 1, we see by Clifford’s theorem that s = 1, A% ~ Z, and r(A " !) = 3.
Furthermore,
1 =c(A)=deg A —4,

shows that deg Z =2 deg A = 10 or g = 6.
Case 11: r(1/(A,B)) > 2 (thus deg(A,B) > 3).

In this case we may assume that (A4,B) is the polar divisor of a function.
(Note first that if P e M appears in the divisor (A4,B), then

P\ (1 |
r((A,B)) B ’((AB)) o
Otherwise,

(A.B)\ _ 1 _ _
C<T> = deg(4,B) — 1 — 2r((A’B)> +2=c((4,B)) —-1=0,
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contradicting that M is not hyperelliptic. A function belonging to

1 P
Ll ——
((A,B))\ PsH.B) - <(A’B))

(this is non-empty since every term in the finite union is of codimension 1
in L(1/(A,B)) will necessarily have polar divisor (4,B).) We thus apply
Corollary 1 to Proposition II1.8.8,

A

2 = 2¢(A) = c(W(AB)) + C((A,B))' (8.11.2)

Since A and (A4,B) have odd Clifford index, they also have odd degree. Hence
A(A,B) and A/(A,B) have even degree and even Clifford index. Thus one
of the terms on the right hand side of (8.11.2) must be zero. Since neither
A(A,B) nor A/(A,B) is principal or canonical we are done. (If, for example,
A /(A,B) were principal, then 4 ~ B ~ A ~ (A4,B). Thus A = (4,B) = B, which
clearly can be avoided from the beginning because r(D/2) > r(1/A) — s =2.)
O

I11.8.12. To change the pace slightly, we prove a result in linear algebra. For
the proposition of this section, we will need some elementary results from
algebraic geometry.

To begin with, the set of r x r symmetric matrices can be viewed in a
natural way as a vector space of dimension 3r(r + 1) which we identify
with C1/2r+ 1),

Proposition. The set V, of r x r symmetric matrices of rank <p is an irre-
ducible homogeneous, alqebrazc subvariety of CWP*D of  dimension
(12)p(p + 1) + p(r — p).

PRrOOE. The points in V, are those r x r symmetric matrices which satisfy
the homogeneous equations of degree p + 1 obtained by equating all
(p + 1) x (p + 1) subdeterminants to zero. Thus ¥, is a homogeneous alge-
braic subvariety. Furthermore, for every Te v, there exists an r X r matrix
T such that

T="'TE,T, (8.12.1)

where E,, is the diagonal matrix with ones along the first p diagonal entries
and zeros on the remaining r — p diagonal entries. Thus V, is connected
and irreducible. To compute the dimension of V,, we may consxder only
the matrices in V, of rank precisely p. Consider such a

- [4 B
T:[é 5j|eVp

with 4 a p x p non-singular symmetric matrix and thus Bisapx(r—p)
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matrix . .. etc. By (8.12.1) we see that there exists an r x r matrix

(4 B
™=lc D:l

‘A 'C[1 0][4 B] ['AA ‘4B A B
['B ’D] [o OJ [C D| [’BA ’BB] a [é 13]'

From the above it follows that 4 is non-singular (44 = 4 implies (det A)? =

det 4 # 0). We claim that 4, B uniquely determine C, D. It is clear that
C ='B. Further, since B ='AB and A4 is non- -singular D = 'BB =
'‘B(AA)"'B ="'BA'B. Conversely, given a non-singular symmetric A as
above, it can be written as ‘A4 for some A. Also given an arbitrary B as
above, we can define a matrix T of the above form. Thus we see that dim V,
is equal to the sum of the dimension of all possible 4 and the d1mens1on
of all possible B. O

such that

Corollary. Let V be a k-dimensional vector space of symmetric r X r matrices.
A sufficient condition for V NV, to contain a non-trivial matrix is that
rir+1)
2

1
<l<+-7p(p+1)+p(r—p).

ProoF. The vector space V is clearly an irreducible homogeneous subvariety
of C/2r* 1 Qo is V,. The intersection of two such varieties is never empty
and in our case has dimension

>k+3p(p+ Vp(r—p) —4r(r+ 1) > 1. O

II1.8.13. Theorem. Let M be a compact Riemann surface of genus g and let
A be an integral divisor of degree n>g. If (A~ ')>+2n+ 7 —g), then
there is an integral divisor B on M with deg B < inand r(B™') > 2.

ProOOF. From the Riemann-Roch theorem,
A ?)=2n—g+ 1.

Let r=r(A""). Let {f,,....f,) be a basis for L(4~'). Then fifke LLA™?)
for 1<j<k<vr and these ir(r + 1) elements are dependent (because
rr+1)>52n+8—g)2n+12—g)>2n— g+ 1), and satisfy at least
k =3r(r+1)—(2n — g + 1) linearly independent symmetric relations of
the form

Z apfifi = 0.

Jok=1
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By the corollary to the previous proposition, a sufficient condition for the
existence of a non-trivial rank <4 relation among these is that

Ir(r+ 1) <k + 10 + 4(r — 4),

which is precisely the condition imposed on r = r(A"'). By a change of
basis in L(4~!), we may assume the relation is of the form (it cannot be

of rank <?2) »
fifa=f3fa or f1="/rifs

From here it is easy to get the desired conclusion. We use a variation of a
previous argument. Let A = P, --- P,. Assume (in case of the relation of
rank 3 set f, = f})

:Qfl-”_Q_fL
Pl"'P ’

n

(f;) j=1,....4

(we are not assuming that Q;, # P, for all j, [, k). Then

Q11 "'anan e an = Q31 "'anQ41 “ Qune

Half the {Q,; k =1,...,n} occurin {Q;,] or {Q4}. Say in the {Q3,]. then

<£> _ 0,012 Q0
/3 Q31Q32.'.Q3n~
and f = f,/f5 has not more than n/2 zeros and is not constant. We can set
B = the divisor of zeros of f, and observe that 1/f'e L(B™"). O

Corollary. Let M be a surface of genus g > 4. Then M carries u non-constant
meromorphic function of degree <%(3g + 1).

PROOF. Let D be a special divisor of degree n with 3g < n < 2g — 2. The
Riemann-Roch theorem implies that

rDY=n—g+1+iD)y=>n—g+2.

The assumption that n > 3¢g implies n — g + 2 > (2n — g + 7) and allows
us to apply the theorem. We conclude that there exists an integral divisor
B ofdegree < in, with L(B~') > 2. Choosing the integer n as low as possible.
the Corollary follows. ]

Remark. The above result generalizes Proposition II1.8.6. The inequality is
not sharp. A surface of even genus g is always an n < 3(g + 2) sheeted cover
of the sphere; the corresponding bound for odd genus is (g + 3). Our
methods do not produce these sharp results.

111.8.14. We consider a special case of the preceding theorem. Let Z
be an integral canonical divisor (then r(Z ')=g¢). Note r(Z ') >
L(2deg Z + 7 — g) if and only if g > 3. Hence we obtain, in this case, from
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Theorem I11.8.13, an integral divisor B of degree <g — 1 with r(1/B) > 2.
Thus, also i(B) > 2. (The above also follows from the corollary to Theorem
111.8.13.)

We have produced the divisor B as a consequence of a quadratic relation
of rank <4 among products of meromorphic functions. It could have
equivalently been produced as a consequence of a quadratic relation of rank
<4 among products of abelian differentials of the first kind. Now, there
are 3g(g + 1) such products and 3g — 3 linearly independent holomorphic
quadratic differentials. Thus there are at least ig(g + 1) — (3g — 3) =
3(g — 2)(g — 3) linearly independent symmetric relations

g
Y =0
Jok=1

among products of a basis {¢,,...,p,} of abelian differentials of the first
kind. The space of symmetric g x g matrices of rank <4 has dimension
4g — 6, and thus the dimension of the “space of relations of rank <4" is

at least
(4g—6)+3(9g—2)g—3)—39(g+1)=(@g—6)—(3g —3) =g — 3.

Thus (another loose statement), the dimension of the space of integral divisors
of degree <g — 1 and index of specialty >2 is >g — 3. The proofs of these
assertions involve new ideas, and will be presented in II1.11.

IIL.8.15. The next lemma is both technically very useful, and explains
what it means for a reciprocal of an integral divisor to have positive
dimension. Roughly it says that for an integral divisor D, L(1/D) has
dimension >s if and only if D has s — 1 “free points”, and gives a precise
meaning to this statement. Note that since D is integral, s > 1.

Remark. The lemma could have been established at the end of 111.4. We
have delayed its appearance because its proof uses techniques of this sec-
tion. In fact, we have already used and proved part of the lemma in IT1.8.10.

Lemma. Let D be an integral divisor on M. A necessary and sufficient condition
Sfor r(1/D) > s is: given any integral divisor D' of degree <.s — 1, there is an
integral divisor D" such that D'D" ~ D. Further, for sufficiency it suffices to
assume that D' is restricted to any open subset U of M _,,, the (s — 1)-
symmetric product of M.

ProoF. To prove the sufficiency, we assume r(1/D) = d and that {fis oo fa)
is a basis for L(1/D). As in 111.8.10, we construct a divisor D' = Q, - - - Q-1
such that rank fl@), k=1,...,d, j=1,...,5s -1, is precisely
min{d, s — 1} and such that none of the points Q;appearin D. Ifd < s — 1
we would have that the only function which vanished at Q,,....Q,_, in
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L(1/D) would be the zero function contradicting the fact that we can choose
an integral divisor D" such that D'D"” ~ D. Hence d > s.

To show necessity assume that r(D™') = s > 1. Note that for arbitrary
divisor W and arbitrary point P € M, r(PA~!) > r(A ') — 1. Now let D’ be
integral of degree <s — 1. By the above remark, r(D'/D) > s — (s — 1) = 1.
Now choose f € L(D'/D). Thus there exists a divisor D" such that D'D” ~ D.

Od

I11.9. Multivalued Functions

We have on several occasions referred to certain functions as being (perhaps)
multivalued, and then proceeded to show that they were single-valued.
Examples of this occurred in the proof of the Riemann—Roch theorem (in a
slightly disguised form), in the proof of the sufficiency part of Abel’s
theorem (Theorem I11.6.3), and in the section on hyperelliptic surfaces. In
this section we give a precise meaning to the term multivalued function
and generalize Abel’s theorem and the Riemann—Roch theorem to include
multivalued functions. Multivalued functions will also be treated in IV.4
and IV.11. Analytic continuation (= multivalued functions) is one of the
motivating elements in the development of Riemann surface theory.
Riemann surfaces are the objects on which multivalued functions become
single-valued. This aspect of multivalued functions will be explored in IV.11.

I11.9.1. Let M be a Riemann surface. By a function element (f,U) on M,
we mean an open set U < M and a meromorphic function

f:U->Cu {x}.

Two function elements ( f,U) and (g,V) are said to be equivalentat Pe U NV,
provided there is an open set Wwith Pe W< U n V and

fIW =g|W.

The equivalence class of (f,U) at P € U is called the germ of (f,U) at P and
will be denoted by (f,P). It is obvious that the set of germs of all function
elements at a point P e M is in bijective correspondence with the set of
convergent Laurent series at P (in terms of some local parameter) with
finite singular parts. We topologize the set of germs as follows. Let ( f,P) be
a germ. Assume it is the equivalence class of the function element (f,U)
with P e U. By a neighborhood of (f,P), we shall mean the set of germs
(f,Q) with Q € U. It is obvious that each connected component &, of the
set of germs, is a Riemann surface equipped with two holomorphic maps

o~ val
F— L0 U ()

proj
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where

eval(f,P) = f(P)
proj(f,P) = P.

The verification of the above claims is routine, and hence left to the
reader. In this connection the reader should see also IV.11.

IIL.9.2. We shall be interested exclusively in a restricted class of compo-
nents ¥ as above. Namely, we require that

1. proj be surjective, and that
ii. for every path c:I - M, and every f e % with proj(f) = c(0), there
exists a (necessarily) unique path ¢:1 - &% with &0) = fand ¢ = proj - C.

We shall call ¢ the analytic continuation of ¢(0) along c.

Note that by the Monodromy theorem &(1) depends only on the homotopy
class of the path ¢ and the point &0). (In the language of 1.2.4, we are con-
sidering only those components # which are smooth unlimited covering
manifolds of M.)

II1.9.3. Let M be a compact Riemann surface and =n,(M), its fundamental
group. By a character y on n(M) we mean a homomorphism of n,(M) into
the multiplicative subgroup of C, C* = C\{0}. Since the range is commuta-
tive, a character y is actually a homomorphism

x:H{(M)—> C*.

The character y is normalized if it takes values in the unit circle {z e C;
|z| = 1}. If M has positive genus g, and {Ny, ... Nyt ={ay,....a,by,...b,}
is a canonical homology basis on M, then y is determined uniquely by its
values on a canonical homology basis, and these values may be arbitrarily
assigned.

The set of characters on 7, (M) forms an abelian group (under the obvious

multiplication) that will be denoted by Char M.

I11.9.4. We are finally ready to define a multiplicative multivalued function
belonging to a character y on M. By this we mean a component .# of the
germs of meromorphic functions on M satisfying the two properties listed
in I11.9.2 and the following additional property:

iii. the continuation of any f € # along a closed curve ¢ leads to a point
f1 with
eval fi = y(c)eval f.

By varying the curve ¢ in its homotopy class, it is easy to see that the above
property holds or an open set; that is, as germs.

IL9.5. We examine more closely a multiplicative function & belonging
to a character . Let ¢ be a closed path in M and ¢ a path in .# lying above
it (proj o ¢ = ¢). For each point t € [0,1], the point &t) is represented by a
function element ( f;,U(t)) with U(t) open in M and ¢(t) € U(t). By the con-
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tinuity of the map ¢:/ — % and the compactness of I, we can find a sub-
division
O=ty<t; <t, < <t <th,,=1

and function elements (f,,Uo), (f1,U1)s .., (fU,) such that &(t) is the
equivalence class of (f;,U)) for te[t;,t;.], j=0, ..., n Furthermore, if ¢
is a closed path, ¢(0) = c¢(1), we may assume without loss of generality that
U, = U,. We say that the function element ( f,,U,) has been obtained from
the function element (f,,U,) by analytic continuation along the curve c.
Since % belongs to the character y, we see that

o= 1) fo.
Thus, we may view a multiplicative function % belonging to a character
y as a collection of function elements (f,U) on M with the properties
(i) given two elements (f;,U,) and (f,,U,) in &£, then (f,,U,) has been
obtained by analytic continuation of (f;,U,) along some curve ¢ on M, and
(i) continuation of a function element ( f,U) in % along the closed curve
¢ leads to the function element (y(c)f,U).

I11.9.6. To define multiplicative differentials belonging to a character, we
proceed as follows: Consider the triples (w,U,z) where U is an open set in
M, z is a local coordinate on U, and w is a meromorphic function of z. If
(w,V,{) is another such triple and Pe U n V, then the two triples are
said to be equivalent at P provided there is an open set W = U n V, with
Pe W, and for all Qe W

d
(@) f =0, z==Q)

Repeating the previous arguments, with this equivalence relation, one
arrives at multiplicative (or Prym) differentials belonging to a character y.
To fix ideas, this involves a collection of triples (w,U,z). If (wq,U,,z0) and
(w,,,U,,,z,) are two such triples, then we can find a chain of triples

((Ujan»zj)s j= 0,...,n,

such that
UinU;, # T, j=0,....n—1,
and
dz;
wi(zjf(zj41)) N = wj1(Zj+ 1) Zjo1 = Zj41(Q), QeU;nUj;y.
Zj+1

Furthermore, if we continue an element (w,U,z) along a closed curve ¢ to the
element (w,,U,z), then

,(2) = y(Jw(z),  z=2:(Q), Qe U.

IIL9.7. It is quite clear that if f; (j = 1,2) is a multiplicative function be-
longing to the character y;, then f,f, is a multiplicative function belonging
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to the character y,x, (f1/f> is a multiplicative function belonging to y,x;
provided f, # 0). Similarly, if w; (j = 3,4) is a multiplicative differential
belonging to the character y;, then fiw; is a multiplicative differential be-
longing to the character y,y; and w;/w, is a multiplicative function belong-
ing to the character y5ys !, provided w, # 0.

Proposition. If f # 0 is a multiplicative function belonging to the character
x> then df is a multiplicative differential belonging to the same character and

df/f is an abelian differential.

PROOF. We need only assure the reader that df is exactly what one expects
it to be. If f is represented by (f,U) on the domain of the local parameter z,
then df is represented by (f'(z),U,z). O

I11.9.8. It is quite obvious that a multiplicative function (and differential)
has a well-defined order at every point, and thus we can assign to it a divisor.

Corollary 1. If f # 0 is a multiplicative function, then deg(f) = 0.

Proor. The order of f at P, ordpf, just as in the ordinary case, is given by
the residue at P of df/f. Since df/f is an abelian differential, the sum of its
residues is zero. O

Corollary 2. If o # 0 is a multiplicative differential, then deg(w) = 2g — 2.

ProoF. Choose an abelian differential w, on M, w, # 0. Then w/w, is a
multiplicative function belonging to the same character as w. Since deg(w;) =
2g — 2, Corollary 1 yields Corollary 2. O

II1.9.9. If f is a multiplicative function without zeros and poles, then
df/f = d(log f) is a holomorphic abelian differential. Letting {{,, . . . L, be
a basis for the abelian differentials of the first kind on M dual to the
canonical homology basis, we see that

d g
—fzdlogfz Y el
S j=1

and thus
rp 2 .
f(P) = f(P,) exp fP Y ¢l withejeC. (9.9.1)
0 =1

The character y of the function f is then given by

x@)=expc, k=1,..,9, (9.9.2)

x(bk)=exp< » c,.n,.k>, k=1,....4, <njk= f c,.). 9.9.3)
Jj=1 by

We shall call a character y as above inessential, and f as above a unit.
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Proposition. If y is an arbitrary character, then there exists a unique inessential
character y, such that y/y, is normalized.

PROOF. Assume
wa)=e " 5, heR,
x(by) = ey, v eR,
for k=1,...,9. To construct an inessential character y, with |x,(c)| =

|x(c)| for all ¢ € H (M), we choose constants ¢, = a, + iff; so that (compare
with 9.9.1,9.9.2, and 9.9.3),

leH| = e =e* or o =s,
and

q g
Y oem Y Recnm g
P B . Y Re ¢y = g (9.9.4)

j=1
To see that this choice is indeed possible and in fact unique, recall that we
can write the matrix IT = (n;,) as

II=X+iY

with Y positive definite, and thus non-singular. To solve (9.9.4) we write
c="Ycyq,... W)y = "(ay, . .. ,0,), €tC., . .., and note that we want to solve

Re[(X + iY)(a + if)] = u
Since we have already chosen « = s the equation we wish to solve is
Re[(X +iY)(s + if)] = u,
or what amounts to the same thing
Y= —u+ Xs.

Since Y is non-singular there is a unique f which solves this system of
equations. 0

Corollary. A normalized inessential character is trivial.

I11.9.10. Theorem. Every divisor D of degree zero is the divisor of a unique
(up to a multiplicative constant) multiplicative function belonging to a unique
normalized character.

ProOOF. Let D =P, ---P,/Q,---Q, with P;# Q, all jk=1,...,r>0.If
f; is a multiplicative function belonging to the normalized character 1
(j = 1,2), and (f;) = D, then f,/f, is a multiplicative function without zeros
and poles. Thus, y,x; ' is inessential and normalized; hence trivial. Thus
it suffices to prove existence for the divisor D = P,/Q,, with P,,Q, e M,
P, # Q,. Recall the normalized abelian differential Tp,, introduced in
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I11.3.6. Define
P
J(P)=exp J;,O TP.Q,-

The character to which f belongs is not necessarily normalized. But the
arguments in 111.9.9 showed how to get around this obstacle. O

Corollary. Every divisor D of degree 2g — 2 is the divisor of a unique (up to a
multiplicative constant) multiplicative differential belonging to a unique
normalized character.

PROOF. Let Z be a canonical divisor, and apply the theorem to the divisor
of degree zero D/Z. O

I11.9.11. Theorem. Every character y is the character of a multiplicative
function (that does not vanish identically).

Proor. Let {a,,...,a,b,,...,b,} be a canonical homology basis on M.
It is obvious that y may be replaced (without loss of generality) by yy, with
x, inessential (a unit always exists with character y,). Since the value of an

inessential character can be prescribed arbitrarily on the “a” periods (see
I11.9.9), we may assume

da)y=1, j=1,...,g 9.11.1)

Furthermore, writing

aby) =exp(B), Jj=1....4
and fixing ¢ > 0, we may assume in addition
IBil<e, j=1,....,9 (9.11.2)

(For if y is arbitrary and satisfies (9.11.1), then choose an integer N > 0 so
that
|Bi/N| <&, j=1,...,4
Set
ia) =1, qby=eN j=1,...,4.
If f is a function belonging to the character ¥, then fV is a function belonging
to the character y.) Let us now fix a single parameter disc U on M with local
coordinate z. We may assume U is equivalent via z to the unit disc. Choose
a point (zy, . .. ,z,) € U? such that the divisor D = P, - - - P, (P; = 271(21.)) is
not special. (This is, as we have previously seen, always possible.) We use
once again the normalized abelian differential tp,, of the third kind (intro-
duced in II1.3).
We define

9. rp
P)= i
f( ) exp jgl J‘Po T'J“J
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where Z = (Z,,...,2,) € U? is a variable point, and P, ¢ U. For fixed Z we
get a multiplicative function with character y, satisfying (9.11.1). This is,
of course, a consequence of the fact that f,,k tpo = 0,fork =1,.. ., g. Further-
more,

g g N
b,) = ex 7., =€X 2ri |7 ¢ 9.11.3
%s(by) pj;1 J;k 225 pj; fzj Gk ( )

by the bilinear relation (3.6.3), where {(,,....(,} is the normalized basis
for the abelian differentials of the first kind dual to the given holomogy
basis.

Now (9.11.3) obviously defines a holomorphic mapping &:U? - C?

®=(®,....8,)
9 z;

oz =exp Y 2ni [,
=1 ’

®(zy,...,z)=(1,...,0).

The theorem will be established if we show that @ covers a neighborhood
in C? of (1,...,1). By the inverse function theorem it suffices to show that
the Jacobian of @ at (z,, . . . ,z,) is non-singular. Write 27i{;(z) = ¢;(z)dz in
terms of the local coordinate z, and note that

0P,

oz =@lz), jLk=1,...,9

Jlzs

Thus, we have to show that the matrix

¢01(z1) @i(z2) 0 @alzy)

@azy) ?2(2,)

(pg(zl) oo (pg(zg)
is non-singular. If this matrix were singular, then a non-trivial linear com-
bination of the rows would be the zero vector in C%. That is (since (;, . . ., {,
are linearly independent), there would be a non-zero abelian differential of
the first kind vanishing at Py, ..., P,, contradicting the assumption that
the divisor D is not special. O

Remark. The reader should notice the similarity between the proof of the
above theorem and the proof of the Jacobi inversion theorem.

I11.9.12. Let A be an arbitrary divisor on M. In analogy to our work in I11.4,
we define for an arbitrary character y,

L(A) = (multiplicative functions f belonging to the character y such that

(f) = U},
r,(A) = dim L (),
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Q,(A) = {multiplicative differentials & on M belonging to the character x
such that (w) > U}, and

i(2) = dim Q,(9).

Theorem (Riemann—-Roch). Let M be a compact surface of genus g, and y
a character on M. Then for every divisor W on M, we have
r (U =deg A —g + 1+ i, (A. 9.12.1)

Proor. Choose a multiplicative function 0 # f belonging to the character y.
(Theorem I11.9.11 gives us the existence of such an f.) Then

he LA™ Y)<h/f e LA '(f)), (9.12.2)
and
we Q,-(W=wf € QU(S)). (9.12.3)
Thus
r A7) = r((A())7Y) and i, (A) = i(AS)). (9.12.4)

We apply now the standard Riemann-Roch theorem (4.11) to the divisor
A( f) and obtain

r((A(f))™1) = deg((U(S))) — g + 1 + i(AS)),
which is equivalent to (9.12.1) in view of (9.12.4) and the fact that
deg(A(f)) = deg A + deg(f) = deg A.

Remark. The isomorphisms established in (9.12.2) and (9.12.3) are also useful
in their own right.

II1.9.13 An important class of characters are the so-called nth-integer
characteristics. Let {a,, ... ,a, b, ... ,b,} be a canonical homology basis on
M. Consider an integer n > 2 and a 2 x g matrix

e | |e/n ... g n

e |, g1/n, ... g /n
with ¢;.¢; integers between 0 and n — 1. The symbol [% ], will be called an
nth-integer characteristic. It determines a normalized character y on M via

x(a;) = exp(2nie;/n),
2(bj) = exp(2miej/n), j=1,....4.

It is clear that for every multiplicative function f belonging to such a
character y, | f|is a (single-valued) function on M, and f itselflifts to a function
on an n-sheeted covering surface of M. Furthermore, we can construct such
an f by taking nth roots of a meromorphic function h on M provided (h)
is an nth power of a divisor on M (that is, provided the order of zeros and
poles of h are integral multiples of n).
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I11.9.14. Proposition. For y € Char M,

(1) = g if y is inessential,
27 g — 1 if y s essential.

PrOOF. The Riemann-Roch theorem says:
ro-l)=—g+1+i(l)

Thus, i,(1)> g — 1, and i (1) < g. Furthermore, i,(1) = g if and only if there
isan feL,_1),f#0. Smce such an f must be a unit if it is not identically
zero, we are done.

I11.9.15. We end this section with the statement of Abel’s theorem for mul-
tiplicative functions belonging to a character y. The proof is omitted since
it is exactly the same as the proof already studied (in 111.6.3).

Theorem (Abel). Let D € Div(M), y € Char M. A4 necessary and sufficient con-
dition for D to be the divisor of a multiplicative function belonging to the
character y is

g

0(D) = 5= ¥ log xlb)e =3 3 log flaj” (mod L(M)

j= j=1
and
deg D = 0.

I111.9.16. Exercise
Define a mapping
¢:Char M — J(M)

as follows. For y € Char M, select a non-constant meromorphic function f belonging
to the character y. Let o(y) = @((f)), where, as before, ¢(( f)) is the image of the divisor
(f) in the Jacobian variety. Show that:

(1) The mapping ¢ is a well defined group homomorphism.

(2) The mapping ¢ is surjective.
(3) x € Kernel ¢ if and only if y is an inessential character. Conclude that as groups
J(M) = Char M /(Inessential characters on M).

(4) Obtain an alternate proof of the Jacobi inversion theorem as follows. First show
that every e € J(M) is the image of a divisor of degree zero. (We established this fact
by the use of the implicit function theorem.) Thus every e € J(M) is the image
of some y € Char M. Now use Theorem II1.9.12 (Riemann—Roch) to show that
r,(1/P%) = 1. Thus there is a multiplicative function belonging to the character x
with < g poles. Jacobi inversion follows from this observation. The same method
(see I11.11) can also determine the dimension of the space of divisors of degree g that
have image e.

Remark. The reader should at this point review the remark at the end of I11.9.11.
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I11.9.17. Exercise

(1) Let Pe M and let z be a local coordinate vanishing at P. Let ne Z, n> 1. By a
principal part (of a meromorphic function) at P we mean a rational function of z of

the form
-1

f@)=Y a7~
k=-n
(2) Let {P,,...,P,} be m distinct points and z; a local coordinate vanishing at P;.
Let f; be a principal part of a meromorphic function at P; (in terms of the local
coordinate z;). The collection F = {fj, . ..,f,} will be called a system of principal
parts at {Py,...,P,}.

(3) Let F be a system of principal parts at { Py, ...,P,}. Let ¢ be an abelian differential
on M that is regular at P;forj=1,...,m Then

Fig)= Y. Resy, fi0

j=1
is a well-defined linear functional on the space of all such . In particular, F induces
a linear function on #'(M), the vector space of holomorphic differentials on M.

(4) Let y e Hom(H,(M),C); that is, x is a homomorphism from the first homology
group of M into the complex numbers. By an additive multivalued function belonging
to y we mean a component ¥ of the germs of meromorphic functions on M satisfying
the two properties listed in 111.9.2, and (iii)’ the continuation of any f € % along a
closed curve ¢ leads to f; € # with

eval f; = eval f + x(c).

Show that for every additive function %, d% is a (well-defined) holomorphic
differential. Further # defines a system of principal parts and this induces a linear
functional on #(M).

(5) Using the normalized abelian differentials of the second kind introduced in IIL3,
show that
(a) Every system of principal parts is the system of principal parts of an additive

function.
(b) Forevery y e Hom(H (M),C) there is an additive function belonging to y.
(c) Let {ay,...,a,b,,...,b,} be a canonical homology basis on M. A homomor-

phism x € Hom(H,(M),C) is called normalized if y(a) =0, j=1,...,g. Show
that every system of principal parts belongs to a unique normalized homomor-
phism.

(6) Prove that a system F of principal parts is the system of principal parts of a
(single-valued) meromorphic function on M if and only if F induces the zero

linear functional on #'(M).

(7) Use the notation of II1.3, and show that
an*Z _ p (n)
n—1_ fQ TR

Tpo = Y. (a;2/)dz at P,
j=o

where
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and
R, P, Q, are three distinct points on M.

(8) Let F be a system of principal parts at {P,...,P,}. Let Q be arbitrary but distinct
from P;, j=1,..., m. Define for P # P;, P # Q,

E(P) = "‘F(TPQ)s

Show that E agrees on M" [P, ..., P,,.Q} with the unique (up to additive constant)
additive function .# with F as its system of principal parts and belonging to a
normalized homomorphism.

II1.10. Projective Imbeddings

Throughout this section, M is a compact Riemann surface of genus g > 2, g
is an integer >1, and d = dim #YM) (=g forg=1, =29 — 1)(g — 1) for
q > 2). We show that every such surface M can be realized as a submanifold
of three-dimensional complex projective space.

I11.10.1. We have seen that for each P e M, there is a w € #'(M) with
(P) # 0 (thus also w? € #4M) with wi(P) # 0). Let {{;,...,{,} be a basis
for #%4M). The preceding remark shows that we have a well-defined
holomorphic mapping, called the g-canonical mapping, of M into complex
projective space

0:M > P

where 0(P) is given by ({;(P), . ... 4(P)) in homogeneous coordinates. We
are using here our usual conventions: Let z be any local coordinate on M.
Express the differential

(=02 dzf

in terms of this local coordinate. Then

0(z) = (@4(2), . . . ,@4(2))

in terms of the local coordinate z. The image of Pe M in P~ ! is clearly
independent of the choice of local coordinate used, and a change of basis of
HYM) leads to projective transformation of P?~!. Hence the map 6 is
canonical, up to the natural self-maps of projective space.

I11.10.2. Theorem. The g-canonical holomorphic mapping 0:M — P*~ ' is
injective (and of maximal rank) unless ¢ = 1 and M is hyperellipticorg = 2 = q.
In these exceptional cases 0 is two-to-one.

PROOF. Assume that for Pe M, 2 is a “g-gap” (that is, there exists a holo-
morphic g-differential with a simple zero at P). Then by choosing a basis for
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H#9(M) adapted to P, we see that (z = local coordinate vanishing at P)

¢(2)=(1+ 0(|z|))dzq, z -0,

@)(z) = (z + O(|z|*))dzA,  z—0.
Thus

P2 (2) =z + O(|z]), z -0,
(2

and we conclude that 6 has a non-vanishing differential at P (z = 0) and is,
hence, of maximal rank at P.

Now assume there exist P and Q e M, P # Q, with 6(P) = 6(Q). By
choosing a basis adapted to P as above, we see that in homogeneous co-
ordinates

0(P) = (1,0,...,0).
=

(d — 1)-times
Thus, if O(P) = 0(Q), we must have,
0(Q) = (4,0,...,0), A #0.
(d — 1)-times

In particular, we see that every holomorphic g-differential that vanishes
at P also vanishes at Q, or

L(Z™“P) = L(Z “PQ), (10.2.1)

since L(Z7?P) and L(Z~?PQ) are isomorphic to the vector spaces of holo-
morphic g-differentials which vanish at P and P and Q, respectively. Hence

HZ 9P) = (Z™9PQ) = d — 1. (10.2.2)

Let us assume g = 1, and use (10.2.2) and Riemann-Roch to compute

1
r<P'Q> =2—g+1+rPQ/Z)=2.

Thus M must be hyperelliptic. Next we assume g > 1, and compute
HZ7PQ)=q(2g —2)—2—g + 1 +r(Z*"/PQ)
=@2q—-1@g—-1)~-2+nrZ""/PQ)
Now for (10.2.2) to hold we must have that

r(Z71/PQ) = 1;
which implies that
deg(z? '/PQ) < 0.

This last statement is equivalent to

(g—Dlg-D<=1L
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Since g > 2 and g > 2, this is only possible for g = 2 = q. Note that the above
argument also establishes that foreach P e M, 2isa “q-gap” exceptifg = 2 =
q or g =1 and M is hyperelliptic.

II1.10.3. To study the excluded cases, we represent a hyperelliptic surface
M by
Wh=(z—ey) (2~ eg4)

with distinct e;. We have seen that a basis for #'(M) is then

djzdz 297V dz
e e

Thus in affine coordinates
O(P) = (1,z(P), ... z(Py~1).

Thus 0 is clearly two-to-one in this case (since z is two-to-one), and not of
maximal rank at the Weierstrass points z~'(e;).
For the other excluded case (¢ = 2 and g = 2), M is hyperelliptic again.

A basis for #%(M) is
dz?  dz?  dz?
P EE AR N

w w w

Again
0(P) = (1,2(P),z(P)?)

is independent of w, and the 2-canonical map (for genus 2) is two-to-one, and
not of maximal rank at the Weierstrass points. O

II1.10.4. Since the image of a compact manifold under an analytic mapping
of maximal rank is a sub-manifold, we have obtained

Corollary 1. Every Riemann surface of genus > 2 is a submanifold of a complex
projective space.

Corollary 2

a. Every non-hyperelliptic surface of genus 3 is a submanifold of P2.
b. Every other surface of genus g > 2 is a submanifold of P3.

PROOF. Part (a) has already been proven. We have also seen that every surface
is a submanifold of P*~! for large d. Now assume that a Riemann surface
M can be realized as a submanifold of P* for k > 3. Call a point x € PX\M
good, provided for all P € M, the (projective) line joining x to P is neither
tangent to M at P, nor does it intersect M in another point. Say that we can
find a good point x. We may assume that

x=(10,...,0).
——

k-times
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A line L through x may be represented thus by any other point y on it.
Since y # X, ¥ = (Agsh1s - - - »Ax), Where (44, ... ,4) = y(L), determines a well
defined (depending only on L) point in P*~!. Now the mapping

M3P yL)e Pk 1,

where L is the line joining x to P, is a one-to-one holomorphic mapping of
maximal rank. Thus we are reduced to finding good points. The tangent
lines to M form a two-dimensional subspace of P*, and the lines through
two points of M form a three dimensional subspace of P*. Thus a good point
(a point not in the union of these two subspaces) can certainly be found
provided P* has dimension >4. |

We also saw in the above proof that the embedding of M as a submanifold
of P? can be achieved by using 3 or 4 linearly independent holomorphic
g-differentials (g = 1 except in the few exceptional cases). We will show in
V.11 that every two meromorphic functions on M are algebraically depen-
dent. Hence we will also have

Corollary 3. Every compact Riemann surface of genus g > 2 can be realized
as an algebraic submanifold of P>.

I1L.10.5. Let S be a non-singular curve of genus g in P9"!. The curve S is
called canonical if it is the image of a compact Riemann surface of genus g
under the 1-canonical mapping. Let §: M — P9~ be the canonical mapping
and assume that M is not hyperelliptic. Let (z,,...,z,) be homogeneous
coordinates on P?! and let («,...,a,) € C? — {0}. The hyperplane 0 =
Y4 a;z; in P7 intersects 6(M) at P if and only if P is a zero of the
non-trivial holomorphic differential Y9, o;{;, We have established the
necessity part of the following

Theorem. Let S be a non-singular curve of genus g in P9"'. Then S is
canonical if and only if S is non-degenerate (that is, the curve does not lie in
any hyperplane in projective space) and of degree 2g — 2 (that is, the curve
intersects every hyperplane in 2g — 2 points, counting multiplicities).

PRrROOF. The theorem is the geometric interpretation of the following obser-
vation. Let D be a divisor of degree 2g — 2 on a compact Riemann surface
of genus g. From Riemann—Roch

r(1/D) =g — 1 + i(D).

Now i(D) =1 if and only if D is canonical (otherwise i(D) = 0). Thus
r(1/D) = g — 1 whenever D is not canonical

Necessity has already been shown. For sufficiency, assume that S is
a non-degenerate curve of degree 2g —2 in P9!. For j=1, ..., g,
the hyperplane {z; =0} intersects S in 2g —2 points in the divisor
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D;=PP---P{)_,. Then f;=z;/z, is a meromorphic function on S with
(f;) = D;/D;. We claim that the functions f, ..., f, are linearly independent.
If not, there exist constants a, ..., a,, not all zero, such that

g

Y af(P)=0 all PeS.

Jj=1
Thus S is contained in the hyperplane Y., a;z; =0 contrary to the
non-degeneracy assumption. Since the divisor D; is canonical, there exists a
holomorphic differential w; on S with (w;) = D;. Hence for j = 1, ..., g, there
exists a non-zero complex number 4; such that f; = Aj(w;/w,); of course,
Ay = 1. Thus the mapping of S into projective space using the functions
{1, f5,....f,} differs from the map using the (linearly independent) differ-
entials {®,,...,w,} by the projective transformation diag(1, 4,, ...,4,). The
first mapping is the identity and the second is canonical. |

I11.10.6. We will study an interesting map 6 : M — P9. Here M is a compact
hyperelliptic Riemann surface of genus g > 2. Let Py, ..., Py, be the
Weierstrass points on M. Let us choose the function z of degree 2 on M
with (z) = PZ/P,.,. The map 0 into projective space is obtained using
the (g + 1)-dimensional space of meromorphic differentials Q(1/P, P,). If

we view M as the algebraic curve w? =[]}{'(z —¢), then e; = z(P),
J=1, ..., 29+ 1, eypiy = z(Pyys,) = 0 (e; =0, of course). A basis for
Q(1/P, P,) is
dz zdz 2971 dz dz
= =", 0w, = , 0, = ;
Po= @1 Ty Pem w I (z—e)(z—ey)

we note from II1.7.5 that

w

( dz ):P3P4-~- Pyyir
(z—e)(z—e,) PP,

In affine coordinates

id . .
<Z z> - P121P22:;22172> J = O’ cees g — 1,

and

_ w(P) )
OP)=|1,z(P),...,z(Py L, ,
1= (1 =
for P#P, j=1, ..., 2g + 2. Thus for P and Q not Weierstrass points
0(P) = 6(Q) if and only if P=Q (for z(P)=z(Q) and P # Q implies
w(P) = —w(Q)). The map 0 is also of maximal rank at the non-Weierstrass

points. Further, none of the components of §(P) vanish.
Let { be a local coordinate vanishing at P,. There exist holomorphic and
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non-vanishing functions ¢, ..., ¢, with
zddz ; .
- = {*¢l)d{ near P, for j=0,...,g9 — 1,

and
dz
(z—e)(z—e)
Thus for |{| small,
0(0) = (Co(0), P10, -, 277 6,-1 (0), 44(0));

={"'¢,(()d{ near P,.

in particular,
6(P,) =(0,...,0,4,) for some non-zero complex number 4.
Similarly,
0(P,) = (0,...,0,4,) for some non-zero complex number 4,,
and we see that
0(Py) = 0(P,).

It is clear that 6 is of maximal rank at both P, and P,. At P, j=3, ...,
2g + 2, 6 is also of maximal rank and the g-th component of 6(P,) vanishes.
It is also easy to see that 6(P;) # 0(P,) for 3 < j < k < 2g + 2, because the
canonical map already discriminates between these points.

If %_,az; =0 is a hyperplane on P? then 6(M) intersects this hyper-
plane in the zeros of the abelian differential ) %_, o;;. This intersection will
(generically) consist of 2g points (provided «, # 0). Thus §(M) is a curve of
genus g and degree 2g in P? with a single double point (the image of the
points P, and P,).

Consider the case g = 2. In this situation, the defining equation for the
curve 0(M) is obtained by letting W = w/z(z — 1) (without loss of generality
e, =0,e, =1, e = o0) as

(z —e3)(z —ey)(z —es)
z(z—1)

w? =

or in homogeneous coordinates as

Z(Z - Y)W2=Y(Z — esY)(Z — e, Y)(Z — e5Y).

EXERCISE

Carry through the above analysis for non-hyperelliptic surfaces; also for hyper-
elliptic surfaces but do not assume that P, and P, are Weierstrass points.
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II1.11. More on the Jacobian Variety

This section is devoted to a closer study of various spaces of divisors on a
compact Riemann surface M, and the images of these spaces in the Jacobian
variety J(M). We show that J(M) satisfies a universal mapping property
(Proposition III.11.7). The technical side involves the calculation of di-
mensions of subvarieties of J(M). The most important consequence is
Noether’s theorem (II1.11.20). Throughout the section, we assume that the
reader is familiar with elementary properties of complex manifolds of di-
mension > 1.

III.11.1. By a complex torus T, we mean the quotient space, T = C"/G,
where G is a group of translations generated by 2»n R-linearly independent
vectors in C". A torus T is thus a group (under addition modulo G) and a
complex analytic manifold with the natural projection

p:C"> T,

a holomorphic local homeomorphism.

We introduce now some notation that we will follow throughout this
section. If u € T, then &t € C" will denote a point with p(&1) = u. The gener-
ators of G will be denoted by the column vectors [TV, ..., [T®" e C". The
j-th component of the vector I’ will be denoted by ;. The n x 2n matrix
(nj) = IT will be called the period matrix of T.

Our first observation is that the 2n x 2n matrix [§] is non-singular.
To see this, assume that there exists a vector ¢ € C*" such that [#]c =

#]=0. Then II(c +¢) =0 = II(c — 7). Thus Rec =0 = Im ¢, by the
R-linear independence of the columns of I1. Thus ¢ = 0.

Hence we have for ‘x, 'y e C", ‘c € C*" the equation (x,y)[4] = ¢ has a

unique solution. In particular if ¢ € R*" = C*", then

xIT + yIl = ¢ =7¢ = xII + VI,
or
(x = + (y — x)11 =0.
Thus x =¥, and
¢ =2 Re(xIT). (11.1.1)

II1.11.2. Since G acts fixed point freely on C", n,(T) = G, and since G is
abelian H(T,Z) = G. As a matter of fact, the paths corresponding to the
columns of IT (that is,

t— tI1®, te[01],k=1,...,2n)

project to a basis of H,(T,Z). We observe next that the holomorphic 1-
differentials, dii; are invariant under G, and hence project to holomorphic
1-differentials du; on T.
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Remark. Let V be a complex manifold of dimension m. By definition, a
holomorphic 1-form w on V is one that can be written locally as dF for some
locally defined holomorphic function F on V, or in terms of local coordinates,
Z2=(24,...,Zpm), aS

o= fl2)dz,
j=1
with f; holomorphic. In particular, w is closed. Since
do=Y% Y o; dzy ndz; =0,
51651 02,
we also have
of; i

== allkj=1...,m
0z, Oz ani "

Lemma. The projections to T of the differentials di,, . .., df, form a basis

Jor the holomorphic 1-differentials on T, that will be denoted by {du,, . . ., du,}.

PRrOOF. Let {a,, ... ,a,,} be a basis for H,(T,Z) corresponding to the gener-
ators of G. Then

fakdujznjk, j=1,....nk=1,...,2n

Thus, letting ¢ € R?", it follows by (11.1.1) that there is a unique vector ‘x € C"
such that

Re [ ¥ xdu=c. k=1 (11.2.1)
k j:l
Now (11.2.1) shows that the differentials du,, du,, . . ., du, are linearly inde-

pendent over C. Furthermore, given any holomorphic 1-differential § on T,
there exists a differential w = }"7_, x;du; such that

ReLkézReLkw, k=1,...,2n (112.2)

Define a function F on T by
F(P) = Re fo”(a —w), PeT.

By (11.2.2), F is well-defined. Since 6 — w is holomorphic, F is locally
the real part of a holomorphic function. Thus F satisfies the maximum (and
minimum) principle. Since T is compact, F is constant and thus = 0. By the
Cauchy-Riemann equations

Im fo"((s —w) =0,
and thus 6 = w. O
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Definition. By du we will denote the column vector of 1-differentials
Yduy, . .. du,}.

Remark. The notation of this section involves some abuse of language. The
closed differentials du; are not exact (the di; are exact).

IIL11.3. Let V be any connected compact m-dimensional complex an-
alytic manifold, and let @:V — T be a holomorphic mapping. Let z =
(zy4,...,z,) be a local coordinate at a point @(P) e T. If w is a holomorphic
I-form on T, then locally

) =

VP

fiz)dz;.

]

j=1

Let { = ({y, ... ,{.) be alocal coordinate at P on V. The pullback of w via @,
P*w, is the holomorphic 1-form defined in terms of the local coordinate { by

P*o = ) g(0)dg;,
i=1

where we write z = h({) = (h,({), . . . ,h,(0)), and

. = oh .
g0 =Y ﬂ(h(C))Tk, j=1...,m
K=1 G
Letd,, ..., d,denote the pullbacks of du,, . . . , du, via ®. Let é be the column

vector formed by the d;, and p be, as before, the projection from C" — T.

Proposition. Let Py e V. Then

P
®(P) = B(P,) + p<ﬁ,0 5). (11.3.1)
PROOF. Since 6 = ®&* du, and
P D(P)
fPO 5= du=d(P)— D(Po) (11.32)
modulo periods, the result is clear. U

I11.11.4. Corollary. Let ®;:V — T be holomorphic mappings for j=0,1.
Assume @, is homotopic to @,. Then there exists a co € T such that

®o(P) = &,(P) + co, allPeV.

PRrOOF. Since @, is homotopic to @,, there exists a continuous function

DV xI->T
(I =[0,1]) such that

P(,0) =D,  O(,1)=D,.
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Thus for every closed curve a in V, ®,(a) is homotopic to @,(a). Let 69 =
@ ;*du. From (11.3.2) we see that 5{” = 6" (since they have the same periods
over every closed curve a on V). Thus &, and @, satisfy (11.3.1) with the
same . O

III.11.5. Let T, =C™"/G, and T, =C"/G, be two complex tori. Let
@:T, —» T, be a holomorphic mapping. As above, let 6 = @&* du. Then there
exists an n x m matrix A such 6 = A dv where dv ="{dv,, ... dv,} is a
basis for the holomorphic 1-forms on T,. Hence, as a consequence of the
previous proposition, the map @ can be written in the form

P(P)=pyeoAcpi'(P)+co, PeTy,

for some ¢y € T,. (Since A is an n x m matrix it also represents a linear
transformation from C™ into C")
We have thus established the following

Proposition. The only holomorphic maps of a complex torus into a complex
torus are the group homomorphisms composed with translations.

I11.11.6. By an underlying real structure for the complex torus T = C"/G
we mean the real torus R2"/Z?" together with the map R?"/Z?" — T induced
by the linear map

R?"3 x+—Ix e C".

We have seen (as a consequence of Proposition II1.11.5) that any
endomorphism of T is induced by a linear transformation A:C" — C" that
preserves periods. Thus if A represents the matrix of this linear transformation
with respect to the canonical basis for C”, then there exists a 2n x 2n integral
matrix M such that AT = IIM. The matrix M now induces an endomorphism
of the underlying real structure. The endomorphism A is completely deter-
mined by M (since [f] is nonsingular), and the following diagrams commute:

Rln n R Cn RZu/zZu 1 > T
JM l 4 j M l 4,
R2" n Cr RZn/zZn n T

which is simply another way of saying AIl = I1M.

It follows immediately from the previous remarks that a holomorphic
injective map of one complex torus into another torus of the same dimension
is necessarily biholomorphic. If IT, and I1, are the period matrices of the
two tori, the map can be represented by a matrix 4:C" — C" such that
AIl, = I1,M for some M as above. It is necessarily the case that both 4 and
M are non-singular. Thus we have established the following
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Proposition. Two complex tori T = C"/G, and T, = C™/G, are holomorphi-
cally equivalent if and only if n=m and there are matrices A € GL(n,C),
M e GL(2n,Z) such that AIl, = II,M where II; is a period matrix of T,
j=12

Let A represent an endomorphism of a complex torus
A:C"G - C"/G.
Let I1,, I1, be two period matrices for this torus. Then for some M;e
GL(2n,2),
All, =1,M, and AIl, =1II,M,.
Further,
I, =1 M, M e GL(2n,2).
Thus
I MM =AM = All, = 1,M, = I MM,,
and hence (since I1, : R*" - C" is an isomorphism)
MM = MM,.

It thus follows, since M is non-singular, that trace M| = trace M ,.

Corollary. The trace of the endomorphism A is well defined by setting it equal
to trace M (or M ,).

II1.11.7. We return now to the situation of II1.6. Let M be a compact
Riemann surface of genus g > 0, ‘{a,b} a canonical homology basis on M,
and {(} the dual basis for #'(M). As before IT denotes the period matrix
of the surface. (Here IT is a ¢ x g matrix.) Let J(M) be the Jacobian variety
of M it is, of course, a complex torus (with period matrix (1,/1)). Let ¢ be
the mapping of M into J(M) with base point P, previously defined. Note
that o *du; = (;,j=1,...,4.

Now let @: M — T be any holomorphic mapping of M into a complex
torus T = C"/G. Let {dv,, . . . ,dv,} be a basis for the holomorphic differentials
on T. Let §; = ®*dv; e #'(M). Since {{} is a basis for #"'(M), there are
unique complex numbers a; such that

g9
oj= 2 aul j=1,...,n
K=1

(oré = A 6 ="{0y,....0,), A=(aj)). Then
Cisua—-p(Ait) + P(Py)e T
defines a unique mapping

y:J(M)— T.



I11.11. More on the Jacobian Variety 147

It now follows from (11.3.1) that
D=y oo (11.7.1)
We have established the following

Proposition. Let &: M — T be a holomorphic mapping of a Riemann surface
M into a complex torus T, then there exists a unique holomorphic mapping
Y:J(M)— T such that (11.7.1) holds.

The above proposition shows that J(M) is determined by M up to a
canonical isomorphism. The mapping ¢ is, of course, determined up to an
additive constant by the canonical homology basis on M.

II1.11.8. We have seen in IIL.6, that the mapping ¢ extends to divisors
on M. Let W, be the image in J(M) of the integral divisors of degree n. Set
by definition W, = {0}. It is then clear that

Wy W,

(because @(D) = @(DP,) for every divisor D) and W, = J(M) (Jacobi inversion
theorem).

Let W;, be the set of points in J(M) which are images of integral divisors
D that satisfy the two conditions deg D = n and r(D™!) > r + 1. Thus W’
consists of the complete g;’s as defined in 111.4.13. Denote by K the image
under ¢ of the canonical (integral) divisors. By Abel’s theorem, K consists
of one point.

Proposition. {K} = W94, 1,.

PrOOF. Let D be an integral with deg D = 2g — 2. Then #(D™') > g if and
only if i(D) > 1 if and only if D is canonical. a

HL11.9. Let M be a Riemann surface and n > 0 an integer. The n-fold
Cartesian product, M", is naturally a complex manifold of dimension n. By
M, we denote the set of integral divisors of degree n on M. We topologize
and give a complex structure to M, as follows: Let ., be the symmetric
group on n letters. An element ¢ € ¥, acts on M" by:

6(Py, ..., P) = (Pyays - - Py

As point sets M, and M"/¥, can clearly be identified. We shall show that
much more is true. A function f on M, is said to be continuous (holomorphic)
provided f - p is continuous (holomorphic) on M”, where

pM"> M,
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is the canonical projection. This gives a natural topology and complex
structure to M,. To see that with this structure M, is a complex manifold,
let (P,,...,P,)e M" and let z; be a local coordinate at P;. Define the ele-
mentary symmetric functions of z;:

=(—1)ZZJ
2—(—1 Y zz,,

i<k

C,. =(=1"zy -z,

Notice that {; is (locally) a holomorphic function on M, and that the ordered
set {{y,...,{,} determines the unordered set {z,,...,z,} uniquely as the
roots of the polynomial z" + {;z" "' + -+ + {,=0. Hence { = ({y,....{,)
is a local homeomorphism of a neighborhood of p(P,,...,P,)€ M, and
thus { serves as a local coordinate at p(P,, ... ,P,)e M,.

Another useful set of local coordinates on M,, is obtained by considering
the elementary symmetric functions of the second kind:

n
L=y k=1,...,n

j=1
An easy induction argument shows that for each k, 1 < k < n, {t,,....t;}
uniquely determines and is uniquely determined by {{y, ... (i}
We remark that with the choice of local coordinates made, p is obviously
a holomorphic map (between complex manifolds) and that M, is compact
if and only if M is. We have established the following

Proposition. If M is a compact Riemann surface, then M, can be given a
unique n-dimensional complex structure so that the natural projection
p:M" — M, is holomorphic. Further,if V is a complex manifold, and the diagram

M —L sy

M,

commutes, then f is holomorphic if and only if f| is.

Remarks

1. Let f be a holomorphic function in a neighborhood of 0 in C. Thus
z)= Z a,z*.
k=0

For (z,, . ..,z,) € C" with |z}| sufficiently small F(z,,....z,) = 2=, f(z))
defines a symmetric holomorphic function in a neighborhood of the
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origin in C". On the quotient space C"/.%,, we can write

F(zy, ...z =Y. Y a2,

k=0 j=1
and conclude that in terms of the local coordinate (¢4, . . . ,t,) on C"/%,,
oF 1 d’f
— = = a;.

-7 ;
Otjli=.....00 J'dZ|.=0

2.IfD =P, - P,e M, and the P; are distinct, we can identify a neighbor-
hood of D in M, with a neighborhood of (P, ...,P,)e M". Thus the
symmetric group and symmetric functions enter only at those points
D € M, which contain non-distinct entries. It is also clear from this remark
that in general we can describe a neighborhood of D by considering blocks
consisting of the distinct points of D listed according to their multiplicities.

II1.11.10. Let 6 be a holomorphic 1-differential on J(M). Let ae J(M)
and set @,(P)= @(P)+a, PeM. Then ¢ = ¢*) is a holomorphic 1-
differential on M, and is independent of a. Thus there is a canonical identifi-
cation via ¢ of the space of holomorphic 1-differentials on M and J(M).

Let Q4, ..., Q, be distinct points on M and let z, be a local coordinate
vanishing at Q,. Assume s < n, and let m, . .., m, be positive integers with

Y m;=n.
Jj=1
Consider the map
o:M,->W,

in a neighborhood of the n-tuple 4 made up of each Q, appearing m, times.
Let 6" be 6 pulled back to M,. A neighborhood of the point A consists of
points

(Q}7Q57"~,ernla %a-"aQyznza-“’ SL,---’ans)’

with Q¥ near Q,. Consider the point
A=(Cy..,01,050...,05,05, ..., 04, ..., Q) €M™
C v J v J | —

m,-times  m,-times mg-times

A local coordinate (on M") vanishing at this point is therefore given by

(lea .. ’Zmll’ Z125 - sszZ’ L »sts)v
where

ij(Q)zzk(Q), j=1,...,mk, k=1,...,s.

Let h(z;) be a local primitive of 6’ near Q, on M. Without loss of generality
h(0) = 0. The sum

S

Z myhy(zy)

k=1
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defines a function on M, whose differential is ¢”. (To see this recall the
definition of the pullback of a differential. The differential § can be written
as df with f a linear function on C’. Now h, is simply f o ¢. The differential
of f o ¢, is 6", where ¢, is ¢ viewed as a map of M, into J(M). Since f is
linear, f(@, (P, - P,)) = f(@(P)) + ~* + @(P) = f(p(P) + - +
f(o(P,)).) Assume now that 4" vanishes at the point A. Since the pullback
of 8" to M" vanishes at 4, we must have dhy/dz, =0atz, =0fork=1,...,s.
We need more accurate information about the differential ¢’ in the case that
at least one m, > 1. In this case, the function

h(zy) + + Mz (11.10.1)

can be expressed as a power series in the elementary symmetric functions
of the second kind of the m, variables z;. If we write

o~
hi(zy) = Z a,zy,
v=1

we see that the coefficient of the [-th symmetric function of the second kind
in (11.10.1) is precisely a,. We see therefore that

I d< Y mkhk>,
k=1

vanishes at A = Q7' - - - Q7 if and only if dh, vanishes at zero to order > m,.
Thus the differential ¢’ vanishes at Q, to order > m,. We have thus proved
the following.

Lemma. If J is a holomorphic 1-differential on J(M), whose pullback to M,
via the map @:M, — J(M) vanishes at a preimage of a point u e W,, corre-
sponding to an integral divisor D of degree n on M, then the holomorphic
differential &' on M which corresponds to ¢ under the canonical map ¢:M —
J(M) has the property that (0')/D is integral.

III.11.11. Before proceeding we define a filtration of M, that is analogous
to the filtration of W, by W7, described in 111.11.8. Let
Mp={DeM,;r(D"")>r+1].
(We abbreviate M by M,). It is obvious that
M=o {(W).
Proposition

a. Let De M,. The Jacobian of the mapping ¢:M, - W, = J(M) at D has
rank equal ton + 1 — r(D™1).

b. The fiber ¢~ '(@(D)) of the mapping is an analytic subvariety of M, of
dimension v = r(D~ ') — 1, which can be represented as a one-to-one
analytic image of P".
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c. The mapping @:M, — W, establishes an analytic isomorphism between
M,\M; and W,\W,.

PRrOOF. Let us examine the differential do,, of the analytic mapping ¢: M, —

J(M) at a point D = Q7 - - - Q7 (where m; + - - - + my = n). It is, of course,

a linear mapping between tangent spaces

dop:Tp(M,) = Typ)(J(M)).

Let us denote by z, a local coordinate vanishing at Q, and let {;, the j-th
normalized differential of first kind, have the power series expansion

Az
(Z aj*zt | dz,
1=0

in a neighborhood of Q,. We must explain which coordinates we are using.
We, of course, use the usual coordinates on J(M) coming from C9. At
the point D € M,, we use modified coordinates of the second kind. The
modification is obtained by bunching together only those coordinates that
arise from a single Q,. Thus if our coordinates in a neighborhood of D in
M™" are

(Z11s o sZimy s Za1s - >Z2mys -+ +s Zsm )s
| J \ J
v Vv
corresponding  corresponding  corresponding
to z, to z, to zg

the related coordinates on M, are

(Fras o osbimgs Lats - oslamys oo Lsm s

where
mp
’pq=223u qzl,---,mp,p=1,...,s.
=1

The matrix which represents de,, is then

1 1 1
o111 .. 11 12 ... 12 1s ... 1s
apg 243 — 4y, -1 Qo — 4y, ag — 0y -1

my m, mg

b

a?l lgot ... lall g2 ... 1 92 gs ... gs
o 241 — 4y, -1 dg — Oy, -1 ag =y -1

my 2 mg

or interpreting the number af* in the obvious manner the matrix can be
written (up to certain obvious constants) as
U vmmy U vme-1)
— Q) o G(Q) o Q)
my! my!

1

£i(Q4)

: 1 1 .*1
Q1) - m—l!CL""_”(Ql) T GQ) o Q)

Ss*
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The rank of the above matrix is g — i(D), which by Riemann-Roch equals
n+1—r(D™Y). Thus (a) holds.

Let D;e M,\M), j = 1,2.If o(D;) = ¢(D,), then by Abel’s theorem D,/D,
is principal. Hence D, = D, unless r(D5 ') > 2. The latter would imply that
D, e M. We have thus established (c).

Since ¢: M, — J(M) is analytic, the fiber ¢~ '(@(D)) is a subvariety of M,,.
Thus it suffices, in order to establish (b), to produce a one-to-one surjective
holomorphic mapping ¥:P" — ¢~ (@(D)). By Abel's theorem, ¢~ !(¢(D))
consists of integral divisors of degree n equivalent to the divisor D. Let D" be
an arbitrary integral divisor of degree n equivalent to D, then D'/D is principal
and we conclude that every such D’ is of the form (f)D for some f € L(D™1).
We have reinterpreted Proposition 111.4.13. We now produce an analytic
mapping from PL(D™!) to ¢~ (p(D)).

Let {fo=1,f;,....f,] be a basis for L(D™'). Send the point 0 #
(€osCys - - - »Cy) = ¢ onto the divisor Y(c) = D(f) wilh~ f= Z;:o ¢;f;- Note
that if ¥(c) = ¥(T), then (f)/(f) is the unit divisor and f is a constant multiple
of f. Thus we have produced a well defined one-to-one surjective mapping

VP - o YD) = M,.
To show that the mapping ¥ is holomorphic, we write

D =Q7 - Qs Q.eM m>0,i=12...,s,m + " +m;=n.

Fix a point ¢® = (c3,...,c?)e C**! and let ¢ = (¢, ...,c,) € C'*' be suffi-
ciently close (to be specified below) to ¢°. We let f°=)"_oc’f; and
f=Y=0¢f;- Then

D(f°) = Py --- Pt PeM,pu>0,j=12,....,r, 4+ +p=n

Let U, be an open neighborhood of P, j =1, ..., r, and z; a local coordinate
vanishing at P; that is defined in a neighborhood of the closure of U; We
assume that the closures of these open sets are disjoint. Further, the points
Q; that do not equal any of the P, are not in any of the closures of the U;
and if Q; = P, for some pair i and j, then we assume that no other Q,, k # i,
is in the closure of U;. By shrinking the sets U; further we may assume that
whenever P, = Q;, we can and do choose a holomorphic function h; on U;
that has a zero of order m; at P; and is non-zero on U, — {P;}. For
P ¢{Q,,...,0,}, we set h; = 1.

We are again using, as local coordinates on M,, the modified elementary
symmetric functions of the second kind:

Hp
tpq:zzgh q=1,...,u,,p=1,...,r,
=1

where z,; =z, I=1,..., u,, p=1, ..., r. We observe that by definition,
t,,(¥(c)) is the sum of the gth powers of the values of the local coordinate
z, at points in the open set U, that appear in divisor (f)D (with proper
multiplicities). Note that ¢, (¥(c’)) =0. We consider the holomorphic
function h;f° on the set U;. It vanishes to order y; at P, and has no other
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zeros on U;. By Rouche’s theorem (see I11.6.8 for a similar argument), the
function h;f will have y; zeros (counting multiplicities) in U; if |c — ¢°| is
sufficiently small. The product of these n zeros (as we sum over the j’s)
forms the divisor (f)D, since D is integral of degree n. The residue theorem
yields
£ 1 (hp(zp)f(z,))

t q’ c)) = le ‘[/ Cc)) = — N AN JCA Iae Zq dz

PO = & 2D = 5 J hy(z)fz) "
forq=1,...,u, p=1,...,r. We have shown that

tpa(P(c))

is a complex analytic function of c.

S

Remarks

1. We saw in the proof that the rank of the Jacobian of ¢ at D € M, can be
written as g — i(D).

2. A “generic” (see I11.6.5) divisor D € M,, n < g, has index of specialty
i(D) = g — n. Thus W, for n < ¢ has dimension precisely n (as expected),
by Remark (1).

I11.11.12. By the inverse function theorem it follows that at the image of an
integral divisor D of degree n < g with r(D™') = 1, there are local coordinates
Zy, ..., z, for J(M) so that the points of W, are given by the equations
Zy+y = =2z,=0. We say in this case that W, is regularly embedded at
@(D).

Conversely, if W, is regularly embedded at a point u € J(M), then there are
g — n linearly independent holomorphic differentials on J(M) whose pull-
backs to M, vanish at the pre-image of u on M,. We have seen (Lemma
I11.11.10) that such a holomorphic differential corresponds to a differential
5 on M such that () is a multiple of D for all D € ¢~ !(u). Now if ue W,,
then for any Q € M there is a divisor D of degree n containing Q such that
(D) = u. Hence the differential § must vanish identically on M. But then
it vanishes identically on J(M). Now if g — n > 1, and W, is regularly im-
bedded at u, there is at least one differential on J(M) that vanishes on W,
and is not identically zero. We have established the

Proposition. If n < g — 1, then ue W, is a singularity of W, if and only if
ue Wl

Remarks

1. The above considerations allow us to describe more intrinsically the
tangent space to J(M). Let uy, . . ., u, be the canonical coordinates on C*.
Then these also serve as local coordinates at an arbitrary point x € J(M) =
C9/G. In terms of these coordinates, a natural basis for the (complex)
tangent space T,(J(M)) of the manifold J(M) at the point x is given by
the vectors ¢/du,, ..., d/0u,. On the cotangent space T*(J(M)), the
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covectors du,, . . ., du, provide a basis. The dual pairing

T.(J(M)) x TX(J(M)) - C, (11.12.1)
is then given by

g a g g
(Z a; 67) x (Z b; d“j) =Y apb;,
Jj=1 J j=1 J

i=1

here a;, b; € C. Of course, every cotangent vector may also be viewed as a
holomorphic 1-form on J(M) and conversely. As we have already seen the
holomorphic 1-forms on J(M) restrict to holomorphic 1-forms on W, <
J(M) and pull back via an isomorphism to elements of #'(M). Thus the
cotangent space to the complex manifold J(M) at any point x is naturally
identified with the abelian differentials of the first kind on M.

We return briefly to the differential doj, discussed in II1.11.11. The image
of dop, is spanned by the column vectors of the matrix (11.11.1). The
linear subspace of T%,)(J(M)) dual to the image of dgp consists (by
definition) of those cotangent vectors () 9_, b;du;) that annihilate the
image of do, under the pairing (11.12.1); in other words, of those covectors
(byduy + - - - + b,du,) which are annihilated by the transpose of the above
matrix. Under the natural identification of T} ,(J(M)) with # (M), these
covectors correspond to those w € # (M) with (w) > D.

2. If V < J(M) is any analytic subvariety, then R(V) denotes the regular
points of V; that is, those points ve V' at which V is an analytic sub-
manifold of J(M). The remaining points are called singular, and the set
of singular points is denoted by S(V'). To any point x € V, there is asso-
ciated a linear subspace T*(V) c T*(J(M)) spanned by those covectors
of the form df,, where f is any analytic function in an open neighborhood
of the point x in J(M) which vanishes (identically) on V. The natural dual
to the subspace T¥(V) is a linear subspace T (V) = T (J(M)) called the
tangent space to the variety V < J(M) at the point x, and dim T (V) is
called the embedding dimension of the variety V at the point x. The
embedding dimension is the dimension of the smallest submanifold of
J(M) which contains the intersection of V with a small neighborhood of x
in J(M). It is thus clear that the embedding dimension of x € R(V) is
precisely the local dimension of x at V. The proposition preceding these
remarks has shown that W, has embedding dimension g precisely at the
points of W} for n < g — 1. (Hence for n > g as well.)

II1.11.13. We introduce now some useful operations on subsets of J(M). If
S = J(M) and a € J(M), then we set

S+a={s+a;seS},
—S={-s;5€8S}
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If S, T< J(M), then we set
S®T=u{S+a;aeT}={s+t;s€S,teT},
SOT=n{S—a;ae T}

A subvariety S of J(M) is irreducible if every meromorphic function on

J(M) that vanishes on an open subset of S vanishes on S. Proposition
II1.11.11 has as an immediate consequence the following

Corollary. For eachn < g, W, is an irreducible subvariety of J(M) of dimension
n.

I11.11.14. Proposition. For any a € J(M),
-W,_y—a=W,_,—a—-K.

[

PrOOF. For any integral divisor D of degree g — 1, we can find an integral
divisor D" of the same degree such that DD’ is canonical. Thus

¢(D) + (D) = K,
showing that
W,_.,=K-W,_,. O

II1.11.15. Proposition. Let 0 <r<t<g— 1. Let ae J(M), be J(M). Then
(W, + a) = (W, + b)==ae (W, + by<sbe(—W,_, + a)

Proor. First note that ae (W,_,+ b)<>a=x+b, xe W,_,<b=a— x,
xe W,_,<be(—W,_, + a). Hence the last equivalence is trivial. Also if
ae(W,_, + b), it is easy to see that (W, + a) = (W, + b).

Assume now that (W, + a) < (W, + b). Thus for every integral divisor
D of degree < r there is a D’ € M, such that

o(D) + a = (D) + b. (11.15.1)

We need show that there is an 4 € M,_, such that a = ¢(A4) + b. Now the
Jacobi inversion theorem implies that there is an integral divisor B such
that a = ¢(B) + b, and (11.15.1) implies that deg B < t. Let 4 be a divisor
of minimal degree such that a = @(4) + b. It follows that A4 is unique,
since r(A~') is necessarily equal to one. If r(4~ ') > 1, then 4 would be
equivalent to a divisor which contains P,. Thus ¢(A) = @(PyA’) = ¢(A');
contradicting minimality of the degree of 4. We now wish to show that
deg A <t — r. We now have for every D € M,, there is a D’ € M, such that

@(D) + ¢(A) = (D), wheredeg A =s<t. (11.15.2)

To show that s <t — r, we assume that s >t — r. We can now choose a
divisor D of degree t + 1 — s < rsuch that P,¢ D and such thatr(4™!D" 1) =1.
(We are here using the facts that deg 4 + deg D < g and r(4™ ') = 1.) Now,
(11.15.2), (A~ 'D~ ') = 1, and Abel’s theorem give us AD = D'P,; which is
a contradiction since Py ¢ A, P, ¢ D. Hence we conclude s < t — r and thus
aeW,_,+b. O
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Remark. The proposition shows that the subvarieties W, = J(M) for t < g
are as far from being translation invariant as possible. Specifically an
inclusion W, + u = W, is equivalent to u € W, = {0}.

I11.11.16. Proposition
a. Foranyr,t > 0 and any a, b € J(M), we have
W, +a)+ (W, + b)=(W,,, +a+b)

b. For 0<r<t<g-—1 and any a, beJM), (W,+a)©O (W, +b) =
(m*r"-a_b)'

PROOF. Part (a) is a triviality. To prove (b) wt use Proposition III.11.15 to
obtainue(W,_, + (@a — b))<=b —aeW,_, —uwy=W + b —a)c
(W, —u)y<>(W, + b) = (W, + a — u). Assume now that ue(W,_, +a—b)
[and thus (W, + b) = (W, + a — u)] and v e (W, + b). Thus ve (W, + a — u),
orue W,+ a— v for all ve (W, + b). Hence ue (W, + a) © (W, + b). Con-
versely, if ue (W, + a)© (W, + b) thenue W,+a—vforallve W, + b or
ve(W,+a—u).Hence W, +b)c(W,+a—uorueW,_,+a—->). 0O

Remarks

1. The condition that t < g — 1 in (b) is necessary because W, = J(M) for
t > g. Hence for any S « J(M), W,© S = J(M) fort > g.
2. A special case of the proposition is also worthy of mention here:
Wi=W,_,oW,._,= m Wi —u
ueWg->

Thus W, = M can be recovered from W,_, and W,_,. Hence M is
determined by W,_, and W, _,.

I11.11.17. Proposition. For any n > 0 and any r > 0,
Wr=W,_,O(—W,), wheneverr <n,and (11.17.1)
W, = wheneverr > n. (11.17.2)

PrOOF. Let xe W’. Then x = ¢(D), DeM,, and r(D"')>r+ 1. The
Riemann-Roch theorem gives r(D~!)=n—g + 1 + i(D). This is clearly
impossible when r > n.
We have previously seen (Lemma IIL.8.15) that ue W, if and only if
for every v € W, there is a v' € W, _, such that u = v + v". Hence
Wi= () (W, + ). (11.17.3) O

veW,

Remarks

1. Formula (11.17.3) can be reformulated as ue Wi« —(W, —u) <= W, _,.
Clifford’s theorem gives a necessary condition that W} not be empty.
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The condition is that 2r < n or that r < n — r. Hence the above gives
a geometric interpretation of this theorem.

2. It is an immediate consequence of the proposition (in the form of
Equation (11.17.3)) that the subsets W}, are complex analytic subvarieties
of J(M).

3. If we define W, to be the empty set for n < 0, then (11.17.2) becomes a
special case of (11.17.1), and (11.17.3) is always valid. We shall adopt
this convention.

I11.11.18. Proposition. Let 1 < n < g — 1 and let x = ¢(Q) with Q # P,. Then
Won W+ x)=W,_, +x)u W,y (11.18.1)
PROOF. Assume u € W, n (W, + x). Then

u=@Q, Q)+ @@ =P, P,

Thus QQ, - - - Q, ~ P,P, - -+ P,. If ~ can be replaced by =, then Q appears
among P, ..., P, and we may assume Q = P,. Thus

u=@P, - P,_))+ Q) e(W,_{ + x).

If the two divisors are not identical, then r(Py ' --- P, ')>2andue W}, .
The reverse inclusion is trivial. O

Remark. A non-empty component of W}, , cannot be a subset of W,_; + x
for all x e W,. For if V is a component of W}, , and V< W,_, + x for
all x e W, then
Ve [\ Wy +x)=W,.
xeW,

Now V< W} certainly implies that V + W, = W}, ,. Since V + W, is an
irreducible subvariety of J(M) contained in W}, (it is the image of the
irreducible subvariety V x W, under the mapping (x,y)+ x + y) that con-
tains V, it must agree with V. Thus in particular we have W, invariant
under translations by ve V. This contradicts the remark following
Proposition II1.11.15.

111.11.19. Theorem

a. Let r be the dimension of a non-empty component of W}, , with1 <n<
g — 1. Then
2n—g<r<n-1

b. A component of W}, ,, 1 <n<gqg— 1, has dimension n — 1 if and only
if M is hyperelliptic.

PROOF. Let V be a component of W}, |. By the above remark we can choose
an x € W, such that V & (W,_, + x). By (11.18.1), V must be a component
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of the intersection W, n (W, + x). Hence dim V > 2n — g. Since W, is irre-
ducible, and W, + x # W,, for each component V of the intersection, we
must have dim V <n — 1.

Assume now that M is hyperelliptic. Then W} is non-empty and consists
of a single point x. Hence x + W,_, is a component of W}, of dimension
n— 1.

Conversely, assume W,,, has a component V of dimension n — 1. If
n =1, then W} is not empty and M is hyperelliptic. Thus assume n > 2.
Let us choose a point x € W;, and a point ue R(V) = W, n (W, + x) that
is a manifold point of the two varieties of the intersection. (This is possible
since ¥V has dimension n — 1 and each of the two singular sets W}, (W} + x)
have dimensions at most n — 2.) The tangent space to W},, at u has
dimension n — 1. Thus the dual cotangent space has dimension g — n + 1.
Now the point u € W, n (W, + x) is given by

u=0(Q; Q)+ @@Q) =P, P,)+ @(Py),

where x = ¢(Q). Assume now that P, --- P,P, is the polar divisor of a
function. We can then choose Q so that neither Q nor any of the Q; appear
among the P,. The space of differentials vanishing at u on W}, , is the span
of those vanishing at u on W, and on W, + x, which are, respectively those
vanishing at P,,..., P, and Q,, ..., Q,. However, r(P;! - P, 'P;!) =
r(Py'---P;')+ 1 implies that i(P, - P,Py) = i(P,--- P,). Thus every
differential vanishing at Py, ..., P, also vanishes at P,. Similarly, every
differential vanishing at Q, .. ., Q, also vanishes at Q. Each of these spaces
are of dimension g — n. Their span must have dimension g — n + 1. Thus
their intersection has dimension

29g—n—(@g—n+1)=g—n—1
The intersection 1s Q(Q, - - Q,QP, - - - P,P,) = Q(D). Now

rD™Y=2n+2—-g+14+(@-—n—1)=n+2

and hence
cD)y=2n+2-2n+2)+2=0.

By Clifford’s theorem, M is hyperelliptic unless D ~ Z.

If D~ Z, then2n +2 =2g — 2 or n = g — 2. In this case 2u = K, which
has only finitely many solutions in J(M). But n > 2 implies (g > 4 and)
dim V=n—12>1. Thus V is a continuum and u could be chosen so that
2u # K (from the beginning).

There remains the possibility that D = P, - - - P, P, is not the polar divisor
of a function for every D € ¢~ *(V) with D containing P,. Note that every
D'e M, ., is equivalent to a D e M}, that contains P,. Thus for every
De o '(V) there is a P e D, such that r(PD™!) = r(D™!); showing that
every u € V can be written in the form u = v + y with ve W} and ye W,.
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Thus W} must have a component of dimension > n — 2. By induction this
implies the hyperellipticity of M. O

I11.11.20. An application of the above results on the dimension of W,
yields the following.

Theorem (Noether). On a non-hyperelliptic surface of genus g > 3, for every
q = 2, the g-fold products of the abelian differentials of the first kind span the
space of holomorphic g-differentials.

Before we prove Noether’s theorem we recall (see I11.6.8) the following
useful observation: we can always find two elements of #!(M) that have no
common zeros. Choose any w, € #'(M) and let P, ..., P, be its distinct
zeros. If the result were not true, every other element of (M) would have
to vanish at one or more of the points P, ..., P,. Consider, however,
Q(P;)u---UL(P). Each set is g — 1 dimensional, so that the union is not
all of s#*(M). Thus there is an w, € # (M) which does not vanish at any
of the points Py, ..., P,.

The preceding implies that the function f = w,/w, gives rise to a (2g — 2)-
sheeted cover of the sphere with the property that for each ze C U {0},
f~Y(z) is a canonical integral divisor. Since the function f is branched over
only finitely many points we can even assume that the differentials o, and
w, have only simple zeros.

A similar argument applied to Q(P,) shows that we can always find two
elements w,, w, € #'(M) with precisely one common zero at P, (and no
other common zeros), provided M is not hyperelliptic. We shall use these
results in the proof of Noether’s theorem.

PrROOF OF THEOREM. Assume that M is a non-hyperelliptic surface. Thus
there exists on M an integral divisor D of degree g — 2, such that i(D) = 2
and for each Q € M we have i(DQ) = 1. Assume, on the contrary, that for
every De M,_,, thereis a Q € M such that i(DQ) > 2. Thus forallve W, _,,
there is an x € W, such thatv+xe W)_orve W), —xc W)_ @ (—W)).
But then W,_, = W}_, @ (— W,), and it must be the case that dim W,_, >
g — 3. Theorem 1I1.11.19 implies that dim W,_, <g — 3, and that M is
hyperelliptic.

Let w,, w, span Q(D) and let w; be any holomorphic differential which
does not vanish at any of the zeros of w,w,. Our assumptions on D give
that w,/w, is a meromorphic function on M with precisely g poles and
i((w,)/D) = 1. The function w,/w, has precisely g poles because w; and w,
have no common zeros other than in D. The assertion on the index of (w,)/D
follows from the equality i((w,)/D) = r(D™')= —1 + i(D). Let {0,,....0,}
be a basis for #!(M) and consider the 2g elements of #*(M):

®,04,...,0,0,;0,0,,..., 0,0,
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Note that the first g products are linearly independent and so are the last
g products. Let A; and A4, denote the subspaces of #?(M) spanned by
these products. Now dim(4, N 4,) = dim 4, + dim 4, — dim(4, v 4,),
and dim(A4, N A4,) = 1. To verify the last assertion write (w;)=DD;,j=1,2,
and note that D, and D, are relatively prime integral divisors of degree g
(with (wl/wz) D,/D,). Now if ne A, n A,, then n = {w;, j =1, 2, with
(€ HYM) (these {; need not be normallzed) Thus (,/{; = w,/w,. In par-
ticular, ({,) = DD, and ({,) = DD, for some D e M,_,. Since i(D) = 1=
i(D,), we must have {,/w, and {,/w, € C and 4, N A2 is spanned by w,w,.
Thus dim(A4, v 4,) = 2g — 1, and the 2¢g products span a subspace of #%(M)
of dimension 2g — 1.

We now adjoin w;0,, ..., w,0, to our list, and denote the subspace of
#*(M) spanned by these g linearly independent products by A,. Once
again

dim((4, v A,) N A3) = dim(4, v A,) + dim A; — dim(A4, v A, Vv A3)
=29—1+4+¢g—dim(A,v A,V A4;).

We show that dim((4, v 4,) N A3) = 2, and in fact the space in question is
spanned by w, w3, w,w;. Note that if n € (4, v A,) N A5, then y = (w5 =
{10, + {,w,. Since the right-hand side vanishes at D, it follows that ({;) =
DD. Thus { {3 = x 0, + x,m, (with x; € C) and the dimension is 2, as claimed.
Thus dim(A4, v A, v A;) = 3g — 3 = dim #*(M). This concludes the proof
forqg =2.

For the case g = 3, we start by choosing two elements o, w, € # (M)
such that w, and w, have precisely one common zero at P, and w; € # (M)
such that w; does not vanish at the zeros of w,w,.

Let {fi,....f3,—3) be a basis of #*(M) with each f; a 2-fold product of
elements of #'(M). Let A; be the (3g — 3)-dimensional space spanned by
®;f1s ..., wjf3,-3. As before

dim(A, N 4,) =dim 4, + dim A, — dim(4, v 4,).

Ifwn, = w,n, € A; N A,, then n,/w, is an abelian differential with at most
a single pole at P, and therefore holomorphic at P,. Hence 1, can be written
as 1, = w,w with w € #*(M). This shows that dim(4, n 4,) = g, and thus
that dim(A4, v 4,) = 59 — 6. Clearly w3 does not vanish at P, while every
element in 4, v 4, does. Hence w3 is not in 4, v A,. Adjoining it to our list,
we have a space of dimension 59 — 5 = dim #3(M), spanned by three-fold
products. This concludes the proof for g = 3.

For g > 4 we now can proceed by induction. We let w,, w, € # (M) be

such that w; and w, have no common zeros. Let {f}, ... ,fom-1) -1,/ b€ @
basis for #™(M), with m > 3, composed of m-fold products of elements of
A (M). Let A; denote the space spanned by ;fi,..., ®;fiam-1)g-1)

Then dim(4,; N 4,) =22m — 1)(g — 1) — dim(A4, v A,). Clearly however
dim(A; " 4,) =(2m —3)(g — 1), and thus dim(4, v A,)=2m+ 1)(g—1)=
dim #™* {(M).
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EXERCISE

Recall the exercises of 111.7.5 and complete the above discussion for hyperelliptic
surfaces (including the case g = 2).

I11.12. Torelli’s Theorem

This section contains a proof of Torelli’s theorem which states that the
conformal equivalence class of a compact Riemann surface is determined by
its period matrix. If the surface is of genus 0, there is of course nothing to
prove. For surfaces of genus 1, the result is a consequence of Abel’s theorem
(see I11.6.4) which shows that each torus is its own Jacobian variety. Thus
we are left with the case of surfaces of genus g > 1. We will use the notation
of the previous section and show that W; — J(M) is determined up to a
translation and reflection (this is the map that sends a point in the Jacobian
variety to its inverse) by W,_,, the so-called canonical polarization of J(M).
Of course, W, is isomorphic to the surface M (Abel’s theorem again) and
we shall show in Chapter VI (Theorem VI1.3.1) that W,_, is determined by
the period matrix of M. We follow the arguments of Henrik H. Martens,
which show that Torelli’s theorem is a combinatorial consequence of the
Riemann—Roch theorem and Abel’s theorem.

I11.12.1. We start with a number of observations.
(a) For every a e J(M), we have
_(VVg—l + {l) + K = VVg_l — da.

This is a restatement of Proposition IT1.11.14.
(b) For every integer r with 0 < r < g — 1 and all a and b in J(M), we have

W, +a) (W, + by<>ae(W,_,_, + b).

This result is a special case of Proposition IIL.11.15 for the case
t=g— 1.
(c) For every integer r as above
VVg—l—r = W/;z—l e W/;
and
Wi + K=W,, o(—w).

The first statement is Proposition I11.11.16(b) for ¢t = g — 1. The second
formula is a consequence of

W, ©(—W)=N{Woy +usueW,} = {-W,_ +u+K;ue W}
=-—N{W,_, —us;ueW,} + K
-Wp W)+ K=—-W,_,,+K
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We now establish the following

Lemma. Let r be an integer with 0 <r < g — 2. Let a and b be points in J(M)
that are related by the equation b = a + x — y where xe Wy and ye W,_, _,.
Then either (W,,, + a) = (W,_; + b) or else

W taoW_  +b)=W, +a+x)uS,
where
S=Wi +tan(—W,., —y+a+K)

PRrOOF. By assumption x = ¢(R), y = ¢(R), and ¢(R) + a = ¢(R) + b, where
R and R are integral divisors of degree 1 and g — 1 — r, respectively. If R is
a point of R, then our equation reduces to a = @(R’) + b, where R’ = R/R
is an integral divisor of degree g — 2 — r. In this case, ae W,_,_, + b and
Wiy +ac W, + b, by (b) above. Hence we assume that R is not a point
of R.

_Letue (W41 + a)n(W,_; + b). Then there exist integral divisors DAand
D of degree r + 1 and g — 1, respectively, such that u = ¢@(D) + a = ¢(D) +
b. Hence DR is equivalent to DR. If DR = 15R, then R must be a point of
D and u = ¢(D) + a = ¢(D’) + @(R) + a, where D’ is an integral divisor of
degree r and thus u € W, + a + x. If DR # DR, then r(1/DR) > 2 and hence
given any point Q € M, there exists an integral divisor Q of degree g — 1
such that DR is equivalent to QQ. Then

u=¢D)+a= 9@+ ¢@Q) — oR) + a;
that is,

ue(V{W,_,+a—y+v,veW,}=—W,_,+y—a) +K.
We have used part two of (c). Since
W, +ty—a+Kec—-W,_ +y—a—x)+ K=W,_, +b,

the reverse inclusion is trivial. |

III.12.2. We will need two more facts. The first observation involves
reflection in the Jacobian variety. We change the canonical homology basis
on the surface M

from {a,,...,a,b,,....b,} to{—ay,...,—a, —b;,...,—b,}.

This changes the elements in the dual basis for the holomorphic differentials
to their negatives while leaving unaltered both the period matrix and the
Jacobian variety of the surface. Our reflection changes W, into — W, for
each positive integer r.

Our second observation involves the intersection of the curve in the
Jacobian (that is, W,) with the polarization divisor (that is, translates of
W,_,). The needed fact is best established using the results of Chapter VI on
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the Riemann theta function. Let b be a point in J(M) and assume that W,
is not contained in W,_; + b. Then the intersection W; n(W,_, + b) consists
of g points (counting multiplicity) ¢(P,), ..., @(P,) with e M,i=1,..., g
and there exists a point ¢ € J(M) that is independent of b such that

o(P, P)=b+c.

To verify this assertion, we let x be the vector of Riemann constants (see
VI1.2.4.1). By Theorem VI1.2.4, the function on C*

z—0(z — b + k)

vanishes precisely on W,_, + b and by Theorem VI.3.2, the multivalued
function on M
P 0(p(P) — b +x)

either vanishes identically or has precisely g zeros Py, ..., P, on M that
satisfy
o(P, - P)+Kk=b—k

The images under ¢ of the zeros of the multivalued function are precisely
the points in W; n(W,_, + b). Thus we have verified our claim with

c=-2k=K
by Theorem VI.3.6.

I11.12.3. Torelli’s Theorem. Let ¢ : M — J(M) be an Abel—Jacobi embedding
of a compact Riemann surface M of genus g > 2 into its Jacobian variety
J(M). Then W, = @(M) is determined up to translation and reflection by
the canonical polarization of J(M); that is, by the class of translates of
PRrOOF. By translation, if necessary, we may normalize ¢ so that ¢(P,) =0
for some base point P,e M. Let N be a second Riemann surface of
genus g with the same Jacobian variety as M and let Y : N - J(M) be an
Abel-Jacobi embedding of N into its Jacobian variety with some normal-
ization ¥(Q,) = 0 for a base point Q, € N. Let V, denote the image under
Y of the set of integral divisors of degree r on N. We must show that
if V,_, is a translate of W,_, then V, is a translate of either W, or of
—W,.
Let r be the smallest integer such that

VieW,.y+a) or Vi —(W,,y +a)+ K for some aeJ(M).

The theorem will be proved if we can show that r=0. Assume for
contradiction that r > 1. Clearly, r < g — 1. By changing the canonical
homology basis on N to inverses as in I11.12.2, if necessary, we may assume
that V, « W,,, + a for some given a € J(M). Choose x€ W, and ye W,_, _,.
Set b=a+ x —y. Then unless W,,; +ac W,_; + b, we have by the
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assumed inclusion and the previous lemma (in the notation of that lemma)
Vian(Wy_y + ) =Vin(W,_; + b)n (W4, + a)
=Win(W,.+a+ x)u((V;nS).

For given a, W, + a + x depends only on the choice of x and S only on the
choice of y.

We show first, that for a fixed x, V; ¢ (W,_, + b) for almost all choices
of y, and hence also (W,., + a) ¢ (W,_, + b) for the same y. As y varies over
W,_1_,, —b varies over W,_,_, —a — x. By assumption, there exists a
k € J(M) such that V,_, + k= W,_,. Hence V, = (W,_, + b) if and only if
Vie(,.i +b+k) if and only if —be(V,_, + k) by IIL.12.1(b). Thus
the set of b for which V, = (W,_, + b) is precisely the set of b with
—be(V,., +k)n(W,_,_, —a—x). Now, if V; «(W,_, +b) for all —be
W,.i.,—a—x),then V,c W,_,©(W,_,_, —a—x)=W, + a+ x by part
one of III.12.1(c). This contradicts the minimality assumption on r. Hence
(Wy—i-, —a—x) ¢ (V,_, + k) and the intersection of these two sets is a
lower dimensional subset of (W,_,_, — a — x).

We now consider again the intersection
VoW, +b=Vin(W, +a+x)uV;nS)

By II1.12.2, if V; & (W,_; + b), then there is a unique integral divisor D(b) of
degree g on N such that

Y(D(®b)) = b +c, (*)

where ¢ € J(M) is independent of b and the points in D(b) are mapped by y
onto the intersection V; N (W,_, + b).

We show next that V; n(W, + a + x) contains at most one point. If not,
then as —b varies over almost all points of (W,_; _, — a — x) for fixed x, the
divisor D(b) will contain at least two fixed points and hence (D(b)) varies
over a translate of V,_,. By the last displayed equation (), we would have
an inclusion of —W,_,_, + K in a translate of V,_,; say (—W,_,_, + K)
(V,-, + d) for some d € J(M). Then

(Vo + k)@(V;,—z +d)c W, O(—W,.1, +K)

and, using II1.12.1(c), we get an inclusion of V; in a translate of — W, + K.
This again contradicts the minimality or r.

Keeping y fixed and varying x, we see from (x) that V, n(W, + a + x)
must contain at least one and hence exactly one point. By the preceding
argument this point occurs in the divisor D(b) with multiplicity 1 for almost
all choices of y.

It is now easily seen that we can find x and x’ inAW1 and a ye W,_,_,
such that D(a + x — y) = QD and D(a + x’ — y) = Q'D, where Q and Q' are
points of N and D is an integral divisor on N of degree g — 1 not containing
either Q or Q. By (%), ¢(Q) — ¢(Q’) = x — x’ and hence W, has two distinct
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points in common with some translate of V. Now, if x, x" € W, then
Wyoy —x)n(Woy = x) =W, u(=W,_, —x—x"+K) by the last
lemma. By II1.12.1(c), we now have an inclusion of some translate of V,_,
in W,_, or in —W,_, + K, hence by II1.12.1(c) again, we get an inclusion
of some translate of V; in W, or in — W, + K. We have completed the proof
of the theorem. |



CHAPTER IV
Uniformization

This chapter has two purposes. The first and by far the most important is to
prove the uniformization theorem for Riemann surfaces. This theorem
describes all simply connected Riemann surfaces and hence with the help
of topology, all Riemann surfaces.

The second purpose is to give different proofs for the existence of mero-
morphic functions on Riemann surfaces. These proofs will not need the
topological facts we assumed in Chapter II (triangulability of surfaces). As a
matier of fact, all the topology can be quickly recovered from the complex
structure.

This chapter also contains a discussion of the exceptional surfaces (those
surfaces with abelian fundamental groups), an alternate proof of the
Riemann-Roch theorem, and a treatment of analytic continuation (algebraic
functions on compact surfaces).

IV.1. More on Harmonic Functions
(A Quick Review)

In this paragraph we establish some of the basic properties of harmonic
functions. The material presented here is probably familiar to most readers.

IV.1.1. We begin by posing a problem that will motivate the presentation
of this section. Details will only be sketched. For more see Ahlfors’ book
Complex Analysis.

DIRICHLET PROBLEM. Let D be a region on a Riemann surface M with
boundary éD. Let f be a continuous function on 6D. Does there exist a
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continuous function F defined on D u 6D such that
i. F|D is harmonic, and
ii. F|6D = f?

IV.1.2. Let g be a real-valued harmonic function in {|z| < p}. There exists,
of course, a holomorphic function f defined on {|z| < p} with g =Re f.
We may define f by .

Im /(z) = | *dg,

and observe that the integral is independent of the path (because {|z| < p}
is simply connected). The Taylor series expansion of f about the origin is

fré®y =% apre™,  0<r<p.

n=0

Without loss of generality a, € R. Hence
. 1 o
glre) = E(f (re”) + f(re”))

=ag+ = Z rn oino ane—in())'

2 n>1
Multiplying the above by ¢~ " and integrating, we get

1 2n i0
ag = 7 fo g(re'®) do
1 parg(re®)
a=_J, (re do, n>1.
Thus for |z| < r, we have

1 n : "
flz) = Zf: g(re”) [1 +2 3 (re ):lde

n>1

1 pr2n oore + z
=5 fo g(re') T Zd9, (1.2.1)

and

0

g(z)=Ref(z)=51;tf2” glre") Re " re? o

- f '9) Izzllz do. (12.2)

The expression (r* — |z|?)/|re” — z|2 is known as the Poisson kernel (for the
disc of radius r about the origin). It has the following important properties:

2 1.2
sz" il C TSR N, (1.2.3)

2nJo |re? — z|?
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2 2
|r’e,.0 ’Zz||2 >0 for|s|<r. (1.2.4)
2
lim %ﬁg o ‘:TJ—H—Zd() 0 for0<n<n (1.2.5)
z—retYo
lz| <r

From the reproducing formula (1.2.1) we also get a formula for the har-
monic conjugate of g that vanishes at z = 0, namely,
10

+ -

do

Im f(2) = 5 f Im

1 a2, re Pz — re'z
= _— re') ———————do. 1.2.6
2mi JoO g(re?) re® — z)? (1.2.6)
1V.1.3. Theorem. The Dirichlet problem for the disc has a unique solution;
that is, given a continuous function f defined on {|z| = r}, there exists a con-
tinuous function F on {|z| < r} such that F is harmonic in {|z| < r} and F(re’’) =
f(re®),0 <0 < 2n.

ProoF. Without loss of generality f is real-valued. Since real harmonic func-
tions satisfy the maximum and minimum principle, uniqueness is obvious.
For existence, one sets for |z| < r

1 p2n 1% — |z|2 "
Fa =5 | o 2 /)0 (13.1)
and uses the properties of the Poisson kernel (1.2.3)-(1.2.5). O

Corollary. If f is a continuous function on a domain D < C, and f satisfies
the mean-value property in D, then f is harmonic in D.

PROOF. Again without loss of generality f is real-valued. Solve the Dirichlet
problem for f|{|z — z¢| = r} with {|z — zo| < r} = D. Call the solution F.
Then F — f satisfies both minimum and maximum principles, since the
mean value property is all that one needs to prove these principles. Hence
F = f on {|z — z¢| < r}, and f is harmonic. O

IV.1.4. For |z| < r, it is easy to see that

r—lz| _ =1z _r+
. < .
r+lz] T e — 2P T r— |

These estimates on the Poisson kernel imply almost immediately

Harnack’s Inequality. Let D be a domain in C and D, < < D (that is, D, is a
relatively compact subdomain of D). Let u be a positive harmonic function on D.
Then there exists a constant ¢ = ¢(D,,D) that depends only on D and D (not on



IV.1. More on Harmonic Functions (A Quick Review) 169

u) such that

u(zy) <c¢ allzy,z,eD,.
u(z,)

1
-<
c

IV.1.5. Because harmonicity is a local property and we have the Poisson
reproducing formula (1.2.2) for harmonic functions, we can establish the
following

Proposition. If {u,} is a sequence of harmonic functions on a Riemann surfuace
M and {u,} converges to u uniformly on compact subsets of M, then u is also
harmonic.

This can be seen from the fact that the limit function is continuous and
necessarily has the mean-value property.

IV.1.6. Harnack’s Principle. Consider a sequence of real valued harmonic
Sfunctions {u,} each defined on a domain D, on the Riemann surface M. Assume
that each Py € M has a neighborhood U such that U < D, for all but finitely
many n. Further assume that

u(P) < u,,(P), PeU,nlarge.
Then either

i. lim u, = + oo, uniformly on compact subsets of M, or

n—x

ii. lim u, = u, uniformly on compact subsets of M with u a harmonic function.

n— oo
OUTLINE OF PrOOF. Without loss of generality we may assume u,, are positive
harmonic functions. Define

u(P) = lim u,(P).
Harnack’s inequalities show that the sets

{PeM;u(P)= +x}
{PeM;u(P)< +w0}

are both open. Hence one of them is empty. The same inequalities show that

the convergence is locally uniform. Thus the result follows from the previous
proposition. Ol

IV.1.7. Theorem. Let u be a harmonic function on {0 < |z| < 1}. Then there

exist constants a, B such that for 0 <r < 1,

2n
u

fo (re®ydg = o log r + B. (1.7.1)
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Proor. Recall Formula I (4.4.2). For u,, u, harmonic and 0 < p < r (and
the usual counterclockwise orientation for the circles) we have:

Now we let u = u,, and set
u,(z) = log|z]

(recall that on |z| = r, (3u;/ér) r d6 = *duy), to obtain

2n a 2n 1
.y =J log r o r do —J u(re®)~r do
0 or r

0

(— B is, of course, the value of the right-hand side of the above equation for
r = p, which we take to be a fixed value). Thus

fozn u(re®ydd = g + log r flzlzr *du= B + o log r.

The last equality holds because |.|-, *du is independent of r. This is simply
Cauchy’s theorem for du + i*du is a holomorphic differential in {0 < |z| < 1}
—alternatively, because *du is closed.

Remark. The above also shows how to evaluate «:

o= f|z|=r *du.

Furthermore, we may view (1.7.1) as a formula for computing f, especially
when we know that o = 0.

Corollary 1. If u is harmonic and bounded in {0 < |z| < 1}, then o = 0.

PROOF. If M = sup|u| on 0 < |z| < 1, then

Uozn u(re’®)do| < M2n. O

Corollary 2. If u is harmonic and bounded in {0 < |z| < 1}, then u can be
extended as a harmonic function to {|z| < 1}.

PROOF. Since o = 0, [/, *du = 0. Thus (we assume u is real, this involves
no loss of generality) there exists an analytic function f on {0 < |z| <1},
with u = Re f on {0 < |z] < 1}. Set F =exp f. Since |F| = exp u, and u is
bounded, so is |F|. By the Riemann removable singularity theorem F can be
extended to |z| < 1. Since a pole or an essential singularity of f is an essential
singularity for F, f has a removable singularity at z = 0. O

Remark. As a consequence of the preceding, we have the following: The
Dirichlet problem does not have a solution for D = {0 < |z] < 1}, f(0) = 1,
flzy=0for|z| = 1.
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IV.2. Subharmonic Functions and Perron’s Method

The linear functions f(x) = ax + b in one (real) variable satisfy the mean-
value property. The harmonic functions in two variables are the natural
generalization. Similarly, both classes of functions satisfy the (appropriate)
Laplace equations. Subharmonic functions are the natural generalization
of convex functions. Throughout this section, M is a Riemann surface. All
functions considered will be real-valued.

In this section we establish Perron’s principle which gives sufficient con-
ditions for the supremum of a family of subharmonic functions to be a
harmonic function. Using this principle, the Dirichlet problem is solved.

IV.2.1. A continuous function u on M is called subharmonic on M if and
only if for every domain D on M and every harmonic function h on D with
u < hon D wehaveu = hon Doru < hon D. The function u is called super-
harmonic if and only if — u is subharmonic. Obviously every harmonic func-
tion is both subharmonic and superharmonic.

Proposition. A continuous function u is subharmonic on M if and only if for
every domain D = M and every harmonic function h on M, u + h has no max-
imum in D unless u + h is constant.

PROOF. Say u is subharmonic and u + h < H with H constant and H assumed
by u + h at some point in D, then u < H — h in D. Since H — h is harmonic
in D and equality holds at least one point in D,u = H — h. Thus,u + h = H,
and u + h is constant.

Conversely, say u <hon D. Thenu +(—h) < 0. Theneitheru + (—h) <0
on D or u + (— h) equals zero at a point in D. In the latter case, the hypothesis
implies u + (— h) is constant (and =0). Thus u is subharmonic. O

Corollary. Subharmonicity is a local property (that is, a function subharmonic
in a neighborhood of every point is subharmonic).

1V.2.2. A conformal disc K = M is an open set (K) whose closure (Cl K)
is in a single coordinate patch (with local coordinate z) such that z(Cl K)
is a closed disc in C of radius > 1, and center z = 0.
J_et u be a continuous function on M(u € C(M)). Fix a conformal disc K on

M. We define a new function u®) on M as follows:

u® e C(M),

u®|M\K = ulM\K,

u'® is harmonic in K.

The solution of the Dirichlet problem for the disc gives the existence and
uniqueness of uX). Furthermore,

CM)sur— u® e CM)
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defines an R-linear operator (to be called harmonization) on C(M). Also, u
is harmonic if and only if u = u'® for all conformal discs K on M.

Proposition. Let ue C(M). The function u is subharmonic if and only if u <
u'® for every conformal disc K on M.

PROOF. Assume u is subharmonic. Consider
u— u®,
This function vanishes on M\K.It has no maximum in K(unless it is constant).
Its maximum must be on K. Thus u — u'® < 0.
To prove the converse, let i be harmonic on D. We show that the maximum
principle holds for u + h. Assume u + h achieves a maximum H on D, a
domain in M. Set

Dy=1{PeD;u(P)+ h(P)=H].

Then Dy is non-empty and closed in D. Pick a conformal disc K = D around

P e Dy with the local coordinate =. Now for 0 <r <1, K, =z"'({|7] < r})
is also a conformal disc, and

H = u(P) + h(P) = u(0) + h(0) < u'®(0) + h(0)
1 n ) .
-’ (u(re'®)y + h(re))do < H.
27 JO
Thus u(re®®) + h(re’®y = H all r, 0 < r < 1, and all 0, 0 < 0 < 2n. Hence Dy
is open in D. Since we have taken D to be connected (without loss of gen-

erality), Dy = D, and u + h is constant in D. Hence u is subharmonic by
Proposition IV.2.1. O

Corollary (of Proof). Let u e C(M). Then u is subharmonic if and only if
1 2n 0
umgﬂﬂuww

for every conformal disc on M.

Corollary (of Corollary). Let D be a domain on M. Assume that u e C(Cl D)
is subharmonic and non-negative on D and identically zero on dD. Extend u
to be zero on M\D. Then u is subharmonic on M.

1V.2.3. Proposition. Let u, v be subharmonic functions on M and ¢ € R, ¢ > 0.
Let K be a conformal disc on M. Then cu, u + v, max{u,v}, and u'® are all
subharmonic.

ProOOF. That cu and u + v are subharmonic follows immediately from the
above corollaries. Next assume that max{u,v}(P,) = u(P,). Letting z be a
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local coordinate vanishing at P, corresponding to a conformal disc, we
see that

1 r2n

max{u,v}(Pgy) = u(Po) < 7 foz u(e'®)do
1 2n .

<5 fo max{u,v}(e*)do,

showing that max{u,} is also subharmonic. Finally, u'®) is clearly sub-
harmonic on M\6K. Thus, let P, € §K. Using the same notation as above,
we see that

1 2n . 1 2n .
(K) _ i0 . (K)( ,i0
u™(0) = u((0) < 52 Jo u(e)do < e fo ut®(e'") do,
proving that u® is subharmonic. O

1V.2.4. Proposition. Let ue C(M). Then u is harmonic if and only if u is
subharmonic and superharmonic.

PROOF. If u is subharmonic, then u < u'® for all conformal discs K. If u is
superharmonic then u > u'®, Thus, if u is both, u = u®. Since harmonization
does not affect such a function u, it must be harmonic. The converse is, of
course, as previously remarked, trivial. O

1V.2.5. Proposition. Let ue C3(M). Then u is subharmonic if and only if
Au > 0.

PRrROOF. Since subharmonicity is a local property, it involves no loss of
generality to assume that M is the unit disc {z = x + iy; |z| < 1}. Further-
more, Au > 0 is a well-defined concept on any Riemann surface (because
we are interested only in complex analytic coordinate changes). We view 4
as an operator from functions to functions:

y Au CPu
U=+ —.
ox?  0y?

Say Au > 0. Thus u has no maximum on M. (If u had a relative maximum
at P, then

N2 N2
(P <0, %y—‘;(mso or Au(Py) < 0.

If h is harmonic on M, then A(u + h) > 0, and, as seen above, this implies
that u + h has no maximum on M. Thus u is subharmonic.
Suppose now Au > 0. Let ¢ > 0 be arbitrary. Set

v(x,y) = u(x,y) + e(x* + y?).
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Then v e C3(M) and Av = Au + 4¢ > 0. Thus, by the first part, v is sub-
harmonic. Hence, for every K, a conformal disc on M, v < v'®, or

ub e > u® 4 e(x? + y)® > u + e(x? + y?),

or (by letting ¢ approach zero) u < u®; that is, u is subharmonic.
Conversely, say u is subharmonic and Au < 0 at some point. Then also
in a neighborhood D of this point. By the above, u is superharmonic in D.
Hence, we conclude that such a u must be harmonic in D, and we arrive
at the contradiction Au = 0 in D. O

IV.2.6. A family # of subharmonic functions on a Riemann suface M
is called a Perron family (on M) provided:
& is non-empty, (2.6.1)

for every conformal disc K = M and every u € &,

there is a v € # such that v| K is harmonic and v > u, (2.6.2)
and
for every u, € # and every u, € #, there is a
v € # such that v > max{u,,u,}. (2.6.3)
Remarks

1. In most applications the functions v satisfying (2.6.2) and (2.6.3) will be
u® and max{u,,u,}, respectively.

2. If # is a Perron family on M, if K is a conformal disc in M, and if u; € #,
j=1,...,n, then there is a v € # such that v\K is harmonic and v > u;,
j=1,...,n

Theorem (Perron’s Principle). Let & be a Perron family and define

u(P) = sup v(P), PeM.

veF
Then either u = + oo or u is harmonic.

Proor. Cover M by a family of discs {D,}. If we have the theorem for discs,
we have it for all of M. We claim that if u is harmonic on one disc in the
cover, say Dy, then u is harmonic on all discs. Let D, be another such disc.
Since M is connected we can find a chain of discs

Dz,D3, ceey D"+1 = D*
with
D;nDj,non-emptyforj=1,...,n (2.6.4)
By the theorem for discs u|Dj is either harmonic or = + oo. Since we have
(2.6.4), it is impossible for u|D, to be harmonic and u|D,,, to be = + c0.
Thus we may assume

K={zeC;lz|<l}c{zeC;lz]<rj=M, r>1,
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and prove the theorem for K. Let {z;} 7, be a dense set of points in M. (We
cannot at this point choose a countable dense set in our original M, since
we do not know yet that every Riemann surface is second countable.) For
each j, choose a sequence vj, € # such that

u(Zj) = klim vjk(zj)'

Choose any v, € # such that v, is harmonic on K and v, > v;,. Having
chosen
{vy, ... 0} = ZF,

choose v, € Z such that

vn+ 1| K is harmonic,

vn+1 ZU,,,
and
Ups1 = U, allm<n+ lalll<n+ 1.

We now observe that

vn(z)) = vlz)), forn>k >},
and thus
lim v,(z;) = sup v,(z;) = u(z)).
Assume u # + o0. Without loss of generality we assume that u(z,) < + oo.
By Harnack’s principle
W = lim v, (2.6.5)
k

is harmonic in K. We must verify W = u. Since v, € #, v, < u, and hence
W < uby (2.6.5). Further W = u on a dense set (we do not know yet however
that u is even continuous). Thus W > v on a dense set for all v € #. Since
all v € # are continuous, W > v for all ve #. Thus, W > u on K. O

Remark. The above proof also showed how to obtain the function u. Let
K be an arbitrary compact subset of M. Cover K by finitely many discs
{K;;j=1,...,n}. For each j, there is a sequence of increasing harmonic
functions {v; } such that

u= ll:n vy on K.

Choose v, € # such that v, > max{v,;j=1,...,n}. Then

u = lim v,
k

uniformly on K. In general, the functions v, are only subharmonic on K
(that is, not always harmonic).

IV.2.7. We now return to the Dirichlet problem introduced in IV.1.1. We
take a region D with boundary 6D on a Riemann surface M.
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Let P € 6D. We shall say that 8 is a barrier at P provided there exists a
neighborhood N of P such that

Be C(CID n N)), (2.7.1)
f is superharmonic on Int(D N N), (2.7.2)
B(P)=0, (2.7.3)
and
p(Q)>0 forQ # P,Qe Cl(Dn N). (2.7.9)

Remark. If P € 6D can be reached by an analytic arc (=image of straight
line under holomorphic mapping) with no points in common with CI D,
then there exists a barrier at P.

PROOF. This is a local problem and so we may assume that P can be reached
by a straight line with no points in common with D and D = C. Furthermore,
we may assume P = 0, and the line segment is y = 0, x < 0. Choose a single-

valued branch of\/E in the complement of this segment and set (z) = Re \/_
Writing z = re®, we see that f(z) = r'/ cos 6/2 with —n <0 <, and is
thus a barrier at 0. O

We need a slight (free) improvement. Let § be a barrier at P € 0D with
N (as in the definition) a relatively compact neighborhood of P. Let us
choose any smaller neighborhood N, of P with Cl N, < Int N. Set

m = min{B(Q); Q € (CI(N\N,) n CI D)} > 0.

Then set
=~ {min{m,B(Q)}, Qe N nD,
poy= {m, Q € CI(D\N).

Then J is continuous on D, B >0, B(Q) =0 if and only if Q = P, and B is
superharmonic on D. Further f/m is again a barrier at P with B/m =1
outside N. (It is defined on all of Cl D.) We shall call B/m a normalized
barrier at P.

IV.2.8. Let D = M. A point P € 6D is called a regular point (for the Dirichlet
problem) if there exists a barrier at P. A solution u to the Dirichlet problem
for a bounded f € C(dD) is called proper provided

inf{f(P); P € 6D} < u(Q) < sup{f(P); Pe D}, allQeClD.

Theorem. The following are equivalent for D — M:

a. There exists a proper solution for every bounded f € C(6D).
b. Every point of 8D is regular.

PROOF. (a) = (b): Let P e dD. It is easy to construct an f e C(6D) with
0<f<1and f(Q) =0 if and only if Q = P. Let u be a proper solution to
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the Dirichlet problem with boundary value f. Then 0 < u < 1. We claim
u> 0 in D. Otherwise, u =0 in D (by the minimum principle) and f = 0.
Since u is harmonic, it is superharmonic, and thus a barrier at P.
(b) = (a): Let
& = {v e C(Cl D); v is subharmonic in D,
mo =inf f < v < sup f = m,, and v(Q) < f(Q)
for all Q € 6D}.

Clearly the function which is identically m, is in #. If u,, u, € #, then
max{ul,uz} € . Also for every ue .# and every conformal disc K in D,
u® e #. Thus Z is a Perron family on D. Let

u(@ =supv(@), QeD.

veF

Then u is harmonic in D and my, < u < m,.
We verify two statements for P € 6D:

. liminf u(Q) > f(P); and

o-p

2. limsup u(Q) < f(P)
Q-P

PROOF OF (1). If f(P) = m,, there is nothing to prove. So assume f(P) > m,.
Choose ¢ > 0 such that f(P) — & > m,. There is then a neighborhood N(P)
such that

f(Q)= f(P)— ¢ forall Qe N(P)n dD.
Let f be a normalized barrier at P which is = 1 outside N(P). Set
w(Q) = —(f(P) —mo — e)B(Q) + f(P)—¢, QeCID.
Clearly, w e C(Cl D) and w is subharmonic. For Q € Cl D,
w(Q) < f(P) — e < my,

w(Q) = moB(Q) + (f(P) — &)1 — B(Q))
= moP(Q) + mo(1 — B(Q)) = my.

and

Finally, for Q € 6D,
w(@Q)=mo < f(Q),  Q¢N(P),
w(@Q) < f(P)—e< f(Q), Qe N(P).
We have shown that w e #. Hence, w(Q) < u(Q), all Q € D, and thus
liminf u(Q) = w(P) = f(P) — «.
QP

and

Since ¢ is arbitrary, (1) follows. |
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PROOF OF (2). There is nothing to verify if f(P) = m,. Assume f(P) < m,.
Choose ¢ > 0 so that f(P) + ¢ < m,. Choose N = N(P), a relatively compact
neighborhood of P, such that

f(Q)< f(P)+¢ forall Qe N(P)n dD.
Let v € .# be arbitrary. We claim
v(Q) — (my — f(P) —e)(Q) < f(P)+¢, QeNP)nD. (28.1)

(Here p is again a normalized barrier at P that is = 1 outside N(P).) Since
the function on the left of the inequality is subharmonic, it suffices to check
the inequality on (N n D). If Q € (N n D), then either (i) Q € N n
CI D or (i1) Q € CI N n dD. In case (i), the left-hand side of (2.8.1) satisfies

=0v(Q) —m; + f(P)+e< f(P) + e
In case (ii) we have the estimates (for the same quantity)
<@ < fQ)< f(P) +e
We have thus verified (2.8.1). Thus for Q e N(P) n D
v(Q) < f(P) + & + (my — f(P) — ¢)BQ),

and hence also
u(@) < f(P) + & + (my — f(P) — e)B(Q).
From this last inequality we conclude

limsup u(Q) < f(P) + «.
Q-P

Since ¢ can be chosen arbitrarily small, we have (2). O

IV.3. A Classification of Riemann Surfaces

In this section we partition the family of all Riemann surfaces into three
mutually exclusive classes: compact (=elliptic), parabolic, and hyperbolic.
The partition depends on the existence or non-existence of certain sub-
harmonic functions. It will turn out (next section) that each of these classes
contains precisely one simply connected Riemann surface. Perhaps of
equal importance is the fact that this classification also enables us to con-
struct non-constant meromorphic functions on each Riemann surface. The
constructions in this section differ in a few important respects from the
constructions in I1.4. We do not need here the topological facts that were
previously used (triangulability of surfaces and existence of partitions of
unity), and we get sharper information about the meromorphic functions
that we construct (see, for example, Theorem IV.3.11).
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IV.3.1. Lemma. Let K be a compact connected region on a Riemann surface
M, with K # M. There exists a domain D on M such that

K < D, (3.1.1)
Cl D is compact, (3.1.2)

and
oD consists of finitely many closed analytic curves. (3.1.3)

PROOE. If M is compact the lemma is trivial. Choose P ¢ K and a small
disc U about P in M\K. In the general case, every P € K is included in a
conformal disc. Finitely many such discs will cover K. Let D; be the union
of these discs. By changing the radii of the discs, if necessary, we may assume
that the boundaries of the discs intersect locally only in pairs and non-
tangentially. Delete from D, a small disc U in D,\K and call the resulting
domain D,. Solve the Dirichlet problem with boundary values 1 on 6U, 0
on 6D, (note that D, = D,\Cl U has a regular boundary). Let D be the
component containing K of

{PeD,;u(P)>e¢> 0},

where ¢ < min{u(P); P € K|. The critical points of the harmonic function
u (the points with du = 0) form a discrete set. By changing ¢ we eliminate
them from 6D. Thus, the domain D satisfies (3.1.1)—(3.1.3). O

IV.3.2. Let M be a Riemann surface. We will call M elliptic if and only
if M is compact (=closed). We will call M parabolic if and only if M is not
compact and M does not carry a negative non-constant subharmonic
function. We will call M hyperbolic if and only if M does carry a negative
non-constant subharmonic function.

Remark. It is obvious that a hyperbolic surface cannot be compact (by the
maximum principle for subharmonic functions), and thus we have divided
Riemann surfaces into three mutually exclusive families.

IV.3.3. Subharmonic functions on a parabolic surface satisfy a strong
maximum principle.

Theorem. Let D be an open set on a parabolic surface M. Let u e C(CI D).
Assume u is subharmonic in D. Furthermore, assume there exist m,, m, € R
such that u < m, on 6D and u < m, on C1 D. Then u < m, on CI D.

PROOF. Assume m, > m, (otherwise there is nothing to prove). Choose ¢,
0 <& < m, — my. Define

max{u,m; + ¢} —m, inD,
v= .
m; +¢—m, in M\D.

It is clear that v is subharmonic on M, v < 0. Thus v is constant; that is,

max{u,m; + ¢} =m; +¢ inD.
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Hence
usm; +e¢,

and since ¢ is arbitrary, we are done. O

Corollary 1. Let u be a bounded real-valued harmonic function on an open set D
ona parabolic surface M. Assume that u € C(C1 D), withmy = inf{u(P); P € 6D}
and m; = sup{u(P); P € 6D}. Then my < u < m, (on CI D).

Corollary 2. On a parabolic Riemann surface, the Dirichlet problem has at
most one bounded solution.

IV.3.4. On hyperbolic surfaces we do not, in general, have uniqueness of
solutions to the Dirichlet problem. To see this we first establish the following

Theorem. Let M be a hyperbolic Riemann surface and K a compact subset
with d(M\K) regular and M\K connected. Then there exist a function
w € C(CI(M\K)) such that

1. w is harmonic on M\K,
il. w=1o0n 6(M\K), and
. 0 <w<1on M\K.

Remark. We will call the smallest w as above, the harmonic measure of K.

PROOF OF THEOREM. Let i, be a non-constant superharmonic function on
M with y, > 0. Let my = min(,|K) and y, = yo/m,. Then y, is super-
harmonic on M, non-constant, ; >0 and y, |K > 1.

We claim there exists P, € K such that y,(P,) = 1. Clearly, since K is
compact we can find such a P, e K. If P, e Int K, then y, is constant on
the component of K centaining P,, and thus also on the boundary of that
component. Thus we can find a P, € K at which , has the value 1.

There exists a Q, € M\K with ,(Q,) < 1. Otherwise ; > 1 and since
¥ 1(Poy) = 1, this would mean that y/, is constant.

Finally, we set = min{l,j/,}, and note that i is superharmonic on M,
0<y<LYQy) <1 y|K=1.

We define

F = {ve C(CI(M\K)); v is subharmonic on M\K and v < y|(M\K)}.

The family % is clearly closed under formation of maxima and under
harmonization. Thus % is a Perron family on M\K provided it is not empty.
Clearly, —y € #. However, we have to show that # has more interesting
functions.

Choose a domain D 2 K with Cl D compact, and 6D consisting of
(finitely many) Jordan curves (this is possible by Lemma IV.3.1). Let v,
be the solution to the Dirichlet problem on D\K with boundary values 1 on
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8K and 0 on éD. Clearly, 0 < vy, < 1 on CI(D\K). Extend v, to be zero on
M\D and observe that v, is subharmonic on M (by the Corollary to Proposi-
tion IV.2.2).

We show that vy € .. We must verify that v, < on M\K. Note that
vy — ¥ is subharmonic on M, and v, — y < 0 on 6D, and also on M\D. By
the maximum principle v, — ¥ < 0 on D because Cl D is compact. Define

w(P) = sup v(P), P e CI(M\K),
veF
then
vo < w < Y,

and in particular w is harmonic on M\K, and w = 1 on 6K (and also w €
C(C(M\K))). The function w is non-constant since w(Qo) < Y(Qo) < 1.
Furthermore, 0 < w < 1 on CI(M\K) and thus 0 < w < | on M\K. O

IV.3.5. Important Addition. We can obtain the harmonic measure of K with
slight modification of the above argument. Set

F, = {ve F ;v has compact support|
and define
w,(P) = sup v(P), P e CI(M\K).

ve #y

Note that %, contains v, and is hence non-empty. Furthermore, », has all
the properties of w. We claim that w; < @ for all @ enjoying the properties
of the theorem. Consider

o —v, vE.F,.
Assume that v| M\K' = 0 for some compact set K. Thus
@—0v>0 ondK\K)
(since @ > 0 on 6K’, v = 0 on K'; @ > v on 6K). Hence & > v on (K'\K) L

(M\K"), and since v is arbitrary @ > w, on M\K.

Corollary. Let M be a hyperbolic Riemann surface and D a domain in M with
reqular boundary such that M\D is compact. Then we have non-uniqueness of
solutions for the Dirichlet problem for D.

PROOEF. If u is any solution to a Dirichlet problem, then so is (1 — w) + u,
where w is the harmonic measure for M\D. O

Remark. Any D as above cannot have compact closure in M. If it did, we
would have a unique solution to the Dirichlet problem for D.

IV.3.6. Let M be a Riemann surface and P € M. A function g is called a
Green’s function for M with singularity at P provided:

g is harmonic in M\{P}. (3.6.1)
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g > 0in M\{P}. (3.6.2)
If z is a local parameter vanishing at P, then
g(2) + log|z| is harmonic in a neighborhood of P. (3.6.3)
If  is another function satisfying (3.6.1)-(3.6.3), then § > g. (3.6.4)

Remark. Condition (3.6.3) is independent of the choice of local parameter
vanishing at P (that is, the condition makes sense on M). For if { is another
such parameter, then (with a; # 0)

{2)=a;z+ a2 + -+

= alz<1 + 24 ) = a,zf(2),
a,

where f is holomorphic near z = 0 and f(0) # 0. We write f(z) = ", with

h holomorphic near z = 0, and conclude that

log|¢| = log|a,| + log|z| + Re h(2).

Since Re h(z) is harmonic, we see that g(z) + log|z| is harmonic if and only if
g(¢) + log|{| is.

A CrassicaL ExaMpPLE. Let D be a domain in C with Cl D compact and 6D
regular (for example 6D consisting of finitely many analytic arcs). Let z, € D.
By solving the Dirichlet problem we can find a function y € C(Cl D) such
that y is harmonic in D and

(z) = log|z — zy), ze dD.
Set
g(z) = —log|z — zo| + y(z),  zeD.

Show that g is the Green’s function for D with singularity at z,. (The
proof of this assertion follows the proof of Lemma IV.3.8.) Formulate and
prove a general theorem so that this example and Lemma IV.3.8 become
special cases of the theorem.

EXERCISE

Let D <= C be a domain bounded by finitely many disjoint Jordan curves Cy, ..., C,.
The harmonic measure of C;(j = 1, ... ,n) with respect to D is classically defined as the
unique harmonic function w; in D that is continuous on Cl D and has boundary values
Spr k=1,..., n. Show that this definition makes sense and relate this concept to the
one introduced in IV.3.4. Show that w; + - - - + w, = 1 and discuss the properties of the
(n— 1) by (n — 1) “period” matrix [, *daw,.

IV.3.7. Theorem. Let M be a Riemann surface. There exists a Green’s function
on M (with singularity at some point P € M) if and only if M is hyperbolic.
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PrOOF. Let g be a Green’s function on M with singularity at P. Let m > 0. Set
f = min{m.g}. Then f is clearly superharmonic in M\{P}. Since g(Q) > + o0
as Q —» P, f = m in a neighborhood of P. Thus f is superharmonic on M.
Also f > 0.If f were constant, then g > m, and thus g — m would be another
candidate for the Green’s function with g — m < g. This contradiction shows
that f cannot be constant and hence M is hyperbolic.

Conversely, assume that M is hyperbolic. Let P e M. Let K be a con-
formal disc about P with local coordinate z. Set

F = {v; v is subharmonic in M\{P},
v > 0, v has compact support, and
v(z) + log|z| is subharmonic in |z| < 1}.
To note that % is non-empty, we define
—log|z], 0<|7 <1
vol) = { 0, |4=1,

and observe that vy e #. It is easy to see that # is a Perron family (on
M\{P}).
We establish now the following

Lemma. Outside every neighborhood of P, & is uniformly bounded.

PRrOOF OF LEMMA. Choose r, 0 < r < 1. Let w, be the harmonic measure of
{|z| < r}. (It is only here that we use the fact that M is hyperbolic.) Thus w,
is harmonic on |2/ >r, w,=1 on |z| =r, and 0 <w, <1 for |z| > r. Let
A, = max{w,(z);|z| = 1}. Thus 0 < 4, < 1. Forue #, letu, = max{u(z); z =r}.
We claim

uw, —u>0 for|z|>r. (3.7.1)

Clearly u,w, — u is superharmonic on |z| > r, and u,w, —u>0on [z =r.
Let ¢ be the support of u. Then u = 0 on 6.4, and thus (3.7.1) holds on §.¢".
Hence (3.7.1) holds on #"\{|z| < r} by the minimum principle for super-
harmonic functions. Inequality (3.7.1) obviously holds on M\¢".

Finally, u(z) + log|z| is subharmonic in |z| < 1 and continuous on |z| < 1.
Thus

u, + logr = max u + log r < max u + log | = maxu < u,4,

lz|=r |z| =1 lz|=1
(the last inequality is a consequence of (3.7.1)). Thus

—logr
< .
=TT

Since u = 0 off a compact set .¢", we conclude that

o> ) < BT (372) O

max{u(z); <o
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CONCLUSION OF PROOF OF THEOREM. Set

9@ =supu@,  QeM\(P}.
Inequality (3.7.2) implies that g(Q) < oo for Q # P. Thus, by Perron’s prin-
ciple, g is harmonic in M\{P}. The fact that g > 0 on M\{P} follows from
the corresponding fact that u >0 on M\{P} for all ue #. Since u >0
implies g >0 on M\{P}. If g(Q) =0 for some Qe M\{P}, then g is
constant. Thus g > 0 on M\ {P}. Next we show (3.6.3). Note that for |z| < r,
ue#,

1 4, lo
u(z) + logl|z| < u, + log r < }og rl + logr = tg-lf

Thus also

A,' ligTr for |z| < r.

g(z) + loglz| <

A’r

Hence z = 0 is a removable singularity for the bounded harmonic function
g(z) + log|z|.

To finish the proof that g is the Green’s function, let § be a competing
function satisfying (3.6.1)—(3.6.3). Let u € #. Then the function § — u is super-
harmonic on M. Since u has compact support, say K’, § — u > 0 on M\K'
and by the minimum principle for superharmonic functions also on K'.
Thus § > uon M\{P}. Thus § > g. (In fact, either § > g or § = g on M\{P}.)

O

Remark. We have shown a little more than claimed in the theorem:

Existence of Green’s function at one point
{
Hyperbolic
Y

Existence of harmonic measures
¢

Existence of Green’s function at every point.

We hence define g(P,Q) as the value at Q of the Green’s function (on the
hyperbolic surface M) with singularity at P.

1V.3.8. Lemma. Let M be a hyperbolic Riemann surface. Let D be a domain
on M with C1 D compact and 6D regular for the Dirichlet problem. Let P € D.
Let u be the unique harmonic function on D with u(Q) = g(P,Q) on 6D. Then
gp(P,Q) = g(P,Q) — u(Q), Q€ D defines the Green’s function for D with
singularity at P.

PrOOF. The function g, is harmonic in D\{P}. Take a small disc 4 about P
so that g — u is positive in its interior. Thus by the minimum principle for
harmonic functions, g — u > 0 on D\{P} since we also have these estimates
on 6(D\4). Condition (3.6.3) is trivially satisfied. Let § be another candidate
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for the Green’s function, and let Q, € D\{P}. It suffices to show that
9(Qo) = gp(P,.Qo) — ¢

for all ¢ > 0. For each Q € 6D, there exists a neighborhood U, of Q in
Cl D\{Q,} such that g, < ¢ on U,. Set

QeoD

Then on D\U we have § — g, > — ¢ since we have this estimate on §(D\U) =
oU. In particular, §(Q,) — gp(P,Q,) = —e. (Intuitively g, is necessarily the
right choice since it has the smallest possible value on 6D, namely 0.) O

IV.3.9. Lemma. In addition to the hypothesis of the previous lemma, assume
that 8D consists of closed analytic arcs, and P, Q € D. We have

gD(P’Q) = gD(QsP)7 a” P7 Q € D

PRrOOF. Let U, U, be two small disjoint discs about P and Q respectively.
Let D = D\(U, u U,). For R e D\{P,Q} set

u(R) = gp(P.R)
v(R) = gp(Q.R).

Then by 1(4.4.2),
0= ”}) (udv —vdu) = J;B (u*dv — v*du)

- _waz (u*dv — v *du). (3.9.1)

Note that by the reflection principle for harmonic functions, we may assume
that u and v are C? in a neighborhood of the closure of D. We introduce now a
conformal disc (U,) at P with local coordinate z = re®. In terms of this local
coordinate, we write

u(z) = @i(z) — log r

with & harmonic in |z| < 1. Thus
fav, u*dv — v*du = LUI (i — logr)*dv — v*d(ii — log r)

= u*dv — v*du — LU (logr)*dv — v*d(log r)

oU,y
—ff fiAv — vAﬁ—f (lo r)*dv-—v(re“’)lrdﬂ
— JJu, oU, & r

= f;" b(re®) df = 210(0) = 21tg (O, P).
Similarly,
fw u*dv — v*du = —2ngp(P,Q). U
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IV.3.10. Theorem. If M is hyperbolic, then

g(P.Q) =g(Q.P), allP,QeM.

PRroOF. Fix a point P € M. Consider the collection 2 of all domains D = M
such that

1. Pe D,
2. C1 D is compact, and
3. 4D is analytic.

Note that if D;e & (j = 1,2), then there is also a D € 2 with D, U D, < D.
Extend each of the Green’s functions gp(P,) to be identically zero outside D.
Let

# ={gp(P,"); D e Z}.

The last corollary in IV.2.2 shows that the functions in % are subharmonic
on M\{P}.

Let K be any conformal disc on M\{P}. Let D € 9. Choose D* € & such
that D* > D U K. Thus gp«(P, *) = gp(P, -) and gp«(P, -)|Int K is harmonic.
Similarly, if D;, D, € 2, we can choose D € 9 with D > D; u D, and observe
that gp(P,") > gp,(P,*), j = 1, 2. Thus the family # is a Perron family. By
Perron’s Principle

Q) = sup {90(P.Q)}, Qe M\{P}

is harmonic on M\{P}, since
go(P,") < g(P,")
shows that y(Q) < + oo, all Q € M\{P}. The last inequality also shows that
y <g(P,-) on M\{P}.

Since y is a competitor for the Green'’s function (it clearly satisfies (3.6.2) and
(3.6.3)), y = g(P,") on M\{P}. We have thus shown that

Q) =g(P,Q) = sup {9o(P.Q)},  QeM.
Hence for Q, Pe D
9o(P.Q) = gp(Q.P) < g(Q,P).

Now fixing P and taking the supremum over D € 2, we see that

g9(P.Q) < g(Q.P).

Reversing the roles of P and Q gives the opposite inequality. Thus the
proof of the theorem is complete.
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EXERCISE
Show that the Green’s function is a conformal invariant; that is, if
f:M > N
is a conformal mapping and g is the Green’s function on N with singularity at f(P) for

some P € M, then g o f is the Green’s function on M with singularity at P.

DIGRESSION. Let D be a domain on a Riemann surface M with §D consisting
of finitely many analytic arcs. Let us generalize the Dirichlet problem and
(recall 11.4.5) our earlier discussion of the Dirichlet principle. Let Q2 be a
2-form which is C? on a neighborhood of the closure of D. (We shall show in
1V.8 that there is a C® 2-form Q, on M that never vanishes. Thus Q = FQ,
for some function F e C*(Cl D)) Let f e C(6D). We want to solve the
boundary-value problem for u € C*(C1 D):
Au = Q,
u|loD = f.
Let P, € D be arbitrary and assume our problem has a solution u. Let us
take a conformal disc z centered about P, and let

D,=D\{|lz|<r}, O<r<l.

Apply Formula I (44.2) on D, with ¢ = u and y = g(P,,"), the Green’s
functien for the domain D. Recall that u = f on 6D and that Ag(P,,") =
0 on D\{P,} while g(P,-) = 0 on 6D. Thus

L da(Po) = [ () * dg(Po.2) = g(Po2) * du(z) = = [, a(Po.)2
Letting r — 0, we see that

2mu(Po) = ~ ([, a(Po )@ = [ 1 dg(Po."). (3.10.1)

Conversely, it can be shown that Formula (3.10.1) does indeed provide a
solution to our problem.

IV.3.11. Theorem. Let M be a non-hyperbolic Riemann surface. Let D be a
domain on M with P € D. Let f be a holomorphic function on D\{P}. Then
there exists a unique harmonic function u on M\{P} such that

u — Re f is harmonic in D and vanishes at P, and (3.11.1)

u is bounded outside every neighborhood of P. (3.11.2)

Remarks

1. The theorem should be contrasted with Theorem II. 4.1 (and its com-
panions). What is important for us is not the more general singularity at P
that we can produce, but the boundedness statement (3.11.2).
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2. If f has no singularity at P, then existence is trivial. We set u = (Re f)(P).

3. The uniqueness part of the theorem is also quite easy to establish. If u,
and u, satisfy the conditions for u, then u, — u, is a bounded harmonic
function on M and hence constant. Since (u; — u,)(P) = 0, u; = u,.

Before obtaining existence, we must establish some lemmas.

1V.3.12. Lemma. Let D < C. Let u be harmonic in D and |u| < m. Let P € D,

then
cm

||(grdd u)P|| < Iﬁﬁl,

with ¢ a universal constant.

PROOF. First: by grad u we mean the vector (u,,u,), and by its norm we mean
max{|u,|u,|}. Choose r > 0 such that the closed disc of radius r about P
is contained in D. The function u, is harmonic in D. Thus (without loss of
generality P = 0), by the mean-value property for harmonic functions

1 2n i0
u(0) = o fo u,(pe'’)do, O<p<r

Multiplying both sides by p and integrating from 0 to r we obtain the “areal
mean-value property”

u,(0) = n%z fj:lﬂ u.dxdy.

Thus
1
| (0)| = "l fL:|<, u,dx dy‘
1 -
= fﬂ(u( r? = y%y) —u(—=/r* =y, y)dy
2 4
< ﬂz 2r =1
nr nr
From the above we see that ¢ = 4/m. O

IV.3.13. Lemma. Let {u;} be a sequence of harmonic functions on a domain
D < C. If {u;} converges uniformly on compact subsets to a function u, then
{u; .} converges uniformly on compact subsets to u,.

ProoOF. Since the result is local in nature, it involves no loss of generality to
assume that D is the unit disc and to show uniform convergence on a smaller
disc. Now choose analytic functions f; such that

uj=Re f; and f;(0) = u;(0).
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Formula (1.2.1) shows that f; converges uniformly to f (similarly constructed).
Thus f’; converges uniformly to f’ (on any compact disc) and since

Si=uj—iujy
we are done. O

EXERCISE

Reprove the above lemma using the methods and result of Lemma IV.3.12.

IV.3.14. Lemma. Let {u;} be a uniformly bounded sequence of harmonic
functions on a Riemann surface M. Then there exists a subsequence converging
uniformly on compact subsets of M.

Proor. If D is a closed disc contained in M, then the sequence {f;} con-
structed in the proof of the previous lemma is uniformly bounded on the
closure of any smaller disc D, and thus contains a subsequence converging
uniformly on D,. The same holds for the sequence {u;}—the real part of
the sequence { f;}. If M were second countable (it is—but we have not yet
established this) the general result follows by a “diagonalization” procedure
to be described in detail in IV.3.16. For the present we can use t' e lemma
only for surfaces we know to be second countable. O

1V.3.15. Lemma. Let M be a non-hyperbolic Riemann surface, and K a con-
formal disc. Let u be a bounded harmonic function on M\K. Assume that u is
C' on CI(M\K). Then

J:sx *du = 0.

ProOF. Without loss of generality we may assume (by adding a constant)
that u > 0 on M\K. Let z be the local coordinate corresponding to K so
that 6K = {|z| = 1}. Since

[i, 2 =du = 1im *du,

p—1+ JlEl=0

it suffices to assume that u is harmonic in {|z| > r}, r < I and to show that

flzlz . *du = 0.

Let 2 be the collection of all domains D such that K =< D =< M and 6D
1s analytic. Let u, be the solution to the Dirichlet problem on CI(D\K,) with
up|0K, = u|6K, and up|6D = 0, where K, = {|z| < r}. Extend uj, to be zero
outside D. Let

F = {up;D e 2},
and

Y = Sup up.
De2
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The reasoning in Theorem IV.3.10 shows % is a Perron family on M\Cl K,.
For every D€ 9, up < u; hence y < u. Now u — y is a bounded harmonic
function on M\CI K,. By Theorem IV.3.3, the maximum and minimum of
this function occur on 6K,. Thus u = y. We have shown that

u=lim up = sup up on {|z| > r}.

De2 De2

Let w, be the solution to the Dirichlet problem on CI(D\K,) with w, | 0K, =1
and wp|d6D = 0. Then (as a special case of the previous argument)

lim wp = sup wp =1 on {|z| > r}.

De 2 De 2
Now note that by the reflection principle, u;, and w, have harmonic exten-
sions (which we do not use) across éD. It thus follows that *du, and *dw,
are defined and smooth on CI(D\K,).

Now use the remark following Perron’s principle (IV.2.6), and choose
sequences of domains {D{"} = 2, {D{?} = 9, such that
u = lim Up, 1 =lim Wp@),
j j

uniformly on a neighborhood of K = {|z] = 1}. Choose D; € & such that
D; > D{ u D). Then u = lim; up , 1 = lim; wp, uniformly on a neighbor-
hood of éK. Further, the functions involved are all harmonic in this
neighborhood. Finally,

= _ — * _ *
0= ffpj\x(w”fd“”f up, dwp ) = J:sw,-\x)(w”f dup, — up *dwp)

== | (*dup, — u*dwp ).

By Lemma 1V.3.13. this last integral converges to —L;K *du. O

1V.3.16. Proof of Theorem IV.3.11. Choose a local parameter z vanishing
at P. We may assume that {|zj < R} c Dwith R > 1. Let 0 < p < L. Let v*
be the solution to the Dirichlet problem on M\{|z| < p} with u?|{|z| = p} =
Ref|{|z| = p}. We claim that there is a constant c¢(r)—independent of p—such
thatforO<p<r<1,

[u?] < c(r) for|z| >r. (3.16.1)

It suffices to verify (3.16.1) on {|z| = r}.
Now, Lemma IV.3.15 implies that

f'zl:t*du" =0, forp<t<R
Thus we can define a holomorphic function F” on {p < |z| < R} by choosing
zo With p < |zo| < R and setting
F?(2) = uP(z) + f * (duP + i*duP).
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We know that Re F?(z) = u”(z), p <|z] < R. Now both F” and f have
Laurent series expansions on p < |z| < R, say

Thus, taking real parts, we obtain (after changing the names of the constants
in the Fourier series) for z = te®

P ©
W(te) — Re f(te) = 929 + T (o8 + .t ") cos nd

n=1

+ i (Bot" + B2t~ ") sin né. (3.16.2)

n=1

Multiplying (3.16.2) by cos kf or sin kf and integrating from 0 to 2m, we
get (for p <t < R)

% foz"(uv(te“’) — Re f(te'®))d6 = of.

1 pae .
- " (W(te) — Re f(te®)) cos kOO = oft* + a2 b5, k=1,2,...,
1 p2n e 0\ o 0k o .~k

;fo (W(te®) — Re f(te')) sin k0dO = ot + B2t 7% k=1,2,....

(3.16.3)

We first use each of the above equations for t = p (1’(pe’®) = Re f(pe®)) to
obtain (k=1,23,...)

ad =0,
of = —paf, (3.16.4)
B2k = — p**Br.

We let
m = sup{|f(2)]; |z| = 1},
m(p) = sup{|u”(2)|; |z| = 1}.
Using Equation (3.16.3) for ¢t = 1, we obtain
of + 4| < 2(m(p) + m),
|BE + B4 < 2(m(p) + m).
Combining the above result with (3.16.4) we have:

s

o] [1 = p**| < 2(m(p) + m),
B2l |1 — p*| < 2(m(p) + m);
and for p < 4:
o] < 4(m(p) + m),
|B2| < 4(m(p) + m).
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Also with the same restrictions on p:
|o? ] < 4(m(p) + m)p?,

B2 < 4(m(p) + m)p?.
Thus (using (3.16.2))

£ 2n
max u’ = c(r,p) < max [Re f| + 8 Y (m(p) + m)(r" + prn )

lz[=r lz]=r n=1

Since p?/r < r, we conclude that

clrp) < max IRe /| + 16(m(p) + m)1—£~r. (3.16.5)

To finish verifying our claim (that ¢(r,p) = ¢(r)) we must show that m(p) is
bounded independently of p. Now

m(p) = max [u’| < max |u’| = c(r,p)
z|=1 lz|=r

(by the maximum principle).
Thus by (3.16.5)
m(p) < max |Re f| + 16m(p)% + 16m l—f—r
|z|=r - d
Choose r small so that r/(1 — r) = g < £ (for example, r < 35). Hence, we
have
1 r
<— R — )< er).
m(p) < - 16q(max| e f|+ 16m i _r>_c(r)

|z|=r
We have now verified (3.16.1) as well as the following estimates (by adjusting

c(r)

|og| < c(r), o2 | < c(r)p?, k=1,2,3....
We now let 4 be the annulus
A={r<l7 <1}, p<r<ss
The set of harmonic functions
{wip<r}

is uniformly bounded in A (actually in {|z| > r}). Thus we can choose a
sequence converging uniformly on 4. By the maximum principle this se-
quence converges uniformly on {|z| > r} and the limit function is harmonic.

Let us choose now a decreasing sequence of radii r; - 0 and the cor-
responding annuli 4;. Let {p,,p,, ...} be a sequence with

pr>p2>cc,
pi<rj j=12,...,
and
limuw*=u on {|z| >r}.
k
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We relabel {p,,02,03, ...} a8 {p11,012:P135 - - .}- NOW we can choose a sub-
sequence {p21,p22,p23, ..} of {p11,P12,P13, - - -} SO that u?? converges uni-
formly touon {|z| > r,}. By induction the sequence {p;_ 1,0j-1,2,0j-1.3,---}
satisfies
Pi-1,1>Pj-1,2>""",

Pi-1x < T k=1,2 ...,

and
limu?-t*=u on {|z| >r;_}.
k

So we can choose a subsequence

{le’sz,Pja, ...yof {Pim1.1Pj=1,2Pj= 1,35 - - -}
so that

limu?* =u on {|z| > r}.
k

We now let u, = py, (the “diagonalization” procedure) and observe that
is a decreasing sequence of positive real numbers with p, < r, such that

lim w** = u uniformly on {|z| > r} for all r > 0.
k

Note that
(u — Re f)(te") = Z a, cos nf + B, sin nf)t"
with )
o, = lim o, B, = lim B2,
p—0 p—0

<11moz”_,,—0—11mﬁ” > forn=1,2,....

p—-0 p—0

Thus, in particular, taking subsequences was completely unnecessary by
the uniqueness part of our theorem. O

IV.3.17. As we saw in 11.5, existence of harmonic functions already implies
the existence of meromorphic functions.

Theorem. Every Riemann surface M carries non-constant meromorphic
functions.

PrROOF. Let Pje M for j = 1,2 with P, # P,. Let z; be a local coordinate
that vanishes at P;. We consider two cases:

M is hyperbolic. Let u; be the Green’s function with singularity at P;. Let
z = x + iy be an arbitrary local coordinate on M. Then

Upx — Wy,

o(z) =

Uz — Wy
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defines a meromorphic function with a pole (of order > 1) at P, and a zero
(of order >1) at P,.

M is elliptic or parabolic. Choose u; harmonic on M\{P;} such that
1
uJ- = Re — + VJ(Z])
Zj

with y; harmonic in a neighborhood of zero. Define ¢ as before. This time
ordp, ¢ < —2 and ordp, ¢ > 2. d

1V.3.18. Theorem IV.3.17 has many consequences.
Corollary 1. On every Riemann surface M we can introduce a C*-Riemannian

metric consistent with the conformal structure.

PrROOF. Let f be any non-constant meromorphic function on M. Let
{P,P,, ...} be the set of poles and critical values (those P € M with df(P) =
0) of f. Let z; be a local coordinate vanishing at P; with the sets {|z;| < 1}
all disjoint. Let 0 < r; <r, < 1 and let w; be a C* function with0 < w; < 1,

w;=1 onf{lzjj<r;} and ;=0 on{|z;|>r,}.
Define arc length ds by
ds* = [df]2<1 -y w,-) + Y w;ldz)|. O
j j

J

Remark. We shall (see IV.8) be able to do much better. We shall show that the
metric may actually be chosen to have constant curvature.

Corollary 2. Every Riemann surface is metrizeable.
Corollary 3. Every Riemann surface has a countable basis for its topology.
Corollary 4. Every Riemann surface may be triangulated.

While it is possible to prove the last two corollaries at this point, we shall
delay the proof until after IV.5 when we will be able to give shorter proofs.

IV.4. The Uniformization Theorem
for Simply Connected Surfaces

The Riemann mapping theorem classifies the simply connected domains in
the complex sphere. It is rather surprising that there are no other simply
connected Riemann surfaces. Our development does not require the Riemann
mapping theorem, which will be a consequence of our main result.
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IV.4.1. Our aim is to prove the following

Theorem. Let M be a homologically trivial (H,(M) = {0}) Riemann surface.
Then M is conformally equivalent to one and only one of the following three:

a. Cu {0},
b. C,
c. 4={zeC;|7 <1}.
These correspond to the surface M being

a. elliptic,
b. parabolic,
c. hyperbolic.

Of course, C U {00} is not even topologically equivalent to either of the
other two, and C and 4 are conformally distinct by Liouville’s theorem. The
fact that these three cases are mutually exclusive will also follow from our
proof of the theorem, and the fact that the types (elliptic, parabolic, hyper-
bolic) are conformal invariants.

IV.4.2. We recall the machinery introduced in II1.9. Let M be an arbitrary
Riemann surface. Let P € M. Denote by 0p(M) the germs of holomorphic
functions at P € M. Let

oM)= ) OpM)

PeM

denote the sheaf of germs of holomorphic functions. This space is given a
topology and conformal structure as in II1.9. The natural projection

proj =n:0(M)-> M
is holomorphic and locally univalent. Similarly, we define the sheaf of germs
of meromorphic functions on M, .#(M).

Theorem. Let o be a discrete set on a Riemann surface M. Let u be a harmonic
function on M\o and assume that for each P € M, there is a neighborhood
N(P) and a meromorphic function fp defined on N(P) with either

a. log|fe| =u on N(P) n (M\o), or
b. Re fp =u on N(P) n (M\o).
Take any fp, as above, and let ¢ € .4 p, be the germ of fp, at Po € M. Then

1. @ can be continued analytically along any path in M beginning at P, and
ii. the continuation of ¢ along any closed path (beginning and ending at P.)
depends only on the homology class of the path.

Remark. The hypothesis ((a) or (b)) is automatically satisfied on M\g.
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PRrOOF OF THEOREM (The proof is almost shorter than the statement of the
theorem and has implicitly been established in the section on multivalued
functions.) Let ¢:[0,1] — M be a continuous path with ¢(0) = P,. Let

0 = {t € [0,1]; ¢ can be continued along ¢, = ¢|[0,t]}.

It is easy to see that 6 is non-empty (0 € 6), open (without any hypothesis),
and closed (by use of (a) or (b)). Note also that the analytic continuation
satisfies (a) or (b).

Let ¢ be a closed path beginning at P,,. Let ¢, be the continuation of ¢
along c. Then, assuming hypothesis (a), we have

log|p| = u = log|p,| near P,.
Thus there is a y(c) € C, [g(c)| = 1, such that
@, = x(c)o near P,. (4.2.1)

Since ¢, depends only on the homotopy class of c, y determines a homo-

morphism
x:my(M,Py) - S!

from the fundamental group of M (based at P,) into the unit circle (viewed
as a multiplicative subgroup of C). Since S' is a commutative group, the
kernel of y contains all commutators and thus y determines a homomorphism
from the first homology group

x: H{(M) > S'. (4.2.2)
In case (b), (4.2.1) is replaced by

1 =@+ ixlc)
with y(c) € R, and (4.2.2) is replaced by a homomorphism

H{(M)- R O
Corollary. Let M be a Riemann surface with H (M) = {0}. Let ¢ be a discrete
subset of M, and u a harmonic function on M\e. If u is locally the real part

(respectively, the log modulus) of a meromorphic function on M, then u is
globally so.

IV.4.3. As an application of the above corollary we establish the following

Proposition. Let D be a domain in the extended plane C U {0} = S? with
H (D) = {0}. Then D is hyperbolic unless S*\D contains at most one point.

Remarks

1. The two sphere S? is of course elliptic. If S$2\D is a point, then (via a
Moébius transformation) D =~ C. The plane C is parabolic. (Prove this
directly. This is also a consequence of Theorem IV .4.5))



IV.4. The Uniformization Theorem for Simply Connected Surfaces 197

2. The proposition can be viewed as a consequence of the Riemann mapping
theorem. It can also be obtained by examining any of the classical proofs
of the Riemann mapping theorem. The proposition together with Theorem
1V.4.4, imply the Riemann mapping theorem.

PROOF OF PROPOSITION. Say S?\D contains 2 points. By replacing D by a
conformally equivalent domain, we may assume that S?\D contains the
points 0, co.

We now construct a single valued branch of \/z on D. Observe that
4 log|z| is a harmonic function on D. Thus there exists a holomorphic func-
tion f on D with

log|f(2)| = % log|z, zeD.

Thus

log|f(z)|* =log|z|, zeD,

and thereisa 0 e R
Set

Then
g(z)? =z, zeD.

Let a e D and g(a) = b. We claim that g does not take on the value —b
on D. For if g(z) = —b, then z = g(z)*> = b*> = g(a)® = a. This contradiction
shows that g misses a ball about —b (using the same argument—since ¢
takes on all values in a ball about b). We define a bounded holomorphic
function

1

h(Z) = —g(7)+?, ze D.

Since D carries a non-constant bounded analytic function, it is hyperbolic.

IV.4.4. Theorem. If M is a hyperbolic Riemann surface with H,(M) = {0},
then M is conformally equivalent to the unit disc A.

PROOF. Choose a point P € M. Let g(P,-) be the Green’s function on M with
singularity at P. The function g(P,-) satisfies the hypothesis (a) of Theorem
IV.4.2. The only issue is at P. Let z be a local coordinate vanishing at P.
Then g(P,z) + log|z\ = v(z) is harmonic in a neighborhood of z = 0. Choose
a harmonic conjugate v* of v, write f = ¢’ **". Then

g(P.z) + log|z| = Relog f(z) = log| f(z)|, near 0,
or
f(2)

g(P,z) = log|—, near 0.
zZ




198 1V Uniformization

By Corollary 1V.4.2, (applied to —g(P,-)) there exists a meromorphic
function, f(P,-) on M such that

log|f(P,Q)| = —g(P,Q), allQe M.

The function f(P,") is holomorphic: For Q # P, g(P,Q) > 0, thus|f(P,Q)| < 1.
By the Riemann removable singularity theorem, f(P,-) extends to an analytic
function on M — that is, to the point P. Furthermore,

f(P,P)=0, f(P,Q)#0 forQ #P. (4.4.1)

We want to show that f(P,) is one-to-one and onto.
Let R, S, T € M with R and S fixed and T variable. Set

f(RS) = f(RT)
o(T) = s .
1 - f(RS)f(RT)
Since ¢ is f(R,-) followed by a Mébius transformation that fixes the unit
disc, ¢ is holomorphic, ¢(S) = 0, and
lo(T)| < 1, TeM.

Let { be a local parameter vanishing at S. We may assume that { maps a
neighborhood of S onto a neighborhood of the closed unit disc. Then

e()=al"l +a,l + a0+ ...), n=1a#0.
Set

1
u(T) = - log|e(T)|.
Then u is harmonic and >0 except at the (isolated) zeros of ¢. Also

1
- log|e(0)| + log|(]

is harmonic for |{| small. Let v € #, where # is the family of subharmonic
functions defined in the proof of Theorem IV.3.7, with P replaced by S
(and z by {). Let D be the support of v, and D, be D with small discs about
the (finite number of) singularities of u deleted such that u — v > 0 on (D\Dy).
By the maximum principle u > v on D,. Hence, on M\{S}. We conclude that

1
- log|o(T)| = w(T) = sup o(T) = ¢(S,T)

veF

= —log|f(S.T)],
or
lo(T)| < |o(T)|"" < | £(S.T)]. (4.4.2)
Setting T = R, we get (by (4.4.2))

|f(RS)] < |f(S,R)|
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or (since R and S are arbitrary)

|f(R,S)| = |f(S.R)].

Remark. The above equality also follows from the symmetry of the Green’s
function (Theorem 1V.3.10).

CONTINUATION OF PROOF OF THEOREM. We consider once again a holo-
morphic function of T, mapping M into the closed unit disc, namely h(T) =
@(T)/f(S,T). By (44.2),

|h(T)| < 1,
and since
|Mmp=¢mwz f(RS) - f(RR) 1
f(5,R) 1 — /(RS)f(R.R) f(S,R)
_ f(R,S) 4
/SR

we conclude that
o(T)=xf(S,T), xeClz=1
We rewrite the above equation as

rf(5,T) =

and deduce that
f(RS)=f(RT)=f(ST)=0«=S=T.

We have shown that f(P,-) is an injective holomorphic function of M into 4.

Remark. If we are willing to use the Riemann mapping theorem, there is
nothing more to prove.

CONCLUSION OF PROOF OF THEOREM. We shall show that f(P,-) is onto. Let
a? € A with a® ¢ Image f(P,). Since f(P,P) =0, a* # 0. Let us abbreviate
f(P,-) by f. Since f(M) is homologically trivial, we can take a square root
(as in IV.4.3) of a non-zero holomorphic function defined on f(M). Let

2

-z @
W= Y12T2 e pm,

1+ia i-a
1a
1 —a%z

where we choose that branch of the square root with / —a? = ia. Now

1+ |af?
2d
h(z) <1 for ze f(M).

ho)=0, |H(O)]= >1,

(4.4.3)
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We now define

FQ) =h(f(Q), QeM.

Then F is a holomorphic function of M into 4 with a simple zero at P and
no other zeros. Thus —log |F| is a competing function for the Green’s
function and we have

—log|F(Q)| = g(P,Q) = —log|f(P.,Q)

[}

or
[F(Q)] < |(Q)].
Hence we conclude that
h("z) <1 for |z| small,
and
W) < 1
contradicting (4.4.3). O

IV.4.5. Theorem. Let M be a Riemann surface with H (M) = {0}. If M is
compact (respectively, parabolic), then M is conformally equivalent to the
complex sphere, C U {oc} = S? (the complex plane, C).

Before proceeding to the proof of the theorem, we must establish some
preliminary results.

IV.4.6. Lemma. Let D be a relatively compact domain on a Riemann surface
M and Py € D. Let f be a meromorphic function on Cl D whose only singularity
is a simple pole at P,. Then there is a neighborhood N of P, such that for any
Qo€ N,

J(Q) # f(Qo), all Q € D\{Q,}.

PRroOF. There is a neighborhood N, of P, such that f|N, is injective. Let
Mg = MaXp.spici vyt |/(P)]} and let m; > m, be so large so that {|z| > m,}
is contained in f(No). Let N = f~'({ze C,|z| > m,}) = N,. Then

|f(Q)| <m; onD\CIN

|f(Q)] =m; onCIN. O

Corollary. Let M be a parabolic or compact Riemann surface. Let Py e M.
Assume that f € A (M) with ordp, f = —1, f is holomorphic on M\{P,} and
f is bounded outside some relatively compact (therefore, outside every) neigh-
borhood of P,. Then there exists a neighborhood N of P, such that for any
Qo€eN,

Q) # f(Qo), all Q e M\{Qy}.

PROOF. This is actually a corollary of the proof of the lemma, using the fact
that under the hypothesis, a bounded analytic function assumes its bound
on the boundary (Theorem 1V.3.3). O
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IV.4.7. Lemma. Let M be a parabolic or compact Riemann surface with
H (M) = {0}. Let Py € M. There exists a function f € A (M) withordp, f = —1
that is bounded outside every neighborhood of P.

PRrOOF. Let z be a conformal disc at P,. By Theorem IV.3.11, there exists
a function u that is harmonic and bounded outside every neighborhood of
P, and such that

1
u(z) — Re .

is harmonic in a neighborhood of z = 0, and vanishes at z = 0. By the corol-
lary to Theorem 1V.4.2, there exists a function f holomorphic on M\{P,}
with

f=u+iv,

f(2) — 1/z holomorphic near z = 0 and (f(z) — 1/z) vanishes at 0 (for some
harmonic_function v on M\{P,}). Similarly, there exists a holomorphic
function f on M\{P,}

f =i+

|77 bounded outside every neighborhood of Py, and f(z) — i/z is holomorphic
near z = 0 and it vanishes at zero. We want to prove that |v| is bounded
outside every neighborhood of P,. We shall show that f = if (thus v = @),
which will conclude the proof.

Choose m > 0 so that

lu(z)] < m, [#(z)] <m on {|z] = 1}.

Thus, also on {|z| > 1}. It involves no loss of generality to assume that f
and f are one-to-one on {|z] < 1}. Choose Q, with 0 # z(Q,) = z, and
|zo| < 1 such that |u(Q,)| > 2m and |#(Q,)| > 2m.
Define
1 1

- g ==, M
19=70-70y 97070y 9°

The functions g and § are holomorphic on M\{Q,}. Furthermore ordy g =
—1 = ordy, . We claim that these two functions are bounded outside every
neighborhood of Q,. It suffices to show that they are bounded outside
{|z] < 1}.Now for |z(Q)| = 1

1
u(Q) — u(Qo))* + (v(Q) — v(Qo))* ~

1
m2’

l9(Q)|* = (

l/\

and similarly

1
m

l3(Q)]* <
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The Laurent series expansions of g and § in terms of z — z, are

c
(Z_Z—)+a0+a1(z—zo)+'--
0

-~

g(z) =

g(z) = +do+a(z—zo)+ .

(z = zo)

Thus ¢g — ¢ 1§ a bounded holomorphic function on M and thus constant.
In particular f is a Mobius transformation of f. Thus

2f(Q) + B

fo=YQB g o
TR by

Setting Q = P, we see that y = 0 (we may thus take 6 = 1) and thus (because
we know the singularity of f and f at P,) f = if. O

1V.4.8. Proof of Theorem 1V.4.5. Let Pe M. A function g € # (M) will be
called admissible at P provided

g A(M\(P}), (48.1)
ordp g = —1, and (4.8.2)
g is bounded outside every neighborhood of P. (4.8.3)

We have seen that there exist functions admissible at every point P and
that any two such functions are related by a Moébius transformation.

Assertion: Given f admissible at P and g admissible at Q € M, then there
exists a Mobius transformation L such that g = L o f.

PROOF OF ASSERTION. Fix P € M, and a function f admissible at P. Let X<
M be defined by
X ={Q e M; g admissible at Q =g = L - f, for some
Moébius transformation L.

The set X is non-empty because P € . Let Q, € X. Let g, be admissible
at Q,. Thus go = L, o f, for some Mobius transformation L,. Choose a
a neighborhood N of Q, such that every value g, taken on in N is not as-
sumed in M\N. Let Q, € N, Q, # Q,. Then

1 -

9o(Q) — go(Q1)
isadmissible at Q,. If g is admissible at Q,,theng =L, g, = L, < L, - g, =
Lo L;oLye f. Thus X is open. Similarly (by exactly the same argument),
2 is closed in M, and thus ~ = M.

9.(Q) = = (L, ° go)(Q), QeM,

Assertion: Every admissible function is univalent.
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PROOF OF ASSERTION. Let f be admissible at Py. Thus f(Py) = cc. Assume
f(P,) = f(P,). Choose g admissible at P, and a M&bius transformation L
such that f = Lo g. Thus L(g(P,)) = L(g(P,)). Since L is univalent, oo =
g(P,) = g(P,). Thus P, = P, since g is by hypothesis admissible at P;.

CONCLUSION OF PROOF. Choose an admissible
fiM—>Cu {oo}.

If M is compact, then f is also surjective (and conversely). Thus if M is para-
bolic, f(M) omits at least one point. Following f by a M&bius transformation
L, we may assume L o f(M) = C.If L < f(M) & C, then L = f(M) (and hence
M) would be hyperbolic. O

Remark. We have now established Theorem 1V.4.1. This is a major result
in this subject.

IV.5. Uniformization of Arbitrary
Riemann Surfaces

In this section we introduce the concept of a Kleinian group and show how
each Riemann surface can be represented by a special Kleinian group —
known as a Fuchsian group. These “uniformizations” will involve only fixed
point free groups. More general uniformizations will be treated in IV.9.

IV.5.1. Let G be a subgroup of PSL(2,C) (that is, G is a group of M&bius
transformations). Thus G acts as a group of biholomorphic automorphisms
of the extended plane C U {o0}. Let zo € C U {oc}. We shall say that G acts
(properly) discontinuously at z, provided

the isotropy subgroup of G at z,

. : (5.1.1)
G., = {g € G:g(z) = zo. is finite,
and
there exists a neighborhood U of z, such that
gU)y=U forgeG.,
and
glU)ymnU=g forgeG\G,,. (5.1.2)

Denote by Q(G) (= Q) the region of discontinuity of G: that is, the set of
points zo € C U {oc} such that G acts discontinuously at z,. Set

A= AG)=C u {0}\Q(G),
and call A(G) the limit set of G.
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It is immediately clear from the definitions that Q is an open G-invariant
(GQ = Q) subset of C. If Q # &, we call G a Kleinian group.

From now on we assume that G is a Kleinian group. Since  is open in
C U {ocj.itcan be written as a union of at most countably many components.
We say that two components D and D are equiralent if there is a g € G such
that gD = D. If Q contains a component 4 which is G-invariant, then G is
called a function group. In general, let

Q.0Q,. ...

be a maximal set of non-equivalent components of Q. It is clear that (as point
sets) the orbit spaces
Q/G and @ Q;/G;
j

are isomorphic, where (the stabilizer of Q)

G;=19eG:gQ;= Q.
It follows from our work in I11.7.7 that each ©;/G; is a Riemann surface and
that the canonical projection ;- Q;/G; is holomorphic. Thus Q/G is a
(perhaps countable) union of Riemann surfaces with the projection

n:Q - Q/G
holomorphic.

IV.5.2. Proposition. If G is a Kleinian group, then it is finite or countable.
PrROOF. Choose z € Q(G) such that G. is trivial. Then

{9(z); g € G}
is a discrete set in Q. Hence finite or countable. But this set has the same

cardinality as the group G. O

IV.53. Since SL(2,C) inherits a topology from its imbedding into C*
PSL(2,C) = SL(2,C)/£1 is a topological group. A group G = PSL(2,C) is
called discrete if it is a discrete subset of the topological space PSL(2,C).
It is obvious that

Proposition. Every Kleinian group is discrete.

The Picard group

b
G = {z»—»az + ;ad — bc =1 and ab,cd e Z[i]}
cz+d

shows that the converse is not true.

IV.5.4. A Kleinian group G is called Fuchsian if there is a disc (or half
plane) that is invariant under G.
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Theorem. Let G < Aut 4, 4 = unit disc. The following conditions are
equivalent:

a. A < Q(G),
b. 4 N QG) # I,
c. G is discrete.

PROOF. (a) = (b): This implication is trivial.
(b)=(c): Assume that G is not discrete. There then exists a distinct
sequence {g,} = G such that
9n 9
with g € Aut 4. Thus also
1

gn ' =g
(as is easily verified using the matrix representation of elements of PL(2,C)).
Consider

hy = goiy © Gy n=12,....

The sequence {h,} contains an infinite distinct subsequence and h, — 1.
Thus h,(z) > z,all ze 4, and 4 N Q(G) = .

(c)=>(a): If the group G is not discontinuous at some point z, € 4, then
there is an infinite sequence of points {z,}, n=1,2,..., in 4 equivalent
under G to z, and which converges to z,. Choose g, € G with g,(z,) = z,.
Consider the element A, € Aut 4 defined by

A= ceAn=0.1,.. .,

1-2Z,2

n

andsetforn=1,2,3,...
Co=Aur1°Gnd1oGno Ax .
Since C,(0) = 0, we conclude from Schwarz’s lemma that
Ci2) = Az, |4a = 1.

Thus there is a subsequence-—which may be taken as the entire sequence—of
{C,} that converges to C, (Where Cy(z) = Ayz). Since A, —» 4,, we see that
hy =g,y o gn— A" o Co o Ap. Since the {z,} are distinct, so are the {g,},
and hence also the {h,}. a

Corollary. If G is a Fuchsian group with invariant disc D, then A(G) < dD.

PRrOOF. The exterior of D is also a disc invariant under G. Since G is a Kleinian
group, it must be discrete. Hence, both D and the exterior of D are subsets
of Q(G). O

Before proceeding to our main result, we need a

Definition. A Kleinian group G with A(G) consisting of two or less points
is called an elementary group.
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IV.5.5. Let M be an arbitrary Riemann surface. We let M be its universal
covering space. Let

MM
be the canonical projection, and G the covering group; that is, the group
of topological automorphisms g of M for which the following diagram
commutes:

M——M

N A

M

Of course, since n is a normal covering, G =~ n,(M). Furthermore, G acts
properly discontinuously and fixed point freely on M. Since = is a local
homeomorphism, it introduces via the analytic structure on M, an analytic
structure on M. With this analytic structure, G becomes a group of conformal
automorphisms of M that is, a subgroup of Aut M.

IV.5.6. Theorem IV 4.1 gave us all the candidates for M ; that is, all the simply
connected Riemann surfaces: C U {00}, Cor A= U = {ze C;Im z > 0}.
Each of these domains has the property that its group of conformal auto-
morphisms is a group of Mobius transformations z — (az + b)/(cz + d). In
fact:
Aut(Cu {0}) = PSL(2,C),
Aut C = P4(2,C),
Aut U =~ PSL(2,R).

(By P4(2,C) we mean the projective group of 2 x 2 upper triangular complex
matrices of non-zero determinant.) We have hence established the following
general uniformization

Theorem. Every Riemann surface M is conformally equivalent to D/G with
D=Cu{ow},C,or Uand G a freely acting discontinuous group of Mdbius
transformations that preserve D. Furthermore, G = 7(M).

Remarks
1. We will see in IV.6 that for most Riemann surfaces M, M =~ U.

2. At this point, it is quite easy to give alternate proofs of Corollaries 24
in IV.3.18. A stronger form of Corollary 1 will be established in IV.8.

IV.5.7. If M = U, then the group G is, of course, a Fuchsian group. If M = C
or C U {oo}, then G can have at most one limit point (G acts discontinuously
on C). Thus we have established the following

Theorem. Every Riemann surface can be represented as a domain in the plane
Jactored by a fixed point free Fuchsian or elementary group.
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IV.5.8. A Riemann surface M will be called prolongable if there exists
a Riemann surface M’ and a one-to-one holomorphic mapping f:M —» M’
such that M\ f(M) has a non-empty interior.

Compact surfaces and those obtained from compact surfaces by omitting
finitely many points are clearly not prolongable. We shall see (trivially)
in the next section that those Riemann surfaces that can be represented as
C/G with G a fixed point free elementary group are not prolongable. For
the Fuchsian case, we need the following

Definition. Let G be a Fuchsian group leaving invariant the interior of the
circle C. The group G is called of the second kind if A(G) ¢ C. If A(G) = C,
G is called of the first kind.

Theorem. Let G be a fixed point free Fuchsian group acting on U. Then
U/G is prolongable if G is ofthe second kind.

PRrOOF. If G is of the second kind, then Q(G) is connected and the complement
of U/G in Q/G certainly contains L/G, where L is the lower half plane. [

Remark. The theorem thus shows that compact surfaces are uniformized
by groups of the first kind.

EXERCISE

Formulate and prove a converse to Theorem IV.5.8.

IV.6. The Exceptional Riemann Surfaces

The title of this section is explained by Theorem IV.6.1. The same surfaces
will reappear in V 4.

IV.6.1. The fundamental groups of most Riemann surfaces are not com-
mutative. The exceptions are listed in the following

Theorem

a. The only simply connected Riemann surfaces are the ones conformally
equivalent to C U {00}, C,or 4 = {zeC, |z| < 1}.

b. The only surfaces with n,(M) = Z are (conformally equivalent to) C* =
C\{0}, 4* = A\{0},0r 4, = {zeC;r< |z <1},0<r< 1.

c. The only surfaces with n(M) =~ Z @ Z (the commutative free group on
two generators) are the tori C/G, where G is generated by z+z + 1 and
z—>z+1,Imt>0.

d. For all other surfaces M, n,(M) is not abelian.

The remainder of this section is devoted to the proof of this theorem.
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IV.6.2. Let A be a Mgbius transformation, 4 # 1. Then 4 has one or
two fixed points. If 4 has one fixed point, it is called parabolic. We write
A(z) = (az + b)/(cz + d), ad — bc = 1. Then

trace* A = (a + d)?

is well defined. It is easy to check that A4 is parabolicif and only if trace? 4 = 4.
The element A is called elliptic if trace>? A € R and 0 < trace®> 4 < 4. It is
called loxodromic if trace? A ¢ [04] = R. A loxodromic element A with
trace’> A > 4 (we are assuming here that trace? A € R) is called hyperbolic.

Let A be parabolic with fixed point z, € C U {o0}. Choose C Mébius such
that C(zg) = 00. Thus Co Ao C™(c) = sco and hence D = C > A - C~ ! has
the form D(z) = az + b with a # 0. Since A4 is parabolic, so is D. Hence
a = 1. We conclude 4 is parabolic if and only if A is conjugate to a translation
z+—z + b (and thus also conjugate to the translation z+s z + 1). Similarly,
it is easy to establish that an element 4 with two fixed points is conjugate
toz—> 4z, A # 0, 1 and that

A is loxodromic <> |4] # 1, A#0,
A is hyperbolic<= 1 € R, A>0,4#1,
and
A is elliptic < [4| = 1, A# 1L

The number 4 is called the multiplier of the motion A. It is a root of unity
if and only if A is elliptic of finite order.

IV.6.3. Theorem. The only Riemann surface M which has as universal covering
the sphere, is the sphere itself.

PROOF. The covering group of M would necessarily have fixed points if

IV.6.4. The fixed point free elements in Aut C are of the form z— z + q,
a e C. Since a covering group of a Riemann surface must be discrete, we
see that (consult Ahlfors’ book Complex Analysis) we have the following

Theorem. If the (holomorphic) universal covering space of M is C, then M
is conformally equivalent to C, C*, or a torus.

These correspond to 7,(M) being trivial, =Z, and =7 @ Z. Note that
if 7,(M) = Z, then we can take as generator for the covering group of M,
the translation z+ z + 1. The covering map

n:C - C*
is given by n(z) = exp(2miz).

IV.6.5. All surfaces except those listed in Theorems IV.6.3 and 1V.6.4
have the unit disc or equivalently the upper half plane U as their holomorphic
universal covering space. We have shown in II1.6.4, that every torus has
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C as its holomorphic universal covering space (we will reprove this below).
Since no surface can have both U and C as its holomorphic universal covering
space, a torus cannot be written as U modulo a fixed point free subgroup
of Aut U. More, however, is true (see Theorem 1V.6.7).

Since Aut U =~ PSL(2,R), we see that each elliptic element A € Aut U
fixes a point z € U (and Z as well). Conversely, every A € Aut U that fixes an
element of U is elliptic. Thus a covering group of a Riemann surface cannot
contain elliptic elements. (As an exercise, prove that a discrete subgroup
of Aut U cannot contain elliptic elements of infinite order.) Since every
element of Aut U of finite order is elliptic, we have established the following
topological result.

Proposition. The fundamental group of a Riemann surface is torsion free.

Remark. Using Fuchsian groups, one can determine generators and relations
for fundamental groups of surfaces.

1V.6.6. If A € Aut U is loxodromic, we can choose an element B e Aut U
such that
C(0)=B-A-B }0)=0,
and
C(0)=BoA>B (x0) = .

Thus C(z) = Az with e R, A > 0, 4 # 1. Thus Aut U does not contain any
non-hyperbolic loxodromic elements, and hence the covering group of a
Riemann surface (whose universal covering space is U) consists only of
parabolic and hyperbolic elements.

Lemma. Let A and B be Mébius transformations which commute, with neither
A nor B the identity. Then we have:

a. If A is parabolic, so is B and both have the same fixed point.

b. If one of A and B is not parabolic (then neither is the other by (a)), then
either A and B have the same fixed points, or both of them are elliptic
of order 2 and one permutes the fixed points of the other.

PROOF. Say 4 - B = B - A. If A is parabolic, it involves no loss of generality
to assume A(z) = z + 1 (by conjugating A and B by the same element C).
Write B=[2 §]e SL(2,C), A=[} }]. Thus the statement A commutes

with B gives
a+c b+d a a+b| .
[ . i :I = [C et ‘J in PSL(2,C).

From which we conclude that ¢ = 0, thus ad = 1 and d = a; showing that
B(z) =z + B.
If neither A nor B have precisely one fixed point, then by conjugation
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we may assume A(z) = Az with 4 # 0, 1. The commutativity relation now reads

Aa b la b .
[C d]zlilc d:l in PSL(2,C).

There are now two possibilities: ¢ # 0 or ¢ = 0. If ¢ # 0, then we must have

the equality
ia b)) [ia b
e ad| i d

Thus a = 0 and if we assume that 4 # — 1, also b = 0 (hence ad — bc # 1).
Thus this case is impossible and 4 = — 1. The matrix identity now reads

L[

from which we conclude a = 0 = d and bc = — 1; from which we conclude
B(z) = k/z. The remaining case is ¢ = 0. Thus d # 0 and the matrix equality

becomes
‘a /b _ ia b
0 d| |0 df
Thus b = 0 and B(z) = k=. O

Corollary. Two commuting loxodromic transformations have the same fixed
point set.

1V.6.7. Theorem. Let M be a Riemann surface with n(M) = 7 @ Z, then the
holomorphic universal covering space of M is C.

PrROOF. Assume the covering space is U. The covering group of M is an
abelian group on two generators. Let A be one of the generators. If 4 is
parabolic, then we may assume A(z) = z + 1. Let B be another free generator.
Since B commutes with 4, B must also be parabolic. Thus B(z) = z + f,
f € R\Q. The group generated by A and B is not discrete.

So assume 4 is hyperbolic (it cannot be anything else if it is not parabolic).
We may assume A(z) = 4z, 4 > 1. The other generator B must be of the
form B(z) = uz with p > 1 and A" # ™ for all (nm)e Z ® Z\{0}. Again,
such a group cannot be discrete (take logarithms to transform to a problem
in discrete modules). O

1V.6.8. To finish the proof of Theorem IV .6.1, we must establish the following

Theorem. Let M be a Riemann surface with holomorphic universal covering
space U. Then M = A, A*, or A,, provided n,(M) is commutative.

PrROOF. We have seen in the proof of the previous theorem that if M is
covered by U and n,(M) is commutative, then the covering group G of M
must be cyclic. The two possibilities (other than the trivial one) are the
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generator A of G is parabolic (without loss of generality z+—z + 1) or
hyperbolic (z+> Az, 2 > 1). In the first case the map

U — 4*
is given by
z>exp(2niz).

For z = re®, 0 < 6 < 2n, we define
log z=logr + if

(the principal branch of the logarithm). The covering map (for the case
of hyperbolic generator)

U- 4,
is then given by
log z
Z>exp <2ni l(())i />
From this we also see that
r = exp(—2n?/log A). (6.8.1) O

IV.6.9. As an application we prove the following

Theorem. Let D be a domain in C U {00} such that C U {c0}\D consists
of two components a, f. Then D = C*, A*, or A,.

PRrOOF. The complement of « (in C U {o0}) is simply connected (#C U {o0})
and thus conformally equivalent to C or 4. Thus it suffices to assume «
is a point or the unit circle. Now (C U {o0}\p) is also equivalent to C or 4.
Thus we are reduced to the case where 0D consists of points or analytic
arcs. In either case, it is now easy to see that n,(D) = Z, and the result follows
by our classification of Riemann surfaces M with commutative 7;(M). [

IV.7. Two Problems on Moduli

The general problem of moduli of Riemann surfaces may be stated as
follows: Given two topologically equivalent Riemann surfaces, find necessary
and sufficient conditions for them to be conformally equivalent. What does
the “space” of conformally inequivalent surfaces of the same topological
type look like? The solution to this general problem is beyond the scope
of this book; however, two simple cases (the case of the annulus and the
case of the torus) will be solved completely in this section.

IV.7.1. Let M; be a Riemann surface with nj:Mj — M, the holomorphic
universal covering map (j = 1,2). First, recall that the covering group G;
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of M; is determined up to conjugation in Aut 1\7lj. Furthermore, if

fiMy—>M,
is a topological, holomorphic, conformal, etc., map, then there exists a map
ﬂ Ml - Mz
of the same type so that
nye f=femy.

(Of course G; is the set of lifts of the identity map M; - M) The map fis
not uniquely determined. It may be replaced by 4, - f - 4, with 4;€ G;.

1V.7.2. How many conformally distinct annuli are there? We have seen
that every annulus can be written as U/G where G is the group generated
by z+— 4z, 2eR, 2> 1. If A; and A, are two such annuli with the cor-
responding 4, and 4,, when do they determine the same conformal annulus?
They determine the same annulus if and only if there is an element T € Aut U
such that

T(Az) = A, T(2), ze U.

From this it follows rather easily that A, = 4, (by direct examination or
using the fact that the trace of a Mobius transformation is invariant under
conjugation).

We conclude

Theorem. The set of conformal equivalence classes of annuli is in one-to-one
canonical correspondence with the open real interval (1,00).

Of course, we could substitute for the word “annuli” the words “domains
in C U {oc} with two non-degenerate boundary components.”

IV.7.3. Let T, and T, be two conformally equivalent tori. As we have
seen, the covering group G; of T; may be chosen to be generated by the
translations z+—z + 1, z+z + t; with Im t; > 0. Thus we are required to
find when two distinct points in U determine the same torus. Let f be the
conformal equivalence between T, and T, and let f be its lift to the universal
covering space:

C —’___,q:
T
T; T

The mapping f is conformal (thus affine; that is, z+— az + b), and it induces

an isomorphism 0 ~ _
Gieg—feg-f e,

We abbreviate the Mobius transformation z+ z + ¢ by ¢. Thus

a=0(1)=ol + fr, witha,fe”Z

7.3.1
at; =60(ty) =yl + 61, withy, de”Z. ( )
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Further, since 0 is an isomorphism the matrix [2 4] is invertible. Thus
ad — By = £ 1. Considering the symbols in (7.3.1) once again as numbers,
we see that

7 + 51'2
Ty = ———>
YT+ By
and since both 7, and 7, € U we see that fy — a0 = — 1. Conversely, two

’s related as above correspond to conformally equivalent tori. Let I" denote
the unimodular group of Mdobius transformations; that is, PSL(2,Z). It is
easy to see that I' is a discrete group (hence discontinuous), and with some
work that U/I' =~ C. Thus we have

Theorem. The set of equivalence classes of tori is in one-to-one canonical
correspondence with the points in C.

IV.8. Riemannian Metrics

In this section we show that on every Riemann surface we can introduce
a complete Riemannian metric of constant (usually negative) curvature. We
also develop some of the basic facts of non-Euclidean geometry that will
be needed in IV.9.

IV.8.1. We introduce Riemannian metrics on the three simply connected
Riemann surfaces. The metric on M will be of the form

Az)|dz

, ze M. (8.1.1)
We set

) 2
A(Z):ilei’ fOYM:CU‘{yJ},

Mz)=1, forM =C,

5, forM=4={zeC,

z1<1}.

The definition of 4 for M = C U {0} is, of course, only valid for z # «.
At infinity, invariance leads to the form of 4 in terms of the local coordinate
{=1/z

We will now explain each of the above metrics.

IV.8.2. The compact surface of genus 0, C U {oc}, has been referred to
(many times) as the Riemann sphere; but up to now no “sphere™ has appeared.
Consider hence the unit sphere S2,

CHn+2=1



214 IV Uniformization

in R3. We map S2\{(0,0,1)} onto C by (stereographic projection)

ct+in_

1-¢

It is a trivial exercise to find an inverse and to show that the above map

establishes a difffomorphism between $2\{(0,0,1)} and C that can be extended
to a diffeomorphism between S? and C U {o0}. The inverse is

2Rez 2Imz |7 -1
Z“’(W U U 1)' ®2.1)

En) —

(Write x = Re z, y = Im z.) The Euclidean metric on R3
ds® = dé* + dy* + di?

induces a metric on S2, which in turn induces a metric on C U {c0}. Equation
(8.2.1) shows that

2(1 — x2 + y?) dx — 4xy dy

d —
¢ TENERE
p _2(1 + x* — yY) dy — 4xy dx
= (1 + [
4x dx + 4y dy
Jp = XXty dy
SRR

A lengthy, but routine, calculation now shows that
I — 4(dx? + dyz).
(1 + 2?72
The curvature K of a metric (8.1.1) is given by

(here 4 is the Laplacian, not the unit disc). A calculation shows that
K= +1,
and that the area of C U {0} in the metric is
Area(C U {o0}) = fL i(z)¥dxdy = f:n j‘: ﬁ rdrd0 = 4.
Proposition. An element T € Aut(C U {cc}) is an isometry in the metric
(2/(1 + |2|*))|dz| if and only if as a matrix

T=r -
.

} la]? + |c|* = 1. (8.2.2)

[STRY
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PRrROOF. Write

Tz[i Z}, ad — bc = 1.
Of course, T is an isometry if and only if

MT2)|T'(2)| = Mz), zeC v {w},
or equivalently if and only if

1 1
lcz + d|* + |az + bf? 1+ ER

(8.2.3)

If (8.2.2) holds, then so does (8.2.3), as can be shown by the calculation

1 1 1
ez + a|* + |az — ¢? " (cz +a)TE + a) + (az — O)@z - ©) 1y |2)*

Conversely, if (8.2.3) holds, we have
1+

2> = ez + d|* + |az + b
Expanding the right-hand side gives

1+ |2> = (la]* + |¢|*)|z]* + (cd + ab)z + (dT + ba)z + |b|* + |d|?,
and the only way this identity can hold is if |a|* + |c|* = 1, |b|* + |d|* = 1,
cd + ab = 0. We now add<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>