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Preface

Two of the most fundamental concepts in the theory of stochastic processes
are the Markov property and the martingale property.* This book is written
for readers who are acquainted with both of these ideas in the discrete-time
setting, and who now wish to explore stochastic processes in their continuous-
time context. It has been our goal to write a systematic and thorough exposi-
tion of this subject, leading in many instances to the frontiers of knowledge.
At the same time, we have endeavored to keep the mathematical prerequisites
as low as possible, namely, knowledge of measure-theoretic probability and
some familiarity with discrete-time processes. The vehicle we have chosen for
this task is Brownian motion, which we present as the canonical example of
both a Markov process and a martingale. We support this point of view by
showing how, by means of stochastic integration and random time change,
all continuous-path martingales and a multitude of continuous-path Markov
processes can be represented in terms of Brownian motion. This approach
forces us to leave aside those processes which do not have continuous paths.
Thus, the Poisson process is not a primary object of study, although it is
developed in Chapter 1 to be used as a tool when we later study passage times
and local time of Brownian motion.

The text is organized as follows: Chapter 1 presents the basic properties of
martingales, as they are used throughout the book. In particular, we generalize
from the discrete to the continuous-time context the martingale convergence
theorem, the optional sampling theorem, and the Doob—Meyer decomposi-
tion. The latter gives conditions under which a submartingale can be written

* According to M. Loéve, “martingales, Markov dependence and stationarity are the only three
dependence concepts so far isolated which are sufficiently general and sufficiently amenable to
investigation, yet with a great number of deep properties” (4nn. Probab. 1 (1973), p. 6).
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as the sum of a martingale and an increasing process, and associates to every
martingale with continuous paths a “quadratic variation process.” This pro-
cess is instrumental in the construction of stochastic integrals with respect to
continuous martingales.

Chapter 2 contains three different constructions of Brownian motion,
as well as discussions of the Markov and strong Markov properties for
continuous-time processes. These properties are motivated by d-dimensional
Brownian motion, but are developed in complete generality. This chapter also
contains a careful discussion of the various filtrations commonly associated
with Brownian motion. In Section 2.8 the strong Markov property is applied
to a study of one-dimensional Brownian motion on a half-line, and on a
bounded interval with absorption and reflection at the endpoints. Many
densities involving first passage times, last exit times, absorbed Brownian
motion, and reflected Brownian motion are explicitly computed. Section 2.9
is devoted to a study of sample path properties of Brownian motion. Results
found in most texts on this subject are included, and in addition to these, a
complete proof of the Lévy modulus of continuity is provided.

The theory of stochastic integration with respect to continuous martingales
is developed in Chapter 3. We follow a middle path between the original
constructions of stochastic integrals with respect to Brownian motion and the
more recent theory of stochastic integration with respect to right-continuous
martingales. By avoiding discontinuous martingales, we obviate the need to
introduce the concept of predictability and the associated, highly technical,
measure-theoretic machinery. On the other hand, it requires little extra effort
to consider integrals with respect to continuous martingales rather than
merely Brownian motion. The remainder of Chapter 3 is a testimony to the
power of this more general approach; in particular, it leads to strong theorems
concerning representations of continuous martingales in terms of Brownian
motion (Section 3.4). In Section 3.3 we develop the chain rule for stochastic
calculus, commonly known as 1td’s formula. The Girsanov Theorem of Sec-
tion 3.5 provides a method of changing probability measures so as to alter
the drift of a stochastic process. It has become an indispensable method for
constructing solutions of stochastic differential equations (Section 5.3) and is
also very important in stochastic control (e.g., Section 5.8) and filtering. Local
time is introduced in Sections 3.6 and 3.7, and it is shown how this concept
leads to a generalization of the Itd formula to convex but not necessarily
differentiable functions.

Chapter 4 is a digression on the connections between Brownian motion,
Laplace’s equation, and the heat equation. Sharp existence and uniqueness
theorems for both these equations are provided by probabilistic methods;
applications to the computation of boundary crossing probabilities are dis-
cussed, and the formulas of Feynman and Kac are established.

Chapter 5 returns to our main theme of stochastic integration and differ-
ential equations. In this chapter, stochastic differential equations are driven
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by Brownian motion and the notions of strong and weak solutions are pre-
sented. The basic It6 theory for strong solutions and some of its ramifications,
including comparison and approximation results, are offered in Section 5.2,
whereas Section 5.3 studies weak solutions in the spirit of Yamada &
Watanabe. Essentially equivalent to the search for a weak solution is the
search for a solution to the “Martingale Problem” of Stroock & Varadhan.
In the context of this martingale problem, a full discussion of existence,
uniqueness, and the strong Markov property for solutions of stochastic differ-
ential equations is given in Section 5.4. For one-dimensional equations it is
possible to provide a complete characterization of solutions which exist only
up to an “explosion time,” and this is set forth in Section 5.5. This section also
presents the recent and quite striking results of Engelbert & Schmidt con-
cerning existence and uniqueness of solutions to one-dimensional equations.
This theory makes substantial use of the local time material of Sections 3.6,
3.7 and the martingale representation results of Subsections 3.4.A,B. By
analogy with Chapter 4, we discuss in Section 5.7 the connections between
solutions to stochastic differential equations and elliptic and parabolic partial
differential equations. Applications of many of the ideas in Chapters 3 and 5
are contained in Section 5.8, where we discuss questions of option pricing
and optimal portfolio/consumption management. In particular, the Girsanov
theorem is used to remove the difference between average rates of return
of different stocks, a martingale representation result provides the optimal
portfolio process, and stochastic representations of solutions to partial differ-
ential equations allow us to recast the optimal portfolio and consumption
management problem in terms of two linear parabolic partial differential
equations, for which explicit solutions are provided.

Chapter 6 is for the most part derived from Paul Lévy’s profound study of
Brownian excursions. Lévy’s intuitive work has now been formalized by such
notions as filtrations, stopping times, and Poisson random measures, but the
remarkable fact remains that he was able, 40 years ago and working without
these tools, to penetrate into the fine structure of the Brownian path and to
inspire all the subsequent research on these matters until today. In the spirit
of Lévy’s work, we show in Section 6.2 that when one travels along the
Brownian path with a clock run by the local time, the number of excursions
away from the origin that one encounters, whose duration exceeds a specified
number, has a Poisson distribution. Lévy’s heuristic construction of Brownian
motion from its excursions has been made rigorous by other authors. We do
not attempt such a construction here, nor do we give a complete specification
of the distribution of Brownian excursions; in the interest of intelligibility, we
content ourselves with the specification of the distribution for the durations
of the excursions. Sections 6.3 and 6.4 derive distributions for functionals
of Brownian motion involving its local time; we present, in particular, a
Feynman-Kac result for the so-called “elastic” Brownian motion, the for-
mulas of D. Williams and H. Taylor, and the Ray—Knight description of
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Brownian local time. An application of this theory is given in Section 6.5,
where a one-dimensional stochastic control problem of the “bang-bang” type
is solved.

The writing of this book has become for us a monumental undertaking
involving several people, whose assistance we gratefully acknowledge. Fore-
most among these are the members of our families, Eleni, Dot, Andrea, and
Matthew, whose support, encouragement, and patience made the whole en-
deavor possible. Parts of the book grew out of notes on lectures given at
Columbia University over several years, and we owe much to the audiences
in those courses. The inclusion of several exercises, the approaches taken to
a number of theorems, and several citations of relevant literature resulted
from discussions and correspondence with F. Baldursson, A. Dvoretzky,
W. Fleming, O. Kallenberg, T. Kurtz, S. Lalley, J. Lehoczky, D. Stroock, and
M. Yor. We have also taken exercises from Mandl, Lanska & Vrko¢ (1978),
and Ethier & Kurtz (1986). As the project proceeded, G.-L. Xu, Z.-L. Ying,
and Th. Zariphopoulou read large portions of the manuscript and suggested
numerous corrections and improvements. Careful reading by Daniel Ocone
and Manfred Schil revealed minor errors in the first printing, and these have
been corrected. Others, including F. Akesson, S. Dayanik, B. Doytchinov,
H.J. Engelbert, R. Hohnle, C. Hou, A. Karolik, W. Nichols, L. Nielsen, D.
Ocone, N. Vaillant and H. Wang found errors and/or contributed ideas,
which have resulted in improvements in subsequent printings. However, our
greatest single debt of gratitude goes to Marc Yor, who read much of the
near-final draft and offered substantial mathematical and editorial comments
on it. The typing was done tirelessly, cheerfully, and efficiently by Stella
DeVito and Doodmatie Kalicharan; they have our most sincere appreciation.

We are grateful to Sanjoy Mitter and Dimitri Bertsekas for extending to us
the invitation to spend the critical initial year of this project at the Massachu-
setts Institute of Technology. During that time the first four chapters were
essentially completed, and we were partially supported by the Army Research
Office under grant DAAG-299-84-K-0005. Additional financial support was
provided by the National Science Foundation under grants DMS-84-16736
and DMS-84-03166 and by the Air Force Office of Scientific Research under
grants AFOSR 82-0259, AFOSR 85-0360, and AFOSR 86-0203.

Ioannis Karatzas
Steven E. Shreve
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Suggestions for the Reader

We use a hierarchical numbering system for equations and statements. The
k-th equation in Section j of Chapter i is labeled (j.k) at the place where it
occurs and is cited as (j.k) within Chapter i, but as (ij.k) outside Chapter i. A
definition, theorem, lemma, corollary, remark, problem, exercise, or solution
is a “statement,” and the k-th statement in Section j of Chapter i is labeled j.k
Statement at the place where it occurs, and is cited as Statement j.k within
Chapter i but as Statement i.j.k outside Chapter i.

This book is intended as a text and can be used in either a one-semester or
atwo-semester course, or as a text for a special topic seminar. The accompany-
ing figure shows dependences among sections, and in some cases among
subsections. In a one-semester course, we recommend inclusion of Chapter 1
and Sections 2.1, 2.2, 2.4, 2.5, 2.6, 2.7, §2.9.A, B, E, Sections 3.2, 3.3, 5.1, 5.2,
and §5.6.A, C. This material provides the basic theory of stochastic integration,
including the Itd calculus and the basic existence and uniqueness results for
strong solutions of stochastic differential equations. It also contains matters
of interest in engineering applications, namely, Fisk—Stratonovich integrals
and approximation of stochastic differential equations in §3.3.A and 5.2.D,
and Gauss—Markov processes in §5.6.A. Progress through this material can
be accelerated by omitting the proof of the Doob—Meyer Decomposition
Theorem 1.4.10 and the proofs in §2.4.D. The statements of Theorem 1.4.10,
Theorem 2.4.20, Definition 2.4.21, and Remark 2.4.22 should, however, be
retained. If possible in a one-semester course, and certainly in a two-semester
course, one should include the topic of weak solutions of stochastic differential
equations. This is accomplished by covering §3.4.A, B, and Sections 3.5, 5.3,
and 5.4. Section 5.8 serves as an introduction to stochastic control, and so we
recommend adding §3.4.C, D, E, and Sections 5.7, and 5.8 if time permits. In
either a one- or two-semester course, Section 2.8 and part or all of Chapter 4
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may be included according to time and interest. The material on local time
and its applications in Sections 3.6, 3.7, 5.5, and in Chapter 6 would normally
be the subject of a special topic course with advanced students.

The text contains about 175 “problems” and over 100 “exercises.” The
former are assignments to the reader to fill in details or generalize a result,
and these are often quoted later in the text. We judge approximately two-
thirds of these problems to be nontrivial or of fundamental importance, and
solutions for such problems are provided at the end of each chapter. The
exercises are also often significant extensions of results developed in the
text, but these will not be needed later, except perhaps in the solution of
other exercises. Solutions for the exercises are not provided. There are some
exercises for which the solution we know violates the dependencies among
sections shown in the figure, but such violations are pointed out in the
offending exercises, usually in the form of a hint citing an earlier result.
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Frequently Used Notation

I. General Notation

Let a and b be real numbers.
(1) £ means “is defined to be.”
(2) a A b £ min{a,b}.

(3) a v b £ max{a,b}.

(4) a* £ max{a,0}.

(5) a= £ max{—a,0}.

II. Sets and Spaces

(1) Ng 2{0,1,2,...}.
(2) Q is the set of rational numbers.
(3) Q7 is the set of nonnegative rational numbers.
(4) R?is the d-dimensional Euclidean space; R' = R.
(5) B, & {xeR¥% ||| < r} (p. 240).
(6) (R0 is the set of functions from [0, o0) to R? (pp. 49, 76).
(7) C[O, c0)? is the subspace of (R%)[°*) consisting of continuous functions;
C[0, o0)! = C[0, o0) (pp. 60, 64).
(8) D[O0, c0) is the subspace of R!%®) consisting of functions which are right
continuous and have left-limits (p. 409).
(9) C*(E), CK(E), CK(E): See Remark 4.1, p. 312.
(10) C*%([0,T) x E),C*2((0, T) x E): See Remark 4.1, p. 312.
(11) &, (M), £*, L*(M): See pp. 130-131.
(12) 2, P(M), P*, P*(M): See pp. 146—147.
(13) A ,(#5): The space of (continuous) square-integrable martingales (p. 30).
(14) 4"°(*"*°): The space of (continuous) local martingales (p. 36).
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III. Functions

1, x>0,

(1) sgn(x) = {—1; x <0.
A |1, x€eA,
(2) 14x) = {0; XEA.

e V2t 5 0 x, yeR (p. 52).

3 ;x,y) &
(3) p(t; x, y) e

4) p+(t;x,y) £ p(t; x,y) + p(t; x, —y); t >0, x, ye R (p. 97).
(5) [t] is the largest integer less than or equal to the real number .

IV. o-Fields

(1) #(U): The smallest o-field containing all open sets of the topological
space U (p. 1).

(2) %,(C[0, 00)), B,(C[0, ). See pp. 60, 307.

(3) a(%): The smallest o-field containing the collection of sets %.

(4) a(X,): The smallest o-field with respect to which the random variable X
is measurable.

(5) (X0 < s <t): The smallest o-field with respect to which the random
variable X, is measurable, Vse[0,t].

6) ZX £ 0(X;0<s<1),F, 2 06(J20%) Seep. 3.

(7) %+ £ ﬂc>0 '9;!+5’ 9—’;_ £ O'(US<,.9-°S)Z See p- 4.

(8) #7: The o-field of events determined prior to the stopping time T; see
p- 8.

(9) Zr,: The o-field of events determined immediately after the optional
time T'; see p. 10.

(10) F ® % £ 6(A x B; Ae #, Be%}: The product o-field formed from the

o-fields # and 4.

V. Operations on Functions

d 52
(1 A&y peE The Laplacian (p. 240).
i=1 i

(2) o, o, Second order differential operators; see pp. 281, 311.

VI. Operations on Processes

(1) 6,, b5: Shift operator at the deterministic time s and the random time S;
see pp. 77, 83.
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(2) IM(X) = [, X,dM,: The stochastic integral of X with respect to M. See
p. 141 for M e M5, X € #*(M); see p. 147 for M e M*'°, X € P*(M).

(3) M & maxq.,<,|M,|: See p. 163 for M e 4.

(4) <X): The quadratic variation process of X € .#, (p. 31) or X € #*'°
(p. 36).

(5) (X, Y): The cross-variation process of X, Y in .#, (p. 31) or in .#°'°
(p. 36).

®) 11X, 1 X]: See p. 37 for X e A ,.

VII. Miscellaneous

(1) mp(X,0) 2 sup{| X, — X,;0<s<t<T,t—s<d}; Seep. 33.
(2) m"(w,6) £ max{|w(s) — w(®); 0 <s <t < T, t —s < J}: See p. 62.
(3) D: The closure of the set D = Re.
(4) D: The complement of the set D.
(5) 0D: The boundary of the set D < R%.
(6) 7p 2 inf{t > 0; W, e D°}: The first time the Brownian motion W exits from
the set D < R? (p. 240).
(7) T, £ inf{t > 0; W, = b}: The first time the one-dimensional Brownian
motion W reaches the level be R (p. 79).
(8) T(t) £ (§ 1,6,.0)(W,) ds: The occupation time by Brownian motion of the
positive half-line (p. 273).
(9) P, P: Weak convergence of the sequence of probability measures
{P,}2., to the probability measure P (p. 60).
(10) X, 2 x. Convergence in distribution of the sequence of random variables
{X,}¥_, to the random variable X (p. 61).
(11) P*: Probability measure corresponding to Brownian motion (p. 72) or a
Markov process (p. 74) with initial position x € R?.
(12) P*: Probability measure corresponding to Brownian motion (p. 72) or a
Markov process (p. 74) with initial distribution pu.
(13) A3#, A#7*: Collections of P*-negligible sets (p. 89).
(14) I(0), Z(0): See pp. 331, 332.
(15) I,;: The (d x d) identity matrix.
(16) meas: Lebesgue measure on the real line (p. 105).



CHAPTER 1

Martingales, Stopping Times,
and Filtrations

1.1. Stochastic Processes and o-Fields

A stochastic process is a mathematical model for the occurrence, at each
moment after the initial time, of a random phenomenon. The randomness is
captured by the introduction of a measurable space (Q, %), called the sample
space, on which probability measures can be placed. Thus, a stochastic process
is a collection of random variables X = {X,;0 <t < o} on (Q, %), which
take values in a second measurable space (S, &), called the state space. For
our purposes, the state space (S, &) will be the d-dimensional Euclidean space
equipped with the o-field of Borel sets, i.e.,, § = R, & = B(R?), where #(U)
will always be used to denote the smallest o-field containing all open sets of
a topological space U. The index t € [0, o0) of the random variables X, admits
a convenient interpretation as time.

For a fixed sample point w € Q, the function ¢t — X,(w); t = 0 is the sample
path (realization, trajectory) of the process X associated with w. It provides
the mathematical model for a random experiment whose outcome can be
observed continuously in time (e.g., the number of customers in a queue
observed and recorded over a period of time, the trajectory of a molecule
subjected to the random disturbances of its neighbors, the output of a com-
munications channel operating in noise).

Let us consider two stochastic processes X and Y defined on the same
probability space (2, #, P). When they are regarded as functions of t and w,
we would say X and Y were the same if and only if X,(w) = Y,(w) forallt > 0
and all w e Q. However, in the presence of the probability measure P, we could
weaken this requirement in at least three different ways to obtain three related
concepts of “sameness” between two processes. We list them here.
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1.1 Definition. Y is a modification of X if, for every t >0, we have
PX,=Y]=1

1.2 Definition. X and Y have the same finite-dimensional distributions if, for
any integer n > 1, real numbers 0 <t, <t, <-** < t, < 00, and 4 Z(R™),
we have:

P[(X,,,...,X, )€ A] = P[(Y,,..., Y, )€ Al.

1.3 Definition. X and Y are called indistinguishable if almost all their sample
paths agree:

P[X,=Y;V0<t<oo]=L1

The third property is the strongest; it implies trivially the first one, which
in turn yields the second. On the other hand, two processes can be modifica-
tions of one another and yet have completely different sample paths. Here is
a standard example:

1.4 Example. Consider a positive random variable T with a continuous dis-
0 t#T
1, t=T
for every t > 0 we have P[Y, = X,] = P[T # t] = 1, but on the other hand:
PLY,=X,;Vt>0]=0.

tribution, put X, = 0,and let Y, = { } Y is a modification of X, since

A positive result in this direction is the following.

1.5 Problem. Let Y be a modification of X, and suppose that both processes
have a.s. right-continuous sample paths. Then X and Y are indistinguishable.

It does not make sense to ask whether Y is a modification of X, or whether
Y and X are indistinguishable, unless X and Y are defined on the same
probability space and have the same state space. However, if X and Y have
the same state space but are defined on different probability spaces, we can
ask whether they have the same finite-dimensional distributions.

1.2’ Definition. Let X and Y be stochastic processes defined on probability
spaces (Q, #, P) and (@, Z, P), respectively, and having the same state space
(R4, B(R%). X and Y have the same finite-dimensional distributions if, for any
integer n > 1, real numbers 0 <t, <t, <~ <t, < o0, and Ae B(R™), we
have

P[(X,,,...,X, )eA] = P[(Y,,..., Y, )e A].

Many processes, including d-dimensional Brownian motion, are defined in
terms of their finite-dimensional distributions irrespective of their probability
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space. Indeed, in Chapter 2 we will construct a standard d-dimensional
Brownian motion B on a canonical probability space and then state that
any process, on any probability space, which has state space (R?, Z(R%)) and
the same finite-dimensional distributions as B, is a standard d-dimensional
Brownian motion.

For technical reasons in the theory of Lebesgue integration, probability
measures are defined on o-fields and random variables are assumed to be
measurable with respect to these o-fields. Thus, implicit in the statement that
a random process X = {X,;0 <t < oo} is a collection of (R?, #(R?))-valued
random variables on (Q, %), is the assumption that each X, is #/%(R?)-
measurable. However, X is really a function of the pair of variables (¢, w), and
so, for technical reasons, it is often convenient to have some joint measurability
properties.

1.6 Definition. The stochastic process X is called measurable if, for every
A e B(R?), the set {(t, w); X,(w) € A} belongs to the product o-field Z([0, ©)) ®
& in other words, if the mapping

(2, @) X (@): ([0, 00) x ©, B([0, 0)) ® F) — (R, B(R"))

is measurable.

It is an immediate consequence of Fubini’s theorem that the trajectories of
such a process are Borel-measurable functions of ¢ € [0, c0), and provided that
the components of X have defined expectations, then the same is true for the
function m(t) = EX,; here, E denotes expectation with respect to a probability
measure P on (Q, %). Moreover, if X takes values in R and [ is a subinterval
of [0, o) such that [, E|X,|dt < oo, then

j |X,|dt < o0 as. P, and f EX,dt = EJ X, dt.
I I

I

There is a very important, nontechnical reason to include o-fields in the
study of stochastic processes, and that is to keep track of information. The
temporal feature of a stochastic process suggests a flow of time, in which, at
every moment ¢ > 0, we can talk about a past, present, and future and can ask
how much an observer of the process knows about it at present, as com-
pared to how much he knew at some point in the past or will know at some
point in the future. We equip our sample space (Q, %) with a filtration,
i.e., a nondecreasing family {%; t > 0} of sub-o-fields of #: #, = % < # for
0<s<t<oo WesetF, =0( o)

Given a stochastic process, the simplest choice of a filtration is that gen-
erated by the process itself, i.e.,

FXLo(X;0<s<1),

the smallest o-field with respect to which X| is measurable for every se [0, t].
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We interpret A € #* to mean that by time ¢, an observer of X knows whether
or not 4 has occurred. The next two exercises illustrate this point.

1.7 Exercise. Let X be a process, every sample path of which is RCLL (i.e.,
right-continuous on [0, co) with finite left-hand limits on (0, o0)). Let 4 be the
event that X is continuous on [0,,). Show that Ae #X.

1.8 Exercise. Let X be a process whose sample paths are RCLL almost surely,
and let A be the event that X is continuous on [0, t,). Show that A can fail to
be in £, but if {#;1 > 0} is a filtration satisfying £* = %, 1 > 0, and #,
contains all P-null sets of &, then 4 € .

Let {#; t > 0} be a filtration. We define &,_ £ o(| J;<, %) to be the o-field
of events strictly prior tot > 0and &, £ (>0 %+, to be the o-field of events
immediately after t > 0. We decree #,_ £ %, and say that the filtration {#,}
is right- (left-)continuous if # = %,, (resp., # = %,_) holds for every ¢t > 0.

The concept of measurability for a stochastic process, introduced in Defini-
tion 1.6, is a rather weak one. The introduction of a filtration {#} opens up
the possibility of more interesting and useful concepts.

1.9 Definition. The stochastic process X is adapted to the filtration {£,} if, for
each t > 0, X, is an %#-measurable random variable.

Obviously, every process X is adapted to {#*}. Moreover, if X is adapted
to {#} and Y is a modification of X, then Y is also adapted to {%#} provided
that %, contains all the P-negligible sets in #. Note that this requirement is
not the same as saying that %, is complete, since some of the P-negligible sets
in # may not be in the completion of %,.

1.10 Exercise. Let X be a process with every sample path LCRL (i.e., left-
continuous on (0, co) with finite right-hand limits on [0, c0)), and let 4 be the
event that X is continuous on [0, ¢,]. Let X be adapted to a right-continuous
filtration {#}. Show that A€ %, .

1.11 Definition. The stochastic process X is called progressively measurable
with respect to the filtration {&} if, for each t > 0 and 4 e Z(RY), the set
{(s,0);0 < s <1, weQ, X(w)e A} belongs to the product o-field ([0, t]) ®
%, in other words, if the mapping (s, w) — X,(w): ([0,t] x Q, #([0,t]) ® &) -
(R?, #(R%)) is measurable, for each t > 0.

The terminology here comes from Chung & Doob (1965), which is a basic
reference for this section and the next. Evidently, any progressively measurable
process is measurable and adapted; the following theorem of Chung & Doab
(1965) provides the extent to which the converse is true.
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1.12 Propeosition. If the stochastic process X is measurable and adapted to the
filtration { &}, then it has a progressively measurable modification.

The reader is referred to the book of Meyer (1966), p. 68, for the (lengthy,
and rather demanding) proof of this result. It will be used in this text only in
a tangential fashion. Nearly all processes of interest are either right- or left-
continuous, and for them the proof of a stronger result is easier and will now
be given.

1.13 Proposition. If the stochastic process X is adapted to the filtration { %}
and every sample path is right-continuous or else every sample path is left-
continuous, then X is also progressively measurable with respect to {#,}.

ProoF. We treat the case of right-continuity. With t >0, n> 1, k=0, 1,
...,2"—1,and 0 < s < t, we define:
kt k+1

X.i")(w) = X(k+1)t/2n((,0) for o <s< o

L,

as well as X{P(w) = X,(w). The so-constructed map (s, w)— X"(w) from
[0,£] x Q into R? is demonstrably %([0,t]) ® % -measurable. Besides, by
right-continuity we have: lim,_, X (w) = X,(w), ¥ (s, 0)€[0,t] x Q. There-
fore, the (limit) map (s, w) — X (w) is also #([0,t]) ® % -measurable. d

1.14 Remark. If the stochastic process X is right- or left-continuous, but
not necessarily adapted to {%}, then the same argument shows that X is
measurable.

A random time T is an & -measurable random variable, with values in
[0, co].

1.15 Definition. If X is a stochastic process and T is a random time, we define
the function X on the event {T < oo} by

X () 2 X T(a))(w)'

If X, (w) is defined for all w e Q, then X; can also be defined on Q, by setting
Xp(w) 2 X (w)on {T = o0}.

1.16 Problem. If the process X is measurable and the random time T is finite,
then the function X; is a random variable.

1.17 Problem. Let X be a measurable process and T a random time. Show
that the collection of all sets of the form {X;e 4} and {X;e A} U {T = oo};
A e #(R), forms a sub-o-field of &#. We call this the o-field generated by X .
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We shall devote our next section to a very special and extremely useful class
of random times, called stopping times. These are of fundamental importance
in the study of stochastic processes, since they constitute our most effective
tool in the effort to “tame the continuum of time,” as Chung (1982) puts it.

1.2. Stopping Times

Let us keep in mind the interpretation of the parameter ¢ as time, and of the
o-field & as the accumulated information up to t. Let us also imagine that we
are interested in the occurrence of a certain phenomenon: an earthquake with
intensity above a certain level, a number of customers exceeding the safety
requirements of our facility, and so on. We are thus forced to pay particular
attention to the instant T(w) at which the phenomenon manifests itself for the
first time. It is quite intuitive then that the event {w; T(w) < t}, which occurs
if and only if the phenomenon has appeared prior to (or at) time ¢, should be
part of the information accumulated by that time.
We can now formulate these heuristic considerations as follows:

2.1 Definition. Let us consider a measurable space (Q, #) equipped with a
filtration {#,}. A random time T is a stopping time of the filtration, if the event
{T <t} belongs to the o-field £, for every t > 0. A random time T is an
optional time of the filtration, if {T < t} € £, for every t > 0.

2.2 Problem. Let X be a stochastic process and T a stopping time of {#*}.
Suppose that for some pair w, o' € Q, we have X, (w) = X,(’) for all te
[0, T(w)] n [0, o0). Show that T(w) = T(w').

2.3 Proposition. Every random time equal to a nonnegative constant is
a stopping time. Every stopping time is optional, and the two concepts coincide
if the filtration is right-continuous.

ProoF. The first statement is trivial; the second is based on the observation
{T<t}=z{T <t—(1/n)}e#, because if T is a stopping time, then
{T<t—(1/n)}eZ_n S & for n > 1. For the third claim, suppose that T
is an optional time of the right-continuous filtration {#}. Since for every
positive integer m, we have {T <} = (\_ {T < t+ (1/n)}, we deduce
that {T <t} € %, (1)m); whence {T < 1} € #, = #,. O

2.4 Corollary. T is an optional time of the filtration {#} if and only if it is a
stopping time of the (right-continuous') filtration {%,. }.

2.5 Example. Consider a stochastic process X with right-continuous paths,
which is adapted to a filtration {#,}. Consider a subset I € Z(R?) of the state
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space of the process, and define the hitting time

Hp(w) = inf{t > 0; X,(w)eT}.
We employ the standard convention that the infimum of the empty set is
infinity.

2.6 Problem. If the set I' in Example 2.5 is open, show that Hy is an optional
time.

2.7 Problem. If the set I" in Example 2.5 is closed and the sample paths of the
process X are continuous, then Hp. is a stopping time.

Let us establish some simple properties of stopping times.

2.8 Lemma. If T is optional and 8 is a positive constant, then T + 8 is a stopping
time.

PROOF. If 0 <t < O, then {T + 0 <t} = JeF. If t > 6, then

{(T+0<t}={T<t—0}eF_g+ €% ]
2.9 Lemma. If T, S are stopping times, thensoare T A S, T v S, T + S.

ProOF. The first two assertions are trivial. For the third, start with the decom-
position, valid for ¢t > 0:

{(T+S>t}={T=0,S>t}u{0<T<t, T+S>t}
u{T>t,S=0}u{T>1tS>0}

The first, third, and fourth events in this decomposition are in %, either
trivially or by virtue of Proposition 2.3. As for the second event, we rewrite
it as:
U {t>T>rS>t—r},
reQt

o<r<t

where Q7 is the set of rational numbers in [0, c0). Membership in & is now
obvious. O

2.10 Problem. Let T, S be optional times; then T + S is optional. It is a
stopping time, if one of the following conditions holds:

i T>0S>0;

(i) T > 0, T is a stopping time.

2.11 Lemma. Let {T,};-; be a sequence of optional times; then the random times

sup T,, inf T,, lim T,, lim T,

n>1 n>1 n—o n—w

are all optional. Furthermore, if the T,’s are stopping times, then so is sup, > T,.
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ProOF. Obvious, from Corollary 2.4 and from the identities
{supT,,st}=ﬂ{T,,St} and {infT,,<t}=U{T,,<t}. O
n>1 n=1 n>1 n=1

How can we measure the information accumulated up to a stopping time
T? In order to broach this question, let us suppose that an event A is part of
this information, i.e., that the occurrence or nonoccurrence of 4 has been
decided by time T. Now if by time ¢t one observes the value of T, which can
happen only if T < ¢, then one must also be able to tell whether 4 has occurred.
In other words, A N {T <t} and A°n {T < t} must both be Z-measurable,
and this must be the case for any ¢ > 0. Since

AT <t} ={T <t} n(An{T < t})’,
it is enough to check only that A n {T <t} e %, t > 0.
2.12 Definition. Let T be a stopping time of the filtration {%,}. The o-field %7

of events determined prior to the stopping time T consists of those events A € #
for which An {T <t} e Z forevery t > 0.

2.13 Problem. Verify that %} is actually a o-field and T is #;-measurable.
Show that if T(w) = t for some constant t > 0 and every w € Q, then #; = #,.

2.14 Exercise. Let T be a stopping time and S a random time such that S > T
on Q. If S is #-measurable, then it is also a stopping time.

2.15 Lemma. For any two stopping times T and S, and for any A € F5, we have
An{S < T}eFy. In particular, if S < T on Q, we have F5 < F.

Proor. It is not hard to verify that, for every stopping time T and positive
constant t, T A tis an %,-measurable random variable. With this in mind, the
claim follows from the decomposition:

An{S<T}n{T<t}=[An{S<t}In{T<tjn{SAt<Tnat},
which shows readily that the left-hand side is an event in .%,. a
2.16 Lemma. Let T and S be stopping times. Then Fr , s = Fr N Fs, and each
of the events

{T<S}L{S<THL{T<S}L{S<T}L{T=S}
belongs to #r N Fs.

ProOF. For the first claim we notice from Lemma 2.15 that %7, s © Fr N F.
In order to establish the opposite inclusion, let us take 4e€ %N % and
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observe that
AN{SAT<t}=An[{S<t}u{T <t}]
=[An{S<t}]u[An{T <t}]eH#,

and therefore Ae %, .

From Lemma 2.15 we have {S < T} e %, and thus {S > T} %;. On the
other hand, consider the stopping time R = S A T, which, again by virtue
of Lemma 2.15, is measurable with respect to #;. Therefore, {S < T} =
{R < T} € #;. Interchanging the roles of S, T we see that {T > S}, {T < §}
belong to %, and thus we have shown that both these events belong to
Fr N Fs. But then the same is true for their complements, and consequently
also for {S = T}. a

2.17 Problem. Let T, S be stopping times and Z an integrable random variable.
We have

Q) E[Z|#;] = E[Z| %5, 1], P-as. on {T< S}
(i) E[E(Z|#7)|Fs] = E[Z|F5A 1], P-as.

Now we can start to appreciate the usefulness of the concept of stopping
time in the study of stochastic processes.

2.18 Proposition. Let X = {X,, %#;0 <t < oo} be a progressively measurable
process, and let T be a stopping time of the filtration {#}. Then the
random variable X of Definition 1.15, defined on the set {T < w0}€ %y, is
Fr-measurable, and the “stopped process” { X1 p,, %3 0 <t < 00} is progres-
sively measurable.

ProoF. For the first claim, one has to show that for any Be #(R?) and any
t > 0, the event {X;€ B} n {T < t} is in %; but this event can also be written
intheform {Xy ,,€ B} n {T < t},and so itis sufficient to prove the progressive
measurability of the stopped process.

To this end, one observes that the mapping (s, w)— (T(w) A s,w) of [0,£] x Q
into itself is %([0,¢]) ® Z-measurable. Besides, by the assumption of pro-
gressive measurability, the mapping

(s, @)~ X(@): ([0,1] x Q,A([0,1]) ® #) — (R’, BR"))
is measurable, and therefore the same is true for the composite mapping

(8, @) = X0 a5(@): ([0,£] x Q, B([0,£]) ® F,) ~ (R’ B(R)). O

2.19 Problem. Under the same assumptions as in Proposition 2.18, and with
f(t,x): [0,0) x R? > R a bounded, ([0, c0)) ® #(R?)-measurable function,
show that the process Y, = [§ f(s, X,) ds; t > Ois progressively measurable with
respect to {#}, and Y; is an Fr-measurable random variable.
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2.20 Definition. Let T be an optional time of the filtration {£,}. The o-field
Fr . of events determined immediately after the optional time T consists of those
events Ae # for which An{T <t}e %, foreveryt > 0.

2.21 Problem. Verify that the class %7, is indeed a o-field with respect to which
T is measurable, that it coincides with {Ae #; An{T < t} € £, Vt > 0}, and
that if T'is a stopping time (so that both %, %, are defined), then #; < F;.,.

2.22 Problem. Verify that analogues of Lemmas 2.15 and 2.16 hold if T and
S are assumed to be optional and %, #s and &7, 5 are replaced by ..., %,
and Zr , 5)+, respectively. Prove that if S is an optional time and T is a positive
stopping time with § < T, and S < T on {S < 0}, then %, < Zr.

2.23 Problem. Show that if {7}, is a sequence of optional times and
T =inf,, T,, then #1, = (>, Zr, .. Besides, if each T, is a positive stopping
time and T < T, on {T < oo}, then we have %, = (%, Zr..

2.24 Problem. Given an optional time T of the filtration {,}, consider the
sequence {T,}>; of random times given by

T(w); on{w; T(w)= +o}

TL(w) =4 k k—1 k

?; on {a); T < T(w) < i}

forn > 1,k > 1. Obviously T, > T,,, > T, for every n > 1. Show that each T,
is a stopping time, that lim,_, T, = T, and that for every 4 € %;, we have
An{T, = K2)} € Fpim k> 1.

We close this section with a statement about the set of jumps for a stochastic
process whose sample paths do not admit discontinuities of the second kind.

2.25 Definition. A filtration {%,} is said to satisfy the usual conditions if it is
right-continuous and &, contains all the P-negligible events in %.

2.26 Proposition. If the process X has RCLL paths and is adapted to the
filtration {&#,} which satisfies the usual conditions, then there exists a sequence
{T,}x=, of stopping times of {#,} which exhausts the jumps of X, i..,

(2.1)
{(t,0)e(0, 0) x & X () # X,_(w)} = |J {(t, w)e[0,0) x & T,(w) = t}.

n=1

The proof of this result is based on the powerful “section theorems” of the
general theory of processes. It can be found in Dellacherie (1972), p. 84, or
Elliott (1982), p. 61. Note that our definition of the terminology “{T,},
exhausts the jumps of X” as set forth in (2.1) is a bit different from that found



1.3. Continuous-Time Martingales 11

on p. 60 of Elliott (1982). However, the proofs in the cited references justify
our version of Proposition 2.26.

1.3. Continuous-Time Martingales

We assume in this section that the reader is familiar with the concept and
basic properties of martingales in discrete time. An excellent presentation of
this material can be found in Chung (1974, §§9.3 and 9.4, pp. 319-341) and we
shall cite from this source frequently. Alternative references are Ash (1972) and
Billingsley (1979). The purpose of this section is to extend the discrete-time
results to continuous-time martingales.

The standard example of a continuous-time martingale is one-dimensional
Brownian motion. This process can be regarded as the continuous-time ver-
sion of the one-dimensional symmetric random walk, as we shall see in
Chapter 2. Since we have not yet introduced Brownian motion, we shall take
instead the compensated Poisson process as a continuing example developed
in the problems throughout this section. The compensated Poisson process is
a martingale which will serve us later in the construction of Poisson random
measures, a tool necessary for the treatment of passage and local times of
Brownian motion.

In this section we shall consider exclusively real-valued processes X =
{X,; 0 <t < o} on a probability space (2, #, P), adapted to a given filtration
{#,} and such that E|X,| < oo holds for every ¢t > 0.

3.1 Definition. The process {X,, %; 0 < t < oo} is said to be a submartingale
(respectively, a supermartingale) if, for every 0 < s <t < oo, we have, a.s. P:
E(X,|%,) = X, (respectively, E(X,|%,) < X,).

We shall say that {X,, #;0 <t < oo} is a martingale if it is both a sub-
martingale and a supermartingale.

3.2 Problem. Let T;, T, ... be a sequence of independent, exponentially dis-
tributed random variables with parameter 1 > 0:

P[T,edt] = Ae *dt, t=0.

Let S, =0and S, =Y 7, T;; n > 1. (We may think of S, as the time at which
the n-th customer arrives in a queue, and of the random variables T;, i = 1, 2,
... as the interarrival times.) Define a continuous-time, integer-valued RCLL
process

(3.1) N, =max{n>0;§,<t}; 0<t<oco.
(We may regard N, as the number of customers who arrive up to time t.)

(i) Show that for 0 < s < t we have
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P[Sy 41 > t|FN] =729, as. P.

(Hint: Choose A€ %N and a nonnegative integer n. Show that there
exists an event Aea(Ty,..., T,) such that AN {N, =n} = An {N, = n},
and use the independence between T, and the pair (S,, 1,) to establish

f P[S,4; > t|FN]1dP = e *9P[A  {N, = n}])
Zr\{Ns=n}

(ii) Show that for 0 <s<t, N,— N, is a Poisson random variable with
parameter A(t — s), independent of #. (Hint: With Ae #Y and n > 0 as
before, use the result in (i) to establish

J P[N, — N, < k|#N1dP
ANn{N,=n}

- koo (At =)y
=P[An{N,=n}]- Y e M9 _ "
[An{ 11 ,Zo i

for every integer k > 0.)

3.3 Definition A Poisson process with intensity A > 0 is an adapted, integer-
valued RCLL process N = {N,, #,; 0 < t < oo} such that N, = 0 as., and for
0 <s <t, N, — N, is independent of &, and is Poisson distributed with mean
At — s).

We have demonstrated in Problem 3.2 that the process N = {N,, #";
0 <t < o} of (3.1) is Poisson. Given a Poisson process N with intensity 4, we
define the compensated Poisson process

M AN, -t %; 0<t< o0.
Note that the filtrations {#™} and {#"} agree.

3.4 Problem. Prove that a compensated Poisson process {M,, #;t >0} is a
martingale.

3.5 Remark. The reader should notice the decomposition N, = M, + A, of
the (submartingale) Poisson process as the sum of the martingale M and the
increasing function A, = At, t > 0. A general result along these lines, due to
P. A. Meyer, will be the object of the next section (Theorem 4.10).

A. Fundamental Inequalities

Consider a submartingale {X,; 0 < t < o0}, and an integrable, Z, -measurable
random variable X, ; we recall here that %, = o(| J,;»0 %). If we also have,
forevery0 <t < o0,

E(X %)= X, as.P,
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then we say that “{X,, #;0 <t < oo} is a submartingale with last element
X,”. We have a similar convention in the (super)martingale case.

A straightforward application of the conditional Jensen inequality (Chung
(1974), Thm. 9.1.4) yields the following result.

3.6 Proposition. Let {X,, #;0 <t < oo} be a martingale (respectively, sub-
martingale), and ¢: R - R a convex (respectively, convex nondecreasing) func-
tion, such that E|@p(X,)| < oo holds for everyt > 0. Then {¢(X,), #;0 <t < 0}
is a submartingale.

The method used to prove Jensen’s inequality and Proposition 3.6 extends
to the vector situation of the next problem.

3.7 Problem. Let {X, = (X{",...,X¥), %;0 <t < o} be a vector of mar-
tingales, and ¢: R? » R a convex function with E|¢(X,)| < oo valid for every
t > 0.Then {o(X,), #; 0< t < oo} is a submartingale; in particular {||X,}|, %;
0 <t < oo} is a submartingale.

Let X = {X,;0 <t < oo} be a real-valued stochastic process. Consider two
numbers o < f§ and a finite subset F of [0, co). We define the number of up-
crossings Ug(a, B; X (w)) of the interval [, B] by the restricted sample path
{X,; te F} as follows. Set

7,(w) = min{te F; X,(w) < o},
and define recursively forj =1, 2, ...
oj(w) = min{t € F; t > 1j(w), X,(w) > B},
Tj41(@) = min{t € F; t > gj(w), X,(0) < a}.

The convention here is that the minimum of empty set is +00, and we denote
by Ug(a, B; X (w)) the largest integer j for which g;(w) < 00.If I = [0, c0) is not
necessarily finite, we define

Ui(a, B; X(w)) = sup{Ug(a, B; X(w)); F < I, F is finite}.

The number of downcrossings Dy(a, B; X (w)) is defined similarly.
The following theorem extends to the continuous-time case certain well-
known results of discrete martingales.

3.8 Theorem. Let {X,, ;0 <t < o0} be a submartingale whose every path is
right-continuous, let [0, t] be a subinterval of [0, o), and let o < B, A > 0 be
real numbers. We have the following results:

(i) First submartingale inequality:

A-P|: sup X, > /1] < E(X)).

g<t<t
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(i) Second submartingale inequality:

(iii) Upcrossings and downcrossings inequalities:

E(X]) + |a| E(X. — 2)f
T-)—;i’ EDy, 4(a, B; X (w)) < e

(iv) Doob’s maximal inequality:

p p p
E< sup X,) < <—1> E(XP), p>1,
p

o<t<rt -

EU, (0 B; X () <

provided X, > 0 a.s. P for every t > 0, and E(X?) < co.

(v) Regularity of the paths: Almost every sample path {X,(w); 0 <t < o0} is
bounded on compact intervals; is free of discontinuities of the second kind,
i.e., admits left-hand limits everywhere on (0, 0); and if the filtration
{#} satisfies the usual conditions, then the jumps are exhausted by a
sequence of stopping times (Proposition 2.26).

PROOF. Let the finite set F consist of o, 7, and a finite subset of [a, 7] N Q.
We obtain from Theorem 9.4.1 of Chung (1974): uP[max, . r X, > p] < E(X,)
as well as: pP[min, _r X, < —u] < E(X) — E(X,). By considering an increas-
ing sequence {F,};>, of finite sets whose union is the whole of ([¢,7] N Q)L
{o,7}, we may replace F by this union in the preceding inequalities. The
right-continuity of sample paths implies then uP[sup, <, <. X; > u] < E(X,")
and pP[inf,., .. X, < —u] < E(X;") — E(X,). Finally, we let u1 4 to obtain
(i) and (ii).

Being the limit of random variables of the form Ug(a, f; X (w)) with finite
F, Uy, 4(, B; X (w)) is measurable. We obtain (iii), (iv) from Theorems 9.4.2,
9.5.4 in Chung (1974) (see also Meyer (1966), pp. 93-94). For (v), we note first
that the boundedness of (almost all) sample paths on the compact interval
[0, n], n > 1, follows directly from (i), (ii); second, we consider the events

A% 2 {weQ; Uy pa, f; X () = 0}, n>1,a<p.
By virtue of (iii), these have zero probability, and the same is true for the union

Av = AL,
a<p

a,BeQ
which includes the set

{weﬂ; lim X, (w) < lim X, (), for some t € [0, n]}.
st st

Consequently, for every w e Q\A™, the left limit X,_(w) = limg4, X(w) exists

for all 0 < t < n. This is true for every n > 1, so the preceding left limit exists

forevery 0 <t < 0, we(| Ji=; A™). a
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3.9 Problem. Let N be a Poisson process with intensity A.

(a) Forany ¢ >0,

Ii_mP|: sup (N, — As) > c\/ﬂ] <

t— 0<s<t C 27'[

(b) Foranyc > 0,

— 1
lim P| inf (N;—As)< —¢ /lt] < .
t—0 I:O <s<t ( f (,\/2—7;

(c) For0 < ¢ < 1, we have

N, 2l 414
E| sup {—— 4 <—.
o<t<t t o

(Hint: Use Stirling’s approximation to show that lim,_, (1 /\/E)E (N,—A)* =

1/4/2n.)

3.10 Remark. From Problem 3.9 (a) and (b), we see that for each ¢ > 0, there
exists T, > 0 such that

P[&—X‘ZC\/E]S 3 , Vt=>T.
t L c/2n

From this we can conclude the weak law of large numbers for Poisson pro-
cesses: (N,/t) = 4, in probability as t — co. In fact, by choosing ¢ = 2" and
7 =2"*!in Problem 3.9 (c) and using Cebysev’s inequality, one can show

P[ s > ] < 84
u >e|<>5=—
znsrspzﬂﬂ 822”
for every n > 1, ¢ > 0. Then by a Borel-Cantelli argument (see Chung (1974),

Theorems 4.2.1, 4.2.2), we obtain the strong law of large numbers for Poisson
processes: lim,_,, (N,/t) = A, a.s. P.

My

The following result from the discrete-parameter theory will be used re-
peatedly in the sequel; it is contained in the proof of Theorem 9.4.7 in Chung
(1974), but it deserves to be singled out and reviewed.

3.11 Problem. Let {#,}., be a decreasing sequence of sub--fields of Z (i.e.,
Far1 € F S F,Vn 2> 1), and let {X,, %,;n > 1} be a backward submartin-
gale; ie., E|X,| < o, X, is #,-measurable, and E(X,|%,.,) > X,., as. P, for
everyn > 1. Then | £ lim,, E(X,) > —oo implies that the sequence {X,}2,
is uniformly integrable.

3.12 Remark. If {X,, #;0 < t < o0} is a submartingale and {t,}2, is a non-
increasing sequence of nonnegative numbers, then {X, , % ;n > 1} is a back-
ward submartingale.
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It was supposed in Theorem 3.8 that the submartingale X has right-
continuous sample paths. It is of interest to investigate conditions under
which we may assume this to be the case.

3.13 Theorem. Let X = {X,, #,;0 <t < oo} be a submartingale, and assume
the filtration { #,} satisfies the usual conditions. Then the process X has a right-
continuous modification if and only if the function t+— EX, from [0, ) to R is
right-continuous. If this right-continuous modification exists, it can be chosen so
as to be RCLL and adapted to { %}, hence a submartingale with respect to {#,}.

The proof of Theorem 3.13 requires the following proposition, which we
establish first.

3.14 Proposition. Let X = {X,, #,;0 <t < o} be a submartingale. We have
the following:

(i) There is an event Q* € & with P(Q*) = 1, such that for every weQ*:

the limits X,,(w) £ lim X (w), X,_ £ lim X (w)
st ste
seQ seQ

exist for all t > O (respectively, t > 0).
(i) The limits in (i) satisfy
E(X,+|%)>X, as.P,Vt>0.
EX,|#_)> X,- as.P,Yt>0.

(iil) {X,;, #.;0<t < o0} is a submartingale with P-almost every path
RCLL.

PRrROOF.

(i) We wish to imitate the proof of (v), Theorem 3.8, but because we have
not assumed right-continuity of sample paths, we may not use (iii) of
Theorem 3.8 to argue that the events A{"; appearing in that proof have
probability zero. Thus, we alter the deﬁmtlon slightly by considering the
submartingale X evaluated only at rational times, and setting

ALy = {0 e Upg o, f; X(@)) = 0}, n=1la<p,
AM = U A(n)

a<p

a,peQ
Then each A has probability zero, as does each A™. The conclusions
follow readlly
(ii) Let {z,}2, be a sequence of rational numbers in (t, c0), monotonically
decreasmg tot>0asn— co. Then {X, , % ;n> 1} is a backward sub-
martingale, and the sequence {E(X, )};-, is decreasing and bounded
below by E(X,). Problem 3.11 tells us that { X, }>_, is a uniformly integrable
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sequence. From the submartingale property we have [, X,dP < [, X, dP,
for every n > 1 and 4 € &;; uniform integrability renders almost sure into
L!-convergence (Chung (1974), Theorem 4.5.4), and by letting n —» co we
obtain |, X,dP < [, X, dP, for every A€ %, The first inequality in (ii)
follows.

Now take a sequence {t,};>; in (0,7) n Q, monotonically increasing to
t > 0. According to the submartingale property E[X,|# ] > X, a.s. We
may let n — oo and use Lévy’s theorem (Chung (1974), Theorem 9.4.8) to
obtain the second inequality in (ii).

(iii) Take a monotone decreasing sequence {s,};-; of rational numbers, with
0 < s < s, < t holding for every n > 1, and lim,_ s, = 5. According to
the first part of (i), E(X,.+| %) > X, as. Letting n — oo and using Lévy’s
theorem again, we obtain the submartingale property E(X,,|%.) = X,
a.s. It is not difficult to show, using (i), that P-almost every path t+— X,
is RCLL. O

PROOF OF THEOREM 3.13. Assume that the function t — EX, is right-continuous;
we show that {X,,,%,; 0 <t < oo} as defined in Proposition 3.14 is a modifi-
cation of X. The former process is adapted because of the right-continuity of
{#Z}. Given t > 0, let {q,};=, be a sequence of rational numbers with g, | .
Then lim,, X, = X,,, a.s., and uniform integrability implies that EX,, =
lim,_,, EX, . By assumption, lim,_, EX, = EX,, and Proposition 3.14 (ii)
gives X,, > X,, a.s. It follows that X,, = X,, a.s.

Conversely, suppose that {X,; 0 <t < oo} is a right-continuous modifica-
tion of X. Fix t > 0 and let {t,};-, be a sequence of numbers with ¢, | t. We
have P[X,= X, X, =X,;n>1]=1 and lim,.,, X, = X,, as. Therefore,
lim,.,, X, =X, as., and the uniform integrability of {X, };>, implies that
EX, = lim,_, EX, . The right-continuity of the function ¢ — EX, follows.

g

B. Convergence Results

For the remainder of this section, we deal only with right-continuous pro-
cesses, usually imposing no condition on the filtrations {%,}. Thus, the de-
scription right-continuous in phrases such as “right-continuous martingale”
refers to the sample paths and not the filtration. It will be obvious that the
assumption of right-continuity can be replaced in these results by the assump-
tion of right-continuity for P-almost every sample path.

3.15 Theorem (Submartingale Convergence). Let {X,, #;0<t < o} be a
right-continuous submartingale and assume C 2 sup,s,E(X;") < co. Then
X_ (@) & lim,,, X,(w) exists for a.e. weQ, and E|X | < 0.

ProoF. From Theorem 3.8 (iii) we have for any n > 1 and real numbers « < f:
EUp (2, B; X () < (E(X,[) + |a])/(B — «), and by letting n — co we obtain,
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thanks to the monotone convergence theorem:

C
EUjg, ) B; X (w)) < B““'.

The events 4, 5 £ {®; Ujg, (@ B; X(w)) = 0}, —00 < a < f < o0, are thus
P-negligible, and the same is true for the event 4 = (Ja<p Aq p, Which con-
tains the set {w; lim,_, X,(w) > lim,_,, X,(w)}. %feQ

Therefore, for every w e Q\ A4, X () = lim,_,,, X,(w) exists. Moreover,

E|X,| = 2E(X}') — E(X,) <2C — EX,

shows that the assumption sup, o E(X,") < co is equivalent to the apparently
stronger one sup, o E| X,| < oo, which in turn forces the integrability of X,
by Fatou’s lemma. O

3.16 Problem. Let {X,, %#;0 <t < oo} be a right-continuous, nonnegative
supermartingale; then X (w)= lim,, X,(®) exists for P-ae. weQ, and
{X;, ;0 <t < oo} is a supermartingale.

3.17 Definition. A right-continuous, nonnegative supermartingale {Z,, %;
0 <t < oo} with lim,,, E(Z,) = 0 is called a potential.

Problem 3.16 guarantees that a potential {Z,, ;0 <t < oo} has a last
element Z_,and Z_ =0a.s. P.

3.18 Exercise. Suppose that the filtration {%,} satisfies the usual conditions.
Then every right-continuous, uniformly integrable supermartingale {X,, %,;
0 <t < oo} admits the Riesz decomposition X, = M, + Z,, a.s. P, as the sum
of a right-continuous, uniformly integrable martingale {M,, #,;0 <t < o}
and a potential {Z,, #;0 <t < c0}.

3.19 Problem. The following three conditions are equivalent for a nonnegative,
right-continuous submartingale {X,, #;0 <t < oo}:

(a) it is a uniformly integrable family of random variables;

(b) it converges in L, as t — oo;

(c) it converges P a.s. (as t — o0) to an integrable random variable X, such
that {X,, ;0 <t < oo} is a submartingale.

Observe that the implications (a) = (b) = (c) hold without the assumption of
nonnegativity.

3.20 Problem. The following four conditions are equivalent for a right-
continuous martingale {X,, #;0 <t < oo}:

(a), (b) asin Problem 3.19;
(c) it converges P a.s. (as t — o0) to an integrable random variable X, such
that {X,, #;0 <t < oo} is a martingale;
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(d) there exists an integrable random variable Y, such that X, = E(Y|#,) a.s.
P, for every t > 0.

Besides, if (d) holds and X, is the random variable in (c), then

E(Y|#,) =X, as.P.

3.21 Problem. Let {N,, #;0 <t < oo} be a Poisson process with parameter
A>0.ForueC andi=./—1, define the process

X, = exp[iuN, — it(e™ — 1)]; 0<t< 0.

(i) Show that {Re(X,), #;0 <t < oo}, {Im(X,), #;0 <t < oo} are martin-
gales.

(i) Consider X with u = —i. Does this martingale satisfy the equivalent con-
ditions of Problem 3.20?

C. The Optional Sampling Theorem

What can happen if one samples a martingale at random, instead of fixed,
times? For instance, if X, represents the fortune, at time ¢, of an indefatigable
gambler (who plays continuously!) engaged in a “fair” game, can he hope to
improve his expected fortune by judicious choice of the time to quit? If no
clairvoyance into the future is allowed (in other words, if our gambler is re-
stricted to quit at stopping times), and if there is any justice in the world, the
answer should be “no.” Doob’s optional sampling theorem tells us under what
conditions we can expect this to be true.

3.22 Theorem (Optional Sampling). Let {X,, #;0 <t < o} be a right-
continuous submartingale with a last element X, and let S < T be two optional
times of the filtration {#}. We have

E(Xr|%s,y) > Xg as. P.

If S is a stopping time, then % can replace F5, above. In particular, EX1 >
EX,, and for a martingale with a last element we have EX; = EX,,.

Proor. Consider the sequence of random times
S(w) if S(w)= 4+

Sa(@) = < k k—1 k
— i - < —
o if < S(w) < o
and the similarly defined sequences {T, }. These were shown in Problem 2.24
to be stopping times. For every fixed integer n > 1, both S, and T, take
on a countable number of values and we also have S, < T,. Therefore, by

the “discrete” optional sampling Theorem 9.3.5 in Chung (1974) we have
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JaXs,dP < [, X dP for every Ae ;s , and a fortiori for every Ae Fs, =

n=1 Fs,, by virtue of Problem 2.23. If S is a stopping time, then S < S, implies
Fs < Fs, asin Lemma 2.15, and the preceding inequality also holds for every
Ae .

It is checked similarly that {X , % ; n > 1} is a backward submartingale,
with {E(X; )}i, decreasing and bounded below by E(X,). Therefore, the
sequence of random variables { X _}»-, is uniformly integrable (Problem 3.11),
and the same is of course true for {X; }»,. The process is right-continuous,
s0 Xr(w) = lim,., X7 () and Xs(w) = lim,_, X; (w) hold for ae. weQ.
It follows from uniform integrability that X, Xy are integrable, and that
f4XsdP < [, X7 dP holds for every A€ %, . O

3.23 Problem. Establish the optional sampling theorem for a right-continuous
submartingale {X,, %;0 < t < oo} and optional times S < T under either of
the following two conditions:

(i) Tisabounded optional time (there exists a number a > 0,such that T < a);
(ii) there exists an integrable random variable Y, such that X, < E(Y|#,) a.s.
P, for every t > 0.

3.24 Problem. Suppose that {X,, #;0 <t < oo} is a right-continuous sub-
martingale and S < T are stopping times of {%,}. Then

(i) {X7r0 Z;0<t< o0} isasubmartingale;
() E[X1r:l%Fs] > Xs4, as. P, foreveryt = 0.

3.25 Problem. A submartingale of constant expectation, ie., with E(X,) =
E(X,) for every t > 0, is a martingale.

3.26 Problem. A right-continuous process X = {X,, #;0 <t < oo} with
E|X,| < 00; 0 <t < o0 is a submartingale if and only if for every pair S < T
of bounded stopping times of the filtration {%,} we have

(3.2) E(X7) > E(X;).

3.27 Problem. Let T be a bounded stopping time of the filtration { &}, which
satisfies the usual conditions, and define &, = %,,; t > 0. Then {%,} also
satisfies the usual conditions.

(i) If X = {X,, #;0 <t < oo} is a right-continuous submartingale, then so
is X = {XtéXT+t_XT"o‘-;~t;Ost< o}

() If X={X,,%;0<t< o0} is a right-continuous submartingale with
X,=0, as. P, then X ={X,2 X, 1v0.%;0<t<o0} is also a
submartingale.

3.28 Problem. Let Z = {Z,, #,;0 <t < o0} be a continuous, nonnegative
martingale with Z_ £ lim,, Z, = 0, a.s. P. Then for every s > 0, b > 0:
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1
(i) P[sup Z, > blﬁ"s} = BZS’ a.s.on {Z; < b}.

t>s

. 1
(i) P[sup Z, > b:| =P[Z,>b] + EE[ZSI{ZS<5}]’

t>s

3.29 Problem. Let {X,, #;0 <t < o0} be a continuous, nonnegative super-
martingale and T = inf{t > 0; X, = 0}. Show that

X7+, =0; 0<t<oo holdsas.on{T < co}.

3.30 Exercise. Suppose that the filtration {%,} satisfies the usual conditions
andlet X = {X", #;0 <t < o0}, n > 1 be an increasing sequence of right-
continuous supermartingales, such that the random variable ¢, £ lim,_, X
is nonnegative and integrable for every 0 < t < oo. Then there exists an RCLL
supermartingale X = {X,, %#;0 <t < oo} which is a modification of the
process & = {{,, ;0 <t < 0}

1.4. The Doob-Meyer Decomposition

This section is devoted to the decomposition of certain submartingales as the
summation of a martingale and an increasing process (Theorem 4.10, already
presaged by Remark 3.5). We develop first the necessary discrete-time results.

4.1 Definition. Consider a probability space (Q2, #, P) and a random sequence
{4,}2., adapted to the discrete filtration {%, };-,. The sequence is called in-
creasing, if for P-a.e. w e Q we have 0 = 44(w) < 4,(w) < --+,and E(4,) < o0
holds for every n > 1.

An increasing sequence is called integrable if E(A,) < oo, where 4, =
lim,_, A4,. An arbitrary random sequence {&, }i, is called predictable for the
filtration { %, }7,, if for every n > 1 the random variable &, is #%,_,-measurable.
Note that if 4 ={4,, #;n=0,1,...} is predictable with E|4,| < co for
every n, and if {M,, #,;n =0, 1, ...} is a bounded martingale, then the mar-
tingale transform of A by M defined by

(4.1) Y,=0 and Y,=Y A(M,—M, ) n=1,
k=1

is itself a martingale. This martingale transform is the discrete-time version
of the stochastic integral with respect to a martingale, defined in Chapter 3.
A fundamental property of such integrals is that they are martingales when
parametrized by their upper limit of integration.

Let us recall from Chung (1974), Theorem 9.3.2 and Exercise 9.3.9, that any
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submartingale {X,, #,;n=0,1,...} admits the Doob decomposition X, =
M, + A, as the summation of a martingale {M,, %,} and an increasing
sequence {A4,, %,}. It suffices for this to take Ao =0and 4,,; =4, — X, +
E(X, 1| %) = Z;=0 [E(Xi+11%) — X ], for n = 0. This increasing sequence
is actually predictable, and with this proviso the Doob decomposition of a
submartingale is unique.

We shall try in this section to extend the Doob decomposition to suitable
continuous-time submartingales. In order to motivate the developments, let
us discuss the concept of predictability for stochastic sequences in some further
detail.

4.2 Definition. An increasing sequence {4,, %,;n =0, 1, ...} is called natural
if for every bounded martingale {M,,, #,;n =0, 1,...} we have

4.2) EM,A,)=E Y M,_ (4, — Ary), Vn=1
k=1

A simple rewriting of (4.1) shows that an increasing sequence A is natural
if and only if the martingale transform Y = {Y,}>, of A by every bounded
martingale M satisfies EY, = 0, n > 0. It is clear then from our discussion of
martingale transforms that every predictable increasing sequence is natural.
We now prove the equivalence of these two concepts.

4.3 Proposition. An increasing random sequence A is predictable if and only if
it is natural.

PROOF. Suppose that A is natural and M is a bounded martingale. With
{Y,}2., defined by (4.1), we have

E[A,M,— M,_)]=EY,—EY,_ =0, n>1.
It follows that
(4.3) E[M,{A, - E(4,|#,-)}]1 = E[M, — M,_,)4,]
+ E[M,-{A, — E(4,|%,-1)}]
— E[(M, — M,_,)E(4,|#,-1)] =0

for every n > 1. Let us take an arbitrary but fixed integer n > 1, and show
that the random variable 4, is %,_,-measurable. Consider (4.3) for this fixed
integer, with the martingale M given by
Sgn[An - E(Anl'%l—l)]a k= n,
M,=<M,, k > n,
E(Mnl‘%z)’ k=0, 1,...,n.

We obtain E|A4, — E(4,|%,_,)| = 0, whence the desired conclusion. |
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From now on we shall revert to our filtration {%,} parametrized by te
[0, o0) on the probability space (Q, #, P). Let us consider a process A = {4,;
0 <t < oo} adapted to {#}. By analogy with Definitions 4.1 and 4.2, we have
the following:

4.4 Definition. An adapted process 4 is called increasing if for P-a.e. we Q we
have

(@) Ag(w)=0
(b) t+— A,(w) is a nondecreasing, right-continuous function,

and E(A4,) < o« holds for every te[0, ). An increasing process is called
integrable if E(A,) < oo, where 4, = lim,_, A4,.

4.5 Definition. An increasing process A is called natural if for every bounded,
right-continuous martingale {M,, %; 0 <t < o} we have

4.4 E M,dA;=E M,_dA,, forevery0 <t < oo.
(0,1] (0,1}

4.6 Remarks.

(i) If A is an increasing and X a measurable process, then with w e Q fixed,
the sample path { X,(w); 0 < t < 0} is a measurable function from [0, c0)
into R. It follows that the Lebesgue-Stieltjes integrals

I (w) 2 J X o) dA(w)
0,1

are well defined. If X is progressively measurable (e.g., right-continuous
and adapted), and if I, = I;" — I, is well defined and finite for all ¢t > 0,
then I is right-continuous and progressively measurable.

(i) Every continuous, increasing process is natural. Indeed then, for P-a.e.
we we have

j (My(w) — M,_(0))dA(w) =0 forevery0 <t < oo,
©.1

because every path {M,(w); 0 < s < oo} has only countably many dis-
continuities (Theorem 3.8(v)).

(iii) It can be shown that every natural increasing process is adapted to the
filtration {%,_} (see Liptser & Shiryaev (1977), Theorem 3.10), provided
that {#} satisfies the usual conditions.

4.7 Lemma. If A isanincreasing process and {M,, #;0 < t < o0} is a bounded,
right-continuous martingale, then

(4.5) E(M,A,) = EJ M, dA,.
(0.1]



24 1. Martingales, Stopping Times, and Filtrations

In particular, condition (4.4) in Definition 4.5 is equivalent to

44y E(MA) = E f M, dA,
(0,1]

PROOF. Consider a partition IT = {t,,t,,...,t,} of [0,t], with 0 = ¢, < t;, <
-+ < t, =t,and define

MSH = Z Mtkl('k—xvtk](s)'

The martingale property of M yields

M=

k=1

E Msn dAs = E kzl Mfk(A!k - A’k~1) = E|:

n—1
M'kA'k - Z Mtk+1A'k:|
(0,1] k=1

- Mtk) = E(M,A)).

k+1

n—1
= E(MtAt) —E kz Atk(Mt
=1

Now let [[TT|| £ max; <, <, (t — ti—1) = 0,50 M — M,, and use the bounded
convergence theorem for Lebesgue-Stieltjes integration to obtain (4.5). [

The following concept is a strengthening of the notion of uniform inte-
grability for submartingales.

4.8 Definition. Let us consider the class #(%,) of all stopping times T of the
filtration {%,} which satisfy P(T < o0) = 1 (respectively, P(T <a) =1 for a
given finite number a > 0). The right-continuous process {X,, #,;0 < t < o0}
is said to be of class D, if the family { X1} ;. « is uniformly integrable; of class
DL, if the family {X} . g is uniformly integrable, for every 0 < a < co.

4.9 Problem. Suppose X = {X,, %#;0 <t < oo} is a right-continuous sub-
martingale. Show that under any one of the following conditions, X is of class
DL.

(@) X, >0a.s. foreveryt > 0.
(b) X has the special form

(4.6) X, =M, +A4, 0<t<o

suggested by the Doob decomposition, where {M,, #,;0 <t < oo} is a mar-
tingale and {4,, %; 0 <t < oo} is an increasing process.
Show also that if X is a uniformly integrable martingale, then it is of class D.

The celebrated theorem which follows asserts that membership in DL is
also a sufficient condition for the decomposition of the semimartingale X in
the form (4.6).

4.10 Theorem (Doob-Meyer Decomposition). Let {%,} satisfy the usual con-
ditions (Definition 2.25). If the right-continuous submartingale X = {X,, #;
0 <t < o} is of class DL, then it admits the decomposition (4.6) as the summa-
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tion of a right-continuous martingale M = {M,, %#,;0 <t < o0} and an increas-
ing process A = {A,, #;0 <t < o}. The latter can be taken to be natural;
under this additional condition, the decomposition (4.6) is unique (up to indistin-
guishability). Further, if X is of class D, then M is a uniformly integrable
martingale and A is integrable.

PrOOF. For uniqueness, let us assume that X admits both decompositions
X, =M+ A, = M + A/, where M’ and M" are martingales and 4’, A" are
natural increasing processes. Then {B, £ A4, — A = M; — M,, #,,0 <t < 0}
is a martingale (of bounded variation), and for every bounded and right-
continuous martingale {£,, %} we have

E[&(A; — A1 = E f ¢, dB, = lim E z Em [Bum — By ],
(0,(] n—oo
where I1, = {t(") oy m, 1, n =1 is a sequence of partitions of [0, with
L) = max1<j<m"(t(” - t( ") |) converging to zero as n — 0. But now

E[é,m»( i — ’}Tx)] = 0, and thus E[é,(A; — A;’)] =0

For an arbitrary bounded random variable &, we can select {£,, %} to be a
right-continuous modification of {E[¢|#,], %} (Theorem 3.13); we obtain
E[E(A; — A7)] = 0 and therefore P(A, = A;) = 1, for every t > 0. The right-
continuity of 4" and A” now gives us their indistinguishability.

For the existence of the decomposition (4.6) on [0, c0), with X of class DL,
it suffices to establish it on every finite interval [0, a]; by uniqueness, we can
then extend the construction to the entire of [0, c0). Thus, for fixed 0 < a < oo,
let us select a right-continuous modification of the nonpositive submartingale

Y2 X, -E[X,|%], 0<t<a.

Consider the partitions IT, = {t, (", ..., 52} of the interval [0, a] of the
form £” = (j/2")a, j=0, 1, ..., 2" For every n> 1, we have the Doob
decomposition

Y,(n)— :4':-)>+Agn)), j=0, 1...,2"
where the predictable increasing sequence A™ is given by

A = A, + E[Yg — Yo, |, ]

i-1
= ;;0 E[Y,gle - Y;Ln)l.%(kn)], j = 1, ey 2"
Notice also that because M™ = — A", we have
4.7 Yo = A — E[AP|Fm], j=0,1,...,2"

We now show that the sequence { A"}, is uniformly integrable. With 4 > 0,
we define the random times
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7" = a A min{t{?,; Af('r-’) > Aforsomej, 1 <j<2"}.

We have {T{” < t{?} = {Ai("n)) > A eFm forj=1,...,2" and {T{” < a} =
{AP > 2}. Therefore T"Me V On each set {T"= t""} we have E [A(")|57" o] =
E[AY|Frem], so (4.7) implies

4.8) YTY') = ATi"’ — E[Af,"”ﬁ“‘};n)] <i- E[A,(,")Lofrﬁn)]

on {T{” < a}. Thus

4.9) J‘ AP AP < AP[T"™ < a] — J YredP.
{4> 1} {T{"<a}

Replacing 4 by 4/2 in (4.8) and integrating the equality over the Froy-
measurable set {77 < a}, we obtain

- J Yrey dP = j (AQ — Afl)dP
(T} <a} {T{}<a}

> J (A — A7) dP > 3 P[T<"><a]
{T{"<a}

and thus (4.9) leads to

(4.10) f APdP < -2 f Yroy dP — f Yy dP.
{A™> 1) (ry<a} (T <a)

The family {X;}; . is uniformly integrable by assumption, and thus so is

{Yr}rcs. But

E(AD) _  E(Yo)
A1

P[T"™ <a] = P[AY > 1] <

SO

sup P[T{" <a] >0 asi— oo.

n>1
Since the sequence { Yy}, is uniformly integrable for every ¢ > 0, it follows
from (4.10) that the sequence {A{"};%, is also uniformly integrable.

By the Dunford-Pettis compactness criterion (Meyer (1966), p. 20, or
Dunford & Schwartz (1963), p. 294), uniform integrability of the sequence
{AM}x_ | guarantees the existence of an integrable random variable A4,, as well
as of a subsequence {4}, which converges to A, weakly in L*:

lim E(EAJ) = E(¢A,)

k=
for every bounded random variable &. To simplify typography we shall assume
henceforth that the preceding subsequence has been relabeled and shall denote
it simply as {4{"};2,. By analogy with (4.7), we define the process {4,, %} as
a right-continuous modification of

@.11) A=Y, +EAlZ); 0<t<a
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4.11 Problem. Show that if {4™}7 | is a sequence of integrable random
variables on a probability space (Q, #, P) which converges weakly in L' to an
integrable random variable A, then for each o-field ¥ = &, the sequence
E[A™|%] converges to E[A|%] weakly in L.

Let IT = )i, IT,. For t e I1, we have from Problem 4.11 and a comparison
of (4.7) and (4.11) that lim,_,, E(.A™) = E(¢A,) for every bounded random
variable £. For s, teI1 with 0 < s < t < a, and any bounded and nonnegative
random variable &, we obtain E[£(4, — A4,)] = lim,_, E[£(A™ — A™)] 20,
and by selecting £ = 1. 4, we get 4, < A4,, as. P. Because IT is countable,
for a.e. w e Q the function ¢ — A4,(w) is nondecreasing on I1, and right-continuity
shows that it is nondecreasing on [0, a] as well. It is trivially seen that 4, = 0,
a.s. P. Further, for any bounded and right-continuous martingale {¢,, %}, we
have from (4.2) and Proposition 4.3:

2n
E(éaAL”)) =F Z ét‘."’ [A:}':.)) —-— A:("”)] ]
= -1
2n
=E Z ét}'l’l[Yt‘,'" — Y ]
= ; &

2"
=E z {,(m [At}n) - A,l}nl ],
= -1 -1

where we are making use of the fact that both sequences {4, — Y,, %} and
{A"™ — Y, #},for t e I1,, are martingales. Letting n — 0o one obtains by virtue
of (4.5).

EJ & dA, = EJ & dA,,
(0,a] (0,a]

as well as E [ ,¢,dA, = E [, & dA,, Vte[0,a], if one remembers that
{&nt» F5; 0 < s < a} is also a (bounded) martingale (cf. Problem 3.24). There-
fore, the process A4 defined in (4.11) is natural increasing, and (4.6) follows with
M, =E[X,— A,|#],0<t<a

Finally, if the submartingale X is of class D it is uniformly integrable, hence
it possesses a last element X to which it converges both in L! and almost
surely as t — oo (Problem 3.19). The reader will have no difficulty repeating
the preceding argument, with a = oo, and observing that E(A4,) < co. d

Much of this book is devoted to the presentation of Brownian motion as
the typical continuous martingale. To develop this theme, we must specialize
the Doob-Meyer result just proved to continuous submartingales, where we
discover that continuity and a bit more implies that both processes in the de-
composition also turn out to be continuous. This fact will allow us to conclude
that the quadratic variation process for a continuous martingale (Section 5)
is itself continuous.
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4.12 Definition. A submartingale {X,, #,;0 <t < oo} is called regular if for
every a > 0 and every nondecreasing sequence of stopping times {T, };>, < 4,
with T = lim,_, T,, we have lim,_,, E(Xr ) = E(X7).

4.13 Problem. Verify that a continuous, nonnegative submartingale is regular.

4.14 Theorem. Suppose that X = {X,;0 <t < oo} is a right-continuous sub-
martingale of class DL with respect to the filtration {%,}, which satisfies the
usual conditions, and let A = {A,; 0 < t < o0} be the natural increasing process
in the Doob-Meyer decomposition (4.6). The process A is continuous if and only
if X is regular.

ProoF. Continuity of A yields the regularity of X quite easily, by appealing
to the optional sampling theorem for bounded stopping times (Problem
3.23(i)).

Conversely, let us suppose that X is regular; then for any sequence
{T,}x., as in Definition 4.12, we have by optional sampling: lim,_, E(A) =
lim,_, E(Xy,) — E(My) = E(Ar), and therefore Ay (@) T A (@) except for
o in a P-null set which may depend on T.

To remove this dependence on T, let us consider the same sequence {IT, }3,
of partitions of the interval [0, a] as in the proof of Theorem 4.10, and select
a number 4 > 0. For each interval (¢, ¢{%7,),j =0, 1, ..., 2" — 1 we consider
a right-continuous modification of the martingale

ff") = E[A A A,t;;l‘l.g’-,], [;-") <t< t}’.:,)l.

This is possible by virtue of Theorem 3.13. The resulting process {&;
0 <t < a} is right-continuous on (0, a) except possibly at the points of the
partition, and dominates the increasing process {1 A 4,;0 <t < a}; in par-
ticular, the two processes agree a.s. at the points ¢, ..., t42. Because 4 is a
natural increasing process, we have from (4.4)

EJ‘ Cﬁ"’dAS=EJ EMdAg; j=0,1,...,2"— 1,
(!}"’J}Tl] (‘}m-'ﬂ)n 1

and by summing over j, we obtain

4.12) EJ EMdA, = E f &M dA,,
(0,1} (0,1)
for any 0 <t < a. Now the process

" = W—MAAA), 0<t<a,
‘ Os t=a,

is right-continuous and adapted to {#}; therefore, for any ¢ > 0 the random
time

T =arninfl0<t<a;n™>e}=aninfl0<t<a; & —(AAA)>¢e}
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is an optional time of the right-continuous filtration {%,}, hence a stopping
time in &, (cf. Problem 2.6 and Proposition 2.3). Further, defining for each

n>1 the function ¢, :[0,a] — I, by ¢,(f) = 1 for t()<t<t() and

¢,(a) = a, we have ¢,(T,(¢)) € ¥,. Because &M s decreasmg in n, the in-
creasing limit T, = lim,_,o. T,(¢) exists a.s., is a stopping time in %, and we
also have

T, = lim ¢,(T,(¢)) as. P.
n—o0o

By optional sampling we obtain now

E[é (g)+] - Z E ;/\A (n) |jT e))l{'(n]<7- <t(n)l}]

+ EEEGA Ad 1,00 <100
= E[AA Ay (T,
where we set .f‘(,'z = & Therefore
E[(AN Ay (1,)) — (AN A7, (e) ]—E[é To(e)+ — (ANA7,)]
= E(lir,(0<a}Ep, g, — (AN AT, 5)))]
> ¢P[T,(¢) < a.

We employ now the regularity of X to conclude that for every ¢ > 0,
1 \
P[Q,>¢e]l=P[T(e) <a]l < EE[() A Ay ruen) — (A A Ar)] >0

asn — oo, where Q, £ supy<,<,|E™ — (4 A A,)|. Therefore, this last sequence
of random variables converges to zero in probability, and hence also almost
surely along a (relabeled) subsequence. We apply this observation to (4.12),
along with the monotone convergence theorem for Lebesgue-Stieltjes integra-
tion, to obtain

EJ (A A A)dA, = EJ (AAA_)dA, 0<t< o,
(0,1] (0,1]

which yields the continuity of the path t— 4 A A,(w) for every 4 > 0, and
hence the continuity of t+— A,(w) for P-a.e. weQ. O

4.15 Problem. Let X = {X,, #,;0 <t < o} be a continuous, nonnegative
process with X, =0 ass, and A = {4,, #;0 <t < o} any continuous, in-
creasing process for which

(4.13) E(Xr) < E(A7)

holds for every bounded stopping time T of {% } Introduce the process
v, 4 maxg<s<: X;, consider a contmuous increasing function F on [0, o)
with F(0) =0, and define G(x) £ 2F( x)+xfx u'dF(u); 0<x< o0.
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Establish the inequalities

(4.14) P[VTZa]sE(jT); Ve>0

Eb A A
(@.15) P[VTZS,AT<5]S¥; Ve>0,6>0
(4.16) EF(Vy) < EG(Ay)

for any stopping time T of {#,}.

4.16 Remark. If the process X of Problem 4.15 is a submartingale, then A4 can
be taken as the continuous, increasing process in the Doob-Meyer decom-
position (4.6) of Theorems 4.10 and 4.14.

4.17 Remark. The corollary

(4.15y P[Vy > €] SM+ P[Ay > 6]

of (4.15) is very useful in the limit theory of continuous-time martingales; it is
known as the Lenglart inequality. We shall use it to establish convergence
results for martingales (Problem 5.25) and stochastic integrals (Proposition
3.2.26). On the other hand, it follows easily from (4.16) that

4.17) E(VP) < f;ZE(A‘%); 0O<p<l

holds for any stopping time T of {Z,}.

1.5. Continuous, Square-Integrable Martingales

In order to appreciate Brownian motion properly, one must understand the
role it plays as the canonical example of various classes of processes. One such
class is that of continuous, square-integrable martingales. Throughout this
section, we have a fixed probability space (Q, #, P) and a filtration {#,} which
satisfies the usual conditions (Definition 2.25).

5.1 Definition. Let X = {X,, #;0 <t < oo} be a right-continuous martin-
gale. We say that X is square-integrable if EX? < oo for every t > 0. If, in
addition, X, = 0 a.s., we write X € 4, (or X € 45, if X is also continuous).

5.2 Remark. Although we have defined .#3 so that its members have every
sample path continuous, the results which follow are also true if we assume
only that P-almost every sample path is continuous.

For any X € .#,, we observe that X? = {X?2, #;0 <t < o0} is a nonnega-
tive submartingale (Proposition 3.6), hence of class DL, and so X2 has a unique
Doob-Meyer decomposition (Theorem 4.10, Problem 4.9):
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X}=M+A4,; 0<t<o

where M = {M,, #;0 <t < oo} is a right-continuous martingale and 4 =
{A,, #;0 <t < o0} is a natural increasing process. We normalize these pro-
cesses so that My = A, =0, as. P. If X e #%, then A and M are continuous
(Theorem 4.14 and Problem 4.13); recall Definitions 4.4 and 4.5 for the terms
increasing and natural.

5.3 Definition. For X € .#,, we define the quadratic variation of X to be the
process {X), & A,, where A4 is the natural increasing process in the Doob-
Meyer decomposition of X2. In other words, (X ) is that unique (up to
indistinguishability) adapted, natural increasing process, for which (X), =0
a.s. and X2 — (X)) is a martingale.

5.4 Example. Consider a Poisson process {N,, %; 0 < t < oo} as in Definition
3.3 and assume that the filtration {#} satisfies the usual conditions (this can
be accomplished, for instance, by “augmentation” of {#"}; cf. Remark 2.7.10).
It is easy to verify that the martingale M, = N, — At, %, of Problem 3.4 is in
My, and (M), = At.

If we take two elements X, Y of .#,, then both processes (X + Y)* —
(X + Y)and (X — Y)?> — (X — Y) are martingales, and therefore so is their
difference 4XY — [(X + Y) — <X - Y)].

5.5 Definition. For any two martingales X, Y in .#,, we define their cross-
variation process (X, Y) by

<X’ Y>x é%[(“, + Y>t_ <X - Y);]; 0<t < oo,

and observe that XY — (X, Y) is a martingale. Two elements X, Y of .#,
are called orthogonal if (X,Y), = 0, a.s. P, holds for every 0 < ¢t < co.

The uniqueness argument in Theorem 4.10 also shows that (X, Y) is, up
to indistinguishability, the only process of the form 4 = AV — A® with A?
adapted and natural increasing (j = 1, 2), such that XY — A is a martingale.
In particular, (X, X) = <X ). For continuous X and Y, we give a different
uniqueness argument in Theorem 5.13.

5.6 Remark. In view of the identities
E[(X, — X)(Y, — |F] = E[X, Y, — X, Y| %]
= E[<X’ Y>l - <X9 Y>s|'g';]9

valid P as. for every 0 < s <t < oo, the orthogonality of X, Y in 4, is
equivalent to the statements “XY is a martingale” or “the increments of X
and Y over [s, t] are conditionally uncorrelated, given %#,”.

5.7 Problem. Show that ¢-, - ) is a bilinear form on .#,, i.e., for any members
X, Y, Z of #, and real numbers «, §, we have
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(1) <aX + BY,Z) = oKX, Z) + BLY, Z),
(i) {X,Y) =Y, X),
(i) [<X,Y)[* < <XH<YD.
(iv) For P-ae. weQ,

£@) — &) S 3D () — (XDy(@) + <Y (@) — <Y ) (@)];
0<s<t<oo,

where ¢, denotes the total variation of & £ {X,Y)on[0,t].

The use of the term quadratic variation in Definition 5.3 may appear to be
unfounded. Indeed, a more conventional use of this term is the following. Let
X ={X,;0<1t< oo} bea process, fix t >0, and let IT = {to,¢,,...,t,}, with
0=ty<t, <t,<- <t, =t, beapartition of [0, t]. Define the p-th variation
(p > 0) of X over the partition I to be

Vo =y 1X, — X, "
k=1

Now define the mesh of the partition IT as ||TT|| = max; <y <m|ty — ty1]- If
V. 2(IT) converges in some sense as ||I1|| — 0, the limit is entitled to be called
the quadratic variation of X on [0,¢]. Our justification of Definition 5.3 for
continuous martingales (on which we shall concentrate from now on) is the
following result:

5.8 Theorem. Let X be in .#5. For partitions I1 of [0,t], we have
lim o V;P(IT) = (X, (in probability); i.e., for every e > 0,n > 0 there exists
0 > 0 such that |IT|| < 6 implies

PLIV2(ID) — <X),| > e] <n.

The proof of Theorem 5.8 proceeds through two lemmas. The key fact
employed here is that, when squaring sums of martingale increments and taking
the expectation, one can neglect the cross-product terms. More precisely, if
XeM,and 0 <s <t <u<uv,then

E[(X, — X,)(X, — X,)] = E{E[X, — X,|#]1(X, — X,)} = 0.
We shall apply this fact to both martingales X € .#, and X2 — {(X). In the
latter case, we note that because
E[(X, — X.,’|#] = E[X] - 2X,E[X,|Z,] + X}|Z]
= E[X} — X7|#] = E[{X), — {XD.|#],
the terms X7 — <X}, — (X7 — <X),) and (X, — X,)* — ({X), — {X),) have

the same conditional expectation given %, namely zero, and thus the expecta-
tion of products of such terms over nonoverlapping intervals is still zero.
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59 Lemma. Let X €./, satisfy |X,| < K < oo for all s€[0,t], a.s. P. Let
I = {tg,t1s. sy}, With 0 =1ty <t, < <t, =t be a partition of [0,t].
Then E[V®(I1)]*> < 6K*.

Proor. Using the martingale property, we have for0 < k <m — 1,

E[ S o, - x, »

j=k+1

%k] =E[ > (X,f—2X,,.;lE(Xt,‘I9'T,}_l)+X,f_l)lg‘?k]
j=k+1
2

SO
m—1 m
EI: z (th - er,l)z(Xlk Xlkl)z:l
k=1 j=k+1
m—1 m
(5.1 = E[ (X, — X, > Y ELX,— X, ) 9‘7,(]]
k=1 j=k+1

We also have

m

(52) El:i X, — X, . )4] < 4K2E [ (X, — X, )2] < 4K*
k=1 =1

k

Inequalities (5.1) and (5.2) imply

E[VO(I)]? = E[ (X, — X,k_,)4]
k=1

m—1 m
+ 2E[ Y (X, - X, )X, — Xr,ﬂ)z]
k=1 j=k+1
< 6K*. O
5.10 Lemma. Let X € 45 satisfy | X,| < K < oo for all se[0,t], as. P. For
partitions I of [0,t], we have
lim EV,*II) = 0.

R84y
ProoF. For any partition I1, we may write
V() < VI m (X T,
where
(5.3) m(X;d) 2 sup{|(X, — X);0<r<s<ts—r<é}

is measurable because the supremum can be restricted to rational s and r. The
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Holder inequality implies
EV®(IT) < (E[VA(ID]*)(Em(X; [TI]))Y.

As |II|| approaches zero, the first factor on the right-hand side remains
bounded and the second term tends to zero, by the uniform continuity on
[0, ] of the sample paths of X and by the bounded convergence theorem.

O

PROOF OF THEOREM 5.8. We consider first the bounded case: | X| < K < o0 and
{X;> < K hold for all s€[0,7], a.s. P. For any partition IT = {to,¢;,...,t,}
as earlier we may write (see the discussion preceding Lemma 5.9 and relation

(5.3))
m 2
E(V (1) — <X>,)* = E[k; Xy — X, ) = XDy, — <X>tk_,)}]

= i E[(X, — X, — (X3 — X3y )P

<25 BL(, = X, )* + (00, = X0, )]

< 2EV(I) + 2E[{X D, m,({XD; (T[]

As the mesh of IT approaches zero, the first term on the right-hand side of this
inequality converges to zero because of Lemma 5.10; the second term does as
well, by the bounded convergence theorem and the sample path uniform con-
tinuity of (X ). Convergence in L? implies convergence in probability, so this
proves the theorem for martingales which are uniformly bounded.

Now suppose X € .#% is not necessarily bounded. We use the technique of
localization to reduce this case to the one already studied. Let us define a
sequence of stopping times (Problem 2.7)forn =1, 2, ... by

T, =inf{t > 0; | X,| = nor {X), > n}.

Now X{" £ X, is a bounded martingale relative to the filtration {%}
(Problem 3.24), and likewise {X?, ;. — (X),r1,, %;0 <t < o0} is a bounded
martingale. From the uniqueness of the Doob-Meyer decomposition, we see
that

(54) <X(")>r = <X>!/\ T,*
Therefore, for partitions IT of [0,t], we have
m 2
lim E [ z (th/\ T, th_l A T,,)z - <X>t/\ T,,] = 0.
Imj-o k=1

Since T, 1 oo a.s., we have for any fixed ¢t that lim,_, P[T, < t] = 0. These
facts can be used to prove the desired convergence of V,2(I) to {X), in
probability. O
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5.11 Problem. Let {X,, #;0 <t < oo} be a continuous process with the
property that for each fixed t+ > 0 and for some p > 0,

lim V,"XII) = L, (in probability),

[mLjj—0
where L, is a random variable taking values in [0, o) a.s. Show that for g > p,
lim"nu_,o V,(")(H) = O(in prObablllty), and for 0 <q < D, llm"r["_,o V,(‘”(H) = 00
(in probability) on the event {L, > 0}.

5.12 Problem. Let X be in .#%, and T be a stopping time of {#,}. If (X )1 = 0,
a.s. P, then we have P[X;,,=0; VO <t < o] = 1.

The conclusion to be drawn from Theorem 5.8 and Problems 5.11 and 5.12
is that for continuous, square-integrable martingales, quadratic variation is
the “right” variation to study. All variations of higher order are zero, and,
except in trivial cases where the martingale is a.s. constant on an initial
interval, all variations of lower order are infinite with positive probability.
Thus, the sample paths of continuous, square-integrable martingales are quite
different from “ordinary” continuous functions. Being of unbounded first
variation, they cannot be differentiable, nor is it possible to define integrals of
the form j{)};(w) dX,(w) with respect to X € % in a pathwise (i.., for every
or P-almost every weQ), Lebesgue-Stieltjes sense. We shall return to this
problem of the definition of stochastic integrals in Chapter 3, where we shall
give It6’s construction and change-of-variable formula; the latter is the coun-
terpart of the chain rule from classical calculus, adapted to account for the
unbounded first, but bounded second, variation of such processes.

It is also worth noting that for X € .5, the process (X ), being monotone,
is its own first variation process and has quadratic variation zero. Thus, an
integral of the form | ¥,d (X, is defined in a pathwise, Lebesgue-Stieltjes sense
(Remark 4.6 (i)).

We discuss now the cross-variation between two continuous, square-
integrable martingales.

5.13 Theorem. Let X = {X,, #;0<t< o} and Y= {Y,, #;0 <t < o0} be
members of M5. There is a unique (up to indistinguishability) {#,}-adapted,
continuous process of bounded variation {A4,, #,;0 < t < oo} satisfying A, = 0
as. P, such that {X,Y, — A,, #;0 <t < o0} is a martingale. This process is
given by the cross-variation {X, Y) of Definition 5.5.

Proor. Clearly, A = (X, Y) enjoys the stated properties (continuity is a con-
sequence of Theorem 4.14 and Problem 4.13). This shows existence of 4. To
prove uniqueness, suppose there exists another process B satisfying the condi-
tions on A. Then

MA(XY—-A)~(XY—-B)=B— 4

is a continuous martingale with finite first variation. If we define
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T, = inf{t > 0: |[M,| = n},

then (M £ M, . 1 , %#,;0 <t < o0} is a continuous, bounded (hence square-
integrable) martingale, with finite first variation on every interval [0,¢]. It
follows from (5.4) and Problem 5.11 that

M)inp,={M™) =0 as, t=>0.

Problem 5.12 shows that M™ = (O a.s.; and since T, T oc as n — o0, we conclude

that M =0, a.s. P. O
5.14 Problem. Show that for X, Ye .#5 and Il = {tq,1;,...,t,} a partition of
[0, ],

lim ) (X, — X, )(Y, —Y, )=<X,Y) (in probability).

[TI[j~0 k=1

Twice in this section we have used the technique of localization, once in the
proof of Theorem 5.8 to extend a result about bounded martingales to square-
integrable ones, and again in the proof of Theorem 5.13 to apply a result about
square-integrable martingales to a continuous martingale which was not
necessarily square-integrable. The next definitions and problems develop this
idea formally.

5.15 Definition. Let X = {X,,%,;0 <t < o0} be a (continuous) process. If
there exists a nondecreasing sequence {T,}:., of stopping times of {%]},
such that {X £ X, ; %;0 <t < oo} is a martingale for each n > 1 and
P[lim,_ T, = oo] = 1, then we say that X is a (continuous) local martingale;
if, in addition, X, = 0 a.s., we write X e .#'°° (respectively, X € 4" if X is
continuous).

5.16 Remark. Every martingale is a local martingale (cf. Problem 3.24(i)), but
the converse is not true. We shall encounter continuous, local martingales
which are integrable, or even uniformly integrable, but fail to be martingales
(cf. Exercises 3.3.36, 3.3.37, 3.5.18 (iii)).

5.17 Problem. Let X, Y be in .#“'°. Then there is a unique (up to indis-
tinguishability) adapted, continuous process of bounded variation <{X,Y)
satisfying <X, Y >, = 0 a.s. P, such that XY — (X, Y)e#“"* . If X = Y, we
write (X ) = (X, X), and this process is nondecreasing.

5.18 Definition. We call the process { X, Y of Problem 5.17 the cross-variation
of X and Y, in accordance with Definition 5.5. We call {X) the quadratic
variation of X.

5.19 Problem.

() A local martingale of class DL is a martingale.
(i) A nonnegative local martingale is a supermartingale.
(iii) If M € .#“"° and S is a stopping time of {%}, then E(M2) < E(M ),
where M2 £ lim,_,, M2

t— o
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We shall show in Theorem 3.3.16 that one-dimensional Brownian motion
{B,, #;0 <t < oo} is the unique member of .#'** whose quadratic variation
at time ¢ is t; i.e., B> — ¢ is a martingale. We shall also show that d-dimen-
sional Brownian motion {(B{",...,B®), #;0 <t < oo} is characterized by
the condition

<B(i)a B(j)>t = 6ijt’ t= 0’

where J;; is the Kronecker delta.

5.20 Exercise. Suppose X € .#, has stationary, independent increments, and
{#,} is the filtration generated by X. Then (X ), = t(EX?),t > 0.

5.21 Exercise. Employ the localization technique used in the solution of
Problem 5.17 to show that the conclusions of Theorem 5.8 and of Problem
5.12 hold for every X € 4", In particular, every X € .#°'°° of bounded first
variation is identically equal to zero.

We close this section by imposing a metric structure on .#, and discussing
the nature of both .#, and its subspace .#$ under this metric.

5.22 Definition. For any X € .#, and 0 < t < o0, we define

X1l £ /E(X?).
We also set

Xl 1 1
PR S

Let us observe that the function t+— || X|, on [0, cc) is nondecreasing,
because X? is a submartingale. Further, || X — Y|| is a pseudo-metric on .#,,
which becomes a metric if we identify indistinguishable processes. Indeed,
suppose that for X, Ye .#, we have | X — Y| = 0; this implies X, = Y, a.s. P,
for every n > 1, and thus X, = E(X,|%) = E(Y,|#) = Y, as. P, for every
0 <t<n. Since X and Y are right-continuous, they are indistinguishable
(Problem 1.5).

5.23 Proposition. Under the preceding metric, #, is a complete metric space,
and M5 a closed subspace of M.

PROOF. Let us consider a Cauchy sequence {X™}2, < #,: lim,, ., [X® —
X™| = 0. For each fixed ¢, {X}%, is Cauchy in L*(Q, %, P), and so has
an L2-limit X,. For0 <s <t < o and A € #,, we have from L?-convergence
and the Cauchy-Schwarz inequality that lim,_ E[1,(X" — X,)]=0
lim,., E[1(X™ — X,)] =0. Therefore, E[1,X™] = E[1,X™] implies
E[1,X,]=E[1,X], and X is seen to be a martingale; we can
choose a right-continuous modification so that X e.#,. We have
limn-*oo ”X(") - X[=0
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To show that .#5 is closed, let {X™}¥_; be a sequence in .#% with limit X
in .#,. We have by the first submartingale inequality of Theorem 3.8:

1 1
P[ sup | X® — X,| > £:| < SEIXP — X7 =5 1X” - X|};-0
€ €

0<t<T

as n — oo. Along an appropriate subsequence {n, };>; we must have

1 1
P[ sup |X™ — X,| > —] < k=1

0<t<T k 2
and the Borel-Cantelli lemma implies that X" converges to X,, uniformly on
[0, T], almost surely. The continuity of X follows. |

5.24 Problem.Let M = {M,, #;0 <t < oo} be a process in 4, U .#*"° and
assume that its quadratic variation process (M) is integrable: E{M ), < co.
Then:

(i) M is a martingale, and M and the submartingale M? are both uni-
formly integrable; in particular, M, = lim,,, M, exists as. P, and
EM? = EXM).;

(ii) we may take a right-continuous modification of Z, = E(M2|%,) — M2;
t > 0, which is a potential.

5.25 Problem. Let M € .#“'*° and show that for any stopping time T of {#,},

(5.5) P[ max |M,| > s:l < E—(é%ﬁ—mﬁ

0<t<T

+ P[{M); > 4],
Ve > 0,6 > 0. In particular, for a sequence {M™}, = .#*'° we have

(5.6) (M™>, 250 = max |M™ —2>0.

n—aoo n—o0
0<t<T

5.26 Problem. Let {M,, #;0<t < o} and {N,,%;0<t < o} on (Q,#,P)
be continuous local martingales relative to their respective filtrations, and
assume that %, and %, are independent. With J# £ ¢(%, U %,), show that
{M,, #;0<t <o}, {N,#;0<t<oo} and {M,N,, #,;0<t< oo} are
local martingales. If we define # = (Vs> 6(H#, U A7), where A is the collec-
tion of P-negligible events in %, then the filtration {J#} satisfies the usual
conditions, and relative to it the processes M, N and MN are still local
martingales. In particular, (M, N) = 0.

1.6. Solutions to Selected Problems

1.8. We first construct an example with A ¢ %X. The collection of sets of the form
{(X,,,X,,,...)€B}, where Be AR ® BR)® - and 0<t, <t < - < to,
forms a o-field, and each such set is in ZX. Indeed, every set in %X has such a



1.6. Solutions to Selected Problems 39

2.6.

2.7.

2.17.

representation; cf. Doob (1953), p. 604. Choose Q = [0, 2), # = %([0, 2)), and
P(F) = meas(F n [0, 1]); F € #, where meas stands for “Lebesgue measure.”
For w € [0, 1], define X,(w) = 0, Vt > 0; for w € (1, 2), define X, (w) = 0if t # o,
X,(®) = 1. Choose t, = 2. If A € £, then for some B € #(R) @ #(R) @ ‘- and
some sequence {t, }i, < [0, 2], wehave 4 = {(X,,, X,,,...) € B}. Choose t € (1, 2),
t¢{t,,t;,...}.Sincew=risnotin 4and X, (t) =0,k =1,2,..., we see that
0,0,...)¢ B.But X, (w) =0,k =1,2, ..., for all we [0, 1]; we conclude that
[0, 11~ A = &, which contradicts the definition of 4 and the construction of X.

We next show that if ZOX < #, and %, contains all P-null sets of #, then
A€ #,. Let N < Q be the set on which X is not RCLL. Then

A= (U A,,> AN,
n=1

where

4=0 U {|x,,l —xqz[>%}.

m=1q,,q€Qn[0,10)
|91 —q2l<(1/m)

Try to argue the validity of the identity {Hy <t} = | Jsco {X €T}, for any
0<s<t

t > 0. The inclusion 2 is obvious, even for sets which are not open. Use right-
continuity, and the fact that I is open, to go the other way.

(Wentzell (1981)): For xe R, let p(x,T") = inf{||x — y|;; ye '}, and consider the
nested sequence of open neighborhoods of I' given by T, = {xe R%; p(x,T) <
(1/n)}. By virtue of Problem 2.6, the times T, £ Hy; n > 1, are optional. They
form a nondecreasing sequence, dominated by H = H., with limit T# lim,_,, T, <
H, and we have the following dichotomy:

On{H=0}: T,=0,Vn>1.
On {H > 0}: there exists an integer k = k(w) > 1 such that
T,=0, Vi<n<k, and 0<T,<T,,<H;, Vn>k

We shall show that T = H, and for this it suffices to establish T > H on
{H>0,T < w}.

On the indicated event we have, by continuity of the sample paths of X: X, =
lim,_, X7, and X; edl,, = T,; Vm > n > k. Now we can let m — oo, to obtain
Xrel,;Vn > k,and thus X; € (|, T, = . We conclude with the desired result
H < T. The conclusion follows now from {H <t} = (%, {T, < t}, valid for
t>0,and {H =0} = {X,eT}.

For every Ae #r we know that A {T < S} belongs to both #; (Lemma
2.16) and % (Lemma 2.15), and therefore also to #;,s = #rn F. Con-
sequently, jA lir<5)E(Z|Fr . 5)dP = ,[An(TsS}ZdP = len(TSS} E(Z|#7)dP =
Ja Yir<s) E(Z| F7) dP, so (i) follows.

For claim (ii) we conclude from (i) that

Lir<s)ELE(Z|F1)|\Fs] = E[l7<5)E(Z|F7)|Fs] = E[17<5)E(Z| Fs  1)| Fs]
= I{TSS}E[ZL%A )

which proves the desired result on the set {T < S}. Interchanging the roles of S
and T and replacing Z by E(Z|#;), we can also conclude from (i) that
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Lis<n) ELE(Z|F1)| F5] = Lis<r) ELE(Z| )| Fs 1 1]
= 1{S<T}E[Z|'g;SAT]'

2.22. We discuss only the second claim, following Chung (1982). For any 4 € %, , we

2.23.

have

A =(U [An{S<r< T}>u[Am{S= w}]
reQ

Now An{S<r<T}=An{S <r}n{T >r} is an event in Fr, as is easily

verified, because AN {S<r}eZ. On the other hand, An{S= o0} =

[ANn{S=w}]n{T = oo} is easily seen to be in F;. It follows that A€ F;.

T is an optional time, by Lemma 2.11, and so %7, is defined and contained in
Fr.+ for every n > 1. Therefore, 1, < (&, Zr.+. To go the other way, con-
sider an event A suchthat A n {T, < t} e #,foreveryn > 1and t > 0. Obviously
then, An{T <t} =An(Jiz, {T, <t}) = Uy (An{T, < t})e#, and thus
Ae%;,. The second claim is justified similarly, using Problem 2.22.

3.2. (i) Fix s = 0 and a nonnegative integer n. Consider the “trace” o-field ¢ of all

sets obtained by intersecting the members of %" with the set {N, = n}.
Consider also the similar trace o-field s# of o(Ty,..., T;) on {N,=n}. A
generating family for ¢ is the collection of sets of the form {N, <n;,...,
N, <m, N, =n},where 0 <t, <--- <, <s,and each such set is a member
of #. A generating family for # is the collection of all sets of the form
{S$ <ty,....,8, < t,,Ny=n}, where 0 <t, <--- <t,, <s, and each such
set is a member of ¥. It follows that ¥ = #.

Therefore, for every Ae ZN there exists Aea(T,,...,T,) such that 4 n
{N; = n} = An{N, = n}. Using the independence of T,,, and (S,,1,) we
obtain

j P[S,s, > t|#N]dP
An{N;=n}

=P[{S,sy >t} nAN{S, <s<S,11}]
=P[{S,+ T4, >t} nANn{S, <s}]

-5

= j P{S,>t—u}nAn{S, <s}Jie ™du

= o~ At=3) f PI{S,+u>s}nAn{S, <s}]le ™du

1]
=e M OIPL{S, + T,y >s}nAN{S, <s}]
=e M IP[A{N, = n}].

Summation over n > O yields [z P[Sy +, > t|#¥]dP = e~ **"9 P(A) for every
AeFN.

(ii) For an arbitrary but fixed k > 1, the random variable Y, £ S, 4y — Sp4; =
Y txi3 T; is independent of o(Ty,...,T,4,); it has the gamma density
P[Y, edu] = [(Aw)*!/(k — 1)!]Ae”* du;u > 0, for which one checks easily the
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3.7.

3.11

identity:

P, >60]1=) e k>1,0>0.

j=0

k=1 (10)]
il
We have, as in (i),

J P[N, — N, < k| #N1dP
An{Ns=n}

=P[{N,<n+k}nAn{N,=n}]
= P[{Sysxt1 >t} n AN {N;=n}]
=P[{Sy41 + i >t} nAn{N,=n}]

= on P[{S,+; +u>t}n An{N,=n}] P(Y,edu)
0

=P[An{N,=n}]-P(Y, >t —s)

+ J'—S P[{S,;; >t —u}nAn{N, = n}]P(Y,edu)

o

= PLAn{N,=n}] z ~36-9 u(t; s)Y
+ J‘—s e_“'_‘_")P(X,edu)>
1]
i J At — s)
=PLAN{N,=n] % e“"‘s)((tj—!s)).

Adding up over n > 0 we obtain

k 2 i
f P[N, — N, < klgz;N]dP — P(/D Z P U s)( (t]' s))
A j=0 !

for every Ae # and k > 1, and both assertions follow.

Let {h,; a€ A} be a collection of linear functions from R? —» R for which ¢ =
Sup,. 4 h,- Then for 0 < s < t we have

E[p(X)|#] = E[h(X))| %] = hy(X,), VaeA.

Taking the supremum over a, we obtain the submartingale inequality for ¢(X).
Now |- || is convex and E||X,|| < E(|X"| + -+ + | X|) < o0, so || X| is a sub-
martingale.

Thanks to the Jensen inequality (as in Proposition 3.6) we have that
{X,},#;n>1} is also a backward submartingale, and so with A > 0:
A-P[|X,| > A] < E|X,| = —E(X,) + 2E(X,]) < —1 + 2E(X{) < o0. It follows
that sup,.., P[|X,| > 4] converges to zero as A — o0, and by the submartingale

property:
J X,,*dPsJ X{'dPsJ X dP.
{X3>2} {Xa>4} {1Xnl> 4}
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3.19.

3.20.

3.26.

3.27.
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Therefore, {X,"}%, is a uniformly integrable sequence. On the other hand,

0> J X,dP = E(X,) — J X,dP > E(X,) — J X, dP
{Xn<-2} {Xp>-4} {(Xp=>—2}
= E(X,) — E(X,,) + f X, dP, forn>m.
(Xn<-1}

Given ¢ > 0, we can certainly choose m so large that 0 < E(X,,) — E(X,) < ¢/2
holds for every n > m, and for that m we select A > 0 in such a way that

n>m

supf |Xm|dP<E.
(Xa<-1) 2

Consequently, for these choices of m and A we have:

n>m

sup J X, dP <¢, and thus {X, }i2, is also uniformly integrable.
{Xn>a}

(a) = (b): Uniform integrability allows us to invoke the submartingale con-
vergence Theorem 3.15, to establish the existence of an almost sure limit X,
for {X,;0 <t < o0} as t » o0, and to convert almost sure convergence into
L'-convergence.

(b) = (c): Let X, be the L'-limit of {X,;0 <t < w}. ForO0 <s<tand Ae %
we have [, X,dP < [, X,dP, and letting t - oo we obtain the submartingale
property |, X,dP < [, X, dP;0<s < o0, Ae Z,.

(c)=(a) For 0<t< oo and 1> 0, we have [y, X,dP < {55, X,, dP,
which converges to zero, uniformly in t, as A1 oo, because P[X,> i] <
(1/)EX, < (1/2)EX,.

Apply Problem 3.19 to the submartingales {X,;*, %;0 <t < 00} to obtain the
equivalence of (a), (b), and (c). The latter obviously implies (d), which in turn
gives (a). If (d) holds, then ([, YdP = [, X,dP,V Ae %, Letting t - c0, we obtain
f4YdP = [, X, dP. The collection of sets 4 € %, for which this equality holds
is a monotone class containing the field ( ), ,%. Consequently, the equality
holds for every A € Z,,, which gives E(Y|%,) = X, as.

The necessity of (3.2) follows from the version of the optional sampling theorem
for bounded stopping times (Problem 3.23 (i)). For sufficiency, consider 0 < s <
t < o0, A € %, and define the stopping time S(w) £ s1,(w) + t1,.(w). The condition
E(X,) > E(Xj) is tantamount to the submartingale property E[ X,1,] = E[X,1,].

By assumption, each %, contains the P-negligible events of #. For the right-
continuity of {Z,}, select a sequence {t,}5, strictly decreasing to ¢; according to
Problem 2.23,

s

0
A
'9=€+ = j’:,, = m ‘o/'-T-H" = ZT+:)+>
n=1

[
—-

and the latter agrees with %, = %, under the assumption of right-continuity
of {#,} (Definition 2.20).

(i) With 0 < s <t < o0, Problem 3.23 implies
E[X|Z] = E[Xrs — X7 Fr] 2 X7y — Xp = X, as. P.
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3.28.

4.9.

4.11.

(ii) Let S; < S, be bounded stopping times of {%}, and set 7; = (§; — T) v 0. By
Lemma 2.16, {1;<t} = {§;< T+ t} € %, for allt >0,s071, <71, are bounded
stopping times of {./,} Furthermore, 0 < EX = EX iy EX and EX iy
Eij < o0, so E|X; | < o0. According to Problem 3.26,

EXs, = EX,2 > EX = EXj,.
Another application of Problem 3.26 shows that X is a submartingale.
(Robbins and Siegmund (1970)): With the stopping time

= inf{te[s, w0); Z, = b},

the process {Z ,,, %; 0 < t < 0} is a martingale (Problem 3.24 (i)). It follows
that for every Ae Z, t > s:

j Z,dP = J Zy . dP
AN{Zs<b} An{Zs<b}

=b'P[An{Zs<b,TSt}]+J Ztl{T>t}dP'

An{Zs<b}

The integrand Z,1,r., is dominated by b, and converges to zero as t — o0 by
assumption; it develops then from the dominated convergence theorem that

J ZdP =b-P[AN{Z,<bT < 0}]
An{Z,<b}
=bf P[T < «|#]dP,
Z,<b}

establishing the first conclusion. The second follows readily.

(a) According to Problem 3.23 (i) we have

E(X;) E(X,
f XTdPsf X,dP and P[X;>1]< Xr) (X.)
X,>2) {(X;>2} 4 A

for every a > 0, A > 0, Te &, and therefore

lim sup J XrdP =0.
A2 Te, {X7>A}

(b) It suffices to show the uniform integrability of {My}r.s,. Once again,
Problem 3.23 (i) yields M; = E(M,|#;) as. P, for every T € &,, and the claim
then follows easily, just as in the implication (d) = (a) of Problem 3.20.

This latter problem, coupled with Theorem 3.22, yields the representation
X, = E(X,| %) as. P, Y TeZ for every uniformly integrable martingale X,
which is thus shown to be of class D.

For an arbitrary bounded random variable £ on (Q, #, P),
E[E(A™|%)] = E[E(|9)- E(A™|%)] = E[A™E(|9)],
which converges to E[A4 - E(¢|9)] = E[(E(A|9)].
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4.15.

5.11

5.12.

5.17.

1. Martingales, Stopping Times, and Filtrations

Define the stopping times H, = inf{t > 0; X, > &}, S = inf{t > 0; A, > J} (Prob-
lem2.7)and T, = TA n A H,. We have

eP[Vy, 2 6] < E[Xr. 1y »q] < E(Xy,) < E(47,) < E(47)
and (4.14) follows because T, T T A H,,a.s.as n — 0. On the other hand, we have

E(As,1) _ E@ A A7)
4

PV;>eAr <d] < P[Vy,.s2e]l <

thanks to (4.14), and (4.15) follows (adapted from Lenglart (1977)). From the
identity F(x) = j“(’," Liysuy dF(u), the Fubini theorem, and (4.15)" we have

P(Vy > wdF () < f ) {5‘1‘2—@
0

o

EF(Vy) = j + P(A; > u)} dF (u)

0

= j [ZP(AT > u) + %E(ATI{AT<,,}):|dF(u)

0

@

= E[ZF(AT) + ATf édF(u):I = EG(Ay)

Ar
(taken from Revuz & Yor (1987); see also Burkholder (1973), p. 26).

LetTT = {tg,...,tn}, With0 = t, < t; < -+ < t,, = t, be a partition of [0,¢]. For
q > p, we have

a-p

v < v2(I): max |X, — X,

I1<k<m

k-l'

As ||TI| - 0, the first term on the right-hand side has a finite limit in probability,
and the second term converges to zero in probability. Therefore, the product con-
verges to zero in probability. For the second assertion, suppose that 0 < g < p,
P(L, > 0) > 0 and assume that V;9(TI) does not tend to cc (in probability) as
T} = 0. Then we can find 6 >0, 0 < K < oo, and a sequence of partitions
{IT,}_, such that P(4,) > P(L, > 0), where

A,={L,>0,VOI,) <K}, n>1
Consequently, with IT, = {t$’,...,t%)}, we have
V(M) < KmP™(X; |TL[) onA,; n=1
This contradicts the fact that ¥,"(I1,) converges (in probability) to the positive
random variable L, on {L, > 0}.

Because {(X) is continuous and nondecreasing, we have P[{(X);,., =0;
0 <t < o0] = 1. An application of the optional sampling theorem to the con-
tinuous martingale M £ X2 — (X) yields (Problem 3.23 (i) 0 = EM;,, =
E[X%,,—{X)>r..]=EX},, which implies P[X;,,=0]=1, for every
0 <t < o0. The conclusion follows now by continuity.

There are sequences {S,}, {T,} of stopping times such that S, 1 oo, T, 1 o, and
X" & X, s, Y™ &Y,  are {#}-martingales. Define

R, AS, AT, Ainf{t 20:|X,|=n or |Y|=n}
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5.24.

5.25.

and set X" = X, p, %™ = ¥, . Note that R, 1 o0 as. Since X" = Xg ,
and likewise for Y™, these processes are also {% }-martingales (Problem 3.24),
and are in .#3 because they are bounded. For m > n, ¥ = X and so

(X‘(n))Z - <X'(m)>r,\n,_ = (Xr('/'\')x,,)z - <X(m)>t/\R,,

is a martingale. This implies (X™, = (X™), , r . We can thus decree (X), £
(X™>, whenever t < R, and be assured that (X is well defined. The process
{X) is adapted, continuous, and nondecreasing and satisfies (X), =0 as.
Furthermore,

XIZAR,, - <X>!AR,, = (X‘(n))z - <X(")>t

is a martingale for each n, so X2 — (X ) e .#“"°. As in Theorem 5.13, we may
now take (X, Y> =4[(X + YD) — <X — Y)].

As for the question of uniqueness, suppose both 4 and B satisfy the conditions
required of (X,Y)>. Then M £ XY — Aand N £ XY — B are in .#°', so just
as before we can construct a sequence {R,} of stopping times with R, T oo such
that M & M,,, and N £ N, are in .#5. Consequently M — N =
B, g, — Aiar, €5, and being of bounded variation this process must be
identically zero (see the proof of Theorem 5.13). It follows that 4 = B.

If Me,, then E(M?)=E{M) <E{(M),; VO<t<oo. If Mes#",
Problem 5.19 (iii) gives E(M2) < E{M s < E{M)_, < o for every stopping time
S; it follows that the family {Mg}s. o is uniformly integrable, i.e., that M is of
class D and therefore a martingale (Problem 5.19 (i)).

In either case, therefore, M is a uniformly integrable martingale; Problem 3.20
now shows that M = lim,_,, M, exists, and that E(M_|%,) = M, holds as. P,
for every t > 0. Fatou’s lemma now yields

6.1) EM2)= E<lim M,Z) < lim E(M,?) = lim E(M), = E{M).,

t—o0 t—o0 t—=o0

and Jensen’s inequality: M2 < E(M2|4,), as. P, for every t > 0. It follows that
the nonnegative submartingale M? has a last element, ie., that {M? #;
0 <t < 0} is a submartingale. Problem 3.19 shows that this submartingale is
uniformly' integrable, and (6.1) holds with equality. Finally, Z, = E(M%|%,) —
M_? is now seen to be a (right-continuous, by appropriate choice of modification)
nonnegative supermartingale, with E(Z,) = E(M2) — E(M}) converging to zero
ast — o0.

Problem 5.19 (iii) allows us to apply Remarks 4.16,4.17 with X = M?, A4 = (M.

1.7. Notes

Sections 1.1, 1.2: These two sections could have been lumped together
under the rubric “Fields, Optionality, and Measurability” after the manner of
Chung & Doob (1965). Although slightly dated, this article still makes
excellent reading. Good accounts of this material in book form have been
written by Meyer [(1966); Chapter IV], Dellacherie [(1972); Chapter IIT and
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to a lesser extent Chapter IV], Dellacherie & Meyer [(1975/1980); Chapter
IV], and Chung [(1982); Chapter 1]. These sources provide material on the
classification of stopping times as “predictable,” “accessible,” and “totally
inaccessible,” as well as corresponding notions of measurability for stochastic
processes, which we need not broach here.

A new notion of “sameness” between two stochastic processes, called syn-
onimity has been introduced by Aldous. It was expounded by Hoover (1984)
and was found to be useful in the study of martingales.

A deep result of Dellacherie [(1972), p. 51] is the following: for every
progressively measurable process X and I'e 4(R), the hitting time Hp of
Example 2.5 is a stopping time of { %}, provided that this filtration is right-
continuous and that each o-field %, is complete.

Section 1.3: The term martingale was introduced in probability theory by
J. Ville (1939). The concept had been created by P. Lévy back in 1934, in an
attempt to extend the Kolmogorov inequality and the law of large numbers
beyond the case of independence. Lévy’s zero-one law (Theorem 9.4.8 and
Corollary in Chung (1974)) is the first martingale convergence theorem. The
classic text, Doob (1953), introduced, for the first time, an impressively com-
plete theory of the subject as we know it today. For the foundations of the
discrete-parameter case there is perhaps no better source than the relevant
sections in Chapter 9 of Chung (1974) that we have already mentioned; fuller
accounts are Neveu (1975), Chow & Teicher (1978), Chapter 11, and Hall
& Heyde (1980). Other books which contain material on the continuous-
parameter case include Meyer [(1966); Chapters V, VI], Dellacherie & Meyer
[(1975/1980); Chapters V—VIII], Liptser & Shiryaev [(1977), Chapters 2, 3]
and Elliott [(1982), Chapters 3, 4].

Section 1.4: Theorem 4.10 is due to P. A. Meyer (1962, 1963); its proof was
later simplified by K. M. Rao (1969). Our account of this theorem, as well as
that of Theorem 4.14, follows closely Ikeda & Watanabe (1981).

For any nonnegative submartingale X satisfying the conditions of Theorem
3.13, Krylov (1990) shows the existence of an increasing process D such that

X, =X, + ED,|%), as.,

holds for every fixed ¢ € [0, c0), and uses this representation to obtain a simple
derivation of the Doob-Meyer decomposition (4.6) for such X.

The Doob-Meyer decomposition X = M + A of Theorem 4.10 remains
valid for a general right-continuous submartingale X (not necessarily of class
DL), but now with M a local martingale; see, for example, Protter (1990),
Theorem 7, p. 94.

Section 1.5: The study of square-integrable martingales began with Fisk
(1966) and continued with the seminal article by Kunita & Watanabe (1967).
Theorem 5.8 is due to Fisk (1966). In (5.6), the opposite implication is also
true; see Lemma A.1 in Pitman & Yor (1986).



CHAPTER 2

Brownian Motion

2.1. Introduction

Brownicn movement is the name given to the irregular movement of pollen,
suspended in water, observed by the botanist Robert Brown in 1828. This
random movement, now attributed to the buffeting of the pollen by water
molecules, results in a dispersal or diffusion of the pollen in the water. The
range of application of Brownian motion as defined here goes far beyond
a study of microscopic particles in suspension and includes modeling of stock
prices, of thermal noise in electrical circuits, of certain limiting behavior in
queueing and inventory systems, and of random perturbations in a variety of
other physical, biological, economic, and management systems. Furthermore,
integration with respect to Brownian motion, developed in Chapter 3, gives
us a unifying representation for a large class of martingales and diffusion
processes. Diffusion processes represented this way exhibit a rich connection
with the theory of partial differential equations (Chapter 4 and Section 5.7).
In particular, to each such process there corresponds a second-order parabolic
equation which governs the transition probabilities of the process.

The history of Brownian motion is discussed more extensively in Section 11;
see also Chapters 2—4 in Nelson (1967).

1.1 Definition. A (standard, one-dimensional) Brownian motion is a continuous,
adapted process B = {B,, #; 0 < t < o0}, defined on some probability space
(Q, #, P), with the properties that B, = 0 a.s. and for 0 < s < ¢, the increment
B, — B, is independent of &, and is normally distributed with mean zero
and variance t — s. We shall speak sometimes of a Brownian motion B =
{B,,#;0<t<T} on [0,T], for some T >0, and the meaning of this
terminology is apparent.
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If B is a Brownian motion and 0 = t, < t, < - < t, < o0, then the incre-
ments {B, — B,  }j-, are independent and the distribution of B, — B,
depends on t; and t;_, only through the difference t; —¢t;_;; to wit, it is
normal with mean zero and variance t; — t;_,. We say that the process B has
stationary, independent increments. It is easily verified that B is a square-
integrable martingale and (B), =t,t > 0.

The filtration {#,} is a part of the definition of Brownian motion. However,
if we are given {B,; 0 <t < oo} but no filtration, and if we know that B has
stationary, independent increments and that B, = B, — B, is normal with
mean zero and variance ¢, then {B,, #2;0 <t < o} is a Brownian motion
(Problem 1.4). Moreover, if {#} is a “larger” filtration in the sense that
FBc &# fort >0, and if B, — B, is independent of &, whenever 0 <s <,
then {B,, #;0 <t < oo} is also a Brownian motion.

It is often interesting, and sometimes necessary, to work with a filtration
{#,} which is larger than {#?}. For instance, we shall see in Example 5.3.5
that the stochastic differential equation (5.3.1) does not have a solution,
unless we take the driving process W to be a Brownian motion with respect
to a filtration which is strictly larger than {Z"}. The desire to have exis-
tence of solutions to stochastic differential equations is a major motivation
for allowing {%} in Definition 1.1 to be strictly larger than {Z?}.

The first problem one encounters with Brownian motion is its existence.
One approach to this question is to write down what the finite-dimensional
distributions of this process (based on the stationarity, independence, and
normality of its increments) must be, and then construct a probability measure
and a process on an appropriate measurable space in such a way that we
obtain the prescribed finite-dimensional distributions. This direct approach
is the one most often used to construct a Markov process, but is rather lengthy
and technical; we spell it out in Section 2. A more elegant approach for
Brownian motion, which exploits the Gaussian property of this process, is
based on Hilbert space theory and appears in Section 3; it is close in spirit
to Wiener’s (1923) original construction, which was modified by Lévy (1948)
and later further simplified by Ciesielski (1961). Nothing in the remainder of
the book depends on Section 3; however, Theorems 2.2 and 2.8 as well as
Problem 2.9 will be useful in later developments.

Section 4 provides yet another proof for the existence of Brownian motion,
this time based on the idea of the weak limit of a sequence of random walks.
The properties of the space C[0, ov) developed in this section will be used
extensively throughout the book.

Section 5 defines the Markov property, which is enjoyed by Brownian
motion. Section 6 presents the strong Markov property, and, using a proof
based on the optional sampling theorem for martingales, shows that Brownian
motion is a strong Markov process. In Section 7 we discuss various choices
of the filtration for Brownian motion. The central idea here is augmentation
of the filtration generated by the process, in order to obtain a right-continuous
filtration. Developing this material in the context of strong Markov processes
requires no additional effort, and we adopt this level of generality.
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Sections 8 and 9 are devoted to properties of Brownian motion. In Section 8
we compute distributions of a number of elementary Brownian functionals;
among these are first passage times, last exit times, and time and level of
the maximum over a fixed time-interval. Section 9 deals with almost sure
properties of the Brownian sample path. Here we discuss its growth as ¢t — o,
its oscillations near ¢ = 0 (law of the iterated logarithm), its nowhere differ-
entiability and nowhere monotonicity, and the topological perfectness of the
set of times when the sample path is at the origin.

We conclude this introductory section with the Dynkin system theorem
(Ash (1972), p. 169). This result will be used frequently in the sequel whenever
we need to establish that a certain property, known to hold for a collection
of sets closed under intersection, also holds for the o-field generated by this
collection. Our first application of this result occurs in Problem 1.4.

1.2 Definition. A collection 2 of subsets of a set Q is called a Dynkin system if

(i) Qe9,
(i) A,Be2 and B < A4 imply A\Be 2,
(i) {A,}nzy S Zand A; € A, =~ imply (J2, 4,€ 2.

1.3 Dynkin System Theorem. Let € be a collection of subsets of Q which is
closed under pairwise intersection. If 9 is a Dynkin system containing €, then
2 also contains the o-field 6(%) generated by €.

1.4 Problem. Let X = {X,;0 <t < oo} be a stochastic process for which
Xo, X;, — X,» ---» X,;, — X, , are independent random variables, for every
integer n > 1 and indices 0 =t, <t; <+ <t, < oo. Then for any fixed
0 < s <t < oo, the increment X, — X, is independent of #X.

2.2. First Construction of Brownian Motion

A. The Consistency Theorem

Let R denote the set of all real-valued functions on [0, c0). An n-dimensional
cylinder set in RI*® is a set of the form

2.1 C & {weR®;(w(ty),...,ot,) € 4},

where t;€[0,0), i =1, ..., n, and A€ %(R"). Let € denote the field of all
cylinder sets (of all finite dimensions) in RI%*), and let #(RI®*) denote the
smallest o-field containing €.

2.1 Definition. Let T be the set of finite sequences t = (t,,...,¢t,) of distinct,
nonnegative numbers, where the length n of these sequences ranges over the set
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of positive integers. Suppose that for each ¢ of length n, we have a probability
measure Q, on (R", Z(R")). Then the collection {Q,},. r is called a family of
finite-dimensional distributions. This family is said 'to be consistent provided
that the following two conditions are satisfied:

(a) if s =(t;,,t;,,...,t;,) is a permutation of ¢t = (¢;,¢5,...,1,), then for any
A;eBR),i=1,...,n, we have
Q;(Al X Ay X x A,)= Q;(Ail X Ay, XX Ai,,);
(b) ift = (t;,t5,...,t,) Withn > 1,5 = (t,t5,...,t,,), and A€ B(R"!), then

0,4 x R) = Qy(A).

If we have a probability measure P on (R[%®, (R[> =))), then we can define
a family of finite-dimensional distributions by

(2:2) 0,(4) = Plwe RO (w(ty),...,o(t,)) € Al,

where Ae #(R") and ¢t = (¢,...,t,)€ T. This family is easily seen to be con-
sistent. We are interested in the converse of this fact, because it will enable us
to construct a probability measure P from the finite-dimensional distributions
of Brownian motion.

2.2 Theorem (Daniell (1918), Kolmogorov (1933)). Let {Q,} be a consistent
family of finite-dimensional distributions. Then there is a probability measure
P on (RI%®), B(RL-*)), such that (2.2) holds for every teT.

PRrOOF. We begin by defining a set function Q on the field of cylinders €. If C
is given by (2.1) and ¢ = (t,,1t,,...,t,)€ T, we set

(23) 0(C)=0Q,(4), Ce%.

2.3 Problem. The set function Q is well defined and finitely additive on €, with
Q(R®) = 1.

We now prove the countable additivity of Q on €, and we can then draw
on the Carathéodory extension theorem to assert the existence of the desired
extension P of Q to Z(R!%*). Thus, suppose {B, }i-, is a sequence of disjoint
sets in ¢ with B £ | Ji2, B, also in %. Let C,, = B\ J~, By, so

0(B) = O(C,) + ki 0(B,).

Countable additivity will follow from

(24) lim Q(C,) =0.
Now Q(C,) = Q(Cps1) + Q(Bui1) = Q(Cprsy), so the limit in (2.4) exists.
Assume that this limit is equal to & > 0, and note that ()p-, C,, = &.
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From {C,}>_, we may construct another sequence {D,}n-; Which has
the properties D, 2D, 2", (\m=y D, = &, and lim,,_, Q(D,)=¢>0.
Furthermore, each D, has the form

D, = {weR>;(w(t,),...,0(t,) €Ay}

for some A,,€ B(R™), and the finite sequence t,, £ (ty,...,t,)€ T is an exten-
sion of the finite sequence ¢,,_; £ (ty,...,tn_1)€ T, m > 2. This may be accom-
plished as follows. Each C, has a form

C = {weR>(w(ty),..., 0, ) EAn};  Am, € BR™),

where t,, = (ty,...,t,,)€ T. Since C,, < C;, we can choose these representa-
. . . m, —m,
tions so that t,, _ is an extension of t,,, and 4,, ., S 4, x R™"™ Define

D, = {w;w(ty)eR},..., D, _; = {®;(@(ty),-..,O(tm,-,)) eR™ 1}
and D,, = C,, as well as
D, .1 = {w;(@(ty),...,0(tp,), Ot +1)) € Am, X R},...,
sz—l = {w;(w(tl): tee ’w(tml)aw(tm,+1 )9 tee ,w(tmz—l))eAm, x Rmz—"‘l_l}
and D,,, = C,. Continue this process, and note that by construction -y Dy =

:=1 Cm = g

2.4 Problem. We say that 4 € B(R") is regular if for every probability measure
Q on (R", #(R")) and for every ¢ > 0, there is a closed set F and an open set
G such that F < A = G and Q(G\F) < & Show that every set in #(R") is
regular. (Hint: Show that the collection of regular sets is a o-field containing
all closed sets.)

According to Problem 2.4, there exists for each m a closed set F,, < A4,, such
that Q, (A.\F,) < ¢/2™. By intersecting F,, with a sufficiently large closed
sphere centered at the origin, we obtain a compact set K,, such that, with

E, 2 {0eR™"(w(t,),...,(tn) € Kn}s
we have E,, = D,, and

O(D\E,) = 0, (An\K,,) < zim

The sequence {E,,} may fail to be nonincreasing, so we define

E,=() Ew
k=1
and we have
E, = {0eRO;(w(t,),...,o(tm) € Kn}s
where

R,=(K; xR"Y)AK, x RN (Kp_y x RN K,,
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which is compact. We can bound ng(K,,,) away from zero, since

0, (Ry) = O(E,) = Q(D,) — QD\Ey)
- 0w, -o({ w5

> 0(D,) — Q< U (Dk\Ek))

>e— Zik>0.
=12

Therefore, K,, is nonempty for each m, and we can choose (x{™,...,x™)e K,,.
Being contained in the compact set K,, the sequence {x{™}%_, must have
a convergent subsequence {x{™}*  with limit x,. But {(x{™,x{")}{"_, is
contained in K,, so it has a convergent subsequence with limit (x;,X,).
Continuing this process, we can construct (x;, x,,...)€ R x R x ---, such that
(x1,-..,%n) € K, for each m. Consequently, the set

S={weR": o) =x;,i=12,...}

is contained in each E,,, and hence in each D,,. This contradicts the fact that
(e_y D,, = &. We conclude that (2.4) holds. O

Our aim is to construct a probability measure P on (Q,%) £ (RI>®),
BRI ™)) so that the process B = {B,, #F;0 <t < oo} defined by B,(w) £
w(t), the coordinate mapping process, is almost a standard, one-dimensional
Brownian motion under P. We say “almost” because we leave aside the
requirement of sample path continuity for the moment and concentrate
on the finite-dimensional distributions. Recalling the discussion following
Definition 1.1, we see that whenever 0 = s, < 5; < 5, < *** < §,, the cumu-
lative distribution function for (B; ,..., B, ) must be

2.5) Fisy,.sp(X150005X,)
=J‘ J ...J‘ p(sl;O,yl)p(sz-*Sl;)’nYZ)-"

"p(sn - sn—l;yn—layn)dyn'"dyzdyl

for (x,,...,x,)€R", where p is the Gaussian kernel

(2.6) p(t;x,y) 2 #e“"_”z/z', t>0,x yeR.
2nt
The reader can verify (and should, if he has never done so!) that (2.5) is
equivalent to the statement that the increments {st — st_l}J’-;l are inde-
pendent, and B; — B, is normally distributed with mean zero and variance
S — Sj—1-
Now let ¢ = (t,¢,,...,t,), where the t; are not necessarily ordered but
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are distinct. Let the random vector (B,,B,,,..., B, ) have the distribution
determined by (2.5) (where the ¢; must be ordered from smallest to largest to
obtain(sy,...,s,)appearingin (2.5)). For 4 € Z(R"), let Q,(A4) be the probability
under this distribution that (B, , B,,,..., B, ) is in A. This defines a family of
finite-dimensional distributions {Q, }, r.

2.5 Problem. Show that the just defined family {Q, },. r is consistent.

2.6 Corollary to Theorem 2.2. There is a probability measure P on (RI>®,
AB(RI**))), under which the coordinate mapping process

B(w) = w(t); weR® >0,

has stationary, independent increments. An increment B, — B,, where 0 < s < t,
is normally distributed with mean zero and variance t — s.

B. The Kolmogorov-Centsov Theorem

Our construction of Brownian motion would now be complete, were it not
for the fact that we have built the process on the sample space RI>*® of all
real-valued functions on [0, co) rather than on the space C[0, c0) of continuous
functions on this half-line. One might hope to overcome this difficulty by
showing that the probability measure P in Corollary 2.6 assigns measure one
to C[0, o). However, as the next problem shows, C[0, c0) is not in the o-field
BRI, so P(C[0, o)) is not defined. This failure is a manifestation of
the fact that the o-field Z(R>*) is, quite uncomfortably, “too small” for a
space as big as R>*; no set in Z(RI**)) can have restrictions on uncountably
many coordinates. In contrast to the space C[0, o0), it is not possible to
determine a function in RI®* by specifying its values at only countably
many coordinates. Consequently, the next theorem takes a different approach,
which is to construct a continuous modification of the coordinate mapping
process in Corollary 2.6.

2.7 Exercise. Show that the only (R *)-measurable set contained in C[0, c0)
is the empty set. (Hint: A typical set in Z(RL% ) has the form

E = {weR";(0(t,), (t,),...)€ A},
where A€ (R x R x ---)).
2.8 Theorem (Kolmogorov, Centsov (1956a)). Suppose that a process X =
{X;; 0 <t < T} on a probability space (Q, #, P) satisfies the condition
(2'7) ElXt_Xslasclt_S|1+ﬂ’ OSS,tS’T,

for some positive constants a, 3, and C. Then there exists a continuous modification
X ={X,;0 <t < T} of X, which is locally Hélder-continuous with exponent y
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for every ye(0, B/a), i.e.,

0<t—s<h(w) |t — s|?
s,te[0,T]

where h(w) is an a.s. positive random variable and 6 > 0 is an appropriate
constant.

Proor. For notational simplicity, we take T = 1. Much of what follows is
a consequence of the Cebysev inequality. First, for any ¢ > 0, we have
E|X, — X,|*
Pl|X,— X,| = €] < # < Ce™®|t — s|* 7P,
€
and so X, — X, in probability as s — t. Second, setting t = k/2",s = (k — 1)/2",
and ¢ = 277" (where 0 < y < B/a) in the preceding inequality, we obtain

P Xy on — Xgoqyanl = 277"] < C2770 48720,

and consequently,

(2.9) P[ max | Xyzn — Xepyanl = 2—7"]

1<k<2m

2"
= P|: U 1 Xi2n — Xgemayonl 2 2—y"]
k=1

< C2—n(ﬁ-ay)_

The last expression is the general term of a convergent series; by the Borel-
Cantelli lemma, there is a set Q* € # with P(Q*) = 1 such that for each w € Q¥*,
(2.10) max | Xy;n(@) — Xg-pyan(@)| <277, Vn > n*(w),

1<k<2n
where n*(w) is a positive, integer-valued random variable.

For each integer n > 1, let us consider the partition D, = {(k/2");k = 0,
1,...,2"} of [0,1],and let D = U;‘,":l D, be the set of dyadic rationals in [0, 1].
We shall fix w e Q*, n > n*(w), and show that for every m > n, we have
211) |X(0)— X(@)| <2 Y 27 VtseD,0<t—s<2™"

Jj=n+1

For m=n+ 1, we can only have t = (k/2™), s = ((k — 1)/2™), and (2.11)
follows from (2.10). Suppose (2.11) is valid form=n+ 1, ..., M — 1. Take
s <t, s, te Dy, consider the numbers t' = max{ueDy_;u <t} and s’ =
min{ue Dy,_;; u > s}, and notice the relationships s <s' <t' <, s' —s<
27M ¢t — 1 <27M From (2.10) we have | X i(0) — X ()| < 27™, | X,(0) —
X, (@) <27™, and from (2.11) withm =M — 1,

M-1

IXp(0) — Xa(@) <2 Y 277

j=n+1

We obtain (2.11) for m = M.
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We can show now that {X,(w); t € D} is uniformly continuous in ¢ for every
weQ*. For any numbers s, te D with 0 <t — s < h(w) £ 27", we select
n > n*(w) such that 27" <t — 5 < 27". We have from (2.11)

(212) |X(0) — X(w)| <2 Y 27V <d|t—s, 0<t—s<h(w),
Jj=n+1
where 6 = 2/(1 — 277). This proves the desired uniform continuity.

We define X as follows. For w ¢ Q*, set X,(w) =0,0 <t < 1. For 0eQ*
and te D, set X,(w) = X,(w). For o € Q* and t [0, 1] n D", choose a sequence
{sn}22, < D with s, > t; uniform continuity and the Cauchy criterion imply
that { X (co)} has a limit which depends on ¢ but not on the particular se-
quence {s ®_ 1 € D chosen to converge to ¢, and we set X (w) = lim, _, X, (o).
The resulting process X is thereby continuous; indeed, X satisfies (2.12), so
(2.8) is established.

To see that X is a modification of X, observe that X, = X, a.s. for teD;
forte[0,1] n D°and {s @, € Dwiths, > t, we have X; — X, in probability
and X, - X, as,s0X, =X, as. |

2.9 Problem. A random field is a collection of random variables {X,; t€ &/ }s
where .o/ is a partially ordered set. Suppose { X,; t € [0, T]*},d > 2,is arandom
field satisfying

(2.13) E|X,— X,|* < C|t — s[|**#

for some positive constants «, 8, and C. Show that the conclusion of Theorem
2.8 holds, with (2.8) replaced by

(2.14) Pl:co; sup IX() - X(@)| < 5] =1

0<|t—s||<h(e) It — s||?
s,te[0,T]¢

2.10 Problem. Show that if B, — B, 0 < s < t, is normally distributed with
mean zero and variance t — s, then for each positive integer n, there is a
positive constant C, for which

E|B, — B*" = C,|t — s|".
2.11 Corollary to Theorem 2.8. There is a probability measure P on (R[>,

A(RI®)) and a stochastic process W = {W,, Z¥;t > 0} on the same space,
such that under P, W is a Brownian motion.

PRrOOF. According to Theorem 2.8 and Problem 2.10, there is foreach T > 0 a
modification W7 of the process B in Corollary 2.6 such that W7 is continuous
on [0, T]. Let

Q; = {w; W,T(w) = B(w) for every rational t [0, T]},
so P(Qr) = 1.0n £ (\$_, Q, we have for positive integers T; and T,
W,T (w) = W,T2(w), for every rational te[0, T; A T,].



56 2. Brownian Motion

Since both processes are continuous on [0, T; A T,], we must have W, (w) =
W,T2(w) for every te[0, T, A T,], weQ. Define W,(w) to be this common
value. For w ¢ Q, set W,(w) = 0 for all t > 0. a

2.12 Remark. Actually, for P-ae. weRI>®), the Brownian sample path
{W,(w); 0 <t < oo} is locally Holder-continuous with exponent y, for every
y€(0,1/2). This is a consequence of Theorem 2.8 and Problem 2.10.

2.3. Second Construction of Brownian Motion

This section provides a succinct, self-contained construction of Brownian
motion. It may be omitted without loss of continuity.

Let us suppose that {B,, %; t > 0} is a Brownian motion, fix0 < s <t < oo,
and set 0 £ (t + s)/2; then, conditioned on B, = x and B, = z, the random
variable B, is normal with mean pu £ (x + z)/2 and variance o> £ (t — s5)/4.
To verify this, observe that the known distribution and independence of the
increments B;, By — B, and B, — By lead to the joint density

J— t_
P[B;edx, Byedy, B,edz] = p(s;0,x)p (t—zf X, y>p <—2—S s Z> dxdydz

1 (y = u)z}
——expy — dxdyd:z
ay/2n P { 20°
in the notation of (2.6), after a bit of algebra. Dividing by
P[B,edx, B,edz] = p(s;0,x)p(t — s;x,z)dx dz,

= p(s;0,x)p(t — s;x,2)-

we obtain

(3.1) P[Bsy,€dy|B,=x,B,=z] = e~ OTW29% gy,

o./2n

The simple form of this conditional distribution for B, suggests that we
can construct Brownian motion on some finite time-interval, say [0, 1], by
interpolation. Once we have completed the construction on [0, 1], a simple
“patching together” of a sequence of such Brownian motions will result in
a Brownian motion defined for all ¢t > 0.

To carry out this program, we begin with a countable collection {£{";
kel(n),n=0,1,...} of independent, standard (zero mean and unit variance)
normal random variables on a probability space (Q, #, P). Here I(n) is the set
of odd integers between 0 and 2"; i.e., I(0) = {1}, I(1) = {1}, I(2) = {1,3}, etc.
For each n > 0, we define a process B” = {B™; 0 < t < 1} by recursion and
linear interpolation, as follows. For n> 1, B{. . will agree with B{,.",,
k=0,1,..., 2" Thus, for each value of n, we need only specify B{}. for
keI(n). We set



2.3. Second Construction of Brownian Motion 57

B =0, BO =0

If the values of B, k=0, 1, ..., 2"! have been specified (so B! is
defined for 0 <t < 1 by piecewise-linear interpolation) and ke I(n), we de-
note s =(k — 1)/2", t = (k + 1)/2", u = 4B" ™V + B" V), and 6% = (t — 5)/4 =
1/2"*1 and set, in accordance with (3.1),

B = Bl g, £ 1+ ol

We shall show that, almost surely, B™ converges uniformly in ¢ to a continuous
function B, and {B,, #?;0 <t < 1} is a Brownian motion.

Our first step is to give a more convenient representation for the processes
B™ n=0,1,.... We define the Haar functions by H®(t) = 1,0 <t < 1, and
forn > 1, kel(n),

( k—1 k
PARER <t<_,
2" 2"
H" () = < k k+1
_2('1-1)/2’ —<t< s
2" 2"
0, otherwise.

Y

We define the Schauder functions by
t
SM(t) = J H"(w)du, 0<t<1,n>0,kel(n).
0

Note that S{°(t) = t, and for n > 1 the graphs of S{ are little tents of height
27*D2 centered at k/2" and nonoverlapping for different values of ke I(n).
It is clear that B = £9S{%)(¢), and by induction on n, it is easily verified that

(32 B@)=Y ¥ &@)SM@, 0<t<1n>0.

m=0 ke lI(m)
3.1 Lemma. As n — oo, the sequence of functions {B™(w);0 <t <1},n>0,
given by (3.2) converges uniformly in t to a continuous function {B(w);0 <t < 1},
for ae. weQ.

PrOOF. Define b, = max, ¢, |£4"|. For x > 0

2 (> _,
(3.3) P[IEM > x] = f j e 2 dy

\/7j e "2 dy _\/zf-xlz,
which gives

2 2nem2
Plb,>n]=P| J {1 > n} |<2PLIEP I >n < [~ n> 1.

kel,
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Now Y2, 2" ™™”/n < o0, so the Borel-Cantelli lemma implies that there
is a set Q with P(Q) = 1 such that for each we{ there is an integer n(w)
satisfying b,(w) < n for all n > n(w). But then

$OT Estmi< Y n2ttR < o

n=n(w) kel(n) n=n(w)

so for weQ, B™(w) converges uniformly in ¢ to a limit B,(w). Continuity of
{B,(w); 0 <t < 1} follows from the uniformity of the convergence. O

Under the inner product {f,g> = [§ f(t)g(t)dt, L*[0,1] is a Hilbert space,
and the Haar functions {H{™; ke I(n), n > 0} form a complete, orthonormal
system (see, e.g., Kaczmarz & Steinhaus (1951), but also Exercise 3.3 later).
The Parseval equality

Lgy=Y Y (LHPYgHP),
n=0 kel(n)
applied to f = 1j, 5 and g = 1, ; yields

o0

(34) Y Y SPSP(s)=sat; 0<st<l

n=0 kel(n)

3.2 Theorem. With {B™}%_, defined by (3.2) and B, = lim,_, B™, the process
{B,, #2,0 <t < 1} is a Brownian motion on [0, 1].

Proor. It suffices to prove that, for 0 =ty < t, < --- <t, < 1, the increments
{B,j — B,j_l}}‘=1 are independent, normally distributed, with mean zero and
variance t; — t;_,. For this, we show that for ,;eR,j=1,...,nand i = {/ —1,

(3.5) E[exp{ Z H Hexp{ H tj_l)}.

Set 4,., = 0. Using the independence and standard normality of the random
variables {£{"}, we have from (3.2)

E|:exp{—i Y (A1 — Aj)B}JM)}]
=

M n
= I:exp{ Z: Z (m) ; (A'j+1 - j)Sl(cm)(tj)}]

kelI(m)

{—iii"" ; (A1 — lj)S:i'"’(tj)}:l
M
i exp[ {m,ﬂ_ o] ]

0 kel(m)

1 n n
=exP|i—5 Z Z (Aj+1 — Aiv1 — A) Z Z Sl(cm)(ti)SI£M)(tj)j|-

Jj=1i=1 m=0 ke I(m)

Letting M — oo and using (3.4), we obtain
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E[exp {i i A(By, — B,j_l)}] = E[exp{—i Z': (Aj41 — )vj)B,j}il

- 1 n
= xp{ Z (A1 — 4 (Aisr — A — 5 Zl (Aj41 — j-j)ztj}
= =

I|
f--’\——ﬂ
uMl

,+1 j)(_j'j+1)tj Z j+1 j)ztj}
S (12 2 1.,
{ ; (Af1 — }.j)tj—il,,t,}
1;1 {_"12 tj—1)} O

3.3 Exercise. Prove Theorem 3.2 without resort to the Parseval identity (3.4),
by completing the following steps.

(a) The increments {B{}. — B ,),.}#-, are independent, normal random
variables with mean zero and variance 1/2".

b)) If0=ty<t; <-<t,<1 and each ¢; is a dyadic rational, then the
increments {B, — B,  }}-, are independent, normal random variables with
mean zero and variance (t; — t;_;).

(c) The assertion in (b) holds even if {t;}/_, is not contained in the set of
dyadic rationals.

3.4 Corollary. There is a probability space (Q, %, P) and a stochastic process
={B, #2% 0 <t < oo} on it, such that B is a standard, one-dimensional
Brownian motion.

PrOOF. According to Theorem 3.2, there is a sequence (Q,, %#,, P,),n = 1,2, ...
of probability spaces together with a Brownian motion {X;0 <t < 1}
on each space. Let Q =Q, x Q, x -, F =F, ®F, ® -, and P = P, x
P, x ---. Define B on Q recursively by

B=XY 0<t<l,

B =B, + X"V n<t<n+1.

This process is clearly continuous, and the increments are easily seen to be
independent and normal with zero mean and the proper variances. O

2.4. The Space C[0, «0), Weak Convergence,
and the Wiener Measure
The sample spaces for the Brownian motions we built in Sections 2 and 3

were, respectively, the space RI>® of all real-valued functions on [0, c0)
and a space Q rich enough to carry a countable collection of independent,
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standard normal random variables. The “canonical” space for Brownian
motion, the one most convenient for many future developments, is C[0, o),
the space of all continuous, real-valued functions on [0, c0) with metric

1
. n<1ai< (o1 () — @,()] A 1).

@) P01, 0,) 2 i

In this section, we show how to construct a measure, called Wiener measure,
on this space so that the coordinate mapping process is Brownian motion.
This construction is given as the proof of Theorem 4.20 (Donsker’s invariance
principle) and involves the notion of weak convergence of random walks to
Brownian motion.

4.1 Problem. Show that p defined by (4.1) is a metric on C[0, o0) and, under
p, C[0, o0) is a complete, separable metric space.

4.2 Problem. Let %(%,) be the collection of finite-dimensional cylinder sets of
the form (2.1); i.e.,

21y C={weC[0, ), (w(ty),...,o(,)eA}; n=>1, Ac B[R"),

where, for all i = 1, ..., n, t;€[0, 00) (respectively, t;€ [0, t]). Denote by %4(%,)
the smallest o-field containing %(%,).

Show that ¥ = %(C[0, 0)), the Borel o-field generated by the open sets in
C[0, ), and that 4, = ¢, *(#(C[0, ))) £ %,(C[0, )), where ¢,: C[0, ) -
C[0, o0) is the mapping (@,w)(s) = w(t A 5);0 < s < 0.

Whenever X is a random variable on a probability space (2, #, P) with
values in a measurable space (S, 4(S)), i.e., the function X: Q — S is % /%(S)-
measurable, then X induces a probability measure PX ! on (S, 4(S)) by

4.2) PX"(B) = P{weQ; X(w)e B}, BeA(S).

An important special case of (4.2) occurs when X = {X,;0<t< oo} isa
continuous stochastic process on (Q, %, P). Such an X can be regarded as
a random variable on (Q, %, P) with values in (C[0, o), 4(C[0, «0))), and
PX! is called the law of X. The reader should verify that the law of a
continuous process is determined by its finite-dimensional distributions.

A. Weak Convergence

The following concept is of fundamental importance in probability theory.

4.3 Definition. Let (S, p) be a metric space with Borel o-field 4(S). Let {P, };2,
be a sequence of probability measures on (S, %(S)), and let P be another

measure on this space. We say that {P,}>, converges weakly to P and write
P, > P, if and only if
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n—wo JS

lim | f(s)dP,(s) = f J(s)dP(s)
N

for every bounded, continuous real-valued function f on S.
It follows, in particular, that the weak limit P is a probability measure, and
that it is unique.

4.4 Definition. Let {(Q,, %,, P,)}2-, be a sequence of probability spaces, and
on each of them consider a random variable X, with values in the metric space
(S, p). Let (Q, #, P) be another probability space, on which a random variable
X with values in (S, p) is given. We say that {X,};=, converges to X in distri-
bution, and write X, 3 X, if the sequence of measures {P, X, ' };, converges
weakly to the measure PX 1.
Equivalently, X, % X if and only if
lim E, f(X,) = Ef(X)

for every bounded, continuous real-valued function f on S, where E, and E
denote expectations with respect to P, and P, respectively.

Recall that if S in Definition 4.4 is R? then X,,'—J{ X if and only if the
sequence of characteristic functions ¢,(u) £ E,exp{i(u, X,)} converges to
¢(u) £ Eexp{i(u, X)}, for every ueR% This is the so-called Cramér-Wold
device (Theorem 7.7 in Billingsley (1968)).

The most important example of convergence in distribution is that provided
by the central limit theorem. In the Lindeberg-Lévy form used here, the
theorem asserts that if {&,}2, is a sequence of independent, identically distri-
buted random variables with mean zero and variance o2, then {S,} defined by

1 n

Sn = z Ck
0./ Nk=1

converges in distribution to a standard normal random variable. It is this fact
which dictates that a properly normalized sequence of random walks will
converge in distribution to Brownian motion (the invariance principle of Sub-
section D).

4.5 Problem. Suppose { X}, is a sequence of random variables taking values
in a metric space (S;, p,) and converging in distribution to X. Suppose (S,, p,)
is another metric space, and ¢: S; — S, is continuous. Show that ¥, £ ¢(X,)
converges in distribution to Y £ ¢(X).

B. Tightness

The following theorem is stated without proof; its special case S = R is used
to prove the central limit theorem. In the form provided here, a proof can
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be found in several sources, for instance Billingsley (1968), pp. 35-40, or
Parthasarathy (1967), pp. 47—49.

4.6 Definition. Let (S, p) be a metric space and let IT be a family of probability
measures on (S, #(S)). We say that I is relatively compact if every sequence
of elements of IT contains a weakly convergent subsequence. We say that
I1 is tight if for every & > 0, there exists a compact set K < S such that
P(K) > 1 — ¢, for every Pell.

If {X,},c4 is a family of random variables, each one defined on a prob-
ability space (Q,, %, P,) and taking values in S, we say that this family is
relatively compact or tight if the family of induced measures {P, X, '}, 4 has
the appropriate property.

4.7 Theorem (Prohorov (1956)). Let I1 be a family of probability measures on
a complete, separable metric space S. This family is relatively compact if and
only if it is tight.

We are interested in the case S = C[0, o). For this case, we shall provide
a characterization of tightness (Theorem 4.10). To do so, we define for each
weC[0,00), T > 0, and 6 > 0 the modulus of continuity on [0, T]:
4.3) mT(w,8) 2 max |w(s)— o).

|s—t]<é
0<s,t<T

4.8 Problem. Show that m”(w,d) is continuous in we C[0, ) under the
metric p of (4.1), is nondecreasing in J, and limsy,m”(w,d) = 0 for each
we C[0, o).

We shall need the following version of the Arzela-Ascoli theorem.

4.9 Theorem. A set A = C[0, o) has compact closure if and only if the follow-
ing two conditions hold:

4.4) sup |w(0)| < oo,
weA
4.5) lim sup mT(w,6) =0 for every T > 0.
840 weAa

PROOF. Assume that the closure of 4, denoted by 4, is compact. Since 4 is
contained in the union of the open sets

G, = {we C[0, w); |w(0)| < n}, n=12,...

it must be contained in some particular G,, and (4.4) follows. For ¢ > 0, let
K; = {we d; m"(w,5) > ¢}. Each K is closed (Problem 4.8) and is contained
in A4, so each K is compact. Problem 4.8 implies () s-0 K; = &, so for some
o(g) > 0, we must have K, = . This proves (4.5).
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We now assume (4.4), (4.5) and prove the compactness of A. Since C[0, o)
is a metric space, it suffices to prove that every sequence {w,};>; < 4 has
a convergent subsequence. We fix T > 0 and note that for some é;, > 0, we
have mT(w,d,) < 1 for each we A; so for fixed integer m > 1 and te(0, T]
with (m — 1)0, <t <md, A T, we have from (4.5):

m—1
lo(0)] < |0(0)] + k; lo(kd,) — o((k — 1)6,)] + |w(t) — w((m — 1)d,)]

< |(0)] + m.

It follows that for each re Q*, the set of nonnegative rationals, {®,(r)};%, is
bounded. Let {ry,7;,7,,...} be an enumeration of Q*. Then choose {0}, ,
a subsequence of {w,}; with w{®(r,) converging to a limit denoted w(r,).
From {w{”}.,, choose a further subsequence {w{"}2_, such that w{*(r,) con-
verges to a limit w(r; ). Continue this process, and then let {®, }i; = {0},
be the “diagonal sequence.” We have @,(r) = w(r) for each re Q™.

Let us note from (4.5) that for each ¢ > 0, there exists d(¢) > O such that
|®,(5) — @,(t)] < & whenever 0 <s, t < T and |s — t| < 6(¢). The same in-
equality, therefore, holds for @ when we impose the additional condition
s, te Q*. It follows that w is uniformly continuous on [0, T] ~ Q% and so has
an extension to a continuous function, also called w, on [0, T]; furthermore,
fow(s) — w(t)] < ¢ whenever 0 <5, ¢t < T and |s — t| < (¢). For n sufficiently
large, we have that whenever ¢ € [0, T, there is some r,e Q* with k < n and
|t — | < 6(e). For sufficiently large M > n, we have |@,(r;) — o(r;)| < & for
allj=0,1,...,nand m > M. Consequently,

[Dm(t) — OO < |Bp(t) = Bl + D) — @) + |0(r) — (1)
<3 Vm>M,0<t<T
We can make this argument for any T > 0, so {®,};%, converges uniformly

on bounded intervals to the function w e C[0, o). O

4.10 Theorem. A sequence {P,}x., of probability measures on (C[O0, ),
B(C[0, 0))) is tight if and only if

4.6) lim sup P,[o; |o(0)] > 4] = 0,
At n>1
4.7 lim sup P,[w; mT(w,8) >¢]=0; VT>0,¢>0.
840 n>1

PRrOOF. Suppose first that {P,}, is tight. Given n > 0, there is a compact
set K with P(K)> 1 — 5, for every n > 1. According to Theorem 4.9, for
sufficiently large 4 > 0, we have |w(0)| < 4 for all weK; this proves (4.6).
According to the same theorem, if T and ¢ are also given, then there exists d,
such that mT(w, ) < e for 0 < § < &, and w e K. This gives us (4.7).

Let us now assume (4.6) and (4.7). Given a positive integer T and # > 0,
we choose 4 > 0 so that
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sup P,[w; |o(0)] > 4] < /2™,

n>1

We choose 6, > 0,k =1, 2, ... such that

1
sup P, [a); mT(w,d,) > E] < nf2TrkH,

n>1

Define the closed sets

s

1
AT={w;|w(0)|SA,mT(w,ék)SE,kz 1,2,...}, A= Aq,

T

1

SO P(Ar) > 1 =Y 2 on/2T** = 1 — /2" and P,(4) > 1 — 1, for every n = 1.
By Theorem 4.9, 4 is compact, so {P,}, is tight. O

4.11 Problem. Let {X™}>_, be a sequence of continuous stochastic processes
X™ = {X!™;,0<t< oo} on(Q,Z,P), satisfying the following conditions:

(1) Sumel Engn)|v a M < 00,
(i) sup,; EIX™ — X2 < Crlt —s|'™%;, VT >0and0<s,t<T

for some positive constants a«, f, v (universal) and C; (depending on T > 0).
Show that the probability measures P,, £ P(X™)~!;m > 1 induced by these

processes on (C[0, c0), Z(C[0, 0))) form a tight sequence.

(Hint: Follow the technique of proof in the Kolmogorov-Centsov Theorem

2.8, to verify the conditions (4.6), (4.7) of Theorem 4.10).

4.12 Problem. Suppose {P,}<, is a sequence of probability measures on
(C[0, 0), (C[0, 00))) which converges weakly to a probability measure P.
Suppose, in addition, that {f,}>, is a uniformly bounded sequence of real-

valued, continuous functions on C[0, c0) converging to a continuous function
/. the convergence being uniform on compact subsets of C[0, c0). Then

4.8) lim J folw)dP,(w) = f f(w)dP(w).
C[0,) C10,)

n—o

4.13 Remark. Theorems 4.9, 4.10 and Problems 4.11, 4.12 have natural exten-
sions to C[0, c0)?, the space of continuous, R-valued functions on [0, o). The
proofs of these extensions are the same as for the one-dimensional case.

C. Convergence of Finite-Dimensional Distributions

Suppose that X is a continuous process on some (Q, %, P). For each w,
the function ¢+ X,(w) is a member of C[0, c0), which we denote by X (w).
Since #(C[0, o0)) is generated by the one-dimensional cylinder sets and X,()
is & -measurable for each fixed ¢, the random function X: Q — C[0, o) is
Z |B(C[0, c0))-measurable. Thus, if {X™}~  is a sequence of continuous

processes (with each X™ defined on a perhaps distinct probability space
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Q,, #,, P,)), we can ask whether X® 2 X in the sense of Definition 4.4. We
can also ask whether the finite-dimensional distributions of {X™};2, converge
to those of X, i.e., whether

n n n)y 2
(X, XD,. LX) S (X, X, X

The latter question is considerably easier to answer than the former, since
the convergence in distribution of finite-dimensional random vectors can be
resolved by studying characteristic functions.

For any finite subset {t,,...,,} of [0, o), let us define the projection mapping
: C[0, 0) > R? as

7[,1 ..... td(w) = (w(tl)v“,w(td))'

If the function f: R? — Ris bounded and continuous, then the composite gnap—
ping fom, .:C[0,0)— R enjoys the same properties; thus, X —— X
implies

Tty

lim E, f(X{7,..., X)) = llm E(fom,, . )(X™)

n—o0

=E(fom,,  )(X) = Ef(X,,..., X))

In other words, if the sequence of processes { X ™}, converges in distribution
to the process X, then all finite-dimensional dlstrlbutlons converge as well.
The converse holds in the presence of tightness (Theorem 4.15), but not in
general; this failure is illustrated by the following exercise.

4.14 Exercise. Consider the sequence of (nonrandom) processes

X" =nt- 1 10m@®) + (1 — n)- 120 1m(0);

0<t<oo,n>1landlet X, = 0,t > 0.Show that all finite-dimensional distri-
butions of X converge weakly to the corresponding finite-dimensional distri-
butions of X, but the sequence of processes {X™}>_, does not converge in
distribution to the process X.

4.15 Theorem. Let {X™}7_, be a tight sequence of continuous processes with
the property that, whenever 0 < t; < -++ < t, < o0, then the sequence of random
vectors {(X{",...,X")}w, converges in distribution. Let P, be the measure
induced on (C[0, 00), B(C[0, 0))) by X™. Then {P,}-, converges weakly to
a measure P, under which the coordinate mapping process W(w) £ w(t) on
C[0, c0) satisfies

X0, XV B W, W), 0<t, < <t,<o,d>L
Proor. Every subsequence {X™} of {X™} is tight, and so has a further
subsequence {X™} such that the measures induced on C[0, ) by {X™}
converge weakly to a probability measure P, by the Prohorov theorem 4.7. If
a different subsequence {X™} induces measures on C[0, o0) converging to
a probability measure Q, then P and Q must have the same finite-dimensional
distributions, i.e.,
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P[weC[0, ); (@t,),..., o(ts) € AT = Q[we C[0, 0); (o(ty),..., 0(t,)) € A,
0<t;<ty< - <t;<oo, AcBRY, d=>1

This means P = Q.

Suppose the sequence of measures {P,}=, induced by {X™}, did not
converge weakly to P. Then there must be a bounded, continuous function
f: C[0, ©) - R such that lim,_, | f(w)P,(dw) does not exist, or else this limit
exists but is different from [ f(w)P(dw). In either case, we can choose a
subsequence { P, }7, for which lim,_,, [ f(w)P,(dw) exists but is different from
j' f(w)P(dw). This subsequence can have no further subsequence {P,,};,“;l with
P, 3 P, and this violates the conclusion of the previous paragraph. |

We shall need the following result.

4.16 Problem. Let {X™}>,, {Y™}~,, and X be random variables with
values in a separable metric space (S, p); we assume that for each n > 1,
X™ and Y® are defined on the same probability space. If X™ 3 X and
p(X™, Y™) - 0 in probability, as n — oo, then Y® 3 X as n — oo.

D. The Invariance Principle and the Wiener Measure

Let us consider now a sequence {&;}2, of independent, identically distributed
random variables with mean zero and variance ¢2, 0 < 62 < 0, as well as
the sequence of partial sums S, =0, S, = Y %, §;, k > 1. A continuous-time
process Y = {Y;; t > 0} can be obtained from the sequence {S, };-, by linear
interpolation; i.e.,

(4.9) Y, = Spp + (¢ = [tDépger, t20,

where [t] denotes the greatest integer less than or equal to t. Scaling appro-
priately both time and space, we obtain from Y a sequence of processes {X™}:

1

o/n

(4.10) XM =

Y, t=>0.
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Note that with s=k/n and t = (k + 1)/n, the increment X — X =

l/af )&+ is independent of FX™ = a(&, ..., &,). Furthermore, X™ — X
has zero mean and variance t — s. This suggests that {X™; t > 0} is approxi-
mately a Brownian motion. We now show that, even though the random
variables ¢; are not necessarily normal, the central limit theorem dictates that
the limiting distributions of the increments of X™ are normal.

4.17 Theorem. With {X™} defined by (4.10) and 0 < t, <+ <ty < 0, we
have
X", X" 4 (B,,...,B,) asn— oo,
where {B,, #E; t > 0} is a standard, one-dimensional Brownian motion.
ProoF. We take the case d = 2; the other cases differ from this one only by
being notationally more cumbersome. Set s = t,, t = t,. We wish to show
(X, X™) 5 (B,, B,).

Since

1
X" — —=Sim| <

1
0-\/; = a‘ﬁlé[m]]-‘—ll,

we have by the Cebysev inequality,
1
&°n

il
as n — oo. It is clear then that
1

(Xgn)aX(")) - —(S sn 9S n )

-

so, by Problem 4.16, it suffices to show

X:(") —

1
S[en
U\/;lf[t]]

— 0 in probability,

1 2
—‘(S sn 9S n )-’(BS’B)
o \/’—1 [sn]> Ofen] t
From Problem 4.5 we see that this is equivalent to proving

1 [[sn]] I[tn]]
(Zg 5 a)w .B,—B),

o n \Jj=1 Jj= [[sn +1

The independence of the random variables {¢;}32, implies
7 I[snﬂ ] [en]
lim E[exp{ u Z &+ w > éj}]
n—oo \/_ nij= [sn]+1

iu [sn] [ [en]
@11) = lim E[exp{ 2 é}:l-lim E[exp {L 5 é,}],
n—oo n—oo g/ N j=[sn]+1
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provided both hmlts on the right-hand side exist. We deal with lim,_, -
Elexp{( m/of Y Js"l &;}1; the other limit can be treated similarly. Since

1 [[il]é \/; [sn]
o ni=1j og.\/|sn| i=

and, by the central limit theorem, (\/ /o\/[sn] )Z[[’"Il &; converges in distri-
bution to a normal random variable with mean zero and variance s, we have

. iu [sn] s
lim E [e‘)‘(‘p{ z & }] e 2,
n—w o

. iU [[tn]] 2
lim E[exp{ Y sfj}:l =g VI,
n—o a./n j= [sn]]+1

Substitution of these last two equations into (4.11) completes the proof. []

— 0 in probability,

Similarly,

Actually, the sequence {X™} of linearly interpolated and normalized random
walks in (4.10) converges to Brownian motion in distribution. For the tightness
required to carry out such an extension (recall Theorem 4.15), we shall need
two auxiliary results.

4.18 Lemma. Set S, =) %_, &;, where {{;}%2, is a sequence of independent,
identically distributed random variables, with mean zero and finite variance
62 > 0. Then, for any ¢ > 0,

— 1

lim lim - P|: max |§;| > sa\/;:l =
340 no O 1<j<[né]+1

Proor. By the central limit theorem, we have for each 6 >0 that

(1/o/[né] + 1)Spusp41 converges in distribution to a standard normal ran-

dom variable Z, whence (1/5/n6)S[,57+1 % 7. Fix 4> 0 and let {oc}i-, bea

sequence of bounded, continuous functions on R with ¢, | 1_o, _31014,00- WE
have for each i,

hm P[IS[n6]+1| > Ado/n ] < lim E@k( \//68[[n6]]+1> = E(pk(Z)

n—ao

Let k - oo to conclude
_ 1
4.12) 31_'12 P[|S[ns)+1| = A0/né] < P[|Z] 2 2] < /1_3E|Z|3’ A>0.

We now define t = min{j > 1;|S;| > soﬁ}. With 0 < 6 < £2/2, we have
(imitating the proof of the Kolmogorov inequality; e.g., Chung (1974), p. 116):
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(4.13) P[ max |S,.[>ea\/;?}

0<j<[né]+1

< P[ISpusperl = 0/ne — /20)]
[ne]
+ X PlISjtesl < 03/ne = /207 = 1Pz = /1.

But if © = j, then [Sp,sp44] < aﬁ(a — /26) implies [S; — Spu5741] > 0+/2n0.
By the Cebysev inequality, the probability of this event is bounded above by

LB — Sl =1 = m( S 2 )<L 1<y <]
[N . — = = s by n 0
oot T P T = =g s 0B A ) Sy PSS
Returning to (4.13), we may now write

P[ max |Sj|>sa\/;z]

0<j<[né]+1

< P[ISuspss| = 0/nle — /26)] + %P[‘L’ < [né]]

< P[ISpus141] = 04/nle — /20)] + %P[ max  |S;| > 80\/;],

0<j<[né]+1
from which follows
PI: max  [Sj| > aaﬁ] < 2P[|Spusye1| = 03/n(e — /20)].
0<j<[né]+1
Setting A = (¢ — 1/20)//d in (4.12), we see that
— 1 2./6
lim - P[ max  |S; > aaﬁ] g——f—-mzp,
0<j<[ns]+1 (e — /26)3
and letting 6 | O we obtain the desired result. O

n—o0 5

4.19 Lemma. Under the assumptions of Lemma 4.18, we have for any T > 0,

lim Enp[ max  [S;, — Sl > saﬁ] =0.
340 n-w 1<j<[no]+1
0<k<[nT]+1

PrROOF. For 0 <4 < T, let m = m(8) > 2 be the unique integer satisfying
T/m < 6 < T/(m — 1). Since

. [aT]+1 T

lim ———=— ,

o 0] +1 0 "

we have [nT] + 1 < ([nd] + 1)m for sufficiently large n. For such a large
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n, suppose |S;,, — S| > saﬁ for some k, 0 < k < [nT] + 1, and some j,
1 <j<[nd] + 1. There exists then a unique integer p, 0 < p < m — 1, such
that

([né] + Dp < k < ([nd] + )(p + 1).
There are two possibilities for k + j. One possibility is that
([no] + Dp <k +j<([né] + D(p + 1),

in which case either [S, — Sus)+1)pl > 380/n, or €lse [Ss; — Sipns)+1)pl >
1eo./n. The second possibility is that

([né] + D(p+ D) <k +j<([né] + D)(p + 2),

. . . )
in which case either |S, — Sgns)+1)pl > gaaﬁ, |Sns1+0p — Snel+ v+l >
Lea /n, or else ISqns1+1p+1) — Skasl > %ea\/ﬁ. In conclusion, we see that

{ max  [S;, — S| > aaﬁ}

1<j<[né]+1
0<k<[nT]+1

" 1
< U { max |Sppgnal+1) — Spna)+n)| > 58‘7\/;}
p=0

1<j<[né]+1

But
1
P max  [Sjipqns]+1) — Sp(no]+)| > 580'\/;
1<j<[[né]+1
1
= P[ max  |S| > —sa\/;}
1<j<[né]+1 3
and thus:

1

Pl: max  |Sj — Sl > sa\/;:l <(m+ 1)P[ max |§;| > —aaﬁ].
1<j<[né]+1 1<j<[né]+1 3
0<k<[nT]+1

Since m < (T/6) + 1, we obtain the desired conclusion from Lemma 4.18.

a

We are now in a position to establish the main result of this section, namely
the convergence in distribution of the sequence of normalized random walks
in (4.10) to Brownian motion. This result is also known as the invariance
principle.

4.20 Theorem (The Invariance Principle of Donsker (1951)). Let (Q, #, P) be
a probability space on which is given a sequence {&;}%, of independent, identi-
cally distributed random variables with mean zero and finite variance 6% > 0.
Define X™ = {X™; t > 0} by (4.10), and let P, be the measure induced by X™
on (C[0, o0), A(C[0, 0))). Then {P,}y, converges weakly to a measure P,,



2.5. The Markov Property 71

under which the coordinate mapping process W,(w) £ w(t) on C[0, o) is a
standard, one-dimensional Brownian motion.

PRrOOF. In light of Theorems 4.15 and 4.17, it remains to show that {X®™}2
is tight. For this we use Theorem 4.10, and since X = 0 a.s. for every n, we
need only establish, for arbitrary ¢ > 0 and T > 0, the convergence

(4.14) lim sup Pl: max | X" — X®"| > s:l =0.

340 n>1 |s—tf]<é
0<s,t<T
We may replace sup, ; in this expression by lim,_,,, since for a finite number
of integers n we can make the probability appearing in (4.14) as small as we
choose, by reducing 6. But

P[ max |X§")—X§"’|>3]=P[ max IYS—Y,I>80'\/;],

[s—t| <4 |s—t|<nd
0<s,t<T 0<s,t<nT
and
max |Y,—Y|< max |%,-Y|< max (S-S
|s—t| <nd |s—t] < [né]+1 1<j<[né]+1
O<st<nT 0<s,t<[nT]+1 0<k<[nT]+1

where the last inequality follows from the fact that Y is piecewise linear and
changes slope only at integer values of t. Now (4.14) follows from Lemma 4.19.

d

4.21 Definition. The probability measure P, on (C[0, o0), (C[0, ©))), under
which the coordinate mapping process W,(w) £ w(t),0 < t < o0, is a standard,
one-dimensional Brownian motion, is called Wiener measure.

4.22 Remark. A standard, one-dimensional Brownian motion defined on any
probability space can be thought of as a random variable with values in
C[0, o0); regarded this way, Brownian motion induces the Wiener measure
on (C[0, o), Z(C[0, c0))). For this reason, we call (C[0, o), Z(C[0, «)), P,),
where P, is Wiener measure, the canonical probability space for Brownian
motion.

2.5. The Markov Property

In this section we define the notion of a d-dimensional Markov process
and cite d-dimensional Brownian motion as an example. There are several
equivalent statements of the Markov property, and we spend some time
developing them.
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A. Brownian Motion in Several Dimensions

5.1 Definition. Let d be a positive integer and u a probability measure on
(R%, B(RY). Let B = {B,, #;t >0} be a continuous, adapted process with
values in R?, defined on some probability space (Q, #, P). This process is called
a d-dimensional Brownian motion with initial distribution p, if

() P[Boel'] = u(I), VT eZBR);

(i) for 0 < s < t, the increment B, — B, is independent of %, and is normally
distributed with mean zero and covariance matrix equal to (t — s)I;, where
I, is the (d x d) identity matrix.

If u assigns measure one to some singleton {x}, we say that B is a d-
dimensional Brownian motion starting at x.

Here is one way to construct a d-dimensional Brownian motion with
initial distribution p. Let X(w,) = w, be the identity random variable on
(R%, B(R?), ), and for each i =1, ..., d, let B = {B®, FEV; ¢t >0} be a
standard, one-dimensional Brownian motion on some (Q®, #®, P?). On the
product space

(Rd x Q) ..o % Q(d)’ Q(Rd)@)g;(l)@...@g:(d)’ U X P x .. x p(d)),

define
B(») £ X(wo) + (BV(,),..., B (w,)),

and set #, = #[. Then B = {B,, %;t > 0} is the desired object.

There is a second construction of d-dimensional Brownian motion with
initial distribution g, a construction which motivates the concept of Markov
family, to be introduced in this section. Let P? i =1, ..., d be d copies of
Wiener measure on (C[0, o0), Z(C[0, ©))). Then P° £ P x --- x PD js a
measure, called d-dimensional Wiener measure, on (C[0, )%, B(C[0, c0)%)).
Under P°, the coordinate mapping process B,(w) £ w(t) together with the
filtration {# [} is a d-dimensional Brownian motion starting at the origin. For
x € R%, we define the probability measure P* on (C[0, 0)?, #(C[0, ©0)?)) by

(5.1) P*(F) = P°(F — x), Fe®(C[O0, w)),

where F — x = {we C[0, 0)%; w(-) + xe F}. Under P*, B2 {B,, #F,t > 0}
is a d-dimensional Brownian motion starting at x. Finally, for a probability
measure u on (R, Z(R?)), we define P* on #(C[0, «0)%) by

(5:2) P¥(F) = J P*(F)u(dx).
Rd
Problem 5.2 shows that such a definition is possible.

5.2 Problem. Show that for each F e %(C[0, o)), the mapping x — P*(F) is
B(R*)/%([0, 1])-measurable. (Hint: Use the Dynkin System Theorem 1.3.)
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5.3 Proposition. The coordinate mapping process B = {B,, #2;t > 0} on
(C[0, )4, B(C[0, 0)%), P*) is a d-dimensional Brownian motion with initial
distribution p.

5.4 Problem. Give a careful proof of Proposition 5.3 and the assertions
preceding Problem 5.2.

5.5 Problem. Let {B, = (B{",...,B?), #;0<t< oo} be a d-dimensional
Brownian motion. Show that the processes

MOPABY _BO Z. 0<t<oo,l<i<d

are continuous, square-integrable martingales, with (MO, MY, = 16,; 1 <,
j < d. Furthermore, the vector of martingales M = (MY,..., M®) is inde-
pendent of %,.

5.6 Definition. Given a metric space (S, p), we denote by %(S)* the completion
of the Borel o-field %(S) (generated by the open sets) with respect to the
finite measure p on (S, %(S)). The universal o-field is %(S) £ (), %(S)*, where
the intersection is over all finite measures (or, equivalently, all probability
measures) u. A %(S)/%(R)-measurable, real-valued function is said to be
universally measurable.

5.7 Problem. Let (S, p) be a metric space and let f be a real-valued function
defined on S. Show that f is universally measurable if and only if for every
finite measure p on (S, 4(S)), there is a Borel-measurable function g,: § - R
such that u{xeS; f(x) # g,(x)} = 0.

5.8 Definition. A d-dimensional Brownian family is an adapted, d-dimensional
process B = {B,, #;t > 0} on a measurable space (, %), and a family of
probability measures {P*}, . ga, such that

(i) for each F e &, the mapping x — P*(F) is universally measurable;
(ii) for each xeRY, P*[B, = x] = 1;
(iii) under each P*, the process B is a d-dimensional Brownian motion
starting at x.

We have already seen how to construct a family of probability measures
{P*} on the canonical space (C[0, )%, Z(C[0, c0)%)) so that the coordinate
mapping process, relative to the filtration it generates, is a Brownian motion
starting at x under any P*. With & = %(C[0, c0)%), Problem 5.2 shows
that the universal measurability requirement (i) of Definition 5.8 is satisfied.
Indeed, for this canonical example of a d-dimensional Brownian family, the
mapping x — P*(F) is actually Borel-measurable for each F € #. The reason
we formulate Definition 5.8 with the weaker measurability condition is to
allow expansion of & to a larger o-field (see Remark 7.16).
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B. Markov Processes and Markov Families

Let us suppose now that we observe a Brownian motion with initial distribution
puptotimes, 0 < s < t. In particular, we see the value of B, which we call y.
Conditioned on these observations, what is the probability that B, is in
some set I' e Z(R?)? Now B, = (B, — B;) + B,, and the increment B, — B; is
independent of the observations up to time s and is distributed just as B,_;
is under P°. On the other hand, B; does depend on the observations; indeed,
we are conditioning on B, = y. It follows that the sum (B, — B;) + B, is
distributed as B,_,is under P*. Two points then become clear. First, knowledge
of the whole past up to time s provides no more useful information about B,
than knowing the value of B;; in other words,

(5.3) P*[B,eT|#] = P*[BeTl|B]], 0<s<tTecBR.
Second, conditioned on B, = y, B, is distributed as B,_; is under P’; i.e.,

(5.4 P*[BeTl|B,=y] = P[B,_,eT'], 0<s<t 'edR?.

5.9 Problem. Make the preceding discussion rigorous by proving the following.
If X and Y are d-dimensional random vectors on (Q, %, P), 4 is a sub-o-field
of #, X is independent of 4 and Y is ¥-measurable, then for every I' e Z(R?):

(5.5) P[X+Yel'|9]=P[X + Yel'|Y], as. P;
(56) P[X+Yel'lY=y]=P[X +yel], forPY'-ae yeR?

in the notation of (4.2).

5.10 Definition. Let d be a positive integer and p a probability measure on
(R, #(R%). An adapted, d-dimensional process X = {X,, #;t >0} on some
probability space (Q,.#,P*) is said to be a Markov process with initial
distribution p if

(i) P“[XoeT] = pu(I), VI e B(RY);
(i) fors, t > 0 and I'e Z(RY),

PULX €T %] = P[X,,eT|X,], P*as.

Our experience with Brownian motion indicates that it is notationally and
conceptually helpful to have a whole family of probability measures, rather
than just one. Toward this end, we define the concept of a Markov family.

5.11 Definition. Let d be a positive integer. A d-dimensional Markov family
is an adapted process X = {X,, %;t > 0} on some (Q, #), together with a
family of probability measures { P*}, .gs On (Q, #), such that

(@) for each F € #, the mapping x — P*(F) is universally measurable;
(b) P*[X, =x]=1,VxeRY%
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(c) for xeR?, s,t > 0 and I'e BA(RY),
P*[X,,,eT|#] = P*[X,,,eT|X,], P*as;
(d) for xeR?, s,t > 0 and ' e A(R?),
P[X,;;eT|X,=y] = P’[X,eI"], P*X;'-ae.y
in the notation of (4.2).

The following statement is a consequence of Problem 5.9 and the discussion
preceding it.

5.12 Theorem. A d-dimensional Brownian motion is a Markov process. A
d-dimensional Brownian family is a Markov family.

C. Equivalent Formulations of the Markov Property

The Markov property, encapsulated by conditions (c) and (d) of Definition 5.11,
can be reformulated in several equivalent ways. Some of these formulations
amount to incorporating (c) and (d) into a single condition; others replace
the evaluation of X at the single time s + ¢ by its evaluation at multiple times
after s. The bulk of this subsection presents those formulations of the Markov
property which we shall find most convenient in the sequel.

Given an adapted process X = {X,, %;t > 0} and a family of probability
measures {P*},.grs On (Q, %), such that condition (a) of Definition 5.11 is
satisfied, we can define a collection of operators {U, }, -, which map bounded,
Borel-measurable, real-valued functions on R? into bounded, universally
measurable, real-valued functions on the same space. These are given by

(5.7 (U.f)(x) & EX(X,).

In the case where fis the indicator of " € #(R?), we have E*f(X,) = P*[X,eI],
and the universal measurability of U, f follows directly from Definition 5.11 (a);
for an arbitrary, Borel-measurable function f, the universal measurability of
U, f is then a consequence of the bounded convergence theorem.

5.13 Proposition. Conditions (c) and (d) of Definition 5.11 can be replaced by:
(e) For xeR% s,t>0and T e AR,

P[X,..eT|#] = (U1)(X,), P-as.

PrOOF. First, let us assume that (c), (d) hold. We have from the latter:
P*[X,.,eT|X, = y] = (Ulp)(y) for P*X;'-ae. ye R

If the function a(y) £ (U,15)(y): R? = [0, 1] were #(R?)-measurable, as is the
case for Brownian motion, we would then be able to conclude that, for all
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xeR%, s>0: P*[X,,,elX,] =a(X,), as. P*, and from condition (c):
P*[X,,,eT| %] = a(X,), a.s. P*, which would then establish (e).

However, we only know that U,1.(-) is universally measurable. This means
(from Problem 5.7) that, for given s, t > 0, x e RY, there exists a Borel-measurable
function g: R? - [0, 1] such that

(5.8) (U1p)(y) = g(y), for P*X '-ae. yeR?,
whence
(5.9) (U 1) (X,) = g(X,), as. P~

One can then repeat the preceding argument with g replacing the function a.
Second, let us assume that (e) holds; then for any given s,t > 0 and x € R?,
(5.9) gives

(5.10) P*[X,.;eT|%] =g(X,), as.P~

It follows that P*[X,,,eT'|%#,] has a ¢(X;)-measurable version, and this
establishes (c). From the latter and (5.10) we conclude

P[X,,s€T|X,=y] =g(y) for P*X'-ae. yeRY
and this in turn yields (d), thanks to (5.8). d

5.14 Remark on Notation. For given w € Q, we denote by X, .(w) the function
t+— X, (w). Thus, X, . is a measurable mapping from (Q, %) into ((R?)[* =,
B((RHO=)), the space of all R¥-valued functions on [0, c0) equipped with
the smallest o-field containing all finite-dimensional cylinder sets.

5.15 Proposition. For a Markov family X, (Q, ), { P*} < pa, we have:
(¢') For xeR% s >0 and F € B((R*)1%®),
P*[X,,.€eF|#] = P*[X,,.€eF|X,], P*as;
(d") For xeR?% s > 0 and F e B((R%)*®),
P[X,, €F|X,=y]=P[X. eF], P*X,'-ae.y.
(Note: If T e #(R?) and F = {we(R*)\*®; w(t)eT}, for fixed ¢ = 0, then (c')
and (d’) reduce to (c) and (d), respectively, of Definition 5.11.)

PROOF. The collection of all sets F e Z((R?)[*®) for which (¢’) and (d’) hold
forms a Dynkin system; so by Theorem 1.3, it suffices to prove (c¢’) and (d')
for finite-dimensional cylinder sets of the form

F = {we®R)"; w(ty)el,, ..., ot,_1)el,_, o(t,)eT,},

where 0 =ty <t, < - <t, I;eBR?),i=0,1,...,n and n > 0. For such
an F, condition (¢’) becomes
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(5.11) P [X;el, ..., X5y, €l Xo € L]
= P [X;ely,..., Xo,, €T, Xy €| X,], Pras.

We prove this statement by induction on n. For n = 0, it is obvious. Assume
it true for n — 1. A consequence of this assumption is that for any bounded,
Borel-measurable ¢: R — R,

(5.12) E*[o(X,, ..., Xour, JIF] = E*[0(X,, ..., Xsi, )IX,], PF-as.
Now (c) implies that
(513)  P[X.eTl,, ..., X5, €l,-y, Xy €LIZ]

= E*[1ix,cr..... xm"_ler,,_,}P (Xt €Ll Fotr, 11 F]

= E* [Mx,er0Xpre,_, T} P [ Xt € Tl X, 1 F -

Any o(Xy,,_,)-measurable random variable can be written as a Borel-
measurable function of Xy, , (Chung (1974), p. 299), and so there exists a
Borel-measurable function g : R — [0, 1], such that P¥[ Xy, €| X5y, ] =
g(XS+t,. 1) a.s. P*. Setting ¢(X(), y Xn— l) lro(-xO) ll'n 1(xn l)g(xn 1) we
can use (5.12) to replace &, by o( ) In (5.13) and then, reversing the pre-
vious steps, to obtain (5.11). The proof of (d’) is similar, although notation-
ally more complex. O

It happens sometimes, for a given process X = {X,, %; t > 0} on a measur-
able space (Q, &), that one can construct a family of so-called shift operators
0: Q- Q, s > 0, such that each 6, is # /% -measurable and

(5.14) X1 (0) = X,0,0); VweQ, s,t=>0.

The most obvious examples occur when Q is either (R?)[>* of Remark 5.14
or C[0, 0)? of Remark 4.13, % is the smallest o-field containing all finite-
dimensional cylinder sets, and X is the coordinate mapping process X,(w) =
(t). We can then define 6,0 = w(s + ), i.e.,

(5.15) b)) =w(s+1), t=0.
)
w 0w
I: s+t t ~
AV 0




78 2. Brownian Motion

When the shift operators exist, then the function X, .(w) of Remark 5.14
is none other than X (,w), so {X,,.€ F} = 6;'{X eF}. As F ranges over
B(RY)0-2)), {X € F} ranges over ZX. Thus, (c') and (d’) can be reformulated
as follows: for every Fe #X and s > 0,

) P*[6;'F|#] = P*[6;'F|X,], P*as.
d”) P*[0;'F|X, = y] = P’[F], P*X '-ae.y.

In a manner analogous to what was achieved in Proposition 5.13, we can
capture both (c”) and (d”) in the requirement that for every Fe #X and s > 0,

(") P*[6;'F|#] = P*:(F), P*as.

Since (¢”) is often given as the primary defining property for a Markov
family, we state a result about its equivalence to our definition.

5.16 Theorem. Let X = {X,, %, t > 0} be an adapted process on a measurable
space (Q, F), let {P*},.ra be a family of probability measures on (Q, ), and
let {6,}>0 be a family of % |F -measurable shift-operators satisfying (5.14).
Then X, (Q, F), { P*}, crais a Markov family if and only if (a), (b), and (¢”) hold.

5.17 Exercise. Suppose that X, (Q, &%), {P*}, g« is a Markov family with
shift-operators {6,},-,. Use (c”) to show that for every xeR?, s > 0, Ge %,
and Fe #X,

") P*[G n 6;'F|X,] = P*[G|X,]P*[6;'F|X,], P*as.

We may interpret this equation as saying the “past” G and the “future” 6, F
are conditionally independent, given the “present” X,. Conversely, show that
(c”) implies (c”).

We close this section with additional examples of Markov families.

5.18 Problem. Suppose X = {X,, #,; t > 0} is a Markov process on (Q, #, P)
and ¢: [0, 0) » R?and ¥: [0, o) —» L(R?, R?), the space of linear transforma-
tions from R? to R?, are given (nonrandom) functions with ¢(0) = 0 and ¥(¢)
nonsingular for every t > 0. Set Y, = ¢(t) + ¥(¢)X,. Then Y = {Y,, #; t > 0}
is also a Markov process.

5.19 Definition. Let B = {B,, %, t > 0}, (, #), {P*},ra be a d-dimensional
Brownian family. If p€ R? and ¢ € L(R?, R?) are constant and ¢ is nonsingular,
then with Y, 2 ur + oB,, we say Y = {Y,, #; t > 0}, (Q, F), {P° *},cpais a
d-dimensional Brownian family with drift u and dispersion coefficient o.

This family is Markov. We may weaken the assumptions on the drift and
diffusion coefficients considerably, allowing them both to depend on the
location of the transformed process, and still obtain a Markov family. This is
the subject of Chapter 5 on stochastic differential equations; see, in particular,
Theorem 5.4.20 and Remark 5.4.21.
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5.20 Definition. A Poisson family with intensity A > Ois a process N = {N,, #;
t > 0} on a measurable space (2, #) and a family of probability measures
{P*}, R, such that

(i) for each Ee &, the mapping x — P*(E) is universally measurable;
(i) foreach xeR, P*[N,=x] =1;
(iii) under each P*, the process {N, = N, — N,, % t > 0} is a Poisson process
with intensity A.

5.21 Exercise. Show that a Poisson family with intensity 4 > 0 is a Markov
family. Show furthermore that, in the notation of Definition 5.20 and under
any P?, the o-fields #Y and %, are independent.

Standard, one-dimensional Brownian motion is both a martingale and a
Markov process. There are many Markov processes, such as Brownian motion
with nonzero drift and the Poisson process, which are not martingales. There
are also martingales which do not enjoy the Markov property.

5.22 Exercise. Construct a martingale which is not a Markov process.

2.6. The Strong Markov Property and the
Reflection Principle

Part of the appeal of Brownian motion lies in the fact that the distribution of
certain of its functionals can be obtained in closed form. Perhaps the most
fundamental of these functionals is the passage time T, to a level b e R, defined
by

6.1) T,(w) = inf{t > 0; B,(w) = b}.

We recall that a passage time for a continuous process is a stopping time
(Problem 1.2.7).

We shall first obtain the probability density function of T, by a heuristic
argument, based on the so-called reflection principle of Désiré André (Lévy
(1948), p. 293). A rigorous presentation of this argument requires use of
the strong Markov property for Brownian motion. Accordingly, after some
motivational discussion, we define the concept of a strong Markov family and
prove that any Brownian family is strongly Markovian. This will allow us
to place the heuristic argument on firm mathematical ground.

A. The Reflection Principle

Here is the argument of Désiré André. Let {B,, #,;0 <t < oo} be a standard,
one-dimensional Brownian motion on (Q, #, P°). For b > 0, we have
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P°[T, <t] = P°[T, <t B,>b]+ P°[T, <t, B, <b].

Now P°[T, <t, B, > b] = P°[B, > b]. On the other hand, if T, <t and
B, < b, then sometime before time ¢ the Brownian path reached level b, and
then in the remaining time it traveled from b to a point c less than b. Because
of the symmetry with respect to b of a Brownian motion starting at b, the
“probability” of doing this is the same as the “probability” of traveling from
b to the point 2b — c. The heuristic rationale here is that, for every path
which crosses level b and is found at time ¢ at a point below b, there is a
“shadow path” (see figure) obtained from reflection about the level b which
exceeds this level at time t, and these two paths have the same “probability.”
Of course, the actual probability for the occurrence of any particular path is
zero, so this argument is only heuristic; even if the probability in question were
positive, it would not be entirely obvious how to derive the type of “symmetry”
claimed here from the definition of Brownian motion. Nevertheless, this
argument leads us to the correct equation

P°[T, <t,B,<b]=P°[T,<t,B,>b] = P°[B, > b],

Shadow path
2b—ct o
", r"
[
rl
b /}"‘/\5
\_}'\-J‘\.‘ J
r B
v |
T, t
which then yields
0 0 2 “ —x2/2
6.2) P°[T, <t] =2P°[B,>b]= |- e dx.
T Jpe-112
Differentiating with respect to t, we obtain the density of the passage time
b 2
(6.3) P°[T,edt] = —l——|——e"’ 2tde; > 0.
2nt3

The preceding reasoning is based on the assumption that Brownian motion
“starts afresh” (in the terminology of It6 & McKean (1974)) at the stopping
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time T,, i.e., that the process {B,.r, — Br,; 0 <t < oo} is Brownian motion,
independent of the o-field 47, . If T, were replaced by a nonnegative constant,
it would not be hard to show this; if T; were replaced by an arbitrary random
time, the statement would be false (cf. Exercise 6.1). The fact that this “starting
afresh” actually takes place at stopping times such as T, is a consequence of
the strong Markov property for Brownian motion.

6.1 Exercise. Let {B,, #;t > 0} be a standard, one-dimensional Brownian
motion. Give an example of a random time S with P[0 < S < o0] = 1, such
that with W, £ Bg,, — B, the process W = {W,, #; t > 0} is not a Brownian
motion.

B. Strong Markov Processes and Families

6.2 Definition. Let d be a positive integer and u a probability measure on
(R?, B(R?). A progressively measurable, d-dimensional process X = {X,, %;
t > 0} on some (Q, #, P*) is said to be a strong Markov process with initial
distribution u if

(i) P‘[Xo€T] = u(I), VL e B[R
(ii) for any optional time S of {#,}, t > 0 and I' e Z(R?),
P*[Xg,, €T F,] = P[ X5, €T Xs], P*-as.on{S < oo}.

6.3 Definition. Let d be a positive integer. A d-dimensional strong Markov
family is a progressively measurable process X = {X,, %;t > 0} on some
(Q, #), together with a family of probability measures {P*}, . ga On (Q, %),
such that:

(a) for each F € #, the mapping x — P*(F) is universally measurable;
(b) P[X, =x] =1,VxeR
(c) for xeR?% t > 0, I' e A(R?), and any optional time S of {Z},

P [Xs., €l %.,] = P[Xs,,€TXs], P*as.on{S< oo};
(d) for xeR%, t > 0, ' e A(R?), and any optional time S of {%,},

P*[Xs.,€T|Xg = y] = PP[X,e], P*Xg'-ae.y.

6.4 Remark. In Definitions 6.2, 6.3, {Xs,,eI'} £ {S < 0, X5,,€I'} and
P*Xs'(R?) = P*(S < o). The probability appearing on the right-hand side
of Definition 6.2(ii) and Definition 6.3(c) is conditioned on the o-field gener-
ated by X as defined in Problem 1.1.17. The reader may wish to verify in this
connection that for any progressively measurable process X,

P*[Xs,, €T %, ] = P*[X5.,€T|Xs]1 =0, Pt-as.on{S = o0},

and so the restriction S < oo in these conditions is unnecessary.
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6.5 Remark. An optional time of {%} is a stopping time of {#, } (Coroliary
1.2.4). Because of the assumption of progressive measurability, the random
variable X appearing in Definitions 6.2 and 6.3 is %5, -measurable (Pro-
position 1.2.18). Moreover, if S is a stopping time of {#}, then Xy is Fs-
measurable. In this case, we can take conditional expectations with respect to
Zs on both sides of (c) in Definition 6.3, to obtain

P*[Xs,,€T| %] = P*[Xs,,€|Xs], P*as.on{S < oo}.

Setting S equal to a constant s > 0, we obtain condition (c) of Definition 5.11.
Thus, every strong Markov family is a Markov family. Likewise, every strong
Markov process is a Markov process. However, not every Markov family
enjoys the strong Markov property; a counterexample to this effect, involving
a progressively measurable process X, appears in Wentzell (1981), p. 161.

Whenever S is an optional time of {%} and u > 0, then § + u is a stopping
time of {#,} (Problem 1.2.10). This fact can be used to replace the constant s
in the proof of Proposition 5.15 by the optional time S, thereby obtaining
the following result.

6.6 Proposition. For a strong Markov family X = {X,, #;t >0}, (Q, %),
{P*}cra, we have

(¢) for xeR% Fe B(RY)*=), and any optional time S of {Z},
P*[Xs,.€F|%,] = P[Xss.€ FIXs), Pas.on{S< ol;
(d) for xeR%, F e B((RY)**)), and any optional time S of {#,},
P [Xs,.€F|Xs = y] = P[X.€F], P*Xs'-ae.y.

Using the operators {U, },, in (5.7), conditions (c) and (d) of Definition 6.3
can be combined.

6.7 Proposition. Let X = {X,, #,;t > 0} be a progressively measurable process
on (Q, F), and let {P*}, pa be a family of probability measures satisfying (a)
and (b) of Definition 6.3. Then X, (Q, F), {P*},cra is strong Markov if and
only if for any {Z,}-optional time S, t > 0, and x € R%, one of the following
equivalent conditions holds:

(e) for any T e B(R?),
P [ X, €%, ] = (U 1) (Xs), P*as.on{S < oo};
(¢') for any bounded, continuous f: R? —» R,
E [ (X540 Fs+] = (U, f)(X5), P*as.on{S < 0}.
ProOOF. The proof that (e) is equivalent to (c) and (d) is the same as the proof

of the analogous equivalence for Markov families given in Proposition 5.13.
Since any bounded, continuous real-valued function on R? is the pointwise
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limit of a bounded sequence of linear combinations of indicators of Borel sets,
(¢') follows from (e) and the bounded convergence theorem. On the other hand,
if (¢') holds and I" = R? is closed, then 1 is the pointwise limit of {f,}r;,
where f,(x) = [1 — np(x,T)] v 0and p(x,T) = inf{|x — y|l; yeT'}. Each f, is
bounded and continuous, so (e) holds for closed sets I'. The collection of sets
I € #(R?) for which () holds forms a Dynkin system, so, by Theorem 1.3, (¢)
holds for all I' e Z(R?). O

6.8 Remark. If X = {X,, #;t >0}, (Q F), {P*},.ra is a strong Markov
family and yu is a probability measure on (R? %(R?)), we can define a proba-
bility measure P* by (5.2) for every F € #, and then X on (Q, #, P*) is a strong
Markov process with initial distribution u. Condition (ii) of Definition 6.2 can
be verified upon writing condition (e) in integrated form:

J (U1r)(X5)dP* = P*[ X5, €I, F], FeZs,,
F

and then integrating both sides with respect to u. Similarly, if X, (Q, %),
{P*}, cra is a Markov family, then X on (Q, #, P*) is a Markov process with
initial distribution pu.

It is often convenient to work with bounded optional times only. The
following problem shows that stating the strong Markov property in terms
of such optional times entails no loss of generality. We shall use this fact in
our proof that Brownian families are strongly Markovian.

6.9 Problem. Let S be an optional time of the filtration {%,} on some (Q, &, P).

(i) Show that if Z, and Z, are integrable random variables and Z, = Z,
on some g, -measurable set A4, then

E[Z,|%5.] = E[Z,|%s.], as.onA.
(i) Show under the conditions of (i) that if s is a positive constant, then
E[Z,|%5,] = E[Z)|Fsr9+), as.on{S <s}nA.

(Hint: Use Problem 1.2.17(i)).
(iii) Show that if (e) (or (¢’)) in Proposition 6.7 holds for every bounded
optional time S of {#,}, then it holds for every optional time.

Conditions (e) and (¢') are statements about the conditional distribution of
X at a single time S + ¢ after the optional time S. If there are shift operators
{6,}> o satisfying (5.14), then for any random time S we can define the random
shift 6s: {S < 0} - Q by

6s=16, on{S=s}.

In other words, 0 is defined so that whenever S(w) < oo, then
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XS(w)ﬂ(w) = Xx(es(w))

In particular, we have {X;, € E} = 65" {X. € E}, and () and (d’) are, respec-
tively, equivalent to the statements: for every x e R?, F e #X, and any optional
time S of {#},

(c”) P*[65'F|%5,] = P*[65'F|Xs], P*as.on{S < oo};
d”) P*[65'F|Xs = y] = P*(F), P*X;5'-ae. ).
Both (c”) and (d”) can be captured by the single condition:
(¢”) for xeRY, Fe #%, and any optional time S of {#,},
P*[65'F|%,] = P¥s(F), P*as.on {S < «}.
Since (¢”) is often given as the primary defining property for a strong

Markov family, we summarize this discussion with a theorem.

6.10 Theorem. Let X = {X,, #,;t > 0} be a progressively measurable process
on (Q, F), let {P*},.pa be a family of probability measures on (Q, F), and let
{6,}s> 0 be a family of F |F -measurable shift operators satisfying (5.14). Then
X,(Q, %), {P*}, cpais astrong Markov family if and only if (a), (b), and (¢") hold.

6.11 Problem. Show that (¢”) is equivalent to the following condition:

(¢”) For all x € R, any bounded, % X-measurable random variable Y, and
any optional time S of { %}, we have
E*[Yo#05|%s,] = E*s(Y), P*as.on {S < oo}.

(Note: If we write this equation with the arguments filled in, it becomes

E*[Y 0 05| 5, 1 () = j Y(' )P (dw'), P*-ae. we{S < oo},
Q

where (Y o 05)(@") £ Y (05, (@")).)

C. The Strong Markov Property for Brownian Motion

The discussion on the strong Markov property for Brownian motion will
require some background material on regular conditional probabilities.

6.12 Definition. Let X be a random variable on a probability space (Q, &, P)
taking values in a complete, separable metric space (S, 4(S)). Let ¥ be a
sub-o-field of &. A regular conditional probability of X given % is a function
Q:Q x %(S) - [0, 1] such that

(i) for each weQ, Q(w; ) is a probability measure on (S, %(S)),
(ii) for each E € #(S), the mapping w+— Q(w; E) is ¥-measurable, and
(i) for each E€ #(S), P[X € E|9](w) = Q(w; E), P-ae. w.
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Under the conditions of Definition 6.12 on X, (, #, P), (S, %(S)), and %, a
regular conditional probability for X given % exists (Ash (1972), pp. 264-265,
or Parthasarathy (1967), pp. 146—150). One consequence of this fact is that
the conditional characteristic function of a random vector can be used to
determine its conditional distribution, in the manner outlined by the next
lemma.

6.13 Lemma. Let X be a d-dimensional random vector on (Q, %, P). Suppose
% is a sub-o-field of & and suppose that for each w€e, there is a function
¢(w; -): R - C such that for each ue R,

o(w;u) = E[e"™®|9](w), P-ae. .

If, for each w, p(w; *) is the characteristic function of some probability measure
P° on (R4, A(RY)), i.e.,

o) = f e!2)Po(dx),
R4

where i = ./ —1, then for each T € B(R?), we have
P[Xel'|9](w) = P°(I'), P-ae.o.

PRrOOF. Let Q be a regular conditional probability for X given ¢, so for each
fixed u e R? we can build up from indicators to show that

(6.4) o(w;u) = E[e/*®|9])(w) = J e'“¥Q(w;dx), P-ae. .
R4

The set of @ for which (6.4) fails may depend on u, but we can choose a
countable, dense subset D of R? and an event Qe % with P(Q) = 1, so that
(6.4) holds for every weQ and ue D. Continuity in u of both sides of (6.4)
allows us to conclude its validity for every w e and ue R%. Since a measure
is uniquely determined by its characteristic function, we must have P® =
Q(w; *) for P-a.e. w, and the result follows. a

Recall that a d-dimensional random vector N has a d-variate normal
distribution with mean ueR? and (d x d) covariance matrix X if and only if
it has characteristic function

(6.5) Ee'®N) = pithm=@In2. 4 R4,

Suppose B = {B,, #;t > 0}, (&), {P*},cra is a d-dimensional Brownian
family. Choose u e R? and define the complex-valued process

t
M, £ exp [i(u, B) + 3 ||u||2], t>0.

We denote the real and imaginary parts of this process by R, and I, respectively.
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6.14 Lemma. For each x € R?, the processes {R,, #;t > 0} and {I,, #;t > 0}
are martingales on (Q, &, P%).

ProOF. For 0 < s < t, we have

E[M,| 7, ]—E"[Mexp(z(uB B) + 2S|[u||2>

%]

= M, E* [exp (i(u, B, — By + t ; > ||u||2>] =M,

where we have used the independence of B, — B,and %, as well as (6. 5) Taking
real and imaginary parts, we obtain the martingale property for {R,, %; t > 0}
and {I,, #;t > 0}. O

6.15 Theorem. A d-dimensional Brownian family is a strong Markov family.
A d-dimensional Brownian motion is a strong Markov process.

PrOOF. We verify that a Brownian family B = {B,, %, t > 0},(Q, %), {P*}cpa
satisfies condition (e) of Proposition 6.7. Thus, let S be an optional time of
{#,}. In light of Problem 6.9, we may assume that S is bounded. Fix xe R%.
The optional sampling theorem (Theorem 1.3.22 and Problem 1.3.23 (i)
applied to the martingales of Lemma 6.14 yields, for P*-a.e. weQ:

E*[exp(i(u, Bs+,))| Fs+ 1 () = exp [i(u, Bs () (@) — % [[ull 2]-

Comparing this to (6.5), we see that the conditional distribution of B, given
Zs.+, is normal with mean B, (w) and covariance matrix tl,. This proves (e).
O

We can carry this line of argument a bit further to obtain a related result.

6.16 Theorem. Let S be an a.s. finite optional time of the filtration {Z } for the
d-dimensional Brownian motionB {B,, #;t > 0}. Then with W, £ Bg,, — B,
the process W = {W,, #”; t > 0} is a d-dimensional Brownian motion, indepen-
dent of Fs..

Proor. We show that for every n>1,0<t, <--<t,< oo, and uy, ...,
u,€R?, we have as. P:

n n 1
(6.6) E|:exp <i Y (e W, —W,_ ,)> 375+j' =11 exP[—z(tk - tk—l)l'”k'lz];
k=1 k=1

thus, according to Lemma 6.13 and (6.5), not only are the increments
{W, — W,_, }i=1 independent normal random vectors with mean zero and
covariance matrices (t, — t,_,)I,;, but they are also independent of the o-field
Zs .. This substantiates the claim of the theorem.
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We prove (6.6) for bounded, optional times S of {#,}; the argument given
in Solution 6.9 can be used to extend this result to a.s. finite S. Assume (6.6)
holds for some n, and choose 0 < t, < - <'t, < t,,,. Applying the equality
in the proof of Theorem 6.15 to the optional time S + ¢,, we have

67)  E{expliltyr, Wi, — W)l Fgarys}
= E{exp[i(un+l’ BS+:,M)]ig'.(s+:,,)+} “expl— i1, BS+:,,)]

= exp[_%(tn+l - tn)”un+1”2], P-as.

]

(e, Wi, — W,,(_l)>

Therefore,

n+1
E[exp (i kzl (uy, W, — Wtu-))

- | exp

" E{exp(i(ity4;, W... — VV:,,))|ZS+:,,)+}

=
A=

-

1 n
= exp[_i(tn+l - tn)”un+1”2:| EI:exp <l Z (uk’ VVtk - VVtk_l)>
k=1

]

n+1

1
= CXP[_E(tk - tk—l)”uknz]’ P-as,

k=1

which completes the induction step. The proof that (6.6) holds for n =1 is
obtained by setting ¢, = 0 in (6.7). (]

In order to present a rigorous derivation of the density (6.3) for the passage
time T, in (6.1), a slight extension of the strong Markov property for right-
continuous processes will be needed.

6.17 Proposition. Let X = {X,, #;t > 0}, (Q, F), { P*} . ra be a strong Markov
family, and the process X be right-continuous. Let S be an optional time of {#,}
and T an g, -measurable random time satisfying T(w) = S(w) for all weQ.
Then, for any x € R and any bounded, continuous f: R? - R,

(6.8) E*[f(X1)|Fs:+1(®) = (Ury-si ) Xsw(@)), P*-ae we{T < oo}
ProOOF. Forn > 1, let
S+ %([[2”(T -] +1), if T < oo,

o, if T= o0,
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so that T, =S + k27" when (k — 1)27"< T — S < k2™". We have T, | T on
{T < oo}. From (¢') we have for k > 0,

E[f(Xs4k2-m)|Fs:+] = (Ugen f)(Xs), P*-as.on {S < oo},
and Problem 6.9 (i) then implies

E"[f(XT")[ﬁs+](w) = (UT,,(w)—S(w)f)(XS(w)(w))’ P*ae we{T < ©}.

The bounded convergence theorem for conditional expectations and the right-
continuity of X imply that the left-hand side converges to E*[ f(X7)| %s+](®)
as n — 0. Since (U, f)(y) = E*f(X,) is right-continuous in ¢ for every ye R,
the right-hand side converges to (Ur,)-siw)f ) (Xs@w)(@))- O

6.18 Corollary. Under the conditions of Proposition 6.17, (6.8) holds for every
bounded, #(R?)/B(R)-measurable function f. In particular, for any T € B(R?)
we have for P*-a.e. we{T < oo}:

P [Xrel'| %, ](w) = (Ur(o)-ste) I1) (X (@) (@)).

PRrROOF. Approximate the indicator of a closed set I' by bounded, continuous
functions as in the proof of Proposition 6.7. Then prove the result for any
I' e #(R?%), and extend to bounded, Borel-measurable functions. O

6.19 Proposition. Let {B,, %, t > 0} be a standard, one-dimensional Brownian
motion, and for b # 0, let T, be the first passage time to b as in (6.1). Then T,
has the density given by (6.3).

PRrooF. Because { — B,, %; t > 0} is also a standard, one-dimensional Brownian
motion, it suffices to consider the case b > 0. In Corollary 6.18 set S = T,

L if S <t,

Tl ifS>1,
and I' = (—o0, b). On the set {T < oo} = {S < t}, we have Bg,)(w) = b and
(UT(w)—S(w)IF)(BS(w)(w)) = % Therefore,

1
P%R<n&<ﬂ=j P°[B;eT|#;.]dP° = S P°[T; <1]

{Ty<t}
It follows that
P°[T, <t] = P°[T, <t B,>b] + P°[T, <t, B, <b]
= P°[B, > b] + {P°[T, < 1],
and (6.2) is proved. |

6.20 Remark. It follows from (6.2), by letting t — co, that the passage times
are almost surely finite: P°[T, < c0] = 1.
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6.21 Problem. Recall the notions of Poisson family and Poisson process from
Definitions 5.20 and 1.3.3, respectively. Show that the former is a strong
Markov family, and the latter is a strong Markov process.

2.7. Brownian Filtrations

In Section 1 we made a point of defining Brownian motion B = {B,, % t > 0}
with a filtration {%,} which is possibly larger than {#2} and anticipated
some of the reasons that mandate this generality. One reason is related to
the fact that, although the filtration {#?} is left-continuous, it fails to be
right-continuous (Problem 7.1). Some of the developments in later chapters
require either right or two-sided continuity of the filtration {}, and so in
this section we construct filtrations with these properties.

Let us recall the basic definitions from Section 1.1. For a filtration {#; t > 0}
on the measurable space (Q, F), we set F, = (o0 F4e fOor t 20, F_ =
0((Js<t #) for t > 0, Z,_ = %, and £, = 6(| ),»0 %) We say that {F} is
right- (respectively, left-) continuous if #,, = %, (respectively, #_ = %) holds
for every 0 <t < co. When X = {X,, #*;t > 0} is a process on (Q, #), then
left-continuity of {#X} at some fixed ¢ > 0 can be interpreted to mean that
X, can be discovered by observing X;, 0 < s < t. Right-continuity means
intuitively that if X has been observed for 0 < s < t, then nothing more can
be learned by peeking infinitesimally far into the future. We recall here that
FX=0(X;0<s<1)

7.1 Problem. Let {X,, #X;0 <t < o0} be a d-dimensional process.

(i) Show that the filtration {#X } is right-continuous.
(i) Show that if X is left-continuous, then the filtration {#X} is left-
continuous.
(iii) Show by example that, even if X is continuous, {#X} can fail to be
right-continuous and {#X} can fail to be left-continuous.

We shall need to develop the important notions of completion and augmen-
tation of o-fields, in the context of a process X = {X,, #*;0 <t < o0} with
initial distribution u on the space (Q,#ZX, P*), where P*[X,el] = u(D);
I' e #(R?). We start by setting, for 0 < t < oo,

NEE{F < Q;3GeFX with F < G, P/(G) = 0}.
A% will be called “the collection of P*-null sets” and denoted simply by A

7.2 Definition. For any 0 < ¢t < oo, we define

(i) the completion: FF & o(FX U N*), and
(i) the augmentation: F} & o(FX L N*)
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of the o-field #* under P*. For t = oo the two concepts agree, and we set
simply #* £ g(FX U N™*).

The augmented filtration { F}} possesses certain desirable properties, which
will be used frequently in the sequel and are developed in the ensuing problems
and propositions.

7.3 Problem. For any sub-o-field 4 of #X, define ¥* = ¢(% U A™*) and

@

H = {F = Q;3Ge% such that FAGe A/™*}.

Show that ¥* = #. We now extend P* by defining P*(F) £ P*(G) whenever
Fe%* and Ge % is chosen to satisfy F A Ge A" Show that the probability
space (Q, ¥*, P*) is complete:

Fe%", PF)=0,DcF = De%"

7.4 Problem. From Definition 7.2 we have #} < #/, for every 0 <t < .
Show by example that the inclusion can be strict.

7.5 Problem. Show that the o-field #* of Definition 7.2 agrees with

Fra 0'<U 3’",).

t>0

7.6 Problem. If the process X has left-continuous paths, then the filtration
{Z}!} is left-continuous.

A. Right-Continuity of the Augmented Filtration
for a Strong Markov Process

We are ready now for the key result of this section.

7.7 Proposition. For a d-dimensional strong Markov process X = {X,, #5;
t > 0} with initial distribution u, the augmented filtration {F}} is right-
continuous.

ProoF. Let (Q, %X, P*) be the probability space on which X is defined.
Fix s >0 and consider the degenerate, {#}-optional time S =s. With
0<to<t; <" <t,<s<ty < <t, and [, ..., [, in B(R?), the
strong Markov property gives

P*[X, €Ty, ..., X, eT,|FX
= l{XtoeI'U,...,X,"el‘,,} P”[X‘"H El_‘n+1a cees Xtmerles]a

P*-as. It is now evident that P*[X, eT,,..., X, €I, |#X] has an F]-
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measurable version. The collection of all sets Fe #ZX for which P*[F|#F2X
has an #}-measurable version is a Dynkin system. We conclude from the
Dynkin System Theorem 1.3 that, for every Fe £, the conditional prob-
ability P*[F|#X ] has an #X-measurable version.

Let us take now Fe #X < #X; we have P*[F|#X] =1, as. P* so 1
has an #X-measurable version Wthh we denote by Y. Because G 2 {Y = 1} e
FYand FAG < {1 # Y} e A", we have Fe #! and consequently FX <
Fl; 5> 0.

Now let us suppose that Fe % s+; for every integer n > 1 we have
FeFl im» as well as a set G,e Yy, such that FAG,e A/ We define
G £ (m=1UizmG,randsince G = ()2, | J&,, G, for any positive integer M,
we have G eﬁ"s’i < Z¥ To prove that Fe #, it suffices to show F A Ge A/
Now

G\F (O G,,>\F = G (G\F) e A",
n=1

n=1

On the other hand,

= |:Fm<ﬂ G,fj|§U(FmG‘ =U (F\G,,) € /™.
1 n=m m=1
It follows that Fe ¥, so % < %! and right-continuity is proved. O

7.8 Corollary. For a d-dimensional, left-continuous strong Markov process
= {X,, #; t > 0} with initial distribution p, the augmented filtration {F}}
is continuous.

7.9 Theorem. Let B = {B,, #%;t > 0} be a d-dimensional Brownian motion
with initial distribution u on (Q F2, P*). Relative to the filtration {#}!},
{B,, t > 0} is still a d-dimensional Brownian motion.

PRrROOF. Augmentation of o-fields does not disturb the assumptions of Definition
5.1

7.10 Remark. Consider a Poisson process {N,, #";0 <t < oo} as in De-
finition 1.3.3 and denote by {#,} the augmentation of {#}}. In conjunction
with Problems 6.21 and 7.3, Proposition 7.7 shows that { %} satisfies the usual
conditions; furthermore, {N,, ;0 <t < o0} is a Poisson process.

Since any d-dimensional Brownian motion is strongly Markov (Theorem
6.15), the augmentation of the filtration in Theorem 7.9 does not affect the
strong Markov property. This raises the following general question. Suppose
{X,, #X;t > 0} is a d-dimensional, strong Markov process with initial distri-



92 2. Brownian Motion

bution u on (Q, # X, P*). Is the process {X,, #/; t > 0} also strongly Markov?
In other words, is it true, for every optional time S of {#/}, t >0 and
I' € #(R?), that

(7.1)  P*[Xs,, €T |FE ] = P[Xs,,€T|Xg], Pt-as.on{S < 0}?

Although the answer to this question is affirmative, phrased in this generality
the question is not as important as it might appear. In each particular case,
some technique must be used to prove that {X,, #*;t > 0} is strongly Markov
in the first place, and this technique can usually be employed to establish the
strong Markov property for {X,, #};t > 0} as well. Theorems 7.9 and 6.15
exemplify this kind of argument for d-dimensional Brownian motion. None-
theless, the interested reader can work through the following series of exercises
to verify that (7.1) is valid in the generality claimed.

In Exercises 7.11-7.13, X = {X,, #¥;0 <t < o0} is a strong Markov
process with initial distribution u on (Q, #X, P*).

7.11 Exercise. Show that any optional time S of {#/} is also a stopping time
of this filtration, and for each such S there exists an optional time T of {#X}
with {S # T} e A ™. Conclude that #¥, = F¥ = F¥%, where F4 is defined to
be the collection of sets A e F* satisfying A N {T <t}e F, V0 <t < 0.

7.12 Exercise. Suppose that T is an optional time of {#*}. For fixed positive
integer n, define

T, on{T = o}

T,=1k k—1 k
o on{ $T<—}.

2" 2"

Show that T, is a stopping time of {#*}, and #} < 6(#7, U A™*). Conclude
that F¥ < o(F¥, U &™). (Hint: Use Problems 1.2.23 and 1.2.24.)

7.13 Exercise. Establish the following proposition: if for each ¢t > 0, T € Z(R%),
and optional time T of {#*}, we have the strong Markov property

(7.2)  P[X74.€T|FF]= P [Xr,€T|X7], Ptas.on{T < oo},
then (7.1) holds for every optional time S of {#/}.

This completes our discussion of the augmentation of the filtration generated
by a strong Markov process. At first glance, augmentation appears to be a
rather artificial device, but in retrospect it can be seen to be more useful and
natural than merely completing each o-field #X with respect to P*. It is more
natural because it involves only one collection of P*-null sets, the collection
we called A, rather than a separate collection for each ¢t > 0. It is more useful
because completing each o-field #¥ need not result in a right-continuous
filtration, as the next problem demonstrates.
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7.14 Problem. Let {B,; t > 0} be the coordinate mapping process on (C[0, o),
A(C[0, 0))), P° be Wiener measure, and %, denote the completion of F2
under P°. Consider the set

F = {we C[0, o); w is constant on [0, ¢] for some & > 0}.

Show that: (i) P°(F) = 0, (ii) F € #&,, and (iii) F ¢ %,.

B. A “Universal” Filtration

The difficulty with the filtration {#/}, obtained for a strong Markov process
with initial distribution g, is its dependence on . In particular, such a filtration
is inappropriate for a strong Markov family, where there is a continuum of
initial conditions. We now construct a filtration which is well suited for this
case.

Let {X,, #X;t > 0}, (Q, #¥), {P*}, . be a d-dimensional, strong Markov
family. For each probability measure p on (R?, #(R?)), we define P* as in (5.2):

P"(F)=j P*(F)u(dx), VFe#X,
R4

and we construct the augmented filtration {#/} as before. We define

(7.3) ZANF, 0<t<om,
u

where the intersection is over all probability measures u on (R, Z(R?)). Note
that ¥ = % < #*,0 <t < o for any probability measure u on (R?, #(R?));
therefore, if {X,, #*; t > 0} and {X,, #}; t > 0} are both strongly Markovian
under P*, then so is {X,, %;t > 0}. Because the order of intersection is
interchangeable and {#/} is right-continuous, we have
Z.=NNF=NNF=NFr=F
u

s>t s>t n

Thus {£} is also right-continuous.

7.15 Theorem. Let B = {B,, #2;t > 0} (Q, #2), {P*} . ra be a d-dimensional
Brownian family. Then {B,, Z,;t > 0}, (Q, Z,), {P*}cra is also a Brownian
family.

PROOF. It is easily verifed that, under each P, {B,, Z,; t > 0} is a d-dimensional
Brownian motion starting at x. It remains only to establish the universal
measurability condition (i) of Definition 5.8. Fix F € Z,,. For each probability
measure u on (R% #A(R?)), we have Fe%* so there is some Ge #2 with
FAGeN™ Let NeZ2 satisfy FAG < N and P*(N) = 0. The functions
g(x) £ P*(G) and n(x) £ P*(N) are universally measurable by assumption.
Furthermore,
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J n(x)u(dx) = P*(N) = 0,
Rd

so n =0, p-ae. The nonnegative functions h,(x) £ P*(F\G) and h,(x) £
P*(G\F) are dominated by n, so h, and h, are zero u-a.e., and hence h; and
h, are measurable with respect to Z(R?)*, .he completion of #(R?) under u.
Set f(x) £ P*(F). We have f(x) = g(x) + h,(x) — h,(x), so f is also B(R%)-
measurable. This is true for every y; thus, f is universally measurable. O

7.16 Remark. In Theorem 7.15, even if the mapping x+ P*(F) is Borel-
measurable for each Fe #2 (cf. Problem 5.2), we can conclude only its
universal measurability for each F € . This explains why Definition 5.8 was
designed with a condition of universal rather than Borel-measurability.

C. The Blumenthal Zero-One Law

We close this section with a useful consequence of the results concerning
augmentation.

7.17 Theorem (Blumenthal (1957) Zero-One Law). Let {B,, Z;; t > 0}, (Q, %),
{P*},cpa be a d-dimensional Brownian family, where %, is given by (7. 3) If
Fe%,, then for each x € R* we have either P*(F) = 0 or P*(F) = 1.

PROOF. For F € %, and each x € R?, there exists G € Z£ such that PX(F A G) =
But G must have the form G = {B,eI'} for some FE.@(Rd) SO

P*(F) = PX(G) = P*{ByeT’} = 1(x). a

7.18 Problem. Show that, with probability one, a standard, one-dimensional
Brownian motion changes sign infinitely many times in any time-interval
[0,],e> 0.

7.19 Problem. Let {W, %;0<t< o} be a standard, one-dimensional
Brownian motion on ( &, P), and define
=inf{t > 0; W, > b}; b=0.

(i) Show that for each b > 0, P[T, # S,] = 0.
(i) Show that if L is a finite, nonnegative random variable on (Q, %, P)
which is independent of #, then {T; # S, }€ % and P[T, # S, ] = 0

2.8. Computations Based on Passage Times

In order to motivate the strong Markov property in Section 2.6, we derived
the density for the first passage time of a one-dimensional Brownian motion
from the origin to b # 0. In this section we obtain a number of distributions
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related to this one, including the distribution of reflected Brownian motion,
Brownian motion on [0,a] absorbed at the endpoints, the time and value of
the maximum of Brownian motion on a fixed time interval, and the time of the
last exit of Brownian motion from the origin before a fixed time. Although
derivations of all of these distributions can be based on the strong Markov
property and the reflection principle, we shall occasionally provide arguments
based on the optional sampling theorem for martingales. The former method
yields densities, whereas the latter yields Laplace transforms of densities
(moment generating functions). The reader should be acquainted with both
methods.

A. Brownian Motion and Its Running Maximum

Throughout this section, {W,, #,;0 <t < 0}, (Q, F), {P*},.r Will be a one-
dimensional Brownian family. We recall from (6.1) the passage times

T, =inf{t > 0; W, = b}; beR,
and define the running maximum (or maximum-to-date)

8.1) M, = max W,.

0<s<t
8.1 Proposition. We have fort > 0anda < b, b > 0:

2(2b — 2b — a)?
82  P[Weda Medb] =222 " Dexpd -F = Lyuap,
2nt? 2t
ProoOF. For a < b, b > 0, the symmetry of Brownian motion implies that
(Ut—sl(—oo,a])(b) & Pb[m—s < a] = Pb[VVt~s = 2b - a]

é ((Jt—sl[Zb—a,oo))(b); 0 <s<t

Corollary 6.18 then yields
POU’V: < a|37T,,+].= (U:—T,,l(—ao,a])(b) = (lJt—Tbl[Zb—a,ao))(b)
= P°[W,>2b —a|%r,,], as. P°on{T, <t}

Integrating both sides of this equation over {T, <t} and noting that
{T, <t} = {M, > b}, we obtain

P°[W, < a, M, > b] = P°[W,>2b — a, M, > b]

= P°[W,>2b—a] =

! Jw e ¥ dx.
2nt J2b-a

Differentiation leads to (8.2). 4
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8.2 Problem. Show that for ¢t > 0, 5 > 0,

2
(8.3) P°[M, e db] = P°[|W,| e db] = P'[M, — W, € db] = \/;te_h 2 dp,
) 0 0 4 ey
(8.3) P [012321|W,l > b} <4P° (W, = b| < 37 5¢ .

8.3 Remark. From (8.3) we see that
2 oo}
V2 Jy i

By differentiation, we recover the passage time density (6.3):

(8.4) P°[T, <t] = P°[M,>b] = e *2dx; b>0.

(8.5) P°[T,edt] = —b——e"’z/z‘dt; b>0,t>0.

J2nt?

For future reference, we note that this density has Laplace transform

(8.6) Ee oo — ¢~5V/22. 50 o> 0.

By letting t T oc in (8.4) or a | 0 in (8.6), we see that P°[T, < oo] = 1. Itis clear
from (8.5), however, that E°T, = .

8.4 Exercise. Derive (8.6) (and consequently (8.5)) by applying the optional
sampling theorem to the { % }-martingale

8.7 X, = exp{AW, — $2%t}; 0<t< oo,

with 4 = /2a > 0.

The following simple proposition will be extremely helpful in our study of
local time in Section 6.2.

8.5 Proposition. The process of passage times T = {T,, #1 ,;0 < a < oo} has
the property that, under P° and for 0 < a < b, the increment T, — T, is inde-
pendent of %, and has the density

b—
P°[T, — T,edt] = J?%e"b‘“’z/z‘dt; 0<t< .
nt

In particular,
(8.8) E0[e T~ To)| &, ] = "¢~ 25, 4 >0,

ProoF. This is a direct consequence of Theorem 6.16 and the fact that
7;,—7:,=1nf{120, WT4+,—WT¢=b—a}- D
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B. Brownian Motion on a Half-Line

When Brownian motion is constrained to have state space [0, co), one must
specify what happens when the origin is reached. The following problems
explore the simplest cases of absorption and (instantaneous) reflection.

8.6 Problem. Derive the transition density for Brownian motion absorbed at
the origin {W, , 1., %; 0 < t < oo}, by verifying that

(89) P*[Wedy, T, > t] = p-(t;x,y)dy
2 [p(t;x,y) — plt;x, —y)1dy; t>0,x,y>0.

8.7 Problem. Show that under P°, reflected Brownian motion |W| & {|W,|, #;
0 <t < oo} is a Markov process with transition density

(8.10)  P°[|W,. ledy|IW]| = x] = p.(s;x,y)dy
2 [p(s;x,y) + p(s;x, —y)1dy; s>0,t=>0and x,y > 0.

8.8 Problem. Define Y, £ M, — W;0 < t < co. Show that under P°, the process
Y ={Y,, #;0 <t < oo} is Markov and has transition density

(8.11) PO[Y,,edylY,=x]=p.(s;x,y)dy; s>0,t=0andx,y>0.

Conclude that under P° the processes |W| and Y have the same finite-
dimensional distributions.

The surprising equivalence in law of the processes Y and | W| was observed
by P. Lévy (1948), who employed it in his deep study of Brownian local time
(cf. Chapter 6). The third process M appearing in (8.3) cannot be equivalent
in law to Y and |W|, since the paths of M are nondecreasing, whereas those
of Y and |W| are not. Nonetheless, M will turn out to be of considerable
interest in Section 6.2, where we develop a number of deep properties of
Brownian local time, using M as the object of study.

C. Brownian Motion on a Finite Interval

In this subsection we consider Brownian motion with state space [0, a], where
a is positive and finite. In order to study the case of reflection at both
endpoints, consider the function ¢: R — [0,a] which satisfies ¢(2na) =0,
¢o((2n+ a)=a;n=0, +£1, +£2, ..., and is linear between these points.

8.9 Exercise. Show that the doubly reflected Brownian motion {@(W,), #;
0 <t < oo} satisfies

PloW)edyl= Y put;x,y+2na)dy; 0<y<aO0<x<at>0.

n=-—o0

The derivation of the transition density for Brownian motion absorbed at 0
andaie., {W, 1 .1, %;0 <t < oo}, is the subject of the next proposition.
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8.10 Proposition. Choose 0 < x < a. Thenfort > 0,0 <y < a:

(8.12) P [Wedy, T, nT,>t]= Y p_(t;x,y+ 2na)dy.

n=-—a

ProOOF. We follow Dynkin & Yushkevich (1969). Set g, £ 0, 1, 2 T,, and
define recursively o, £ inf{t > 7,_,; W, =a}, 1, =inf{t > 0,; W,=0}; n= 1,
2,.... We know that P*[t, < 0] = 1, and using Theorem 6.16 we can show
by induction on n that g, — t,_, is the passage time of the standard Brownian
motion W, — W, to a, 1, — g, is the passage time of the standard
Brownian moton W,,, — W, to —a, and the sequence of differences 6, — 7o,
T, — 0y, 0, — Ty, T, — 05, ... consists of independent and identically distri-
buted random variables with moment generating function e~/ (c.f. (8.8)).
It follows that 7, — 7, being the sum of 2n such differences, has moment

generating function e~2mV/2a and so

P [t,—1o<t] = P[T},, < 1]
We have then
(8.13) lim P*[1,<t]=0; 0<t < oo.

n—aco

For any ye(0, ), we have from Corollary 6.18 and the symmetry of
Brownian motion that

P*[W, 2 y|# .]1=P[W,< —y|# ] on{r, <t}

and so for any integer n > 0,
(8.14) P [W,zy 1, <t]=P[W,< -y 1,<t]=P[W,< —y0,<t].
Similarly, for ye(—o0, a), we have

P*[W,<y|#,.]=P[W,>2a—y|#,,] on{s,<t},
whence
(8.15) P [W, <y, 0,<t]=P[W,>2a—-y,0,<t]

=P [W,>2a—y,1,.,<t]; n>1.

We may apply (8.14) and (8.15) alternately and repeatedly to conclude, for
O<y<an>0:

PW, 2y, 1,<t]=P[W, < —y— 2nd],
P W, <y, 0,<t] =P [W, <y— 2nd],
and by differentiating with respect to y, we see that
(8.16) P*[W,edy, 1, < t] = p(t; x, —y — 2na)dy,
(8.17) P*[W,edy, 6, < t] = p(t; x, y — 2na)dy.

Now set , = 0, p, = T,, and define recursively
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n,=inf{t>p, ; W,=0}, p,=inf{t>n;W,=a}; n=12,....
We may proceed as previously to obtain the formulas

(8.18) lim P*[p,<t]=0;, 0<t< o0,

(8.19) P*[W,edy, p,<t]=p(t;x,—y+2(n+1a)dy; 0<y<anx=0,
(8.20) P*[W,edy,n, <t]=p(t;x,y +2na)dy; 0<y<a,n=0.

It is easily verified by considering the cases T, < T, and T, > T, that
Ty_y V Ppy =0, A W and 6, v m, = 7, A p,; 1 = 1. Consequently,

P*[W,edy, 1,1 A Py < t] = P*[W,edy, 1,_, <t] + P [Wedy, p,-, <t]

(8.21) — P*[W,edy, 0, A 1, < ],

and

(8.22) P*[W,edy, o, A n, < t] = P*[W,edy, g, < t] + P*[W,edy, n, < t]
— P*[Wedy, 1, A p, < t].

Successive application of (8.21) and (8.22) yields for every integer k > I:

(8.23) )

P*[Wedy, 1o A po<t] =Y {P*[Wedy, 1, <t]+ P [Wedyp,, <t]

n=1
— P*[W,edy, 0, <t] — P [Wedy, n, < t]}
+ P*[W,edy, 1, A p < t]
Now we let k tend to infinity in (8.23); because of (8.13), (8.18) the last term

converges to zero, whereas using (8.16), (8.17) and (8.19), (8.20), we obtain from
the remaining terms:

P[Wedy, T, A T, > 1] = P\[W,edy] — P [Wedy, 1 A po < 1]

0

= Y p-(t;x,y+2na)dy; 0<y<a,t>0.

n=-—a D
8.11 Exercise. Show thatfort > 0,0 < x < a:
© 2
(8.24) P*[T, A T,edt] = Y [(2na + x)exp{—@a—-’-—)-c)—}
nt3 n==w 2t
2 . 2
+ (2na + a — x)exp {—(—Eiz‘:——f)—}]dt.

It is now tempting to guess the decomposition of (8.24):
(8.25)

1 & 2
P [Tyedt, T, < T,] = Y (2na + x)exp{-gm—-'-x)—}dt,

\/27tt3 n=-o 2t
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(8.26)
P [T,edt, T, < T,] =

(2na + a — x)? } s,

= Y (2na+a—x)exp{— %

2nt? n==w

Indeed, one can use the identity (8.6) to compute the Laplace transforms of
the right-hand sides; then (8.25), (8.26) are seen to be equivalent to

sinh((a — x)/22)
sinh(a\/Z_a)

Fo—a sinh(x./2x)
(8.28) E*[e T"l{r,,<r°}] =

* sinh(a\/29)

We leave the verification of these identities as a problem. Note that by adding
(8.27) and (8.28) we obtain the transform of (8.24):

cosh <<x — g) \/—27«>
(8.29) EX[e*TorTa] = .
cosh (g \/Z)

This provides an independent verification of (8.24).

(827) B[ ™11 cr] =

8.12 Problem. Derive the formulas (8.27), (8.28) by applying the optional
sampling theorem to the martingale of (8.7).

8.13 Exercise. Show that fora > 0,0 < x < a:
P <T]=">, PIL<T]=".

8.14 Problem. Show that EX(Ty A T)) = x(a — x); 0<x<a.

D. Distributions Involving Last Exit Times

Proposition 8.1 coupled with the Markov property enables one to compute
distributions for a wide variety of Brownian functionals. We illustrate the
method by computing some joint distributions involving the last time before
t that the reflected Brownian motion Y of Problem 8.8 is at the origin. Note
that such last exit times are not stopping times.

8.15 Proposition. Define
(8.30) 6, 2sup{0<s<t; W,=M,]}.
Then for acR, b > a*, 0 < s < t, we have:
(8.31)

P°[W,eda, M,edb, b,eds] =

bb — a) [ b2 (b —a)?

n/s3(t — s)® Pl T T

23 20— s):ldadbds.
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ProOOF. Forb> 0,6 >6>0,x>0,a<band 0 <s <t, we have

(8.32) P°|:b <M, <b+ 6, Web— dx, max W, <b, W,eda:l

s<u<t

<P°[b<M,<b+4,0,<s, W,eb—dx, Wyeda]

SPo[b<Mssb+5,Wseb—dx, max W,,sb+a,W,eda].

s<u<t

Divide by & and let 6 | 0, £ | O (in that order). The upper and lower bounds in
the preceding inequalities converge to the same limit, which is

(8.33) P°[M,edb, 6, <s, W,eb — dx, W,eda]

= PO[Msedb, W.eb — dx, max W, < b, W,eda]

s<u<t
= P°[M,edb, W,eb — dx]- P> *[M,_, < b, W,_,e da]
b+x [ { (x + 1 )? (2b—a)2}
expy — -

n/s3(t — s) 20? 2t
(x+u) a
exp{ T —5? dxdadb,

where we have used (8.2) and

bt —s) + (a — b)s, RPN s(tt—s)'
t

4

My

In terms of ®(z) £ (1/y/2n) [2, e " dx we may now evaluate the integrals

) 2
j b+ x)exp{—(—)—cj—#i}dx = gle #i2
(V]

202

+;(b +(b—-a)o 2n-d><—’—‘f>,

and so integrating out x in (8.33) and using the equality

vy  (bxb-—a) b (b-a)
(834) 2% % TR TR

we arrive at the formula

P°[M,edb, 6, < s, W,eda] =

2 s (b - ap
oo a5

He a? |
— ol = = ;
( )aexp{ Zt} dadb
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Note that /0s(— u . /o) = 1/26((b/s) + (b — a)/(t — s)), and so

;PO[M edb, 0, < s, W,eda]

_ bb—a) {_bz (b — a)?

n/s3(t — )3 o 2 2t—s)

8.16 Remark. If we define §, £ inf{0 < s < t; W, = M,} to be the first time W
attains its maximum over [0, t], then (8.32) is still valid when 6, is replaced by
0 Thus, 6, and 9 have the same distribution, and since 9, < 6,, we see that
P°[6 = 6,] = 1. In other words, the time at which the maximum over [0, ]
is attained is almost surely unique.

} dadbds. 0

8.17 Problem. Show thatforb> 0,0 <s <1t:
b

/s3(t — s)

P°[M,edb, 6,eds] = e 125 db ds,

whence
Pol0,eds] = PO[M,edb| 6, =s] = e db,
/st —s) T s

In particular, the conditional density of M, given 6, does not depend on t.
We say that 6, obeys the arc-sine law, since

2
P°[0,<s] = —arcsinﬁ; 0<s<tt>0.
n

8.18 Problem. Define the time of last exit from the origin before ¢ by
(8.35) %, 2 sup{0 <s <t W, =0}
Show that 7, obeys the arc-sine law; i.e.,

d
P°[y,eds] = 8 o<s<ut

n,/s(t—s)’

(Hint: Use Problem 8.8.)

8.19 Exercise. With y, defined as in (8.35), derive the quadrivariate density
P°[W,eda, M,edb, y,eds, 6,€ du]
_ —2ab? ox sh? a?
T Quu(s — u)(t — s))*? P 2u(s —u)  2(t —s)

O<u<s<t,a<0<b.

} dadb ds du;
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8.20 Exercise (Seshadri, 1988): Deduce from (8.2) that, for fixed ¢ >0,
the random variables M,(M,— W,) and W, are independent, and that
(2/H)M,(M, — W,) has a standard exponential distribution: P°[M,(M, — W,)
>x/2]=e* x2=0.

2.9. The Brownian Sample Paths

We present in this section a detailed discussion of the basic absolute properties
of Brownian motion, i.e., those properties which hold with probability one
(also called sample path properties). These include characterizations of “bad”
behavior (nondifferentiability and lack of points of increase) as well as “good”
behavior (law of the iterated logarithm and Lévy modulus of continuity) of the
Brownian paths. We also study the local maxima and the zero sets of these
paths. We shall see in Section 3.4 that the sample paths of any continuous
martingale can be obtained by running those of a Brownian motion according
to a different, path-dependent clock. Thus, this study of Brownian motion has
much to say about the sample path properties of much more general classes
of processes, including continuous martingales and diffusions.

A. Elementary Properties

We start by collecting together, in Lemma 9.4, the fundamental equivalence
transformations of Brownian motion. These will prove handy, both in this
section and throughout the book; indeed, we made frequent use of symmetry
in the previous section.

9.1 Definition. An Ri-valued stochastic process X = {X,; 0 <t < oo} iscalled
Gaussian if, for any integer k > 1 and real numbers 0 <t;, <t, < - < < 00,
the random vector (X,,,X,,,..., X, ) has a joint normal distribution. If the
distribution of (X,.,,, X,+,,,- .., X,+,,) does not depend on ¢, we say that the
process is stationary.

The finite-dimensional distributions of a Gaussian process X are determined
by its expectation vector m(t) £ EX,; t > 0, and its covariance matrix

p(s,1) & E[(X, — m(s)(X, — m(t))"]; 5620,

where the superscript T indicates transposition. If m(t) = 0; ¢t > 0, we say that
X is a zero-mean Gaussian process.

9.2 Remark. One-dimensional Brownian motion is a zero-mean Gaussian
process with covariance function

9.1) pGs,t)=snAt; s t=0.
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Conversely, any zero-mean Gaussian process X = {X,, #X;0 <t < o0} with
a.s. continuous paths and covariance function given by (9.1) is a one-
dimensional Brownian motion. See Definition 1.1.

Throughout this section, W = {W,, #;,0 <t < co} is a standard, one-
dimensional Brownian motion on (Q, %, P). In particular W, = 0, a.s. P, For
fixed w e Q, we denote by W(w) the sample path t— W, (w).

9.3 Problem (Strong Law of Large Numbers). Show that

W,
9.2) lim —t—' =0, as.
t—0
(Hint: Recall the analogous property for the Poisson process, Remark 1.3.10.)

9.4 Lemma. When W = {W,, #,;0 <t < 0} is a standard Brownian motion,
so are the processes obtained from the following “equivalence transformations™:

(1) Scaling: X = {X,, #,;0 <t < oo} defined for c > 0 by
1
9.3) X,=7Wc, ; 0<t<oo.
¢

(ii) Time-inversion: Y = {Y,, #Y;0 <t < oo} defined by

tW,, ; 0<t< o
9.4 Y, =4 "M ’
64 ! {0 : t=0.
(iii) Time-reversal: Z = {Z,, #%;0 <t < o0} defined for T > 0 by
9.5) Z,=Wr—W;_, ; 0<t<T

(iv) Symmetry: —W = {—W,, ;0 <t < «}.

Proor. We shall discuss only part (ii), the others being either similar or
completely evident. The process Y of (9.4) is easily seen to have a.s. continuous
paths; continuity at the origin is a corollary of Problem 9.3. On the other hand,
Y is a zero-mean Gaussian process with covariance function

1 1
E(YSY,)=st<—/\?>=S/\t; s, t>0
s

and the conclusion follows from Remark 9.2. O

9.5 Problem. Show that the probability that Brownian motion returns to the
origin infinitely often is one.

B. The Zero Set and the Quadratic Variation

We take up now the study of the zero set of the Brownian path. Define
(9.6) Z 2 {(t,w)e[0, ) x & W(w) =0},
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and for fixed w € Q, define the zero set of W(w):

9.7 Z,2{0<t< o0; W(w) =0}

9.6 Theorem. For P-a.e. w e, the zero set %,

(i) has Lebesgue measure zero,
(i) is closed and unbounded,
(iii) has an accumulation point at t = 0,
(iv) has no isolated point in (0, c0), and therefore
(v) is dense in itself.

ProOF. We start by observing that the set 2 of (9.6) is in %([0, ©0)) ® &,
because W is a (progressively) measurable process. By Fubini’s theorem,

E[meas(Z,)] = (meas x P)(Z) = fw P[W,=0]dt = 0,

0

and therefore meas(Z,) = 0 for P-a.e. weQ, proving (i); here and in the
sequel, meas means “Lebesgue measure.” On the other hand, for P-a.e. w€Q
the mapping t+— W,(w) is continuous, and %, is the inverse image under
this mapping of the closed set {0}. Thus, for every such w, the set &, is
closed, is unbounded (Problem 9.5), and has an accumulation point at t = 0
(Problem 7.18).

For (iv), let us observe that {w e Q; &, has an isolated point in (0, )} can
be written as

9.8) (J {weQ; there is exactly one se(a, b) with W(w) = 0}
a,beQ
0<a<b<w

where Q is the set of rationals. Let us consider the family of almost surely
finite optional times

B 2inf{s>t; W,=0}; t>0.
According to (iii)) we have B, = 0, a.s. P; moreover,
Bs (@) = inf{s > B(w); Wi(w) = 0}
= Bi@) + inf{s > 0; W p,0)(@) — Wp0)(@) = 0} = B(w)

for P-ae. weQ, because {W,,5, — W;;0 < s < oo} is a standard Brownian
motion (Theorem 6.16). Therefore, for 0 < a < b < o0,

{weQ; there is exactly one se(a, b) with W,(w) = 0}
c {weQ; B(w) < b and f; () > b}

has probability zero, and the same is then true for the union (9.8). ]

9.7 Remark. From Theorem 9.6 and the strong Markov property in the form
of Theorem 6.16, we see that for every fixed be R and P-a.e. w € Q, the level set
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Z,(b) 2 {0 <t < o0; W(w) = b}

is closed, unbounded, of Lebesgue measure zero, and dense in itself.

The following problem strengthens the result of Theorem 1.5.8 in the special
case of Brownian motion.

9.8 Problem. Let {IT,}:>, be a sequence of partitions of the interval [0, t] with
lim, ., |IT,]| = 0. Then the quadratic variations

my,
vea,) £ kZ W — Wi 2
=1

of the Brownian motion W over these partitions converge to t in L2, as n — co.
If, furthermore, the partitions become so fine that Z;‘,‘;l ITL,]| < oo holds, the
preceding convergence takes place also with probability one.

C. Local Maxima and Points of Increase

As discussed in Section 1.5, one can easily show by using Problem 9.8 that for
almost every w eQ, the sample path W(w) is of unbounded variation on every
finite interval [0,t]. In the remainder of this section we describe just how
oscillatory the Brownian path is.

9.9 Theorem. For almost every w € Q, the sample path W(w) is monotone in no
interval.

Proor. If we denote by F the set of weQ with the property that W (w) is
monotone in some interval, we have

F= ) {weQ W(w)ismonotone on [s,t]},

s,te
0 <s<t<ow

since every nonempty interval includes one with rational endpoints. There-
fore, it suffices to show that on any such interval, say on [0, 1], the path W.(w)
is monotone for almost no w. By virtue of the symmetry property (iv) of
Lemma 9.4, it suffices then to show that the event

A £ {weQ; W (w) is nondecreasing on [0, 1]}
isin & and has probability zero. But A = ()i, 4,, where

n—1
A, & ﬂ {0e® Wiiiym(@) — Wj(0) 2 0}eF
i=0

has probability P(4,) = [[7=5 P[W+1ym — Wyn = 0] = 27" Thus, P(4) <
lim,_, P(A,) = 0. 0O



2.9. The Brownian Sample Paths 107

In order to proceed with our study of the Brownian sample paths, we need
a few elementary notions and results concerning real-valued functions of one
variable.

9.10 Definition. Let f: [0,00) - R be a given function. A number ¢t > 0 is
called

(i) a point of increase of size §, if for given 6 > 0 we have f(s) < f(¢) < f(w)
forevery se[(t — 6)*,t)and ue(t,t + 81; a point of strict increase of size
9, if the preceding inequalities are strict;

(i) a point of increase, if it is a point of increase of size J for some é > 0; a
point of strict increase, if it is a point of strict increase of size J for some
0> 0;

(i) a point of local maximum, if there exists a number 6 > 0 with f(s) < f{(¢)
valid for every se[(t — d)*,t + &]; and a point of strict local maxi-
mum, if there exists a number 6 > 0 with f(s) < f(¢) valid for every
sel(t —8)*, t + 61\{t}.

9.11 Problem. Let f: [0, 0) —» R be continuous.

(i) Show that the set of points of strict local maximum for f is countable.
(i) If f is monotone on no interval, then the set of points of local maximum
for f is dense in [0, c0).

9.12 Theorem. For almost every weQ, the set of points of local maximum for
the Brownian path W (w) is countable and dense in [0, ), and all local maxima
are strict.

Proor. Thanks to Theorem 9.9 and Problem 9.11, it suffices to show that the
set

A = {weQ; every local maximum of W, (w) is strict}

includes an event of probability one. Indeed, A includes the (countable) inter-
section of events of the type

9.9) A, B {weﬂ; max W, (w) — max W(w) # O},

13<t<t, t <t<tp
taken over all quadruples (¢,,t,, t5, t,) of rational numbers satisfying 0 < t;, <
t, <tz <ty < oo. Therefore, it remains to prove that for every such quadruple,
the event in (9.9) has probability one. But the difference of the two random
variables in (9.9) can be written as

Wy = W)+ min [W,(0) - W(©)]+ max [W(w)— W, ()],

1 <t<tp t3<t<ty

and the three terms appearing in this sum are independent. Consequently,
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© 0
P[A,,, .J1= f f P[W, — W, #x +y] P[ min (W, — W,)de]
0 —o0

1 <t<t,
'P[ max (W, — W,a)edy:l =1
t3<t<ty
because P[W,, — W, #x + y] = 1. O

Let us now discuss the question of occurrence of points of increase on the
Brownian path. We start by observing that the set

A = {(t,w)e[0, 0) x Q;t is a point of increase of W (w)}

is product-measurable: A € Z([0, 0)) ® #. Indeed, A can be written as the
countable union A = ( ), A(m), with

A(m) & {(t, w)€e[0,00) x Q; max W.(w) = W,(w)= min Ws(w)},
t—(1/m)* <s<t t<s<t+(1/m)

and each A(m) is in %([0, c0)) ® & . We denote the sections of A by
A 2 {weQ;(t,w)eA}, A, =2 {te[0,);(,w)eA},
and A,(m), A, (m) have a similar meaning. For 0 <t < oo,
P[A,(m)] < P[W,,,— W, >0, Vse[0,1/m]]=0
because {W,,, — W,; s > 0} is a standard Brownian motion (Problem 7.18);
now A, = ( Jw_; A,(m) gives also
9.10) PA)=0; 0<t<o

as well as

J meas(A,)dP = (meas x P)(A) = J P(A)dt=0

Q 0

from Fubini’s theorem. It follows that P[w € Q; meas(A,,) = 0] = 1. The ques-
tion is whether this assertion can be strengthened to PlweQ; A, = J] =1,
or equivalently

9.11) P[weQ; the path W (w) has no point of increase] = 1.

That the answer to this question turns out to be affirmative is perhaps one of
the most surprising aspects of Brownian sample path behavior. We state this
result here but defer the proof to Chapter 6.

9.13 Theorem (Dvoretzky, Erdoés, & Kakutani (1961)). Almost every
Brownian sample path has no point of increase (or decrease); that is, (9.11)
holds.

9.14 Remark. We have already seen that almost every Brownian path has a
dense set of local maxima. If T(w) is a local maximum for W,(w), then one
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might imagine that by reflection (replacing W,(w) — Wr(,)(@) by —(W,(w) —
Wi w)(@)) for t > T(w)), one could turn the point T(w) into a point of increase
for a new Brownian motion. Such an approach was used successfully at the
beginning of Section 6 to derive the passage time distribution. Here, however,
it fails completely. Of course, the results of Section 6 are inappropriate in this
context because T(w) is not a stopping time. Even if the filtration {} is right-
continuous, so that {®w e Q; W,(w) has a local maximum at t} is in &, for each
t > 0, it is not possible to define a stopping time T for {#} such that W (w)
has a local maximum at T(w) for all w in some event of positive probability.
In other words, one cannot specify in a “proper way” which of the numerous
times of local maximum is to be selected. Indeed, if it were possible to do this,
Theorem 9.13 would be violated.

9.15 Remark. It is quite possible that, for each fixed ¢t > 0, a certain property
holds almost surely, but then it fails to hold for all > 0 simultaneously
on an event whose probability is one (or even positive!). As an extreme and
rather trivial example, consider that P[w e Q; W(w) # 1] = 1 holds for every
0 <t < oo, but PfloeQ; W(w) # 1, for every te [0, c0)] = 0. The point here
is that in order to pass from the consideration of fixed but arbitrary ¢ to the
consideration of all ¢ simultaneously, it is usually necessary to reduce the latter
consideration to that of a countable number of coordinates. This is precisely
the problem which must be overcome in the passage from (9.10) to (9.11),
and the proof of Theorem 9.13 in Dvoretzky, Erdos & Kakutani (1961) is
demanding' because of the difficulty of reducing the property of “being a point
of increase” for all ¢ > 0 to a description involving only countably many co-
ordinates. We choose to give a completely different proof of Theorem 9.13 in
Subsection 6.4.B, based on the concept of local time. We do, however, illustrate
the technique mentioned previously by taking up a less demanding question,
the nondifferentiability of the Brownian path.

D. Nowhere Differentiability

9.16 Definition. For a continuous function f: [0, c0) — R, we denote by

9.12) D*f(t) = Iim M)_—f(t)
h—0+ h
the upper (right and left) Dini derivates at t, and by
(9.13) D_.f(t) = lim ﬂii_h)—_f(t)
- h—0 + h

the lower (right and left) Dini derivates at t. The function f is said to be

' See, however, Adelman (1985) for a simpler argument.
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differentiable at t from the right (respectively, the left), if D*f(t) and D, f(t)
(respectively, D~ f(t) and D_ f(t)) are finite numbers and equal. The function
[ is said to be differentiable at t > 0 if it is differentiable from both the right
and the left and the four Dini derivates agree. At ¢ = 0, differentiability is
defined as differentiability from the right.

9.17 Exercise. Show that for fixed t € [0, 00),
9.14) PlweQ; D*W,(w) = o and D, W(w) = —o0] = 1.

9.18 Theorem (Paley, Wiener & Zygmund (1933)). For almost every w € Q,
the Brownian sample path W (w) is nowhere differentiable. More precisely, the
set

(9:15) {weQ; for each t€[0, ), either D* W(w) = oo or D, W;(w) = —oo}

contains an event F e # with P(F) = 1.

9.19 Remark. At every point ¢t of local maximum for W (w) we have
D* W,(w) < 0, and at every point s of local minimum, D, W,(w) > 0. Thus, the
“or” in (9.15) cannot be replaced by “and.” We do not know whether the set
of (9.15) belongs to Z£Y.

ProoF. It is enough to consider the interval [0,1]. For fixed integers j > 1,
k > 1, we define the set

016 A= U ) {(0eQ|W(o) - W) <}

te[0,1] he[O, 1/k]

Certainly we have

{weQ; —o0 < D, W(w) < D*W(w) < o, for some te[0,11} = | | 4,
Jj=1 k=1
and the proof of the theorem will be complete if we find, for each fixed j, k, an
event Ce # with P(C) =0 and 4; < C.

Let us fix a sample path we A, ie., suppose there exists a number
te[0,1] with |W,,,(w) — W,(w)| < jh for every 0 < h < 1/k. Take an integer
n > 4k. Then there exists an integer i, 1 <i <n, such that (i —1)/n <t <
i/n, and it is easily verified that we also have (i + v)/n)) —t < (v+ 1)/n <
1/k, for v = 1, 2, 3. It follows that

|VV(i+1)/n(w) - W./,.(w)l < |VV(i+1)/n(w) — Wi(w)| + |VVi/n(w) — W(w)|

% i 3
<< 13
n n n
The crucial observation here is that the assumption w e A4, provides infor-
mation about the size of the Brownian increment, not only over the interval

[i/n,(i + 1)/n], but also over the neighboring intervals [(i + 1)/n,(i + 2)/n] and
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[@ + 2)/n,(i + 3)/n]. Indeed,

3i 2 5
[ Weis 2ym(@) = Wiir1ym(@)| <IWitaym — Wil + | Wisrym — Wil < " + PP
4 3
[ Wit 3yn(@) = Wi 2yn(@)] < Wit aym — Wil + | Wi aym — Wil < "y + PR

Therefore, with

3 v+ 1,
cin & Q {weﬂ; [ Wrwin(@) = Wiisr—iyn(@)] < — J},

we have observed that 4 < ( Ji-, C{” holds for every n > 4k. But now
\/;l(VV(i+v)/n - VV(i+v—1)/n) = Z,;, v= 1,23

are independent, standard normal random variables, and one can easily verify
the bound P[|Z,| < ¢] < e. It develops that

105/

(9.17) PCP) < —33: i=L2...n
We have 4, < C upon taking
(9.18) cen Ucres,
n=4k i=1
and (9.17) shows us that P(C) < inf,, 4, P(|Ji-; C{") = 0. O

9.20 Remark. An alternative approach to Theorem 9.18, based on local time,
is indicated in Exercise 3.6.6.

9.21 Exercise. By modifying the preceding proof, establish the following
stronger result: for almost every w e, the Brownian path W (w) is nowhere
Holder-continuous with exponent y > 1. (Hint: By analogy with (9.16), consider
the sets

9.19)
Ay & {we | W, (w) — Wi(w)| < jh? for some te[0,1] and all he[0,1/k]}

and show that each A4 is included in a P-null event.)

E. Law of the Iterated Logarithm

Our next result is the celebrated law of the iterated logarithm, which describes
the oscillations of Brownian motion near ¢t = 0 and as ¢ — co. In preparation
for the theorem, we recall the following upper and lower bounds on the tail
of the normal distribution.
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9.22 Problem. For every x > 0, we have

X @ 1
_e-x2/2 < e—u2/2 du < _e—x2/2‘
x X

9.2
0-20) 1+ x?

9.23 Theorem. (Law of the Iterated Logarithm (A. Hinc¢in (1933))). For almost
every weQ, we have

(i)li_m—W'(w)—=1 (ii) 1im—W'(“’)—=—1
o /2tloglog(1/t) ’ ho /2tloglog(1/t)
(i) Tim — @) _ (iv) lim — 1) —1.

r-»w./2tloglogt_ ’ z—»w./2t10glogt—

9.24 Remark. By symmetry, property (i) follows from (i), and by time-inversion,
properties (iii) and (iv) follow from (i) and (ii), respectively (cf. Lemma 9.4).
Thus it suffices to establish (i).

ProoF. The submartingale inequality (Theorem 1.3.8 (i)) applied to the ex-
ponential martingale {X,, %#,;0 <t < oo} of (8.7) gives for A > 0, > 0:

9.21) P|:max (WS -~ %s) > ﬁ] = P[ max X, > e"”] <e .
0<s<t 2 0<s<t

With the notation h(t) £ /2tloglog(1/t) and fixed numbers 6, 6 in (0, 1), we

choose 4 = (1 + 6)0"h(6"), B = $h(6™), and t = 6™ in (9.21), which becomes

A 1
LZ&( y 2s> = ﬁ] = (nlog(1/0) 7" "

The last expression is the general term of a convergent series; by the Borel-
Cantelli lemma, there exists an event Q46 # of probability one and an
integer-valued random variable Ny, so that for every w € Q,; we have

max [VVs(w) — !

0<s<on

Thus, for every te(6"*1,0"]:

”; 6s9""h(9"):| < %h(en); 1> Nos(o).

Wi(w) < max W(w) < <1 + g) h(0™) < <1 + g) 672 h(2).

0<s<on

Therefore,

W(w) AP
<|1+4=)07V2 > N,
a"+§<zs9" h(t) — < - 2> P Nel)

holds for every w € Qy;, and letting n 1 co we obtain

— W) ( 5) -
im——<(1+=)67"2 as. P.
tbo h(t) 2
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By letting 6 | 0, 6 T 1 through the rationals, we deduce
— W,

9.22 lim— <1; as.P.

622 5o k)

In order to obtain an inequality in the opposite direction, we have to employ
the second half of the Borel-Cantelli lemma, which relies on independence.
We introduce the independent events

Ay = {Wogn — Wogner > /1 —0h(0O")}; n=12,...,
again for fixed 0 < 0 < 1. Inequality (9.20) with x = /2logn + 2loglog(1/0)
provides lower bounds on the probabilities of these events:
Won — Wenss x] e *12 const.

~/9"—0"+12 2\/2—n(x+1/x)2n,/logn; "

Now the last expression is the general term of a divergent series, and the second
half of the Borel-Cantelli lemma (Chung (1974), p. 76, or Ash (1972), p. 272)
guarantees the existence of an event Q, € # with P(Q,) = 1 such that, for every
weQ,and k > 1, there exists an integer m = m(k, w) > k with

(9.23) Wyn(@) — Wymer(0) = /1 — Oh(6™).

On the other hand, (9.22) applied to the Brownian motion — W shows that
there exist an event Q* € # of probability one and an integer-valued random
variable N*, so that for every w € Q*

(9.24) — Wner (@) < 2h(0"*") < 402R(0"), n > N*(w).

P(A,) = P[

1
log|

From (9.23) and (9.24) we conclude that, for every weQ, " Q* and every
integer k > 1, there exists an integer m = m(k,w) > k v N*(w) such that

V:‘;';(m“)’) > /T=0—4./6.

By letting m — oo, we conclude that lim, o (W,/h(t)) = /1 — 6 — /40 holds
a.s. P, and letting 6 | 0 through the rationals we obtain

l_irEW'>1' as. P O
lim ;5 =L as P

We observed in Remark 2.12 that almost every Brownian sample path is
locally Holder-continuous with exponent y for every y € (0,4), and we also